description
stringlengths
171
4k
code
stringlengths
94
3.98k
normalized_code
stringlengths
57
4.99k
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
import sys t = int(sys.stdin.readline().strip()) for _ in range(t): n, s = map(int, sys.stdin.readline().strip().split()) orin = n tot = 0 for x in str(n): tot += int(x) ans = 0 add = 1 ind = -1 while tot > s: while str(n)[ind] != "0": n += add tot = 0 for x in str(n): tot += int(x) ind -= 1 add *= 10 print(n - orin)
IMPORT ASSIGN VAR FUNC_CALL VAR FUNC_CALL FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR WHILE FUNC_CALL VAR VAR VAR STRING VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
for T in range(int(input())): a, b = map(int, input().split()) ans = 0 if a <= b: print(b - a) elif a % b == 0: print(0) else: print(b - a % b)
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER IF VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR IF BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR BIN_OP VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
t = int(input()) num = [list(map(int, input().split())) for _ in range(t)] answer = [] for a, b in num: k = 0 multi = b if a % b != 0: k = b - a % b answer.append(k) for i in answer: print(i)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR VAR FUNC_CALL VAR VAR ASSIGN VAR LIST FOR VAR VAR VAR ASSIGN VAR NUMBER ASSIGN VAR VAR IF BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR VAR FOR VAR VAR EXPR FUNC_CALL VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
t = int(input()) for i in range(t): at = 0 a, b = map(int, input().split()) k = a if sum(map(int, list(str(a)))) <= b: print(0) continue else: for j in range(len(str(a)) - 1, -1, -1): a += (10 - int(str(a)[j])) * 10 ** (len(str(a)) - j - 1) if sum(map(int, list(str(a)))) <= b: print(a - k) break
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR IF FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR FUNC_CALL VAR VAR NUMBER NUMBER NUMBER VAR BIN_OP BIN_OP NUMBER FUNC_CALL VAR FUNC_CALL VAR VAR VAR BIN_OP NUMBER BIN_OP BIN_OP FUNC_CALL VAR FUNC_CALL VAR VAR VAR NUMBER IF FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
t = int(input()) for _ in range(t): a = input().split() ans = int(a[0]) % int(a[1]) if ans != 0: ans = int(a[1]) - ans else: ans = 0 print(ans)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER FUNC_CALL VAR VAR NUMBER IF VAR NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER VAR ASSIGN VAR NUMBER EXPR FUNC_CALL VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
def find(n, s): if sum(map(int, list(n))) <= s: return 0 for i in range(len(n)): try: if 1 + sum(map(int, list(n[i + 1 :]))) <= s: w = "0" * (i + 1) + str(1 + int("".join(n[i + 1 :][::-1])))[::-1] return min( int(w[::-1]) - int("".join(n[::-1])), int("1" + "0" * len(n)) - int("".join(n[::-1])), ) except: return int("1" + "0" * len(n)) - int("".join(n[::-1])) return int("1" + "0" * len(n)) - int("".join(n[::-1])) def main(): for _ in range(int(input())): n, s = list(map(int, input().split())) n = str(n)[::-1] print(find(list(n), s)) main()
FUNC_DEF IF FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR VAR RETURN NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF BIN_OP NUMBER FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR ASSIGN VAR BIN_OP BIN_OP STRING BIN_OP VAR NUMBER FUNC_CALL VAR BIN_OP NUMBER FUNC_CALL VAR FUNC_CALL STRING VAR BIN_OP VAR NUMBER NUMBER NUMBER RETURN FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER FUNC_CALL VAR FUNC_CALL STRING VAR NUMBER BIN_OP FUNC_CALL VAR BIN_OP STRING BIN_OP STRING FUNC_CALL VAR VAR FUNC_CALL VAR FUNC_CALL STRING VAR NUMBER RETURN BIN_OP FUNC_CALL VAR BIN_OP STRING BIN_OP STRING FUNC_CALL VAR VAR FUNC_CALL VAR FUNC_CALL STRING VAR NUMBER RETURN BIN_OP FUNC_CALL VAR BIN_OP STRING BIN_OP STRING FUNC_CALL VAR VAR FUNC_CALL VAR FUNC_CALL STRING VAR NUMBER FUNC_DEF FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
def convert_array_to_int(arr): for i in range(0, len(arr), 1): arr[i] = int(arr[i]) return arr testCases = int(input()) while testCases: X = input().split() X = convert_array_to_int(X) a = X[0] b = X[1] remainder = a % b if remainder: print(b - remainder) else: print(remainder) testCases -= 1
FUNC_DEF FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR VAR RETURN VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR WHILE VAR ASSIGN VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR VAR NUMBER ASSIGN VAR VAR NUMBER ASSIGN VAR BIN_OP VAR VAR IF VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR VAR VAR NUMBER
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
t = int(input()) def get_sum(n): return sum([i for i in map(int, list(str(n)))]) def destroy_digit(n, digit): if digit == 0: return n return int(str(n)[0 : -1 * digit] + "0" * digit) + 10**digit for _ in range(t): n, s = map(int, input().split()) n_digits = len(str(n)) for i in range(n_digits + 1): new_num = destroy_digit(n, i) if get_sum(new_num) <= s: print(new_num - n) break
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_DEF RETURN FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_DEF IF VAR NUMBER RETURN VAR RETURN BIN_OP FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER BIN_OP NUMBER VAR BIN_OP STRING VAR BIN_OP NUMBER VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR IF FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
def main(): d = int(input()) for i in range(d): a, b = [int(v) for v in input().split()] print((a // b + (0 if a % b == 0 else 1)) * b - a) main()
FUNC_DEF ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR BIN_OP BIN_OP BIN_OP BIN_OP VAR VAR BIN_OP VAR VAR NUMBER NUMBER NUMBER VAR VAR EXPR FUNC_CALL VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
t = int(input()) while t: x, y = map(int, input().split()) if x % y == 0: print("0") else: print(y - x % y) t = t - 1
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR WHILE VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR BIN_OP VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR NUMBER
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
n = int(input()) listA = [] listB = [] for i in range(0, n): a = list(map(int, input().split())) listA.append(a[0]) listB.append(a[1]) i = 0 while n: if listA[i] % listB[i] == 0: print("0") i = i + 1 else: num = int(listA[i] / listB[i]) exactNum = int(listB[i] * (num + 1)) ans = int(exactNum - listA[i]) print(ans) i = i + 1 n = n - 1
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST ASSIGN VAR LIST FOR VAR FUNC_CALL VAR NUMBER VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR VAR NUMBER ASSIGN VAR NUMBER WHILE VAR IF BIN_OP VAR VAR VAR VAR NUMBER EXPR FUNC_CALL VAR STRING ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR BIN_OP VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR BIN_OP VAR VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR BIN_OP VAR VAR VAR EXPR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
def divisible(a, b): if a % b != 0: return b - a % b return 0 a = int(input()) for i in range(a): z = input() z = z.split() w = [] for i in z: w.append(int(i)) ans = divisible(w[0], w[1]) print(ans)
FUNC_DEF IF BIN_OP VAR VAR NUMBER RETURN BIN_OP VAR BIN_OP VAR VAR RETURN NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR LIST FOR VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
t = int(input()) while t > 0: t -= 1 n, s = map(int, input().strip().split(" ")) def calcSum(num): st = str(num) st = list(st) sm = 0 for i in range(len(st)): sm += int(st[i]) return sm diff = calcSum(n) - s if diff < 1: print(0) else: done = False ind = 1 newnum = n ans = 0 while not done: k = newnum % 10 adf = 10 - k ans += ind * adf newnum = newnum // 10 newnum += 1 diff = calcSum(newnum) - s if diff < 1: done = True break ind = ind * 10 print(ans)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR WHILE VAR NUMBER VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL FUNC_CALL VAR STRING FUNC_DEF ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR RETURN VAR ASSIGN VAR BIN_OP FUNC_CALL VAR VAR VAR IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR VAR ASSIGN VAR NUMBER WHILE VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP NUMBER VAR VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR VAR VAR IF VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
