contestId
int64 0
1.01k
| index
stringclasses 40
values | name
stringlengths 2
54
| type
stringclasses 2
values | rating
int64 0
3.4k
| tags
listlengths 0
7
| title
stringclasses 393
values | time-limit
stringclasses 7
values | memory-limit
stringclasses 6
values | problem-description
stringlengths 0
2.97k
| input-specification
stringlengths 4
1.87k
| output-specification
stringlengths 4
1.12k
| demo-input
listlengths 0
7
| demo-output
listlengths 0
7
| note
stringlengths 0
5.24k
| points
float64 0
3.5k
| test_cases
listlengths 0
402
| creationTimeSeconds
int64 1.37B
1.7B
| relativeTimeSeconds
int64 8
2.15B
| programmingLanguage
stringclasses 3
values | verdict
stringclasses 1
value | testset
stringclasses 9
values | passedTestCount
int64 1
402
| timeConsumedMillis
int64 15
8.06k
| memoryConsumedBytes
int64 0
514M
| code
stringlengths 11
61.4k
| prompt
stringlengths 297
7.35k
| response
stringlengths 25
61.4k
| score
float64 2.82
3.99
|
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
898
|
A
|
Rounding
|
PROGRAMMING
| 800
|
[
"implementation",
"math"
] | null | null |
Vasya has a non-negative integer *n*. He wants to round it to nearest integer, which ends up with 0. If *n* already ends up with 0, Vasya considers it already rounded.
For example, if *n*<==<=4722 answer is 4720. If *n*<==<=5 Vasya can round it to 0 or to 10. Both ways are correct.
For given *n* find out to which integer will Vasya round it.
|
The first line contains single integer *n* (0<=≤<=*n*<=≤<=109) — number that Vasya has.
|
Print result of rounding *n*. Pay attention that in some cases answer isn't unique. In that case print any correct answer.
|
[
"5\n",
"113\n",
"1000000000\n",
"5432359\n"
] |
[
"0\n",
"110\n",
"1000000000\n",
"5432360\n"
] |
In the first example *n* = 5. Nearest integers, that ends up with zero are 0 and 10. Any of these answers is correct, so you can print 0 or 10.
| 500
|
[
{
"input": "5",
"output": "0"
},
{
"input": "113",
"output": "110"
},
{
"input": "1000000000",
"output": "1000000000"
},
{
"input": "5432359",
"output": "5432360"
},
{
"input": "999999994",
"output": "999999990"
},
{
"input": "10",
"output": "10"
},
{
"input": "9",
"output": "10"
},
{
"input": "1",
"output": "0"
},
{
"input": "0",
"output": "0"
},
{
"input": "3",
"output": "0"
},
{
"input": "4",
"output": "0"
},
{
"input": "6",
"output": "10"
},
{
"input": "7",
"output": "10"
},
{
"input": "8",
"output": "10"
},
{
"input": "19",
"output": "20"
},
{
"input": "100",
"output": "100"
},
{
"input": "997",
"output": "1000"
},
{
"input": "9994",
"output": "9990"
},
{
"input": "10002",
"output": "10000"
},
{
"input": "100000",
"output": "100000"
},
{
"input": "99999",
"output": "100000"
},
{
"input": "999999999",
"output": "1000000000"
},
{
"input": "999999998",
"output": "1000000000"
},
{
"input": "999999995",
"output": "999999990"
},
{
"input": "999999990",
"output": "999999990"
},
{
"input": "1000000",
"output": "1000000"
},
{
"input": "1000010",
"output": "1000010"
},
{
"input": "10000010",
"output": "10000010"
},
{
"input": "100000011",
"output": "100000010"
},
{
"input": "400000003",
"output": "400000000"
},
{
"input": "234234",
"output": "234230"
},
{
"input": "675621",
"output": "675620"
},
{
"input": "43532",
"output": "43530"
},
{
"input": "4576453",
"output": "4576450"
},
{
"input": "65754674",
"output": "65754670"
},
{
"input": "3245526",
"output": "3245530"
},
{
"input": "123445",
"output": "123440"
},
{
"input": "234217",
"output": "234220"
},
{
"input": "23451218",
"output": "23451220"
},
{
"input": "1231239",
"output": "1231240"
},
{
"input": "1923140",
"output": "1923140"
},
{
"input": "307910310",
"output": "307910310"
},
{
"input": "780961030",
"output": "780961030"
},
{
"input": "103509421",
"output": "103509420"
},
{
"input": "576560141",
"output": "576560140"
},
{
"input": "48851642",
"output": "48851640"
},
{
"input": "226935072",
"output": "226935070"
},
{
"input": "844450763",
"output": "844450760"
},
{
"input": "22534183",
"output": "22534180"
},
{
"input": "640049874",
"output": "640049870"
},
{
"input": "818133304",
"output": "818133300"
},
{
"input": "730616285",
"output": "730616280"
},
{
"input": "613732415",
"output": "613732410"
},
{
"input": "380991216",
"output": "380991220"
},
{
"input": "559074636",
"output": "559074640"
},
{
"input": "176590327",
"output": "176590330"
},
{
"input": "354673757",
"output": "354673760"
},
{
"input": "267156738",
"output": "267156740"
},
{
"input": "150272868",
"output": "150272870"
},
{
"input": "62755859",
"output": "62755860"
},
{
"input": "945871979",
"output": "945871980"
},
{
"input": "46",
"output": "50"
},
{
"input": "999",
"output": "1000"
},
{
"input": "1397",
"output": "1400"
}
] | 1,696,193,253
| 2,147,483,647
|
PyPy 3-64
|
OK
|
TESTS
| 64
| 62
| 0
|
n = int(input())
if n % 10 >= 6:
n += 9
print(n // 10 * 10)
|
Title: Rounding
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Vasya has a non-negative integer *n*. He wants to round it to nearest integer, which ends up with 0. If *n* already ends up with 0, Vasya considers it already rounded.
For example, if *n*<==<=4722 answer is 4720. If *n*<==<=5 Vasya can round it to 0 or to 10. Both ways are correct.
For given *n* find out to which integer will Vasya round it.
Input Specification:
The first line contains single integer *n* (0<=≤<=*n*<=≤<=109) — number that Vasya has.
Output Specification:
Print result of rounding *n*. Pay attention that in some cases answer isn't unique. In that case print any correct answer.
Demo Input:
['5\n', '113\n', '1000000000\n', '5432359\n']
Demo Output:
['0\n', '110\n', '1000000000\n', '5432360\n']
Note:
In the first example *n* = 5. Nearest integers, that ends up with zero are 0 and 10. Any of these answers is correct, so you can print 0 or 10.
|
```python
n = int(input())
if n % 10 >= 6:
n += 9
print(n // 10 * 10)
```
| 3
|
|
507
|
A
|
Amr and Music
|
PROGRAMMING
| 1,000
|
[
"greedy",
"implementation",
"sortings"
] | null | null |
Amr is a young coder who likes music a lot. He always wanted to learn how to play music but he was busy coding so he got an idea.
Amr has *n* instruments, it takes *a**i* days to learn *i*-th instrument. Being busy, Amr dedicated *k* days to learn how to play the maximum possible number of instruments.
Amr asked for your help to distribute his free days between instruments so that he can achieve his goal.
|
The first line contains two numbers *n*, *k* (1<=≤<=*n*<=≤<=100, 0<=≤<=*k*<=≤<=10<=000), the number of instruments and number of days respectively.
The second line contains *n* integers *a**i* (1<=≤<=*a**i*<=≤<=100), representing number of days required to learn the *i*-th instrument.
|
In the first line output one integer *m* representing the maximum number of instruments Amr can learn.
In the second line output *m* space-separated integers: the indices of instruments to be learnt. You may output indices in any order.
if there are multiple optimal solutions output any. It is not necessary to use all days for studying.
|
[
"4 10\n4 3 1 2\n",
"5 6\n4 3 1 1 2\n",
"1 3\n4\n"
] |
[
"4\n1 2 3 4",
"3\n1 3 4",
"0\n"
] |
In the first test Amr can learn all 4 instruments.
In the second test other possible solutions are: {2, 3, 5} or {3, 4, 5}.
In the third test Amr doesn't have enough time to learn the only presented instrument.
| 500
|
[
{
"input": "4 10\n4 3 1 2",
"output": "4\n1 2 3 4"
},
{
"input": "5 6\n4 3 1 1 2",
"output": "3\n3 4 5"
},
{
"input": "1 3\n4",
"output": "0"
},
{
"input": "2 100\n100 100",
"output": "1\n1"
},
{
"input": "3 150\n50 50 50",
"output": "3\n1 2 3"
},
{
"input": "4 0\n100 100 100 100",
"output": "0"
},
{
"input": "100 7567\n100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100",
"output": "75\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75"
},
{
"input": "68 3250\n95 84 67 7 82 75 100 39 31 45 69 100 8 97 13 58 74 40 88 69 35 91 94 28 62 85 51 97 37 15 87 51 24 96 89 49 53 54 35 17 23 54 51 91 94 18 26 92 79 63 23 37 98 43 16 44 82 25 100 59 97 3 60 92 76 58 56 50",
"output": "60\n1 2 3 4 5 6 8 9 10 11 13 15 16 17 18 19 20 21 22 23 24 25 26 27 29 30 31 32 33 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 54 55 56 57 58 60 62 63 64 65 66 67 68"
},
{
"input": "100 10000\n100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100",
"output": "100\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100"
},
{
"input": "25 1293\n96 13 7 2 81 72 39 45 5 88 47 23 60 81 54 46 63 52 41 57 2 87 90 28 93",
"output": "25\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25"
},
{
"input": "98 7454\n71 57 94 76 52 90 76 81 67 60 99 88 98 61 73 61 80 91 88 93 53 55 88 64 71 55 81 76 52 63 87 99 84 66 65 52 83 99 92 62 95 81 90 67 64 57 80 80 67 75 77 58 71 85 97 50 97 55 52 59 55 96 57 53 85 100 95 95 74 51 78 88 66 98 97 86 94 81 56 64 61 57 67 95 85 82 85 60 76 95 69 95 76 91 74 100 69 76",
"output": "98\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98"
},
{
"input": "5 249\n96 13 7 2 81",
"output": "5\n1 2 3 4 5"
},
{
"input": "61 3331\n12 63 99 56 57 70 53 21 41 82 97 63 42 91 18 84 99 78 85 89 6 63 76 28 33 78 100 46 78 78 32 13 11 12 73 50 34 60 12 73 9 19 88 100 28 51 50 45 51 10 78 38 25 22 8 40 71 55 56 83 44",
"output": "61\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61"
},
{
"input": "99 10000\n42 88 21 63 59 38 23 100 86 37 57 86 11 22 19 89 6 19 15 64 18 77 83 29 14 26 80 73 8 51 14 19 9 98 81 96 47 77 22 19 86 71 91 61 84 8 80 28 6 25 33 95 96 21 57 92 96 57 31 88 38 32 70 19 25 67 29 78 18 90 37 50 62 33 49 16 47 39 9 33 88 69 69 29 14 66 75 76 41 98 40 52 65 25 33 47 39 24 80",
"output": "99\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99"
},
{
"input": "89 4910\n44 9 31 70 85 72 55 9 85 84 63 43 92 85 10 34 83 28 73 45 62 7 34 52 89 58 24 10 28 6 72 45 57 36 71 34 26 24 38 59 5 15 48 82 58 99 8 77 49 84 14 58 29 46 88 50 13 7 58 23 40 63 96 23 46 31 17 8 59 93 12 76 69 20 43 44 91 78 68 94 37 27 100 65 40 25 52 30 97",
"output": "89\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89"
},
{
"input": "40 2110\n91 18 52 22 26 67 59 10 55 43 97 78 20 81 99 36 33 12 86 32 82 87 70 63 48 48 45 94 78 23 77 15 68 17 71 54 44 98 54 8",
"output": "39\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40"
},
{
"input": "27 1480\n38 95 9 36 21 70 19 89 35 46 7 31 88 25 10 72 81 32 65 83 68 57 50 20 73 42 12",
"output": "27\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27"
},
{
"input": "57 2937\n84 73 23 62 93 64 23 17 53 100 47 67 52 53 90 58 19 84 33 69 46 47 50 28 73 74 40 42 92 70 32 29 57 52 23 82 42 32 46 83 45 87 40 58 50 51 48 37 57 52 78 26 21 54 16 66 93",
"output": "55\n1 2 3 4 5 6 7 8 9 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56"
},
{
"input": "6 41\n6 8 9 8 9 8",
"output": "5\n1 2 3 4 6"
},
{
"input": "9 95\n9 11 12 11 12 11 8 11 10",
"output": "9\n1 2 3 4 5 6 7 8 9"
},
{
"input": "89 6512\n80 87 61 91 85 51 58 69 79 57 81 67 74 55 88 70 77 61 55 81 56 76 79 67 92 52 54 73 67 72 81 54 72 81 65 88 83 57 83 92 62 66 63 58 61 66 92 77 73 66 71 85 92 73 82 65 76 64 58 62 64 51 90 59 79 70 86 89 86 51 72 61 60 71 52 74 58 72 77 91 91 60 76 56 64 55 61 81 52",
"output": "89\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89"
},
{
"input": "5 29\n6 3 7 2 1",
"output": "5\n1 2 3 4 5"
},
{
"input": "5 49\n16 13 7 2 1",
"output": "5\n1 2 3 4 5"
},
{
"input": "6 84\n16 21 25 6 17 16",
"output": "5\n1 2 4 5 6"
},
{
"input": "4 9\n7 4 2 1",
"output": "3\n2 3 4"
},
{
"input": "50 2500\n50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50",
"output": "50\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50"
},
{
"input": "100 10000\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1",
"output": "100\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100"
},
{
"input": "100 100\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1",
"output": "100\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100"
},
{
"input": "96 514\n6 3 7 2 1 2 9 5 5 8 7 3 10 1 4 6 3 2 1 7 2 7 10 8 3 8 10 4 8 8 2 5 3 2 1 4 4 8 4 3 3 7 4 4 2 7 8 3 9 2 2 6 3 4 8 6 7 5 4 3 10 7 6 5 10 1 7 10 7 7 8 2 1 2 3 10 9 8 8 2 7 1 2 7 10 1 2 2 3 8 6 2 9 6 9 6",
"output": "96\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96"
},
{
"input": "47 350\n6 1 9 12 8 8 11 4 4 8 8 3 3 2 12 7 7 7 12 2 9 1 5 10 6 1 5 2 6 3 9 13 8 3 10 10 10 10 6 9 10 10 8 5 12 11 3",
"output": "47\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47"
},
{
"input": "100 200\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2",
"output": "100\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100"
},
{
"input": "2 10000\n1 1",
"output": "2\n1 2"
},
{
"input": "1 2\n1",
"output": "1\n1"
},
{
"input": "1 3\n2",
"output": "1\n1"
},
{
"input": "34 4964\n37 27 90 83 36 59 80 7 28 41 97 72 64 8 40 30 76 4 92 51 52 44 42 13 38 64 60 66 47 93 30 35 71 71",
"output": "34\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34"
},
{
"input": "2 2\n1 10",
"output": "1\n1"
},
{
"input": "2 5\n1 1",
"output": "2\n1 2"
},
{
"input": "1 4\n3",
"output": "1\n1"
},
{
"input": "4 384\n1 2 3 4",
"output": "4\n1 2 3 4"
}
] | 1,644,838,092
| 2,147,483,647
|
PyPy 3-64
|
OK
|
TESTS
| 39
| 78
| 0
|
def main():
n, k = list(map(int, input().split()))
arr = list(map(int, input().split()))
for index, value in enumerate(arr):
arr[index] = (index, value)
arr.sort(key=lambda x: x[1])
learn_arr = []
s = 0
for element in arr:
s += element[1]
if s > k:
break
else:
learn_arr.append(element[0] + 1)
print(len(learn_arr))
print(*learn_arr)
if __name__ == "__main__":
main()
|
Title: Amr and Music
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Amr is a young coder who likes music a lot. He always wanted to learn how to play music but he was busy coding so he got an idea.
Amr has *n* instruments, it takes *a**i* days to learn *i*-th instrument. Being busy, Amr dedicated *k* days to learn how to play the maximum possible number of instruments.
Amr asked for your help to distribute his free days between instruments so that he can achieve his goal.
Input Specification:
The first line contains two numbers *n*, *k* (1<=≤<=*n*<=≤<=100, 0<=≤<=*k*<=≤<=10<=000), the number of instruments and number of days respectively.
The second line contains *n* integers *a**i* (1<=≤<=*a**i*<=≤<=100), representing number of days required to learn the *i*-th instrument.
Output Specification:
In the first line output one integer *m* representing the maximum number of instruments Amr can learn.
In the second line output *m* space-separated integers: the indices of instruments to be learnt. You may output indices in any order.
if there are multiple optimal solutions output any. It is not necessary to use all days for studying.
Demo Input:
['4 10\n4 3 1 2\n', '5 6\n4 3 1 1 2\n', '1 3\n4\n']
Demo Output:
['4\n1 2 3 4', '3\n1 3 4', '0\n']
Note:
In the first test Amr can learn all 4 instruments.
In the second test other possible solutions are: {2, 3, 5} or {3, 4, 5}.
In the third test Amr doesn't have enough time to learn the only presented instrument.
|
```python
def main():
n, k = list(map(int, input().split()))
arr = list(map(int, input().split()))
for index, value in enumerate(arr):
arr[index] = (index, value)
arr.sort(key=lambda x: x[1])
learn_arr = []
s = 0
for element in arr:
s += element[1]
if s > k:
break
else:
learn_arr.append(element[0] + 1)
print(len(learn_arr))
print(*learn_arr)
if __name__ == "__main__":
main()
```
| 3
|
|
172
|
A
|
Phone Code
|
PROGRAMMING
| 800
|
[
"*special",
"brute force",
"implementation"
] | null | null |
Polycarpus has *n* friends in Tarasov city. Polycarpus knows phone numbers of all his friends: they are strings *s*1,<=*s*2,<=...,<=*s**n*. All these strings consist only of digits and have the same length.
Once Polycarpus needed to figure out Tarasov city phone code. He assumed that the phone code of the city is the longest common prefix of all phone numbers of his friends. In other words, it is the longest string *c* which is a prefix (the beginning) of each *s**i* for all *i* (1<=≤<=*i*<=≤<=*n*). Help Polycarpus determine the length of the city phone code.
|
The first line of the input contains an integer *n* (2<=≤<=*n*<=≤<=3·104) — the number of Polycarpus's friends. The following *n* lines contain strings *s*1,<=*s*2,<=...,<=*s**n* — the phone numbers of Polycarpus's friends. It is guaranteed that all strings consist only of digits and have the same length from 1 to 20, inclusive. It is also guaranteed that all strings are different.
|
Print the number of digits in the city phone code.
|
[
"4\n00209\n00219\n00999\n00909\n",
"2\n1\n2\n",
"3\n77012345678999999999\n77012345678901234567\n77012345678998765432\n"
] |
[
"2\n",
"0\n",
"12\n"
] |
A prefix of string *t* is a string that is obtained by deleting zero or more digits from the end of string *t*. For example, string "00209" has 6 prefixes: "" (an empty prefix), "0", "00", "002", "0020", "00209".
In the first sample the city phone code is string "00".
In the second sample the city phone code is an empty string.
In the third sample the city phone code is string "770123456789".
| 1,000
|
[
{
"input": "4\n00209\n00219\n00999\n00909",
"output": "2"
},
{
"input": "2\n1\n2",
"output": "0"
},
{
"input": "3\n77012345678999999999\n77012345678901234567\n77012345678998765432",
"output": "12"
},
{
"input": "5\n4491183345\n4491184811\n4491162340\n4491233399\n4491449214",
"output": "4"
},
{
"input": "10\n15424\n10953\n19176\n15514\n16284\n18680\n19305\n13816\n16168\n15924",
"output": "1"
},
{
"input": "10\n4906361343\n8985777485\n1204265609\n7088384855\n4127287014\n7904807820\n3032139021\n5999959109\n6477458281\n3244359368",
"output": "0"
},
{
"input": "10\n3717208309\n3717208306\n3717208302\n3717208301\n3717208303\n3717208308\n3717208304\n3717208307\n3717208300\n3717208305",
"output": "9"
},
{
"input": "9\n2881\n2808\n2868\n2874\n2894\n2870\n2818\n2896\n2890",
"output": "2"
},
{
"input": "2\n4\n9",
"output": "0"
},
{
"input": "2\n29867863763143509570\n59261213969200291523",
"output": "0"
},
{
"input": "2\n84\n62",
"output": "0"
},
{
"input": "2\n75970434466248453472\n75970434466248453476",
"output": "19"
},
{
"input": "10\n17254072509168593435\n17254072509168593433\n17254072509168593430\n17254072509168593432\n17254072509168593439\n17254072509168593436\n17254072509168593438\n17254072509168593437\n17254072509168593431\n17254072509168593434",
"output": "19"
}
] | 1,689,328,894
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 28
| 248
| 2,969,600
|
t=int(input())
l=[]
for _ in range(t):
s=input()
l.append(s)
m=l[0]
c=0
for k in range(len(m)):
flag=1
for i in range(1,len(l)):
if l[i][k]!=m[k]:
flag=0
break
if flag==1:
c+=1
else:
break
print(c)
|
Title: Phone Code
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Polycarpus has *n* friends in Tarasov city. Polycarpus knows phone numbers of all his friends: they are strings *s*1,<=*s*2,<=...,<=*s**n*. All these strings consist only of digits and have the same length.
Once Polycarpus needed to figure out Tarasov city phone code. He assumed that the phone code of the city is the longest common prefix of all phone numbers of his friends. In other words, it is the longest string *c* which is a prefix (the beginning) of each *s**i* for all *i* (1<=≤<=*i*<=≤<=*n*). Help Polycarpus determine the length of the city phone code.
Input Specification:
The first line of the input contains an integer *n* (2<=≤<=*n*<=≤<=3·104) — the number of Polycarpus's friends. The following *n* lines contain strings *s*1,<=*s*2,<=...,<=*s**n* — the phone numbers of Polycarpus's friends. It is guaranteed that all strings consist only of digits and have the same length from 1 to 20, inclusive. It is also guaranteed that all strings are different.
Output Specification:
Print the number of digits in the city phone code.
Demo Input:
['4\n00209\n00219\n00999\n00909\n', '2\n1\n2\n', '3\n77012345678999999999\n77012345678901234567\n77012345678998765432\n']
Demo Output:
['2\n', '0\n', '12\n']
Note:
A prefix of string *t* is a string that is obtained by deleting zero or more digits from the end of string *t*. For example, string "00209" has 6 prefixes: "" (an empty prefix), "0", "00", "002", "0020", "00209".
In the first sample the city phone code is string "00".
In the second sample the city phone code is an empty string.
In the third sample the city phone code is string "770123456789".
|
```python
t=int(input())
l=[]
for _ in range(t):
s=input()
l.append(s)
m=l[0]
c=0
for k in range(len(m)):
flag=1
for i in range(1,len(l)):
if l[i][k]!=m[k]:
flag=0
break
if flag==1:
c+=1
else:
break
print(c)
```
| 3
|
|
20
|
A
|
BerOS file system
|
PROGRAMMING
| 1,700
|
[
"implementation"
] |
A. BerOS file system
|
2
|
64
|
The new operating system BerOS has a nice feature. It is possible to use any number of characters '/' as a delimiter in path instead of one traditional '/'. For example, strings //usr///local//nginx/sbin// and /usr/local/nginx///sbin are equivalent. The character '/' (or some sequence of such characters) at the end of the path is required only in case of the path to the root directory, which can be represented as single character '/'.
A path called normalized if it contains the smallest possible number of characters '/'.
Your task is to transform a given path to the normalized form.
|
The first line of the input contains only lowercase Latin letters and character '/' — the path to some directory. All paths start with at least one character '/'. The length of the given line is no more than 100 characters, it is not empty.
|
The path in normalized form.
|
[
"//usr///local//nginx/sbin\n"
] |
[
"/usr/local/nginx/sbin\n"
] |
none
| 500
|
[
{
"input": "//usr///local//nginx/sbin",
"output": "/usr/local/nginx/sbin"
},
{
"input": "////a//b/////g",
"output": "/a/b/g"
},
{
"input": "/a/b/c",
"output": "/a/b/c"
},
{
"input": "/",
"output": "/"
},
{
"input": "////",
"output": "/"
},
{
"input": "/a//aa/a//",
"output": "/a/aa/a"
},
{
"input": "/aa//b/aa",
"output": "/aa/b/aa"
},
{
"input": "////////////////////////////////////////////////////////////////////////////////////////////////////",
"output": "/"
},
{
"input": "/opt///pokerband///srvb/opt///pokerband///srvb////pokerband///srvb/",
"output": "/opt/pokerband/srvb/opt/pokerband/srvb/pokerband/srvb"
},
{
"input": "/root/pokerband/trunk/server/game/code/src/main/java/com/uosipa/pokerband/gameserver/game/",
"output": "/root/pokerband/trunk/server/game/code/src/main/java/com/uosipa/pokerband/gameserver/game"
},
{
"input": "/root//pokerband/trunk/server/game/code/src///main/java/com/uosipa/pokerband//gameserver/game//",
"output": "/root/pokerband/trunk/server/game/code/src/main/java/com/uosipa/pokerband/gameserver/game"
},
{
"input": "/root//pokerband/trunk/server/game/code/src///main/java/com/uosipa/pokerband//gameserver/game//test/",
"output": "/root/pokerband/trunk/server/game/code/src/main/java/com/uosipa/pokerband/gameserver/game/test"
},
{
"input": "/root//pokerband/trunk/server/game/code/src///main/java/com/uosipa/pokerband//gameserver/game//testt",
"output": "/root/pokerband/trunk/server/game/code/src/main/java/com/uosipa/pokerband/gameserver/game/testt"
},
{
"input": "///a//a////a/a//a//a//a/////",
"output": "/a/a/a/a/a/a/a"
},
{
"input": "/zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz",
"output": "/zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz"
},
{
"input": "/zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz/",
"output": "/zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz"
},
{
"input": "/a/a/a/a/a/a/a/a/a/a/a/a/a/a/a/a/a/a/a/a/a/a/a/a/a/a/a/a/a/a/a/a/a/a/a/a/a/a/a/a/a/a/a/a/a/a/a/a/a/a",
"output": "/a/a/a/a/a/a/a/a/a/a/a/a/a/a/a/a/a/a/a/a/a/a/a/a/a/a/a/a/a/a/a/a/a/a/a/a/a/a/a/a/a/a/a/a/a/a/a/a/a/a"
},
{
"input": "///////////////////////////////////////////////////////////////////////////////////////////////////z",
"output": "/z"
},
{
"input": "/z//////////////////////////////////////////////////////////////////////////////////////////////////",
"output": "/z"
}
] | 1,581,583,320
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 19
| 218
| 0
|
flag = False
for i in filter(None, input().split('/')):
flag = True
print('/' + i, end = '')
if not flag:
print('/')
else:
print()
|
Title: BerOS file system
Time Limit: 2 seconds
Memory Limit: 64 megabytes
Problem Description:
The new operating system BerOS has a nice feature. It is possible to use any number of characters '/' as a delimiter in path instead of one traditional '/'. For example, strings //usr///local//nginx/sbin// and /usr/local/nginx///sbin are equivalent. The character '/' (or some sequence of such characters) at the end of the path is required only in case of the path to the root directory, which can be represented as single character '/'.
A path called normalized if it contains the smallest possible number of characters '/'.
Your task is to transform a given path to the normalized form.
Input Specification:
The first line of the input contains only lowercase Latin letters and character '/' — the path to some directory. All paths start with at least one character '/'. The length of the given line is no more than 100 characters, it is not empty.
Output Specification:
The path in normalized form.
Demo Input:
['//usr///local//nginx/sbin\n']
Demo Output:
['/usr/local/nginx/sbin\n']
Note:
none
|
```python
flag = False
for i in filter(None, input().split('/')):
flag = True
print('/' + i, end = '')
if not flag:
print('/')
else:
print()
```
| 3.9455
|
602
|
A
|
Two Bases
|
PROGRAMMING
| 1,100
|
[
"brute force",
"implementation"
] | null | null |
After seeing the "ALL YOUR BASE ARE BELONG TO US" meme for the first time, numbers *X* and *Y* realised that they have different bases, which complicated their relations.
You're given a number *X* represented in base *b**x* and a number *Y* represented in base *b**y*. Compare those two numbers.
|
The first line of the input contains two space-separated integers *n* and *b**x* (1<=≤<=*n*<=≤<=10, 2<=≤<=*b**x*<=≤<=40), where *n* is the number of digits in the *b**x*-based representation of *X*.
The second line contains *n* space-separated integers *x*1,<=*x*2,<=...,<=*x**n* (0<=≤<=*x**i*<=<<=*b**x*) — the digits of *X*. They are given in the order from the most significant digit to the least significant one.
The following two lines describe *Y* in the same way: the third line contains two space-separated integers *m* and *b**y* (1<=≤<=*m*<=≤<=10, 2<=≤<=*b**y*<=≤<=40, *b**x*<=≠<=*b**y*), where *m* is the number of digits in the *b**y*-based representation of *Y*, and the fourth line contains *m* space-separated integers *y*1,<=*y*2,<=...,<=*y**m* (0<=≤<=*y**i*<=<<=*b**y*) — the digits of *Y*.
There will be no leading zeroes. Both *X* and *Y* will be positive. All digits of both numbers are given in the standard decimal numeral system.
|
Output a single character (quotes for clarity):
- '<' if *X*<=<<=*Y* - '>' if *X*<=><=*Y* - '=' if *X*<==<=*Y*
|
[
"6 2\n1 0 1 1 1 1\n2 10\n4 7\n",
"3 3\n1 0 2\n2 5\n2 4\n",
"7 16\n15 15 4 0 0 7 10\n7 9\n4 8 0 3 1 5 0\n"
] |
[
"=\n",
"<\n",
">\n"
] |
In the first sample, *X* = 101111<sub class="lower-index">2</sub> = 47<sub class="lower-index">10</sub> = *Y*.
In the second sample, *X* = 102<sub class="lower-index">3</sub> = 21<sub class="lower-index">5</sub> and *Y* = 24<sub class="lower-index">5</sub> = 112<sub class="lower-index">3</sub>, thus *X* < *Y*.
In the third sample, <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/603a342b0ae3e56fed542d1c50c0a5ff6ce2cbaa.png" style="max-width: 100.0%;max-height: 100.0%;"/> and *Y* = 4803150<sub class="lower-index">9</sub>. We may notice that *X* starts with much larger digits and *b*<sub class="lower-index">*x*</sub> is much larger than *b*<sub class="lower-index">*y*</sub>, so *X* is clearly larger than *Y*.
| 500
|
[
{
"input": "6 2\n1 0 1 1 1 1\n2 10\n4 7",
"output": "="
},
{
"input": "3 3\n1 0 2\n2 5\n2 4",
"output": "<"
},
{
"input": "7 16\n15 15 4 0 0 7 10\n7 9\n4 8 0 3 1 5 0",
"output": ">"
},
{
"input": "2 2\n1 0\n2 3\n1 0",
"output": "<"
},
{
"input": "2 2\n1 0\n1 3\n1",
"output": ">"
},
{
"input": "10 2\n1 0 1 0 1 0 1 0 1 0\n10 3\n2 2 2 2 2 2 2 2 2 2",
"output": "<"
},
{
"input": "10 16\n15 15 4 0 0 0 0 7 10 9\n7 9\n4 8 0 3 1 5 0",
"output": ">"
},
{
"input": "5 5\n4 4 4 4 4\n4 6\n5 5 5 5",
"output": ">"
},
{
"input": "2 8\n1 0\n4 2\n1 0 0 0",
"output": "="
},
{
"input": "5 2\n1 0 0 0 1\n6 8\n1 4 7 2 0 0",
"output": "<"
},
{
"input": "6 7\n1 1 2 1 2 1\n6 6\n2 3 2 2 2 2",
"output": "="
},
{
"input": "9 35\n34 3 20 29 27 30 2 8 5\n7 33\n17 3 22 31 1 11 6",
"output": ">"
},
{
"input": "1 8\n5\n9 27\n23 23 23 23 23 23 23 23 23",
"output": "<"
},
{
"input": "4 7\n3 0 6 6\n3 11\n7 10 10",
"output": ">"
},
{
"input": "1 40\n1\n2 5\n1 0",
"output": "<"
},
{
"input": "1 36\n35\n4 5\n2 4 4 1",
"output": "<"
},
{
"input": "1 30\n1\n1 31\n1",
"output": "="
},
{
"input": "1 3\n1\n1 2\n1",
"output": "="
},
{
"input": "1 2\n1\n1 40\n1",
"output": "="
},
{
"input": "6 29\n1 1 1 1 1 1\n10 21\n1 1 1 1 1 1 1 1 1 1",
"output": "<"
},
{
"input": "3 5\n1 0 0\n3 3\n2 2 2",
"output": "<"
},
{
"input": "2 8\n1 0\n2 3\n2 2",
"output": "="
},
{
"input": "2 4\n3 3\n2 15\n1 0",
"output": "="
},
{
"input": "2 35\n1 0\n2 6\n5 5",
"output": "="
},
{
"input": "2 6\n5 5\n2 34\n1 0",
"output": ">"
},
{
"input": "2 7\n1 0\n2 3\n2 2",
"output": "<"
},
{
"input": "2 2\n1 0\n1 3\n2",
"output": "="
},
{
"input": "2 9\n5 5\n4 3\n1 0 0 0",
"output": ">"
},
{
"input": "1 24\n6\n3 9\n1 1 1",
"output": "<"
},
{
"input": "5 37\n9 9 9 9 9\n6 27\n13 0 0 0 0 0",
"output": "<"
},
{
"input": "10 2\n1 1 1 1 1 1 1 1 1 1\n10 34\n14 14 14 14 14 14 14 14 14 14",
"output": "<"
},
{
"input": "7 26\n8 0 0 0 0 0 0\n9 9\n3 3 3 3 3 3 3 3 3",
"output": ">"
},
{
"input": "2 40\n2 0\n5 13\n4 0 0 0 0",
"output": "<"
},
{
"input": "1 22\n15\n10 14\n3 3 3 3 3 3 3 3 3 3",
"output": "<"
},
{
"input": "10 22\n3 3 3 3 3 3 3 3 3 3\n3 40\n19 19 19",
"output": ">"
},
{
"input": "2 29\n11 11\n6 26\n11 11 11 11 11 11",
"output": "<"
},
{
"input": "5 3\n1 0 0 0 0\n4 27\n1 0 0 0",
"output": "<"
},
{
"input": "10 3\n1 0 0 0 0 0 0 0 0 0\n8 13\n1 0 0 0 0 0 0 0",
"output": "<"
},
{
"input": "4 20\n1 1 1 1\n5 22\n1 1 1 1 1",
"output": "<"
},
{
"input": "10 39\n34 2 24 34 11 6 33 12 22 21\n10 36\n25 35 17 24 30 0 1 32 14 35",
"output": ">"
},
{
"input": "10 39\n35 12 31 35 28 27 25 8 22 25\n10 40\n23 21 18 12 15 29 38 32 4 8",
"output": ">"
},
{
"input": "10 38\n16 19 37 32 16 7 14 33 16 11\n10 39\n10 27 35 15 31 15 17 16 38 35",
"output": ">"
},
{
"input": "10 39\n20 12 10 32 24 14 37 35 10 38\n9 40\n1 13 0 10 22 20 1 5 35",
"output": ">"
},
{
"input": "10 40\n18 1 2 25 28 2 10 2 17 37\n10 39\n37 8 12 8 21 11 23 11 25 21",
"output": "<"
},
{
"input": "9 39\n10 20 16 36 30 29 28 9 8\n9 38\n12 36 10 22 6 3 19 12 34",
"output": "="
},
{
"input": "7 39\n28 16 13 25 19 23 4\n7 38\n33 8 2 19 3 21 14",
"output": "="
},
{
"input": "10 16\n15 15 4 0 0 0 0 7 10 9\n10 9\n4 8 0 3 1 5 4 8 1 0",
"output": ">"
},
{
"input": "7 22\n1 13 9 16 7 13 3\n4 4\n3 0 2 1",
"output": ">"
},
{
"input": "10 29\n10 19 8 27 1 24 13 15 13 26\n2 28\n20 14",
"output": ">"
},
{
"input": "6 16\n2 13 7 13 15 6\n10 22\n17 17 21 9 16 11 4 4 13 17",
"output": "<"
},
{
"input": "8 26\n6 6 17 25 24 8 8 25\n4 27\n24 7 5 24",
"output": ">"
},
{
"input": "10 23\n5 21 4 15 12 7 10 7 16 21\n4 17\n3 11 1 14",
"output": ">"
},
{
"input": "10 21\n4 7 7 2 13 7 19 19 18 19\n3 31\n6 11 28",
"output": ">"
},
{
"input": "1 30\n9\n7 37\n20 11 18 14 0 36 27",
"output": "<"
},
{
"input": "5 35\n22 18 28 29 11\n2 3\n2 0",
"output": ">"
},
{
"input": "7 29\n14 26 14 22 11 11 8\n6 28\n2 12 10 17 0 14",
"output": ">"
},
{
"input": "2 37\n25 2\n3 26\n13 13 12",
"output": "<"
},
{
"input": "8 8\n4 0 4 3 4 1 5 6\n8 24\n19 8 15 6 10 7 2 18",
"output": "<"
},
{
"input": "4 22\n18 16 1 2\n10 26\n23 0 12 24 16 2 24 25 1 11",
"output": "<"
},
{
"input": "7 31\n14 6 16 6 26 18 17\n7 24\n22 10 4 5 14 6 9",
"output": ">"
},
{
"input": "10 29\n15 22 0 5 11 12 17 22 4 27\n4 22\n9 2 8 14",
"output": ">"
},
{
"input": "2 10\n6 0\n10 26\n16 14 8 18 24 4 9 5 22 25",
"output": "<"
},
{
"input": "7 2\n1 0 0 0 1 0 1\n9 6\n1 1 5 1 2 5 3 5 3",
"output": "<"
},
{
"input": "3 9\n2 5 4\n1 19\n15",
"output": ">"
},
{
"input": "6 16\n4 9 13 4 2 8\n4 10\n3 5 2 4",
"output": ">"
},
{
"input": "2 12\n1 4\n8 16\n4 4 10 6 15 10 8 15",
"output": "<"
},
{
"input": "3 19\n9 18 16\n4 10\n4 3 5 4",
"output": "<"
},
{
"input": "7 3\n1 1 2 1 2 0 2\n2 2\n1 0",
"output": ">"
},
{
"input": "3 2\n1 1 1\n1 3\n1",
"output": ">"
},
{
"input": "4 4\n1 3 1 3\n9 3\n1 1 0 1 2 2 2 2 1",
"output": "<"
},
{
"input": "9 3\n1 0 0 1 1 0 0 1 2\n6 4\n1 2 0 1 3 2",
"output": ">"
},
{
"input": "3 5\n1 1 3\n10 4\n3 3 2 3 0 0 0 3 1 1",
"output": "<"
},
{
"input": "6 4\n3 3 2 2 0 2\n6 5\n1 1 1 1 0 3",
"output": ">"
},
{
"input": "6 5\n4 4 4 3 1 3\n7 6\n4 2 2 2 5 0 4",
"output": "<"
},
{
"input": "2 5\n3 3\n6 6\n4 2 0 1 1 0",
"output": "<"
},
{
"input": "10 6\n3 5 4 2 4 2 3 5 4 2\n10 7\n3 2 1 1 3 1 0 3 4 5",
"output": "<"
},
{
"input": "9 7\n2 0 3 2 6 6 1 4 3\n9 6\n4 4 1 1 4 5 5 0 2",
"output": ">"
},
{
"input": "1 7\n2\n4 8\n3 2 3 2",
"output": "<"
},
{
"input": "2 8\n4 1\n1 7\n1",
"output": ">"
},
{
"input": "1 10\n7\n3 9\n2 1 7",
"output": "<"
},
{
"input": "9 9\n2 2 3 6 3 6 3 8 4\n6 10\n4 7 7 0 3 8",
"output": ">"
},
{
"input": "3 11\n6 5 2\n8 10\n5 0 1 8 3 5 1 4",
"output": "<"
},
{
"input": "6 11\n10 6 1 0 2 2\n9 10\n4 3 4 1 1 6 3 4 1",
"output": "<"
},
{
"input": "2 19\n4 8\n8 18\n7 8 6 8 4 11 9 1",
"output": "<"
},
{
"input": "2 24\n20 9\n10 23\n21 10 15 11 6 8 20 16 14 11",
"output": "<"
},
{
"input": "8 36\n23 5 27 1 10 7 26 27\n10 35\n28 33 9 22 10 28 26 4 27 29",
"output": "<"
},
{
"input": "6 37\n22 15 14 10 1 8\n6 36\n18 5 28 10 1 17",
"output": ">"
},
{
"input": "5 38\n1 31 2 21 21\n9 37\n8 36 32 30 13 9 24 2 35",
"output": "<"
},
{
"input": "3 39\n27 4 3\n8 38\n32 15 11 34 35 27 30 15",
"output": "<"
},
{
"input": "2 40\n22 38\n5 39\n8 9 32 4 1",
"output": "<"
},
{
"input": "9 37\n1 35 7 33 20 21 26 24 5\n10 40\n39 4 11 9 33 12 26 32 11 8",
"output": "<"
},
{
"input": "4 39\n13 25 23 35\n6 38\n19 36 20 4 12 33",
"output": "<"
},
{
"input": "5 37\n29 29 5 7 27\n3 39\n13 1 10",
"output": ">"
},
{
"input": "7 28\n1 10 7 0 13 14 11\n6 38\n8 11 27 5 14 35",
"output": "="
},
{
"input": "2 34\n1 32\n2 33\n2 0",
"output": "="
},
{
"input": "7 5\n4 0 4 1 3 0 4\n4 35\n1 18 7 34",
"output": "="
},
{
"input": "9 34\n5 8 4 4 26 1 30 5 24\n10 27\n1 6 3 10 8 13 22 3 12 8",
"output": "="
},
{
"input": "10 36\n1 13 13 23 31 35 5 32 18 21\n9 38\n32 1 20 14 12 37 13 15 23",
"output": "="
},
{
"input": "10 40\n1 1 14 5 6 3 3 11 3 25\n10 39\n1 11 24 33 25 34 38 29 27 33",
"output": "="
},
{
"input": "9 37\n2 6 1 9 19 6 11 28 35\n9 40\n1 6 14 37 1 8 31 4 9",
"output": "="
},
{
"input": "4 5\n1 4 2 0\n4 4\n3 2 2 3",
"output": "="
},
{
"input": "6 4\n1 1 1 2 2 2\n7 3\n1 2 2 0 1 0 0",
"output": "="
},
{
"input": "2 5\n3 3\n5 2\n1 0 0 1 0",
"output": "="
},
{
"input": "1 9\n2\n1 10\n2",
"output": "="
},
{
"input": "6 19\n4 9 14 1 3 1\n8 10\n1 1 1 7 3 7 3 0",
"output": "="
},
{
"input": "7 15\n8 5 8 10 13 6 13\n8 13\n1 6 9 10 12 3 12 8",
"output": "="
},
{
"input": "8 18\n1 1 4 15 7 4 9 3\n8 17\n1 10 2 10 3 11 14 10",
"output": "="
},
{
"input": "8 21\n5 19 0 14 13 13 10 5\n10 13\n1 0 0 6 11 10 8 2 8 1",
"output": "="
},
{
"input": "8 28\n3 1 10 19 10 14 21 15\n8 21\n14 0 18 13 2 1 18 6",
"output": ">"
},
{
"input": "7 34\n21 22 28 16 30 4 27\n7 26\n5 13 21 10 8 12 10",
"output": ">"
},
{
"input": "6 26\n7 6 4 18 6 1\n6 25\n5 3 11 1 8 15",
"output": ">"
},
{
"input": "10 31\n6 27 17 22 14 16 25 9 13 26\n10 39\n6 1 3 26 12 32 28 19 9 19",
"output": "<"
},
{
"input": "3 5\n2 2 3\n3 6\n4 3 5",
"output": "<"
},
{
"input": "2 24\n4 18\n2 40\n29 24",
"output": "<"
},
{
"input": "5 38\n2 24 34 14 17\n8 34\n4 24 31 2 14 15 8 15",
"output": "<"
},
{
"input": "9 40\n39 39 39 39 39 39 39 39 39\n6 35\n34 34 34 34 34 34",
"output": ">"
},
{
"input": "10 40\n39 39 39 39 39 39 39 39 39 39\n10 8\n7 7 7 7 7 7 7 7 7 7",
"output": ">"
},
{
"input": "10 40\n39 39 39 39 39 39 39 39 39 39\n10 39\n38 38 38 38 38 38 38 38 38 38",
"output": ">"
}
] | 1,645,111,983
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 118
| 46
| 0
|
nx, bx = map(int, input().split(' ')[:2])
xs = list(map(int, input().split(' ')[:nx]))
ny, by = map(int, input().split(' ')[:2])
ys = list(map(int, input().split(' ')[:ny]))
p = 1
x = 0
for d in reversed(xs):
x += d * p
p *= bx
p = 1
y = 0
for d in reversed(ys):
y += d * p
p *= by
if x == y:
print('=')
elif x < y:
print('<')
else:
print('>')
|
Title: Two Bases
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
After seeing the "ALL YOUR BASE ARE BELONG TO US" meme for the first time, numbers *X* and *Y* realised that they have different bases, which complicated their relations.
You're given a number *X* represented in base *b**x* and a number *Y* represented in base *b**y*. Compare those two numbers.
Input Specification:
The first line of the input contains two space-separated integers *n* and *b**x* (1<=≤<=*n*<=≤<=10, 2<=≤<=*b**x*<=≤<=40), where *n* is the number of digits in the *b**x*-based representation of *X*.
The second line contains *n* space-separated integers *x*1,<=*x*2,<=...,<=*x**n* (0<=≤<=*x**i*<=<<=*b**x*) — the digits of *X*. They are given in the order from the most significant digit to the least significant one.
The following two lines describe *Y* in the same way: the third line contains two space-separated integers *m* and *b**y* (1<=≤<=*m*<=≤<=10, 2<=≤<=*b**y*<=≤<=40, *b**x*<=≠<=*b**y*), where *m* is the number of digits in the *b**y*-based representation of *Y*, and the fourth line contains *m* space-separated integers *y*1,<=*y*2,<=...,<=*y**m* (0<=≤<=*y**i*<=<<=*b**y*) — the digits of *Y*.
There will be no leading zeroes. Both *X* and *Y* will be positive. All digits of both numbers are given in the standard decimal numeral system.
Output Specification:
Output a single character (quotes for clarity):
- '<' if *X*<=<<=*Y* - '>' if *X*<=><=*Y* - '=' if *X*<==<=*Y*
Demo Input:
['6 2\n1 0 1 1 1 1\n2 10\n4 7\n', '3 3\n1 0 2\n2 5\n2 4\n', '7 16\n15 15 4 0 0 7 10\n7 9\n4 8 0 3 1 5 0\n']
Demo Output:
['=\n', '<\n', '>\n']
Note:
In the first sample, *X* = 101111<sub class="lower-index">2</sub> = 47<sub class="lower-index">10</sub> = *Y*.
In the second sample, *X* = 102<sub class="lower-index">3</sub> = 21<sub class="lower-index">5</sub> and *Y* = 24<sub class="lower-index">5</sub> = 112<sub class="lower-index">3</sub>, thus *X* < *Y*.
In the third sample, <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/603a342b0ae3e56fed542d1c50c0a5ff6ce2cbaa.png" style="max-width: 100.0%;max-height: 100.0%;"/> and *Y* = 4803150<sub class="lower-index">9</sub>. We may notice that *X* starts with much larger digits and *b*<sub class="lower-index">*x*</sub> is much larger than *b*<sub class="lower-index">*y*</sub>, so *X* is clearly larger than *Y*.
|
```python
nx, bx = map(int, input().split(' ')[:2])
xs = list(map(int, input().split(' ')[:nx]))
ny, by = map(int, input().split(' ')[:2])
ys = list(map(int, input().split(' ')[:ny]))
p = 1
x = 0
for d in reversed(xs):
x += d * p
p *= bx
p = 1
y = 0
for d in reversed(ys):
y += d * p
p *= by
if x == y:
print('=')
elif x < y:
print('<')
else:
print('>')
```
| 3
|
|
888
|
D
|
Almost Identity Permutations
|
PROGRAMMING
| 1,600
|
[
"combinatorics",
"dp",
"math"
] | null | null |
A permutation *p* of size *n* is an array such that every integer from 1 to *n* occurs exactly once in this array.
Let's call a permutation an almost identity permutation iff there exist at least *n*<=-<=*k* indices *i* (1<=≤<=*i*<=≤<=*n*) such that *p**i*<==<=*i*.
Your task is to count the number of almost identity permutations for given numbers *n* and *k*.
|
The first line contains two integers *n* and *k* (4<=≤<=*n*<=≤<=1000, 1<=≤<=*k*<=≤<=4).
|
Print the number of almost identity permutations for given *n* and *k*.
|
[
"4 1\n",
"4 2\n",
"5 3\n",
"5 4\n"
] |
[
"1\n",
"7\n",
"31\n",
"76\n"
] |
none
| 0
|
[
{
"input": "4 1",
"output": "1"
},
{
"input": "4 2",
"output": "7"
},
{
"input": "5 3",
"output": "31"
},
{
"input": "5 4",
"output": "76"
},
{
"input": "200 1",
"output": "1"
},
{
"input": "200 2",
"output": "19901"
},
{
"input": "200 3",
"output": "2646701"
},
{
"input": "200 4",
"output": "584811251"
},
{
"input": "400 1",
"output": "1"
},
{
"input": "400 2",
"output": "79801"
},
{
"input": "400 3",
"output": "21253401"
},
{
"input": "400 4",
"output": "9477912501"
},
{
"input": "600 1",
"output": "1"
},
{
"input": "600 2",
"output": "179701"
},
{
"input": "600 3",
"output": "71820101"
},
{
"input": "600 4",
"output": "48187303751"
},
{
"input": "800 1",
"output": "1"
},
{
"input": "800 2",
"output": "319601"
},
{
"input": "800 3",
"output": "170346801"
},
{
"input": "800 4",
"output": "152620985001"
},
{
"input": "1000 1",
"output": "1"
},
{
"input": "1000 2",
"output": "499501"
},
{
"input": "1000 3",
"output": "332833501"
},
{
"input": "1000 4",
"output": "373086956251"
},
{
"input": "4 4",
"output": "24"
}
] | 1,621,026,357
| 2,147,483,647
|
PyPy 3
|
OK
|
TESTS
| 25
| 93
| 2,355,200
|
n,k=map(int,input().split())
dp=[[[0]*(k+1) for i in range(n+1)] for j in range(k+1)]
dp_c=[[[0]*(k+1) for i in range(n+1)] for j in range(k+1)]
for i in range(1,n):
dp[1][i][1]=1
store=[0,1,1,2,9]
ans=0
for i in range(2,k+1):
add=0
for j in range(1,n+1):
add += dp[i - 1][j - 1][i - 1]
if j>=i:
dp[i][j][i]=add
dp_c[i][j][i]=add*store[i]
ans+=dp_c[i][j][i]
print(ans+1)
|
Title: Almost Identity Permutations
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
A permutation *p* of size *n* is an array such that every integer from 1 to *n* occurs exactly once in this array.
Let's call a permutation an almost identity permutation iff there exist at least *n*<=-<=*k* indices *i* (1<=≤<=*i*<=≤<=*n*) such that *p**i*<==<=*i*.
Your task is to count the number of almost identity permutations for given numbers *n* and *k*.
Input Specification:
The first line contains two integers *n* and *k* (4<=≤<=*n*<=≤<=1000, 1<=≤<=*k*<=≤<=4).
Output Specification:
Print the number of almost identity permutations for given *n* and *k*.
Demo Input:
['4 1\n', '4 2\n', '5 3\n', '5 4\n']
Demo Output:
['1\n', '7\n', '31\n', '76\n']
Note:
none
|
```python
n,k=map(int,input().split())
dp=[[[0]*(k+1) for i in range(n+1)] for j in range(k+1)]
dp_c=[[[0]*(k+1) for i in range(n+1)] for j in range(k+1)]
for i in range(1,n):
dp[1][i][1]=1
store=[0,1,1,2,9]
ans=0
for i in range(2,k+1):
add=0
for j in range(1,n+1):
add += dp[i - 1][j - 1][i - 1]
if j>=i:
dp[i][j][i]=add
dp_c[i][j][i]=add*store[i]
ans+=dp_c[i][j][i]
print(ans+1)
```
| 3
|
|
923
|
B
|
Producing Snow
|
PROGRAMMING
| 1,600
|
[
"binary search",
"data structures"
] | null | null |
Alice likes snow a lot! Unfortunately, this year's winter is already over, and she can't expect to have any more of it. Bob has thus bought her a gift — a large snow maker. He plans to make some amount of snow every day. On day *i* he will make a pile of snow of volume *V**i* and put it in her garden.
Each day, every pile will shrink a little due to melting. More precisely, when the temperature on a given day is *T**i*, each pile will reduce its volume by *T**i*. If this would reduce the volume of a pile to or below zero, it disappears forever. All snow piles are independent of each other.
Note that the pile made on day *i* already loses part of its volume on the same day. In an extreme case, this may mean that there are no piles left at the end of a particular day.
You are given the initial pile sizes and the temperature on each day. Determine the total volume of snow melted on each day.
|
The first line contains a single integer *N* (1<=≤<=*N*<=≤<=105) — the number of days.
The second line contains *N* integers *V*1,<=*V*2,<=...,<=*V**N* (0<=≤<=*V**i*<=≤<=109), where *V**i* is the initial size of a snow pile made on the day *i*.
The third line contains *N* integers *T*1,<=*T*2,<=...,<=*T**N* (0<=≤<=*T**i*<=≤<=109), where *T**i* is the temperature on the day *i*.
|
Output a single line with *N* integers, where the *i*-th integer represents the total volume of snow melted on day *i*.
|
[
"3\n10 10 5\n5 7 2\n",
"5\n30 25 20 15 10\n9 10 12 4 13\n"
] |
[
"5 12 4\n",
"9 20 35 11 25\n"
] |
In the first sample, Bob first makes a snow pile of volume 10, which melts to the size of 5 on the same day. On the second day, he makes another pile of size 10. Since it is a bit warmer than the day before, the first pile disappears completely while the second pile shrinks to 3. At the end of the second day, he has only a single pile of size 3. On the third day he makes a smaller pile than usual, but as the temperature dropped too, both piles survive till the end of the day.
| 1,000
|
[
{
"input": "3\n10 10 5\n5 7 2",
"output": "5 12 4"
},
{
"input": "5\n30 25 20 15 10\n9 10 12 4 13",
"output": "9 20 35 11 25"
},
{
"input": "4\n0 0 0 0\n1 2 3 4",
"output": "0 0 0 0"
},
{
"input": "10\n11 39 16 34 25 3 12 11 31 16\n10 0 4 9 8 9 7 8 9 2",
"output": "10 0 9 27 27 30 28 17 12 4"
},
{
"input": "10\n20 35 4 0 6 29 4 9 17 10\n0 9 4 7 5 1 4 3 9 4",
"output": "0 18 12 14 10 3 12 9 26 12"
},
{
"input": "1\n4\n5",
"output": "4"
},
{
"input": "1\n5\n4",
"output": "4"
},
{
"input": "1\n5\n5",
"output": "5"
},
{
"input": "2\n9 3\n8 2",
"output": "8 3"
},
{
"input": "2\n9 3\n4 4",
"output": "4 7"
},
{
"input": "2\n9 3\n10 2",
"output": "9 2"
},
{
"input": "13\n1 1 1 1 1 1 1 1 1 1 1 1 1\n1 1 1 1 1 1 1 1 1 1 1 1 1",
"output": "1 1 1 1 1 1 1 1 1 1 1 1 1"
}
] | 1,520,703,129
| 7,029
|
PyPy 3
|
OK
|
TESTS
| 103
| 686
| 37,068,800
|
n = int(input())
vs = [int(x) for x in input().split()]
ts = [int(x) for x in input().split()]
sumt = 0
for i, t in enumerate(ts):
vs[i]+=sumt
sumt+=t
vs.sort()
tl, tr = 0, 0
il, ir = 0, 0
for ind, t in enumerate(ts): #check
tl = tr
tr += t
while ir < n and vs[ir] <= tr: ir += 1
cur_sum = 0
while il < ir:
cur_sum += vs[il]-tl
il+=1
## print(ir, tl, tr, cur_sum)
cur_sum += t * ((n-ir) - (n-ind-1))
print(cur_sum, end=" ")
|
Title: Producing Snow
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Alice likes snow a lot! Unfortunately, this year's winter is already over, and she can't expect to have any more of it. Bob has thus bought her a gift — a large snow maker. He plans to make some amount of snow every day. On day *i* he will make a pile of snow of volume *V**i* and put it in her garden.
Each day, every pile will shrink a little due to melting. More precisely, when the temperature on a given day is *T**i*, each pile will reduce its volume by *T**i*. If this would reduce the volume of a pile to or below zero, it disappears forever. All snow piles are independent of each other.
Note that the pile made on day *i* already loses part of its volume on the same day. In an extreme case, this may mean that there are no piles left at the end of a particular day.
You are given the initial pile sizes and the temperature on each day. Determine the total volume of snow melted on each day.
Input Specification:
The first line contains a single integer *N* (1<=≤<=*N*<=≤<=105) — the number of days.
The second line contains *N* integers *V*1,<=*V*2,<=...,<=*V**N* (0<=≤<=*V**i*<=≤<=109), where *V**i* is the initial size of a snow pile made on the day *i*.
The third line contains *N* integers *T*1,<=*T*2,<=...,<=*T**N* (0<=≤<=*T**i*<=≤<=109), where *T**i* is the temperature on the day *i*.
Output Specification:
Output a single line with *N* integers, where the *i*-th integer represents the total volume of snow melted on day *i*.
Demo Input:
['3\n10 10 5\n5 7 2\n', '5\n30 25 20 15 10\n9 10 12 4 13\n']
Demo Output:
['5 12 4\n', '9 20 35 11 25\n']
Note:
In the first sample, Bob first makes a snow pile of volume 10, which melts to the size of 5 on the same day. On the second day, he makes another pile of size 10. Since it is a bit warmer than the day before, the first pile disappears completely while the second pile shrinks to 3. At the end of the second day, he has only a single pile of size 3. On the third day he makes a smaller pile than usual, but as the temperature dropped too, both piles survive till the end of the day.
|
```python
n = int(input())
vs = [int(x) for x in input().split()]
ts = [int(x) for x in input().split()]
sumt = 0
for i, t in enumerate(ts):
vs[i]+=sumt
sumt+=t
vs.sort()
tl, tr = 0, 0
il, ir = 0, 0
for ind, t in enumerate(ts): #check
tl = tr
tr += t
while ir < n and vs[ir] <= tr: ir += 1
cur_sum = 0
while il < ir:
cur_sum += vs[il]-tl
il+=1
## print(ir, tl, tr, cur_sum)
cur_sum += t * ((n-ir) - (n-ind-1))
print(cur_sum, end=" ")
```
| 3
|
|
25
|
A
|
IQ test
|
PROGRAMMING
| 1,300
|
[
"brute force"
] |
A. IQ test
|
2
|
256
|
Bob is preparing to pass IQ test. The most frequent task in this test is to find out which one of the given *n* numbers differs from the others. Bob observed that one number usually differs from the others in evenness. Help Bob — to check his answers, he needs a program that among the given *n* numbers finds one that is different in evenness.
|
The first line contains integer *n* (3<=≤<=*n*<=≤<=100) — amount of numbers in the task. The second line contains *n* space-separated natural numbers, not exceeding 100. It is guaranteed, that exactly one of these numbers differs from the others in evenness.
|
Output index of number that differs from the others in evenness. Numbers are numbered from 1 in the input order.
|
[
"5\n2 4 7 8 10\n",
"4\n1 2 1 1\n"
] |
[
"3\n",
"2\n"
] |
none
| 0
|
[
{
"input": "5\n2 4 7 8 10",
"output": "3"
},
{
"input": "4\n1 2 1 1",
"output": "2"
},
{
"input": "3\n1 2 2",
"output": "1"
},
{
"input": "3\n100 99 100",
"output": "2"
},
{
"input": "3\n5 3 2",
"output": "3"
},
{
"input": "4\n43 28 1 91",
"output": "2"
},
{
"input": "4\n75 13 94 77",
"output": "3"
},
{
"input": "4\n97 8 27 3",
"output": "2"
},
{
"input": "10\n95 51 12 91 85 3 1 31 25 7",
"output": "3"
},
{
"input": "20\n88 96 66 51 14 88 2 92 18 72 18 88 20 30 4 82 90 100 24 46",
"output": "4"
},
{
"input": "30\n20 94 56 50 10 98 52 32 14 22 24 60 4 8 98 46 34 68 82 82 98 90 50 20 78 49 52 94 64 36",
"output": "26"
},
{
"input": "50\n79 27 77 57 37 45 27 49 65 33 57 21 71 19 75 85 65 61 23 97 85 9 23 1 9 3 99 77 77 21 79 69 15 37 15 7 93 81 13 89 91 31 45 93 15 97 55 80 85 83",
"output": "48"
},
{
"input": "60\n46 11 73 65 3 69 3 53 43 53 97 47 55 93 31 75 35 3 9 73 23 31 3 81 91 79 61 21 15 11 11 11 81 7 83 75 39 87 83 59 89 55 93 27 49 67 67 29 1 93 11 17 9 19 35 21 63 31 31 25",
"output": "1"
},
{
"input": "70\n28 42 42 92 64 54 22 38 38 78 62 38 4 38 14 66 4 92 66 58 94 26 4 44 41 88 48 82 44 26 74 44 48 4 16 92 34 38 26 64 94 4 30 78 50 54 12 90 8 16 80 98 28 100 74 50 36 42 92 18 76 98 8 22 2 50 58 50 64 46",
"output": "25"
},
{
"input": "100\n43 35 79 53 13 91 91 45 65 83 57 9 42 39 85 45 71 51 61 59 31 13 63 39 25 21 79 39 91 67 21 61 97 75 93 83 29 79 59 97 11 37 63 51 39 55 91 23 21 17 47 23 35 75 49 5 69 99 5 7 41 17 25 89 15 79 21 63 53 81 43 91 59 91 69 99 85 15 91 51 49 37 65 7 89 81 21 93 61 63 97 93 45 17 13 69 57 25 75 73",
"output": "13"
},
{
"input": "100\n50 24 68 60 70 30 52 22 18 74 68 98 20 82 4 46 26 68 100 78 84 58 74 98 38 88 68 86 64 80 82 100 20 22 98 98 52 6 94 10 48 68 2 18 38 22 22 82 44 20 66 72 36 58 64 6 36 60 4 96 76 64 12 90 10 58 64 60 74 28 90 26 24 60 40 58 2 16 76 48 58 36 82 60 24 44 4 78 28 38 8 12 40 16 38 6 66 24 31 76",
"output": "99"
},
{
"input": "100\n47 48 94 48 14 18 94 36 96 22 12 30 94 20 48 98 40 58 2 94 8 36 98 18 98 68 2 60 76 38 18 100 8 72 100 68 2 86 92 72 58 16 48 14 6 58 72 76 6 88 80 66 20 28 74 62 86 68 90 86 2 56 34 38 56 90 4 8 76 44 32 86 12 98 38 34 54 92 70 94 10 24 82 66 90 58 62 2 32 58 100 22 58 72 2 22 68 72 42 14",
"output": "1"
},
{
"input": "99\n38 20 68 60 84 16 28 88 60 48 80 28 4 92 70 60 46 46 20 34 12 100 76 2 40 10 8 86 6 80 50 66 12 34 14 28 26 70 46 64 34 96 10 90 98 96 56 88 50 74 70 94 2 94 24 66 68 46 22 30 6 10 64 32 88 14 98 100 64 58 50 18 50 50 8 38 8 16 54 2 60 54 62 84 92 98 4 72 66 26 14 88 99 16 10 6 88 56 22",
"output": "93"
},
{
"input": "99\n50 83 43 89 53 47 69 1 5 37 63 87 95 15 55 95 75 89 33 53 89 75 93 75 11 85 49 29 11 97 49 67 87 11 25 37 97 73 67 49 87 43 53 97 43 29 53 33 45 91 37 73 39 49 59 5 21 43 87 35 5 63 89 57 63 47 29 99 19 85 13 13 3 13 43 19 5 9 61 51 51 57 15 89 13 97 41 13 99 79 13 27 97 95 73 33 99 27 23",
"output": "1"
},
{
"input": "98\n61 56 44 30 58 14 20 24 88 28 46 56 96 52 58 42 94 50 46 30 46 80 72 88 68 16 6 60 26 90 10 98 76 20 56 40 30 16 96 20 88 32 62 30 74 58 36 76 60 4 24 36 42 54 24 92 28 14 2 74 86 90 14 52 34 82 40 76 8 64 2 56 10 8 78 16 70 86 70 42 70 74 22 18 76 98 88 28 62 70 36 72 20 68 34 48 80 98",
"output": "1"
},
{
"input": "98\n66 26 46 42 78 32 76 42 26 82 8 12 4 10 24 26 64 44 100 46 94 64 30 18 88 28 8 66 30 82 82 28 74 52 62 80 80 60 94 86 64 32 44 88 92 20 12 74 94 28 34 58 4 22 16 10 94 76 82 58 40 66 22 6 30 32 92 54 16 76 74 98 18 48 48 30 92 2 16 42 84 74 30 60 64 52 50 26 16 86 58 96 79 60 20 62 82 94",
"output": "93"
},
{
"input": "95\n9 31 27 93 17 77 75 9 9 53 89 39 51 99 5 1 11 39 27 49 91 17 27 79 81 71 37 75 35 13 93 4 99 55 85 11 23 57 5 43 5 61 15 35 23 91 3 81 99 85 43 37 39 27 5 67 7 33 75 59 13 71 51 27 15 93 51 63 91 53 43 99 25 47 17 71 81 15 53 31 59 83 41 23 73 25 91 91 13 17 25 13 55 57 29",
"output": "32"
},
{
"input": "100\n91 89 81 45 53 1 41 3 77 93 55 97 55 97 87 27 69 95 73 41 93 21 75 35 53 56 5 51 87 59 91 67 33 3 99 45 83 17 97 47 75 97 7 89 17 99 23 23 81 25 55 97 27 35 69 5 77 35 93 19 55 59 37 21 31 37 49 41 91 53 73 69 7 37 37 39 17 71 7 97 55 17 47 23 15 73 31 39 57 37 9 5 61 41 65 57 77 79 35 47",
"output": "26"
},
{
"input": "99\n38 56 58 98 80 54 26 90 14 16 78 92 52 74 40 30 84 14 44 80 16 90 98 68 26 24 78 72 42 16 84 40 14 44 2 52 50 2 12 96 58 66 8 80 44 52 34 34 72 98 74 4 66 74 56 21 8 38 76 40 10 22 48 32 98 34 12 62 80 68 64 82 22 78 58 74 20 22 48 56 12 38 32 72 6 16 74 24 94 84 26 38 18 24 76 78 98 94 72",
"output": "56"
},
{
"input": "100\n44 40 6 40 56 90 98 8 36 64 76 86 98 76 36 92 6 30 98 70 24 98 96 60 24 82 88 68 86 96 34 42 58 10 40 26 56 10 88 58 70 32 24 28 14 82 52 12 62 36 70 60 52 34 74 30 78 76 10 16 42 94 66 90 70 38 52 12 58 22 98 96 14 68 24 70 4 30 84 98 8 50 14 52 66 34 100 10 28 100 56 48 38 12 38 14 91 80 70 86",
"output": "97"
},
{
"input": "100\n96 62 64 20 90 46 56 90 68 36 30 56 70 28 16 64 94 34 6 32 34 50 94 22 90 32 40 2 72 10 88 38 28 92 20 26 56 80 4 100 100 90 16 74 74 84 8 2 30 20 80 32 16 46 92 56 42 12 96 64 64 42 64 58 50 42 74 28 2 4 36 32 70 50 54 92 70 16 45 76 28 16 18 50 48 2 62 94 4 12 52 52 4 100 70 60 82 62 98 42",
"output": "79"
},
{
"input": "99\n14 26 34 68 90 58 50 36 8 16 18 6 2 74 54 20 36 84 32 50 52 2 26 24 3 64 20 10 54 26 66 44 28 72 4 96 78 90 96 86 68 28 94 4 12 46 100 32 22 36 84 32 44 94 76 94 4 52 12 30 74 4 34 64 58 72 44 16 70 56 54 8 14 74 8 6 58 62 98 54 14 40 80 20 36 72 28 98 20 58 40 52 90 64 22 48 54 70 52",
"output": "25"
},
{
"input": "95\n82 86 30 78 6 46 80 66 74 72 16 24 18 52 52 38 60 36 86 26 62 28 22 46 96 26 94 84 20 46 66 88 76 32 12 86 74 18 34 88 4 48 94 6 58 6 100 82 4 24 88 32 54 98 34 48 6 76 42 88 42 28 100 4 22 2 10 66 82 54 98 20 60 66 38 98 32 47 86 58 6 100 12 46 2 42 8 84 78 28 24 70 34 28 86",
"output": "78"
},
{
"input": "90\n40 50 8 42 76 24 58 42 26 68 20 48 54 12 34 84 14 36 32 88 6 50 96 56 20 92 48 16 40 34 96 46 20 84 30 50 20 98 8 44 96 42 8 76 70 38 84 30 40 88 84 72 2 22 52 58 16 62 100 66 80 40 50 32 14 62 88 72 22 99 76 50 84 82 8 82 98 46 26 40 2 98 18 78 30 72 70 18 34 68",
"output": "70"
},
{
"input": "80\n81 43 87 1 55 43 53 61 27 19 43 13 89 9 33 83 75 55 97 71 91 37 95 5 21 69 81 93 95 69 31 83 55 7 97 7 79 57 8 61 27 85 49 1 15 97 63 79 29 73 41 85 5 41 31 93 67 11 63 59 15 99 91 77 43 69 23 23 81 73 19 1 67 51 1 75 99 67 3 81",
"output": "39"
},
{
"input": "98\n13 83 61 27 35 1 85 95 97 73 95 65 73 45 5 43 27 83 91 19 11 3 85 59 9 39 69 23 45 7 51 85 5 71 5 95 1 51 75 3 43 57 3 11 33 71 21 99 47 41 87 39 71 87 31 85 91 49 83 5 49 85 47 91 55 99 33 23 31 23 23 73 29 77 55 31 25 5 81 49 91 15 15 39 87 5 9 40 69 47 29 33 11 21 49 79 51 83",
"output": "88"
},
{
"input": "3\n100 100 1",
"output": "3"
}
] | 1,480,517,478
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 32
| 154
| 0
|
n = int(input())
num = list(map(int, input().split()))
even_count = 0
for i in range(3):
if(num[i] % 2 == 0):
even_count += 1
if(even_count >= 2):
for i in range(n):
if(num[i] % 2 == 1):
print(i + 1)
else:
for i in range(n):
if(num[i] % 2 == 0):
print(i + 1)
|
Title: IQ test
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
Bob is preparing to pass IQ test. The most frequent task in this test is to find out which one of the given *n* numbers differs from the others. Bob observed that one number usually differs from the others in evenness. Help Bob — to check his answers, he needs a program that among the given *n* numbers finds one that is different in evenness.
Input Specification:
The first line contains integer *n* (3<=≤<=*n*<=≤<=100) — amount of numbers in the task. The second line contains *n* space-separated natural numbers, not exceeding 100. It is guaranteed, that exactly one of these numbers differs from the others in evenness.
Output Specification:
Output index of number that differs from the others in evenness. Numbers are numbered from 1 in the input order.
Demo Input:
['5\n2 4 7 8 10\n', '4\n1 2 1 1\n']
Demo Output:
['3\n', '2\n']
Note:
none
|
```python
n = int(input())
num = list(map(int, input().split()))
even_count = 0
for i in range(3):
if(num[i] % 2 == 0):
even_count += 1
if(even_count >= 2):
for i in range(n):
if(num[i] % 2 == 1):
print(i + 1)
else:
for i in range(n):
if(num[i] % 2 == 0):
print(i + 1)
```
| 3.9615
|
474
|
B
|
Worms
|
PROGRAMMING
| 1,200
|
[
"binary search",
"implementation"
] | null | null |
It is lunch time for Mole. His friend, Marmot, prepared him a nice game for lunch.
Marmot brought Mole *n* ordered piles of worms such that *i*-th pile contains *a**i* worms. He labeled all these worms with consecutive integers: worms in first pile are labeled with numbers 1 to *a*1, worms in second pile are labeled with numbers *a*1<=+<=1 to *a*1<=+<=*a*2 and so on. See the example for a better understanding.
Mole can't eat all the worms (Marmot brought a lot) and, as we all know, Mole is blind, so Marmot tells him the labels of the best juicy worms. Marmot will only give Mole a worm if Mole says correctly in which pile this worm is contained.
Poor Mole asks for your help. For all juicy worms said by Marmot, tell Mole the correct answers.
|
The first line contains a single integer *n* (1<=≤<=*n*<=≤<=105), the number of piles.
The second line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=103, *a*1<=+<=*a*2<=+<=...<=+<=*a**n*<=≤<=106), where *a**i* is the number of worms in the *i*-th pile.
The third line contains single integer *m* (1<=≤<=*m*<=≤<=105), the number of juicy worms said by Marmot.
The fourth line contains *m* integers *q*1,<=*q*2,<=...,<=*q**m* (1<=≤<=*q**i*<=≤<=*a*1<=+<=*a*2<=+<=...<=+<=*a**n*), the labels of the juicy worms.
|
Print *m* lines to the standard output. The *i*-th line should contain an integer, representing the number of the pile where the worm labeled with the number *q**i* is.
|
[
"5\n2 7 3 4 9\n3\n1 25 11\n"
] |
[
"1\n5\n3\n"
] |
For the sample input:
- The worms with labels from [1, 2] are in the first pile. - The worms with labels from [3, 9] are in the second pile. - The worms with labels from [10, 12] are in the third pile. - The worms with labels from [13, 16] are in the fourth pile. - The worms with labels from [17, 25] are in the fifth pile.
| 1,000
|
[
{
"input": "5\n2 7 3 4 9\n3\n1 25 11",
"output": "1\n5\n3"
}
] | 1,672,667,370
| 2,147,483,647
|
PyPy 3-64
|
OK
|
TESTS
| 38
| 514
| 95,129,600
|
from collections import defaultdict
input()
a = list(map(int, input().split()))
input()
q = list(map(int, input().split()))
pos = defaultdict()
pos.setdefault(0)
cf = [a[0]]
cf.extend([0] * len(a))
for worm in range(cf[0]):
pos[worm + 1] = 1
p = 1
for pile in a[1:]:
worms_size = pile
cf[p] = cf[p - 1] + pile
for worm in range(cf[p - 1], cf[p]):
pos[worm + 1] = p + 1
p += 1
for juicy in q:
print(pos[juicy])
|
Title: Worms
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
It is lunch time for Mole. His friend, Marmot, prepared him a nice game for lunch.
Marmot brought Mole *n* ordered piles of worms such that *i*-th pile contains *a**i* worms. He labeled all these worms with consecutive integers: worms in first pile are labeled with numbers 1 to *a*1, worms in second pile are labeled with numbers *a*1<=+<=1 to *a*1<=+<=*a*2 and so on. See the example for a better understanding.
Mole can't eat all the worms (Marmot brought a lot) and, as we all know, Mole is blind, so Marmot tells him the labels of the best juicy worms. Marmot will only give Mole a worm if Mole says correctly in which pile this worm is contained.
Poor Mole asks for your help. For all juicy worms said by Marmot, tell Mole the correct answers.
Input Specification:
The first line contains a single integer *n* (1<=≤<=*n*<=≤<=105), the number of piles.
The second line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=103, *a*1<=+<=*a*2<=+<=...<=+<=*a**n*<=≤<=106), where *a**i* is the number of worms in the *i*-th pile.
The third line contains single integer *m* (1<=≤<=*m*<=≤<=105), the number of juicy worms said by Marmot.
The fourth line contains *m* integers *q*1,<=*q*2,<=...,<=*q**m* (1<=≤<=*q**i*<=≤<=*a*1<=+<=*a*2<=+<=...<=+<=*a**n*), the labels of the juicy worms.
Output Specification:
Print *m* lines to the standard output. The *i*-th line should contain an integer, representing the number of the pile where the worm labeled with the number *q**i* is.
Demo Input:
['5\n2 7 3 4 9\n3\n1 25 11\n']
Demo Output:
['1\n5\n3\n']
Note:
For the sample input:
- The worms with labels from [1, 2] are in the first pile. - The worms with labels from [3, 9] are in the second pile. - The worms with labels from [10, 12] are in the third pile. - The worms with labels from [13, 16] are in the fourth pile. - The worms with labels from [17, 25] are in the fifth pile.
|
```python
from collections import defaultdict
input()
a = list(map(int, input().split()))
input()
q = list(map(int, input().split()))
pos = defaultdict()
pos.setdefault(0)
cf = [a[0]]
cf.extend([0] * len(a))
for worm in range(cf[0]):
pos[worm + 1] = 1
p = 1
for pile in a[1:]:
worms_size = pile
cf[p] = cf[p - 1] + pile
for worm in range(cf[p - 1], cf[p]):
pos[worm + 1] = p + 1
p += 1
for juicy in q:
print(pos[juicy])
```
| 3
|
|
987
|
A
|
Infinity Gauntlet
|
PROGRAMMING
| 800
|
[
"implementation"
] | null | null |
You took a peek on Thanos wearing Infinity Gauntlet. In the Gauntlet there is a place for six Infinity Gems:
- the Power Gem of purple color, - the Time Gem of green color, - the Space Gem of blue color, - the Soul Gem of orange color, - the Reality Gem of red color, - the Mind Gem of yellow color.
Using colors of Gems you saw in the Gauntlet determine the names of absent Gems.
|
In the first line of input there is one integer $n$ ($0 \le n \le 6$) — the number of Gems in Infinity Gauntlet.
In next $n$ lines there are colors of Gems you saw. Words used for colors are: purple, green, blue, orange, red, yellow. It is guaranteed that all the colors are distinct. All colors are given in lowercase English letters.
|
In the first line output one integer $m$ ($0 \le m \le 6$) — the number of absent Gems.
Then in $m$ lines print the names of absent Gems, each on its own line. Words used for names are: Power, Time, Space, Soul, Reality, Mind. Names can be printed in any order. Keep the first letter uppercase, others lowercase.
|
[
"4\nred\npurple\nyellow\norange\n",
"0\n"
] |
[
"2\nSpace\nTime\n",
"6\nTime\nMind\nSoul\nPower\nReality\nSpace\n"
] |
In the first sample Thanos already has Reality, Power, Mind and Soul Gems, so he needs two more: Time and Space.
In the second sample Thanos doesn't have any Gems, so he needs all six.
| 500
|
[
{
"input": "4\nred\npurple\nyellow\norange",
"output": "2\nSpace\nTime"
},
{
"input": "0",
"output": "6\nMind\nSpace\nPower\nTime\nReality\nSoul"
},
{
"input": "6\npurple\nblue\nyellow\nred\ngreen\norange",
"output": "0"
},
{
"input": "1\npurple",
"output": "5\nTime\nReality\nSoul\nSpace\nMind"
},
{
"input": "3\nblue\norange\npurple",
"output": "3\nTime\nReality\nMind"
},
{
"input": "2\nyellow\nred",
"output": "4\nPower\nSoul\nSpace\nTime"
},
{
"input": "1\ngreen",
"output": "5\nReality\nSpace\nPower\nSoul\nMind"
},
{
"input": "2\npurple\ngreen",
"output": "4\nReality\nMind\nSpace\nSoul"
},
{
"input": "1\nblue",
"output": "5\nPower\nReality\nSoul\nTime\nMind"
},
{
"input": "2\npurple\nblue",
"output": "4\nMind\nSoul\nTime\nReality"
},
{
"input": "2\ngreen\nblue",
"output": "4\nReality\nMind\nPower\nSoul"
},
{
"input": "3\npurple\ngreen\nblue",
"output": "3\nMind\nReality\nSoul"
},
{
"input": "1\norange",
"output": "5\nReality\nTime\nPower\nSpace\nMind"
},
{
"input": "2\npurple\norange",
"output": "4\nReality\nMind\nTime\nSpace"
},
{
"input": "2\norange\ngreen",
"output": "4\nSpace\nMind\nReality\nPower"
},
{
"input": "3\norange\npurple\ngreen",
"output": "3\nReality\nSpace\nMind"
},
{
"input": "2\norange\nblue",
"output": "4\nTime\nMind\nReality\nPower"
},
{
"input": "3\nblue\ngreen\norange",
"output": "3\nPower\nMind\nReality"
},
{
"input": "4\nblue\norange\ngreen\npurple",
"output": "2\nMind\nReality"
},
{
"input": "1\nred",
"output": "5\nTime\nSoul\nMind\nPower\nSpace"
},
{
"input": "2\nred\npurple",
"output": "4\nMind\nSpace\nTime\nSoul"
},
{
"input": "2\nred\ngreen",
"output": "4\nMind\nSpace\nPower\nSoul"
},
{
"input": "3\nred\npurple\ngreen",
"output": "3\nSoul\nSpace\nMind"
},
{
"input": "2\nblue\nred",
"output": "4\nMind\nTime\nPower\nSoul"
},
{
"input": "3\nred\nblue\npurple",
"output": "3\nTime\nMind\nSoul"
},
{
"input": "3\nred\nblue\ngreen",
"output": "3\nSoul\nPower\nMind"
},
{
"input": "4\npurple\nblue\ngreen\nred",
"output": "2\nMind\nSoul"
},
{
"input": "2\norange\nred",
"output": "4\nPower\nMind\nTime\nSpace"
},
{
"input": "3\nred\norange\npurple",
"output": "3\nMind\nSpace\nTime"
},
{
"input": "3\nred\norange\ngreen",
"output": "3\nMind\nSpace\nPower"
},
{
"input": "4\nred\norange\ngreen\npurple",
"output": "2\nSpace\nMind"
},
{
"input": "3\nblue\norange\nred",
"output": "3\nPower\nMind\nTime"
},
{
"input": "4\norange\nblue\npurple\nred",
"output": "2\nTime\nMind"
},
{
"input": "4\ngreen\norange\nred\nblue",
"output": "2\nMind\nPower"
},
{
"input": "5\npurple\norange\nblue\nred\ngreen",
"output": "1\nMind"
},
{
"input": "1\nyellow",
"output": "5\nPower\nSoul\nReality\nSpace\nTime"
},
{
"input": "2\npurple\nyellow",
"output": "4\nTime\nReality\nSpace\nSoul"
},
{
"input": "2\ngreen\nyellow",
"output": "4\nSpace\nReality\nPower\nSoul"
},
{
"input": "3\npurple\nyellow\ngreen",
"output": "3\nSoul\nReality\nSpace"
},
{
"input": "2\nblue\nyellow",
"output": "4\nTime\nReality\nPower\nSoul"
},
{
"input": "3\nyellow\nblue\npurple",
"output": "3\nSoul\nReality\nTime"
},
{
"input": "3\ngreen\nyellow\nblue",
"output": "3\nSoul\nReality\nPower"
},
{
"input": "4\nyellow\nblue\ngreen\npurple",
"output": "2\nReality\nSoul"
},
{
"input": "2\nyellow\norange",
"output": "4\nTime\nSpace\nReality\nPower"
},
{
"input": "3\nyellow\npurple\norange",
"output": "3\nSpace\nReality\nTime"
},
{
"input": "3\norange\nyellow\ngreen",
"output": "3\nSpace\nReality\nPower"
},
{
"input": "4\ngreen\nyellow\norange\npurple",
"output": "2\nSpace\nReality"
},
{
"input": "3\nyellow\nblue\norange",
"output": "3\nTime\nReality\nPower"
},
{
"input": "4\norange\npurple\nblue\nyellow",
"output": "2\nReality\nTime"
},
{
"input": "4\nblue\norange\nyellow\ngreen",
"output": "2\nReality\nPower"
},
{
"input": "5\ngreen\nyellow\norange\nblue\npurple",
"output": "1\nReality"
},
{
"input": "3\nyellow\npurple\nred",
"output": "3\nTime\nSoul\nSpace"
},
{
"input": "3\nred\ngreen\nyellow",
"output": "3\nPower\nSoul\nSpace"
},
{
"input": "4\nred\npurple\ngreen\nyellow",
"output": "2\nSpace\nSoul"
},
{
"input": "3\nred\nyellow\nblue",
"output": "3\nPower\nSoul\nTime"
},
{
"input": "4\nblue\nyellow\nred\npurple",
"output": "2\nTime\nSoul"
},
{
"input": "4\nblue\nyellow\nred\ngreen",
"output": "2\nSoul\nPower"
},
{
"input": "5\nred\nyellow\ngreen\nblue\npurple",
"output": "1\nSoul"
},
{
"input": "3\nred\nyellow\norange",
"output": "3\nPower\nSpace\nTime"
},
{
"input": "4\norange\ngreen\nyellow\nred",
"output": "2\nPower\nSpace"
},
{
"input": "5\norange\nred\ngreen\nyellow\npurple",
"output": "1\nSpace"
},
{
"input": "4\nyellow\nred\norange\nblue",
"output": "2\nTime\nPower"
},
{
"input": "5\npurple\nblue\norange\nyellow\nred",
"output": "1\nTime"
},
{
"input": "5\norange\nblue\nyellow\nred\ngreen",
"output": "1\nPower"
}
] | 1,626,328,483
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 64
| 77
| 6,963,200
|
n=int(input())
b=dict({'Power':'purple','Time':'green' , 'Space' :'blue','Soul':'orange', 'Reality':'red','Mind':'yellow'})
a=[]
for i in range(n):
a.append(input())
print(6-n)
for x in b:
if b[x] not in a:
print(x)
|
Title: Infinity Gauntlet
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
You took a peek on Thanos wearing Infinity Gauntlet. In the Gauntlet there is a place for six Infinity Gems:
- the Power Gem of purple color, - the Time Gem of green color, - the Space Gem of blue color, - the Soul Gem of orange color, - the Reality Gem of red color, - the Mind Gem of yellow color.
Using colors of Gems you saw in the Gauntlet determine the names of absent Gems.
Input Specification:
In the first line of input there is one integer $n$ ($0 \le n \le 6$) — the number of Gems in Infinity Gauntlet.
In next $n$ lines there are colors of Gems you saw. Words used for colors are: purple, green, blue, orange, red, yellow. It is guaranteed that all the colors are distinct. All colors are given in lowercase English letters.
Output Specification:
In the first line output one integer $m$ ($0 \le m \le 6$) — the number of absent Gems.
Then in $m$ lines print the names of absent Gems, each on its own line. Words used for names are: Power, Time, Space, Soul, Reality, Mind. Names can be printed in any order. Keep the first letter uppercase, others lowercase.
Demo Input:
['4\nred\npurple\nyellow\norange\n', '0\n']
Demo Output:
['2\nSpace\nTime\n', '6\nTime\nMind\nSoul\nPower\nReality\nSpace\n']
Note:
In the first sample Thanos already has Reality, Power, Mind and Soul Gems, so he needs two more: Time and Space.
In the second sample Thanos doesn't have any Gems, so he needs all six.
|
```python
n=int(input())
b=dict({'Power':'purple','Time':'green' , 'Space' :'blue','Soul':'orange', 'Reality':'red','Mind':'yellow'})
a=[]
for i in range(n):
a.append(input())
print(6-n)
for x in b:
if b[x] not in a:
print(x)
```
| 3
|
|
822
|
A
|
I'm bored with life
|
PROGRAMMING
| 800
|
[
"implementation",
"math",
"number theory"
] | null | null |
Holidays have finished. Thanks to the help of the hacker Leha, Noora managed to enter the university of her dreams which is located in a town Pavlopolis. It's well known that universities provide students with dormitory for the period of university studies. Consequently Noora had to leave Vičkopolis and move to Pavlopolis. Thus Leha was left completely alone in a quiet town Vičkopolis. He almost even fell into a depression from boredom!
Leha came up with a task for himself to relax a little. He chooses two integers *A* and *B* and then calculates the greatest common divisor of integers "*A* factorial" and "*B* factorial". Formally the hacker wants to find out GCD(*A*!,<=*B*!). It's well known that the factorial of an integer *x* is a product of all positive integers less than or equal to *x*. Thus *x*!<==<=1·2·3·...·(*x*<=-<=1)·*x*. For example 4!<==<=1·2·3·4<==<=24. Recall that GCD(*x*,<=*y*) is the largest positive integer *q* that divides (without a remainder) both *x* and *y*.
Leha has learned how to solve this task very effective. You are able to cope with it not worse, aren't you?
|
The first and single line contains two integers *A* and *B* (1<=≤<=*A*,<=*B*<=≤<=109,<=*min*(*A*,<=*B*)<=≤<=12).
|
Print a single integer denoting the greatest common divisor of integers *A*! and *B*!.
|
[
"4 3\n"
] |
[
"6\n"
] |
Consider the sample.
4! = 1·2·3·4 = 24. 3! = 1·2·3 = 6. The greatest common divisor of integers 24 and 6 is exactly 6.
| 500
|
[
{
"input": "4 3",
"output": "6"
},
{
"input": "10 399603090",
"output": "3628800"
},
{
"input": "6 973151934",
"output": "720"
},
{
"input": "2 841668075",
"output": "2"
},
{
"input": "7 415216919",
"output": "5040"
},
{
"input": "3 283733059",
"output": "6"
},
{
"input": "11 562314608",
"output": "39916800"
},
{
"input": "3 990639260",
"output": "6"
},
{
"input": "11 859155400",
"output": "39916800"
},
{
"input": "1 1",
"output": "1"
},
{
"input": "5 3",
"output": "6"
},
{
"input": "1 4",
"output": "1"
},
{
"input": "5 4",
"output": "24"
},
{
"input": "1 12",
"output": "1"
},
{
"input": "9 7",
"output": "5040"
},
{
"input": "2 3",
"output": "2"
},
{
"input": "6 11",
"output": "720"
},
{
"input": "6 7",
"output": "720"
},
{
"input": "11 11",
"output": "39916800"
},
{
"input": "4 999832660",
"output": "24"
},
{
"input": "7 999228288",
"output": "5040"
},
{
"input": "11 999257105",
"output": "39916800"
},
{
"input": "11 999286606",
"output": "39916800"
},
{
"input": "3 999279109",
"output": "6"
},
{
"input": "999632727 11",
"output": "39916800"
},
{
"input": "999625230 7",
"output": "5040"
},
{
"input": "999617047 3",
"output": "6"
},
{
"input": "999646548 7",
"output": "5040"
},
{
"input": "999639051 3",
"output": "6"
},
{
"input": "12 12",
"output": "479001600"
},
{
"input": "12 1",
"output": "1"
},
{
"input": "1213 5",
"output": "120"
},
{
"input": "8 9",
"output": "40320"
},
{
"input": "12 9",
"output": "362880"
},
{
"input": "12 1000000000",
"output": "479001600"
},
{
"input": "1000000000 1",
"output": "1"
},
{
"input": "12 13",
"output": "479001600"
},
{
"input": "2 29845",
"output": "2"
},
{
"input": "10 21",
"output": "3628800"
},
{
"input": "12 20",
"output": "479001600"
},
{
"input": "15 12",
"output": "479001600"
},
{
"input": "1 1",
"output": "1"
},
{
"input": "1000000000 12",
"output": "479001600"
},
{
"input": "11 30",
"output": "39916800"
},
{
"input": "17 12",
"output": "479001600"
},
{
"input": "4 19",
"output": "24"
},
{
"input": "12 15",
"output": "479001600"
},
{
"input": "20 6",
"output": "720"
},
{
"input": "10 20",
"output": "3628800"
},
{
"input": "10 10",
"output": "3628800"
},
{
"input": "22 12",
"output": "479001600"
},
{
"input": "20 12",
"output": "479001600"
},
{
"input": "12 23",
"output": "479001600"
},
{
"input": "12 22",
"output": "479001600"
},
{
"input": "18 3",
"output": "6"
},
{
"input": "14 10",
"output": "3628800"
},
{
"input": "14 12",
"output": "479001600"
},
{
"input": "8 3",
"output": "6"
},
{
"input": "5 5",
"output": "120"
}
] | 1,642,604,833
| 2,147,483,647
|
PyPy 3-64
|
OK
|
TESTS
| 59
| 93
| 0
|
def gt(n):
p=1
for i in range(1,n+1):
p*=i
return p
a,b = [int(x) for x in input().split()]
print(gt(min(a,b)))
|
Title: I'm bored with life
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Holidays have finished. Thanks to the help of the hacker Leha, Noora managed to enter the university of her dreams which is located in a town Pavlopolis. It's well known that universities provide students with dormitory for the period of university studies. Consequently Noora had to leave Vičkopolis and move to Pavlopolis. Thus Leha was left completely alone in a quiet town Vičkopolis. He almost even fell into a depression from boredom!
Leha came up with a task for himself to relax a little. He chooses two integers *A* and *B* and then calculates the greatest common divisor of integers "*A* factorial" and "*B* factorial". Formally the hacker wants to find out GCD(*A*!,<=*B*!). It's well known that the factorial of an integer *x* is a product of all positive integers less than or equal to *x*. Thus *x*!<==<=1·2·3·...·(*x*<=-<=1)·*x*. For example 4!<==<=1·2·3·4<==<=24. Recall that GCD(*x*,<=*y*) is the largest positive integer *q* that divides (without a remainder) both *x* and *y*.
Leha has learned how to solve this task very effective. You are able to cope with it not worse, aren't you?
Input Specification:
The first and single line contains two integers *A* and *B* (1<=≤<=*A*,<=*B*<=≤<=109,<=*min*(*A*,<=*B*)<=≤<=12).
Output Specification:
Print a single integer denoting the greatest common divisor of integers *A*! and *B*!.
Demo Input:
['4 3\n']
Demo Output:
['6\n']
Note:
Consider the sample.
4! = 1·2·3·4 = 24. 3! = 1·2·3 = 6. The greatest common divisor of integers 24 and 6 is exactly 6.
|
```python
def gt(n):
p=1
for i in range(1,n+1):
p*=i
return p
a,b = [int(x) for x in input().split()]
print(gt(min(a,b)))
```
| 3
|
|
372
|
A
|
Counting Kangaroos is Fun
|
PROGRAMMING
| 1,600
|
[
"binary search",
"greedy",
"sortings",
"two pointers"
] | null | null |
There are *n* kangaroos with pockets. Each kangaroo has a size (integer number). A kangaroo can go into another kangaroo's pocket if and only if the size of kangaroo who hold the kangaroo is at least twice as large as the size of kangaroo who is held.
Each kangaroo can hold at most one kangaroo, and the kangaroo who is held by another kangaroo cannot hold any kangaroos.
The kangaroo who is held by another kangaroo cannot be visible from outside. Please, find a plan of holding kangaroos with the minimal number of kangaroos who is visible.
|
The first line contains a single integer — *n* (1<=≤<=*n*<=≤<=5·105). Each of the next *n* lines contains an integer *s**i* — the size of the *i*-th kangaroo (1<=≤<=*s**i*<=≤<=105).
|
Output a single integer — the optimal number of visible kangaroos.
|
[
"8\n2\n5\n7\n6\n9\n8\n4\n2\n",
"8\n9\n1\n6\n2\n6\n5\n8\n3\n"
] |
[
"5\n",
"5\n"
] |
none
| 500
|
[
{
"input": "8\n2\n5\n7\n6\n9\n8\n4\n2",
"output": "5"
},
{
"input": "8\n9\n1\n6\n2\n6\n5\n8\n3",
"output": "5"
},
{
"input": "12\n3\n99\n24\n46\n75\n63\n57\n55\n10\n62\n34\n52",
"output": "7"
},
{
"input": "12\n55\n75\n1\n98\n63\n64\n9\n39\n82\n18\n47\n9",
"output": "6"
},
{
"input": "100\n678\n771\n96\n282\n135\n749\n168\n668\n17\n658\n979\n446\n998\n331\n606\n756\n37\n515\n538\n205\n647\n547\n904\n842\n647\n286\n774\n414\n267\n791\n595\n465\n8\n327\n855\n174\n339\n946\n184\n250\n807\n422\n679\n980\n64\n530\n312\n351\n676\n911\n803\n991\n669\n50\n293\n841\n545\n598\n737\n894\n231\n754\n588\n83\n873\n767\n833\n482\n905\n903\n970\n571\n715\n59\n777\n697\n537\n861\n339\n212\n149\n889\n905\n70\n970\n307\n830\n465\n968\n291\n430\n317\n942\n944\n330\n235\n814\n880\n415\n76",
"output": "58"
},
{
"input": "100\n154\n60\n97\n638\n139\n150\n570\n579\n601\n647\n804\n237\n245\n549\n288\n347\n778\n282\n916\n441\n974\n145\n957\n886\n655\n702\n930\n618\n132\n520\n972\n48\n94\n54\n682\n433\n896\n134\n845\n636\n242\n842\n125\n141\n240\n130\n409\n666\n948\n938\n604\n110\n474\n484\n364\n40\n807\n271\n438\n288\n201\n814\n754\n589\n341\n576\n146\n952\n819\n923\n222\n535\n336\n83\n314\n911\n303\n911\n384\n601\n249\n330\n735\n271\n142\n204\n405\n783\n775\n449\n590\n139\n109\n276\n45\n205\n454\n836\n82\n841",
"output": "50"
},
{
"input": "1\n1",
"output": "1"
},
{
"input": "4\n1\n1\n1\n2",
"output": "3"
},
{
"input": "5\n1\n2\n4\n8\n16",
"output": "3"
},
{
"input": "7\n1\n2\n4\n8\n16\n32\n64",
"output": "4"
},
{
"input": "3\n1\n2\n4",
"output": "2"
}
] | 1,673,126,057
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 45
| 920
| 14,745,600
|
n = int(input())
sizes = sorted([int(input()) for i in range(n)])
opt = n-1
cnt = 0
for i in range(n//2-1, -1, -1):
if sizes[i] * 2 <= sizes[opt]:
opt -= 1
cnt += 1
print(opt+1)
|
Title: Counting Kangaroos is Fun
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
There are *n* kangaroos with pockets. Each kangaroo has a size (integer number). A kangaroo can go into another kangaroo's pocket if and only if the size of kangaroo who hold the kangaroo is at least twice as large as the size of kangaroo who is held.
Each kangaroo can hold at most one kangaroo, and the kangaroo who is held by another kangaroo cannot hold any kangaroos.
The kangaroo who is held by another kangaroo cannot be visible from outside. Please, find a plan of holding kangaroos with the minimal number of kangaroos who is visible.
Input Specification:
The first line contains a single integer — *n* (1<=≤<=*n*<=≤<=5·105). Each of the next *n* lines contains an integer *s**i* — the size of the *i*-th kangaroo (1<=≤<=*s**i*<=≤<=105).
Output Specification:
Output a single integer — the optimal number of visible kangaroos.
Demo Input:
['8\n2\n5\n7\n6\n9\n8\n4\n2\n', '8\n9\n1\n6\n2\n6\n5\n8\n3\n']
Demo Output:
['5\n', '5\n']
Note:
none
|
```python
n = int(input())
sizes = sorted([int(input()) for i in range(n)])
opt = n-1
cnt = 0
for i in range(n//2-1, -1, -1):
if sizes[i] * 2 <= sizes[opt]:
opt -= 1
cnt += 1
print(opt+1)
```
| 3
|
|
588
|
B
|
Duff in Love
|
PROGRAMMING
| 1,300
|
[
"math"
] | null | null |
Duff is in love with lovely numbers! A positive integer *x* is called lovely if and only if there is no such positive integer *a*<=><=1 such that *a*2 is a divisor of *x*.
Malek has a number store! In his store, he has only divisors of positive integer *n* (and he has all of them). As a birthday present, Malek wants to give her a lovely number from his store. He wants this number to be as big as possible.
Malek always had issues in math, so he asked for your help. Please tell him what is the biggest lovely number in his store.
|
The first and only line of input contains one integer, *n* (1<=≤<=*n*<=≤<=1012).
|
Print the answer in one line.
|
[
"10\n",
"12\n"
] |
[
"10\n",
"6\n"
] |
In first sample case, there are numbers 1, 2, 5 and 10 in the shop. 10 isn't divisible by any perfect square, so 10 is lovely.
In second sample case, there are numbers 1, 2, 3, 4, 6 and 12 in the shop. 12 is divisible by 4 = 2<sup class="upper-index">2</sup>, so 12 is not lovely, while 6 is indeed lovely.
| 1,000
|
[
{
"input": "10",
"output": "10"
},
{
"input": "12",
"output": "6"
},
{
"input": "1",
"output": "1"
},
{
"input": "2",
"output": "2"
},
{
"input": "4",
"output": "2"
},
{
"input": "8",
"output": "2"
},
{
"input": "3",
"output": "3"
},
{
"input": "31",
"output": "31"
},
{
"input": "97",
"output": "97"
},
{
"input": "1000000000000",
"output": "10"
},
{
"input": "15",
"output": "15"
},
{
"input": "894",
"output": "894"
},
{
"input": "271",
"output": "271"
},
{
"input": "2457",
"output": "273"
},
{
"input": "2829",
"output": "2829"
},
{
"input": "5000",
"output": "10"
},
{
"input": "20",
"output": "10"
},
{
"input": "68",
"output": "34"
},
{
"input": "3096",
"output": "258"
},
{
"input": "1024",
"output": "2"
},
{
"input": "1048576",
"output": "2"
},
{
"input": "413933789280",
"output": "25870861830"
},
{
"input": "817634153013",
"output": "817634153013"
},
{
"input": "56517269141",
"output": "56517269141"
},
{
"input": "30707328551",
"output": "30707328551"
},
{
"input": "279564127218",
"output": "10354226934"
},
{
"input": "491159577042",
"output": "18191095446"
},
{
"input": "734337660466",
"output": "734337660466"
},
{
"input": "808453785117",
"output": "808453785117"
},
{
"input": "55926835837",
"output": "55926835837"
},
{
"input": "294809951965",
"output": "294809951965"
},
{
"input": "537988035389",
"output": "76855433627"
},
{
"input": "822722434952",
"output": "205680608738"
},
{
"input": "699511759613",
"output": "699511759613"
},
{
"input": "942689843037",
"output": "104743315893"
},
{
"input": "663634158717",
"output": "663634158717"
},
{
"input": "213612977250",
"output": "11730"
},
{
"input": "999999999989",
"output": "999999999989"
},
{
"input": "999999999988",
"output": "499999999994"
},
{
"input": "87178291200",
"output": "30030"
},
{
"input": "927668721948",
"output": "463834360974"
},
{
"input": "562436815639",
"output": "37927"
},
{
"input": "302981118597",
"output": "35853"
},
{
"input": "5",
"output": "5"
},
{
"input": "9",
"output": "3"
},
{
"input": "36",
"output": "6"
},
{
"input": "2231",
"output": "2231"
},
{
"input": "27648",
"output": "6"
},
{
"input": "40320",
"output": "210"
},
{
"input": "648000",
"output": "30"
},
{
"input": "999966000289",
"output": "999983"
},
{
"input": "999985999949",
"output": "999985999949"
},
{
"input": "991921850317",
"output": "9973"
}
] | 1,634,565,776
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 53
| 327
| 0
|
n = int(input())
for i in range(2,10**6):
while n%(i*i) ==0 :
n = n // i
print(n)
|
Title: Duff in Love
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Duff is in love with lovely numbers! A positive integer *x* is called lovely if and only if there is no such positive integer *a*<=><=1 such that *a*2 is a divisor of *x*.
Malek has a number store! In his store, he has only divisors of positive integer *n* (and he has all of them). As a birthday present, Malek wants to give her a lovely number from his store. He wants this number to be as big as possible.
Malek always had issues in math, so he asked for your help. Please tell him what is the biggest lovely number in his store.
Input Specification:
The first and only line of input contains one integer, *n* (1<=≤<=*n*<=≤<=1012).
Output Specification:
Print the answer in one line.
Demo Input:
['10\n', '12\n']
Demo Output:
['10\n', '6\n']
Note:
In first sample case, there are numbers 1, 2, 5 and 10 in the shop. 10 isn't divisible by any perfect square, so 10 is lovely.
In second sample case, there are numbers 1, 2, 3, 4, 6 and 12 in the shop. 12 is divisible by 4 = 2<sup class="upper-index">2</sup>, so 12 is not lovely, while 6 is indeed lovely.
|
```python
n = int(input())
for i in range(2,10**6):
while n%(i*i) ==0 :
n = n // i
print(n)
```
| 3
|
|
242
|
B
|
Big Segment
|
PROGRAMMING
| 1,100
|
[
"implementation",
"sortings"
] | null | null |
A coordinate line has *n* segments, the *i*-th segment starts at the position *l**i* and ends at the position *r**i*. We will denote such a segment as [*l**i*,<=*r**i*].
You have suggested that one of the defined segments covers all others. In other words, there is such segment in the given set, which contains all other ones. Now you want to test your assumption. Find in the given set the segment which covers all other segments, and print its number. If such a segment doesn't exist, print -1.
Formally we will assume that segment [*a*,<=*b*] covers segment [*c*,<=*d*], if they meet this condition *a*<=≤<=*c*<=≤<=*d*<=≤<=*b*.
|
The first line contains integer *n* (1<=≤<=*n*<=≤<=105) — the number of segments. Next *n* lines contain the descriptions of the segments. The *i*-th line contains two space-separated integers *l**i*,<=*r**i* (1<=≤<=*l**i*<=≤<=*r**i*<=≤<=109) — the borders of the *i*-th segment.
It is guaranteed that no two segments coincide.
|
Print a single integer — the number of the segment that covers all other segments in the set. If there's no solution, print -1.
The segments are numbered starting from 1 in the order in which they appear in the input.
|
[
"3\n1 1\n2 2\n3 3\n",
"6\n1 5\n2 3\n1 10\n7 10\n7 7\n10 10\n"
] |
[
"-1\n",
"3\n"
] |
none
| 1,000
|
[
{
"input": "3\n1 1\n2 2\n3 3",
"output": "-1"
},
{
"input": "6\n1 5\n2 3\n1 10\n7 10\n7 7\n10 10",
"output": "3"
},
{
"input": "4\n1 5\n2 2\n2 4\n2 5",
"output": "1"
},
{
"input": "5\n3 3\n1 3\n2 2\n2 3\n1 2",
"output": "2"
},
{
"input": "7\n7 7\n8 8\n3 7\n1 6\n1 7\n4 7\n2 8",
"output": "-1"
},
{
"input": "3\n2 5\n3 4\n2 3",
"output": "1"
},
{
"input": "16\n15 15\n8 12\n6 9\n15 16\n8 14\n3 12\n7 19\n9 13\n5 16\n9 17\n10 15\n9 14\n9 9\n18 19\n5 15\n6 19",
"output": "-1"
},
{
"input": "9\n1 10\n7 8\n6 7\n1 4\n5 9\n2 8\n3 10\n1 1\n2 3",
"output": "1"
},
{
"input": "1\n1 100000",
"output": "1"
},
{
"input": "6\n2 2\n3 3\n3 5\n4 5\n1 1\n1 5",
"output": "6"
},
{
"input": "33\n2 18\n4 14\n2 16\n10 12\n4 6\n9 17\n2 8\n4 12\n8 20\n1 10\n11 14\n11 17\n8 15\n3 16\n3 4\n6 9\n6 19\n4 17\n17 19\n6 16\n3 12\n1 7\n6 20\n8 16\n12 19\n1 3\n12 18\n6 11\n7 20\n16 18\n4 15\n3 15\n15 19",
"output": "-1"
},
{
"input": "34\n3 8\n5 9\n2 9\n1 4\n3 7\n3 3\n8 9\n6 10\n4 7\n6 7\n5 8\n5 10\n1 5\n8 8\n2 5\n3 5\n7 7\n2 8\n4 5\n1 1\n7 9\n5 6\n2 3\n1 2\n2 4\n8 10\n7 8\n1 3\n4 8\n9 10\n1 7\n10 10\n2 2\n1 8",
"output": "-1"
},
{
"input": "55\n3 4\n6 8\n9 10\n3 9\n9 9\n2 5\n4 8\n3 8\n8 10\n1 1\n4 9\n10 10\n6 6\n8 8\n1 8\n5 5\n4 5\n5 9\n2 2\n3 10\n4 6\n3 6\n1 6\n1 7\n6 10\n2 6\n3 7\n2 4\n4 4\n5 10\n1 4\n2 9\n1 3\n7 9\n7 8\n1 9\n1 10\n2 8\n8 9\n6 7\n1 2\n6 9\n7 7\n4 7\n3 3\n2 7\n4 10\n7 10\n2 3\n2 10\n5 7\n3 5\n5 8\n1 5\n5 6",
"output": "37"
},
{
"input": "1\n999999999 1000000000",
"output": "1"
},
{
"input": "3\n1 20\n2 22\n3 18",
"output": "-1"
},
{
"input": "1\n1000000000 1000000000",
"output": "1"
},
{
"input": "2\n100001 100008\n100005 100006",
"output": "1"
},
{
"input": "1\n1000000 10000000",
"output": "1"
},
{
"input": "3\n3 6\n2 4\n1 5",
"output": "-1"
},
{
"input": "2\n3 5\n1 2",
"output": "-1"
}
] | 1,526,625,274
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 45
| 778
| 5,427,200
|
n = int(input())
l = []
r = []
# đọc dữ liệu
for i in range(n):
a, b = map(int, input().split())
l.append(a)
r.append(b)
minL = min(l)
maxR = max(r)
# Tìm minL, maxR
found = False
for i in range(n):
if l[i] == minL and r[i] == maxR:
print(i+1)
found = True
if found == False:
print(-1)
|
Title: Big Segment
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
A coordinate line has *n* segments, the *i*-th segment starts at the position *l**i* and ends at the position *r**i*. We will denote such a segment as [*l**i*,<=*r**i*].
