Datasets:

inputs
stringlengths
50
14k
targets
stringlengths
4
655k
Strings A and B are K-similar (for some non-negative integer K) if we can swap the positions of two letters in A exactly K times so that the resulting string equals B. Given two anagrams A and B, return the smallest K for which A and B are K-similar. Example 1: Input: A = "ab", B = "ba" Output: 1 Example 2: Input: A = "abc", B = "bca" Output: 2 Example 3: Input: A = "abac", B = "baca" Output: 2 Example 4: Input: A = "aabc", B = "abca" Output: 2 Note: 1 <= A.length == B.length <= 20 A and B contain only lowercase letters from the set {'a', 'b', 'c', 'd', 'e', 'f'}
class Solution: # save the indices of letters that are in the right place # create array 'correct' where the index corresponds to the letter in A and the value is the correct index # find every letter pair --> a pair is two letters in B that when swapped, will end up in the correct index # dynamic programming? number of displaced letters --> min # of swaps # subproblem = number of displaced letters # at most 20 swaps def kSimilarity(self, A: str, B: str) -> int: q, visited = [(A,0)], {A} # BFS for x, dist in q: if x == B: return dist for y in self.generate_neighbour_strings(x, B): if y not in visited: visited.add(y), q.append((y,dist+1)) def generate_neighbour_strings(self, x, B): i = 0 while x[i] == B[i]: i+=1 for j in range(i+1, len(x)): if x[j] == B[i] and x[j] != B[j]: yield x[:i]+x[j]+x[i+1:j]+x[i]+x[j+1:]
Strings A and B are K-similar (for some non-negative integer K) if we can swap the positions of two letters in A exactly K times so that the resulting string equals B. Given two anagrams A and B, return the smallest K for which A and B are K-similar. Example 1: Input: A = "ab", B = "ba" Output: 1 Example 2: Input: A = "abc", B = "bca" Output: 2 Example 3: Input: A = "abac", B = "baca" Output: 2 Example 4: Input: A = "aabc", B = "abca" Output: 2 Note: 1 <= A.length == B.length <= 20 A and B contain only lowercase letters from the set {'a', 'b', 'c', 'd', 'e', 'f'}
class Solution: def kSimilarity(self, A: str, B: str) -> int: if A == B: return 0 queue = collections.deque([A]) visited = set([A]) step = 0 while queue: for _ in range(len(queue)): curr = queue.popleft() for nxt in self.findNext(curr, B): if nxt == B: return step + 1 if nxt in visited: continue queue.append(nxt) visited.add(nxt) step += 1 return -1 def findNext(self, curr, B): for i in range(len(curr)): if curr[i] != B[i]: break for j in range(i + 1, len(B)): if curr[j] == B[i]: yield curr[:i] + curr[j] + curr[i + 1: j] + curr[i] + curr[j + 1:]
Strings A and B are K-similar (for some non-negative integer K) if we can swap the positions of two letters in A exactly K times so that the resulting string equals B. Given two anagrams A and B, return the smallest K for which A and B are K-similar. Example 1: Input: A = "ab", B = "ba" Output: 1 Example 2: Input: A = "abc", B = "bca" Output: 2 Example 3: Input: A = "abac", B = "baca" Output: 2 Example 4: Input: A = "aabc", B = "abca" Output: 2 Note: 1 <= A.length == B.length <= 20 A and B contain only lowercase letters from the set {'a', 'b', 'c', 'd', 'e', 'f'}
class Solution: def kSimilarity(self, A: str, B: str) -> int: return self.recursion(A, B, {}) def recursion(self, A: str, B: str, memo: dict) -> int: if A == '': return 0 key = A + ',' + B if key in memo: return memo[key] if A[0] == B[0]: return self.recursion(A[1:], B[1:], memo) move = 100000 for i in range(1, len(A)): if B[i] == A[0]: tempB = B[1:i] + B[0] + B[i + 1:] move = min(move, self.recursion(A[1:], tempB, memo)) memo[key] = move + 1 return 1 + move
Strings A and B are K-similar (for some non-negative integer K) if we can swap the positions of two letters in A exactly K times so that the resulting string equals B. Given two anagrams A and B, return the smallest K for which A and B are K-similar. Example 1: Input: A = "ab", B = "ba" Output: 1 Example 2: Input: A = "abc", B = "bca" Output: 2 Example 3: Input: A = "abac", B = "baca" Output: 2 Example 4: Input: A = "aabc", B = "abca" Output: 2 Note: 1 <= A.length == B.length <= 20 A and B contain only lowercase letters from the set {'a', 'b', 'c', 'd', 'e', 'f'}
class Solution: from collections import deque def kSimilarity(self, A: str, B: str) -> int: if A==B: return 0 def G(pat): for i in range(len(B)-1): if pat[i] != B[i]: break ans = [] for j in range(i+1,len(B)): if pat[j] == B[i]: ans.append(pat[:i] + pat[j] + pat[i+1:j] + pat[i] + pat[j+1:]) return ans Q = deque([]) visited = set() visited.add(A) Q.append((0,A)) while(Q): lv, pat = Q.popleft() #if pat==B: # return lv for new in G(pat): if new not in visited: visited.add(new) Q.append((lv+1,new)) if new == B: return lv+1 #print(Q,visited)
Strings A and B are K-similar (for some non-negative integer K) if we can swap the positions of two letters in A exactly K times so that the resulting string equals B. Given two anagrams A and B, return the smallest K for which A and B are K-similar. Example 1: Input: A = "ab", B = "ba" Output: 1 Example 2: Input: A = "abc", B = "bca" Output: 2 Example 3: Input: A = "abac", B = "baca" Output: 2 Example 4: Input: A = "aabc", B = "abca" Output: 2 Note: 1 <= A.length == B.length <= 20 A and B contain only lowercase letters from the set {'a', 'b', 'c', 'd', 'e', 'f'}
class Solution: def kSimilarity(self, A: str, B: str) -> int: if A==B: return 0 N = len(A) dq = deque([(A, 0)]) cnt = 0 seen = {A} while dq: length = len(dq) for _ in range(length): a, idx = dq.popleft() for i in range(idx, N): if a[i]!=B[i]: break else: return cnt lst = list(a) for j in range(i+1, N): if a[j]!=B[j] and a[j]==B[i]: lst[j], lst[i] = lst[i], lst[j] state = ''.join(lst) if state not in seen: seen.add(state) dq.append((state, i+1)) lst[j], lst[i] = lst[i], lst[j] if a[i]==B[j]: break cnt += 1
Strings A and B are K-similar (for some non-negative integer K) if we can swap the positions of two letters in A exactly K times so that the resulting string equals B. Given two anagrams A and B, return the smallest K for which A and B are K-similar. Example 1: Input: A = "ab", B = "ba" Output: 1 Example 2: Input: A = "abc", B = "bca" Output: 2 Example 3: Input: A = "abac", B = "baca" Output: 2 Example 4: Input: A = "aabc", B = "abca" Output: 2 Note: 1 <= A.length == B.length <= 20 A and B contain only lowercase letters from the set {'a', 'b', 'c', 'd', 'e', 'f'}
class Solution: def kSimilarity(self, A: str, B: str) -> int: def get_neis(s): res = [] for i in range(N): if s[i]!=B[i]: break temp = list(s) for j in range(i+1, N): if s[j]==B[i]: #and s[j]!=B[j]: temp[i], temp[j] = temp[j], temp[i] res.append(''.join(temp)) temp[i], temp[j] = temp[j], temp[i] return res if A==B: return 0 N = len(A) dq = deque([A]) seen = set([A]) cnt = 0 while dq: length = len(dq) for _ in range(length): s = dq.popleft() for nei in get_neis(s): if nei==B: return cnt+1 if nei not in seen: seen.add(nei) dq.append(nei) cnt += 1
Strings A and B are K-similar (for some non-negative integer K) if we can swap the positions of two letters in A exactly K times so that the resulting string equals B. Given two anagrams A and B, return the smallest K for which A and B are K-similar. Example 1: Input: A = "ab", B = "ba" Output: 1 Example 2: Input: A = "abc", B = "bca" Output: 2 Example 3: Input: A = "abac", B = "baca" Output: 2 Example 4: Input: A = "aabc", B = "abca" Output: 2 Note: 1 <= A.length == B.length <= 20 A and B contain only lowercase letters from the set {'a', 'b', 'c', 'd', 'e', 'f'}
class Solution: @lru_cache(None) def kSimilarity(self, A: str, B: str) -> int: if len(A) == 0: return 0 if A[0]==B[0]: return self.kSimilarity(A[1:],B[1:]) ans = math.inf for i in range(1,len(B)): if B[i]==A[0]: ans = min(ans, 1+self.kSimilarity(A[1:],B[1:i]+B[0]+B[i+1:])) return ans
Strings A and B are K-similar (for some non-negative integer K) if we can swap the positions of two letters in A exactly K times so that the resulting string equals B. Given two anagrams A and B, return the smallest K for which A and B are K-similar. Example 1: Input: A = "ab", B = "ba" Output: 1 Example 2: Input: A = "abc", B = "bca" Output: 2 Example 3: Input: A = "abac", B = "baca" Output: 2 Example 4: Input: A = "aabc", B = "abca" Output: 2 Note: 1 <= A.length == B.length <= 20 A and B contain only lowercase letters from the set {'a', 'b', 'c', 'd', 'e', 'f'}
class Solution: def kSimilarity(self, A: str, B: str) -> int: if A==B: return 0 step_list = [] A_list = [] for i in range(len(A)): A_list.append(A[i]) states = [[A_list.copy(),0,0],] #list, index, step while states != []: state = states.pop(0) indictor = 0 for i in range(state[1],len(A_list)): if state[0][i] != B[i]: indictor = 1 for j in range(i+1,len(A_list)): if state[0][j] == B[i] and B[j] != state[0][j]: new_state = state[0].copy() new_state[j], new_state[i] = new_state[i], new_state[j] states.append([new_state,i+1,state[2]+1]) if B[j] == state[0][i]: break break if indictor == 0: step_list.append(state[2]) return min(step_list)
Strings A and B are K-similar (for some non-negative integer K) if we can swap the positions of two letters in A exactly K times so that the resulting string equals B. Given two anagrams A and B, return the smallest K for which A and B are K-similar. Example 1: Input: A = "ab", B = "ba" Output: 1 Example 2: Input: A = "abc", B = "bca" Output: 2 Example 3: Input: A = "abac", B = "baca" Output: 2 Example 4: Input: A = "aabc", B = "abca" Output: 2 Note: 1 <= A.length == B.length <= 20 A and B contain only lowercase letters from the set {'a', 'b', 'c', 'd', 'e', 'f'}
class Solution: def kSimilarity2(self, A, B): def nei(x): i = 0 while x[i] == B[i]: i+=1 for j in range(i+1, len(x)): if x[j] == B[i] and x[i] != x[j]: yield x[:i]+x[j]+x[i+1:j]+x[i]+x[j+1:] q, seen = collections.deque([(A,0)]), {A} while q: x, d = q.popleft() if x == B: return d for y in nei(x): if y not in seen: seen.add(y), q.append((y,d+1)) def kSimilarity(self, A: str, B: str) -> int: if A == B: return 0 m = len(A) def getNeighbors(word): i = 0 while word[i] == B[i]: i+=1 for j in range(i+1, m): if word[j] == B[i] and word[j] != word[i]: yield word[:i] + word[j] + word[i+1:j] + word[i] + word[j+1:] visited = {A} queue = collections.deque([(A, 0)]) while queue: word, d = queue.popleft() if word == B: return d for nbor in getNeighbors(word): if nbor not in visited: visited.add(nbor) queue.append((nbor, d+1))
Strings A and B are K-similar (for some non-negative integer K) if we can swap the positions of two letters in A exactly K times so that the resulting string equals B. Given two anagrams A and B, return the smallest K for which A and B are K-similar. Example 1: Input: A = "ab", B = "ba" Output: 1 Example 2: Input: A = "abc", B = "bca" Output: 2 Example 3: Input: A = "abac", B = "baca" Output: 2 Example 4: Input: A = "aabc", B = "abca" Output: 2 Note: 1 <= A.length == B.length <= 20 A and B contain only lowercase letters from the set {'a', 'b', 'c', 'd', 'e', 'f'}
class Solution: @lru_cache(None) def kSimilarity(self, A: str, B: str) -> int: if len(A) == 0: return 0 if A[0]==B[0]: return self.kSimilarity(A[1:],B[1:]) ans = math.inf for i in range(1,len(B)): if B[i]==A[0]: ans = min(ans, 1+self.kSimilarity(A[1:],B[1:i]+B[0]+B[i+1:])) return ans
Strings A and B are K-similar (for some non-negative integer K) if we can swap the positions of two letters in A exactly K times so that the resulting string equals B. Given two anagrams A and B, return the smallest K for which A and B are K-similar. Example 1: Input: A = "ab", B = "ba" Output: 1 Example 2: Input: A = "abc", B = "bca" Output: 2 Example 3: Input: A = "abac", B = "baca" Output: 2 Example 4: Input: A = "aabc", B = "abca" Output: 2 Note: 1 <= A.length == B.length <= 20 A and B contain only lowercase letters from the set {'a', 'b', 'c', 'd', 'e', 'f'}
class Solution: def kSimilarity(self, A, B): # def nei(x): # i = 0 # while x[i] == B[i]: i += 1 # for j in range(i + 1, len(A)): # if x[j] == B[j]: # continue # if x[j] == B[i] and x[i] == B[j]: # yield x[:i] + x[j] + x[i + 1:j] + x[i] + x[j + 1:] # break # if x[j] == B[i]: # yield x[:i] + x[j] + x[i + 1:j] + x[i] + x[j + 1:] # # def test(): # stack = [(A, 0)] # visit = {A} # while stack: # cur, d = stack.pop() # if cur == B: return d # for neighbor in nei(cur): # if neighbor not in visit: # visit.add(neighbor) # stack.append((neighbor, d+1)) n = len(A) def nei(x): i = 0 while x[i] == B[i]: i += 1 for j in range(i+1,n): if x[j] == B[j]: continue if x[j] == B[i] and x[i] == B[j]: yield x[:i]+x[j]+x[i+1:j]+x[i]+x[j+1:] break if x[j] == B[i]: yield x[:i]+x[j]+x[i+1:j]+x[i]+x[j+1:] pool = [(A,0)] seen = {A} for x,d in pool: if x == B: return d for y in nei(x): if y not in seen: seen.add(y) pool.append((y,d+1))
Strings A and B are K-similar (for some non-negative integer K) if we can swap the positions of two letters in A exactly K times so that the resulting string equals B. Given two anagrams A and B, return the smallest K for which A and B are K-similar. Example 1: Input: A = "ab", B = "ba" Output: 1 Example 2: Input: A = "abc", B = "bca" Output: 2 Example 3: Input: A = "abac", B = "baca" Output: 2 Example 4: Input: A = "aabc", B = "abca" Output: 2 Note: 1 <= A.length == B.length <= 20 A and B contain only lowercase letters from the set {'a', 'b', 'c', 'd', 'e', 'f'}
class Solution: def kSimilarity(self, A: str, B: str) -> int: mem = dict() def process(A,B): key = '%s_%s'%(A,B) if A==B: return 0 if key in mem: return mem[key] if A[0] == B[0]: return process(A[1:],B[1:]) c2 = float('inf') temp = list(B) for idx,val in enumerate(B): if val == A[0]: temp[idx],temp[0] = temp[0],temp[idx] c2 = min(c2,1+process(A[1:],''.join(temp)[1:])) temp[0],temp[idx] = temp[idx],temp[0] mem[key]=c2 return mem[key] return process(A,B)
Strings A and B are K-similar (for some non-negative integer K) if we can swap the positions of two letters in A exactly K times so that the resulting string equals B. Given two anagrams A and B, return the smallest K for which A and B are K-similar. Example 1: Input: A = "ab", B = "ba" Output: 1 Example 2: Input: A = "abc", B = "bca" Output: 2 Example 3: Input: A = "abac", B = "baca" Output: 2 Example 4: Input: A = "aabc", B = "abca" Output: 2 Note: 1 <= A.length == B.length <= 20 A and B contain only lowercase letters from the set {'a', 'b', 'c', 'd', 'e', 'f'}
from functools import lru_cache class Solution: def kSimilarity(self, A: str, B: str) -> int: @lru_cache(None) def solve(s1, s2): if not s1: return 0 if s1[0] == s2[0]: return solve(s1[1:], s2[1:]) ans = 21 for i,c in enumerate(s1): if s2[0] == c: ans = min(ans, 1 + solve(s1[1:i] + s1[0] + s1[i+1:], s2[1:])) return ans return solve(A, B)
Strings A and B are K-similar (for some non-negative integer K) if we can swap the positions of two letters in A exactly K times so that the resulting string equals B. Given two anagrams A and B, return the smallest K for which A and B are K-similar. Example 1: Input: A = "ab", B = "ba" Output: 1 Example 2: Input: A = "abc", B = "bca" Output: 2 Example 3: Input: A = "abac", B = "baca" Output: 2 Example 4: Input: A = "aabc", B = "abca" Output: 2 Note: 1 <= A.length == B.length <= 20 A and B contain only lowercase letters from the set {'a', 'b', 'c', 'd', 'e', 'f'}
