description
stringlengths 171
4k
| code
stringlengths 94
3.98k
| normalized_code
stringlengths 57
4.99k
|
|---|---|---|
This is an easy version of the problem. The actual problems are different, but the easy version is almost a subtask of the hard version. Note that the constraints and the output format are different.
You are given a string $s$ consisting of $n$ lowercase Latin letters.
You have to color all its characters one of the two colors (each character to exactly one color, the same letters can be colored the same or different colors, i.e. you can choose exactly one color for each index in $s$).
After coloring, you can swap any two neighboring characters of the string that are colored different colors. You can perform such an operation arbitrary (possibly, zero) number of times.
The goal is to make the string sorted, i.e. all characters should be in alphabetical order.
Your task is to say if it is possible to color the given string so that after coloring it can become sorted by some sequence of swaps. Note that you have to restore only coloring, not the sequence of swaps.
-----Input-----
The first line of the input contains one integer $n$ ($1 \le n \le 200$) β the length of $s$.
The second line of the input contains the string $s$ consisting of exactly $n$ lowercase Latin letters.
-----Output-----
If it is impossible to color the given string so that after coloring it can become sorted by some sequence of swaps, print "NO" (without quotes) in the first line.
Otherwise, print "YES" in the first line and any correct coloring in the second line (the coloring is the string consisting of $n$ characters, the $i$-th character should be '0' if the $i$-th character is colored the first color and '1' otherwise).
-----Examples-----
Input
9
abacbecfd
Output
YES
001010101
Input
8
aaabbcbb
Output
YES
01011011
Input
7
abcdedc
Output
NO
Input
5
abcde
Output
YES
00000
|
from sys import stdin
input = stdin.readline
for xoxo in range(1):
n = int(input())
s = input()
a = []
b = []
c = [0] * 26
d = []
for i in range(26):
a.append([])
b.append([])
d.append([])
for i in range(n):
c[ord(s[i]) - 97] += 1
for i in range(n):
kk = 0
for j in range(ord(s[i]) - 97):
kk += c[j]
a[ord(s[i]) - 97].append(i + kk)
d[ord(s[i]) - 97].append(i)
c[ord(s[i]) - 97] -= 1
s2 = sorted(s)
s1 = ""
for i in range(1, n + 1):
s1 += s2[i]
for i in range(n):
b[ord(s1[i]) - 97].append(i)
ans = [-1] * n
flag = 0
for i in range(26):
if flag == 1:
break
for j in range(len(a[i])):
if flag == 1:
break
if b[i][j] >= a[i][j]:
continue
else:
if ans[d[i][j]] != 0:
ans[d[i][j]] = 1
else:
flag = 1
break
p = ans[d[i][j]]
for k in range(d[i][j] - 1, d[i][j] - 1 - (a[i][j] - b[i][j]), -1):
if i >= ord(s[k]) - 97:
continue
else:
if ans[k] == -1:
ans[k] = (p + 1) % 2
if ans[k] == p:
flag = 1
break
if flag == 1:
print("NO")
else:
print("YES")
for i in range(n):
if ans[i] == -1:
ans[i] = 0
print(ans[i], end="")
|
ASSIGN VAR VAR FOR VAR FUNC_CALL VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR LIST ASSIGN VAR LIST ASSIGN VAR BIN_OP LIST NUMBER NUMBER ASSIGN VAR LIST FOR VAR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR LIST EXPR FUNC_CALL VAR LIST EXPR FUNC_CALL VAR LIST FOR VAR FUNC_CALL VAR VAR VAR BIN_OP FUNC_CALL VAR VAR VAR NUMBER NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR VAR NUMBER VAR VAR VAR EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR VAR NUMBER BIN_OP VAR VAR EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR VAR NUMBER VAR VAR BIN_OP FUNC_CALL VAR VAR VAR NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR STRING FOR VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER VAR VAR VAR FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR VAR NUMBER VAR ASSIGN VAR BIN_OP LIST NUMBER VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER IF VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR IF VAR NUMBER IF VAR VAR VAR VAR VAR VAR IF VAR VAR VAR VAR NUMBER ASSIGN VAR VAR VAR VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR VAR VAR VAR VAR FOR VAR FUNC_CALL VAR BIN_OP VAR VAR VAR NUMBER BIN_OP BIN_OP VAR VAR VAR NUMBER BIN_OP VAR VAR VAR VAR VAR VAR NUMBER IF VAR BIN_OP FUNC_CALL VAR VAR VAR NUMBER IF VAR VAR NUMBER ASSIGN VAR VAR BIN_OP BIN_OP VAR NUMBER NUMBER IF VAR VAR VAR ASSIGN VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR STRING FOR VAR FUNC_CALL VAR VAR IF VAR VAR NUMBER ASSIGN VAR VAR NUMBER EXPR FUNC_CALL VAR VAR VAR STRING
|
This is an easy version of the problem. The actual problems are different, but the easy version is almost a subtask of the hard version. Note that the constraints and the output format are different.
You are given a string $s$ consisting of $n$ lowercase Latin letters.
You have to color all its characters one of the two colors (each character to exactly one color, the same letters can be colored the same or different colors, i.e. you can choose exactly one color for each index in $s$).
After coloring, you can swap any two neighboring characters of the string that are colored different colors. You can perform such an operation arbitrary (possibly, zero) number of times.
The goal is to make the string sorted, i.e. all characters should be in alphabetical order.
Your task is to say if it is possible to color the given string so that after coloring it can become sorted by some sequence of swaps. Note that you have to restore only coloring, not the sequence of swaps.
-----Input-----
The first line of the input contains one integer $n$ ($1 \le n \le 200$) β the length of $s$.
The second line of the input contains the string $s$ consisting of exactly $n$ lowercase Latin letters.
-----Output-----
If it is impossible to color the given string so that after coloring it can become sorted by some sequence of swaps, print "NO" (without quotes) in the first line.
Otherwise, print "YES" in the first line and any correct coloring in the second line (the coloring is the string consisting of $n$ characters, the $i$-th character should be '0' if the $i$-th character is colored the first color and '1' otherwise).
-----Examples-----
Input
9
abacbecfd
Output
YES
001010101
Input
8
aaabbcbb
Output
YES
01011011
Input
7
abcdedc
Output
NO
Input
5
abcde
Output
YES
00000
|
class Node:
idx = None
letter = None
color = False
def __init__(self, idx, letter):
assert idx >= 0 and letter
self.dependencies = []
self.dependents = []
self.idx = idx
self.letter = letter
def __repr__(self):
return f"Node<{self.idx, self.letter}>"
def add_dependency(self, node):
assert type(node) is Node
self.dependencies.append(node)
node.dependents.append(self)
input()
string = input()
nodes = [Node(*x) for x in enumerate(string)]
def check_dep_depth(node, max_depth=1):
if max_depth < 0:
return False
for n in node.dependencies:
n.color = not node.color
if not check_dep_depth(n, max_depth - 1):
return False
return True
for idx, n1 in enumerate(nodes):
if idx == len(nodes) - 1:
continue
for n2 in nodes[idx + 1 :]:
if n2.letter < n1.letter:
n1.add_dependency(n2)
for n in nodes:
if not check_dep_depth(n, 1):
print("NO")
exit()
print("YES")
print("".join(str(int(n.color)) for n in nodes))
|
CLASS_DEF ASSIGN VAR NONE ASSIGN VAR NONE ASSIGN VAR NUMBER FUNC_DEF VAR NUMBER VAR ASSIGN VAR LIST ASSIGN VAR LIST ASSIGN VAR VAR ASSIGN VAR VAR FUNC_DEF RETURN STRING VAR VAR STRING FUNC_DEF FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR FUNC_DEF NUMBER IF VAR NUMBER RETURN NUMBER FOR VAR VAR ASSIGN VAR VAR IF FUNC_CALL VAR VAR BIN_OP VAR NUMBER RETURN NUMBER RETURN NUMBER FOR VAR VAR FUNC_CALL VAR VAR IF VAR BIN_OP FUNC_CALL VAR VAR NUMBER FOR VAR VAR BIN_OP VAR NUMBER IF VAR VAR EXPR FUNC_CALL VAR VAR FOR VAR VAR IF FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR FUNC_CALL STRING FUNC_CALL VAR FUNC_CALL VAR VAR VAR VAR
|
This is an easy version of the problem. The actual problems are different, but the easy version is almost a subtask of the hard version. Note that the constraints and the output format are different.
You are given a string $s$ consisting of $n$ lowercase Latin letters.
You have to color all its characters one of the two colors (each character to exactly one color, the same letters can be colored the same or different colors, i.e. you can choose exactly one color for each index in $s$).
After coloring, you can swap any two neighboring characters of the string that are colored different colors. You can perform such an operation arbitrary (possibly, zero) number of times.
The goal is to make the string sorted, i.e. all characters should be in alphabetical order.
Your task is to say if it is possible to color the given string so that after coloring it can become sorted by some sequence of swaps. Note that you have to restore only coloring, not the sequence of swaps.
-----Input-----
The first line of the input contains one integer $n$ ($1 \le n \le 200$) β the length of $s$.
The second line of the input contains the string $s$ consisting of exactly $n$ lowercase Latin letters.
-----Output-----
If it is impossible to color the given string so that after coloring it can become sorted by some sequence of swaps, print "NO" (without quotes) in the first line.
Otherwise, print "YES" in the first line and any correct coloring in the second line (the coloring is the string consisting of $n$ characters, the $i$-th character should be '0' if the $i$-th character is colored the first color and '1' otherwise).
-----Examples-----
Input
9
abacbecfd
Output
YES
001010101
Input
8
aaabbcbb
Output
YES
01011011
Input
7
abcdedc
Output
NO
Input
5
abcde
Output
YES
00000
|
n = int(input())
s = input()
last, last1 = "a", "a"
ans = ""
flag = 1
for i in s:
if i < last and i < last1:
flag = 0
break
elif i >= last:
last = i
ans += "0"
else:
last1 = i
ans += "1"
if flag:
print("YES")
print(ans)
else:
print("NO")
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR VAR STRING STRING ASSIGN VAR STRING ASSIGN VAR NUMBER FOR VAR VAR IF VAR VAR VAR VAR ASSIGN VAR NUMBER IF VAR VAR ASSIGN VAR VAR VAR STRING ASSIGN VAR VAR VAR STRING IF VAR EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR STRING
|
This is an easy version of the problem. The actual problems are different, but the easy version is almost a subtask of the hard version. Note that the constraints and the output format are different.
You are given a string $s$ consisting of $n$ lowercase Latin letters.
You have to color all its characters one of the two colors (each character to exactly one color, the same letters can be colored the same or different colors, i.e. you can choose exactly one color for each index in $s$).
After coloring, you can swap any two neighboring characters of the string that are colored different colors. You can perform such an operation arbitrary (possibly, zero) number of times.
The goal is to make the string sorted, i.e. all characters should be in alphabetical order.
Your task is to say if it is possible to color the given string so that after coloring it can become sorted by some sequence of swaps. Note that you have to restore only coloring, not the sequence of swaps.
-----Input-----
The first line of the input contains one integer $n$ ($1 \le n \le 200$) β the length of $s$.
The second line of the input contains the string $s$ consisting of exactly $n$ lowercase Latin letters.
-----Output-----
If it is impossible to color the given string so that after coloring it can become sorted by some sequence of swaps, print "NO" (without quotes) in the first line.
Otherwise, print "YES" in the first line and any correct coloring in the second line (the coloring is the string consisting of $n$ characters, the $i$-th character should be '0' if the $i$-th character is colored the first color and '1' otherwise).
-----Examples-----
Input
9
abacbecfd
Output
YES
001010101
Input
8
aaabbcbb
Output
YES
01011011
Input
7
abcdedc
Output
NO
Input
5
abcde
Output
YES
00000
|
n = int(input())
s = input()
used = [0] * n
col = [-1] * n
a = [(c, i) for i, c in enumerate(s)]
a.sort()
for _, i in a:
tmp = -1
for j in range(i):
if used[j] or col[j] == -1:
continue
if tmp == -1:
tmp = col[j]
if tmp != col[j]:
print("NO")
exit()
if tmp == -1 and col[i] == -1:
tmp = 0
elif tmp == -1 and col[i] != -1:
tmp = 1 ^ col[i]
elif tmp != -1 and col[i] == -1:
pass
elif tmp == col[i]:
print("NO")
exit()
col[i] = 1 ^ tmp
for j in range(i):
if used[j]:
continue
col[j] = tmp
used[i] = 1
ans = "".join(map(str, col))
b = [c for c in s]
for i in range(1, n):
while i and b[i - 1] > b[i]:
if col[i - 1] == col[i]:
print("NO")
exit()
b[i - 1], b[i] = b[i], b[i - 1]
col[i - 1], col[i] = col[i], col[i - 1]
i -= 1
print("YES")
print(ans)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR BIN_OP LIST NUMBER VAR ASSIGN VAR BIN_OP LIST NUMBER VAR ASSIGN VAR VAR VAR VAR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR FOR VAR VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR VAR VAR VAR NUMBER IF VAR NUMBER ASSIGN VAR VAR VAR IF VAR VAR VAR EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR IF VAR NUMBER VAR VAR NUMBER ASSIGN VAR NUMBER IF VAR NUMBER VAR VAR NUMBER ASSIGN VAR BIN_OP NUMBER VAR VAR IF VAR NUMBER VAR VAR NUMBER IF VAR VAR VAR EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR ASSIGN VAR VAR BIN_OP NUMBER VAR FOR VAR FUNC_CALL VAR VAR IF VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR VAR NUMBER ASSIGN VAR FUNC_CALL STRING FUNC_CALL VAR VAR VAR ASSIGN VAR VAR VAR VAR FOR VAR FUNC_CALL VAR NUMBER VAR WHILE VAR VAR BIN_OP VAR NUMBER VAR VAR IF VAR BIN_OP VAR NUMBER VAR VAR EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR ASSIGN VAR BIN_OP VAR NUMBER VAR VAR VAR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER VAR VAR VAR VAR VAR BIN_OP VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR VAR
|
This is an easy version of the problem. The actual problems are different, but the easy version is almost a subtask of the hard version. Note that the constraints and the output format are different.
You are given a string $s$ consisting of $n$ lowercase Latin letters.
You have to color all its characters one of the two colors (each character to exactly one color, the same letters can be colored the same or different colors, i.e. you can choose exactly one color for each index in $s$).
After coloring, you can swap any two neighboring characters of the string that are colored different colors. You can perform such an operation arbitrary (possibly, zero) number of times.
The goal is to make the string sorted, i.e. all characters should be in alphabetical order.
Your task is to say if it is possible to color the given string so that after coloring it can become sorted by some sequence of swaps. Note that you have to restore only coloring, not the sequence of swaps.
-----Input-----
The first line of the input contains one integer $n$ ($1 \le n \le 200$) β the length of $s$.
The second line of the input contains the string $s$ consisting of exactly $n$ lowercase Latin letters.
-----Output-----
If it is impossible to color the given string so that after coloring it can become sorted by some sequence of swaps, print "NO" (without quotes) in the first line.
Otherwise, print "YES" in the first line and any correct coloring in the second line (the coloring is the string consisting of $n$ characters, the $i$-th character should be '0' if the $i$-th character is colored the first color and '1' otherwise).
-----Examples-----
Input
9
abacbecfd
Output
YES
001010101
Input
8
aaabbcbb
Output
YES
01011011
Input
7
abcdedc
Output
NO
Input
5
abcde
Output
YES
00000
|
import sys
f_in = sys.stdin
f_out = sys.stdout
num = int(f_in.readline())
strings = f_in.readline()
grp = [[], [], []]
warning = 0
for i in range(0, num):
if grp[0] == [] or grp[0][-1] <= strings[i]:
grp[0].append(strings[i])
grp[2].append("0")
elif grp[1] == [] or grp[1][-1] <= strings[i]:
grp[1].append(strings[i])
grp[2].append("1")
else:
warning = 1
ans = "".join(grp[2])
if warning == 1:
f_out.write("NO\n")
else:
f_out.write("YES\n")
f_out.write(ans + "\n")
f_in.close()
f_out.close()
|
IMPORT ASSIGN VAR VAR ASSIGN VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR LIST LIST LIST LIST ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR IF VAR NUMBER LIST VAR NUMBER NUMBER VAR VAR EXPR FUNC_CALL VAR NUMBER VAR VAR EXPR FUNC_CALL VAR NUMBER STRING IF VAR NUMBER LIST VAR NUMBER NUMBER VAR VAR EXPR FUNC_CALL VAR NUMBER VAR VAR EXPR FUNC_CALL VAR NUMBER STRING ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL STRING VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR BIN_OP VAR STRING EXPR FUNC_CALL VAR EXPR FUNC_CALL VAR
|
This is an easy version of the problem. The actual problems are different, but the easy version is almost a subtask of the hard version. Note that the constraints and the output format are different.
You are given a string $s$ consisting of $n$ lowercase Latin letters.
You have to color all its characters one of the two colors (each character to exactly one color, the same letters can be colored the same or different colors, i.e. you can choose exactly one color for each index in $s$).
After coloring, you can swap any two neighboring characters of the string that are colored different colors. You can perform such an operation arbitrary (possibly, zero) number of times.
The goal is to make the string sorted, i.e. all characters should be in alphabetical order.
Your task is to say if it is possible to color the given string so that after coloring it can become sorted by some sequence of swaps. Note that you have to restore only coloring, not the sequence of swaps.
-----Input-----
The first line of the input contains one integer $n$ ($1 \le n \le 200$) β the length of $s$.
The second line of the input contains the string $s$ consisting of exactly $n$ lowercase Latin letters.
-----Output-----
If it is impossible to color the given string so that after coloring it can become sorted by some sequence of swaps, print "NO" (without quotes) in the first line.
Otherwise, print "YES" in the first line and any correct coloring in the second line (the coloring is the string consisting of $n$ characters, the $i$-th character should be '0' if the $i$-th character is colored the first color and '1' otherwise).
-----Examples-----
Input
9
abacbecfd
Output
YES
001010101
Input
8
aaabbcbb
Output
YES
01011011
Input
7
abcdedc
Output
NO
Input
5
abcde
Output
YES
00000
|
from sys import stdin, stdout
input = stdin.readline
def im():
return map(int, input().split())
def ii():
return int(input())
def il():
return list(map(int, input().split()))
def ins():
return input()[:-1]
n = ii()
st = ins()
lis = [0] * (n + 1)
lis[1] = st[0]
r = 1
ans = [1]
for i in st[1:]:
if i >= lis[1]:
lis[1] = i
ans.append(1)
elif i < lis[r]:
r += 1
lis[r] = i
ans.append(r)
else:
left = 1
right = r
while left < right:
mid = (left + right) // 2
if i < lis[mid]:
left = mid + 1
else:
right = mid
ans.append(left)
lis[left] = i
print(r)
print(*ans)
|
ASSIGN VAR VAR FUNC_DEF RETURN FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR FUNC_DEF RETURN FUNC_CALL VAR FUNC_CALL VAR FUNC_DEF RETURN FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR FUNC_DEF RETURN FUNC_CALL VAR NUMBER ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR BIN_OP LIST NUMBER BIN_OP VAR NUMBER ASSIGN VAR NUMBER VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR LIST NUMBER FOR VAR VAR NUMBER IF VAR VAR NUMBER ASSIGN VAR NUMBER VAR EXPR FUNC_CALL VAR NUMBER IF VAR VAR VAR VAR NUMBER ASSIGN VAR VAR VAR EXPR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR VAR WHILE VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR VAR EXPR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR
|
This is an easy version of the problem. The actual problems are different, but the easy version is almost a subtask of the hard version. Note that the constraints and the output format are different.
You are given a string $s$ consisting of $n$ lowercase Latin letters.
You have to color all its characters one of the two colors (each character to exactly one color, the same letters can be colored the same or different colors, i.e. you can choose exactly one color for each index in $s$).
After coloring, you can swap any two neighboring characters of the string that are colored different colors. You can perform such an operation arbitrary (possibly, zero) number of times.
The goal is to make the string sorted, i.e. all characters should be in alphabetical order.
Your task is to say if it is possible to color the given string so that after coloring it can become sorted by some sequence of swaps. Note that you have to restore only coloring, not the sequence of swaps.
-----Input-----
The first line of the input contains one integer $n$ ($1 \le n \le 200$) β the length of $s$.
The second line of the input contains the string $s$ consisting of exactly $n$ lowercase Latin letters.
-----Output-----
If it is impossible to color the given string so that after coloring it can become sorted by some sequence of swaps, print "NO" (without quotes) in the first line.
Otherwise, print "YES" in the first line and any correct coloring in the second line (the coloring is the string consisting of $n$ characters, the $i$-th character should be '0' if the $i$-th character is colored the first color and '1' otherwise).
-----Examples-----
Input
9
abacbecfd
Output
YES
001010101
Input
8
aaabbcbb
Output
YES
01011011
Input
7
abcdedc
Output
NO
Input
5
abcde
Output
YES
00000
|
n = int(input())
l = list(input())
k = [(0) for i in range(n)]
z = [(0) for i in range(n)]
x = sorted(l)
r = ""
for t in x:
r += t
for t in range(1, n):
if l[t] < l[t - 1]:
k[t] = k[t - 1] ^ 1
z[t] = k[t]
i = t
while i > 0 and l[i] < l[i - 1]:
if k[i] == k[i - 1]:
break
l[i], l[i - 1] = l[i - 1], l[i]
k[i], k[i - 1] = k[i - 1], k[i]
i -= 1
s = ""
for t in l:
s += t
if s == r:
print("YES")
print(*z, sep="")
else:
print("NO")
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR NUMBER VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR STRING FOR VAR VAR VAR VAR FOR VAR FUNC_CALL VAR NUMBER VAR IF VAR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR VAR BIN_OP VAR BIN_OP VAR NUMBER NUMBER ASSIGN VAR VAR VAR VAR ASSIGN VAR VAR WHILE VAR NUMBER VAR VAR VAR BIN_OP VAR NUMBER IF VAR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR VAR VAR BIN_OP VAR NUMBER VAR BIN_OP VAR NUMBER VAR VAR ASSIGN VAR VAR VAR BIN_OP VAR NUMBER VAR BIN_OP VAR NUMBER VAR VAR VAR NUMBER ASSIGN VAR STRING FOR VAR VAR VAR VAR IF VAR VAR EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR VAR STRING EXPR FUNC_CALL VAR STRING
|
This is an easy version of the problem. The actual problems are different, but the easy version is almost a subtask of the hard version. Note that the constraints and the output format are different.
You are given a string $s$ consisting of $n$ lowercase Latin letters.
You have to color all its characters one of the two colors (each character to exactly one color, the same letters can be colored the same or different colors, i.e. you can choose exactly one color for each index in $s$).
After coloring, you can swap any two neighboring characters of the string that are colored different colors. You can perform such an operation arbitrary (possibly, zero) number of times.
The goal is to make the string sorted, i.e. all characters should be in alphabetical order.
Your task is to say if it is possible to color the given string so that after coloring it can become sorted by some sequence of swaps. Note that you have to restore only coloring, not the sequence of swaps.
-----Input-----
The first line of the input contains one integer $n$ ($1 \le n \le 200$) β the length of $s$.
The second line of the input contains the string $s$ consisting of exactly $n$ lowercase Latin letters.
-----Output-----
If it is impossible to color the given string so that after coloring it can become sorted by some sequence of swaps, print "NO" (without quotes) in the first line.
Otherwise, print "YES" in the first line and any correct coloring in the second line (the coloring is the string consisting of $n$ characters, the $i$-th character should be '0' if the $i$-th character is colored the first color and '1' otherwise).
-----Examples-----
Input
9
abacbecfd
Output
YES
001010101
Input
8
aaabbcbb
Output
YES
01011011
Input
7
abcdedc
Output
NO
Input
5
abcde
Output
YES
00000
|
from sys import stdin, stdout
t = 1
for _ in range(t):
n = int(input())
s = input()
ans = [str(0)]
last = s[0]
color = 0
for i in s[1:]:
if i >= last:
last = i
ans.append(str(color))
else:
ans.append(str(color ^ 1))
val1 = []
val2 = []
for i in range(n):
if int(ans[i]):
val1.append(s[i])
else:
val2.append(s[i])
if val1 == sorted(val1) and val2 == sorted(val2):
print("YES")
print("".join(ans))
else:
print("NO")
|
ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR LIST FUNC_CALL VAR NUMBER ASSIGN VAR VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR NUMBER IF VAR VAR ASSIGN VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR BIN_OP VAR NUMBER ASSIGN VAR LIST ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR IF FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR VAR IF VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR FUNC_CALL STRING VAR EXPR FUNC_CALL VAR STRING
|
This is an easy version of the problem. The actual problems are different, but the easy version is almost a subtask of the hard version. Note that the constraints and the output format are different.
You are given a string $s$ consisting of $n$ lowercase Latin letters.
You have to color all its characters one of the two colors (each character to exactly one color, the same letters can be colored the same or different colors, i.e. you can choose exactly one color for each index in $s$).
After coloring, you can swap any two neighboring characters of the string that are colored different colors. You can perform such an operation arbitrary (possibly, zero) number of times.
The goal is to make the string sorted, i.e. all characters should be in alphabetical order.
Your task is to say if it is possible to color the given string so that after coloring it can become sorted by some sequence of swaps. Note that you have to restore only coloring, not the sequence of swaps.
-----Input-----
The first line of the input contains one integer $n$ ($1 \le n \le 200$) β the length of $s$.
The second line of the input contains the string $s$ consisting of exactly $n$ lowercase Latin letters.
-----Output-----
If it is impossible to color the given string so that after coloring it can become sorted by some sequence of swaps, print "NO" (without quotes) in the first line.
Otherwise, print "YES" in the first line and any correct coloring in the second line (the coloring is the string consisting of $n$ characters, the $i$-th character should be '0' if the $i$-th character is colored the first color and '1' otherwise).
-----Examples-----
Input
9
abacbecfd
Output
YES
001010101
Input
8
aaabbcbb
Output
YES
01011011
Input
7
abcdedc
Output
NO
Input
5
abcde
Output
YES
00000
|
n = int(input())
s = str(input())
ls = []
b_end = False
s_out = ""
for x in range(0, len(s)):
tmp_tab = [s[x], -1]
ls.append(tmp_tab)
ls[0][1] = 0
for x in range(1, len(ls)):
tmp_val = ls[x]
tmp_lit = ls[x][0]
tmp_num = 0
tmp_war = []
for y in range(x - 1, -1, -1):
if ls[y][0] > tmp_lit:
tmp_war.append(ls[y][1])
if not tmp_war:
ls[x][1] = 0
elif 0 not in tmp_war:
ls[x][1] = 0
elif 1 not in tmp_war:
ls[x][1] = 1
else:
b_end = True
break
if b_end == True:
print("NO")
else:
for x in range(0, len(ls)):
s_out += str(ls[x][1])
print("YES")
print(s_out)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST ASSIGN VAR NUMBER ASSIGN VAR STRING FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR ASSIGN VAR LIST VAR VAR NUMBER EXPR FUNC_CALL VAR VAR ASSIGN VAR NUMBER NUMBER NUMBER FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR VAR VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR LIST FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER IF VAR VAR NUMBER VAR EXPR FUNC_CALL VAR VAR VAR NUMBER IF VAR ASSIGN VAR VAR NUMBER NUMBER IF NUMBER VAR ASSIGN VAR VAR NUMBER NUMBER IF NUMBER VAR ASSIGN VAR VAR NUMBER NUMBER ASSIGN VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR STRING FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR NUMBER EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR VAR
|
This is an easy version of the problem. The actual problems are different, but the easy version is almost a subtask of the hard version. Note that the constraints and the output format are different.
You are given a string $s$ consisting of $n$ lowercase Latin letters.
You have to color all its characters one of the two colors (each character to exactly one color, the same letters can be colored the same or different colors, i.e. you can choose exactly one color for each index in $s$).
After coloring, you can swap any two neighboring characters of the string that are colored different colors. You can perform such an operation arbitrary (possibly, zero) number of times.
The goal is to make the string sorted, i.e. all characters should be in alphabetical order.
Your task is to say if it is possible to color the given string so that after coloring it can become sorted by some sequence of swaps. Note that you have to restore only coloring, not the sequence of swaps.
-----Input-----
The first line of the input contains one integer $n$ ($1 \le n \le 200$) β the length of $s$.
The second line of the input contains the string $s$ consisting of exactly $n$ lowercase Latin letters.
-----Output-----
If it is impossible to color the given string so that after coloring it can become sorted by some sequence of swaps, print "NO" (without quotes) in the first line.
Otherwise, print "YES" in the first line and any correct coloring in the second line (the coloring is the string consisting of $n$ characters, the $i$-th character should be '0' if the $i$-th character is colored the first color and '1' otherwise).
-----Examples-----
Input
9
abacbecfd
Output
YES
001010101
Input
8
aaabbcbb
Output
YES
01011011
Input
7
abcdedc
Output
NO
Input
5
abcde
Output
YES
00000
|
n = int(input())
s = input()
col = [-1] * n
ans = "YES"
inversions = False
used = [False] * n
def solve(i):
global ans
global inversions
used[i] = True
for j in range(n):
if (ord(s[j]) - ord(s[i])) * (j - i) < 0:
if col[j] != -1:
if col[i] == col[j]:
ans = "NO"
else:
col[j] = col[i] ^ 1
if not used[j]:
solve(j)
for i in range(n):
if not used[i]:
col[i] = 0
solve(i)
print(ans)
if ans == "YES":
print(*col, sep="")
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR BIN_OP LIST NUMBER VAR ASSIGN VAR STRING ASSIGN VAR NUMBER ASSIGN VAR BIN_OP LIST NUMBER VAR FUNC_DEF ASSIGN VAR VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF BIN_OP BIN_OP FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR BIN_OP VAR VAR NUMBER IF VAR VAR NUMBER IF VAR VAR VAR VAR ASSIGN VAR STRING ASSIGN VAR VAR BIN_OP VAR VAR NUMBER IF VAR VAR EXPR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR VAR IF VAR VAR ASSIGN VAR VAR NUMBER EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR IF VAR STRING EXPR FUNC_CALL VAR VAR STRING
|
This is an easy version of the problem. The actual problems are different, but the easy version is almost a subtask of the hard version. Note that the constraints and the output format are different.
You are given a string $s$ consisting of $n$ lowercase Latin letters.
You have to color all its characters one of the two colors (each character to exactly one color, the same letters can be colored the same or different colors, i.e. you can choose exactly one color for each index in $s$).
After coloring, you can swap any two neighboring characters of the string that are colored different colors. You can perform such an operation arbitrary (possibly, zero) number of times.
The goal is to make the string sorted, i.e. all characters should be in alphabetical order.
Your task is to say if it is possible to color the given string so that after coloring it can become sorted by some sequence of swaps. Note that you have to restore only coloring, not the sequence of swaps.
-----Input-----
The first line of the input contains one integer $n$ ($1 \le n \le 200$) β the length of $s$.
The second line of the input contains the string $s$ consisting of exactly $n$ lowercase Latin letters.
-----Output-----
If it is impossible to color the given string so that after coloring it can become sorted by some sequence of swaps, print "NO" (without quotes) in the first line.
Otherwise, print "YES" in the first line and any correct coloring in the second line (the coloring is the string consisting of $n$ characters, the $i$-th character should be '0' if the $i$-th character is colored the first color and '1' otherwise).
-----Examples-----
Input
9
abacbecfd
Output
YES
001010101
Input
8
aaabbcbb
Output
YES
01011011
Input
7
abcdedc
Output
NO
Input
5
abcde
Output
YES
00000
|
n = int(input())
s = input()
p = [-1] * n
dd = [0] * 26
p[0] = 1
dd[ord(s[0]) - 97] = 1
for i in range(1, n):
f = 0
mxj = 0
for j in range(26):
if dd[j] != 0 and j > ord(s[i]) - 97:
f = 1
mxj = max(mxj, dd[j])
p[i] = mxj + 1
dd[ord(s[i]) - 97] = p[i]
print(max(p))
for i in p:
print(i, end=" ")
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR BIN_OP LIST NUMBER VAR ASSIGN VAR BIN_OP LIST NUMBER NUMBER ASSIGN VAR NUMBER NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER NUMBER NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER IF VAR VAR NUMBER VAR BIN_OP FUNC_CALL VAR VAR VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR VAR ASSIGN VAR VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR VAR VAR NUMBER VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR FOR VAR VAR EXPR FUNC_CALL VAR VAR STRING
|
This is an easy version of the problem. The actual problems are different, but the easy version is almost a subtask of the hard version. Note that the constraints and the output format are different.
You are given a string $s$ consisting of $n$ lowercase Latin letters.
You have to color all its characters one of the two colors (each character to exactly one color, the same letters can be colored the same or different colors, i.e. you can choose exactly one color for each index in $s$).
After coloring, you can swap any two neighboring characters of the string that are colored different colors. You can perform such an operation arbitrary (possibly, zero) number of times.
The goal is to make the string sorted, i.e. all characters should be in alphabetical order.
Your task is to say if it is possible to color the given string so that after coloring it can become sorted by some sequence of swaps. Note that you have to restore only coloring, not the sequence of swaps.
-----Input-----
The first line of the input contains one integer $n$ ($1 \le n \le 200$) β the length of $s$.
The second line of the input contains the string $s$ consisting of exactly $n$ lowercase Latin letters.
-----Output-----
If it is impossible to color the given string so that after coloring it can become sorted by some sequence of swaps, print "NO" (without quotes) in the first line.
Otherwise, print "YES" in the first line and any correct coloring in the second line (the coloring is the string consisting of $n$ characters, the $i$-th character should be '0' if the $i$-th character is colored the first color and '1' otherwise).
-----Examples-----
Input
9
abacbecfd
Output
YES
001010101
Input
8
aaabbcbb
Output
YES
01011011
Input
7
abcdedc
Output
NO
Input
5
abcde
Output
YES
00000
|
n = int(input())
s = str(input())
lit = ["Z"] * 26
wyn = ""
m = -1
for x in s:
for y in range(26):
if lit[y] <= x:
wyn += str(y + 1) + " "
lit[y] = x
if y + 1 >= m:
m = y + 1
break
print(m)
print(wyn)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR BIN_OP LIST STRING NUMBER ASSIGN VAR STRING ASSIGN VAR NUMBER FOR VAR VAR FOR VAR FUNC_CALL VAR NUMBER IF VAR VAR VAR VAR BIN_OP FUNC_CALL VAR BIN_OP VAR NUMBER STRING ASSIGN VAR VAR VAR IF BIN_OP VAR NUMBER VAR ASSIGN VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR
|
This is an easy version of the problem. The actual problems are different, but the easy version is almost a subtask of the hard version. Note that the constraints and the output format are different.
You are given a string $s$ consisting of $n$ lowercase Latin letters.
You have to color all its characters one of the two colors (each character to exactly one color, the same letters can be colored the same or different colors, i.e. you can choose exactly one color for each index in $s$).
After coloring, you can swap any two neighboring characters of the string that are colored different colors. You can perform such an operation arbitrary (possibly, zero) number of times.
The goal is to make the string sorted, i.e. all characters should be in alphabetical order.
Your task is to say if it is possible to color the given string so that after coloring it can become sorted by some sequence of swaps. Note that you have to restore only coloring, not the sequence of swaps.
-----Input-----
The first line of the input contains one integer $n$ ($1 \le n \le 200$) β the length of $s$.
The second line of the input contains the string $s$ consisting of exactly $n$ lowercase Latin letters.
-----Output-----
If it is impossible to color the given string so that after coloring it can become sorted by some sequence of swaps, print "NO" (without quotes) in the first line.
Otherwise, print "YES" in the first line and any correct coloring in the second line (the coloring is the string consisting of $n$ characters, the $i$-th character should be '0' if the $i$-th character is colored the first color and '1' otherwise).
-----Examples-----
Input
9
abacbecfd
Output
YES
001010101
Input
8
aaabbcbb
Output
YES
01011011
Input
7
abcdedc
Output
NO
Input
5
abcde
Output
YES
00000
|
n = int(input())
f = input()
t = ""
a = "a"
b = "a"
h = 0
for j in f:
if ord(a[-1]) <= ord(j):
a += j
t += "0"
elif ord(b[-1]) <= ord(j):
b += j
t += "1"
else:
print("NO")
h += 1
break
if h == 0:
print("YES")
print(t)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR STRING ASSIGN VAR STRING ASSIGN VAR STRING ASSIGN VAR NUMBER FOR VAR VAR IF FUNC_CALL VAR VAR NUMBER FUNC_CALL VAR VAR VAR VAR VAR STRING IF FUNC_CALL VAR VAR NUMBER FUNC_CALL VAR VAR VAR VAR VAR STRING EXPR FUNC_CALL VAR STRING VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR VAR
|
This is an easy version of the problem. The actual problems are different, but the easy version is almost a subtask of the hard version. Note that the constraints and the output format are different.