for _ in range(int(input())): n, s = map(int, input().split()) l = list(map(int, str(n)))[::-1] x = sum(l) if x <= s: print(0) continue for i in range(1, len(l)): if l[i] == 9: continue t = l.copy() t[:i] = [0] * i t[i] += 1 if sum(t) <= s: print(int("".join(str(x) for x in t)[::-1]) - n) break else: print(int("1" + "0" * len(str(n))) - n)
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR IF VAR VAR EXPR FUNC_CALL VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR IF VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR ASSIGN VAR VAR BIN_OP LIST NUMBER VAR VAR VAR NUMBER IF FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR FUNC_CALL STRING FUNC_CALL VAR VAR VAR VAR NUMBER VAR EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR BIN_OP STRING BIN_OP STRING FUNC_CALL VAR FUNC_CALL VAR VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
for i in range(int(input())): a, b = map(int, input().split()) ans = 0 if a % b == 0: print(0) else: q = a // b g = b * (q + 1) ans = g - a print(ans)
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER IF BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
C = int(input()) while True: try: A, B = input().split() A = int(A) B = int(B) if A % B: print(abs(B - A % B)) else: print(A % B) except EOFError: break
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR WHILE NUMBER ASSIGN VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR IF BIN_OP VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR BIN_OP VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
import sys def process(a, b): m = a % b if m == 0: print(0) else: print(b - m) input = sys.stdin.readline def inp(): return int(input()) def inlt(): return list(map(int, input().split())) def insr(): s = input() return list(s[: len(s) - 1]) def invr(): return map(int, input().split()) t = inp() for i in range(t): AB = inlt() a, b = AB[0], AB[1] process(a, b)
IMPORT FUNC_DEF ASSIGN VAR BIN_OP VAR VAR IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR VAR ASSIGN VAR VAR FUNC_DEF RETURN FUNC_CALL VAR FUNC_CALL VAR FUNC_DEF RETURN FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR FUNC_DEF ASSIGN VAR FUNC_CALL VAR RETURN FUNC_CALL VAR VAR BIN_OP FUNC_CALL VAR VAR NUMBER FUNC_DEF RETURN FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR VAR VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
MOD = 1000000007 MOD2 = 998244353 ii = lambda: int(input()) si = lambda: input() dgl = lambda: list(map(int, input())) f = lambda: map(int, input().split()) il = lambda: list(map(int, input().split())) ls = lambda: list(input()) let = "abcdefghijklmnopqrstuvwxyz" for _ in range(ii()): a, b = f() x = (b - a % b) % b print(x)
ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR STRING FOR VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR ASSIGN VAR BIN_OP BIN_OP VAR BIN_OP VAR VAR VAR EXPR FUNC_CALL VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
for _ in range(int(input())): n, s = input().split() s = int(s) n = "0" + n c = d = 0 while c <= s: c += int(n[d]) d += 1 if d == len(n): if c <= s: d = -1 break if d < 0: print(0) continue d -= 1 c -= int(n[d]) while sum(map(int, str(int(n[:d]) + 1))) > s: d -= 1 print(int(str(int(n[:d]) + 1) + "0" * (len(n) - d)) - int(n))
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP STRING VAR ASSIGN VAR VAR NUMBER WHILE VAR VAR VAR FUNC_CALL VAR VAR VAR VAR NUMBER IF VAR FUNC_CALL VAR VAR IF VAR VAR ASSIGN VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER VAR NUMBER VAR FUNC_CALL VAR VAR VAR WHILE FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR VAR NUMBER VAR VAR NUMBER EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR BIN_OP FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR VAR NUMBER BIN_OP STRING BIN_OP FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
t = input() t = int(t) for i in range(t): n, k = input().split() n = int(n) k = int(k) c = n % k if n % k == 0: print("0") else: print(k - c)
ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR VAR IF BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR BIN_OP VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
t = int(input()) for i in range(t): n, s = [int(k) for k in input().split()] c = [int(k) for k in str(n)] res = 0 while c and sum(c) > s: c.pop() res += 1 while c and c[-1] == 9: c.pop() res += 1 if c: c[-1] += 1 if not c: print(int("1" + len(str(n)) * "0") - n) else: print(int("".join([str(k) for k in c]) + "0" * res) - n)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER WHILE VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR NUMBER WHILE VAR VAR NUMBER NUMBER EXPR FUNC_CALL VAR VAR NUMBER IF VAR VAR NUMBER NUMBER IF VAR EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR BIN_OP STRING BIN_OP FUNC_CALL VAR FUNC_CALL VAR VAR STRING VAR EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR BIN_OP FUNC_CALL STRING FUNC_CALL VAR VAR VAR VAR BIN_OP STRING VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
t = int(input()) for i in range(t): a, b = list(map(int, input().split())) if a % b != 0: r = a // b j = (r + 1) * b - a print(j) else: print("0")
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP BIN_OP BIN_OP VAR NUMBER VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR STRING
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
t = int(input()) result = [] for i in range(t): def find(a, b): x = a % b result.append(b - x) a, b = [int(j) for j in input().split()] if a % b == 0: result.append(0) elif b > a: result.append(b - a) else: find(a, b) for i in range(t): print(result[i])
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR FUNC_DEF ASSIGN VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR IF BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER IF VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR VAR VAR FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
t = int(input()) tab = [] for x in range(t): moves = 0 a, b = map(int, input().split()) if a % b == 0: tab.append(0) elif a < b: tab.append(b - a) elif a > b: tab.append(b - a % b) for each in tab: print(each)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER IF VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR IF VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR BIN_OP VAR VAR FOR VAR VAR EXPR FUNC_CALL VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
l = [] n = int(input()) ct = 0 for i in range(n): ct = 0 e = input().split(" ") a = int(e[0]) b = int(e[-1]) if a % b == 0: print(0) else: c = a // b c += 1 print(b * c - a)
ASSIGN VAR LIST ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR NUMBER IF BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR BIN_OP VAR VAR VAR NUMBER EXPR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
def minmove(n, s): n1 = n digits = list(map(int, str(n))) move = 0 i = 1 while sum(digits) > s: new = (n // 10**i + 1) * 10**i digits = list(map(int, str(new))) i += 1 move = new - n return move t = int(input()) for i in range(t): n, s = map(int, input().split()) print(minmove(n, s))
FUNC_DEF ASSIGN VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE FUNC_CALL VAR VAR VAR ASSIGN VAR BIN_OP BIN_OP BIN_OP VAR BIN_OP NUMBER VAR NUMBER BIN_OP NUMBER VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR VAR NUMBER ASSIGN VAR BIN_OP VAR VAR RETURN VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
def divisibility(a, b): if a % b == 0: return 0 else: return b * (a // b + 1) - a def test(): number_of_tests = int(input()) for i in range(number_of_tests): ab = input().split(" ") a = int(ab[0]) b = int(ab[1]) output = str(divisibility(a, b)) print(output) return () test()
FUNC_DEF IF BIN_OP VAR VAR NUMBER RETURN NUMBER RETURN BIN_OP BIN_OP VAR BIN_OP BIN_OP VAR VAR NUMBER VAR FUNC_DEF ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR RETURN EXPR FUNC_CALL VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
