description
stringlengths
171
4k
code
stringlengths
94
3.98k
normalized_code
stringlengths
57
4.99k
This is an easy version of the problem. The actual problems are different, but the easy version is almost a subtask of the hard version. Note that the constraints and the output format are different. You are given a string $s$ consisting of $n$ lowercase Latin letters. You have to color all its characters one of the two colors (each character to exactly one color, the same letters can be colored the same or different colors, i.e. you can choose exactly one color for each index in $s$). After coloring, you can swap any two neighboring characters of the string that are colored different colors. You can perform such an operation arbitrary (possibly, zero) number of times. The goal is to make the string sorted, i.e. all characters should be in alphabetical order. Your task is to say if it is possible to color the given string so that after coloring it can become sorted by some sequence of swaps. Note that you have to restore only coloring, not the sequence of swaps. -----Input----- The first line of the input contains one integer $n$ ($1 \le n \le 200$) β€” the length of $s$. The second line of the input contains the string $s$ consisting of exactly $n$ lowercase Latin letters. -----Output----- If it is impossible to color the given string so that after coloring it can become sorted by some sequence of swaps, print "NO" (without quotes) in the first line. Otherwise, print "YES" in the first line and any correct coloring in the second line (the coloring is the string consisting of $n$ characters, the $i$-th character should be '0' if the $i$-th character is colored the first color and '1' otherwise). -----Examples----- Input 9 abacbecfd Output YES 001010101 Input 8 aaabbcbb Output YES 01011011 Input 7 abcdedc Output NO Input 5 abcde Output YES 00000
def dfs(adj, u, color): for v in adj[u]: if color[v] is None: color[v] = color[u] ^ 1 if dfs(adj, v, color): return True elif color[v] != color[u] ^ 1: return True return False n = int(input()) s = input() adj = [[] for _ in range(n)] for i in range(n): for j in range(i + 1, n): if s[i] > s[j]: adj[i].append(j) adj[j].append(i) color = [None] * n bad = False for u in range(n): if color[u] is None: color[u] = 0 if dfs(adj, u, color): bad = True break if bad: print("NO") else: print("YES") print(*color, sep="")
FUNC_DEF FOR VAR VAR VAR IF VAR VAR NONE ASSIGN VAR VAR BIN_OP VAR VAR NUMBER IF FUNC_CALL VAR VAR VAR VAR RETURN NUMBER IF VAR VAR BIN_OP VAR VAR NUMBER RETURN NUMBER RETURN NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR LIST VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER VAR IF VAR VAR VAR VAR EXPR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR VAR ASSIGN VAR BIN_OP LIST NONE VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR VAR NONE ASSIGN VAR VAR NUMBER IF FUNC_CALL VAR VAR VAR VAR ASSIGN VAR NUMBER IF VAR EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR VAR STRING
This is an easy version of the problem. The actual problems are different, but the easy version is almost a subtask of the hard version. Note that the constraints and the output format are different. You are given a string $s$ consisting of $n$ lowercase Latin letters. You have to color all its characters one of the two colors (each character to exactly one color, the same letters can be colored the same or different colors, i.e. you can choose exactly one color for each index in $s$). After coloring, you can swap any two neighboring characters of the string that are colored different colors. You can perform such an operation arbitrary (possibly, zero) number of times. The goal is to make the string sorted, i.e. all characters should be in alphabetical order. Your task is to say if it is possible to color the given string so that after coloring it can become sorted by some sequence of swaps. Note that you have to restore only coloring, not the sequence of swaps. -----Input----- The first line of the input contains one integer $n$ ($1 \le n \le 200$) β€” the length of $s$. The second line of the input contains the string $s$ consisting of exactly $n$ lowercase Latin letters. -----Output----- If it is impossible to color the given string so that after coloring it can become sorted by some sequence of swaps, print "NO" (without quotes) in the first line. Otherwise, print "YES" in the first line and any correct coloring in the second line (the coloring is the string consisting of $n$ characters, the $i$-th character should be '0' if the $i$-th character is colored the first color and '1' otherwise). -----Examples----- Input 9 abacbecfd Output YES 001010101 Input 8 aaabbcbb Output YES 01011011 Input 7 abcdedc Output NO Input 5 abcde Output YES 00000
n = int(input()) s = input() ans = [1] cc = 0 color = ["z"] * 26 color[0] = s[0] for i in range(1, n): flag = False for j in range(cc + 1): if color[j] <= s[i]: ans.append(j + 1) flag = True color[j] = s[i] break if not flag: cc += 1 color[cc] = s[i] ans.append(cc + 1) print(cc + 1) for i in range(n): print(ans[i], end=" ")
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR LIST NUMBER ASSIGN VAR NUMBER ASSIGN VAR BIN_OP LIST STRING NUMBER ASSIGN VAR NUMBER VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER IF VAR VAR VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR VAR VAR VAR IF VAR VAR NUMBER ASSIGN VAR VAR VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR VAR STRING
This is an easy version of the problem. The actual problems are different, but the easy version is almost a subtask of the hard version. Note that the constraints and the output format are different. You are given a string $s$ consisting of $n$ lowercase Latin letters. You have to color all its characters one of the two colors (each character to exactly one color, the same letters can be colored the same or different colors, i.e. you can choose exactly one color for each index in $s$). After coloring, you can swap any two neighboring characters of the string that are colored different colors. You can perform such an operation arbitrary (possibly, zero) number of times. The goal is to make the string sorted, i.e. all characters should be in alphabetical order. Your task is to say if it is possible to color the given string so that after coloring it can become sorted by some sequence of swaps. Note that you have to restore only coloring, not the sequence of swaps. -----Input----- The first line of the input contains one integer $n$ ($1 \le n \le 200$) β€” the length of $s$. The second line of the input contains the string $s$ consisting of exactly $n$ lowercase Latin letters. -----Output----- If it is impossible to color the given string so that after coloring it can become sorted by some sequence of swaps, print "NO" (without quotes) in the first line. Otherwise, print "YES" in the first line and any correct coloring in the second line (the coloring is the string consisting of $n$ characters, the $i$-th character should be '0' if the $i$-th character is colored the first color and '1' otherwise). -----Examples----- Input 9 abacbecfd Output YES 001010101 Input 8 aaabbcbb Output YES 01011011 Input 7 abcdedc Output NO Input 5 abcde Output YES 00000
input() arr = input().strip() ans = [] color = 0 mx = [(0) for i in range(26)] for i in arr: c = ord(i) - 97 _max = 0 for j in range(c + 1, 26): _max = max(_max, mx[j]) ans.append(_max + 1) color = max(color, ans[-1]) mx[c] = max(mx[c], _max + 1) if color > 2: print("NO") else: print("YES") for i in ans: print(i - 1, end="")
EXPR FUNC_CALL VAR ASSIGN VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR LIST ASSIGN VAR NUMBER ASSIGN VAR NUMBER VAR FUNC_CALL VAR NUMBER FOR VAR VAR ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR VAR BIN_OP VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR STRING FOR VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR NUMBER STRING
This is an easy version of the problem. The actual problems are different, but the easy version is almost a subtask of the hard version. Note that the constraints and the output format are different. You are given a string $s$ consisting of $n$ lowercase Latin letters. You have to color all its characters one of the two colors (each character to exactly one color, the same letters can be colored the same or different colors, i.e. you can choose exactly one color for each index in $s$). After coloring, you can swap any two neighboring characters of the string that are colored different colors. You can perform such an operation arbitrary (possibly, zero) number of times. The goal is to make the string sorted, i.e. all characters should be in alphabetical order. Your task is to say if it is possible to color the given string so that after coloring it can become sorted by some sequence of swaps. Note that you have to restore only coloring, not the sequence of swaps. -----Input----- The first line of the input contains one integer $n$ ($1 \le n \le 200$) β€” the length of $s$. The second line of the input contains the string $s$ consisting of exactly $n$ lowercase Latin letters. -----Output----- If it is impossible to color the given string so that after coloring it can become sorted by some sequence of swaps, print "NO" (without quotes) in the first line. Otherwise, print "YES" in the first line and any correct coloring in the second line (the coloring is the string consisting of $n$ characters, the $i$-th character should be '0' if the $i$-th character is colored the first color and '1' otherwise). -----Examples----- Input 9 abacbecfd Output YES 001010101 Input 8 aaabbcbb Output YES 01011011 Input 7 abcdedc Output NO Input 5 abcde Output YES 00000
n = int(input()) string = input() arr = [(ord(i) - 96) for i in string] lmax = arr[0] ans = "0" flag = 0 flag2 = 1 for i in range(1, n): if arr[i] < lmax: if flag: if arr[i] < fmax: flag2 = 0 break else: fmax = arr[i] ans += "1" else: flag = 1 fmax = arr[i] ans += "1" else: lmax = arr[i] ans += "0" if flag2: print("YES") print(ans) else: print("NO")
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER VAR VAR ASSIGN VAR VAR NUMBER ASSIGN VAR STRING ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR IF VAR VAR VAR IF VAR IF VAR VAR VAR ASSIGN VAR NUMBER ASSIGN VAR VAR VAR VAR STRING ASSIGN VAR NUMBER ASSIGN VAR VAR VAR VAR STRING ASSIGN VAR VAR VAR VAR STRING IF VAR EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR STRING
This is an easy version of the problem. The actual problems are different, but the easy version is almost a subtask of the hard version. Note that the constraints and the output format are different. You are given a string $s$ consisting of $n$ lowercase Latin letters. You have to color all its characters one of the two colors (each character to exactly one color, the same letters can be colored the same or different colors, i.e. you can choose exactly one color for each index in $s$). After coloring, you can swap any two neighboring characters of the string that are colored different colors. You can perform such an operation arbitrary (possibly, zero) number of times. The goal is to make the string sorted, i.e. all characters should be in alphabetical order. Your task is to say if it is possible to color the given string so that after coloring it can become sorted by some sequence of swaps. Note that you have to restore only coloring, not the sequence of swaps. -----Input----- The first line of the input contains one integer $n$ ($1 \le n \le 200$) β€” the length of $s$. The second line of the input contains the string $s$ consisting of exactly $n$ lowercase Latin letters. -----Output----- If it is impossible to color the given string so that after coloring it can become sorted by some sequence of swaps, print "NO" (without quotes) in the first line. Otherwise, print "YES" in the first line and any correct coloring in the second line (the coloring is the string consisting of $n$ characters, the $i$-th character should be '0' if the $i$-th character is colored the first color and '1' otherwise). -----Examples----- Input 9 abacbecfd Output YES 001010101 Input 8 aaabbcbb Output YES 01011011 Input 7 abcdedc Output NO Input 5 abcde Output YES 00000
n = int(input()) s = input() a = [] for i in range(n): a.append([s[i], i, 0]) for i in range(n): mn = a[i][0] k = i for j in range(i + 1, n): if a[j][0] < mn: mn = a[j][0] k = j if k == i: continue if a[k][2]: print("NO") exit() for j in range(k, i, -1): a[j - 1][2] = 1 a[j - 1], a[j] = a[j], a[j - 1] ans = [0] * n for i in range(n): pos, color = a[i][1], a[i][2] ans[pos] = color print("YES") print("".join(map(str, ans)))
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR LIST VAR VAR VAR NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR NUMBER ASSIGN VAR VAR FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER VAR IF VAR VAR NUMBER VAR ASSIGN VAR VAR VAR NUMBER ASSIGN VAR VAR IF VAR VAR IF VAR VAR NUMBER EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER NUMBER NUMBER ASSIGN VAR BIN_OP VAR NUMBER VAR VAR VAR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP LIST NUMBER VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR VAR NUMBER VAR VAR NUMBER ASSIGN VAR VAR VAR EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR FUNC_CALL STRING FUNC_CALL VAR VAR VAR
This is an easy version of the problem. The actual problems are different, but the easy version is almost a subtask of the hard version. Note that the constraints and the output format are different. You are given a string $s$ consisting of $n$ lowercase Latin letters. You have to color all its characters one of the two colors (each character to exactly one color, the same letters can be colored the same or different colors, i.e. you can choose exactly one color for each index in $s$). After coloring, you can swap any two neighboring characters of the string that are colored different colors. You can perform such an operation arbitrary (possibly, zero) number of times. The goal is to make the string sorted, i.e. all characters should be in alphabetical order. Your task is to say if it is possible to color the given string so that after coloring it can become sorted by some sequence of swaps. Note that you have to restore only coloring, not the sequence of swaps. -----Input----- The first line of the input contains one integer $n$ ($1 \le n \le 200$) β€” the length of $s$. The second line of the input contains the string $s$ consisting of exactly $n$ lowercase Latin letters. -----Output----- If it is impossible to color the given string so that after coloring it can become sorted by some sequence of swaps, print "NO" (without quotes) in the first line. Otherwise, print "YES" in the first line and any correct coloring in the second line (the coloring is the string consisting of $n$ characters, the $i$-th character should be '0' if the $i$-th character is colored the first color and '1' otherwise). -----Examples----- Input 9 abacbecfd Output YES 001010101 Input 8 aaabbcbb Output YES 01011011 Input 7 abcdedc Output NO Input 5 abcde Output YES 00000
input() string = input() colors = [0] * 26 res = [] visited = set() for char in string: i1 = ord(char) - ord("a") color = 0 for v in visited: i2 = ord(v) - ord("a") if char < v: color = max(color, colors[i2]) color += 1 colors[i1] = color res.append(color) visited.add(char) print(max(colors)) print(" ".join(str(i) for i in res))
EXPR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR BIN_OP LIST NUMBER NUMBER ASSIGN VAR LIST ASSIGN VAR FUNC_CALL VAR FOR VAR VAR ASSIGN VAR BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR STRING ASSIGN VAR NUMBER FOR VAR VAR ASSIGN VAR BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR STRING IF VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR VAR VAR NUMBER ASSIGN VAR VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR FUNC_CALL STRING FUNC_CALL VAR VAR VAR VAR
This is an easy version of the problem. The actual problems are different, but the easy version is almost a subtask of the hard version. Note that the constraints and the output format are different. You are given a string $s$ consisting of $n$ lowercase Latin letters. You have to color all its characters one of the two colors (each character to exactly one color, the same letters can be colored the same or different colors, i.e. you can choose exactly one color for each index in $s$). After coloring, you can swap any two neighboring characters of the string that are colored different colors. You can perform such an operation arbitrary (possibly, zero) number of times. The goal is to make the string sorted, i.e. all characters should be in alphabetical order. Your task is to say if it is possible to color the given string so that after coloring it can become sorted by some sequence of swaps. Note that you have to restore only coloring, not the sequence of swaps. -----Input----- The first line of the input contains one integer $n$ ($1 \le n \le 200$) β€” the length of $s$. The second line of the input contains the string $s$ consisting of exactly $n$ lowercase Latin letters. -----Output----- If it is impossible to color the given string so that after coloring it can become sorted by some sequence of swaps, print "NO" (without quotes) in the first line. Otherwise, print "YES" in the first line and any correct coloring in the second line (the coloring is the string consisting of $n$ characters, the $i$-th character should be '0' if the $i$-th character is colored the first color and '1' otherwise). -----Examples----- Input 9 abacbecfd Output YES 001010101 Input 8 aaabbcbb Output YES 01011011 Input 7 abcdedc Output NO Input 5 abcde Output YES 00000
n = int(input()) s = input() prev = -1 ans = "" t = -1 flag = 1 for i in range(n): cur = ord(s[i]) - ord("a") if cur >= prev: ans += "1" prev = cur else: if cur < t: flag = 0 break t = cur ans += "0" if flag: print("YES") print(ans) else: print("NO")
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR STRING ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP FUNC_CALL VAR VAR VAR FUNC_CALL VAR STRING IF VAR VAR VAR STRING ASSIGN VAR VAR IF VAR VAR ASSIGN VAR NUMBER ASSIGN VAR VAR VAR STRING IF VAR EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR STRING
This is an easy version of the problem. The actual problems are different, but the easy version is almost a subtask of the hard version. Note that the constraints and the output format are different. You are given a string $s$ consisting of $n$ lowercase Latin letters. You have to color all its characters one of the two colors (each character to exactly one color, the same letters can be colored the same or different colors, i.e. you can choose exactly one color for each index in $s$). After coloring, you can swap any two neighboring characters of the string that are colored different colors. You can perform such an operation arbitrary (possibly, zero) number of times. The goal is to make the string sorted, i.e. all characters should be in alphabetical order. Your task is to say if it is possible to color the given string so that after coloring it can become sorted by some sequence of swaps. Note that you have to restore only coloring, not the sequence of swaps. -----Input----- The first line of the input contains one integer $n$ ($1 \le n \le 200$) β€” the length of $s$. The second line of the input contains the string $s$ consisting of exactly $n$ lowercase Latin letters. -----Output----- If it is impossible to color the given string so that after coloring it can become sorted by some sequence of swaps, print "NO" (without quotes) in the first line. Otherwise, print "YES" in the first line and any correct coloring in the second line (the coloring is the string consisting of $n$ characters, the $i$-th character should be '0' if the $i$-th character is colored the first color and '1' otherwise). -----Examples----- Input 9 abacbecfd Output YES 001010101 Input 8 aaabbcbb Output YES 01011011 Input 7 abcdedc Output NO Input 5 abcde Output YES 00000
n = int(input()) it = list(input()) it = [(ord(i) - 97) for i in it] lds = [1] pre = [(0) for i in range(26)] pre[it[0]] = 1 for i in range(1, n): lds.append(1) pre[it[i]] = max(pre[it[i]], 1) for j in range(it[i] + 1, 26): pre[it[i]] = max(pre[it[i]], pre[j] + 1) lds[-1] = pre[it[i]] print(max(lds)) print(*lds)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER VAR VAR ASSIGN VAR LIST NUMBER ASSIGN VAR NUMBER VAR FUNC_CALL VAR NUMBER ASSIGN VAR VAR NUMBER NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR VAR VAR FUNC_CALL VAR VAR VAR VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR VAR NUMBER NUMBER ASSIGN VAR VAR VAR FUNC_CALL VAR VAR VAR VAR BIN_OP VAR VAR NUMBER ASSIGN VAR NUMBER VAR VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR
This is an easy version of the problem. The actual problems are different, but the easy version is almost a subtask of the hard version. Note that the constraints and the output format are different. You are given a string $s$ consisting of $n$ lowercase Latin letters. You have to color all its characters one of the two colors (each character to exactly one color, the same letters can be colored the same or different colors, i.e. you can choose exactly one color for each index in $s$). After coloring, you can swap any two neighboring characters of the string that are colored different colors. You can perform such an operation arbitrary (possibly, zero) number of times. The goal is to make the string sorted, i.e. all characters should be in alphabetical order. Your task is to say if it is possible to color the given string so that after coloring it can become sorted by some sequence of swaps. Note that you have to restore only coloring, not the sequence of swaps. -----Input----- The first line of the input contains one integer $n$ ($1 \le n \le 200$) β€” the length of $s$. The second line of the input contains the string $s$ consisting of exactly $n$ lowercase Latin letters. -----Output----- If it is impossible to color the given string so that after coloring it can become sorted by some sequence of swaps, print "NO" (without quotes) in the first line. Otherwise, print "YES" in the first line and any correct coloring in the second line (the coloring is the string consisting of $n$ characters, the $i$-th character should be '0' if the $i$-th character is colored the first color and '1' otherwise). -----Examples----- Input 9 abacbecfd Output YES 001010101 Input 8 aaabbcbb Output YES 01011011 Input 7 abcdedc Output NO Input 5 abcde Output YES 00000
alp = "abcdefghijklmnopqrstuvwxyz" dic = {} for i, s in enumerate(alp): dic[s] = i lis = [-1] * 27 n = int(input()) S = input() ans = [] for i, s in enumerate(S): ind = dic[s] ans.append(max(lis[ind + 1 :]) + 1) lis[ind] = ans[-1] if max(ans) <= 1: print("YES") print("".join(map(str, ans))) else: print("NO")
ASSIGN VAR STRING ASSIGN VAR DICT FOR VAR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR BIN_OP LIST NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR LIST FOR VAR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR BIN_OP VAR NUMBER NUMBER ASSIGN VAR VAR VAR NUMBER IF FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR FUNC_CALL STRING FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR STRING
This is an easy version of the problem. The actual problems are different, but the easy version is almost a subtask of the hard version. Note that the constraints and the output format are different. You are given a string $s$ consisting of $n$ lowercase Latin letters. You have to color all its characters one of the two colors (each character to exactly one color, the same letters can be colored the same or different colors, i.e. you can choose exactly one color for each index in $s$). After coloring, you can swap any two neighboring characters of the string that are colored different colors. You can perform such an operation arbitrary (possibly, zero) number of times. The goal is to make the string sorted, i.e. all characters should be in alphabetical order. Your task is to say if it is possible to color the given string so that after coloring it can become sorted by some sequence of swaps. Note that you have to restore only coloring, not the sequence of swaps. -----Input----- The first line of the input contains one integer $n$ ($1 \le n \le 200$) β€” the length of $s$. The second line of the input contains the string $s$ consisting of exactly $n$ lowercase Latin letters. -----Output----- If it is impossible to color the given string so that after coloring it can become sorted by some sequence of swaps, print "NO" (without quotes) in the first line. Otherwise, print "YES" in the first line and any correct coloring in the second line (the coloring is the string consisting of $n$ characters, the $i$-th character should be '0' if the $i$-th character is colored the first color and '1' otherwise). -----Examples----- Input 9 abacbecfd Output YES 001010101 Input 8 aaabbcbb Output YES 01011011 Input 7 abcdedc Output NO Input 5 abcde Output YES 00000
N = int(input()) s = input() C = [0] * N Sf = [0] risultato = True for n in range(1, N): if s[n] >= s[Sf[-1]]: Sf.append(n) else: C[n] = 1 u = Sf[-1] Sf[-1] = n Sf.append(u) i = 3 while n >= 2 and i <= len(Sf) and s[n] < s[Sf[-i]]: if C[n] == C[Sf[-i]]: risultato = False break else: i = i + 1 if risultato == False: break if risultato: print("YES") r = "" for c in C: r = r + str(c) print(r) else: print("NO")
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR BIN_OP LIST NUMBER VAR ASSIGN VAR LIST NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR IF VAR VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR ASSIGN VAR VAR NUMBER ASSIGN VAR VAR NUMBER ASSIGN VAR NUMBER VAR EXPR FUNC_CALL VAR VAR ASSIGN VAR NUMBER WHILE VAR NUMBER VAR FUNC_CALL VAR VAR VAR VAR VAR VAR VAR IF VAR VAR VAR VAR VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER IF VAR NUMBER IF VAR EXPR FUNC_CALL VAR STRING ASSIGN VAR STRING FOR VAR VAR ASSIGN VAR BIN_OP VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR STRING
This is an easy version of the problem. The actual problems are different, but the easy version is almost a subtask of the hard version. Note that the constraints and the output format are different. You are given a string $s$ consisting of $n$ lowercase Latin letters. You have to color all its characters one of the two colors (each character to exactly one color, the same letters can be colored the same or different colors, i.e. you can choose exactly one color for each index in $s$). After coloring, you can swap any two neighboring characters of the string that are colored different colors. You can perform such an operation arbitrary (possibly, zero) number of times. The goal is to make the string sorted, i.e. all characters should be in alphabetical order. Your task is to say if it is possible to color the given string so that after coloring it can become sorted by some sequence of swaps. Note that you have to restore only coloring, not the sequence of swaps. -----Input----- The first line of the input contains one integer $n$ ($1 \le n \le 200$) β€” the length of $s$. The second line of the input contains the string $s$ consisting of exactly $n$ lowercase Latin letters. -----Output----- If it is impossible to color the given string so that after coloring it can become sorted by some sequence of swaps, print "NO" (without quotes) in the first line. Otherwise, print "YES" in the first line and any correct coloring in the second line (the coloring is the string consisting of $n$ characters, the $i$-th character should be '0' if the $i$-th character is colored the first color and '1' otherwise). -----Examples----- Input 9 abacbecfd Output YES 001010101 Input 8 aaabbcbb Output YES 01011011 Input 7 abcdedc Output NO Input 5 abcde Output YES 00000
from itertools import tee def line(): return map(int, input().split()) def num(): return int(input()) def pairwise(it): a, b = tee(it) next(b, None) return zip(a, b) n = num() s = input() q = sorted((i, j) for j, (c, i) in enumerate(sorted((c, i) for i, c in enumerate(s)))) w = [q[0]] e = [] for i, j in q[1:]: if j > w[-1][1]: w.append((i, j)) else: e.append((i, j)) if all(j1 < j2 for (i1, j1), (i2, j2) in pairwise(e)): print("YES") kw, ke = 0, 0 ans = [] while kw < len(w) or ke < len(e): if kw < len(w) and ke < len(e): if w[kw][0] < e[ke][0]: ans.append("0") kw += 1 else: ans.append("1") ke += 1 elif kw < len(w): ans.append("0") kw += 1 else: ans.append("1") ke += 1 print("".join(ans)) else: print("NO")
FUNC_DEF RETURN FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR FUNC_DEF RETURN FUNC_CALL VAR FUNC_CALL VAR FUNC_DEF ASSIGN VAR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR NONE RETURN FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR VAR VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR VAR VAR FUNC_CALL VAR VAR ASSIGN VAR LIST VAR NUMBER ASSIGN VAR LIST FOR VAR VAR VAR NUMBER IF VAR VAR NUMBER NUMBER EXPR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR VAR IF FUNC_CALL VAR VAR VAR VAR VAR VAR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR STRING ASSIGN VAR VAR NUMBER NUMBER ASSIGN VAR LIST WHILE VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR IF VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR IF VAR VAR NUMBER VAR VAR NUMBER EXPR FUNC_CALL VAR STRING VAR NUMBER EXPR FUNC_CALL VAR STRING VAR NUMBER IF VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR STRING VAR NUMBER EXPR FUNC_CALL VAR STRING VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL STRING VAR EXPR FUNC_CALL VAR STRING
This is an easy version of the problem. The actual problems are different, but the easy version is almost a subtask of the hard version. Note that the constraints and the output format are different. You are given a string $s$ consisting of $n$ lowercase Latin letters. You have to color all its characters one of the two colors (each character to exactly one color, the same letters can be colored the same or different colors, i.e. you can choose exactly one color for each index in $s$). After coloring, you can swap any two neighboring characters of the string that are colored different colors. You can perform such an operation arbitrary (possibly, zero) number of times. The goal is to make the string sorted, i.e. all characters should be in alphabetical order. Your task is to say if it is possible to color the given string so that after coloring it can become sorted by some sequence of swaps. Note that you have to restore only coloring, not the sequence of swaps. -----Input----- The first line of the input contains one integer $n$ ($1 \le n \le 200$) β€” the length of $s$. The second line of the input contains the string $s$ consisting of exactly $n$ lowercase Latin letters. -----Output----- If it is impossible to color the given string so that after coloring it can become sorted by some sequence of swaps, print "NO" (without quotes) in the first line. Otherwise, print "YES" in the first line and any correct coloring in the second line (the coloring is the string consisting of $n$ characters, the $i$-th character should be '0' if the $i$-th character is colored the first color and '1' otherwise). -----Examples----- Input 9 abacbecfd Output YES 001010101 Input 8 aaabbcbb Output YES 01011011 Input 7 abcdedc Output NO Input 5 abcde Output YES 00000
n = int(input()) s = input() b, w = [s[0]], [] ans = "YES" for i in range(1, n): if s[i] >= b[-1]: b.append(s[i]) elif len(w) == 0 or s[i] >= w[-1]: w.append(s[i]) else: ans = "NO" break if ans == "YES": print(ans) j, k = 0, 0 for i in range(n): if j < len(b) and s[i] == b[j]: print("0", end="") j += 1 else: print("1", end="") k += 1 print() else: print(ans)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR VAR LIST VAR NUMBER LIST ASSIGN VAR STRING FOR VAR FUNC_CALL VAR NUMBER VAR IF VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR VAR IF FUNC_CALL VAR VAR NUMBER VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR VAR ASSIGN VAR STRING IF VAR STRING EXPR FUNC_CALL VAR VAR ASSIGN VAR VAR NUMBER NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR FUNC_CALL VAR VAR VAR VAR VAR VAR EXPR FUNC_CALL VAR STRING STRING VAR NUMBER EXPR FUNC_CALL VAR STRING STRING VAR NUMBER EXPR FUNC_CALL VAR EXPR FUNC_CALL VAR VAR
This is an easy version of the problem. The actual problems are different, but the easy version is almost a subtask of the hard version. Note that the constraints and the output format are different. You are given a string $s$ consisting of $n$ lowercase Latin letters. You have to color all its characters one of the two colors (each character to exactly one color, the same letters can be colored the same or different colors, i.e. you can choose exactly one color for each index in $s$). After coloring, you can swap any two neighboring characters of the string that are colored different colors. You can perform such an operation arbitrary (possibly, zero) number of times. The goal is to make the string sorted, i.e. all characters should be in alphabetical order. Your task is to say if it is possible to color the given string so that after coloring it can become sorted by some sequence of swaps. Note that you have to restore only coloring, not the sequence of swaps. -----Input----- The first line of the input contains one integer $n$ ($1 \le n \le 200$) β€” the length of $s$. The second line of the input contains the string $s$ consisting of exactly $n$ lowercase Latin letters. -----Output----- If it is impossible to color the given string so that after coloring it can become sorted by some sequence of swaps, print "NO" (without quotes) in the first line. Otherwise, print "YES" in the first line and any correct coloring in the second line (the coloring is the string consisting of $n$ characters, the $i$-th character should be '0' if the $i$-th character is colored the first color and '1' otherwise). -----Examples----- Input 9 abacbecfd Output YES 001010101 Input 8 aaabbcbb Output YES 01011011 Input 7 abcdedc Output NO Input 5 abcde Output YES 00000
n = int(input()) s = list(input()) adj_list = [[] for i in range(n)] for i in range(n): for j in range(i + 1, n): if s[j] < s[i]: adj_list[i].append(j) adj_list[j].append(i) color = [-1] * n feasible = True for i in range(n): if color[i] == -1: l = [i] color[i] = 0 while len(l) > 0: cur = l.pop() for child in adj_list[cur]: if color[child] == color[cur]: feasible = False elif color[child] == -1: l.append(child) color[child] = 1 - color[cur] if feasible: print("YES") print("".join(map(str, color))) else: print("NO")
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER VAR IF VAR VAR VAR VAR EXPR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR VAR ASSIGN VAR BIN_OP LIST NUMBER VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR VAR NUMBER ASSIGN VAR LIST VAR ASSIGN VAR VAR NUMBER WHILE FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR FOR VAR VAR VAR IF VAR VAR VAR VAR ASSIGN VAR NUMBER IF VAR VAR NUMBER EXPR FUNC_CALL VAR VAR ASSIGN VAR VAR BIN_OP NUMBER VAR VAR IF VAR EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR FUNC_CALL STRING FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR STRING