You are given a string $s$ consisting of $n$ lowercase Latin letters.
You have to color all its characters one of the two colors (each character to exactly one color, the same letters can be colored the same or different colors, i.e. you can choose exactly one color for each index in $s$).
After coloring, you can swap any two neighboring characters of the string that are colored different colors. You can perform such an operation arbitrary (possibly, zero) number of times.
The goal is to make the string sorted, i.e. all characters should be in alphabetical order.
Your task is to say if it is possible to color the given string so that after coloring it can become sorted by some sequence of swaps. Note that you have to restore only coloring, not the sequence of swaps.
-----Input-----
The first line of the input contains one integer $n$ ($1 \le n \le 200$) β the length of $s$.
The second line of the input contains the string $s$ consisting of exactly $n$ lowercase Latin letters.
-----Output-----
If it is impossible to color the given string so that after coloring it can become sorted by some sequence of swaps, print "NO" (without quotes) in the first line.
Otherwise, print "YES" in the first line and any correct coloring in the second line (the coloring is the string consisting of $n$ characters, the $i$-th character should be '0' if the $i$-th character is colored the first color and '1' otherwise).
-----Examples-----
Input
9
abacbecfd
Output
YES
001010101
Input
8
aaabbcbb
Output
YES
01011011
Input
7
abcdedc
Output
NO
Input
5
abcde
Output
YES
00000
|
def hello_nigga():
n = int(input())
s = input()
s0 = []
l_s0 = "a"
s1 = []
l_s1 = "a"
t = 1
for i in range(n):
if s[i] >= l_s1:
l_s1 = s[i]
s1.append(i)
elif s[i] >= l_s0:
l_s0 = s[i]
else:
t = 0
print("NO")
break
if t:
ans = ["0"] * n
for i in range(len(s1)):
ans[s1[i]] = "1"
print("YES")
print("".join(ans))
if "compiler is alive":
if "it has sence" and "the wether is nice":
hello_nigga()
|
FUNC_DEF ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR LIST ASSIGN VAR STRING ASSIGN VAR LIST ASSIGN VAR STRING ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR VAR VAR ASSIGN VAR VAR VAR EXPR FUNC_CALL VAR VAR IF VAR VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR NUMBER EXPR FUNC_CALL VAR STRING IF VAR ASSIGN VAR BIN_OP LIST STRING VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR STRING EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR FUNC_CALL STRING VAR IF STRING IF STRING STRING EXPR FUNC_CALL VAR
|
This is an easy version of the problem. The actual problems are different, but the easy version is almost a subtask of the hard version. Note that the constraints and the output format are different.
You are given a string $s$ consisting of $n$ lowercase Latin letters.
You have to color all its characters one of the two colors (each character to exactly one color, the same letters can be colored the same or different colors, i.e. you can choose exactly one color for each index in $s$).
After coloring, you can swap any two neighboring characters of the string that are colored different colors. You can perform such an operation arbitrary (possibly, zero) number of times.
The goal is to make the string sorted, i.e. all characters should be in alphabetical order.
Your task is to say if it is possible to color the given string so that after coloring it can become sorted by some sequence of swaps. Note that you have to restore only coloring, not the sequence of swaps.
-----Input-----
The first line of the input contains one integer $n$ ($1 \le n \le 200$) β the length of $s$.
The second line of the input contains the string $s$ consisting of exactly $n$ lowercase Latin letters.
-----Output-----
If it is impossible to color the given string so that after coloring it can become sorted by some sequence of swaps, print "NO" (without quotes) in the first line.
Otherwise, print "YES" in the first line and any correct coloring in the second line (the coloring is the string consisting of $n$ characters, the $i$-th character should be '0' if the $i$-th character is colored the first color and '1' otherwise).
-----Examples-----
Input
9
abacbecfd
Output
YES
001010101
Input
8
aaabbcbb
Output
YES
01011011
Input
7
abcdedc
Output
NO
Input
5
abcde
Output
YES
00000
|
n = int(input())
a = list(input())
max_color = 0
colors = [(0) for _ in range(n)]
color_to_max = [-1]
for i in range(n):
max_ok_color = -1
for color in range(max_color + 1):
if ord(a[i]) >= color_to_max[color]:
if max_ok_color == -1 or color_to_max[color] > color_to_max[max_ok_color]:
max_ok_color = color
if max_ok_color == -1:
colors[i] = max_color + 1
max_color += 1
color_to_max.append(ord(a[i]))
else:
colors[i] = max_ok_color
color_to_max[max_ok_color] = ord(a[i])
print(max_color + 1)
print(" ".join([str(item + 1) for item in colors]))
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER VAR FUNC_CALL VAR VAR ASSIGN VAR LIST NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER IF FUNC_CALL VAR VAR VAR VAR VAR IF VAR NUMBER VAR VAR VAR VAR ASSIGN VAR VAR IF VAR NUMBER ASSIGN VAR VAR BIN_OP VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL STRING FUNC_CALL VAR BIN_OP VAR NUMBER VAR VAR
|
This is an easy version of the problem. The actual problems are different, but the easy version is almost a subtask of the hard version. Note that the constraints and the output format are different.
You are given a string $s$ consisting of $n$ lowercase Latin letters.
You have to color all its characters one of the two colors (each character to exactly one color, the same letters can be colored the same or different colors, i.e. you can choose exactly one color for each index in $s$).
After coloring, you can swap any two neighboring characters of the string that are colored different colors. You can perform such an operation arbitrary (possibly, zero) number of times.
The goal is to make the string sorted, i.e. all characters should be in alphabetical order.
Your task is to say if it is possible to color the given string so that after coloring it can become sorted by some sequence of swaps. Note that you have to restore only coloring, not the sequence of swaps.
-----Input-----
The first line of the input contains one integer $n$ ($1 \le n \le 200$) β the length of $s$.
The second line of the input contains the string $s$ consisting of exactly $n$ lowercase Latin letters.
-----Output-----
If it is impossible to color the given string so that after coloring it can become sorted by some sequence of swaps, print "NO" (without quotes) in the first line.
Otherwise, print "YES" in the first line and any correct coloring in the second line (the coloring is the string consisting of $n$ characters, the $i$-th character should be '0' if the $i$-th character is colored the first color and '1' otherwise).
-----Examples-----
Input
9
abacbecfd
Output
YES
001010101
Input
8
aaabbcbb
Output
YES
01011011
Input
7
abcdedc
Output
NO
Input
5
abcde
Output
YES
00000
|
n = int(input())
s = input()
a = []
for i in range(n):
a.append(ord(s[i]))
visit = [(0) for i in range(n)]
i, flag = 1, 0
rama = [(0) for i in range(n)]
while i < n:
if a[i] < a[i - 1]:
visit[i] = 1
rama[i] = visit[i]
temp = a[i]
tempu = visit[i]
j = i
while j > 0:
if temp < a[j - 1]:
if tempu != visit[j - 1]:
a[j] = a[j - 1]
visit[j] = visit[j - 1]
else:
flag = -1
break
else:
break
j -= 1
if flag == -1:
break
visit[j] = tempu
a[j] = temp
i += 1
if flag == -1:
print("NO")
else:
print("YES")
for i in rama:
print(i, end="")
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR ASSIGN VAR NUMBER VAR FUNC_CALL VAR VAR ASSIGN VAR VAR NUMBER NUMBER ASSIGN VAR NUMBER VAR FUNC_CALL VAR VAR WHILE VAR VAR IF VAR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR VAR NUMBER ASSIGN VAR VAR VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR VAR WHILE VAR NUMBER IF VAR VAR BIN_OP VAR NUMBER IF VAR VAR BIN_OP VAR NUMBER ASSIGN VAR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER VAR NUMBER IF VAR NUMBER ASSIGN VAR VAR VAR ASSIGN VAR VAR VAR VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR STRING FOR VAR VAR EXPR FUNC_CALL VAR VAR STRING
|
This is an easy version of the problem. The actual problems are different, but the easy version is almost a subtask of the hard version. Note that the constraints and the output format are different.
You are given a string $s$ consisting of $n$ lowercase Latin letters.
You have to color all its characters one of the two colors (each character to exactly one color, the same letters can be colored the same or different colors, i.e. you can choose exactly one color for each index in $s$).
After coloring, you can swap any two neighboring characters of the string that are colored different colors. You can perform such an operation arbitrary (possibly, zero) number of times.
The goal is to make the string sorted, i.e. all characters should be in alphabetical order.
Your task is to say if it is possible to color the given string so that after coloring it can become sorted by some sequence of swaps. Note that you have to restore only coloring, not the sequence of swaps.
-----Input-----
The first line of the input contains one integer $n$ ($1 \le n \le 200$) β the length of $s$.
The second line of the input contains the string $s$ consisting of exactly $n$ lowercase Latin letters.
-----Output-----
If it is impossible to color the given string so that after coloring it can become sorted by some sequence of swaps, print "NO" (without quotes) in the first line.
Otherwise, print "YES" in the first line and any correct coloring in the second line (the coloring is the string consisting of $n$ characters, the $i$-th character should be '0' if the $i$-th character is colored the first color and '1' otherwise).
-----Examples-----
Input
9
abacbecfd
Output
YES
001010101
Input
8
aaabbcbb
Output
YES
01011011
Input
7
abcdedc
Output
NO
Input
5
abcde
Output
YES
00000
|
n = int(input())
s = input()
alpha = [0] * 26
col = []
for i in range(0, len(s)):
c = 0
for j in range(ord(s[i]) - 97 + 1, 26):
c = max(c, alpha[j])
col.append(c + 1)
alpha[ord(s[i]) - 97] = c + 1
print(max(col))
print(*col)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR BIN_OP LIST NUMBER NUMBER ASSIGN VAR LIST FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP BIN_OP FUNC_CALL VAR VAR VAR NUMBER NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR VAR VAR NUMBER BIN_OP VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR
|
This is an easy version of the problem. The actual problems are different, but the easy version is almost a subtask of the hard version. Note that the constraints and the output format are different.
You are given a string $s$ consisting of $n$ lowercase Latin letters.
You have to color all its characters one of the two colors (each character to exactly one color, the same letters can be colored the same or different colors, i.e. you can choose exactly one color for each index in $s$).
After coloring, you can swap any two neighboring characters of the string that are colored different colors. You can perform such an operation arbitrary (possibly, zero) number of times.
The goal is to make the string sorted, i.e. all characters should be in alphabetical order.
Your task is to say if it is possible to color the given string so that after coloring it can become sorted by some sequence of swaps. Note that you have to restore only coloring, not the sequence of swaps.
-----Input-----
The first line of the input contains one integer $n$ ($1 \le n \le 200$) β the length of $s$.
The second line of the input contains the string $s$ consisting of exactly $n$ lowercase Latin letters.
-----Output-----
If it is impossible to color the given string so that after coloring it can become sorted by some sequence of swaps, print "NO" (without quotes) in the first line.
Otherwise, print "YES" in the first line and any correct coloring in the second line (the coloring is the string consisting of $n$ characters, the $i$-th character should be '0' if the $i$-th character is colored the first color and '1' otherwise).
-----Examples-----
Input
9
abacbecfd
Output
YES
001010101
Input
8
aaabbcbb
Output
YES
01011011
Input
7
abcdedc
Output
NO
Input
5
abcde
Output
YES
00000
|
def main():
n = int(input())
s = list(input())
colors = [-1] * n
for i in range(len(s)):
if colors[i] == -1:
colors[i] = 0
for j in range(i + 1, n):
if s[j] < s[i]:
if colors[j] == colors[i]:
print("NO")
return
if colors[j] == -1:
if colors[i] == 0:
colors[j] = 1
else:
colors[j] = 0
print("YES")
for i in colors:
print(i, end="")
main()
|
FUNC_DEF ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR BIN_OP LIST NUMBER VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR VAR NUMBER ASSIGN VAR VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER VAR IF VAR VAR VAR VAR IF VAR VAR VAR VAR EXPR FUNC_CALL VAR STRING RETURN IF VAR VAR NUMBER IF VAR VAR NUMBER ASSIGN VAR VAR NUMBER ASSIGN VAR VAR NUMBER EXPR FUNC_CALL VAR STRING FOR VAR VAR EXPR FUNC_CALL VAR VAR STRING EXPR FUNC_CALL VAR
|
This is an easy version of the problem. The actual problems are different, but the easy version is almost a subtask of the hard version. Note that the constraints and the output format are different.
You are given a string $s$ consisting of $n$ lowercase Latin letters.
You have to color all its characters one of the two colors (each character to exactly one color, the same letters can be colored the same or different colors, i.e. you can choose exactly one color for each index in $s$).
After coloring, you can swap any two neighboring characters of the string that are colored different colors. You can perform such an operation arbitrary (possibly, zero) number of times.
The goal is to make the string sorted, i.e. all characters should be in alphabetical order.
Your task is to say if it is possible to color the given string so that after coloring it can become sorted by some sequence of swaps. Note that you have to restore only coloring, not the sequence of swaps.
-----Input-----
The first line of the input contains one integer $n$ ($1 \le n \le 200$) β the length of $s$.
The second line of the input contains the string $s$ consisting of exactly $n$ lowercase Latin letters.
-----Output-----
If it is impossible to color the given string so that after coloring it can become sorted by some sequence of swaps, print "NO" (without quotes) in the first line.
Otherwise, print "YES" in the first line and any correct coloring in the second line (the coloring is the string consisting of $n$ characters, the $i$-th character should be '0' if the $i$-th character is colored the first color and '1' otherwise).
-----Examples-----
Input
9
abacbecfd
Output
YES
001010101
Input
8
aaabbcbb
Output
YES
01011011
Input
7
abcdedc
Output
NO
Input
5
abcde
Output
YES
00000
|
n = int(input())
ok = True
string = input()
seq1 = "a"
seq2 = "a"
ans = "0"
for i in string:
if i >= seq1:
seq1 = i
ans += "0"
continue
if i >= seq2:
seq2 = i
ans += "1"
else:
ok = False
if ok == True:
print("YES")
print(ans[1:])
else:
print("NO")
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR ASSIGN VAR STRING ASSIGN VAR STRING ASSIGN VAR STRING FOR VAR VAR IF VAR VAR ASSIGN VAR VAR VAR STRING IF VAR VAR ASSIGN VAR VAR VAR STRING ASSIGN VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR STRING
|
This is an easy version of the problem. The actual problems are different, but the easy version is almost a subtask of the hard version. Note that the constraints and the output format are different.
You are given a string $s$ consisting of $n$ lowercase Latin letters.
You have to color all its characters one of the two colors (each character to exactly one color, the same letters can be colored the same or different colors, i.e. you can choose exactly one color for each index in $s$).
After coloring, you can swap any two neighboring characters of the string that are colored different colors. You can perform such an operation arbitrary (possibly, zero) number of times.
The goal is to make the string sorted, i.e. all characters should be in alphabetical order.
Your task is to say if it is possible to color the given string so that after coloring it can become sorted by some sequence of swaps. Note that you have to restore only coloring, not the sequence of swaps.
-----Input-----
The first line of the input contains one integer $n$ ($1 \le n \le 200$) β the length of $s$.
The second line of the input contains the string $s$ consisting of exactly $n$ lowercase Latin letters.
-----Output-----
If it is impossible to color the given string so that after coloring it can become sorted by some sequence of swaps, print "NO" (without quotes) in the first line.
Otherwise, print "YES" in the first line and any correct coloring in the second line (the coloring is the string consisting of $n$ characters, the $i$-th character should be '0' if the $i$-th character is colored the first color and '1' otherwise).
-----Examples-----
Input
9
abacbecfd
Output
YES
001010101
Input
8
aaabbcbb
Output
YES
01011011
Input
7
abcdedc
Output
NO
Input
5
abcde
Output
YES
00000
|
n = int(input())
c = list(input())
for i in range(n):
c[i] = [c[i], -1]
i = 0
flag = True
while flag and i < n:
j = i + 1
while j < n and c[i][1] == -1:
if c[j][0] < c[i][0]:
if c[j][1] != -1:
c[i][1] = (c[j][1] + 1) % 2
j = n + 1
j += 1
if c[i][1] == -1:
c[i][1] = 0
for j in range(i + 1, n):
if c[j][0] < c[i][0]:
if c[j][1] == -1:
c[j][1] = (c[i][1] + 1) % 2
elif (c[j][1] + c[i][1]) % 2 != 1:
flag = False
if not flag:
break
i += 1
ans = []
for i in c:
ans.append(i[1])
if flag:
print("YES")
print(*ans, sep="")
else:
print("NO")
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR LIST VAR VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER WHILE VAR VAR VAR VAR NUMBER NUMBER IF VAR VAR NUMBER VAR VAR NUMBER IF VAR VAR NUMBER NUMBER ASSIGN VAR VAR NUMBER BIN_OP BIN_OP VAR VAR NUMBER NUMBER NUMBER ASSIGN VAR BIN_OP VAR NUMBER VAR NUMBER IF VAR VAR NUMBER NUMBER ASSIGN VAR VAR NUMBER NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER VAR IF VAR VAR NUMBER VAR VAR NUMBER IF VAR VAR NUMBER NUMBER ASSIGN VAR VAR NUMBER BIN_OP BIN_OP VAR VAR NUMBER NUMBER NUMBER IF BIN_OP BIN_OP VAR VAR NUMBER VAR VAR NUMBER NUMBER NUMBER ASSIGN VAR NUMBER IF VAR VAR NUMBER ASSIGN VAR LIST FOR VAR VAR EXPR FUNC_CALL VAR VAR NUMBER IF VAR EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR VAR STRING EXPR FUNC_CALL VAR STRING
|
This is an easy version of the problem. The actual problems are different, but the easy version is almost a subtask of the hard version. Note that the constraints and the output format are different.
You are given a string $s$ consisting of $n$ lowercase Latin letters.
You have to color all its characters one of the two colors (each character to exactly one color, the same letters can be colored the same or different colors, i.e. you can choose exactly one color for each index in $s$).
After coloring, you can swap any two neighboring characters of the string that are colored different colors. You can perform such an operation arbitrary (possibly, zero) number of times.
The goal is to make the string sorted, i.e. all characters should be in alphabetical order.
Your task is to say if it is possible to color the given string so that after coloring it can become sorted by some sequence of swaps. Note that you have to restore only coloring, not the sequence of swaps.
-----Input-----
The first line of the input contains one integer $n$ ($1 \le n \le 200$) β the length of $s$.
The second line of the input contains the string $s$ consisting of exactly $n$ lowercase Latin letters.
-----Output-----
If it is impossible to color the given string so that after coloring it can become sorted by some sequence of swaps, print "NO" (without quotes) in the first line.
Otherwise, print "YES" in the first line and any correct coloring in the second line (the coloring is the string consisting of $n$ characters, the $i$-th character should be '0' if the $i$-th character is colored the first color and '1' otherwise).
-----Examples-----
Input
9
abacbecfd
Output
YES
001010101
Input
8
aaabbcbb
Output
YES
01011011
Input
7
abcdedc
Output
NO
Input
5
abcde
Output
YES
00000
|
def main():
n = int(input())
s = input()
fst_lst = [s[0]]
snd_lst = []
ans = "1"
for i in range(1, len(s)):
if fst_lst[-1] <= s[i]:
fst_lst.append(s[i])
ans += "1"
else:
snd_lst.append(s[i])
ans += "0"
if sorted(snd_lst) == snd_lst:
print("YES")
print(ans)
else:
print("NO")
main()
|
FUNC_DEF ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR LIST VAR NUMBER ASSIGN VAR LIST ASSIGN VAR STRING FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR IF VAR NUMBER VAR VAR EXPR FUNC_CALL VAR VAR VAR VAR STRING EXPR FUNC_CALL VAR VAR VAR VAR STRING IF FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR
|
This is an easy version of the problem. The actual problems are different, but the easy version is almost a subtask of the hard version. Note that the constraints and the output format are different.
You are given a string $s$ consisting of $n$ lowercase Latin letters.
You have to color all its characters one of the two colors (each character to exactly one color, the same letters can be colored the same or different colors, i.e. you can choose exactly one color for each index in $s$).
After coloring, you can swap any two neighboring characters of the string that are colored different colors. You can perform such an operation arbitrary (possibly, zero) number of times.
The goal is to make the string sorted, i.e. all characters should be in alphabetical order.
Your task is to say if it is possible to color the given string so that after coloring it can become sorted by some sequence of swaps. Note that you have to restore only coloring, not the sequence of swaps.
-----Input-----
The first line of the input contains one integer $n$ ($1 \le n \le 200$) β the length of $s$.
The second line of the input contains the string $s$ consisting of exactly $n$ lowercase Latin letters.
-----Output-----
If it is impossible to color the given string so that after coloring it can become sorted by some sequence of swaps, print "NO" (without quotes) in the first line.
Otherwise, print "YES" in the first line and any correct coloring in the second line (the coloring is the string consisting of $n$ characters, the $i$-th character should be '0' if the $i$-th character is colored the first color and '1' otherwise).
-----Examples-----
Input
9
abacbecfd
Output
YES
001010101
Input
8
aaabbcbb
Output
YES
01011011
Input
7
abcdedc
Output
NO
Input
5
abcde
Output
YES
00000
|
from itertools import tee
def line():
return map(int, input().split())
def num():
return int(input())
def pairwise(it):
a, b = tee(it)
next(b, None)
return zip(a, b)
n = num()
s = input()
qq = []
ans = []
for c in s:
for j, q in enumerate(qq):
if c >= q:
qq[j] = c
ans.append(j + 1)
break
else:
qq.append(c)
ans.append(len(qq))
print(len(qq))
print(" ".join(map(str, ans)))
|
FUNC_DEF RETURN FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR FUNC_DEF RETURN FUNC_CALL VAR FUNC_CALL VAR FUNC_DEF ASSIGN VAR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR NONE RETURN FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR LIST ASSIGN VAR LIST FOR VAR VAR FOR VAR VAR FUNC_CALL VAR VAR IF VAR VAR ASSIGN VAR VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR FUNC_CALL STRING FUNC_CALL VAR VAR VAR
|
This is an easy version of the problem. The actual problems are different, but the easy version is almost a subtask of the hard version. Note that the constraints and the output format are different.
You are given a string $s$ consisting of $n$ lowercase Latin letters.
You have to color all its characters one of the two colors (each character to exactly one color, the same letters can be colored the same or different colors, i.e. you can choose exactly one color for each index in $s$).
After coloring, you can swap any two neighboring characters of the string that are colored different colors. You can perform such an operation arbitrary (possibly, zero) number of times.
The goal is to make the string sorted, i.e. all characters should be in alphabetical order.
Your task is to say if it is possible to color the given string so that after coloring it can become sorted by some sequence of swaps. Note that you have to restore only coloring, not the sequence of swaps.
-----Input-----
The first line of the input contains one integer $n$ ($1 \le n \le 200$) β the length of $s$.
The second line of the input contains the string $s$ consisting of exactly $n$ lowercase Latin letters.
-----Output-----
If it is impossible to color the given string so that after coloring it can become sorted by some sequence of swaps, print "NO" (without quotes) in the first line.
Otherwise, print "YES" in the first line and any correct coloring in the second line (the coloring is the string consisting of $n$ characters, the $i$-th character should be '0' if the $i$-th character is colored the first color and '1' otherwise).
-----Examples-----
Input
9
abacbecfd
Output
YES
001010101
Input
8
aaabbcbb
Output
YES
01011011
Input
7
abcdedc
Output
NO
Input
5
abcde
Output
YES
00000
|
def hello_nigga():
n = int(input())
s = input()
LAST = {(1): "a"}
COLORS = {(1): []}
cnum = 1
for i in range(n):
nice = 0
for j in range(1, cnum + 1):
if s[i] >= LAST[j]:
LAST[j] = s[i]
COLORS[j].append(i)
nice = 1
break
if not nice:
cnum += 1
LAST[cnum] = s[i]
COLORS[cnum] = [i]
ans = [0] * n
for i in range(1, cnum + 1):
for j in range(len(COLORS[i])):
ans[COLORS[i][j]] = i
print(cnum)
print(*ans)
if "compiler is alive":
if "it has sence" and "the wether is nice":
hello_nigga()
|
FUNC_DEF ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR DICT NUMBER STRING ASSIGN VAR DICT NUMBER LIST ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER IF VAR VAR VAR VAR ASSIGN VAR VAR VAR VAR EXPR FUNC_CALL VAR VAR VAR ASSIGN VAR NUMBER IF VAR VAR NUMBER ASSIGN VAR VAR VAR VAR ASSIGN VAR VAR LIST VAR ASSIGN VAR BIN_OP LIST NUMBER VAR FOR VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR ASSIGN VAR VAR VAR VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR IF STRING IF STRING STRING EXPR FUNC_CALL VAR
|
This is an easy version of the problem. The actual problems are different, but the easy version is almost a subtask of the hard version. Note that the constraints and the output format are different.
You are given a string $s$ consisting of $n$ lowercase Latin letters.
You have to color all its characters one of the two colors (each character to exactly one color, the same letters can be colored the same or different colors, i.e. you can choose exactly one color for each index in $s$).
After coloring, you can swap any two neighboring characters of the string that are colored different colors. You can perform such an operation arbitrary (possibly, zero) number of times.
The goal is to make the string sorted, i.e. all characters should be in alphabetical order.
Your task is to say if it is possible to color the given string so that after coloring it can become sorted by some sequence of swaps. Note that you have to restore only coloring, not the sequence of swaps.
-----Input-----
The first line of the input contains one integer $n$ ($1 \le n \le 200$) β the length of $s$.
The second line of the input contains the string $s$ consisting of exactly $n$ lowercase Latin letters.
-----Output-----
If it is impossible to color the given string so that after coloring it can become sorted by some sequence of swaps, print "NO" (without quotes) in the first line.
Otherwise, print "YES" in the first line and any correct coloring in the second line (the coloring is the string consisting of $n$ characters, the $i$-th character should be '0' if the $i$-th character is colored the first color and '1' otherwise).
-----Examples-----
Input
9
abacbecfd
Output
YES
001010101
Input
8
aaabbcbb
Output
YES
01011011
Input
7
abcdedc
Output
NO
Input
5
abcde
Output
YES
00000
|
def r(t=int):
return list(map(t, input().split()))
def ri(t=int):
return t(input())
def cd(it):
ret_val = dict()
for v in it:
ret_val[v] = ret_val.get(v, 0) + 1
return ret_val
n = ri()
ans = [0] * n
alphabet = "abcdefghijklmnopqrstuvwxyz"
a = [alphabet.index(ai) for ai in input()]
pa = []
for i, ai in enumerate(a):
m = 100
for h, p in enumerate(pa):
p1 = ai - p
if p <= ai and p1 < m:
f = h + 1
m = p1
if m == 100:
pa.append(ai)
f = len(pa)
ans[i] = f
pa[f - 1] = ai
print(len(pa))
print(" ".join(str(i) for i in ans))
|
FUNC_DEF VAR RETURN FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR FUNC_DEF VAR RETURN FUNC_CALL VAR FUNC_CALL VAR FUNC_DEF ASSIGN VAR FUNC_CALL VAR FOR VAR VAR ASSIGN VAR VAR BIN_OP FUNC_CALL VAR VAR NUMBER NUMBER RETURN VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR BIN_OP LIST NUMBER VAR ASSIGN VAR STRING ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR ASSIGN VAR LIST FOR VAR VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER FOR VAR VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR VAR IF VAR VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR VAR IF VAR NUMBER EXPR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR FUNC_CALL STRING FUNC_CALL VAR VAR VAR VAR
|
This is an easy version of the problem. The actual problems are different, but the easy version is almost a subtask of the hard version. Note that the constraints and the output format are different.
You are given a string $s$ consisting of $n$ lowercase Latin letters.
You have to color all its characters one of the two colors (each character to exactly one color, the same letters can be colored the same or different colors, i.e. you can choose exactly one color for each index in $s$).
After coloring, you can swap any two neighboring characters of the string that are colored different colors. You can perform such an operation arbitrary (possibly, zero) number of times.
The goal is to make the string sorted, i.e. all characters should be in alphabetical order.
Your task is to say if it is possible to color the given string so that after coloring it can become sorted by some sequence of swaps. Note that you have to restore only coloring, not the sequence of swaps.
-----Input-----
The first line of the input contains one integer $n$ ($1 \le n \le 200$) β the length of $s$.
The second line of the input contains the string $s$ consisting of exactly $n$ lowercase Latin letters.
-----Output-----
If it is impossible to color the given string so that after coloring it can become sorted by some sequence of swaps, print "NO" (without quotes) in the first line.
Otherwise, print "YES" in the first line and any correct coloring in the second line (the coloring is the string consisting of $n$ characters, the $i$-th character should be '0' if the $i$-th character is colored the first color and '1' otherwise).
-----Examples-----
Input
9
abacbecfd
Output
YES
001010101
Input
8
aaabbcbb
Output
YES
01011011
Input
7
abcdedc
Output
NO
Input
5
abcde
Output
YES
00000
|
n = int(input())
a = list(input())
colors = [(0) for _ in range(n)]
flag_yes = True
last0, last1 = -1, -1
for i in range(n):
if ord(a[i]) >= last0:
if ord(a[i]) >= last1:
if last0 >= last1:
last0 = ord(a[i])
colors[i] = 0
else:
last1 = ord(a[i])
colors[i] = 1
else:
last0 = ord(a[i])
colors[i] = 0
elif ord(a[i]) >= last1:
last1 = ord(a[i])
colors[i] = 1
else:
flag_yes = False
break
if flag_yes:
print("YES")
print("".join([str(item) for item in colors]))
else:
print("NO")
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR NUMBER VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR VAR NUMBER NUMBER FOR VAR FUNC_CALL VAR VAR IF FUNC_CALL VAR VAR VAR VAR IF FUNC_CALL VAR VAR VAR VAR IF VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR VAR NUMBER IF FUNC_CALL VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR VAR NUMBER ASSIGN VAR NUMBER IF VAR EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR FUNC_CALL STRING FUNC_CALL VAR VAR VAR VAR EXPR FUNC_CALL VAR STRING
|
This is an easy version of the problem. The actual problems are different, but the easy version is almost a subtask of the hard version. Note that the constraints and the output format are different.
You are given a string $s$ consisting of $n$ lowercase Latin letters.
You have to color all its characters one of the two colors (each character to exactly one color, the same letters can be colored the same or different colors, i.e. you can choose exactly one color for each index in $s$).
After coloring, you can swap any two neighboring characters of the string that are colored different colors. You can perform such an operation arbitrary (possibly, zero) number of times.
The goal is to make the string sorted, i.e. all characters should be in alphabetical order.
Your task is to say if it is possible to color the given string so that after coloring it can become sorted by some sequence of swaps. Note that you have to restore only coloring, not the sequence of swaps.
-----Input-----
The first line of the input contains one integer $n$ ($1 \le n \le 200$) β the length of $s$.
The second line of the input contains the string $s$ consisting of exactly $n$ lowercase Latin letters.
-----Output-----
If it is impossible to color the given string so that after coloring it can become sorted by some sequence of swaps, print "NO" (without quotes) in the first line.
Otherwise, print "YES" in the first line and any correct coloring in the second line (the coloring is the string consisting of $n$ characters, the $i$-th character should be '0' if the $i$-th character is colored the first color and '1' otherwise).
-----Examples-----
Input
9
abacbecfd
Output
YES
001010101
Input
8
aaabbcbb
Output
YES
01011011
Input
7
abcdedc
Output
NO
Input
5
abcde
Output
YES
00000
|
n = int(input())
letters = list(input())
flag = True
flagarr = [0] * n
binarr = {x: [0, 0] for x in range(26)}
for i in range(n):
for k in range(i + 1, n):
if ord(letters[k]) % 97 < ord(letters[i]) % 97:
flagarr[k] = 1
if flagarr[i]:
flag = False
break
if not flag:
break
for letter in range(n):
if not flag:
break
if flagarr[letter]:
binarr[ord(letters[letter]) % 97][1] += 1
else:
binarr[ord(letters[letter]) % 97][0] += 1
if not flag:
print("NO")
else:
print("YES")
print("".join(str(i) for i in flagarr))
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP LIST NUMBER VAR ASSIGN VAR VAR LIST NUMBER NUMBER VAR FUNC_CALL VAR NUMBER FOR VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER VAR IF BIN_OP FUNC_CALL VAR VAR VAR NUMBER BIN_OP FUNC_CALL VAR VAR VAR NUMBER ASSIGN VAR VAR NUMBER IF VAR VAR ASSIGN VAR NUMBER IF VAR FOR VAR FUNC_CALL VAR VAR IF VAR IF VAR VAR VAR BIN_OP FUNC_CALL VAR VAR VAR NUMBER NUMBER NUMBER VAR BIN_OP FUNC_CALL VAR VAR VAR NUMBER NUMBER NUMBER IF VAR EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR FUNC_CALL STRING FUNC_CALL VAR VAR VAR VAR
|
This is an easy version of the problem. The actual problems are different, but the easy version is almost a subtask of the hard version. Note that the constraints and the output format are different.
You are given a string $s$ consisting of $n$ lowercase Latin letters.
You have to color all its characters one of the two colors (each character to exactly one color, the same letters can be colored the same or different colors, i.e. you can choose exactly one color for each index in $s$).
After coloring, you can swap any two neighboring characters of the string that are colored different colors. You can perform such an operation arbitrary (possibly, zero) number of times.
The goal is to make the string sorted, i.e. all characters should be in alphabetical order.
Your task is to say if it is possible to color the given string so that after coloring it can become sorted by some sequence of swaps. Note that you have to restore only coloring, not the sequence of swaps.
-----Input-----
The first line of the input contains one integer $n$ ($1 \le n \le 200$) β the length of $s$.
The second line of the input contains the string $s$ consisting of exactly $n$ lowercase Latin letters.
-----Output-----
If it is impossible to color the given string so that after coloring it can become sorted by some sequence of swaps, print "NO" (without quotes) in the first line.
Otherwise, print "YES" in the first line and any correct coloring in the second line (the coloring is the string consisting of $n$ characters, the $i$-th character should be '0' if the $i$-th character is colored the first color and '1' otherwise).
-----Examples-----
Input
9
abacbecfd
Output
YES
001010101
Input
8
aaabbcbb
Output
YES
01011011
Input
7
abcdedc
Output
NO
Input
5
abcde
Output
YES
00000
|
import sys
reader = (line.rstrip() for line in sys.stdin)
input = reader.__next__
def ceil(tails, L, R, key):
while L + 1 < R:
m = (L + R) // 2
if key < tails[m]:
L = m
else:
R = m
return R
def LIS(a, n):
tails = [0] * (n + 1)
tails[0] = a[0]
seq_len = 1
for i in range(1, n):
if a[i] > tails[0]:
tails[0] = a[i]
ans.append(1)
elif a[i] < tails[seq_len - 1]:
tails[seq_len] = a[i]
seq_len += 1
ans.append(seq_len)
else:
pos = ceil(tails, -1, seq_len - 1, a[i])
tails[pos] = a[i]
ans.append(pos + 1)
return seq_len
n = int(input())
s = input()
ans = [1]
res = LIS(s, n)
print(res)
print(*ans)
|
IMPORT ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR VAR FUNC_DEF WHILE BIN_OP VAR NUMBER VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF VAR VAR VAR ASSIGN VAR VAR ASSIGN VAR VAR RETURN VAR FUNC_DEF ASSIGN VAR BIN_OP LIST NUMBER BIN_OP VAR NUMBER ASSIGN VAR NUMBER VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR IF VAR VAR VAR NUMBER ASSIGN VAR NUMBER VAR VAR EXPR FUNC_CALL VAR NUMBER IF VAR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR VAR VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR NUMBER BIN_OP VAR NUMBER VAR VAR ASSIGN VAR VAR VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR NUMBER RETURN VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR LIST NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR
|
This is an easy version of the problem. The actual problems are different, but the easy version is almost a subtask of the hard version. Note that the constraints and the output format are different.
You are given a string $s$ consisting of $n$ lowercase Latin letters.
You have to color all its characters one of the two colors (each character to exactly one color, the same letters can be colored the same or different colors, i.e. you can choose exactly one color for each index in $s$).
After coloring, you can swap any two neighboring characters of the string that are colored different colors. You can perform such an operation arbitrary (possibly, zero) number of times.
The goal is to make the string sorted, i.e. all characters should be in alphabetical order.
Your task is to say if it is possible to color the given string so that after coloring it can become sorted by some sequence of swaps. Note that you have to restore only coloring, not the sequence of swaps.
-----Input-----
The first line of the input contains one integer $n$ ($1 \le n \le 200$) β the length of $s$.
The second line of the input contains the string $s$ consisting of exactly $n$ lowercase Latin letters.
-----Output-----
If it is impossible to color the given string so that after coloring it can become sorted by some sequence of swaps, print "NO" (without quotes) in the first line.
