description
stringlengths
171
4k
code
stringlengths
94
3.98k
normalized_code
stringlengths
57
4.99k
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
def get(*arg): if arg[0] == 0: cnt = int(input()) flag = 1 else: cnt = 1 flag = 0 lst = list() for i in range(cnt): lst2 = list() for ii in range(len(arg) - flag): if arg[ii + flag] == 1: t = input().split() tmp = list() for iii in t: tmp.append(int(iii)) elif arg[ii + flag] == 2: tmp = input().split() else: tmp = input() lst2.append(tmp) lst.append(lst2) return lst q = get(0, 1) for i in q: a = i[0][0] b = i[0][1] if a <= b: print(b - a) else: c = (a // b + 1) * b - a if c == b: c = 0 print(c)
FUNC_DEF IF VAR NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR VAR IF VAR BIN_OP VAR VAR NUMBER ASSIGN VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FOR VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR BIN_OP VAR VAR NUMBER ASSIGN VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR RETURN VAR ASSIGN VAR FUNC_CALL VAR NUMBER NUMBER FOR VAR VAR ASSIGN VAR VAR NUMBER NUMBER ASSIGN VAR VAR NUMBER NUMBER IF VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP BIN_OP BIN_OP BIN_OP VAR VAR NUMBER VAR VAR IF VAR VAR ASSIGN VAR NUMBER EXPR FUNC_CALL VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
test = False test_cases = [[10, 4], [13, 9], [100, 13], [123, 456], [92, 46]] def solve(input_data): a, b = input_data print(0 if a % b == 0 else b - a % b) if test: n = len(test_cases) while n > 0: solve(test_cases[-n]) n -= 1 else: n = int(input()) while n > 0: solve([int(x) for x in input().split()]) n -= 1
ASSIGN VAR NUMBER ASSIGN VAR LIST LIST NUMBER NUMBER LIST NUMBER NUMBER LIST NUMBER NUMBER LIST NUMBER NUMBER LIST NUMBER NUMBER FUNC_DEF ASSIGN VAR VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR NUMBER NUMBER BIN_OP VAR BIN_OP VAR VAR IF VAR ASSIGN VAR FUNC_CALL VAR VAR WHILE VAR NUMBER EXPR FUNC_CALL VAR VAR VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR WHILE VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR VAR NUMBER
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
t = int(input()) for i in range(t): a, b = map(int, input().split(" ")) if a % b == 0: print(0) continue if a > b: num = a num = num // b + 1 print(b * num - a) else: print(b - a)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR STRING IF BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER IF VAR VAR ASSIGN VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
for i in range(int(input())): a, b = map(int, input().split()) if b > a: print(b - a) elif b == a or a % b == 0: print(0) else: y = a % b print(b - y)
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR IF VAR VAR BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
def go(): a, b = map(int, input().split()) if a % b == 0: return 0 else: return b - a % b t = int(input()) ans = [] for _ in range(t): ans.append(str(go())) print("\n".join(ans))
FUNC_DEF ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF BIN_OP VAR VAR NUMBER RETURN NUMBER RETURN BIN_OP VAR BIN_OP VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR EXPR FUNC_CALL VAR FUNC_CALL STRING VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
def res(n, s): a = str(n) b = str(s) n_len = len(a) s_len = len(b) san = n sandar = [] for i in range(n_len): sandar.append(san % 10) san = san // 10 sum_n = sum(sandar) if sum_n <= s: return 0 else: k = s total = 0 for i in range(n_len): if sandar[n_len - 1 - i] < k: k = k - sandar[n_len - 1 - i] elif n_len - i >= n_len: return 10 ** (n_len - s_len + 1) - n else: sandar[n_len - i] += 1 for j in range(i): total += sandar[n_len - 1 - j] * 10 ** (n_len - 1 - j) return total - n n = int(input()) reuslt = [] for i in range(n): data = list(map(int, input().split())) reuslt.append(res(data[0], data[1])) for i in range(n): print(reuslt[i])
FUNC_DEF ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR IF VAR VAR RETURN NUMBER ASSIGN VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR BIN_OP BIN_OP VAR NUMBER VAR VAR ASSIGN VAR BIN_OP VAR VAR BIN_OP BIN_OP VAR NUMBER VAR IF BIN_OP VAR VAR VAR RETURN BIN_OP BIN_OP NUMBER BIN_OP BIN_OP VAR VAR NUMBER VAR VAR BIN_OP VAR VAR NUMBER FOR VAR FUNC_CALL VAR VAR VAR BIN_OP VAR BIN_OP BIN_OP VAR NUMBER VAR BIN_OP NUMBER BIN_OP BIN_OP VAR NUMBER VAR RETURN BIN_OP VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR NUMBER VAR NUMBER FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
x = int(input()) for i in range(x): maxi = [int(x) for x in input().split()] if maxi[0] <= maxi[1]: print(maxi[1] - maxi[0]) elif maxi[0] % maxi[1] == 0: print(0) else: print(maxi[1] - maxi[0] % maxi[1])
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR IF VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR NUMBER VAR NUMBER IF BIN_OP VAR NUMBER VAR NUMBER NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR NUMBER BIN_OP VAR NUMBER VAR NUMBER
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
t = int(input()) def f(temp_n): total = 0 while temp_n > 0: total += temp_n % 10 temp_n = temp_n // 10 return total for _ in range(t): n, target = map(int, input().split()) pw = 1 res = 0 while f(n) > target: digit = n // pw % 10 add = pw * ((10 - digit) % 10) n += add res += add pw *= 10 print(res)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_DEF ASSIGN VAR NUMBER WHILE VAR NUMBER VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER RETURN VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE FUNC_CALL VAR VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP VAR BIN_OP BIN_OP NUMBER VAR NUMBER VAR VAR VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
def integer(array): for i in range(len(array)): array[i] = int(array[i]) return array N = int(input()) inputs = [] for i in range(N): inputs.append(integer(str(input()).split(" "))) def div(a, b): if a % b == 0: return 0 else: return b - a % b for i in inputs: print(div(i[0], i[1]))
FUNC_DEF FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR RETURN VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL FUNC_CALL VAR FUNC_CALL VAR STRING FUNC_DEF IF BIN_OP VAR VAR NUMBER RETURN NUMBER RETURN BIN_OP VAR BIN_OP VAR VAR FOR VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR NUMBER VAR NUMBER
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
for _ in range(int(input())): n, s = map(str, input().split()) s = int(s) n = list(n) q = 0 for i in range(len(n)): q += int(n[i]) if q <= s: print(0) elif int(n[0]) < s: a = [n[0]] r = int(n[0]) m = 0 for i in range(1, len(n)): r += int(n[i]) if r <= s - 1: a.append(n[i]) else: a[-1] = str(int(a[-1]) + 1) m = i break for i in range(len(a) - 1, 0, -1): if len(a[i]) == 2: a[i - 1] = str(int(a[i - 1]) + 1) a[i] = "0" else: break for i in range(m, len(n)): a.append("0") b = "".join(a) c = "".join(n) print(int(b) - int(c)) else: a = ["1"] for i in range(len(n)): a.append("0") b = "".join(a) c = "".join(n) print(int(b) - int(c))
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR IF VAR VAR EXPR FUNC_CALL VAR NUMBER IF FUNC_CALL VAR VAR NUMBER VAR ASSIGN VAR LIST VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR IF VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR VAR ASSIGN VAR NUMBER FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER NUMBER ASSIGN VAR VAR FOR VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER NUMBER NUMBER IF FUNC_CALL VAR VAR VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR BIN_OP VAR NUMBER NUMBER ASSIGN VAR VAR STRING FOR VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL STRING VAR ASSIGN VAR FUNC_CALL STRING VAR EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR VAR ASSIGN VAR LIST STRING FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL STRING VAR ASSIGN VAR FUNC_CALL STRING VAR EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
