description
stringlengths
171
4k
code
stringlengths
94
3.98k
normalized_code
stringlengths
57
4.99k
You are given a sequence $a$ consisting of $n$ integers $a_1, a_2, \dots, a_n$, and an integer $x$. Your task is to make the sequence $a$ sorted (it is considered sorted if the condition $a_1 \le a_2 \le a_3 \le \dots \le a_n$ holds). To make the sequence sorted, you may perform the following operation any number of times you want (possibly zero): choose an integer $i$ such that $1 \le i \le n$ and $a_i > x$, and swap the values of $a_i$ and $x$. For example, if $a = [0, 2, 3, 5, 4]$, $x = 1$, the following sequence of operations is possible: choose $i = 2$ (it is possible since $a_2 > x$), then $a = [0, 1, 3, 5, 4]$, $x = 2$; choose $i = 3$ (it is possible since $a_3 > x$), then $a = [0, 1, 2, 5, 4]$, $x = 3$; choose $i = 4$ (it is possible since $a_4 > x$), then $a = [0, 1, 2, 3, 4]$, $x = 5$. Calculate the minimum number of operations you have to perform so that $a$ becomes sorted, or report that it is impossible. -----Input----- The first line contains one integer $t$ ($1 \le t \le 500$) β€” the number of test cases. Each test case consists of two lines. The first line contains two integers $n$ and $x$ ($1 \le n \le 500$, $0 \le x \le 500$) β€” the number of elements in the sequence and the initial value of $x$. The second line contains $n$ integers $a_1$, $a_2$, ..., $a_n$ ($0 \le a_i \le 500$). The sum of values of $n$ over all test cases in the input does not exceed $500$. -----Output----- For each test case, print one integer β€” the minimum number of operations you have to perform to make $a$ sorted, or $-1$, if it is impossible. -----Examples----- Input 6 4 1 2 3 5 4 5 6 1 1 3 4 4 1 10 2 2 10 11 9 2 10 12 11 5 18 81 324 218 413 324 Output 3 0 0 -1 1 3 -----Note----- None
for _ in range(int(input())): n, x = map(int, input().split()) l1 = list(map(int, input().split())) l2 = l1[:] l2.sort() if l1 == l2: print(0) else: co = 0 for i in range(n): f1 = 0 if l1[i] <= x: pass else: l1[i], x = x, l1[i] co += 1 for j in range(i + 1, n - 1, 1): if l1[j] > l1[j + 1]: f1 = 1 if f1 == 0: break l3 = l1[:] l3.sort() if l3 == l1: print(co) else: print(-1)
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR EXPR FUNC_CALL VAR IF VAR VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER IF VAR VAR VAR ASSIGN VAR VAR VAR VAR VAR VAR VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER BIN_OP VAR NUMBER NUMBER IF VAR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER IF VAR NUMBER ASSIGN VAR VAR EXPR FUNC_CALL VAR IF VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR NUMBER
You are given a sequence $a$ consisting of $n$ integers $a_1, a_2, \dots, a_n$, and an integer $x$. Your task is to make the sequence $a$ sorted (it is considered sorted if the condition $a_1 \le a_2 \le a_3 \le \dots \le a_n$ holds). To make the sequence sorted, you may perform the following operation any number of times you want (possibly zero): choose an integer $i$ such that $1 \le i \le n$ and $a_i > x$, and swap the values of $a_i$ and $x$. For example, if $a = [0, 2, 3, 5, 4]$, $x = 1$, the following sequence of operations is possible: choose $i = 2$ (it is possible since $a_2 > x$), then $a = [0, 1, 3, 5, 4]$, $x = 2$; choose $i = 3$ (it is possible since $a_3 > x$), then $a = [0, 1, 2, 5, 4]$, $x = 3$; choose $i = 4$ (it is possible since $a_4 > x$), then $a = [0, 1, 2, 3, 4]$, $x = 5$. Calculate the minimum number of operations you have to perform so that $a$ becomes sorted, or report that it is impossible. -----Input----- The first line contains one integer $t$ ($1 \le t \le 500$) β€” the number of test cases. Each test case consists of two lines. The first line contains two integers $n$ and $x$ ($1 \le n \le 500$, $0 \le x \le 500$) β€” the number of elements in the sequence and the initial value of $x$. The second line contains $n$ integers $a_1$, $a_2$, ..., $a_n$ ($0 \le a_i \le 500$). The sum of values of $n$ over all test cases in the input does not exceed $500$. -----Output----- For each test case, print one integer β€” the minimum number of operations you have to perform to make $a$ sorted, or $-1$, if it is impossible. -----Examples----- Input 6 4 1 2 3 5 4 5 6 1 1 3 4 4 1 10 2 2 10 11 9 2 10 12 11 5 18 81 324 218 413 324 Output 3 0 0 -1 1 3 -----Note----- None
t = int(input()) def solve(): n, x = map(int, input().split()) a = list(map(int, input().split())) xwas = x sor = list(sorted(a)) g = 1 for i in range(n): g = g and sor[i] == a[i] if g: return 0 sor = list(sorted(a + [x])) k = 0 b = 1 for i in range(n): if sor[i] != a[i]: k += 1 if a[i] <= x: return -1 else: a[i], x = x, a[i] sor2 = list(sorted(a[i:])) if sor2 == a[i:]: return k return k for _ in range(t): print(solve())
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_DEF ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR VAR VAR VAR IF VAR RETURN NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR BIN_OP VAR LIST VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR VAR VAR VAR VAR NUMBER IF VAR VAR VAR RETURN NUMBER ASSIGN VAR VAR VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR IF VAR VAR VAR RETURN VAR RETURN VAR FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR
You are given a sequence $a$ consisting of $n$ integers $a_1, a_2, \dots, a_n$, and an integer $x$. Your task is to make the sequence $a$ sorted (it is considered sorted if the condition $a_1 \le a_2 \le a_3 \le \dots \le a_n$ holds). To make the sequence sorted, you may perform the following operation any number of times you want (possibly zero): choose an integer $i$ such that $1 \le i \le n$ and $a_i > x$, and swap the values of $a_i$ and $x$. For example, if $a = [0, 2, 3, 5, 4]$, $x = 1$, the following sequence of operations is possible: choose $i = 2$ (it is possible since $a_2 > x$), then $a = [0, 1, 3, 5, 4]$, $x = 2$; choose $i = 3$ (it is possible since $a_3 > x$), then $a = [0, 1, 2, 5, 4]$, $x = 3$; choose $i = 4$ (it is possible since $a_4 > x$), then $a = [0, 1, 2, 3, 4]$, $x = 5$. Calculate the minimum number of operations you have to perform so that $a$ becomes sorted, or report that it is impossible. -----Input----- The first line contains one integer $t$ ($1 \le t \le 500$) β€” the number of test cases. Each test case consists of two lines. The first line contains two integers $n$ and $x$ ($1 \le n \le 500$, $0 \le x \le 500$) β€” the number of elements in the sequence and the initial value of $x$. The second line contains $n$ integers $a_1$, $a_2$, ..., $a_n$ ($0 \le a_i \le 500$). The sum of values of $n$ over all test cases in the input does not exceed $500$. -----Output----- For each test case, print one integer β€” the minimum number of operations you have to perform to make $a$ sorted, or $-1$, if it is impossible. -----Examples----- Input 6 4 1 2 3 5 4 5 6 1 1 3 4 4 1 10 2 2 10 11 9 2 10 12 11 5 18 81 324 218 413 324 Output 3 0 0 -1 1 3 -----Note----- None
def check_sort(list1): ans = 1 for i in range(n - 1): if list1[i + 1] < list1[i]: ans = 0 break return ans t = int(input()) for _ in range(t): n, x = list(map(int, input().strip().split())) list1 = list(map(int, input().strip().split())) count = 0 possible = 1 for i in range(n): if check_sort(list1) == 1: break if list1[i] <= x: if i != 0 and list1[i] < list1[i - 1]: possible = 0 break else: temp = list1[i] list1[i] = x x = temp count += 1 if possible == 0: print(-1) else: print(count)
FUNC_DEF ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER IF VAR BIN_OP VAR NUMBER VAR VAR ASSIGN VAR NUMBER RETURN VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF FUNC_CALL VAR VAR NUMBER IF VAR VAR VAR IF VAR NUMBER VAR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR VAR VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR VAR
You are given a sequence $a$ consisting of $n$ integers $a_1, a_2, \dots, a_n$, and an integer $x$. Your task is to make the sequence $a$ sorted (it is considered sorted if the condition $a_1 \le a_2 \le a_3 \le \dots \le a_n$ holds). To make the sequence sorted, you may perform the following operation any number of times you want (possibly zero): choose an integer $i$ such that $1 \le i \le n$ and $a_i > x$, and swap the values of $a_i$ and $x$. For example, if $a = [0, 2, 3, 5, 4]$, $x = 1$, the following sequence of operations is possible: choose $i = 2$ (it is possible since $a_2 > x$), then $a = [0, 1, 3, 5, 4]$, $x = 2$; choose $i = 3$ (it is possible since $a_3 > x$), then $a = [0, 1, 2, 5, 4]$, $x = 3$; choose $i = 4$ (it is possible since $a_4 > x$), then $a = [0, 1, 2, 3, 4]$, $x = 5$. Calculate the minimum number of operations you have to perform so that $a$ becomes sorted, or report that it is impossible. -----Input----- The first line contains one integer $t$ ($1 \le t \le 500$) β€” the number of test cases. Each test case consists of two lines. The first line contains two integers $n$ and $x$ ($1 \le n \le 500$, $0 \le x \le 500$) β€” the number of elements in the sequence and the initial value of $x$. The second line contains $n$ integers $a_1$, $a_2$, ..., $a_n$ ($0 \le a_i \le 500$). The sum of values of $n$ over all test cases in the input does not exceed $500$. -----Output----- For each test case, print one integer β€” the minimum number of operations you have to perform to make $a$ sorted, or $-1$, if it is impossible. -----Examples----- Input 6 4 1 2 3 5 4 5 6 1 1 3 4 4 1 10 2 2 10 11 9 2 10 12 11 5 18 81 324 218 413 324 Output 3 0 0 -1 1 3 -----Note----- None
t = int(input()) def do_step(arr, x, i): while i < len(arr): if x < arr[i]: arr[i], x = x, arr[i] return x, i i += 1 return x, i for _ in range(t): n, x = map(int, input().split()) arr = [int(v) for v in input().split()] steps = 0 i = 0 while i != len(arr): if sorted(arr) == arr: break x, i = do_step(arr, x, i) if i != -1: steps += 1 if sorted(arr) != arr: steps = -1 print(steps)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_DEF WHILE VAR FUNC_CALL VAR VAR IF VAR VAR VAR ASSIGN VAR VAR VAR VAR VAR VAR RETURN VAR VAR VAR NUMBER RETURN VAR VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR FUNC_CALL VAR VAR IF FUNC_CALL VAR VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR VAR IF VAR NUMBER VAR NUMBER IF FUNC_CALL VAR VAR VAR ASSIGN VAR NUMBER EXPR FUNC_CALL VAR VAR
You are given a sequence $a$ consisting of $n$ integers $a_1, a_2, \dots, a_n$, and an integer $x$. Your task is to make the sequence $a$ sorted (it is considered sorted if the condition $a_1 \le a_2 \le a_3 \le \dots \le a_n$ holds). To make the sequence sorted, you may perform the following operation any number of times you want (possibly zero): choose an integer $i$ such that $1 \le i \le n$ and $a_i > x$, and swap the values of $a_i$ and $x$. For example, if $a = [0, 2, 3, 5, 4]$, $x = 1$, the following sequence of operations is possible: choose $i = 2$ (it is possible since $a_2 > x$), then $a = [0, 1, 3, 5, 4]$, $x = 2$; choose $i = 3$ (it is possible since $a_3 > x$), then $a = [0, 1, 2, 5, 4]$, $x = 3$; choose $i = 4$ (it is possible since $a_4 > x$), then $a = [0, 1, 2, 3, 4]$, $x = 5$. Calculate the minimum number of operations you have to perform so that $a$ becomes sorted, or report that it is impossible. -----Input----- The first line contains one integer $t$ ($1 \le t \le 500$) β€” the number of test cases. Each test case consists of two lines. The first line contains two integers $n$ and $x$ ($1 \le n \le 500$, $0 \le x \le 500$) β€” the number of elements in the sequence and the initial value of $x$. The second line contains $n$ integers $a_1$, $a_2$, ..., $a_n$ ($0 \le a_i \le 500$). The sum of values of $n$ over all test cases in the input does not exceed $500$. -----Output----- For each test case, print one integer β€” the minimum number of operations you have to perform to make $a$ sorted, or $-1$, if it is impossible. -----Examples----- Input 6 4 1 2 3 5 4 5 6 1 1 3 4 4 1 10 2 2 10 11 9 2 10 12 11 5 18 81 324 218 413 324 Output 3 0 0 -1 1 3 -----Note----- None
def issorted(l): flag = 0 if all(l[i] <= l[i + 1] for i in range(len(l) - 1)): return True return False t = int(input()) for _ in range(t): n, x = map(int, input().split()) l = list(map(int, input().split())) if issorted(l): print(0) else: c = 0 for i in range(n): while not issorted(l): if x < l[i]: x, l[i] = l[i], x c += 1 break else: break if issorted(l): print(c) else: print(-1)
FUNC_DEF ASSIGN VAR NUMBER IF FUNC_CALL VAR VAR VAR VAR BIN_OP VAR NUMBER VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER RETURN NUMBER RETURN NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF FUNC_CALL VAR VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR WHILE FUNC_CALL VAR VAR IF VAR VAR VAR ASSIGN VAR VAR VAR VAR VAR VAR VAR NUMBER IF FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR NUMBER
You are given a sequence $a$ consisting of $n$ integers $a_1, a_2, \dots, a_n$, and an integer $x$. Your task is to make the sequence $a$ sorted (it is considered sorted if the condition $a_1 \le a_2 \le a_3 \le \dots \le a_n$ holds). To make the sequence sorted, you may perform the following operation any number of times you want (possibly zero): choose an integer $i$ such that $1 \le i \le n$ and $a_i > x$, and swap the values of $a_i$ and $x$. For example, if $a = [0, 2, 3, 5, 4]$, $x = 1$, the following sequence of operations is possible: choose $i = 2$ (it is possible since $a_2 > x$), then $a = [0, 1, 3, 5, 4]$, $x = 2$; choose $i = 3$ (it is possible since $a_3 > x$), then $a = [0, 1, 2, 5, 4]$, $x = 3$; choose $i = 4$ (it is possible since $a_4 > x$), then $a = [0, 1, 2, 3, 4]$, $x = 5$. Calculate the minimum number of operations you have to perform so that $a$ becomes sorted, or report that it is impossible. -----Input----- The first line contains one integer $t$ ($1 \le t \le 500$) β€” the number of test cases. Each test case consists of two lines. The first line contains two integers $n$ and $x$ ($1 \le n \le 500$, $0 \le x \le 500$) β€” the number of elements in the sequence and the initial value of $x$. The second line contains $n$ integers $a_1$, $a_2$, ..., $a_n$ ($0 \le a_i \le 500$). The sum of values of $n$ over all test cases in the input does not exceed $500$. -----Output----- For each test case, print one integer β€” the minimum number of operations you have to perform to make $a$ sorted, or $-1$, if it is impossible. -----Examples----- Input 6 4 1 2 3 5 4 5 6 1 1 3 4 4 1 10 2 2 10 11 9 2 10 12 11 5 18 81 324 218 413 324 Output 3 0 0 -1 1 3 -----Note----- None
def swap(arr, x): count = 0 for i in range(1, len(arr)): if arr[i] < x and arr[i] < arr[i - 1]: return -1 if arr[i] < arr[i - 1]: for j in range(0, i): if arr[j] > x: scratch = x x = arr[j] arr[j] = scratch count += 1 if arr[i] < x and arr[i] < arr[i - 1]: return -1 if arr[i] < arr[i - 1]: scratch = x x = arr[i] arr[i] = scratch count += 1 return count t = int(input()) for i in range(0, t): nx = list(map(int, input().strip().split())) arr = list(map(int, input().strip().split())) print(swap(arr, nx[1]))
FUNC_DEF ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR IF VAR VAR VAR VAR VAR VAR BIN_OP VAR NUMBER RETURN NUMBER IF VAR VAR VAR BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR IF VAR VAR VAR ASSIGN VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR VAR VAR VAR NUMBER IF VAR VAR VAR VAR VAR VAR BIN_OP VAR NUMBER RETURN NUMBER IF VAR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR VAR VAR VAR NUMBER RETURN VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR NUMBER VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR NUMBER
You are given a sequence $a$ consisting of $n$ integers $a_1, a_2, \dots, a_n$, and an integer $x$. Your task is to make the sequence $a$ sorted (it is considered sorted if the condition $a_1 \le a_2 \le a_3 \le \dots \le a_n$ holds). To make the sequence sorted, you may perform the following operation any number of times you want (possibly zero): choose an integer $i$ such that $1 \le i \le n$ and $a_i > x$, and swap the values of $a_i$ and $x$. For example, if $a = [0, 2, 3, 5, 4]$, $x = 1$, the following sequence of operations is possible: choose $i = 2$ (it is possible since $a_2 > x$), then $a = [0, 1, 3, 5, 4]$, $x = 2$; choose $i = 3$ (it is possible since $a_3 > x$), then $a = [0, 1, 2, 5, 4]$, $x = 3$; choose $i = 4$ (it is possible since $a_4 > x$), then $a = [0, 1, 2, 3, 4]$, $x = 5$. Calculate the minimum number of operations you have to perform so that $a$ becomes sorted, or report that it is impossible. -----Input----- The first line contains one integer $t$ ($1 \le t \le 500$) β€” the number of test cases. Each test case consists of two lines. The first line contains two integers $n$ and $x$ ($1 \le n \le 500$, $0 \le x \le 500$) β€” the number of elements in the sequence and the initial value of $x$. The second line contains $n$ integers $a_1$, $a_2$, ..., $a_n$ ($0 \le a_i \le 500$). The sum of values of $n$ over all test cases in the input does not exceed $500$. -----Output----- For each test case, print one integer β€” the minimum number of operations you have to perform to make $a$ sorted, or $-1$, if it is impossible. -----Examples----- Input 6 4 1 2 3 5 4 5 6 1 1 3 4 4 1 10 2 2 10 11 9 2 10 12 11 5 18 81 324 218 413 324 Output 3 0 0 -1 1 3 -----Note----- None
t = int(input()) for i in range(t): n, x = map(int, input().split()) arr = list(map(int, input().split())) ans = 0 while not all(arr[j] <= arr[j + 1] for j in range(len(arr) - 1)): ans += 1 for j in range(len(arr)): if arr[j] > x: arr[j], x = x, arr[j] break else: ans = -1 break print(ans)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER WHILE FUNC_CALL VAR VAR VAR VAR BIN_OP VAR NUMBER VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR VAR VAR ASSIGN VAR VAR VAR VAR VAR VAR ASSIGN VAR NUMBER EXPR FUNC_CALL VAR VAR
You are given a sequence $a$ consisting of $n$ integers $a_1, a_2, \dots, a_n$, and an integer $x$. Your task is to make the sequence $a$ sorted (it is considered sorted if the condition $a_1 \le a_2 \le a_3 \le \dots \le a_n$ holds). To make the sequence sorted, you may perform the following operation any number of times you want (possibly zero): choose an integer $i$ such that $1 \le i \le n$ and $a_i > x$, and swap the values of $a_i$ and $x$. For example, if $a = [0, 2, 3, 5, 4]$, $x = 1$, the following sequence of operations is possible: choose $i = 2$ (it is possible since $a_2 > x$), then $a = [0, 1, 3, 5, 4]$, $x = 2$; choose $i = 3$ (it is possible since $a_3 > x$), then $a = [0, 1, 2, 5, 4]$, $x = 3$; choose $i = 4$ (it is possible since $a_4 > x$), then $a = [0, 1, 2, 3, 4]$, $x = 5$. Calculate the minimum number of operations you have to perform so that $a$ becomes sorted, or report that it is impossible. -----Input----- The first line contains one integer $t$ ($1 \le t \le 500$) β€” the number of test cases. Each test case consists of two lines. The first line contains two integers $n$ and $x$ ($1 \le n \le 500$, $0 \le x \le 500$) β€” the number of elements in the sequence and the initial value of $x$. The second line contains $n$ integers $a_1$, $a_2$, ..., $a_n$ ($0 \le a_i \le 500$). The sum of values of $n$ over all test cases in the input does not exceed $500$. -----Output----- For each test case, print one integer β€” the minimum number of operations you have to perform to make $a$ sorted, or $-1$, if it is impossible. -----Examples----- Input 6 4 1 2 3 5 4 5 6 1 1 3 4 4 1 10 2 2 10 11 9 2 10 12 11 5 18 81 324 218 413 324 Output 3 0 0 -1 1 3 -----Note----- None
def sorted_list(mylist): n = len(mylist) if n == 1: return 1 for i in range(1, n): if mylist[i - 1] > mylist[i]: return -1 elif i == n - 1: return 1 cases = int(input()) for z in range(cases): n, x = input().split() n = int(n) x = int(x) mylist = [int(i) for i in input().split()] flag = 0 count = 0 for i in range(0, n): if sorted_list(mylist) == 1: flag = 1 break if mylist[i] > x: temp = x count += 1 x = mylist[i] mylist[i] = temp if flag == 1: print(count) else: print(-1)
FUNC_DEF ASSIGN VAR FUNC_CALL VAR VAR IF VAR NUMBER RETURN NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR IF VAR BIN_OP VAR NUMBER VAR VAR RETURN NUMBER IF VAR BIN_OP VAR NUMBER RETURN NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR IF FUNC_CALL VAR VAR NUMBER ASSIGN VAR NUMBER IF VAR VAR VAR ASSIGN VAR VAR VAR NUMBER ASSIGN VAR VAR VAR ASSIGN VAR VAR VAR IF VAR NUMBER EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR NUMBER
You are given a sequence $a$ consisting of $n$ integers $a_1, a_2, \dots, a_n$, and an integer $x$. Your task is to make the sequence $a$ sorted (it is considered sorted if the condition $a_1 \le a_2 \le a_3 \le \dots \le a_n$ holds). To make the sequence sorted, you may perform the following operation any number of times you want (possibly zero): choose an integer $i$ such that $1 \le i \le n$ and $a_i > x$, and swap the values of $a_i$ and $x$. For example, if $a = [0, 2, 3, 5, 4]$, $x = 1$, the following sequence of operations is possible: choose $i = 2$ (it is possible since $a_2 > x$), then $a = [0, 1, 3, 5, 4]$, $x = 2$; choose $i = 3$ (it is possible since $a_3 > x$), then $a = [0, 1, 2, 5, 4]$, $x = 3$; choose $i = 4$ (it is possible since $a_4 > x$), then $a = [0, 1, 2, 3, 4]$, $x = 5$. Calculate the minimum number of operations you have to perform so that $a$ becomes sorted, or report that it is impossible. -----Input----- The first line contains one integer $t$ ($1 \le t \le 500$) β€” the number of test cases. Each test case consists of two lines. The first line contains two integers $n$ and $x$ ($1 \le n \le 500$, $0 \le x \le 500$) β€” the number of elements in the sequence and the initial value of $x$. The second line contains $n$ integers $a_1$, $a_2$, ..., $a_n$ ($0 \le a_i \le 500$). The sum of values of $n$ over all test cases in the input does not exceed $500$. -----Output----- For each test case, print one integer β€” the minimum number of operations you have to perform to make $a$ sorted, or $-1$, if it is impossible. -----Examples----- Input 6 4 1 2 3 5 4 5 6 1 1 3 4 4 1 10 2 2 10 11 9 2 10 12 11 5 18 81 324 218 413 324 Output 3 0 0 -1 1 3 -----Note----- None
t = int(input()) def is_sorted(a, i, j): if i == j or i + 1 == j: return True if a[i] > a[i + 1]: return False for ii in range(i + 1, j): if a[ii - 1] > a[ii]: return False return True while t: n, x = list(map(int, input().split())) arr = list(map(int, input().split())) if is_sorted(arr, 0, len(arr)): print(0) else: ans = 0 for i in range(len(arr)): if arr[i] > x: tmp = arr[i] arr[i] = x x = tmp ans += 1 if is_sorted(arr, i, len(arr)): break if is_sorted(arr, 0, len(arr)): print(ans) else: print(-1) t -= 1
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_DEF IF VAR VAR BIN_OP VAR NUMBER VAR RETURN NUMBER IF VAR VAR VAR BIN_OP VAR NUMBER RETURN NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER VAR IF VAR BIN_OP VAR NUMBER VAR VAR RETURN NUMBER RETURN NUMBER WHILE VAR ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF FUNC_CALL VAR VAR NUMBER FUNC_CALL VAR VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR VAR VAR NUMBER IF FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR IF FUNC_CALL VAR VAR NUMBER FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR NUMBER VAR NUMBER
You are given a sequence $a$ consisting of $n$ integers $a_1, a_2, \dots, a_n$, and an integer $x$. Your task is to make the sequence $a$ sorted (it is considered sorted if the condition $a_1 \le a_2 \le a_3 \le \dots \le a_n$ holds). To make the sequence sorted, you may perform the following operation any number of times you want (possibly zero): choose an integer $i$ such that $1 \le i \le n$ and $a_i > x$, and swap the values of $a_i$ and $x$. For example, if $a = [0, 2, 3, 5, 4]$, $x = 1$, the following sequence of operations is possible: choose $i = 2$ (it is possible since $a_2 > x$), then $a = [0, 1, 3, 5, 4]$, $x = 2$; choose $i = 3$ (it is possible since $a_3 > x$), then $a = [0, 1, 2, 5, 4]$, $x = 3$; choose $i = 4$ (it is possible since $a_4 > x$), then $a = [0, 1, 2, 3, 4]$, $x = 5$. Calculate the minimum number of operations you have to perform so that $a$ becomes sorted, or report that it is impossible. -----Input----- The first line contains one integer $t$ ($1 \le t \le 500$) β€” the number of test cases. Each test case consists of two lines. The first line contains two integers $n$ and $x$ ($1 \le n \le 500$, $0 \le x \le 500$) β€” the number of elements in the sequence and the initial value of $x$. The second line contains $n$ integers $a_1$, $a_2$, ..., $a_n$ ($0 \le a_i \le 500$). The sum of values of $n$ over all test cases in the input does not exceed $500$. -----Output----- For each test case, print one integer β€” the minimum number of operations you have to perform to make $a$ sorted, or $-1$, if it is impossible. -----Examples----- Input 6 4 1 2 3 5 4 5 6 1 1 3 4 4 1 10 2 2 10 11 9 2 10 12 11 5 18 81 324 218 413 324 Output 3 0 0 -1 1 3 -----Note----- None
for _ in range(int(input())): n, x = map(int, input().split()) A = list(map(int, input().split())) if sorted(A) == A: print(0) else: i = 1 ans = 0 flag = 0 while i < n: if A[i] < A[i - 1]: if x >= A[i - 1] and A[i] > x: A[i], x = x, A[i] ans += 1 else: j = 0 for j in range(i): if A[j] > x: break else: flag = 1 break for k in range(j, i): if x >= A[i - 1]: break if A[k] > x: A[k], x = x, A[k] ans += 1 elif A[k] == x: continue if A[i] >= A[i - 1]: continue if A[i] < A[i - 1] and A[i] > x: A[i], x = x, A[i] ans += 1 else: flag = 1 break i += 1 if flag: print(-1) else: print(ans)
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR IF VAR VAR VAR BIN_OP VAR NUMBER IF VAR VAR BIN_OP VAR NUMBER VAR VAR VAR ASSIGN VAR VAR VAR VAR VAR VAR VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR VAR IF VAR VAR BIN_OP VAR NUMBER IF VAR VAR VAR ASSIGN VAR VAR VAR VAR VAR VAR VAR NUMBER IF VAR VAR VAR IF VAR VAR VAR BIN_OP VAR NUMBER IF VAR VAR VAR BIN_OP VAR NUMBER VAR VAR VAR ASSIGN VAR VAR VAR VAR VAR VAR VAR NUMBER ASSIGN VAR NUMBER VAR NUMBER IF VAR EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR VAR
You are given a sequence $a$ consisting of $n$ integers $a_1, a_2, \dots, a_n$, and an integer $x$. Your task is to make the sequence $a$ sorted (it is considered sorted if the condition $a_1 \le a_2 \le a_3 \le \dots \le a_n$ holds). To make the sequence sorted, you may perform the following operation any number of times you want (possibly zero): choose an integer $i$ such that $1 \le i \le n$ and $a_i > x$, and swap the values of $a_i$ and $x$. For example, if $a = [0, 2, 3, 5, 4]$, $x = 1$, the following sequence of operations is possible: choose $i = 2$ (it is possible since $a_2 > x$), then $a = [0, 1, 3, 5, 4]$, $x = 2$; choose $i = 3$ (it is possible since $a_3 > x$), then $a = [0, 1, 2, 5, 4]$, $x = 3$; choose $i = 4$ (it is possible since $a_4 > x$), then $a = [0, 1, 2, 3, 4]$, $x = 5$. Calculate the minimum number of operations you have to perform so that $a$ becomes sorted, or report that it is impossible. -----Input----- The first line contains one integer $t$ ($1 \le t \le 500$) β€” the number of test cases. Each test case consists of two lines. The first line contains two integers $n$ and $x$ ($1 \le n \le 500$, $0 \le x \le 500$) β€” the number of elements in the sequence and the initial value of $x$. The second line contains $n$ integers $a_1$, $a_2$, ..., $a_n$ ($0 \le a_i \le 500$). The sum of values of $n$ over all test cases in the input does not exceed $500$. -----Output----- For each test case, print one integer β€” the minimum number of operations you have to perform to make $a$ sorted, or $-1$, if it is impossible. -----Examples----- Input 6 4 1 2 3 5 4 5 6 1 1 3 4 4 1 10 2 2 10 11 9 2 10 12 11 5 18 81 324 218 413 324 Output 3 0 0 -1 1 3 -----Note----- None
def check(l, n): for i in range(n - 1): if l[i] > l[i + 1]: return False return True def main(n, x, l): c = 0 for i in range(n): if check(l, n) is True: return c if l[i] > x: x, l[i] = l[i], x c += 1 if check(l, n) is True: return c return -1 k = int(input()) for _ in range(k): n, x = map(int, input().strip().split()) l = list(map(int, input().strip().split())) n = len(l) print(main(n, x, l))
FUNC_DEF FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER IF VAR VAR VAR BIN_OP VAR NUMBER RETURN NUMBER RETURN NUMBER FUNC_DEF ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF FUNC_CALL VAR VAR VAR NUMBER RETURN VAR IF VAR VAR VAR ASSIGN VAR VAR VAR VAR VAR VAR VAR NUMBER IF FUNC_CALL VAR VAR VAR NUMBER RETURN VAR RETURN NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR VAR
You are given a sequence $a$ consisting of $n$ integers $a_1, a_2, \dots, a_n$, and an integer $x$. Your task is to make the sequence $a$ sorted (it is considered sorted if the condition $a_1 \le a_2 \le a_3 \le \dots \le a_n$ holds). To make the sequence sorted, you may perform the following operation any number of times you want (possibly zero): choose an integer $i$ such that $1 \le i \le n$ and $a_i > x$, and swap the values of $a_i$ and $x$. For example, if $a = [0, 2, 3, 5, 4]$, $x = 1$, the following sequence of operations is possible: choose $i = 2$ (it is possible since $a_2 > x$), then $a = [0, 1, 3, 5, 4]$, $x = 2$; choose $i = 3$ (it is possible since $a_3 > x$), then $a = [0, 1, 2, 5, 4]$, $x = 3$; choose $i = 4$ (it is possible since $a_4 > x$), then $a = [0, 1, 2, 3, 4]$, $x = 5$. Calculate the minimum number of operations you have to perform so that $a$ becomes sorted, or report that it is impossible. -----Input----- The first line contains one integer $t$ ($1 \le t \le 500$) β€” the number of test cases. Each test case consists of two lines. The first line contains two integers $n$ and $x$ ($1 \le n \le 500$, $0 \le x \le 500$) β€” the number of elements in the sequence and the initial value of $x$. The second line contains $n$ integers $a_1$, $a_2$, ..., $a_n$ ($0 \le a_i \le 500$). The sum of values of $n$ over all test cases in the input does not exceed $500$. -----Output----- For each test case, print one integer β€” the minimum number of operations you have to perform to make $a$ sorted, or $-1$, if it is impossible. -----Examples----- Input 6 4 1 2 3 5 4 5 6 1 1 3 4 4 1 10 2 2 10 11 9 2 10 12 11 5 18 81 324 218 413 324 Output 3 0 0 -1 1 3 -----Note----- None
for _ in range(int(input())): n, x = map(int, input().split()) a = list(map(int, input().split())) if a == sorted(a): print(0) continue ans = 0 j = 0 b = [0] while j < n - 1: if a[j] > a[j + 1]: b[j] += 1 b += (b[j],) j += 1 j = 0 while j < n: if a[j] > x: a[j], x = x, a[j] ans += 1 if b[j] == b[-1]: break j += 1 if a == sorted(a): print(ans) else: print(-1)
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR LIST NUMBER WHILE VAR BIN_OP VAR NUMBER IF VAR VAR VAR BIN_OP VAR NUMBER VAR VAR NUMBER VAR VAR VAR VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR IF VAR VAR VAR ASSIGN VAR VAR VAR VAR VAR VAR VAR NUMBER IF VAR VAR VAR NUMBER VAR NUMBER IF VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR NUMBER
You are given a sequence $a$ consisting of $n$ integers $a_1, a_2, \dots, a_n$, and an integer $x$. Your task is to make the sequence $a$ sorted (it is considered sorted if the condition $a_1 \le a_2 \le a_3 \le \dots \le a_n$ holds). To make the sequence sorted, you may perform the following operation any number of times you want (possibly zero): choose an integer $i$ such that $1 \le i \le n$ and $a_i > x$, and swap the values of $a_i$ and $x$. For example, if $a = [0, 2, 3, 5, 4]$, $x = 1$, the following sequence of operations is possible: choose $i = 2$ (it is possible since $a_2 > x$), then $a = [0, 1, 3, 5, 4]$, $x = 2$; choose $i = 3$ (it is possible since $a_3 > x$), then $a = [0, 1, 2, 5, 4]$, $x = 3$; choose $i = 4$ (it is possible since $a_4 > x$), then $a = [0, 1, 2, 3, 4]$, $x = 5$. Calculate the minimum number of operations you have to perform so that $a$ becomes sorted, or report that it is impossible. -----Input----- The first line contains one integer $t$ ($1 \le t \le 500$) β€” the number of test cases. Each test case consists of two lines. The first line contains two integers $n$ and $x$ ($1 \le n \le 500$, $0 \le x \le 500$) β€” the number of elements in the sequence and the initial value of $x$. The second line contains $n$ integers $a_1$, $a_2$, ..., $a_n$ ($0 \le a_i \le 500$). The sum of values of $n$ over all test cases in the input does not exceed $500$. -----Output----- For each test case, print one integer β€” the minimum number of operations you have to perform to make $a$ sorted, or $-1$, if it is impossible. -----Examples----- Input 6 4 1 2 3 5 4 5 6 1 1 3 4 4 1 10 2 2 10 11 9 2 10 12 11 5 18 81 324 218 413 324 Output 3 0 0 -1 1 3 -----Note----- None
t_count = int(input()) for _ in range(t_count): num_count, x = map(int, input().split()) nums = list(map(int, input().split())) operation_count = 0 sorted_until = 0 place_of_x = 0 last_was_swap = False while sorted_until != num_count - 1: if nums[sorted_until + 1] >= nums[sorted_until]: if nums[sorted_until] <= x: place_of_x += 1 sorted_until += 1 last_was_swap = False else: operation_count += 1 nums[place_of_x], x = x, nums[place_of_x] if last_was_swap: operation_count = -1 break last_was_swap = True sorted_until = place_of_x print(operation_count)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR BIN_OP VAR NUMBER IF VAR BIN_OP VAR NUMBER VAR VAR IF VAR VAR VAR VAR NUMBER VAR NUMBER ASSIGN VAR NUMBER VAR NUMBER ASSIGN VAR VAR VAR VAR VAR VAR IF VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR VAR EXPR FUNC_CALL VAR VAR
You are given a sequence $a$ consisting of $n$ integers $a_1, a_2, \dots, a_n$, and an integer $x$. Your task is to make the sequence $a$ sorted (it is considered sorted if the condition $a_1 \le a_2 \le a_3 \le \dots \le a_n$ holds). To make the sequence sorted, you may perform the following operation any number of times you want (possibly zero): choose an integer $i$ such that $1 \le i \le n$ and $a_i > x$, and swap the values of $a_i$ and $x$. For example, if $a = [0, 2, 3, 5, 4]$, $x = 1$, the following sequence of operations is possible: choose $i = 2$ (it is possible since $a_2 > x$), then $a = [0, 1, 3, 5, 4]$, $x = 2$; choose $i = 3$ (it is possible since $a_3 > x$), then $a = [0, 1, 2, 5, 4]$, $x = 3$; choose $i = 4$ (it is possible since $a_4 > x$), then $a = [0, 1, 2, 3, 4]$, $x = 5$. Calculate the minimum number of operations you have to perform so that $a$ becomes sorted, or report that it is impossible. -----Input----- The first line contains one integer $t$ ($1 \le t \le 500$) β€” the number of test cases. Each test case consists of two lines. The first line contains two integers $n$ and $x$ ($1 \le n \le 500$, $0 \le x \le 500$) β€” the number of elements in the sequence and the initial value of $x$. The second line contains $n$ integers $a_1$, $a_2$, ..., $a_n$ ($0 \le a_i \le 500$). The sum of values of $n$ over all test cases in the input does not exceed $500$. -----Output----- For each test case, print one integer β€” the minimum number of operations you have to perform to make $a$ sorted, or $-1$, if it is impossible. -----Examples----- Input 6 4 1 2 3 5 4 5 6 1 1 3 4 4 1 10 2 2 10 11 9 2 10 12 11 5 18 81 324 218 413 324 Output 3 0 0 -1 1 3 -----Note----- None
