inputs
stringlengths 50
14k
| targets
stringlengths 4
655k
|
|---|---|
Given two strings str1 and str2, return the shortest string that has both str1 and str2 as subsequences. If multiple answers exist, you may return any of them.
(A string S is a subsequence of string T if deleting some number of characters from T (possibly 0, and the characters are chosen anywhere from T) results in the string S.)
Example 1:
Input: str1 = "abac", str2 = "cab"
Output: "cabac"
Explanation:
str1 = "abac" is a subsequence of "cabac" because we can delete the first "c".
str2 = "cab" is a subsequence of "cabac" because we can delete the last "ac".
The answer provided is the shortest such string that satisfies these properties.
Note:
1 <= str1.length, str2.length <= 1000
str1 and str2 consist of lowercase English letters.
|
class Solution:
def shortestCommonSupersequence(self, str1: str, str2: str) -> str:
m = len(str1)
n = len(str2)
DP = [[0 for j in range(n + 1)] for i in range(m + 1)]
res = []
for i in range(m + 1):
DP[i][0] = i
for j in range(n + 1):
DP[0][j] = j
for i in range(1, m + 1):
for j in range(1, n + 1):
if str1[i - 1] == str2[j - 1]:
DP[i][j] = 1 + DP[i - 1][j - 1]
else:
if DP[i - 1][j] < DP[i][j - 1]:
DP[i][j] = 1 + DP[i - 1][j]
else:
DP[i][j] = 1 + DP[i][j - 1]
#print(DP[m][n])
#build string from DP array
i = m
j = n
res = []
while i > 0 or j > 0:
if i - 1 >= 0 and j - 1 >= 0 and str1[i - 1] == str2[j - 1]:
res.append(str1[i - 1])
i -= 1
j -= 1
else:
if DP[i - 1][j] < DP[i][j - 1]:
res.append(str1[i - 1])
i -= 1
else:
res.append(str2[j - 1])
j -= 1
return ''.join(reversed(res))
|
Given two strings str1 and str2, return the shortest string that has both str1 and str2 as subsequences. If multiple answers exist, you may return any of them.
(A string S is a subsequence of string T if deleting some number of characters from T (possibly 0, and the characters are chosen anywhere from T) results in the string S.)
Example 1:
Input: str1 = "abac", str2 = "cab"
Output: "cabac"
Explanation:
str1 = "abac" is a subsequence of "cabac" because we can delete the first "c".
str2 = "cab" is a subsequence of "cabac" because we can delete the last "ac".
The answer provided is the shortest such string that satisfies these properties.
Note:
1 <= str1.length, str2.length <= 1000
str1 and str2 consist of lowercase English letters.
|
class Solution:
def shortestCommonSupersequence(self, str1: str, str2: str) -> str:
cache = [[0 for i in range(len(str2)+1)] for j in range(len(str1)+1)]
for i in range(1, len(str1)+1):
for j in range(1, len(str2)+1):
if str1[i-1] == str2[j-1]:
cache[i][j] = 1+cache[i-1][j-1]
else:
cache[i][j] = max(cache[i][j-1], cache[i-1][j])
print(cache)
i,j = len(str1), len(str2)
ans = ''
while i>0 and j>0:
if str1[i-1] == str2[j-1]:
ans = str1[i-1] + ans
i -= 1
j -= 1
elif cache[i][j-1] > cache[i-1][j]:
ans = str2[j-1] + ans
j -= 1
else:
ans = str1[i-1]+ans
i -= 1
print(str1, str2, ans, i, j)
if i > 0:
ans = str1[:i] + ans
i -= 1
if j > 0:
ans = str2[:j] + ans
j -= 1
return ans
|
Given two strings str1 and str2, return the shortest string that has both str1 and str2 as subsequences. If multiple answers exist, you may return any of them.
(A string S is a subsequence of string T if deleting some number of characters from T (possibly 0, and the characters are chosen anywhere from T) results in the string S.)
Example 1:
Input: str1 = "abac", str2 = "cab"
Output: "cabac"
Explanation:
str1 = "abac" is a subsequence of "cabac" because we can delete the first "c".
str2 = "cab" is a subsequence of "cabac" because we can delete the last "ac".
The answer provided is the shortest such string that satisfies these properties.
Note:
1 <= str1.length, str2.length <= 1000
str1 and str2 consist of lowercase English letters.
|
class Solution:
def shortestCommonSupersequence(self, str1: str, str2: str) -> str:
#https://leetcode.com/problems/shortest-common-supersequence/discuss/639784/Python-DP-with-detailed-explanation
#https://leetcode.com/problems/shortest-common-supersequence/discuss/674175/Python-Very-simple-solution-with-DP-Table-Memory-95
m,n = len(str1)+1, len(str2)+1
dp = ['']*n
for c in range(n):
dp[c] = str2[:c]
for r in range(1, m):
pre = dp[:] #use pre to store last row's information
dp[0] += str1[r-1]
for c in range(1, n):
if str1[r-1] == str2[c-1]:
dp[c] = pre[c-1]+str1[r-1]
else:
if len(pre[c]) < len(dp[c-1]):
dp[c] = pre[c] + str1[r-1]
else:
dp[c] = dp[c-1] + str2[c-1]
return dp[-1]
|
Given two strings str1 and str2, return the shortest string that has both str1 and str2 as subsequences. If multiple answers exist, you may return any of them.
(A string S is a subsequence of string T if deleting some number of characters from T (possibly 0, and the characters are chosen anywhere from T) results in the string S.)
Example 1:
Input: str1 = "abac", str2 = "cab"
Output: "cabac"
Explanation:
str1 = "abac" is a subsequence of "cabac" because we can delete the first "c".
str2 = "cab" is a subsequence of "cabac" because we can delete the last "ac".
The answer provided is the shortest such string that satisfies these properties.
Note:
1 <= str1.length, str2.length <= 1000
str1 and str2 consist of lowercase English letters.
|
class Solution:
def shortestCommonSupersequence(self, str1: str, str2: str) -> str:
n = len(str1)
m = len(str2)
dp = [[-1] * (m + 1) for _ in range(n + 1)]
for i in range(n + 1):
for j in range(m + 1):
if i == 0 or j == 0:
dp[i][j] = 0
else:
if str1[i - 1] == str2[j - 1]:
dp[i][j] = 1 + dp[i - 1][j - 1]
else:
dp[i][j] = max(dp[i][j - 1], dp[i - 1][j])
i = n
j = j
result = []
while i > 0 and j > 0:
if str1[i - 1] == str2[j - 1]:
result.append(str1[i - 1])
i -= 1
j -= 1
else:
left = dp[i][j - 1]
top = dp[i - 1][j]
if left > top:
result.append(str2[j - 1])
j -= 1
else:
result.append(str1[i - 1])
i -= 1
while i > 0:
result.append(str1[i - 1])
i -= 1
while j > 0:
result.append(str2[j - 1])
j -= 1
result = ''.join(result[::-1])
return result
|
Given two strings str1 and str2, return the shortest string that has both str1 and str2 as subsequences. If multiple answers exist, you may return any of them.
(A string S is a subsequence of string T if deleting some number of characters from T (possibly 0, and the characters are chosen anywhere from T) results in the string S.)
Example 1:
Input: str1 = "abac", str2 = "cab"
Output: "cabac"
Explanation:
str1 = "abac" is a subsequence of "cabac" because we can delete the first "c".
str2 = "cab" is a subsequence of "cabac" because we can delete the last "ac".
The answer provided is the shortest such string that satisfies these properties.
Note:
1 <= str1.length, str2.length <= 1000
str1 and str2 consist of lowercase English letters.
|
class Solution:
def shortestCommonSupersequence(self, str1: str, str2: str) -> str:
str1 = '0' + str1
str2 = '0' + str2
len_1, len_2 = len(str1), len(str2)
dp = [[0] * len_2 for _ in range(len_1)]
for i in range(1, len_1):
for j in range(1, len_2):
if str1[i] == str2[j]:
dp[i][j] = dp[i-1][j-1] + 1
else:
dp[i][j] = max(dp[i-1][j], dp[i][j-1])
res = ''
m, n = len_1 - 1, len_2 - 1
while m > 0 or n > 0:
if m == 0:
res += str2[n]
n -= 1
elif n == 0:
res += str1[m]
m -= 1
elif str1[m] == str2[n]:
res += str1[m]
m -= 1
n -= 1
elif dp[m-1][n] == dp[m][n]:
res += str1[m]
m -= 1
elif dp[m][n-1] == dp[m][n]:
res += str2[n]
n -= 1
# print(res)
return res[::-1]
|
Given two strings str1 and str2, return the shortest string that has both str1 and str2 as subsequences. If multiple answers exist, you may return any of them.
(A string S is a subsequence of string T if deleting some number of characters from T (possibly 0, and the characters are chosen anywhere from T) results in the string S.)
Example 1:
Input: str1 = "abac", str2 = "cab"
Output: "cabac"
Explanation:
str1 = "abac" is a subsequence of "cabac" because we can delete the first "c".
str2 = "cab" is a subsequence of "cabac" because we can delete the last "ac".
The answer provided is the shortest such string that satisfies these properties.
Note:
1 <= str1.length, str2.length <= 1000
str1 and str2 consist of lowercase English letters.
|
class Solution:
def shortestCommonSupersequence(self, str1: str, str2: str) -> str:
n = len(str1)
m = len(str2)
dp = [[-1] * (m + 1) for _ in range(n + 1)]
for i in range(n + 1):
for j in range(m + 1):
if i == 0 or j == 0:
dp[i][j] = 0
else:
if str1[i - 1] == str2[j - 1]:
dp[i][j] = 1 + dp[i - 1][j - 1]
else:
dp[i][j] = max(dp[i][j - 1], dp[i - 1][j])
i = n
j = m
result = []
while i > 0 and j > 0:
if str1[i - 1] == str2[j - 1]:
result.append(str1[i - 1])
i -= 1
j -= 1
else:
left = dp[i][j - 1]
top = dp[i - 1][j]
if left > top:
result.append(str2[j - 1])
j -= 1
else:
result.append(str1[i - 1])
i -= 1
while i > 0:
result.append(str1[i - 1])
i -= 1
while j > 0:
result.append(str2[j - 1])
j -= 1
result = ''.join(result[::-1])
return result
|
Given two strings str1 and str2, return the shortest string that has both str1 and str2 as subsequences. If multiple answers exist, you may return any of them.
(A string S is a subsequence of string T if deleting some number of characters from T (possibly 0, and the characters are chosen anywhere from T) results in the string S.)
Example 1:
Input: str1 = "abac", str2 = "cab"
Output: "cabac"
Explanation:
str1 = "abac" is a subsequence of "cabac" because we can delete the first "c".
str2 = "cab" is a subsequence of "cabac" because we can delete the last "ac".
The answer provided is the shortest such string that satisfies these properties.
Note:
1 <= str1.length, str2.length <= 1000
str1 and str2 consist of lowercase English letters.
|
class Solution:
def shortestCommonSupersequence(self, str1: str, str2: str) -> str:
longest_common_sub = ''
str1_len = len(str1)
str2_len = len(str2)
dp = [[0 for _ in range(str2_len + 1)] for _ in range(str1_len + 1)]
for i in range(str1_len + 1):
dp[i][0] = i
for j in range(str2_len + 1):
dp[0][j] = j
for i in range(1,str1_len+1):
for j in range(1, str2_len+1):
if str1[i-1] == str2[j-1]:
dp[i][j] = dp[i-1][j-1] + 1
else:
dp[i][j] = min(dp[i-1][j], dp[i][j-1]) + 1
# reconstruct the array
toret = []
i = str1_len
j = str2_len
while i > 0 or j > 0:
if i > 0 and j > 0 and str1[i-1] == str2[j-1]:
toret.append(str1[i-1])
i -= 1
j -= 1
else:
if dp[i-1][j] < dp[i][j-1]:
toret.append(str1[i-1])
i -= 1
else:
toret.append(str2[j-1])
j -= 1
return ''.join(reversed(toret))
|
Given two strings str1 and str2, return the shortest string that has both str1 and str2 as subsequences. If multiple answers exist, you may return any of them.
(A string S is a subsequence of string T if deleting some number of characters from T (possibly 0, and the characters are chosen anywhere from T) results in the string S.)
Example 1:
Input: str1 = "abac", str2 = "cab"
Output: "cabac"
Explanation:
str1 = "abac" is a subsequence of "cabac" because we can delete the first "c".
str2 = "cab" is a subsequence of "cabac" because we can delete the last "ac".
The answer provided is the shortest such string that satisfies these properties.
Note:
1 <= str1.length, str2.length <= 1000
str1 and str2 consist of lowercase English letters.
|
class Solution:
def shortestCommonSupersequence(self, s1: str, s2: str) -> str:
m, n = len(s1), len(s2)
dp = [[0] * (n + 1) for _ in range(m + 1)]
for i, c in enumerate(s1):
for j, d in enumerate(s2):
dp[i + 1][j + 1] = 1 + dp[i][j] if c == d else max(dp[i + 1][j], dp[i][j + 1])
i, j, stk = m - 1, n - 1, []
while i >= 0 and j >= 0:
if s1[i] == s2[j]:
stk.append(s1[i])
i -= 1
j -= 1
elif dp[i + 1][j] < dp[i][j + 1]:
stk.append(s1[i])
i -= 1
else:
stk.append(s2[j])
j -= 1
return s1[: i + 1] + s2[: j + 1] + ''.join(reversed(stk))
|
Given two strings str1 and str2, return the shortest string that has both str1 and str2 as subsequences. If multiple answers exist, you may return any of them.
(A string S is a subsequence of string T if deleting some number of characters from T (possibly 0, and the characters are chosen anywhere from T) results in the string S.)
Example 1:
Input: str1 = "abac", str2 = "cab"
Output: "cabac"
Explanation:
str1 = "abac" is a subsequence of "cabac" because we can delete the first "c".
str2 = "cab" is a subsequence of "cabac" because we can delete the last "ac".
The answer provided is the shortest such string that satisfies these properties.
Note:
1 <= str1.length, str2.length <= 1000
str1 and str2 consist of lowercase English letters.
|
class Solution:
def shortestCommonSupersequence(self, s: str, t: str) -> str:
dp =[[-1 for _ in range(len(t)+1)] for _ in range(len(s)+1)]
for i in range(len(s)+1):
for j in range(len(t)+1):
if i==0 or j==0:
dp[i][j]=0
elif s[i-1]==t[j-1]:
dp[i][j] = dp[i-1][j-1]+1
else:
dp[i][j] = max(dp[i-1][j], dp[i][j-1])
# for i in dp:
# print(i)
lcs =''
i,j=len(s),len(t)
while i>0 and j>0:
if s[i-1]==t[j-1]:
lcs += s[i-1]
i-=1
j-=1
else:
if dp[i][j-1]>dp[i-1][j]:
j-=1
lcs += t[j]
else:
i-=1
lcs+=s[i]
while i>0:
i-=1
lcs+=s[i]
while j>0:
j-=1
lcs +=t[j]
return lcs[::-1]
|
Given two strings str1 and str2, return the shortest string that has both str1 and str2 as subsequences. If multiple answers exist, you may return any of them.
(A string S is a subsequence of string T if deleting some number of characters from T (possibly 0, and the characters are chosen anywhere from T) results in the string S.)
Example 1:
Input: str1 = "abac", str2 = "cab"
Output: "cabac"
Explanation:
str1 = "abac" is a subsequence of "cabac" because we can delete the first "c".
str2 = "cab" is a subsequence of "cabac" because we can delete the last "ac".
The answer provided is the shortest such string that satisfies these properties.
Note:
1 <= str1.length, str2.length <= 1000
str1 and str2 consist of lowercase English letters.
|
class Solution:
def shortestCommonSupersequence(self, str1: str, str2: str) -> str:
M, N = len(str1), len(str2)
dp = [['']*(N+1) for _ in range(M+1)]
## TLE...
# for i in range(M):
# dp[i+1][0] = str1[:i+1]
# for i in range(N):
# dp[0][i+1] = str2[:i+1]
# for i in range(1, M+1):
# for j in range(1, N+1):
# if str1[i-1]==str2[j-1]:
# dp[i][j] = dp[i-1][j-1] + str1[i-1]
# else:
# if len(dp[i][j-1]) < len(dp[i-1][j]):
# dp[i][j] = dp[i][j-1] + str2[j-1]
# else:
# dp[i][j] = dp[i-1][j] + str1[i-1]
# # dp[i][j] = min(dp[i][j-1], dp[i-1][j]) + 1
# return dp[M][N]
for i in range(1, M+1):
for j in range(1, N+1):
if str1[i-1]==str2[j-1]:
dp[i][j] = dp[i-1][j-1] + str1[i-1]
else:
dp[i][j] = max(dp[i-1][j], dp[i][j-1], key=len)
LCS = dp[M][N]
res = ''
i = j = 0
for c in LCS:
while str1[i]!=c:
res += str1[i]
i+=1
while str2[j]!=c:
res += str2[j]
j+=1
res += c
i+=1
j+=1
res += str1[i:]
res += str2[j:]
return res
|
Given two strings str1 and str2, return the shortest string that has both str1 and str2 as subsequences. If multiple answers exist, you may return any of them.
(A string S is a subsequence of string T if deleting some number of characters from T (possibly 0, and the characters are chosen anywhere from T) results in the string S.)
Example 1:
Input: str1 = "abac", str2 = "cab"
Output: "cabac"
Explanation:
str1 = "abac" is a subsequence of "cabac" because we can delete the first "c".
str2 = "cab" is a subsequence of "cabac" because we can delete the last "ac".
The answer provided is the shortest such string that satisfies these properties.
Note:
1 <= str1.length, str2.length <= 1000
str1 and str2 consist of lowercase English letters.
|
class Solution:
def shortestCommonSupersequence(self, s1: str, s2: str) -> str:
m, n = len(s1), len(s2)
dp = [[''] * n for _ in range(m)]
for i in range(m):
for j in range(n):
if s1[i] == s2[j]:
dp[i][j] = dp[i-1][j-1] + s1[i] if i > 0 and j > 0 else s1[i]
else:
if i > 0 and j > 0:
dp[i][j] = max(dp[i-1][j], dp[i][j-1], key=len)
elif i > 0:
dp[i][j] = dp[i-1][j]
elif j > 0:
dp[i][j] = dp[i][j-1]
res, i, j = '', 0, 0
for ch in dp[-1][-1]:
while s1[i] != ch:
res += s1[i]
i += 1
while s2[j] != ch:
res += s2[j]
j += 1
res, i, j = res + ch, i + 1, j + 1
res += s1[i:] + s2[j:]
return res
|
Given two strings str1 and str2, return the shortest string that has both str1 and str2 as subsequences. If multiple answers exist, you may return any of them.
(A string S is a subsequence of string T if deleting some number of characters from T (possibly 0, and the characters are chosen anywhere from T) results in the string S.)