t = int(input()) while t > 0: val = list(map(int, input().split(" "))) a = val[0] b = val[1] counter = 0 if a % b != 0: quotient = a // b pro = b * (quotient + 1) counter = pro - a print(counter) t -= 1
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR WHILE VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR STRING ASSIGN VAR VAR NUMBER ASSIGN VAR VAR NUMBER ASSIGN VAR NUMBER IF BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR VAR VAR NUMBER
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
for _ in range(int(input())): a, b = map(int, input().split()) if b > a: print(b - a) elif a % b == 0: print(0) else: i = a // b + 1 num_up = b * i - a print(num_up)
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR IF BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR VAR EXPR FUNC_CALL VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
t = int(input("")) i = 0 while i < t: x, y = [int(x) for x in input().split()] if x % y != 0: print((x // y + 1) * y - x) else: print(0) i += 1
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR STRING ASSIGN VAR NUMBER WHILE VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR IF BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR BIN_OP BIN_OP BIN_OP BIN_OP VAR VAR NUMBER VAR VAR EXPR FUNC_CALL VAR NUMBER VAR NUMBER
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
def sums(n): res = 0 while n > 0: res += n % 10 n = n // 10 return res t = int(input()) while t: t -= 1 n, s = map(int, input().split()) if sums(n) <= s: print(0) continue pw = 1 ans = 0 for i in range(18): dig = n // pw % 10 add = pw * ((10 - dig) % 10) ans += add n += add if sums(n) <= s: break pw *= 10 print(ans)
FUNC_DEF ASSIGN VAR NUMBER WHILE VAR NUMBER VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER RETURN VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR WHILE VAR VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP VAR BIN_OP BIN_OP NUMBER VAR NUMBER VAR VAR VAR VAR IF FUNC_CALL VAR VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
n = int(input()) for k in range(n): entrada = list(map(int, input().split(" "))) a = entrada[0] b = entrada[1] if a % b == 0: print(0) elif a < b: print(b - a) else: d = a // b d += 1 print(d * b - a)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR STRING ASSIGN VAR VAR NUMBER ASSIGN VAR VAR NUMBER IF BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER IF VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR VAR VAR NUMBER EXPR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
T = int(input()) ret = [] for t in range(T): n, s = input().split() s = int(s) raw = int(n) n = list(n) n = list(map(int, n)) score = sum(n) ans = 0 keta = 0 while score > s: if n[len(n) - 1 - keta] == 0: keta += 1 continue if n[len(n) - 1 - keta] == 10: n[max(0, len(n) - 1 - keta - 1)] += 1 keta += 1 score += -9 continue score += 1 - n[len(n) - 1 - keta] ans += 10**keta * (10 - n[len(n) - 1 - keta]) n[max(0, len(n) - 1 - keta - 1)] += 1 keta += 1 ret.append(ans) for i in range(T): print(ret[i])
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR IF VAR BIN_OP BIN_OP FUNC_CALL VAR VAR NUMBER VAR NUMBER VAR NUMBER IF VAR BIN_OP BIN_OP FUNC_CALL VAR VAR NUMBER VAR NUMBER VAR FUNC_CALL VAR NUMBER BIN_OP BIN_OP BIN_OP FUNC_CALL VAR VAR NUMBER VAR NUMBER NUMBER VAR NUMBER VAR NUMBER VAR BIN_OP NUMBER VAR BIN_OP BIN_OP FUNC_CALL VAR VAR NUMBER VAR VAR BIN_OP BIN_OP NUMBER VAR BIN_OP NUMBER VAR BIN_OP BIN_OP FUNC_CALL VAR VAR NUMBER VAR VAR FUNC_CALL VAR NUMBER BIN_OP BIN_OP BIN_OP FUNC_CALL VAR VAR NUMBER VAR NUMBER NUMBER VAR NUMBER EXPR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
t = int(input()) ls = [] for i in range(t): a, b = map(int, input().split()) if a >= b and a % b == 0: rs = 0 else: c = a // b c = (c + 1) * b rs = c - a ls.append(rs) for o in ls: print(o)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF VAR VAR BIN_OP VAR VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR NUMBER VAR ASSIGN VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR VAR FOR VAR VAR EXPR FUNC_CALL VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
def solve(a, b): val = a % b if val == 0: return 0 else: return b - val t = int(input()) for ti in range(t): a, b = map(int, input().split()) res = solve(a, b) print(res)
FUNC_DEF ASSIGN VAR BIN_OP VAR VAR IF VAR NUMBER RETURN NUMBER RETURN BIN_OP VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
n = int(input()) while n > 0: n = n - 1 a, b = map(int, input().split()) if a < b: print(b - a) elif a % b == 0: print("0") else: s = int(a / b) x = (s + 1) * b - a print(x)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR WHILE VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR IF BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP BIN_OP BIN_OP VAR NUMBER VAR VAR EXPR FUNC_CALL VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
t = int(input()) for _ in range(t): n, s = input().split() (*n,) = map(int, n) n = [0] + n s = int(s) n_sum = sum(n) ans = [] ind = 0 while n_sum > s: if n[-1 - ind] > 0: ans.append(10 - n[-1 - ind]) n[-1 - ind] = 0 for i in range(len(n)): n[-2 - i - ind] += 1 if n[-2 - i - ind] == 10: n[-2 - i - ind] = 0 else: break else: ans.append(0) n_sum = sum(n) ind += 1 if ans != []: print("".join(map(str, ans[::-1]))) else: print(0)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR BIN_OP LIST NUMBER VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR LIST ASSIGN VAR NUMBER WHILE VAR VAR IF VAR BIN_OP NUMBER VAR NUMBER EXPR FUNC_CALL VAR BIN_OP NUMBER VAR BIN_OP NUMBER VAR ASSIGN VAR BIN_OP NUMBER VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR BIN_OP BIN_OP NUMBER VAR VAR NUMBER IF VAR BIN_OP BIN_OP NUMBER VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP NUMBER VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR NUMBER IF VAR LIST EXPR FUNC_CALL VAR FUNC_CALL STRING FUNC_CALL VAR VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
t = int(input()) for _ in range(t): n, s = map(int, input().split()) arr = list(map(int, str(n))) currSum = sum(arr) i = len(arr) - 1 while currSum > s: while arr[i] == 0: i -= 1 currSum -= arr[i] arr[i] = 0 i -= 1 while i >= 0 and arr[i] == 9: currSum -= arr[i] arr[i] = 0 i -= 1 if i < 0: currSum += 1 arr = [1] + arr i = 0 else: currSum += 1 arr[i] += 1 smallest = int("".join(map(str, arr))) print(smallest - n)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER WHILE VAR VAR WHILE VAR VAR NUMBER VAR NUMBER VAR VAR VAR ASSIGN VAR VAR NUMBER VAR NUMBER WHILE VAR NUMBER VAR VAR NUMBER VAR VAR VAR ASSIGN VAR VAR NUMBER VAR NUMBER IF VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP LIST NUMBER VAR ASSIGN VAR NUMBER VAR NUMBER VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL STRING FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
from sys import stdin def steps(a, b): if a < b: return b - a remainder = a % b if remainder == 0: return 0 return b - remainder def main(): data = stdin.readline().strip() n = int(data) for i in range(n): a, b = map(int, stdin.readline().strip().split()) print(steps(a, b)) main()
FUNC_DEF IF VAR VAR RETURN BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR VAR IF VAR NUMBER RETURN NUMBER RETURN BIN_OP VAR VAR FUNC_DEF ASSIGN VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
def main(): n = int(input()) for i in range(n): a, b = tuple(map(int, input().split())) if a % b == 0: print(0) else: print(b - a if b > a else b * (a // b + 1) - a) main()
FUNC_DEF ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR VAR VAR BIN_OP VAR VAR BIN_OP BIN_OP VAR BIN_OP BIN_OP VAR VAR NUMBER VAR EXPR FUNC_CALL VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