def sort1(l): n = len(l) for i in range(1, n): if l[i - 1] > l[i]: return False return True for _ in range(int(input())): n, x = list(map(int, input().split())) l = list(map(int, input().split())) ans = 0 f = 0 while not sort1(l): ans += 1 i = 0 while i < n and l[i] <= x: i += 1 if i == n: f = 1 break x, l[i] = l[i], x if f == 1: print(-1) else: print(ans)
FUNC_DEF ASSIGN VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR NUMBER VAR IF VAR BIN_OP VAR NUMBER VAR VAR RETURN NUMBER RETURN NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE FUNC_CALL VAR VAR VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR VAR VAR VAR VAR NUMBER IF VAR VAR ASSIGN VAR NUMBER ASSIGN VAR VAR VAR VAR VAR VAR IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR VAR
You are given a sequence $a$ consisting of $n$ integers $a_1, a_2, \dots, a_n$, and an integer $x$. Your task is to make the sequence $a$ sorted (it is considered sorted if the condition $a_1 \le a_2 \le a_3 \le \dots \le a_n$ holds). To make the sequence sorted, you may perform the following operation any number of times you want (possibly zero): choose an integer $i$ such that $1 \le i \le n$ and $a_i > x$, and swap the values of $a_i$ and $x$. For example, if $a = [0, 2, 3, 5, 4]$, $x = 1$, the following sequence of operations is possible: choose $i = 2$ (it is possible since $a_2 > x$), then $a = [0, 1, 3, 5, 4]$, $x = 2$; choose $i = 3$ (it is possible since $a_3 > x$), then $a = [0, 1, 2, 5, 4]$, $x = 3$; choose $i = 4$ (it is possible since $a_4 > x$), then $a = [0, 1, 2, 3, 4]$, $x = 5$. Calculate the minimum number of operations you have to perform so that $a$ becomes sorted, or report that it is impossible. -----Input----- The first line contains one integer $t$ ($1 \le t \le 500$) β€” the number of test cases. Each test case consists of two lines. The first line contains two integers $n$ and $x$ ($1 \le n \le 500$, $0 \le x \le 500$) β€” the number of elements in the sequence and the initial value of $x$. The second line contains $n$ integers $a_1$, $a_2$, ..., $a_n$ ($0 \le a_i \le 500$). The sum of values of $n$ over all test cases in the input does not exceed $500$. -----Output----- For each test case, print one integer β€” the minimum number of operations you have to perform to make $a$ sorted, or $-1$, if it is impossible. -----Examples----- Input 6 4 1 2 3 5 4 5 6 1 1 3 4 4 1 10 2 2 10 11 9 2 10 12 11 5 18 81 324 218 413 324 Output 3 0 0 -1 1 3 -----Note----- None
def how_many_operations_need_to_make_sorted(a_seq, x): a_seq = list(a_seq) operations_n = 0 while not __is_sorted(a_seq): for i in range(len(a_seq)): if a_seq[i] > x: a_seq[i], x = x, a_seq[i] operations_n += 1 break else: raise ValueError return operations_n def __is_sorted(seq): for i in range(len(seq) - 1): if not seq[i] <= seq[i + 1]: return False return True def __main(): (t,) = __read_ints() for i_t in range(t): n, x = __read_ints() a_seq = tuple(__read_ints()) try: result = how_many_operations_need_to_make_sorted(a_seq, x) except ValueError: result = -1 print(result) def __read_ints(): return map(int, input().split()) __main()
FUNC_DEF ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER WHILE FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR VAR VAR ASSIGN VAR VAR VAR VAR VAR VAR VAR NUMBER VAR RETURN VAR FUNC_DEF FOR VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER IF VAR VAR VAR BIN_OP VAR NUMBER RETURN NUMBER RETURN NUMBER FUNC_DEF ASSIGN VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR VAR ASSIGN VAR NUMBER EXPR FUNC_CALL VAR VAR FUNC_DEF RETURN FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR
You are given a sequence $a$ consisting of $n$ integers $a_1, a_2, \dots, a_n$, and an integer $x$. Your task is to make the sequence $a$ sorted (it is considered sorted if the condition $a_1 \le a_2 \le a_3 \le \dots \le a_n$ holds). To make the sequence sorted, you may perform the following operation any number of times you want (possibly zero): choose an integer $i$ such that $1 \le i \le n$ and $a_i > x$, and swap the values of $a_i$ and $x$. For example, if $a = [0, 2, 3, 5, 4]$, $x = 1$, the following sequence of operations is possible: choose $i = 2$ (it is possible since $a_2 > x$), then $a = [0, 1, 3, 5, 4]$, $x = 2$; choose $i = 3$ (it is possible since $a_3 > x$), then $a = [0, 1, 2, 5, 4]$, $x = 3$; choose $i = 4$ (it is possible since $a_4 > x$), then $a = [0, 1, 2, 3, 4]$, $x = 5$. Calculate the minimum number of operations you have to perform so that $a$ becomes sorted, or report that it is impossible. -----Input----- The first line contains one integer $t$ ($1 \le t \le 500$) β€” the number of test cases. Each test case consists of two lines. The first line contains two integers $n$ and $x$ ($1 \le n \le 500$, $0 \le x \le 500$) β€” the number of elements in the sequence and the initial value of $x$. The second line contains $n$ integers $a_1$, $a_2$, ..., $a_n$ ($0 \le a_i \le 500$). The sum of values of $n$ over all test cases in the input does not exceed $500$. -----Output----- For each test case, print one integer β€” the minimum number of operations you have to perform to make $a$ sorted, or $-1$, if it is impossible. -----Examples----- Input 6 4 1 2 3 5 4 5 6 1 1 3 4 4 1 10 2 2 10 11 9 2 10 12 11 5 18 81 324 218 413 324 Output 3 0 0 -1 1 3 -----Note----- None
def answer(): global x opp = 0 if a == sorted(a): return opp i = 0 while i < n: while i < n and a[i] <= x: i += 1 if i < n: x, a[i] = a[i], x opp += 1 if a == sorted(a): return opp i += 1 return -1 for T in range(int(input())): n, x = map(int, input().split()) a = list(map(int, input().split())) print(answer())
FUNC_DEF ASSIGN VAR NUMBER IF VAR FUNC_CALL VAR VAR RETURN VAR ASSIGN VAR NUMBER WHILE VAR VAR WHILE VAR VAR VAR VAR VAR VAR NUMBER IF VAR VAR ASSIGN VAR VAR VAR VAR VAR VAR VAR NUMBER IF VAR FUNC_CALL VAR VAR RETURN VAR VAR NUMBER RETURN NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR FUNC_CALL VAR
You are given a sequence $a$ consisting of $n$ integers $a_1, a_2, \dots, a_n$, and an integer $x$. Your task is to make the sequence $a$ sorted (it is considered sorted if the condition $a_1 \le a_2 \le a_3 \le \dots \le a_n$ holds). To make the sequence sorted, you may perform the following operation any number of times you want (possibly zero): choose an integer $i$ such that $1 \le i \le n$ and $a_i > x$, and swap the values of $a_i$ and $x$. For example, if $a = [0, 2, 3, 5, 4]$, $x = 1$, the following sequence of operations is possible: choose $i = 2$ (it is possible since $a_2 > x$), then $a = [0, 1, 3, 5, 4]$, $x = 2$; choose $i = 3$ (it is possible since $a_3 > x$), then $a = [0, 1, 2, 5, 4]$, $x = 3$; choose $i = 4$ (it is possible since $a_4 > x$), then $a = [0, 1, 2, 3, 4]$, $x = 5$. Calculate the minimum number of operations you have to perform so that $a$ becomes sorted, or report that it is impossible. -----Input----- The first line contains one integer $t$ ($1 \le t \le 500$) β€” the number of test cases. Each test case consists of two lines. The first line contains two integers $n$ and $x$ ($1 \le n \le 500$, $0 \le x \le 500$) β€” the number of elements in the sequence and the initial value of $x$. The second line contains $n$ integers $a_1$, $a_2$, ..., $a_n$ ($0 \le a_i \le 500$). The sum of values of $n$ over all test cases in the input does not exceed $500$. -----Output----- For each test case, print one integer β€” the minimum number of operations you have to perform to make $a$ sorted, or $-1$, if it is impossible. -----Examples----- Input 6 4 1 2 3 5 4 5 6 1 1 3 4 4 1 10 2 2 10 11 9 2 10 12 11 5 18 81 324 218 413 324 Output 3 0 0 -1 1 3 -----Note----- None
def sol(): n, x = list(map(int, input().split())) arr = list(map(int, input().split())) a = 0 solution = 0 if arr == sorted(arr): return 0 for i in range(n): if arr[i] > x: solution += 1 arr[i], x = x, arr[i] if arr == sorted(arr): return solution if i == len(arr) - 1: return -1 return solution for _ in range(int(input())): print(sol())
FUNC_DEF ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER IF VAR FUNC_CALL VAR VAR RETURN NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR VAR VAR VAR NUMBER ASSIGN VAR VAR VAR VAR VAR VAR IF VAR FUNC_CALL VAR VAR RETURN VAR IF VAR BIN_OP FUNC_CALL VAR VAR NUMBER RETURN NUMBER RETURN VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR EXPR FUNC_CALL VAR FUNC_CALL VAR
You are given a sequence $a$ consisting of $n$ integers $a_1, a_2, \dots, a_n$, and an integer $x$. Your task is to make the sequence $a$ sorted (it is considered sorted if the condition $a_1 \le a_2 \le a_3 \le \dots \le a_n$ holds). To make the sequence sorted, you may perform the following operation any number of times you want (possibly zero): choose an integer $i$ such that $1 \le i \le n$ and $a_i > x$, and swap the values of $a_i$ and $x$. For example, if $a = [0, 2, 3, 5, 4]$, $x = 1$, the following sequence of operations is possible: choose $i = 2$ (it is possible since $a_2 > x$), then $a = [0, 1, 3, 5, 4]$, $x = 2$; choose $i = 3$ (it is possible since $a_3 > x$), then $a = [0, 1, 2, 5, 4]$, $x = 3$; choose $i = 4$ (it is possible since $a_4 > x$), then $a = [0, 1, 2, 3, 4]$, $x = 5$. Calculate the minimum number of operations you have to perform so that $a$ becomes sorted, or report that it is impossible. -----Input----- The first line contains one integer $t$ ($1 \le t \le 500$) β€” the number of test cases. Each test case consists of two lines. The first line contains two integers $n$ and $x$ ($1 \le n \le 500$, $0 \le x \le 500$) β€” the number of elements in the sequence and the initial value of $x$. The second line contains $n$ integers $a_1$, $a_2$, ..., $a_n$ ($0 \le a_i \le 500$). The sum of values of $n$ over all test cases in the input does not exceed $500$. -----Output----- For each test case, print one integer β€” the minimum number of operations you have to perform to make $a$ sorted, or $-1$, if it is impossible. -----Examples----- Input 6 4 1 2 3 5 4 5 6 1 1 3 4 4 1 10 2 2 10 11 9 2 10 12 11 5 18 81 324 218 413 324 Output 3 0 0 -1 1 3 -----Note----- None
tc = int(input()) while tc: n, x = map(int, input().split()) li = list(map(int, input().split())) pre = [li[0]] m = 0 def not_sorted(li): for i in range(1, n): if li[i] < li[i - 1]: return 1 return 0 m = 0 flag = True while not_sorted(li): m += 1 i = 0 while i < n and li[i] <= x: i += 1 if i == n: flag = False break li[i], x = x, li[i] if flag: print(m) else: print(-1) tc -= 1
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR WHILE VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR LIST VAR NUMBER ASSIGN VAR NUMBER FUNC_DEF FOR VAR FUNC_CALL VAR NUMBER VAR IF VAR VAR VAR BIN_OP VAR NUMBER RETURN NUMBER RETURN NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE FUNC_CALL VAR VAR VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR VAR VAR VAR VAR NUMBER IF VAR VAR ASSIGN VAR NUMBER ASSIGN VAR VAR VAR VAR VAR VAR IF VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR NUMBER VAR NUMBER
You are given a sequence $a$ consisting of $n$ integers $a_1, a_2, \dots, a_n$, and an integer $x$. Your task is to make the sequence $a$ sorted (it is considered sorted if the condition $a_1 \le a_2 \le a_3 \le \dots \le a_n$ holds). To make the sequence sorted, you may perform the following operation any number of times you want (possibly zero): choose an integer $i$ such that $1 \le i \le n$ and $a_i > x$, and swap the values of $a_i$ and $x$. For example, if $a = [0, 2, 3, 5, 4]$, $x = 1$, the following sequence of operations is possible: choose $i = 2$ (it is possible since $a_2 > x$), then $a = [0, 1, 3, 5, 4]$, $x = 2$; choose $i = 3$ (it is possible since $a_3 > x$), then $a = [0, 1, 2, 5, 4]$, $x = 3$; choose $i = 4$ (it is possible since $a_4 > x$), then $a = [0, 1, 2, 3, 4]$, $x = 5$. Calculate the minimum number of operations you have to perform so that $a$ becomes sorted, or report that it is impossible. -----Input----- The first line contains one integer $t$ ($1 \le t \le 500$) β€” the number of test cases. Each test case consists of two lines. The first line contains two integers $n$ and $x$ ($1 \le n \le 500$, $0 \le x \le 500$) β€” the number of elements in the sequence and the initial value of $x$. The second line contains $n$ integers $a_1$, $a_2$, ..., $a_n$ ($0 \le a_i \le 500$). The sum of values of $n$ over all test cases in the input does not exceed $500$. -----Output----- For each test case, print one integer β€” the minimum number of operations you have to perform to make $a$ sorted, or $-1$, if it is impossible. -----Examples----- Input 6 4 1 2 3 5 4 5 6 1 1 3 4 4 1 10 2 2 10 11 9 2 10 12 11 5 18 81 324 218 413 324 Output 3 0 0 -1 1 3 -----Note----- None
for _ in range(int(input())): n, x = map(int, input().split()) l = list(map(int, input().split())) f = 1 ans = 0 for i in range(1, n): if l[i] < l[i - 1]: idx = i - 1 val = i - 1 for j in range(i - 2, -1, -1): val = j if x >= l[j]: break idx = val if idx == 0 and l[0] > x: idx -= 1 for k in range(idx + 1, i - 1): if x == l[k]: continue temp = l[k] l[k] = x x = temp ans += 1 cv = l[i - 1] if l[i - 1] > x and l[i] >= x: temp = cv l[i - 1] = x x = temp ans += 1 else: f = 0 if f: print(ans) else: print(-1)
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR IF VAR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER ASSIGN VAR VAR IF VAR VAR VAR ASSIGN VAR VAR IF VAR NUMBER VAR NUMBER VAR VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER BIN_OP VAR NUMBER IF VAR VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR VAR VAR NUMBER ASSIGN VAR VAR BIN_OP VAR NUMBER IF VAR BIN_OP VAR NUMBER VAR VAR VAR VAR ASSIGN VAR VAR ASSIGN VAR BIN_OP VAR NUMBER VAR ASSIGN VAR VAR VAR NUMBER ASSIGN VAR NUMBER IF VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR NUMBER
You are given a sequence $a$ consisting of $n$ integers $a_1, a_2, \dots, a_n$, and an integer $x$. Your task is to make the sequence $a$ sorted (it is considered sorted if the condition $a_1 \le a_2 \le a_3 \le \dots \le a_n$ holds). To make the sequence sorted, you may perform the following operation any number of times you want (possibly zero): choose an integer $i$ such that $1 \le i \le n$ and $a_i > x$, and swap the values of $a_i$ and $x$. For example, if $a = [0, 2, 3, 5, 4]$, $x = 1$, the following sequence of operations is possible: choose $i = 2$ (it is possible since $a_2 > x$), then $a = [0, 1, 3, 5, 4]$, $x = 2$; choose $i = 3$ (it is possible since $a_3 > x$), then $a = [0, 1, 2, 5, 4]$, $x = 3$; choose $i = 4$ (it is possible since $a_4 > x$), then $a = [0, 1, 2, 3, 4]$, $x = 5$. Calculate the minimum number of operations you have to perform so that $a$ becomes sorted, or report that it is impossible. -----Input----- The first line contains one integer $t$ ($1 \le t \le 500$) β€” the number of test cases. Each test case consists of two lines. The first line contains two integers $n$ and $x$ ($1 \le n \le 500$, $0 \le x \le 500$) β€” the number of elements in the sequence and the initial value of $x$. The second line contains $n$ integers $a_1$, $a_2$, ..., $a_n$ ($0 \le a_i \le 500$). The sum of values of $n$ over all test cases in the input does not exceed $500$. -----Output----- For each test case, print one integer β€” the minimum number of operations you have to perform to make $a$ sorted, or $-1$, if it is impossible. -----Examples----- Input 6 4 1 2 3 5 4 5 6 1 1 3 4 4 1 10 2 2 10 11 9 2 10 12 11 5 18 81 324 218 413 324 Output 3 0 0 -1 1 3 -----Note----- None
import sys input = sys.stdin.readline for _ in range(int(input())): n, x = list(map(int, input().split())) arr = list(map(int, input().split())) ans = 0 for i in range(1, len(arr)): if arr[i] < arr[i - 1]: index = i - 1 while index >= 0 and arr[index] > x: index -= 1 ans += 1 index += 1 for j in range(index, i): temp = arr[j] if arr[j] == x: ans -= 1 arr[j] = x x = temp for i in range(1, len(arr)): if arr[i] < arr[i - 1]: ans = -1 print(ans)
IMPORT ASSIGN VAR VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR IF VAR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER WHILE VAR NUMBER VAR VAR VAR VAR NUMBER VAR NUMBER VAR NUMBER FOR VAR FUNC_CALL VAR VAR VAR ASSIGN VAR VAR VAR IF VAR VAR VAR VAR NUMBER ASSIGN VAR VAR VAR ASSIGN VAR VAR FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR IF VAR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER EXPR FUNC_CALL VAR VAR
You are given a sequence $a$ consisting of $n$ integers $a_1, a_2, \dots, a_n$, and an integer $x$. Your task is to make the sequence $a$ sorted (it is considered sorted if the condition $a_1 \le a_2 \le a_3 \le \dots \le a_n$ holds). To make the sequence sorted, you may perform the following operation any number of times you want (possibly zero): choose an integer $i$ such that $1 \le i \le n$ and $a_i > x$, and swap the values of $a_i$ and $x$. For example, if $a = [0, 2, 3, 5, 4]$, $x = 1$, the following sequence of operations is possible: choose $i = 2$ (it is possible since $a_2 > x$), then $a = [0, 1, 3, 5, 4]$, $x = 2$; choose $i = 3$ (it is possible since $a_3 > x$), then $a = [0, 1, 2, 5, 4]$, $x = 3$; choose $i = 4$ (it is possible since $a_4 > x$), then $a = [0, 1, 2, 3, 4]$, $x = 5$. Calculate the minimum number of operations you have to perform so that $a$ becomes sorted, or report that it is impossible. -----Input----- The first line contains one integer $t$ ($1 \le t \le 500$) β€” the number of test cases. Each test case consists of two lines. The first line contains two integers $n$ and $x$ ($1 \le n \le 500$, $0 \le x \le 500$) β€” the number of elements in the sequence and the initial value of $x$. The second line contains $n$ integers $a_1$, $a_2$, ..., $a_n$ ($0 \le a_i \le 500$). The sum of values of $n$ over all test cases in the input does not exceed $500$. -----Output----- For each test case, print one integer β€” the minimum number of operations you have to perform to make $a$ sorted, or $-1$, if it is impossible. -----Examples----- Input 6 4 1 2 3 5 4 5 6 1 1 3 4 4 1 10 2 2 10 11 9 2 10 12 11 5 18 81 324 218 413 324 Output 3 0 0 -1 1 3 -----Note----- None
def probeg(n, a): index = 0 LN = 0 V = 1 while index < n and V: if a[index] < LN: V = 0 LN = a[index] index += 1 if V: return 0 else: return 1 t = int(input()) for _ in range(t): n, x = map(int, input().split()) a = list(map(int, input().split())) V = probeg(n, a) answer = 0 S = 1 while V: answer += 1 index = 0 valid = 1 while index < n and valid: if a[index] > x: t = a[index] a[index] = x x = t valid = 0 if index == n - 1: if a[index] <= x: answer = -1 S = 0 index += 1 if S: V = probeg(n, a) else: V = 0 print(answer)
FUNC_DEF ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR VAR IF VAR VAR VAR ASSIGN VAR NUMBER ASSIGN VAR VAR VAR VAR NUMBER IF VAR RETURN NUMBER RETURN NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR VAR IF VAR VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR VAR ASSIGN VAR NUMBER IF VAR BIN_OP VAR NUMBER IF VAR VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER VAR NUMBER IF VAR ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR NUMBER EXPR FUNC_CALL VAR VAR
You are given a sequence $a$ consisting of $n$ integers $a_1, a_2, \dots, a_n$, and an integer $x$. Your task is to make the sequence $a$ sorted (it is considered sorted if the condition $a_1 \le a_2 \le a_3 \le \dots \le a_n$ holds). To make the sequence sorted, you may perform the following operation any number of times you want (possibly zero): choose an integer $i$ such that $1 \le i \le n$ and $a_i > x$, and swap the values of $a_i$ and $x$. For example, if $a = [0, 2, 3, 5, 4]$, $x = 1$, the following sequence of operations is possible: choose $i = 2$ (it is possible since $a_2 > x$), then $a = [0, 1, 3, 5, 4]$, $x = 2$; choose $i = 3$ (it is possible since $a_3 > x$), then $a = [0, 1, 2, 5, 4]$, $x = 3$; choose $i = 4$ (it is possible since $a_4 > x$), then $a = [0, 1, 2, 3, 4]$, $x = 5$. Calculate the minimum number of operations you have to perform so that $a$ becomes sorted, or report that it is impossible. -----Input----- The first line contains one integer $t$ ($1 \le t \le 500$) β€” the number of test cases. Each test case consists of two lines. The first line contains two integers $n$ and $x$ ($1 \le n \le 500$, $0 \le x \le 500$) β€” the number of elements in the sequence and the initial value of $x$. The second line contains $n$ integers $a_1$, $a_2$, ..., $a_n$ ($0 \le a_i \le 500$). The sum of values of $n$ over all test cases in the input does not exceed $500$. -----Output----- For each test case, print one integer β€” the minimum number of operations you have to perform to make $a$ sorted, or $-1$, if it is impossible. -----Examples----- Input 6 4 1 2 3 5 4 5 6 1 1 3 4 4 1 10 2 2 10 11 9 2 10 12 11 5 18 81 324 218 413 324 Output 3 0 0 -1 1 3 -----Note----- None
for w in range(int(input())): n, x = tuple(map(int, input().split())) a = list(map(int, input().split())) c = 0 ans = 0 t = -1 i = 0 if a == sorted(a): print(0) elif x > max(a): print(-1) else: for i in range(n): if a[i] > x: a[i], x = x, a[i] ans += 1 if a == sorted(a): break if a == sorted(a): print(ans) else: print(-1)
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER IF VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR NUMBER IF VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR VAR VAR ASSIGN VAR VAR VAR VAR VAR VAR VAR NUMBER IF VAR FUNC_CALL VAR VAR IF VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR NUMBER
You are given a sequence $a$ consisting of $n$ integers $a_1, a_2, \dots, a_n$, and an integer $x$. Your task is to make the sequence $a$ sorted (it is considered sorted if the condition $a_1 \le a_2 \le a_3 \le \dots \le a_n$ holds). To make the sequence sorted, you may perform the following operation any number of times you want (possibly zero): choose an integer $i$ such that $1 \le i \le n$ and $a_i > x$, and swap the values of $a_i$ and $x$. For example, if $a = [0, 2, 3, 5, 4]$, $x = 1$, the following sequence of operations is possible: choose $i = 2$ (it is possible since $a_2 > x$), then $a = [0, 1, 3, 5, 4]$, $x = 2$; choose $i = 3$ (it is possible since $a_3 > x$), then $a = [0, 1, 2, 5, 4]$, $x = 3$; choose $i = 4$ (it is possible since $a_4 > x$), then $a = [0, 1, 2, 3, 4]$, $x = 5$. Calculate the minimum number of operations you have to perform so that $a$ becomes sorted, or report that it is impossible. -----Input----- The first line contains one integer $t$ ($1 \le t \le 500$) β€” the number of test cases. Each test case consists of two lines. The first line contains two integers $n$ and $x$ ($1 \le n \le 500$, $0 \le x \le 500$) β€” the number of elements in the sequence and the initial value of $x$. The second line contains $n$ integers $a_1$, $a_2$, ..., $a_n$ ($0 \le a_i \le 500$). The sum of values of $n$ over all test cases in the input does not exceed $500$. -----Output----- For each test case, print one integer β€” the minimum number of operations you have to perform to make $a$ sorted, or $-1$, if it is impossible. -----Examples----- Input 6 4 1 2 3 5 4 5 6 1 1 3 4 4 1 10 2 2 10 11 9 2 10 12 11 5 18 81 324 218 413 324 Output 3 0 0 -1 1 3 -----Note----- None
import sys def solve(): n, x = list(map(int, input().split())) a = list(map(int, input().split())) o = 0 if a == sorted(a): print(o) return for i in range(len(a)): if a == sorted(a): print(o) return if a[i] > x: temp = a[i] a[i] = x x = temp o += 1 if a != sorted(a): print(-1) else: print(o) num = int(input()) for n in range(num): solve()
IMPORT FUNC_DEF ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER IF VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR RETURN FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR RETURN IF VAR VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR VAR VAR NUMBER IF VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR
You are given a sequence $a$ consisting of $n$ integers $a_1, a_2, \dots, a_n$, and an integer $x$. Your task is to make the sequence $a$ sorted (it is considered sorted if the condition $a_1 \le a_2 \le a_3 \le \dots \le a_n$ holds). To make the sequence sorted, you may perform the following operation any number of times you want (possibly zero): choose an integer $i$ such that $1 \le i \le n$ and $a_i > x$, and swap the values of $a_i$ and $x$. For example, if $a = [0, 2, 3, 5, 4]$, $x = 1$, the following sequence of operations is possible: choose $i = 2$ (it is possible since $a_2 > x$), then $a = [0, 1, 3, 5, 4]$, $x = 2$; choose $i = 3$ (it is possible since $a_3 > x$), then $a = [0, 1, 2, 5, 4]$, $x = 3$; choose $i = 4$ (it is possible since $a_4 > x$), then $a = [0, 1, 2, 3, 4]$, $x = 5$. Calculate the minimum number of operations you have to perform so that $a$ becomes sorted, or report that it is impossible. -----Input----- The first line contains one integer $t$ ($1 \le t \le 500$) β€” the number of test cases. Each test case consists of two lines. The first line contains two integers $n$ and $x$ ($1 \le n \le 500$, $0 \le x \le 500$) β€” the number of elements in the sequence and the initial value of $x$. The second line contains $n$ integers $a_1$, $a_2$, ..., $a_n$ ($0 \le a_i \le 500$). The sum of values of $n$ over all test cases in the input does not exceed $500$. -----Output----- For each test case, print one integer β€” the minimum number of operations you have to perform to make $a$ sorted, or $-1$, if it is impossible. -----Examples----- Input 6 4 1 2 3 5 4 5 6 1 1 3 4 4 1 10 2 2 10 11 9 2 10 12 11 5 18 81 324 218 413 324 Output 3 0 0 -1 1 3 -----Note----- None
import sys def get_ints(): return map(int, sys.stdin.readline().strip().split()) def get_int(): return list(map(int, sys.stdin.readline().strip().split()))[0] def get_list(): return list(map(int, sys.stdin.readline().strip().split())) def get_string(): return sys.stdin.readline().strip() N = 0 a = [] def solve(): global N N, X = get_ints() a = get_list() lastSortedPosition = N - 1 notSorted = False for i in reversed(range(1, N)): if a[i] < a[i - 1]: lastSortedPosition = i notSorted = True break if not notSorted: print(0) return bad = False answer = 0 for i in range(lastSortedPosition): if a[i] > X: a[i], X = X, a[i] answer = answer + 1 if i != N - 1 and a[i] > a[i + 1]: bad = True break elif i == lastSortedPosition - 1 and a[i] > a[i + 1]: bad = True break elif i != 0 and a[i] < a[i - 1]: bad = True break if bad: print(-1) else: print(answer) test_cases = get_int() for _ in range(test_cases): solve()
IMPORT FUNC_DEF RETURN FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL FUNC_CALL VAR FUNC_DEF RETURN FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL FUNC_CALL VAR NUMBER FUNC_DEF RETURN FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL FUNC_CALL VAR FUNC_DEF RETURN FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR LIST FUNC_DEF ASSIGN VAR VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR NUMBER VAR IF VAR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR VAR ASSIGN VAR NUMBER IF VAR EXPR FUNC_CALL VAR NUMBER RETURN ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR VAR VAR ASSIGN VAR VAR VAR VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER IF VAR BIN_OP VAR NUMBER VAR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER IF VAR BIN_OP VAR NUMBER VAR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER IF VAR NUMBER VAR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER IF VAR EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR
You are given a sequence $a$ consisting of $n$ integers $a_1, a_2, \dots, a_n$, and an integer $x$. Your task is to make the sequence $a$ sorted (it is considered sorted if the condition $a_1 \le a_2 \le a_3 \le \dots \le a_n$ holds). To make the sequence sorted, you may perform the following operation any number of times you want (possibly zero): choose an integer $i$ such that $1 \le i \le n$ and $a_i > x$, and swap the values of $a_i$ and $x$. For example, if $a = [0, 2, 3, 5, 4]$, $x = 1$, the following sequence of operations is possible: choose $i = 2$ (it is possible since $a_2 > x$), then $a = [0, 1, 3, 5, 4]$, $x = 2$; choose $i = 3$ (it is possible since $a_3 > x$), then $a = [0, 1, 2, 5, 4]$, $x = 3$; choose $i = 4$ (it is possible since $a_4 > x$), then $a = [0, 1, 2, 3, 4]$, $x = 5$. Calculate the minimum number of operations you have to perform so that $a$ becomes sorted, or report that it is impossible. -----Input----- The first line contains one integer $t$ ($1 \le t \le 500$) β€” the number of test cases. Each test case consists of two lines. The first line contains two integers $n$ and $x$ ($1 \le n \le 500$, $0 \le x \le 500$) β€” the number of elements in the sequence and the initial value of $x$. The second line contains $n$ integers $a_1$, $a_2$, ..., $a_n$ ($0 \le a_i \le 500$). The sum of values of $n$ over all test cases in the input does not exceed $500$. -----Output----- For each test case, print one integer β€” the minimum number of operations you have to perform to make $a$ sorted, or $-1$, if it is impossible. -----Examples----- Input 6 4 1 2 3 5 4 5 6 1 1 3 4 4 1 10 2 2 10 11 9 2 10 12 11 5 18 81 324 218 413 324 Output 3 0 0 -1 1 3 -----Note----- None
t = int(input()) for i in range(t): n, x = map(int, input().split()) lst = list(map(int, input().split())) c = 0 lst1 = lst.copy() lst1.sort() ind = 0 while True: if lst1 == lst or ind > n - 1: break elif lst[ind] > x: lst[ind], x = x, lst[ind] c += 1 lst1 = lst.copy() lst1.sort() ind += 1 else: ind += 1 lst1 = lst.copy() lst1.sort() if lst1 == lst: print(c) else: print(-1)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR EXPR FUNC_CALL VAR ASSIGN VAR NUMBER WHILE NUMBER IF VAR VAR VAR BIN_OP VAR NUMBER IF VAR VAR VAR ASSIGN VAR VAR VAR VAR VAR VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR EXPR FUNC_CALL VAR VAR NUMBER VAR NUMBER ASSIGN VAR FUNC_CALL VAR EXPR FUNC_CALL VAR IF VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR NUMBER
You are given a sequence $a$ consisting of $n$ integers $a_1, a_2, \dots, a_n$, and an integer $x$. Your task is to make the sequence $a$ sorted (it is considered sorted if the condition $a_1 \le a_2 \le a_3 \le \dots \le a_n$ holds). To make the sequence sorted, you may perform the following operation any number of times you want (possibly zero): choose an integer $i$ such that $1 \le i \le n$ and $a_i > x$, and swap the values of $a_i$ and $x$. For example, if $a = [0, 2, 3, 5, 4]$, $x = 1$, the following sequence of operations is possible: choose $i = 2$ (it is possible since $a_2 > x$), then $a = [0, 1, 3, 5, 4]$, $x = 2$; choose $i = 3$ (it is possible since $a_3 > x$), then $a = [0, 1, 2, 5, 4]$, $x = 3$; choose $i = 4$ (it is possible since $a_4 > x$), then $a = [0, 1, 2, 3, 4]$, $x = 5$. Calculate the minimum number of operations you have to perform so that $a$ becomes sorted, or report that it is impossible. -----Input----- The first line contains one integer $t$ ($1 \le t \le 500$) β€” the number of test cases. Each test case consists of two lines. The first line contains two integers $n$ and $x$ ($1 \le n \le 500$, $0 \le x \le 500$) β€” the number of elements in the sequence and the initial value of $x$. The second line contains $n$ integers $a_1$, $a_2$, ..., $a_n$ ($0 \le a_i \le 500$). The sum of values of $n$ over all test cases in the input does not exceed $500$. -----Output----- For each test case, print one integer β€” the minimum number of operations you have to perform to make $a$ sorted, or $-1$, if it is impossible. -----Examples----- Input 6 4 1 2 3 5 4 5 6 1 1 3 4 4 1 10 2 2 10 11 9 2 10 12 11 5 18 81 324 218 413 324 Output 3 0 0 -1 1 3 -----Note----- None
def read(): return [int(x) for x in input().split()] (ca,) = read() for _ in range(ca): n, x = read() ds = read() i = 0 r = 0 for j in range(1, len(ds)): if ds[j] < ds[j - 1]: while i < j: if x < ds[i]: r += 1 ds[i] ^= x x ^= ds[i] ds[i] ^= x i += 1 if ds[j] < ds[j - 1]: r = -1 break print(r)
FUNC_DEF RETURN FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR IF VAR VAR VAR BIN_OP VAR NUMBER WHILE VAR VAR IF VAR VAR VAR VAR NUMBER VAR VAR VAR VAR VAR VAR VAR VAR VAR VAR NUMBER IF VAR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER EXPR FUNC_CALL VAR VAR
You are given a sequence $a$ consisting of $n$ integers $a_1, a_2, \dots, a_n$, and an integer $x$. Your task is to make the sequence $a$ sorted (it is considered sorted if the condition $a_1 \le a_2 \le a_3 \le \dots \le a_n$ holds). To make the sequence sorted, you may perform the following operation any number of times you want (possibly zero): choose an integer $i$ such that $1 \le i \le n$ and $a_i > x$, and swap the values of $a_i$ and $x$. For example, if $a = [0, 2, 3, 5, 4]$, $x = 1$, the following sequence of operations is possible: choose $i = 2$ (it is possible since $a_2 > x$), then $a = [0, 1, 3, 5, 4]$, $x = 2$; choose $i = 3$ (it is possible since $a_3 > x$), then $a = [0, 1, 2, 5, 4]$, $x = 3$; choose $i = 4$ (it is possible since $a_4 > x$), then $a = [0, 1, 2, 3, 4]$, $x = 5$. Calculate the minimum number of operations you have to perform so that $a$ becomes sorted, or report that it is impossible. -----Input----- The first line contains one integer $t$ ($1 \le t \le 500$) β€” the number of test cases. Each test case consists of two lines. The first line contains two integers $n$ and $x$ ($1 \le n \le 500$, $0 \le x \le 500$) β€” the number of elements in the sequence and the initial value of $x$. The second line contains $n$ integers $a_1$, $a_2$, ..., $a_n$ ($0 \le a_i \le 500$). The sum of values of $n$ over all test cases in the input does not exceed $500$. -----Output----- For each test case, print one integer β€” the minimum number of operations you have to perform to make $a$ sorted, or $-1$, if it is impossible. -----Examples----- Input 6 4 1 2 3 5 4 5 6 1 1 3 4 4 1 10 2 2 10 11 9 2 10 12 11 5 18 81 324 218 413 324 Output 3 0 0 -1 1 3 -----Note----- None
for _ in range(int(input())): n, x = map(int, input().split()) a = list(map(int, input().split())) res = 0 i = 0 backward = False while i < n - 1: if not backward: if a[i] > a[i + 1]: if a[i] <= x or x > a[i + 1]: res = -1 break elif i > 0: if a[i - 1] <= x: buffer = a[i] a[i] = x x = buffer res += 1 i += 1 else: backward = True i -= 1 else: buffer = a[i] a[i] = x x = buffer res += 1 i += 1 else: i += 1 elif i > 0: if a[i - 1] > x: i -= 1 else: backward = False buffer = a[i] a[i] = x x = buffer res += 1 i += 1 else: backward = False buffer = a[i] a[i] = x x = buffer res += 1 i += 1 print(res)
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR BIN_OP VAR NUMBER IF VAR IF VAR VAR VAR BIN_OP VAR NUMBER IF VAR VAR VAR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER IF VAR NUMBER IF VAR BIN_OP VAR NUMBER VAR ASSIGN VAR VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR VAR VAR NUMBER VAR NUMBER ASSIGN VAR NUMBER VAR NUMBER ASSIGN VAR VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR VAR VAR NUMBER VAR NUMBER VAR NUMBER IF VAR NUMBER IF VAR BIN_OP VAR NUMBER VAR VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR VAR VAR NUMBER VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR VAR VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR VAR