This is an easy version of the problem. The actual problems are different, but the easy version is almost a subtask of the hard version. Note that the constraints and the output format are different. You are given a string $s$ consisting of $n$ lowercase Latin letters. You have to color all its characters one of the two colors (each character to exactly one color, the same letters can be colored the same or different colors, i.e. you can choose exactly one color for each index in $s$). After coloring, you can swap any two neighboring characters of the string that are colored different colors. You can perform such an operation arbitrary (possibly, zero) number of times. The goal is to make the string sorted, i.e. all characters should be in alphabetical order. Your task is to say if it is possible to color the given string so that after coloring it can become sorted by some sequence of swaps. Note that you have to restore only coloring, not the sequence of swaps. -----Input----- The first line of the input contains one integer $n$ ($1 \le n \le 200$) β€” the length of $s$. The second line of the input contains the string $s$ consisting of exactly $n$ lowercase Latin letters. -----Output----- If it is impossible to color the given string so that after coloring it can become sorted by some sequence of swaps, print "NO" (without quotes) in the first line. Otherwise, print "YES" in the first line and any correct coloring in the second line (the coloring is the string consisting of $n$ characters, the $i$-th character should be '0' if the $i$-th character is colored the first color and '1' otherwise). -----Examples----- Input 9 abacbecfd Output YES 001010101 Input 8 aaabbcbb Output YES 01011011 Input 7 abcdedc Output NO Input 5 abcde Output YES 00000
n = int(input()) s = input() ar = [-1] * n b = True for i in range(n - 1): if ar[i] == -1: ar[i] = 0 for j in range(i + 1, n): if s[i] > s[j]: if ar[j] == -1 and ar[i] == 0: ar[j] = 1 elif ar[j] == -1 and ar[i] == 1: ar[j] = 0 elif ar[j] != -1: if ar[j] == ar[i]: b = False break if b == False: break if ar[n - 1] == -1: ar[n - 1] = 0 if b == False: print("NO") else: print("YES") for j in ar: print(j, end="") print()
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR BIN_OP LIST NUMBER VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER IF VAR VAR NUMBER ASSIGN VAR VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER VAR IF VAR VAR VAR VAR IF VAR VAR NUMBER VAR VAR NUMBER ASSIGN VAR VAR NUMBER IF VAR VAR NUMBER VAR VAR NUMBER ASSIGN VAR VAR NUMBER IF VAR VAR NUMBER IF VAR VAR VAR VAR ASSIGN VAR NUMBER IF VAR NUMBER IF VAR BIN_OP VAR NUMBER NUMBER ASSIGN VAR BIN_OP VAR NUMBER NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR STRING FOR VAR VAR EXPR FUNC_CALL VAR VAR STRING EXPR FUNC_CALL VAR
This is an easy version of the problem. The actual problems are different, but the easy version is almost a subtask of the hard version. Note that the constraints and the output format are different. You are given a string $s$ consisting of $n$ lowercase Latin letters. You have to color all its characters one of the two colors (each character to exactly one color, the same letters can be colored the same or different colors, i.e. you can choose exactly one color for each index in $s$). After coloring, you can swap any two neighboring characters of the string that are colored different colors. You can perform such an operation arbitrary (possibly, zero) number of times. The goal is to make the string sorted, i.e. all characters should be in alphabetical order. Your task is to say if it is possible to color the given string so that after coloring it can become sorted by some sequence of swaps. Note that you have to restore only coloring, not the sequence of swaps. -----Input----- The first line of the input contains one integer $n$ ($1 \le n \le 200$) β€” the length of $s$. The second line of the input contains the string $s$ consisting of exactly $n$ lowercase Latin letters. -----Output----- If it is impossible to color the given string so that after coloring it can become sorted by some sequence of swaps, print "NO" (without quotes) in the first line. Otherwise, print "YES" in the first line and any correct coloring in the second line (the coloring is the string consisting of $n$ characters, the $i$-th character should be '0' if the $i$-th character is colored the first color and '1' otherwise). -----Examples----- Input 9 abacbecfd Output YES 001010101 Input 8 aaabbcbb Output YES 01011011 Input 7 abcdedc Output NO Input 5 abcde Output YES 00000
n = int(input()) s = list(input()) a = [] for i in range(n): a.append([s[i], i]) a.sort() f = ["0"] * n w = -1 tf = False g = [0] * n for i in range(n): if a[i][1] + g[a[i][1]] == i: pass elif g[a[i][1]] == 0: g[a[i][1]] = 1 for j in range(a[i][1] - 1, -1, -1): g[j] += 1 f[a[i][1]] = "1" else: tf = True break if tf: print("NO") else: print("YES") print("".join(f))
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR LIST VAR VAR VAR EXPR FUNC_CALL VAR ASSIGN VAR BIN_OP LIST STRING VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR BIN_OP LIST NUMBER VAR FOR VAR FUNC_CALL VAR VAR IF BIN_OP VAR VAR NUMBER VAR VAR VAR NUMBER VAR IF VAR VAR VAR NUMBER NUMBER ASSIGN VAR VAR VAR NUMBER NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR VAR NUMBER NUMBER NUMBER NUMBER VAR VAR NUMBER ASSIGN VAR VAR VAR NUMBER STRING ASSIGN VAR NUMBER IF VAR EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR FUNC_CALL STRING VAR
This is an easy version of the problem. The actual problems are different, but the easy version is almost a subtask of the hard version. Note that the constraints and the output format are different. You are given a string $s$ consisting of $n$ lowercase Latin letters. You have to color all its characters one of the two colors (each character to exactly one color, the same letters can be colored the same or different colors, i.e. you can choose exactly one color for each index in $s$). After coloring, you can swap any two neighboring characters of the string that are colored different colors. You can perform such an operation arbitrary (possibly, zero) number of times. The goal is to make the string sorted, i.e. all characters should be in alphabetical order. Your task is to say if it is possible to color the given string so that after coloring it can become sorted by some sequence of swaps. Note that you have to restore only coloring, not the sequence of swaps. -----Input----- The first line of the input contains one integer $n$ ($1 \le n \le 200$) β€” the length of $s$. The second line of the input contains the string $s$ consisting of exactly $n$ lowercase Latin letters. -----Output----- If it is impossible to color the given string so that after coloring it can become sorted by some sequence of swaps, print "NO" (without quotes) in the first line. Otherwise, print "YES" in the first line and any correct coloring in the second line (the coloring is the string consisting of $n$ characters, the $i$-th character should be '0' if the $i$-th character is colored the first color and '1' otherwise). -----Examples----- Input 9 abacbecfd Output YES 001010101 Input 8 aaabbcbb Output YES 01011011 Input 7 abcdedc Output NO Input 5 abcde Output YES 00000
n = int(input()) seq = input() l1 = [] l2 = [] possible = True l1.append(seq[0]) i = 0 for i in range(1, n): if seq[i] >= seq[i - 1]: l1.append(seq[i]) else: l2.append(seq[i]) break i += 1 while i < n: if seq[i] >= l1[len(l1) - 1]: l1.append(seq[i]) elif seq[i] >= l2[len(l2) - 1]: l2.append(seq[i]) else: possible = False break i += 1 i = 0 j = 0 if possible: print("YES") for char in seq: if i < len(l1) and char == l1[i]: print("0", end="") i += 1 else: print("1", end="") j += 1 else: print("NO")
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR LIST ASSIGN VAR LIST ASSIGN VAR NUMBER EXPR FUNC_CALL VAR VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR IF VAR VAR VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR VAR VAR NUMBER WHILE VAR VAR IF VAR VAR VAR BIN_OP FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR VAR VAR IF VAR VAR VAR BIN_OP FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR VAR VAR ASSIGN VAR NUMBER VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER IF VAR EXPR FUNC_CALL VAR STRING FOR VAR VAR IF VAR FUNC_CALL VAR VAR VAR VAR VAR EXPR FUNC_CALL VAR STRING STRING VAR NUMBER EXPR FUNC_CALL VAR STRING STRING VAR NUMBER EXPR FUNC_CALL VAR STRING
This is an easy version of the problem. The actual problems are different, but the easy version is almost a subtask of the hard version. Note that the constraints and the output format are different. You are given a string $s$ consisting of $n$ lowercase Latin letters. You have to color all its characters one of the two colors (each character to exactly one color, the same letters can be colored the same or different colors, i.e. you can choose exactly one color for each index in $s$). After coloring, you can swap any two neighboring characters of the string that are colored different colors. You can perform such an operation arbitrary (possibly, zero) number of times. The goal is to make the string sorted, i.e. all characters should be in alphabetical order. Your task is to say if it is possible to color the given string so that after coloring it can become sorted by some sequence of swaps. Note that you have to restore only coloring, not the sequence of swaps. -----Input----- The first line of the input contains one integer $n$ ($1 \le n \le 200$) β€” the length of $s$. The second line of the input contains the string $s$ consisting of exactly $n$ lowercase Latin letters. -----Output----- If it is impossible to color the given string so that after coloring it can become sorted by some sequence of swaps, print "NO" (without quotes) in the first line. Otherwise, print "YES" in the first line and any correct coloring in the second line (the coloring is the string consisting of $n$ characters, the $i$-th character should be '0' if the $i$-th character is colored the first color and '1' otherwise). -----Examples----- Input 9 abacbecfd Output YES 001010101 Input 8 aaabbcbb Output YES 01011011 Input 7 abcdedc Output NO Input 5 abcde Output YES 00000
def dfs(no, par=-1, c=0): nonlocal adj, vis, col, st col[no] = c for i in adj[no]: if vis[i] == 1: if col[i] == col[no]: st = 0 continue else: continue vis[i] = 1 dfs(i, no, 1 - c) n = int(input()) s = list(input()) s = [(ord(i) - 97) for i in s] if sorted(s) == s: print("YES") print("0" * n) else: st = 1 adj = [[] for i in range(n)] for i in range(n): for j in range(i): if s[i] < s[j]: adj[i].append(j) adj[j].append(i) col = [(-1) for i in range(n)] vis = [(0) for i in range(n)] st = 1 for i in range(n): if vis[i] == 0: vis[i] = 1 dfs(i) if st: col = [str(i) for i in col] print("YES") print("".join(col)) else: print("NO")
FUNC_DEF NUMBER NUMBER ASSIGN VAR VAR VAR FOR VAR VAR VAR IF VAR VAR NUMBER IF VAR VAR VAR VAR ASSIGN VAR NUMBER ASSIGN VAR VAR NUMBER EXPR FUNC_CALL VAR VAR VAR BIN_OP NUMBER VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER VAR VAR IF FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR BIN_OP STRING VAR ASSIGN VAR NUMBER ASSIGN VAR LIST VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR VAR IF VAR VAR VAR VAR EXPR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR VAR ASSIGN VAR NUMBER VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR VAR NUMBER ASSIGN VAR VAR NUMBER EXPR FUNC_CALL VAR VAR IF VAR ASSIGN VAR FUNC_CALL VAR VAR VAR VAR EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR FUNC_CALL STRING VAR EXPR FUNC_CALL VAR STRING
This is an easy version of the problem. The actual problems are different, but the easy version is almost a subtask of the hard version. Note that the constraints and the output format are different. You are given a string $s$ consisting of $n$ lowercase Latin letters. You have to color all its characters one of the two colors (each character to exactly one color, the same letters can be colored the same or different colors, i.e. you can choose exactly one color for each index in $s$). After coloring, you can swap any two neighboring characters of the string that are colored different colors. You can perform such an operation arbitrary (possibly, zero) number of times. The goal is to make the string sorted, i.e. all characters should be in alphabetical order. Your task is to say if it is possible to color the given string so that after coloring it can become sorted by some sequence of swaps. Note that you have to restore only coloring, not the sequence of swaps. -----Input----- The first line of the input contains one integer $n$ ($1 \le n \le 200$) β€” the length of $s$. The second line of the input contains the string $s$ consisting of exactly $n$ lowercase Latin letters. -----Output----- If it is impossible to color the given string so that after coloring it can become sorted by some sequence of swaps, print "NO" (without quotes) in the first line. Otherwise, print "YES" in the first line and any correct coloring in the second line (the coloring is the string consisting of $n$ characters, the $i$-th character should be '0' if the $i$-th character is colored the first color and '1' otherwise). -----Examples----- Input 9 abacbecfd Output YES 001010101 Input 8 aaabbcbb Output YES 01011011 Input 7 abcdedc Output NO Input 5 abcde Output YES 00000
n = int(input()) s = input() rama = [] for i in range(n): rama.append(ord(s[i]) - 96) visit = [(1) for i in range(27)] a = [] maxi = 0 for i in range(n): p = visit[rama[i]] a.append(p) maxi = max(maxi, p) for j in range(rama[i]): visit[j] = max(visit[j], p + 1) print(maxi) for i in a: print(i, end=" ")
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR VAR NUMBER ASSIGN VAR NUMBER VAR FUNC_CALL VAR NUMBER ASSIGN VAR LIST ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR VAR EXPR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FOR VAR FUNC_CALL VAR VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR FOR VAR VAR EXPR FUNC_CALL VAR VAR STRING
This is an easy version of the problem. The actual problems are different, but the easy version is almost a subtask of the hard version. Note that the constraints and the output format are different. You are given a string $s$ consisting of $n$ lowercase Latin letters. You have to color all its characters one of the two colors (each character to exactly one color, the same letters can be colored the same or different colors, i.e. you can choose exactly one color for each index in $s$). After coloring, you can swap any two neighboring characters of the string that are colored different colors. You can perform such an operation arbitrary (possibly, zero) number of times. The goal is to make the string sorted, i.e. all characters should be in alphabetical order. Your task is to say if it is possible to color the given string so that after coloring it can become sorted by some sequence of swaps. Note that you have to restore only coloring, not the sequence of swaps. -----Input----- The first line of the input contains one integer $n$ ($1 \le n \le 200$) β€” the length of $s$. The second line of the input contains the string $s$ consisting of exactly $n$ lowercase Latin letters. -----Output----- If it is impossible to color the given string so that after coloring it can become sorted by some sequence of swaps, print "NO" (without quotes) in the first line. Otherwise, print "YES" in the first line and any correct coloring in the second line (the coloring is the string consisting of $n$ characters, the $i$-th character should be '0' if the $i$-th character is colored the first color and '1' otherwise). -----Examples----- Input 9 abacbecfd Output YES 001010101 Input 8 aaabbcbb Output YES 01011011 Input 7 abcdedc Output NO Input 5 abcde Output YES 00000
n = int(input()) s = input() res = "" lst0 = "a" lst1 = "a" ans = "YES" for i in range(n): if s[i] >= lst0: res += "0" lst0 = s[i] elif s[i] >= lst1: res += "1" lst1 = s[i] else: ans = "NO" if ans == "NO": print(ans) else: print("YES") print(res)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR STRING ASSIGN VAR STRING ASSIGN VAR STRING ASSIGN VAR STRING FOR VAR FUNC_CALL VAR VAR IF VAR VAR VAR VAR STRING ASSIGN VAR VAR VAR IF VAR VAR VAR VAR STRING ASSIGN VAR VAR VAR ASSIGN VAR STRING IF VAR STRING EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR VAR
This is an easy version of the problem. The actual problems are different, but the easy version is almost a subtask of the hard version. Note that the constraints and the output format are different. You are given a string $s$ consisting of $n$ lowercase Latin letters. You have to color all its characters one of the two colors (each character to exactly one color, the same letters can be colored the same or different colors, i.e. you can choose exactly one color for each index in $s$). After coloring, you can swap any two neighboring characters of the string that are colored different colors. You can perform such an operation arbitrary (possibly, zero) number of times. The goal is to make the string sorted, i.e. all characters should be in alphabetical order. Your task is to say if it is possible to color the given string so that after coloring it can become sorted by some sequence of swaps. Note that you have to restore only coloring, not the sequence of swaps. -----Input----- The first line of the input contains one integer $n$ ($1 \le n \le 200$) β€” the length of $s$. The second line of the input contains the string $s$ consisting of exactly $n$ lowercase Latin letters. -----Output----- If it is impossible to color the given string so that after coloring it can become sorted by some sequence of swaps, print "NO" (without quotes) in the first line. Otherwise, print "YES" in the first line and any correct coloring in the second line (the coloring is the string consisting of $n$ characters, the $i$-th character should be '0' if the $i$-th character is colored the first color and '1' otherwise). -----Examples----- Input 9 abacbecfd Output YES 001010101 Input 8 aaabbcbb Output YES 01011011 Input 7 abcdedc Output NO Input 5 abcde Output YES 00000
n = int(input()) s = input() fl = True dp = [1] * n for i in range(1, n): for j in range(i): if s[j] > s[i]: dp[i] = max(dp[i], 1 + dp[j]) for i in dp: if i >= 3: fl = False break if not fl: print("NO") else: print("YES") mn1 = s[0] ans = str(0) for i in range(1, n): if s[i] >= mn1: ans += "0" mn1 = s[i] else: ans += "1" print(ans)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP LIST NUMBER VAR FOR VAR FUNC_CALL VAR NUMBER VAR FOR VAR FUNC_CALL VAR VAR IF VAR VAR VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR BIN_OP NUMBER VAR VAR FOR VAR VAR IF VAR NUMBER ASSIGN VAR NUMBER IF VAR EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR STRING ASSIGN VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR IF VAR VAR VAR VAR STRING ASSIGN VAR VAR VAR VAR STRING EXPR FUNC_CALL VAR VAR
This is an easy version of the problem. The actual problems are different, but the easy version is almost a subtask of the hard version. Note that the constraints and the output format are different. You are given a string $s$ consisting of $n$ lowercase Latin letters. You have to color all its characters one of the two colors (each character to exactly one color, the same letters can be colored the same or different colors, i.e. you can choose exactly one color for each index in $s$). After coloring, you can swap any two neighboring characters of the string that are colored different colors. You can perform such an operation arbitrary (possibly, zero) number of times. The goal is to make the string sorted, i.e. all characters should be in alphabetical order. Your task is to say if it is possible to color the given string so that after coloring it can become sorted by some sequence of swaps. Note that you have to restore only coloring, not the sequence of swaps. -----Input----- The first line of the input contains one integer $n$ ($1 \le n \le 200$) β€” the length of $s$. The second line of the input contains the string $s$ consisting of exactly $n$ lowercase Latin letters. -----Output----- If it is impossible to color the given string so that after coloring it can become sorted by some sequence of swaps, print "NO" (without quotes) in the first line. Otherwise, print "YES" in the first line and any correct coloring in the second line (the coloring is the string consisting of $n$ characters, the $i$-th character should be '0' if the $i$-th character is colored the first color and '1' otherwise). -----Examples----- Input 9 abacbecfd Output YES 001010101 Input 8 aaabbcbb Output YES 01011011 Input 7 abcdedc Output NO Input 5 abcde Output YES 00000
import sys a = int(sys.stdin.readline()) s = sys.stdin.readline().strip() s1 = s[0] s2 = "" p = "" f = False for i in s: if i >= s1[-1]: s1 += i p += "0" elif not s2 or i >= s2[-1]: s2 += i p += "1" else: print("NO") f = True break if not f: print("YES") print(p)
IMPORT ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR NUMBER ASSIGN VAR STRING ASSIGN VAR STRING ASSIGN VAR NUMBER FOR VAR VAR IF VAR VAR NUMBER VAR VAR VAR STRING IF VAR VAR VAR NUMBER VAR VAR VAR STRING EXPR FUNC_CALL VAR STRING ASSIGN VAR NUMBER IF VAR EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR VAR
This is an easy version of the problem. The actual problems are different, but the easy version is almost a subtask of the hard version. Note that the constraints and the output format are different. You are given a string $s$ consisting of $n$ lowercase Latin letters. You have to color all its characters one of the two colors (each character to exactly one color, the same letters can be colored the same or different colors, i.e. you can choose exactly one color for each index in $s$). After coloring, you can swap any two neighboring characters of the string that are colored different colors. You can perform such an operation arbitrary (possibly, zero) number of times. The goal is to make the string sorted, i.e. all characters should be in alphabetical order. Your task is to say if it is possible to color the given string so that after coloring it can become sorted by some sequence of swaps. Note that you have to restore only coloring, not the sequence of swaps. -----Input----- The first line of the input contains one integer $n$ ($1 \le n \le 200$) β€” the length of $s$. The second line of the input contains the string $s$ consisting of exactly $n$ lowercase Latin letters. -----Output----- If it is impossible to color the given string so that after coloring it can become sorted by some sequence of swaps, print "NO" (without quotes) in the first line. Otherwise, print "YES" in the first line and any correct coloring in the second line (the coloring is the string consisting of $n$ characters, the $i$-th character should be '0' if the $i$-th character is colored the first color and '1' otherwise). -----Examples----- Input 9 abacbecfd Output YES 001010101 Input 8 aaabbcbb Output YES 01011011 Input 7 abcdedc Output NO Input 5 abcde Output YES 00000
n = int(input()) s = str(input()) p1 = [] p2 = [] ans = [] flag = False for elem in s: if len(p1) == 0: p1.append(elem) ans.append(0) elif ord(p1[-1]) <= ord(elem): p1.append(elem) ans.append(0) elif len(p2) == 0: p2.append(elem) ans.append(1) elif ord(p2[-1]) <= ord(elem): p2.append(elem) ans.append(1) else: flag = True if flag: print("NO") else: print("YES") print("".join(map(str, ans)))
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST ASSIGN VAR LIST ASSIGN VAR LIST ASSIGN VAR NUMBER FOR VAR VAR IF FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR NUMBER IF FUNC_CALL VAR VAR NUMBER FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR NUMBER IF FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR NUMBER IF FUNC_CALL VAR VAR NUMBER FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER IF VAR EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR FUNC_CALL STRING FUNC_CALL VAR VAR VAR
This is an easy version of the problem. The actual problems are different, but the easy version is almost a subtask of the hard version. Note that the constraints and the output format are different. You are given a string $s$ consisting of $n$ lowercase Latin letters. You have to color all its characters one of the two colors (each character to exactly one color, the same letters can be colored the same or different colors, i.e. you can choose exactly one color for each index in $s$). After coloring, you can swap any two neighboring characters of the string that are colored different colors. You can perform such an operation arbitrary (possibly, zero) number of times. The goal is to make the string sorted, i.e. all characters should be in alphabetical order. Your task is to say if it is possible to color the given string so that after coloring it can become sorted by some sequence of swaps. Note that you have to restore only coloring, not the sequence of swaps. -----Input----- The first line of the input contains one integer $n$ ($1 \le n \le 200$) β€” the length of $s$. The second line of the input contains the string $s$ consisting of exactly $n$ lowercase Latin letters. -----Output----- If it is impossible to color the given string so that after coloring it can become sorted by some sequence of swaps, print "NO" (without quotes) in the first line. Otherwise, print "YES" in the first line and any correct coloring in the second line (the coloring is the string consisting of $n$ characters, the $i$-th character should be '0' if the $i$-th character is colored the first color and '1' otherwise). -----Examples----- Input 9 abacbecfd Output YES 001010101 Input 8 aaabbcbb Output YES 01011011 Input 7 abcdedc Output NO Input 5 abcde Output YES 00000
n = int(input()) s = list(str(input())) for i in range(n): s[i] = ord(s[i]) - ord("a") + 1 dp = [[([0] * 27) for i in range(27)] for j in range(n + 1)] dp[0][0][0] = "" p = [[([0] * 27) for i in range(27)] for j in range(n + 1)] for i in range(n): c = s[i] for j in range(27): for k in range(27): if dp[i][j][k] == 0: continue if c >= j: dp[i + 1][c][k] = 1 p[i + 1][c][k] = [[j, k], "0"] if c >= k: dp[i + 1][j][c] = 1 p[i + 1][j][c] = [[j, k], "1"] x = -1 y = -1 for j in range(27): for k in range(27): if dp[-1][j][k] != 0: x = j y = k if x == -1 and y == -1: print("NO") exit() ans = "" for i in reversed(range(n)): prvx = p[i + 1][x][y][0][0] prvy = p[i + 1][x][y][0][1] ans = p[i + 1][x][y][1] + ans x = prvx y = prvy print("YES") print(ans)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR BIN_OP BIN_OP FUNC_CALL VAR VAR VAR FUNC_CALL VAR STRING NUMBER ASSIGN VAR BIN_OP LIST NUMBER NUMBER VAR FUNC_CALL VAR NUMBER VAR FUNC_CALL VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER NUMBER NUMBER STRING ASSIGN VAR BIN_OP LIST NUMBER NUMBER VAR FUNC_CALL VAR NUMBER VAR FUNC_CALL VAR BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR FOR VAR FUNC_CALL VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER IF VAR VAR VAR VAR NUMBER IF VAR VAR ASSIGN VAR BIN_OP VAR NUMBER VAR VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER VAR VAR LIST LIST VAR VAR STRING IF VAR VAR ASSIGN VAR BIN_OP VAR NUMBER VAR VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER VAR VAR LIST LIST VAR VAR STRING ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER IF VAR NUMBER VAR VAR NUMBER ASSIGN VAR VAR ASSIGN VAR VAR IF VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR ASSIGN VAR STRING FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR VAR BIN_OP VAR NUMBER VAR VAR NUMBER NUMBER ASSIGN VAR VAR BIN_OP VAR NUMBER VAR VAR NUMBER NUMBER ASSIGN VAR BIN_OP VAR BIN_OP VAR NUMBER VAR VAR NUMBER VAR ASSIGN VAR VAR ASSIGN VAR VAR EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR VAR
This is an easy version of the problem. The actual problems are different, but the easy version is almost a subtask of the hard version. Note that the constraints and the output format are different. You are given a string $s$ consisting of $n$ lowercase Latin letters. You have to color all its characters one of the two colors (each character to exactly one color, the same letters can be colored the same or different colors, i.e. you can choose exactly one color for each index in $s$). After coloring, you can swap any two neighboring characters of the string that are colored different colors. You can perform such an operation arbitrary (possibly, zero) number of times. The goal is to make the string sorted, i.e. all characters should be in alphabetical order. Your task is to say if it is possible to color the given string so that after coloring it can become sorted by some sequence of swaps. Note that you have to restore only coloring, not the sequence of swaps. -----Input----- The first line of the input contains one integer $n$ ($1 \le n \le 200$) β€” the length of $s$. The second line of the input contains the string $s$ consisting of exactly $n$ lowercase Latin letters. -----Output----- If it is impossible to color the given string so that after coloring it can become sorted by some sequence of swaps, print "NO" (without quotes) in the first line. Otherwise, print "YES" in the first line and any correct coloring in the second line (the coloring is the string consisting of $n$ characters, the $i$-th character should be '0' if the $i$-th character is colored the first color and '1' otherwise). -----Examples----- Input 9 abacbecfd Output YES 001010101 Input 8 aaabbcbb Output YES 01011011 Input 7 abcdedc Output NO Input 5 abcde Output YES 00000
from sys import stdin, stdout t = 1 for _ in range(t): n = int(input()) s = input() ans = [] dict = {} count = 0 for i in s: count += 1 maxi = -1 taken = set() for j in range(97 + 25, 96, -1): if chr(j) in dict and chr(j) > i: taken.add(dict[chr(j)][1]) j = 0 while 1: j += 1 if j not in taken: ans.append(j) dict[i] = count, j break x = len(set(ans)) if x > 2: print("no") continue print("yes") for i in range(n): ans[i] -= 1 ans[i] = str(ans[i]) print("".join(ans))
ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR LIST ASSIGN VAR DICT ASSIGN VAR NUMBER FOR VAR VAR VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR BIN_OP NUMBER NUMBER NUMBER NUMBER IF FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR NUMBER WHILE NUMBER VAR NUMBER IF VAR VAR EXPR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR NUMBER EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR STRING FOR VAR FUNC_CALL VAR VAR VAR VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR FUNC_CALL STRING VAR
This is an easy version of the problem. The actual problems are different, but the easy version is almost a subtask of the hard version. Note that the constraints and the output format are different. You are given a string $s$ consisting of $n$ lowercase Latin letters. You have to color all its characters one of the two colors (each character to exactly one color, the same letters can be colored the same or different colors, i.e. you can choose exactly one color for each index in $s$). After coloring, you can swap any two neighboring characters of the string that are colored different colors. You can perform such an operation arbitrary (possibly, zero) number of times. The goal is to make the string sorted, i.e. all characters should be in alphabetical order. Your task is to say if it is possible to color the given string so that after coloring it can become sorted by some sequence of swaps. Note that you have to restore only coloring, not the sequence of swaps. -----Input----- The first line of the input contains one integer $n$ ($1 \le n \le 200$) β€” the length of $s$. The second line of the input contains the string $s$ consisting of exactly $n$ lowercase Latin letters. -----Output----- If it is impossible to color the given string so that after coloring it can become sorted by some sequence of swaps, print "NO" (without quotes) in the first line. Otherwise, print "YES" in the first line and any correct coloring in the second line (the coloring is the string consisting of $n$ characters, the $i$-th character should be '0' if the $i$-th character is colored the first color and '1' otherwise). -----Examples----- Input 9 abacbecfd Output YES 001010101 Input 8 aaabbcbb Output YES 01011011 Input 7 abcdedc Output NO Input 5 abcde Output YES 00000
import sys def input(): return sys.stdin.readline().strip() def list2d(a, b, c): return [([c] * b) for i in range(a)] def list3d(a, b, c, d): return [[([d] * c) for j in range(b)] for i in range(a)] def list4d(a, b, c, d, e): return [[[([e] * d) for j in range(c)] for j in range(b)] for i in range(a)] def ceil(x, y=1): return int(-(-x // y)) def INT(): return int(input()) def MAP(): return map(int, input().split()) def LIST(N=None): return list(MAP()) if N is None else [INT() for i in range(N)] def Yes(): print("Yes") def No(): print("No") def YES(): print("YES") def NO(): print("NO") INF = 10**18 MOD = 10**9 + 7 def bisearch_min(mn, mx, func): ok = mx ng = mn while ng + 1 < ok: mid = (ok + ng) // 2 if func(mid): ok = mid else: ng = mid return ok def check(m): if m == len(B): return True if B[m][-1][0] <= a: return True else: return False N = INT() A = [(ord(c) - 97) for c in input()] B = [[] for i in range(1)] B[0].append((A[0], 0)) for i, a in enumerate(A[1:], 1): idx = bisearch_min(-1, len(B), check) if idx == len(B): B.append([(a, i)]) else: B[idx].append((a, i)) ans = [0] * N for a, li in enumerate(B): for _, idx in li: ans[idx] = str(a) if len(B) <= 2: YES() print("".join(ans)) else: NO()
IMPORT FUNC_DEF RETURN FUNC_CALL FUNC_CALL VAR FUNC_DEF RETURN BIN_OP LIST VAR VAR VAR FUNC_CALL VAR VAR FUNC_DEF RETURN BIN_OP LIST VAR VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR FUNC_DEF RETURN BIN_OP LIST VAR VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR FUNC_DEF NUMBER RETURN FUNC_CALL VAR BIN_OP VAR VAR FUNC_DEF RETURN FUNC_CALL VAR FUNC_CALL VAR FUNC_DEF RETURN FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR FUNC_DEF NONE RETURN VAR NONE FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR FUNC_DEF EXPR FUNC_CALL VAR STRING FUNC_DEF EXPR FUNC_CALL VAR STRING FUNC_DEF EXPR FUNC_CALL VAR STRING FUNC_DEF EXPR FUNC_CALL VAR STRING ASSIGN VAR BIN_OP NUMBER NUMBER ASSIGN VAR BIN_OP BIN_OP NUMBER NUMBER NUMBER FUNC_DEF ASSIGN VAR VAR ASSIGN VAR VAR WHILE BIN_OP VAR NUMBER VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF FUNC_CALL VAR VAR ASSIGN VAR VAR ASSIGN VAR VAR RETURN VAR FUNC_DEF IF VAR FUNC_CALL VAR VAR RETURN NUMBER IF VAR VAR NUMBER NUMBER VAR RETURN NUMBER RETURN NUMBER ASSIGN VAR FUNC_CALL VAR ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER VAR FUNC_CALL VAR ASSIGN VAR LIST VAR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR NUMBER VAR NUMBER NUMBER FOR VAR VAR FUNC_CALL VAR VAR NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR VAR IF VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR LIST VAR VAR EXPR FUNC_CALL VAR VAR VAR VAR ASSIGN VAR BIN_OP LIST NUMBER VAR FOR VAR VAR FUNC_CALL VAR VAR FOR VAR VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR IF FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR EXPR FUNC_CALL VAR FUNC_CALL STRING VAR EXPR FUNC_CALL VAR