Otherwise, print "YES" in the first line and any correct coloring in the second line (the coloring is the string consisting of $n$ characters, the $i$-th character should be '0' if the $i$-th character is colored the first color and '1' otherwise).
-----Examples-----
Input
9
abacbecfd
Output
YES
001010101
Input
8
aaabbcbb
Output
YES
01011011
Input
7
abcdedc
Output
NO
Input
5
abcde
Output
YES
00000
|
n = int(input())
s2 = input()
k = 0
s = []
l = {}
for i in range(n):
s.append(i)
l[i] = -1
for i in range(n):
m = "zz"
index = -1
for j in range(k, n):
if index == -1:
index = j
m = s2[j]
if s2[j] < m:
index = j
m = s2[j]
col = -1
for j in range(k, index):
if col == -1:
col = l[s[j]]
if col == 0:
if l[s[j]] == 1:
print("NO")
exit(0)
if col == 1:
if l[s[j]] == 0:
print("NO")
exit(0)
if l[s[index]] == -1:
if col == -1:
l[s[index]] = 1
for j in range(k, index):
l[s[j]] = 0
if col == 0:
l[s[index]] = 1
for j in range(k, index):
l[s[j]] = 0
if col == 1:
l[s[index]] = 0
for j in range(k, index):
l[s[j]] = 1
else:
if l[s[index]] == col:
print("NO")
exit(0)
if col == -1:
if l[s[index]] == 0:
for j in range(k, index):
l[s[j]] = 1
if l[s[index]] == 1:
for j in range(k, index):
l[s[j]] = 0
s = s[:k] + [s[index]] + s[k:index] + s[index + 1 :]
s2 = s2[:k] + s2[index] + s2[k:index] + s2[index + 1 :]
k += 1
ss = ""
for i in range(n):
ss += str(l[i])
print("YES")
print(ss)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR LIST ASSIGN VAR DICT FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR ASSIGN VAR VAR NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR STRING ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR VAR IF VAR NUMBER ASSIGN VAR VAR ASSIGN VAR VAR VAR IF VAR VAR VAR ASSIGN VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR VAR IF VAR NUMBER ASSIGN VAR VAR VAR VAR IF VAR NUMBER IF VAR VAR VAR NUMBER EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR NUMBER IF VAR NUMBER IF VAR VAR VAR NUMBER EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR NUMBER IF VAR VAR VAR NUMBER IF VAR NUMBER ASSIGN VAR VAR VAR NUMBER FOR VAR FUNC_CALL VAR VAR VAR ASSIGN VAR VAR VAR NUMBER IF VAR NUMBER ASSIGN VAR VAR VAR NUMBER FOR VAR FUNC_CALL VAR VAR VAR ASSIGN VAR VAR VAR NUMBER IF VAR NUMBER ASSIGN VAR VAR VAR NUMBER FOR VAR FUNC_CALL VAR VAR VAR ASSIGN VAR VAR VAR NUMBER IF VAR VAR VAR VAR EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR NUMBER IF VAR NUMBER IF VAR VAR VAR NUMBER FOR VAR FUNC_CALL VAR VAR VAR ASSIGN VAR VAR VAR NUMBER IF VAR VAR VAR NUMBER FOR VAR FUNC_CALL VAR VAR VAR ASSIGN VAR VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP BIN_OP VAR VAR LIST VAR VAR VAR VAR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP BIN_OP BIN_OP VAR VAR VAR VAR VAR VAR VAR VAR BIN_OP VAR NUMBER VAR NUMBER ASSIGN VAR STRING FOR VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR VAR
|
This is an easy version of the problem. The actual problems are different, but the easy version is almost a subtask of the hard version. Note that the constraints and the output format are different.
You are given a string $s$ consisting of $n$ lowercase Latin letters.
You have to color all its characters one of the two colors (each character to exactly one color, the same letters can be colored the same or different colors, i.e. you can choose exactly one color for each index in $s$).
After coloring, you can swap any two neighboring characters of the string that are colored different colors. You can perform such an operation arbitrary (possibly, zero) number of times.
The goal is to make the string sorted, i.e. all characters should be in alphabetical order.
Your task is to say if it is possible to color the given string so that after coloring it can become sorted by some sequence of swaps. Note that you have to restore only coloring, not the sequence of swaps.
-----Input-----
The first line of the input contains one integer $n$ ($1 \le n \le 200$) β the length of $s$.
The second line of the input contains the string $s$ consisting of exactly $n$ lowercase Latin letters.
-----Output-----
If it is impossible to color the given string so that after coloring it can become sorted by some sequence of swaps, print "NO" (without quotes) in the first line.
Otherwise, print "YES" in the first line and any correct coloring in the second line (the coloring is the string consisting of $n$ characters, the $i$-th character should be '0' if the $i$-th character is colored the first color and '1' otherwise).
-----Examples-----
Input
9
abacbecfd
Output
YES
001010101
Input
8
aaabbcbb
Output
YES
01011011
Input
7
abcdedc
Output
NO
Input
5
abcde
Output
YES
00000
|
def binSearch(a, n):
i, j = 0, len(a) - 1
while i != j:
if (j - i) % 2 == 1:
if a[i + (j - i) // 2] > n:
i = i + (j - i) // 2 + 1
else:
j = i + (j - i) // 2
elif a[i + (j - i) // 2] > n:
i = i + (j - i) // 2
else:
j = i + (j - i) // 2
return i
n, s = int(input()), input()
k = "aa"
ans = ""
maxColor = 1
for symb in s:
i = binSearch(k, symb)
ans += str(i + 1) + " "
if i + 1 > maxColor:
maxColor = i + 1
k += "a"
k = k[:i] + symb + k[i + 1 :]
print(maxColor)
print(ans)
|
FUNC_DEF ASSIGN VAR VAR NUMBER BIN_OP FUNC_CALL VAR VAR NUMBER WHILE VAR VAR IF BIN_OP BIN_OP VAR VAR NUMBER NUMBER IF VAR BIN_OP VAR BIN_OP BIN_OP VAR VAR NUMBER VAR ASSIGN VAR BIN_OP BIN_OP VAR BIN_OP BIN_OP VAR VAR NUMBER NUMBER ASSIGN VAR BIN_OP VAR BIN_OP BIN_OP VAR VAR NUMBER IF VAR BIN_OP VAR BIN_OP BIN_OP VAR VAR NUMBER VAR ASSIGN VAR BIN_OP VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP VAR BIN_OP BIN_OP VAR VAR NUMBER RETURN VAR ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR STRING ASSIGN VAR STRING ASSIGN VAR NUMBER FOR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR VAR BIN_OP FUNC_CALL VAR BIN_OP VAR NUMBER STRING IF BIN_OP VAR NUMBER VAR ASSIGN VAR BIN_OP VAR NUMBER VAR STRING ASSIGN VAR BIN_OP BIN_OP VAR VAR VAR VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR
|
This is an easy version of the problem. The actual problems are different, but the easy version is almost a subtask of the hard version. Note that the constraints and the output format are different.
You are given a string $s$ consisting of $n$ lowercase Latin letters.
You have to color all its characters one of the two colors (each character to exactly one color, the same letters can be colored the same or different colors, i.e. you can choose exactly one color for each index in $s$).
After coloring, you can swap any two neighboring characters of the string that are colored different colors. You can perform such an operation arbitrary (possibly, zero) number of times.
The goal is to make the string sorted, i.e. all characters should be in alphabetical order.
Your task is to say if it is possible to color the given string so that after coloring it can become sorted by some sequence of swaps. Note that you have to restore only coloring, not the sequence of swaps.
-----Input-----
The first line of the input contains one integer $n$ ($1 \le n \le 200$) β the length of $s$.
The second line of the input contains the string $s$ consisting of exactly $n$ lowercase Latin letters.
-----Output-----
If it is impossible to color the given string so that after coloring it can become sorted by some sequence of swaps, print "NO" (without quotes) in the first line.
Otherwise, print "YES" in the first line and any correct coloring in the second line (the coloring is the string consisting of $n$ characters, the $i$-th character should be '0' if the $i$-th character is colored the first color and '1' otherwise).
-----Examples-----
Input
9
abacbecfd
Output
YES
001010101
Input
8
aaabbcbb
Output
YES
01011011
Input
7
abcdedc
Output
NO
Input
5
abcde
Output
YES
00000
|
n = int(input())
s = input()
kol = [-1] * n
cur = 1
ind = 0
while ind < n:
if kol[ind] != -1:
ind += 1
else:
kol[ind] = cur
best = s[ind]
for i in range(ind + 1, n):
if kol[i] != -1:
continue
elif s[i] >= best:
kol[i] = cur
best = s[i]
ind += 1
cur += 1
print(max(kol))
for i in range(n):
print(kol[i], end=" ")
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR BIN_OP LIST NUMBER VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR IF VAR VAR NUMBER VAR NUMBER ASSIGN VAR VAR VAR ASSIGN VAR VAR VAR FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER VAR IF VAR VAR NUMBER IF VAR VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR VAR VAR VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR VAR STRING
|
This is an easy version of the problem. The actual problems are different, but the easy version is almost a subtask of the hard version. Note that the constraints and the output format are different.
You are given a string $s$ consisting of $n$ lowercase Latin letters.
You have to color all its characters one of the two colors (each character to exactly one color, the same letters can be colored the same or different colors, i.e. you can choose exactly one color for each index in $s$).
After coloring, you can swap any two neighboring characters of the string that are colored different colors. You can perform such an operation arbitrary (possibly, zero) number of times.
The goal is to make the string sorted, i.e. all characters should be in alphabetical order.
Your task is to say if it is possible to color the given string so that after coloring it can become sorted by some sequence of swaps. Note that you have to restore only coloring, not the sequence of swaps.
-----Input-----
The first line of the input contains one integer $n$ ($1 \le n \le 200$) β the length of $s$.
The second line of the input contains the string $s$ consisting of exactly $n$ lowercase Latin letters.
-----Output-----
If it is impossible to color the given string so that after coloring it can become sorted by some sequence of swaps, print "NO" (without quotes) in the first line.
Otherwise, print "YES" in the first line and any correct coloring in the second line (the coloring is the string consisting of $n$ characters, the $i$-th character should be '0' if the $i$-th character is colored the first color and '1' otherwise).
-----Examples-----
Input
9
abacbecfd
Output
YES
001010101
Input
8
aaabbcbb
Output
YES
01011011
Input
7
abcdedc
Output
NO
Input
5
abcde
Output
YES
00000
|
n = int(input())
s = input()
arr = ["a" for i in range(n)]
l = []
for i in s:
for j in range(n):
if i >= arr[j]:
arr[j] = i
l.append(j + 1)
break
print(max(l))
print(*l)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR STRING VAR FUNC_CALL VAR VAR ASSIGN VAR LIST FOR VAR VAR FOR VAR FUNC_CALL VAR VAR IF VAR VAR VAR ASSIGN VAR VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR
|
This is an easy version of the problem. The actual problems are different, but the easy version is almost a subtask of the hard version. Note that the constraints and the output format are different.
You are given a string $s$ consisting of $n$ lowercase Latin letters.
You have to color all its characters one of the two colors (each character to exactly one color, the same letters can be colored the same or different colors, i.e. you can choose exactly one color for each index in $s$).
After coloring, you can swap any two neighboring characters of the string that are colored different colors. You can perform such an operation arbitrary (possibly, zero) number of times.
The goal is to make the string sorted, i.e. all characters should be in alphabetical order.
Your task is to say if it is possible to color the given string so that after coloring it can become sorted by some sequence of swaps. Note that you have to restore only coloring, not the sequence of swaps.
-----Input-----
The first line of the input contains one integer $n$ ($1 \le n \le 200$) β the length of $s$.
The second line of the input contains the string $s$ consisting of exactly $n$ lowercase Latin letters.
-----Output-----
If it is impossible to color the given string so that after coloring it can become sorted by some sequence of swaps, print "NO" (without quotes) in the first line.
Otherwise, print "YES" in the first line and any correct coloring in the second line (the coloring is the string consisting of $n$ characters, the $i$-th character should be '0' if the $i$-th character is colored the first color and '1' otherwise).
-----Examples-----
Input
9
abacbecfd
Output
YES
001010101
Input
8
aaabbcbb
Output
YES
01011011
Input
7
abcdedc
Output
NO
Input
5
abcde
Output
YES
00000
|
import sys
input = sys.stdin.readline
class SegmentTree:
def __init__(self, a):
self.op = lambda a, b: max(a, b)
self.e = 0
self.n = len(a)
self.lv = (self.n - 1).bit_length()
self.size = 2**self.lv
self.data = [self.e] * (2 * self.size - 1)
self._check = lambda x, acc: acc >= x
self._acc = self.e
self.initialize(a)
def initialize(self, a):
for i in range(self.n):
self.data[self.size + i - 1] = a[i]
for i in range(self.size - 2, -1, -1):
self.data[i] = self.op(self.data[i * 2 + 1], self.data[i * 2 + 2])
def update(self, k, x):
k += self.size - 1
self.data[k] = x
while k > 0:
k = (k - 1) // 2
self.data[k] = self.op(self.data[2 * k + 1], self.data[2 * k + 2])
def fold(self, l, r):
L = l + self.size
R = r + self.size
s = self.e
while L < R:
if R & 1:
R -= 1
s = self.op(s, self.data[R - 1])
if L & 1:
s = self.op(s, self.data[L - 1])
L += 1
L >>= 1
R >>= 1
return s
def _bisect_forward(self, x, start, k):
if k >= self.size - 1:
self._acc = self.op(self._acc, self.data[k])
if self._check(x, self._acc):
return k - (self.size - 1)
else:
return -1
width = 2 ** (self.lv - (k + 1).bit_length() + 1)
mid = (k + 1) * width + width // 2 - self.size
if mid <= start:
return self._bisect_forward(x, start, 2 * k + 2)
tmp_acc = self.op(self._acc, self.data[k])
if start <= mid - width // 2 and not self._check(x, tmp_acc):
self._acc = tmp_acc
return -1
vl = self._bisect_forward(x, start, 2 * k + 1)
if vl != -1:
return vl
return self._bisect_forward(x, start, 2 * k + 2)
def bisect_forward(self, x, start=None):
if start:
ret = self._bisect_forward(x, start, 0)
else:
ret = self._bisect_forward(x, 0, 0)
self._acc = self.e
return ret
def _bisect_backward(self, x, start, k):
if k >= self.size - 1:
self._acc = self.op(self._acc, self.data[k])
if self._check(x, self._acc):
return k - (self.size - 1)
else:
return -1
width = 2 ** (self.lv - (k + 1).bit_length() + 1)
mid = (k + 1) * width + width // 2 - self.size
if mid >= start:
return self._bisect_backward(x, start, 2 * k + 1)
tmp_acc = self.op(self._acc, self.data[k])
if start > mid + width // 2 and not self._check(x, tmp_acc):
self._acc = tmp_acc
return -1
vl = self._bisect_backward(x, start, 2 * k + 2)
if vl != -1:
return vl
return self._bisect_backward(x, start, 2 * k + 1)
def bisect_backward(self, x, start=None):
if start:
ret = self._bisect_backward(x, start, 0)
else:
ret = self._bisect_backward(x, self.n, 0)
self._acc = self.e
return ret
n = int(input())
s = input().rstrip()
array = [0] * n
ST = SegmentTree(array)
event = []
for i, ch in enumerate(s):
event.append((ch, i))
event.sort(reverse=True)
ans = [0] * n
for ch, index in event:
val = ST.fold(0, index) + 1
ans[index] = val
ST.update(index, val)
print(max(ans))
print(*ans)
|
IMPORT ASSIGN VAR VAR CLASS_DEF FUNC_DEF ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL BIN_OP VAR NUMBER ASSIGN VAR BIN_OP NUMBER VAR ASSIGN VAR BIN_OP LIST VAR BIN_OP BIN_OP NUMBER VAR NUMBER ASSIGN VAR VAR VAR ASSIGN VAR VAR EXPR FUNC_CALL VAR VAR FUNC_DEF FOR VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER VAR VAR FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR BIN_OP BIN_OP VAR NUMBER NUMBER VAR BIN_OP BIN_OP VAR NUMBER NUMBER FUNC_DEF VAR BIN_OP VAR NUMBER ASSIGN VAR VAR VAR WHILE VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR NUMBER NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR BIN_OP BIN_OP NUMBER VAR NUMBER VAR BIN_OP BIN_OP NUMBER VAR NUMBER FUNC_DEF ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR VAR WHILE VAR VAR IF BIN_OP VAR NUMBER VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR BIN_OP VAR NUMBER IF BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR BIN_OP VAR NUMBER VAR NUMBER VAR NUMBER VAR NUMBER RETURN VAR FUNC_DEF IF VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR VAR IF FUNC_CALL VAR VAR VAR RETURN BIN_OP VAR BIN_OP VAR NUMBER RETURN NUMBER ASSIGN VAR BIN_OP NUMBER BIN_OP BIN_OP VAR FUNC_CALL BIN_OP VAR NUMBER NUMBER ASSIGN VAR BIN_OP BIN_OP BIN_OP BIN_OP VAR NUMBER VAR BIN_OP VAR NUMBER VAR IF VAR VAR RETURN FUNC_CALL VAR VAR VAR BIN_OP BIN_OP NUMBER VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR VAR IF VAR BIN_OP VAR BIN_OP VAR NUMBER FUNC_CALL VAR VAR VAR ASSIGN VAR VAR RETURN NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR BIN_OP BIN_OP NUMBER VAR NUMBER IF VAR NUMBER RETURN VAR RETURN FUNC_CALL VAR VAR VAR BIN_OP BIN_OP NUMBER VAR NUMBER FUNC_DEF NONE IF VAR ASSIGN VAR FUNC_CALL VAR VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR NUMBER NUMBER ASSIGN VAR VAR RETURN VAR FUNC_DEF IF VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR VAR IF FUNC_CALL VAR VAR VAR RETURN BIN_OP VAR BIN_OP VAR NUMBER RETURN NUMBER ASSIGN VAR BIN_OP NUMBER BIN_OP BIN_OP VAR FUNC_CALL BIN_OP VAR NUMBER NUMBER ASSIGN VAR BIN_OP BIN_OP BIN_OP BIN_OP VAR NUMBER VAR BIN_OP VAR NUMBER VAR IF VAR VAR RETURN FUNC_CALL VAR VAR VAR BIN_OP BIN_OP NUMBER VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR VAR IF VAR BIN_OP VAR BIN_OP VAR NUMBER FUNC_CALL VAR VAR VAR ASSIGN VAR VAR RETURN NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR BIN_OP BIN_OP NUMBER VAR NUMBER IF VAR NUMBER RETURN VAR RETURN FUNC_CALL VAR VAR VAR BIN_OP BIN_OP NUMBER VAR NUMBER FUNC_DEF NONE IF VAR ASSIGN VAR FUNC_CALL VAR VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR NUMBER ASSIGN VAR VAR RETURN VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR BIN_OP LIST NUMBER VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR LIST FOR VAR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR BIN_OP LIST NUMBER VAR FOR VAR VAR VAR ASSIGN VAR BIN_OP FUNC_CALL VAR NUMBER VAR NUMBER ASSIGN VAR VAR VAR EXPR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR
|
This is an easy version of the problem. The actual problems are different, but the easy version is almost a subtask of the hard version. Note that the constraints and the output format are different.
You are given a string $s$ consisting of $n$ lowercase Latin letters.
You have to color all its characters one of the two colors (each character to exactly one color, the same letters can be colored the same or different colors, i.e. you can choose exactly one color for each index in $s$).
After coloring, you can swap any two neighboring characters of the string that are colored different colors. You can perform such an operation arbitrary (possibly, zero) number of times.
The goal is to make the string sorted, i.e. all characters should be in alphabetical order.
Your task is to say if it is possible to color the given string so that after coloring it can become sorted by some sequence of swaps. Note that you have to restore only coloring, not the sequence of swaps.
-----Input-----
The first line of the input contains one integer $n$ ($1 \le n \le 200$) β the length of $s$.
The second line of the input contains the string $s$ consisting of exactly $n$ lowercase Latin letters.
-----Output-----
If it is impossible to color the given string so that after coloring it can become sorted by some sequence of swaps, print "NO" (without quotes) in the first line.
Otherwise, print "YES" in the first line and any correct coloring in the second line (the coloring is the string consisting of $n$ characters, the $i$-th character should be '0' if the $i$-th character is colored the first color and '1' otherwise).
-----Examples-----
Input
9
abacbecfd
Output
YES
001010101
Input
8
aaabbcbb
Output
YES
01011011
Input
7
abcdedc
Output
NO
Input
5
abcde
Output
YES
00000
|
import sys
class SegmentTree:
def __init__(self, n, op, e):
self.n = n
self.op = op
self.e = e
self.size = 2 ** (n - 1).bit_length()
self.node = [self.e] * (2 * self.size)
def built(self, array):
for i in range(self.n):
self.node[self.size + i] = array[i]
for i in range(self.size - 1, 0, -1):
self.node[i] = self.op(self.data[i << 1], self.data[(i << 1) + 1])
def update(self, i, val):
i += self.size
self.node[i] = val
while i > 1:
i >>= 1
self.node[i] = self.op(self.node[i << 1], self.node[(i << 1) + 1])
def get_val(self, l, r):
l, r = l + self.size, r + self.size
res = self.e
while l < r:
if l & 1:
res = self.op(self.node[l], res)
l += 1
if r & 1:
r -= 1
res = self.op(self.node[r], res)
l, r = l >> 1, r >> 1
return res
input = sys.stdin.readline
n = int(input())
s = input()
st = SegmentTree(n, max, 0)
s = sorted([(s[i], i) for i in range(n)])[::-1]
cnt = 0
for char, i in s:
min_ = st.get_val(0, i)
st.update(i, min_ + 1)
cnt = max(cnt, min_ + 1)
print(cnt)
print(*st.node[st.size : st.size + n])
|
IMPORT CLASS_DEF FUNC_DEF ASSIGN VAR VAR ASSIGN VAR VAR ASSIGN VAR VAR ASSIGN VAR BIN_OP NUMBER FUNC_CALL BIN_OP VAR NUMBER ASSIGN VAR BIN_OP LIST VAR BIN_OP NUMBER VAR FUNC_DEF FOR VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR VAR VAR VAR FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR BIN_OP BIN_OP VAR NUMBER NUMBER FUNC_DEF VAR VAR ASSIGN VAR VAR VAR WHILE VAR NUMBER VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR BIN_OP BIN_OP VAR NUMBER NUMBER FUNC_DEF ASSIGN VAR VAR BIN_OP VAR VAR BIN_OP VAR VAR ASSIGN VAR VAR WHILE VAR VAR IF BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR VAR VAR NUMBER IF BIN_OP VAR NUMBER VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR VAR ASSIGN VAR VAR BIN_OP VAR NUMBER BIN_OP VAR NUMBER RETURN VAR ASSIGN VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR VAR VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR NUMBER VAR EXPR FUNC_CALL VAR VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR VAR BIN_OP VAR VAR
|
This is an easy version of the problem. The actual problems are different, but the easy version is almost a subtask of the hard version. Note that the constraints and the output format are different.
You are given a string $s$ consisting of $n$ lowercase Latin letters.
You have to color all its characters one of the two colors (each character to exactly one color, the same letters can be colored the same or different colors, i.e. you can choose exactly one color for each index in $s$).
After coloring, you can swap any two neighboring characters of the string that are colored different colors. You can perform such an operation arbitrary (possibly, zero) number of times.
The goal is to make the string sorted, i.e. all characters should be in alphabetical order.
Your task is to say if it is possible to color the given string so that after coloring it can become sorted by some sequence of swaps. Note that you have to restore only coloring, not the sequence of swaps.
-----Input-----
The first line of the input contains one integer $n$ ($1 \le n \le 200$) β the length of $s$.
The second line of the input contains the string $s$ consisting of exactly $n$ lowercase Latin letters.
-----Output-----
If it is impossible to color the given string so that after coloring it can become sorted by some sequence of swaps, print "NO" (without quotes) in the first line.
Otherwise, print "YES" in the first line and any correct coloring in the second line (the coloring is the string consisting of $n$ characters, the $i$-th character should be '0' if the $i$-th character is colored the first color and '1' otherwise).
-----Examples-----
Input
9
abacbecfd
Output
YES
001010101
Input
8
aaabbcbb
Output
YES
01011011
Input
7
abcdedc
Output
NO
Input
5
abcde
Output
YES
00000
|
while True:
try:
n = int(input())
s = input()
a = ""
b = ""
a += s[0]
ans = "0"
for i in range(1, n):
if s[i] >= a[-1]:
a += s[i]
ans += "0"
elif b == "" or s[i] >= b[-1]:
b += s[i]
ans += "1"
else:
ans = "N"
break
if ans == "N":
print("NO")
else:
print("YES")
print(ans)
except EOFError:
break
|
WHILE NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR STRING ASSIGN VAR STRING VAR VAR NUMBER ASSIGN VAR STRING FOR VAR FUNC_CALL VAR NUMBER VAR IF VAR VAR VAR NUMBER VAR VAR VAR VAR STRING IF VAR STRING VAR VAR VAR NUMBER VAR VAR VAR VAR STRING ASSIGN VAR STRING IF VAR STRING EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR VAR VAR
|
This is an easy version of the problem. The actual problems are different, but the easy version is almost a subtask of the hard version. Note that the constraints and the output format are different.
You are given a string $s$ consisting of $n$ lowercase Latin letters.
You have to color all its characters one of the two colors (each character to exactly one color, the same letters can be colored the same or different colors, i.e. you can choose exactly one color for each index in $s$).
After coloring, you can swap any two neighboring characters of the string that are colored different colors. You can perform such an operation arbitrary (possibly, zero) number of times.
The goal is to make the string sorted, i.e. all characters should be in alphabetical order.
Your task is to say if it is possible to color the given string so that after coloring it can become sorted by some sequence of swaps. Note that you have to restore only coloring, not the sequence of swaps.
-----Input-----
The first line of the input contains one integer $n$ ($1 \le n \le 200$) β the length of $s$.
The second line of the input contains the string $s$ consisting of exactly $n$ lowercase Latin letters.
-----Output-----
If it is impossible to color the given string so that after coloring it can become sorted by some sequence of swaps, print "NO" (without quotes) in the first line.
Otherwise, print "YES" in the first line and any correct coloring in the second line (the coloring is the string consisting of $n$ characters, the $i$-th character should be '0' if the $i$-th character is colored the first color and '1' otherwise).
-----Examples-----
Input
9
abacbecfd
Output
YES
001010101
Input
8
aaabbcbb
Output
YES
01011011
Input
7
abcdedc
Output
NO
Input
5
abcde
Output
YES
00000
|
class RangeMinimumQuery:
def __init__(self, n, func=min, inf=float("inf")):
self.n0 = 2 ** (n - 1).bit_length()
self.op = func
self.inf = inf
self.data = [self.inf] * (2 * self.n0)
def query(self, l, r):
l += self.n0
r += self.n0
res = self.inf
while l < r:
if r & 1:
r -= 1
res = self.op(res, self.data[r - 1])
if l & 1:
res = self.op(res, self.data[l - 1])
l += 1
l >>= 1
r >>= 1
return res
def update(self, i, x):
i += self.n0 - 1
self.data[i] = x
while i:
i = ~-i // 2
self.data[i] = self.op(self.data[2 * i + 1], self.data[2 * i + 2])
n = int(input())
s = input()
a = [(c, i) for i, c in enumerate(s)]
a.sort()
RMQ = RangeMinimumQuery(n, max, 0)
col = [0] * n
for _, i in a:
c = RMQ.query(i, n) + 1
col[i] = c
RMQ.update(i, c)
max_col = RMQ.query(0, n)
print(max_col)
print(*col)
|
CLASS_DEF FUNC_DEF VAR FUNC_CALL VAR STRING ASSIGN VAR BIN_OP NUMBER FUNC_CALL BIN_OP VAR NUMBER ASSIGN VAR VAR ASSIGN VAR VAR ASSIGN VAR BIN_OP LIST VAR BIN_OP NUMBER VAR FUNC_DEF VAR VAR VAR VAR ASSIGN VAR VAR WHILE VAR VAR IF BIN_OP VAR NUMBER VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR BIN_OP VAR NUMBER IF BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR BIN_OP VAR NUMBER VAR NUMBER VAR NUMBER VAR NUMBER RETURN VAR FUNC_DEF VAR BIN_OP VAR NUMBER ASSIGN VAR VAR VAR WHILE VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR BIN_OP BIN_OP NUMBER VAR NUMBER VAR BIN_OP BIN_OP NUMBER VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR VAR VAR VAR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR NUMBER ASSIGN VAR BIN_OP LIST NUMBER VAR FOR VAR VAR VAR ASSIGN VAR BIN_OP FUNC_CALL VAR VAR VAR NUMBER ASSIGN VAR VAR VAR EXPR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR NUMBER VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR
|
This is an easy version of the problem. The actual problems are different, but the easy version is almost a subtask of the hard version. Note that the constraints and the output format are different.
You are given a string $s$ consisting of $n$ lowercase Latin letters.
You have to color all its characters one of the two colors (each character to exactly one color, the same letters can be colored the same or different colors, i.e. you can choose exactly one color for each index in $s$).
After coloring, you can swap any two neighboring characters of the string that are colored different colors. You can perform such an operation arbitrary (possibly, zero) number of times.
The goal is to make the string sorted, i.e. all characters should be in alphabetical order.
Your task is to say if it is possible to color the given string so that after coloring it can become sorted by some sequence of swaps. Note that you have to restore only coloring, not the sequence of swaps.
-----Input-----
The first line of the input contains one integer $n$ ($1 \le n \le 200$) β the length of $s$.
The second line of the input contains the string $s$ consisting of exactly $n$ lowercase Latin letters.
-----Output-----
If it is impossible to color the given string so that after coloring it can become sorted by some sequence of swaps, print "NO" (without quotes) in the first line.
Otherwise, print "YES" in the first line and any correct coloring in the second line (the coloring is the string consisting of $n$ characters, the $i$-th character should be '0' if the $i$-th character is colored the first color and '1' otherwise).
-----Examples-----
Input
9
abacbecfd
Output
YES
001010101
Input
8
aaabbcbb
Output
YES
01011011
Input
7
abcdedc
Output
NO
Input
5
abcde
Output
YES
00000
|
n = int(input())
s = list(input())
color = [-1] * n
feasible = True
for i in range(n):
for j in range(0, i):
if s[j] > s[i]:
if color[i] == -1:
color[i] = 1 - color[j]
elif color[i] == color[j]:
feasible = False
if color[i] == -1:
color[i] = 0
if feasible:
print("YES")
print("".join(map(str, color)))
else:
print("NO")
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR BIN_OP LIST NUMBER VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR NUMBER VAR IF VAR VAR VAR VAR IF VAR VAR NUMBER ASSIGN VAR VAR BIN_OP NUMBER VAR VAR IF VAR VAR VAR VAR ASSIGN VAR NUMBER IF VAR VAR NUMBER ASSIGN VAR VAR NUMBER IF VAR EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR FUNC_CALL STRING FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR STRING
|
This is an easy version of the problem. The actual problems are different, but the easy version is almost a subtask of the hard version. Note that the constraints and the output format are different.
You are given a string $s$ consisting of $n$ lowercase Latin letters.
You have to color all its characters one of the two colors (each character to exactly one color, the same letters can be colored the same or different colors, i.e. you can choose exactly one color for each index in $s$).
After coloring, you can swap any two neighboring characters of the string that are colored different colors. You can perform such an operation arbitrary (possibly, zero) number of times.
The goal is to make the string sorted, i.e. all characters should be in alphabetical order.
Your task is to say if it is possible to color the given string so that after coloring it can become sorted by some sequence of swaps. Note that you have to restore only coloring, not the sequence of swaps.
-----Input-----
The first line of the input contains one integer $n$ ($1 \le n \le 200$) β the length of $s$.
The second line of the input contains the string $s$ consisting of exactly $n$ lowercase Latin letters.
-----Output-----
If it is impossible to color the given string so that after coloring it can become sorted by some sequence of swaps, print "NO" (without quotes) in the first line.
Otherwise, print "YES" in the first line and any correct coloring in the second line (the coloring is the string consisting of $n$ characters, the $i$-th character should be '0' if the $i$-th character is colored the first color and '1' otherwise).
-----Examples-----
Input
9
abacbecfd
Output
YES
001010101
Input
8
aaabbcbb
Output
YES
01011011
Input
7
abcdedc
Output
NO
Input
5
abcde
Output
YES
00000
|
def main():
n = int(input())
s = input()
lst = ["a"] * n
ans = []
m = 0
for i in range(n):
for j in range(n):
if lst[j] <= s[i]:
lst[j] = s[i]
ans.append(j + 1)
m = max(m, j + 1)
break
print(m)
print(*ans)
main()
|
FUNC_DEF ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR BIN_OP LIST STRING VAR ASSIGN VAR LIST ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR VAR IF VAR VAR VAR VAR ASSIGN VAR VAR VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR
|
This is an easy version of the problem. The actual problems are different, but the easy version is almost a subtask of the hard version. Note that the constraints and the output format are different.
You are given a string $s$ consisting of $n$ lowercase Latin letters.
You have to color all its characters one of the two colors (each character to exactly one color, the same letters can be colored the same or different colors, i.e. you can choose exactly one color for each index in $s$).
After coloring, you can swap any two neighboring characters of the string that are colored different colors. You can perform such an operation arbitrary (possibly, zero) number of times.
The goal is to make the string sorted, i.e. all characters should be in alphabetical order.
Your task is to say if it is possible to color the given string so that after coloring it can become sorted by some sequence of swaps. Note that you have to restore only coloring, not the sequence of swaps.
-----Input-----
The first line of the input contains one integer $n$ ($1 \le n \le 200$) β the length of $s$.
The second line of the input contains the string $s$ consisting of exactly $n$ lowercase Latin letters.
-----Output-----
If it is impossible to color the given string so that after coloring it can become sorted by some sequence of swaps, print "NO" (without quotes) in the first line.
Otherwise, print "YES" in the first line and any correct coloring in the second line (the coloring is the string consisting of $n$ characters, the $i$-th character should be '0' if the $i$-th character is colored the first color and '1' otherwise).
-----Examples-----
Input
9
abacbecfd
Output
YES
001010101
Input
8
aaabbcbb
Output
YES
01011011
Input
7
abcdedc
Output
NO
Input
5
abcde
Output
YES
00000
|
n = int(input())
s = input()
najm = [0] * n
najm[n - 1] = s[n - 1]
for i in range(n - 1):
j = n - i - 2
najm[j] = min(najm[j + 1], s[j + 1])
can_sort = True
for i in range(n):
for j in range(i + 1, n - 1):
if s[i] > s[j] and s[j] > najm[j]:
can_sort = False
break
if not can_sort:
print("NO")
else:
print("YES")
kol = [-1] * n
kol[0] = 0
ind = 0
while ind < n:
if kol[ind] == -1:
kol[ind] = 0
for i in range(ind + 1, n):
if s[i] < s[ind]:
kol[i] = (kol[ind] + 1) % 2
ind += 1
print("".join(map(str, kol)))
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR BIN_OP LIST NUMBER VAR ASSIGN VAR BIN_OP VAR NUMBER VAR BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER BIN_OP VAR NUMBER IF VAR VAR VAR VAR VAR VAR VAR VAR ASSIGN VAR NUMBER IF VAR EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR STRING ASSIGN VAR BIN_OP LIST NUMBER VAR ASSIGN VAR NUMBER NUMBER ASSIGN VAR NUMBER WHILE VAR VAR IF VAR VAR NUMBER ASSIGN VAR VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER VAR IF VAR VAR VAR VAR ASSIGN VAR VAR BIN_OP BIN_OP VAR VAR NUMBER NUMBER VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL STRING FUNC_CALL VAR VAR VAR
|
This is an easy version of the problem. The actual problems are different, but the easy version is almost a subtask of the hard version. Note that the constraints and the output format are different.
You are given a string $s$ consisting of $n$ lowercase Latin letters.
You have to color all its characters one of the two colors (each character to exactly one color, the same letters can be colored the same or different colors, i.e. you can choose exactly one color for each index in $s$).
After coloring, you can swap any two neighboring characters of the string that are colored different colors. You can perform such an operation arbitrary (possibly, zero) number of times.
The goal is to make the string sorted, i.e. all characters should be in alphabetical order.
Your task is to say if it is possible to color the given string so that after coloring it can become sorted by some sequence of swaps. Note that you have to restore only coloring, not the sequence of swaps.
-----Input-----
The first line of the input contains one integer $n$ ($1 \le n \le 200$) β the length of $s$.
The second line of the input contains the string $s$ consisting of exactly $n$ lowercase Latin letters.
-----Output-----
If it is impossible to color the given string so that after coloring it can become sorted by some sequence of swaps, print "NO" (without quotes) in the first line.