class Solution: def kSimilarity(self, A: str, B: str) -> int: q = collections.deque() visited = set() q.append(A) visited.add(A) step = -1 while q: step += 1 lens = len(q) for _ in range(lens): curr = q.popleft() if curr == B: return step #print(self._swap(curr, B)) for next in self._swap(curr, B): if next in visited: continue q.append(next) visited.add(next) def _swap(self, s, B): i = 0 while s[i] == B[i]: i += 1 if s[i]!=B[i]: for j in range(i + 1, len(s)): if s[j] == B[i]: yield s[:i] + s[j] + s[i+1:j] + s[i] + s[j+1:]
Strings A and B are K-similar (for some non-negative integer K) if we can swap the positions of two letters in A exactly K times so that the resulting string equals B. Given two anagrams A and B, return the smallest K for which A and B are K-similar. Example 1: Input: A = "ab", B = "ba" Output: 1 Example 2: Input: A = "abc", B = "bca" Output: 2 Example 3: Input: A = "abac", B = "baca" Output: 2 Example 4: Input: A = "aabc", B = "abca" Output: 2 Note: 1 <= A.length == B.length <= 20 A and B contain only lowercase letters from the set {'a', 'b', 'c', 'd', 'e', 'f'}
class Solution: def kSimilarity(self, A, B): def nei(x): i = 0 while x[i] == B[i]: i+=1 for j in range(i+1, len(x)): if x[j] == B[i] and x[i] != x[j]: yield x[:i]+x[j]+x[i+1:j]+x[i]+x[j+1:] q, seen = collections.deque([(A,0)]), {A} while q: x, d = q.popleft() print(x) if x == B: return d for y in nei(x): if y not in seen: seen.add(y), q.append((y,d+1))
Strings A and B are K-similar (for some non-negative integer K) if we can swap the positions of two letters in A exactly K times so that the resulting string equals B. Given two anagrams A and B, return the smallest K for which A and B are K-similar. Example 1: Input: A = "ab", B = "ba" Output: 1 Example 2: Input: A = "abc", B = "bca" Output: 2 Example 3: Input: A = "abac", B = "baca" Output: 2 Example 4: Input: A = "aabc", B = "abca" Output: 2 Note: 1 <= A.length == B.length <= 20 A and B contain only lowercase letters from the set {'a', 'b', 'c', 'd', 'e', 'f'}
class Solution: def kSimilarity(self, A: str, B: str) -> int: if A==B: return 0 step_list = [] A_list = [] for i in range(len(A)): A_list.append(A[i]) states = [[A_list.copy(),0,0],] #list, index, step while states != []: state = states.pop(0) indictor = 0 for i in range(state[1],len(A_list)): if state[0][i] != B[i]: indictor = 1 for j in range(i+1,len(A_list)): if state[0][j] == B[i] and B[j] != state[0][j] and B[j] == state[0][i]: new_state = state[0].copy() new_state[j], new_state[i] = new_state[i], new_state[j] states.append([new_state,i+1,state[2]+1]) break elif state[0][j] == B[i] and B[j] != state[0][j]: new_state = state[0].copy() new_state[j], new_state[i] = new_state[i], new_state[j] states.append([new_state,i+1,state[2]+1]) break if indictor == 0: step_list.append(state[2]) return min(step_list)
Strings A and B are K-similar (for some non-negative integer K) if we can swap the positions of two letters in A exactly K times so that the resulting string equals B. Given two anagrams A and B, return the smallest K for which A and B are K-similar. Example 1: Input: A = "ab", B = "ba" Output: 1 Example 2: Input: A = "abc", B = "bca" Output: 2 Example 3: Input: A = "abac", B = "baca" Output: 2 Example 4: Input: A = "aabc", B = "abca" Output: 2 Note: 1 <= A.length == B.length <= 20 A and B contain only lowercase letters from the set {'a', 'b', 'c', 'd', 'e', 'f'}
class Solution: def kSimilarity(self, A: str, B: str) -> int: dic = {c: i for i, c in enumerate('abcdef')} bag = dict() stack = [] for a, b in zip(A, B): if a != b: i, j = dic[a], dic[b] bag[(i, j)] = bag.get((i, j), 0) + 1 stack.append((i, j)) output = 0 # @lru_cache(maxsize=None) def search(stack): if not stack: return 0 i, j = stack.pop() if (j, i) in stack: idx = stack.index((j, i)) stack = stack[:idx] + stack[(idx + 1):] return search(stack) + 1 else: best = float(inf) for idx, pair in enumerate(stack): if pair[0] == j: curr = search(stack[:idx] + [(i, pair[1])] + stack[(idx + 1):]) + 1 best = min(curr, best) return best return search(stack)
Strings A and B are K-similar (for some non-negative integer K) if we can swap the positions of two letters in A exactly K times so that the resulting string equals B. Given two anagrams A and B, return the smallest K for which A and B are K-similar. Example 1: Input: A = "ab", B = "ba" Output: 1 Example 2: Input: A = "abc", B = "bca" Output: 2 Example 3: Input: A = "abac", B = "baca" Output: 2 Example 4: Input: A = "aabc", B = "abca" Output: 2 Note: 1 <= A.length == B.length <= 20 A and B contain only lowercase letters from the set {'a', 'b', 'c', 'd', 'e', 'f'}
class Solution: def kSimilarity(self, A: str, B: str) -> int: n = len(A) A = list(A) B = list(B) base = 0 for i in range(n): if A[i] == B[i]: continue for j in range(i+1, n): if A[i] == B[j] and A[j] == B[i]: A[i], A[j] = A[j], A[i] base += 1 break # invariant: A[:i] == B[:i] def dfs(i): if i == n: return 0 if A[i] == B[i]: return dfs(i+1) desired = B[i] cand = float('inf') for j in range(i+1, n): if A[j] == desired: A[i], A[j] = A[j], A[i] cand = min(cand, 1 + dfs(i+1)) A[i], A[j] = A[j], A[i] return cand return base + dfs(0)
Strings A and B are K-similar (for some non-negative integer K) if we can swap the positions of two letters in A exactly K times so that the resulting string equals B. Given two anagrams A and B, return the smallest K for which A and B are K-similar. Example 1: Input: A = "ab", B = "ba" Output: 1 Example 2: Input: A = "abc", B = "bca" Output: 2 Example 3: Input: A = "abac", B = "baca" Output: 2 Example 4: Input: A = "aabc", B = "abca" Output: 2 Note: 1 <= A.length == B.length <= 20 A and B contain only lowercase letters from the set {'a', 'b', 'c', 'd', 'e', 'f'}
from collections import deque class Solution: def kSimilarity(self, A: str, B: str) -> int: ## check official solution and ## https://leetcode.com/problems/k-similar-strings/discuss/269517/Python-Graph-BFS q = deque() q.append(A) visited = set([A]) res = 0 def neighbors(x): res = [] i = 0 while i<len(x) and x[i] == B[i]: i += 1 for j in range(i+1, len(A)): if x[j] == B[i]: new_str = x[:i] + x[j] + x[i+1:j] + x[i] + x[j+1:] if new_str not in visited: visited.add(new_str) res.append(new_str) return res while len(q)>0: q_sz = len(q) for _ in range(q_sz): cur = q.popleft() if cur == B: return res for neighbor in neighbors(cur): q.append(neighbor) res += 1 return res
Strings A and B are K-similar (for some non-negative integer K) if we can swap the positions of two letters in A exactly K times so that the resulting string equals B. Given two anagrams A and B, return the smallest K for which A and B are K-similar. Example 1: Input: A = "ab", B = "ba" Output: 1 Example 2: Input: A = "abc", B = "bca" Output: 2 Example 3: Input: A = "abac", B = "baca" Output: 2 Example 4: Input: A = "aabc", B = "abca" Output: 2 Note: 1 <= A.length == B.length <= 20 A and B contain only lowercase letters from the set {'a', 'b', 'c', 'd', 'e', 'f'}
class Solution: def kSimilarity(self, A: str, B: str) -> int: queue = collections.deque([(A, 0, 0)]) s = {A} while queue: curr_A, curr_k, curr_p = queue.popleft() # print(curr_A, curr_k, curr_p) if curr_A == B: return curr_k for i in range(curr_p, len(A)): if curr_A[i] != B[i]: for j in range(i+1, len(A)): if curr_A[j] == B[i] and curr_A[:i] + curr_A[j] + curr_A[i+1: j] + curr_A[i] + curr_A[j+1:] not in s: queue.append((curr_A[:i] + curr_A[j] + curr_A[i+1: j] + curr_A[i] + curr_A[j+1:], curr_k + 1, i + 1)) s.add(curr_A[:i] + curr_A[j] + curr_A[i+1: j] + curr_A[i] + curr_A[j+1:]) break
Strings A and B are K-similar (for some non-negative integer K) if we can swap the positions of two letters in A exactly K times so that the resulting string equals B. Given two anagrams A and B, return the smallest K for which A and B are K-similar. Example 1: Input: A = "ab", B = "ba" Output: 1 Example 2: Input: A = "abc", B = "bca" Output: 2 Example 3: Input: A = "abac", B = "baca" Output: 2 Example 4: Input: A = "aabc", B = "abca" Output: 2 Note: 1 <= A.length == B.length <= 20 A and B contain only lowercase letters from the set {'a', 'b', 'c', 'd', 'e', 'f'}
class Solution: def kSimilarity(self, A: str, B: str) -> int: queue = collections.deque([(A, 0, 0)]) s = {A} while queue: curr_A, curr_k, curr_p = queue.popleft() if curr_A == B: return curr_k for i in range(curr_p, len(A)): if curr_A[i] != B[i]: for j in range(i+1, len(A)): if curr_A[j] == B[i] and curr_A[:i] + curr_A[j] + curr_A[i+1: j] + curr_A[i] + curr_A[j+1:] not in s: queue.append((curr_A[:i] + curr_A[j] + curr_A[i+1: j] + curr_A[i] + curr_A[j+1:], curr_k + 1, i + 1)) s.add(curr_A[:i] + curr_A[j] + curr_A[i+1: j] + curr_A[i] + curr_A[j+1:]) break
Strings A and B are K-similar (for some non-negative integer K) if we can swap the positions of two letters in A exactly K times so that the resulting string equals B. Given two anagrams A and B, return the smallest K for which A and B are K-similar. Example 1: Input: A = "ab", B = "ba" Output: 1 Example 2: Input: A = "abc", B = "bca" Output: 2 Example 3: Input: A = "abac", B = "baca" Output: 2 Example 4: Input: A = "aabc", B = "abca" Output: 2 Note: 1 <= A.length == B.length <= 20 A and B contain only lowercase letters from the set {'a', 'b', 'c', 'd', 'e', 'f'}
class Solution: def kSimilarity(self, A: str, B: str) -> int: queue = [] queue.append((A,B,0)) step = len(A) minFlip = float('inf') seen = {(A,B):0} while(queue): target, current, flip = queue.pop(0) if seen[(target,current)] < flip: continue if target == current: minFlip = min(minFlip,flip) continue if target[0] == current[0]: temp = seen.get((target[1:], current[1:]), None) if not temp: seen[(target[1:], current[1:])] = flip else: if temp <= flip: continue seen[(target[1:], current[1:])] = flip queue.append((target[1:], current[1:], flip)) else: canni = [idx for idx, char in enumerate(current) if char == target[0]] piror = canni #piror = [(loc, target[loc] == current[0]) for loc in canni] #piror.sort(key=lambda x:x[1],reverse = True) for loc in piror: lol = (target[1:], current[1:loc] + current[0] + current[loc+1:]) temp = seen.get(lol, None) if not temp: seen[lol] = flip+1 else: if temp <= flip+1: continue seen[lol] = flip + 1 queue.append((target[1:], current[1:loc] + current[0] + current[loc+1:], flip + 1)) return minFlip
Strings A and B are K-similar (for some non-negative integer K) if we can swap the positions of two letters in A exactly K times so that the resulting string equals B. Given two anagrams A and B, return the smallest K for which A and B are K-similar. Example 1: Input: A = "ab", B = "ba" Output: 1 Example 2: Input: A = "abc", B = "bca" Output: 2 Example 3: Input: A = "abac", B = "baca" Output: 2 Example 4: Input: A = "aabc", B = "abca" Output: 2 Note: 1 <= A.length == B.length <= 20 A and B contain only lowercase letters from the set {'a', 'b', 'c', 'd', 'e', 'f'}
class Solution: def kSimilarity(self, A: str, B: str) -> int: def dist(a, b): # count number of differing characters return sum( (1 if c!=d else 0 for (c,d) in zip(a,b) ) ) def swap(s, i, j): # swap ith and jth chars of string s # assert i != j if i > j: i, j = j, i return s[:i] + s[j] + s[i+1:j] + s[i] + s[j+1:] def DFS(string, k): # can string be swapped into problem's str `A` in `k` moves? if string == A: return True if k == 0: return False # early break if distance is too great: # best possible for string of length N: # N is even: N/2 (every swap corrects 2 letters # N is odd: N//2 + 1 # every swap until last 3 letters corrects 2 # last 3 letters take 2 swaps distance = dist(string, A) best = distance/2 if distance % 2 == 0 else (distance//2) + 1 if k < best: return False for i,c in enumerate(string): if A[i] == c: continue # c is wrong, we need to swap a correct letter into it # only look for after current position to avoid double swaps for j in range(i, len(A)): if string[j] == A[i] and A[j] != A[i]: # try this swap if DFS(swap(string, i, j), k-1): return True # return False after trying the first wrong letter (because of trick): # if there is any `k` solution, then there's a `k` solution # that starts on this letter return False for k in range(len(A)): if DFS(B, k): return k
Strings A and B are K-similar (for some non-negative integer K) if we can swap the positions of two letters in A exactly K times so that the resulting string equals B. Given two anagrams A and B, return the smallest K for which A and B are K-similar. Example 1: Input: A = "ab", B = "ba" Output: 1 Example 2: Input: A = "abc", B = "bca" Output: 2 Example 3: Input: A = "abac", B = "baca" Output: 2 Example 4: Input: A = "aabc", B = "abca" Output: 2 Note: 1 <= A.length == B.length <= 20 A and B contain only lowercase letters from the set {'a', 'b', 'c', 'd', 'e', 'f'}
class Solution: def kSimilarity(self, A: str, B: str) -> int: q = collections.deque() visited = set() q.append(A) visited.add(A) level = 0 def getNext(S, B): S = list(S) res = [] i = 0 while i < len(S): if S[i] != B[i]: break i += 1 for j in range(i + 1, len(S)): if S[j] == B[i]: S[j], S[i] = S[i], S[j] res.append(''.join(S)) S[j], S[i] = S[i], S[j] return res while q: for _ in range(len(q)): curr = q.popleft() if curr == B: return level for next_str in getNext(curr, B): if next_str not in visited: q.append(next_str) visited.add(next_str) level += 1 return -1
Strings A and B are K-similar (for some non-negative integer K) if we can swap the positions of two letters in A exactly K times so that the resulting string equals B. Given two anagrams A and B, return the smallest K for which A and B are K-similar. Example 1: Input: A = "ab", B = "ba" Output: 1 Example 2: Input: A = "abc", B = "bca" Output: 2 Example 3: Input: A = "abac", B = "baca" Output: 2 Example 4: Input: A = "aabc", B = "abca" Output: 2 Note: 1 <= A.length == B.length <= 20 A and B contain only lowercase letters from the set {'a', 'b', 'c', 'd', 'e', 'f'}
class Solution: def kSimilarity(self, A: str, B: str) -> int: def mk_similarities(s): # len(s) == len(B) for i, c in enumerate(B): if s[i] != c: break res = [] for j in range(i + 1, len(B)): if s[j] == B[i]: ns = list(s) ns[i], ns[j] = ns[j], ns[i] res.append(''.join(ns)) return res N = len(A) ws = [A] swaps = 0 seen = {A} while ws: nws = [] for _ in range(len(ws)): s = ws.pop(0) # print(s) if s == B: return swaps similarities = mk_similarities(s) # print(similarities) for similarity in similarities: if similarity not in seen: nws.append(similarity) seen.add(similarity) ws = nws swaps += 1 return None # swaps = 0 # N = len(A) # A = list(A) # for i, c in enumerate(B): # if A[i] == c: # pass # else: # nearest_c = None # for j in range(i + 1, N): # if A[j] == c: # nearest_c = j # break # if nearest_c is None: # return None # else: # A[i], A[j] = A[j], A[i] # swaps += 1 # return swaps
Strings A and B are K-similar (for some non-negative integer K) if we can swap the positions of two letters in A exactly K times so that the resulting string equals B. Given two anagrams A and B, return the smallest K for which A and B are K-similar. Example 1: Input: A = "ab", B = "ba" Output: 1 Example 2: Input: A = "abc", B = "bca" Output: 2 Example 3: Input: A = "abac", B = "baca" Output: 2 Example 4: Input: A = "aabc", B = "abca" Output: 2 Note: 1 <= A.length == B.length <= 20 A and B contain only lowercase letters from the set {'a', 'b', 'c', 'd', 'e', 'f'}
class Solution: def kSimilarity(self, A: str, B: str) -> int: def getSwap(S): # 用于获取一个节点下可以扩展的所有节点 for i, c in enumerate(S): # 找到第一个不相等的字符的-位置- if c != B[i]: break T = list(S) for j in range(i + 1, len(S)): # 获取所有的可扩展的子节点 if S[j] == B[i]: # 找到就交换 T[i], T[j] = T[j], T[i] yield ''.join(T) # 返回一个节点 T[j], T[i] = T[i], T[j] # 恢复当前环境,以便寻找下一个可扩展的节点 queue, cnt = [A], {A: 0} # 初始化队列,cnt用于记录当前结点已经走了多少步 while queue: S = queue[0] # 出队 del queue[0] if S == B: return cnt[S] # 结束 for T in getSwap(S): # 获取当前节点所有扩展子节点 if T not in cnt: # 如果没有出现过,则入队 cnt[T] = cnt[S] + 1 queue.append(T)