Example 1:
Input: str1 = "abac", str2 = "cab"
Output: "cabac"
Explanation:
str1 = "abac" is a subsequence of "cabac" because we can delete the first "c".
str2 = "cab" is a subsequence of "cabac" because we can delete the last "ac".
The answer provided is the shortest such string that satisfies these properties.
Note:
1 <= str1.length, str2.length <= 1000
str1 and str2 consist of lowercase English letters.
|
class Solution:
def shortestCommonSupersequence(self, s1: str, s2: str) -> str:
m, n = len(s1), len(s2)
dp = [[0] * (n + 1) for _ in range(m + 1)]
for i, c in enumerate(s1):
for j, d in enumerate(s2):
dp[i + 1][j + 1] = 1 + dp[i][j] if c == d else max(dp[i + 1][j], dp[i][j + 1])
i, j, stk = m - 1, n - 1, []
while i >= 0 and j >= 0:
if s1[i] == s2[j]:
stk.append(s1[i])
i -= 1
j -= 1
elif dp[i + 1][j] < dp[i][j + 1]:
stk.append(s1[i])
i -= 1
else:
stk.append(s2[j])
j -= 1
return s1[: i + 1] + s2[: j + 1] + ''.join(reversed(stk))
|
Given two strings str1 and str2, return the shortest string that has both str1 and str2 as subsequences. If multiple answers exist, you may return any of them.
(A string S is a subsequence of string T if deleting some number of characters from T (possibly 0, and the characters are chosen anywhere from T) results in the string S.)
Example 1:
Input: str1 = "abac", str2 = "cab"
Output: "cabac"
Explanation:
str1 = "abac" is a subsequence of "cabac" because we can delete the first "c".
str2 = "cab" is a subsequence of "cabac" because we can delete the last "ac".
The answer provided is the shortest such string that satisfies these properties.
Note:
1 <= str1.length, str2.length <= 1000
str1 and str2 consist of lowercase English letters.
|
class Solution:
def shortestCommonSupersequence(self, str1: str, str2: str) -> str:
n1, n2 = len(str1), len(str2)
def lcs():
dp = [[''] * (n2 + 1) for _ in range(n1 + 1)]
for i in range(1, n1 + 1):
for j in range(1, n2 + 1):
if str1[i-1] == str2[j-1]:
dp[i][j] = dp[i-1][j-1] + str1[i-1]
else:
dp[i][j] = max(dp[i-1][j], dp[i][j-1], key=len)
return dp[-1][-1]
i = j = 0
res = ''
for ch in lcs():
while i < n1 and str1[i] != ch:
res += str1[i]
i += 1
while j < n2 and str2[j] != ch:
res += str2[j]
j += 1
res += ch
i += 1
j += 1
return res + str1[i:] + str2[j:]
|
Given two strings str1 and str2, return the shortest string that has both str1 and str2 as subsequences. If multiple answers exist, you may return any of them.
(A string S is a subsequence of string T if deleting some number of characters from T (possibly 0, and the characters are chosen anywhere from T) results in the string S.)
Example 1:
Input: str1 = "abac", str2 = "cab"
Output: "cabac"
Explanation:
str1 = "abac" is a subsequence of "cabac" because we can delete the first "c".
str2 = "cab" is a subsequence of "cabac" because we can delete the last "ac".
The answer provided is the shortest such string that satisfies these properties.
Note:
1 <= str1.length, str2.length <= 1000
str1 and str2 consist of lowercase English letters.
|
class Solution:
def shortestCommonSupersequence(self, str1: str, str2: str) -> str:
@lru_cache(None)
def lcs(x, y):
m, n = len(x), len(y)
dp = [['' for _ in range(n+1)] for _ in range(m+1)]
for i in range(1, m+1):
for j in range(1, n+1):
if x[i-1] == y[j-1]:
dp[i][j] = dp[i-1][j-1] + x[i-1]
else:
dp[i][j] = max(dp[i][j-1], dp[i-1][j], key=len)
return dp[-1][-1]
# print(lcs(str1, str2))
lcs_ = lcs(str1, str2)
i = 0
j = 0
res = ''
for c in lcs_:
while str1[i] != c:
res += str1[i]
i += 1
while str2[j] != c:
res += str2[j]
j += 1
res += c
i += 1
j += 1
# print(res)
return res + str1[i:] + str2[j:]
|
Given two strings str1 and str2, return the shortest string that has both str1 and str2 as subsequences. If multiple answers exist, you may return any of them.
(A string S is a subsequence of string T if deleting some number of characters from T (possibly 0, and the characters are chosen anywhere from T) results in the string S.)
Example 1:
Input: str1 = "abac", str2 = "cab"
Output: "cabac"
Explanation:
str1 = "abac" is a subsequence of "cabac" because we can delete the first "c".
str2 = "cab" is a subsequence of "cabac" because we can delete the last "ac".
The answer provided is the shortest such string that satisfies these properties.
Note:
1 <= str1.length, str2.length <= 1000
str1 and str2 consist of lowercase English letters.
|
class Solution:
def shortestCommonSupersequence(self, str1: str, str2: str) -> str:
# build dp for LCS
dp = [[0]*(len(str1)+1) for _ in range(len(str2)+1)]
for r in range(1, len(dp)):
for c in range(1, len(dp[0])):
diag = dp[r-1][c-1]
up = dp[r-1][c]
left = dp[r][c-1]
if str1[c-1] == str2[r-1]:
diag += 1
dp[r][c] = max(diag, up, left)
# build supersequence by going up the dp grid
r = len(str2)
c = len(str1)
res = []
while r > 0 and c > 0:
if str1[c-1] == str2[r-1]:
res.append(str1[c-1])
r -= 1
c -= 1
else:
# move up/left depending on which dp is larger
up = dp[r-1][c]
left = dp[r][c-1]
if up > left:
# move up
res.append(str2[r-1])
r -= 1
else:
# move left
res.append(str1[c-1])
c -= 1
while r > 0:
res.append(str2[r-1])
r -= 1
while c > 0:
res.append(str1[c-1])
c -= 1
return ''.join(res[::-1])
|
Given two strings str1 and str2, return the shortest string that has both str1 and str2 as subsequences. If multiple answers exist, you may return any of them.
(A string S is a subsequence of string T if deleting some number of characters from T (possibly 0, and the characters are chosen anywhere from T) results in the string S.)
Example 1:
Input: str1 = "abac", str2 = "cab"
Output: "cabac"
Explanation:
str1 = "abac" is a subsequence of "cabac" because we can delete the first "c".
str2 = "cab" is a subsequence of "cabac" because we can delete the last "ac".
The answer provided is the shortest such string that satisfies these properties.
Note:
1 <= str1.length, str2.length <= 1000
str1 and str2 consist of lowercase English letters.
|
class Solution:
def shortestCommonSupersequence(self, str1: str, str2: str) -> str:
if len(str2) > len(str1):
str1, str2 = str2, str1
if not str1 or not str2:
return str1
m, n = len(str1), len(str2)
dp = [[0] * (m+1) for _ in range(n+1)]
for i in range(1, n+1):
for j in range(1, m+1):
if str2[i-1] == str1[j-1]:
dp[i][j] = dp[i-1][j-1] + 1
else:
dp[i][j] = max(dp[i-1][j], dp[i][j-1])
#print(dp)
final_str = ''
i, j = n, m
c1 = str1[j-1]
c2 = str2[i-1]
while i > 0 or j > 0:
#print(f'{i} {c2} {j} {c1}')
if c1 == c2:
final_str += c1
i -= 1
j -= 1
c1 = str1[j-1] if j > 0 else ''
c2 = str2[i-1] if i > 0 else ''
else:
if i == 0 or dp[i][j-1] > dp[i-1][j]:
final_str += c1
j -= 1
c1 = str1[j-1] if j > 0 else ''
else:
final_str += c2
i -= 1
c2 = str2[i-1] if i > 0 else ''
return ''.join(reversed(final_str))
|
Given two strings str1 and str2, return the shortest string that has both str1 and str2 as subsequences. If multiple answers exist, you may return any of them.
(A string S is a subsequence of string T if deleting some number of characters from T (possibly 0, and the characters are chosen anywhere from T) results in the string S.)
Example 1:
Input: str1 = "abac", str2 = "cab"
Output: "cabac"
Explanation:
str1 = "abac" is a subsequence of "cabac" because we can delete the first "c".
str2 = "cab" is a subsequence of "cabac" because we can delete the last "ac".
The answer provided is the shortest such string that satisfies these properties.
Note:
1 <= str1.length, str2.length <= 1000
str1 and str2 consist of lowercase English letters.
|
class Solution:
def shortestCommonSupersequence(self, str1: str, str2: str) -> str:
m = len(str1)
n = len(str2)
dp = [[-1]*(n+1) for i in range(m+1)]
for i in range(m+1):
dp[i][0]=0
for j in range(n+1):
dp[0][j]=0
for i in range(1, m+1):
for j in range(1, n+1):
if str1[i-1]==str2[j-1]:
dp[i][j]=1+dp[i-1][j-1]
else:
dp[i][j]=max(dp[i-1][j], dp[i][j-1])
i = m
j = n
s = ''
while(i>0 and j>0):
if str1[i-1]==str2[j-1]:
s = s+str1[i-1]
i = i-1
j = j-1
else:
if dp[i-1][j]>dp[i][j-1]:
s = s+str1[i-1]
i = i-1
else:
s=s+str2[j-1]
j = j-1
while(i>0):
s = s+str1[i-1]
i = i-1
while(j>0):
s= s+str2[j-1]
j = j-1
return s[::-1]
|
Given two strings str1 and str2, return the shortest string that has both str1 and str2 as subsequences. If multiple answers exist, you may return any of them.
(A string S is a subsequence of string T if deleting some number of characters from T (possibly 0, and the characters are chosen anywhere from T) results in the string S.)
Example 1:
Input: str1 = "abac", str2 = "cab"
Output: "cabac"
Explanation:
str1 = "abac" is a subsequence of "cabac" because we can delete the first "c".
str2 = "cab" is a subsequence of "cabac" because we can delete the last "ac".
The answer provided is the shortest such string that satisfies these properties.
Note:
1 <= str1.length, str2.length <= 1000
str1 and str2 consist of lowercase English letters.
|
class Solution:
def shortestCommonSupersequence(self, s1: str, s2: str) -> str:
m, n = len(s1), len(s2)
dp = [[''] * n for _ in range(m)]
for i in range(m):
for j in range(n):
if s1[i] == s2[j]:
dp[i][j] = dp[i-1][j-1] + s1[i] if i > 0 and j > 0 else s1[i]
else:
if i > 0 and j > 0:
dp[i][j] = max(dp[i-1][j], dp[i][j-1], key=len)
elif i > 0:
dp[i][j] = dp[i-1][j]
elif j > 0:
dp[i][j] = dp[i][j-1]
res, i, j = '', 0, 0
for ch in dp[-1][-1]:
while i < len(s1) and s1[i] != ch:
res += s1[i]
i += 1
while j < len(s2) and s2[j] != ch:
res += s2[j]
j += 1
res += ch
i += 1
j += 1
res += s1[i:] + s2[j:]
return res
|
Given two strings str1 and str2, return the shortest string that has both str1 and str2 as subsequences. If multiple answers exist, you may return any of them.
(A string S is a subsequence of string T if deleting some number of characters from T (possibly 0, and the characters are chosen anywhere from T) results in the string S.)
Example 1:
Input: str1 = "abac", str2 = "cab"
Output: "cabac"
Explanation:
str1 = "abac" is a subsequence of "cabac" because we can delete the first "c".
str2 = "cab" is a subsequence of "cabac" because we can delete the last "ac".
The answer provided is the shortest such string that satisfies these properties.
Note:
1 <= str1.length, str2.length <= 1000
str1 and str2 consist of lowercase English letters.
|
class Solution:
def shortestCommonSupersequence(self, str1: str, str2: str) -> str:
'''
@params: two strings str1 and str2
@return: shortest common supersequence
'''
# Use Dynamic Programming to first compute shortest common subsequence
m = len(str1)
n = len(str2)
dp = [[0] * (n+1) for _ in range(m+1)]
for i in range(1, m+1):
for j in range(1, n+1):
# Case 1: delete text1[i] in common subsequence
deletion = dp[i-1][j]
# Case 2: delete text2[j] in common subsequence
insertion = dp[i][j-1]
# Case 3: match --> common subsequence extend by 1
match = dp[i-1][j-1] + 1
# Case 4: mistch --> common subsequence keeps the same
mismatch = dp[i-1][j-1]
if str1[i-1] == str2[j-1]:
dp[i][j] = max(deletion, insertion, match)
else:
dp[i][j] = max(deletion, insertion, mismatch)
# Backtrack from dp[m][n] to construct shortest common supersequence
# in revered order
i, j = m, n
ans = []
while i > 0 or j > 0:
# Case 1: str1 is used up
if i == 0:
ans.append(str2[j-1])
j -= 1
# Case 2: str2 is used up
elif j == 0:
ans.append(str1[i-1])
i -= 1
# Case 3: match
elif str1[i-1] == str2[j-1]:
ans.append(str1[i-1])
i -= 1
j -= 1
# Case 4: insertion of str1
elif dp[i][j] == dp[i-1][j]:
ans.append(str1[i-1])
i -= 1
# Case 5: deletion of str2
elif dp[i][j] == dp[i][j-1]:
ans.append(str2[j-1])
j -= 1
#print('i, j: ', i, j)
#print(''.join(reversed(ans)))
return ''.join(reversed(ans))
|
Given two strings str1 and str2, return the shortest string that has both str1 and str2 as subsequences. If multiple answers exist, you may return any of them.
(A string S is a subsequence of string T if deleting some number of characters from T (possibly 0, and the characters are chosen anywhere from T) results in the string S.)
Example 1:
Input: str1 = "abac", str2 = "cab"
Output: "cabac"
Explanation:
str1 = "abac" is a subsequence of "cabac" because we can delete the first "c".
str2 = "cab" is a subsequence of "cabac" because we can delete the last "ac".
The answer provided is the shortest such string that satisfies these properties.
Note:
1 <= str1.length, str2.length <= 1000
str1 and str2 consist of lowercase English letters.
|
class Solution:
def shortestCommonSupersequence(self, str1: str, str2: str) -> str:
m, n = len(str1), len(str2)
dp = [[0] * (n + 1) for _ in range(m + 1)]
for i in range(1, m + 1):
for j in range(1, n + 1):
if str1[i - 1] == str2[j - 1]:
dp[i][j] = 1 + dp[i - 1][j - 1]
else:
dp[i][j] = max(dp[i - 1][j], dp[i][j - 1])
s = []
i, j = m, n
while i > 0 and j > 0:
if str1[i - 1] == str2[j - 1]:
s.append(str1[i - 1])
i -= 1
j -= 1
elif dp[i][j - 1] > dp[i - 1][j]:
s.append(str2[j - 1])
j -= 1
else:
s.append(str1[i - 1])
i -= 1
while j > 0:
s.append(str2[j - 1])
j -= 1
while i > 0:
s.append(str1[i - 1])
i -= 1
s.reverse()
return ''.join(s)
|
Given two strings str1 and str2, return the shortest string that has both str1 and str2 as subsequences. If multiple answers exist, you may return any of them.
(A string S is a subsequence of string T if deleting some number of characters from T (possibly 0, and the characters are chosen anywhere from T) results in the string S.)
Example 1:
Input: str1 = "abac", str2 = "cab"
Output: "cabac"
Explanation:
str1 = "abac" is a subsequence of "cabac" because we can delete the first "c".
str2 = "cab" is a subsequence of "cabac" because we can delete the last "ac".
The answer provided is the shortest such string that satisfies these properties.
Note:
1 <= str1.length, str2.length <= 1000
str1 and str2 consist of lowercase English letters.
|
class Solution:
def shortestCommonSupersequence(self, a: str, b: str) -> str:
def lcs(a,b):
n, m = len(a),len(b)
dp = [['' for j in range(m+1)] for i in range(n+1)]
for i in range(n):
for j in range(m):
if a[i]==b[j]:
dp[i+1][j+1]=dp[i][j]+a[i]
else:
dp[i+1][j+1]=max(dp[i+1][j], dp[i][j+1] , key =len)
return dp[-1][-1]
res , i ,j = '',0,0
for c in lcs(a,b):
while a[i]!=c:
res+=a[i]
i+=1
while b[j]!=c:
res+=b[j]
j+=1
res+=c
i+=1
j+=1
res+= a[i:]+b[j:]
return res
|
Given two strings str1 and str2, return the shortest string that has both str1 and str2 as subsequences. If multiple answers exist, you may return any of them.
(A string S is a subsequence of string T if deleting some number of characters from T (possibly 0, and the characters are chosen anywhere from T) results in the string S.)
Example 1:
Input: str1 = "abac", str2 = "cab"
Output: "cabac"
Explanation:
str1 = "abac" is a subsequence of "cabac" because we can delete the first "c".
str2 = "cab" is a subsequence of "cabac" because we can delete the last "ac".
The answer provided is the shortest such string that satisfies these properties.
Note:
1 <= str1.length, str2.length <= 1000
str1 and str2 consist of lowercase English letters.
|
class Solution:
def shortestCommonSupersequence(self, str1: str, str2: str) -> str:
m=len(str1)
n=len(str2)
dp = [[0 for x in range(n+1)] for x in range(m+1)]
for i in range(m+1):
for j in range(n+1):
if i == 0 or j == 0:
dp[i][j] = 0
elif str1[i-1] == str2[j-1]:
dp[i][j] = dp[i-1][j-1] + 1
else:
dp[i][j] = max(dp[i-1][j], dp[i][j-1])
s=''
i = m
j = n
while i > 0 and j > 0:
if str1[i-1] == str2[j-1]:
s += str1[i-1]
i-=1
j-=1
elif dp[i-1][j] > dp[i][j-1]:
i-=1
else:
j-=1
res=s[::-1]
i,j,st=0,0,0
final=''
while(i<m and j<n and st<len(res)):
if str1[i]!=res[st]:
final+=str1[i]
i+=1
if str2[j]!=res[st]:
final+=str2[j]
j+=1
elif str1[i]==res[st]:
final+=res[st]
i+=1
j+=1
st+=1
final+=str2[j:]+str1[i:]
return final
|
Given two strings str1 and str2, return the shortest string that has both str1 and str2 as subsequences. If multiple answers exist, you may return any of them.
(A string S is a subsequence of string T if deleting some number of characters from T (possibly 0, and the characters are chosen anywhere from T) results in the string S.)
Example 1:
Input: str1 = "abac", str2 = "cab"
Output: "cabac"
Explanation:
str1 = "abac" is a subsequence of "cabac" because we can delete the first "c".
str2 = "cab" is a subsequence of "cabac" because we can delete the last "ac".
The answer provided is the shortest such string that satisfies these properties.
