fact
stringlengths
6
3.84k
type
stringclasses
11 values
library
stringclasses
32 values
imports
listlengths
1
14
filename
stringlengths
20
95
symbolic_name
stringlengths
1
90
docstring
stringlengths
7
20k
disc {R : Type*} [Ring R] (P : Cubic R) : R := P.b ^ 2 * P.c ^ 2 - 4 * P.a * P.c ^ 3 - 4 * P.b ^ 3 * P.d - 27 * P.a ^ 2 * P.d ^ 2 + 18 * P.a * P.b * P.c * P.d
def
Algebra
[ "Mathlib.Algebra.Polynomial.Splits", "Mathlib.Tactic.IntervalCases" ]
Mathlib/Algebra/CubicDiscriminant.lean
disc
The discriminant of a cubic polynomial.
disc_eq_prod_three_roots (ha : P.a ≠ 0) (h3 : (map φ P).roots = {x, y, z}) : φ P.disc = (φ P.a * φ P.a * (x - y) * (x - z) * (y - z)) ^ 2 := by simp only [disc, RingHom.map_add, RingHom.map_sub, RingHom.map_mul, map_pow, map_ofNat] rw [b_eq_three_roots ha h3, c_eq_three_roots ha h3, d_eq_three_roots ha h3] ring1
theorem
Algebra
[ "Mathlib.Algebra.Polynomial.Splits", "Mathlib.Tactic.IntervalCases" ]
Mathlib/Algebra/CubicDiscriminant.lean
disc_eq_prod_three_roots
null
disc_ne_zero_iff_roots_ne (ha : P.a ≠ 0) (h3 : (map φ P).roots = {x, y, z}) : P.disc ≠ 0 ↔ x ≠ y ∧ x ≠ z ∧ y ≠ z := by rw [← _root_.map_ne_zero φ, disc_eq_prod_three_roots ha h3, pow_two] simp_rw [mul_ne_zero_iff, sub_ne_zero, _root_.map_ne_zero, and_self_iff, and_iff_right ha, and_assoc]
theorem
Algebra
[ "Mathlib.Algebra.Polynomial.Splits", "Mathlib.Tactic.IntervalCases" ]
Mathlib/Algebra/CubicDiscriminant.lean
disc_ne_zero_iff_roots_ne
null
disc_ne_zero_iff_roots_nodup (ha : P.a ≠ 0) (h3 : (map φ P).roots = {x, y, z}) : P.disc ≠ 0 ↔ (map φ P).roots.Nodup := by rw [disc_ne_zero_iff_roots_ne ha h3, h3] change _ ↔ (x ::ₘ y ::ₘ {z}).Nodup rw [nodup_cons, nodup_cons, mem_cons, mem_singleton, mem_singleton] simp only [nodup_singleton] tauto
theorem
Algebra
[ "Mathlib.Algebra.Polynomial.Splits", "Mathlib.Tactic.IntervalCases" ]
Mathlib/Algebra/CubicDiscriminant.lean
disc_ne_zero_iff_roots_nodup
null
card_roots_of_disc_ne_zero [DecidableEq K] (ha : P.a ≠ 0) (h3 : (map φ P).roots = {x, y, z}) (hd : P.disc ≠ 0) : (map φ P).roots.toFinset.card = 3 := by rw [toFinset_card_of_nodup <| (disc_ne_zero_iff_roots_nodup ha h3).mp hd, ← splits_iff_card_roots ha, splits_iff_roots_eq_three ha] exact ⟨x, ⟨y, ⟨z, h3⟩⟩⟩
theorem
Algebra
[ "Mathlib.Algebra.Polynomial.Splits", "Mathlib.Tactic.IntervalCases" ]
Mathlib/Algebra/CubicDiscriminant.lean
card_roots_of_disc_ne_zero
null
DualNumber (R : Type*) : Type _ := TrivSqZeroExt R R
abbrev
Algebra
[ "Mathlib.Algebra.TrivSqZeroExt" ]
Mathlib/Algebra/DualNumber.lean
DualNumber
The type of dual numbers, numbers of the form $a + bε$ where $ε^2 = 0$. `R[ε]` is notation for `DualNumber R`.
DualNumber.eps [Zero R] [One R] : DualNumber R := TrivSqZeroExt.inr 1 @[inherit_doc] scoped[DualNumber] notation "ε" => DualNumber.eps @[inherit_doc] scoped[DualNumber] postfix:1024 "[ε]" => DualNumber open DualNumber
def
Algebra
[ "Mathlib.Algebra.TrivSqZeroExt" ]
Mathlib/Algebra/DualNumber.lean
DualNumber.eps
The unit element $ε$ that squares to zero, with notation `ε`.
@[simp] fst_eps [Zero R] [One R] : fst ε = (0 : R) := rfl @[simp]
theorem
Algebra
[ "Mathlib.Algebra.TrivSqZeroExt" ]
Mathlib/Algebra/DualNumber.lean
fst_eps
null
snd_eps [Zero R] [One R] : snd ε = (1 : R) := rfl
theorem
Algebra
[ "Mathlib.Algebra.TrivSqZeroExt" ]
Mathlib/Algebra/DualNumber.lean
snd_eps
null
@[simp] snd_mul [Semiring R] (x y : R[ε]) : snd (x * y) = fst x * snd y + snd x * fst y := rfl @[simp]
theorem
Algebra
[ "Mathlib.Algebra.TrivSqZeroExt" ]
Mathlib/Algebra/DualNumber.lean
snd_mul
A version of `TrivSqZeroExt.snd_mul` with `*` instead of `•`.
eps_mul_eps [Semiring R] : (ε * ε : R[ε]) = 0 := inr_mul_inr _ _ _ @[simp]
theorem
Algebra
[ "Mathlib.Algebra.TrivSqZeroExt" ]
Mathlib/Algebra/DualNumber.lean
eps_mul_eps
null
inv_eps [DivisionRing R] : (ε : R[ε])⁻¹ = 0 := TrivSqZeroExt.inv_inr 1 @[simp]
theorem
Algebra
[ "Mathlib.Algebra.TrivSqZeroExt" ]
Mathlib/Algebra/DualNumber.lean
inv_eps
null
inr_eq_smul_eps [MulZeroOneClass R] (r : R) : inr r = (r • ε : R[ε]) := ext (mul_zero r).symm (mul_one r).symm
theorem
Algebra
[ "Mathlib.Algebra.TrivSqZeroExt" ]
Mathlib/Algebra/DualNumber.lean
inr_eq_smul_eps
null
commute_eps_left [Semiring R] (x : DualNumber R) : Commute ε x := by ext <;> simp
theorem
Algebra
[ "Mathlib.Algebra.TrivSqZeroExt" ]
Mathlib/Algebra/DualNumber.lean
commute_eps_left
`ε` commutes with every element of the algebra.
commute_eps_right [Semiring R] (x : DualNumber R) : Commute x ε := (commute_eps_left x).symm variable {A : Type*} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B]
theorem
Algebra
[ "Mathlib.Algebra.TrivSqZeroExt" ]
Mathlib/Algebra/DualNumber.lean
commute_eps_right
`ε` commutes with every element of the algebra.
@[ext 1200] algHom_ext ⦃f g : R[ε] →ₐ[R] A⦄ (hε : f ε = g ε) : f = g := by ext dsimp simp only [one_smul, hε]
theorem
Algebra
[ "Mathlib.Algebra.TrivSqZeroExt" ]
Mathlib/Algebra/DualNumber.lean
algHom_ext
For two `R`-algebra morphisms out of `A[ε]` to agree, it suffices for them to agree on the elements of `A` and the `A`-multiples of `ε`. -/ @[ext 1100] nonrec theorem algHom_ext' ⦃f g : A[ε] →ₐ[R] B⦄ (hinl : f.comp (inlAlgHom _ _ _) = g.comp (inlAlgHom _ _ _)) (hinr : f.toLinearMap ∘ₗ (LinearMap.toSpanSingleton A A[ε] ε).restrictScalars R = g.toLinearMap ∘ₗ (LinearMap.toSpanSingleton A A[ε] ε).restrictScalars R) : f = g := algHom_ext' hinl (by ext a change f (inr a) = g (inr a) simpa only [inr_eq_smul_eps] using DFunLike.congr_fun hinr a) /-- For two `R`-algebra morphisms out of `R[ε]` to agree, it suffices for them to agree on `ε`.
