description
stringlengths
171
4k
code
stringlengths
94
3.98k
normalized_code
stringlengths
57
4.99k
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
inp = int(input()) lt = [] for i in range(inp): lt.append(input().split()) for i in lt: a = int(i[0]) b = int(i[1]) if a % b == 0: print("0") else: print((a // b + 1) * b - a)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR FUNC_CALL FUNC_CALL VAR FOR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR NUMBER IF BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR BIN_OP BIN_OP BIN_OP BIN_OP VAR VAR NUMBER VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
import sys input = sys.stdin.readline def inp(): return int(input()) def inlt(): return list(map(int, input().split())) def insr(): s = input() return list(s[: len(s) - 1]) def invr(): return map(int, input().split()) tests = inp() testcount = 0 while testcount < tests: arr = inlt() a = arr[0] b = arr[1] if a % b == 0: print(0) else: print(b - a % b) testcount += 1
IMPORT ASSIGN VAR VAR FUNC_DEF RETURN FUNC_CALL VAR FUNC_CALL VAR FUNC_DEF RETURN FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR FUNC_DEF ASSIGN VAR FUNC_CALL VAR RETURN FUNC_CALL VAR VAR BIN_OP FUNC_CALL VAR VAR NUMBER FUNC_DEF RETURN FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR NUMBER WHILE VAR VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR VAR NUMBER ASSIGN VAR VAR NUMBER IF BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR BIN_OP VAR VAR VAR NUMBER
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
for _ in range(int(input())): n, s = map(int, input().split()) nn = n n = [0] + list(map(int, str(n))) if sum(n) <= s: print(0) continue for i in range(len(n) - 1, 0, -1): if sum(n[:i]) < s: for j in range(i, len(n) - 1): n[j] = 0 n[i - 1] = (n[i - 1] + 1) % 10 if n[i - 1] == 0: n[i - 2] += 1 ans = 0 for i in range(len(n) - 1): ans += n[i] * pow(10, len(n) - 1 - i) print(ans - nn) break
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR ASSIGN VAR BIN_OP LIST NUMBER FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR IF FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER NUMBER NUMBER IF FUNC_CALL VAR VAR VAR VAR FOR VAR FUNC_CALL VAR VAR BIN_OP FUNC_CALL VAR VAR NUMBER ASSIGN VAR VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER BIN_OP BIN_OP VAR BIN_OP VAR NUMBER NUMBER NUMBER IF VAR BIN_OP VAR NUMBER NUMBER VAR BIN_OP VAR NUMBER NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER VAR BIN_OP VAR VAR FUNC_CALL VAR NUMBER BIN_OP BIN_OP FUNC_CALL VAR VAR NUMBER VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
import sys input = sys.stdin.readline t = int(input()) def d_sum(x): y = str(x) ans = 0 for char in y: ans += int(char) return ans for _ in range(t): a, b = list(map(int, input().split())) c = a mul = 1 if d_sum(c) > b: while True: c += mul if c % (mul * 10) == 0: mul *= 10 if d_sum(c) <= b: break print(c - a)
IMPORT ASSIGN VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_DEF ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER FOR VAR VAR VAR FUNC_CALL VAR VAR RETURN VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR ASSIGN VAR NUMBER IF FUNC_CALL VAR VAR VAR WHILE NUMBER VAR VAR IF BIN_OP VAR BIN_OP VAR NUMBER NUMBER VAR NUMBER IF FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
from sys import stdin N = int(stdin.readline()) for case in range(N): num, maxsum = map(int, stdin.readline().split()) power = 0 sol = 0 ds = 0 idx = 0 for i in str(num): ds += int(i) for count in range(18): if ds <= maxsum: break digit = int(str(num)[-1 - power]) if digit == 0: power += 1 continue ds -= digit sol += 10**power * ((10 - digit) % 10) num += 10**power * ((10 - digit) % 10) power += 1 while int(str(num)[-1 - power]) == 0: power += 1 ds -= 9 ds += 1 print(sol)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR NUMBER IF VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR BIN_OP NUMBER VAR IF VAR NUMBER VAR NUMBER VAR VAR VAR BIN_OP BIN_OP NUMBER VAR BIN_OP BIN_OP NUMBER VAR NUMBER VAR BIN_OP BIN_OP NUMBER VAR BIN_OP BIN_OP NUMBER VAR NUMBER VAR NUMBER WHILE FUNC_CALL VAR FUNC_CALL VAR VAR BIN_OP NUMBER VAR NUMBER VAR NUMBER VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
t = int(input()) for i in range(0, t): ab = input().split(" ") ab = [int(i) for i in ab] a = ab[0] b = ab[1] i = 1 g = b h = 0 if a % b == 0: print(0) elif b <= 1000: while a % b != 0: a += 1 h += 1 print(h) else: while a > g: g = b * i i += 1 print(g - a)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR NUMBER VAR ASSIGN VAR FUNC_CALL FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR VAR VAR VAR ASSIGN VAR VAR NUMBER ASSIGN VAR VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR VAR ASSIGN VAR NUMBER IF BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER IF VAR NUMBER WHILE BIN_OP VAR VAR NUMBER VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR VAR WHILE VAR VAR ASSIGN VAR BIN_OP VAR VAR VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
for i in range(int(input())): n, s = map(int, input().split()) l1 = list(str(n)) sum = 0 j = 0 final = [] if n == s: print(0) continue current_sum = 0 for k in range(len(l1)): current_sum = current_sum + int(l1[k]) if current_sum <= s: print(0) continue while sum < s: sum = sum + int(l1[j]) if sum >= s: final = l1[j : len(l1)] j += 1 a = "1" + "0" * len(final) a = int(a) final = "".join(final) print(a - int(final))
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR LIST IF VAR VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR FUNC_CALL VAR VAR VAR IF VAR VAR EXPR FUNC_CALL VAR NUMBER WHILE VAR VAR ASSIGN VAR BIN_OP VAR FUNC_CALL VAR VAR VAR IF VAR VAR ASSIGN VAR VAR VAR FUNC_CALL VAR VAR VAR NUMBER ASSIGN VAR BIN_OP STRING BIN_OP STRING FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL STRING VAR EXPR FUNC_CALL VAR BIN_OP VAR FUNC_CALL VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
for _ in range(int(input())): n, s = map(int, input().split()) arr1 = [int(d) for d in list(str(n))] arr2 = [] k = 0 if sum(arr1) <= s: print(0) continue for i in range(len(arr1)): if s - arr1[i] > 0: arr2.append(arr1[i]) s -= arr1[i] k += 1 else: break str1 = "" for i in range(k, len(arr1)): str1 += str(arr1[i]) l = int(str1) w = 10 ** (len(arr1) - k) print(w - l)
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR LIST ASSIGN VAR NUMBER IF FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF BIN_OP VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR VAR VAR VAR VAR VAR NUMBER ASSIGN VAR STRING FOR VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP NUMBER BIN_OP FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
T = int(input()) while T > 0: n, s = map(int, input().split()) x = n digits = [] while x > 0: digits.append(x % 10) x //= 10 digits.append(0) temp = sum(digits) res = 0 last_digit = 0 ad = 1 while temp > s: res += (10 - digits[last_digit]) * ad temp -= digits[last_digit] digits[last_digit] = 0 last_digit += 1 digits[last_digit] += 1 while digits[last_digit] == 10: digits[last_digit] = 0 temp -= 9 last_digit += 1 digits[last_digit] += 1 ad *= 10 temp += 1 ad *= 10 print(res) T -= 1
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR WHILE VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR ASSIGN VAR LIST WHILE VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR VAR BIN_OP BIN_OP NUMBER VAR VAR VAR VAR VAR VAR ASSIGN VAR VAR NUMBER VAR NUMBER VAR VAR NUMBER WHILE VAR VAR NUMBER ASSIGN VAR VAR NUMBER VAR NUMBER VAR NUMBER VAR VAR NUMBER VAR NUMBER VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR VAR VAR NUMBER
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
for _ in range(int(input())): a, b = map(int, input().split()) d = 0 while a % b != 0: c = a % b d = b - c a += d print(d)
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER WHILE BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR VAR VAR VAR EXPR FUNC_CALL VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
def somc(n): cnt = 0 while n != 0: cnt = cnt + n % 10 n = n // 10 return cnt def ansc(n, s): if somc(n) <= s: return 0 else: a = 10 while n % a == 0: a *= 10 d = a - n % a return d + ansc(n + d, s) for _ in range(int(input())): n, s = map(int, input().split()) print(ansc(n, s))
FUNC_DEF ASSIGN VAR NUMBER WHILE VAR NUMBER ASSIGN VAR BIN_OP VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER RETURN VAR FUNC_DEF IF FUNC_CALL VAR VAR VAR RETURN NUMBER ASSIGN VAR NUMBER WHILE BIN_OP VAR VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP VAR BIN_OP VAR VAR RETURN BIN_OP VAR FUNC_CALL VAR BIN_OP VAR VAR VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
x = input() y = int(x) lis = [] for i in range(y): x2 = input() spl = x2.split() i1 = int(spl[0]) i2 = int(spl[1]) i3 = i1 // i2 if i1 % i2 == 0: i4 = 0 else: i4 = (i3 + 1) * i2 - i1 lis.append(i4) for i in lis: print(i)
ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR BIN_OP VAR VAR IF BIN_OP VAR VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR BIN_OP BIN_OP BIN_OP VAR NUMBER VAR VAR EXPR FUNC_CALL VAR VAR FOR VAR VAR EXPR FUNC_CALL VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