test = int(input()) my_list = [] while test != 0: a, b = [int(a) for a in input().split()] moves = 1 if a % b == 0: moves = 0 else: rem = a % b moves = b - rem value = str(moves) my_list.append(value) test -= 1 for i in my_list: print(i)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST WHILE VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER IF BIN_OP VAR VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR VAR NUMBER FOR VAR VAR EXPR FUNC_CALL VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
import sys def read_line(): return sys.stdin.readline()[:-1] def read_int(): return int(sys.stdin.readline()) def read_int_line(): return [int(v) for v in sys.stdin.readline().split()] t = read_int() for i in range(t): a, b = read_int_line() if a % b == 0: print(0) else: print(b - a % b)
IMPORT FUNC_DEF RETURN FUNC_CALL VAR NUMBER FUNC_DEF RETURN FUNC_CALL VAR FUNC_CALL VAR FUNC_DEF RETURN FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR IF BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR BIN_OP VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
for i in range(int(input())): n, m = map(int, input().split()) if n < m: print(m - n) else: print(((n // m + 1) * m - n) % m)
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR BIN_OP BIN_OP BIN_OP BIN_OP BIN_OP VAR VAR NUMBER VAR VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
t = int(input()) for _ in range(t): a, b = list(map(int, input().split())) c = 0 if a % b == 0: print(0) continue elif a < b: print(b - a) continue else: print(b - a % b) continue
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER IF BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER IF VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR BIN_OP VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
n = int(input()) for x in range(n): a, b = map(int, input().split(" ")) r = a % b if r == 0: print(0) elif a < b: print(b - a) elif a > b: print(b - r)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR STRING ASSIGN VAR BIN_OP VAR VAR IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER IF VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR IF VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
for i in range(0, int(input())): p, z = input().split() if int(p) % int(z) == 0: print(0) else: print(int(z) - int(p) % int(z))
FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL FUNC_CALL VAR IF BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
N = int(input()) for _ in range(0, N): a, b = list(map(int, input().split(" "))) if a < b: print(b - a) elif a % b == 0: print(0) else: tmp = int(a / b) + 1 print(tmp * b - a)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR NUMBER VAR ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR STRING IF VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR IF BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
l = [] x = int(input()) for _ in range(x): a, b = list(map(int, input().split())) c = a % b if c != 0: d = b - c l.append(d) elif c == 0: d = 0 l.append(d) for k in l: print(k)
ASSIGN VAR LIST ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR BIN_OP VAR VAR IF VAR NUMBER ASSIGN VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR VAR IF VAR NUMBER ASSIGN VAR NUMBER EXPR FUNC_CALL VAR VAR FOR VAR VAR EXPR FUNC_CALL VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
def kek(): string = input() n, s = list(map(int, string.split())) k = 0 summa = sum(map(int, list(str(n)))) delitel = 10 while summa > s: shagi = delitel - n % delitel k += shagi delitel *= 10 n += shagi summa = sum(map(int, list(str(n)))) print(k) t = int(input()) for i in range(t): kek()
FUNC_DEF ASSIGN VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER WHILE VAR VAR ASSIGN VAR BIN_OP VAR BIN_OP VAR VAR VAR VAR VAR NUMBER VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
import sys input = sys.stdin.read() data = list(map(int, input.split())) T = int(data[0]) it = 1 while T > 0: a = data[it] b = data[it + 1] if a % b == 0: print(0) else: next_num = b * (a // b + 1) print(next_num - a) it += 2 T -= 1
IMPORT ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR NUMBER WHILE VAR NUMBER ASSIGN VAR VAR VAR ASSIGN VAR VAR BIN_OP VAR NUMBER IF BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR BIN_OP VAR BIN_OP BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR VAR VAR NUMBER VAR NUMBER
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
q = int(input()) for i in range(q): a, b = map(int, input().split()) s = 0 if a % b != 0: print(b - a % b) else: print("0")
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER IF BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR STRING
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
for i in range(int(input())): a, b = map(int, input().split()) c = a % b if c > 0: print(b - c) continue print("0")
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR BIN_OP VAR VAR IF VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR STRING
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
def check(n, b): s, x = str(n), 0 for i in s: x += int(i) if x <= b: return 1 else: return 0 for p in range(int(input())): a, b = map(int, input().split()) if check(a, b): print(0) elif int(str(a)[0]) < b: s = int(str(a)[0]) for i in range(len(str(a)) - 1): s += int(str(a)[i + 1]) if s >= b: print(10 ** (len(str(a)) - i - 1) - a % 10 ** (len(str(a)) - i - 1)) break else: print(0) else: print(10 ** len(str(a)) - a)
FUNC_DEF ASSIGN VAR VAR FUNC_CALL VAR VAR NUMBER FOR VAR VAR VAR FUNC_CALL VAR VAR IF VAR VAR RETURN NUMBER RETURN NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR NUMBER IF FUNC_CALL VAR FUNC_CALL VAR VAR NUMBER VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR FUNC_CALL VAR VAR NUMBER VAR FUNC_CALL VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER IF VAR VAR EXPR FUNC_CALL VAR BIN_OP BIN_OP NUMBER BIN_OP BIN_OP FUNC_CALL VAR FUNC_CALL VAR VAR VAR NUMBER BIN_OP VAR BIN_OP NUMBER BIN_OP BIN_OP FUNC_CALL VAR FUNC_CALL VAR VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR BIN_OP BIN_OP NUMBER FUNC_CALL VAR FUNC_CALL VAR VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
num_tests = input() num_tests = int(num_tests) def divisible_move(var1, var2): cnt = 1 mod = var1 % var2 if mod == 0: return 0 else: return var2 - mod for i in range(num_tests): var1, var2 = input().split(" ") var1 = int(var1) var2 = int(var2) answer = divisible_move(var1, var2) print(answer)
ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR FUNC_DEF ASSIGN VAR NUMBER ASSIGN VAR BIN_OP VAR VAR IF VAR NUMBER RETURN NUMBER RETURN BIN_OP VAR VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
from sys import stdin def func(): return for _ in range(int(stdin.readline())): a, b = map(int, stdin.readline().split()) if a % b == 0: print(0) else: print(b - a % b)
FUNC_DEF RETURN FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR BIN_OP VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
a = int(input()) for j in range(a): n, x = [int(i) for i in input().split()] if n % x: print((int(n / x) + 1) * x - n) else: print(0)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR IF BIN_OP VAR VAR EXPR FUNC_CALL VAR BIN_OP BIN_OP BIN_OP FUNC_CALL VAR BIN_OP VAR VAR NUMBER VAR VAR EXPR FUNC_CALL VAR NUMBER
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
t = int(input()) bl = [] for i in range(t): tempo = input() bl.append(tempo) def sdigits(n): sum = 0 for i in n: sum += int(i) return sum for i in range(t): s1 = bl[i] s1 = s1.split() n = s1[0] s = int(s1[1]) if sdigits(n) <= s: print(0) else: temp = 0 ix = 0 for i in range(len(n)): temp += int(n[i]) if temp >= s: ix = i break if ix > 0: fin = str(int(n[:ix]) + 1) else: fin = "1" rem = len(n) - ix fin += "0" * rem fin = int(fin) fin = fin - int(n) print(fin)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR EXPR FUNC_CALL VAR VAR FUNC_DEF ASSIGN VAR NUMBER FOR VAR VAR VAR FUNC_CALL VAR VAR RETURN VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR NUMBER IF FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR IF VAR VAR ASSIGN VAR VAR IF VAR NUMBER ASSIGN VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR VAR NUMBER ASSIGN VAR STRING ASSIGN VAR BIN_OP FUNC_CALL VAR VAR VAR VAR BIN_OP STRING VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