Strings A and B are K-similar (for some non-negative integer K) if we can swap the positions of two letters in A exactly K times so that the resulting string equals B. Given two anagrams A and B, return the smallest K for which A and B are K-similar. Example 1: Input: A = "ab", B = "ba" Output: 1 Example 2: Input: A = "abc", B = "bca" Output: 2 Example 3: Input: A = "abac", B = "baca" Output: 2 Example 4: Input: A = "aabc", B = "abca" Output: 2 Note: 1 <= A.length == B.length <= 20 A and B contain only lowercase letters from the set {'a', 'b', 'c', 'd', 'e', 'f'}
class Solution: def kSimilarity(self, A: str, B: str) -> int: def mk_similarities(s): # len(s) == len(B) for i, c in enumerate(B): if s[i] != c: break res = [] for j in range(i + 1, len(B)): if s[j] == B[i]: ns = list(s) ns[i], ns[j] = ns[j], ns[i] res.append(''.join(ns)) return res N = len(A) ws = [A] swaps = 0 seen = {A} while ws: nws = [] for _ in range(len(ws)): s = ws.pop(0) # print(s) if s == B: return swaps similarities = mk_similarities(s) # print(similarities) for similarity in similarities: if similarity not in seen: nws.append(similarity) seen.add(similarity) ws = nws swaps += 1 return None
Strings A and B are K-similar (for some non-negative integer K) if we can swap the positions of two letters in A exactly K times so that the resulting string equals B. Given two anagrams A and B, return the smallest K for which A and B are K-similar. Example 1: Input: A = "ab", B = "ba" Output: 1 Example 2: Input: A = "abc", B = "bca" Output: 2 Example 3: Input: A = "abac", B = "baca" Output: 2 Example 4: Input: A = "aabc", B = "abca" Output: 2 Note: 1 <= A.length == B.length <= 20 A and B contain only lowercase letters from the set {'a', 'b', 'c', 'd', 'e', 'f'}
class Solution: def kSimilarity(self, A: str, B: str) -> int: @lru_cache(None) def nei(x): i = 0 while i < len(x) and x[i] == B[i]: i+=1 res = [] for j in range(i+1, len(x)): if x[j] == B[i]: res.append(x[:i]+x[j]+x[i+1:j]+x[i]+x[j+1:]) return res q, seen = [(A,0)], {A} for x, d in q: if x == B: return d for y in nei(x): if y not in seen: seen.add(y), q.append((y,d+1))
Strings A and B are K-similar (for some non-negative integer K) if we can swap the positions of two letters in A exactly K times so that the resulting string equals B. Given two anagrams A and B, return the smallest K for which A and B are K-similar. Example 1: Input: A = "ab", B = "ba" Output: 1 Example 2: Input: A = "abc", B = "bca" Output: 2 Example 3: Input: A = "abac", B = "baca" Output: 2 Example 4: Input: A = "aabc", B = "abca" Output: 2 Note: 1 <= A.length == B.length <= 20 A and B contain only lowercase letters from the set {'a', 'b', 'c', 'd', 'e', 'f'}
class Solution: def kSimilarity(self, A, B): def nei(x): i = 0 while x[i] == B[i]: i+=1 for j in range(i+1, len(x)): if x[j] == B[i]: yield x[:i]+x[j]+x[i+1:j]+x[i]+x[j+1:] q, seen = [(A,0)], {A} for x, d in q: if x == B: return d for y in nei(x): if y not in seen: seen.add(y), q.append((y,d+1))
Given an integer array nums and an integer k, return the maximum sum of a non-empty subsequence of that array such that for every two consecutive integers in the subsequence, nums[i] and nums[j], where i < j, the condition j - i <= k is satisfied. A subsequence of an array is obtained by deleting some number of elements (can be zero) from the array, leaving the remaining elements in their original order.   Example 1: Input: nums = [10,2,-10,5,20], k = 2 Output: 37 Explanation: The subsequence is [10, 2, 5, 20]. Example 2: Input: nums = [-1,-2,-3], k = 1 Output: -1 Explanation: The subsequence must be non-empty, so we choose the largest number. Example 3: Input: nums = [10,-2,-10,-5,20], k = 2 Output: 23 Explanation: The subsequence is [10, -2, -5, 20].   Constraints: 1 <= k <= nums.length <= 10^5 -10^4 <= nums[i] <= 10^4
from collections import deque class Solution: def constrainedSubsetSum(self, nums, k): N, queue = len(nums), deque() dp = [val for val in nums] for i, val in enumerate(nums): if queue and (i - queue[0] > k): queue.popleft() if queue and dp[queue[0]] > 0: dp[i] += dp[queue[0]] while queue and dp[i] >= dp[queue[-1]]: queue.pop() queue.append(i) return max(dp)
Given an integer array nums and an integer k, return the maximum sum of a non-empty subsequence of that array such that for every two consecutive integers in the subsequence, nums[i] and nums[j], where i < j, the condition j - i <= k is satisfied. A subsequence of an array is obtained by deleting some number of elements (can be zero) from the array, leaving the remaining elements in their original order.   Example 1: Input: nums = [10,2,-10,5,20], k = 2 Output: 37 Explanation: The subsequence is [10, 2, 5, 20]. Example 2: Input: nums = [-1,-2,-3], k = 1 Output: -1 Explanation: The subsequence must be non-empty, so we choose the largest number. Example 3: Input: nums = [10,-2,-10,-5,20], k = 2 Output: 23 Explanation: The subsequence is [10, -2, -5, 20].   Constraints: 1 <= k <= nums.length <= 10^5 -10^4 <= nums[i] <= 10^4
from collections import deque class Solution: def constrainedSubsetSum(self, nums: List[int], k: int) -> int: dp = nums.copy() ans = dp[0] monoq = deque() qsize = 0 for i, num in enumerate(nums): if i > 0: dp[i] = max(dp[i], num + monoq[0][0]) ans = max(ans, dp[i]) pops = 1 while monoq and dp[i] > monoq[-1][0]: _, freq = monoq.pop() pops += freq qsize -= freq monoq.append([dp[i], pops]) qsize += pops while qsize > k: extra = qsize - k if monoq[0][1] > extra: monoq[0][1] -= extra qsize = k else: _, v = monoq.popleft() qsize -= v return ans
Given an integer array nums and an integer k, return the maximum sum of a non-empty subsequence of that array such that for every two consecutive integers in the subsequence, nums[i] and nums[j], where i < j, the condition j - i <= k is satisfied. A subsequence of an array is obtained by deleting some number of elements (can be zero) from the array, leaving the remaining elements in their original order.   Example 1: Input: nums = [10,2,-10,5,20], k = 2 Output: 37 Explanation: The subsequence is [10, 2, 5, 20]. Example 2: Input: nums = [-1,-2,-3], k = 1 Output: -1 Explanation: The subsequence must be non-empty, so we choose the largest number. Example 3: Input: nums = [10,-2,-10,-5,20], k = 2 Output: 23 Explanation: The subsequence is [10, -2, -5, 20].   Constraints: 1 <= k <= nums.length <= 10^5 -10^4 <= nums[i] <= 10^4
from collections import deque class Solution: def constrainedSubsetSum(self, nums: List[int], k: int) -> int: dp = [] dp.append(nums[0]) deq = deque() deq.append(0) for i in range(1, len(nums)): while len(deq) and (i - deq[0]) > k: deq.popleft() cur_max = dp[deq[0]] if len(deq) and dp[deq[0]] > 0 else 0 dp.append(cur_max + nums[i]) while len(deq) and dp[deq[-1]] < dp[i]: deq.pop() deq.append(i) return max(dp)
Given an integer array nums and an integer k, return the maximum sum of a non-empty subsequence of that array such that for every two consecutive integers in the subsequence, nums[i] and nums[j], where i < j, the condition j - i <= k is satisfied. A subsequence of an array is obtained by deleting some number of elements (can be zero) from the array, leaving the remaining elements in their original order.   Example 1: Input: nums = [10,2,-10,5,20], k = 2 Output: 37 Explanation: The subsequence is [10, 2, 5, 20]. Example 2: Input: nums = [-1,-2,-3], k = 1 Output: -1 Explanation: The subsequence must be non-empty, so we choose the largest number. Example 3: Input: nums = [10,-2,-10,-5,20], k = 2 Output: 23 Explanation: The subsequence is [10, -2, -5, 20].   Constraints: 1 <= k <= nums.length <= 10^5 -10^4 <= nums[i] <= 10^4
from heapq import heappop from heapq import heappush class Solution: def constrainedSubsetSum(self, nums: List[int], k: int) -> int: # -val, val, idx heap = [] ans = -10001 for i, num in enumerate(nums): while len(heap) > 0: _, val, idx = heap[0] if idx < i - k: # out of constraint heappop(heap) else: new_val = max(num, val + num) ans = max(ans, new_val) heappush(heap, (-new_val, new_val, i)) break if len(heap) == 0: # no valid previous item ans = max(ans, num) heappush(heap, (-num, num, i)) return ans
Given an integer array nums and an integer k, return the maximum sum of a non-empty subsequence of that array such that for every two consecutive integers in the subsequence, nums[i] and nums[j], where i < j, the condition j - i <= k is satisfied. A subsequence of an array is obtained by deleting some number of elements (can be zero) from the array, leaving the remaining elements in their original order.   Example 1: Input: nums = [10,2,-10,5,20], k = 2 Output: 37 Explanation: The subsequence is [10, 2, 5, 20]. Example 2: Input: nums = [-1,-2,-3], k = 1 Output: -1 Explanation: The subsequence must be non-empty, so we choose the largest number. Example 3: Input: nums = [10,-2,-10,-5,20], k = 2 Output: 23 Explanation: The subsequence is [10, -2, -5, 20].   Constraints: 1 <= k <= nums.length <= 10^5 -10^4 <= nums[i] <= 10^4
class Solution: def constrainedSubsetSum(self, nums: List[int], k: int) -> int: n=len(nums) dp=[-sys.maxsize]*n dq=[] dp[n-1]=nums[n-1] res=dp[n-1] for i in range(n-2,-1,-1): while(len(dq)!=0 and dp[i+1]>dp[dq[-1]]): dq.pop() while(len(dq)!=0 and dq[0]>i+k): dq.pop(0) dq.append(i+1) dp[i]=max(dp[i],nums[i],nums[i]+dp[dq[0]]) res=max(res,dp[i]) return res
Given an integer array nums and an integer k, return the maximum sum of a non-empty subsequence of that array such that for every two consecutive integers in the subsequence, nums[i] and nums[j], where i < j, the condition j - i <= k is satisfied. A subsequence of an array is obtained by deleting some number of elements (can be zero) from the array, leaving the remaining elements in their original order.   Example 1: Input: nums = [10,2,-10,5,20], k = 2 Output: 37 Explanation: The subsequence is [10, 2, 5, 20]. Example 2: Input: nums = [-1,-2,-3], k = 1 Output: -1 Explanation: The subsequence must be non-empty, so we choose the largest number. Example 3: Input: nums = [10,-2,-10,-5,20], k = 2 Output: 23 Explanation: The subsequence is [10, -2, -5, 20].   Constraints: 1 <= k <= nums.length <= 10^5 -10^4 <= nums[i] <= 10^4
class Solution: def constrainedSubsetSum(self, nums: List[int], k: int) -> int: withAdding = [0 for _ in range(len(nums))] notAdding = [-1 for _ in range(len(nums))] validMax = [nums[0]] maxValue = nums[0] withAdding[0] = nums[0] for i in range(1, len(nums)): if maxValue < 0 and nums[i] > maxValue: withAdding[i] = nums[i] else: withAdding[i] = maxValue + nums[i] validMax.append(withAdding[i]) maxValue = max(withAdding[i], maxValue) if len(validMax) > k and validMax.pop(0) == maxValue: maxValue = max(validMax) notAdding[i] = max(notAdding[i - 1], withAdding[i - 1]) return max(max(notAdding), max(withAdding))
Given an integer array nums and an integer k, return the maximum sum of a non-empty subsequence of that array such that for every two consecutive integers in the subsequence, nums[i] and nums[j], where i < j, the condition j - i <= k is satisfied. A subsequence of an array is obtained by deleting some number of elements (can be zero) from the array, leaving the remaining elements in their original order.   Example 1: Input: nums = [10,2,-10,5,20], k = 2 Output: 37 Explanation: The subsequence is [10, 2, 5, 20]. Example 2: Input: nums = [-1,-2,-3], k = 1 Output: -1 Explanation: The subsequence must be non-empty, so we choose the largest number. Example 3: Input: nums = [10,-2,-10,-5,20], k = 2 Output: 23 Explanation: The subsequence is [10, -2, -5, 20].   Constraints: 1 <= k <= nums.length <= 10^5 -10^4 <= nums[i] <= 10^4
class Solution: def constrainedSubsetSum(self, nums: List[int], k: int) -> int: memo=[nums[0]] if not nums: return 0 m=nums[0] for i in range(1,k): memo.append(nums[i]+max(0,m)) if memo[-1]>m: m=memo[-1] import copy window=copy.deepcopy(memo) #m=max(window) for i in range(k,len(nums)): #print(m,memo,window) memo.append(nums[i]+max(0,m)) window.append(memo[-1]) p=window.pop(0) if memo[-1]>m: m=memo[-1] elif p==m: m=max(window) return max(memo)
Given an integer array nums and an integer k, return the maximum sum of a non-empty subsequence of that array such that for every two consecutive integers in the subsequence, nums[i] and nums[j], where i < j, the condition j - i <= k is satisfied. A subsequence of an array is obtained by deleting some number of elements (can be zero) from the array, leaving the remaining elements in their original order.   Example 1: Input: nums = [10,2,-10,5,20], k = 2 Output: 37 Explanation: The subsequence is [10, 2, 5, 20]. Example 2: Input: nums = [-1,-2,-3], k = 1 Output: -1 Explanation: The subsequence must be non-empty, so we choose the largest number. Example 3: Input: nums = [10,-2,-10,-5,20], k = 2 Output: 23 Explanation: The subsequence is [10, -2, -5, 20].   Constraints: 1 <= k <= nums.length <= 10^5 -10^4 <= nums[i] <= 10^4
from collections import deque class Solution: def constrainedSubsetSum(self, nums, k): N, queue = len(nums), deque() dp = [0] * N for i, val in enumerate(nums): if queue and (i - queue[0] > k): #if i > k and (queue[0] == i - k - 1): queue.popleft() #dp[i] = (val + max(dp[queue[0]], 0)) if queue else val if queue and dp[queue[0]] > 0: dp[i] = val + dp[queue[0]] else: dp[i] = val while queue and dp[i] >= dp[queue[-1]]: queue.pop() queue.append(i) return max(dp) from collections import deque class Solution: def constrainedSubsetSum(self, nums, k): if not nums or not k: return 0 if max(nums) <= 0: return max(nums) if min(nums) >= 0: return sum(nums) queue, N = deque(), len(nums) for i in range(N): #if queue and (i - queue[0] > k): while queue and queue[0] < i - k: queue.popleft() # compute the max sum we can get at index i if queue: nums[i] += nums[queue[0]] # delet all the sequence that smaller than current sum, becaus there will never be # considers ==> smaller than current sequence, and end before current sequence while queue and nums[queue[-1]] < nums[i]: queue.pop() # if nums[i] < 0, it can't be a useful prefix sum if nums[i] > 0: queue.append(i) return max(nums)
Given an integer array nums and an integer k, return the maximum sum of a non-empty subsequence of that array such that for every two consecutive integers in the subsequence, nums[i] and nums[j], where i < j, the condition j - i <= k is satisfied. A subsequence of an array is obtained by deleting some number of elements (can be zero) from the array, leaving the remaining elements in their original order.   Example 1: Input: nums = [10,2,-10,5,20], k = 2 Output: 37 Explanation: The subsequence is [10, 2, 5, 20]. Example 2: Input: nums = [-1,-2,-3], k = 1 Output: -1 Explanation: The subsequence must be non-empty, so we choose the largest number. Example 3: Input: nums = [10,-2,-10,-5,20], k = 2 Output: 23 Explanation: The subsequence is [10, -2, -5, 20].   Constraints: 1 <= k <= nums.length <= 10^5 -10^4 <= nums[i] <= 10^4
from collections import deque class Solution: def constrainedSubsetSum(self, nums, k): if max(nums) <= 0: return max(nums) # optimization if min(nums) >= 0: return sum(nums) # optimization N, queue = len(nums), deque() dp = [val for val in nums] for i, val in enumerate(nums): if queue and (i - queue[0] > k): queue.popleft() if queue and dp[queue[0]] > 0: dp[i] += dp[queue[0]] while queue and dp[i] >= dp[queue[-1]]: queue.pop() queue.append(i) return max(dp)
