fact
stringlengths
6
3.84k
type
stringclasses
11 values
library
stringclasses
32 values
imports
listlengths
1
14
filename
stringlengths
20
95
symbolic_name
stringlengths
1
90
docstring
stringlengths
7
20k
instZero : Zero (FreeAlgebra R X) where zero := Quot.mk _ 0
instance
Algebra
[ "Mathlib.Algebra.Algebra.Subalgebra.Basic", "Mathlib.Algebra.Algebra.Subalgebra.Lattice", "Mathlib.Algebra.FreeMonoid.UniqueProds", "Mathlib.Algebra.MonoidAlgebra.Basic", "Mathlib.Algebra.MonoidAlgebra.NoZeroDivisors" ]
Mathlib/Algebra/FreeAlgebra.lean
instZero
null
instOne : One (FreeAlgebra R X) where one := Quot.mk _ 1
instance
Algebra
[ "Mathlib.Algebra.Algebra.Subalgebra.Basic", "Mathlib.Algebra.Algebra.Subalgebra.Lattice", "Mathlib.Algebra.FreeMonoid.UniqueProds", "Mathlib.Algebra.MonoidAlgebra.Basic", "Mathlib.Algebra.MonoidAlgebra.NoZeroDivisors" ]
Mathlib/Algebra/FreeAlgebra.lean
instOne
null
instAdd : Add (FreeAlgebra R X) where add := Quot.map₂ HAdd.hAdd (fun _ _ _ ↦ Rel.add_compat_right) fun _ _ _ ↦ Rel.add_compat_left
instance
Algebra
[ "Mathlib.Algebra.Algebra.Subalgebra.Basic", "Mathlib.Algebra.Algebra.Subalgebra.Lattice", "Mathlib.Algebra.FreeMonoid.UniqueProds", "Mathlib.Algebra.MonoidAlgebra.Basic", "Mathlib.Algebra.MonoidAlgebra.NoZeroDivisors" ]
Mathlib/Algebra/FreeAlgebra.lean
instAdd
null
instMul : Mul (FreeAlgebra R X) where mul := Quot.map₂ HMul.hMul (fun _ _ _ ↦ Rel.mul_compat_right) fun _ _ _ ↦ Rel.mul_compat_left
instance
Algebra
[ "Mathlib.Algebra.Algebra.Subalgebra.Basic", "Mathlib.Algebra.Algebra.Subalgebra.Lattice", "Mathlib.Algebra.FreeMonoid.UniqueProds", "Mathlib.Algebra.MonoidAlgebra.Basic", "Mathlib.Algebra.MonoidAlgebra.NoZeroDivisors" ]
Mathlib/Algebra/FreeAlgebra.lean
instMul
null
private mk_mul (x y : Pre R X) : Quot.mk (Rel R X) (x * y) = (HMul.hMul (self := instHMul (α := FreeAlgebra R X)) (Quot.mk (Rel R X) x) (Quot.mk (Rel R X) y)) := rfl /-! Build the semiring structure. We do this one piece at a time as this is convenient for proving the `nsmul` fields. -/
theorem
Algebra
[ "Mathlib.Algebra.Algebra.Subalgebra.Basic", "Mathlib.Algebra.Algebra.Subalgebra.Lattice", "Mathlib.Algebra.FreeMonoid.UniqueProds", "Mathlib.Algebra.MonoidAlgebra.Basic", "Mathlib.Algebra.MonoidAlgebra.NoZeroDivisors" ]
Mathlib/Algebra/FreeAlgebra.lean
mk_mul
null
instMonoidWithZero : MonoidWithZero (FreeAlgebra R X) where mul_assoc := by rintro ⟨⟩ ⟨⟩ ⟨⟩ exact Quot.sound Rel.mul_assoc one := Quot.mk _ 1 one_mul := by rintro ⟨⟩ exact Quot.sound Rel.one_mul mul_one := by rintro ⟨⟩ exact Quot.sound Rel.mul_one zero_mul := by rintro ⟨⟩ exact Quot.sound Rel.zero_mul mul_zero := by rintro ⟨⟩ exact Quot.sound Rel.mul_zero
instance
Algebra