You have suggested that one of the defined segments covers all others. In other words, there is such segment in the given set, which contains all other ones. Now you want to test your assumption. Find in the given set the segment which covers all other segments, and print its number. If such a segment doesn't exist, print -1.
Formally we will assume that segment [*a*,<=*b*] covers segment [*c*,<=*d*], if they meet this condition *a*<=≤<=*c*<=≤<=*d*<=≤<=*b*.
Input Specification:
The first line contains integer *n* (1<=≤<=*n*<=≤<=105) — the number of segments. Next *n* lines contain the descriptions of the segments. The *i*-th line contains two space-separated integers *l**i*,<=*r**i* (1<=≤<=*l**i*<=≤<=*r**i*<=≤<=109) — the borders of the *i*-th segment.
It is guaranteed that no two segments coincide.
Output Specification:
Print a single integer — the number of the segment that covers all other segments in the set. If there's no solution, print -1.
The segments are numbered starting from 1 in the order in which they appear in the input.
Demo Input:
['3\n1 1\n2 2\n3 3\n', '6\n1 5\n2 3\n1 10\n7 10\n7 7\n10 10\n']
Demo Output:
['-1\n', '3\n']
Note:
none
|
```python
n = int(input())
l = []
r = []
# đọc dữ liệu
for i in range(n):
a, b = map(int, input().split())
l.append(a)
r.append(b)
minL = min(l)
maxR = max(r)
# Tìm minL, maxR
found = False
for i in range(n):
if l[i] == minL and r[i] == maxR:
print(i+1)
found = True
if found == False:
print(-1)
```
| 3
|
|
1,004
|
C
|
Sonya and Robots
|
PROGRAMMING
| 1,400
|
[
"constructive algorithms",
"implementation"
] | null | null |
Since Sonya is interested in robotics too, she decided to construct robots that will read and recognize numbers.
Sonya has drawn $n$ numbers in a row, $a_i$ is located in the $i$-th position. She also has put a robot at each end of the row (to the left of the first number and to the right of the last number). Sonya will give a number to each robot (they can be either same or different) and run them. When a robot is running, it is moving toward to another robot, reading numbers in the row. When a robot is reading a number that is equal to the number that was given to that robot, it will turn off and stay in the same position.
Sonya does not want robots to break, so she will give such numbers that robots will stop before they meet. That is, the girl wants them to stop at different positions so that the first robot is to the left of the second one.
For example, if the numbers $[1, 5, 4, 1, 3]$ are written, and Sonya gives the number $1$ to the first robot and the number $4$ to the second one, the first robot will stop in the $1$-st position while the second one in the $3$-rd position. In that case, robots will not meet each other. As a result, robots will not be broken. But if Sonya gives the number $4$ to the first robot and the number $5$ to the second one, they will meet since the first robot will stop in the $3$-rd position while the second one is in the $2$-nd position.
Sonya understands that it does not make sense to give a number that is not written in the row because a robot will not find this number and will meet the other robot.
Sonya is now interested in finding the number of different pairs that she can give to robots so that they will not meet. In other words, she wants to know the number of pairs ($p$, $q$), where she will give $p$ to the first robot and $q$ to the second one. Pairs ($p_i$, $q_i$) and ($p_j$, $q_j$) are different if $p_i\neq p_j$ or $q_i\neq q_j$.
Unfortunately, Sonya is busy fixing robots that broke after a failed launch. That is why she is asking you to find the number of pairs that she can give to robots so that they will not meet.
|
The first line contains a single integer $n$ ($1\leq n\leq 10^5$) — the number of numbers in a row.
The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($1\leq a_i\leq 10^5$) — the numbers in a row.
|
Print one number — the number of possible pairs that Sonya can give to robots so that they will not meet.
|
[
"5\n1 5 4 1 3\n",
"7\n1 2 1 1 1 3 2\n"
] |
[
"9\n",
"7\n"
] |
In the first example, Sonya can give pairs ($1$, $1$), ($1$, $3$), ($1$, $4$), ($1$, $5$), ($4$, $1$), ($4$, $3$), ($5$, $1$), ($5$, $3$), and ($5$, $4$).
In the second example, Sonya can give pairs ($1$, $1$), ($1$, $2$), ($1$, $3$), ($2$, $1$), ($2$, $2$), ($2$, $3$), and ($3$, $2$).
| 1,500
|
[
{
"input": "5\n1 5 4 1 3",
"output": "9"
},
{
"input": "7\n1 2 1 1 1 3 2",
"output": "7"
},
{
"input": "10\n2 2 4 4 3 1 1 2 3 2",
"output": "14"
},
{
"input": "15\n1 2 2 1 2 4 2 1 1 6 6 4 2 5 4",
"output": "20"
},
{
"input": "1\n1",
"output": "0"
}
] | 1,611,558,078
| 2,147,483,647
|
PyPy 3
|
OK
|
TESTS
| 42
| 264
| 17,715,200
|
import functools
import time
def timer(func):
@functools.wraps(func)
def wrapper(*args, **kwargs):
stime = time.perf_counter()
res = func(*args, **kwargs)
elapsed = time.perf_counter() - stime
print(f"{func.__name__} in {elapsed:.4f} secs")
return res
return wrapper
class solver:
# @timer
def __init__(self):
n = int(input())
a = list(map(int, input().strip().split()))
MAX = 2**19
fen = [0] * (MAX + 1)
vis = [False] * (MAX + 1)
dl = [n] * (MAX + 1)
dr = [n] * (MAX + 1)
for i in range(n):
dl[a[i]] = min(dl[a[i]], i)
for i in range(n - 1, -1, -1):
dr[a[i]] = min(dr[a[i]], n - 1 - i)
def inc(p, val):
p += 1
while p <= MAX:
fen[p] += val
p += (p&(-p))
def query(p):
p += 1
res = 0
while p > 0:
res += fen[p]
p -= (p&(-p))
return res
for i in range(n - 1):
val = dl[a[i]]
if not vis[val]:
inc(val, 1)
vis[val] = True
ans = 0
vis = [False] * (MAX + 1)
for i in range(n - 1, 0, -1):
if not vis[a[i]]:
q = max(0, n - 2 - dr[a[i]])
ans += query(q)
vis[a[i]] = True
print(ans)
solver()
|
Title: Sonya and Robots
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Since Sonya is interested in robotics too, she decided to construct robots that will read and recognize numbers.
Sonya has drawn $n$ numbers in a row, $a_i$ is located in the $i$-th position. She also has put a robot at each end of the row (to the left of the first number and to the right of the last number). Sonya will give a number to each robot (they can be either same or different) and run them. When a robot is running, it is moving toward to another robot, reading numbers in the row. When a robot is reading a number that is equal to the number that was given to that robot, it will turn off and stay in the same position.
Sonya does not want robots to break, so she will give such numbers that robots will stop before they meet. That is, the girl wants them to stop at different positions so that the first robot is to the left of the second one.
For example, if the numbers $[1, 5, 4, 1, 3]$ are written, and Sonya gives the number $1$ to the first robot and the number $4$ to the second one, the first robot will stop in the $1$-st position while the second one in the $3$-rd position. In that case, robots will not meet each other. As a result, robots will not be broken. But if Sonya gives the number $4$ to the first robot and the number $5$ to the second one, they will meet since the first robot will stop in the $3$-rd position while the second one is in the $2$-nd position.
Sonya understands that it does not make sense to give a number that is not written in the row because a robot will not find this number and will meet the other robot.
Sonya is now interested in finding the number of different pairs that she can give to robots so that they will not meet. In other words, she wants to know the number of pairs ($p$, $q$), where she will give $p$ to the first robot and $q$ to the second one. Pairs ($p_i$, $q_i$) and ($p_j$, $q_j$) are different if $p_i\neq p_j$ or $q_i\neq q_j$.
Unfortunately, Sonya is busy fixing robots that broke after a failed launch. That is why she is asking you to find the number of pairs that she can give to robots so that they will not meet.
Input Specification:
The first line contains a single integer $n$ ($1\leq n\leq 10^5$) — the number of numbers in a row.
The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($1\leq a_i\leq 10^5$) — the numbers in a row.
Output Specification:
Print one number — the number of possible pairs that Sonya can give to robots so that they will not meet.
Demo Input:
['5\n1 5 4 1 3\n', '7\n1 2 1 1 1 3 2\n']
Demo Output:
['9\n', '7\n']
Note:
In the first example, Sonya can give pairs ($1$, $1$), ($1$, $3$), ($1$, $4$), ($1$, $5$), ($4$, $1$), ($4$, $3$), ($5$, $1$), ($5$, $3$), and ($5$, $4$).
In the second example, Sonya can give pairs ($1$, $1$), ($1$, $2$), ($1$, $3$), ($2$, $1$), ($2$, $2$), ($2$, $3$), and ($3$, $2$).
|
```python
import functools
import time
def timer(func):
@functools.wraps(func)
def wrapper(*args, **kwargs):
stime = time.perf_counter()
res = func(*args, **kwargs)
elapsed = time.perf_counter() - stime
print(f"{func.__name__} in {elapsed:.4f} secs")
return res
return wrapper
class solver:
# @timer
def __init__(self):
n = int(input())
a = list(map(int, input().strip().split()))
MAX = 2**19
fen = [0] * (MAX + 1)
vis = [False] * (MAX + 1)
dl = [n] * (MAX + 1)
dr = [n] * (MAX + 1)
for i in range(n):
dl[a[i]] = min(dl[a[i]], i)
for i in range(n - 1, -1, -1):
dr[a[i]] = min(dr[a[i]], n - 1 - i)
def inc(p, val):
p += 1
while p <= MAX:
fen[p] += val
p += (p&(-p))
def query(p):
p += 1
res = 0
while p > 0:
res += fen[p]
p -= (p&(-p))
return res
for i in range(n - 1):
val = dl[a[i]]
if not vis[val]:
inc(val, 1)
vis[val] = True
ans = 0
vis = [False] * (MAX + 1)
for i in range(n - 1, 0, -1):
if not vis[a[i]]:
q = max(0, n - 2 - dr[a[i]])
ans += query(q)
vis[a[i]] = True
print(ans)
solver()
```
| 3
|
|
552
|
A
|
Vanya and Table
|
PROGRAMMING
| 1,000
|
[
"implementation",
"math"
] | null | null |
Vanya has a table consisting of 100 rows, each row contains 100 cells. The rows are numbered by integers from 1 to 100 from bottom to top, the columns are numbered from 1 to 100 from left to right.
In this table, Vanya chose *n* rectangles with sides that go along borders of squares (some rectangles probably occur multiple times). After that for each cell of the table he counted the number of rectangles it belongs to and wrote this number into it. Now he wants to find the sum of values in all cells of the table and as the table is too large, he asks you to help him find the result.
|
The first line contains integer *n* (1<=≤<=*n*<=≤<=100) — the number of rectangles.
Each of the following *n* lines contains four integers *x*1,<=*y*1,<=*x*2,<=*y*2 (1<=≤<=*x*1<=≤<=*x*2<=≤<=100, 1<=≤<=*y*1<=≤<=*y*2<=≤<=100), where *x*1 and *y*1 are the number of the column and row of the lower left cell and *x*2 and *y*2 are the number of the column and row of the upper right cell of a rectangle.
|
In a single line print the sum of all values in the cells of the table.
|
[
"2\n1 1 2 3\n2 2 3 3\n",
"2\n1 1 3 3\n1 1 3 3\n"
] |
[
"10\n",
"18\n"
] |
Note to the first sample test:
Values of the table in the first three rows and columns will be as follows:
121
121
110
So, the sum of values will be equal to 10.
Note to the second sample test:
Values of the table in the first three rows and columns will be as follows:
222
222
222
So, the sum of values will be equal to 18.
| 500
|
[
{
"input": "2\n1 1 2 3\n2 2 3 3",
"output": "10"
},
{
"input": "2\n1 1 3 3\n1 1 3 3",
"output": "18"
},
{
"input": "5\n4 11 20 15\n7 5 12 20\n10 8 16 12\n7 5 12 15\n2 2 20 13",
"output": "510"
},
{
"input": "5\n4 11 20 20\n6 11 20 16\n5 2 19 15\n11 3 18 15\n3 2 14 11",
"output": "694"
},
{
"input": "5\n1 1 1 100\n1 1 1 100\n1 1 1 100\n1 1 1 100\n1 1 1 100",
"output": "500"
},
{
"input": "1\n1 1 1 1",
"output": "1"
},
{
"input": "1\n100 100 100 100",
"output": "1"
},
{
"input": "1\n1 1 1 100",
"output": "100"
},
{
"input": "3\n1 1 1 1\n1 2 1 2\n1 3 1 3",
"output": "3"
},
{
"input": "1\n1 1 100 100",
"output": "10000"
}
] | 1,661,683,309
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 26
| 46
| 0
|
from cmath import inf
n = int(input())
ans = 0
for _ in range(n):
x1, y1, x2, y2 = [int(i) for i in input().split(' ')]
ans += (abs(x2 - x1) + 1) * (abs(y2 - y1) + 1)
print(ans)
|
Title: Vanya and Table
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Vanya has a table consisting of 100 rows, each row contains 100 cells. The rows are numbered by integers from 1 to 100 from bottom to top, the columns are numbered from 1 to 100 from left to right.
In this table, Vanya chose *n* rectangles with sides that go along borders of squares (some rectangles probably occur multiple times). After that for each cell of the table he counted the number of rectangles it belongs to and wrote this number into it. Now he wants to find the sum of values in all cells of the table and as the table is too large, he asks you to help him find the result.
Input Specification:
The first line contains integer *n* (1<=≤<=*n*<=≤<=100) — the number of rectangles.
Each of the following *n* lines contains four integers *x*1,<=*y*1,<=*x*2,<=*y*2 (1<=≤<=*x*1<=≤<=*x*2<=≤<=100, 1<=≤<=*y*1<=≤<=*y*2<=≤<=100), where *x*1 and *y*1 are the number of the column and row of the lower left cell and *x*2 and *y*2 are the number of the column and row of the upper right cell of a rectangle.
Output Specification:
In a single line print the sum of all values in the cells of the table.
Demo Input:
['2\n1 1 2 3\n2 2 3 3\n', '2\n1 1 3 3\n1 1 3 3\n']
Demo Output:
['10\n', '18\n']
Note:
Note to the first sample test:
Values of the table in the first three rows and columns will be as follows:
121
121
110
So, the sum of values will be equal to 10.
Note to the second sample test:
Values of the table in the first three rows and columns will be as follows:
222
222
222
So, the sum of values will be equal to 18.
|
```python
from cmath import inf
n = int(input())
ans = 0
for _ in range(n):
x1, y1, x2, y2 = [int(i) for i in input().split(' ')]
ans += (abs(x2 - x1) + 1) * (abs(y2 - y1) + 1)
print(ans)
```
| 3
|
|
549
|
A
|
Face Detection
|
PROGRAMMING
| 900
|
[
"implementation",
"strings"
] | null | null |
The developers of Looksery have to write an efficient algorithm that detects faces on a picture. Unfortunately, they are currently busy preparing a contest for you, so you will have to do it for them.
In this problem an image is a rectangular table that consists of lowercase Latin letters. A face on the image is a 2<=×<=2 square, such that from the four letters of this square you can make word "face".
You need to write a program that determines the number of faces on the image. The squares that correspond to the faces can overlap.
|
The first line contains two space-separated integers, *n* and *m* (1<=≤<=*n*,<=*m*<=≤<=50) — the height and the width of the image, respectively.
Next *n* lines define the image. Each line contains *m* lowercase Latin letters.
|
In the single line print the number of faces on the image.
|
[
"4 4\nxxxx\nxfax\nxcex\nxxxx\n",
"4 2\nxx\ncf\nae\nxx\n",
"2 3\nfac\ncef\n",
"1 4\nface\n"
] |
[
"1\n",
"1\n",
"2\n",
"0\n"
] |
In the first sample the image contains a single face, located in a square with the upper left corner at the second line and the second column:
In the second sample the image also contains exactly one face, its upper left corner is at the second row and the first column.
In the third sample two faces are shown:
In the fourth sample the image has no faces on it.
| 250
|
[
{
"input": "4 4\nxxxx\nxfax\nxcex\nxxxx",
"output": "1"
},
{
"input": "4 2\nxx\ncf\nae\nxx",
"output": "1"
},
{
"input": "2 3\nfac\ncef",
"output": "2"
},
{
"input": "1 4\nface",
"output": "0"
},
{
"input": "5 5\nwmmwn\nlurcm\nkeetd\nfokon\ncxxgx",
"output": "0"
},
{
"input": "5 5\nkjxbw\neacra\nxefhx\nucmcz\npgtjk",
"output": "1"
},
{
"input": "1 1\np",
"output": "0"
},
{
"input": "2 5\nacdmw\nefazb",
"output": "1"
},
{
"input": "5 2\ndz\nda\nsx\nyu\nzz",
"output": "0"
},
{
"input": "5 5\nxeljd\nwriac\nveief\nlcacf\nbqefn",
"output": "2"
},
{
"input": "5 5\nacnbx\nefacp\nlrefa\norqce\nzvbay",
"output": "3"
},
{
"input": "5 5\nbyjvu\nkmaca\nalefe\nwcacg\nrefez",
"output": "5"
},
{
"input": "5 5\npuxac\nbbaef\naccfa\nefaec\nligsr",
"output": "5"
},
{
"input": "37 4\nacjo\nefac\nacef\nefac\nwpef\nicac\naefe\ncfac\naece\ncfaf\nyqce\nmiaf\nirce\nycaf\naefc\ncfae\nrsnc\nbacz\nqefb\npdhs\nffac\nfaef\nacfd\nacmi\nefvm\nacaz\nefpn\nacao\nefer\nacap\nefec\nacaf\nefef\nacbj\nefac\nacef\nefoz",
"output": "49"
},
{
"input": "7 3\njac\naef\ncfa\naec\ncfq\ndig\nxyq",
"output": "5"
},
{
"input": "35 1\ny\na\nk\ng\ni\nd\nv\nn\nl\nx\nu\nx\nu\no\nd\nf\nk\nj\nr\nm\nq\ns\nc\nd\nc\nm\nv\nh\nn\ne\nl\nt\nz\ny\no",
"output": "0"
},
{
"input": "9 46\nuuexbaacesjclggslacermcbkxlcxhdgqtacdwfryxzuxc\naclrsaefakndbnzlkefenuphgcgoedhkaxefjtnkgfeaca\nefuqunpmfxdyyffyhvracozzrxlpekhtsrfhlilfmyhefg\numyacfzffvicqtdpiulefnwcojuwtfbvlxkfsiapdnzpqo\nactefvuxqptremlqjhdbdwacjxdxitxjktecvefacamjcz\neflarseklqrkayhosverpfefzirqigzlxezabhzeferkwm\nztpypwxyohtacsnnvoigqwcachtaceyxlkhfhgwbnfmklb\nfzpqeymhljiefctvqtbgcdjefkxefarbciyosmktmoziac\nbssxizyrzyhacszttwhrzspbfkgfcejybdjcpuczhrkqef",
"output": "20"
},
{
"input": "7 30\nmjfracgaacacctacrreyrlkacuacay\nrlacefacefeftaeftkacacaefcefev\nacefacefacraccfaeaefefecaeacaf\nefacefacefaefaecfcfacacaecfefa\nncefacefacecacfaeaecefefcaeace\nfafaceacuafaefadcfcafacaefcfea\nzsvefafukcecfarkaeaecefecailgu",
"output": "95"
},
{
"input": "2 2\nff\nee",
"output": "0"
},
{
"input": "2 2\nfa\ncc",
"output": "0"
},
{
"input": "2 2\nfa\naa",
"output": "0"
},
{
"input": "2 2\nfa\nea",
"output": "0"
},
{
"input": "2 2\nfa\ndd",
"output": "0"
},
{
"input": "2 2\nee\nff",
"output": "0"
},
{
"input": "2 2\ncc\ncf",
"output": "0"
},
{
"input": "2 2\naa\nae",
"output": "0"
},
{
"input": "2 2\nef\nac",
"output": "1"
},
{
"input": "2 2\nfe\nca",
"output": "1"
}
] | 1,541,778,616
| 2,147,483,647
|
PyPy 3
|
OK
|
TESTS
| 37
| 139
| 204,800
|
n,m=map(int,input().split())
c=[]
for i in range(n):
c.append(input())
z=0
for i in range(len(c)-1):
for j in range(len(c[i])-1):
l=[]
l.append(c[i][j])
l.append(c[i+1][j])
l.append(c[i][j+1])
l.append(c[i+1][j+1])
if(l.count('f')==1 and l.count('a')==1 and l.count('c')==1 and l.count('e')==1):
z+=1
print(z)
|
Title: Face Detection
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
The developers of Looksery have to write an efficient algorithm that detects faces on a picture. Unfortunately, they are currently busy preparing a contest for you, so you will have to do it for them.
In this problem an image is a rectangular table that consists of lowercase Latin letters. A face on the image is a 2<=×<=2 square, such that from the four letters of this square you can make word "face".
You need to write a program that determines the number of faces on the image. The squares that correspond to the faces can overlap.
Input Specification:
The first line contains two space-separated integers, *n* and *m* (1<=≤<=*n*,<=*m*<=≤<=50) — the height and the width of the image, respectively.
Next *n* lines define the image. Each line contains *m* lowercase Latin letters.
Output Specification:
In the single line print the number of faces on the image.
Demo Input:
['4 4\nxxxx\nxfax\nxcex\nxxxx\n', '4 2\nxx\ncf\nae\nxx\n', '2 3\nfac\ncef\n', '1 4\nface\n']
Demo Output:
['1\n', '1\n', '2\n', '0\n']
Note:
In the first sample the image contains a single face, located in a square with the upper left corner at the second line and the second column:
In the second sample the image also contains exactly one face, its upper left corner is at the second row and the first column.
In the third sample two faces are shown:
In the fourth sample the image has no faces on it.
|
```python
n,m=map(int,input().split())
c=[]
for i in range(n):
c.append(input())
z=0
for i in range(len(c)-1):
for j in range(len(c[i])-1):
l=[]
l.append(c[i][j])
l.append(c[i+1][j])
l.append(c[i][j+1])
l.append(c[i+1][j+1])
if(l.count('f')==1 and l.count('a')==1 and l.count('c')==1 and l.count('e')==1):
z+=1
print(z)
```
| 3
|
|
373
|
A
|
Collecting Beats is Fun
|
PROGRAMMING
| 900
|
[
"implementation"
] | null | null |
Cucumber boy is fan of Kyubeat, a famous music game.
Kyubeat has 16 panels for playing arranged in 4<=×<=4 table. When a panel lights up, he has to press that panel.
Each panel has a timing to press (the preffered time when a player should press it), and Cucumber boy is able to press at most *k* panels in a time with his one hand. Cucumber boy is trying to press all panels in perfect timing, that is he wants to press each panel exactly in its preffered time. If he cannot press the panels with his two hands in perfect timing, his challenge to press all the panels in perfect timing will fail.
You are given one scene of Kyubeat's panel from the music Cucumber boy is trying. Tell him is he able to press all the panels in perfect timing.
|
The first line contains a single integer *k* (1<=≤<=*k*<=≤<=5) — the number of panels Cucumber boy can press with his one hand.
Next 4 lines contain 4 characters each (digits from 1 to 9, or period) — table of panels. If a digit *i* was written on the panel, it means the boy has to press that panel in time *i*. If period was written on the panel, he doesn't have to press that panel.
|
Output "YES" (without quotes), if he is able to press all the panels in perfect timing. If not, output "NO" (without quotes).
|
[
"1\n.135\n1247\n3468\n5789\n",
"5\n..1.\n1111\n..1.\n..1.\n",
"1\n....\n12.1\n.2..\n.2..\n"
] |
[
"YES\n",
"YES\n",
"NO\n"
] |
In the third sample boy cannot press all panels in perfect timing. He can press all the panels in timing in time 1, but he cannot press the panels in time 2 in timing with his two hands.
| 500
|
[
{
"input": "1\n.135\n1247\n3468\n5789",
"output": "YES"
},
{
"input": "5\n..1.\n1111\n..1.\n..1.",
"output": "YES"
},
{
"input": "1\n....\n12.1\n.2..\n.2..",
"output": "NO"
},
{
"input": "1\n6981\n.527\n4163\n2345",
"output": "YES"
},
{
"input": "5\n9999\n9999\n9999\n9999",
"output": "NO"
},
{
"input": "2\n4444\n3333\n2222\n1111",
"output": "YES"
},
{
"input": "3\n2123\n1232\n2321\n3213",
"output": "NO"
},
{
"input": "2\n1...\n.1..\n..1.\n...1",
"output": "YES"
},
{
"input": "2\n1.1.\n.1.1\n2.2.\n.222",
"output": "NO"
},
{
"input": "1\n1..2\n.3.4\n567.\n.89.",
"output": "YES"
},
{
"input": "1\n1122\n3344\n5588\n6699",
"output": "YES"
},
{
"input": "4\n1111\n1221\n1221\n1111",
"output": "NO"
},
{
"input": "5\n3141\n5926\n5358\n9793",
"output": "YES"
},
{
"input": "5\n5454\n4343\n3232\n2121",
"output": "YES"
},
{
"input": "5\n1222\n2221\n2221\n1122",
"output": "NO"
},
{
"input": "1\n....\n5..5\n6..6\n7..7",
"output": "YES"
},
{
"input": "1\n9875\n8643\n7421\n531.",
"output": "YES"
},
{
"input": "1\n..1.\n..1.\n..1.\n..1.",
"output": "NO"
},
{
"input": "4\n4.4.\n4.4.\n4444\n..4.",
"output": "NO"
},
{
"input": "5\n4.4.\n4.4.\n4444\n..4.",
"output": "YES"
},
{
"input": "3\n1.1.\n.1.1\n1.1.\n.1.1",
"output": "NO"
},
{
"input": "2\n1131\n4412\n2569\n3478",
"output": "YES"
},
{
"input": "2\n8888\n8888\n8888\n8888",
"output": "NO"
}
] | 1,580,461,180
| 2,147,483,647
|
PyPy 3
|
OK
|
TESTS
| 27
| 156
| 0
|
import sys
panels_per_hand = int(input())
panels = []
for x in range(4):
panels.append(input())
panel_string = ''
for x in panels:
panel_string += x
freq = None
for x in panel_string:
if x == '.':
continue
freq = 0
for y in panel_string:
if x == y:
freq += 1
if freq > 2 * panels_per_hand:
print('NO')
sys.exit(0)
print('YES')
|
Title: Collecting Beats is Fun
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Cucumber boy is fan of Kyubeat, a famous music game.
Kyubeat has 16 panels for playing arranged in 4<=×<=4 table. When a panel lights up, he has to press that panel.
Each panel has a timing to press (the preffered time when a player should press it), and Cucumber boy is able to press at most *k* panels in a time with his one hand. Cucumber boy is trying to press all panels in perfect timing, that is he wants to press each panel exactly in its preffered time. If he cannot press the panels with his two hands in perfect timing, his challenge to press all the panels in perfect timing will fail.
You are given one scene of Kyubeat's panel from the music Cucumber boy is trying. Tell him is he able to press all the panels in perfect timing.
Input Specification:
The first line contains a single integer *k* (1<=≤<=*k*<=≤<=5) — the number of panels Cucumber boy can press with his one hand.
Next 4 lines contain 4 characters each (digits from 1 to 9, or period) — table of panels. If a digit *i* was written on the panel, it means the boy has to press that panel in time *i*. If period was written on the panel, he doesn't have to press that panel.
Output Specification:
Output "YES" (without quotes), if he is able to press all the panels in perfect timing. If not, output "NO" (without quotes).
Demo Input:
['1\n.135\n1247\n3468\n5789\n', '5\n..1.\n1111\n..1.\n..1.\n', '1\n....\n12.1\n.2..\n.2..\n']
Demo Output:
['YES\n', 'YES\n', 'NO\n']
Note:
In the third sample boy cannot press all panels in perfect timing. He can press all the panels in timing in time 1, but he cannot press the panels in time 2 in timing with his two hands.
|
```python
import sys
panels_per_hand = int(input())
panels = []
for x in range(4):
panels.append(input())
panel_string = ''
for x in panels:
panel_string += x
freq = None
for x in panel_string:
if x == '.':
continue
freq = 0
for y in panel_string:
if x == y:
freq += 1
if freq > 2 * panels_per_hand:
print('NO')
sys.exit(0)
print('YES')
```
| 3
|
|
960
|
A
|
Check the string
|
PROGRAMMING
| 1,200
|
[
"implementation"
] | null | null |
A has a string consisting of some number of lowercase English letters 'a'. He gives it to his friend B who appends some number of letters 'b' to the end of this string. Since both A and B like the characters 'a' and 'b', they have made sure that at this point, at least one 'a' and one 'b' exist in the string.
B now gives this string to C and he appends some number of letters 'c' to the end of the string. However, since C is a good friend of A and B, the number of letters 'c' he appends is equal to the number of 'a' or to the number of 'b' in the string. It is also possible that the number of letters 'c' equals both to the number of letters 'a' and to the number of letters 'b' at the same time.
You have a string in your hands, and you want to check if it is possible to obtain the string in this way or not. If it is possible to obtain the string, print "YES", otherwise print "NO" (without the quotes).
|
The first and only line consists of a string $S$ ($ 1 \le |S| \le 5\,000 $). It is guaranteed that the string will only consist of the lowercase English letters 'a', 'b', 'c'.
|
Print "YES" or "NO", according to the condition.
|
[
"aaabccc\n",
"bbacc\n",
"aabc\n"
] |
[
"YES\n",
"NO\n",
"YES\n"
] |
Consider first example: the number of 'c' is equal to the number of 'a'.
Consider second example: although the number of 'c' is equal to the number of the 'b', the order is not correct.
Consider third example: the number of 'c' is equal to the number of 'b'.
| 500
|
[
{
"input": "aaabccc",
"output": "YES"
},
{
"input": "bbacc",
"output": "NO"
},
{
"input": "aabc",
"output": "YES"
},
{
"input": "aabbcc",
"output": "YES"
},
{
"input": "aaacccbb",
"output": "NO"
},
{
"input": "abc",
"output": "YES"
},
{
"input": "acba",
"output": "NO"
},
{
"input": "bbabbc",
"output": "NO"
},
{
"input": "bbbabacca",
"output": "NO"
},
{
"input": "aabcbcaca",
"output": "NO"
},
{
"input": "aaaaabbbbbb",
"output": "NO"
},
{
"input": "c",
"output": "NO"
},
{
"input": "cc",
"output": "NO"
},
{
"input": "bbb",
"output": "NO"
},
{
"input": "bc",
"output": "NO"
},
{
"input": "ccbcc",
"output": "NO"
},
{
"input": "aaa",
"output": "NO"
},
{
"input": "aaccaa",
"output": "NO"
},
{
"input": "a",
"output": "NO"
},
{
"input": "b",
"output": "NO"
},
{
"input": "abca",
"output": "NO"
},
{
"input": "aabbcccc",
"output": "NO"
},
{
"input": "abac",
"output": "NO"
},
{
"input": "abcc",
"output": "NO"
},
{
"input": "abcb",
"output": "NO"
},
{
"input": "aacc",
"output": "NO"
},
{
"input": "aabbaacccc",
"output": "NO"
},
{
"input": "aabb",
"output": "NO"
},
{
"input": "ac",
"output": "NO"
},
{
"input": "abbacc",
"output": "NO"
},
{
"input": "abacc",
"output": "NO"
},
{
"input": "ababc",
"output": "NO"
},
{
"input": "aa",
"output": "NO"
},
{
"input": "aabaccc",
"output": "NO"
},
{
"input": "bbcc",
"output": "NO"
},
{
"input": "aaabcbc",
"output": "NO"
},
{
"input": "acbbc",
"output": "NO"
},
{
"input": "babc",
"output": "NO"
},
{
"input": "bbbcc",
"output": "NO"
},
{
"input": "bbc",
"output": "NO"
},
{
"input": "abababccc",
"output": "NO"
},
{
"input": "ccbbaa",
"output": "NO"
}
] | 1,685,284,192
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 55
| 46
| 0
|
# import sys
# input = sys.stdin.readline
for _ in range(1):#int(input())):
s = input()
a, b, c = 0, 0, 0
flag = 0
if (s[0] == 'a'): a += 1
for i in range(1, len(s)):
if (s[i] >= s[i-1]):
if (s[i] == 'a'):
a += 1
elif (s[i] == 'b'):
b += 1
elif (s[i] == 'c'):
c += 1
else:
flag = 1
break
if (flag == 0):
if(a > 0 and b > 0 and c > 0):
if (c == a or c == b):
print("YES")
else:
print("NO")
else:
print("NO")
else:
print("NO")
|
Title: Check the string
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
A has a string consisting of some number of lowercase English letters 'a'. He gives it to his friend B who appends some number of letters 'b' to the end of this string. Since both A and B like the characters 'a' and 'b', they have made sure that at this point, at least one 'a' and one 'b' exist in the string.
B now gives this string to C and he appends some number of letters 'c' to the end of the string. However, since C is a good friend of A and B, the number of letters 'c' he appends is equal to the number of 'a' or to the number of 'b' in the string. It is also possible that the number of letters 'c' equals both to the number of letters 'a' and to the number of letters 'b' at the same time.
You have a string in your hands, and you want to check if it is possible to obtain the string in this way or not. If it is possible to obtain the string, print "YES", otherwise print "NO" (without the quotes).
Input Specification:
The first and only line consists of a string $S$ ($ 1 \le |S| \le 5\,000 $). It is guaranteed that the string will only consist of the lowercase English letters 'a', 'b', 'c'.
Output Specification:
Print "YES" or "NO", according to the condition.
Demo Input:
['aaabccc\n', 'bbacc\n', 'aabc\n']
Demo Output:
['YES\n', 'NO\n', 'YES\n']
Note:
Consider first example: the number of 'c' is equal to the number of 'a'.
Consider second example: although the number of 'c' is equal to the number of the 'b', the order is not correct.
Consider third example: the number of 'c' is equal to the number of 'b'.
|
```python
# import sys
# input = sys.stdin.readline
for _ in range(1):#int(input())):
s = input()
a, b, c = 0, 0, 0
flag = 0
if (s[0] == 'a'): a += 1
for i in range(1, len(s)):
if (s[i] >= s[i-1]):
if (s[i] == 'a'):
a += 1
elif (s[i] == 'b'):
b += 1
elif (s[i] == 'c'):
c += 1
else:
flag = 1
break
if (flag == 0):
if(a > 0 and b > 0 and c > 0):
if (c == a or c == b):
print("YES")
else:
print("NO")
else:
print("NO")
else:
print("NO")
```
| 3
|
|
675
|
B
|
Restoring Painting
|
PROGRAMMING
| 1,400
|
[
"brute force",
"constructive algorithms",
"math"
] | null | null |
Vasya works as a watchman in the gallery. Unfortunately, one of the most expensive paintings was stolen while he was on duty. He doesn't want to be fired, so he has to quickly restore the painting. He remembers some facts about it.
- The painting is a square 3<=×<=3, each cell contains a single integer from 1 to *n*, and different cells may contain either different or equal integers. - The sum of integers in each of four squares 2<=×<=2 is equal to the sum of integers in the top left square 2<=×<=2. - Four elements *a*, *b*, *c* and *d* are known and are located as shown on the picture below.
Help Vasya find out the number of distinct squares the satisfy all the conditions above. Note, that this number may be equal to 0, meaning Vasya remembers something wrong.
Two squares are considered to be different, if there exists a cell that contains two different integers in different squares.
|
The first line of the input contains five integers *n*, *a*, *b*, *c* and *d* (1<=≤<=*n*<=≤<=100<=000, 1<=≤<=*a*,<=*b*,<=*c*,<=*d*<=≤<=*n*) — maximum possible value of an integer in the cell and four integers that Vasya remembers.
|
Print one integer — the number of distinct valid squares.
|
[
"2 1 1 1 2\n",
"3 3 1 2 3\n"
] |
[
"2\n",
"6\n"
] |
Below are all the possible paintings for the first sample. <img class="tex-graphics" src="https://espresso.codeforces.com/c4c53d4e7b6814d8aad7b72604b6089d61dadb48.png" style="max-width: 100.0%;max-height: 100.0%;"/> <img class="tex-graphics" src="https://espresso.codeforces.com/46a6ad6a5d3db202f3779b045b9dc77fc2348cf1.png" style="max-width: 100.0%;max-height: 100.0%;"/>
In the second sample, only paintings displayed below satisfy all the rules. <img class="tex-graphics" src="https://espresso.codeforces.com/776f231305f8ce7c33e79e887722ce46aa8b6e61.png" style="max-width: 100.0%;max-height: 100.0%;"/> <img class="tex-graphics" src="https://espresso.codeforces.com/2fce9e9a31e70f1e46ea26f11d7305b3414e9b6b.png" style="max-width: 100.0%;max-height: 100.0%;"/> <img class="tex-graphics" src="https://espresso.codeforces.com/be084a4d1f7e475be1183f7dff10e9c89eb175ef.png" style="max-width: 100.0%;max-height: 100.0%;"/> <img class="tex-graphics" src="https://espresso.codeforces.com/96afdb4a35ac14f595d29bea2282f621098902f4.png" style="max-width: 100.0%;max-height: 100.0%;"/> <img class="tex-graphics" src="https://espresso.codeforces.com/79ca8d720334a74910514f017ecf1d0166009a03.png" style="max-width: 100.0%;max-height: 100.0%;"/> <img class="tex-graphics" src="https://espresso.codeforces.com/ad3c37e950bf5702d54f05756db35c831da59ad9.png" style="max-width: 100.0%;max-height: 100.0%;"/>
| 1,000
|
[
{
"input": "2 1 1 1 2",
"output": "2"
},
{
"input": "3 3 1 2 3",
"output": "6"
},
{
"input": "1 1 1 1 1",
"output": "1"
},
{
"input": "1000 522 575 426 445",
"output": "774000"
},
{
"input": "99000 52853 14347 64237 88869",
"output": "1296306000"
},
{
"input": "100000 2 2 2 2",
"output": "10000000000"
},
{
"input": "2 1 1 2 2",
"output": "0"
},
{
"input": "10 9 10 8 10",
"output": "70"
},
{
"input": "100 19 16 35 83",
"output": "1700"
},
{
"input": "1000 102 583 606 929",
"output": "150000"
},
{
"input": "10000 1816 3333 6908 7766",
"output": "4750000"
},
{
"input": "100000 80015 84290 50777 30497",
"output": "1696900000"
},
{
"input": "100000 64022 49026 55956 88430",
"output": "6866200000"
},
{
"input": "100000 10263 46628 10268 22948",
"output": "5095500000"
},
{
"input": "100000 81311 81584 51625 57276",
"output": "4600600000"
},
{
"input": "100000 77594 3226 21255 8541",
"output": "1291800000"
},
{
"input": "100000 65131 35523 58220 87645",
"output": "5478900000"
},
{
"input": "100000 83958 32567 91083 95317",
"output": "3012500000"
},
{
"input": "100000 36851 54432 21164 85520",
"output": "1806300000"
},
{
"input": "100000 55732 17473 23832 75148",
"output": "7422500000"
},
{
"input": "100000 60789 25296 49585 25237",
"output": "4015900000"
},
{
"input": "100000 92060 77234 58709 36956",
"output": "2637100000"
},
{
"input": "100000 87223 66046 27153 40823",
"output": "1470700000"
},
{
"input": "100000 3809 35468 34556 51158",
"output": "5173900000"
},
{
"input": "100000 35038 37363 95275 88903",
"output": "0"
},
{
"input": "100000 45274 9250 36558 49486",
"output": "6848000000"
},
{
"input": "100000 1 1 1 1",
"output": "10000000000"
},
{
"input": "100000 1 1 1 100000",
"output": "100000"
},
{
"input": "100000 1 1 100000 1",
"output": "100000"
},
{
"input": "100000 1 1 100000 100000",
"output": "0"
},
{
"input": "100000 1 100000 1 1",
"output": "100000"
},
{
"input": "100000 1 100000 1 100000",
"output": "0"
},
{
"input": "100000 1 100000 100000 1",
"output": "10000000000"
},
{
"input": "100000 1 100000 100000 100000",
"output": "100000"
},
{
"input": "100000 100000 1 1 1",
"output": "100000"
},
{
"input": "100000 100000 1 1 100000",
"output": "10000000000"
},
{
"input": "100000 100000 1 100000 1",
"output": "0"
},
{
"input": "100000 100000 1 100000 100000",
"output": "100000"
},
{
"input": "100000 100000 100000 1 1",
"output": "0"
},
{
"input": "100000 100000 100000 1 100000",
"output": "100000"
},
{
"input": "100000 100000 100000 100000 1",
"output": "100000"
},
{
"input": "100000 100000 100000 100000 100000",
"output": "10000000000"
},
{
"input": "3 3 3 1 1",
"output": "0"
},
{
"input": "10 1 2 5 10",
"output": "0"
},
{
"input": "5 1 1 5 5",
"output": "0"
},
{
"input": "4 4 4 1 1",
"output": "0"
},
{
"input": "10 10 10 1 1",
"output": "0"
},
{
"input": "5 5 5 1 1",
"output": "0"
},
{
"input": "100 100 100 1 1",
"output": "0"
},
{
"input": "3 1 1 3 3",
"output": "0"
},
{
"input": "10 2 10 1 10",
"output": "0"
},
{
"input": "7 7 7 1 1",
"output": "0"
},
{
"input": "5 5 3 4 1",
"output": "0"
},
{
"input": "7 1 1 7 7",
"output": "0"
},
{
"input": "100 1 1 100 100",
"output": "0"
},
{
"input": "123 1 2 3 100",
"output": "2829"
},
{
"input": "10 1 1 10 10",
"output": "0"
},
{
"input": "803 525 6 623 8",
"output": "0"
}
] | 1,514,705,221
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 58
| 62
| 5,632,000
|
#Codeforces: Restoring Painting
n,a,b,c,d=[eval(x) for x in input().split()]
if(a<d):
ab=c+(d-a)
else:
ab=c
aa=ab+a+b
ac=aa-(a+c)
bd=aa-(b+d)
cd=aa-(c+d)
mini=min(ab,ac,bd,cd)
maxi=max(ab,ac,bd,cd)
diff=maxi-mini
t=n-(1+diff)+1
if(t<=0):
print(0)
else:
print(t*n)
|
Title: Restoring Painting
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Vasya works as a watchman in the gallery. Unfortunately, one of the most expensive paintings was stolen while he was on duty. He doesn't want to be fired, so he has to quickly restore the painting. He remembers some facts about it.
- The painting is a square 3<=×<=3, each cell contains a single integer from 1 to *n*, and different cells may contain either different or equal integers. - The sum of integers in each of four squares 2<=×<=2 is equal to the sum of integers in the top left square 2<=×<=2. - Four elements *a*, *b*, *c* and *d* are known and are located as shown on the picture below.
Help Vasya find out the number of distinct squares the satisfy all the conditions above. Note, that this number may be equal to 0, meaning Vasya remembers something wrong.
Two squares are considered to be different, if there exists a cell that contains two different integers in different squares.
Input Specification:
The first line of the input contains five integers *n*, *a*, *b*, *c* and *d* (1<=≤<=*n*<=≤<=100<=000, 1<=≤<=*a*,<=*b*,<=*c*,<=*d*<=≤<=*n*) — maximum possible value of an integer in the cell and four integers that Vasya remembers.
Output Specification:
Print one integer — the number of distinct valid squares.
Demo Input:
['2 1 1 1 2\n', '3 3 1 2 3\n']
Demo Output:
['2\n', '6\n']
Note:
Below are all the possible paintings for the first sample. <img class="tex-graphics" src="https://espresso.codeforces.com/c4c53d4e7b6814d8aad7b72604b6089d61dadb48.png" style="max-width: 100.0%;max-height: 100.0%;"/> <img class="tex-graphics" src="https://espresso.codeforces.com/46a6ad6a5d3db202f3779b045b9dc77fc2348cf1.png" style="max-width: 100.0%;max-height: 100.0%;"/>
In the second sample, only paintings displayed below satisfy all the rules. <img class="tex-graphics" src="https://espresso.codeforces.com/776f231305f8ce7c33e79e887722ce46aa8b6e61.png" style="max-width: 100.0%;max-height: 100.0%;"/> <img class="tex-graphics" src="https://espresso.codeforces.com/2fce9e9a31e70f1e46ea26f11d7305b3414e9b6b.png" style="max-width: 100.0%;max-height: 100.0%;"/> <img class="tex-graphics" src="https://espresso.codeforces.com/be084a4d1f7e475be1183f7dff10e9c89eb175ef.png" style="max-width: 100.0%;max-height: 100.0%;"/> <img class="tex-graphics" src="https://espresso.codeforces.com/96afdb4a35ac14f595d29bea2282f621098902f4.png" style="max-width: 100.0%;max-height: 100.0%;"/> <img class="tex-graphics" src="https://espresso.codeforces.com/79ca8d720334a74910514f017ecf1d0166009a03.png" style="max-width: 100.0%;max-height: 100.0%;"/> <img class="tex-graphics" src="https://espresso.codeforces.com/ad3c37e950bf5702d54f05756db35c831da59ad9.png" style="max-width: 100.0%;max-height: 100.0%;"/>
|
```python
#Codeforces: Restoring Painting
n,a,b,c,d=[eval(x) for x in input().split()]
if(a<d):
ab=c+(d-a)
else:
ab=c
aa=ab+a+b
ac=aa-(a+c)
bd=aa-(b+d)
cd=aa-(c+d)
mini=min(ab,ac,bd,cd)
maxi=max(ab,ac,bd,cd)
diff=maxi-mini
t=n-(1+diff)+1
if(t<=0):
print(0)
else:
print(t*n)
```
| 3
|
|
61
|
A
|
Ultra-Fast Mathematician
|
PROGRAMMING
| 800
|
[
"implementation"
] |
A. Ultra-Fast Mathematician
|
2
|
256
|
Shapur was an extremely gifted student. He was great at everything including Combinatorics, Algebra, Number Theory, Geometry, Calculus, etc. He was not only smart but extraordinarily fast! He could manage to sum 1018 numbers in a single second.
One day in 230 AD Shapur was trying to find out if any one can possibly do calculations faster than him. As a result he made a very great contest and asked every one to come and take part.
In his contest he gave the contestants many different pairs of numbers. Each number is made from digits 0 or 1. The contestants should write a new number corresponding to the given pair of numbers. The rule is simple: The *i*-th digit of the answer is 1 if and only if the *i*-th digit of the two given numbers differ. In the other case the *i*-th digit of the answer is 0.
Shapur made many numbers and first tried his own speed. He saw that he can perform these operations on numbers of length ∞ (length of a number is number of digits in it) in a glance! He always gives correct answers so he expects the contestants to give correct answers, too. He is a good fellow so he won't give anyone very big numbers and he always gives one person numbers of same length.
Now you are going to take part in Shapur's contest. See if you are faster and more accurate.
|
There are two lines in each input. Each of them contains a single number. It is guaranteed that the numbers are made from 0 and 1 only and that their length is same. The numbers may start with 0. The length of each number doesn't exceed 100.
|
Write one line — the corresponding answer. Do not omit the leading 0s.
|
[
"1010100\n0100101\n",
"000\n111\n",
"1110\n1010\n",
"01110\n01100\n"
] |
[
"1110001\n",
"111\n",
"0100\n",
"00010\n"
] |
none
| 500
|
[
{
"input": "1010100\n0100101",
"output": "1110001"
},
{
"input": "000\n111",
"output": "111"
},
{
"input": "1110\n1010",
"output": "0100"
},
{
"input": "01110\n01100",
"output": "00010"
},
{
"input": "011101\n000001",
"output": "011100"
},
{
"input": "10\n01",
"output": "11"
},
{
"input": "00111111\n11011101",
"output": "11100010"
},
{
"input": "011001100\n101001010",
"output": "110000110"
},
{
"input": "1100100001\n0110101100",
"output": "1010001101"
},
{
"input": "00011101010\n10010100101",
"output": "10001001111"
},
{
"input": "100000101101\n111010100011",
"output": "011010001110"
},
{
"input": "1000001111010\n1101100110001",
"output": "0101101001011"
},
{
"input": "01011111010111\n10001110111010",
"output": "11010001101101"
},
{
"input": "110010000111100\n001100101011010",
"output": "111110101100110"
},
{
"input": "0010010111110000\n0000000011010110",
"output": "0010010100100110"
},
{
"input": "00111110111110000\n01111100001100000",
"output": "01000010110010000"
},
{
"input": "101010101111010001\n001001111101111101",
"output": "100011010010101100"
},
{
"input": "0110010101111100000\n0011000101000000110",
"output": "0101010000111100110"
},
{
"input": "11110100011101010111\n00001000011011000000",
"output": "11111100000110010111"
},
{
"input": "101010101111101101001\n111010010010000011111",
"output": "010000111101101110110"
},
{
"input": "0000111111100011000010\n1110110110110000001010",
"output": "1110001001010011001000"
},
{
"input": "10010010101000110111000\n00101110100110111000111",
"output": "10111100001110001111111"
},
{
"input": "010010010010111100000111\n100100111111100011001110",
"output": "110110101101011111001001"
},
{
"input": "0101110100100111011010010\n0101100011010111001010001",
"output": "0000010111110000010000011"
},
{
"input": "10010010100011110111111011\n10000110101100000001000100",
"output": "00010100001111110110111111"
},
{
"input": "000001111000000100001000000\n011100111101111001110110001",
"output": "011101000101111101111110001"
},
{
"input": "0011110010001001011001011100\n0000101101000011101011001010",
"output": "0011011111001010110010010110"
},
{
"input": "11111000000000010011001101111\n11101110011001010100010000000",
"output": "00010110011001000111011101111"
},
{
"input": "011001110000110100001100101100\n001010000011110000001000101001",
"output": "010011110011000100000100000101"
},
{
"input": "1011111010001100011010110101111\n1011001110010000000101100010101",
"output": "0000110100011100011111010111010"
},
{
"input": "10111000100001000001010110000001\n10111000001100101011011001011000",
"output": "00000000101101101010001111011001"
},
{
"input": "000001010000100001000000011011100\n111111111001010100100001100000111",
"output": "111110101001110101100001111011011"
},
{
"input": "1101000000000010011011101100000110\n1110000001100010011010000011011110",
"output": "0011000001100000000001101111011000"
},
{
"input": "01011011000010100001100100011110001\n01011010111000001010010100001110000",
"output": "00000001111010101011110000010000001"
},
{
"input": "000011111000011001000110111100000100\n011011000110000111101011100111000111",
"output": "011000111110011110101101011011000011"
},
{
"input": "1001000010101110001000000011111110010\n0010001011010111000011101001010110000",
"output": "1011001001111001001011101010101000010"
},
{
"input": "00011101011001100101111111000000010101\n10010011011011001011111000000011101011",
"output": "10001110000010101110000111000011111110"
},
{
"input": "111011100110001001101111110010111001010\n111111101101111001110010000101101000100",
"output": "000100001011110000011101110111010001110"
},
{
"input": "1111001001101000001000000010010101001010\n0010111100111110001011000010111110111001",
"output": "1101110101010110000011000000101011110011"
},
{
"input": "00100101111000000101011111110010100011010\n11101110001010010101001000111110101010100",
"output": "11001011110010010000010111001100001001110"
},
{
"input": "101011001110110100101001000111010101101111\n100111100110101011010100111100111111010110",
"output": "001100101000011111111101111011101010111001"
},
{
"input": "1111100001100101000111101001001010011100001\n1000110011000011110010001011001110001000001",
"output": "0111010010100110110101100010000100010100000"
},
{
"input": "01100111011111010101000001101110000001110101\n10011001011111110000000101011001001101101100",
"output": "11111110000000100101000100110111001100011001"
},
{
"input": "110010100111000100100101100000011100000011001\n011001111011100110000110111001110110100111011",
"output": "101011011100100010100011011001101010100100010"
},
{
"input": "0001100111111011010110100100111000000111000110\n1100101011000000000001010010010111001100110001",
"output": "1101001100111011010111110110101111001011110111"
},
{
"input": "00000101110110110001110010100001110100000100000\n10010000110011110001101000111111101010011010001",
"output": "10010101000101000000011010011110011110011110001"
},
{
"input": "110000100101011100100011001111110011111110010001\n101011111001011100110110111101110011010110101100",
"output": "011011011100000000010101110010000000101000111101"
},
{
"input": "0101111101011111010101011101000011101100000000111\n0000101010110110001110101011011110111001010100100",
"output": "0101010111101001011011110110011101010101010100011"
},
{
"input": "11000100010101110011101000011111001010110111111100\n00001111000111001011111110000010101110111001000011",
"output": "11001011010010111000010110011101100100001110111111"
},
{
"input": "101000001101111101101111111000001110110010101101010\n010011100111100001100000010001100101000000111011011",
"output": "111011101010011100001111101001101011110010010110001"
},
{
"input": "0011111110010001010100010110111000110011001101010100\n0111000000100010101010000100101000000100101000111001",
"output": "0100111110110011111110010010010000110111100101101101"
},
{
"input": "11101010000110000011011010000001111101000111011111100\n10110011110001010100010110010010101001010111100100100",
"output": "01011001110111010111001100010011010100010000111011000"
},
{
"input": "011000100001000001101000010110100110011110100111111011\n111011001000001001110011001111011110111110110011011111",
"output": "100011101001001000011011011001111000100000010100100100"
},
{
"input": "0111010110010100000110111011010110100000000111110110000\n1011100100010001101100000100111111101001110010000100110",
"output": "1100110010000101101010111111101001001001110101110010110"
},
{
"input": "10101000100111000111010001011011011011110100110101100011\n11101111000000001100100011111000100100000110011001101110",
"output": "01000111100111001011110010100011111111110010101100001101"
},
{
"input": "000000111001010001000000110001001011100010011101010011011\n110001101000010010000101000100001111101001100100001010010",
"output": "110001010001000011000101110101000100001011111001011001001"
},
{
"input": "0101011100111010000111110010101101111111000000111100011100\n1011111110000010101110111001000011100000100111111111000111",
"output": "1110100010111000101001001011101110011111100111000011011011"
},
{
"input": "11001000001100100111100111100100101011000101001111001001101\n10111110100010000011010100110100100011101001100000001110110",
"output": "01110110101110100100110011010000001000101100101111000111011"
},
{
"input": "010111011011101000000110000110100110001110100001110110111011\n101011110011101011101101011111010100100001100111100100111011",
"output": "111100101000000011101011011001110010101111000110010010000000"
},
{
"input": "1001011110110110000100011001010110000100011010010111010101110\n1101111100001000010111110011010101111010010100000001000010111",
"output": "0100100010111110010011101010000011111110001110010110010111001"
},
{
"input": "10000010101111100111110101111000010100110111101101111111111010\n10110110101100101010011001011010100110111011101100011001100111",
"output": "00110100000011001101101100100010110010001100000001100110011101"
},
{
"input": "011111010011111000001010101001101001000010100010111110010100001\n011111001011000011111001000001111001010110001010111101000010011",
"output": "000000011000111011110011101000010000010100101000000011010110010"
},
{
"input": "1111000000110001011101000100100100001111011100001111001100011111\n1101100110000101100001100000001001011011111011010101000101001010",
"output": "0010100110110100111100100100101101010100100111011010001001010101"
},
{
"input": "01100000101010010011001110100110110010000110010011011001100100011\n10110110010110111100100111000111000110010000000101101110000010111",
"output": "11010110111100101111101001100001110100010110010110110111100110100"
},
{
"input": "001111111010000100001100001010011001111110011110010111110001100111\n110000101001011000100010101100100110000111100000001101001110010111",
"output": "111111010011011100101110100110111111111001111110011010111111110000"
},
{
"input": "1011101011101101011110101101011101011000010011100101010101000100110\n0001000001001111010111100100111101100000000001110001000110000000110",
"output": "1010101010100010001001001001100000111000010010010100010011000100000"
},
{
"input": "01000001011001010011011100010000100100110101111011011011110000001110\n01011110000110011011000000000011000111100001010000000011111001110000",
"output": "00011111011111001000011100010011100011010100101011011000001001111110"
},
{
"input": "110101010100110101000001111110110100010010000100111110010100110011100\n111010010111111011100110101011001011001110110111110100000110110100111",
"output": "001111000011001110100111010101111111011100110011001010010010000111011"
},
{
"input": "1001101011000001011111100110010010000011010001001111011100010100110001\n1111100111110101001111010001010000011001001001010110001111000000100101",
"output": "0110001100110100010000110111000010011010011000011001010011010100010100"
},
{
"input": "00000111110010110001110110001010010101000111011001111111100110011110010\n00010111110100000100110101000010010001100001100011100000001100010100010",
"output": "00010000000110110101000011001000000100100110111010011111101010001010000"
},
{
"input": "100101011100101101000011010001011001101110101110001100010001010111001110\n100001111100101011011111110000001111000111001011111110000010101110111001",
"output": "000100100000000110011100100001010110101001100101110010010011111001110111"
},
{
"input": "1101100001000111001101001011101000111000011110000001001101101001111011010\n0101011101010100011011010110101000010010110010011110101100000110110001000",
"output": "1000111100010011010110011101000000101010101100011111100001101111001010010"
},
{
"input": "01101101010011110101100001110101111011100010000010001101111000011110111111\n00101111001101001100111010000101110000100101101111100111101110010100011011",
"output": "01000010011110111001011011110000001011000111101101101010010110001010100100"
},
{
"input": "101100101100011001101111110110110010100110110010100001110010110011001101011\n000001011010101011110011111101001110000111000010001101000010010000010001101",
"output": "101101110110110010011100001011111100100001110000101100110000100011011100110"
},
{
"input": "0010001011001010001100000010010011110110011000100000000100110000101111001110\n1100110100111000110100001110111001011101001100001010100001010011100110110001",
"output": "1110111111110010111000001100101010101011010100101010100101100011001001111111"
},
{
"input": "00101101010000000101011001101011001100010001100000101011101110000001111001000\n10010110010111000000101101000011101011001010000011011101101011010000000011111",
"output": "10111011000111000101110100101000100111011011100011110110000101010001111010111"
},
{
"input": "111100000100100000101001100001001111001010001000001000000111010000010101101011\n001000100010100101111011111011010110101100001111011000010011011011100010010110",
"output": "110100100110000101010010011010011001100110000111010000010100001011110111111101"
},
{
"input": "0110001101100100001111110101101000100101010010101010011001101001001101110000000\n0111011000000010010111011110010000000001000110001000011001101000000001110100111",
"output": "0001010101100110011000101011111000100100010100100010000000000001001100000100111"
},
{
"input": "10001111111001000101001011110101111010100001011010101100111001010001010010001000\n10000111010010011110111000111010101100000011110001101111001000111010100000000001",
"output": "00001000101011011011110011001111010110100010101011000011110001101011110010001001"
},
{
"input": "100110001110110000100101001110000011110110000110000000100011110100110110011001101\n110001110101110000000100101001101011111100100100001001000110000001111100011110110",
"output": "010111111011000000100001100111101000001010100010001001100101110101001010000111011"
},
{
"input": "0000010100100000010110111100011111111010011101000000100000011001001101101100111010\n0100111110011101010110101011110110010111001111000110101100101110111100101000111111",
"output": "0100101010111101000000010111101001101101010010000110001100110111110001000100000101"
},
{
"input": "11000111001010100001110000001001011010010010110000001110100101000001010101100110111\n11001100100100100001101010110100000111100011101110011010110100001001000011011011010",
"output": "00001011101110000000011010111101011101110001011110010100010001001000010110111101101"
},
{
"input": "010110100010001000100010101001101010011010111110100001000100101000111011100010100001\n110000011111101101010011111000101010111010100001001100001001100101000000111000000000",
"output": "100110111101100101110001010001000000100000011111101101001101001101111011011010100001"
},
{
"input": "0000011110101110010101110110110101100001011001101010101001000010000010000000101001101\n1100111111011100000110000111101110011111100111110001011001000010011111100001001100011",
"output": "1100100001110010010011110001011011111110111110011011110000000000011101100001100101110"
},
{
"input": "10100000101101110001100010010010100101100011010010101000110011100000101010110010000000\n10001110011011010010111011011101101111000111110000111000011010010101001100000001010011",
"output": "00101110110110100011011001001111001010100100100010010000101001110101100110110011010011"
},
{
"input": "001110000011111101101010011111000101010111010100001001100001001100101000000111000000000\n111010000000000000101001110011001000111011001100101010011001000011101001001011110000011",
"output": "110100000011111101000011101100001101101100011000100011111000001111000001001100110000011"
},
{
"input": "1110111100111011010101011011001110001010010010110011110010011111000010011111010101100001\n1001010101011001001010100010101100000110111101011000100010101111111010111100001110010010",
"output": "0111101001100010011111111001100010001100101111101011010000110000111000100011011011110011"
},
{
"input": "11100010001100010011001100001100010011010001101110011110100101110010101101011101000111111\n01110000000110111010110100001010000101011110100101010011000110101110101101110111011110001",
"output": "10010010001010101001111000000110010110001111001011001101100011011100000000101010011001110"
},
{
"input": "001101011001100101101100110000111000101011001001100100000100101000100000110100010111111101\n101001111110000010111101111110001001111001111101111010000110111000100100110010010001011111",
"output": "100100100111100111010001001110110001010010110100011110000010010000000100000110000110100010"
},
{
"input": "1010110110010101000110010010110101011101010100011001101011000110000000100011100100011000000\n0011011111100010001111101101000111001011101110100000110111100100101111010110101111011100011",
"output": "1001101001110111001001111111110010010110111010111001011100100010101111110101001011000100011"
},
{
"input": "10010010000111010111011111110010100101100000001100011100111011100010000010010001011100001100\n00111010100010110010000100010111010001111110100100100011101000101111111111001101101100100100",
"output": "10101000100101100101011011100101110100011110101000111111010011001101111101011100110000101000"
},
{
"input": "010101110001010101100000010111010000000111110011001101100011001000000011001111110000000010100\n010010111011100101010101111110110000000111000100001101101001001000001100101110001010000100001",
"output": "000111001010110000110101101001100000000000110111000000001010000000001111100001111010000110101"
},
{
"input": "1100111110011001000111101001001011000110011010111111100010111111001100111111011101100111101011\n1100000011001000110100110111000001011001010111101000010010100011000001100100111101101000010110",
"output": "0000111101010001110011011110001010011111001101010111110000011100001101011011100000001111111101"
},
{
"input": "00011000100100110111100101100100000000010011110111110010101110110011100001010111010011110100101\n00011011111011111011100101100111100101001110010111000010000111000100100100000001110101111011011",
"output": "00000011011111001100000000000011100101011101100000110000101001110111000101010110100110001111110"
},
{
"input": "000101011001001100000111100010110101111011110101111101000110001101011010111110110011100100000001\n011000101010011111011000111000100000000011011000000001111110001000001111101010110000011100001111",
"output": "011101110011010011011111011010010101111000101101111100111000000101010101010100000011111000001110"
},
{
"input": "1000101001011010000100100100010010011101011001110101111011101111111110010101001101010001010101001\n0110110010011100011111011111110111000000010001110100001010111110101011010011111011111110000110000",
"output": "1110011011000110011011111011100101011101001000000001110001010001010101000110110110101111010011001"
},
{
"input": "01111010010101100111110111111011011010100001011101010000111100101101101110111011001100101011100111\n00001100110110100001111011000010001001001100000010111101000001111011100000010111010010000011000010",
"output": "01110110100011000110001100111001010011101101011111101101111101010110001110101100011110101000100101"
},
{
"input": "111101011101111000001011001101111010110111001101110100100011111011011101001101010101011010111000110\n101111100101101101001100110011000001111010011101110111110110101110011011110011111100001001110101101",
"output": "010010111000010101000111111110111011001101010000000011010101010101000110111110101001010011001101011"
},
{
"input": "1010000011010110011101001101110001110010000111011101110010110110111111001001110100101100010101010001\n0111101000111100101100000101111010100100001000011101010100110011100011010011010101000100101011100011",
"output": "1101101011101010110001001000001011010110001111000000100110000101011100011010100001101000111110110010"
},
{
"input": "0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001\n1111111010111111101011111110101111111010111111101011111110101111111010111111101011111110101111111010",
"output": "1111111010111111101011111110101111111010111111101011111110101111111010111111101011111110101111111011"
},
{
"input": "0\n0",
"output": "0"
},
{
"input": "0\n1",
"output": "1"
}
] | 1,641,224,767
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 102
| 61
| 0
|
a = input()
b = input()
ans = []
for i,x in enumerate(a):
if x == b[i]:
ans.append("0")
else:
ans.append("1")
c = "".join(ans)
print(c)
|
Title: Ultra-Fast Mathematician
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
Shapur was an extremely gifted student. He was great at everything including Combinatorics, Algebra, Number Theory, Geometry, Calculus, etc. He was not only smart but extraordinarily fast! He could manage to sum 1018 numbers in a single second.
One day in 230 AD Shapur was trying to find out if any one can possibly do calculations faster than him. As a result he made a very great contest and asked every one to come and take part.
In his contest he gave the contestants many different pairs of numbers. Each number is made from digits 0 or 1. The contestants should write a new number corresponding to the given pair of numbers. The rule is simple: The *i*-th digit of the answer is 1 if and only if the *i*-th digit of the two given numbers differ. In the other case the *i*-th digit of the answer is 0.
Shapur made many numbers and first tried his own speed. He saw that he can perform these operations on numbers of length ∞ (length of a number is number of digits in it) in a glance! He always gives correct answers so he expects the contestants to give correct answers, too. He is a good fellow so he won't give anyone very big numbers and he always gives one person numbers of same length.
Now you are going to take part in Shapur's contest. See if you are faster and more accurate.
Input Specification:
There are two lines in each input. Each of them contains a single number. It is guaranteed that the numbers are made from 0 and 1 only and that their length is same. The numbers may start with 0. The length of each number doesn't exceed 100.
Output Specification:
Write one line — the corresponding answer. Do not omit the leading 0s.
Demo Input:
['1010100\n0100101\n', '000\n111\n', '1110\n1010\n', '01110\n01100\n']
Demo Output:
['1110001\n', '111\n', '0100\n', '00010\n']
Note:
none
|
```python
a = input()
b = input()
ans = []
for i,x in enumerate(a):
if x == b[i]:
ans.append("0")
else:
ans.append("1")
c = "".join(ans)
print(c)
```
| 3.98475
|
884
|
A
|
Book Reading
|
PROGRAMMING
| 800
|
[
"implementation"
] | null | null |
Recently Luba bought a very interesting book. She knows that it will take *t* seconds to read the book. Luba wants to finish reading as fast as she can.
But she has some work to do in each of *n* next days. The number of seconds that Luba has to spend working during *i*-th day is *a**i*. If some free time remains, she can spend it on reading.
Help Luba to determine the minimum number of day when she finishes reading.
It is guaranteed that the answer doesn't exceed *n*.
Remember that there are 86400 seconds in a day.
|
The first line contains two integers *n* and *t* (1<=≤<=*n*<=≤<=100, 1<=≤<=*t*<=≤<=106) — the number of days and the time required to read the book.
The second line contains *n* integers *a**i* (0<=≤<=*a**i*<=≤<=86400) — the time Luba has to spend on her work during *i*-th day.
|
Print the minimum day Luba can finish reading the book.
It is guaranteed that answer doesn't exceed *n*.
|
[
"2 2\n86400 86398\n",
"2 86400\n0 86400\n"
] |
[
"2\n",
"1\n"
] |
none
| 0
|
[
{
"input": "2 2\n86400 86398",
"output": "2"
},
{
"input": "2 86400\n0 86400",
"output": "1"
},
{
"input": "2 86400\n1 86399",
"output": "2"
},
{
"input": "100 1000000\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0",
"output": "12"
},
{
"input": "1 1\n86399",
"output": "1"
},
{
"input": "6 1200\n86400 86400 86000 86000 86000 86400",
"output": "5"
},
{
"input": "6 1200\n86400 86400 86000 86000 86001 86399",
"output": "6"
},
{
"input": "4 172799\n1 1 86400 0",
"output": "4"
},
{
"input": "4 172799\n0 86400 86399 0",
"output": "4"
},
{
"input": "6 1\n1 1 86400 1 86399 1",
"output": "1"
},
{
"input": "4 1\n86400 86399 86400 86400",
"output": "2"
},
{
"input": "4 1\n86400 86400 0 86400",
"output": "3"
}
] | 1,551,441,301
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 16
| 108
| 0
|
n, t = map(int, input().split())
n = 0
s = list(map(lambda x: 86400 - int(x), input().split()))
for i, j in enumerate(s):
n += j
if n >= t:
print(i + 1)
exit(0)
|
Title: Book Reading
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Recently Luba bought a very interesting book. She knows that it will take *t* seconds to read the book. Luba wants to finish reading as fast as she can.
But she has some work to do in each of *n* next days. The number of seconds that Luba has to spend working during *i*-th day is *a**i*. If some free time remains, she can spend it on reading.
Help Luba to determine the minimum number of day when she finishes reading.
It is guaranteed that the answer doesn't exceed *n*.
Remember that there are 86400 seconds in a day.
Input Specification:
The first line contains two integers *n* and *t* (1<=≤<=*n*<=≤<=100, 1<=≤<=*t*<=≤<=106) — the number of days and the time required to read the book.
The second line contains *n* integers *a**i* (0<=≤<=*a**i*<=≤<=86400) — the time Luba has to spend on her work during *i*-th day.
Output Specification:
Print the minimum day Luba can finish reading the book.
It is guaranteed that answer doesn't exceed *n*.
Demo Input:
['2 2\n86400 86398\n', '2 86400\n0 86400\n']
Demo Output:
['2\n', '1\n']
Note:
none
|
```python
n, t = map(int, input().split())
n = 0
s = list(map(lambda x: 86400 - int(x), input().split()))
for i, j in enumerate(s):
n += j
if n >= t:
print(i + 1)
exit(0)
```
| 3
|
|
266
|
A
|
Stones on the Table
|
PROGRAMMING
| 800
|
[
"implementation"
] | null | null |
There are *n* stones on the table in a row, each of them can be red, green or blue. Count the minimum number of stones to take from the table so that any two neighboring stones had different colors. Stones in a row are considered neighboring if there are no other stones between them.
|
The first line contains integer *n* (1<=≤<=*n*<=≤<=50) — the number of stones on the table.
The next line contains string *s*, which represents the colors of the stones. We'll consider the stones in the row numbered from 1 to *n* from left to right. Then the *i*-th character *s* equals "R", if the *i*-th stone is red, "G", if it's green and "B", if it's blue.
|
Print a single integer — the answer to the problem.
|
[
"3\nRRG\n",
"5\nRRRRR\n",
"4\nBRBG\n"
] |
[
"1\n",
"4\n",
"0\n"
] |
none
| 500
|
[
{
"input": "3\nRRG",
"output": "1"
},
{
"input": "5\nRRRRR",
"output": "4"
},
{
"input": "4\nBRBG",
"output": "0"
},
{
"input": "1\nB",
"output": "0"
},
{
"input": "2\nBG",
"output": "0"
},
{
"input": "3\nBGB",
"output": "0"
},
{
"input": "4\nRBBR",
"output": "1"
},
{
"input": "5\nRGGBG",
"output": "1"
},
{
"input": "10\nGGBRBRGGRB",
"output": "2"
},
{
"input": "50\nGRBGGRBRGRBGGBBBBBGGGBBBBRBRGBRRBRGBBBRBBRRGBGGGRB",
"output": "18"
},
{
"input": "15\nBRRBRGGBBRRRRGR",
"output": "6"
},
{
"input": "20\nRRGBBRBRGRGBBGGRGRRR",
"output": "6"
},
{
"input": "25\nBBGBGRBGGBRRBGRRBGGBBRBRB",
"output": "6"
},
{
"input": "30\nGRGGGBGGRGBGGRGRBGBGBRRRRRRGRB",
"output": "9"
},
{
"input": "35\nGBBGBRGBBGGRBBGBRRGGRRRRRRRBRBBRRGB",
"output": "14"
},
{
"input": "40\nGBBRRGBGGGRGGGRRRRBRBGGBBGGGBGBBBBBRGGGG",
"output": "20"
},
{
"input": "45\nGGGBBRBBRRGRBBGGBGRBRGGBRBRGBRRGBGRRBGRGRBRRG",
"output": "11"
},
{
"input": "50\nRBGGBGGRBGRBBBGBBGRBBBGGGRBBBGBBBGRGGBGGBRBGBGRRGG",
"output": "17"
},
{
"input": "50\nGGGBBRGGGGGRRGGRBGGRGBBRBRRBGRGBBBGBRBGRGBBGRGGBRB",
"output": "16"
},
{
"input": "50\nGBGRGRRBRRRRRGGBBGBRRRBBBRBBBRRGRBBRGBRBGGRGRBBGGG",
"output": "19"
},
{
"input": "10\nGRRBRBRBGR",
"output": "1"
},
{
"input": "10\nBRBGBGRRBR",
"output": "1"
},
{
"input": "20\nGBGBGGRRRRGRBBGRGRGR",
"output": "5"
},
{
"input": "20\nRRGGRBBGBBRBGRRBRRBG",
"output": "6"
},
{
"input": "30\nBGBRGBBBGRGBBRGBGRBBBRGGRRGRRB",
"output": "8"
},
{
"input": "30\nBBBBGGBRBGBBGBGBGBGGGRGRRGGBBB",
"output": "11"
},
{
"input": "40\nGBRRGRBGBRRGBRGGGBRGBGBRGBBRRGRGGBBGBGBB",
"output": "9"
},
{
"input": "40\nBRGRGGRGGRBBRRRBRBBGGGRRGBGBBGRBBRGBRRGG",
"output": "13"
},
{
"input": "50\nRBGBGGRRGGRGGBGBGRRBGGBGBRRBBGBBGBBBGBBRBBRBRBRGRG",
"output": "13"
},
{
"input": "50\nRBRRGBGRRRBGRRBGRRGRBBRBBRRBRGGBRBRRBGGRBGGBRBRGRB",
"output": "12"
},
{
"input": "2\nBB",
"output": "1"
},
{
"input": "50\nRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR",
"output": "49"
},
{
"input": "50\nRRRRRRRRGRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR",
"output": "47"
},
{
"input": "50\nRRRRRRRRRRRRGGRRRRRRRRRBRRRRRRRRRRRRRRBBRRRRRRRRRR",
"output": "43"
}
] | 1,698,501,747
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 34
| 92
| 0
|
n=int(input())
s1=input()
c=0
for i in range(0,n-1):
if s1[i]==s1[i+1]:
c+=1
print(c)
|
Title: Stones on the Table
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
There are *n* stones on the table in a row, each of them can be red, green or blue. Count the minimum number of stones to take from the table so that any two neighboring stones had different colors. Stones in a row are considered neighboring if there are no other stones between them.
Input Specification:
The first line contains integer *n* (1<=≤<=*n*<=≤<=50) — the number of stones on the table.
The next line contains string *s*, which represents the colors of the stones. We'll consider the stones in the row numbered from 1 to *n* from left to right. Then the *i*-th character *s* equals "R", if the *i*-th stone is red, "G", if it's green and "B", if it's blue.
Output Specification:
Print a single integer — the answer to the problem.
Demo Input:
['3\nRRG\n', '5\nRRRRR\n', '4\nBRBG\n']
Demo Output:
['1\n', '4\n', '0\n']
Note:
none
|
```python
n=int(input())
s1=input()
c=0
for i in range(0,n-1):
if s1[i]==s1[i+1]:
c+=1
print(c)
```
| 3
|
|
992
|
A
|
Nastya and an Array
|
PROGRAMMING
| 800
|
[
"implementation",
"sortings"
] | null | null |
Nastya owns too many arrays now, so she wants to delete the least important of them. However, she discovered that this array is magic! Nastya now knows that the array has the following properties:
- In one second we can add an arbitrary (possibly negative) integer to all elements of the array that are not equal to zero. - When all elements of the array become equal to zero, the array explodes.
Nastya is always busy, so she wants to explode the array as fast as possible. Compute the minimum time in which the array can be exploded.
|
The first line contains a single integer *n* (1<=≤<=*n*<=≤<=105) — the size of the array.
The second line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n* (<=-<=105<=≤<=*a**i*<=≤<=105) — the elements of the array.
|
Print a single integer — the minimum number of seconds needed to make all elements of the array equal to zero.
|
[
"5\n1 1 1 1 1\n",
"3\n2 0 -1\n",
"4\n5 -6 -5 1\n"
] |
[
"1\n",
"2\n",
"4\n"
] |
In the first example you can add - 1 to all non-zero elements in one second and make them equal to zero.
In the second example you can add - 2 on the first second, then the array becomes equal to [0, 0, - 3]. On the second second you can add 3 to the third (the only non-zero) element.
| 500
|
[
{
"input": "5\n1 1 1 1 1",
"output": "1"
},
{
"input": "3\n2 0 -1",
"output": "2"
},
{
"input": "4\n5 -6 -5 1",
"output": "4"
},
{
"input": "1\n0",
"output": "0"
},
{
"input": "2\n21794 -79194",
"output": "2"
},
{
"input": "3\n-63526 95085 -5239",
"output": "3"
},
{
"input": "3\n0 53372 -20572",
"output": "2"
},
{
"input": "13\n-2075 -32242 27034 -37618 -96962 82203 64846 48249 -71761 28908 -21222 -61370 46899",
"output": "13"
},
{
"input": "5\n806 0 1308 1954 683",
"output": "4"
},
{
"input": "8\n-26 0 -249 -289 -126 -206 288 -11",
"output": "7"
},
{
"input": "10\n2 2 2 1 2 -1 0 2 -1 1",
"output": "3"
},
{
"input": "1\n8",
"output": "1"
},
{
"input": "3\n0 0 0",
"output": "0"
},
{
"input": "10\n1 2 3 4 5 6 7 8 9 10",
"output": "10"
},
{
"input": "5\n2 0 -1 0 0",
"output": "2"
},
{
"input": "2\n0 0",
"output": "0"
},
{
"input": "5\n0 0 0 0 0",
"output": "0"
},
{
"input": "2\n1 0",
"output": "1"
},
{
"input": "2\n-1 0",
"output": "1"
},
{
"input": "4\n0 0 0 0",
"output": "0"
},
{
"input": "8\n10 9 -1 0 0 3 2 3",
"output": "5"
},
{
"input": "5\n5 0 1 2 3",
"output": "4"
},
{
"input": "3\n1 1 0",
"output": "1"
},
{
"input": "1\n-1",
"output": "1"
},
{
"input": "5\n1 2 0 0 0",
"output": "2"
},
{
"input": "5\n1 0 0 0 0",
"output": "1"
},
{
"input": "5\n4 5 6 0 0",
"output": "3"
},
{
"input": "4\n-1 0 0 1",
"output": "2"
},
{
"input": "5\n3 0 0 4 5",
"output": "3"
},
{
"input": "3\n0 0 2",
"output": "1"
},
{
"input": "3\n1 0 0",
"output": "1"
},
{
"input": "4\n0 0 0 4",
"output": "1"
},
{
"input": "5\n-1 0 0 0 0",
"output": "1"
},
{
"input": "2\n0 1",
"output": "1"
},
{
"input": "3\n1 2 3",
"output": "3"
},
{
"input": "1\n5",
"output": "1"
},
{
"input": "10\n0 0 0 0 0 1 2 3 0 0",
"output": "3"
},
{
"input": "4\n0 1 2 3",
"output": "3"
},
{
"input": "3\n0 1 2",
"output": "2"
},
{
"input": "4\n2 0 0 -1",
"output": "2"
}
] | 1,588,613,775
| 2,147,483,647
|
PyPy 3
|
OK
|
TESTS
| 79
| 218
| 13,516,800
|
n = int(input())
s = [int(i) for i in input().split() if int(i) != 0]
print(len(set(s)))
|
Title: Nastya and an Array
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Nastya owns too many arrays now, so she wants to delete the least important of them. However, she discovered that this array is magic! Nastya now knows that the array has the following properties:
- In one second we can add an arbitrary (possibly negative) integer to all elements of the array that are not equal to zero. - When all elements of the array become equal to zero, the array explodes.
Nastya is always busy, so she wants to explode the array as fast as possible. Compute the minimum time in which the array can be exploded.
Input Specification:
The first line contains a single integer *n* (1<=≤<=*n*<=≤<=105) — the size of the array.
The second line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n* (<=-<=105<=≤<=*a**i*<=≤<=105) — the elements of the array.
Output Specification:
Print a single integer — the minimum number of seconds needed to make all elements of the array equal to zero.
Demo Input:
['5\n1 1 1 1 1\n', '3\n2 0 -1\n', '4\n5 -6 -5 1\n']
Demo Output:
['1\n', '2\n', '4\n']
Note:
In the first example you can add - 1 to all non-zero elements in one second and make them equal to zero.
In the second example you can add - 2 on the first second, then the array becomes equal to [0, 0, - 3]. On the second second you can add 3 to the third (the only non-zero) element.
|
```python
n = int(input())
s = [int(i) for i in input().split() if int(i) != 0]
print(len(set(s)))
```
| 3
|
|
673
|
A
|
Bear and Game
|
PROGRAMMING
| 800
|
[
"implementation"
] | null | null |
Bear Limak likes watching sports on TV. He is going to watch a game today. The game lasts 90 minutes and there are no breaks.
Each minute can be either interesting or boring. If 15 consecutive minutes are boring then Limak immediately turns TV off.
You know that there will be *n* interesting minutes *t*1,<=*t*2,<=...,<=*t**n*. Your task is to calculate for how many minutes Limak will watch the game.
|
The first line of the input contains one integer *n* (1<=≤<=*n*<=≤<=90) — the number of interesting minutes.
The second line contains *n* integers *t*1,<=*t*2,<=...,<=*t**n* (1<=≤<=*t*1<=<<=*t*2<=<<=... *t**n*<=≤<=90), given in the increasing order.
|
Print the number of minutes Limak will watch the game.
|
[
"3\n7 20 88\n",
"9\n16 20 30 40 50 60 70 80 90\n",
"9\n15 20 30 40 50 60 70 80 90\n"
] |
[
"35\n",
"15\n",
"90\n"
] |
In the first sample, minutes 21, 22, ..., 35 are all boring and thus Limak will turn TV off immediately after the 35-th minute. So, he would watch the game for 35 minutes.
In the second sample, the first 15 minutes are boring.
In the third sample, there are no consecutive 15 boring minutes. So, Limak will watch the whole game.
| 500
|
[
{
"input": "3\n7 20 88",
"output": "35"
},
{
"input": "9\n16 20 30 40 50 60 70 80 90",
"output": "15"
},
{
"input": "9\n15 20 30 40 50 60 70 80 90",
"output": "90"
},
{
"input": "30\n6 11 12 15 22 24 30 31 32 33 34 35 40 42 44 45 47 50 53 54 57 58 63 67 75 77 79 81 83 88",
"output": "90"
},
{
"input": "60\n1 2 4 5 6 7 11 14 16 18 20 21 22 23 24 25 26 33 34 35 36 37 38 39 41 42 43 44 46 47 48 49 52 55 56 57 58 59 60 61 63 64 65 67 68 70 71 72 73 74 75 77 78 80 82 83 84 85 86 88",
"output": "90"
},
{
"input": "90\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90",
"output": "90"
},
{
"input": "1\n1",
"output": "16"
},
{
"input": "5\n15 30 45 60 75",
"output": "90"
},
{
"input": "6\n14 29 43 59 70 74",
"output": "58"
},
{
"input": "1\n15",
"output": "30"
},
{
"input": "1\n16",
"output": "15"
},
{
"input": "14\n14 22 27 31 35 44 46 61 62 69 74 79 88 89",
"output": "90"
},
{
"input": "76\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90",
"output": "90"
},
{
"input": "1\n90",
"output": "15"
},
{
"input": "6\n13 17 32 47 60 66",
"output": "81"
},
{
"input": "84\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84",
"output": "90"
},
{
"input": "9\n6 20 27 28 40 53 59 70 85",
"output": "90"
},
{
"input": "12\n14 22 27 31 35 44 62 69 74 79 88 89",
"output": "59"
},
{
"input": "5\n15 30 45 60 74",
"output": "89"
},
{
"input": "72\n3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89",
"output": "54"
},
{
"input": "8\n1 16 30 31 32 33 34 50",
"output": "49"
},
{
"input": "12\n1 3 6 10 15 21 28 36 45 55 66 78",
"output": "90"
},
{
"input": "25\n1 2 3 4 5 6 7 8 9 10 11 23 36 50 65 81 82 83 84 85 86 87 88 89 90",
"output": "80"
},
{
"input": "8\n5 17 20 35 42 53 67 76",
"output": "90"
},
{
"input": "9\n15 28 39 48 55 60 63 64 74",
"output": "89"
},
{
"input": "10\n15 28 39 48 55 60 63 64 74 82",
"output": "90"
},
{
"input": "2\n1 18",
"output": "16"
},
{
"input": "9\n10 20 30 40 50 60 70 80 84",
"output": "90"
},
{
"input": "2\n16 50",
"output": "15"
},
{
"input": "6\n15 30 45 60 75 84",
"output": "90"
},
{
"input": "8\n15 20 30 40 50 60 73 83",
"output": "90"
},
{
"input": "8\n10 20 30 40 50 60 70 80",
"output": "90"
},
{
"input": "3\n1 20 90",
"output": "16"
},
{
"input": "6\n15 30 45 60 74 89",
"output": "90"
}
] | 1,646,909,752
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 34
| 46
| 0
|
n = int(input())
my_list = list(map(int, input().split()))
time = [0] * 106
my_list = [0] + my_list
temp_list = [1] * 15
for i in my_list:
time[i:i+15] = temp_list
i = 15
while (time[i] == 1) and (i <= 89):
i += 1
print(i)
|
Title: Bear and Game
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Bear Limak likes watching sports on TV. He is going to watch a game today. The game lasts 90 minutes and there are no breaks.
Each minute can be either interesting or boring. If 15 consecutive minutes are boring then Limak immediately turns TV off.
You know that there will be *n* interesting minutes *t*1,<=*t*2,<=...,<=*t**n*. Your task is to calculate for how many minutes Limak will watch the game.
Input Specification:
The first line of the input contains one integer *n* (1<=≤<=*n*<=≤<=90) — the number of interesting minutes.
The second line contains *n* integers *t*1,<=*t*2,<=...,<=*t**n* (1<=≤<=*t*1<=<<=*t*2<=<<=... *t**n*<=≤<=90), given in the increasing order.
Output Specification:
Print the number of minutes Limak will watch the game.
Demo Input:
['3\n7 20 88\n', '9\n16 20 30 40 50 60 70 80 90\n', '9\n15 20 30 40 50 60 70 80 90\n']
Demo Output:
['35\n', '15\n', '90\n']
Note:
In the first sample, minutes 21, 22, ..., 35 are all boring and thus Limak will turn TV off immediately after the 35-th minute. So, he would watch the game for 35 minutes.
In the second sample, the first 15 minutes are boring.
In the third sample, there are no consecutive 15 boring minutes. So, Limak will watch the whole game.
|
```python
n = int(input())
my_list = list(map(int, input().split()))
time = [0] * 106
my_list = [0] + my_list
temp_list = [1] * 15
for i in my_list:
time[i:i+15] = temp_list
i = 15
while (time[i] == 1) and (i <= 89):
i += 1
print(i)
```
| 3
|
|
750
|
A
|
New Year and Hurry
|
PROGRAMMING
| 800
|
[
"binary search",
"brute force",
"implementation",
"math"
] | null | null |
Limak is going to participate in a contest on the last day of the 2016. The contest will start at 20:00 and will last four hours, exactly until midnight. There will be *n* problems, sorted by difficulty, i.e. problem 1 is the easiest and problem *n* is the hardest. Limak knows it will take him 5·*i* minutes to solve the *i*-th problem.
Limak's friends organize a New Year's Eve party and Limak wants to be there at midnight or earlier. He needs *k* minutes to get there from his house, where he will participate in the contest first.
How many problems can Limak solve if he wants to make it to the party?
|
The only line of the input contains two integers *n* and *k* (1<=≤<=*n*<=≤<=10, 1<=≤<=*k*<=≤<=240) — the number of the problems in the contest and the number of minutes Limak needs to get to the party from his house.
|
Print one integer, denoting the maximum possible number of problems Limak can solve so that he could get to the party at midnight or earlier.
|
[
"3 222\n",
"4 190\n",
"7 1\n"
] |
[
"2\n",
"4\n",
"7\n"
] |
In the first sample, there are 3 problems and Limak needs 222 minutes to get to the party. The three problems require 5, 10 and 15 minutes respectively. Limak can spend 5 + 10 = 15 minutes to solve first two problems. Then, at 20:15 he can leave his house to get to the party at 23:57 (after 222 minutes). In this scenario Limak would solve 2 problems. He doesn't have enough time to solve 3 problems so the answer is 2.
In the second sample, Limak can solve all 4 problems in 5 + 10 + 15 + 20 = 50 minutes. At 20:50 he will leave the house and go to the party. He will get there exactly at midnight.
In the third sample, Limak needs only 1 minute to get to the party. He has enough time to solve all 7 problems.
| 500
|
[
{
"input": "3 222",
"output": "2"
},
{
"input": "4 190",
"output": "4"
},
{
"input": "7 1",
"output": "7"
},
{
"input": "10 135",
"output": "6"
},
{
"input": "10 136",
"output": "5"
},
{
"input": "1 1",
"output": "1"
},
{
"input": "1 240",
"output": "0"
},
{
"input": "10 1",
"output": "9"
},
{
"input": "10 240",
"output": "0"
},
{
"input": "9 240",
"output": "0"
},
{
"input": "9 1",
"output": "9"
},
{
"input": "9 235",
"output": "1"
},
{
"input": "9 236",
"output": "0"
},
{
"input": "5 225",
"output": "2"
},
{
"input": "5 226",
"output": "1"
},
{
"input": "4 210",
"output": "3"
},
{
"input": "4 211",
"output": "2"
},
{
"input": "4 191",
"output": "3"
},
{
"input": "10 165",
"output": "5"
},
{
"input": "10 166",
"output": "4"
},
{
"input": "8 100",
"output": "7"
},
{
"input": "8 101",
"output": "6"
},
{
"input": "8 60",
"output": "8"
},
{
"input": "8 61",
"output": "7"
},
{
"input": "10 15",
"output": "9"
},
{
"input": "10 16",
"output": "8"
},
{
"input": "4 100",
"output": "4"
},
{
"input": "4 101",
"output": "4"
},
{
"input": "7 167",
"output": "4"
},
{
"input": "10 164",
"output": "5"
},
{
"input": "9 170",
"output": "4"
},
{
"input": "8 160",
"output": "5"
},
{
"input": "1 100",
"output": "1"
},
{
"input": "8 123",
"output": "6"
},
{
"input": "2 99",
"output": "2"
},
{
"input": "10 88",
"output": "7"
},
{
"input": "1 235",
"output": "1"
},
{
"input": "1 1",
"output": "1"
},
{
"input": "4 240",
"output": "0"
},
{
"input": "1 55",
"output": "1"
},
{
"input": "1 240",
"output": "0"
},
{
"input": "3 240",
"output": "0"
},
{
"input": "10 240",
"output": "0"
},
{
"input": "2 240",
"output": "0"
},
{
"input": "10 1",
"output": "9"
},
{
"input": "9 1",
"output": "9"
},
{
"input": "2 236",
"output": "0"
},
{
"input": "10 2",
"output": "9"
},
{
"input": "3 239",
"output": "0"
},
{
"input": "1 237",
"output": "0"
},
{
"input": "7 8",
"output": "7"
},
{
"input": "10 235",
"output": "1"
}
] | 1,684,806,885
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 52
| 46
| 0
|
a,b = map(int,input().split())
sum = 240 - b
count = 0
for i in range(1,a+1):
if sum >= 5*i:
sum -= 5*i
count += 1
print(count)
|
Title: New Year and Hurry
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Limak is going to participate in a contest on the last day of the 2016. The contest will start at 20:00 and will last four hours, exactly until midnight. There will be *n* problems, sorted by difficulty, i.e. problem 1 is the easiest and problem *n* is the hardest. Limak knows it will take him 5·*i* minutes to solve the *i*-th problem.
Limak's friends organize a New Year's Eve party and Limak wants to be there at midnight or earlier. He needs *k* minutes to get there from his house, where he will participate in the contest first.
How many problems can Limak solve if he wants to make it to the party?
Input Specification:
The only line of the input contains two integers *n* and *k* (1<=≤<=*n*<=≤<=10, 1<=≤<=*k*<=≤<=240) — the number of the problems in the contest and the number of minutes Limak needs to get to the party from his house.
Output Specification:
Print one integer, denoting the maximum possible number of problems Limak can solve so that he could get to the party at midnight or earlier.
Demo Input:
['3 222\n', '4 190\n', '7 1\n']
Demo Output:
['2\n', '4\n', '7\n']
Note:
In the first sample, there are 3 problems and Limak needs 222 minutes to get to the party. The three problems require 5, 10 and 15 minutes respectively. Limak can spend 5 + 10 = 15 minutes to solve first two problems. Then, at 20:15 he can leave his house to get to the party at 23:57 (after 222 minutes). In this scenario Limak would solve 2 problems. He doesn't have enough time to solve 3 problems so the answer is 2.
In the second sample, Limak can solve all 4 problems in 5 + 10 + 15 + 20 = 50 minutes. At 20:50 he will leave the house and go to the party. He will get there exactly at midnight.
In the third sample, Limak needs only 1 minute to get to the party. He has enough time to solve all 7 problems.
|
```python
a,b = map(int,input().split())
sum = 240 - b
count = 0
for i in range(1,a+1):
if sum >= 5*i:
sum -= 5*i
count += 1
print(count)
```
| 3
|
|
359
|
A
|
Table
|
PROGRAMMING
| 1,000
|
[
"constructive algorithms",
"greedy",
"implementation"
] | null | null |
Simon has a rectangular table consisting of *n* rows and *m* columns. Simon numbered the rows of the table from top to bottom starting from one and the columns — from left to right starting from one. We'll represent the cell on the *x*-th row and the *y*-th column as a pair of numbers (*x*,<=*y*). The table corners are cells: (1,<=1), (*n*,<=1), (1,<=*m*), (*n*,<=*m*).
Simon thinks that some cells in this table are good. Besides, it's known that no good cell is the corner of the table.
Initially, all cells of the table are colorless. Simon wants to color all cells of his table. In one move, he can choose any good cell of table (*x*1,<=*y*1), an arbitrary corner of the table (*x*2,<=*y*2) and color all cells of the table (*p*,<=*q*), which meet both inequations: *min*(*x*1,<=*x*2)<=≤<=*p*<=≤<=*max*(*x*1,<=*x*2), *min*(*y*1,<=*y*2)<=≤<=*q*<=≤<=*max*(*y*1,<=*y*2).
Help Simon! Find the minimum number of operations needed to color all cells of the table. Note that you can color one cell multiple times.
|
The first line contains exactly two integers *n*, *m* (3<=≤<=*n*,<=*m*<=≤<=50).
Next *n* lines contain the description of the table cells. Specifically, the *i*-th line contains *m* space-separated integers *a**i*1,<=*a**i*2,<=...,<=*a**im*. If *a**ij* equals zero, then cell (*i*,<=*j*) isn't good. Otherwise *a**ij* equals one. It is guaranteed that at least one cell is good. It is guaranteed that no good cell is a corner.
|
Print a single number — the minimum number of operations Simon needs to carry out his idea.
|
[
"3 3\n0 0 0\n0 1 0\n0 0 0\n",
"4 3\n0 0 0\n0 0 1\n1 0 0\n0 0 0\n"
] |
[
"4\n",
"2\n"
] |
In the first sample, the sequence of operations can be like this:
- For the first time you need to choose cell (2, 2) and corner (1, 1). - For the second time you need to choose cell (2, 2) and corner (3, 3). - For the third time you need to choose cell (2, 2) and corner (3, 1). - For the fourth time you need to choose cell (2, 2) and corner (1, 3).
In the second sample the sequence of operations can be like this:
- For the first time you need to choose cell (3, 1) and corner (4, 3). - For the second time you need to choose cell (2, 3) and corner (1, 1).
| 500
|
[
{
"input": "3 3\n0 0 0\n0 1 0\n0 0 0",
"output": "4"
},
{
"input": "4 3\n0 0 0\n0 0 1\n1 0 0\n0 0 0",
"output": "2"
},
{
"input": "50 4\n0 0 0 0\n0 0 0 0\n0 0 0 0\n0 0 0 0\n0 0 0 0\n0 0 0 0\n0 0 0 0\n0 0 0 0\n0 0 0 0\n0 0 0 0\n0 1 0 0\n0 0 0 0\n0 0 0 0\n0 0 0 0\n0 0 0 0\n0 0 0 0\n0 0 0 0\n0 0 0 0\n0 0 0 0\n0 0 0 0\n0 0 0 0\n0 0 0 0\n0 0 0 0\n0 0 0 0\n0 0 0 0\n0 0 0 0\n0 0 0 0\n0 0 0 0\n0 0 0 0\n0 0 0 0\n0 0 0 0\n0 0 0 0\n0 0 0 0\n0 0 0 0\n0 0 0 0\n0 0 0 0\n0 0 0 0\n0 0 0 0\n0 0 0 0\n0 0 0 0\n0 0 0 0\n0 0 0 0\n0 0 0 0\n0 0 0 0\n0 0 0 0\n0 0 0 0\n0 0 0 0\n0 0 0 0\n0 0 0 0\n0 0 0 0",
"output": "4"
},
{
"input": "5 50\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0",
"output": "2"
},
{
"input": "4 32\n0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0",
"output": "2"
},
{
"input": "7 4\n0 0 0 0\n0 0 0 0\n0 0 0 0\n0 0 0 0\n0 0 0 0\n0 0 0 0\n0 1 0 0",
"output": "2"
},
{
"input": "13 15\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n1 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0",
"output": "2"
},
{
"input": "3 3\n0 1 0\n0 0 0\n0 0 0",
"output": "2"
},
{
"input": "3 3\n0 0 0\n0 0 0\n0 1 0",
"output": "2"
},
{
"input": "3 3\n0 0 0\n1 0 0\n0 0 0",
"output": "2"
},
{
"input": "3 3\n0 0 0\n0 0 1\n0 0 0",
"output": "2"
},
{
"input": "3 4\n0 1 0 0\n0 0 0 0\n0 0 0 0",
"output": "2"
},
{
"input": "3 5\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 1 0",
"output": "2"
},
{
"input": "3 5\n0 0 0 0 0\n1 0 0 0 0\n0 0 0 0 0",
"output": "2"
},
{
"input": "3 5\n0 0 0 0 0\n0 0 0 0 1\n0 0 0 0 0",
"output": "2"
},
{
"input": "3 5\n0 0 0 0 0\n0 0 1 0 0\n0 0 0 0 0",
"output": "4"
},
{
"input": "4 3\n0 1 0\n0 0 0\n0 0 0\n0 0 0",
"output": "2"
},
{
"input": "4 3\n0 0 0\n0 0 0\n0 0 0\n0 1 0",
"output": "2"
},
{
"input": "5 3\n0 0 0\n0 0 0\n1 0 0\n0 0 0\n0 0 0",
"output": "2"
},
{
"input": "5 3\n0 0 0\n0 0 1\n0 0 0\n0 0 0\n0 0 0",
"output": "2"
},
{
"input": "5 3\n0 0 0\n0 1 0\n0 0 0\n0 0 0\n0 0 0",
"output": "4"
},
{
"input": "4 4\n0 0 0 0\n0 1 1 0\n0 1 1 0\n0 0 0 0",
"output": "4"
},
{
"input": "5 3\n0 0 0\n0 0 1\n0 0 0\n0 1 0\n0 0 0",
"output": "2"
},
{
"input": "3 3\n0 0 0\n0 1 1\n0 0 0",
"output": "2"
},
{
"input": "4 3\n0 0 0\n0 0 0\n0 1 0\n0 0 0",
"output": "4"
},
{
"input": "5 5\n0 0 0 0 0\n0 1 0 0 0\n0 0 0 1 0\n0 0 0 0 0\n0 0 0 0 0",
"output": "4"
},
{
"input": "5 3\n0 0 0\n0 0 0\n0 0 0\n0 0 1\n0 0 0",
"output": "2"
}
] | 1,626,775,014
| 2,147,483,647
|
PyPy 3
|
OK
|
TESTS
| 37
| 109
| 21,811,200
|
n,m=map(int,input().split());x,y=[],[];b=0
for i in range(n):
t=list(map(int,input().split()))
for j in range(m):
if t[j]==1:y.append(j+1);x.append(i+1)
for i in y:
if i==1 or i==m:b=2;break
for i in x:
if i==1 or i==n:b=2;break
if b==2:print(2)
else:print(4)
|
Title: Table
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Simon has a rectangular table consisting of *n* rows and *m* columns. Simon numbered the rows of the table from top to bottom starting from one and the columns — from left to right starting from one. We'll represent the cell on the *x*-th row and the *y*-th column as a pair of numbers (*x*,<=*y*). The table corners are cells: (1,<=1), (*n*,<=1), (1,<=*m*), (*n*,<=*m*).
Simon thinks that some cells in this table are good. Besides, it's known that no good cell is the corner of the table.
Initially, all cells of the table are colorless. Simon wants to color all cells of his table. In one move, he can choose any good cell of table (*x*1,<=*y*1), an arbitrary corner of the table (*x*2,<=*y*2) and color all cells of the table (*p*,<=*q*), which meet both inequations: *min*(*x*1,<=*x*2)<=≤<=*p*<=≤<=*max*(*x*1,<=*x*2), *min*(*y*1,<=*y*2)<=≤<=*q*<=≤<=*max*(*y*1,<=*y*2).
Help Simon! Find the minimum number of operations needed to color all cells of the table. Note that you can color one cell multiple times.
Input Specification:
The first line contains exactly two integers *n*, *m* (3<=≤<=*n*,<=*m*<=≤<=50).
Next *n* lines contain the description of the table cells. Specifically, the *i*-th line contains *m* space-separated integers *a**i*1,<=*a**i*2,<=...,<=*a**im*. If *a**ij* equals zero, then cell (*i*,<=*j*) isn't good. Otherwise *a**ij* equals one. It is guaranteed that at least one cell is good. It is guaranteed that no good cell is a corner.
Output Specification:
Print a single number — the minimum number of operations Simon needs to carry out his idea.
Demo Input:
['3 3\n0 0 0\n0 1 0\n0 0 0\n', '4 3\n0 0 0\n0 0 1\n1 0 0\n0 0 0\n']
Demo Output:
['4\n', '2\n']
Note:
In the first sample, the sequence of operations can be like this:
- For the first time you need to choose cell (2, 2) and corner (1, 1). - For the second time you need to choose cell (2, 2) and corner (3, 3). - For the third time you need to choose cell (2, 2) and corner (3, 1). - For the fourth time you need to choose cell (2, 2) and corner (1, 3).
In the second sample the sequence of operations can be like this:
- For the first time you need to choose cell (3, 1) and corner (4, 3). - For the second time you need to choose cell (2, 3) and corner (1, 1).
|
```python
n,m=map(int,input().split());x,y=[],[];b=0
for i in range(n):
t=list(map(int,input().split()))
for j in range(m):
if t[j]==1:y.append(j+1);x.append(i+1)
for i in y:
if i==1 or i==m:b=2;break
for i in x:
if i==1 or i==n:b=2;break
if b==2:print(2)
else:print(4)
```
| 3
|
|
233
|
A
|
Perfect Permutation
|
PROGRAMMING
| 800
|
[
"implementation",
"math"
] | null | null |
A permutation is a sequence of integers *p*1,<=*p*2,<=...,<=*p**n*, consisting of *n* distinct positive integers, each of them doesn't exceed *n*. Let's denote the *i*-th element of permutation *p* as *p**i*. We'll call number *n* the size of permutation *p*1,<=*p*2,<=...,<=*p**n*.
Nickolas adores permutations. He likes some permutations more than the others. He calls such permutations perfect. A perfect permutation is such permutation *p* that for any *i* (1<=≤<=*i*<=≤<=*n*) (*n* is the permutation size) the following equations hold *p**p**i*<==<=*i* and *p**i*<=≠<=*i*. Nickolas asks you to print any perfect permutation of size *n* for the given *n*.
|
A single line contains a single integer *n* (1<=≤<=*n*<=≤<=100) — the permutation size.
|
If a perfect permutation of size *n* doesn't exist, print a single integer -1. Otherwise print *n* distinct integers from 1 to *n*, *p*1,<=*p*2,<=...,<=*p**n* — permutation *p*, that is perfect. Separate printed numbers by whitespaces.
|
[
"1\n",
"2\n",
"4\n"
] |
[
"-1\n",
"2 1 \n",
"2 1 4 3 \n"
] |
none
| 500
|
[
{
"input": "1",
"output": "-1"
},
{
"input": "2",
"output": "2 1 "
},
{
"input": "4",
"output": "2 1 4 3 "
},
{
"input": "3",
"output": "-1"
},
{
"input": "5",
"output": "-1"
},
{
"input": "6",
"output": "2 1 4 3 6 5 "
},
{
"input": "7",
"output": "-1"
},
{
"input": "20",
"output": "2 1 4 3 6 5 8 7 10 9 12 11 14 13 16 15 18 17 20 19 "
},
{
"input": "8",
"output": "2 1 4 3 6 5 8 7 "
},
{
"input": "9",
"output": "-1"
},
{
"input": "10",
"output": "2 1 4 3 6 5 8 7 10 9 "
},
{
"input": "11",
"output": "-1"
},
{
"input": "21",
"output": "-1"
},
{
"input": "50",
"output": "2 1 4 3 6 5 8 7 10 9 12 11 14 13 16 15 18 17 20 19 22 21 24 23 26 25 28 27 30 29 32 31 34 33 36 35 38 37 40 39 42 41 44 43 46 45 48 47 50 49 "
},
{
"input": "51",
"output": "-1"
},
{
"input": "52",
"output": "2 1 4 3 6 5 8 7 10 9 12 11 14 13 16 15 18 17 20 19 22 21 24 23 26 25 28 27 30 29 32 31 34 33 36 35 38 37 40 39 42 41 44 43 46 45 48 47 50 49 52 51 "
},
{
"input": "84",
"output": "2 1 4 3 6 5 8 7 10 9 12 11 14 13 16 15 18 17 20 19 22 21 24 23 26 25 28 27 30 29 32 31 34 33 36 35 38 37 40 39 42 41 44 43 46 45 48 47 50 49 52 51 54 53 56 55 58 57 60 59 62 61 64 63 66 65 68 67 70 69 72 71 74 73 76 75 78 77 80 79 82 81 84 83 "
},
{
"input": "86",
"output": "2 1 4 3 6 5 8 7 10 9 12 11 14 13 16 15 18 17 20 19 22 21 24 23 26 25 28 27 30 29 32 31 34 33 36 35 38 37 40 39 42 41 44 43 46 45 48 47 50 49 52 51 54 53 56 55 58 57 60 59 62 61 64 63 66 65 68 67 70 69 72 71 74 73 76 75 78 77 80 79 82 81 84 83 86 85 "
},
{
"input": "100",
"output": "2 1 4 3 6 5 8 7 10 9 12 11 14 13 16 15 18 17 20 19 22 21 24 23 26 25 28 27 30 29 32 31 34 33 36 35 38 37 40 39 42 41 44 43 46 45 48 47 50 49 52 51 54 53 56 55 58 57 60 59 62 61 64 63 66 65 68 67 70 69 72 71 74 73 76 75 78 77 80 79 82 81 84 83 86 85 88 87 90 89 92 91 94 93 96 95 98 97 100 99 "
},
{
"input": "98",
"output": "2 1 4 3 6 5 8 7 10 9 12 11 14 13 16 15 18 17 20 19 22 21 24 23 26 25 28 27 30 29 32 31 34 33 36 35 38 37 40 39 42 41 44 43 46 45 48 47 50 49 52 51 54 53 56 55 58 57 60 59 62 61 64 63 66 65 68 67 70 69 72 71 74 73 76 75 78 77 80 79 82 81 84 83 86 85 88 87 90 89 92 91 94 93 96 95 98 97 "
},
{
"input": "96",
"output": "2 1 4 3 6 5 8 7 10 9 12 11 14 13 16 15 18 17 20 19 22 21 24 23 26 25 28 27 30 29 32 31 34 33 36 35 38 37 40 39 42 41 44 43 46 45 48 47 50 49 52 51 54 53 56 55 58 57 60 59 62 61 64 63 66 65 68 67 70 69 72 71 74 73 76 75 78 77 80 79 82 81 84 83 86 85 88 87 90 89 92 91 94 93 96 95 "
},
{
"input": "33",
"output": "-1"
},
{
"input": "34",
"output": "2 1 4 3 6 5 8 7 10 9 12 11 14 13 16 15 18 17 20 19 22 21 24 23 26 25 28 27 30 29 32 31 34 33 "
},
{
"input": "36",
"output": "2 1 4 3 6 5 8 7 10 9 12 11 14 13 16 15 18 17 20 19 22 21 24 23 26 25 28 27 30 29 32 31 34 33 36 35 "
},
{
"input": "38",
"output": "2 1 4 3 6 5 8 7 10 9 12 11 14 13 16 15 18 17 20 19 22 21 24 23 26 25 28 27 30 29 32 31 34 33 36 35 38 37 "
},
{
"input": "40",
"output": "2 1 4 3 6 5 8 7 10 9 12 11 14 13 16 15 18 17 20 19 22 21 24 23 26 25 28 27 30 29 32 31 34 33 36 35 38 37 40 39 "
},
{
"input": "42",
"output": "2 1 4 3 6 5 8 7 10 9 12 11 14 13 16 15 18 17 20 19 22 21 24 23 26 25 28 27 30 29 32 31 34 33 36 35 38 37 40 39 42 41 "
},
{
"input": "44",
"output": "2 1 4 3 6 5 8 7 10 9 12 11 14 13 16 15 18 17 20 19 22 21 24 23 26 25 28 27 30 29 32 31 34 33 36 35 38 37 40 39 42 41 44 43 "
},
{
"input": "46",
"output": "2 1 4 3 6 5 8 7 10 9 12 11 14 13 16 15 18 17 20 19 22 21 24 23 26 25 28 27 30 29 32 31 34 33 36 35 38 37 40 39 42 41 44 43 46 45 "
},
{
"input": "48",
"output": "2 1 4 3 6 5 8 7 10 9 12 11 14 13 16 15 18 17 20 19 22 21 24 23 26 25 28 27 30 29 32 31 34 33 36 35 38 37 40 39 42 41 44 43 46 45 48 47 "
}
] | 1,651,423,320
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 30
| 92
| 0
|
a = int(input())
if a % 2:
print(-1)
else:
n = list(range(1, a + 1))
for i in range(0, a, 2):
n[i], n[i + 1] = n[i + 1], n[i]
print(' '.join(list(map(str, n))))
|
Title: Perfect Permutation
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
A permutation is a sequence of integers *p*1,<=*p*2,<=...,<=*p**n*, consisting of *n* distinct positive integers, each of them doesn't exceed *n*. Let's denote the *i*-th element of permutation *p* as *p**i*. We'll call number *n* the size of permutation *p*1,<=*p*2,<=...,<=*p**n*.