Otherwise, print "YES" in the first line and any correct coloring in the second line (the coloring is the string consisting of $n$ characters, the $i$-th character should be '0' if the $i$-th character is colored the first color and '1' otherwise).
-----Examples-----
Input
9
abacbecfd
Output
YES
001010101
Input
8
aaabbcbb
Output
YES
01011011
Input
7
abcdedc
Output
NO
Input
5
abcde
Output
YES
00000
|
n = int(input())
a = list(input())
a1 = [i for i in range(n)]
new = {i: set() for i in range(n)}
flag = False
while not flag:
flag = True
for i in range(n - 1):
if a[i] > a[i + 1]:
a[i], a[i + 1] = a[i + 1], a[i]
new.setdefault(a1[i], set()).add(a1[i + 1])
a1[i], a1[i + 1] = a1[i + 1], a1[i]
flag = False
i = 0
while i < n and len(new[i]) == 0:
i += 1
if i == n:
print("YES")
print("0" * n)
exit(0)
set1 = {i}
set2 = new[i]
for i in range(n):
flag = True
for x in new:
flag = True
if x in set1:
if not len(new[x] & set1) == 0:
flag = False
break
set2 |= new[x]
elif x in set2:
if not len(new[x] & set2) == 0:
flag = False
break
set1 |= new[x]
else:
set1.add(x)
set2 |= new[x]
if not flag:
break
if flag:
print("YES")
new = [0] * n
for i in range(n):
if i in set1:
new[i] = 0
else:
new[i] = 1
print("".join(map(str, new)))
else:
print("NO")
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER WHILE VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER IF VAR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR VAR VAR BIN_OP VAR NUMBER VAR BIN_OP VAR NUMBER VAR VAR EXPR FUNC_CALL FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER ASSIGN VAR VAR VAR BIN_OP VAR NUMBER VAR BIN_OP VAR NUMBER VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR FUNC_CALL VAR VAR VAR NUMBER VAR NUMBER IF VAR VAR EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR BIN_OP STRING VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR VAR ASSIGN VAR VAR VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER FOR VAR VAR ASSIGN VAR NUMBER IF VAR VAR IF FUNC_CALL VAR BIN_OP VAR VAR VAR NUMBER ASSIGN VAR NUMBER VAR VAR VAR IF VAR VAR IF FUNC_CALL VAR BIN_OP VAR VAR VAR NUMBER ASSIGN VAR NUMBER VAR VAR VAR EXPR FUNC_CALL VAR VAR VAR VAR VAR IF VAR IF VAR EXPR FUNC_CALL VAR STRING ASSIGN VAR BIN_OP LIST NUMBER VAR FOR VAR FUNC_CALL VAR VAR IF VAR VAR ASSIGN VAR VAR NUMBER ASSIGN VAR VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL STRING FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR STRING
|
This is an easy version of the problem. The actual problems are different, but the easy version is almost a subtask of the hard version. Note that the constraints and the output format are different.
You are given a string $s$ consisting of $n$ lowercase Latin letters.
You have to color all its characters one of the two colors (each character to exactly one color, the same letters can be colored the same or different colors, i.e. you can choose exactly one color for each index in $s$).
After coloring, you can swap any two neighboring characters of the string that are colored different colors. You can perform such an operation arbitrary (possibly, zero) number of times.
The goal is to make the string sorted, i.e. all characters should be in alphabetical order.
Your task is to say if it is possible to color the given string so that after coloring it can become sorted by some sequence of swaps. Note that you have to restore only coloring, not the sequence of swaps.
-----Input-----
The first line of the input contains one integer $n$ ($1 \le n \le 200$) β the length of $s$.
The second line of the input contains the string $s$ consisting of exactly $n$ lowercase Latin letters.
-----Output-----
If it is impossible to color the given string so that after coloring it can become sorted by some sequence of swaps, print "NO" (without quotes) in the first line.
Otherwise, print "YES" in the first line and any correct coloring in the second line (the coloring is the string consisting of $n$ characters, the $i$-th character should be '0' if the $i$-th character is colored the first color and '1' otherwise).
-----Examples-----
Input
9
abacbecfd
Output
YES
001010101
Input
8
aaabbcbb
Output
YES
01011011
Input
7
abcdedc
Output
NO
Input
5
abcde
Output
YES
00000
|
def solution():
n = int(input())
s = list(input())
s1, s2 = ["a"], ["a"]
ans = []
for i in range(n):
if s[i] >= s1[-1]:
s1.append(s[i])
ans.append("0")
elif s[i] >= s2[-1]:
s2.append(s[i])
ans.append("1")
else:
print("NO")
return
print("YES")
print("".join(ans))
return
solution()
|
FUNC_DEF ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR LIST STRING LIST STRING ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR IF VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR STRING IF VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR STRING RETURN EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR FUNC_CALL STRING VAR RETURN EXPR FUNC_CALL VAR
|
This is an easy version of the problem. The actual problems are different, but the easy version is almost a subtask of the hard version. Note that the constraints and the output format are different.
You are given a string $s$ consisting of $n$ lowercase Latin letters.
You have to color all its characters one of the two colors (each character to exactly one color, the same letters can be colored the same or different colors, i.e. you can choose exactly one color for each index in $s$).
After coloring, you can swap any two neighboring characters of the string that are colored different colors. You can perform such an operation arbitrary (possibly, zero) number of times.
The goal is to make the string sorted, i.e. all characters should be in alphabetical order.
Your task is to say if it is possible to color the given string so that after coloring it can become sorted by some sequence of swaps. Note that you have to restore only coloring, not the sequence of swaps.
-----Input-----
The first line of the input contains one integer $n$ ($1 \le n \le 200$) β the length of $s$.
The second line of the input contains the string $s$ consisting of exactly $n$ lowercase Latin letters.
-----Output-----
If it is impossible to color the given string so that after coloring it can become sorted by some sequence of swaps, print "NO" (without quotes) in the first line.
Otherwise, print "YES" in the first line and any correct coloring in the second line (the coloring is the string consisting of $n$ characters, the $i$-th character should be '0' if the $i$-th character is colored the first color and '1' otherwise).
-----Examples-----
Input
9
abacbecfd
Output
YES
001010101
Input
8
aaabbcbb
Output
YES
01011011
Input
7
abcdedc
Output
NO
Input
5
abcde
Output
YES
00000
|
def ri():
return int(input())
def rl():
return list(map(int, input().split()))
def solve():
n = ri()
s = input().strip()
codes = [-1] * n
highest = {i: (0) for i in range(ord("a"), ord("z") + 1)}
for p, c in enumerate(s):
max_before = 0
for i in range(ord(c) + 1, ord("z") + 1):
max_before = max(max_before, highest[i])
codes[p] = max_before + 1
highest[ord(c)] = max_before + 1
print(max(highest.values()))
print(*codes)
solve()
|
FUNC_DEF RETURN FUNC_CALL VAR FUNC_CALL VAR FUNC_DEF RETURN FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR FUNC_DEF ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR BIN_OP LIST NUMBER VAR ASSIGN VAR VAR NUMBER VAR FUNC_CALL VAR FUNC_CALL VAR STRING BIN_OP FUNC_CALL VAR STRING NUMBER FOR VAR VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER BIN_OP FUNC_CALL VAR STRING NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR VAR ASSIGN VAR VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR
|
This is an easy version of the problem. The actual problems are different, but the easy version is almost a subtask of the hard version. Note that the constraints and the output format are different.
You are given a string $s$ consisting of $n$ lowercase Latin letters.
You have to color all its characters one of the two colors (each character to exactly one color, the same letters can be colored the same or different colors, i.e. you can choose exactly one color for each index in $s$).
After coloring, you can swap any two neighboring characters of the string that are colored different colors. You can perform such an operation arbitrary (possibly, zero) number of times.
The goal is to make the string sorted, i.e. all characters should be in alphabetical order.
Your task is to say if it is possible to color the given string so that after coloring it can become sorted by some sequence of swaps. Note that you have to restore only coloring, not the sequence of swaps.
-----Input-----
The first line of the input contains one integer $n$ ($1 \le n \le 200$) β the length of $s$.
The second line of the input contains the string $s$ consisting of exactly $n$ lowercase Latin letters.
-----Output-----
If it is impossible to color the given string so that after coloring it can become sorted by some sequence of swaps, print "NO" (without quotes) in the first line.
Otherwise, print "YES" in the first line and any correct coloring in the second line (the coloring is the string consisting of $n$ characters, the $i$-th character should be '0' if the $i$-th character is colored the first color and '1' otherwise).
-----Examples-----
Input
9
abacbecfd
Output
YES
001010101
Input
8
aaabbcbb
Output
YES
01011011
Input
7
abcdedc
Output
NO
Input
5
abcde
Output
YES
00000
|
n = int(input())
s = input().strip()
CONTRADICT = False
color = [(-1) for i in range(len(s))]
color[-1] = 1
for i in range(n - 1, -1, -1):
for j in range(i - 1, -1, -1):
if s[i] < s[j]:
if color[j] == -1:
color[j] = 1 if color[i] == 0 else 0
elif color[i] == -1:
color[i] = 1 if color[j] == 0 else 0
elif color[i] == color[j]:
CONTRADICT = True
for i in range(len(color)):
if color[i] == -1:
color[i] = 1
if not CONTRADICT:
print("YES")
for i in color:
print(i, end="")
else:
print("NO")
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER IF VAR VAR VAR VAR IF VAR VAR NUMBER ASSIGN VAR VAR VAR VAR NUMBER NUMBER NUMBER IF VAR VAR NUMBER ASSIGN VAR VAR VAR VAR NUMBER NUMBER NUMBER IF VAR VAR VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR VAR NUMBER ASSIGN VAR VAR NUMBER IF VAR EXPR FUNC_CALL VAR STRING FOR VAR VAR EXPR FUNC_CALL VAR VAR STRING EXPR FUNC_CALL VAR STRING
|
This is an easy version of the problem. The actual problems are different, but the easy version is almost a subtask of the hard version. Note that the constraints and the output format are different.
You are given a string $s$ consisting of $n$ lowercase Latin letters.
You have to color all its characters one of the two colors (each character to exactly one color, the same letters can be colored the same or different colors, i.e. you can choose exactly one color for each index in $s$).
After coloring, you can swap any two neighboring characters of the string that are colored different colors. You can perform such an operation arbitrary (possibly, zero) number of times.
The goal is to make the string sorted, i.e. all characters should be in alphabetical order.
Your task is to say if it is possible to color the given string so that after coloring it can become sorted by some sequence of swaps. Note that you have to restore only coloring, not the sequence of swaps.
-----Input-----
The first line of the input contains one integer $n$ ($1 \le n \le 200$) β the length of $s$.
The second line of the input contains the string $s$ consisting of exactly $n$ lowercase Latin letters.
-----Output-----
If it is impossible to color the given string so that after coloring it can become sorted by some sequence of swaps, print "NO" (without quotes) in the first line.
Otherwise, print "YES" in the first line and any correct coloring in the second line (the coloring is the string consisting of $n$ characters, the $i$-th character should be '0' if the $i$-th character is colored the first color and '1' otherwise).
-----Examples-----
Input
9
abacbecfd
Output
YES
001010101
Input
8
aaabbcbb
Output
YES
01011011
Input
7
abcdedc
Output
NO
Input
5
abcde
Output
YES
00000
|
import sys
input = sys.stdin.readline
n = int(input())
S = input().strip()
ANS = [-1] * n
for i in range(n):
flag = 0
for j in range(i):
if S[j] > S[i]:
flag = 1
if ANS[j] != -1:
if ANS[j] == ANS[i]:
print("NO")
sys.exit()
ANS[i] = 1 - ANS[j]
if flag:
ANS[i] = 0
for j in range(i):
if S[j] > S[i]:
if ANS[j] == ANS[i]:
print("NO")
sys.exit()
ANS[j] = 1 - ANS[i]
for i in range(n):
if ANS[i] == -1:
ANS[i] = 0
print("YES")
print("".join(tuple(map(str, ANS))))
|
IMPORT ASSIGN VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR BIN_OP LIST NUMBER VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR VAR VAR VAR ASSIGN VAR NUMBER IF VAR VAR NUMBER IF VAR VAR VAR VAR EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR ASSIGN VAR VAR BIN_OP NUMBER VAR VAR IF VAR ASSIGN VAR VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR VAR VAR VAR IF VAR VAR VAR VAR EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR ASSIGN VAR VAR BIN_OP NUMBER VAR VAR FOR VAR FUNC_CALL VAR VAR IF VAR VAR NUMBER ASSIGN VAR VAR NUMBER EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR FUNC_CALL STRING FUNC_CALL VAR FUNC_CALL VAR VAR VAR
|
This is an easy version of the problem. The actual problems are different, but the easy version is almost a subtask of the hard version. Note that the constraints and the output format are different.
You are given a string $s$ consisting of $n$ lowercase Latin letters.
You have to color all its characters one of the two colors (each character to exactly one color, the same letters can be colored the same or different colors, i.e. you can choose exactly one color for each index in $s$).
After coloring, you can swap any two neighboring characters of the string that are colored different colors. You can perform such an operation arbitrary (possibly, zero) number of times.
The goal is to make the string sorted, i.e. all characters should be in alphabetical order.
Your task is to say if it is possible to color the given string so that after coloring it can become sorted by some sequence of swaps. Note that you have to restore only coloring, not the sequence of swaps.
-----Input-----
The first line of the input contains one integer $n$ ($1 \le n \le 200$) β the length of $s$.
The second line of the input contains the string $s$ consisting of exactly $n$ lowercase Latin letters.
-----Output-----
If it is impossible to color the given string so that after coloring it can become sorted by some sequence of swaps, print "NO" (without quotes) in the first line.
Otherwise, print "YES" in the first line and any correct coloring in the second line (the coloring is the string consisting of $n$ characters, the $i$-th character should be '0' if the $i$-th character is colored the first color and '1' otherwise).
-----Examples-----
Input
9
abacbecfd
Output
YES
001010101
Input
8
aaabbcbb
Output
YES
01011011
Input
7
abcdedc
Output
NO
Input
5
abcde
Output
YES
00000
|
import sys
input = lambda: sys.stdin.readline().strip()
n = int(input())
s = input()
adj = [[] for i in range(n)]
for i in range(n):
for j in range(i + 1, n):
if s[i] > s[j]:
adj[i].append(j)
adj[j].append(i)
color = [(0) for i in range(n)]
seen = [(False) for i in range(n)]
def bfs(s):
q = [s]
for u in q:
for v in adj[u]:
if not seen[v]:
seen[v] = True
color[v] = 1 - color[u]
q.append(v)
for i in range(n):
if not seen[i]:
bfs(i)
if all(color[u] != color[v] for u in range(n) for v in adj[u]):
print("YES")
print(*color, sep="")
else:
print("NO")
|
IMPORT ASSIGN VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR LIST VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER VAR IF VAR VAR VAR VAR EXPR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR VAR ASSIGN VAR NUMBER VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER VAR FUNC_CALL VAR VAR FUNC_DEF ASSIGN VAR LIST VAR FOR VAR VAR FOR VAR VAR VAR IF VAR VAR ASSIGN VAR VAR NUMBER ASSIGN VAR VAR BIN_OP NUMBER VAR VAR EXPR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR VAR IF VAR VAR EXPR FUNC_CALL VAR VAR IF FUNC_CALL VAR VAR VAR VAR VAR VAR FUNC_CALL VAR VAR VAR VAR VAR EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR VAR STRING EXPR FUNC_CALL VAR STRING
|
This is an easy version of the problem. The actual problems are different, but the easy version is almost a subtask of the hard version. Note that the constraints and the output format are different.
You are given a string $s$ consisting of $n$ lowercase Latin letters.
You have to color all its characters one of the two colors (each character to exactly one color, the same letters can be colored the same or different colors, i.e. you can choose exactly one color for each index in $s$).
After coloring, you can swap any two neighboring characters of the string that are colored different colors. You can perform such an operation arbitrary (possibly, zero) number of times.
The goal is to make the string sorted, i.e. all characters should be in alphabetical order.
Your task is to say if it is possible to color the given string so that after coloring it can become sorted by some sequence of swaps. Note that you have to restore only coloring, not the sequence of swaps.
-----Input-----
The first line of the input contains one integer $n$ ($1 \le n \le 200$) β the length of $s$.
The second line of the input contains the string $s$ consisting of exactly $n$ lowercase Latin letters.
-----Output-----
If it is impossible to color the given string so that after coloring it can become sorted by some sequence of swaps, print "NO" (without quotes) in the first line.
Otherwise, print "YES" in the first line and any correct coloring in the second line (the coloring is the string consisting of $n$ characters, the $i$-th character should be '0' if the $i$-th character is colored the first color and '1' otherwise).
-----Examples-----
Input
9
abacbecfd
Output
YES
001010101
Input
8
aaabbcbb
Output
YES
01011011
Input
7
abcdedc
Output
NO
Input
5
abcde
Output
YES
00000
|
n = int(input())
arr = list(input())
for i in reversed(range(1, n)):
cc = arr[i]
cl = 0
for j in reversed(range(i)):
if arr[j] > cc:
cc = arr[j]
cl += 1
if cl == 2:
print("NO")
exit(0)
elif arr[j] > arr[i]:
cc = arr[j]
cc = arr[-1]
narr = ["1" for _ in range(n)]
for i in reversed(range(n)):
if arr[i] <= cc:
narr[i] = "0"
cc = arr[i]
print("YES")
print("".join(narr))
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR NUMBER VAR ASSIGN VAR VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR VAR VAR ASSIGN VAR VAR VAR VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR NUMBER IF VAR VAR VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR VAR NUMBER ASSIGN VAR STRING VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR VAR VAR ASSIGN VAR VAR STRING ASSIGN VAR VAR VAR EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR FUNC_CALL STRING VAR
|
This is an easy version of the problem. The actual problems are different, but the easy version is almost a subtask of the hard version. Note that the constraints and the output format are different.
You are given a string $s$ consisting of $n$ lowercase Latin letters.
You have to color all its characters one of the two colors (each character to exactly one color, the same letters can be colored the same or different colors, i.e. you can choose exactly one color for each index in $s$).
After coloring, you can swap any two neighboring characters of the string that are colored different colors. You can perform such an operation arbitrary (possibly, zero) number of times.
The goal is to make the string sorted, i.e. all characters should be in alphabetical order.
Your task is to say if it is possible to color the given string so that after coloring it can become sorted by some sequence of swaps. Note that you have to restore only coloring, not the sequence of swaps.
-----Input-----
The first line of the input contains one integer $n$ ($1 \le n \le 200$) β the length of $s$.
The second line of the input contains the string $s$ consisting of exactly $n$ lowercase Latin letters.
-----Output-----
If it is impossible to color the given string so that after coloring it can become sorted by some sequence of swaps, print "NO" (without quotes) in the first line.
Otherwise, print "YES" in the first line and any correct coloring in the second line (the coloring is the string consisting of $n$ characters, the $i$-th character should be '0' if the $i$-th character is colored the first color and '1' otherwise).
-----Examples-----
Input
9
abacbecfd
Output
YES
001010101
Input
8
aaabbcbb
Output
YES
01011011
Input
7
abcdedc
Output
NO
Input
5
abcde
Output
YES
00000
|
n, s = int(input()), input()
x = y = "a"
d = ""
for c in s:
if c >= x:
d += "0"
x = c
elif c >= y:
d += "1"
y = c
else:
print("NO")
exit()
print("YES", d)
|
ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR STRING ASSIGN VAR STRING FOR VAR VAR IF VAR VAR VAR STRING ASSIGN VAR VAR IF VAR VAR VAR STRING ASSIGN VAR VAR EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR EXPR FUNC_CALL VAR STRING VAR
|
This is an easy version of the problem. The actual problems are different, but the easy version is almost a subtask of the hard version. Note that the constraints and the output format are different.
You are given a string $s$ consisting of $n$ lowercase Latin letters.
You have to color all its characters one of the two colors (each character to exactly one color, the same letters can be colored the same or different colors, i.e. you can choose exactly one color for each index in $s$).
After coloring, you can swap any two neighboring characters of the string that are colored different colors. You can perform such an operation arbitrary (possibly, zero) number of times.
The goal is to make the string sorted, i.e. all characters should be in alphabetical order.
Your task is to say if it is possible to color the given string so that after coloring it can become sorted by some sequence of swaps. Note that you have to restore only coloring, not the sequence of swaps.
-----Input-----
The first line of the input contains one integer $n$ ($1 \le n \le 200$) β the length of $s$.
The second line of the input contains the string $s$ consisting of exactly $n$ lowercase Latin letters.
-----Output-----
If it is impossible to color the given string so that after coloring it can become sorted by some sequence of swaps, print "NO" (without quotes) in the first line.
Otherwise, print "YES" in the first line and any correct coloring in the second line (the coloring is the string consisting of $n$ characters, the $i$-th character should be '0' if the $i$-th character is colored the first color and '1' otherwise).
-----Examples-----
Input
9
abacbecfd
Output
YES
001010101
Input
8
aaabbcbb
Output
YES
01011011
Input
7
abcdedc
Output
NO
Input
5
abcde
Output
YES
00000
|
n = int(input())
s = input()
s0 = ""
s1 = ""
k = ""
s0 += s[0]
k += "0"
cont = True
for x in range(1, n):
if s1 == "":
if s[x] >= s0[len(s0) - 1]:
s0 += s[x]
k += "0"
else:
s1 += s[x]
k += "1"
elif s[x] >= s0[len(s0) - 1]:
s0 += s[x]
k += "0"
elif s[x] >= s1[len(s1) - 1]:
s1 += s[x]
k += "1"
else:
cont = False
break
if cont:
print("YES")
print(k)
else:
print("NO")
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR STRING ASSIGN VAR STRING ASSIGN VAR STRING VAR VAR NUMBER VAR STRING ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR IF VAR STRING IF VAR VAR VAR BIN_OP FUNC_CALL VAR VAR NUMBER VAR VAR VAR VAR STRING VAR VAR VAR VAR STRING IF VAR VAR VAR BIN_OP FUNC_CALL VAR VAR NUMBER VAR VAR VAR VAR STRING IF VAR VAR VAR BIN_OP FUNC_CALL VAR VAR NUMBER VAR VAR VAR VAR STRING ASSIGN VAR NUMBER IF VAR EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR STRING
|
This is an easy version of the problem. The actual problems are different, but the easy version is almost a subtask of the hard version. Note that the constraints and the output format are different.
You are given a string $s$ consisting of $n$ lowercase Latin letters.
You have to color all its characters one of the two colors (each character to exactly one color, the same letters can be colored the same or different colors, i.e. you can choose exactly one color for each index in $s$).
After coloring, you can swap any two neighboring characters of the string that are colored different colors. You can perform such an operation arbitrary (possibly, zero) number of times.
The goal is to make the string sorted, i.e. all characters should be in alphabetical order.
Your task is to say if it is possible to color the given string so that after coloring it can become sorted by some sequence of swaps. Note that you have to restore only coloring, not the sequence of swaps.
-----Input-----
The first line of the input contains one integer $n$ ($1 \le n \le 200$) β the length of $s$.
The second line of the input contains the string $s$ consisting of exactly $n$ lowercase Latin letters.
-----Output-----
If it is impossible to color the given string so that after coloring it can become sorted by some sequence of swaps, print "NO" (without quotes) in the first line.
Otherwise, print "YES" in the first line and any correct coloring in the second line (the coloring is the string consisting of $n$ characters, the $i$-th character should be '0' if the $i$-th character is colored the first color and '1' otherwise).
-----Examples-----
Input
9
abacbecfd
Output
YES
001010101
Input
8
aaabbcbb
Output
YES
01011011
Input
7
abcdedc
Output
NO
Input
5
abcde
Output
YES
00000
|
import sys
def main():
n = int(input())
s = input()
subsequences = []
for i, c in enumerate(s):
ok = False
for subseq in subsequences:
if s[subseq[-1]] <= c:
subseq.append(i)
ok = True
break
if not ok:
subsequences.append([i])
color = [(-1) for _ in range(n)]
for i in range(len(subsequences)):
for j in subsequences[i]:
color[j] = i + 1
print(len(subsequences))
oneLineArrayPrint(color)
return
input = lambda: sys.stdin.readline().rstrip("\r\n")
def oneLineArrayPrint(arr):
print(" ".join([str(x) for x in arr]))
def multiLineArrayPrint(arr):
print("\n".join([str(x) for x in arr]))
def multiLineArrayOfArraysPrint(arr):
print("\n".join([" ".join([str(x) for x in y]) for y in arr]))
def readIntArr():
return [int(x) for x in input().split()]
def makeArr(*args):
assert (
len(args) >= 2
), "makeArr args should be (default value, dimension 1, dimension 2,..."
if len(args) == 2:
return [args[0] for _ in range(args[1])]
else:
return [makeArr(args[0], *args[2:]) for _ in range(args[1])]
def queryInteractive(x, y):
print("? {} {}".format(x, y))
sys.stdout.flush()
return int(input())
def answerInteractive(ans):
print("! {}".format(ans))
sys.stdout.flush()
inf = float("inf")
MOD = 10**9 + 7
for _abc in range(1):
main()
|
IMPORT FUNC_DEF ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR LIST FOR VAR VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER FOR VAR VAR IF VAR VAR NUMBER VAR EXPR FUNC_CALL VAR VAR ASSIGN VAR NUMBER IF VAR EXPR FUNC_CALL VAR LIST VAR ASSIGN VAR NUMBER VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FOR VAR VAR VAR ASSIGN VAR VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR RETURN ASSIGN VAR FUNC_CALL FUNC_CALL VAR STRING FUNC_DEF EXPR FUNC_CALL VAR FUNC_CALL STRING FUNC_CALL VAR VAR VAR VAR FUNC_DEF EXPR FUNC_CALL VAR FUNC_CALL STRING FUNC_CALL VAR VAR VAR VAR FUNC_DEF EXPR FUNC_CALL VAR FUNC_CALL STRING FUNC_CALL STRING FUNC_CALL VAR VAR VAR VAR VAR VAR FUNC_DEF RETURN FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR FUNC_DEF FUNC_CALL VAR VAR NUMBER STRING IF FUNC_CALL VAR VAR NUMBER RETURN VAR NUMBER VAR FUNC_CALL VAR VAR NUMBER RETURN FUNC_CALL VAR VAR NUMBER VAR NUMBER VAR FUNC_CALL VAR VAR NUMBER FUNC_DEF EXPR FUNC_CALL VAR FUNC_CALL STRING VAR VAR EXPR FUNC_CALL VAR RETURN FUNC_CALL VAR FUNC_CALL VAR FUNC_DEF EXPR FUNC_CALL VAR FUNC_CALL STRING VAR EXPR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR STRING ASSIGN VAR BIN_OP BIN_OP NUMBER NUMBER NUMBER FOR VAR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR
|
This is an easy version of the problem. The actual problems are different, but the easy version is almost a subtask of the hard version. Note that the constraints and the output format are different.
You are given a string $s$ consisting of $n$ lowercase Latin letters.
You have to color all its characters one of the two colors (each character to exactly one color, the same letters can be colored the same or different colors, i.e. you can choose exactly one color for each index in $s$).
After coloring, you can swap any two neighboring characters of the string that are colored different colors. You can perform such an operation arbitrary (possibly, zero) number of times.
The goal is to make the string sorted, i.e. all characters should be in alphabetical order.
Your task is to say if it is possible to color the given string so that after coloring it can become sorted by some sequence of swaps. Note that you have to restore only coloring, not the sequence of swaps.
-----Input-----
The first line of the input contains one integer $n$ ($1 \le n \le 200$) β the length of $s$.
The second line of the input contains the string $s$ consisting of exactly $n$ lowercase Latin letters.
-----Output-----
If it is impossible to color the given string so that after coloring it can become sorted by some sequence of swaps, print "NO" (without quotes) in the first line.
Otherwise, print "YES" in the first line and any correct coloring in the second line (the coloring is the string consisting of $n$ characters, the $i$-th character should be '0' if the $i$-th character is colored the first color and '1' otherwise).
-----Examples-----
Input
9
abacbecfd
Output
YES
001010101
Input
8
aaabbcbb
Output
YES
01011011
Input
7
abcdedc
Output
NO
Input
5
abcde
Output
YES
00000
|
import sys
def main():
n = int(sys.stdin.readline().split()[0])
s = sys.stdin.readline().split()[0]
color = [None] * n
color[0] = 0
for i in range(n):
if color[i] == None:
color[i] = 0
for j in range(i + 1, n):
if ord(s[j]) < ord(s[i]):
if color[j] == color[i]:
print("NO")
return
if color[j] == None:
color[j] = color[i] ^ 1
print("YES")
print(*color, sep="")
main()
|
IMPORT FUNC_DEF ASSIGN VAR FUNC_CALL VAR FUNC_CALL FUNC_CALL VAR NUMBER ASSIGN VAR FUNC_CALL FUNC_CALL VAR NUMBER ASSIGN VAR BIN_OP LIST NONE VAR ASSIGN VAR NUMBER NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR VAR NONE ASSIGN VAR VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER VAR IF FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR IF VAR VAR VAR VAR EXPR FUNC_CALL VAR STRING RETURN IF VAR VAR NONE ASSIGN VAR VAR BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR VAR STRING EXPR FUNC_CALL VAR
|
This is an easy version of the problem. The actual problems are different, but the easy version is almost a subtask of the hard version. Note that the constraints and the output format are different.
You are given a string $s$ consisting of $n$ lowercase Latin letters.
You have to color all its characters one of the two colors (each character to exactly one color, the same letters can be colored the same or different colors, i.e. you can choose exactly one color for each index in $s$).
After coloring, you can swap any two neighboring characters of the string that are colored different colors. You can perform such an operation arbitrary (possibly, zero) number of times.
The goal is to make the string sorted, i.e. all characters should be in alphabetical order.
Your task is to say if it is possible to color the given string so that after coloring it can become sorted by some sequence of swaps. Note that you have to restore only coloring, not the sequence of swaps.
-----Input-----
The first line of the input contains one integer $n$ ($1 \le n \le 200$) β the length of $s$.
The second line of the input contains the string $s$ consisting of exactly $n$ lowercase Latin letters.
-----Output-----
If it is impossible to color the given string so that after coloring it can become sorted by some sequence of swaps, print "NO" (without quotes) in the first line.
Otherwise, print "YES" in the first line and any correct coloring in the second line (the coloring is the string consisting of $n$ characters, the $i$-th character should be '0' if the $i$-th character is colored the first color and '1' otherwise).
-----Examples-----
Input
9
abacbecfd
Output
YES
001010101
Input
8
aaabbcbb
Output
YES
01011011
Input
7
abcdedc
Output
NO
Input
5
abcde
Output
YES
00000
|
n = int(input())
s = input()
ans = [0] * n
for i in range(n - 1):
for j in range(i + 1, n):
if s[i] > s[j]:
if ans[i] == 0:
ans[j] = 1
else:
ans[j] = 0
flag = True
for i in range(n - 1):
for j in range(i + 1, n):
if s[i] > s[j]:
if ans[i] == ans[j]:
flag = False
break
if flag:
print("YES")
for i in ans:
print(i, end="")
else:
print("NO")
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR BIN_OP LIST NUMBER VAR FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER VAR IF VAR VAR VAR VAR IF VAR VAR NUMBER ASSIGN VAR VAR NUMBER ASSIGN VAR VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER VAR IF VAR VAR VAR VAR IF VAR VAR VAR VAR ASSIGN VAR NUMBER IF VAR EXPR FUNC_CALL VAR STRING FOR VAR VAR EXPR FUNC_CALL VAR VAR STRING EXPR FUNC_CALL VAR STRING
|
This is an easy version of the problem. The actual problems are different, but the easy version is almost a subtask of the hard version. Note that the constraints and the output format are different.
You are given a string $s$ consisting of $n$ lowercase Latin letters.
You have to color all its characters one of the two colors (each character to exactly one color, the same letters can be colored the same or different colors, i.e. you can choose exactly one color for each index in $s$).
After coloring, you can swap any two neighboring characters of the string that are colored different colors. You can perform such an operation arbitrary (possibly, zero) number of times.
The goal is to make the string sorted, i.e. all characters should be in alphabetical order.
Your task is to say if it is possible to color the given string so that after coloring it can become sorted by some sequence of swaps. Note that you have to restore only coloring, not the sequence of swaps.
-----Input-----
The first line of the input contains one integer $n$ ($1 \le n \le 200$) β the length of $s$.
The second line of the input contains the string $s$ consisting of exactly $n$ lowercase Latin letters.
-----Output-----
If it is impossible to color the given string so that after coloring it can become sorted by some sequence of swaps, print "NO" (without quotes) in the first line.
Otherwise, print "YES" in the first line and any correct coloring in the second line (the coloring is the string consisting of $n$ characters, the $i$-th character should be '0' if the $i$-th character is colored the first color and '1' otherwise).
-----Examples-----
Input
9
abacbecfd
Output
YES
001010101
Input
8
aaabbcbb
Output
YES
01011011
Input
7
abcdedc
Output
NO
Input
5
abcde
Output
YES
00000
|
n = int(input())
x = input()
s = [""] * n
for i in range(0, n, 1):
s[i] = x[i]
ok = True
color = [-1] * n
ocolor = [-1] * n
def swap(i, j):
global color, s, ocolor
for index in range(j, i, -1):
tmpx = s[index]
tmpc = color[index]
s[index] = s[index - 1]
color[index] = color[index - 1]
s[index - 1] = tmpx
color[index - 1] = tmpc
return
for i in range(0, n, 1):
one = False
zero = False
alpha = []
index = -1
for j in range(0, i, 1):
if s[j] <= s[i] and index != -1 or s[j] > s[i]:
c = color[j]
if c == -1:
alpha.append(j)
elif c == 1:
one = True
else:
zero = True
if index == -1:
index = j
if one and zero:
ok = False
break
elif len(alpha) > 0 and not (one or zero):
one = True
for j in range(0, len(alpha), 1):
if one:
color[alpha[j]] = 1
ocolor[alpha[j]] = 1
else:
color[alpha[j]] = 0
ocolor[alpha[j]] = 0
if one:
color[i] = 0
ocolor[i] = 0
elif zero:
color[i] = 1
ocolor[i] = 1
else:
continue
swap(index, i)
if ok:
print("YES")
for i in range(0, n, 1):
if ocolor[i] == -1:
ocolor[i] = 1
print(ocolor[i], end="")
else:
print("NO")
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR BIN_OP LIST STRING VAR FOR VAR FUNC_CALL VAR NUMBER VAR NUMBER ASSIGN VAR VAR VAR VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP LIST NUMBER VAR ASSIGN VAR BIN_OP LIST NUMBER VAR FUNC_DEF FOR VAR FUNC_CALL VAR VAR VAR NUMBER ASSIGN VAR VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER VAR ASSIGN VAR BIN_OP VAR NUMBER VAR RETURN FOR VAR FUNC_CALL VAR NUMBER VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR LIST ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR NUMBER IF VAR VAR VAR VAR VAR NUMBER VAR VAR VAR VAR ASSIGN VAR VAR VAR IF VAR NUMBER EXPR FUNC_CALL VAR VAR IF VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER IF VAR NUMBER ASSIGN VAR VAR IF VAR VAR ASSIGN VAR NUMBER IF FUNC_CALL VAR VAR NUMBER VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR NUMBER IF VAR ASSIGN VAR VAR VAR NUMBER ASSIGN VAR VAR VAR NUMBER ASSIGN VAR VAR VAR NUMBER ASSIGN VAR VAR VAR NUMBER IF VAR ASSIGN VAR VAR NUMBER ASSIGN VAR VAR NUMBER IF VAR ASSIGN VAR VAR NUMBER ASSIGN VAR VAR NUMBER EXPR FUNC_CALL VAR VAR VAR IF VAR EXPR FUNC_CALL VAR STRING FOR VAR FUNC_CALL VAR NUMBER VAR NUMBER IF VAR VAR NUMBER ASSIGN VAR VAR NUMBER EXPR FUNC_CALL VAR VAR VAR STRING EXPR FUNC_CALL VAR STRING
|
This is an easy version of the problem. The actual problems are different, but the easy version is almost a subtask of the hard version. Note that the constraints and the output format are different.
You are given a string $s$ consisting of $n$ lowercase Latin letters.
You have to color all its characters one of the two colors (each character to exactly one color, the same letters can be colored the same or different colors, i.e. you can choose exactly one color for each index in $s$).
After coloring, you can swap any two neighboring characters of the string that are colored different colors. You can perform such an operation arbitrary (possibly, zero) number of times.
The goal is to make the string sorted, i.e. all characters should be in alphabetical order.
Your task is to say if it is possible to color the given string so that after coloring it can become sorted by some sequence of swaps. Note that you have to restore only coloring, not the sequence of swaps.
-----Input-----
The first line of the input contains one integer $n$ ($1 \le n \le 200$) β the length of $s$.
The second line of the input contains the string $s$ consisting of exactly $n$ lowercase Latin letters.