lift : {fe : (A →ₐ[R] B) × B // fe.2 * fe.2 = 0 ∧ ∀ a, Commute fe.2 (fe.1 a)} ≃ (A[ε] →ₐ[R] B) := by refine Equiv.trans ?_ TrivSqZeroExt.liftEquiv exact { toFun := fun fe => ⟨ (fe.val.1, MulOpposite.op fe.val.2 • fe.val.1.toLinearMap), fun x y => show (fe.val.1 x * fe.val.2) * (fe.val.1 y * fe.val.2) = 0 by rw [(fe.prop.2 _).mul_mul_mul_comm, fe.prop.1, mul_zero], fun r x => show fe.val.1 (r * x) * fe.val.2 = fe.val.1 r * (fe.val.1 x * fe.val.2) by rw [map_mul, mul_assoc], fun r x => show fe.val.1 (x * r) * fe.val.2 = (fe.val.1 x * fe.val.2) * fe.val.1 r by rw [map_mul, (fe.prop.2 _).right_comm]⟩ invFun := fun fg => ⟨ (fg.val.1, fg.val.2 1), fg.prop.1 _ _, fun a => show fg.val.2 1 * fg.val.1 a = fg.val.1 a * fg.val.2 1 by rw [← fg.prop.2.1, ← fg.prop.2.2, smul_eq_mul, op_smul_eq_mul, mul_one, one_mul]⟩ left_inv := fun fe => Subtype.ext <| Prod.ext rfl <| show fe.val.1 1 * fe.val.2 = fe.val.2 by rw [map_one, one_mul] right_inv := fun fg => Subtype.ext <| Prod.ext rfl <| LinearMap.ext fun x => show fg.val.1 x * fg.val.2 1 = fg.val.2 x by rw [← fg.prop.2.1, smul_eq_mul, mul_one] }
def
Algebra
[ "Mathlib.Algebra.TrivSqZeroExt" ]
Mathlib/Algebra/DualNumber.lean
lift
A universal property of the dual numbers, providing a unique `A[ε] →ₐ[R] B` for every map `f : A →ₐ[R] B` and a choice of element `e : B` which squares to `0` and commutes with the range of `f`. This isomorphism is named to match the similar `Complex.lift`. Note that when `f : R →ₐ[R] B := Algebra.ofId R B`, the commutativity assumption is automatic, and we are free to choose any element `e : B`.
lift_apply_apply (fe : {_fe : (A →ₐ[R] B) × B // _}) (a : A[ε]) : lift fe a = fe.val.1 a.fst + fe.val.1 a.snd * fe.val.2 := rfl @[simp] theorem coe_lift_symm_apply (F : A[ε] →ₐ[R] B) : (lift.symm F).val = (F.comp (inlAlgHom _ _ _), F ε) := rfl
theorem
Algebra
[ "Mathlib.Algebra.TrivSqZeroExt" ]
Mathlib/Algebra/DualNumber.lean
lift_apply_apply
null
@[simp] lift_apply_inl (fe : {_fe : (A →ₐ[R] B) × B // _}) (a : A) : lift fe (inl a : A[ε]) = fe.val.1 a := by rw [lift_apply_apply, fst_inl, snd_inl, map_zero, zero_mul, add_zero] @[simp] theorem lift_comp_inlHom (fe : {_fe : (A →ₐ[R] B) × B // _}) : (lift fe).comp (inlAlgHom R A A) = fe.val.1 := AlgHom.ext <| lift_apply_inl fe
theorem
Algebra
[ "Mathlib.Algebra.TrivSqZeroExt" ]
Mathlib/Algebra/DualNumber.lean
lift_apply_inl
When applied to `inl`, `DualNumber.lift` applies the map `f : A →ₐ[R] B`.
@[simp] lift_smul (fe : {_fe : (A →ₐ[R] B) × B // _}) (a : A) (ad : A[ε]) : lift fe (a • ad) = fe.val.1 a * lift fe ad := by rw [← inl_mul_eq_smul, map_mul, lift_apply_inl]
theorem
Algebra
[ "Mathlib.Algebra.TrivSqZeroExt" ]
Mathlib/Algebra/DualNumber.lean
lift_smul
Scaling on the left is sent by `DualNumber.lift` to multiplication on the left
@[simp] lift_op_smul (fe : {_fe : (A →ₐ[R] B) × B // _}) (a : A) (ad : A[ε]) : lift fe (MulOpposite.op a • ad) = lift fe ad * fe.val.1 a := by rw [← mul_inl_eq_op_smul, map_mul, lift_apply_inl]
theorem
Algebra
[ "Mathlib.Algebra.TrivSqZeroExt" ]
Mathlib/Algebra/DualNumber.lean
lift_op_smul
Scaling on the right is sent by `DualNumber.lift` to multiplication on the right
@[simp] lift_apply_eps (fe : {fe : (A →ₐ[R] B) × B // fe.2 * fe.2 = 0 ∧ ∀ a, Commute fe.2 (fe.1 a)}) : lift fe (ε : A[ε]) = fe.val.2 := by simp only [lift_apply_apply, fst_eps, map_zero, snd_eps, map_one, one_mul, zero_add]
theorem
Algebra
[ "Mathlib.Algebra.TrivSqZeroExt" ]
Mathlib/Algebra/DualNumber.lean
lift_apply_eps
When applied to `ε`, `DualNumber.lift` produces the element of `B` that squares to 0.
@[simp] lift_inlAlgHom_eps : lift ⟨(inlAlgHom _ _ _, ε), eps_mul_eps, fun _ => commute_eps_left _⟩ = AlgHom.id R A[ε] := lift.apply_symm_apply <| AlgHom.id R A[ε] @[simp]
theorem
Algebra
[ "Mathlib.Algebra.TrivSqZeroExt" ]
Mathlib/Algebra/DualNumber.lean
lift_inlAlgHom_eps
Lifting `DualNumber.eps` itself gives the identity.
range_inlAlgHom_sup_adjoin_eps : (inlAlgHom R A A).range ⊔ Algebra.adjoin R {ε} = ⊤ := by refine top_unique fun x hx => ?_; clear hx rw [← x.inl_fst_add_inr_snd_eq, inr_eq_smul_eps, ← inl_mul_eq_smul] refine add_mem ?_ (mul_mem ?_ ?_) · exact le_sup_left (α := Subalgebra R _) <| Set.mem_range_self x.fst · exact le_sup_left (α := Subalgebra R _) <| Set.mem_range_self x.snd · refine le_sup_right (α := Subalgebra R _) <| Algebra.subset_adjoin <| Set.mem_singleton ε @[simp]
theorem
Algebra
[ "Mathlib.Algebra.TrivSqZeroExt" ]
Mathlib/Algebra/DualNumber.lean
range_inlAlgHom_sup_adjoin_eps
null
range_lift (fe : {fe : (A →ₐ[R] B) × B // fe.2 * fe.2 = 0 ∧ ∀ a, Commute fe.2 (fe.1 a)}) : (lift fe).range = fe.1.1.range ⊔ Algebra.adjoin R {fe.1.2} := by simp_rw [← Algebra.map_top, ← range_inlAlgHom_sup_adjoin_eps, Algebra.map_sup, AlgHom.map_adjoin, ← AlgHom.range_comp, Set.image_singleton, lift_apply_eps, lift_comp_inlHom, Algebra.map_top]
theorem
Algebra
[ "Mathlib.Algebra.TrivSqZeroExt" ]
Mathlib/Algebra/DualNumber.lean
range_lift
null
instRepr [Repr R] : Repr (DualNumber R) where reprPrec f p := (if p > 65 then (Std.Format.bracket "(" · ")") else (·)) <| reprPrec f.fst 65 ++ " + " ++ reprPrec f.snd 70 ++ "*ε"
instance
Algebra
[ "Mathlib.Algebra.TrivSqZeroExt" ]
Mathlib/Algebra/DualNumber.lean
instRepr
Show DualNumber with values x and y as an "x + y*ε" string
dualNumberEquiv : Quaternion (DualNumber R) ≃ₐ[R] DualNumber (Quaternion R) where toFun q := (⟨q.re.fst, q.imI.fst, q.imJ.fst, q.imK.fst⟩, ⟨q.re.snd, q.imI.snd, q.imJ.snd, q.imK.snd⟩) invFun d := ⟨(d.fst.re, d.snd.re), (d.fst.imI, d.snd.imI), (d.fst.imJ, d.snd.imJ), (d.fst.imK, d.snd.imK)⟩ map_mul' := by intros ext : 1 · rfl · dsimp congr 1 <;> simp <;> ring map_add' := by intros rfl commutes' _ := rfl /-! Lemmas characterizing `Quaternion.dualNumberEquiv`. -/ @[simp]
def
Algebra
[ "Mathlib.Algebra.DualNumber", "Mathlib.Algebra.Quaternion" ]
Mathlib/Algebra/DualQuaternion.lean
dualNumberEquiv
The dual quaternions can be equivalently represented as a quaternion with dual coefficients, or as a dual number with quaternion coefficients. See also `Matrix.dualNumberEquiv` for a similar result.