This is an easy version of the problem. The actual problems are different, but the easy version is almost a subtask of the hard version. Note that the constraints and the output format are different. You are given a string $s$ consisting of $n$ lowercase Latin letters. You have to color all its characters one of the two colors (each character to exactly one color, the same letters can be colored the same or different colors, i.e. you can choose exactly one color for each index in $s$). After coloring, you can swap any two neighboring characters of the string that are colored different colors. You can perform such an operation arbitrary (possibly, zero) number of times. The goal is to make the string sorted, i.e. all characters should be in alphabetical order. Your task is to say if it is possible to color the given string so that after coloring it can become sorted by some sequence of swaps. Note that you have to restore only coloring, not the sequence of swaps. -----Input----- The first line of the input contains one integer $n$ ($1 \le n \le 200$) β€” the length of $s$. The second line of the input contains the string $s$ consisting of exactly $n$ lowercase Latin letters. -----Output----- If it is impossible to color the given string so that after coloring it can become sorted by some sequence of swaps, print "NO" (without quotes) in the first line. Otherwise, print "YES" in the first line and any correct coloring in the second line (the coloring is the string consisting of $n$ characters, the $i$-th character should be '0' if the $i$-th character is colored the first color and '1' otherwise). -----Examples----- Input 9 abacbecfd Output YES 001010101 Input 8 aaabbcbb Output YES 01011011 Input 7 abcdedc Output NO Input 5 abcde Output YES 00000
import sys n = int(sys.stdin.readline()) s = list(sys.stdin.readline().strip()) s0, s1 = "", "" color = "" works = True for i in s: if s0 == "" or s0[-1] <= i: s0 += i color += "0" elif s1 == "" or s1[-1] <= i: s1 += i color += "1" else: works = False break if works == True: print("YES") print(color) else: print("NO")
IMPORT ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR STRING STRING ASSIGN VAR STRING ASSIGN VAR NUMBER FOR VAR VAR IF VAR STRING VAR NUMBER VAR VAR VAR VAR STRING IF VAR STRING VAR NUMBER VAR VAR VAR VAR STRING ASSIGN VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR STRING
This is an easy version of the problem. The actual problems are different, but the easy version is almost a subtask of the hard version. Note that the constraints and the output format are different. You are given a string $s$ consisting of $n$ lowercase Latin letters. You have to color all its characters one of the two colors (each character to exactly one color, the same letters can be colored the same or different colors, i.e. you can choose exactly one color for each index in $s$). After coloring, you can swap any two neighboring characters of the string that are colored different colors. You can perform such an operation arbitrary (possibly, zero) number of times. The goal is to make the string sorted, i.e. all characters should be in alphabetical order. Your task is to say if it is possible to color the given string so that after coloring it can become sorted by some sequence of swaps. Note that you have to restore only coloring, not the sequence of swaps. -----Input----- The first line of the input contains one integer $n$ ($1 \le n \le 200$) β€” the length of $s$. The second line of the input contains the string $s$ consisting of exactly $n$ lowercase Latin letters. -----Output----- If it is impossible to color the given string so that after coloring it can become sorted by some sequence of swaps, print "NO" (without quotes) in the first line. Otherwise, print "YES" in the first line and any correct coloring in the second line (the coloring is the string consisting of $n$ characters, the $i$-th character should be '0' if the $i$-th character is colored the first color and '1' otherwise). -----Examples----- Input 9 abacbecfd Output YES 001010101 Input 8 aaabbcbb Output YES 01011011 Input 7 abcdedc Output NO Input 5 abcde Output YES 00000
n = int(input()) s = input() l = [-1] * n flag = True def check(f, l, i, s): for j in range(i - 1, -1, -1): if s[i] < s[j]: if l[j] == -1: l[j] = 1 - f elif l[j] == f: return False return True for i in range(n - 1, -1, -1): if l[i] == 0: for j in range(i - 1, -1, -1): if s[i] < s[j]: if l[j] == -1: l[j] = 1 elif l[j] == 0: flag = False break elif l[i] == 1: for j in range(i - 1, -1, -1): if s[i] < s[j]: if l[j] == -1: l[j] = 0 elif l[j] == 1: flag = False break if flag == False: break else: l[i] = 1 if check(1, l, i, s): l[i] = 1 continue elif check(0, l, i, s): l[i] = 0 continue else: flag = False break if flag == False: print("NO") else: print("YES") for i in l: print(i, end="") print()
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR BIN_OP LIST NUMBER VAR ASSIGN VAR NUMBER FUNC_DEF FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER IF VAR VAR VAR VAR IF VAR VAR NUMBER ASSIGN VAR VAR BIN_OP NUMBER VAR IF VAR VAR VAR RETURN NUMBER RETURN NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER IF VAR VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER IF VAR VAR VAR VAR IF VAR VAR NUMBER ASSIGN VAR VAR NUMBER IF VAR VAR NUMBER ASSIGN VAR NUMBER IF VAR VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER IF VAR VAR VAR VAR IF VAR VAR NUMBER ASSIGN VAR VAR NUMBER IF VAR VAR NUMBER ASSIGN VAR NUMBER IF VAR NUMBER ASSIGN VAR VAR NUMBER IF FUNC_CALL VAR NUMBER VAR VAR VAR ASSIGN VAR VAR NUMBER IF FUNC_CALL VAR NUMBER VAR VAR VAR ASSIGN VAR VAR NUMBER ASSIGN VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR STRING FOR VAR VAR EXPR FUNC_CALL VAR VAR STRING EXPR FUNC_CALL VAR
This is an easy version of the problem. The actual problems are different, but the easy version is almost a subtask of the hard version. Note that the constraints and the output format are different. You are given a string $s$ consisting of $n$ lowercase Latin letters. You have to color all its characters one of the two colors (each character to exactly one color, the same letters can be colored the same or different colors, i.e. you can choose exactly one color for each index in $s$). After coloring, you can swap any two neighboring characters of the string that are colored different colors. You can perform such an operation arbitrary (possibly, zero) number of times. The goal is to make the string sorted, i.e. all characters should be in alphabetical order. Your task is to say if it is possible to color the given string so that after coloring it can become sorted by some sequence of swaps. Note that you have to restore only coloring, not the sequence of swaps. -----Input----- The first line of the input contains one integer $n$ ($1 \le n \le 200$) β€” the length of $s$. The second line of the input contains the string $s$ consisting of exactly $n$ lowercase Latin letters. -----Output----- If it is impossible to color the given string so that after coloring it can become sorted by some sequence of swaps, print "NO" (without quotes) in the first line. Otherwise, print "YES" in the first line and any correct coloring in the second line (the coloring is the string consisting of $n$ characters, the $i$-th character should be '0' if the $i$-th character is colored the first color and '1' otherwise). -----Examples----- Input 9 abacbecfd Output YES 001010101 Input 8 aaabbcbb Output YES 01011011 Input 7 abcdedc Output NO Input 5 abcde Output YES 00000
from sys import stdin, stdout class Solve: def __init__(self): R = stdin.readline W = stdout.write n = int(input()) s = [x for x in R()] s.pop() tmps = [] + s sor = sorted(s) ans = ["0" for i in range(n)] for i in range(n): if s[i] != sor[i]: flg = 0 for j in range(i + 1, n): if s[j] == sor[i]: for k in range(j, i, -1): s[k] = s[k - 1] if k == j: if ans[k] == "1": W("NO") return ans[k] = "1" s[i] = sor[i] break tmpans = [] + ans for i in range(n): if tmps[i] != sor[i]: for j in range(i + 1, n): if tmps[j] == sor[i]: for k in range(j, i - 1, -1): if tmpans[k] != tmpans[k - 1]: tmpans[k], tmpans[k - 1] = tmpans[k - 1], tmpans[k] tmps[k], tmps[k - 1] = tmps[k - 1], tmps[k] else: W("NO") return break W("YES\n") W("".join(ans)) def main(): s = Solve() main()
CLASS_DEF FUNC_DEF ASSIGN VAR VAR ASSIGN VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR VAR FUNC_CALL VAR EXPR FUNC_CALL VAR ASSIGN VAR BIN_OP LIST VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR STRING VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR VAR IF VAR VAR VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER VAR IF VAR VAR VAR VAR FOR VAR FUNC_CALL VAR VAR VAR NUMBER ASSIGN VAR VAR VAR BIN_OP VAR NUMBER IF VAR VAR IF VAR VAR STRING EXPR FUNC_CALL VAR STRING RETURN ASSIGN VAR VAR STRING ASSIGN VAR VAR VAR VAR ASSIGN VAR BIN_OP LIST VAR FOR VAR FUNC_CALL VAR VAR IF VAR VAR VAR VAR FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER VAR IF VAR VAR VAR VAR FOR VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER NUMBER IF VAR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR VAR VAR BIN_OP VAR NUMBER VAR BIN_OP VAR NUMBER VAR VAR ASSIGN VAR VAR VAR BIN_OP VAR NUMBER VAR BIN_OP VAR NUMBER VAR VAR EXPR FUNC_CALL VAR STRING RETURN EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR FUNC_CALL STRING VAR FUNC_DEF ASSIGN VAR FUNC_CALL VAR EXPR FUNC_CALL VAR
This is an easy version of the problem. The actual problems are different, but the easy version is almost a subtask of the hard version. Note that the constraints and the output format are different. You are given a string $s$ consisting of $n$ lowercase Latin letters. You have to color all its characters one of the two colors (each character to exactly one color, the same letters can be colored the same or different colors, i.e. you can choose exactly one color for each index in $s$). After coloring, you can swap any two neighboring characters of the string that are colored different colors. You can perform such an operation arbitrary (possibly, zero) number of times. The goal is to make the string sorted, i.e. all characters should be in alphabetical order. Your task is to say if it is possible to color the given string so that after coloring it can become sorted by some sequence of swaps. Note that you have to restore only coloring, not the sequence of swaps. -----Input----- The first line of the input contains one integer $n$ ($1 \le n \le 200$) β€” the length of $s$. The second line of the input contains the string $s$ consisting of exactly $n$ lowercase Latin letters. -----Output----- If it is impossible to color the given string so that after coloring it can become sorted by some sequence of swaps, print "NO" (without quotes) in the first line. Otherwise, print "YES" in the first line and any correct coloring in the second line (the coloring is the string consisting of $n$ characters, the $i$-th character should be '0' if the $i$-th character is colored the first color and '1' otherwise). -----Examples----- Input 9 abacbecfd Output YES 001010101 Input 8 aaabbcbb Output YES 01011011 Input 7 abcdedc Output NO Input 5 abcde Output YES 00000
n = int(input()) s = input() dp = [(0) for i in range(30)] ans = [(1) for i in range(n)] for i in range(n): tmp = ord(s[i]) - ord("a") for j in range(tmp + 1, 26): ans[i] = max(ans[i], dp[j] + 1) dp[tmp] = ans[i] if max(ans) <= 2: print("YES") for i in ans: print(i - 1, end="") else: print("NO")
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR NUMBER VAR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP FUNC_CALL VAR VAR VAR FUNC_CALL VAR STRING FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR VAR BIN_OP VAR VAR NUMBER ASSIGN VAR VAR VAR VAR IF FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR STRING FOR VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR NUMBER STRING EXPR FUNC_CALL VAR STRING
This is an easy version of the problem. The actual problems are different, but the easy version is almost a subtask of the hard version. Note that the constraints and the output format are different. You are given a string $s$ consisting of $n$ lowercase Latin letters. You have to color all its characters one of the two colors (each character to exactly one color, the same letters can be colored the same or different colors, i.e. you can choose exactly one color for each index in $s$). After coloring, you can swap any two neighboring characters of the string that are colored different colors. You can perform such an operation arbitrary (possibly, zero) number of times. The goal is to make the string sorted, i.e. all characters should be in alphabetical order. Your task is to say if it is possible to color the given string so that after coloring it can become sorted by some sequence of swaps. Note that you have to restore only coloring, not the sequence of swaps. -----Input----- The first line of the input contains one integer $n$ ($1 \le n \le 200$) β€” the length of $s$. The second line of the input contains the string $s$ consisting of exactly $n$ lowercase Latin letters. -----Output----- If it is impossible to color the given string so that after coloring it can become sorted by some sequence of swaps, print "NO" (without quotes) in the first line. Otherwise, print "YES" in the first line and any correct coloring in the second line (the coloring is the string consisting of $n$ characters, the $i$-th character should be '0' if the $i$-th character is colored the first color and '1' otherwise). -----Examples----- Input 9 abacbecfd Output YES 001010101 Input 8 aaabbcbb Output YES 01011011 Input 7 abcdedc Output NO Input 5 abcde Output YES 00000
n = int(input()) k = ["a"] * 26 ans = [] maxColor = 1 c = 0 for symb in input(): for i in range(len(k)): if symb >= k[i]: ans.append(str(i + 1)) if i + 1 > maxColor: maxColor = i + 1 k[i] = symb break c += 1 print(maxColor) print(" ".join(ans))
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR BIN_OP LIST STRING NUMBER ASSIGN VAR LIST ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR BIN_OP VAR NUMBER IF BIN_OP VAR NUMBER VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR FUNC_CALL STRING VAR
This is an easy version of the problem. The actual problems are different, but the easy version is almost a subtask of the hard version. Note that the constraints and the output format are different. You are given a string $s$ consisting of $n$ lowercase Latin letters. You have to color all its characters one of the two colors (each character to exactly one color, the same letters can be colored the same or different colors, i.e. you can choose exactly one color for each index in $s$). After coloring, you can swap any two neighboring characters of the string that are colored different colors. You can perform such an operation arbitrary (possibly, zero) number of times. The goal is to make the string sorted, i.e. all characters should be in alphabetical order. Your task is to say if it is possible to color the given string so that after coloring it can become sorted by some sequence of swaps. Note that you have to restore only coloring, not the sequence of swaps. -----Input----- The first line of the input contains one integer $n$ ($1 \le n \le 200$) β€” the length of $s$. The second line of the input contains the string $s$ consisting of exactly $n$ lowercase Latin letters. -----Output----- If it is impossible to color the given string so that after coloring it can become sorted by some sequence of swaps, print "NO" (without quotes) in the first line. Otherwise, print "YES" in the first line and any correct coloring in the second line (the coloring is the string consisting of $n$ characters, the $i$-th character should be '0' if the $i$-th character is colored the first color and '1' otherwise). -----Examples----- Input 9 abacbecfd Output YES 001010101 Input 8 aaabbcbb Output YES 01011011 Input 7 abcdedc Output NO Input 5 abcde Output YES 00000
n = int(input()) s = input() zero = False one = False mx = s[n - 1] zero = True final = ["0"] o = "" z = s[n - 1] ans = 1 for i in range(n - 2, -1, -1): if s[i] <= z: z = s[i] final.append("0") elif s[i] > z: if o == "": o = s[i] final.append("1") elif s[i] > o: ans = -1 break else: o = s[i] final.append("1") if ans == -1: print("NO") else: print("YES") print("".join(final[::-1]))
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR LIST STRING ASSIGN VAR STRING ASSIGN VAR VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER IF VAR VAR VAR ASSIGN VAR VAR VAR EXPR FUNC_CALL VAR STRING IF VAR VAR VAR IF VAR STRING ASSIGN VAR VAR VAR EXPR FUNC_CALL VAR STRING IF VAR VAR VAR ASSIGN VAR NUMBER ASSIGN VAR VAR VAR EXPR FUNC_CALL VAR STRING IF VAR NUMBER EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR FUNC_CALL STRING VAR NUMBER
This is an easy version of the problem. The actual problems are different, but the easy version is almost a subtask of the hard version. Note that the constraints and the output format are different. You are given a string $s$ consisting of $n$ lowercase Latin letters. You have to color all its characters one of the two colors (each character to exactly one color, the same letters can be colored the same or different colors, i.e. you can choose exactly one color for each index in $s$). After coloring, you can swap any two neighboring characters of the string that are colored different colors. You can perform such an operation arbitrary (possibly, zero) number of times. The goal is to make the string sorted, i.e. all characters should be in alphabetical order. Your task is to say if it is possible to color the given string so that after coloring it can become sorted by some sequence of swaps. Note that you have to restore only coloring, not the sequence of swaps. -----Input----- The first line of the input contains one integer $n$ ($1 \le n \le 200$) β€” the length of $s$. The second line of the input contains the string $s$ consisting of exactly $n$ lowercase Latin letters. -----Output----- If it is impossible to color the given string so that after coloring it can become sorted by some sequence of swaps, print "NO" (without quotes) in the first line. Otherwise, print "YES" in the first line and any correct coloring in the second line (the coloring is the string consisting of $n$ characters, the $i$-th character should be '0' if the $i$-th character is colored the first color and '1' otherwise). -----Examples----- Input 9 abacbecfd Output YES 001010101 Input 8 aaabbcbb Output YES 01011011 Input 7 abcdedc Output NO Input 5 abcde Output YES 00000
def string(n, s): res = "" j = k = "a" for i in range(n): if s[i] >= j: res += "0" j = s[i] elif s[i] >= k: res += "1" k = s[i] else: return "NO" return ["YES", res] n = int(input()) s = input() if string(n, s) == "NO": print("NO") else: print(*string(n, s), sep="\n")
FUNC_DEF ASSIGN VAR STRING ASSIGN VAR VAR STRING FOR VAR FUNC_CALL VAR VAR IF VAR VAR VAR VAR STRING ASSIGN VAR VAR VAR IF VAR VAR VAR VAR STRING ASSIGN VAR VAR VAR RETURN STRING RETURN LIST STRING VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR IF FUNC_CALL VAR VAR VAR STRING EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR STRING
This is an easy version of the problem. The actual problems are different, but the easy version is almost a subtask of the hard version. Note that the constraints and the output format are different. You are given a string $s$ consisting of $n$ lowercase Latin letters. You have to color all its characters one of the two colors (each character to exactly one color, the same letters can be colored the same or different colors, i.e. you can choose exactly one color for each index in $s$). After coloring, you can swap any two neighboring characters of the string that are colored different colors. You can perform such an operation arbitrary (possibly, zero) number of times. The goal is to make the string sorted, i.e. all characters should be in alphabetical order. Your task is to say if it is possible to color the given string so that after coloring it can become sorted by some sequence of swaps. Note that you have to restore only coloring, not the sequence of swaps. -----Input----- The first line of the input contains one integer $n$ ($1 \le n \le 200$) β€” the length of $s$. The second line of the input contains the string $s$ consisting of exactly $n$ lowercase Latin letters. -----Output----- If it is impossible to color the given string so that after coloring it can become sorted by some sequence of swaps, print "NO" (without quotes) in the first line. Otherwise, print "YES" in the first line and any correct coloring in the second line (the coloring is the string consisting of $n$ characters, the $i$-th character should be '0' if the $i$-th character is colored the first color and '1' otherwise). -----Examples----- Input 9 abacbecfd Output YES 001010101 Input 8 aaabbcbb Output YES 01011011 Input 7 abcdedc Output NO Input 5 abcde Output YES 00000
n = int(input()) string = input() l = [] a1 = "a" b1 = "a" t = 0 for i in range(n): if string[i] >= a1: l.append(0) a1 = string[i] elif string[i] >= b1: l.append(1) b1 = string[i] else: t = 1 break if t == 1: print("NO") else: print("YES") for i in range(n): print(l[i], end="")
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR LIST ASSIGN VAR STRING ASSIGN VAR STRING ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR VAR VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR VAR VAR IF VAR VAR VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR VAR VAR ASSIGN VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR STRING FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR VAR STRING
This is an easy version of the problem. The actual problems are different, but the easy version is almost a subtask of the hard version. Note that the constraints and the output format are different. You are given a string $s$ consisting of $n$ lowercase Latin letters. You have to color all its characters one of the two colors (each character to exactly one color, the same letters can be colored the same or different colors, i.e. you can choose exactly one color for each index in $s$). After coloring, you can swap any two neighboring characters of the string that are colored different colors. You can perform such an operation arbitrary (possibly, zero) number of times. The goal is to make the string sorted, i.e. all characters should be in alphabetical order. Your task is to say if it is possible to color the given string so that after coloring it can become sorted by some sequence of swaps. Note that you have to restore only coloring, not the sequence of swaps. -----Input----- The first line of the input contains one integer $n$ ($1 \le n \le 200$) β€” the length of $s$. The second line of the input contains the string $s$ consisting of exactly $n$ lowercase Latin letters. -----Output----- If it is impossible to color the given string so that after coloring it can become sorted by some sequence of swaps, print "NO" (without quotes) in the first line. Otherwise, print "YES" in the first line and any correct coloring in the second line (the coloring is the string consisting of $n$ characters, the $i$-th character should be '0' if the $i$-th character is colored the first color and '1' otherwise). -----Examples----- Input 9 abacbecfd Output YES 001010101 Input 8 aaabbcbb Output YES 01011011 Input 7 abcdedc Output NO Input 5 abcde Output YES 00000
import sys def input(): return sys.stdin.readline().rstrip() def f(char): return ord(char) - ord("a") def slv(): n = int(input()) a = list(input()) a = list(map(f, a)) if n == 1: print("YES") print(0) return ans = [0] * n sorted_ans = [0] * n for i in range(n - 2, -1, -1): v = a[i] if v > a[i + 1]: ans[i] = 1 sorted_ans[i] = 1 for j in range(i, n - 1): if a[j] > a[j + 1]: if sorted_ans[j] == sorted_ans[j + 1]: print("NO") return else: a[j], a[j + 1] = a[j + 1], a[j] sorted_ans[j], sorted_ans[j + 1] = ( sorted_ans[j + 1], sorted_ans[j], ) else: break else: continue print("YES") print("".join(map(str, ans))) return def main(): t = 1 for i in range(t): slv() return main()
IMPORT FUNC_DEF RETURN FUNC_CALL FUNC_CALL VAR FUNC_DEF RETURN BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR STRING FUNC_DEF ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR IF VAR NUMBER EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR NUMBER RETURN ASSIGN VAR BIN_OP LIST NUMBER VAR ASSIGN VAR BIN_OP LIST NUMBER VAR FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER ASSIGN VAR VAR VAR IF VAR VAR BIN_OP VAR NUMBER ASSIGN VAR VAR NUMBER ASSIGN VAR VAR NUMBER FOR VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER IF VAR VAR VAR BIN_OP VAR NUMBER IF VAR VAR VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR STRING RETURN ASSIGN VAR VAR VAR BIN_OP VAR NUMBER VAR BIN_OP VAR NUMBER VAR VAR ASSIGN VAR VAR VAR BIN_OP VAR NUMBER VAR BIN_OP VAR NUMBER VAR VAR EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR FUNC_CALL STRING FUNC_CALL VAR VAR VAR RETURN FUNC_DEF ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR RETURN EXPR FUNC_CALL VAR
This is an easy version of the problem. The actual problems are different, but the easy version is almost a subtask of the hard version. Note that the constraints and the output format are different. You are given a string $s$ consisting of $n$ lowercase Latin letters. You have to color all its characters one of the two colors (each character to exactly one color, the same letters can be colored the same or different colors, i.e. you can choose exactly one color for each index in $s$). After coloring, you can swap any two neighboring characters of the string that are colored different colors. You can perform such an operation arbitrary (possibly, zero) number of times. The goal is to make the string sorted, i.e. all characters should be in alphabetical order. Your task is to say if it is possible to color the given string so that after coloring it can become sorted by some sequence of swaps. Note that you have to restore only coloring, not the sequence of swaps. -----Input----- The first line of the input contains one integer $n$ ($1 \le n \le 200$) β€” the length of $s$. The second line of the input contains the string $s$ consisting of exactly $n$ lowercase Latin letters. -----Output----- If it is impossible to color the given string so that after coloring it can become sorted by some sequence of swaps, print "NO" (without quotes) in the first line. Otherwise, print "YES" in the first line and any correct coloring in the second line (the coloring is the string consisting of $n$ characters, the $i$-th character should be '0' if the $i$-th character is colored the first color and '1' otherwise). -----Examples----- Input 9 abacbecfd Output YES 001010101 Input 8 aaabbcbb Output YES 01011011 Input 7 abcdedc Output NO Input 5 abcde Output YES 00000
t = 1 while t != 0: t -= 1 n = int(input()) s = input() l1, l2 = "a", "a" ans = "" for i in range(n): if s[i] >= l1: l1 = s[i] ans += "0" elif s[i] >= l2: l2 = s[i] ans += "1" else: ans = "NO" break if ans == "NO": print(ans) else: print("YES") print(ans)
ASSIGN VAR NUMBER WHILE VAR NUMBER VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR VAR STRING STRING ASSIGN VAR STRING FOR VAR FUNC_CALL VAR VAR IF VAR VAR VAR ASSIGN VAR VAR VAR VAR STRING IF VAR VAR VAR ASSIGN VAR VAR VAR VAR STRING ASSIGN VAR STRING IF VAR STRING EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR VAR
This is an easy version of the problem. The actual problems are different, but the easy version is almost a subtask of the hard version. Note that the constraints and the output format are different. You are given a string $s$ consisting of $n$ lowercase Latin letters. You have to color all its characters one of the two colors (each character to exactly one color, the same letters can be colored the same or different colors, i.e. you can choose exactly one color for each index in $s$). After coloring, you can swap any two neighboring characters of the string that are colored different colors. You can perform such an operation arbitrary (possibly, zero) number of times. The goal is to make the string sorted, i.e. all characters should be in alphabetical order. Your task is to say if it is possible to color the given string so that after coloring it can become sorted by some sequence of swaps. Note that you have to restore only coloring, not the sequence of swaps. -----Input----- The first line of the input contains one integer $n$ ($1 \le n \le 200$) β€” the length of $s$. The second line of the input contains the string $s$ consisting of exactly $n$ lowercase Latin letters. -----Output----- If it is impossible to color the given string so that after coloring it can become sorted by some sequence of swaps, print "NO" (without quotes) in the first line. Otherwise, print "YES" in the first line and any correct coloring in the second line (the coloring is the string consisting of $n$ characters, the $i$-th character should be '0' if the $i$-th character is colored the first color and '1' otherwise). -----Examples----- Input 9 abacbecfd Output YES 001010101 Input 8 aaabbcbb Output YES 01011011 Input 7 abcdedc Output NO Input 5 abcde Output YES 00000
def main(): n = int(input().strip()) s = input().strip() result = [] a, b = "", "" for c in s: if c >= a: a = c result.append("1") elif c >= b: b = c result.append("0") else: print("NO") return print("YES") print("".join(result)) main()
FUNC_DEF ASSIGN VAR FUNC_CALL VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR LIST ASSIGN VAR VAR STRING STRING FOR VAR VAR IF VAR VAR ASSIGN VAR VAR EXPR FUNC_CALL VAR STRING IF VAR VAR ASSIGN VAR VAR EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR STRING RETURN EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR FUNC_CALL STRING VAR EXPR FUNC_CALL VAR
This is an easy version of the problem. The actual problems are different, but the easy version is almost a subtask of the hard version. Note that the constraints and the output format are different. You are given a string $s$ consisting of $n$ lowercase Latin letters. You have to color all its characters one of the two colors (each character to exactly one color, the same letters can be colored the same or different colors, i.e. you can choose exactly one color for each index in $s$). After coloring, you can swap any two neighboring characters of the string that are colored different colors. You can perform such an operation arbitrary (possibly, zero) number of times. The goal is to make the string sorted, i.e. all characters should be in alphabetical order. Your task is to say if it is possible to color the given string so that after coloring it can become sorted by some sequence of swaps. Note that you have to restore only coloring, not the sequence of swaps. -----Input----- The first line of the input contains one integer $n$ ($1 \le n \le 200$) β€” the length of $s$. The second line of the input contains the string $s$ consisting of exactly $n$ lowercase Latin letters. -----Output----- If it is impossible to color the given string so that after coloring it can become sorted by some sequence of swaps, print "NO" (without quotes) in the first line. Otherwise, print "YES" in the first line and any correct coloring in the second line (the coloring is the string consisting of $n$ characters, the $i$-th character should be '0' if the $i$-th character is colored the first color and '1' otherwise). -----Examples----- Input 9 abacbecfd Output YES 001010101 Input 8 aaabbcbb Output YES 01011011 Input 7 abcdedc Output NO Input 5 abcde Output YES 00000
def main(): n = int(input()) ss = list(zip(input(), range(0, n))) prev = " " res = ["0"] * n for i in range(1, n): if ss[i][0] < ss[i - 1][0]: if res[ss[i - 1][1]] == "0": res[ss[i][1]] = "1" j = i - 1 while j >= 0 and ss[i][0] < ss[j][0]: if res[ss[i][1]] == res[ss[j][1]]: print("NO") return else: j -= 1 ss[j + 1 : i + 1] = [ss[i]] + ss[j + 1 : i] print("YES") print("".join(res)) main()
FUNC_DEF ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR NUMBER VAR ASSIGN VAR STRING ASSIGN VAR BIN_OP LIST STRING VAR FOR VAR FUNC_CALL VAR NUMBER VAR IF VAR VAR NUMBER VAR BIN_OP VAR NUMBER NUMBER IF VAR VAR BIN_OP VAR NUMBER NUMBER STRING ASSIGN VAR VAR VAR NUMBER STRING ASSIGN VAR BIN_OP VAR NUMBER WHILE VAR NUMBER VAR VAR NUMBER VAR VAR NUMBER IF VAR VAR VAR NUMBER VAR VAR VAR NUMBER EXPR FUNC_CALL VAR STRING RETURN VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER BIN_OP VAR NUMBER BIN_OP LIST VAR VAR VAR BIN_OP VAR NUMBER VAR EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR FUNC_CALL STRING VAR EXPR FUNC_CALL VAR
This is an easy version of the problem. The actual problems are different, but the easy version is almost a subtask of the hard version. Note that the constraints and the output format are different. You are given a string $s$ consisting of $n$ lowercase Latin letters. You have to color all its characters one of the two colors (each character to exactly one color, the same letters can be colored the same or different colors, i.e. you can choose exactly one color for each index in $s$). After coloring, you can swap any two neighboring characters of the string that are colored different colors. You can perform such an operation arbitrary (possibly, zero) number of times. The goal is to make the string sorted, i.e. all characters should be in alphabetical order. Your task is to say if it is possible to color the given string so that after coloring it can become sorted by some sequence of swaps. Note that you have to restore only coloring, not the sequence of swaps. -----Input----- The first line of the input contains one integer $n$ ($1 \le n \le 200$) β€” the length of $s$. The second line of the input contains the string $s$ consisting of exactly $n$ lowercase Latin letters. -----Output----- If it is impossible to color the given string so that after coloring it can become sorted by some sequence of swaps, print "NO" (without quotes) in the first line. Otherwise, print "YES" in the first line and any correct coloring in the second line (the coloring is the string consisting of $n$ characters, the $i$-th character should be '0' if the $i$-th character is colored the first color and '1' otherwise). -----Examples----- Input 9 abacbecfd Output YES 001010101 Input 8 aaabbcbb Output YES 01011011 Input 7 abcdedc Output NO Input 5 abcde Output YES 00000
def main(): n = int(input()) s = input() dp = [] ans = [] for i in range(n - 1, -1, -1): letters = [0] * 26 if dp: for j in range(26): letters[j] = dp[-1][j] for j in range(ord(s[i]) - ord("a")): letters[ord(s[i]) - ord("a")] = max( letters[ord(s[i]) - ord("a")], dp[-1][j] + 1 ) letters[ord(s[i]) - ord("a")] = max(letters[ord(s[i]) - ord("a")], 1) else: letters[ord(s[i]) - ord("a")] = 1 ans.append(letters[ord(s[i]) - ord("a")]) dp.append(letters) ans.reverse() max_val = max(dp[-1]) print(max_val) for i in ans: print(i, end=" ") main()