-----Output-----
If it is impossible to color the given string so that after coloring it can become sorted by some sequence of swaps, print "NO" (without quotes) in the first line.
Otherwise, print "YES" in the first line and any correct coloring in the second line (the coloring is the string consisting of $n$ characters, the $i$-th character should be '0' if the $i$-th character is colored the first color and '1' otherwise).
-----Examples-----
Input
9
abacbecfd
Output
YES
001010101
Input
8
aaabbcbb
Output
YES
01011011
Input
7
abcdedc
Output
NO
Input
5
abcde
Output
YES
00000
|
n = int(input())
s = input()
r = []
q = 0
f = ["a"]
for i in range(n):
z = 0
while s[i] < f[z]:
z = z + 1
if z == len(f):
f.append(s[i])
break
f[z] = s[i]
r.append(z + 1)
print(max(r))
print(*r)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR LIST ASSIGN VAR NUMBER ASSIGN VAR LIST STRING FOR VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER WHILE VAR VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER IF VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR VAR ASSIGN VAR VAR VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR
|
This is an easy version of the problem. The actual problems are different, but the easy version is almost a subtask of the hard version. Note that the constraints and the output format are different.
You are given a string $s$ consisting of $n$ lowercase Latin letters.
You have to color all its characters one of the two colors (each character to exactly one color, the same letters can be colored the same or different colors, i.e. you can choose exactly one color for each index in $s$).
After coloring, you can swap any two neighboring characters of the string that are colored different colors. You can perform such an operation arbitrary (possibly, zero) number of times.
The goal is to make the string sorted, i.e. all characters should be in alphabetical order.
Your task is to say if it is possible to color the given string so that after coloring it can become sorted by some sequence of swaps. Note that you have to restore only coloring, not the sequence of swaps.
-----Input-----
The first line of the input contains one integer $n$ ($1 \le n \le 200$) β the length of $s$.
The second line of the input contains the string $s$ consisting of exactly $n$ lowercase Latin letters.
-----Output-----
If it is impossible to color the given string so that after coloring it can become sorted by some sequence of swaps, print "NO" (without quotes) in the first line.
Otherwise, print "YES" in the first line and any correct coloring in the second line (the coloring is the string consisting of $n$ characters, the $i$-th character should be '0' if the $i$-th character is colored the first color and '1' otherwise).
-----Examples-----
Input
9
abacbecfd
Output
YES
001010101
Input
8
aaabbcbb
Output
YES
01011011
Input
7
abcdedc
Output
NO
Input
5
abcde
Output
YES
00000
|
n, s, a, b, ans = int(input()), input(), "a", "a", ""
check = True
for i in s:
if i >= a:
ans += "0"
a = i
elif i >= b:
ans += "1"
b = i
else:
print("NO")
check = False
break
if check:
print("YES")
print(ans)
|
ASSIGN VAR VAR VAR VAR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR STRING STRING STRING ASSIGN VAR NUMBER FOR VAR VAR IF VAR VAR VAR STRING ASSIGN VAR VAR IF VAR VAR VAR STRING ASSIGN VAR VAR EXPR FUNC_CALL VAR STRING ASSIGN VAR NUMBER IF VAR EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR VAR
|
This is an easy version of the problem. The actual problems are different, but the easy version is almost a subtask of the hard version. Note that the constraints and the output format are different.
You are given a string $s$ consisting of $n$ lowercase Latin letters.
You have to color all its characters one of the two colors (each character to exactly one color, the same letters can be colored the same or different colors, i.e. you can choose exactly one color for each index in $s$).
After coloring, you can swap any two neighboring characters of the string that are colored different colors. You can perform such an operation arbitrary (possibly, zero) number of times.
The goal is to make the string sorted, i.e. all characters should be in alphabetical order.
Your task is to say if it is possible to color the given string so that after coloring it can become sorted by some sequence of swaps. Note that you have to restore only coloring, not the sequence of swaps.
-----Input-----
The first line of the input contains one integer $n$ ($1 \le n \le 200$) β the length of $s$.
The second line of the input contains the string $s$ consisting of exactly $n$ lowercase Latin letters.
-----Output-----
If it is impossible to color the given string so that after coloring it can become sorted by some sequence of swaps, print "NO" (without quotes) in the first line.
Otherwise, print "YES" in the first line and any correct coloring in the second line (the coloring is the string consisting of $n$ characters, the $i$-th character should be '0' if the $i$-th character is colored the first color and '1' otherwise).
-----Examples-----
Input
9
abacbecfd
Output
YES
001010101
Input
8
aaabbcbb
Output
YES
01011011
Input
7
abcdedc
Output
NO
Input
5
abcde
Output
YES
00000
|
n = int(input())
s = input()
color = [(0) for _ in range(n)]
f = 0
for i in range(n):
for j in range(i + 1, n):
if s[j] < s[i]:
color[j] = 1 - color[i]
for i in range(n):
for j in range(i + 1, n):
if color[i] == color[j] and s[i] > s[j]:
f = 1
print("NO")
break
if f == 1:
break
if f == 0:
print("YES")
for i in range(n):
print(color[i], end="")
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR NUMBER VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER VAR IF VAR VAR VAR VAR ASSIGN VAR VAR BIN_OP NUMBER VAR VAR FOR VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER VAR IF VAR VAR VAR VAR VAR VAR VAR VAR ASSIGN VAR NUMBER EXPR FUNC_CALL VAR STRING IF VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR STRING FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR VAR STRING
|
This is an easy version of the problem. The actual problems are different, but the easy version is almost a subtask of the hard version. Note that the constraints and the output format are different.
You are given a string $s$ consisting of $n$ lowercase Latin letters.
You have to color all its characters one of the two colors (each character to exactly one color, the same letters can be colored the same or different colors, i.e. you can choose exactly one color for each index in $s$).
After coloring, you can swap any two neighboring characters of the string that are colored different colors. You can perform such an operation arbitrary (possibly, zero) number of times.
The goal is to make the string sorted, i.e. all characters should be in alphabetical order.
Your task is to say if it is possible to color the given string so that after coloring it can become sorted by some sequence of swaps. Note that you have to restore only coloring, not the sequence of swaps.
-----Input-----
The first line of the input contains one integer $n$ ($1 \le n \le 200$) β the length of $s$.
The second line of the input contains the string $s$ consisting of exactly $n$ lowercase Latin letters.
-----Output-----
If it is impossible to color the given string so that after coloring it can become sorted by some sequence of swaps, print "NO" (without quotes) in the first line.
Otherwise, print "YES" in the first line and any correct coloring in the second line (the coloring is the string consisting of $n$ characters, the $i$-th character should be '0' if the $i$-th character is colored the first color and '1' otherwise).
-----Examples-----
Input
9
abacbecfd
Output
YES
001010101
Input
8
aaabbcbb
Output
YES
01011011
Input
7
abcdedc
Output
NO
Input
5
abcde
Output
YES
00000
|
from sys import stdin, stdout
def main():
n = int(stdin.readline())
s = stdin.readline().rstrip()
h1 = "A"
h2 = "B"
res = []
for i, x in enumerate(s):
if i == 0:
res.append("0")
h1 = s[i]
continue
if s[i] < h2:
stdout.write("NO")
return
if s[i] >= h1:
h1 = s[i]
res.append("0")
continue
elif s[i] >= h2 and s[i] < h1:
h2 = s[i]
res.append("1")
continue
res.append("1")
stdout.write("YES\n" + "".join(res))
main()
|
FUNC_DEF ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR STRING ASSIGN VAR STRING ASSIGN VAR LIST FOR VAR VAR FUNC_CALL VAR VAR IF VAR NUMBER EXPR FUNC_CALL VAR STRING ASSIGN VAR VAR VAR IF VAR VAR VAR EXPR FUNC_CALL VAR STRING RETURN IF VAR VAR VAR ASSIGN VAR VAR VAR EXPR FUNC_CALL VAR STRING IF VAR VAR VAR VAR VAR VAR ASSIGN VAR VAR VAR EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR BIN_OP STRING FUNC_CALL STRING VAR EXPR FUNC_CALL VAR
|
This is an easy version of the problem. The actual problems are different, but the easy version is almost a subtask of the hard version. Note that the constraints and the output format are different.
You are given a string $s$ consisting of $n$ lowercase Latin letters.
You have to color all its characters one of the two colors (each character to exactly one color, the same letters can be colored the same or different colors, i.e. you can choose exactly one color for each index in $s$).
After coloring, you can swap any two neighboring characters of the string that are colored different colors. You can perform such an operation arbitrary (possibly, zero) number of times.
The goal is to make the string sorted, i.e. all characters should be in alphabetical order.
Your task is to say if it is possible to color the given string so that after coloring it can become sorted by some sequence of swaps. Note that you have to restore only coloring, not the sequence of swaps.
-----Input-----
The first line of the input contains one integer $n$ ($1 \le n \le 200$) β the length of $s$.
The second line of the input contains the string $s$ consisting of exactly $n$ lowercase Latin letters.
-----Output-----
If it is impossible to color the given string so that after coloring it can become sorted by some sequence of swaps, print "NO" (without quotes) in the first line.
Otherwise, print "YES" in the first line and any correct coloring in the second line (the coloring is the string consisting of $n$ characters, the $i$-th character should be '0' if the $i$-th character is colored the first color and '1' otherwise).
-----Examples-----
Input
9
abacbecfd
Output
YES
001010101
Input
8
aaabbcbb
Output
YES
01011011
Input
7
abcdedc
Output
NO
Input
5
abcde
Output
YES
00000
|
n = int(input())
s = [(ord(i) - ord("a") + 1) for i in input()]
clr = ["0"] * n
x = s[0]
bad = []
flag = 1
for i in range(n):
if s[i] >= x:
x = s[i]
else:
clr[i] = "1"
bad.append(s[i])
if any([(s[i] < j) for j in bad]):
print("NO")
flag = 0
break
if flag:
print("YES")
print("".join(clr))
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR BIN_OP BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR STRING NUMBER VAR FUNC_CALL VAR ASSIGN VAR BIN_OP LIST STRING VAR ASSIGN VAR VAR NUMBER ASSIGN VAR LIST ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR VAR STRING EXPR FUNC_CALL VAR VAR VAR IF FUNC_CALL VAR VAR VAR VAR VAR VAR EXPR FUNC_CALL VAR STRING ASSIGN VAR NUMBER IF VAR EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR FUNC_CALL STRING VAR
|
This is an easy version of the problem. The actual problems are different, but the easy version is almost a subtask of the hard version. Note that the constraints and the output format are different.
You are given a string $s$ consisting of $n$ lowercase Latin letters.
You have to color all its characters one of the two colors (each character to exactly one color, the same letters can be colored the same or different colors, i.e. you can choose exactly one color for each index in $s$).
After coloring, you can swap any two neighboring characters of the string that are colored different colors. You can perform such an operation arbitrary (possibly, zero) number of times.
The goal is to make the string sorted, i.e. all characters should be in alphabetical order.
Your task is to say if it is possible to color the given string so that after coloring it can become sorted by some sequence of swaps. Note that you have to restore only coloring, not the sequence of swaps.
-----Input-----
The first line of the input contains one integer $n$ ($1 \le n \le 200$) β the length of $s$.
The second line of the input contains the string $s$ consisting of exactly $n$ lowercase Latin letters.
-----Output-----
If it is impossible to color the given string so that after coloring it can become sorted by some sequence of swaps, print "NO" (without quotes) in the first line.
Otherwise, print "YES" in the first line and any correct coloring in the second line (the coloring is the string consisting of $n$ characters, the $i$-th character should be '0' if the $i$-th character is colored the first color and '1' otherwise).
-----Examples-----
Input
9
abacbecfd
Output
YES
001010101
Input
8
aaabbcbb
Output
YES
01011011
Input
7
abcdedc
Output
NO
Input
5
abcde
Output
YES
00000
|
N = int(input())
s = input()
a = "a"
b = "a"
t = ""
flag = 0
for i in s:
if a < b:
if b <= i:
b = i
t += "1"
elif a <= i:
a = i
t += "0"
else:
flag = 1
break
elif b < a:
if a <= i:
a = i
t += "0"
elif b <= i:
b = i
t += "1"
else:
flag = 1
break
elif a <= i:
a = i
t += "0"
else:
flag = 1
break
if flag == 1:
print("NO")
else:
print("YES")
print(t)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR STRING ASSIGN VAR STRING ASSIGN VAR STRING ASSIGN VAR NUMBER FOR VAR VAR IF VAR VAR IF VAR VAR ASSIGN VAR VAR VAR STRING IF VAR VAR ASSIGN VAR VAR VAR STRING ASSIGN VAR NUMBER IF VAR VAR IF VAR VAR ASSIGN VAR VAR VAR STRING IF VAR VAR ASSIGN VAR VAR VAR STRING ASSIGN VAR NUMBER IF VAR VAR ASSIGN VAR VAR VAR STRING ASSIGN VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR VAR
|
This is an easy version of the problem. The actual problems are different, but the easy version is almost a subtask of the hard version. Note that the constraints and the output format are different.
You are given a string $s$ consisting of $n$ lowercase Latin letters.
You have to color all its characters one of the two colors (each character to exactly one color, the same letters can be colored the same or different colors, i.e. you can choose exactly one color for each index in $s$).
After coloring, you can swap any two neighboring characters of the string that are colored different colors. You can perform such an operation arbitrary (possibly, zero) number of times.
The goal is to make the string sorted, i.e. all characters should be in alphabetical order.
Your task is to say if it is possible to color the given string so that after coloring it can become sorted by some sequence of swaps. Note that you have to restore only coloring, not the sequence of swaps.
-----Input-----
The first line of the input contains one integer $n$ ($1 \le n \le 200$) β the length of $s$.
The second line of the input contains the string $s$ consisting of exactly $n$ lowercase Latin letters.
-----Output-----
If it is impossible to color the given string so that after coloring it can become sorted by some sequence of swaps, print "NO" (without quotes) in the first line.
Otherwise, print "YES" in the first line and any correct coloring in the second line (the coloring is the string consisting of $n$ characters, the $i$-th character should be '0' if the $i$-th character is colored the first color and '1' otherwise).
-----Examples-----
Input
9
abacbecfd
Output
YES
001010101
Input
8
aaabbcbb
Output
YES
01011011
Input
7
abcdedc
Output
NO
Input
5
abcde
Output
YES
00000
|
a = int(input(""))
s = input("")
def recurse(s, m):
if len(s) == 0:
return ""
char = min(s)
i = s.index(char)
if i < m and i != 0:
return -1
elif i < m and i == 0:
return recurse(s[0:i] + s[i + 1 : len(s)], m - 1)
else:
add = ""
for l in range(i - m):
add = add + "1"
add = add + "0"
xd = recurse(s[0:i] + s[i + 1 : len(s)], i)
if xd == -1:
return -1
else:
return add + xd
ans = recurse(s, 0)
if ans != -1:
print("YES")
print(ans)
else:
print("NO")
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR STRING FUNC_DEF IF FUNC_CALL VAR VAR NUMBER RETURN STRING ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR IF VAR VAR VAR NUMBER RETURN NUMBER IF VAR VAR VAR NUMBER RETURN FUNC_CALL VAR BIN_OP VAR NUMBER VAR VAR BIN_OP VAR NUMBER FUNC_CALL VAR VAR BIN_OP VAR NUMBER ASSIGN VAR STRING FOR VAR FUNC_CALL VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR STRING ASSIGN VAR BIN_OP VAR STRING ASSIGN VAR FUNC_CALL VAR BIN_OP VAR NUMBER VAR VAR BIN_OP VAR NUMBER FUNC_CALL VAR VAR VAR IF VAR NUMBER RETURN NUMBER RETURN BIN_OP VAR VAR ASSIGN VAR FUNC_CALL VAR VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR STRING
|
There are $n$ shovels in the nearby shop. The $i$-th shovel costs $a_i$ bourles.
Misha has to buy exactly $k$ shovels. Each shovel can be bought no more than once.
Misha can buy shovels by several purchases. During one purchase he can choose any subset of remaining (non-bought) shovels and buy this subset.
There are also $m$ special offers in the shop. The $j$-th of them is given as a pair $(x_j, y_j)$, and it means that if Misha buys exactly $x_j$ shovels during one purchase then $y_j$ most cheapest of them are for free (i.e. he will not pay for $y_j$ most cheapest shovels during the current purchase).
Misha can use any offer any (possibly, zero) number of times, but he cannot use more than one offer during one purchase (but he can buy shovels without using any offers).
Your task is to calculate the minimum cost of buying $k$ shovels, if Misha buys them optimally.
-----Input-----
The first line of the input contains three integers $n, m$ and $k$ ($1 \le n, m \le 2 \cdot 10^5, 1 \le k \le min(n, 2000)$) β the number of shovels in the shop, the number of special offers and the number of shovels Misha has to buy, correspondingly.
The second line of the input contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \le a_i \le 2 \cdot 10^5$), where $a_i$ is the cost of the $i$-th shovel.
The next $m$ lines contain special offers. The $j$-th of them is given as a pair of integers $(x_i, y_i)$ ($1 \le y_i \le x_i \le n$) and means that if Misha buys exactly $x_i$ shovels during some purchase, then he can take $y_i$ most cheapest of them for free.
-----Output-----
Print one integer β the minimum cost of buying $k$ shovels if Misha buys them optimally.
-----Examples-----
Input
7 4 5
2 5 4 2 6 3 1
2 1
6 5
2 1
3 1
Output
7
Input
9 4 8
6 8 5 1 8 1 1 2 1
9 2
8 4
5 3
9 7
Output
17
Input
5 1 4
2 5 7 4 6
5 4
Output
17
-----Note-----
In the first example Misha can buy shovels on positions $1$ and $4$ (both with costs $2$) during the first purchase and get one of them for free using the first or the third special offer. And then he can buy shovels on positions $3$ and $6$ (with costs $4$ and $3$) during the second purchase and get the second one for free using the first or the third special offer. Then he can buy the shovel on a position $7$ with cost $1$. So the total cost is $4 + 2 + 1 = 7$.
In the second example Misha can buy shovels on positions $1$, $2$, $3$, $4$ and $8$ (costs are $6$, $8$, $5$, $1$ and $2$) and get three cheapest (with costs $5$, $1$ and $2$) for free. And then he can buy shovels on positions $6$, $7$ and $9$ (all with costs $1$) without using any special offers. So the total cost is $6 + 8 + 1 + 1 + 1 = 17$.
In the third example Misha can buy four cheapest shovels without using any special offers and get the total cost $17$.
|
import sys
input = sys.stdin.readline
n, m, k = map(int, input().split())
a = list(map(int, input().split()))
a.sort()
b = [0]
for i in range(k - 1, -1, -1):
b.append(a[i])
c = [0] * (k + 1)
for i in range(1, k + 1):
c[i] += b[i] + c[i - 1]
s = [0] * (k + 1)
for _ in range(m):
x, y = map(int, input().split())
if x <= k:
s[x] = max(s[x], y)
inf = 1145141919810
dp = [0] * (k + 1)
for i in range(1, k + 1):
dpi = inf
for j in range(1, i + 1):
d = i - j + 1
dpi = min(dpi, dp[j - 1] - c[j - 1] + c[i - s[d]])
dp[i] = dpi
ans = dp[k]
print(ans)
|
IMPORT ASSIGN VAR VAR ASSIGN VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR ASSIGN VAR LIST NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER EXPR FUNC_CALL VAR VAR VAR ASSIGN VAR BIN_OP LIST NUMBER BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER VAR VAR BIN_OP VAR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP LIST NUMBER BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP LIST NUMBER BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER ASSIGN VAR VAR FOR VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP BIN_OP VAR BIN_OP VAR NUMBER VAR BIN_OP VAR NUMBER VAR BIN_OP VAR VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR VAR VAR EXPR FUNC_CALL VAR VAR
|
There are $n$ shovels in the nearby shop. The $i$-th shovel costs $a_i$ bourles.
Misha has to buy exactly $k$ shovels. Each shovel can be bought no more than once.
Misha can buy shovels by several purchases. During one purchase he can choose any subset of remaining (non-bought) shovels and buy this subset.
There are also $m$ special offers in the shop. The $j$-th of them is given as a pair $(x_j, y_j)$, and it means that if Misha buys exactly $x_j$ shovels during one purchase then $y_j$ most cheapest of them are for free (i.e. he will not pay for $y_j$ most cheapest shovels during the current purchase).
Misha can use any offer any (possibly, zero) number of times, but he cannot use more than one offer during one purchase (but he can buy shovels without using any offers).
Your task is to calculate the minimum cost of buying $k$ shovels, if Misha buys them optimally.
-----Input-----
The first line of the input contains three integers $n, m$ and $k$ ($1 \le n, m \le 2 \cdot 10^5, 1 \le k \le min(n, 2000)$) β the number of shovels in the shop, the number of special offers and the number of shovels Misha has to buy, correspondingly.
The second line of the input contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \le a_i \le 2 \cdot 10^5$), where $a_i$ is the cost of the $i$-th shovel.
The next $m$ lines contain special offers. The $j$-th of them is given as a pair of integers $(x_i, y_i)$ ($1 \le y_i \le x_i \le n$) and means that if Misha buys exactly $x_i$ shovels during some purchase, then he can take $y_i$ most cheapest of them for free.
-----Output-----
Print one integer β the minimum cost of buying $k$ shovels if Misha buys them optimally.
-----Examples-----
Input
7 4 5
2 5 4 2 6 3 1
2 1
6 5
2 1
3 1
Output
7
Input
9 4 8
6 8 5 1 8 1 1 2 1
9 2
8 4
5 3
9 7
Output
17
Input
5 1 4
2 5 7 4 6
5 4
Output
17
-----Note-----
In the first example Misha can buy shovels on positions $1$ and $4$ (both with costs $2$) during the first purchase and get one of them for free using the first or the third special offer. And then he can buy shovels on positions $3$ and $6$ (with costs $4$ and $3$) during the second purchase and get the second one for free using the first or the third special offer. Then he can buy the shovel on a position $7$ with cost $1$. So the total cost is $4 + 2 + 1 = 7$.
In the second example Misha can buy shovels on positions $1$, $2$, $3$, $4$ and $8$ (costs are $6$, $8$, $5$, $1$ and $2$) and get three cheapest (with costs $5$, $1$ and $2$) for free. And then he can buy shovels on positions $6$, $7$ and $9$ (all with costs $1$) without using any special offers. So the total cost is $6 + 8 + 1 + 1 + 1 = 17$.
In the third example Misha can buy four cheapest shovels without using any special offers and get the total cost $17$.
|
import sys
def main():
global visited, adj, sets
n, m, k = get_list()
li = get_list()
li.sort()
offers = [[10**10, 0]]
for _ in range(m):
offers.append(get_list())
offers.sort()
best_y = [0]
ptr = -1
for i in range(k):
best_y.append(best_y[-1])
while offers[ptr + 1][0] <= i + 1:
ptr += 1
best_y[-1] = max(best_y[-1], offers[ptr][1])
x, y = 1, i
while x <= y:
best_y[-1] = max(best_y[-1], best_y[x] + best_y[y])
x += 1
y -= 1
dp = [0]
for i in range(1, k + 1):
prefix_sm = [0]
dp.append(dp[-1] + li[i - 1])
for j in range(i - 1, -1, -1):
prefix_sm.append(prefix_sm[-1] + li[j])
x = i - j
dp[-1] = min(dp[-1], dp[j] + prefix_sm[x - best_y[x]])
print(dp[k])
input = iter(sys.stdin.buffer.read().decode().splitlines()).__next__
out = []
get_int = lambda: int(input())
get_list = lambda: list(map(int, input().split()))
main()
print(*out, sep="\n")
|
IMPORT FUNC_DEF ASSIGN VAR VAR VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR EXPR FUNC_CALL VAR ASSIGN VAR LIST LIST BIN_OP NUMBER NUMBER NUMBER FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR EXPR FUNC_CALL VAR ASSIGN VAR LIST NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR NUMBER WHILE VAR BIN_OP VAR NUMBER NUMBER BIN_OP VAR NUMBER VAR NUMBER ASSIGN VAR NUMBER FUNC_CALL VAR VAR NUMBER VAR VAR NUMBER ASSIGN VAR VAR NUMBER VAR WHILE VAR VAR ASSIGN VAR NUMBER FUNC_CALL VAR VAR NUMBER BIN_OP VAR VAR VAR VAR VAR NUMBER VAR NUMBER ASSIGN VAR LIST NUMBER FOR VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER ASSIGN VAR LIST NUMBER EXPR FUNC_CALL VAR BIN_OP VAR NUMBER VAR BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER EXPR FUNC_CALL VAR BIN_OP VAR NUMBER VAR VAR ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR NUMBER FUNC_CALL VAR VAR NUMBER BIN_OP VAR VAR VAR BIN_OP VAR VAR VAR EXPR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL FUNC_CALL FUNC_CALL VAR ASSIGN VAR LIST ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR EXPR FUNC_CALL VAR VAR STRING
|
There are $n$ shovels in the nearby shop. The $i$-th shovel costs $a_i$ bourles.
Misha has to buy exactly $k$ shovels. Each shovel can be bought no more than once.
Misha can buy shovels by several purchases. During one purchase he can choose any subset of remaining (non-bought) shovels and buy this subset.
There are also $m$ special offers in the shop. The $j$-th of them is given as a pair $(x_j, y_j)$, and it means that if Misha buys exactly $x_j$ shovels during one purchase then $y_j$ most cheapest of them are for free (i.e. he will not pay for $y_j$ most cheapest shovels during the current purchase).
Misha can use any offer any (possibly, zero) number of times, but he cannot use more than one offer during one purchase (but he can buy shovels without using any offers).
Your task is to calculate the minimum cost of buying $k$ shovels, if Misha buys them optimally.
-----Input-----
The first line of the input contains three integers $n, m$ and $k$ ($1 \le n, m \le 2 \cdot 10^5, 1 \le k \le min(n, 2000)$) β the number of shovels in the shop, the number of special offers and the number of shovels Misha has to buy, correspondingly.
The second line of the input contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \le a_i \le 2 \cdot 10^5$), where $a_i$ is the cost of the $i$-th shovel.
The next $m$ lines contain special offers. The $j$-th of them is given as a pair of integers $(x_i, y_i)$ ($1 \le y_i \le x_i \le n$) and means that if Misha buys exactly $x_i$ shovels during some purchase, then he can take $y_i$ most cheapest of them for free.
-----Output-----
Print one integer β the minimum cost of buying $k$ shovels if Misha buys them optimally.
-----Examples-----
Input
7 4 5
2 5 4 2 6 3 1
2 1
6 5
2 1
3 1
Output
7
Input
9 4 8
6 8 5 1 8 1 1 2 1
9 2
8 4
5 3
9 7
Output
17
Input
5 1 4
2 5 7 4 6
5 4
Output
17
-----Note-----
In the first example Misha can buy shovels on positions $1$ and $4$ (both with costs $2$) during the first purchase and get one of them for free using the first or the third special offer. And then he can buy shovels on positions $3$ and $6$ (with costs $4$ and $3$) during the second purchase and get the second one for free using the first or the third special offer. Then he can buy the shovel on a position $7$ with cost $1$. So the total cost is $4 + 2 + 1 = 7$.
In the second example Misha can buy shovels on positions $1$, $2$, $3$, $4$ and $8$ (costs are $6$, $8$, $5$, $1$ and $2$) and get three cheapest (with costs $5$, $1$ and $2$) for free. And then he can buy shovels on positions $6$, $7$ and $9$ (all with costs $1$) without using any special offers. So the total cost is $6 + 8 + 1 + 1 + 1 = 17$.
In the third example Misha can buy four cheapest shovels without using any special offers and get the total cost $17$.
|
n, m, k = map(int, input().split())
arr = list(map(int, input().split()))
offer = [list(map(int, input().split())) for _ in range(m)]
arr = sorted(arr)
arr = arr[:k]
arr = arr[::-1]
acum = [0]
for i in range(k):
acum.append(acum[-1] + arr[i])
dp = [acum[i] for i in range(k + 1)]
for x, y in offer:
if x > k:
continue
for i in range(x, k + 1):
dp[i] = min(
dp[i], dp[i - x] + (acum[i] - acum[i - x]) - (acum[i] - acum[i - y])
)
tmp = dp[0]
for i in range(1, k + 1):
tmp = min(tmp, dp[i - 1]) + arr[i - 1]
dp[i] = min(dp[i], tmp)
for x, y in offer:
if x > k:
continue
for i in range(x, k + 1):
dp[i] = min(
dp[i], dp[i - x] + (acum[i] - acum[i - x]) - (acum[i] - acum[i - y])
)
tmp = dp[0]
for i in range(1, k + 1):
tmp = min(tmp, dp[i - 1]) + arr[i - 1]
dp[i] = min(dp[i], tmp)
print(dp[k])
|
ASSIGN VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR VAR NUMBER ASSIGN VAR LIST NUMBER FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR NUMBER VAR VAR ASSIGN VAR VAR VAR VAR FUNC_CALL VAR BIN_OP VAR NUMBER FOR VAR VAR VAR IF VAR VAR FOR VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR VAR BIN_OP BIN_OP VAR BIN_OP VAR VAR BIN_OP VAR VAR VAR BIN_OP VAR VAR BIN_OP VAR VAR VAR BIN_OP VAR VAR ASSIGN VAR VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR VAR VAR BIN_OP VAR NUMBER VAR BIN_OP VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR VAR VAR FOR VAR VAR VAR IF VAR VAR FOR VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR VAR BIN_OP BIN_OP VAR BIN_OP VAR VAR BIN_OP VAR VAR VAR BIN_OP VAR VAR BIN_OP VAR VAR VAR BIN_OP VAR VAR ASSIGN VAR VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR VAR VAR BIN_OP VAR NUMBER VAR BIN_OP VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR VAR VAR EXPR FUNC_CALL VAR VAR VAR
|
There are $n$ shovels in the nearby shop. The $i$-th shovel costs $a_i$ bourles.
Misha has to buy exactly $k$ shovels. Each shovel can be bought no more than once.
Misha can buy shovels by several purchases. During one purchase he can choose any subset of remaining (non-bought) shovels and buy this subset.
There are also $m$ special offers in the shop. The $j$-th of them is given as a pair $(x_j, y_j)$, and it means that if Misha buys exactly $x_j$ shovels during one purchase then $y_j$ most cheapest of them are for free (i.e. he will not pay for $y_j$ most cheapest shovels during the current purchase).
Misha can use any offer any (possibly, zero) number of times, but he cannot use more than one offer during one purchase (but he can buy shovels without using any offers).
Your task is to calculate the minimum cost of buying $k$ shovels, if Misha buys them optimally.
-----Input-----
The first line of the input contains three integers $n, m$ and $k$ ($1 \le n, m \le 2 \cdot 10^5, 1 \le k \le min(n, 2000)$) β the number of shovels in the shop, the number of special offers and the number of shovels Misha has to buy, correspondingly.
The second line of the input contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \le a_i \le 2 \cdot 10^5$), where $a_i$ is the cost of the $i$-th shovel.
The next $m$ lines contain special offers. The $j$-th of them is given as a pair of integers $(x_i, y_i)$ ($1 \le y_i \le x_i \le n$) and means that if Misha buys exactly $x_i$ shovels during some purchase, then he can take $y_i$ most cheapest of them for free.
-----Output-----
Print one integer β the minimum cost of buying $k$ shovels if Misha buys them optimally.
-----Examples-----
Input
7 4 5
2 5 4 2 6 3 1
2 1
6 5
2 1
3 1
Output
7
Input
9 4 8
6 8 5 1 8 1 1 2 1
9 2
8 4
5 3
9 7
Output
17
Input
5 1 4
2 5 7 4 6
5 4
Output
17
-----Note-----
In the first example Misha can buy shovels on positions $1$ and $4$ (both with costs $2$) during the first purchase and get one of them for free using the first or the third special offer. And then he can buy shovels on positions $3$ and $6$ (with costs $4$ and $3$) during the second purchase and get the second one for free using the first or the third special offer. Then he can buy the shovel on a position $7$ with cost $1$. So the total cost is $4 + 2 + 1 = 7$.
In the second example Misha can buy shovels on positions $1$, $2$, $3$, $4$ and $8$ (costs are $6$, $8$, $5$, $1$ and $2$) and get three cheapest (with costs $5$, $1$ and $2$) for free. And then he can buy shovels on positions $6$, $7$ and $9$ (all with costs $1$) without using any special offers. So the total cost is $6 + 8 + 1 + 1 + 1 = 17$.
In the third example Misha can buy four cheapest shovels without using any special offers and get the total cost $17$.
|
from sys import stdin, stdout
n, m, k = tuple(map(lambda x: int(x), stdin.readline().split()))
a = stdin.readline().split()
for i in range(len(a)):
a[i] = int(a[i])
prefix_sum = []
a = sorted(a, key=lambda x: x)
for x in a:
if prefix_sum:
prefix_sum.append(prefix_sum[-1] + x)
else:
prefix_sum.append(x)
offers = {}
for i in range(m):
x, y = stdin.readline().split()
x = int(x)
y = int(y)
if x not in offers or y > offers[x]:
offers[x] = y
answer = []
for i in range(k):
if i == 0:
if 1 in offers and offers[1] > 0:
answer.append(0)
else:
answer.append(a[0])
continue
answer.append(400000002)
for j in range(i):
cursum = answer[j]
answer[i] = min(
answer[i],
answer[j]
+ prefix_sum[i]
- prefix_sum[j + (offers[i - j] if i - j in offers else 0)],
)
answer[i] = min(
answer[i],
(
prefix_sum[i]
if i + 1 not in offers
else -prefix_sum[offers[i + 1] - 1] + prefix_sum[i]
),
)
print(answer[k - 1])
|
ASSIGN VAR VAR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL FUNC_CALL VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR ASSIGN VAR LIST ASSIGN VAR FUNC_CALL VAR VAR VAR FOR VAR VAR IF VAR EXPR FUNC_CALL VAR BIN_OP VAR NUMBER VAR EXPR FUNC_CALL VAR VAR ASSIGN VAR DICT FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR IF VAR VAR VAR VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR IF VAR NUMBER IF NUMBER VAR VAR NUMBER NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR BIN_OP BIN_OP VAR VAR VAR VAR VAR BIN_OP VAR BIN_OP VAR VAR VAR VAR BIN_OP VAR VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR VAR BIN_OP VAR NUMBER VAR VAR VAR BIN_OP VAR BIN_OP VAR BIN_OP VAR NUMBER NUMBER VAR VAR EXPR FUNC_CALL VAR VAR BIN_OP VAR NUMBER
|
There are $n$ shovels in the nearby shop. The $i$-th shovel costs $a_i$ bourles.
Misha has to buy exactly $k$ shovels. Each shovel can be bought no more than once.
Misha can buy shovels by several purchases. During one purchase he can choose any subset of remaining (non-bought) shovels and buy this subset.
There are also $m$ special offers in the shop. The $j$-th of them is given as a pair $(x_j, y_j)$, and it means that if Misha buys exactly $x_j$ shovels during one purchase then $y_j$ most cheapest of them are for free (i.e. he will not pay for $y_j$ most cheapest shovels during the current purchase).
Misha can use any offer any (possibly, zero) number of times, but he cannot use more than one offer during one purchase (but he can buy shovels without using any offers).
Your task is to calculate the minimum cost of buying $k$ shovels, if Misha buys them optimally.
-----Input-----
The first line of the input contains three integers $n, m$ and $k$ ($1 \le n, m \le 2 \cdot 10^5, 1 \le k \le min(n, 2000)$) β the number of shovels in the shop, the number of special offers and the number of shovels Misha has to buy, correspondingly.
The second line of the input contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \le a_i \le 2 \cdot 10^5$), where $a_i$ is the cost of the $i$-th shovel.
The next $m$ lines contain special offers. The $j$-th of them is given as a pair of integers $(x_i, y_i)$ ($1 \le y_i \le x_i \le n$) and means that if Misha buys exactly $x_i$ shovels during some purchase, then he can take $y_i$ most cheapest of them for free.
-----Output-----
Print one integer β the minimum cost of buying $k$ shovels if Misha buys them optimally.
-----Examples-----
Input
7 4 5
2 5 4 2 6 3 1
2 1
6 5
2 1
3 1
Output
7
Input
9 4 8
6 8 5 1 8 1 1 2 1
9 2
8 4
5 3
9 7
Output
17
Input
5 1 4
2 5 7 4 6
5 4
Output
17
-----Note-----
In the first example Misha can buy shovels on positions $1$ and $4$ (both with costs $2$) during the first purchase and get one of them for free using the first or the third special offer. And then he can buy shovels on positions $3$ and $6$ (with costs $4$ and $3$) during the second purchase and get the second one for free using the first or the third special offer. Then he can buy the shovel on a position $7$ with cost $1$. So the total cost is $4 + 2 + 1 = 7$.