re_fst_dualNumberEquiv (q : Quaternion (DualNumber R)) : (dualNumberEquiv q).fst.re = q.re.fst := rfl @[simp]
theorem
Algebra
[ "Mathlib.Algebra.DualNumber", "Mathlib.Algebra.Quaternion" ]
Mathlib/Algebra/DualQuaternion.lean
re_fst_dualNumberEquiv
null
imI_fst_dualNumberEquiv (q : Quaternion (DualNumber R)) : (dualNumberEquiv q).fst.imI = q.imI.fst := rfl @[simp]
theorem
Algebra
[ "Mathlib.Algebra.DualNumber", "Mathlib.Algebra.Quaternion" ]
Mathlib/Algebra/DualQuaternion.lean
imI_fst_dualNumberEquiv
null
imJ_fst_dualNumberEquiv (q : Quaternion (DualNumber R)) : (dualNumberEquiv q).fst.imJ = q.imJ.fst := rfl @[simp]
theorem
Algebra
[ "Mathlib.Algebra.DualNumber", "Mathlib.Algebra.Quaternion" ]
Mathlib/Algebra/DualQuaternion.lean
imJ_fst_dualNumberEquiv
null
imK_fst_dualNumberEquiv (q : Quaternion (DualNumber R)) : (dualNumberEquiv q).fst.imK = q.imK.fst := rfl @[simp]
theorem
Algebra
[ "Mathlib.Algebra.DualNumber", "Mathlib.Algebra.Quaternion" ]
Mathlib/Algebra/DualQuaternion.lean
imK_fst_dualNumberEquiv
null
re_snd_dualNumberEquiv (q : Quaternion (DualNumber R)) : (dualNumberEquiv q).snd.re = q.re.snd := rfl @[simp]
theorem
Algebra
[ "Mathlib.Algebra.DualNumber", "Mathlib.Algebra.Quaternion" ]
Mathlib/Algebra/DualQuaternion.lean
re_snd_dualNumberEquiv
null
imI_snd_dualNumberEquiv (q : Quaternion (DualNumber R)) : (dualNumberEquiv q).snd.imI = q.imI.snd := rfl @[simp]
theorem
Algebra
[ "Mathlib.Algebra.DualNumber", "Mathlib.Algebra.Quaternion" ]
Mathlib/Algebra/DualQuaternion.lean
imI_snd_dualNumberEquiv
null
imJ_snd_dualNumberEquiv (q : Quaternion (DualNumber R)) : (dualNumberEquiv q).snd.imJ = q.imJ.snd := rfl @[simp]
theorem
Algebra
[ "Mathlib.Algebra.DualNumber", "Mathlib.Algebra.Quaternion" ]
Mathlib/Algebra/DualQuaternion.lean
imJ_snd_dualNumberEquiv
null
imK_snd_dualNumberEquiv (q : Quaternion (DualNumber R)) : (dualNumberEquiv q).snd.imK = q.imK.snd := rfl @[simp]
theorem
Algebra
[ "Mathlib.Algebra.DualNumber", "Mathlib.Algebra.Quaternion" ]
Mathlib/Algebra/DualQuaternion.lean
imK_snd_dualNumberEquiv
null
fst_re_dualNumberEquiv_symm (d : DualNumber (Quaternion R)) : (dualNumberEquiv.symm d).re.fst = d.fst.re := rfl @[simp]
theorem
Algebra
[ "Mathlib.Algebra.DualNumber", "Mathlib.Algebra.Quaternion" ]
Mathlib/Algebra/DualQuaternion.lean
fst_re_dualNumberEquiv_symm
null
fst_imI_dualNumberEquiv_symm (d : DualNumber (Quaternion R)) : (dualNumberEquiv.symm d).imI.fst = d.fst.imI := rfl @[simp]
theorem
Algebra
[ "Mathlib.Algebra.DualNumber", "Mathlib.Algebra.Quaternion" ]
Mathlib/Algebra/DualQuaternion.lean
fst_imI_dualNumberEquiv_symm
null
fst_imJ_dualNumberEquiv_symm (d : DualNumber (Quaternion R)) : (dualNumberEquiv.symm d).imJ.fst = d.fst.imJ := rfl @[simp]
theorem
Algebra
[ "Mathlib.Algebra.DualNumber", "Mathlib.Algebra.Quaternion" ]
Mathlib/Algebra/DualQuaternion.lean
fst_imJ_dualNumberEquiv_symm
null
fst_imK_dualNumberEquiv_symm (d : DualNumber (Quaternion R)) : (dualNumberEquiv.symm d).imK.fst = d.fst.imK := rfl @[simp]
theorem
Algebra
[ "Mathlib.Algebra.DualNumber", "Mathlib.Algebra.Quaternion" ]
Mathlib/Algebra/DualQuaternion.lean
fst_imK_dualNumberEquiv_symm
null
snd_re_dualNumberEquiv_symm (d : DualNumber (Quaternion R)) : (dualNumberEquiv.symm d).re.snd = d.snd.re := rfl @[simp]
theorem
Algebra
[ "Mathlib.Algebra.DualNumber", "Mathlib.Algebra.Quaternion" ]
Mathlib/Algebra/DualQuaternion.lean
snd_re_dualNumberEquiv_symm
null
snd_imI_dualNumberEquiv_symm (d : DualNumber (Quaternion R)) : (dualNumberEquiv.symm d).imI.snd = d.snd.imI := rfl @[simp]
theorem
Algebra
[ "Mathlib.Algebra.DualNumber", "Mathlib.Algebra.Quaternion" ]
Mathlib/Algebra/DualQuaternion.lean
snd_imI_dualNumberEquiv_symm
null
snd_imJ_dualNumberEquiv_symm (d : DualNumber (Quaternion R)) : (dualNumberEquiv.symm d).imJ.snd = d.snd.imJ := rfl @[simp]
theorem
Algebra
[ "Mathlib.Algebra.DualNumber", "Mathlib.Algebra.Quaternion" ]
Mathlib/Algebra/DualQuaternion.lean
snd_imJ_dualNumberEquiv_symm
null
snd_imK_dualNumberEquiv_symm (d : DualNumber (Quaternion R)) : (dualNumberEquiv.symm d).imK.snd = d.snd.imK := rfl
theorem
Algebra
[ "Mathlib.Algebra.DualNumber", "Mathlib.Algebra.Quaternion" ]
Mathlib/Algebra/DualQuaternion.lean
snd_imK_dualNumberEquiv_symm
null
Exact [Zero P] : Prop := ∀ y, g y = 0 ↔ y ∈ Set.range f variable {f g}
def
Algebra
[ "Mathlib.Algebra.Module.Submodule.Range", "Mathlib.LinearAlgebra.Prod", "Mathlib.LinearAlgebra.Quotient.Basic" ]
Mathlib/Algebra/Exact.lean
Exact
The maps `f` and `g` form an exact pair : `g y = 0` iff `y` belongs to the image of `f`
apply_apply_eq_zero [Zero P] (h : Exact f g) (x : M) : g (f x) = 0 := (h _).mpr <| Set.mem_range_self _
lemma
Algebra
[ "Mathlib.Algebra.Module.Submodule.Range", "Mathlib.LinearAlgebra.Prod", "Mathlib.LinearAlgebra.Quotient.Basic" ]
Mathlib/Algebra/Exact.lean
apply_apply_eq_zero
null
comp_eq_zero [Zero P] (h : Exact f g) : g.comp f = 0 := funext h.apply_apply_eq_zero
lemma
Algebra
[ "Mathlib.Algebra.Module.Submodule.Range", "Mathlib.LinearAlgebra.Prod", "Mathlib.LinearAlgebra.Quotient.Basic" ]
Mathlib/Algebra/Exact.lean
comp_eq_zero
null
of_comp_of_mem_range [Zero P] (h1 : g ∘ f = 0) (h2 : ∀ x, g x = 0 → x ∈ Set.range f) : Exact f g := fun y => Iff.intro (h2 y) <| Exists.rec ((forall_apply_eq_imp_iff (p := (g · = 0))).mpr (congrFun h1) y)
lemma
Algebra
[ "Mathlib.Algebra.Module.Submodule.Range", "Mathlib.LinearAlgebra.Prod", "Mathlib.LinearAlgebra.Quotient.Basic" ]
Mathlib/Algebra/Exact.lean
of_comp_of_mem_range
null
comp_injective [Zero P] [Zero P'] (exact : Exact f g) (inj : Function.Injective g') (h0 : g' 0 = 0) : Exact f (g' ∘ g) := by intro x refine ⟨fun H => exact x |>.mp <| inj <| h0 ▸ H, ?_⟩ intro H rw [Function.comp_apply, exact x |>.mpr H, h0]
lemma
Algebra
[ "Mathlib.Algebra.Module.Submodule.Range", "Mathlib.LinearAlgebra.Prod", "Mathlib.LinearAlgebra.Quotient.Basic" ]
Mathlib/Algebra/Exact.lean
comp_injective
null
of_comp_eq_zero_of_ker_in_range [Zero P] (hc : g.comp f = 0) (hr : ∀ y, g y = 0 → y ∈ Set.range f) : Exact f g := fun y ↦ ⟨hr y, fun ⟨x, hx⟩ ↦ hx ▸ congrFun hc x⟩
lemma
Algebra
[ "Mathlib.Algebra.Module.Submodule.Range", "Mathlib.LinearAlgebra.Prod", "Mathlib.LinearAlgebra.Quotient.Basic" ]
Mathlib/Algebra/Exact.lean
of_comp_eq_zero_of_ker_in_range
null
iff_rangeFactorization [Zero P] (hg : 0 ∈ Set.range g) : letI : Zero (Set.range g) := ⟨⟨0, hg⟩⟩ Exact f g ↔ Exact ((↑) : Set.range f → N) (Set.rangeFactorization g) := by letI : Zero (Set.range g) := ⟨⟨0, hg⟩⟩ have : ((0 : Set.range g) : P) = 0 := rfl simp [Exact, Set.rangeFactorization, Subtype.ext_iff, this]
lemma
Algebra
[ "Mathlib.Algebra.Module.Submodule.Range", "Mathlib.LinearAlgebra.Prod", "Mathlib.LinearAlgebra.Quotient.Basic" ]
Mathlib/Algebra/Exact.lean
iff_rangeFactorization
Two maps `f : M → N` and `g : N → P` are exact if and only if the induced maps `Set.range f → N → Set.range g` are exact. Note that if you already have an instance `[Zero (Set.range g)]` (which is unlikely) this lemma may not apply if the zero of `Set.range g` is not definitionally equal to `⟨0, hg⟩`.
