description
stringlengths 171
4k
| code
stringlengths 94
3.98k
| normalized_code
stringlengths 57
4.99k
|
|---|---|---|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
t = int(input())
for _ in range(t):
[a, b] = [*map(int, input().split())]
if a <= b:
print(b - a)
continue
if a % b == 0:
print(0)
continue
times = a // b
print((times + 1) * b - a)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN LIST VAR VAR LIST FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR IF BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR BIN_OP BIN_OP BIN_OP VAR NUMBER VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
t = int(input())
h = []
s = 0
for i in range(t):
s = 0
a, b = map(int, input().split())
if a % b == 0:
pass
else:
s = b - a % b
h.append(s)
for i in h:
print(i)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR VAR FOR VAR VAR EXPR FUNC_CALL VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
for tc in range(int(input())):
n, s = [int(x) for x in input().split()]
sumOf = sum(int(x) for x in str(n))
cost = 0
carry = False
for pos, char in enumerate(reversed("0" + str(n))):
if sumOf <= s:
break
digit = int(char)
if carry:
digit += 1
if digit != 0:
carry = True
cost += (10 - digit) * 10**pos
sumOf -= digit - 1
print(cost)
|
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR FUNC_CALL VAR FUNC_CALL VAR BIN_OP STRING FUNC_CALL VAR VAR IF VAR VAR ASSIGN VAR FUNC_CALL VAR VAR IF VAR VAR NUMBER IF VAR NUMBER ASSIGN VAR NUMBER VAR BIN_OP BIN_OP NUMBER VAR BIN_OP NUMBER VAR VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
T = int(input())
for k in range(T):
n, s = map(int, input().split())
a = [0] + [int(i) for i in str(n)]
ds = sum(a)
cost = 0
idx = len(a) - 1
radix = 1
while ds > s:
if a[idx] > 0:
cost += (10 - a[idx]) * radix
ds -= a[idx]
a[idx] = 0
ds += 1
a[idx - 1] += 1
i = idx - 1
while a[i] >= 10:
a[i - 1] += 1
a[i] -= 10
ds -= 9
i -= 1
radix *= 10
idx -= 1
print(cost)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR BIN_OP LIST NUMBER FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR IF VAR VAR NUMBER VAR BIN_OP BIN_OP NUMBER VAR VAR VAR VAR VAR VAR ASSIGN VAR VAR NUMBER VAR NUMBER VAR BIN_OP VAR NUMBER NUMBER ASSIGN VAR BIN_OP VAR NUMBER WHILE VAR VAR NUMBER VAR BIN_OP VAR NUMBER NUMBER VAR VAR NUMBER VAR NUMBER VAR NUMBER VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
t = int(input())
res = [(0) for i in range(t)]
for i in range(t):
a, b = map(int, input().split())
if a % b != 0:
c = a % b
res[i] += b - c
print(*res, sep="\n")
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR NUMBER VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP VAR VAR VAR VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR VAR STRING
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
t = int(input())
for i in range(t):
n, m = list(map(int, input().rstrip().split()))
k = n // m
if n % m:
print((k + 1) * m - n)
else:
print(0)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL FUNC_CALL VAR ASSIGN VAR BIN_OP VAR VAR IF BIN_OP VAR VAR EXPR FUNC_CALL VAR BIN_OP BIN_OP BIN_OP VAR NUMBER VAR VAR EXPR FUNC_CALL VAR NUMBER
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
import sys
for _ in range(int(input())):
n, s = map(int, input().split())
N = n
nn = n
Sum = 0
while N > 0:
Sum += N % 10
N //= 10
N = n
c = 1
ans = 0
while Sum > s and n > 9:
ans += (10 - n % 10) * c
c *= 10
n //= 10
n += 1
N = n
Sum = 0
while N > 0:
Sum += N % 10
N //= 10
n = nn
if Sum > s:
ans = 1
while n > 0:
ans *= 10
n //= 10
ans = ans - nn
print(ans)
|
IMPORT FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR ASSIGN VAR VAR ASSIGN VAR NUMBER WHILE VAR NUMBER VAR BIN_OP VAR NUMBER VAR NUMBER ASSIGN VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR VAR NUMBER VAR BIN_OP BIN_OP NUMBER BIN_OP VAR NUMBER VAR VAR NUMBER VAR NUMBER VAR NUMBER ASSIGN VAR VAR ASSIGN VAR NUMBER WHILE VAR NUMBER VAR BIN_OP VAR NUMBER VAR NUMBER ASSIGN VAR VAR IF VAR VAR ASSIGN VAR NUMBER WHILE VAR NUMBER VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
import sys
input = sys.stdin.readline
T = int(input())
for _ in range(T):
n, s = input().split()
n_len = len(n)
s = int(s)
if sum(list(map(int, n))) <= s:
print(0)
continue
e_sum = 0
for count, e in enumerate(map(int, n)):
e_sum += e
if e_sum >= s:
break
if count == 0:
ans = 10**n_len - int(n)
else:
ans = 10 ** (n_len - count) - int(n[count:])
print(ans)
|
IMPORT ASSIGN VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR IF FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR VAR VAR IF VAR VAR IF VAR NUMBER ASSIGN VAR BIN_OP BIN_OP NUMBER VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP BIN_OP NUMBER BIN_OP VAR VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
n = int(input())
for i in range(n):
x = list(map(int, input().split()))
if x[0] % x[1] == 0:
print(0)
else:
b = int(x[0] / x[1])
b = b + 1
bb = b * x[1]
print(bb - x[0])
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF BIN_OP VAR NUMBER VAR NUMBER NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR FUNC_CALL VAR BIN_OP VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR VAR NUMBER
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
def Divisibility_Problem(a, b):
if a % b == 0:
return 0
elif a < b:
return b - a
else:
return b - a % b
n = input()
for i in range(0, int(n)):
a, b = input().split()
print(Divisibility_Problem(int(a), int(b)))
|
FUNC_DEF IF BIN_OP VAR VAR NUMBER RETURN NUMBER IF VAR VAR RETURN BIN_OP VAR VAR RETURN BIN_OP VAR BIN_OP VAR VAR ASSIGN VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
cq = int(input())
ql = list()
fl = list()
for _ in range(cq):
ql.append(tuple(map(int, input().split(" "))))
for a, b in ql:
if a % b == 0:
fl.append(0)
else:
fl.append(b - a % b)
for ans in fl:
print(ans)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR STRING FOR VAR VAR VAR IF BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR BIN_OP VAR VAR FOR VAR VAR EXPR FUNC_CALL VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
for _ in range(int(input())):
n, s = input().split()
n, s = int(n), int(s)
ss = 0
for i in range(len(str(n))):
ss += int(str(n)[i])
if n == s or ss <= s:
print(0)
else:
c = str(n)
a = 0
for i in range(n):
a += int(c[i])
if a >= s:
break
p = 10 ** (len(c) - i)
c = c[i:]
print(p - int(c))
|
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR IF VAR VAR VAR VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR IF VAR VAR ASSIGN VAR BIN_OP NUMBER BIN_OP FUNC_CALL VAR VAR VAR ASSIGN VAR VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR FUNC_CALL VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
for _ in range(int(input())):
n, s = input().split()
s = int(s)
c = 0
for i in n:
c += int(i)
if c <= s:
print(0)
else:
t = len(n)
temp = 0
for i in range(t):
temp += int(n[i])
if temp < s:
continue
else:
new = n[i:]
print(10 ** len(new) - int(new))
break
|
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER FOR VAR VAR VAR FUNC_CALL VAR VAR IF VAR VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR IF VAR VAR ASSIGN VAR VAR VAR EXPR FUNC_CALL VAR BIN_OP BIN_OP NUMBER FUNC_CALL VAR VAR FUNC_CALL VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
for i in range(int(input())):
a, b = map(int, input().split())
if (a / b).is_integer():
print(0)
continue
if b < a:
c = a // b
ans = b * (c + 1) - a
print(ans)
else:
ans = b - a
print(ans)
|