FUNC_DEF ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR LIST ASSIGN VAR LIST FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER ASSIGN VAR BIN_OP LIST NUMBER NUMBER IF VAR FOR VAR FUNC_CALL VAR NUMBER ASSIGN VAR VAR VAR NUMBER VAR FOR VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR VAR FUNC_CALL VAR STRING ASSIGN VAR BIN_OP FUNC_CALL VAR VAR VAR FUNC_CALL VAR STRING FUNC_CALL VAR VAR BIN_OP FUNC_CALL VAR VAR VAR FUNC_CALL VAR STRING BIN_OP VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR VAR VAR FUNC_CALL VAR STRING FUNC_CALL VAR VAR BIN_OP FUNC_CALL VAR VAR VAR FUNC_CALL VAR STRING NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR VAR VAR FUNC_CALL VAR STRING NUMBER EXPR FUNC_CALL VAR VAR BIN_OP FUNC_CALL VAR VAR VAR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR VAR FOR VAR VAR EXPR FUNC_CALL VAR VAR STRING EXPR FUNC_CALL VAR
This is an easy version of the problem. The actual problems are different, but the easy version is almost a subtask of the hard version. Note that the constraints and the output format are different. You are given a string $s$ consisting of $n$ lowercase Latin letters. You have to color all its characters one of the two colors (each character to exactly one color, the same letters can be colored the same or different colors, i.e. you can choose exactly one color for each index in $s$). After coloring, you can swap any two neighboring characters of the string that are colored different colors. You can perform such an operation arbitrary (possibly, zero) number of times. The goal is to make the string sorted, i.e. all characters should be in alphabetical order. Your task is to say if it is possible to color the given string so that after coloring it can become sorted by some sequence of swaps. Note that you have to restore only coloring, not the sequence of swaps. -----Input----- The first line of the input contains one integer $n$ ($1 \le n \le 200$) β€” the length of $s$. The second line of the input contains the string $s$ consisting of exactly $n$ lowercase Latin letters. -----Output----- If it is impossible to color the given string so that after coloring it can become sorted by some sequence of swaps, print "NO" (without quotes) in the first line. Otherwise, print "YES" in the first line and any correct coloring in the second line (the coloring is the string consisting of $n$ characters, the $i$-th character should be '0' if the $i$-th character is colored the first color and '1' otherwise). -----Examples----- Input 9 abacbecfd Output YES 001010101 Input 8 aaabbcbb Output YES 01011011 Input 7 abcdedc Output NO Input 5 abcde Output YES 00000
alpha_small_dict = {chr(i): (i - 97) for i in range(97, 97 + 26)} n = int(input()) s = input() data = [alpha_small_dict[x] for x in s] G = [[] for _ in range(n)] alpha_data = [[] for _ in range(26)] color = [(0) for _ in range(n)] max_color = [(0) for _ in range(26)] for i, x in enumerate(data): now = 0 for y in range(x + 1, 26): now = max(max_color[y], now) now += 1 alpha_data[x].append(i) max_color[x] = max(max_color[x], now) color[i] = now print(max(color)) print(*color)
ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR FUNC_CALL VAR NUMBER BIN_OP NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR VAR VAR VAR VAR ASSIGN VAR LIST VAR FUNC_CALL VAR VAR ASSIGN VAR LIST VAR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER VAR FUNC_CALL VAR NUMBER FOR VAR VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR VAR ASSIGN VAR VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR
This is an easy version of the problem. The actual problems are different, but the easy version is almost a subtask of the hard version. Note that the constraints and the output format are different. You are given a string $s$ consisting of $n$ lowercase Latin letters. You have to color all its characters one of the two colors (each character to exactly one color, the same letters can be colored the same or different colors, i.e. you can choose exactly one color for each index in $s$). After coloring, you can swap any two neighboring characters of the string that are colored different colors. You can perform such an operation arbitrary (possibly, zero) number of times. The goal is to make the string sorted, i.e. all characters should be in alphabetical order. Your task is to say if it is possible to color the given string so that after coloring it can become sorted by some sequence of swaps. Note that you have to restore only coloring, not the sequence of swaps. -----Input----- The first line of the input contains one integer $n$ ($1 \le n \le 200$) β€” the length of $s$. The second line of the input contains the string $s$ consisting of exactly $n$ lowercase Latin letters. -----Output----- If it is impossible to color the given string so that after coloring it can become sorted by some sequence of swaps, print "NO" (without quotes) in the first line. Otherwise, print "YES" in the first line and any correct coloring in the second line (the coloring is the string consisting of $n$ characters, the $i$-th character should be '0' if the $i$-th character is colored the first color and '1' otherwise). -----Examples----- Input 9 abacbecfd Output YES 001010101 Input 8 aaabbcbb Output YES 01011011 Input 7 abcdedc Output NO Input 5 abcde Output YES 00000
a = int(input()) s = input() ans = [0] flag = 0 g1 = [[s[0], 0, 0]] def fit(g1, si, i): r = len(g1) - 1 while r >= 0 and g1[r][0] > s[i] and g1[r][1] == 0: r -= 1 if r < 0: g1.insert(0, [si, 1, i]) return 1 if g1[r][0] > si and g1[r][1] == 1: return 0 g1.insert(r + 1, [si, 1, i]) return 1 for i in range(1, len(s)): if s[i] >= g1[-1][0]: g1.append([s[i], 0, i]) continue if fit(g1, s[i], i): continue else: flag = 1 break if flag == 1: print("NO") exit(0) print("YES") g1.sort(key=lambda x: x[2]) for i in range(len(g1)): print(g1[i][1], end="")
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR LIST NUMBER ASSIGN VAR NUMBER ASSIGN VAR LIST LIST VAR NUMBER NUMBER NUMBER FUNC_DEF ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER WHILE VAR NUMBER VAR VAR NUMBER VAR VAR VAR VAR NUMBER NUMBER VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER LIST VAR NUMBER VAR RETURN NUMBER IF VAR VAR NUMBER VAR VAR VAR NUMBER NUMBER RETURN NUMBER EXPR FUNC_CALL VAR BIN_OP VAR NUMBER LIST VAR NUMBER VAR RETURN NUMBER FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR IF VAR VAR VAR NUMBER NUMBER EXPR FUNC_CALL VAR LIST VAR VAR NUMBER VAR IF FUNC_CALL VAR VAR VAR VAR VAR ASSIGN VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR VAR NUMBER STRING
This is an easy version of the problem. The actual problems are different, but the easy version is almost a subtask of the hard version. Note that the constraints and the output format are different. You are given a string $s$ consisting of $n$ lowercase Latin letters. You have to color all its characters one of the two colors (each character to exactly one color, the same letters can be colored the same or different colors, i.e. you can choose exactly one color for each index in $s$). After coloring, you can swap any two neighboring characters of the string that are colored different colors. You can perform such an operation arbitrary (possibly, zero) number of times. The goal is to make the string sorted, i.e. all characters should be in alphabetical order. Your task is to say if it is possible to color the given string so that after coloring it can become sorted by some sequence of swaps. Note that you have to restore only coloring, not the sequence of swaps. -----Input----- The first line of the input contains one integer $n$ ($1 \le n \le 200$) β€” the length of $s$. The second line of the input contains the string $s$ consisting of exactly $n$ lowercase Latin letters. -----Output----- If it is impossible to color the given string so that after coloring it can become sorted by some sequence of swaps, print "NO" (without quotes) in the first line. Otherwise, print "YES" in the first line and any correct coloring in the second line (the coloring is the string consisting of $n$ characters, the $i$-th character should be '0' if the $i$-th character is colored the first color and '1' otherwise). -----Examples----- Input 9 abacbecfd Output YES 001010101 Input 8 aaabbcbb Output YES 01011011 Input 7 abcdedc Output NO Input 5 abcde Output YES 00000
import sys sys.setrecursionlimit(10**6) int1 = lambda x: int(x) - 1 p2D = lambda x: print(*x, sep="\n") def II(): return int(sys.stdin.readline()) def MI(): return map(int, sys.stdin.readline().split()) def LI(): return list(map(int, sys.stdin.readline().split())) def LLI(rows_number): return [LI() for _ in range(rows_number)] def SI(): return sys.stdin.readline()[:-1] def main(): n = II() s = SI() col = [0] * 27 ans = [0] * n a = ord("a") for i, c in enumerate(s): code = ord(c) - a cur = max(col[code + 1 :]) + 1 ans[i] = cur col[code] = cur print(max(col)) print(*ans) main()
IMPORT EXPR FUNC_CALL VAR BIN_OP NUMBER NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR STRING FUNC_DEF RETURN FUNC_CALL VAR FUNC_CALL VAR FUNC_DEF RETURN FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR FUNC_DEF RETURN FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR FUNC_DEF RETURN FUNC_CALL VAR VAR FUNC_CALL VAR VAR FUNC_DEF RETURN FUNC_CALL VAR NUMBER FUNC_DEF ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR BIN_OP LIST NUMBER NUMBER ASSIGN VAR BIN_OP LIST NUMBER VAR ASSIGN VAR FUNC_CALL VAR STRING FOR VAR VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP FUNC_CALL VAR VAR VAR ASSIGN VAR BIN_OP FUNC_CALL VAR VAR BIN_OP VAR NUMBER NUMBER ASSIGN VAR VAR VAR ASSIGN VAR VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR
This is an easy version of the problem. The actual problems are different, but the easy version is almost a subtask of the hard version. Note that the constraints and the output format are different. You are given a string $s$ consisting of $n$ lowercase Latin letters. You have to color all its characters one of the two colors (each character to exactly one color, the same letters can be colored the same or different colors, i.e. you can choose exactly one color for each index in $s$). After coloring, you can swap any two neighboring characters of the string that are colored different colors. You can perform such an operation arbitrary (possibly, zero) number of times. The goal is to make the string sorted, i.e. all characters should be in alphabetical order. Your task is to say if it is possible to color the given string so that after coloring it can become sorted by some sequence of swaps. Note that you have to restore only coloring, not the sequence of swaps. -----Input----- The first line of the input contains one integer $n$ ($1 \le n \le 200$) β€” the length of $s$. The second line of the input contains the string $s$ consisting of exactly $n$ lowercase Latin letters. -----Output----- If it is impossible to color the given string so that after coloring it can become sorted by some sequence of swaps, print "NO" (without quotes) in the first line. Otherwise, print "YES" in the first line and any correct coloring in the second line (the coloring is the string consisting of $n$ characters, the $i$-th character should be '0' if the $i$-th character is colored the first color and '1' otherwise). -----Examples----- Input 9 abacbecfd Output YES 001010101 Input 8 aaabbcbb Output YES 01011011 Input 7 abcdedc Output NO Input 5 abcde Output YES 00000
n = int(input()) s = input() c = 1 k = [(0) for i in range(26)] code = ord("a") k[0] = 1 ans = [] for i in range(n): letter = ord(s[i]) - code if k[letter] != 0: ans.append(k[letter]) else: for j in range(letter, -1, -1): if k[j] != 0: ans.append(k[j]) k[letter] = k[j] k[j] = 0 break if j == 0: c += 1 k[letter] = c ans.append(c) print(c) print(*ans)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER VAR FUNC_CALL VAR NUMBER ASSIGN VAR FUNC_CALL VAR STRING ASSIGN VAR NUMBER NUMBER ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP FUNC_CALL VAR VAR VAR VAR IF VAR VAR NUMBER EXPR FUNC_CALL VAR VAR VAR FOR VAR FUNC_CALL VAR VAR NUMBER NUMBER IF VAR VAR NUMBER EXPR FUNC_CALL VAR VAR VAR ASSIGN VAR VAR VAR VAR ASSIGN VAR VAR NUMBER IF VAR NUMBER VAR NUMBER ASSIGN VAR VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR
This is an easy version of the problem. The actual problems are different, but the easy version is almost a subtask of the hard version. Note that the constraints and the output format are different. You are given a string $s$ consisting of $n$ lowercase Latin letters. You have to color all its characters one of the two colors (each character to exactly one color, the same letters can be colored the same or different colors, i.e. you can choose exactly one color for each index in $s$). After coloring, you can swap any two neighboring characters of the string that are colored different colors. You can perform such an operation arbitrary (possibly, zero) number of times. The goal is to make the string sorted, i.e. all characters should be in alphabetical order. Your task is to say if it is possible to color the given string so that after coloring it can become sorted by some sequence of swaps. Note that you have to restore only coloring, not the sequence of swaps. -----Input----- The first line of the input contains one integer $n$ ($1 \le n \le 200$) β€” the length of $s$. The second line of the input contains the string $s$ consisting of exactly $n$ lowercase Latin letters. -----Output----- If it is impossible to color the given string so that after coloring it can become sorted by some sequence of swaps, print "NO" (without quotes) in the first line. Otherwise, print "YES" in the first line and any correct coloring in the second line (the coloring is the string consisting of $n$ characters, the $i$-th character should be '0' if the $i$-th character is colored the first color and '1' otherwise). -----Examples----- Input 9 abacbecfd Output YES 001010101 Input 8 aaabbcbb Output YES 01011011 Input 7 abcdedc Output NO Input 5 abcde Output YES 00000
N = int(input()) s = input() A = [] for i in range(N): A.append((s[i], i)) A.sort() B = [0] * N C = [i for i in range(N)] for i in range(N): _, j = A[i] B[i] = j adj = [[] for _ in range(N)] for i in range(N): x = B[i] j = C.index(x) while i < j: y = C[j - 1] adj[x].append(y) adj[y].append(x) C[j], C[j - 1] = C[j - 1], C[j] j -= 1 vst = [-1] * N succ = True for i in range(N): if vst[i] < 0: vst[i] = 0 for j in adj[i]: if vst[j] < 0: vst[j] = 1 - vst[i] elif vst[j] + vst[i] != 1: succ = False if succ: print("YES") print("".join(map(str, vst))) else: print("NO")
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR VAR VAR EXPR FUNC_CALL VAR ASSIGN VAR BIN_OP LIST NUMBER VAR ASSIGN VAR VAR VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR LIST VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR WHILE VAR VAR ASSIGN VAR VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR VAR ASSIGN VAR VAR VAR BIN_OP VAR NUMBER VAR BIN_OP VAR NUMBER VAR VAR VAR NUMBER ASSIGN VAR BIN_OP LIST NUMBER VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR VAR NUMBER ASSIGN VAR VAR NUMBER FOR VAR VAR VAR IF VAR VAR NUMBER ASSIGN VAR VAR BIN_OP NUMBER VAR VAR IF BIN_OP VAR VAR VAR VAR NUMBER ASSIGN VAR NUMBER IF VAR EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR FUNC_CALL STRING FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR STRING
This is an easy version of the problem. The actual problems are different, but the easy version is almost a subtask of the hard version. Note that the constraints and the output format are different. You are given a string $s$ consisting of $n$ lowercase Latin letters. You have to color all its characters one of the two colors (each character to exactly one color, the same letters can be colored the same or different colors, i.e. you can choose exactly one color for each index in $s$). After coloring, you can swap any two neighboring characters of the string that are colored different colors. You can perform such an operation arbitrary (possibly, zero) number of times. The goal is to make the string sorted, i.e. all characters should be in alphabetical order. Your task is to say if it is possible to color the given string so that after coloring it can become sorted by some sequence of swaps. Note that you have to restore only coloring, not the sequence of swaps. -----Input----- The first line of the input contains one integer $n$ ($1 \le n \le 200$) β€” the length of $s$. The second line of the input contains the string $s$ consisting of exactly $n$ lowercase Latin letters. -----Output----- If it is impossible to color the given string so that after coloring it can become sorted by some sequence of swaps, print "NO" (without quotes) in the first line. Otherwise, print "YES" in the first line and any correct coloring in the second line (the coloring is the string consisting of $n$ characters, the $i$-th character should be '0' if the $i$-th character is colored the first color and '1' otherwise). -----Examples----- Input 9 abacbecfd Output YES 001010101 Input 8 aaabbcbb Output YES 01011011 Input 7 abcdedc Output NO Input 5 abcde Output YES 00000
n = int(input()) s = [(ord(i) - ord("a") + 1) for i in input()] clr = ["1"] * n current = 1 x = s[0] last = [27, 1] for i in range(n): if s[i] >= x: x = s[i] last[1] = s[i] else: check = [(s[i] < j) for j in last] if False in check: c = check.index(False) last[c] = s[i] else: current += 1 c = current last.append(s[i]) clr[i] = str(c) print(len(set(clr))) print(" ".join(clr))
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR BIN_OP BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR STRING NUMBER VAR FUNC_CALL VAR ASSIGN VAR BIN_OP LIST STRING VAR ASSIGN VAR NUMBER ASSIGN VAR VAR NUMBER ASSIGN VAR LIST NUMBER NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR NUMBER VAR VAR ASSIGN VAR VAR VAR VAR VAR VAR IF NUMBER VAR ASSIGN VAR FUNC_CALL VAR NUMBER ASSIGN VAR VAR VAR VAR VAR NUMBER ASSIGN VAR VAR EXPR FUNC_CALL VAR VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR FUNC_CALL STRING VAR
This is an easy version of the problem. The actual problems are different, but the easy version is almost a subtask of the hard version. Note that the constraints and the output format are different. You are given a string $s$ consisting of $n$ lowercase Latin letters. You have to color all its characters one of the two colors (each character to exactly one color, the same letters can be colored the same or different colors, i.e. you can choose exactly one color for each index in $s$). After coloring, you can swap any two neighboring characters of the string that are colored different colors. You can perform such an operation arbitrary (possibly, zero) number of times. The goal is to make the string sorted, i.e. all characters should be in alphabetical order. Your task is to say if it is possible to color the given string so that after coloring it can become sorted by some sequence of swaps. Note that you have to restore only coloring, not the sequence of swaps. -----Input----- The first line of the input contains one integer $n$ ($1 \le n \le 200$) β€” the length of $s$. The second line of the input contains the string $s$ consisting of exactly $n$ lowercase Latin letters. -----Output----- If it is impossible to color the given string so that after coloring it can become sorted by some sequence of swaps, print "NO" (without quotes) in the first line. Otherwise, print "YES" in the first line and any correct coloring in the second line (the coloring is the string consisting of $n$ characters, the $i$-th character should be '0' if the $i$-th character is colored the first color and '1' otherwise). -----Examples----- Input 9 abacbecfd Output YES 001010101 Input 8 aaabbcbb Output YES 01011011 Input 7 abcdedc Output NO Input 5 abcde Output YES 00000
def ri(): return int(input()) def rl(): return list(map(int, input().split())) def solve(): n = ri() s = input().strip() out = [-1] * n for i in range(n): if out[i] == -1: out[i] = 0 for j in range(i + 1, n): if s[j] < s[i]: if out[i] == out[j]: print("NO") return elif out[j] == -1: out[j] = 1 - out[i] print("YES") print("".join(map(str, out))) solve()
FUNC_DEF RETURN FUNC_CALL VAR FUNC_CALL VAR FUNC_DEF RETURN FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR FUNC_DEF ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR BIN_OP LIST NUMBER VAR FOR VAR FUNC_CALL VAR VAR IF VAR VAR NUMBER ASSIGN VAR VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER VAR IF VAR VAR VAR VAR IF VAR VAR VAR VAR EXPR FUNC_CALL VAR STRING RETURN IF VAR VAR NUMBER ASSIGN VAR VAR BIN_OP NUMBER VAR VAR EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR FUNC_CALL STRING FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR
This is an easy version of the problem. The actual problems are different, but the easy version is almost a subtask of the hard version. Note that the constraints and the output format are different. You are given a string $s$ consisting of $n$ lowercase Latin letters. You have to color all its characters one of the two colors (each character to exactly one color, the same letters can be colored the same or different colors, i.e. you can choose exactly one color for each index in $s$). After coloring, you can swap any two neighboring characters of the string that are colored different colors. You can perform such an operation arbitrary (possibly, zero) number of times. The goal is to make the string sorted, i.e. all characters should be in alphabetical order. Your task is to say if it is possible to color the given string so that after coloring it can become sorted by some sequence of swaps. Note that you have to restore only coloring, not the sequence of swaps. -----Input----- The first line of the input contains one integer $n$ ($1 \le n \le 200$) β€” the length of $s$. The second line of the input contains the string $s$ consisting of exactly $n$ lowercase Latin letters. -----Output----- If it is impossible to color the given string so that after coloring it can become sorted by some sequence of swaps, print "NO" (without quotes) in the first line. Otherwise, print "YES" in the first line and any correct coloring in the second line (the coloring is the string consisting of $n$ characters, the $i$-th character should be '0' if the $i$-th character is colored the first color and '1' otherwise). -----Examples----- Input 9 abacbecfd Output YES 001010101 Input 8 aaabbcbb Output YES 01011011 Input 7 abcdedc Output NO Input 5 abcde Output YES 00000
import sys def main(): n = int(input()) s = input() arr = list(s) arr.sort() s2 = "".join(arr) def swap(i, j): temp = arr[i] arr[i] = arr[j] arr[j] = temp arr = [] for i, char in enumerate(s): arr.append([char, -1, i]) i = 0 ok = True color = [] while i < n and ok: c1 = arr[i][1] if c1 == -1: c1 = 0 c2 = 1 ^ c1 for j in range(i, n): if s2[i] == arr[j][0]: break if i == j: arr[i][1] = 0 i += 1 continue for k in range(i, j): if arr[k][1] == c2: ok = False break arr[k][1] = c1 if arr[j][1] == c1: ok = False arr[j][1] = c2 for k in range(j, i, -1): swap(k, k - 1) i += 1 if ok: print("YES") color = [(-1) for _ in range(n)] for char, c, i in arr: color[i] = c ans = "".join([str(x) for x in color]) print(ans) else: print("NO") return input = lambda: sys.stdin.readline().rstrip("\r\n") def oneLineArrayPrint(arr): print(" ".join([str(x) for x in arr])) def multiLineArrayPrint(arr): print("\n".join([str(x) for x in arr])) def multiLineArrayOfArraysPrint(arr): print("\n".join([" ".join([str(x) for x in y]) for y in arr])) def readIntArr(): return [int(x) for x in input().split()] def makeArr(*args): assert ( len(args) >= 2 ), "makeArr args should be (default value, dimension 1, dimension 2,..." if len(args) == 2: return [args[0] for _ in range(args[1])] else: return [makeArr(args[0], *args[2:]) for _ in range(args[1])] def queryInteractive(x, y): print("? {} {}".format(x, y)) sys.stdout.flush() return int(input()) def answerInteractive(ans): print("! {}".format(ans)) sys.stdout.flush() inf = float("inf") MOD = 10**9 + 7 for _abc in range(1): main()
IMPORT FUNC_DEF ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR ASSIGN VAR FUNC_CALL STRING VAR FUNC_DEF ASSIGN VAR VAR VAR ASSIGN VAR VAR VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR LIST FOR VAR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR LIST VAR NUMBER VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR LIST WHILE VAR VAR VAR ASSIGN VAR VAR VAR NUMBER IF VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR BIN_OP NUMBER VAR FOR VAR FUNC_CALL VAR VAR VAR IF VAR VAR VAR VAR NUMBER IF VAR VAR ASSIGN VAR VAR NUMBER NUMBER VAR NUMBER FOR VAR FUNC_CALL VAR VAR VAR IF VAR VAR NUMBER VAR ASSIGN VAR NUMBER ASSIGN VAR VAR NUMBER VAR IF VAR VAR NUMBER VAR ASSIGN VAR NUMBER ASSIGN VAR VAR NUMBER VAR FOR VAR FUNC_CALL VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR NUMBER IF VAR EXPR FUNC_CALL VAR STRING ASSIGN VAR NUMBER VAR FUNC_CALL VAR VAR FOR VAR VAR VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR FUNC_CALL STRING FUNC_CALL VAR VAR VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR STRING RETURN ASSIGN VAR FUNC_CALL FUNC_CALL VAR STRING FUNC_DEF EXPR FUNC_CALL VAR FUNC_CALL STRING FUNC_CALL VAR VAR VAR VAR FUNC_DEF EXPR FUNC_CALL VAR FUNC_CALL STRING FUNC_CALL VAR VAR VAR VAR FUNC_DEF EXPR FUNC_CALL VAR FUNC_CALL STRING FUNC_CALL STRING FUNC_CALL VAR VAR VAR VAR VAR VAR FUNC_DEF RETURN FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR FUNC_DEF FUNC_CALL VAR VAR NUMBER STRING IF FUNC_CALL VAR VAR NUMBER RETURN VAR NUMBER VAR FUNC_CALL VAR VAR NUMBER RETURN FUNC_CALL VAR VAR NUMBER VAR NUMBER VAR FUNC_CALL VAR VAR NUMBER FUNC_DEF EXPR FUNC_CALL VAR FUNC_CALL STRING VAR VAR EXPR FUNC_CALL VAR RETURN FUNC_CALL VAR FUNC_CALL VAR FUNC_DEF EXPR FUNC_CALL VAR FUNC_CALL STRING VAR EXPR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR STRING ASSIGN VAR BIN_OP BIN_OP NUMBER NUMBER NUMBER FOR VAR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR
This is an easy version of the problem. The actual problems are different, but the easy version is almost a subtask of the hard version. Note that the constraints and the output format are different. You are given a string $s$ consisting of $n$ lowercase Latin letters. You have to color all its characters one of the two colors (each character to exactly one color, the same letters can be colored the same or different colors, i.e. you can choose exactly one color for each index in $s$). After coloring, you can swap any two neighboring characters of the string that are colored different colors. You can perform such an operation arbitrary (possibly, zero) number of times. The goal is to make the string sorted, i.e. all characters should be in alphabetical order. Your task is to say if it is possible to color the given string so that after coloring it can become sorted by some sequence of swaps. Note that you have to restore only coloring, not the sequence of swaps. -----Input----- The first line of the input contains one integer $n$ ($1 \le n \le 200$) β€” the length of $s$. The second line of the input contains the string $s$ consisting of exactly $n$ lowercase Latin letters. -----Output----- If it is impossible to color the given string so that after coloring it can become sorted by some sequence of swaps, print "NO" (without quotes) in the first line. Otherwise, print "YES" in the first line and any correct coloring in the second line (the coloring is the string consisting of $n$ characters, the $i$-th character should be '0' if the $i$-th character is colored the first color and '1' otherwise). -----Examples----- Input 9 abacbecfd Output YES 001010101 Input 8 aaabbcbb Output YES 01011011 Input 7 abcdedc Output NO Input 5 abcde Output YES 00000
N = int(input()) L = input() S = "0" prev = L[0] last = -1 for i in range(1, N): if L[i] < prev: S += "1" if last != -1: if L[i] < last: print("NO") exit(0) last = L[i] else: S += "0" prev = L[i] print("YES") print(S)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR STRING ASSIGN VAR VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR IF VAR VAR VAR VAR STRING IF VAR NUMBER IF VAR VAR VAR EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR NUMBER ASSIGN VAR VAR VAR VAR STRING ASSIGN VAR VAR VAR EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR VAR
This is an easy version of the problem. The actual problems are different, but the easy version is almost a subtask of the hard version. Note that the constraints and the output format are different. You are given a string $s$ consisting of $n$ lowercase Latin letters. You have to color all its characters one of the two colors (each character to exactly one color, the same letters can be colored the same or different colors, i.e. you can choose exactly one color for each index in $s$). After coloring, you can swap any two neighboring characters of the string that are colored different colors. You can perform such an operation arbitrary (possibly, zero) number of times. The goal is to make the string sorted, i.e. all characters should be in alphabetical order. Your task is to say if it is possible to color the given string so that after coloring it can become sorted by some sequence of swaps. Note that you have to restore only coloring, not the sequence of swaps. -----Input----- The first line of the input contains one integer $n$ ($1 \le n \le 200$) β€” the length of $s$. The second line of the input contains the string $s$ consisting of exactly $n$ lowercase Latin letters. -----Output----- If it is impossible to color the given string so that after coloring it can become sorted by some sequence of swaps, print "NO" (without quotes) in the first line. Otherwise, print "YES" in the first line and any correct coloring in the second line (the coloring is the string consisting of $n$ characters, the $i$-th character should be '0' if the $i$-th character is colored the first color and '1' otherwise). -----Examples----- Input 9 abacbecfd Output YES 001010101 Input 8 aaabbcbb Output YES 01011011 Input 7 abcdedc Output NO Input 5 abcde Output YES 00000
first = [] second = [] N = int(input()) s = input() last_first = s[0] first.append(0) last_second = "" check = -1 for i in range(1, N, 1): if last_first <= s[i]: last_first = s[i] first.append(i) elif last_second == "": last_second = s[i] second.append(i) check = len(first) len_first = len(first) if len_first != N: for i in range(second[0] + 1, N, 1): if check < len_first and i == first[check]: check += 1 continue if last_second <= s[i]: last_second = s[i] second.append(i) len_second = len(second) if len_first + len_second != N: print("NO") else: result = [] i, j = 0, 0 while i < len_first and j < len_second: if first[i] < second[j]: result.append(0) i += 1 else: result.append(1) j += 1 while i < len_first: result.append(0) i += 1 while j < len_second: result.append(1) j += 1 print("YES") for i in range(0, N, 1): print(result[i], end="") print()
ASSIGN VAR LIST ASSIGN VAR LIST ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR STRING ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR NUMBER IF VAR VAR VAR ASSIGN VAR VAR VAR EXPR FUNC_CALL VAR VAR IF VAR STRING ASSIGN VAR VAR VAR EXPR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR IF VAR VAR FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER VAR NUMBER IF VAR VAR VAR VAR VAR VAR NUMBER IF VAR VAR VAR ASSIGN VAR VAR VAR EXPR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR IF BIN_OP VAR VAR VAR EXPR FUNC_CALL VAR STRING ASSIGN VAR LIST ASSIGN VAR VAR NUMBER NUMBER WHILE VAR VAR VAR VAR IF VAR VAR VAR VAR EXPR FUNC_CALL VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR NUMBER VAR NUMBER WHILE VAR VAR EXPR FUNC_CALL VAR NUMBER VAR NUMBER WHILE VAR VAR EXPR FUNC_CALL VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR STRING FOR VAR FUNC_CALL VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR VAR VAR STRING EXPR FUNC_CALL VAR
This is an easy version of the problem. The actual problems are different, but the easy version is almost a subtask of the hard version. Note that the constraints and the output format are different. You are given a string $s$ consisting of $n$ lowercase Latin letters. You have to color all its characters one of the two colors (each character to exactly one color, the same letters can be colored the same or different colors, i.e. you can choose exactly one color for each index in $s$). After coloring, you can swap any two neighboring characters of the string that are colored different colors. You can perform such an operation arbitrary (possibly, zero) number of times. The goal is to make the string sorted, i.e. all characters should be in alphabetical order. Your task is to say if it is possible to color the given string so that after coloring it can become sorted by some sequence of swaps. Note that you have to restore only coloring, not the sequence of swaps. -----Input----- The first line of the input contains one integer $n$ ($1 \le n \le 200$) β€” the length of $s$. The second line of the input contains the string $s$ consisting of exactly $n$ lowercase Latin letters. -----Output----- If it is impossible to color the given string so that after coloring it can become sorted by some sequence of swaps, print "NO" (without quotes) in the first line. Otherwise, print "YES" in the first line and any correct coloring in the second line (the coloring is the string consisting of $n$ characters, the $i$-th character should be '0' if the $i$-th character is colored the first color and '1' otherwise). -----Examples----- Input 9 abacbecfd Output YES 001010101 Input 8 aaabbcbb Output YES 01011011 Input 7 abcdedc Output NO Input 5 abcde Output YES 00000
n = int(input()) s = list(map(ord, input())) b = [(0) for i in range(26)] ans = [] for i in s: for j in range(26): if b[j] <= i: b[j] = i ans.append(j + 1) break print(26 - b.count(0)) print(*ans)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL VAR ASSIGN VAR NUMBER VAR FUNC_CALL VAR NUMBER ASSIGN VAR LIST FOR VAR VAR FOR VAR FUNC_CALL VAR NUMBER IF VAR VAR VAR ASSIGN VAR VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR BIN_OP NUMBER FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR VAR