You are given a sequence $a$ consisting of $n$ integers $a_1, a_2, \dots, a_n$, and an integer $x$. Your task is to make the sequence $a$ sorted (it is considered sorted if the condition $a_1 \le a_2 \le a_3 \le \dots \le a_n$ holds). To make the sequence sorted, you may perform the following operation any number of times you want (possibly zero): choose an integer $i$ such that $1 \le i \le n$ and $a_i > x$, and swap the values of $a_i$ and $x$. For example, if $a = [0, 2, 3, 5, 4]$, $x = 1$, the following sequence of operations is possible: choose $i = 2$ (it is possible since $a_2 > x$), then $a = [0, 1, 3, 5, 4]$, $x = 2$; choose $i = 3$ (it is possible since $a_3 > x$), then $a = [0, 1, 2, 5, 4]$, $x = 3$; choose $i = 4$ (it is possible since $a_4 > x$), then $a = [0, 1, 2, 3, 4]$, $x = 5$. Calculate the minimum number of operations you have to perform so that $a$ becomes sorted, or report that it is impossible. -----Input----- The first line contains one integer $t$ ($1 \le t \le 500$) β€” the number of test cases. Each test case consists of two lines. The first line contains two integers $n$ and $x$ ($1 \le n \le 500$, $0 \le x \le 500$) β€” the number of elements in the sequence and the initial value of $x$. The second line contains $n$ integers $a_1$, $a_2$, ..., $a_n$ ($0 \le a_i \le 500$). The sum of values of $n$ over all test cases in the input does not exceed $500$. -----Output----- For each test case, print one integer β€” the minimum number of operations you have to perform to make $a$ sorted, or $-1$, if it is impossible. -----Examples----- Input 6 4 1 2 3 5 4 5 6 1 1 3 4 4 1 10 2 2 10 11 9 2 10 12 11 5 18 81 324 218 413 324 Output 3 0 0 -1 1 3 -----Note----- None
t = int(input()) def getfirst(a: list, x: int): for i in range(len(a)): if a[i] > x: return i return -1 for _ in range(t): n, x = map(int, input().split()) a = list(map(int, input().split())) ans = 0 while a != sorted(a): e = getfirst(a, x) if e < 0: ans = -1 break else: a[e], x = x, a[e] ans += 1 print(ans)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_DEF VAR VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR VAR VAR RETURN VAR RETURN NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER WHILE VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR IF VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR VAR VAR VAR VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR
You are given a sequence $a$ consisting of $n$ integers $a_1, a_2, \dots, a_n$, and an integer $x$. Your task is to make the sequence $a$ sorted (it is considered sorted if the condition $a_1 \le a_2 \le a_3 \le \dots \le a_n$ holds). To make the sequence sorted, you may perform the following operation any number of times you want (possibly zero): choose an integer $i$ such that $1 \le i \le n$ and $a_i > x$, and swap the values of $a_i$ and $x$. For example, if $a = [0, 2, 3, 5, 4]$, $x = 1$, the following sequence of operations is possible: choose $i = 2$ (it is possible since $a_2 > x$), then $a = [0, 1, 3, 5, 4]$, $x = 2$; choose $i = 3$ (it is possible since $a_3 > x$), then $a = [0, 1, 2, 5, 4]$, $x = 3$; choose $i = 4$ (it is possible since $a_4 > x$), then $a = [0, 1, 2, 3, 4]$, $x = 5$. Calculate the minimum number of operations you have to perform so that $a$ becomes sorted, or report that it is impossible. -----Input----- The first line contains one integer $t$ ($1 \le t \le 500$) β€” the number of test cases. Each test case consists of two lines. The first line contains two integers $n$ and $x$ ($1 \le n \le 500$, $0 \le x \le 500$) β€” the number of elements in the sequence and the initial value of $x$. The second line contains $n$ integers $a_1$, $a_2$, ..., $a_n$ ($0 \le a_i \le 500$). The sum of values of $n$ over all test cases in the input does not exceed $500$. -----Output----- For each test case, print one integer β€” the minimum number of operations you have to perform to make $a$ sorted, or $-1$, if it is impossible. -----Examples----- Input 6 4 1 2 3 5 4 5 6 1 1 3 4 4 1 10 2 2 10 11 9 2 10 12 11 5 18 81 324 218 413 324 Output 3 0 0 -1 1 3 -----Note----- None
for i in range(int(input())): n, x = map(int, input().split()) j = list(map(int, input().split())) k = 0 m = 0 if j == sorted(j): m = 1 print(k) elif j != sorted(j): for z in range(len(j)): if j[z] > x: t = j[z] j[z] = x x = t k += 1 if j == sorted(j): m = 1 print(k) break if m == 0: print(-1)
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER IF VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER EXPR FUNC_CALL VAR VAR IF VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR VAR VAR NUMBER IF VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER EXPR FUNC_CALL VAR VAR IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER
You are given a sequence $a$ consisting of $n$ integers $a_1, a_2, \dots, a_n$, and an integer $x$. Your task is to make the sequence $a$ sorted (it is considered sorted if the condition $a_1 \le a_2 \le a_3 \le \dots \le a_n$ holds). To make the sequence sorted, you may perform the following operation any number of times you want (possibly zero): choose an integer $i$ such that $1 \le i \le n$ and $a_i > x$, and swap the values of $a_i$ and $x$. For example, if $a = [0, 2, 3, 5, 4]$, $x = 1$, the following sequence of operations is possible: choose $i = 2$ (it is possible since $a_2 > x$), then $a = [0, 1, 3, 5, 4]$, $x = 2$; choose $i = 3$ (it is possible since $a_3 > x$), then $a = [0, 1, 2, 5, 4]$, $x = 3$; choose $i = 4$ (it is possible since $a_4 > x$), then $a = [0, 1, 2, 3, 4]$, $x = 5$. Calculate the minimum number of operations you have to perform so that $a$ becomes sorted, or report that it is impossible. -----Input----- The first line contains one integer $t$ ($1 \le t \le 500$) β€” the number of test cases. Each test case consists of two lines. The first line contains two integers $n$ and $x$ ($1 \le n \le 500$, $0 \le x \le 500$) β€” the number of elements in the sequence and the initial value of $x$. The second line contains $n$ integers $a_1$, $a_2$, ..., $a_n$ ($0 \le a_i \le 500$). The sum of values of $n$ over all test cases in the input does not exceed $500$. -----Output----- For each test case, print one integer β€” the minimum number of operations you have to perform to make $a$ sorted, or $-1$, if it is impossible. -----Examples----- Input 6 4 1 2 3 5 4 5 6 1 1 3 4 4 1 10 2 2 10 11 9 2 10 12 11 5 18 81 324 218 413 324 Output 3 0 0 -1 1 3 -----Note----- None
t = int(input()) for o in range(t): n, x = map(int, input().split()) l = list(map(int, input().split())) c, flag = 0, False for i in range(n): m = l[:] m.sort() if m == l: flag = True break elif l[i] > x: x, l[i] = l[i], x c += 1 if flag: print(c) else: print(-1)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR NUMBER NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR EXPR FUNC_CALL VAR IF VAR VAR ASSIGN VAR NUMBER IF VAR VAR VAR ASSIGN VAR VAR VAR VAR VAR VAR VAR NUMBER IF VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR NUMBER
You are given a sequence $a$ consisting of $n$ integers $a_1, a_2, \dots, a_n$, and an integer $x$. Your task is to make the sequence $a$ sorted (it is considered sorted if the condition $a_1 \le a_2 \le a_3 \le \dots \le a_n$ holds). To make the sequence sorted, you may perform the following operation any number of times you want (possibly zero): choose an integer $i$ such that $1 \le i \le n$ and $a_i > x$, and swap the values of $a_i$ and $x$. For example, if $a = [0, 2, 3, 5, 4]$, $x = 1$, the following sequence of operations is possible: choose $i = 2$ (it is possible since $a_2 > x$), then $a = [0, 1, 3, 5, 4]$, $x = 2$; choose $i = 3$ (it is possible since $a_3 > x$), then $a = [0, 1, 2, 5, 4]$, $x = 3$; choose $i = 4$ (it is possible since $a_4 > x$), then $a = [0, 1, 2, 3, 4]$, $x = 5$. Calculate the minimum number of operations you have to perform so that $a$ becomes sorted, or report that it is impossible. -----Input----- The first line contains one integer $t$ ($1 \le t \le 500$) β€” the number of test cases. Each test case consists of two lines. The first line contains two integers $n$ and $x$ ($1 \le n \le 500$, $0 \le x \le 500$) β€” the number of elements in the sequence and the initial value of $x$. The second line contains $n$ integers $a_1$, $a_2$, ..., $a_n$ ($0 \le a_i \le 500$). The sum of values of $n$ over all test cases in the input does not exceed $500$. -----Output----- For each test case, print one integer β€” the minimum number of operations you have to perform to make $a$ sorted, or $-1$, if it is impossible. -----Examples----- Input 6 4 1 2 3 5 4 5 6 1 1 3 4 4 1 10 2 2 10 11 9 2 10 12 11 5 18 81 324 218 413 324 Output 3 0 0 -1 1 3 -----Note----- None
T = int(input()) r = 1 while r <= T: n, x = map(int, input().split()) arr = list(map(int, input().split())) ans = 0 stack = [0] temp = [x] for i in range(len(arr)): a = arr[i] if stack[-1] <= a: stack.append(a) continue if stack[-1] <= temp[-1]: ans = -1 break while stack[-1] > temp[0]: temp.append(stack.pop()) temp = [temp[0]] + temp[1:][::-1] for ele in temp[:-1]: stack.append(ele) if ele != arr[len(stack) - 2]: ans += 1 temp = [temp[-1]] if stack[-1] <= a: stack.append(a) else: ans = -1 break print(ans) r += 1
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR NUMBER WHILE VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR LIST NUMBER ASSIGN VAR LIST VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR IF VAR NUMBER VAR EXPR FUNC_CALL VAR VAR IF VAR NUMBER VAR NUMBER ASSIGN VAR NUMBER WHILE VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR BIN_OP LIST VAR NUMBER VAR NUMBER NUMBER FOR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR IF VAR VAR BIN_OP FUNC_CALL VAR VAR NUMBER VAR NUMBER ASSIGN VAR LIST VAR NUMBER IF VAR NUMBER VAR EXPR FUNC_CALL VAR VAR ASSIGN VAR NUMBER EXPR FUNC_CALL VAR VAR VAR NUMBER
You are given a sequence $a$ consisting of $n$ integers $a_1, a_2, \dots, a_n$, and an integer $x$. Your task is to make the sequence $a$ sorted (it is considered sorted if the condition $a_1 \le a_2 \le a_3 \le \dots \le a_n$ holds). To make the sequence sorted, you may perform the following operation any number of times you want (possibly zero): choose an integer $i$ such that $1 \le i \le n$ and $a_i > x$, and swap the values of $a_i$ and $x$. For example, if $a = [0, 2, 3, 5, 4]$, $x = 1$, the following sequence of operations is possible: choose $i = 2$ (it is possible since $a_2 > x$), then $a = [0, 1, 3, 5, 4]$, $x = 2$; choose $i = 3$ (it is possible since $a_3 > x$), then $a = [0, 1, 2, 5, 4]$, $x = 3$; choose $i = 4$ (it is possible since $a_4 > x$), then $a = [0, 1, 2, 3, 4]$, $x = 5$. Calculate the minimum number of operations you have to perform so that $a$ becomes sorted, or report that it is impossible. -----Input----- The first line contains one integer $t$ ($1 \le t \le 500$) β€” the number of test cases. Each test case consists of two lines. The first line contains two integers $n$ and $x$ ($1 \le n \le 500$, $0 \le x \le 500$) β€” the number of elements in the sequence and the initial value of $x$. The second line contains $n$ integers $a_1$, $a_2$, ..., $a_n$ ($0 \le a_i \le 500$). The sum of values of $n$ over all test cases in the input does not exceed $500$. -----Output----- For each test case, print one integer β€” the minimum number of operations you have to perform to make $a$ sorted, or $-1$, if it is impossible. -----Examples----- Input 6 4 1 2 3 5 4 5 6 1 1 3 4 4 1 10 2 2 10 11 9 2 10 12 11 5 18 81 324 218 413 324 Output 3 0 0 -1 1 3 -----Note----- None
def swaps(A, x): n = len(A) count = 0 if A == sorted(A): return 0 for i in range(n): if A == sorted(A): return count if A[i] > x: A[i], x = x, A[i] count += 1 if A == sorted(A): return count return -1 t = int(input()) for i in range(t): n, x = input().split() n = int(n) x = int(x) a = [int(j) for j in input().split()][:n] print(swaps(a, x))
FUNC_DEF ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER IF VAR FUNC_CALL VAR VAR RETURN NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR FUNC_CALL VAR VAR RETURN VAR IF VAR VAR VAR ASSIGN VAR VAR VAR VAR VAR VAR VAR NUMBER IF VAR FUNC_CALL VAR VAR RETURN VAR RETURN NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR
You are given a sequence $a$ consisting of $n$ integers $a_1, a_2, \dots, a_n$, and an integer $x$. Your task is to make the sequence $a$ sorted (it is considered sorted if the condition $a_1 \le a_2 \le a_3 \le \dots \le a_n$ holds). To make the sequence sorted, you may perform the following operation any number of times you want (possibly zero): choose an integer $i$ such that $1 \le i \le n$ and $a_i > x$, and swap the values of $a_i$ and $x$. For example, if $a = [0, 2, 3, 5, 4]$, $x = 1$, the following sequence of operations is possible: choose $i = 2$ (it is possible since $a_2 > x$), then $a = [0, 1, 3, 5, 4]$, $x = 2$; choose $i = 3$ (it is possible since $a_3 > x$), then $a = [0, 1, 2, 5, 4]$, $x = 3$; choose $i = 4$ (it is possible since $a_4 > x$), then $a = [0, 1, 2, 3, 4]$, $x = 5$. Calculate the minimum number of operations you have to perform so that $a$ becomes sorted, or report that it is impossible. -----Input----- The first line contains one integer $t$ ($1 \le t \le 500$) β€” the number of test cases. Each test case consists of two lines. The first line contains two integers $n$ and $x$ ($1 \le n \le 500$, $0 \le x \le 500$) β€” the number of elements in the sequence and the initial value of $x$. The second line contains $n$ integers $a_1$, $a_2$, ..., $a_n$ ($0 \le a_i \le 500$). The sum of values of $n$ over all test cases in the input does not exceed $500$. -----Output----- For each test case, print one integer β€” the minimum number of operations you have to perform to make $a$ sorted, or $-1$, if it is impossible. -----Examples----- Input 6 4 1 2 3 5 4 5 6 1 1 3 4 4 1 10 2 2 10 11 9 2 10 12 11 5 18 81 324 218 413 324 Output 3 0 0 -1 1 3 -----Note----- None
def s(a, n): for i in range(1, n): if arr[i] < arr[i - 1]: return False return True for _ in range(int(input())): n, k = map(int, input().split(" ")) arr = [int(num) for num in input().split(" ")] a = arr.copy() a.sort() ans = 0 while s(arr, n) == False: f = 0 for i in range(n): if arr[i] > k: temp = arr[i] arr[i] = k k = temp ans = ans + 1 f = 1 break if f == 0: break if s(arr, n) == True: print(ans) else: print(-1)
FUNC_DEF FOR VAR FUNC_CALL VAR NUMBER VAR IF VAR VAR VAR BIN_OP VAR NUMBER RETURN NUMBER RETURN NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR EXPR FUNC_CALL VAR ASSIGN VAR NUMBER WHILE FUNC_CALL VAR VAR VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER IF VAR NUMBER IF FUNC_CALL VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR NUMBER
You are given a sequence $a$ consisting of $n$ integers $a_1, a_2, \dots, a_n$, and an integer $x$. Your task is to make the sequence $a$ sorted (it is considered sorted if the condition $a_1 \le a_2 \le a_3 \le \dots \le a_n$ holds). To make the sequence sorted, you may perform the following operation any number of times you want (possibly zero): choose an integer $i$ such that $1 \le i \le n$ and $a_i > x$, and swap the values of $a_i$ and $x$. For example, if $a = [0, 2, 3, 5, 4]$, $x = 1$, the following sequence of operations is possible: choose $i = 2$ (it is possible since $a_2 > x$), then $a = [0, 1, 3, 5, 4]$, $x = 2$; choose $i = 3$ (it is possible since $a_3 > x$), then $a = [0, 1, 2, 5, 4]$, $x = 3$; choose $i = 4$ (it is possible since $a_4 > x$), then $a = [0, 1, 2, 3, 4]$, $x = 5$. Calculate the minimum number of operations you have to perform so that $a$ becomes sorted, or report that it is impossible. -----Input----- The first line contains one integer $t$ ($1 \le t \le 500$) β€” the number of test cases. Each test case consists of two lines. The first line contains two integers $n$ and $x$ ($1 \le n \le 500$, $0 \le x \le 500$) β€” the number of elements in the sequence and the initial value of $x$. The second line contains $n$ integers $a_1$, $a_2$, ..., $a_n$ ($0 \le a_i \le 500$). The sum of values of $n$ over all test cases in the input does not exceed $500$. -----Output----- For each test case, print one integer β€” the minimum number of operations you have to perform to make $a$ sorted, or $-1$, if it is impossible. -----Examples----- Input 6 4 1 2 3 5 4 5 6 1 1 3 4 4 1 10 2 2 10 11 9 2 10 12 11 5 18 81 324 218 413 324 Output 3 0 0 -1 1 3 -----Note----- None
for i in range(int(input())): n, x = map(int, input().split(" ")) l = list(map(int, input().split(" "))) if n == 1: print(0) else: c = 1 count = 0 for i in range(1, n): if l[i] >= l[i - 1]: c += 1 if c == n: print(0) else: end = False for i in range(0, n): if end: i = n continue if l[i] > x: x, l[i] = l[i], x count += 1 c = 1 for i in range(1, n): if l[i] >= l[i - 1]: c += 1 if not c == n: continue else: print(count) end = True if not end: c = 1 for i in range(1, n): if l[i] >= l[i - 1]: c += 1 if c == n: print(count) else: print(-1)
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR STRING IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR IF VAR VAR VAR BIN_OP VAR NUMBER VAR NUMBER IF VAR VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR IF VAR ASSIGN VAR VAR IF VAR VAR VAR ASSIGN VAR VAR VAR VAR VAR VAR VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR IF VAR VAR VAR BIN_OP VAR NUMBER VAR NUMBER IF VAR VAR EXPR FUNC_CALL VAR VAR ASSIGN VAR NUMBER IF VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR IF VAR VAR VAR BIN_OP VAR NUMBER VAR NUMBER IF VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR NUMBER
You are given a sequence $a$ consisting of $n$ integers $a_1, a_2, \dots, a_n$, and an integer $x$. Your task is to make the sequence $a$ sorted (it is considered sorted if the condition $a_1 \le a_2 \le a_3 \le \dots \le a_n$ holds). To make the sequence sorted, you may perform the following operation any number of times you want (possibly zero): choose an integer $i$ such that $1 \le i \le n$ and $a_i > x$, and swap the values of $a_i$ and $x$. For example, if $a = [0, 2, 3, 5, 4]$, $x = 1$, the following sequence of operations is possible: choose $i = 2$ (it is possible since $a_2 > x$), then $a = [0, 1, 3, 5, 4]$, $x = 2$; choose $i = 3$ (it is possible since $a_3 > x$), then $a = [0, 1, 2, 5, 4]$, $x = 3$; choose $i = 4$ (it is possible since $a_4 > x$), then $a = [0, 1, 2, 3, 4]$, $x = 5$. Calculate the minimum number of operations you have to perform so that $a$ becomes sorted, or report that it is impossible. -----Input----- The first line contains one integer $t$ ($1 \le t \le 500$) β€” the number of test cases. Each test case consists of two lines. The first line contains two integers $n$ and $x$ ($1 \le n \le 500$, $0 \le x \le 500$) β€” the number of elements in the sequence and the initial value of $x$. The second line contains $n$ integers $a_1$, $a_2$, ..., $a_n$ ($0 \le a_i \le 500$). The sum of values of $n$ over all test cases in the input does not exceed $500$. -----Output----- For each test case, print one integer β€” the minimum number of operations you have to perform to make $a$ sorted, or $-1$, if it is impossible. -----Examples----- Input 6 4 1 2 3 5 4 5 6 1 1 3 4 4 1 10 2 2 10 11 9 2 10 12 11 5 18 81 324 218 413 324 Output 3 0 0 -1 1 3 -----Note----- None
def find(a, si): x = a[si] for i in range(si + 1, len(a)): if x > a[i]: return False x = a[i] return True def solve(a, x): p = 0 c = 0 while p < len(a): if find(a, 0): return c if x < a[p]: x, a[p] = a[p], x c += 1 p += 1 return -1 t = int(input()) for _ in range(t): n, x = [int(i) for i in input().split()] l = [int(i) for i in input().split()] print(solve(l, x))
FUNC_DEF ASSIGN VAR VAR VAR FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER FUNC_CALL VAR VAR IF VAR VAR VAR RETURN NUMBER ASSIGN VAR VAR VAR RETURN NUMBER FUNC_DEF ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR FUNC_CALL VAR VAR IF FUNC_CALL VAR VAR NUMBER RETURN VAR IF VAR VAR VAR ASSIGN VAR VAR VAR VAR VAR VAR VAR NUMBER VAR NUMBER RETURN NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR
You are given a sequence $a$ consisting of $n$ integers $a_1, a_2, \dots, a_n$, and an integer $x$. Your task is to make the sequence $a$ sorted (it is considered sorted if the condition $a_1 \le a_2 \le a_3 \le \dots \le a_n$ holds). To make the sequence sorted, you may perform the following operation any number of times you want (possibly zero): choose an integer $i$ such that $1 \le i \le n$ and $a_i > x$, and swap the values of $a_i$ and $x$. For example, if $a = [0, 2, 3, 5, 4]$, $x = 1$, the following sequence of operations is possible: choose $i = 2$ (it is possible since $a_2 > x$), then $a = [0, 1, 3, 5, 4]$, $x = 2$; choose $i = 3$ (it is possible since $a_3 > x$), then $a = [0, 1, 2, 5, 4]$, $x = 3$; choose $i = 4$ (it is possible since $a_4 > x$), then $a = [0, 1, 2, 3, 4]$, $x = 5$. Calculate the minimum number of operations you have to perform so that $a$ becomes sorted, or report that it is impossible. -----Input----- The first line contains one integer $t$ ($1 \le t \le 500$) β€” the number of test cases. Each test case consists of two lines. The first line contains two integers $n$ and $x$ ($1 \le n \le 500$, $0 \le x \le 500$) β€” the number of elements in the sequence and the initial value of $x$. The second line contains $n$ integers $a_1$, $a_2$, ..., $a_n$ ($0 \le a_i \le 500$). The sum of values of $n$ over all test cases in the input does not exceed $500$. -----Output----- For each test case, print one integer β€” the minimum number of operations you have to perform to make $a$ sorted, or $-1$, if it is impossible. -----Examples----- Input 6 4 1 2 3 5 4 5 6 1 1 3 4 4 1 10 2 2 10 11 9 2 10 12 11 5 18 81 324 218 413 324 Output 3 0 0 -1 1 3 -----Note----- None
for test_var in range(int(input())): n, x = map(int, input().split()) arr = list(map(int, input().split())) def get_index(): for i, m in enumerate(arr): if m > x: return i return -1 count = 0 while arr != sorted(arr): index = get_index() if index < 0: break arr[index], x = x, arr[index] count += 1 if arr == sorted(arr): print(count) else: print(-1)
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR FUNC_DEF FOR VAR VAR FUNC_CALL VAR VAR IF VAR VAR RETURN VAR RETURN NUMBER ASSIGN VAR NUMBER WHILE VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR IF VAR NUMBER ASSIGN VAR VAR VAR VAR VAR VAR VAR NUMBER IF VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR NUMBER
You are given a sequence $a$ consisting of $n$ integers $a_1, a_2, \dots, a_n$, and an integer $x$. Your task is to make the sequence $a$ sorted (it is considered sorted if the condition $a_1 \le a_2 \le a_3 \le \dots \le a_n$ holds). To make the sequence sorted, you may perform the following operation any number of times you want (possibly zero): choose an integer $i$ such that $1 \le i \le n$ and $a_i > x$, and swap the values of $a_i$ and $x$. For example, if $a = [0, 2, 3, 5, 4]$, $x = 1$, the following sequence of operations is possible: choose $i = 2$ (it is possible since $a_2 > x$), then $a = [0, 1, 3, 5, 4]$, $x = 2$; choose $i = 3$ (it is possible since $a_3 > x$), then $a = [0, 1, 2, 5, 4]$, $x = 3$; choose $i = 4$ (it is possible since $a_4 > x$), then $a = [0, 1, 2, 3, 4]$, $x = 5$. Calculate the minimum number of operations you have to perform so that $a$ becomes sorted, or report that it is impossible. -----Input----- The first line contains one integer $t$ ($1 \le t \le 500$) β€” the number of test cases. Each test case consists of two lines. The first line contains two integers $n$ and $x$ ($1 \le n \le 500$, $0 \le x \le 500$) β€” the number of elements in the sequence and the initial value of $x$. The second line contains $n$ integers $a_1$, $a_2$, ..., $a_n$ ($0 \le a_i \le 500$). The sum of values of $n$ over all test cases in the input does not exceed $500$. -----Output----- For each test case, print one integer β€” the minimum number of operations you have to perform to make $a$ sorted, or $-1$, if it is impossible. -----Examples----- Input 6 4 1 2 3 5 4 5 6 1 1 3 4 4 1 10 2 2 10 11 9 2 10 12 11 5 18 81 324 218 413 324 Output 3 0 0 -1 1 3 -----Note----- None
import sys readline = sys.stdin.readline rdw = lambda: readline().rstrip() rdws = lambda: readline().split() rdwl = lambda: list(readline().split()) rdi = lambda: int(readline()) rdis = lambda: map(int, readline().split()) rdil = lambda: list(map(int, readline().split())) rdilrows = lambda cnt: [rdil() for _ in range(cnt)] def solve(): n, x = rdis() a = rdil() res = 0 for i in range(n - 1): if a[i] > a[i + 1]: if a[i] > x and x <= a[i + 1]: j = i - 1 while j >= 0 and a[j] > x: if a[j] > a[i + 1]: print(-1) return if a[j] != a[j + 1]: res += 1 j -= 1 x = a[i] res += 1 else: res = -1 break print(res) tests = 1 tests = rdi() for testnum in range(tests): solve()
IMPORT ASSIGN VAR VAR ASSIGN VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR FUNC_DEF ASSIGN VAR VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER IF VAR VAR VAR BIN_OP VAR NUMBER IF VAR VAR VAR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER WHILE VAR NUMBER VAR VAR VAR IF VAR VAR VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR NUMBER RETURN IF VAR VAR VAR BIN_OP VAR NUMBER VAR NUMBER VAR NUMBER ASSIGN VAR VAR VAR VAR NUMBER ASSIGN VAR NUMBER EXPR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR
You are given a sequence $a$ consisting of $n$ integers $a_1, a_2, \dots, a_n$, and an integer $x$. Your task is to make the sequence $a$ sorted (it is considered sorted if the condition $a_1 \le a_2 \le a_3 \le \dots \le a_n$ holds). To make the sequence sorted, you may perform the following operation any number of times you want (possibly zero): choose an integer $i$ such that $1 \le i \le n$ and $a_i > x$, and swap the values of $a_i$ and $x$. For example, if $a = [0, 2, 3, 5, 4]$, $x = 1$, the following sequence of operations is possible: choose $i = 2$ (it is possible since $a_2 > x$), then $a = [0, 1, 3, 5, 4]$, $x = 2$; choose $i = 3$ (it is possible since $a_3 > x$), then $a = [0, 1, 2, 5, 4]$, $x = 3$; choose $i = 4$ (it is possible since $a_4 > x$), then $a = [0, 1, 2, 3, 4]$, $x = 5$. Calculate the minimum number of operations you have to perform so that $a$ becomes sorted, or report that it is impossible. -----Input----- The first line contains one integer $t$ ($1 \le t \le 500$) β€” the number of test cases. Each test case consists of two lines. The first line contains two integers $n$ and $x$ ($1 \le n \le 500$, $0 \le x \le 500$) β€” the number of elements in the sequence and the initial value of $x$. The second line contains $n$ integers $a_1$, $a_2$, ..., $a_n$ ($0 \le a_i \le 500$). The sum of values of $n$ over all test cases in the input does not exceed $500$. -----Output----- For each test case, print one integer β€” the minimum number of operations you have to perform to make $a$ sorted, or $-1$, if it is impossible. -----Examples----- Input 6 4 1 2 3 5 4 5 6 1 1 3 4 4 1 10 2 2 10 11 9 2 10 12 11 5 18 81 324 218 413 324 Output 3 0 0 -1 1 3 -----Note----- None
t = int(input()) for i in range(t): n, x = [int(c) for c in input().split()] a = [int(c) for c in input().split()] a = [-1] + a + [1000] check1 = check2 = swaps = indx = 0 for j in range(n, 1, -1): if a[j - 1] > a[j]: indx = j - 1 check1 = 1 break for j in range(1, indx + 2): if x < a[j]: swaps += 1 a[j], x = x, a[j] if a[j - 1] > a[j]: check2 = 1 break if not check1: print(0) elif not check2: print(swaps) else: print(-1)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR BIN_OP BIN_OP LIST NUMBER VAR LIST NUMBER ASSIGN VAR VAR VAR VAR NUMBER FOR VAR FUNC_CALL VAR VAR NUMBER NUMBER IF VAR BIN_OP VAR NUMBER VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER IF VAR VAR VAR VAR NUMBER ASSIGN VAR VAR VAR VAR VAR VAR IF VAR BIN_OP VAR NUMBER VAR VAR ASSIGN VAR NUMBER IF VAR EXPR FUNC_CALL VAR NUMBER IF VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR NUMBER
You are given a sequence $a$ consisting of $n$ integers $a_1, a_2, \dots, a_n$, and an integer $x$. Your task is to make the sequence $a$ sorted (it is considered sorted if the condition $a_1 \le a_2 \le a_3 \le \dots \le a_n$ holds). To make the sequence sorted, you may perform the following operation any number of times you want (possibly zero): choose an integer $i$ such that $1 \le i \le n$ and $a_i > x$, and swap the values of $a_i$ and $x$. For example, if $a = [0, 2, 3, 5, 4]$, $x = 1$, the following sequence of operations is possible: choose $i = 2$ (it is possible since $a_2 > x$), then $a = [0, 1, 3, 5, 4]$, $x = 2$; choose $i = 3$ (it is possible since $a_3 > x$), then $a = [0, 1, 2, 5, 4]$, $x = 3$; choose $i = 4$ (it is possible since $a_4 > x$), then $a = [0, 1, 2, 3, 4]$, $x = 5$. Calculate the minimum number of operations you have to perform so that $a$ becomes sorted, or report that it is impossible. -----Input----- The first line contains one integer $t$ ($1 \le t \le 500$) β€” the number of test cases. Each test case consists of two lines. The first line contains two integers $n$ and $x$ ($1 \le n \le 500$, $0 \le x \le 500$) β€” the number of elements in the sequence and the initial value of $x$. The second line contains $n$ integers $a_1$, $a_2$, ..., $a_n$ ($0 \le a_i \le 500$). The sum of values of $n$ over all test cases in the input does not exceed $500$. -----Output----- For each test case, print one integer β€” the minimum number of operations you have to perform to make $a$ sorted, or $-1$, if it is impossible. -----Examples----- Input 6 4 1 2 3 5 4 5 6 1 1 3 4 4 1 10 2 2 10 11 9 2 10 12 11 5 18 81 324 218 413 324 Output 3 0 0 -1 1 3 -----Note----- None
for T in range(int(input())): n, x = [int(x) for x in input().split()] arr = [int(x) for x in input().split()] ans = 0 if arr == sorted(arr): print(ans) continue done = 0 for i in range(n): if arr == sorted(arr): print(ans) done = 1 break if arr[i] > x: arr[i], x = x, arr[i] ans += 1 if done: continue elif arr == sorted(arr): print(ans) else: print(-1)
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER IF VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR ASSIGN VAR NUMBER IF VAR VAR VAR ASSIGN VAR VAR VAR VAR VAR VAR VAR NUMBER IF VAR IF VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR NUMBER
You are given a sequence $a$ consisting of $n$ integers $a_1, a_2, \dots, a_n$, and an integer $x$. Your task is to make the sequence $a$ sorted (it is considered sorted if the condition $a_1 \le a_2 \le a_3 \le \dots \le a_n$ holds). To make the sequence sorted, you may perform the following operation any number of times you want (possibly zero): choose an integer $i$ such that $1 \le i \le n$ and $a_i > x$, and swap the values of $a_i$ and $x$. For example, if $a = [0, 2, 3, 5, 4]$, $x = 1$, the following sequence of operations is possible: choose $i = 2$ (it is possible since $a_2 > x$), then $a = [0, 1, 3, 5, 4]$, $x = 2$; choose $i = 3$ (it is possible since $a_3 > x$), then $a = [0, 1, 2, 5, 4]$, $x = 3$; choose $i = 4$ (it is possible since $a_4 > x$), then $a = [0, 1, 2, 3, 4]$, $x = 5$. Calculate the minimum number of operations you have to perform so that $a$ becomes sorted, or report that it is impossible. -----Input----- The first line contains one integer $t$ ($1 \le t \le 500$) β€” the number of test cases. Each test case consists of two lines. The first line contains two integers $n$ and $x$ ($1 \le n \le 500$, $0 \le x \le 500$) β€” the number of elements in the sequence and the initial value of $x$. The second line contains $n$ integers $a_1$, $a_2$, ..., $a_n$ ($0 \le a_i \le 500$). The sum of values of $n$ over all test cases in the input does not exceed $500$. -----Output----- For each test case, print one integer β€” the minimum number of operations you have to perform to make $a$ sorted, or $-1$, if it is impossible. -----Examples----- Input 6 4 1 2 3 5 4 5 6 1 1 3 4 4 1 10 2 2 10 11 9 2 10 12 11 5 18 81 324 218 413 324 Output 3 0 0 -1 1 3 -----Note----- None
def check(arr): newarr = [] for i in range(1, len(arr)): if arr[i - 1] > arr[i]: return False return True t = int(input()) for i in range(t): n, x = input().split() n = int(n) x = int(x) a = [int(i) for i in input().split()] j = 0 c = 0 while j < n: if check(a): break if a[j] > x: a[j], x = x, a[j] c += 1 j += 1 z = [] for i in a: z.append(i) z.sort() c1 = 0 for i in range(len(a)): if a[i] == z[i]: c1 += 1 if c1 == len(a): pass else: c = -1 print(c)
FUNC_DEF ASSIGN VAR LIST FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR IF VAR BIN_OP VAR NUMBER VAR VAR RETURN NUMBER RETURN NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR IF FUNC_CALL VAR VAR IF VAR VAR VAR ASSIGN VAR VAR VAR VAR VAR VAR VAR NUMBER VAR NUMBER ASSIGN VAR LIST FOR VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR VAR VAR VAR VAR NUMBER IF VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER EXPR FUNC_CALL VAR VAR
You are given a sequence $a$ consisting of $n$ integers $a_1, a_2, \dots, a_n$, and an integer $x$. Your task is to make the sequence $a$ sorted (it is considered sorted if the condition $a_1 \le a_2 \le a_3 \le \dots \le a_n$ holds). To make the sequence sorted, you may perform the following operation any number of times you want (possibly zero): choose an integer $i$ such that $1 \le i \le n$ and $a_i > x$, and swap the values of $a_i$ and $x$. For example, if $a = [0, 2, 3, 5, 4]$, $x = 1$, the following sequence of operations is possible: choose $i = 2$ (it is possible since $a_2 > x$), then $a = [0, 1, 3, 5, 4]$, $x = 2$; choose $i = 3$ (it is possible since $a_3 > x$), then $a = [0, 1, 2, 5, 4]$, $x = 3$; choose $i = 4$ (it is possible since $a_4 > x$), then $a = [0, 1, 2, 3, 4]$, $x = 5$. Calculate the minimum number of operations you have to perform so that $a$ becomes sorted, or report that it is impossible. -----Input----- The first line contains one integer $t$ ($1 \le t \le 500$) β€” the number of test cases. Each test case consists of two lines. The first line contains two integers $n$ and $x$ ($1 \le n \le 500$, $0 \le x \le 500$) β€” the number of elements in the sequence and the initial value of $x$. The second line contains $n$ integers $a_1$, $a_2$, ..., $a_n$ ($0 \le a_i \le 500$). The sum of values of $n$ over all test cases in the input does not exceed $500$. -----Output----- For each test case, print one integer β€” the minimum number of operations you have to perform to make $a$ sorted, or $-1$, if it is impossible. -----Examples----- Input 6 4 1 2 3 5 4 5 6 1 1 3 4 4 1 10 2 2 10 11 9 2 10 12 11 5 18 81 324 218 413 324 Output 3 0 0 -1 1 3 -----Note----- None
for i in range(int(input())): n, k = map(int, input().split()) a = list(map(int, input().split())) l = 0 sumo = 0 for j in range(1, n): if a[j] < a[j - 1]: l = l + 1 if l == 0: print("0") else: l = 0 m = 0 for j in range(n - 1, 1, -1): m = m + 1 if a[j] < a[j - 1]: break for j in range(n): if a[j] > k: if j >= n - m: break t = a[j] a[j] = k k = t sumo = sumo + 1 for j in range(1, n): if a[j] < a[j - 1]: l = l + 1 break if l == 0: print(sumo) else: print("-1")