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF FUNC_CALL BIN_OP VAR VAR EXPR FUNC_CALL VAR NUMBER IF VAR VAR ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR BIN_OP VAR NUMBER VAR EXPR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
t = int(input())
for _ in range(t):
a, b = [int(i) for i in input().split()]
c = a % b
print(abs(a - (a - b + c if c else a)))
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR BIN_OP VAR VAR BIN_OP BIN_OP VAR VAR VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
def a(n, s):
if sum(ord(x) - 48 for x in str(n)) <= s:
return 0
return 10 - n % 10 + 10 * a(n // 10 + 1, s) if n % 10 else 10 * a(n // 10, s)
for t in range(int(input())):
print(a(*map(int, input().split())))
|
FUNC_DEF IF FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER VAR FUNC_CALL VAR VAR VAR RETURN NUMBER RETURN BIN_OP VAR NUMBER BIN_OP BIN_OP NUMBER BIN_OP VAR NUMBER BIN_OP NUMBER FUNC_CALL VAR BIN_OP BIN_OP VAR NUMBER NUMBER VAR BIN_OP NUMBER FUNC_CALL VAR BIN_OP VAR NUMBER VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR EXPR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
n = int(input())
while n > 0:
n -= 1
r = list(map(int, input().split()))
res = r[1] - r[0] % r[1] if r[0] % r[1] != 0 else 0
print(res)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR WHILE VAR NUMBER VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR BIN_OP VAR NUMBER VAR NUMBER NUMBER BIN_OP VAR NUMBER BIN_OP VAR NUMBER VAR NUMBER NUMBER EXPR FUNC_CALL VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
import sys
input = lambda: sys.stdin.readline().strip()
ipnut = input
def main(t=1):
for i in range(t):
n, m = map(int, input().split())
print(-n + m * ((n + m - 1) // m))
main(int(input()))
|
IMPORT ASSIGN VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR FUNC_DEF NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR BIN_OP VAR BIN_OP VAR BIN_OP BIN_OP BIN_OP VAR VAR NUMBER VAR EXPR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
T = int(input())
for i in range(T):
n, q = map(int, input().split())
if n % q != 0:
h = n % q
print(q - h)
else:
print(0)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR NUMBER
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
n = int(input())
for i in range(n):
k = 0
a, b = map(lambda x: int(x), input().split())
c = a % b
if a < b:
print(b - a)
elif c == 0:
print(0)
else:
print(b - c)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR BIN_OP VAR VAR IF VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
try:
t = int(input())
i = 0
while i < t:
a, b = list(map(int, input().split()))
c = a % b
if c == 0:
print(0)
else:
print(b - c)
i += 1
except:
pass
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR NUMBER WHILE VAR VAR ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR BIN_OP VAR VAR IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR VAR VAR NUMBER
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
for i in range(int(input())):
a, b = list(map(int, input().split()))
d, e, f = 0, 0, 0
c = a % b
if c == 0:
print(0)
elif a > b:
d = a // b
d += 1
e = b * d
f = e - a
print(f)
else:
print(b - a)
|
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR VAR NUMBER NUMBER NUMBER ASSIGN VAR BIN_OP VAR VAR IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER IF VAR VAR ASSIGN VAR BIN_OP VAR VAR VAR NUMBER ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
def min_moves_divisibility(a, b):
return (b - a % b) % b
def run_alg():
num_cases = int(input())
for _ in range(num_cases):
line_data = input().split(" ")
a = int(line_data[0])
b = int(line_data[1])
print(min_moves_divisibility(a, b))
run_alg()
|
FUNC_DEF RETURN BIN_OP BIN_OP VAR BIN_OP VAR VAR VAR FUNC_DEF ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
import sys
t = int(input())
while t > 0:
t -= 1
input = sys.stdin.readline()
n, s = map(int, input.split())
a = []
x = n
while x > 0:
a.append(x % 10)
x = x // 10
a.reverse()
add, flag = 0, 0
for i in range(len(a)):
add += a[i]
if add > s:
flag = 1
break
if flag == 0:
print(0)
elif a[0] >= s:
print(10 ** len(a) - n)
elif add - a[i] == s:
while a[i - 1] == 0:
i -= 1
num = 0
for x in range(i - 1):
num = num * 10 + a[x]
print((num + 1) * 10 ** (len(a) - i + 1) - n)
else:
num = 0
for x in range(i):
num = num * 10 + a[x]
print((num + 1) * 10 ** (len(a) - i) - n)
|
IMPORT ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR WHILE VAR NUMBER VAR NUMBER ASSIGN VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL VAR ASSIGN VAR LIST ASSIGN VAR VAR WHILE VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR ASSIGN VAR VAR NUMBER NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR VAR VAR IF VAR VAR ASSIGN VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER IF VAR NUMBER VAR EXPR FUNC_CALL VAR BIN_OP BIN_OP NUMBER FUNC_CALL VAR VAR VAR IF BIN_OP VAR VAR VAR VAR WHILE VAR BIN_OP VAR NUMBER NUMBER VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR NUMBER VAR VAR EXPR FUNC_CALL VAR BIN_OP BIN_OP BIN_OP VAR NUMBER BIN_OP NUMBER BIN_OP BIN_OP FUNC_CALL VAR VAR VAR NUMBER VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR NUMBER VAR VAR EXPR FUNC_CALL VAR BIN_OP BIN_OP BIN_OP VAR NUMBER BIN_OP NUMBER BIN_OP FUNC_CALL VAR VAR VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
def f(n):
r = 0
while n:
r += n % 10
n //= 10
return r
def solve():
n, s = (int(x) for x in input().split())
orig = n
mod = 10
while f(n) > s:
while n % mod == 0:
mod *= 10
n += mod - n % mod
print(n - orig)
t = int(input())
for _ in range(t):
solve()
|
FUNC_DEF ASSIGN VAR NUMBER WHILE VAR VAR BIN_OP VAR NUMBER VAR NUMBER RETURN VAR FUNC_DEF ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR ASSIGN VAR NUMBER WHILE FUNC_CALL VAR VAR VAR WHILE BIN_OP VAR VAR NUMBER VAR NUMBER VAR BIN_OP VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
from sys import stdin, stdout
def read():
x = stdin.readline().rstrip()
return x
def __main__():
t = int(read())
for t0 in range(t):
y = read()
a, b = map(int, y.split())
if a % b == 0:
stdout.write("0\n")
else:
d = b * (a // b + 1) - a
d_out = str(d) + "\n"
stdout.write(d_out)
__main__()
|
FUNC_DEF ASSIGN VAR FUNC_CALL FUNC_CALL VAR RETURN VAR FUNC_DEF ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL VAR IF BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR STRING ASSIGN VAR BIN_OP BIN_OP VAR BIN_OP BIN_OP VAR VAR NUMBER VAR ASSIGN VAR BIN_OP FUNC_CALL VAR VAR STRING EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
t = int(input())
while t:
t -= 1
n, s = input().split()
on = int(n)
n, s = [0] + [int(i) for i in n], int(s)
sm = sum(int(i) for i in n)
prv = 0
if sm > s:
for i in range(len(n) - 1, -1, -1):
if n[i] != 9 and sm - prv + 1 <= s:
sm = 0
n[i] += 1
break
prv += n[i]
n[i] = 0
n = int("".join([str(i) for i in n]))
print(n - on)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR WHILE VAR VAR NUMBER ASSIGN VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR VAR BIN_OP LIST NUMBER FUNC_CALL VAR VAR VAR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR VAR ASSIGN VAR NUMBER IF VAR VAR FOR VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER NUMBER NUMBER IF VAR VAR NUMBER BIN_OP BIN_OP VAR VAR NUMBER VAR ASSIGN VAR NUMBER VAR VAR NUMBER VAR VAR VAR ASSIGN VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL STRING FUNC_CALL VAR VAR VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
n = int(input())