Given an integer array nums and an integer k, return the maximum sum of a non-empty subsequence of that array such that for every two consecutive integers in the subsequence, nums[i] and nums[j], where i < j, the condition j - i <= k is satisfied. A subsequence of an array is obtained by deleting some number of elements (can be zero) from the array, leaving the remaining elements in their original order.   Example 1: Input: nums = [10,2,-10,5,20], k = 2 Output: 37 Explanation: The subsequence is [10, 2, 5, 20]. Example 2: Input: nums = [-1,-2,-3], k = 1 Output: -1 Explanation: The subsequence must be non-empty, so we choose the largest number. Example 3: Input: nums = [10,-2,-10,-5,20], k = 2 Output: 23 Explanation: The subsequence is [10, -2, -5, 20].   Constraints: 1 <= k <= nums.length <= 10^5 -10^4 <= nums[i] <= 10^4
class Solution: def constrainedSubsetSum(self, nums: List[int], k: int) -> int: dp=[nums[0]] decrease=collections.deque([0]) for i,num in enumerate(nums[1:],1): if decrease and i-decrease[0]>k: decrease.popleft() val=max(num,dp[decrease[0]]+num) dp.append(val) while decrease and dp[decrease[-1]]<=val: decrease.pop() decrease.append(i) return max(dp)
Given an integer array nums and an integer k, return the maximum sum of a non-empty subsequence of that array such that for every two consecutive integers in the subsequence, nums[i] and nums[j], where i < j, the condition j - i <= k is satisfied. A subsequence of an array is obtained by deleting some number of elements (can be zero) from the array, leaving the remaining elements in their original order.   Example 1: Input: nums = [10,2,-10,5,20], k = 2 Output: 37 Explanation: The subsequence is [10, 2, 5, 20]. Example 2: Input: nums = [-1,-2,-3], k = 1 Output: -1 Explanation: The subsequence must be non-empty, so we choose the largest number. Example 3: Input: nums = [10,-2,-10,-5,20], k = 2 Output: 23 Explanation: The subsequence is [10, -2, -5, 20].   Constraints: 1 <= k <= nums.length <= 10^5 -10^4 <= nums[i] <= 10^4
from collections import deque class Solution: def constrainedSubsetSum(self, nums, k): if max(nums) <= 0: return max(nums) # optimization if min(nums) >= 0: return sum(nums) # optimization N, queue = len(nums), deque() dp = [val for val in nums] for i, val in enumerate(nums): if queue and (i - queue[0] > k): queue.popleft() if queue and dp[queue[0]] > 0: dp[i] += dp[queue[0]] while queue and dp[i] >= dp[queue[-1]]: queue.pop() queue.append(i) return dp[queue[0]]
Given an integer array nums and an integer k, return the maximum sum of a non-empty subsequence of that array such that for every two consecutive integers in the subsequence, nums[i] and nums[j], where i < j, the condition j - i <= k is satisfied. A subsequence of an array is obtained by deleting some number of elements (can be zero) from the array, leaving the remaining elements in their original order.   Example 1: Input: nums = [10,2,-10,5,20], k = 2 Output: 37 Explanation: The subsequence is [10, 2, 5, 20]. Example 2: Input: nums = [-1,-2,-3], k = 1 Output: -1 Explanation: The subsequence must be non-empty, so we choose the largest number. Example 3: Input: nums = [10,-2,-10,-5,20], k = 2 Output: 23 Explanation: The subsequence is [10, -2, -5, 20].   Constraints: 1 <= k <= nums.length <= 10^5 -10^4 <= nums[i] <= 10^4
class Solution: def constrainedSubsetSum(self, nums: List[int], k: int) -> int: n = len(nums) _max = collections.deque() res = max(nums) for i in range(n): if len(_max) and _max[0][0] > 0: val = nums[i] + _max[0][0] else: val = nums[i] while len(_max) and _max[-1][0] < val: _max.pop() _max.append((val, i)) res = max(val, res) if _max[0][1] <= i-k: _max.popleft() return res
Given an integer array nums and an integer k, return the maximum sum of a non-empty subsequence of that array such that for every two consecutive integers in the subsequence, nums[i] and nums[j], where i < j, the condition j - i <= k is satisfied. A subsequence of an array is obtained by deleting some number of elements (can be zero) from the array, leaving the remaining elements in their original order.   Example 1: Input: nums = [10,2,-10,5,20], k = 2 Output: 37 Explanation: The subsequence is [10, 2, 5, 20]. Example 2: Input: nums = [-1,-2,-3], k = 1 Output: -1 Explanation: The subsequence must be non-empty, so we choose the largest number. Example 3: Input: nums = [10,-2,-10,-5,20], k = 2 Output: 23 Explanation: The subsequence is [10, -2, -5, 20].   Constraints: 1 <= k <= nums.length <= 10^5 -10^4 <= nums[i] <= 10^4
class Solution: def constrainedSubsetSum(self, nums: List[int], k: int) -> int: maxNum = nums[0] maxSum = nums[0] maxNegSum = 0 curNegWindowSum = 0 curWindowSum = 0 rightIndex = 0 leftIndex = 0 midIndex = 0 negativeStreak = False while rightIndex < len(nums): if maxNum < nums[rightIndex]: maxNum = nums[rightIndex] if nums[rightIndex] >= 0 and not negativeStreak: curWindowSum += nums[rightIndex] maxSum = max(maxSum, curWindowSum) elif nums[rightIndex] < 0 and not negativeStreak: negativeStreak = True midIndex = rightIndex if k > 1: curNegWindowSum = nums[rightIndex] maxNegSum = curNegWindowSum curWindowSum += nums[rightIndex] elif nums[rightIndex] < 0 and negativeStreak: if rightIndex - midIndex < k - 1: curNegWindowSum += nums[rightIndex] maxNegSum = curNegWindowSum else: if k > 1: curNegWindowSum -= nums[midIndex] curNegWindowSum += nums[rightIndex] maxNegSum = min(maxNegSum, curNegWindowSum) midIndex += 1 curWindowSum += nums[rightIndex] elif nums[rightIndex] >= 0 and negativeStreak: curWindowSum -= maxNegSum if curWindowSum <= 0: midIndex = rightIndex leftIndex = rightIndex curWindowSum = nums[rightIndex] else: curWindowSum += nums[rightIndex] maxSum = max(maxSum, curWindowSum) maxNegSum = 0 curNegWindowSum = 0 negativeStreak = False rightIndex += 1 return max(maxSum, maxNum)
Given an integer array nums and an integer k, return the maximum sum of a non-empty subsequence of that array such that for every two consecutive integers in the subsequence, nums[i] and nums[j], where i < j, the condition j - i <= k is satisfied. A subsequence of an array is obtained by deleting some number of elements (can be zero) from the array, leaving the remaining elements in their original order.   Example 1: Input: nums = [10,2,-10,5,20], k = 2 Output: 37 Explanation: The subsequence is [10, 2, 5, 20]. Example 2: Input: nums = [-1,-2,-3], k = 1 Output: -1 Explanation: The subsequence must be non-empty, so we choose the largest number. Example 3: Input: nums = [10,-2,-10,-5,20], k = 2 Output: 23 Explanation: The subsequence is [10, -2, -5, 20].   Constraints: 1 <= k <= nums.length <= 10^5 -10^4 <= nums[i] <= 10^4
class Solution: def constrainedSubsetSum(self, nums: List[int], k: int) -> int: dp = [nums[0]] decrease = collections.deque([0]) for i, x in enumerate(nums[1:], 1): if decrease[0] == i-k-1: decrease.popleft() tmp = max(x, dp[decrease[0]] + x) dp += [tmp] while decrease and dp[decrease[-1]] <= tmp: decrease.pop() decrease += [i] return max(dp)
Given an integer array nums and an integer k, return the maximum sum of a non-empty subsequence of that array such that for every two consecutive integers in the subsequence, nums[i] and nums[j], where i < j, the condition j - i <= k is satisfied. A subsequence of an array is obtained by deleting some number of elements (can be zero) from the array, leaving the remaining elements in their original order.   Example 1: Input: nums = [10,2,-10,5,20], k = 2 Output: 37 Explanation: The subsequence is [10, 2, 5, 20]. Example 2: Input: nums = [-1,-2,-3], k = 1 Output: -1 Explanation: The subsequence must be non-empty, so we choose the largest number. Example 3: Input: nums = [10,-2,-10,-5,20], k = 2 Output: 23 Explanation: The subsequence is [10, -2, -5, 20].   Constraints: 1 <= k <= nums.length <= 10^5 -10^4 <= nums[i] <= 10^4
class Solution: def constrainedSubsetSum(self, A: List[int], k: int) -> int: deque = collections.deque() for i in range(len(A)): A[i] += deque[0] if deque else 0 while len(deque) and A[i] > deque[-1]: deque.pop() if A[i] > 0: deque.append(A[i]) if i >= k and deque and deque[0] == A[i-k]: deque.popleft() return max(A)
Given an integer array nums and an integer k, return the maximum sum of a non-empty subsequence of that array such that for every two consecutive integers in the subsequence, nums[i] and nums[j], where i < j, the condition j - i <= k is satisfied. A subsequence of an array is obtained by deleting some number of elements (can be zero) from the array, leaving the remaining elements in their original order.   Example 1: Input: nums = [10,2,-10,5,20], k = 2 Output: 37 Explanation: The subsequence is [10, 2, 5, 20]. Example 2: Input: nums = [-1,-2,-3], k = 1 Output: -1 Explanation: The subsequence must be non-empty, so we choose the largest number. Example 3: Input: nums = [10,-2,-10,-5,20], k = 2 Output: 23 Explanation: The subsequence is [10, -2, -5, 20].   Constraints: 1 <= k <= nums.length <= 10^5 -10^4 <= nums[i] <= 10^4
class Solution: def constrainedSubsetSum(self, nums: List[int], k: int) -> int: q_max, ans = deque([(nums[0],0)]), nums[0] for i in range(1,len(nums)): nums[i] += max(q_max[0][0],0) if q_max[0][1] <= i-k: q_max.popleft() while q_max and nums[i] > q_max[-1][0]: q_max.pop() q_max.append((nums[i],i)) ans = max(ans, nums[i]) return ans
Given an integer array nums and an integer k, return the maximum sum of a non-empty subsequence of that array such that for every two consecutive integers in the subsequence, nums[i] and nums[j], where i < j, the condition j - i <= k is satisfied. A subsequence of an array is obtained by deleting some number of elements (can be zero) from the array, leaving the remaining elements in their original order.   Example 1: Input: nums = [10,2,-10,5,20], k = 2 Output: 37 Explanation: The subsequence is [10, 2, 5, 20]. Example 2: Input: nums = [-1,-2,-3], k = 1 Output: -1 Explanation: The subsequence must be non-empty, so we choose the largest number. Example 3: Input: nums = [10,-2,-10,-5,20], k = 2 Output: 23 Explanation: The subsequence is [10, -2, -5, 20].   Constraints: 1 <= k <= nums.length <= 10^5 -10^4 <= nums[i] <= 10^4
class Solution: def constrainedSubsetSum(self, nums: List[int], k: int) -> int: dq=collections.deque() m=-sys.maxsize for i,n in enumerate(nums): fi = n if dq: fi += max(dq[0][1], 0) while dq and fi>=dq[-1][1]: dq.pop() dq.append([i,fi]) if i-dq[0][0]==k: dq.popleft() if fi>m: m=fi return m
Given an integer array nums and an integer k, return the maximum sum of a non-empty subsequence of that array such that for every two consecutive integers in the subsequence, nums[i] and nums[j], where i < j, the condition j - i <= k is satisfied. A subsequence of an array is obtained by deleting some number of elements (can be zero) from the array, leaving the remaining elements in their original order.   Example 1: Input: nums = [10,2,-10,5,20], k = 2 Output: 37 Explanation: The subsequence is [10, 2, 5, 20]. Example 2: Input: nums = [-1,-2,-3], k = 1 Output: -1 Explanation: The subsequence must be non-empty, so we choose the largest number. Example 3: Input: nums = [10,-2,-10,-5,20], k = 2 Output: 23 Explanation: The subsequence is [10, -2, -5, 20].   Constraints: 1 <= k <= nums.length <= 10^5 -10^4 <= nums[i] <= 10^4
class Solution: def constrainedSubsetSum(self, nums, k): n = len(nums) dp = [0] * n deq = deque([0]) for i in range(n): if deq and deq[0] < i - k: deq.popleft() while deq and nums[i] + dp[deq[0]] > dp[deq[-1]]: a = deq.pop() dp[i] = max(nums[i],nums[i] + dp[deq[0]] if deq else nums[i] + dp[a]) deq.append(i) return max(dp)
Given an integer array nums and an integer k, return the maximum sum of a non-empty subsequence of that array such that for every two consecutive integers in the subsequence, nums[i] and nums[j], where i < j, the condition j - i <= k is satisfied. A subsequence of an array is obtained by deleting some number of elements (can be zero) from the array, leaving the remaining elements in their original order.   Example 1: Input: nums = [10,2,-10,5,20], k = 2 Output: 37 Explanation: The subsequence is [10, 2, 5, 20]. Example 2: Input: nums = [-1,-2,-3], k = 1 Output: -1 Explanation: The subsequence must be non-empty, so we choose the largest number. Example 3: Input: nums = [10,-2,-10,-5,20], k = 2 Output: 23 Explanation: The subsequence is [10, -2, -5, 20].   Constraints: 1 <= k <= nums.length <= 10^5 -10^4 <= nums[i] <= 10^4
class Solution: def constrainedSubsetSum(self, nums: List[int], k: int) -> int: q = deque([0]) ans = nums[0] for i in range(1, len(nums)): nums[i] += max(nums[q[0]], 0) while q and nums[i] >= nums[q[-1]]: q.pop() q.append(i) if i - q[0] == k: q.popleft() ans = max(ans, nums[i]) return ans
Given an integer array nums and an integer k, return the maximum sum of a non-empty subsequence of that array such that for every two consecutive integers in the subsequence, nums[i] and nums[j], where i < j, the condition j - i <= k is satisfied. A subsequence of an array is obtained by deleting some number of elements (can be zero) from the array, leaving the remaining elements in their original order.   Example 1: Input: nums = [10,2,-10,5,20], k = 2 Output: 37 Explanation: The subsequence is [10, 2, 5, 20]. Example 2: Input: nums = [-1,-2,-3], k = 1 Output: -1 Explanation: The subsequence must be non-empty, so we choose the largest number. Example 3: Input: nums = [10,-2,-10,-5,20], k = 2 Output: 23 Explanation: The subsequence is [10, -2, -5, 20].   Constraints: 1 <= k <= nums.length <= 10^5 -10^4 <= nums[i] <= 10^4
class Solution: def constrainedSubsetSum(self, nums: List[int], k: int) -> int: dp, q = [nums[0]], deque() q.append((0,nums[0])) res = nums[0] for i in range(1, len(nums)): while q and i - q[0][0] >k: q.popleft() cur = nums[i] if q: cur +=max(q[0][1],0) while q and q[-1][1] < cur: q.pop() q.append((i,cur)) dp.append(cur) res = max(res,cur) return res
Given an integer array nums and an integer k, return the maximum sum of a non-empty subsequence of that array such that for every two consecutive integers in the subsequence, nums[i] and nums[j], where i < j, the condition j - i <= k is satisfied. A subsequence of an array is obtained by deleting some number of elements (can be zero) from the array, leaving the remaining elements in their original order.   Example 1: Input: nums = [10,2,-10,5,20], k = 2 Output: 37 Explanation: The subsequence is [10, 2, 5, 20]. Example 2: Input: nums = [-1,-2,-3], k = 1 Output: -1 Explanation: The subsequence must be non-empty, so we choose the largest number. Example 3: Input: nums = [10,-2,-10,-5,20], k = 2 Output: 23 Explanation: The subsequence is [10, -2, -5, 20].   Constraints: 1 <= k <= nums.length <= 10^5 -10^4 <= nums[i] <= 10^4
from collections import deque class Solution: def constrainedSubsetSum(self, A: List[int], k: int) -> int: d = deque() for i in range(len(A)): A[i] += d[0] if d else 0 while d and d[-1] < A[i]: d.pop() if A[i] > 0: d.append(A[i]) if i >= k and d and d[0] == A[i - k]: d.popleft() return max(A)