f = lambda x: sum(map(int, str(x))) for t in range(int(input())): n, s = list(map(int, input().split())) if f(n) <= s: print(0) continue for i in range(1, 19): z = int("1" + "0" * i) k = (n + z) // z * z if f(k) <= s: print(k - n) break
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR BIN_OP STRING BIN_OP STRING VAR ASSIGN VAR BIN_OP BIN_OP BIN_OP VAR VAR VAR VAR IF FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
n = int(input()) for k in range(n): test = input().split(" ") maxi = int(test[1]) l = len(test[0]) suma = 0 test[0] = list(map(int, test[0])) i = 0 i2 = -1 for i in range(l): suma += test[0][i] if suma > maxi: break if suma == maxi and i2 == -1: i2 = i zeros = True ret = [] if suma <= maxi: ret = [0] i += 1 elif i2 > -1: i = i2 for j in range(1, l - i + 1): c = test[0][l - j] if zeros: if c == 0: ret.append(0) else: zeros = False ret.append(10 - c) else: ret.append(9 - c) x = l - i - 1 if len(ret) > 1: while ret[x] == 0: x -= 1 print("".join(map(str, ret[x::-1])))
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FUNC_CALL VAR FUNC_CALL VAR VAR VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR VAR VAR NUMBER VAR IF VAR VAR IF VAR VAR VAR NUMBER ASSIGN VAR VAR ASSIGN VAR NUMBER ASSIGN VAR LIST IF VAR VAR ASSIGN VAR LIST NUMBER VAR NUMBER IF VAR NUMBER ASSIGN VAR VAR FOR VAR FUNC_CALL VAR NUMBER BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR VAR NUMBER BIN_OP VAR VAR IF VAR IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER EXPR FUNC_CALL VAR BIN_OP NUMBER VAR EXPR FUNC_CALL VAR BIN_OP NUMBER VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF FUNC_CALL VAR VAR NUMBER WHILE VAR VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL STRING FUNC_CALL VAR VAR VAR VAR NUMBER
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
n = int(input()) while n > 0: n -= 1 count = 0 a, b = map(int, input().split()) if a % b == 0: count += 0 elif a > b: div = a % b count += b - div else: count += b - a print(count)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR WHILE VAR NUMBER VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF BIN_OP VAR VAR NUMBER VAR NUMBER IF VAR VAR ASSIGN VAR BIN_OP VAR VAR VAR BIN_OP VAR VAR VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
t = int(input()) ab = [list(map(int, input().split())) for _ in range(t)] ans = [(b - a % b if a % b != 0 else 0) for a, b in ab] print(*ans, sep="\n")
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR VAR NUMBER BIN_OP VAR BIN_OP VAR VAR NUMBER VAR VAR VAR EXPR FUNC_CALL VAR VAR STRING
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
import sys input = sys.stdin.readline for _ in range(int(input())): a, b = [x for x in input().split()] b = int(b) temp = [int(i) for i in a] n = len(a) i = n - 1 curr = sum(temp) while curr > b: now = temp[i] if now == 0 and i != 0: i -= 1 elif curr - now + 1 > b and i != 0: curr -= now - 1 temp[i] = 0 temp[i - 1] += 1 i -= 1 elif i == 0: temp[i] = 0 temp = [1] + temp break else: curr -= now - 1 temp[i] = 0 temp[i - 1] += 1 break ans = 0 for i in temp: ans = 10 * ans + i print(ans - int(a))
IMPORT ASSIGN VAR VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR WHILE VAR VAR ASSIGN VAR VAR VAR IF VAR NUMBER VAR NUMBER VAR NUMBER IF BIN_OP BIN_OP VAR VAR NUMBER VAR VAR NUMBER VAR BIN_OP VAR NUMBER ASSIGN VAR VAR NUMBER VAR BIN_OP VAR NUMBER NUMBER VAR NUMBER IF VAR NUMBER ASSIGN VAR VAR NUMBER ASSIGN VAR BIN_OP LIST NUMBER VAR VAR BIN_OP VAR NUMBER ASSIGN VAR VAR NUMBER VAR BIN_OP VAR NUMBER NUMBER ASSIGN VAR NUMBER FOR VAR VAR ASSIGN VAR BIN_OP BIN_OP NUMBER VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR FUNC_CALL VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
t = int(input()) while t: a, b = [int(i) for i in input().split()] t -= 1 if a % b != 0: m = a // b print((m + 1) * b - a) else: print(0)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR WHILE VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR VAR NUMBER IF BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR BIN_OP BIN_OP BIN_OP VAR NUMBER VAR VAR EXPR FUNC_CALL VAR NUMBER
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
from sys import stdin def f(b, x): return b * x def binarySearch(a, b): lo, hi, mid = 0, 10**9 + 1, 0 while lo + 1 != hi: mid = lo + hi >> 1 if f(b, mid) <= a: lo = mid else: hi = mid return hi def solve(a, b): ans = None if a % b == 0: ans = 0 elif b > a: ans = b - a else: x = binarySearch(a, b) ans = abs(b * x - a) return ans def main(): t = int(stdin.readline().strip()) for _ in range(t): a, b = map(int, stdin.readline().strip().split()) print(solve(a, b)) main()
FUNC_DEF RETURN BIN_OP VAR VAR FUNC_DEF ASSIGN VAR VAR VAR NUMBER BIN_OP BIN_OP NUMBER NUMBER NUMBER NUMBER WHILE BIN_OP VAR NUMBER VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF FUNC_CALL VAR VAR VAR VAR ASSIGN VAR VAR ASSIGN VAR VAR RETURN VAR FUNC_DEF ASSIGN VAR NONE IF BIN_OP VAR VAR NUMBER ASSIGN VAR NUMBER IF VAR VAR ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR VAR RETURN VAR FUNC_DEF ASSIGN VAR FUNC_CALL VAR FUNC_CALL FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
t = int(input()) for i in range(t): ab = tuple(map(int, input().split())) if ab[0] % ab[1] == 0: print(0) elif ab[0] < ab[1]: print(ab[1] - ab[0]) else: print(ab[1] * (int(ab[0] / ab[1]) + 1) - ab[0])
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF BIN_OP VAR NUMBER VAR NUMBER NUMBER EXPR FUNC_CALL VAR NUMBER IF VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR BIN_OP BIN_OP VAR NUMBER BIN_OP FUNC_CALL VAR BIN_OP VAR NUMBER VAR NUMBER NUMBER VAR NUMBER
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
def solve(): n, s = [str(i) for i in input().split(" ")] s = int(s) count = 0 ans = "" cum = sum(int(i) for i in n) if cum <= s: print(0) return if int(n[0]) >= s: if int(n[0]) == s and len(n) == 1: print(0) return ans = "10" + "0" * len(n[1:]) print(int(ans) - int(n)) return for idx, i in enumerate(n): count += int(i) if idx == len(n) - 1 and count <= s: print(0) return if count >= s: ans = str(int(n[:idx]) + 1) + "0" * (len(n) - idx) print(int(ans) - int(n)) return print(0) def main(): tc = int(input().strip()) for c in range(tc): solve() main()
FUNC_DEF ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR STRING ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR VAR IF VAR VAR EXPR FUNC_CALL VAR NUMBER RETURN IF FUNC_CALL VAR VAR NUMBER VAR IF FUNC_CALL VAR VAR NUMBER VAR FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER RETURN ASSIGN VAR BIN_OP STRING BIN_OP STRING FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR VAR RETURN FOR VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR IF VAR BIN_OP FUNC_CALL VAR VAR NUMBER VAR VAR EXPR FUNC_CALL VAR NUMBER RETURN IF VAR VAR ASSIGN VAR BIN_OP FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR VAR NUMBER BIN_OP STRING BIN_OP FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR VAR RETURN EXPR FUNC_CALL VAR NUMBER FUNC_DEF ASSIGN VAR FUNC_CALL VAR FUNC_CALL FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR EXPR FUNC_CALL VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
def main(): T = int(input()) for _ in range(T): n, s = (int(i) for i in input().split()) cur = sum(int(v) for v in str(n)) ans = 0 if cur <= s: print(ans) else: d = 0 while cur > s: r = int(str(n)[::-1][d]) if r == 0: d += 1 continue ans += (10 - r) * 10**d n += (10 - r) * 10**d cur = sum(int(v) for v in str(n)) d += 1 print(ans) main()
FUNC_DEF ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER IF VAR VAR EXPR FUNC_CALL VAR VAR ASSIGN VAR NUMBER WHILE VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR NUMBER VAR IF VAR NUMBER VAR NUMBER VAR BIN_OP BIN_OP NUMBER VAR BIN_OP NUMBER VAR VAR BIN_OP BIN_OP NUMBER VAR BIN_OP NUMBER VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
n = int(input()) arr = [] for i in range(n): temp = input().split() temp[0] = int(temp[0]) temp[1] = int(temp[1]) arr.append(temp) for i in range(n): a = arr[i][0] b = arr[i][1] if a % b == 0: print(0) else: print(b - a % b)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER FUNC_CALL VAR VAR NUMBER ASSIGN VAR NUMBER FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR NUMBER ASSIGN VAR VAR VAR NUMBER IF BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR BIN_OP VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
for _ in range(int(input())): n, s = [int(x) for x in input().split()] a = [int(x) for x in str(n)] if sum(a) <= s: print(0) else: acum = 0 j = 0 encontrado = -1 for i in range(len(a) - 1, -1, -1): if sum(a[0 : i + 1]) + 1 <= s: encontrado = i break if encontrado >= 0: print(10 ** len(a[encontrado + 1 :]) - int(str(n)[encontrado + 1 :])) else: print(10 ** len(a) - int(str(n)))