for i in range(n):
cnt = 0
a, b = input().split()
a = int(a)
b = int(b)
if a % b == 0:
print(cnt)
elif a > b:
print((a // b + 1) * b - a)
else:
print(b - a)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR IF BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR VAR IF VAR VAR EXPR FUNC_CALL VAR BIN_OP BIN_OP BIN_OP BIN_OP VAR VAR NUMBER VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
repetition = int(input())
for times in range(repetition):
dividend, divisor = map(int, input().split())
multiple = 1
if dividend % divisor == 0:
print("0")
elif dividend < divisor:
print(divisor - dividend)
else:
starting_point = dividend // divisor + 1
remainder = divisor * starting_point - dividend
print(remainder)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER IF BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR STRING IF VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR VAR EXPR FUNC_CALL VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
t = int(input())
answer = []
for i in range(t):
a, b = list(map(int, input().split()))
ans = b - a % b if a % b != 0 else 0
answer.append(str(ans))
print("\n".join(answer))
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR BIN_OP VAR VAR NUMBER BIN_OP VAR BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR FUNC_CALL STRING VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
n = int(input())
l = []
for i in range(n):
a, b = map(int, input().split())
k = 0
if b == 0:
l.append(k)
elif a % b == 0:
l.append(k)
else:
k = (a // b + 1) * b - a
l.append(k)
for i in range(n):
print(l[i])
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR VAR IF BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP BIN_OP BIN_OP BIN_OP VAR VAR NUMBER VAR VAR EXPR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
def find_moves(a, b):
return b - a % b
cases = int(input())
for i in range(cases):
numbers = input().split()
if int(numbers[0]) % int(numbers[1]) == 0:
print(0)
else:
print(find_moves(int(numbers[0]), int(numbers[1])))
|
FUNC_DEF RETURN BIN_OP VAR BIN_OP VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL FUNC_CALL VAR IF BIN_OP FUNC_CALL VAR VAR NUMBER FUNC_CALL VAR VAR NUMBER NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR VAR NUMBER FUNC_CALL VAR VAR NUMBER
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
t = int(input())
def sumOfDigits(num):
sum = 0
while num > 0:
last = num % 10
num = num // 10
sum += last
return sum
while t > 0:
n, s = input().split(" ")
n = int(n)
s = int(s)
ans = 0
inc = 0
while True:
if sumOfDigits(n) <= s:
break
last = n % 10
ans += 10**inc * (10 - last)
n += 10 - last
n = n // 10
inc += 1
print(ans)
t -= 1
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_DEF ASSIGN VAR NUMBER WHILE VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER VAR VAR RETURN VAR WHILE VAR NUMBER ASSIGN VAR VAR FUNC_CALL FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE NUMBER IF FUNC_CALL VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER VAR BIN_OP BIN_OP NUMBER VAR BIN_OP NUMBER VAR VAR BIN_OP NUMBER VAR ASSIGN VAR BIN_OP VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR VAR VAR NUMBER
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
def solve():
A, B = [int(s) for s in input().split()]
return -A % B
T = int(input())
for t in range(T):
ans = solve()
print(ans)
|
FUNC_DEF ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR RETURN BIN_OP VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR EXPR FUNC_CALL VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
for i in range(int(input())):
x, y = map(int, input().split())
if y > x:
print(y - x)
elif x % y == 0:
print(0)
elif x // y * y < x:
print(y * (x // y + 1) - x)
|
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR IF BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER IF BIN_OP BIN_OP VAR VAR VAR VAR EXPR FUNC_CALL VAR BIN_OP BIN_OP VAR BIN_OP BIN_OP VAR VAR NUMBER VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
t = int(input())
while t != 0:
m, n = map(int, input().split())
q = m / n
r = m % n
if r == 0:
ans = 0
else:
new = (int(q) + 1) * n
ans = new - m
print(ans)
t -= 1
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR WHILE VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR VAR IF VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR BIN_OP BIN_OP FUNC_CALL VAR VAR NUMBER VAR ASSIGN VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR VAR VAR NUMBER
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
t = int(input())
i = 0
while i < t:
s = input()
s = s.split(" ")
s[0] = int(s[0])
s[1] = int(s[1])
if s[0] % s[1] == 0:
print("0")
else:
a = s[0] // s[1] + 1
a = a * s[1]
a = a - s[0]
print(a)
i += 1
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR NUMBER WHILE VAR VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR STRING ASSIGN VAR NUMBER FUNC_CALL VAR VAR NUMBER ASSIGN VAR NUMBER FUNC_CALL VAR VAR NUMBER IF BIN_OP VAR NUMBER VAR NUMBER NUMBER EXPR FUNC_CALL VAR STRING ASSIGN VAR BIN_OP BIN_OP VAR NUMBER VAR NUMBER NUMBER ASSIGN VAR BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR VAR VAR NUMBER
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
tests = []
ans = 0
def sumofD(num) -> int:
sum = 0
while num > 0:
last = num % 10
sum += last
num = num // 10
return sum
for i in range(int(input())):
tests.append([int(j) for j in input().split()])
for i in tests:
n = i[0]
s = i[1]
if sumofD(n) <= s:
print("0")
continue
p = 1
for i in range(18):
dig = n // p % 10
add = p * ((10 - dig) % 10)
n += add
ans += add
if sumofD(n) <= s:
break
p = p * 10
print(ans)
ans = 0
|
ASSIGN VAR LIST ASSIGN VAR NUMBER FUNC_DEF ASSIGN VAR NUMBER WHILE VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER VAR VAR ASSIGN VAR BIN_OP VAR NUMBER RETURN VAR VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR FOR VAR VAR ASSIGN VAR VAR NUMBER ASSIGN VAR VAR NUMBER IF FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR STRING ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP VAR BIN_OP BIN_OP NUMBER VAR NUMBER VAR VAR VAR VAR IF FUNC_CALL VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR ASSIGN VAR NUMBER
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
n = int(input())
l = []
for i in range(n):
p = list(map(int, input().split()))
l += [p]
for i in l:
if i[0] % i[-1] == 0:
print(0)
else:
q = i[0] // i[-1]
w = (q + 1) * i[-1]
e = w - i[0]
print(e)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR VAR LIST VAR FOR VAR VAR IF BIN_OP VAR NUMBER VAR NUMBER NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
n = int(input())
a = []
b = []
for i in range(n):
Input = list(map(int, input().split(" ")))
a.append(Input[0])
b.append(Input[1])
for i in range(n):
Output = b[i] - a[i] % b[i]
print(0 if a[i] % b[i] == 0 else Output)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR STRING EXPR FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR VAR NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR VAR BIN_OP VAR VAR VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR VAR VAR NUMBER NUMBER VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
def getSteps(a, b):
if a % b == 0:
return 0
return b - a % b
n = int(input())
answers = []
for i in range(n):
a, b = list(map(int, input().split()))
answers.append(getSteps(a, b))
for ans in answers:
print(ans)
|