This is an easy version of the problem. The actual problems are different, but the easy version is almost a subtask of the hard version. Note that the constraints and the output format are different. You are given a string $s$ consisting of $n$ lowercase Latin letters. You have to color all its characters one of the two colors (each character to exactly one color, the same letters can be colored the same or different colors, i.e. you can choose exactly one color for each index in $s$). After coloring, you can swap any two neighboring characters of the string that are colored different colors. You can perform such an operation arbitrary (possibly, zero) number of times. The goal is to make the string sorted, i.e. all characters should be in alphabetical order. Your task is to say if it is possible to color the given string so that after coloring it can become sorted by some sequence of swaps. Note that you have to restore only coloring, not the sequence of swaps. -----Input----- The first line of the input contains one integer $n$ ($1 \le n \le 200$) β€” the length of $s$. The second line of the input contains the string $s$ consisting of exactly $n$ lowercase Latin letters. -----Output----- If it is impossible to color the given string so that after coloring it can become sorted by some sequence of swaps, print "NO" (without quotes) in the first line. Otherwise, print "YES" in the first line and any correct coloring in the second line (the coloring is the string consisting of $n$ characters, the $i$-th character should be '0' if the $i$-th character is colored the first color and '1' otherwise). -----Examples----- Input 9 abacbecfd Output YES 001010101 Input 8 aaabbcbb Output YES 01011011 Input 7 abcdedc Output NO Input 5 abcde Output YES 00000
def main(): n = int(input()) s = input() ret = [(-1) for _ in range(n)] flag = False for i in range(n): se = set() for j in range(i - 1, -1, -1): if s[j] > s[i]: se.add(ret[j]) if len(se) > 1: flag = True break elif len(se) == 1: ret[i] = 1 - list(se)[0] else: ret[i] = 0 if flag: print("NO") else: print("YES") print("".join(list(map(str, ret)))) main()
FUNC_DEF ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR NUMBER VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER IF VAR VAR VAR VAR EXPR FUNC_CALL VAR VAR VAR IF FUNC_CALL VAR VAR NUMBER ASSIGN VAR NUMBER IF FUNC_CALL VAR VAR NUMBER ASSIGN VAR VAR BIN_OP NUMBER FUNC_CALL VAR VAR NUMBER ASSIGN VAR VAR NUMBER IF VAR EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR FUNC_CALL STRING FUNC_CALL VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR
This is an easy version of the problem. The actual problems are different, but the easy version is almost a subtask of the hard version. Note that the constraints and the output format are different. You are given a string $s$ consisting of $n$ lowercase Latin letters. You have to color all its characters one of the two colors (each character to exactly one color, the same letters can be colored the same or different colors, i.e. you can choose exactly one color for each index in $s$). After coloring, you can swap any two neighboring characters of the string that are colored different colors. You can perform such an operation arbitrary (possibly, zero) number of times. The goal is to make the string sorted, i.e. all characters should be in alphabetical order. Your task is to say if it is possible to color the given string so that after coloring it can become sorted by some sequence of swaps. Note that you have to restore only coloring, not the sequence of swaps. -----Input----- The first line of the input contains one integer $n$ ($1 \le n \le 200$) β€” the length of $s$. The second line of the input contains the string $s$ consisting of exactly $n$ lowercase Latin letters. -----Output----- If it is impossible to color the given string so that after coloring it can become sorted by some sequence of swaps, print "NO" (without quotes) in the first line. Otherwise, print "YES" in the first line and any correct coloring in the second line (the coloring is the string consisting of $n$ characters, the $i$-th character should be '0' if the $i$-th character is colored the first color and '1' otherwise). -----Examples----- Input 9 abacbecfd Output YES 001010101 Input 8 aaabbcbb Output YES 01011011 Input 7 abcdedc Output NO Input 5 abcde Output YES 00000
def main(): n = int(input()) ss = list(zip(input(), range(0, n))) res = [1] * n max_colour = 1 nextx = [0] * 26 colours_after = [([True] + [False] * 26) for _ in range(26)] for i in range(n): ch = ord(ss[i][0]) - ord("a") opos = ss[i][1] nx = nextx[ch] col = colours_after[ch].index(False) if col > max_colour: max_colour = col res[opos] = col for c in range(ch): colours_after[c][col] = True for c in range(ch, 26): nextx[c] = min(nextx[c], nx + 1) print(max_colour) print(" ".join(map(str, res))) main()
FUNC_DEF ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR NUMBER VAR ASSIGN VAR BIN_OP LIST NUMBER VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP LIST NUMBER NUMBER ASSIGN VAR BIN_OP LIST NUMBER BIN_OP LIST NUMBER NUMBER VAR FUNC_CALL VAR NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP FUNC_CALL VAR VAR VAR NUMBER FUNC_CALL VAR STRING ASSIGN VAR VAR VAR NUMBER ASSIGN VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR NUMBER IF VAR VAR ASSIGN VAR VAR ASSIGN VAR VAR VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR NUMBER FOR VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR FUNC_CALL STRING FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR
This is an easy version of the problem. The actual problems are different, but the easy version is almost a subtask of the hard version. Note that the constraints and the output format are different. You are given a string $s$ consisting of $n$ lowercase Latin letters. You have to color all its characters one of the two colors (each character to exactly one color, the same letters can be colored the same or different colors, i.e. you can choose exactly one color for each index in $s$). After coloring, you can swap any two neighboring characters of the string that are colored different colors. You can perform such an operation arbitrary (possibly, zero) number of times. The goal is to make the string sorted, i.e. all characters should be in alphabetical order. Your task is to say if it is possible to color the given string so that after coloring it can become sorted by some sequence of swaps. Note that you have to restore only coloring, not the sequence of swaps. -----Input----- The first line of the input contains one integer $n$ ($1 \le n \le 200$) β€” the length of $s$. The second line of the input contains the string $s$ consisting of exactly $n$ lowercase Latin letters. -----Output----- If it is impossible to color the given string so that after coloring it can become sorted by some sequence of swaps, print "NO" (without quotes) in the first line. Otherwise, print "YES" in the first line and any correct coloring in the second line (the coloring is the string consisting of $n$ characters, the $i$-th character should be '0' if the $i$-th character is colored the first color and '1' otherwise). -----Examples----- Input 9 abacbecfd Output YES 001010101 Input 8 aaabbcbb Output YES 01011011 Input 7 abcdedc Output NO Input 5 abcde Output YES 00000
n = int(input()) s = input() g = {} for i in range(len(s)): g[i] = [] for i in range(len(s)): for j in range(i): if s[j] > s[i]: g[i].append(j) g[j].append(i) colored = [False] * len(s) color = [None] * len(s) def brush(v, c): colored[v] = True color[v] = c for n in g[v]: if colored[n]: if color[n] == c: return False elif not brush(n, c ^ 1): return False return True failed = False for i in range(len(s)): if not colored[i]: if not brush(i, 0): failed = True break if failed: print("NO") else: print("YES") print("".join(map(lambda i: "1" if color[i] == 1 else "0", range(len(s)))))
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR DICT FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR VAR LIST FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR VAR IF VAR VAR VAR VAR EXPR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR VAR ASSIGN VAR BIN_OP LIST NUMBER FUNC_CALL VAR VAR ASSIGN VAR BIN_OP LIST NONE FUNC_CALL VAR VAR FUNC_DEF ASSIGN VAR VAR NUMBER ASSIGN VAR VAR VAR FOR VAR VAR VAR IF VAR VAR IF VAR VAR VAR RETURN NUMBER IF FUNC_CALL VAR VAR BIN_OP VAR NUMBER RETURN NUMBER RETURN NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR VAR IF FUNC_CALL VAR VAR NUMBER ASSIGN VAR NUMBER IF VAR EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR FUNC_CALL STRING FUNC_CALL VAR VAR VAR NUMBER STRING STRING FUNC_CALL VAR FUNC_CALL VAR VAR
This is an easy version of the problem. The actual problems are different, but the easy version is almost a subtask of the hard version. Note that the constraints and the output format are different. You are given a string $s$ consisting of $n$ lowercase Latin letters. You have to color all its characters one of the two colors (each character to exactly one color, the same letters can be colored the same or different colors, i.e. you can choose exactly one color for each index in $s$). After coloring, you can swap any two neighboring characters of the string that are colored different colors. You can perform such an operation arbitrary (possibly, zero) number of times. The goal is to make the string sorted, i.e. all characters should be in alphabetical order. Your task is to say if it is possible to color the given string so that after coloring it can become sorted by some sequence of swaps. Note that you have to restore only coloring, not the sequence of swaps. -----Input----- The first line of the input contains one integer $n$ ($1 \le n \le 200$) β€” the length of $s$. The second line of the input contains the string $s$ consisting of exactly $n$ lowercase Latin letters. -----Output----- If it is impossible to color the given string so that after coloring it can become sorted by some sequence of swaps, print "NO" (without quotes) in the first line. Otherwise, print "YES" in the first line and any correct coloring in the second line (the coloring is the string consisting of $n$ characters, the $i$-th character should be '0' if the $i$-th character is colored the first color and '1' otherwise). -----Examples----- Input 9 abacbecfd Output YES 001010101 Input 8 aaabbcbb Output YES 01011011 Input 7 abcdedc Output NO Input 5 abcde Output YES 00000
import sys input = lambda: sys.stdin.readline().strip() n = int(input()) s = input() color = [(0) for i in range(n)] counter = [(0) for i in range(26)] for i in range(n): color[i] = max(counter[ord(s[i]) - ord("a") + 1 :], default=0) + 1 counter[ord(s[i]) - ord("a")] = max(counter[ord(s[i]) - ord("a")], color[i]) print(max(color)) print(*color)
IMPORT ASSIGN VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR NUMBER VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER VAR FUNC_CALL VAR NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR BIN_OP FUNC_CALL VAR VAR BIN_OP BIN_OP FUNC_CALL VAR VAR VAR FUNC_CALL VAR STRING NUMBER NUMBER NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR VAR VAR FUNC_CALL VAR STRING FUNC_CALL VAR VAR BIN_OP FUNC_CALL VAR VAR VAR FUNC_CALL VAR STRING VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR
This is an easy version of the problem. The actual problems are different, but the easy version is almost a subtask of the hard version. Note that the constraints and the output format are different. You are given a string $s$ consisting of $n$ lowercase Latin letters. You have to color all its characters one of the two colors (each character to exactly one color, the same letters can be colored the same or different colors, i.e. you can choose exactly one color for each index in $s$). After coloring, you can swap any two neighboring characters of the string that are colored different colors. You can perform such an operation arbitrary (possibly, zero) number of times. The goal is to make the string sorted, i.e. all characters should be in alphabetical order. Your task is to say if it is possible to color the given string so that after coloring it can become sorted by some sequence of swaps. Note that you have to restore only coloring, not the sequence of swaps. -----Input----- The first line of the input contains one integer $n$ ($1 \le n \le 200$) β€” the length of $s$. The second line of the input contains the string $s$ consisting of exactly $n$ lowercase Latin letters. -----Output----- If it is impossible to color the given string so that after coloring it can become sorted by some sequence of swaps, print "NO" (without quotes) in the first line. Otherwise, print "YES" in the first line and any correct coloring in the second line (the coloring is the string consisting of $n$ characters, the $i$-th character should be '0' if the $i$-th character is colored the first color and '1' otherwise). -----Examples----- Input 9 abacbecfd Output YES 001010101 Input 8 aaabbcbb Output YES 01011011 Input 7 abcdedc Output NO Input 5 abcde Output YES 00000
n = int(input()) s = input() last0 = last1 = "a" ans = "" for i in range(n): if s[i] >= last0: ans += "0" last0 = s[i] elif s[i] >= last1: ans += "1" last1 = s[i] else: print("NO") break if len(ans) == n: print("YES") print(ans)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR VAR STRING ASSIGN VAR STRING FOR VAR FUNC_CALL VAR VAR IF VAR VAR VAR VAR STRING ASSIGN VAR VAR VAR IF VAR VAR VAR VAR STRING ASSIGN VAR VAR VAR EXPR FUNC_CALL VAR STRING IF FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR VAR
This is an easy version of the problem. The actual problems are different, but the easy version is almost a subtask of the hard version. Note that the constraints and the output format are different. You are given a string $s$ consisting of $n$ lowercase Latin letters. You have to color all its characters one of the two colors (each character to exactly one color, the same letters can be colored the same or different colors, i.e. you can choose exactly one color for each index in $s$). After coloring, you can swap any two neighboring characters of the string that are colored different colors. You can perform such an operation arbitrary (possibly, zero) number of times. The goal is to make the string sorted, i.e. all characters should be in alphabetical order. Your task is to say if it is possible to color the given string so that after coloring it can become sorted by some sequence of swaps. Note that you have to restore only coloring, not the sequence of swaps. -----Input----- The first line of the input contains one integer $n$ ($1 \le n \le 200$) β€” the length of $s$. The second line of the input contains the string $s$ consisting of exactly $n$ lowercase Latin letters. -----Output----- If it is impossible to color the given string so that after coloring it can become sorted by some sequence of swaps, print "NO" (without quotes) in the first line. Otherwise, print "YES" in the first line and any correct coloring in the second line (the coloring is the string consisting of $n$ characters, the $i$-th character should be '0' if the $i$-th character is colored the first color and '1' otherwise). -----Examples----- Input 9 abacbecfd Output YES 001010101 Input 8 aaabbcbb Output YES 01011011 Input 7 abcdedc Output NO Input 5 abcde Output YES 00000
from sys import stdin, stdout input = stdin.readline def im(): return map(int, input().split()) def ii(): return int(input()) def il(): return list(map(int, input().split())) def ins(): return input()[:-1] n = ii() st = ins() l = "a" l2 = "a" ans = "" for i in st: if i >= l: l = i ans += "0" elif i >= l2: l2 = i ans += "1" else: print("NO") break if len(ans) == len(st): print("YES") print(ans)
ASSIGN VAR VAR FUNC_DEF RETURN FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR FUNC_DEF RETURN FUNC_CALL VAR FUNC_CALL VAR FUNC_DEF RETURN FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR FUNC_DEF RETURN FUNC_CALL VAR NUMBER ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR STRING ASSIGN VAR STRING ASSIGN VAR STRING FOR VAR VAR IF VAR VAR ASSIGN VAR VAR VAR STRING IF VAR VAR ASSIGN VAR VAR VAR STRING EXPR FUNC_CALL VAR STRING IF FUNC_CALL VAR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR VAR
This is an easy version of the problem. The actual problems are different, but the easy version is almost a subtask of the hard version. Note that the constraints and the output format are different. You are given a string $s$ consisting of $n$ lowercase Latin letters. You have to color all its characters one of the two colors (each character to exactly one color, the same letters can be colored the same or different colors, i.e. you can choose exactly one color for each index in $s$). After coloring, you can swap any two neighboring characters of the string that are colored different colors. You can perform such an operation arbitrary (possibly, zero) number of times. The goal is to make the string sorted, i.e. all characters should be in alphabetical order. Your task is to say if it is possible to color the given string so that after coloring it can become sorted by some sequence of swaps. Note that you have to restore only coloring, not the sequence of swaps. -----Input----- The first line of the input contains one integer $n$ ($1 \le n \le 200$) β€” the length of $s$. The second line of the input contains the string $s$ consisting of exactly $n$ lowercase Latin letters. -----Output----- If it is impossible to color the given string so that after coloring it can become sorted by some sequence of swaps, print "NO" (without quotes) in the first line. Otherwise, print "YES" in the first line and any correct coloring in the second line (the coloring is the string consisting of $n$ characters, the $i$-th character should be '0' if the $i$-th character is colored the first color and '1' otherwise). -----Examples----- Input 9 abacbecfd Output YES 001010101 Input 8 aaabbcbb Output YES 01011011 Input 7 abcdedc Output NO Input 5 abcde Output YES 00000
n = int(input()) s = input() r = "" f = "a" se = "a" bool = True for i in range(n): if s[i] >= f: r = r + "0" f = s[i] elif s[i] >= se: r = r + "1" se = s[i] else: bool = False print("NO") break if bool: print("YES") print(r)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR STRING ASSIGN VAR STRING ASSIGN VAR STRING ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR VAR VAR ASSIGN VAR BIN_OP VAR STRING ASSIGN VAR VAR VAR IF VAR VAR VAR ASSIGN VAR BIN_OP VAR STRING ASSIGN VAR VAR VAR ASSIGN VAR NUMBER EXPR FUNC_CALL VAR STRING IF VAR EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR VAR
This is an easy version of the problem. The actual problems are different, but the easy version is almost a subtask of the hard version. Note that the constraints and the output format are different. You are given a string $s$ consisting of $n$ lowercase Latin letters. You have to color all its characters one of the two colors (each character to exactly one color, the same letters can be colored the same or different colors, i.e. you can choose exactly one color for each index in $s$). After coloring, you can swap any two neighboring characters of the string that are colored different colors. You can perform such an operation arbitrary (possibly, zero) number of times. The goal is to make the string sorted, i.e. all characters should be in alphabetical order. Your task is to say if it is possible to color the given string so that after coloring it can become sorted by some sequence of swaps. Note that you have to restore only coloring, not the sequence of swaps. -----Input----- The first line of the input contains one integer $n$ ($1 \le n \le 200$) β€” the length of $s$. The second line of the input contains the string $s$ consisting of exactly $n$ lowercase Latin letters. -----Output----- If it is impossible to color the given string so that after coloring it can become sorted by some sequence of swaps, print "NO" (without quotes) in the first line. Otherwise, print "YES" in the first line and any correct coloring in the second line (the coloring is the string consisting of $n$ characters, the $i$-th character should be '0' if the $i$-th character is colored the first color and '1' otherwise). -----Examples----- Input 9 abacbecfd Output YES 001010101 Input 8 aaabbcbb Output YES 01011011 Input 7 abcdedc Output NO Input 5 abcde Output YES 00000
def solve(): for i in range(n): mine = i for j in range(i, n): if s[j] < s[mine]: mine = j if mine != i: color = -1 for k in range(i, mine): if ans[ind[k]] != -1: if color != -1 and color != ans[ind[k]]: return False color = ans[ind[k]] if color == -1: ans[ind[mine]] = 0 color = 1 elif ans[ind[mine]] == -1: ans[ind[mine]] = 1 - color else: if ans[ind[mine]] != 1 - color: return False ans[ind[mine]] = 1 - color for k in range(i, mine): ans[ind[k]] = color tmp = s[mine] tmpind = ind[mine] for k in range(mine, i, -1): s[k] = s[k - 1] ind[k] = ind[k - 1] s[i] = tmp ind[i] = tmpind return True n = int(input()) s = list(input()) ans = [-1] * n ind = list(range(n)) if solve(): print("YES") for i in range(n): if ans[i] == -1: ans[i] = 0 for i in ans: print(i, end="") print() else: print("NO")
FUNC_DEF FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FOR VAR FUNC_CALL VAR VAR VAR IF VAR VAR VAR VAR ASSIGN VAR VAR IF VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR VAR IF VAR VAR VAR NUMBER IF VAR NUMBER VAR VAR VAR VAR RETURN NUMBER ASSIGN VAR VAR VAR VAR IF VAR NUMBER ASSIGN VAR VAR VAR NUMBER ASSIGN VAR NUMBER IF VAR VAR VAR NUMBER ASSIGN VAR VAR VAR BIN_OP NUMBER VAR IF VAR VAR VAR BIN_OP NUMBER VAR RETURN NUMBER ASSIGN VAR VAR VAR BIN_OP NUMBER VAR FOR VAR FUNC_CALL VAR VAR VAR ASSIGN VAR VAR VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR VAR VAR FOR VAR FUNC_CALL VAR VAR VAR NUMBER ASSIGN VAR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR VAR VAR ASSIGN VAR VAR VAR RETURN NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR BIN_OP LIST NUMBER VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF FUNC_CALL VAR EXPR FUNC_CALL VAR STRING FOR VAR FUNC_CALL VAR VAR IF VAR VAR NUMBER ASSIGN VAR VAR NUMBER FOR VAR VAR EXPR FUNC_CALL VAR VAR STRING EXPR FUNC_CALL VAR EXPR FUNC_CALL VAR STRING
This is an easy version of the problem. The actual problems are different, but the easy version is almost a subtask of the hard version. Note that the constraints and the output format are different. You are given a string $s$ consisting of $n$ lowercase Latin letters. You have to color all its characters one of the two colors (each character to exactly one color, the same letters can be colored the same or different colors, i.e. you can choose exactly one color for each index in $s$). After coloring, you can swap any two neighboring characters of the string that are colored different colors. You can perform such an operation arbitrary (possibly, zero) number of times. The goal is to make the string sorted, i.e. all characters should be in alphabetical order. Your task is to say if it is possible to color the given string so that after coloring it can become sorted by some sequence of swaps. Note that you have to restore only coloring, not the sequence of swaps. -----Input----- The first line of the input contains one integer $n$ ($1 \le n \le 200$) β€” the length of $s$. The second line of the input contains the string $s$ consisting of exactly $n$ lowercase Latin letters. -----Output----- If it is impossible to color the given string so that after coloring it can become sorted by some sequence of swaps, print "NO" (without quotes) in the first line. Otherwise, print "YES" in the first line and any correct coloring in the second line (the coloring is the string consisting of $n$ characters, the $i$-th character should be '0' if the $i$-th character is colored the first color and '1' otherwise). -----Examples----- Input 9 abacbecfd Output YES 001010101 Input 8 aaabbcbb Output YES 01011011 Input 7 abcdedc Output NO Input 5 abcde Output YES 00000
n = int(input()) s = str(input()) tre = [[] for i in range(n)] clr = [(-1) for i in range(n)] for i in range(n): for j in range(0, i): if s[j] > s[i]: tre[i].append(j) for j in range(i + 1, n): if s[j] < s[i]: tre[i].append(j) t = True for i in range(n): if clr[i] != -1: continue s = [i] clr[i] = 0 while s and t: x = s.pop() i = clr[x] for j in tre[x]: if clr[j] == -1: clr[j] = i ^ 1 s.append(j) elif clr[j] == i: t = False break if t: print("YES") print("".join([str(i) for i in clr])) else: print("NO")
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR NUMBER VAR IF VAR VAR VAR VAR EXPR FUNC_CALL VAR VAR VAR FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER VAR IF VAR VAR VAR VAR EXPR FUNC_CALL VAR VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR VAR NUMBER ASSIGN VAR LIST VAR ASSIGN VAR VAR NUMBER WHILE VAR VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR VAR VAR FOR VAR VAR VAR IF VAR VAR NUMBER ASSIGN VAR VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR IF VAR VAR VAR ASSIGN VAR NUMBER IF VAR EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR FUNC_CALL STRING FUNC_CALL VAR VAR VAR VAR EXPR FUNC_CALL VAR STRING
This is an easy version of the problem. The actual problems are different, but the easy version is almost a subtask of the hard version. Note that the constraints and the output format are different. You are given a string $s$ consisting of $n$ lowercase Latin letters. You have to color all its characters one of the two colors (each character to exactly one color, the same letters can be colored the same or different colors, i.e. you can choose exactly one color for each index in $s$). After coloring, you can swap any two neighboring characters of the string that are colored different colors. You can perform such an operation arbitrary (possibly, zero) number of times. The goal is to make the string sorted, i.e. all characters should be in alphabetical order. Your task is to say if it is possible to color the given string so that after coloring it can become sorted by some sequence of swaps. Note that you have to restore only coloring, not the sequence of swaps. -----Input----- The first line of the input contains one integer $n$ ($1 \le n \le 200$) β€” the length of $s$. The second line of the input contains the string $s$ consisting of exactly $n$ lowercase Latin letters. -----Output----- If it is impossible to color the given string so that after coloring it can become sorted by some sequence of swaps, print "NO" (without quotes) in the first line. Otherwise, print "YES" in the first line and any correct coloring in the second line (the coloring is the string consisting of $n$ characters, the $i$-th character should be '0' if the $i$-th character is colored the first color and '1' otherwise). -----Examples----- Input 9 abacbecfd Output YES 001010101 Input 8 aaabbcbb Output YES 01011011 Input 7 abcdedc Output NO Input 5 abcde Output YES 00000
n = int(input()) a = list(map(lambda c: ord(c) - 97, input())) color = [0] * 26 ans = [0] * n last = -1 for i, c in enumerate(a): col = 0 if last <= c: last = c if color[c] == 0: col = 1 else: col = color[c] & -color[c] else: col = 1 for j in range(last, c, -1): while col & color[j]: col <<= 1 color[c] |= col ans[i] = len(bin(col)) - 2 print(max(ans)) print(*ans)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER FUNC_CALL VAR ASSIGN VAR BIN_OP LIST NUMBER NUMBER ASSIGN VAR BIN_OP LIST NUMBER VAR ASSIGN VAR NUMBER FOR VAR VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER IF VAR VAR ASSIGN VAR VAR IF VAR VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR BIN_OP VAR VAR VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR VAR NUMBER WHILE BIN_OP VAR VAR VAR VAR NUMBER VAR VAR VAR ASSIGN VAR VAR BIN_OP FUNC_CALL VAR FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR
This is an easy version of the problem. The actual problems are different, but the easy version is almost a subtask of the hard version. Note that the constraints and the output format are different. You are given a string $s$ consisting of $n$ lowercase Latin letters. You have to color all its characters one of the two colors (each character to exactly one color, the same letters can be colored the same or different colors, i.e. you can choose exactly one color for each index in $s$). After coloring, you can swap any two neighboring characters of the string that are colored different colors. You can perform such an operation arbitrary (possibly, zero) number of times. The goal is to make the string sorted, i.e. all characters should be in alphabetical order. Your task is to say if it is possible to color the given string so that after coloring it can become sorted by some sequence of swaps. Note that you have to restore only coloring, not the sequence of swaps. -----Input----- The first line of the input contains one integer $n$ ($1 \le n \le 200$) β€” the length of $s$. The second line of the input contains the string $s$ consisting of exactly $n$ lowercase Latin letters. -----Output----- If it is impossible to color the given string so that after coloring it can become sorted by some sequence of swaps, print "NO" (without quotes) in the first line. Otherwise, print "YES" in the first line and any correct coloring in the second line (the coloring is the string consisting of $n$ characters, the $i$-th character should be '0' if the $i$-th character is colored the first color and '1' otherwise). -----Examples----- Input 9 abacbecfd Output YES 001010101 Input 8 aaabbcbb Output YES 01011011 Input 7 abcdedc Output NO Input 5 abcde Output YES 00000
n = int(input()) s = input() a = [-1] * 26 h = [-1] * n ch = 1 for i in range(len(s)): f = s[i] y = ord(f) - 97 st = set() for j in range(y + 1, 26): if a[j] != -1: st.add(a[j]) if 2 in st: ch = 0 break if len(st) == 0: h[i] = 0 a[y] = 0 elif len(st) == 1: yt = -1 if 1 in st: yt = 1 else: yt = 0 h[i] = 1 - yt if a[y] == -1 or a[y] == 1 - yt: a[y] = 1 - yt else: a[y] = 2 else: ch = 0 break if ch == 1: print("YES") for i in h: print(i, end="") print() else: print("NO")
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR BIN_OP LIST NUMBER NUMBER ASSIGN VAR BIN_OP LIST NUMBER VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER IF VAR VAR NUMBER EXPR FUNC_CALL VAR VAR VAR IF NUMBER VAR ASSIGN VAR NUMBER IF FUNC_CALL VAR VAR NUMBER ASSIGN VAR VAR NUMBER ASSIGN VAR VAR NUMBER IF FUNC_CALL VAR VAR NUMBER ASSIGN VAR NUMBER IF NUMBER VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR VAR BIN_OP NUMBER VAR IF VAR VAR NUMBER VAR VAR BIN_OP NUMBER VAR ASSIGN VAR VAR BIN_OP NUMBER VAR ASSIGN VAR VAR NUMBER ASSIGN VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR STRING FOR VAR VAR EXPR FUNC_CALL VAR VAR STRING EXPR FUNC_CALL VAR EXPR FUNC_CALL VAR STRING
This is an easy version of the problem. The actual problems are different, but the easy version is almost a subtask of the hard version. Note that the constraints and the output format are different. You are given a string $s$ consisting of $n$ lowercase Latin letters. You have to color all its characters one of the two colors (each character to exactly one color, the same letters can be colored the same or different colors, i.e. you can choose exactly one color for each index in $s$). After coloring, you can swap any two neighboring characters of the string that are colored different colors. You can perform such an operation arbitrary (possibly, zero) number of times. The goal is to make the string sorted, i.e. all characters should be in alphabetical order. Your task is to say if it is possible to color the given string so that after coloring it can become sorted by some sequence of swaps. Note that you have to restore only coloring, not the sequence of swaps. -----Input----- The first line of the input contains one integer $n$ ($1 \le n \le 200$) β€” the length of $s$. The second line of the input contains the string $s$ consisting of exactly $n$ lowercase Latin letters. -----Output----- If it is impossible to color the given string so that after coloring it can become sorted by some sequence of swaps, print "NO" (without quotes) in the first line. Otherwise, print "YES" in the first line and any correct coloring in the second line (the coloring is the string consisting of $n$ characters, the $i$-th character should be '0' if the $i$-th character is colored the first color and '1' otherwise). -----Examples----- Input 9 abacbecfd Output YES 001010101 Input 8 aaabbcbb Output YES 01011011 Input 7 abcdedc Output NO Input 5 abcde Output YES 00000
n = int(input()) s = input() c1, c2, res = "a", "a", [""] * n for i in range(n): if s[i] >= c1: res[i] = "0" c1 = s[i] elif s[i] >= c2: res[i] = "1" c2 = s[i] else: print("NO") break else: print("YES") print("".join(res))
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR VAR VAR STRING STRING BIN_OP LIST STRING VAR FOR VAR FUNC_CALL VAR VAR IF VAR VAR VAR ASSIGN VAR VAR STRING ASSIGN VAR VAR VAR IF VAR VAR VAR ASSIGN VAR VAR STRING ASSIGN VAR VAR VAR EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR FUNC_CALL STRING VAR
This is an easy version of the problem. The actual problems are different, but the easy version is almost a subtask of the hard version. Note that the constraints and the output format are different. You are given a string $s$ consisting of $n$ lowercase Latin letters. You have to color all its characters one of the two colors (each character to exactly one color, the same letters can be colored the same or different colors, i.e. you can choose exactly one color for each index in $s$). After coloring, you can swap any two neighboring characters of the string that are colored different colors. You can perform such an operation arbitrary (possibly, zero) number of times. The goal is to make the string sorted, i.e. all characters should be in alphabetical order. Your task is to say if it is possible to color the given string so that after coloring it can become sorted by some sequence of swaps. Note that you have to restore only coloring, not the sequence of swaps. -----Input----- The first line of the input contains one integer $n$ ($1 \le n \le 200$) β€” the length of $s$. The second line of the input contains the string $s$ consisting of exactly $n$ lowercase Latin letters. -----Output----- If it is impossible to color the given string so that after coloring it can become sorted by some sequence of swaps, print "NO" (without quotes) in the first line. Otherwise, print "YES" in the first line and any correct coloring in the second line (the coloring is the string consisting of $n$ characters, the $i$-th character should be '0' if the $i$-th character is colored the first color and '1' otherwise). -----Examples----- Input 9 abacbecfd Output YES 001010101 Input 8 aaabbcbb Output YES 01011011 Input 7 abcdedc Output NO Input 5 abcde Output YES 00000
input() x = ["a"] d = [] for c in input(): i = 0 while c < x[i]: i += 1 if i == len(x): x.append(c) x[i] = c d.append(i + 1) print(max(d), *d)
EXPR FUNC_CALL VAR ASSIGN VAR LIST STRING ASSIGN VAR LIST FOR VAR FUNC_CALL VAR ASSIGN VAR NUMBER WHILE VAR VAR VAR VAR NUMBER IF VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR
This is an easy version of the problem. The actual problems are different, but the easy version is almost a subtask of the hard version. Note that the constraints and the output format are different. You are given a string $s$ consisting of $n$ lowercase Latin letters. You have to color all its characters one of the two colors (each character to exactly one color, the same letters can be colored the same or different colors, i.e. you can choose exactly one color for each index in $s$). After coloring, you can swap any two neighboring characters of the string that are colored different colors. You can perform such an operation arbitrary (possibly, zero) number of times. The goal is to make the string sorted, i.e. all characters should be in alphabetical order. Your task is to say if it is possible to color the given string so that after coloring it can become sorted by some sequence of swaps. Note that you have to restore only coloring, not the sequence of swaps. -----Input----- The first line of the input contains one integer $n$ ($1 \le n \le 200$) β€” the length of $s$. The second line of the input contains the string $s$ consisting of exactly $n$ lowercase Latin letters. -----Output----- If it is impossible to color the given string so that after coloring it can become sorted by some sequence of swaps, print "NO" (without quotes) in the first line. Otherwise, print "YES" in the first line and any correct coloring in the second line (the coloring is the string consisting of $n$ characters, the $i$-th character should be '0' if the $i$-th character is colored the first color and '1' otherwise). -----Examples----- Input 9 abacbecfd Output YES 001010101 Input 8 aaabbcbb Output YES 01011011 Input 7 abcdedc Output NO Input 5 abcde Output YES 00000
def solve(): n = int(input()) s = input() color = [1] * n prevMaxColor = [0] * 30 for i in reversed(range(n)): c = ord(s[i]) - ord("a") for j in range(0, c): color[i] = max(color[i], prevMaxColor[j] + 1) prevMaxColor[c] = max(color[i], prevMaxColor[c]) print(max(color)) for c in color: print(c, end=" ") solve()
FUNC_DEF ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR BIN_OP LIST NUMBER VAR ASSIGN VAR BIN_OP LIST NUMBER NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP FUNC_CALL VAR VAR VAR FUNC_CALL VAR STRING FOR VAR FUNC_CALL VAR NUMBER VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR BIN_OP VAR VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR VAR VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR FOR VAR VAR EXPR FUNC_CALL VAR VAR STRING EXPR FUNC_CALL VAR
This is an easy version of the problem. The actual problems are different, but the easy version is almost a subtask of the hard version. Note that the constraints and the output format are different. You are given a string $s$ consisting of $n$ lowercase Latin letters. You have to color all its characters one of the two colors (each character to exactly one color, the same letters can be colored the same or different colors, i.e. you can choose exactly one color for each index in $s$). After coloring, you can swap any two neighboring characters of the string that are colored different colors. You can perform such an operation arbitrary (possibly, zero) number of times. The goal is to make the string sorted, i.e. all characters should be in alphabetical order. Your task is to say if it is possible to color the given string so that after coloring it can become sorted by some sequence of swaps. Note that you have to restore only coloring, not the sequence of swaps. -----Input----- The first line of the input contains one integer $n$ ($1 \le n \le 200$) β€” the length of $s$. The second line of the input contains the string $s$ consisting of exactly $n$ lowercase Latin letters. -----Output----- If it is impossible to color the given string so that after coloring it can become sorted by some sequence of swaps, print "NO" (without quotes) in the first line. Otherwise, print "YES" in the first line and any correct coloring in the second line (the coloring is the string consisting of $n$ characters, the $i$-th character should be '0' if the $i$-th character is colored the first color and '1' otherwise). -----Examples----- Input 9 abacbecfd Output YES 001010101 Input 8 aaabbcbb Output YES 01011011 Input 7 abcdedc Output NO Input 5 abcde Output YES 00000
n = int(input()) s = list(map(ord, input())) b = [(0) for i in range(26)] ans = [] for i in s: for j in range(26): if b[j] <= i: b[j] = i ans.append(j) break if 26 - b.count(0) <= 2: print("YES") print("".join(map(str, ans))) else: print("NO")
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL VAR ASSIGN VAR NUMBER VAR FUNC_CALL VAR NUMBER ASSIGN VAR LIST FOR VAR VAR FOR VAR FUNC_CALL VAR NUMBER IF VAR VAR VAR ASSIGN VAR VAR VAR EXPR FUNC_CALL VAR VAR IF BIN_OP NUMBER FUNC_CALL VAR NUMBER NUMBER EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR FUNC_CALL STRING FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR STRING
This is an easy version of the problem. The actual problems are different, but the easy version is almost a subtask of the hard version. Note that the constraints and the output format are different. You are given a string $s$ consisting of $n$ lowercase Latin letters. You have to color all its characters one of the two colors (each character to exactly one color, the same letters can be colored the same or different colors, i.e. you can choose exactly one color for each index in $s$). After coloring, you can swap any two neighboring characters of the string that are colored different colors. You can perform such an operation arbitrary (possibly, zero) number of times. The goal is to make the string sorted, i.e. all characters should be in alphabetical order. Your task is to say if it is possible to color the given string so that after coloring it can become sorted by some sequence of swaps. Note that you have to restore only coloring, not the sequence of swaps. -----Input----- The first line of the input contains one integer $n$ ($1 \le n \le 200$) β€” the length of $s$. The second line of the input contains the string $s$ consisting of exactly $n$ lowercase Latin letters. -----Output----- If it is impossible to color the given string so that after coloring it can become sorted by some sequence of swaps, print "NO" (without quotes) in the first line. Otherwise, print "YES" in the first line and any correct coloring in the second line (the coloring is the string consisting of $n$ characters, the $i$-th character should be '0' if the $i$-th character is colored the first color and '1' otherwise). -----Examples----- Input 9 abacbecfd Output YES 001010101 Input 8 aaabbcbb Output YES 01011011 Input 7 abcdedc Output NO Input 5 abcde Output YES 00000
n = int(input()) s = list(input()) dg = 10**6 for i in range(n): s[i] = ord(s[i]) * dg + i s.sort() def init_max(init_max_val): for i in range(n): seg_max[i + num_max - 1] = init_max_val[i] for i in range(num_max - 2, -1, -1): seg_max[i] = max(seg_max[2 * i + 1], seg_max[2 * i + 2]) def update_max(k, x): k += num_max - 1 seg_max[k] = x while k: k = (k - 1) // 2 seg_max[k] = max(seg_max[k * 2 + 1], seg_max[k * 2 + 2]) def query_max(p, q): if q <= p: return ide_ele_max p += num_max - 1 q += num_max - 2 res = ide_ele_max while q - p > 1: if p & 1 == 0: res = max(res, seg_max[p]) if q & 1 == 1: res = max(res, seg_max[q]) q -= 1 p = p // 2 q = (q - 1) // 2 if p == q: res = max(res, seg_max[p]) else: res = max(max(res, seg_max[p]), seg_max[q]) return res ide_ele_max = 0 num_max = 2 ** (n - 1).bit_length() seg_max = [ide_ele_max] * 2 * num_max res = [0] * n for e in s: ind = e % dg ad = query_max(ind, n) res[ind] = ad + 1 update_max(ind, ad + 1) print(max(res)) print(*res)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR BIN_OP NUMBER NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR BIN_OP BIN_OP FUNC_CALL VAR VAR VAR VAR VAR EXPR FUNC_CALL VAR FUNC_DEF FOR VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER VAR VAR FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR BIN_OP BIN_OP NUMBER VAR NUMBER VAR BIN_OP BIN_OP NUMBER VAR NUMBER FUNC_DEF VAR BIN_OP VAR NUMBER ASSIGN VAR VAR VAR WHILE VAR ASSIGN VAR BIN_OP BIN_OP VAR NUMBER NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR BIN_OP BIN_OP VAR NUMBER NUMBER VAR BIN_OP BIN_OP VAR NUMBER NUMBER FUNC_DEF IF VAR VAR RETURN VAR VAR BIN_OP VAR NUMBER VAR BIN_OP VAR NUMBER ASSIGN VAR VAR WHILE BIN_OP VAR VAR NUMBER IF BIN_OP VAR NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR VAR IF BIN_OP VAR NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR VAR VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR NUMBER NUMBER IF VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR VAR VAR VAR RETURN VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP NUMBER FUNC_CALL BIN_OP VAR NUMBER ASSIGN VAR BIN_OP BIN_OP LIST VAR NUMBER VAR ASSIGN VAR BIN_OP LIST NUMBER VAR FOR VAR VAR ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR
This is an easy version of the problem. The actual problems are different, but the easy version is almost a subtask of the hard version. Note that the constraints and the output format are different. You are given a string $s$ consisting of $n$ lowercase Latin letters. You have to color all its characters one of the two colors (each character to exactly one color, the same letters can be colored the same or different colors, i.e. you can choose exactly one color for each index in $s$). After coloring, you can swap any two neighboring characters of the string that are colored different colors. You can perform such an operation arbitrary (possibly, zero) number of times. The goal is to make the string sorted, i.e. all characters should be in alphabetical order. Your task is to say if it is possible to color the given string so that after coloring it can become sorted by some sequence of swaps. Note that you have to restore only coloring, not the sequence of swaps. -----Input----- The first line of the input contains one integer $n$ ($1 \le n \le 200$) β€” the length of $s$. The second line of the input contains the string $s$ consisting of exactly $n$ lowercase Latin letters. -----Output----- If it is impossible to color the given string so that after coloring it can become sorted by some sequence of swaps, print "NO" (without quotes) in the first line. Otherwise, print "YES" in the first line and any correct coloring in the second line (the coloring is the string consisting of $n$ characters, the $i$-th character should be '0' if the $i$-th character is colored the first color and '1' otherwise). -----Examples----- Input 9 abacbecfd Output YES 001010101 Input 8 aaabbcbb Output YES 01011011 Input 7 abcdedc Output NO Input 5 abcde Output YES 00000
import sys input = sys.stdin.readline n = int(input()) s = list(input())[:-1] perm = [i for i in range(n)] res = [0] * n decided = [0] * n decided[0] = 1 for _ in range(n): for i in range(n - 1): if s[perm[i]] > s[perm[i + 1]] and ( decided[perm[i + 1]] == 0 or res[perm[i + 1]] != res[perm[i]] ): res[perm[i + 1]] = res[perm[i]] ^ 1 decided[perm[i + 1]] = 1 perm[i], perm[i + 1] = perm[i + 1], perm[i] for i in range(n - 1): if s[perm[i]] > s[perm[i + 1]]: print("NO") exit(0) print("YES") print("".join(list(map(str, res))))
IMPORT ASSIGN VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR NUMBER ASSIGN VAR VAR VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP LIST NUMBER VAR ASSIGN VAR BIN_OP LIST NUMBER VAR ASSIGN VAR NUMBER NUMBER FOR VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER IF VAR VAR VAR VAR VAR BIN_OP VAR NUMBER VAR VAR BIN_OP VAR NUMBER NUMBER VAR VAR BIN_OP VAR NUMBER VAR VAR VAR ASSIGN VAR VAR BIN_OP VAR NUMBER BIN_OP VAR VAR VAR NUMBER ASSIGN VAR VAR BIN_OP VAR NUMBER NUMBER ASSIGN VAR VAR VAR BIN_OP VAR NUMBER VAR BIN_OP VAR NUMBER VAR VAR FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER IF VAR VAR VAR VAR VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR FUNC_CALL STRING FUNC_CALL VAR FUNC_CALL VAR VAR VAR
This is an easy version of the problem. The actual problems are different, but the easy version is almost a subtask of the hard version. Note that the constraints and the output format are different. You are given a string $s$ consisting of $n$ lowercase Latin letters. You have to color all its characters one of the two colors (each character to exactly one color, the same letters can be colored the same or different colors, i.e. you can choose exactly one color for each index in $s$). After coloring, you can swap any two neighboring characters of the string that are colored different colors. You can perform such an operation arbitrary (possibly, zero) number of times. The goal is to make the string sorted, i.e. all characters should be in alphabetical order. Your task is to say if it is possible to color the given string so that after coloring it can become sorted by some sequence of swaps. Note that you have to restore only coloring, not the sequence of swaps. -----Input----- The first line of the input contains one integer $n$ ($1 \le n \le 200$) β€” the length of $s$. The second line of the input contains the string $s$ consisting of exactly $n$ lowercase Latin letters. -----Output----- If it is impossible to color the given string so that after coloring it can become sorted by some sequence of swaps, print "NO" (without quotes) in the first line. Otherwise, print "YES" in the first line and any correct coloring in the second line (the coloring is the string consisting of $n$ characters, the $i$-th character should be '0' if the $i$-th character is colored the first color and '1' otherwise). -----Examples----- Input 9 abacbecfd Output YES 001010101 Input 8 aaabbcbb Output YES 01011011 Input 7 abcdedc Output NO Input 5 abcde Output YES 00000
import sys n = int(input()) s = input() l1 = [1] * n l1[0] = 0 prev = s[0] for i in range(1, n): if s[i] >= prev: l1[i] = 0 prev = s[i] temp = [] for i in range(n): if l1[i] == 1: temp.append(s[i]) if len(temp) == 0: print("YES") print("".join(str(x) for x in l1)) sys.exit() prev = temp[0] for i in range(1, len(temp)): if temp[i] < prev: print("NO") sys.exit() prev = temp[i] print("YES") print("".join(str(x) for x in l1))
IMPORT ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR BIN_OP LIST NUMBER VAR ASSIGN VAR NUMBER NUMBER ASSIGN VAR VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR IF VAR VAR VAR ASSIGN VAR VAR NUMBER ASSIGN VAR VAR VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR IF VAR VAR NUMBER EXPR FUNC_CALL VAR VAR VAR IF FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR FUNC_CALL STRING FUNC_CALL VAR VAR VAR VAR EXPR FUNC_CALL VAR ASSIGN VAR VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR IF VAR VAR VAR EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR ASSIGN VAR VAR VAR EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR FUNC_CALL STRING FUNC_CALL VAR VAR VAR VAR
This is an easy version of the problem. The actual problems are different, but the easy version is almost a subtask of the hard version. Note that the constraints and the output format are different. You are given a string $s$ consisting of $n$ lowercase Latin letters. You have to color all its characters one of the two colors (each character to exactly one color, the same letters can be colored the same or different colors, i.e. you can choose exactly one color for each index in $s$). After coloring, you can swap any two neighboring characters of the string that are colored different colors. You can perform such an operation arbitrary (possibly, zero) number of times. The goal is to make the string sorted, i.e. all characters should be in alphabetical order. Your task is to say if it is possible to color the given string so that after coloring it can become sorted by some sequence of swaps. Note that you have to restore only coloring, not the sequence of swaps. -----Input----- The first line of the input contains one integer $n$ ($1 \le n \le 200$) β€” the length of $s$. The second line of the input contains the string $s$ consisting of exactly $n$ lowercase Latin letters. -----Output----- If it is impossible to color the given string so that after coloring it can become sorted by some sequence of swaps, print "NO" (without quotes) in the first line. Otherwise, print "YES" in the first line and any correct coloring in the second line (the coloring is the string consisting of $n$ characters, the $i$-th character should be '0' if the $i$-th character is colored the first color and '1' otherwise). -----Examples----- Input 9 abacbecfd Output YES 001010101 Input 8 aaabbcbb Output YES 01011011 Input 7 abcdedc Output NO Input 5 abcde Output YES 00000
import sys input = sys.stdin.readline def main(): N = int(input()) S = input().strip() color = [] ans = [] for i, s in enumerate(S): if i == 0: color.append(ord(s) - ord("a")) ans.append(1) else: for j in range(len(color)): if ord(s) - ord("a") >= color[j]: color[j] = ord(s) - ord("a") ans.append(j + 1) break else: ans.append(len(color) + 1) color.append(ord(s) - ord("a")) else: print(len(color)) print(*ans) main()
IMPORT ASSIGN VAR VAR FUNC_DEF ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR LIST ASSIGN VAR LIST FOR VAR VAR FUNC_CALL VAR VAR IF VAR NUMBER EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR STRING VAR VAR ASSIGN VAR VAR BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR
This is an easy version of the problem. The actual problems are different, but the easy version is almost a subtask of the hard version. Note that the constraints and the output format are different. You are given a string $s$ consisting of $n$ lowercase Latin letters. You have to color all its characters one of the two colors (each character to exactly one color, the same letters can be colored the same or different colors, i.e. you can choose exactly one color for each index in $s$). After coloring, you can swap any two neighboring characters of the string that are colored different colors. You can perform such an operation arbitrary (possibly, zero) number of times. The goal is to make the string sorted, i.e. all characters should be in alphabetical order. Your task is to say if it is possible to color the given string so that after coloring it can become sorted by some sequence of swaps. Note that you have to restore only coloring, not the sequence of swaps. -----Input----- The first line of the input contains one integer $n$ ($1 \le n \le 200$) β€” the length of $s$. The second line of the input contains the string $s$ consisting of exactly $n$ lowercase Latin letters. -----Output----- If it is impossible to color the given string so that after coloring it can become sorted by some sequence of swaps, print "NO" (without quotes) in the first line. Otherwise, print "YES" in the first line and any correct coloring in the second line (the coloring is the string consisting of $n$ characters, the $i$-th character should be '0' if the $i$-th character is colored the first color and '1' otherwise). -----Examples----- Input 9 abacbecfd Output YES 001010101 Input 8 aaabbcbb Output YES 01011011 Input 7 abcdedc Output NO Input 5 abcde Output YES 00000
n = int(input()) s = input() ans = [-1] * n for i in range(n - 1, -1, -1): c = d = 0 for j in range(i - 1, -1, -1): if s[j] > s[i] and ans[j] == 0: c += 1 if s[j] > s[i] and ans[j] == 1: d += 1 if c > 0 and d > 0 or ans[i] == 1 and d > 0 or ans[i] == 0 and c > 0: print("NO") exit() if ans[i] == -1: ans[i] = 0 for j in range(i - 1, -1, -1): if s[j] > s[i]: ans[j] = ans[i] ^ 1 print("YES") print(*ans, sep="")
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR BIN_OP LIST NUMBER VAR FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER ASSIGN VAR VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER IF VAR VAR VAR VAR VAR VAR NUMBER VAR NUMBER IF VAR VAR VAR VAR VAR VAR NUMBER VAR NUMBER IF VAR NUMBER VAR NUMBER VAR VAR NUMBER VAR NUMBER VAR VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR IF VAR VAR NUMBER ASSIGN VAR VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER IF VAR VAR VAR VAR ASSIGN VAR VAR BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR VAR STRING
This is an easy version of the problem. The actual problems are different, but the easy version is almost a subtask of the hard version. Note that the constraints and the output format are different. You are given a string $s$ consisting of $n$ lowercase Latin letters. You have to color all its characters one of the two colors (each character to exactly one color, the same letters can be colored the same or different colors, i.e. you can choose exactly one color for each index in $s$). After coloring, you can swap any two neighboring characters of the string that are colored different colors. You can perform such an operation arbitrary (possibly, zero) number of times. The goal is to make the string sorted, i.e. all characters should be in alphabetical order. Your task is to say if it is possible to color the given string so that after coloring it can become sorted by some sequence of swaps. Note that you have to restore only coloring, not the sequence of swaps. -----Input----- The first line of the input contains one integer $n$ ($1 \le n \le 200$) β€” the length of $s$. The second line of the input contains the string $s$ consisting of exactly $n$ lowercase Latin letters. -----Output----- If it is impossible to color the given string so that after coloring it can become sorted by some sequence of swaps, print "NO" (without quotes) in the first line. Otherwise, print "YES" in the first line and any correct coloring in the second line (the coloring is the string consisting of $n$ characters, the $i$-th character should be '0' if the $i$-th character is colored the first color and '1' otherwise). -----Examples----- Input 9 abacbecfd Output YES 001010101 Input 8 aaabbcbb Output YES 01011011 Input 7 abcdedc Output NO Input 5 abcde Output YES 00000
x = int(input()) y = input() out = [0] * x ch = "a" for i in range(x): if y[i] >= ch: ch = y[i] out[i] = 1 ch = "a" for i in range(x): if y[i] >= ch and out[i] == 0: ch = y[i] out[i] = 2 if 0 in out: print("NO") else: print("YES") for i in out: print(i - 1, end="")
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR BIN_OP LIST NUMBER VAR ASSIGN VAR STRING FOR VAR FUNC_CALL VAR VAR IF VAR VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR VAR NUMBER ASSIGN VAR STRING FOR VAR FUNC_CALL VAR VAR IF VAR VAR VAR VAR VAR NUMBER ASSIGN VAR VAR VAR ASSIGN VAR VAR NUMBER IF NUMBER VAR EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR STRING FOR VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR NUMBER STRING
This is an easy version of the problem. The actual problems are different, but the easy version is almost a subtask of the hard version. Note that the constraints and the output format are different. You are given a string $s$ consisting of $n$ lowercase Latin letters. You have to color all its characters one of the two colors (each character to exactly one color, the same letters can be colored the same or different colors, i.e. you can choose exactly one color for each index in $s$). After coloring, you can swap any two neighboring characters of the string that are colored different colors. You can perform such an operation arbitrary (possibly, zero) number of times. The goal is to make the string sorted, i.e. all characters should be in alphabetical order. Your task is to say if it is possible to color the given string so that after coloring it can become sorted by some sequence of swaps. Note that you have to restore only coloring, not the sequence of swaps. -----Input----- The first line of the input contains one integer $n$ ($1 \le n \le 200$) β€” the length of $s$. The second line of the input contains the string $s$ consisting of exactly $n$ lowercase Latin letters. -----Output----- If it is impossible to color the given string so that after coloring it can become sorted by some sequence of swaps, print "NO" (without quotes) in the first line. Otherwise, print "YES" in the first line and any correct coloring in the second line (the coloring is the string consisting of $n$ characters, the $i$-th character should be '0' if the $i$-th character is colored the first color and '1' otherwise). -----Examples----- Input 9 abacbecfd Output YES 001010101 Input 8 aaabbcbb Output YES 01011011 Input 7 abcdedc Output NO Input 5 abcde Output YES 00000
import sys n = int(sys.stdin.readline()) s = sys.stdin.readline().strip() a2int = {chr(97 + i): i for i in range(26)} aaaaa = {"1": 1, "0": 0} res = "YES" list_res = ["0"] * n list_where = [[] for _ in range(26)] for i, now in enumerate(s): count = [0, 0] for j in range(a2int[now] + 1, 26): for v in list_where[j]: count[aaaaa[list_res[v]]] += 1 if count[0] and count[1]: res = "NO" break if count[0]: list_res[i] = "1" else: list_res[i] = "0" list_where[a2int[now]].append(i) if res == "YES": print("YES") print("".join(list_res)) else: print("NO")
IMPORT ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR BIN_OP NUMBER VAR VAR VAR FUNC_CALL VAR NUMBER ASSIGN VAR DICT STRING STRING NUMBER NUMBER ASSIGN VAR STRING ASSIGN VAR BIN_OP LIST STRING VAR ASSIGN VAR LIST VAR FUNC_CALL VAR NUMBER FOR VAR VAR FUNC_CALL VAR VAR ASSIGN VAR LIST NUMBER NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR VAR NUMBER NUMBER FOR VAR VAR VAR VAR VAR VAR VAR NUMBER IF VAR NUMBER VAR NUMBER ASSIGN VAR STRING IF VAR NUMBER ASSIGN VAR VAR STRING ASSIGN VAR VAR STRING EXPR FUNC_CALL VAR VAR VAR VAR IF VAR STRING EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR FUNC_CALL STRING VAR EXPR FUNC_CALL VAR STRING
This is an easy version of the problem. The actual problems are different, but the easy version is almost a subtask of the hard version. Note that the constraints and the output format are different. You are given a string $s$ consisting of $n$ lowercase Latin letters. You have to color all its characters one of the two colors (each character to exactly one color, the same letters can be colored the same or different colors, i.e. you can choose exactly one color for each index in $s$). After coloring, you can swap any two neighboring characters of the string that are colored different colors. You can perform such an operation arbitrary (possibly, zero) number of times. The goal is to make the string sorted, i.e. all characters should be in alphabetical order. Your task is to say if it is possible to color the given string so that after coloring it can become sorted by some sequence of swaps. Note that you have to restore only coloring, not the sequence of swaps. -----Input----- The first line of the input contains one integer $n$ ($1 \le n \le 200$) β€” the length of $s$. The second line of the input contains the string $s$ consisting of exactly $n$ lowercase Latin letters. -----Output----- If it is impossible to color the given string so that after coloring it can become sorted by some sequence of swaps, print "NO" (without quotes) in the first line. Otherwise, print "YES" in the first line and any correct coloring in the second line (the coloring is the string consisting of $n$ characters, the $i$-th character should be '0' if the $i$-th character is colored the first color and '1' otherwise). -----Examples----- Input 9 abacbecfd Output YES 001010101 Input 8 aaabbcbb Output YES 01011011 Input 7 abcdedc Output NO Input 5 abcde Output YES 00000
n = int(input()) s = input() l = [[0, -1] for i in range(26)] for i in range(n): l[ord(s[i]) - 97][0] += 1 j = -1 color = [(-1) for i in range(n)] for c in range(26): i = j + 1 while l[c][0] > 0 and i < n: if ord(s[i]) - 97 == c: if l[c][1] == -1: was0 = False was1 = False for k in range(i): if ord(s[k]) - 97 > ord(s[i]) - 97: if color[k] == 0: was0 = True if color[k] == 1: was1 = True if was0 and was1: print("NO") exit(0) if was0: color[i] = 1 l[c][1] = 1 else: color[i] = 0 l[c][1] = 0 else: color[i] = l[c][1] l[c][0] -= 1 j = i i += 1 mx = ord(s[j]) - 97 for i in range(j): if color[i] != -1: continue if ord(s[i]) - 97 > ord(s[j]) - 97: color[i] = 1 - color[j] if mx > ord(s[i]) - 97: print("NO") exit(0) mx = ord(s[i]) - 97 for j in range(n): for i in range(j): if ord(s[i]) - 97 > ord(s[j]) - 97 and color[i] == color[j]: print("NO") exit(0) print("YES") for c in color: print(c, end="")
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR LIST NUMBER NUMBER VAR FUNC_CALL VAR NUMBER FOR VAR FUNC_CALL VAR VAR VAR BIN_OP FUNC_CALL VAR VAR VAR NUMBER NUMBER NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER WHILE VAR VAR NUMBER NUMBER VAR VAR IF BIN_OP FUNC_CALL VAR VAR VAR NUMBER VAR IF VAR VAR NUMBER NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF BIN_OP FUNC_CALL VAR VAR VAR NUMBER BIN_OP FUNC_CALL VAR VAR VAR NUMBER IF VAR VAR NUMBER ASSIGN VAR NUMBER IF VAR VAR NUMBER ASSIGN VAR NUMBER IF VAR VAR EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR NUMBER IF VAR ASSIGN VAR VAR NUMBER ASSIGN VAR VAR NUMBER NUMBER ASSIGN VAR VAR NUMBER ASSIGN VAR VAR NUMBER NUMBER ASSIGN VAR VAR VAR VAR NUMBER VAR VAR NUMBER NUMBER ASSIGN VAR VAR VAR NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR VAR VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR VAR NUMBER IF BIN_OP FUNC_CALL VAR VAR VAR NUMBER BIN_OP FUNC_CALL VAR VAR VAR NUMBER ASSIGN VAR VAR BIN_OP NUMBER VAR VAR IF VAR BIN_OP FUNC_CALL VAR VAR VAR NUMBER EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR VAR VAR NUMBER FOR VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR VAR IF BIN_OP FUNC_CALL VAR VAR VAR NUMBER BIN_OP FUNC_CALL VAR VAR VAR NUMBER VAR VAR VAR VAR EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR STRING FOR VAR VAR EXPR FUNC_CALL VAR VAR STRING
This is an easy version of the problem. The actual problems are different, but the easy version is almost a subtask of the hard version. Note that the constraints and the output format are different. You are given a string $s$ consisting of $n$ lowercase Latin letters. You have to color all its characters one of the two colors (each character to exactly one color, the same letters can be colored the same or different colors, i.e. you can choose exactly one color for each index in $s$). After coloring, you can swap any two neighboring characters of the string that are colored different colors. You can perform such an operation arbitrary (possibly, zero) number of times. The goal is to make the string sorted, i.e. all characters should be in alphabetical order. Your task is to say if it is possible to color the given string so that after coloring it can become sorted by some sequence of swaps. Note that you have to restore only coloring, not the sequence of swaps. -----Input----- The first line of the input contains one integer $n$ ($1 \le n \le 200$) β€” the length of $s$. The second line of the input contains the string $s$ consisting of exactly $n$ lowercase Latin letters. -----Output----- If it is impossible to color the given string so that after coloring it can become sorted by some sequence of swaps, print "NO" (without quotes) in the first line. Otherwise, print "YES" in the first line and any correct coloring in the second line (the coloring is the string consisting of $n$ characters, the $i$-th character should be '0' if the $i$-th character is colored the first color and '1' otherwise). -----Examples----- Input 9 abacbecfd Output YES 001010101 Input 8 aaabbcbb Output YES 01011011 Input 7 abcdedc Output NO Input 5 abcde Output YES 00000
n = int(input()) s = input() l = [s[0]] ll = [] ss = "0" for i in range(1, n): if l[-1] <= s[i]: l.append(s[i]) ss += "0" elif len(ll) == 0 or ll[-1] <= s[i]: ll.append(s[i]) ss += "1" else: ss = "NO" break if ss == "NO": print(ss) else: print("YES") print(ss)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR LIST VAR NUMBER ASSIGN VAR LIST ASSIGN VAR STRING FOR VAR FUNC_CALL VAR NUMBER VAR IF VAR NUMBER VAR VAR EXPR FUNC_CALL VAR VAR VAR VAR STRING IF FUNC_CALL VAR VAR NUMBER VAR NUMBER VAR VAR EXPR FUNC_CALL VAR VAR VAR VAR STRING ASSIGN VAR STRING IF VAR STRING EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR VAR
This is an easy version of the problem. The actual problems are different, but the easy version is almost a subtask of the hard version. Note that the constraints and the output format are different. You are given a string $s$ consisting of $n$ lowercase Latin letters. You have to color all its characters one of the two colors (each character to exactly one color, the same letters can be colored the same or different colors, i.e. you can choose exactly one color for each index in $s$). After coloring, you can swap any two neighboring characters of the string that are colored different colors. You can perform such an operation arbitrary (possibly, zero) number of times. The goal is to make the string sorted, i.e. all characters should be in alphabetical order. Your task is to say if it is possible to color the given string so that after coloring it can become sorted by some sequence of swaps. Note that you have to restore only coloring, not the sequence of swaps. -----Input----- The first line of the input contains one integer $n$ ($1 \le n \le 200$) β€” the length of $s$. The second line of the input contains the string $s$ consisting of exactly $n$ lowercase Latin letters. -----Output----- If it is impossible to color the given string so that after coloring it can become sorted by some sequence of swaps, print "NO" (without quotes) in the first line. Otherwise, print "YES" in the first line and any correct coloring in the second line (the coloring is the string consisting of $n$ characters, the $i$-th character should be '0' if the $i$-th character is colored the first color and '1' otherwise). -----Examples----- Input 9 abacbecfd Output YES 001010101 Input 8 aaabbcbb Output YES 01011011 Input 7 abcdedc Output NO Input 5 abcde Output YES 00000
n = int(input()) s = input() tmp = [s[0]] + ["" for i in range(25)] ans = [1] for i in range(1, len(s)): for j in range(26): if tmp[j] <= s[i]: ans.append(j + 1) tmp[j] = s[i] break print(max(ans)) print(*ans)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR BIN_OP LIST VAR NUMBER STRING VAR FUNC_CALL VAR NUMBER ASSIGN VAR LIST NUMBER FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR NUMBER IF VAR VAR VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR NUMBER ASSIGN VAR VAR VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR
This is an easy version of the problem. The actual problems are different, but the easy version is almost a subtask of the hard version. Note that the constraints and the output format are different. You are given a string $s$ consisting of $n$ lowercase Latin letters. You have to color all its characters one of the two colors (each character to exactly one color, the same letters can be colored the same or different colors, i.e. you can choose exactly one color for each index in $s$). After coloring, you can swap any two neighboring characters of the string that are colored different colors. You can perform such an operation arbitrary (possibly, zero) number of times. The goal is to make the string sorted, i.e. all characters should be in alphabetical order. Your task is to say if it is possible to color the given string so that after coloring it can become sorted by some sequence of swaps. Note that you have to restore only coloring, not the sequence of swaps. -----Input----- The first line of the input contains one integer $n$ ($1 \le n \le 200$) β€” the length of $s$. The second line of the input contains the string $s$ consisting of exactly $n$ lowercase Latin letters. -----Output----- If it is impossible to color the given string so that after coloring it can become sorted by some sequence of swaps, print "NO" (without quotes) in the first line. Otherwise, print "YES" in the first line and any correct coloring in the second line (the coloring is the string consisting of $n$ characters, the $i$-th character should be '0' if the $i$-th character is colored the first color and '1' otherwise). -----Examples----- Input 9 abacbecfd Output YES 001010101 Input 8 aaabbcbb Output YES 01011011 Input 7 abcdedc Output NO Input 5 abcde Output YES 00000