[ "Mathlib.Algebra.Algebra.Subalgebra.Basic", "Mathlib.Algebra.Algebra.Subalgebra.Lattice", "Mathlib.Algebra.FreeMonoid.UniqueProds", "Mathlib.Algebra.MonoidAlgebra.Basic", "Mathlib.Algebra.MonoidAlgebra.NoZeroDivisors" ]
Mathlib/Algebra/FreeAlgebra.lean
instMonoidWithZero
null
instDistrib : Distrib (FreeAlgebra R X) where left_distrib := by rintro ⟨⟩ ⟨⟩ ⟨⟩ exact Quot.sound Rel.left_distrib right_distrib := by rintro ⟨⟩ ⟨⟩ ⟨⟩ exact Quot.sound Rel.right_distrib
instance
Algebra
[ "Mathlib.Algebra.Algebra.Subalgebra.Basic", "Mathlib.Algebra.Algebra.Subalgebra.Lattice", "Mathlib.Algebra.FreeMonoid.UniqueProds", "Mathlib.Algebra.MonoidAlgebra.Basic", "Mathlib.Algebra.MonoidAlgebra.NoZeroDivisors" ]
Mathlib/Algebra/FreeAlgebra.lean
instDistrib
null
instAddCommMonoid : AddCommMonoid (FreeAlgebra R X) where add_assoc := by rintro ⟨⟩ ⟨⟩ ⟨⟩ exact Quot.sound Rel.add_assoc zero_add := by rintro ⟨⟩ exact Quot.sound Rel.zero_add add_zero := by rintro ⟨⟩ change Quot.mk _ _ = _ rw [Quot.sound Rel.add_comm, Quot.sound Rel.zero_add] add_comm := by rintro ⟨⟩ ⟨⟩ exact Quot.sound Rel.add_comm nsmul := (· • ·) nsmul_zero := by rintro ⟨⟩ change Quot.mk _ (_ * _) = _ rw [map_zero] exact Quot.sound Rel.zero_mul nsmul_succ n := by rintro ⟨a⟩ dsimp only [HSMul.hSMul, instSMul, Quot.map] rw [map_add, map_one, mk_mul, mk_mul, ← add_one_mul (_ : FreeAlgebra R X)] congr 1 exact Quot.sound Rel.add_scalar
instance
Algebra
[ "Mathlib.Algebra.Algebra.Subalgebra.Basic", "Mathlib.Algebra.Algebra.Subalgebra.Lattice", "Mathlib.Algebra.FreeMonoid.UniqueProds", "Mathlib.Algebra.MonoidAlgebra.Basic", "Mathlib.Algebra.MonoidAlgebra.NoZeroDivisors" ]
Mathlib/Algebra/FreeAlgebra.lean
instAddCommMonoid
null
instAlgebra {A} [CommSemiring A] [Algebra R A] : Algebra R (FreeAlgebra A X) where algebraMap := ({ toFun := fun r => Quot.mk _ r map_one' := rfl map_mul' := fun _ _ => Quot.sound Rel.mul_scalar map_zero' := rfl map_add' := fun _ _ => Quot.sound Rel.add_scalar } : A →+* FreeAlgebra A X).comp (algebraMap R A) commutes' _ := by rintro ⟨⟩ exact Quot.sound Rel.central_scalar smul_def' _ _ := rfl variable (S : Type) [CommSemiring S] in
instance
Algebra
[ "Mathlib.Algebra.Algebra.Subalgebra.Basic", "Mathlib.Algebra.Algebra.Subalgebra.Lattice", "Mathlib.Algebra.FreeMonoid.UniqueProds", "Mathlib.Algebra.MonoidAlgebra.Basic", "Mathlib.Algebra.MonoidAlgebra.NoZeroDivisors" ]
Mathlib/Algebra/FreeAlgebra.lean
instAlgebra
null