FUNC_DEF IF BIN_OP VAR VAR NUMBER RETURN NUMBER RETURN BIN_OP VAR BIN_OP VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR FOR VAR VAR EXPR FUNC_CALL VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
t = int(input())
list_step = []
for i in range(t):
a, b = input().split()
step = 0
if int(a) < int(b):
step = int(b) - int(a)
elif int(a) % int(b) == 0:
step = 0
else:
factor = int(a) // int(b) + 1
step = int(b) * factor - int(a)
list_step.append(step)
for i in range(t):
print(list_step[i])
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER IF FUNC_CALL VAR VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR VAR IF BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR BIN_OP BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
n = int(input())
c = 0
for i in range(n):
s1, s2 = list(map(int, input().split()))
s = s1 % s2
if s != 0:
print(s2 - s)
else:
print("0")
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR BIN_OP VAR VAR IF VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR STRING
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
for _ in range(int(input())):
n, s = map(int, input().split())
lin = n
d = []
su = 0
while n != 0:
su += n % 10
d.append(n % 10)
n //= 10
d.reverse()
m = len(d)
p = 0
i = 0
while i < m:
p += d[i]
if p >= s:
break
i += 1
a = 0
if i == 0:
a = 10**m
else:
b = 0
i -= 1
j = i
d[i] += 1
q = 1
while i >= 0:
b += d[i] * q
q *= 10
i -= 1
a = b * 10 ** (m - j - 1)
if su <= s:
print(0)
else:
print(a - lin)
|
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR ASSIGN VAR LIST ASSIGN VAR NUMBER WHILE VAR NUMBER VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR VAR VAR VAR IF VAR VAR VAR NUMBER ASSIGN VAR NUMBER IF VAR NUMBER ASSIGN VAR BIN_OP NUMBER VAR ASSIGN VAR NUMBER VAR NUMBER ASSIGN VAR VAR VAR VAR NUMBER ASSIGN VAR NUMBER WHILE VAR NUMBER VAR BIN_OP VAR VAR VAR VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP VAR BIN_OP NUMBER BIN_OP BIN_OP VAR VAR NUMBER IF VAR VAR EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
t = int(input())
for _ in range(t):
n, s = input().split()
s = int(s)
n = int(n)
st = str(n)
su = 0
ans = n
digsum = sum([(ord(i) - ord("0")) for i in st])
if digsum <= s:
print(0)
continue
for i in range(len(st)):
if su + ord(st[i]) - ord("0") < s:
su += ord(st[i]) - ord("0")
else:
left = len(st[i:])
if len(st[:i]) == 0:
q = 0
else:
q = int(st[:i])
ans = (q + 1) * 10**left
break
print(ans - n)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR VAR ASSIGN VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR STRING VAR VAR IF VAR VAR EXPR FUNC_CALL VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF BIN_OP BIN_OP VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR STRING VAR VAR BIN_OP FUNC_CALL VAR VAR VAR FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR VAR VAR IF FUNC_CALL VAR VAR VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR NUMBER BIN_OP NUMBER VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
t = int(input())
for i in range(1, t + 1):
a, b = map(int, input().split(" "))
modulus = a % b
if modulus == 0:
print(0)
else:
value = b - modulus
print(value)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR STRING ASSIGN VAR BIN_OP VAR VAR IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
for i in range(int(input())):
n, s = map(int, input().split())
res = "0"
while sum(int(x) for x in str(n)) > s:
res = str((10 - n % 10) % 10) + res
n = n // 10 + 1 * (n % 10 != 0)
print(int(res) // 10)
|
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR STRING WHILE FUNC_CALL VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR ASSIGN VAR BIN_OP FUNC_CALL VAR BIN_OP BIN_OP NUMBER BIN_OP VAR NUMBER NUMBER VAR ASSIGN VAR BIN_OP BIN_OP VAR NUMBER BIN_OP NUMBER BIN_OP VAR NUMBER NUMBER EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
def ssum(s):
return sum(map(int, list(s)))
for _ in range(int(input())):
n, s = list(map(int, input().split()))
ns = str(n)
if ssum(ns) <= s:
print(0)
continue
ans = float("inf")
for i in range(0, len(ns)):
x = 1
if i > 0:
x = int(ns[:i]) + 1
acc = 0
while x > 0:
acc += x % 10
x //= 10
if acc > s:
continue
y = 10 ** (len(ns) - i) - int(ns[i:])
ans = min(ans, y)
print(ans)
|
FUNC_DEF RETURN FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR IF FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR FUNC_CALL VAR STRING FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR ASSIGN VAR NUMBER IF VAR NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR VAR VAR NUMBER ASSIGN VAR NUMBER WHILE VAR NUMBER VAR BIN_OP VAR NUMBER VAR NUMBER IF VAR VAR ASSIGN VAR BIN_OP BIN_OP NUMBER BIN_OP FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
i = int(input())
for x in range(i):
s = input().split()
a = int(s[0])
b = int(s[1])
if a < b:
print(b - a)
elif a % b == 0:
print(0)
else:
print(int(s[1]) - int(s[0]) % int(s[1]))
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR NUMBER IF VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR IF BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER BIN_OP FUNC_CALL VAR VAR NUMBER FUNC_CALL VAR VAR NUMBER
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
t = 1
t = int(input())
for _ in range(t):
n, s = map(int, input().split())
su = 0
arr = []
for i in str(n):
su += int(i)
arr.append(int(i))
if su <= s:
print(0)
continue
else:
arr = arr[::-1]
ptr = 0
while su > s:
tmp = arr[ptr]
su -= tmp
su += 1
arr[ptr] = 0
if tmp == 0:
ptr += 1
continue
if ptr > 20:
break
if ptr < len(arr) - 1:
arr[ptr + 1] += 1
for i in range(len(arr) - 1):
if arr[i] >= 10:
arr[i + 1] += arr[i] - 9
arr[i] = 0
if arr[-1] >= 10:
arr.append(arr[-1] - 9)
arr[-2] = 0
else:
arr.append(1)
su = 0
for i in arr:
su += i
ptr += 1
ans = ""
arr = arr[::-1]
for i in arr:
ans += str(i)
print(int(ans) - n)
|
ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR ASSIGN VAR VAR VAR VAR VAR VAR NUMBER ASSIGN VAR VAR NUMBER IF VAR NUMBER VAR NUMBER IF VAR NUMBER IF VAR BIN_OP FUNC_CALL VAR VAR NUMBER VAR BIN_OP VAR NUMBER NUMBER FOR VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER IF VAR VAR NUMBER VAR BIN_OP VAR NUMBER BIN_OP VAR VAR NUMBER ASSIGN VAR VAR NUMBER IF VAR NUMBER NUMBER EXPR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER ASSIGN VAR NUMBER NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR VAR VAR VAR NUMBER ASSIGN VAR STRING ASSIGN VAR VAR NUMBER FOR VAR VAR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
size = int(input())
remainder = 0
for i in range(size):
first, second = input().split()
first = int(first)
second = int(second)
if first < second:
print(second - first)
elif first % second == 0:
print(0)
else:
remainder = first % second
print(second - remainder)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR IF VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR IF BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
for _ in range(int(input())):
n, total = map(int, input().split())
s = list(str(n)[::-1])
for i in range(len(s)):
s[i] = int(s[i])
val = sum(s)
if val <= total:
print(0)
continue
if total <= s[-1]:
val = 10 ** len(s) - n
print(val)
continue
i = len(s) - 1
total_so_far = s[i]
while i > 0 and total_so_far < total:
i -= 1
total_so_far += s[i]
i += 1
val = 0
j = i - 1
while j > -1:
val *= 10
val += s[j]
j -= 1
print(10**i - val)
|