def iin(): return int(input()) def lin(): return list(map(int, input().split())) def main(): t = iin() while t: t -= 1 n, s = input().split() s = int(s) n = list(map(int, n)) sm = sum(n) ans = 0 n = n[::-1] ch = 0 pv = 0 ln = len(n) pw = 0 while sm > s: if pw >= ln: break val = n[pw] if val == 0: pw += 1 continue ans += (10 - val if val else 0) * pow(10, pw) n[pw] = 0 pv = 1 for j in range(pw + 1, ln): if n[j] == 9: n[j] = 0 else: n[j] += 1 break else: n.append(1) ln += 1 sm = sum(n) pw += 1 print(ans) main()
FUNC_DEF RETURN FUNC_CALL VAR FUNC_CALL VAR FUNC_DEF RETURN FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR FUNC_DEF ASSIGN VAR FUNC_CALL VAR WHILE VAR VAR NUMBER ASSIGN VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER WHILE VAR VAR IF VAR VAR ASSIGN VAR VAR VAR IF VAR NUMBER VAR NUMBER VAR BIN_OP VAR BIN_OP NUMBER VAR NUMBER FUNC_CALL VAR NUMBER VAR ASSIGN VAR VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER VAR IF VAR VAR NUMBER ASSIGN VAR VAR NUMBER VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
n = int(input()) x = [] y = [] for i in range(n): a, b = map(int, input().split()) x.append(a) y.append(b) for j in range(len(x)): if x[j] % y[j] != 0: print(y[j] - x[j] % y[j]) else: print("0")
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF BIN_OP VAR VAR VAR VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR VAR BIN_OP VAR VAR VAR VAR EXPR FUNC_CALL VAR STRING
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
import sys input = sys.stdin.readline def inp(): return int(input()) def inlt(): return list(map(int, input().split())) def insr(): s = input() return list(s[: len(s) - 1]) def invr(): return map(int, input().split()) def solve(a, b): r = a % b if r == 0: return 0 else: return b - r def output(): t = inp() res = [] for i in range(t): a, b = invr() res.append(solve(a, b)) for elt in res: print(elt) output()
IMPORT ASSIGN VAR VAR FUNC_DEF RETURN FUNC_CALL VAR FUNC_CALL VAR FUNC_DEF RETURN FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR FUNC_DEF ASSIGN VAR FUNC_CALL VAR RETURN FUNC_CALL VAR VAR BIN_OP FUNC_CALL VAR VAR NUMBER FUNC_DEF RETURN FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR FUNC_DEF ASSIGN VAR BIN_OP VAR VAR IF VAR NUMBER RETURN NUMBER RETURN BIN_OP VAR VAR FUNC_DEF ASSIGN VAR FUNC_CALL VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR FOR VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
import sys input = sys.stdin.readline def inp(): return int(input()) def inlt(): return list(map(int, input().split())) def insr(): s = input() return list(s[: len(s) - 1]) def invr(): return map(int, input().split()) t = inp() for idx in range(0, t): [a, b] = invr() if a % b == 0: print(0) else: print(b * (int(a / b) + 1) - a)
IMPORT ASSIGN VAR VAR FUNC_DEF RETURN FUNC_CALL VAR FUNC_CALL VAR FUNC_DEF RETURN FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR FUNC_DEF ASSIGN VAR FUNC_CALL VAR RETURN FUNC_CALL VAR VAR BIN_OP FUNC_CALL VAR VAR NUMBER FUNC_DEF RETURN FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR NUMBER VAR ASSIGN LIST VAR VAR FUNC_CALL VAR IF BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR BIN_OP BIN_OP VAR BIN_OP FUNC_CALL VAR BIN_OP VAR VAR NUMBER VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
n = int(input()) i = 0 x = [] while i < n: p = input() x.append(p) i = i + 1 for er in x: we = er.split() if int(we[0]) < int(we[1]): print(int(we[1]) - int(we[0])) elif int(we[0]) % int(we[1]) == 0: print(0) elif int(we[0]) > int(we[1]): print((int(we[0]) // int(we[1]) + 1) * int(we[1]) - int(we[0]))
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR LIST WHILE VAR VAR ASSIGN VAR FUNC_CALL VAR EXPR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR NUMBER FOR VAR VAR ASSIGN VAR FUNC_CALL VAR IF FUNC_CALL VAR VAR NUMBER FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER FUNC_CALL VAR VAR NUMBER IF BIN_OP FUNC_CALL VAR VAR NUMBER FUNC_CALL VAR VAR NUMBER NUMBER EXPR FUNC_CALL VAR NUMBER IF FUNC_CALL VAR VAR NUMBER FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR BIN_OP BIN_OP BIN_OP BIN_OP FUNC_CALL VAR VAR NUMBER FUNC_CALL VAR VAR NUMBER NUMBER FUNC_CALL VAR VAR NUMBER FUNC_CALL VAR VAR NUMBER
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
def make_div(a, b): if a % b == 0: return 0 return b * (a // b + 1) - a for i in range(int(input())): a, b = map(int, input().split()) print(make_div(a, b))
FUNC_DEF IF BIN_OP VAR VAR NUMBER RETURN NUMBER RETURN BIN_OP BIN_OP VAR BIN_OP BIN_OP VAR VAR NUMBER VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
def aa(a, b, count): if a % b == 0 or a == b: count = 0 elif a < b: count = b - a else: count = b - a % b print(count) t = int(input()) for _ in range(t): a, b = map(int, input().split()) count = 0 aa(a, b, count)
FUNC_DEF IF BIN_OP VAR VAR NUMBER VAR VAR ASSIGN VAR NUMBER IF VAR VAR ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER EXPR FUNC_CALL VAR VAR VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
def get_result(a, b): print((b - a % b) % b) t = int(input()) for i in range(t): a, b = input().split() a, b = int(a), int(b) get_result(a, b)
FUNC_DEF EXPR FUNC_CALL VAR BIN_OP BIN_OP VAR BIN_OP VAR VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
def sol(x, y): c = 0 if x % y == 0: return c elif x > y: c = y * (x // y + 1) - x return c else: c = y - x return c for i in range(int(input())): a, b = [int(x) for x in input().split(" ")] print(sol(a, b))
FUNC_DEF ASSIGN VAR NUMBER IF BIN_OP VAR VAR NUMBER RETURN VAR IF VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR BIN_OP BIN_OP VAR VAR NUMBER VAR RETURN VAR ASSIGN VAR BIN_OP VAR VAR RETURN VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR STRING EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
n = int(input()) while n: n -= 1 a, b = input().split() a, b = int(a), int(b) k = a // b if a % b == 0: print(0) else: print(b * (k + 1) - a)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR WHILE VAR VAR NUMBER ASSIGN VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR VAR IF BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR BIN_OP BIN_OP VAR BIN_OP VAR NUMBER VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
t = int(input()) for _ in range(t): a, b = map(int, input().split()) if a % b == 0: print(0) else: e = a // b f = b * e d = f + b res = d - a print(res)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
for _ in range(int(input())): n, x = map(int, input().split()) s = list(str(n)) c = 0 ss = len(s) for i in s: c += int(i) if c <= x: print(0) else: for i in range(len(s) - 1, 0, -1): if s[i] == "0": continue if c <= x: break elif s[i - 1] == "9": for j in range(i - 1, -1, -1): if s[j] == "9" and j != 0: c -= 9 s[j] = "0" elif j == 0 and s[j] == "9": c -= 8 s[j] = str(int(s[j]) + 1) else: c += 1 s[j] = str(int(s[j]) + 1) break c -= int(s[i]) s[i] = "0" else: c -= int(s[i]) c += 1 s[i] = "0" s[i - 1] = str(int(s[i - 1]) + 1) if c > x: s[0] = "1" s.append("0") xx = "".join(s) xx = int(xx) print(xx - n) else: xx = "".join(s) xx = int(xx) print(xx - n)