Nickolas adores permutations. He likes some permutations more than the others. He calls such permutations perfect. A perfect permutation is such permutation *p* that for any *i* (1<=≤<=*i*<=≤<=*n*) (*n* is the permutation size) the following equations hold *p**p**i*<==<=*i* and *p**i*<=≠<=*i*. Nickolas asks you to print any perfect permutation of size *n* for the given *n*.
Input Specification:
A single line contains a single integer *n* (1<=≤<=*n*<=≤<=100) — the permutation size.
Output Specification:
If a perfect permutation of size *n* doesn't exist, print a single integer -1. Otherwise print *n* distinct integers from 1 to *n*, *p*1,<=*p*2,<=...,<=*p**n* — permutation *p*, that is perfect. Separate printed numbers by whitespaces.
Demo Input:
['1\n', '2\n', '4\n']
Demo Output:
['-1\n', '2 1 \n', '2 1 4 3 \n']
Note:
none
|
```python
a = int(input())
if a % 2:
print(-1)
else:
n = list(range(1, a + 1))
for i in range(0, a, 2):
n[i], n[i + 1] = n[i + 1], n[i]
print(' '.join(list(map(str, n))))
```
| 3
|
|
116
|
A
|
Tram
|
PROGRAMMING
| 800
|
[
"implementation"
] | null | null |
Linear Kingdom has exactly one tram line. It has *n* stops, numbered from 1 to *n* in the order of tram's movement. At the *i*-th stop *a**i* passengers exit the tram, while *b**i* passengers enter it. The tram is empty before it arrives at the first stop. Also, when the tram arrives at the last stop, all passengers exit so that it becomes empty.
Your task is to calculate the tram's minimum capacity such that the number of people inside the tram at any time never exceeds this capacity. Note that at each stop all exiting passengers exit before any entering passenger enters the tram.
|
The first line contains a single number *n* (2<=≤<=*n*<=≤<=1000) — the number of the tram's stops.
Then *n* lines follow, each contains two integers *a**i* and *b**i* (0<=≤<=*a**i*,<=*b**i*<=≤<=1000) — the number of passengers that exits the tram at the *i*-th stop, and the number of passengers that enter the tram at the *i*-th stop. The stops are given from the first to the last stop in the order of tram's movement.
- The number of people who exit at a given stop does not exceed the total number of people in the tram immediately before it arrives at the stop. More formally, . This particularly means that *a*1<==<=0. - At the last stop, all the passengers exit the tram and it becomes empty. More formally, . - No passenger will enter the train at the last stop. That is, *b**n*<==<=0.
|
Print a single integer denoting the minimum possible capacity of the tram (0 is allowed).
|
[
"4\n0 3\n2 5\n4 2\n4 0\n"
] |
[
"6\n"
] |
For the first example, a capacity of 6 is sufficient:
- At the first stop, the number of passengers inside the tram before arriving is 0. Then, 3 passengers enter the tram, and the number of passengers inside the tram becomes 3. - At the second stop, 2 passengers exit the tram (1 passenger remains inside). Then, 5 passengers enter the tram. There are 6 passengers inside the tram now. - At the third stop, 4 passengers exit the tram (2 passengers remain inside). Then, 2 passengers enter the tram. There are 4 passengers inside the tram now. - Finally, all the remaining passengers inside the tram exit the tram at the last stop. There are no passenger inside the tram now, which is in line with the constraints.
Since the number of passengers inside the tram never exceeds 6, a capacity of 6 is sufficient. Furthermore it is not possible for the tram to have a capacity less than 6. Hence, 6 is the correct answer.
| 500
|
[
{
"input": "4\n0 3\n2 5\n4 2\n4 0",
"output": "6"
},
{
"input": "5\n0 4\n4 6\n6 5\n5 4\n4 0",
"output": "6"
},
{
"input": "10\n0 5\n1 7\n10 8\n5 3\n0 5\n3 3\n8 8\n0 6\n10 1\n9 0",
"output": "18"
},
{
"input": "3\n0 1\n1 1\n1 0",
"output": "1"
},
{
"input": "4\n0 1\n0 1\n1 0\n1 0",
"output": "2"
},
{
"input": "3\n0 0\n0 0\n0 0",
"output": "0"
},
{
"input": "3\n0 1000\n1000 1000\n1000 0",
"output": "1000"
},
{
"input": "5\n0 73\n73 189\n189 766\n766 0\n0 0",
"output": "766"
},
{
"input": "5\n0 0\n0 0\n0 0\n0 1\n1 0",
"output": "1"
},
{
"input": "5\n0 917\n917 923\n904 992\n1000 0\n11 0",
"output": "1011"
},
{
"input": "5\n0 1\n1 2\n2 1\n1 2\n2 0",
"output": "2"
},
{
"input": "5\n0 0\n0 0\n0 0\n0 0\n0 0",
"output": "0"
},
{
"input": "20\n0 7\n2 1\n2 2\n5 7\n2 6\n6 10\n2 4\n0 4\n7 4\n8 0\n10 6\n2 1\n6 1\n1 7\n0 3\n8 7\n6 3\n6 3\n1 1\n3 0",
"output": "22"
},
{
"input": "5\n0 1000\n1000 1000\n1000 1000\n1000 1000\n1000 0",
"output": "1000"
},
{
"input": "10\n0 592\n258 598\n389 203\n249 836\n196 635\n478 482\n994 987\n1000 0\n769 0\n0 0",
"output": "1776"
},
{
"input": "10\n0 1\n1 0\n0 0\n0 0\n0 0\n0 1\n1 1\n0 1\n1 0\n1 0",
"output": "2"
},
{
"input": "10\n0 926\n926 938\n938 931\n931 964\n937 989\n983 936\n908 949\n997 932\n945 988\n988 0",
"output": "1016"
},
{
"input": "10\n0 1\n1 2\n1 2\n2 2\n2 2\n2 2\n1 1\n1 1\n2 1\n2 0",
"output": "3"
},
{
"input": "10\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0",
"output": "0"
},
{
"input": "10\n0 1000\n1000 1000\n1000 1000\n1000 1000\n1000 1000\n1000 1000\n1000 1000\n1000 1000\n1000 1000\n1000 0",
"output": "1000"
},
{
"input": "50\n0 332\n332 268\n268 56\n56 711\n420 180\n160 834\n149 341\n373 777\n763 93\n994 407\n86 803\n700 132\n471 608\n429 467\n75 5\n638 305\n405 853\n316 478\n643 163\n18 131\n648 241\n241 766\n316 847\n640 380\n923 759\n789 41\n125 421\n421 9\n9 388\n388 829\n408 108\n462 856\n816 411\n518 688\n290 7\n405 912\n397 772\n396 652\n394 146\n27 648\n462 617\n514 433\n780 35\n710 705\n460 390\n194 508\n643 56\n172 469\n1000 0\n194 0",
"output": "2071"
},
{
"input": "50\n0 0\n0 1\n1 1\n0 1\n0 0\n1 0\n0 0\n1 0\n0 0\n0 0\n0 0\n0 0\n0 1\n0 0\n0 0\n0 1\n1 0\n0 1\n0 0\n1 1\n1 0\n0 1\n0 0\n1 1\n0 1\n1 0\n1 1\n1 0\n0 0\n1 1\n1 0\n0 1\n0 0\n0 1\n1 1\n1 1\n1 1\n1 0\n1 1\n1 0\n0 1\n1 0\n0 0\n0 1\n1 1\n1 1\n0 1\n0 0\n1 0\n1 0",
"output": "3"
},
{
"input": "50\n0 926\n926 971\n915 980\n920 965\n954 944\n928 952\n955 980\n916 980\n906 935\n944 913\n905 923\n912 922\n965 934\n912 900\n946 930\n931 983\n979 905\n925 969\n924 926\n910 914\n921 977\n934 979\n962 986\n942 909\n976 903\n982 982\n991 941\n954 929\n902 980\n947 983\n919 924\n917 943\n916 905\n907 913\n964 977\n984 904\n905 999\n950 970\n986 906\n993 970\n960 994\n963 983\n918 986\n980 900\n931 986\n993 997\n941 909\n907 909\n1000 0\n278 0",
"output": "1329"
},
{
"input": "2\n0 863\n863 0",
"output": "863"
},
{
"input": "50\n0 1\n1 2\n2 2\n1 1\n1 1\n1 2\n1 2\n1 1\n1 2\n1 1\n1 1\n1 2\n1 2\n1 1\n2 1\n2 2\n1 2\n2 2\n1 2\n2 1\n2 1\n2 2\n2 1\n1 2\n1 2\n2 1\n1 1\n2 2\n1 1\n2 1\n2 2\n2 1\n1 2\n2 2\n1 2\n1 1\n1 1\n2 1\n2 1\n2 2\n2 1\n2 1\n1 2\n1 2\n1 2\n1 2\n2 0\n2 0\n2 0\n0 0",
"output": "8"
},
{
"input": "50\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0",
"output": "0"
},
{
"input": "100\n0 1\n0 0\n0 0\n1 0\n0 0\n0 1\n0 1\n1 1\n0 0\n0 0\n1 1\n0 0\n1 1\n0 1\n1 1\n0 1\n1 1\n1 0\n1 0\n0 0\n1 0\n0 1\n1 0\n0 0\n0 0\n1 1\n1 1\n0 1\n0 0\n1 0\n1 1\n0 1\n1 0\n1 1\n0 1\n1 1\n1 0\n0 0\n0 0\n0 1\n0 0\n0 1\n1 1\n0 0\n1 1\n1 1\n0 0\n0 1\n1 0\n0 1\n0 0\n0 1\n0 1\n1 1\n1 1\n1 1\n0 0\n0 0\n1 1\n0 1\n0 1\n1 0\n0 0\n0 0\n1 1\n0 1\n0 1\n1 1\n1 1\n0 1\n1 1\n1 1\n0 0\n1 0\n0 1\n0 0\n0 0\n1 1\n1 1\n1 1\n1 1\n0 1\n1 0\n1 0\n1 0\n1 0\n1 0\n0 0\n1 0\n1 0\n0 0\n1 0\n0 0\n0 1\n1 0\n0 1\n1 0\n1 0\n1 0\n1 0",
"output": "11"
},
{
"input": "100\n0 2\n1 2\n2 1\n1 2\n1 2\n2 1\n2 2\n1 1\n1 1\n2 1\n1 2\n2 1\n1 2\n2 2\n2 2\n2 2\n1 2\n2 2\n2 1\n1 1\n1 1\n1 1\n2 2\n1 2\n2 2\n1 1\n1 1\n1 1\n1 1\n2 2\n1 2\n2 1\n1 1\n2 2\n1 1\n2 1\n1 1\n2 2\n2 1\n1 2\n1 1\n1 2\n2 1\n2 2\n1 1\n2 1\n1 1\n2 1\n1 1\n1 2\n2 2\n2 2\n1 1\n2 2\n1 2\n2 1\n2 1\n1 1\n1 1\n1 2\n1 2\n1 1\n1 1\n2 1\n1 2\n1 2\n2 1\n2 2\n2 2\n2 2\n2 1\n2 2\n1 1\n1 2\n1 2\n1 1\n2 2\n2 2\n1 1\n2 1\n1 1\n1 2\n1 2\n1 2\n1 1\n1 1\n2 2\n1 2\n2 1\n2 1\n2 1\n1 2\n1 2\n1 1\n2 2\n1 2\n2 0\n2 0\n2 0\n1 0",
"output": "7"
},
{
"input": "100\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0",
"output": "0"
},
{
"input": "2\n0 1\n1 0",
"output": "1"
},
{
"input": "2\n0 900\n900 0",
"output": "900"
},
{
"input": "2\n0 1\n1 0",
"output": "1"
},
{
"input": "2\n0 0\n0 0",
"output": "0"
},
{
"input": "2\n0 1000\n1000 0",
"output": "1000"
},
{
"input": "3\n0 802\n175 188\n815 0",
"output": "815"
},
{
"input": "3\n0 910\n910 976\n976 0",
"output": "976"
},
{
"input": "3\n0 2\n2 1\n1 0",
"output": "2"
}
] | 1,694,409,084
| 2,147,483,647
|
PyPy 3
|
OK
|
TESTS
| 71
| 218
| 1,433,600
|
c=0
m=0
for _ in range(int(input())):
a,b = map(int,input().split())
c= c-a+b
if c>m:
m=c
print(m)
|
Title: Tram
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Linear Kingdom has exactly one tram line. It has *n* stops, numbered from 1 to *n* in the order of tram's movement. At the *i*-th stop *a**i* passengers exit the tram, while *b**i* passengers enter it. The tram is empty before it arrives at the first stop. Also, when the tram arrives at the last stop, all passengers exit so that it becomes empty.
Your task is to calculate the tram's minimum capacity such that the number of people inside the tram at any time never exceeds this capacity. Note that at each stop all exiting passengers exit before any entering passenger enters the tram.
Input Specification:
The first line contains a single number *n* (2<=≤<=*n*<=≤<=1000) — the number of the tram's stops.
Then *n* lines follow, each contains two integers *a**i* and *b**i* (0<=≤<=*a**i*,<=*b**i*<=≤<=1000) — the number of passengers that exits the tram at the *i*-th stop, and the number of passengers that enter the tram at the *i*-th stop. The stops are given from the first to the last stop in the order of tram's movement.
- The number of people who exit at a given stop does not exceed the total number of people in the tram immediately before it arrives at the stop. More formally, . This particularly means that *a*1<==<=0. - At the last stop, all the passengers exit the tram and it becomes empty. More formally, . - No passenger will enter the train at the last stop. That is, *b**n*<==<=0.
Output Specification:
Print a single integer denoting the minimum possible capacity of the tram (0 is allowed).
Demo Input:
['4\n0 3\n2 5\n4 2\n4 0\n']
Demo Output:
['6\n']
Note:
For the first example, a capacity of 6 is sufficient:
- At the first stop, the number of passengers inside the tram before arriving is 0. Then, 3 passengers enter the tram, and the number of passengers inside the tram becomes 3. - At the second stop, 2 passengers exit the tram (1 passenger remains inside). Then, 5 passengers enter the tram. There are 6 passengers inside the tram now. - At the third stop, 4 passengers exit the tram (2 passengers remain inside). Then, 2 passengers enter the tram. There are 4 passengers inside the tram now. - Finally, all the remaining passengers inside the tram exit the tram at the last stop. There are no passenger inside the tram now, which is in line with the constraints.
Since the number of passengers inside the tram never exceeds 6, a capacity of 6 is sufficient. Furthermore it is not possible for the tram to have a capacity less than 6. Hence, 6 is the correct answer.
|
```python
c=0
m=0
for _ in range(int(input())):
a,b = map(int,input().split())
c= c-a+b
if c>m:
m=c
print(m)
```
| 3
|
|
61
|
A
|
Ultra-Fast Mathematician
|
PROGRAMMING
| 800
|
[
"implementation"
] |
A. Ultra-Fast Mathematician
|
2
|
256
|
Shapur was an extremely gifted student. He was great at everything including Combinatorics, Algebra, Number Theory, Geometry, Calculus, etc. He was not only smart but extraordinarily fast! He could manage to sum 1018 numbers in a single second.
One day in 230 AD Shapur was trying to find out if any one can possibly do calculations faster than him. As a result he made a very great contest and asked every one to come and take part.
In his contest he gave the contestants many different pairs of numbers. Each number is made from digits 0 or 1. The contestants should write a new number corresponding to the given pair of numbers. The rule is simple: The *i*-th digit of the answer is 1 if and only if the *i*-th digit of the two given numbers differ. In the other case the *i*-th digit of the answer is 0.
Shapur made many numbers and first tried his own speed. He saw that he can perform these operations on numbers of length ∞ (length of a number is number of digits in it) in a glance! He always gives correct answers so he expects the contestants to give correct answers, too. He is a good fellow so he won't give anyone very big numbers and he always gives one person numbers of same length.
Now you are going to take part in Shapur's contest. See if you are faster and more accurate.
|
There are two lines in each input. Each of them contains a single number. It is guaranteed that the numbers are made from 0 and 1 only and that their length is same. The numbers may start with 0. The length of each number doesn't exceed 100.
|
Write one line — the corresponding answer. Do not omit the leading 0s.
|
[
"1010100\n0100101\n",
"000\n111\n",
"1110\n1010\n",
"01110\n01100\n"
] |
[
"1110001\n",
"111\n",
"0100\n",
"00010\n"
] |
none
| 500
|
[
{
"input": "1010100\n0100101",
"output": "1110001"
},
{
"input": "000\n111",
"output": "111"
},
{
"input": "1110\n1010",
"output": "0100"
},
{
"input": "01110\n01100",
"output": "00010"
},
{
"input": "011101\n000001",
"output": "011100"
},
{
"input": "10\n01",
"output": "11"
},
{
"input": "00111111\n11011101",
"output": "11100010"
},
{
"input": "011001100\n101001010",
"output": "110000110"
},
{
"input": "1100100001\n0110101100",
"output": "1010001101"
},
{
"input": "00011101010\n10010100101",
"output": "10001001111"
},
{
"input": "100000101101\n111010100011",
"output": "011010001110"
},
{
"input": "1000001111010\n1101100110001",
"output": "0101101001011"
},
{
"input": "01011111010111\n10001110111010",
"output": "11010001101101"
},
{
"input": "110010000111100\n001100101011010",
"output": "111110101100110"
},
{
"input": "0010010111110000\n0000000011010110",
"output": "0010010100100110"
},
{
"input": "00111110111110000\n01111100001100000",
"output": "01000010110010000"
},
{
"input": "101010101111010001\n001001111101111101",
"output": "100011010010101100"
},
{
"input": "0110010101111100000\n0011000101000000110",
"output": "0101010000111100110"
},
{
"input": "11110100011101010111\n00001000011011000000",
"output": "11111100000110010111"
},
{
"input": "101010101111101101001\n111010010010000011111",
"output": "010000111101101110110"
},
{
"input": "0000111111100011000010\n1110110110110000001010",
"output": "1110001001010011001000"
},
{
"input": "10010010101000110111000\n00101110100110111000111",
"output": "10111100001110001111111"
},
{
"input": "010010010010111100000111\n100100111111100011001110",
"output": "110110101101011111001001"
},
{
"input": "0101110100100111011010010\n0101100011010111001010001",
"output": "0000010111110000010000011"
},
{
"input": "10010010100011110111111011\n10000110101100000001000100",
"output": "00010100001111110110111111"
},
{
"input": "000001111000000100001000000\n011100111101111001110110001",
"output": "011101000101111101111110001"
},
{
"input": "0011110010001001011001011100\n0000101101000011101011001010",
"output": "0011011111001010110010010110"
},
{
"input": "11111000000000010011001101111\n11101110011001010100010000000",
"output": "00010110011001000111011101111"
},
{
"input": "011001110000110100001100101100\n001010000011110000001000101001",
"output": "010011110011000100000100000101"
},
{
"input": "1011111010001100011010110101111\n1011001110010000000101100010101",
"output": "0000110100011100011111010111010"
},
{
"input": "10111000100001000001010110000001\n10111000001100101011011001011000",
"output": "00000000101101101010001111011001"
},
{
"input": "000001010000100001000000011011100\n111111111001010100100001100000111",
"output": "111110101001110101100001111011011"
},
{
"input": "1101000000000010011011101100000110\n1110000001100010011010000011011110",
"output": "0011000001100000000001101111011000"
},
{
"input": "01011011000010100001100100011110001\n01011010111000001010010100001110000",
"output": "00000001111010101011110000010000001"
},
{
"input": "000011111000011001000110111100000100\n011011000110000111101011100111000111",
"output": "011000111110011110101101011011000011"
},
{
"input": "1001000010101110001000000011111110010\n0010001011010111000011101001010110000",
"output": "1011001001111001001011101010101000010"
},
{
"input": "00011101011001100101111111000000010101\n10010011011011001011111000000011101011",
"output": "10001110000010101110000111000011111110"
},
{
"input": "111011100110001001101111110010111001010\n111111101101111001110010000101101000100",
"output": "000100001011110000011101110111010001110"
},
{
"input": "1111001001101000001000000010010101001010\n0010111100111110001011000010111110111001",
"output": "1101110101010110000011000000101011110011"
},
{
"input": "00100101111000000101011111110010100011010\n11101110001010010101001000111110101010100",
"output": "11001011110010010000010111001100001001110"
},
{
"input": "101011001110110100101001000111010101101111\n100111100110101011010100111100111111010110",
"output": "001100101000011111111101111011101010111001"
},
{
"input": "1111100001100101000111101001001010011100001\n1000110011000011110010001011001110001000001",
"output": "0111010010100110110101100010000100010100000"
},
{
"input": "01100111011111010101000001101110000001110101\n10011001011111110000000101011001001101101100",
"output": "11111110000000100101000100110111001100011001"
},
{
"input": "110010100111000100100101100000011100000011001\n011001111011100110000110111001110110100111011",
"output": "101011011100100010100011011001101010100100010"
},
{
"input": "0001100111111011010110100100111000000111000110\n1100101011000000000001010010010111001100110001",
"output": "1101001100111011010111110110101111001011110111"
},
{
"input": "00000101110110110001110010100001110100000100000\n10010000110011110001101000111111101010011010001",
"output": "10010101000101000000011010011110011110011110001"
},
{
"input": "110000100101011100100011001111110011111110010001\n101011111001011100110110111101110011010110101100",
"output": "011011011100000000010101110010000000101000111101"
},
{
"input": "0101111101011111010101011101000011101100000000111\n0000101010110110001110101011011110111001010100100",
"output": "0101010111101001011011110110011101010101010100011"
},
{
"input": "11000100010101110011101000011111001010110111111100\n00001111000111001011111110000010101110111001000011",
"output": "11001011010010111000010110011101100100001110111111"
},
{
"input": "101000001101111101101111111000001110110010101101010\n010011100111100001100000010001100101000000111011011",
"output": "111011101010011100001111101001101011110010010110001"
},
{
"input": "0011111110010001010100010110111000110011001101010100\n0111000000100010101010000100101000000100101000111001",
"output": "0100111110110011111110010010010000110111100101101101"
},
{
"input": "11101010000110000011011010000001111101000111011111100\n10110011110001010100010110010010101001010111100100100",
"output": "01011001110111010111001100010011010100010000111011000"
},
{
"input": "011000100001000001101000010110100110011110100111111011\n111011001000001001110011001111011110111110110011011111",
"output": "100011101001001000011011011001111000100000010100100100"
},
{
"input": "0111010110010100000110111011010110100000000111110110000\n1011100100010001101100000100111111101001110010000100110",
"output": "1100110010000101101010111111101001001001110101110010110"
},
{
"input": "10101000100111000111010001011011011011110100110101100011\n11101111000000001100100011111000100100000110011001101110",
"output": "01000111100111001011110010100011111111110010101100001101"
},
{
"input": "000000111001010001000000110001001011100010011101010011011\n110001101000010010000101000100001111101001100100001010010",
"output": "110001010001000011000101110101000100001011111001011001001"
},
{
"input": "0101011100111010000111110010101101111111000000111100011100\n1011111110000010101110111001000011100000100111111111000111",
"output": "1110100010111000101001001011101110011111100111000011011011"
},
{
"input": "11001000001100100111100111100100101011000101001111001001101\n10111110100010000011010100110100100011101001100000001110110",
"output": "01110110101110100100110011010000001000101100101111000111011"
},
{
"input": "010111011011101000000110000110100110001110100001110110111011\n101011110011101011101101011111010100100001100111100100111011",
"output": "111100101000000011101011011001110010101111000110010010000000"
},
{
"input": "1001011110110110000100011001010110000100011010010111010101110\n1101111100001000010111110011010101111010010100000001000010111",
"output": "0100100010111110010011101010000011111110001110010110010111001"
},
{
"input": "10000010101111100111110101111000010100110111101101111111111010\n10110110101100101010011001011010100110111011101100011001100111",
"output": "00110100000011001101101100100010110010001100000001100110011101"
},
{
"input": "011111010011111000001010101001101001000010100010111110010100001\n011111001011000011111001000001111001010110001010111101000010011",
"output": "000000011000111011110011101000010000010100101000000011010110010"
},
{
"input": "1111000000110001011101000100100100001111011100001111001100011111\n1101100110000101100001100000001001011011111011010101000101001010",
"output": "0010100110110100111100100100101101010100100111011010001001010101"
},
{
"input": "01100000101010010011001110100110110010000110010011011001100100011\n10110110010110111100100111000111000110010000000101101110000010111",
"output": "11010110111100101111101001100001110100010110010110110111100110100"
},
{
"input": "001111111010000100001100001010011001111110011110010111110001100111\n110000101001011000100010101100100110000111100000001101001110010111",
"output": "111111010011011100101110100110111111111001111110011010111111110000"
},
{
"input": "1011101011101101011110101101011101011000010011100101010101000100110\n0001000001001111010111100100111101100000000001110001000110000000110",
"output": "1010101010100010001001001001100000111000010010010100010011000100000"
},
{
"input": "01000001011001010011011100010000100100110101111011011011110000001110\n01011110000110011011000000000011000111100001010000000011111001110000",
"output": "00011111011111001000011100010011100011010100101011011000001001111110"
},
{
"input": "110101010100110101000001111110110100010010000100111110010100110011100\n111010010111111011100110101011001011001110110111110100000110110100111",
"output": "001111000011001110100111010101111111011100110011001010010010000111011"
},
{
"input": "1001101011000001011111100110010010000011010001001111011100010100110001\n1111100111110101001111010001010000011001001001010110001111000000100101",
"output": "0110001100110100010000110111000010011010011000011001010011010100010100"
},
{
"input": "00000111110010110001110110001010010101000111011001111111100110011110010\n00010111110100000100110101000010010001100001100011100000001100010100010",
"output": "00010000000110110101000011001000000100100110111010011111101010001010000"
},
{
"input": "100101011100101101000011010001011001101110101110001100010001010111001110\n100001111100101011011111110000001111000111001011111110000010101110111001",
"output": "000100100000000110011100100001010110101001100101110010010011111001110111"
},
{
"input": "1101100001000111001101001011101000111000011110000001001101101001111011010\n0101011101010100011011010110101000010010110010011110101100000110110001000",
"output": "1000111100010011010110011101000000101010101100011111100001101111001010010"
},
{
"input": "01101101010011110101100001110101111011100010000010001101111000011110111111\n00101111001101001100111010000101110000100101101111100111101110010100011011",
"output": "01000010011110111001011011110000001011000111101101101010010110001010100100"
},
{
"input": "101100101100011001101111110110110010100110110010100001110010110011001101011\n000001011010101011110011111101001110000111000010001101000010010000010001101",
"output": "101101110110110010011100001011111100100001110000101100110000100011011100110"
},
{
"input": "0010001011001010001100000010010011110110011000100000000100110000101111001110\n1100110100111000110100001110111001011101001100001010100001010011100110110001",
"output": "1110111111110010111000001100101010101011010100101010100101100011001001111111"
},
{
"input": "00101101010000000101011001101011001100010001100000101011101110000001111001000\n10010110010111000000101101000011101011001010000011011101101011010000000011111",
"output": "10111011000111000101110100101000100111011011100011110110000101010001111010111"
},
{
"input": "111100000100100000101001100001001111001010001000001000000111010000010101101011\n001000100010100101111011111011010110101100001111011000010011011011100010010110",
"output": "110100100110000101010010011010011001100110000111010000010100001011110111111101"
},
{
"input": "0110001101100100001111110101101000100101010010101010011001101001001101110000000\n0111011000000010010111011110010000000001000110001000011001101000000001110100111",
"output": "0001010101100110011000101011111000100100010100100010000000000001001100000100111"
},
{
"input": "10001111111001000101001011110101111010100001011010101100111001010001010010001000\n10000111010010011110111000111010101100000011110001101111001000111010100000000001",
"output": "00001000101011011011110011001111010110100010101011000011110001101011110010001001"
},
{
"input": "100110001110110000100101001110000011110110000110000000100011110100110110011001101\n110001110101110000000100101001101011111100100100001001000110000001111100011110110",
"output": "010111111011000000100001100111101000001010100010001001100101110101001010000111011"
},
{
"input": "0000010100100000010110111100011111111010011101000000100000011001001101101100111010\n0100111110011101010110101011110110010111001111000110101100101110111100101000111111",
"output": "0100101010111101000000010111101001101101010010000110001100110111110001000100000101"
},
{
"input": "11000111001010100001110000001001011010010010110000001110100101000001010101100110111\n11001100100100100001101010110100000111100011101110011010110100001001000011011011010",
"output": "00001011101110000000011010111101011101110001011110010100010001001000010110111101101"
},
{
"input": "010110100010001000100010101001101010011010111110100001000100101000111011100010100001\n110000011111101101010011111000101010111010100001001100001001100101000000111000000000",
"output": "100110111101100101110001010001000000100000011111101101001101001101111011011010100001"
},
{
"input": "0000011110101110010101110110110101100001011001101010101001000010000010000000101001101\n1100111111011100000110000111101110011111100111110001011001000010011111100001001100011",
"output": "1100100001110010010011110001011011111110111110011011110000000000011101100001100101110"
},
{
"input": "10100000101101110001100010010010100101100011010010101000110011100000101010110010000000\n10001110011011010010111011011101101111000111110000111000011010010101001100000001010011",
"output": "00101110110110100011011001001111001010100100100010010000101001110101100110110011010011"
},
{
"input": "001110000011111101101010011111000101010111010100001001100001001100101000000111000000000\n111010000000000000101001110011001000111011001100101010011001000011101001001011110000011",
"output": "110100000011111101000011101100001101101100011000100011111000001111000001001100110000011"
},
{
"input": "1110111100111011010101011011001110001010010010110011110010011111000010011111010101100001\n1001010101011001001010100010101100000110111101011000100010101111111010111100001110010010",
"output": "0111101001100010011111111001100010001100101111101011010000110000111000100011011011110011"
},
{
"input": "11100010001100010011001100001100010011010001101110011110100101110010101101011101000111111\n01110000000110111010110100001010000101011110100101010011000110101110101101110111011110001",
"output": "10010010001010101001111000000110010110001111001011001101100011011100000000101010011001110"
},
{
"input": "001101011001100101101100110000111000101011001001100100000100101000100000110100010111111101\n101001111110000010111101111110001001111001111101111010000110111000100100110010010001011111",
"output": "100100100111100111010001001110110001010010110100011110000010010000000100000110000110100010"
},
{
"input": "1010110110010101000110010010110101011101010100011001101011000110000000100011100100011000000\n0011011111100010001111101101000111001011101110100000110111100100101111010110101111011100011",
"output": "1001101001110111001001111111110010010110111010111001011100100010101111110101001011000100011"
},
{
"input": "10010010000111010111011111110010100101100000001100011100111011100010000010010001011100001100\n00111010100010110010000100010111010001111110100100100011101000101111111111001101101100100100",
"output": "10101000100101100101011011100101110100011110101000111111010011001101111101011100110000101000"
},
{
"input": "010101110001010101100000010111010000000111110011001101100011001000000011001111110000000010100\n010010111011100101010101111110110000000111000100001101101001001000001100101110001010000100001",
"output": "000111001010110000110101101001100000000000110111000000001010000000001111100001111010000110101"
},
{
"input": "1100111110011001000111101001001011000110011010111111100010111111001100111111011101100111101011\n1100000011001000110100110111000001011001010111101000010010100011000001100100111101101000010110",
"output": "0000111101010001110011011110001010011111001101010111110000011100001101011011100000001111111101"
},
{
"input": "00011000100100110111100101100100000000010011110111110010101110110011100001010111010011110100101\n00011011111011111011100101100111100101001110010111000010000111000100100100000001110101111011011",
"output": "00000011011111001100000000000011100101011101100000110000101001110111000101010110100110001111110"
},
{
"input": "000101011001001100000111100010110101111011110101111101000110001101011010111110110011100100000001\n011000101010011111011000111000100000000011011000000001111110001000001111101010110000011100001111",
"output": "011101110011010011011111011010010101111000101101111100111000000101010101010100000011111000001110"
},
{
"input": "1000101001011010000100100100010010011101011001110101111011101111111110010101001101010001010101001\n0110110010011100011111011111110111000000010001110100001010111110101011010011111011111110000110000",
"output": "1110011011000110011011111011100101011101001000000001110001010001010101000110110110101111010011001"
},
{
"input": "01111010010101100111110111111011011010100001011101010000111100101101101110111011001100101011100111\n00001100110110100001111011000010001001001100000010111101000001111011100000010111010010000011000010",
"output": "01110110100011000110001100111001010011101101011111101101111101010110001110101100011110101000100101"
},
{
"input": "111101011101111000001011001101111010110111001101110100100011111011011101001101010101011010111000110\n101111100101101101001100110011000001111010011101110111110110101110011011110011111100001001110101101",
"output": "010010111000010101000111111110111011001101010000000011010101010101000110111110101001010011001101011"
},
{
"input": "1010000011010110011101001101110001110010000111011101110010110110111111001001110100101100010101010001\n0111101000111100101100000101111010100100001000011101010100110011100011010011010101000100101011100011",
"output": "1101101011101010110001001000001011010110001111000000100110000101011100011010100001101000111110110010"
},
{
"input": "0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001\n1111111010111111101011111110101111111010111111101011111110101111111010111111101011111110101111111010",
"output": "1111111010111111101011111110101111111010111111101011111110101111111010111111101011111110101111111011"
},
{
"input": "0\n0",
"output": "0"
},
{
"input": "0\n1",
"output": "1"
}
] | 1,642,691,287
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 102
| 62
| 0
|
n = input()
m = input()
ans = list(bin(int(n,2) ^ int(m,2))[2:])
if len(ans)==len(n):
print("".join(ans))
else:
lis = ['0']*(len(n)-len(ans))
print("".join(lis+ans))
|
Title: Ultra-Fast Mathematician
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
Shapur was an extremely gifted student. He was great at everything including Combinatorics, Algebra, Number Theory, Geometry, Calculus, etc. He was not only smart but extraordinarily fast! He could manage to sum 1018 numbers in a single second.
One day in 230 AD Shapur was trying to find out if any one can possibly do calculations faster than him. As a result he made a very great contest and asked every one to come and take part.
In his contest he gave the contestants many different pairs of numbers. Each number is made from digits 0 or 1. The contestants should write a new number corresponding to the given pair of numbers. The rule is simple: The *i*-th digit of the answer is 1 if and only if the *i*-th digit of the two given numbers differ. In the other case the *i*-th digit of the answer is 0.
Shapur made many numbers and first tried his own speed. He saw that he can perform these operations on numbers of length ∞ (length of a number is number of digits in it) in a glance! He always gives correct answers so he expects the contestants to give correct answers, too. He is a good fellow so he won't give anyone very big numbers and he always gives one person numbers of same length.
Now you are going to take part in Shapur's contest. See if you are faster and more accurate.
Input Specification:
There are two lines in each input. Each of them contains a single number. It is guaranteed that the numbers are made from 0 and 1 only and that their length is same. The numbers may start with 0. The length of each number doesn't exceed 100.
Output Specification:
Write one line — the corresponding answer. Do not omit the leading 0s.
Demo Input:
['1010100\n0100101\n', '000\n111\n', '1110\n1010\n', '01110\n01100\n']
Demo Output:
['1110001\n', '111\n', '0100\n', '00010\n']
Note:
none
|
```python
n = input()
m = input()
ans = list(bin(int(n,2) ^ int(m,2))[2:])
if len(ans)==len(n):
print("".join(ans))
else:
lis = ['0']*(len(n)-len(ans))
print("".join(lis+ans))
```
| 3.9845
|
583
|
A
|
Asphalting Roads
|
PROGRAMMING
| 1,000
|
[
"implementation"
] | null | null |
City X consists of *n* vertical and *n* horizontal infinite roads, forming *n*<=×<=*n* intersections. Roads (both vertical and horizontal) are numbered from 1 to *n*, and the intersections are indicated by the numbers of the roads that form them.
Sand roads have long been recognized out of date, so the decision was made to asphalt them. To do this, a team of workers was hired and a schedule of work was made, according to which the intersections should be asphalted.
Road repairs are planned for *n*2 days. On the *i*-th day of the team arrives at the *i*-th intersection in the list and if none of the two roads that form the intersection were already asphalted they asphalt both roads. Otherwise, the team leaves the intersection, without doing anything with the roads.
According to the schedule of road works tell in which days at least one road will be asphalted.
|
The first line contains integer *n* (1<=≤<=*n*<=≤<=50) — the number of vertical and horizontal roads in the city.
Next *n*2 lines contain the order of intersections in the schedule. The *i*-th of them contains two numbers *h**i*,<=*v**i* (1<=≤<=*h**i*,<=*v**i*<=≤<=*n*), separated by a space, and meaning that the intersection that goes *i*-th in the timetable is at the intersection of the *h**i*-th horizontal and *v**i*-th vertical roads. It is guaranteed that all the intersections in the timetable are distinct.
|
In the single line print the numbers of the days when road works will be in progress in ascending order. The days are numbered starting from 1.
|
[
"2\n1 1\n1 2\n2 1\n2 2\n",
"1\n1 1\n"
] |
[
"1 4 \n",
"1 \n"
] |
In the sample the brigade acts like that:
1. On the first day the brigade comes to the intersection of the 1-st horizontal and the 1-st vertical road. As none of them has been asphalted, the workers asphalt the 1-st vertical and the 1-st horizontal road; 1. On the second day the brigade of the workers comes to the intersection of the 1-st horizontal and the 2-nd vertical road. The 2-nd vertical road hasn't been asphalted, but as the 1-st horizontal road has been asphalted on the first day, the workers leave and do not asphalt anything; 1. On the third day the brigade of the workers come to the intersection of the 2-nd horizontal and the 1-st vertical road. The 2-nd horizontal road hasn't been asphalted but as the 1-st vertical road has been asphalted on the first day, the workers leave and do not asphalt anything; 1. On the fourth day the brigade come to the intersection formed by the intersection of the 2-nd horizontal and 2-nd vertical road. As none of them has been asphalted, the workers asphalt the 2-nd vertical and the 2-nd horizontal road.
| 500
|
[
{
"input": "2\n1 1\n1 2\n2 1\n2 2",
"output": "1 4 "
},
{
"input": "1\n1 1",
"output": "1 "
},
{
"input": "2\n1 1\n2 2\n1 2\n2 1",
"output": "1 2 "
},
{
"input": "2\n1 2\n2 2\n2 1\n1 1",
"output": "1 3 "
},
{
"input": "3\n2 2\n1 2\n3 2\n3 3\n1 1\n2 3\n1 3\n3 1\n2 1",
"output": "1 4 5 "
},
{
"input": "3\n1 3\n3 1\n2 1\n1 1\n1 2\n2 2\n3 2\n3 3\n2 3",
"output": "1 2 6 "
},
{
"input": "4\n1 3\n2 3\n2 4\n4 4\n3 1\n1 1\n3 4\n2 1\n1 4\n4 3\n4 1\n3 2\n1 2\n4 2\n2 2\n3 3",
"output": "1 3 5 14 "
},
{
"input": "4\n3 3\n4 2\n2 3\n3 4\n4 4\n1 2\n3 2\n2 2\n1 4\n3 1\n4 1\n2 1\n1 3\n1 1\n4 3\n2 4",
"output": "1 2 9 12 "
},
{
"input": "9\n4 5\n2 3\n8 3\n5 6\n9 3\n4 4\n5 4\n4 7\n1 7\n8 4\n1 4\n1 5\n5 7\n7 8\n7 1\n9 9\n8 7\n7 5\n3 7\n6 6\n7 3\n5 2\n3 6\n7 4\n9 6\n5 8\n9 7\n6 3\n7 9\n1 2\n1 1\n6 2\n5 3\n7 2\n1 6\n4 1\n6 1\n8 9\n2 2\n3 9\n2 9\n7 7\n2 8\n9 4\n2 5\n8 6\n3 4\n2 1\n2 7\n6 5\n9 1\n3 3\n3 8\n5 5\n4 3\n3 1\n1 9\n6 4\n3 2\n6 8\n2 6\n5 9\n8 5\n8 8\n9 5\n6 9\n9 2\n3 5\n4 9\n4 8\n2 4\n5 1\n4 6\n7 6\n9 8\n1 3\n4 2\n8 1\n8 2\n6 7\n1 8",
"output": "1 2 4 9 10 14 16 32 56 "
},
{
"input": "8\n1 1\n1 2\n1 3\n1 4\n1 5\n8 6\n1 7\n1 8\n2 1\n8 5\n2 3\n2 4\n2 5\n2 6\n4 3\n2 2\n3 1\n3 2\n3 3\n3 4\n3 5\n3 6\n5 6\n3 8\n4 1\n4 2\n2 7\n4 4\n8 8\n4 6\n4 7\n4 8\n5 1\n5 2\n5 3\n6 5\n5 5\n3 7\n5 7\n5 8\n6 1\n6 2\n6 3\n6 4\n5 4\n6 6\n6 7\n6 8\n7 1\n7 2\n7 3\n7 4\n7 5\n7 6\n7 7\n7 8\n8 1\n8 2\n8 3\n8 4\n2 8\n1 6\n8 7\n4 5",
"output": "1 6 11 18 28 36 39 56 "
},
{
"input": "9\n9 9\n5 5\n8 8\n3 3\n2 2\n6 6\n4 4\n1 1\n7 7\n8 4\n1 4\n1 5\n5 7\n7 8\n7 1\n1 7\n8 7\n7 5\n3 7\n5 6\n7 3\n5 2\n3 6\n7 4\n9 6\n5 8\n9 7\n6 3\n7 9\n1 2\n4 5\n6 2\n5 3\n7 2\n1 6\n4 1\n6 1\n8 9\n2 3\n3 9\n2 9\n5 4\n2 8\n9 4\n2 5\n8 6\n3 4\n2 1\n2 7\n6 5\n9 1\n8 3\n3 8\n9 3\n4 3\n3 1\n1 9\n6 4\n3 2\n6 8\n2 6\n5 9\n8 5\n4 7\n9 5\n6 9\n9 2\n3 5\n4 9\n4 8\n2 4\n5 1\n4 6\n7 6\n9 8\n1 3\n4 2\n8 1\n8 2\n6 7\n1 8",
"output": "1 2 3 4 5 6 7 8 9 "
}
] | 1,443,920,261
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 39
| 109
| 0
|
n=int(input())
x,y=[],[]
for i in range(n*n):
x1,y1=input().split()
x2,y2=len(x),len(y)
flag=0
for j in range(x2):
if(x1==x[j]):
flag=1
for j in range(y2):
if(y1==y[j]):
flag=1
if(flag==0):
x.append(x1)
y.append(y1)
print(i+1)
|
Title: Asphalting Roads
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
City X consists of *n* vertical and *n* horizontal infinite roads, forming *n*<=×<=*n* intersections. Roads (both vertical and horizontal) are numbered from 1 to *n*, and the intersections are indicated by the numbers of the roads that form them.
Sand roads have long been recognized out of date, so the decision was made to asphalt them. To do this, a team of workers was hired and a schedule of work was made, according to which the intersections should be asphalted.
Road repairs are planned for *n*2 days. On the *i*-th day of the team arrives at the *i*-th intersection in the list and if none of the two roads that form the intersection were already asphalted they asphalt both roads. Otherwise, the team leaves the intersection, without doing anything with the roads.
According to the schedule of road works tell in which days at least one road will be asphalted.
Input Specification:
The first line contains integer *n* (1<=≤<=*n*<=≤<=50) — the number of vertical and horizontal roads in the city.
Next *n*2 lines contain the order of intersections in the schedule. The *i*-th of them contains two numbers *h**i*,<=*v**i* (1<=≤<=*h**i*,<=*v**i*<=≤<=*n*), separated by a space, and meaning that the intersection that goes *i*-th in the timetable is at the intersection of the *h**i*-th horizontal and *v**i*-th vertical roads. It is guaranteed that all the intersections in the timetable are distinct.
Output Specification:
In the single line print the numbers of the days when road works will be in progress in ascending order. The days are numbered starting from 1.
Demo Input:
['2\n1 1\n1 2\n2 1\n2 2\n', '1\n1 1\n']
Demo Output:
['1 4 \n', '1 \n']
Note:
In the sample the brigade acts like that:
1. On the first day the brigade comes to the intersection of the 1-st horizontal and the 1-st vertical road. As none of them has been asphalted, the workers asphalt the 1-st vertical and the 1-st horizontal road; 1. On the second day the brigade of the workers comes to the intersection of the 1-st horizontal and the 2-nd vertical road. The 2-nd vertical road hasn't been asphalted, but as the 1-st horizontal road has been asphalted on the first day, the workers leave and do not asphalt anything; 1. On the third day the brigade of the workers come to the intersection of the 2-nd horizontal and the 1-st vertical road. The 2-nd horizontal road hasn't been asphalted but as the 1-st vertical road has been asphalted on the first day, the workers leave and do not asphalt anything; 1. On the fourth day the brigade come to the intersection formed by the intersection of the 2-nd horizontal and 2-nd vertical road. As none of them has been asphalted, the workers asphalt the 2-nd vertical and the 2-nd horizontal road.
|
```python
n=int(input())
x,y=[],[]
for i in range(n*n):
x1,y1=input().split()
x2,y2=len(x),len(y)
flag=0
for j in range(x2):
if(x1==x[j]):
flag=1
for j in range(y2):
if(y1==y[j]):
flag=1
if(flag==0):
x.append(x1)
y.append(y1)
print(i+1)
```
| 3
|
|
281
|
A
|
Word Capitalization
|
PROGRAMMING
| 800
|
[
"implementation",
"strings"
] | null | null |
Capitalization is writing a word with its first letter as a capital letter. Your task is to capitalize the given word.
Note, that during capitalization all the letters except the first one remains unchanged.
|
A single line contains a non-empty word. This word consists of lowercase and uppercase English letters. The length of the word will not exceed 103.
|
Output the given word after capitalization.
|
[
"ApPLe\n",
"konjac\n"
] |
[
"ApPLe\n",
"Konjac\n"
] |
none
| 500
|
[
{
"input": "ApPLe",
"output": "ApPLe"
},
{
"input": "konjac",
"output": "Konjac"
},
{
"input": "a",
"output": "A"
},
{
"input": "A",
"output": "A"
},
{
"input": "z",
"output": "Z"
},
{
"input": "ABACABA",
"output": "ABACABA"
},
{
"input": "xYaPxPxHxGePfGtQySlNrLxSjDtNnTaRaEpAhPaQpWnDzMqGgRgEwJxGiBdZnMtHxFbObCaGiCeZkUqIgBhHtNvAqAlHpMnQhNeQbMyZrCdElVwHtKrPpJjIaHuIlYwHaRkAkUpPlOhNlBtXwDsKzPyHrPiUwNlXtTaPuMwTqYtJySgFoXvLiHbQwMjSvXsQfKhVlOxGdQkWjBhEyQvBjPoFkThNeRhTuIzFjInJtEfPjOlOsJpJuLgLzFnZmKvFgFrNsOnVqFcNiMfCqTpKnVyLwNqFiTySpWeTdFnWuTwDkRjVxNyQvTrOoEiExYiFaIrLoFmJfZcDkHuWjYfCeEqCvEsZiWnJaEmFbMjDvYwEeJeGcKbVbChGsIzNlExHzHiTlHcSaKxLuZxX",
"output": "XYaPxPxHxGePfGtQySlNrLxSjDtNnTaRaEpAhPaQpWnDzMqGgRgEwJxGiBdZnMtHxFbObCaGiCeZkUqIgBhHtNvAqAlHpMnQhNeQbMyZrCdElVwHtKrPpJjIaHuIlYwHaRkAkUpPlOhNlBtXwDsKzPyHrPiUwNlXtTaPuMwTqYtJySgFoXvLiHbQwMjSvXsQfKhVlOxGdQkWjBhEyQvBjPoFkThNeRhTuIzFjInJtEfPjOlOsJpJuLgLzFnZmKvFgFrNsOnVqFcNiMfCqTpKnVyLwNqFiTySpWeTdFnWuTwDkRjVxNyQvTrOoEiExYiFaIrLoFmJfZcDkHuWjYfCeEqCvEsZiWnJaEmFbMjDvYwEeJeGcKbVbChGsIzNlExHzHiTlHcSaKxLuZxX"
},
{
"input": "rZhIcQlXpNcPgXrOjTiOlMoTgXgIhCfMwZfWoFzGhEkQlOoMjIuShPlZfWkNnMyQfYdUhVgQuSmYoElEtZpDyHtOxXgCpWbZqSbYnPqBcNqRtPgCnJnAyIvNsAhRbNeVlMwZyRyJnFgIsCnSbOdLvUyIeOzQvRpMoMoHfNhHwKvTcHuYnYySfPmAiNwAiWdZnWlLvGfBbRbRrCrBqIgIdWkWiBsNyYkKdNxZdGaToSsDnXpRaGrKxBpQsCzBdQgZzBkGeHgGxNrIyQlSzWsTmSnZwOcHqQpNcQvJlPvKaPiQaMaYsQjUeCqQdCjPgUbDmWiJmNiXgExLqOcCtSwSePnUxIuZfIfBeWbEiVbXnUsPwWyAiXyRbZgKwOqFfCtQuKxEmVeRlAkOeXkO",
"output": "RZhIcQlXpNcPgXrOjTiOlMoTgXgIhCfMwZfWoFzGhEkQlOoMjIuShPlZfWkNnMyQfYdUhVgQuSmYoElEtZpDyHtOxXgCpWbZqSbYnPqBcNqRtPgCnJnAyIvNsAhRbNeVlMwZyRyJnFgIsCnSbOdLvUyIeOzQvRpMoMoHfNhHwKvTcHuYnYySfPmAiNwAiWdZnWlLvGfBbRbRrCrBqIgIdWkWiBsNyYkKdNxZdGaToSsDnXpRaGrKxBpQsCzBdQgZzBkGeHgGxNrIyQlSzWsTmSnZwOcHqQpNcQvJlPvKaPiQaMaYsQjUeCqQdCjPgUbDmWiJmNiXgExLqOcCtSwSePnUxIuZfIfBeWbEiVbXnUsPwWyAiXyRbZgKwOqFfCtQuKxEmVeRlAkOeXkO"
},
{
"input": "hDgZlUmLhYbLkLcNcKeOwJwTePbOvLaRvNzQbSbLsPeHqLhUqWtUbNdQfQqFfXeJqJwWuOrFnDdZiPxIkDyVmHbHvXfIlFqSgAcSyWbOlSlRuPhWdEpEzEeLnXwCtWuVcHaUeRgCiYsIvOaIgDnFuDbRnMoCmPrZfLeFpSjQaTfHgZwZvAzDuSeNwSoWuJvLqKqAuUxFaCxFfRcEjEsJpOfCtDiVrBqNsNwPuGoRgPzRpLpYnNyQxKaNnDnYiJrCrVcHlOxPiPcDbEgKfLwBjLhKcNeMgJhJmOiJvPfOaPaEuGqWvRbErKrIpDkEoQnKwJnTlStLyNsHyOjZfKoIjXwUvRrWpSyYhRpQdLqGmErAiNcGqAqIrTeTiMuPmCrEkHdBrLyCxPtYpRqD",
"output": "HDgZlUmLhYbLkLcNcKeOwJwTePbOvLaRvNzQbSbLsPeHqLhUqWtUbNdQfQqFfXeJqJwWuOrFnDdZiPxIkDyVmHbHvXfIlFqSgAcSyWbOlSlRuPhWdEpEzEeLnXwCtWuVcHaUeRgCiYsIvOaIgDnFuDbRnMoCmPrZfLeFpSjQaTfHgZwZvAzDuSeNwSoWuJvLqKqAuUxFaCxFfRcEjEsJpOfCtDiVrBqNsNwPuGoRgPzRpLpYnNyQxKaNnDnYiJrCrVcHlOxPiPcDbEgKfLwBjLhKcNeMgJhJmOiJvPfOaPaEuGqWvRbErKrIpDkEoQnKwJnTlStLyNsHyOjZfKoIjXwUvRrWpSyYhRpQdLqGmErAiNcGqAqIrTeTiMuPmCrEkHdBrLyCxPtYpRqD"
},
{
"input": "qUdLgGrJeGmIzIeZrCjUtBpYfRvNdXdRpGsThIsEmJjTiMqEwRxBeBaSxEuWrNvExKePjPnXhPzBpWnHiDhTvZhBuIjDnZpTcEkCvRkAcTmMuXhGgErWgFyGyToOyVwYlCuQpTfJkVdWmFyBqQhJjYtXrBbFdHzDlGsFbHmHbFgXgFhIyDhZyEqEiEwNxSeByBwLiVeSnCxIdHbGjOjJrZeVkOzGeMmQrJkVyGhDtCzOlPeAzGrBlWwEnAdUfVaIjNrRyJjCnHkUvFuKuKeKbLzSbEmUcXtVkZzXzKlOrPgQiDmCcCvIyAdBwOeUuLbRmScNcWxIkOkJuIsBxTrIqXhDzLcYdVtPgZdZfAxTmUtByGiTsJkSySjXdJvEwNmSmNoWsChPdAzJrBoW",
"output": "QUdLgGrJeGmIzIeZrCjUtBpYfRvNdXdRpGsThIsEmJjTiMqEwRxBeBaSxEuWrNvExKePjPnXhPzBpWnHiDhTvZhBuIjDnZpTcEkCvRkAcTmMuXhGgErWgFyGyToOyVwYlCuQpTfJkVdWmFyBqQhJjYtXrBbFdHzDlGsFbHmHbFgXgFhIyDhZyEqEiEwNxSeByBwLiVeSnCxIdHbGjOjJrZeVkOzGeMmQrJkVyGhDtCzOlPeAzGrBlWwEnAdUfVaIjNrRyJjCnHkUvFuKuKeKbLzSbEmUcXtVkZzXzKlOrPgQiDmCcCvIyAdBwOeUuLbRmScNcWxIkOkJuIsBxTrIqXhDzLcYdVtPgZdZfAxTmUtByGiTsJkSySjXdJvEwNmSmNoWsChPdAzJrBoW"
},
{
"input": "kHbApGoBcLmIwUlXkVgUmWzYeLoDbGaOkWbIuXoRwMfKuOoMzAoXrBoTvYxGrMbRjDuRxAbGsTnErIiHnHoLeRnTbFiRfDdOkNlWiAcOsChLdLqFqXlDpDoDtPxXqAmSvYgPvOcCpOlWtOjYwFkGkHuCaHwZcFdOfHjBmIxTeSiHkWjXyFcCtOlSuJsZkDxUgPeZkJwMmNpErUlBcGuMlJwKkWnOzFeFiSiPsEvMmQiCsYeHlLuHoMgBjFoZkXlObDkSoQcVyReTmRsFzRhTuIvCeBqVsQdQyTyZjStGrTyDcEcAgTgMiIcVkLbZbGvWeHtXwEqWkXfTcPyHhHjYwIeVxLyVmHmMkUsGiHmNnQuMsXaFyPpVqNrBhOiWmNkBbQuHvQdOjPjKiZcL",
"output": "KHbApGoBcLmIwUlXkVgUmWzYeLoDbGaOkWbIuXoRwMfKuOoMzAoXrBoTvYxGrMbRjDuRxAbGsTnErIiHnHoLeRnTbFiRfDdOkNlWiAcOsChLdLqFqXlDpDoDtPxXqAmSvYgPvOcCpOlWtOjYwFkGkHuCaHwZcFdOfHjBmIxTeSiHkWjXyFcCtOlSuJsZkDxUgPeZkJwMmNpErUlBcGuMlJwKkWnOzFeFiSiPsEvMmQiCsYeHlLuHoMgBjFoZkXlObDkSoQcVyReTmRsFzRhTuIvCeBqVsQdQyTyZjStGrTyDcEcAgTgMiIcVkLbZbGvWeHtXwEqWkXfTcPyHhHjYwIeVxLyVmHmMkUsGiHmNnQuMsXaFyPpVqNrBhOiWmNkBbQuHvQdOjPjKiZcL"
},
{
"input": "aHmRbLgNuWkLxLnWvUbYwTeZeYiOlLhTuOvKfLnVmCiPcMkSgVrYjZiLuRjCiXhAnVzVcTlVeJdBvPdDfFvHkTuIhCdBjEsXbVmGcLrPfNvRdFsZkSdNpYsJeIhIcNqSoLkOjUlYlDmXsOxPbQtIoUxFjGnRtBhFaJvBeEzHsAtVoQbAfYjJqReBiKeUwRqYrUjPjBoHkOkPzDwEwUgTxQxAvKzUpMhKyOhPmEhYhItQwPeKsKaKlUhGuMcTtSwFtXfJsDsFlTtOjVvVfGtBtFlQyIcBaMsPaJlPqUcUvLmReZiFbXxVtRhTzJkLkAjVqTyVuFeKlTyQgUzMsXjOxQnVfTaWmThEnEoIhZeZdStBkKeLpAhJnFoJvQyGwDiStLjEwGfZwBuWsEfC",
"output": "AHmRbLgNuWkLxLnWvUbYwTeZeYiOlLhTuOvKfLnVmCiPcMkSgVrYjZiLuRjCiXhAnVzVcTlVeJdBvPdDfFvHkTuIhCdBjEsXbVmGcLrPfNvRdFsZkSdNpYsJeIhIcNqSoLkOjUlYlDmXsOxPbQtIoUxFjGnRtBhFaJvBeEzHsAtVoQbAfYjJqReBiKeUwRqYrUjPjBoHkOkPzDwEwUgTxQxAvKzUpMhKyOhPmEhYhItQwPeKsKaKlUhGuMcTtSwFtXfJsDsFlTtOjVvVfGtBtFlQyIcBaMsPaJlPqUcUvLmReZiFbXxVtRhTzJkLkAjVqTyVuFeKlTyQgUzMsXjOxQnVfTaWmThEnEoIhZeZdStBkKeLpAhJnFoJvQyGwDiStLjEwGfZwBuWsEfC"
},
{
"input": "sLlZkDiDmEdNaXuUuJwHqYvRtOdGfTiTpEpAoSqAbJaChOiCvHgSwZwEuPkMmXiLcKdXqSsEyViEbZpZsHeZpTuXoGcRmOiQfBfApPjDqSqElWeSeOhUyWjLyNoRuYeGfGwNqUsQoTyVvWeNgNdZfDxGwGfLsDjIdInSqDlMuNvFaHbScZkTlVwNcJpEjMaPaOtFgJjBjOcLlLmDnQrShIrJhOcUmPnZhTxNeClQsZaEaVaReLyQpLwEqJpUwYhLiRzCzKfOoFeTiXzPiNbOsZaZaLgCiNnMkBcFwGgAwPeNyTxJcCtBgXcToKlWaWcBaIvBpNxPeClQlWeQqRyEtAkJdBtSrFdDvAbUlKyLdCuTtXxFvRcKnYnWzVdYqDeCmOqPxUaFjQdTdCtN",
"output": "SLlZkDiDmEdNaXuUuJwHqYvRtOdGfTiTpEpAoSqAbJaChOiCvHgSwZwEuPkMmXiLcKdXqSsEyViEbZpZsHeZpTuXoGcRmOiQfBfApPjDqSqElWeSeOhUyWjLyNoRuYeGfGwNqUsQoTyVvWeNgNdZfDxGwGfLsDjIdInSqDlMuNvFaHbScZkTlVwNcJpEjMaPaOtFgJjBjOcLlLmDnQrShIrJhOcUmPnZhTxNeClQsZaEaVaReLyQpLwEqJpUwYhLiRzCzKfOoFeTiXzPiNbOsZaZaLgCiNnMkBcFwGgAwPeNyTxJcCtBgXcToKlWaWcBaIvBpNxPeClQlWeQqRyEtAkJdBtSrFdDvAbUlKyLdCuTtXxFvRcKnYnWzVdYqDeCmOqPxUaFjQdTdCtN"
},
{
"input": "iRuStKvVhJdJbQwRoIuLiVdTpKaOqKfYlYwAzIpPtUwUtMeKyCaOlXmVrKwWeImYmVuXdLkRlHwFxKqZbZtTzNgOzDbGqTfZnKmUzAcIjDcEmQgYyFbEfWzRpKvCkDmAqDiIiRcLvMxWaJqCgYqXgIcLdNaZlBnXtJyKaMnEaWfXfXwTbDnAiYnWqKbAtDpYdUbZrCzWgRnHzYxFgCdDbOkAgTqBuLqMeStHcDxGnVhSgMzVeTaZoTfLjMxQfRuPcFqVlRyYdHyOdJsDoCeWrUuJyIiAqHwHyVpEeEoMaJwAoUfPtBeJqGhMaHiBjKwAlXoZpUsDhHgMxBkVbLcEvNtJbGnPsUwAvXrAkTlXwYvEnOpNeWyIkRnEnTrIyAcLkRgMyYcKrGiDaAyE",
"output": "IRuStKvVhJdJbQwRoIuLiVdTpKaOqKfYlYwAzIpPtUwUtMeKyCaOlXmVrKwWeImYmVuXdLkRlHwFxKqZbZtTzNgOzDbGqTfZnKmUzAcIjDcEmQgYyFbEfWzRpKvCkDmAqDiIiRcLvMxWaJqCgYqXgIcLdNaZlBnXtJyKaMnEaWfXfXwTbDnAiYnWqKbAtDpYdUbZrCzWgRnHzYxFgCdDbOkAgTqBuLqMeStHcDxGnVhSgMzVeTaZoTfLjMxQfRuPcFqVlRyYdHyOdJsDoCeWrUuJyIiAqHwHyVpEeEoMaJwAoUfPtBeJqGhMaHiBjKwAlXoZpUsDhHgMxBkVbLcEvNtJbGnPsUwAvXrAkTlXwYvEnOpNeWyIkRnEnTrIyAcLkRgMyYcKrGiDaAyE"
},
{
"input": "cRtJkOxHzUbJcDdHzJtLbVmSoWuHoTkVrPqQaVmXeBrHxJbQfNrQbAaMrEhVdQnPxNyCjErKxPoEdWkVrBbDeNmEgBxYiBtWdAfHiLuSwIxJuHpSkAxPoYdNkGoLySsNhUmGoZhDzAfWhJdPlJzQkZbOnMtTkClIoCqOlIcJcMlGjUyOiEmHdYfIcPtTgQhLlLcPqQjAnQnUzHpCaQsCnYgQsBcJrQwBnWsIwFfSfGuYgTzQmShFpKqEeRlRkVfMuZbUsDoFoPrNuNwTtJqFkRiXxPvKyElDzLoUnIwAaBaOiNxMpEvPzSpGpFhMtGhGdJrFnZmNiMcUfMtBnDuUnXqDcMsNyGoLwLeNnLfRsIwRfBtXkHrFcPsLdXaAoYaDzYnZuQeVcZrElWmP",
"output": "CRtJkOxHzUbJcDdHzJtLbVmSoWuHoTkVrPqQaVmXeBrHxJbQfNrQbAaMrEhVdQnPxNyCjErKxPoEdWkVrBbDeNmEgBxYiBtWdAfHiLuSwIxJuHpSkAxPoYdNkGoLySsNhUmGoZhDzAfWhJdPlJzQkZbOnMtTkClIoCqOlIcJcMlGjUyOiEmHdYfIcPtTgQhLlLcPqQjAnQnUzHpCaQsCnYgQsBcJrQwBnWsIwFfSfGuYgTzQmShFpKqEeRlRkVfMuZbUsDoFoPrNuNwTtJqFkRiXxPvKyElDzLoUnIwAaBaOiNxMpEvPzSpGpFhMtGhGdJrFnZmNiMcUfMtBnDuUnXqDcMsNyGoLwLeNnLfRsIwRfBtXkHrFcPsLdXaAoYaDzYnZuQeVcZrElWmP"
},
{
"input": "wVaCsGxZrBbFnTbKsCoYlAvUkIpBaYpYmJkMlPwCaFvUkDxAiJgIqWsFqZlFvTtAnGzEwXbYiBdFfFxRiDoUkLmRfAwOlKeOlKgXdUnVqLkTuXtNdQpBpXtLvZxWoBeNePyHcWmZyRiUkPlRqYiQdGeXwOhHbCqVjDcEvJmBkRwWnMqPjXpUsIyXqGjHsEsDwZiFpIbTkQaUlUeFxMwJzSaHdHnDhLaLdTuYgFuJsEcMmDvXyPjKsSeBaRwNtPuOuBtNeOhQdVgKzPzOdYtPjPfDzQzHoWcYjFbSvRgGdGsCmGnQsErToBkCwGeQaCbBpYkLhHxTbUvRnJpZtXjKrHdRiUmUbSlJyGaLnWsCrJbBnSjFaZrIzIrThCmGhQcMsTtOxCuUcRaEyPaG",
"output": "WVaCsGxZrBbFnTbKsCoYlAvUkIpBaYpYmJkMlPwCaFvUkDxAiJgIqWsFqZlFvTtAnGzEwXbYiBdFfFxRiDoUkLmRfAwOlKeOlKgXdUnVqLkTuXtNdQpBpXtLvZxWoBeNePyHcWmZyRiUkPlRqYiQdGeXwOhHbCqVjDcEvJmBkRwWnMqPjXpUsIyXqGjHsEsDwZiFpIbTkQaUlUeFxMwJzSaHdHnDhLaLdTuYgFuJsEcMmDvXyPjKsSeBaRwNtPuOuBtNeOhQdVgKzPzOdYtPjPfDzQzHoWcYjFbSvRgGdGsCmGnQsErToBkCwGeQaCbBpYkLhHxTbUvRnJpZtXjKrHdRiUmUbSlJyGaLnWsCrJbBnSjFaZrIzIrThCmGhQcMsTtOxCuUcRaEyPaG"
},
{
"input": "kEiLxLmPjGzNoGkJdBlAfXhThYhMsHmZoZbGyCvNiUoLoZdAxUbGyQiEfXvPzZzJrPbEcMpHsMjIkRrVvDvQtHuKmXvGpQtXbPzJpFjJdUgWcPdFxLjLtXgVpEiFhImHnKkGiWnZbJqRjCyEwHsNbYfYfTyBaEuKlCtWnOqHmIgGrFmQiYrBnLiFcGuZxXlMfEuVoCxPkVrQvZoIpEhKsYtXrPxLcSfQqXsWaDgVlOnAzUvAhOhMrJfGtWcOwQfRjPmGhDyAeXrNqBvEiDfCiIvWxPjTwPlXpVsMjVjUnCkXgBuWnZaDyJpWkCfBrWnHxMhJgItHdRqNrQaEeRjAuUwRkUdRhEeGlSqVqGmOjNcUhFfXjCmWzBrGvIuZpRyWkWiLyUwFpYjNmNfV",
"output": "KEiLxLmPjGzNoGkJdBlAfXhThYhMsHmZoZbGyCvNiUoLoZdAxUbGyQiEfXvPzZzJrPbEcMpHsMjIkRrVvDvQtHuKmXvGpQtXbPzJpFjJdUgWcPdFxLjLtXgVpEiFhImHnKkGiWnZbJqRjCyEwHsNbYfYfTyBaEuKlCtWnOqHmIgGrFmQiYrBnLiFcGuZxXlMfEuVoCxPkVrQvZoIpEhKsYtXrPxLcSfQqXsWaDgVlOnAzUvAhOhMrJfGtWcOwQfRjPmGhDyAeXrNqBvEiDfCiIvWxPjTwPlXpVsMjVjUnCkXgBuWnZaDyJpWkCfBrWnHxMhJgItHdRqNrQaEeRjAuUwRkUdRhEeGlSqVqGmOjNcUhFfXjCmWzBrGvIuZpRyWkWiLyUwFpYjNmNfV"
},
{
"input": "eIhDoLmDeReKqXsHcVgFxUqNfScAiQnFrTlCgSuTtXiYvBxKaPaGvUeYfSgHqEaWcHxKpFaSlCxGqAmNeFcIzFcZsBiVoZhUjXaDaIcKoBzYdIlEnKfScRqSkYpPtVsVhXsBwUsUfAqRoCkBxWbHgDiCkRtPvUwVgDjOzObYwNiQwXlGnAqEkHdSqLgUkOdZiWaHqQnOhUnDhIzCiQtVcJlGoRfLuVlFjWqSuMsLgLwOdZvKtWdRuRqDoBoInKqPbJdXpIqLtFlMlDaWgSiKbFpCxOnQeNeQzXeKsBzIjCyPxCmBnYuHzQoYxZgGzSgGtZiTeQmUeWlNzZeKiJbQmEjIiDhPeSyZlNdHpZnIkPdJzSeJpPiXxToKyBjJfPwNzZpWzIzGySqPxLtI",
"output": "EIhDoLmDeReKqXsHcVgFxUqNfScAiQnFrTlCgSuTtXiYvBxKaPaGvUeYfSgHqEaWcHxKpFaSlCxGqAmNeFcIzFcZsBiVoZhUjXaDaIcKoBzYdIlEnKfScRqSkYpPtVsVhXsBwUsUfAqRoCkBxWbHgDiCkRtPvUwVgDjOzObYwNiQwXlGnAqEkHdSqLgUkOdZiWaHqQnOhUnDhIzCiQtVcJlGoRfLuVlFjWqSuMsLgLwOdZvKtWdRuRqDoBoInKqPbJdXpIqLtFlMlDaWgSiKbFpCxOnQeNeQzXeKsBzIjCyPxCmBnYuHzQoYxZgGzSgGtZiTeQmUeWlNzZeKiJbQmEjIiDhPeSyZlNdHpZnIkPdJzSeJpPiXxToKyBjJfPwNzZpWzIzGySqPxLtI"
},
{
"input": "uOoQzIeTwYeKpJtGoUdNiXbPgEwVsZkAnJcArHxIpEnEhZwQhZvAiOuLeMkVqLeDsAyKeYgFxGmRoLaRsZjAeXgNfYhBkHeDrHdPuTuYhKmDlAvYzYxCdYgYfVaYlGeVqTeSfBxQePbQrKsTaIkGzMjFrQlJuYaMxWpQkLdEcDsIiMnHnDtThRvAcKyGwBsHqKdXpJfIeTeZtYjFbMeUoXoXzGrShTwSwBpQlKeDrZdCjRqNtXoTsIzBkWbMsObTtDvYaPhUeLeHqHeMpZmTaCcIqXzAmGnPfNdDaFhOqWqDrWuFiBpRjZrQmAdViOuMbFfRyXyWfHgRkGpPnDrEqQcEmHcKpEvWlBrOtJbUaXbThJaSxCbVoGvTmHvZrHvXpCvLaYbRiHzYuQyX",
"output": "UOoQzIeTwYeKpJtGoUdNiXbPgEwVsZkAnJcArHxIpEnEhZwQhZvAiOuLeMkVqLeDsAyKeYgFxGmRoLaRsZjAeXgNfYhBkHeDrHdPuTuYhKmDlAvYzYxCdYgYfVaYlGeVqTeSfBxQePbQrKsTaIkGzMjFrQlJuYaMxWpQkLdEcDsIiMnHnDtThRvAcKyGwBsHqKdXpJfIeTeZtYjFbMeUoXoXzGrShTwSwBpQlKeDrZdCjRqNtXoTsIzBkWbMsObTtDvYaPhUeLeHqHeMpZmTaCcIqXzAmGnPfNdDaFhOqWqDrWuFiBpRjZrQmAdViOuMbFfRyXyWfHgRkGpPnDrEqQcEmHcKpEvWlBrOtJbUaXbThJaSxCbVoGvTmHvZrHvXpCvLaYbRiHzYuQyX"
},
{
"input": "lZqBqKeGvNdSeYuWxRiVnFtYbKuJwQtUcKnVtQhAlOeUzMaAuTaEnDdPfDcNyHgEoBmYjZyFePeJrRiKyAzFnBfAuGiUyLrIeLrNhBeBdVcEeKgCcBrQzDsPwGcNnZvTsEaYmFfMeOmMdNuZbUtDoQoNcGwDqEkEjIdQaPwAxJbXeNxOgKgXoEbZiIsVkRrNpNyAkLeHkNfEpLuQvEcMbIoGaDzXbEtNsLgGfOkZaFiUsOvEjVeCaMcZqMzKeAdXxJsVeCrZaFpJtZxInQxFaSmGgSsVyGeLlFgFqTpIbAvPkIfJrVcJeBxSdEvPyVwIjHpYrLrKqLnAmCuGmPoZrSbOtGaLaTmBmSuUyAmAsRiMqOtRjJhPhAfXaJnTpLbFqPmJgFcBxImTqIiJ",
"output": "LZqBqKeGvNdSeYuWxRiVnFtYbKuJwQtUcKnVtQhAlOeUzMaAuTaEnDdPfDcNyHgEoBmYjZyFePeJrRiKyAzFnBfAuGiUyLrIeLrNhBeBdVcEeKgCcBrQzDsPwGcNnZvTsEaYmFfMeOmMdNuZbUtDoQoNcGwDqEkEjIdQaPwAxJbXeNxOgKgXoEbZiIsVkRrNpNyAkLeHkNfEpLuQvEcMbIoGaDzXbEtNsLgGfOkZaFiUsOvEjVeCaMcZqMzKeAdXxJsVeCrZaFpJtZxInQxFaSmGgSsVyGeLlFgFqTpIbAvPkIfJrVcJeBxSdEvPyVwIjHpYrLrKqLnAmCuGmPoZrSbOtGaLaTmBmSuUyAmAsRiMqOtRjJhPhAfXaJnTpLbFqPmJgFcBxImTqIiJ"
},
{
"input": "P",
"output": "P"
},
{
"input": "Xyzzy",
"output": "Xyzzy"
},
{
"input": "Zzz",
"output": "Zzz"
},
{
"input": "Zp",
"output": "Zp"
}
] | 1,695,392,839
| 2,147,483,647
|
PyPy 3-64
|
OK
|
TESTS
| 25
| 124
| 0
|
s = input()
if 'A' <= s[0] <= 'Z':
print(s)
else:
print(chr( ord('A') + ( ord(s[0]) - ord('a') ) ) + s[1::] )
|
Title: Word Capitalization
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Capitalization is writing a word with its first letter as a capital letter. Your task is to capitalize the given word.
Note, that during capitalization all the letters except the first one remains unchanged.
Input Specification:
A single line contains a non-empty word. This word consists of lowercase and uppercase English letters. The length of the word will not exceed 103.
Output Specification:
Output the given word after capitalization.
Demo Input:
['ApPLe\n', 'konjac\n']
Demo Output:
['ApPLe\n', 'Konjac\n']
Note:
none
|
```python
s = input()
if 'A' <= s[0] <= 'Z':
print(s)
else:
print(chr( ord('A') + ( ord(s[0]) - ord('a') ) ) + s[1::] )
```
| 3
|
|
456
|
A
|
Laptops
|
PROGRAMMING
| 1,100
|
[
"sortings"
] | null | null |
One day Dima and Alex had an argument about the price and quality of laptops. Dima thinks that the more expensive a laptop is, the better it is. Alex disagrees. Alex thinks that there are two laptops, such that the price of the first laptop is less (strictly smaller) than the price of the second laptop but the quality of the first laptop is higher (strictly greater) than the quality of the second laptop.
Please, check the guess of Alex. You are given descriptions of *n* laptops. Determine whether two described above laptops exist.
|
The first line contains an integer *n* (1<=≤<=*n*<=≤<=105) — the number of laptops.
Next *n* lines contain two integers each, *a**i* and *b**i* (1<=≤<=*a**i*,<=*b**i*<=≤<=*n*), where *a**i* is the price of the *i*-th laptop, and *b**i* is the number that represents the quality of the *i*-th laptop (the larger the number is, the higher is the quality).
All *a**i* are distinct. All *b**i* are distinct.
|
If Alex is correct, print "Happy Alex", otherwise print "Poor Alex" (without the quotes).
|
[
"2\n1 2\n2 1\n"
] |
[
"Happy Alex\n"
] |
none
| 500
|
[
{
"input": "2\n1 2\n2 1",
"output": "Happy Alex"
},
{
"input": "2\n1 1\n2 2",
"output": "Poor Alex"
},
{
"input": "3\n2 2\n3 3\n1 1",
"output": "Poor Alex"
},
{
"input": "3\n3 3\n1 2\n2 1",
"output": "Happy Alex"
},
{
"input": "1\n1 1",
"output": "Poor Alex"
},
{
"input": "3\n2 3\n1 1\n3 2",
"output": "Happy Alex"
},
{
"input": "4\n4 1\n3 2\n2 3\n1 4",
"output": "Happy Alex"
},
{
"input": "2\n2 1\n1 2",
"output": "Happy Alex"
},
{
"input": "3\n3 2\n1 1\n2 3",
"output": "Happy Alex"
},
{
"input": "3\n1 2\n2 3\n3 1",
"output": "Happy Alex"
},
{
"input": "3\n1 2\n2 1\n3 3",
"output": "Happy Alex"
},
{
"input": "3\n1 2\n2 3\n3 1",
"output": "Happy Alex"
}
] | 1,678,635,413
| 2,147,483,647
|
PyPy 3-64
|
OK
|
TESTS
| 46
| 670
| 9,318,400
|
t = int(input())
c = 0
for el in range(t):
a , b = list(map(int , input().split()))
if(a != b):
c += 1
if(c > 0):
print('Happy Alex')
else:
print('Poor Alex')
|
Title: Laptops
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
One day Dima and Alex had an argument about the price and quality of laptops. Dima thinks that the more expensive a laptop is, the better it is. Alex disagrees. Alex thinks that there are two laptops, such that the price of the first laptop is less (strictly smaller) than the price of the second laptop but the quality of the first laptop is higher (strictly greater) than the quality of the second laptop.
Please, check the guess of Alex. You are given descriptions of *n* laptops. Determine whether two described above laptops exist.
Input Specification:
The first line contains an integer *n* (1<=≤<=*n*<=≤<=105) — the number of laptops.
Next *n* lines contain two integers each, *a**i* and *b**i* (1<=≤<=*a**i*,<=*b**i*<=≤<=*n*), where *a**i* is the price of the *i*-th laptop, and *b**i* is the number that represents the quality of the *i*-th laptop (the larger the number is, the higher is the quality).
All *a**i* are distinct. All *b**i* are distinct.
Output Specification:
If Alex is correct, print "Happy Alex", otherwise print "Poor Alex" (without the quotes).
Demo Input:
['2\n1 2\n2 1\n']
Demo Output:
['Happy Alex\n']
Note:
none
|
```python
t = int(input())
c = 0
for el in range(t):
a , b = list(map(int , input().split()))
if(a != b):
c += 1
if(c > 0):
print('Happy Alex')
else:
print('Poor Alex')
```
| 3
|
|
611
|
A
|
New Year and Days
|
PROGRAMMING
| 900
|
[
"implementation"
] | null | null |
Today is Wednesday, the third day of the week. What's more interesting is that tomorrow is the last day of the year 2015.
Limak is a little polar bear. He enjoyed this year a lot. Now, he is so eager to the coming year 2016.
Limak wants to prove how responsible a bear he is. He is going to regularly save candies for the entire year 2016! He considers various saving plans. He can save one candy either on some fixed day of the week or on some fixed day of the month.
Limak chose one particular plan. He isn't sure how many candies he will save in the 2016 with his plan. Please, calculate it and tell him.
|
The only line of the input is in one of the following two formats:
- "*x* of week" where *x* (1<=≤<=*x*<=≤<=7) denotes the day of the week. The 1-st day is Monday and the 7-th one is Sunday. - "*x* of month" where *x* (1<=≤<=*x*<=≤<=31) denotes the day of the month.
|
Print one integer — the number of candies Limak will save in the year 2016.
|
[
"4 of week\n",
"30 of month\n"
] |
[
"52\n",
"11\n"
] |
Polar bears use the Gregorian calendar. It is the most common calendar and you likely use it too. You can read about it on Wikipedia if you want to – [https://en.wikipedia.org/wiki/Gregorian_calendar](https://en.wikipedia.org/wiki/Gregorian_calendar). The week starts with Monday.
In the first sample Limak wants to save one candy on each Thursday (the 4-th day of the week). There are 52 Thursdays in the 2016. Thus, he will save 52 candies in total.
In the second sample Limak wants to save one candy on the 30-th day of each month. There is the 30-th day in exactly 11 months in the 2016 — all months but February. It means that Limak will save 11 candies in total.
| 500
|
[
{
"input": "4 of week",
"output": "52"
},
{
"input": "30 of month",
"output": "11"
},
{
"input": "17 of month",
"output": "12"
},
{
"input": "31 of month",
"output": "7"
},
{
"input": "6 of week",
"output": "53"
},
{
"input": "1 of week",
"output": "52"
},
{
"input": "2 of week",
"output": "52"
},
{
"input": "3 of week",
"output": "52"
},
{
"input": "5 of week",
"output": "53"
},
{
"input": "7 of week",
"output": "52"
},
{
"input": "1 of month",
"output": "12"
},
{
"input": "2 of month",
"output": "12"
},
{
"input": "3 of month",
"output": "12"
},
{
"input": "4 of month",
"output": "12"
},
{
"input": "5 of month",
"output": "12"
},
{
"input": "6 of month",
"output": "12"
},
{
"input": "7 of month",
"output": "12"
},
{
"input": "8 of month",
"output": "12"
},
{
"input": "9 of month",
"output": "12"
},
{
"input": "10 of month",
"output": "12"
},
{
"input": "11 of month",
"output": "12"
},
{
"input": "12 of month",
"output": "12"
},
{
"input": "13 of month",
"output": "12"
},
{
"input": "14 of month",
"output": "12"
},
{
"input": "15 of month",
"output": "12"
},
{
"input": "16 of month",
"output": "12"
},
{
"input": "18 of month",
"output": "12"
},
{
"input": "19 of month",
"output": "12"
},
{
"input": "20 of month",
"output": "12"
},
{
"input": "21 of month",
"output": "12"
},
{
"input": "22 of month",
"output": "12"
},
{
"input": "23 of month",
"output": "12"
},
{
"input": "24 of month",
"output": "12"
},
{
"input": "25 of month",
"output": "12"
},
{
"input": "26 of month",
"output": "12"
},
{
"input": "27 of month",
"output": "12"
},
{
"input": "28 of month",
"output": "12"
},
{
"input": "29 of month",
"output": "12"
}
] | 1,656,151,628
| 2,147,483,647
|
PyPy 3-64
|
OK
|
TESTS
| 38
| 77
| 614,400
|
'''
╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬
╬╬ ▓▓ ▓▓ ╬╬
╬╬ ▓▓ ▓▓ ╬╬
╬╬ ▓▓█████▓▓ ╬╬
╬╬ ▓▓ ▓▓ ╬╬
╬╬ ▓▓ ▓▓ ╬╬
╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬
###########################
// •︿• \\
/\\ //\
/\\ //\
/\\//\
###########################
'''
import sys
import math as mth
from math import ceil as cl
from math import log2 as l2
from math import factorial as fct
from collections import Counter as CNT
mod = 10**9 + 7
def ii():
return int(input())
def fi():
return float(input())
def lii():
return list(map(int, input().split()))
def ss():
return input()
def lss():
return input().split()
def yes():
print("YES")
def no():
print("NO")
############################################
input = lambda : sys.stdin.readline().strip()
'''
╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬
'''
s = ss()
if "of month" in s:
if "31" in s:
print(7)
elif "30" in s:
print("11")
else:
print("12")
else:
if int(s[0]) in [1,2,3,4,7]:
print("52")
else:
print(53)
|
Title: New Year and Days
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Today is Wednesday, the third day of the week. What's more interesting is that tomorrow is the last day of the year 2015.
Limak is a little polar bear. He enjoyed this year a lot. Now, he is so eager to the coming year 2016.
Limak wants to prove how responsible a bear he is. He is going to regularly save candies for the entire year 2016! He considers various saving plans. He can save one candy either on some fixed day of the week or on some fixed day of the month.
Limak chose one particular plan. He isn't sure how many candies he will save in the 2016 with his plan. Please, calculate it and tell him.
Input Specification:
The only line of the input is in one of the following two formats:
- "*x* of week" where *x* (1<=≤<=*x*<=≤<=7) denotes the day of the week. The 1-st day is Monday and the 7-th one is Sunday. - "*x* of month" where *x* (1<=≤<=*x*<=≤<=31) denotes the day of the month.
Output Specification:
Print one integer — the number of candies Limak will save in the year 2016.
Demo Input:
['4 of week\n', '30 of month\n']
Demo Output:
['52\n', '11\n']
Note:
Polar bears use the Gregorian calendar. It is the most common calendar and you likely use it too. You can read about it on Wikipedia if you want to – [https://en.wikipedia.org/wiki/Gregorian_calendar](https://en.wikipedia.org/wiki/Gregorian_calendar). The week starts with Monday.
In the first sample Limak wants to save one candy on each Thursday (the 4-th day of the week). There are 52 Thursdays in the 2016. Thus, he will save 52 candies in total.
In the second sample Limak wants to save one candy on the 30-th day of each month. There is the 30-th day in exactly 11 months in the 2016 — all months but February. It means that Limak will save 11 candies in total.
|
```python
'''
╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬
╬╬ ▓▓ ▓▓ ╬╬
╬╬ ▓▓ ▓▓ ╬╬
╬╬ ▓▓█████▓▓ ╬╬
╬╬ ▓▓ ▓▓ ╬╬
╬╬ ▓▓ ▓▓ ╬╬
╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬
###########################
// •︿• \\
/\\ //\
/\\ //\
/\\//\
###########################
'''
import sys
import math as mth
from math import ceil as cl
from math import log2 as l2
from math import factorial as fct
from collections import Counter as CNT
mod = 10**9 + 7
def ii():
return int(input())
def fi():
return float(input())
def lii():
return list(map(int, input().split()))
def ss():
return input()
def lss():
return input().split()
def yes():
print("YES")
def no():
print("NO")
############################################
input = lambda : sys.stdin.readline().strip()
'''
╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬
'''
s = ss()
if "of month" in s:
if "31" in s:
print(7)
elif "30" in s:
print("11")
else:
print("12")
else:
if int(s[0]) in [1,2,3,4,7]:
print("52")
else:
print(53)
```
| 3
|
|
25
|
A
|
IQ test
|
PROGRAMMING
| 1,300
|
[
"brute force"
] |
A. IQ test
|
2
|
256
|
Bob is preparing to pass IQ test. The most frequent task in this test is to find out which one of the given *n* numbers differs from the others. Bob observed that one number usually differs from the others in evenness. Help Bob — to check his answers, he needs a program that among the given *n* numbers finds one that is different in evenness.
|
The first line contains integer *n* (3<=≤<=*n*<=≤<=100) — amount of numbers in the task. The second line contains *n* space-separated natural numbers, not exceeding 100. It is guaranteed, that exactly one of these numbers differs from the others in evenness.
|
Output index of number that differs from the others in evenness. Numbers are numbered from 1 in the input order.
|
[
"5\n2 4 7 8 10\n",
"4\n1 2 1 1\n"
] |
[
"3\n",
"2\n"
] |
none
| 0
|
[
{
"input": "5\n2 4 7 8 10",
"output": "3"
},
{
"input": "4\n1 2 1 1",
"output": "2"
},
{
"input": "3\n1 2 2",
"output": "1"
},
{
"input": "3\n100 99 100",
"output": "2"
},
{
"input": "3\n5 3 2",
"output": "3"
},
{
"input": "4\n43 28 1 91",
"output": "2"
},
{
"input": "4\n75 13 94 77",
"output": "3"
},
{
"input": "4\n97 8 27 3",
"output": "2"
},
{
"input": "10\n95 51 12 91 85 3 1 31 25 7",
"output": "3"
},
{
"input": "20\n88 96 66 51 14 88 2 92 18 72 18 88 20 30 4 82 90 100 24 46",
"output": "4"
},
{
"input": "30\n20 94 56 50 10 98 52 32 14 22 24 60 4 8 98 46 34 68 82 82 98 90 50 20 78 49 52 94 64 36",
"output": "26"
},
{
"input": "50\n79 27 77 57 37 45 27 49 65 33 57 21 71 19 75 85 65 61 23 97 85 9 23 1 9 3 99 77 77 21 79 69 15 37 15 7 93 81 13 89 91 31 45 93 15 97 55 80 85 83",
"output": "48"
},
{
"input": "60\n46 11 73 65 3 69 3 53 43 53 97 47 55 93 31 75 35 3 9 73 23 31 3 81 91 79 61 21 15 11 11 11 81 7 83 75 39 87 83 59 89 55 93 27 49 67 67 29 1 93 11 17 9 19 35 21 63 31 31 25",
"output": "1"
},
{
"input": "70\n28 42 42 92 64 54 22 38 38 78 62 38 4 38 14 66 4 92 66 58 94 26 4 44 41 88 48 82 44 26 74 44 48 4 16 92 34 38 26 64 94 4 30 78 50 54 12 90 8 16 80 98 28 100 74 50 36 42 92 18 76 98 8 22 2 50 58 50 64 46",
"output": "25"
},
{
"input": "100\n43 35 79 53 13 91 91 45 65 83 57 9 42 39 85 45 71 51 61 59 31 13 63 39 25 21 79 39 91 67 21 61 97 75 93 83 29 79 59 97 11 37 63 51 39 55 91 23 21 17 47 23 35 75 49 5 69 99 5 7 41 17 25 89 15 79 21 63 53 81 43 91 59 91 69 99 85 15 91 51 49 37 65 7 89 81 21 93 61 63 97 93 45 17 13 69 57 25 75 73",
"output": "13"
},
{
"input": "100\n50 24 68 60 70 30 52 22 18 74 68 98 20 82 4 46 26 68 100 78 84 58 74 98 38 88 68 86 64 80 82 100 20 22 98 98 52 6 94 10 48 68 2 18 38 22 22 82 44 20 66 72 36 58 64 6 36 60 4 96 76 64 12 90 10 58 64 60 74 28 90 26 24 60 40 58 2 16 76 48 58 36 82 60 24 44 4 78 28 38 8 12 40 16 38 6 66 24 31 76",
"output": "99"
},
{
"input": "100\n47 48 94 48 14 18 94 36 96 22 12 30 94 20 48 98 40 58 2 94 8 36 98 18 98 68 2 60 76 38 18 100 8 72 100 68 2 86 92 72 58 16 48 14 6 58 72 76 6 88 80 66 20 28 74 62 86 68 90 86 2 56 34 38 56 90 4 8 76 44 32 86 12 98 38 34 54 92 70 94 10 24 82 66 90 58 62 2 32 58 100 22 58 72 2 22 68 72 42 14",
"output": "1"
},
{
"input": "99\n38 20 68 60 84 16 28 88 60 48 80 28 4 92 70 60 46 46 20 34 12 100 76 2 40 10 8 86 6 80 50 66 12 34 14 28 26 70 46 64 34 96 10 90 98 96 56 88 50 74 70 94 2 94 24 66 68 46 22 30 6 10 64 32 88 14 98 100 64 58 50 18 50 50 8 38 8 16 54 2 60 54 62 84 92 98 4 72 66 26 14 88 99 16 10 6 88 56 22",
"output": "93"
},
{
"input": "99\n50 83 43 89 53 47 69 1 5 37 63 87 95 15 55 95 75 89 33 53 89 75 93 75 11 85 49 29 11 97 49 67 87 11 25 37 97 73 67 49 87 43 53 97 43 29 53 33 45 91 37 73 39 49 59 5 21 43 87 35 5 63 89 57 63 47 29 99 19 85 13 13 3 13 43 19 5 9 61 51 51 57 15 89 13 97 41 13 99 79 13 27 97 95 73 33 99 27 23",
"output": "1"
},
{
"input": "98\n61 56 44 30 58 14 20 24 88 28 46 56 96 52 58 42 94 50 46 30 46 80 72 88 68 16 6 60 26 90 10 98 76 20 56 40 30 16 96 20 88 32 62 30 74 58 36 76 60 4 24 36 42 54 24 92 28 14 2 74 86 90 14 52 34 82 40 76 8 64 2 56 10 8 78 16 70 86 70 42 70 74 22 18 76 98 88 28 62 70 36 72 20 68 34 48 80 98",
"output": "1"
},
{
"input": "98\n66 26 46 42 78 32 76 42 26 82 8 12 4 10 24 26 64 44 100 46 94 64 30 18 88 28 8 66 30 82 82 28 74 52 62 80 80 60 94 86 64 32 44 88 92 20 12 74 94 28 34 58 4 22 16 10 94 76 82 58 40 66 22 6 30 32 92 54 16 76 74 98 18 48 48 30 92 2 16 42 84 74 30 60 64 52 50 26 16 86 58 96 79 60 20 62 82 94",
"output": "93"
},
{
"input": "95\n9 31 27 93 17 77 75 9 9 53 89 39 51 99 5 1 11 39 27 49 91 17 27 79 81 71 37 75 35 13 93 4 99 55 85 11 23 57 5 43 5 61 15 35 23 91 3 81 99 85 43 37 39 27 5 67 7 33 75 59 13 71 51 27 15 93 51 63 91 53 43 99 25 47 17 71 81 15 53 31 59 83 41 23 73 25 91 91 13 17 25 13 55 57 29",
"output": "32"
},
{
"input": "100\n91 89 81 45 53 1 41 3 77 93 55 97 55 97 87 27 69 95 73 41 93 21 75 35 53 56 5 51 87 59 91 67 33 3 99 45 83 17 97 47 75 97 7 89 17 99 23 23 81 25 55 97 27 35 69 5 77 35 93 19 55 59 37 21 31 37 49 41 91 53 73 69 7 37 37 39 17 71 7 97 55 17 47 23 15 73 31 39 57 37 9 5 61 41 65 57 77 79 35 47",
"output": "26"
},
{
"input": "99\n38 56 58 98 80 54 26 90 14 16 78 92 52 74 40 30 84 14 44 80 16 90 98 68 26 24 78 72 42 16 84 40 14 44 2 52 50 2 12 96 58 66 8 80 44 52 34 34 72 98 74 4 66 74 56 21 8 38 76 40 10 22 48 32 98 34 12 62 80 68 64 82 22 78 58 74 20 22 48 56 12 38 32 72 6 16 74 24 94 84 26 38 18 24 76 78 98 94 72",
"output": "56"
},
{
"input": "100\n44 40 6 40 56 90 98 8 36 64 76 86 98 76 36 92 6 30 98 70 24 98 96 60 24 82 88 68 86 96 34 42 58 10 40 26 56 10 88 58 70 32 24 28 14 82 52 12 62 36 70 60 52 34 74 30 78 76 10 16 42 94 66 90 70 38 52 12 58 22 98 96 14 68 24 70 4 30 84 98 8 50 14 52 66 34 100 10 28 100 56 48 38 12 38 14 91 80 70 86",
"output": "97"
},
{
"input": "100\n96 62 64 20 90 46 56 90 68 36 30 56 70 28 16 64 94 34 6 32 34 50 94 22 90 32 40 2 72 10 88 38 28 92 20 26 56 80 4 100 100 90 16 74 74 84 8 2 30 20 80 32 16 46 92 56 42 12 96 64 64 42 64 58 50 42 74 28 2 4 36 32 70 50 54 92 70 16 45 76 28 16 18 50 48 2 62 94 4 12 52 52 4 100 70 60 82 62 98 42",
"output": "79"
},
{
"input": "99\n14 26 34 68 90 58 50 36 8 16 18 6 2 74 54 20 36 84 32 50 52 2 26 24 3 64 20 10 54 26 66 44 28 72 4 96 78 90 96 86 68 28 94 4 12 46 100 32 22 36 84 32 44 94 76 94 4 52 12 30 74 4 34 64 58 72 44 16 70 56 54 8 14 74 8 6 58 62 98 54 14 40 80 20 36 72 28 98 20 58 40 52 90 64 22 48 54 70 52",
"output": "25"
},
{
"input": "95\n82 86 30 78 6 46 80 66 74 72 16 24 18 52 52 38 60 36 86 26 62 28 22 46 96 26 94 84 20 46 66 88 76 32 12 86 74 18 34 88 4 48 94 6 58 6 100 82 4 24 88 32 54 98 34 48 6 76 42 88 42 28 100 4 22 2 10 66 82 54 98 20 60 66 38 98 32 47 86 58 6 100 12 46 2 42 8 84 78 28 24 70 34 28 86",
"output": "78"
},
{
"input": "90\n40 50 8 42 76 24 58 42 26 68 20 48 54 12 34 84 14 36 32 88 6 50 96 56 20 92 48 16 40 34 96 46 20 84 30 50 20 98 8 44 96 42 8 76 70 38 84 30 40 88 84 72 2 22 52 58 16 62 100 66 80 40 50 32 14 62 88 72 22 99 76 50 84 82 8 82 98 46 26 40 2 98 18 78 30 72 70 18 34 68",
"output": "70"
},
{
"input": "80\n81 43 87 1 55 43 53 61 27 19 43 13 89 9 33 83 75 55 97 71 91 37 95 5 21 69 81 93 95 69 31 83 55 7 97 7 79 57 8 61 27 85 49 1 15 97 63 79 29 73 41 85 5 41 31 93 67 11 63 59 15 99 91 77 43 69 23 23 81 73 19 1 67 51 1 75 99 67 3 81",
"output": "39"
},
{
"input": "98\n13 83 61 27 35 1 85 95 97 73 95 65 73 45 5 43 27 83 91 19 11 3 85 59 9 39 69 23 45 7 51 85 5 71 5 95 1 51 75 3 43 57 3 11 33 71 21 99 47 41 87 39 71 87 31 85 91 49 83 5 49 85 47 91 55 99 33 23 31 23 23 73 29 77 55 31 25 5 81 49 91 15 15 39 87 5 9 40 69 47 29 33 11 21 49 79 51 83",
"output": "88"
},
{
"input": "3\n100 100 1",
"output": "3"
}
] | 1,596,624,907
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 32
| 248
| 6,963,200
|
length = int(input())
numbers = input().split()
new_arr = []
even_arr = []
odd_arr = []
for num in numbers:
new_arr.append(int(num))
for item in new_arr:
if item % 2 == 0:
even_arr.append(item)
else:
odd_arr.append(item)
if len(even_arr) == 1:
print(new_arr.index(even_arr[0]) + 1)
else:
print(new_arr.index(odd_arr[0]) + 1)
|
Title: IQ test
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
Bob is preparing to pass IQ test. The most frequent task in this test is to find out which one of the given *n* numbers differs from the others. Bob observed that one number usually differs from the others in evenness. Help Bob — to check his answers, he needs a program that among the given *n* numbers finds one that is different in evenness.
Input Specification:
The first line contains integer *n* (3<=≤<=*n*<=≤<=100) — amount of numbers in the task. The second line contains *n* space-separated natural numbers, not exceeding 100. It is guaranteed, that exactly one of these numbers differs from the others in evenness.
Output Specification:
Output index of number that differs from the others in evenness. Numbers are numbered from 1 in the input order.
Demo Input:
['5\n2 4 7 8 10\n', '4\n1 2 1 1\n']
Demo Output:
['3\n', '2\n']
Note:
none
|
```python
length = int(input())
numbers = input().split()
new_arr = []
even_arr = []
odd_arr = []
for num in numbers:
new_arr.append(int(num))
for item in new_arr:
if item % 2 == 0:
even_arr.append(item)
else:
odd_arr.append(item)
if len(even_arr) == 1:
print(new_arr.index(even_arr[0]) + 1)
else:
print(new_arr.index(odd_arr[0]) + 1)
```
| 3.92503
|
577
|
A
|
Multiplication Table
|
PROGRAMMING
| 1,000
|
[
"implementation",
"number theory"
] | null | null |
Let's consider a table consisting of *n* rows and *n* columns. The cell located at the intersection of *i*-th row and *j*-th column contains number *i*<=×<=*j*. The rows and columns are numbered starting from 1.
You are given a positive integer *x*. Your task is to count the number of cells in a table that contain number *x*.
|
The single line contains numbers *n* and *x* (1<=≤<=*n*<=≤<=105, 1<=≤<=*x*<=≤<=109) — the size of the table and the number that we are looking for in the table.
|
Print a single number: the number of times *x* occurs in the table.
|
[
"10 5\n",
"6 12\n",
"5 13\n"
] |
[
"2\n",
"4\n",
"0\n"
] |
A table for the second sample test is given below. The occurrences of number 12 are marked bold.
| 500
|
[
{
"input": "10 5",
"output": "2"
},
{
"input": "6 12",
"output": "4"
},
{
"input": "5 13",
"output": "0"
},
{
"input": "1 1",
"output": "1"
},
{
"input": "2 1",
"output": "1"
},
{
"input": "100000 1",
"output": "1"
},
{
"input": "1 1000000000",
"output": "0"
},
{
"input": "100000 1000000000",
"output": "16"
},
{
"input": "100000 362880",
"output": "154"
},
{
"input": "1 4",
"output": "0"
},
{
"input": "9 12",
"output": "4"
},
{
"input": "10 123",
"output": "0"
},
{
"input": "9551 975275379",
"output": "0"
},
{
"input": "17286 948615687",
"output": "0"
},
{
"input": "58942 936593001",
"output": "0"
},
{
"input": "50000 989460910",
"output": "4"
},
{
"input": "22741 989460910",
"output": "0"
},
{
"input": "22740 989460910",
"output": "0"
},
{
"input": "100000 989460910",
"output": "4"
},
{
"input": "100000 98280",
"output": "128"
},
{
"input": "100000 997920",
"output": "222"
},
{
"input": "100000 720720",
"output": "226"
},
{
"input": "100000 2162160",
"output": "282"
},
{
"input": "100000 4324320",
"output": "320"
},
{
"input": "100000 8648640",
"output": "348"
},
{
"input": "100000 183783600",
"output": "438"
},
{
"input": "100000 551350800",
"output": "392"
},
{
"input": "40000 551350800",
"output": "150"
},
{
"input": "20000 400000000",
"output": "1"
},
{
"input": "19999 400000000",
"output": "0"
},
{
"input": "19999 399960001",
"output": "1"
},
{
"input": "31621 999887641",
"output": "1"
},
{
"input": "31622 999887641",
"output": "1"
},
{
"input": "31620 999887641",
"output": "0"
},
{
"input": "100000 999887641",
"output": "3"
},
{
"input": "100000 25",
"output": "3"
},
{
"input": "100000 1",
"output": "1"
},
{
"input": "100000 3628800",
"output": "220"
},
{
"input": "100000 39916800",
"output": "328"
},
{
"input": "100000 479001600",
"output": "254"
},
{
"input": "4 9",
"output": "1"
},
{
"input": "2 6",
"output": "0"
},
{
"input": "20 100",
"output": "3"
},
{
"input": "10 3",
"output": "2"
},
{
"input": "4 4",
"output": "3"
},
{
"input": "2 4",
"output": "1"
},
{
"input": "89874 1",
"output": "1"
}
] | 1,643,549,396
| 2,147,483,647
|
PyPy 3-64
|
OK
|
TESTS
| 47
| 109
| 2,252,800
|
N, X = map(int, input().split())
c = 0
for m in range(1, N+1) :
if X%m==0 and X//m<=N :
c += 1
print(c)
|
Title: Multiplication Table
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Let's consider a table consisting of *n* rows and *n* columns. The cell located at the intersection of *i*-th row and *j*-th column contains number *i*<=×<=*j*. The rows and columns are numbered starting from 1.
You are given a positive integer *x*. Your task is to count the number of cells in a table that contain number *x*.
Input Specification:
The single line contains numbers *n* and *x* (1<=≤<=*n*<=≤<=105, 1<=≤<=*x*<=≤<=109) — the size of the table and the number that we are looking for in the table.
Output Specification:
Print a single number: the number of times *x* occurs in the table.
Demo Input:
['10 5\n', '6 12\n', '5 13\n']
Demo Output:
['2\n', '4\n', '0\n']
Note:
A table for the second sample test is given below. The occurrences of number 12 are marked bold.
|
```python
N, X = map(int, input().split())
c = 0
for m in range(1, N+1) :
if X%m==0 and X//m<=N :
c += 1
print(c)
```
| 3
|
|
745
|
A
|
Hongcow Learns the Cyclic Shift
|
PROGRAMMING
| 900
|
[
"implementation",
"strings"
] | null | null |
Hongcow is learning to spell! One day, his teacher gives him a word that he needs to learn to spell. Being a dutiful student, he immediately learns how to spell the word.
Hongcow has decided to try to make new words from this one. He starts by taking the word he just learned how to spell, and moves the last character of the word to the beginning of the word. He calls this a cyclic shift. He can apply cyclic shift many times. For example, consecutively applying cyclic shift operation to the word "abracadabra" Hongcow will get words "aabracadabr", "raabracadab" and so on.
Hongcow is now wondering how many distinct words he can generate by doing the cyclic shift arbitrarily many times. The initial string is also counted.
|
The first line of input will be a single string *s* (1<=≤<=|*s*|<=≤<=50), the word Hongcow initially learns how to spell. The string *s* consists only of lowercase English letters ('a'–'z').
|
Output a single integer equal to the number of distinct strings that Hongcow can obtain by applying the cyclic shift arbitrarily many times to the given string.
|
[
"abcd\n",
"bbb\n",
"yzyz\n"
] |
[
"4\n",
"1\n",
"2\n"
] |
For the first sample, the strings Hongcow can generate are "abcd", "dabc", "cdab", and "bcda".
For the second sample, no matter how many times Hongcow does the cyclic shift, Hongcow can only generate "bbb".
For the third sample, the two strings Hongcow can generate are "yzyz" and "zyzy".
| 500
|
[
{
"input": "abcd",
"output": "4"
},
{
"input": "bbb",
"output": "1"
},
{
"input": "yzyz",
"output": "2"
},
{
"input": "abcdefghijklmnopqrstuvwxyabcdefghijklmnopqrstuvwxy",
"output": "25"
},
{
"input": "zclkjadoprqronzclkjadoprqronzclkjadoprqron",
"output": "14"
},
{
"input": "zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz",
"output": "1"
},
{
"input": "xyxyxyxyxyxyxyxyxyxyxyxyxyxyxyxyxyxyxyxyxyxyxyxyxy",
"output": "2"
},
{
"input": "y",
"output": "1"
},
{
"input": "ervbfotfedpozygoumbmxeaqegouaqqzqerlykhmvxvvlcaos",
"output": "49"
},
{
"input": "zyzzzyyzyyyzyyzyzyzyzyzzzyyyzzyzyyzzzzzyyyzzzzyzyy",
"output": "50"
},
{
"input": "zzfyftdezzfyftdezzfyftdezzfyftdezzfyftdezzfyftde",
"output": "8"
},
{
"input": "yehcqdlllqpuxdsaicyjjxiylahgxbygmsopjbxhtimzkashs",
"output": "49"
},
{
"input": "yyyyzzzyzzzyzyzyzyyyyyzzyzyzyyyyyzyzyyyzyzzyyzzzz",
"output": "49"
},
{
"input": "zkqcrhzlzsnwzkqcrhzlzsnwzkqcrhzlzsnwzkqcrhzlzsnw",
"output": "12"
},
{
"input": "xxyxxyxxyxxyxxyxxyxxyxxyxxyxxyxxyxxyxxyxxyxxyxxy",
"output": "3"
},
{
"input": "aaaaaaaaaaaaaaaaaaaaaaaabaaaaaaaaaaaaaaaaaaaaaaaab",
"output": "25"
},
{
"input": "aabaaabaaabaaabaaabaaabaaabaaabaaabaaabaaabaaaba",
"output": "4"
},
{
"input": "pqqpqqpqqpqqpqqpqqpqqpqqpqqpqqpqqppqppqppqppqppq",
"output": "48"
},
{
"input": "zxkljaqzxkljaqzxkljaqzxkljaqzxrljaqzxkljaqzxkljaq",
"output": "49"
},
{
"input": "abcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwx",
"output": "50"
},
{
"input": "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaz",
"output": "50"
},
{
"input": "abcddcba",
"output": "8"
},
{
"input": "aabaabaabaacaabaabaabaacaabaabaabaacaabaabaabaac",
"output": "12"
},
{
"input": "aabaabcaabaabcdaabaabcaabaabcd",
"output": "15"
},
{
"input": "ababaababaaababaababaaaababaababaaababaababaaaa",
"output": "47"
},
{
"input": "ababaababaaababaababaaaababaababaaababaababaaa",
"output": "23"
},
{
"input": "aaababaab",
"output": "9"
},
{
"input": "aba",
"output": "3"
}
] | 1,628,452,239
| 2,147,483,647
|
PyPy 3
|
OK
|
TESTS
| 28
| 93
| 20,172,800
|
original = input()
s = original
res = 1
while original != s[-1] + s[:-1]:
res += 1
s = s[-1] + s[:-1]
print(res)
|
Title: Hongcow Learns the Cyclic Shift
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Hongcow is learning to spell! One day, his teacher gives him a word that he needs to learn to spell. Being a dutiful student, he immediately learns how to spell the word.