for _ in range(int(input())): a, b = map(int, input().split()) k = a % b if k != 0: ans = b - k print(ans) else: print(0)
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR BIN_OP VAR VAR IF VAR NUMBER ASSIGN VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR NUMBER
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
t = int(input()) for i in range(t): a, b = input().split() a = int(a) b = int(b) moves = (b - a % b) % b print("%d" % moves)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR BIN_OP VAR VAR VAR EXPR FUNC_CALL VAR BIN_OP STRING VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
def solution(str_n, s): S = 0 for j in str_n: S = S + int(j) if S <= s: print(0) else: S = 0 p = 0 while p < len(str_n) and S < s: S = S + int(str_n[p]) p = p + 1 p = len(str_n) - p + 1 solution = 1 for i in range(p): solution = solution + (9 - int(str_n[len(str_n) - i - 1])) * 10**i print(solution) for j in range(int(input())): str_n, str_s = input().split() solution(str_n, int(str_s))
FUNC_DEF ASSIGN VAR NUMBER FOR VAR VAR ASSIGN VAR BIN_OP VAR FUNC_CALL VAR VAR IF VAR VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR FUNC_CALL VAR VAR VAR VAR ASSIGN VAR BIN_OP VAR FUNC_CALL VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP BIN_OP FUNC_CALL VAR VAR VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR BIN_OP BIN_OP NUMBER FUNC_CALL VAR VAR BIN_OP BIN_OP FUNC_CALL VAR VAR VAR NUMBER BIN_OP NUMBER VAR EXPR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR VAR FUNC_CALL VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
def solve(n, s): sums = [] all_sum = 0 nn = n while nn > 0: sums.append(all_sum) all_sum += nn % 10 nn = nn // 10 if all_sum <= s: return 0 m = 10 ** len(sums) for i, d in enumerate(sums): if all_sum - d < s: m = 10**i break return m - n % m t = int(input()) for _ in range(t): n, s = (int(x) for x in input().split()) print(solve(n, s))
FUNC_DEF ASSIGN VAR LIST ASSIGN VAR NUMBER ASSIGN VAR VAR WHILE VAR NUMBER EXPR FUNC_CALL VAR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER IF VAR VAR RETURN NUMBER ASSIGN VAR BIN_OP NUMBER FUNC_CALL VAR VAR FOR VAR VAR FUNC_CALL VAR VAR IF BIN_OP VAR VAR VAR ASSIGN VAR BIN_OP NUMBER VAR RETURN BIN_OP VAR BIN_OP VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
for _ in range(int(input())): li = list(map(int, input().split())) a = li[0] b = li[1] if a % b == 0: print(0) elif b > a: print(b - a) else: remainder = a % b ans = b - remainder print(ans)
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR NUMBER ASSIGN VAR VAR NUMBER IF BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER IF VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
t = int(input()) a = [] for i in range(t): x, y = map(int, input().split()) if x != 0 and x % y == 0: x = y else: x = x % y a.append(y - x) for i in range(t): print(a[i])
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF VAR NUMBER BIN_OP VAR VAR NUMBER ASSIGN VAR VAR ASSIGN VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
t = int(input()) for T in range(t): a, b = [int(x) for x in input().split()] rem = a % b if rem > 0: rem = b - rem print(rem)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR BIN_OP VAR VAR IF VAR NUMBER ASSIGN VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
def calc(a, b): if a % b == 0: return 0 return (a // b + 1) * b - a N = int(input()) cases = [] for _ in range(N): cases.append(map(int, input().split())) for a, b in cases: print(calc(a, b))
FUNC_DEF IF BIN_OP VAR VAR NUMBER RETURN NUMBER RETURN BIN_OP BIN_OP BIN_OP BIN_OP VAR VAR NUMBER VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR FOR VAR VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
t = int(input()) for _ in range(t): a, b = input().split() a, b = int(a), int(b) if a % b == 0: minimum = 0 else: minimum = (int(a / b) + 1) * b - a print(minimum)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR IF BIN_OP VAR VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR BIN_OP BIN_OP BIN_OP FUNC_CALL VAR BIN_OP VAR VAR NUMBER VAR VAR EXPR FUNC_CALL VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
t = int(input()) for _ in range(t): n, s = [int(p) for p in input().split()] li = [int(p) for p in list(str(n))] if sum(li) <= s: print(0) continue val = 0 i = 1 currSum = sum(li) while currSum > s: rem = n % 10**i val += 10**i - rem n += 10**i - rem currSum = sum([int(p) for p in list(str(n))]) i += 1 print(val)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR WHILE VAR VAR ASSIGN VAR BIN_OP VAR BIN_OP NUMBER VAR VAR BIN_OP BIN_OP NUMBER VAR VAR VAR BIN_OP BIN_OP NUMBER VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
s = int(input()) for i in range(0, s): a, b = map(int, input().split()) count = 0 flag = 0 d = a % b if d == 0: print(count) else: c = a // b k = (c + 1) * b count = k - a print(count)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR NUMBER VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR BIN_OP VAR VAR IF VAR NUMBER EXPR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR NUMBER VAR ASSIGN VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
t = int(input()) for _ in range(t): n, max_sum = map(int, input().split()) s = str(n) if sum(map(int, s)) <= max_sum: print(0) else: sm = 0 i = 0 while i < len(s) and sm + int(s[i]) < max_sum: sm += int(s[i]) i += 1 next = 0 for j in range(i): next = 10 * next + int(s[j]) next += 1 next *= 10 ** (len(s) - i) print(next - n)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR IF FUNC_CALL VAR FUNC_CALL VAR VAR VAR VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR FUNC_CALL VAR VAR BIN_OP VAR FUNC_CALL VAR VAR VAR VAR VAR FUNC_CALL VAR VAR VAR VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP BIN_OP NUMBER VAR FUNC_CALL VAR VAR VAR VAR NUMBER VAR BIN_OP NUMBER BIN_OP FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
import sys input = sys.stdin.readline def getsum(n): x = list(str(n)) sumi = 0 for i in range(len(x)): sumi += int(x[i]) return sumi for _ in range(int(input())): n, s = [int(j) for j in input().split()] ans = 0 i = 0 while getsum(n) > s: temp = 10**i - n % 10**i ans += temp n += temp i += 1 print(ans)
IMPORT ASSIGN VAR VAR FUNC_DEF ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR RETURN VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE FUNC_CALL VAR VAR VAR ASSIGN VAR BIN_OP BIN_OP NUMBER VAR BIN_OP VAR BIN_OP NUMBER VAR VAR VAR VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
PI = 3.141592653589793 INF = 999999999 MOD = 1000000007 def add(x, y): return (x + y) % MOD def sub(x, y): return (x - y + MOD) % MOD def mul(x, y): return x * y % MOD def gcd(x, y): if y == 0: return x return gcd(y, x % y) def lcm(x, y): return x * y // gcd(x, y) def power(x, y): res = 1 x %= MOD while y != 0: if y & 1: res = mul(res, x) y >>= 1 x = mul(x, x) return res def mod_inv(n): return power(n, MOD - 2) def prob(p, q): return mul(p, power(q, MOD - 2)) def ii(): return int(input()) def li(): return [int(i) for i in input().split()] def ls(): return [i for i in input().split()] for t in range(ii()): t += 1 n, s = li() N = str(n) total = 0 for i in N: total += int(i) if total <= s: print(0) continue temp = s index = 0 while int(N[index]) < temp: temp -= int(N[index]) index += 1 l = len(N) if index < len(N): print(10 ** (l - index) - int(N[index:])) else: print(10 ** len(N) - n)
ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FUNC_DEF RETURN BIN_OP BIN_OP VAR VAR VAR FUNC_DEF RETURN BIN_OP BIN_OP BIN_OP VAR VAR VAR VAR FUNC_DEF RETURN BIN_OP BIN_OP VAR VAR VAR FUNC_DEF IF VAR NUMBER RETURN VAR RETURN FUNC_CALL VAR VAR BIN_OP VAR VAR FUNC_DEF RETURN BIN_OP BIN_OP VAR VAR FUNC_CALL VAR VAR VAR FUNC_DEF ASSIGN VAR NUMBER VAR VAR WHILE VAR NUMBER IF BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR RETURN VAR FUNC_DEF RETURN FUNC_CALL VAR VAR BIN_OP VAR NUMBER FUNC_DEF RETURN FUNC_CALL VAR VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER FUNC_DEF RETURN FUNC_CALL VAR FUNC_CALL VAR FUNC_DEF RETURN FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR FUNC_DEF RETURN VAR VAR FUNC_CALL FUNC_CALL VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER FOR VAR VAR VAR FUNC_CALL VAR VAR IF VAR VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR VAR ASSIGN VAR NUMBER WHILE FUNC_CALL VAR VAR VAR VAR VAR FUNC_CALL VAR VAR VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR IF VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR BIN_OP BIN_OP NUMBER BIN_OP VAR VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR BIN_OP BIN_OP NUMBER FUNC_CALL VAR VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