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR IF FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER NUMBER NUMBER IF BIN_OP FUNC_CALL VAR VAR NUMBER BIN_OP VAR NUMBER NUMBER VAR ASSIGN VAR VAR IF VAR NUMBER EXPR FUNC_CALL VAR BIN_OP BIN_OP NUMBER FUNC_CALL VAR VAR BIN_OP VAR NUMBER FUNC_CALL VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR BIN_OP BIN_OP NUMBER FUNC_CALL VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
t = int(input()) for _ in range(t): a, b = map(int, input().split()) if a % b: if a > b: x = a // b y = b * (x + 1) print(y - a) else: print(b - a) else: print(0)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF BIN_OP VAR VAR IF VAR VAR ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR NUMBER
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
def inc(a, b): i = 0 if a > b: if a % b != 0: r = a // b + 1 i = b * r - a return i else: return i else: i = b - a return i n = int(input()) for i in range(n): a, b = input().split() a = int(a) b = int(b) print(inc(a, b))
FUNC_DEF ASSIGN VAR NUMBER IF VAR VAR IF BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR VAR RETURN VAR RETURN VAR ASSIGN VAR BIN_OP VAR VAR RETURN VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
def ab(): a, b = map(int, input().split()) t = a % b if t == 0: print(0) return print(b - t) for i in range(0, int(input())): ab()
FUNC_DEF ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR BIN_OP VAR VAR IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER RETURN EXPR FUNC_CALL VAR BIN_OP VAR VAR FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR FUNC_CALL VAR EXPR FUNC_CALL VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
n = int(input()) while n > 0: a, b = map(int, input().split()) count = 0 if a < b: print(b - a) elif a % b == 0: print("0") else: temp = a // b a1 = b * (temp + 1) print(a1 - a) n = n - 1
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR WHILE VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER IF VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR IF BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR STRING ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR NUMBER
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
import sys cases = int(sys.stdin.readline().strip()) for i in range(cases): candles = sys.stdin.readline().strip().split(" ") a = int(candles[0]) b = int(candles[1]) if a % b == 0: print("0") else: print(str(b - a % b))
IMPORT ASSIGN VAR FUNC_CALL VAR FUNC_CALL FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL FUNC_CALL FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR NUMBER IF BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR FUNC_CALL VAR BIN_OP VAR BIN_OP VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
for _ in range(int(input())): a, b = map(int, input().split()) bb = b can = 0 d = 10000000000000000000 while d > 0: bb = bb - a // d % 10 d = d // 10 if bb >= 0: can = 1 d = 10000000000000000000 t = 0 while d > 0 and b - a // d % 10 >= 1: b = b - a // d % 10 t = (a // d + 1) * d d = d // 10 if can: print(0) else: print(t - a) t = 0
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR NUMBER ASSIGN VAR BIN_OP VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER IF VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR NUMBER BIN_OP VAR BIN_OP BIN_OP VAR VAR NUMBER NUMBER ASSIGN VAR BIN_OP VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP BIN_OP VAR VAR NUMBER VAR ASSIGN VAR BIN_OP VAR NUMBER IF VAR EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR VAR ASSIGN VAR NUMBER
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
t = int(input()) for _ in range(t): n, s = map(str, input().split()) s = int(s) flag = 0 p = len(n) sum = 0 for i in range(p): sum = sum + int(n[i]) if sum > s: flag = 1 break else: pass if flag == 0: print(0) elif flag == 1 and int(n[0]) >= s: ans = int(str(1) + str(0) * p) print(ans - int(n)) else: sum = sum + 1 while sum > s and i > 0: sum = sum - int(n[i]) i = i - 1 while n[i] == "9": i = i - 1 if i == -1: break if i == -1: ans = int(str(1) + str(0) * p) print(ans - int(n)) else: ans = int(n[:i] + str(int(n[i]) + 1) + str(0) * (p - i - 1)) print(ans - int(n))
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR FUNC_CALL VAR VAR VAR IF VAR VAR ASSIGN VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER IF VAR NUMBER FUNC_CALL VAR VAR NUMBER VAR ASSIGN VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR NUMBER BIN_OP FUNC_CALL VAR NUMBER VAR EXPR FUNC_CALL VAR BIN_OP VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR NUMBER WHILE VAR VAR VAR NUMBER ASSIGN VAR BIN_OP VAR FUNC_CALL VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER WHILE VAR VAR STRING ASSIGN VAR BIN_OP VAR NUMBER IF VAR NUMBER IF VAR NUMBER ASSIGN VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR NUMBER BIN_OP FUNC_CALL VAR NUMBER VAR EXPR FUNC_CALL VAR BIN_OP VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR VAR NUMBER BIN_OP FUNC_CALL VAR NUMBER BIN_OP BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR FUNC_CALL VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
for _ in range(int(input())): a, b = map(int, input().split()) temp = str(a) c = b i = 0 if sum([int(x) for x in temp]) <= b: print(0) continue while c > int(temp[i]): c -= int(temp[i]) i += 1 if i > 0: no = str(int(temp[:i]) + 1) + (len(temp) - i) * "0" else: no = "1" + len(temp) * "0" print(int(no) - a)
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR VAR ASSIGN VAR NUMBER IF FUNC_CALL VAR FUNC_CALL VAR VAR VAR VAR VAR EXPR FUNC_CALL VAR NUMBER WHILE VAR FUNC_CALL VAR VAR VAR VAR FUNC_CALL VAR VAR VAR VAR NUMBER IF VAR NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR VAR NUMBER BIN_OP BIN_OP FUNC_CALL VAR VAR VAR STRING ASSIGN VAR BIN_OP STRING BIN_OP FUNC_CALL VAR VAR STRING EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
t = int(input()) for z in range(t): arr = list(map(int, input().rstrip().split())) a = arr[0] b = arr[1] if a > b and b % a != 0: d = int(a / b) rem = a % b if rem == 0: print("0") else: r = b * (d + 1) ans = r - a print(ans) elif b > a: ans = b - a print(ans) elif a % b == 0: print("0")
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR NUMBER ASSIGN VAR VAR NUMBER IF VAR VAR BIN_OP VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR VAR IF VAR NUMBER EXPR FUNC_CALL VAR STRING ASSIGN VAR BIN_OP VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR VAR IF VAR VAR ASSIGN VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR VAR IF BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR STRING
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
T = int(input()) def digsum(N): return sum(list(map(int, list(str(N))))) for _ in range(T): n, s = [int(x) for x in input().split()] sm = digsum(n) if sm <= s: print(0) else: i = 0 cnt = 0 while True: cnt += (10 - n % 10) * 10**i i += 1 n = n // 10 + 1 sm = digsum(n) if sm <= s: print(cnt) break
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_DEF RETURN FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR IF VAR VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE NUMBER VAR BIN_OP BIN_OP NUMBER BIN_OP VAR NUMBER BIN_OP NUMBER VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR VAR IF VAR VAR EXPR FUNC_CALL VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
def solve(n, s, ans): total = 0 n = list(str(n)) for i in range(len(n)): n[i] = int(n[i]) total += n[i] if total <= s: ans.append("0") return moves = 0 index = 0 while n and total > s: last = n.pop() total -= last moves += (10 - last) * pow(10, index) index += 1 total += 1 if n: i2 = len(n) - 1 while i2 >= 0: if n[i2] == 9: total -= 9 n[i2] = 0 i2 -= 1 else: n[i2] += 1 break if i2 == -1: n.insert(0, 1) else: n.append(1) ans.append(str(moves)) def main(): t = int(input()) ans = [] for i in range(t): n, s = map(int, input().split()) solve(n, s, ans) print("\n".join(ans)) main()
FUNC_DEF ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR VAR VAR VAR IF VAR VAR EXPR FUNC_CALL VAR STRING RETURN ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR VAR BIN_OP BIN_OP NUMBER VAR FUNC_CALL VAR NUMBER VAR VAR NUMBER VAR NUMBER IF VAR ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER WHILE VAR NUMBER IF VAR VAR NUMBER VAR NUMBER ASSIGN VAR VAR NUMBER VAR NUMBER VAR VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_DEF ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR VAR VAR VAR EXPR FUNC_CALL VAR FUNC_CALL STRING VAR EXPR FUNC_CALL VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
t = int(input()) for i in range(t): a, b = map(int, input().split()) if a <= b: x = b - a elif a % b == 0: x = 0 else: x = b - a % b print(int(x))
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF VAR VAR ASSIGN VAR BIN_OP VAR VAR IF BIN_OP VAR VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR BIN_OP VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