Note:
1 <= str1.length, str2.length <= 1000
str1 and str2 consist of lowercase English letters.
|
class Solution:
def shortestCommonSupersequence(self, str1: str, str2: str) -> str:
size1, size2 = len(str1), len(str2)
dp = [None] * (size2 + 1)
dp[0] = ''
for i in range(1, size2 + 1):
dp[i] = dp[i-1] + str2[i-1]
for i1 in range(1, size1 + 1):
newDP = [None] * (size2 + 1)
newDP[0] = dp[0] + str1[i1-1]
for i2 in range(1, size2 + 1):
if str1[i1-1] == str2[i2-1]:
newDP[i2] = dp[i2-1] + str1[i1-1]
else:
newDP[i2] = min(
dp[i2] + str1[i1-1],
newDP[i2-1] + str2[i2-1],
key=len)
dp = newDP
return dp[-1]
|
Given two strings str1 and str2, return the shortest string that has both str1 and str2 as subsequences. If multiple answers exist, you may return any of them.
(A string S is a subsequence of string T if deleting some number of characters from T (possibly 0, and the characters are chosen anywhere from T) results in the string S.)
Example 1:
Input: str1 = "abac", str2 = "cab"
Output: "cabac"
Explanation:
str1 = "abac" is a subsequence of "cabac" because we can delete the first "c".
str2 = "cab" is a subsequence of "cabac" because we can delete the last "ac".
The answer provided is the shortest such string that satisfies these properties.
Note:
1 <= str1.length, str2.length <= 1000
str1 and str2 consist of lowercase English letters.
|
class Solution:
def shortestCommonSupersequence(self, str1: str, str2: str) -> str:
size1, size2 = len(str1), len(str2)
Inf = str1 + str2
dp = [None] * (size2 + 1)
dp[0] = ''
for i in range(1, size2 + 1):
dp[i] = dp[i-1] + str2[i-1]
for i1 in range(1, size1 + 1):
newDP = [None] * (size2 + 1)
newDP[0] = dp[0] + str1[i1-1]
for i2 in range(1, size2 + 1):
if str1[i1-1] == str2[i2-1]:
newDP[i2] = dp[i2-1] + str1[i1-1]
else:
newDP[i2] = min(
dp[i2] + str1[i1-1],
newDP[i2-1] + str2[i2-1],
key=len)
dp = newDP
return dp[-1]
|
Given two strings str1 and str2, return the shortest string that has both str1 and str2 as subsequences. If multiple answers exist, you may return any of them.
(A string S is a subsequence of string T if deleting some number of characters from T (possibly 0, and the characters are chosen anywhere from T) results in the string S.)
Example 1:
Input: str1 = "abac", str2 = "cab"
Output: "cabac"
Explanation:
str1 = "abac" is a subsequence of "cabac" because we can delete the first "c".
str2 = "cab" is a subsequence of "cabac" because we can delete the last "ac".
The answer provided is the shortest such string that satisfies these properties.
Note:
1 <= str1.length, str2.length <= 1000
str1 and str2 consist of lowercase English letters.
|
class Solution:
def shortestCommonSupersequence(self, str1: str, str2: str) -> str:
m, n = len(str1), len(str2)
dp = [[0]*(n+1) for _ in range(m+1)]
for i in range(1, m+1):
for j in range(1, n+1):
if str1[i-1]==str2[j-1]:
dp[i][j] = dp[i-1][j-1]+1
else:
dp[i][j] = max(dp[i-1][j], dp[i][j-1])
i, j = m, n
lcs = []
while i>0 and j>0:
if str1[i-1]==str2[j-1]:
lcs.append(str1[i-1])
i -= 1
j -= 1
else:
if dp[i-1][j]>dp[i][j-1]:
i -= 1
else:
j -= 1
lcs.reverse()
insert_1 = defaultdict(list)
idx = 0
for i in range(m):
if idx<len(lcs) and str1[i]==lcs[idx]:
idx += 1
else:
insert_1[idx].append(str1[i])
insert_2 = defaultdict(list)
idx = 0
for i in range(n):
if idx<len(lcs) and str2[i]==lcs[idx]:
idx += 1
else:
insert_2[idx].append(str2[i])
ans = ''
for i in range(idx):
ans += ''.join(insert_1[i])+''.join(insert_2[i])+lcs[i]
ans += ''.join(insert_1[idx])+''.join(insert_2[idx])
return ans
|
Given two strings str1 and str2, return the shortest string that has both str1 and str2 as subsequences. If multiple answers exist, you may return any of them.
(A string S is a subsequence of string T if deleting some number of characters from T (possibly 0, and the characters are chosen anywhere from T) results in the string S.)
Example 1:
Input: str1 = "abac", str2 = "cab"
Output: "cabac"
Explanation:
str1 = "abac" is a subsequence of "cabac" because we can delete the first "c".
str2 = "cab" is a subsequence of "cabac" because we can delete the last "ac".
The answer provided is the shortest such string that satisfies these properties.
Note:
1 <= str1.length, str2.length <= 1000
str1 and str2 consist of lowercase English letters.
|
class Solution:
def shortestCommonSupersequence(self, str1: str, str2: str) -> str:
m, n = len(str1), len(str2)
@lru_cache(None)
def dp(i, j):
if i == m or j == n:
return 0
if str1[i] == str2[j]:
return 1 + dp(i + 1, j + 1)
return max(dp(i + 1, j), dp(i, j + 1))
dp(0, 0)
i = 0
j = 0
result = ''
while i < m and j < n:
if str1[i] == str2[j]:
result += str1[i]
i += 1
j += 1
else:
s1 = dp(i + 1, j)
s2 = dp(i, j + 1)
if s1 > s2:
result += str1[i]
i += 1
else:
result += str2[j]
j += 1
if i < m:
result += str1[i:]
if j < n:
result += str2[j:]
return result
|
Given an input string (s) and a pattern (p), implement wildcard pattern matching with support for '?' and '*'.
'?' Matches any single character.
'*' Matches any sequence of characters (including the empty sequence).
The matching should cover the entire input string (not partial).
Note:
s could be empty and contains only lowercase letters a-z.
p could be empty and contains only lowercase letters a-z, and characters like ? or *.
Example 1:
Input:
s = "aa"
p = "a"
Output: false
Explanation: "a" does not match the entire string "aa".
Example 2:
Input:
s = "aa"
p = "*"
Output: true
Explanation: '*' matches any sequence.
Example 3:
Input:
s = "cb"
p = "?a"
Output: false
Explanation: '?' matches 'c', but the second letter is 'a', which does not match 'b'.
Example 4:
Input:
s = "adceb"
p = "*a*b"
Output: true
Explanation: The first '*' matches the empty sequence, while the second '*' matches the substring "dce".
Example 5:
Input:
s = "acdcb"
p = "a*c?b"
Output: false
|
class Solution:
def isMatch(self, s, p):
"""
:type s: str
:type p: str
:rtype: bool
"""
'''维护两个下标,逐个比较,如果pj为*,则记录*的位置,将*后一个元素与si进行比较,如果不相等,则将i从记录的位置+1,重新比较'''
i=0
j=0
star=-1
lenp=len(p)
while i<len(s):
if j<lenp and (s[i]==p[j] or p[j]=='?'):
i+=1
j+=1
elif j<lenp and p[j]=='*':
star=j
mi=i
j+=1
elif star!=-1:
mi+=1
i=mi
j=star+1
else:
return False
while j<lenp and p[j]=='*':
j+=1
return j==lenp
|
Given an input string (s) and a pattern (p), implement wildcard pattern matching with support for '?' and '*'.
'?' Matches any single character.
'*' Matches any sequence of characters (including the empty sequence).
The matching should cover the entire input string (not partial).
Note:
s could be empty and contains only lowercase letters a-z.
p could be empty and contains only lowercase letters a-z, and characters like ? or *.
Example 1:
Input:
s = "aa"
p = "a"
Output: false
Explanation: "a" does not match the entire string "aa".
Example 2:
Input:
s = "aa"
p = "*"
Output: true
Explanation: '*' matches any sequence.
Example 3:
Input:
s = "cb"
p = "?a"
Output: false
Explanation: '?' matches 'c', but the second letter is 'a', which does not match 'b'.
Example 4:
Input:
s = "adceb"
p = "*a*b"
Output: true
Explanation: The first '*' matches the empty sequence, while the second '*' matches the substring "dce".
Example 5:
Input:
s = "acdcb"
p = "a*c?b"
Output: false
|
class Solution:
def isMatch(self, s, p):
"""
:type s: str
:type p: str
:rtype: bool
"""
m = len(s)
n = len(p)
starj = -1
last_match = -1
i = j = 0
while i<m:
if j<n and (s[i]==p[j] or p[j]=='?'):
i+=1
j+=1
elif j<n and p[j]=='*':
starj = j
j += 1
last_match = i
elif starj!=-1:
j = starj+1
last_match +=1
i = last_match
else:
return False
while j<n and p[j]=='*':
j+=1
return j==n
|
Given an input string (s) and a pattern (p), implement wildcard pattern matching with support for '?' and '*'.
'?' Matches any single character.
'*' Matches any sequence of characters (including the empty sequence).
The matching should cover the entire input string (not partial).
Note:
s could be empty and contains only lowercase letters a-z.
p could be empty and contains only lowercase letters a-z, and characters like ? or *.
Example 1:
Input:
s = "aa"
p = "a"
Output: false
Explanation: "a" does not match the entire string "aa".
Example 2:
Input:
s = "aa"
p = "*"
Output: true
Explanation: '*' matches any sequence.
Example 3:
Input:
s = "cb"
p = "?a"
Output: false
Explanation: '?' matches 'c', but the second letter is 'a', which does not match 'b'.
Example 4:
Input:
s = "adceb"
p = "*a*b"
Output: true
Explanation: The first '*' matches the empty sequence, while the second '*' matches the substring "dce".
Example 5:
Input:
s = "acdcb"
p = "a*c?b"
Output: false
|
class Solution:
def isMatch(self, s, p):
"""
:type s: str
:type p: str
:rtype: bool
"""
sp = 0
pp = 0
match = 0
star = -1
while sp < len(s):
if (pp < len(p) and (s[sp] == p[pp] or p[pp] == '?')):
sp +=1
pp +=1
elif pp < len(p) and p[pp] == '*':
star = pp
match = sp
pp +=1
elif star != -1:
pp = star + 1
match +=1
sp = match
else:
return False
while(pp < len(p) and p[pp] == '*'):
pp += 1
return pp == len(p)
|
Given an input string (s) and a pattern (p), implement wildcard pattern matching with support for '?' and '*'.
'?' Matches any single character.
'*' Matches any sequence of characters (including the empty sequence).
The matching should cover the entire input string (not partial).
Note:
s could be empty and contains only lowercase letters a-z.
p could be empty and contains only lowercase letters a-z, and characters like ? or *.
Example 1:
Input:
s = "aa"
p = "a"
Output: false
Explanation: "a" does not match the entire string "aa".
Example 2:
Input:
s = "aa"
p = "*"
Output: true
Explanation: '*' matches any sequence.
Example 3:
Input:
s = "cb"
p = "?a"
Output: false
Explanation: '?' matches 'c', but the second letter is 'a', which does not match 'b'.
Example 4:
Input:
s = "adceb"
p = "*a*b"
Output: true
Explanation: The first '*' matches the empty sequence, while the second '*' matches the substring "dce".
Example 5:
Input:
s = "acdcb"
p = "a*c?b"
Output: false
|
class Solution:
def isMatch(self, s, p):
"""
:type s: str
:type p: str
:rtype: bool
"""
len_s = len(s)
len_p = len(p)
if len_s == 0 and len_p == 0:
return True
elif len_p == 0:
return False
elif len_p == p.count('*'):
return True
elif len_p - p.count('*') > len_s:
return False
i_s = 0
i_p = 0
star_index = None
s_star_match = None
while i_s < len_s:
pchar = p[i_p] if i_p < len_p else None
schar = s[i_s]
if pchar == '*':
star_index = i_p
s_star_match = i_s
i_p += 1
elif pchar == '?' or pchar == schar:
i_s +=1
i_p += 1
elif star_index is not None:
i_p = star_index + 1
s_star_match += 1
i_s = s_star_match
else:
return False
while i_p < len_p and p[i_p] == '*':
i_p += 1
return i_p == len_p
|
Strings A and B are K-similar (for some non-negative integer K) if we can swap the positions of two letters in A exactly K times so that the resulting string equals B.
Given two anagrams A and B, return the smallest K for which A and B are K-similar.
Example 1:
Input: A = "ab", B = "ba"
Output: 1
Example 2:
Input: A = "abc", B = "bca"
Output: 2
Example 3:
Input: A = "abac", B = "baca"
Output: 2
Example 4:
Input: A = "aabc", B = "abca"
Output: 2
Note:
1 <= A.length == B.length <= 20
A and B contain only lowercase letters from the set {'a', 'b', 'c', 'd', 'e', 'f'}
|
class Solution:
def kSimilarity(self, A: str, B: str) -> int:
a = ''
b = ''
for i in range(len(A)):
if A[i] != B[i]:
a+=A[i]
b+=B[i]
return self.dfs(a,b)
def dfs(self,a,b):
if not a:
return 0
one = []
two = []
for i in range(len(a)):
if a[0] == b[i]:
one.append(i)
if b[0] == a[i]:
two.append(i)
if two:
i = two[0]
c = a[1:i] + a[i+1:]
d = b[1:i] + b[i+1:]
return self.dfs(c,d) + 1
else:
res = float('inf')
for i in one:
c = a[i] + a[1:i] + a[i+1:]
d = b[:i]+b[i+1:]
res= min(res,self.dfs(c,d)+1)
return res
|
Strings A and B are K-similar (for some non-negative integer K) if we can swap the positions of two letters in A exactly K times so that the resulting string equals B.
Given two anagrams A and B, return the smallest K for which A and B are K-similar.
Example 1:
Input: A = "ab", B = "ba"
Output: 1
Example 2:
Input: A = "abc", B = "bca"
Output: 2
Example 3:
Input: A = "abac", B = "baca"
Output: 2
Example 4:
Input: A = "aabc", B = "abca"
Output: 2
Note:
1 <= A.length == B.length <= 20
A and B contain only lowercase letters from the set {'a', 'b', 'c', 'd', 'e', 'f'}
|
class Solution:
def kSimilarity(self, A: str, B: str) -> int:
if A == B: return 0
def neighbors(s, i=0):
while s[i] == B[i]: i+= 1
for j in range(i+1, len(A)):
if s[j] == B[i] and B[j] == s[i]:
yield s[:i] + s[j] + s[i+1:j] + s[i] + s[j+1:]
return
for j in range(i+1, len(A)):
if s[j] == B[i] and s[j] != B[j]:
yield s[:i] + s[j] + s[i+1:j] + s[i] + s[j+1:]
dp = collections.deque([(A,0)])
met = set()
while dp:
A_, step = dp.popleft()
for n in neighbors(A_):
if n == B:
return step+1
if n not in met:
dp.append((n,step+1))
met.add(n)
|
Strings A and B are K-similar (for some non-negative integer K) if we can swap the positions of two letters in A exactly K times so that the resulting string equals B.
Given two anagrams A and B, return the smallest K for which A and B are K-similar.
Example 1:
Input: A = "ab", B = "ba"
Output: 1
Example 2:
Input: A = "abc", B = "bca"
Output: 2
Example 3:
Input: A = "abac", B = "baca"
Output: 2
Example 4:
Input: A = "aabc", B = "abca"
Output: 2
Note:
1 <= A.length == B.length <= 20
A and B contain only lowercase letters from the set {'a', 'b', 'c', 'd', 'e', 'f'}
|
class Solution:
def kSimilarity(self, A: str, B: str) -> int:
lsta, lstb = '', ''
for i in range(len(A)):
if A[i]!=B[i]:
lsta+=A[i]
lstb+=B[i]
q = [(0,lsta,lstb)]
while q:
time,la,lb = q.pop(0)
if not lb: return time
goal = lb[0]
work,ls = None,[]
for i in range(1,len(la)):
if la[i]==goal and la[0]==lb[i]:
work = True
break
if work:
q.append((time+1,la[1:i]+la[i+1:],lb[1:i]+lb[i+1:]))
else:
for i in range(1,len(la)):
if la[i]==goal:
q.append((time+1,la[1:i]+la[0]+la[i+1:],lb[1:]))
|
Strings A and B are K-similar (for some non-negative integer K) if we can swap the positions of two letters in A exactly K times so that the resulting string equals B.
Given two anagrams A and B, return the smallest K for which A and B are K-similar.
Example 1:
Input: A = "ab", B = "ba"
Output: 1
Example 2:
Input: A = "abc", B = "bca"
Output: 2
Example 3:
Input: A = "abac", B = "baca"
Output: 2
Example 4:
Input: A = "aabc", B = "abca"
Output: 2
Note:
1 <= A.length == B.length <= 20
A and B contain only lowercase letters from the set {'a', 'b', 'c', 'd', 'e', 'f'}
|
class Solution:
def kSimilarity(self, A: str, B: str) -> int:
A = list(A)
memo = {}
def solution(i):
t = tuple(A)
if (i,t) in memo: return memo[i,t]
if i == len(A):
return 0
if A[i] == B[i]:
return solution(i+1)
mymin = float('inf')
for j in range(i+1, len(A)):
if A[j] != B[i]:
continue
A[i], A[j] = A[j], A[i]
mymin = min(mymin, solution(i+1))
A[j], A[i] = A[i], A[j]
memo[i,t] = 1 + mymin
return 1 + mymin
return solution(0)
|
Strings A and B are K-similar (for some non-negative integer K) if we can swap the positions of two letters in A exactly K times so that the resulting string equals B.
Given two anagrams A and B, return the smallest K for which A and B are K-similar.
Example 1:
Input: A = "ab", B = "ba"
Output: 1
Example 2:
Input: A = "abc", B = "bca"
Output: 2
Example 3:
Input: A = "abac", B = "baca"
Output: 2
Example 4:
Input: A = "aabc", B = "abca"
Output: 2
Note:
1 <= A.length == B.length <= 20
A and B contain only lowercase letters from the set {'a', 'b', 'c', 'd', 'e', 'f'}
|
from collections import deque
class Solution:
def kSimilarity(self, A: str, B: str) -> int:
def swapPos(string):
i = 0
while string[i] == B[i]:
i += 1
for j in range(i+1, length):
if string[j] == B[i]:
yield string[:i] + string[j] + string[i+1:j] + string[i] + string[j+1:]
dq = deque([(A, 0)])
visited = set(A)
length = len(A)
while dq:
string, dist = dq.popleft()
if string == B:
return dist
for s2 in swapPos(string):
if s2 not in visited:
dq.append((s2, dist+1))
visited.add(s2)
|
Strings A and B are K-similar (for some non-negative integer K) if we can swap the positions of two letters in A exactly K times so that the resulting string equals B.
Given two anagrams A and B, return the smallest K for which A and B are K-similar.