Given an integer array nums and an integer k, return the maximum sum of a non-empty subsequence of that array such that for every two consecutive integers in the subsequence, nums[i] and nums[j], where i < j, the condition j - i <= k is satisfied. A subsequence of an array is obtained by deleting some number of elements (can be zero) from the array, leaving the remaining elements in their original order.   Example 1: Input: nums = [10,2,-10,5,20], k = 2 Output: 37 Explanation: The subsequence is [10, 2, 5, 20]. Example 2: Input: nums = [-1,-2,-3], k = 1 Output: -1 Explanation: The subsequence must be non-empty, so we choose the largest number. Example 3: Input: nums = [10,-2,-10,-5,20], k = 2 Output: 23 Explanation: The subsequence is [10, -2, -5, 20].   Constraints: 1 <= k <= nums.length <= 10^5 -10^4 <= nums[i] <= 10^4
from collections import deque ''' We need to figure out basically for k numbers remaining what is the largest sum, assuming that the first of those is selected. ''' class Solution: def constrainedSubsetSum(self, nums: List[int], k: int) -> int: numLength = len(nums) maxSums = defaultdict(int) maxSum = nums[0]##as that is definitely a lower bound on the maxSum, as that is obviously a possible sum. Be careful when you initialize mins and maxs maxQueue = deque([0])##this will be used to compute the list of values of the maxSum for the previousk indices. for i in range(numLength-1,-1,-1): ithMax = max(nums[i],maxQueue[0]+nums[i])##be careful of index name. maxSums[i] = ithMax ##print(\"Max Queue before popping: \",maxQueue) if len(maxQueue) == k:##be careful of variables if maxSums[i+k] == maxQueue[0]: maxQueue.popleft()##this is needed to ensure that we don't have values that have expired. while maxQueue and ithMax > maxQueue[-1]:##be sure of spelling and using right variables maxQueue.pop() maxQueue.append(ithMax) ##print(\"Max Queue after popping: \",maxQueue) maxSum = max(ithMax,maxSum) return maxSum
Given an integer array nums and an integer k, return the maximum sum of a non-empty subsequence of that array such that for every two consecutive integers in the subsequence, nums[i] and nums[j], where i < j, the condition j - i <= k is satisfied. A subsequence of an array is obtained by deleting some number of elements (can be zero) from the array, leaving the remaining elements in their original order.   Example 1: Input: nums = [10,2,-10,5,20], k = 2 Output: 37 Explanation: The subsequence is [10, 2, 5, 20]. Example 2: Input: nums = [-1,-2,-3], k = 1 Output: -1 Explanation: The subsequence must be non-empty, so we choose the largest number. Example 3: Input: nums = [10,-2,-10,-5,20], k = 2 Output: 23 Explanation: The subsequence is [10, -2, -5, 20].   Constraints: 1 <= k <= nums.length <= 10^5 -10^4 <= nums[i] <= 10^4
class Solution: def constrainedSubsetSum(self, nums: List[int], k: int) -> int: dp = collections.deque([(nums[0], 0)]) ans = nums[0] for i in range(1, len(nums)): new = nums[i] + max(0,dp[0][0]) while dp and dp[0][1] <= i-k: dp.popleft() while dp and new >= dp[-1][0]: dp.pop() dp.append((new, i)) ans = max(ans, new) return ans
Given an integer array nums and an integer k, return the maximum sum of a non-empty subsequence of that array such that for every two consecutive integers in the subsequence, nums[i] and nums[j], where i < j, the condition j - i <= k is satisfied. A subsequence of an array is obtained by deleting some number of elements (can be zero) from the array, leaving the remaining elements in their original order.   Example 1: Input: nums = [10,2,-10,5,20], k = 2 Output: 37 Explanation: The subsequence is [10, 2, 5, 20]. Example 2: Input: nums = [-1,-2,-3], k = 1 Output: -1 Explanation: The subsequence must be non-empty, so we choose the largest number. Example 3: Input: nums = [10,-2,-10,-5,20], k = 2 Output: 23 Explanation: The subsequence is [10, -2, -5, 20].   Constraints: 1 <= k <= nums.length <= 10^5 -10^4 <= nums[i] <= 10^4
from collections import deque class Solution: def constrainedSubsetSum(self, nums, k): if max(nums) <= 0: return max(nums) if min(nums) >= 0: return sum(nums) queue, N = deque(), len(nums) for i in range(N): while queue and queue[0] < i - k: queue.popleft() if queue: nums[i] += nums[queue[0]] while queue and nums[queue[-1]] < nums[i]: queue.pop() if nums[i] > 0: queue.append(i) return max(nums)
Given an integer array nums and an integer k, return the maximum sum of a non-empty subsequence of that array such that for every two consecutive integers in the subsequence, nums[i] and nums[j], where i < j, the condition j - i <= k is satisfied. A subsequence of an array is obtained by deleting some number of elements (can be zero) from the array, leaving the remaining elements in their original order.   Example 1: Input: nums = [10,2,-10,5,20], k = 2 Output: 37 Explanation: The subsequence is [10, 2, 5, 20]. Example 2: Input: nums = [-1,-2,-3], k = 1 Output: -1 Explanation: The subsequence must be non-empty, so we choose the largest number. Example 3: Input: nums = [10,-2,-10,-5,20], k = 2 Output: 23 Explanation: The subsequence is [10, -2, -5, 20].   Constraints: 1 <= k <= nums.length <= 10^5 -10^4 <= nums[i] <= 10^4
class Solution: def constrainedSubsetSum(self, nums: List[int], k: int) -> int: n= len(nums) dp = [0]*n q = deque() ans = float('-inf') for i in range(n): if i>k and q[0]==i-k-1: q.popleft() dp[i]= (0 if len(q)==0 else max(dp[q[0]],0)) + nums[i] while len(q)>0 and dp[i]>=dp[q[-1]]: q.pop() q.append(i) ans = max(ans, dp[i]) return ans
Given an integer array nums and an integer k, return the maximum sum of a non-empty subsequence of that array such that for every two consecutive integers in the subsequence, nums[i] and nums[j], where i < j, the condition j - i <= k is satisfied. A subsequence of an array is obtained by deleting some number of elements (can be zero) from the array, leaving the remaining elements in their original order.   Example 1: Input: nums = [10,2,-10,5,20], k = 2 Output: 37 Explanation: The subsequence is [10, 2, 5, 20]. Example 2: Input: nums = [-1,-2,-3], k = 1 Output: -1 Explanation: The subsequence must be non-empty, so we choose the largest number. Example 3: Input: nums = [10,-2,-10,-5,20], k = 2 Output: 23 Explanation: The subsequence is [10, -2, -5, 20].   Constraints: 1 <= k <= nums.length <= 10^5 -10^4 <= nums[i] <= 10^4
class Solution: def constrainedSubsetSum(self, nums: List[int], k: int) -> int: # dp[i] = nums[i] + max(dp[j] j - i <= k) # max(dp) n = len(nums) from collections import deque q = deque() q.append((nums[-1], n-1)) ans = nums[-1] for i in reversed(list(range(n-1))): while q and q[0][1] - i > k: q.popleft() dp = nums[i] if q: dp = max(dp, nums[i] + q[0][0]) ans = max(dp, ans) while q and q[-1][0] <= dp: q.pop() q.append((dp, i)) return ans
Given an integer array nums and an integer k, return the maximum sum of a non-empty subsequence of that array such that for every two consecutive integers in the subsequence, nums[i] and nums[j], where i < j, the condition j - i <= k is satisfied. A subsequence of an array is obtained by deleting some number of elements (can be zero) from the array, leaving the remaining elements in their original order.   Example 1: Input: nums = [10,2,-10,5,20], k = 2 Output: 37 Explanation: The subsequence is [10, 2, 5, 20]. Example 2: Input: nums = [-1,-2,-3], k = 1 Output: -1 Explanation: The subsequence must be non-empty, so we choose the largest number. Example 3: Input: nums = [10,-2,-10,-5,20], k = 2 Output: 23 Explanation: The subsequence is [10, -2, -5, 20].   Constraints: 1 <= k <= nums.length <= 10^5 -10^4 <= nums[i] <= 10^4
from collections import deque class Solution: def constrainedSubsetSum(self, nums: List[int], k: int) -> int: n = len(nums) queue = deque() res = float('-inf') for i in range(n): if queue and i - queue[0][1] > k: queue.popleft() cur = nums[i] + max(0, (queue[0][0] if queue else 0)) res = max(res, cur) while queue and queue[-1][0] <= cur: queue.pop() queue.append((cur, i)) return res
Given an integer array nums and an integer k, return the maximum sum of a non-empty subsequence of that array such that for every two consecutive integers in the subsequence, nums[i] and nums[j], where i < j, the condition j - i <= k is satisfied. A subsequence of an array is obtained by deleting some number of elements (can be zero) from the array, leaving the remaining elements in their original order.   Example 1: Input: nums = [10,2,-10,5,20], k = 2 Output: 37 Explanation: The subsequence is [10, 2, 5, 20]. Example 2: Input: nums = [-1,-2,-3], k = 1 Output: -1 Explanation: The subsequence must be non-empty, so we choose the largest number. Example 3: Input: nums = [10,-2,-10,-5,20], k = 2 Output: 23 Explanation: The subsequence is [10, -2, -5, 20].   Constraints: 1 <= k <= nums.length <= 10^5 -10^4 <= nums[i] <= 10^4
class Solution: def constrainedSubsetSum(self, nums: List[int], k: int) -> int: q = [] res = float('-inf') for i in range(len(nums)): while q and i-q[0][0] > k: q.pop(0) temp = nums[i] if q and q[0][1] > 0: temp += q[0][1] res = max(res, temp) while q and q[-1][1] <= temp: q.pop() q.append((i, temp)) return res
Given an integer array nums and an integer k, return the maximum sum of a non-empty subsequence of that array such that for every two consecutive integers in the subsequence, nums[i] and nums[j], where i < j, the condition j - i <= k is satisfied. A subsequence of an array is obtained by deleting some number of elements (can be zero) from the array, leaving the remaining elements in their original order.   Example 1: Input: nums = [10,2,-10,5,20], k = 2 Output: 37 Explanation: The subsequence is [10, 2, 5, 20]. Example 2: Input: nums = [-1,-2,-3], k = 1 Output: -1 Explanation: The subsequence must be non-empty, so we choose the largest number. Example 3: Input: nums = [10,-2,-10,-5,20], k = 2 Output: 23 Explanation: The subsequence is [10, -2, -5, 20].   Constraints: 1 <= k <= nums.length <= 10^5 -10^4 <= nums[i] <= 10^4
class Solution: def constrainedSubsetSum(self, nums: List[int], k: int) -> int: N = len(nums) dp = [-math.inf] * N q = deque() #. Val, Index for i in range(N): dp[i] = max(dp[i], nums[i] + (q[0][0] if q else 0), nums[i] ) while q and dp[i] > q[-1][0]: q.pop() while q and i - q[0][1] >= k: q.popleft() q.append((dp[i], i)) # print(dp) return max(dp)
Given an integer array nums and an integer k, return the maximum sum of a non-empty subsequence of that array such that for every two consecutive integers in the subsequence, nums[i] and nums[j], where i < j, the condition j - i <= k is satisfied. A subsequence of an array is obtained by deleting some number of elements (can be zero) from the array, leaving the remaining elements in their original order.   Example 1: Input: nums = [10,2,-10,5,20], k = 2 Output: 37 Explanation: The subsequence is [10, 2, 5, 20]. Example 2: Input: nums = [-1,-2,-3], k = 1 Output: -1 Explanation: The subsequence must be non-empty, so we choose the largest number. Example 3: Input: nums = [10,-2,-10,-5,20], k = 2 Output: 23 Explanation: The subsequence is [10, -2, -5, 20].   Constraints: 1 <= k <= nums.length <= 10^5 -10^4 <= nums[i] <= 10^4
class Solution: def constrainedSubsetSum(self, nums: List[int], k: int) -> int: deq = deque() for index, val in enumerate(nums): nums[index] += deq[0] if deq else 0 while deq and nums[index]> deq[-1]: deq.pop() if nums[index]>0: deq.append(nums[index]) if index>=k and deq and deq[0] == nums[index-k]: deq.popleft() return max(nums)
Given an integer array nums and an integer k, return the maximum sum of a non-empty subsequence of that array such that for every two consecutive integers in the subsequence, nums[i] and nums[j], where i < j, the condition j - i <= k is satisfied. A subsequence of an array is obtained by deleting some number of elements (can be zero) from the array, leaving the remaining elements in their original order.   Example 1: Input: nums = [10,2,-10,5,20], k = 2 Output: 37 Explanation: The subsequence is [10, 2, 5, 20]. Example 2: Input: nums = [-1,-2,-3], k = 1 Output: -1 Explanation: The subsequence must be non-empty, so we choose the largest number. Example 3: Input: nums = [10,-2,-10,-5,20], k = 2 Output: 23 Explanation: The subsequence is [10, -2, -5, 20].   Constraints: 1 <= k <= nums.length <= 10^5 -10^4 <= nums[i] <= 10^4
class Solution: def constrainedSubsetSum(self, nums: List[int], k: int) -> int: n = len(nums) dp = [0] *n dp[0] = nums[0] heap = [] heappush(heap, (- nums[0], 0)) for i in range(1, n): while heap[0][1] < i - k: heappop(heap) cur = heap[0][0] dp[i] = nums[i] + max(- cur, 0) heappush(heap, (- dp[i], i)) #print(dp) return max(dp)
Given an integer array nums and an integer k, return the maximum sum of a non-empty subsequence of that array such that for every two consecutive integers in the subsequence, nums[i] and nums[j], where i < j, the condition j - i <= k is satisfied. A subsequence of an array is obtained by deleting some number of elements (can be zero) from the array, leaving the remaining elements in their original order.   Example 1: Input: nums = [10,2,-10,5,20], k = 2 Output: 37 Explanation: The subsequence is [10, 2, 5, 20]. Example 2: Input: nums = [-1,-2,-3], k = 1 Output: -1 Explanation: The subsequence must be non-empty, so we choose the largest number. Example 3: Input: nums = [10,-2,-10,-5,20], k = 2 Output: 23 Explanation: The subsequence is [10, -2, -5, 20].   Constraints: 1 <= k <= nums.length <= 10^5 -10^4 <= nums[i] <= 10^4
class Solution: def constrainedSubsetSum(self, A, k): deque = collections.deque() for i in range(len(A)): A[i] += deque[0] if deque else 0 while len(deque) and deque[-1] < A[i]: deque.pop() if A[i] > 0: deque.append(A[i]) if i >= k and deque and deque[0] == A[i - k]: deque.popleft() return max(A)
Given an integer array nums and an integer k, return the maximum sum of a non-empty subsequence of that array such that for every two consecutive integers in the subsequence, nums[i] and nums[j], where i < j, the condition j - i <= k is satisfied. A subsequence of an array is obtained by deleting some number of elements (can be zero) from the array, leaving the remaining elements in their original order.   Example 1: Input: nums = [10,2,-10,5,20], k = 2 Output: 37 Explanation: The subsequence is [10, 2, 5, 20]. Example 2: Input: nums = [-1,-2,-3], k = 1 Output: -1 Explanation: The subsequence must be non-empty, so we choose the largest number. Example 3: Input: nums = [10,-2,-10,-5,20], k = 2 Output: 23 Explanation: The subsequence is [10, -2, -5, 20].   Constraints: 1 <= k <= nums.length <= 10^5 -10^4 <= nums[i] <= 10^4
class Solution: def constrainedSubsetSum(self, nums: List[int], k: int) -> int: n = len(nums) dp = [-(math.inf) for i in range(n)] dp[0] = nums[0] ans = [nums[0]] queue = [0] for i in range(1,n): dp[i] = max(dp[i], nums[i], nums[i]+ans[i-1]) if len(queue) == 0: queue.append(i) else: while len(queue) > 0 and ((dp[i] > dp[queue[-1]]) or (i - queue[0]) >= k): if dp[i] > dp[queue[-1]]: queue.pop(-1) else: queue.pop(0) queue.append(i) ans.append(dp[queue[0]]) # print(ans) # print(dp) return (max(dp))
Given an integer array nums and an integer k, return the maximum sum of a non-empty subsequence of that array such that for every two consecutive integers in the subsequence, nums[i] and nums[j], where i < j, the condition j - i <= k is satisfied. A subsequence of an array is obtained by deleting some number of elements (can be zero) from the array, leaving the remaining elements in their original order.   Example 1: Input: nums = [10,2,-10,5,20], k = 2 Output: 37 Explanation: The subsequence is [10, 2, 5, 20]. Example 2: Input: nums = [-1,-2,-3], k = 1 Output: -1 Explanation: The subsequence must be non-empty, so we choose the largest number. Example 3: Input: nums = [10,-2,-10,-5,20], k = 2 Output: 23 Explanation: The subsequence is [10, -2, -5, 20].   Constraints: 1 <= k <= nums.length <= 10^5 -10^4 <= nums[i] <= 10^4