t = int(input()) for i in range(t): n, k = map(str, input().split()) k = int(k) j = 0 s = 0 l = len(n) while j < l and s + int(n[j]) < k: s = s + int(n[j]) j = j + 1 if j == l: print(0) else: q = 0 for v in n: q = q + int(v) if q == k: print(0) else: p = 10 ** (l - j) q = int(n[j:]) print(p - q)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR WHILE VAR VAR BIN_OP VAR FUNC_CALL VAR VAR VAR VAR ASSIGN VAR BIN_OP VAR FUNC_CALL VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER IF VAR VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR ASSIGN VAR BIN_OP VAR FUNC_CALL VAR VAR IF VAR VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR BIN_OP NUMBER BIN_OP VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
import sys stdin = sys.stdin stdout = sys.stdout def getCount(n): ans = 0 while n: ans += n % 10 n = n // 10 return ans def getLastSetBit(n): ans = 0 power = 1 while n: ans = n % 10 if ans != 0: return ans, power n = n // 10 power = power * 10 test = int(stdin.readline()) for t in range(test): n, s = [int(_) for _ in stdin.readline().split()] ans = 0 while getCount(n) > s: setBit, power = getLastSetBit(n) temp = (10 - setBit) * power ans += temp n += temp stdout.write(f"{ans}\n")
IMPORT ASSIGN VAR VAR ASSIGN VAR VAR FUNC_DEF ASSIGN VAR NUMBER WHILE VAR VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER RETURN VAR FUNC_DEF ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR ASSIGN VAR BIN_OP VAR NUMBER IF VAR NUMBER RETURN VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER WHILE FUNC_CALL VAR VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP BIN_OP NUMBER VAR VAR VAR VAR VAR VAR EXPR FUNC_CALL VAR VAR STRING
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
for _ in range(int(input())): n, s = input().split() s = int(s) t1 = sum([int(i) for i in n]) if t1 <= s: print(0) else: t, k, m = "", 0, len(n) for i in range(m): k += int(n[i]) if k >= s: for j in range(i, m): t += str(10 - int(n[j]) - 1) break print(int(t) + 1)
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR VAR IF VAR VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR VAR VAR STRING NUMBER FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR IF VAR VAR FOR VAR FUNC_CALL VAR VAR VAR VAR FUNC_CALL VAR BIN_OP BIN_OP NUMBER FUNC_CALL VAR VAR VAR NUMBER EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
def minimum_moves(n, s): moves = 0 multiplier = 1 while sum(map(int, str(n))) > s: if n % 10: delta = 10 - n % 10 n += delta moves += multiplier * delta n //= 10 multiplier *= 10 return moves for _ in range(int(input())): n, s = map(int, input().split()) print(minimum_moves(n, s))
FUNC_DEF ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR VAR IF BIN_OP VAR NUMBER ASSIGN VAR BIN_OP NUMBER BIN_OP VAR NUMBER VAR VAR VAR BIN_OP VAR VAR VAR NUMBER VAR NUMBER RETURN VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
def f(n): ans = 0 for i in n: ans += int(i) return ans for i in range(int(input())): n, s = input().split(" ") s = int(s) if f(n) <= s: print(0) else: store = 0 ind = 0 while store + int(n[ind]) < s: store += int(n[ind]) ind += 1 a = "" for i in range(ind): a += n[i] if ind == 0: print(10 ** len(n) - int(n)) else: a = int(a) + 1 a = a * 10 ** (len(n) - ind) print(a - int(n))
FUNC_DEF ASSIGN VAR NUMBER FOR VAR VAR VAR FUNC_CALL VAR VAR RETURN VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR VAR IF FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE BIN_OP VAR FUNC_CALL VAR VAR VAR VAR VAR FUNC_CALL VAR VAR VAR VAR NUMBER ASSIGN VAR STRING FOR VAR FUNC_CALL VAR VAR VAR VAR VAR IF VAR NUMBER EXPR FUNC_CALL VAR BIN_OP BIN_OP NUMBER FUNC_CALL VAR VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER ASSIGN VAR BIN_OP VAR BIN_OP NUMBER BIN_OP FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR FUNC_CALL VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
def fun2(s, n): ans = 0 for i in range(n): ans += ord(s[i]) - 48 return ans def fun(s, n, x): for i in reversed(range(1, n)): s2 = s[0:i] temp = fun2(s2, i) if temp < x: temp2 = int(s[i:n]) return 10 ** (n - i) - temp2 temp2 = int(s) temp3 = 10**n return temp3 - temp2 t = int(input()) while t > 0: t -= 1 n, s = map(int, input().split()) s2 = str(n) l = len(s2) n2 = fun2(s2, l) if n2 <= s: print(0) else: print(fun(s2, l, s))
FUNC_DEF ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR VAR BIN_OP FUNC_CALL VAR VAR VAR NUMBER RETURN VAR FUNC_DEF FOR VAR FUNC_CALL VAR FUNC_CALL VAR NUMBER VAR ASSIGN VAR VAR NUMBER VAR ASSIGN VAR FUNC_CALL VAR VAR VAR IF VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR VAR RETURN BIN_OP BIN_OP NUMBER BIN_OP VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP NUMBER VAR RETURN BIN_OP VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR WHILE VAR NUMBER VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR IF VAR VAR EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
def isdiv(): a, b = map(int, input().split()) val = 0 if a % b != 0: val = b - a % b return val t = int(input()) for i in range(t): print(isdiv())
FUNC_DEF ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER IF BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP VAR BIN_OP VAR VAR RETURN VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
t = int(input()) out = [] while t != 0: a, b = input().split(" ") a = int(a) b = int(b) z = int(0) if a % b == 0: out.append(0) else: out.append(b - a % b) t -= 1 print(*out, sep="\n")
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST WHILE VAR NUMBER ASSIGN VAR VAR FUNC_CALL FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR NUMBER IF BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR BIN_OP VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR STRING
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
cases = int(input()) def digits(n): l = [] while n > 0: l.append(n % 10) n //= 10 l.reverse() return l def form(l): n = 0 for i in l: n *= 10 n += i return n for case in range(cases): n, s = map(int, input().split()) d = digits(n) if sum(d) <= s: print(0) continue num_acceptable = 0 this_sum = 0 for i in d: if this_sum + i < s: num_acceptable += 1 this_sum += i else: break if num_acceptable == 0: d = [1] + [0] * len(d) print(form(d) - n) else: d = d[:num_acceptable] + [0] * (len(d) - num_acceptable) d[num_acceptable - 1] += 1 print(form(d) - n)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_DEF ASSIGN VAR LIST WHILE VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR RETURN VAR FUNC_DEF ASSIGN VAR NUMBER FOR VAR VAR VAR NUMBER VAR VAR RETURN VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR IF FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR IF BIN_OP VAR VAR VAR VAR NUMBER VAR VAR IF VAR NUMBER ASSIGN VAR BIN_OP LIST NUMBER BIN_OP LIST NUMBER FUNC_CALL VAR VAR EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR VAR ASSIGN VAR BIN_OP VAR VAR BIN_OP LIST NUMBER BIN_OP FUNC_CALL VAR VAR VAR VAR BIN_OP VAR NUMBER NUMBER EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
for _ in range(int(input())): a, b = map(int, input().split()) f = a // b ans = 0 if a < b: ans = b - a elif a % b != 0: ans = b * (f + 1) - a print(ans)
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR NUMBER IF VAR VAR ASSIGN VAR BIN_OP VAR VAR IF BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR BIN_OP VAR NUMBER VAR EXPR FUNC_CALL VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
def solve(): for _ in range(ii()): a, b = mi() mod = a % b if mod == 0: print(0) else: print(b - mod) ii = lambda: int(input()) mi = lambda: map(int, input().split()) li = lambda: list(mi()) si = lambda: input() solve()
FUNC_DEF FOR VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR ASSIGN VAR BIN_OP VAR VAR IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR EXPR FUNC_CALL VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
def operation(pairNum): n, s = pairNum s = int(s) k = 0 allDigits = list(n) revDigits = allDigits[::-1] revDigits = list(map(int, revDigits)) revDigits.append(0) i = 0 while i <= len(revDigits) - 2 and sum(revDigits) > s: if revDigits[i] == 10: revDigits[i] = 0 revDigits[i + 1] += 1 else: k += (10 - revDigits[i]) * 10**i revDigits[i] = 0 revDigits[i + 1] += 1 i += 1 return k t = int(input()) listResults = [] for i in range(t): pairNum = input().split() result = operation(pairNum) listResults.append(result) for i in listResults: print(i)
FUNC_DEF ASSIGN VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER WHILE VAR BIN_OP FUNC_CALL VAR VAR NUMBER FUNC_CALL VAR VAR VAR IF VAR VAR NUMBER ASSIGN VAR VAR NUMBER VAR BIN_OP VAR NUMBER NUMBER VAR BIN_OP BIN_OP NUMBER VAR VAR BIN_OP NUMBER VAR ASSIGN VAR VAR NUMBER VAR BIN_OP VAR NUMBER NUMBER VAR NUMBER RETURN VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR FOR VAR VAR EXPR FUNC_CALL VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
def sm(s): x = 0 for i in str(s): x += int(i) return x for _ in range(int(input())): n, s = map(int, input().split()) x = n i = 1 l = len(str(n)) f = 0 if sm(x) <= s: print(x - n) continue while 1: if sm(x) <= s and x > n: f = 1 break x = n // pow(10, i) x = x * pow(10, i) x += pow(10, i) i += 1 print(x - n)