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR IF VAR VAR EXPR FUNC_CALL VAR NUMBER IF VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP NUMBER FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER ASSIGN VAR VAR VAR WHILE VAR NUMBER VAR VAR VAR NUMBER VAR VAR VAR VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER WHILE VAR NUMBER VAR NUMBER VAR VAR VAR VAR NUMBER EXPR FUNC_CALL VAR BIN_OP BIN_OP NUMBER VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
n = int(input())
for i in range(n):
a1, a2 = input().split()
b = int(a1)
a2 = int(a2)
a1 = int(a1)
if a1 < a2:
print(a2 - a1)
elif a1 % a2 == 0:
print(0)
else:
print(a2 - a1 % a2)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR IF VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR IF BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR BIN_OP VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
t = int(input())
for _ in range(t):
a, b = map(int, input().split())
s = 0
ans = 0
a = str(a)
n = len(a)
all = 0
for i in range(n):
s += int(a[i])
if a[i] == 0:
j += 1
if s >= b:
ans = 10 ** (n - i) - int(a[i:])
if i < n - 1:
all = s + int(a[i + 1 :])
elif i == n - 1:
all = s
break
if all == b:
ans = 0
print(ans)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR IF VAR VAR NUMBER VAR NUMBER IF VAR VAR ASSIGN VAR BIN_OP BIN_OP NUMBER BIN_OP VAR VAR FUNC_CALL VAR VAR VAR IF VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER IF VAR BIN_OP VAR NUMBER ASSIGN VAR VAR IF VAR VAR ASSIGN VAR NUMBER EXPR FUNC_CALL VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
def main():
answer = ""
for _ in range(int(input())):
a, b = list(map(int, input().split(" ")))
if a % b == 0:
answer += "0 \n"
else:
a = a % b
answer += str(b - a) + "\n"
print(answer)
main()
|
FUNC_DEF ASSIGN VAR STRING FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR STRING IF BIN_OP VAR VAR NUMBER VAR STRING ASSIGN VAR BIN_OP VAR VAR VAR BIN_OP FUNC_CALL VAR BIN_OP VAR VAR STRING EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
x = int(input())
for i in range(x):
y = str(input())
x = y.split(" ")
a = int(x[0])
b = int(x[1])
increament = 0
if a % b == 0:
print(0)
else:
print(b * (int(a / b) + 1) - a)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR NUMBER IF BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR BIN_OP BIN_OP VAR BIN_OP FUNC_CALL VAR BIN_OP VAR VAR NUMBER VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
from sys import stdin, stdout
t = int(stdin.readline())
for _ in range(t):
inp = stdin.readline().split()
a, b = int(inp[0]), int(inp[1])
cnt = 0
if not a % b:
print(cnt)
continue
print(abs(a % b - b))
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR NUMBER FUNC_CALL VAR VAR NUMBER ASSIGN VAR NUMBER IF BIN_OP VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
def main():
t = int(input())
for i in range(t):
a, b = [int(z) for z in input().split()]
if a < b:
print(b - a)
else:
j = a % b
if j == 0:
print(0)
else:
print(b - j)
main()
|
FUNC_DEF ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR IF VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR VAR IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
test = int(input())
def digitsum(n):
sum = 0
while int(n) > 0:
sum += int(n) % 10
n = int(n) - int(n) % 10
n = int(n) // 10
return sum
for i in range(test):
n, s = input().split()
if digitsum(n) <= int(s):
print("0")
elif int(s) <= int(n[0]):
wynik = "1"
while int(wynik) < int(n):
wynik += "0"
print(int(wynik) - int(n))
else:
target = ""
ss = 0
tmp = 0
while int(s) > ss + int(n[tmp]):
ss += int(n[tmp])
tmp += 1
if tmp > len(n) - 1:
tmp = len(n)
break
for i in range(tmp):
target += str(n[i])
targett = int(target)
targett += 1
targettt = str(targett)
while int(targettt) < int(n):
targettt += "0"
print(int(targettt) - int(n))
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_DEF ASSIGN VAR NUMBER WHILE FUNC_CALL VAR VAR NUMBER VAR BIN_OP FUNC_CALL VAR VAR NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR VAR BIN_OP FUNC_CALL VAR VAR NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER RETURN VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL FUNC_CALL VAR IF FUNC_CALL VAR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR STRING IF FUNC_CALL VAR VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR STRING WHILE FUNC_CALL VAR VAR FUNC_CALL VAR VAR VAR STRING EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR VAR ASSIGN VAR STRING ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE FUNC_CALL VAR VAR BIN_OP VAR FUNC_CALL VAR VAR VAR VAR FUNC_CALL VAR VAR VAR VAR NUMBER IF VAR BIN_OP FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR WHILE FUNC_CALL VAR VAR FUNC_CALL VAR VAR VAR STRING EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
def sum_digits(n):
sw = 0
while n:
sw += n % 10
n //= 10
return sw
for _ in range(int(input())):
n, s = list(map(int, input().split()))
d = list(map(int, str(n)))
if sum(d) <= s:
print(0)
continue
su = 0
new = []
pl = 0
for i in range(len(d)):
su += d[i]
if su >= s:
new = int("".join(map(str, d[: i + 1])))
pl = "0" * (len(d) - i - 1)
break
new += 1
while sum_digits(new) > s:
new += 1
print(int(str(new) + pl) - n)
|
FUNC_DEF ASSIGN VAR NUMBER WHILE VAR VAR BIN_OP VAR NUMBER VAR NUMBER RETURN VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR IF FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR LIST ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR VAR VAR IF VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL STRING FUNC_CALL VAR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP STRING BIN_OP BIN_OP FUNC_CALL VAR VAR VAR NUMBER VAR NUMBER WHILE FUNC_CALL VAR VAR VAR VAR NUMBER EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
n = int(input())
numbers = []
result = []
for i in range(n):
line = list(map(int, input().split(" ")))
numbers.append(line)
for i in numbers:
real = int(i[0] / i[1])
res = i[1] * (real + int(1)) - i[0]
if i[1] == res:
result.append(0)
else:
result.append(res)
print(*result, sep="\n")
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR STRING EXPR FUNC_CALL VAR VAR FOR VAR VAR ASSIGN VAR FUNC_CALL VAR BIN_OP VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR NUMBER BIN_OP VAR FUNC_CALL VAR NUMBER VAR NUMBER IF VAR NUMBER VAR EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR STRING
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
n = int(input())
for i in range(n):
a = list(map(int, input().rstrip().split()))
resto = a[0] % a[-1]
if resto > 0:
print(a[-1] - resto)
else:
print(resto)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL FUNC_CALL VAR ASSIGN VAR BIN_OP VAR NUMBER VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR NUMBER VAR EXPR FUNC_CALL VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
def hod(a, b):
if a > b:
x = (b - a % b) % b
else:
x = b - a
return x
t = int(input())
for i in range(t):
a, b = map(int, input().split())
print(hod(a, b))
|
FUNC_DEF IF VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR BIN_OP VAR VAR VAR ASSIGN VAR BIN_OP VAR VAR RETURN VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
def sum(n):
s = 0
while n > 0:
s += n % 10
n = n // 10
return s
def solve(n, s):
ans = 0
place = 1
while True:
currsum = sum(n)
if currsum <= s:
return ans
r = n % (place * 10) // place
if r == 0:
place *= 10
continue
n += (10 - r) * place
ans += place * (10 - r)
place *= 10
return ans
t = int(input())
while t > 0:
t -= 1
inp = input()
inp = inp.split(" ")
n = int(inp[0])
s = int(inp[1])
ans = solve(n, s)
print(ans)
|