Hongcow has decided to try to make new words from this one. He starts by taking the word he just learned how to spell, and moves the last character of the word to the beginning of the word. He calls this a cyclic shift. He can apply cyclic shift many times. For example, consecutively applying cyclic shift operation to the word "abracadabra" Hongcow will get words "aabracadabr", "raabracadab" and so on.
Hongcow is now wondering how many distinct words he can generate by doing the cyclic shift arbitrarily many times. The initial string is also counted.
Input Specification:
The first line of input will be a single string *s* (1<=≤<=|*s*|<=≤<=50), the word Hongcow initially learns how to spell. The string *s* consists only of lowercase English letters ('a'–'z').
Output Specification:
Output a single integer equal to the number of distinct strings that Hongcow can obtain by applying the cyclic shift arbitrarily many times to the given string.
Demo Input:
['abcd\n', 'bbb\n', 'yzyz\n']
Demo Output:
['4\n', '1\n', '2\n']
Note:
For the first sample, the strings Hongcow can generate are "abcd", "dabc", "cdab", and "bcda".
For the second sample, no matter how many times Hongcow does the cyclic shift, Hongcow can only generate "bbb".
For the third sample, the two strings Hongcow can generate are "yzyz" and "zyzy".
|
```python
original = input()
s = original
res = 1
while original != s[-1] + s[:-1]:
res += 1
s = s[-1] + s[:-1]
print(res)
```
| 3
|
|
43
|
A
|
Football
|
PROGRAMMING
| 1,000
|
[
"strings"
] |
A. Football
|
2
|
256
|
One day Vasya decided to have a look at the results of Berland 1910 Football Championship’s finals. Unfortunately he didn't find the overall score of the match; however, he got hold of a profound description of the match's process. On the whole there are *n* lines in that description each of which described one goal. Every goal was marked with the name of the team that had scored it. Help Vasya, learn the name of the team that won the finals. It is guaranteed that the match did not end in a tie.
|
The first line contains an integer *n* (1<=≤<=*n*<=≤<=100) — the number of lines in the description. Then follow *n* lines — for each goal the names of the teams that scored it. The names are non-empty lines consisting of uppercase Latin letters whose lengths do not exceed 10 symbols. It is guaranteed that the match did not end in a tie and the description contains no more than two different teams.
|
Print the name of the winning team. We remind you that in football the team that scores more goals is considered the winner.
|
[
"1\nABC\n",
"5\nA\nABA\nABA\nA\nA\n"
] |
[
"ABC\n",
"A\n"
] |
none
| 500
|
[
{
"input": "1\nABC",
"output": "ABC"
},
{
"input": "5\nA\nABA\nABA\nA\nA",
"output": "A"
},
{
"input": "2\nXTSJEP\nXTSJEP",
"output": "XTSJEP"
},
{
"input": "3\nXZYDJAEDZ\nXZYDJAEDZ\nXZYDJAEDZ",
"output": "XZYDJAEDZ"
},
{
"input": "3\nQCCYXL\nQCCYXL\nAXGLFQDD",
"output": "QCCYXL"
},
{
"input": "3\nAZID\nEERWBC\nEERWBC",
"output": "EERWBC"
},
{
"input": "3\nHNCGYL\nHNCGYL\nHNCGYL",
"output": "HNCGYL"
},
{
"input": "4\nZZWZTG\nZZWZTG\nZZWZTG\nZZWZTG",
"output": "ZZWZTG"
},
{
"input": "4\nA\nA\nKUDLJMXCSE\nA",
"output": "A"
},
{
"input": "5\nPHBTW\nPHBTW\nPHBTW\nPHBTW\nPHBTW",
"output": "PHBTW"
},
{
"input": "5\nPKUZYTFYWN\nPKUZYTFYWN\nSTC\nPKUZYTFYWN\nPKUZYTFYWN",
"output": "PKUZYTFYWN"
},
{
"input": "5\nHH\nHH\nNTQWPA\nNTQWPA\nHH",
"output": "HH"
},
{
"input": "10\nW\nW\nW\nW\nW\nD\nW\nD\nD\nW",
"output": "W"
},
{
"input": "19\nXBCP\nTGACNIH\nXBCP\nXBCP\nXBCP\nXBCP\nXBCP\nTGACNIH\nXBCP\nXBCP\nXBCP\nXBCP\nXBCP\nTGACNIH\nXBCP\nXBCP\nTGACNIH\nTGACNIH\nXBCP",
"output": "XBCP"
},
{
"input": "33\nOWQWCKLLF\nOWQWCKLLF\nOWQWCKLLF\nPYPAS\nPYPAS\nPYPAS\nOWQWCKLLF\nPYPAS\nOWQWCKLLF\nPYPAS\nPYPAS\nOWQWCKLLF\nOWQWCKLLF\nOWQWCKLLF\nPYPAS\nOWQWCKLLF\nPYPAS\nPYPAS\nPYPAS\nPYPAS\nOWQWCKLLF\nPYPAS\nPYPAS\nOWQWCKLLF\nOWQWCKLLF\nPYPAS\nOWQWCKLLF\nOWQWCKLLF\nPYPAS\nPYPAS\nOWQWCKLLF\nPYPAS\nPYPAS",
"output": "PYPAS"
},
{
"input": "51\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC\nNC",
"output": "NC"
},
{
"input": "89\nH\nVOCI\nVOCI\nH\nVOCI\nH\nH\nVOCI\nVOCI\nVOCI\nH\nH\nH\nVOCI\nVOCI\nVOCI\nH\nVOCI\nVOCI\nH\nVOCI\nVOCI\nVOCI\nH\nVOCI\nH\nVOCI\nH\nVOCI\nH\nVOCI\nVOCI\nH\nVOCI\nVOCI\nVOCI\nVOCI\nVOCI\nVOCI\nH\nVOCI\nVOCI\nVOCI\nVOCI\nH\nVOCI\nH\nH\nVOCI\nH\nVOCI\nH\nVOCI\nVOCI\nVOCI\nVOCI\nVOCI\nVOCI\nVOCI\nH\nH\nVOCI\nH\nH\nVOCI\nH\nVOCI\nH\nVOCI\nVOCI\nH\nVOCI\nVOCI\nVOCI\nVOCI\nVOCI\nVOCI\nVOCI\nH\nH\nH\nH\nH\nVOCI\nH\nVOCI\nH\nVOCI\nVOCI",
"output": "VOCI"
},
{
"input": "100\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nM\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA\nHA",
"output": "HA"
},
{
"input": "100\nG\nG\nS\nS\nG\nG\nS\nS\nG\nS\nS\nS\nG\nS\nG\nG\nS\nG\nS\nS\nG\nS\nS\nS\nS\nS\nG\nS\nG\nS\nS\nG\nG\nG\nS\nS\nS\nS\nG\nS\nS\nG\nG\nG\nG\nG\nS\nG\nG\nS\nS\nS\nS\nS\nG\nG\nS\nG\nG\nG\nG\nG\nS\nS\nG\nS\nS\nS\nS\nG\nS\nS\nG\nS\nG\nG\nG\nG\nG\nG\nG\nG\nG\nG\nG\nS\nS\nG\nS\nS\nS\nS\nG\nG\nG\nS\nG\nG\nG\nS",
"output": "G"
},
{
"input": "100\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nOBH\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL\nWL",
"output": "WL"
}
] | 1,611,666,342
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 34
| 154
| 409,600
|
from collections import Counter, OrderedDict
import operator
lines = int(input())
goals = []
for k in range(lines):
goals.append(input())
dict1 = (Counter(goals))
sorted_tuples = sorted(dict1.items(), key=operator.itemgetter(1), reverse=True)
sorted_dict = OrderedDict()
for k, v in sorted_tuples:
sorted_dict[k] = v
print(list(sorted_dict.keys())[0]) # {1: 1, 3: 4, 2: 9}
|
Title: Football
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
One day Vasya decided to have a look at the results of Berland 1910 Football Championship’s finals. Unfortunately he didn't find the overall score of the match; however, he got hold of a profound description of the match's process. On the whole there are *n* lines in that description each of which described one goal. Every goal was marked with the name of the team that had scored it. Help Vasya, learn the name of the team that won the finals. It is guaranteed that the match did not end in a tie.
Input Specification:
The first line contains an integer *n* (1<=≤<=*n*<=≤<=100) — the number of lines in the description. Then follow *n* lines — for each goal the names of the teams that scored it. The names are non-empty lines consisting of uppercase Latin letters whose lengths do not exceed 10 symbols. It is guaranteed that the match did not end in a tie and the description contains no more than two different teams.
Output Specification:
Print the name of the winning team. We remind you that in football the team that scores more goals is considered the winner.
Demo Input:
['1\nABC\n', '5\nA\nABA\nABA\nA\nA\n']
Demo Output:
['ABC\n', 'A\n']
Note:
none
|
```python
from collections import Counter, OrderedDict
import operator
lines = int(input())
goals = []
for k in range(lines):
goals.append(input())
dict1 = (Counter(goals))
sorted_tuples = sorted(dict1.items(), key=operator.itemgetter(1), reverse=True)
sorted_dict = OrderedDict()
for k, v in sorted_tuples:
sorted_dict[k] = v
print(list(sorted_dict.keys())[0]) # {1: 1, 3: 4, 2: 9}
```
| 3.960737
|
81
|
A
|
Plug-in
|
PROGRAMMING
| 1,400
|
[
"implementation"
] |
A. Plug-in
|
1
|
256
|
Polycarp thinks about the meaning of life very often. He does this constantly, even when typing in the editor. Every time he starts brooding he can no longer fully concentrate and repeatedly presses the keys that need to be pressed only once. For example, instead of the phrase "how are you" he can type "hhoow aaaare yyoouu".
Polycarp decided to automate the process of correcting such errors. He decided to write a plug-in to the text editor that will remove pairs of identical consecutive letters (if there are any in the text). Of course, this is not exactly what Polycarp needs, but he's got to start from something!
Help Polycarp and write the main plug-in module. Your program should remove from a string all pairs of identical letters, which are consecutive. If after the removal there appear new pairs, the program should remove them as well. Technically, its work should be equivalent to the following: while the string contains a pair of consecutive identical letters, the pair should be deleted. Note that deleting of the consecutive identical letters can be done in any order, as any order leads to the same result.
|
The input data consists of a single line to be processed. The length of the line is from 1 to 2·105 characters inclusive. The string contains only lowercase Latin letters.
|
Print the given string after it is processed. It is guaranteed that the result will contain at least one character.
|
[
"hhoowaaaareyyoouu\n",
"reallazy\n",
"abacabaabacabaa\n"
] |
[
"wre",
"rezy",
"a"
] |
none
| 500
|
[
{
"input": "hhoowaaaareyyoouu",
"output": "wre"
},
{
"input": "reallazy",
"output": "rezy"
},
{
"input": "abacabaabacabaa",
"output": "a"
},
{
"input": "xraccabccbry",
"output": "xy"
},
{
"input": "a",
"output": "a"
},
{
"input": "b",
"output": "b"
},
{
"input": "il",
"output": "il"
},
{
"input": "gfj",
"output": "gfj"
},
{
"input": "babbbbbababa",
"output": "babababa"
},
{
"input": "babbbbabbabbbababbabbbbbbabaabaababaaabbbbbabbbbaaaaabbaaabbaabaabbbbabbbababbabaaabbababaaababbbaaa",
"output": "babababababababababababa"
},
{
"input": "aab",
"output": "b"
},
{
"input": "abb",
"output": "a"
},
{
"input": "aba",
"output": "aba"
},
{
"input": "ab",
"output": "ab"
}
] | 1,659,399,056
| 2,147,483,647
|
PyPy 3-64
|
OK
|
TESTS
| 32
| 186
| 15,667,200
|
import sys
input = sys.stdin.readline
s = input()[:-1]
d = []
for i in s:
if d and i == d[-1]:
d.pop()
else:
d.append(i)
print(''.join(d))
|
Title: Plug-in
Time Limit: 1 seconds
Memory Limit: 256 megabytes
Problem Description:
Polycarp thinks about the meaning of life very often. He does this constantly, even when typing in the editor. Every time he starts brooding he can no longer fully concentrate and repeatedly presses the keys that need to be pressed only once. For example, instead of the phrase "how are you" he can type "hhoow aaaare yyoouu".
Polycarp decided to automate the process of correcting such errors. He decided to write a plug-in to the text editor that will remove pairs of identical consecutive letters (if there are any in the text). Of course, this is not exactly what Polycarp needs, but he's got to start from something!
Help Polycarp and write the main plug-in module. Your program should remove from a string all pairs of identical letters, which are consecutive. If after the removal there appear new pairs, the program should remove them as well. Technically, its work should be equivalent to the following: while the string contains a pair of consecutive identical letters, the pair should be deleted. Note that deleting of the consecutive identical letters can be done in any order, as any order leads to the same result.
Input Specification:
The input data consists of a single line to be processed. The length of the line is from 1 to 2·105 characters inclusive. The string contains only lowercase Latin letters.
Output Specification:
Print the given string after it is processed. It is guaranteed that the result will contain at least one character.
Demo Input:
['hhoowaaaareyyoouu\n', 'reallazy\n', 'abacabaabacabaa\n']
Demo Output:
['wre', 'rezy', 'a']
Note:
none
|
```python
import sys
input = sys.stdin.readline
s = input()[:-1]
d = []
for i in s:
if d and i == d[-1]:
d.pop()
else:
d.append(i)
print(''.join(d))
```
| 3.877818
|
510
|
A
|
Fox And Snake
|
PROGRAMMING
| 800
|
[
"implementation"
] | null | null |
Fox Ciel starts to learn programming. The first task is drawing a fox! However, that turns out to be too hard for a beginner, so she decides to draw a snake instead.
A snake is a pattern on a *n* by *m* table. Denote *c*-th cell of *r*-th row as (*r*,<=*c*). The tail of the snake is located at (1,<=1), then it's body extends to (1,<=*m*), then goes down 2 rows to (3,<=*m*), then goes left to (3,<=1) and so on.
Your task is to draw this snake for Fox Ciel: the empty cells should be represented as dot characters ('.') and the snake cells should be filled with number signs ('#').
Consider sample tests in order to understand the snake pattern.
|
The only line contains two integers: *n* and *m* (3<=≤<=*n*,<=*m*<=≤<=50).
*n* is an odd number.
|
Output *n* lines. Each line should contain a string consisting of *m* characters. Do not output spaces.
|
[
"3 3\n",
"3 4\n",
"5 3\n",
"9 9\n"
] |
[
"###\n..#\n###\n",
"####\n...#\n####\n",
"###\n..#\n###\n#..\n###\n",
"#########\n........#\n#########\n#........\n#########\n........#\n#########\n#........\n#########\n"
] |
none
| 500
|
[
{
"input": "3 3",
"output": "###\n..#\n###"
},
{
"input": "3 4",
"output": "####\n...#\n####"
},
{
"input": "5 3",
"output": "###\n..#\n###\n#..\n###"
},
{
"input": "9 9",
"output": "#########\n........#\n#########\n#........\n#########\n........#\n#########\n#........\n#########"
},
{
"input": "3 5",
"output": "#####\n....#\n#####"
},
{
"input": "3 6",
"output": "######\n.....#\n######"
},
{
"input": "7 3",
"output": "###\n..#\n###\n#..\n###\n..#\n###"
},
{
"input": "7 4",
"output": "####\n...#\n####\n#...\n####\n...#\n####"
},
{
"input": "49 50",
"output": "##################################################\n.................................................#\n##################################################\n#.................................................\n##################################################\n.................................................#\n##################################################\n#.................................................\n##################################################\n.............................................."
},
{
"input": "43 50",
"output": "##################################################\n.................................................#\n##################################################\n#.................................................\n##################################################\n.................................................#\n##################################################\n#.................................................\n##################################################\n.............................................."
},
{
"input": "43 27",
"output": "###########################\n..........................#\n###########################\n#..........................\n###########################\n..........................#\n###########################\n#..........................\n###########################\n..........................#\n###########################\n#..........................\n###########################\n..........................#\n###########################\n#..........................\n###########################\n....................."
},
{
"input": "11 15",
"output": "###############\n..............#\n###############\n#..............\n###############\n..............#\n###############\n#..............\n###############\n..............#\n###############"
},
{
"input": "11 3",
"output": "###\n..#\n###\n#..\n###\n..#\n###\n#..\n###\n..#\n###"
},
{
"input": "19 3",
"output": "###\n..#\n###\n#..\n###\n..#\n###\n#..\n###\n..#\n###\n#..\n###\n..#\n###\n#..\n###\n..#\n###"
},
{
"input": "23 50",
"output": "##################################################\n.................................................#\n##################################################\n#.................................................\n##################################################\n.................................................#\n##################################################\n#.................................................\n##################################################\n.............................................."
},
{
"input": "49 49",
"output": "#################################################\n................................................#\n#################################################\n#................................................\n#################################################\n................................................#\n#################################################\n#................................................\n#################################################\n................................................#\n#..."
},
{
"input": "33 43",
"output": "###########################################\n..........................................#\n###########################################\n#..........................................\n###########################################\n..........................................#\n###########################################\n#..........................................\n###########################################\n..........................................#\n###########################################\n#.................."
},
{
"input": "33 44",
"output": "############################################\n...........................................#\n############################################\n#...........................................\n############################################\n...........................................#\n############################################\n#...........................................\n############################################\n...........................................#\n############################################\n#......."
},
{
"input": "45 45",
"output": "#############################################\n............................................#\n#############################################\n#............................................\n#############################################\n............................................#\n#############################################\n#............................................\n#############################################\n............................................#\n#########################################..."
},
{
"input": "45 49",
"output": "#################################################\n................................................#\n#################################################\n#................................................\n#################################################\n................................................#\n#################################################\n#................................................\n#################################################\n................................................#\n#..."
},
{
"input": "45 3",
"output": "###\n..#\n###\n#..\n###\n..#\n###\n#..\n###\n..#\n###\n#..\n###\n..#\n###\n#..\n###\n..#\n###\n#..\n###\n..#\n###\n#..\n###\n..#\n###\n#..\n###\n..#\n###\n#..\n###\n..#\n###\n#..\n###\n..#\n###\n#..\n###\n..#\n###\n#..\n###"
},
{
"input": "45 4",
"output": "####\n...#\n####\n#...\n####\n...#\n####\n#...\n####\n...#\n####\n#...\n####\n...#\n####\n#...\n####\n...#\n####\n#...\n####\n...#\n####\n#...\n####\n...#\n####\n#...\n####\n...#\n####\n#...\n####\n...#\n####\n#...\n####\n...#\n####\n#...\n####\n...#\n####\n#...\n####"
},
{
"input": "5 4",
"output": "####\n...#\n####\n#...\n####"
},
{
"input": "5 5",
"output": "#####\n....#\n#####\n#....\n#####"
},
{
"input": "5 6",
"output": "######\n.....#\n######\n#.....\n######"
},
{
"input": "7 5",
"output": "#####\n....#\n#####\n#....\n#####\n....#\n#####"
},
{
"input": "7 6",
"output": "######\n.....#\n######\n#.....\n######\n.....#\n######"
},
{
"input": "7 7",
"output": "#######\n......#\n#######\n#......\n#######\n......#\n#######"
}
] | 1,688,670,661
| 2,147,483,647
|
PyPy 3-64
|
OK
|
TESTS
| 28
| 78
| 4,096,000
|
a,b=map(int,input().split())
c=0
for i in range(a):
for j in range(b):
if i%2==0:
print("#",end="")
else:
if i % 4 == 1 and j == b - 1:
print("#", end="")
elif i % 4 == 3 and j == 0:
print("#", end="")
else:
print(".", end="")
print()
|
Title: Fox And Snake
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Fox Ciel starts to learn programming. The first task is drawing a fox! However, that turns out to be too hard for a beginner, so she decides to draw a snake instead.
A snake is a pattern on a *n* by *m* table. Denote *c*-th cell of *r*-th row as (*r*,<=*c*). The tail of the snake is located at (1,<=1), then it's body extends to (1,<=*m*), then goes down 2 rows to (3,<=*m*), then goes left to (3,<=1) and so on.
Your task is to draw this snake for Fox Ciel: the empty cells should be represented as dot characters ('.') and the snake cells should be filled with number signs ('#').
Consider sample tests in order to understand the snake pattern.
Input Specification:
The only line contains two integers: *n* and *m* (3<=≤<=*n*,<=*m*<=≤<=50).
*n* is an odd number.
Output Specification:
Output *n* lines. Each line should contain a string consisting of *m* characters. Do not output spaces.
Demo Input:
['3 3\n', '3 4\n', '5 3\n', '9 9\n']
Demo Output:
['###\n..#\n###\n', '####\n...#\n####\n', '###\n..#\n###\n#..\n###\n', '#########\n........#\n#########\n#........\n#########\n........#\n#########\n#........\n#########\n']
Note:
none
|
```python
a,b=map(int,input().split())
c=0
for i in range(a):
for j in range(b):
if i%2==0:
print("#",end="")
else:
if i % 4 == 1 and j == b - 1:
print("#", end="")
elif i % 4 == 3 and j == 0:
print("#", end="")
else:
print(".", end="")
print()
```
| 3
|
|
381
|
A
|
Sereja and Dima
|
PROGRAMMING
| 800
|
[
"greedy",
"implementation",
"two pointers"
] | null | null |
Sereja and Dima play a game. The rules of the game are very simple. The players have *n* cards in a row. Each card contains a number, all numbers on the cards are distinct. The players take turns, Sereja moves first. During his turn a player can take one card: either the leftmost card in a row, or the rightmost one. The game ends when there is no more cards. The player who has the maximum sum of numbers on his cards by the end of the game, wins.
Sereja and Dima are being greedy. Each of them chooses the card with the larger number during his move.
Inna is a friend of Sereja and Dima. She knows which strategy the guys are using, so she wants to determine the final score, given the initial state of the game. Help her.
|
The first line contains integer *n* (1<=≤<=*n*<=≤<=1000) — the number of cards on the table. The second line contains space-separated numbers on the cards from left to right. The numbers on the cards are distinct integers from 1 to 1000.
|
On a single line, print two integers. The first number is the number of Sereja's points at the end of the game, the second number is the number of Dima's points at the end of the game.
|
[
"4\n4 1 2 10\n",
"7\n1 2 3 4 5 6 7\n"
] |
[
"12 5\n",
"16 12\n"
] |
In the first sample Sereja will take cards with numbers 10 and 2, so Sereja's sum is 12. Dima will take cards with numbers 4 and 1, so Dima's sum is 5.
| 500
|
[
{
"input": "4\n4 1 2 10",
"output": "12 5"
},
{
"input": "7\n1 2 3 4 5 6 7",
"output": "16 12"
},
{
"input": "42\n15 29 37 22 16 5 26 31 6 32 19 3 45 36 33 14 25 20 48 7 42 11 24 28 9 18 8 21 47 17 38 40 44 4 35 1 43 39 41 27 12 13",
"output": "613 418"
},
{
"input": "43\n32 1 15 48 38 26 25 14 20 44 11 30 3 42 49 19 18 46 5 45 10 23 34 9 29 41 2 52 6 17 35 4 50 22 33 51 7 28 47 13 39 37 24",
"output": "644 500"
},
{
"input": "1\n3",
"output": "3 0"
},
{
"input": "45\n553 40 94 225 415 471 126 190 647 394 515 303 189 159 308 6 139 132 326 78 455 75 85 295 135 613 360 614 351 228 578 259 258 591 444 29 33 463 561 174 368 183 140 168 646",
"output": "6848 6568"
},
{
"input": "44\n849 373 112 307 479 608 856 769 526 82 168 143 573 762 115 501 688 36 214 450 396 496 236 309 287 786 397 43 811 141 745 846 350 270 276 677 420 459 403 722 267 54 394 727",
"output": "9562 9561"
},
{
"input": "35\n10 15 18 1 28 16 2 33 6 22 23 4 9 25 35 8 7 26 3 20 30 14 31 19 27 32 11 5 29 24 21 34 13 17 12",
"output": "315 315"
},
{
"input": "17\n580 376 191 496 73 44 520 357 483 149 81 178 514 300 216 598 304",
"output": "3238 2222"
},
{
"input": "30\n334 443 223 424 168 549 189 303 429 559 516 220 459 134 344 346 316 446 209 148 487 526 69 286 102 366 518 280 392 325",
"output": "5246 4864"
},
{
"input": "95\n122 29 188 265 292 287 183 225 222 187 155 256 64 148 173 278 218 136 290 17 31 130 2 87 57 283 255 280 68 166 174 142 102 39 116 206 288 154 26 78 296 172 184 232 77 91 277 8 249 186 94 93 207 251 257 195 101 299 193 124 293 65 58 35 24 302 220 189 252 125 27 284 247 182 141 103 198 97 234 83 281 216 85 180 267 236 109 143 149 239 79 300 191 244 71",
"output": "8147 7807"
},
{
"input": "1\n1",
"output": "1 0"
}
] | 1,694,013,192
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 34
| 46
| 0
|
n = int(input()) # Number of cards
cards = list(map(int, input().split())) # List of card values
# Initialize Sereja's and Dima's scores
sereja_score = 0
dima_score = 0
# Initialize pointers for the leftmost and rightmost cards
left = 0
right = n - 1
# Initialize a variable to keep track of the current player (Sereja or Dima)
current_player = 1 # 1 for Sereja, 2 for Dima
while left <= right:
if cards[left] >= cards[right]:
# Sereja's turn
if current_player == 1:
sereja_score += cards[left]
else:
dima_score += cards[left]
left += 1
else:
# Sereja's turn
if current_player == 1:
sereja_score += cards[right]
else:
dima_score += cards[right]
right -= 1
# Switch to the other player's turn
current_player = 3 - current_player
# Print the final scores
print(sereja_score, dima_score)
|
Title: Sereja and Dima
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Sereja and Dima play a game. The rules of the game are very simple. The players have *n* cards in a row. Each card contains a number, all numbers on the cards are distinct. The players take turns, Sereja moves first. During his turn a player can take one card: either the leftmost card in a row, or the rightmost one. The game ends when there is no more cards. The player who has the maximum sum of numbers on his cards by the end of the game, wins.
Sereja and Dima are being greedy. Each of them chooses the card with the larger number during his move.
Inna is a friend of Sereja and Dima. She knows which strategy the guys are using, so she wants to determine the final score, given the initial state of the game. Help her.
Input Specification:
The first line contains integer *n* (1<=≤<=*n*<=≤<=1000) — the number of cards on the table. The second line contains space-separated numbers on the cards from left to right. The numbers on the cards are distinct integers from 1 to 1000.
Output Specification:
On a single line, print two integers. The first number is the number of Sereja's points at the end of the game, the second number is the number of Dima's points at the end of the game.
Demo Input:
['4\n4 1 2 10\n', '7\n1 2 3 4 5 6 7\n']
Demo Output:
['12 5\n', '16 12\n']
Note:
In the first sample Sereja will take cards with numbers 10 and 2, so Sereja's sum is 12. Dima will take cards with numbers 4 and 1, so Dima's sum is 5.
|
```python
n = int(input()) # Number of cards
cards = list(map(int, input().split())) # List of card values
# Initialize Sereja's and Dima's scores
sereja_score = 0
dima_score = 0
# Initialize pointers for the leftmost and rightmost cards
left = 0
right = n - 1
# Initialize a variable to keep track of the current player (Sereja or Dima)
current_player = 1 # 1 for Sereja, 2 for Dima
while left <= right:
if cards[left] >= cards[right]:
# Sereja's turn
if current_player == 1:
sereja_score += cards[left]
else:
dima_score += cards[left]
left += 1
else:
# Sereja's turn
if current_player == 1:
sereja_score += cards[right]
else:
dima_score += cards[right]
right -= 1
# Switch to the other player's turn
current_player = 3 - current_player
# Print the final scores
print(sereja_score, dima_score)
```
| 3
|
|
979
|
A
|
Pizza, Pizza, Pizza!!!
|
PROGRAMMING
| 1,000
|
[
"math"
] | null | null |
Katie, Kuro and Shiro are best friends. They have known each other since kindergarten. That's why they often share everything with each other and work together on some very hard problems.
Today is Shiro's birthday. She really loves pizza so she wants to invite her friends to the pizza restaurant near her house to celebrate her birthday, including her best friends Katie and Kuro.
She has ordered a very big round pizza, in order to serve her many friends. Exactly $n$ of Shiro's friends are here. That's why she has to divide the pizza into $n + 1$ slices (Shiro also needs to eat). She wants the slices to be exactly the same size and shape. If not, some of her friends will get mad and go home early, and the party will be over.
Shiro is now hungry. She wants to cut the pizza with minimum of straight cuts. A cut is a straight segment, it might have ends inside or outside the pizza. But she is too lazy to pick up the calculator.
As usual, she will ask Katie and Kuro for help. But they haven't come yet. Could you help Shiro with this problem?
|
A single line contains one non-negative integer $n$ ($0 \le n \leq 10^{18}$) — the number of Shiro's friends. The circular pizza has to be sliced into $n + 1$ pieces.
|
A single integer — the number of straight cuts Shiro needs.
|
[
"3\n",
"4\n"
] |
[
"2",
"5"
] |
To cut the round pizza into quarters one has to make two cuts through the center with angle $90^{\circ}$ between them.
To cut the round pizza into five equal parts one has to make five cuts.
| 500
|
[
{
"input": "3",
"output": "2"
},
{
"input": "4",
"output": "5"
},
{
"input": "10",
"output": "11"
},
{
"input": "10000000000",
"output": "10000000001"
},
{
"input": "1234567891",
"output": "617283946"
},
{
"input": "7509213957",
"output": "3754606979"
},
{
"input": "99999999999999999",
"output": "50000000000000000"
},
{
"input": "21",
"output": "11"
},
{
"input": "712394453192",
"output": "712394453193"
},
{
"input": "172212168",
"output": "172212169"
},
{
"input": "822981260158260519",
"output": "411490630079130260"
},
{
"input": "28316250877914571",
"output": "14158125438957286"
},
{
"input": "779547116602436424",
"output": "779547116602436425"
},
{
"input": "578223540024979436",
"output": "578223540024979437"
},
{
"input": "335408917861648766",
"output": "335408917861648767"
},
{
"input": "74859962623690078",
"output": "74859962623690079"
},
{
"input": "252509054433933439",
"output": "126254527216966720"
},
{
"input": "760713016476190622",
"output": "760713016476190623"
},
{
"input": "919845426262703496",
"output": "919845426262703497"
},
{
"input": "585335723211047194",
"output": "585335723211047195"
},
{
"input": "522842184971407769",
"output": "261421092485703885"
},
{
"input": "148049062628894320",
"output": "148049062628894321"
},
{
"input": "84324828731963974",
"output": "84324828731963975"
},
{
"input": "354979173822804781",
"output": "177489586911402391"
},
{
"input": "1312150450968413",
"output": "656075225484207"
},
{
"input": "269587449430302150",
"output": "269587449430302151"
},
{
"input": "645762258982631926",
"output": "645762258982631927"
},
{
"input": "615812229161735895",
"output": "307906114580867948"
},
{
"input": "0",
"output": "0"
},
{
"input": "349993004923078531",
"output": "174996502461539266"
},
{
"input": "891351282707723851",
"output": "445675641353861926"
},
{
"input": "563324731189330734",
"output": "563324731189330735"
},
{
"input": "520974001910286909",
"output": "260487000955143455"
},
{
"input": "666729339802329204",
"output": "666729339802329205"
},
{
"input": "856674611404539671",
"output": "428337305702269836"
},
{
"input": "791809296303238499",
"output": "395904648151619250"
},
{
"input": "711066337317063338",
"output": "711066337317063339"
},
{
"input": "931356503492686566",
"output": "931356503492686567"
},
{
"input": "234122432773361866",
"output": "234122432773361867"
},
{
"input": "1000000000000000000",
"output": "1000000000000000001"
},
{
"input": "1",
"output": "1"
},
{
"input": "2",
"output": "3"
},
{
"input": "7",
"output": "4"
},
{
"input": "63",
"output": "32"
},
{
"input": "24",
"output": "25"
},
{
"input": "8",
"output": "9"
},
{
"input": "15",
"output": "8"
}
] | 1,576,819,638
| 2,147,483,647
|
PyPy 3
|
OK
|
TESTS
| 47
| 156
| 0
|
x=int(input())
print( 0 if x==0 else (x+1)//2 if (x+1)%2==0 else x+1 )
# My code says who am i
# red is love
# love is not in logic
|
Title: Pizza, Pizza, Pizza!!!
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Katie, Kuro and Shiro are best friends. They have known each other since kindergarten. That's why they often share everything with each other and work together on some very hard problems.
Today is Shiro's birthday. She really loves pizza so she wants to invite her friends to the pizza restaurant near her house to celebrate her birthday, including her best friends Katie and Kuro.
She has ordered a very big round pizza, in order to serve her many friends. Exactly $n$ of Shiro's friends are here. That's why she has to divide the pizza into $n + 1$ slices (Shiro also needs to eat). She wants the slices to be exactly the same size and shape. If not, some of her friends will get mad and go home early, and the party will be over.
Shiro is now hungry. She wants to cut the pizza with minimum of straight cuts. A cut is a straight segment, it might have ends inside or outside the pizza. But she is too lazy to pick up the calculator.
As usual, she will ask Katie and Kuro for help. But they haven't come yet. Could you help Shiro with this problem?
Input Specification:
A single line contains one non-negative integer $n$ ($0 \le n \leq 10^{18}$) — the number of Shiro's friends. The circular pizza has to be sliced into $n + 1$ pieces.
Output Specification:
A single integer — the number of straight cuts Shiro needs.
Demo Input:
['3\n', '4\n']
Demo Output:
['2', '5']
Note:
To cut the round pizza into quarters one has to make two cuts through the center with angle $90^{\circ}$ between them.
To cut the round pizza into five equal parts one has to make five cuts.
|
```python
x=int(input())
print( 0 if x==0 else (x+1)//2 if (x+1)%2==0 else x+1 )
# My code says who am i
# red is love
# love is not in logic
```
| 3
|
|
545
|
C
|
Woodcutters
|
PROGRAMMING
| 1,500
|
[
"dp",
"greedy"
] | null | null |
Little Susie listens to fairy tales before bed every day. Today's fairy tale was about wood cutters and the little girl immediately started imagining the choppers cutting wood. She imagined the situation that is described below.
There are *n* trees located along the road at points with coordinates *x*1,<=*x*2,<=...,<=*x**n*. Each tree has its height *h**i*. Woodcutters can cut down a tree and fell it to the left or to the right. After that it occupies one of the segments [*x**i*<=-<=*h**i*,<=*x**i*] or [*x**i*;*x**i*<=+<=*h**i*]. The tree that is not cut down occupies a single point with coordinate *x**i*. Woodcutters can fell a tree if the segment to be occupied by the fallen tree doesn't contain any occupied point. The woodcutters want to process as many trees as possible, so Susie wonders, what is the maximum number of trees to fell.
|
The first line contains integer *n* (1<=≤<=*n*<=≤<=105) — the number of trees.
Next *n* lines contain pairs of integers *x**i*,<=*h**i* (1<=≤<=*x**i*,<=*h**i*<=≤<=109) — the coordinate and the height of the *і*-th tree.
The pairs are given in the order of ascending *x**i*. No two trees are located at the point with the same coordinate.
|
Print a single number — the maximum number of trees that you can cut down by the given rules.
|
[
"5\n1 2\n2 1\n5 10\n10 9\n19 1\n",
"5\n1 2\n2 1\n5 10\n10 9\n20 1\n"
] |
[
"3\n",
"4\n"
] |
In the first sample you can fell the trees like that:
- fell the 1-st tree to the left — now it occupies segment [ - 1;1] - fell the 2-nd tree to the right — now it occupies segment [2;3] - leave the 3-rd tree — it occupies point 5 - leave the 4-th tree — it occupies point 10 - fell the 5-th tree to the right — now it occupies segment [19;20]
In the second sample you can also fell 4-th tree to the right, after that it will occupy segment [10;19].
| 1,750
|
[
{
"input": "5\n1 2\n2 1\n5 10\n10 9\n19 1",
"output": "3"
},
{
"input": "5\n1 2\n2 1\n5 10\n10 9\n20 1",
"output": "4"
},
{
"input": "4\n10 4\n15 1\n19 3\n20 1",
"output": "4"
},
{
"input": "35\n1 7\n3 11\n6 12\n7 6\n8 5\n9 11\n15 3\n16 10\n22 2\n23 3\n25 7\n27 3\n34 5\n35 10\n37 3\n39 4\n40 5\n41 1\n44 1\n47 7\n48 11\n50 6\n52 5\n57 2\n58 7\n60 4\n62 1\n67 3\n68 12\n69 8\n70 1\n71 5\n72 5\n73 6\n74 4",
"output": "10"
},
{
"input": "40\n1 1\n2 1\n3 1\n4 1\n5 1\n6 1\n7 1\n8 1\n9 1\n10 1\n11 1\n12 1\n13 1\n14 1\n15 1\n16 1\n17 1\n18 1\n19 1\n20 1\n21 1\n22 1\n23 1\n24 1\n25 1\n26 1\n27 1\n28 1\n29 1\n30 1\n31 1\n32 1\n33 1\n34 1\n35 1\n36 1\n37 1\n38 1\n39 1\n40 1",
"output": "2"
},
{
"input": "67\n1 1\n3 8\n4 10\n7 8\n9 2\n10 1\n11 5\n12 8\n13 4\n16 6\n18 3\n19 3\n22 5\n24 6\n27 5\n28 3\n29 3\n30 5\n32 5\n33 10\n34 7\n35 8\n36 5\n41 3\n42 2\n43 5\n46 4\n48 4\n49 9\n52 4\n53 9\n55 1\n56 4\n59 7\n68 7\n69 4\n71 9\n72 10\n74 5\n76 4\n77 9\n80 7\n81 9\n82 5\n83 5\n84 9\n85 7\n86 9\n87 4\n88 7\n89 10\n90 3\n91 5\n92 10\n93 5\n94 8\n95 4\n96 2\n97 10\n98 1\n99 3\n100 1\n101 5\n102 4\n103 8\n104 8\n105 8",
"output": "5"
},
{
"input": "1\n1000000000 1000000000",
"output": "1"
},
{
"input": "10\n7 12\n10 2\n12 2\n15 1\n19 2\n20 1\n53 25\n63 10\n75 12\n87 1",
"output": "9"
},
{
"input": "3\n1 1\n1000 1000\n1000000000 1000000000",
"output": "3"
},
{
"input": "2\n1 999999999\n1000000000 1000000000",
"output": "2"
},
{
"input": "10\n999999900 1000000000\n999999901 1000000000\n999999902 1000000000\n999999903 1000000000\n999999904 1000000000\n999999905 1000000000\n999999906 1000000000\n999999907 1000000000\n999999908 1000000000\n999999909 1000000000",
"output": "2"
},
{
"input": "2\n100000000 1000000000\n1000000000 1000000000",
"output": "2"
}
] | 1,667,106,041
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 67
| 358
| 10,240,000
|
n=int(input())
if n==1:
a=map(int,input().split())
print(1)
if n>1:
s=[]
b=0
for i in range(n):
a=list(map(int,input().split()))
s.append(a)
for i in range(1,len(s)-1):
if s[i][0]-s[i-1][0]>s[i][1]:
b+=1
elif s[i+1][0]-s[i][0]>s[i][1]:
b+=1
s[i][0]+=s[i][1]
print(b+2)
|
Title: Woodcutters
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Little Susie listens to fairy tales before bed every day. Today's fairy tale was about wood cutters and the little girl immediately started imagining the choppers cutting wood. She imagined the situation that is described below.
There are *n* trees located along the road at points with coordinates *x*1,<=*x*2,<=...,<=*x**n*. Each tree has its height *h**i*. Woodcutters can cut down a tree and fell it to the left or to the right. After that it occupies one of the segments [*x**i*<=-<=*h**i*,<=*x**i*] or [*x**i*;*x**i*<=+<=*h**i*]. The tree that is not cut down occupies a single point with coordinate *x**i*. Woodcutters can fell a tree if the segment to be occupied by the fallen tree doesn't contain any occupied point. The woodcutters want to process as many trees as possible, so Susie wonders, what is the maximum number of trees to fell.
Input Specification:
The first line contains integer *n* (1<=≤<=*n*<=≤<=105) — the number of trees.
Next *n* lines contain pairs of integers *x**i*,<=*h**i* (1<=≤<=*x**i*,<=*h**i*<=≤<=109) — the coordinate and the height of the *і*-th tree.
The pairs are given in the order of ascending *x**i*. No two trees are located at the point with the same coordinate.
Output Specification:
Print a single number — the maximum number of trees that you can cut down by the given rules.
Demo Input:
['5\n1 2\n2 1\n5 10\n10 9\n19 1\n', '5\n1 2\n2 1\n5 10\n10 9\n20 1\n']
Demo Output:
['3\n', '4\n']
Note:
In the first sample you can fell the trees like that:
- fell the 1-st tree to the left — now it occupies segment [ - 1;1] - fell the 2-nd tree to the right — now it occupies segment [2;3] - leave the 3-rd tree — it occupies point 5 - leave the 4-th tree — it occupies point 10 - fell the 5-th tree to the right — now it occupies segment [19;20]
In the second sample you can also fell 4-th tree to the right, after that it will occupy segment [10;19].
|
```python
n=int(input())
if n==1:
a=map(int,input().split())
print(1)
if n>1:
s=[]
b=0
for i in range(n):
a=list(map(int,input().split()))
s.append(a)
for i in range(1,len(s)-1):
if s[i][0]-s[i-1][0]>s[i][1]:
b+=1
elif s[i+1][0]-s[i][0]>s[i][1]:
b+=1
s[i][0]+=s[i][1]
print(b+2)
```
| 3
|
|
284
|
B
|
Cows and Poker Game
|
PROGRAMMING
| 1,000
|
[
"brute force",
"implementation"
] | null | null |
There are *n* cows playing poker at a table. For the current betting phase, each player's status is either "ALLIN", "IN", or "FOLDED", and does not change throughout the phase. To increase the suspense, a player whose current status is not "FOLDED" may show his/her hand to the table. However, so as not to affect any betting decisions, he/she may only do so if all other players have a status of either "ALLIN" or "FOLDED". The player's own status may be either "ALLIN" or "IN".
Find the number of cows that can currently show their hands without affecting any betting decisions.
|
The first line contains a single integer, *n* (2<=≤<=*n*<=≤<=2·105). The second line contains *n* characters, each either "A", "I", or "F". The *i*-th character is "A" if the *i*-th player's status is "ALLIN", "I" if the *i*-th player's status is "IN", or "F" if the *i*-th player's status is "FOLDED".
|
The first line should contain a single integer denoting the number of players that can currently show their hands.
|
[
"6\nAFFAAA\n",
"3\nAFI\n"
] |
[
"4\n",
"1\n"
] |
In the first sample, cows 1, 4, 5, and 6 can show their hands. In the second sample, only cow 3 can show her hand.
| 1,000
|
[
{
"input": "6\nAFFAAA",
"output": "4"
},
{
"input": "3\nAFI",
"output": "1"
},
{
"input": "3\nFFF",
"output": "0"
},
{
"input": "3\nFIF",
"output": "1"
},
{
"input": "3\nAAA",
"output": "3"
},
{
"input": "3\nIII",
"output": "0"
},
{
"input": "3\nIIA",
"output": "0"
},
{
"input": "3\nAFF",
"output": "1"
},
{
"input": "5\nFAFFF",
"output": "1"
},
{
"input": "3\nIAA",
"output": "1"
},
{
"input": "3\nIIF",
"output": "0"
},
{
"input": "2\nFA",
"output": "1"
},
{
"input": "2\nFF",
"output": "0"
},
{
"input": "2\nIF",
"output": "1"
},
{
"input": "5\nAAAAI",
"output": "1"
},
{
"input": "5\nIIIIF",
"output": "0"
},
{
"input": "10\nAAAAAAAAAA",
"output": "10"
},
{
"input": "100\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA",
"output": "100"
},
{
"input": "5\nFAIAF",
"output": "1"
},
{
"input": "5\nAIAIF",
"output": "0"
},
{
"input": "5\nFAAII",
"output": "0"
},
{
"input": "5\nAIFFF",
"output": "1"
},
{
"input": "5\nAFAFA",
"output": "3"
},
{
"input": "2\nFA",
"output": "1"
},
{
"input": "8\nAFFFFIAF",
"output": "1"
},
{
"input": "8\nIAAIFFFI",
"output": "0"
},
{
"input": "5\nIIIII",
"output": "0"
}
] | 1,517,748,921
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 66
| 218
| 6,144,000
|
a = int(input())
s = input()
b = {'A':0, 'I':0, 'F':0}
for i in s:
b[i] += 1
if b['I'] > 1:
print(0)
elif b['I'] == 1:
print(1)
else:
print(b['A'])
|
Title: Cows and Poker Game
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
There are *n* cows playing poker at a table. For the current betting phase, each player's status is either "ALLIN", "IN", or "FOLDED", and does not change throughout the phase. To increase the suspense, a player whose current status is not "FOLDED" may show his/her hand to the table. However, so as not to affect any betting decisions, he/she may only do so if all other players have a status of either "ALLIN" or "FOLDED". The player's own status may be either "ALLIN" or "IN".
Find the number of cows that can currently show their hands without affecting any betting decisions.
Input Specification:
The first line contains a single integer, *n* (2<=≤<=*n*<=≤<=2·105). The second line contains *n* characters, each either "A", "I", or "F". The *i*-th character is "A" if the *i*-th player's status is "ALLIN", "I" if the *i*-th player's status is "IN", or "F" if the *i*-th player's status is "FOLDED".
Output Specification:
The first line should contain a single integer denoting the number of players that can currently show their hands.
Demo Input:
['6\nAFFAAA\n', '3\nAFI\n']
Demo Output:
['4\n', '1\n']
Note:
In the first sample, cows 1, 4, 5, and 6 can show their hands. In the second sample, only cow 3 can show her hand.
|
```python
a = int(input())
s = input()
b = {'A':0, 'I':0, 'F':0}
for i in s:
b[i] += 1
if b['I'] > 1:
print(0)
elif b['I'] == 1:
print(1)
else:
print(b['A'])
```
| 3
|
|
581
|
A
|
Vasya the Hipster
|
PROGRAMMING
| 800
|
[
"implementation",
"math"
] | null | null |
One day Vasya the Hipster decided to count how many socks he had. It turned out that he had *a* red socks and *b* blue socks.
According to the latest fashion, hipsters should wear the socks of different colors: a red one on the left foot, a blue one on the right foot.
Every day Vasya puts on new socks in the morning and throws them away before going to bed as he doesn't want to wash them.
Vasya wonders, what is the maximum number of days when he can dress fashionable and wear different socks, and after that, for how many days he can then wear the same socks until he either runs out of socks or cannot make a single pair from the socks he's got.
Can you help him?
|
The single line of the input contains two positive integers *a* and *b* (1<=≤<=*a*,<=*b*<=≤<=100) — the number of red and blue socks that Vasya's got.
|
Print two space-separated integers — the maximum number of days when Vasya can wear different socks and the number of days when he can wear the same socks until he either runs out of socks or cannot make a single pair from the socks he's got.
Keep in mind that at the end of the day Vasya throws away the socks that he's been wearing on that day.
|
[
"3 1\n",
"2 3\n",
"7 3\n"
] |
[
"1 1\n",
"2 0\n",
"3 2\n"
] |
In the first sample Vasya can first put on one pair of different socks, after that he has two red socks left to wear on the second day.
| 500
|
[
{
"input": "3 1",
"output": "1 1"
},
{
"input": "2 3",
"output": "2 0"
},
{
"input": "7 3",
"output": "3 2"
},
{
"input": "100 100",
"output": "100 0"
},
{
"input": "4 10",
"output": "4 3"
},
{
"input": "6 10",
"output": "6 2"
},
{
"input": "6 11",
"output": "6 2"
},
{
"input": "10 40",
"output": "10 15"
},
{
"input": "11 56",
"output": "11 22"
},
{
"input": "34 30",
"output": "30 2"
},
{
"input": "33 33",
"output": "33 0"
},
{
"input": "100 45",
"output": "45 27"
},
{
"input": "100 23",
"output": "23 38"
},
{
"input": "45 12",
"output": "12 16"
},
{
"input": "1 1",
"output": "1 0"
},
{
"input": "1 100",
"output": "1 49"
},
{
"input": "100 1",
"output": "1 49"
},
{
"input": "68 59",
"output": "59 4"
},
{
"input": "45 99",
"output": "45 27"
},
{
"input": "99 100",
"output": "99 0"
},
{
"input": "100 98",
"output": "98 1"
},
{
"input": "59 12",
"output": "12 23"
},
{
"input": "86 4",
"output": "4 41"
},
{
"input": "68 21",
"output": "21 23"
},
{
"input": "100 11",
"output": "11 44"
},
{
"input": "100 10",
"output": "10 45"
},
{
"input": "15 45",
"output": "15 15"
},
{
"input": "11 32",
"output": "11 10"
},
{
"input": "34 96",
"output": "34 31"
},
{
"input": "89 89",
"output": "89 0"
}
] | 1,662,528,539
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 30
| 46
| 0
|
li=list(map(int,input().split()))
print(min(li),(abs(li[0]-li[1]))//2)
|
Title: Vasya the Hipster
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
One day Vasya the Hipster decided to count how many socks he had. It turned out that he had *a* red socks and *b* blue socks.
According to the latest fashion, hipsters should wear the socks of different colors: a red one on the left foot, a blue one on the right foot.
Every day Vasya puts on new socks in the morning and throws them away before going to bed as he doesn't want to wash them.
Vasya wonders, what is the maximum number of days when he can dress fashionable and wear different socks, and after that, for how many days he can then wear the same socks until he either runs out of socks or cannot make a single pair from the socks he's got.
Can you help him?
Input Specification:
The single line of the input contains two positive integers *a* and *b* (1<=≤<=*a*,<=*b*<=≤<=100) — the number of red and blue socks that Vasya's got.
Output Specification:
Print two space-separated integers — the maximum number of days when Vasya can wear different socks and the number of days when he can wear the same socks until he either runs out of socks or cannot make a single pair from the socks he's got.
Keep in mind that at the end of the day Vasya throws away the socks that he's been wearing on that day.
Demo Input:
['3 1\n', '2 3\n', '7 3\n']
Demo Output:
['1 1\n', '2 0\n', '3 2\n']
Note:
In the first sample Vasya can first put on one pair of different socks, after that he has two red socks left to wear on the second day.
|
```python
li=list(map(int,input().split()))
print(min(li),(abs(li[0]-li[1]))//2)
```
| 3
|
|
61
|
A
|
Ultra-Fast Mathematician
|
PROGRAMMING
| 800
|
[
"implementation"
] |
A. Ultra-Fast Mathematician
|
2
|
256
|
Shapur was an extremely gifted student. He was great at everything including Combinatorics, Algebra, Number Theory, Geometry, Calculus, etc. He was not only smart but extraordinarily fast! He could manage to sum 1018 numbers in a single second.
One day in 230 AD Shapur was trying to find out if any one can possibly do calculations faster than him. As a result he made a very great contest and asked every one to come and take part.
In his contest he gave the contestants many different pairs of numbers. Each number is made from digits 0 or 1. The contestants should write a new number corresponding to the given pair of numbers. The rule is simple: The *i*-th digit of the answer is 1 if and only if the *i*-th digit of the two given numbers differ. In the other case the *i*-th digit of the answer is 0.
Shapur made many numbers and first tried his own speed. He saw that he can perform these operations on numbers of length ∞ (length of a number is number of digits in it) in a glance! He always gives correct answers so he expects the contestants to give correct answers, too. He is a good fellow so he won't give anyone very big numbers and he always gives one person numbers of same length.
Now you are going to take part in Shapur's contest. See if you are faster and more accurate.
|
There are two lines in each input. Each of them contains a single number. It is guaranteed that the numbers are made from 0 and 1 only and that their length is same. The numbers may start with 0. The length of each number doesn't exceed 100.
|
Write one line — the corresponding answer. Do not omit the leading 0s.
|
[
"1010100\n0100101\n",
"000\n111\n",
"1110\n1010\n",
"01110\n01100\n"
] |
[
"1110001\n",
"111\n",
"0100\n",
"00010\n"
] |
none
| 500
|
[
{
"input": "1010100\n0100101",
"output": "1110001"
},
{
"input": "000\n111",
"output": "111"
},
{
"input": "1110\n1010",
"output": "0100"
},
{
"input": "01110\n01100",
"output": "00010"
},
{
"input": "011101\n000001",
"output": "011100"
},
{
"input": "10\n01",
"output": "11"
},
{
"input": "00111111\n11011101",
"output": "11100010"
},
{
"input": "011001100\n101001010",
"output": "110000110"
},
{
"input": "1100100001\n0110101100",
"output": "1010001101"
},
{
"input": "00011101010\n10010100101",
"output": "10001001111"
},
{
"input": "100000101101\n111010100011",
"output": "011010001110"
},
{
"input": "1000001111010\n1101100110001",
"output": "0101101001011"
},
{
"input": "01011111010111\n10001110111010",
"output": "11010001101101"
},
{
"input": "110010000111100\n001100101011010",
"output": "111110101100110"
},
{
"input": "0010010111110000\n0000000011010110",
"output": "0010010100100110"
},
{
"input": "00111110111110000\n01111100001100000",
"output": "01000010110010000"
},
{
"input": "101010101111010001\n001001111101111101",
"output": "100011010010101100"
},
{
"input": "0110010101111100000\n0011000101000000110",
"output": "0101010000111100110"
},
{
"input": "11110100011101010111\n00001000011011000000",
"output": "11111100000110010111"
},
{
"input": "101010101111101101001\n111010010010000011111",
"output": "010000111101101110110"
},
{
"input": "0000111111100011000010\n1110110110110000001010",
"output": "1110001001010011001000"
},
{
"input": "10010010101000110111000\n00101110100110111000111",
"output": "10111100001110001111111"
},
{
"input": "010010010010111100000111\n100100111111100011001110",
"output": "110110101101011111001001"
},
{
"input": "0101110100100111011010010\n0101100011010111001010001",
"output": "0000010111110000010000011"
},
{
"input": "10010010100011110111111011\n10000110101100000001000100",
"output": "00010100001111110110111111"
},
{
"input": "000001111000000100001000000\n011100111101111001110110001",
"output": "011101000101111101111110001"
},
{
"input": "0011110010001001011001011100\n0000101101000011101011001010",
"output": "0011011111001010110010010110"
},
{
"input": "11111000000000010011001101111\n11101110011001010100010000000",
"output": "00010110011001000111011101111"
},
{
"input": "011001110000110100001100101100\n001010000011110000001000101001",
"output": "010011110011000100000100000101"
},
{
"input": "1011111010001100011010110101111\n1011001110010000000101100010101",
"output": "0000110100011100011111010111010"
},
{
"input": "10111000100001000001010110000001\n10111000001100101011011001011000",
"output": "00000000101101101010001111011001"
},
{
"input": "000001010000100001000000011011100\n111111111001010100100001100000111",
"output": "111110101001110101100001111011011"
},
{
"input": "1101000000000010011011101100000110\n1110000001100010011010000011011110",
"output": "0011000001100000000001101111011000"
},
{
"input": "01011011000010100001100100011110001\n01011010111000001010010100001110000",
"output": "00000001111010101011110000010000001"
},
{
"input": "000011111000011001000110111100000100\n011011000110000111101011100111000111",
"output": "011000111110011110101101011011000011"
},
{
"input": "1001000010101110001000000011111110010\n0010001011010111000011101001010110000",
"output": "1011001001111001001011101010101000010"
},
{
"input": "00011101011001100101111111000000010101\n10010011011011001011111000000011101011",
"output": "10001110000010101110000111000011111110"
},
{
"input": "111011100110001001101111110010111001010\n111111101101111001110010000101101000100",
"output": "000100001011110000011101110111010001110"
},
{
"input": "1111001001101000001000000010010101001010\n0010111100111110001011000010111110111001",
"output": "1101110101010110000011000000101011110011"
},
{
"input": "00100101111000000101011111110010100011010\n11101110001010010101001000111110101010100",
"output": "11001011110010010000010111001100001001110"
},
{
"input": "101011001110110100101001000111010101101111\n100111100110101011010100111100111111010110",
"output": "001100101000011111111101111011101010111001"
},
{
"input": "1111100001100101000111101001001010011100001\n1000110011000011110010001011001110001000001",
"output": "0111010010100110110101100010000100010100000"
},
{
"input": "01100111011111010101000001101110000001110101\n10011001011111110000000101011001001101101100",
"output": "11111110000000100101000100110111001100011001"
},
{
"input": "110010100111000100100101100000011100000011001\n011001111011100110000110111001110110100111011",
"output": "101011011100100010100011011001101010100100010"
},
{
"input": "0001100111111011010110100100111000000111000110\n1100101011000000000001010010010111001100110001",
"output": "1101001100111011010111110110101111001011110111"
},
{
"input": "00000101110110110001110010100001110100000100000\n10010000110011110001101000111111101010011010001",
"output": "10010101000101000000011010011110011110011110001"
},
{
"input": "110000100101011100100011001111110011111110010001\n101011111001011100110110111101110011010110101100",
"output": "011011011100000000010101110010000000101000111101"
},
{
"input": "0101111101011111010101011101000011101100000000111\n0000101010110110001110101011011110111001010100100",
"output": "0101010111101001011011110110011101010101010100011"
},
{
"input": "11000100010101110011101000011111001010110111111100\n00001111000111001011111110000010101110111001000011",
"output": "11001011010010111000010110011101100100001110111111"
},
{
"input": "101000001101111101101111111000001110110010101101010\n010011100111100001100000010001100101000000111011011",
"output": "111011101010011100001111101001101011110010010110001"
},
{
"input": "0011111110010001010100010110111000110011001101010100\n0111000000100010101010000100101000000100101000111001",
"output": "0100111110110011111110010010010000110111100101101101"
},
{
"input": "11101010000110000011011010000001111101000111011111100\n10110011110001010100010110010010101001010111100100100",
"output": "01011001110111010111001100010011010100010000111011000"
},
{
"input": "011000100001000001101000010110100110011110100111111011\n111011001000001001110011001111011110111110110011011111",
"output": "100011101001001000011011011001111000100000010100100100"
},
{
"input": "0111010110010100000110111011010110100000000111110110000\n1011100100010001101100000100111111101001110010000100110",
"output": "1100110010000101101010111111101001001001110101110010110"
},
{
"input": "10101000100111000111010001011011011011110100110101100011\n11101111000000001100100011111000100100000110011001101110",
"output": "01000111100111001011110010100011111111110010101100001101"
},
{
"input": "000000111001010001000000110001001011100010011101010011011\n110001101000010010000101000100001111101001100100001010010",
"output": "110001010001000011000101110101000100001011111001011001001"
},
{
"input": "0101011100111010000111110010101101111111000000111100011100\n1011111110000010101110111001000011100000100111111111000111",
"output": "1110100010111000101001001011101110011111100111000011011011"
},
{
"input": "11001000001100100111100111100100101011000101001111001001101\n10111110100010000011010100110100100011101001100000001110110",
"output": "01110110101110100100110011010000001000101100101111000111011"
},
{
"input": "010111011011101000000110000110100110001110100001110110111011\n101011110011101011101101011111010100100001100111100100111011",
"output": "111100101000000011101011011001110010101111000110010010000000"
},
{
"input": "1001011110110110000100011001010110000100011010010111010101110\n1101111100001000010111110011010101111010010100000001000010111",
"output": "0100100010111110010011101010000011111110001110010110010111001"
},
{
"input": "10000010101111100111110101111000010100110111101101111111111010\n10110110101100101010011001011010100110111011101100011001100111",
"output": "00110100000011001101101100100010110010001100000001100110011101"
},
{
"input": "011111010011111000001010101001101001000010100010111110010100001\n011111001011000011111001000001111001010110001010111101000010011",
"output": "000000011000111011110011101000010000010100101000000011010110010"
},
{
"input": "1111000000110001011101000100100100001111011100001111001100011111\n1101100110000101100001100000001001011011111011010101000101001010",
"output": "0010100110110100111100100100101101010100100111011010001001010101"
},
{
"input": "01100000101010010011001110100110110010000110010011011001100100011\n10110110010110111100100111000111000110010000000101101110000010111",
"output": "11010110111100101111101001100001110100010110010110110111100110100"
},
{
"input": "001111111010000100001100001010011001111110011110010111110001100111\n110000101001011000100010101100100110000111100000001101001110010111",
"output": "111111010011011100101110100110111111111001111110011010111111110000"
},
{
"input": "1011101011101101011110101101011101011000010011100101010101000100110\n0001000001001111010111100100111101100000000001110001000110000000110",
"output": "1010101010100010001001001001100000111000010010010100010011000100000"
},
{
"input": "01000001011001010011011100010000100100110101111011011011110000001110\n01011110000110011011000000000011000111100001010000000011111001110000",
"output": "00011111011111001000011100010011100011010100101011011000001001111110"
},
{
"input": "110101010100110101000001111110110100010010000100111110010100110011100\n111010010111111011100110101011001011001110110111110100000110110100111",
"output": "001111000011001110100111010101111111011100110011001010010010000111011"
},
{
"input": "1001101011000001011111100110010010000011010001001111011100010100110001\n1111100111110101001111010001010000011001001001010110001111000000100101",
"output": "0110001100110100010000110111000010011010011000011001010011010100010100"
},
{
"input": "00000111110010110001110110001010010101000111011001111111100110011110010\n00010111110100000100110101000010010001100001100011100000001100010100010",
"output": "00010000000110110101000011001000000100100110111010011111101010001010000"
},
{
"input": "100101011100101101000011010001011001101110101110001100010001010111001110\n100001111100101011011111110000001111000111001011111110000010101110111001",
"output": "000100100000000110011100100001010110101001100101110010010011111001110111"
},
{
"input": "1101100001000111001101001011101000111000011110000001001101101001111011010\n0101011101010100011011010110101000010010110010011110101100000110110001000",
"output": "1000111100010011010110011101000000101010101100011111100001101111001010010"
},
{
"input": "01101101010011110101100001110101111011100010000010001101111000011110111111\n00101111001101001100111010000101110000100101101111100111101110010100011011",
"output": "01000010011110111001011011110000001011000111101101101010010110001010100100"
},
{
"input": "101100101100011001101111110110110010100110110010100001110010110011001101011\n000001011010101011110011111101001110000111000010001101000010010000010001101",
"output": "101101110110110010011100001011111100100001110000101100110000100011011100110"
},
{
"input": "0010001011001010001100000010010011110110011000100000000100110000101111001110\n1100110100111000110100001110111001011101001100001010100001010011100110110001",
"output": "1110111111110010111000001100101010101011010100101010100101100011001001111111"
},
{
"input": "00101101010000000101011001101011001100010001100000101011101110000001111001000\n10010110010111000000101101000011101011001010000011011101101011010000000011111",
"output": "10111011000111000101110100101000100111011011100011110110000101010001111010111"
},
{
"input": "111100000100100000101001100001001111001010001000001000000111010000010101101011\n001000100010100101111011111011010110101100001111011000010011011011100010010110",
"output": "110100100110000101010010011010011001100110000111010000010100001011110111111101"
},
{
"input": "0110001101100100001111110101101000100101010010101010011001101001001101110000000\n0111011000000010010111011110010000000001000110001000011001101000000001110100111",
"output": "0001010101100110011000101011111000100100010100100010000000000001001100000100111"
},
{
"input": "10001111111001000101001011110101111010100001011010101100111001010001010010001000\n10000111010010011110111000111010101100000011110001101111001000111010100000000001",
"output": "00001000101011011011110011001111010110100010101011000011110001101011110010001001"
},
{
"input": "100110001110110000100101001110000011110110000110000000100011110100110110011001101\n110001110101110000000100101001101011111100100100001001000110000001111100011110110",
"output": "010111111011000000100001100111101000001010100010001001100101110101001010000111011"
},
{
"input": "0000010100100000010110111100011111111010011101000000100000011001001101101100111010\n0100111110011101010110101011110110010111001111000110101100101110111100101000111111",
"output": "0100101010111101000000010111101001101101010010000110001100110111110001000100000101"
},
{
"input": "11000111001010100001110000001001011010010010110000001110100101000001010101100110111\n11001100100100100001101010110100000111100011101110011010110100001001000011011011010",
"output": "00001011101110000000011010111101011101110001011110010100010001001000010110111101101"
},
{
"input": "010110100010001000100010101001101010011010111110100001000100101000111011100010100001\n110000011111101101010011111000101010111010100001001100001001100101000000111000000000",
"output": "100110111101100101110001010001000000100000011111101101001101001101111011011010100001"
},
{
"input": "0000011110101110010101110110110101100001011001101010101001000010000010000000101001101\n1100111111011100000110000111101110011111100111110001011001000010011111100001001100011",
"output": "1100100001110010010011110001011011111110111110011011110000000000011101100001100101110"
},
{
"input": "10100000101101110001100010010010100101100011010010101000110011100000101010110010000000\n10001110011011010010111011011101101111000111110000111000011010010101001100000001010011",
"output": "00101110110110100011011001001111001010100100100010010000101001110101100110110011010011"
},
{
"input": "001110000011111101101010011111000101010111010100001001100001001100101000000111000000000\n111010000000000000101001110011001000111011001100101010011001000011101001001011110000011",
"output": "110100000011111101000011101100001101101100011000100011111000001111000001001100110000011"
},
{
"input": "1110111100111011010101011011001110001010010010110011110010011111000010011111010101100001\n1001010101011001001010100010101100000110111101011000100010101111111010111100001110010010",
"output": "0111101001100010011111111001100010001100101111101011010000110000111000100011011011110011"
},
{
"input": "11100010001100010011001100001100010011010001101110011110100101110010101101011101000111111\n01110000000110111010110100001010000101011110100101010011000110101110101101110111011110001",
"output": "10010010001010101001111000000110010110001111001011001101100011011100000000101010011001110"
},
{
"input": "001101011001100101101100110000111000101011001001100100000100101000100000110100010111111101\n101001111110000010111101111110001001111001111101111010000110111000100100110010010001011111",
"output": "100100100111100111010001001110110001010010110100011110000010010000000100000110000110100010"
},
{
"input": "1010110110010101000110010010110101011101010100011001101011000110000000100011100100011000000\n0011011111100010001111101101000111001011101110100000110111100100101111010110101111011100011",
"output": "1001101001110111001001111111110010010110111010111001011100100010101111110101001011000100011"
},
{
"input": "10010010000111010111011111110010100101100000001100011100111011100010000010010001011100001100\n00111010100010110010000100010111010001111110100100100011101000101111111111001101101100100100",
"output": "10101000100101100101011011100101110100011110101000111111010011001101111101011100110000101000"
},
{
"input": "010101110001010101100000010111010000000111110011001101100011001000000011001111110000000010100\n010010111011100101010101111110110000000111000100001101101001001000001100101110001010000100001",
"output": "000111001010110000110101101001100000000000110111000000001010000000001111100001111010000110101"
},
{
"input": "1100111110011001000111101001001011000110011010111111100010111111001100111111011101100111101011\n1100000011001000110100110111000001011001010111101000010010100011000001100100111101101000010110",
"output": "0000111101010001110011011110001010011111001101010111110000011100001101011011100000001111111101"
},
{
"input": "00011000100100110111100101100100000000010011110111110010101110110011100001010111010011110100101\n00011011111011111011100101100111100101001110010111000010000111000100100100000001110101111011011",
"output": "00000011011111001100000000000011100101011101100000110000101001110111000101010110100110001111110"
},
{
"input": "000101011001001100000111100010110101111011110101111101000110001101011010111110110011100100000001\n011000101010011111011000111000100000000011011000000001111110001000001111101010110000011100001111",
"output": "011101110011010011011111011010010101111000101101111100111000000101010101010100000011111000001110"
},
{
"input": "1000101001011010000100100100010010011101011001110101111011101111111110010101001101010001010101001\n0110110010011100011111011111110111000000010001110100001010111110101011010011111011111110000110000",
"output": "1110011011000110011011111011100101011101001000000001110001010001010101000110110110101111010011001"
},
{
"input": "01111010010101100111110111111011011010100001011101010000111100101101101110111011001100101011100111\n00001100110110100001111011000010001001001100000010111101000001111011100000010111010010000011000010",
"output": "01110110100011000110001100111001010011101101011111101101111101010110001110101100011110101000100101"
},
{
"input": "111101011101111000001011001101111010110111001101110100100011111011011101001101010101011010111000110\n101111100101101101001100110011000001111010011101110111110110101110011011110011111100001001110101101",
"output": "010010111000010101000111111110111011001101010000000011010101010101000110111110101001010011001101011"
},
{
"input": "1010000011010110011101001101110001110010000111011101110010110110111111001001110100101100010101010001\n0111101000111100101100000101111010100100001000011101010100110011100011010011010101000100101011100011",
"output": "1101101011101010110001001000001011010110001111000000100110000101011100011010100001101000111110110010"
},
{
"input": "0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001\n1111111010111111101011111110101111111010111111101011111110101111111010111111101011111110101111111010",
"output": "1111111010111111101011111110101111111010111111101011111110101111111010111111101011111110101111111011"
},
{
"input": "0\n0",
"output": "0"
},
{
"input": "0\n1",
"output": "1"
}
] | 1,618,514,760
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 102
| 77
| 0
|
n = list(input())
m = list(input())
N = []
M = []
for i in n:
N.append(int(i))
for i in m:
M.append(int(i))
#print(M,N)
res = []
for i in range(len(n)):
if N[i]==0 and M[i] == 0 :
res.append(0)
elif N[i]==1 and M[i] == 1 :
res.append(0)
else:
res.append(1)
final_res = []
for i in res:
final_res.append(str(i))
print(''.join(final_res))
|
Title: Ultra-Fast Mathematician
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
Shapur was an extremely gifted student. He was great at everything including Combinatorics, Algebra, Number Theory, Geometry, Calculus, etc. He was not only smart but extraordinarily fast! He could manage to sum 1018 numbers in a single second.
One day in 230 AD Shapur was trying to find out if any one can possibly do calculations faster than him. As a result he made a very great contest and asked every one to come and take part.
In his contest he gave the contestants many different pairs of numbers. Each number is made from digits 0 or 1. The contestants should write a new number corresponding to the given pair of numbers. The rule is simple: The *i*-th digit of the answer is 1 if and only if the *i*-th digit of the two given numbers differ. In the other case the *i*-th digit of the answer is 0.
Shapur made many numbers and first tried his own speed. He saw that he can perform these operations on numbers of length ∞ (length of a number is number of digits in it) in a glance! He always gives correct answers so he expects the contestants to give correct answers, too. He is a good fellow so he won't give anyone very big numbers and he always gives one person numbers of same length.
Now you are going to take part in Shapur's contest. See if you are faster and more accurate.
Input Specification:
There are two lines in each input. Each of them contains a single number. It is guaranteed that the numbers are made from 0 and 1 only and that their length is same. The numbers may start with 0. The length of each number doesn't exceed 100.
Output Specification:
Write one line — the corresponding answer. Do not omit the leading 0s.
Demo Input:
['1010100\n0100101\n', '000\n111\n', '1110\n1010\n', '01110\n01100\n']
Demo Output:
['1110001\n', '111\n', '0100\n', '00010\n']
Note:
none
|
```python
n = list(input())
m = list(input())
N = []
M = []
for i in n:
N.append(int(i))
for i in m:
M.append(int(i))
#print(M,N)
res = []
for i in range(len(n)):
if N[i]==0 and M[i] == 0 :
res.append(0)
elif N[i]==1 and M[i] == 1 :
res.append(0)
else:
res.append(1)
final_res = []
for i in res:
final_res.append(str(i))
print(''.join(final_res))
```
| 3.98075
|
349
|
A
|
Cinema Line
|
PROGRAMMING
| 1,100
|
[
"greedy",
"implementation"
] | null | null |
The new "Die Hard" movie has just been released! There are *n* people at the cinema box office standing in a huge line. Each of them has a single 100, 50 or 25 ruble bill. A "Die Hard" ticket costs 25 rubles. Can the booking clerk sell a ticket to each person and give the change if he initially has no money and sells the tickets strictly in the order people follow in the line?
|
The first line contains integer *n* (1<=≤<=*n*<=≤<=105) — the number of people in the line. The next line contains *n* integers, each of them equals 25, 50 or 100 — the values of the bills the people have. The numbers are given in the order from the beginning of the line (at the box office) to the end of the line.
|
Print "YES" (without the quotes) if the booking clerk can sell a ticket to each person and give the change. Otherwise print "NO".
|
[
"4\n25 25 50 50\n",
"2\n25 100\n",
"4\n50 50 25 25\n"
] |
[
"YES\n",
"NO\n",
"NO\n"
] |
none
| 500
|
[
{
"input": "4\n25 25 50 50",
"output": "YES"
},
{
"input": "2\n25 100",
"output": "NO"
},
{
"input": "4\n50 50 25 25",
"output": "NO"
},
{
"input": "3\n25 50 100",
"output": "NO"
},
{
"input": "10\n25 25 25 25 25 25 25 25 25 25",
"output": "YES"
},
{
"input": "10\n50 50 50 50 50 50 50 50 50 50",
"output": "NO"
},
{
"input": "10\n100 100 100 100 100 100 100 100 100 100",
"output": "NO"
},
{
"input": "7\n25 25 25 25 50 100 50",
"output": "YES"
},
{
"input": "2\n25 25",
"output": "YES"
},
{
"input": "3\n50 100 100",
"output": "NO"
},
{
"input": "3\n25 50 50",
"output": "NO"
},
{
"input": "2\n50 25",
"output": "NO"
},
{
"input": "14\n25 25 25 25 25 25 25 50 50 50 100 100 100 100",
"output": "NO"
},
{
"input": "5\n25 25 25 100 100",
"output": "NO"
},
{
"input": "7\n25 50 25 50 25 50 100",
"output": "NO"
},
{
"input": "5\n25 50 25 50 100",
"output": "NO"
},
{
"input": "5\n25 25 50 50 50",
"output": "NO"
},
{
"input": "5\n25 25 50 100 50",
"output": "NO"
},
{
"input": "5\n25 25 50 50 100",
"output": "NO"
},
{
"input": "1\n50",
"output": "NO"
}
] | 1,691,403,369
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 40
| 124
| 9,830,400
|
import sys
input = sys.stdin.readline
t = 1
# t = int(input())
for _ in range(t):
n = int(input())
a = list(map(int, input().split()))
if (a[0] != 25):
print("NO")
else:
flag = 0
d = {25 : 0, 50 : 0}
for i in a:
if (i == 25):
d[25] += 1
elif (i == 50):
if (d[25] > 0):
d[25] -= 1
d[50] += 1
else:
print("NO")
flag = 1
break
else:
if (d[25] == 0):
print("NO")
flag = 1
break
elif (d[50] == 0):
if (d[25] > 2):
d[25] -= 3
else:
print("NO")
flag = 1
break
else:
d[25] -= 1
d[50] -= 1
if (not flag):
print("YES")
|
Title: Cinema Line
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
The new "Die Hard" movie has just been released! There are *n* people at the cinema box office standing in a huge line. Each of them has a single 100, 50 or 25 ruble bill. A "Die Hard" ticket costs 25 rubles. Can the booking clerk sell a ticket to each person and give the change if he initially has no money and sells the tickets strictly in the order people follow in the line?
Input Specification:
The first line contains integer *n* (1<=≤<=*n*<=≤<=105) — the number of people in the line. The next line contains *n* integers, each of them equals 25, 50 or 100 — the values of the bills the people have. The numbers are given in the order from the beginning of the line (at the box office) to the end of the line.
Output Specification:
Print "YES" (without the quotes) if the booking clerk can sell a ticket to each person and give the change. Otherwise print "NO".
Demo Input:
['4\n25 25 50 50\n', '2\n25 100\n', '4\n50 50 25 25\n']
Demo Output:
['YES\n', 'NO\n', 'NO\n']
Note:
none
|
```python
import sys
input = sys.stdin.readline
t = 1
# t = int(input())
for _ in range(t):
n = int(input())
a = list(map(int, input().split()))
if (a[0] != 25):
print("NO")
else:
flag = 0
d = {25 : 0, 50 : 0}
for i in a:
if (i == 25):
d[25] += 1
elif (i == 50):
if (d[25] > 0):
d[25] -= 1
d[50] += 1
else:
print("NO")
flag = 1
break
else:
if (d[25] == 0):
print("NO")
flag = 1
break
elif (d[50] == 0):
if (d[25] > 2):
d[25] -= 3
else:
print("NO")
flag = 1
break
else:
d[25] -= 1
d[50] -= 1
if (not flag):
print("YES")
```
| 3
|
|
44
|
A
|
Indian Summer
|
PROGRAMMING
| 900
|
[
"implementation"
] |
A. Indian Summer
|
2
|
256
|
Indian summer is such a beautiful time of the year! A girl named Alyona is walking in the forest and picking a bouquet from fallen leaves. Alyona is very choosy — she doesn't take a leaf if it matches the color and the species of the tree of one of the leaves she already has. Find out how many leaves Alyona has picked.
|
The first line contains an integer *n* (1<=≤<=*n*<=≤<=100) — the number of leaves Alyona has found. The next *n* lines contain the leaves' descriptions. Each leaf is characterized by the species of the tree it has fallen from and by the color. The species of the trees and colors are given in names, consisting of no more than 10 lowercase Latin letters. A name can not be an empty string. The species of a tree and the color are given in each line separated by a space.
|
Output the single number — the number of Alyona's leaves.
|
[
"5\nbirch yellow\nmaple red\nbirch yellow\nmaple yellow\nmaple green\n",
"3\noak yellow\noak yellow\noak yellow\n"
] |
[
"4\n",
"1\n"
] |
none
| 0
|
[
{
"input": "5\nbirch yellow\nmaple red\nbirch yellow\nmaple yellow\nmaple green",
"output": "4"
},
{
"input": "3\noak yellow\noak yellow\noak yellow",
"output": "1"
},
{
"input": "5\nxbnbkzn hp\nkaqkl vrgzbvqstu\nj aqidx\nhos gyul\nwefxmh tygpluae",
"output": "5"
},
{
"input": "1\nqvwli hz",
"output": "1"
},
{
"input": "4\nsrhk x\nsrhk x\nqfoe vnrjuab\nqfoe vnrjuab",
"output": "2"
},
{
"input": "4\nsddqllmmpk syded\nfprsq fnenjnaz\nn hdej\nsddqllmmpk syded",
"output": "3"
},
{
"input": "17\njtbctslqq tosqzw\njtbctslqq tosqzw\njtbctslqq tosqzw\njtbctslqq tosqzw\njtbctslqq tosqzw\njtbctslqq tosqzw\njtbctslqq tosqzw\njtbctslqq tosqzw\njtbctslqq tosqzw\njtbctslqq tosqzw\njtbctslqq tosqzw\njtbctslqq tosqzw\njtbctslqq tosqzw\njtbctslqq tosqzw\njtbctslqq tosqzw\njtbctslqq tosqzw\njtbctslqq tosqzw",
"output": "1"
},
{
"input": "18\nb d\nrfdb esp\nrfdb esp\nb d\nrfdb esp\nrfdb esp\nb d\nb d\nrfdb esp\nrfdb esp\nb d\nrfdb esp\nb d\nrfdb esp\nb d\nb d\nrfdb esp\nrfdb esp",
"output": "2"
},
{
"input": "13\nsvpzwtwn rykzfdce\nqweiyeck jkreouy\nhk nnli\ntwxrnbbdt vtuv\nxokqjtylly sz\nesdt dbfidjslq\ng ybqgomvw\nxcpfjmf zcqvz\nifajadhj invzueip\nvdemdnxifb hckwebmi\nsdpnhipam wvowzavh\nuqdlfskhgo vunbpghae\ne dtigwnb",
"output": "13"
},
{
"input": "20\nm vkfh\nvptikamead mvx\nitu mf\nklruxckw aqega\nekqkd enjllwol\ncc uybfdh\nimrfdngvo u\ne uh\ntwt jsslcfuogk\nbljwqsag tuqbdn\nqcv q\nasx gzhvwwmajj\nqcv q\nekqkd enjllwol\nasx gzhvwwmajj\nks vv\nkzyfi cn\ncc uybfdh\nitu mf\ncjbjhtbyvk vatwfmux",
"output": "15"
},
{
"input": "2\nab ab\na bab",
"output": "2"
}
] | 1,651,937,540
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 29
| 92
| 0
|
t=int(input())
h={}
count=0
for _ in range(t):
a=input()
if(a not in h):
h[a]=1
count=count+1
else:
pass
print(count)
|
Title: Indian Summer
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
Indian summer is such a beautiful time of the year! A girl named Alyona is walking in the forest and picking a bouquet from fallen leaves. Alyona is very choosy — she doesn't take a leaf if it matches the color and the species of the tree of one of the leaves she already has. Find out how many leaves Alyona has picked.
Input Specification:
The first line contains an integer *n* (1<=≤<=*n*<=≤<=100) — the number of leaves Alyona has found. The next *n* lines contain the leaves' descriptions. Each leaf is characterized by the species of the tree it has fallen from and by the color. The species of the trees and colors are given in names, consisting of no more than 10 lowercase Latin letters. A name can not be an empty string. The species of a tree and the color are given in each line separated by a space.
Output Specification:
Output the single number — the number of Alyona's leaves.
Demo Input:
['5\nbirch yellow\nmaple red\nbirch yellow\nmaple yellow\nmaple green\n', '3\noak yellow\noak yellow\noak yellow\n']
Demo Output:
['4\n', '1\n']
Note:
none
|
```python
t=int(input())
h={}
count=0
for _ in range(t):
a=input()
if(a not in h):
h[a]=1
count=count+1
else:
pass
print(count)
```
| 3.977
|
205
|
A
|
Little Elephant and Rozdil
|
PROGRAMMING
| 900
|
[
"brute force",
"implementation"
] | null | null |
The Little Elephant loves Ukraine very much. Most of all he loves town Rozdol (ukr. "Rozdil").
However, Rozdil is dangerous to settle, so the Little Elephant wants to go to some other town. The Little Elephant doesn't like to spend much time on travelling, so for his journey he will choose a town that needs minimum time to travel to. If there are multiple such cities, then the Little Elephant won't go anywhere.
For each town except for Rozdil you know the time needed to travel to this town. Find the town the Little Elephant will go to or print "Still Rozdil", if he stays in Rozdil.
|
The first line contains a single integer *n* (1<=≤<=*n*<=≤<=105) — the number of cities. The next line contains *n* integers, separated by single spaces: the *i*-th integer represents the time needed to go from town Rozdil to the *i*-th town. The time values are positive integers, not exceeding 109.
You can consider the cities numbered from 1 to *n*, inclusive. Rozdil is not among the numbered cities.
|
Print the answer on a single line — the number of the town the Little Elephant will go to. If there are multiple cities with minimum travel time, print "Still Rozdil" (without the quotes).
|
[
"2\n7 4\n",
"7\n7 4 47 100 4 9 12\n"
] |
[
"2\n",
"Still Rozdil\n"
] |
In the first sample there are only two cities where the Little Elephant can go. The travel time for the first town equals 7, to the second one — 4. The town which is closest to Rodzil (the only one) is the second one, so the answer is 2.
In the second sample the closest cities are cities two and five, the travelling time to both of them equals 4, so the answer is "Still Rozdil".
| 500
|
[
{
"input": "2\n7 4",
"output": "2"
},
{
"input": "7\n7 4 47 100 4 9 12",
"output": "Still Rozdil"
},
{
"input": "1\n47",
"output": "1"
},
{
"input": "2\n1000000000 1000000000",
"output": "Still Rozdil"
},
{
"input": "7\n7 6 5 4 3 2 1",
"output": "7"
},
{
"input": "10\n1 1 1 1 1 1 1 1 1 1",
"output": "Still Rozdil"
},
{
"input": "4\n1000000000 100000000 1000000 1000000",
"output": "Still Rozdil"
},
{
"input": "20\n7 1 1 2 1 1 8 7 7 8 4 3 7 10 5 3 10 5 10 6",
"output": "Still Rozdil"
},
{
"input": "20\n3 3 6 9 8 2 4 1 7 3 2 9 7 7 9 7 2 6 2 7",
"output": "8"
},
{
"input": "47\n35 79 84 56 67 95 80 34 77 68 14 55 95 32 40 89 58 79 96 66 50 79 35 86 31 74 91 35 22 72 84 38 11 59 73 51 65 11 11 62 30 12 32 71 69 15 11",
"output": "Still Rozdil"
},
{
"input": "47\n3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3",
"output": "32"
},
{
"input": "25\n73 56 65 70 57 57 49 50 65 68 54 48 66 55 55 66 60 70 47 62 63 70 62 70 63",
"output": "19"
},
{
"input": "100\n922 938 103 689 526 118 314 496 373 47 224 544 495 656 804 754 269 356 354 536 817 597 787 178 516 659 790 993 786 169 866 779 997 350 674 437 219 546 564 893 402 449 751 628 238 686 392 951 716 439 332 563 215 146 746 311 866 773 548 675 731 183 890 802 488 944 473 25 662 559 732 534 777 144 502 593 839 692 84 337 679 718 1005 663 709 940 86 469 310 960 902 233 606 761 116 231 662 903 68 622",
"output": "68"
},
{
"input": "5\n5 5 2 3 1",
"output": "5"
},
{
"input": "1\n1000000000",
"output": "1"
},
{
"input": "3\n7 7 4",
"output": "3"
},
{
"input": "3\n2 2 1",
"output": "3"
},
{
"input": "3\n4 4 3",
"output": "3"
},
{
"input": "2\n10000001 10000002",
"output": "1"
},
{
"input": "4\n3 3 2 1",
"output": "4"
},
{
"input": "3\n1 2 3",
"output": "1"
},
{
"input": "2\n1000000000 100000000",
"output": "2"
},
{
"input": "1\n99999999",
"output": "1"
},
{
"input": "3\n5 5 3",
"output": "3"
},
{
"input": "3\n7 7 5",
"output": "3"
},
{
"input": "3\n3 3 1",
"output": "3"
},
{
"input": "4\n10 10 10 1",
"output": "4"
}
] | 1,694,723,258
| 2,147,483,647
|
PyPy 3-64
|
OK
|
TESTS
| 45
| 186
| 14,438,400
|
import math
from collections import Counter
import io, os
# input = io.BytesIO(os.read(0,os.fstat(0).st_size)).readline
# for _ in range(int(input())):
n = input()
n = int(n)
arr = list(map(int, input().split()))
m = arr.index(min(arr))
arr.sort()
if n == 1:
arr.append(10000000)
if arr[0] == arr[1]:
print("Still Rozdil")
else:
print(m+1)
# for _ in range(int(input())):
# grid = [list(map(int, input().split())) for _ in range(3)]
# grid = [list(input()) for _ in range(n)]
# result = [[1] * 3 for _ in range(3)]
# n, s, r = map(int, input().split())
# arr = list(map(int, input().split()))
# n = input()
# n = int(n)
|
Title: Little Elephant and Rozdil
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
The Little Elephant loves Ukraine very much. Most of all he loves town Rozdol (ukr. "Rozdil").
However, Rozdil is dangerous to settle, so the Little Elephant wants to go to some other town. The Little Elephant doesn't like to spend much time on travelling, so for his journey he will choose a town that needs minimum time to travel to. If there are multiple such cities, then the Little Elephant won't go anywhere.
For each town except for Rozdil you know the time needed to travel to this town. Find the town the Little Elephant will go to or print "Still Rozdil", if he stays in Rozdil.
Input Specification:
The first line contains a single integer *n* (1<=≤<=*n*<=≤<=105) — the number of cities. The next line contains *n* integers, separated by single spaces: the *i*-th integer represents the time needed to go from town Rozdil to the *i*-th town. The time values are positive integers, not exceeding 109.
You can consider the cities numbered from 1 to *n*, inclusive. Rozdil is not among the numbered cities.
Output Specification:
Print the answer on a single line — the number of the town the Little Elephant will go to. If there are multiple cities with minimum travel time, print "Still Rozdil" (without the quotes).
Demo Input:
['2\n7 4\n', '7\n7 4 47 100 4 9 12\n']
Demo Output:
['2\n', 'Still Rozdil\n']
Note:
In the first sample there are only two cities where the Little Elephant can go. The travel time for the first town equals 7, to the second one — 4. The town which is closest to Rodzil (the only one) is the second one, so the answer is 2.
In the second sample the closest cities are cities two and five, the travelling time to both of them equals 4, so the answer is "Still Rozdil".
|
```python
import math
from collections import Counter
import io, os
# input = io.BytesIO(os.read(0,os.fstat(0).st_size)).readline
# for _ in range(int(input())):
n = input()
n = int(n)
arr = list(map(int, input().split()))
m = arr.index(min(arr))
arr.sort()
if n == 1:
arr.append(10000000)
if arr[0] == arr[1]:
print("Still Rozdil")
else:
print(m+1)
# for _ in range(int(input())):
# grid = [list(map(int, input().split())) for _ in range(3)]
# grid = [list(input()) for _ in range(n)]
# result = [[1] * 3 for _ in range(3)]
# n, s, r = map(int, input().split())
# arr = list(map(int, input().split()))
# n = input()
# n = int(n)
```
| 3
|
|
703
|
A
|
Mishka and Game
|
PROGRAMMING
| 800
|
[
"implementation"
] | null | null |
Mishka is a little polar bear. As known, little bears loves spending their free time playing dice for chocolates. Once in a wonderful sunny morning, walking around blocks of ice, Mishka met her friend Chris, and they started playing the game.
Rules of the game are very simple: at first number of rounds *n* is defined. In every round each of the players throws a cubical dice with distinct numbers from 1 to 6 written on its faces. Player, whose value after throwing the dice is greater, wins the round. In case if player dice values are equal, no one of them is a winner.
In average, player, who won most of the rounds, is the winner of the game. In case if two players won the same number of rounds, the result of the game is draw.
Mishka is still very little and can't count wins and losses, so she asked you to watch their game and determine its result. Please help her!
|
The first line of the input contains single integer *n* *n* (1<=≤<=*n*<=≤<=100) — the number of game rounds.
The next *n* lines contains rounds description. *i*-th of them contains pair of integers *m**i* and *c**i* (1<=≤<=*m**i*,<=<=*c**i*<=≤<=6) — values on dice upper face after Mishka's and Chris' throws in *i*-th round respectively.
|
If Mishka is the winner of the game, print "Mishka" (without quotes) in the only line.
If Chris is the winner of the game, print "Chris" (without quotes) in the only line.
If the result of the game is draw, print "Friendship is magic!^^" (without quotes) in the only line.
|
[
"3\n3 5\n2 1\n4 2\n",
"2\n6 1\n1 6\n",
"3\n1 5\n3 3\n2 2\n"
] |
[
"Mishka",
"Friendship is magic!^^",
"Chris"
] |
In the first sample case Mishka loses the first round, but wins second and third rounds and thus she is the winner of the game.
In the second sample case Mishka wins the first round, Chris wins the second round, and the game ends with draw with score 1:1.
In the third sample case Chris wins the first round, but there is no winner of the next two rounds. The winner of the game is Chris.
| 500
|
[
{
"input": "3\n3 5\n2 1\n4 2",
"output": "Mishka"
},
{
"input": "2\n6 1\n1 6",
"output": "Friendship is magic!^^"
},
{
"input": "3\n1 5\n3 3\n2 2",
"output": "Chris"
},
{
"input": "6\n4 1\n4 2\n5 3\n5 1\n5 3\n4 1",
"output": "Mishka"
},
{
"input": "8\n2 4\n1 4\n1 5\n2 6\n2 5\n2 5\n2 4\n2 5",
"output": "Chris"
},
{
"input": "8\n4 1\n2 6\n4 2\n2 5\n5 2\n3 5\n5 2\n1 5",
"output": "Friendship is magic!^^"
},
{
"input": "9\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n2 1\n2 1\n1 3",
"output": "Mishka"
},
{
"input": "9\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n1 6\n1 6\n1 6",
"output": "Mishka"
},
{
"input": "9\n1 2\n1 2\n1 2\n1 2\n1 2\n6 1\n6 1\n6 1\n6 1",
"output": "Chris"
},
{
"input": "9\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n1 6\n1 6\n1 6",
"output": "Mishka"
},
{
"input": "10\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n2 1\n2 1\n2 1\n1 4",
"output": "Mishka"
},
{
"input": "10\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n1 6\n1 6\n1 6",
"output": "Mishka"
},
{
"input": "10\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n6 1\n6 1\n6 1\n6 1",
"output": "Chris"
},
{
"input": "10\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n1 6\n1 6\n1 6",
"output": "Mishka"
},
{
"input": "100\n2 4\n6 6\n3 2\n1 5\n5 2\n1 5\n1 5\n3 1\n6 5\n4 3\n1 1\n5 1\n3 3\n2 4\n1 5\n3 4\n5 1\n5 5\n2 5\n2 1\n4 3\n6 5\n1 1\n2 1\n1 3\n1 1\n6 4\n4 6\n6 4\n2 1\n2 5\n6 2\n3 4\n5 5\n1 4\n4 6\n3 4\n1 6\n5 1\n4 3\n3 4\n2 2\n1 2\n2 3\n1 3\n4 4\n5 5\n4 5\n4 4\n3 1\n4 5\n2 3\n2 6\n6 5\n6 1\n6 6\n2 3\n6 4\n3 3\n2 5\n4 4\n3 1\n2 4\n6 1\n3 2\n1 3\n5 4\n6 6\n2 5\n5 1\n1 1\n2 5\n6 5\n3 6\n5 6\n4 3\n3 4\n3 4\n6 5\n5 2\n4 2\n1 1\n3 1\n2 6\n1 6\n1 2\n6 1\n3 4\n1 6\n3 1\n5 3\n1 3\n5 6\n2 1\n6 4\n3 1\n1 6\n6 3\n3 3\n4 3",
"output": "Chris"
},
{
"input": "100\n4 1\n3 4\n4 6\n4 5\n6 5\n5 3\n6 2\n6 3\n5 2\n4 5\n1 5\n5 4\n1 4\n4 5\n4 6\n1 6\n4 4\n5 1\n6 4\n6 4\n4 6\n2 3\n6 2\n4 6\n1 4\n2 3\n4 3\n1 3\n6 2\n3 1\n3 4\n2 6\n4 5\n5 4\n2 2\n2 5\n4 1\n2 2\n3 3\n1 4\n5 6\n6 4\n4 2\n6 1\n5 5\n4 1\n2 1\n6 4\n4 4\n4 3\n5 3\n4 5\n5 3\n3 5\n6 3\n1 1\n3 4\n6 3\n6 1\n5 1\n2 4\n4 3\n2 2\n5 5\n1 5\n5 3\n4 6\n1 4\n6 3\n4 3\n2 4\n3 2\n2 4\n3 4\n6 2\n5 6\n1 2\n1 5\n5 5\n2 6\n5 1\n1 6\n5 3\n3 5\n2 6\n4 6\n6 2\n3 1\n5 5\n6 1\n3 6\n4 4\n1 1\n4 6\n5 3\n4 2\n5 1\n3 3\n2 1\n1 4",
"output": "Mishka"
},
{
"input": "100\n6 3\n4 5\n4 3\n5 4\n5 1\n6 3\n4 2\n4 6\n3 1\n2 4\n2 2\n4 6\n5 3\n5 5\n4 2\n6 2\n2 3\n4 4\n6 4\n3 5\n2 4\n2 2\n5 2\n3 5\n2 4\n4 4\n3 5\n6 5\n1 3\n1 6\n2 2\n2 4\n3 2\n5 4\n1 6\n3 4\n4 1\n1 5\n1 4\n5 3\n2 2\n4 5\n6 3\n4 4\n1 1\n4 1\n2 4\n4 1\n4 5\n5 3\n1 1\n1 6\n5 6\n6 6\n4 2\n4 3\n3 4\n3 6\n3 4\n6 5\n3 4\n5 4\n5 1\n5 3\n5 1\n1 2\n2 6\n3 4\n6 5\n4 3\n1 1\n5 5\n5 1\n3 3\n5 2\n1 3\n6 6\n5 6\n1 4\n4 4\n1 4\n3 6\n6 5\n3 3\n3 6\n1 5\n1 2\n3 6\n3 6\n4 1\n5 2\n1 2\n5 2\n3 3\n4 4\n4 2\n6 2\n5 4\n6 1\n6 3",
"output": "Mishka"
},
{
"input": "8\n4 1\n6 2\n4 1\n5 3\n4 1\n5 3\n6 2\n5 3",
"output": "Mishka"
},
{
"input": "5\n3 6\n3 5\n3 5\n1 6\n3 5",
"output": "Chris"
},
{
"input": "4\n4 1\n2 4\n5 3\n3 6",
"output": "Friendship is magic!^^"
},
{
"input": "6\n6 3\n5 1\n6 3\n4 3\n4 3\n5 2",
"output": "Mishka"
},
{
"input": "7\n3 4\n1 4\n2 5\n1 6\n1 6\n1 5\n3 4",
"output": "Chris"
},
{
"input": "6\n6 2\n2 5\n5 2\n3 6\n4 3\n1 6",
"output": "Friendship is magic!^^"
},
{
"input": "8\n6 1\n5 3\n4 3\n4 1\n5 1\n4 2\n4 2\n4 1",
"output": "Mishka"
},
{
"input": "9\n2 5\n2 5\n1 4\n2 6\n2 4\n2 5\n2 6\n1 5\n2 5",
"output": "Chris"
},
{
"input": "4\n6 2\n2 4\n4 2\n3 6",
"output": "Friendship is magic!^^"
},
{
"input": "9\n5 2\n4 1\n4 1\n5 1\n6 2\n6 1\n5 3\n6 1\n6 2",
"output": "Mishka"
},
{
"input": "8\n2 4\n3 6\n1 6\n1 6\n2 4\n3 4\n3 6\n3 4",
"output": "Chris"
},
{
"input": "6\n5 3\n3 6\n6 2\n1 6\n5 1\n3 5",
"output": "Friendship is magic!^^"
},
{
"input": "6\n5 2\n5 1\n6 1\n5 2\n4 2\n5 1",
"output": "Mishka"
},
{
"input": "5\n1 4\n2 5\n3 4\n2 6\n3 4",
"output": "Chris"
},
{
"input": "4\n6 2\n3 4\n5 1\n1 6",
"output": "Friendship is magic!^^"
},
{
"input": "93\n4 3\n4 1\n4 2\n5 2\n5 3\n6 3\n4 3\n6 2\n6 3\n5 1\n4 2\n4 2\n5 1\n6 2\n6 3\n6 1\n4 1\n6 2\n5 3\n4 3\n4 1\n4 2\n5 2\n6 3\n5 2\n5 2\n6 3\n5 1\n6 2\n5 2\n4 1\n5 2\n5 1\n4 1\n6 1\n5 2\n4 3\n5 3\n5 3\n5 1\n4 3\n4 3\n4 2\n4 1\n6 2\n6 1\n4 1\n5 2\n5 2\n6 2\n5 3\n5 1\n6 2\n5 1\n6 3\n5 2\n6 2\n6 2\n4 2\n5 2\n6 1\n6 3\n6 3\n5 1\n5 1\n4 1\n5 1\n4 3\n5 3\n6 3\n4 1\n4 3\n6 1\n6 1\n4 2\n6 2\n4 2\n5 2\n4 1\n5 2\n4 1\n5 1\n5 2\n5 1\n4 1\n6 3\n6 2\n4 3\n4 1\n5 2\n4 3\n5 2\n5 1",
"output": "Mishka"
},
{
"input": "11\n1 6\n1 6\n2 4\n2 5\n3 4\n1 5\n1 6\n1 5\n1 6\n2 6\n3 4",
"output": "Chris"
},
{
"input": "70\n6 1\n3 6\n4 3\n2 5\n5 2\n1 4\n6 2\n1 6\n4 3\n1 4\n5 3\n2 4\n5 3\n1 6\n5 1\n3 5\n4 2\n2 4\n5 1\n3 5\n6 2\n1 5\n4 2\n2 5\n5 3\n1 5\n4 2\n1 4\n5 2\n2 6\n4 3\n1 5\n6 2\n3 4\n4 2\n3 5\n6 3\n3 4\n5 1\n1 4\n4 2\n1 4\n6 3\n2 6\n5 2\n1 6\n6 1\n2 6\n5 3\n1 5\n5 1\n1 6\n4 1\n1 5\n4 2\n2 4\n5 1\n2 5\n6 3\n1 4\n6 3\n3 6\n5 1\n1 4\n5 3\n3 5\n4 2\n3 4\n6 2\n1 4",
"output": "Friendship is magic!^^"
},
{
"input": "59\n4 1\n5 3\n6 1\n4 2\n5 1\n4 3\n6 1\n5 1\n4 3\n4 3\n5 2\n5 3\n4 1\n6 2\n5 1\n6 3\n6 3\n5 2\n5 2\n6 1\n4 1\n6 1\n4 3\n5 3\n5 3\n4 3\n4 2\n4 2\n6 3\n6 3\n6 1\n4 3\n5 1\n6 2\n6 1\n4 1\n6 1\n5 3\n4 2\n5 1\n6 2\n6 2\n4 3\n5 3\n4 3\n6 3\n5 2\n5 2\n4 3\n5 1\n5 3\n6 1\n6 3\n6 3\n4 3\n5 2\n5 2\n5 2\n4 3",
"output": "Mishka"
},
{
"input": "42\n1 5\n1 6\n1 6\n1 4\n2 5\n3 6\n1 6\n3 4\n2 5\n2 5\n2 4\n1 4\n3 4\n2 4\n2 6\n1 5\n3 6\n2 6\n2 6\n3 5\n1 4\n1 5\n2 6\n3 6\n1 4\n3 4\n2 4\n1 6\n3 4\n2 4\n2 6\n1 6\n1 4\n1 6\n1 6\n2 4\n1 5\n1 6\n2 5\n3 6\n3 5\n3 4",
"output": "Chris"
},
{
"input": "78\n4 3\n3 5\n4 3\n1 5\n5 1\n1 5\n4 3\n1 4\n6 3\n1 5\n4 1\n2 4\n4 3\n2 4\n5 1\n3 6\n4 2\n3 6\n6 3\n3 4\n4 3\n3 6\n5 3\n1 5\n4 1\n2 6\n4 2\n2 4\n4 1\n3 5\n5 2\n3 6\n4 3\n2 4\n6 3\n1 6\n4 3\n3 5\n6 3\n2 6\n4 1\n2 4\n6 2\n1 6\n4 2\n1 4\n4 3\n1 4\n4 3\n2 4\n6 2\n3 5\n6 1\n3 6\n5 3\n1 6\n6 1\n2 6\n4 2\n1 5\n6 2\n2 6\n6 3\n2 4\n4 2\n3 5\n6 1\n2 5\n5 3\n2 6\n5 1\n3 6\n4 3\n3 6\n6 3\n2 5\n6 1\n2 6",
"output": "Friendship is magic!^^"
},
{
"input": "76\n4 1\n5 2\n4 3\n5 2\n5 3\n5 2\n6 1\n4 2\n6 2\n5 3\n4 2\n6 2\n4 1\n4 2\n5 1\n5 1\n6 2\n5 2\n5 3\n6 3\n5 2\n4 3\n6 3\n6 1\n4 3\n6 2\n6 1\n4 1\n6 1\n5 3\n4 1\n5 3\n4 2\n5 2\n4 3\n6 1\n6 2\n5 2\n6 1\n5 3\n4 3\n5 1\n5 3\n4 3\n5 1\n5 1\n4 1\n4 1\n4 1\n4 3\n5 3\n6 3\n6 3\n5 2\n6 2\n6 3\n5 1\n6 3\n5 3\n6 1\n5 3\n4 1\n5 3\n6 1\n4 2\n6 2\n4 3\n4 1\n6 2\n4 3\n5 3\n5 2\n5 3\n5 1\n6 3\n5 2",
"output": "Mishka"
},
{
"input": "84\n3 6\n3 4\n2 5\n2 4\n1 6\n3 4\n1 5\n1 6\n3 5\n1 6\n2 4\n2 6\n2 6\n2 4\n3 5\n1 5\n3 6\n3 6\n3 4\n3 4\n2 6\n1 6\n1 6\n3 5\n3 4\n1 6\n3 4\n3 5\n2 4\n2 5\n2 5\n3 5\n1 6\n3 4\n2 6\n2 6\n3 4\n3 4\n2 5\n2 5\n2 4\n3 4\n2 5\n3 4\n3 4\n2 6\n2 6\n1 6\n2 4\n1 5\n3 4\n2 5\n2 5\n3 4\n2 4\n2 6\n2 6\n1 4\n3 5\n3 5\n2 4\n2 5\n3 4\n1 5\n1 5\n2 6\n1 5\n3 5\n2 4\n2 5\n3 4\n2 6\n1 6\n2 5\n3 5\n3 5\n3 4\n2 5\n2 6\n3 4\n1 6\n2 5\n2 6\n1 4",
"output": "Chris"
},
{
"input": "44\n6 1\n1 6\n5 2\n1 4\n6 2\n2 5\n5 3\n3 6\n5 2\n1 6\n4 1\n2 4\n6 1\n3 4\n6 3\n3 6\n4 3\n2 4\n6 1\n3 4\n6 1\n1 6\n4 1\n3 5\n6 1\n3 6\n4 1\n1 4\n4 2\n2 6\n6 1\n2 4\n6 2\n1 4\n6 2\n2 4\n5 2\n3 6\n6 3\n2 6\n5 3\n3 4\n5 3\n2 4",
"output": "Friendship is magic!^^"
},
{
"input": "42\n5 3\n5 1\n5 2\n4 1\n6 3\n6 1\n6 2\n4 1\n4 3\n4 1\n5 1\n5 3\n5 1\n4 1\n4 2\n6 1\n6 3\n5 1\n4 1\n4 1\n6 3\n4 3\n6 3\n5 2\n6 1\n4 1\n5 3\n4 3\n5 2\n6 3\n6 1\n5 1\n4 2\n4 3\n5 2\n5 3\n6 3\n5 2\n5 1\n5 3\n6 2\n6 1",
"output": "Mishka"
},
{
"input": "50\n3 6\n2 6\n1 4\n1 4\n1 4\n2 5\n3 4\n3 5\n2 6\n1 6\n3 5\n1 5\n2 6\n2 4\n2 4\n3 5\n1 6\n1 5\n1 5\n1 4\n3 5\n1 6\n3 5\n1 4\n1 5\n1 4\n3 6\n1 6\n1 4\n1 4\n1 4\n1 5\n3 6\n1 6\n1 6\n2 4\n1 5\n2 6\n2 5\n3 5\n3 6\n3 4\n2 4\n2 6\n3 4\n2 5\n3 6\n3 5\n2 4\n2 4",
"output": "Chris"
},
{
"input": "86\n6 3\n2 4\n6 3\n3 5\n6 3\n1 5\n5 2\n2 4\n4 3\n2 6\n4 1\n2 6\n5 2\n1 4\n5 1\n2 4\n4 1\n1 4\n6 2\n3 5\n4 2\n2 4\n6 2\n1 5\n5 3\n2 5\n5 1\n1 6\n6 1\n1 4\n4 3\n3 4\n5 2\n2 4\n5 3\n2 5\n4 3\n3 4\n4 1\n1 5\n6 3\n3 4\n4 3\n3 4\n4 1\n3 4\n5 1\n1 6\n4 2\n1 6\n5 1\n2 4\n5 1\n3 6\n4 1\n1 5\n5 2\n1 4\n4 3\n2 5\n5 1\n1 5\n6 2\n2 6\n4 2\n2 4\n4 1\n2 5\n5 3\n3 4\n5 1\n3 4\n6 3\n3 4\n4 3\n2 6\n6 2\n2 5\n5 2\n3 5\n4 2\n3 6\n6 2\n3 4\n4 2\n2 4",
"output": "Friendship is magic!^^"
},
{
"input": "84\n6 1\n6 3\n6 3\n4 1\n4 3\n4 2\n6 3\n5 3\n6 1\n6 3\n4 3\n5 2\n5 3\n5 1\n6 2\n6 2\n6 1\n4 1\n6 3\n5 2\n4 1\n5 3\n6 3\n4 2\n6 2\n6 3\n4 3\n4 1\n4 3\n5 1\n5 1\n5 1\n4 1\n6 1\n4 3\n6 2\n5 1\n5 1\n6 2\n5 2\n4 1\n6 1\n6 1\n6 3\n6 2\n4 3\n6 3\n6 2\n5 2\n5 1\n4 3\n6 2\n4 1\n6 2\n6 1\n5 2\n5 1\n6 2\n6 1\n5 3\n5 2\n6 1\n6 3\n5 2\n6 1\n6 3\n4 3\n5 1\n6 3\n6 1\n5 3\n4 3\n5 2\n5 1\n6 2\n5 3\n6 1\n5 1\n4 1\n5 1\n5 1\n5 2\n5 2\n5 1",
"output": "Mishka"
},
{
"input": "92\n1 5\n2 4\n3 5\n1 6\n2 5\n1 6\n3 6\n1 6\n2 4\n3 4\n3 4\n3 6\n1 5\n2 5\n1 5\n1 5\n2 6\n2 4\n3 6\n1 4\n1 6\n2 6\n3 4\n2 6\n2 6\n1 4\n3 5\n2 5\n2 6\n1 5\n1 4\n1 5\n3 6\n3 5\n2 5\n1 5\n3 5\n3 6\n2 6\n2 6\n1 5\n3 4\n2 4\n3 6\n2 5\n1 5\n2 4\n1 4\n2 6\n2 6\n2 6\n1 5\n3 6\n3 6\n2 5\n1 4\n2 4\n3 4\n1 5\n2 5\n2 4\n2 5\n3 5\n3 4\n3 6\n2 6\n3 5\n1 4\n3 4\n1 6\n3 6\n2 6\n1 4\n3 6\n3 6\n2 5\n2 6\n1 6\n2 6\n3 5\n2 5\n3 6\n2 5\n2 6\n1 5\n2 4\n1 4\n2 4\n1 5\n2 5\n2 5\n2 6",
"output": "Chris"
},
{
"input": "20\n5 1\n1 4\n4 3\n1 5\n4 2\n3 6\n6 2\n1 6\n4 1\n1 4\n5 2\n3 4\n5 1\n1 6\n5 1\n2 6\n6 3\n2 5\n6 2\n2 4",
"output": "Friendship is magic!^^"
},
{
"input": "100\n4 3\n4 3\n4 2\n4 3\n4 1\n4 3\n5 2\n5 2\n6 2\n4 2\n5 1\n4 2\n5 2\n6 1\n4 1\n6 3\n5 3\n5 1\n5 1\n5 1\n5 3\n6 1\n6 1\n4 1\n5 2\n5 2\n6 1\n6 3\n4 2\n4 1\n5 3\n4 1\n5 3\n5 1\n6 3\n6 3\n6 1\n5 2\n5 3\n5 3\n6 1\n4 1\n6 2\n6 1\n6 2\n6 3\n4 3\n4 3\n6 3\n4 2\n4 2\n5 3\n5 2\n5 2\n4 3\n5 3\n5 2\n4 2\n5 1\n4 2\n5 1\n5 3\n6 3\n5 3\n5 3\n4 2\n4 1\n4 2\n4 3\n6 3\n4 3\n6 2\n6 1\n5 3\n5 2\n4 1\n6 1\n5 2\n6 2\n4 2\n6 3\n4 3\n5 1\n6 3\n5 2\n4 3\n5 3\n5 3\n4 3\n6 3\n4 3\n4 1\n5 1\n6 2\n6 3\n5 3\n6 1\n6 3\n5 3\n6 1",
"output": "Mishka"
},
{
"input": "100\n1 5\n1 4\n1 5\n2 4\n2 6\n3 6\n3 5\n1 5\n2 5\n3 6\n3 5\n1 6\n1 4\n1 5\n1 6\n2 6\n1 5\n3 5\n3 4\n2 6\n2 6\n2 5\n3 4\n1 6\n1 4\n2 4\n1 5\n1 6\n3 5\n1 6\n2 6\n3 5\n1 6\n3 4\n3 5\n1 6\n3 6\n2 4\n2 4\n3 5\n2 6\n1 5\n3 5\n3 6\n2 4\n2 4\n2 6\n3 4\n3 4\n1 5\n1 4\n2 5\n3 4\n1 4\n2 6\n2 5\n2 4\n2 4\n2 5\n1 5\n1 6\n1 5\n1 5\n1 5\n1 6\n3 4\n2 4\n3 5\n3 5\n1 6\n3 5\n1 5\n1 6\n3 6\n3 4\n1 5\n3 5\n3 6\n1 4\n3 6\n1 5\n3 5\n3 6\n3 5\n1 4\n3 4\n2 4\n2 4\n2 5\n3 6\n3 5\n1 5\n2 4\n1 4\n3 4\n1 5\n3 4\n3 6\n3 5\n3 4",
"output": "Chris"
},
{
"input": "100\n4 3\n3 4\n5 1\n2 5\n5 3\n1 5\n6 3\n2 4\n5 2\n2 6\n5 2\n1 5\n6 3\n1 5\n6 3\n3 4\n5 2\n1 5\n6 1\n1 5\n4 2\n3 5\n6 3\n2 6\n6 3\n1 4\n6 2\n3 4\n4 1\n3 6\n5 1\n2 4\n5 1\n3 4\n6 2\n3 5\n4 1\n2 6\n4 3\n2 6\n5 2\n3 6\n6 2\n3 5\n4 3\n1 5\n5 3\n3 6\n4 2\n3 4\n6 1\n3 4\n5 2\n2 6\n5 2\n2 4\n6 2\n3 6\n4 3\n2 4\n4 3\n2 6\n4 2\n3 4\n6 3\n2 4\n6 3\n3 5\n5 2\n1 5\n6 3\n3 6\n4 3\n1 4\n5 2\n1 6\n4 1\n2 5\n4 1\n2 4\n4 2\n2 5\n6 1\n2 4\n6 3\n1 5\n4 3\n2 6\n6 3\n2 6\n5 3\n1 5\n4 1\n1 5\n6 2\n2 5\n5 1\n3 6\n4 3\n3 4",
"output": "Friendship is magic!^^"
},
{
"input": "99\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n2 1\n2 1\n1 3",
"output": "Mishka"
},
{
"input": "99\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6",
"output": "Mishka"
},
{
"input": "99\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1",
"output": "Chris"
},
{
"input": "99\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6",
"output": "Mishka"
},
{
"input": "100\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n2 1\n2 1\n2 1\n1 4",
"output": "Mishka"
},
{
"input": "100\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6",
"output": "Mishka"
},
{
"input": "100\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1\n6 1",
"output": "Chris"
},
{
"input": "100\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n2 1\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6\n1 6",
"output": "Mishka"
},
{
"input": "84\n6 2\n1 5\n6 2\n2 3\n5 5\n1 2\n3 4\n3 4\n6 5\n6 4\n2 5\n4 1\n1 2\n1 1\n1 4\n2 5\n5 6\n6 3\n2 4\n5 5\n2 6\n3 4\n5 1\n3 3\n5 5\n4 6\n4 6\n2 4\n4 1\n5 2\n2 2\n3 6\n3 3\n4 6\n1 1\n2 4\n6 5\n5 2\n6 5\n5 5\n2 5\n6 4\n1 1\n6 2\n3 6\n6 5\n4 4\n1 5\n5 6\n4 4\n3 5\n6 1\n3 4\n1 5\n4 6\n4 6\n4 1\n3 6\n6 2\n1 1\n4 5\n5 4\n5 3\n3 4\n6 4\n1 1\n5 2\n6 5\n6 1\n2 2\n2 4\n3 3\n4 6\n1 3\n6 6\n5 2\n1 6\n6 2\n6 6\n4 1\n3 6\n6 4\n2 3\n3 4",
"output": "Chris"
},
{
"input": "70\n3 4\n2 3\n2 3\n6 5\n6 6\n4 3\n2 3\n3 1\n3 5\n5 6\n1 6\n2 5\n5 3\n2 5\n4 6\n5 1\n6 1\n3 1\n3 3\n5 3\n2 1\n3 3\n6 4\n6 3\n4 3\n4 5\n3 5\n5 5\n5 2\n1 6\n3 4\n5 2\n2 4\n1 6\n4 3\n4 3\n6 2\n1 3\n1 5\n6 1\n3 1\n1 1\n1 3\n2 2\n3 2\n6 4\n1 1\n4 4\n3 1\n4 5\n4 2\n6 3\n4 4\n3 2\n1 2\n2 6\n3 3\n1 5\n1 1\n6 5\n2 2\n3 1\n5 4\n5 2\n6 4\n6 3\n6 6\n6 3\n3 3\n5 4",
"output": "Mishka"
},
{
"input": "56\n6 4\n3 4\n6 1\n3 3\n1 4\n2 3\n1 5\n2 5\n1 5\n5 5\n2 3\n1 1\n3 2\n3 5\n4 6\n4 4\n5 2\n4 3\n3 1\n3 6\n2 3\n3 4\n5 6\n5 2\n5 6\n1 5\n1 5\n4 1\n6 3\n2 2\n2 1\n5 5\n2 1\n4 1\n5 4\n2 5\n4 1\n6 2\n3 4\n4 2\n6 4\n5 4\n4 2\n4 3\n6 2\n6 2\n3 1\n1 4\n3 6\n5 1\n5 5\n3 6\n6 4\n2 3\n6 5\n3 3",
"output": "Mishka"
},
{
"input": "94\n2 4\n6 4\n1 6\n1 4\n5 1\n3 3\n4 3\n6 1\n6 5\n3 2\n2 3\n5 1\n5 3\n1 2\n4 3\n3 2\n2 3\n4 6\n1 3\n6 3\n1 1\n3 2\n4 3\n1 5\n4 6\n3 2\n6 3\n1 6\n1 1\n1 2\n3 5\n1 3\n3 5\n4 4\n4 2\n1 4\n4 5\n1 3\n1 2\n1 1\n5 4\n5 5\n6 1\n2 1\n2 6\n6 6\n4 2\n3 6\n1 6\n6 6\n1 5\n3 2\n1 2\n4 4\n6 4\n4 1\n1 5\n3 3\n1 3\n3 4\n4 4\n1 1\n2 5\n4 5\n3 1\n3 1\n3 6\n3 2\n1 4\n1 6\n6 3\n2 4\n1 1\n2 2\n2 2\n2 1\n5 4\n1 2\n6 6\n2 2\n3 3\n6 3\n6 3\n1 6\n2 3\n2 4\n2 3\n6 6\n2 6\n6 3\n3 5\n1 4\n1 1\n3 5",
"output": "Chris"
},
{
"input": "81\n4 2\n1 2\n2 3\n4 5\n6 2\n1 6\n3 6\n3 4\n4 6\n4 4\n3 5\n4 6\n3 6\n3 5\n3 1\n1 3\n5 3\n3 4\n1 1\n4 1\n1 2\n6 1\n1 3\n6 5\n4 5\n4 2\n4 5\n6 2\n1 2\n2 6\n5 2\n1 5\n2 4\n4 3\n5 4\n1 2\n5 3\n2 6\n6 4\n1 1\n1 3\n3 1\n3 1\n6 5\n5 5\n6 1\n6 6\n5 2\n1 3\n1 4\n2 3\n5 5\n3 1\n3 1\n4 4\n1 6\n6 4\n2 2\n4 6\n4 4\n2 6\n2 4\n2 4\n4 1\n1 6\n1 4\n1 3\n6 5\n5 1\n1 3\n5 1\n1 4\n3 5\n2 6\n1 3\n5 6\n3 5\n4 4\n5 5\n5 6\n4 3",
"output": "Chris"
},
{
"input": "67\n6 5\n3 6\n1 6\n5 3\n5 4\n5 1\n1 6\n1 1\n3 2\n4 4\n3 1\n4 1\n1 5\n5 3\n3 3\n6 4\n2 4\n2 2\n4 3\n1 4\n1 4\n6 1\n1 2\n2 2\n5 1\n6 2\n3 5\n5 5\n2 2\n6 5\n6 2\n4 4\n3 1\n4 2\n6 6\n6 4\n5 1\n2 2\n4 5\n5 5\n4 6\n1 5\n6 3\n4 4\n1 5\n6 4\n3 6\n3 4\n1 6\n2 4\n2 1\n2 5\n6 5\n6 4\n4 1\n3 2\n1 2\n5 1\n5 6\n1 5\n3 5\n3 1\n5 3\n3 2\n5 1\n4 6\n6 6",
"output": "Mishka"
},
{
"input": "55\n6 6\n6 5\n2 2\n2 2\n6 4\n5 5\n6 5\n5 3\n1 3\n2 2\n5 6\n3 3\n3 3\n6 5\n3 5\n5 5\n1 2\n1 1\n4 6\n1 2\n5 5\n6 2\n6 3\n1 2\n5 1\n1 3\n3 3\n4 4\n2 5\n1 1\n5 3\n4 3\n2 2\n4 5\n5 6\n4 5\n6 3\n1 6\n6 4\n3 6\n1 6\n5 2\n6 3\n2 3\n5 5\n4 3\n3 1\n4 2\n1 1\n2 5\n5 3\n2 2\n6 3\n4 5\n2 2",
"output": "Mishka"
},
{
"input": "92\n2 3\n1 3\n2 6\n5 1\n5 5\n3 2\n5 6\n2 5\n3 1\n3 6\n4 5\n2 5\n1 2\n2 3\n6 5\n3 6\n4 4\n6 2\n4 5\n4 4\n5 1\n6 1\n3 4\n3 5\n6 6\n3 2\n6 4\n2 2\n3 5\n6 4\n6 3\n6 6\n3 4\n3 3\n6 1\n5 4\n6 2\n2 6\n5 6\n1 4\n4 6\n6 3\n3 1\n4 1\n6 6\n3 5\n6 3\n6 1\n1 6\n3 2\n6 6\n4 3\n3 4\n1 3\n3 5\n5 3\n6 5\n4 3\n5 5\n4 1\n1 5\n6 4\n2 3\n2 3\n1 5\n1 2\n5 2\n4 3\n3 6\n5 5\n5 4\n1 4\n3 3\n1 6\n5 6\n5 4\n5 3\n1 1\n6 2\n5 5\n2 5\n4 3\n6 6\n5 1\n1 1\n4 6\n4 6\n3 1\n6 4\n2 4\n2 2\n2 1",
"output": "Chris"
},
{
"input": "79\n5 3\n4 6\n3 6\n2 1\n5 2\n2 3\n4 4\n6 2\n2 5\n1 6\n6 6\n2 6\n3 3\n4 5\n6 2\n2 1\n1 5\n5 1\n2 1\n2 6\n5 3\n6 2\n2 6\n2 3\n1 5\n4 4\n6 3\n5 2\n3 2\n1 3\n1 3\n6 3\n2 6\n3 6\n5 3\n4 5\n6 1\n3 5\n3 5\n6 5\n1 5\n4 2\n6 2\n2 3\n4 6\n3 6\n2 5\n4 4\n1 1\n4 6\n2 6\n6 4\n3 2\n4 1\n1 2\n6 4\n5 6\n1 4\n2 2\n5 4\n3 2\n1 2\n2 4\n2 5\n2 1\n3 6\n3 3\n1 1\n2 2\n4 4\n4 5\n3 3\n5 3\n6 2\n4 5\n6 5\n2 5\n5 6\n2 2",
"output": "Chris"
},
{
"input": "65\n1 1\n5 1\n2 2\n5 4\n4 5\n2 5\n3 2\n5 6\n6 3\n1 1\n6 1\n1 5\n1 1\n5 2\n6 4\n1 6\n1 1\n4 3\n2 3\n5 6\n4 4\n6 2\n1 3\n4 3\n1 3\n6 3\n3 5\n4 2\n4 1\n6 1\n3 2\n2 6\n3 2\n3 5\n6 3\n4 3\n1 5\n2 6\n1 3\n4 1\n4 1\n2 5\n2 5\n6 2\n5 3\n3 1\n3 3\n5 1\n2 4\n5 3\n3 3\n1 1\n6 3\n3 3\n5 1\n1 6\n4 5\n6 6\n5 5\n2 5\n4 1\n2 2\n1 4\n1 6\n6 5",
"output": "Mishka"
},
{
"input": "1\n1 1",
"output": "Friendship is magic!^^"
}
] | 1,673,644,278
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 69
| 46
| 0
|
n = int(input())
mishka = 0
chris = 0
for i in range(n):
mish, chri = map(int,input().split())
if mish > chri:
mishka = mishka + 1
elif chri > mish:
chris = chris + 1
if chris == mishka:
print("Friendship is magic!^^")
else:
if chris > mishka:
print("Chris")
elif mishka > chris:
print("Mishka")
|
Title: Mishka and Game
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Mishka is a little polar bear. As known, little bears loves spending their free time playing dice for chocolates. Once in a wonderful sunny morning, walking around blocks of ice, Mishka met her friend Chris, and they started playing the game.