FUNC_DEF ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR RETURN VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER IF FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR WHILE NUMBER IF FUNC_CALL VAR VAR VAR VAR VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP VAR FUNC_CALL VAR NUMBER VAR ASSIGN VAR BIN_OP VAR FUNC_CALL VAR NUMBER VAR VAR FUNC_CALL VAR NUMBER VAR VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
t = int(input()) for _ipj_ in range(t): n, s = map(int, input().split()) n = str(n) n = [0] + [int(x) for x in list(n)] ans = 0 pow = 1 if sum(n) <= s: print(0) continue while sum(n) > s: if n[-1] == 0: n.pop() pow = pow * 10 continue ans += (10 - n[-1]) * pow n.pop() pow *= 10 for i in range(18): if n[-1] != 9: n[-1] += 1 break else: n.pop() pow *= 10 print(ans)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP LIST NUMBER FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER IF FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR NUMBER WHILE FUNC_CALL VAR VAR VAR IF VAR NUMBER NUMBER EXPR FUNC_CALL VAR ASSIGN VAR BIN_OP VAR NUMBER VAR BIN_OP BIN_OP NUMBER VAR NUMBER VAR EXPR FUNC_CALL VAR VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER IF VAR NUMBER NUMBER VAR NUMBER NUMBER EXPR FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
for f in [*open(0)][1:]: n, s = map(int, f.split()) v = n d = 1 while sum(map(int, str(n))) > s: n += -(n // d % 10) % 10 * d d *= 10 print(n - v)
FOR VAR LIST FUNC_CALL VAR NUMBER NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL VAR ASSIGN VAR VAR ASSIGN VAR NUMBER WHILE FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR VAR VAR BIN_OP BIN_OP BIN_OP BIN_OP VAR VAR NUMBER NUMBER VAR VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
for i in range(int(input())): a, b = map(int, input().split()) n = 0 if a % b == 0: print("0") else: rem = a % b print(b - rem)
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER IF BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR STRING ASSIGN VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
n = int(input()) a = [] for i in range(0, n): l, m = input().split() l = int(l) m = int(m) p = l % m if p == 0: a.append(0) else: a.append(m - p) for i in range(0, n): print(a[i])
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR NUMBER VAR ASSIGN VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR VAR IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR VAR FOR VAR FUNC_CALL VAR NUMBER VAR EXPR FUNC_CALL VAR VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
t = int(input()) for i in range(t): inp = input().split(" ") remainder = int(inp[0]) % int(inp[1]) if remainder == 0: print(remainder) else: print(int(inp[1]) - remainder)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL FUNC_CALL VAR STRING ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER FUNC_CALL VAR VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
def solve(a, b): print((b - a % b) % b) t = int(input()) for i in range(0, t): nums = list(map(lambda n: int(n), input().split())) solve(nums[0], nums[1])
FUNC_DEF EXPR FUNC_CALL VAR BIN_OP BIN_OP VAR BIN_OP VAR VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR NUMBER VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR VAR NUMBER VAR NUMBER
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
m = int(input()) a = [] n = m for i in range(0, n): b = input() a.append(b) for i in range(0, m): k = a[i] x = [int(y) for y in k.split()] count = 0 if x[0] > x[1] and x[0] % x[1] != 0: h = x[0] % x[1] count = count + x[1] - h elif x[0] < x[1]: count = count + x[1] - x[0] print(count)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST ASSIGN VAR VAR FOR VAR FUNC_CALL VAR NUMBER VAR ASSIGN VAR FUNC_CALL VAR EXPR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR NUMBER VAR ASSIGN VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR ASSIGN VAR NUMBER IF VAR NUMBER VAR NUMBER BIN_OP VAR NUMBER VAR NUMBER NUMBER ASSIGN VAR BIN_OP VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER VAR IF VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
def digsum(n): ans = 0 while n: ans += n % 10 n //= 10 return ans for _ in range(int(input())): n, s = map(int, input().split()) a = digsum(n) t = n if a > s: i = 1 while True: r = t % 10**i t += 10**i - r if digsum(t) <= s: print(t - n) break i += 1 else: print(0)
FUNC_DEF ASSIGN VAR NUMBER WHILE VAR VAR BIN_OP VAR NUMBER VAR NUMBER RETURN VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR VAR IF VAR VAR ASSIGN VAR NUMBER WHILE NUMBER ASSIGN VAR BIN_OP VAR BIN_OP NUMBER VAR VAR BIN_OP BIN_OP NUMBER VAR VAR IF FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
for _ in range(int(input())): n, s = map(int, input().split()) digits = [] while n > 0: digits.append(n % 10) n //= 10 result = 0 cur_sum = 0 cur = len(digits) - 1 while cur >= 0 and cur_sum <= s: cur_sum += digits[cur] cur -= 1 cur += 1 while cur_sum > s: cur_sum -= digits[cur] cur_sum += 1 n_sum = 0 for i, x in enumerate(digits[0 : cur + 1]): n_sum += x * 10**i digits[i] = 0 result += 10 ** (cur + 1) - n_sum cur += 1 if cur >= len(digits): digits.append(1) elif digits[cur] != 9: digits[cur] += 1 else: while digits[cur] == 9: digits[cur] = 0 cur_sum -= 9 cur += 1 if cur >= len(digits): digits.append(1) print(result)
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR LIST WHILE VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR NUMBER VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER WHILE VAR NUMBER VAR VAR VAR VAR VAR VAR NUMBER VAR NUMBER WHILE VAR VAR VAR VAR VAR VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR FUNC_CALL VAR VAR NUMBER BIN_OP VAR NUMBER VAR BIN_OP VAR BIN_OP NUMBER VAR ASSIGN VAR VAR NUMBER VAR BIN_OP BIN_OP NUMBER BIN_OP VAR NUMBER VAR VAR NUMBER IF VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR NUMBER IF VAR VAR NUMBER VAR VAR NUMBER WHILE VAR VAR NUMBER ASSIGN VAR VAR NUMBER VAR NUMBER VAR NUMBER IF VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
from sys import stdin, stdout input = stdin.readline def su(n): ans = 0 for i in str(n): ans += int(i) return ans for _ in range(int(input())): n, s = map(int, input().split()) l = su(n) ans = 0 i = 0 while l > s: ans += 10 ** (i + 1) - n % 10 ** (i + 1) n += 10 ** (i + 1) - n % 10 ** (i + 1) l = su(n) i += 1 stdout.write(str(ans) + "\n")
ASSIGN VAR VAR FUNC_DEF ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR RETURN VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR VAR BIN_OP BIN_OP NUMBER BIN_OP VAR NUMBER BIN_OP VAR BIN_OP NUMBER BIN_OP VAR NUMBER VAR BIN_OP BIN_OP NUMBER BIN_OP VAR NUMBER BIN_OP VAR BIN_OP NUMBER BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR NUMBER EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR STRING
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
n = int(input()) lst = [] for i in range(n): c = 0 a, b = input().split() a = int(a) b = int(b) if a % b == 0: lst.append(c) else: c = b - a % b lst.append(c) for i in lst: print(i)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR IF BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR VAR FOR VAR VAR EXPR FUNC_CALL VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
def dsum(x): res = 0 while x: res += x % 10 x //= 10 return res for _ in range(int(input())): n, s = map(int, input().split()) p = 1 ans = 0 csum = dsum(n) while csum > s: add = 10 * p - n % (10 * p) if add == 10 * p: add = 0 ans += add n += add csum = dsum(n) p *= 10 print(ans)
FUNC_DEF ASSIGN VAR NUMBER WHILE VAR VAR BIN_OP VAR NUMBER VAR NUMBER RETURN VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR WHILE VAR VAR ASSIGN VAR BIN_OP BIN_OP NUMBER VAR BIN_OP VAR BIN_OP NUMBER VAR IF VAR BIN_OP NUMBER VAR ASSIGN VAR NUMBER VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
def res(l): if l[0] % l[1] == 0: print(0) else: k = l[0] % l[1] print(l[1] - k) t = int(input()) while t > 0: t = t - 1 l = list(map(int, input().split())) res(l)
FUNC_DEF IF BIN_OP VAR NUMBER VAR NUMBER NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR NUMBER VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR WHILE VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
n = int(input()) def fon(mini): a, b = map(int, mini.split()) c = 0 if a > b and a % b != 0: c = b - a % b return c elif a % b == 0: return "0" else: return b - a for i in range(n): print(fon(input()))
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_DEF ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL VAR ASSIGN VAR NUMBER IF VAR VAR BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP VAR BIN_OP VAR VAR RETURN VAR IF BIN_OP VAR VAR NUMBER RETURN STRING RETURN BIN_OP VAR VAR FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
t = int(input()) while t: n, s = input().split() s = int(s) l = len(n) u = 0 f = 0 flag = 0 index = 0 for x in range(l): u += int(n[x]) if u == s and flag != 1: flag = 1 index = x if u > s: f = 1 break if f: if flag: x = index print(abs(10 ** (l - x) - int(n[x:]))) else: print(0) t -= 1