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR FOR VAR VAR VAR FUNC_CALL VAR VAR IF VAR VAR EXPR FUNC_CALL VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER NUMBER NUMBER IF VAR VAR STRING IF VAR VAR IF VAR BIN_OP VAR NUMBER STRING FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER IF VAR VAR STRING VAR NUMBER VAR NUMBER ASSIGN VAR VAR STRING IF VAR NUMBER VAR VAR STRING VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR VAR NUMBER VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR VAR NUMBER VAR FUNC_CALL VAR VAR VAR ASSIGN VAR VAR STRING VAR FUNC_CALL VAR VAR VAR VAR NUMBER ASSIGN VAR VAR STRING ASSIGN VAR BIN_OP VAR NUMBER FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR BIN_OP VAR NUMBER NUMBER IF VAR VAR ASSIGN VAR NUMBER STRING EXPR FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL STRING VAR ASSIGN VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR ASSIGN VAR FUNC_CALL STRING VAR ASSIGN VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
test = int(input()) moves = list() a = list() b = list() for i in range(test): x, y = map(int, input().split(" ")) a.append(x) b.append(y) if a[i] % b[i] != 0: add = (int(a[i] / b[i]) + 1) * b[i] - a[i] moves.append(add) else: moves.append("0") print(*moves, sep="\n")
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR STRING EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR IF BIN_OP VAR VAR VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP BIN_OP FUNC_CALL VAR BIN_OP VAR VAR VAR VAR NUMBER VAR VAR VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR VAR STRING
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
t = int(input()) p = [] for i in range(t): h = list(map(int, input().split())) p.append(h) for i in range(t): if p[i][0] % p[i][1] != 0: print(p[i][1] - p[i][0] % p[i][1]) else: print(p[i][0] % p[i][1])
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR VAR IF BIN_OP VAR VAR NUMBER VAR VAR NUMBER NUMBER EXPR FUNC_CALL VAR BIN_OP VAR VAR NUMBER BIN_OP VAR VAR NUMBER VAR VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR VAR NUMBER VAR VAR NUMBER
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
j = int(input()) ar = [] for i in range(0, j): y = input().split(" ") a = int(y[0]) b = int(y[1]) if a % b == 0: ar.append(0) else: if a < b: ar.append(b - a) continue tjk = int(a / b) tjk += 1 ar.append(b * tjk - a) for i in ar: print(i)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR NUMBER VAR ASSIGN VAR FUNC_CALL FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR NUMBER IF BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER IF VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR ASSIGN VAR FUNC_CALL VAR BIN_OP VAR VAR VAR NUMBER EXPR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR VAR FOR VAR VAR EXPR FUNC_CALL VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
def main(): test = int(input()) for t in range(test): l = [int(i) for i in input().split(" ")] a = l[0] b = l[1] if a % b == 0: print(0) else: temp = (a // b + 1) * b - a print(temp) main()
FUNC_DEF ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR STRING ASSIGN VAR VAR NUMBER ASSIGN VAR VAR NUMBER IF BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR BIN_OP BIN_OP BIN_OP BIN_OP VAR VAR NUMBER VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
n = int(input()) l = list() for i in range(n): l.append(list(map(int, input().split(" ")))) len = len(l) for i in range(len): c = l[i][0] % l[i][1] if c == 0: print(0) continue c = l[i][1] - c print(c)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR VAR NUMBER VAR VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR BIN_OP VAR VAR NUMBER VAR EXPR FUNC_CALL VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
for _ in range(int(input())): n, s = map(int, input().split()) new = list(str(n)) sm = 0 ans = 0 for i in new: sm += int(i) if sm > s: step = 0 for i in range(len(new) - 1, -1, -1): if sm > s: step += (10 - int(new[i])) * pow(10, len(new) - 1 - i) sm -= int(new[i]) - 1 new[i - 1] = str(int(new[i - 1]) + 1) else: ans = step break if ans == 0: if sm > s: step += (10 - int(new[0])) * pow(10, len(new) - 1) ans = step else: ans = step print(ans)
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR VAR FUNC_CALL VAR VAR IF VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER NUMBER NUMBER IF VAR VAR VAR BIN_OP BIN_OP NUMBER FUNC_CALL VAR VAR VAR FUNC_CALL VAR NUMBER BIN_OP BIN_OP FUNC_CALL VAR VAR NUMBER VAR VAR BIN_OP FUNC_CALL VAR VAR VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR BIN_OP VAR NUMBER NUMBER ASSIGN VAR VAR IF VAR NUMBER IF VAR VAR VAR BIN_OP BIN_OP NUMBER FUNC_CALL VAR VAR NUMBER FUNC_CALL VAR NUMBER BIN_OP FUNC_CALL VAR VAR NUMBER ASSIGN VAR VAR ASSIGN VAR VAR EXPR FUNC_CALL VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
n = int(input()) list = [] for i in range(n): x, y = [int(j) for j in input().split()] if x % y == 0: k = 0 elif x % y != 0: k = y - x % y list.append(k) for i in list: print(i, end="\n")
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR IF BIN_OP VAR VAR NUMBER ASSIGN VAR NUMBER IF BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR VAR FOR VAR VAR EXPR FUNC_CALL VAR VAR STRING
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
val = int(input()) liste = [] for _ in range(val): a, b = [int(x) for x in input().split()] liste.append((b - a % b) % b) for x in liste: print(x)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR BIN_OP BIN_OP VAR BIN_OP VAR VAR VAR FOR VAR VAR EXPR FUNC_CALL VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
_1 = "236a" _2 = "339a" _3 = "266a" _4 = "96a" _5 = "236a" _6 = "281a" _7 = "546a" _8 = "116a" _9 = "977a" _10 = "266b" _11 = "110a" _12 = "41a" _13 = "734a" _14 = "133a" _15 = "467a" _16 = "158a" _17 = "677a" _18 = "580a" _19 = "344a" _20 = "1030a" _21 = "705a" _22 = "318a" _23 = "479a" _24 = "486a" _25 = "61a" _26 = "405a" _27 = "200b" _28 = "337a" _29 = "148a" _30 = "228a" _31 = "25a" _32 = "25a" _33 = "1328a" n = int(input()) o = [] for i in range(n): a, b = map(int, input().split()) if a % b == 0: o.append(0) else: o.append(b - a % b) for i in o: print(i)
ASSIGN VAR STRING ASSIGN VAR STRING ASSIGN VAR STRING ASSIGN VAR STRING ASSIGN VAR STRING ASSIGN VAR STRING ASSIGN VAR STRING ASSIGN VAR STRING ASSIGN VAR STRING ASSIGN VAR STRING ASSIGN VAR STRING ASSIGN VAR STRING ASSIGN VAR STRING ASSIGN VAR STRING ASSIGN VAR STRING ASSIGN VAR STRING ASSIGN VAR STRING ASSIGN VAR STRING ASSIGN VAR STRING ASSIGN VAR STRING ASSIGN VAR STRING ASSIGN VAR STRING ASSIGN VAR STRING ASSIGN VAR STRING ASSIGN VAR STRING ASSIGN VAR STRING ASSIGN VAR STRING ASSIGN VAR STRING ASSIGN VAR STRING ASSIGN VAR STRING ASSIGN VAR STRING ASSIGN VAR STRING ASSIGN VAR STRING ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR BIN_OP VAR VAR FOR VAR VAR EXPR FUNC_CALL VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
t = int(input()) cases = [] def func(n, s): for i in range(len(n)): digit = int(n[i]) if s > digit: s -= digit elif digit == s: if i == len(n) - 1: return 0 elif all([(v == "0") for v in n[i + 1 :]]): return 0 else: left = len(n) - i num = 10**left remaining = n[i:] remaining = int("".join(remaining)) return num - remaining else: left = len(n) - i num = 10**left remaining = n[i:] remaining = int("".join(remaining)) return num - remaining return 0 for i in range(t): n, s = [int(x) for x in input().split(" ")] cases.append([n, s]) for k in cases: n = k[0] s = k[1] n = str(n) n = list(n) print(func(n, s))
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST FUNC_DEF FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR IF VAR VAR VAR VAR IF VAR VAR IF VAR BIN_OP FUNC_CALL VAR VAR NUMBER RETURN NUMBER IF FUNC_CALL VAR VAR STRING VAR VAR BIN_OP VAR NUMBER RETURN NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR VAR VAR ASSIGN VAR BIN_OP NUMBER VAR ASSIGN VAR VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL STRING VAR RETURN BIN_OP VAR VAR ASSIGN VAR BIN_OP FUNC_CALL VAR VAR VAR ASSIGN VAR BIN_OP NUMBER VAR ASSIGN VAR VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL STRING VAR RETURN BIN_OP VAR VAR RETURN NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR STRING EXPR FUNC_CALL VAR LIST VAR VAR FOR VAR VAR ASSIGN VAR VAR NUMBER ASSIGN VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