t = int(input()) while t > 0: a, b = input().split() a = int(a) b = int(b) c = a % b if c == 0: print(f"{c}") else: ans = b - c print(f"{ans}") t -= 1
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR WHILE VAR NUMBER ASSIGN VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR VAR IF VAR NUMBER EXPR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR VAR VAR NUMBER
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
t = int(input()) for i in range(0, t): a, b = input().split() a = int(a) b = int(b) if a % b == 0: print(0) else: r = a % b print(abs(b - r))
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR NUMBER VAR ASSIGN VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR IF BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR BIN_OP VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
for _ in range(int(input())): n, s = input().split() s = int(s) length = n.__len__() summa = 0 for i in range(length): summa += int(n[i]) if summa <= s: print(0) continue summa = 0 cnt = 0 elem = 0 for i in range(length): if summa + int(n[i]) >= s: break summa += int(n[i]) cnt += 1 elem = int(n[i]) start = str(elem) res = str(elem + 1) for i in range(cnt, length): start += n[i] res += "0" print(int(res) - int(start))
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR IF VAR VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF BIN_OP VAR FUNC_CALL VAR VAR VAR VAR VAR FUNC_CALL VAR VAR VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR VAR VAR VAR VAR VAR VAR STRING EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
t = int(input()) for _ in range(t): inp = input().split(" ") a = int(inp[0]) b = int(inp[1]) move = 0 if a % b == 0: print(move) else: g = a % b move = b - g print(move)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR NUMBER IF BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
import sys inputlist = sys.stdin.readlines() number_of_testcases = int(inputlist[0].strip()) for i in range(number_of_testcases): a, b = list(map(int, inputlist[i + 1].strip().split(" "))) modresult = a % b if modresult == 0: print(modresult) else: print(b - modresult)
IMPORT ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR BIN_OP VAR NUMBER STRING ASSIGN VAR BIN_OP VAR VAR IF VAR NUMBER EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
from sys import stdin, stdout def rem(a, b): if a < b: return b - a elif a % b != 0: return b - a % b else: return 0 def main(): n = 0 for line in stdin: x = [int(i) for i in line.split()] if len(x) == 2: stdout.write(str(rem(x[0], x[1])) + "\n") main()
FUNC_DEF IF VAR VAR RETURN BIN_OP VAR VAR IF BIN_OP VAR VAR NUMBER RETURN BIN_OP VAR BIN_OP VAR VAR RETURN NUMBER FUNC_DEF ASSIGN VAR NUMBER FOR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR IF FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR FUNC_CALL VAR VAR NUMBER VAR NUMBER STRING EXPR FUNC_CALL VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
n = int(input()) cases = [(0) for j in range(n)] for i in range(n): line = [int(k) for k in input().split()] if line[0] % line[1] == 0: cases[i] = 0 else: cases[i] = line[1] - line[0] % line[1] for j in cases: print(str(j))
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR NUMBER VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR IF BIN_OP VAR NUMBER VAR NUMBER NUMBER ASSIGN VAR VAR NUMBER ASSIGN VAR VAR BIN_OP VAR NUMBER BIN_OP VAR NUMBER VAR NUMBER FOR VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
t = int(input()) for i in range(t): n = input() a, b = map(int, n.split()) count = 0 if a % b == 0: print(count) elif a < b: count = b - a print(count) else: count += b - a % b print(count)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL VAR ASSIGN VAR NUMBER IF BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR VAR IF VAR VAR ASSIGN VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR VAR VAR BIN_OP VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
for _ in range(int(input())): n, s = map(int, input().split(" ")) digits = [int(x) for x in str(n)] if sum(digits) <= s: print(0) continue i = 1 while i < len(digits) and sum(digits[:i]) < s: i += 1 p = 10 ** (len(digits) - i + 1) print(p - n % p)
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR IF FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER WHILE VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR VAR VAR VAR NUMBER ASSIGN VAR BIN_OP NUMBER BIN_OP BIN_OP FUNC_CALL VAR VAR VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR BIN_OP VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
for x in range(int(input())): a, b = map(int, input().split()) c = a a = list("0" + str(a)) arr = [] b = b - (ord(a[0]) - 48) t = 1 f = 0 while b >= 0: arr.append(b) b = b - (ord(a[t]) - 48) t += 1 if t == len(a): f = 1 break arr.append(b) for i in range(len(a) - len(arr) - 1, -1, -1): arr.append(0) if f == 1 and b >= 0: print(0) else: s1 = "" f = 0 t = 1 k = 0 for i in range(len(arr) - 1, 0, -1): if arr[i] <= 0 and f == 0: s1 += "0" else: f = 1 if t: k = len(arr) - i - 1 t = 0 s1 += a[i] if int(s1) == 0: s1 = s1 + "1" ans = int(s1[::-1]) if k > 0: ans += pow(10, k) print(ans - int("".join(a)))
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR ASSIGN VAR FUNC_CALL VAR BIN_OP STRING FUNC_CALL VAR VAR ASSIGN VAR LIST ASSIGN VAR BIN_OP VAR BIN_OP FUNC_CALL VAR VAR NUMBER NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR NUMBER EXPR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR BIN_OP FUNC_CALL VAR VAR VAR NUMBER VAR NUMBER IF VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER EXPR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR BIN_OP BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR VAR NUMBER NUMBER NUMBER EXPR FUNC_CALL VAR NUMBER IF VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR STRING ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER NUMBER NUMBER IF VAR VAR NUMBER VAR NUMBER VAR STRING ASSIGN VAR NUMBER IF VAR ASSIGN VAR BIN_OP BIN_OP FUNC_CALL VAR VAR VAR NUMBER ASSIGN VAR NUMBER VAR VAR VAR IF FUNC_CALL VAR VAR NUMBER ASSIGN VAR BIN_OP VAR STRING ASSIGN VAR FUNC_CALL VAR VAR NUMBER IF VAR NUMBER VAR FUNC_CALL VAR NUMBER VAR EXPR FUNC_CALL VAR BIN_OP VAR FUNC_CALL VAR FUNC_CALL STRING VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
t = int(input()) outputList = [] i = 0 while i < t: x = str(input()).split(" ") a = int(x[0]) b = int(x[1]) steps = outputList.append((b - a % b) % b) i += 1 for item in range(len(outputList)): print(outputList[item])
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST ASSIGN VAR NUMBER WHILE VAR VAR ASSIGN VAR FUNC_CALL FUNC_CALL VAR FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR BIN_OP BIN_OP VAR BIN_OP VAR VAR VAR VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
n = int(input()) a = [] b = [] c = 0 d = 0 for i in range(n): a.append([int(j) for j in input().split()]) for i in range(0, n): if a[i][0] % a[i][1] == 0: b.append(0) elif a[i][0] > a[i][1]: b.append((a[i][0] // a[i][1] + 1) * a[i][1] - a[i][0]) else: b.append(a[i][1] - a[i][0]) for i in range(len(b)): print(b[i])
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST ASSIGN VAR LIST ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR FOR VAR FUNC_CALL VAR NUMBER VAR IF BIN_OP VAR VAR NUMBER VAR VAR NUMBER NUMBER EXPR FUNC_CALL VAR NUMBER IF VAR VAR NUMBER VAR VAR NUMBER EXPR FUNC_CALL VAR BIN_OP BIN_OP BIN_OP BIN_OP VAR VAR NUMBER VAR VAR NUMBER NUMBER VAR VAR NUMBER VAR VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR VAR NUMBER VAR VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