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR WHILE VAR ASSIGN VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR IF VAR VAR VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR VAR IF VAR VAR ASSIGN VAR NUMBER IF VAR IF VAR ASSIGN VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR BIN_OP BIN_OP NUMBER BIN_OP VAR VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR NUMBER VAR NUMBER
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
t = int(input()) while t != 0: a, b = map(int, input().split()) if a % b == 0: print(0) else: m = a // b mi = m + 1 n = b * mi - a print(n) t -= 1
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR WHILE VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR VAR EXPR FUNC_CALL VAR VAR VAR NUMBER
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
t = int(input()) for i in range(t): li = [int(x) for x in input().split()] n = li[0] m = li[1] if n > m: if n % m == 0: print(n % m) else: print(m - n % m) else: print(m - n)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR NUMBER ASSIGN VAR VAR NUMBER IF VAR VAR IF BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
def f(i, s): if s == arr[i]: if pres[-1] - pres[i + 1] != 0: arr[i - 1] += 1 for i in range(i, len(arr)): arr[i] = 0 return 0 else: return 0 elif s < arr[i]: arr[i - 1] += 1 for i in range(i, len(arr)): arr[i] = 0 return 0 else: return s - arr[i] for _ in range(int(input())): n, s = list(map(int, input().split())) n1 = n arr = [] while n > 0: arr.append(n % 10) n = n // 10 if sum(arr) <= s: print(0) continue arr = arr[::-1] arr = [0] + arr pres = [0] * (len(arr) + 1) for i in range(len(arr)): pres[i + 1] = pres[i] + arr[i] i = 1 while s != 0: s = f(i, s) i += 1 for i in range(n, 0, -1): if arr[i] > 9: arr[i - 1] += 1 arr[i] -= 10 if sum(arr) <= s: print(0) continue c = 0 u = 0 for i in range(len(arr) - 1, -1, -1): c += arr[i] * 10 ** (len(arr) - i - 1) print(c - n1)
FUNC_DEF IF VAR VAR VAR IF BIN_OP VAR NUMBER VAR BIN_OP VAR NUMBER NUMBER VAR BIN_OP VAR NUMBER NUMBER FOR VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR NUMBER RETURN NUMBER RETURN NUMBER IF VAR VAR VAR VAR BIN_OP VAR NUMBER NUMBER FOR VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR NUMBER RETURN NUMBER RETURN BIN_OP VAR VAR VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR ASSIGN VAR LIST WHILE VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER IF FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR VAR NUMBER ASSIGN VAR BIN_OP LIST NUMBER VAR ASSIGN VAR BIN_OP LIST NUMBER BIN_OP FUNC_CALL VAR VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR NUMBER BIN_OP VAR VAR VAR VAR ASSIGN VAR NUMBER WHILE VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR VAR NUMBER FOR VAR FUNC_CALL VAR VAR NUMBER NUMBER IF VAR VAR NUMBER VAR BIN_OP VAR NUMBER NUMBER VAR VAR NUMBER IF FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER NUMBER NUMBER VAR BIN_OP VAR VAR BIN_OP NUMBER BIN_OP BIN_OP FUNC_CALL VAR VAR VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
def getDigit(n, i): if i > 1: return getDigit(n // 10, i - 1) else: return n % 10 t = int(input()) while t: t -= 1 line = input().split() n = int(line[0]) s = int(line[1]) ans = 0 ns = str(n) tot = 0 for char in ns: tot += int(char) if tot <= s: print(0) continue for i in range(1, 21): dig = getDigit(n, i) toAdd = pow(10, i - 1) * (10 - dig) if dig == 0: toAdd = 0 ans += toAdd if dig > 0: n += toAdd ns = str(n) tot = 0 for char in ns: tot += int(char) if tot <= s: break print(ans)
FUNC_DEF IF VAR NUMBER RETURN FUNC_CALL VAR BIN_OP VAR NUMBER BIN_OP VAR NUMBER RETURN BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR WHILE VAR VAR NUMBER ASSIGN VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER FOR VAR VAR VAR FUNC_CALL VAR VAR IF VAR VAR EXPR FUNC_CALL VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR BIN_OP FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER BIN_OP NUMBER VAR IF VAR NUMBER ASSIGN VAR NUMBER VAR VAR IF VAR NUMBER VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER FOR VAR VAR VAR FUNC_CALL VAR VAR IF VAR VAR EXPR FUNC_CALL VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
t = int(input()) while t: l = list(map(int, input().split())) r, q = 0, 0 r = l[0] % l[1] if r == 0: q = 0 else: q = l[1] - r print(q) t = t - 1
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR WHILE VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR NUMBER NUMBER ASSIGN VAR BIN_OP VAR NUMBER VAR NUMBER IF VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER VAR EXPR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR NUMBER
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
t = int(input()) dig = [] for i in range(t): a, b = list(map(int, input().split())) if a % b != 0: number = a // b + 1 number *= b dig.append(number - a) else: dig.append(0) for j in range(len(dig)): print(dig[j])
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
import sys line = sys.stdin.readline() cases = int(line.strip()) for case in range(cases): nums = sys.stdin.readline().strip().split() a = int(nums[0]) b = int(nums[1]) add = a % b if add != 0: res = int(a / b) add = (res + 1) * b - a print(int(add))
IMPORT ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR BIN_OP VAR VAR IF VAR NUMBER ASSIGN VAR FUNC_CALL VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP BIN_OP BIN_OP VAR NUMBER VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
def f(n): res = 0 while n > 0: res = res + 1 n = n // 10 return res def check(n): res = 0 while n > 0: res = res + n % 10 n = n // 10 return res for _ in range(int(input())): n, s = list(map(int, input().split())) len = f(n) ans = pow(10, 20) if check(n) <= s: ans = 0 for i in range(0, len): p = n // pow(10, i + 1) p = p * pow(10, i + 1) p = p + pow(10, i + 1) if check(p) <= s: if ans > p - n: ans = p - n print(ans)
FUNC_DEF ASSIGN VAR NUMBER WHILE VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER RETURN VAR FUNC_DEF ASSIGN VAR NUMBER WHILE VAR NUMBER ASSIGN VAR BIN_OP VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER RETURN VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR NUMBER NUMBER IF FUNC_CALL VAR VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR ASSIGN VAR BIN_OP VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER IF FUNC_CALL VAR VAR VAR IF VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
from sys import exit as sys_ret from sys import stdin, stdout f_input, f_print, f_flush = stdin.readline, stdout.write, stdout.flush for _ in range(int(f_input())): a, b = map(int, f_input().split()) if a == b or a % b == 0: f_print("0\n") continue if a < b: f_print(str(b - a) + "\n") continue new = a // b * b + b f_print(str(new - a) + "\n")
ASSIGN VAR VAR VAR VAR VAR VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF VAR VAR BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR STRING IF VAR VAR EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR BIN_OP VAR VAR STRING ASSIGN VAR BIN_OP BIN_OP BIN_OP VAR VAR VAR VAR EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR BIN_OP VAR VAR STRING
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
tc = input() tc = int(tc) for i in range(tc): inp = input() inp_lst = inp.split() a = int(inp_lst[0]) b = int(inp_lst[1]) ans = (b - a % b) % b print(ans)
ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR BIN_OP VAR VAR VAR EXPR FUNC_CALL VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
n = int(input()) s = 0 for i in range(n): s = 0 m, z = map(int, input().split()) if m % z == 0: print(0) else: print((m // z + 1) * z - m)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR BIN_OP BIN_OP BIN_OP BIN_OP VAR VAR NUMBER VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
for _ in range(int(input())): a, b = (int(x) for x in input().split()) if a % b == 0: ans1 = 0 elif a <= b: ans1 = b - a else: ans1 = b - a % b print(ans1)
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR IF BIN_OP VAR VAR NUMBER ASSIGN VAR NUMBER IF VAR VAR ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
t = int(input()) for i in range(0, t): ip = str(input()).split(" ") a = int(ip[0]) b = int(ip[1]) print(-a % b)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR NUMBER VAR ASSIGN VAR FUNC_CALL FUNC_CALL VAR FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
t = int(input()) for i in range(t): a, b = map(int, input().split()) ans = 0 k = a // b if a % b == 0: print(0) else: r = b * (k + 1) ans = r - a print(ans)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP VAR VAR IF BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR BIN_OP VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
def summer(s): re = 0 s = str(s) for i in s: re += int(i) return re def sol(n, s): if summer(n) <= s: print(0) return ans = 0 pw = 1 for i in range(18): digit = n // pw % 10 add = pw * ((10 - digit) % 10) n += add ans += add if summer(n) <= s: break pw = pw * 10 print(ans) k = int(input()) for i in range(k): n, s = list(map(int, input().split(" "))) sol(n, s)