from sys import gettrace, stdin if gettrace(): inputi = input else: def input(): return next(stdin)[:-1] def inputi(): return stdin.buffer.readline() def solve(): n, s = input().split() s = int(s) nn = [0] + list(map(int, n)) if sum(nn) < s: print(0) return mult = 1 res = 0 for i in range(len(nn) - 1, 0, -1): if sum(nn) <= s: break v = nn[i] if v != 0: res += (10 - v) * mult nn[i] = 0 nn[i - 1] += 1 mult *= 10 print(res) def main(): t = int(input()) for _ in range(t): solve() main()
IF FUNC_CALL VAR ASSIGN VAR VAR FUNC_DEF RETURN FUNC_CALL VAR VAR NUMBER FUNC_DEF RETURN FUNC_CALL VAR FUNC_DEF ASSIGN VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP LIST NUMBER FUNC_CALL VAR FUNC_CALL VAR VAR VAR IF FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR NUMBER RETURN ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER NUMBER NUMBER IF FUNC_CALL VAR VAR VAR ASSIGN VAR VAR VAR IF VAR NUMBER VAR BIN_OP BIN_OP NUMBER VAR VAR ASSIGN VAR VAR NUMBER VAR BIN_OP VAR NUMBER NUMBER VAR NUMBER EXPR FUNC_CALL VAR VAR FUNC_DEF ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR EXPR FUNC_CALL VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
import sys input = sys.stdin.readline t = int(input()) for _ in range(t): n, s = map(int, input().split()) N = [] for i in str(n): N.append(int(i)) N.reverse() N.append(0) ans = 0 for i in range(len(str(n))): if sum(N) <= s: break if N[i] == 0: continue ans += (10 - N[i]) * pow(10, i) N[i] = 0 N[i + 1] += 1 print(ans)
IMPORT ASSIGN VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF FUNC_CALL VAR VAR VAR IF VAR VAR NUMBER VAR BIN_OP BIN_OP NUMBER VAR VAR FUNC_CALL VAR NUMBER VAR ASSIGN VAR VAR NUMBER VAR BIN_OP VAR NUMBER NUMBER EXPR FUNC_CALL VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
for t in range(int(input())): a, b = map(int, input().split()) if a % b == 0: print(0) else: q = a // b + 1 n = q * b print(n - a)
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
t = int(input()) while t > 0: a, b = [int(x) for x in input().split()] if a <= b: print(b - a) else: lower = int(a / b) if a % b == 0: print("0") else: goal = b * (lower + 1) print(goal - a) t = t - 1
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR WHILE VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR IF VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR ASSIGN VAR FUNC_CALL VAR BIN_OP VAR VAR IF BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR STRING ASSIGN VAR BIN_OP VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR NUMBER
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
t = int(input()) for _ in range(t): a, b = input().strip().split() a, b = int(a), int(b) remain = a % b if remain == 0: print(remain) else: print(b - remain)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR VAR IF VAR NUMBER EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
def do2(n, s): pass def do(): q = int(input()) for _ in range(q): a = [0] * 30 res = [0] * 30 n, s = input().split() n = n[::-1] for i in range(len(n)): a[i] = int(n[i]) s = int(s) i = 0 while sum(a) > s: if a[i] > 9: a[i], a[i + 1] = a[i] % 10, a[i + 1] + a[i] // 10 continue if a[i] == 0: i += 1 continue res[i] = 10 - a[i] a[i + 1] += 1 a[i] = 0 i += 1 res = int("".join(map(str, res[::-1]))) print(res) do()
FUNC_DEF FUNC_DEF ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP LIST NUMBER NUMBER ASSIGN VAR BIN_OP LIST NUMBER NUMBER ASSIGN VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER WHILE FUNC_CALL VAR VAR VAR IF VAR VAR NUMBER ASSIGN VAR VAR VAR BIN_OP VAR NUMBER BIN_OP VAR VAR NUMBER BIN_OP VAR BIN_OP VAR NUMBER BIN_OP VAR VAR NUMBER IF VAR VAR NUMBER VAR NUMBER ASSIGN VAR VAR BIN_OP NUMBER VAR VAR VAR BIN_OP VAR NUMBER NUMBER ASSIGN VAR VAR NUMBER VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL STRING FUNC_CALL VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
N = int(input()) for _ in range(N): data = input() split = data.split() a = int(split[0]) b = int(split[1]) if a % b == 0: print(0) else: print(b - a % b)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR NUMBER IF BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR BIN_OP VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
k = int(input()) def sum_digits(n): s = 0 while n > 0: s += n % 10 n //= 10 return s for _ in range(k): n, s = map(int, input().strip().split(" ")) m = 0 r = 1 while sum_digits(n) > s: d = 10 - n % 10 n += d m += d * r r *= 10 n //= 10 print(m)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_DEF ASSIGN VAR NUMBER WHILE VAR NUMBER VAR BIN_OP VAR NUMBER VAR NUMBER RETURN VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL FUNC_CALL VAR STRING ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE FUNC_CALL VAR VAR VAR ASSIGN VAR BIN_OP NUMBER BIN_OP VAR NUMBER VAR VAR VAR BIN_OP VAR VAR VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
def divisibility(a, b): if a < b: return b - a elif a % b == 0: return 0 else: return b - a % b t = int(input()) for t_itr in range(t): arr = list(map(int, input().rstrip().split())) a = int(arr[0]) b = int(arr[1]) result = divisibility(a, b) print(result)
FUNC_DEF IF VAR VAR RETURN BIN_OP VAR VAR IF BIN_OP VAR VAR NUMBER RETURN NUMBER RETURN BIN_OP VAR BIN_OP VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
def solver(n, x): m = list(map(lambda x: int(x), str(n))) res = 0 pw = 1 if sum(m) <= x: return res for i in range(18): dig = n // pw % 10 add = (10 - dig) % 10 * pw n += add res += add m = list(map(lambda x: int(x), str(n))) if sum(m) <= x: break pw *= 10 return res for i in range(int(input())): n, x = map(int, input().split()) print(solver(n, x))
FUNC_DEF ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER IF FUNC_CALL VAR VAR VAR RETURN VAR FOR VAR FUNC_CALL VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP BIN_OP NUMBER VAR NUMBER VAR VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR IF FUNC_CALL VAR VAR VAR VAR NUMBER RETURN VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
t = int(input()) for i in range(0, t): array = input().split() n = int(array[0]) m = int(array[1]) ans = n / m div = n % m print((m - div) % m)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR NUMBER VAR ASSIGN VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
t = int(input()) data = [0] * t ans = 0 for i in range(t): data = list(map(int, input().split())) if data[0] % data[1] != 0: ans = data[1] - data[0] % data[1] print(ans) ans = 0
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR BIN_OP LIST NUMBER VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF BIN_OP VAR NUMBER VAR NUMBER NUMBER ASSIGN VAR BIN_OP VAR NUMBER BIN_OP VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR VAR ASSIGN VAR NUMBER
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
t = int(input()) powers_of_ten = [(10**i) for i in range(163)] for i in range(t): string = input() n, s = string.split()[0], int(string.split()[1]) n_int = int(n) start = n_int index = len(n) - 1 while True: sum = 0 for j in n: sum += int(j) if sum <= s: print(n_int - start) break while n[index] == str(0): index -= 1 rest = 10 - int(n[index]) n_int += rest * powers_of_ten[len(n) - 1 - index] n = str(n_int)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR BIN_OP NUMBER VAR VAR FUNC_CALL VAR NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR FUNC_CALL VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR VAR ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER WHILE NUMBER ASSIGN VAR NUMBER FOR VAR VAR VAR FUNC_CALL VAR VAR IF VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR WHILE VAR VAR FUNC_CALL VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP NUMBER FUNC_CALL VAR VAR VAR VAR BIN_OP VAR VAR BIN_OP BIN_OP FUNC_CALL VAR VAR NUMBER VAR ASSIGN VAR FUNC_CALL VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