def solve(): a, b = map(int, input().split()) print(-a % b) def main(): t = int(input()) for _ in range(t): solve() main()
FUNC_DEF ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR FUNC_DEF ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR EXPR FUNC_CALL VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
def input_int(): return int(input()) def input_int_list(): return list(map(int, input().split())) def input_input_map(): return map(int, input().split()) def run(): q_num = input_int() for i in range(q_num): base_num, target_sum = input_input_map() base_num_sum = 0 for num in str(base_num): base_num_sum += int(num) if base_num_sum <= target_sum: print(0) continue base_num_str = str(base_num) num_len = len(base_num_str) sum_from_top = 0 from_top_i = 0 for i_from_top in range(num_len): sum_from_top += int(base_num_str[i_from_top]) if sum_from_top >= target_sum: from_top_i = i_from_top break a = 10 ** (num_len - from_top_i) b = int(base_num_str[from_top_i:]) result = a - b print(result) run()
FUNC_DEF RETURN FUNC_CALL VAR FUNC_CALL VAR FUNC_DEF RETURN FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR FUNC_DEF RETURN FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR FUNC_DEF ASSIGN VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR IF VAR VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR IF VAR VAR ASSIGN VAR VAR ASSIGN VAR BIN_OP NUMBER BIN_OP VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
t = int(input()) def id(x): return x for i in range(t): n, s = map(int, input().split()) s = int(s) ans = 0 cancer = sum([int(x) for x in list(str(n))]) i = 0 m = n while cancer > s: if int(str(n)[-1 - i]) == 0: pass elif cancer - s > int(str(n)[-1 - i]): n -= int(str(n)[-1 - i]) * 10**i n = n + 10 ** (i + 1) else: n -= int(str(n)[-1 - i]) * 10**i n = n + 10 ** (i + 1) cancer = sum([int(x) for x in list(str(n))]) i += 1 print(n - m)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_DEF RETURN VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR VAR WHILE VAR VAR IF FUNC_CALL VAR FUNC_CALL VAR VAR BIN_OP NUMBER VAR NUMBER IF BIN_OP VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR BIN_OP NUMBER VAR VAR BIN_OP FUNC_CALL VAR FUNC_CALL VAR VAR BIN_OP NUMBER VAR BIN_OP NUMBER VAR ASSIGN VAR BIN_OP VAR BIN_OP NUMBER BIN_OP VAR NUMBER VAR BIN_OP FUNC_CALL VAR FUNC_CALL VAR VAR BIN_OP NUMBER VAR BIN_OP NUMBER VAR ASSIGN VAR BIN_OP VAR BIN_OP NUMBER BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
for t in range(int(input())): n, s = [int(i) for i in input().split()] n = str(n) n = [int(i) for i in n] res = 0 if sum(n) <= s: print(res) else: cnt = 1 while n and sum(n) > s: q = n.pop() res += (10 - q) * cnt if n: n[-1] += 1 cnt *= 10 print(res)
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR VAR ASSIGN VAR NUMBER IF FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR ASSIGN VAR NUMBER WHILE VAR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP BIN_OP NUMBER VAR VAR IF VAR VAR NUMBER NUMBER VAR NUMBER EXPR FUNC_CALL VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
t = int(input()) sol = [] while t: t -= 1 a, b = input().split() a = int(a) b = int(b) nr = 0 if a > b: if a % b: nr = b - a % b else: nr = b - a sol.append(nr) print(*sol, sep="\n")
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST WHILE VAR VAR NUMBER ASSIGN VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER IF VAR VAR IF BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR STRING
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
import sys input = sys.stdin.readline sm = lambda x: sum(map(int, str(x))) for _ in range(int(input())): n, s = map(int, input().split()) res = 0 while sm(n) > s: t = 0 while n % pow(10, t) == 0: t += 1 d = -n % pow(10, t) res += d n += d print(res)
IMPORT ASSIGN VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER WHILE FUNC_CALL VAR VAR VAR ASSIGN VAR NUMBER WHILE BIN_OP VAR FUNC_CALL VAR NUMBER VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP VAR FUNC_CALL VAR NUMBER VAR VAR VAR VAR VAR EXPR FUNC_CALL VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
for _ in range(int(input())): n, s = input().split() s = int(s) digits = [int(c) for c in n] x = len(digits) p = 0 while digits[x - 1] == 0: x -= 1 p += 1 y, s_ = 0, 0 while s_ < s and y < x: s_ += digits[y] y += 1 if y == x and s_ <= s: print(0) else: suffix = int(n[y - 1 : x]) ans = (10 ** (x - y + 1) - suffix) * 10**p print(ans)
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER WHILE VAR BIN_OP VAR NUMBER NUMBER VAR NUMBER VAR NUMBER ASSIGN VAR VAR NUMBER NUMBER WHILE VAR VAR VAR VAR VAR VAR VAR VAR NUMBER IF VAR VAR VAR VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR ASSIGN VAR BIN_OP BIN_OP BIN_OP NUMBER BIN_OP BIN_OP VAR VAR NUMBER VAR BIN_OP NUMBER VAR EXPR FUNC_CALL VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
def getSum(n): sum = 0 while n > 0: sum += n % 10 n //= 10 return sum tc = int(input()) while tc: tc -= 1 n, s = map(int, input().split()) ans = 0 while getSum(n) > s: p = 1 tmp = n while tmp % 10 == 0: tmp //= 10 p *= 10 n += (10 - tmp % 10) * p ans += (10 - tmp % 10) * p print(ans)
FUNC_DEF ASSIGN VAR NUMBER WHILE VAR NUMBER VAR BIN_OP VAR NUMBER VAR NUMBER RETURN VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR WHILE VAR VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER WHILE FUNC_CALL VAR VAR VAR ASSIGN VAR NUMBER ASSIGN VAR VAR WHILE BIN_OP VAR NUMBER NUMBER VAR NUMBER VAR NUMBER VAR BIN_OP BIN_OP NUMBER BIN_OP VAR NUMBER VAR VAR BIN_OP BIN_OP NUMBER BIN_OP VAR NUMBER VAR EXPR FUNC_CALL VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
import sys def get_sum(a): now_sum = 0 while a: now_sum += a % 10 a //= 10 return now_sum T = int(sys.stdin.readline()) for _ in range(T): n, x = map(int, sys.stdin.readline().split()) res_n = n digit = 0 while get_sum(res_n) > x: res_n += (10 - res_n // 10**digit % 10) * 10**digit digit += 1 print(res_n - n)
IMPORT FUNC_DEF ASSIGN VAR NUMBER WHILE VAR VAR BIN_OP VAR NUMBER VAR NUMBER RETURN VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR ASSIGN VAR NUMBER WHILE FUNC_CALL VAR VAR VAR VAR BIN_OP BIN_OP NUMBER BIN_OP BIN_OP VAR BIN_OP NUMBER VAR NUMBER BIN_OP NUMBER VAR VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
def solve(a, b): check = b if check == a: return 0 if a > check: div = int(a / b) while a > check: check = b * div div += 1 return check - a if a < check: return check - a Q = int(input()) for _ in range(Q): a, b = map(int, input().split()) ans = solve(a, b) print(ans)
FUNC_DEF ASSIGN VAR VAR IF VAR VAR RETURN NUMBER IF VAR VAR ASSIGN VAR FUNC_CALL VAR BIN_OP VAR VAR WHILE VAR VAR ASSIGN VAR BIN_OP VAR VAR VAR NUMBER RETURN BIN_OP VAR VAR IF VAR VAR RETURN BIN_OP VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
t = int(input()) for _ in range(t): a, b, *c = input().split() a = int(a) b = int(b) j = 0 if a % b != 0: print(b - a % b) else: print(0)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER IF BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR NUMBER
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
for j in range(int(input())): a, b = map(int, input().split()) if a >= b: if a % b == 0: print(0) else: c = a // b ans1 = (c + 1) * b - a print(ans1) elif a < b: print(b - a)
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF VAR VAR IF BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP BIN_OP BIN_OP VAR NUMBER VAR VAR EXPR FUNC_CALL VAR VAR IF VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
t = input() t = int(t) for tt in range(0, t): a, b = input().split() a, b = int(a), int(b) if a % b == 0: print(0) else: print(b - a % b)
ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR NUMBER VAR ASSIGN VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR IF BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR BIN_OP VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