Rules of the game are very simple: at first number of rounds *n* is defined. In every round each of the players throws a cubical dice with distinct numbers from 1 to 6 written on its faces. Player, whose value after throwing the dice is greater, wins the round. In case if player dice values are equal, no one of them is a winner.
In average, player, who won most of the rounds, is the winner of the game. In case if two players won the same number of rounds, the result of the game is draw.
Mishka is still very little and can't count wins and losses, so she asked you to watch their game and determine its result. Please help her!
Input Specification:
The first line of the input contains single integer *n* *n* (1<=≤<=*n*<=≤<=100) — the number of game rounds.
The next *n* lines contains rounds description. *i*-th of them contains pair of integers *m**i* and *c**i* (1<=≤<=*m**i*,<=<=*c**i*<=≤<=6) — values on dice upper face after Mishka's and Chris' throws in *i*-th round respectively.
Output Specification:
If Mishka is the winner of the game, print "Mishka" (without quotes) in the only line.
If Chris is the winner of the game, print "Chris" (without quotes) in the only line.
If the result of the game is draw, print "Friendship is magic!^^" (without quotes) in the only line.
Demo Input:
['3\n3 5\n2 1\n4 2\n', '2\n6 1\n1 6\n', '3\n1 5\n3 3\n2 2\n']
Demo Output:
['Mishka', 'Friendship is magic!^^', 'Chris']
Note:
In the first sample case Mishka loses the first round, but wins second and third rounds and thus she is the winner of the game.
In the second sample case Mishka wins the first round, Chris wins the second round, and the game ends with draw with score 1:1.
In the third sample case Chris wins the first round, but there is no winner of the next two rounds. The winner of the game is Chris.
|
```python
n = int(input())
mishka = 0
chris = 0
for i in range(n):
mish, chri = map(int,input().split())
if mish > chri:
mishka = mishka + 1
elif chri > mish:
chris = chris + 1
if chris == mishka:
print("Friendship is magic!^^")
else:
if chris > mishka:
print("Chris")
elif mishka > chris:
print("Mishka")
```
| 3
|
|
507
|
B
|
Amr and Pins
|
PROGRAMMING
| 1,400
|
[
"geometry",
"math"
] | null | null |
Amr loves Geometry. One day he came up with a very interesting problem.
Amr has a circle of radius *r* and center in point (*x*,<=*y*). He wants the circle center to be in new position (*x*',<=*y*').
In one step Amr can put a pin to the border of the circle in a certain point, then rotate the circle around that pin by any angle and finally remove the pin.
Help Amr to achieve his goal in minimum number of steps.
|
Input consists of 5 space-separated integers *r*, *x*, *y*, *x*' *y*' (1<=≤<=*r*<=≤<=105, <=-<=105<=≤<=*x*,<=*y*,<=*x*',<=*y*'<=≤<=105), circle radius, coordinates of original center of the circle and coordinates of destination center of the circle respectively.
|
Output a single integer — minimum number of steps required to move the center of the circle to the destination point.
|
[
"2 0 0 0 4\n",
"1 1 1 4 4\n",
"4 5 6 5 6\n"
] |
[
"1\n",
"3\n",
"0\n"
] |
In the first sample test the optimal way is to put a pin at point (0, 2) and rotate the circle by 180 degrees counter-clockwise (or clockwise, no matter).
<img class="tex-graphics" src="https://espresso.codeforces.com/4e40fd4cc24a2050a0488aa131e6244369328039.png" style="max-width: 100.0%;max-height: 100.0%;"/>
| 1,000
|
[
{
"input": "2 0 0 0 4",
"output": "1"
},
{
"input": "1 1 1 4 4",
"output": "3"
},
{
"input": "4 5 6 5 6",
"output": "0"
},
{
"input": "10 20 0 40 0",
"output": "1"
},
{
"input": "9 20 0 40 0",
"output": "2"
},
{
"input": "5 -1 -6 -5 1",
"output": "1"
},
{
"input": "99125 26876 -21414 14176 17443",
"output": "1"
},
{
"input": "8066 7339 19155 -90534 -60666",
"output": "8"
},
{
"input": "100000 -100000 -100000 100000 100000",
"output": "2"
},
{
"input": "10 20 0 41 0",
"output": "2"
},
{
"input": "25 -64 -6 -56 64",
"output": "2"
},
{
"input": "125 455 450 439 721",
"output": "2"
},
{
"input": "5 6 3 7 2",
"output": "1"
},
{
"input": "24 130 14786 3147 2140",
"output": "271"
},
{
"input": "125 -363 176 93 330",
"output": "2"
},
{
"input": "1 14 30 30 14",
"output": "12"
},
{
"input": "25 96 13 7 2",
"output": "2"
},
{
"input": "4 100000 -100000 100000 -100000",
"output": "0"
},
{
"input": "1 3 4 2 5",
"output": "1"
},
{
"input": "1 -3 3 2 6",
"output": "3"
},
{
"input": "2 7 20 13 -5",
"output": "7"
},
{
"input": "1 1 1 1 4",
"output": "2"
},
{
"input": "249 -54242 -30537 -45023 -89682",
"output": "121"
},
{
"input": "4 100000 -100000 100000 -99999",
"output": "1"
},
{
"input": "97741 23818 78751 97583 26933",
"output": "1"
},
{
"input": "56767 -29030 51625 79823 -56297",
"output": "2"
},
{
"input": "98260 13729 74998 23701 9253",
"output": "1"
},
{
"input": "67377 -80131 -90254 -57320 14102",
"output": "1"
},
{
"input": "1 100000 100000 100000 -100000",
"output": "100000"
},
{
"input": "19312 19470 82059 58064 62231",
"output": "2"
},
{
"input": "67398 -68747 -79056 -34193 29400",
"output": "1"
},
{
"input": "91099 37184 -71137 75650 -3655",
"output": "1"
},
{
"input": "46456 -2621 -23623 -98302 -99305",
"output": "2"
},
{
"input": "100 100000 -100000 100000 -99999",
"output": "1"
},
{
"input": "1 100000 -100000 100000 -100000",
"output": "0"
},
{
"input": "8 0 0 0 32",
"output": "2"
},
{
"input": "100000 100000 1 -100000 0",
"output": "2"
}
] | 1,641,754,383
| 2,147,483,647
|
PyPy 3
|
OK
|
TESTS
| 37
| 93
| 0
|
import math
def main():
r, x, y, a, b = [int(x) for x in input().split()]
d = ((a - x) ** 2 + (b - y) ** 2)**0.5
t = r << 1
ans = math.floor(d) // t
d = d - ans * t
if d > 0:
ans += 1
print(ans)
if __name__ == '__main__':
main()
|
Title: Amr and Pins
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Amr loves Geometry. One day he came up with a very interesting problem.
Amr has a circle of radius *r* and center in point (*x*,<=*y*). He wants the circle center to be in new position (*x*',<=*y*').
In one step Amr can put a pin to the border of the circle in a certain point, then rotate the circle around that pin by any angle and finally remove the pin.
Help Amr to achieve his goal in minimum number of steps.
Input Specification:
Input consists of 5 space-separated integers *r*, *x*, *y*, *x*' *y*' (1<=≤<=*r*<=≤<=105, <=-<=105<=≤<=*x*,<=*y*,<=*x*',<=*y*'<=≤<=105), circle radius, coordinates of original center of the circle and coordinates of destination center of the circle respectively.
Output Specification:
Output a single integer — minimum number of steps required to move the center of the circle to the destination point.
Demo Input:
['2 0 0 0 4\n', '1 1 1 4 4\n', '4 5 6 5 6\n']
Demo Output:
['1\n', '3\n', '0\n']
Note:
In the first sample test the optimal way is to put a pin at point (0, 2) and rotate the circle by 180 degrees counter-clockwise (or clockwise, no matter).
<img class="tex-graphics" src="https://espresso.codeforces.com/4e40fd4cc24a2050a0488aa131e6244369328039.png" style="max-width: 100.0%;max-height: 100.0%;"/>
|
```python
import math
def main():
r, x, y, a, b = [int(x) for x in input().split()]
d = ((a - x) ** 2 + (b - y) ** 2)**0.5
t = r << 1
ans = math.floor(d) // t
d = d - ans * t
if d > 0:
ans += 1
print(ans)
if __name__ == '__main__':
main()
```
| 3
|
|
989
|
C
|
A Mist of Florescence
|
PROGRAMMING
| 1,800
|
[
"constructive algorithms",
"graphs"
] | null | null |
"I've been here once," Mino exclaims with delight, "it's breathtakingly amazing."
"What is it like?"
"Look, Kanno, you've got your paintbrush, and I've got my words. Have a try, shall we?"
There are four kinds of flowers in the wood, Amaranths, Begonias, Centaureas and Dianthuses.
The wood can be represented by a rectangular grid of $n$ rows and $m$ columns. In each cell of the grid, there is exactly one type of flowers.
According to Mino, the numbers of connected components formed by each kind of flowers are $a$, $b$, $c$ and $d$ respectively. Two cells are considered in the same connected component if and only if a path exists between them that moves between cells sharing common edges and passes only through cells containing the same flowers.
You are to help Kanno depict such a grid of flowers, with $n$ and $m$ arbitrarily chosen under the constraints given below. It can be shown that at least one solution exists under the constraints of this problem.
Note that you can choose arbitrary $n$ and $m$ under the constraints below, they are not given in the input.
|
The first and only line of input contains four space-separated integers $a$, $b$, $c$ and $d$ ($1 \leq a, b, c, d \leq 100$) — the required number of connected components of Amaranths, Begonias, Centaureas and Dianthuses, respectively.
|
In the first line, output two space-separated integers $n$ and $m$ ($1 \leq n, m \leq 50$) — the number of rows and the number of columns in the grid respectively.
Then output $n$ lines each consisting of $m$ consecutive English letters, representing one row of the grid. Each letter should be among 'A', 'B', 'C' and 'D', representing Amaranths, Begonias, Centaureas and Dianthuses, respectively.
In case there are multiple solutions, print any. You can output each letter in either case (upper or lower).
|
[
"5 3 2 1\n",
"50 50 1 1\n",
"1 6 4 5\n"
] |
[
"4 7\nDDDDDDD\nDABACAD\nDBABACD\nDDDDDDD",
"4 50\nCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC\nABABABABABABABABABABABABABABABABABABABABABABABABAB\nBABABABABABABABABABABABABABABABABABABABABABABABABA\nDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD",
"7 7\nDDDDDDD\nDDDBDBD\nDDCDCDD\nDBDADBD\nDDCDCDD\nDBDBDDD\nDDDDDDD"
] |
In the first example, each cell of Amaranths, Begonias and Centaureas forms a connected component, while all the Dianthuses form one.
| 1,500
|
[
{
"input": "5 3 2 1",
"output": "5 13\nAABABBBBCDDAD\nABAABBBBCDADD\nAAAABBBBCDDAD\nAAAABCBBCDADD\nAAAABBBBCDDDD"
},
{
"input": "50 50 1 1",
"output": "10 50\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nABABABABABABABABABABABABABABABABABABABABABABABABAA\nBABABABABABABABABABABABABABABABABABABABABABABABABA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB\nCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC\nDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD\nDADADADADADADADADADADADADADADADADADADADADADADADADD\nADADADADADADADADADADADADADADADADADADADADADADADADAD\nDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD..."
},
{
"input": "1 6 4 5",
"output": "6 13\nAABABBCBCCDCD\nABAABBBBCCCCD\nAABABBCBCCDCD\nABAABCBBCDCCD\nAABABBBBCCDCD\nAAAABBBBCCCCD"
},
{
"input": "1 1 1 1",
"output": "2 4\nABCD\nABCD"
},
{
"input": "4 8 16 32",
"output": "16 32\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nABAAAAAAABAAAAAAAAAAAAAAABABAAAA\nBAAAAAAAAAAABAAAAAAAAAAABAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB\nBCBBBBBCBCBCBCBCBBBCBCBBBBBBBBBB\nCBCBBBBBBBBBCBBBCBBBCBBBBBCBBBCB\nBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB\nCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC\nCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCC\nDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDC\nCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC\nDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD\nDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD\nADDDDDDDDDDDDDDDADDDDDDDDDDD..."
},
{
"input": "1 1 1 50",
"output": "7 50\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB\nCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC\nCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCC\nDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDC\nCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC\nDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD"
},
{
"input": "19 58 20 18",
"output": "19 50\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nABABABABABAAABABABABABAAABABAAAAABABAAABABAAAAABAA\nAAAABABABAAABABABABABAAABAAABAAABAAAAAAABAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAABAAABABABAAABABABABAAAAAAABABAAABAAABAAABAAABABA\nABABAAABAAABABAAABAAAAABAAABABAAABAAAAABAAABAAAAAB\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB\nBBBCBBBBBBBBBCBBBCBCBBBBBBBBBCBBBCBBBBBBBBBBBCBCBB\nBBBBCBCBCBCBBBBBCBBBBBCBCBCBBBCBBBBB..."
},
{
"input": "100 100 100 100",
"output": "40 50\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAABAAABAAABAAABABABABABABAAABABABABABABAAAAABABAA\nAABAAAAAAAAAAABAAABAAABABABAAABABAAABABABABABABAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAABABABAAAAAAABABABABABAAABABABABABABAAAAAAABABA\nABABABAAABABABAAABABAAABAAABABABABABAAABABABABABAB\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nABABABAAABAAABABAAAAAAABAAAAAAABABAAABAAABAAAAABAA\nBABABABAAABABABABABAAABABABABAAABABAAABABABAAABABA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA..."
},
{
"input": "1 1 1 2",
"output": "2 7\nABCCDCD\nABCCCCD"
},
{
"input": "1 1 3 1",
"output": "3 7\nABBCBCD\nABCBBCD\nABBBBCD"
},
{
"input": "1 4 1 1",
"output": "4 7\nAABABCD\nABAABCD\nAABABCD\nAAAABCD"
},
{
"input": "5 1 1 1",
"output": "5 7\nABCDDAD\nABCDADD\nABCDDAD\nABCDADD\nABCDDDD"
},
{
"input": "1 4 7 3",
"output": "7 13\nAAAABBCBCCDCD\nABAABCBBCCCCD\nAAAABBCBCCCCD\nABAABCBBCCCCD\nAABABBCBCCCCD\nAAAABCBBCDCCD\nAAAABBBBCCCCD"
},
{
"input": "6 2 5 1",
"output": "6 13\nAAAABBCBCDDAD\nAAAABBBBCDADD\nAAAABBCBCDDAD\nAAAABCBBCDADD\nAABABBCBCDDAD\nAAAABBBBCDDDD"
},
{
"input": "1 5 6 3",
"output": "6 13\nAAAABBCBCCCCD\nABAABCBBCCCCD\nAABABBCBCCCCD\nABAABCBBCDCCD\nAABABBCBCCDCD\nAAAABBBBCCCCD"
},
{
"input": "4 1 4 5",
"output": "5 13\nABBCBCCDCDDAD\nABCBBCDCCDDDD\nABBBBCCDCDDAD\nABCBBCDCCDADD\nABBBBCCCCDDDD"
},
{
"input": "4 5 3 6",
"output": "6 16\nAAAABBCBCCDCDDAD\nABAABBBBCDCCDDDD\nAABABBCBCCDCDDAD\nABAABBBBCDCCDDDD\nAABABBBBCCDCDDAD\nAAAABBBBCCCCDDDD"
},
{
"input": "2 5 1 17",
"output": "13 17\nAAAAAAAAAAAAAAAAA\nABAAAAAAABAAAAAAA\nAABAAAAAAAAABAAAA\nAAAAAAAAAAAAAAAAA\nBBBBBBBBBBBBBBBBB\nCCCCCCCCCCCCCCCCC\nCDCDCDCDCDCDCDCDC\nDCDCDCDCDCDCDCDCC\nCCCCCCCCCCCCCCCCC\nDDDDDDDDDDDDDDDDD\nDDDDDDDDDDDDDDDDD\nDDADDDDDDDDDDDDDD\nDDDDDDDDDDDDDDDDD"
},
{
"input": "11 4 5 14",
"output": "14 16\nAAAABBBBCCDCDDDD\nABAABBBBCDCCDADD\nAAAABBBBCCDCDDAD\nAAAABBBBCDCCDADD\nAAAABBBBCCDCDDAD\nAAAABBBBCDCCDADD\nAAAABBBBCCDCDDAD\nAAAABCBBCDCCDDDD\nAAAABBCBCCDCDDDD\nABAABCBBCDCCDADD\nAAAABBBBCCDCDDAD\nAAAABCBBCDCCDADD\nAABABBBBCCDCDDAD\nAAAABBBBCCCCDDDD"
},
{
"input": "19 19 8 10",
"output": "16 19\nAAAAAAAAAAAAAAAAAAA\nABABABABABABABABABA\nBABABABABABABABABAA\nAAAAAAAAAAAAAAAAAAA\nBBBBBBBBBBBBBBBBBBB\nBBBCBBBBBBBBBCBBBCB\nBBCBBBCBCBBBBBCBBBB\nBBBBBBBBBBBBBBBBBBB\nCCCCCCCCCCCCCCCCCCC\nCCCDCCCCCDCCCDCCCDC\nCCCCDCDCCCDCCCDCDCC\nCCCCCCCCCCCCCCCCCCC\nDDDDDDDDDDDDDDDDDDD\nDADADADADADADADADAD\nADADADADADADADADADD\nDDDDDDDDDDDDDDDDDDD"
},
{
"input": "49 49 49 49",
"output": "16 49\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nABABABABABABABABABABABABABABABABABABABABABABABABA\nBABABABABABABABABABABABABABABABABABABABABABABABAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB\nBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCB\nCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBB\nBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB\nCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC\nCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDC..."
},
{
"input": "49 50 50 50",
"output": "16 50\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nABABABABABABABABABABABABABABABABABABABABABABABABAA\nBABABABABABABABABABABABABABABABABABABABABABABABABA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB\nBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBB\nCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCB\nBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB\nCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC\nCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD..."
},
{
"input": "50 50 51 50",
"output": "19 50\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nABABABABABABABABABABABABABABABABABABABABABABABABAA\nBABABABABABABABABABABABABABABABABABABABABABABABABA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB\nBBBCBBBBBCBCBBBBBCBBBCBBBCBBBBBBBCBCBBBCBBBBBCBBBB\nCBCBCBCBCBBBBBBBBBBBBBBBBBBBCBCBBBCBCBCBBBCBCBCBBB\nBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB\nBBCBCBBBBBCBBBCBBBCBCBCBCBCBCBCBCBCBCBBBCBBBBBCBCB\nBBBBBCBBBCBBBBBCBBBBBCBBBCBBBCBBBCBB..."
},
{
"input": "15 63 41 45",
"output": "19 50\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nABABABABABAAABABABABABAAABABAAAAABABAAABABAAAAABAA\nAAAABABABAAABABABABABAAABAAABAAABABABABABAAABAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAABAAABABABAAABABABABAAAAAAABABAAABAAABAAABAAABABA\nABABAAABAAABABAAABAAAAABAAABABAAABABAAABAAABAAAAAB\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB\nBBBCBCBCBCBCBCBCBCBCBCBBBCBBBCBBBCBCBCBCBCBCBCBCBB\nCBBBCBCBCBCBCBCBCBBBCBCBCBCBCBCBBBBB..."
},
{
"input": "45 36 25 13",
"output": "16 45\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nABAAABABABABAAABABABABABAAABABABABABAAAAABAAA\nBABABABABABABAAAAABABABABABABABABABABAAABABAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB\nBCBCBCBCBCBBBCBBBBBBBBBBBBBBBCBCBCBBBCBCBBBCB\nCBBBCBCBCBCBBBBBCBBBBBBBBBCBBBCBBBBBCBCBCBCBB\nBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB\nCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC\nCCCCCCCCCCCCCCCCCCCDCCCCCCCCCDCCCCCDCCCCCDCCC\nCCCCCCCCCCCCDCCCDCCCCCDCDCCCCCDCCC..."
},
{
"input": "31 41 59 26",
"output": "19 50\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nABABABABABABAAAAABAAABABABABABABABABAAABABABABABAA\nBABABABABABABAAABABAAABAAABAAABABABABAAABABABABABA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB\nBBBCBBBBBCBCBCBBBCBBBCBBBCBBBBBBBCBCBBBCBBBBBCBBBB\nCBCBCBCBCBCBBBBBBBBBBBBBCBBBCBCBBBCBCBCBBBCBCBCBBB\nBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB\nBBCBCBBBBBCBBBCBBBCBCBCBCBCBCBCBCBCBCBBBCBBBBBCBCB\nBCBBBCBBBCBBBCBCBBBBBCBBBCBBBCBCBCBC..."
},
{
"input": "18 90 64 16",
"output": "22 50\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nABABABABABABABABABABABABABABABABABABABABABABAAABAA\nAABABABABAAABABABABABABABAAABABABABABABABABABABAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAABABABABABABABABABABABABABABABAAABABABABABABABABA\nABABABABABABABAAABABAAABABABABABABABABABABABAAABAB\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB\nBBBBBCBCBCBBBCBBBBBCBCBCBBBCBCBCBBBCBBBCBCBCBCBCBB\nCBCBCBBBCBCBBBCBBBCBCBBBCBCBBBCBCBBB..."
},
{
"input": "77 88 99 1",
"output": "22 50\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nABABABABABABABABABABABABABABABABABABABABABAAAAABAA\nAABABABABAAABABABABABABABAAABABABABABABABABABABAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAABABABABABABABABABABABABAAABABAAABABABABABABABABA\nABABABABABABABAAABABAAABABABABABABABABABABABAAABAB\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB\nBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBB\nCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCB..."
},
{
"input": "99 100 1 100",
"output": "28 50\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAABAAABAAABAAABABABABABABAAABABABABABABAAAAABABAA\nAABAAAAAAAAAAABAAABAAABABABAAABABAAABABABABABABAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAABABABAAAAAAABABABABABAAABABABABABABAAAAAAABABA\nABABABAAABABABAAABABAAABAAABABABABABAAABABABABABAB\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nABABABAAABAAABABAAAAAAABAAAAAAABABAAABAAABAAAAABAA\nBABABABAAABABABABABAAABABABABAAABABAAABABABAAABABA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA..."
},
{
"input": "100 50 100 49",
"output": "28 50\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nABABABABABABABABABABABABABABABABABABABABABABABABAA\nBABABABABABABABABABABABABABABABABABABABABABABABABA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB\nBCBCBBBBBCBCBCBBBCBBBBBCBCBBBCBCBCBBBCBCBCBCBBBBBB\nBBBBCBCBCBCBBBCBCBCBCBCBBBCBCBCBCBBBCBCBCBCBCBCBBB\nBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB\nBBCBCBBBBBCBCBCBCBCBCBCBCBCBCBBBCBCBCBBBBBCBCBCBCB\nBCBBBBBCBCBCBBBCBCBBBCBCBCBBBBBCBCBB..."
}
] | 1,528,812,213
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 30
| 108
| 0
|
abcd = input().split(' ')
a = int(abcd[0])
b = int(abcd[1])
c = int(abcd[2])
d = int(abcd[3])
out = []
h = int(50 / 4)
for letter in 'D C B A'.split(' '):
for i in range(h):
out.append([letter for j in range(50)])
y = 0
for counts in [a - 1,b - 1,c - 1,d - 1]:
counter = 0
shift = 1
for q in range(3):
for x in range(49):
if counter == counts:
break
out[y + shift + x % 2][x] = ['A', 'B', 'C', 'D'][int(y / h)]
counter += 1
shift += 3
if counter == counts:
break
if counter < counts:
for i in range(counts - counter):
out[y + shift][2 * x] = ['A', 'B', 'C', 'D'][4 - int(y / h)]
y += h
print(4 * h, 50)
for line in out:
print(''.join(line))
|
Title: A Mist of Florescence
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
"I've been here once," Mino exclaims with delight, "it's breathtakingly amazing."
"What is it like?"
"Look, Kanno, you've got your paintbrush, and I've got my words. Have a try, shall we?"
There are four kinds of flowers in the wood, Amaranths, Begonias, Centaureas and Dianthuses.
The wood can be represented by a rectangular grid of $n$ rows and $m$ columns. In each cell of the grid, there is exactly one type of flowers.
According to Mino, the numbers of connected components formed by each kind of flowers are $a$, $b$, $c$ and $d$ respectively. Two cells are considered in the same connected component if and only if a path exists between them that moves between cells sharing common edges and passes only through cells containing the same flowers.
You are to help Kanno depict such a grid of flowers, with $n$ and $m$ arbitrarily chosen under the constraints given below. It can be shown that at least one solution exists under the constraints of this problem.
Note that you can choose arbitrary $n$ and $m$ under the constraints below, they are not given in the input.
Input Specification:
The first and only line of input contains four space-separated integers $a$, $b$, $c$ and $d$ ($1 \leq a, b, c, d \leq 100$) — the required number of connected components of Amaranths, Begonias, Centaureas and Dianthuses, respectively.
Output Specification:
In the first line, output two space-separated integers $n$ and $m$ ($1 \leq n, m \leq 50$) — the number of rows and the number of columns in the grid respectively.
Then output $n$ lines each consisting of $m$ consecutive English letters, representing one row of the grid. Each letter should be among 'A', 'B', 'C' and 'D', representing Amaranths, Begonias, Centaureas and Dianthuses, respectively.
In case there are multiple solutions, print any. You can output each letter in either case (upper or lower).
Demo Input:
['5 3 2 1\n', '50 50 1 1\n', '1 6 4 5\n']
Demo Output:
['4 7\nDDDDDDD\nDABACAD\nDBABACD\nDDDDDDD', '4 50\nCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC\nABABABABABABABABABABABABABABABABABABABABABABABABAB\nBABABABABABABABABABABABABABABABABABABABABABABABABA\nDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD', '7 7\nDDDDDDD\nDDDBDBD\nDDCDCDD\nDBDADBD\nDDCDCDD\nDBDBDDD\nDDDDDDD']
Note:
In the first example, each cell of Amaranths, Begonias and Centaureas forms a connected component, while all the Dianthuses form one.
|
```python
abcd = input().split(' ')
a = int(abcd[0])
b = int(abcd[1])
c = int(abcd[2])
d = int(abcd[3])
out = []
h = int(50 / 4)
for letter in 'D C B A'.split(' '):
for i in range(h):
out.append([letter for j in range(50)])
y = 0
for counts in [a - 1,b - 1,c - 1,d - 1]:
counter = 0
shift = 1
for q in range(3):
for x in range(49):
if counter == counts:
break
out[y + shift + x % 2][x] = ['A', 'B', 'C', 'D'][int(y / h)]
counter += 1
shift += 3
if counter == counts:
break
if counter < counts:
for i in range(counts - counter):
out[y + shift][2 * x] = ['A', 'B', 'C', 'D'][4 - int(y / h)]
y += h
print(4 * h, 50)
for line in out:
print(''.join(line))
```
| 3
|
|
281
|
A
|
Word Capitalization
|
PROGRAMMING
| 800
|
[
"implementation",
"strings"
] | null | null |
Capitalization is writing a word with its first letter as a capital letter. Your task is to capitalize the given word.
Note, that during capitalization all the letters except the first one remains unchanged.
|
A single line contains a non-empty word. This word consists of lowercase and uppercase English letters. The length of the word will not exceed 103.
|
Output the given word after capitalization.
|
[
"ApPLe\n",
"konjac\n"
] |
[
"ApPLe\n",
"Konjac\n"
] |
none
| 500
|
[
{
"input": "ApPLe",
"output": "ApPLe"
},
{
"input": "konjac",
"output": "Konjac"
},
{
"input": "a",
"output": "A"
},
{
"input": "A",
"output": "A"
},
{
"input": "z",
"output": "Z"
},
{
"input": "ABACABA",
"output": "ABACABA"
},
{
"input": "xYaPxPxHxGePfGtQySlNrLxSjDtNnTaRaEpAhPaQpWnDzMqGgRgEwJxGiBdZnMtHxFbObCaGiCeZkUqIgBhHtNvAqAlHpMnQhNeQbMyZrCdElVwHtKrPpJjIaHuIlYwHaRkAkUpPlOhNlBtXwDsKzPyHrPiUwNlXtTaPuMwTqYtJySgFoXvLiHbQwMjSvXsQfKhVlOxGdQkWjBhEyQvBjPoFkThNeRhTuIzFjInJtEfPjOlOsJpJuLgLzFnZmKvFgFrNsOnVqFcNiMfCqTpKnVyLwNqFiTySpWeTdFnWuTwDkRjVxNyQvTrOoEiExYiFaIrLoFmJfZcDkHuWjYfCeEqCvEsZiWnJaEmFbMjDvYwEeJeGcKbVbChGsIzNlExHzHiTlHcSaKxLuZxX",
"output": "XYaPxPxHxGePfGtQySlNrLxSjDtNnTaRaEpAhPaQpWnDzMqGgRgEwJxGiBdZnMtHxFbObCaGiCeZkUqIgBhHtNvAqAlHpMnQhNeQbMyZrCdElVwHtKrPpJjIaHuIlYwHaRkAkUpPlOhNlBtXwDsKzPyHrPiUwNlXtTaPuMwTqYtJySgFoXvLiHbQwMjSvXsQfKhVlOxGdQkWjBhEyQvBjPoFkThNeRhTuIzFjInJtEfPjOlOsJpJuLgLzFnZmKvFgFrNsOnVqFcNiMfCqTpKnVyLwNqFiTySpWeTdFnWuTwDkRjVxNyQvTrOoEiExYiFaIrLoFmJfZcDkHuWjYfCeEqCvEsZiWnJaEmFbMjDvYwEeJeGcKbVbChGsIzNlExHzHiTlHcSaKxLuZxX"
},
{
"input": "rZhIcQlXpNcPgXrOjTiOlMoTgXgIhCfMwZfWoFzGhEkQlOoMjIuShPlZfWkNnMyQfYdUhVgQuSmYoElEtZpDyHtOxXgCpWbZqSbYnPqBcNqRtPgCnJnAyIvNsAhRbNeVlMwZyRyJnFgIsCnSbOdLvUyIeOzQvRpMoMoHfNhHwKvTcHuYnYySfPmAiNwAiWdZnWlLvGfBbRbRrCrBqIgIdWkWiBsNyYkKdNxZdGaToSsDnXpRaGrKxBpQsCzBdQgZzBkGeHgGxNrIyQlSzWsTmSnZwOcHqQpNcQvJlPvKaPiQaMaYsQjUeCqQdCjPgUbDmWiJmNiXgExLqOcCtSwSePnUxIuZfIfBeWbEiVbXnUsPwWyAiXyRbZgKwOqFfCtQuKxEmVeRlAkOeXkO",
"output": "RZhIcQlXpNcPgXrOjTiOlMoTgXgIhCfMwZfWoFzGhEkQlOoMjIuShPlZfWkNnMyQfYdUhVgQuSmYoElEtZpDyHtOxXgCpWbZqSbYnPqBcNqRtPgCnJnAyIvNsAhRbNeVlMwZyRyJnFgIsCnSbOdLvUyIeOzQvRpMoMoHfNhHwKvTcHuYnYySfPmAiNwAiWdZnWlLvGfBbRbRrCrBqIgIdWkWiBsNyYkKdNxZdGaToSsDnXpRaGrKxBpQsCzBdQgZzBkGeHgGxNrIyQlSzWsTmSnZwOcHqQpNcQvJlPvKaPiQaMaYsQjUeCqQdCjPgUbDmWiJmNiXgExLqOcCtSwSePnUxIuZfIfBeWbEiVbXnUsPwWyAiXyRbZgKwOqFfCtQuKxEmVeRlAkOeXkO"
},
{
"input": "hDgZlUmLhYbLkLcNcKeOwJwTePbOvLaRvNzQbSbLsPeHqLhUqWtUbNdQfQqFfXeJqJwWuOrFnDdZiPxIkDyVmHbHvXfIlFqSgAcSyWbOlSlRuPhWdEpEzEeLnXwCtWuVcHaUeRgCiYsIvOaIgDnFuDbRnMoCmPrZfLeFpSjQaTfHgZwZvAzDuSeNwSoWuJvLqKqAuUxFaCxFfRcEjEsJpOfCtDiVrBqNsNwPuGoRgPzRpLpYnNyQxKaNnDnYiJrCrVcHlOxPiPcDbEgKfLwBjLhKcNeMgJhJmOiJvPfOaPaEuGqWvRbErKrIpDkEoQnKwJnTlStLyNsHyOjZfKoIjXwUvRrWpSyYhRpQdLqGmErAiNcGqAqIrTeTiMuPmCrEkHdBrLyCxPtYpRqD",
"output": "HDgZlUmLhYbLkLcNcKeOwJwTePbOvLaRvNzQbSbLsPeHqLhUqWtUbNdQfQqFfXeJqJwWuOrFnDdZiPxIkDyVmHbHvXfIlFqSgAcSyWbOlSlRuPhWdEpEzEeLnXwCtWuVcHaUeRgCiYsIvOaIgDnFuDbRnMoCmPrZfLeFpSjQaTfHgZwZvAzDuSeNwSoWuJvLqKqAuUxFaCxFfRcEjEsJpOfCtDiVrBqNsNwPuGoRgPzRpLpYnNyQxKaNnDnYiJrCrVcHlOxPiPcDbEgKfLwBjLhKcNeMgJhJmOiJvPfOaPaEuGqWvRbErKrIpDkEoQnKwJnTlStLyNsHyOjZfKoIjXwUvRrWpSyYhRpQdLqGmErAiNcGqAqIrTeTiMuPmCrEkHdBrLyCxPtYpRqD"
},
{
"input": "qUdLgGrJeGmIzIeZrCjUtBpYfRvNdXdRpGsThIsEmJjTiMqEwRxBeBaSxEuWrNvExKePjPnXhPzBpWnHiDhTvZhBuIjDnZpTcEkCvRkAcTmMuXhGgErWgFyGyToOyVwYlCuQpTfJkVdWmFyBqQhJjYtXrBbFdHzDlGsFbHmHbFgXgFhIyDhZyEqEiEwNxSeByBwLiVeSnCxIdHbGjOjJrZeVkOzGeMmQrJkVyGhDtCzOlPeAzGrBlWwEnAdUfVaIjNrRyJjCnHkUvFuKuKeKbLzSbEmUcXtVkZzXzKlOrPgQiDmCcCvIyAdBwOeUuLbRmScNcWxIkOkJuIsBxTrIqXhDzLcYdVtPgZdZfAxTmUtByGiTsJkSySjXdJvEwNmSmNoWsChPdAzJrBoW",
"output": "QUdLgGrJeGmIzIeZrCjUtBpYfRvNdXdRpGsThIsEmJjTiMqEwRxBeBaSxEuWrNvExKePjPnXhPzBpWnHiDhTvZhBuIjDnZpTcEkCvRkAcTmMuXhGgErWgFyGyToOyVwYlCuQpTfJkVdWmFyBqQhJjYtXrBbFdHzDlGsFbHmHbFgXgFhIyDhZyEqEiEwNxSeByBwLiVeSnCxIdHbGjOjJrZeVkOzGeMmQrJkVyGhDtCzOlPeAzGrBlWwEnAdUfVaIjNrRyJjCnHkUvFuKuKeKbLzSbEmUcXtVkZzXzKlOrPgQiDmCcCvIyAdBwOeUuLbRmScNcWxIkOkJuIsBxTrIqXhDzLcYdVtPgZdZfAxTmUtByGiTsJkSySjXdJvEwNmSmNoWsChPdAzJrBoW"
},
{
"input": "kHbApGoBcLmIwUlXkVgUmWzYeLoDbGaOkWbIuXoRwMfKuOoMzAoXrBoTvYxGrMbRjDuRxAbGsTnErIiHnHoLeRnTbFiRfDdOkNlWiAcOsChLdLqFqXlDpDoDtPxXqAmSvYgPvOcCpOlWtOjYwFkGkHuCaHwZcFdOfHjBmIxTeSiHkWjXyFcCtOlSuJsZkDxUgPeZkJwMmNpErUlBcGuMlJwKkWnOzFeFiSiPsEvMmQiCsYeHlLuHoMgBjFoZkXlObDkSoQcVyReTmRsFzRhTuIvCeBqVsQdQyTyZjStGrTyDcEcAgTgMiIcVkLbZbGvWeHtXwEqWkXfTcPyHhHjYwIeVxLyVmHmMkUsGiHmNnQuMsXaFyPpVqNrBhOiWmNkBbQuHvQdOjPjKiZcL",
"output": "KHbApGoBcLmIwUlXkVgUmWzYeLoDbGaOkWbIuXoRwMfKuOoMzAoXrBoTvYxGrMbRjDuRxAbGsTnErIiHnHoLeRnTbFiRfDdOkNlWiAcOsChLdLqFqXlDpDoDtPxXqAmSvYgPvOcCpOlWtOjYwFkGkHuCaHwZcFdOfHjBmIxTeSiHkWjXyFcCtOlSuJsZkDxUgPeZkJwMmNpErUlBcGuMlJwKkWnOzFeFiSiPsEvMmQiCsYeHlLuHoMgBjFoZkXlObDkSoQcVyReTmRsFzRhTuIvCeBqVsQdQyTyZjStGrTyDcEcAgTgMiIcVkLbZbGvWeHtXwEqWkXfTcPyHhHjYwIeVxLyVmHmMkUsGiHmNnQuMsXaFyPpVqNrBhOiWmNkBbQuHvQdOjPjKiZcL"
},
{
"input": "aHmRbLgNuWkLxLnWvUbYwTeZeYiOlLhTuOvKfLnVmCiPcMkSgVrYjZiLuRjCiXhAnVzVcTlVeJdBvPdDfFvHkTuIhCdBjEsXbVmGcLrPfNvRdFsZkSdNpYsJeIhIcNqSoLkOjUlYlDmXsOxPbQtIoUxFjGnRtBhFaJvBeEzHsAtVoQbAfYjJqReBiKeUwRqYrUjPjBoHkOkPzDwEwUgTxQxAvKzUpMhKyOhPmEhYhItQwPeKsKaKlUhGuMcTtSwFtXfJsDsFlTtOjVvVfGtBtFlQyIcBaMsPaJlPqUcUvLmReZiFbXxVtRhTzJkLkAjVqTyVuFeKlTyQgUzMsXjOxQnVfTaWmThEnEoIhZeZdStBkKeLpAhJnFoJvQyGwDiStLjEwGfZwBuWsEfC",
"output": "AHmRbLgNuWkLxLnWvUbYwTeZeYiOlLhTuOvKfLnVmCiPcMkSgVrYjZiLuRjCiXhAnVzVcTlVeJdBvPdDfFvHkTuIhCdBjEsXbVmGcLrPfNvRdFsZkSdNpYsJeIhIcNqSoLkOjUlYlDmXsOxPbQtIoUxFjGnRtBhFaJvBeEzHsAtVoQbAfYjJqReBiKeUwRqYrUjPjBoHkOkPzDwEwUgTxQxAvKzUpMhKyOhPmEhYhItQwPeKsKaKlUhGuMcTtSwFtXfJsDsFlTtOjVvVfGtBtFlQyIcBaMsPaJlPqUcUvLmReZiFbXxVtRhTzJkLkAjVqTyVuFeKlTyQgUzMsXjOxQnVfTaWmThEnEoIhZeZdStBkKeLpAhJnFoJvQyGwDiStLjEwGfZwBuWsEfC"
},
{
"input": "sLlZkDiDmEdNaXuUuJwHqYvRtOdGfTiTpEpAoSqAbJaChOiCvHgSwZwEuPkMmXiLcKdXqSsEyViEbZpZsHeZpTuXoGcRmOiQfBfApPjDqSqElWeSeOhUyWjLyNoRuYeGfGwNqUsQoTyVvWeNgNdZfDxGwGfLsDjIdInSqDlMuNvFaHbScZkTlVwNcJpEjMaPaOtFgJjBjOcLlLmDnQrShIrJhOcUmPnZhTxNeClQsZaEaVaReLyQpLwEqJpUwYhLiRzCzKfOoFeTiXzPiNbOsZaZaLgCiNnMkBcFwGgAwPeNyTxJcCtBgXcToKlWaWcBaIvBpNxPeClQlWeQqRyEtAkJdBtSrFdDvAbUlKyLdCuTtXxFvRcKnYnWzVdYqDeCmOqPxUaFjQdTdCtN",
"output": "SLlZkDiDmEdNaXuUuJwHqYvRtOdGfTiTpEpAoSqAbJaChOiCvHgSwZwEuPkMmXiLcKdXqSsEyViEbZpZsHeZpTuXoGcRmOiQfBfApPjDqSqElWeSeOhUyWjLyNoRuYeGfGwNqUsQoTyVvWeNgNdZfDxGwGfLsDjIdInSqDlMuNvFaHbScZkTlVwNcJpEjMaPaOtFgJjBjOcLlLmDnQrShIrJhOcUmPnZhTxNeClQsZaEaVaReLyQpLwEqJpUwYhLiRzCzKfOoFeTiXzPiNbOsZaZaLgCiNnMkBcFwGgAwPeNyTxJcCtBgXcToKlWaWcBaIvBpNxPeClQlWeQqRyEtAkJdBtSrFdDvAbUlKyLdCuTtXxFvRcKnYnWzVdYqDeCmOqPxUaFjQdTdCtN"
},
{
"input": "iRuStKvVhJdJbQwRoIuLiVdTpKaOqKfYlYwAzIpPtUwUtMeKyCaOlXmVrKwWeImYmVuXdLkRlHwFxKqZbZtTzNgOzDbGqTfZnKmUzAcIjDcEmQgYyFbEfWzRpKvCkDmAqDiIiRcLvMxWaJqCgYqXgIcLdNaZlBnXtJyKaMnEaWfXfXwTbDnAiYnWqKbAtDpYdUbZrCzWgRnHzYxFgCdDbOkAgTqBuLqMeStHcDxGnVhSgMzVeTaZoTfLjMxQfRuPcFqVlRyYdHyOdJsDoCeWrUuJyIiAqHwHyVpEeEoMaJwAoUfPtBeJqGhMaHiBjKwAlXoZpUsDhHgMxBkVbLcEvNtJbGnPsUwAvXrAkTlXwYvEnOpNeWyIkRnEnTrIyAcLkRgMyYcKrGiDaAyE",
"output": "IRuStKvVhJdJbQwRoIuLiVdTpKaOqKfYlYwAzIpPtUwUtMeKyCaOlXmVrKwWeImYmVuXdLkRlHwFxKqZbZtTzNgOzDbGqTfZnKmUzAcIjDcEmQgYyFbEfWzRpKvCkDmAqDiIiRcLvMxWaJqCgYqXgIcLdNaZlBnXtJyKaMnEaWfXfXwTbDnAiYnWqKbAtDpYdUbZrCzWgRnHzYxFgCdDbOkAgTqBuLqMeStHcDxGnVhSgMzVeTaZoTfLjMxQfRuPcFqVlRyYdHyOdJsDoCeWrUuJyIiAqHwHyVpEeEoMaJwAoUfPtBeJqGhMaHiBjKwAlXoZpUsDhHgMxBkVbLcEvNtJbGnPsUwAvXrAkTlXwYvEnOpNeWyIkRnEnTrIyAcLkRgMyYcKrGiDaAyE"
},
{
"input": "cRtJkOxHzUbJcDdHzJtLbVmSoWuHoTkVrPqQaVmXeBrHxJbQfNrQbAaMrEhVdQnPxNyCjErKxPoEdWkVrBbDeNmEgBxYiBtWdAfHiLuSwIxJuHpSkAxPoYdNkGoLySsNhUmGoZhDzAfWhJdPlJzQkZbOnMtTkClIoCqOlIcJcMlGjUyOiEmHdYfIcPtTgQhLlLcPqQjAnQnUzHpCaQsCnYgQsBcJrQwBnWsIwFfSfGuYgTzQmShFpKqEeRlRkVfMuZbUsDoFoPrNuNwTtJqFkRiXxPvKyElDzLoUnIwAaBaOiNxMpEvPzSpGpFhMtGhGdJrFnZmNiMcUfMtBnDuUnXqDcMsNyGoLwLeNnLfRsIwRfBtXkHrFcPsLdXaAoYaDzYnZuQeVcZrElWmP",
"output": "CRtJkOxHzUbJcDdHzJtLbVmSoWuHoTkVrPqQaVmXeBrHxJbQfNrQbAaMrEhVdQnPxNyCjErKxPoEdWkVrBbDeNmEgBxYiBtWdAfHiLuSwIxJuHpSkAxPoYdNkGoLySsNhUmGoZhDzAfWhJdPlJzQkZbOnMtTkClIoCqOlIcJcMlGjUyOiEmHdYfIcPtTgQhLlLcPqQjAnQnUzHpCaQsCnYgQsBcJrQwBnWsIwFfSfGuYgTzQmShFpKqEeRlRkVfMuZbUsDoFoPrNuNwTtJqFkRiXxPvKyElDzLoUnIwAaBaOiNxMpEvPzSpGpFhMtGhGdJrFnZmNiMcUfMtBnDuUnXqDcMsNyGoLwLeNnLfRsIwRfBtXkHrFcPsLdXaAoYaDzYnZuQeVcZrElWmP"
},
{
"input": "wVaCsGxZrBbFnTbKsCoYlAvUkIpBaYpYmJkMlPwCaFvUkDxAiJgIqWsFqZlFvTtAnGzEwXbYiBdFfFxRiDoUkLmRfAwOlKeOlKgXdUnVqLkTuXtNdQpBpXtLvZxWoBeNePyHcWmZyRiUkPlRqYiQdGeXwOhHbCqVjDcEvJmBkRwWnMqPjXpUsIyXqGjHsEsDwZiFpIbTkQaUlUeFxMwJzSaHdHnDhLaLdTuYgFuJsEcMmDvXyPjKsSeBaRwNtPuOuBtNeOhQdVgKzPzOdYtPjPfDzQzHoWcYjFbSvRgGdGsCmGnQsErToBkCwGeQaCbBpYkLhHxTbUvRnJpZtXjKrHdRiUmUbSlJyGaLnWsCrJbBnSjFaZrIzIrThCmGhQcMsTtOxCuUcRaEyPaG",
"output": "WVaCsGxZrBbFnTbKsCoYlAvUkIpBaYpYmJkMlPwCaFvUkDxAiJgIqWsFqZlFvTtAnGzEwXbYiBdFfFxRiDoUkLmRfAwOlKeOlKgXdUnVqLkTuXtNdQpBpXtLvZxWoBeNePyHcWmZyRiUkPlRqYiQdGeXwOhHbCqVjDcEvJmBkRwWnMqPjXpUsIyXqGjHsEsDwZiFpIbTkQaUlUeFxMwJzSaHdHnDhLaLdTuYgFuJsEcMmDvXyPjKsSeBaRwNtPuOuBtNeOhQdVgKzPzOdYtPjPfDzQzHoWcYjFbSvRgGdGsCmGnQsErToBkCwGeQaCbBpYkLhHxTbUvRnJpZtXjKrHdRiUmUbSlJyGaLnWsCrJbBnSjFaZrIzIrThCmGhQcMsTtOxCuUcRaEyPaG"
},
{
"input": "kEiLxLmPjGzNoGkJdBlAfXhThYhMsHmZoZbGyCvNiUoLoZdAxUbGyQiEfXvPzZzJrPbEcMpHsMjIkRrVvDvQtHuKmXvGpQtXbPzJpFjJdUgWcPdFxLjLtXgVpEiFhImHnKkGiWnZbJqRjCyEwHsNbYfYfTyBaEuKlCtWnOqHmIgGrFmQiYrBnLiFcGuZxXlMfEuVoCxPkVrQvZoIpEhKsYtXrPxLcSfQqXsWaDgVlOnAzUvAhOhMrJfGtWcOwQfRjPmGhDyAeXrNqBvEiDfCiIvWxPjTwPlXpVsMjVjUnCkXgBuWnZaDyJpWkCfBrWnHxMhJgItHdRqNrQaEeRjAuUwRkUdRhEeGlSqVqGmOjNcUhFfXjCmWzBrGvIuZpRyWkWiLyUwFpYjNmNfV",
"output": "KEiLxLmPjGzNoGkJdBlAfXhThYhMsHmZoZbGyCvNiUoLoZdAxUbGyQiEfXvPzZzJrPbEcMpHsMjIkRrVvDvQtHuKmXvGpQtXbPzJpFjJdUgWcPdFxLjLtXgVpEiFhImHnKkGiWnZbJqRjCyEwHsNbYfYfTyBaEuKlCtWnOqHmIgGrFmQiYrBnLiFcGuZxXlMfEuVoCxPkVrQvZoIpEhKsYtXrPxLcSfQqXsWaDgVlOnAzUvAhOhMrJfGtWcOwQfRjPmGhDyAeXrNqBvEiDfCiIvWxPjTwPlXpVsMjVjUnCkXgBuWnZaDyJpWkCfBrWnHxMhJgItHdRqNrQaEeRjAuUwRkUdRhEeGlSqVqGmOjNcUhFfXjCmWzBrGvIuZpRyWkWiLyUwFpYjNmNfV"
},
{
"input": "eIhDoLmDeReKqXsHcVgFxUqNfScAiQnFrTlCgSuTtXiYvBxKaPaGvUeYfSgHqEaWcHxKpFaSlCxGqAmNeFcIzFcZsBiVoZhUjXaDaIcKoBzYdIlEnKfScRqSkYpPtVsVhXsBwUsUfAqRoCkBxWbHgDiCkRtPvUwVgDjOzObYwNiQwXlGnAqEkHdSqLgUkOdZiWaHqQnOhUnDhIzCiQtVcJlGoRfLuVlFjWqSuMsLgLwOdZvKtWdRuRqDoBoInKqPbJdXpIqLtFlMlDaWgSiKbFpCxOnQeNeQzXeKsBzIjCyPxCmBnYuHzQoYxZgGzSgGtZiTeQmUeWlNzZeKiJbQmEjIiDhPeSyZlNdHpZnIkPdJzSeJpPiXxToKyBjJfPwNzZpWzIzGySqPxLtI",
"output": "EIhDoLmDeReKqXsHcVgFxUqNfScAiQnFrTlCgSuTtXiYvBxKaPaGvUeYfSgHqEaWcHxKpFaSlCxGqAmNeFcIzFcZsBiVoZhUjXaDaIcKoBzYdIlEnKfScRqSkYpPtVsVhXsBwUsUfAqRoCkBxWbHgDiCkRtPvUwVgDjOzObYwNiQwXlGnAqEkHdSqLgUkOdZiWaHqQnOhUnDhIzCiQtVcJlGoRfLuVlFjWqSuMsLgLwOdZvKtWdRuRqDoBoInKqPbJdXpIqLtFlMlDaWgSiKbFpCxOnQeNeQzXeKsBzIjCyPxCmBnYuHzQoYxZgGzSgGtZiTeQmUeWlNzZeKiJbQmEjIiDhPeSyZlNdHpZnIkPdJzSeJpPiXxToKyBjJfPwNzZpWzIzGySqPxLtI"
},
{
"input": "uOoQzIeTwYeKpJtGoUdNiXbPgEwVsZkAnJcArHxIpEnEhZwQhZvAiOuLeMkVqLeDsAyKeYgFxGmRoLaRsZjAeXgNfYhBkHeDrHdPuTuYhKmDlAvYzYxCdYgYfVaYlGeVqTeSfBxQePbQrKsTaIkGzMjFrQlJuYaMxWpQkLdEcDsIiMnHnDtThRvAcKyGwBsHqKdXpJfIeTeZtYjFbMeUoXoXzGrShTwSwBpQlKeDrZdCjRqNtXoTsIzBkWbMsObTtDvYaPhUeLeHqHeMpZmTaCcIqXzAmGnPfNdDaFhOqWqDrWuFiBpRjZrQmAdViOuMbFfRyXyWfHgRkGpPnDrEqQcEmHcKpEvWlBrOtJbUaXbThJaSxCbVoGvTmHvZrHvXpCvLaYbRiHzYuQyX",
"output": "UOoQzIeTwYeKpJtGoUdNiXbPgEwVsZkAnJcArHxIpEnEhZwQhZvAiOuLeMkVqLeDsAyKeYgFxGmRoLaRsZjAeXgNfYhBkHeDrHdPuTuYhKmDlAvYzYxCdYgYfVaYlGeVqTeSfBxQePbQrKsTaIkGzMjFrQlJuYaMxWpQkLdEcDsIiMnHnDtThRvAcKyGwBsHqKdXpJfIeTeZtYjFbMeUoXoXzGrShTwSwBpQlKeDrZdCjRqNtXoTsIzBkWbMsObTtDvYaPhUeLeHqHeMpZmTaCcIqXzAmGnPfNdDaFhOqWqDrWuFiBpRjZrQmAdViOuMbFfRyXyWfHgRkGpPnDrEqQcEmHcKpEvWlBrOtJbUaXbThJaSxCbVoGvTmHvZrHvXpCvLaYbRiHzYuQyX"
},
{
"input": "lZqBqKeGvNdSeYuWxRiVnFtYbKuJwQtUcKnVtQhAlOeUzMaAuTaEnDdPfDcNyHgEoBmYjZyFePeJrRiKyAzFnBfAuGiUyLrIeLrNhBeBdVcEeKgCcBrQzDsPwGcNnZvTsEaYmFfMeOmMdNuZbUtDoQoNcGwDqEkEjIdQaPwAxJbXeNxOgKgXoEbZiIsVkRrNpNyAkLeHkNfEpLuQvEcMbIoGaDzXbEtNsLgGfOkZaFiUsOvEjVeCaMcZqMzKeAdXxJsVeCrZaFpJtZxInQxFaSmGgSsVyGeLlFgFqTpIbAvPkIfJrVcJeBxSdEvPyVwIjHpYrLrKqLnAmCuGmPoZrSbOtGaLaTmBmSuUyAmAsRiMqOtRjJhPhAfXaJnTpLbFqPmJgFcBxImTqIiJ",
"output": "LZqBqKeGvNdSeYuWxRiVnFtYbKuJwQtUcKnVtQhAlOeUzMaAuTaEnDdPfDcNyHgEoBmYjZyFePeJrRiKyAzFnBfAuGiUyLrIeLrNhBeBdVcEeKgCcBrQzDsPwGcNnZvTsEaYmFfMeOmMdNuZbUtDoQoNcGwDqEkEjIdQaPwAxJbXeNxOgKgXoEbZiIsVkRrNpNyAkLeHkNfEpLuQvEcMbIoGaDzXbEtNsLgGfOkZaFiUsOvEjVeCaMcZqMzKeAdXxJsVeCrZaFpJtZxInQxFaSmGgSsVyGeLlFgFqTpIbAvPkIfJrVcJeBxSdEvPyVwIjHpYrLrKqLnAmCuGmPoZrSbOtGaLaTmBmSuUyAmAsRiMqOtRjJhPhAfXaJnTpLbFqPmJgFcBxImTqIiJ"
},
{
"input": "P",
"output": "P"
},
{
"input": "Xyzzy",
"output": "Xyzzy"
},
{
"input": "Zzz",
"output": "Zzz"
},
{
"input": "Zp",
"output": "Zp"
}
] | 1,698,055,745
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 25
| 92
| 0
|
s = input();a = s[0];b = s[1:]
print(a.upper(),b,sep='')
|
Title: Word Capitalization
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Capitalization is writing a word with its first letter as a capital letter. Your task is to capitalize the given word.
Note, that during capitalization all the letters except the first one remains unchanged.
Input Specification:
A single line contains a non-empty word. This word consists of lowercase and uppercase English letters. The length of the word will not exceed 103.
Output Specification:
Output the given word after capitalization.
Demo Input:
['ApPLe\n', 'konjac\n']
Demo Output:
['ApPLe\n', 'Konjac\n']
Note:
none
|
```python
s = input();a = s[0];b = s[1:]
print(a.upper(),b,sep='')
```
| 3
|
|
723
|
A
|
The New Year: Meeting Friends
|
PROGRAMMING
| 800
|
[
"implementation",
"math",
"sortings"
] | null | null |
There are three friend living on the straight line *Ox* in Lineland. The first friend lives at the point *x*1, the second friend lives at the point *x*2, and the third friend lives at the point *x*3. They plan to celebrate the New Year together, so they need to meet at one point. What is the minimum total distance they have to travel in order to meet at some point and celebrate the New Year?
It's guaranteed that the optimal answer is always integer.
|
The first line of the input contains three distinct integers *x*1, *x*2 and *x*3 (1<=≤<=*x*1,<=*x*2,<=*x*3<=≤<=100) — the coordinates of the houses of the first, the second and the third friends respectively.
|
Print one integer — the minimum total distance the friends need to travel in order to meet together.
|
[
"7 1 4\n",
"30 20 10\n"
] |
[
"6\n",
"20\n"
] |
In the first sample, friends should meet at the point 4. Thus, the first friend has to travel the distance of 3 (from the point 7 to the point 4), the second friend also has to travel the distance of 3 (from the point 1 to the point 4), while the third friend should not go anywhere because he lives at the point 4.
| 500
|
[
{
"input": "7 1 4",
"output": "6"
},
{
"input": "30 20 10",
"output": "20"
},
{
"input": "1 4 100",
"output": "99"
},
{
"input": "100 1 91",
"output": "99"
},
{
"input": "1 45 100",
"output": "99"
},
{
"input": "1 2 3",
"output": "2"
},
{
"input": "71 85 88",
"output": "17"
},
{
"input": "30 38 99",
"output": "69"
},
{
"input": "23 82 95",
"output": "72"
},
{
"input": "22 41 47",
"output": "25"
},
{
"input": "9 94 77",
"output": "85"
},
{
"input": "1 53 51",
"output": "52"
},
{
"input": "25 97 93",
"output": "72"
},
{
"input": "42 53 51",
"output": "11"
},
{
"input": "81 96 94",
"output": "15"
},
{
"input": "21 5 93",
"output": "88"
},
{
"input": "50 13 75",
"output": "62"
},
{
"input": "41 28 98",
"output": "70"
},
{
"input": "69 46 82",
"output": "36"
},
{
"input": "87 28 89",
"output": "61"
},
{
"input": "44 45 40",
"output": "5"
},
{
"input": "86 97 68",
"output": "29"
},
{
"input": "43 92 30",
"output": "62"
},
{
"input": "16 70 1",
"output": "69"
},
{
"input": "40 46 19",
"output": "27"
},
{
"input": "71 38 56",
"output": "33"
},
{
"input": "82 21 80",
"output": "61"
},
{
"input": "75 8 35",
"output": "67"
},
{
"input": "75 24 28",
"output": "51"
},
{
"input": "78 23 56",
"output": "55"
},
{
"input": "85 31 10",
"output": "75"
},
{
"input": "76 50 9",
"output": "67"
},
{
"input": "95 37 34",
"output": "61"
},
{
"input": "84 61 35",
"output": "49"
},
{
"input": "87 85 37",
"output": "50"
},
{
"input": "1 3 2",
"output": "2"
},
{
"input": "4 2 6",
"output": "4"
},
{
"input": "6 9 3",
"output": "6"
},
{
"input": "12 4 8",
"output": "8"
},
{
"input": "15 10 5",
"output": "10"
},
{
"input": "1 50 17",
"output": "49"
},
{
"input": "10 5 15",
"output": "10"
},
{
"input": "8 1 9",
"output": "8"
},
{
"input": "3 5 4",
"output": "2"
},
{
"input": "2 1 3",
"output": "2"
},
{
"input": "1 8 2",
"output": "7"
},
{
"input": "1 100 2",
"output": "99"
},
{
"input": "1 4 6",
"output": "5"
}
] | 1,693,930,881
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 48
| 46
| 0
|
x,y,z=map(int,input().split(' '))
distance =[abs(x-y),abs(x-z),abs(z-y)]
min_distance=max(distance)
print(min_distance)
|
Title: The New Year: Meeting Friends
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
There are three friend living on the straight line *Ox* in Lineland. The first friend lives at the point *x*1, the second friend lives at the point *x*2, and the third friend lives at the point *x*3. They plan to celebrate the New Year together, so they need to meet at one point. What is the minimum total distance they have to travel in order to meet at some point and celebrate the New Year?
It's guaranteed that the optimal answer is always integer.
Input Specification:
The first line of the input contains three distinct integers *x*1, *x*2 and *x*3 (1<=≤<=*x*1,<=*x*2,<=*x*3<=≤<=100) — the coordinates of the houses of the first, the second and the third friends respectively.
Output Specification:
Print one integer — the minimum total distance the friends need to travel in order to meet together.
Demo Input:
['7 1 4\n', '30 20 10\n']
Demo Output:
['6\n', '20\n']
Note:
In the first sample, friends should meet at the point 4. Thus, the first friend has to travel the distance of 3 (from the point 7 to the point 4), the second friend also has to travel the distance of 3 (from the point 1 to the point 4), while the third friend should not go anywhere because he lives at the point 4.
|
```python
x,y,z=map(int,input().split(' '))
distance =[abs(x-y),abs(x-z),abs(z-y)]
min_distance=max(distance)
print(min_distance)
```
| 3
|
|
390
|
A
|
Inna and Alarm Clock
|
PROGRAMMING
| 0
|
[
"implementation"
] | null | null |
Inna loves sleeping very much, so she needs *n* alarm clocks in total to wake up. Let's suppose that Inna's room is a 100<=×<=100 square with the lower left corner at point (0,<=0) and with the upper right corner at point (100,<=100). Then the alarm clocks are points with integer coordinates in this square.
The morning has come. All *n* alarm clocks in Inna's room are ringing, so Inna wants to turn them off. For that Inna has come up with an amusing game:
- First Inna chooses a type of segments that she will use throughout the game. The segments can be either vertical or horizontal. - Then Inna makes multiple moves. In a single move, Inna can paint a segment of any length on the plane, she chooses its type at the beginning of the game (either vertical or horizontal), then all alarm clocks that are on this segment switch off. The game ends when all the alarm clocks are switched off.
Inna is very sleepy, so she wants to get through the alarm clocks as soon as possible. Help her, find the minimum number of moves in the game that she needs to turn off all the alarm clocks!
|
The first line of the input contains integer *n* (1<=≤<=*n*<=≤<=105) — the number of the alarm clocks. The next *n* lines describe the clocks: the *i*-th line contains two integers *x**i*, *y**i* — the coordinates of the *i*-th alarm clock (0<=≤<=*x**i*,<=*y**i*<=≤<=100).
Note that a single point in the room can contain any number of alarm clocks and the alarm clocks can lie on the sides of the square that represents the room.
|
In a single line print a single integer — the minimum number of segments Inna will have to draw if she acts optimally.
|
[
"4\n0 0\n0 1\n0 2\n1 0\n",
"4\n0 0\n0 1\n1 0\n1 1\n",
"4\n1 1\n1 2\n2 3\n3 3\n"
] |
[
"2\n",
"2\n",
"3\n"
] |
In the first sample, Inna first chooses type "vertical segments", and then she makes segments with ends at : (0, 0), (0, 2); and, for example, (1, 0), (1, 1). If she paints horizontal segments, she will need at least 3 segments.
In the third sample it is important to note that Inna doesn't have the right to change the type of the segments during the game. That's why she will need 3 horizontal or 3 vertical segments to end the game.
| 500
|
[
{
"input": "4\n0 0\n0 1\n0 2\n1 0",
"output": "2"
},
{
"input": "4\n0 0\n0 1\n1 0\n1 1",
"output": "2"
},
{
"input": "4\n1 1\n1 2\n2 3\n3 3",
"output": "3"
},
{
"input": "1\n0 0",
"output": "1"
},
{
"input": "42\n28 87\n26 16\n59 90\n47 61\n28 83\n36 30\n67 10\n6 95\n9 49\n86 94\n52 24\n74 9\n86 24\n28 51\n25 99\n40 98\n57 33\n18 96\n43 36\n3 79\n4 86\n38 61\n25 61\n6 100\n58 81\n28 19\n64 4\n3 40\n2 56\n41 49\n97 100\n86 34\n42 36\n44 40\n14 85\n21 60\n76 99\n64 47\n69 13\n49 37\n97 37\n3 70",
"output": "31"
},
{
"input": "21\n54 85\n69 37\n42 87\n53 18\n28 22\n13 3\n62 97\n38 91\n67 19\n100 79\n29 18\n48 40\n68 84\n44 20\n37 34\n73 53\n21 5\n20 73\n24 94\n23 52\n7 55",
"output": "20"
},
{
"input": "19\n1 1\n1 2\n1 3\n1 4\n1 5\n1 6\n1 7\n1 8\n1 9\n1 10\n1 11\n1 12\n1 13\n1 14\n1 15\n1 16\n1 17\n1 18\n1 19",
"output": "1"
},
{
"input": "12\n1 1\n1 3\n1 5\n2 1\n2 2\n2 4\n3 1\n3 3\n3 5\n4 1\n4 2\n4 3",
"output": "4"
}
] | 1,654,092,978
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 19
| 171
| 0
|
h=set()
v=set()
for i in range(int(input())):
k = input().split()
v.add(k[0])
h.add(k[1])
print(min(len(v),len(h)))
|
Title: Inna and Alarm Clock
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Inna loves sleeping very much, so she needs *n* alarm clocks in total to wake up. Let's suppose that Inna's room is a 100<=×<=100 square with the lower left corner at point (0,<=0) and with the upper right corner at point (100,<=100). Then the alarm clocks are points with integer coordinates in this square.
The morning has come. All *n* alarm clocks in Inna's room are ringing, so Inna wants to turn them off. For that Inna has come up with an amusing game:
- First Inna chooses a type of segments that she will use throughout the game. The segments can be either vertical or horizontal. - Then Inna makes multiple moves. In a single move, Inna can paint a segment of any length on the plane, she chooses its type at the beginning of the game (either vertical or horizontal), then all alarm clocks that are on this segment switch off. The game ends when all the alarm clocks are switched off.
Inna is very sleepy, so she wants to get through the alarm clocks as soon as possible. Help her, find the minimum number of moves in the game that she needs to turn off all the alarm clocks!
Input Specification:
The first line of the input contains integer *n* (1<=≤<=*n*<=≤<=105) — the number of the alarm clocks. The next *n* lines describe the clocks: the *i*-th line contains two integers *x**i*, *y**i* — the coordinates of the *i*-th alarm clock (0<=≤<=*x**i*,<=*y**i*<=≤<=100).
Note that a single point in the room can contain any number of alarm clocks and the alarm clocks can lie on the sides of the square that represents the room.
Output Specification:
In a single line print a single integer — the minimum number of segments Inna will have to draw if she acts optimally.
Demo Input:
['4\n0 0\n0 1\n0 2\n1 0\n', '4\n0 0\n0 1\n1 0\n1 1\n', '4\n1 1\n1 2\n2 3\n3 3\n']
Demo Output:
['2\n', '2\n', '3\n']
Note:
In the first sample, Inna first chooses type "vertical segments", and then she makes segments with ends at : (0, 0), (0, 2); and, for example, (1, 0), (1, 1). If she paints horizontal segments, she will need at least 3 segments.
In the third sample it is important to note that Inna doesn't have the right to change the type of the segments during the game. That's why she will need 3 horizontal or 3 vertical segments to end the game.
|
```python
h=set()
v=set()
for i in range(int(input())):
k = input().split()
v.add(k[0])
h.add(k[1])
print(min(len(v),len(h)))
```
| 3
|
|
501
|
A
|
Contest
|
PROGRAMMING
| 900
|
[
"implementation"
] | null | null |
Misha and Vasya participated in a Codeforces contest. Unfortunately, each of them solved only one problem, though successfully submitted it at the first attempt. Misha solved the problem that costs *a* points and Vasya solved the problem that costs *b* points. Besides, Misha submitted the problem *c* minutes after the contest started and Vasya submitted the problem *d* minutes after the contest started. As you know, on Codeforces the cost of a problem reduces as a round continues. That is, if you submit a problem that costs *p* points *t* minutes after the contest started, you get points.
Misha and Vasya are having an argument trying to find out who got more points. Help them to find out the truth.
|
The first line contains four integers *a*, *b*, *c*, *d* (250<=≤<=*a*,<=*b*<=≤<=3500, 0<=≤<=*c*,<=*d*<=≤<=180).
It is guaranteed that numbers *a* and *b* are divisible by 250 (just like on any real Codeforces round).
|
Output on a single line:
"Misha" (without the quotes), if Misha got more points than Vasya.
"Vasya" (without the quotes), if Vasya got more points than Misha.
"Tie" (without the quotes), if both of them got the same number of points.
|
[
"500 1000 20 30\n",
"1000 1000 1 1\n",
"1500 1000 176 177\n"
] |
[
"Vasya\n",
"Tie\n",
"Misha\n"
] |
none
| 500
|
[
{
"input": "500 1000 20 30",
"output": "Vasya"
},
{
"input": "1000 1000 1 1",
"output": "Tie"
},
{
"input": "1500 1000 176 177",
"output": "Misha"
},
{
"input": "1500 1000 74 177",
"output": "Misha"
},
{
"input": "750 2500 175 178",
"output": "Vasya"
},
{
"input": "750 1000 54 103",
"output": "Tie"
},
{
"input": "2000 1250 176 130",
"output": "Tie"
},
{
"input": "1250 1750 145 179",
"output": "Tie"
},
{
"input": "2000 2000 176 179",
"output": "Tie"
},
{
"input": "1500 1500 148 148",
"output": "Tie"
},
{
"input": "2750 1750 134 147",
"output": "Misha"
},
{
"input": "3250 250 175 173",
"output": "Misha"
},
{
"input": "500 500 170 176",
"output": "Misha"
},
{
"input": "250 1000 179 178",
"output": "Vasya"
},
{
"input": "3250 1000 160 138",
"output": "Misha"
},
{
"input": "3000 2000 162 118",
"output": "Tie"
},
{
"input": "1500 1250 180 160",
"output": "Tie"
},
{
"input": "1250 2500 100 176",
"output": "Tie"
},
{
"input": "3500 3500 177 178",
"output": "Tie"
},
{
"input": "3000 3250 16 34",
"output": "Tie"
},
{
"input": "1750 3000 137 49",
"output": "Vasya"
},
{
"input": "500 1500 179 71",
"output": "Vasya"
},
{
"input": "1250 2000 101 180",
"output": "Misha"
},
{
"input": "250 750 180 176",
"output": "Vasya"
},
{
"input": "2250 2250 163 145",
"output": "Vasya"
},
{
"input": "3000 3000 176 78",
"output": "Vasya"
},
{
"input": "250 3500 8 178",
"output": "Vasya"
},
{
"input": "1750 1250 179 180",
"output": "Misha"
},
{
"input": "2750 1750 13 164",
"output": "Misha"
},
{
"input": "1750 2250 178 53",
"output": "Vasya"
},
{
"input": "2500 2750 73 179",
"output": "Misha"
},
{
"input": "1000 3500 178 175",
"output": "Vasya"
},
{
"input": "1000 500 7 162",
"output": "Misha"
},
{
"input": "1000 250 175 48",
"output": "Misha"
},
{
"input": "1750 500 166 177",
"output": "Misha"
},
{
"input": "250 250 0 0",
"output": "Tie"
},
{
"input": "250 3500 0 0",
"output": "Vasya"
},
{
"input": "250 3500 0 180",
"output": "Vasya"
},
{
"input": "3500 3500 180 180",
"output": "Tie"
},
{
"input": "3500 250 0 180",
"output": "Misha"
}
] | 1,633,290,004
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 40
| 77
| 6,758,400
|
a, b, c, d = map(int, input().split())
e = max(3*a/10, a-a*c/250)
f = max(3*b/10, b-b*d/250)
if e>f:
print("Misha")
elif e<f :
print("Vasya")
else:
print("Tie")
|
Title: Contest
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Misha and Vasya participated in a Codeforces contest. Unfortunately, each of them solved only one problem, though successfully submitted it at the first attempt. Misha solved the problem that costs *a* points and Vasya solved the problem that costs *b* points. Besides, Misha submitted the problem *c* minutes after the contest started and Vasya submitted the problem *d* minutes after the contest started. As you know, on Codeforces the cost of a problem reduces as a round continues. That is, if you submit a problem that costs *p* points *t* minutes after the contest started, you get points.
Misha and Vasya are having an argument trying to find out who got more points. Help them to find out the truth.
Input Specification:
The first line contains four integers *a*, *b*, *c*, *d* (250<=≤<=*a*,<=*b*<=≤<=3500, 0<=≤<=*c*,<=*d*<=≤<=180).
It is guaranteed that numbers *a* and *b* are divisible by 250 (just like on any real Codeforces round).
Output Specification:
Output on a single line:
"Misha" (without the quotes), if Misha got more points than Vasya.
"Vasya" (without the quotes), if Vasya got more points than Misha.
"Tie" (without the quotes), if both of them got the same number of points.
Demo Input:
['500 1000 20 30\n', '1000 1000 1 1\n', '1500 1000 176 177\n']
Demo Output:
['Vasya\n', 'Tie\n', 'Misha\n']
Note:
none
|
```python
a, b, c, d = map(int, input().split())
e = max(3*a/10, a-a*c/250)
f = max(3*b/10, b-b*d/250)
if e>f:
print("Misha")
elif e<f :
print("Vasya")
else:
print("Tie")
```
| 3
|
|
50
|
A
|
Domino piling
|
PROGRAMMING
| 800
|
[
"greedy",
"math"
] |
A. Domino piling
|
2
|
256
|
You are given a rectangular board of *M*<=×<=*N* squares. Also you are given an unlimited number of standard domino pieces of 2<=×<=1 squares. You are allowed to rotate the pieces. You are asked to place as many dominoes as possible on the board so as to meet the following conditions:
1. Each domino completely covers two squares.
2. No two dominoes overlap.
3. Each domino lies entirely inside the board. It is allowed to touch the edges of the board.
Find the maximum number of dominoes, which can be placed under these restrictions.
|
In a single line you are given two integers *M* and *N* — board sizes in squares (1<=≤<=*M*<=≤<=*N*<=≤<=16).
|
Output one number — the maximal number of dominoes, which can be placed.
|
[
"2 4\n",
"3 3\n"
] |
[
"4\n",
"4\n"
] |
none
| 500
|
[
{
"input": "2 4",
"output": "4"
},
{
"input": "3 3",
"output": "4"
},
{
"input": "1 5",
"output": "2"
},
{
"input": "1 6",
"output": "3"
},
{
"input": "1 15",
"output": "7"
},
{
"input": "1 16",
"output": "8"
},
{
"input": "2 5",
"output": "5"
},
{
"input": "2 6",
"output": "6"
},
{
"input": "2 7",
"output": "7"
},
{
"input": "2 14",
"output": "14"
},
{
"input": "2 15",
"output": "15"
},
{
"input": "1 4",
"output": "2"
},
{
"input": "2 16",
"output": "16"
},
{
"input": "3 5",
"output": "7"
},
{
"input": "3 6",
"output": "9"
},
{
"input": "3 10",
"output": "15"
},
{
"input": "3 14",
"output": "21"
},
{
"input": "3 15",
"output": "22"
},
{
"input": "3 16",
"output": "24"
},
{
"input": "5 7",
"output": "17"
},
{
"input": "16 16",
"output": "128"
},
{
"input": "15 16",
"output": "120"
},
{
"input": "2 3",
"output": "3"
},
{
"input": "15 15",
"output": "112"
},
{
"input": "14 16",
"output": "112"
},
{
"input": "11 13",
"output": "71"
},
{
"input": "5 16",
"output": "40"
},
{
"input": "8 15",
"output": "60"
},
{
"input": "2 2",
"output": "2"
},
{
"input": "3 4",
"output": "6"
},
{
"input": "4 4",
"output": "8"
},
{
"input": "1 1",
"output": "0"
},
{
"input": "1 2",
"output": "1"
},
{
"input": "1 3",
"output": "1"
},
{
"input": "14 15",
"output": "105"
}
] | 1,635,664,399
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 35
| 92
| 4,300,800
|
a = map(int, input().split())
data = list(a)
print (int(data[0] * data[1] / 2)) if (data[0] % 2 == 0 or data[1] % 2 == 0) \
else print (int((data[0] * data[1] - 1) / 2))
|
Title: Domino piling
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
You are given a rectangular board of *M*<=×<=*N* squares. Also you are given an unlimited number of standard domino pieces of 2<=×<=1 squares. You are allowed to rotate the pieces. You are asked to place as many dominoes as possible on the board so as to meet the following conditions:
1. Each domino completely covers two squares.
2. No two dominoes overlap.
3. Each domino lies entirely inside the board. It is allowed to touch the edges of the board.
Find the maximum number of dominoes, which can be placed under these restrictions.
Input Specification:
In a single line you are given two integers *M* and *N* — board sizes in squares (1<=≤<=*M*<=≤<=*N*<=≤<=16).
Output Specification:
Output one number — the maximal number of dominoes, which can be placed.
Demo Input:
['2 4\n', '3 3\n']
Demo Output:
['4\n', '4\n']
Note:
none
|
```python
a = map(int, input().split())
data = list(a)
print (int(data[0] * data[1] / 2)) if (data[0] % 2 == 0 or data[1] % 2 == 0) \
else print (int((data[0] * data[1] - 1) / 2))
```
| 3.968989
|
25
|
A
|
IQ test
|
PROGRAMMING
| 1,300
|
[
"brute force"
] |
A. IQ test
|
2
|
256
|
Bob is preparing to pass IQ test. The most frequent task in this test is to find out which one of the given *n* numbers differs from the others. Bob observed that one number usually differs from the others in evenness. Help Bob — to check his answers, he needs a program that among the given *n* numbers finds one that is different in evenness.
|
The first line contains integer *n* (3<=≤<=*n*<=≤<=100) — amount of numbers in the task. The second line contains *n* space-separated natural numbers, not exceeding 100. It is guaranteed, that exactly one of these numbers differs from the others in evenness.
|
Output index of number that differs from the others in evenness. Numbers are numbered from 1 in the input order.
|
[
"5\n2 4 7 8 10\n",
"4\n1 2 1 1\n"
] |
[
"3\n",
"2\n"
] |
none
| 0
|
[
{
"input": "5\n2 4 7 8 10",
"output": "3"
},
{
"input": "4\n1 2 1 1",
"output": "2"
},
{
"input": "3\n1 2 2",
"output": "1"
},
{
"input": "3\n100 99 100",
"output": "2"
},
{
"input": "3\n5 3 2",
"output": "3"
},
{
"input": "4\n43 28 1 91",
"output": "2"
},
{
"input": "4\n75 13 94 77",
"output": "3"
},
{
"input": "4\n97 8 27 3",
"output": "2"
},
{
"input": "10\n95 51 12 91 85 3 1 31 25 7",
"output": "3"
},
{
"input": "20\n88 96 66 51 14 88 2 92 18 72 18 88 20 30 4 82 90 100 24 46",
"output": "4"
},
{
"input": "30\n20 94 56 50 10 98 52 32 14 22 24 60 4 8 98 46 34 68 82 82 98 90 50 20 78 49 52 94 64 36",
"output": "26"
},
{
"input": "50\n79 27 77 57 37 45 27 49 65 33 57 21 71 19 75 85 65 61 23 97 85 9 23 1 9 3 99 77 77 21 79 69 15 37 15 7 93 81 13 89 91 31 45 93 15 97 55 80 85 83",
"output": "48"
},
{
"input": "60\n46 11 73 65 3 69 3 53 43 53 97 47 55 93 31 75 35 3 9 73 23 31 3 81 91 79 61 21 15 11 11 11 81 7 83 75 39 87 83 59 89 55 93 27 49 67 67 29 1 93 11 17 9 19 35 21 63 31 31 25",
"output": "1"
},
{
"input": "70\n28 42 42 92 64 54 22 38 38 78 62 38 4 38 14 66 4 92 66 58 94 26 4 44 41 88 48 82 44 26 74 44 48 4 16 92 34 38 26 64 94 4 30 78 50 54 12 90 8 16 80 98 28 100 74 50 36 42 92 18 76 98 8 22 2 50 58 50 64 46",
"output": "25"
},
{
"input": "100\n43 35 79 53 13 91 91 45 65 83 57 9 42 39 85 45 71 51 61 59 31 13 63 39 25 21 79 39 91 67 21 61 97 75 93 83 29 79 59 97 11 37 63 51 39 55 91 23 21 17 47 23 35 75 49 5 69 99 5 7 41 17 25 89 15 79 21 63 53 81 43 91 59 91 69 99 85 15 91 51 49 37 65 7 89 81 21 93 61 63 97 93 45 17 13 69 57 25 75 73",
"output": "13"
},
{
"input": "100\n50 24 68 60 70 30 52 22 18 74 68 98 20 82 4 46 26 68 100 78 84 58 74 98 38 88 68 86 64 80 82 100 20 22 98 98 52 6 94 10 48 68 2 18 38 22 22 82 44 20 66 72 36 58 64 6 36 60 4 96 76 64 12 90 10 58 64 60 74 28 90 26 24 60 40 58 2 16 76 48 58 36 82 60 24 44 4 78 28 38 8 12 40 16 38 6 66 24 31 76",
"output": "99"
},
{
"input": "100\n47 48 94 48 14 18 94 36 96 22 12 30 94 20 48 98 40 58 2 94 8 36 98 18 98 68 2 60 76 38 18 100 8 72 100 68 2 86 92 72 58 16 48 14 6 58 72 76 6 88 80 66 20 28 74 62 86 68 90 86 2 56 34 38 56 90 4 8 76 44 32 86 12 98 38 34 54 92 70 94 10 24 82 66 90 58 62 2 32 58 100 22 58 72 2 22 68 72 42 14",
"output": "1"
},
{
"input": "99\n38 20 68 60 84 16 28 88 60 48 80 28 4 92 70 60 46 46 20 34 12 100 76 2 40 10 8 86 6 80 50 66 12 34 14 28 26 70 46 64 34 96 10 90 98 96 56 88 50 74 70 94 2 94 24 66 68 46 22 30 6 10 64 32 88 14 98 100 64 58 50 18 50 50 8 38 8 16 54 2 60 54 62 84 92 98 4 72 66 26 14 88 99 16 10 6 88 56 22",
"output": "93"
},
{
"input": "99\n50 83 43 89 53 47 69 1 5 37 63 87 95 15 55 95 75 89 33 53 89 75 93 75 11 85 49 29 11 97 49 67 87 11 25 37 97 73 67 49 87 43 53 97 43 29 53 33 45 91 37 73 39 49 59 5 21 43 87 35 5 63 89 57 63 47 29 99 19 85 13 13 3 13 43 19 5 9 61 51 51 57 15 89 13 97 41 13 99 79 13 27 97 95 73 33 99 27 23",
"output": "1"
},
{
"input": "98\n61 56 44 30 58 14 20 24 88 28 46 56 96 52 58 42 94 50 46 30 46 80 72 88 68 16 6 60 26 90 10 98 76 20 56 40 30 16 96 20 88 32 62 30 74 58 36 76 60 4 24 36 42 54 24 92 28 14 2 74 86 90 14 52 34 82 40 76 8 64 2 56 10 8 78 16 70 86 70 42 70 74 22 18 76 98 88 28 62 70 36 72 20 68 34 48 80 98",
"output": "1"
},
{
"input": "98\n66 26 46 42 78 32 76 42 26 82 8 12 4 10 24 26 64 44 100 46 94 64 30 18 88 28 8 66 30 82 82 28 74 52 62 80 80 60 94 86 64 32 44 88 92 20 12 74 94 28 34 58 4 22 16 10 94 76 82 58 40 66 22 6 30 32 92 54 16 76 74 98 18 48 48 30 92 2 16 42 84 74 30 60 64 52 50 26 16 86 58 96 79 60 20 62 82 94",
"output": "93"
},
{
"input": "95\n9 31 27 93 17 77 75 9 9 53 89 39 51 99 5 1 11 39 27 49 91 17 27 79 81 71 37 75 35 13 93 4 99 55 85 11 23 57 5 43 5 61 15 35 23 91 3 81 99 85 43 37 39 27 5 67 7 33 75 59 13 71 51 27 15 93 51 63 91 53 43 99 25 47 17 71 81 15 53 31 59 83 41 23 73 25 91 91 13 17 25 13 55 57 29",
"output": "32"
},
{
"input": "100\n91 89 81 45 53 1 41 3 77 93 55 97 55 97 87 27 69 95 73 41 93 21 75 35 53 56 5 51 87 59 91 67 33 3 99 45 83 17 97 47 75 97 7 89 17 99 23 23 81 25 55 97 27 35 69 5 77 35 93 19 55 59 37 21 31 37 49 41 91 53 73 69 7 37 37 39 17 71 7 97 55 17 47 23 15 73 31 39 57 37 9 5 61 41 65 57 77 79 35 47",
"output": "26"
},
{
"input": "99\n38 56 58 98 80 54 26 90 14 16 78 92 52 74 40 30 84 14 44 80 16 90 98 68 26 24 78 72 42 16 84 40 14 44 2 52 50 2 12 96 58 66 8 80 44 52 34 34 72 98 74 4 66 74 56 21 8 38 76 40 10 22 48 32 98 34 12 62 80 68 64 82 22 78 58 74 20 22 48 56 12 38 32 72 6 16 74 24 94 84 26 38 18 24 76 78 98 94 72",
"output": "56"
},
{
"input": "100\n44 40 6 40 56 90 98 8 36 64 76 86 98 76 36 92 6 30 98 70 24 98 96 60 24 82 88 68 86 96 34 42 58 10 40 26 56 10 88 58 70 32 24 28 14 82 52 12 62 36 70 60 52 34 74 30 78 76 10 16 42 94 66 90 70 38 52 12 58 22 98 96 14 68 24 70 4 30 84 98 8 50 14 52 66 34 100 10 28 100 56 48 38 12 38 14 91 80 70 86",
"output": "97"
},
{
"input": "100\n96 62 64 20 90 46 56 90 68 36 30 56 70 28 16 64 94 34 6 32 34 50 94 22 90 32 40 2 72 10 88 38 28 92 20 26 56 80 4 100 100 90 16 74 74 84 8 2 30 20 80 32 16 46 92 56 42 12 96 64 64 42 64 58 50 42 74 28 2 4 36 32 70 50 54 92 70 16 45 76 28 16 18 50 48 2 62 94 4 12 52 52 4 100 70 60 82 62 98 42",
"output": "79"
},
{
"input": "99\n14 26 34 68 90 58 50 36 8 16 18 6 2 74 54 20 36 84 32 50 52 2 26 24 3 64 20 10 54 26 66 44 28 72 4 96 78 90 96 86 68 28 94 4 12 46 100 32 22 36 84 32 44 94 76 94 4 52 12 30 74 4 34 64 58 72 44 16 70 56 54 8 14 74 8 6 58 62 98 54 14 40 80 20 36 72 28 98 20 58 40 52 90 64 22 48 54 70 52",
"output": "25"
},
{
"input": "95\n82 86 30 78 6 46 80 66 74 72 16 24 18 52 52 38 60 36 86 26 62 28 22 46 96 26 94 84 20 46 66 88 76 32 12 86 74 18 34 88 4 48 94 6 58 6 100 82 4 24 88 32 54 98 34 48 6 76 42 88 42 28 100 4 22 2 10 66 82 54 98 20 60 66 38 98 32 47 86 58 6 100 12 46 2 42 8 84 78 28 24 70 34 28 86",
"output": "78"
},
{
"input": "90\n40 50 8 42 76 24 58 42 26 68 20 48 54 12 34 84 14 36 32 88 6 50 96 56 20 92 48 16 40 34 96 46 20 84 30 50 20 98 8 44 96 42 8 76 70 38 84 30 40 88 84 72 2 22 52 58 16 62 100 66 80 40 50 32 14 62 88 72 22 99 76 50 84 82 8 82 98 46 26 40 2 98 18 78 30 72 70 18 34 68",
"output": "70"
},
{
"input": "80\n81 43 87 1 55 43 53 61 27 19 43 13 89 9 33 83 75 55 97 71 91 37 95 5 21 69 81 93 95 69 31 83 55 7 97 7 79 57 8 61 27 85 49 1 15 97 63 79 29 73 41 85 5 41 31 93 67 11 63 59 15 99 91 77 43 69 23 23 81 73 19 1 67 51 1 75 99 67 3 81",
"output": "39"
},
{
"input": "98\n13 83 61 27 35 1 85 95 97 73 95 65 73 45 5 43 27 83 91 19 11 3 85 59 9 39 69 23 45 7 51 85 5 71 5 95 1 51 75 3 43 57 3 11 33 71 21 99 47 41 87 39 71 87 31 85 91 49 83 5 49 85 47 91 55 99 33 23 31 23 23 73 29 77 55 31 25 5 81 49 91 15 15 39 87 5 9 40 69 47 29 33 11 21 49 79 51 83",
"output": "88"
},
{
"input": "3\n100 100 1",
"output": "3"
}
] | 1,610,904,008
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 32
| 154
| 0
|
n = int(input())
l = list(map(int,input().split()))
e1 = []
o1 = []
for i in range(n) :
if l[i]%2==0:
e1.append(i)
else:
o1.append(i)
if len(e1)==1:
print(e1[0]+1)
else:
print(o1[0]+1)
|
Title: IQ test
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
Bob is preparing to pass IQ test. The most frequent task in this test is to find out which one of the given *n* numbers differs from the others. Bob observed that one number usually differs from the others in evenness. Help Bob — to check his answers, he needs a program that among the given *n* numbers finds one that is different in evenness.
Input Specification:
The first line contains integer *n* (3<=≤<=*n*<=≤<=100) — amount of numbers in the task. The second line contains *n* space-separated natural numbers, not exceeding 100. It is guaranteed, that exactly one of these numbers differs from the others in evenness.
Output Specification:
Output index of number that differs from the others in evenness. Numbers are numbered from 1 in the input order.
Demo Input:
['5\n2 4 7 8 10\n', '4\n1 2 1 1\n']
Demo Output:
['3\n', '2\n']
Note:
none
|
```python
n = int(input())
l = list(map(int,input().split()))
e1 = []
o1 = []
for i in range(n) :
if l[i]%2==0:
e1.append(i)
else:
o1.append(i)
if len(e1)==1:
print(e1[0]+1)
else:
print(o1[0]+1)
```
| 3.9615
|
263
|
A
|
Beautiful Matrix
|
PROGRAMMING
| 800
|
[
"implementation"
] | null | null |
You've got a 5<=×<=5 matrix, consisting of 24 zeroes and a single number one. Let's index the matrix rows by numbers from 1 to 5 from top to bottom, let's index the matrix columns by numbers from 1 to 5 from left to right. In one move, you are allowed to apply one of the two following transformations to the matrix:
1. Swap two neighboring matrix rows, that is, rows with indexes *i* and *i*<=+<=1 for some integer *i* (1<=≤<=*i*<=<<=5). 1. Swap two neighboring matrix columns, that is, columns with indexes *j* and *j*<=+<=1 for some integer *j* (1<=≤<=*j*<=<<=5).
You think that a matrix looks beautiful, if the single number one of the matrix is located in its middle (in the cell that is on the intersection of the third row and the third column). Count the minimum number of moves needed to make the matrix beautiful.
|
The input consists of five lines, each line contains five integers: the *j*-th integer in the *i*-th line of the input represents the element of the matrix that is located on the intersection of the *i*-th row and the *j*-th column. It is guaranteed that the matrix consists of 24 zeroes and a single number one.
|
Print a single integer — the minimum number of moves needed to make the matrix beautiful.
|
[
"0 0 0 0 0\n0 0 0 0 1\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n",
"0 0 0 0 0\n0 0 0 0 0\n0 1 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n"
] |
[
"3\n",
"1\n"
] |
none
| 500
|
[
{
"input": "0 0 0 0 0\n0 0 0 0 1\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0",
"output": "3"
},
{
"input": "0 0 0 0 0\n0 0 0 0 0\n0 1 0 0 0\n0 0 0 0 0\n0 0 0 0 0",
"output": "1"
},
{
"input": "0 0 0 0 0\n0 0 0 0 0\n0 0 1 0 0\n0 0 0 0 0\n0 0 0 0 0",
"output": "0"
},
{
"input": "0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 1",
"output": "4"
},
{
"input": "0 1 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0",
"output": "3"
},
{
"input": "1 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0",
"output": "4"
},
{
"input": "0 0 1 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0",
"output": "2"
},
{
"input": "0 0 0 1 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0",
"output": "3"
},
{
"input": "0 0 0 0 1\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0",
"output": "4"
},
{
"input": "0 0 0 0 0\n1 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0",
"output": "3"
},
{
"input": "0 0 0 0 0\n0 1 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0",
"output": "2"
},
{
"input": "0 0 0 0 0\n0 0 1 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0",
"output": "1"
},
{
"input": "0 0 0 0 0\n0 0 0 1 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0",
"output": "2"
},
{
"input": "0 0 0 0 0\n0 0 0 0 0\n1 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0",
"output": "2"
},
{
"input": "0 0 0 0 0\n0 0 0 0 0\n0 0 0 1 0\n0 0 0 0 0\n0 0 0 0 0",
"output": "1"
},
{
"input": "0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 1\n0 0 0 0 0\n0 0 0 0 0",
"output": "2"
},
{
"input": "0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n1 0 0 0 0\n0 0 0 0 0",
"output": "3"
},
{
"input": "0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 1 0 0 0\n0 0 0 0 0",
"output": "2"
},
{
"input": "0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 1 0 0\n0 0 0 0 0",
"output": "1"
},
{
"input": "0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 1 0\n0 0 0 0 0",
"output": "2"
},
{
"input": "0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 1\n0 0 0 0 0",
"output": "3"
},
{
"input": "0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n1 0 0 0 0",
"output": "4"
},
{
"input": "0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 1 0 0 0",
"output": "3"
},
{
"input": "0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 1 0 0",
"output": "2"
},
{
"input": "0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 1 0",
"output": "3"
}
] | 1,696,762,359
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 25
| 92
| 0
|
i = 1
for _ in range(5):
r = input().split()
if "1" in r:
j = r.index("1")+1
print((abs(3-j)+abs(3-i)))
break
i += 1
|
Title: Beautiful Matrix
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
You've got a 5<=×<=5 matrix, consisting of 24 zeroes and a single number one. Let's index the matrix rows by numbers from 1 to 5 from top to bottom, let's index the matrix columns by numbers from 1 to 5 from left to right. In one move, you are allowed to apply one of the two following transformations to the matrix:
1. Swap two neighboring matrix rows, that is, rows with indexes *i* and *i*<=+<=1 for some integer *i* (1<=≤<=*i*<=<<=5). 1. Swap two neighboring matrix columns, that is, columns with indexes *j* and *j*<=+<=1 for some integer *j* (1<=≤<=*j*<=<<=5).
You think that a matrix looks beautiful, if the single number one of the matrix is located in its middle (in the cell that is on the intersection of the third row and the third column). Count the minimum number of moves needed to make the matrix beautiful.
Input Specification:
The input consists of five lines, each line contains five integers: the *j*-th integer in the *i*-th line of the input represents the element of the matrix that is located on the intersection of the *i*-th row and the *j*-th column. It is guaranteed that the matrix consists of 24 zeroes and a single number one.
Output Specification:
Print a single integer — the minimum number of moves needed to make the matrix beautiful.