Example 1:
Input: A = "ab", B = "ba"
Output: 1
Example 2:
Input: A = "abc", B = "bca"
Output: 2
Example 3:
Input: A = "abac", B = "baca"
Output: 2
Example 4:
Input: A = "aabc", B = "abca"
Output: 2
Note:
1 <= A.length == B.length <= 20
A and B contain only lowercase letters from the set {'a', 'b', 'c', 'd', 'e', 'f'}
|
class Solution:
@lru_cache(maxsize=None)
def kSimilarity(self, A: str, B: str) -> int:
if not A and not B:
return 0
if A[0]==B[0]:
return self.kSimilarity(A[1:],B[1:])
ans=float('inf')
for i, c in enumerate(B):
if c==A[0]:
ans=min(ans,1+self.kSimilarity(A[1:],B[1:i]+B[0]+B[i+1:]))
return ans
|
Strings A and B are K-similar (for some non-negative integer K) if we can swap the positions of two letters in A exactly K times so that the resulting string equals B.
Given two anagrams A and B, return the smallest K for which A and B are K-similar.
Example 1:
Input: A = "ab", B = "ba"
Output: 1
Example 2:
Input: A = "abc", B = "bca"
Output: 2
Example 3:
Input: A = "abac", B = "baca"
Output: 2
Example 4:
Input: A = "aabc", B = "abca"
Output: 2
Note:
1 <= A.length == B.length <= 20
A and B contain only lowercase letters from the set {'a', 'b', 'c', 'd', 'e', 'f'}
|
# class Solution:
# def kSimilarity(self, A: str, B: str) -> int:
# n = len(A)
# A, B = list(A), list(B)
# mp = defaultdict(list)
# for i, ch in enumerate(A):
# mp[ch].append(i)
# def dfs(idx):
# if idx == n:
# return 0
# if A[idx] == B[idx]:
# return dfs(idx+1)
# res = float('inf')
# for nxt in range(idx+1,n):
# if A[nxt] != B[idx]:
# continue
# A[idx], A[nxt] = A[nxt], A[idx]
# res = min(res, dfs(idx+1)+1)
# A[idx], A[nxt] = A[nxt], A[idx]
# return res
# return dfs(0)
from functools import lru_cache
class Solution:
def kSimilarity(self, A: str, B: str) -> int:
n = len(A)
# mp = defaultdict(list)
# for i, ch in enumerate(A):
# mp[ch].append(i)
@lru_cache(None)
def dfs(s):
if s == B:
return 0
idx = 0
while s[idx] == B[idx]:
idx += 1
res = float('inf')
for nxt in range(idx+1,n):
if s[nxt] != B[idx]:
# if s[nxt] != B[idx] or s[nxt] == B[nxt]:
continue
res = min(res, dfs(s[:idx]+s[nxt]+s[idx+1:nxt]+s[idx]+s[nxt+1:])+1)
return res
return dfs(A)
|
Strings A and B are K-similar (for some non-negative integer K) if we can swap the positions of two letters in A exactly K times so that the resulting string equals B.
Given two anagrams A and B, return the smallest K for which A and B are K-similar.
Example 1:
Input: A = "ab", B = "ba"
Output: 1
Example 2:
Input: A = "abc", B = "bca"
Output: 2
Example 3:
Input: A = "abac", B = "baca"
Output: 2
Example 4:
Input: A = "aabc", B = "abca"
Output: 2
Note:
1 <= A.length == B.length <= 20
A and B contain only lowercase letters from the set {'a', 'b', 'c', 'd', 'e', 'f'}
|
class Solution:
def kSimilarity(self, A: str, B: str) -> int:
q = collections.deque()
visited = set()
q.append(A)
visited.add(A)
step = -1
while q:
step += 1
lens = len(q)
for _ in range(lens):
curr = q.popleft()
if curr == B:
return step
for next in self._swap(curr, B): # takes O(N)
if next in visited:
continue
q.append(next)
visited.add(next)
def _swap(self, s, B): # now only takes O(N)
i = 0
while s[i] == B[i]: # if S[i]==B[i], we don't need to swap them - strong prune to makes sure swapped string always get more and more similar with B
i += 1
for j in range(i + 1, len(s)):
if s[j] == B[i]: # since B[i]!=s[i], if we swap s[j] to s[i], now B[i]=s[i]: this is how every swap make sure we get more and more closer to B
yield s[:i] + s[j] + s[i+1:j] + s[i] + s[j+1:]
|
Strings A and B are K-similar (for some non-negative integer K) if we can swap the positions of two letters in A exactly K times so that the resulting string equals B.
Given two anagrams A and B, return the smallest K for which A and B are K-similar.
Example 1:
Input: A = "ab", B = "ba"
Output: 1
Example 2:
Input: A = "abc", B = "bca"
Output: 2
Example 3:
Input: A = "abac", B = "baca"
Output: 2
Example 4:
Input: A = "aabc", B = "abca"
Output: 2
Note:
1 <= A.length == B.length <= 20
A and B contain only lowercase letters from the set {'a', 'b', 'c', 'd', 'e', 'f'}
|
class Solution:
def kSimilarity(self, A, B):
def nei(x):
i = 0
while x[i] == B[i]: i += 1
for j in range(i + 1, len(A)):
if x[j] == B[j]:
continue
if x[j] == B[i] and x[i] == B[j]:
yield x[:i] + x[j] + x[i + 1:j] + x[i] + x[j + 1:]
break
if x[j] == B[i]:
yield x[:i] + x[j] + x[i + 1:j] + x[i] + x[j + 1:]
# def test():
stack = [(A, 0)]
visit = {A}
for cur, d in stack:
# cur, d = stack.pop()
if cur == B: return d
for neighbor in nei(cur):
if neighbor not in visit:
visit.add(neighbor)
stack.append((neighbor, d+1))
# n = len(A)
# def nei(x):
# i = 0
# while x[i] == B[i]: i += 1
# for j in range(i+1,n):
# if x[j] == B[j]:
# continue
# if x[j] == B[i] and x[i] == B[j]:
# yield x[:i]+x[j]+x[i+1:j]+x[i]+x[j+1:]
# break
# if x[j] == B[i]:
# yield x[:i]+x[j]+x[i+1:j]+x[i]+x[j+1:]
# pool = [(A,0)]
# seen = {A}
# for x,d in pool:
# if x == B: return d
# for y in nei(x):
# if y not in seen:
# seen.add(y)
# pool.append((y,d+1))
|
Strings A and B are K-similar (for some non-negative integer K) if we can swap the positions of two letters in A exactly K times so that the resulting string equals B.
Given two anagrams A and B, return the smallest K for which A and B are K-similar.
Example 1:
Input: A = "ab", B = "ba"
Output: 1
Example 2:
Input: A = "abc", B = "bca"
Output: 2
Example 3:
Input: A = "abac", B = "baca"
Output: 2
Example 4:
Input: A = "aabc", B = "abca"
Output: 2
Note:
1 <= A.length == B.length <= 20
A and B contain only lowercase letters from the set {'a', 'b', 'c', 'd', 'e', 'f'}
|
class Solution:
# Just like the shuffle board game, consider each string as a node
# And for each child is the shuffled result
def kSimilarity(self, A: str, B: str) -> int:
def find(s):
i = 0
res = []
while s[i] == B[i]: i += 1
for j in range(i+1,len(B)):
if s[j] == B[i]:
res.append(s[:i]+s[j]+s[i+1:j]+s[i]+s[j+1:])
return res
q = collections.deque([[0,A]])
seen = set([A])
while q:
size = len(q)
for _ in range(size):
step,s = q.popleft()
if s == B:return step
for new in find(s):
if new not in seen:
seen.add(new)
q.append([step+1,new])
return
|
Strings A and B are K-similar (for some non-negative integer K) if we can swap the positions of two letters in A exactly K times so that the resulting string equals B.
Given two anagrams A and B, return the smallest K for which A and B are K-similar.
Example 1:
Input: A = "ab", B = "ba"
Output: 1
Example 2:
Input: A = "abc", B = "bca"
Output: 2
Example 3:
Input: A = "abac", B = "baca"
Output: 2
Example 4:
Input: A = "aabc", B = "abca"
Output: 2
Note:
1 <= A.length == B.length <= 20
A and B contain only lowercase letters from the set {'a', 'b', 'c', 'd', 'e', 'f'}
|
class Solution:
def kSimilarity(self, A: str, B: str) -> int:
def nei(x):
i = 0
while x[i]==B[i]:
i+=1
for j in range(i+1, len(x)):
if x[i]==B[j] and x[j] != B[j]:
yield x[:i] + x[j] + x[i+1:j] + x[i] + x[j+1:]
seen = {A}
queue = [(A,0)]
for node, change in queue:
if node==B:
return change
for y in nei(node):
if y not in seen:
seen.add(node)
queue.append((y, change+1))
|
Strings A and B are K-similar (for some non-negative integer K) if we can swap the positions of two letters in A exactly K times so that the resulting string equals B.
Given two anagrams A and B, return the smallest K for which A and B are K-similar.
Example 1:
Input: A = "ab", B = "ba"
Output: 1
Example 2:
Input: A = "abc", B = "bca"
Output: 2
Example 3:
Input: A = "abac", B = "baca"
Output: 2
Example 4:
Input: A = "aabc", B = "abca"
Output: 2
Note:
1 <= A.length == B.length <= 20
A and B contain only lowercase letters from the set {'a', 'b', 'c', 'd', 'e', 'f'}
|
class Solution:
def kSimilarity(self, A: str, B: str) -> int:
def nei(x):
i = 0
while x[i] == B[i]: i+=1
for j in range(i+1, len(x)):
if x[j] == B[i]: yield x[:i]+x[j]+x[i+1:j]+x[i]+x[j+1:]
q, seen = [(A,0)], {A}
for x, d in q:
if x == B: return d
for y in nei(x):
if y not in seen:
seen.add(y), q.append((y,d+1))
|
Strings A and B are K-similar (for some non-negative integer K) if we can swap the positions of two letters in A exactly K times so that the resulting string equals B.
Given two anagrams A and B, return the smallest K for which A and B are K-similar.
Example 1:
Input: A = "ab", B = "ba"
Output: 1
Example 2:
Input: A = "abc", B = "bca"
Output: 2
Example 3:
Input: A = "abac", B = "baca"
Output: 2
Example 4:
Input: A = "aabc", B = "abca"
Output: 2
Note:
1 <= A.length == B.length <= 20
A and B contain only lowercase letters from the set {'a', 'b', 'c', 'd', 'e', 'f'}
|
from collections import deque
class Solution:
def kSimilarity(self, A: str, B: str) -> int:
def successor(s):
i=0
while s[i] == B[i]:
i += 1
for j in range(i, len(s)):
if s[j] == B[i]:
yield s[:i] + s[j] + s[i+1:j] + s[i] + s[j+1:]
q = deque([(A, 0)])
seen = set()
while q:
curr, dist = q.popleft()
if curr == B:
return dist
if curr not in seen:
seen.add(curr)
q.extend([(suc, dist+1) for suc in successor(curr)])
|
Strings A and B are K-similar (for some non-negative integer K) if we can swap the positions of two letters in A exactly K times so that the resulting string equals B.
Given two anagrams A and B, return the smallest K for which A and B are K-similar.
Example 1:
Input: A = "ab", B = "ba"
Output: 1
Example 2:
Input: A = "abc", B = "bca"
Output: 2
Example 3:
Input: A = "abac", B = "baca"
Output: 2
Example 4:
Input: A = "aabc", B = "abca"
Output: 2
Note:
1 <= A.length == B.length <= 20
A and B contain only lowercase letters from the set {'a', 'b', 'c', 'd', 'e', 'f'}
|
class Solution:
def kSimilarity(self, A: str, B: str) -> int:
N = len(A)
def dfs(A, B, pos):
if A == B:
return 0
while A[pos] == B[pos]:
pos += 1
minCnt = float('inf')
for i in range(pos + 1, N):
if B[i] == A[pos] and B[i] != A[i]:
B[i], B[pos] = B[pos], B[i]
tmp = dfs(A, B, pos + 1) + 1
minCnt = min(tmp, minCnt)
B[i], B[pos] = B[pos], B[i]
return minCnt
return dfs(list(A), list(B), 0)
|
Strings A and B are K-similar (for some non-negative integer K) if we can swap the positions of two letters in A exactly K times so that the resulting string equals B.
Given two anagrams A and B, return the smallest K for which A and B are K-similar.
Example 1:
Input: A = "ab", B = "ba"
Output: 1
Example 2:
Input: A = "abc", B = "bca"
Output: 2
Example 3:
Input: A = "abac", B = "baca"
Output: 2
Example 4:
Input: A = "aabc", B = "abca"
Output: 2
Note:
1 <= A.length == B.length <= 20
A and B contain only lowercase letters from the set {'a', 'b', 'c', 'd', 'e', 'f'}
|
class Solution:
def kSimilarity(self, A: str, B: str) -> int:
A = list(A)
B = list(B)
n = len(A)
# ans = 0
# for i in range(n):
# if A[i]==B[i]:
# continue
# else:
# ans+=1
# for j in range(i+1, n):
# if B[j] == A[i]:
# B[i], B[j] = B[j], B[i]
# break
# return ans
def rec(i):
if i==n:
return 0
if A[i]==B[i]:
return rec(i+1)
else:
min_ = sys.maxsize
for j in range(i+1, n):
if B[j] == A[i] and B[j]!=A[j]:
B[i], B[j] = B[j], B[i]
min_ = min(min_, rec(i+1) + 1)
B[i], B[j] = B[j], B[i]
return min_
return rec(0)
# ans = 0
# for i in range(n):
# if A[i]==B[i]:
# continue
# else:
# ans+=1
# for j in range(i+1, n):
# if B[j] == A[i] and B[j]!=A[j]:
# B[i], B[j] = B[j], B[i]
# break
# return ans
# def rec(i):
# if i==n:
# return 0
# if A[i]==B[i]:
# return rec(i+1)
# else:
# min_ = sys.maxsize
# j = 0
# while A[j]==B[j]:
# j+=1
# for k in range(j+1, n):
# if B[k] == A[j]:
# B[j], B[k] = B[k], B[j]
# min_ = min(min_, rec(i+1) + 1)
# B[j], B[k] = B[k], B[j]
# return min_
# return rec(0)
# def nei(x):
# i = 0
# while x[i] == B[i]: i+=1
# for j in range(i+1, len(x)):
# if x[j] == B[i]: yield x[:i]+x[j]+x[i+1:j]+x[i]+x[j+1:]
# q, seen = [(A,0)], set([A])
# for x, d in q:
# if x == B: return d
# for y in nei(x):
# if y not in seen:
# seen.add(y), q.append((y,d+1))
|
Strings A and B are K-similar (for some non-negative integer K) if we can swap the positions of two letters in A exactly K times so that the resulting string equals B.
Given two anagrams A and B, return the smallest K for which A and B are K-similar.
Example 1:
Input: A = "ab", B = "ba"
Output: 1
Example 2:
Input: A = "abc", B = "bca"
Output: 2
Example 3:
Input: A = "abac", B = "baca"
Output: 2
Example 4:
Input: A = "aabc", B = "abca"
Output: 2
Note:
1 <= A.length == B.length <= 20
A and B contain only lowercase letters from the set {'a', 'b', 'c', 'd', 'e', 'f'}
|
'''
'ab'
'ba'
1
'abc' -> 'acb' -> 'bca'
'bca'
2
'abac' -> 'baac' -> 'baca'
'baca'
2
'aabc' -> 'acba' -> 'abca'
'abca'
2
* See the problem as a graph problem.
* Nodes are the strings.
* Two nodes are conneted to each order if the one string is equal to the
other if we swap two chars.
* The problem boils down to find the shortest path between A and B.
* Since this is an unweigthed graph, the shortest path can be found by
traversing the graph in BFS.
'abc' -> 'bac'
-> 'cba'
-> 'acb'
* This approach doesn't sound an efficient approach because for every node
we'd need to generated its adjcent nodes.
* This sounds like an optimization problem.
'abcd' --> 'bcd'
'adbc' 'dbc'
* If the first char from A and B are equal, recurse on the remaining string.
* Else, swap A so it first char match and recurse. If the target char repeats,
try swapping all of them and consider the one that leads to the smallest K.
('abac', 'baca') = 1 + ('aac', 'aca')
('aac', 'aca') = ('ac', 'ca')
('ac', 'ca') = 1 + ('a', 'a')
('a', 'a') = 0
'''
class Solution:
def kSimilarity(self, A: str, B: str) -> int:
return do_kSimilarity(list(A), list(B), {})
def do_kSimilarity(A, B, memo):
if (tuple(A), tuple(B)) in memo:
return memo[(tuple(A), tuple(B))]
if A == B:
return 0
if A[0] == B[0]:
return do_kSimilarity(A[1:], B[1:], memo)
else:
swaps = []
for i, char in enumerate(A):
if char == B[0]:
swaps.append(i)
k = float('inf')
for swap in swaps:
A[0], A[swap] = A[swap], A[0]
k = min(k, 1 + do_kSimilarity(A[1:], B[1:], memo))
A[0], A[swap] = A[swap], A[0]
memo[(tuple(A), tuple(B))] = k
return k
|
Strings A and B are K-similar (for some non-negative integer K) if we can swap the positions of two letters in A exactly K times so that the resulting string equals B.
Given two anagrams A and B, return the smallest K for which A and B are K-similar.
Example 1:
Input: A = "ab", B = "ba"
Output: 1
Example 2:
Input: A = "abc", B = "bca"
Output: 2
Example 3:
Input: A = "abac", B = "baca"
Output: 2
Example 4:
Input: A = "aabc", B = "abca"
Output: 2
Note:
1 <= A.length == B.length <= 20
A and B contain only lowercase letters from the set {'a', 'b', 'c', 'd', 'e', 'f'}
|
class Solution:
def kSimilarity(self, A: str, B: str) -> int:
def neighbor(s):
i = 0
while i<len(B) and s[i]==B[i]:
i += 1
for j in range(i+1, len(B)):
if s[j] == B[i]:
yield s[:i] + s[j] + s[i+1:j] + s[i] + s[j+1:]
queue = deque([(A, 0)])
visited = {A}
while queue:
s, d = queue.popleft()
if s == B:
return d
for n in neighbor(s):
if n not in visited:
visited.add(n)
queue.append([n, d+1])
|
Strings A and B are K-similar (for some non-negative integer K) if we can swap the positions of two letters in A exactly K times so that the resulting string equals B.
Given two anagrams A and B, return the smallest K for which A and B are K-similar.
Example 1:
Input: A = "ab", B = "ba"
Output: 1
Example 2:
Input: A = "abc", B = "bca"
Output: 2
Example 3:
Input: A = "abac", B = "baca"
Output: 2
Example 4:
Input: A = "aabc", B = "abca"
Output: 2
Note:
1 <= A.length == B.length <= 20
A and B contain only lowercase letters from the set {'a', 'b', 'c', 'd', 'e', 'f'}
|
from collections import deque
class Solution:
def kSimilarity(self, A: str, B: str) -> int:
def successor(s):
i=0
while s[i] == B[i]:
i += 1
ans = []
for j in range(i, len(s)):
if s[j] == B[i]:
ans.append(s[:i] + s[j] + s[i+1:j] + s[i] + s[j+1:])
return ans
q = deque([(A, 0)])
seen = set()
while q:
curr, dist = q.popleft()
if curr == B:
return dist
if curr not in seen:
seen.add(curr)
q.extend([(suc, dist+1) for suc in successor(curr)])
|
Strings A and B are K-similar (for some non-negative integer K) if we can swap the positions of two letters in A exactly K times so that the resulting string equals B.