class Solution: def constrainedSubsetSum(self, nums: List[int], k: int) -> int: stack = deque() for i in range(len(nums)): nums[i] += stack[0] if stack else 0 while stack and stack[-1] < nums[i]: stack.pop() if i >= k and stack and stack[0] == nums[i-k]: stack.popleft() if nums[i] > 0: stack.append(nums[i]) return max(nums) q = deque() for i in range(len(nums)): nums[i] += q[0] if q else 0 while q and nums[i] > q[-1]: q.pop() if nums[i] > 0: q.append(nums[i]) if i >= k and q and q[0] == nums[i-k]: q.popleft() return max(nums)
Given an integer array nums and an integer k, return the maximum sum of a non-empty subsequence of that array such that for every two consecutive integers in the subsequence, nums[i] and nums[j], where i < j, the condition j - i <= k is satisfied. A subsequence of an array is obtained by deleting some number of elements (can be zero) from the array, leaving the remaining elements in their original order.   Example 1: Input: nums = [10,2,-10,5,20], k = 2 Output: 37 Explanation: The subsequence is [10, 2, 5, 20]. Example 2: Input: nums = [-1,-2,-3], k = 1 Output: -1 Explanation: The subsequence must be non-empty, so we choose the largest number. Example 3: Input: nums = [10,-2,-10,-5,20], k = 2 Output: 23 Explanation: The subsequence is [10, -2, -5, 20].   Constraints: 1 <= k <= nums.length <= 10^5 -10^4 <= nums[i] <= 10^4
class Solution: def constrainedSubsetSum(self, nums: List[int], k: int) -> int: #用来保留k步内的累加最大值 deque = collections.deque() for i in range(len(nums)): if deque: nums[i] += deque[0] while deque and nums[i] > deque[-1]: deque.pop() if nums[i] > 0: deque.append(nums[i]) #去除超过k步的最大值,为下一步要加的的最大值做准备 if i >= k and deque and deque[0] == nums[i - k]: deque.popleft() return max(nums)
Given an integer array nums and an integer k, return the maximum sum of a non-empty subsequence of that array such that for every two consecutive integers in the subsequence, nums[i] and nums[j], where i < j, the condition j - i <= k is satisfied. A subsequence of an array is obtained by deleting some number of elements (can be zero) from the array, leaving the remaining elements in their original order.   Example 1: Input: nums = [10,2,-10,5,20], k = 2 Output: 37 Explanation: The subsequence is [10, 2, 5, 20]. Example 2: Input: nums = [-1,-2,-3], k = 1 Output: -1 Explanation: The subsequence must be non-empty, so we choose the largest number. Example 3: Input: nums = [10,-2,-10,-5,20], k = 2 Output: 23 Explanation: The subsequence is [10, -2, -5, 20].   Constraints: 1 <= k <= nums.length <= 10^5 -10^4 <= nums[i] <= 10^4
class Solution: def constrainedSubsetSum(self, nums: List[int], k: int) -> int: res = -sys.maxsize n = len(nums) dp = [0]*(n+1) dq = collections.deque() for i in range(n): if not dq: dp[i+1] = nums[i] else: dp[i+1] = max(nums[i], dq[0] + nums[i]) dq.append(dp[i+1]) while len(dq) > k: dq.popleft() while len(dq) > 1 and dq[0] <= dq[-1]: dq.popleft() res = max(res, dp[i+1]) return res
Given an integer array nums and an integer k, return the maximum sum of a non-empty subsequence of that array such that for every two consecutive integers in the subsequence, nums[i] and nums[j], where i < j, the condition j - i <= k is satisfied. A subsequence of an array is obtained by deleting some number of elements (can be zero) from the array, leaving the remaining elements in their original order.   Example 1: Input: nums = [10,2,-10,5,20], k = 2 Output: 37 Explanation: The subsequence is [10, 2, 5, 20]. Example 2: Input: nums = [-1,-2,-3], k = 1 Output: -1 Explanation: The subsequence must be non-empty, so we choose the largest number. Example 3: Input: nums = [10,-2,-10,-5,20], k = 2 Output: 23 Explanation: The subsequence is [10, -2, -5, 20].   Constraints: 1 <= k <= nums.length <= 10^5 -10^4 <= nums[i] <= 10^4
from typing import List import collections class Solution: def constrainedSubsetSum(self, nums: List[int], k: int) -> int: maxx = list(nums) deque = collections.deque() for i in range(len(nums)): if deque: maxx[i] += deque[0] while deque and maxx[i] > deque[-1]: deque.pop() if maxx[i] > 0: deque.append(maxx[i]) if i >= k and deque and deque[0] == maxx[i - k]: deque.popleft() return max(maxx)
Given an integer array nums and an integer k, return the maximum sum of a non-empty subsequence of that array such that for every two consecutive integers in the subsequence, nums[i] and nums[j], where i < j, the condition j - i <= k is satisfied. A subsequence of an array is obtained by deleting some number of elements (can be zero) from the array, leaving the remaining elements in their original order.   Example 1: Input: nums = [10,2,-10,5,20], k = 2 Output: 37 Explanation: The subsequence is [10, 2, 5, 20]. Example 2: Input: nums = [-1,-2,-3], k = 1 Output: -1 Explanation: The subsequence must be non-empty, so we choose the largest number. Example 3: Input: nums = [10,-2,-10,-5,20], k = 2 Output: 23 Explanation: The subsequence is [10, -2, -5, 20].   Constraints: 1 <= k <= nums.length <= 10^5 -10^4 <= nums[i] <= 10^4
class Solution: def constrainedSubsetSum(self, nums: List[int], k: int) -> int: rec = -nums[0] heap = [(-nums[0], 0)] for j, n in enumerate(nums[1:]): while j+1-heap[0][1] > k: heapq.heappop(heap) cand = -n + heap[0][0] if heap[0][0] <= 0 else -n rec = min(rec, cand) heapq.heappush(heap, (cand, j+1)) return -rec
Given an integer array nums and an integer k, return the maximum sum of a non-empty subsequence of that array such that for every two consecutive integers in the subsequence, nums[i] and nums[j], where i < j, the condition j - i <= k is satisfied. A subsequence of an array is obtained by deleting some number of elements (can be zero) from the array, leaving the remaining elements in their original order.   Example 1: Input: nums = [10,2,-10,5,20], k = 2 Output: 37 Explanation: The subsequence is [10, 2, 5, 20]. Example 2: Input: nums = [-1,-2,-3], k = 1 Output: -1 Explanation: The subsequence must be non-empty, so we choose the largest number. Example 3: Input: nums = [10,-2,-10,-5,20], k = 2 Output: 23 Explanation: The subsequence is [10, -2, -5, 20].   Constraints: 1 <= k <= nums.length <= 10^5 -10^4 <= nums[i] <= 10^4
class MonoQ: def __init__(self,k): self.k = k self.m = [] def add(self,a,solution): while len(self.m) > 0: if solution[a] > solution[self.m[-1]]: self.m.pop() else: break self.m.append(a) def grab(self, a, solution, nums): if len(self.m) > 0: if self.m[0] > a+self.k: self.m = self.m[1:] return max(nums[a],nums[a]+solution[self.m[0]]) else: return nums[a] class Solution: def constrainedSubsetSum(self, nums: List[int], k: int) -> int: n = len(nums) solution = [0]*n m = MonoQ(k) for i in range(n-1,-1,-1): solution[i] = m.grab(i,solution,nums) m.add(i,solution) return max(solution)
Given an integer array nums and an integer k, return the maximum sum of a non-empty subsequence of that array such that for every two consecutive integers in the subsequence, nums[i] and nums[j], where i < j, the condition j - i <= k is satisfied. A subsequence of an array is obtained by deleting some number of elements (can be zero) from the array, leaving the remaining elements in their original order.   Example 1: Input: nums = [10,2,-10,5,20], k = 2 Output: 37 Explanation: The subsequence is [10, 2, 5, 20]. Example 2: Input: nums = [-1,-2,-3], k = 1 Output: -1 Explanation: The subsequence must be non-empty, so we choose the largest number. Example 3: Input: nums = [10,-2,-10,-5,20], k = 2 Output: 23 Explanation: The subsequence is [10, -2, -5, 20].   Constraints: 1 <= k <= nums.length <= 10^5 -10^4 <= nums[i] <= 10^4
import heapq class Solution: def constrainedSubsetSum(self, nums: List[int], k: int) -> int: heap = [] n = len(nums) dp = [None] * n for i in range(n): best = None while len(heap) > 0: val, idx = heap[0] val *= (-1) if i - idx <= k: best = val break heapq.heappop(heap) dp[i] = nums[i] if best is not None and dp[i] < best + nums[i]: dp[i] = best + nums[i] #print(dp) heapq.heappush(heap, (-dp[i], i)) return max(dp)
Given an integer array nums and an integer k, return the maximum sum of a non-empty subsequence of that array such that for every two consecutive integers in the subsequence, nums[i] and nums[j], where i < j, the condition j - i <= k is satisfied. A subsequence of an array is obtained by deleting some number of elements (can be zero) from the array, leaving the remaining elements in their original order.   Example 1: Input: nums = [10,2,-10,5,20], k = 2 Output: 37 Explanation: The subsequence is [10, 2, 5, 20]. Example 2: Input: nums = [-1,-2,-3], k = 1 Output: -1 Explanation: The subsequence must be non-empty, so we choose the largest number. Example 3: Input: nums = [10,-2,-10,-5,20], k = 2 Output: 23 Explanation: The subsequence is [10, -2, -5, 20].   Constraints: 1 <= k <= nums.length <= 10^5 -10^4 <= nums[i] <= 10^4
from heapq import heappush, heappop class Solution: def constrainedSubsetSum(self, nums: List[int], k: int) -> int: # [-max_sum, idx] res = -float('inf') queue = [] for i, x in enumerate(nums): while queue and queue[0][1] < i - k: heappop(queue) if queue: y = x - queue[0][0] else: y = x res = max(res, y) if y > 0: heappush(queue, [-y, i]) return res
Given an integer array nums and an integer k, return the maximum sum of a non-empty subsequence of that array such that for every two consecutive integers in the subsequence, nums[i] and nums[j], where i < j, the condition j - i <= k is satisfied. A subsequence of an array is obtained by deleting some number of elements (can be zero) from the array, leaving the remaining elements in their original order.   Example 1: Input: nums = [10,2,-10,5,20], k = 2 Output: 37 Explanation: The subsequence is [10, 2, 5, 20]. Example 2: Input: nums = [-1,-2,-3], k = 1 Output: -1 Explanation: The subsequence must be non-empty, so we choose the largest number. Example 3: Input: nums = [10,-2,-10,-5,20], k = 2 Output: 23 Explanation: The subsequence is [10, -2, -5, 20].   Constraints: 1 <= k <= nums.length <= 10^5 -10^4 <= nums[i] <= 10^4
class Solution: def constrainedSubsetSum(self, nums: List[int], k: int) -> int: max_queue = collections.deque([0,]) max_sum = nums[0] for i in range(1, len(nums)): while max(0,i-k)>max_queue[0]: max_queue.popleft() nums[i] += max(0, nums[max_queue[0]]) max_sum = max(max_sum, nums[i]) while max_queue and nums[max_queue[-1]]<nums[i]: max_queue.pop() max_queue.append(i) return max_sum
Given an integer array nums and an integer k, return the maximum sum of a non-empty subsequence of that array such that for every two consecutive integers in the subsequence, nums[i] and nums[j], where i < j, the condition j - i <= k is satisfied. A subsequence of an array is obtained by deleting some number of elements (can be zero) from the array, leaving the remaining elements in their original order.   Example 1: Input: nums = [10,2,-10,5,20], k = 2 Output: 37 Explanation: The subsequence is [10, 2, 5, 20]. Example 2: Input: nums = [-1,-2,-3], k = 1 Output: -1 Explanation: The subsequence must be non-empty, so we choose the largest number. Example 3: Input: nums = [10,-2,-10,-5,20], k = 2 Output: 23 Explanation: The subsequence is [10, -2, -5, 20].   Constraints: 1 <= k <= nums.length <= 10^5 -10^4 <= nums[i] <= 10^4
from heapq import heappush, heappop class Solution: def constrainedSubsetSum(self, nums: List[int], k: int) -> int: res = -float('inf') queue = list() for i, x in enumerate(nums): while queue and queue[0][1] < i - k: heappop(queue) if queue: val, idx = queue[0] if val < 0: x -= val heappush(queue, [-x, i]) res = max(res, x) return res
Given an integer array nums and an integer k, return the maximum sum of a non-empty subsequence of that array such that for every two consecutive integers in the subsequence, nums[i] and nums[j], where i < j, the condition j - i <= k is satisfied. A subsequence of an array is obtained by deleting some number of elements (can be zero) from the array, leaving the remaining elements in their original order.   Example 1: Input: nums = [10,2,-10,5,20], k = 2 Output: 37 Explanation: The subsequence is [10, 2, 5, 20]. Example 2: Input: nums = [-1,-2,-3], k = 1 Output: -1 Explanation: The subsequence must be non-empty, so we choose the largest number. Example 3: Input: nums = [10,-2,-10,-5,20], k = 2 Output: 23 Explanation: The subsequence is [10, -2, -5, 20].   Constraints: 1 <= k <= nums.length <= 10^5 -10^4 <= nums[i] <= 10^4
import collections class Solution: def constrainedSubsetSum(self, nums: List[int], k: int) -> int: # Like jump game # At nums[i], add the max of [num[i-k], ... num[i-1], 0] # this can be done by deque with max k sol = -float('inf') n = len(nums) maxque = collections.deque([(-1,0)]) for i in range(n): max_i = max(maxque[0][1],0) + nums[i] sol = max(sol, max_i) while maxque: if maxque[-1][1] < max_i: maxque.pop() else: break maxque.append((i,max_i)) if maxque[0][0] <= i-k: maxque.popleft() return sol
Given an integer array nums and an integer k, return the maximum sum of a non-empty subsequence of that array such that for every two consecutive integers in the subsequence, nums[i] and nums[j], where i < j, the condition j - i <= k is satisfied. A subsequence of an array is obtained by deleting some number of elements (can be zero) from the array, leaving the remaining elements in their original order.   Example 1: Input: nums = [10,2,-10,5,20], k = 2 Output: 37 Explanation: The subsequence is [10, 2, 5, 20]. Example 2: Input: nums = [-1,-2,-3], k = 1 Output: -1 Explanation: The subsequence must be non-empty, so we choose the largest number. Example 3: Input: nums = [10,-2,-10,-5,20], k = 2 Output: 23 Explanation: The subsequence is [10, -2, -5, 20].   Constraints: 1 <= k <= nums.length <= 10^5 -10^4 <= nums[i] <= 10^4
class Solution: def constrainedSubsetSum(self, nums: List[int], k: int) -> int: dp = [n for n in nums] heap = [(-nums[0], 0)] for j in range(1, len(nums)): while heap[0][1] < j - k: heapq.heappop(heap) dp[j] = max(dp[j], -heap[0][0] + nums[j]) heapq.heappush(heap, (-dp[j], j)) return max(dp)
Given an integer array nums and an integer k, return the maximum sum of a non-empty subsequence of that array such that for every two consecutive integers in the subsequence, nums[i] and nums[j], where i < j, the condition j - i <= k is satisfied. A subsequence of an array is obtained by deleting some number of elements (can be zero) from the array, leaving the remaining elements in their original order.   Example 1: Input: nums = [10,2,-10,5,20], k = 2 Output: 37 Explanation: The subsequence is [10, 2, 5, 20]. Example 2: Input: nums = [-1,-2,-3], k = 1 Output: -1 Explanation: The subsequence must be non-empty, so we choose the largest number. Example 3: Input: nums = [10,-2,-10,-5,20], k = 2 Output: 23 Explanation: The subsequence is [10, -2, -5, 20].   Constraints: 1 <= k <= nums.length <= 10^5 -10^4 <= nums[i] <= 10^4
class Solution: def constrainedSubsetSum(self, nums: List[int], k: int) -> int: n=len(nums) dp=[-sys.maxsize]*n dq=collections.deque([]) dp[n-1]=nums[n-1] res=dp[n-1] for i in range(n-2,-1,-1): while(len(dq)!=0 and dp[i+1]>dp[dq[-1]]): dq.pop() while(len(dq)!=0 and dq[0]>i+k): dq.popleft() dq.append(i+1) dp[i]=max(dp[i],nums[i],nums[i]+dp[dq[0]]) res=max(res,dp[i]) return res