Demo Input:
['0 0 0 0 0\n0 0 0 0 1\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n', '0 0 0 0 0\n0 0 0 0 0\n0 1 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n']
Demo Output:
['3\n', '1\n']
Note:
none
|
```python
i = 1
for _ in range(5):
r = input().split()
if "1" in r:
j = r.index("1")+1
print((abs(3-j)+abs(3-i)))
break
i += 1
```
| 3
|
|
278
|
A
|
Circle Line
|
PROGRAMMING
| 800
|
[
"implementation"
] | null | null |
The circle line of the Berland subway has *n* stations. We know the distances between all pairs of neighboring stations:
- *d*1 is the distance between the 1-st and the 2-nd station;- *d*2 is the distance between the 2-nd and the 3-rd station;...- *d**n*<=-<=1 is the distance between the *n*<=-<=1-th and the *n*-th station;- *d**n* is the distance between the *n*-th and the 1-st station.
The trains go along the circle line in both directions. Find the shortest distance between stations with numbers *s* and *t*.
|
The first line contains integer *n* (3<=≤<=*n*<=≤<=100) — the number of stations on the circle line. The second line contains *n* integers *d*1,<=*d*2,<=...,<=*d**n* (1<=≤<=*d**i*<=≤<=100) — the distances between pairs of neighboring stations. The third line contains two integers *s* and *t* (1<=≤<=*s*,<=*t*<=≤<=*n*) — the numbers of stations, between which you need to find the shortest distance. These numbers can be the same.
The numbers in the lines are separated by single spaces.
|
Print a single number — the length of the shortest path between stations number *s* and *t*.
|
[
"4\n2 3 4 9\n1 3\n",
"4\n5 8 2 100\n4 1\n",
"3\n1 1 1\n3 1\n",
"3\n31 41 59\n1 1\n"
] |
[
"5\n",
"15\n",
"1\n",
"0\n"
] |
In the first sample the length of path 1 → 2 → 3 equals 5, the length of path 1 → 4 → 3 equals 13.
In the second sample the length of path 4 → 1 is 100, the length of path 4 → 3 → 2 → 1 is 15.
In the third sample the length of path 3 → 1 is 1, the length of path 3 → 2 → 1 is 2.
In the fourth sample the numbers of stations are the same, so the shortest distance equals 0.
| 500
|
[
{
"input": "4\n2 3 4 9\n1 3",
"output": "5"
},
{
"input": "4\n5 8 2 100\n4 1",
"output": "15"
},
{
"input": "3\n1 1 1\n3 1",
"output": "1"
},
{
"input": "3\n31 41 59\n1 1",
"output": "0"
},
{
"input": "5\n16 13 10 30 15\n4 2",
"output": "23"
},
{
"input": "6\n89 82 87 32 67 33\n4 4",
"output": "0"
},
{
"input": "7\n2 3 17 10 2 2 2\n4 2",
"output": "18"
},
{
"input": "3\n4 37 33\n3 3",
"output": "0"
},
{
"input": "8\n87 40 96 7 86 86 72 97\n6 8",
"output": "158"
},
{
"input": "10\n91 94 75 99 100 91 79 86 79 92\n2 8",
"output": "348"
},
{
"input": "19\n1 1 1 1 2 1 1 1 1 1 2 1 3 2 2 1 1 1 2\n7 7",
"output": "0"
},
{
"input": "34\n96 65 24 99 74 76 97 93 99 69 94 82 92 91 98 83 95 97 96 81 90 95 86 87 43 78 88 86 82 62 76 99 83 96\n21 16",
"output": "452"
},
{
"input": "50\n75 98 65 75 99 89 84 65 9 53 62 61 61 53 80 7 6 47 86 1 89 27 67 1 31 39 53 92 19 20 76 41 60 15 29 94 76 82 87 89 93 38 42 6 87 36 100 97 93 71\n2 6",
"output": "337"
},
{
"input": "99\n1 15 72 78 23 22 26 98 7 2 75 58 100 98 45 79 92 69 79 72 33 88 62 9 15 87 17 73 68 54 34 89 51 91 28 44 20 11 74 7 85 61 30 46 95 72 36 18 48 22 42 46 29 46 86 53 96 55 98 34 60 37 75 54 1 81 20 68 84 19 18 18 75 84 86 57 73 34 23 43 81 87 47 96 57 41 69 1 52 44 54 7 85 35 5 1 19 26 7\n4 64",
"output": "1740"
},
{
"input": "100\n33 63 21 27 49 82 86 93 43 55 4 72 89 85 5 34 80 7 23 13 21 49 22 73 89 65 81 25 6 92 82 66 58 88 48 96 1 1 16 48 67 96 84 63 87 76 20 100 36 4 31 41 35 62 55 76 74 70 68 41 4 16 39 81 2 41 34 73 66 57 41 89 78 93 68 96 87 47 92 60 40 58 81 12 19 74 56 83 56 61 83 97 26 92 62 52 39 57 89 95\n71 5",
"output": "2127"
},
{
"input": "100\n95 98 99 81 98 96 100 92 96 90 99 91 98 98 91 78 97 100 96 98 87 93 96 99 91 92 96 92 90 97 85 83 99 95 66 91 87 89 100 95 100 88 99 84 96 79 99 100 94 100 99 99 92 89 99 91 100 94 98 97 91 92 90 87 84 99 97 98 93 100 90 85 75 95 86 71 98 93 91 87 92 95 98 94 95 94 100 98 96 100 97 96 95 95 86 86 94 97 98 96\n67 57",
"output": "932"
},
{
"input": "100\n100 100 100 100 100 100 100 100 100 100 97 100 100 100 100 100 99 100 100 99 99 100 99 100 100 100 100 100 100 100 100 100 97 99 98 98 100 98 98 100 99 100 100 100 100 99 100 98 100 99 98 99 98 98 100 100 100 100 100 100 100 100 100 100 99 100 100 100 100 100 98 100 99 99 100 96 100 96 100 99 100 100 99 100 99 100 100 100 99 100 100 100 100 98 98 97 100 100 99 98\n16 6",
"output": "997"
},
{
"input": "100\n3 6 23 4 23 1 2 14 2 3 3 9 17 8 10 5 1 14 8 5 7 4 13 8 5 6 24 3 12 3 4 9 2 8 2 1 2 1 3 2 1 6 14 23 8 6 3 5 7 8 18 9 2 5 22 6 13 16 2 4 31 20 4 3 3 6 6 1 1 18 5 11 1 14 4 16 6 37 11 1 8 3 7 11 21 14 3 3 12 2 5 1 9 16 3 1 3 4 4 2\n98 24",
"output": "195"
},
{
"input": "100\n1 1 3 1 1 2 1 2 1 1 2 2 2 1 1 1 1 1 1 3 1 1 1 3 1 3 3 1 1 2 1 1 1 1 1 2 1 1 1 4 1 1 3 3 2 1 1 1 1 1 2 2 1 3 1 1 1 2 4 1 1 2 5 2 1 1 2 1 1 1 2 3 1 1 1 1 2 1 1 1 1 2 1 1 1 1 1 2 2 3 1 7 3 1 3 1 2 1 2 1\n49 10",
"output": "60"
},
{
"input": "100\n75 62 31 96 62 76 93 96 72 67 88 35 67 34 60 56 95 86 82 48 64 61 74 100 56 98 76 98 78 55 53 10 12 78 58 45 86 90 93 77 69 73 88 66 92 88 33 50 95 69 89 12 93 57 93 89 59 53 71 86 15 13 61 93 24 100 58 76 46 95 76 82 50 20 79 38 5 72 99 81 55 90 90 65 85 44 63 39 6 34 98 72 88 30 59 73 84 61 25 67\n86 25",
"output": "2523"
},
{
"input": "100\n100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100\n1 51",
"output": "5000"
},
{
"input": "4\n1 1 1 1\n2 4",
"output": "2"
},
{
"input": "4\n1 1 2 1\n2 4",
"output": "2"
}
] | 1,616,292,313
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 23
| 124
| 307,200
|
def swap(num1,num2):
arr = [num2,num1]
return arr
num = int(input())
distance = list(map(int, input() .split()))
cities = list(map(int, input() .split()))
answer = 0
sum1 = 0
sum2 = 0
if cities[0] == cities[1]:
answer = 0
if (cities[0] > cities[1]):
cities = swap(cities[0], cities[1])
i = cities[0] - 1
while(i < cities[1] - 1):
sum1 += distance[i]
i += 1
i = cities[1] - 1
while(i < num):
sum2 += distance[i]
i += 1
i = 0
while(i < cities[0] - 1):
sum2 += distance[i]
i += 1
if(sum1 < sum2):
print(sum1)
else:
print(sum2)
|
Title: Circle Line
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
The circle line of the Berland subway has *n* stations. We know the distances between all pairs of neighboring stations:
- *d*1 is the distance between the 1-st and the 2-nd station;- *d*2 is the distance between the 2-nd and the 3-rd station;...- *d**n*<=-<=1 is the distance between the *n*<=-<=1-th and the *n*-th station;- *d**n* is the distance between the *n*-th and the 1-st station.
The trains go along the circle line in both directions. Find the shortest distance between stations with numbers *s* and *t*.
Input Specification:
The first line contains integer *n* (3<=≤<=*n*<=≤<=100) — the number of stations on the circle line. The second line contains *n* integers *d*1,<=*d*2,<=...,<=*d**n* (1<=≤<=*d**i*<=≤<=100) — the distances between pairs of neighboring stations. The third line contains two integers *s* and *t* (1<=≤<=*s*,<=*t*<=≤<=*n*) — the numbers of stations, between which you need to find the shortest distance. These numbers can be the same.
The numbers in the lines are separated by single spaces.
Output Specification:
Print a single number — the length of the shortest path between stations number *s* and *t*.
Demo Input:
['4\n2 3 4 9\n1 3\n', '4\n5 8 2 100\n4 1\n', '3\n1 1 1\n3 1\n', '3\n31 41 59\n1 1\n']
Demo Output:
['5\n', '15\n', '1\n', '0\n']
Note:
In the first sample the length of path 1 → 2 → 3 equals 5, the length of path 1 → 4 → 3 equals 13.
In the second sample the length of path 4 → 1 is 100, the length of path 4 → 3 → 2 → 1 is 15.
In the third sample the length of path 3 → 1 is 1, the length of path 3 → 2 → 1 is 2.
In the fourth sample the numbers of stations are the same, so the shortest distance equals 0.
|
```python
def swap(num1,num2):
arr = [num2,num1]
return arr
num = int(input())
distance = list(map(int, input() .split()))
cities = list(map(int, input() .split()))
answer = 0
sum1 = 0
sum2 = 0
if cities[0] == cities[1]:
answer = 0
if (cities[0] > cities[1]):
cities = swap(cities[0], cities[1])
i = cities[0] - 1
while(i < cities[1] - 1):
sum1 += distance[i]
i += 1
i = cities[1] - 1
while(i < num):
sum2 += distance[i]
i += 1
i = 0
while(i < cities[0] - 1):
sum2 += distance[i]
i += 1
if(sum1 < sum2):
print(sum1)
else:
print(sum2)
```
| 3
|
|
50
|
A
|
Domino piling
|
PROGRAMMING
| 800
|
[
"greedy",
"math"
] |
A. Domino piling
|
2
|
256
|
You are given a rectangular board of *M*<=×<=*N* squares. Also you are given an unlimited number of standard domino pieces of 2<=×<=1 squares. You are allowed to rotate the pieces. You are asked to place as many dominoes as possible on the board so as to meet the following conditions:
1. Each domino completely covers two squares.
2. No two dominoes overlap.
3. Each domino lies entirely inside the board. It is allowed to touch the edges of the board.
Find the maximum number of dominoes, which can be placed under these restrictions.
|
In a single line you are given two integers *M* and *N* — board sizes in squares (1<=≤<=*M*<=≤<=*N*<=≤<=16).
|
Output one number — the maximal number of dominoes, which can be placed.
|
[
"2 4\n",
"3 3\n"
] |
[
"4\n",
"4\n"
] |
none
| 500
|
[
{
"input": "2 4",
"output": "4"
},
{
"input": "3 3",
"output": "4"
},
{
"input": "1 5",
"output": "2"
},
{
"input": "1 6",
"output": "3"
},
{
"input": "1 15",
"output": "7"
},
{
"input": "1 16",
"output": "8"
},
{
"input": "2 5",
"output": "5"
},
{
"input": "2 6",
"output": "6"
},
{
"input": "2 7",
"output": "7"
},
{
"input": "2 14",
"output": "14"
},
{
"input": "2 15",
"output": "15"
},
{
"input": "1 4",
"output": "2"
},
{
"input": "2 16",
"output": "16"
},
{
"input": "3 5",
"output": "7"
},
{
"input": "3 6",
"output": "9"
},
{
"input": "3 10",
"output": "15"
},
{
"input": "3 14",
"output": "21"
},
{
"input": "3 15",
"output": "22"
},
{
"input": "3 16",
"output": "24"
},
{
"input": "5 7",
"output": "17"
},
{
"input": "16 16",
"output": "128"
},
{
"input": "15 16",
"output": "120"
},
{
"input": "2 3",
"output": "3"
},
{
"input": "15 15",
"output": "112"
},
{
"input": "14 16",
"output": "112"
},
{
"input": "11 13",
"output": "71"
},
{
"input": "5 16",
"output": "40"
},
{
"input": "8 15",
"output": "60"
},
{
"input": "2 2",
"output": "2"
},
{
"input": "3 4",
"output": "6"
},
{
"input": "4 4",
"output": "8"
},
{
"input": "1 1",
"output": "0"
},
{
"input": "1 2",
"output": "1"
},
{
"input": "1 3",
"output": "1"
},
{
"input": "14 15",
"output": "105"
}
] | 1,678,601,945
| 2,147,483,647
|
PyPy 3-64
|
OK
|
TESTS
| 35
| 124
| 0
|
m,n = (input().split())
area = int(m)*int(n)
print(int(area/2))
|
Title: Domino piling
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
You are given a rectangular board of *M*<=×<=*N* squares. Also you are given an unlimited number of standard domino pieces of 2<=×<=1 squares. You are allowed to rotate the pieces. You are asked to place as many dominoes as possible on the board so as to meet the following conditions:
1. Each domino completely covers two squares.
2. No two dominoes overlap.
3. Each domino lies entirely inside the board. It is allowed to touch the edges of the board.
Find the maximum number of dominoes, which can be placed under these restrictions.
Input Specification:
In a single line you are given two integers *M* and *N* — board sizes in squares (1<=≤<=*M*<=≤<=*N*<=≤<=16).
Output Specification:
Output one number — the maximal number of dominoes, which can be placed.
Demo Input:
['2 4\n', '3 3\n']
Demo Output:
['4\n', '4\n']
Note:
none
|
```python
m,n = (input().split())
area = int(m)*int(n)
print(int(area/2))
```
| 3.969
|
581
|
A
|
Vasya the Hipster
|
PROGRAMMING
| 800
|
[
"implementation",
"math"
] | null | null |
One day Vasya the Hipster decided to count how many socks he had. It turned out that he had *a* red socks and *b* blue socks.
According to the latest fashion, hipsters should wear the socks of different colors: a red one on the left foot, a blue one on the right foot.
Every day Vasya puts on new socks in the morning and throws them away before going to bed as he doesn't want to wash them.
Vasya wonders, what is the maximum number of days when he can dress fashionable and wear different socks, and after that, for how many days he can then wear the same socks until he either runs out of socks or cannot make a single pair from the socks he's got.
Can you help him?
|
The single line of the input contains two positive integers *a* and *b* (1<=≤<=*a*,<=*b*<=≤<=100) — the number of red and blue socks that Vasya's got.
|
Print two space-separated integers — the maximum number of days when Vasya can wear different socks and the number of days when he can wear the same socks until he either runs out of socks or cannot make a single pair from the socks he's got.
Keep in mind that at the end of the day Vasya throws away the socks that he's been wearing on that day.
|
[
"3 1\n",
"2 3\n",
"7 3\n"
] |
[
"1 1\n",
"2 0\n",
"3 2\n"
] |
In the first sample Vasya can first put on one pair of different socks, after that he has two red socks left to wear on the second day.
| 500
|
[
{
"input": "3 1",
"output": "1 1"
},
{
"input": "2 3",
"output": "2 0"
},
{
"input": "7 3",
"output": "3 2"
},
{
"input": "100 100",
"output": "100 0"
},
{
"input": "4 10",
"output": "4 3"
},
{
"input": "6 10",
"output": "6 2"
},
{
"input": "6 11",
"output": "6 2"
},
{
"input": "10 40",
"output": "10 15"
},
{
"input": "11 56",
"output": "11 22"
},
{
"input": "34 30",
"output": "30 2"
},
{
"input": "33 33",
"output": "33 0"
},
{
"input": "100 45",
"output": "45 27"
},
{
"input": "100 23",
"output": "23 38"
},
{
"input": "45 12",
"output": "12 16"
},
{
"input": "1 1",
"output": "1 0"
},
{
"input": "1 100",
"output": "1 49"
},
{
"input": "100 1",
"output": "1 49"
},
{
"input": "68 59",
"output": "59 4"
},
{
"input": "45 99",
"output": "45 27"
},
{
"input": "99 100",
"output": "99 0"
},
{
"input": "100 98",
"output": "98 1"
},
{
"input": "59 12",
"output": "12 23"
},
{
"input": "86 4",
"output": "4 41"
},
{
"input": "68 21",
"output": "21 23"
},
{
"input": "100 11",
"output": "11 44"
},
{
"input": "100 10",
"output": "10 45"
},
{
"input": "15 45",
"output": "15 15"
},
{
"input": "11 32",
"output": "11 10"
},
{
"input": "34 96",
"output": "34 31"
},
{
"input": "89 89",
"output": "89 0"
}
] | 1,691,085,404
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 30
| 46
| 0
|
a,b=map(int,input().split())
s=0
d=0
if a>b:
d+=b
a-=b
if a %2 == 0:
s+=int(a/2)
else:
s+=int((a-1)/2)
else:
d+=a
b-=a
if b % 2 ==0:
s+=int(b/2)
else:
s+=int((b-1)/2)
print(d,s)
|
Title: Vasya the Hipster
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
One day Vasya the Hipster decided to count how many socks he had. It turned out that he had *a* red socks and *b* blue socks.
According to the latest fashion, hipsters should wear the socks of different colors: a red one on the left foot, a blue one on the right foot.
Every day Vasya puts on new socks in the morning and throws them away before going to bed as he doesn't want to wash them.
Vasya wonders, what is the maximum number of days when he can dress fashionable and wear different socks, and after that, for how many days he can then wear the same socks until he either runs out of socks or cannot make a single pair from the socks he's got.
Can you help him?
Input Specification:
The single line of the input contains two positive integers *a* and *b* (1<=≤<=*a*,<=*b*<=≤<=100) — the number of red and blue socks that Vasya's got.
Output Specification:
Print two space-separated integers — the maximum number of days when Vasya can wear different socks and the number of days when he can wear the same socks until he either runs out of socks or cannot make a single pair from the socks he's got.
Keep in mind that at the end of the day Vasya throws away the socks that he's been wearing on that day.
Demo Input:
['3 1\n', '2 3\n', '7 3\n']
Demo Output:
['1 1\n', '2 0\n', '3 2\n']
Note:
In the first sample Vasya can first put on one pair of different socks, after that he has two red socks left to wear on the second day.
|
```python
a,b=map(int,input().split())
s=0
d=0
if a>b:
d+=b
a-=b
if a %2 == 0:
s+=int(a/2)
else:
s+=int((a-1)/2)
else:
d+=a
b-=a
if b % 2 ==0:
s+=int(b/2)
else:
s+=int((b-1)/2)
print(d,s)
```
| 3
|
|
513
|
A
|
Game
|
PROGRAMMING
| 800
|
[
"constructive algorithms",
"math"
] | null | null |
Two players play a simple game. Each player is provided with a box with balls. First player's box contains exactly *n*1 balls and second player's box contains exactly *n*2 balls. In one move first player can take from 1 to *k*1 balls from his box and throw them away. Similarly, the second player can take from 1 to *k*2 balls from his box in his move. Players alternate turns and the first player starts the game. The one who can't make a move loses. Your task is to determine who wins if both players play optimally.
|
The first line contains four integers *n*1,<=*n*2,<=*k*1,<=*k*2. All numbers in the input are from 1 to 50.
This problem doesn't have subproblems. You will get 3 points for the correct submission.
|
Output "First" if the first player wins and "Second" otherwise.
|
[
"2 2 1 2\n",
"2 1 1 1\n"
] |
[
"Second\n",
"First\n"
] |
Consider the first sample test. Each player has a box with 2 balls. The first player draws a single ball from his box in one move and the second player can either take 1 or 2 balls from his box in one move. No matter how the first player acts, the second player can always win if he plays wisely.
| 3
|
[
{
"input": "2 2 1 2",
"output": "Second"
},
{
"input": "2 1 1 1",
"output": "First"
},
{
"input": "5 7 4 1",
"output": "Second"
},
{
"input": "5 7 1 4",
"output": "Second"
},
{
"input": "5 7 10 10",
"output": "Second"
},
{
"input": "5 7 1 10",
"output": "Second"
},
{
"input": "1 1 1 1",
"output": "Second"
},
{
"input": "50 50 50 50",
"output": "Second"
},
{
"input": "50 49 1 2",
"output": "First"
},
{
"input": "50 48 3 1",
"output": "First"
},
{
"input": "48 50 12 11",
"output": "Second"
},
{
"input": "49 50 11 12",
"output": "Second"
},
{
"input": "49 49 4 1",
"output": "Second"
},
{
"input": "49 49 3 3",
"output": "Second"
},
{
"input": "1 50 1 50",
"output": "Second"
},
{
"input": "1 50 50 50",
"output": "Second"
},
{
"input": "50 1 1 1",
"output": "First"
},
{
"input": "50 1 1 50",
"output": "First"
},
{
"input": "32 31 10 9",
"output": "First"
},
{
"input": "32 4 17 3",
"output": "First"
}
] | 1,423,330,051
| 1,651
|
Python 3
|
OK
|
TESTS
| 20
| 62
| 0
|
n1, n2, k1, k2=map(int, input().split())
if(n1>n2):
print("First")
if(n1<=n2):
print("Second")
|
Title: Game
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Two players play a simple game. Each player is provided with a box with balls. First player's box contains exactly *n*1 balls and second player's box contains exactly *n*2 balls. In one move first player can take from 1 to *k*1 balls from his box and throw them away. Similarly, the second player can take from 1 to *k*2 balls from his box in his move. Players alternate turns and the first player starts the game. The one who can't make a move loses. Your task is to determine who wins if both players play optimally.
Input Specification:
The first line contains four integers *n*1,<=*n*2,<=*k*1,<=*k*2. All numbers in the input are from 1 to 50.
This problem doesn't have subproblems. You will get 3 points for the correct submission.
Output Specification:
Output "First" if the first player wins and "Second" otherwise.
Demo Input:
['2 2 1 2\n', '2 1 1 1\n']
Demo Output:
['Second\n', 'First\n']
Note:
Consider the first sample test. Each player has a box with 2 balls. The first player draws a single ball from his box in one move and the second player can either take 1 or 2 balls from his box in one move. No matter how the first player acts, the second player can always win if he plays wisely.
|
```python
n1, n2, k1, k2=map(int, input().split())
if(n1>n2):
print("First")
if(n1<=n2):
print("Second")
```
| 3
|
|
50
|
A
|
Domino piling
|
PROGRAMMING
| 800
|
[
"greedy",
"math"
] |
A. Domino piling
|
2
|
256
|
You are given a rectangular board of *M*<=×<=*N* squares. Also you are given an unlimited number of standard domino pieces of 2<=×<=1 squares. You are allowed to rotate the pieces. You are asked to place as many dominoes as possible on the board so as to meet the following conditions:
1. Each domino completely covers two squares.
2. No two dominoes overlap.
3. Each domino lies entirely inside the board. It is allowed to touch the edges of the board.
Find the maximum number of dominoes, which can be placed under these restrictions.
|
In a single line you are given two integers *M* and *N* — board sizes in squares (1<=≤<=*M*<=≤<=*N*<=≤<=16).
|
Output one number — the maximal number of dominoes, which can be placed.
|
[
"2 4\n",
"3 3\n"
] |
[
"4\n",
"4\n"
] |
none
| 500
|
[
{
"input": "2 4",
"output": "4"
},
{
"input": "3 3",
"output": "4"
},
{
"input": "1 5",
"output": "2"
},
{
"input": "1 6",
"output": "3"
},
{
"input": "1 15",
"output": "7"
},
{
"input": "1 16",
"output": "8"
},
{
"input": "2 5",
"output": "5"
},
{
"input": "2 6",
"output": "6"
},
{
"input": "2 7",
"output": "7"
},
{
"input": "2 14",
"output": "14"
},
{
"input": "2 15",
"output": "15"
},
{
"input": "1 4",
"output": "2"
},
{
"input": "2 16",
"output": "16"
},
{
"input": "3 5",
"output": "7"
},
{
"input": "3 6",
"output": "9"
},
{
"input": "3 10",
"output": "15"
},
{
"input": "3 14",
"output": "21"
},
{
"input": "3 15",
"output": "22"
},
{
"input": "3 16",
"output": "24"
},
{
"input": "5 7",
"output": "17"
},
{
"input": "16 16",
"output": "128"
},
{
"input": "15 16",
"output": "120"
},
{
"input": "2 3",
"output": "3"
},
{
"input": "15 15",
"output": "112"
},
{
"input": "14 16",
"output": "112"
},
{
"input": "11 13",
"output": "71"
},
{
"input": "5 16",
"output": "40"
},
{
"input": "8 15",
"output": "60"
},
{
"input": "2 2",
"output": "2"
},
{
"input": "3 4",
"output": "6"
},
{
"input": "4 4",
"output": "8"
},
{
"input": "1 1",
"output": "0"
},
{
"input": "1 2",
"output": "1"
},
{
"input": "1 3",
"output": "1"
},
{
"input": "14 15",
"output": "105"
}
] | 1,693,733,584
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 35
| 92
| 0
|
m,n = map(int,input().split())
x = m*n
print(x//2)
|
Title: Domino piling
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
You are given a rectangular board of *M*<=×<=*N* squares. Also you are given an unlimited number of standard domino pieces of 2<=×<=1 squares. You are allowed to rotate the pieces. You are asked to place as many dominoes as possible on the board so as to meet the following conditions:
1. Each domino completely covers two squares.
2. No two dominoes overlap.
3. Each domino lies entirely inside the board. It is allowed to touch the edges of the board.
Find the maximum number of dominoes, which can be placed under these restrictions.
Input Specification:
In a single line you are given two integers *M* and *N* — board sizes in squares (1<=≤<=*M*<=≤<=*N*<=≤<=16).
Output Specification:
Output one number — the maximal number of dominoes, which can be placed.
Demo Input:
['2 4\n', '3 3\n']
Demo Output:
['4\n', '4\n']
Note:
none
|
```python
m,n = map(int,input().split())
x = m*n
print(x//2)
```
| 3.977
|
246
|
A
|
Buggy Sorting
|
PROGRAMMING
| 900
|
[
"constructive algorithms",
"greedy",
"sortings"
] | null | null |
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of *n* integers *a*1,<=*a*2,<=...,<=*a**n* in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number *n* and array *a*.
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of *n* doesn't exist, print -1.
|
You've got a single integer *n* (1<=≤<=*n*<=≤<=50) — the size of the sorted array.
|
Print *n* space-separated integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of *n* numbers, you are allowed to print any of them.
|
[
"1\n"
] |
[
"-1\n"
] |
none
| 500
|
[
{
"input": "1",
"output": "-1"
},
{
"input": "2",
"output": "-1"
},
{
"input": "3",
"output": "3 2 1 "
},
{
"input": "4",
"output": "4 3 2 1 "
},
{
"input": "5",
"output": "5 4 3 2 1 "
},
{
"input": "6",
"output": "6 5 4 3 2 1 "
},
{
"input": "7",
"output": "7 6 5 4 3 2 1 "
},
{
"input": "8",
"output": "8 7 6 5 4 3 2 1 "
},
{
"input": "9",
"output": "9 8 7 6 5 4 3 2 1 "
},
{
"input": "50",
"output": "50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 "
},
{
"input": "22",
"output": "22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 "
},
{
"input": "34",
"output": "34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 "
},
{
"input": "50",
"output": "50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 "
},
{
"input": "12",
"output": "12 11 10 9 8 7 6 5 4 3 2 1 "
},
{
"input": "26",
"output": "26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 "
},
{
"input": "38",
"output": "38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 "
},
{
"input": "4",
"output": "4 3 2 1 "
},
{
"input": "18",
"output": "18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 "
},
{
"input": "30",
"output": "30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 "
},
{
"input": "46",
"output": "46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 "
},
{
"input": "32",
"output": "32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 "
}
] | 1,623,499,939
| 2,147,483,647
|
PyPy 3
|
OK
|
TESTS
| 21
| 108
| 0
|
def main_function():
a = int(input())
if a > 2:
return " ".join([str(a - i) for i in range(a)])
return -1
print(main_function())
|
Title: Buggy Sorting
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of *n* integers *a*1,<=*a*2,<=...,<=*a**n* in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number *n* and array *a*.
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of *n* doesn't exist, print -1.
Input Specification:
You've got a single integer *n* (1<=≤<=*n*<=≤<=50) — the size of the sorted array.
Output Specification:
Print *n* space-separated integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of *n* numbers, you are allowed to print any of them.
Demo Input:
['1\n']
Demo Output:
['-1\n']
Note:
none
|
```python
def main_function():
a = int(input())
if a > 2:
return " ".join([str(a - i) for i in range(a)])
return -1
print(main_function())
```
| 3
|
|
25
|
B
|
Phone numbers
|
PROGRAMMING
| 1,100
|
[
"implementation"
] |
B. Phone numbers
|
2
|
256
|
Phone number in Berland is a sequence of *n* digits. Often, to make it easier to memorize the number, it is divided into groups of two or three digits. For example, the phone number 1198733 is easier to remember as 11-987-33. Your task is to find for a given phone number any of its divisions into groups of two or three digits.
|
The first line contains integer *n* (2<=≤<=*n*<=≤<=100) — amount of digits in the phone number. The second line contains *n* digits — the phone number to divide into groups.
|
Output any of divisions of the given phone number into groups of two or three digits. Separate groups by single character -. If the answer is not unique, output any.
|
[
"6\n549871\n",
"7\n1198733\n"
] |
[
"54-98-71",
"11-987-33\n"
] |
none
| 0
|
[
{
"input": "6\n549871",
"output": "54-98-71"
},
{
"input": "7\n1198733",
"output": "119-87-33"
},
{
"input": "2\n74",
"output": "74"
},
{
"input": "2\n33",
"output": "33"
},
{
"input": "3\n074",
"output": "074"
},
{
"input": "3\n081",
"output": "081"
},
{
"input": "4\n3811",
"output": "38-11"
},
{
"input": "5\n21583",
"output": "215-83"
},
{
"input": "8\n33408349",
"output": "33-40-83-49"
},
{
"input": "9\n988808426",
"output": "988-80-84-26"
},
{
"input": "10\n0180990956",
"output": "01-80-99-09-56"
},
{
"input": "15\n433488906230138",
"output": "433-48-89-06-23-01-38"
},
{
"input": "22\n7135498415686025907059",
"output": "71-35-49-84-15-68-60-25-90-70-59"
},
{
"input": "49\n2429965524999668169991253653390090510755018570235",
"output": "242-99-65-52-49-99-66-81-69-99-12-53-65-33-90-09-05-10-75-50-18-57-02-35"
},
{
"input": "72\n491925337784111770500147619881727525570039735507439360627744863794794290",
"output": "49-19-25-33-77-84-11-17-70-50-01-47-61-98-81-72-75-25-57-00-39-73-55-07-43-93-60-62-77-44-86-37-94-79-42-90"
},
{
"input": "95\n32543414456047900690980198395035321172843693417425457554204776648220562494524275489599199209210",
"output": "325-43-41-44-56-04-79-00-69-09-80-19-83-95-03-53-21-17-28-43-69-34-17-42-54-57-55-42-04-77-66-48-22-05-62-49-45-24-27-54-89-59-91-99-20-92-10"
},
{
"input": "97\n9362344595153688016434451101547661156123505108492010669557671355055642365998461003851354321478898",
"output": "936-23-44-59-51-53-68-80-16-43-44-51-10-15-47-66-11-56-12-35-05-10-84-92-01-06-69-55-76-71-35-50-55-64-23-65-99-84-61-00-38-51-35-43-21-47-88-98"
},
{
"input": "98\n65521815795893886057122984634320900545031770769333931308009346017867969790810907868670369236928568",
"output": "65-52-18-15-79-58-93-88-60-57-12-29-84-63-43-20-90-05-45-03-17-70-76-93-33-93-13-08-00-93-46-01-78-67-96-97-90-81-09-07-86-86-70-36-92-36-92-85-68"
},
{
"input": "99\n455213856470326729480192345541970106407563996625458559297407682539801838244443866898560852503660390",
"output": "455-21-38-56-47-03-26-72-94-80-19-23-45-54-19-70-10-64-07-56-39-96-62-54-58-55-92-97-40-76-82-53-98-01-83-82-44-44-38-66-89-85-60-85-25-03-66-03-90"
},
{
"input": "100\n4004223124942730640235383244438257614581534320356060987241659784249551110165034719443327659510644224",
"output": "40-04-22-31-24-94-27-30-64-02-35-38-32-44-43-82-57-61-45-81-53-43-20-35-60-60-98-72-41-65-97-84-24-95-51-11-01-65-03-47-19-44-33-27-65-95-10-64-42-24"
}
] | 1,671,875,638
| 2,038
|
PyPy 3-64
|
OK
|
TESTS
| 20
| 124
| 0
|
n = int(input())
s = input()
ans=""
if(n%2==0):
for i in range(0,n,2):
if(i<n-2):
ans = ans + s[i:i+2]+"-"
if(i==n-2):
ans = ans + s[i:i+2]
else :
j = n-3
k = 0
while (k<j):
ans = ans + s[k:k+2]+"-"
k+=2
ans = ans+s[j:]
print(ans)
|
Title: Phone numbers
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
Phone number in Berland is a sequence of *n* digits. Often, to make it easier to memorize the number, it is divided into groups of two or three digits. For example, the phone number 1198733 is easier to remember as 11-987-33. Your task is to find for a given phone number any of its divisions into groups of two or three digits.
Input Specification:
The first line contains integer *n* (2<=≤<=*n*<=≤<=100) — amount of digits in the phone number. The second line contains *n* digits — the phone number to divide into groups.
Output Specification:
Output any of divisions of the given phone number into groups of two or three digits. Separate groups by single character -. If the answer is not unique, output any.
Demo Input:
['6\n549871\n', '7\n1198733\n']
Demo Output:
['54-98-71', '11-987-33\n']
Note:
none
|
```python
n = int(input())
s = input()
ans=""
if(n%2==0):
for i in range(0,n,2):
if(i<n-2):
ans = ans + s[i:i+2]+"-"
if(i==n-2):
ans = ans + s[i:i+2]
else :
j = n-3
k = 0
while (k<j):
ans = ans + s[k:k+2]+"-"
k+=2
ans = ans+s[j:]
print(ans)
```
| 3.969
|
596
|
A
|
Wilbur and Swimming Pool
|
PROGRAMMING
| 1,100
|
[
"geometry",
"implementation"
] | null | null |
After making bad dives into swimming pools, Wilbur wants to build a swimming pool in the shape of a rectangle in his backyard. He has set up coordinate axes, and he wants the sides of the rectangle to be parallel to them. Of course, the area of the rectangle must be positive. Wilbur had all four vertices of the planned pool written on a paper, until his friend came along and erased some of the vertices.
Now Wilbur is wondering, if the remaining *n* vertices of the initial rectangle give enough information to restore the area of the planned swimming pool.
|
The first line of the input contains a single integer *n* (1<=≤<=*n*<=≤<=4) — the number of vertices that were not erased by Wilbur's friend.
Each of the following *n* lines contains two integers *x**i* and *y**i* (<=-<=1000<=≤<=*x**i*,<=*y**i*<=≤<=1000) —the coordinates of the *i*-th vertex that remains. Vertices are given in an arbitrary order.
It's guaranteed that these points are distinct vertices of some rectangle, that has positive area and which sides are parallel to the coordinate axes.
|
Print the area of the initial rectangle if it could be uniquely determined by the points remaining. Otherwise, print <=-<=1.
|
[
"2\n0 0\n1 1\n",
"1\n1 1\n"
] |
[
"1\n",
"-1\n"
] |
In the first sample, two opposite corners of the initial rectangle are given, and that gives enough information to say that the rectangle is actually a unit square.
In the second sample there is only one vertex left and this is definitely not enough to uniquely define the area.
| 500
|
[
{
"input": "2\n0 0\n1 1",
"output": "1"
},
{
"input": "1\n1 1",
"output": "-1"
},
{
"input": "1\n-188 17",
"output": "-1"
},
{
"input": "1\n71 -740",
"output": "-1"
},
{
"input": "4\n-56 -858\n-56 -174\n778 -858\n778 -174",
"output": "570456"
},
{
"input": "2\n14 153\n566 -13",
"output": "91632"
},
{
"input": "2\n-559 894\n314 127",
"output": "669591"
},
{
"input": "1\n-227 -825",
"output": "-1"
},
{
"input": "2\n-187 583\n25 13",
"output": "120840"
},
{
"input": "2\n-337 451\n32 -395",
"output": "312174"
},
{
"input": "4\n-64 -509\n-64 960\n634 -509\n634 960",
"output": "1025362"
},
{
"input": "2\n-922 -505\n712 -683",
"output": "290852"
},
{
"input": "2\n-1000 -1000\n-1000 0",
"output": "-1"
},
{
"input": "2\n-1000 -1000\n0 -1000",
"output": "-1"
},
{
"input": "4\n-414 -891\n-414 896\n346 -891\n346 896",
"output": "1358120"
},
{
"input": "2\n56 31\n704 -121",
"output": "98496"
},
{
"input": "4\n-152 198\n-152 366\n458 198\n458 366",
"output": "102480"
},
{
"input": "3\n-890 778\n-418 296\n-890 296",
"output": "227504"
},
{
"input": "4\n852 -184\n852 724\n970 -184\n970 724",
"output": "107144"
},
{
"input": "1\n858 -279",
"output": "-1"
},
{
"input": "2\n-823 358\n446 358",
"output": "-1"
},
{
"input": "2\n-739 -724\n-739 443",
"output": "-1"
},
{
"input": "2\n686 664\n686 -590",
"output": "-1"
},
{
"input": "3\n-679 301\n240 -23\n-679 -23",
"output": "297756"
},
{
"input": "2\n-259 -978\n978 -978",
"output": "-1"
},
{
"input": "1\n627 -250",
"output": "-1"
},
{
"input": "3\n-281 598\n679 -990\n-281 -990",
"output": "1524480"
},
{
"input": "2\n-414 -431\n-377 -688",
"output": "9509"
},
{
"input": "3\n-406 566\n428 426\n-406 426",
"output": "116760"
},
{
"input": "3\n-686 695\n-547 308\n-686 308",
"output": "53793"
},
{
"input": "1\n-164 -730",
"output": "-1"
},
{
"input": "2\n980 -230\n980 592",
"output": "-1"
},
{
"input": "4\n-925 306\n-925 602\n398 306\n398 602",
"output": "391608"
},
{
"input": "3\n576 -659\n917 -739\n576 -739",
"output": "27280"
},
{
"input": "1\n720 -200",
"output": "-1"
},
{
"input": "4\n-796 -330\n-796 758\n171 -330\n171 758",
"output": "1052096"
},
{
"input": "2\n541 611\n-26 611",
"output": "-1"
},
{
"input": "3\n-487 838\n134 691\n-487 691",
"output": "91287"
},
{
"input": "2\n-862 -181\n-525 -181",
"output": "-1"
},
{
"input": "1\n-717 916",
"output": "-1"
},
{
"input": "1\n-841 -121",
"output": "-1"
},
{
"input": "4\n259 153\n259 999\n266 153\n266 999",
"output": "5922"
},
{
"input": "2\n295 710\n295 254",
"output": "-1"
},
{
"input": "4\n137 -184\n137 700\n712 -184\n712 700",
"output": "508300"
},
{
"input": "2\n157 994\n377 136",
"output": "188760"
},
{
"input": "1\n193 304",
"output": "-1"
},
{
"input": "4\n5 -952\n5 292\n553 -952\n553 292",
"output": "681712"
},
{
"input": "2\n-748 697\n671 575",
"output": "173118"
},
{
"input": "2\n-457 82\n260 -662",
"output": "533448"
},
{
"input": "2\n-761 907\n967 907",
"output": "-1"
},
{
"input": "3\n-639 51\n-321 -539\n-639 -539",
"output": "187620"
},
{
"input": "2\n-480 51\n89 -763",
"output": "463166"
},
{
"input": "4\n459 -440\n459 -94\n872 -440\n872 -94",
"output": "142898"
},
{
"input": "2\n380 -849\n68 -849",
"output": "-1"
},
{
"input": "2\n-257 715\n102 715",
"output": "-1"
},
{
"input": "2\n247 -457\n434 -921",
"output": "86768"
},
{
"input": "4\n-474 -894\n-474 -833\n-446 -894\n-446 -833",
"output": "1708"
},
{
"input": "3\n-318 831\n450 31\n-318 31",
"output": "614400"
},
{
"input": "3\n-282 584\n696 488\n-282 488",
"output": "93888"
},
{
"input": "3\n258 937\n395 856\n258 856",
"output": "11097"
},
{
"input": "1\n-271 -499",
"output": "-1"
},
{
"input": "2\n-612 208\n326 -559",
"output": "719446"
},
{
"input": "2\n115 730\n562 -546",
"output": "570372"
},
{
"input": "2\n-386 95\n-386 750",
"output": "-1"
},
{
"input": "3\n0 0\n0 1\n1 0",
"output": "1"
},
{
"input": "3\n0 4\n3 4\n3 1",
"output": "9"
},
{
"input": "3\n1 1\n1 2\n2 1",
"output": "1"
},
{
"input": "3\n1 4\n4 4\n4 1",
"output": "9"
},
{
"input": "3\n1 1\n2 1\n1 2",
"output": "1"
},
{
"input": "3\n0 0\n1 0\n1 1",
"output": "1"
},
{
"input": "3\n0 0\n0 5\n5 0",
"output": "25"
},
{
"input": "3\n0 0\n0 1\n1 1",
"output": "1"
},
{
"input": "4\n0 0\n1 0\n1 1\n0 1",
"output": "1"
},
{
"input": "3\n4 4\n1 4\n4 1",
"output": "9"
},
{
"input": "3\n0 0\n2 0\n2 1",
"output": "2"
},
{
"input": "3\n0 0\n2 0\n0 2",
"output": "4"
},
{
"input": "3\n0 0\n0 1\n5 0",
"output": "5"
},
{
"input": "3\n1 1\n1 3\n3 1",
"output": "4"
},
{
"input": "4\n0 0\n1 0\n0 1\n1 1",
"output": "1"
},
{
"input": "2\n1 0\n2 1",
"output": "1"
},
{
"input": "3\n0 0\n1 0\n0 1",
"output": "1"
},
{
"input": "3\n1 0\n0 0\n0 1",
"output": "1"
},
{
"input": "3\n0 0\n0 5\n5 5",
"output": "25"
},
{
"input": "3\n1 0\n5 0\n5 10",
"output": "40"
},
{
"input": "3\n0 0\n1 0\n1 2",
"output": "2"
},
{
"input": "4\n0 1\n0 0\n1 0\n1 1",
"output": "1"
},
{
"input": "3\n0 0\n2 0\n0 1",
"output": "2"
},
{
"input": "3\n-2 -1\n-1 -1\n-1 -2",
"output": "1"
},
{
"input": "2\n1 0\n0 1",
"output": "1"
},
{
"input": "4\n1 1\n3 3\n3 1\n1 3",
"output": "4"
},
{
"input": "3\n2 1\n1 2\n2 2",
"output": "1"
},
{
"input": "3\n0 0\n0 3\n3 0",
"output": "9"
},
{
"input": "2\n0 3\n3 3",
"output": "-1"
},
{
"input": "4\n2 0\n2 8\n5 8\n5 0",
"output": "24"
},
{
"input": "2\n0 999\n100 250",
"output": "74900"
},
{
"input": "3\n1 1\n1 5\n5 1",
"output": "16"
},
{
"input": "3\n0 1\n0 0\n1 1",
"output": "1"
},
{
"input": "3\n0 0\n10 0\n0 10",
"output": "100"
},
{
"input": "2\n0 0\n-1 -1",
"output": "1"
},
{
"input": "3\n1 5\n2 2\n2 5",
"output": "3"
},
{
"input": "3\n0 0\n0 1\n2 0",
"output": "2"
},
{
"input": "3\n0 1\n1 0\n0 0",
"output": "1"
},
{
"input": "3\n0 0\n0 -1\n1 -1",
"output": "1"
},
{
"input": "3\n0 1\n1 0\n1 1",
"output": "1"
},
{
"input": "3\n3 5\n3 2\n7 2",
"output": "12"
},
{
"input": "3\n1 2\n1 3\n2 2",
"output": "1"
},
{
"input": "3\n5 0\n0 0\n0 5",
"output": "25"
},
{
"input": "3\n1 0\n1 3\n5 0",
"output": "12"
},
{
"input": "3\n0 0\n0 2\n2 0",
"output": "4"
},
{
"input": "3\n1 1\n0 0\n1 0",
"output": "1"
},
{
"input": "3\n1 2\n1 3\n2 3",
"output": "1"
},
{
"input": "4\n0 0\n0 1\n1 1\n1 0",
"output": "1"
},
{
"input": "2\n-3 0\n3 3",
"output": "18"
},
{
"input": "3\n1 1\n0 1\n1 0",
"output": "1"
},
{
"input": "3\n0 0\n5 0\n5 5",
"output": "25"
},
{
"input": "3\n79 79\n79 158\n158 79",
"output": "6241"
},
{
"input": "3\n1 0\n1 -1\n0 0",
"output": "1"
},
{
"input": "3\n1 1\n1 2\n2 2",
"output": "1"
},
{
"input": "3\n0 1\n0 0\n1 0",
"output": "1"
},
{
"input": "3\n2 1\n2 4\n6 1",
"output": "12"
},
{
"input": "3\n5 0\n0 0\n5 5",
"output": "25"
}
] | 1,649,230,194
| 2,147,483,647
|
PyPy 3-64
|
OK
|
TESTS
| 121
| 62
| 0
|
import math
def rl():
return map(int,input().split())
def ri():
return int(input())
n=ri()
x=[]
y=[]
while n:
a,b=rl()
x.append(a)
y.append(b)
n-=1
s=(max(x)-min(x))*(max(y)-min(y))
if s==0:
print(-1)
else:
print(s)
|
Title: Wilbur and Swimming Pool
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
After making bad dives into swimming pools, Wilbur wants to build a swimming pool in the shape of a rectangle in his backyard. He has set up coordinate axes, and he wants the sides of the rectangle to be parallel to them. Of course, the area of the rectangle must be positive. Wilbur had all four vertices of the planned pool written on a paper, until his friend came along and erased some of the vertices.
Now Wilbur is wondering, if the remaining *n* vertices of the initial rectangle give enough information to restore the area of the planned swimming pool.
Input Specification:
The first line of the input contains a single integer *n* (1<=≤<=*n*<=≤<=4) — the number of vertices that were not erased by Wilbur's friend.
Each of the following *n* lines contains two integers *x**i* and *y**i* (<=-<=1000<=≤<=*x**i*,<=*y**i*<=≤<=1000) —the coordinates of the *i*-th vertex that remains. Vertices are given in an arbitrary order.
It's guaranteed that these points are distinct vertices of some rectangle, that has positive area and which sides are parallel to the coordinate axes.
Output Specification:
Print the area of the initial rectangle if it could be uniquely determined by the points remaining. Otherwise, print <=-<=1.
Demo Input:
['2\n0 0\n1 1\n', '1\n1 1\n']
Demo Output:
['1\n', '-1\n']
Note:
In the first sample, two opposite corners of the initial rectangle are given, and that gives enough information to say that the rectangle is actually a unit square.
In the second sample there is only one vertex left and this is definitely not enough to uniquely define the area.
|
```python
import math
def rl():
return map(int,input().split())
def ri():
return int(input())
n=ri()
x=[]
y=[]
while n:
a,b=rl()
x.append(a)
y.append(b)
n-=1
s=(max(x)-min(x))*(max(y)-min(y))
if s==0:
print(-1)
else:
print(s)
```
| 3
|
|
440
|
A
|
Forgotten Episode
|
PROGRAMMING
| 800
|
[
"implementation"
] | null | null |
Polycarpus adores TV series. Right now he is ready to finish watching a season of a popular sitcom "Graph Theory". In total, the season has *n* episodes, numbered with integers from 1 to *n*.
Polycarpus watches episodes not one by one but in a random order. He has already watched all the episodes except for one. Which episode has Polycaprus forgotten to watch?
|
The first line of the input contains integer *n* (2<=≤<=*n*<=≤<=100000) — the number of episodes in a season. Assume that the episodes are numbered by integers from 1 to *n*.
The second line contains *n*<=-<=1 integer *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=*n*) — the numbers of episodes that Polycarpus has watched. All values of *a**i* are distinct.
|
Print the number of the episode that Polycarpus hasn't watched.
|
[
"10\n3 8 10 1 7 9 6 5 2\n"
] |
[
"4\n"
] |
none
| 500
|
[
{
"input": "10\n3 8 10 1 7 9 6 5 2",
"output": "4"
},
{
"input": "5\n4 3 2 1",
"output": "5"
},
{
"input": "2\n1",
"output": "2"
},
{
"input": "2\n2",
"output": "1"
},
{
"input": "3\n1 2",
"output": "3"
},
{
"input": "3\n1 3",
"output": "2"
},
{
"input": "3\n2 3",
"output": "1"
},
{
"input": "3\n2 1",
"output": "3"
},
{
"input": "3\n3 1",
"output": "2"
},
{
"input": "3\n3 2",
"output": "1"
},
{
"input": "5\n2 3 4 5",
"output": "1"
},
{
"input": "5\n5 4 3 2",
"output": "1"
},
{
"input": "5\n5 2 4 3",
"output": "1"
},
{
"input": "5\n1 2 3 4",
"output": "5"
},
{
"input": "5\n2 1 3 4",
"output": "5"
},
{
"input": "5\n1 5 3 4",
"output": "2"
},
{
"input": "5\n1 4 5 2",
"output": "3"
},
{
"input": "5\n2 1 5 3",
"output": "4"
},
{
"input": "5\n2 3 4 5",
"output": "1"
}
] | 1,691,772,486
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 35
| 93
| 17,510,400
|
n = int(input())
L = set(map(int, input().split())) # Use a set for O(1) membership check
missing = set(range(1, n+1)) - L # Calculate the missing elements
print(min(missing)) # Print the smallest missing element
|
Title: Forgotten Episode
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Polycarpus adores TV series. Right now he is ready to finish watching a season of a popular sitcom "Graph Theory". In total, the season has *n* episodes, numbered with integers from 1 to *n*.
Polycarpus watches episodes not one by one but in a random order. He has already watched all the episodes except for one. Which episode has Polycaprus forgotten to watch?
Input Specification:
The first line of the input contains integer *n* (2<=≤<=*n*<=≤<=100000) — the number of episodes in a season. Assume that the episodes are numbered by integers from 1 to *n*.
The second line contains *n*<=-<=1 integer *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=*n*) — the numbers of episodes that Polycarpus has watched. All values of *a**i* are distinct.
Output Specification:
Print the number of the episode that Polycarpus hasn't watched.
Demo Input:
['10\n3 8 10 1 7 9 6 5 2\n']
Demo Output:
['4\n']
Note:
none
|
```python
n = int(input())
L = set(map(int, input().split())) # Use a set for O(1) membership check
missing = set(range(1, n+1)) - L # Calculate the missing elements
print(min(missing)) # Print the smallest missing element
```
| 3
|
|
600
|
F
|
Edge coloring of bipartite graph
|
PROGRAMMING
| 2,800
|
[
"graphs"
] | null | null |
You are given an undirected bipartite graph without multiple edges. You should paint the edges of graph to minimal number of colours, so that no two adjacent edges have the same colour.
|
The first line contains three integers *a*,<=*b*,<=*m* (1<=≤<=*a*,<=*b*<=≤<=1000, 0<=≤<=*m*<=≤<=105), *a* is the size of the first part, *b* is the size of the second part, *m* is the number of edges in the graph.
Each of the next *m* lines contains two integers *x*,<=*y* (1<=≤<=*x*<=≤<=*a*,<=1<=≤<=*y*<=≤<=*b*), where *x* is the number of the vertex in the first part and *y* is the number of the vertex in the second part. It is guaranteed that there are no multiple edges.
|
In the first line print integer *c* — the minimal number of colours. The second line should contain *m* integers from 1 to *c* — the colours of the edges (in the order they appear in the input).
If there are several solutions, you can print any one of them.
|
[
"4 3 5\n1 2\n2 2\n3 2\n4 1\n4 3\n"
] |
[
"3\n1 2 3 1 2\n"
] |
none
| 0
|
[
{
"input": "4 3 5\n1 2\n2 2\n3 2\n4 1\n4 3",
"output": "3\n1 2 3 1 2"
},
{
"input": "4 3 5\n1 2\n2 2\n3 2\n4 1\n4 3",
"output": "3\n1 2 3 1 2"
},
{
"input": "4 3 0",
"output": "0"
},
{
"input": "10 10 67\n1 1\n1 2\n1 3\n1 7\n1 9\n1 10\n2 1\n2 2\n2 3\n2 6\n2 8\n2 10\n3 2\n3 3\n3 6\n3 8\n3 9\n3 10\n4 1\n4 4\n4 5\n4 6\n4 7\n4 8\n5 2\n5 4\n5 7\n5 8\n5 9\n5 10\n6 1\n6 2\n6 3\n6 4\n6 6\n6 8\n6 9\n6 10\n7 2\n7 4\n7 6\n7 9\n7 10\n8 3\n8 4\n8 5\n8 6\n8 7\n8 8\n8 9\n8 10\n9 1\n9 2\n9 3\n9 5\n9 6\n9 7\n9 8\n9 9\n9 10\n10 1\n10 3\n10 4\n10 5\n10 8\n10 9\n10 10",
"output": "9\n3 2 1 4 5 6 2 6 4 3 5 1 1 2 4 3 6 5 1 3 4 5 6 2 3 5 1 6 4 2 4 5 3 2 6 1 7 8 4 8 2 3 7 5 4 6 7 2 8 1 3 5 7 6 1 8 3 4 2 9 6 7 1 2 9 8 4"
},
{
"input": "10 10 27\n1 10\n2 1\n2 3\n2 6\n2 8\n3 2\n3 4\n3 5\n4 1\n4 3\n4 5\n5 2\n5 5\n5 6\n6 1\n6 6\n7 8\n7 9\n8 1\n8 3\n8 6\n8 8\n9 1\n9 10\n10 2\n10 4\n10 5",
"output": "5\n1 1 2 3 4 1 2 3 2 1 4 2 1 4 3 2 1 2 4 3 1 2 5 2 3 1 2"
},
{
"input": "10 10 10\n1 7\n1 10\n2 3\n3 3\n4 5\n4 6\n4 7\n5 5\n8 10\n10 9",
"output": "3\n1 2 1 2 1 2 3 2 1 1"
},
{
"input": "100 100 50\n6 1\n6 89\n12 34\n14 4\n16 12\n20 45\n22 41\n22 87\n25 81\n30 92\n30 98\n31 16\n31 89\n32 84\n33 45\n33 94\n34 97\n36 94\n37 81\n39 23\n40 55\n40 60\n42 82\n44 80\n46 57\n46 86\n50 48\n55 33\n56 59\n56 76\n64 27\n64 60\n65 24\n71 95\n72 28\n74 23\n76 11\n80 34\n80 46\n81 22\n81 46\n85 2\n87 9\n91 97\n92 35\n95 22\n97 87\n98 29\n98 74\n100 7",
"output": "2\n1 2 1 1 1 1 1 2 1 1 2 2 1 1 2 1 1 2 2 1 1 2 1 1 1 2 1 1 1 2 2 1 1 1 1 2 1 2 1 1 2 1 1 2 1 2 1 1 2 1"
},
{
"input": "100 100 50\n3 71\n3 97\n5 65\n7 49\n9 85\n10 92\n12 60\n16 52\n17 13\n18 22\n22 85\n24 16\n27 47\n29 18\n31 83\n36 10\n37 68\n37 75\n38 1\n41 48\n43 99\n45 65\n45 96\n46 33\n50 39\n51 43\n53 55\n59 4\n63 1\n64 58\n64 92\n65 95\n70 49\n74 52\n75 51\n76 29\n76 43\n80 92\n84 51\n85 25\n85 37\n86 24\n86 81\n87 51\n91 7\n93 33\n97 50\n100 39\n100 59\n100 66",
"output": "3\n1 2 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 2 1 1 1 2 1 1 1 1 1 1 2 1 2 1 2 2 1 1 2 3 2 1 2 1 2 3 1 2 1 2 1 3"
},
{
"input": "100 100 50\n4 76\n7 17\n8 6\n8 58\n11 56\n12 79\n14 38\n19 39\n22 50\n24 33\n27 41\n29 5\n29 35\n30 20\n31 37\n31 80\n32 50\n38 39\n42 49\n42 59\n48 1\n48 80\n49 36\n49 70\n50 95\n51 3\n51 33\n57 28\n59 71\n59 94\n59 95\n61 70\n63 5\n63 98\n64 73\n66 65\n74 85\n77 13\n77 59\n78 61\n79 4\n80 39\n82 91\n85 82\n85 92\n86 45\n88 32\n89 7\n93 21\n96 36",
"output": "3\n1 1 1 2 1 1 1 1 1 1 1 1 2 1 1 2 2 2 1 2 2 1 1 2 1 1 2 1 1 2 3 1 2 1 1 1 1 1 3 1 1 3 1 1 2 1 1 1 1 2"
},
{
"input": "15 15 54\n1 1\n1 3\n1 5\n1 10\n1 14\n1 15\n2 3\n2 5\n2 14\n3 4\n3 10\n4 2\n4 13\n4 15\n5 4\n5 8\n5 10\n6 4\n6 6\n6 7\n6 8\n6 15\n7 3\n7 6\n7 7\n7 10\n8 1\n8 4\n8 6\n8 13\n9 2\n9 3\n10 2\n10 7\n10 15\n11 3\n11 6\n11 7\n11 10\n11 11\n12 5\n12 9\n12 10\n13 11\n14 2\n14 8\n14 12\n14 14\n14 15\n15 4\n15 5\n15 6\n15 10\n15 15",
"output": "7\n1 2 3 4 5 6 1 2 3 1 2 1 2 3 2 1 3 3 1 2 4 5 3 2 1 5 2 4 3 1 2 4 3 4 1 5 4 3 1 2 4 2 6 1 4 3 1 6 2 5 1 6 7 4"
},
{
"input": "15 15 49\n1 4\n1 7\n1 9\n1 11\n1 13\n2 1\n2 2\n2 4\n2 6\n2 8\n2 12\n2 13\n3 1\n3 2\n3 5\n3 9\n3 10\n4 2\n4 5\n4 6\n5 1\n5 8\n5 12\n6 1\n6 6\n6 15\n7 14\n8 2\n8 5\n8 6\n8 15\n9 1\n9 6\n9 13\n10 9\n10 11\n11 1\n11 2\n12 3\n12 7\n12 14\n13 5\n13 9\n13 14\n14 2\n14 3\n14 13\n15 10\n15 15",
"output": "7\n1 2 3 4 5 1 2 3 4 5 6 7 2 1 3 4 5 3 1 2 3 1 2 4 1 2 1 4 2 3 1 5 6 1 1 2 6 5 1 3 2 4 2 3 6 2 3 1 3"
},
{
"input": "15 15 49\n1 4\n1 7\n1 9\n1 11\n1 13\n2 1\n2 2\n2 4\n2 6\n2 8\n2 12\n2 13\n3 1\n3 2\n3 5\n3 9\n3 10\n4 2\n4 5\n4 6\n5 1\n5 8\n5 12\n6 1\n6 6\n6 15\n7 14\n8 2\n8 5\n8 6\n8 15\n9 1\n9 6\n9 13\n10 9\n10 11\n11 1\n11 2\n12 3\n12 7\n12 14\n13 5\n13 9\n13 14\n14 2\n14 3\n14 13\n15 10\n15 15",
"output": "7\n1 2 3 4 5 1 2 3 4 5 6 7 2 1 3 4 5 3 1 2 3 1 2 4 1 2 1 4 2 3 1 5 6 1 1 2 6 5 1 3 2 4 2 3 6 2 3 1 3"
},
{
"input": "15 15 53\n1 6\n2 4\n2 10\n3 3\n3 4\n3 11\n3 13\n3 14\n4 2\n4 12\n5 7\n5 8\n5 10\n6 1\n6 9\n7 10\n7 15\n8 7\n8 8\n9 4\n9 5\n9 6\n9 8\n9 11\n9 15\n10 1\n10 11\n10 15\n11 5\n11 7\n11 10\n11 12\n11 13\n12 1\n12 2\n12 4\n12 8\n12 10\n13 6\n13 7\n13 9\n13 13\n13 14\n14 9\n14 10\n14 15\n15 5\n15 8\n15 10\n15 11\n15 12\n15 14\n15 15",
"output": "7\n1 1 2 1 2 3 4 5 1 2 1 2 3 1 2 1 2 2 1 3 1 2 4 5 6 2 1 3 2 3 4 1 5 3 2 4 5 6 3 4 1 2 6 3 5 1 3 6 7 2 4 1 5"
},
{
"input": "139 1000 0",
"output": "0"
},
{
"input": "139 1000 1\n75 791",
"output": "1\n1"
}
] | 1,657,806,830
| 2,147,483,647
|
PyPy 3-64
|
OK
|
TESTS
| 47
| 889
| 52,326,400
|
import os
import sys
from io import BytesIO, IOBase
BUFSIZE = 8192
class FastIO(IOBase):
newlines = 0
def __init__(self, file):
self._fd = file.fileno()
self.buffer = BytesIO()
self.writable = "x" in file.mode or "r" not in file.mode
self.write = self.buffer.write if self.writable else None
def read(self):
while True:
b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE))
if not b:
break
ptr = self.buffer.tell()
self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr)
self.newlines = 0
return self.buffer.read()
def readline(self):
while self.newlines == 0:
b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE))
self.newlines = b.count(b"\n") + (not b)
ptr = self.buffer.tell()
self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr)
self.newlines -= 1
return self.buffer.readline()
def flush(self):
if self.writable:
os.write(self._fd, self.buffer.getvalue())
self.buffer.truncate(0), self.buffer.seek(0)
class IOWrapper(IOBase):
def __init__(self, file):
self.buffer = FastIO(file)
self.flush = self.buffer.flush
self.writable = self.buffer.writable
self.write = lambda s: self.buffer.write(s.encode("ascii"))
self.read = lambda: self.buffer.read().decode("ascii")
self.readline = lambda: self.buffer.readline().decode("ascii")
sys.stdin, sys.stdout = IOWrapper(sys.stdin), IOWrapper(sys.stdout)
input = lambda: sys.stdin.readline().rstrip("\r\n")
from heapq import *
from collections import deque
class HopCroftKarp:
def __init__(self, n, m):
self.n = n
self.m = m
self.G = [[] for _ in range(n)]
self.RG = [[] for _ in range(m)]
self.match_l = [-1] * n
self.match_r = [-1] * m
self.used = [0] * n
self.time_stamp = 0
def add_edges(self, u, v):
self.G[u].append(v)
def _build_argument_path(self):
queue = deque()
self.dist = [-1] * self.n
for i in range(self.n):
if self.match_l[i] == -1:
queue.append(i)
self.dist[i] = 0
while queue:
a = queue.popleft()
for b in self.G[a]:
c = self.match_r[b]
if c >= 0 and self.dist[c] == -1:
self.dist[c] = self.dist[a] + 1
queue.append(c)
def _find_min_dist_argument_path(self, a):
self.used[a] = self.time_stamp
for b in self.G[a]:
c = self.match_r[b]
if c < 0 or (self.used[c] != self.time_stamp and self.dist[c] == self.dist[a] + 1 and self._find_min_dist_argument_path(c)):
self.match_r[b] = a
self.match_l[a] = b
return True
return False
def max_matching(self):
while 1:
self._build_argument_path()
self.time_stamp += 1
flow = 0
for i in range(self.n):
if self.match_l[i] == -1:
flow += self._find_min_dist_argument_path(i)
if flow == 0:
break
ret = []
for i in range(self.n):
if self.match_l[i] >= 0:
ret.append((i, self.match_l[i]))
return ret
class UnionFind:
def __init__(self, n):
self.n = n
self.parents = [-1] * n
self.group = n
def find(self, x):
if self.parents[x] < 0:
return x
else:
self.parents[x] = self.find(self.parents[x])
return self.parents[x]
def union(self, x, y):
x = self.find(x)
y = self.find(y)
if x == y:
return
self.group -= 1
if self.parents[x] > self.parents[y]:
x, y = y, x
self.parents[x] += self.parents[y]
self.parents[y] = x
def size(self, x):
return -self.parents[self.find(x)]
def same(self, x, y):
return self.find(x) == self.find(y)
def members(self, x):
root = self.find(x)
return [i for i in range(self.n) if self.find(i) == root]
def roots(self):
return [i for i, x in enumerate(self.parents) if x < 0]
def group_count(self):
return self.group
def all_group_members(self):
dic = {r:[] for r in self.roots()}
for i in range(self.n):
dic[self.find(i)].append(i)
return dic
def __str__(self):
return '\n'.join('{}: {}'.format(r, self.members(r)) for r in self.roots())
def contract(deg, k):
hq = []
for i, d in enumerate(deg):
hq.append([d, i])
heapify(hq)
UF = UnionFind(len(deg))
while len(hq) >= 2:
p = heappop(hq)
q = heappop(hq)
if p[0] + q[0] > k:
continue
p[0] += q[0]
UF.union(p[1], q[1])
heappush(hq, p)
return UF
def build_k_regular_graph(n, m, A, B):
dega = [0] * n
degb = [0] * m
for a in A:
dega[a] += 1
for b in B:
degb[b] += 1
K = max(*dega, *degb)
UFa = contract(dega, K)
ida = [-1] * n
pa = 0
for i in range(n):
if UFa.find(i) == i:
ida[i] = pa
pa += 1
UFb = contract(degb, K)
idb = [-1] * m
pb = 0
for i in range(m):
if UFb.find(i) == i:
idb[i] = pb
pb += 1
p = max(pa, pb)
dega = [0] * p
degb = [0] * p
C = []
D = []
for i in range(len(A)):
u = ida[UFa.find(A[i])]
v = idb[UFb.find(B[i])]
C.append(u)
D.append(v)
dega[u] += 1
degb[v] += 1
j = 0
for i in range(p):
while dega[i] < K:
while degb[j] == K:
j += 1
C.append(i)
D.append(j)
dega[i] += 1
degb[j] += 1
return K, p, C, D
def EdgeColoring(a, b, A, B):
K, n, A, B = build_k_regular_graph(a, b, A, B)
ord = [i for i in range(len(A))]
ans = []
def euler_trail(ord):
V = 2 * n
G = [[] for _ in range(V)]
m = 0
for i in ord:
G[A[i]].append((B[i] + n, m))
G[B[i] + n].append((A[i], m))
m += 1
used_v = [0] * V
used_e = [0] * m
ans = []
for i in range(V):
if used_v[i]:
continue
st = []
ord2 = []
st.append((i, -1))
while st:
id_ = st[-1][0]
used_v[id_] = True
if len(G[id_]) == 0:
ord2.append(st[-1][1])
st.pop()
else:
e = G[id_][-1]
G[id_].pop()
if used_e[e[1]]:
continue
used_e[e[1]] = True
st.append(e)
ord2.pop()
ord2 = ord2[::-1]
ans += ord2
for i, a in enumerate(ans):
ans[i] = ord[a]
return ans
def rec(ord, K):
if K == 0:
return
elif K == 1:
ans.append(ord)
return
elif K & 1:
G = HopCroftKarp(n, n)
for i in ord:
G.add_edges(A[i], B[i])
G.max_matching()
lst = []
ans.append([])
for i in ord:
if G.match_l[A[i]] == B[i]:
G.match_l[A[i]] = -1
ans[-1].append(i)
else:
lst.append(i)
rec(lst, K - 1)
else:
path = euler_trail(ord)
L = []
R = []
for i, p in enumerate(path):
if i & 1:
L.append(p)
else:
R.append(p)
rec(L, K // 2)
rec(R, K // 2)
rec(ord, K)
return K, ans
def solve():
a, b, m = map(int, input().split())
A = [-1] * m
B = [-1] * m
for i in range(m):
A[i], B[i] = map(int, input().split())
A[i] -= 1
B[i] -= 1
K, ans = EdgeColoring(a, b, A, B)
color = [-1] * m
for i in range(len(ans)):
for j in ans[i]:
if j < m:
color[j] = i + 1
print(K)
print(*color)
for _ in range(1):
solve()
|
Title: Edge coloring of bipartite graph
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
You are given an undirected bipartite graph without multiple edges. You should paint the edges of graph to minimal number of colours, so that no two adjacent edges have the same colour.
Input Specification:
The first line contains three integers *a*,<=*b*,<=*m* (1<=≤<=*a*,<=*b*<=≤<=1000, 0<=≤<=*m*<=≤<=105), *a* is the size of the first part, *b* is the size of the second part, *m* is the number of edges in the graph.
Each of the next *m* lines contains two integers *x*,<=*y* (1<=≤<=*x*<=≤<=*a*,<=1<=≤<=*y*<=≤<=*b*), where *x* is the number of the vertex in the first part and *y* is the number of the vertex in the second part. It is guaranteed that there are no multiple edges.
Output Specification:
In the first line print integer *c* — the minimal number of colours. The second line should contain *m* integers from 1 to *c* — the colours of the edges (in the order they appear in the input).
If there are several solutions, you can print any one of them.
Demo Input:
['4 3 5\n1 2\n2 2\n3 2\n4 1\n4 3\n']
Demo Output:
['3\n1 2 3 1 2\n']
Note:
none
|
```python
import os
import sys
from io import BytesIO, IOBase
BUFSIZE = 8192
class FastIO(IOBase):
newlines = 0
def __init__(self, file):
self._fd = file.fileno()
self.buffer = BytesIO()
self.writable = "x" in file.mode or "r" not in file.mode
self.write = self.buffer.write if self.writable else None
def read(self):
while True:
b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE))
if not b:
break
ptr = self.buffer.tell()
self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr)
self.newlines = 0
return self.buffer.read()
def readline(self):
while self.newlines == 0:
b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE))
self.newlines = b.count(b"\n") + (not b)
ptr = self.buffer.tell()
self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr)
self.newlines -= 1
return self.buffer.readline()
def flush(self):
if self.writable:
os.write(self._fd, self.buffer.getvalue())
self.buffer.truncate(0), self.buffer.seek(0)
class IOWrapper(IOBase):
def __init__(self, file):
self.buffer = FastIO(file)
self.flush = self.buffer.flush
self.writable = self.buffer.writable
self.write = lambda s: self.buffer.write(s.encode("ascii"))
self.read = lambda: self.buffer.read().decode("ascii")
self.readline = lambda: self.buffer.readline().decode("ascii")
sys.stdin, sys.stdout = IOWrapper(sys.stdin), IOWrapper(sys.stdout)
input = lambda: sys.stdin.readline().rstrip("\r\n")
from heapq import *
from collections import deque
class HopCroftKarp:
def __init__(self, n, m):
self.n = n
self.m = m
self.G = [[] for _ in range(n)]
self.RG = [[] for _ in range(m)]
self.match_l = [-1] * n
self.match_r = [-1] * m
self.used = [0] * n
self.time_stamp = 0
def add_edges(self, u, v):
self.G[u].append(v)
def _build_argument_path(self):
queue = deque()
self.dist = [-1] * self.n
for i in range(self.n):
if self.match_l[i] == -1:
queue.append(i)
self.dist[i] = 0
while queue:
a = queue.popleft()
for b in self.G[a]:
c = self.match_r[b]
if c >= 0 and self.dist[c] == -1:
self.dist[c] = self.dist[a] + 1
queue.append(c)
def _find_min_dist_argument_path(self, a):
self.used[a] = self.time_stamp
for b in self.G[a]:
c = self.match_r[b]
if c < 0 or (self.used[c] != self.time_stamp and self.dist[c] == self.dist[a] + 1 and self._find_min_dist_argument_path(c)):
self.match_r[b] = a
self.match_l[a] = b
return True
return False
def max_matching(self):
while 1:
self._build_argument_path()
self.time_stamp += 1
flow = 0
for i in range(self.n):
if self.match_l[i] == -1:
flow += self._find_min_dist_argument_path(i)
if flow == 0:
break
ret = []
for i in range(self.n):
if self.match_l[i] >= 0:
ret.append((i, self.match_l[i]))
return ret
class UnionFind:
def __init__(self, n):
self.n = n
self.parents = [-1] * n
self.group = n
def find(self, x):
if self.parents[x] < 0:
return x
else:
self.parents[x] = self.find(self.parents[x])
return self.parents[x]
def union(self, x, y):
x = self.find(x)
y = self.find(y)
if x == y:
return
self.group -= 1
if self.parents[x] > self.parents[y]:
x, y = y, x
self.parents[x] += self.parents[y]
self.parents[y] = x
def size(self, x):
return -self.parents[self.find(x)]
def same(self, x, y):
return self.find(x) == self.find(y)
def members(self, x):
root = self.find(x)
return [i for i in range(self.n) if self.find(i) == root]
def roots(self):
return [i for i, x in enumerate(self.parents) if x < 0]
def group_count(self):
return self.group
def all_group_members(self):
dic = {r:[] for r in self.roots()}
for i in range(self.n):
dic[self.find(i)].append(i)
return dic
def __str__(self):
return '\n'.join('{}: {}'.format(r, self.members(r)) for r in self.roots())
def contract(deg, k):
hq = []
for i, d in enumerate(deg):
hq.append([d, i])
heapify(hq)
UF = UnionFind(len(deg))
while len(hq) >= 2:
p = heappop(hq)
q = heappop(hq)
if p[0] + q[0] > k:
continue
p[0] += q[0]
UF.union(p[1], q[1])
heappush(hq, p)
return UF
def build_k_regular_graph(n, m, A, B):
dega = [0] * n
degb = [0] * m
for a in A:
dega[a] += 1
for b in B:
degb[b] += 1
K = max(*dega, *degb)
UFa = contract(dega, K)
ida = [-1] * n
pa = 0
for i in range(n):
if UFa.find(i) == i:
ida[i] = pa
pa += 1
UFb = contract(degb, K)
idb = [-1] * m
pb = 0
for i in range(m):
if UFb.find(i) == i:
idb[i] = pb
pb += 1
p = max(pa, pb)
dega = [0] * p
degb = [0] * p
C = []
D = []
for i in range(len(A)):
u = ida[UFa.find(A[i])]
v = idb[UFb.find(B[i])]
C.append(u)
D.append(v)
dega[u] += 1
degb[v] += 1
j = 0
for i in range(p):
while dega[i] < K:
while degb[j] == K:
j += 1
C.append(i)
D.append(j)
dega[i] += 1
degb[j] += 1
return K, p, C, D
def EdgeColoring(a, b, A, B):
K, n, A, B = build_k_regular_graph(a, b, A, B)
ord = [i for i in range(len(A))]
ans = []
def euler_trail(ord):
V = 2 * n
G = [[] for _ in range(V)]
m = 0
for i in ord:
G[A[i]].append((B[i] + n, m))
G[B[i] + n].append((A[i], m))
m += 1
used_v = [0] * V
used_e = [0] * m
ans = []
for i in range(V):
if used_v[i]:
continue
st = []
ord2 = []
st.append((i, -1))
while st:
id_ = st[-1][0]
used_v[id_] = True
if len(G[id_]) == 0:
ord2.append(st[-1][1])
st.pop()
else:
e = G[id_][-1]
G[id_].pop()
if used_e[e[1]]:
continue
used_e[e[1]] = True
st.append(e)
ord2.pop()
ord2 = ord2[::-1]
ans += ord2
for i, a in enumerate(ans):
ans[i] = ord[a]
return ans
def rec(ord, K):
if K == 0:
return
elif K == 1:
ans.append(ord)
return
elif K & 1:
G = HopCroftKarp(n, n)
for i in ord:
G.add_edges(A[i], B[i])
G.max_matching()
lst = []
ans.append([])
for i in ord:
if G.match_l[A[i]] == B[i]:
G.match_l[A[i]] = -1
ans[-1].append(i)
else:
lst.append(i)
rec(lst, K - 1)
else:
path = euler_trail(ord)
L = []
R = []
for i, p in enumerate(path):
if i & 1:
L.append(p)
else:
R.append(p)
rec(L, K // 2)
rec(R, K // 2)
rec(ord, K)
return K, ans
def solve():
a, b, m = map(int, input().split())
A = [-1] * m
B = [-1] * m
for i in range(m):
A[i], B[i] = map(int, input().split())
A[i] -= 1
B[i] -= 1
K, ans = EdgeColoring(a, b, A, B)
color = [-1] * m
for i in range(len(ans)):
for j in ans[i]:
if j < m:
color[j] = i + 1
print(K)
print(*color)
for _ in range(1):
solve()
```
| 3
|
|
66
|
B
|
Petya and Countryside
|
PROGRAMMING
| 1,100
|
[
"brute force",
"implementation"
] |
B. Petya and Countryside
|
2
|
256
|
Little Petya often travels to his grandmother in the countryside. The grandmother has a large garden, which can be represented as a rectangle 1<=×<=*n* in size, when viewed from above. This rectangle is divided into *n* equal square sections. The garden is very unusual as each of the square sections possesses its own fixed height and due to the newest irrigation system we can create artificial rain above each section.
Creating artificial rain is an expensive operation. That's why we limit ourselves to creating the artificial rain only above one section. At that, the water from each watered section will flow into its neighbouring sections if their height does not exceed the height of the section. That is, for example, the garden can be represented by a 1<=×<=5 rectangle, where the section heights are equal to 4, 2, 3, 3, 2. Then if we create an artificial rain over any of the sections with the height of 3, the water will flow over all the sections, except the ones with the height of 4. See the illustration of this example at the picture:
As Petya is keen on programming, he decided to find such a section that if we create artificial rain above it, the number of watered sections will be maximal. Help him.
|
The first line contains a positive integer *n* (1<=≤<=*n*<=≤<=1000). The second line contains *n* positive integers which are the height of the sections. All the numbers are no less than 1 and not more than 1000.
|
Print a single number, the maximal number of watered sections if we create artificial rain above exactly one section.
|
[
"1\n2\n",
"5\n1 2 1 2 1\n",
"8\n1 2 1 1 1 3 3 4\n"
] |
[
"1\n",
"3\n",
"6\n"
] |
none
| 1,000
|
[
{
"input": "1\n2",
"output": "1"
},
{
"input": "5\n1 2 1 2 1",
"output": "3"
},
{
"input": "8\n1 2 1 1 1 3 3 4",
"output": "6"
},
{
"input": "10\n1 2 3 4 5 6 7 8 9 10",
"output": "10"
},
{
"input": "10\n10 9 8 7 6 5 4 3 2 1",
"output": "10"
},
{
"input": "2\n100 100",
"output": "2"
},
{
"input": "3\n100 100 100",
"output": "3"
},
{
"input": "11\n1 2 3 4 5 6 5 4 3 2 1",
"output": "11"
},
{
"input": "100\n1 2 3 4 5 6 7 8 9 10 11 100 88 87 86 85 84 83 82 81 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 1 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1",
"output": "61"
},
{
"input": "100\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 1 82 83 84 85 86 87 88 89 90 91 92 93 94 100 5 4 3 2 1",
"output": "81"
},
{
"input": "100\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 1 86 87 88 89 90 91 92 93 100 6 5 4 3 2 1",
"output": "85"
},
{
"input": "100\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 1 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 100 7 6 5 4 3 2 1",
"output": "61"
},
{
"input": "100\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 100 8 7 6 1 4 3 2 1",
"output": "96"
},
{
"input": "100\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 100 10 9 8 7 6 5 4 3 2 1",
"output": "100"
},
{
"input": "100\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 1 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 100 11 10 9 8 7 6 5 4 3 2 1",
"output": "55"
},
{
"input": "100\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 1 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 100 12 11 10 9 8 7 6 5 4 3 2 1",
"output": "59"
},
{
"input": "100\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 1 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 100 13 12 11 10 9 8 7 6 5 4 3 2 1",
"output": "86"
},
{
"input": "100\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 1 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 100 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1",
"output": "83"
},
{
"input": "100\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 100 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 1 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1",
"output": "74"
},
{
"input": "100\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 100 9 8 7 6 5 4 3 2 1",
"output": "100"
},
{
"input": "100\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 100 84 83 82 81 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 1 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1",
"output": "52"
},
{
"input": "100\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 100 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 1 2 1",
"output": "98"
},
{
"input": "10\n1 4 4 4 4 4 1 2 4 3",
"output": "7"
}
] | 1,591,128,093
| 2,147,483,647
|
PyPy 3
|
OK
|
TESTS
| 80
| 310
| 102,400
|
# Author : debugster
# Email : [email protected]
# Date : 2020-06-03 01:51:41
import sys
import os
def get_int():
return map(int, input().split())
def get_array():
return list(map(int, input().split()))
if os.environ.get("DEBUGSTER_PYTHON"):
sys.stdin = open('in.txt', 'r')
sys.stdout = open('out.txt','w')
n = int(input())
h = get_array()
left = dict()
right = dict()
for i in range(n):
left[i] = 0
right[i] = 0
for i in range(1, n):
if h[i - 1] <= h[i]:
left[i] = left[i - 1] + 1
for i in range(n - 2, -1, -1):
if h[i] >= h[i + 1]:
right[i] = right[i + 1] + 1
ans = -1
for i in range(n):
ans = max(ans, left[i] + right[i] + 1)
print(ans)
|
Title: Petya and Countryside
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
Little Petya often travels to his grandmother in the countryside. The grandmother has a large garden, which can be represented as a rectangle 1<=×<=*n* in size, when viewed from above. This rectangle is divided into *n* equal square sections. The garden is very unusual as each of the square sections possesses its own fixed height and due to the newest irrigation system we can create artificial rain above each section.
Creating artificial rain is an expensive operation. That's why we limit ourselves to creating the artificial rain only above one section. At that, the water from each watered section will flow into its neighbouring sections if their height does not exceed the height of the section. That is, for example, the garden can be represented by a 1<=×<=5 rectangle, where the section heights are equal to 4, 2, 3, 3, 2. Then if we create an artificial rain over any of the sections with the height of 3, the water will flow over all the sections, except the ones with the height of 4. See the illustration of this example at the picture:
As Petya is keen on programming, he decided to find such a section that if we create artificial rain above it, the number of watered sections will be maximal. Help him.
Input Specification:
The first line contains a positive integer *n* (1<=≤<=*n*<=≤<=1000). The second line contains *n* positive integers which are the height of the sections. All the numbers are no less than 1 and not more than 1000.
Output Specification:
Print a single number, the maximal number of watered sections if we create artificial rain above exactly one section.
Demo Input:
['1\n2\n', '5\n1 2 1 2 1\n', '8\n1 2 1 1 1 3 3 4\n']
Demo Output:
['1\n', '3\n', '6\n']
Note:
none
|
```python
# Author : debugster
# Email : [email protected]
# Date : 2020-06-03 01:51:41
import sys
import os
def get_int():
return map(int, input().split())
def get_array():
return list(map(int, input().split()))
if os.environ.get("DEBUGSTER_PYTHON"):
sys.stdin = open('in.txt', 'r')
sys.stdout = open('out.txt','w')
n = int(input())
h = get_array()
left = dict()
right = dict()
for i in range(n):
left[i] = 0
right[i] = 0
for i in range(1, n):
if h[i - 1] <= h[i]:
left[i] = left[i - 1] + 1
for i in range(n - 2, -1, -1):
if h[i] >= h[i + 1]:
right[i] = right[i + 1] + 1
ans = -1
for i in range(n):
ans = max(ans, left[i] + right[i] + 1)
print(ans)
```
| 3.922309
|
727
|
A
|
Transformation: from A to B
|
PROGRAMMING
| 1,000
|
[
"brute force",
"dfs and similar",
"math"
] | null | null |
Vasily has a number *a*, which he wants to turn into a number *b*. For this purpose, he can do two types of operations:
- multiply the current number by 2 (that is, replace the number *x* by 2·*x*); - append the digit 1 to the right of current number (that is, replace the number *x* by 10·*x*<=+<=1).
You need to help Vasily to transform the number *a* into the number *b* using only the operations described above, or find that it is impossible.
Note that in this task you are not required to minimize the number of operations. It suffices to find any way to transform *a* into *b*.
|
The first line contains two positive integers *a* and *b* (1<=≤<=*a*<=<<=*b*<=≤<=109) — the number which Vasily has and the number he wants to have.
|
If there is no way to get *b* from *a*, print "NO" (without quotes).
Otherwise print three lines. On the first line print "YES" (without quotes). The second line should contain single integer *k* — the length of the transformation sequence. On the third line print the sequence of transformations *x*1,<=*x*2,<=...,<=*x**k*, where:
- *x*1 should be equal to *a*, - *x**k* should be equal to *b*, - *x**i* should be obtained from *x**i*<=-<=1 using any of two described operations (1<=<<=*i*<=≤<=*k*).
If there are multiple answers, print any of them.
|
[
"2 162\n",
"4 42\n",
"100 40021\n"
] |
[
"YES\n5\n2 4 8 81 162 \n",
"NO\n",
"YES\n5\n100 200 2001 4002 40021 \n"
] |
none
| 1,000
|
[
{
"input": "2 162",
"output": "YES\n5\n2 4 8 81 162 "
},
{
"input": "4 42",
"output": "NO"
},
{
"input": "100 40021",
"output": "YES\n5\n100 200 2001 4002 40021 "
},
{
"input": "1 111111111",
"output": "YES\n9\n1 11 111 1111 11111 111111 1111111 11111111 111111111 "
},
{
"input": "1 1000000000",
"output": "NO"
},
{
"input": "999999999 1000000000",
"output": "NO"
},
{
"input": "1 2",
"output": "YES\n2\n1 2 "
},
{
"input": "1 536870912",
"output": "YES\n30\n1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384 32768 65536 131072 262144 524288 1048576 2097152 4194304 8388608 16777216 33554432 67108864 134217728 268435456 536870912 "
},
{
"input": "11111 11111111",
"output": "YES\n4\n11111 111111 1111111 11111111 "
},
{
"input": "59139 946224",
"output": "YES\n5\n59139 118278 236556 473112 946224 "
},
{
"input": "9859 19718",
"output": "YES\n2\n9859 19718 "
},
{
"input": "25987 51974222",
"output": "YES\n5\n25987 259871 2598711 25987111 51974222 "
},
{
"input": "9411 188222222",
"output": "YES\n6\n9411 94111 941111 9411111 94111111 188222222 "
},
{
"input": "25539 510782222",
"output": "YES\n6\n25539 255391 2553911 25539111 255391111 510782222 "
},
{
"input": "76259 610072",
"output": "YES\n4\n76259 152518 305036 610072 "
},
{
"input": "92387 184774",
"output": "YES\n2\n92387 184774 "
},
{
"input": "8515 85151111",
"output": "YES\n5\n8515 85151 851511 8515111 85151111 "
},
{
"input": "91939 9193911",
"output": "YES\n3\n91939 919391 9193911 "
},
{
"input": "30518 610361",
"output": "YES\n3\n30518 61036 610361 "
},
{
"input": "46646 373168844",
"output": "YES\n7\n46646 466461 932922 9329221 93292211 186584422 373168844 "
},
{
"input": "30070 300701",
"output": "YES\n2\n30070 300701 "
},
{
"input": "13494 1079528",
"output": "YES\n5\n13494 134941 269882 539764 1079528 "
},
{
"input": "96918 775344422",
"output": "YES\n7\n96918 193836 1938361 3876722 38767221 387672211 775344422 "
},
{
"input": "13046 260921",
"output": "YES\n3\n13046 26092 260921 "
},
{
"input": "29174 5834811",
"output": "YES\n4\n29174 58348 583481 5834811 "
},
{
"input": "79894 319576421",
"output": "YES\n6\n79894 798941 1597882 15978821 31957642 319576421 "
},
{
"input": "96022 1920442",
"output": "YES\n3\n96022 960221 1920442 "
},
{
"input": "79446 6355681",
"output": "YES\n5\n79446 158892 317784 635568 6355681 "
},
{
"input": "5440 27853056",
"output": "YES\n11\n5440 10880 108801 217602 435204 870408 1740816 3481632 6963264 13926528 27853056 "
},
{
"input": "250000000 705032705",
"output": "NO"
},
{
"input": "17 35",
"output": "NO"
},
{
"input": "1 3",
"output": "NO"
},
{
"input": "2 11",
"output": "NO"
}
] | 1,685,122,319
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 33
| 46
| 0
|
a, b = list(map(int, input().split()))
lista = []
lista.append(b)
flag = False
while a <= b:
# print("~~", a, b)
if a == b:
flag = True
break
elif b % 2 == 0:
b = b // 2
lista.append(b)
elif b % 10 == 1:
b = (b - 1) // 10
lista.append(b)
else:
break
if not (flag):
print("NO")
else:
rev = reversed(lista)
print("YES")
print(len(lista))
print(*rev)
|
Title: Transformation: from A to B
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Vasily has a number *a*, which he wants to turn into a number *b*. For this purpose, he can do two types of operations:
- multiply the current number by 2 (that is, replace the number *x* by 2·*x*); - append the digit 1 to the right of current number (that is, replace the number *x* by 10·*x*<=+<=1).
You need to help Vasily to transform the number *a* into the number *b* using only the operations described above, or find that it is impossible.
Note that in this task you are not required to minimize the number of operations. It suffices to find any way to transform *a* into *b*.
Input Specification:
The first line contains two positive integers *a* and *b* (1<=≤<=*a*<=<<=*b*<=≤<=109) — the number which Vasily has and the number he wants to have.
Output Specification:
If there is no way to get *b* from *a*, print "NO" (without quotes).
Otherwise print three lines. On the first line print "YES" (without quotes). The second line should contain single integer *k* — the length of the transformation sequence. On the third line print the sequence of transformations *x*1,<=*x*2,<=...,<=*x**k*, where:
- *x*1 should be equal to *a*, - *x**k* should be equal to *b*, - *x**i* should be obtained from *x**i*<=-<=1 using any of two described operations (1<=<<=*i*<=≤<=*k*).
If there are multiple answers, print any of them.
Demo Input:
['2 162\n', '4 42\n', '100 40021\n']
Demo Output:
['YES\n5\n2 4 8 81 162 \n', 'NO\n', 'YES\n5\n100 200 2001 4002 40021 \n']
Note:
none
|
```python
a, b = list(map(int, input().split()))
lista = []
lista.append(b)
flag = False
while a <= b:
# print("~~", a, b)
if a == b:
flag = True
break
elif b % 2 == 0:
b = b // 2
lista.append(b)
elif b % 10 == 1:
b = (b - 1) // 10
lista.append(b)
else:
break
if not (flag):
print("NO")
else:
rev = reversed(lista)
print("YES")
print(len(lista))
print(*rev)
```
| 3
|
|
733
|
A
|
Grasshopper And the String
|
PROGRAMMING
| 1,000
|
[
"implementation"
] | null | null |
One day, the Grasshopper was jumping on the lawn and found a piece of paper with a string. Grasshopper became interested what is the minimum jump ability he should have in order to be able to reach the far end of the string, jumping only on vowels of the English alphabet. Jump ability is the maximum possible length of his jump.
Formally, consider that at the begginning the Grasshopper is located directly in front of the leftmost character of the string. His goal is to reach the position right after the rightmost character of the string. In one jump the Grasshopper could jump to the right any distance from 1 to the value of his jump ability.
The following letters are vowels: 'A', 'E', 'I', 'O', 'U' and 'Y'.
|
The first line contains non-empty string consisting of capital English letters. It is guaranteed that the length of the string does not exceed 100.
|
Print single integer *a* — the minimum jump ability of the Grasshopper (in the number of symbols) that is needed to overcome the given string, jumping only on vowels.
|
[
"ABABBBACFEYUKOTT\n",
"AAA\n"
] |
[
"4",
"1"
] |
none
| 500
|
[
{
"input": "ABABBBACFEYUKOTT",
"output": "4"
},
{
"input": "AAA",
"output": "1"
},
{
"input": "A",
"output": "1"
},
{
"input": "B",
"output": "2"
},
{
"input": "AEYUIOAEIYAEOUIYOEIUYEAOIUEOEAYOEIUYAEOUIYEOIKLMJNHGTRWSDZXCVBNMHGFDSXVWRTPPPLKMNBXIUOIUOIUOIUOOIU",
"output": "39"
},
{
"input": "AEYUIOAEIYAEOUIYOEIUYEAOIUEOEAYOEIUYAEOUIYEOIAEYUIOAEIYAEOUIYOEIUYEAOIUEOEAYOEIUYAEOUIYEOI",
"output": "1"
},
{
"input": "KMLPTGFHNBVCDRFGHNMBVXWSQFDCVBNHTJKLPMNFVCKMLPTGFHNBVCDRFGHNMBVXWSQFDCVBNHTJKLPMNFVC",
"output": "85"
},
{
"input": "QWERTYUIOPASDFGHJKLZXCVBNMQWERTYUIOPASDFGHJKLZXCVBNMQWERTYUIOPASDFGHJKLZXCVBNMQWERTYUIOPASDFGHJKLZ",
"output": "18"
},
{
"input": "PKLKBWTXVJ",
"output": "11"
},
{
"input": "CFHFPTGMOKXVLJJZJDQW",
"output": "12"
},
{
"input": "TXULTFSBUBFLRNQORMMULWNVLPWTYJXZBPBGAWNX",
"output": "9"
},
{
"input": "DAIUSEAUEUYUWEIOOEIOUYVYYOPEEWEBZOOOAOXUOIEUKYYOJOYAUYUUIYUXOUJLGIYEIIYUOCUAACRY",
"output": "4"
},
{
"input": "VRPHBNWNWVWBWMFJJDCTJQJDJBKSJRZLVQRVVFLTZFSGCGDXCWQVWWWMFVCQHPKXXVRKTGWGPSMQTPKNDQJHNSKLXPCXDJDQDZZD",
"output": "101"
},
{
"input": "SGDDFCDRDWGPNNFBBZZJSPXFYMZKPRXTCHVJSJJBWZXXQMDZBNKDHRGSRLGLRKPMWXNSXJPNJLDPXBSRCQMHJKPZNTPNTZXNPCJC",
"output": "76"
},
{
"input": "NVTQVNLGWFDBCBKSDLTBGWBMNQZWZQJWNGVCTCQBGWNTYJRDBPZJHXCXFMIXNRGSTXHQPCHNFQPCMDZWJGLJZWMRRFCVLBKDTDSC",
"output": "45"
},
{
"input": "SREZXQFVPQCLRCQGMKXCBRWKYZKWKRMZGXPMKWNMFZTRDPHJFCSXVPPXWKZMZTBFXGNLPLHZIPLFXNRRQFDTLFPKBGCXKTMCFKKT",
"output": "48"
},
{
"input": "ICKJKMVPDNZPLKDSLTPZNRLSQSGHQJQQPJJSNHNWVDLJRLZEJSXZDPHYXGGWXHLCTVQSKWNWGTLJMOZVJNZPVXGVPJKHFVZTGCCX",
"output": "47"
},
{
"input": "XXFPZDRPXLNHGDVCBDKJMKLGUQZXLLWYLOKFZVGXVNPJWZZZNRMQBRJCZTSDRHSNCVDMHKVXCXPCRBWSJCJWDRDPVZZLCZRTDRYA",
"output": "65"
},
{
"input": "HDDRZDKCHHHEDKHZMXQSNQGSGNNSCCPVJFGXGNCEKJMRKSGKAPQWPCWXXWHLSMRGSJWEHWQCSJJSGLQJXGVTBYALWMLKTTJMFPFS",
"output": "28"
},
{
"input": "PXVKJHXVDPWGLHWFWMJPMCCNHCKSHCPZXGIHHNMYNFQBUCKJJTXXJGKRNVRTQFDFMLLGPQKFOVNNLTNDIEXSARRJKGSCZKGGJCBW",
"output": "35"
},
{
"input": "EXNMTTFPJLDHXDQBJJRDRYBZVFFHUDCHCPNFZWXSMZXNFVJGHZWXVBRQFNUIDVLZOVPXQNVMFNBTJDSCKRLNGXPSADTGCAHCBJKL",
"output": "30"
},
{
"input": "NRNLSQQJGIJBCZFTNKJCXMGPARGWXPSHZXOBNSFOLDQVXTVAGJZNLXULHBRDGMNQKQGWMRRDPYCSNFVPUFTFBUBRXVJGNGSPJKLL",
"output": "19"
},
{
"input": "SRHOKCHQQMVZKTCVQXJJCFGYFXGMBZSZFNAFETXILZHPGHBWZRZQFMGSEYRUDVMCIQTXTBTSGFTHRRNGNTHHWWHCTDFHSVARMCMB",
"output": "30"
},
{
"input": "HBSVZHDKGNIRQUBYKYHUPJCEETGFMVBZJTHYHFQPFBVBSMQACYAVWZXSBGNKWXFNMQJFMSCHJVWBZXZGSNBRUHTHAJKVLEXFBOFB",
"output": "34"
},
{
"input": "NXKMUGOPTUQNSRYTKUKSCWCRQSZKKFPYUMDIBJAHJCEKZJVWZAWOLOEFBFXLQDDPNNZKCQHUPBFVDSXSUCVLMZXQROYQYIKPQPWR",
"output": "17"
},
{
"input": "TEHJDICFNOLQVQOAREVAGUAWODOCXJXIHYXFAEPEXRHPKEIIRCRIVASKNTVYUYDMUQKSTSSBYCDVZKDDHTSDWJWACPCLYYOXGCLT",
"output": "15"
},
{
"input": "LCJJUZZFEIUTMSEXEYNOOAIZMORQDOANAMUCYTFRARDCYHOYOPHGGYUNOGNXUAOYSEMXAZOOOFAVHQUBRNGORSPNQWZJYQQUNPEB",
"output": "9"
},
{
"input": "UUOKAOOJBXUTSMOLOOOOSUYYFTAVBNUXYFVOOGCGZYQEOYISIYOUULUAIJUYVVOENJDOCLHOSOHIHDEJOIGZNIXEMEGZACHUAQFW",
"output": "5"
},
{
"input": "OUUBEHXOOURMOAIAEHXCUOIYHUJEVAWYRCIIAGDRIPUIPAIUYAIWJEVYEYYUYBYOGVYESUJCFOJNUAHIOOKBUUHEJFEWPOEOUHYA",
"output": "4"
},
{
"input": "EMNOYEEUIOUHEWZITIAEZNCJUOUAOQEAUYEIHYUSUYUUUIAEDIOOERAEIRBOJIEVOMECOGAIAIUIYYUWYIHIOWVIJEYUEAFYULSE",
"output": "5"
},
{
"input": "BVOYEAYOIEYOREJUYEUOEOYIISYAEOUYAAOIOEOYOOOIEFUAEAAESUOOIIEUAAGAEISIAPYAHOOEYUJHUECGOYEIDAIRTBHOYOYA",
"output": "5"
},
{
"input": "GOIEOAYIEYYOOEOAIAEOOUWYEIOTNYAANAYOOXEEOEAVIOIAAIEOIAUIAIAAUEUAOIAEUOUUZYIYAIEUEGOOOOUEIYAEOSYAEYIO",
"output": "3"
},
{
"input": "AUEAOAYIAOYYIUIOAULIOEUEYAIEYYIUOEOEIEYRIYAYEYAEIIMMAAEAYAAAAEOUICAUAYOUIAOUIAIUOYEOEEYAEYEYAAEAOYIY",
"output": "3"
},
{
"input": "OAIIYEYYAOOEIUOEEIOUOIAEFIOAYETUYIOAAAEYYOYEYOEAUIIUEYAYYIIAOIEEYGYIEAAOOWYAIEYYYIAOUUOAIAYAYYOEUEOY",
"output": "2"
},
{
"input": "EEEAOEOEEIOUUUEUEAAOEOIUYJEYAIYIEIYYEAUOIIYIUOOEUCYEOOOYYYIUUAYIAOEUEIEAOUOIAACAOOUAUIYYEAAAOOUYIAAE",
"output": "2"
},
{
"input": "AYEYIIEUIYOYAYEUEIIIEUYUUAUEUIYAIAAUYONIEYIUIAEUUOUOYYOUUUIUIAEYEOUIIUOUUEOAIUUYAAEOAAEOYUUIYAYRAIII",
"output": "2"
},
{
"input": "YOOAAUUAAAYEUYIUIUYIUOUAEIEEIAUEOAUIIAAIUYEUUOYUIYEAYAAAYUEEOEEAEOEEYYOUAEUYEEAIIYEUEYJOIIYUIOIUOIEE",
"output": "2"
},
{
"input": "UYOIIIAYOOAIUUOOEEUYIOUAEOOEIOUIAIEYOAEAIOOEOOOIUYYUYIAAUIOUYYOOUAUIEYYUOAAUUEAAIEUIAUEUUIAUUOYOAYIU",
"output": "1"
},
{
"input": "ABBABBB",
"output": "4"
},
{
"input": "ABCD",
"output": "4"
},
{
"input": "XXYC",
"output": "3"
},
{
"input": "YYY",
"output": "1"
},
{
"input": "ABABBBBBBB",
"output": "8"
},
{
"input": "YYYY",
"output": "1"
},
{
"input": "YYYYY",
"output": "1"
},
{
"input": "AXXX",
"output": "4"
},
{
"input": "YYYYYYY",
"output": "1"
},
{
"input": "BYYBBB",
"output": "4"
},
{
"input": "YYYYYYYYY",
"output": "1"
},
{
"input": "CAAAAA",
"output": "2"
},
{
"input": "CCCACCCC",
"output": "5"
},
{
"input": "ABABBBACFEYUKOTTTT",
"output": "5"
},
{
"input": "AABBYYYYYYYY",
"output": "3"
},
{
"input": "BYBACYC",
"output": "2"
},
{
"input": "Y",
"output": "1"
},
{
"input": "ABBBBBB",
"output": "7"
},
{
"input": "BACDYDI",
"output": "3"
},
{
"input": "XEXXXXXXXXXXXXXXX",
"output": "16"
},
{
"input": "TTYTT",
"output": "3"
},
{
"input": "AAYBC",
"output": "3"
},
{
"input": "ABABBBACFEYUKOTTTTT",
"output": "6"
},
{
"input": "YYAYY",
"output": "1"
},
{
"input": "YZZY",
"output": "3"
},
{
"input": "YY",
"output": "1"
},
{
"input": "ZZYZZ",
"output": "3"
},
{
"input": "YBBBY",
"output": "4"
},
{
"input": "BBBACCCCCCC",
"output": "8"
},
{
"input": "YBBBBY",
"output": "5"
},
{
"input": "YYYYYYYYYY",
"output": "1"
},
{
"input": "ABABBBBBBBBBBBB",
"output": "13"
}
] | 1,563,392,089
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 70
| 124
| 0
|
s=input()
m=1
l=0
d={'A','E','I','O','U','Y'}
for i in range(len(s)):
if s[i] in d:
l=max(l,m)
m=1
else:
m+=1
l=max(l,m)
if l==0:
print(len(s)+1)
else:
print(l)
|
Title: Grasshopper And the String
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
One day, the Grasshopper was jumping on the lawn and found a piece of paper with a string. Grasshopper became interested what is the minimum jump ability he should have in order to be able to reach the far end of the string, jumping only on vowels of the English alphabet. Jump ability is the maximum possible length of his jump.
Formally, consider that at the begginning the Grasshopper is located directly in front of the leftmost character of the string. His goal is to reach the position right after the rightmost character of the string. In one jump the Grasshopper could jump to the right any distance from 1 to the value of his jump ability.
The following letters are vowels: 'A', 'E', 'I', 'O', 'U' and 'Y'.
Input Specification:
The first line contains non-empty string consisting of capital English letters. It is guaranteed that the length of the string does not exceed 100.
Output Specification:
Print single integer *a* — the minimum jump ability of the Grasshopper (in the number of symbols) that is needed to overcome the given string, jumping only on vowels.
Demo Input:
['ABABBBACFEYUKOTT\n', 'AAA\n']
Demo Output:
['4', '1']
Note:
none
|
```python
s=input()
m=1
l=0
d={'A','E','I','O','U','Y'}
for i in range(len(s)):
if s[i] in d:
l=max(l,m)
m=1
else:
m+=1
l=max(l,m)
if l==0:
print(len(s)+1)
else:
print(l)
```
| 3
|
|
343
|
B
|
Alternating Current
|
PROGRAMMING
| 1,600
|
[
"data structures",
"greedy",
"implementation"
] | null | null |
Mad scientist Mike has just finished constructing a new device to search for extraterrestrial intelligence! He was in such a hurry to launch it for the first time that he plugged in the power wires without giving it a proper glance and started experimenting right away. After a while Mike observed that the wires ended up entangled and now have to be untangled again.
The device is powered by two wires "plus" and "minus". The wires run along the floor from the wall (on the left) to the device (on the right). Both the wall and the device have two contacts in them on the same level, into which the wires are plugged in some order. The wires are considered entangled if there are one or more places where one wire runs above the other one. For example, the picture below has four such places (top view):
Mike knows the sequence in which the wires run above each other. Mike also noticed that on the left side, the "plus" wire is always plugged into the top contact (as seen on the picture). He would like to untangle the wires without unplugging them and without moving the device. Determine if it is possible to do that. A wire can be freely moved and stretched on the floor, but cannot be cut.
To understand the problem better please read the notes to the test samples.
|
The single line of the input contains a sequence of characters "+" and "-" of length *n* (1<=≤<=*n*<=≤<=100000). The *i*-th (1<=≤<=*i*<=≤<=*n*) position of the sequence contains the character "+", if on the *i*-th step from the wall the "plus" wire runs above the "minus" wire, and the character "-" otherwise.
|
Print either "Yes" (without the quotes) if the wires can be untangled or "No" (without the quotes) if the wires cannot be untangled.
|
[
"-++-\n",
"+-\n",
"++\n",
"-\n"
] |
[
"Yes\n",
"No\n",
"Yes\n",
"No\n"
] |
The first testcase corresponds to the picture in the statement. To untangle the wires, one can first move the "plus" wire lower, thus eliminating the two crosses in the middle, and then draw it under the "minus" wire, eliminating also the remaining two crosses.
In the second testcase the "plus" wire makes one full revolution around the "minus" wire. Thus the wires cannot be untangled:
In the third testcase the "plus" wire simply runs above the "minus" wire twice in sequence. The wires can be untangled by lifting "plus" and moving it higher:
In the fourth testcase the "minus" wire runs above the "plus" wire once. The wires cannot be untangled without moving the device itself:
| 1,000
|
[
{
"input": "-++-",
"output": "Yes"
},
{
"input": "+-",
"output": "No"
},
{
"input": "++",
"output": "Yes"
},
{
"input": "-",
"output": "No"
},
{
"input": "+-+-",
"output": "No"
},
{
"input": "-+-",
"output": "No"
},
{
"input": "-++-+--+",
"output": "Yes"
},
{
"input": "+",
"output": "No"
},
{
"input": "-+",
"output": "No"
},
{
"input": "--",
"output": "Yes"
},
{
"input": "+++",
"output": "No"
},
{
"input": "--+",
"output": "No"
},
{
"input": "++--++",
"output": "Yes"
},
{
"input": "+-++-+",
"output": "Yes"
},
{
"input": "+-+--+",
"output": "No"
},
{
"input": "--++-+",
"output": "No"
},
{
"input": "-+-+--",
"output": "No"
},
{
"input": "+-+++-",
"output": "No"
},
{
"input": "-+-+-+",
"output": "No"
},
{
"input": "-++-+--++--+-++-",
"output": "Yes"
},
{
"input": "+-----+-++---+------+++-++++",
"output": "No"
},
{
"input": "-+-++--+++-++++---+--+----+--+-+-+++-+++-+---++-++++-+--+--+--+-+-++-+-+-++++++---++--+++++-+--++--+-+--++-----+--+-++---+++---++----+++-++++--++-++-",
"output": "No"
},
{
"input": "-+-----++++--++-+-++",
"output": "Yes"
},
{
"input": "+--+--+------+++++++-+-+++--++---+--+-+---+--+++-+++-------+++++-+-++++--+-+-+++++++----+----+++----+-+++-+++-----+++-+-++-+-+++++-+--++----+--+-++-----+-+-++++---+++---+-+-+-++++--+--+++---+++++-+---+-----+++-++--+++---++-++-+-+++-+-+-+---+++--+--++++-+-+--++-------+--+---++-----+++--+-+++--++-+-+++-++--+++-++++++++++-++-++++++-+++--+--++-+++--+++-++++----+++---+-+----++++-+-+",
"output": "Yes"
},
{
"input": "-+-+-++-+-+-",
"output": "Yes"
},
{
"input": "-+-++-+-",
"output": "Yes"
},
{
"input": "-+-++-+-+-",
"output": "No"
},
{
"input": "++-+-+-+-+--+",
"output": "No"
},
{
"input": "+++---",
"output": "No"
},
{
"input": "+-+-+-+-+--+-+-+-+-++--++--+",
"output": "Yes"
},
{
"input": "+-+-++",
"output": "No"
},
{
"input": "-++--+--+++-+-+-+-+-",
"output": "No"
},
{
"input": "+---+-+-",
"output": "No"
},
{
"input": "+-+--+-+",
"output": "Yes"
},
{
"input": "+++---+++---",
"output": "No"
},
{
"input": "-+++++",
"output": "No"
},
{
"input": "-+-+-+-+-+-+-++-+-+-+-+-+-+-",
"output": "Yes"
},
{
"input": "-+++--",
"output": "No"
},
{
"input": "+---+",
"output": "No"
},
{
"input": "-++",
"output": "No"
},
{
"input": "-+--+-",
"output": "Yes"
},
{
"input": "+---++--++",
"output": "No"
},
{
"input": "+++-",
"output": "No"
},
{
"input": "--+++",
"output": "No"
},
{
"input": "++-+",
"output": "No"
}
] | 1,547,694,224
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 62
| 248
| 1,228,800
|
t = input()
#-+-++--+
stack = []
for i in t:
try:
if stack[-1] == i:
stack.pop()
else:
stack.append(i)
except:
stack.append(i)
if len(stack) == 0:
print("Yes")
else:
print("No")
|
Title: Alternating Current
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Mad scientist Mike has just finished constructing a new device to search for extraterrestrial intelligence! He was in such a hurry to launch it for the first time that he plugged in the power wires without giving it a proper glance and started experimenting right away. After a while Mike observed that the wires ended up entangled and now have to be untangled again.