In the second example Misha can buy shovels on positions $1$, $2$, $3$, $4$ and $8$ (costs are $6$, $8$, $5$, $1$ and $2$) and get three cheapest (with costs $5$, $1$ and $2$) for free. And then he can buy shovels on positions $6$, $7$ and $9$ (all with costs $1$) without using any special offers. So the total cost is $6 + 8 + 1 + 1 + 1 = 17$.
In the third example Misha can buy four cheapest shovels without using any special offers and get the total cost $17$.
|
n, m, k = map(int, input().split())
ai = list(map(int, input().split()))
ar = [0] * k
for i in range(m):
x, y = list(map(int, input().split()))
x -= 1
if x < k:
ar[x] = max(ar[x], y)
ai.sort()
big = 10**9
ar2 = [big] * (k + 1)
ar3 = [0] * (k + 1)
ar3[0] = 0
for i in range(1, k + 1):
ar3[i] = ar3[i - 1] + ai[i - 1]
ar2[k] = 0
for i in range(k, 0, -1):
for j in range(i):
ar2[i - j - 1] = min(ar2[i - j - 1], ar2[i] + ar3[i] - ar3[i - (j + 1 - ar[j])])
print(ar2[0])
|
ASSIGN VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR BIN_OP LIST NUMBER VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR VAR NUMBER IF VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR VAR EXPR FUNC_CALL VAR ASSIGN VAR BIN_OP NUMBER NUMBER ASSIGN VAR BIN_OP LIST VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP LIST NUMBER BIN_OP VAR NUMBER ASSIGN VAR NUMBER NUMBER FOR VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER ASSIGN VAR VAR BIN_OP VAR BIN_OP VAR NUMBER VAR BIN_OP VAR NUMBER ASSIGN VAR VAR NUMBER FOR VAR FUNC_CALL VAR VAR NUMBER NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER FUNC_CALL VAR VAR BIN_OP BIN_OP VAR VAR NUMBER BIN_OP BIN_OP VAR VAR VAR VAR VAR BIN_OP VAR BIN_OP BIN_OP VAR NUMBER VAR VAR EXPR FUNC_CALL VAR VAR NUMBER
|
There are $n$ shovels in the nearby shop. The $i$-th shovel costs $a_i$ bourles.
Misha has to buy exactly $k$ shovels. Each shovel can be bought no more than once.
Misha can buy shovels by several purchases. During one purchase he can choose any subset of remaining (non-bought) shovels and buy this subset.
There are also $m$ special offers in the shop. The $j$-th of them is given as a pair $(x_j, y_j)$, and it means that if Misha buys exactly $x_j$ shovels during one purchase then $y_j$ most cheapest of them are for free (i.e. he will not pay for $y_j$ most cheapest shovels during the current purchase).
Misha can use any offer any (possibly, zero) number of times, but he cannot use more than one offer during one purchase (but he can buy shovels without using any offers).
Your task is to calculate the minimum cost of buying $k$ shovels, if Misha buys them optimally.
-----Input-----
The first line of the input contains three integers $n, m$ and $k$ ($1 \le n, m \le 2 \cdot 10^5, 1 \le k \le min(n, 2000)$) β the number of shovels in the shop, the number of special offers and the number of shovels Misha has to buy, correspondingly.
The second line of the input contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \le a_i \le 2 \cdot 10^5$), where $a_i$ is the cost of the $i$-th shovel.
The next $m$ lines contain special offers. The $j$-th of them is given as a pair of integers $(x_i, y_i)$ ($1 \le y_i \le x_i \le n$) and means that if Misha buys exactly $x_i$ shovels during some purchase, then he can take $y_i$ most cheapest of them for free.
-----Output-----
Print one integer β the minimum cost of buying $k$ shovels if Misha buys them optimally.
-----Examples-----
Input
7 4 5
2 5 4 2 6 3 1
2 1
6 5
2 1
3 1
Output
7
Input
9 4 8
6 8 5 1 8 1 1 2 1
9 2
8 4
5 3
9 7
Output
17
Input
5 1 4
2 5 7 4 6
5 4
Output
17
-----Note-----
In the first example Misha can buy shovels on positions $1$ and $4$ (both with costs $2$) during the first purchase and get one of them for free using the first or the third special offer. And then he can buy shovels on positions $3$ and $6$ (with costs $4$ and $3$) during the second purchase and get the second one for free using the first or the third special offer. Then he can buy the shovel on a position $7$ with cost $1$. So the total cost is $4 + 2 + 1 = 7$.
In the second example Misha can buy shovels on positions $1$, $2$, $3$, $4$ and $8$ (costs are $6$, $8$, $5$, $1$ and $2$) and get three cheapest (with costs $5$, $1$ and $2$) for free. And then he can buy shovels on positions $6$, $7$ and $9$ (all with costs $1$) without using any special offers. So the total cost is $6 + 8 + 1 + 1 + 1 = 17$.
In the third example Misha can buy four cheapest shovels without using any special offers and get the total cost $17$.
|
IN = input
rint = lambda: int(IN())
rmint = lambda: list(map(int, IN().split()))
rlist = lambda: list(rmint())
n, m, k = rmint()
a = rlist()
t = []
for i in range(m):
x, y = rmint()
t.append((x, y))
t.sort()
a.sort()
pr = [0]
for i in a:
pr.append(pr[-1] + i)
f = 4096 * [0]
def s(l, r):
if l > r:
return 0
else:
return pr[r + 1] - pr[l]
ans = s(0, k - 1)
def upd(x, y):
nonlocal ans
f[x] = min(f[x], y)
ans = min(ans, y + s(x, k - 1))
for i in range(1, k + 1):
f[i] = f[i - 1] + a[i - 1]
for p in t:
x, y = p
if i - x < 0:
break
upd(i, f[i - x] + s(i - x + y, i - 1))
print(ans)
|
ASSIGN VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR EXPR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR EXPR FUNC_CALL VAR ASSIGN VAR LIST NUMBER FOR VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR NUMBER VAR ASSIGN VAR BIN_OP NUMBER LIST NUMBER FUNC_DEF IF VAR VAR RETURN NUMBER RETURN BIN_OP VAR BIN_OP VAR NUMBER VAR VAR ASSIGN VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER FUNC_DEF ASSIGN VAR VAR FUNC_CALL VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER ASSIGN VAR VAR BIN_OP VAR BIN_OP VAR NUMBER VAR BIN_OP VAR NUMBER FOR VAR VAR ASSIGN VAR VAR VAR IF BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR VAR BIN_OP VAR BIN_OP VAR VAR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR
|
There are $n$ shovels in the nearby shop. The $i$-th shovel costs $a_i$ bourles.
Misha has to buy exactly $k$ shovels. Each shovel can be bought no more than once.
Misha can buy shovels by several purchases. During one purchase he can choose any subset of remaining (non-bought) shovels and buy this subset.
There are also $m$ special offers in the shop. The $j$-th of them is given as a pair $(x_j, y_j)$, and it means that if Misha buys exactly $x_j$ shovels during one purchase then $y_j$ most cheapest of them are for free (i.e. he will not pay for $y_j$ most cheapest shovels during the current purchase).
Misha can use any offer any (possibly, zero) number of times, but he cannot use more than one offer during one purchase (but he can buy shovels without using any offers).
Your task is to calculate the minimum cost of buying $k$ shovels, if Misha buys them optimally.
-----Input-----
The first line of the input contains three integers $n, m$ and $k$ ($1 \le n, m \le 2 \cdot 10^5, 1 \le k \le min(n, 2000)$) β the number of shovels in the shop, the number of special offers and the number of shovels Misha has to buy, correspondingly.
The second line of the input contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \le a_i \le 2 \cdot 10^5$), where $a_i$ is the cost of the $i$-th shovel.
The next $m$ lines contain special offers. The $j$-th of them is given as a pair of integers $(x_i, y_i)$ ($1 \le y_i \le x_i \le n$) and means that if Misha buys exactly $x_i$ shovels during some purchase, then he can take $y_i$ most cheapest of them for free.
-----Output-----
Print one integer β the minimum cost of buying $k$ shovels if Misha buys them optimally.
-----Examples-----
Input
7 4 5
2 5 4 2 6 3 1
2 1
6 5
2 1
3 1
Output
7
Input
9 4 8
6 8 5 1 8 1 1 2 1
9 2
8 4
5 3
9 7
Output
17
Input
5 1 4
2 5 7 4 6
5 4
Output
17
-----Note-----
In the first example Misha can buy shovels on positions $1$ and $4$ (both with costs $2$) during the first purchase and get one of them for free using the first or the third special offer. And then he can buy shovels on positions $3$ and $6$ (with costs $4$ and $3$) during the second purchase and get the second one for free using the first or the third special offer. Then he can buy the shovel on a position $7$ with cost $1$. So the total cost is $4 + 2 + 1 = 7$.
In the second example Misha can buy shovels on positions $1$, $2$, $3$, $4$ and $8$ (costs are $6$, $8$, $5$, $1$ and $2$) and get three cheapest (with costs $5$, $1$ and $2$) for free. And then he can buy shovels on positions $6$, $7$ and $9$ (all with costs $1$) without using any special offers. So the total cost is $6 + 8 + 1 + 1 + 1 = 17$.
In the third example Misha can buy four cheapest shovels without using any special offers and get the total cost $17$.
|
N, M, K = map(int, input().split())
A = sorted([int(a) for a in input().split()])[:K][::-1]
B = [0]
for a in A:
B.append(B[-1] + a)
X = [0] * (K + 1)
for _ in range(M):
x, y = map(int, input().split())
if x <= K:
X[x] = max(X[x], y)
Y = [0] * (K + 1)
for i in range(1, K + 1):
mi = 10**100
for j in range(1, i + 1):
s = Y[i - j] + B[i - X[j]] - B[i - j]
mi = min(mi, s)
Y[i] = mi
print(Y[K])
|
ASSIGN VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR VAR NUMBER ASSIGN VAR LIST NUMBER FOR VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR NUMBER VAR ASSIGN VAR BIN_OP LIST NUMBER BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR VAR ASSIGN VAR BIN_OP LIST NUMBER BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER ASSIGN VAR BIN_OP NUMBER NUMBER FOR VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR BIN_OP VAR VAR VAR BIN_OP VAR VAR VAR VAR BIN_OP VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR VAR VAR EXPR FUNC_CALL VAR VAR VAR
|
There are $n$ shovels in the nearby shop. The $i$-th shovel costs $a_i$ bourles.
Misha has to buy exactly $k$ shovels. Each shovel can be bought no more than once.
Misha can buy shovels by several purchases. During one purchase he can choose any subset of remaining (non-bought) shovels and buy this subset.
There are also $m$ special offers in the shop. The $j$-th of them is given as a pair $(x_j, y_j)$, and it means that if Misha buys exactly $x_j$ shovels during one purchase then $y_j$ most cheapest of them are for free (i.e. he will not pay for $y_j$ most cheapest shovels during the current purchase).
Misha can use any offer any (possibly, zero) number of times, but he cannot use more than one offer during one purchase (but he can buy shovels without using any offers).
Your task is to calculate the minimum cost of buying $k$ shovels, if Misha buys them optimally.
-----Input-----
The first line of the input contains three integers $n, m$ and $k$ ($1 \le n, m \le 2 \cdot 10^5, 1 \le k \le min(n, 2000)$) β the number of shovels in the shop, the number of special offers and the number of shovels Misha has to buy, correspondingly.
The second line of the input contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \le a_i \le 2 \cdot 10^5$), where $a_i$ is the cost of the $i$-th shovel.
The next $m$ lines contain special offers. The $j$-th of them is given as a pair of integers $(x_i, y_i)$ ($1 \le y_i \le x_i \le n$) and means that if Misha buys exactly $x_i$ shovels during some purchase, then he can take $y_i$ most cheapest of them for free.
-----Output-----
Print one integer β the minimum cost of buying $k$ shovels if Misha buys them optimally.
-----Examples-----
Input
7 4 5
2 5 4 2 6 3 1
2 1
6 5
2 1
3 1
Output
7
Input
9 4 8
6 8 5 1 8 1 1 2 1
9 2
8 4
5 3
9 7
Output
17
Input
5 1 4
2 5 7 4 6
5 4
Output
17
-----Note-----
In the first example Misha can buy shovels on positions $1$ and $4$ (both with costs $2$) during the first purchase and get one of them for free using the first or the third special offer. And then he can buy shovels on positions $3$ and $6$ (with costs $4$ and $3$) during the second purchase and get the second one for free using the first or the third special offer. Then he can buy the shovel on a position $7$ with cost $1$. So the total cost is $4 + 2 + 1 = 7$.
In the second example Misha can buy shovels on positions $1$, $2$, $3$, $4$ and $8$ (costs are $6$, $8$, $5$, $1$ and $2$) and get three cheapest (with costs $5$, $1$ and $2$) for free. And then he can buy shovels on positions $6$, $7$ and $9$ (all with costs $1$) without using any special offers. So the total cost is $6 + 8 + 1 + 1 + 1 = 17$.
In the third example Misha can buy four cheapest shovels without using any special offers and get the total cost $17$.
|
import sys
dp = []
sum = []
INF = sys.maxsize / 2
def sum_range(a, b):
if a == 0:
return sum[b]
return sum[b] - sum[a - 1]
def rec(pos, sale, n, k):
if k == 0:
return 0
if dp[k] != -1:
return dp[k]
res = INF
for x in range(1, k + 1):
if sale[x] != -1:
res = min(
res,
rec(pos + x, sale, n, k - x) + sum_range(pos + sale[x], pos + x - 1),
)
dp[k] = res
return res
inp = [int(x) for x in sys.stdin.read().split()]
n, m, k = inp[0], inp[1], inp[2]
inp_idx = 3
a = []
for _ in range(n):
a.append(inp[inp_idx])
inp_idx += 1
sale = [-1] * (k + 1)
sale[1] = 0
for _ in range(m):
x, y = inp[inp_idx], inp[inp_idx + 1]
inp_idx += 2
if x > k:
continue
sale[x] = max(sale[x], y)
a.sort()
sum = [0] * n
sum[0] = a[0]
for i in range(1, n):
sum[i] = sum[i - 1] + a[i]
dp = [-1] * (k + 1)
cost = rec(0, sale, n, k)
print(cost)
|
IMPORT ASSIGN VAR LIST ASSIGN VAR LIST ASSIGN VAR BIN_OP VAR NUMBER FUNC_DEF IF VAR NUMBER RETURN VAR VAR RETURN BIN_OP VAR VAR VAR BIN_OP VAR NUMBER FUNC_DEF IF VAR NUMBER RETURN NUMBER IF VAR VAR NUMBER RETURN VAR VAR ASSIGN VAR VAR FOR VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER IF VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP FUNC_CALL VAR BIN_OP VAR VAR VAR VAR BIN_OP VAR VAR FUNC_CALL VAR BIN_OP VAR VAR VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR VAR VAR RETURN VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR VAR VAR NUMBER VAR NUMBER VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR VAR VAR NUMBER ASSIGN VAR BIN_OP LIST NUMBER BIN_OP VAR NUMBER ASSIGN VAR NUMBER NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR VAR VAR BIN_OP VAR NUMBER VAR NUMBER IF VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR VAR EXPR FUNC_CALL VAR ASSIGN VAR BIN_OP LIST NUMBER VAR ASSIGN VAR NUMBER VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR ASSIGN VAR VAR BIN_OP VAR BIN_OP VAR NUMBER VAR VAR ASSIGN VAR BIN_OP LIST NUMBER BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR NUMBER VAR VAR VAR EXPR FUNC_CALL VAR VAR
|
There are $n$ shovels in the nearby shop. The $i$-th shovel costs $a_i$ bourles.
Misha has to buy exactly $k$ shovels. Each shovel can be bought no more than once.
Misha can buy shovels by several purchases. During one purchase he can choose any subset of remaining (non-bought) shovels and buy this subset.
There are also $m$ special offers in the shop. The $j$-th of them is given as a pair $(x_j, y_j)$, and it means that if Misha buys exactly $x_j$ shovels during one purchase then $y_j$ most cheapest of them are for free (i.e. he will not pay for $y_j$ most cheapest shovels during the current purchase).
Misha can use any offer any (possibly, zero) number of times, but he cannot use more than one offer during one purchase (but he can buy shovels without using any offers).
Your task is to calculate the minimum cost of buying $k$ shovels, if Misha buys them optimally.
-----Input-----
The first line of the input contains three integers $n, m$ and $k$ ($1 \le n, m \le 2 \cdot 10^5, 1 \le k \le min(n, 2000)$) β the number of shovels in the shop, the number of special offers and the number of shovels Misha has to buy, correspondingly.
The second line of the input contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \le a_i \le 2 \cdot 10^5$), where $a_i$ is the cost of the $i$-th shovel.
The next $m$ lines contain special offers. The $j$-th of them is given as a pair of integers $(x_i, y_i)$ ($1 \le y_i \le x_i \le n$) and means that if Misha buys exactly $x_i$ shovels during some purchase, then he can take $y_i$ most cheapest of them for free.
-----Output-----
Print one integer β the minimum cost of buying $k$ shovels if Misha buys them optimally.
-----Examples-----
Input
7 4 5
2 5 4 2 6 3 1
2 1
6 5
2 1
3 1
Output
7
Input
9 4 8
6 8 5 1 8 1 1 2 1
9 2
8 4
5 3
9 7
Output
17
Input
5 1 4
2 5 7 4 6
5 4
Output
17
-----Note-----
In the first example Misha can buy shovels on positions $1$ and $4$ (both with costs $2$) during the first purchase and get one of them for free using the first or the third special offer. And then he can buy shovels on positions $3$ and $6$ (with costs $4$ and $3$) during the second purchase and get the second one for free using the first or the third special offer. Then he can buy the shovel on a position $7$ with cost $1$. So the total cost is $4 + 2 + 1 = 7$.
In the second example Misha can buy shovels on positions $1$, $2$, $3$, $4$ and $8$ (costs are $6$, $8$, $5$, $1$ and $2$) and get three cheapest (with costs $5$, $1$ and $2$) for free. And then he can buy shovels on positions $6$, $7$ and $9$ (all with costs $1$) without using any special offers. So the total cost is $6 + 8 + 1 + 1 + 1 = 17$.
In the third example Misha can buy four cheapest shovels without using any special offers and get the total cost $17$.
|
n, m, k = list(map(int, input().split()))
a = list(map(int, input().split()))
a = sorted(a)
a = a[:k]
d = [(1, 0)]
for i in range(m):
x, y = list(map(int, input().split()))
if x > k:
continue
d.append((x, y))
d = sorted(d)
s = [0] * (k + 1)
s[1] = a[0]
for i in range(1, k + 1):
s[i] = s[i - 1] + a[i - 1]
INF = float("inf")
dp = [INF] * (k + 1)
dp[0] = 0
for i in range(k + 1):
for j in range(len(d)):
x, y = d[j]
if i + x <= k:
dp[i + x] = min(dp[i + x], dp[i] + s[i + x] - s[i + y])
else:
break
print(dp[k])
|
ASSIGN VAR VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR LIST NUMBER NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF VAR VAR EXPR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP LIST NUMBER BIN_OP VAR NUMBER ASSIGN VAR NUMBER VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER ASSIGN VAR VAR BIN_OP VAR BIN_OP VAR NUMBER VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR STRING ASSIGN VAR BIN_OP LIST VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR VAR IF BIN_OP VAR VAR VAR ASSIGN VAR BIN_OP VAR VAR FUNC_CALL VAR VAR BIN_OP VAR VAR BIN_OP BIN_OP VAR VAR VAR BIN_OP VAR VAR VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR VAR VAR
|
There are $n$ shovels in the nearby shop. The $i$-th shovel costs $a_i$ bourles.
Misha has to buy exactly $k$ shovels. Each shovel can be bought no more than once.
Misha can buy shovels by several purchases. During one purchase he can choose any subset of remaining (non-bought) shovels and buy this subset.
There are also $m$ special offers in the shop. The $j$-th of them is given as a pair $(x_j, y_j)$, and it means that if Misha buys exactly $x_j$ shovels during one purchase then $y_j$ most cheapest of them are for free (i.e. he will not pay for $y_j$ most cheapest shovels during the current purchase).
Misha can use any offer any (possibly, zero) number of times, but he cannot use more than one offer during one purchase (but he can buy shovels without using any offers).
Your task is to calculate the minimum cost of buying $k$ shovels, if Misha buys them optimally.
-----Input-----
The first line of the input contains three integers $n, m$ and $k$ ($1 \le n, m \le 2 \cdot 10^5, 1 \le k \le min(n, 2000)$) β the number of shovels in the shop, the number of special offers and the number of shovels Misha has to buy, correspondingly.
The second line of the input contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \le a_i \le 2 \cdot 10^5$), where $a_i$ is the cost of the $i$-th shovel.
The next $m$ lines contain special offers. The $j$-th of them is given as a pair of integers $(x_i, y_i)$ ($1 \le y_i \le x_i \le n$) and means that if Misha buys exactly $x_i$ shovels during some purchase, then he can take $y_i$ most cheapest of them for free.
-----Output-----
Print one integer β the minimum cost of buying $k$ shovels if Misha buys them optimally.
-----Examples-----
Input
7 4 5
2 5 4 2 6 3 1
2 1
6 5
2 1
3 1
Output
7
Input
9 4 8
6 8 5 1 8 1 1 2 1
9 2
8 4
5 3
9 7
Output
17
Input
5 1 4
2 5 7 4 6
5 4
Output
17
-----Note-----
In the first example Misha can buy shovels on positions $1$ and $4$ (both with costs $2$) during the first purchase and get one of them for free using the first or the third special offer. And then he can buy shovels on positions $3$ and $6$ (with costs $4$ and $3$) during the second purchase and get the second one for free using the first or the third special offer. Then he can buy the shovel on a position $7$ with cost $1$. So the total cost is $4 + 2 + 1 = 7$.
In the second example Misha can buy shovels on positions $1$, $2$, $3$, $4$ and $8$ (costs are $6$, $8$, $5$, $1$ and $2$) and get three cheapest (with costs $5$, $1$ and $2$) for free. And then he can buy shovels on positions $6$, $7$ and $9$ (all with costs $1$) without using any special offers. So the total cost is $6 + 8 + 1 + 1 + 1 = 17$.
In the third example Misha can buy four cheapest shovels without using any special offers and get the total cost $17$.
|
n, m, k = (int(i) for i in input().split())
cost = sorted([int(i) for i in input().split()])[:k] + [0]
discount = [0] * n
for i in range(m):
a, b = (int(j) for j in input().split())
discount[a - 1] = max(discount[a - 1], b)
S = [0] * (k + 1)
for i in range(k):
S[i] = cost[i] + S[i - 1]
cost[i] += cost[i - 1]
for j in range(i + 1):
S[i] = min(S[i], S[j - 1] + cost[i] - cost[j - 1 + discount[i - j]])
print(S[k - 1])
|
ASSIGN VAR VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR BIN_OP FUNC_CALL VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR VAR LIST NUMBER ASSIGN VAR BIN_OP LIST NUMBER VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR BIN_OP VAR NUMBER FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR ASSIGN VAR BIN_OP LIST NUMBER BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR BIN_OP VAR VAR VAR BIN_OP VAR NUMBER VAR VAR VAR BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR VAR BIN_OP BIN_OP VAR BIN_OP VAR NUMBER VAR VAR VAR BIN_OP BIN_OP VAR NUMBER VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR VAR BIN_OP VAR NUMBER
|
You are given a sequence $a$ consisting of $n$ integers $a_1, a_2, \dots, a_n$, and an integer $x$. Your task is to make the sequence $a$ sorted (it is considered sorted if the condition $a_1 \le a_2 \le a_3 \le \dots \le a_n$ holds).
To make the sequence sorted, you may perform the following operation any number of times you want (possibly zero): choose an integer $i$ such that $1 \le i \le n$ and $a_i > x$, and swap the values of $a_i$ and $x$.
For example, if $a = [0, 2, 3, 5, 4]$, $x = 1$, the following sequence of operations is possible:
choose $i = 2$ (it is possible since $a_2 > x$), then $a = [0, 1, 3, 5, 4]$, $x = 2$;
choose $i = 3$ (it is possible since $a_3 > x$), then $a = [0, 1, 2, 5, 4]$, $x = 3$;
choose $i = 4$ (it is possible since $a_4 > x$), then $a = [0, 1, 2, 3, 4]$, $x = 5$.
Calculate the minimum number of operations you have to perform so that $a$ becomes sorted, or report that it is impossible.
-----Input-----
The first line contains one integer $t$ ($1 \le t \le 500$) β the number of test cases.
Each test case consists of two lines. The first line contains two integers $n$ and $x$ ($1 \le n \le 500$, $0 \le x \le 500$) β the number of elements in the sequence and the initial value of $x$.
The second line contains $n$ integers $a_1$, $a_2$, ..., $a_n$ ($0 \le a_i \le 500$).
The sum of values of $n$ over all test cases in the input does not exceed $500$.
-----Output-----
For each test case, print one integer β the minimum number of operations you have to perform to make $a$ sorted, or $-1$, if it is impossible.
-----Examples-----
Input
6
4 1
2 3 5 4
5 6
1 1 3 4 4
1 10
2
2 10
11 9
2 10
12 11
5 18
81 324 218 413 324
Output
3
0
0
-1
1
3
-----Note-----
None
|
n = int(input())
while n > 0:
a, x = map(int, input().split())
arr = list(map(int, input().split()))
i = 0
count = 0
while i < len(arr):
if sorted(arr) == arr:
break
if arr[i] > x:
x, arr[i] = arr[i], x
count += 1
i += 1
if sorted(arr) == arr:
print(count)
else:
print(-1)
n -= 1
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR WHILE VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR FUNC_CALL VAR VAR IF FUNC_CALL VAR VAR VAR IF VAR VAR VAR ASSIGN VAR VAR VAR VAR VAR VAR VAR NUMBER VAR NUMBER IF FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR NUMBER VAR NUMBER
|
You are given a sequence $a$ consisting of $n$ integers $a_1, a_2, \dots, a_n$, and an integer $x$. Your task is to make the sequence $a$ sorted (it is considered sorted if the condition $a_1 \le a_2 \le a_3 \le \dots \le a_n$ holds).
To make the sequence sorted, you may perform the following operation any number of times you want (possibly zero): choose an integer $i$ such that $1 \le i \le n$ and $a_i > x$, and swap the values of $a_i$ and $x$.
For example, if $a = [0, 2, 3, 5, 4]$, $x = 1$, the following sequence of operations is possible:
choose $i = 2$ (it is possible since $a_2 > x$), then $a = [0, 1, 3, 5, 4]$, $x = 2$;
choose $i = 3$ (it is possible since $a_3 > x$), then $a = [0, 1, 2, 5, 4]$, $x = 3$;
choose $i = 4$ (it is possible since $a_4 > x$), then $a = [0, 1, 2, 3, 4]$, $x = 5$.
Calculate the minimum number of operations you have to perform so that $a$ becomes sorted, or report that it is impossible.
-----Input-----
The first line contains one integer $t$ ($1 \le t \le 500$) β the number of test cases.
Each test case consists of two lines. The first line contains two integers $n$ and $x$ ($1 \le n \le 500$, $0 \le x \le 500$) β the number of elements in the sequence and the initial value of $x$.
The second line contains $n$ integers $a_1$, $a_2$, ..., $a_n$ ($0 \le a_i \le 500$).
The sum of values of $n$ over all test cases in the input does not exceed $500$.
-----Output-----
For each test case, print one integer β the minimum number of operations you have to perform to make $a$ sorted, or $-1$, if it is impossible.
-----Examples-----
Input
6
4 1
2 3 5 4
5 6
1 1 3 4 4
1 10
2
2 10
11 9
2 10
12 11
5 18
81 324 218 413 324
Output
3
0
0
-1
1
3
-----Note-----
None
|
t = int(input())
for i in range(t):
n, x = map(int, input().split())
arr = list(map(int, input().split()))
if arr == sorted(arr):
print(0)
else:
res = 0
for i in range(n):
if arr[i] > x:
temp = x
x = arr[i]
arr[i] = temp
res += 1
if arr == sorted(arr):
print(res)
break
elif i == n - 1:
print(-1)
break
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR VAR VAR ASSIGN VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR VAR VAR VAR NUMBER IF VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR IF VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR NUMBER
|
You are given a sequence $a$ consisting of $n$ integers $a_1, a_2, \dots, a_n$, and an integer $x$. Your task is to make the sequence $a$ sorted (it is considered sorted if the condition $a_1 \le a_2 \le a_3 \le \dots \le a_n$ holds).
To make the sequence sorted, you may perform the following operation any number of times you want (possibly zero): choose an integer $i$ such that $1 \le i \le n$ and $a_i > x$, and swap the values of $a_i$ and $x$.
For example, if $a = [0, 2, 3, 5, 4]$, $x = 1$, the following sequence of operations is possible:
choose $i = 2$ (it is possible since $a_2 > x$), then $a = [0, 1, 3, 5, 4]$, $x = 2$;
choose $i = 3$ (it is possible since $a_3 > x$), then $a = [0, 1, 2, 5, 4]$, $x = 3$;
choose $i = 4$ (it is possible since $a_4 > x$), then $a = [0, 1, 2, 3, 4]$, $x = 5$.
Calculate the minimum number of operations you have to perform so that $a$ becomes sorted, or report that it is impossible.
-----Input-----
The first line contains one integer $t$ ($1 \le t \le 500$) β the number of test cases.
Each test case consists of two lines. The first line contains two integers $n$ and $x$ ($1 \le n \le 500$, $0 \le x \le 500$) β the number of elements in the sequence and the initial value of $x$.
The second line contains $n$ integers $a_1$, $a_2$, ..., $a_n$ ($0 \le a_i \le 500$).
The sum of values of $n$ over all test cases in the input does not exceed $500$.
-----Output-----
For each test case, print one integer β the minimum number of operations you have to perform to make $a$ sorted, or $-1$, if it is impossible.
-----Examples-----
Input
6
4 1
2 3 5 4
5 6
1 1 3 4 4
1 10
2
2 10
11 9
2 10
12 11
5 18
81 324 218 413 324
Output
3
0
0
-1
1
3
-----Note-----
None
|
def f(l):
last = l[0]
bool = True
for i in l[1:]:
if last > i:
bool = False
break
last = i
return bool
for _ in range(int(input())):
n, x = map(int, input().split())
l = list(map(int, input().split()))
bool = False
ans = 0
if f(l):
print(0)
continue
while True:
ans += 1
i = 0
while i < n and l[i] <= x:
i += 1
if i == n:
ans = -1
break
l[i], x = x, l[i]
if f(l):
break
print(ans)
|
FUNC_DEF ASSIGN VAR VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR NUMBER IF VAR VAR ASSIGN VAR NUMBER ASSIGN VAR VAR RETURN VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER IF FUNC_CALL VAR VAR EXPR FUNC_CALL VAR NUMBER WHILE NUMBER VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR VAR VAR VAR VAR NUMBER IF VAR VAR ASSIGN VAR NUMBER ASSIGN VAR VAR VAR VAR VAR VAR IF FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR
|
You are given a sequence $a$ consisting of $n$ integers $a_1, a_2, \dots, a_n$, and an integer $x$. Your task is to make the sequence $a$ sorted (it is considered sorted if the condition $a_1 \le a_2 \le a_3 \le \dots \le a_n$ holds).
To make the sequence sorted, you may perform the following operation any number of times you want (possibly zero): choose an integer $i$ such that $1 \le i \le n$ and $a_i > x$, and swap the values of $a_i$ and $x$.
For example, if $a = [0, 2, 3, 5, 4]$, $x = 1$, the following sequence of operations is possible:
choose $i = 2$ (it is possible since $a_2 > x$), then $a = [0, 1, 3, 5, 4]$, $x = 2$;
choose $i = 3$ (it is possible since $a_3 > x$), then $a = [0, 1, 2, 5, 4]$, $x = 3$;
choose $i = 4$ (it is possible since $a_4 > x$), then $a = [0, 1, 2, 3, 4]$, $x = 5$.
Calculate the minimum number of operations you have to perform so that $a$ becomes sorted, or report that it is impossible.
-----Input-----
The first line contains one integer $t$ ($1 \le t \le 500$) β the number of test cases.
Each test case consists of two lines. The first line contains two integers $n$ and $x$ ($1 \le n \le 500$, $0 \le x \le 500$) β the number of elements in the sequence and the initial value of $x$.
The second line contains $n$ integers $a_1$, $a_2$, ..., $a_n$ ($0 \le a_i \le 500$).
The sum of values of $n$ over all test cases in the input does not exceed $500$.
-----Output-----
For each test case, print one integer β the minimum number of operations you have to perform to make $a$ sorted, or $-1$, if it is impossible.
-----Examples-----
Input
6
4 1
2 3 5 4
5 6
1 1 3 4 4
1 10
2
2 10
11 9
2 10
12 11
5 18
81 324 218 413 324
Output
3
0
0
-1
1
3
-----Note-----
None
|
test = int(input())
for t in range(0, test):
n, x = input().split()
n = int(n)
x = int(x)
a = [int(i) for i in input().split(" ")]
ans = 0
while 1:
if a == sorted(a):
print(ans)
break
f = 0
for i in range(0, len(a)):
if a[i] > x:
temp = a[i]
a[i] = x
x = temp
ans += 1
f = 1
break
if a == sorted(a):
print(ans)
break
if f == 0:
print(-1)
break
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR NUMBER VAR ASSIGN VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR STRING ASSIGN VAR NUMBER WHILE NUMBER IF VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR IF VAR VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR VAR VAR NUMBER ASSIGN VAR NUMBER IF VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER
|
You are given a sequence $a$ consisting of $n$ integers $a_1, a_2, \dots, a_n$, and an integer $x$. Your task is to make the sequence $a$ sorted (it is considered sorted if the condition $a_1 \le a_2 \le a_3 \le \dots \le a_n$ holds).
To make the sequence sorted, you may perform the following operation any number of times you want (possibly zero): choose an integer $i$ such that $1 \le i \le n$ and $a_i > x$, and swap the values of $a_i$ and $x$.
For example, if $a = [0, 2, 3, 5, 4]$, $x = 1$, the following sequence of operations is possible:
choose $i = 2$ (it is possible since $a_2 > x$), then $a = [0, 1, 3, 5, 4]$, $x = 2$;
choose $i = 3$ (it is possible since $a_3 > x$), then $a = [0, 1, 2, 5, 4]$, $x = 3$;
choose $i = 4$ (it is possible since $a_4 > x$), then $a = [0, 1, 2, 3, 4]$, $x = 5$.
Calculate the minimum number of operations you have to perform so that $a$ becomes sorted, or report that it is impossible.
-----Input-----
The first line contains one integer $t$ ($1 \le t \le 500$) β the number of test cases.
Each test case consists of two lines. The first line contains two integers $n$ and $x$ ($1 \le n \le 500$, $0 \le x \le 500$) β the number of elements in the sequence and the initial value of $x$.
The second line contains $n$ integers $a_1$, $a_2$, ..., $a_n$ ($0 \le a_i \le 500$).
The sum of values of $n$ over all test cases in the input does not exceed $500$.
-----Output-----
For each test case, print one integer β the minimum number of operations you have to perform to make $a$ sorted, or $-1$, if it is impossible.
-----Examples-----
Input
6
4 1
2 3 5 4
5 6
1 1 3 4 4
1 10
2
2 10
11 9
2 10
12 11
5 18
81 324 218 413 324
Output
3
0
0
-1
1
3
-----Note-----
None
|
import sys
from sys import maxsize
def get_ints():
return map(int, sys.stdin.readline().strip().split())
def get_list():
return list(map(int, sys.stdin.readline().strip().split()))
def get_list_string():
return list(map(str, sys.stdin.readline().strip().split()))
def get_string():
return sys.stdin.readline().strip()
def get_int():
return int(sys.stdin.readline().strip())
def get_print_int(x):
sys.stdout.write(str(x) + "\n")
def get_print(x):
sys.stdout.write(x + "\n")
def arrsort(arr, n):
for i in range(1, n):
if arr[i] < arr[i - 1]:
return False
return True
def solve():
for _ in range(get_int()):
n, x = get_ints()
arr = get_list()
if arrsort(arr, n):
get_print_int(0)
else:
ans = 0
f = 0
while True:
ans += 1
i = 0
while i < n and arr[i] <= x:
i += 1
if i == n:
ans = -1
break
arr[i], x = x, arr[i]
if arrsort(arr, n):
break
get_print_int(ans)
solve()
|
IMPORT FUNC_DEF RETURN FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL FUNC_CALL VAR FUNC_DEF RETURN FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL FUNC_CALL VAR FUNC_DEF RETURN FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL FUNC_CALL VAR FUNC_DEF RETURN FUNC_CALL FUNC_CALL VAR FUNC_DEF RETURN FUNC_CALL VAR FUNC_CALL FUNC_CALL VAR FUNC_DEF EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR STRING FUNC_DEF EXPR FUNC_CALL VAR BIN_OP VAR STRING FUNC_DEF FOR VAR FUNC_CALL VAR NUMBER VAR IF VAR VAR VAR BIN_OP VAR NUMBER RETURN NUMBER RETURN NUMBER FUNC_DEF FOR VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR IF FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE NUMBER VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR VAR VAR VAR VAR NUMBER IF VAR VAR ASSIGN VAR NUMBER ASSIGN VAR VAR VAR VAR VAR VAR IF FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR
|
You are given a sequence $a$ consisting of $n$ integers $a_1, a_2, \dots, a_n$, and an integer $x$. Your task is to make the sequence $a$ sorted (it is considered sorted if the condition $a_1 \le a_2 \le a_3 \le \dots \le a_n$ holds).