Given an integer array nums and an integer k, return the maximum sum of a non-empty subsequence of that array such that for every two consecutive integers in the subsequence, nums[i] and nums[j], where i < j, the condition j - i <= k is satisfied. A subsequence of an array is obtained by deleting some number of elements (can be zero) from the array, leaving the remaining elements in their original order.   Example 1: Input: nums = [10,2,-10,5,20], k = 2 Output: 37 Explanation: The subsequence is [10, 2, 5, 20]. Example 2: Input: nums = [-1,-2,-3], k = 1 Output: -1 Explanation: The subsequence must be non-empty, so we choose the largest number. Example 3: Input: nums = [10,-2,-10,-5,20], k = 2 Output: 23 Explanation: The subsequence is [10, -2, -5, 20].   Constraints: 1 <= k <= nums.length <= 10^5 -10^4 <= nums[i] <= 10^4
class Solution: def constrainedSubsetSum(self, A: List[int], k: int) -> int: d = collections.deque() for i in range(len(A)): A[i] += d[0] if d else 0 while d and A[i] > d[-1]: d.pop() if A[i] > 0: d.append(A[i]) if i >= k and d and d[0] == A[i-k]: d.popleft() return max(A)
Given an integer array nums and an integer k, return the maximum sum of a non-empty subsequence of that array such that for every two consecutive integers in the subsequence, nums[i] and nums[j], where i < j, the condition j - i <= k is satisfied. A subsequence of an array is obtained by deleting some number of elements (can be zero) from the array, leaving the remaining elements in their original order.   Example 1: Input: nums = [10,2,-10,5,20], k = 2 Output: 37 Explanation: The subsequence is [10, 2, 5, 20]. Example 2: Input: nums = [-1,-2,-3], k = 1 Output: -1 Explanation: The subsequence must be non-empty, so we choose the largest number. Example 3: Input: nums = [10,-2,-10,-5,20], k = 2 Output: 23 Explanation: The subsequence is [10, -2, -5, 20].   Constraints: 1 <= k <= nums.length <= 10^5 -10^4 <= nums[i] <= 10^4
class Solution: def constrainedSubsetSum(self, nums: List[int], k: int) -> int: pq = [(-nums[0], 0)] res = nums[0] for i in range(1, len(nums)): rm = i - k - 1 while pq[0][1] <= rm: heapq.heappop(pq) cur = max(-pq[0][0], 0) + nums[i] res = max(res, cur) heapq.heappush(pq, (-cur, i)) return res
Given an integer array nums and an integer k, return the maximum sum of a non-empty subsequence of that array such that for every two consecutive integers in the subsequence, nums[i] and nums[j], where i < j, the condition j - i <= k is satisfied. A subsequence of an array is obtained by deleting some number of elements (can be zero) from the array, leaving the remaining elements in their original order.   Example 1: Input: nums = [10,2,-10,5,20], k = 2 Output: 37 Explanation: The subsequence is [10, 2, 5, 20]. Example 2: Input: nums = [-1,-2,-3], k = 1 Output: -1 Explanation: The subsequence must be non-empty, so we choose the largest number. Example 3: Input: nums = [10,-2,-10,-5,20], k = 2 Output: 23 Explanation: The subsequence is [10, -2, -5, 20].   Constraints: 1 <= k <= nums.length <= 10^5 -10^4 <= nums[i] <= 10^4
import heapq class Solution: def constrainedSubsetSum(self, nums: List[int], k: int) -> int: n = len(nums) # dp: walk backward, optimized dp process ans = nums.copy() q = [] for i in range(n - 1, -1, -1): # armortized O(1) while q and q[0][1] - i > k: heapq.heappop(q) if q: ans[i] += max(0, -q[0][0]) heapq.heappush(q, (-ans[i], i)) return max(ans)
Given an integer array nums and an integer k, return the maximum sum of a non-empty subsequence of that array such that for every two consecutive integers in the subsequence, nums[i] and nums[j], where i < j, the condition j - i <= k is satisfied. A subsequence of an array is obtained by deleting some number of elements (can be zero) from the array, leaving the remaining elements in their original order.   Example 1: Input: nums = [10,2,-10,5,20], k = 2 Output: 37 Explanation: The subsequence is [10, 2, 5, 20]. Example 2: Input: nums = [-1,-2,-3], k = 1 Output: -1 Explanation: The subsequence must be non-empty, so we choose the largest number. Example 3: Input: nums = [10,-2,-10,-5,20], k = 2 Output: 23 Explanation: The subsequence is [10, -2, -5, 20].   Constraints: 1 <= k <= nums.length <= 10^5 -10^4 <= nums[i] <= 10^4
class Solution: def constrainedSubsetSum(self, nums: List[int], k: int) -> int: dp=[-sys.maxsize]*len(nums) ans=nums[0] dp[0]=nums[0] heap=[(-nums[0],0)] heapq.heapify(heap) for i in range(1,len(nums)): bound=i-k while heap[0][1]<bound: heapq.heappop(heap) dp[i]=max(dp[i],nums[i],-heap[0][0]+nums[i]) ans=max(ans,dp[i]) heapq.heappush(heap,(-dp[i],i)) return ans
Given an integer array nums and an integer k, return the maximum sum of a non-empty subsequence of that array such that for every two consecutive integers in the subsequence, nums[i] and nums[j], where i < j, the condition j - i <= k is satisfied. A subsequence of an array is obtained by deleting some number of elements (can be zero) from the array, leaving the remaining elements in their original order.   Example 1: Input: nums = [10,2,-10,5,20], k = 2 Output: 37 Explanation: The subsequence is [10, 2, 5, 20]. Example 2: Input: nums = [-1,-2,-3], k = 1 Output: -1 Explanation: The subsequence must be non-empty, so we choose the largest number. Example 3: Input: nums = [10,-2,-10,-5,20], k = 2 Output: 23 Explanation: The subsequence is [10, -2, -5, 20].   Constraints: 1 <= k <= nums.length <= 10^5 -10^4 <= nums[i] <= 10^4
class Solution: def constrainedSubsetSum(self, nums: List[int], k: int) -> int: n = len(nums) q = [(-nums[0], 0)] res = nums[0] dp = [0] * n for i in range(1, n): while q and i - q[0][1] > k: heapq.heappop(q) t = max(nums[i] - q[0][0], nums[i]) res = max(res, t) heapq.heappush(q, (-t, i)) return res
Given an integer array nums and an integer k, return the maximum sum of a non-empty subsequence of that array such that for every two consecutive integers in the subsequence, nums[i] and nums[j], where i < j, the condition j - i <= k is satisfied. A subsequence of an array is obtained by deleting some number of elements (can be zero) from the array, leaving the remaining elements in their original order.   Example 1: Input: nums = [10,2,-10,5,20], k = 2 Output: 37 Explanation: The subsequence is [10, 2, 5, 20]. Example 2: Input: nums = [-1,-2,-3], k = 1 Output: -1 Explanation: The subsequence must be non-empty, so we choose the largest number. Example 3: Input: nums = [10,-2,-10,-5,20], k = 2 Output: 23 Explanation: The subsequence is [10, -2, -5, 20].   Constraints: 1 <= k <= nums.length <= 10^5 -10^4 <= nums[i] <= 10^4
class Solution: def constrainedSubsetSum(self, nums: List[int], k: int) -> int: q = collections.deque() for i in range(len(nums)): nums[i] += q[0] if q else 0 while q and nums[i] > q[-1]: q.pop() if nums[i] > 0: q.append(nums[i]) if i >= k and q and q[0] == nums[i-k]: q.popleft() return max(nums)
Given an integer array nums and an integer k, return the maximum sum of a non-empty subsequence of that array such that for every two consecutive integers in the subsequence, nums[i] and nums[j], where i < j, the condition j - i <= k is satisfied. A subsequence of an array is obtained by deleting some number of elements (can be zero) from the array, leaving the remaining elements in their original order.   Example 1: Input: nums = [10,2,-10,5,20], k = 2 Output: 37 Explanation: The subsequence is [10, 2, 5, 20]. Example 2: Input: nums = [-1,-2,-3], k = 1 Output: -1 Explanation: The subsequence must be non-empty, so we choose the largest number. Example 3: Input: nums = [10,-2,-10,-5,20], k = 2 Output: 23 Explanation: The subsequence is [10, -2, -5, 20].   Constraints: 1 <= k <= nums.length <= 10^5 -10^4 <= nums[i] <= 10^4
class Solution: def constrainedSubsetSum(self, nums: List[int], k: int) -> int: n = len(nums) q = collections.deque() result = nums[0] for i in range(n): while q and q[0][1] < i - k: q.popleft() a = q[0][0] if q else 0 m = nums[i] + (a if a > 0 else 0) while q and m >= q[-1][0]: q.pop() q.append((m, i)) result = max(result, m) return result
Given an integer array nums and an integer k, return the maximum sum of a non-empty subsequence of that array such that for every two consecutive integers in the subsequence, nums[i] and nums[j], where i < j, the condition j - i <= k is satisfied. A subsequence of an array is obtained by deleting some number of elements (can be zero) from the array, leaving the remaining elements in their original order.   Example 1: Input: nums = [10,2,-10,5,20], k = 2 Output: 37 Explanation: The subsequence is [10, 2, 5, 20]. Example 2: Input: nums = [-1,-2,-3], k = 1 Output: -1 Explanation: The subsequence must be non-empty, so we choose the largest number. Example 3: Input: nums = [10,-2,-10,-5,20], k = 2 Output: 23 Explanation: The subsequence is [10, -2, -5, 20].   Constraints: 1 <= k <= nums.length <= 10^5 -10^4 <= nums[i] <= 10^4
class Solution: def constrainedSubsetSum(self, nums: List[int], k: int) -> int: heap = [(-nums[0], 0)] ret = nums[0] for i in range(1, len(nums)): remove = i - k - 1 while remove >= heap[0][1]: heapq.heappop(heap) cur = max(0, -heap[0][0]) + nums[i] ret = max(ret, cur) heapq.heappush(heap, (-cur, i)) return ret
Given an integer array nums and an integer k, return the maximum sum of a non-empty subsequence of that array such that for every two consecutive integers in the subsequence, nums[i] and nums[j], where i < j, the condition j - i <= k is satisfied. A subsequence of an array is obtained by deleting some number of elements (can be zero) from the array, leaving the remaining elements in their original order.   Example 1: Input: nums = [10,2,-10,5,20], k = 2 Output: 37 Explanation: The subsequence is [10, 2, 5, 20]. Example 2: Input: nums = [-1,-2,-3], k = 1 Output: -1 Explanation: The subsequence must be non-empty, so we choose the largest number. Example 3: Input: nums = [10,-2,-10,-5,20], k = 2 Output: 23 Explanation: The subsequence is [10, -2, -5, 20].   Constraints: 1 <= k <= nums.length <= 10^5 -10^4 <= nums[i] <= 10^4
from collections import deque class Solution: def constrainedSubsetSum(self, nums: List[int], k: int) -> int: dp = nums.copy() ans = dp[0] monoq = deque() qsize = 0 for i, num in enumerate(nums): if i > 0: dp[i] = max(dp[i], num + monoq[0][0]) ans = max(ans, dp[i]) pops = 1 while monoq and dp[i] > monoq[-1][0]: _, freq = monoq.pop() pops += freq qsize -= freq monoq.append([dp[i], pops]) qsize += pops while qsize > k: extra = qsize - k if monoq[0][1] > extra: monoq[0][1] -= extra qsize = k else: _, v = monoq.popleft() qsize -= v return ans
Given an integer array nums and an integer k, return the maximum sum of a non-empty subsequence of that array such that for every two consecutive integers in the subsequence, nums[i] and nums[j], where i < j, the condition j - i <= k is satisfied. A subsequence of an array is obtained by deleting some number of elements (can be zero) from the array, leaving the remaining elements in their original order.   Example 1: Input: nums = [10,2,-10,5,20], k = 2 Output: 37 Explanation: The subsequence is [10, 2, 5, 20]. Example 2: Input: nums = [-1,-2,-3], k = 1 Output: -1 Explanation: The subsequence must be non-empty, so we choose the largest number. Example 3: Input: nums = [10,-2,-10,-5,20], k = 2 Output: 23 Explanation: The subsequence is [10, -2, -5, 20].   Constraints: 1 <= k <= nums.length <= 10^5 -10^4 <= nums[i] <= 10^4
from collections import deque class Solution: def constrainedSubsetSum(self, nums, k): N, queue = len(nums), deque() dp = [0] * N for i, val in enumerate(nums): if queue and (i - queue[0] > k): #if i > k and (queue[0] == i - k - 1): queue.popleft() #dp[i] = (val + max(dp[queue[0]], 0)) if queue else val if queue and dp[queue[0]] > 0: dp[i] = val + dp[queue[0]] else: dp[i] = val while queue and dp[i] >= dp[queue[-1]]: queue.pop() queue.append(i) return max(dp) from collections import deque class Solution: def constrainedSubsetSum(self, nums, k): if not nums or not k: return 0 if max(nums) <= 0: return max(nums) if min(nums) >= 0: return sum(nums) queue, N = deque(), len(nums) for i in range(N): #if queue and (i - queue[0] > k): while queue and queue[0] < i - k: queue.popleft() # compute the max sum we can get at index i if queue: nums[i] += nums[queue[0]] # delet all the sequence that smaller than current sum, becaus there will never be # considers ==> smaller than current sequence, and end before current sequence while queue and nums[queue[-1]] < nums[i]: queue.pop() # if nums[i] < 0, it can't be a useful prefix sum if nums[i] > 0: queue.append(i) return max(nums) from collections import deque class Solution: def constrainedSubsetSum(self, nums, k): N, queue = len(nums), deque() dp = [val for val in nums] for i, val in enumerate(nums): if queue and (i - queue[0] > k): queue.popleft() if queue and dp[queue[0]] > 0: dp[i] += dp[queue[0]] while queue and dp[i] >= dp[queue[-1]]: queue.pop() queue.append(i) return max(dp)
Given an integer array nums and an integer k, return the maximum sum of a non-empty subsequence of that array such that for every two consecutive integers in the subsequence, nums[i] and nums[j], where i < j, the condition j - i <= k is satisfied. A subsequence of an array is obtained by deleting some number of elements (can be zero) from the array, leaving the remaining elements in their original order.   Example 1: Input: nums = [10,2,-10,5,20], k = 2 Output: 37 Explanation: The subsequence is [10, 2, 5, 20]. Example 2: Input: nums = [-1,-2,-3], k = 1 Output: -1 Explanation: The subsequence must be non-empty, so we choose the largest number. Example 3: Input: nums = [10,-2,-10,-5,20], k = 2 Output: 23 Explanation: The subsequence is [10, -2, -5, 20].   Constraints: 1 <= k <= nums.length <= 10^5 -10^4 <= nums[i] <= 10^4
from collections import deque class Solution: def constrainedSubsetSum(self, A: List[int], k: int) -> int: Q = deque([(0, A[0])]) # decreasing running_max = A[0] for i in range(1, len(A)): if Q[0][0] < i - k: Q.popleft() maxsum_of_subseq_ends_at_i = A[i] + max(Q[0][1], 0) running_max = max(maxsum_of_subseq_ends_at_i, running_max) while Q and Q[-1][1] <= maxsum_of_subseq_ends_at_i: Q.pop() Q.append((i, maxsum_of_subseq_ends_at_i)) return running_max
Given an integer array nums and an integer k, return the maximum sum of a non-empty subsequence of that array such that for every two consecutive integers in the subsequence, nums[i] and nums[j], where i < j, the condition j - i <= k is satisfied. A subsequence of an array is obtained by deleting some number of elements (can be zero) from the array, leaving the remaining elements in their original order.   Example 1: Input: nums = [10,2,-10,5,20], k = 2 Output: 37 Explanation: The subsequence is [10, 2, 5, 20]. Example 2: Input: nums = [-1,-2,-3], k = 1 Output: -1 Explanation: The subsequence must be non-empty, so we choose the largest number. Example 3: Input: nums = [10,-2,-10,-5,20], k = 2 Output: 23 Explanation: The subsequence is [10, -2, -5, 20].   Constraints: 1 <= k <= nums.length <= 10^5 -10^4 <= nums[i] <= 10^4
class Solution: def constrainedSubsetSum(self, nums: List[int], k: int) -> int: n = len(nums) dp = [-sys.maxsize] * n dp[0] = nums[0] maxDeque = deque() ans = -sys.maxsize for j in range(n): while len(maxDeque) > 0 and j - maxDeque[0] > k: maxDeque.popleft() preMax = dp[maxDeque[0]] if len(maxDeque) > 0 else 0 dp[j] = max(preMax + nums[j], nums[j]) ans = max(dp[j], ans) while len(maxDeque) > 0 and dp[maxDeque[-1]] < dp[j]: maxDeque.pop() maxDeque.append(j) return ans