FUNC_DEF ASSIGN VAR NUMBER WHILE VAR NUMBER VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER RETURN VAR FUNC_DEF ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE NUMBER ASSIGN VAR FUNC_CALL VAR VAR IF VAR VAR RETURN VAR ASSIGN VAR BIN_OP BIN_OP VAR BIN_OP VAR NUMBER VAR IF VAR NUMBER VAR NUMBER VAR BIN_OP BIN_OP NUMBER VAR VAR VAR BIN_OP VAR BIN_OP NUMBER VAR VAR NUMBER RETURN VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR WHILE VAR NUMBER VAR NUMBER ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
t = int(input())
for i in range(t):
a, b = map(int, input().split())
if a > b and a % b != 0:
d = a % b
print(b - d)
elif a < b:
print(b - a)
else:
print("0")
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF VAR VAR BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR IF VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR STRING
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
def divisiblity_check(num1, num2):
if num1 % num2 == 0:
print("0")
else:
rem = num1 // num2
ans = (rem + 1) * num2 - num1
print(ans)
def main():
test_case = int(input())
while test_case != 0:
a, b = map(int, input().split(" "))
divisiblity_check(a, b)
test_case = test_case - 1
main()
|
FUNC_DEF IF BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR STRING ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP BIN_OP BIN_OP VAR NUMBER VAR VAR EXPR FUNC_CALL VAR VAR FUNC_DEF ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR WHILE VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR STRING EXPR FUNC_CALL VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
n = int(input())
for i in range(n):
arr = input().split(" ")
count = 0
a = int(arr[0])
b = int(arr[1])
if a <= b:
print(abs(a - b))
elif a % b != 0:
c = a // b + 1
print(int(c * b - a))
else:
print(count)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL FUNC_CALL VAR STRING ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR NUMBER IF VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR BIN_OP VAR VAR IF BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR VAR EXPR FUNC_CALL VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
for _ in range(int(input())):
n, s = input().split()
s = int(s)
a = [int(i) for i in list(n)[::-1]]
a.append(0)
x = sum(a)
i = 0
res = 0
y = len(a) - 1
while x > s and i < y:
if a[i] != 0:
a[i + 1] += 1
res += (10 - a[i]) * 10**i
x -= a[i] - 1
i += 1
print(res)
|
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER WHILE VAR VAR VAR VAR IF VAR VAR NUMBER VAR BIN_OP VAR NUMBER NUMBER VAR BIN_OP BIN_OP NUMBER VAR VAR BIN_OP NUMBER VAR VAR BIN_OP VAR VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
res = []
t = int(input())
for i in range(t):
a, b = [int(x) for x in input().split()]
curr = a % b
if curr == 0:
res.append(0)
else:
res.append(min(abs(curr - b), abs(b - curr)))
for item in res:
print(item)
|
ASSIGN VAR LIST ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR BIN_OP VAR VAR IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR BIN_OP VAR VAR FUNC_CALL VAR BIN_OP VAR VAR FOR VAR VAR EXPR FUNC_CALL VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
from sys import stdin, stdout
def suum(S):
return sum(map(int, list(str(S))))
def find(S, K):
S1 = S
i = 0
while suum(S) > K:
S += 10**i - S % 10**i
i += 1
return S - S1
def main():
for _ in range(int(stdin.readline())):
N, S = list(map(int, stdin.readline().split()))
print(find(N, S))
main()
|
FUNC_DEF RETURN FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_DEF ASSIGN VAR VAR ASSIGN VAR NUMBER WHILE FUNC_CALL VAR VAR VAR VAR BIN_OP BIN_OP NUMBER VAR BIN_OP VAR BIN_OP NUMBER VAR VAR NUMBER RETURN BIN_OP VAR VAR FUNC_DEF FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
t = int(input())
while t:
a, b = [int(a) for a in input().split()]
if a % b == 0:
diff = 0
else:
diff = b - a % b
print(diff)
t -= 1
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR WHILE VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR IF BIN_OP VAR VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR BIN_OP VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR VAR VAR NUMBER
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
def inp():
return int(input())
def inlt():
return list(map(int, input().split()))
def insr():
s = input()
return list(s[: len(s)])
def invr():
return map(int, input().split())
entries = inp()
for i in range(entries):
l = inlt()
n = l[0]
k = l[1]
c = k
if n % k == 0:
print(0)
else:
m = n // k * k + k
print(m - n)
|
FUNC_DEF RETURN FUNC_CALL VAR FUNC_CALL VAR FUNC_DEF RETURN FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR FUNC_DEF ASSIGN VAR FUNC_CALL VAR RETURN FUNC_CALL VAR VAR FUNC_CALL VAR VAR FUNC_DEF RETURN FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR VAR NUMBER ASSIGN VAR VAR NUMBER ASSIGN VAR VAR IF BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR BIN_OP BIN_OP BIN_OP VAR VAR VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
t = int(input())
for i in range(t):
a, b = map(int, input().split())
li = list(str(a))
li = list(map(int, li))
if sum(li) <= b:
print(0)
else:
diff = sum(li) - b
total = 0
carry = 0
for j in range(len(li) - 1, -1, -1):
val = li[j] + carry
x = (10 - val) * 10 ** (len(li) - j - 1)
total += x
carry = 1
li[j] = 0
if sum(li) + carry <= b:
break
print(total)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR IF FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER NUMBER NUMBER ASSIGN VAR BIN_OP VAR VAR VAR ASSIGN VAR BIN_OP BIN_OP NUMBER VAR BIN_OP NUMBER BIN_OP BIN_OP FUNC_CALL VAR VAR VAR NUMBER VAR VAR ASSIGN VAR NUMBER ASSIGN VAR VAR NUMBER IF BIN_OP FUNC_CALL VAR VAR VAR VAR EXPR FUNC_CALL VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
t = int(input())
while t:
t = t - 1
n, s = map(int, input().split())
n = str(n)
summ = 0
for i in range(len(n)):
summ += int(n[i])
if summ <= s:
print(0)
else:
summ = 0
for i in range(len(n)):
summ += int(n[i])
if summ >= s:
n2 = n[i : len(n)]
break
minusstr = "1"
minusstr += "0" * len(n2)
n2 = int(n2)
print(int(minusstr) - n2)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR WHILE VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR IF VAR VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR IF VAR VAR ASSIGN VAR VAR VAR FUNC_CALL VAR VAR ASSIGN VAR STRING VAR BIN_OP STRING FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
import sys
input = sys.stdin.readline
I = lambda: list(map(int, input().split()))
(t,) = I()
for _ in range(t):
a, s = I()
an = 0
p = str(a)
cr = 0
if sum(int(i) for i in p) <= s:
an = a
else:
for i in range(len(p)):
cr += int(p[i])
if cr >= s:
an = (an + 1) * 10 ** (len(p) - i)
break
an = an * 10 + int(p[i])
print(an - a)
|
IMPORT ASSIGN VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER IF FUNC_CALL VAR FUNC_CALL VAR VAR VAR VAR VAR ASSIGN VAR VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR IF VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR NUMBER BIN_OP NUMBER BIN_OP FUNC_CALL VAR VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR NUMBER FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
t = int(input())
for _ in range(t):
a, b = map(int, input().split())
if a < b:
print(b - a)
elif a >= b:
num = a % b
if num == 0:
print(num)
else:
num2 = b - num
ans = num2
print(ans)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR IF VAR VAR ASSIGN VAR BIN_OP VAR VAR IF VAR NUMBER EXPR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR VAR EXPR FUNC_CALL VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