FUNC_DEF ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR FOR VAR VAR VAR FUNC_CALL VAR VAR RETURN VAR FUNC_DEF IF FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR NUMBER RETURN ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP VAR BIN_OP BIN_OP NUMBER VAR NUMBER VAR VAR VAR VAR IF FUNC_CALL VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR STRING EXPR FUNC_CALL VAR VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
t = int(input()) while t: user_input = list(map(int, input().split())) digits = [] i = 0 total = 0 temp = user_input[0] while temp: digits.append(temp % 10) temp //= 10 total += digits[i] i += 1 if total <= user_input[1]: print(0) else: for i in range(0, len(digits)): total = total - digits[i] + 1 if total <= user_input[1]: if i == len(digits) - 1: number = total for j in range(0, len(digits)): number *= 10 solution = number - user_input[0] print(solution) break j = len(digits) - 1 number = digits[j] j -= 1 while j > i: number = number * 10 + digits[j] j -= 1 number += 1 for j in range(0, i + 1): number = number * 10 solution = number - user_input[0] print(solution) break total -= 1 t -= 1
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR WHILE VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR LIST ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR VAR NUMBER WHILE VAR EXPR FUNC_CALL VAR BIN_OP VAR NUMBER VAR NUMBER VAR VAR VAR VAR NUMBER IF VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR VAR NUMBER IF VAR VAR NUMBER IF VAR BIN_OP FUNC_CALL VAR VAR NUMBER ASSIGN VAR VAR FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR VAR NUMBER ASSIGN VAR BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER ASSIGN VAR VAR VAR VAR NUMBER WHILE VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR NUMBER VAR VAR VAR NUMBER VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR VAR VAR NUMBER VAR NUMBER
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
for _ in range(int(input())): n, s = map(int, input().split()) m = n s1 = sum([int(i) for i in str(n)]) i = 0 while s1 > s: x = n // 10**i % 10 n += 10**i * (10 - x) i += 1 s1 = sum([int(i) for i in str(n // 10**i)]) print(n - m)
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER WHILE VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR BIN_OP NUMBER VAR NUMBER VAR BIN_OP BIN_OP NUMBER VAR BIN_OP NUMBER VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR BIN_OP VAR BIN_OP NUMBER VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
def divisible(a, b): return b - a % b if a % b > 0 else 0 testcases = int(input()) for i in range(1, testcases + 1): data = tuple(map(int, input().split())) print(divisible(data[0], data[1]))
FUNC_DEF RETURN BIN_OP VAR VAR NUMBER BIN_OP VAR BIN_OP VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR NUMBER VAR NUMBER
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
t = int(input()) for _ in range(t): n, s = input().split() n = [int(i) for i in list(n)] s = int(s) cursum = sum(n) if cursum <= s: print(0) else: n = n[::-1] p = 1 cur = 0 gone = 0 for i in range(len(n)): if n[i] == 0: p *= 10 continue cur += n[i] * p gone += n[i] p *= 10 if cursum - gone + 1 <= s: print(p - cur) break
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR IF VAR VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR VAR NUMBER VAR NUMBER VAR BIN_OP VAR VAR VAR VAR VAR VAR VAR NUMBER IF BIN_OP BIN_OP VAR VAR NUMBER VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
def problem(a, b): count = 0 if a % b == 0: return count else: res = a % b count = b - res return count for i in range(int(input())): a, b = [int(x) for x in input().split()] print(problem(a, b))
FUNC_DEF ASSIGN VAR NUMBER IF BIN_OP VAR VAR NUMBER RETURN VAR ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR VAR RETURN VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
t = int(input()) for _ in range(t): a, b = map(int, input().split()) min_inc = a if a % b != 0: min_inc -= a % b min_inc += b print(min_inc - a)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR IF BIN_OP VAR VAR NUMBER VAR BIN_OP VAR VAR VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
import sys def q1(): for inx, line in enumerate(sys.stdin): if inx == 0: continue tokens = line.rstrip("\n").split() a = int(tokens[0]) b = int(tokens[1]) if a < b: print(b - a) continue elif a % b == 0: print(0) else: d = a // b an = b * (d + 1) print(an - a) q1()
IMPORT FUNC_DEF FOR VAR VAR FUNC_CALL VAR VAR IF VAR NUMBER ASSIGN VAR FUNC_CALL FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR NUMBER IF VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR IF BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
def to_list(s): return list(map(lambda x: int(x), s.split(" "))) def solve(a, b): residue = a % b if residue == 0: return "0" else: return str(b - residue) t = int(input()) answers = [] for i in range(t): a, b = to_list(input()) answers.append(solve(a, b)) print("\n".join(answers))
FUNC_DEF RETURN FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL VAR STRING FUNC_DEF ASSIGN VAR BIN_OP VAR VAR IF VAR NUMBER RETURN STRING RETURN FUNC_CALL VAR BIN_OP VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR FUNC_CALL STRING VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
for _ in range(int(input())): number, mx = input().split() number = [i for i in number] mx = int(mx) su = sum(int(i) for i in number) if su <= mx: print(0) continue number = ["0"] + number inumber = int("".join(number)) ln = len(number) res = int(2e18) for i in range(ln): nn = number.copy() if int(nn[i]) < 9: nn[i] = str(int(nn[i]) + 1) for j in range(i + 1, ln): nn[j] = "0" su = sum(int(i) for i in nn) inn = int("".join(nn)) if inumber <= inn < res and su <= mx: res = inn print(res - inumber)
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR VAR IF VAR VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR BIN_OP LIST STRING VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL STRING VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR IF FUNC_CALL VAR VAR VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER VAR ASSIGN VAR VAR STRING ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL STRING VAR IF VAR VAR VAR VAR VAR ASSIGN VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
def sumd(n): return sum([int(x) for x in str(n)]) t = int(input()) for tc in range(t): n, s = [int(x) for x in input().split()] ans = 0 while sumd(n) > s: if n <= 9: ans += 10 - n n = 10 else: st = str(n)[::-1] l = 0 for i in range(len(st)): if st[i] != "0": l = i + 1 break x = n % 10**l ans += 10**l - x n = n + (10**l - x) print(ans)
FUNC_DEF RETURN FUNC_CALL VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER WHILE FUNC_CALL VAR VAR VAR IF VAR NUMBER VAR BIN_OP NUMBER VAR ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR VAR STRING ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR BIN_OP NUMBER VAR VAR BIN_OP BIN_OP NUMBER VAR VAR ASSIGN VAR BIN_OP VAR BIN_OP BIN_OP NUMBER VAR VAR EXPR FUNC_CALL VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
n = int(input()) ar = list() for i in range(n): a, b = [int(s) for s in input().split()] if a % b == 0: ar.append(0) else: ar.append(int((a // b + 1) * b - a)) for i in ar: print(i)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR IF BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR BIN_OP BIN_OP BIN_OP BIN_OP VAR VAR NUMBER VAR VAR FOR VAR VAR EXPR FUNC_CALL VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
n = int(input()) l = list() def process(x, y): r = 0 if x % y != 0: print(y - x % y) else: print("0") while n > 0: f = [int(x) for x in input().split()] l.append(f) n -= 1 for i in l: process(i[0], i[1])
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_DEF ASSIGN VAR NUMBER IF BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR STRING WHILE VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR VAR VAR NUMBER FOR VAR VAR EXPR FUNC_CALL VAR VAR NUMBER VAR NUMBER
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
for i in range(int(input())): a, s = [x for x in input().split()] n = len(a) s = int(s) lst = [] for i in a: lst.append(int(i)) su = 0 i = 0 while i != n: su += lst[i] if su > s: break i += 1 if i == n: print(0) else: while i != -1: if su < s: break su -= lst[i] i -= 1 if i == -1: num = 10**n print(num - int(a)) else: num = 10 ** (n - i - 1) print(num - int(a[i + 1 :]))
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR LIST FOR VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR VAR VAR VAR IF VAR VAR VAR NUMBER IF VAR VAR EXPR FUNC_CALL VAR NUMBER WHILE VAR NUMBER IF VAR VAR VAR VAR VAR VAR NUMBER IF VAR NUMBER ASSIGN VAR BIN_OP NUMBER VAR EXPR FUNC_CALL VAR BIN_OP VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP NUMBER BIN_OP BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