Given two anagrams A and B, return the smallest K for which A and B are K-similar.
Example 1:
Input: A = "ab", B = "ba"
Output: 1
Example 2:
Input: A = "abc", B = "bca"
Output: 2
Example 3:
Input: A = "abac", B = "baca"
Output: 2
Example 4:
Input: A = "aabc", B = "abca"
Output: 2
Note:
1 <= A.length == B.length <= 20
A and B contain only lowercase letters from the set {'a', 'b', 'c', 'd', 'e', 'f'}
|
class Solution:
def bfs(self, A: str, B: str):
if A == B: return 0
n = len(A)
q = []
visited = set()
q.append((B, 0, 0))
while q:
processed, idx, swaps = q.pop(0)
visited.add(processed)
while processed[idx] == A[idx]:
idx += 1
for i in range(idx+1,n):
if A[idx] == processed[i]:
new_processed = processed[:idx] + processed[i] + processed[idx+1:i] + processed[idx] + processed[i+1:]
if A == new_processed: return swaps + 1
if new_processed not in visited:
q.append((new_processed, idx+1, swaps+1))
return 0
def kSimilarity(self, A: str, B: str) -> int:
return self.bfs(A, B)
|
Strings A and B are K-similar (for some non-negative integer K) if we can swap the positions of two letters in A exactly K times so that the resulting string equals B.
Given two anagrams A and B, return the smallest K for which A and B are K-similar.
Example 1:
Input: A = "ab", B = "ba"
Output: 1
Example 2:
Input: A = "abc", B = "bca"
Output: 2
Example 3:
Input: A = "abac", B = "baca"
Output: 2
Example 4:
Input: A = "aabc", B = "abca"
Output: 2
Note:
1 <= A.length == B.length <= 20
A and B contain only lowercase letters from the set {'a', 'b', 'c', 'd', 'e', 'f'}
|
class Solution:
def kSimilarity(self, A: str, B: str) -> int:
def neighbors(A):
i = 0
while A[i] == B[i]:
i += 1
for j in range(i+1, len(B)):
if A[i] != A[j] and A[j] == B[i]:
yield A[:i] + A[j] + A[i+1:j] + A[i] + A[j+1:]
queue = [(A,0)]
seen = set([A])
for s, val in queue:
if s == B:
return val
for nxt_s in neighbors(s):
if nxt_s not in seen:
queue.append((nxt_s, val+1))
seen.add(nxt_s)
return -1
|
Strings A and B are K-similar (for some non-negative integer K) if we can swap the positions of two letters in A exactly K times so that the resulting string equals B.
Given two anagrams A and B, return the smallest K for which A and B are K-similar.
Example 1:
Input: A = "ab", B = "ba"
Output: 1
Example 2:
Input: A = "abc", B = "bca"
Output: 2
Example 3:
Input: A = "abac", B = "baca"
Output: 2
Example 4:
Input: A = "aabc", B = "abca"
Output: 2
Note:
1 <= A.length == B.length <= 20
A and B contain only lowercase letters from the set {'a', 'b', 'c', 'd', 'e', 'f'}
|
class Solution:
# Just like the shuffle board game, consider each string as a node
# And for each child is the shuffled result which one step closer to the target
# Another key is how to find the next step (by finding the first different letter and swap)
# The order does not matter
def kSimilarity(self, A: str, B: str) -> int:
def find(s):
i = 0
res = []
while s[i] == B[i]: i += 1
for j in range(i+1,len(B)):
if s[j] == B[i]:
res.append(s[:i]+s[j]+s[i+1:j]+s[i]+s[j+1:])
return res
q = collections.deque([[0,A]])
seen = set([A])
while q:
size = len(q)
for _ in range(size):
step,s = q.popleft()
if s == B:return step
for new in find(s):
if new not in seen:
seen.add(new)
q.append([step+1,new])
return
|
Strings A and B are K-similar (for some non-negative integer K) if we can swap the positions of two letters in A exactly K times so that the resulting string equals B.
Given two anagrams A and B, return the smallest K for which A and B are K-similar.
Example 1:
Input: A = "ab", B = "ba"
Output: 1
Example 2:
Input: A = "abc", B = "bca"
Output: 2
Example 3:
Input: A = "abac", B = "baca"
Output: 2
Example 4:
Input: A = "aabc", B = "abca"
Output: 2
Note:
1 <= A.length == B.length <= 20
A and B contain only lowercase letters from the set {'a', 'b', 'c', 'd', 'e', 'f'}
|
class Solution:
def kSimilarity(self, A: str, B: str) -> int:
self.min = float('inf')
A = list(A)
B = list(B)
def swap(a,b):
A[a], A[b] = A[b], A[a]
@lru_cache(None)
def helper(left, right, AB):
ok = True
swaps = 0
while A != B:
ok = False
a = A[left]
b = B[right]
if a != b:
minn = float('inf')
poss = []
for i,c in enumerate(A):
if b == c and i >= left:
poss.append(i)
# if len(poss) > 1:
for p in poss:
swap(left,p)
otherswaps = helper(left+1,right+1, tuple(A+B))
swap(left,p)
minn = min(otherswaps, minn)
return swaps+ 1 + minn
# else:
# if poss:
# # print(A,B, a,b)
# swap(left,poss[0])
# swaps += 1
left = (left+1) % len(A)
right= (right+1) % len(B)
return swaps
# left = right = 0
# ok = True
# swaps = 0
# while A != B:
# ok = False
# a = A[left]
# b = B[right]
# if a != b:
# # indx = A.index(b)
# for i,c in enumerate(A):
# if b == c and i >= left:
# indx = i
# break
# swap(left,indx)
# swaps += 1
# left = (left+1) % len(A)
# right= (right+1) % len(B)
f = helper(0,0, tuple(A+B))
print(A)
print(B)
# out = helper(A, 0, 0)
# print(out)
return f
|
Strings A and B are K-similar (for some non-negative integer K) if we can swap the positions of two letters in A exactly K times so that the resulting string equals B.
Given two anagrams A and B, return the smallest K for which A and B are K-similar.
Example 1:
Input: A = "ab", B = "ba"
Output: 1
Example 2:
Input: A = "abc", B = "bca"
Output: 2
Example 3:
Input: A = "abac", B = "baca"
Output: 2
Example 4:
Input: A = "aabc", B = "abca"
Output: 2
Note:
1 <= A.length == B.length <= 20
A and B contain only lowercase letters from the set {'a', 'b', 'c', 'd', 'e', 'f'}
|
class Solution:
def kSimilarity(self, A: str, B: str) -> int:
self.min = float('inf')
A = list(A)
B = list(B)
def swap(a,b):
A[a], A[b] = A[b], A[a]
@lru_cache(None)
def helper(left, right, AB):
ok = True
swaps = 0
while A != B:
ok = False
a = A[left]
b = B[right]
if a != b:
minn = float('inf')
poss = []
for i,c in enumerate(A):
if b == c and i >= left:
poss.append(i)
# if len(poss) > 1:
for p in poss:
swap(left,p)
otherswaps = helper(left+1,right+1, tuple(A+B))
swap(left,p)
minn = min(otherswaps, minn)
return swaps+ 1 + minn
left = (left+1) % len(A)
right= (right+1) % len(B)
return swaps
f = helper(0,0, tuple(A+B))
return f
|
Strings A and B are K-similar (for some non-negative integer K) if we can swap the positions of two letters in A exactly K times so that the resulting string equals B.
Given two anagrams A and B, return the smallest K for which A and B are K-similar.
Example 1:
Input: A = "ab", B = "ba"
Output: 1
Example 2:
Input: A = "abc", B = "bca"
Output: 2
Example 3:
Input: A = "abac", B = "baca"
Output: 2
Example 4:
Input: A = "aabc", B = "abca"
Output: 2
Note:
1 <= A.length == B.length <= 20
A and B contain only lowercase letters from the set {'a', 'b', 'c', 'd', 'e', 'f'}
|
class Solution:
def kSimilarity(self, A: str, B: str) -> int:
if A==B: return 0
dq = deque([(A,0)])
cnt = 0
N = len(A)
while dq:
length = len(dq)
for _ in range(length):
curr, idx = dq.popleft()
lst = list(curr)
for i in range(idx, N):
if lst[i]!=B[i]:
for j in range(i+1, N):
if lst[j]!=B[j] and lst[j]==B[i]:
lst[i], lst[j] = lst[j], lst[i]
temp = ''.join(lst)
if temp==B:
return cnt+1
dq.append((temp, i+1))
lst[i], lst[j] = lst[j], lst[i]
break
cnt += 1
|
Strings A and B are K-similar (for some non-negative integer K) if we can swap the positions of two letters in A exactly K times so that the resulting string equals B.
Given two anagrams A and B, return the smallest K for which A and B are K-similar.
Example 1:
Input: A = "ab", B = "ba"
Output: 1
Example 2:
Input: A = "abc", B = "bca"
Output: 2
Example 3:
Input: A = "abac", B = "baca"
Output: 2
Example 4:
Input: A = "aabc", B = "abca"
Output: 2
Note:
1 <= A.length == B.length <= 20
A and B contain only lowercase letters from the set {'a', 'b', 'c', 'd', 'e', 'f'}
|
class Solution:
def kSimilarity(self, A: str, B: str) -> int:
def dist(a, b):
# count number of differing characters
return sum( (1 if c!=d else 0 for (c,d) in zip(a,b) ) )
def swap(s, i, j):
# swap ith and jth chars of string s
# assert i != j
if i > j:
i, j = j, i
return s[:i] + s[j] + s[i+1:j] + s[i] + s[j+1:]
def DFS(string, k):
# can string be swapped into problem's str `A` in `k` moves?
if string == A:
return True
if k == 0:
return False
for i,c in enumerate(string):
if A[i] == c:
continue
# c is wrong, we need to swap a correct letter into it
# only look for after current position to avoid double swaps
for j in range(i, len(A)):
if string[j] == A[i] and A[j] != A[i]:
# try this swap
if DFS(swap(string, i, j), k-1):
return True
# return False after trying to correct the first wrong letter:
# if there is any `k` solution, then there's a `k` solution
# that starts on this letter
return False
for k in range(len(A)):
if DFS(B, k):
return k
|
Strings A and B are K-similar (for some non-negative integer K) if we can swap the positions of two letters in A exactly K times so that the resulting string equals B.
Given two anagrams A and B, return the smallest K for which A and B are K-similar.
Example 1:
Input: A = "ab", B = "ba"
Output: 1
Example 2:
Input: A = "abc", B = "bca"
Output: 2
Example 3:
Input: A = "abac", B = "baca"
Output: 2
Example 4:
Input: A = "aabc", B = "abca"
Output: 2
Note:
1 <= A.length == B.length <= 20
A and B contain only lowercase letters from the set {'a', 'b', 'c', 'd', 'e', 'f'}
|
class Solution:
def kSimilarity(self, A: str, B: str) -> int:
N = len(A)
if not N:
return 0
cnt = 0
q = deque()
q.append((cnt, A, 0))
while q:
cnt, v, i = q.popleft()
if v == B:
return cnt
for j in range(i+1, N):
while v[i]==B[i]:
i += 1
if v[j]==B[i] and v[j]!=B[j]:
candidate = v[:i]+v[j]+v[i+1:j]+v[i]+v[j+1:]
q.append((cnt+1, candidate, i+1))
|
Strings A and B are K-similar (for some non-negative integer K) if we can swap the positions of two letters in A exactly K times so that the resulting string equals B.
Given two anagrams A and B, return the smallest K for which A and B are K-similar.
Example 1:
Input: A = "ab", B = "ba"
Output: 1
Example 2:
Input: A = "abc", B = "bca"
Output: 2
Example 3:
Input: A = "abac", B = "baca"
Output: 2
Example 4:
Input: A = "aabc", B = "abca"
Output: 2
Note:
1 <= A.length == B.length <= 20
A and B contain only lowercase letters from the set {'a', 'b', 'c', 'd', 'e', 'f'}
|
class Solution:
def kSimilarity(self, A: str, B: str) -> int:
A, B = list(A), list(B)
N = len(A)
if not N:
return 0
cnt = 0
q = deque()
q.append((cnt, A, 0))
while q:
cnt, v, i = q.popleft()
if v == B:
return cnt
for j in range(i+1, N):
while v[i]==B[i]:
i += 1
if v[j]==B[i] and v[j]!=B[j]:
candidate = v[:]
candidate[i], candidate[j] = candidate[j], candidate[i]
q.append((cnt+1, candidate, i+1))
|
Strings A and B are K-similar (for some non-negative integer K) if we can swap the positions of two letters in A exactly K times so that the resulting string equals B.
Given two anagrams A and B, return the smallest K for which A and B are K-similar.
Example 1:
Input: A = "ab", B = "ba"
Output: 1
Example 2:
Input: A = "abc", B = "bca"
Output: 2
Example 3:
Input: A = "abac", B = "baca"
Output: 2
Example 4:
Input: A = "aabc", B = "abca"
Output: 2
Note:
1 <= A.length == B.length <= 20
A and B contain only lowercase letters from the set {'a', 'b', 'c', 'd', 'e', 'f'}
|
class Solution:
def kSimilarity(self, A: str, B: str) -> int:
self.counter = float('inf')
A = list(A)
B = list(B)
def swap(first, cur):
if first == len(A) - 1 or A[first:] == B[first:]:
self.counter = min(self.counter, cur)
#print(f'cur={cur}, first={first}')
return
for i in range(first, len(A)):
if A[i] != B[i]:
for k in range(i + 1, len(A)):
if A[i] == B[k] and cur + 1 < self.counter:
B[i], B[k] = B[k], B[i]
#print(f'B={B}')
swap(i + 1, cur + 1)
B[i], B[k] = B[k], B[i]
break
return
swap(0, 0)
return self.counter
|
Strings A and B are K-similar (for some non-negative integer K) if we can swap the positions of two letters in A exactly K times so that the resulting string equals B.
Given two anagrams A and B, return the smallest K for which A and B are K-similar.
Example 1:
Input: A = "ab", B = "ba"
Output: 1
Example 2:
Input: A = "abc", B = "bca"
Output: 2
Example 3:
Input: A = "abac", B = "baca"
Output: 2
Example 4:
Input: A = "aabc", B = "abca"
Output: 2
Note:
1 <= A.length == B.length <= 20
A and B contain only lowercase letters from the set {'a', 'b', 'c', 'd', 'e', 'f'}
|
class Solution:
def kSimilarity(self, A: str, B: str) -> int:
def dfs(A, B):
if not A and not B:
return 0
if str(A) == str(B):
return 0
k = str(A)
if k in dp:
return dp[k]
dp[k] = len(A) - 1
if A[0] == B[0]:
dp[k] = dfs(A[1:], B[1:])
return dp[k]
for j in range(1,len(A)):
if A[j] == B[0]:
A[0],A[j] = A[j],A[0]
dp[k] = min(dp[k],1 + dfs(A[1:],B[1:]))
A[j],A[0] = A[0],A[j]
return dp[k]
dp = dict()
A,B = list(A),list(B)
dp[str(A)] = dfs(A,B)
return dp[str(A)]
|
Strings A and B are K-similar (for some non-negative integer K) if we can swap the positions of two letters in A exactly K times so that the resulting string equals B.
Given two anagrams A and B, return the smallest K for which A and B are K-similar.
Example 1:
Input: A = "ab", B = "ba"
Output: 1
Example 2:
Input: A = "abc", B = "bca"
Output: 2
Example 3:
Input: A = "abac", B = "baca"
Output: 2
Example 4:
Input: A = "aabc", B = "abca"
Output: 2
Note:
1 <= A.length == B.length <= 20
A and B contain only lowercase letters from the set {'a', 'b', 'c', 'd', 'e', 'f'}
|
class Solution:
def kSimilarity(self, A: str, B: str) -> int:
N = len(A)
if not N:
return 0
cnt = 0
q = deque()
q.append((cnt, A, 0))
while q:
cnt, v, i = q.popleft()
if v == B:
return cnt
for j in range(i+1, N):
while v[i]==B[i]:
i += 1
if v[j]==B[i] and v[j]!=B[j]:
candidate = list(v)
candidate[i], candidate[j] = candidate[j], candidate[i]
candidate = ''.join(candidate)
q.append((cnt+1, candidate, i+1))
|
Strings A and B are K-similar (for some non-negative integer K) if we can swap the positions of two letters in A exactly K times so that the resulting string equals B.
Given two anagrams A and B, return the smallest K for which A and B are K-similar.
Example 1:
Input: A = "ab", B = "ba"
Output: 1
Example 2:
Input: A = "abc", B = "bca"
Output: 2
Example 3:
Input: A = "abac", B = "baca"
Output: 2
Example 4:
Input: A = "aabc", B = "abca"
Output: 2
Note:
1 <= A.length == B.length <= 20
A and B contain only lowercase letters from the set {'a', 'b', 'c', 'd', 'e', 'f'}
|
class Solution:
def kSimilarity(self, A: str, B: str) -> int:
self.N = len(A)
self.dict1 = collections.defaultdict()
return self.dfs(list(A), list(B), 0)
def dfs(self,A, B, pos):
sB = ''.join(B)
if sB in self.dict1:
return self.dict1[sB]
if A == B:
return 0
while A[pos] == B[pos]:
pos += 1
minCnt = float('inf')
for i in range(pos + 1, self.N):
if B[i] == A[pos] and B[i] != A[i]:
B[i], B[pos] = B[pos], B[i]
tmp = self.dfs(A, B, pos + 1) + 1
minCnt = min(tmp, minCnt)
B[i], B[pos] = B[pos], B[i]
self.dict1[sB] = minCnt
return minCnt
|
Strings A and B are K-similar (for some non-negative integer K) if we can swap the positions of two letters in A exactly K times so that the resulting string equals B.
Given two anagrams A and B, return the smallest K for which A and B are K-similar.