n = int(input()) s = input() ans = [(-1) for i in range(n)] last = chr(ord("a") - 1) for i in range(n): if s[i] >= last: ans[i] = 0 last = s[i] last = chr(ord("a") - 1) for i in range(n): if ans[i] == -1 and s[i] >= last: ans[i] = 1 last = s[i] elif ans[i] == -1: print("NO") exit(0) print("YES") print(*ans, sep="")
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR NUMBER VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR STRING NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR VAR VAR ASSIGN VAR VAR NUMBER ASSIGN VAR VAR VAR ASSIGN VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR STRING NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR VAR NUMBER VAR VAR VAR ASSIGN VAR VAR NUMBER ASSIGN VAR VAR VAR IF VAR VAR NUMBER EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR VAR STRING
This is an easy version of the problem. The actual problems are different, but the easy version is almost a subtask of the hard version. Note that the constraints and the output format are different. You are given a string $s$ consisting of $n$ lowercase Latin letters. You have to color all its characters one of the two colors (each character to exactly one color, the same letters can be colored the same or different colors, i.e. you can choose exactly one color for each index in $s$). After coloring, you can swap any two neighboring characters of the string that are colored different colors. You can perform such an operation arbitrary (possibly, zero) number of times. The goal is to make the string sorted, i.e. all characters should be in alphabetical order. Your task is to say if it is possible to color the given string so that after coloring it can become sorted by some sequence of swaps. Note that you have to restore only coloring, not the sequence of swaps. -----Input----- The first line of the input contains one integer $n$ ($1 \le n \le 200$) β€” the length of $s$. The second line of the input contains the string $s$ consisting of exactly $n$ lowercase Latin letters. -----Output----- If it is impossible to color the given string so that after coloring it can become sorted by some sequence of swaps, print "NO" (without quotes) in the first line. Otherwise, print "YES" in the first line and any correct coloring in the second line (the coloring is the string consisting of $n$ characters, the $i$-th character should be '0' if the $i$-th character is colored the first color and '1' otherwise). -----Examples----- Input 9 abacbecfd Output YES 001010101 Input 8 aaabbcbb Output YES 01011011 Input 7 abcdedc Output NO Input 5 abcde Output YES 00000
alpha_small_dict = {chr(i): (i - 97) for i in range(97, 97 + 26)} n = int(input()) s = input() data = [alpha_small_dict[x] for x in s] G = [[] for _ in range(n)] alpha_data = [[] for _ in range(26)] for i, x in enumerate(data): for y in range(x + 1, 26): for j in alpha_data[y]: G[i].append(j) G[j].append(i) alpha_data[x].append(i) color = [(-1) for _ in range(n)] t = True for i in range(n): if color[i] == -1: que = [[-1, i]] color[i] = 0 while que: pre, now = que.pop() for to in G[now]: if to == pre: continue if color[to] == color[now]: print("NO") exit() elif color[to] == -1: color[to] = 1 - color[now] que.append([now, to]) print("YES") for x in color: print(x, end="") print()
ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR FUNC_CALL VAR NUMBER BIN_OP NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR VAR VAR VAR VAR ASSIGN VAR LIST VAR FUNC_CALL VAR VAR ASSIGN VAR LIST VAR FUNC_CALL VAR NUMBER FOR VAR VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER FOR VAR VAR VAR EXPR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR VAR ASSIGN VAR NUMBER VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR VAR NUMBER ASSIGN VAR LIST LIST NUMBER VAR ASSIGN VAR VAR NUMBER WHILE VAR ASSIGN VAR VAR FUNC_CALL VAR FOR VAR VAR VAR IF VAR VAR IF VAR VAR VAR VAR EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR IF VAR VAR NUMBER ASSIGN VAR VAR BIN_OP NUMBER VAR VAR EXPR FUNC_CALL VAR LIST VAR VAR EXPR FUNC_CALL VAR STRING FOR VAR VAR EXPR FUNC_CALL VAR VAR STRING EXPR FUNC_CALL VAR
This is an easy version of the problem. The actual problems are different, but the easy version is almost a subtask of the hard version. Note that the constraints and the output format are different. You are given a string $s$ consisting of $n$ lowercase Latin letters. You have to color all its characters one of the two colors (each character to exactly one color, the same letters can be colored the same or different colors, i.e. you can choose exactly one color for each index in $s$). After coloring, you can swap any two neighboring characters of the string that are colored different colors. You can perform such an operation arbitrary (possibly, zero) number of times. The goal is to make the string sorted, i.e. all characters should be in alphabetical order. Your task is to say if it is possible to color the given string so that after coloring it can become sorted by some sequence of swaps. Note that you have to restore only coloring, not the sequence of swaps. -----Input----- The first line of the input contains one integer $n$ ($1 \le n \le 200$) β€” the length of $s$. The second line of the input contains the string $s$ consisting of exactly $n$ lowercase Latin letters. -----Output----- If it is impossible to color the given string so that after coloring it can become sorted by some sequence of swaps, print "NO" (without quotes) in the first line. Otherwise, print "YES" in the first line and any correct coloring in the second line (the coloring is the string consisting of $n$ characters, the $i$-th character should be '0' if the $i$-th character is colored the first color and '1' otherwise). -----Examples----- Input 9 abacbecfd Output YES 001010101 Input 8 aaabbcbb Output YES 01011011 Input 7 abcdedc Output NO Input 5 abcde Output YES 00000
n = int(input()) s = input() ans = [0] * n f = 0 for i in range(n): for j in range(i + 1, n): if s[j] < s[i]: if ans[j] == 1 and ans[i] == 0: continue if ans[j] == 1 and ans[i] == 1: f = -1 break ans[j] = 1 - ans[i] if f == -1: break if f == -1: print("NO") else: print("YES") for i in ans: print(i, end="")
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR BIN_OP LIST NUMBER VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER VAR IF VAR VAR VAR VAR IF VAR VAR NUMBER VAR VAR NUMBER IF VAR VAR NUMBER VAR VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR VAR BIN_OP NUMBER VAR VAR IF VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR STRING FOR VAR VAR EXPR FUNC_CALL VAR VAR STRING
This is an easy version of the problem. The actual problems are different, but the easy version is almost a subtask of the hard version. Note that the constraints and the output format are different. You are given a string $s$ consisting of $n$ lowercase Latin letters. You have to color all its characters one of the two colors (each character to exactly one color, the same letters can be colored the same or different colors, i.e. you can choose exactly one color for each index in $s$). After coloring, you can swap any two neighboring characters of the string that are colored different colors. You can perform such an operation arbitrary (possibly, zero) number of times. The goal is to make the string sorted, i.e. all characters should be in alphabetical order. Your task is to say if it is possible to color the given string so that after coloring it can become sorted by some sequence of swaps. Note that you have to restore only coloring, not the sequence of swaps. -----Input----- The first line of the input contains one integer $n$ ($1 \le n \le 200$) β€” the length of $s$. The second line of the input contains the string $s$ consisting of exactly $n$ lowercase Latin letters. -----Output----- If it is impossible to color the given string so that after coloring it can become sorted by some sequence of swaps, print "NO" (without quotes) in the first line. Otherwise, print "YES" in the first line and any correct coloring in the second line (the coloring is the string consisting of $n$ characters, the $i$-th character should be '0' if the $i$-th character is colored the first color and '1' otherwise). -----Examples----- Input 9 abacbecfd Output YES 001010101 Input 8 aaabbcbb Output YES 01011011 Input 7 abcdedc Output NO Input 5 abcde Output YES 00000
import sys n = int(sys.stdin.readline().rstrip()) s = list(sys.stdin.readline().rstrip()) a1 = "a" a2 = "a" sol = "" for i in s: if i >= a1: a1 = i sol += "0" elif i >= a2: a2 = i sol += "1" else: print("NO") break else: print("YES") print(sol)
IMPORT ASSIGN VAR FUNC_CALL VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR STRING ASSIGN VAR STRING ASSIGN VAR STRING FOR VAR VAR IF VAR VAR ASSIGN VAR VAR VAR STRING IF VAR VAR ASSIGN VAR VAR VAR STRING EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR VAR
This is an easy version of the problem. The actual problems are different, but the easy version is almost a subtask of the hard version. Note that the constraints and the output format are different. You are given a string $s$ consisting of $n$ lowercase Latin letters. You have to color all its characters one of the two colors (each character to exactly one color, the same letters can be colored the same or different colors, i.e. you can choose exactly one color for each index in $s$). After coloring, you can swap any two neighboring characters of the string that are colored different colors. You can perform such an operation arbitrary (possibly, zero) number of times. The goal is to make the string sorted, i.e. all characters should be in alphabetical order. Your task is to say if it is possible to color the given string so that after coloring it can become sorted by some sequence of swaps. Note that you have to restore only coloring, not the sequence of swaps. -----Input----- The first line of the input contains one integer $n$ ($1 \le n \le 200$) β€” the length of $s$. The second line of the input contains the string $s$ consisting of exactly $n$ lowercase Latin letters. -----Output----- If it is impossible to color the given string so that after coloring it can become sorted by some sequence of swaps, print "NO" (without quotes) in the first line. Otherwise, print "YES" in the first line and any correct coloring in the second line (the coloring is the string consisting of $n$ characters, the $i$-th character should be '0' if the $i$-th character is colored the first color and '1' otherwise). -----Examples----- Input 9 abacbecfd Output YES 001010101 Input 8 aaabbcbb Output YES 01011011 Input 7 abcdedc Output NO Input 5 abcde Output YES 00000
n = int(input()) s = input() prev = -1 t = -1 ans = "" for c in s: cur = ord(c) - ord("a") if cur >= prev: ans += "1" prev = cur else: if cur < t: print("NO") exit() ans += "0" t = cur print("YES") print(ans)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR STRING FOR VAR VAR ASSIGN VAR BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR STRING IF VAR VAR VAR STRING ASSIGN VAR VAR IF VAR VAR EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR VAR STRING ASSIGN VAR VAR EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR VAR
This is an easy version of the problem. The actual problems are different, but the easy version is almost a subtask of the hard version. Note that the constraints and the output format are different. You are given a string $s$ consisting of $n$ lowercase Latin letters. You have to color all its characters one of the two colors (each character to exactly one color, the same letters can be colored the same or different colors, i.e. you can choose exactly one color for each index in $s$). After coloring, you can swap any two neighboring characters of the string that are colored different colors. You can perform such an operation arbitrary (possibly, zero) number of times. The goal is to make the string sorted, i.e. all characters should be in alphabetical order. Your task is to say if it is possible to color the given string so that after coloring it can become sorted by some sequence of swaps. Note that you have to restore only coloring, not the sequence of swaps. -----Input----- The first line of the input contains one integer $n$ ($1 \le n \le 200$) β€” the length of $s$. The second line of the input contains the string $s$ consisting of exactly $n$ lowercase Latin letters. -----Output----- If it is impossible to color the given string so that after coloring it can become sorted by some sequence of swaps, print "NO" (without quotes) in the first line. Otherwise, print "YES" in the first line and any correct coloring in the second line (the coloring is the string consisting of $n$ characters, the $i$-th character should be '0' if the $i$-th character is colored the first color and '1' otherwise). -----Examples----- Input 9 abacbecfd Output YES 001010101 Input 8 aaabbcbb Output YES 01011011 Input 7 abcdedc Output NO Input 5 abcde Output YES 00000
def check(i, n, x, y, s, dp): if i == n: return 1 if dp[i][x][y] != -1: return dp[i][x][y] ch = ord(s[i]) - 97 dp[i][x][y] = 0 if ch >= x and check(i + 1, n, ch, y, s, dp) > 0: dp[i][x][y] = 1 elif ch >= y and check(i + 1, n, x, ch, s, dp) > 0: dp[i][x][y] = 2 return dp[i][x][y] n = int(input()) s = input() dp = [[([-1] * 26) for j in range(26)] for i in range(n)] if check(0, n, 0, 0, s, dp) == 0: print("NO") else: print("YES") ans = "" x = 0 y = 0 for i in range(n): ch = ord(s[i]) - 97 ans += str(dp[i][x][y] - 1) if dp[i][x][y] == 1: x = ch else: y = ch print(ans)
FUNC_DEF IF VAR VAR RETURN NUMBER IF VAR VAR VAR VAR NUMBER RETURN VAR VAR VAR VAR ASSIGN VAR BIN_OP FUNC_CALL VAR VAR VAR NUMBER ASSIGN VAR VAR VAR VAR NUMBER IF VAR VAR FUNC_CALL VAR BIN_OP VAR NUMBER VAR VAR VAR VAR VAR NUMBER ASSIGN VAR VAR VAR VAR NUMBER IF VAR VAR FUNC_CALL VAR BIN_OP VAR NUMBER VAR VAR VAR VAR VAR NUMBER ASSIGN VAR VAR VAR VAR NUMBER RETURN VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR BIN_OP LIST NUMBER NUMBER VAR FUNC_CALL VAR NUMBER VAR FUNC_CALL VAR VAR IF FUNC_CALL VAR NUMBER VAR NUMBER NUMBER VAR VAR NUMBER EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR STRING ASSIGN VAR STRING ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP FUNC_CALL VAR VAR VAR NUMBER VAR FUNC_CALL VAR BIN_OP VAR VAR VAR VAR NUMBER IF VAR VAR VAR VAR NUMBER ASSIGN VAR VAR ASSIGN VAR VAR EXPR FUNC_CALL VAR VAR
This is an easy version of the problem. The actual problems are different, but the easy version is almost a subtask of the hard version. Note that the constraints and the output format are different. You are given a string $s$ consisting of $n$ lowercase Latin letters. You have to color all its characters one of the two colors (each character to exactly one color, the same letters can be colored the same or different colors, i.e. you can choose exactly one color for each index in $s$). After coloring, you can swap any two neighboring characters of the string that are colored different colors. You can perform such an operation arbitrary (possibly, zero) number of times. The goal is to make the string sorted, i.e. all characters should be in alphabetical order. Your task is to say if it is possible to color the given string so that after coloring it can become sorted by some sequence of swaps. Note that you have to restore only coloring, not the sequence of swaps. -----Input----- The first line of the input contains one integer $n$ ($1 \le n \le 200$) β€” the length of $s$. The second line of the input contains the string $s$ consisting of exactly $n$ lowercase Latin letters. -----Output----- If it is impossible to color the given string so that after coloring it can become sorted by some sequence of swaps, print "NO" (without quotes) in the first line. Otherwise, print "YES" in the first line and any correct coloring in the second line (the coloring is the string consisting of $n$ characters, the $i$-th character should be '0' if the $i$-th character is colored the first color and '1' otherwise). -----Examples----- Input 9 abacbecfd Output YES 001010101 Input 8 aaabbcbb Output YES 01011011 Input 7 abcdedc Output NO Input 5 abcde Output YES 00000
d = [([0] * 26) for _ in range(26)] n = int(input()) s = input() ans = [-1] * n max_ = 0 for i, x in enumerate(s): pos = ord(x) - 97 val = None if pos == 25: val = 0 else: for _, x in enumerate(d[pos + 1]): if x == 0: val = _ break max_ = max(max_, val) ans[i] = str(val) for j in range(pos, -1, -1): d[j][val] = 1 if max_ > 1: print("NO") else: print("YES") print("".join(ans))
ASSIGN VAR BIN_OP LIST NUMBER NUMBER VAR FUNC_CALL VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR BIN_OP LIST NUMBER VAR ASSIGN VAR NUMBER FOR VAR VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER ASSIGN VAR NONE IF VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER IF VAR NUMBER ASSIGN VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR VAR NUMBER NUMBER ASSIGN VAR VAR VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR FUNC_CALL STRING VAR
This is an easy version of the problem. The actual problems are different, but the easy version is almost a subtask of the hard version. Note that the constraints and the output format are different. You are given a string $s$ consisting of $n$ lowercase Latin letters. You have to color all its characters one of the two colors (each character to exactly one color, the same letters can be colored the same or different colors, i.e. you can choose exactly one color for each index in $s$). After coloring, you can swap any two neighboring characters of the string that are colored different colors. You can perform such an operation arbitrary (possibly, zero) number of times. The goal is to make the string sorted, i.e. all characters should be in alphabetical order. Your task is to say if it is possible to color the given string so that after coloring it can become sorted by some sequence of swaps. Note that you have to restore only coloring, not the sequence of swaps. -----Input----- The first line of the input contains one integer $n$ ($1 \le n \le 200$) β€” the length of $s$. The second line of the input contains the string $s$ consisting of exactly $n$ lowercase Latin letters. -----Output----- If it is impossible to color the given string so that after coloring it can become sorted by some sequence of swaps, print "NO" (without quotes) in the first line. Otherwise, print "YES" in the first line and any correct coloring in the second line (the coloring is the string consisting of $n$ characters, the $i$-th character should be '0' if the $i$-th character is colored the first color and '1' otherwise). -----Examples----- Input 9 abacbecfd Output YES 001010101 Input 8 aaabbcbb Output YES 01011011 Input 7 abcdedc Output NO Input 5 abcde Output YES 00000
def char_to_int(c): res = ord(c) - ord("a") return res def int_to_char(n): n_ord = ord("a") + n res = chr(n_ord) return res n = int(input()) s = input() maxdp = [0] * 26 dp = [1] * n for i in range(n): si = s[i] isi = char_to_int(si) for c in range(25, isi, -1): dp[i] = max(dp[i], maxdp[c] + 1) maxdp[isi] = max(maxdp[isi], dp[i]) m = max(maxdp) print(m) print(" ".join(map(str, dp)))
FUNC_DEF ASSIGN VAR BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR STRING RETURN VAR FUNC_DEF ASSIGN VAR BIN_OP FUNC_CALL VAR STRING VAR ASSIGN VAR FUNC_CALL VAR VAR RETURN VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR BIN_OP LIST NUMBER NUMBER ASSIGN VAR BIN_OP LIST NUMBER VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR NUMBER VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR VAR BIN_OP VAR VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR FUNC_CALL STRING FUNC_CALL VAR VAR VAR
This is an easy version of the problem. The actual problems are different, but the easy version is almost a subtask of the hard version. Note that the constraints and the output format are different. You are given a string $s$ consisting of $n$ lowercase Latin letters. You have to color all its characters one of the two colors (each character to exactly one color, the same letters can be colored the same or different colors, i.e. you can choose exactly one color for each index in $s$). After coloring, you can swap any two neighboring characters of the string that are colored different colors. You can perform such an operation arbitrary (possibly, zero) number of times. The goal is to make the string sorted, i.e. all characters should be in alphabetical order. Your task is to say if it is possible to color the given string so that after coloring it can become sorted by some sequence of swaps. Note that you have to restore only coloring, not the sequence of swaps. -----Input----- The first line of the input contains one integer $n$ ($1 \le n \le 200$) β€” the length of $s$. The second line of the input contains the string $s$ consisting of exactly $n$ lowercase Latin letters. -----Output----- If it is impossible to color the given string so that after coloring it can become sorted by some sequence of swaps, print "NO" (without quotes) in the first line. Otherwise, print "YES" in the first line and any correct coloring in the second line (the coloring is the string consisting of $n$ characters, the $i$-th character should be '0' if the $i$-th character is colored the first color and '1' otherwise). -----Examples----- Input 9 abacbecfd Output YES 001010101 Input 8 aaabbcbb Output YES 01011011 Input 7 abcdedc Output NO Input 5 abcde Output YES 00000
n = int(input()) s = input() ans = [-1] * n f = True for i in range(n): if ans[i] == -1: ans[i] = 0 for j in range(i + 1, n): if s[j] < s[i]: if ans[j] == -1: ans[j] = (ans[i] - 1) ** 2 else: now = ans[j] new = (ans[i] - 1) ** 2 if new != now: f = False else: ans[j] = new if not f: print("NO") else: print("YES") for i in range(n): print(ans[i], end="")
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR BIN_OP LIST NUMBER VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR VAR NUMBER ASSIGN VAR VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER VAR IF VAR VAR VAR VAR IF VAR VAR NUMBER ASSIGN VAR VAR BIN_OP BIN_OP VAR VAR NUMBER NUMBER ASSIGN VAR VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER NUMBER IF VAR VAR ASSIGN VAR NUMBER ASSIGN VAR VAR VAR IF VAR EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR STRING FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR VAR STRING
This is an easy version of the problem. The actual problems are different, but the easy version is almost a subtask of the hard version. Note that the constraints and the output format are different. You are given a string $s$ consisting of $n$ lowercase Latin letters. You have to color all its characters one of the two colors (each character to exactly one color, the same letters can be colored the same or different colors, i.e. you can choose exactly one color for each index in $s$). After coloring, you can swap any two neighboring characters of the string that are colored different colors. You can perform such an operation arbitrary (possibly, zero) number of times. The goal is to make the string sorted, i.e. all characters should be in alphabetical order. Your task is to say if it is possible to color the given string so that after coloring it can become sorted by some sequence of swaps. Note that you have to restore only coloring, not the sequence of swaps. -----Input----- The first line of the input contains one integer $n$ ($1 \le n \le 200$) β€” the length of $s$. The second line of the input contains the string $s$ consisting of exactly $n$ lowercase Latin letters. -----Output----- If it is impossible to color the given string so that after coloring it can become sorted by some sequence of swaps, print "NO" (without quotes) in the first line. Otherwise, print "YES" in the first line and any correct coloring in the second line (the coloring is the string consisting of $n$ characters, the $i$-th character should be '0' if the $i$-th character is colored the first color and '1' otherwise). -----Examples----- Input 9 abacbecfd Output YES 001010101 Input 8 aaabbcbb Output YES 01011011 Input 7 abcdedc Output NO Input 5 abcde Output YES 00000
def f(s, n): s = list(s) temp = list(zip(s, range(n))) ans = [-1] * n for i in range(0, n): for j in range(n - i - 1): if temp[j][0] > temp[j + 1][0]: if ans[temp[j][1]] == ans[temp[j + 1][1]] == -1: temp[j], temp[j + 1] = temp[j + 1], temp[j] ans[temp[j][1]] = 1 ans[temp[j + 1][1]] = 0 elif ans[temp[j][1]] != -1 and ans[temp[j + 1][1]] == -1: ans[temp[j + 1][1]] = ans[temp[j][1]] ^ 1 temp[j], temp[j + 1] = temp[j + 1], temp[j] elif ans[temp[j + 1][1]] != -1 and ans[temp[j][1]] == -1: ans[temp[j][1]] = ans[temp[j + 1][1]] ^ 1 temp[j], temp[j + 1] = temp[j + 1], temp[j] elif ans[temp[j + 1][1]] ^ ans[temp[j][1]] == 1: temp[j], temp[j + 1] = temp[j + 1], temp[j] l = "" for i in range(len(temp)): l += temp[i][0] if ans[temp[i][1]] == -1: ans[temp[i][1]] = 0 if list(l) != sorted(l): return "NO" print("YES") print(*ans, sep="") return "" n = int(input()) s = input() print(f(s, n))
FUNC_DEF ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP LIST NUMBER VAR FOR VAR FUNC_CALL VAR NUMBER VAR FOR VAR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR NUMBER IF VAR VAR NUMBER VAR BIN_OP VAR NUMBER NUMBER IF VAR VAR VAR NUMBER VAR VAR BIN_OP VAR NUMBER NUMBER NUMBER ASSIGN VAR VAR VAR BIN_OP VAR NUMBER VAR BIN_OP VAR NUMBER VAR VAR ASSIGN VAR VAR VAR NUMBER NUMBER ASSIGN VAR VAR BIN_OP VAR NUMBER NUMBER NUMBER IF VAR VAR VAR NUMBER NUMBER VAR VAR BIN_OP VAR NUMBER NUMBER NUMBER ASSIGN VAR VAR BIN_OP VAR NUMBER NUMBER BIN_OP VAR VAR VAR NUMBER NUMBER ASSIGN VAR VAR VAR BIN_OP VAR NUMBER VAR BIN_OP VAR NUMBER VAR VAR IF VAR VAR BIN_OP VAR NUMBER NUMBER NUMBER VAR VAR VAR NUMBER NUMBER ASSIGN VAR VAR VAR NUMBER BIN_OP VAR VAR BIN_OP VAR NUMBER NUMBER NUMBER ASSIGN VAR VAR VAR BIN_OP VAR NUMBER VAR BIN_OP VAR NUMBER VAR VAR IF BIN_OP VAR VAR BIN_OP VAR NUMBER NUMBER VAR VAR VAR NUMBER NUMBER ASSIGN VAR VAR VAR BIN_OP VAR NUMBER VAR BIN_OP VAR NUMBER VAR VAR ASSIGN VAR STRING FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR VAR VAR NUMBER IF VAR VAR VAR NUMBER NUMBER ASSIGN VAR VAR VAR NUMBER NUMBER IF FUNC_CALL VAR VAR FUNC_CALL VAR VAR RETURN STRING EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR VAR STRING RETURN STRING ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR
This is an easy version of the problem. The actual problems are different, but the easy version is almost a subtask of the hard version. Note that the constraints and the output format are different. You are given a string $s$ consisting of $n$ lowercase Latin letters. You have to color all its characters one of the two colors (each character to exactly one color, the same letters can be colored the same or different colors, i.e. you can choose exactly one color for each index in $s$). After coloring, you can swap any two neighboring characters of the string that are colored different colors. You can perform such an operation arbitrary (possibly, zero) number of times. The goal is to make the string sorted, i.e. all characters should be in alphabetical order. Your task is to say if it is possible to color the given string so that after coloring it can become sorted by some sequence of swaps. Note that you have to restore only coloring, not the sequence of swaps. -----Input----- The first line of the input contains one integer $n$ ($1 \le n \le 200$) β€” the length of $s$. The second line of the input contains the string $s$ consisting of exactly $n$ lowercase Latin letters. -----Output----- If it is impossible to color the given string so that after coloring it can become sorted by some sequence of swaps, print "NO" (without quotes) in the first line. Otherwise, print "YES" in the first line and any correct coloring in the second line (the coloring is the string consisting of $n$ characters, the $i$-th character should be '0' if the $i$-th character is colored the first color and '1' otherwise). -----Examples----- Input 9 abacbecfd Output YES 001010101 Input 8 aaabbcbb Output YES 01011011 Input 7 abcdedc Output NO Input 5 abcde Output YES 00000
import sys input = lambda: sys.stdin.readline().rstrip("\r\n") n = int(input()) a = input() ck = [] ans = [0] * n for i, v in enumerate(a): for j in range(len(ck)): if ck[j][-1] <= v: ck[j].append(v) ans[i] = j + 1 break if not ans[i]: ck.append([v]) ans[i] = len(ck) print(len(ck)) print(*ans)
IMPORT ASSIGN VAR FUNC_CALL FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR LIST ASSIGN VAR BIN_OP LIST NUMBER VAR FOR VAR VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR VAR NUMBER VAR EXPR FUNC_CALL VAR VAR VAR ASSIGN VAR VAR BIN_OP VAR NUMBER IF VAR VAR EXPR FUNC_CALL VAR LIST VAR ASSIGN VAR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR
This is an easy version of the problem. The actual problems are different, but the easy version is almost a subtask of the hard version. Note that the constraints and the output format are different. You are given a string $s$ consisting of $n$ lowercase Latin letters. You have to color all its characters one of the two colors (each character to exactly one color, the same letters can be colored the same or different colors, i.e. you can choose exactly one color for each index in $s$). After coloring, you can swap any two neighboring characters of the string that are colored different colors. You can perform such an operation arbitrary (possibly, zero) number of times. The goal is to make the string sorted, i.e. all characters should be in alphabetical order. Your task is to say if it is possible to color the given string so that after coloring it can become sorted by some sequence of swaps. Note that you have to restore only coloring, not the sequence of swaps. -----Input----- The first line of the input contains one integer $n$ ($1 \le n \le 200$) β€” the length of $s$. The second line of the input contains the string $s$ consisting of exactly $n$ lowercase Latin letters. -----Output----- If it is impossible to color the given string so that after coloring it can become sorted by some sequence of swaps, print "NO" (without quotes) in the first line. Otherwise, print "YES" in the first line and any correct coloring in the second line (the coloring is the string consisting of $n$ characters, the $i$-th character should be '0' if the $i$-th character is colored the first color and '1' otherwise). -----Examples----- Input 9 abacbecfd Output YES 001010101 Input 8 aaabbcbb Output YES 01011011 Input 7 abcdedc Output NO Input 5 abcde Output YES 00000
def ispossible(a, col, ind): for j in range(ind - 1, -1, -1): if a[j][0] <= a[ind][0]: return 1 if a[j][2] == col: return 0 return 1 n = int(input()) S = input() s = [] col = [(-1) for i in range(n)] c = 0 for i in S: if ord("a") <= ord(i) <= ord("z"): s.append([ord(i) - ord("a"), c, -1]) c += 1 possible = 1 for i in range(26): for j in range(n): if s[j][0] == i: if ispossible(s, 0, j) and s[j][2] != 1: ind = j s[j][2] = 0 for k in range(ind, -1, -1): if k == 0 or s[k - 1][0] <= s[k][0]: break s[k - 1][2] = 1 s[k], s[k - 1] = s[k - 1], s[k] elif ispossible(s, 1, j) and s[j][2] != 0: s[j][2] = 1 ind = j for k in range(ind, -1, -1): if k == 0 or s[k - 1][0] <= s[k][0]: break s[k - 1][2] = 0 s[k], s[k - 1] = s[k - 1], s[k] else: possible = 0 break if possible: print("YES") ans = [(0) for i in range(n)] for i in s: ans[i[1]] = i[2] for i in ans: print(i, end="") else: print("NO")
FUNC_DEF FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER IF VAR VAR NUMBER VAR VAR NUMBER RETURN NUMBER IF VAR VAR NUMBER VAR RETURN NUMBER RETURN NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR LIST ASSIGN VAR NUMBER VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER FOR VAR VAR IF FUNC_CALL VAR STRING FUNC_CALL VAR VAR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR LIST BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR STRING VAR NUMBER VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR VAR NUMBER VAR IF FUNC_CALL VAR VAR NUMBER VAR VAR VAR NUMBER NUMBER ASSIGN VAR VAR ASSIGN VAR VAR NUMBER NUMBER FOR VAR FUNC_CALL VAR VAR NUMBER NUMBER IF VAR NUMBER VAR BIN_OP VAR NUMBER NUMBER VAR VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER NUMBER NUMBER ASSIGN VAR VAR VAR BIN_OP VAR NUMBER VAR BIN_OP VAR NUMBER VAR VAR IF FUNC_CALL VAR VAR NUMBER VAR VAR VAR NUMBER NUMBER ASSIGN VAR VAR NUMBER NUMBER ASSIGN VAR VAR FOR VAR FUNC_CALL VAR VAR NUMBER NUMBER IF VAR NUMBER VAR BIN_OP VAR NUMBER NUMBER VAR VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER NUMBER NUMBER ASSIGN VAR VAR VAR BIN_OP VAR NUMBER VAR BIN_OP VAR NUMBER VAR VAR ASSIGN VAR NUMBER IF VAR EXPR FUNC_CALL VAR STRING ASSIGN VAR NUMBER VAR FUNC_CALL VAR VAR FOR VAR VAR ASSIGN VAR VAR NUMBER VAR NUMBER FOR VAR VAR EXPR FUNC_CALL VAR VAR STRING EXPR FUNC_CALL VAR STRING
This is an easy version of the problem. The actual problems are different, but the easy version is almost a subtask of the hard version. Note that the constraints and the output format are different. You are given a string $s$ consisting of $n$ lowercase Latin letters. You have to color all its characters one of the two colors (each character to exactly one color, the same letters can be colored the same or different colors, i.e. you can choose exactly one color for each index in $s$). After coloring, you can swap any two neighboring characters of the string that are colored different colors. You can perform such an operation arbitrary (possibly, zero) number of times. The goal is to make the string sorted, i.e. all characters should be in alphabetical order. Your task is to say if it is possible to color the given string so that after coloring it can become sorted by some sequence of swaps. Note that you have to restore only coloring, not the sequence of swaps. -----Input----- The first line of the input contains one integer $n$ ($1 \le n \le 200$) β€” the length of $s$. The second line of the input contains the string $s$ consisting of exactly $n$ lowercase Latin letters. -----Output----- If it is impossible to color the given string so that after coloring it can become sorted by some sequence of swaps, print "NO" (without quotes) in the first line. Otherwise, print "YES" in the first line and any correct coloring in the second line (the coloring is the string consisting of $n$ characters, the $i$-th character should be '0' if the $i$-th character is colored the first color and '1' otherwise). -----Examples----- Input 9 abacbecfd Output YES 001010101 Input 8 aaabbcbb Output YES 01011011 Input 7 abcdedc Output NO Input 5 abcde Output YES 00000