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR IF VAR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR STRING ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER ASSIGN VAR BIN_OP VAR NUMBER IF VAR VAR VAR BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR VAR VAR IF VAR BIN_OP VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR VAR ASSIGN VAR BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR IF VAR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR STRING
You are given a sequence $a$ consisting of $n$ integers $a_1, a_2, \dots, a_n$, and an integer $x$. Your task is to make the sequence $a$ sorted (it is considered sorted if the condition $a_1 \le a_2 \le a_3 \le \dots \le a_n$ holds). To make the sequence sorted, you may perform the following operation any number of times you want (possibly zero): choose an integer $i$ such that $1 \le i \le n$ and $a_i > x$, and swap the values of $a_i$ and $x$. For example, if $a = [0, 2, 3, 5, 4]$, $x = 1$, the following sequence of operations is possible: choose $i = 2$ (it is possible since $a_2 > x$), then $a = [0, 1, 3, 5, 4]$, $x = 2$; choose $i = 3$ (it is possible since $a_3 > x$), then $a = [0, 1, 2, 5, 4]$, $x = 3$; choose $i = 4$ (it is possible since $a_4 > x$), then $a = [0, 1, 2, 3, 4]$, $x = 5$. Calculate the minimum number of operations you have to perform so that $a$ becomes sorted, or report that it is impossible. -----Input----- The first line contains one integer $t$ ($1 \le t \le 500$) β€” the number of test cases. Each test case consists of two lines. The first line contains two integers $n$ and $x$ ($1 \le n \le 500$, $0 \le x \le 500$) β€” the number of elements in the sequence and the initial value of $x$. The second line contains $n$ integers $a_1$, $a_2$, ..., $a_n$ ($0 \le a_i \le 500$). The sum of values of $n$ over all test cases in the input does not exceed $500$. -----Output----- For each test case, print one integer β€” the minimum number of operations you have to perform to make $a$ sorted, or $-1$, if it is impossible. -----Examples----- Input 6 4 1 2 3 5 4 5 6 1 1 3 4 4 1 10 2 2 10 11 9 2 10 12 11 5 18 81 324 218 413 324 Output 3 0 0 -1 1 3 -----Note----- None
import sys input = sys.stdin.readline for _ in range(int(input())): n, x = map(int, input().split()) l = [*map(int, input().split())] if l == sorted(l): print(0) continue cunt = 0 for i in range(n): if l == sorted(l): break if l[i] > x: x, l[i] = l[i], x cunt += 1 if l == sorted(l): print(cunt) continue print(-1)
IMPORT ASSIGN VAR VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR LIST FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR FUNC_CALL VAR VAR IF VAR VAR VAR ASSIGN VAR VAR VAR VAR VAR VAR VAR NUMBER IF VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR NUMBER
You are given a sequence $a$ consisting of $n$ integers $a_1, a_2, \dots, a_n$, and an integer $x$. Your task is to make the sequence $a$ sorted (it is considered sorted if the condition $a_1 \le a_2 \le a_3 \le \dots \le a_n$ holds). To make the sequence sorted, you may perform the following operation any number of times you want (possibly zero): choose an integer $i$ such that $1 \le i \le n$ and $a_i > x$, and swap the values of $a_i$ and $x$. For example, if $a = [0, 2, 3, 5, 4]$, $x = 1$, the following sequence of operations is possible: choose $i = 2$ (it is possible since $a_2 > x$), then $a = [0, 1, 3, 5, 4]$, $x = 2$; choose $i = 3$ (it is possible since $a_3 > x$), then $a = [0, 1, 2, 5, 4]$, $x = 3$; choose $i = 4$ (it is possible since $a_4 > x$), then $a = [0, 1, 2, 3, 4]$, $x = 5$. Calculate the minimum number of operations you have to perform so that $a$ becomes sorted, or report that it is impossible. -----Input----- The first line contains one integer $t$ ($1 \le t \le 500$) β€” the number of test cases. Each test case consists of two lines. The first line contains two integers $n$ and $x$ ($1 \le n \le 500$, $0 \le x \le 500$) β€” the number of elements in the sequence and the initial value of $x$. The second line contains $n$ integers $a_1$, $a_2$, ..., $a_n$ ($0 \le a_i \le 500$). The sum of values of $n$ over all test cases in the input does not exceed $500$. -----Output----- For each test case, print one integer β€” the minimum number of operations you have to perform to make $a$ sorted, or $-1$, if it is impossible. -----Examples----- Input 6 4 1 2 3 5 4 5 6 1 1 3 4 4 1 10 2 2 10 11 9 2 10 12 11 5 18 81 324 218 413 324 Output 3 0 0 -1 1 3 -----Note----- None
for _ in range(int(input())): n, x = [int(x) for x in input().split()] l = list(map(int, input().split())) count = 0 for i in range(len(l)): flag = True for j in range(len(l) - 1): if l[j] > l[j + 1]: flag = False if flag == True: break elif l[i] > x: temp = x x = l[i] l[i] = temp count = count + 1 for j in range(len(l) - 1): if l[j] > l[j + 1]: flag = False if flag == False: print(-1) else: print(count)
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER IF VAR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER IF VAR NUMBER IF VAR VAR VAR ASSIGN VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER IF VAR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR VAR
You are given a sequence $a$ consisting of $n$ integers $a_1, a_2, \dots, a_n$, and an integer $x$. Your task is to make the sequence $a$ sorted (it is considered sorted if the condition $a_1 \le a_2 \le a_3 \le \dots \le a_n$ holds). To make the sequence sorted, you may perform the following operation any number of times you want (possibly zero): choose an integer $i$ such that $1 \le i \le n$ and $a_i > x$, and swap the values of $a_i$ and $x$. For example, if $a = [0, 2, 3, 5, 4]$, $x = 1$, the following sequence of operations is possible: choose $i = 2$ (it is possible since $a_2 > x$), then $a = [0, 1, 3, 5, 4]$, $x = 2$; choose $i = 3$ (it is possible since $a_3 > x$), then $a = [0, 1, 2, 5, 4]$, $x = 3$; choose $i = 4$ (it is possible since $a_4 > x$), then $a = [0, 1, 2, 3, 4]$, $x = 5$. Calculate the minimum number of operations you have to perform so that $a$ becomes sorted, or report that it is impossible. -----Input----- The first line contains one integer $t$ ($1 \le t \le 500$) β€” the number of test cases. Each test case consists of two lines. The first line contains two integers $n$ and $x$ ($1 \le n \le 500$, $0 \le x \le 500$) β€” the number of elements in the sequence and the initial value of $x$. The second line contains $n$ integers $a_1$, $a_2$, ..., $a_n$ ($0 \le a_i \le 500$). The sum of values of $n$ over all test cases in the input does not exceed $500$. -----Output----- For each test case, print one integer β€” the minimum number of operations you have to perform to make $a$ sorted, or $-1$, if it is impossible. -----Examples----- Input 6 4 1 2 3 5 4 5 6 1 1 3 4 4 1 10 2 2 10 11 9 2 10 12 11 5 18 81 324 218 413 324 Output 3 0 0 -1 1 3 -----Note----- None
t = int(input()) for i in range(t): a = list(map(int, input().split())) b = list(map(int, input().split())) c = sorted(b) flag = False if b == c: print(0) else: count = 0 for j in range(a[0]): if sorted(b) != b: if b[j] > a[1]: count += 1 b[j], a[1] = a[1], b[j] if sorted(b) == b: print(count) flag = True break if flag == False: print(-1)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER IF VAR VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR NUMBER IF FUNC_CALL VAR VAR VAR IF VAR VAR VAR NUMBER VAR NUMBER ASSIGN VAR VAR VAR NUMBER VAR NUMBER VAR VAR IF FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR ASSIGN VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER
You are given a sequence $a$ consisting of $n$ integers $a_1, a_2, \dots, a_n$, and an integer $x$. Your task is to make the sequence $a$ sorted (it is considered sorted if the condition $a_1 \le a_2 \le a_3 \le \dots \le a_n$ holds). To make the sequence sorted, you may perform the following operation any number of times you want (possibly zero): choose an integer $i$ such that $1 \le i \le n$ and $a_i > x$, and swap the values of $a_i$ and $x$. For example, if $a = [0, 2, 3, 5, 4]$, $x = 1$, the following sequence of operations is possible: choose $i = 2$ (it is possible since $a_2 > x$), then $a = [0, 1, 3, 5, 4]$, $x = 2$; choose $i = 3$ (it is possible since $a_3 > x$), then $a = [0, 1, 2, 5, 4]$, $x = 3$; choose $i = 4$ (it is possible since $a_4 > x$), then $a = [0, 1, 2, 3, 4]$, $x = 5$. Calculate the minimum number of operations you have to perform so that $a$ becomes sorted, or report that it is impossible. -----Input----- The first line contains one integer $t$ ($1 \le t \le 500$) β€” the number of test cases. Each test case consists of two lines. The first line contains two integers $n$ and $x$ ($1 \le n \le 500$, $0 \le x \le 500$) β€” the number of elements in the sequence and the initial value of $x$. The second line contains $n$ integers $a_1$, $a_2$, ..., $a_n$ ($0 \le a_i \le 500$). The sum of values of $n$ over all test cases in the input does not exceed $500$. -----Output----- For each test case, print one integer β€” the minimum number of operations you have to perform to make $a$ sorted, or $-1$, if it is impossible. -----Examples----- Input 6 4 1 2 3 5 4 5 6 1 1 3 4 4 1 10 2 2 10 11 9 2 10 12 11 5 18 81 324 218 413 324 Output 3 0 0 -1 1 3 -----Note----- None
def sS(): n, x = map(int, input().split()) arr = list(map(int, input().split())) if check(arr) == True: return 0 c = 0 for i in range(n): if arr[i] > x: arr[i], x = x, arr[i] c += 1 if check(arr) == True: return c if check(arr) == False: return -1 def check(arr): m = 0 for i in range(len(arr) - 1): if arr[i] > arr[i + 1]: m += 1 if m > 0: return False return True t = int(input()) while t > 0: print(sS()) t -= 1
FUNC_DEF ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF FUNC_CALL VAR VAR NUMBER RETURN NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR VAR VAR ASSIGN VAR VAR VAR VAR VAR VAR VAR NUMBER IF FUNC_CALL VAR VAR NUMBER RETURN VAR IF FUNC_CALL VAR VAR NUMBER RETURN NUMBER FUNC_DEF ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER IF VAR VAR VAR BIN_OP VAR NUMBER VAR NUMBER IF VAR NUMBER RETURN NUMBER RETURN NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR WHILE VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR VAR NUMBER
You are given a sequence $a$ consisting of $n$ integers $a_1, a_2, \dots, a_n$, and an integer $x$. Your task is to make the sequence $a$ sorted (it is considered sorted if the condition $a_1 \le a_2 \le a_3 \le \dots \le a_n$ holds). To make the sequence sorted, you may perform the following operation any number of times you want (possibly zero): choose an integer $i$ such that $1 \le i \le n$ and $a_i > x$, and swap the values of $a_i$ and $x$. For example, if $a = [0, 2, 3, 5, 4]$, $x = 1$, the following sequence of operations is possible: choose $i = 2$ (it is possible since $a_2 > x$), then $a = [0, 1, 3, 5, 4]$, $x = 2$; choose $i = 3$ (it is possible since $a_3 > x$), then $a = [0, 1, 2, 5, 4]$, $x = 3$; choose $i = 4$ (it is possible since $a_4 > x$), then $a = [0, 1, 2, 3, 4]$, $x = 5$. Calculate the minimum number of operations you have to perform so that $a$ becomes sorted, or report that it is impossible. -----Input----- The first line contains one integer $t$ ($1 \le t \le 500$) β€” the number of test cases. Each test case consists of two lines. The first line contains two integers $n$ and $x$ ($1 \le n \le 500$, $0 \le x \le 500$) β€” the number of elements in the sequence and the initial value of $x$. The second line contains $n$ integers $a_1$, $a_2$, ..., $a_n$ ($0 \le a_i \le 500$). The sum of values of $n$ over all test cases in the input does not exceed $500$. -----Output----- For each test case, print one integer β€” the minimum number of operations you have to perform to make $a$ sorted, or $-1$, if it is impossible. -----Examples----- Input 6 4 1 2 3 5 4 5 6 1 1 3 4 4 1 10 2 2 10 11 9 2 10 12 11 5 18 81 324 218 413 324 Output 3 0 0 -1 1 3 -----Note----- None
import sys def minp(): return sys.stdin.readline().strip() def mint(): return int(minp()) def mints(): return map(int, minp().split()) def solve(): n, x = mints() a = list(mints()) b = a.copy() b.append(x) b.sort() res = int(1000000000.0) for i in range(n + 1): ok = True if b[i] >= x: k = 0 xx = x cnt = 0 for j in range(n): if k == i: k += 1 if b[k] != a[j]: if xx != b[k] or a[j] < xx: ok = False break xx = a[j] cnt += 1 k += 1 if ok: res = min(res, cnt) if res >= int(1000000000.0): print(-1) else: print(res) for t in range(mint()): solve()
IMPORT FUNC_DEF RETURN FUNC_CALL FUNC_CALL VAR FUNC_DEF RETURN FUNC_CALL VAR FUNC_CALL VAR FUNC_DEF RETURN FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR FUNC_DEF ASSIGN VAR VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER IF VAR VAR VAR ASSIGN VAR NUMBER ASSIGN VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR VAR VAR NUMBER IF VAR VAR VAR VAR IF VAR VAR VAR VAR VAR VAR ASSIGN VAR NUMBER ASSIGN VAR VAR VAR VAR NUMBER VAR NUMBER IF VAR ASSIGN VAR FUNC_CALL VAR VAR VAR IF VAR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR EXPR FUNC_CALL VAR
You are given a sequence $a$ consisting of $n$ integers $a_1, a_2, \dots, a_n$, and an integer $x$. Your task is to make the sequence $a$ sorted (it is considered sorted if the condition $a_1 \le a_2 \le a_3 \le \dots \le a_n$ holds). To make the sequence sorted, you may perform the following operation any number of times you want (possibly zero): choose an integer $i$ such that $1 \le i \le n$ and $a_i > x$, and swap the values of $a_i$ and $x$. For example, if $a = [0, 2, 3, 5, 4]$, $x = 1$, the following sequence of operations is possible: choose $i = 2$ (it is possible since $a_2 > x$), then $a = [0, 1, 3, 5, 4]$, $x = 2$; choose $i = 3$ (it is possible since $a_3 > x$), then $a = [0, 1, 2, 5, 4]$, $x = 3$; choose $i = 4$ (it is possible since $a_4 > x$), then $a = [0, 1, 2, 3, 4]$, $x = 5$. Calculate the minimum number of operations you have to perform so that $a$ becomes sorted, or report that it is impossible. -----Input----- The first line contains one integer $t$ ($1 \le t \le 500$) β€” the number of test cases. Each test case consists of two lines. The first line contains two integers $n$ and $x$ ($1 \le n \le 500$, $0 \le x \le 500$) β€” the number of elements in the sequence and the initial value of $x$. The second line contains $n$ integers $a_1$, $a_2$, ..., $a_n$ ($0 \le a_i \le 500$). The sum of values of $n$ over all test cases in the input does not exceed $500$. -----Output----- For each test case, print one integer β€” the minimum number of operations you have to perform to make $a$ sorted, or $-1$, if it is impossible. -----Examples----- Input 6 4 1 2 3 5 4 5 6 1 1 3 4 4 1 10 2 2 10 11 9 2 10 12 11 5 18 81 324 218 413 324 Output 3 0 0 -1 1 3 -----Note----- None
inn = lambda: int(input()) inm = lambda: map(int, input().split()) ins = lambda: str(input()) ina = lambda: list(map(int, input().split())) def solve(): n, x = inm() a = ina() if sorted(a) == a: print(0) return moves = 0 pref = [1] * n for i in range(n - 2, -1, -1): if a[i] <= a[i + 1]: pref[i] = 1 & pref[i + 1] else: pref[i] = 0 for i, v in enumerate(a): if v > x: a[i], x = x, a[i] moves += 1 if pref[i]: break b = a[:] if sorted(b) == a: print(moves) else: print(-1) def main(): t = 1 t = int(input()) for _ in range(t): solve() main()
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR FUNC_DEF ASSIGN VAR VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR IF FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR NUMBER RETURN ASSIGN VAR NUMBER ASSIGN VAR BIN_OP LIST NUMBER VAR FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER IF VAR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR VAR BIN_OP NUMBER VAR BIN_OP VAR NUMBER ASSIGN VAR VAR NUMBER FOR VAR VAR FUNC_CALL VAR VAR IF VAR VAR ASSIGN VAR VAR VAR VAR VAR VAR VAR NUMBER IF VAR VAR ASSIGN VAR VAR IF FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR NUMBER FUNC_DEF ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR EXPR FUNC_CALL VAR
You are given a sequence $a$ consisting of $n$ integers $a_1, a_2, \dots, a_n$, and an integer $x$. Your task is to make the sequence $a$ sorted (it is considered sorted if the condition $a_1 \le a_2 \le a_3 \le \dots \le a_n$ holds). To make the sequence sorted, you may perform the following operation any number of times you want (possibly zero): choose an integer $i$ such that $1 \le i \le n$ and $a_i > x$, and swap the values of $a_i$ and $x$. For example, if $a = [0, 2, 3, 5, 4]$, $x = 1$, the following sequence of operations is possible: choose $i = 2$ (it is possible since $a_2 > x$), then $a = [0, 1, 3, 5, 4]$, $x = 2$; choose $i = 3$ (it is possible since $a_3 > x$), then $a = [0, 1, 2, 5, 4]$, $x = 3$; choose $i = 4$ (it is possible since $a_4 > x$), then $a = [0, 1, 2, 3, 4]$, $x = 5$. Calculate the minimum number of operations you have to perform so that $a$ becomes sorted, or report that it is impossible. -----Input----- The first line contains one integer $t$ ($1 \le t \le 500$) β€” the number of test cases. Each test case consists of two lines. The first line contains two integers $n$ and $x$ ($1 \le n \le 500$, $0 \le x \le 500$) β€” the number of elements in the sequence and the initial value of $x$. The second line contains $n$ integers $a_1$, $a_2$, ..., $a_n$ ($0 \le a_i \le 500$). The sum of values of $n$ over all test cases in the input does not exceed $500$. -----Output----- For each test case, print one integer β€” the minimum number of operations you have to perform to make $a$ sorted, or $-1$, if it is impossible. -----Examples----- Input 6 4 1 2 3 5 4 5 6 1 1 3 4 4 1 10 2 2 10 11 9 2 10 12 11 5 18 81 324 218 413 324 Output 3 0 0 -1 1 3 -----Note----- None
from sys import stdin stdin.readline def mp(): return list(map(int, stdin.readline().strip().split())) def it(): return int(stdin.readline().strip()) def not_sorted(l): for i in range(1, len(l)): if l[i] < l[i - 1]: return 1 return 0 for _ in range(it()): n, x = mp() l = mp() count, flag, i = 0, 0, 0 while not_sorted(l): count += 1 while i < n and l[i] <= x: i += 1 if i == n: flag = 1 break l[i], x = x, l[i] if flag: print(-1) else: print(count)
EXPR VAR FUNC_DEF RETURN FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL FUNC_CALL VAR FUNC_DEF RETURN FUNC_CALL VAR FUNC_CALL FUNC_CALL VAR FUNC_DEF FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR IF VAR VAR VAR BIN_OP VAR NUMBER RETURN NUMBER RETURN NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR VAR VAR NUMBER NUMBER NUMBER WHILE FUNC_CALL VAR VAR VAR NUMBER WHILE VAR VAR VAR VAR VAR VAR NUMBER IF VAR VAR ASSIGN VAR NUMBER ASSIGN VAR VAR VAR VAR VAR VAR IF VAR EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR VAR
You are given a sequence $a$ consisting of $n$ integers $a_1, a_2, \dots, a_n$, and an integer $x$. Your task is to make the sequence $a$ sorted (it is considered sorted if the condition $a_1 \le a_2 \le a_3 \le \dots \le a_n$ holds). To make the sequence sorted, you may perform the following operation any number of times you want (possibly zero): choose an integer $i$ such that $1 \le i \le n$ and $a_i > x$, and swap the values of $a_i$ and $x$. For example, if $a = [0, 2, 3, 5, 4]$, $x = 1$, the following sequence of operations is possible: choose $i = 2$ (it is possible since $a_2 > x$), then $a = [0, 1, 3, 5, 4]$, $x = 2$; choose $i = 3$ (it is possible since $a_3 > x$), then $a = [0, 1, 2, 5, 4]$, $x = 3$; choose $i = 4$ (it is possible since $a_4 > x$), then $a = [0, 1, 2, 3, 4]$, $x = 5$. Calculate the minimum number of operations you have to perform so that $a$ becomes sorted, or report that it is impossible. -----Input----- The first line contains one integer $t$ ($1 \le t \le 500$) β€” the number of test cases. Each test case consists of two lines. The first line contains two integers $n$ and $x$ ($1 \le n \le 500$, $0 \le x \le 500$) β€” the number of elements in the sequence and the initial value of $x$. The second line contains $n$ integers $a_1$, $a_2$, ..., $a_n$ ($0 \le a_i \le 500$). The sum of values of $n$ over all test cases in the input does not exceed $500$. -----Output----- For each test case, print one integer β€” the minimum number of operations you have to perform to make $a$ sorted, or $-1$, if it is impossible. -----Examples----- Input 6 4 1 2 3 5 4 5 6 1 1 3 4 4 1 10 2 2 10 11 9 2 10 12 11 5 18 81 324 218 413 324 Output 3 0 0 -1 1 3 -----Note----- None
import sys sys.setrecursionlimit(10**5) int1 = lambda x: int(x) - 1 p2D = lambda x: print(*x, sep="\n") def II(): return int(sys.stdin.buffer.readline()) def MI(): return map(int, sys.stdin.buffer.readline().split()) def LI(): return list(map(int, sys.stdin.buffer.readline().split())) def LLI(rows_number): return [LI() for _ in range(rows_number)] def BI(): return sys.stdin.buffer.readline().rstrip() def SI(): return sys.stdin.buffer.readline().rstrip().decode() inf = 10**16 md = 10**9 + 7 def isinc(aa, n): for i in range(n - 1): if aa[i] > aa[i + 1]: return False return True def solve(n, x, aa): if isinc(aa, n): return 0 aa += [-inf] res = 0 for i in range(n): if aa[i] > x and aa[i - 1] <= x: aa[i], x = x, aa[i] res += 1 if aa[i - 1] > aa[i]: return -1 if isinc(aa, n): return res return res for _ in range(II()): n, x = MI() aa = LI() print(solve(n, x, aa))
IMPORT EXPR FUNC_CALL VAR BIN_OP NUMBER NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR STRING FUNC_DEF RETURN FUNC_CALL VAR FUNC_CALL VAR FUNC_DEF RETURN FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR FUNC_DEF RETURN FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR FUNC_DEF RETURN FUNC_CALL VAR VAR FUNC_CALL VAR VAR FUNC_DEF RETURN FUNC_CALL FUNC_CALL VAR FUNC_DEF RETURN FUNC_CALL FUNC_CALL FUNC_CALL VAR ASSIGN VAR BIN_OP NUMBER NUMBER ASSIGN VAR BIN_OP BIN_OP NUMBER NUMBER NUMBER FUNC_DEF FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER IF VAR VAR VAR BIN_OP VAR NUMBER RETURN NUMBER RETURN NUMBER FUNC_DEF IF FUNC_CALL VAR VAR VAR RETURN NUMBER VAR LIST VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR VAR VAR VAR BIN_OP VAR NUMBER VAR ASSIGN VAR VAR VAR VAR VAR VAR VAR NUMBER IF VAR BIN_OP VAR NUMBER VAR VAR RETURN NUMBER IF FUNC_CALL VAR VAR VAR RETURN VAR RETURN VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR VAR
You are given a sequence $a$ consisting of $n$ integers $a_1, a_2, \dots, a_n$, and an integer $x$. Your task is to make the sequence $a$ sorted (it is considered sorted if the condition $a_1 \le a_2 \le a_3 \le \dots \le a_n$ holds). To make the sequence sorted, you may perform the following operation any number of times you want (possibly zero): choose an integer $i$ such that $1 \le i \le n$ and $a_i > x$, and swap the values of $a_i$ and $x$. For example, if $a = [0, 2, 3, 5, 4]$, $x = 1$, the following sequence of operations is possible: choose $i = 2$ (it is possible since $a_2 > x$), then $a = [0, 1, 3, 5, 4]$, $x = 2$; choose $i = 3$ (it is possible since $a_3 > x$), then $a = [0, 1, 2, 5, 4]$, $x = 3$; choose $i = 4$ (it is possible since $a_4 > x$), then $a = [0, 1, 2, 3, 4]$, $x = 5$. Calculate the minimum number of operations you have to perform so that $a$ becomes sorted, or report that it is impossible. -----Input----- The first line contains one integer $t$ ($1 \le t \le 500$) β€” the number of test cases. Each test case consists of two lines. The first line contains two integers $n$ and $x$ ($1 \le n \le 500$, $0 \le x \le 500$) β€” the number of elements in the sequence and the initial value of $x$. The second line contains $n$ integers $a_1$, $a_2$, ..., $a_n$ ($0 \le a_i \le 500$). The sum of values of $n$ over all test cases in the input does not exceed $500$. -----Output----- For each test case, print one integer β€” the minimum number of operations you have to perform to make $a$ sorted, or $-1$, if it is impossible. -----Examples----- Input 6 4 1 2 3 5 4 5 6 1 1 3 4 4 1 10 2 2 10 11 9 2 10 12 11 5 18 81 324 218 413 324 Output 3 0 0 -1 1 3 -----Note----- None
for q11 in range(int(input())): n, x = map(int, input().split()) a = list(map(int, input().split())) max1 = max2 = -float("inf") for q in range(n): if a[q] > max1: max2, max1 = max1, a[q] elif a[q] > max2: max2 = a[q] if a[q] < max2: print(-1) break else: seg = [] for q in range(1, n): if a[q - 1] > a[q]: seg.append(q - 1) if len(seg) == 0: print(0) elif a[seg[0] + 1] < x: print(-1) else: q1, q2, plus = seg[0] - 1, 0, 1 while q1 > -1 and a[q1] > x: plus += q1 == 0 or a[q1] != a[q1 - 1] q1 -= 1 for q in range(seg[0] + 1, seg[-1] + 1): if q == seg[q2 + 1]: plus += 1 q2 += 1 else: plus += a[q] > a[seg[q2]] and a[q] != a[q - 1] print(plus)
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR STRING FOR VAR FUNC_CALL VAR VAR IF VAR VAR VAR ASSIGN VAR VAR VAR VAR VAR IF VAR VAR VAR ASSIGN VAR VAR VAR IF VAR VAR VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR LIST FOR VAR FUNC_CALL VAR NUMBER VAR IF VAR BIN_OP VAR NUMBER VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR NUMBER IF FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER IF VAR BIN_OP VAR NUMBER NUMBER VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR VAR VAR BIN_OP VAR NUMBER NUMBER NUMBER NUMBER WHILE VAR NUMBER VAR VAR VAR VAR VAR NUMBER VAR VAR VAR BIN_OP VAR NUMBER VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER BIN_OP VAR NUMBER NUMBER IF VAR VAR BIN_OP VAR NUMBER VAR NUMBER VAR NUMBER VAR VAR VAR VAR VAR VAR VAR VAR VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR
You are given a sequence $a$ consisting of $n$ integers $a_1, a_2, \dots, a_n$, and an integer $x$. Your task is to make the sequence $a$ sorted (it is considered sorted if the condition $a_1 \le a_2 \le a_3 \le \dots \le a_n$ holds). To make the sequence sorted, you may perform the following operation any number of times you want (possibly zero): choose an integer $i$ such that $1 \le i \le n$ and $a_i > x$, and swap the values of $a_i$ and $x$. For example, if $a = [0, 2, 3, 5, 4]$, $x = 1$, the following sequence of operations is possible: choose $i = 2$ (it is possible since $a_2 > x$), then $a = [0, 1, 3, 5, 4]$, $x = 2$; choose $i = 3$ (it is possible since $a_3 > x$), then $a = [0, 1, 2, 5, 4]$, $x = 3$; choose $i = 4$ (it is possible since $a_4 > x$), then $a = [0, 1, 2, 3, 4]$, $x = 5$. Calculate the minimum number of operations you have to perform so that $a$ becomes sorted, or report that it is impossible. -----Input----- The first line contains one integer $t$ ($1 \le t \le 500$) β€” the number of test cases. Each test case consists of two lines. The first line contains two integers $n$ and $x$ ($1 \le n \le 500$, $0 \le x \le 500$) β€” the number of elements in the sequence and the initial value of $x$. The second line contains $n$ integers $a_1$, $a_2$, ..., $a_n$ ($0 \le a_i \le 500$). The sum of values of $n$ over all test cases in the input does not exceed $500$. -----Output----- For each test case, print one integer β€” the minimum number of operations you have to perform to make $a$ sorted, or $-1$, if it is impossible. -----Examples----- Input 6 4 1 2 3 5 4 5 6 1 1 3 4 4 1 10 2 2 10 11 9 2 10 12 11 5 18 81 324 218 413 324 Output 3 0 0 -1 1 3 -----Note----- None
def is_sorted(a): n = len(a) for i in range(n - 1): if a[i + 1] < a[i]: return False return True t = int(input()) for case in range(t): n, x = [int(s) for s in input().split(" ")] a = [int(s) for s in input().split(" ")] ans = 0 i = 0 while i < n: if is_sorted(a): break if a[i] > x: a[i], x = x, a[i] ans += 1 i += 1 if not is_sorted(a): ans = -1 print(ans)
FUNC_DEF ASSIGN VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER IF VAR BIN_OP VAR NUMBER VAR VAR RETURN NUMBER RETURN NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR STRING ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR IF FUNC_CALL VAR VAR IF VAR VAR VAR ASSIGN VAR VAR VAR VAR VAR VAR VAR NUMBER VAR NUMBER IF FUNC_CALL VAR VAR ASSIGN VAR NUMBER EXPR FUNC_CALL VAR VAR
Ashish has an array $a$ of size $n$. A subsequence of $a$ is defined as a sequence that can be obtained from $a$ by deleting some elements (possibly none), without changing the order of the remaining elements. Consider a subsequence $s$ of $a$. He defines the cost of $s$ as the minimum between: The maximum among all elements at odd indices of $s$. The maximum among all elements at even indices of $s$. Note that the index of an element is its index in $s$, rather than its index in $a$. The positions are numbered from $1$. So, the cost of $s$ is equal to $min(max(s_1, s_3, s_5, \ldots), max(s_2, s_4, s_6, \ldots))$. For example, the cost of $\{7, 5, 6\}$ is $min( max(7, 6), max(5) ) = min(7, 5) = 5$. Help him find the minimum cost of a subsequence of size $k$. -----Input----- The first line contains two integers $n$ and $k$ ($2 \leq k \leq n \leq 2 \cdot 10^5$) Β β€” the size of the array $a$ and the size of the subsequence. The next line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($1 \leq a_i \leq 10^9$) Β β€” the elements of the array $a$. -----Output----- Output a single integer Β β€” the minimum cost of a subsequence of size $k$. -----Examples----- Input 4 2 1 2 3 4 Output 1 Input 4 3 1 2 3 4 Output 2 Input 5 3 5 3 4 2 6 Output 2 Input 6 4 5 3 50 2 4 5 Output 3 -----Note----- In the first test, consider the subsequence $s$ = $\{1, 3\}$. Here the cost is equal to $min(max(1), max(3)) = 1$. In the second test, consider the subsequence $s$ = $\{1, 2, 4\}$. Here the cost is equal to $min(max(1, 4), max(2)) = 2$. In the fourth test, consider the subsequence $s$ = $\{3, 50, 2, 4\}$. Here the cost is equal to $min(max(3, 2), max(50, 4)) = 3$.
def find(A, x, k, flag): if flag == 1: codd = 1 count = 0 for i in range(len(A)): if codd == 1: if A[i] <= x: count += 1 codd = 0 else: count += 1 codd = 1 if count >= k: return True else: ceven = 0 count = 0 for i in range(len(A)): if ceven == 1: if A[i] <= x: count += 1 ceven = 0 else: count += 1 ceven = 1 if count >= k: return True return False def answer(n, k, A): if k == 2: return min(A) l = 0 r = max(A) while r >= l: mid = l + (r - l) // 2 fodd = find(A, mid, k, 1) feven = find(A, mid, k, 0) if fodd or feven: r = mid - 1 else: l = mid + 1 return l n, k = map(int, input().split()) A = list(map(int, input().split())) print(answer(n, k, A))
FUNC_DEF IF VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR NUMBER IF VAR VAR VAR VAR NUMBER ASSIGN VAR NUMBER VAR NUMBER ASSIGN VAR NUMBER IF VAR VAR RETURN NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR NUMBER IF VAR VAR VAR VAR NUMBER ASSIGN VAR NUMBER VAR NUMBER ASSIGN VAR NUMBER IF VAR VAR RETURN NUMBER RETURN NUMBER FUNC_DEF IF VAR NUMBER RETURN FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR WHILE VAR VAR ASSIGN VAR BIN_OP VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR VAR NUMBER IF VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER RETURN VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR VAR
Ashish has an array $a$ of size $n$. A subsequence of $a$ is defined as a sequence that can be obtained from $a$ by deleting some elements (possibly none), without changing the order of the remaining elements. Consider a subsequence $s$ of $a$. He defines the cost of $s$ as the minimum between: The maximum among all elements at odd indices of $s$. The maximum among all elements at even indices of $s$. Note that the index of an element is its index in $s$, rather than its index in $a$. The positions are numbered from $1$. So, the cost of $s$ is equal to $min(max(s_1, s_3, s_5, \ldots), max(s_2, s_4, s_6, \ldots))$. For example, the cost of $\{7, 5, 6\}$ is $min( max(7, 6), max(5) ) = min(7, 5) = 5$. Help him find the minimum cost of a subsequence of size $k$. -----Input----- The first line contains two integers $n$ and $k$ ($2 \leq k \leq n \leq 2 \cdot 10^5$) Β β€” the size of the array $a$ and the size of the subsequence. The next line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($1 \leq a_i \leq 10^9$) Β β€” the elements of the array $a$. -----Output----- Output a single integer Β β€” the minimum cost of a subsequence of size $k$. -----Examples----- Input 4 2 1 2 3 4 Output 1 Input 4 3 1 2 3 4 Output 2 Input 5 3 5 3 4 2 6 Output 2 Input 6 4 5 3 50 2 4 5 Output 3 -----Note----- In the first test, consider the subsequence $s$ = $\{1, 3\}$. Here the cost is equal to $min(max(1), max(3)) = 1$. In the second test, consider the subsequence $s$ = $\{1, 2, 4\}$. Here the cost is equal to $min(max(1, 4), max(2)) = 2$. In the fourth test, consider the subsequence $s$ = $\{3, 50, 2, 4\}$. Here the cost is equal to $min(max(3, 2), max(50, 4)) = 3$.
def fun(m): global a1, k c1 = 0 c2 = 0 for i in a1: if i <= m or c1 % 2 == 0: c1 += 1 if i <= m or c2 % 2 != 0: c2 += 1 f1 = bool(c1 >= k) f2 = bool(c2 >= k) return f1 or f2 n, k = map(int, input().split()) a1 = list(map(int, input().split())) l = 0 b = max(a1) while l < b: m = (l + b) // 2 if fun(m): b = m else: l = m + 1 print(l)
FUNC_DEF ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR IF VAR VAR BIN_OP VAR NUMBER NUMBER VAR NUMBER IF VAR VAR BIN_OP VAR NUMBER NUMBER VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR RETURN VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR WHILE VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF FUNC_CALL VAR VAR ASSIGN VAR VAR ASSIGN VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR
Ashish has an array $a$ of size $n$. A subsequence of $a$ is defined as a sequence that can be obtained from $a$ by deleting some elements (possibly none), without changing the order of the remaining elements. Consider a subsequence $s$ of $a$. He defines the cost of $s$ as the minimum between: The maximum among all elements at odd indices of $s$. The maximum among all elements at even indices of $s$. Note that the index of an element is its index in $s$, rather than its index in $a$. The positions are numbered from $1$. So, the cost of $s$ is equal to $min(max(s_1, s_3, s_5, \ldots), max(s_2, s_4, s_6, \ldots))$. For example, the cost of $\{7, 5, 6\}$ is $min( max(7, 6), max(5) ) = min(7, 5) = 5$. Help him find the minimum cost of a subsequence of size $k$. -----Input----- The first line contains two integers $n$ and $k$ ($2 \leq k \leq n \leq 2 \cdot 10^5$) Β β€” the size of the array $a$ and the size of the subsequence. The next line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($1 \leq a_i \leq 10^9$) Β β€” the elements of the array $a$. -----Output----- Output a single integer Β β€” the minimum cost of a subsequence of size $k$. -----Examples----- Input 4 2 1 2 3 4 Output 1 Input 4 3 1 2 3 4 Output 2 Input 5 3 5 3 4 2 6 Output 2 Input 6 4 5 3 50 2 4 5 Output 3 -----Note----- In the first test, consider the subsequence $s$ = $\{1, 3\}$. Here the cost is equal to $min(max(1), max(3)) = 1$. In the second test, consider the subsequence $s$ = $\{1, 2, 4\}$. Here the cost is equal to $min(max(1, 4), max(2)) = 2$. In the fourth test, consider the subsequence $s$ = $\{3, 50, 2, 4\}$. Here the cost is equal to $min(max(3, 2), max(50, 4)) = 3$.