Given an integer array nums and an integer k, return the maximum sum of a non-empty subsequence of that array such that for every two consecutive integers in the subsequence, nums[i] and nums[j], where i < j, the condition j - i <= k is satisfied. A subsequence of an array is obtained by deleting some number of elements (can be zero) from the array, leaving the remaining elements in their original order.   Example 1: Input: nums = [10,2,-10,5,20], k = 2 Output: 37 Explanation: The subsequence is [10, 2, 5, 20]. Example 2: Input: nums = [-1,-2,-3], k = 1 Output: -1 Explanation: The subsequence must be non-empty, so we choose the largest number. Example 3: Input: nums = [10,-2,-10,-5,20], k = 2 Output: 23 Explanation: The subsequence is [10, -2, -5, 20].   Constraints: 1 <= k <= nums.length <= 10^5 -10^4 <= nums[i] <= 10^4
class Solution: def constrainedSubsetSum(self, nums: List[int], k: int) -> int: dp, res = collections.deque(), -float('inf') for i, n in enumerate(nums): if dp and dp[0][0] < i - k: dp.popleft() cur = n + (0 if not dp else dp[0][1]) res = max(res, cur) if cur > 0: while dp and dp[-1][1] <= cur: dp.pop() dp.append((i, cur)) # print('dp', dp) return res
Given an integer array nums and an integer k, return the maximum sum of a non-empty subsequence of that array such that for every two consecutive integers in the subsequence, nums[i] and nums[j], where i < j, the condition j - i <= k is satisfied. A subsequence of an array is obtained by deleting some number of elements (can be zero) from the array, leaving the remaining elements in their original order.   Example 1: Input: nums = [10,2,-10,5,20], k = 2 Output: 37 Explanation: The subsequence is [10, 2, 5, 20]. Example 2: Input: nums = [-1,-2,-3], k = 1 Output: -1 Explanation: The subsequence must be non-empty, so we choose the largest number. Example 3: Input: nums = [10,-2,-10,-5,20], k = 2 Output: 23 Explanation: The subsequence is [10, -2, -5, 20].   Constraints: 1 <= k <= nums.length <= 10^5 -10^4 <= nums[i] <= 10^4
class Solution: def constrainedSubsetSum(self, nums: List[int], k: int) -> int: n=len(nums) dp=[0]*n remove=collections.defaultdict(int) h=[] def get_b(): if not h: return 0 b=heapq.heappop(h) while remove[b]>0: remove[b]-=1 b=heapq.heappop(h) heapq.heappush(h,b) return -b for i,d in enumerate(nums): if i>k: remove[-dp[i-k-1]]+=1 dp[i]=max(get_b(),0)+d heapq.heappush(h,-dp[i]) return max(dp)
Given an integer array nums and an integer k, return the maximum sum of a non-empty subsequence of that array such that for every two consecutive integers in the subsequence, nums[i] and nums[j], where i < j, the condition j - i <= k is satisfied. A subsequence of an array is obtained by deleting some number of elements (can be zero) from the array, leaving the remaining elements in their original order.   Example 1: Input: nums = [10,2,-10,5,20], k = 2 Output: 37 Explanation: The subsequence is [10, 2, 5, 20]. Example 2: Input: nums = [-1,-2,-3], k = 1 Output: -1 Explanation: The subsequence must be non-empty, so we choose the largest number. Example 3: Input: nums = [10,-2,-10,-5,20], k = 2 Output: 23 Explanation: The subsequence is [10, -2, -5, 20].   Constraints: 1 <= k <= nums.length <= 10^5 -10^4 <= nums[i] <= 10^4
class Solution: def constrainedSubsetSum(self, nums: List[int], k: int) -> int: n = len(nums) q = collections.deque() result = nums[0] for i in range(n): while q and q[0][1] < i - k: q.popleft() a = q[0][0] if q else 0 m = nums[i] + (a if a > 0 else 0) if m > 0: while q and m >= q[-1][0]: q.pop() q.append((m, i)) result = max(result, m) return result
Given an integer array nums and an integer k, return the maximum sum of a non-empty subsequence of that array such that for every two consecutive integers in the subsequence, nums[i] and nums[j], where i < j, the condition j - i <= k is satisfied. A subsequence of an array is obtained by deleting some number of elements (can be zero) from the array, leaving the remaining elements in their original order.   Example 1: Input: nums = [10,2,-10,5,20], k = 2 Output: 37 Explanation: The subsequence is [10, 2, 5, 20]. Example 2: Input: nums = [-1,-2,-3], k = 1 Output: -1 Explanation: The subsequence must be non-empty, so we choose the largest number. Example 3: Input: nums = [10,-2,-10,-5,20], k = 2 Output: 23 Explanation: The subsequence is [10, -2, -5, 20].   Constraints: 1 <= k <= nums.length <= 10^5 -10^4 <= nums[i] <= 10^4
class Solution: def constrainedSubsetSum(self, nums: List[int], k: int) -> int: dp = [0 - sys.maxsize for i in range(len(nums))] heap = [] dp[0] = nums[0] heapq.heappush(heap, (0-nums[0], 0)) for i in range(1,len(nums)): while len(heap) and heap[0][1] < i - k: heapq.heappop(heap) dp[i] = max(dp[i], nums[i] + max(0, 0 - heap[0][0] if len(heap) else 0)) heapq.heappush(heap, (0 - dp[i], i)) return max(dp)
Given an integer array nums and an integer k, return the maximum sum of a non-empty subsequence of that array such that for every two consecutive integers in the subsequence, nums[i] and nums[j], where i < j, the condition j - i <= k is satisfied. A subsequence of an array is obtained by deleting some number of elements (can be zero) from the array, leaving the remaining elements in their original order.   Example 1: Input: nums = [10,2,-10,5,20], k = 2 Output: 37 Explanation: The subsequence is [10, 2, 5, 20]. Example 2: Input: nums = [-1,-2,-3], k = 1 Output: -1 Explanation: The subsequence must be non-empty, so we choose the largest number. Example 3: Input: nums = [10,-2,-10,-5,20], k = 2 Output: 23 Explanation: The subsequence is [10, -2, -5, 20].   Constraints: 1 <= k <= nums.length <= 10^5 -10^4 <= nums[i] <= 10^4
class Solution: def constrainedSubsetSum(self, nums: List[int], k: int) -> int: n = len(nums) heap = [(-nums[0], 0)] result = nums[0] for i in range(1, n): while heap and heap[0][1] < i - k: heapq.heappop(heap) a = -heap[0][0] m = nums[i] + (a if a > 0 else 0) heapq.heappush(heap, (-m, i)) result = max(result, m) return result
Given an integer array nums and an integer k, return the maximum sum of a non-empty subsequence of that array such that for every two consecutive integers in the subsequence, nums[i] and nums[j], where i < j, the condition j - i <= k is satisfied. A subsequence of an array is obtained by deleting some number of elements (can be zero) from the array, leaving the remaining elements in their original order.   Example 1: Input: nums = [10,2,-10,5,20], k = 2 Output: 37 Explanation: The subsequence is [10, 2, 5, 20]. Example 2: Input: nums = [-1,-2,-3], k = 1 Output: -1 Explanation: The subsequence must be non-empty, so we choose the largest number. Example 3: Input: nums = [10,-2,-10,-5,20], k = 2 Output: 23 Explanation: The subsequence is [10, -2, -5, 20].   Constraints: 1 <= k <= nums.length <= 10^5 -10^4 <= nums[i] <= 10^4
from collections import deque class Solution: def constrainedSubsetSum(self, nums: List[int], k: int) -> int: que = deque() for ind in range(len(nums)): nums[ind] += que[0] if que else 0 while que and nums[ind] > que[-1]: que.pop() if nums[ind] > 0: que.append(nums[ind]) if que and ind >= k and que[0] == nums[ind-k]: que.popleft() return max(nums)
Given an integer array nums and an integer k, return the maximum sum of a non-empty subsequence of that array such that for every two consecutive integers in the subsequence, nums[i] and nums[j], where i < j, the condition j - i <= k is satisfied. A subsequence of an array is obtained by deleting some number of elements (can be zero) from the array, leaving the remaining elements in their original order.   Example 1: Input: nums = [10,2,-10,5,20], k = 2 Output: 37 Explanation: The subsequence is [10, 2, 5, 20]. Example 2: Input: nums = [-1,-2,-3], k = 1 Output: -1 Explanation: The subsequence must be non-empty, so we choose the largest number. Example 3: Input: nums = [10,-2,-10,-5,20], k = 2 Output: 23 Explanation: The subsequence is [10, -2, -5, 20].   Constraints: 1 <= k <= nums.length <= 10^5 -10^4 <= nums[i] <= 10^4
from collections import deque class Solution: def constrainedSubsetSum(self, nums, k): #if max(nums) <= 0: return max(nums) # optimization #if min(nums) >= 0: return sum(nums) # optimization N, queue = len(nums), deque() dp = [val for val in nums] for i, val in enumerate(nums): if queue and (i - queue[0] > k): queue.popleft() if queue and dp[queue[0]] > 0: dp[i] += dp[queue[0]] while queue and dp[i] >= dp[queue[-1]]: queue.pop() queue.append(i) return max(dp)
Given an integer array nums and an integer k, return the maximum sum of a non-empty subsequence of that array such that for every two consecutive integers in the subsequence, nums[i] and nums[j], where i < j, the condition j - i <= k is satisfied. A subsequence of an array is obtained by deleting some number of elements (can be zero) from the array, leaving the remaining elements in their original order.   Example 1: Input: nums = [10,2,-10,5,20], k = 2 Output: 37 Explanation: The subsequence is [10, 2, 5, 20]. Example 2: Input: nums = [-1,-2,-3], k = 1 Output: -1 Explanation: The subsequence must be non-empty, so we choose the largest number. Example 3: Input: nums = [10,-2,-10,-5,20], k = 2 Output: 23 Explanation: The subsequence is [10, -2, -5, 20].   Constraints: 1 <= k <= nums.length <= 10^5 -10^4 <= nums[i] <= 10^4
class Solution: def constrainedSubsetSum(self, nums: List[int], k: int) -> int: q = deque() q.append((nums[0],0)) max_sum = nums[0] for i in range(1,len(nums)): while q and q[0][1] < i - k: q.popleft() next_val = max(nums[i], nums[i] + q[0][0]) while q and q[-1][0] < next_val: q.pop() q.append((next_val,i)) max_sum = max(max_sum, q[0][0]) return max_sum
Given an integer array nums and an integer k, return the maximum sum of a non-empty subsequence of that array such that for every two consecutive integers in the subsequence, nums[i] and nums[j], where i < j, the condition j - i <= k is satisfied. A subsequence of an array is obtained by deleting some number of elements (can be zero) from the array, leaving the remaining elements in their original order.   Example 1: Input: nums = [10,2,-10,5,20], k = 2 Output: 37 Explanation: The subsequence is [10, 2, 5, 20]. Example 2: Input: nums = [-1,-2,-3], k = 1 Output: -1 Explanation: The subsequence must be non-empty, so we choose the largest number. Example 3: Input: nums = [10,-2,-10,-5,20], k = 2 Output: 23 Explanation: The subsequence is [10, -2, -5, 20].   Constraints: 1 <= k <= nums.length <= 10^5 -10^4 <= nums[i] <= 10^4
class Solution: def constrainedSubsetSum(self, nums: List[int], k: int) -> int: deque = [] for i, num in enumerate(nums): while(deque and nums[deque[-1]] < 0): deque.pop() while(deque and deque[0] < i - k): deque.pop(0) if deque: nums[i] = nums[deque[0]] + num while(deque and nums[deque[-1]] < nums[i]): deque.pop() deque.append(i) return max(nums)
Given an integer array nums and an integer k, return the maximum sum of a non-empty subsequence of that array such that for every two consecutive integers in the subsequence, nums[i] and nums[j], where i < j, the condition j - i <= k is satisfied. A subsequence of an array is obtained by deleting some number of elements (can be zero) from the array, leaving the remaining elements in their original order.   Example 1: Input: nums = [10,2,-10,5,20], k = 2 Output: 37 Explanation: The subsequence is [10, 2, 5, 20]. Example 2: Input: nums = [-1,-2,-3], k = 1 Output: -1 Explanation: The subsequence must be non-empty, so we choose the largest number. Example 3: Input: nums = [10,-2,-10,-5,20], k = 2 Output: 23 Explanation: The subsequence is [10, -2, -5, 20].   Constraints: 1 <= k <= nums.length <= 10^5 -10^4 <= nums[i] <= 10^4
from collections import deque class Solution: def constrainedSubsetSum(self, nums: List[int], k: int) -> int: largest = deque() global_max = float('-inf') for i, num in enumerate(nums): if largest and largest[-1][1] < i - k: largest.pop() curr = num + max(0, largest[-1][0] if largest else 0) while largest and curr > largest[0][0]: largest.popleft() global_max = max(global_max, curr) largest.appendleft((curr, i)) return global_max
Given an integer array nums and an integer k, return the maximum sum of a non-empty subsequence of that array such that for every two consecutive integers in the subsequence, nums[i] and nums[j], where i < j, the condition j - i <= k is satisfied. A subsequence of an array is obtained by deleting some number of elements (can be zero) from the array, leaving the remaining elements in their original order.   Example 1: Input: nums = [10,2,-10,5,20], k = 2 Output: 37 Explanation: The subsequence is [10, 2, 5, 20]. Example 2: Input: nums = [-1,-2,-3], k = 1 Output: -1 Explanation: The subsequence must be non-empty, so we choose the largest number. Example 3: Input: nums = [10,-2,-10,-5,20], k = 2 Output: 23 Explanation: The subsequence is [10, -2, -5, 20].   Constraints: 1 <= k <= nums.length <= 10^5 -10^4 <= nums[i] <= 10^4
from collections import deque class Solution: def constrainedSubsetSum(self, A: List[int], k: int) -> int: deque = collections.deque() for i in range(len(A)): A[i] += deque[0] if deque else 0 while len(deque) and A[i] > deque[-1]: deque.pop() if A[i] > 0: deque.append(A[i]) if i >= k and deque and deque[0] == A[i - k]: deque.popleft() return max(A)
Given an integer array nums and an integer k, return the maximum sum of a non-empty subsequence of that array such that for every two consecutive integers in the subsequence, nums[i] and nums[j], where i < j, the condition j - i <= k is satisfied. A subsequence of an array is obtained by deleting some number of elements (can be zero) from the array, leaving the remaining elements in their original order.   Example 1: Input: nums = [10,2,-10,5,20], k = 2 Output: 37 Explanation: The subsequence is [10, 2, 5, 20]. Example 2: Input: nums = [-1,-2,-3], k = 1 Output: -1 Explanation: The subsequence must be non-empty, so we choose the largest number. Example 3: Input: nums = [10,-2,-10,-5,20], k = 2 Output: 23 Explanation: The subsequence is [10, -2, -5, 20].   Constraints: 1 <= k <= nums.length <= 10^5 -10^4 <= nums[i] <= 10^4
class Solution: def constrainedSubsetSum(self, nums: List[int], k: int) -> int: q = deque() q.append((nums[0],0)) max_sum = nums[0] for i in range(1,len(nums)): while q and q[0][1] < i - k: q.popleft() next_val = nums[i] if q and q[0][0] >= 0: next_val += q[0][0] while q and q[-1][0] < next_val: q.pop() q.append((next_val,i)) max_sum = max(max_sum, q[0][0]) return max_sum
Given an integer array nums and an integer k, return the maximum sum of a non-empty subsequence of that array such that for every two consecutive integers in the subsequence, nums[i] and nums[j], where i < j, the condition j - i <= k is satisfied. A subsequence of an array is obtained by deleting some number of elements (can be zero) from the array, leaving the remaining elements in their original order.   Example 1: Input: nums = [10,2,-10,5,20], k = 2 Output: 37 Explanation: The subsequence is [10, 2, 5, 20]. Example 2: Input: nums = [-1,-2,-3], k = 1 Output: -1 Explanation: The subsequence must be non-empty, so we choose the largest number. Example 3: Input: nums = [10,-2,-10,-5,20], k = 2 Output: 23 Explanation: The subsequence is [10, -2, -5, 20].   Constraints: 1 <= k <= nums.length <= 10^5 -10^4 <= nums[i] <= 10^4
class Solution: def constrainedSubsetSum(self, nums: List[int], k: int) -> int: dp=collections.deque([(nums[0],0)]) ans=nums[0] for i in range(1,len(nums)): new = nums[i] + max(0,dp[0][0]) while dp and dp[0][1]<=i-k: dp.popleft() while dp and new>=dp[-1][0]: dp.pop() dp.append((new,i)) ans=max(ans,new) return ans