def solution(x):
ans = []
for i in range(len(x)):
a, b = x[i]
if a % b == 0:
c = 0
else:
c = b - a % b
ans.append(c)
return ans
def main():
t = int(input())
x = []
for i in range(t):
a = list(map(int, input().split()))
x.append(a)
ans = solution(x)
for i in range(len(ans)):
print(ans[i])
main()
|
FUNC_DEF ASSIGN VAR LIST FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR VAR IF BIN_OP VAR VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR BIN_OP VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR VAR RETURN VAR FUNC_DEF ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
for _ in range(int(input())):
n, s = list(map(int, input().split()))
arr = [n]
p = 1
for i in range(19):
num = n // p
num = num * p
num += p
p *= 10
arr.append(num)
ans = 10**20
for x in arr:
t = x
su = 0
while t:
su += t % 10
t = t // 10
if su <= s:
ans = min(ans, x - n)
print(ans)
|
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR LIST VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR VAR VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP NUMBER NUMBER FOR VAR VAR ASSIGN VAR VAR ASSIGN VAR NUMBER WHILE VAR VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER IF VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
for t in range(int(input())):
n, s = map(int, input().split())
num = list(str(n))
if sum(map(int, num)) <= s:
print("0")
continue
final_ans = list("1" + "0" * len(num))
res, idx = 0, len(num) - 1
while num != final_ans:
num[idx] = "0"
idx -= 1
while idx >= 0 and num[idx] == "9":
num[idx] = "0"
idx -= 1
if idx < 0:
res += int("".join(final_ans)) - n
break
num[idx] = str(int(num[idx]) + 1)
res += int("".join(num)) - n
n = int("".join(num))
if sum(map(int, num)) <= s:
break
print(res)
|
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF FUNC_CALL VAR FUNC_CALL VAR VAR VAR VAR EXPR FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR BIN_OP STRING BIN_OP STRING FUNC_CALL VAR VAR ASSIGN VAR VAR NUMBER BIN_OP FUNC_CALL VAR VAR NUMBER WHILE VAR VAR ASSIGN VAR VAR STRING VAR NUMBER WHILE VAR NUMBER VAR VAR STRING ASSIGN VAR VAR STRING VAR NUMBER IF VAR NUMBER VAR BIN_OP FUNC_CALL VAR FUNC_CALL STRING VAR VAR ASSIGN VAR VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR VAR NUMBER VAR BIN_OP FUNC_CALL VAR FUNC_CALL STRING VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL STRING VAR IF FUNC_CALL VAR FUNC_CALL VAR VAR VAR VAR EXPR FUNC_CALL VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
n = int(input(""))
l = []
for i in range(n):
s = input("")
a, b = s.split(" ")
a = int(a)
b = int(b)
if a % b == 0:
l.append(0)
else:
temp = a % b
l.append(b - temp)
for i in l:
print(i)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR STRING ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR STRING ASSIGN VAR VAR FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR IF BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR FOR VAR VAR EXPR FUNC_CALL VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
import sys
input = sys.stdin.readline
t = int(input())
for tests in range(t):
n, s = map(int, input().split())
LIST = [(n, 0)]
ANS = 0
for i in range(1, 20):
x = (10**i - n % 10**i) % 10**i
n += x
ANS += x
LIST.append((n, ANS))
ANSMIN = 1 << 60
for x, ans in LIST:
if sum(map(int, list(str(x)))) <= s:
ANSMIN = min(ANSMIN, ans)
print(ANSMIN)
|
IMPORT ASSIGN VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR LIST VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER NUMBER ASSIGN VAR BIN_OP BIN_OP BIN_OP NUMBER VAR BIN_OP VAR BIN_OP NUMBER VAR BIN_OP NUMBER VAR VAR VAR VAR VAR EXPR FUNC_CALL VAR VAR VAR ASSIGN VAR BIN_OP NUMBER NUMBER FOR VAR VAR VAR IF FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
t = int(input())
def summ(ss):
s1 = 0
while ss > 0:
s1 += ss % 10
ss = ss // 10
return s1
def last(s, n):
return int(s[len(s) - n :])
while t > 0:
s, n = [int(x) for x in input().split()]
s1 = summ(s)
if s1 <= n:
print(0)
elif s1 > n:
add = 10
k = 1
while s1 > n:
s1 = summ(s + add - last(str(s), k))
if s1 <= n:
break
add *= 10
k += 1
print(add - last(str(s), k))
t -= 1
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_DEF ASSIGN VAR NUMBER WHILE VAR NUMBER VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER RETURN VAR FUNC_DEF RETURN FUNC_CALL VAR VAR BIN_OP FUNC_CALL VAR VAR VAR WHILE VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR IF VAR VAR EXPR FUNC_CALL VAR NUMBER IF VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR ASSIGN VAR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR IF VAR VAR VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR VAR NUMBER
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
def func(num1, num2):
if num1 % num2 == 0:
return 0
else:
k = int((int(num1 / num2) + 1) * num2 - num1)
return k
n = int(input())
li = []
for i in range(n):
num1, num2 = input().split()
num1 = int(num1)
num2 = int(num2)
li.append(func(num1, num2))
for i in li:
print(i)
|
FUNC_DEF IF BIN_OP VAR VAR NUMBER RETURN NUMBER ASSIGN VAR FUNC_CALL VAR BIN_OP BIN_OP BIN_OP FUNC_CALL VAR BIN_OP VAR VAR NUMBER VAR VAR RETURN VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR FOR VAR VAR EXPR FUNC_CALL VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
answer = []
for _ in range(int(input())):
a, b = map(int, input().split())
moves = 0
if a % b != 0:
if a < b:
moves = b - a
if a > b:
aux = int(a / b)
moves = b * (aux + 1) - a
answer.append(moves)
for item in answer:
print(item)
|
ASSIGN VAR LIST FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER IF BIN_OP VAR VAR NUMBER IF VAR VAR ASSIGN VAR BIN_OP VAR VAR IF VAR VAR ASSIGN VAR FUNC_CALL VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR BIN_OP VAR NUMBER VAR EXPR FUNC_CALL VAR VAR FOR VAR VAR EXPR FUNC_CALL VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
t = int(input())
if 1 <= t <= 10**4:
for i in range(t):
a, b = input().split()
a = int(a)
b = int(b)
if a % b == 0:
print(0)
else:
p = a // b + 1
q = p * b - a
print(q)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR IF NUMBER VAR BIN_OP NUMBER NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR IF BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR VAR EXPR FUNC_CALL VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
test = int(input())
ar = []
br = []
for i in range(test):
a, b = list(map(int, input().strip().split()))
ar.append(a)
br.append(b)
for i in range(test):
if ar[i] % br[i] == 0:
print(0)
else:
print(br[i] * (ar[i] // br[i] + 1) - ar[i])
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR VAR IF BIN_OP VAR VAR VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR BIN_OP BIN_OP VAR VAR VAR VAR NUMBER VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
tot = int(input())
string = ""
for _ in range(tot):
a, b = map(int, input().split())
if a % b == 0:
string += "0\n"
else:
string += str(b - a % b) + "\n"
print(string)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR STRING FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF BIN_OP VAR VAR NUMBER VAR STRING VAR BIN_OP FUNC_CALL VAR BIN_OP VAR BIN_OP VAR VAR STRING EXPR FUNC_CALL VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
def sod(num):
sums = 0
while num > 0:
sums += num % 10
num = num // 10
return sums
t = int(input())
for _ in range(t):
n, s = map(int, input().split())