rangeFactorization [Zero P] (h : Exact f g) (hg : 0 ∈ Set.range g) : letI : Zero (Set.range g) := ⟨⟨0, hg⟩⟩ Exact ((↑) : Set.range f → N) (Set.rangeFactorization g) := (iff_rangeFactorization hg).1 h
lemma
Algebra
[ "Mathlib.Algebra.Module.Submodule.Range", "Mathlib.LinearAlgebra.Prod", "Mathlib.LinearAlgebra.Quotient.Basic" ]
Mathlib/Algebra/Exact.lean
rangeFactorization
If two maps `f : M → N` and `g : N → P` are exact, then the induced maps `Set.range f → N → Set.range g` are exact. Note that if you already have an instance `[Zero (Set.range g)]` (which is unlikely) this lemma may not apply if the zero of `Set.range g` is not definitionally equal to `⟨0, hg⟩`.
exact_iff : Exact f g ↔ ker g = range f := Iff.symm SetLike.ext_iff
lemma
Algebra
[ "Mathlib.Algebra.Module.Submodule.Range", "Mathlib.LinearAlgebra.Prod", "Mathlib.LinearAlgebra.Quotient.Basic" ]
Mathlib/Algebra/Exact.lean
exact_iff
null
exact_of_comp_eq_zero_of_ker_le_range (h1 : g.comp f = 0) (h2 : ker g ≤ range f) : Exact f g := Exact.of_comp_of_mem_range (congrArg DFunLike.coe h1) h2
lemma
Algebra
[ "Mathlib.Algebra.Module.Submodule.Range", "Mathlib.LinearAlgebra.Prod", "Mathlib.LinearAlgebra.Quotient.Basic" ]
Mathlib/Algebra/Exact.lean
exact_of_comp_eq_zero_of_ker_le_range
null
exact_of_comp_of_mem_range (h1 : g.comp f = 0) (h2 : ∀ x, g x = 0 → x ∈ range f) : Exact f g := exact_of_comp_eq_zero_of_ker_le_range h1 h2
lemma
Algebra
[ "Mathlib.Algebra.Module.Submodule.Range", "Mathlib.LinearAlgebra.Prod", "Mathlib.LinearAlgebra.Quotient.Basic" ]
Mathlib/Algebra/Exact.lean
exact_of_comp_of_mem_range
null
exact_iff_of_surjective_of_bijective_of_injective {M₁ M₂ M₃ N₁ N₂ N₃ : Type*} [AddCommMonoid M₁] [AddCommMonoid M₂] [AddCommMonoid M₃] [AddCommMonoid N₁] [AddCommMonoid N₂] [AddCommMonoid N₃] (f : M₁ →+ M₂) (g : M₂ →+ M₃) (f' : N₁ →+ N₂) (g' : N₂ →+ N₃) (τ₁ : M₁ →+ N₁) (τ₂ : M₂ →+ N₂) (τ₃ : M₃ →+ N₃) (comm₁₂ : f'.comp τ₁ = τ₂.comp f) (comm₂₃ : g'.comp τ₂ = τ₃.comp g) (h₁ : Function.Surjective τ₁) (h₂ : Function.Bijective τ₂) (h₃ : Function.Injective τ₃) : Exact f g ↔ Exact f' g' := by replace comm₁₂ := DFunLike.congr_fun comm₁₂ replace comm₂₃ := DFunLike.congr_fun comm₂₃ dsimp at comm₁₂ comm₂₃ constructor · intro h y₂ obtain ⟨x₂, rfl⟩ := h₂.2 y₂ constructor · intro hx₂ obtain ⟨x₁, rfl⟩ := (h x₂).1 (h₃ (by simpa only [map_zero, comm₂₃] using hx₂)) exact ⟨τ₁ x₁, by simp only [comm₁₂]⟩ · rintro ⟨y₁, hy₁⟩ obtain ⟨x₁, rfl⟩ := h₁ y₁ rw [comm₂₃, (h x₂).2 _, map_zero] exact ⟨x₁, h₂.1 (by simpa only [comm₁₂] using hy₁)⟩ · intro h x₂ constructor · intro hx₂ obtain ⟨y₁, hy₁⟩ := (h (τ₂ x₂)).1 (by simp only [comm₂₃, hx₂, map_zero]) obtain ⟨x₁, rfl⟩ := h₁ y₁ exact ⟨x₁, h₂.1 (by simpa only [comm₁₂] using hy₁)⟩ · rintro ⟨x₁, rfl⟩ apply h₃ simp only [← comm₁₂, ← comm₂₃, h.apply_apply_eq_zero (τ₁ x₁), map_zero]
lemma
Algebra
[ "Mathlib.Algebra.Module.Submodule.Range", "Mathlib.LinearAlgebra.Prod", "Mathlib.LinearAlgebra.Quotient.Basic" ]
Mathlib/Algebra/Exact.lean
exact_iff_of_surjective_of_bijective_of_injective
When we have a commutative diagram from a sequence of two maps to another, such that the left vertical map is surjective, the middle vertical map is bijective and the right vertical map is injective, then the upper row is exact iff the lower row is. See `ShortComplex.exact_iff_of_epi_of_isIso_of_mono` in the file `Mathlib/Algebra/Homology/ShortComplex/Exact.lean` for the categorical version of this result.
addMonoidHom_ker_eq (hfg : Exact f g) : ker g = range f := SetLike.ext hfg
lemma
Algebra
[ "Mathlib.Algebra.Module.Submodule.Range", "Mathlib.LinearAlgebra.Prod", "Mathlib.LinearAlgebra.Quotient.Basic" ]
Mathlib/Algebra/Exact.lean
addMonoidHom_ker_eq
null
addMonoidHom_comp_eq_zero (h : Exact f g) : g.comp f = 0 := DFunLike.coe_injective h.comp_eq_zero
lemma
Algebra
[ "Mathlib.Algebra.Module.Submodule.Range", "Mathlib.LinearAlgebra.Prod", "Mathlib.LinearAlgebra.Quotient.Basic" ]
Mathlib/Algebra/Exact.lean
addMonoidHom_comp_eq_zero
null
iff_of_ladder_addEquiv (comm₁₂ : g₁₂.comp e₁ = AddMonoidHom.comp e₂ f₁₂) (comm₂₃ : g₂₃.comp e₂ = AddMonoidHom.comp e₃ f₂₃) : Exact g₁₂ g₂₃ ↔ Exact f₁₂ f₂₃ := (exact_iff_of_surjective_of_bijective_of_injective _ _ _ _ e₁ e₂ e₃ comm₁₂ comm₂₃ e₁.surjective e₂.bijective e₃.injective).symm
lemma
Algebra
[ "Mathlib.Algebra.Module.Submodule.Range", "Mathlib.LinearAlgebra.Prod", "Mathlib.LinearAlgebra.Quotient.Basic" ]
Mathlib/Algebra/Exact.lean
iff_of_ladder_addEquiv
null
of_ladder_addEquiv_of_exact (comm₁₂ : g₁₂.comp e₁ = AddMonoidHom.comp e₂ f₁₂) (comm₂₃ : g₂₃.comp e₂ = AddMonoidHom.comp e₃ f₂₃) (H : Exact f₁₂ f₂₃) : Exact g₁₂ g₂₃ := (iff_of_ladder_addEquiv _ _ _ comm₁₂ comm₂₃).2 H
lemma
Algebra
[ "Mathlib.Algebra.Module.Submodule.Range", "Mathlib.LinearAlgebra.Prod", "Mathlib.LinearAlgebra.Quotient.Basic" ]
Mathlib/Algebra/Exact.lean
of_ladder_addEquiv_of_exact
null
of_ladder_addEquiv_of_exact' (comm₁₂ : g₁₂.comp e₁ = AddMonoidHom.comp e₂ f₁₂) (comm₂₃ : g₂₃.comp e₂ = AddMonoidHom.comp e₃ f₂₃) (H : Exact g₁₂ g₂₃) : Exact f₁₂ f₂₃ := (iff_of_ladder_addEquiv _ _ _ comm₁₂ comm₂₃).1 H
lemma
Algebra
[ "Mathlib.Algebra.Module.Submodule.Range", "Mathlib.LinearAlgebra.Prod", "Mathlib.LinearAlgebra.Quotient.Basic" ]
Mathlib/Algebra/Exact.lean
of_ladder_addEquiv_of_exact'
null
iff_addMonoidHom_rangeRestrict : Exact f g ↔ Exact f.range.subtype g.rangeRestrict := iff_rangeFactorization (zero_mem g.range) alias ⟨addMonoidHom_rangeRestrict, _⟩ := iff_addMonoidHom_rangeRestrict
lemma
Algebra
[ "Mathlib.Algebra.Module.Submodule.Range", "Mathlib.LinearAlgebra.Prod", "Mathlib.LinearAlgebra.Quotient.Basic" ]
Mathlib/Algebra/Exact.lean
iff_addMonoidHom_rangeRestrict
Two maps `f : M →+ N` and `g : N →+ P` are exact if and only if the induced maps `AddMonoidHom.range f → N → AddMonoidHom.range g` are exact.