private liftAux (f : X → A) : FreeAlgebra R X →ₐ[R] A where toFun a := Quot.liftOn a (liftFun _ _ f) fun a b h ↦ by induction h · exact (algebraMap R A).map_add _ _ · exact (algebraMap R A).map_mul _ _ · apply Algebra.commutes · change _ + _ + _ = _ + (_ + _) rw [add_assoc] · change _ + _ = _ + _ rw [add_comm] · change algebraMap _ _ _ + liftFun R X f _ = liftFun R X f _ simp · change _ * _ * _ = _ * (_ * _) rw [mul_assoc] · change algebraMap _ _ _ * liftFun R X f _ = liftFun R X f _ simp · change liftFun R X f _ * algebraMap _ _ _ = liftFun R X f _ simp · change _ * (_ + _) = _ * _ + _ * _ rw [left_distrib] · change (_ + _) * _ = _ * _ + _ * _ rw [right_distrib] · change algebraMap _ _ _ * _ = algebraMap _ _ _ simp · change _ * algebraMap _ _ _ = algebraMap _ _ _ simp repeat change liftFun R X f _ + liftFun R X f _ = _ simp only [*] rfl repeat change liftFun R X f _ * liftFun R X f _ = _ simp only [*] rfl map_one' := by change algebraMap _ _ _ = _ simp map_mul' := by rintro ⟨⟩ ⟨⟩ rfl map_zero' := by change algebraMap _ _ _ = _ simp map_add' := by rintro ⟨⟩ ⟨⟩ rfl commutes' := by tauto
def
Algebra
[ "Mathlib.Algebra.Algebra.Subalgebra.Basic", "Mathlib.Algebra.Algebra.Subalgebra.Lattice", "Mathlib.Algebra.FreeMonoid.UniqueProds", "Mathlib.Algebra.MonoidAlgebra.Basic", "Mathlib.Algebra.MonoidAlgebra.NoZeroDivisors" ]
Mathlib/Algebra/FreeAlgebra.lean
liftAux
The canonical function `X → FreeAlgebra R X`. -/ irreducible_def ι : X → FreeAlgebra R X := fun m ↦ Quot.mk _ m @[simp] theorem quot_mk_eq_ι (m : X) : Quot.mk (FreeAlgebra.Rel R X) m = ι R m := by rw [ι_def] variable {A : Type*} [Semiring A] [Algebra R A] /-- Internal definition used to define `lift`
@[irreducible] lift : (X → A) ≃ (FreeAlgebra R X →ₐ[R] A) := { toFun := liftAux R invFun := fun F ↦ F ∘ ι R left_inv := fun f ↦ by ext simp only [Function.comp_apply, ι_def] rfl right_inv := fun F ↦ by ext t rcases t with ⟨x⟩ induction x with | of => change ((F : FreeAlgebra R X → A) ∘ ι R) _ = _ simp only [Function.comp_apply, ι_def] | ofScalar x => change algebraMap _ _ x = F (algebraMap _ _ x) rw [AlgHom.commutes F _] | add a b ha hb => let fa : FreeAlgebra R X := Quot.mk (Rel R X) a let fb : FreeAlgebra R X := Quot.mk (Rel R X) b change liftAux R (F ∘ ι R) (fa + fb) = F (fa + fb) rw [map_add, map_add, ha, hb] | mul a b ha hb => let fa : FreeAlgebra R X := Quot.mk (Rel R X) a let fb : FreeAlgebra R X := Quot.mk (Rel R X) b change liftAux R (F ∘ ι R) (fa * fb) = F (fa * fb) rw [map_mul, map_mul, ha, hb] } @[simp]
def
Algebra
[ "Mathlib.Algebra.Algebra.Subalgebra.Basic", "Mathlib.Algebra.Algebra.Subalgebra.Lattice", "Mathlib.Algebra.FreeMonoid.UniqueProds", "Mathlib.Algebra.MonoidAlgebra.Basic", "Mathlib.Algebra.MonoidAlgebra.NoZeroDivisors" ]
Mathlib/Algebra/FreeAlgebra.lean
lift
Given a function `f : X → A` where `A` is an `R`-algebra, `lift R f` is the unique lift of `f` to a morphism of `R`-algebras `FreeAlgebra R X → A`.