import sys def input(): return sys.stdin.readline()[:-1] def getInt(): return int(input()) def getIntIter(): return map(int, input().split()) def getIntList(): return list(getIntIter()) for _ in range(int(input())): n, s = getIntIter() digits = [] while n > 0: digits.insert(0, n % 10) n = n // 10 if sum(digits) <= s: print(0) else: currSum = 0 i = -1 while currSum < s and i + 1 < len(digits): i += 1 currSum += digits[i] digits = digits[i:] num = sum(10 ** (len(digits) - 1 - i) * digits[i] for i in range(len(digits))) print(10 ** len(digits) - num)
IMPORT FUNC_DEF RETURN FUNC_CALL VAR NUMBER FUNC_DEF RETURN FUNC_CALL VAR FUNC_CALL VAR FUNC_DEF RETURN FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR FUNC_DEF RETURN FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR ASSIGN VAR LIST WHILE VAR NUMBER EXPR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER IF FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR BIN_OP VAR NUMBER FUNC_CALL VAR VAR VAR NUMBER VAR VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR FUNC_CALL VAR BIN_OP BIN_OP NUMBER BIN_OP BIN_OP FUNC_CALL VAR VAR NUMBER VAR VAR VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR BIN_OP BIN_OP NUMBER FUNC_CALL VAR VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
n = int(input()) Result = [] for i in range(0, n): List = list(map(int, input().strip().split()))[0:2] a = List[0] b = List[1] residue = a % b if residue == 0: Result.append(0) else: Res = b - residue Result.append(Res) for i in Result: print(i)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR NUMBER VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL FUNC_CALL VAR NUMBER NUMBER ASSIGN VAR VAR NUMBER ASSIGN VAR VAR NUMBER ASSIGN VAR BIN_OP VAR VAR IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR VAR FOR VAR VAR EXPR FUNC_CALL VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
from sys import stdin class Problem: def __init__(self, n, s): self.n = n self.s = s self.stack = [] def solve(self): number = "0" + str(self.n) current_sum = 0 for digit in number: d = int(digit) self.stack.append(d) current_sum += d adds = 0 ten = 1 while current_sum > self.s: d = self.stack.pop() if d == 0: ten = ten * 10 continue if d == 10: current_sum = current_sum - 9 self.stack[-1] += 1 else: current_sum = current_sum - d adds = adds + ten * (10 - d) current_sum = current_sum + 1 self.stack[-1] += 1 ten = ten * 10 return adds cases = int(stdin.readline()) for test in range(cases): n, s = map(int, stdin.readline().split()) ans = Problem(n, s).solve() print(ans)
CLASS_DEF FUNC_DEF ASSIGN VAR VAR ASSIGN VAR VAR ASSIGN VAR LIST FUNC_DEF ASSIGN VAR BIN_OP STRING FUNC_CALL VAR VAR ASSIGN VAR NUMBER FOR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR ASSIGN VAR FUNC_CALL VAR IF VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER IF VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER VAR NUMBER NUMBER ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR BIN_OP VAR BIN_OP NUMBER VAR ASSIGN VAR BIN_OP VAR NUMBER VAR NUMBER NUMBER ASSIGN VAR BIN_OP VAR NUMBER RETURN VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
t = int(input()) for i in range(t): n, s = map(int, input().split()) pn = n tn = [] while n: n, a = divmod(n, 10) tn.append(a) tn.append(0) def cal(p): tn[p] = 0 tn[p + 1] += 1 for d in range(p + 1, 100000000): if tn[d] == 10: tn[d] = 0 tn[d + 1] += 1 else: break return sum(tn) <= s if sum(tn) <= s: print(0) continue for j in range(0, 100000): if cal(j): print(int("".join(map(str, tn[::-1]))) - pn) break
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR ASSIGN VAR LIST WHILE VAR ASSIGN VAR VAR FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR NUMBER FUNC_DEF ASSIGN VAR VAR NUMBER VAR BIN_OP VAR NUMBER NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER IF VAR VAR NUMBER ASSIGN VAR VAR NUMBER VAR BIN_OP VAR NUMBER NUMBER RETURN FUNC_CALL VAR VAR VAR IF FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER NUMBER IF FUNC_CALL VAR VAR EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR FUNC_CALL STRING FUNC_CALL VAR VAR VAR NUMBER VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
number = int(input()) data = list(map(int, input().split())) for index in range(1, number, 1): current = list(map(int, input().split())) data.append(current[0]) data.append(current[1]) def devide(number): array = [] while number > 0: array.append(number % 10) number = (number - number % 10) // 10 return array def massiv(array): sum = 0 for pos, element in enumerate(array): sum += 10 ** (len(array) - pos - 1) * element return sum def partial(array): num = massiv(array) num = 10 ** len(array) - num return num def check(array): sum = 0 for pos, element in enumerate(array): sum += element return sum def func(number1, number2): if number1 == number2: print(0) else: array = devide(number1) array.reverse() if check(array) > number2: counter = 0 value = 0 for pos, element in enumerate(array): if element < number2: number2 -= element elif counter == 0 and pos != 0: counter = 1 array[pos - 1] = array[pos - 1] + 1 elif pos == 0 and element >= number2: value = 1 answer = partial(array) if counter == 1: array[pos] = 0 if value == 0: answer = massiv(array) print(answer - number1) else: print(answer) else: print(0) for element in range(0, len(data), 2): func(data[element], data[element + 1])
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR FOR VAR FUNC_CALL VAR NUMBER VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR VAR NUMBER FUNC_DEF ASSIGN VAR LIST WHILE VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR BIN_OP VAR NUMBER NUMBER RETURN VAR FUNC_DEF ASSIGN VAR NUMBER FOR VAR VAR FUNC_CALL VAR VAR VAR BIN_OP BIN_OP NUMBER BIN_OP BIN_OP FUNC_CALL VAR VAR VAR NUMBER VAR RETURN VAR FUNC_DEF ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP BIN_OP NUMBER FUNC_CALL VAR VAR VAR RETURN VAR FUNC_DEF ASSIGN VAR NUMBER FOR VAR VAR FUNC_CALL VAR VAR VAR VAR RETURN VAR FUNC_DEF IF VAR VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR IF FUNC_CALL VAR VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR FUNC_CALL VAR VAR IF VAR VAR VAR VAR IF VAR NUMBER VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER BIN_OP VAR BIN_OP VAR NUMBER NUMBER IF VAR NUMBER VAR VAR ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR IF VAR NUMBER ASSIGN VAR VAR NUMBER IF VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR VAR VAR VAR BIN_OP VAR NUMBER
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
def digits_sum(n): s = 0 while n > 0: s += n % 10 n //= 10 return s def main(): t = int(input()) for _ in range(t): n, s = map(int, input().split()) sm = digits_sum(n) ops = 0 mul = 1 while sm > s: last = n % 10 if last != 0: n += 10 - last sm = digits_sum(n) ops += (10 - last) * mul n //= 10 mul *= 10 print(ops) main()
FUNC_DEF ASSIGN VAR NUMBER WHILE VAR NUMBER VAR BIN_OP VAR NUMBER VAR NUMBER RETURN VAR FUNC_DEF ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR ASSIGN VAR BIN_OP VAR NUMBER IF VAR NUMBER VAR BIN_OP NUMBER VAR ASSIGN VAR FUNC_CALL VAR VAR VAR BIN_OP BIN_OP NUMBER VAR VAR VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
t = int(input()) for i in range(t): s, m = [int(s) for s in input().split()] s = str(s) sumi = 0 for i in range(len(s)): sumi = sumi + int(s[i]) if sumi >= m: answer = int(s[i:]) answer = int("1" + (len(s) - i) * "0") - answer break sumi = 0 for i in range(len(s)): sumi = sumi + int(s[i]) if sumi <= m: print(0) else: print(answer)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR FUNC_CALL VAR VAR VAR IF VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR BIN_OP FUNC_CALL VAR BIN_OP STRING BIN_OP BIN_OP FUNC_CALL VAR VAR VAR STRING VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR FUNC_CALL VAR VAR VAR IF VAR VAR EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR VAR
You are given a positive integer $n$. In one move, you can increase $n$ by one (i.e. make $n := n + 1$). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. You have to answer $t$ independent test cases. -----Input----- The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β€” the number of test cases. Then $t$ test cases follow. The only line of the test case contains two integers $n$ and $s$ ($1 \le n \le 10^{18}$; $1 \le s \le 162$). -----Output----- For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of $n$ be less than or equal to $s$. -----Example----- Input 5 2 1 1 1 500 4 217871987498122 10 100000000000000001 1 Output 8 0 500 2128012501878 899999999999999999
for t in range(int(input())): n, s = input().split() s = int(s) nl = [int(i) for i in n] digits = len(nl) sum_s = sum(nl) while sum_s > s: sum_s -= nl.pop() while nl and nl[-1] == 9: sum_s -= nl.pop() if nl: nl[-1] += 1 else: nl.append(1) sum_s += 1 n = int(n) nl = [str(i) for i in nl] while int("".join(nl)) < n: nl.append("0") print(int("".join(nl)) - n)
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR WHILE VAR VAR VAR FUNC_CALL VAR WHILE VAR VAR NUMBER NUMBER VAR FUNC_CALL VAR IF VAR VAR NUMBER NUMBER EXPR FUNC_CALL VAR NUMBER VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR VAR WHILE FUNC_CALL VAR FUNC_CALL STRING VAR VAR EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR FUNC_CALL STRING VAR VAR