n = int(input()) for a in range(n): x = [int(i) for i in input().split()] if x[0] % x[1] == 0: print(0) continue res = int(x[0] / x[1]) print((res + 1) * x[1] - x[0])
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR IF BIN_OP VAR NUMBER VAR NUMBER NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR FUNC_CALL VAR BIN_OP VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR BIN_OP BIN_OP BIN_OP VAR NUMBER VAR NUMBER VAR NUMBER
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
def solve(): s, n = [i for i in input().split()] n = int(n) i = 0 ok = True while i < len(s): if n > int(s[i]): n -= int(s[i]) else: ok = False break i += 1 if ok: print(0) return if int(s[i]) == n: tmp = 0 for char in s[i + 1 :]: tmp += int(char) if tmp > 0: break if tmp == 0: print(0) return total = 10 ** (len(s) - i) cur = s[i:] print(int(total - int(cur))) t = int(input()) for _ in range(t): solve()
FUNC_DEF ASSIGN VAR VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR FUNC_CALL VAR VAR IF VAR FUNC_CALL VAR VAR VAR VAR FUNC_CALL VAR VAR VAR ASSIGN VAR NUMBER VAR NUMBER IF VAR EXPR FUNC_CALL VAR NUMBER RETURN IF FUNC_CALL VAR VAR VAR VAR ASSIGN VAR NUMBER FOR VAR VAR BIN_OP VAR NUMBER VAR FUNC_CALL VAR VAR IF VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER RETURN ASSIGN VAR BIN_OP NUMBER BIN_OP FUNC_CALL VAR VAR VAR ASSIGN VAR VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR BIN_OP VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
t = int(input()) ans = [] for Num in range(t): ab = input() a = int(ab.split(" ")[0]) b = int(ab.split(" ")[1]) if a % b == 0: ans.append(0) else: ans.append(b - a % b) for Num in range(t): print(ans[Num])
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR STRING NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR STRING NUMBER IF BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR BIN_OP VAR VAR FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
try: t = int(input()) while t: a, b = [int(x) for x in input().split()] if a % b == 0: print("0") else: r = a % b print(b - r) t -= 1 except: pass
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR WHILE VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR IF BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR STRING ASSIGN VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR VAR NUMBER
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
def main(): for _ in range(int(input())): ans = 0 a, b = map(int, input().split()) if a % b == 0: print("0") continue else: x = a // b print(b * (x + 1) - a) main()
FUNC_DEF FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR STRING ASSIGN VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR BIN_OP BIN_OP VAR BIN_OP VAR NUMBER VAR EXPR FUNC_CALL VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
t = int(input()) for tt in range(t): ab = input().split(" ") a = int(ab[0]) b = int(ab[1]) if a == b: print(0) elif a < b: print(b - a) elif a % b == 0: print(0) else: t = (int(a / b) + 1) * b print(t - a)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR NUMBER IF VAR VAR EXPR FUNC_CALL VAR NUMBER IF VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR IF BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR BIN_OP BIN_OP FUNC_CALL VAR BIN_OP VAR VAR NUMBER VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
t = int(input()) while t: li = [int(i) for i in input().split()] a = li[0] b = li[1] rem = a % b if rem == 0: print(rem) else: k = b - rem print(k) t -= 1
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR WHILE VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR NUMBER ASSIGN VAR VAR NUMBER ASSIGN VAR BIN_OP VAR VAR IF VAR NUMBER EXPR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR VAR VAR NUMBER
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
t = eval(input()) for case in range(t): n, s = input().split(" ") s = int(s) sumx = 0 sum1 = 0 ans = [0] flag = 0 for i in n: sum1 += int(i) if sum1 <= s: print(0) continue for i in n: sumx += int(i) if sumx >= s and flag == 0: ans[-1] = ans[-1] + 1 flag = 1 if flag: ans.append(0) else: ans.append(int(i)) k = 0 for i in ans: k = k * 10 + i print(k - int(n))
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR LIST NUMBER ASSIGN VAR NUMBER FOR VAR VAR VAR FUNC_CALL VAR VAR IF VAR VAR EXPR FUNC_CALL VAR NUMBER FOR VAR VAR VAR FUNC_CALL VAR VAR IF VAR VAR VAR NUMBER ASSIGN VAR NUMBER BIN_OP VAR NUMBER NUMBER ASSIGN VAR NUMBER IF VAR EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER FOR VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR NUMBER VAR EXPR FUNC_CALL VAR BIN_OP VAR FUNC_CALL VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
def main(): answers = [] for i in range(int(input())): a, b = map(int, input().split()) c = a % b if c != 0: c = abs(c - b) answers.append(c) for i in range(len(answers)): print(answers[i]) main()
FUNC_DEF ASSIGN VAR LIST FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR BIN_OP VAR VAR IF VAR NUMBER ASSIGN VAR FUNC_CALL VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
n = int(input()) def solve(a, b): if a % b == 0: return 0 count = b - a % b return count for i in range(n): data = list(map(int, input().split())) a = data[0] b = data[1] print(solve(a, b))
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_DEF IF BIN_OP VAR VAR NUMBER RETURN NUMBER ASSIGN VAR BIN_OP VAR BIN_OP VAR VAR RETURN VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR NUMBER ASSIGN VAR VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
t = int(input()) ans = [] for _ in range(t): n, s = map(int, input().split()) n = str(n)[::-1] temp = 0 if sum([int(c) for c in n]) <= s: ans.append(temp) else: num_lis = [0] * 19 for i, c in enumerate(n): num_lis[i] = int(c) digit = 1 for i in range(19): if num_lis[i] != 0: temp += (10 - num_lis[i]) * digit num_lis[i] = 0 num_lis[i + 1] += 1 if sum(num_lis) <= s: ans.append(temp) break digit *= 10 print(*ans, sep="\n")
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR NUMBER IF FUNC_CALL VAR FUNC_CALL VAR VAR VAR VAR VAR EXPR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP LIST NUMBER NUMBER FOR VAR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER IF VAR VAR NUMBER VAR BIN_OP BIN_OP NUMBER VAR VAR VAR ASSIGN VAR VAR NUMBER VAR BIN_OP VAR NUMBER NUMBER IF FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR STRING
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
t = int(input()) while t > 0: a, b = [int(ele) for ele in input().split()] div = int(a / b) rem = a % b if rem == 0: print(0) else: print(b * (div + 1) - (b * div + rem)) t -= 1
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR WHILE VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR VAR IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR BIN_OP BIN_OP VAR BIN_OP VAR NUMBER BIN_OP BIN_OP VAR VAR VAR VAR NUMBER
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
import sys input = sys.stdin.readline t = int(input()) for t1 in range(t): n, s = list(map(int, input().split(" "))) su = s z = str(n) z = "0" + z o = n ans = 0 for i in z: ans += int(i) w = 0 if ans <= s: print(0) else: count = 0 for i in range(len(z)): count += int(z[i]) if count >= s: a = "1" + (len(z) - i) * "0" a = int(a) org = len(z) n += a after = len(str(n)) if after != org: n = "0" + str(n) x = str(n) x = x[:i] + "0" * (len(z) - i) w = x break w = int(w) print(w - o)