To make the sequence sorted, you may perform the following operation any number of times you want (possibly zero): choose an integer $i$ such that $1 \le i \le n$ and $a_i > x$, and swap the values of $a_i$ and $x$.
For example, if $a = [0, 2, 3, 5, 4]$, $x = 1$, the following sequence of operations is possible:
choose $i = 2$ (it is possible since $a_2 > x$), then $a = [0, 1, 3, 5, 4]$, $x = 2$;
choose $i = 3$ (it is possible since $a_3 > x$), then $a = [0, 1, 2, 5, 4]$, $x = 3$;
choose $i = 4$ (it is possible since $a_4 > x$), then $a = [0, 1, 2, 3, 4]$, $x = 5$.
Calculate the minimum number of operations you have to perform so that $a$ becomes sorted, or report that it is impossible.
-----Input-----
The first line contains one integer $t$ ($1 \le t \le 500$) β the number of test cases.
Each test case consists of two lines. The first line contains two integers $n$ and $x$ ($1 \le n \le 500$, $0 \le x \le 500$) β the number of elements in the sequence and the initial value of $x$.
The second line contains $n$ integers $a_1$, $a_2$, ..., $a_n$ ($0 \le a_i \le 500$).
The sum of values of $n$ over all test cases in the input does not exceed $500$.
-----Output-----
For each test case, print one integer β the minimum number of operations you have to perform to make $a$ sorted, or $-1$, if it is impossible.
-----Examples-----
Input
6
4 1
2 3 5 4
5 6
1 1 3 4 4
1 10
2
2 10
11 9
2 10
12 11
5 18
81 324 218 413 324
Output
3
0
0
-1
1
3
-----Note-----
None
|
for u in range(int(input())):
n, x = map(int, input().split())
a = list(map(int, input().split()))
i = 0
ans = 0
while i < n:
k = list(a)
k.sort()
if k == a:
break
if a[i] > x:
a[i], x = x, a[i]
ans += 1
if x > max(a):
break
i += 1
k = list(a)
k.sort()
if k == a:
print(ans)
else:
print(-1)
|
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR ASSIGN VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR IF VAR VAR IF VAR VAR VAR ASSIGN VAR VAR VAR VAR VAR VAR VAR NUMBER IF VAR FUNC_CALL VAR VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR IF VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR NUMBER
|
You are given a sequence $a$ consisting of $n$ integers $a_1, a_2, \dots, a_n$, and an integer $x$. Your task is to make the sequence $a$ sorted (it is considered sorted if the condition $a_1 \le a_2 \le a_3 \le \dots \le a_n$ holds).
To make the sequence sorted, you may perform the following operation any number of times you want (possibly zero): choose an integer $i$ such that $1 \le i \le n$ and $a_i > x$, and swap the values of $a_i$ and $x$.
For example, if $a = [0, 2, 3, 5, 4]$, $x = 1$, the following sequence of operations is possible:
choose $i = 2$ (it is possible since $a_2 > x$), then $a = [0, 1, 3, 5, 4]$, $x = 2$;
choose $i = 3$ (it is possible since $a_3 > x$), then $a = [0, 1, 2, 5, 4]$, $x = 3$;
choose $i = 4$ (it is possible since $a_4 > x$), then $a = [0, 1, 2, 3, 4]$, $x = 5$.
Calculate the minimum number of operations you have to perform so that $a$ becomes sorted, or report that it is impossible.
-----Input-----
The first line contains one integer $t$ ($1 \le t \le 500$) β the number of test cases.
Each test case consists of two lines. The first line contains two integers $n$ and $x$ ($1 \le n \le 500$, $0 \le x \le 500$) β the number of elements in the sequence and the initial value of $x$.
The second line contains $n$ integers $a_1$, $a_2$, ..., $a_n$ ($0 \le a_i \le 500$).
The sum of values of $n$ over all test cases in the input does not exceed $500$.
-----Output-----
For each test case, print one integer β the minimum number of operations you have to perform to make $a$ sorted, or $-1$, if it is impossible.
-----Examples-----
Input
6
4 1
2 3 5 4
5 6
1 1 3 4 4
1 10
2
2 10
11 9
2 10
12 11
5 18
81 324 218 413 324
Output
3
0
0
-1
1
3
-----Note-----
None
|
t = int(input())
for _ in range(t):
n, x = tuple(map(int, input().split(" ")))
ans = -1
a = list(map(int, input().split(" ")))
for i in range(0, n):
if a[i] > x and sorted(a) != a:
a[i], x = x, a[i]
ans = ans + 1
if sorted(a) != a:
ans = -1
print(ans)
else:
print(ans + 1)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR STRING ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR STRING FOR VAR FUNC_CALL VAR NUMBER VAR IF VAR VAR VAR FUNC_CALL VAR VAR VAR ASSIGN VAR VAR VAR VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER IF FUNC_CALL VAR VAR VAR ASSIGN VAR NUMBER EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR NUMBER
|
You are given a sequence $a$ consisting of $n$ integers $a_1, a_2, \dots, a_n$, and an integer $x$. Your task is to make the sequence $a$ sorted (it is considered sorted if the condition $a_1 \le a_2 \le a_3 \le \dots \le a_n$ holds).
To make the sequence sorted, you may perform the following operation any number of times you want (possibly zero): choose an integer $i$ such that $1 \le i \le n$ and $a_i > x$, and swap the values of $a_i$ and $x$.
For example, if $a = [0, 2, 3, 5, 4]$, $x = 1$, the following sequence of operations is possible:
choose $i = 2$ (it is possible since $a_2 > x$), then $a = [0, 1, 3, 5, 4]$, $x = 2$;
choose $i = 3$ (it is possible since $a_3 > x$), then $a = [0, 1, 2, 5, 4]$, $x = 3$;
choose $i = 4$ (it is possible since $a_4 > x$), then $a = [0, 1, 2, 3, 4]$, $x = 5$.
Calculate the minimum number of operations you have to perform so that $a$ becomes sorted, or report that it is impossible.
-----Input-----
The first line contains one integer $t$ ($1 \le t \le 500$) β the number of test cases.
Each test case consists of two lines. The first line contains two integers $n$ and $x$ ($1 \le n \le 500$, $0 \le x \le 500$) β the number of elements in the sequence and the initial value of $x$.
The second line contains $n$ integers $a_1$, $a_2$, ..., $a_n$ ($0 \le a_i \le 500$).
The sum of values of $n$ over all test cases in the input does not exceed $500$.
-----Output-----
For each test case, print one integer β the minimum number of operations you have to perform to make $a$ sorted, or $-1$, if it is impossible.
-----Examples-----
Input
6
4 1
2 3 5 4
5 6
1 1 3 4 4
1 10
2
2 10
11 9
2 10
12 11
5 18
81 324 218 413 324
Output
3
0
0
-1
1
3
-----Note-----
None
|
def check(a):
if sorted(a) == a:
return 1
return 0
t = int(input())
for _ in range(t):
kt = 0
cnt = 0
n, x = map(int, input().split())
a = list(map(int, input().split()))
if check(a):
print(0)
continue
for i in range(n):
if x < a[i]:
a[i] = a[i] ^ x
x = a[i] ^ x
a[i] = a[i] ^ x
cnt = cnt + 1
if check(a):
kt = 1
break
if kt:
print(cnt)
else:
print(-1)
|
FUNC_DEF IF FUNC_CALL VAR VAR VAR RETURN NUMBER RETURN NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF FUNC_CALL VAR VAR EXPR FUNC_CALL VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR VAR VAR ASSIGN VAR VAR BIN_OP VAR VAR VAR ASSIGN VAR BIN_OP VAR VAR VAR ASSIGN VAR VAR BIN_OP VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER IF FUNC_CALL VAR VAR ASSIGN VAR NUMBER IF VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR NUMBER
|
You are given a sequence $a$ consisting of $n$ integers $a_1, a_2, \dots, a_n$, and an integer $x$. Your task is to make the sequence $a$ sorted (it is considered sorted if the condition $a_1 \le a_2 \le a_3 \le \dots \le a_n$ holds).
To make the sequence sorted, you may perform the following operation any number of times you want (possibly zero): choose an integer $i$ such that $1 \le i \le n$ and $a_i > x$, and swap the values of $a_i$ and $x$.
For example, if $a = [0, 2, 3, 5, 4]$, $x = 1$, the following sequence of operations is possible:
choose $i = 2$ (it is possible since $a_2 > x$), then $a = [0, 1, 3, 5, 4]$, $x = 2$;
choose $i = 3$ (it is possible since $a_3 > x$), then $a = [0, 1, 2, 5, 4]$, $x = 3$;
choose $i = 4$ (it is possible since $a_4 > x$), then $a = [0, 1, 2, 3, 4]$, $x = 5$.
Calculate the minimum number of operations you have to perform so that $a$ becomes sorted, or report that it is impossible.
-----Input-----
The first line contains one integer $t$ ($1 \le t \le 500$) β the number of test cases.
Each test case consists of two lines. The first line contains two integers $n$ and $x$ ($1 \le n \le 500$, $0 \le x \le 500$) β the number of elements in the sequence and the initial value of $x$.
The second line contains $n$ integers $a_1$, $a_2$, ..., $a_n$ ($0 \le a_i \le 500$).
The sum of values of $n$ over all test cases in the input does not exceed $500$.
-----Output-----
For each test case, print one integer β the minimum number of operations you have to perform to make $a$ sorted, or $-1$, if it is impossible.
-----Examples-----
Input
6
4 1
2 3 5 4
5 6
1 1 3 4 4
1 10
2
2 10
11 9
2 10
12 11
5 18
81 324 218 413 324
Output
3
0
0
-1
1
3
-----Note-----
None
|
def sol():
for _ in range(int(input())):
n, x = map(int, input().split())
arr = list(map(int, input().split()))
if arr == sorted(arr):
print(0)
else:
count = 0
flag = False
for i in range(n):
if arr[i] > x:
arr[i], x = x, arr[i]
count += 1
if arr == sorted(arr):
flag = True
break
if flag == False:
print(-1)
else:
print(count)
sol()
|
FUNC_DEF FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR VAR VAR ASSIGN VAR VAR VAR VAR VAR VAR VAR NUMBER IF VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR
|
You are given a sequence $a$ consisting of $n$ integers $a_1, a_2, \dots, a_n$, and an integer $x$. Your task is to make the sequence $a$ sorted (it is considered sorted if the condition $a_1 \le a_2 \le a_3 \le \dots \le a_n$ holds).
To make the sequence sorted, you may perform the following operation any number of times you want (possibly zero): choose an integer $i$ such that $1 \le i \le n$ and $a_i > x$, and swap the values of $a_i$ and $x$.
For example, if $a = [0, 2, 3, 5, 4]$, $x = 1$, the following sequence of operations is possible:
choose $i = 2$ (it is possible since $a_2 > x$), then $a = [0, 1, 3, 5, 4]$, $x = 2$;
choose $i = 3$ (it is possible since $a_3 > x$), then $a = [0, 1, 2, 5, 4]$, $x = 3$;
choose $i = 4$ (it is possible since $a_4 > x$), then $a = [0, 1, 2, 3, 4]$, $x = 5$.
Calculate the minimum number of operations you have to perform so that $a$ becomes sorted, or report that it is impossible.
-----Input-----
The first line contains one integer $t$ ($1 \le t \le 500$) β the number of test cases.
Each test case consists of two lines. The first line contains two integers $n$ and $x$ ($1 \le n \le 500$, $0 \le x \le 500$) β the number of elements in the sequence and the initial value of $x$.
The second line contains $n$ integers $a_1$, $a_2$, ..., $a_n$ ($0 \le a_i \le 500$).
The sum of values of $n$ over all test cases in the input does not exceed $500$.
-----Output-----
For each test case, print one integer β the minimum number of operations you have to perform to make $a$ sorted, or $-1$, if it is impossible.
-----Examples-----
Input
6
4 1
2 3 5 4
5 6
1 1 3 4 4
1 10
2
2 10
11 9
2 10
12 11
5 18
81 324 218 413 324
Output
3
0
0
-1
1
3
-----Note-----
None
|
def notsorted(l, n):
for i in range(0, n - 1):
if l[i] > l[i + 1]:
return True
return False
for _ in range(int(input())):
n, x = map(int, input().split())
l = list(map(int, input().split()))
ans = 0
i = 0
flag = True
while notsorted(l, n):
ans += 1
while i < n and l[i] <= x:
i += 1
if i == n:
print(-1)
flag = False
break
else:
x, l[i] = l[i], x
if flag:
print(ans)
|
FUNC_DEF FOR VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER IF VAR VAR VAR BIN_OP VAR NUMBER RETURN NUMBER RETURN NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE FUNC_CALL VAR VAR VAR VAR NUMBER WHILE VAR VAR VAR VAR VAR VAR NUMBER IF VAR VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR VAR VAR VAR VAR VAR IF VAR EXPR FUNC_CALL VAR VAR
|
You are given a sequence $a$ consisting of $n$ integers $a_1, a_2, \dots, a_n$, and an integer $x$. Your task is to make the sequence $a$ sorted (it is considered sorted if the condition $a_1 \le a_2 \le a_3 \le \dots \le a_n$ holds).
To make the sequence sorted, you may perform the following operation any number of times you want (possibly zero): choose an integer $i$ such that $1 \le i \le n$ and $a_i > x$, and swap the values of $a_i$ and $x$.
For example, if $a = [0, 2, 3, 5, 4]$, $x = 1$, the following sequence of operations is possible:
choose $i = 2$ (it is possible since $a_2 > x$), then $a = [0, 1, 3, 5, 4]$, $x = 2$;
choose $i = 3$ (it is possible since $a_3 > x$), then $a = [0, 1, 2, 5, 4]$, $x = 3$;
choose $i = 4$ (it is possible since $a_4 > x$), then $a = [0, 1, 2, 3, 4]$, $x = 5$.
Calculate the minimum number of operations you have to perform so that $a$ becomes sorted, or report that it is impossible.
-----Input-----
The first line contains one integer $t$ ($1 \le t \le 500$) β the number of test cases.
Each test case consists of two lines. The first line contains two integers $n$ and $x$ ($1 \le n \le 500$, $0 \le x \le 500$) β the number of elements in the sequence and the initial value of $x$.
The second line contains $n$ integers $a_1$, $a_2$, ..., $a_n$ ($0 \le a_i \le 500$).
The sum of values of $n$ over all test cases in the input does not exceed $500$.
-----Output-----
For each test case, print one integer β the minimum number of operations you have to perform to make $a$ sorted, or $-1$, if it is impossible.
-----Examples-----
Input
6
4 1
2 3 5 4
5 6
1 1 3 4 4
1 10
2
2 10
11 9
2 10
12 11
5 18
81 324 218 413 324
Output
3
0
0
-1
1
3
-----Note-----
None
|
def func(x, l1):
num = 0
x0 = 0
repeat = 0
for i in range(len(l1) - 1):
if l1[i] <= x:
x0 = i + 1
if x0 < i:
if l1[i] == l1[i - 1]:
repeat += 1
if l1[i] > l1[i + 1]:
if x > l1[i + 1] or i > 0 and l1[i - 1] > l1[i + 1]:
return -1
num += i + 1 - x0 - repeat
repeat = 0
xx = x
x = l1[i]
l1[i] = xx
return num
for test_num in range(int(input())):
x = int(input().split(" ")[1])
l = input().split(" ")
l1 = []
for i in l:
l1.append(int(i))
print(func(x, l1))
|
FUNC_DEF ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER IF VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER IF VAR VAR IF VAR VAR VAR BIN_OP VAR NUMBER VAR NUMBER IF VAR VAR VAR BIN_OP VAR NUMBER IF VAR VAR BIN_OP VAR NUMBER VAR NUMBER VAR BIN_OP VAR NUMBER VAR BIN_OP VAR NUMBER RETURN NUMBER VAR BIN_OP BIN_OP BIN_OP VAR NUMBER VAR VAR ASSIGN VAR NUMBER ASSIGN VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR VAR VAR RETURN VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL FUNC_CALL VAR STRING NUMBER ASSIGN VAR FUNC_CALL FUNC_CALL VAR STRING ASSIGN VAR LIST FOR VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR
|
You are given a sequence $a$ consisting of $n$ integers $a_1, a_2, \dots, a_n$, and an integer $x$. Your task is to make the sequence $a$ sorted (it is considered sorted if the condition $a_1 \le a_2 \le a_3 \le \dots \le a_n$ holds).
To make the sequence sorted, you may perform the following operation any number of times you want (possibly zero): choose an integer $i$ such that $1 \le i \le n$ and $a_i > x$, and swap the values of $a_i$ and $x$.
For example, if $a = [0, 2, 3, 5, 4]$, $x = 1$, the following sequence of operations is possible:
choose $i = 2$ (it is possible since $a_2 > x$), then $a = [0, 1, 3, 5, 4]$, $x = 2$;
choose $i = 3$ (it is possible since $a_3 > x$), then $a = [0, 1, 2, 5, 4]$, $x = 3$;
choose $i = 4$ (it is possible since $a_4 > x$), then $a = [0, 1, 2, 3, 4]$, $x = 5$.
Calculate the minimum number of operations you have to perform so that $a$ becomes sorted, or report that it is impossible.
-----Input-----
The first line contains one integer $t$ ($1 \le t \le 500$) β the number of test cases.
Each test case consists of two lines. The first line contains two integers $n$ and $x$ ($1 \le n \le 500$, $0 \le x \le 500$) β the number of elements in the sequence and the initial value of $x$.
The second line contains $n$ integers $a_1$, $a_2$, ..., $a_n$ ($0 \le a_i \le 500$).
The sum of values of $n$ over all test cases in the input does not exceed $500$.
-----Output-----
For each test case, print one integer β the minimum number of operations you have to perform to make $a$ sorted, or $-1$, if it is impossible.
-----Examples-----
Input
6
4 1
2 3 5 4
5 6
1 1 3 4 4
1 10
2
2 10
11 9
2 10
12 11
5 18
81 324 218 413 324
Output
3
0
0
-1
1
3
-----Note-----
None
|
import sys
input = sys.stdin.readline
def solve():
n, x = map(int, input().split())
arr = list(map(int, input().split()))
B = sorted(arr)
if arr == B:
return 0
b = n - 1
while b >= 0 and arr[b] == B[b]:
b -= 1
A = arr + [x]
A.sort()
cnt = 0
prev = x
for i in range(b + 1):
if arr[i] != A[i]:
if A[i] != prev:
return -1
prev = arr[i]
cnt += 1
return cnt
for _ in range(int(input())):
print(solve())
|
IMPORT ASSIGN VAR VAR FUNC_DEF ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR IF VAR VAR RETURN NUMBER ASSIGN VAR BIN_OP VAR NUMBER WHILE VAR NUMBER VAR VAR VAR VAR VAR NUMBER ASSIGN VAR BIN_OP VAR LIST VAR EXPR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR VAR FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER IF VAR VAR VAR VAR IF VAR VAR VAR RETURN NUMBER ASSIGN VAR VAR VAR VAR NUMBER RETURN VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR EXPR FUNC_CALL VAR FUNC_CALL VAR
|
You are given a sequence $a$ consisting of $n$ integers $a_1, a_2, \dots, a_n$, and an integer $x$. Your task is to make the sequence $a$ sorted (it is considered sorted if the condition $a_1 \le a_2 \le a_3 \le \dots \le a_n$ holds).
To make the sequence sorted, you may perform the following operation any number of times you want (possibly zero): choose an integer $i$ such that $1 \le i \le n$ and $a_i > x$, and swap the values of $a_i$ and $x$.
For example, if $a = [0, 2, 3, 5, 4]$, $x = 1$, the following sequence of operations is possible:
choose $i = 2$ (it is possible since $a_2 > x$), then $a = [0, 1, 3, 5, 4]$, $x = 2$;
choose $i = 3$ (it is possible since $a_3 > x$), then $a = [0, 1, 2, 5, 4]$, $x = 3$;
choose $i = 4$ (it is possible since $a_4 > x$), then $a = [0, 1, 2, 3, 4]$, $x = 5$.
Calculate the minimum number of operations you have to perform so that $a$ becomes sorted, or report that it is impossible.
-----Input-----
The first line contains one integer $t$ ($1 \le t \le 500$) β the number of test cases.
Each test case consists of two lines. The first line contains two integers $n$ and $x$ ($1 \le n \le 500$, $0 \le x \le 500$) β the number of elements in the sequence and the initial value of $x$.
The second line contains $n$ integers $a_1$, $a_2$, ..., $a_n$ ($0 \le a_i \le 500$).
The sum of values of $n$ over all test cases in the input does not exceed $500$.
-----Output-----
For each test case, print one integer β the minimum number of operations you have to perform to make $a$ sorted, or $-1$, if it is impossible.
-----Examples-----
Input
6
4 1
2 3 5 4
5 6
1 1 3 4 4
1 10
2
2 10
11 9
2 10
12 11
5 18
81 324 218 413 324
Output
3
0
0
-1
1
3
-----Note-----
None
|
import sys
input = sys.stdin.buffer.readline
t = int(input())
INF = 10**18
for _ in range(t):
n, x = map(int, input().split())
a = list(map(int, input().split()))
if sorted(a) == a:
print(0)
continue
cnt = 0
for i in range(n):
if a[i] > x:
a[i], x = x, a[i]
cnt += 1
if sorted(a) == a:
print(cnt)
break
else:
print(-1)
|
IMPORT ASSIGN VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR BIN_OP NUMBER NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR VAR VAR ASSIGN VAR VAR VAR VAR VAR VAR VAR NUMBER IF FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR NUMBER
|
You are given a sequence $a$ consisting of $n$ integers $a_1, a_2, \dots, a_n$, and an integer $x$. Your task is to make the sequence $a$ sorted (it is considered sorted if the condition $a_1 \le a_2 \le a_3 \le \dots \le a_n$ holds).
To make the sequence sorted, you may perform the following operation any number of times you want (possibly zero): choose an integer $i$ such that $1 \le i \le n$ and $a_i > x$, and swap the values of $a_i$ and $x$.
For example, if $a = [0, 2, 3, 5, 4]$, $x = 1$, the following sequence of operations is possible:
choose $i = 2$ (it is possible since $a_2 > x$), then $a = [0, 1, 3, 5, 4]$, $x = 2$;
choose $i = 3$ (it is possible since $a_3 > x$), then $a = [0, 1, 2, 5, 4]$, $x = 3$;
choose $i = 4$ (it is possible since $a_4 > x$), then $a = [0, 1, 2, 3, 4]$, $x = 5$.
Calculate the minimum number of operations you have to perform so that $a$ becomes sorted, or report that it is impossible.
-----Input-----
The first line contains one integer $t$ ($1 \le t \le 500$) β the number of test cases.
Each test case consists of two lines. The first line contains two integers $n$ and $x$ ($1 \le n \le 500$, $0 \le x \le 500$) β the number of elements in the sequence and the initial value of $x$.
The second line contains $n$ integers $a_1$, $a_2$, ..., $a_n$ ($0 \le a_i \le 500$).
The sum of values of $n$ over all test cases in the input does not exceed $500$.
-----Output-----
For each test case, print one integer β the minimum number of operations you have to perform to make $a$ sorted, or $-1$, if it is impossible.
-----Examples-----
Input
6
4 1
2 3 5 4
5 6
1 1 3 4 4
1 10
2
2 10
11 9
2 10
12 11
5 18
81 324 218 413 324
Output
3
0
0
-1
1
3
-----Note-----
None
|
t = int(input())
for _ in range(t):
n, x = map(int, input().split())
s = 0
a = list(map(int, input().split()))
for i in range(n - 1):
if a[i] > a[i + 1]:
s = 1
if s == 0:
print(0)
else:
c = 0
for i in range(n - 1):
if a[i] > x:
a[i], x = x, a[i]
c += 1
jj = 1
for j in range(i, n - 1):
if a[j] > a[j + 1]:
jj = 0
if jj == 1:
break
r = 0
for i in range(n - 1):
if a[i] > a[i + 1]:
r = 1
if r == 1:
print(-1)
else:
print(c)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER IF VAR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER IF VAR VAR VAR ASSIGN VAR VAR VAR VAR VAR VAR VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER IF VAR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER IF VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER IF VAR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR VAR
|
You are given a sequence $a$ consisting of $n$ integers $a_1, a_2, \dots, a_n$, and an integer $x$. Your task is to make the sequence $a$ sorted (it is considered sorted if the condition $a_1 \le a_2 \le a_3 \le \dots \le a_n$ holds).
To make the sequence sorted, you may perform the following operation any number of times you want (possibly zero): choose an integer $i$ such that $1 \le i \le n$ and $a_i > x$, and swap the values of $a_i$ and $x$.
For example, if $a = [0, 2, 3, 5, 4]$, $x = 1$, the following sequence of operations is possible:
choose $i = 2$ (it is possible since $a_2 > x$), then $a = [0, 1, 3, 5, 4]$, $x = 2$;
choose $i = 3$ (it is possible since $a_3 > x$), then $a = [0, 1, 2, 5, 4]$, $x = 3$;
choose $i = 4$ (it is possible since $a_4 > x$), then $a = [0, 1, 2, 3, 4]$, $x = 5$.
Calculate the minimum number of operations you have to perform so that $a$ becomes sorted, or report that it is impossible.
-----Input-----
The first line contains one integer $t$ ($1 \le t \le 500$) β the number of test cases.
Each test case consists of two lines. The first line contains two integers $n$ and $x$ ($1 \le n \le 500$, $0 \le x \le 500$) β the number of elements in the sequence and the initial value of $x$.
The second line contains $n$ integers $a_1$, $a_2$, ..., $a_n$ ($0 \le a_i \le 500$).
The sum of values of $n$ over all test cases in the input does not exceed $500$.
-----Output-----
For each test case, print one integer β the minimum number of operations you have to perform to make $a$ sorted, or $-1$, if it is impossible.
-----Examples-----
Input
6
4 1
2 3 5 4
5 6
1 1 3 4 4
1 10
2
2 10
11 9
2 10
12 11
5 18
81 324 218 413 324
Output
3
0
0
-1
1
3
-----Note-----
None
|
Inp = input
for _ in range(int(Inp())):
n, k = map(int, Inp().split())
l = [*map(int, Inp().split())]
b = 0
for i in range(n):
if sorted(l) == l:
break
if l[i] > k:
l[i], k = k, l[i]
b += 1
print([-1, b][sorted(l) == l])
|
ASSIGN VAR VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR LIST FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF FUNC_CALL VAR VAR VAR IF VAR VAR VAR ASSIGN VAR VAR VAR VAR VAR VAR VAR NUMBER EXPR FUNC_CALL VAR LIST NUMBER VAR FUNC_CALL VAR VAR VAR
|
You are given a sequence $a$ consisting of $n$ integers $a_1, a_2, \dots, a_n$, and an integer $x$. Your task is to make the sequence $a$ sorted (it is considered sorted if the condition $a_1 \le a_2 \le a_3 \le \dots \le a_n$ holds).
To make the sequence sorted, you may perform the following operation any number of times you want (possibly zero): choose an integer $i$ such that $1 \le i \le n$ and $a_i > x$, and swap the values of $a_i$ and $x$.
For example, if $a = [0, 2, 3, 5, 4]$, $x = 1$, the following sequence of operations is possible:
choose $i = 2$ (it is possible since $a_2 > x$), then $a = [0, 1, 3, 5, 4]$, $x = 2$;
choose $i = 3$ (it is possible since $a_3 > x$), then $a = [0, 1, 2, 5, 4]$, $x = 3$;
choose $i = 4$ (it is possible since $a_4 > x$), then $a = [0, 1, 2, 3, 4]$, $x = 5$.
Calculate the minimum number of operations you have to perform so that $a$ becomes sorted, or report that it is impossible.
-----Input-----
The first line contains one integer $t$ ($1 \le t \le 500$) β the number of test cases.
Each test case consists of two lines. The first line contains two integers $n$ and $x$ ($1 \le n \le 500$, $0 \le x \le 500$) β the number of elements in the sequence and the initial value of $x$.
The second line contains $n$ integers $a_1$, $a_2$, ..., $a_n$ ($0 \le a_i \le 500$).
The sum of values of $n$ over all test cases in the input does not exceed $500$.
-----Output-----
For each test case, print one integer β the minimum number of operations you have to perform to make $a$ sorted, or $-1$, if it is impossible.
-----Examples-----
Input
6
4 1
2 3 5 4
5 6
1 1 3 4 4
1 10
2
2 10
11 9
2 10
12 11
5 18
81 324 218 413 324
Output
3
0
0
-1
1
3
-----Note-----
None
|
def ans(A, x):
if A == sorted(A):
return 0
i = 0
ret = 0
while i < len(A) and A != sorted(A):
if x < A[i]:
ret += 1
x, A[i] = A[i], x
i += 1
else:
i += 1
continue
if A == sorted(A):
return ret
return -1
T = int(input())
for _ in range(T):
_, x = input().split()
x = int(x)
A = list(map(int, input().split()))
print(ans(A, x))
|
FUNC_DEF IF VAR FUNC_CALL VAR VAR RETURN NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR IF VAR VAR VAR VAR NUMBER ASSIGN VAR VAR VAR VAR VAR VAR VAR NUMBER VAR NUMBER IF VAR FUNC_CALL VAR VAR RETURN VAR RETURN NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR
|
You are given a sequence $a$ consisting of $n$ integers $a_1, a_2, \dots, a_n$, and an integer $x$. Your task is to make the sequence $a$ sorted (it is considered sorted if the condition $a_1 \le a_2 \le a_3 \le \dots \le a_n$ holds).
To make the sequence sorted, you may perform the following operation any number of times you want (possibly zero): choose an integer $i$ such that $1 \le i \le n$ and $a_i > x$, and swap the values of $a_i$ and $x$.
For example, if $a = [0, 2, 3, 5, 4]$, $x = 1$, the following sequence of operations is possible:
choose $i = 2$ (it is possible since $a_2 > x$), then $a = [0, 1, 3, 5, 4]$, $x = 2$;
choose $i = 3$ (it is possible since $a_3 > x$), then $a = [0, 1, 2, 5, 4]$, $x = 3$;
choose $i = 4$ (it is possible since $a_4 > x$), then $a = [0, 1, 2, 3, 4]$, $x = 5$.
Calculate the minimum number of operations you have to perform so that $a$ becomes sorted, or report that it is impossible.
-----Input-----
The first line contains one integer $t$ ($1 \le t \le 500$) β the number of test cases.
Each test case consists of two lines. The first line contains two integers $n$ and $x$ ($1 \le n \le 500$, $0 \le x \le 500$) β the number of elements in the sequence and the initial value of $x$.
The second line contains $n$ integers $a_1$, $a_2$, ..., $a_n$ ($0 \le a_i \le 500$).
The sum of values of $n$ over all test cases in the input does not exceed $500$.
-----Output-----
For each test case, print one integer β the minimum number of operations you have to perform to make $a$ sorted, or $-1$, if it is impossible.
-----Examples-----
Input
6
4 1
2 3 5 4
5 6
1 1 3 4 4
1 10
2
2 10
11 9
2 10
12 11
5 18
81 324 218 413 324
Output
3
0
0
-1
1
3
-----Note-----
None
|
t = int(input())
for i in range(t):
n, x = map(int, input().split())
array = [int(num) for num in input().split()]
ans = 0
j = 0
found = False
if array == sorted(array):
print(0)
continue
for i in range(n):
if array[i] > x:
temp = array[i]
array[i] = x
x = temp
ans += 1
if array == sorted(array):
print(ans)
found = True
break
if found == False:
print(-1)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER IF VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR VAR VAR NUMBER IF VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR ASSIGN VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER
|
You are given a sequence $a$ consisting of $n$ integers $a_1, a_2, \dots, a_n$, and an integer $x$. Your task is to make the sequence $a$ sorted (it is considered sorted if the condition $a_1 \le a_2 \le a_3 \le \dots \le a_n$ holds).
To make the sequence sorted, you may perform the following operation any number of times you want (possibly zero): choose an integer $i$ such that $1 \le i \le n$ and $a_i > x$, and swap the values of $a_i$ and $x$.
For example, if $a = [0, 2, 3, 5, 4]$, $x = 1$, the following sequence of operations is possible:
choose $i = 2$ (it is possible since $a_2 > x$), then $a = [0, 1, 3, 5, 4]$, $x = 2$;
choose $i = 3$ (it is possible since $a_3 > x$), then $a = [0, 1, 2, 5, 4]$, $x = 3$;
choose $i = 4$ (it is possible since $a_4 > x$), then $a = [0, 1, 2, 3, 4]$, $x = 5$.
Calculate the minimum number of operations you have to perform so that $a$ becomes sorted, or report that it is impossible.
-----Input-----
The first line contains one integer $t$ ($1 \le t \le 500$) β the number of test cases.
Each test case consists of two lines. The first line contains two integers $n$ and $x$ ($1 \le n \le 500$, $0 \le x \le 500$) β the number of elements in the sequence and the initial value of $x$.
The second line contains $n$ integers $a_1$, $a_2$, ..., $a_n$ ($0 \le a_i \le 500$).
The sum of values of $n$ over all test cases in the input does not exceed $500$.
-----Output-----
For each test case, print one integer β the minimum number of operations you have to perform to make $a$ sorted, or $-1$, if it is impossible.
-----Examples-----
Input
6
4 1
2 3 5 4
5 6
1 1 3 4 4
1 10
2
2 10
11 9
2 10
12 11
5 18
81 324 218 413 324
Output
3
0
0
-1
1
3
-----Note-----
None
|
def check(arr):
for i in range(len(arr) - 1):
if arr[i] > arr[i + 1]:
return False
return True
for _ in range(int(input())):
n, x = map(int, input().split())
arr = list(map(int, input().split()))
if check(arr):
print(0)
else:
asn = 0
for j in range(n):
if arr[j] > x:
arr[j], x = x, arr[j]
asn += 1
if check(arr):
break
if check(arr) == False:
print(-1)
else:
print(asn)
|
FUNC_DEF FOR VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER IF VAR VAR VAR BIN_OP VAR NUMBER RETURN NUMBER RETURN NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF FUNC_CALL VAR VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR VAR VAR ASSIGN VAR VAR VAR VAR VAR VAR VAR NUMBER IF FUNC_CALL VAR VAR IF FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR VAR
|
You are given a sequence $a$ consisting of $n$ integers $a_1, a_2, \dots, a_n$, and an integer $x$. Your task is to make the sequence $a$ sorted (it is considered sorted if the condition $a_1 \le a_2 \le a_3 \le \dots \le a_n$ holds).
To make the sequence sorted, you may perform the following operation any number of times you want (possibly zero): choose an integer $i$ such that $1 \le i \le n$ and $a_i > x$, and swap the values of $a_i$ and $x$.
For example, if $a = [0, 2, 3, 5, 4]$, $x = 1$, the following sequence of operations is possible:
choose $i = 2$ (it is possible since $a_2 > x$), then $a = [0, 1, 3, 5, 4]$, $x = 2$;
choose $i = 3$ (it is possible since $a_3 > x$), then $a = [0, 1, 2, 5, 4]$, $x = 3$;
choose $i = 4$ (it is possible since $a_4 > x$), then $a = [0, 1, 2, 3, 4]$, $x = 5$.
Calculate the minimum number of operations you have to perform so that $a$ becomes sorted, or report that it is impossible.
-----Input-----
The first line contains one integer $t$ ($1 \le t \le 500$) β the number of test cases.
Each test case consists of two lines. The first line contains two integers $n$ and $x$ ($1 \le n \le 500$, $0 \le x \le 500$) β the number of elements in the sequence and the initial value of $x$.
The second line contains $n$ integers $a_1$, $a_2$, ..., $a_n$ ($0 \le a_i \le 500$).
The sum of values of $n$ over all test cases in the input does not exceed $500$.
-----Output-----
For each test case, print one integer β the minimum number of operations you have to perform to make $a$ sorted, or $-1$, if it is impossible.