n = int(input()) s = input() last_1 = "a" last_2 = "a" res = True r = [] for c in s: if c < last_1: if c < last_2: res = False else: r.append("1") last_2 = max(last_2, c) else: last_1 = max(c, last_1) r.append("0") if res: print("YES") print("".join(r)) else: print("NO")
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR STRING ASSIGN VAR STRING ASSIGN VAR NUMBER ASSIGN VAR LIST FOR VAR VAR IF VAR VAR IF VAR VAR ASSIGN VAR NUMBER EXPR FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR STRING IF VAR EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR FUNC_CALL STRING VAR EXPR FUNC_CALL VAR STRING
This is an easy version of the problem. The actual problems are different, but the easy version is almost a subtask of the hard version. Note that the constraints and the output format are different. You are given a string $s$ consisting of $n$ lowercase Latin letters. You have to color all its characters one of the two colors (each character to exactly one color, the same letters can be colored the same or different colors, i.e. you can choose exactly one color for each index in $s$). After coloring, you can swap any two neighboring characters of the string that are colored different colors. You can perform such an operation arbitrary (possibly, zero) number of times. The goal is to make the string sorted, i.e. all characters should be in alphabetical order. Your task is to say if it is possible to color the given string so that after coloring it can become sorted by some sequence of swaps. Note that you have to restore only coloring, not the sequence of swaps. -----Input----- The first line of the input contains one integer $n$ ($1 \le n \le 200$) β€” the length of $s$. The second line of the input contains the string $s$ consisting of exactly $n$ lowercase Latin letters. -----Output----- If it is impossible to color the given string so that after coloring it can become sorted by some sequence of swaps, print "NO" (without quotes) in the first line. Otherwise, print "YES" in the first line and any correct coloring in the second line (the coloring is the string consisting of $n$ characters, the $i$-th character should be '0' if the $i$-th character is colored the first color and '1' otherwise). -----Examples----- Input 9 abacbecfd Output YES 001010101 Input 8 aaabbcbb Output YES 01011011 Input 7 abcdedc Output NO Input 5 abcde Output YES 00000
n, ar, x, y, d = int(input()), input(), "a", "a", "" for i in ar: if i >= x: d += "0" x = i elif i >= y: d += "1" y = i else: print("NO") exit() print("YES" + "\n" + d)
ASSIGN VAR VAR VAR VAR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR STRING STRING STRING FOR VAR VAR IF VAR VAR VAR STRING ASSIGN VAR VAR IF VAR VAR VAR STRING ASSIGN VAR VAR EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR EXPR FUNC_CALL VAR BIN_OP BIN_OP STRING STRING VAR
This is an easy version of the problem. The actual problems are different, but the easy version is almost a subtask of the hard version. Note that the constraints and the output format are different. You are given a string $s$ consisting of $n$ lowercase Latin letters. You have to color all its characters one of the two colors (each character to exactly one color, the same letters can be colored the same or different colors, i.e. you can choose exactly one color for each index in $s$). After coloring, you can swap any two neighboring characters of the string that are colored different colors. You can perform such an operation arbitrary (possibly, zero) number of times. The goal is to make the string sorted, i.e. all characters should be in alphabetical order. Your task is to say if it is possible to color the given string so that after coloring it can become sorted by some sequence of swaps. Note that you have to restore only coloring, not the sequence of swaps. -----Input----- The first line of the input contains one integer $n$ ($1 \le n \le 200$) β€” the length of $s$. The second line of the input contains the string $s$ consisting of exactly $n$ lowercase Latin letters. -----Output----- If it is impossible to color the given string so that after coloring it can become sorted by some sequence of swaps, print "NO" (without quotes) in the first line. Otherwise, print "YES" in the first line and any correct coloring in the second line (the coloring is the string consisting of $n$ characters, the $i$-th character should be '0' if the $i$-th character is colored the first color and '1' otherwise). -----Examples----- Input 9 abacbecfd Output YES 001010101 Input 8 aaabbcbb Output YES 01011011 Input 7 abcdedc Output NO Input 5 abcde Output YES 00000
def find(x): r = x while r != f[r]: r = f[r] while x != r: pre = f[x] f[x] = r x = pre return r a = input() n = int(a) a = input() str = list(a) id = [0] * n f = [0] * 2 * n name = [0] * 2 * n for i in range(n): id[i] = i for i in range(2 * n): f[i] = i name[i] = -1 Find = 0 for i in range(n): if Find: break for j in range(n - i - 1): if str[j] > str[j + 1]: str[j], str[j + 1] = str[j + 1], str[j] id[j], id[j + 1] = id[j + 1], id[j] fx = find(id[j]) fnx = find(id[j] + n) fy = find(id[j + 1]) fny = find(id[j + 1] + n) if fx == fy or fnx == fny: Find = 1 break else: f[fx] = fny f[fy] = fnx if Find: print("NO") else: print("YES") for i in range(n): fx = find(i) if name[fx] < 0: name[fx] = 0 if fx >= n: name[find(fx - n)] = 1 else: name[find(fx + n)] = 1 print("{:d}".format(name[fx]), end="")
FUNC_DEF ASSIGN VAR VAR WHILE VAR VAR VAR ASSIGN VAR VAR VAR WHILE VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR VAR RETURN VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP LIST NUMBER VAR ASSIGN VAR BIN_OP BIN_OP LIST NUMBER NUMBER VAR ASSIGN VAR BIN_OP BIN_OP LIST NUMBER NUMBER VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR FOR VAR FUNC_CALL VAR BIN_OP NUMBER VAR ASSIGN VAR VAR VAR ASSIGN VAR VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR FOR VAR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR NUMBER IF VAR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR VAR VAR BIN_OP VAR NUMBER VAR BIN_OP VAR NUMBER VAR VAR ASSIGN VAR VAR VAR BIN_OP VAR NUMBER VAR BIN_OP VAR NUMBER VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR BIN_OP VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR BIN_OP VAR BIN_OP VAR NUMBER VAR IF VAR VAR VAR VAR ASSIGN VAR NUMBER ASSIGN VAR VAR VAR ASSIGN VAR VAR VAR IF VAR EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR STRING FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR IF VAR VAR NUMBER ASSIGN VAR VAR NUMBER IF VAR VAR ASSIGN VAR FUNC_CALL VAR BIN_OP VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL STRING VAR VAR STRING
This is an easy version of the problem. The actual problems are different, but the easy version is almost a subtask of the hard version. Note that the constraints and the output format are different. You are given a string $s$ consisting of $n$ lowercase Latin letters. You have to color all its characters one of the two colors (each character to exactly one color, the same letters can be colored the same or different colors, i.e. you can choose exactly one color for each index in $s$). After coloring, you can swap any two neighboring characters of the string that are colored different colors. You can perform such an operation arbitrary (possibly, zero) number of times. The goal is to make the string sorted, i.e. all characters should be in alphabetical order. Your task is to say if it is possible to color the given string so that after coloring it can become sorted by some sequence of swaps. Note that you have to restore only coloring, not the sequence of swaps. -----Input----- The first line of the input contains one integer $n$ ($1 \le n \le 200$) β€” the length of $s$. The second line of the input contains the string $s$ consisting of exactly $n$ lowercase Latin letters. -----Output----- If it is impossible to color the given string so that after coloring it can become sorted by some sequence of swaps, print "NO" (without quotes) in the first line. Otherwise, print "YES" in the first line and any correct coloring in the second line (the coloring is the string consisting of $n$ characters, the $i$-th character should be '0' if the $i$-th character is colored the first color and '1' otherwise). -----Examples----- Input 9 abacbecfd Output YES 001010101 Input 8 aaabbcbb Output YES 01011011 Input 7 abcdedc Output NO Input 5 abcde Output YES 00000
def r(t=int): return list(map(t, input().split())) def ri(t=int): return t(input()) def cd(it): ret_val = dict() for v in it: ret_val[v] = ret_val.get(v, 0) + 1 return ret_val n = ri() a = input() ans = [0] * n alphabet = "abcdefghijklmnopqrstuvwxyzZ" last = [alphabet, alphabet] for i, ai in enumerate(a): try: a1 = last[0].index(ai) except ValueError: a1 = 100 try: a2 = last[1].index(ai) except ValueError: a2 = 100 m = min(a1, a2) if m != 100: if a1 < a2: last[0] = last[0][a1:] ans[i] = 0 else: last[1] = last[1][a2:] ans[i] = 1 else: print("NO") break else: print("YES") print("".join(str(i) for i in ans))
FUNC_DEF VAR RETURN FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR FUNC_DEF VAR RETURN FUNC_CALL VAR FUNC_CALL VAR FUNC_DEF ASSIGN VAR FUNC_CALL VAR FOR VAR VAR ASSIGN VAR VAR BIN_OP FUNC_CALL VAR VAR NUMBER NUMBER RETURN VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR BIN_OP LIST NUMBER VAR ASSIGN VAR STRING ASSIGN VAR LIST VAR VAR FOR VAR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR NUMBER VAR VAR ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR NUMBER VAR VAR ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR IF VAR NUMBER IF VAR VAR ASSIGN VAR NUMBER VAR NUMBER VAR ASSIGN VAR VAR NUMBER ASSIGN VAR NUMBER VAR NUMBER VAR ASSIGN VAR VAR NUMBER EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR FUNC_CALL STRING FUNC_CALL VAR VAR VAR VAR
This is an easy version of the problem. The actual problems are different, but the easy version is almost a subtask of the hard version. Note that the constraints and the output format are different. You are given a string $s$ consisting of $n$ lowercase Latin letters. You have to color all its characters one of the two colors (each character to exactly one color, the same letters can be colored the same or different colors, i.e. you can choose exactly one color for each index in $s$). After coloring, you can swap any two neighboring characters of the string that are colored different colors. You can perform such an operation arbitrary (possibly, zero) number of times. The goal is to make the string sorted, i.e. all characters should be in alphabetical order. Your task is to say if it is possible to color the given string so that after coloring it can become sorted by some sequence of swaps. Note that you have to restore only coloring, not the sequence of swaps. -----Input----- The first line of the input contains one integer $n$ ($1 \le n \le 200$) β€” the length of $s$. The second line of the input contains the string $s$ consisting of exactly $n$ lowercase Latin letters. -----Output----- If it is impossible to color the given string so that after coloring it can become sorted by some sequence of swaps, print "NO" (without quotes) in the first line. Otherwise, print "YES" in the first line and any correct coloring in the second line (the coloring is the string consisting of $n$ characters, the $i$-th character should be '0' if the $i$-th character is colored the first color and '1' otherwise). -----Examples----- Input 9 abacbecfd Output YES 001010101 Input 8 aaabbcbb Output YES 01011011 Input 7 abcdedc Output NO Input 5 abcde Output YES 00000
n = int(input()) s = input() colors = ["_"] * 26 ans = [""] * n idx = 0 for c in s: for i in range(26): if c >= colors[i]: ans[idx] = str(i + 1) colors[i] = c break idx += 1 print(26 - colors.count("_")) print(" ".join(ans))
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR BIN_OP LIST STRING NUMBER ASSIGN VAR BIN_OP LIST STRING VAR ASSIGN VAR NUMBER FOR VAR VAR FOR VAR FUNC_CALL VAR NUMBER IF VAR VAR VAR ASSIGN VAR VAR FUNC_CALL VAR BIN_OP VAR NUMBER ASSIGN VAR VAR VAR VAR NUMBER EXPR FUNC_CALL VAR BIN_OP NUMBER FUNC_CALL VAR STRING EXPR FUNC_CALL VAR FUNC_CALL STRING VAR
This is an easy version of the problem. The actual problems are different, but the easy version is almost a subtask of the hard version. Note that the constraints and the output format are different. You are given a string $s$ consisting of $n$ lowercase Latin letters. You have to color all its characters one of the two colors (each character to exactly one color, the same letters can be colored the same or different colors, i.e. you can choose exactly one color for each index in $s$). After coloring, you can swap any two neighboring characters of the string that are colored different colors. You can perform such an operation arbitrary (possibly, zero) number of times. The goal is to make the string sorted, i.e. all characters should be in alphabetical order. Your task is to say if it is possible to color the given string so that after coloring it can become sorted by some sequence of swaps. Note that you have to restore only coloring, not the sequence of swaps. -----Input----- The first line of the input contains one integer $n$ ($1 \le n \le 200$) β€” the length of $s$. The second line of the input contains the string $s$ consisting of exactly $n$ lowercase Latin letters. -----Output----- If it is impossible to color the given string so that after coloring it can become sorted by some sequence of swaps, print "NO" (without quotes) in the first line. Otherwise, print "YES" in the first line and any correct coloring in the second line (the coloring is the string consisting of $n$ characters, the $i$-th character should be '0' if the $i$-th character is colored the first color and '1' otherwise). -----Examples----- Input 9 abacbecfd Output YES 001010101 Input 8 aaabbcbb Output YES 01011011 Input 7 abcdedc Output NO Input 5 abcde Output YES 00000
n = int(input()) s = input() d = "" flag = False x = y = "a" for i in s: if i >= x: d += "0" x = i elif i >= y: d += "1" y = i else: print("NO") flag = True break if not flag: print("YES") print(d)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR STRING ASSIGN VAR NUMBER ASSIGN VAR VAR STRING FOR VAR VAR IF VAR VAR VAR STRING ASSIGN VAR VAR IF VAR VAR VAR STRING ASSIGN VAR VAR EXPR FUNC_CALL VAR STRING ASSIGN VAR NUMBER IF VAR EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR VAR
This is an easy version of the problem. The actual problems are different, but the easy version is almost a subtask of the hard version. Note that the constraints and the output format are different. You are given a string $s$ consisting of $n$ lowercase Latin letters. You have to color all its characters one of the two colors (each character to exactly one color, the same letters can be colored the same or different colors, i.e. you can choose exactly one color for each index in $s$). After coloring, you can swap any two neighboring characters of the string that are colored different colors. You can perform such an operation arbitrary (possibly, zero) number of times. The goal is to make the string sorted, i.e. all characters should be in alphabetical order. Your task is to say if it is possible to color the given string so that after coloring it can become sorted by some sequence of swaps. Note that you have to restore only coloring, not the sequence of swaps. -----Input----- The first line of the input contains one integer $n$ ($1 \le n \le 200$) β€” the length of $s$. The second line of the input contains the string $s$ consisting of exactly $n$ lowercase Latin letters. -----Output----- If it is impossible to color the given string so that after coloring it can become sorted by some sequence of swaps, print "NO" (without quotes) in the first line. Otherwise, print "YES" in the first line and any correct coloring in the second line (the coloring is the string consisting of $n$ characters, the $i$-th character should be '0' if the $i$-th character is colored the first color and '1' otherwise). -----Examples----- Input 9 abacbecfd Output YES 001010101 Input 8 aaabbcbb Output YES 01011011 Input 7 abcdedc Output NO Input 5 abcde Output YES 00000
n = int(input()) s = input() poss = 1 l1 = [] l2 = [] arr = [(0) for i in range(n)] for i in range(n): if l1 == []: l1.append(s[i]) arr[i] = 0 elif ord(s[i]) >= ord(l1[-1]): l1.append(s[i]) arr[i] = 0 elif l2 == []: l2.append(s[i]) arr[i] = 1 elif ord(s[i]) >= ord(l2[-1]): l2.append(s[i]) arr[i] = 1 else: poss = 0 break if poss == 0: print("NO") else: print("YES") for i in arr: print(i, end="")
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR LIST ASSIGN VAR LIST ASSIGN VAR NUMBER VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR VAR IF VAR LIST EXPR FUNC_CALL VAR VAR VAR ASSIGN VAR VAR NUMBER IF FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR VAR VAR ASSIGN VAR VAR NUMBER IF VAR LIST EXPR FUNC_CALL VAR VAR VAR ASSIGN VAR VAR NUMBER IF FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR VAR VAR ASSIGN VAR VAR NUMBER ASSIGN VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR STRING FOR VAR VAR EXPR FUNC_CALL VAR VAR STRING
This is an easy version of the problem. The actual problems are different, but the easy version is almost a subtask of the hard version. Note that the constraints and the output format are different. You are given a string $s$ consisting of $n$ lowercase Latin letters. You have to color all its characters one of the two colors (each character to exactly one color, the same letters can be colored the same or different colors, i.e. you can choose exactly one color for each index in $s$). After coloring, you can swap any two neighboring characters of the string that are colored different colors. You can perform such an operation arbitrary (possibly, zero) number of times. The goal is to make the string sorted, i.e. all characters should be in alphabetical order. Your task is to say if it is possible to color the given string so that after coloring it can become sorted by some sequence of swaps. Note that you have to restore only coloring, not the sequence of swaps. -----Input----- The first line of the input contains one integer $n$ ($1 \le n \le 200$) β€” the length of $s$. The second line of the input contains the string $s$ consisting of exactly $n$ lowercase Latin letters. -----Output----- If it is impossible to color the given string so that after coloring it can become sorted by some sequence of swaps, print "NO" (without quotes) in the first line. Otherwise, print "YES" in the first line and any correct coloring in the second line (the coloring is the string consisting of $n$ characters, the $i$-th character should be '0' if the $i$-th character is colored the first color and '1' otherwise). -----Examples----- Input 9 abacbecfd Output YES 001010101 Input 8 aaabbcbb Output YES 01011011 Input 7 abcdedc Output NO Input 5 abcde Output YES 00000
import sys input = sys.stdin.readline l = [0] * 26 n = int(input()) pres = [0] * 30 s = input() s = s[: len(s) - 1] res = [1] * n ii = -1 mxx = -1 for i in s: ii += 1 ind = ord(i) - ord("a") lol = 0 mx = 1 for j in range(ind + 1, 26): if pres[j] != 0: lol = 1 if l[j] != 0: if mx < l[j]: mx = l[j] pres[ind] = 1 if lol == 1: l[ind] = mx + 1 res[ii] = mx + 1 if res[ii] > mxx: mxx = res[ii] print(mxx) print(*res)
IMPORT ASSIGN VAR VAR ASSIGN VAR BIN_OP LIST NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR BIN_OP LIST NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR ASSIGN VAR VAR BIN_OP FUNC_CALL VAR VAR NUMBER ASSIGN VAR BIN_OP LIST NUMBER VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR VAR NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR STRING ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER IF VAR VAR NUMBER ASSIGN VAR NUMBER IF VAR VAR NUMBER IF VAR VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR VAR NUMBER IF VAR NUMBER ASSIGN VAR VAR BIN_OP VAR NUMBER ASSIGN VAR VAR BIN_OP VAR NUMBER IF VAR VAR VAR ASSIGN VAR VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR
This is an easy version of the problem. The actual problems are different, but the easy version is almost a subtask of the hard version. Note that the constraints and the output format are different. You are given a string $s$ consisting of $n$ lowercase Latin letters. You have to color all its characters one of the two colors (each character to exactly one color, the same letters can be colored the same or different colors, i.e. you can choose exactly one color for each index in $s$). After coloring, you can swap any two neighboring characters of the string that are colored different colors. You can perform such an operation arbitrary (possibly, zero) number of times. The goal is to make the string sorted, i.e. all characters should be in alphabetical order. Your task is to say if it is possible to color the given string so that after coloring it can become sorted by some sequence of swaps. Note that you have to restore only coloring, not the sequence of swaps. -----Input----- The first line of the input contains one integer $n$ ($1 \le n \le 200$) β€” the length of $s$. The second line of the input contains the string $s$ consisting of exactly $n$ lowercase Latin letters. -----Output----- If it is impossible to color the given string so that after coloring it can become sorted by some sequence of swaps, print "NO" (without quotes) in the first line. Otherwise, print "YES" in the first line and any correct coloring in the second line (the coloring is the string consisting of $n$ characters, the $i$-th character should be '0' if the $i$-th character is colored the first color and '1' otherwise). -----Examples----- Input 9 abacbecfd Output YES 001010101 Input 8 aaabbcbb Output YES 01011011 Input 7 abcdedc Output NO Input 5 abcde Output YES 00000
n, s = int(input()), input() k = {(0): "a", (1): "a"} ans = "" maxColor = 1 for symb in s: for i in range(len(k)): if symb >= k[i]: ans += str(i + 1) + " " if i + 1 > maxColor: maxColor = i + 1 k[i + 1] = "a" k[i] = symb break print(maxColor) print(ans)
ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR DICT NUMBER NUMBER STRING STRING ASSIGN VAR STRING ASSIGN VAR NUMBER FOR VAR VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR VAR VAR VAR BIN_OP FUNC_CALL VAR BIN_OP VAR NUMBER STRING IF BIN_OP VAR NUMBER VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER STRING ASSIGN VAR VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR
This is an easy version of the problem. The actual problems are different, but the easy version is almost a subtask of the hard version. Note that the constraints and the output format are different. You are given a string $s$ consisting of $n$ lowercase Latin letters. You have to color all its characters one of the two colors (each character to exactly one color, the same letters can be colored the same or different colors, i.e. you can choose exactly one color for each index in $s$). After coloring, you can swap any two neighboring characters of the string that are colored different colors. You can perform such an operation arbitrary (possibly, zero) number of times. The goal is to make the string sorted, i.e. all characters should be in alphabetical order. Your task is to say if it is possible to color the given string so that after coloring it can become sorted by some sequence of swaps. Note that you have to restore only coloring, not the sequence of swaps. -----Input----- The first line of the input contains one integer $n$ ($1 \le n \le 200$) β€” the length of $s$. The second line of the input contains the string $s$ consisting of exactly $n$ lowercase Latin letters. -----Output----- If it is impossible to color the given string so that after coloring it can become sorted by some sequence of swaps, print "NO" (without quotes) in the first line. Otherwise, print "YES" in the first line and any correct coloring in the second line (the coloring is the string consisting of $n$ characters, the $i$-th character should be '0' if the $i$-th character is colored the first color and '1' otherwise). -----Examples----- Input 9 abacbecfd Output YES 001010101 Input 8 aaabbcbb Output YES 01011011 Input 7 abcdedc Output NO Input 5 abcde Output YES 00000
n = int(input()) s = input() col = [1] * n prev = [0] * 26 for i in range(n): code = ord(s[i]) - ord("a") if code != 25: col[i] = max(prev[code + 1 :]) + 1 prev[code] = col[i] print(max(col)) print(*col)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR BIN_OP LIST NUMBER VAR ASSIGN VAR BIN_OP LIST NUMBER NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP FUNC_CALL VAR VAR VAR FUNC_CALL VAR STRING IF VAR NUMBER ASSIGN VAR VAR BIN_OP FUNC_CALL VAR VAR BIN_OP VAR NUMBER NUMBER ASSIGN VAR VAR VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR
This is an easy version of the problem. The actual problems are different, but the easy version is almost a subtask of the hard version. Note that the constraints and the output format are different. You are given a string $s$ consisting of $n$ lowercase Latin letters. You have to color all its characters one of the two colors (each character to exactly one color, the same letters can be colored the same or different colors, i.e. you can choose exactly one color for each index in $s$). After coloring, you can swap any two neighboring characters of the string that are colored different colors. You can perform such an operation arbitrary (possibly, zero) number of times. The goal is to make the string sorted, i.e. all characters should be in alphabetical order. Your task is to say if it is possible to color the given string so that after coloring it can become sorted by some sequence of swaps. Note that you have to restore only coloring, not the sequence of swaps. -----Input----- The first line of the input contains one integer $n$ ($1 \le n \le 200$) β€” the length of $s$. The second line of the input contains the string $s$ consisting of exactly $n$ lowercase Latin letters. -----Output----- If it is impossible to color the given string so that after coloring it can become sorted by some sequence of swaps, print "NO" (without quotes) in the first line. Otherwise, print "YES" in the first line and any correct coloring in the second line (the coloring is the string consisting of $n$ characters, the $i$-th character should be '0' if the $i$-th character is colored the first color and '1' otherwise). -----Examples----- Input 9 abacbecfd Output YES 001010101 Input 8 aaabbcbb Output YES 01011011 Input 7 abcdedc Output NO Input 5 abcde Output YES 00000
n = int(input()) s = input() x = "0" flag = "YES" c = 0 initial = s[0] for i in range(1, n): if s[i] < initial: x += "1" if c != 0: if s[i] < c: flag = "NO" break c = s[i] else: x += "0" initial = s[i] print(flag) if flag != "NO": print(x)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR STRING ASSIGN VAR STRING ASSIGN VAR NUMBER ASSIGN VAR VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR IF VAR VAR VAR VAR STRING IF VAR NUMBER IF VAR VAR VAR ASSIGN VAR STRING ASSIGN VAR VAR VAR VAR STRING ASSIGN VAR VAR VAR EXPR FUNC_CALL VAR VAR IF VAR STRING EXPR FUNC_CALL VAR VAR
This is an easy version of the problem. The actual problems are different, but the easy version is almost a subtask of the hard version. Note that the constraints and the output format are different. You are given a string $s$ consisting of $n$ lowercase Latin letters. You have to color all its characters one of the two colors (each character to exactly one color, the same letters can be colored the same or different colors, i.e. you can choose exactly one color for each index in $s$). After coloring, you can swap any two neighboring characters of the string that are colored different colors. You can perform such an operation arbitrary (possibly, zero) number of times. The goal is to make the string sorted, i.e. all characters should be in alphabetical order. Your task is to say if it is possible to color the given string so that after coloring it can become sorted by some sequence of swaps. Note that you have to restore only coloring, not the sequence of swaps. -----Input----- The first line of the input contains one integer $n$ ($1 \le n \le 200$) β€” the length of $s$. The second line of the input contains the string $s$ consisting of exactly $n$ lowercase Latin letters. -----Output----- If it is impossible to color the given string so that after coloring it can become sorted by some sequence of swaps, print "NO" (without quotes) in the first line. Otherwise, print "YES" in the first line and any correct coloring in the second line (the coloring is the string consisting of $n$ characters, the $i$-th character should be '0' if the $i$-th character is colored the first color and '1' otherwise). -----Examples----- Input 9 abacbecfd Output YES 001010101 Input 8 aaabbcbb Output YES 01011011 Input 7 abcdedc Output NO Input 5 abcde Output YES 00000
n = int(input()) a = input() ref = {chr(i + 97): [] for i in range(26)} vis = [0] * n high = a[0] for i in range(1, n): if a[i] >= high: high = a[i] continue ref[a[i]].append(i) flag = 0 mi = -1 for i in ref.keys(): for j in ref[i]: if mi < j: mi = j vis[j] = 1 continue flag = 1 if flag == 1: print("NO") else: print("YES") for i in vis: print(i, end="") print()
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR BIN_OP VAR NUMBER LIST VAR FUNC_CALL VAR NUMBER ASSIGN VAR BIN_OP LIST NUMBER VAR ASSIGN VAR VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR IF VAR VAR VAR ASSIGN VAR VAR VAR EXPR FUNC_CALL VAR VAR VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FOR VAR VAR VAR IF VAR VAR ASSIGN VAR VAR ASSIGN VAR VAR NUMBER ASSIGN VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR STRING FOR VAR VAR EXPR FUNC_CALL VAR VAR STRING EXPR FUNC_CALL VAR
This is an easy version of the problem. The actual problems are different, but the easy version is almost a subtask of the hard version. Note that the constraints and the output format are different. You are given a string $s$ consisting of $n$ lowercase Latin letters. You have to color all its characters one of the two colors (each character to exactly one color, the same letters can be colored the same or different colors, i.e. you can choose exactly one color for each index in $s$). After coloring, you can swap any two neighboring characters of the string that are colored different colors. You can perform such an operation arbitrary (possibly, zero) number of times. The goal is to make the string sorted, i.e. all characters should be in alphabetical order. Your task is to say if it is possible to color the given string so that after coloring it can become sorted by some sequence of swaps. Note that you have to restore only coloring, not the sequence of swaps. -----Input----- The first line of the input contains one integer $n$ ($1 \le n \le 200$) β€” the length of $s$. The second line of the input contains the string $s$ consisting of exactly $n$ lowercase Latin letters. -----Output----- If it is impossible to color the given string so that after coloring it can become sorted by some sequence of swaps, print "NO" (without quotes) in the first line. Otherwise, print "YES" in the first line and any correct coloring in the second line (the coloring is the string consisting of $n$ characters, the $i$-th character should be '0' if the $i$-th character is colored the first color and '1' otherwise). -----Examples----- Input 9 abacbecfd Output YES 001010101 Input 8 aaabbcbb Output YES 01011011 Input 7 abcdedc Output NO Input 5 abcde Output YES 00000
t = 1 while t != 0: t -= 1 n = int(input()) s = input() aux = "abcdefghijklmnopqrstuvwxyz" maxi = [(0) for _ in range(26)] dp = [(1) for _ in range(n)] for i in range(n): for j in range(aux.find(s[i]) + 1, 26): dp[i] = max(dp[i], maxi[j] + 1) maxi[aux.find(s[i])] = dp[i] st = set(dp) print(len(st)) print(*dp)
ASSIGN VAR NUMBER WHILE VAR NUMBER VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR STRING ASSIGN VAR NUMBER VAR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR VAR NUMBER NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR VAR BIN_OP VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR
This is an easy version of the problem. The actual problems are different, but the easy version is almost a subtask of the hard version. Note that the constraints and the output format are different. You are given a string $s$ consisting of $n$ lowercase Latin letters. You have to color all its characters one of the two colors (each character to exactly one color, the same letters can be colored the same or different colors, i.e. you can choose exactly one color for each index in $s$). After coloring, you can swap any two neighboring characters of the string that are colored different colors. You can perform such an operation arbitrary (possibly, zero) number of times. The goal is to make the string sorted, i.e. all characters should be in alphabetical order. Your task is to say if it is possible to color the given string so that after coloring it can become sorted by some sequence of swaps. Note that you have to restore only coloring, not the sequence of swaps. -----Input----- The first line of the input contains one integer $n$ ($1 \le n \le 200$) β€” the length of $s$. The second line of the input contains the string $s$ consisting of exactly $n$ lowercase Latin letters. -----Output----- If it is impossible to color the given string so that after coloring it can become sorted by some sequence of swaps, print "NO" (without quotes) in the first line. Otherwise, print "YES" in the first line and any correct coloring in the second line (the coloring is the string consisting of $n$ characters, the $i$-th character should be '0' if the $i$-th character is colored the first color and '1' otherwise). -----Examples----- Input 9 abacbecfd Output YES 001010101 Input 8 aaabbcbb Output YES 01011011 Input 7 abcdedc Output NO Input 5 abcde Output YES 00000
n = int(input()) a = list(map(lambda c: ord(c) - 97, input())) color = [0] * 26 ans = [0] * n last = -1 for i, c in enumerate(a): col = 0 if last <= c: last = c if color[c] == 0 or color[c] == 3: col = 1 else: col = color[c] else: for j in range(last, c, -1): if color[j] == 0: continue if color[j] == 3: print("NO") return if col == 0: col = color[j] ^ 3 elif col & color[j]: print("NO") return color[c] |= col ans[i] = col - 1 print("YES") print(*ans, sep="")
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER FUNC_CALL VAR ASSIGN VAR BIN_OP LIST NUMBER NUMBER ASSIGN VAR BIN_OP LIST NUMBER VAR ASSIGN VAR NUMBER FOR VAR VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER IF VAR VAR ASSIGN VAR VAR IF VAR VAR NUMBER VAR VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR VAR VAR FOR VAR FUNC_CALL VAR VAR VAR NUMBER IF VAR VAR NUMBER IF VAR VAR NUMBER EXPR FUNC_CALL VAR STRING RETURN IF VAR NUMBER ASSIGN VAR BIN_OP VAR VAR NUMBER IF BIN_OP VAR VAR VAR EXPR FUNC_CALL VAR STRING RETURN VAR VAR VAR ASSIGN VAR VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR VAR STRING