import sys int1 = lambda x: int(x) - 1 p2D = lambda x: print(*x, sep="\n") def II(): return int(sys.stdin.readline()) def MI(): return map(int, sys.stdin.readline().split()) def LI(): return list(map(int, sys.stdin.readline().split())) def LLI(rows_number): return [LI() for _ in range(rows_number)] def SI(): return sys.stdin.readline()[:-1] def main(): def ok(i): s = ss[i] if k & 1: cnt = 0 pre = False for a in aa: if pre: pre = False continue if a <= s: cnt += 1 pre = True if cnt == k // 2 + 1: return True cnt = 0 pre = False for a in aa[1 : n - 1]: if pre: pre = False continue if a <= s: cnt += 1 pre = True if cnt == k // 2: return True else: cnt = 0 pre = False for a in aa[: n - 1]: if pre: pre = False continue if a <= s: cnt += 1 pre = True if cnt == k // 2: return True cnt = 0 pre = False for a in aa[1:]: if pre: pre = False continue if a <= s: cnt += 1 pre = True if cnt == k // 2: return True return False n, k = MI() aa = LI() ss = list(sorted(set(aa))) sn = len(ss) l = -1 r = sn while l + 1 < r: i = (l + r) // 2 if ok(i): r = i else: l = i print(ss[r]) main()
IMPORT ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR STRING FUNC_DEF RETURN FUNC_CALL VAR FUNC_CALL VAR FUNC_DEF RETURN FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR FUNC_DEF RETURN FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR FUNC_DEF RETURN FUNC_CALL VAR VAR FUNC_CALL VAR VAR FUNC_DEF RETURN FUNC_CALL VAR NUMBER FUNC_DEF FUNC_DEF ASSIGN VAR VAR VAR IF BIN_OP VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR IF VAR ASSIGN VAR NUMBER IF VAR VAR VAR NUMBER ASSIGN VAR NUMBER IF VAR BIN_OP BIN_OP VAR NUMBER NUMBER RETURN NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR NUMBER BIN_OP VAR NUMBER IF VAR ASSIGN VAR NUMBER IF VAR VAR VAR NUMBER ASSIGN VAR NUMBER IF VAR BIN_OP VAR NUMBER RETURN NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR BIN_OP VAR NUMBER IF VAR ASSIGN VAR NUMBER IF VAR VAR VAR NUMBER ASSIGN VAR NUMBER IF VAR BIN_OP VAR NUMBER RETURN NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR NUMBER IF VAR ASSIGN VAR NUMBER IF VAR VAR VAR NUMBER ASSIGN VAR NUMBER IF VAR BIN_OP VAR NUMBER RETURN NUMBER RETURN NUMBER ASSIGN VAR VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR VAR WHILE BIN_OP VAR NUMBER VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF FUNC_CALL VAR VAR ASSIGN VAR VAR ASSIGN VAR VAR EXPR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR
Ashish has an array $a$ of size $n$. A subsequence of $a$ is defined as a sequence that can be obtained from $a$ by deleting some elements (possibly none), without changing the order of the remaining elements. Consider a subsequence $s$ of $a$. He defines the cost of $s$ as the minimum between: The maximum among all elements at odd indices of $s$. The maximum among all elements at even indices of $s$. Note that the index of an element is its index in $s$, rather than its index in $a$. The positions are numbered from $1$. So, the cost of $s$ is equal to $min(max(s_1, s_3, s_5, \ldots), max(s_2, s_4, s_6, \ldots))$. For example, the cost of $\{7, 5, 6\}$ is $min( max(7, 6), max(5) ) = min(7, 5) = 5$. Help him find the minimum cost of a subsequence of size $k$. -----Input----- The first line contains two integers $n$ and $k$ ($2 \leq k \leq n \leq 2 \cdot 10^5$) Β β€” the size of the array $a$ and the size of the subsequence. The next line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($1 \leq a_i \leq 10^9$) Β β€” the elements of the array $a$. -----Output----- Output a single integer Β β€” the minimum cost of a subsequence of size $k$. -----Examples----- Input 4 2 1 2 3 4 Output 1 Input 4 3 1 2 3 4 Output 2 Input 5 3 5 3 4 2 6 Output 2 Input 6 4 5 3 50 2 4 5 Output 3 -----Note----- In the first test, consider the subsequence $s$ = $\{1, 3\}$. Here the cost is equal to $min(max(1), max(3)) = 1$. In the second test, consider the subsequence $s$ = $\{1, 2, 4\}$. Here the cost is equal to $min(max(1, 4), max(2)) = 2$. In the fourth test, consider the subsequence $s$ = $\{3, 50, 2, 4\}$. Here the cost is equal to $min(max(3, 2), max(50, 4)) = 3$.
from sys import stdin, stdout def MI(): return map(int, stdin.readline().split()) def LI(): return list(map(int, stdin.readline().split())) def isValidOdd(a, n, k, v): cnt = 0 for x in a: if cnt % 2 == 0: if x <= v: cnt += 1 else: cnt += 1 return cnt >= k def isValidEven(a, n, k, v): cnt = 0 for x in a: if cnt % 2 == 1: if x <= v: cnt += 1 else: cnt += 1 return cnt >= k def bs(a, n, k, l, h): ans = h while l <= h: mid = (l + h) // 2 if isValidOdd(a, n, k, mid) or isValidEven(a, n, k, mid): ans = mid h = mid - 1 else: l = mid + 1 return ans n, k = MI() a = LI() ans = bs(a, n, k, 1, 10**9) stdout.write(str(ans) + "\n")
FUNC_DEF RETURN FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR FUNC_DEF RETURN FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR FUNC_DEF ASSIGN VAR NUMBER FOR VAR VAR IF BIN_OP VAR NUMBER NUMBER IF VAR VAR VAR NUMBER VAR NUMBER RETURN VAR VAR FUNC_DEF ASSIGN VAR NUMBER FOR VAR VAR IF BIN_OP VAR NUMBER NUMBER IF VAR VAR VAR NUMBER VAR NUMBER RETURN VAR VAR FUNC_DEF ASSIGN VAR VAR WHILE VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF FUNC_CALL VAR VAR VAR VAR VAR FUNC_CALL VAR VAR VAR VAR VAR ASSIGN VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER RETURN VAR ASSIGN VAR VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR VAR NUMBER BIN_OP NUMBER NUMBER EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR STRING
Ashish has an array $a$ of size $n$. A subsequence of $a$ is defined as a sequence that can be obtained from $a$ by deleting some elements (possibly none), without changing the order of the remaining elements. Consider a subsequence $s$ of $a$. He defines the cost of $s$ as the minimum between: The maximum among all elements at odd indices of $s$. The maximum among all elements at even indices of $s$. Note that the index of an element is its index in $s$, rather than its index in $a$. The positions are numbered from $1$. So, the cost of $s$ is equal to $min(max(s_1, s_3, s_5, \ldots), max(s_2, s_4, s_6, \ldots))$. For example, the cost of $\{7, 5, 6\}$ is $min( max(7, 6), max(5) ) = min(7, 5) = 5$. Help him find the minimum cost of a subsequence of size $k$. -----Input----- The first line contains two integers $n$ and $k$ ($2 \leq k \leq n \leq 2 \cdot 10^5$) Β β€” the size of the array $a$ and the size of the subsequence. The next line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($1 \leq a_i \leq 10^9$) Β β€” the elements of the array $a$. -----Output----- Output a single integer Β β€” the minimum cost of a subsequence of size $k$. -----Examples----- Input 4 2 1 2 3 4 Output 1 Input 4 3 1 2 3 4 Output 2 Input 5 3 5 3 4 2 6 Output 2 Input 6 4 5 3 50 2 4 5 Output 3 -----Note----- In the first test, consider the subsequence $s$ = $\{1, 3\}$. Here the cost is equal to $min(max(1), max(3)) = 1$. In the second test, consider the subsequence $s$ = $\{1, 2, 4\}$. Here the cost is equal to $min(max(1, 4), max(2)) = 2$. In the fourth test, consider the subsequence $s$ = $\{3, 50, 2, 4\}$. Here the cost is equal to $min(max(3, 2), max(50, 4)) = 3$.
def isValidOdd(mid): cnt = 0 for x in range(n): if cnt % 2 == 0: if arr[x] <= mid: cnt += 1 else: cnt += 1 if cnt >= k: return True return False def isValidEven(mid): cnt = 0 for x in range(n): if cnt % 2 == 1: if arr[x] <= mid: cnt += 1 else: cnt += 1 if cnt >= k: return True return False def bs(left, right): ans = right while left <= right: mid = (left + right) // 2 if isValidOdd(mid) or isValidEven(mid): right = mid - 1 ans = mid else: left = mid + 1 print(ans) n, k = map(int, input().split()) arr = list(map(int, input().split())) bs(1, max(arr))
FUNC_DEF ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF BIN_OP VAR NUMBER NUMBER IF VAR VAR VAR VAR NUMBER VAR NUMBER IF VAR VAR RETURN NUMBER RETURN NUMBER FUNC_DEF ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF BIN_OP VAR NUMBER NUMBER IF VAR VAR VAR VAR NUMBER VAR NUMBER IF VAR VAR RETURN NUMBER RETURN NUMBER FUNC_DEF ASSIGN VAR VAR WHILE VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF FUNC_CALL VAR VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR VAR ASSIGN VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR
Ashish has an array $a$ of size $n$. A subsequence of $a$ is defined as a sequence that can be obtained from $a$ by deleting some elements (possibly none), without changing the order of the remaining elements. Consider a subsequence $s$ of $a$. He defines the cost of $s$ as the minimum between: The maximum among all elements at odd indices of $s$. The maximum among all elements at even indices of $s$. Note that the index of an element is its index in $s$, rather than its index in $a$. The positions are numbered from $1$. So, the cost of $s$ is equal to $min(max(s_1, s_3, s_5, \ldots), max(s_2, s_4, s_6, \ldots))$. For example, the cost of $\{7, 5, 6\}$ is $min( max(7, 6), max(5) ) = min(7, 5) = 5$. Help him find the minimum cost of a subsequence of size $k$. -----Input----- The first line contains two integers $n$ and $k$ ($2 \leq k \leq n \leq 2 \cdot 10^5$) Β β€” the size of the array $a$ and the size of the subsequence. The next line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($1 \leq a_i \leq 10^9$) Β β€” the elements of the array $a$. -----Output----- Output a single integer Β β€” the minimum cost of a subsequence of size $k$. -----Examples----- Input 4 2 1 2 3 4 Output 1 Input 4 3 1 2 3 4 Output 2 Input 5 3 5 3 4 2 6 Output 2 Input 6 4 5 3 50 2 4 5 Output 3 -----Note----- In the first test, consider the subsequence $s$ = $\{1, 3\}$. Here the cost is equal to $min(max(1), max(3)) = 1$. In the second test, consider the subsequence $s$ = $\{1, 2, 4\}$. Here the cost is equal to $min(max(1, 4), max(2)) = 2$. In the fourth test, consider the subsequence $s$ = $\{3, 50, 2, 4\}$. Here the cost is equal to $min(max(3, 2), max(50, 4)) = 3$.
def check(a, m, chk, k): ct = 0 for i in a: if i <= m or ct % 2 != chk: ct += 1 if ct >= k: return True else: return False n, k = map(int, input().split()) a = list(map(int, input().split())) l = 1 h = 10**9 + 1 m = 0 while l < h: m = (l + h) // 2 if check(a, m, 0, k) or check(a, m, 1, k): h = m else: l = m + 1 print(l)
FUNC_DEF ASSIGN VAR NUMBER FOR VAR VAR IF VAR VAR BIN_OP VAR NUMBER VAR VAR NUMBER IF VAR VAR RETURN NUMBER RETURN NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP BIN_OP NUMBER NUMBER NUMBER ASSIGN VAR NUMBER WHILE VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF FUNC_CALL VAR VAR VAR NUMBER VAR FUNC_CALL VAR VAR VAR NUMBER VAR ASSIGN VAR VAR ASSIGN VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR
Ashish has an array $a$ of size $n$. A subsequence of $a$ is defined as a sequence that can be obtained from $a$ by deleting some elements (possibly none), without changing the order of the remaining elements. Consider a subsequence $s$ of $a$. He defines the cost of $s$ as the minimum between: The maximum among all elements at odd indices of $s$. The maximum among all elements at even indices of $s$. Note that the index of an element is its index in $s$, rather than its index in $a$. The positions are numbered from $1$. So, the cost of $s$ is equal to $min(max(s_1, s_3, s_5, \ldots), max(s_2, s_4, s_6, \ldots))$. For example, the cost of $\{7, 5, 6\}$ is $min( max(7, 6), max(5) ) = min(7, 5) = 5$. Help him find the minimum cost of a subsequence of size $k$. -----Input----- The first line contains two integers $n$ and $k$ ($2 \leq k \leq n \leq 2 \cdot 10^5$) Β β€” the size of the array $a$ and the size of the subsequence. The next line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($1 \leq a_i \leq 10^9$) Β β€” the elements of the array $a$. -----Output----- Output a single integer Β β€” the minimum cost of a subsequence of size $k$. -----Examples----- Input 4 2 1 2 3 4 Output 1 Input 4 3 1 2 3 4 Output 2 Input 5 3 5 3 4 2 6 Output 2 Input 6 4 5 3 50 2 4 5 Output 3 -----Note----- In the first test, consider the subsequence $s$ = $\{1, 3\}$. Here the cost is equal to $min(max(1), max(3)) = 1$. In the second test, consider the subsequence $s$ = $\{1, 2, 4\}$. Here the cost is equal to $min(max(1, 4), max(2)) = 2$. In the fourth test, consider the subsequence $s$ = $\{3, 50, 2, 4\}$. Here the cost is equal to $min(max(3, 2), max(50, 4)) = 3$.
def can_alterate(vs, max_v, num_to_take, begin_i, end_i): i = begin_i while i < end_i and num_to_take > 0: if vs[i] <= max_v: i += 1 num_to_take -= 1 i += 1 return num_to_take == 0 def can_fit_max(vs, max_v, num_to_take): return can_alterate( vs, max_v, (num_to_take + 1) // 2, 0, len(vs) - 1 + num_to_take % 2 ) or can_alterate(vs, max_v, num_to_take // 2, 1, len(vs) - num_to_take % 2) def main(): n, k = [int(t) for t in input().strip().split()] vs = [int(t) for t in input().strip().split()] min_target = 0 max_target = max(vs) while max_target > min_target + 1: mid_target = (min_target + max_target) // 2 if can_fit_max(vs, mid_target, k): max_target = mid_target else: min_target = mid_target print(max_target) main()
FUNC_DEF ASSIGN VAR VAR WHILE VAR VAR VAR NUMBER IF VAR VAR VAR VAR NUMBER VAR NUMBER VAR NUMBER RETURN VAR NUMBER FUNC_DEF RETURN FUNC_CALL VAR VAR VAR BIN_OP BIN_OP VAR NUMBER NUMBER NUMBER BIN_OP BIN_OP FUNC_CALL VAR VAR NUMBER BIN_OP VAR NUMBER FUNC_CALL VAR VAR VAR BIN_OP VAR NUMBER NUMBER BIN_OP FUNC_CALL VAR VAR BIN_OP VAR NUMBER FUNC_DEF ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR WHILE VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF FUNC_CALL VAR VAR VAR VAR ASSIGN VAR VAR ASSIGN VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR
Ashish has an array $a$ of size $n$. A subsequence of $a$ is defined as a sequence that can be obtained from $a$ by deleting some elements (possibly none), without changing the order of the remaining elements. Consider a subsequence $s$ of $a$. He defines the cost of $s$ as the minimum between: The maximum among all elements at odd indices of $s$. The maximum among all elements at even indices of $s$. Note that the index of an element is its index in $s$, rather than its index in $a$. The positions are numbered from $1$. So, the cost of $s$ is equal to $min(max(s_1, s_3, s_5, \ldots), max(s_2, s_4, s_6, \ldots))$. For example, the cost of $\{7, 5, 6\}$ is $min( max(7, 6), max(5) ) = min(7, 5) = 5$. Help him find the minimum cost of a subsequence of size $k$. -----Input----- The first line contains two integers $n$ and $k$ ($2 \leq k \leq n \leq 2 \cdot 10^5$) Β β€” the size of the array $a$ and the size of the subsequence. The next line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($1 \leq a_i \leq 10^9$) Β β€” the elements of the array $a$. -----Output----- Output a single integer Β β€” the minimum cost of a subsequence of size $k$. -----Examples----- Input 4 2 1 2 3 4 Output 1 Input 4 3 1 2 3 4 Output 2 Input 5 3 5 3 4 2 6 Output 2 Input 6 4 5 3 50 2 4 5 Output 3 -----Note----- In the first test, consider the subsequence $s$ = $\{1, 3\}$. Here the cost is equal to $min(max(1), max(3)) = 1$. In the second test, consider the subsequence $s$ = $\{1, 2, 4\}$. Here the cost is equal to $min(max(1, 4), max(2)) = 2$. In the fourth test, consider the subsequence $s$ = $\{3, 50, 2, 4\}$. Here the cost is equal to $min(max(3, 2), max(50, 4)) = 3$.
def testing(): n, k = [int(x) for x in input().split()] arr = [int(x) for x in input().split()] min_ = 1 max_ = 10**9 while min_ < max_: target = (min_ + max_) // 2 skip = 0 count = 0 for i in range(len(arr)): if skip or arr[i] <= target: count += 1 skip = 1 - skip if count >= k: max_ = target continue skip = 1 count = 0 for i in range(len(arr)): if skip or arr[i] <= target: count += 1 skip = 1 - skip if count >= k: max_ = target else: min_ = target + 1 return max_ print(testing())
FUNC_DEF ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP NUMBER NUMBER WHILE VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR VAR VAR VAR VAR NUMBER ASSIGN VAR BIN_OP NUMBER VAR IF VAR VAR ASSIGN VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR VAR VAR VAR VAR NUMBER ASSIGN VAR BIN_OP NUMBER VAR IF VAR VAR ASSIGN VAR VAR ASSIGN VAR BIN_OP VAR NUMBER RETURN VAR EXPR FUNC_CALL VAR FUNC_CALL VAR
Ashish has an array $a$ of size $n$. A subsequence of $a$ is defined as a sequence that can be obtained from $a$ by deleting some elements (possibly none), without changing the order of the remaining elements. Consider a subsequence $s$ of $a$. He defines the cost of $s$ as the minimum between: The maximum among all elements at odd indices of $s$. The maximum among all elements at even indices of $s$. Note that the index of an element is its index in $s$, rather than its index in $a$. The positions are numbered from $1$. So, the cost of $s$ is equal to $min(max(s_1, s_3, s_5, \ldots), max(s_2, s_4, s_6, \ldots))$. For example, the cost of $\{7, 5, 6\}$ is $min( max(7, 6), max(5) ) = min(7, 5) = 5$. Help him find the minimum cost of a subsequence of size $k$. -----Input----- The first line contains two integers $n$ and $k$ ($2 \leq k \leq n \leq 2 \cdot 10^5$) Β β€” the size of the array $a$ and the size of the subsequence. The next line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($1 \leq a_i \leq 10^9$) Β β€” the elements of the array $a$. -----Output----- Output a single integer Β β€” the minimum cost of a subsequence of size $k$. -----Examples----- Input 4 2 1 2 3 4 Output 1 Input 4 3 1 2 3 4 Output 2 Input 5 3 5 3 4 2 6 Output 2 Input 6 4 5 3 50 2 4 5 Output 3 -----Note----- In the first test, consider the subsequence $s$ = $\{1, 3\}$. Here the cost is equal to $min(max(1), max(3)) = 1$. In the second test, consider the subsequence $s$ = $\{1, 2, 4\}$. Here the cost is equal to $min(max(1, 4), max(2)) = 2$. In the fourth test, consider the subsequence $s$ = $\{3, 50, 2, 4\}$. Here the cost is equal to $min(max(3, 2), max(50, 4)) = 3$.
def check(M, x): if u[M][0] > x: return False cnt = 1 if M < n - 1: cnt += 1 if M > 0: cnt += 1 i = M + 2 while i < n: if u[i][0] <= x: cnt += 1 if i < n - 1: cnt += 1 i += 1 i += 1 i = M - 2 while i >= 0: if u[i][0] <= x: cnt += 1 if i > 0: cnt += 1 i -= 1 i -= 1 return cnt >= k n, k = map(int, input().split()) u = list(map(int, input().split())) for i in range(n): u[i] = u[i], i s = sorted(u) s.reverse() L = 0 R = n while R - L > 1: M = (L + R) // 2 if ( check(s[M][1], s[M][0]) or s[M][1] > 0 and check(s[M][1] - 1, s[M][0]) or s[M][1] < n - 1 and check(s[M][1] + 1, s[M][0]) ): L = M else: R = M print(s[L][0])
FUNC_DEF IF VAR VAR NUMBER VAR RETURN NUMBER ASSIGN VAR NUMBER IF VAR BIN_OP VAR NUMBER VAR NUMBER IF VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER WHILE VAR VAR IF VAR VAR NUMBER VAR VAR NUMBER IF VAR BIN_OP VAR NUMBER VAR NUMBER VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER WHILE VAR NUMBER IF VAR VAR NUMBER VAR VAR NUMBER IF VAR NUMBER VAR NUMBER VAR NUMBER VAR NUMBER RETURN VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR VAR WHILE BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF FUNC_CALL VAR VAR VAR NUMBER VAR VAR NUMBER VAR VAR NUMBER NUMBER FUNC_CALL VAR BIN_OP VAR VAR NUMBER NUMBER VAR VAR NUMBER VAR VAR NUMBER BIN_OP VAR NUMBER FUNC_CALL VAR BIN_OP VAR VAR NUMBER NUMBER VAR VAR NUMBER ASSIGN VAR VAR ASSIGN VAR VAR EXPR FUNC_CALL VAR VAR VAR NUMBER
Ashish has an array $a$ of size $n$. A subsequence of $a$ is defined as a sequence that can be obtained from $a$ by deleting some elements (possibly none), without changing the order of the remaining elements. Consider a subsequence $s$ of $a$. He defines the cost of $s$ as the minimum between: The maximum among all elements at odd indices of $s$. The maximum among all elements at even indices of $s$. Note that the index of an element is its index in $s$, rather than its index in $a$. The positions are numbered from $1$. So, the cost of $s$ is equal to $min(max(s_1, s_3, s_5, \ldots), max(s_2, s_4, s_6, \ldots))$. For example, the cost of $\{7, 5, 6\}$ is $min( max(7, 6), max(5) ) = min(7, 5) = 5$. Help him find the minimum cost of a subsequence of size $k$. -----Input----- The first line contains two integers $n$ and $k$ ($2 \leq k \leq n \leq 2 \cdot 10^5$) Β β€” the size of the array $a$ and the size of the subsequence. The next line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($1 \leq a_i \leq 10^9$) Β β€” the elements of the array $a$. -----Output----- Output a single integer Β β€” the minimum cost of a subsequence of size $k$. -----Examples----- Input 4 2 1 2 3 4 Output 1 Input 4 3 1 2 3 4 Output 2 Input 5 3 5 3 4 2 6 Output 2 Input 6 4 5 3 50 2 4 5 Output 3 -----Note----- In the first test, consider the subsequence $s$ = $\{1, 3\}$. Here the cost is equal to $min(max(1), max(3)) = 1$. In the second test, consider the subsequence $s$ = $\{1, 2, 4\}$. Here the cost is equal to $min(max(1, 4), max(2)) = 2$. In the fourth test, consider the subsequence $s$ = $\{3, 50, 2, 4\}$. Here the cost is equal to $min(max(3, 2), max(50, 4)) = 3$.
n, k = [int(x) for x in input().split()] arr = [int(x) for x in input().split()] l = -1 r = 10**9 while r - l != 1: tmp = 0 j = 0 mid = (r + l) // 2 while j < len(arr): if arr[j] <= mid: tmp += 1 if j != len(arr) - 1: tmp += 1 j += 2 else: j += 1 if tmp >= k: r = mid else: l = mid r1 = r l = -1 r = 10**9 l = -1 r = 10**9 while r - l != 1: tmp = 1 j = 1 mid = (r + l) // 2 while j < len(arr): if arr[j] <= mid: tmp += 1 if j != len(arr) - 1: tmp += 1 j += 2 else: j += 1 if tmp >= k: r = mid else: l = mid print(min(r1, r))
ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP NUMBER NUMBER WHILE BIN_OP VAR VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER WHILE VAR FUNC_CALL VAR VAR IF VAR VAR VAR VAR NUMBER IF VAR BIN_OP FUNC_CALL VAR VAR NUMBER VAR NUMBER VAR NUMBER VAR NUMBER IF VAR VAR ASSIGN VAR VAR ASSIGN VAR VAR ASSIGN VAR VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP NUMBER NUMBER ASSIGN VAR NUMBER ASSIGN VAR BIN_OP NUMBER NUMBER WHILE BIN_OP VAR VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER WHILE VAR FUNC_CALL VAR VAR IF VAR VAR VAR VAR NUMBER IF VAR BIN_OP FUNC_CALL VAR VAR NUMBER VAR NUMBER VAR NUMBER VAR NUMBER IF VAR VAR ASSIGN VAR VAR ASSIGN VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR
Ashish has an array $a$ of size $n$. A subsequence of $a$ is defined as a sequence that can be obtained from $a$ by deleting some elements (possibly none), without changing the order of the remaining elements. Consider a subsequence $s$ of $a$. He defines the cost of $s$ as the minimum between: The maximum among all elements at odd indices of $s$. The maximum among all elements at even indices of $s$. Note that the index of an element is its index in $s$, rather than its index in $a$. The positions are numbered from $1$. So, the cost of $s$ is equal to $min(max(s_1, s_3, s_5, \ldots), max(s_2, s_4, s_6, \ldots))$. For example, the cost of $\{7, 5, 6\}$ is $min( max(7, 6), max(5) ) = min(7, 5) = 5$. Help him find the minimum cost of a subsequence of size $k$. -----Input----- The first line contains two integers $n$ and $k$ ($2 \leq k \leq n \leq 2 \cdot 10^5$) Β β€” the size of the array $a$ and the size of the subsequence. The next line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($1 \leq a_i \leq 10^9$) Β β€” the elements of the array $a$. -----Output----- Output a single integer Β β€” the minimum cost of a subsequence of size $k$. -----Examples----- Input 4 2 1 2 3 4 Output 1 Input 4 3 1 2 3 4 Output 2 Input 5 3 5 3 4 2 6 Output 2 Input 6 4 5 3 50 2 4 5 Output 3 -----Note----- In the first test, consider the subsequence $s$ = $\{1, 3\}$. Here the cost is equal to $min(max(1), max(3)) = 1$. In the second test, consider the subsequence $s$ = $\{1, 2, 4\}$. Here the cost is equal to $min(max(1, 4), max(2)) = 2$. In the fourth test, consider the subsequence $s$ = $\{3, 50, 2, 4\}$. Here the cost is equal to $min(max(3, 2), max(50, 4)) = 3$.
def check(a, mid, t): l = 0 for i in range(len(a)): if t: if l % 2 and a[i] <= mid: l += 1 elif not l % 2: l += 1 elif not l % 2 and a[i] <= mid: l += 1 elif l % 2: l += 1 return l def main(): n, k = map(int, input().split()) a = list(map(int, input().split())) lo, hi = min(a), max(a) mi = hi while lo <= hi: mid = (lo + hi) // 2 e = max(check(a, mid, 0), check(a, mid, 1)) if e >= k: mi, hi = min(mid, mi), mid - 1 else: lo = mid + 1 print(mi) main()
FUNC_DEF ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR IF BIN_OP VAR NUMBER VAR VAR VAR VAR NUMBER IF BIN_OP VAR NUMBER VAR NUMBER IF BIN_OP VAR NUMBER VAR VAR VAR VAR NUMBER IF BIN_OP VAR NUMBER VAR NUMBER RETURN VAR FUNC_DEF ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR WHILE VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR NUMBER FUNC_CALL VAR VAR VAR NUMBER IF VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR
Ashish has an array $a$ of size $n$. A subsequence of $a$ is defined as a sequence that can be obtained from $a$ by deleting some elements (possibly none), without changing the order of the remaining elements. Consider a subsequence $s$ of $a$. He defines the cost of $s$ as the minimum between: The maximum among all elements at odd indices of $s$. The maximum among all elements at even indices of $s$. Note that the index of an element is its index in $s$, rather than its index in $a$. The positions are numbered from $1$. So, the cost of $s$ is equal to $min(max(s_1, s_3, s_5, \ldots), max(s_2, s_4, s_6, \ldots))$. For example, the cost of $\{7, 5, 6\}$ is $min( max(7, 6), max(5) ) = min(7, 5) = 5$. Help him find the minimum cost of a subsequence of size $k$. -----Input----- The first line contains two integers $n$ and $k$ ($2 \leq k \leq n \leq 2 \cdot 10^5$) Β β€” the size of the array $a$ and the size of the subsequence. The next line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($1 \leq a_i \leq 10^9$) Β β€” the elements of the array $a$. -----Output----- Output a single integer Β β€” the minimum cost of a subsequence of size $k$. -----Examples----- Input 4 2 1 2 3 4 Output 1 Input 4 3 1 2 3 4 Output 2 Input 5 3 5 3 4 2 6 Output 2 Input 6 4 5 3 50 2 4 5 Output 3 -----Note----- In the first test, consider the subsequence $s$ = $\{1, 3\}$. Here the cost is equal to $min(max(1), max(3)) = 1$. In the second test, consider the subsequence $s$ = $\{1, 2, 4\}$. Here the cost is equal to $min(max(1, 4), max(2)) = 2$. In the fourth test, consider the subsequence $s$ = $\{3, 50, 2, 4\}$. Here the cost is equal to $min(max(3, 2), max(50, 4)) = 3$.
def valid(m, even=True): l = 0 for i in range(n): if not even: l += 1 even = not even elif a[i] <= m: l += 1 even = not even return l >= k n, k = map(int, input().strip().split()) a = list(map(int, input().strip().split())) l = 1 h = 1000000000.0 while l < h: m = l + (h - l) // 2 if valid(m, even=True) or valid(m, even=False): h = m else: l = m + 1 print(int(h))
FUNC_DEF NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR VAR NUMBER ASSIGN VAR VAR IF VAR VAR VAR VAR NUMBER ASSIGN VAR VAR RETURN VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR ASSIGN VAR BIN_OP VAR BIN_OP BIN_OP VAR VAR NUMBER IF FUNC_CALL VAR VAR NUMBER FUNC_CALL VAR VAR NUMBER ASSIGN VAR VAR ASSIGN VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR VAR
Ashish has an array $a$ of size $n$. A subsequence of $a$ is defined as a sequence that can be obtained from $a$ by deleting some elements (possibly none), without changing the order of the remaining elements. Consider a subsequence $s$ of $a$. He defines the cost of $s$ as the minimum between: The maximum among all elements at odd indices of $s$. The maximum among all elements at even indices of $s$. Note that the index of an element is its index in $s$, rather than its index in $a$. The positions are numbered from $1$. So, the cost of $s$ is equal to $min(max(s_1, s_3, s_5, \ldots), max(s_2, s_4, s_6, \ldots))$. For example, the cost of $\{7, 5, 6\}$ is $min( max(7, 6), max(5) ) = min(7, 5) = 5$. Help him find the minimum cost of a subsequence of size $k$. -----Input----- The first line contains two integers $n$ and $k$ ($2 \leq k \leq n \leq 2 \cdot 10^5$) Β β€” the size of the array $a$ and the size of the subsequence. The next line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($1 \leq a_i \leq 10^9$) Β β€” the elements of the array $a$. -----Output----- Output a single integer Β β€” the minimum cost of a subsequence of size $k$. -----Examples----- Input 4 2 1 2 3 4 Output 1 Input 4 3 1 2 3 4 Output 2 Input 5 3 5 3 4 2 6 Output 2 Input 6 4 5 3 50 2 4 5 Output 3 -----Note----- In the first test, consider the subsequence $s$ = $\{1, 3\}$. Here the cost is equal to $min(max(1), max(3)) = 1$. In the second test, consider the subsequence $s$ = $\{1, 2, 4\}$. Here the cost is equal to $min(max(1, 4), max(2)) = 2$. In the fourth test, consider the subsequence $s$ = $\{3, 50, 2, 4\}$. Here the cost is equal to $min(max(3, 2), max(50, 4)) = 3$.
n, k = map(int, input().split()) a = list(map(int, input().split())) aOrderSorter = [] aOrderList = [] for i in range(n): aOrderSorter.append((a[i], i)) aOrderList.append(-1) aOrderSorter.sort(key=lambda x: x[0]) for i in range(n): aOrderList[aOrderSorter[i][1]] = i if k % 2 == 0: k = k // 2 oddMin = -1 evenMin = -1 l = 0 r = k while r != l: m = (r + l) // 2 subseq = [] subseqLen = 0 for i in range(n): if i == n - 1: break if aOrderList[i] < k + m and ( subseqLen == 0 or subseq[subseqLen - 1] != i - 1 ): subseq.append(i) subseqLen += 1 if subseqLen >= k: break if subseqLen >= k: r = m else: l = m + 1 oddMin = r l = 0 r = k while r != l: m = (r + l) // 2 subseq = [] subseqLen = 0 for i in range(n): if i == 0: continue if aOrderList[i] < k + m and ( subseqLen == 0 or subseq[subseqLen - 1] != i - 1 ): subseq.append(i) subseqLen += 1 if subseqLen >= k: break if subseqLen >= k: r = m else: l = m + 1 evenMin = r print(aOrderSorter[k + min(oddMin, evenMin) - 1][0]) else: k = k // 2 l = 0 r = k + 2 while r != l: m = (r + l) // 2 subseq = [] subseqLen = 0 for i in range(n): if aOrderList[i] < k + m and ( subseqLen == 0 or subseq[subseqLen - 1] != i - 1 ): subseq.append(i) subseqLen += 1 if subseqLen >= k + 1: break if subseqLen >= k + 1: r = m else: l = m + 1 oddMin = r l = 0 r = k while r != l: m = (r + l) // 2 subseq = [] subseqLen = 0 for i in range(n): if i == 0: continue if i == n - 1: break if aOrderList[i] < k + m and ( subseqLen == 0 or subseq[subseqLen - 1] != i - 1 ): subseq.append(i) subseqLen += 1 if subseqLen >= k: break if subseqLen >= k: r = m else: l = m + 1 evenMin = r print(aOrderSorter[k + min(oddMin, evenMin) - 1][0])
ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR LIST ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR VAR VAR EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR VAR NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR NUMBER VAR IF BIN_OP VAR NUMBER NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR VAR WHILE VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR LIST ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR BIN_OP VAR NUMBER IF VAR VAR BIN_OP VAR VAR VAR NUMBER VAR BIN_OP VAR NUMBER BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR VAR NUMBER IF VAR VAR IF VAR VAR ASSIGN VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR VAR ASSIGN VAR NUMBER ASSIGN VAR VAR WHILE VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR LIST ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR NUMBER IF VAR VAR BIN_OP VAR VAR VAR NUMBER VAR BIN_OP VAR NUMBER BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR VAR NUMBER IF VAR VAR IF VAR VAR ASSIGN VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR VAR EXPR FUNC_CALL VAR VAR BIN_OP BIN_OP VAR FUNC_CALL VAR VAR VAR NUMBER NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER WHILE VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR LIST ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR VAR BIN_OP VAR VAR VAR NUMBER VAR BIN_OP VAR NUMBER BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR VAR NUMBER IF VAR BIN_OP VAR NUMBER IF VAR BIN_OP VAR NUMBER ASSIGN VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR VAR ASSIGN VAR NUMBER ASSIGN VAR VAR WHILE VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR LIST ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR NUMBER IF VAR BIN_OP VAR NUMBER IF VAR VAR BIN_OP VAR VAR VAR NUMBER VAR BIN_OP VAR NUMBER BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR VAR NUMBER IF VAR VAR IF VAR VAR ASSIGN VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR VAR EXPR FUNC_CALL VAR VAR BIN_OP BIN_OP VAR FUNC_CALL VAR VAR VAR NUMBER NUMBER
Ashish has an array $a$ of size $n$. A subsequence of $a$ is defined as a sequence that can be obtained from $a$ by deleting some elements (possibly none), without changing the order of the remaining elements. Consider a subsequence $s$ of $a$. He defines the cost of $s$ as the minimum between: The maximum among all elements at odd indices of $s$. The maximum among all elements at even indices of $s$. Note that the index of an element is its index in $s$, rather than its index in $a$. The positions are numbered from $1$. So, the cost of $s$ is equal to $min(max(s_1, s_3, s_5, \ldots), max(s_2, s_4, s_6, \ldots))$. For example, the cost of $\{7, 5, 6\}$ is $min( max(7, 6), max(5) ) = min(7, 5) = 5$. Help him find the minimum cost of a subsequence of size $k$. -----Input----- The first line contains two integers $n$ and $k$ ($2 \leq k \leq n \leq 2 \cdot 10^5$) Β β€” the size of the array $a$ and the size of the subsequence. The next line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($1 \leq a_i \leq 10^9$) Β β€” the elements of the array $a$. -----Output----- Output a single integer Β β€” the minimum cost of a subsequence of size $k$. -----Examples----- Input 4 2 1 2 3 4 Output 1 Input 4 3 1 2 3 4 Output 2 Input 5 3 5 3 4 2 6 Output 2 Input 6 4 5 3 50 2 4 5 Output 3 -----Note----- In the first test, consider the subsequence $s$ = $\{1, 3\}$. Here the cost is equal to $min(max(1), max(3)) = 1$. In the second test, consider the subsequence $s$ = $\{1, 2, 4\}$. Here the cost is equal to $min(max(1, 4), max(2)) = 2$. In the fourth test, consider the subsequence $s$ = $\{3, 50, 2, 4\}$. Here the cost is equal to $min(max(3, 2), max(50, 4)) = 3$.