exact_iff : Exact f g ↔ LinearMap.ker g = LinearMap.range f := Iff.symm SetLike.ext_iff
lemma
Algebra
[ "Mathlib.Algebra.Module.Submodule.Range", "Mathlib.LinearAlgebra.Prod", "Mathlib.LinearAlgebra.Quotient.Basic" ]
Mathlib/Algebra/Exact.lean
exact_iff
null
exact_of_comp_eq_zero_of_ker_le_range (h1 : g ∘ₗ f = 0) (h2 : ker g ≤ range f) : Exact f g := Exact.of_comp_of_mem_range (congrArg DFunLike.coe h1) h2
lemma
Algebra
[ "Mathlib.Algebra.Module.Submodule.Range", "Mathlib.LinearAlgebra.Prod", "Mathlib.LinearAlgebra.Quotient.Basic" ]
Mathlib/Algebra/Exact.lean
exact_of_comp_eq_zero_of_ker_le_range
null
exact_of_comp_of_mem_range (h1 : g ∘ₗ f = 0) (h2 : ∀ x, g x = 0 → x ∈ range f) : Exact f g := exact_of_comp_eq_zero_of_ker_le_range h1 h2
lemma
Algebra
[ "Mathlib.Algebra.Module.Submodule.Range", "Mathlib.LinearAlgebra.Prod", "Mathlib.LinearAlgebra.Quotient.Basic" ]
Mathlib/Algebra/Exact.lean
exact_of_comp_of_mem_range
null
exact_subtype_mkQ (Q : Submodule R N) : Exact (Submodule.subtype Q) (Submodule.mkQ Q) := by rw [exact_iff, Submodule.ker_mkQ, Submodule.range_subtype Q]
lemma
Algebra
[ "Mathlib.Algebra.Module.Submodule.Range", "Mathlib.LinearAlgebra.Prod", "Mathlib.LinearAlgebra.Quotient.Basic" ]
Mathlib/Algebra/Exact.lean
exact_subtype_mkQ
null
exact_map_mkQ_range (f : M →ₗ[R] N) : Exact f (Submodule.mkQ (range f)) := exact_iff.mpr <| Submodule.ker_mkQ _
lemma
Algebra
[ "Mathlib.Algebra.Module.Submodule.Range", "Mathlib.LinearAlgebra.Prod", "Mathlib.LinearAlgebra.Quotient.Basic" ]
Mathlib/Algebra/Exact.lean
exact_map_mkQ_range
null
exact_subtype_ker_map (g : N →ₗ[R] P) : Exact (Submodule.subtype (ker g)) g := exact_iff.mpr <| (Submodule.range_subtype _).symm @[simp]
lemma
Algebra
[ "Mathlib.Algebra.Module.Submodule.Range", "Mathlib.LinearAlgebra.Prod", "Mathlib.LinearAlgebra.Quotient.Basic" ]
Mathlib/Algebra/Exact.lean
exact_subtype_ker_map
null
exact_zero_iff_injective {M N : Type*} (P : Type*) [AddCommGroup M] [AddCommGroup N] [AddCommMonoid P] [Module R N] [Module R M] [Module R P] (f : M →ₗ[R] N) : Function.Exact (0 : P →ₗ[R] M) f ↔ Function.Injective f := by simp [← ker_eq_bot, exact_iff]
lemma
Algebra
[ "Mathlib.Algebra.Module.Submodule.Range", "Mathlib.LinearAlgebra.Prod", "Mathlib.LinearAlgebra.Quotient.Basic" ]
Mathlib/Algebra/Exact.lean
exact_zero_iff_injective
null
@[simp] exact_zero_iff_surjective {M N : Type*} (P : Type*) [AddCommGroup M] [AddCommGroup N] [AddCommMonoid P] [Module R N] [Module R M] [Module R P] (f : M →ₗ[R] N) : Function.Exact f (0 : N →ₗ[R] P) ↔ Function.Surjective f := by simp [← range_eq_top, exact_iff, eq_comm]
lemma
Algebra
[ "Mathlib.Algebra.Module.Submodule.Range", "Mathlib.LinearAlgebra.Prod", "Mathlib.LinearAlgebra.Quotient.Basic" ]
Mathlib/Algebra/Exact.lean
exact_zero_iff_surjective
null
LinearEquiv.conj_exact_iff_exact (e : N ≃ₗ[R] N') : Function.Exact (e ∘ₗ f) (g ∘ₗ (e.symm : N' →ₗ[R] N)) ↔ Exact f g := by simp_rw [LinearMap.exact_iff, LinearMap.ker_comp, ← Submodule.map_equiv_eq_comap_symm, LinearMap.range_comp] exact (Submodule.map_injective_of_injective e.injective).eq_iff
lemma
Algebra
[ "Mathlib.Algebra.Module.Submodule.Range", "Mathlib.LinearAlgebra.Prod", "Mathlib.LinearAlgebra.Quotient.Basic" ]
Mathlib/Algebra/Exact.lean
LinearEquiv.conj_exact_iff_exact
null
Exact.linearMap_ker_eq (hfg : Exact f g) : ker g = range f := SetLike.ext hfg
lemma
Algebra
[ "Mathlib.Algebra.Module.Submodule.Range", "Mathlib.LinearAlgebra.Prod", "Mathlib.LinearAlgebra.Quotient.Basic" ]
Mathlib/Algebra/Exact.lean
Exact.linearMap_ker_eq
null
Exact.linearMap_comp_eq_zero (h : Exact f g) : g.comp f = 0 := DFunLike.coe_injective h.comp_eq_zero
lemma
Algebra
[ "Mathlib.Algebra.Module.Submodule.Range", "Mathlib.LinearAlgebra.Prod", "Mathlib.LinearAlgebra.Quotient.Basic" ]
Mathlib/Algebra/Exact.lean
Exact.linearMap_comp_eq_zero
null
Surjective.comp_exact_iff_exact {p : M' →ₗ[R] M} (h : Surjective p) : Exact (f ∘ₗ p) g ↔ Exact f g := iff_of_eq <| forall_congr fun x => congrArg (g x = 0 ↔ x ∈ ·) (h.range_comp f)
lemma
Algebra
[ "Mathlib.Algebra.Module.Submodule.Range", "Mathlib.LinearAlgebra.Prod", "Mathlib.LinearAlgebra.Quotient.Basic" ]
Mathlib/Algebra/Exact.lean
Surjective.comp_exact_iff_exact
null
Injective.comp_exact_iff_exact {i : P →ₗ[R] P'} (h : Injective i) : Exact f (i ∘ₗ g) ↔ Exact f g := forall_congr' fun _ => iff_congr (LinearMap.map_eq_zero_iff _ h) Iff.rfl
lemma
Algebra
[ "Mathlib.Algebra.Module.Submodule.Range", "Mathlib.LinearAlgebra.Prod", "Mathlib.LinearAlgebra.Quotient.Basic" ]
Mathlib/Algebra/Exact.lean
Injective.comp_exact_iff_exact
null
iff_of_ladder_linearEquiv (h₁₂ : g₁₂ ∘ₗ e₁ = e₂ ∘ₗ f₁₂) (h₂₃ : g₂₃ ∘ₗ e₂ = e₃ ∘ₗ f₂₃) : Exact g₁₂ g₂₃ ↔ Exact f₁₂ f₂₃ := iff_of_ladder_addEquiv e₁.toAddEquiv e₂.toAddEquiv e₃.toAddEquiv (f₁₂ := f₁₂) (f₂₃ := f₂₃) (g₁₂ := g₁₂) (g₂₃ := g₂₃) (congr_arg LinearMap.toAddMonoidHom h₁₂) (congr_arg LinearMap.toAddMonoidHom h₂₃)
lemma
Algebra
[ "Mathlib.Algebra.Module.Submodule.Range", "Mathlib.LinearAlgebra.Prod", "Mathlib.LinearAlgebra.Quotient.Basic" ]
Mathlib/Algebra/Exact.lean
iff_of_ladder_linearEquiv
null
of_ladder_linearEquiv_of_exact (h₁₂ : g₁₂ ∘ₗ e₁ = e₂ ∘ₗ f₁₂) (h₂₃ : g₂₃ ∘ₗ e₂ = e₃ ∘ₗ f₂₃) (H : Exact f₁₂ f₂₃) : Exact g₁₂ g₂₃ := by rwa [iff_of_ladder_linearEquiv h₁₂ h₂₃]
lemma
Algebra
[ "Mathlib.Algebra.Module.Submodule.Range", "Mathlib.LinearAlgebra.Prod", "Mathlib.LinearAlgebra.Quotient.Basic" ]
Mathlib/Algebra/Exact.lean
of_ladder_linearEquiv_of_exact
null
iff_linearMap_rangeRestrict : Exact f g ↔ Exact (LinearMap.range f).subtype g.rangeRestrict := iff_rangeFactorization (zero_mem (LinearMap.range g)) alias ⟨linearMap_rangeRestrict, _⟩ := iff_linearMap_rangeRestrict
lemma
Algebra
[ "Mathlib.Algebra.Module.Submodule.Range", "Mathlib.LinearAlgebra.Prod", "Mathlib.LinearAlgebra.Quotient.Basic" ]
Mathlib/Algebra/Exact.lean
iff_linearMap_rangeRestrict
Two maps `f : M →ₗ[R] N` and `g : N →ₗ[R] P` are exact if and only if the induced maps `LinearMap.range f → N → LinearMap.range g` are exact.