liftAux_eq (f : X → A) : liftAux R f = lift R f := by rw [lift] rfl @[simp]
theorem
Algebra
[ "Mathlib.Algebra.Algebra.Subalgebra.Basic", "Mathlib.Algebra.Algebra.Subalgebra.Lattice", "Mathlib.Algebra.FreeMonoid.UniqueProds", "Mathlib.Algebra.MonoidAlgebra.Basic", "Mathlib.Algebra.MonoidAlgebra.NoZeroDivisors" ]
Mathlib/Algebra/FreeAlgebra.lean
liftAux_eq
null
lift_symm_apply (F : FreeAlgebra R X →ₐ[R] A) : (lift R).symm F = F ∘ ι R := by rw [lift] rfl variable {R} @[simp]
theorem
Algebra
[ "Mathlib.Algebra.Algebra.Subalgebra.Basic", "Mathlib.Algebra.Algebra.Subalgebra.Lattice", "Mathlib.Algebra.FreeMonoid.UniqueProds", "Mathlib.Algebra.MonoidAlgebra.Basic", "Mathlib.Algebra.MonoidAlgebra.NoZeroDivisors" ]
Mathlib/Algebra/FreeAlgebra.lean
lift_symm_apply
null
ι_comp_lift (f : X → A) : (lift R f : FreeAlgebra R X → A) ∘ ι R = f := by ext rw [Function.comp_apply, ι_def, lift] rfl @[simp]
theorem
Algebra
[ "Mathlib.Algebra.Algebra.Subalgebra.Basic", "Mathlib.Algebra.Algebra.Subalgebra.Lattice", "Mathlib.Algebra.FreeMonoid.UniqueProds", "Mathlib.Algebra.MonoidAlgebra.Basic", "Mathlib.Algebra.MonoidAlgebra.NoZeroDivisors" ]
Mathlib/Algebra/FreeAlgebra.lean
ι_comp_lift
null
lift_ι_apply (f : X → A) (x) : lift R f (ι R x) = f x := by rw [ι_def, lift] rfl @[simp]
theorem
Algebra
[ "Mathlib.Algebra.Algebra.Subalgebra.Basic", "Mathlib.Algebra.Algebra.Subalgebra.Lattice", "Mathlib.Algebra.FreeMonoid.UniqueProds", "Mathlib.Algebra.MonoidAlgebra.Basic", "Mathlib.Algebra.MonoidAlgebra.NoZeroDivisors" ]
Mathlib/Algebra/FreeAlgebra.lean
lift_ι_apply
null
lift_unique (f : X → A) (g : FreeAlgebra R X →ₐ[R] A) : (g : FreeAlgebra R X → A) ∘ ι R = f ↔ g = lift R f := by rw [← (lift R).symm_apply_eq, lift] rfl /-! Since we have set the basic definitions as `@[Irreducible]`, from this point onwards one should only use the universal properties of the free algebra, and consider the actual implementation as a quotient of an inductive type as completely hidden. -/ @[simp]
theorem
Algebra
[ "Mathlib.Algebra.Algebra.Subalgebra.Basic", "Mathlib.Algebra.Algebra.Subalgebra.Lattice", "Mathlib.Algebra.FreeMonoid.UniqueProds", "Mathlib.Algebra.MonoidAlgebra.Basic", "Mathlib.Algebra.MonoidAlgebra.NoZeroDivisors" ]
Mathlib/Algebra/FreeAlgebra.lean
lift_unique
null
lift_comp_ι (g : FreeAlgebra R X →ₐ[R] A) : lift R ((g : FreeAlgebra R X → A) ∘ ι R) = g := by rw [← lift_symm_apply] exact (lift R).apply_symm_apply g
theorem
Algebra
[ "Mathlib.Algebra.Algebra.Subalgebra.Basic", "Mathlib.Algebra.Algebra.Subalgebra.Lattice", "Mathlib.Algebra.FreeMonoid.UniqueProds", "Mathlib.Algebra.MonoidAlgebra.Basic", "Mathlib.Algebra.MonoidAlgebra.NoZeroDivisors" ]
Mathlib/Algebra/FreeAlgebra.lean
lift_comp_ι
null
@[ext high] hom_ext {f g : FreeAlgebra R X →ₐ[R] A} (w : (f : FreeAlgebra R X → A) ∘ ι R = (g : FreeAlgebra R X → A) ∘ ι R) : f = g := by rw [← lift_symm_apply, ← lift_symm_apply] at w exact (lift R).symm.injective w
theorem
Algebra
[ "Mathlib.Algebra.Algebra.Subalgebra.Basic", "Mathlib.Algebra.Algebra.Subalgebra.Lattice", "Mathlib.Algebra.FreeMonoid.UniqueProds", "Mathlib.Algebra.MonoidAlgebra.Basic", "Mathlib.Algebra.MonoidAlgebra.NoZeroDivisors" ]
Mathlib/Algebra/FreeAlgebra.lean
hom_ext
See note [partially-applied ext lemmas].