n, k = map(int, input().split()) arr = list(map(int, input().split())) low = 1 high = 10**9 def checkodd(mid): count = 0 for i in range(0, n): if count % 2 == 0: if arr[i] <= mid: count += 1 else: count += 1 return count >= k def checkeven(mid): count = 0 for i in range(0, n): if count % 2 != 0: if arr[i] <= mid: count += 1 else: count += 1 return count >= k while low < high: mid = (low + high) // 2 if checkodd(mid) or checkeven(mid): high = mid else: low = mid + 1 print(low)
ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP NUMBER NUMBER FUNC_DEF ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR IF BIN_OP VAR NUMBER NUMBER IF VAR VAR VAR VAR NUMBER VAR NUMBER RETURN VAR VAR FUNC_DEF ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR IF BIN_OP VAR NUMBER NUMBER IF VAR VAR VAR VAR NUMBER VAR NUMBER RETURN VAR VAR WHILE VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF FUNC_CALL VAR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR ASSIGN VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR
Ashish has an array $a$ of size $n$. A subsequence of $a$ is defined as a sequence that can be obtained from $a$ by deleting some elements (possibly none), without changing the order of the remaining elements. Consider a subsequence $s$ of $a$. He defines the cost of $s$ as the minimum between: The maximum among all elements at odd indices of $s$. The maximum among all elements at even indices of $s$. Note that the index of an element is its index in $s$, rather than its index in $a$. The positions are numbered from $1$. So, the cost of $s$ is equal to $min(max(s_1, s_3, s_5, \ldots), max(s_2, s_4, s_6, \ldots))$. For example, the cost of $\{7, 5, 6\}$ is $min( max(7, 6), max(5) ) = min(7, 5) = 5$. Help him find the minimum cost of a subsequence of size $k$. -----Input----- The first line contains two integers $n$ and $k$ ($2 \leq k \leq n \leq 2 \cdot 10^5$) Β β€” the size of the array $a$ and the size of the subsequence. The next line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($1 \leq a_i \leq 10^9$) Β β€” the elements of the array $a$. -----Output----- Output a single integer Β β€” the minimum cost of a subsequence of size $k$. -----Examples----- Input 4 2 1 2 3 4 Output 1 Input 4 3 1 2 3 4 Output 2 Input 5 3 5 3 4 2 6 Output 2 Input 6 4 5 3 50 2 4 5 Output 3 -----Note----- In the first test, consider the subsequence $s$ = $\{1, 3\}$. Here the cost is equal to $min(max(1), max(3)) = 1$. In the second test, consider the subsequence $s$ = $\{1, 2, 4\}$. Here the cost is equal to $min(max(1, 4), max(2)) = 2$. In the fourth test, consider the subsequence $s$ = $\{3, 50, 2, 4\}$. Here the cost is equal to $min(max(3, 2), max(50, 4)) = 3$.
n, k = map(int, input().split()) lo = 0 hi = 10**9 l = list(map(int, input().split())) while hi - lo > 1: test = lo + (hi - lo) // 2 odd = 0 skip = False for v in l: if skip: skip = False odd += 1 elif v <= test: odd += 1 skip = True even = 0 skip = True for v in l: if skip: skip = False even += 1 elif v <= test: even += 1 skip = True if odd >= k or even >= k: hi = test else: lo = test print(hi)
ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR WHILE BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR IF VAR ASSIGN VAR NUMBER VAR NUMBER IF VAR VAR VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR IF VAR ASSIGN VAR NUMBER VAR NUMBER IF VAR VAR VAR NUMBER ASSIGN VAR NUMBER IF VAR VAR VAR VAR ASSIGN VAR VAR ASSIGN VAR VAR EXPR FUNC_CALL VAR VAR
Ashish has an array $a$ of size $n$. A subsequence of $a$ is defined as a sequence that can be obtained from $a$ by deleting some elements (possibly none), without changing the order of the remaining elements. Consider a subsequence $s$ of $a$. He defines the cost of $s$ as the minimum between: The maximum among all elements at odd indices of $s$. The maximum among all elements at even indices of $s$. Note that the index of an element is its index in $s$, rather than its index in $a$. The positions are numbered from $1$. So, the cost of $s$ is equal to $min(max(s_1, s_3, s_5, \ldots), max(s_2, s_4, s_6, \ldots))$. For example, the cost of $\{7, 5, 6\}$ is $min( max(7, 6), max(5) ) = min(7, 5) = 5$. Help him find the minimum cost of a subsequence of size $k$. -----Input----- The first line contains two integers $n$ and $k$ ($2 \leq k \leq n \leq 2 \cdot 10^5$) Β β€” the size of the array $a$ and the size of the subsequence. The next line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($1 \leq a_i \leq 10^9$) Β β€” the elements of the array $a$. -----Output----- Output a single integer Β β€” the minimum cost of a subsequence of size $k$. -----Examples----- Input 4 2 1 2 3 4 Output 1 Input 4 3 1 2 3 4 Output 2 Input 5 3 5 3 4 2 6 Output 2 Input 6 4 5 3 50 2 4 5 Output 3 -----Note----- In the first test, consider the subsequence $s$ = $\{1, 3\}$. Here the cost is equal to $min(max(1), max(3)) = 1$. In the second test, consider the subsequence $s$ = $\{1, 2, 4\}$. Here the cost is equal to $min(max(1, 4), max(2)) = 2$. In the fourth test, consider the subsequence $s$ = $\{3, 50, 2, 4\}$. Here the cost is equal to $min(max(3, 2), max(50, 4)) = 3$.
from sys import gettrace, stdin if gettrace(): inputi = input else: def input(): return next(stdin)[:-1] def inputi(): return stdin.buffer.readline() def main(): n, k = map(int, inputi().split()) aa = [int(a) for a in inputi().split()] lo = 0 hi = max(aa) + 1 while lo < hi: mid = (lo + hi) // 2 if valid_sequence(aa, k, mid, n): hi = mid else: lo = mid + 1 print(lo) def valid_sequence(aa, k, mid, n): i = 0 count = 0 while i < n - 1 + k % 2 and count < (k + 1) // 2: if aa[i] <= mid: i += 2 count += 1 else: i += 1 found = count == (k + 1) // 2 if not found: i = 1 count = 0 while i < n - k % 2 and count < k // 2: if aa[i] <= mid: i += 2 count += 1 else: i += 1 found = count == k // 2 return found main()
IF FUNC_CALL VAR ASSIGN VAR VAR FUNC_DEF RETURN FUNC_CALL VAR VAR NUMBER FUNC_DEF RETURN FUNC_CALL VAR FUNC_DEF ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER WHILE VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF FUNC_CALL VAR VAR VAR VAR VAR ASSIGN VAR VAR ASSIGN VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR FUNC_DEF ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR BIN_OP BIN_OP VAR NUMBER BIN_OP VAR NUMBER VAR BIN_OP BIN_OP VAR NUMBER NUMBER IF VAR VAR VAR VAR NUMBER VAR NUMBER VAR NUMBER ASSIGN VAR VAR BIN_OP BIN_OP VAR NUMBER NUMBER IF VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR BIN_OP VAR BIN_OP VAR NUMBER VAR BIN_OP VAR NUMBER IF VAR VAR VAR VAR NUMBER VAR NUMBER VAR NUMBER ASSIGN VAR VAR BIN_OP VAR NUMBER RETURN VAR EXPR FUNC_CALL VAR
Ashish has an array $a$ of size $n$. A subsequence of $a$ is defined as a sequence that can be obtained from $a$ by deleting some elements (possibly none), without changing the order of the remaining elements. Consider a subsequence $s$ of $a$. He defines the cost of $s$ as the minimum between: The maximum among all elements at odd indices of $s$. The maximum among all elements at even indices of $s$. Note that the index of an element is its index in $s$, rather than its index in $a$. The positions are numbered from $1$. So, the cost of $s$ is equal to $min(max(s_1, s_3, s_5, \ldots), max(s_2, s_4, s_6, \ldots))$. For example, the cost of $\{7, 5, 6\}$ is $min( max(7, 6), max(5) ) = min(7, 5) = 5$. Help him find the minimum cost of a subsequence of size $k$. -----Input----- The first line contains two integers $n$ and $k$ ($2 \leq k \leq n \leq 2 \cdot 10^5$) Β β€” the size of the array $a$ and the size of the subsequence. The next line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($1 \leq a_i \leq 10^9$) Β β€” the elements of the array $a$. -----Output----- Output a single integer Β β€” the minimum cost of a subsequence of size $k$. -----Examples----- Input 4 2 1 2 3 4 Output 1 Input 4 3 1 2 3 4 Output 2 Input 5 3 5 3 4 2 6 Output 2 Input 6 4 5 3 50 2 4 5 Output 3 -----Note----- In the first test, consider the subsequence $s$ = $\{1, 3\}$. Here the cost is equal to $min(max(1), max(3)) = 1$. In the second test, consider the subsequence $s$ = $\{1, 2, 4\}$. Here the cost is equal to $min(max(1, 4), max(2)) = 2$. In the fourth test, consider the subsequence $s$ = $\{3, 50, 2, 4\}$. Here the cost is equal to $min(max(3, 2), max(50, 4)) = 3$.
n, k = map(int, input().split()) arr = list(map(int, input().split())) def check(m, ind): c = 0 for i in arr: if i <= m or c % 2 != ind: c += 1 return c >= k l, h = 1, 10**9 while l < h: m = (l + h) // 2 if check(m, 0) or check(m, 1): h = m else: l = m + 1 print(l)
ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR FUNC_DEF ASSIGN VAR NUMBER FOR VAR VAR IF VAR VAR BIN_OP VAR NUMBER VAR VAR NUMBER RETURN VAR VAR ASSIGN VAR VAR NUMBER BIN_OP NUMBER NUMBER WHILE VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF FUNC_CALL VAR VAR NUMBER FUNC_CALL VAR VAR NUMBER ASSIGN VAR VAR ASSIGN VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR
Ashish has an array $a$ of size $n$. A subsequence of $a$ is defined as a sequence that can be obtained from $a$ by deleting some elements (possibly none), without changing the order of the remaining elements. Consider a subsequence $s$ of $a$. He defines the cost of $s$ as the minimum between: The maximum among all elements at odd indices of $s$. The maximum among all elements at even indices of $s$. Note that the index of an element is its index in $s$, rather than its index in $a$. The positions are numbered from $1$. So, the cost of $s$ is equal to $min(max(s_1, s_3, s_5, \ldots), max(s_2, s_4, s_6, \ldots))$. For example, the cost of $\{7, 5, 6\}$ is $min( max(7, 6), max(5) ) = min(7, 5) = 5$. Help him find the minimum cost of a subsequence of size $k$. -----Input----- The first line contains two integers $n$ and $k$ ($2 \leq k \leq n \leq 2 \cdot 10^5$) Β β€” the size of the array $a$ and the size of the subsequence. The next line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($1 \leq a_i \leq 10^9$) Β β€” the elements of the array $a$. -----Output----- Output a single integer Β β€” the minimum cost of a subsequence of size $k$. -----Examples----- Input 4 2 1 2 3 4 Output 1 Input 4 3 1 2 3 4 Output 2 Input 5 3 5 3 4 2 6 Output 2 Input 6 4 5 3 50 2 4 5 Output 3 -----Note----- In the first test, consider the subsequence $s$ = $\{1, 3\}$. Here the cost is equal to $min(max(1), max(3)) = 1$. In the second test, consider the subsequence $s$ = $\{1, 2, 4\}$. Here the cost is equal to $min(max(1, 4), max(2)) = 2$. In the fourth test, consider the subsequence $s$ = $\{3, 50, 2, 4\}$. Here the cost is equal to $min(max(3, 2), max(50, 4)) = 3$.
n, k = [int(i) for i in input().split()] array = [int(i) for i in input().split()] def check_possible(array, x): i = 0 removed = 0 while i < n: if array[i] <= x: i += 2 else: i += 1 removed += 1 odd = removed <= n - k i = 1 removed = 0 while i < n: if array[i] <= x: i += 2 else: i += 1 removed += 1 even = removed <= n - k return odd or even x_min = 1 x_max = 1000000001 while x_max - x_min > 1: if (x_max + x_min) % 2 == 0: x_mid = (x_max + x_min) // 2 else: x_mid = (x_max + x_min - 1) // 2 if check_possible(array, x_mid): x_max = x_mid else: x_min = x_mid if check_possible(array, x_min): print(x_min) else: print(x_max)
ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR FUNC_DEF ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR IF VAR VAR VAR VAR NUMBER VAR NUMBER VAR NUMBER ASSIGN VAR VAR BIN_OP VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR IF VAR VAR VAR VAR NUMBER VAR NUMBER VAR NUMBER ASSIGN VAR VAR BIN_OP VAR VAR RETURN VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE BIN_OP VAR VAR NUMBER IF BIN_OP BIN_OP VAR VAR NUMBER NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP BIN_OP VAR VAR NUMBER NUMBER IF FUNC_CALL VAR VAR VAR ASSIGN VAR VAR ASSIGN VAR VAR IF FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR
Ashish has an array $a$ of size $n$. A subsequence of $a$ is defined as a sequence that can be obtained from $a$ by deleting some elements (possibly none), without changing the order of the remaining elements. Consider a subsequence $s$ of $a$. He defines the cost of $s$ as the minimum between: The maximum among all elements at odd indices of $s$. The maximum among all elements at even indices of $s$. Note that the index of an element is its index in $s$, rather than its index in $a$. The positions are numbered from $1$. So, the cost of $s$ is equal to $min(max(s_1, s_3, s_5, \ldots), max(s_2, s_4, s_6, \ldots))$. For example, the cost of $\{7, 5, 6\}$ is $min( max(7, 6), max(5) ) = min(7, 5) = 5$. Help him find the minimum cost of a subsequence of size $k$. -----Input----- The first line contains two integers $n$ and $k$ ($2 \leq k \leq n \leq 2 \cdot 10^5$) Β β€” the size of the array $a$ and the size of the subsequence. The next line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($1 \leq a_i \leq 10^9$) Β β€” the elements of the array $a$. -----Output----- Output a single integer Β β€” the minimum cost of a subsequence of size $k$. -----Examples----- Input 4 2 1 2 3 4 Output 1 Input 4 3 1 2 3 4 Output 2 Input 5 3 5 3 4 2 6 Output 2 Input 6 4 5 3 50 2 4 5 Output 3 -----Note----- In the first test, consider the subsequence $s$ = $\{1, 3\}$. Here the cost is equal to $min(max(1), max(3)) = 1$. In the second test, consider the subsequence $s$ = $\{1, 2, 4\}$. Here the cost is equal to $min(max(1, 4), max(2)) = 2$. In the fourth test, consider the subsequence $s$ = $\{3, 50, 2, 4\}$. Here the cost is equal to $min(max(3, 2), max(50, 4)) = 3$.
n, k = map(int, input().split()) def jest(x, s, k1): bo = map(lambda y: y <= s, x) p = 0 b = False for i in bo: if i: if b: b = False else: b = True p += 1 else: b = False return p >= k1 a = list(map(int, input().split())) kon = max(a) pocz = min(a) while pocz < kon: v = (pocz + kon) // 2 if k % 2: if jest(a, v, k // 2 + 1) or jest(a[1:-1], v, k // 2): kon = v else: pocz = v + 1 elif jest(a[:-1], v, k // 2) or jest(a[1:], v, k // 2): kon = v else: pocz = v + 1 print(kon)
ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR FUNC_DEF ASSIGN VAR FUNC_CALL VAR VAR VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR IF VAR IF VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER VAR NUMBER ASSIGN VAR NUMBER RETURN VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR WHILE VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF BIN_OP VAR NUMBER IF FUNC_CALL VAR VAR VAR BIN_OP BIN_OP VAR NUMBER NUMBER FUNC_CALL VAR VAR NUMBER NUMBER VAR BIN_OP VAR NUMBER ASSIGN VAR VAR ASSIGN VAR BIN_OP VAR NUMBER IF FUNC_CALL VAR VAR NUMBER VAR BIN_OP VAR NUMBER FUNC_CALL VAR VAR NUMBER VAR BIN_OP VAR NUMBER ASSIGN VAR VAR ASSIGN VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR
Ashish has an array $a$ of size $n$. A subsequence of $a$ is defined as a sequence that can be obtained from $a$ by deleting some elements (possibly none), without changing the order of the remaining elements. Consider a subsequence $s$ of $a$. He defines the cost of $s$ as the minimum between: The maximum among all elements at odd indices of $s$. The maximum among all elements at even indices of $s$. Note that the index of an element is its index in $s$, rather than its index in $a$. The positions are numbered from $1$. So, the cost of $s$ is equal to $min(max(s_1, s_3, s_5, \ldots), max(s_2, s_4, s_6, \ldots))$. For example, the cost of $\{7, 5, 6\}$ is $min( max(7, 6), max(5) ) = min(7, 5) = 5$. Help him find the minimum cost of a subsequence of size $k$. -----Input----- The first line contains two integers $n$ and $k$ ($2 \leq k \leq n \leq 2 \cdot 10^5$) Β β€” the size of the array $a$ and the size of the subsequence. The next line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($1 \leq a_i \leq 10^9$) Β β€” the elements of the array $a$. -----Output----- Output a single integer Β β€” the minimum cost of a subsequence of size $k$. -----Examples----- Input 4 2 1 2 3 4 Output 1 Input 4 3 1 2 3 4 Output 2 Input 5 3 5 3 4 2 6 Output 2 Input 6 4 5 3 50 2 4 5 Output 3 -----Note----- In the first test, consider the subsequence $s$ = $\{1, 3\}$. Here the cost is equal to $min(max(1), max(3)) = 1$. In the second test, consider the subsequence $s$ = $\{1, 2, 4\}$. Here the cost is equal to $min(max(1, 4), max(2)) = 2$. In the fourth test, consider the subsequence $s$ = $\{3, 50, 2, 4\}$. Here the cost is equal to $min(max(3, 2), max(50, 4)) = 3$.
import sys def is_possible(val, arr, k): count = 0 just_added = False for el in arr: if el > val: just_added = False elif not just_added: just_added = True count += 1 if count == k: return True else: just_added = False return False def binary_search(possible_sorted_answers, arr, to_pick): left = 0 right = len(possible_sorted_answers) while True: x = (left + right) // 2 p1 = is_possible(possible_sorted_answers[x], arr, to_pick) if p1 and x == 0: return possible_sorted_answers[0] elif p1: right = x elif x == len(possible_sorted_answers) - 1: return possible_sorted_answers[-1] else: p2 = is_possible(possible_sorted_answers[x + 1], arr, to_pick) if p2: return possible_sorted_answers[x + 1] else: left = x def input(): return sys.stdin.readline().rstrip() def input_split(): return [int(i) for i in input().split()] n, k = input_split() arr = input_split() arr_sorted = arr.copy() arr_sorted.sort() possible_sorted_answers = arr_sorted[k // 2 - 1 : k] if k % 2 == 0: ans = min( binary_search(possible_sorted_answers, arr[:-1], k // 2), binary_search(possible_sorted_answers, arr[1:], k // 2), ) else: ans = min( binary_search(possible_sorted_answers, arr[1:-1], k // 2), binary_search(possible_sorted_answers, arr, k // 2 + 1), ) print(ans)
IMPORT FUNC_DEF ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR IF VAR VAR ASSIGN VAR NUMBER IF VAR ASSIGN VAR NUMBER VAR NUMBER IF VAR VAR RETURN NUMBER ASSIGN VAR NUMBER RETURN NUMBER FUNC_DEF ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR WHILE NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR VAR VAR IF VAR VAR NUMBER RETURN VAR NUMBER IF VAR ASSIGN VAR VAR IF VAR BIN_OP FUNC_CALL VAR VAR NUMBER RETURN VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR VAR IF VAR RETURN VAR BIN_OP VAR NUMBER ASSIGN VAR VAR FUNC_DEF RETURN FUNC_CALL FUNC_CALL VAR FUNC_DEF RETURN FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR EXPR FUNC_CALL VAR ASSIGN VAR VAR BIN_OP BIN_OP VAR NUMBER NUMBER VAR IF BIN_OP VAR NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR NUMBER BIN_OP VAR NUMBER FUNC_CALL VAR VAR VAR NUMBER BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR NUMBER NUMBER BIN_OP VAR NUMBER FUNC_CALL VAR VAR VAR BIN_OP BIN_OP VAR NUMBER NUMBER EXPR FUNC_CALL VAR VAR
Ashish has an array $a$ of size $n$. A subsequence of $a$ is defined as a sequence that can be obtained from $a$ by deleting some elements (possibly none), without changing the order of the remaining elements. Consider a subsequence $s$ of $a$. He defines the cost of $s$ as the minimum between: The maximum among all elements at odd indices of $s$. The maximum among all elements at even indices of $s$. Note that the index of an element is its index in $s$, rather than its index in $a$. The positions are numbered from $1$. So, the cost of $s$ is equal to $min(max(s_1, s_3, s_5, \ldots), max(s_2, s_4, s_6, \ldots))$. For example, the cost of $\{7, 5, 6\}$ is $min( max(7, 6), max(5) ) = min(7, 5) = 5$. Help him find the minimum cost of a subsequence of size $k$. -----Input----- The first line contains two integers $n$ and $k$ ($2 \leq k \leq n \leq 2 \cdot 10^5$) Β β€” the size of the array $a$ and the size of the subsequence. The next line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($1 \leq a_i \leq 10^9$) Β β€” the elements of the array $a$. -----Output----- Output a single integer Β β€” the minimum cost of a subsequence of size $k$. -----Examples----- Input 4 2 1 2 3 4 Output 1 Input 4 3 1 2 3 4 Output 2 Input 5 3 5 3 4 2 6 Output 2 Input 6 4 5 3 50 2 4 5 Output 3 -----Note----- In the first test, consider the subsequence $s$ = $\{1, 3\}$. Here the cost is equal to $min(max(1), max(3)) = 1$. In the second test, consider the subsequence $s$ = $\{1, 2, 4\}$. Here the cost is equal to $min(max(1, 4), max(2)) = 2$. In the fourth test, consider the subsequence $s$ = $\{3, 50, 2, 4\}$. Here the cost is equal to $min(max(3, 2), max(50, 4)) = 3$.
n, k = map(int, input().split()) a = list(map(int, input().split())) def bs(mid, s, k): count = 0 for i in range(n): if s or a[i] <= mid: count += 1 s ^= 1 if count >= k: return True return False left = 0 right = 1000000000.0 while left < right: mid = int(left + right) // 2 if bs(mid, 0, k) or bs(mid, 1, k): right = mid else: left = mid + 1 print(left)
ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR FUNC_DEF ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR VAR VAR VAR VAR NUMBER VAR NUMBER IF VAR VAR RETURN NUMBER RETURN NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR ASSIGN VAR BIN_OP FUNC_CALL VAR BIN_OP VAR VAR NUMBER IF FUNC_CALL VAR VAR NUMBER VAR FUNC_CALL VAR VAR NUMBER VAR ASSIGN VAR VAR ASSIGN VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR
Ashish has an array $a$ of size $n$. A subsequence of $a$ is defined as a sequence that can be obtained from $a$ by deleting some elements (possibly none), without changing the order of the remaining elements. Consider a subsequence $s$ of $a$. He defines the cost of $s$ as the minimum between: The maximum among all elements at odd indices of $s$. The maximum among all elements at even indices of $s$. Note that the index of an element is its index in $s$, rather than its index in $a$. The positions are numbered from $1$. So, the cost of $s$ is equal to $min(max(s_1, s_3, s_5, \ldots), max(s_2, s_4, s_6, \ldots))$. For example, the cost of $\{7, 5, 6\}$ is $min( max(7, 6), max(5) ) = min(7, 5) = 5$. Help him find the minimum cost of a subsequence of size $k$. -----Input----- The first line contains two integers $n$ and $k$ ($2 \leq k \leq n \leq 2 \cdot 10^5$) Β β€” the size of the array $a$ and the size of the subsequence. The next line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($1 \leq a_i \leq 10^9$) Β β€” the elements of the array $a$. -----Output----- Output a single integer Β β€” the minimum cost of a subsequence of size $k$. -----Examples----- Input 4 2 1 2 3 4 Output 1 Input 4 3 1 2 3 4 Output 2 Input 5 3 5 3 4 2 6 Output 2 Input 6 4 5 3 50 2 4 5 Output 3 -----Note----- In the first test, consider the subsequence $s$ = $\{1, 3\}$. Here the cost is equal to $min(max(1), max(3)) = 1$. In the second test, consider the subsequence $s$ = $\{1, 2, 4\}$. Here the cost is equal to $min(max(1, 4), max(2)) = 2$. In the fourth test, consider the subsequence $s$ = $\{3, 50, 2, 4\}$. Here the cost is equal to $min(max(3, 2), max(50, 4)) = 3$.
import sys input = sys.stdin.readline inputr = lambda: input().rstrip("\n") INF = 10**18 n, k = map(int, input().split()) A = list(map(int, input().split())) if k == 1: print(min(A)) sys.exit(0) need = k // 2 def test(V, takeo): g = 0 o = 0 for v in A: if takeo: o += 1 takeo = False elif v <= V: g += 1 takeo = True if o + g == k: return True return False SA = sorted(set(A)) lo = 0 hi = len(SA) best = INF while lo < hi: m = (lo + hi) // 2 V = SA[m] if test(V, False) or test(V, True): best = min(best, V) hi = m else: lo = m + 1 print(best)
IMPORT ASSIGN VAR VAR ASSIGN VAR FUNC_CALL FUNC_CALL VAR STRING ASSIGN VAR BIN_OP NUMBER NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER FUNC_DEF ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR IF VAR VAR NUMBER ASSIGN VAR NUMBER IF VAR VAR VAR NUMBER ASSIGN VAR NUMBER IF BIN_OP VAR VAR VAR RETURN NUMBER RETURN NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR VAR WHILE VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR VAR VAR IF FUNC_CALL VAR VAR NUMBER FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR VAR ASSIGN VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR
Ashish has an array $a$ of size $n$. A subsequence of $a$ is defined as a sequence that can be obtained from $a$ by deleting some elements (possibly none), without changing the order of the remaining elements. Consider a subsequence $s$ of $a$. He defines the cost of $s$ as the minimum between: The maximum among all elements at odd indices of $s$. The maximum among all elements at even indices of $s$. Note that the index of an element is its index in $s$, rather than its index in $a$. The positions are numbered from $1$. So, the cost of $s$ is equal to $min(max(s_1, s_3, s_5, \ldots), max(s_2, s_4, s_6, \ldots))$. For example, the cost of $\{7, 5, 6\}$ is $min( max(7, 6), max(5) ) = min(7, 5) = 5$. Help him find the minimum cost of a subsequence of size $k$. -----Input----- The first line contains two integers $n$ and $k$ ($2 \leq k \leq n \leq 2 \cdot 10^5$) Β β€” the size of the array $a$ and the size of the subsequence. The next line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($1 \leq a_i \leq 10^9$) Β β€” the elements of the array $a$. -----Output----- Output a single integer Β β€” the minimum cost of a subsequence of size $k$. -----Examples----- Input 4 2 1 2 3 4 Output 1 Input 4 3 1 2 3 4 Output 2 Input 5 3 5 3 4 2 6 Output 2 Input 6 4 5 3 50 2 4 5 Output 3 -----Note----- In the first test, consider the subsequence $s$ = $\{1, 3\}$. Here the cost is equal to $min(max(1), max(3)) = 1$. In the second test, consider the subsequence $s$ = $\{1, 2, 4\}$. Here the cost is equal to $min(max(1, 4), max(2)) = 2$. In the fourth test, consider the subsequence $s$ = $\{3, 50, 2, 4\}$. Here the cost is equal to $min(max(3, 2), max(50, 4)) = 3$.
n, k = map(int, input().split()) l = 0 r = 10**9 a = list(map(int, input().split())) def is_ok(num): length = 0 for i in range(len(a)): if length % 2 == 0 and a[i] <= num: length += 1 elif length % 2 == 1: length += 1 if length >= k: return True length = 0 for i in range(len(a)): if length % 2 == 1 and a[i] <= num: length += 1 elif length % 2 == 0: length += 1 if length >= k: return True return False while r - l > 1: m = (r + l) // 2 if is_ok(m): r = m else: l = m print(r)
ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR FUNC_DEF ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF BIN_OP VAR NUMBER NUMBER VAR VAR VAR VAR NUMBER IF BIN_OP VAR NUMBER NUMBER VAR NUMBER IF VAR VAR RETURN NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF BIN_OP VAR NUMBER NUMBER VAR VAR VAR VAR NUMBER IF BIN_OP VAR NUMBER NUMBER VAR NUMBER IF VAR VAR RETURN NUMBER RETURN NUMBER WHILE BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF FUNC_CALL VAR VAR ASSIGN VAR VAR ASSIGN VAR VAR EXPR FUNC_CALL VAR VAR
Ashish has an array $a$ of size $n$. A subsequence of $a$ is defined as a sequence that can be obtained from $a$ by deleting some elements (possibly none), without changing the order of the remaining elements. Consider a subsequence $s$ of $a$. He defines the cost of $s$ as the minimum between: The maximum among all elements at odd indices of $s$. The maximum among all elements at even indices of $s$. Note that the index of an element is its index in $s$, rather than its index in $a$. The positions are numbered from $1$. So, the cost of $s$ is equal to $min(max(s_1, s_3, s_5, \ldots), max(s_2, s_4, s_6, \ldots))$. For example, the cost of $\{7, 5, 6\}$ is $min( max(7, 6), max(5) ) = min(7, 5) = 5$. Help him find the minimum cost of a subsequence of size $k$. -----Input----- The first line contains two integers $n$ and $k$ ($2 \leq k \leq n \leq 2 \cdot 10^5$) Β β€” the size of the array $a$ and the size of the subsequence. The next line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($1 \leq a_i \leq 10^9$) Β β€” the elements of the array $a$. -----Output----- Output a single integer Β β€” the minimum cost of a subsequence of size $k$. -----Examples----- Input 4 2 1 2 3 4 Output 1 Input 4 3 1 2 3 4 Output 2 Input 5 3 5 3 4 2 6 Output 2 Input 6 4 5 3 50 2 4 5 Output 3 -----Note----- In the first test, consider the subsequence $s$ = $\{1, 3\}$. Here the cost is equal to $min(max(1), max(3)) = 1$. In the second test, consider the subsequence $s$ = $\{1, 2, 4\}$. Here the cost is equal to $min(max(1, 4), max(2)) = 2$. In the fourth test, consider the subsequence $s$ = $\{3, 50, 2, 4\}$. Here the cost is equal to $min(max(3, 2), max(50, 4)) = 3$.
from sys import stdin input = stdin.readline n, k = [int(x) for x in input().split()] arr = [int(x) for x in input().split()] min_ = 1 max_ = 10**9 def works(arr, k, target, skip): count = 0 for i in range(len(arr)): if skip or arr[i] <= target: count += 1 skip = 1 - skip return count >= k while min_ < max_: target = (min_ + max_) // 2 if works(arr, k, target, 0) or works(arr, k, target, 1): max_ = target else: min_ = target + 1 print(max_)
ASSIGN VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP NUMBER NUMBER FUNC_DEF ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR VAR VAR VAR VAR NUMBER ASSIGN VAR BIN_OP NUMBER VAR RETURN VAR VAR WHILE VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF FUNC_CALL VAR VAR VAR VAR NUMBER FUNC_CALL VAR VAR VAR VAR NUMBER ASSIGN VAR VAR ASSIGN VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR
Ashish has an array $a$ of size $n$. A subsequence of $a$ is defined as a sequence that can be obtained from $a$ by deleting some elements (possibly none), without changing the order of the remaining elements. Consider a subsequence $s$ of $a$. He defines the cost of $s$ as the minimum between: The maximum among all elements at odd indices of $s$. The maximum among all elements at even indices of $s$. Note that the index of an element is its index in $s$, rather than its index in $a$. The positions are numbered from $1$. So, the cost of $s$ is equal to $min(max(s_1, s_3, s_5, \ldots), max(s_2, s_4, s_6, \ldots))$. For example, the cost of $\{7, 5, 6\}$ is $min( max(7, 6), max(5) ) = min(7, 5) = 5$. Help him find the minimum cost of a subsequence of size $k$. -----Input----- The first line contains two integers $n$ and $k$ ($2 \leq k \leq n \leq 2 \cdot 10^5$) Β β€” the size of the array $a$ and the size of the subsequence. The next line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($1 \leq a_i \leq 10^9$) Β β€” the elements of the array $a$. -----Output----- Output a single integer Β β€” the minimum cost of a subsequence of size $k$. -----Examples----- Input 4 2 1 2 3 4 Output 1 Input 4 3 1 2 3 4 Output 2 Input 5 3 5 3 4 2 6 Output 2 Input 6 4 5 3 50 2 4 5 Output 3 -----Note----- In the first test, consider the subsequence $s$ = $\{1, 3\}$. Here the cost is equal to $min(max(1), max(3)) = 1$. In the second test, consider the subsequence $s$ = $\{1, 2, 4\}$. Here the cost is equal to $min(max(1, 4), max(2)) = 2$. In the fourth test, consider the subsequence $s$ = $\{3, 50, 2, 4\}$. Here the cost is equal to $min(max(3, 2), max(50, 4)) = 3$.
n, k = [int(i) for i in input().split()] arr = [int(i) for i in input().split()] def check(x, p): ans = 0 for i in range(len(arr)): if not p: ans += 1 p ^= 1 elif arr[i] <= x: ans += 1 p ^= 1 return ans >= k l = 1 r = 10**9 res = 0 while l <= r: mid = l + (r - l) // 2 if check(mid, 0) or check(mid, 1): res = mid r = mid - 1 else: l = mid + 1 print(res)
ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR FUNC_DEF ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR VAR NUMBER VAR NUMBER IF VAR VAR VAR VAR NUMBER VAR NUMBER RETURN VAR VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP NUMBER NUMBER ASSIGN VAR NUMBER WHILE VAR VAR ASSIGN VAR BIN_OP VAR BIN_OP BIN_OP VAR VAR NUMBER IF FUNC_CALL VAR VAR NUMBER FUNC_CALL VAR VAR NUMBER ASSIGN VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR
Ashish has an array $a$ of size $n$. A subsequence of $a$ is defined as a sequence that can be obtained from $a$ by deleting some elements (possibly none), without changing the order of the remaining elements. Consider a subsequence $s$ of $a$. He defines the cost of $s$ as the minimum between: The maximum among all elements at odd indices of $s$. The maximum among all elements at even indices of $s$. Note that the index of an element is its index in $s$, rather than its index in $a$. The positions are numbered from $1$. So, the cost of $s$ is equal to $min(max(s_1, s_3, s_5, \ldots), max(s_2, s_4, s_6, \ldots))$. For example, the cost of $\{7, 5, 6\}$ is $min( max(7, 6), max(5) ) = min(7, 5) = 5$. Help him find the minimum cost of a subsequence of size $k$. -----Input----- The first line contains two integers $n$ and $k$ ($2 \leq k \leq n \leq 2 \cdot 10^5$) Β β€” the size of the array $a$ and the size of the subsequence. The next line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($1 \leq a_i \leq 10^9$) Β β€” the elements of the array $a$. -----Output----- Output a single integer Β β€” the minimum cost of a subsequence of size $k$. -----Examples----- Input 4 2 1 2 3 4 Output 1 Input 4 3 1 2 3 4 Output 2 Input 5 3 5 3 4 2 6 Output 2 Input 6 4 5 3 50 2 4 5 Output 3 -----Note----- In the first test, consider the subsequence $s$ = $\{1, 3\}$. Here the cost is equal to $min(max(1), max(3)) = 1$. In the second test, consider the subsequence $s$ = $\{1, 2, 4\}$. Here the cost is equal to $min(max(1, 4), max(2)) = 2$. In the fourth test, consider the subsequence $s$ = $\{3, 50, 2, 4\}$. Here the cost is equal to $min(max(3, 2), max(50, 4)) = 3$.
import sys input = sys.stdin.readline n, k = map(int, input().split()) a = [int(item) for item in input().split()] if k <= 2: print(min(a)) exit() l = 0 r = 10**9 + 10 while r - l > 1: mid = (l + r) // 2 is_small = [] for i, item in enumerate(a): if item <= mid: is_small.append(1) else: is_small.append(0) if is_small[:3] == [1, 1, 0]: is_small[0] = 0 max_cnt = 0 for i in range(2): cnt = 0 state = i for item in is_small: if item: if state == 0: cnt += 1 state = 1 else: cnt += 1 state = 0 elif state == 1: cnt += 1 state = 0 max_cnt = max(max_cnt, cnt) if max_cnt >= k: r = mid else: l = mid print(r)
IMPORT ASSIGN VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR IF VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP BIN_OP NUMBER NUMBER NUMBER WHILE BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR LIST FOR VAR VAR FUNC_CALL VAR VAR IF VAR VAR EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR NUMBER IF VAR NUMBER LIST NUMBER NUMBER NUMBER ASSIGN VAR NUMBER NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR VAR FOR VAR VAR IF VAR IF VAR NUMBER VAR NUMBER ASSIGN VAR NUMBER VAR NUMBER ASSIGN VAR NUMBER IF VAR NUMBER VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR IF VAR VAR ASSIGN VAR VAR ASSIGN VAR VAR EXPR FUNC_CALL VAR VAR
Ashish has an array $a$ of size $n$. A subsequence of $a$ is defined as a sequence that can be obtained from $a$ by deleting some elements (possibly none), without changing the order of the remaining elements. Consider a subsequence $s$ of $a$. He defines the cost of $s$ as the minimum between: The maximum among all elements at odd indices of $s$. The maximum among all elements at even indices of $s$. Note that the index of an element is its index in $s$, rather than its index in $a$. The positions are numbered from $1$. So, the cost of $s$ is equal to $min(max(s_1, s_3, s_5, \ldots), max(s_2, s_4, s_6, \ldots))$. For example, the cost of $\{7, 5, 6\}$ is $min( max(7, 6), max(5) ) = min(7, 5) = 5$. Help him find the minimum cost of a subsequence of size $k$. -----Input----- The first line contains two integers $n$ and $k$ ($2 \leq k \leq n \leq 2 \cdot 10^5$) Β β€” the size of the array $a$ and the size of the subsequence. The next line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($1 \leq a_i \leq 10^9$) Β β€” the elements of the array $a$. -----Output----- Output a single integer Β β€” the minimum cost of a subsequence of size $k$. -----Examples----- Input 4 2 1 2 3 4 Output 1 Input 4 3 1 2 3 4 Output 2 Input 5 3 5 3 4 2 6 Output 2 Input 6 4 5 3 50 2 4 5 Output 3 -----Note----- In the first test, consider the subsequence $s$ = $\{1, 3\}$. Here the cost is equal to $min(max(1), max(3)) = 1$. In the second test, consider the subsequence $s$ = $\{1, 2, 4\}$. Here the cost is equal to $min(max(1, 4), max(2)) = 2$. In the fourth test, consider the subsequence $s$ = $\{3, 50, 2, 4\}$. Here the cost is equal to $min(max(3, 2), max(50, 4)) = 3$.