if sod(n) <= s:
print(0)
else:
temp = n
i = 1
while sod(temp) > s:
temp = temp // 10**i
temp += 1
temp = temp * 10**i
i += 1
print(temp - n)
|
FUNC_DEF ASSIGN VAR NUMBER WHILE VAR NUMBER VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER RETURN VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR VAR ASSIGN VAR NUMBER WHILE FUNC_CALL VAR VAR VAR ASSIGN VAR BIN_OP VAR BIN_OP NUMBER VAR VAR NUMBER ASSIGN VAR BIN_OP VAR BIN_OP NUMBER VAR VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
for _ in range(int(input())):
x = input()
y = [int(q) for q in x.split()]
a = y[0]
b = y[1]
if a < b:
print(b - a)
elif a == b:
print(0)
else:
k = (b - a % b) % b
print(k)
|
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR ASSIGN VAR VAR NUMBER ASSIGN VAR VAR NUMBER IF VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR IF VAR VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR BIN_OP VAR VAR VAR EXPR FUNC_CALL VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
n = int(input())
for i in range(n):
l = 0
a, b = map(int, input().split())
l = a % b
if l == 0 and a < b:
l = b - a
elif l != 0:
l = b - a % b
print(l)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR BIN_OP VAR VAR IF VAR NUMBER VAR VAR ASSIGN VAR BIN_OP VAR VAR IF VAR NUMBER ASSIGN VAR BIN_OP VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
def s(n: str):
r = 0
for i in n:
r += int(i)
return r
def sol(a, b):
k, tmp = 1, a
while s(str(tmp)) > b:
tmp += 10**k - tmp % 10**k
k += 1
return tmp - a
t = int(input())
for i in range(t):
a, b = map(int, input().split())
print(sol(a, b))
|
FUNC_DEF VAR ASSIGN VAR NUMBER FOR VAR VAR VAR FUNC_CALL VAR VAR RETURN VAR FUNC_DEF ASSIGN VAR VAR NUMBER VAR WHILE FUNC_CALL VAR FUNC_CALL VAR VAR VAR VAR BIN_OP BIN_OP NUMBER VAR BIN_OP VAR BIN_OP NUMBER VAR VAR NUMBER RETURN BIN_OP VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
n = int(input())
x = []
for i in range(0, n):
a = list(map(int, input().split()))
x.append(a)
for j in range(0, n):
if x[j][0] >= x[j][1]:
if x[j][0] % x[j][1] != 0:
y = int(x[j][0] / x[j][1])
z = y + 1
print(x[j][1] * z - x[j][0])
else:
print(0)
else:
print(x[j][1] - x[j][0])
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR NUMBER VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR NUMBER VAR IF VAR VAR NUMBER VAR VAR NUMBER IF BIN_OP VAR VAR NUMBER VAR VAR NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR BIN_OP VAR VAR NUMBER VAR VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR NUMBER VAR VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR VAR NUMBER VAR VAR NUMBER
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
for _ in range(int(input())):
a, b = map(int, input().split())
a1 = a
d = 10
while sum(map(int, str(a))) > b:
a = (a // d + 1) * d
d = d * 10
print(a - a1)
|
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR ASSIGN VAR NUMBER WHILE FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR VAR ASSIGN VAR BIN_OP BIN_OP BIN_OP VAR VAR NUMBER VAR ASSIGN VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
for _ in range(int(input())):
X = list(map(int, input().split()))
print(0 if X[0] % X[1] == 0 else X[1] - X[0] % X[1])
|
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR BIN_OP VAR NUMBER VAR NUMBER NUMBER NUMBER BIN_OP VAR NUMBER BIN_OP VAR NUMBER VAR NUMBER
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
t = int(input())
while t > 0:
t = t - 1
n, s = map(int, input().split())
pot = 1
sum = 0
while pot <= n:
sum += n // pot % 10
pot *= 10
pot = 1
ans = 0
while sum > s:
if n % 10 == 0:
if ans > 0:
sum -= 9
n = n // 10
pot *= 10
continue
d = 10 - n % 10
ans += d * pot
n += d
pot *= 10
n = n // 10
sum = sum - (10 - d) + 1
print(ans)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR WHILE VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR VAR BIN_OP BIN_OP VAR VAR NUMBER VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR IF BIN_OP VAR NUMBER NUMBER IF VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP NUMBER BIN_OP VAR NUMBER VAR BIN_OP VAR VAR VAR VAR VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR BIN_OP NUMBER VAR NUMBER EXPR FUNC_CALL VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
def solve(n, s):
n_str = str(n)
digits = map(int, n_str)
curr_sum = 0
ans = 0
for i, d in enumerate(digits):
curr_sum += d
if curr_sum > s:
sup_i = i
tail = int(n_str[i:])
ten_p = 10 ** (len(n_str) - i)
ans = ten_p - tail
return ans + solve(n + ans, s)
return 0
t = int(input())
for _ in range(t):
n, s = map(int, input().split())
print(solve(n, s))
|
FUNC_DEF ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR FUNC_CALL VAR VAR VAR VAR IF VAR VAR ASSIGN VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR BIN_OP NUMBER BIN_OP FUNC_CALL VAR VAR VAR ASSIGN VAR BIN_OP VAR VAR RETURN BIN_OP VAR FUNC_CALL VAR BIN_OP VAR VAR VAR RETURN NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
k = []
for i in range(0, int(input())):
k.append(input().split())
if int(k[i][0]) % int(k[i][1]) == 0:
print(0)
elif int(k[i][0]) > int(k[i][1]):
print(int(k[i][1]) - int(k[i][0]) % int(k[i][1]))
else:
print(int(k[i][1]) - int(k[i][0]))
|
ASSIGN VAR LIST FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR FUNC_CALL VAR EXPR FUNC_CALL VAR FUNC_CALL FUNC_CALL VAR IF BIN_OP FUNC_CALL VAR VAR VAR NUMBER FUNC_CALL VAR VAR VAR NUMBER NUMBER EXPR FUNC_CALL VAR NUMBER IF FUNC_CALL VAR VAR VAR NUMBER FUNC_CALL VAR VAR VAR NUMBER EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR VAR NUMBER BIN_OP FUNC_CALL VAR VAR VAR NUMBER FUNC_CALL VAR VAR VAR NUMBER EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR VAR NUMBER FUNC_CALL VAR VAR VAR NUMBER
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
for _ in range(int(input())):
cost = 0
p = 0
num, s = list(map(int, input().split()))
num1 = num
nummap = [int(x) for x in str(num)]
while True:
if sum(nummap) < s + 1:
break
else:
p += 1
k = nummap[-p]
cost += 10**p - k * 10 ** (p - 1)
num1 = num + cost
nummap = [int(x) for x in str(num1)]
print(cost)
|
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR WHILE NUMBER IF FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR NUMBER ASSIGN VAR VAR VAR VAR BIN_OP BIN_OP NUMBER VAR BIN_OP VAR BIN_OP NUMBER BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
for i in range(int(input())):
d = list(map(int, input().split()))
count = 0
n = 1
print((d[1] - d[0] % d[1]) % d[1])
|
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER EXPR FUNC_CALL VAR BIN_OP BIN_OP VAR NUMBER BIN_OP VAR NUMBER VAR NUMBER VAR NUMBER
|
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$).
-----Output-----
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$.
-----Example-----
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
|
t = int(input())
for _ in range(t):
n, s = map(int, input().split())
dig = [int(c) for c in str(n)]
if sum(dig) <= s:
print(0)
continue
cntup = 10
x = 0
for i in range(len(dig) - 1, -1, -1):
dig[i] = 0
x = int("".join([str(x) for x in dig])) + cntup
cntup *= 10
if sum([int(c) for c in str(x)]) <= s:
break
print(x - n)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR IF FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER NUMBER NUMBER ASSIGN VAR VAR NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR FUNC_CALL STRING FUNC_CALL VAR VAR VAR VAR VAR VAR NUMBER IF FUNC_CALL VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.