The device is powered by two wires "plus" and "minus". The wires run along the floor from the wall (on the left) to the device (on the right). Both the wall and the device have two contacts in them on the same level, into which the wires are plugged in some order. The wires are considered entangled if there are one or more places where one wire runs above the other one. For example, the picture below has four such places (top view):
Mike knows the sequence in which the wires run above each other. Mike also noticed that on the left side, the "plus" wire is always plugged into the top contact (as seen on the picture). He would like to untangle the wires without unplugging them and without moving the device. Determine if it is possible to do that. A wire can be freely moved and stretched on the floor, but cannot be cut.
To understand the problem better please read the notes to the test samples.
Input Specification:
The single line of the input contains a sequence of characters "+" and "-" of length *n* (1<=≤<=*n*<=≤<=100000). The *i*-th (1<=≤<=*i*<=≤<=*n*) position of the sequence contains the character "+", if on the *i*-th step from the wall the "plus" wire runs above the "minus" wire, and the character "-" otherwise.
Output Specification:
Print either "Yes" (without the quotes) if the wires can be untangled or "No" (without the quotes) if the wires cannot be untangled.
Demo Input:
['-++-\n', '+-\n', '++\n', '-\n']
Demo Output:
['Yes\n', 'No\n', 'Yes\n', 'No\n']
Note:
The first testcase corresponds to the picture in the statement. To untangle the wires, one can first move the "plus" wire lower, thus eliminating the two crosses in the middle, and then draw it under the "minus" wire, eliminating also the remaining two crosses.
In the second testcase the "plus" wire makes one full revolution around the "minus" wire. Thus the wires cannot be untangled:
In the third testcase the "plus" wire simply runs above the "minus" wire twice in sequence. The wires can be untangled by lifting "plus" and moving it higher:
In the fourth testcase the "minus" wire runs above the "plus" wire once. The wires cannot be untangled without moving the device itself:
|
```python
t = input()
#-+-++--+
stack = []
for i in t:
try:
if stack[-1] == i:
stack.pop()
else:
stack.append(i)
except:
stack.append(i)
if len(stack) == 0:
print("Yes")
else:
print("No")
```
| 3
|
|
519
|
B
|
A and B and Compilation Errors
|
PROGRAMMING
| 1,100
|
[
"data structures",
"implementation",
"sortings"
] | null | null |
A and B are preparing themselves for programming contests.
B loves to debug his code. But before he runs the solution and starts debugging, he has to first compile the code.
Initially, the compiler displayed *n* compilation errors, each of them is represented as a positive integer. After some effort, B managed to fix some mistake and then another one mistake.
However, despite the fact that B is sure that he corrected the two errors, he can not understand exactly what compilation errors disappeared — the compiler of the language which B uses shows errors in the new order every time! B is sure that unlike many other programming languages, compilation errors for his programming language do not depend on each other, that is, if you correct one error, the set of other error does not change.
Can you help B find out exactly what two errors he corrected?
|
The first line of the input contains integer *n* (3<=≤<=*n*<=≤<=105) — the initial number of compilation errors.
The second line contains *n* space-separated integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=109) — the errors the compiler displayed for the first time.
The third line contains *n*<=-<=1 space-separated integers *b*1,<=*b*2,<=...,<=*b**n*<=-<=1 — the errors displayed at the second compilation. It is guaranteed that the sequence in the third line contains all numbers of the second string except for exactly one.
The fourth line contains *n*<=-<=2 space-separated integers *с*1,<=*с*2,<=...,<=*с**n*<=-<=2 — the errors displayed at the third compilation. It is guaranteed that the sequence in the fourth line contains all numbers of the third line except for exactly one.
|
Print two numbers on a single line: the numbers of the compilation errors that disappeared after B made the first and the second correction, respectively.
|
[
"5\n1 5 8 123 7\n123 7 5 1\n5 1 7\n",
"6\n1 4 3 3 5 7\n3 7 5 4 3\n4 3 7 5\n"
] |
[
"8\n123\n",
"1\n3\n"
] |
In the first test sample B first corrects the error number 8, then the error number 123.
In the second test sample B first corrects the error number 1, then the error number 3. Note that if there are multiple errors with the same number, B can correct only one of them in one step.
| 1,000
|
[
{
"input": "5\n1 5 8 123 7\n123 7 5 1\n5 1 7",
"output": "8\n123"
},
{
"input": "6\n1 4 3 3 5 7\n3 7 5 4 3\n4 3 7 5",
"output": "1\n3"
},
{
"input": "3\n1 2 3\n3 2\n2",
"output": "1\n3"
},
{
"input": "10\n460626451 802090732 277246428 661369649 388684428 784303821 376287098 656422756 9301599 25720377\n277246428 388684428 661369649 460626451 656422756 802090732 9301599 784303821 376287098\n376287098 802090732 388684428 9301599 656422756 784303821 460626451 277246428",
"output": "25720377\n661369649"
},
{
"input": "3\n796067435 964699482 819602309\n964699482 796067435\n964699482",
"output": "819602309\n796067435"
},
{
"input": "3\n374054998 726316780 902899520\n902899520 726316780\n726316780",
"output": "374054998\n902899520"
},
{
"input": "3\n168638990 939116221 323703261\n168638990 323703261\n168638990",
"output": "939116221\n323703261"
},
{
"input": "3\n77 77 77\n77 77\n77",
"output": "77\n77"
},
{
"input": "3\n84 30 9\n9 84\n9",
"output": "30\n84"
},
{
"input": "6\n5 4 3 3 5 5\n3 5 5 4 3\n3 5 4 3",
"output": "5\n5"
},
{
"input": "4\n1 5 7 8\n1 5 7\n1 5",
"output": "8\n7"
}
] | 1,667,767,418
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 33
| 265
| 13,824,000
|
"""
https://codeforces.com/problemset/problem/519/B
"""
_ = input()
a = sorted([int(x) for x in input().split()])
b = sorted([int(x) for x in input().split()]) + [-1]
c = sorted([int(x) for x in input().split()]) + [-1, -1]
for i, z in enumerate(b):
if z != a[i]:
print(a[i])
break
for i, z in enumerate(c):
if z != b[i]:
print(b[i])
break
|
Title: A and B and Compilation Errors
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
A and B are preparing themselves for programming contests.
B loves to debug his code. But before he runs the solution and starts debugging, he has to first compile the code.
Initially, the compiler displayed *n* compilation errors, each of them is represented as a positive integer. After some effort, B managed to fix some mistake and then another one mistake.
However, despite the fact that B is sure that he corrected the two errors, he can not understand exactly what compilation errors disappeared — the compiler of the language which B uses shows errors in the new order every time! B is sure that unlike many other programming languages, compilation errors for his programming language do not depend on each other, that is, if you correct one error, the set of other error does not change.
Can you help B find out exactly what two errors he corrected?
Input Specification:
The first line of the input contains integer *n* (3<=≤<=*n*<=≤<=105) — the initial number of compilation errors.
The second line contains *n* space-separated integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=109) — the errors the compiler displayed for the first time.
The third line contains *n*<=-<=1 space-separated integers *b*1,<=*b*2,<=...,<=*b**n*<=-<=1 — the errors displayed at the second compilation. It is guaranteed that the sequence in the third line contains all numbers of the second string except for exactly one.
The fourth line contains *n*<=-<=2 space-separated integers *с*1,<=*с*2,<=...,<=*с**n*<=-<=2 — the errors displayed at the third compilation. It is guaranteed that the sequence in the fourth line contains all numbers of the third line except for exactly one.
Output Specification:
Print two numbers on a single line: the numbers of the compilation errors that disappeared after B made the first and the second correction, respectively.
Demo Input:
['5\n1 5 8 123 7\n123 7 5 1\n5 1 7\n', '6\n1 4 3 3 5 7\n3 7 5 4 3\n4 3 7 5\n']
Demo Output:
['8\n123\n', '1\n3\n']
Note:
In the first test sample B first corrects the error number 8, then the error number 123.
In the second test sample B first corrects the error number 1, then the error number 3. Note that if there are multiple errors with the same number, B can correct only one of them in one step.
|
```python
"""
https://codeforces.com/problemset/problem/519/B
"""
_ = input()
a = sorted([int(x) for x in input().split()])
b = sorted([int(x) for x in input().split()]) + [-1]
c = sorted([int(x) for x in input().split()]) + [-1, -1]
for i, z in enumerate(b):
if z != a[i]:
print(a[i])
break
for i, z in enumerate(c):
if z != b[i]:
print(b[i])
break
```
| 3
|
|
60
|
A
|
Where Are My Flakes?
|
PROGRAMMING
| 1,300
|
[
"implementation",
"two pointers"
] |
A. Where Are My Flakes?
|
2
|
256
|
One morning the Cereal Guy found out that all his cereal flakes were gone. He found a note instead of them. It turned out that his smart roommate hid the flakes in one of *n* boxes. The boxes stand in one row, they are numbered from 1 to *n* from the left to the right. The roommate left hints like "Hidden to the left of the *i*-th box" ("To the left of *i*"), "Hidden to the right of the *i*-th box" ("To the right of *i*"). Such hints mean that there are no flakes in the *i*-th box as well. The Cereal Guy wants to know the minimal number of boxes he necessarily needs to check to find the flakes considering all the hints. Or he wants to find out that the hints are contradictory and the roommate lied to him, that is, no box has the flakes.
|
The first line contains two integers *n* and *m* (1<=≤<=*n*<=≤<=1000,<=0<=≤<=*m*<=≤<=1000) which represent the number of boxes and the number of hints correspondingly. Next *m* lines contain hints like "To the left of *i*" and "To the right of *i*", where *i* is integer (1<=≤<=*i*<=≤<=*n*). The hints may coincide.
|
The answer should contain exactly one integer — the number of boxes that should necessarily be checked or "-1" if the hints are contradictory.
|
[
"2 1\nTo the left of 2\n",
"3 2\nTo the right of 1\nTo the right of 2\n",
"3 1\nTo the left of 3\n",
"3 2\nTo the left of 2\nTo the right of 1\n"
] |
[
"1\n",
"1\n",
"2\n",
"-1\n"
] |
none
| 500
|
[
{
"input": "2 1\nTo the left of 2",
"output": "1"
},
{
"input": "3 2\nTo the right of 1\nTo the right of 2",
"output": "1"
},
{
"input": "3 1\nTo the left of 3",
"output": "2"
},
{
"input": "3 2\nTo the left of 2\nTo the right of 1",
"output": "-1"
},
{
"input": "3 0",
"output": "3"
},
{
"input": "2 2\nTo the left of 2\nTo the left of 2",
"output": "1"
},
{
"input": "5 0",
"output": "5"
},
{
"input": "6 2\nTo the right of 2\nTo the left of 4",
"output": "1"
},
{
"input": "8 6\nTo the right of 3\nTo the left of 4\nTo the left of 4\nTo the right of 1\nTo the right of 5\nTo the left of 6",
"output": "-1"
},
{
"input": "459 16\nTo the right of 9\nTo the right of 148\nTo the left of 406\nTo the left of 335\nTo the right of 240\nTo the left of 409\nTo the left of 365\nTo the left of 426\nTo the left of 416\nTo the right of 247\nTo the left of 284\nTo the right of 187\nTo the right of 134\nTo the right of 128\nTo the right of 98\nTo the left of 412",
"output": "36"
},
{
"input": "1000 1\nTo the right of 117",
"output": "883"
},
{
"input": "1000 0",
"output": "1000"
},
{
"input": "1 0",
"output": "1"
},
{
"input": "2 0",
"output": "2"
},
{
"input": "1 1\nTo the right of 1",
"output": "-1"
},
{
"input": "1 1\nTo the left of 1",
"output": "-1"
},
{
"input": "2 1\nTo the right of 2",
"output": "-1"
}
] | 1,581,214,198
| 2,147,483,647
|
PyPy 3
|
OK
|
TESTS
| 54
| 374
| 1,433,600
|
n, m = input().split(' ')
n = int(n)
m = int(m)
hints = {}
max_right = None
min_left = None
if m > 0:
for i in range(m):
do_nothing = False
line = input().split(' ')
hint_position = int(line[4])-1
if line[2] == 'left':
hint_box = hint_position - 1
if min_left is None or hint_box < min_left:
min_left = hint_box
hint_pointer = -1
else:
hint_box = hint_position + 1
if max_right is None or hint_box > max_right:
max_right = hint_box
hint_pointer = 1
hints[hint_position] = hint_pointer
value_1 = hints.get(max_right)
if max_right is not None and min_left is not None:
if max_right <= min_left:
boxes = 0
for i in range(max_right, min_left+1):
value = hints.get(i)
if value is None:
boxes +=1
if boxes == 0:
print(-1)
else:
print(boxes)
else:
print(-1)
elif max_right is None:
if min_left < 0:
print(-1)
else:
print(min_left+1)
else:
if max_right > n-1:
print(-1)
else:
print(n-max_right)
else:
print(n)
|
Title: Where Are My Flakes?
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
One morning the Cereal Guy found out that all his cereal flakes were gone. He found a note instead of them. It turned out that his smart roommate hid the flakes in one of *n* boxes. The boxes stand in one row, they are numbered from 1 to *n* from the left to the right. The roommate left hints like "Hidden to the left of the *i*-th box" ("To the left of *i*"), "Hidden to the right of the *i*-th box" ("To the right of *i*"). Such hints mean that there are no flakes in the *i*-th box as well. The Cereal Guy wants to know the minimal number of boxes he necessarily needs to check to find the flakes considering all the hints. Or he wants to find out that the hints are contradictory and the roommate lied to him, that is, no box has the flakes.
Input Specification:
The first line contains two integers *n* and *m* (1<=≤<=*n*<=≤<=1000,<=0<=≤<=*m*<=≤<=1000) which represent the number of boxes and the number of hints correspondingly. Next *m* lines contain hints like "To the left of *i*" and "To the right of *i*", where *i* is integer (1<=≤<=*i*<=≤<=*n*). The hints may coincide.
Output Specification:
The answer should contain exactly one integer — the number of boxes that should necessarily be checked or "-1" if the hints are contradictory.
Demo Input:
['2 1\nTo the left of 2\n', '3 2\nTo the right of 1\nTo the right of 2\n', '3 1\nTo the left of 3\n', '3 2\nTo the left of 2\nTo the right of 1\n']
Demo Output:
['1\n', '1\n', '2\n', '-1\n']
Note:
none
|
```python
n, m = input().split(' ')
n = int(n)
m = int(m)
hints = {}
max_right = None
min_left = None
if m > 0:
for i in range(m):
do_nothing = False
line = input().split(' ')
hint_position = int(line[4])-1
if line[2] == 'left':
hint_box = hint_position - 1
if min_left is None or hint_box < min_left:
min_left = hint_box
hint_pointer = -1
else:
hint_box = hint_position + 1
if max_right is None or hint_box > max_right:
max_right = hint_box
hint_pointer = 1
hints[hint_position] = hint_pointer
value_1 = hints.get(max_right)
if max_right is not None and min_left is not None:
if max_right <= min_left:
boxes = 0
for i in range(max_right, min_left+1):
value = hints.get(i)
if value is None:
boxes +=1
if boxes == 0:
print(-1)
else:
print(boxes)
else:
print(-1)
elif max_right is None:
if min_left < 0:
print(-1)
else:
print(min_left+1)
else:
if max_right > n-1:
print(-1)
else:
print(n-max_right)
else:
print(n)
```
| 3.90383
|
598
|
A
|
Tricky Sum
|
PROGRAMMING
| 900
|
[
"math"
] | null | null |
In this problem you are to calculate the sum of all integers from 1 to *n*, but you should take all powers of two with minus in the sum.
For example, for *n*<==<=4 the sum is equal to <=-<=1<=-<=2<=+<=3<=-<=4<==<=<=-<=4, because 1, 2 and 4 are 20, 21 and 22 respectively.
Calculate the answer for *t* values of *n*.
|
The first line of the input contains a single integer *t* (1<=≤<=*t*<=≤<=100) — the number of values of *n* to be processed.
Each of next *t* lines contains a single integer *n* (1<=≤<=*n*<=≤<=109).
|
Print the requested sum for each of *t* integers *n* given in the input.
|
[
"2\n4\n1000000000\n"
] |
[
"-4\n499999998352516354\n"
] |
The answer for the first sample is explained in the statement.
| 0
|
[
{
"input": "2\n4\n1000000000",
"output": "-4\n499999998352516354"
},
{
"input": "10\n1\n2\n3\n4\n5\n6\n7\n8\n9\n10",
"output": "-1\n-3\n0\n-4\n1\n7\n14\n6\n15\n25"
},
{
"input": "10\n10\n9\n47\n33\n99\n83\n62\n1\n100\n53",
"output": "25\n15\n1002\n435\n4696\n3232\n1827\n-1\n4796\n1305"
},
{
"input": "100\n901\n712\n3\n677\n652\n757\n963\n134\n205\n888\n847\n283\n591\n984\n1\n61\n540\n986\n950\n729\n104\n244\n500\n461\n251\n685\n631\n803\n526\n600\n1000\n899\n411\n219\n597\n342\n771\n348\n507\n775\n454\n102\n486\n333\n580\n431\n537\n355\n624\n23\n429\n276\n84\n704\n96\n536\n855\n653\n72\n718\n776\n658\n802\n777\n995\n285\n328\n405\n184\n555\n956\n410\n846\n853\n525\n983\n65\n549\n839\n929\n620\n725\n635\n303\n201\n878\n580\n139\n182\n69\n400\n788\n985\n792\n103\n248\n570\n839\n253\n417",
"output": "404305\n251782\n0\n227457\n210832\n284857\n462120\n8535\n20605\n392670\n357082\n39164\n172890\n482574\n-1\n1765\n144024\n484545\n449679\n264039\n5206\n29380\n124228\n105469\n31116\n232909\n197350\n320760\n136555\n178254\n498454\n402504\n83644\n23580\n176457\n57631\n295560\n59704\n127756\n298654\n102263\n4999\n117319\n54589\n166444\n92074\n142407\n62168\n192954\n214\n91213\n37204\n3316\n246114\n4402\n141870\n363894\n211485\n2374\n256075\n299430\n214765\n319957\n300207\n493464\n39733\n52934\n81193\n16510\n15..."
},
{
"input": "1\n16",
"output": "74"
},
{
"input": "60\n536870912\n536870911\n536870913\n1000000000\n999999999\n1\n2\n3\n4\n268435456\n268435455\n268435457\n536870912\n536870911\n536870913\n1000000000\n999999999\n1\n2\n3\n4\n268435456\n268435455\n268435457\n536870912\n536870911\n536870913\n1000000000\n999999999\n1\n2\n3\n4\n268435456\n268435455\n268435457\n536870912\n536870911\n536870913\n1000000000\n999999999\n1\n2\n3\n4\n268435456\n268435455\n268435457\n536870912\n536870911\n536870913\n1000000000\n999999999\n1\n2\n3\n4\n268435456\n268435455\n268435457",
"output": "144115186196807682\n144115186733678594\n144115186733678595\n499999998352516354\n499999997352516354\n-1\n-3\n0\n-4\n36028796079439874\n36028796347875330\n36028796347875331\n144115186196807682\n144115186733678594\n144115186733678595\n499999998352516354\n499999997352516354\n-1\n-3\n0\n-4\n36028796079439874\n36028796347875330\n36028796347875331\n144115186196807682\n144115186733678594\n144115186733678595\n499999998352516354\n499999997352516354\n-1\n-3\n0\n-4\n36028796079439874\n36028796347875330\n36028796347875..."
},
{
"input": "13\n1\n19\n31\n19\n19\n92\n74\n69\n32\n32\n91\n42\n73",
"output": "-1\n128\n434\n128\n128\n4024\n2521\n2161\n402\n402\n3932\n777\n2447"
},
{
"input": "1\n16383",
"output": "134176770"
},
{
"input": "16\n100100\n100100\n100100\n100100\n100100\n100100\n100100\n100100\n100100\n100100\n100100\n100100\n100100\n100100\n100100\n100100",
"output": "5009792908\n5009792908\n5009792908\n5009792908\n5009792908\n5009792908\n5009792908\n5009792908\n5009792908\n5009792908\n5009792908\n5009792908\n5009792908\n5009792908\n5009792908\n5009792908"
},
{
"input": "1\n414234",
"output": "85794061921"
},
{
"input": "1\n414232",
"output": "85793233454"
},
{
"input": "3\n414231\n414231\n414231",
"output": "85792819222\n85792819222\n85792819222"
},
{
"input": "1\n121",
"output": "7127"
}
] | 1,620,905,043
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 21
| 62
| 6,963,200
|
def is_power_of_2(n):
return (n & (n - 1)) == 0
def solve(n):
sum_1_to_n = (n*(n+1))//2
sum_powers_of_2 = 0
i = 1
while i <= n:
if is_power_of_2(i):
sum_powers_of_2 += i
i *= 2
return sum_1_to_n - (2 * sum_powers_of_2)
if __name__ == '__main__':
t = int(input())
while t > 0:
n = int(input())
result = solve(n)
print(result)
t -= 1
|
Title: Tricky Sum
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
In this problem you are to calculate the sum of all integers from 1 to *n*, but you should take all powers of two with minus in the sum.
For example, for *n*<==<=4 the sum is equal to <=-<=1<=-<=2<=+<=3<=-<=4<==<=<=-<=4, because 1, 2 and 4 are 20, 21 and 22 respectively.
Calculate the answer for *t* values of *n*.
Input Specification:
The first line of the input contains a single integer *t* (1<=≤<=*t*<=≤<=100) — the number of values of *n* to be processed.
Each of next *t* lines contains a single integer *n* (1<=≤<=*n*<=≤<=109).
Output Specification:
Print the requested sum for each of *t* integers *n* given in the input.
Demo Input:
['2\n4\n1000000000\n']
Demo Output:
['-4\n499999998352516354\n']
Note:
The answer for the first sample is explained in the statement.
|
```python
def is_power_of_2(n):
return (n & (n - 1)) == 0
def solve(n):
sum_1_to_n = (n*(n+1))//2
sum_powers_of_2 = 0
i = 1
while i <= n:
if is_power_of_2(i):
sum_powers_of_2 += i
i *= 2
return sum_1_to_n - (2 * sum_powers_of_2)
if __name__ == '__main__':
t = int(input())
while t > 0:
n = int(input())
result = solve(n)
print(result)
t -= 1
```
| 3
|
|
412
|
B
|
Network Configuration
|
PROGRAMMING
| 900
|
[
"greedy",
"sortings"
] | null | null |
The R1 company wants to hold a web search championship. There were *n* computers given for the competition, each of them is connected to the Internet. The organizers believe that the data transfer speed directly affects the result. The higher the speed of the Internet is, the faster the participant will find the necessary information. Therefore, before the competition started, each computer had its maximum possible data transfer speed measured. On the *i*-th computer it was *a**i* kilobits per second.
There will be *k* participants competing in the championship, each should get a separate computer. The organizing company does not want any of the participants to have an advantage over the others, so they want to provide the same data transfer speed to each participant's computer. Also, the organizers want to create the most comfortable conditions for the participants, so the data transfer speed on the participants' computers should be as large as possible.
The network settings of the R1 company has a special option that lets you to cut the initial maximum data transfer speed of any computer to any lower speed. How should the R1 company configure the network using the described option so that at least *k* of *n* computers had the same data transfer speed and the data transfer speed on these computers was as large as possible?
|
The first line contains two space-separated integers *n* and *k* (1<=≤<=*k*<=≤<=*n*<=≤<=100) — the number of computers and the number of participants, respectively. In the second line you have a space-separated sequence consisting of *n* integers: *a*1,<=*a*2,<=...,<=*a**n* (16<=≤<=*a**i*<=≤<=32768); number *a**i* denotes the maximum data transfer speed on the *i*-th computer.
|
Print a single integer — the maximum Internet speed value. It is guaranteed that the answer to the problem is always an integer.
|
[
"3 2\n40 20 30\n",
"6 4\n100 20 40 20 50 50\n"
] |
[
"30\n",
"40\n"
] |
In the first test case the organizers can cut the first computer's speed to 30 kilobits. Then two computers (the first and the third one) will have the same speed of 30 kilobits. They should be used as the participants' computers. This answer is optimal.
| 1,000
|
[
{
"input": "3 2\n40 20 30",
"output": "30"
},
{
"input": "6 4\n100 20 40 20 50 50",
"output": "40"
},
{
"input": "1 1\n16",
"output": "16"
},
{
"input": "2 1\n10000 17",
"output": "10000"
},
{
"input": "2 2\n200 300",
"output": "200"
},
{
"input": "3 1\n21 25 16",
"output": "25"
},
{
"input": "3 2\n23 20 26",
"output": "23"
},
{
"input": "3 3\n19 29 28",
"output": "19"
},
{
"input": "100 2\n82 37 88 28 98 30 38 76 90 68 79 29 67 93 19 71 122 103 110 79 20 75 68 101 16 120 114 68 73 71 103 114 99 70 73 18 36 31 32 87 32 79 44 72 58 25 44 72 106 38 47 17 83 41 75 23 49 30 73 67 117 52 22 117 109 89 66 88 75 62 17 35 83 69 63 60 23 120 93 18 112 93 39 72 116 109 106 72 27 123 117 119 87 72 33 73 70 110 43 43",
"output": "122"
},
{
"input": "30 13\n36 82 93 91 48 62 59 96 72 40 45 68 97 70 26 22 35 98 92 83 72 49 70 39 53 94 97 65 37 28",
"output": "70"
},
{
"input": "50 49\n20 77 31 40 18 87 44 64 70 48 29 59 98 33 95 17 69 84 81 17 24 66 37 54 97 55 77 79 42 21 23 42 36 55 81 83 94 45 25 84 20 97 37 95 46 92 73 39 90 71",
"output": "17"
},
{
"input": "40 40\n110 674 669 146 882 590 650 844 427 187 380 711 122 94 38 216 414 874 380 31 895 390 414 557 913 68 665 964 895 708 594 17 24 621 780 509 837 550 630 568",
"output": "17"
},
{
"input": "40 1\n851 110 1523 1572 945 4966 4560 756 2373 4760 144 2579 4022 220 1924 1042 160 2792 2425 4483 2154 4120 319 4617 4686 2502 4797 4941 4590 4478 4705 4355 695 684 1560 684 2780 1090 4995 3113",
"output": "4995"
},
{
"input": "70 12\n6321 2502 557 2734 16524 10133 13931 5045 3897 18993 5745 8687 12344 1724 12071 2345 3852 9312 14432 8615 7461 2439 4751 19872 12266 12997 8276 8155 9502 3047 7226 12754 9447 17349 1888 14564 18257 18099 8924 14199 738 13693 10917 15554 15773 17859 13391 13176 10567 19658 16494 3968 13977 14694 10537 4044 16402 9714 4425 13599 19660 2426 19687 2455 2382 3413 5754 113 7542 8353",
"output": "16402"
},
{
"input": "80 60\n6159 26457 23753 27073 9877 4492 11957 10989 27151 6552 1646 7773 23924 27554 10517 8788 31160 455 12625 22009 22133 15657 14968 31871 15344 16550 27414 876 31213 10895 21508 17516 12747 59 11786 10497 30143 25548 22003 2809 11694 30395 8122 31248 23075 19013 31614 9133 27942 27346 15969 19415 10367 8424 29355 18903 3396 6327 4201 24124 24266 22586 724 1595 3972 17526 2843 20982 23655 12714 18050 15225 2658 7236 27555 13023 729 9022 17386 2585",
"output": "8122"
},
{
"input": "100 1\n199 348 489 76 638 579 982 125 28 401 228 117 195 337 80 914 752 98 679 417 47 225 357 413 849 622 477 620 487 223 321 240 439 393 733 660 652 500 877 40 788 246 376 723 952 601 912 316 598 809 476 932 384 147 982 271 202 695 129 303 304 712 49 306 598 141 833 730 946 708 724 788 202 465 951 118 279 706 214 655 152 976 998 231 487 311 342 317 243 554 977 232 365 643 336 501 761 400 600 528",
"output": "998"
},
{
"input": "80 50\n15160 6853 20254 11358 19535 27691 2983 31650 9219 11833 32053 31695 21511 4320 4384 24843 1454 31543 18796 13815 1546 27926 16276 14315 12542 25370 24890 29647 3584 17867 12446 15072 19852 30207 16361 7964 5343 398 10837 31114 9252 12767 15098 22562 32637 31823 8160 12658 6422 19142 12448 6765 7373 868 31712 24856 23251 29200 8159 16144 27165 4308 13652 12502 4183 7961 3032 26855 8687 12263 24319 7722 19460 30700 29806 1280 21141 25965 25550 26881",
"output": "12448"
},
{
"input": "50 16\n16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16",
"output": "16"
},
{
"input": "100 1\n16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16",
"output": "16"
},
{
"input": "100 2\n16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16",
"output": "16"
},
{
"input": "100 100\n16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16",
"output": "16"
},
{
"input": "100 99\n16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16",
"output": "16"
}
] | 1,397,838,477
| 1,077
|
Python 3
|
OK
|
TESTS
| 34
| 62
| 0
|
[n, k], speed = map(int, input().split()), sorted(map(int, input().split()), reverse = True)
print(speed[k - 1])
|
Title: Network Configuration
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
The R1 company wants to hold a web search championship. There were *n* computers given for the competition, each of them is connected to the Internet. The organizers believe that the data transfer speed directly affects the result. The higher the speed of the Internet is, the faster the participant will find the necessary information. Therefore, before the competition started, each computer had its maximum possible data transfer speed measured. On the *i*-th computer it was *a**i* kilobits per second.
There will be *k* participants competing in the championship, each should get a separate computer. The organizing company does not want any of the participants to have an advantage over the others, so they want to provide the same data transfer speed to each participant's computer. Also, the organizers want to create the most comfortable conditions for the participants, so the data transfer speed on the participants' computers should be as large as possible.
The network settings of the R1 company has a special option that lets you to cut the initial maximum data transfer speed of any computer to any lower speed. How should the R1 company configure the network using the described option so that at least *k* of *n* computers had the same data transfer speed and the data transfer speed on these computers was as large as possible?
Input Specification:
The first line contains two space-separated integers *n* and *k* (1<=≤<=*k*<=≤<=*n*<=≤<=100) — the number of computers and the number of participants, respectively. In the second line you have a space-separated sequence consisting of *n* integers: *a*1,<=*a*2,<=...,<=*a**n* (16<=≤<=*a**i*<=≤<=32768); number *a**i* denotes the maximum data transfer speed on the *i*-th computer.
Output Specification:
Print a single integer — the maximum Internet speed value. It is guaranteed that the answer to the problem is always an integer.
Demo Input:
['3 2\n40 20 30\n', '6 4\n100 20 40 20 50 50\n']
Demo Output:
['30\n', '40\n']
Note:
In the first test case the organizers can cut the first computer's speed to 30 kilobits. Then two computers (the first and the third one) will have the same speed of 30 kilobits. They should be used as the participants' computers. This answer is optimal.
|
```python
[n, k], speed = map(int, input().split()), sorted(map(int, input().split()), reverse = True)
print(speed[k - 1])
```
| 3
|
|
459
|
B
|
Pashmak and Flowers
|
PROGRAMMING
| 1,300
|
[
"combinatorics",
"implementation",
"sortings"
] | null | null |
Pashmak decided to give Parmida a pair of flowers from the garden. There are *n* flowers in the garden and the *i*-th of them has a beauty number *b**i*. Parmida is a very strange girl so she doesn't want to have the two most beautiful flowers necessarily. She wants to have those pairs of flowers that their beauty difference is maximal possible!
Your task is to write a program which calculates two things:
1. The maximum beauty difference of flowers that Pashmak can give to Parmida. 1. The number of ways that Pashmak can pick the flowers. Two ways are considered different if and only if there is at least one flower that is chosen in the first way and not chosen in the second way.
|
The first line of the input contains *n* (2<=≤<=*n*<=≤<=2·105). In the next line there are *n* space-separated integers *b*1, *b*2, ..., *b**n* (1<=≤<=*b**i*<=≤<=109).
|
The only line of output should contain two integers. The maximum beauty difference and the number of ways this may happen, respectively.
|
[
"2\n1 2\n",
"3\n1 4 5\n",
"5\n3 1 2 3 1\n"
] |
[
"1 1",
"4 1",
"2 4"
] |
In the third sample the maximum beauty difference is 2 and there are 4 ways to do this:
1. choosing the first and the second flowers; 1. choosing the first and the fifth flowers; 1. choosing the fourth and the second flowers; 1. choosing the fourth and the fifth flowers.
| 500
|
[
{
"input": "2\n1 2",
"output": "1 1"
},
{
"input": "3\n1 4 5",
"output": "4 1"
},
{
"input": "5\n3 1 2 3 1",
"output": "2 4"
},
{
"input": "2\n1 1",
"output": "0 1"
},
{
"input": "3\n1 1 1",
"output": "0 3"
},
{
"input": "4\n1 1 1 1",
"output": "0 6"
},
{
"input": "5\n1 1 1 1 1",
"output": "0 10"
},
{
"input": "5\n2 2 2 2 2",
"output": "0 10"
},
{
"input": "10\n2 2 2 2 2 2 2 2 2 2",
"output": "0 45"
},
{
"input": "3\n2 2 2",
"output": "0 3"
},
{
"input": "3\n3 3 3",
"output": "0 3"
},
{
"input": "2\n10000000 100000000",
"output": "90000000 1"
},
{
"input": "5\n5 5 5 5 5",
"output": "0 10"
},
{
"input": "5\n3 3 3 3 3",
"output": "0 10"
},
{
"input": "6\n1 1 1 1 1 1",
"output": "0 15"
},
{
"input": "2\n5 6",
"output": "1 1"
},
{
"input": "10\n1 1 1 1 1 1 1 1 1 1",
"output": "0 45"
},
{
"input": "10\n1000000000 1000000000 1000000000 1000000000 1000000000 1000000000 1000000000 1000000000 1000000000 1000000000",
"output": "0 45"
},
{
"input": "4\n4 4 4 4",
"output": "0 6"
},
{
"input": "7\n1 1 1 1 1 1 1",
"output": "0 21"
},
{
"input": "11\n1 1 1 1 1 1 1 1 1 1 1",
"output": "0 55"
},
{
"input": "8\n8 8 8 8 8 8 8 8",
"output": "0 28"
},
{
"input": "2\n3 2",
"output": "1 1"
}
] | 1,660,243,380
| 2,147,483,647
|
PyPy 3-64
|
OK
|
TESTS
| 58
| 155
| 27,545,600
|
t=int(input())
l=list(map(int,input().split()))
maxi=max(l)
mini=min(l)
count1=l.count(maxi)
count2=l.count(mini)
if mini==maxi:
print(maxi-mini,count1*(count1-1)//2)
else:
print(maxi-mini,count1*count2)
|
Title: Pashmak and Flowers
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Pashmak decided to give Parmida a pair of flowers from the garden. There are *n* flowers in the garden and the *i*-th of them has a beauty number *b**i*. Parmida is a very strange girl so she doesn't want to have the two most beautiful flowers necessarily. She wants to have those pairs of flowers that their beauty difference is maximal possible!
Your task is to write a program which calculates two things:
1. The maximum beauty difference of flowers that Pashmak can give to Parmida. 1. The number of ways that Pashmak can pick the flowers. Two ways are considered different if and only if there is at least one flower that is chosen in the first way and not chosen in the second way.
Input Specification:
The first line of the input contains *n* (2<=≤<=*n*<=≤<=2·105). In the next line there are *n* space-separated integers *b*1, *b*2, ..., *b**n* (1<=≤<=*b**i*<=≤<=109).
Output Specification:
The only line of output should contain two integers. The maximum beauty difference and the number of ways this may happen, respectively.
Demo Input:
['2\n1 2\n', '3\n1 4 5\n', '5\n3 1 2 3 1\n']
Demo Output:
['1 1', '4 1', '2 4']
Note:
In the third sample the maximum beauty difference is 2 and there are 4 ways to do this:
1. choosing the first and the second flowers; 1. choosing the first and the fifth flowers; 1. choosing the fourth and the second flowers; 1. choosing the fourth and the fifth flowers.
|
```python
t=int(input())
l=list(map(int,input().split()))
maxi=max(l)
mini=min(l)
count1=l.count(maxi)
count2=l.count(mini)
if mini==maxi:
print(maxi-mini,count1*(count1-1)//2)
else:
print(maxi-mini,count1*count2)
```
| 3
|
|
264
|
B
|
Good Sequences
|
PROGRAMMING
| 1,500
|
[
"dp",
"number theory"
] | null | null |
Squirrel Liss is interested in sequences. She also has preferences of integers. She thinks *n* integers *a*1,<=*a*2,<=...,<=*a**n* are good.
Now she is interested in good sequences. A sequence *x*1,<=*x*2,<=...,<=*x**k* is called good if it satisfies the following three conditions:
- The sequence is strictly increasing, i.e. *x**i*<=<<=*x**i*<=+<=1 for each *i* (1<=≤<=*i*<=≤<=*k*<=-<=1). - No two adjacent elements are coprime, i.e. *gcd*(*x**i*,<=*x**i*<=+<=1)<=><=1 for each *i* (1<=≤<=*i*<=≤<=*k*<=-<=1) (where *gcd*(*p*,<=*q*) denotes the greatest common divisor of the integers *p* and *q*). - All elements of the sequence are good integers.
Find the length of the longest good sequence.
|
The input consists of two lines. The first line contains a single integer *n* (1<=≤<=*n*<=≤<=105) — the number of good integers. The second line contains a single-space separated list of good integers *a*1,<=*a*2,<=...,<=*a**n* in strictly increasing order (1<=≤<=*a**i*<=≤<=105; *a**i*<=<<=*a**i*<=+<=1).
|
Print a single integer — the length of the longest good sequence.
|
[
"5\n2 3 4 6 9\n",
"9\n1 2 3 5 6 7 8 9 10\n"
] |
[
"4\n",
"4\n"
] |
In the first example, the following sequences are examples of good sequences: [2; 4; 6; 9], [2; 4; 6], [3; 9], [6]. The length of the longest good sequence is 4.
| 1,000
|
[
{
"input": "5\n2 3 4 6 9",
"output": "4"
},
{
"input": "9\n1 2 3 5 6 7 8 9 10",
"output": "4"
},
{
"input": "4\n1 2 4 6",
"output": "3"
},
{
"input": "7\n1 2 3 4 7 9 10",
"output": "3"
},
{
"input": "1\n1",
"output": "1"
},
{
"input": "8\n3 4 5 6 7 8 9 10",
"output": "4"
},
{
"input": "5\n2 3 7 9 10",
"output": "2"
},
{
"input": "3\n1 4 7",
"output": "1"
},
{
"input": "1\n4",
"output": "1"
},
{
"input": "9\n1 2 3 4 5 6 7 9 10",
"output": "4"
},
{
"input": "49\n10 34 58 72 126 166 176 180 198 200 208 228 238 248 302 332 340 344 350 354 380 406 418 428 438 442 482 532 536 544 546 554 596 626 642 682 684 704 714 792 804 820 862 880 906 946 954 966 970",
"output": "49"
},
{
"input": "44\n1 5 37 97 107 147 185 187 195 241 249 295 311 323 341 345 363 391 425 431 473 525 539 541 555 577 595 611 647 695 757 759 775 779 869 877 927 935 963 965 967 969 973 975",
"output": "15"
},
{
"input": "3\n21 67 243",
"output": "2"
},
{
"input": "3\n150 358 382",
"output": "3"
},
{
"input": "10\n13 2187 2197 4567 5200 29873 67866 98798 99999 100000",
"output": "6"
},
{
"input": "10\n1 2 4 8 16 32 33 64 128 256",
"output": "8"
},
{
"input": "10\n2 4 8 67 128 324 789 1296 39877 98383",
"output": "7"
},
{
"input": "10\n2 3 4 5 6 8 9 10 17 92",
"output": "6"
},
{
"input": "10\n2 3 10 40 478 3877 28787 88888 99999 100000",
"output": "6"
},
{
"input": "10\n2 3 45 67 89 101 234 567 890 1234",
"output": "5"
},
{
"input": "10\n2 3 4 5 6 7 8 9 10 11",
"output": "5"
},
{
"input": "2\n5101 10202",
"output": "2"
},
{
"input": "1\n99991",
"output": "1"
},
{
"input": "2\n1009 2018",
"output": "2"
},
{
"input": "2\n601 1202",
"output": "2"
},
{
"input": "3\n3 14 22",
"output": "2"
}
] | 1,647,513,645
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 86
| 622
| 9,830,400
|
input()
a=list(map(int,input().split()))
n=max(a)+1
w=[0]*n
t=[[]for i in range(n)]
t[1]=[1]
for i in range(2,n):
if not t[i]:
for j in range(i,n,i): t[j]+=[i]
for i in a:
q=max(w[j] for j in t[i])+1
for j in t[i]:w[j]=q
print(max(w))
|
Title: Good Sequences
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Squirrel Liss is interested in sequences. She also has preferences of integers. She thinks *n* integers *a*1,<=*a*2,<=...,<=*a**n* are good.
Now she is interested in good sequences. A sequence *x*1,<=*x*2,<=...,<=*x**k* is called good if it satisfies the following three conditions:
- The sequence is strictly increasing, i.e. *x**i*<=<<=*x**i*<=+<=1 for each *i* (1<=≤<=*i*<=≤<=*k*<=-<=1). - No two adjacent elements are coprime, i.e. *gcd*(*x**i*,<=*x**i*<=+<=1)<=><=1 for each *i* (1<=≤<=*i*<=≤<=*k*<=-<=1) (where *gcd*(*p*,<=*q*) denotes the greatest common divisor of the integers *p* and *q*). - All elements of the sequence are good integers.
Find the length of the longest good sequence.
Input Specification:
The input consists of two lines. The first line contains a single integer *n* (1<=≤<=*n*<=≤<=105) — the number of good integers. The second line contains a single-space separated list of good integers *a*1,<=*a*2,<=...,<=*a**n* in strictly increasing order (1<=≤<=*a**i*<=≤<=105; *a**i*<=<<=*a**i*<=+<=1).
Output Specification:
Print a single integer — the length of the longest good sequence.
Demo Input:
['5\n2 3 4 6 9\n', '9\n1 2 3 5 6 7 8 9 10\n']
Demo Output:
['4\n', '4\n']
Note:
In the first example, the following sequences are examples of good sequences: [2; 4; 6; 9], [2; 4; 6], [3; 9], [6]. The length of the longest good sequence is 4.
|
```python
input()
a=list(map(int,input().split()))
n=max(a)+1
w=[0]*n
t=[[]for i in range(n)]
t[1]=[1]
for i in range(2,n):
if not t[i]:
for j in range(i,n,i): t[j]+=[i]
for i in a:
q=max(w[j] for j in t[i])+1
for j in t[i]:w[j]=q
print(max(w))
```
| 3
|
|
535
|
B
|
Tavas and SaDDas
|
PROGRAMMING
| 1,100
|
[
"bitmasks",
"brute force",
"combinatorics",
"implementation"
] | null | null |
Once again Tavas started eating coffee mix without water! Keione told him that it smells awful, but he didn't stop doing that. That's why Keione told his smart friend, SaDDas to punish him! SaDDas took Tavas' headphones and told him: "If you solve the following problem, I'll return it to you."
The problem is:
You are given a lucky number *n*. Lucky numbers are the positive integers whose decimal representations contain only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not.
If we sort all lucky numbers in increasing order, what's the 1-based index of *n*?
Tavas is not as smart as SaDDas, so he asked you to do him a favor and solve this problem so he can have his headphones back.
|
The first and only line of input contains a lucky number *n* (1<=≤<=*n*<=≤<=109).
|
Print the index of *n* among all lucky numbers.
|
[
"4\n",
"7\n",
"77\n"
] |
[
"1\n",
"2\n",
"6\n"
] |
none
| 1,000
|
[
{
"input": "4",
"output": "1"
},
{
"input": "7",
"output": "2"
},
{
"input": "77",
"output": "6"
},
{
"input": "4",
"output": "1"
},
{
"input": "474744",
"output": "83"
},
{
"input": "777774",
"output": "125"
},
{
"input": "447",
"output": "8"
},
{
"input": "774",
"output": "13"
},
{
"input": "4",
"output": "1"
},
{
"input": "4447747",
"output": "140"
},
{
"input": "7747474",
"output": "233"
},
{
"input": "4444",
"output": "15"
},
{
"input": "4447",
"output": "16"
},
{
"input": "7",
"output": "2"
},
{
"input": "4",
"output": "1"
},
{
"input": "4447744",
"output": "139"
},
{
"input": "77474",
"output": "57"
},
{
"input": "7747",
"output": "28"
},
{
"input": "444",
"output": "7"
},
{
"input": "7",
"output": "2"
},
{
"input": "7774477",
"output": "242"
},
{
"input": "4477774",
"output": "157"
},
{
"input": "7444",
"output": "23"
},
{
"input": "7474747",
"output": "212"
},
{
"input": "77",
"output": "6"
},
{
"input": "774477",
"output": "114"
},
{
"input": "7",
"output": "2"
},
{
"input": "47",
"output": "4"
},
{
"input": "747777",
"output": "110"
},
{
"input": "444444444",
"output": "511"
},
{
"input": "777777777",
"output": "1022"
},
{
"input": "477477447",
"output": "728"
},
{
"input": "777744747",
"output": "996"
}
] | 1,614,717,300
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 33
| 77
| 0
|
n = list(input())
ans,ans1=0,0
for j in range(len(n)-1,-1,-1):
if n[j] == '7':
ans1+=2**(len(n)-j-1)
ans += 2**j
print(ans+ans1)
|
Title: Tavas and SaDDas
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Once again Tavas started eating coffee mix without water! Keione told him that it smells awful, but he didn't stop doing that. That's why Keione told his smart friend, SaDDas to punish him! SaDDas took Tavas' headphones and told him: "If you solve the following problem, I'll return it to you."
The problem is:
You are given a lucky number *n*. Lucky numbers are the positive integers whose decimal representations contain only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not.
If we sort all lucky numbers in increasing order, what's the 1-based index of *n*?
Tavas is not as smart as SaDDas, so he asked you to do him a favor and solve this problem so he can have his headphones back.
Input Specification:
The first and only line of input contains a lucky number *n* (1<=≤<=*n*<=≤<=109).
Output Specification:
Print the index of *n* among all lucky numbers.
Demo Input:
['4\n', '7\n', '77\n']
Demo Output:
['1\n', '2\n', '6\n']
Note:
none
|
```python
n = list(input())
ans,ans1=0,0
for j in range(len(n)-1,-1,-1):
if n[j] == '7':
ans1+=2**(len(n)-j-1)
ans += 2**j
print(ans+ans1)
```
| 3
|
|
177
|
B1
|
Rectangular Game
|
PROGRAMMING
| 1,000
|
[
"number theory"
] | null | null |
The Smart Beaver from ABBYY decided to have a day off. But doing nothing the whole day turned out to be too boring, and he decided to play a game with pebbles. Initially, the Beaver has *n* pebbles. He arranges them in *a* equal rows, each row has *b* pebbles (*a*<=><=1). Note that the Beaver must use all the pebbles he has, i. e. *n*<==<=*a*·*b*.
Once the Smart Beaver has arranged the pebbles, he takes back any of the resulting rows (that is, *b* pebbles) and discards all other pebbles. Then he arranges all his pebbles again (possibly choosing other values of *a* and *b*) and takes back one row, and so on. The game continues until at some point the Beaver ends up with exactly one pebble.
The game process can be represented as a finite sequence of integers *c*1,<=...,<=*c**k*, where:
- *c*1<==<=*n* - *c**i*<=+<=1 is the number of pebbles that the Beaver ends up with after the *i*-th move, that is, the number of pebbles in a row after some arrangement of *c**i* pebbles (1<=≤<=*i*<=<<=*k*). Note that *c**i*<=><=*c**i*<=+<=1. - *c**k*<==<=1
The result of the game is the sum of numbers *c**i*. You are given *n*. Find the maximum possible result of the game.
|
The single line of the input contains a single integer *n* — the initial number of pebbles the Smart Beaver has.
The input limitations for getting 30 points are:
- 2<=≤<=*n*<=≤<=50
The input limitations for getting 100 points are:
- 2<=≤<=*n*<=≤<=109
|
Print a single number — the maximum possible result of the game.
|
[
"10\n",
"8\n"
] |
[
"16\n",
"15\n"
] |
Consider the first example (*c*<sub class="lower-index">1</sub> = 10). The possible options for the game development are:
- Arrange the pebbles in 10 rows, one pebble per row. Then *c*<sub class="lower-index">2</sub> = 1, and the game ends after the first move with the result of 11. - Arrange the pebbles in 5 rows, two pebbles per row. Then *c*<sub class="lower-index">2</sub> = 2, and the game continues. During the second move we have two pebbles which can be arranged in a unique way (remember that you are not allowed to put all the pebbles in the same row!) — 2 rows, one pebble per row. *c*<sub class="lower-index">3</sub> = 1, and the game ends with the result of 13. - Finally, arrange the pebbles in two rows, five pebbles per row. The same logic leads us to *c*<sub class="lower-index">2</sub> = 5, *c*<sub class="lower-index">3</sub> = 1, and the game ends with the result of 16 — the maximum possible result.
| 30
|
[
{
"input": "10",
"output": "16"
},
{
"input": "8",
"output": "15"
},
{
"input": "4",
"output": "7"
},
{
"input": "36",
"output": "67"
},
{
"input": "32",
"output": "63"
},
{
"input": "46",
"output": "70"
},
{
"input": "6",
"output": "10"
},
{
"input": "13",
"output": "14"
},
{
"input": "9",
"output": "13"
},
{
"input": "18",
"output": "31"
},
{
"input": "20",
"output": "36"
},
{
"input": "37",
"output": "38"
},
{
"input": "42",
"output": "71"
},
{
"input": "50",
"output": "81"
},
{
"input": "48",
"output": "94"
},
{
"input": "33",
"output": "45"
},
{
"input": "49",
"output": "57"
},
{
"input": "34",
"output": "52"
},
{
"input": "35",
"output": "43"
},
{
"input": "37",
"output": "38"
},
{
"input": "39",
"output": "53"
},
{
"input": "42",
"output": "71"
},
{
"input": "14",
"output": "22"
},
{
"input": "2",
"output": "3"
},
{
"input": "3",
"output": "4"
},
{
"input": "5",
"output": "6"
}
] | 1,620,733,983
| 2,147,483,647
|
PyPy 3
|
OK
|
TESTS1
| 26
| 186
| 20,172,800
|
import math
n = int(input())
sum=n
x = n
while (x!=1):
f = True
for i in range(2,int(math.sqrt(x))+1):
if x%i==0:
x=x//i
f = False
break
if f:
x = 1
sum+=x
print(sum)
|
Title: Rectangular Game
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
The Smart Beaver from ABBYY decided to have a day off. But doing nothing the whole day turned out to be too boring, and he decided to play a game with pebbles. Initially, the Beaver has *n* pebbles. He arranges them in *a* equal rows, each row has *b* pebbles (*a*<=><=1). Note that the Beaver must use all the pebbles he has, i. e. *n*<==<=*a*·*b*.
Once the Smart Beaver has arranged the pebbles, he takes back any of the resulting rows (that is, *b* pebbles) and discards all other pebbles. Then he arranges all his pebbles again (possibly choosing other values of *a* and *b*) and takes back one row, and so on. The game continues until at some point the Beaver ends up with exactly one pebble.
The game process can be represented as a finite sequence of integers *c*1,<=...,<=*c**k*, where:
- *c*1<==<=*n* - *c**i*<=+<=1 is the number of pebbles that the Beaver ends up with after the *i*-th move, that is, the number of pebbles in a row after some arrangement of *c**i* pebbles (1<=≤<=*i*<=<<=*k*). Note that *c**i*<=><=*c**i*<=+<=1. - *c**k*<==<=1
The result of the game is the sum of numbers *c**i*. You are given *n*. Find the maximum possible result of the game.
Input Specification:
The single line of the input contains a single integer *n* — the initial number of pebbles the Smart Beaver has.
The input limitations for getting 30 points are:
- 2<=≤<=*n*<=≤<=50
The input limitations for getting 100 points are:
- 2<=≤<=*n*<=≤<=109
Output Specification:
Print a single number — the maximum possible result of the game.
Demo Input:
['10\n', '8\n']
Demo Output:
['16\n', '15\n']
Note:
Consider the first example (*c*<sub class="lower-index">1</sub> = 10). The possible options for the game development are:
- Arrange the pebbles in 10 rows, one pebble per row. Then *c*<sub class="lower-index">2</sub> = 1, and the game ends after the first move with the result of 11. - Arrange the pebbles in 5 rows, two pebbles per row. Then *c*<sub class="lower-index">2</sub> = 2, and the game continues. During the second move we have two pebbles which can be arranged in a unique way (remember that you are not allowed to put all the pebbles in the same row!) — 2 rows, one pebble per row. *c*<sub class="lower-index">3</sub> = 1, and the game ends with the result of 13. - Finally, arrange the pebbles in two rows, five pebbles per row. The same logic leads us to *c*<sub class="lower-index">2</sub> = 5, *c*<sub class="lower-index">3</sub> = 1, and the game ends with the result of 16 — the maximum possible result.
|
```python
import math
n = int(input())
sum=n
x = n
while (x!=1):
f = True
for i in range(2,int(math.sqrt(x))+1):
if x%i==0:
x=x//i
f = False
break
if f:
x = 1
sum+=x
print(sum)
```
| 3
|
|
818
|
A
|
Diplomas and Certificates
|
PROGRAMMING
| 800
|
[
"implementation",
"math"
] | null | null |
There are *n* students who have taken part in an olympiad. Now it's time to award the students.
Some of them will receive diplomas, some wiil get certificates, and others won't receive anything. Students with diplomas and certificates are called winners. But there are some rules of counting the number of diplomas and certificates. The number of certificates must be exactly *k* times greater than the number of diplomas. The number of winners must not be greater than half of the number of all students (i.e. not be greater than half of *n*). It's possible that there are no winners.
You have to identify the maximum possible number of winners, according to these rules. Also for this case you have to calculate the number of students with diplomas, the number of students with certificates and the number of students who are not winners.
|
The first (and the only) line of input contains two integers *n* and *k* (1<=≤<=*n*,<=*k*<=≤<=1012), where *n* is the number of students and *k* is the ratio between the number of certificates and the number of diplomas.
|
Output three numbers: the number of students with diplomas, the number of students with certificates and the number of students who are not winners in case when the number of winners is maximum possible.
It's possible that there are no winners.
|
[
"18 2\n",
"9 10\n",
"1000000000000 5\n",
"1000000000000 499999999999\n"
] |
[
"3 6 9\n",
"0 0 9\n",
"83333333333 416666666665 500000000002\n",
"1 499999999999 500000000000\n"
] |
none
| 0
|
[
{
"input": "18 2",
"output": "3 6 9"
},
{
"input": "9 10",
"output": "0 0 9"
},
{
"input": "1000000000000 5",
"output": "83333333333 416666666665 500000000002"
},
{
"input": "1000000000000 499999999999",
"output": "1 499999999999 500000000000"
},
{
"input": "1 1",
"output": "0 0 1"
},
{
"input": "5 3",
"output": "0 0 5"
},
{
"input": "42 6",
"output": "3 18 21"
},
{
"input": "1000000000000 1000",
"output": "499500499 499500499000 500000000501"
},
{
"input": "999999999999 999999",
"output": "499999 499998500001 500000999999"
},
{
"input": "732577309725 132613",
"output": "2762066 366285858458 366288689201"
},
{
"input": "152326362626 15",
"output": "4760198832 71402982480 76163181314"
},
{
"input": "2 1",
"output": "0 0 2"
},
{
"input": "1000000000000 500000000000",
"output": "0 0 1000000000000"
},
{
"input": "100000000000 50000000011",
"output": "0 0 100000000000"
},
{
"input": "1000000000000 32416187567",
"output": "15 486242813505 513757186480"
},
{
"input": "1000000000000 7777777777",
"output": "64 497777777728 502222222208"
},
{
"input": "1000000000000 77777777777",
"output": "6 466666666662 533333333332"
},
{
"input": "100000000000 578485652",
"output": "86 49749766072 50250233842"
},
{
"input": "999999999999 10000000000",
"output": "49 490000000000 509999999950"
},
{
"input": "7 2",
"output": "1 2 4"
},
{
"input": "420506530901 752346673804",
"output": "0 0 420506530901"
},
{
"input": "960375521135 321688347872",
"output": "1 321688347872 638687173262"
},
{
"input": "1000000000000 1000000000000",
"output": "0 0 1000000000000"
},
{
"input": "99999999999 15253636363",
"output": "3 45760909089 54239090907"
},
{
"input": "19 2",
"output": "3 6 10"
},
{
"input": "999999999999 1000000000000",
"output": "0 0 999999999999"
},
{
"input": "1000000000000 5915587276",
"output": "84 496909331184 503090668732"
},
{
"input": "1000000000000 1000000006",
"output": "499 499000002994 500999996507"
},
{
"input": "549755813888 134217728",
"output": "2047 274743689216 275012122625"
},
{
"input": "99999999999 3333333",
"output": "14999 49996661667 50003323333"
},
{
"input": "9 1",
"output": "2 2 5"
},
{
"input": "1000000000000 250000000001",
"output": "1 250000000001 749999999998"
},
{
"input": "5 1",
"output": "1 1 3"
},
{
"input": "3107038133 596040207",
"output": "2 1192080414 1914957717"
},
{
"input": "1000000000000 73786977",
"output": "6776 499980556152 500019437072"
},
{
"input": "1000000000000 73786976",
"output": "6776 499980549376 500019443848"
},
{
"input": "1000000000000 25000000000",
"output": "19 475000000000 524999999981"
},
{
"input": "216929598879 768233755932",
"output": "0 0 216929598879"
},
{
"input": "1000000000000 250000000000",
"output": "1 250000000000 749999999999"
},
{
"input": "1000000000000 100000000001",
"output": "4 400000000004 599999999992"
},
{
"input": "100000000000 100000000001",
"output": "0 0 100000000000"
},
{
"input": "900000000000 100281800001",
"output": "4 401127200004 498872799992"
},
{
"input": "906028900004 109123020071",
"output": "4 436492080284 469536819716"
},
{
"input": "1000000000000 1",
"output": "250000000000 250000000000 500000000000"
}
] | 1,680,504,449
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 44
| 46
| 0
|
n, k = map(int, input().split())
max_diplomas = n // (2 * (k + 1))
max_certificates = max_diplomas * k
max_participation = n - max_diplomas - max_certificates
print(max_diplomas, max_certificates, max_participation)
|
Title: Diplomas and Certificates
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
There are *n* students who have taken part in an olympiad. Now it's time to award the students.
Some of them will receive diplomas, some wiil get certificates, and others won't receive anything. Students with diplomas and certificates are called winners. But there are some rules of counting the number of diplomas and certificates. The number of certificates must be exactly *k* times greater than the number of diplomas. The number of winners must not be greater than half of the number of all students (i.e. not be greater than half of *n*). It's possible that there are no winners.
You have to identify the maximum possible number of winners, according to these rules. Also for this case you have to calculate the number of students with diplomas, the number of students with certificates and the number of students who are not winners.
Input Specification:
The first (and the only) line of input contains two integers *n* and *k* (1<=≤<=*n*,<=*k*<=≤<=1012), where *n* is the number of students and *k* is the ratio between the number of certificates and the number of diplomas.
Output Specification:
Output three numbers: the number of students with diplomas, the number of students with certificates and the number of students who are not winners in case when the number of winners is maximum possible.
It's possible that there are no winners.
Demo Input:
['18 2\n', '9 10\n', '1000000000000 5\n', '1000000000000 499999999999\n']
Demo Output:
['3 6 9\n', '0 0 9\n', '83333333333 416666666665 500000000002\n', '1 499999999999 500000000000\n']
Note:
none
|
```python
n, k = map(int, input().split())
max_diplomas = n // (2 * (k + 1))
max_certificates = max_diplomas * k
max_participation = n - max_diplomas - max_certificates
print(max_diplomas, max_certificates, max_participation)
```
| 3
|
|
265
|
A
|
Colorful Stones (Simplified Edition)
|
PROGRAMMING
| 800
|
[
"implementation"
] | null | null |
There is a sequence of colorful stones. The color of each stone is one of red, green, or blue. You are given a string *s*. The *i*-th (1-based) character of *s* represents the color of the *i*-th stone. If the character is "R", "G", or "B", the color of the corresponding stone is red, green, or blue, respectively.
Initially Squirrel Liss is standing on the first stone. You perform instructions one or more times.
Each instruction is one of the three types: "RED", "GREEN", or "BLUE". After an instruction *c*, if Liss is standing on a stone whose colors is *c*, Liss will move one stone forward, else she will not move.
You are given a string *t*. The number of instructions is equal to the length of *t*, and the *i*-th character of *t* represents the *i*-th instruction.
Calculate the final position of Liss (the number of the stone she is going to stand on in the end) after performing all the instructions, and print its 1-based position. It is guaranteed that Liss don't move out of the sequence.
|
The input contains two lines. The first line contains the string *s* (1<=≤<=|*s*|<=≤<=50). The second line contains the string *t* (1<=≤<=|*t*|<=≤<=50). The characters of each string will be one of "R", "G", or "B". It is guaranteed that Liss don't move out of the sequence.
|
Print the final 1-based position of Liss in a single line.
|
[
"RGB\nRRR\n",
"RRRBGBRBBB\nBBBRR\n",
"BRRBGBRGRBGRGRRGGBGBGBRGBRGRGGGRBRRRBRBBBGRRRGGBBB\nBBRBGGRGRGBBBRBGRBRBBBBRBRRRBGBBGBBRRBBGGRBRRBRGRB\n"
] |
[
"2\n",
"3\n",
"15\n"
] |
none
| 500
|
[
{
"input": "RGB\nRRR",
"output": "2"
},
{
"input": "RRRBGBRBBB\nBBBRR",
"output": "3"
},
{
"input": "BRRBGBRGRBGRGRRGGBGBGBRGBRGRGGGRBRRRBRBBBGRRRGGBBB\nBBRBGGRGRGBBBRBGRBRBBBBRBRRRBGBBGBBRRBBGGRBRRBRGRB",
"output": "15"
},
{
"input": "G\nRRBBRBRRBR",
"output": "1"
},
{
"input": "RRRRRBRRBRRGRBGGRRRGRBBRBBBBBRGRBGBRRGBBBRBBGBRGBB\nB",
"output": "1"
},
{
"input": "RRGGBRGRBG\nBRRGGBBGGR",
"output": "7"
},
{
"input": "BBRRGBGGRGBRGBRBRBGR\nGGGRBGGGBRRRRGRBGBGRGRRBGRBGBG",
"output": "15"
},
{
"input": "GBRRBGBGBBBBRRRGBGRRRGBGBBBRGR\nRRGBRRGRBBBBBBGRRBBR",
"output": "8"
},
{
"input": "BRGRRGRGRRGBBGBBBRRBBRRBGBBGRGBBGGRGBRBGGGRRRBGGBB\nRGBBGRRBBBRRGRRBRBBRGBBGGGRGBGRRRRBRBGGBRBGGGRGBRR",
"output": "16"
},
{
"input": "GGRGGBRRGRGBRRGGRBBGGRRGBBBGBBBGGRBGGBRBBRGBRRRBRG\nGGRGRRRRRRRRRGBBBBRGBRGRGRRGBBRGGBRBBRBGBRGRRRRGGR",
"output": "18"
},
{
"input": "RBBRBGBBGGGBRRBGBRGRRGGRBBBBGRBGGBRRBGBBRBRGBBGGGG\nBRRGRBGRBGBRGBRBGGBBBGBBRGRBGRGRBGRBGGRRBGBRGRRBBG",
"output": "23"
},
{
"input": "RRGGRRBRGRGBRGBRGBBRGGGBRBGBRGBRGGBRBRGBGRRBBGGRBR\nBRGRBBBGRBGRRGGRRRRRRRRGGGGGGGGBGGGGGGGRGRBBRGRGBR",
"output": "14"
},
{
"input": "RBRBRRRRRGGR\nBBBBRRGGBGRBRGBBRGGGRGGBRRBRBRBGGG",
"output": "12"
},
{
"input": "GGRGGGBRGRGRBBRGGGRBGRRR\nGBBBBGBGBGBBBRGGRGGBGRRGRRRGBGB",
"output": "12"
},
{
"input": "RGRBGBRBBGBRRGGGBBGBRRBGRGBBBBBGRRRGGRBB\nBGR",
"output": "2"
},
{
"input": "R\nB",
"output": "1"
},
{
"input": "RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR\nRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR",
"output": "50"
},
{
"input": "RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR\nGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG",
"output": "1"
},
{
"input": "R\nGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG",
"output": "1"
}
] | 1,690,796,368
| 2,147,483,647
|
PyPy 3-64
|
OK
|
TESTS
| 19
| 122
| 0
|
s = input()
c = input()
j = 0
ans = 0
for i in range(len(c)):
if s[j] == c[i] :
ans += 1
j += 1
print(ans+1)
|
Title: Colorful Stones (Simplified Edition)
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
There is a sequence of colorful stones. The color of each stone is one of red, green, or blue. You are given a string *s*. The *i*-th (1-based) character of *s* represents the color of the *i*-th stone. If the character is "R", "G", or "B", the color of the corresponding stone is red, green, or blue, respectively.
Initially Squirrel Liss is standing on the first stone. You perform instructions one or more times.
Each instruction is one of the three types: "RED", "GREEN", or "BLUE". After an instruction *c*, if Liss is standing on a stone whose colors is *c*, Liss will move one stone forward, else she will not move.
You are given a string *t*. The number of instructions is equal to the length of *t*, and the *i*-th character of *t* represents the *i*-th instruction.
Calculate the final position of Liss (the number of the stone she is going to stand on in the end) after performing all the instructions, and print its 1-based position. It is guaranteed that Liss don't move out of the sequence.
Input Specification:
The input contains two lines. The first line contains the string *s* (1<=≤<=|*s*|<=≤<=50). The second line contains the string *t* (1<=≤<=|*t*|<=≤<=50). The characters of each string will be one of "R", "G", or "B". It is guaranteed that Liss don't move out of the sequence.
Output Specification:
Print the final 1-based position of Liss in a single line.
Demo Input:
['RGB\nRRR\n', 'RRRBGBRBBB\nBBBRR\n', 'BRRBGBRGRBGRGRRGGBGBGBRGBRGRGGGRBRRRBRBBBGRRRGGBBB\nBBRBGGRGRGBBBRBGRBRBBBBRBRRRBGBBGBBRRBBGGRBRRBRGRB\n']
Demo Output:
['2\n', '3\n', '15\n']
Note:
none
|
```python
s = input()
c = input()
j = 0
ans = 0
for i in range(len(c)):
if s[j] == c[i] :
ans += 1
j += 1
print(ans+1)
```
| 3
|
|
707
|
A
|
Brain's Photos
|
PROGRAMMING
| 800
|
[
"implementation"
] | null | null |
Small, but very brave, mouse Brain was not accepted to summer school of young villains. He was upset and decided to postpone his plans of taking over the world, but to become a photographer instead.
As you may know, the coolest photos are on the film (because you can specify the hashtag #film for such).
Brain took a lot of colourful pictures on colored and black-and-white film. Then he developed and translated it into a digital form. But now, color and black-and-white photos are in one folder, and to sort them, one needs to spend more than one hour!
As soon as Brain is a photographer not programmer now, he asks you to help him determine for a single photo whether it is colored or black-and-white.
Photo can be represented as a matrix sized *n*<=×<=*m*, and each element of the matrix stores a symbol indicating corresponding pixel color. There are only 6 colors:
- 'C' (cyan)- 'M' (magenta)- 'Y' (yellow)- 'W' (white)- 'G' (grey)- 'B' (black)
The photo is considered black-and-white if it has only white, black and grey pixels in it. If there are any of cyan, magenta or yellow pixels in the photo then it is considered colored.
|
The first line of the input contains two integers *n* and *m* (1<=≤<=*n*,<=*m*<=≤<=100) — the number of photo pixel matrix rows and columns respectively.
Then *n* lines describing matrix rows follow. Each of them contains *m* space-separated characters describing colors of pixels in a row. Each character in the line is one of the 'C', 'M', 'Y', 'W', 'G' or 'B'.
|
Print the "#Black&White" (without quotes), if the photo is black-and-white and "#Color" (without quotes), if it is colored, in the only line.
|
[
"2 2\nC M\nY Y\n",
"3 2\nW W\nW W\nB B\n",
"1 1\nW\n"
] |
[
"#Color",
"#Black&White",
"#Black&White"
] |
none
| 500
|
[
{
"input": "2 2\nC M\nY Y",
"output": "#Color"
},
{
"input": "3 2\nW W\nW W\nB B",
"output": "#Black&White"
},
{
"input": "1 1\nW",
"output": "#Black&White"
},
{
"input": "2 3\nW W W\nB G Y",
"output": "#Color"
},
{
"input": "1 1\nW",
"output": "#Black&White"
},
{
"input": "5 5\nW G B Y M\nG B Y M C\nB Y M C W\nY M C W G\nM C W G B",
"output": "#Color"
},
{
"input": "1 6\nC M Y W G B",
"output": "#Color"
},
{
"input": "1 3\nW G B",
"output": "#Black&White"
},
{
"input": "1 1\nW",
"output": "#Black&White"
},
{
"input": "5 5\nW G B W G\nG B W G B\nB W G B W\nW G B W G\nG B W G B",
"output": "#Black&White"
},
{
"input": "2 3\nW W W\nB G C",
"output": "#Color"
},
{
"input": "2 3\nW W W\nB G M",
"output": "#Color"
},
{
"input": "3 3\nC B W\nB Y M\nB B W",
"output": "#Color"
},
{
"input": "1 3\nW C W",
"output": "#Color"
},
{
"input": "3 3\nB W B\nB C W\nB W W",
"output": "#Color"
},
{
"input": "1 2\nW Y",
"output": "#Color"
},
{
"input": "1 1\nG",
"output": "#Black&White"
},
{
"input": "1 3\nB G W",
"output": "#Black&White"
},
{
"input": "2 2\nW W\nB C",
"output": "#Color"
},
{
"input": "1 1\nM",
"output": "#Color"
},
{
"input": "1 2\nW C",
"output": "#Color"
},
{
"input": "2 3\nW W M\nW W M",
"output": "#Color"
},
{
"input": "3 2\nW W\nW W\nB C",
"output": "#Color"
},
{
"input": "2 3\nW W C\nW W W",
"output": "#Color"
},
{
"input": "1 3\nG G G",
"output": "#Black&White"
},
{
"input": "1 1\nC",
"output": "#Color"
},
{
"input": "1 2\nC W",
"output": "#Color"
},
{
"input": "1 3\nW W C",
"output": "#Color"
},
{
"input": "2 2\nW B\nB G",
"output": "#Black&White"
},
{
"input": "2 2\nB B\nY Y",
"output": "#Color"
},
{
"input": "2 2\nG G\nC C",
"output": "#Color"
},
{
"input": "1 2\nB C",
"output": "#Color"
},
{
"input": "1 4\nG G G C",
"output": "#Color"
},
{
"input": "1 1\nB",
"output": "#Black&White"
},
{
"input": "2 1\nY\nB",
"output": "#Color"
}
] | 1,682,158,925
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 50
| 62
| 204,800
|
n,m = map(int,input().split())
pixels = list(list(map(str,input().split()))for _ in range(n))
pix = []
for i in pixels:
for g in i:
pix.append(g.upper())
if "C" in pix or "M" in pix or "Y" in pix:
print("#Color")
else :
print("#Black&White")
|
Title: Brain's Photos
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Small, but very brave, mouse Brain was not accepted to summer school of young villains. He was upset and decided to postpone his plans of taking over the world, but to become a photographer instead.
As you may know, the coolest photos are on the film (because you can specify the hashtag #film for such).
Brain took a lot of colourful pictures on colored and black-and-white film. Then he developed and translated it into a digital form. But now, color and black-and-white photos are in one folder, and to sort them, one needs to spend more than one hour!
As soon as Brain is a photographer not programmer now, he asks you to help him determine for a single photo whether it is colored or black-and-white.
Photo can be represented as a matrix sized *n*<=×<=*m*, and each element of the matrix stores a symbol indicating corresponding pixel color. There are only 6 colors:
- 'C' (cyan)- 'M' (magenta)- 'Y' (yellow)- 'W' (white)- 'G' (grey)- 'B' (black)
The photo is considered black-and-white if it has only white, black and grey pixels in it. If there are any of cyan, magenta or yellow pixels in the photo then it is considered colored.
Input Specification:
The first line of the input contains two integers *n* and *m* (1<=≤<=*n*,<=*m*<=≤<=100) — the number of photo pixel matrix rows and columns respectively.
Then *n* lines describing matrix rows follow. Each of them contains *m* space-separated characters describing colors of pixels in a row. Each character in the line is one of the 'C', 'M', 'Y', 'W', 'G' or 'B'.
Output Specification:
Print the "#Black&White" (without quotes), if the photo is black-and-white and "#Color" (without quotes), if it is colored, in the only line.
Demo Input:
['2 2\nC M\nY Y\n', '3 2\nW W\nW W\nB B\n', '1 1\nW\n']
Demo Output:
['#Color', '#Black&White', '#Black&White']
Note:
none
|
```python
n,m = map(int,input().split())
pixels = list(list(map(str,input().split()))for _ in range(n))
pix = []
for i in pixels:
for g in i:
pix.append(g.upper())
if "C" in pix or "M" in pix or "Y" in pix:
print("#Color")
else :
print("#Black&White")
```
| 3
|
|
538
|
A
|
Cutting Banner
|
PROGRAMMING
| 1,400
|
[
"brute force",
"implementation"
] | null | null |
A large banner with word CODEFORCES was ordered for the 1000-th onsite round of Codeforcesω that takes place on the Miami beach. Unfortunately, the company that made the banner mixed up two orders and delivered somebody else's banner that contains someone else's word. The word on the banner consists only of upper-case English letters.
There is very little time to correct the mistake. All that we can manage to do is to cut out some substring from the banner, i.e. several consecutive letters. After that all the resulting parts of the banner will be glued into a single piece (if the beginning or the end of the original banner was cut out, only one part remains); it is not allowed change the relative order of parts of the banner (i.e. after a substring is cut, several first and last letters are left, it is allowed only to glue the last letters to the right of the first letters). Thus, for example, for example, you can cut a substring out from string 'TEMPLATE' and get string 'TEMPLE' (if you cut out string AT), 'PLATE' (if you cut out TEM), 'T' (if you cut out EMPLATE), etc.
Help the organizers of the round determine whether it is possible to cut out of the banner some substring in such a way that the remaining parts formed word CODEFORCES.
|
The single line of the input contains the word written on the banner. The word only consists of upper-case English letters. The word is non-empty and its length doesn't exceed 100 characters. It is guaranteed that the word isn't word CODEFORCES.
|
Print 'YES', if there exists a way to cut out the substring, and 'NO' otherwise (without the quotes).
|
[
"CODEWAITFORITFORCES\n",
"BOTTOMCODER\n",
"DECODEFORCES\n",
"DOGEFORCES\n"
] |
[
"YES\n",
"NO\n",
"YES\n",
"NO\n"
] |
none
| 500
|
[
{
"input": "CODEWAITFORITFORCES",
"output": "YES"
},
{
"input": "BOTTOMCODER",
"output": "NO"
},
{
"input": "DECODEFORCES",
"output": "YES"
},
{
"input": "DOGEFORCES",
"output": "NO"
},
{
"input": "ABACABA",
"output": "NO"
},
{
"input": "CODEFORCE",
"output": "NO"
},
{
"input": "C",
"output": "NO"
},
{
"input": "NQTSMZEBLY",
"output": "NO"
},
{
"input": "CODEFZORCES",
"output": "YES"
},
{
"input": "EDYKHVZCNTLJUUOQGHPTIOETQNFLLWEKZOHIUAXELGECABVSBIBGQODQXVYFKBYJWTGBYHVSSNTINKWSINWSMALUSIWNJMTCOOVF",
"output": "NO"
},
{
"input": "OCECFDSRDE",
"output": "NO"
},
{
"input": "MDBUWCZFFZKFMJTTJFXRHTGRPREORKDVUXOEMFYSOMSQGHUKGYCRCVJTNDLFDEWFS",
"output": "NO"
},
{
"input": "CODEFYTORCHES",
"output": "NO"
},
{
"input": "BCODEFORCES",
"output": "YES"
},
{
"input": "CVODEFORCES",
"output": "YES"
},
{
"input": "COAKDEFORCES",
"output": "YES"
},
{
"input": "CODFMWEFORCES",
"output": "YES"
},
{
"input": "CODEVCSYRFORCES",
"output": "YES"
},
{
"input": "CODEFXHHPWCVQORCES",
"output": "YES"
},
{
"input": "CODEFORQWUFJLOFFXTXRCES",
"output": "YES"
},
{
"input": "CODEFORBWFURYIDURNRKRDLHCLXZCES",
"output": "YES"
},
{
"input": "CODEFORCQSYSLYKCDFFUPSAZCJIAENCKZUFJZEINQIES",
"output": "YES"
},
{
"input": "CODEFORCEVENMDBQLSVPQIIBGSHBVOPYZXNWVSTVWDRONUREYJJIJIPMEBPQDCPFS",
"output": "YES"
},
{
"input": "CODEFORCESCFNNPAHNHDIPPBAUSPKJYAQDBVZNLSTSDCREZACVLMRFGVKGVHHZLXOHCTJDBQKIDWBUXDUJARLWGFGFCTTXUCAZB",
"output": "YES"
},
{
"input": "CODJRDPDEFOROES",
"output": "NO"
},
{
"input": "CODEFOGSIUZMZCMWAVQHNYFEKIEZQMAZOVEMDRMOEDBHAXPLBLDYYXCVTOOSJZVSQAKFXTBTZFWAYRZEMDEMVDJTDRXXAQBURCES",
"output": "YES"
},
{
"input": "CODEMKUYHAZSGJBQLXTHUCZZRJJJXUSEBOCNZASOKDZHMSGWZSDFBGHXFLABVPDQBJYXSHHAZAKHSTRGOKJYHRVSSUGDCMFOGCES",
"output": "NO"
},
{
"input": "CODEFORCESCODEFORCESCODEFORCESCODEFORCESCODEFORCESCODEFORCESCODEFORCESCODEFORCESCODEFORCES",
"output": "YES"
},
{
"input": "CCODEFORCESODECODEFORCCODEFORCESODCODEFORCESEFCODEFORCESORCODEFORCESCESCESFORCODEFORCESCES",
"output": "NO"
},
{
"input": "CCODEFORCESC",
"output": "NO"
},
{
"input": "CODEAFORBCES",
"output": "NO"
},
{
"input": "CODERRRRRFORCRRRRES",
"output": "NO"
},
{
"input": "CODELFORCELS",
"output": "NO"
},
{
"input": "CPOPDPEPFPOPRPCPEPS",
"output": "NO"
},
{
"input": "COXDEXFORXCEXS",
"output": "NO"
},
{
"input": "CODAAAAAFORCES",
"output": "NO"
},
{
"input": "CAOADEFORCES",
"output": "NO"
},
{
"input": "FORCESXCODE",
"output": "NO"
},
{
"input": "FORCESACODE",
"output": "NO"
},
{
"input": "ACAOADAEFORCES",
"output": "NO"
},
{
"input": "CCODEFORCESS",
"output": "NO"
},
{
"input": "ZCODEFORCEZ",
"output": "NO"
},
{
"input": "CODXEFORXCES",
"output": "NO"
},
{
"input": "CODEFORCEZ",
"output": "NO"
},
{
"input": "CODEFORCEST",
"output": "YES"
},
{
"input": "AXODEFORCES",
"output": "NO"
},
{
"input": "RCODEFORCESR",
"output": "NO"
},
{
"input": "CODECODEFORCESFORCES",
"output": "YES"
},
{
"input": "TTTWWWCODEFORCES",
"output": "YES"
},
{
"input": "CODEFORRCEST",
"output": "NO"
},
{
"input": "UJYTYUCODEFORCES",
"output": "YES"
},
{
"input": "CODEXXXXXXXXXXXXXXXXXXCODEFORCESXXXXXXXXXXXXXXXXXXXXXFORCES",
"output": "YES"
},
{
"input": "COXEDYFORCES",
"output": "NO"
},
{
"input": "UJYTYCODEFORCES",
"output": "YES"
},
{
"input": "UJYTCODEFORCES",
"output": "YES"
}
] | 1,577,983,592
| 2,147,483,647
|
PyPy 3
|
OK
|
TESTS
| 55
| 140
| 0
|
s=input()
i=len(s)-1
if(s.find("C")==0 and s[i-8:]==("ODEFORCES")):
print("YES")
elif(s.find("CO")==0 and s[i-7:]==("DEFORCES")):
print("YES")
elif(s.find("COD")==0 and s[i-6:]==("EFORCES")):
print("YES")
elif(s.find("CODE")==0 and s[i-5:]==("FORCES")):
print("YES")
elif(s.find("CODEF")==0 and s[i-4:]==("ORCES")):
print("YES")
elif(s.find("CODEFO")==0 and s[i-3:]==("RCES")):
print("YES")
elif(s.find("CODEFOR")==0 and s[i-2:]==("CES")):
print("YES")
elif(s.find("CODEFORC")==0 and s[i-1:]==("ES")):
print("YES")
elif(s.find("CODEFORCE")==0 and s[i]==("S")):
print("YES")
elif(s.find("CODEFORCES")==0 or s[i-9:]=="CODEFORCES"):
print("YES")
else:
print("NO")
|
Title: Cutting Banner
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
A large banner with word CODEFORCES was ordered for the 1000-th onsite round of Codeforcesω that takes place on the Miami beach. Unfortunately, the company that made the banner mixed up two orders and delivered somebody else's banner that contains someone else's word. The word on the banner consists only of upper-case English letters.
There is very little time to correct the mistake. All that we can manage to do is to cut out some substring from the banner, i.e. several consecutive letters. After that all the resulting parts of the banner will be glued into a single piece (if the beginning or the end of the original banner was cut out, only one part remains); it is not allowed change the relative order of parts of the banner (i.e. after a substring is cut, several first and last letters are left, it is allowed only to glue the last letters to the right of the first letters). Thus, for example, for example, you can cut a substring out from string 'TEMPLATE' and get string 'TEMPLE' (if you cut out string AT), 'PLATE' (if you cut out TEM), 'T' (if you cut out EMPLATE), etc.
Help the organizers of the round determine whether it is possible to cut out of the banner some substring in such a way that the remaining parts formed word CODEFORCES.
Input Specification:
The single line of the input contains the word written on the banner. The word only consists of upper-case English letters. The word is non-empty and its length doesn't exceed 100 characters. It is guaranteed that the word isn't word CODEFORCES.
Output Specification:
Print 'YES', if there exists a way to cut out the substring, and 'NO' otherwise (without the quotes).
Demo Input:
['CODEWAITFORITFORCES\n', 'BOTTOMCODER\n', 'DECODEFORCES\n', 'DOGEFORCES\n']
Demo Output:
['YES\n', 'NO\n', 'YES\n', 'NO\n']
Note:
none
|
```python
s=input()
i=len(s)-1
if(s.find("C")==0 and s[i-8:]==("ODEFORCES")):
print("YES")
elif(s.find("CO")==0 and s[i-7:]==("DEFORCES")):
print("YES")
elif(s.find("COD")==0 and s[i-6:]==("EFORCES")):
print("YES")
elif(s.find("CODE")==0 and s[i-5:]==("FORCES")):
print("YES")
elif(s.find("CODEF")==0 and s[i-4:]==("ORCES")):
print("YES")
elif(s.find("CODEFO")==0 and s[i-3:]==("RCES")):
print("YES")
elif(s.find("CODEFOR")==0 and s[i-2:]==("CES")):
print("YES")
elif(s.find("CODEFORC")==0 and s[i-1:]==("ES")):
print("YES")
elif(s.find("CODEFORCE")==0 and s[i]==("S")):
print("YES")
elif(s.find("CODEFORCES")==0 or s[i-9:]=="CODEFORCES"):
print("YES")
else:
print("NO")
```
| 3
|
|
151
|
A
|
Soft Drinking
|
PROGRAMMING
| 800
|
[
"implementation",
"math"
] | null | null |
This winter is so cold in Nvodsk! A group of *n* friends decided to buy *k* bottles of a soft drink called "Take-It-Light" to warm up a bit. Each bottle has *l* milliliters of the drink. Also they bought *c* limes and cut each of them into *d* slices. After that they found *p* grams of salt.
To make a toast, each friend needs *nl* milliliters of the drink, a slice of lime and *np* grams of salt. The friends want to make as many toasts as they can, provided they all drink the same amount. How many toasts can each friend make?
|
The first and only line contains positive integers *n*, *k*, *l*, *c*, *d*, *p*, *nl*, *np*, not exceeding 1000 and no less than 1. The numbers are separated by exactly one space.
|
Print a single integer — the number of toasts each friend can make.
|
[
"3 4 5 10 8 100 3 1\n",
"5 100 10 1 19 90 4 3\n",
"10 1000 1000 25 23 1 50 1\n"
] |
[
"2\n",
"3\n",
"0\n"
] |
A comment to the first sample:
Overall the friends have 4 * 5 = 20 milliliters of the drink, it is enough to make 20 / 3 = 6 toasts. The limes are enough for 10 * 8 = 80 toasts and the salt is enough for 100 / 1 = 100 toasts. However, there are 3 friends in the group, so the answer is *min*(6, 80, 100) / 3 = 2.
| 500
|
[
{
"input": "3 4 5 10 8 100 3 1",
"output": "2"
},
{
"input": "5 100 10 1 19 90 4 3",
"output": "3"
},
{
"input": "10 1000 1000 25 23 1 50 1",
"output": "0"
},
{
"input": "1 7 4 5 5 8 3 2",
"output": "4"
},
{
"input": "2 3 3 5 5 10 1 3",
"output": "1"
},
{
"input": "2 6 4 5 6 5 1 3",
"output": "0"
},
{
"input": "1 7 3 5 3 6 2 1",
"output": "6"
},
{
"input": "2 4 5 4 5 7 3 2",
"output": "1"
},
{
"input": "2 3 6 5 7 8 2 1",
"output": "4"
},
{
"input": "1 4 5 5 3 10 3 1",
"output": "6"
},
{
"input": "1 4 6 7 3 5 1 3",
"output": "1"
},
{
"input": "1 6 5 5 5 8 3 1",
"output": "8"
},
{
"input": "1 7 5 3 3 9 2 1",
"output": "9"
},
{
"input": "3 5 3 7 6 10 3 1",
"output": "1"
},
{
"input": "3 6 3 5 3 6 3 1",
"output": "2"
},
{
"input": "1 7 5 5 5 5 2 2",
"output": "2"
},
{
"input": "2 5 3 5 6 9 2 1",
"output": "3"
},
{
"input": "3 4 3 5 3 6 2 1",
"output": "2"
},
{
"input": "1 5 5 4 7 6 3 1",
"output": "6"
},
{
"input": "2 3 7 6 5 9 3 1",
"output": "3"
},
{
"input": "2 6 5 3 3 8 1 1",
"output": "4"
},
{
"input": "2 4 7 3 4 10 2 1",
"output": "5"
},
{
"input": "1 1000 1000 1000 1000 1000 1 1",
"output": "1000"
},
{
"input": "17 1000 1000 1000 1000 1000 3 7",
"output": "8"
},
{
"input": "115 1000 1000 1000 1000 1000 17 15",
"output": "0"
},
{
"input": "1 587 981 1 2 1 1 1",
"output": "1"
},
{
"input": "1 1 2 1 2 2 1 1",
"output": "2"
}
] | 1,690,195,706
| 2,147,483,647
|
PyPy 3-64
|
OK
|
TESTS
| 27
| 122
| 0
|
# -*- coding: utf-8 -*-
l = [int(i) for i in input().split(' ')]
people = l[0]
v_bottle = l[1]*l[2]
d_lime = l[3]*l[4]
solt = l[5]
print(int(min((v_bottle/l[6]/people),(d_lime/people),(solt/l[7]/people))))
|
Title: Soft Drinking
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
This winter is so cold in Nvodsk! A group of *n* friends decided to buy *k* bottles of a soft drink called "Take-It-Light" to warm up a bit. Each bottle has *l* milliliters of the drink. Also they bought *c* limes and cut each of them into *d* slices. After that they found *p* grams of salt.
To make a toast, each friend needs *nl* milliliters of the drink, a slice of lime and *np* grams of salt. The friends want to make as many toasts as they can, provided they all drink the same amount. How many toasts can each friend make?
Input Specification:
The first and only line contains positive integers *n*, *k*, *l*, *c*, *d*, *p*, *nl*, *np*, not exceeding 1000 and no less than 1. The numbers are separated by exactly one space.
Output Specification:
Print a single integer — the number of toasts each friend can make.
Demo Input:
['3 4 5 10 8 100 3 1\n', '5 100 10 1 19 90 4 3\n', '10 1000 1000 25 23 1 50 1\n']
Demo Output:
['2\n', '3\n', '0\n']
Note:
A comment to the first sample:
Overall the friends have 4 * 5 = 20 milliliters of the drink, it is enough to make 20 / 3 = 6 toasts. The limes are enough for 10 * 8 = 80 toasts and the salt is enough for 100 / 1 = 100 toasts. However, there are 3 friends in the group, so the answer is *min*(6, 80, 100) / 3 = 2.
|
```python
# -*- coding: utf-8 -*-
l = [int(i) for i in input().split(' ')]
people = l[0]
v_bottle = l[1]*l[2]
d_lime = l[3]*l[4]
solt = l[5]
print(int(min((v_bottle/l[6]/people),(d_lime/people),(solt/l[7]/people))))
```
| 3
|
|
239
|
A
|
Two Bags of Potatoes
|
PROGRAMMING
| 1,200
|
[
"greedy",
"implementation",
"math"
] | null | null |
Valera had two bags of potatoes, the first of these bags contains *x* (*x*<=≥<=1) potatoes, and the second — *y* (*y*<=≥<=1) potatoes. Valera — very scattered boy, so the first bag of potatoes (it contains *x* potatoes) Valera lost. Valera remembers that the total amount of potatoes (*x*<=+<=*y*) in the two bags, firstly, was not gerater than *n*, and, secondly, was divisible by *k*.
Help Valera to determine how many potatoes could be in the first bag. Print all such possible numbers in ascending order.
|
The first line of input contains three integers *y*, *k*, *n* (1<=≤<=*y*,<=*k*,<=*n*<=≤<=109; <=≤<=105).
|
Print the list of whitespace-separated integers — all possible values of *x* in ascending order. You should print each possible value of *x* exactly once.
If there are no such values of *x* print a single integer -1.
|
[
"10 1 10\n",
"10 6 40\n"
] |
[
"-1\n",
"2 8 14 20 26 \n"
] |
none
| 500
|
[
{
"input": "10 1 10",
"output": "-1"
},
{
"input": "10 6 40",
"output": "2 8 14 20 26 "
},
{
"input": "10 1 20",
"output": "1 2 3 4 5 6 7 8 9 10 "
},
{
"input": "1 10000 1000000000",
"output": "9999 19999 29999 39999 49999 59999 69999 79999 89999 99999 109999 119999 129999 139999 149999 159999 169999 179999 189999 199999 209999 219999 229999 239999 249999 259999 269999 279999 289999 299999 309999 319999 329999 339999 349999 359999 369999 379999 389999 399999 409999 419999 429999 439999 449999 459999 469999 479999 489999 499999 509999 519999 529999 539999 549999 559999 569999 579999 589999 599999 609999 619999 629999 639999 649999 659999 669999 679999 689999 699999 709999 719999 729999 739999 7499..."
},
{
"input": "84817 1 33457",
"output": "-1"
},
{
"input": "21 37 99",
"output": "16 53 "
},
{
"input": "78 7 15",
"output": "-1"
},
{
"input": "74 17 27",
"output": "-1"
},
{
"input": "79 23 43",
"output": "-1"
},
{
"input": "32 33 3",
"output": "-1"
},
{
"input": "55 49 44",
"output": "-1"
},
{
"input": "64 59 404",
"output": "54 113 172 231 290 "
},
{
"input": "61 69 820",
"output": "8 77 146 215 284 353 422 491 560 629 698 "
},
{
"input": "17 28 532",
"output": "11 39 67 95 123 151 179 207 235 263 291 319 347 375 403 431 459 487 515 "
},
{
"input": "46592 52 232",
"output": "-1"
},
{
"input": "1541 58 648",
"output": "-1"
},
{
"input": "15946 76 360",
"output": "-1"
},
{
"input": "30351 86 424",
"output": "-1"
},
{
"input": "1 2 37493",
"output": "1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81 83 85 87 89 91 93 95 97 99 101 103 105 107 109 111 113 115 117 119 121 123 125 127 129 131 133 135 137 139 141 143 145 147 149 151 153 155 157 159 161 163 165 167 169 171 173 175 177 179 181 183 185 187 189 191 193 195 197 199 201 203 205 207 209 211 213 215 217 219 221 223 225 227 229 231 233 235 237 239 241 243 245 247 249 251 253 255 257 259 261 263 265 267 269 271 273 275 277 279 281 28..."
},
{
"input": "1 3 27764",
"output": "2 5 8 11 14 17 20 23 26 29 32 35 38 41 44 47 50 53 56 59 62 65 68 71 74 77 80 83 86 89 92 95 98 101 104 107 110 113 116 119 122 125 128 131 134 137 140 143 146 149 152 155 158 161 164 167 170 173 176 179 182 185 188 191 194 197 200 203 206 209 212 215 218 221 224 227 230 233 236 239 242 245 248 251 254 257 260 263 266 269 272 275 278 281 284 287 290 293 296 299 302 305 308 311 314 317 320 323 326 329 332 335 338 341 344 347 350 353 356 359 362 365 368 371 374 377 380 383 386 389 392 395 398 401 404 407 410..."
},
{
"input": "10 4 9174",
"output": "2 6 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94 98 102 106 110 114 118 122 126 130 134 138 142 146 150 154 158 162 166 170 174 178 182 186 190 194 198 202 206 210 214 218 222 226 230 234 238 242 246 250 254 258 262 266 270 274 278 282 286 290 294 298 302 306 310 314 318 322 326 330 334 338 342 346 350 354 358 362 366 370 374 378 382 386 390 394 398 402 406 410 414 418 422 426 430 434 438 442 446 450 454 458 462 466 470 474 478 482 486 490 494 498 502 506 510 514 518 522 526 530 534 53..."
},
{
"input": "33 7 4971",
"output": "2 9 16 23 30 37 44 51 58 65 72 79 86 93 100 107 114 121 128 135 142 149 156 163 170 177 184 191 198 205 212 219 226 233 240 247 254 261 268 275 282 289 296 303 310 317 324 331 338 345 352 359 366 373 380 387 394 401 408 415 422 429 436 443 450 457 464 471 478 485 492 499 506 513 520 527 534 541 548 555 562 569 576 583 590 597 604 611 618 625 632 639 646 653 660 667 674 681 688 695 702 709 716 723 730 737 744 751 758 765 772 779 786 793 800 807 814 821 828 835 842 849 856 863 870 877 884 891 898 905 912 919..."
},
{
"input": "981 1 3387",
"output": "1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155..."
},
{
"input": "386 1 2747",
"output": "1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155..."
},
{
"input": "123 2 50000",
"output": "1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81 83 85 87 89 91 93 95 97 99 101 103 105 107 109 111 113 115 117 119 121 123 125 127 129 131 133 135 137 139 141 143 145 147 149 151 153 155 157 159 161 163 165 167 169 171 173 175 177 179 181 183 185 187 189 191 193 195 197 199 201 203 205 207 209 211 213 215 217 219 221 223 225 227 229 231 233 235 237 239 241 243 245 247 249 251 253 255 257 259 261 263 265 267 269 271 273 275 277 279 281 28..."
},
{
"input": "3123 100 10000000",
"output": "77 177 277 377 477 577 677 777 877 977 1077 1177 1277 1377 1477 1577 1677 1777 1877 1977 2077 2177 2277 2377 2477 2577 2677 2777 2877 2977 3077 3177 3277 3377 3477 3577 3677 3777 3877 3977 4077 4177 4277 4377 4477 4577 4677 4777 4877 4977 5077 5177 5277 5377 5477 5577 5677 5777 5877 5977 6077 6177 6277 6377 6477 6577 6677 6777 6877 6977 7077 7177 7277 7377 7477 7577 7677 7777 7877 7977 8077 8177 8277 8377 8477 8577 8677 8777 8877 8977 9077 9177 9277 9377 9477 9577 9677 9777 9877 9977 10077 10177 10277 1037..."
},
{
"input": "2 10000 1000000000",
"output": "9998 19998 29998 39998 49998 59998 69998 79998 89998 99998 109998 119998 129998 139998 149998 159998 169998 179998 189998 199998 209998 219998 229998 239998 249998 259998 269998 279998 289998 299998 309998 319998 329998 339998 349998 359998 369998 379998 389998 399998 409998 419998 429998 439998 449998 459998 469998 479998 489998 499998 509998 519998 529998 539998 549998 559998 569998 579998 589998 599998 609998 619998 629998 639998 649998 659998 669998 679998 689998 699998 709998 719998 729998 739998 7499..."
},
{
"input": "3 10000 1000000000",
"output": "9997 19997 29997 39997 49997 59997 69997 79997 89997 99997 109997 119997 129997 139997 149997 159997 169997 179997 189997 199997 209997 219997 229997 239997 249997 259997 269997 279997 289997 299997 309997 319997 329997 339997 349997 359997 369997 379997 389997 399997 409997 419997 429997 439997 449997 459997 469997 479997 489997 499997 509997 519997 529997 539997 549997 559997 569997 579997 589997 599997 609997 619997 629997 639997 649997 659997 669997 679997 689997 699997 709997 719997 729997 739997 7499..."
},
{
"input": "12312223 10000 1000000000",
"output": "7777 17777 27777 37777 47777 57777 67777 77777 87777 97777 107777 117777 127777 137777 147777 157777 167777 177777 187777 197777 207777 217777 227777 237777 247777 257777 267777 277777 287777 297777 307777 317777 327777 337777 347777 357777 367777 377777 387777 397777 407777 417777 427777 437777 447777 457777 467777 477777 487777 497777 507777 517777 527777 537777 547777 557777 567777 577777 587777 597777 607777 617777 627777 637777 647777 657777 667777 677777 687777 697777 707777 717777 727777 737777 7477..."
},
{
"input": "500000000 1000000000 1000000000",
"output": "500000000 "
},
{
"input": "1 1000000000 1000000000",
"output": "999999999 "
},
{
"input": "10 6 11",
"output": "-1"
},
{
"input": "2 100 10",
"output": "-1"
},
{
"input": "1 100000007 1000000000",
"output": "100000006 200000013 300000020 400000027 500000034 600000041 700000048 800000055 900000062 "
},
{
"input": "1 999999999 1000000000",
"output": "999999998 "
},
{
"input": "100000000 1000000000 1000000000",
"output": "900000000 "
},
{
"input": "11 2 12",
"output": "1 "
},
{
"input": "31 10 39",
"output": "-1"
},
{
"input": "48 6 50",
"output": "-1"
},
{
"input": "500000000 500000000 1000000000",
"output": "500000000 "
},
{
"input": "1 1000000000 999999999",
"output": "-1"
},
{
"input": "4 2 10",
"output": "2 4 6 "
},
{
"input": "1000000000 1 1",
"output": "-1"
},
{
"input": "1000000000 1 100000",
"output": "-1"
},
{
"input": "1000000000 1 10",
"output": "-1"
},
{
"input": "10 5 14",
"output": "-1"
},
{
"input": "500000000 499999999 1000000000",
"output": "499999998 "
},
{
"input": "1 999999997 1000000000",
"output": "999999996 "
}
] | 1,698,152,925
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 48
| 310
| 102,400
|
y,k,n = map(int,input().split())
x = k - y%k
f = 0
while x+y <= n:
print(x,end=" ")
x += k
f = 1
if f==0:
print(-1)
|
Title: Two Bags of Potatoes
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Valera had two bags of potatoes, the first of these bags contains *x* (*x*<=≥<=1) potatoes, and the second — *y* (*y*<=≥<=1) potatoes. Valera — very scattered boy, so the first bag of potatoes (it contains *x* potatoes) Valera lost. Valera remembers that the total amount of potatoes (*x*<=+<=*y*) in the two bags, firstly, was not gerater than *n*, and, secondly, was divisible by *k*.
Help Valera to determine how many potatoes could be in the first bag. Print all such possible numbers in ascending order.
Input Specification:
The first line of input contains three integers *y*, *k*, *n* (1<=≤<=*y*,<=*k*,<=*n*<=≤<=109; <=≤<=105).
Output Specification:
Print the list of whitespace-separated integers — all possible values of *x* in ascending order. You should print each possible value of *x* exactly once.
If there are no such values of *x* print a single integer -1.
Demo Input:
['10 1 10\n', '10 6 40\n']
Demo Output:
['-1\n', '2 8 14 20 26 \n']
Note:
none
|
```python
y,k,n = map(int,input().split())
x = k - y%k
f = 0
while x+y <= n:
print(x,end=" ")
x += k
f = 1
if f==0:
print(-1)
```
| 3
|
|
554
|
A
|
Kyoya and Photobooks
|
PROGRAMMING
| 900
|
[
"brute force",
"math",
"strings"
] | null | null |
Kyoya Ootori is selling photobooks of the Ouran High School Host Club. He has 26 photos, labeled "a" to "z", and he has compiled them into a photo booklet with some photos in some order (possibly with some photos being duplicated). A photo booklet can be described as a string of lowercase letters, consisting of the photos in the booklet in order. He now wants to sell some "special edition" photobooks, each with one extra photo inserted anywhere in the book. He wants to make as many distinct photobooks as possible, so he can make more money. He asks Haruhi, how many distinct photobooks can he make by inserting one extra photo into the photobook he already has?
Please help Haruhi solve this problem.
|
The first line of input will be a single string *s* (1<=≤<=|*s*|<=≤<=20). String *s* consists only of lowercase English letters.
|
Output a single integer equal to the number of distinct photobooks Kyoya Ootori can make.
|
[
"a\n",
"hi\n"
] |
[
"51\n",
"76\n"
] |
In the first case, we can make 'ab','ac',...,'az','ba','ca',...,'za', and 'aa', producing a total of 51 distinct photo booklets.
| 250
|
[
{
"input": "a",
"output": "51"
},
{
"input": "hi",
"output": "76"
},
{
"input": "y",
"output": "51"
},
{
"input": "kgan",
"output": "126"
},
{
"input": "zoabkyuvus",
"output": "276"
},
{
"input": "spyemhyznjieyhhbk",
"output": "451"
},
{
"input": "xulsyfkuizjauadjjopu",
"output": "526"
},
{
"input": "e",
"output": "51"
},
{
"input": "zv",
"output": "76"
},
{
"input": "jgv",
"output": "101"
},
{
"input": "zsfo",
"output": "126"
},
{
"input": "jselr",
"output": "151"
},
{
"input": "dwemig",
"output": "176"
},
{
"input": "mddoxsf",
"output": "201"
},
{
"input": "jgirkrmi",
"output": "226"
},
{
"input": "spkxurcum",
"output": "251"
},
{
"input": "fykkiubdkt",
"output": "276"
},
{
"input": "fznbcxsxygs",
"output": "301"
},
{
"input": "qcrvrdqcbtou",
"output": "326"
},
{
"input": "qktrbjzrqgmlr",
"output": "351"
},
{
"input": "foamodbvptlxxg",
"output": "376"
},
{
"input": "ydzpjhsidipricw",
"output": "401"
},
{
"input": "lpfpndmjfvqejdgf",
"output": "426"
},
{
"input": "ofkvparuvjtggnmab",
"output": "451"
},
{
"input": "xxncfutrtxcwdzwbgs",
"output": "476"
},
{
"input": "zovhffccflkgqncsdte",
"output": "501"
},
{
"input": "cskgsxywlvfeicoueglr",
"output": "526"
},
{
"input": "gggggggggggggggggggg",
"output": "526"
},
{
"input": "qdqdddqddqqddqddqdqd",
"output": "526"
},
{
"input": "takttttaakaaktakttkt",
"output": "526"
},
{
"input": "coccoooogogcgocccmcg",
"output": "526"
},
{
"input": "kskkskkkssksssk",
"output": "401"
},
{
"input": "lllllllllllllll",
"output": "401"
}
] | 1,590,002,763
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 33
| 109
| 0
|
def main():
st = input()
print(solve(st))
def solve(st):
return len(st)*25 + 26
main()
|
Title: Kyoya and Photobooks
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Kyoya Ootori is selling photobooks of the Ouran High School Host Club. He has 26 photos, labeled "a" to "z", and he has compiled them into a photo booklet with some photos in some order (possibly with some photos being duplicated). A photo booklet can be described as a string of lowercase letters, consisting of the photos in the booklet in order. He now wants to sell some "special edition" photobooks, each with one extra photo inserted anywhere in the book. He wants to make as many distinct photobooks as possible, so he can make more money. He asks Haruhi, how many distinct photobooks can he make by inserting one extra photo into the photobook he already has?
Please help Haruhi solve this problem.
Input Specification:
The first line of input will be a single string *s* (1<=≤<=|*s*|<=≤<=20). String *s* consists only of lowercase English letters.
Output Specification:
Output a single integer equal to the number of distinct photobooks Kyoya Ootori can make.
Demo Input:
['a\n', 'hi\n']
Demo Output:
['51\n', '76\n']
Note:
In the first case, we can make 'ab','ac',...,'az','ba','ca',...,'za', and 'aa', producing a total of 51 distinct photo booklets.
|
```python
def main():
st = input()
print(solve(st))
def solve(st):
return len(st)*25 + 26
main()
```
| 3
|
|
602
|
B
|
Approximating a Constant Range
|
PROGRAMMING
| 1,400
|
[
"dp",
"implementation",
"two pointers"
] | null | null |
When Xellos was doing a practice course in university, he once had to measure the intensity of an effect that slowly approached equilibrium. A good way to determine the equilibrium intensity would be choosing a sufficiently large number of consecutive data points that seems as constant as possible and taking their average. Of course, with the usual sizes of data, it's nothing challenging — but why not make a similar programming contest problem while we're at it?
You're given a sequence of *n* data points *a*1,<=...,<=*a**n*. There aren't any big jumps between consecutive data points — for each 1<=≤<=*i*<=<<=*n*, it's guaranteed that |*a**i*<=+<=1<=-<=*a**i*|<=≤<=1.
A range [*l*,<=*r*] of data points is said to be almost constant if the difference between the largest and the smallest value in that range is at most 1. Formally, let *M* be the maximum and *m* the minimum value of *a**i* for *l*<=≤<=*i*<=≤<=*r*; the range [*l*,<=*r*] is almost constant if *M*<=-<=*m*<=≤<=1.
Find the length of the longest almost constant range.
|
The first line of the input contains a single integer *n* (2<=≤<=*n*<=≤<=100<=000) — the number of data points.
The second line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=100<=000).
|
Print a single number — the maximum length of an almost constant range of the given sequence.
|
[
"5\n1 2 3 3 2\n",
"11\n5 4 5 5 6 7 8 8 8 7 6\n"
] |
[
"4\n",
"5\n"
] |
In the first sample, the longest almost constant range is [2, 5]; its length (the number of data points in it) is 4.
In the second sample, there are three almost constant ranges of length 4: [1, 4], [6, 9] and [7, 10]; the only almost constant range of the maximum length 5 is [6, 10].
| 1,000
|
[
{
"input": "5\n1 2 3 3 2",
"output": "4"
},
{
"input": "11\n5 4 5 5 6 7 8 8 8 7 6",
"output": "5"
},
{
"input": "2\n3 2",
"output": "2"
},
{
"input": "4\n1001 1000 1000 1001",
"output": "4"
},
{
"input": "4\n1 1 2 3",
"output": "3"
},
{
"input": "3\n1 2 1",
"output": "3"
},
{
"input": "3\n1 2 3",
"output": "2"
},
{
"input": "18\n10 9 8 7 6 5 4 3 2 1 2 3 4 5 6 7 8 9",
"output": "3"
},
{
"input": "3\n1 2 2",
"output": "3"
},
{
"input": "4\n10 9 10 9",
"output": "4"
},
{
"input": "4\n4 3 2 3",
"output": "3"
},
{
"input": "4\n8 8 7 7",
"output": "4"
},
{
"input": "3\n99998 99999 100000",
"output": "2"
},
{
"input": "3\n100000 99999 99998",
"output": "2"
},
{
"input": "3\n1 1 1",
"output": "3"
},
{
"input": "2\n99999 100000",
"output": "2"
},
{
"input": "2\n100000 100000",
"output": "2"
},
{
"input": "2\n1 1",
"output": "2"
},
{
"input": "15\n1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000",
"output": "15"
}
] | 1,687,232,957
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 107
| 124
| 13,619,200
|
MOD=10**9+7
def slove():
n=int(input())
# m=input()
a=list(map(int,input().split(' ')))
left=0
d={}
ans=0
for i,x in enumerate(a):
if x not in d: d[x]=0
d[x]+=1
while len(d)>2:
d[a[left]]-=1
if d[a[left]]==0:
del d[a[left]]
left+=1
ans=max(ans,i-left+1)
print(ans)
return
# t=int(input())
t=1
# M=1<<30
for _ in range(t):
slove()
|
Title: Approximating a Constant Range
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
When Xellos was doing a practice course in university, he once had to measure the intensity of an effect that slowly approached equilibrium. A good way to determine the equilibrium intensity would be choosing a sufficiently large number of consecutive data points that seems as constant as possible and taking their average. Of course, with the usual sizes of data, it's nothing challenging — but why not make a similar programming contest problem while we're at it?