noncomputable equivMonoidAlgebraFreeMonoid : FreeAlgebra R X ≃ₐ[R] MonoidAlgebra R (FreeMonoid X) := AlgEquiv.ofAlgHom (lift R fun x ↦ (MonoidAlgebra.of R (FreeMonoid X)) (FreeMonoid.of x)) ((MonoidAlgebra.lift R (FreeMonoid X) (FreeAlgebra R X)) (FreeMonoid.lift (ι R))) (by apply MonoidAlgebra.algHom_ext; intro x refine FreeMonoid.recOn x ?_ ?_ · simp rfl · intro x y ih simp at ih simp [ih]) (by ext simp)
def
Algebra
[ "Mathlib.Algebra.Algebra.Subalgebra.Basic", "Mathlib.Algebra.Algebra.Subalgebra.Lattice", "Mathlib.Algebra.FreeMonoid.UniqueProds", "Mathlib.Algebra.MonoidAlgebra.Basic", "Mathlib.Algebra.MonoidAlgebra.NoZeroDivisors" ]
Mathlib/Algebra/FreeAlgebra.lean
equivMonoidAlgebraFreeMonoid
The free algebra on `X` is "just" the monoid algebra on the free monoid on `X`. This would be useful when constructing linear maps out of a free algebra, for example.
instNoZeroDivisors [NoZeroDivisors R] : NoZeroDivisors (FreeAlgebra R X) := equivMonoidAlgebraFreeMonoid.toMulEquiv.noZeroDivisors
instance
Algebra
[ "Mathlib.Algebra.Algebra.Subalgebra.Basic", "Mathlib.Algebra.Algebra.Subalgebra.Lattice", "Mathlib.Algebra.FreeMonoid.UniqueProds", "Mathlib.Algebra.MonoidAlgebra.Basic", "Mathlib.Algebra.MonoidAlgebra.NoZeroDivisors" ]
Mathlib/Algebra/FreeAlgebra.lean
instNoZeroDivisors
`FreeAlgebra R X` is nontrivial when `R` is. -/ instance [Nontrivial R] : Nontrivial (FreeAlgebra R X) := equivMonoidAlgebraFreeMonoid.surjective.nontrivial /-- `FreeAlgebra R X` has no zero-divisors when `R` has no zero-divisors.
instIsDomain {R X} [CommRing R] [IsDomain R] : IsDomain (FreeAlgebra R X) := NoZeroDivisors.to_isDomain _
instance
Algebra
[ "Mathlib.Algebra.Algebra.Subalgebra.Basic", "Mathlib.Algebra.Algebra.Subalgebra.Lattice", "Mathlib.Algebra.FreeMonoid.UniqueProds", "Mathlib.Algebra.MonoidAlgebra.Basic", "Mathlib.Algebra.MonoidAlgebra.NoZeroDivisors" ]
Mathlib/Algebra/FreeAlgebra.lean
instIsDomain
`FreeAlgebra R X` is a domain when `R` is an integral domain.