Example 1:
Input: A = "ab", B = "ba"
Output: 1
Example 2:
Input: A = "abc", B = "bca"
Output: 2
Example 3:
Input: A = "abac", B = "baca"
Output: 2
Example 4:
Input: A = "aabc", B = "abca"
Output: 2
Note:
1 <= A.length == B.length <= 20
A and B contain only lowercase letters from the set {'a', 'b', 'c', 'd', 'e', 'f'}
|
class Solution:
def kSimilarity(self, A: str, B: str) -> int:
def dist(a, b):
# count number of differing characters
return sum( (1 if c!=d else 0 for (c,d) in zip(a,b) ) )
def swap(s, i, j):
# swap ith and jth chars of string s
# assert i != j
if i > j:
i, j = j, i
return s[:i] + s[j] + s[i+1:j] + s[i] + s[j+1:]
def DFS(string, k, seen):
# print(f\" {string}\")
if string in seen:
return False, 0
seen.add(string)
# print(f\" {k}: {string}\")
# can string be swapped into problem's str `A` in `k` moves?
if string == A:
return True, 1
# early break if distance is too great:
# best possible for string of length N:
# N is even: N/2 (every swap corrects 2 letters
# N is odd: N//2 + 1
# every swap until last 3 letters corrects 2
# last 3 letters take 2 swaps
distance = dist(string, A)
best = distance/2 if distance % 2 == 0 else (distance//2) + 1
if k < best:
return False, 1
neighbors = []
for i,c in enumerate(string):
if A[i] == c:
continue
# c is wrong, we need to swap a correct letter into it
# only look for after current position to avoid double swaps
for j in range(i+1, len(A)):
if string[j] == A[i] and A[j] != A[i]:
double_play = string[i] == A[j]
change = -2 if double_play else -1
if k == best and distance % 2 == 1 and distance > 3 and not double_play:
continue
neighbor = swap(string, i, j)
neighbors.append( (change, neighbor) )
neighbors.sort()
total_count = 1
for (score, neighbor) in neighbors:
found, count = DFS(neighbor, k-1, seen)
total_count += count
if found:
return True, total_count
return False, total_count
for k in range(len(A), -1, -1):
# for k in range(len(A)):
found, count = DFS(B, k, set())
if not found:
return k+1
return 0
|
Strings A and B are K-similar (for some non-negative integer K) if we can swap the positions of two letters in A exactly K times so that the resulting string equals B.
Given two anagrams A and B, return the smallest K for which A and B are K-similar.
Example 1:
Input: A = "ab", B = "ba"
Output: 1
Example 2:
Input: A = "abc", B = "bca"
Output: 2
Example 3:
Input: A = "abac", B = "baca"
Output: 2
Example 4:
Input: A = "aabc", B = "abca"
Output: 2
Note:
1 <= A.length == B.length <= 20
A and B contain only lowercase letters from the set {'a', 'b', 'c', 'd', 'e', 'f'}
|
class Solution:
def kSimilarity(self, A: str, B: str) -> int:
def neighbor(x):
i = 0
while x[i] == B[i]:
i += 1
for j in range(i+1, len(x)):
if x[j] == B[i] and x[j] != B[j]:
yield x[:i] + x[j] + x[i+1:j] + x[i] + x[j+1:]
queue, seen = [(A, 0)], {A}
for word, distance in queue:
if word == B:
return distance
for neigh in neighbor(word):
if neighbor not in seen:
seen.add(neigh)
queue.append((neigh, distance + 1))
|
Strings A and B are K-similar (for some non-negative integer K) if we can swap the positions of two letters in A exactly K times so that the resulting string equals B.
Given two anagrams A and B, return the smallest K for which A and B are K-similar.
Example 1:
Input: A = "ab", B = "ba"
Output: 1
Example 2:
Input: A = "abc", B = "bca"
Output: 2
Example 3:
Input: A = "abac", B = "baca"
Output: 2
Example 4:
Input: A = "aabc", B = "abca"
Output: 2
Note:
1 <= A.length == B.length <= 20
A and B contain only lowercase letters from the set {'a', 'b', 'c', 'd', 'e', 'f'}
|
from collections import deque
class Solution:
def kSimilarity(self, A, B):
def find_neighbors(arr, i):
e = A[i]
nei = []
for x in range(i + 1, len(arr)):
if arr[x] == e:
nei.append(x)
return nei
q = deque()
for i in range(len(A)):
if A[i] == B[i]:
continue
else:
q.append([list(B), i])
break
l = 0
while q:
for x in range(len(q)):
e = q.popleft()
y = e[1]
while y < len(e[0]): #Move forward when elements of A and B are equal
if e[0][y] == A[y]:
y += 1
else:
break
if y == len(e[0]): #If everything is equal return level
return l
else:
nei = find_neighbors(e[0], y) #Find all A[i]'s to the right of B which are prospective candidates
for n in nei:
new_e = e[0][:]
new_e[n] = e[0][y] #Swap A[i] with all matched neighbors(Generating a new 'state')
q.append([new_e, y + 1])
l += 1
return l
|
Strings A and B are K-similar (for some non-negative integer K) if we can swap the positions of two letters in A exactly K times so that the resulting string equals B.
Given two anagrams A and B, return the smallest K for which A and B are K-similar.
Example 1:
Input: A = "ab", B = "ba"
Output: 1
Example 2:
Input: A = "abc", B = "bca"
Output: 2
Example 3:
Input: A = "abac", B = "baca"
Output: 2
Example 4:
Input: A = "aabc", B = "abca"
Output: 2
Note:
1 <= A.length == B.length <= 20
A and B contain only lowercase letters from the set {'a', 'b', 'c', 'd', 'e', 'f'}
|
class Solution:
def kSimilarity(self, A, B):
out = 0
q = deque()
for i in range(len(A)):
if A[i] == B[i]:
continue
else:
q.append([list(B), i])
break
def find_neighbors(arr, i):
e = A[i]
nei = []
for x in range(i + 1, len(arr)):
if arr[x] == e:
nei.append(x)
return nei
while q:
for _ in range(len(q)):
cur, idx = q.popleft()
while idx < len(cur):
if cur[idx] == A[idx]:
idx += 1
else: break
if idx == len(cur):
return out
else:
nei = find_neighbors(cur, idx)
for n in nei:
new = cur[:]
new[n] = cur[idx]
q.append([new, idx + 1])
out += 1
return out
|
Strings A and B are K-similar (for some non-negative integer K) if we can swap the positions of two letters in A exactly K times so that the resulting string equals B.
Given two anagrams A and B, return the smallest K for which A and B are K-similar.
Example 1:
Input: A = "ab", B = "ba"
Output: 1
Example 2:
Input: A = "abc", B = "bca"
Output: 2
Example 3:
Input: A = "abac", B = "baca"
Output: 2
Example 4:
Input: A = "aabc", B = "abca"
Output: 2
Note:
1 <= A.length == B.length <= 20
A and B contain only lowercase letters from the set {'a', 'b', 'c', 'd', 'e', 'f'}
|
class Solution:
def bfs(self, A: str, B: str):
if A == B: return 0
n = len(A)
q = []
# visited = [False for i in range(n)]
q.append((B, 0, 0))
while q:
processed, idx, swaps = q.pop(0)
while processed[idx] == A[idx]:
idx += 1
for i in range(idx+1,n):
if A[idx] == processed[i]:
new_processed = processed[:idx] + processed[i] + processed[idx+1:i] + processed[idx] + processed[i+1:]
if A == new_processed: return swaps + 1
q.append((new_processed, idx+1, swaps+1))
return 0
def kSimilarity(self, A: str, B: str) -> int:
return self.bfs(A, B)
|
Strings A and B are K-similar (for some non-negative integer K) if we can swap the positions of two letters in A exactly K times so that the resulting string equals B.
Given two anagrams A and B, return the smallest K for which A and B are K-similar.
Example 1:
Input: A = "ab", B = "ba"
Output: 1
Example 2:
Input: A = "abc", B = "bca"
Output: 2
Example 3:
Input: A = "abac", B = "baca"
Output: 2
Example 4:
Input: A = "aabc", B = "abca"
Output: 2
Note:
1 <= A.length == B.length <= 20
A and B contain only lowercase letters from the set {'a', 'b', 'c', 'd', 'e', 'f'}
|
class Solution:
def kSimilarity(self, A: str, B: str) -> int:
def check(a,i):
if(a == B):
return 0
if a[i] != B[i]:
j=i
minCount = None
while(j<len(a)):
if a[j] == B[i]:
if a[i] == B[j]:
return 1 + check(a[:i]+a[j]+a[i+1:j]+a[i]+a[j+1:],i+1)
count = check(a[:i]+a[j]+a[i+1:j]+a[i]+a[j+1:],i+1)
if minCount == None or minCount > count:
minCount = count
j+=1
return 1 + minCount
else:
return 0 + check(a,i+1)
return check(A,0)
|
Strings A and B are K-similar (for some non-negative integer K) if we can swap the positions of two letters in A exactly K times so that the resulting string equals B.
Given two anagrams A and B, return the smallest K for which A and B are K-similar.
Example 1:
Input: A = "ab", B = "ba"
Output: 1
Example 2:
Input: A = "abc", B = "bca"
Output: 2
Example 3:
Input: A = "abac", B = "baca"
Output: 2
Example 4:
Input: A = "aabc", B = "abca"
Output: 2
Note:
1 <= A.length == B.length <= 20
A and B contain only lowercase letters from the set {'a', 'b', 'c', 'd', 'e', 'f'}
|
class Solution:
def kSimilarity(self, A: str, B: str) -> int:
A, B = list(A), list(B)
res = float('inf')
q = [(0, 0, B)] # (i) index, (k) swaps made, (B) current list
while q:
i, k, B = heapq.heappop(q)
i = -i
if k >= res:
continue
while (i < len(B)) and (B[i] == A[i]):
i += 1
if i == len(B):
res = min(res, k)
continue
target = A[i]
j = i + 1
while j < len(B):
if B[j] == target:
heapq.heappush(q, (-(i+1), k+1, B[:j]+[B[i]]+B[j+1:]))
j += 1
return res
|
Strings A and B are K-similar (for some non-negative integer K) if we can swap the positions of two letters in A exactly K times so that the resulting string equals B.
Given two anagrams A and B, return the smallest K for which A and B are K-similar.
Example 1:
Input: A = "ab", B = "ba"
Output: 1
Example 2:
Input: A = "abc", B = "bca"
Output: 2
Example 3:
Input: A = "abac", B = "baca"
Output: 2
Example 4:
Input: A = "aabc", B = "abca"
Output: 2
Note:
1 <= A.length == B.length <= 20
A and B contain only lowercase letters from the set {'a', 'b', 'c', 'd', 'e', 'f'}
|
class Solution:
def kSimilarity(self, A: str, B: str) -> int:
visited, n = set(), len(A)
q = collections.deque([(A, 0)])
while q:
C, swaps = q.popleft()
if C == B:
return swaps
visited.add(C)
i = 0
while C[i] == B[i]:
i += 1
for j in range(i + 1, n):
if C[j] == B[i]:
nxt = C[:i] + C[j] + C[i+1:j] + C[i] + C[j+1:]
if nxt not in visited:
q.append((nxt, swaps + 1))
return -1
|
Strings A and B are K-similar (for some non-negative integer K) if we can swap the positions of two letters in A exactly K times so that the resulting string equals B.
Given two anagrams A and B, return the smallest K for which A and B are K-similar.
Example 1:
Input: A = "ab", B = "ba"
Output: 1
Example 2:
Input: A = "abc", B = "bca"
Output: 2
Example 3:
Input: A = "abac", B = "baca"
Output: 2
Example 4:
Input: A = "aabc", B = "abca"
Output: 2
Note:
1 <= A.length == B.length <= 20
A and B contain only lowercase letters from the set {'a', 'b', 'c', 'd', 'e', 'f'}
|
from collections import deque
class Solution:
def kSimilarity(self, A: str, B: str) -> int:
def find_neighbors(arr, i):
e = A[i]
nei = []
for x in range(i + 1, len(arr)):
if arr[x] == e:
nei.append(x)
return nei
q = deque()
for i in range(len(A)):
if A[i] == B[i]:
continue
else:
q.append([list(B), i])
break
l = 0
while q:
for x in range(len(q)):
e = q.popleft()
y = e[1]
while y < len(e[0]): #Move forward when elements of A and B are equal
if e[0][y] == A[y]:
y += 1
else:
break
if y == len(e[0]): #If everything is equal return level
return l
else:
nei = find_neighbors(e[0], y) #Find all A[i]'s to the right of B which are prospective candidates
for n in nei:
new_e = e[0][:]
new_e[n] = e[0][y] #Swap A[i] with all matched neighbors(Generating a new 'state')
q.append([new_e, y + 1])
l += 1
return l
|
Strings A and B are K-similar (for some non-negative integer K) if we can swap the positions of two letters in A exactly K times so that the resulting string equals B.
Given two anagrams A and B, return the smallest K for which A and B are K-similar.
Example 1:
Input: A = "ab", B = "ba"
Output: 1
Example 2:
Input: A = "abc", B = "bca"
Output: 2
Example 3:
Input: A = "abac", B = "baca"
Output: 2
Example 4:
Input: A = "aabc", B = "abca"
Output: 2
Note:
1 <= A.length == B.length <= 20
A and B contain only lowercase letters from the set {'a', 'b', 'c', 'd', 'e', 'f'}
|
class Solution:
def kSimilarity(self, A: str, B: str) -> int:
def dist(a, b):
# count number of differing characters
return sum( (1 if c!=d else 0 for (c,d) in zip(a,b) ) )
def find_wrong_letters(working):
# given a working string, return two dicts that track work to be done:
# (wants, wrongs)
# `wants[target]` maps to set of positions that need `target` letter
# `wrongs[letter]` maps to set positions that have a wrong `letter`
# if i in wants{target] and j in wrongs[letter]
# we can swap ith and jth letters to improve working
wants = defaultdict(set)
wrongs = defaultdict(set)
for i, c in enumerate(working):
target = A[i]
if c != target:
wants[target].add(i)
wrongs[c].add(i)
return wants, wrongs
def estimate_remaining(string):
# count number of wrong letters
# assume a perfect scenario:
# each swap fixes two letters
count = dist(string, A)
return count/2 if count % 2 == 0 else count//2 + 1
def swap(s, i, j):
# swap ith and jth chars of string s
# assert i != j
if i > j:
i, j = j, i
return s[:i] + s[j] + s[i+1:j] + s[i] + s[j+1:]
def extend(working):
wrongs, needs = find_wrong_letters(working)
for letter, wrong_set in list(wrongs.items()):
return ( swap(working, i, j) for i in wrong_set for j in needs[letter] )
# print(A)
# print(B)
# print(\"0123456789abcdefghijklmnopqrst\"[:len(A)])
# needs, wrongs = find_wrong_letters(B)
# print(f\"wrong: {wrongs}\")
# print(f\"needs: {needs}\")
# return 0
if A == B:
return 0
# BFS
# q is a heap that holds triples:
# (estimate, swap_count_so_far, the_working_string)
q = [ (0,0,B) ]
seen = dict()
best = len(A)
while q:
estimate, k, working = heapq.heappop(q)
if estimate >= best or k >= best:
return best
if working == A:
best = min( best, k)
continue
for extension in extend(working):
if extension not in seen or seen[extension] > k+1:
seen[extension] = k+1
new_estimate = estimate_remaining(extension) + k + 1
heapq.heappush( q, (new_estimate, k+1, extension) )
return best
|
Strings A and B are K-similar (for some non-negative integer K) if we can swap the positions of two letters in A exactly K times so that the resulting string equals B.
Given two anagrams A and B, return the smallest K for which A and B are K-similar.
Example 1:
Input: A = "ab", B = "ba"
Output: 1
Example 2:
Input: A = "abc", B = "bca"
Output: 2
Example 3:
Input: A = "abac", B = "baca"
Output: 2
Example 4:
Input: A = "aabc", B = "abca"
Output: 2
Note:
1 <= A.length == B.length <= 20
A and B contain only lowercase letters from the set {'a', 'b', 'c', 'd', 'e', 'f'}
|
class Solution:
def kSimilarity(self, A, B):
def find_neighbors(arr, i):
e = A[i]
nei = []
for x in range(i + 1, len(arr)):
if arr[x] == e:
nei.append(x)
return nei
q = deque()
for i in range(len(A)):
if A[i] == B[i]:
continue
else:
q.append([list(B), i])
break
l = 0
while q:
for x in range(len(q)):
e = q.popleft()
y = e[1]
while y < len(e[0]): #Move forward when elements of A and B are equal
if e[0][y] == A[y]:
y += 1
else:
break
if y == len(e[0]): #If everything is equal return level
return l
else:
nei = find_neighbors(e[0], y) #Find all A[i]'s to the right of B which are prospective candidates
for n in nei:
new_e = e[0][:]
new_e[n] = e[0][y] #Swap A[i] with all matched neighbors(Generating a new 'state')
q.append([new_e, y + 1])
l += 1
return l
|
Strings A and B are K-similar (for some non-negative integer K) if we can swap the positions of two letters in A exactly K times so that the resulting string equals B.
Given two anagrams A and B, return the smallest K for which A and B are K-similar.
Example 1:
Input: A = "ab", B = "ba"
Output: 1
Example 2:
Input: A = "abc", B = "bca"
Output: 2
Example 3:
Input: A = "abac", B = "baca"
Output: 2
Example 4:
Input: A = "aabc", B = "abca"
Output: 2
Note:
1 <= A.length == B.length <= 20
A and B contain only lowercase letters from the set {'a', 'b', 'c', 'd', 'e', 'f'}
|
class Solution:
def kSimilarity(self, A: str, B: str) -> int:
if A == B:
return 0
m = len(A)
def getNeighbors(word):
i = 0
while word[i] == B[i]:
i+=1
for j in range(i+1, m):
if word[j] == B[i]:
yield word[:i] + word[j] + word[i+1:j] + word[i] + word[j+1:]
visited = set([A])
queue = collections.deque([A])
k = 1
while queue:
for _ in range(len(queue)):
word = queue.popleft()
for nbor in getNeighbors(word):
if nbor not in visited:
if nbor == B:
return k
queue.append(nbor)
k += 1
raise Exception('invalid')
|
Strings A and B are K-similar (for some non-negative integer K) if we can swap the positions of two letters in A exactly K times so that the resulting string equals B.
Given two anagrams A and B, return the smallest K for which A and B are K-similar.
Example 1:
Input: A = "ab", B = "ba"
Output: 1
Example 2:
Input: A = "abc", B = "bca"
Output: 2
Example 3:
Input: A = "abac", B = "baca"
Output: 2
Example 4:
Input: A = "aabc", B = "abca"
Output: 2
Note:
1 <= A.length == B.length <= 20
A and B contain only lowercase letters from the set {'a', 'b', 'c', 'd', 'e', 'f'}
|
class Solution:
def kSimilarity(self, A: str, B: str) -> int:
if A == B:
return 0
m = len(A)
def getNeighbors(word):
i = 0
while word[i] == B[i]:
i+=1
for j in range(i+1, m):
if word[j] == B[i] and word[j] != word[i]:
yield word[:i] + word[j] + word[i+1:j] + word[i] + word[j+1:]
visited = set([A])
queue = collections.deque([A])
k = 1
while queue:
for _ in range(len(queue)):
word = queue.popleft()
for nbor in getNeighbors(word):
if nbor not in visited:
if nbor == B:
return k
queue.append(nbor)
k += 1
raise Exception('invalid')
|
Strings A and B are K-similar (for some non-negative integer K) if we can swap the positions of two letters in A exactly K times so that the resulting string equals B.
Given two anagrams A and B, return the smallest K for which A and B are K-similar.