You're given a sequence of *n* data points *a*1,<=...,<=*a**n*. There aren't any big jumps between consecutive data points — for each 1<=≤<=*i*<=<<=*n*, it's guaranteed that |*a**i*<=+<=1<=-<=*a**i*|<=≤<=1.
A range [*l*,<=*r*] of data points is said to be almost constant if the difference between the largest and the smallest value in that range is at most 1. Formally, let *M* be the maximum and *m* the minimum value of *a**i* for *l*<=≤<=*i*<=≤<=*r*; the range [*l*,<=*r*] is almost constant if *M*<=-<=*m*<=≤<=1.
Find the length of the longest almost constant range.
Input Specification:
The first line of the input contains a single integer *n* (2<=≤<=*n*<=≤<=100<=000) — the number of data points.
The second line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=100<=000).
Output Specification:
Print a single number — the maximum length of an almost constant range of the given sequence.
Demo Input:
['5\n1 2 3 3 2\n', '11\n5 4 5 5 6 7 8 8 8 7 6\n']
Demo Output:
['4\n', '5\n']
Note:
In the first sample, the longest almost constant range is [2, 5]; its length (the number of data points in it) is 4.
In the second sample, there are three almost constant ranges of length 4: [1, 4], [6, 9] and [7, 10]; the only almost constant range of the maximum length 5 is [6, 10].
|
```python
MOD=10**9+7
def slove():
n=int(input())
# m=input()
a=list(map(int,input().split(' ')))
left=0
d={}
ans=0
for i,x in enumerate(a):
if x not in d: d[x]=0
d[x]+=1
while len(d)>2:
d[a[left]]-=1
if d[a[left]]==0:
del d[a[left]]
left+=1
ans=max(ans,i-left+1)
print(ans)
return
# t=int(input())
t=1
# M=1<<30
for _ in range(t):
slove()
```
| 3
|
|
629
|
A
|
Far Relative’s Birthday Cake
|
PROGRAMMING
| 800
|
[
"brute force",
"combinatorics",
"constructive algorithms",
"implementation"
] | null | null |
Door's family is going celebrate Famil Doors's birthday party. They love Famil Door so they are planning to make his birthday cake weird!
The cake is a *n*<=×<=*n* square consisting of equal squares with side length 1. Each square is either empty or consists of a single chocolate. They bought the cake and randomly started to put the chocolates on the cake. The value of Famil Door's happiness will be equal to the number of pairs of cells with chocolates that are in the same row or in the same column of the cake. Famil Doors's family is wondering what is the amount of happiness of Famil going to be?
Please, note that any pair can be counted no more than once, as two different cells can't share both the same row and the same column.
|
In the first line of the input, you are given a single integer *n* (1<=≤<=*n*<=≤<=100) — the length of the side of the cake.
Then follow *n* lines, each containing *n* characters. Empty cells are denoted with '.', while cells that contain chocolates are denoted by 'C'.
|
Print the value of Famil Door's happiness, i.e. the number of pairs of chocolate pieces that share the same row or the same column.
|
[
"3\n.CC\nC..\nC.C\n",
"4\nCC..\nC..C\n.CC.\n.CC.\n"
] |
[
"4\n",
"9\n"
] |
If we number rows from top to bottom and columns from left to right, then, pieces that share the same row in the first sample are:
1. (1, 2) and (1, 3) 1. (3, 1) and (3, 3) 1. (2, 1) and (3, 1) 1. (1, 3) and (3, 3)
| 500
|
[
{
"input": "3\n.CC\nC..\nC.C",
"output": "4"
},
{
"input": "4\nCC..\nC..C\n.CC.\n.CC.",
"output": "9"
},
{
"input": "5\n.CCCC\nCCCCC\n.CCC.\nCC...\n.CC.C",
"output": "46"
},
{
"input": "7\n.CC..CC\nCC.C..C\nC.C..C.\nC...C.C\nCCC.CCC\n.CC...C\n.C.CCC.",
"output": "84"
},
{
"input": "8\n..C....C\nC.CCC.CC\n.C..C.CC\nCC......\nC..C..CC\nC.C...C.\nC.C..C..\nC...C.C.",
"output": "80"
},
{
"input": "9\n.C...CCCC\nC.CCCC...\n....C..CC\n.CC.CCC..\n.C.C..CC.\nC...C.CCC\nCCC.C...C\nCCCC....C\n..C..C..C",
"output": "144"
},
{
"input": "10\n..C..C.C..\n..CC..C.CC\n.C.C...C.C\n..C.CC..CC\n....C..C.C\n...C..C..C\nCC.CC....C\n..CCCC.C.C\n..CC.CCC..\nCCCC..C.CC",
"output": "190"
},
{
"input": "11\nC.CC...C.CC\nCC.C....C.C\n.....C..CCC\n....C.CC.CC\nC..C..CC...\nC...C...C..\nCC..CCC.C.C\n..C.CC.C..C\nC...C.C..CC\n.C.C..CC..C\n.C.C.CC.C..",
"output": "228"
},
{
"input": "21\n...CCC.....CC..C..C.C\n..CCC...CC...CC.CCC.C\n....C.C.C..CCC..C.C.C\n....CCC..C..C.CC.CCC.\n...CCC.C..C.C.....CCC\n.CCC.....CCC..C...C.C\nCCCC.C...CCC.C...C.CC\nC..C...C.CCC..CC..C..\nC...CC..C.C.CC..C.CC.\nCC..CCCCCCCCC..C....C\n.C..CCCC.CCCC.CCC...C\nCCC...CCC...CCC.C..C.\n.CCCCCCCC.CCCC.CC.C..\n.C.C..C....C.CCCCCC.C\n...C...C.CCC.C.CC..C.\nCCC...CC..CC...C..C.C\n.CCCCC...C.C..C.CC.C.\n..CCC.C.C..CCC.CCC...\n..C..C.C.C.....CC.C..\n.CC.C...C.CCC.C....CC\n...C..CCCC.CCC....C..",
"output": "2103"
},
{
"input": "20\nC.C.CCC.C....C.CCCCC\nC.CC.C..CCC....CCCC.\n.CCC.CC...CC.CCCCCC.\n.C...CCCC..C....CCC.\n.C..CCCCCCC.C.C.....\nC....C.C..CCC.C..CCC\n...C.C.CC..CC..CC...\nC...CC.C.CCCCC....CC\n.CC.C.CCC....C.CCC.C\nCC...CC...CC..CC...C\nC.C..CC.C.CCCC.C.CC.\n..CCCCC.C.CCC..CCCC.\n....C..C..C.CC...C.C\nC..CCC..CC..C.CC..CC\n...CC......C.C..C.C.\nCC.CCCCC.CC.CC...C.C\n.C.CC..CC..CCC.C.CCC\nC..C.CC....C....C...\n..CCC..CCC...CC..C.C\n.C.CCC.CCCCCCCCC..CC",
"output": "2071"
},
{
"input": "17\nCCC..C.C....C.C.C\n.C.CC.CC...CC..C.\n.CCCC.CC.C..CCC.C\n...CCC.CC.CCC.C.C\nCCCCCCCC..C.CC.CC\n...C..C....C.CC.C\nCC....CCC...C.CC.\n.CC.C.CC..C......\n.CCCCC.C.CC.CCCCC\n..CCCC...C..CC..C\nC.CC.C.CC..C.C.C.\nC..C..C..CCC.C...\n.C..CCCC..C......\n.CC.C...C..CC.CC.\nC..C....CC...CC..\nC.CC.CC..C.C..C..\nCCCC...C.C..CCCC.",
"output": "1160"
},
{
"input": "15\nCCCC.C..CCC....\nCCCCCC.CC.....C\n...C.CC.C.C.CC.\nCCCCCCC..C..C..\nC..CCC..C.CCCC.\n.CC..C.C.C.CC.C\n.C.C..C..C.C..C\n...C...C..CCCC.\n.....C.C..CC...\nCC.C.C..CC.C..C\n..CCCCC..CCC...\nCC.CC.C..CC.CCC\n..CCC...CC.C..C\nCC..C.C..CCC..C\n.C.C....CCC...C",
"output": "789"
},
{
"input": "1\n.",
"output": "0"
},
{
"input": "3\n.CC\nC..\nC.C",
"output": "4"
},
{
"input": "13\nC.C...C.C.C..\nCC.CCCC.CC..C\n.C.CCCCC.CC..\nCCCC..C...C..\n...CC.C.C...C\n.CC.CCC...CC.\nCC.CCCCCC....\n.C...C..CC..C\nCCCC.CC...C..\n.C.CCC..C.CC.\n..C...CC..C.C\n..C.CCC..CC.C\n.C...CCC.CC.C",
"output": "529"
},
{
"input": "16\n.C.C.C.C.C...C.C\n..C..C.CCCCCC...\n..C.C.C.C..C..C.\n.CC....C.CCC..C.\n.C.CCC..C....CCC\nCC..C.CC..C.C.CC\n...C..C..CC..CC.\n.CCC..C.CC.C.C..\n.CC.C..........C\nC...C....CC..C..\nC.CCC.C..C..C...\n.CCCCCCCCCCCC..C\n..C.C.CC.CC.CCC.\nCC..C.C....C..CC\nC.CCC..C..C.C.CC\n.C.CCC.CC..CCC.C",
"output": "874"
},
{
"input": "2\nCC\nCC",
"output": "4"
},
{
"input": "3\nC..\nC..\nC..",
"output": "3"
}
] | 1,699,990,905
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 48
| 46
| 0
|
n = int(input())
rowCounts = [0] * n
colCounts = [0] * n
for i in range(n):
cakeRow = input()
for j in range(n):
if cakeRow[j] == 'C':
rowCounts[i] += 1
colCounts[j] += 1
totalHappiness = 0
for i in range(n):
totalHappiness += (rowCounts[i] - 1) * rowCounts[i] // 2
totalHappiness += (colCounts[i] - 1) * colCounts[i] // 2
print(totalHappiness)
|
Title: Far Relative’s Birthday Cake
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Door's family is going celebrate Famil Doors's birthday party. They love Famil Door so they are planning to make his birthday cake weird!
The cake is a *n*<=×<=*n* square consisting of equal squares with side length 1. Each square is either empty or consists of a single chocolate. They bought the cake and randomly started to put the chocolates on the cake. The value of Famil Door's happiness will be equal to the number of pairs of cells with chocolates that are in the same row or in the same column of the cake. Famil Doors's family is wondering what is the amount of happiness of Famil going to be?
Please, note that any pair can be counted no more than once, as two different cells can't share both the same row and the same column.
Input Specification:
In the first line of the input, you are given a single integer *n* (1<=≤<=*n*<=≤<=100) — the length of the side of the cake.
Then follow *n* lines, each containing *n* characters. Empty cells are denoted with '.', while cells that contain chocolates are denoted by 'C'.
Output Specification:
Print the value of Famil Door's happiness, i.e. the number of pairs of chocolate pieces that share the same row or the same column.
Demo Input:
['3\n.CC\nC..\nC.C\n', '4\nCC..\nC..C\n.CC.\n.CC.\n']
Demo Output:
['4\n', '9\n']
Note:
If we number rows from top to bottom and columns from left to right, then, pieces that share the same row in the first sample are:
1. (1, 2) and (1, 3) 1. (3, 1) and (3, 3) 1. (2, 1) and (3, 1) 1. (1, 3) and (3, 3)
|
```python
n = int(input())
rowCounts = [0] * n
colCounts = [0] * n
for i in range(n):
cakeRow = input()
for j in range(n):
if cakeRow[j] == 'C':
rowCounts[i] += 1
colCounts[j] += 1
totalHappiness = 0
for i in range(n):
totalHappiness += (rowCounts[i] - 1) * rowCounts[i] // 2
totalHappiness += (colCounts[i] - 1) * colCounts[i] // 2
print(totalHappiness)
```
| 3
|
|
462
|
B
|
Appleman and Card Game
|
PROGRAMMING
| 1,300
|
[
"greedy"
] | null | null |
Appleman has *n* cards. Each card has an uppercase letter written on it. Toastman must choose *k* cards from Appleman's cards. Then Appleman should give Toastman some coins depending on the chosen cards. Formally, for each Toastman's card *i* you should calculate how much Toastman's cards have the letter equal to letter on *i*th, then sum up all these quantities, such a number of coins Appleman should give to Toastman.
Given the description of Appleman's cards. What is the maximum number of coins Toastman can get?
|
The first line contains two integers *n* and *k* (1<=≤<=*k*<=≤<=*n*<=≤<=105). The next line contains *n* uppercase letters without spaces — the *i*-th letter describes the *i*-th card of the Appleman.
|
Print a single integer – the answer to the problem.
|
[
"15 10\nDZFDFZDFDDDDDDF\n",
"6 4\nYJSNPI\n"
] |
[
"82\n",
"4\n"
] |
In the first test example Toastman can choose nine cards with letter D and one additional card with any letter. For each card with D he will get 9 coins and for the additional card he will get 1 coin.
| 1,000
|
[
{
"input": "15 10\nDZFDFZDFDDDDDDF",
"output": "82"
},
{
"input": "6 4\nYJSNPI",
"output": "4"
},
{
"input": "5 3\nAOWBY",
"output": "3"
},
{
"input": "1 1\nV",
"output": "1"
},
{
"input": "2 1\nWT",
"output": "1"
},
{
"input": "2 2\nBL",
"output": "2"
},
{
"input": "5 1\nFACJT",
"output": "1"
},
{
"input": "5 5\nMJDIJ",
"output": "7"
},
{
"input": "15 5\nAZBIPTOFTJCJJIK",
"output": "13"
},
{
"input": "100 1\nEVEEVEEEGGECFEHEFVFVFHVHEEEEEFCVEEEEEEVFVEEVEEHEEVEFEVVEFEEEFEVECEHGHEEFGEEVCEECCECEFHEVEEEEEEGEEHVH",
"output": "1"
},
{
"input": "100 15\nKKTFFUTFCKUIKKKKFIFFKTUKUUKUKKIKKKTIFKTKUCFFKKKIIKKKKKKTFKFKKIRKKKFKUUKIKUUUFFKKKKTUZKITUIKKIKUKKTIK",
"output": "225"
},
{
"input": "100 50\nYYIYYAAAIEAAYAYAEAIIIAAEAAYEAEYYYIAEYAYAYYAAAIAYAEAAYAYYIYAAYYAAAAAAIYYYAAYAAEAAYAIEIYIYAYAYAYIIAAEY",
"output": "1972"
},
{
"input": "100 90\nFAFAOOAOOAFAOTFAFAFFATAAAOFAAOAFBAAAFBOAOFFFOAOAFAPFOFAOFAAFOAAAAFAAFOFAAOFPPAAOOAAOOFFOFFFOFAOTOFAF",
"output": "2828"
},
{
"input": "100 99\nBFFBBFBFBQFFFFFQBFFBFFBQFBFQFBBFQFFFBFFFBFQFQFBFFBBFYQFBFFFFFFFBQQFQBFBQBQFFFBQQFFFBQFYFBFBFFFBBBQQY",
"output": "3713"
},
{
"input": "100 100\nMQSBDAJABILIBCUEOWGWCEXMUTEYQKAIWGINXVQEOFDUBSVULROQHQRZZAALVQFEFRAAAYUIMGCAFQGIAEFBETRECGSFQJNXHHDN",
"output": "514"
},
{
"input": "100 50\nBMYIXQSJNHGFVFPJBIOBXIKSFNUFPVODCUBQYSIIQNVNXXCWXWRHKFEUPPIIDDGRDBJLZDCBMNJMYRMWFIHOSTDJJHXHPNRKWNFD",
"output": "328"
},
{
"input": "100 50\nENFNEMLJEMDMFMNNGNIMNINALGLLLAEMENEMNLMMIEIJNAINBJEJMFJLLIMINELGFLAIAMJMHMGNLIEFJIEEFEFGLLLDLMEAEIMM",
"output": "748"
}
] | 1,589,812,883
| 2,147,483,647
|
PyPy 3
|
OK
|
TESTS
| 41
| 155
| 20,684,800
|
n,k=map(int,input().split())
s=input()
lst=list()
c=str.count
ind="ABCDEFGHIJKLMNOPQRSTUVWXYZ"
for i in ind:
if(c(s,i)!=0):
lst.append(c(s,i))
lst.sort()
lst.reverse()
ans=0
for i in lst:
ans+=min(k,i)**2
k=k-min(k,i)
if(k==0):break
print(ans)
|
Title: Appleman and Card Game
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Appleman has *n* cards. Each card has an uppercase letter written on it. Toastman must choose *k* cards from Appleman's cards. Then Appleman should give Toastman some coins depending on the chosen cards. Formally, for each Toastman's card *i* you should calculate how much Toastman's cards have the letter equal to letter on *i*th, then sum up all these quantities, such a number of coins Appleman should give to Toastman.
Given the description of Appleman's cards. What is the maximum number of coins Toastman can get?
Input Specification:
The first line contains two integers *n* and *k* (1<=≤<=*k*<=≤<=*n*<=≤<=105). The next line contains *n* uppercase letters without spaces — the *i*-th letter describes the *i*-th card of the Appleman.
Output Specification:
Print a single integer – the answer to the problem.
Demo Input:
['15 10\nDZFDFZDFDDDDDDF\n', '6 4\nYJSNPI\n']
Demo Output:
['82\n', '4\n']
Note:
In the first test example Toastman can choose nine cards with letter D and one additional card with any letter. For each card with D he will get 9 coins and for the additional card he will get 1 coin.
|
```python
n,k=map(int,input().split())
s=input()
lst=list()
c=str.count
ind="ABCDEFGHIJKLMNOPQRSTUVWXYZ"
for i in ind:
if(c(s,i)!=0):
lst.append(c(s,i))
lst.sort()
lst.reverse()
ans=0
for i in lst:
ans+=min(k,i)**2
k=k-min(k,i)
if(k==0):break
print(ans)
```
| 3
|
|
118
|
A
|
String Task
|
PROGRAMMING
| 1,000
|
[
"implementation",
"strings"
] | null | null |
Petya started to attend programming lessons. On the first lesson his task was to write a simple program. The program was supposed to do the following: in the given string, consisting if uppercase and lowercase Latin letters, it:
- deletes all the vowels, - inserts a character "." before each consonant, - replaces all uppercase consonants with corresponding lowercase ones.
Vowels are letters "A", "O", "Y", "E", "U", "I", and the rest are consonants. The program's input is exactly one string, it should return the output as a single string, resulting after the program's processing the initial string.
Help Petya cope with this easy task.
|
The first line represents input string of Petya's program. This string only consists of uppercase and lowercase Latin letters and its length is from 1 to 100, inclusive.
|
Print the resulting string. It is guaranteed that this string is not empty.
|
[
"tour\n",
"Codeforces\n",
"aBAcAba\n"
] |
[
".t.r\n",
".c.d.f.r.c.s\n",
".b.c.b\n"
] |
none
| 500
|
[
{
"input": "tour",
"output": ".t.r"
},
{
"input": "Codeforces",
"output": ".c.d.f.r.c.s"
},
{
"input": "aBAcAba",
"output": ".b.c.b"
},
{
"input": "obn",
"output": ".b.n"
},
{
"input": "wpwl",
"output": ".w.p.w.l"
},
{
"input": "ggdvq",
"output": ".g.g.d.v.q"
},
{
"input": "pumesz",
"output": ".p.m.s.z"
},
{
"input": "g",
"output": ".g"
},
{
"input": "zjuotps",
"output": ".z.j.t.p.s"
},
{
"input": "jzbwuehe",
"output": ".j.z.b.w.h"
},
{
"input": "tnkgwuugu",
"output": ".t.n.k.g.w.g"
},
{
"input": "kincenvizh",
"output": ".k.n.c.n.v.z.h"
},
{
"input": "xattxjenual",
"output": ".x.t.t.x.j.n.l"
},
{
"input": "ktajqhpqsvhw",
"output": ".k.t.j.q.h.p.q.s.v.h.w"
},
{
"input": "xnhcigytnqcmy",
"output": ".x.n.h.c.g.t.n.q.c.m"
},
{
"input": "jfmtbejyilxcec",
"output": ".j.f.m.t.b.j.l.x.c.c"
},
{
"input": "D",
"output": ".d"
},
{
"input": "ab",
"output": ".b"
},
{
"input": "Ab",
"output": ".b"
},
{
"input": "aB",
"output": ".b"
},
{
"input": "AB",
"output": ".b"
},
{
"input": "ba",
"output": ".b"
},
{
"input": "bA",
"output": ".b"
},
{
"input": "Ba",
"output": ".b"
},
{
"input": "BA",
"output": ".b"
},
{
"input": "aab",
"output": ".b"
},
{
"input": "baa",
"output": ".b"
},
{
"input": "femOZeCArKCpUiHYnbBPTIOFmsHmcpObtPYcLCdjFrUMIyqYzAokKUiiKZRouZiNMoiOuGVoQzaaCAOkquRjmmKKElLNqCnhGdQM",
"output": ".f.m.z.c.r.k.c.p.h.n.b.b.p.t.f.m.s.h.m.c.p.b.t.p.c.l.c.d.j.f.r.m.q.z.k.k.k.z.r.z.n.m.g.v.q.z.c.k.q.r.j.m.m.k.k.l.l.n.q.c.n.h.g.d.q.m"
},
{
"input": "VMBPMCmMDCLFELLIISUJDWQRXYRDGKMXJXJHXVZADRZWVWJRKFRRNSAWKKDPZZLFLNSGUNIVJFBEQsMDHSBJVDTOCSCgZWWKvZZN",
"output": ".v.m.b.p.m.c.m.m.d.c.l.f.l.l.s.j.d.w.q.r.x.r.d.g.k.m.x.j.x.j.h.x.v.z.d.r.z.w.v.w.j.r.k.f.r.r.n.s.w.k.k.d.p.z.z.l.f.l.n.s.g.n.v.j.f.b.q.s.m.d.h.s.b.j.v.d.t.c.s.c.g.z.w.w.k.v.z.z.n"
},
{
"input": "MCGFQQJNUKuAEXrLXibVjClSHjSxmlkQGTKZrRaDNDomIPOmtSgjJAjNVIVLeUGUAOHNkCBwNObVCHOWvNkLFQQbFnugYVMkJruJ",
"output": ".m.c.g.f.q.q.j.n.k.x.r.l.x.b.v.j.c.l.s.h.j.s.x.m.l.k.q.g.t.k.z.r.r.d.n.d.m.p.m.t.s.g.j.j.j.n.v.v.l.g.h.n.k.c.b.w.n.b.v.c.h.w.v.n.k.l.f.q.q.b.f.n.g.v.m.k.j.r.j"
},
{
"input": "iyaiuiwioOyzUaOtAeuEYcevvUyveuyioeeueoeiaoeiavizeeoeyYYaaAOuouueaUioueauayoiuuyiuovyOyiyoyioaoyuoyea",
"output": ".w.z.t.c.v.v.v.v.z.v"
},
{
"input": "yjnckpfyLtzwjsgpcrgCfpljnjwqzgVcufnOvhxplvflxJzqxnhrwgfJmPzifgubvspffmqrwbzivatlmdiBaddiaktdsfPwsevl",
"output": ".j.n.c.k.p.f.l.t.z.w.j.s.g.p.c.r.g.c.f.p.l.j.n.j.w.q.z.g.v.c.f.n.v.h.x.p.l.v.f.l.x.j.z.q.x.n.h.r.w.g.f.j.m.p.z.f.g.b.v.s.p.f.f.m.q.r.w.b.z.v.t.l.m.d.b.d.d.k.t.d.s.f.p.w.s.v.l"
},
{
"input": "RIIIUaAIYJOiuYIUWFPOOAIuaUEZeIooyUEUEAoIyIHYOEAlVAAIiLUAUAeiUIEiUMuuOiAgEUOIAoOUYYEYFEoOIIVeOOAOIIEg",
"output": ".r.j.w.f.p.z.h.l.v.l.m.g.f.v.g"
},
{
"input": "VBKQCFBMQHDMGNSGBQVJTGQCNHHRJMNKGKDPPSQRRVQTZNKBZGSXBPBRXPMVFTXCHZMSJVBRNFNTHBHGJLMDZJSVPZZBCCZNVLMQ",
"output": ".v.b.k.q.c.f.b.m.q.h.d.m.g.n.s.g.b.q.v.j.t.g.q.c.n.h.h.r.j.m.n.k.g.k.d.p.p.s.q.r.r.v.q.t.z.n.k.b.z.g.s.x.b.p.b.r.x.p.m.v.f.t.x.c.h.z.m.s.j.v.b.r.n.f.n.t.h.b.h.g.j.l.m.d.z.j.s.v.p.z.z.b.c.c.z.n.v.l.m.q"
},
{
"input": "iioyoaayeuyoolyiyoeuouiayiiuyTueyiaoiueyioiouyuauouayyiaeoeiiigmioiououeieeeyuyyaYyioiiooaiuouyoeoeg",
"output": ".l.t.g.m.g"
},
{
"input": "ueyiuiauuyyeueykeioouiiauzoyoeyeuyiaoaiiaaoaueyaeydaoauexuueafouiyioueeaaeyoeuaueiyiuiaeeayaioeouiuy",
"output": ".k.z.d.x.f"
},
{
"input": "FSNRBXLFQHZXGVMKLQDVHWLDSLKGKFMDRQWMWSSKPKKQBNDZRSCBLRSKCKKFFKRDMZFZGCNSMXNPMZVDLKXGNXGZQCLRTTDXLMXQ",
"output": ".f.s.n.r.b.x.l.f.q.h.z.x.g.v.m.k.l.q.d.v.h.w.l.d.s.l.k.g.k.f.m.d.r.q.w.m.w.s.s.k.p.k.k.q.b.n.d.z.r.s.c.b.l.r.s.k.c.k.k.f.f.k.r.d.m.z.f.z.g.c.n.s.m.x.n.p.m.z.v.d.l.k.x.g.n.x.g.z.q.c.l.r.t.t.d.x.l.m.x.q"
},
{
"input": "EYAYAYIOIOYOOAUOEUEUOUUYIYUUMOEOIIIAOIUOAAOIYOIOEUIERCEYYAOIOIGYUIAOYUEOEUAEAYPOYEYUUAUOAOEIYIEYUEEY",
"output": ".m.r.c.g.p"
},
{
"input": "jvvzcdcxjstbbksmqjsngxkgtttdxrljjxtwptgwwqzpvqchvgrkqlzxmptzblxhhsmrkmzzmgdfskhtmmnqzzflpmqdctvrfgtx",
"output": ".j.v.v.z.c.d.c.x.j.s.t.b.b.k.s.m.q.j.s.n.g.x.k.g.t.t.t.d.x.r.l.j.j.x.t.w.p.t.g.w.w.q.z.p.v.q.c.h.v.g.r.k.q.l.z.x.m.p.t.z.b.l.x.h.h.s.m.r.k.m.z.z.m.g.d.f.s.k.h.t.m.m.n.q.z.z.f.l.p.m.q.d.c.t.v.r.f.g.t.x"
},
{
"input": "YB",
"output": ".b"
},
{
"input": "fly",
"output": ".f.l"
},
{
"input": "YyyYYYyyYxdwdawdDAWDdaddYYYY",
"output": ".x.d.w.d.w.d.d.w.d.d.d.d"
}
] | 1,694,791,260
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 42
| 92
| 0
|
s = input().lower()
repl = ["A", "O", "Y", "E", "U", "I",'a','o','y','e','u','i']
ls = []
for i in s:
if i not in repl:
ls.append(f'.{i}')
print(''.join(ls))
|
Title: String Task
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Petya started to attend programming lessons. On the first lesson his task was to write a simple program. The program was supposed to do the following: in the given string, consisting if uppercase and lowercase Latin letters, it:
- deletes all the vowels, - inserts a character "." before each consonant, - replaces all uppercase consonants with corresponding lowercase ones.
Vowels are letters "A", "O", "Y", "E", "U", "I", and the rest are consonants. The program's input is exactly one string, it should return the output as a single string, resulting after the program's processing the initial string.
Help Petya cope with this easy task.
Input Specification:
The first line represents input string of Petya's program. This string only consists of uppercase and lowercase Latin letters and its length is from 1 to 100, inclusive.
Output Specification:
Print the resulting string. It is guaranteed that this string is not empty.
Demo Input:
['tour\n', 'Codeforces\n', 'aBAcAba\n']
Demo Output:
['.t.r\n', '.c.d.f.r.c.s\n', '.b.c.b\n']
Note:
none
|
```python
s = input().lower()
repl = ["A", "O", "Y", "E", "U", "I",'a','o','y','e','u','i']
ls = []
for i in s:
if i not in repl:
ls.append(f'.{i}')
print(''.join(ls))
```
| 3
|
|
706
|
B
|
Interesting drink
|
PROGRAMMING
| 1,100
|
[
"binary search",
"dp",
"implementation"
] | null | null |
Vasiliy likes to rest after a hard work, so you may often meet him in some bar nearby. As all programmers do, he loves the famous drink "Beecola", which can be bought in *n* different shops in the city. It's known that the price of one bottle in the shop *i* is equal to *x**i* coins.
Vasiliy plans to buy his favorite drink for *q* consecutive days. He knows, that on the *i*-th day he will be able to spent *m**i* coins. Now, for each of the days he want to know in how many different shops he can buy a bottle of "Beecola".
|
The first line of the input contains a single integer *n* (1<=≤<=*n*<=≤<=100<=000) — the number of shops in the city that sell Vasiliy's favourite drink.
The second line contains *n* integers *x**i* (1<=≤<=*x**i*<=≤<=100<=000) — prices of the bottles of the drink in the *i*-th shop.
The third line contains a single integer *q* (1<=≤<=*q*<=≤<=100<=000) — the number of days Vasiliy plans to buy the drink.
Then follow *q* lines each containing one integer *m**i* (1<=≤<=*m**i*<=≤<=109) — the number of coins Vasiliy can spent on the *i*-th day.
|
Print *q* integers. The *i*-th of them should be equal to the number of shops where Vasiliy will be able to buy a bottle of the drink on the *i*-th day.
|
[
"5\n3 10 8 6 11\n4\n1\n10\n3\n11\n"
] |
[
"0\n4\n1\n5\n"
] |
On the first day, Vasiliy won't be able to buy a drink in any of the shops.
On the second day, Vasiliy can buy a drink in the shops 1, 2, 3 and 4.
On the third day, Vasiliy can buy a drink only in the shop number 1.
Finally, on the last day Vasiliy can buy a drink in any shop.
| 1,000
|
[
{
"input": "5\n3 10 8 6 11\n4\n1\n10\n3\n11",
"output": "0\n4\n1\n5"
},
{
"input": "5\n868 987 714 168 123\n10\n424\n192\n795\n873\n117\n914\n735\n158\n631\n471",
"output": "2\n2\n3\n4\n0\n4\n3\n1\n2\n2"
},
{
"input": "3\n435 482 309\n7\n245\n241\n909\n745\n980\n29\n521",
"output": "0\n0\n3\n3\n3\n0\n3"
},
{
"input": "1\n653\n9\n903\n980\n80\n770\n965\n874\n381\n657\n969",
"output": "1\n1\n0\n1\n1\n1\n0\n1\n1"
},
{
"input": "12\n35345 58181 32223 84621 35905 73863 99537 30666 67771 39229 36847 29038\n23\n55052824\n82504840\n35160556\n78141700\n73401989\n86305919\n39430705\n31939373\n23501765\n4406029\n61436920\n14295390\n34275309\n28028753\n85724689\n70158847\n2396455\n66994588\n84024224\n30175981\n65622319\n76517111\n76605341",
"output": "12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12\n12"
},
{
"input": "4\n698 193 1584 76192\n4\n553640\n310518\n274280\n429192",
"output": "4\n4\n4\n4"
},
{
"input": "1\n1\n1\n1000000000",
"output": "1"
},
{
"input": "1\n1\n1\n100005",
"output": "1"
},
{
"input": "3\n1 2 3\n1\n100005",
"output": "3"
},
{
"input": "2\n1 2\n3\n100004\n100005\n100006",
"output": "2\n2\n2"
},
{
"input": "3\n1 1 1\n1\n1",
"output": "3"
},
{
"input": "1\n1\n1\n1",
"output": "1"
},
{
"input": "3\n1 2 3\n1\n100000",
"output": "3"
},
{
"input": "5\n1 1 1 1 10\n2\n1\n10",
"output": "4\n5"
},
{
"input": "5\n3 10 8 6 11\n1\n10000000",
"output": "5"
}
] | 1,696,751,444
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 103
| 1,107
| 13,619,200
|
n = int(input())
arr = list(map(int, input().split()))
arr.sort()
for _ in range(int(input())):
c = int(input())
low, high = 0, n - 1
ans = -1
while low <= high:
mid = (low + high) // 2
if arr[mid] > c:
ans = mid
high = mid - 1
else:
low = mid + 1
print(ans if ans != -1 else n)
|
Title: Interesting drink
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Vasiliy likes to rest after a hard work, so you may often meet him in some bar nearby. As all programmers do, he loves the famous drink "Beecola", which can be bought in *n* different shops in the city. It's known that the price of one bottle in the shop *i* is equal to *x**i* coins.
Vasiliy plans to buy his favorite drink for *q* consecutive days. He knows, that on the *i*-th day he will be able to spent *m**i* coins. Now, for each of the days he want to know in how many different shops he can buy a bottle of "Beecola".
Input Specification:
The first line of the input contains a single integer *n* (1<=≤<=*n*<=≤<=100<=000) — the number of shops in the city that sell Vasiliy's favourite drink.
The second line contains *n* integers *x**i* (1<=≤<=*x**i*<=≤<=100<=000) — prices of the bottles of the drink in the *i*-th shop.
The third line contains a single integer *q* (1<=≤<=*q*<=≤<=100<=000) — the number of days Vasiliy plans to buy the drink.
Then follow *q* lines each containing one integer *m**i* (1<=≤<=*m**i*<=≤<=109) — the number of coins Vasiliy can spent on the *i*-th day.
Output Specification:
Print *q* integers. The *i*-th of them should be equal to the number of shops where Vasiliy will be able to buy a bottle of the drink on the *i*-th day.
Demo Input:
['5\n3 10 8 6 11\n4\n1\n10\n3\n11\n']
Demo Output:
['0\n4\n1\n5\n']
Note:
On the first day, Vasiliy won't be able to buy a drink in any of the shops.
On the second day, Vasiliy can buy a drink in the shops 1, 2, 3 and 4.
On the third day, Vasiliy can buy a drink only in the shop number 1.
Finally, on the last day Vasiliy can buy a drink in any shop.
|
```python
n = int(input())
arr = list(map(int, input().split()))
arr.sort()
for _ in range(int(input())):
c = int(input())
low, high = 0, n - 1
ans = -1
while low <= high:
mid = (low + high) // 2
if arr[mid] > c:
ans = mid
high = mid - 1
else:
low = mid + 1
print(ans if ans != -1 else n)
```
| 3
|
|
118
|
A
|
String Task
|
PROGRAMMING
| 1,000
|
[
"implementation",
"strings"
] | null | null |
Petya started to attend programming lessons. On the first lesson his task was to write a simple program. The program was supposed to do the following: in the given string, consisting if uppercase and lowercase Latin letters, it:
- deletes all the vowels, - inserts a character "." before each consonant, - replaces all uppercase consonants with corresponding lowercase ones.
Vowels are letters "A", "O", "Y", "E", "U", "I", and the rest are consonants. The program's input is exactly one string, it should return the output as a single string, resulting after the program's processing the initial string.
Help Petya cope with this easy task.
|
The first line represents input string of Petya's program. This string only consists of uppercase and lowercase Latin letters and its length is from 1 to 100, inclusive.
|
Print the resulting string. It is guaranteed that this string is not empty.
|
[
"tour\n",
"Codeforces\n",
"aBAcAba\n"
] |
[
".t.r\n",
".c.d.f.r.c.s\n",
".b.c.b\n"
] |
none
| 500
|
[
{
"input": "tour",
"output": ".t.r"
},
{
"input": "Codeforces",
"output": ".c.d.f.r.c.s"
},
{
"input": "aBAcAba",
"output": ".b.c.b"
},
{
"input": "obn",
"output": ".b.n"
},
{
"input": "wpwl",
"output": ".w.p.w.l"
},
{
"input": "ggdvq",
"output": ".g.g.d.v.q"
},
{
"input": "pumesz",
"output": ".p.m.s.z"
},
{
"input": "g",
"output": ".g"
},
{
"input": "zjuotps",
"output": ".z.j.t.p.s"
},
{
"input": "jzbwuehe",
"output": ".j.z.b.w.h"
},
{
"input": "tnkgwuugu",
"output": ".t.n.k.g.w.g"
},
{
"input": "kincenvizh",
"output": ".k.n.c.n.v.z.h"
},
{
"input": "xattxjenual",
"output": ".x.t.t.x.j.n.l"
},
{
"input": "ktajqhpqsvhw",
"output": ".k.t.j.q.h.p.q.s.v.h.w"
},
{
"input": "xnhcigytnqcmy",
"output": ".x.n.h.c.g.t.n.q.c.m"
},
{
"input": "jfmtbejyilxcec",
"output": ".j.f.m.t.b.j.l.x.c.c"
},
{
"input": "D",
"output": ".d"
},
{
"input": "ab",
"output": ".b"
},
{
"input": "Ab",
"output": ".b"
},
{
"input": "aB",
"output": ".b"
},
{
"input": "AB",
"output": ".b"
},
{
"input": "ba",
"output": ".b"
},
{
"input": "bA",
"output": ".b"
},
{
"input": "Ba",
"output": ".b"
},
{
"input": "BA",
"output": ".b"
},
{
"input": "aab",
"output": ".b"
},
{
"input": "baa",
"output": ".b"
},
{
"input": "femOZeCArKCpUiHYnbBPTIOFmsHmcpObtPYcLCdjFrUMIyqYzAokKUiiKZRouZiNMoiOuGVoQzaaCAOkquRjmmKKElLNqCnhGdQM",
"output": ".f.m.z.c.r.k.c.p.h.n.b.b.p.t.f.m.s.h.m.c.p.b.t.p.c.l.c.d.j.f.r.m.q.z.k.k.k.z.r.z.n.m.g.v.q.z.c.k.q.r.j.m.m.k.k.l.l.n.q.c.n.h.g.d.q.m"
},
{
"input": "VMBPMCmMDCLFELLIISUJDWQRXYRDGKMXJXJHXVZADRZWVWJRKFRRNSAWKKDPZZLFLNSGUNIVJFBEQsMDHSBJVDTOCSCgZWWKvZZN",
"output": ".v.m.b.p.m.c.m.m.d.c.l.f.l.l.s.j.d.w.q.r.x.r.d.g.k.m.x.j.x.j.h.x.v.z.d.r.z.w.v.w.j.r.k.f.r.r.n.s.w.k.k.d.p.z.z.l.f.l.n.s.g.n.v.j.f.b.q.s.m.d.h.s.b.j.v.d.t.c.s.c.g.z.w.w.k.v.z.z.n"
},
{
"input": "MCGFQQJNUKuAEXrLXibVjClSHjSxmlkQGTKZrRaDNDomIPOmtSgjJAjNVIVLeUGUAOHNkCBwNObVCHOWvNkLFQQbFnugYVMkJruJ",
"output": ".m.c.g.f.q.q.j.n.k.x.r.l.x.b.v.j.c.l.s.h.j.s.x.m.l.k.q.g.t.k.z.r.r.d.n.d.m.p.m.t.s.g.j.j.j.n.v.v.l.g.h.n.k.c.b.w.n.b.v.c.h.w.v.n.k.l.f.q.q.b.f.n.g.v.m.k.j.r.j"
},
{
"input": "iyaiuiwioOyzUaOtAeuEYcevvUyveuyioeeueoeiaoeiavizeeoeyYYaaAOuouueaUioueauayoiuuyiuovyOyiyoyioaoyuoyea",
"output": ".w.z.t.c.v.v.v.v.z.v"
},
{
"input": "yjnckpfyLtzwjsgpcrgCfpljnjwqzgVcufnOvhxplvflxJzqxnhrwgfJmPzifgubvspffmqrwbzivatlmdiBaddiaktdsfPwsevl",
"output": ".j.n.c.k.p.f.l.t.z.w.j.s.g.p.c.r.g.c.f.p.l.j.n.j.w.q.z.g.v.c.f.n.v.h.x.p.l.v.f.l.x.j.z.q.x.n.h.r.w.g.f.j.m.p.z.f.g.b.v.s.p.f.f.m.q.r.w.b.z.v.t.l.m.d.b.d.d.k.t.d.s.f.p.w.s.v.l"
},
{
"input": "RIIIUaAIYJOiuYIUWFPOOAIuaUEZeIooyUEUEAoIyIHYOEAlVAAIiLUAUAeiUIEiUMuuOiAgEUOIAoOUYYEYFEoOIIVeOOAOIIEg",
"output": ".r.j.w.f.p.z.h.l.v.l.m.g.f.v.g"
},
{
"input": "VBKQCFBMQHDMGNSGBQVJTGQCNHHRJMNKGKDPPSQRRVQTZNKBZGSXBPBRXPMVFTXCHZMSJVBRNFNTHBHGJLMDZJSVPZZBCCZNVLMQ",
"output": ".v.b.k.q.c.f.b.m.q.h.d.m.g.n.s.g.b.q.v.j.t.g.q.c.n.h.h.r.j.m.n.k.g.k.d.p.p.s.q.r.r.v.q.t.z.n.k.b.z.g.s.x.b.p.b.r.x.p.m.v.f.t.x.c.h.z.m.s.j.v.b.r.n.f.n.t.h.b.h.g.j.l.m.d.z.j.s.v.p.z.z.b.c.c.z.n.v.l.m.q"
},
{
"input": "iioyoaayeuyoolyiyoeuouiayiiuyTueyiaoiueyioiouyuauouayyiaeoeiiigmioiououeieeeyuyyaYyioiiooaiuouyoeoeg",
"output": ".l.t.g.m.g"
},
{
"input": "ueyiuiauuyyeueykeioouiiauzoyoeyeuyiaoaiiaaoaueyaeydaoauexuueafouiyioueeaaeyoeuaueiyiuiaeeayaioeouiuy",
"output": ".k.z.d.x.f"
},
{
"input": "FSNRBXLFQHZXGVMKLQDVHWLDSLKGKFMDRQWMWSSKPKKQBNDZRSCBLRSKCKKFFKRDMZFZGCNSMXNPMZVDLKXGNXGZQCLRTTDXLMXQ",
"output": ".f.s.n.r.b.x.l.f.q.h.z.x.g.v.m.k.l.q.d.v.h.w.l.d.s.l.k.g.k.f.m.d.r.q.w.m.w.s.s.k.p.k.k.q.b.n.d.z.r.s.c.b.l.r.s.k.c.k.k.f.f.k.r.d.m.z.f.z.g.c.n.s.m.x.n.p.m.z.v.d.l.k.x.g.n.x.g.z.q.c.l.r.t.t.d.x.l.m.x.q"
},
{
"input": "EYAYAYIOIOYOOAUOEUEUOUUYIYUUMOEOIIIAOIUOAAOIYOIOEUIERCEYYAOIOIGYUIAOYUEOEUAEAYPOYEYUUAUOAOEIYIEYUEEY",
"output": ".m.r.c.g.p"
},
{
"input": "jvvzcdcxjstbbksmqjsngxkgtttdxrljjxtwptgwwqzpvqchvgrkqlzxmptzblxhhsmrkmzzmgdfskhtmmnqzzflpmqdctvrfgtx",
"output": ".j.v.v.z.c.d.c.x.j.s.t.b.b.k.s.m.q.j.s.n.g.x.k.g.t.t.t.d.x.r.l.j.j.x.t.w.p.t.g.w.w.q.z.p.v.q.c.h.v.g.r.k.q.l.z.x.m.p.t.z.b.l.x.h.h.s.m.r.k.m.z.z.m.g.d.f.s.k.h.t.m.m.n.q.z.z.f.l.p.m.q.d.c.t.v.r.f.g.t.x"
},
{
"input": "YB",
"output": ".b"
},
{
"input": "fly",
"output": ".f.l"
},
{
"input": "YyyYYYyyYxdwdawdDAWDdaddYYYY",
"output": ".x.d.w.d.w.d.d.w.d.d.d.d"
}
] | 1,694,632,628
| 2,147,483,647
|
PyPy 3-64
|
OK
|
TESTS
| 42
| 124
| 0
|
def chc(st):
nst = ''
for i in st.lower():
if i not in 'aoyeui':
nst += '.'+i
return nst
st = input()
print(chc(st))
|
Title: String Task
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Petya started to attend programming lessons. On the first lesson his task was to write a simple program. The program was supposed to do the following: in the given string, consisting if uppercase and lowercase Latin letters, it:
- deletes all the vowels, - inserts a character "." before each consonant, - replaces all uppercase consonants with corresponding lowercase ones.
Vowels are letters "A", "O", "Y", "E", "U", "I", and the rest are consonants. The program's input is exactly one string, it should return the output as a single string, resulting after the program's processing the initial string.
Help Petya cope with this easy task.
Input Specification:
The first line represents input string of Petya's program. This string only consists of uppercase and lowercase Latin letters and its length is from 1 to 100, inclusive.
Output Specification:
Print the resulting string. It is guaranteed that this string is not empty.
Demo Input:
['tour\n', 'Codeforces\n', 'aBAcAba\n']
Demo Output:
['.t.r\n', '.c.d.f.r.c.s\n', '.b.c.b\n']
Note:
none
|
```python
def chc(st):
nst = ''
for i in st.lower():
if i not in 'aoyeui':
nst += '.'+i
return nst
st = input()
print(chc(st))
```
| 3
|
|
761
|
C
|
Dasha and Password
|
PROGRAMMING
| 1,500
|
[
"brute force",
"dp",
"implementation"
] | null | null |
After overcoming the stairs Dasha came to classes. She needed to write a password to begin her classes. The password is a string of length *n* which satisfies the following requirements:
- There is at least one digit in the string, - There is at least one lowercase (small) letter of the Latin alphabet in the string, - There is at least one of three listed symbols in the string: '#', '*', '&'.
Considering that these are programming classes it is not easy to write the password.
For each character of the password we have a fixed string of length *m*, on each of these *n* strings there is a pointer on some character. The *i*-th character displayed on the screen is the pointed character in the *i*-th string. Initially, all pointers are on characters with indexes 1 in the corresponding strings (all positions are numbered starting from one).
During one operation Dasha can move a pointer in one string one character to the left or to the right. Strings are cyclic, it means that when we move the pointer which is on the character with index 1 to the left, it moves to the character with the index *m*, and when we move it to the right from the position *m* it moves to the position 1.
You need to determine the minimum number of operations necessary to make the string displayed on the screen a valid password.
|
The first line contains two integers *n*, *m* (3<=≤<=*n*<=≤<=50,<=1<=≤<=*m*<=≤<=50) — the length of the password and the length of strings which are assigned to password symbols.
Each of the next *n* lines contains the string which is assigned to the *i*-th symbol of the password string. Its length is *m*, it consists of digits, lowercase English letters, and characters '#', '*' or '&'.
You have such input data that you can always get a valid password.
|
Print one integer — the minimum number of operations which is necessary to make the string, which is displayed on the screen, a valid password.
|
[
"3 4\n1**2\na3*0\nc4**\n",
"5 5\n#*&#*\n*a1c&\n&q2w*\n#a3c#\n*&#*&\n"
] |
[
"1\n",
"3\n"
] |
In the first test it is necessary to move the pointer of the third string to one left to get the optimal answer.
In the second test one of possible algorithms will be:
- to move the pointer of the second symbol once to the right. - to move the pointer of the third symbol twice to the right.
| 1,500
|
[
{
"input": "3 4\n1**2\na3*0\nc4**",
"output": "1"
},
{
"input": "5 5\n#*&#*\n*a1c&\n&q2w*\n#a3c#\n*&#*&",
"output": "3"
},
{
"input": "5 2\n&l\n*0\n*9\n*#\n#o",
"output": "2"
},
{
"input": "25 16\nvza**ooxkmd#*ywa\ndip#*#&ef&z&&&pv\nwggob&&72#*&&nku\nrsb##*&jm&#u**te\nzif#lu#t&2w#jbqb\nwfo&#&***0xp#&hp\njbw##h*###nkmkdn\nqrn*&y#3cnf&d*rc\nend*zg&0f*&g*&ak\niayh&r#8om#o**yq\nwym&e&*v0j&#zono\ntzu*vj&i18iew&ht\nhpfnceb193&#&acf\ngesvq&l&*&m*l*ru\nfot#u&pq&0y&s*pg\nqdfgs&hk*wob&&bw\nbqd&&&lnv&&ax&ql\nell#&t&k*p#n*rlg\nclfou#ap#*vxulmt\nfhp*gax&s1&pinql\nyihmh*yy&2&#&prc\nrmv**#h*bxyf&&eq\nziu##ku#f#uh*fek\nhmg&&cvx0p*#odgw\nquu&csv*aph#dkiq",
"output": "10"
},
{
"input": "3 5\n*****\n1***a\n**a**",
"output": "2"
},
{
"input": "5 2\n&e\n#j\n&&\n*2\n94",
"output": "1"
},
{
"input": "5 2\ns*\nsq\n*v\nes\n*5",
"output": "1"
},
{
"input": "10 2\n0n\n5h\n7&\n1b\n5&\n4*\n9k\n0*\n7m\n62",
"output": "2"
},
{
"input": "10 2\n89\n7&\ns8\now\n2#\n5&\nu&\n89\n8#\n3u",
"output": "1"
},
{
"input": "10 2\n#y\njc\n#6\n#0\nt7\ns7\nd#\nn2\n#7\n&3",
"output": "1"
},
{
"input": "15 12\n502j2*su#*j4\n48vtw8#r5\n43wl0085#&64\n99pedbk#*ol2\n08w#h#&y1346\n259*874&b*76\n40l#5hc*qta4\n280#h#r*3k98\n20t8o&l1##55\n8048l#6&o*37\n01a3z0179#30\n65p28q#0*3j3\n51tx885#**56\n105&&f64n639\n40v3&l61yr65",
"output": "5"
},
{
"input": "15 12\ndcmzv&*zzflc\neftqm&**njyp\ntwlsi*jvuman\ngcxdlb#xwbul\nnpgvufdyqoaz\nxvvpk##&bpso\njlwcfb&kqlbu\nnpxxr#1augfd\nngnaph#erxpl\nlsfaoc*ulsbi\npffbe&6lrybj\nsuvpz#q&aahf\nizhoba**jjmc\nmkdtg#6*xtnp\nqqfpjo1gddqo",
"output": "11"
},
{
"input": "15 12\n#&*&s#&&9&&&\n*&##*4&le&*#\n#*##24qh3*#&\n&***2j&a2###\n#*&#n68*z###\n##**1#&w#**&\n*&*#*0#&#***\n#*#*2723&*##\n&#&&mg3iu##*\n*&&#zl4k#&*&\n##&*5g#01&&*\n*##&wg1#6&*#\n#&**pvr6*&&#\n&&#*mzd#5&*#\n###*e2684#**",
"output": "8"
},
{
"input": "20 13\n885**jh##mj0t\nky3h&h&clr#27\nq6n&v127i64xo\n3lz4du4zi5&z9\n0r7056qp8r*5a\nc8v94v#402l7n\nu968vxt9&2fkn\n2jl4m**o6412n\nh10v&vl*#4&h4\nj4864*##48*9d\n402i&3#x&o786\nzn8#w&*p#8&6l\n2e7&68p#&kc47\njf4e7fv&o0*3z\n0z67ocr7#5*79\nr8az68#&u&5a9\n65a#&9#*8o178\nqjevs&&muj893\n4c83i63j##m37\ng1g85c##f7y3f",
"output": "3"
},
{
"input": "20 13\nvpym*054*4hoi\nldg&1u*yu4inw\nvs#b7*s27iqgo\nfp&*s2g#1i&#k\nyp&v474*58*#w\nzwfxx***4hqdg\nqqv*3163r2*&l\naxdc4l7&5l#fj\nqq&h#1z*&5#*a\nyml&&&9#a2*pr\nmpn&&78rbthpb\nac#d50**b7t#o\ndk&z7q&z&&#&j\ngyh#&f#0q5#&x\ncxw*#hgm#9nqn\nqm#&*c*k&2&bz\nxc#&86o#d9g#w\nzjm&12&9x3#hp\nzy&s##47u1jyf\nub*&9ao5qy#ip",
"output": "6"
},
{
"input": "20 13\n*8002g&87&8&6\n&4n*51i4&0\n40*#iq3pnc&87\n#*&0*s458&475\n802*8&1z*g533\n7171&a&2&2*8*\n*&##&&&&&t**&\n3#&*7#80*m18#\n#4#cqt9*7\n6*#56*#*&762&\n9406&ge0&7&07\n9**&6lv*v*2&&\n9##&c&i&z13#*\n68#*4g*9&f4&1\n37##80#&f2*&2\n81##*xo#q#5&0\n5247#hqy&d9&2\n#*13*5477*9#*\n2*&#q*0*fb9#*\n&2&4v*2##&&32",
"output": "4"
},
{
"input": "25 16\n5v7dnmg1##qqa75*\n0187oa*&c&&ew9h*\nr70*&##*q#4i6*&#\n7*wk*&4v06col***\n28*0h94x**&21*f5\neh5vbt#8&8#8#3r&\np*01u&&90&08p*#*\nb9#e7&r8lc56b*##\nyb4&x#&4956iw&8*\n39&5#4d5#&3r8t5x\n7x13**kk#0n**&80\n4oux8yhz*pg84nnr\nb2yfb&b70xa&k56e\nqt5&q4&6#&*z5#3&\n5*#*086*51l&&44#\n84k5**0lij37j#&v\ns&j0m4j&2v3fv9h&\np&hu68704*&cufs#\n34ra*i1993*i*&55\nr#w#4#1#30*cudj*\n0m3p&e3t##y97&90\nk6my174e##5z1##4\n2*&v#0u&49f#*47#\nv5276hv1xn*wz8if\nk24*#&hu7e*##n8&",
"output": "1"
},
{
"input": "25 16\n&*#&#**sw&**&#&#\n&*#*d#j*3b&q***#\n###&yq*v3q*&##**\n#**&#jpt#*#*#\n***#y*cd&l*oe*##\n&&&***#k*e&*p&#*\n&###*&fkn*pni#**\n**&#ybz*&u*##&&#\n**##p&renhvlq#&#\n*#*&q&*#1&p#&&#&\n**&##&##2*ved&&*\n##*&tug&x*fx&*&*\n###**nt*u&&ux*&&\n&#&#**##1xca*#&&\n*#*&jw#rc#vow&&&\n&*#&exgq&&m*&#*&\n&&##l&&mbizc&**&\n##*&&#m*0&o#*##*\n&#*&fcqsy#&&#*#&\n**#**#*cdm#yf*&*\n*&##s#*v#*g#*&**\n*&##&*#mu##eh&#*\n####v#&i5*bnb&&&\n**##*hj&9#ro#&**\n#&&**&s*9x#f&&*#",
"output": "12"
},
{
"input": "50 1\n#\n4\n7\n#\n&\n*\n3\n&\nc\n*\n7\n*\n#\nw\n1\n&\n8\n7\n&\n&\ny\ng\n#\n5\n*\n4\nx\ny\np\n6\nf\ne\np\n&\n#\n#\ns\nt\na\nm\n&\n1\nv\n#\n&\n1\nq\n0\ny\n3",
"output": "0"
},
{
"input": "3 1\nr\n&\n6",
"output": "0"
},
{
"input": "3 1\n1\nz\n#",
"output": "0"
},
{
"input": "3 1\n6\n*\nt",
"output": "0"
},
{
"input": "3 1\ni\n3\n&",
"output": "0"
},
{
"input": "3 1\nj\n#\n0",
"output": "0"
},
{
"input": "3 1\n&\n7\no",
"output": "0"
},
{
"input": "3 1\n&\nr\n3",
"output": "0"
},
{
"input": "3 8\n*1a*****\n*******a\n*******1",
"output": "2"
},
{
"input": "3 15\naaaaaaa1aaaaaaa\naaaaaaa*aaaaaaa\naaaaaaa*aaaaaaa",
"output": "14"
}
] | 1,485,877,985
| 4,685
|
PyPy 3
|
OK
|
TESTS
| 52
| 685
| 30,003,200
|
n,m = list(map(int, input().split(" ")))
strings = []
for i in range(n):
strings.append(input())
spec = set('#*&')
dig = set('0123456789')
alpha = set('abcdefghijklmnopqrstuvwxyz')
def num(checkset, checkstring):
m = len(checkstring)+1
for i, c in enumerate(checkstring):
if c in checkset:
m = min(m, i)
m = min(m, len(checkstring)-i)
if m < len(checkstring)+1:
return m
return -1
ret = float('inf')
for i in range(n):
for j in range(n):
for k in range(n):
if i==j or i==k or j==k:
continue
else:
s1 = num(spec, strings[i])
s2 = num(dig, strings[j])
s3 = num(alpha, strings[k])
if s1 >= 0 and s2 >= 0 and s3 >= 0:
ret = min(ret, s1+s2+s3)
print(str(int(ret)))
|
Title: Dasha and Password
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
After overcoming the stairs Dasha came to classes. She needed to write a password to begin her classes. The password is a string of length *n* which satisfies the following requirements:
- There is at least one digit in the string, - There is at least one lowercase (small) letter of the Latin alphabet in the string, - There is at least one of three listed symbols in the string: '#', '*', '&'.
Considering that these are programming classes it is not easy to write the password.
For each character of the password we have a fixed string of length *m*, on each of these *n* strings there is a pointer on some character. The *i*-th character displayed on the screen is the pointed character in the *i*-th string. Initially, all pointers are on characters with indexes 1 in the corresponding strings (all positions are numbered starting from one).
During one operation Dasha can move a pointer in one string one character to the left or to the right. Strings are cyclic, it means that when we move the pointer which is on the character with index 1 to the left, it moves to the character with the index *m*, and when we move it to the right from the position *m* it moves to the position 1.
You need to determine the minimum number of operations necessary to make the string displayed on the screen a valid password.
Input Specification:
The first line contains two integers *n*, *m* (3<=≤<=*n*<=≤<=50,<=1<=≤<=*m*<=≤<=50) — the length of the password and the length of strings which are assigned to password symbols.
Each of the next *n* lines contains the string which is assigned to the *i*-th symbol of the password string. Its length is *m*, it consists of digits, lowercase English letters, and characters '#', '*' or '&'.
You have such input data that you can always get a valid password.
Output Specification:
Print one integer — the minimum number of operations which is necessary to make the string, which is displayed on the screen, a valid password.
Demo Input:
['3 4\n1**2\na3*0\nc4**\n', '5 5\n#*&#*\n*a1c&\n&q2w*\n#a3c#\n*&#*&\n']
Demo Output:
['1\n', '3\n']
Note:
In the first test it is necessary to move the pointer of the third string to one left to get the optimal answer.
In the second test one of possible algorithms will be:
- to move the pointer of the second symbol once to the right. - to move the pointer of the third symbol twice to the right.
|
```python
n,m = list(map(int, input().split(" ")))
strings = []
for i in range(n):
strings.append(input())
spec = set('#*&')
dig = set('0123456789')
alpha = set('abcdefghijklmnopqrstuvwxyz')
def num(checkset, checkstring):
m = len(checkstring)+1
for i, c in enumerate(checkstring):
if c in checkset:
m = min(m, i)
m = min(m, len(checkstring)-i)
if m < len(checkstring)+1:
return m
return -1
ret = float('inf')
for i in range(n):
for j in range(n):
for k in range(n):
if i==j or i==k or j==k:
continue
else:
s1 = num(spec, strings[i])
s2 = num(dig, strings[j])
s3 = num(alpha, strings[k])
if s1 >= 0 and s2 >= 0 and s3 >= 0:
ret = min(ret, s1+s2+s3)
print(str(int(ret)))
```
| 3
|
|
445
|
A
|
DZY Loves Chessboard
|
PROGRAMMING
| 1,200
|
[
"dfs and similar",
"implementation"
] | null | null |
DZY loves chessboard, and he enjoys playing with it.
He has a chessboard of *n* rows and *m* columns. Some cells of the chessboard are bad, others are good. For every good cell, DZY wants to put a chessman on it. Each chessman is either white or black. After putting all chessmen, DZY wants that no two chessmen with the same color are on two adjacent cells. Two cells are adjacent if and only if they share a common edge.
You task is to find any suitable placement of chessmen on the given chessboard.
|
The first line contains two space-separated integers *n* and *m* (1<=≤<=*n*,<=*m*<=≤<=100).
Each of the next *n* lines contains a string of *m* characters: the *j*-th character of the *i*-th string is either "." or "-". A "." means that the corresponding cell (in the *i*-th row and the *j*-th column) is good, while a "-" means it is bad.
|
Output must contain *n* lines, each line must contain a string of *m* characters. The *j*-th character of the *i*-th string should be either "W", "B" or "-". Character "W" means the chessman on the cell is white, "B" means it is black, "-" means the cell is a bad cell.
If multiple answers exist, print any of them. It is guaranteed that at least one answer exists.
|
[
"1 1\n.\n",
"2 2\n..\n..\n",
"3 3\n.-.\n---\n--."
] |
[
"B\n",
"BW\nWB\n",
"B-B\n---\n--B"
] |
In the first sample, DZY puts a single black chessman. Of course putting a white one is also OK.
In the second sample, all 4 cells are good. No two same chessmen share an edge in the sample output.
In the third sample, no good cells are adjacent. So you can just put 3 chessmen, no matter what their colors are.
| 500
|
[
{
"input": "1 1\n.",
"output": "B"
},
{
"input": "2 2\n..\n..",
"output": "BW\nWB"
},
{
"input": "3 3\n.-.\n---\n--.",
"output": "B-B\n---\n--B"
},
{
"input": "3 1\n-\n.\n.",
"output": "-\nW\nB"
},
{
"input": "11 11\n-----------\n-----------\n-----------\n-----------\n-----------\n-----------\n-----------\n-----------\n-----------\n-----------\n-----------",
"output": "-----------\n-----------\n-----------\n-----------\n-----------\n-----------\n-----------\n-----------\n-----------\n-----------\n-----------"
},
{
"input": "1 1\n-",
"output": "-"
},
{
"input": "4 2\n..\n..\n..\n..",
"output": "BW\nWB\nBW\nWB"
},
{
"input": "5 1\n.\n.\n.\n.\n.",
"output": "B\nW\nB\nW\nB"
}
] | 1,626,249,223
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 37
| 78
| 7,065,600
|
def spliter():
d = input()
a = d.split()
r = []
for i in a:
k = int(i)
r.append(k)
return r
n = spliter()
lst = []
final = []
for i in range(n[0]):
lst.append([])
k = input()
for j in range(n[1]):
lst[i].append(k[j])
for i in range(n[0]):
final.append([])
for j in range(n[1]):
if lst[i][j]=='-':
final[i].append('-')
print(final[i][j],end="")
else:
if (i+j)%2==0:
final[i].append('B')
print(final[i][j],end="")
else:
final[i].append('W')
print(final[i][j],end="")
print()
|
Title: DZY Loves Chessboard
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
DZY loves chessboard, and he enjoys playing with it.
He has a chessboard of *n* rows and *m* columns. Some cells of the chessboard are bad, others are good. For every good cell, DZY wants to put a chessman on it. Each chessman is either white or black. After putting all chessmen, DZY wants that no two chessmen with the same color are on two adjacent cells. Two cells are adjacent if and only if they share a common edge.
You task is to find any suitable placement of chessmen on the given chessboard.
Input Specification:
The first line contains two space-separated integers *n* and *m* (1<=≤<=*n*,<=*m*<=≤<=100).
Each of the next *n* lines contains a string of *m* characters: the *j*-th character of the *i*-th string is either "." or "-". A "." means that the corresponding cell (in the *i*-th row and the *j*-th column) is good, while a "-" means it is bad.
Output Specification:
Output must contain *n* lines, each line must contain a string of *m* characters. The *j*-th character of the *i*-th string should be either "W", "B" or "-". Character "W" means the chessman on the cell is white, "B" means it is black, "-" means the cell is a bad cell.
If multiple answers exist, print any of them. It is guaranteed that at least one answer exists.
Demo Input:
['1 1\n.\n', '2 2\n..\n..\n', '3 3\n.-.\n---\n--.']
Demo Output:
['B\n', 'BW\nWB\n', 'B-B\n---\n--B']
Note:
In the first sample, DZY puts a single black chessman. Of course putting a white one is also OK.
In the second sample, all 4 cells are good. No two same chessmen share an edge in the sample output.
In the third sample, no good cells are adjacent. So you can just put 3 chessmen, no matter what their colors are.
|
```python
def spliter():
d = input()
a = d.split()
r = []
for i in a:
k = int(i)
r.append(k)
return r
n = spliter()
lst = []
final = []
for i in range(n[0]):
lst.append([])
k = input()
for j in range(n[1]):
lst[i].append(k[j])
for i in range(n[0]):
final.append([])
for j in range(n[1]):
if lst[i][j]=='-':
final[i].append('-')
print(final[i][j],end="")
else:
if (i+j)%2==0:
final[i].append('B')
print(final[i][j],end="")
else:
final[i].append('W')
print(final[i][j],end="")
print()
```
| 3
|
|
61
|
A
|
Ultra-Fast Mathematician
|
PROGRAMMING
| 800
|
[
"implementation"
] |
A. Ultra-Fast Mathematician
|
2
|
256
|
Shapur was an extremely gifted student. He was great at everything including Combinatorics, Algebra, Number Theory, Geometry, Calculus, etc. He was not only smart but extraordinarily fast! He could manage to sum 1018 numbers in a single second.
One day in 230 AD Shapur was trying to find out if any one can possibly do calculations faster than him. As a result he made a very great contest and asked every one to come and take part.
In his contest he gave the contestants many different pairs of numbers. Each number is made from digits 0 or 1. The contestants should write a new number corresponding to the given pair of numbers. The rule is simple: The *i*-th digit of the answer is 1 if and only if the *i*-th digit of the two given numbers differ. In the other case the *i*-th digit of the answer is 0.
Shapur made many numbers and first tried his own speed. He saw that he can perform these operations on numbers of length ∞ (length of a number is number of digits in it) in a glance! He always gives correct answers so he expects the contestants to give correct answers, too. He is a good fellow so he won't give anyone very big numbers and he always gives one person numbers of same length.
Now you are going to take part in Shapur's contest. See if you are faster and more accurate.
|
There are two lines in each input. Each of them contains a single number. It is guaranteed that the numbers are made from 0 and 1 only and that their length is same. The numbers may start with 0. The length of each number doesn't exceed 100.
|
Write one line — the corresponding answer. Do not omit the leading 0s.
|
[
"1010100\n0100101\n",
"000\n111\n",
"1110\n1010\n",
"01110\n01100\n"
] |
[
"1110001\n",
"111\n",
"0100\n",
"00010\n"
] |
none
| 500
|
[
{
"input": "1010100\n0100101",
"output": "1110001"
},
{
"input": "000\n111",
"output": "111"
},
{
"input": "1110\n1010",
"output": "0100"
},
{
"input": "01110\n01100",
"output": "00010"
},
{
"input": "011101\n000001",
"output": "011100"
},
{
"input": "10\n01",
"output": "11"
},
{
"input": "00111111\n11011101",
"output": "11100010"
},
{
"input": "011001100\n101001010",
"output": "110000110"
},
{
"input": "1100100001\n0110101100",
"output": "1010001101"
},
{
"input": "00011101010\n10010100101",
"output": "10001001111"
},
{
"input": "100000101101\n111010100011",
"output": "011010001110"
},
{
"input": "1000001111010\n1101100110001",
"output": "0101101001011"
},
{
"input": "01011111010111\n10001110111010",
"output": "11010001101101"
},
{
"input": "110010000111100\n001100101011010",
"output": "111110101100110"
},
{
"input": "0010010111110000\n0000000011010110",
"output": "0010010100100110"
},
{
"input": "00111110111110000\n01111100001100000",
"output": "01000010110010000"
},
{
"input": "101010101111010001\n001001111101111101",
"output": "100011010010101100"
},
{
"input": "0110010101111100000\n0011000101000000110",
"output": "0101010000111100110"
},
{
"input": "11110100011101010111\n00001000011011000000",
"output": "11111100000110010111"
},
{
"input": "101010101111101101001\n111010010010000011111",
"output": "010000111101101110110"
},
{
"input": "0000111111100011000010\n1110110110110000001010",
"output": "1110001001010011001000"
},
{
"input": "10010010101000110111000\n00101110100110111000111",
"output": "10111100001110001111111"
},
{
"input": "010010010010111100000111\n100100111111100011001110",
"output": "110110101101011111001001"
},
{
"input": "0101110100100111011010010\n0101100011010111001010001",
"output": "0000010111110000010000011"
},
{
"input": "10010010100011110111111011\n10000110101100000001000100",
"output": "00010100001111110110111111"
},
{
"input": "000001111000000100001000000\n011100111101111001110110001",
"output": "011101000101111101111110001"
},
{
"input": "0011110010001001011001011100\n0000101101000011101011001010",
"output": "0011011111001010110010010110"
},
{
"input": "11111000000000010011001101111\n11101110011001010100010000000",
"output": "00010110011001000111011101111"
},
{
"input": "011001110000110100001100101100\n001010000011110000001000101001",
"output": "010011110011000100000100000101"
},
{
"input": "1011111010001100011010110101111\n1011001110010000000101100010101",
"output": "0000110100011100011111010111010"
},
{
"input": "10111000100001000001010110000001\n10111000001100101011011001011000",
"output": "00000000101101101010001111011001"
},
{
"input": "000001010000100001000000011011100\n111111111001010100100001100000111",
"output": "111110101001110101100001111011011"
},
{
"input": "1101000000000010011011101100000110\n1110000001100010011010000011011110",
"output": "0011000001100000000001101111011000"
},
{
"input": "01011011000010100001100100011110001\n01011010111000001010010100001110000",
"output": "00000001111010101011110000010000001"
},
{
"input": "000011111000011001000110111100000100\n011011000110000111101011100111000111",
"output": "011000111110011110101101011011000011"
},
{
"input": "1001000010101110001000000011111110010\n0010001011010111000011101001010110000",
"output": "1011001001111001001011101010101000010"
},
{
"input": "00011101011001100101111111000000010101\n10010011011011001011111000000011101011",
"output": "10001110000010101110000111000011111110"
},
{
"input": "111011100110001001101111110010111001010\n111111101101111001110010000101101000100",
"output": "000100001011110000011101110111010001110"
},
{
"input": "1111001001101000001000000010010101001010\n0010111100111110001011000010111110111001",
"output": "1101110101010110000011000000101011110011"
},
{
"input": "00100101111000000101011111110010100011010\n11101110001010010101001000111110101010100",
"output": "11001011110010010000010111001100001001110"
},
{
"input": "101011001110110100101001000111010101101111\n100111100110101011010100111100111111010110",
"output": "001100101000011111111101111011101010111001"
},
{
"input": "1111100001100101000111101001001010011100001\n1000110011000011110010001011001110001000001",
"output": "0111010010100110110101100010000100010100000"
},
{
"input": "01100111011111010101000001101110000001110101\n10011001011111110000000101011001001101101100",
"output": "11111110000000100101000100110111001100011001"
},
{
"input": "110010100111000100100101100000011100000011001\n011001111011100110000110111001110110100111011",
"output": "101011011100100010100011011001101010100100010"
},
{
"input": "0001100111111011010110100100111000000111000110\n1100101011000000000001010010010111001100110001",
"output": "1101001100111011010111110110101111001011110111"
},
{
"input": "00000101110110110001110010100001110100000100000\n10010000110011110001101000111111101010011010001",
"output": "10010101000101000000011010011110011110011110001"
},
{
"input": "110000100101011100100011001111110011111110010001\n101011111001011100110110111101110011010110101100",
"output": "011011011100000000010101110010000000101000111101"
},
{
"input": "0101111101011111010101011101000011101100000000111\n0000101010110110001110101011011110111001010100100",
"output": "0101010111101001011011110110011101010101010100011"
},
{
"input": "11000100010101110011101000011111001010110111111100\n00001111000111001011111110000010101110111001000011",
"output": "11001011010010111000010110011101100100001110111111"
},
{
"input": "101000001101111101101111111000001110110010101101010\n010011100111100001100000010001100101000000111011011",
"output": "111011101010011100001111101001101011110010010110001"
},
{
"input": "0011111110010001010100010110111000110011001101010100\n0111000000100010101010000100101000000100101000111001",
"output": "0100111110110011111110010010010000110111100101101101"
},
{
"input": "11101010000110000011011010000001111101000111011111100\n10110011110001010100010110010010101001010111100100100",
"output": "01011001110111010111001100010011010100010000111011000"
},
{
"input": "011000100001000001101000010110100110011110100111111011\n111011001000001001110011001111011110111110110011011111",
"output": "100011101001001000011011011001111000100000010100100100"
},
{
"input": "0111010110010100000110111011010110100000000111110110000\n1011100100010001101100000100111111101001110010000100110",
"output": "1100110010000101101010111111101001001001110101110010110"
},
{
"input": "10101000100111000111010001011011011011110100110101100011\n11101111000000001100100011111000100100000110011001101110",
"output": "01000111100111001011110010100011111111110010101100001101"
},
{
"input": "000000111001010001000000110001001011100010011101010011011\n110001101000010010000101000100001111101001100100001010010",
"output": "110001010001000011000101110101000100001011111001011001001"
},
{
"input": "0101011100111010000111110010101101111111000000111100011100\n1011111110000010101110111001000011100000100111111111000111",
"output": "1110100010111000101001001011101110011111100111000011011011"
},
{
"input": "11001000001100100111100111100100101011000101001111001001101\n10111110100010000011010100110100100011101001100000001110110",
"output": "01110110101110100100110011010000001000101100101111000111011"
},
{
"input": "010111011011101000000110000110100110001110100001110110111011\n101011110011101011101101011111010100100001100111100100111011",
"output": "111100101000000011101011011001110010101111000110010010000000"
},
{
"input": "1001011110110110000100011001010110000100011010010111010101110\n1101111100001000010111110011010101111010010100000001000010111",
"output": "0100100010111110010011101010000011111110001110010110010111001"
},
{
"input": "10000010101111100111110101111000010100110111101101111111111010\n10110110101100101010011001011010100110111011101100011001100111",
"output": "00110100000011001101101100100010110010001100000001100110011101"
},
{
"input": "011111010011111000001010101001101001000010100010111110010100001\n011111001011000011111001000001111001010110001010111101000010011",
"output": "000000011000111011110011101000010000010100101000000011010110010"
},
{
"input": "1111000000110001011101000100100100001111011100001111001100011111\n1101100110000101100001100000001001011011111011010101000101001010",
"output": "0010100110110100111100100100101101010100100111011010001001010101"
},
{
"input": "01100000101010010011001110100110110010000110010011011001100100011\n10110110010110111100100111000111000110010000000101101110000010111",
"output": "11010110111100101111101001100001110100010110010110110111100110100"
},
{
"input": "001111111010000100001100001010011001111110011110010111110001100111\n110000101001011000100010101100100110000111100000001101001110010111",
"output": "111111010011011100101110100110111111111001111110011010111111110000"
},
{
"input": "1011101011101101011110101101011101011000010011100101010101000100110\n0001000001001111010111100100111101100000000001110001000110000000110",
"output": "1010101010100010001001001001100000111000010010010100010011000100000"
},
{
"input": "01000001011001010011011100010000100100110101111011011011110000001110\n01011110000110011011000000000011000111100001010000000011111001110000",
"output": "00011111011111001000011100010011100011010100101011011000001001111110"
},
{
"input": "110101010100110101000001111110110100010010000100111110010100110011100\n111010010111111011100110101011001011001110110111110100000110110100111",
"output": "001111000011001110100111010101111111011100110011001010010010000111011"
},
{
"input": "1001101011000001011111100110010010000011010001001111011100010100110001\n1111100111110101001111010001010000011001001001010110001111000000100101",
"output": "0110001100110100010000110111000010011010011000011001010011010100010100"
},
{
"input": "00000111110010110001110110001010010101000111011001111111100110011110010\n00010111110100000100110101000010010001100001100011100000001100010100010",
"output": "00010000000110110101000011001000000100100110111010011111101010001010000"
},
{
"input": "100101011100101101000011010001011001101110101110001100010001010111001110\n100001111100101011011111110000001111000111001011111110000010101110111001",
"output": "000100100000000110011100100001010110101001100101110010010011111001110111"
},
{
"input": "1101100001000111001101001011101000111000011110000001001101101001111011010\n0101011101010100011011010110101000010010110010011110101100000110110001000",
"output": "1000111100010011010110011101000000101010101100011111100001101111001010010"
},
{
"input": "01101101010011110101100001110101111011100010000010001101111000011110111111\n00101111001101001100111010000101110000100101101111100111101110010100011011",
"output": "01000010011110111001011011110000001011000111101101101010010110001010100100"
},
{
"input": "101100101100011001101111110110110010100110110010100001110010110011001101011\n000001011010101011110011111101001110000111000010001101000010010000010001101",
"output": "101101110110110010011100001011111100100001110000101100110000100011011100110"
},
{
"input": "0010001011001010001100000010010011110110011000100000000100110000101111001110\n1100110100111000110100001110111001011101001100001010100001010011100110110001",
"output": "1110111111110010111000001100101010101011010100101010100101100011001001111111"
},
{
"input": "00101101010000000101011001101011001100010001100000101011101110000001111001000\n10010110010111000000101101000011101011001010000011011101101011010000000011111",
"output": "10111011000111000101110100101000100111011011100011110110000101010001111010111"
},
{
"input": "111100000100100000101001100001001111001010001000001000000111010000010101101011\n001000100010100101111011111011010110101100001111011000010011011011100010010110",
"output": "110100100110000101010010011010011001100110000111010000010100001011110111111101"
},
{
"input": "0110001101100100001111110101101000100101010010101010011001101001001101110000000\n0111011000000010010111011110010000000001000110001000011001101000000001110100111",
"output": "0001010101100110011000101011111000100100010100100010000000000001001100000100111"
},
{
"input": "10001111111001000101001011110101111010100001011010101100111001010001010010001000\n10000111010010011110111000111010101100000011110001101111001000111010100000000001",
"output": "00001000101011011011110011001111010110100010101011000011110001101011110010001001"
},
{
"input": "100110001110110000100101001110000011110110000110000000100011110100110110011001101\n110001110101110000000100101001101011111100100100001001000110000001111100011110110",
"output": "010111111011000000100001100111101000001010100010001001100101110101001010000111011"
},
{
"input": "0000010100100000010110111100011111111010011101000000100000011001001101101100111010\n0100111110011101010110101011110110010111001111000110101100101110111100101000111111",
"output": "0100101010111101000000010111101001101101010010000110001100110111110001000100000101"
},
{
"input": "11000111001010100001110000001001011010010010110000001110100101000001010101100110111\n11001100100100100001101010110100000111100011101110011010110100001001000011011011010",
"output": "00001011101110000000011010111101011101110001011110010100010001001000010110111101101"
},
{
"input": "010110100010001000100010101001101010011010111110100001000100101000111011100010100001\n110000011111101101010011111000101010111010100001001100001001100101000000111000000000",
"output": "100110111101100101110001010001000000100000011111101101001101001101111011011010100001"
},
{
"input": "0000011110101110010101110110110101100001011001101010101001000010000010000000101001101\n1100111111011100000110000111101110011111100111110001011001000010011111100001001100011",
"output": "1100100001110010010011110001011011111110111110011011110000000000011101100001100101110"
},
{
"input": "10100000101101110001100010010010100101100011010010101000110011100000101010110010000000\n10001110011011010010111011011101101111000111110000111000011010010101001100000001010011",
"output": "00101110110110100011011001001111001010100100100010010000101001110101100110110011010011"
},
{
"input": "001110000011111101101010011111000101010111010100001001100001001100101000000111000000000\n111010000000000000101001110011001000111011001100101010011001000011101001001011110000011",
"output": "110100000011111101000011101100001101101100011000100011111000001111000001001100110000011"
},
{
"input": "1110111100111011010101011011001110001010010010110011110010011111000010011111010101100001\n1001010101011001001010100010101100000110111101011000100010101111111010111100001110010010",
"output": "0111101001100010011111111001100010001100101111101011010000110000111000100011011011110011"
},
{
"input": "11100010001100010011001100001100010011010001101110011110100101110010101101011101000111111\n01110000000110111010110100001010000101011110100101010011000110101110101101110111011110001",
"output": "10010010001010101001111000000110010110001111001011001101100011011100000000101010011001110"
},
{
"input": "001101011001100101101100110000111000101011001001100100000100101000100000110100010111111101\n101001111110000010111101111110001001111001111101111010000110111000100100110010010001011111",
"output": "100100100111100111010001001110110001010010110100011110000010010000000100000110000110100010"
},
{
"input": "1010110110010101000110010010110101011101010100011001101011000110000000100011100100011000000\n0011011111100010001111101101000111001011101110100000110111100100101111010110101111011100011",
"output": "1001101001110111001001111111110010010110111010111001011100100010101111110101001011000100011"
},
{
"input": "10010010000111010111011111110010100101100000001100011100111011100010000010010001011100001100\n00111010100010110010000100010111010001111110100100100011101000101111111111001101101100100100",
"output": "10101000100101100101011011100101110100011110101000111111010011001101111101011100110000101000"
},
{
"input": "010101110001010101100000010111010000000111110011001101100011001000000011001111110000000010100\n010010111011100101010101111110110000000111000100001101101001001000001100101110001010000100001",
"output": "000111001010110000110101101001100000000000110111000000001010000000001111100001111010000110101"
},
{
"input": "1100111110011001000111101001001011000110011010111111100010111111001100111111011101100111101011\n1100000011001000110100110111000001011001010111101000010010100011000001100100111101101000010110",
"output": "0000111101010001110011011110001010011111001101010111110000011100001101011011100000001111111101"
},
{
"input": "00011000100100110111100101100100000000010011110111110010101110110011100001010111010011110100101\n00011011111011111011100101100111100101001110010111000010000111000100100100000001110101111011011",
"output": "00000011011111001100000000000011100101011101100000110000101001110111000101010110100110001111110"
},
{
"input": "000101011001001100000111100010110101111011110101111101000110001101011010111110110011100100000001\n011000101010011111011000111000100000000011011000000001111110001000001111101010110000011100001111",
"output": "011101110011010011011111011010010101111000101101111100111000000101010101010100000011111000001110"
},
{
"input": "1000101001011010000100100100010010011101011001110101111011101111111110010101001101010001010101001\n0110110010011100011111011111110111000000010001110100001010111110101011010011111011111110000110000",
"output": "1110011011000110011011111011100101011101001000000001110001010001010101000110110110101111010011001"
},
{
"input": "01111010010101100111110111111011011010100001011101010000111100101101101110111011001100101011100111\n00001100110110100001111011000010001001001100000010111101000001111011100000010111010010000011000010",
"output": "01110110100011000110001100111001010011101101011111101101111101010110001110101100011110101000100101"
},
{
"input": "111101011101111000001011001101111010110111001101110100100011111011011101001101010101011010111000110\n101111100101101101001100110011000001111010011101110111110110101110011011110011111100001001110101101",
"output": "010010111000010101000111111110111011001101010000000011010101010101000110111110101001010011001101011"
},
{
"input": "1010000011010110011101001101110001110010000111011101110010110110111111001001110100101100010101010001\n0111101000111100101100000101111010100100001000011101010100110011100011010011010101000100101011100011",
"output": "1101101011101010110001001000001011010110001111000000100110000101011100011010100001101000111110110010"
},
{
"input": "0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001\n1111111010111111101011111110101111111010111111101011111110101111111010111111101011111110101111111010",
"output": "1111111010111111101011111110101111111010111111101011111110101111111010111111101011111110101111111011"
},
{
"input": "0\n0",
"output": "0"
},
{
"input": "0\n1",
"output": "1"
}
] | 1,594,114,987
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 102
| 109
| 6,656,000
|
s1=input()
s2=input()
x=''
for i in range(len(s1)):
if s1[i]==s2[i]:
x=x+str(0)
else:
x=x+str(1)
print(x)
|
Title: Ultra-Fast Mathematician
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
Shapur was an extremely gifted student. He was great at everything including Combinatorics, Algebra, Number Theory, Geometry, Calculus, etc. He was not only smart but extraordinarily fast! He could manage to sum 1018 numbers in a single second.
One day in 230 AD Shapur was trying to find out if any one can possibly do calculations faster than him. As a result he made a very great contest and asked every one to come and take part.
In his contest he gave the contestants many different pairs of numbers. Each number is made from digits 0 or 1. The contestants should write a new number corresponding to the given pair of numbers. The rule is simple: The *i*-th digit of the answer is 1 if and only if the *i*-th digit of the two given numbers differ. In the other case the *i*-th digit of the answer is 0.
Shapur made many numbers and first tried his own speed. He saw that he can perform these operations on numbers of length ∞ (length of a number is number of digits in it) in a glance! He always gives correct answers so he expects the contestants to give correct answers, too. He is a good fellow so he won't give anyone very big numbers and he always gives one person numbers of same length.
Now you are going to take part in Shapur's contest. See if you are faster and more accurate.
Input Specification:
There are two lines in each input. Each of them contains a single number. It is guaranteed that the numbers are made from 0 and 1 only and that their length is same. The numbers may start with 0. The length of each number doesn't exceed 100.
Output Specification:
Write one line — the corresponding answer. Do not omit the leading 0s.
Demo Input:
['1010100\n0100101\n', '000\n111\n', '1110\n1010\n', '01110\n01100\n']
Demo Output:
['1110001\n', '111\n', '0100\n', '00010\n']
Note:
none
|
```python
s1=input()
s2=input()
x=''
for i in range(len(s1)):
if s1[i]==s2[i]:
x=x+str(0)
else:
x=x+str(1)
print(x)
```
| 3.960352
|
50
|
A
|
Domino piling
|
PROGRAMMING
| 800
|
[
"greedy",
"math"
] |
A. Domino piling
|
2
|
256
|
You are given a rectangular board of *M*<=×<=*N* squares. Also you are given an unlimited number of standard domino pieces of 2<=×<=1 squares. You are allowed to rotate the pieces. You are asked to place as many dominoes as possible on the board so as to meet the following conditions:
1. Each domino completely covers two squares.
2. No two dominoes overlap.
3. Each domino lies entirely inside the board. It is allowed to touch the edges of the board.
Find the maximum number of dominoes, which can be placed under these restrictions.
|
In a single line you are given two integers *M* and *N* — board sizes in squares (1<=≤<=*M*<=≤<=*N*<=≤<=16).
|
Output one number — the maximal number of dominoes, which can be placed.
|
[
"2 4\n",
"3 3\n"
] |
[
"4\n",
"4\n"
] |
none
| 500
|
[
{
"input": "2 4",
"output": "4"
},
{
"input": "3 3",
"output": "4"
},
{
"input": "1 5",
"output": "2"
},
{
"input": "1 6",
"output": "3"
},
{
"input": "1 15",
"output": "7"
},
{
"input": "1 16",
"output": "8"
},
{
"input": "2 5",
"output": "5"
},
{
"input": "2 6",
"output": "6"
},
{
"input": "2 7",
"output": "7"
},
{
"input": "2 14",
"output": "14"
},
{
"input": "2 15",
"output": "15"
},
{
"input": "1 4",
"output": "2"
},
{
"input": "2 16",
"output": "16"
},
{
"input": "3 5",
"output": "7"
},
{
"input": "3 6",
"output": "9"
},
{
"input": "3 10",
"output": "15"
},
{
"input": "3 14",
"output": "21"
},
{
"input": "3 15",
"output": "22"
},
{
"input": "3 16",
"output": "24"
},
{
"input": "5 7",
"output": "17"
},
{
"input": "16 16",
"output": "128"
},
{
"input": "15 16",
"output": "120"
},
{
"input": "2 3",
"output": "3"
},
{
"input": "15 15",
"output": "112"
},
{
"input": "14 16",
"output": "112"
},
{
"input": "11 13",
"output": "71"
},
{
"input": "5 16",
"output": "40"
},
{
"input": "8 15",
"output": "60"
},
{
"input": "2 2",
"output": "2"
},
{
"input": "3 4",
"output": "6"
},
{
"input": "4 4",
"output": "8"
},
{
"input": "1 1",
"output": "0"
},
{
"input": "1 2",
"output": "1"
},
{
"input": "1 3",
"output": "1"
},
{
"input": "14 15",
"output": "105"
}
] | 1,681,489,083
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 35
| 124
| 0
|
l,m = map(int, input().split())
if l%2 == 0 or m %2 == 0:
print((l//2) * m if l%2 == 0 else (m//2) * l)
else:
print((max(m, l) - 1)//2 * min(m, l) + min(m, l) //2)
|
Title: Domino piling
Time Limit: 2 seconds
Memory Limit: 256 megabytes
Problem Description:
You are given a rectangular board of *M*<=×<=*N* squares. Also you are given an unlimited number of standard domino pieces of 2<=×<=1 squares. You are allowed to rotate the pieces. You are asked to place as many dominoes as possible on the board so as to meet the following conditions:
1. Each domino completely covers two squares.
2. No two dominoes overlap.
3. Each domino lies entirely inside the board. It is allowed to touch the edges of the board.
Find the maximum number of dominoes, which can be placed under these restrictions.
Input Specification:
In a single line you are given two integers *M* and *N* — board sizes in squares (1<=≤<=*M*<=≤<=*N*<=≤<=16).
Output Specification:
Output one number — the maximal number of dominoes, which can be placed.
Demo Input:
['2 4\n', '3 3\n']
Demo Output:
['4\n', '4\n']
Note:
none
|
```python
l,m = map(int, input().split())
if l%2 == 0 or m %2 == 0:
print((l//2) * m if l%2 == 0 else (m//2) * l)
else:
print((max(m, l) - 1)//2 * min(m, l) + min(m, l) //2)
```
| 3.969
|
764
|
A
|
Taymyr is calling you
|
PROGRAMMING
| 800
|
[
"brute force",
"implementation",
"math"
] | null | null |
Comrade Dujikov is busy choosing artists for Timofey's birthday and is recieving calls from Taymyr from Ilia-alpinist.
Ilia-alpinist calls every *n* minutes, i.e. in minutes *n*, 2*n*, 3*n* and so on. Artists come to the comrade every *m* minutes, i.e. in minutes *m*, 2*m*, 3*m* and so on. The day is *z* minutes long, i.e. the day consists of minutes 1,<=2,<=...,<=*z*. How many artists should be killed so that there are no artists in the room when Ilia calls? Consider that a call and a talk with an artist take exactly one minute.
|
The only string contains three integers — *n*, *m* and *z* (1<=≤<=*n*,<=*m*,<=*z*<=≤<=104).
|
Print single integer — the minimum number of artists that should be killed so that there are no artists in the room when Ilia calls.
|
[
"1 1 10\n",
"1 2 5\n",
"2 3 9\n"
] |
[
"10\n",
"2\n",
"1\n"
] |
Taymyr is a place in the north of Russia.
In the first test the artists come each minute, as well as the calls, so we need to kill all of them.
In the second test we need to kill artists which come on the second and the fourth minutes.
In the third test — only the artist which comes on the sixth minute.
| 500
|
[
{
"input": "1 1 10",
"output": "10"
},
{
"input": "1 2 5",
"output": "2"
},
{
"input": "2 3 9",
"output": "1"
},
{
"input": "4 8 9",
"output": "1"
},
{
"input": "7 9 2",
"output": "0"
},
{
"input": "10000 10000 10000",
"output": "1"
},
{
"input": "24 22 9235",
"output": "34"
},
{
"input": "74 8 417",
"output": "1"
},
{
"input": "972 1 203",
"output": "0"
},
{
"input": "550 1 754",
"output": "1"
},
{
"input": "860 1 884",
"output": "1"
},
{
"input": "358 2 809",
"output": "2"
},
{
"input": "33 27 216",
"output": "0"
},
{
"input": "2940 1 9311",
"output": "3"
},
{
"input": "4624 1 1953",
"output": "0"
},
{
"input": "2696 2 7345",
"output": "2"
},
{
"input": "3443 2 6701",
"output": "0"
},
{
"input": "3 613 2275",
"output": "1"
},
{
"input": "1 10000 10000",
"output": "1"
},
{
"input": "10000 1 10000",
"output": "1"
},
{
"input": "1 1 1",
"output": "1"
},
{
"input": "1 1 10000",
"output": "10000"
},
{
"input": "34 27 10000",
"output": "10"
},
{
"input": "2 2 9999",
"output": "4999"
},
{
"input": "2 2 1",
"output": "0"
},
{
"input": "6 4 36",
"output": "3"
},
{
"input": "33 6 3005",
"output": "45"
},
{
"input": "5 1 20",
"output": "4"
},
{
"input": "1 2 10",
"output": "5"
},
{
"input": "2 1 100",
"output": "50"
},
{
"input": "10 20 10000",
"output": "500"
},
{
"input": "8 12 12",
"output": "0"
}
] | 1,646,691,986
| 2,147,483,647
|
Python 3
|
OK
|
TESTS
| 32
| 46
| 1,638,400
|
n,m,z = map(int, input().split(" "))
a = set()
c = set()
for i in range(1,z+1):
if (i*m <= z):
a.add(i*m)
if (i*n <= z):
c.add(i*n)
commons = len(set(a) - (set(a) - set(c)))
print(commons)
|
Title: Taymyr is calling you
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Comrade Dujikov is busy choosing artists for Timofey's birthday and is recieving calls from Taymyr from Ilia-alpinist.
Ilia-alpinist calls every *n* minutes, i.e. in minutes *n*, 2*n*, 3*n* and so on. Artists come to the comrade every *m* minutes, i.e. in minutes *m*, 2*m*, 3*m* and so on. The day is *z* minutes long, i.e. the day consists of minutes 1,<=2,<=...,<=*z*. How many artists should be killed so that there are no artists in the room when Ilia calls? Consider that a call and a talk with an artist take exactly one minute.
Input Specification:
The only string contains three integers — *n*, *m* and *z* (1<=≤<=*n*,<=*m*,<=*z*<=≤<=104).
Output Specification:
Print single integer — the minimum number of artists that should be killed so that there are no artists in the room when Ilia calls.
Demo Input:
['1 1 10\n', '1 2 5\n', '2 3 9\n']
Demo Output:
['10\n', '2\n', '1\n']
Note:
Taymyr is a place in the north of Russia.
In the first test the artists come each minute, as well as the calls, so we need to kill all of them.
In the second test we need to kill artists which come on the second and the fourth minutes.
In the third test — only the artist which comes on the sixth minute.
|
```python
n,m,z = map(int, input().split(" "))
a = set()
c = set()
for i in range(1,z+1):
if (i*m <= z):
a.add(i*m)
if (i*n <= z):
c.add(i*n)
commons = len(set(a) - (set(a) - set(c)))
print(commons)
```
| 3
|
|
897
|
A
|
Scarborough Fair
|
PROGRAMMING
| 800
|
[
"implementation"
] | null | null |
Parsley, sage, rosemary and thyme.
Remember me to one who lives there.
He once was the true love of mine.
Willem is taking the girl to the highest building in island No.28, however, neither of them knows how to get there.
Willem asks his friend, Grick for directions, Grick helped them, and gave them a task.
Although the girl wants to help, Willem insists on doing it by himself.
Grick gave Willem a string of length *n*.
Willem needs to do *m* operations, each operation has four parameters *l*,<=*r*,<=*c*1,<=*c*2, which means that all symbols *c*1 in range [*l*,<=*r*] (from *l*-th to *r*-th, including *l* and *r*) are changed into *c*2. String is 1-indexed.
Grick wants to know the final string after all the *m* operations.
|
The first line contains two integers *n* and *m* (1<=≤<=*n*,<=*m*<=≤<=100).
The second line contains a string *s* of length *n*, consisting of lowercase English letters.
Each of the next *m* lines contains four parameters *l*,<=*r*,<=*c*1,<=*c*2 (1<=≤<=*l*<=≤<=*r*<=≤<=*n*, *c*1,<=*c*2 are lowercase English letters), separated by space.
|
Output string *s* after performing *m* operations described above.
|
[
"3 1\nioi\n1 1 i n\n",
"5 3\nwxhak\n3 3 h x\n1 5 x a\n1 3 w g\n"
] |
[
"noi",
"gaaak"
] |
For the second example:
After the first operation, the string is wxxak.
After the second operation, the string is waaak.
After the third operation, the string is gaaak.
| 500
|
[
{
"input": "3 1\nioi\n1 1 i n",
"output": "noi"
},
{
"input": "5 3\nwxhak\n3 3 h x\n1 5 x a\n1 3 w g",
"output": "gaaak"
},
{
"input": "9 51\nbhfbdcgff\n2 3 b b\n2 8 e f\n3 8 g f\n5 7 d a\n1 5 e b\n3 4 g b\n6 7 c d\n3 6 e g\n3 6 e h\n5 6 a e\n7 9 a c\n4 9 a h\n3 7 c b\n6 9 b g\n1 7 h b\n4 5 a e\n3 9 f a\n1 2 c h\n4 8 a c\n3 5 e d\n3 4 g f\n2 3 d h\n2 3 d e\n1 7 d g\n2 6 e g\n2 3 d g\n5 5 h h\n2 8 g d\n8 9 a f\n5 9 c e\n1 7 f d\n1 6 e e\n5 7 c a\n8 9 b b\n2 6 e b\n6 6 g h\n1 2 b b\n1 5 a f\n5 8 f h\n1 5 e g\n3 9 f h\n6 8 g a\n4 6 h g\n1 5 f a\n5 6 a c\n4 8 e d\n1 4 d g\n7 8 b f\n5 6 h b\n3 9 c e\n1 9 b a",
"output": "aahaddddh"
},
{
"input": "28 45\ndcbbaddjhbeefjadjchgkhgggfha\n10 25 c a\n13 19 a f\n12 28 e d\n12 27 e a\n9 20 b e\n7 17 g d\n22 26 j j\n8 16 c g\n14 16 a d\n3 10 f c\n10 26 d b\n8 17 i e\n10 19 d i\n6 21 c j\n7 22 b k\n17 19 a i\n4 18 j k\n8 25 a g\n10 27 j e\n9 18 g d\n16 23 h a\n17 26 k e\n8 16 h f\n1 15 d f\n22 28 k k\n11 20 c k\n6 11 b h\n17 17 e i\n15 22 g h\n8 18 c f\n4 16 e a\n8 25 b c\n6 24 d g\n5 9 f j\n12 19 i h\n4 25 e f\n15 25 c j\n15 27 e e\n11 20 b f\n19 27 e k\n2 21 d a\n9 27 k e\n14 24 b a\n3 6 i g\n2 26 k f",
"output": "fcbbajjfjaaefefehfahfagggfha"
},
{
"input": "87 5\nnfinedeojadjmgafnaogekfjkjfncnliagfchjfcmellgigjjcaaoeakdolchjcecljdeblmheimkibkgdkcdml\n47 56 a k\n51 81 o d\n5 11 j h\n48 62 j d\n16 30 k m",
"output": "nfinedeohadjmgafnaogemfjmjfncnliagfchjfcmellgigddckkdekkddlchdcecljdeblmheimkibkgdkcdml"
},
{
"input": "5 16\nacfbb\n1 2 e f\n2 5 a f\n2 3 b e\n4 4 f a\n2 3 f a\n1 2 b e\n4 5 c d\n2 4 e c\n1 4 e a\n1 3 d c\n3 5 e b\n3 5 e b\n2 2 e d\n1 3 e c\n3 3 a e\n1 5 a a",
"output": "acebb"
},
{
"input": "94 13\nbcaaaaaaccacddcdaacbdaabbcbaddbccbccbbbddbadddcccbddadddaadbdababadaacdcdbcdadabdcdcbcbcbcbbcd\n52 77 d d\n21 92 d b\n45 48 c b\n20 25 d a\n57 88 d b\n3 91 b d\n64 73 a a\n5 83 b d\n2 69 c c\n28 89 a b\n49 67 c b\n41 62 a c\n49 87 b c",
"output": "bcaaaaaaccacddcdaacddaaddcdbdddccdccddddddbdddddcdddcdddccdddcdcdcdcccdcddcdcdcddcdcdcdcdcdbcd"
},
{
"input": "67 39\nacbcbccccbabaabcabcaaaaaaccbcbbcbaaaacbbcccbcbabbcacccbbabbabbabaac\n4 36 a b\n25 38 a a\n3 44 b c\n35 57 b a\n4 8 a c\n20 67 c a\n30 66 b b\n27 40 a a\n2 56 a b\n10 47 c a\n22 65 c b\n29 42 a b\n1 46 c b\n57 64 b c\n20 29 b a\n14 51 c a\n12 55 b b\n20 20 a c\n2 57 c a\n22 60 c b\n16 51 c c\n31 64 a c\n17 30 c a\n23 36 c c\n28 67 a c\n37 40 a c\n37 50 b c\n29 48 c b\n2 34 b c\n21 53 b a\n26 63 a c\n23 28 c a\n51 56 c b\n32 61 b b\n64 67 b b\n21 67 b c\n8 53 c c\n40 62 b b\n32 38 c c",
"output": "accccccccaaaaaaaaaaaaaaaaaaaccccccccccccccccccccccccccccccccccccccc"
},
{
"input": "53 33\nhhcbhfafeececbhadfbdbehdfacfchbhdbfebdfeghebfcgdhehfh\n27 41 h g\n18 35 c b\n15 46 h f\n48 53 e g\n30 41 b c\n12 30 b f\n10 37 e f\n18 43 a h\n10 52 d a\n22 48 c e\n40 53 f d\n7 12 b h\n12 51 f a\n3 53 g a\n19 41 d h\n22 29 b h\n2 30 a b\n26 28 e h\n25 35 f a\n19 31 h h\n44 44 d e\n19 22 e c\n29 44 d h\n25 33 d h\n3 53 g c\n18 44 h b\n19 28 f e\n3 22 g h\n8 17 c a\n37 51 d d\n3 28 e h\n27 50 h h\n27 46 f b",
"output": "hhcbhfbfhfababbbbbbbbbbbbbbbbbeaaeaaeaaeabebdeaahahdh"
},
{
"input": "83 10\nfhbecdgadecabbbecedcgfdcefcbgechbedagecgdgfgdaahchdgchbeaedgafdefecdchceececfcdhcdh\n9 77 e e\n26 34 b g\n34 70 b a\n40 64 e g\n33 78 h f\n14 26 a a\n17 70 d g\n56 65 a c\n8 41 d c\n11 82 c b",
"output": "fhbecdgacebabbbebegbgfgbefbggebhgegagebgggfggaafbfggbfagbgggbfggfebgbfbeebebfbdhbdh"
},
{
"input": "1 4\ne\n1 1 c e\n1 1 e a\n1 1 e c\n1 1 d a",
"output": "a"
},
{
"input": "71 21\naaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa\n61 61 a a\n32 56 a a\n10 67 a a\n7 32 a a\n26 66 a a\n41 55 a a\n49 55 a a\n4 61 a a\n53 59 a a\n37 58 a a\n7 63 a a\n39 40 a a\n51 64 a a\n27 37 a a\n22 71 a a\n4 45 a a\n7 8 a a\n43 46 a a\n19 28 a a\n51 54 a a\n14 67 a a",
"output": "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa"
},
{
"input": "30 4\neaaddabedcbbcccddbabdecadcecce\n2 17 c a\n16 29 e e\n16 21 c b\n7 11 b c",
"output": "eaaddacedacbaaaddbabdecadcecce"
},
{
"input": "48 30\naaaabaabbaababbbaabaabaababbabbbaabbbaabaaaaaaba\n3 45 a b\n1 14 a a\n15 32 a b\n37 47 a b\n9 35 a b\n36 39 b b\n6 26 a b\n36 44 a a\n28 44 b a\n29 31 b a\n20 39 a a\n45 45 a b\n21 32 b b\n7 43 a b\n14 48 a b\n14 33 a b\n39 44 a a\n9 36 b b\n4 23 b b\n9 42 b b\n41 41 b a\n30 47 a b\n8 42 b a\n14 38 b b\n3 15 a a\n35 47 b b\n14 34 a b\n38 43 a b\n1 35 b a\n16 28 b a",
"output": "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaabbbbbbbbbbb"
},
{
"input": "89 29\nbabaabaaabaaaababbbbbbbabbbaaaaababbaababababbababaaabbababaaabbbbaaabaaaaaabaaabaabbabab\n39 70 b b\n3 56 b b\n5 22 b a\n4 39 a b\n41 87 b b\n34 41 a a\n10 86 a b\n29 75 a b\n2 68 a a\n27 28 b b\n42 51 b a\n18 61 a a\n6 67 b a\n47 63 a a\n8 68 a b\n4 74 b a\n19 65 a b\n8 55 a b\n5 30 a a\n3 65 a b\n16 57 a b\n34 56 b a\n1 70 a b\n59 68 b b\n29 57 b a\n47 49 b b\n49 73 a a\n32 61 b b\n29 42 a a",
"output": "bbbbbbbbbbbbbbbbbbbbbbbbbbbbaaaaaaaaaaaaaaaaaaaaaaaaaaaaabbbbbbbbbbbbbaaaabbbbbbbbbbbbbab"
},
{
"input": "59 14\nfbebcfabdefbaaedcefdeecababcabebadfbccaaedaebfdaefdbbcbebbe\n5 32 e f\n8 46 e e\n31 43 e f\n3 10 e a\n53 54 f d\n55 59 d a\n39 58 e b\n54 56 f a\n9 40 b e\n28 37 d a\n7 35 e b\n7 56 c f\n23 26 e a\n15 44 e d",
"output": "fbabcfabdffbaafdfffdfffababfabfbaafdffaafdabbfdabfdbbfbbbbe"
},
{
"input": "7 17\nbbaabab\n3 5 a b\n5 7 a a\n5 5 a a\n4 4 b a\n7 7 a a\n5 6 b b\n1 3 b a\n6 7 a b\n4 6 a b\n6 6 a a\n2 4 b a\n1 7 b a\n4 6 b b\n2 5 b b\n2 5 a b\n1 4 a a\n4 4 b a",
"output": "abbabaa"
},
{
"input": "100 1\ndebaaagbfdgehagadabfgheegggfghghgeeeabgceffeffggcbcegfgebbdhebhfagcgadcbdbabddbcadgbgdebdfehceehcaef\n13 99 f c",
"output": "debaaagbfdgehagadabcgheegggcghghgeeeabgcecceccggcbcegcgebbdhebhcagcgadcbdbabddbcadgbgdebdcehceehcaef"
},
{
"input": "1 1\na\n1 1 a b",
"output": "b"
},
{
"input": "100 1\naaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa\n1 100 a b",
"output": "bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb"
},
{
"input": "2 2\naa\n1 2 a b\n1 2 b c",
"output": "cc"
},
{
"input": "3 3\naaa\n1 3 a b\n1 3 b c\n1 3 c d",
"output": "ddd"
},
{
"input": "2 2\naa\n2 2 a b\n1 1 a b",
"output": "bb"
}
] | 1,664,970,084
| 2,147,483,647
|
PyPy 3-64
|
OK
|
TESTS
| 47
| 62
| 3,276,800
|
def main():
n, m = map(int, input().split())
st = list(input())
for _ in range(m):
l, r, c1, c2 = input().split()
for i in range(int(l)-1, int(r)):
if st[i] == c1:
st[i] = c2
print(''.join(st))
if __name__ == '__main__':
main()
|
Title: Scarborough Fair
Time Limit: None seconds
Memory Limit: None megabytes
Problem Description:
Parsley, sage, rosemary and thyme.
Remember me to one who lives there.
He once was the true love of mine.
Willem is taking the girl to the highest building in island No.28, however, neither of them knows how to get there.
Willem asks his friend, Grick for directions, Grick helped them, and gave them a task.
Although the girl wants to help, Willem insists on doing it by himself.
Grick gave Willem a string of length *n*.
Willem needs to do *m* operations, each operation has four parameters *l*,<=*r*,<=*c*1,<=*c*2, which means that all symbols *c*1 in range [*l*,<=*r*] (from *l*-th to *r*-th, including *l* and *r*) are changed into *c*2. String is 1-indexed.
Grick wants to know the final string after all the *m* operations.
Input Specification:
The first line contains two integers *n* and *m* (1<=≤<=*n*,<=*m*<=≤<=100).
The second line contains a string *s* of length *n*, consisting of lowercase English letters.
Each of the next *m* lines contains four parameters *l*,<=*r*,<=*c*1,<=*c*2 (1<=≤<=*l*<=≤<=*r*<=≤<=*n*, *c*1,<=*c*2 are lowercase English letters), separated by space.
Output Specification:
Output string *s* after performing *m* operations described above.
Demo Input:
['3 1\nioi\n1 1 i n\n', '5 3\nwxhak\n3 3 h x\n1 5 x a\n1 3 w g\n']
Demo Output:
['noi', 'gaaak']
Note:
For the second example:
After the first operation, the string is wxxak.
After the second operation, the string is waaak.
After the third operation, the string is gaaak.
|
```python
def main():
n, m = map(int, input().split())
st = list(input())
for _ in range(m):
l, r, c1, c2 = input().split()
for i in range(int(l)-1, int(r)):
if st[i] == c1:
st[i] = c2
print(''.join(st))
if __name__ == '__main__':
main()
```
| 3
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.