t = int(input()) for ii in range(t): n, s = map(int, input().split()) num = [int(i) for i in str(n)] if sum(num) <= s: print(0) else: i, k = len(num) - 1, 0 while i > -1: if num[i] != 0: num[i] = 0 k = i l = -2 for l in range(k - 1, -1, -1): if num[l] != 9: num[l] += 1 break else: num[l] = 0 if l > -2: i = l else: i -= 1 if sum(num) <= s and set(num) != {0} and int("".join(map(str, num))) >= n: tmp = int("".join(map(str, num))) print(tmp - n) break else: num.insert(0, 1) tmp = int("".join(map(str, num))) print(tmp - n)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR IF FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR VAR BIN_OP FUNC_CALL VAR VAR NUMBER NUMBER WHILE VAR NUMBER IF VAR VAR NUMBER ASSIGN VAR VAR NUMBER ASSIGN VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER IF VAR VAR NUMBER VAR VAR NUMBER ASSIGN VAR VAR NUMBER IF VAR NUMBER ASSIGN VAR VAR VAR NUMBER IF FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR NUMBER FUNC_CALL VAR FUNC_CALL STRING FUNC_CALL VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL STRING FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL STRING FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
T = int(input()) for t in range(T): n, s = map(int, input().split()) str_n = str(n)[::-1] tot_sum = 0 for i in str_n: tot_sum += int(i) moves = 0 carry = 0 if tot_sum <= s: print(moves) else: for i in range(len(str_n)): moves += (10 - int(str_n[i]) - carry) * 10**i carry = 1 if i == 0: tot_sum = tot_sum - int(str_n[i]) + carry else: tot_sum = tot_sum - int(str_n[i]) if tot_sum <= s: break print(moves)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER IF VAR VAR EXPR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR BIN_OP BIN_OP BIN_OP NUMBER FUNC_CALL VAR VAR VAR VAR BIN_OP NUMBER VAR ASSIGN VAR NUMBER IF VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR FUNC_CALL VAR VAR VAR VAR ASSIGN VAR BIN_OP VAR FUNC_CALL VAR VAR VAR IF VAR VAR EXPR FUNC_CALL VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
t = int(input()) for _ in range(t): a, b = map(int, input().split()) if a < b: ans = b - a else: v = (10**9 + 1) * b c = v - a ans = int(c % b) print(ans)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF VAR VAR ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP BIN_OP BIN_OP NUMBER NUMBER NUMBER VAR ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR FUNC_CALL VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
t = int(input()) for _ in range(t): n, s = input().split() cnt = 0 keta = len(n) wa = 0 ans = "" for i in n: wa += int(i) if wa <= int(s): print(0) continue else: wa = 0 for i, x in enumerate(n): wa += int(x) if wa >= int(s): break ans += x cnt = i + 1 if ans == "": ans = 1 else: ans = int(ans) + 1 ans = str(ans) + "0" * (keta - cnt) ans = int(ans) print(ans - int(n))
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR STRING FOR VAR VAR VAR FUNC_CALL VAR VAR IF VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR IF VAR FUNC_CALL VAR VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER IF VAR STRING ASSIGN VAR NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR VAR BIN_OP STRING BIN_OP VAR VAR ASSIGN VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR FUNC_CALL VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
T = int(input()) for i in range(T): l = list(map(int, input().split())) a = l[0] b = l[1] count = a % b if count == 0: print("0") else: check = (a // b + 1) * b - a print(check)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR NUMBER ASSIGN VAR VAR NUMBER ASSIGN VAR BIN_OP VAR VAR IF VAR NUMBER EXPR FUNC_CALL VAR STRING ASSIGN VAR BIN_OP BIN_OP BIN_OP BIN_OP VAR VAR NUMBER VAR VAR EXPR FUNC_CALL VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
def sumofdigits(n): n = str(n) sum1 = 0 for i in n: sum1 += int(i) return sum1 t = int(input()) for i in range(t): n, s = list(map(int, input().split())) value = sumofdigits(n) if value <= s: print(0) elif s == 1: tempn = n solo = len(str(n)) d = pow(10, solo) print(d - tempn) else: tempn = str(n) sum1 = 1 for i in range(len(tempn)): sum1 += int(tempn[i]) if sum1 > s: flag = i break l = len(tempn) - flag p = pow(10, l) arr = tempn[flag:] print(p - int(arr))
FUNC_DEF ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER FOR VAR VAR VAR FUNC_CALL VAR VAR RETURN VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR IF VAR VAR EXPR FUNC_CALL VAR NUMBER IF VAR NUMBER ASSIGN VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR NUMBER VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR IF VAR VAR ASSIGN VAR VAR ASSIGN VAR BIN_OP FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR NUMBER VAR ASSIGN VAR VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR FUNC_CALL VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
x = int(input()) for _ in range(x): w, y = map(int, input().split()) if w >= y: thing = w // y if w % y == 0: print(0) else: print((thing + 1) * y - w) else: print(y - w)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF VAR VAR ASSIGN VAR BIN_OP VAR VAR IF BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR BIN_OP BIN_OP BIN_OP VAR NUMBER VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
import sys def rl(): return sys.stdin.readline().strip() def ri(): return int(sys.stdin.readline().strip()) def rn(): return list(map(int, sys.stdin.readline().strip().split())) def rnn(): return map(int, sys.stdin.readline().strip().split()) def rln(n): l = [None] * n for i in range(n): l[i] = int(rl()) return l t = ri() for _ in range(t): a, b = rn() r = a % b solved = False if r == 0: print(0) solved = True if not solved: if a >= b: print(b - r) else: print(b - a)
IMPORT FUNC_DEF RETURN FUNC_CALL FUNC_CALL VAR FUNC_DEF RETURN FUNC_CALL VAR FUNC_CALL FUNC_CALL VAR FUNC_DEF RETURN FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL FUNC_CALL VAR FUNC_DEF RETURN FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL FUNC_CALL VAR FUNC_DEF ASSIGN VAR BIN_OP LIST NONE VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR RETURN VAR ASSIGN VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER IF VAR IF VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
for _ in range(int(input())): n, s = map(int, input().split()) ans = "" strn = str(n) sumn = 0 for i in strn: sumn += int(i) if sumn <= s: print(0) else: k = 0 tot = 0 for i in strn: k += int(i) if k + 1 > s: break tot += 1 ans += i if ans: k = int(ans) + 1 if not tot: print(10 ** len(strn) - n) else: print(k * 10 ** (len(strn) - tot) - n)
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR STRING ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER FOR VAR VAR VAR FUNC_CALL VAR VAR IF VAR VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR VAR FUNC_CALL VAR VAR IF BIN_OP VAR NUMBER VAR VAR NUMBER VAR VAR IF VAR ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER IF VAR EXPR FUNC_CALL VAR BIN_OP BIN_OP NUMBER FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR BIN_OP BIN_OP VAR BIN_OP NUMBER BIN_OP FUNC_CALL VAR VAR VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
for _ in range(int(input())): n, s = map(int, input().split()) a = [] temp = n while temp > 0: a.append(temp % 10) temp //= 10 if sum(a) <= s: print(0) continue su = 0 x = len(a) temp = -1 for i in range(x - 1, -1, -1): if su + a[i] >= s: temp = i break su += a[i] if temp == x - 1: a.insert(x, 1) else: a[temp + 1] += 1 for i in range(0, temp + 1): a[i] = 0 num = 0 for i in a[::-1]: num *= 10 num += i print(num - n)
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR LIST ASSIGN VAR VAR WHILE VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR NUMBER VAR NUMBER IF FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER IF BIN_OP VAR VAR VAR VAR ASSIGN VAR VAR VAR VAR VAR IF VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR NUMBER VAR BIN_OP VAR NUMBER NUMBER FOR VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER ASSIGN VAR VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR NUMBER VAR NUMBER VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