Example 1:
Input: A = "ab", B = "ba"
Output: 1
Example 2:
Input: A = "abc", B = "bca"
Output: 2
Example 3:
Input: A = "abac", B = "baca"
Output: 2
Example 4:
Input: A = "aabc", B = "abca"
Output: 2
Note:
1 <= A.length == B.length <= 20
A and B contain only lowercase letters from the set {'a', 'b', 'c', 'd', 'e', 'f'}
|
class Solution:
def kSimilarity(self, A: str, B: str) -> int:
n = len(B)
q = deque([B])
visited = {B}
cnt = 0
while q:
L = len(q)
for _ in range(L):
cur = q.popleft()
if cur == A:
return cnt
pos = 0
while A[pos] == cur[pos]:
pos += 1
curlist = list(cur)
for i in range(pos+1, n):
if curlist[i] == A[pos] and curlist[i] != A[i]:
curlist[i], curlist[pos] = curlist[pos], curlist[i]
curstr = ''.join(curlist)
if curstr not in visited:
q.append(curstr)
visited.add(curstr)
curlist[i], curlist[pos] = curlist[pos], curlist[i]
cnt += 1
return cnt
|
Strings A and B are K-similar (for some non-negative integer K) if we can swap the positions of two letters in A exactly K times so that the resulting string equals B.
Given two anagrams A and B, return the smallest K for which A and B are K-similar.
Example 1:
Input: A = "ab", B = "ba"
Output: 1
Example 2:
Input: A = "abc", B = "bca"
Output: 2
Example 3:
Input: A = "abac", B = "baca"
Output: 2
Example 4:
Input: A = "aabc", B = "abca"
Output: 2
Note:
1 <= A.length == B.length <= 20
A and B contain only lowercase letters from the set {'a', 'b', 'c', 'd', 'e', 'f'}
|
from functools import lru_cache
class Solution:
@lru_cache(None)
def kSimilarity(self, A: str, B: str) -> int:
if len(A)==0:
return 0
if A[0]==B[0]:
return self.kSimilarity(A[1:],B[1:])
for i in range(1,len(B)):
if A[0]==B[i] and B[0]==A[i]:
return 1 + self.kSimilarity(A[1:i]+A[i+1:], B[1:i]+B[i+1:])
ans = math.inf
for i in range(1,len(B)):
if A[0]==B[i]: ans = min(ans, 1+self.kSimilarity(A[1:], B[1:i]+B[0]+B[i+1:]))
return ans
|
Strings A and B are K-similar (for some non-negative integer K) if we can swap the positions of two letters in A exactly K times so that the resulting string equals B.
Given two anagrams A and B, return the smallest K for which A and B are K-similar.
Example 1:
Input: A = "ab", B = "ba"
Output: 1
Example 2:
Input: A = "abc", B = "bca"
Output: 2
Example 3:
Input: A = "abac", B = "baca"
Output: 2
Example 4:
Input: A = "aabc", B = "abca"
Output: 2
Note:
1 <= A.length == B.length <= 20
A and B contain only lowercase letters from the set {'a', 'b', 'c', 'd', 'e', 'f'}
|
class Solution:
def kSimilarity(self, A: str, B: str) -> int:
if A == B:
return 0
def swap(S, i, j):
a = list(S)
a[i], a[j] = a[j], a[i]
return ''.join(a)
n = len(A)
steps = 0
q = deque()
visited = set()
q.append(A)
visited.add(A)
while q:
steps += 1
sz = len(q)
for _ in range(sz):
S = q.popleft()
i = 0
while S[i] == B[i]:
i += 1
for j in range(i + 1, n):
if S[j] != B[i] or S[j] == B[j]:
continue
T = swap(S, i, j)
if T == B:
return steps
if T not in visited:
q.append(T)
visited.add(T)
return steps
|
Strings A and B are K-similar (for some non-negative integer K) if we can swap the positions of two letters in A exactly K times so that the resulting string equals B.
Given two anagrams A and B, return the smallest K for which A and B are K-similar.
Example 1:
Input: A = "ab", B = "ba"
Output: 1
Example 2:
Input: A = "abc", B = "bca"
Output: 2
Example 3:
Input: A = "abac", B = "baca"
Output: 2
Example 4:
Input: A = "aabc", B = "abca"
Output: 2
Note:
1 <= A.length == B.length <= 20
A and B contain only lowercase letters from the set {'a', 'b', 'c', 'd', 'e', 'f'}
|
class Solution:
def kSimilarity(self, A: str, B: str) -> int:
#assert(len(A) == len(B))
#assert(sorted(A) == sorted(B))
if A == B:
return 0
seen = set(A)
q = deque()
q.append((A,0))
while q:
currentString, k = q.popleft()
for i in range(0, len(B)-1):
if currentString[i] == B[i]:
continue
for j in range(i+1,len(B)):
if currentString[j] == B[j]:
continue
if currentString[i] == currentString[j]:
continue
if currentString[j] != B[i]:
continue
newString = currentString[:i] + currentString[j] + currentString[i+1:j] + currentString[i] + currentString[j+1:]
if newString == B:
return k+1
if newString not in seen:
q.append((newString,k+1))
seen.add(newString)
break
return -1
|
Strings A and B are K-similar (for some non-negative integer K) if we can swap the positions of two letters in A exactly K times so that the resulting string equals B.
Given two anagrams A and B, return the smallest K for which A and B are K-similar.
Example 1:
Input: A = "ab", B = "ba"
Output: 1
Example 2:
Input: A = "abc", B = "bca"
Output: 2
Example 3:
Input: A = "abac", B = "baca"
Output: 2
Example 4:
Input: A = "aabc", B = "abca"
Output: 2
Note:
1 <= A.length == B.length <= 20
A and B contain only lowercase letters from the set {'a', 'b', 'c', 'd', 'e', 'f'}
|
class Solution:
def kSimilarity(self, A: str, B: str) -> int:
def nei(x):
i = 0
while x[i] == B[i]: i+=1 #continue incremeneting if characters are same
for j in range(i+1, len(x)):
if x[j] == B[i] and x[j] != B[j]:
yield x[:i]+x[j]+x[i+1:j]+x[i]+x[j+1:] #swaps the two characters
q, seen = [(A,0)], {A}
while q != []:
x, d = q.pop(0)
if x == B: return d #return immediately from BFS if the strings are the same
for y in nei(x):
#print(\"y\", y)
if y not in seen:
seen.add(y), q.append((y,d+1))
#print(\"q\", q)
|
Strings A and B are K-similar (for some non-negative integer K) if we can swap the positions of two letters in A exactly K times so that the resulting string equals B.
Given two anagrams A and B, return the smallest K for which A and B are K-similar.
Example 1:
Input: A = "ab", B = "ba"
Output: 1
Example 2:
Input: A = "abc", B = "bca"
Output: 2
Example 3:
Input: A = "abac", B = "baca"
Output: 2
Example 4:
Input: A = "aabc", B = "abca"
Output: 2
Note:
1 <= A.length == B.length <= 20
A and B contain only lowercase letters from the set {'a', 'b', 'c', 'd', 'e', 'f'}
|
from collections import deque
class Solution:
def kSimilarity(self, A: str, B: str) -> int:
if A==B:
return 0
queue = deque([])
queue.append(A)
step = 0
visited = set()
while queue:
length = len(queue)
while length:
length-=1
strings = queue.popleft()
i = 0
while strings[i]==B[i]:
i+=1
newstrings = list(strings)
cha = strings[i]
for j in range(i+1, len(strings)):
if strings[j]==B[i] and strings[j]!=B[j]:
newstrings[i], newstrings[j] = newstrings[j], newstrings[i]
newstrings = ''.join(newstrings)
if newstrings == B:
return step+1
else:
if newstrings not in visited:
visited.add(newstrings)
queue.append(newstrings)
newstrings = list(strings)
step+=1
|
Strings A and B are K-similar (for some non-negative integer K) if we can swap the positions of two letters in A exactly K times so that the resulting string equals B.
Given two anagrams A and B, return the smallest K for which A and B are K-similar.
Example 1:
Input: A = "ab", B = "ba"
Output: 1
Example 2:
Input: A = "abc", B = "bca"
Output: 2
Example 3:
Input: A = "abac", B = "baca"
Output: 2
Example 4:
Input: A = "aabc", B = "abca"
Output: 2
Note:
1 <= A.length == B.length <= 20
A and B contain only lowercase letters from the set {'a', 'b', 'c', 'd', 'e', 'f'}
|
class Solution:
def kSimilarity(self, A: str, B: str) -> int:
'''
A classic BFS solution to find the shortest path;
The neighbors to each node string S are all the strings reachable with 1 swap, that match the first unmatched character in S.
'''
def getNeighbors(s):
for i, c in enumerate(s):
if c!=B[i]: break
s = list(s)
for j in range(i+1,len(s)):
if s[j]==B[i] and s[j]!=B[j]:
s[i],s[j]=s[j],s[i]
yield(''.join(s))
s[j],s[i]=s[i],s[j]
queue = collections.deque([A])
seen = {A:0}
while queue:
s = queue.popleft()
if s==B: return seen[s]
for n in getNeighbors(s):
if n not in seen:
seen[n]=seen[s]+1
queue.append(n)
|
Strings A and B are K-similar (for some non-negative integer K) if we can swap the positions of two letters in A exactly K times so that the resulting string equals B.
Given two anagrams A and B, return the smallest K for which A and B are K-similar.
Example 1:
Input: A = "ab", B = "ba"
Output: 1
Example 2:
Input: A = "abc", B = "bca"
Output: 2
Example 3:
Input: A = "abac", B = "baca"
Output: 2
Example 4:
Input: A = "aabc", B = "abca"
Output: 2
Note:
1 <= A.length == B.length <= 20
A and B contain only lowercase letters from the set {'a', 'b', 'c', 'd', 'e', 'f'}
|
class Solution:
def kSimilarity(self, A: str, B: str) -> int:
l = len(A)
def neighbor(s,pos,target):
visited = set()
t = list(s)
for i in range(pos+1,l):
if t[i] == target and (t[i],B[i]) not in visited:
visited.add((t[i],B[i]))
t[pos],t[i] = t[i],t[pos]
yield(''.join(t))
t[pos],t[i] = t[i],t[pos]
step = 0
index = 0
seen = set()
q = collections.deque()
q.append((A,0))
seen.add(A)
while q:
lq = len(q)
for j in range(lq):
tmp,k = q.popleft()
if tmp == B:
return step
while k<l and tmp[k] == B[k]:
k+=1
for n in neighbor(tmp,k,B[k]):
if n not in seen:
seen.add(n)
q.append((n,k))
step += 1
|
Strings A and B are K-similar (for some non-negative integer K) if we can swap the positions of two letters in A exactly K times so that the resulting string equals B.
Given two anagrams A and B, return the smallest K for which A and B are K-similar.
Example 1:
Input: A = "ab", B = "ba"
Output: 1
Example 2:
Input: A = "abc", B = "bca"
Output: 2
Example 3:
Input: A = "abac", B = "baca"
Output: 2
Example 4:
Input: A = "aabc", B = "abca"
Output: 2
Note:
1 <= A.length == B.length <= 20
A and B contain only lowercase letters from the set {'a', 'b', 'c', 'd', 'e', 'f'}
|
class Solution:
def kSimilarity(self, A: str, B: str) -> int:
if A == B:
return 0
visited = set([A])
q = collections.deque([A])
res, n = 0, len(A)
while q:
res += 1
qn = len(q)
for _ in range(qn):
s = q.popleft()
i = 0
while i < n and s[i] == B[i]:
i += 1
for j in range(i+1, n):
if s[j] == B[j] or s[j] != B[i]:
continue
tmp = self.swap(s, i, j)
if tmp == B:
return res
if tmp not in visited:
visited.add(tmp)
q.append(tmp)
return res
def swap(self, s: str, i: int, j: int) -> str:
l = list(s)
l[i], l[j] = l[j], l[i]
return ''.join(l)
|
Strings A and B are K-similar (for some non-negative integer K) if we can swap the positions of two letters in A exactly K times so that the resulting string equals B.
Given two anagrams A and B, return the smallest K for which A and B are K-similar.
Example 1:
Input: A = "ab", B = "ba"
Output: 1
Example 2:
Input: A = "abc", B = "bca"
Output: 2
Example 3:
Input: A = "abac", B = "baca"
Output: 2
Example 4:
Input: A = "aabc", B = "abca"
Output: 2
Note:
1 <= A.length == B.length <= 20
A and B contain only lowercase letters from the set {'a', 'b', 'c', 'd', 'e', 'f'}
|
class Solution:
def kSimilarity(self, A: str, B: str) -> int:
def dist(a, b):
# count number of differing characters
return sum( (1 if c!=d else 0 for (c,d) in zip(a,b) ) )
def find_wrong_letters(working):
# given a working string, return two dicts that track work to be done:
# (wants, wrongs)
# `wants[target]` maps to set of positions that need `target` letter
# `wrongs[letter]` maps to set positions that have a wrong `letter`
# if i in wants{target] and j in wrongs[letter]
# we can swap ith and jth letters to improve working
wants = defaultdict(set)
wrongs = defaultdict(set)
for i, c in enumerate(working):
target = A[i]
if c != target:
wants[target].add(i)
wrongs[c].add(i)
return wants, wrongs
def swap(s, i, j):
# swap ith and jth chars of string s
# assert i != j
if i > j:
i, j = j, i
return s[:i] + s[j] + s[i+1:j] + s[i] + s[j+1:]
def extend(working):
wrongs, needs = find_wrong_letters(working)
for letter, wrong_set in list(wrongs.items()):
return ( swap(working, i, j) for i in wrong_set for j in needs[letter] )
# greedy BFS
# only search
# q holds triples:
# (estimate, swap_count_so_far, the_working_string)
q = deque()
q.append( (0, 0, B) )
seen = dict()
best = len(A)
while q:
estimate, k, working = q.popleft()
if estimate >= best or k >= best:
return best
if working == A:
best = min( best, k)
continue
improves_one, improves_two = [], []
for extension in extend(working):
improvement = dist(A, working) - dist(A, extension)
# improvement = 2
if improvement == 2:
improves_two.append(extension)
else:
improves_one.append(extension)
for extension in improves_two or improves_one:
if extension not in seen or seen[extension] > k+1:
seen[extension] = k+1
q.append( (0, k+1, extension) )
return best
|
Strings A and B are K-similar (for some non-negative integer K) if we can swap the positions of two letters in A exactly K times so that the resulting string equals B.
Given two anagrams A and B, return the smallest K for which A and B are K-similar.
Example 1:
Input: A = "ab", B = "ba"
Output: 1
Example 2:
Input: A = "abc", B = "bca"
Output: 2
Example 3:
Input: A = "abac", B = "baca"
Output: 2
Example 4:
Input: A = "aabc", B = "abca"
Output: 2
Note:
1 <= A.length == B.length <= 20
A and B contain only lowercase letters from the set {'a', 'b', 'c', 'd', 'e', 'f'}
|
from collections import deque
class Solution:
def kSimilarity(self, A: str, B: str) -> int:
# BFS
# Key: at every step, we swap and make sure we put one char at correct pos, BFS makes sure it's shortest
length = len(A)
q = deque([A])
visited = set([A])
step = 0
while q:
size = len(q)
for _ in range(size):
cur = q.popleft()
if cur == B: return step
for i in range(length):
if cur[i] != B[i]: break
for j in range(i + 1, length):
# Key: NOT (cur[j] == B[i] or cur[i] == B[j])!!! Because in each BFS level we only need to make sure i pos can be corrected by swap(i,j), in the next level, since range of i and j is decreasing, width of BFS won't too large.
# But cur[i]==B[j] NOT guarantee i pos is corrected, next level it might still starts from i, thus range of search is width and got TLE
if cur[j] != B[j] and cur[j] == B[i]:
new_str = cur[: i] + cur[j] + cur[i+1: j] + cur[i] + cur[j + 1:]
if new_str not in visited:
q.append(new_str)
visited.add(new_str)
step += 1
|
Strings A and B are K-similar (for some non-negative integer K) if we can swap the positions of two letters in A exactly K times so that the resulting string equals B.
Given two anagrams A and B, return the smallest K for which A and B are K-similar.
Example 1:
Input: A = "ab", B = "ba"
Output: 1
Example 2:
Input: A = "abc", B = "bca"
Output: 2
Example 3:
Input: A = "abac", B = "baca"
Output: 2
Example 4:
Input: A = "aabc", B = "abca"
Output: 2
Note:
1 <= A.length == B.length <= 20
A and B contain only lowercase letters from the set {'a', 'b', 'c', 'd', 'e', 'f'}
|
class Solution:
@lru_cache(None)
def kSimilarity(self, A: str, B: str) -> int:
if len(A) == 0: return 0
if A[0]==B[0]: return self.kSimilarity(A[1:],B[1:])
for i in range(1,len(B)):
if B[i]==A[0] and A[i]==B[0]:
return 1 + self.kSimilarity(A[1:i]+A[i+1:],B[1:i]+B[i+1:])
ans = math.inf
for i in range(1,len(B)):
if B[i]==A[0]: ans = min(ans, 1+self.kSimilarity(A[1:],B[1:i]+B[0]+B[i+1:]))
return ans
|
Strings A and B are K-similar (for some non-negative integer K) if we can swap the positions of two letters in A exactly K times so that the resulting string equals B.
Given two anagrams A and B, return the smallest K for which A and B are K-similar.
Example 1:
Input: A = "ab", B = "ba"
Output: 1
Example 2:
Input: A = "abc", B = "bca"
Output: 2
Example 3:
Input: A = "abac", B = "baca"
Output: 2
Example 4:
Input: A = "aabc", B = "abca"
Output: 2
Note:
1 <= A.length == B.length <= 20
A and B contain only lowercase letters from the set {'a', 'b', 'c', 'd', 'e', 'f'}
|
from collections import deque
class Solution:
def kSimilarity(self, A: str, B: str) -> int:
def swapPos(string):
i = 0
while string[i] == B[i]:
i += 1
for j in range(i+1, length):
if string[j] == B[i] and string[j] != B[j]:
yield string[:i] + string[j] + string[i+1:j] + string[i] + string[j+1:]
dq = deque([(A, 0)])
visited = set(A)
length = len(A)
while dq:
string, dist = dq.popleft()
if string == B:
return dist
for s2 in swapPos(string):
if s2 not in visited:
dq.append((s2, dist+1))
visited.add(s2)
|
Strings A and B are K-similar (for some non-negative integer K) if we can swap the positions of two letters in A exactly K times so that the resulting string equals B.
Given two anagrams A and B, return the smallest K for which A and B are K-similar.