noncomputable Exact.splitSurjectiveEquiv (h : Function.Exact f g) (hf : Function.Injective f) : { l // g ∘ₗ l = .id } ≃ { e : N ≃ₗ[R] M × P // f = e.symm ∘ₗ inl R M P ∧ g = snd R M P ∘ₗ e } := by refine { toFun := fun l ↦ ⟨(LinearEquiv.ofBijective (f ∘ₗ fst R M P + l.1 ∘ₗ snd R M P) ?_).symm, ?_⟩ invFun := fun e ↦ ⟨e.1.symm ∘ₗ inr R M P, ?_⟩ left_inv := ?_ right_inv := ?_ } · have h₁ : ∀ x, g (l.1 x) = x := LinearMap.congr_fun l.2 have h₂ : ∀ x, g (f x) = 0 := congr_fun h.comp_eq_zero constructor · intro x y e simp only [add_apply, coe_comp, comp_apply, fst_apply, snd_apply] at e suffices x.2 = y.2 from Prod.ext (hf (by rwa [this, add_left_inj] at e)) this simpa [h₁, h₂] using DFunLike.congr_arg g e · intro x obtain ⟨y, hy⟩ := (h (x - l.1 (g x))).mp (by simp [h₁, g.map_sub]) exact ⟨⟨y, g x⟩, by simp [hy]⟩ · have h₁ : ∀ x, g (l.1 x) = x := LinearMap.congr_fun l.2 have h₂ : ∀ x, g (f x) = 0 := congr_fun h.comp_eq_zero constructor · ext; simp · rw [LinearEquiv.eq_comp_toLinearMap_symm] ext <;> simp [h₁, h₂] · rw [← LinearMap.comp_assoc, (LinearEquiv.eq_comp_toLinearMap_symm _ _).mp e.2.2]; rfl · intro; ext; simp · rintro ⟨e, rfl, rfl⟩ ext1 apply LinearEquiv.symm_bijective.injective ext apply e.injective ext <;> simp
def
Algebra
[ "Mathlib.Algebra.Module.Submodule.Range", "Mathlib.LinearAlgebra.Prod", "Mathlib.LinearAlgebra.Quotient.Basic" ]
Mathlib/Algebra/Exact.lean
Exact.splitSurjectiveEquiv
Given an exact sequence `0 → M → N → P`, giving a section `P → N` is equivalent to giving a splitting `N ≃ M × P`.
noncomputable Exact.splitInjectiveEquiv {R M N P} [Semiring R] [AddCommGroup M] [AddCommGroup N] [AddCommGroup P] [Module R M] [Module R N] [Module R P] {f : M →ₗ[R] N} {g : N →ₗ[R] P} (h : Function.Exact f g) (hg : Function.Surjective g) : { l // l ∘ₗ f = .id } ≃ { e : N ≃ₗ[R] M × P // f = e.symm ∘ₗ inl R M P ∧ g = snd R M P ∘ₗ e } := by refine { toFun := fun l ↦ ⟨(LinearEquiv.ofBijective (l.1.prod g) ?_), ?_⟩ invFun := fun e ↦ ⟨fst R M P ∘ₗ e.1, ?_⟩ left_inv := ?_ right_inv := ?_ } · have h₁ : ∀ x, l.1 (f x) = x := LinearMap.congr_fun l.2 have h₂ : ∀ x, g (f x) = 0 := congr_fun h.comp_eq_zero constructor · intro x y e simp only [prod_apply, Pi.prod, Prod.mk.injEq] at e obtain ⟨z, hz⟩ := (h (x - y)).mp (by simpa [sub_eq_zero] using e.2) suffices z = 0 by rw [← sub_eq_zero, ← hz, this, map_zero] rw [← h₁ z, hz, map_sub, e.1, sub_self] · rintro ⟨x, y⟩ obtain ⟨y, rfl⟩ := hg y refine ⟨f x + y - f (l.1 y), by ext <;> simp [h₁, h₂]⟩ · have h₁ : ∀ x, l.1 (f x) = x := LinearMap.congr_fun l.2 have h₂ : ∀ x, g (f x) = 0 := congr_fun h.comp_eq_zero constructor · rw [LinearEquiv.eq_toLinearMap_symm_comp] ext <;> simp [h₁, h₂] · ext; simp · rw [LinearMap.comp_assoc, (LinearEquiv.eq_toLinearMap_symm_comp _ _).mp e.2.1]; rfl · intro; ext; simp · rintro ⟨e, rfl, rfl⟩ ext x <;> simp
def
Algebra
[ "Mathlib.Algebra.Module.Submodule.Range", "Mathlib.LinearAlgebra.Prod", "Mathlib.LinearAlgebra.Quotient.Basic" ]
Mathlib/Algebra/Exact.lean
Exact.splitInjectiveEquiv
Given an exact sequence `M → N → P → 0`, giving a retraction `N → M` is equivalent to giving a splitting `N ≃ M × P`.
Exact.split_tfae' (h : Function.Exact f g) : List.TFAE [ Function.Injective f ∧ ∃ l, g ∘ₗ l = LinearMap.id, Function.Surjective g ∧ ∃ l, l ∘ₗ f = LinearMap.id, ∃ e : N ≃ₗ[R] M × P, f = e.symm ∘ₗ LinearMap.inl R M P ∧ g = LinearMap.snd R M P ∘ₗ e] := by tfae_have 1 → 3 | ⟨hf, l, hl⟩ => ⟨_, (h.splitSurjectiveEquiv hf ⟨l, hl⟩).2⟩ tfae_have 2 → 3 | ⟨hg, l, hl⟩ => ⟨_, (h.splitInjectiveEquiv hg ⟨l, hl⟩).2⟩ tfae_have 3 → 1 | ⟨e, e₁, e₂⟩ => by have : Function.Injective f := e₁ ▸ e.symm.injective.comp LinearMap.inl_injective exact ⟨this, ⟨_, ((h.splitSurjectiveEquiv this).symm ⟨e, e₁, e₂⟩).2⟩⟩ tfae_have 3 → 2 | ⟨e, e₁, e₂⟩ => by have : Function.Surjective g := e₂ ▸ Prod.snd_surjective.comp e.surjective exact ⟨this, ⟨_, ((h.splitInjectiveEquiv this).symm ⟨e, e₁, e₂⟩).2⟩⟩ tfae_finish
theorem
Algebra
[ "Mathlib.Algebra.Module.Submodule.Range", "Mathlib.LinearAlgebra.Prod", "Mathlib.LinearAlgebra.Quotient.Basic" ]
Mathlib/Algebra/Exact.lean
Exact.split_tfae'
null
Exact.split_tfae {R M N P} [Semiring R] [AddCommGroup M] [AddCommGroup N] [AddCommGroup P] [Module R M] [Module R N] [Module R P] {f : M →ₗ[R] N} {g : N →ₗ[R] P} (h : Function.Exact f g) (hf : Function.Injective f) (hg : Function.Surjective g) : List.TFAE [ ∃ l, g ∘ₗ l = LinearMap.id, ∃ l, l ∘ₗ f = LinearMap.id, ∃ e : N ≃ₗ[R] M × P, f = e.symm ∘ₗ LinearMap.inl R M P ∧ g = LinearMap.snd R M P ∘ₗ e] := by tfae_have 1 ↔ 3 := by simpa using (h.splitSurjectiveEquiv hf).nonempty_congr tfae_have 2 ↔ 3 := by simpa using (h.splitInjectiveEquiv hg).nonempty_congr tfae_finish
theorem
Algebra
[ "Mathlib.Algebra.Module.Submodule.Range", "Mathlib.LinearAlgebra.Prod", "Mathlib.LinearAlgebra.Quotient.Basic" ]
Mathlib/Algebra/Exact.lean
Exact.split_tfae
Equivalent characterizations of split exact sequences. Also known as the **Splitting lemma**.