t = int(input()) for _ in range(t): n, s = list(input().split()) s = int(s) p = len(n) ncopy = n[::-1] ncopy = ncopy + "000000000000000000" ncopy = list(ncopy) summ = 0 for j in n: summ += int(j) if summ <= s: print(0) continue diff = summ - s for i in range(p): cur = int(ncopy[i]) if cur == 0: continue diff = diff - cur ncopy[i] = "0" j = 1 while True: nc = int(ncopy[i + j]) if nc != 9: nc = nc + 1 ncopy[i + j] = str(nc) diff = diff + 1 break else: ncopy[i + j] = "0" diff -= 9 j += 1 if diff <= 0: break ans = [] ncopy = ncopy[::-1] st = 0 for j in ncopy: if st == 1: ans.append(j) continue if int(j) != 0: st = 1 ans.append(j) print(int("".join(ans)) - int(n))
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR VAR NUMBER ASSIGN VAR BIN_OP VAR STRING ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER FOR VAR VAR VAR FUNC_CALL VAR VAR IF VAR VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR BIN_OP VAR VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR IF VAR NUMBER ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR VAR STRING ASSIGN VAR NUMBER WHILE NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR IF VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR VAR STRING VAR NUMBER VAR NUMBER IF VAR NUMBER ASSIGN VAR LIST ASSIGN VAR VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR IF VAR NUMBER EXPR FUNC_CALL VAR VAR IF FUNC_CALL VAR VAR NUMBER ASSIGN VAR NUMBER EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR FUNC_CALL STRING VAR FUNC_CALL VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
for case in range(int(input())): a, b = [int(a) for a in input().split()] if a < b: ans = b - a elif a == b: ans = 0 elif a % b == 0: ans = 0 else: mod = a // b + 1 ans = b * mod - a print(ans)
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR IF VAR VAR ASSIGN VAR BIN_OP VAR VAR IF VAR VAR ASSIGN VAR NUMBER IF BIN_OP VAR VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR VAR EXPR FUNC_CALL VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
t = int(input()) def solve(): a, b = map(int, input().split()) steps = 0 r = a % b if r == 0: print(0) else: print(b - r) while t > 0: solve() t -= 1
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_DEF ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP VAR VAR IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR VAR WHILE VAR NUMBER EXPR FUNC_CALL VAR VAR NUMBER
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
for t in range(int(input())): inp = list(map(int, input().split())) if inp[0] % inp[1] == 0: print(inp[0] % inp[1]) else: print(inp[1] - inp[0] % inp[1])
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF BIN_OP VAR NUMBER VAR NUMBER NUMBER EXPR FUNC_CALL VAR BIN_OP VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR NUMBER BIN_OP VAR NUMBER VAR NUMBER
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
num = int(input()) def increment(n1, n2): n1 = int(n1) n2 = int(n2) if n1 % n2 == 0: return 0 else: t = n1 % n2 return n2 - t for i in range(num): temp = input() temp = temp.split(" ") print(increment(temp[0], temp[1]))
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_DEF ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR IF BIN_OP VAR VAR NUMBER RETURN NUMBER ASSIGN VAR BIN_OP VAR VAR RETURN BIN_OP VAR VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR FUNC_CALL VAR VAR NUMBER VAR NUMBER
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
def r(t=int): return list(map(t, input().split())) def ri(t=int): return t(input()) def cd(it): ret_val = dict() for v in it: ret_val[v] = ret_val.get(v, 0) + 1 return ret_val for _ in range(ri()): a, b = r() s = 0 if a % b: s = b - a % b else: s = 0 print(s)
FUNC_DEF VAR RETURN FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR FUNC_DEF VAR RETURN FUNC_CALL VAR FUNC_CALL VAR FUNC_DEF ASSIGN VAR FUNC_CALL VAR FOR VAR VAR ASSIGN VAR VAR BIN_OP FUNC_CALL VAR VAR NUMBER NUMBER RETURN VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR ASSIGN VAR NUMBER IF BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR BIN_OP VAR VAR ASSIGN VAR NUMBER EXPR FUNC_CALL VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
def algo(n, s): cur = -1 total = 0 sn = str(n) for i in range(len(sn)): total += int(sn[i]) if total < s: cur = i if total <= s: return 0 res = 0 substr = sn[cur + 1 :] return int("1" + "0" * len(substr)) - int(substr) for _ in range(int(input())): n, s = map(int, input().split()) ans = algo(n, s) print(ans)
FUNC_DEF ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR IF VAR VAR ASSIGN VAR VAR IF VAR VAR RETURN NUMBER ASSIGN VAR NUMBER ASSIGN VAR VAR BIN_OP VAR NUMBER RETURN BIN_OP FUNC_CALL VAR BIN_OP STRING BIN_OP STRING FUNC_CALL VAR VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
import sys int1 = lambda x: int(x) - 1 p2D = lambda x: print(*x, sep="\n") def II(): return int(sys.stdin.readline()) def MI(): return map(int, sys.stdin.readline().split()) def LI(): return list(map(int, sys.stdin.readline().split())) def LLI(rows_number): return [LI() for _ in range(rows_number)] def SI(): return sys.stdin.readline()[:-1] inf = 10**19 for _ in range(II()): t, s = SI().split() n = len(t) s = int(s) if sum(int(c) for c in t) <= s: print(0) continue i = 0 while i < n and s > 0: s -= int(t[i]) i += 1 ans = [] m = 0 for j in range(n - 1, i - 2, -1): a = int(t[j]) if a + m == 0: ans.append(0) else: ans.append(10 - a - m) m = 1 while len(ans) > 1 and ans[-1] == 0: ans.pop() print(*ans[::-1], sep="")
IMPORT ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR STRING FUNC_DEF RETURN FUNC_CALL VAR FUNC_CALL VAR FUNC_DEF RETURN FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR FUNC_DEF RETURN FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR FUNC_DEF RETURN FUNC_CALL VAR VAR FUNC_CALL VAR VAR FUNC_DEF RETURN FUNC_CALL VAR NUMBER ASSIGN VAR BIN_OP NUMBER NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR IF FUNC_CALL VAR FUNC_CALL VAR VAR VAR VAR VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR VAR NUMBER VAR FUNC_CALL VAR VAR VAR VAR NUMBER ASSIGN VAR LIST ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER BIN_OP VAR NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR IF BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR BIN_OP BIN_OP NUMBER VAR VAR ASSIGN VAR NUMBER WHILE FUNC_CALL VAR VAR NUMBER VAR NUMBER NUMBER EXPR FUNC_CALL VAR EXPR FUNC_CALL VAR VAR NUMBER STRING
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
t = int(input()) l = [] for i in range(t): a, b = map(int, input().strip().split()) m = a % b if m == 0: l.append(m) else: l.append(b - m) for i in l: print(i)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL FUNC_CALL VAR ASSIGN VAR BIN_OP VAR VAR IF VAR NUMBER EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR FOR VAR VAR EXPR FUNC_CALL VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
t = int(input()) for _ in range(t): a, b = map(int, input().split()) ans = None if a % b != 0: ans = b - a % b else: ans = a % b print(ans)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NONE IF BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
t = int(input()) a1 = [0] * t b1 = [0] * t for i in range(t): a, b = input().split() a1[i], b1[i] = int(a), int(b) for i in range(t): mod = a1[i] % b1[i] if mod: print(b1[i] - a1[i] % b1[i]) else: print(0)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR BIN_OP LIST NUMBER VAR ASSIGN VAR BIN_OP LIST NUMBER VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR VAR VAR VAR IF VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR BIN_OP VAR VAR VAR VAR EXPR FUNC_CALL VAR NUMBER
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
t = int(input()) while t != 0: a, b = map(int, input().split()) if a > b: if a % b == 0: count = 0 else: c = a // b d = b * (c + 1) count = d - a elif a < b: count = b - a else: count = 0 print(count) t = t - 1
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR WHILE VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF VAR VAR IF BIN_OP VAR VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR VAR IF VAR VAR ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR NUMBER EXPR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR NUMBER
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