IMPORT ASSIGN VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR STRING ASSIGN VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP STRING VAR ASSIGN VAR VAR ASSIGN VAR NUMBER FOR VAR VAR VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER IF VAR VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR IF VAR VAR ASSIGN VAR BIN_OP STRING BIN_OP BIN_OP FUNC_CALL VAR VAR VAR STRING ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR VAR ASSIGN VAR BIN_OP STRING FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR VAR BIN_OP STRING BIN_OP FUNC_CALL VAR VAR VAR ASSIGN VAR VAR ASSIGN VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
t = int(input()) while t > 0: t = t - 1 a, b = input().split() c = 0 a = int(a) b = int(b) if a % b == 0: c = 0 else: d = int(a / b) c = b * (d + 1) - a print(c)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR WHILE VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR IF BIN_OP VAR VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR BIN_OP VAR NUMBER VAR EXPR FUNC_CALL VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
for i in range(int(input())): a, b = map(int, input().split()) if a % b == 0: print(0) else: print((divmod(a, b)[0] + 1) * b - a)
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR BIN_OP BIN_OP BIN_OP FUNC_CALL VAR VAR VAR NUMBER NUMBER VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
for _ in range(int(input())): n, s = map(int, input().split()) a = list(map(int, list(str(n)))) temp = 0 ans = 0 x = len(a) for i in range(x): if a[i] + temp > s: for j in range(i, x): a[j] = 0 c = i - 1 while c >= 0 and temp + 1 > s: temp -= a[c] a[c] = 0 c -= 1 if c < 0: a.insert(0, 1) else: a[c] += 1 break else: temp += a[i] new = 0 p = 0 for i in range(len(a) - 1, -1, -1): new += a[i] * pow(10, p) p += 1 print(new - n)
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR VAR IF BIN_OP VAR VAR VAR VAR FOR VAR FUNC_CALL VAR VAR VAR ASSIGN VAR VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER WHILE VAR NUMBER BIN_OP VAR NUMBER VAR VAR VAR VAR ASSIGN VAR VAR NUMBER VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER NUMBER VAR VAR NUMBER VAR VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER NUMBER NUMBER VAR BIN_OP VAR VAR FUNC_CALL VAR NUMBER VAR VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
while True: t = int(input()) if t >= 1 and t <= 10**4: break for i in range(t): a, b = map(int, input().split(" ")) if a % b == 0: print(0) else: print(b - a % b)
WHILE NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR IF VAR NUMBER VAR BIN_OP NUMBER NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR STRING IF BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR BIN_OP VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
def divisible(a, b): x = a y = b if x % y == 0: return 0 if x < y: return y - x else: return y - x % y n = int(input()) for i in range(n): a, b = input().split() a = int(a) b = int(b) result = divisible(a, b) print(result)
FUNC_DEF ASSIGN VAR VAR ASSIGN VAR VAR IF BIN_OP VAR VAR NUMBER RETURN NUMBER IF VAR VAR RETURN BIN_OP VAR VAR RETURN BIN_OP VAR BIN_OP VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
for _ in range(int(input())): n, s = input().split() su, la = 0, len(n) n = n.rstrip() s = int(s) for i in n: su += int(i) n = int(n) if su <= s: print(0) else: ans = 0 flag = 0 for i in range(la): if n % 10 != 0: z = pow(10, i) ans += (10 - n % 10) * z su = su - n % 10 + 1 n = n + (10 - n % 10) flag = 1 elif flag == 1: su -= 9 if su <= s: break n = n // 10 print(ans)
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR NUMBER FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR FOR VAR VAR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR IF VAR VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF BIN_OP VAR NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR NUMBER VAR VAR BIN_OP BIN_OP NUMBER BIN_OP VAR NUMBER VAR ASSIGN VAR BIN_OP BIN_OP VAR BIN_OP VAR NUMBER NUMBER ASSIGN VAR BIN_OP VAR BIN_OP NUMBER BIN_OP VAR NUMBER ASSIGN VAR NUMBER IF VAR NUMBER VAR NUMBER IF VAR VAR ASSIGN VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
t = int(input()) while t: c = 0 s = input() li = s.split(" ") lis = [0, 0] for i in range(2): lis[i] = int(li[i]) a = lis[0] b = lis[1] if a % b == 0: print(c) elif a < b: print(b - a) else: print(b - a % b) t = t - 1
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR WHILE VAR ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR STRING ASSIGN VAR LIST NUMBER NUMBER FOR VAR FUNC_CALL VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR VAR ASSIGN VAR VAR NUMBER ASSIGN VAR VAR NUMBER IF BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR VAR IF VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR NUMBER
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
q = int(input()) while q: n, s = map(int, input().split()) tmp = str(n) res, ans = [], 0 for i in reversed(tmp): res.append(int(i)) carry = 1 idx = 0 while sum(res) > s: if res[idx] == 0: carry *= 10 idx += 1 continue d = 10 - res[idx] ans += carry * d carry *= 10 res[idx] = 0 idx += 1 if idx < len(res): res[idx] += 1 else: res.append(1) t = idx while res[t] >= 10: x, y = res[t] % 10, res[t] // 10 if t >= len(res) - 1: res.append(y) else: res[t + 1] += 1 res[t] = x t += 1 print(ans) q -= 1
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR WHILE VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR VAR LIST NUMBER FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE FUNC_CALL VAR VAR VAR IF VAR VAR NUMBER VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP NUMBER VAR VAR VAR BIN_OP VAR VAR VAR NUMBER ASSIGN VAR VAR NUMBER VAR NUMBER IF VAR FUNC_CALL VAR VAR VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR VAR WHILE VAR VAR NUMBER ASSIGN VAR VAR BIN_OP VAR VAR NUMBER BIN_OP VAR VAR NUMBER IF VAR BIN_OP FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR VAR VAR BIN_OP VAR NUMBER NUMBER ASSIGN VAR VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR VAR NUMBER
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
casos = int(input()) for i in range(casos): a, b = input().split(" ") a = int(a) b = int(b) if a % b == 0: print(0) continue elif a < b: print(b - a) else: print(b * (a // b + 1) - a)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR IF BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER IF VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR BIN_OP BIN_OP VAR BIN_OP BIN_OP VAR VAR NUMBER VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
def divisor(a, b): c = 0 while b < 0: if a % b == 0: print(0) b -= 1 else: print((b - a) % b) b = b - 11 for i in range(int(input())): a, b = map(int, input().split()) divisor(a, b)
FUNC_DEF ASSIGN VAR NUMBER WHILE VAR NUMBER IF BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
def solve(a, b): return (b - a % b) % b t = int(input()) for _ in range(t): a, b = map(int, input().split()) print(solve(a, b)) assert solve(10, 4) == 2 assert solve(13, 9) == 5 assert solve(100, 13) == 4 assert solve(123, 456) == 333 assert solve(92, 46) == 0
FUNC_DEF RETURN BIN_OP BIN_OP VAR BIN_OP VAR VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR NUMBER NUMBER NUMBER FUNC_CALL VAR NUMBER NUMBER NUMBER FUNC_CALL VAR NUMBER NUMBER NUMBER FUNC_CALL VAR NUMBER NUMBER NUMBER FUNC_CALL VAR NUMBER NUMBER NUMBER
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
import sys def get_div(a, b): if a % b == 0: return 0 else: y = 0 x = a % b y = x - b return abs(y) def main(): n = int(sys.stdin.readline()) for i in range(n): a, b = map(int, sys.stdin.readline().split()) sys.stdout.write(f"{get_div(a, b)}\n") main()
IMPORT FUNC_DEF IF BIN_OP VAR VAR NUMBER RETURN NUMBER ASSIGN VAR NUMBER ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR VAR RETURN FUNC_CALL VAR VAR FUNC_DEF ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR STRING EXPR FUNC_CALL VAR