Exact.inr_fst : Function.Exact (LinearMap.inr R M N) (LinearMap.fst R M N) := by rintro ⟨x, y⟩ simp only [LinearMap.fst_apply, @eq_comm _ x, LinearMap.coe_inr, Set.mem_range, Prod.mk.injEq, exists_eq_right]
lemma
Algebra
[ "Mathlib.Algebra.Module.Submodule.Range", "Mathlib.LinearAlgebra.Prod", "Mathlib.LinearAlgebra.Quotient.Basic" ]
Mathlib/Algebra/Exact.lean
Exact.inr_fst
null
Exact.inl_snd : Function.Exact (LinearMap.inl R M N) (LinearMap.snd R M N) := by rintro ⟨x, y⟩ simp only [LinearMap.snd_apply, @eq_comm _ y, LinearMap.coe_inl, Set.mem_range, Prod.mk.injEq, exists_eq_left]
lemma
Algebra
[ "Mathlib.Algebra.Module.Submodule.Range", "Mathlib.LinearAlgebra.Prod", "Mathlib.LinearAlgebra.Quotient.Basic" ]
Mathlib/Algebra/Exact.lean
Exact.inl_snd
null
Exact.exact_mapQ_iff (hfg : Exact f g) {p q r} (hpq : p ≤ comap f q) (hqr : q ≤ comap g r) : Exact (mapQ p q f hpq) (mapQ q r g hqr) ↔ range g ⊓ r ≤ map g q := by rw [exact_iff, ← (comap_injective_of_surjective (mkQ_surjective _)).eq_iff] dsimp only [mapQ] rw [← ker_comp, range_liftQ, liftQ_mkQ, ker_comp, range_comp, comap_map_eq, ker_mkQ, ker_mkQ, ← hfg.linearMap_ker_eq, sup_comm, ← (sup_le hqr (ker_le_comap g)).ge_iff_eq', ← comap_map_eq, ← map_le_iff_le_comap, map_comap_eq]
lemma
Algebra
[ "Mathlib.Algebra.Module.Submodule.Range", "Mathlib.LinearAlgebra.Prod", "Mathlib.LinearAlgebra.Quotient.Basic" ]
Mathlib/Algebra/Exact.lean
Exact.exact_mapQ_iff
A necessary and sufficient condition for an exact sequence to descend to a quotient.
exact_iff_of_surjective_of_bijective_of_injective {M₁ M₂ M₃ N₁ N₂ N₃ : Type*} [AddCommMonoid M₁] [AddCommMonoid M₂] [AddCommMonoid M₃] [AddCommMonoid N₁] [AddCommMonoid N₂] [AddCommMonoid N₃] [Module R M₁] [Module R M₂] [Module R M₃] [Module R N₁] [Module R N₂] [Module R N₃] (f : M₁ →ₗ[R] M₂) (g : M₂ →ₗ[R] M₃) (f' : N₁ →ₗ[R] N₂) (g' : N₂ →ₗ[R] N₃) (τ₁ : M₁ →ₗ[R] N₁) (τ₂ : M₂ →ₗ[R] N₂) (τ₃ : M₃ →ₗ[R] N₃) (comm₁₂ : f'.comp τ₁ = τ₂.comp f) (comm₂₃ : g'.comp τ₂ = τ₃.comp g) (h₁ : Function.Surjective τ₁) (h₂ : Function.Bijective τ₂) (h₃ : Function.Injective τ₃) : Function.Exact f g ↔ Function.Exact f' g' := AddMonoidHom.exact_iff_of_surjective_of_bijective_of_injective f.toAddMonoidHom g.toAddMonoidHom f'.toAddMonoidHom g'.toAddMonoidHom τ₁.toAddMonoidHom τ₂.toAddMonoidHom τ₃.toAddMonoidHom (by ext; apply DFunLike.congr_fun comm₁₂) (by ext; apply DFunLike.congr_fun comm₂₃) h₁ h₂ h₃
lemma
Algebra
[ "Mathlib.Algebra.Module.Submodule.Range", "Mathlib.LinearAlgebra.Prod", "Mathlib.LinearAlgebra.Quotient.Basic" ]
Mathlib/Algebra/Exact.lean
exact_iff_of_surjective_of_bijective_of_injective
When we have a commutative diagram from a sequence of two linear maps to another, such that the left vertical map is surjective, the middle vertical map is bijective and the right vertical map is injective, then the upper row is exact iff the lower row is. See `ShortComplex.exact_iff_of_epi_of_isIso_of_mono` in the file `Mathlib/Algebra/Homology/ShortComplex/Exact.lean` for the categorical version of this result.
surjective_range_liftQ (h : range f ≤ ker g) (hg : Function.Surjective g) : Function.Surjective ((range f).liftQ g h) := by intro x₃ obtain ⟨x₂, rfl⟩ := hg x₃ exact ⟨Submodule.Quotient.mk x₂, rfl⟩
lemma
Algebra
[ "Mathlib.Algebra.Module.Submodule.Range", "Mathlib.LinearAlgebra.Prod", "Mathlib.LinearAlgebra.Quotient.Basic" ]
Mathlib/Algebra/Exact.lean
surjective_range_liftQ
null
ker_eq_bot_range_liftQ_iff (h : range f ≤ ker g) : ker ((range f).liftQ g h) = ⊥ ↔ ker g = range f := by simp only [Submodule.ext_iff, mem_ker, Submodule.mem_bot, mem_range] constructor · intro hfg x simpa using hfg (Submodule.Quotient.mk x) · intro hfg x obtain ⟨x, rfl⟩ := Submodule.Quotient.mk_surjective _ x simpa using hfg x
lemma
Algebra
[ "Mathlib.Algebra.Module.Submodule.Range", "Mathlib.LinearAlgebra.Prod", "Mathlib.LinearAlgebra.Quotient.Basic" ]
Mathlib/Algebra/Exact.lean
ker_eq_bot_range_liftQ_iff
null
injective_range_liftQ_of_exact (h : Function.Exact f g) : Function.Injective ((range f).liftQ g (h · |>.mpr)) := by simpa only [← LinearMap.ker_eq_bot, ker_eq_bot_range_liftQ_iff, exact_iff] using h
lemma
Algebra
[ "Mathlib.Algebra.Module.Submodule.Range", "Mathlib.LinearAlgebra.Prod", "Mathlib.LinearAlgebra.Quotient.Basic" ]
Mathlib/Algebra/Exact.lean
injective_range_liftQ_of_exact
null
@[simps! apply] noncomputable Function.Exact.linearEquivOfSurjective (h : Function.Exact f g) (hg : Function.Surjective g) : (N ⧸ LinearMap.range f) ≃ₗ[R] P := LinearEquiv.ofBijective ((LinearMap.range f).liftQ g (h · |>.mpr)) ⟨LinearMap.injective_range_liftQ_of_exact h, LinearMap.surjective_range_liftQ _ hg⟩
def
Algebra
[ "Mathlib.Algebra.Module.Submodule.Range", "Mathlib.LinearAlgebra.Prod", "Mathlib.LinearAlgebra.Quotient.Basic" ]
Mathlib/Algebra/Exact.lean
Function.Exact.linearEquivOfSurjective
The linear equivalence `(N ⧸ LinearMap.range f) ≃ₗ[A] P` associated to an exact sequence `M → N → P → 0` of `R`-modules.
Expr.instOne {u : Lean.Level} (α : Q(Type u)) (_ : Q(One $α)) : One Q($α) where one := q(1 : $α)
def
Algebra
[ "Mathlib.Init", "Qq" ]
Mathlib/Algebra/Expr.lean
Expr.instOne
Produce a `One` instance for `Q($α)` such that `1 : Q($α)` is `q(1 : $α)`.
Expr.instZero {u : Lean.Level} (α : Q(Type u)) (_ : Q(Zero $α)) : Zero Q($α) where zero := q(0 : $α)
def
Algebra
[ "Mathlib.Init", "Qq" ]
Mathlib/Algebra/Expr.lean
Expr.instZero
Produce a `Zero` instance for `Q($α)` such that `0 : Q($α)` is `q(0 : $α)`.
Expr.instMul {u : Lean.Level} (α : Q(Type u)) (_ : Q(Mul $α)) : Mul Q($α) where mul x y := q($x * $y)
def
Algebra
[ "Mathlib.Init", "Qq" ]
Mathlib/Algebra/Expr.lean
Expr.instMul
Produce a `Mul` instance for `Q($α)` such that `x * y : Q($α)` is `q($x * $y)`.