N, K = map(int, input().split(" ")) a = [int(x) for x in input().split(" ")] def solve(b): c = [(0) for _ in range(len(b))] for i, x in enumerate(b): if i == 0: c[i] = 1 if x else 0 else: c[i] = c[i - 1] if x: c[i] = max(c[i], 1 + (c[i - 2] if i >= 2 else 0)) return c[-1] def ok(maxv): if K % 2 == 0: b = [(x <= maxv) for x in a[1:]] c = [(x <= maxv) for x in a[:-1]] return solve(b) >= K // 2 or solve(c) >= K // 2 else: b = [(x <= maxv) for x in a] c = [(x <= maxv) for x in a[1:-1]] return solve(b) >= (K + 1) // 2 or solve(c) >= (K - 1) // 2 lo, hi = 1, int(1000000000.0) while lo != hi: mi = (lo + hi) // 2 if ok(mi): hi = mi else: lo = mi + 1 print(lo)
ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR STRING FUNC_DEF ASSIGN VAR NUMBER VAR FUNC_CALL VAR FUNC_CALL VAR VAR FOR VAR VAR FUNC_CALL VAR VAR IF VAR NUMBER ASSIGN VAR VAR VAR NUMBER NUMBER ASSIGN VAR VAR VAR BIN_OP VAR NUMBER IF VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR BIN_OP NUMBER VAR NUMBER VAR BIN_OP VAR NUMBER NUMBER RETURN VAR NUMBER FUNC_DEF IF BIN_OP VAR NUMBER NUMBER ASSIGN VAR VAR VAR VAR VAR NUMBER ASSIGN VAR VAR VAR VAR VAR NUMBER RETURN FUNC_CALL VAR VAR BIN_OP VAR NUMBER FUNC_CALL VAR VAR BIN_OP VAR NUMBER ASSIGN VAR VAR VAR VAR VAR ASSIGN VAR VAR VAR VAR VAR NUMBER NUMBER RETURN FUNC_CALL VAR VAR BIN_OP BIN_OP VAR NUMBER NUMBER FUNC_CALL VAR VAR BIN_OP BIN_OP VAR NUMBER NUMBER ASSIGN VAR VAR NUMBER FUNC_CALL VAR NUMBER WHILE VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF FUNC_CALL VAR VAR ASSIGN VAR VAR ASSIGN VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR
Ashish has an array $a$ of size $n$. A subsequence of $a$ is defined as a sequence that can be obtained from $a$ by deleting some elements (possibly none), without changing the order of the remaining elements. Consider a subsequence $s$ of $a$. He defines the cost of $s$ as the minimum between: The maximum among all elements at odd indices of $s$. The maximum among all elements at even indices of $s$. Note that the index of an element is its index in $s$, rather than its index in $a$. The positions are numbered from $1$. So, the cost of $s$ is equal to $min(max(s_1, s_3, s_5, \ldots), max(s_2, s_4, s_6, \ldots))$. For example, the cost of $\{7, 5, 6\}$ is $min( max(7, 6), max(5) ) = min(7, 5) = 5$. Help him find the minimum cost of a subsequence of size $k$. -----Input----- The first line contains two integers $n$ and $k$ ($2 \leq k \leq n \leq 2 \cdot 10^5$) Β β€” the size of the array $a$ and the size of the subsequence. The next line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($1 \leq a_i \leq 10^9$) Β β€” the elements of the array $a$. -----Output----- Output a single integer Β β€” the minimum cost of a subsequence of size $k$. -----Examples----- Input 4 2 1 2 3 4 Output 1 Input 4 3 1 2 3 4 Output 2 Input 5 3 5 3 4 2 6 Output 2 Input 6 4 5 3 50 2 4 5 Output 3 -----Note----- In the first test, consider the subsequence $s$ = $\{1, 3\}$. Here the cost is equal to $min(max(1), max(3)) = 1$. In the second test, consider the subsequence $s$ = $\{1, 2, 4\}$. Here the cost is equal to $min(max(1, 4), max(2)) = 2$. In the fourth test, consider the subsequence $s$ = $\{3, 50, 2, 4\}$. Here the cost is equal to $min(max(3, 2), max(50, 4)) = 3$.
def subsolve(a, x): c = 0 i = 0 while i < len(a): if a[i] > x: i += 1 continue j = i while j < len(a) and a[j] <= x: j += 1 c += (j - i) // 2 + (j - i) % 2 i = j return c def odd(n, k, a): if k >= 2 and k % 2 == 0: a = a[:-1] l, r = 0, max(a) + 1 while r - l > 1: mid = (l + r) // 2 if subsolve(a, mid) >= k // 2 + k % 2: r = mid else: l = mid return r def even(n, k, a): if k == 1: return max(a) + 1 a = a[1:] if k % 2 == 1: a.pop(-1) l, r = 0, max(a) + 1 while r - l > 1: mid = (l + r) // 2 if subsolve(a, mid) >= k // 2: r = mid else: l = mid return r def solve(): n, k = map(int, input().split()) a = list(map(int, input().split())) print(min(odd(n, k, a), even(n, k, a))) solve()
FUNC_DEF ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR FUNC_CALL VAR VAR IF VAR VAR VAR VAR NUMBER ASSIGN VAR VAR WHILE VAR FUNC_CALL VAR VAR VAR VAR VAR VAR NUMBER VAR BIN_OP BIN_OP BIN_OP VAR VAR NUMBER BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR VAR RETURN VAR FUNC_DEF IF VAR NUMBER BIN_OP VAR NUMBER NUMBER ASSIGN VAR VAR NUMBER ASSIGN VAR VAR NUMBER BIN_OP FUNC_CALL VAR VAR NUMBER WHILE BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF FUNC_CALL VAR VAR VAR BIN_OP BIN_OP VAR NUMBER BIN_OP VAR NUMBER ASSIGN VAR VAR ASSIGN VAR VAR RETURN VAR FUNC_DEF IF VAR NUMBER RETURN BIN_OP FUNC_CALL VAR VAR NUMBER ASSIGN VAR VAR NUMBER IF BIN_OP VAR NUMBER NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR VAR NUMBER BIN_OP FUNC_CALL VAR VAR NUMBER WHILE BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF FUNC_CALL VAR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR VAR ASSIGN VAR VAR RETURN VAR FUNC_DEF ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR VAR FUNC_CALL VAR VAR VAR VAR EXPR FUNC_CALL VAR
Ashish has an array $a$ of size $n$. A subsequence of $a$ is defined as a sequence that can be obtained from $a$ by deleting some elements (possibly none), without changing the order of the remaining elements. Consider a subsequence $s$ of $a$. He defines the cost of $s$ as the minimum between: The maximum among all elements at odd indices of $s$. The maximum among all elements at even indices of $s$. Note that the index of an element is its index in $s$, rather than its index in $a$. The positions are numbered from $1$. So, the cost of $s$ is equal to $min(max(s_1, s_3, s_5, \ldots), max(s_2, s_4, s_6, \ldots))$. For example, the cost of $\{7, 5, 6\}$ is $min( max(7, 6), max(5) ) = min(7, 5) = 5$. Help him find the minimum cost of a subsequence of size $k$. -----Input----- The first line contains two integers $n$ and $k$ ($2 \leq k \leq n \leq 2 \cdot 10^5$) Β β€” the size of the array $a$ and the size of the subsequence. The next line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($1 \leq a_i \leq 10^9$) Β β€” the elements of the array $a$. -----Output----- Output a single integer Β β€” the minimum cost of a subsequence of size $k$. -----Examples----- Input 4 2 1 2 3 4 Output 1 Input 4 3 1 2 3 4 Output 2 Input 5 3 5 3 4 2 6 Output 2 Input 6 4 5 3 50 2 4 5 Output 3 -----Note----- In the first test, consider the subsequence $s$ = $\{1, 3\}$. Here the cost is equal to $min(max(1), max(3)) = 1$. In the second test, consider the subsequence $s$ = $\{1, 2, 4\}$. Here the cost is equal to $min(max(1, 4), max(2)) = 2$. In the fourth test, consider the subsequence $s$ = $\{3, 50, 2, 4\}$. Here the cost is equal to $min(max(3, 2), max(50, 4)) = 3$.
import sys input = sys.stdin.readline n, k = map(int, input().split()) a = list(map(int, input().split())) b = a.copy() b.sort() low = 0 high = len(b) - 1 mid = len(b) // 2 answer1 = 10**10 while low <= high: need = k // 2 if k % 2 == 0: mom = len(a) else: mom = len(a) - 1 ans = b[mid] i = 1 while need > 0 and i < mom: if a[i] <= ans: need -= 1 i += 2 else: i += 1 if need == 0: answer1 = min(answer1, ans) if need > 0: low = mid + 1 else: high = mid - 1 mid = (low + high) // 2 low = 0 high = len(b) - 1 mid = len(b) // 2 answer2 = 10**10 while low <= high: need = k // 2 + k % 2 ans = b[mid] i = 0 mam = 0 if k % 2 == 0: mam = len(a) - 1 else: mam = len(a) while need > 0 and i < mam: if a[i] <= ans: need -= 1 i += 2 else: i += 1 if need == 0: answer2 = min(answer2, ans) if need > 0: low = mid + 1 else: high = mid - 1 mid = (low + high) // 2 print(min(answer1, answer2))
IMPORT ASSIGN VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR EXPR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER ASSIGN VAR BIN_OP NUMBER NUMBER WHILE VAR VAR ASSIGN VAR BIN_OP VAR NUMBER IF BIN_OP VAR NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER ASSIGN VAR VAR VAR ASSIGN VAR NUMBER WHILE VAR NUMBER VAR VAR IF VAR VAR VAR VAR NUMBER VAR NUMBER VAR NUMBER IF VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR IF VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER ASSIGN VAR BIN_OP NUMBER NUMBER WHILE VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR NUMBER BIN_OP VAR NUMBER ASSIGN VAR VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER IF BIN_OP VAR NUMBER NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR WHILE VAR NUMBER VAR VAR IF VAR VAR VAR VAR NUMBER VAR NUMBER VAR NUMBER IF VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR IF VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR
Ashish has an array $a$ of size $n$. A subsequence of $a$ is defined as a sequence that can be obtained from $a$ by deleting some elements (possibly none), without changing the order of the remaining elements. Consider a subsequence $s$ of $a$. He defines the cost of $s$ as the minimum between: The maximum among all elements at odd indices of $s$. The maximum among all elements at even indices of $s$. Note that the index of an element is its index in $s$, rather than its index in $a$. The positions are numbered from $1$. So, the cost of $s$ is equal to $min(max(s_1, s_3, s_5, \ldots), max(s_2, s_4, s_6, \ldots))$. For example, the cost of $\{7, 5, 6\}$ is $min( max(7, 6), max(5) ) = min(7, 5) = 5$. Help him find the minimum cost of a subsequence of size $k$. -----Input----- The first line contains two integers $n$ and $k$ ($2 \leq k \leq n \leq 2 \cdot 10^5$) Β β€” the size of the array $a$ and the size of the subsequence. The next line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($1 \leq a_i \leq 10^9$) Β β€” the elements of the array $a$. -----Output----- Output a single integer Β β€” the minimum cost of a subsequence of size $k$. -----Examples----- Input 4 2 1 2 3 4 Output 1 Input 4 3 1 2 3 4 Output 2 Input 5 3 5 3 4 2 6 Output 2 Input 6 4 5 3 50 2 4 5 Output 3 -----Note----- In the first test, consider the subsequence $s$ = $\{1, 3\}$. Here the cost is equal to $min(max(1), max(3)) = 1$. In the second test, consider the subsequence $s$ = $\{1, 2, 4\}$. Here the cost is equal to $min(max(1, 4), max(2)) = 2$. In the fourth test, consider the subsequence $s$ = $\{3, 50, 2, 4\}$. Here the cost is equal to $min(max(3, 2), max(50, 4)) = 3$.
def check(x, p): ans = 0 for i in range(n): if a[i] <= x or ans % 2 == p: ans += 1 if ans >= k: return True return False n, k = map(int, input().split()) a = list(map(int, input().split())) lo, hi = min(a), max(a) while lo < hi: x = (lo + hi) // 2 if check(x, 0) or check(x, 1): hi = x else: lo = x + 1 print(lo)
FUNC_DEF ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR VAR VAR BIN_OP VAR NUMBER VAR VAR NUMBER IF VAR VAR RETURN NUMBER RETURN NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR WHILE VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF FUNC_CALL VAR VAR NUMBER FUNC_CALL VAR VAR NUMBER ASSIGN VAR VAR ASSIGN VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR
Ashish has an array $a$ of size $n$. A subsequence of $a$ is defined as a sequence that can be obtained from $a$ by deleting some elements (possibly none), without changing the order of the remaining elements. Consider a subsequence $s$ of $a$. He defines the cost of $s$ as the minimum between: The maximum among all elements at odd indices of $s$. The maximum among all elements at even indices of $s$. Note that the index of an element is its index in $s$, rather than its index in $a$. The positions are numbered from $1$. So, the cost of $s$ is equal to $min(max(s_1, s_3, s_5, \ldots), max(s_2, s_4, s_6, \ldots))$. For example, the cost of $\{7, 5, 6\}$ is $min( max(7, 6), max(5) ) = min(7, 5) = 5$. Help him find the minimum cost of a subsequence of size $k$. -----Input----- The first line contains two integers $n$ and $k$ ($2 \leq k \leq n \leq 2 \cdot 10^5$) Β β€” the size of the array $a$ and the size of the subsequence. The next line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($1 \leq a_i \leq 10^9$) Β β€” the elements of the array $a$. -----Output----- Output a single integer Β β€” the minimum cost of a subsequence of size $k$. -----Examples----- Input 4 2 1 2 3 4 Output 1 Input 4 3 1 2 3 4 Output 2 Input 5 3 5 3 4 2 6 Output 2 Input 6 4 5 3 50 2 4 5 Output 3 -----Note----- In the first test, consider the subsequence $s$ = $\{1, 3\}$. Here the cost is equal to $min(max(1), max(3)) = 1$. In the second test, consider the subsequence $s$ = $\{1, 2, 4\}$. Here the cost is equal to $min(max(1, 4), max(2)) = 2$. In the fourth test, consider the subsequence $s$ = $\{3, 50, 2, 4\}$. Here the cost is equal to $min(max(3, 2), max(50, 4)) = 3$.
def ss_length(arr, x, k, oe): l = 0 for i in range(len(arr)): if oe: if arr[i] <= x: l += 1 oe ^= 1 else: l += 1 oe ^= 1 return l >= k def bin_search(arr, li, hi, k): if li >= hi: return li mi = (li + hi) // 2 ss_len_check = ss_length(arr, mi, k, 0) or ss_length(arr, mi, k, 1) if ss_len_check: return bin_search(arr, li, mi, k) else: return bin_search(arr, mi + 1, hi, k) n, k = map(int, input().strip().split()) arr = list(map(int, input().strip().split())) ans = bin_search(arr, 1, int(1000000000.0), k) print(ans)
FUNC_DEF ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR IF VAR VAR VAR VAR NUMBER VAR NUMBER VAR NUMBER VAR NUMBER RETURN VAR VAR FUNC_DEF IF VAR VAR RETURN VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR VAR NUMBER FUNC_CALL VAR VAR VAR VAR NUMBER IF VAR RETURN FUNC_CALL VAR VAR VAR VAR VAR RETURN FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR NUMBER FUNC_CALL VAR NUMBER VAR EXPR FUNC_CALL VAR VAR
Ashish has an array $a$ of size $n$. A subsequence of $a$ is defined as a sequence that can be obtained from $a$ by deleting some elements (possibly none), without changing the order of the remaining elements. Consider a subsequence $s$ of $a$. He defines the cost of $s$ as the minimum between: The maximum among all elements at odd indices of $s$. The maximum among all elements at even indices of $s$. Note that the index of an element is its index in $s$, rather than its index in $a$. The positions are numbered from $1$. So, the cost of $s$ is equal to $min(max(s_1, s_3, s_5, \ldots), max(s_2, s_4, s_6, \ldots))$. For example, the cost of $\{7, 5, 6\}$ is $min( max(7, 6), max(5) ) = min(7, 5) = 5$. Help him find the minimum cost of a subsequence of size $k$. -----Input----- The first line contains two integers $n$ and $k$ ($2 \leq k \leq n \leq 2 \cdot 10^5$) Β β€” the size of the array $a$ and the size of the subsequence. The next line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($1 \leq a_i \leq 10^9$) Β β€” the elements of the array $a$. -----Output----- Output a single integer Β β€” the minimum cost of a subsequence of size $k$. -----Examples----- Input 4 2 1 2 3 4 Output 1 Input 4 3 1 2 3 4 Output 2 Input 5 3 5 3 4 2 6 Output 2 Input 6 4 5 3 50 2 4 5 Output 3 -----Note----- In the first test, consider the subsequence $s$ = $\{1, 3\}$. Here the cost is equal to $min(max(1), max(3)) = 1$. In the second test, consider the subsequence $s$ = $\{1, 2, 4\}$. Here the cost is equal to $min(max(1, 4), max(2)) = 2$. In the fourth test, consider the subsequence $s$ = $\{3, 50, 2, 4\}$. Here the cost is equal to $min(max(3, 2), max(50, 4)) = 3$.
def check(num): count = 0 flag = -1 s = 0 for i in range(n): if a[i] <= num: count += 1 s += 1 elif flag == -1: flag = s % 2 count += 1 s += 1 elif (s + 1) % 2 != flag: count += 1 s += 1 if count == k: return True return False n, k = map(int, input().split()) a = list(map(int, input().split())) if n == k: m1 = 0 m2 = 0 for i in range(0, n, 2): m1 = max(m1, a[i]) for i in range(1, n, 2): m2 = max(m2, a[i]) print(min(m1, m2)) return s = set(a) minn, maxx = min(a), max(a) low = minn high = maxx while low < high: mid = (low + high) // 2 if check(mid): high = mid - 1 else: low = mid + 1 if check(low): print(low) else: print(low + 1)
FUNC_DEF ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR VAR VAR VAR NUMBER VAR NUMBER IF VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER VAR NUMBER VAR NUMBER IF BIN_OP BIN_OP VAR NUMBER NUMBER VAR VAR NUMBER VAR NUMBER IF VAR VAR RETURN NUMBER RETURN NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR VAR FOR VAR FUNC_CALL VAR NUMBER VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR RETURN ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR ASSIGN VAR VAR WHILE VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER IF FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR NUMBER
Ashish has an array $a$ of size $n$. A subsequence of $a$ is defined as a sequence that can be obtained from $a$ by deleting some elements (possibly none), without changing the order of the remaining elements. Consider a subsequence $s$ of $a$. He defines the cost of $s$ as the minimum between: The maximum among all elements at odd indices of $s$. The maximum among all elements at even indices of $s$. Note that the index of an element is its index in $s$, rather than its index in $a$. The positions are numbered from $1$. So, the cost of $s$ is equal to $min(max(s_1, s_3, s_5, \ldots), max(s_2, s_4, s_6, \ldots))$. For example, the cost of $\{7, 5, 6\}$ is $min( max(7, 6), max(5) ) = min(7, 5) = 5$. Help him find the minimum cost of a subsequence of size $k$. -----Input----- The first line contains two integers $n$ and $k$ ($2 \leq k \leq n \leq 2 \cdot 10^5$) Β β€” the size of the array $a$ and the size of the subsequence. The next line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($1 \leq a_i \leq 10^9$) Β β€” the elements of the array $a$. -----Output----- Output a single integer Β β€” the minimum cost of a subsequence of size $k$. -----Examples----- Input 4 2 1 2 3 4 Output 1 Input 4 3 1 2 3 4 Output 2 Input 5 3 5 3 4 2 6 Output 2 Input 6 4 5 3 50 2 4 5 Output 3 -----Note----- In the first test, consider the subsequence $s$ = $\{1, 3\}$. Here the cost is equal to $min(max(1), max(3)) = 1$. In the second test, consider the subsequence $s$ = $\{1, 2, 4\}$. Here the cost is equal to $min(max(1, 4), max(2)) = 2$. In the fourth test, consider the subsequence $s$ = $\{3, 50, 2, 4\}$. Here the cost is equal to $min(max(3, 2), max(50, 4)) = 3$.
import sys n, k = [int(x) for x in input().split()] arr = [int(x) for x in input().split()] start, end = min(arr), max(arr) ans = -1 def good(mid, curr): now = "odd" temp = 0 for i in range(n): if now == "odd" and curr == "odd": if arr[i] <= mid: temp += 1 now = "even" continue elif now == "even" and curr == "even": if arr[i] <= mid: temp += 1 now = "odd" continue else: temp += 1 if now == "odd": now = "even" else: now = "odd" return temp >= k while start <= end: mid = (start + end) // 2 if good(mid, "odd") or good(mid, "even"): ans = mid end = mid - 1 else: start = mid + 1 print(ans)
IMPORT ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER FUNC_DEF ASSIGN VAR STRING ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR STRING VAR STRING IF VAR VAR VAR VAR NUMBER ASSIGN VAR STRING IF VAR STRING VAR STRING IF VAR VAR VAR VAR NUMBER ASSIGN VAR STRING VAR NUMBER IF VAR STRING ASSIGN VAR STRING ASSIGN VAR STRING RETURN VAR VAR WHILE VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF FUNC_CALL VAR VAR STRING FUNC_CALL VAR VAR STRING ASSIGN VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR
Ashish has an array $a$ of size $n$. A subsequence of $a$ is defined as a sequence that can be obtained from $a$ by deleting some elements (possibly none), without changing the order of the remaining elements. Consider a subsequence $s$ of $a$. He defines the cost of $s$ as the minimum between: The maximum among all elements at odd indices of $s$. The maximum among all elements at even indices of $s$. Note that the index of an element is its index in $s$, rather than its index in $a$. The positions are numbered from $1$. So, the cost of $s$ is equal to $min(max(s_1, s_3, s_5, \ldots), max(s_2, s_4, s_6, \ldots))$. For example, the cost of $\{7, 5, 6\}$ is $min( max(7, 6), max(5) ) = min(7, 5) = 5$. Help him find the minimum cost of a subsequence of size $k$. -----Input----- The first line contains two integers $n$ and $k$ ($2 \leq k \leq n \leq 2 \cdot 10^5$) Β β€” the size of the array $a$ and the size of the subsequence. The next line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($1 \leq a_i \leq 10^9$) Β β€” the elements of the array $a$. -----Output----- Output a single integer Β β€” the minimum cost of a subsequence of size $k$. -----Examples----- Input 4 2 1 2 3 4 Output 1 Input 4 3 1 2 3 4 Output 2 Input 5 3 5 3 4 2 6 Output 2 Input 6 4 5 3 50 2 4 5 Output 3 -----Note----- In the first test, consider the subsequence $s$ = $\{1, 3\}$. Here the cost is equal to $min(max(1), max(3)) = 1$. In the second test, consider the subsequence $s$ = $\{1, 2, 4\}$. Here the cost is equal to $min(max(1, 4), max(2)) = 2$. In the fourth test, consider the subsequence $s$ = $\{3, 50, 2, 4\}$. Here the cost is equal to $min(max(3, 2), max(50, 4)) = 3$.
l = lambda: map(int, input().split()) n, k = l() a = list(l()) def check(x, cur): ans = 0 for i in range(n): if cur == 0: ans += 1 cur = 1 elif a[i] <= x: ans += 1 cur = 0 return ans >= k lo = 1 hi = int(1000000000.0) while lo < hi: mid = (lo + hi) // 2 if check(mid, 0) or check(mid, 1): hi = mid else: lo = mid + 1 print(lo)
ASSIGN VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_DEF ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR NUMBER VAR NUMBER ASSIGN VAR NUMBER IF VAR VAR VAR VAR NUMBER ASSIGN VAR NUMBER RETURN VAR VAR ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR NUMBER WHILE VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF FUNC_CALL VAR VAR NUMBER FUNC_CALL VAR VAR NUMBER ASSIGN VAR VAR ASSIGN VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR
Ashish has an array $a$ of size $n$. A subsequence of $a$ is defined as a sequence that can be obtained from $a$ by deleting some elements (possibly none), without changing the order of the remaining elements. Consider a subsequence $s$ of $a$. He defines the cost of $s$ as the minimum between: The maximum among all elements at odd indices of $s$. The maximum among all elements at even indices of $s$. Note that the index of an element is its index in $s$, rather than its index in $a$. The positions are numbered from $1$. So, the cost of $s$ is equal to $min(max(s_1, s_3, s_5, \ldots), max(s_2, s_4, s_6, \ldots))$. For example, the cost of $\{7, 5, 6\}$ is $min( max(7, 6), max(5) ) = min(7, 5) = 5$. Help him find the minimum cost of a subsequence of size $k$. -----Input----- The first line contains two integers $n$ and $k$ ($2 \leq k \leq n \leq 2 \cdot 10^5$) Β β€” the size of the array $a$ and the size of the subsequence. The next line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($1 \leq a_i \leq 10^9$) Β β€” the elements of the array $a$. -----Output----- Output a single integer Β β€” the minimum cost of a subsequence of size $k$. -----Examples----- Input 4 2 1 2 3 4 Output 1 Input 4 3 1 2 3 4 Output 2 Input 5 3 5 3 4 2 6 Output 2 Input 6 4 5 3 50 2 4 5 Output 3 -----Note----- In the first test, consider the subsequence $s$ = $\{1, 3\}$. Here the cost is equal to $min(max(1), max(3)) = 1$. In the second test, consider the subsequence $s$ = $\{1, 2, 4\}$. Here the cost is equal to $min(max(1, 4), max(2)) = 2$. In the fourth test, consider the subsequence $s$ = $\{3, 50, 2, 4\}$. Here the cost is equal to $min(max(3, 2), max(50, 4)) = 3$.
n, k = map(int, input().split()) (*arr,) = map(int, input().split()) lo = 0 hi = max(arr) def possible(arr, k, mid): odd_cnt = 0 even_cnt = 0 for v in arr: if v <= mid: even_cnt, odd_cnt = max(odd_cnt + 1, even_cnt), max(even_cnt + 1, odd_cnt) else: odd_cnt = max(odd_cnt, even_cnt + 1) return max(even_cnt, odd_cnt) >= k while lo < hi: mid = (lo + hi) // 2 if possible(arr, k, mid): hi = mid else: lo = mid + 1 print(lo)
ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR FUNC_DEF ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR IF VAR VAR ASSIGN VAR VAR FUNC_CALL VAR BIN_OP VAR NUMBER VAR FUNC_CALL VAR BIN_OP VAR NUMBER VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER RETURN FUNC_CALL VAR VAR VAR VAR WHILE VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF FUNC_CALL VAR VAR VAR VAR ASSIGN VAR VAR ASSIGN VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR
Ashish has an array $a$ of size $n$. A subsequence of $a$ is defined as a sequence that can be obtained from $a$ by deleting some elements (possibly none), without changing the order of the remaining elements. Consider a subsequence $s$ of $a$. He defines the cost of $s$ as the minimum between: The maximum among all elements at odd indices of $s$. The maximum among all elements at even indices of $s$. Note that the index of an element is its index in $s$, rather than its index in $a$. The positions are numbered from $1$. So, the cost of $s$ is equal to $min(max(s_1, s_3, s_5, \ldots), max(s_2, s_4, s_6, \ldots))$. For example, the cost of $\{7, 5, 6\}$ is $min( max(7, 6), max(5) ) = min(7, 5) = 5$. Help him find the minimum cost of a subsequence of size $k$. -----Input----- The first line contains two integers $n$ and $k$ ($2 \leq k \leq n \leq 2 \cdot 10^5$) Β β€” the size of the array $a$ and the size of the subsequence. The next line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($1 \leq a_i \leq 10^9$) Β β€” the elements of the array $a$. -----Output----- Output a single integer Β β€” the minimum cost of a subsequence of size $k$. -----Examples----- Input 4 2 1 2 3 4 Output 1 Input 4 3 1 2 3 4 Output 2 Input 5 3 5 3 4 2 6 Output 2 Input 6 4 5 3 50 2 4 5 Output 3 -----Note----- In the first test, consider the subsequence $s$ = $\{1, 3\}$. Here the cost is equal to $min(max(1), max(3)) = 1$. In the second test, consider the subsequence $s$ = $\{1, 2, 4\}$. Here the cost is equal to $min(max(1, 4), max(2)) = 2$. In the fourth test, consider the subsequence $s$ = $\{3, 50, 2, 4\}$. Here the cost is equal to $min(max(3, 2), max(50, 4)) = 3$.
n, k = map(int, input().split()) a = list(map(int, input().split())) l = 0 r = 10**9 while r - l != 1: m = (l + r) // 2 ind = 0 cnt = 0 while ind < n: if a[ind] <= m and not (k % 2 == 0 and ind == n - 1): cnt += 1 ind += 2 else: ind += 1 ind = 1 cnt2 = 0 while ind < n: if a[ind] <= m and not (k % 2 == 1 and ind == n - 1): cnt2 += 1 ind += 2 else: ind += 1 if cnt >= (k + 1) // 2 or cnt2 >= k // 2: r = m else: l = m print(r)
ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP NUMBER NUMBER WHILE BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR IF VAR VAR VAR BIN_OP VAR NUMBER NUMBER VAR BIN_OP VAR NUMBER VAR NUMBER VAR NUMBER VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR IF VAR VAR VAR BIN_OP VAR NUMBER NUMBER VAR BIN_OP VAR NUMBER VAR NUMBER VAR NUMBER VAR NUMBER IF VAR BIN_OP BIN_OP VAR NUMBER NUMBER VAR BIN_OP VAR NUMBER ASSIGN VAR VAR ASSIGN VAR VAR EXPR FUNC_CALL VAR VAR
Ashish has an array $a$ of size $n$. A subsequence of $a$ is defined as a sequence that can be obtained from $a$ by deleting some elements (possibly none), without changing the order of the remaining elements. Consider a subsequence $s$ of $a$. He defines the cost of $s$ as the minimum between: The maximum among all elements at odd indices of $s$. The maximum among all elements at even indices of $s$. Note that the index of an element is its index in $s$, rather than its index in $a$. The positions are numbered from $1$. So, the cost of $s$ is equal to $min(max(s_1, s_3, s_5, \ldots), max(s_2, s_4, s_6, \ldots))$. For example, the cost of $\{7, 5, 6\}$ is $min( max(7, 6), max(5) ) = min(7, 5) = 5$. Help him find the minimum cost of a subsequence of size $k$. -----Input----- The first line contains two integers $n$ and $k$ ($2 \leq k \leq n \leq 2 \cdot 10^5$) Β β€” the size of the array $a$ and the size of the subsequence. The next line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($1 \leq a_i \leq 10^9$) Β β€” the elements of the array $a$. -----Output----- Output a single integer Β β€” the minimum cost of a subsequence of size $k$. -----Examples----- Input 4 2 1 2 3 4 Output 1 Input 4 3 1 2 3 4 Output 2 Input 5 3 5 3 4 2 6 Output 2 Input 6 4 5 3 50 2 4 5 Output 3 -----Note----- In the first test, consider the subsequence $s$ = $\{1, 3\}$. Here the cost is equal to $min(max(1), max(3)) = 1$. In the second test, consider the subsequence $s$ = $\{1, 2, 4\}$. Here the cost is equal to $min(max(1, 4), max(2)) = 2$. In the fourth test, consider the subsequence $s$ = $\{3, 50, 2, 4\}$. Here the cost is equal to $min(max(3, 2), max(50, 4)) = 3$.
n, k = map(int, input().split()) arr = list(map(int, input().split())) def done(x, s): c = 0 for i in range(len(arr)): if s or arr[i] <= x: c += 1 s = s ^ 1 return c >= k lb = 1 rb = max(arr) ans = rb while lb < rb: mid = (lb + rb) // 2 if done(mid, 0) or done(mid, 1): rb = mid ans = min(ans, mid) else: lb = mid + 1 print(ans)
ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR FUNC_DEF ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR VAR VAR VAR VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER RETURN VAR VAR ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR VAR WHILE VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF FUNC_CALL VAR VAR NUMBER FUNC_CALL VAR VAR NUMBER ASSIGN VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR
Ashish has an array $a$ of size $n$. A subsequence of $a$ is defined as a sequence that can be obtained from $a$ by deleting some elements (possibly none), without changing the order of the remaining elements. Consider a subsequence $s$ of $a$. He defines the cost of $s$ as the minimum between: The maximum among all elements at odd indices of $s$. The maximum among all elements at even indices of $s$. Note that the index of an element is its index in $s$, rather than its index in $a$. The positions are numbered from $1$. So, the cost of $s$ is equal to $min(max(s_1, s_3, s_5, \ldots), max(s_2, s_4, s_6, \ldots))$. For example, the cost of $\{7, 5, 6\}$ is $min( max(7, 6), max(5) ) = min(7, 5) = 5$. Help him find the minimum cost of a subsequence of size $k$. -----Input----- The first line contains two integers $n$ and $k$ ($2 \leq k \leq n \leq 2 \cdot 10^5$) Β β€” the size of the array $a$ and the size of the subsequence. The next line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($1 \leq a_i \leq 10^9$) Β β€” the elements of the array $a$. -----Output----- Output a single integer Β β€” the minimum cost of a subsequence of size $k$. -----Examples----- Input 4 2 1 2 3 4 Output 1 Input 4 3 1 2 3 4 Output 2 Input 5 3 5 3 4 2 6 Output 2 Input 6 4 5 3 50 2 4 5 Output 3 -----Note----- In the first test, consider the subsequence $s$ = $\{1, 3\}$. Here the cost is equal to $min(max(1), max(3)) = 1$. In the second test, consider the subsequence $s$ = $\{1, 2, 4\}$. Here the cost is equal to $min(max(1, 4), max(2)) = 2$. In the fourth test, consider the subsequence $s$ = $\{3, 50, 2, 4\}$. Here the cost is equal to $min(max(3, 2), max(50, 4)) = 3$.
import sys def check(a, pos): u = 0 for i in range(n): if pos == 0: u += 1 pos = 1 elif t[i] <= a: u += 1 pos = 0 if u >= k: return 1 else: return 0 def bina(l, r): while l < r: m = l + (r - l) // 2 if check(m, 0) | check(m, 1): r = m else: l = m + 1 return l input = sys.stdin.readline n, k = map(int, input().split()) t = list(map(int, input().split())) print(bina(1, 1000000000))
IMPORT FUNC_DEF ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR NUMBER VAR NUMBER ASSIGN VAR NUMBER IF VAR VAR VAR VAR NUMBER ASSIGN VAR NUMBER IF VAR VAR RETURN NUMBER RETURN NUMBER FUNC_DEF WHILE VAR VAR ASSIGN VAR BIN_OP VAR BIN_OP BIN_OP VAR VAR NUMBER IF BIN_OP FUNC_CALL VAR VAR NUMBER FUNC_CALL VAR VAR NUMBER ASSIGN VAR VAR ASSIGN VAR BIN_OP VAR NUMBER RETURN VAR ASSIGN VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR FUNC_CALL VAR NUMBER NUMBER
Ashish has an array $a$ of size $n$. A subsequence of $a$ is defined as a sequence that can be obtained from $a$ by deleting some elements (possibly none), without changing the order of the remaining elements. Consider a subsequence $s$ of $a$. He defines the cost of $s$ as the minimum between: The maximum among all elements at odd indices of $s$. The maximum among all elements at even indices of $s$. Note that the index of an element is its index in $s$, rather than its index in $a$. The positions are numbered from $1$. So, the cost of $s$ is equal to $min(max(s_1, s_3, s_5, \ldots), max(s_2, s_4, s_6, \ldots))$. For example, the cost of $\{7, 5, 6\}$ is $min( max(7, 6), max(5) ) = min(7, 5) = 5$. Help him find the minimum cost of a subsequence of size $k$. -----Input----- The first line contains two integers $n$ and $k$ ($2 \leq k \leq n \leq 2 \cdot 10^5$) Β β€” the size of the array $a$ and the size of the subsequence. The next line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($1 \leq a_i \leq 10^9$) Β β€” the elements of the array $a$. -----Output----- Output a single integer Β β€” the minimum cost of a subsequence of size $k$. -----Examples----- Input 4 2 1 2 3 4 Output 1 Input 4 3 1 2 3 4 Output 2 Input 5 3 5 3 4 2 6 Output 2 Input 6 4 5 3 50 2 4 5 Output 3 -----Note----- In the first test, consider the subsequence $s$ = $\{1, 3\}$. Here the cost is equal to $min(max(1), max(3)) = 1$. In the second test, consider the subsequence $s$ = $\{1, 2, 4\}$. Here the cost is equal to $min(max(1, 4), max(2)) = 2$. In the fourth test, consider the subsequence $s$ = $\{3, 50, 2, 4\}$. Here the cost is equal to $min(max(3, 2), max(50, 4)) = 3$.