-----Examples-----
Input
6
4 1
2 3 5 4
5 6
1 1 3 4 4
1 10
2
2 10
11 9
2 10
12 11
5 18
81 324 218 413 324
Output
3
0
0
-1
1
3
-----Note-----
None
|
def solve(l, x):
count = 0
for i in range(len(l)):
if sorted(l) == l:
break
if l[i] > x:
l[i], x = x, l[i]
count += 1
if sorted(l) == l:
return count
else:
return -1
for _ in range(int(input())):
n, x = map(int, input().split())
l = list(map(int, input().split()))
print(solve(l, x))
|
FUNC_DEF ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF FUNC_CALL VAR VAR VAR IF VAR VAR VAR ASSIGN VAR VAR VAR VAR VAR VAR VAR NUMBER IF FUNC_CALL VAR VAR VAR RETURN VAR RETURN NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR
|
You are given a sequence $a$ consisting of $n$ integers $a_1, a_2, \dots, a_n$, and an integer $x$. Your task is to make the sequence $a$ sorted (it is considered sorted if the condition $a_1 \le a_2 \le a_3 \le \dots \le a_n$ holds).
To make the sequence sorted, you may perform the following operation any number of times you want (possibly zero): choose an integer $i$ such that $1 \le i \le n$ and $a_i > x$, and swap the values of $a_i$ and $x$.
For example, if $a = [0, 2, 3, 5, 4]$, $x = 1$, the following sequence of operations is possible:
choose $i = 2$ (it is possible since $a_2 > x$), then $a = [0, 1, 3, 5, 4]$, $x = 2$;
choose $i = 3$ (it is possible since $a_3 > x$), then $a = [0, 1, 2, 5, 4]$, $x = 3$;
choose $i = 4$ (it is possible since $a_4 > x$), then $a = [0, 1, 2, 3, 4]$, $x = 5$.
Calculate the minimum number of operations you have to perform so that $a$ becomes sorted, or report that it is impossible.
-----Input-----
The first line contains one integer $t$ ($1 \le t \le 500$) β the number of test cases.
Each test case consists of two lines. The first line contains two integers $n$ and $x$ ($1 \le n \le 500$, $0 \le x \le 500$) β the number of elements in the sequence and the initial value of $x$.
The second line contains $n$ integers $a_1$, $a_2$, ..., $a_n$ ($0 \le a_i \le 500$).
The sum of values of $n$ over all test cases in the input does not exceed $500$.
-----Output-----
For each test case, print one integer β the minimum number of operations you have to perform to make $a$ sorted, or $-1$, if it is impossible.
-----Examples-----
Input
6
4 1
2 3 5 4
5 6
1 1 3 4 4
1 10
2
2 10
11 9
2 10
12 11
5 18
81 324 218 413 324
Output
3
0
0
-1
1
3
-----Note-----
None
|
t = int(input())
all = []
x_arr = []
for i in range(t):
k = input()
k = [int(m) for m in k.split()]
l, x = k
x_arr.append(x)
h = input()
a = [int(z) for z in h.split()]
all.append(a)
for i in range(t):
x = x_arr[i]
arr = all[i]
sorted_ = sorted(arr)
if sorted_ == arr:
print(0)
else:
step = 0
for idx in range(len(arr)):
if x < arr[idx]:
swa = x
x = arr[idx]
arr[idx] = swa
step += 1
s = sorted(arr)
if s == arr:
break
if sorted(arr) == arr:
print(step)
else:
print(-1)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR ASSIGN VAR VAR VAR EXPR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR EXPR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR IF VAR VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR VAR VAR ASSIGN VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR VAR VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR IF VAR VAR IF FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR NUMBER
|
You are given a sequence $a$ consisting of $n$ integers $a_1, a_2, \dots, a_n$, and an integer $x$. Your task is to make the sequence $a$ sorted (it is considered sorted if the condition $a_1 \le a_2 \le a_3 \le \dots \le a_n$ holds).
To make the sequence sorted, you may perform the following operation any number of times you want (possibly zero): choose an integer $i$ such that $1 \le i \le n$ and $a_i > x$, and swap the values of $a_i$ and $x$.
For example, if $a = [0, 2, 3, 5, 4]$, $x = 1$, the following sequence of operations is possible:
choose $i = 2$ (it is possible since $a_2 > x$), then $a = [0, 1, 3, 5, 4]$, $x = 2$;
choose $i = 3$ (it is possible since $a_3 > x$), then $a = [0, 1, 2, 5, 4]$, $x = 3$;
choose $i = 4$ (it is possible since $a_4 > x$), then $a = [0, 1, 2, 3, 4]$, $x = 5$.
Calculate the minimum number of operations you have to perform so that $a$ becomes sorted, or report that it is impossible.
-----Input-----
The first line contains one integer $t$ ($1 \le t \le 500$) β the number of test cases.
Each test case consists of two lines. The first line contains two integers $n$ and $x$ ($1 \le n \le 500$, $0 \le x \le 500$) β the number of elements in the sequence and the initial value of $x$.
The second line contains $n$ integers $a_1$, $a_2$, ..., $a_n$ ($0 \le a_i \le 500$).
The sum of values of $n$ over all test cases in the input does not exceed $500$.
-----Output-----
For each test case, print one integer β the minimum number of operations you have to perform to make $a$ sorted, or $-1$, if it is impossible.
-----Examples-----
Input
6
4 1
2 3 5 4
5 6
1 1 3 4 4
1 10
2
2 10
11 9
2 10
12 11
5 18
81 324 218 413 324
Output
3
0
0
-1
1
3
-----Note-----
None
|
def not_sorted(n, a):
for i in range(1, n):
if a[i] < a[i - 1]:
return -1
return 0
def solve(n, x, a):
cnt = 0
while not_sorted(n, a):
cnt += 1
i = 0
while i < n and a[i] <= x:
i += 1
if i == n:
return -1
a[i], x = x, a[i]
return cnt
t = int(input())
while t:
n, x = map(int, input().split())
a = list(map(int, input().split()))
print(solve(n, x, a))
t -= 1
|
FUNC_DEF FOR VAR FUNC_CALL VAR NUMBER VAR IF VAR VAR VAR BIN_OP VAR NUMBER RETURN NUMBER RETURN NUMBER FUNC_DEF ASSIGN VAR NUMBER WHILE FUNC_CALL VAR VAR VAR VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR VAR VAR VAR VAR NUMBER IF VAR VAR RETURN NUMBER ASSIGN VAR VAR VAR VAR VAR VAR RETURN VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR WHILE VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR VAR VAR NUMBER
|
You are given a sequence $a$ consisting of $n$ integers $a_1, a_2, \dots, a_n$, and an integer $x$. Your task is to make the sequence $a$ sorted (it is considered sorted if the condition $a_1 \le a_2 \le a_3 \le \dots \le a_n$ holds).
To make the sequence sorted, you may perform the following operation any number of times you want (possibly zero): choose an integer $i$ such that $1 \le i \le n$ and $a_i > x$, and swap the values of $a_i$ and $x$.
For example, if $a = [0, 2, 3, 5, 4]$, $x = 1$, the following sequence of operations is possible:
choose $i = 2$ (it is possible since $a_2 > x$), then $a = [0, 1, 3, 5, 4]$, $x = 2$;
choose $i = 3$ (it is possible since $a_3 > x$), then $a = [0, 1, 2, 5, 4]$, $x = 3$;
choose $i = 4$ (it is possible since $a_4 > x$), then $a = [0, 1, 2, 3, 4]$, $x = 5$.
Calculate the minimum number of operations you have to perform so that $a$ becomes sorted, or report that it is impossible.
-----Input-----
The first line contains one integer $t$ ($1 \le t \le 500$) β the number of test cases.
Each test case consists of two lines. The first line contains two integers $n$ and $x$ ($1 \le n \le 500$, $0 \le x \le 500$) β the number of elements in the sequence and the initial value of $x$.
The second line contains $n$ integers $a_1$, $a_2$, ..., $a_n$ ($0 \le a_i \le 500$).
The sum of values of $n$ over all test cases in the input does not exceed $500$.
-----Output-----
For each test case, print one integer β the minimum number of operations you have to perform to make $a$ sorted, or $-1$, if it is impossible.
-----Examples-----
Input
6
4 1
2 3 5 4
5 6
1 1 3 4 4
1 10
2
2 10
11 9
2 10
12 11
5 18
81 324 218 413 324
Output
3
0
0
-1
1
3
-----Note-----
None
|
for i in range(int(input())):
n, x = [int(_) for _ in input().split()]
arr = [int(_) for _ in input().split()]
c = 0
for i in range(n):
if sorted(arr) == arr:
break
if arr[i] > x:
x, arr[i] = arr[i], x
c += 1
if sorted(arr) == arr:
print(c)
else:
print(-1)
|
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF FUNC_CALL VAR VAR VAR IF VAR VAR VAR ASSIGN VAR VAR VAR VAR VAR VAR VAR NUMBER IF FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR NUMBER
|
You are given a sequence $a$ consisting of $n$ integers $a_1, a_2, \dots, a_n$, and an integer $x$. Your task is to make the sequence $a$ sorted (it is considered sorted if the condition $a_1 \le a_2 \le a_3 \le \dots \le a_n$ holds).
To make the sequence sorted, you may perform the following operation any number of times you want (possibly zero): choose an integer $i$ such that $1 \le i \le n$ and $a_i > x$, and swap the values of $a_i$ and $x$.
For example, if $a = [0, 2, 3, 5, 4]$, $x = 1$, the following sequence of operations is possible:
choose $i = 2$ (it is possible since $a_2 > x$), then $a = [0, 1, 3, 5, 4]$, $x = 2$;
choose $i = 3$ (it is possible since $a_3 > x$), then $a = [0, 1, 2, 5, 4]$, $x = 3$;
choose $i = 4$ (it is possible since $a_4 > x$), then $a = [0, 1, 2, 3, 4]$, $x = 5$.
Calculate the minimum number of operations you have to perform so that $a$ becomes sorted, or report that it is impossible.
-----Input-----
The first line contains one integer $t$ ($1 \le t \le 500$) β the number of test cases.
Each test case consists of two lines. The first line contains two integers $n$ and $x$ ($1 \le n \le 500$, $0 \le x \le 500$) β the number of elements in the sequence and the initial value of $x$.
The second line contains $n$ integers $a_1$, $a_2$, ..., $a_n$ ($0 \le a_i \le 500$).
The sum of values of $n$ over all test cases in the input does not exceed $500$.
-----Output-----
For each test case, print one integer β the minimum number of operations you have to perform to make $a$ sorted, or $-1$, if it is impossible.
-----Examples-----
Input
6
4 1
2 3 5 4
5 6
1 1 3 4 4
1 10
2
2 10
11 9
2 10
12 11
5 18
81 324 218 413 324
Output
3
0
0
-1
1
3
-----Note-----
None
|
from sys import stdin
nii = lambda: map(int, stdin.readline().split())
lnii = lambda: list(map(int, stdin.readline().split()))
t = int(input())
for tt in range(t):
n, x = nii()
a = lnii()
if a == sorted(a):
print(0)
continue
ans = 0
for i in range(n):
if a[i] > x:
ans += 1
a[i], x = x, a[i]
if a == sorted(a):
print(ans)
break
else:
print(-1)
|
ASSIGN VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR IF VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR VAR VAR VAR NUMBER ASSIGN VAR VAR VAR VAR VAR VAR IF VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR NUMBER
|
You are given a sequence $a$ consisting of $n$ integers $a_1, a_2, \dots, a_n$, and an integer $x$. Your task is to make the sequence $a$ sorted (it is considered sorted if the condition $a_1 \le a_2 \le a_3 \le \dots \le a_n$ holds).
To make the sequence sorted, you may perform the following operation any number of times you want (possibly zero): choose an integer $i$ such that $1 \le i \le n$ and $a_i > x$, and swap the values of $a_i$ and $x$.
For example, if $a = [0, 2, 3, 5, 4]$, $x = 1$, the following sequence of operations is possible:
choose $i = 2$ (it is possible since $a_2 > x$), then $a = [0, 1, 3, 5, 4]$, $x = 2$;
choose $i = 3$ (it is possible since $a_3 > x$), then $a = [0, 1, 2, 5, 4]$, $x = 3$;
choose $i = 4$ (it is possible since $a_4 > x$), then $a = [0, 1, 2, 3, 4]$, $x = 5$.
Calculate the minimum number of operations you have to perform so that $a$ becomes sorted, or report that it is impossible.
-----Input-----
The first line contains one integer $t$ ($1 \le t \le 500$) β the number of test cases.
Each test case consists of two lines. The first line contains two integers $n$ and $x$ ($1 \le n \le 500$, $0 \le x \le 500$) β the number of elements in the sequence and the initial value of $x$.
The second line contains $n$ integers $a_1$, $a_2$, ..., $a_n$ ($0 \le a_i \le 500$).
The sum of values of $n$ over all test cases in the input does not exceed $500$.
-----Output-----
For each test case, print one integer β the minimum number of operations you have to perform to make $a$ sorted, or $-1$, if it is impossible.
-----Examples-----
Input
6
4 1
2 3 5 4
5 6
1 1 3 4 4
1 10
2
2 10
11 9
2 10
12 11
5 18
81 324 218 413 324
Output
3
0
0
-1
1
3
-----Note-----
None
|
for _ in range(int(input())):
n, x = map(int, input().split())
a = [int(i) for i in input().split()]
ans = 0
temp = 0
x1 = x
for i in range(n - 1):
if a[i] > a[i + 1]:
if a[i] <= x:
ans = -1
break
elif x > a[i + 1]:
ans = -1
break
else:
ans += 1 + temp
x = a[i]
temp = 0
elif x < a[i] and i == 0:
temp += 1
x = a[i]
elif i != 0:
if x < a[i] and a[i] != a[i - 1]:
temp += 1
x = a[i]
print(ans)
|
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR VAR FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER IF VAR VAR VAR BIN_OP VAR NUMBER IF VAR VAR VAR ASSIGN VAR NUMBER IF VAR VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER VAR BIN_OP NUMBER VAR ASSIGN VAR VAR VAR ASSIGN VAR NUMBER IF VAR VAR VAR VAR NUMBER VAR NUMBER ASSIGN VAR VAR VAR IF VAR NUMBER IF VAR VAR VAR VAR VAR VAR BIN_OP VAR NUMBER VAR NUMBER ASSIGN VAR VAR VAR EXPR FUNC_CALL VAR VAR
|
You are given a sequence $a$ consisting of $n$ integers $a_1, a_2, \dots, a_n$, and an integer $x$. Your task is to make the sequence $a$ sorted (it is considered sorted if the condition $a_1 \le a_2 \le a_3 \le \dots \le a_n$ holds).
To make the sequence sorted, you may perform the following operation any number of times you want (possibly zero): choose an integer $i$ such that $1 \le i \le n$ and $a_i > x$, and swap the values of $a_i$ and $x$.
For example, if $a = [0, 2, 3, 5, 4]$, $x = 1$, the following sequence of operations is possible:
choose $i = 2$ (it is possible since $a_2 > x$), then $a = [0, 1, 3, 5, 4]$, $x = 2$;
choose $i = 3$ (it is possible since $a_3 > x$), then $a = [0, 1, 2, 5, 4]$, $x = 3$;
choose $i = 4$ (it is possible since $a_4 > x$), then $a = [0, 1, 2, 3, 4]$, $x = 5$.
Calculate the minimum number of operations you have to perform so that $a$ becomes sorted, or report that it is impossible.
-----Input-----
The first line contains one integer $t$ ($1 \le t \le 500$) β the number of test cases.
Each test case consists of two lines. The first line contains two integers $n$ and $x$ ($1 \le n \le 500$, $0 \le x \le 500$) β the number of elements in the sequence and the initial value of $x$.
The second line contains $n$ integers $a_1$, $a_2$, ..., $a_n$ ($0 \le a_i \le 500$).
The sum of values of $n$ over all test cases in the input does not exceed $500$.
-----Output-----
For each test case, print one integer β the minimum number of operations you have to perform to make $a$ sorted, or $-1$, if it is impossible.
-----Examples-----
Input
6
4 1
2 3 5 4
5 6
1 1 3 4 4
1 10
2
2 10
11 9
2 10
12 11
5 18
81 324 218 413 324
Output
3
0
0
-1
1
3
-----Note-----
None
|
for i in range(int(input())):
a = list(map(int, input().split()))
b = list(map(int, input().split()))
n = a[0]
x = a[1]
if n == 1:
print(0)
continue
i = 0
count = 0
f = 0
flag = 0
while i < n:
ans = 0
for j in range(i, n):
if j == 0:
continue
if b[j] < b[j - 1]:
flag = 1
break
for z in range(i, j + 1):
if z == j and b[z] < b[z - 1] and x < b[z] and flag == 1:
ans += 1
q = b[z]
b[z] = x
x = q
break
elif b[z] > x and flag == 1:
q = b[z]
b[z] = x
x = q
ans += 1
i = j + 1
flag = 0
for g in range(1, j + 1):
if b[g] < b[g - 1]:
f = 1
if f == 1:
count = -1
break
else:
count += ans
if f == 1:
print(-1)
else:
print(count)
|
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR NUMBER ASSIGN VAR VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR VAR IF VAR NUMBER IF VAR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER IF VAR VAR VAR VAR VAR BIN_OP VAR NUMBER VAR VAR VAR VAR NUMBER VAR NUMBER ASSIGN VAR VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR VAR IF VAR VAR VAR VAR NUMBER ASSIGN VAR VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR VAR VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER IF VAR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER IF VAR NUMBER ASSIGN VAR NUMBER VAR VAR IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR VAR
|
You are given a sequence $a$ consisting of $n$ integers $a_1, a_2, \dots, a_n$, and an integer $x$. Your task is to make the sequence $a$ sorted (it is considered sorted if the condition $a_1 \le a_2 \le a_3 \le \dots \le a_n$ holds).
To make the sequence sorted, you may perform the following operation any number of times you want (possibly zero): choose an integer $i$ such that $1 \le i \le n$ and $a_i > x$, and swap the values of $a_i$ and $x$.
For example, if $a = [0, 2, 3, 5, 4]$, $x = 1$, the following sequence of operations is possible:
choose $i = 2$ (it is possible since $a_2 > x$), then $a = [0, 1, 3, 5, 4]$, $x = 2$;
choose $i = 3$ (it is possible since $a_3 > x$), then $a = [0, 1, 2, 5, 4]$, $x = 3$;
choose $i = 4$ (it is possible since $a_4 > x$), then $a = [0, 1, 2, 3, 4]$, $x = 5$.
Calculate the minimum number of operations you have to perform so that $a$ becomes sorted, or report that it is impossible.
-----Input-----
The first line contains one integer $t$ ($1 \le t \le 500$) β the number of test cases.
Each test case consists of two lines. The first line contains two integers $n$ and $x$ ($1 \le n \le 500$, $0 \le x \le 500$) β the number of elements in the sequence and the initial value of $x$.
The second line contains $n$ integers $a_1$, $a_2$, ..., $a_n$ ($0 \le a_i \le 500$).
The sum of values of $n$ over all test cases in the input does not exceed $500$.
-----Output-----
For each test case, print one integer β the minimum number of operations you have to perform to make $a$ sorted, or $-1$, if it is impossible.
-----Examples-----
Input
6
4 1
2 3 5 4
5 6
1 1 3 4 4
1 10
2
2 10
11 9
2 10
12 11
5 18
81 324 218 413 324
Output
3
0
0
-1
1
3
-----Note-----
None
|
def swap(l, r, x):
temp = arr[r]
for o in range(r, l, -1):
arr[o] = arr[o - 1]
arr[l] = x
return temp
t = int(input())
for z in range(t):
n, x = map(int, input().split())
arr = list(map(int, input().split()))
count = 0
ok = 0
for i in range(n - 1):
if arr[i] > arr[i + 1]:
if x <= arr[i + 1]:
j = i - 1
while j >= 0:
if x < arr[j]:
j = j - 1
else:
break
count = count + len(set(arr[j + 1 : i + 1]))
x = swap(j + 1, i, x)
if arr[i] > arr[i + 1]:
ok = 1
else:
ok = 1
if ok == 1:
print("-1")
else:
print(count)
|
FUNC_DEF ASSIGN VAR VAR VAR FOR VAR FUNC_CALL VAR VAR VAR NUMBER ASSIGN VAR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR VAR VAR RETURN VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER IF VAR VAR VAR BIN_OP VAR NUMBER IF VAR VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER WHILE VAR NUMBER IF VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR FUNC_CALL VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR BIN_OP VAR NUMBER VAR VAR IF VAR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR VAR
|
You are given a sequence $a$ consisting of $n$ integers $a_1, a_2, \dots, a_n$, and an integer $x$. Your task is to make the sequence $a$ sorted (it is considered sorted if the condition $a_1 \le a_2 \le a_3 \le \dots \le a_n$ holds).
To make the sequence sorted, you may perform the following operation any number of times you want (possibly zero): choose an integer $i$ such that $1 \le i \le n$ and $a_i > x$, and swap the values of $a_i$ and $x$.
For example, if $a = [0, 2, 3, 5, 4]$, $x = 1$, the following sequence of operations is possible:
choose $i = 2$ (it is possible since $a_2 > x$), then $a = [0, 1, 3, 5, 4]$, $x = 2$;
choose $i = 3$ (it is possible since $a_3 > x$), then $a = [0, 1, 2, 5, 4]$, $x = 3$;
choose $i = 4$ (it is possible since $a_4 > x$), then $a = [0, 1, 2, 3, 4]$, $x = 5$.
Calculate the minimum number of operations you have to perform so that $a$ becomes sorted, or report that it is impossible.
-----Input-----
The first line contains one integer $t$ ($1 \le t \le 500$) β the number of test cases.
Each test case consists of two lines. The first line contains two integers $n$ and $x$ ($1 \le n \le 500$, $0 \le x \le 500$) β the number of elements in the sequence and the initial value of $x$.
The second line contains $n$ integers $a_1$, $a_2$, ..., $a_n$ ($0 \le a_i \le 500$).
The sum of values of $n$ over all test cases in the input does not exceed $500$.
-----Output-----
For each test case, print one integer β the minimum number of operations you have to perform to make $a$ sorted, or $-1$, if it is impossible.
-----Examples-----
Input
6
4 1
2 3 5 4
5 6
1 1 3 4 4
1 10
2
2 10
11 9
2 10
12 11
5 18
81 324 218 413 324
Output
3
0
0
-1
1
3
-----Note-----
None
|
t = int(input())
ans = ""
def is_sorted(lst, key=lambda x: x):
for i, el in enumerate(lst[1:]):
if key(el) < key(lst[i]):
return False
return True
for j in range(t):
n, x = list(map(int, input().split()))
a = list(map(int, input().split()))
cnt = 0
if is_sorted(a) == False:
for i in range(n):
if x < a[i]:
x, a[i] = a[i], x
cnt += 1
if is_sorted(a):
break
if is_sorted(a) == False:
cnt = -1
ans += str(cnt) + "\n"
print(ans)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR STRING FUNC_DEF VAR FOR VAR VAR FUNC_CALL VAR VAR NUMBER IF FUNC_CALL VAR VAR FUNC_CALL VAR VAR VAR RETURN NUMBER RETURN NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER IF FUNC_CALL VAR VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR VAR VAR ASSIGN VAR VAR VAR VAR VAR VAR VAR NUMBER IF FUNC_CALL VAR VAR IF FUNC_CALL VAR VAR NUMBER ASSIGN VAR NUMBER VAR BIN_OP FUNC_CALL VAR VAR STRING EXPR FUNC_CALL VAR VAR
|
You are given a sequence $a$ consisting of $n$ integers $a_1, a_2, \dots, a_n$, and an integer $x$. Your task is to make the sequence $a$ sorted (it is considered sorted if the condition $a_1 \le a_2 \le a_3 \le \dots \le a_n$ holds).
To make the sequence sorted, you may perform the following operation any number of times you want (possibly zero): choose an integer $i$ such that $1 \le i \le n$ and $a_i > x$, and swap the values of $a_i$ and $x$.
For example, if $a = [0, 2, 3, 5, 4]$, $x = 1$, the following sequence of operations is possible:
choose $i = 2$ (it is possible since $a_2 > x$), then $a = [0, 1, 3, 5, 4]$, $x = 2$;
choose $i = 3$ (it is possible since $a_3 > x$), then $a = [0, 1, 2, 5, 4]$, $x = 3$;
choose $i = 4$ (it is possible since $a_4 > x$), then $a = [0, 1, 2, 3, 4]$, $x = 5$.
Calculate the minimum number of operations you have to perform so that $a$ becomes sorted, or report that it is impossible.
-----Input-----
The first line contains one integer $t$ ($1 \le t \le 500$) β the number of test cases.
Each test case consists of two lines. The first line contains two integers $n$ and $x$ ($1 \le n \le 500$, $0 \le x \le 500$) β the number of elements in the sequence and the initial value of $x$.
The second line contains $n$ integers $a_1$, $a_2$, ..., $a_n$ ($0 \le a_i \le 500$).
The sum of values of $n$ over all test cases in the input does not exceed $500$.
-----Output-----
For each test case, print one integer β the minimum number of operations you have to perform to make $a$ sorted, or $-1$, if it is impossible.
-----Examples-----
Input
6
4 1
2 3 5 4
5 6
1 1 3 4 4
1 10
2
2 10
11 9
2 10
12 11
5 18
81 324 218 413 324
Output
3
0
0
-1
1
3
-----Note-----
None
|
I = lambda: map(int, input().split())
s = sorted
(T,) = I()
for _ in range(T):
n, k = I()
l = [*I()]
a = 0
for i in range(n):
if s(l) == l:
break
if l[i] > k:
l[i], k = k, l[i]
a += 1
print([a, -1][s(l) < l])
|
ASSIGN VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR ASSIGN VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR ASSIGN VAR LIST FUNC_CALL VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF FUNC_CALL VAR VAR VAR IF VAR VAR VAR ASSIGN VAR VAR VAR VAR VAR VAR VAR NUMBER EXPR FUNC_CALL VAR LIST VAR NUMBER FUNC_CALL VAR VAR VAR
|
You are given a sequence $a$ consisting of $n$ integers $a_1, a_2, \dots, a_n$, and an integer $x$. Your task is to make the sequence $a$ sorted (it is considered sorted if the condition $a_1 \le a_2 \le a_3 \le \dots \le a_n$ holds).
To make the sequence sorted, you may perform the following operation any number of times you want (possibly zero): choose an integer $i$ such that $1 \le i \le n$ and $a_i > x$, and swap the values of $a_i$ and $x$.
For example, if $a = [0, 2, 3, 5, 4]$, $x = 1$, the following sequence of operations is possible:
choose $i = 2$ (it is possible since $a_2 > x$), then $a = [0, 1, 3, 5, 4]$, $x = 2$;
choose $i = 3$ (it is possible since $a_3 > x$), then $a = [0, 1, 2, 5, 4]$, $x = 3$;
choose $i = 4$ (it is possible since $a_4 > x$), then $a = [0, 1, 2, 3, 4]$, $x = 5$.
Calculate the minimum number of operations you have to perform so that $a$ becomes sorted, or report that it is impossible.
-----Input-----
The first line contains one integer $t$ ($1 \le t \le 500$) β the number of test cases.
Each test case consists of two lines. The first line contains two integers $n$ and $x$ ($1 \le n \le 500$, $0 \le x \le 500$) β the number of elements in the sequence and the initial value of $x$.
The second line contains $n$ integers $a_1$, $a_2$, ..., $a_n$ ($0 \le a_i \le 500$).
The sum of values of $n$ over all test cases in the input does not exceed $500$.
-----Output-----
For each test case, print one integer β the minimum number of operations you have to perform to make $a$ sorted, or $-1$, if it is impossible.
-----Examples-----
Input
6
4 1
2 3 5 4
5 6
1 1 3 4 4
1 10
2
2 10
11 9
2 10
12 11
5 18
81 324 218 413 324
Output
3
0
0
-1
1
3
-----Note-----
None
|
def ans(arr, x):
if len(arr) == 1:
return 0
elif arr == sorted(arr):
return 0
else:
cnt = 0
for i in range(len(arr)):
if arr[i] > x:
arr[i], x = x, arr[i]
cnt += 1
if arr == sorted(arr):
return cnt
break
return -1
for _ in range(int(input())):
n, x = map(int, input().split())
arr = list(map(int, input().split()))
print(ans(arr, x))
|
FUNC_DEF IF FUNC_CALL VAR VAR NUMBER RETURN NUMBER IF VAR FUNC_CALL VAR VAR RETURN NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR VAR VAR ASSIGN VAR VAR VAR VAR VAR VAR VAR NUMBER IF VAR FUNC_CALL VAR VAR RETURN VAR RETURN NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR
|
You are given a sequence $a$ consisting of $n$ integers $a_1, a_2, \dots, a_n$, and an integer $x$. Your task is to make the sequence $a$ sorted (it is considered sorted if the condition $a_1 \le a_2 \le a_3 \le \dots \le a_n$ holds).
To make the sequence sorted, you may perform the following operation any number of times you want (possibly zero): choose an integer $i$ such that $1 \le i \le n$ and $a_i > x$, and swap the values of $a_i$ and $x$.
For example, if $a = [0, 2, 3, 5, 4]$, $x = 1$, the following sequence of operations is possible:
choose $i = 2$ (it is possible since $a_2 > x$), then $a = [0, 1, 3, 5, 4]$, $x = 2$;
choose $i = 3$ (it is possible since $a_3 > x$), then $a = [0, 1, 2, 5, 4]$, $x = 3$;
choose $i = 4$ (it is possible since $a_4 > x$), then $a = [0, 1, 2, 3, 4]$, $x = 5$.
Calculate the minimum number of operations you have to perform so that $a$ becomes sorted, or report that it is impossible.
-----Input-----
The first line contains one integer $t$ ($1 \le t \le 500$) β the number of test cases.
Each test case consists of two lines. The first line contains two integers $n$ and $x$ ($1 \le n \le 500$, $0 \le x \le 500$) β the number of elements in the sequence and the initial value of $x$.
The second line contains $n$ integers $a_1$, $a_2$, ..., $a_n$ ($0 \le a_i \le 500$).
The sum of values of $n$ over all test cases in the input does not exceed $500$.
-----Output-----
For each test case, print one integer β the minimum number of operations you have to perform to make $a$ sorted, or $-1$, if it is impossible.
-----Examples-----
Input
6
4 1
2 3 5 4
5 6
1 1 3 4 4
1 10
2
2 10
11 9
2 10
12 11
5 18
81 324 218 413 324
Output
3
0
0
-1
1
3
-----Note-----
None
|
def check(ll):
for i in range(len(l) - 1):
if l[i] <= l[i + 1]:
continue
else:
return False
return True
for i in range(int(input())):
n, k = map(int, input().split())
l = list(map(int, input().split()))
c = 0
if len(l) == 1:
print(0)
continue
if check(l):
print(0)
continue
for i in range(len(l)):
if l[i] > k:
t = l[i]
l[i] = k
k = t
c += 1
if not check(l):
continue
else:
break
if not check(l):
c = -1
print(c)
|
FUNC_DEF FOR VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER IF VAR VAR VAR BIN_OP VAR NUMBER RETURN NUMBER RETURN NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER IF FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER IF FUNC_CALL VAR VAR EXPR FUNC_CALL VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR VAR VAR NUMBER IF FUNC_CALL VAR VAR IF FUNC_CALL VAR VAR ASSIGN VAR NUMBER EXPR FUNC_CALL VAR VAR
|
You are given a sequence $a$ consisting of $n$ integers $a_1, a_2, \dots, a_n$, and an integer $x$. Your task is to make the sequence $a$ sorted (it is considered sorted if the condition $a_1 \le a_2 \le a_3 \le \dots \le a_n$ holds).
To make the sequence sorted, you may perform the following operation any number of times you want (possibly zero): choose an integer $i$ such that $1 \le i \le n$ and $a_i > x$, and swap the values of $a_i$ and $x$.
For example, if $a = [0, 2, 3, 5, 4]$, $x = 1$, the following sequence of operations is possible:
choose $i = 2$ (it is possible since $a_2 > x$), then $a = [0, 1, 3, 5, 4]$, $x = 2$;
choose $i = 3$ (it is possible since $a_3 > x$), then $a = [0, 1, 2, 5, 4]$, $x = 3$;
choose $i = 4$ (it is possible since $a_4 > x$), then $a = [0, 1, 2, 3, 4]$, $x = 5$.
Calculate the minimum number of operations you have to perform so that $a$ becomes sorted, or report that it is impossible.
-----Input-----
The first line contains one integer $t$ ($1 \le t \le 500$) β the number of test cases.
Each test case consists of two lines. The first line contains two integers $n$ and $x$ ($1 \le n \le 500$, $0 \le x \le 500$) β the number of elements in the sequence and the initial value of $x$.
The second line contains $n$ integers $a_1$, $a_2$, ..., $a_n$ ($0 \le a_i \le 500$).
The sum of values of $n$ over all test cases in the input does not exceed $500$.
-----Output-----
For each test case, print one integer β the minimum number of operations you have to perform to make $a$ sorted, or $-1$, if it is impossible.
-----Examples-----
Input
6
4 1
2 3 5 4
5 6
1 1 3 4 4
1 10
2
2 10
11 9
2 10
12 11
5 18
81 324 218 413 324
Output
3
0
0
-1
1
3
-----Note-----
None
|
def calc_swaps(nums, x):
if nums == sorted(nums):
return 0
swaps = 0
for ind in range(len(nums)):
if nums[ind] > x:
x, nums[ind] = nums[ind], x
swaps += 1
if nums == sorted(nums):
return swaps
return -1
data_count = int(input())
ans = []
for _ in range(data_count):
cnt, x = list(map(int, input().split()))
nums = list(map(int, input().split()))
ans.append(calc_swaps(nums, x))
for res in ans:
print(res)
|
FUNC_DEF IF VAR FUNC_CALL VAR VAR RETURN NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR VAR VAR ASSIGN VAR VAR VAR VAR VAR VAR VAR NUMBER IF VAR FUNC_CALL VAR VAR RETURN VAR RETURN NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR FOR VAR VAR EXPR FUNC_CALL VAR VAR
|
You are given a sequence $a$ consisting of $n$ integers $a_1, a_2, \dots, a_n$, and an integer $x$. Your task is to make the sequence $a$ sorted (it is considered sorted if the condition $a_1 \le a_2 \le a_3 \le \dots \le a_n$ holds).
To make the sequence sorted, you may perform the following operation any number of times you want (possibly zero): choose an integer $i$ such that $1 \le i \le n$ and $a_i > x$, and swap the values of $a_i$ and $x$.
For example, if $a = [0, 2, 3, 5, 4]$, $x = 1$, the following sequence of operations is possible:
choose $i = 2$ (it is possible since $a_2 > x$), then $a = [0, 1, 3, 5, 4]$, $x = 2$;
choose $i = 3$ (it is possible since $a_3 > x$), then $a = [0, 1, 2, 5, 4]$, $x = 3$;
choose $i = 4$ (it is possible since $a_4 > x$), then $a = [0, 1, 2, 3, 4]$, $x = 5$.
Calculate the minimum number of operations you have to perform so that $a$ becomes sorted, or report that it is impossible.
-----Input-----
The first line contains one integer $t$ ($1 \le t \le 500$) β the number of test cases.
Each test case consists of two lines. The first line contains two integers $n$ and $x$ ($1 \le n \le 500$, $0 \le x \le 500$) β the number of elements in the sequence and the initial value of $x$.
The second line contains $n$ integers $a_1$, $a_2$, ..., $a_n$ ($0 \le a_i \le 500$).
The sum of values of $n$ over all test cases in the input does not exceed $500$.
-----Output-----
For each test case, print one integer β the minimum number of operations you have to perform to make $a$ sorted, or $-1$, if it is impossible.
-----Examples-----
Input
6
4 1
2 3 5 4
5 6
1 1 3 4 4
1 10
2
2 10
11 9
2 10
12 11
5 18
81 324 218 413 324
Output
3
0
0
-1
1
3
-----Note-----
None
|
import sys
input = sys.stdin.readline
(T,) = map(int, input().split())
for _ in range(T):
N, x = map(int, input().split())
A = list(map(int, input().split()))
f = 0
for i in range(N - 1):
if A[i] > A[i + 1]:
f = 1
break
if not f:
print(0)
continue
for K in range(1, N):
for j in range(N):
if A[j] > x:
A[j], x = x, A[j]
break
f = 0
for i in range(N - 1):
if A[i] > A[i + 1]:
f = 1
break
if not f:
break
if f:
print(-1)
else:
print(K)
|
IMPORT ASSIGN VAR VAR ASSIGN VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER IF VAR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER IF VAR EXPR FUNC_CALL VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR FOR VAR FUNC_CALL VAR VAR IF VAR VAR VAR ASSIGN VAR VAR VAR VAR VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER IF VAR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER IF VAR IF VAR EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR VAR
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.