Example 1:
Input: A = "ab", B = "ba"
Output: 1
Example 2:
Input: A = "abc", B = "bca"
Output: 2
Example 3:
Input: A = "abac", B = "baca"
Output: 2
Example 4:
Input: A = "aabc", B = "abca"
Output: 2
Note:
1 <= A.length == B.length <= 20
A and B contain only lowercase letters from the set {'a', 'b', 'c', 'd', 'e', 'f'}
|
# class Solution:
# def kSimilarity(self, A: str, B: str) -> int:
# n = len(A)
# A, B = list(A), list(B)
# mp = defaultdict(list)
# for i, ch in enumerate(A):
# mp[ch].append(i)
# def dfs(idx):
# if idx == n:
# return 0
# if A[idx] == B[idx]:
# return dfs(idx+1)
# res = float('inf')
# for nxt in range(idx+1,n):
# if A[nxt] != B[idx]:
# continue
# A[idx], A[nxt] = A[nxt], A[idx]
# res = min(res, dfs(idx+1)+1)
# A[idx], A[nxt] = A[nxt], A[idx]
# return res
# return dfs(0)
from functools import lru_cache
class Solution:
def kSimilarity(self, A: str, B: str) -> int:
n = len(A)
# mp = defaultdict(list)
# for i, ch in enumerate(A):
# mp[ch].append(i)
@lru_cache(None)
def dfs(s):
if s == B:
return 0
idx = 0
while s[idx] == B[idx]:
idx += 1
res = float('inf')
for nxt in range(idx+1,n):
if s[nxt] != B[idx] or s[nxt] == B[nxt]:
continue
res = min(res, dfs(s[:idx]+s[nxt]+s[idx+1:nxt]+s[idx]+s[nxt+1:])+1)
return res
return dfs(A)
|
Strings A and B are K-similar (for some non-negative integer K) if we can swap the positions of two letters in A exactly K times so that the resulting string equals B.
Given two anagrams A and B, return the smallest K for which A and B are K-similar.
Example 1:
Input: A = "ab", B = "ba"
Output: 1
Example 2:
Input: A = "abc", B = "bca"
Output: 2
Example 3:
Input: A = "abac", B = "baca"
Output: 2
Example 4:
Input: A = "aabc", B = "abca"
Output: 2
Note:
1 <= A.length == B.length <= 20
A and B contain only lowercase letters from the set {'a', 'b', 'c', 'd', 'e', 'f'}
|
class Solution:
def kSimilarity(self, A: str, B: str) -> int:
def next(s):
for i in range(len(s)):
if s[i] != B[i]:
for j in range(i + 1,len(s)):
if B[i] == s[j] and B[j] == s[i]:
yield s[:i]+s[j]+s[i+1:j]+s[i]+s[j+1:]
for j in range(i + 1,len(s)):
if B[i] == s[j] and B[j] != s[j]:
yield s[:i]+s[j]+s[i+1:j]+s[i]+s[j+1:]
return
res = 0
if A == B:
return res
q = [(A,0)]
seen = {A}
for s,i in q:
if s == B:
return i
for n in next(s):
if n not in seen:
q.append((n,i + 1))
seen.add(n)
return -1
|
Strings A and B are K-similar (for some non-negative integer K) if we can swap the positions of two letters in A exactly K times so that the resulting string equals B.
Given two anagrams A and B, return the smallest K for which A and B are K-similar.
Example 1:
Input: A = "ab", B = "ba"
Output: 1
Example 2:
Input: A = "abc", B = "bca"
Output: 2
Example 3:
Input: A = "abac", B = "baca"
Output: 2
Example 4:
Input: A = "aabc", B = "abca"
Output: 2
Note:
1 <= A.length == B.length <= 20
A and B contain only lowercase letters from the set {'a', 'b', 'c', 'd', 'e', 'f'}
|
class Solution:
def kSimilarity(self, A: str, B: str) -> int:
def get_neis(s):
res = []
for i in range(N):
if s[i]!=B[i]:
break
temp = list(s)
for j in range(i+1, N):
if s[j]==B[i] and s[j]!=B[j]:
temp[i], temp[j] = temp[j], temp[i]
res.append(''.join(temp))
temp[i], temp[j] = temp[j], temp[i]
return res
if A==B: return 0
N = len(A)
dq = deque([A])
seen = set([A])
cnt = 0
while dq:
length = len(dq)
for _ in range(length):
s = dq.popleft()
for nei in get_neis(s):
if nei==B: return cnt+1
if nei not in seen:
seen.add(nei)
dq.append(nei)
cnt += 1
|
Strings A and B are K-similar (for some non-negative integer K) if we can swap the positions of two letters in A exactly K times so that the resulting string equals B.
Given two anagrams A and B, return the smallest K for which A and B are K-similar.
Example 1:
Input: A = "ab", B = "ba"
Output: 1
Example 2:
Input: A = "abc", B = "bca"
Output: 2
Example 3:
Input: A = "abac", B = "baca"
Output: 2
Example 4:
Input: A = "aabc", B = "abca"
Output: 2
Note:
1 <= A.length == B.length <= 20
A and B contain only lowercase letters from the set {'a', 'b', 'c', 'd', 'e', 'f'}
|
class Solution:
def kSimilarity(self, A: str, B: str) -> int:
def swap(s):
i=0
while s[i]==B[i]:
i+=1
for j in range(i+1,len(s)):
if s[j]==B[i] and B[j]!=s[j]:
yield s[:i]+s[j]+s[i+1:j]+s[i]+s[j+1:]
q=collections.deque([(A,0)])
seen={A}
while q:
s,d=q.popleft()
if s==B:
return d
for n in swap(s):
if n not in seen:
seen.add(n)
q.append((n,d+1))
|
Strings A and B are K-similar (for some non-negative integer K) if we can swap the positions of two letters in A exactly K times so that the resulting string equals B.
Given two anagrams A and B, return the smallest K for which A and B are K-similar.
Example 1:
Input: A = "ab", B = "ba"
Output: 1
Example 2:
Input: A = "abc", B = "bca"
Output: 2
Example 3:
Input: A = "abac", B = "baca"
Output: 2
Example 4:
Input: A = "aabc", B = "abca"
Output: 2
Note:
1 <= A.length == B.length <= 20
A and B contain only lowercase letters from the set {'a', 'b', 'c', 'd', 'e', 'f'}
|
class Solution:
def kSimilarity(self, A: str, B: str) -> int:
def nei(x):
i = 0
while x[i] == B[i]: i+=1
for j in range(i+1, len(x)):
if x[j] == B[i] and x[j] != B[j]: yield x[:i]+x[j]+x[i+1:j]+x[i]+x[j+1:]
q, seen = [(A,0)], {A}
for x, d in q:
if x == B: return d
for y in nei(x):
if y not in seen:
seen.add(y), q.append((y,d+1))
|
Strings A and B are K-similar (for some non-negative integer K) if we can swap the positions of two letters in A exactly K times so that the resulting string equals B.
Given two anagrams A and B, return the smallest K for which A and B are K-similar.
Example 1:
Input: A = "ab", B = "ba"
Output: 1
Example 2:
Input: A = "abc", B = "bca"
Output: 2
Example 3:
Input: A = "abac", B = "baca"
Output: 2
Example 4:
Input: A = "aabc", B = "abca"
Output: 2
Note:
1 <= A.length == B.length <= 20
A and B contain only lowercase letters from the set {'a', 'b', 'c', 'd', 'e', 'f'}
|
class Solution:
def kSimilarity(self, A: str, B: str) -> int:
lsta, lstb = [], []
for i in range(len(A)):
if A[i] != B[i]:
lsta.append(A[i])
lstb.append(B[i])
A, B = ''.join(lsta), ''.join(lstb)
q = deque([(0, A, B)])
while q:
cost, curr, goal = q.popleft()
if not curr:
return cost
need = goal[0]
work = None
for i in range(len(curr)):
# need to find one where curr[i] == goal[0] and goal[i] == curr[0]
if curr[i] == goal[0] and goal[i] == curr[0]:
work = i
break
if work:
# only swap this one
# remove 0 and work from the unmatched list
q.append((cost+1, curr[1:work]+curr[work+1:], goal[1:work]+goal[work+1:]))
else:
for i in range(1, len(curr)):
if curr[i] == need:
q.append((cost+1, curr[1:i]+curr[0]+curr[i+1:], goal[1:]))
|
Strings A and B are K-similar (for some non-negative integer K) if we can swap the positions of two letters in A exactly K times so that the resulting string equals B.
Given two anagrams A and B, return the smallest K for which A and B are K-similar.
Example 1:
Input: A = "ab", B = "ba"
Output: 1
Example 2:
Input: A = "abc", B = "bca"
Output: 2
Example 3:
Input: A = "abac", B = "baca"
Output: 2
Example 4:
Input: A = "aabc", B = "abca"
Output: 2
Note:
1 <= A.length == B.length <= 20
A and B contain only lowercase letters from the set {'a', 'b', 'c', 'd', 'e', 'f'}
|
from collections import deque
class Solution:
def kSimilarity(self, A: str, B: str) -> int:
def nei(x):
i = 0
while x[i] == B[i]:
i += 1
for j in range(i+1, len(x)):
if x[j] == B[i] and x[j] != B[j]:
yield x[:i]+x[j]+x[i+1:j]+x[i]+x[j+1:]
if not A or not B: return 0
queue, visited = [(A, 0)], {A}
for x, d in queue:
if x == B: return d
for y in nei(x):
if y not in visited:
visited.add(y)
queue.append((y, d+1))
|
Strings A and B are K-similar (for some non-negative integer K) if we can swap the positions of two letters in A exactly K times so that the resulting string equals B.
Given two anagrams A and B, return the smallest K for which A and B are K-similar.
Example 1:
Input: A = "ab", B = "ba"
Output: 1
Example 2:
Input: A = "abc", B = "bca"
Output: 2
Example 3:
Input: A = "abac", B = "baca"
Output: 2
Example 4:
Input: A = "aabc", B = "abca"
Output: 2
Note:
1 <= A.length == B.length <= 20
A and B contain only lowercase letters from the set {'a', 'b', 'c', 'd', 'e', 'f'}
|
class Solution:
def kSimilarity(self, A: str, B: str) -> int:
if A==B: return 0
dq = deque([(A,0)])
cnt = 0
N = len(A)
seen = set()
while dq:
length = len(dq)
for _ in range(length):
curr, idx = dq.popleft()
lst = list(curr)
for i in range(idx, N):
if lst[i]!=B[i]:
for j in range(i+1, N):
if lst[j]!=B[j] and lst[j]==B[i]:
lst[i], lst[j] = lst[j], lst[i]
temp = ''.join(lst)
if temp==B:
return cnt+1
if temp not in seen:
seen.add(temp)
dq.append((temp, i+1))
lst[i], lst[j] = lst[j], lst[i]
break
cnt += 1
|
Strings A and B are K-similar (for some non-negative integer K) if we can swap the positions of two letters in A exactly K times so that the resulting string equals B.
Given two anagrams A and B, return the smallest K for which A and B are K-similar.
Example 1:
Input: A = "ab", B = "ba"
Output: 1
Example 2:
Input: A = "abc", B = "bca"
Output: 2
Example 3:
Input: A = "abac", B = "baca"
Output: 2
Example 4:
Input: A = "aabc", B = "abca"
Output: 2
Note:
1 <= A.length == B.length <= 20
A and B contain only lowercase letters from the set {'a', 'b', 'c', 'd', 'e', 'f'}
|
class Solution:
def kSimilarity(self, A: str, B: str) -> int:
if A == B:
return 0
dp = [B]
visit = {B}
k = 0
while dp:
k += 1
l = len(dp)
for i in range(l):
s = dp.pop()
for j, c in enumerate(A):
if c != s[j]:
for n in range(j+1, len(A)):
if s[n] == c:
newS = s[0:j] + s[n] + s[j+1:n] + s[j] + s[n+1:]
if newS not in visit:
if newS == A:
return k
dp.insert(0, newS)
visit.add(newS)
break
|
Strings A and B are K-similar (for some non-negative integer K) if we can swap the positions of two letters in A exactly K times so that the resulting string equals B.
Given two anagrams A and B, return the smallest K for which A and B are K-similar.
Example 1:
Input: A = "ab", B = "ba"
Output: 1
Example 2:
Input: A = "abc", B = "bca"
Output: 2
Example 3:
Input: A = "abac", B = "baca"
Output: 2
Example 4:
Input: A = "aabc", B = "abca"
Output: 2
Note:
1 <= A.length == B.length <= 20
A and B contain only lowercase letters from the set {'a', 'b', 'c', 'd', 'e', 'f'}
|
class Solution:
def kSimilarity(self, A: str, B: str) -> int:
def dist(a, b):
# count number of differing characters
return sum( (1 if c!=d else 0 for (c,d) in zip(a,b) ) )
def estimate_remaining(string):
# count number of wrong letters
# assume a perfect scenario:
# each swap corrects two letters
count = dist(string, A)
return count/2 if count % 2 == 0 else count//2 + 1
def find_wrong_letters(working):
# given a working string, return two dicts that track work to be done:
# (wants, wrongs)
# `wants[target]` maps to set of positions that need `target` letter
# `wrongs[letter]` maps to set positions that have a wrong `letter`
# if i in wants{target] and j in wrongs[letter]
# we can swap ith and jth letters to improve working
wants = defaultdict(set)
wrongs = defaultdict(set)
for i, c in enumerate(working):
target = A[i]
if c != target:
wants[target].add(i)
wrongs[c].add(i)
return wants, wrongs
def swap(s, i, j):
# swap ith and jth chars of string s
# assert i != j
if i > j:
i, j = j, i
return s[:i] + s[j] + s[i+1:j] + s[i] + s[j+1:]
def extend(working):
wrongs, needs = find_wrong_letters(working)
for letter, wrong_set in list(wrongs.items()):
return ( swap(working, i, j) for i in wrong_set for j in needs[letter] )
# BFS
# q is a heap that holds triples:
# (estimate, swap_count_so_far, the_working_string)
# q = deque()
q = [ (0, 0, B) ]
seen = dict()
best = len(A)
while q:
estimate, k, working = heapq.heappop(q)
if estimate >= best or -k >= best:
return best
if working == A:
best = min( best, -k)
continue
for extension in extend(working):
if extension not in seen or seen[extension] > -k+1:
seen[extension] = k+1
new_estimate = estimate_remaining(extension) -k + 1
heapq.heappush( q, (new_estimate, k-1, extension) )
return best
|
Strings A and B are K-similar (for some non-negative integer K) if we can swap the positions of two letters in A exactly K times so that the resulting string equals B.
Given two anagrams A and B, return the smallest K for which A and B are K-similar.
Example 1:
Input: A = "ab", B = "ba"
Output: 1
Example 2:
Input: A = "abc", B = "bca"
Output: 2
Example 3:
Input: A = "abac", B = "baca"
Output: 2
Example 4:
Input: A = "aabc", B = "abca"
Output: 2
Note:
1 <= A.length == B.length <= 20
A and B contain only lowercase letters from the set {'a', 'b', 'c', 'd', 'e', 'f'}
|
class Solution:
def kSimilarity(self, A: str, B: str) -> int:
# 根据最后一位是否相等进行贪心的求解。dfs深搜
memo = {}
def helper(a, b):
if a == b:
return 0
if (a, b) in memo:
return memo[(a, b)]
res = float('inf')
if a[-1] == b[-1]:
res = min(res, helper(a[:-1], b[:-1]))
else:
for i in range(len(a) - 1):
if a[i] == b[-1] and a[i] != b[i]:
# 切记当前位置的ab不能对应相等,要不然肯定多操作了。
a_new = a[:i] + a[-1] + a[i + 1:-1] #把a[i]与a[-1]交换了
res = min(res, 1 + helper(a_new, b[:-1]))
memo[(a, b)] = res
return res
return helper(A, B)
'''
# 这道题虽然是hard但是通过你理解题意,很容易找到潜在的解答方法。
# 第一重思路就是看到最小。那么只要比最小的大都OK,那么很容易想到用二分法去猜测答案。但是如何check存疑
# 第二重思路就是看到两个node。第一个node通过交换变成第二个。交换的可能性很多。因此可以看乘bfs
# BFS就是给你一个起点一个终点,问你最近的距离,最少的方式等等是多少!
# by build directed edges bfs to find k
def neighbor(x):
i = 0
while x[i] == B[i]: # 更换的种类很多种,但是仍然需要剪枝无效的。因此相同部分就不改变了。
i += 1
for j in range(i + 1, len(x)): # 找到第一个不同的地方,然后去找可以过来填坑的letter
if x[j] == B[i]:
yield x[:i] + x[j] + x[i + 1:j] + x[i] + x[j + 1:]
q, seen = [(A, 0)], {A}
for x, d in q:
if x == B:
return d
for y in neighbor(x):
if y not in seen:
seen.add(y)
q.append((y, d + 1))
'''
|
Strings A and B are K-similar (for some non-negative integer K) if we can swap the positions of two letters in A exactly K times so that the resulting string equals B.
Given two anagrams A and B, return the smallest K for which A and B are K-similar.
Example 1:
Input: A = "ab", B = "ba"
Output: 1
Example 2:
Input: A = "abc", B = "bca"
Output: 2
Example 3:
Input: A = "abac", B = "baca"
Output: 2
Example 4:
Input: A = "aabc", B = "abca"
Output: 2
Note:
1 <= A.length == B.length <= 20
A and B contain only lowercase letters from the set {'a', 'b', 'c', 'd', 'e', 'f'}
|
class Solution:
def kSimilarity(self, A: str, B: str) -> int:
lsta, lstb = [], []
for i in range(len(A)):
if A[i] != B[i]:
lsta.append(A[i])
lstb.append(B[i])
A, B = ''.join(lsta), ''.join(lstb)
q = deque([(0, A, B)])
while q:
cost, curr, goal = q.popleft()
if not curr:
return cost
need = goal[0]
work = None
for i in range(len(curr)):
# need to find one where curr[i] == goal[0] and goal[i] == curr[0]
if curr[i] == goal[0] and goal[i] == curr[0]:
work = i
break
if work:
# only swap this one
q.append((cost+1, curr[1:work]+curr[work+1:], goal[1:work]+goal[work+1:]))
else:
for i in range(1, len(curr)):
if curr[i] == need:
q.append((cost+1, curr[1:i]+curr[0]+curr[i+1:], goal[1:]))
|
Strings A and B are K-similar (for some non-negative integer K) if we can swap the positions of two letters in A exactly K times so that the resulting string equals B.
Given two anagrams A and B, return the smallest K for which A and B are K-similar.
Example 1:
Input: A = "ab", B = "ba"
Output: 1
Example 2:
Input: A = "abc", B = "bca"
Output: 2
Example 3:
Input: A = "abac", B = "baca"
Output: 2
Example 4:
Input: A = "aabc", B = "abca"
Output: 2
Note:
1 <= A.length == B.length <= 20
A and B contain only lowercase letters from the set {'a', 'b', 'c', 'd', 'e', 'f'}
|
from collections import deque
class Solution:
def kSimilarity(self, A: str, B: str) -> int:
def nei(x):
i = 0
while x[i] == B[i]: i+=1
for j in range(i+1, len(x)):
if x[j] == B[i] and x[j] != B[j]: yield x[:i]+x[j]+x[i+1:j]+x[i]+x[j+1:]
q, seen = [(A,0)], {A}
for x, d in q:
if x == B: return d
for y in nei(x):
if y not in seen:
seen.add(y), q.append((y,d+1))
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.