def isvalid0(x, num): count = 0 curr = 0 for i in range(n): if curr % 2 == 0: if li[i] <= x: count += 1 curr ^= 1 else: curr ^= 1 count += 1 if count >= num: return 1 return 0 def isvalid1(x, num): count = 0 curr = 0 for i in range(n): if curr % 2 == 1: if li[i] <= x: count += 1 curr ^= 1 else: curr ^= 1 count += 1 if count >= num: return 1 return 0 def binary_search(low, high): while low < high: mid = (low + high) // 2 if isvalid0(mid, k) or isvalid1(mid, k): high = mid else: low = mid + 1 return low l = input().split() n = int(l[0]) k = int(l[1]) l = input().split() li = [int(i) for i in l] print(binary_search(1, 10**9))
FUNC_DEF ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF BIN_OP VAR NUMBER NUMBER IF VAR VAR VAR VAR NUMBER VAR NUMBER VAR NUMBER VAR NUMBER IF VAR VAR RETURN NUMBER RETURN NUMBER FUNC_DEF ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF BIN_OP VAR NUMBER NUMBER IF VAR VAR VAR VAR NUMBER VAR NUMBER VAR NUMBER VAR NUMBER IF VAR VAR RETURN NUMBER RETURN NUMBER FUNC_DEF WHILE VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR ASSIGN VAR VAR ASSIGN VAR BIN_OP VAR NUMBER RETURN VAR ASSIGN VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR NUMBER BIN_OP NUMBER NUMBER
Ashish has an array $a$ of size $n$. A subsequence of $a$ is defined as a sequence that can be obtained from $a$ by deleting some elements (possibly none), without changing the order of the remaining elements. Consider a subsequence $s$ of $a$. He defines the cost of $s$ as the minimum between: The maximum among all elements at odd indices of $s$. The maximum among all elements at even indices of $s$. Note that the index of an element is its index in $s$, rather than its index in $a$. The positions are numbered from $1$. So, the cost of $s$ is equal to $min(max(s_1, s_3, s_5, \ldots), max(s_2, s_4, s_6, \ldots))$. For example, the cost of $\{7, 5, 6\}$ is $min( max(7, 6), max(5) ) = min(7, 5) = 5$. Help him find the minimum cost of a subsequence of size $k$. -----Input----- The first line contains two integers $n$ and $k$ ($2 \leq k \leq n \leq 2 \cdot 10^5$) Β β€” the size of the array $a$ and the size of the subsequence. The next line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($1 \leq a_i \leq 10^9$) Β β€” the elements of the array $a$. -----Output----- Output a single integer Β β€” the minimum cost of a subsequence of size $k$. -----Examples----- Input 4 2 1 2 3 4 Output 1 Input 4 3 1 2 3 4 Output 2 Input 5 3 5 3 4 2 6 Output 2 Input 6 4 5 3 50 2 4 5 Output 3 -----Note----- In the first test, consider the subsequence $s$ = $\{1, 3\}$. Here the cost is equal to $min(max(1), max(3)) = 1$. In the second test, consider the subsequence $s$ = $\{1, 2, 4\}$. Here the cost is equal to $min(max(1, 4), max(2)) = 2$. In the fourth test, consider the subsequence $s$ = $\{3, 50, 2, 4\}$. Here the cost is equal to $min(max(3, 2), max(50, 4)) = 3$.
n, k = map(int, input().split()) a = [int(j) for j in input().split()] def check(num, idx): ans = 0 for i in range(n): if idx == 0: ans += 1 idx = 1 elif idx == 1 and a[i] <= num: ans += 1 idx = 0 return ans >= k def bsearch(lo, hi): while lo < hi: mid = lo + (hi - lo) // 2 if check(mid, 0) or check(mid, 1): hi = mid else: lo = mid + 1 return lo ans = bsearch(1, max(a)) print(ans)
ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR FUNC_DEF ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR NUMBER VAR NUMBER ASSIGN VAR NUMBER IF VAR NUMBER VAR VAR VAR VAR NUMBER ASSIGN VAR NUMBER RETURN VAR VAR FUNC_DEF WHILE VAR VAR ASSIGN VAR BIN_OP VAR BIN_OP BIN_OP VAR VAR NUMBER IF FUNC_CALL VAR VAR NUMBER FUNC_CALL VAR VAR NUMBER ASSIGN VAR VAR ASSIGN VAR BIN_OP VAR NUMBER RETURN VAR ASSIGN VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR
Ashish has an array $a$ of size $n$. A subsequence of $a$ is defined as a sequence that can be obtained from $a$ by deleting some elements (possibly none), without changing the order of the remaining elements. Consider a subsequence $s$ of $a$. He defines the cost of $s$ as the minimum between: The maximum among all elements at odd indices of $s$. The maximum among all elements at even indices of $s$. Note that the index of an element is its index in $s$, rather than its index in $a$. The positions are numbered from $1$. So, the cost of $s$ is equal to $min(max(s_1, s_3, s_5, \ldots), max(s_2, s_4, s_6, \ldots))$. For example, the cost of $\{7, 5, 6\}$ is $min( max(7, 6), max(5) ) = min(7, 5) = 5$. Help him find the minimum cost of a subsequence of size $k$. -----Input----- The first line contains two integers $n$ and $k$ ($2 \leq k \leq n \leq 2 \cdot 10^5$) Β β€” the size of the array $a$ and the size of the subsequence. The next line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($1 \leq a_i \leq 10^9$) Β β€” the elements of the array $a$. -----Output----- Output a single integer Β β€” the minimum cost of a subsequence of size $k$. -----Examples----- Input 4 2 1 2 3 4 Output 1 Input 4 3 1 2 3 4 Output 2 Input 5 3 5 3 4 2 6 Output 2 Input 6 4 5 3 50 2 4 5 Output 3 -----Note----- In the first test, consider the subsequence $s$ = $\{1, 3\}$. Here the cost is equal to $min(max(1), max(3)) = 1$. In the second test, consider the subsequence $s$ = $\{1, 2, 4\}$. Here the cost is equal to $min(max(1, 4), max(2)) = 2$. In the fourth test, consider the subsequence $s$ = $\{3, 50, 2, 4\}$. Here the cost is equal to $min(max(3, 2), max(50, 4)) = 3$.
import sys input = sys.stdin.readline def ceil(x, y): return (x + y - 1) // y def swaparr(arr, a, b): temp = arr[a] arr[a] = arr[b] arr[b] = temp def gcd(a, b): if b == 0: return a return gcd(b, a % b) def nCr(n, k): if k > n - k: k = n - k res = 1 for i in range(k): res = res * (n - i) res = res / (i + 1) return int(res) def upper_bound(a, x, lo=0): hi = len(a) while lo < hi: mid = (lo + hi) // 2 if a[mid] < x: lo = mid + 1 else: hi = mid return lo def primefs(n): primes = {} while n % 2 == 0 and n > 0: primes[2] = primes.get(2, 0) + 1 n = n // 2 for i in range(3, int(n**0.5) + 2, 2): while n % i == 0 and n > 0: primes[i] = primes.get(i, 0) + 1 n = n // i if n > 2: primes[n] = primes.get(n, 0) + 1 return primes def power(x, y, p): res = 1 x = x % p if x == 0: return 0 while y > 0: if y & 1 == 1: res = res * x % p y = y >> 1 x = x * x % p return res def swap(a, b): temp = a a = b b = temp return a, b def find(x, link): p = x while p != link[p]: p = link[p] while x != p: nex = link[x] link[x] = p x = nex return p def union(x, y, link, size): x = find(x, link) y = find(y, link) if size[x] < size[y]: x, y = swap(x, y) if x != y: size[x] += size[y] link[y] = x def sieve(n): prime = [(True) for i in range(n + 1)] p = 2 while p * p <= n: if prime[p] == True: for i in range(p * p, n + 1, p): prime[i] = False p += 1 return prime MAXN = int(10000000.0 + 5) def spf_sieve(): spf[1] = 1 for i in range(2, MAXN): spf[i] = i for i in range(4, MAXN, 2): spf[i] = 2 for i in range(3, ceil(MAXN**0.5), 2): if spf[i] == i: for j in range(i * i, MAXN, i): if spf[j] == j: spf[j] = i def factoriazation(x): ret = {} while x != 1: ret[spf[x]] = ret.get(spf[x], 0) + 1 x = x // spf[x] return ret def int_array(): return list(map(int, input().strip().split())) def str_array(): return input().strip().split() MOD = int(1000000000.0) + 7 CMOD = 998244353 INF = float("inf") NINF = -float("inf") def check(x, cur): ans = 0 for i in range(n): if not cur: ans += 1 cur ^= 1 elif a[i] <= x: ans += 1 cur ^= 1 return ans >= k def bin_search(lo, hi): while lo < hi: mid = (lo + hi) // 2 if check(mid, 0) or check(mid, 1): hi = mid else: lo = mid + 1 return lo n, k = int_array() a = int_array() ans = bin_search(0, int(1000000000.0 + 1)) print(ans)
IMPORT ASSIGN VAR VAR FUNC_DEF RETURN BIN_OP BIN_OP BIN_OP VAR VAR NUMBER VAR FUNC_DEF ASSIGN VAR VAR VAR ASSIGN VAR VAR VAR VAR ASSIGN VAR VAR VAR FUNC_DEF IF VAR NUMBER RETURN VAR RETURN FUNC_CALL VAR VAR BIN_OP VAR VAR FUNC_DEF IF VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR BIN_OP VAR NUMBER RETURN FUNC_CALL VAR VAR FUNC_DEF NUMBER ASSIGN VAR FUNC_CALL VAR VAR WHILE VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR VAR RETURN VAR FUNC_DEF ASSIGN VAR DICT WHILE BIN_OP VAR NUMBER NUMBER VAR NUMBER ASSIGN VAR NUMBER BIN_OP FUNC_CALL VAR NUMBER NUMBER NUMBER ASSIGN VAR BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER BIN_OP FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER WHILE BIN_OP VAR VAR NUMBER VAR NUMBER ASSIGN VAR VAR BIN_OP FUNC_CALL VAR VAR NUMBER NUMBER ASSIGN VAR BIN_OP VAR VAR IF VAR NUMBER ASSIGN VAR VAR BIN_OP FUNC_CALL VAR VAR NUMBER NUMBER RETURN VAR FUNC_DEF ASSIGN VAR NUMBER ASSIGN VAR BIN_OP VAR VAR IF VAR NUMBER RETURN NUMBER WHILE VAR NUMBER IF BIN_OP VAR NUMBER NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR VAR RETURN VAR FUNC_DEF ASSIGN VAR VAR ASSIGN VAR VAR ASSIGN VAR VAR RETURN VAR VAR FUNC_DEF ASSIGN VAR VAR WHILE VAR VAR VAR ASSIGN VAR VAR VAR WHILE VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR VAR RETURN VAR FUNC_DEF ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR IF VAR VAR VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR IF VAR VAR VAR VAR VAR VAR ASSIGN VAR VAR VAR FUNC_DEF ASSIGN VAR NUMBER VAR FUNC_CALL VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER WHILE BIN_OP VAR VAR VAR IF VAR VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR VAR BIN_OP VAR NUMBER VAR ASSIGN VAR VAR NUMBER VAR NUMBER RETURN VAR ASSIGN VAR FUNC_CALL VAR BIN_OP NUMBER NUMBER FUNC_DEF ASSIGN VAR NUMBER NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR ASSIGN VAR VAR VAR FOR VAR FUNC_CALL VAR NUMBER VAR NUMBER ASSIGN VAR VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER IF VAR VAR VAR FOR VAR FUNC_CALL VAR BIN_OP VAR VAR VAR VAR IF VAR VAR VAR ASSIGN VAR VAR VAR FUNC_DEF ASSIGN VAR DICT WHILE VAR NUMBER ASSIGN VAR VAR VAR BIN_OP FUNC_CALL VAR VAR VAR NUMBER NUMBER ASSIGN VAR BIN_OP VAR VAR VAR RETURN VAR FUNC_DEF RETURN FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL FUNC_CALL VAR FUNC_DEF RETURN FUNC_CALL FUNC_CALL FUNC_CALL VAR ASSIGN VAR BIN_OP FUNC_CALL VAR NUMBER NUMBER ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR STRING FUNC_DEF ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR VAR NUMBER VAR NUMBER IF VAR VAR VAR VAR NUMBER VAR NUMBER RETURN VAR VAR FUNC_DEF WHILE VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF FUNC_CALL VAR VAR NUMBER FUNC_CALL VAR VAR NUMBER ASSIGN VAR VAR ASSIGN VAR BIN_OP VAR NUMBER RETURN VAR ASSIGN VAR VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR BIN_OP NUMBER NUMBER EXPR FUNC_CALL VAR VAR
Ashish has an array $a$ of size $n$. A subsequence of $a$ is defined as a sequence that can be obtained from $a$ by deleting some elements (possibly none), without changing the order of the remaining elements. Consider a subsequence $s$ of $a$. He defines the cost of $s$ as the minimum between: The maximum among all elements at odd indices of $s$. The maximum among all elements at even indices of $s$. Note that the index of an element is its index in $s$, rather than its index in $a$. The positions are numbered from $1$. So, the cost of $s$ is equal to $min(max(s_1, s_3, s_5, \ldots), max(s_2, s_4, s_6, \ldots))$. For example, the cost of $\{7, 5, 6\}$ is $min( max(7, 6), max(5) ) = min(7, 5) = 5$. Help him find the minimum cost of a subsequence of size $k$. -----Input----- The first line contains two integers $n$ and $k$ ($2 \leq k \leq n \leq 2 \cdot 10^5$) Β β€” the size of the array $a$ and the size of the subsequence. The next line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($1 \leq a_i \leq 10^9$) Β β€” the elements of the array $a$. -----Output----- Output a single integer Β β€” the minimum cost of a subsequence of size $k$. -----Examples----- Input 4 2 1 2 3 4 Output 1 Input 4 3 1 2 3 4 Output 2 Input 5 3 5 3 4 2 6 Output 2 Input 6 4 5 3 50 2 4 5 Output 3 -----Note----- In the first test, consider the subsequence $s$ = $\{1, 3\}$. Here the cost is equal to $min(max(1), max(3)) = 1$. In the second test, consider the subsequence $s$ = $\{1, 2, 4\}$. Here the cost is equal to $min(max(1, 4), max(2)) = 2$. In the fourth test, consider the subsequence $s$ = $\{3, 50, 2, 4\}$. Here the cost is equal to $min(max(3, 2), max(50, 4)) = 3$.
n, k = map(int, input().split()) s = list(map(int, input().split())) def f(m): t = [] for x in s: if x > m: t.append(False) else: t.append(True) LEN = 0 for x in t: if x == True: LEN += 1 else: break small = False for i in range(LEN, len(t)): if small == False: small = True LEN += 1 elif small == True and t[i] == True: small = False LEN += 1 if LEN >= k: return True return False def bi(a, b): if a == b: return a m = (a + b) // 2 if f(m) == True: return bi(a, m) else: return bi(m + 1, b) print(bi(1, 10**9))
ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR FUNC_DEF ASSIGN VAR LIST FOR VAR VAR IF VAR VAR EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR IF VAR NUMBER VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR IF VAR NUMBER ASSIGN VAR NUMBER VAR NUMBER IF VAR NUMBER VAR VAR NUMBER ASSIGN VAR NUMBER VAR NUMBER IF VAR VAR RETURN NUMBER RETURN NUMBER FUNC_DEF IF VAR VAR RETURN VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF FUNC_CALL VAR VAR NUMBER RETURN FUNC_CALL VAR VAR VAR RETURN FUNC_CALL VAR BIN_OP VAR NUMBER VAR EXPR FUNC_CALL VAR FUNC_CALL VAR NUMBER BIN_OP NUMBER NUMBER
Ashish has an array $a$ of size $n$. A subsequence of $a$ is defined as a sequence that can be obtained from $a$ by deleting some elements (possibly none), without changing the order of the remaining elements. Consider a subsequence $s$ of $a$. He defines the cost of $s$ as the minimum between: The maximum among all elements at odd indices of $s$. The maximum among all elements at even indices of $s$. Note that the index of an element is its index in $s$, rather than its index in $a$. The positions are numbered from $1$. So, the cost of $s$ is equal to $min(max(s_1, s_3, s_5, \ldots), max(s_2, s_4, s_6, \ldots))$. For example, the cost of $\{7, 5, 6\}$ is $min( max(7, 6), max(5) ) = min(7, 5) = 5$. Help him find the minimum cost of a subsequence of size $k$. -----Input----- The first line contains two integers $n$ and $k$ ($2 \leq k \leq n \leq 2 \cdot 10^5$) Β β€” the size of the array $a$ and the size of the subsequence. The next line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($1 \leq a_i \leq 10^9$) Β β€” the elements of the array $a$. -----Output----- Output a single integer Β β€” the minimum cost of a subsequence of size $k$. -----Examples----- Input 4 2 1 2 3 4 Output 1 Input 4 3 1 2 3 4 Output 2 Input 5 3 5 3 4 2 6 Output 2 Input 6 4 5 3 50 2 4 5 Output 3 -----Note----- In the first test, consider the subsequence $s$ = $\{1, 3\}$. Here the cost is equal to $min(max(1), max(3)) = 1$. In the second test, consider the subsequence $s$ = $\{1, 2, 4\}$. Here the cost is equal to $min(max(1, 4), max(2)) = 2$. In the fourth test, consider the subsequence $s$ = $\{3, 50, 2, 4\}$. Here the cost is equal to $min(max(3, 2), max(50, 4)) = 3$.
import sys input = sys.stdin.buffer.readline def possible(start, k, x): c = 0 for i in range(start, len(arr)): if c % 2 == 1: c += 1 elif arr[i] <= x: c += 1 if c == k: return True return False n, k = [int(x) for x in input().split()] arr = [int(x) for x in input().split()] maxCost = max(arr) b = maxCost // 2 + 1 maxImpossible = -1 while b > 0: while ( possible(1, k - 1, maxImpossible + b) == possible(0, k, maxImpossible + b) == False ): maxImpossible += b b //= 2 minCost = maxImpossible + 1 print(minCost)
IMPORT ASSIGN VAR VAR FUNC_DEF ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR IF BIN_OP VAR NUMBER NUMBER VAR NUMBER IF VAR VAR VAR VAR NUMBER IF VAR VAR RETURN NUMBER RETURN NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR NUMBER NUMBER ASSIGN VAR NUMBER WHILE VAR NUMBER WHILE FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER BIN_OP VAR VAR FUNC_CALL VAR NUMBER VAR BIN_OP VAR VAR NUMBER VAR VAR VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR
Ashish has an array $a$ of size $n$. A subsequence of $a$ is defined as a sequence that can be obtained from $a$ by deleting some elements (possibly none), without changing the order of the remaining elements. Consider a subsequence $s$ of $a$. He defines the cost of $s$ as the minimum between: The maximum among all elements at odd indices of $s$. The maximum among all elements at even indices of $s$. Note that the index of an element is its index in $s$, rather than its index in $a$. The positions are numbered from $1$. So, the cost of $s$ is equal to $min(max(s_1, s_3, s_5, \ldots), max(s_2, s_4, s_6, \ldots))$. For example, the cost of $\{7, 5, 6\}$ is $min( max(7, 6), max(5) ) = min(7, 5) = 5$. Help him find the minimum cost of a subsequence of size $k$. -----Input----- The first line contains two integers $n$ and $k$ ($2 \leq k \leq n \leq 2 \cdot 10^5$) Β β€” the size of the array $a$ and the size of the subsequence. The next line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($1 \leq a_i \leq 10^9$) Β β€” the elements of the array $a$. -----Output----- Output a single integer Β β€” the minimum cost of a subsequence of size $k$. -----Examples----- Input 4 2 1 2 3 4 Output 1 Input 4 3 1 2 3 4 Output 2 Input 5 3 5 3 4 2 6 Output 2 Input 6 4 5 3 50 2 4 5 Output 3 -----Note----- In the first test, consider the subsequence $s$ = $\{1, 3\}$. Here the cost is equal to $min(max(1), max(3)) = 1$. In the second test, consider the subsequence $s$ = $\{1, 2, 4\}$. Here the cost is equal to $min(max(1, 4), max(2)) = 2$. In the fourth test, consider the subsequence $s$ = $\{3, 50, 2, 4\}$. Here the cost is equal to $min(max(3, 2), max(50, 4)) = 3$.
import sys input = sys.stdin.readline inp, ip = lambda: int(input()), lambda: [int(w) for w in input().split()] n, k = ip() x = ip() l, r = 0, max(x) ans = 0 while l <= r: mid = (l + r) // 2 flag = 0 for start in [0, 1]: ct = 0 alt = start for i in x: if not alt or i <= mid: ct += 1 alt = not alt if ct >= k: flag = 1 if flag: ans = mid r = mid - 1 else: l = mid + 1 print(ans)
IMPORT ASSIGN VAR VAR ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR VAR NUMBER FUNC_CALL VAR VAR ASSIGN VAR NUMBER WHILE VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR NUMBER FOR VAR LIST NUMBER NUMBER ASSIGN VAR NUMBER ASSIGN VAR VAR FOR VAR VAR IF VAR VAR VAR VAR NUMBER ASSIGN VAR VAR IF VAR VAR ASSIGN VAR NUMBER IF VAR ASSIGN VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR
Ashish has an array $a$ of size $n$. A subsequence of $a$ is defined as a sequence that can be obtained from $a$ by deleting some elements (possibly none), without changing the order of the remaining elements. Consider a subsequence $s$ of $a$. He defines the cost of $s$ as the minimum between: The maximum among all elements at odd indices of $s$. The maximum among all elements at even indices of $s$. Note that the index of an element is its index in $s$, rather than its index in $a$. The positions are numbered from $1$. So, the cost of $s$ is equal to $min(max(s_1, s_3, s_5, \ldots), max(s_2, s_4, s_6, \ldots))$. For example, the cost of $\{7, 5, 6\}$ is $min( max(7, 6), max(5) ) = min(7, 5) = 5$. Help him find the minimum cost of a subsequence of size $k$. -----Input----- The first line contains two integers $n$ and $k$ ($2 \leq k \leq n \leq 2 \cdot 10^5$) Β β€” the size of the array $a$ and the size of the subsequence. The next line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($1 \leq a_i \leq 10^9$) Β β€” the elements of the array $a$. -----Output----- Output a single integer Β β€” the minimum cost of a subsequence of size $k$. -----Examples----- Input 4 2 1 2 3 4 Output 1 Input 4 3 1 2 3 4 Output 2 Input 5 3 5 3 4 2 6 Output 2 Input 6 4 5 3 50 2 4 5 Output 3 -----Note----- In the first test, consider the subsequence $s$ = $\{1, 3\}$. Here the cost is equal to $min(max(1), max(3)) = 1$. In the second test, consider the subsequence $s$ = $\{1, 2, 4\}$. Here the cost is equal to $min(max(1, 4), max(2)) = 2$. In the fourth test, consider the subsequence $s$ = $\{3, 50, 2, 4\}$. Here the cost is equal to $min(max(3, 2), max(50, 4)) = 3$.
def main(): n, k = [int(s) for s in input().split()] a = [int(s) for s in input().split()] low = min(a) high = max(a) while low < high: mid = (low + high) // 2 if possible(a, k, mid): high = mid else: low = mid + 1 print(low) def possible(a, k, x): return greedy(a, k, x, 0) or greedy(a, k, x, 1) def greedy(a, k, x, parity): i = 0 s = [] while i < len(a) and len(s) < k: if len(s) % 2 == parity: if a[i] <= x: s.append(a[i]) else: s.append(a[i]) i += 1 return len(s) == k main()
FUNC_DEF ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR WHILE VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF FUNC_CALL VAR VAR VAR VAR ASSIGN VAR VAR ASSIGN VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR FUNC_DEF RETURN FUNC_CALL VAR VAR VAR VAR NUMBER FUNC_CALL VAR VAR VAR VAR NUMBER FUNC_DEF ASSIGN VAR NUMBER ASSIGN VAR LIST WHILE VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR VAR IF BIN_OP FUNC_CALL VAR VAR NUMBER VAR IF VAR VAR VAR EXPR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR VAR VAR NUMBER RETURN FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR
Ashish has an array $a$ of size $n$. A subsequence of $a$ is defined as a sequence that can be obtained from $a$ by deleting some elements (possibly none), without changing the order of the remaining elements. Consider a subsequence $s$ of $a$. He defines the cost of $s$ as the minimum between: The maximum among all elements at odd indices of $s$. The maximum among all elements at even indices of $s$. Note that the index of an element is its index in $s$, rather than its index in $a$. The positions are numbered from $1$. So, the cost of $s$ is equal to $min(max(s_1, s_3, s_5, \ldots), max(s_2, s_4, s_6, \ldots))$. For example, the cost of $\{7, 5, 6\}$ is $min( max(7, 6), max(5) ) = min(7, 5) = 5$. Help him find the minimum cost of a subsequence of size $k$. -----Input----- The first line contains two integers $n$ and $k$ ($2 \leq k \leq n \leq 2 \cdot 10^5$) Β β€” the size of the array $a$ and the size of the subsequence. The next line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($1 \leq a_i \leq 10^9$) Β β€” the elements of the array $a$. -----Output----- Output a single integer Β β€” the minimum cost of a subsequence of size $k$. -----Examples----- Input 4 2 1 2 3 4 Output 1 Input 4 3 1 2 3 4 Output 2 Input 5 3 5 3 4 2 6 Output 2 Input 6 4 5 3 50 2 4 5 Output 3 -----Note----- In the first test, consider the subsequence $s$ = $\{1, 3\}$. Here the cost is equal to $min(max(1), max(3)) = 1$. In the second test, consider the subsequence $s$ = $\{1, 2, 4\}$. Here the cost is equal to $min(max(1, 4), max(2)) = 2$. In the fourth test, consider the subsequence $s$ = $\{3, 50, 2, 4\}$. Here the cost is equal to $min(max(3, 2), max(50, 4)) = 3$.
n, k = map(int, input().split()) a = list(map(int, input().split())) def f(x): global n, k, a check = 0 now = 1 for i in range(n): if now: if a[i] <= x: now = 1 - now check += 1 else: now = 1 - now check += 1 if check >= k: return True check = 0 now = 0 for i in range(n): if now: if a[i] <= x: now = 1 - now check += 1 else: now = 1 - now check += 1 if check >= k: return True else: return False l, r = 0, 10**9 + 1 while l + 1 < r: m = l + (r - l) // 2 if f(m): r = m else: l = m print(r)
ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR FUNC_DEF ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR IF VAR VAR VAR ASSIGN VAR BIN_OP NUMBER VAR VAR NUMBER ASSIGN VAR BIN_OP NUMBER VAR VAR NUMBER IF VAR VAR RETURN NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR IF VAR VAR VAR ASSIGN VAR BIN_OP NUMBER VAR VAR NUMBER ASSIGN VAR BIN_OP NUMBER VAR VAR NUMBER IF VAR VAR RETURN NUMBER RETURN NUMBER ASSIGN VAR VAR NUMBER BIN_OP BIN_OP NUMBER NUMBER NUMBER WHILE BIN_OP VAR NUMBER VAR ASSIGN VAR BIN_OP VAR BIN_OP BIN_OP VAR VAR NUMBER IF FUNC_CALL VAR VAR ASSIGN VAR VAR ASSIGN VAR VAR EXPR FUNC_CALL VAR VAR
Ashish has an array $a$ of size $n$. A subsequence of $a$ is defined as a sequence that can be obtained from $a$ by deleting some elements (possibly none), without changing the order of the remaining elements. Consider a subsequence $s$ of $a$. He defines the cost of $s$ as the minimum between: The maximum among all elements at odd indices of $s$. The maximum among all elements at even indices of $s$. Note that the index of an element is its index in $s$, rather than its index in $a$. The positions are numbered from $1$. So, the cost of $s$ is equal to $min(max(s_1, s_3, s_5, \ldots), max(s_2, s_4, s_6, \ldots))$. For example, the cost of $\{7, 5, 6\}$ is $min( max(7, 6), max(5) ) = min(7, 5) = 5$. Help him find the minimum cost of a subsequence of size $k$. -----Input----- The first line contains two integers $n$ and $k$ ($2 \leq k \leq n \leq 2 \cdot 10^5$) Β β€” the size of the array $a$ and the size of the subsequence. The next line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($1 \leq a_i \leq 10^9$) Β β€” the elements of the array $a$. -----Output----- Output a single integer Β β€” the minimum cost of a subsequence of size $k$. -----Examples----- Input 4 2 1 2 3 4 Output 1 Input 4 3 1 2 3 4 Output 2 Input 5 3 5 3 4 2 6 Output 2 Input 6 4 5 3 50 2 4 5 Output 3 -----Note----- In the first test, consider the subsequence $s$ = $\{1, 3\}$. Here the cost is equal to $min(max(1), max(3)) = 1$. In the second test, consider the subsequence $s$ = $\{1, 2, 4\}$. Here the cost is equal to $min(max(1, 4), max(2)) = 2$. In the fourth test, consider the subsequence $s$ = $\{3, 50, 2, 4\}$. Here the cost is equal to $min(max(3, 2), max(50, 4)) = 3$.
import sys input = sys.stdin.readline f = lambda: list(map(int, input().split())) _N = 1111111111 n, k = f() inp = f() l, r = min(inp), max(inp) ans = r while l <= r: m = (l + r) // 2 length = 0 flag = False for i in inp: if length % 2: length += 1 elif i <= m: length += 1 else: pass if length >= k: flag = True break length = 0 for i in inp: if not length % 2: length += 1 elif i <= m: length += 1 else: pass if length >= k: flag = True break if flag: ans = min(ans, m) r = m - 1 else: l = m + 1 print(ans)
IMPORT ASSIGN VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR WHILE VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR IF BIN_OP VAR NUMBER VAR NUMBER IF VAR VAR VAR NUMBER IF VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR IF BIN_OP VAR NUMBER VAR NUMBER IF VAR VAR VAR NUMBER IF VAR VAR ASSIGN VAR NUMBER IF VAR ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR
Ashish has an array $a$ of size $n$. A subsequence of $a$ is defined as a sequence that can be obtained from $a$ by deleting some elements (possibly none), without changing the order of the remaining elements. Consider a subsequence $s$ of $a$. He defines the cost of $s$ as the minimum between: The maximum among all elements at odd indices of $s$. The maximum among all elements at even indices of $s$. Note that the index of an element is its index in $s$, rather than its index in $a$. The positions are numbered from $1$. So, the cost of $s$ is equal to $min(max(s_1, s_3, s_5, \ldots), max(s_2, s_4, s_6, \ldots))$. For example, the cost of $\{7, 5, 6\}$ is $min( max(7, 6), max(5) ) = min(7, 5) = 5$. Help him find the minimum cost of a subsequence of size $k$. -----Input----- The first line contains two integers $n$ and $k$ ($2 \leq k \leq n \leq 2 \cdot 10^5$) Β β€” the size of the array $a$ and the size of the subsequence. The next line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($1 \leq a_i \leq 10^9$) Β β€” the elements of the array $a$. -----Output----- Output a single integer Β β€” the minimum cost of a subsequence of size $k$. -----Examples----- Input 4 2 1 2 3 4 Output 1 Input 4 3 1 2 3 4 Output 2 Input 5 3 5 3 4 2 6 Output 2 Input 6 4 5 3 50 2 4 5 Output 3 -----Note----- In the first test, consider the subsequence $s$ = $\{1, 3\}$. Here the cost is equal to $min(max(1), max(3)) = 1$. In the second test, consider the subsequence $s$ = $\{1, 2, 4\}$. Here the cost is equal to $min(max(1, 4), max(2)) = 2$. In the fourth test, consider the subsequence $s$ = $\{3, 50, 2, 4\}$. Here the cost is equal to $min(max(3, 2), max(50, 4)) = 3$.
def nd(lst, num, prc): dp = [(0) for i in range(len(lst))] dp[0] = int(lst[0] <= prc) for i in range(1, len(lst)): if lst[i] > prc: dp[i] = dp[i - 1] elif i >= 2: dp[i] = max(dp[i - 1], dp[i - 2] + 2) else: dp[i] = 2 return max(dp[-1], dp[-2] + 1) >= num n, k = map(int, input().split()) lst = list(map(int, input().split())) l = min(lst) r = max(lst) while r - l > 1: m = (l + r) // 2 if nd(lst, k, m): r = m else: l = m if nd(lst, k, l): print(l) else: print(r)
FUNC_DEF ASSIGN VAR NUMBER VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER FUNC_CALL VAR VAR NUMBER VAR FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR IF VAR VAR VAR ASSIGN VAR VAR VAR BIN_OP VAR NUMBER IF VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER BIN_OP VAR BIN_OP VAR NUMBER NUMBER ASSIGN VAR VAR NUMBER RETURN FUNC_CALL VAR VAR NUMBER BIN_OP VAR NUMBER NUMBER VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR WHILE BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF FUNC_CALL VAR VAR VAR VAR ASSIGN VAR VAR ASSIGN VAR VAR IF FUNC_CALL VAR VAR VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR
Ashish has an array $a$ of size $n$. A subsequence of $a$ is defined as a sequence that can be obtained from $a$ by deleting some elements (possibly none), without changing the order of the remaining elements. Consider a subsequence $s$ of $a$. He defines the cost of $s$ as the minimum between: The maximum among all elements at odd indices of $s$. The maximum among all elements at even indices of $s$. Note that the index of an element is its index in $s$, rather than its index in $a$. The positions are numbered from $1$. So, the cost of $s$ is equal to $min(max(s_1, s_3, s_5, \ldots), max(s_2, s_4, s_6, \ldots))$. For example, the cost of $\{7, 5, 6\}$ is $min( max(7, 6), max(5) ) = min(7, 5) = 5$. Help him find the minimum cost of a subsequence of size $k$. -----Input----- The first line contains two integers $n$ and $k$ ($2 \leq k \leq n \leq 2 \cdot 10^5$) Β β€” the size of the array $a$ and the size of the subsequence. The next line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($1 \leq a_i \leq 10^9$) Β β€” the elements of the array $a$. -----Output----- Output a single integer Β β€” the minimum cost of a subsequence of size $k$. -----Examples----- Input 4 2 1 2 3 4 Output 1 Input 4 3 1 2 3 4 Output 2 Input 5 3 5 3 4 2 6 Output 2 Input 6 4 5 3 50 2 4 5 Output 3 -----Note----- In the first test, consider the subsequence $s$ = $\{1, 3\}$. Here the cost is equal to $min(max(1), max(3)) = 1$. In the second test, consider the subsequence $s$ = $\{1, 2, 4\}$. Here the cost is equal to $min(max(1, 4), max(2)) = 2$. In the fourth test, consider the subsequence $s$ = $\{3, 50, 2, 4\}$. Here the cost is equal to $min(max(3, 2), max(50, 4)) = 3$.
N, k = map(int, input().split()) a = list(map(int, input().split())) if k % 2 == 0: def cond(n): res = 0 L = 0 for i in range(N): if a[i] > n: res += (L + 1) // 2 L = 0 else: L += 1 res += L // 2 if res >= k // 2: return True res = 0 L = 0 for i in range(N - 1, -1, -1): if a[i] > n: res += (L + 1) // 2 L = 0 else: L += 1 res += L // 2 if res >= k // 2: return True return False start = 0 end = 10**9 while end - start > 1: test = (end + start) // 2 if cond(test): end = test else: start = test print(end) else: def cond(n): res = 0 L = 0 for i in range(N): if a[i] > n: res += (L + 1) // 2 L = 0 else: L += 1 res += (L + 1) // 2 if res >= k // 2 + 1: return True res = 0 L = 0 for i in range(N - 2, -1, -1): if a[i] > n: res += (L + 1) // 2 L = 0 else: L += 1 res += L // 2 if res >= k // 2: return True return False start = 0 end = 10**9 while end - start > 1: test = (end + start) // 2 if cond(test): end = test else: start = test print(end)
ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF BIN_OP VAR NUMBER NUMBER FUNC_DEF ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR VAR VAR VAR BIN_OP BIN_OP VAR NUMBER NUMBER ASSIGN VAR NUMBER VAR NUMBER VAR BIN_OP VAR NUMBER IF VAR BIN_OP VAR NUMBER RETURN NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER IF VAR VAR VAR VAR BIN_OP BIN_OP VAR NUMBER NUMBER ASSIGN VAR NUMBER VAR NUMBER VAR BIN_OP VAR NUMBER IF VAR BIN_OP VAR NUMBER RETURN NUMBER RETURN NUMBER ASSIGN VAR NUMBER ASSIGN VAR BIN_OP NUMBER NUMBER WHILE BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF FUNC_CALL VAR VAR ASSIGN VAR VAR ASSIGN VAR VAR EXPR FUNC_CALL VAR VAR FUNC_DEF ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR VAR VAR VAR BIN_OP BIN_OP VAR NUMBER NUMBER ASSIGN VAR NUMBER VAR NUMBER VAR BIN_OP BIN_OP VAR NUMBER NUMBER IF VAR BIN_OP BIN_OP VAR NUMBER NUMBER RETURN NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER IF VAR VAR VAR VAR BIN_OP BIN_OP VAR NUMBER NUMBER ASSIGN VAR NUMBER VAR NUMBER VAR BIN_OP VAR NUMBER IF VAR BIN_OP VAR NUMBER RETURN NUMBER RETURN NUMBER ASSIGN VAR NUMBER ASSIGN VAR BIN_OP NUMBER NUMBER WHILE BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF FUNC_CALL VAR VAR ASSIGN VAR VAR ASSIGN VAR VAR EXPR FUNC_CALL VAR VAR