Expr.instAdd {u : Lean.Level} (α : Q(Type u)) (_ : Q(Add $α)) : Add Q($α) where add x y := q($x + $y)
def
Algebra
[ "Mathlib.Init", "Qq" ]
Mathlib/Algebra/Expr.lean
Expr.instAdd
Produce an `Add` instance for `Q($α)` such that `x + y : Q($α)` is `q($x + $y)`.
surjective_of_surjective_of_surjective_of_injective (hi₁ : Function.Surjective i₁) (hi₃ : Function.Surjective i₃) (hi₄ : Function.Injective i₄) : Function.Surjective i₂ := by intro x obtain ⟨y, hy⟩ := hi₃ (g₂ x) obtain ⟨a, rfl⟩ : y ∈ Set.range f₂ := (hf₂ _).mp <| by simpa [hy, hg₂.apply_apply_eq_zero, map_eq_zero_iff _ hi₄] using (DFunLike.congr_fun hc₃ y).symm obtain ⟨b, hb⟩ : x - i₂ a ∈ Set.range g₁ := (hg₁ _).mp <| by simp [← hy, show g₂ (i₂ a) = i₃ (f₂ a) by simpa using DFunLike.congr_fun hc₂ a] obtain ⟨o, rfl⟩ := hi₁ b use f₁ o + a simp [← show g₁ (i₁ o) = i₂ (f₁ o) by simpa using DFunLike.congr_fun hc₁ o, hb] include hf₁ hf₂ hg₁ hc₁ hc₂ hc₃ in
lemma
Algebra
[ "Mathlib.Algebra.Exact" ]
Mathlib/Algebra/FiveLemma.lean
surjective_of_surjective_of_surjective_of_injective
One four lemma in terms of (additive) groups. For a diagram explaining the variables, see the module docstring.
injective_of_surjective_of_injective_of_injective (hi₁ : Function.Surjective i₁) (hi₂ : Function.Injective i₂) (hi₄ : Function.Injective i₄) : Function.Injective i₃ := by rw [injective_iff_map_eq_zero] intro m hm obtain ⟨x, rfl⟩ := (hf₂ m).mp <| by suffices h : i₄ (f₃ m) = 0 by rwa [map_eq_zero_iff _ hi₄] at h simp [← show g₃ (i₃ m) = i₄ (f₃ m) by simpa using DFunLike.congr_fun hc₃ m, hm] obtain ⟨y, hy⟩ := (hg₁ _).mp <| by rwa [show g₂ (i₂ x) = i₃ (f₂ x) by simpa using DFunLike.congr_fun hc₂ x] obtain ⟨a, rfl⟩ := hi₁ y rw [show g₁ (i₁ a) = i₂ (f₁ a) by simpa using DFunLike.congr_fun hc₁ a] at hy apply hi₂ at hy subst hy rw [hf₁.apply_apply_eq_zero] include hf₁ hf₂ hf₃ hg₁ hg₂ hg₃ hc₁ hc₂ hc₃ hc₄ in
lemma
Algebra
[ "Mathlib.Algebra.Exact" ]
Mathlib/Algebra/FiveLemma.lean
injective_of_surjective_of_injective_of_injective
One four lemma in terms of (additive) groups. For a diagram explaining the variables, see the module docstring.
bijective_of_surjective_of_bijective_of_bijective_of_injective (hi₁ : Function.Surjective i₁) (hi₂ : Function.Bijective i₂) (hi₄ : Function.Bijective i₄) (hi₅ : Function.Injective i₅) : Function.Bijective i₃ := ⟨injective_of_surjective_of_injective_of_injective f₁ f₂ f₃ g₁ g₂ g₃ i₁ i₂ i₃ i₄ hc₁ hc₂ hc₃ hf₁ hf₂ hg₁ hi₁ hi₂.1 hi₄.1, surjective_of_surjective_of_surjective_of_injective f₂ f₃ f₄ g₂ g₃ g₄ i₂ i₃ i₄ i₅ hc₂ hc₃ hc₄ hf₃ hg₂ hg₃ hi₂.2 hi₄.2 hi₅⟩
lemma
Algebra
[ "Mathlib.Algebra.Exact" ]
Mathlib/Algebra/FiveLemma.lean
bijective_of_surjective_of_bijective_of_bijective_of_injective
The five lemma in terms of (additive) groups. For a diagram explaining the variables, see the module docstring.
surjective_of_surjective_of_surjective_of_injective (hi₁ : Function.Surjective i₁) (hi₃ : Function.Surjective i₃) (hi₄ : Function.Injective i₄) : Function.Surjective i₂ := AddMonoidHom.surjective_of_surjective_of_surjective_of_injective f₁.toAddMonoidHom f₂.toAddMonoidHom f₃.toAddMonoidHom g₁.toAddMonoidHom g₂.toAddMonoidHom g₃.toAddMonoidHom i₁.toAddMonoidHom i₂.toAddMonoidHom i₃.toAddMonoidHom i₄.toAddMonoidHom (AddMonoidHom.ext fun x ↦ DFunLike.congr_fun hc₁ x) (AddMonoidHom.ext fun x ↦ DFunLike.congr_fun hc₂ x) (AddMonoidHom.ext fun x ↦ DFunLike.congr_fun hc₃ x) hf₂ hg₁ hg₂ hi₁ hi₃ hi₄ include hf₁ hf₂ hg₁ hc₁ hc₂ hc₃ in
lemma
Algebra
[ "Mathlib.Algebra.Exact" ]
Mathlib/Algebra/FiveLemma.lean
surjective_of_surjective_of_surjective_of_injective
One four lemma in terms of modules. For a diagram explaining the variables, see the module docstring.
injective_of_surjective_of_injective_of_injective (hi₁ : Function.Surjective i₁) (hi₂ : Function.Injective i₂) (hi₄ : Function.Injective i₄) : Function.Injective i₃ := AddMonoidHom.injective_of_surjective_of_injective_of_injective f₁.toAddMonoidHom f₂.toAddMonoidHom f₃.toAddMonoidHom g₁.toAddMonoidHom g₂.toAddMonoidHom g₃.toAddMonoidHom i₁.toAddMonoidHom i₂.toAddMonoidHom i₃.toAddMonoidHom i₄.toAddMonoidHom (AddMonoidHom.ext fun x ↦ DFunLike.congr_fun hc₁ x) (AddMonoidHom.ext fun x ↦ DFunLike.congr_fun hc₂ x) (AddMonoidHom.ext fun x ↦ DFunLike.congr_fun hc₃ x) hf₁ hf₂ hg₁ hi₁ hi₂ hi₄ include hf₁ hf₂ hf₃ hg₁ hg₂ hg₃ hc₁ hc₂ hc₃ hc₄ in
lemma
Algebra
[ "Mathlib.Algebra.Exact" ]
Mathlib/Algebra/FiveLemma.lean
injective_of_surjective_of_injective_of_injective
One four lemma in terms of modules. For a diagram explaining the variables, see the module docstring.
bijective_of_surjective_of_bijective_of_bijective_of_injective (hi₁ : Function.Surjective i₁) (hi₂ : Function.Bijective i₂) (hi₄ : Function.Bijective i₄) (hi₅ : Function.Injective i₅) : Function.Bijective i₃ := ⟨injective_of_surjective_of_injective_of_injective f₁ f₂ f₃ g₁ g₂ g₃ i₁ i₂ i₃ i₄ hc₁ hc₂ hc₃ hf₁ hf₂ hg₁ hi₁ hi₂.1 hi₄.1, surjective_of_surjective_of_surjective_of_injective f₂ f₃ f₄ g₂ g₃ g₄ i₂ i₃ i₄ i₅ hc₂ hc₃ hc₄ hf₃ hg₂ hg₃ hi₂.2 hi₄.2 hi₅⟩
lemma
Algebra
[ "Mathlib.Algebra.Exact" ]
Mathlib/Algebra/FiveLemma.lean
bijective_of_surjective_of_bijective_of_bijective_of_injective
The five lemma in terms of modules. For a diagram explaining the variables, see the module docstring.
FreeAddMagma (α : Type u) : Type u | of : α → FreeAddMagma α | add : FreeAddMagma α → FreeAddMagma α → FreeAddMagma α deriving DecidableEq compile_inductive% FreeAddMagma set_option genSizeOfSpec false in set_option genInjectivity false in
inductive
Algebra
[ "Mathlib.Algebra.Group.Basic", "Mathlib.Algebra.Group.Equiv.Defs", "Mathlib.Control.Applicative", "Mathlib.Control.Traversable.Basic", "Mathlib.Logic.Equiv.Defs", "Mathlib.Tactic.AdaptationNote" ]
Mathlib/Algebra/Free.lean
FreeAddMagma
If `α` is a type, then `FreeAddMagma α` is the free additive magma generated by `α`. This is an additive magma equipped with a function `FreeAddMagma.of : α → FreeAddMagma α` which has the following universal property: if `M` is any magma, and `f : α → M` is any function, then this function is the composite of `FreeAddMagma.of` and a unique additive homomorphism `FreeAddMagma.lift f : FreeAddMagma α →ₙ+ M`. A typical element of `FreeAddMagma α` is a formal non-associative sum of elements of `α`. For example if `x` and `y` are terms of type `α` then `x + ((y + y) + x)` is a "typical" element of `FreeAddMagma α`. One can think of `FreeAddMagma α` as the type of binary trees with leaves labelled by `α`. In general, no pair of distinct elements in `FreeAddMagma α` will commute.