n = int(input()) for i in range(n): m = input().split() a = int(m[0]) b = int(m[1]) if a % b != 0: r = b - a % b print(r) else: print(0)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR NUMBER IF BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR NUMBER
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
import sys read = lambda: sys.stdin.readline().strip() for _ in range(int(read())): s, n = read().split() n = int(n) s = list(map(int, list(s)))[::-1] s1 = s.copy() total = sum(s) if total <= n: print(0) continue place = None temp_sum = 0 for i, digit in enumerate(s): s1[i] = 0 temp_sum += digit if total - temp_sum + 1 <= n: break i += 1 while i < len(s1): s1[i] += 1 if s1[i] > 9: s1[i] = 0 i += 1 else: break else: s1.append(1) s1 = int("".join(map(str, s1[::-1]))) s = int("".join(map(str, s[::-1]))) print(s1 - s)
IMPORT ASSIGN VAR FUNC_CALL FUNC_CALL VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR IF VAR VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR NONE ASSIGN VAR NUMBER FOR VAR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR NUMBER VAR VAR IF BIN_OP BIN_OP VAR VAR NUMBER VAR VAR NUMBER WHILE VAR FUNC_CALL VAR VAR VAR VAR NUMBER IF VAR VAR NUMBER ASSIGN VAR VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL STRING FUNC_CALL VAR VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL STRING FUNC_CALL VAR VAR VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
import sys input = sys.stdin.readline def sol(n, s): c = 0 i = 0 while True: if digsum(n) <= s: return c else: c += (10 - n % 10) * 10**i n //= 10 n += 1 i += 1 def digsum(n): r = 0 while n != 0: r += n % 10 n //= 10 return r for t in range(int(input())): n, s = map(int, input().split()) print(sol(n, s))
IMPORT ASSIGN VAR VAR FUNC_DEF ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE NUMBER IF FUNC_CALL VAR VAR VAR RETURN VAR VAR BIN_OP BIN_OP NUMBER BIN_OP VAR NUMBER BIN_OP NUMBER VAR VAR NUMBER VAR NUMBER VAR NUMBER FUNC_DEF ASSIGN VAR NUMBER WHILE VAR NUMBER VAR BIN_OP VAR NUMBER VAR NUMBER RETURN VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
import sys input = sys.stdin.readline cases = int(input()) for tt in range(cases): n, need = map(int, input().split()) i = 9 ans = 0 was = n i, j, temp = 9, 1, 0 while True: k = str(n) s = 0 for c in range(len(k)): s += int(k[c]) if s <= need: break temp += i * j n = (n + temp) // (temp + 1) n *= temp + 1 j *= 10 ans = n - was print(ans)
IMPORT ASSIGN VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR VAR ASSIGN VAR VAR VAR NUMBER NUMBER NUMBER WHILE NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR IF VAR VAR VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR BIN_OP VAR NUMBER VAR BIN_OP VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
for _ in range(int(input())): n, x = input().split() x = int(x) n = list(map(str, str(n))) z = list(map(int, n)) if sum(z) <= x: print(0) else: z = 0 for i in range(len(n)): z += int(n[i]) if z >= x: break n = n[i:] z = "".join(n) x = len(z) z = int(z) print(10**x - z)
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR IF FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR IF VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR FUNC_CALL STRING VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR BIN_OP BIN_OP NUMBER VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
t = int(input()) j = 0 while j < t: a, b = map(int, input().split()) if a % b == 0: print("0") elif a % b != 0: if a < b: print(b - a) elif a > b: c = int(a / b) + 1 print(c * b - a) j = j + 1
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR NUMBER WHILE VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR STRING IF BIN_OP VAR VAR NUMBER IF VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR IF VAR VAR ASSIGN VAR BIN_OP FUNC_CALL VAR BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
for _ in range(int(input())): n, s = map(int, input().split()) l = [x for x in str(n)] su = sum([int(x) for x in str(n)]) ans = 0 c = 0 for i in range(len(l)): c += int(l[i]) if c >= s and su > s: p = 10 ** (len(l) - i) ans = p - int("".join(l[i:])) break print(ans)
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR IF VAR VAR VAR VAR ASSIGN VAR BIN_OP NUMBER BIN_OP FUNC_CALL VAR VAR VAR ASSIGN VAR BIN_OP VAR FUNC_CALL VAR FUNC_CALL STRING VAR VAR EXPR FUNC_CALL VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
import sys def set_debug(debug_mode=False): if debug_mode: fin = open("input.txt", "r") fout = open("output.txt", "w") sys.stdin = fin sys.stdout = fout t = int(input()) for _ in range(t): a, b = map(int, input().split()) mod = a % b if mod == 0: print(mod) else: print(b - mod)
IMPORT FUNC_DEF NUMBER IF VAR ASSIGN VAR FUNC_CALL VAR STRING STRING ASSIGN VAR FUNC_CALL VAR STRING STRING ASSIGN VAR VAR ASSIGN VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR BIN_OP VAR VAR IF VAR NUMBER EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
n = int(input()) l = [] while n: l.append([int(x) for x in input().split()]) n = n - 1 for i in l: c = 0 t = 0 if i[1] > i[0]: t = i[1] - i[0] elif i[0] % i[1] != 0: a = i[0] % i[1] t = i[1] - a print(t)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST WHILE VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR BIN_OP VAR NUMBER FOR VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER IF VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER VAR NUMBER IF BIN_OP VAR NUMBER VAR NUMBER NUMBER ASSIGN VAR BIN_OP VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER VAR EXPR FUNC_CALL VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
for _ in range(int(input())): n, s = map(int, input().split()) r = list(map(int, str(n)))[::-1] d = sum(r) if d <= s: print(0) continue for i in range(1, len(r)): x = r[: i + 1] if x[-1] == 9: continue if d - sum(x) + x[-1] + 1 <= s: nr = r.copy() nr[:i] = [0] * len(nr[:i]) nr[i] = x[-1] + 1 print(int("".join(str(i) for i in nr)[::-1]) - n) break else: print(int("1" + "0" * len(r)) - n)
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR IF VAR VAR EXPR FUNC_CALL VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR ASSIGN VAR VAR BIN_OP VAR NUMBER IF VAR NUMBER NUMBER IF BIN_OP BIN_OP BIN_OP VAR FUNC_CALL VAR VAR VAR NUMBER NUMBER VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR VAR BIN_OP LIST NUMBER FUNC_CALL VAR VAR VAR ASSIGN VAR VAR BIN_OP VAR NUMBER NUMBER EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR FUNC_CALL STRING FUNC_CALL VAR VAR VAR VAR NUMBER VAR EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR BIN_OP STRING BIN_OP STRING FUNC_CALL VAR VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
def sum_s(s): ans = 0 for i in s: ans += i return ans t = int(input()) while t: t -= 1 n, s = map(int, input().split()) l = [] s1 = str(n) for i in s1: l.append(int(i)) n = l if sum_s(n) <= s: print(0) continue steps = 0 n1 = len(n) i = 0 n.reverse() curr = 1 while i < n1: if n[i] != 0: steps += (10 - int(n[i])) * curr n[i] = 0 present = False for j in range(i + 1, n1): if n[j] == 9: n[j] = 0 else: present = True n[j] = n[j] + 1 break if not present: break i += 1 if sum_s(n) <= s: break curr *= 10 print(steps)
FUNC_DEF ASSIGN VAR NUMBER FOR VAR VAR VAR VAR RETURN VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR WHILE VAR VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR LIST ASSIGN VAR FUNC_CALL VAR VAR FOR VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR VAR IF FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER EXPR FUNC_CALL VAR ASSIGN VAR NUMBER WHILE VAR VAR IF VAR VAR NUMBER VAR BIN_OP BIN_OP NUMBER FUNC_CALL VAR VAR VAR VAR ASSIGN VAR VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER VAR IF VAR VAR NUMBER ASSIGN VAR VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR VAR BIN_OP VAR VAR NUMBER IF VAR VAR NUMBER IF FUNC_CALL VAR VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
f = int(input()) while f: a, b = input().split(" ") if int(a) % int(b): print(int(b) - int(a) % int(b)) else: print(0) f -= 1
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR WHILE VAR ASSIGN VAR VAR FUNC_CALL FUNC_CALL VAR STRING IF BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR NUMBER VAR NUMBER