algebraMapInv : FreeAlgebra R X →ₐ[R] R := lift R (0 : X → R)
def
Algebra
[ "Mathlib.Algebra.Algebra.Subalgebra.Basic", "Mathlib.Algebra.Algebra.Subalgebra.Lattice", "Mathlib.Algebra.FreeMonoid.UniqueProds", "Mathlib.Algebra.MonoidAlgebra.Basic", "Mathlib.Algebra.MonoidAlgebra.NoZeroDivisors" ]
Mathlib/Algebra/FreeAlgebra.lean
algebraMapInv
The left-inverse of `algebraMap`.
algebraMap_leftInverse : Function.LeftInverse algebraMapInv (algebraMap R <| FreeAlgebra R X) := fun x ↦ by simp [algebraMapInv] @[simp]
theorem
Algebra
[ "Mathlib.Algebra.Algebra.Subalgebra.Basic", "Mathlib.Algebra.Algebra.Subalgebra.Lattice", "Mathlib.Algebra.FreeMonoid.UniqueProds", "Mathlib.Algebra.MonoidAlgebra.Basic", "Mathlib.Algebra.MonoidAlgebra.NoZeroDivisors" ]
Mathlib/Algebra/FreeAlgebra.lean
algebraMap_leftInverse
null
algebraMap_inj (x y : R) : algebraMap R (FreeAlgebra R X) x = algebraMap R (FreeAlgebra R X) y ↔ x = y := algebraMap_leftInverse.injective.eq_iff @[simp]
theorem
Algebra
[ "Mathlib.Algebra.Algebra.Subalgebra.Basic", "Mathlib.Algebra.Algebra.Subalgebra.Lattice", "Mathlib.Algebra.FreeMonoid.UniqueProds", "Mathlib.Algebra.MonoidAlgebra.Basic", "Mathlib.Algebra.MonoidAlgebra.NoZeroDivisors" ]
Mathlib/Algebra/FreeAlgebra.lean
algebraMap_inj
null
algebraMap_eq_zero_iff (x : R) : algebraMap R (FreeAlgebra R X) x = 0 ↔ x = 0 := map_eq_zero_iff (algebraMap _ _) algebraMap_leftInverse.injective @[simp]
theorem
Algebra
[ "Mathlib.Algebra.Algebra.Subalgebra.Basic", "Mathlib.Algebra.Algebra.Subalgebra.Lattice", "Mathlib.Algebra.FreeMonoid.UniqueProds", "Mathlib.Algebra.MonoidAlgebra.Basic", "Mathlib.Algebra.MonoidAlgebra.NoZeroDivisors" ]
Mathlib/Algebra/FreeAlgebra.lean
algebraMap_eq_zero_iff
null
algebraMap_eq_one_iff (x : R) : algebraMap R (FreeAlgebra R X) x = 1 ↔ x = 1 := map_eq_one_iff (algebraMap _ _) algebraMap_leftInverse.injective
theorem
Algebra
[ "Mathlib.Algebra.Algebra.Subalgebra.Basic", "Mathlib.Algebra.Algebra.Subalgebra.Lattice", "Mathlib.Algebra.FreeMonoid.UniqueProds", "Mathlib.Algebra.MonoidAlgebra.Basic", "Mathlib.Algebra.MonoidAlgebra.NoZeroDivisors" ]
Mathlib/Algebra/FreeAlgebra.lean
algebraMap_eq_one_iff
null
ι_injective [Nontrivial R] : Function.Injective (ι R : X → FreeAlgebra R X) := fun x y hoxy ↦ by_contradiction <| by classical exact fun hxy : x ≠ y ↦ let f : FreeAlgebra R X →ₐ[R] R := lift R fun z ↦ if x = z then (1 : R) else 0 have hfx1 : f (ι R x) = 1 := (lift_ι_apply _ _).trans <| if_pos rfl have hfy1 : f (ι R y) = 1 := hoxy ▸ hfx1 have hfy0 : f (ι R y) = 0 := (lift_ι_apply _ _).trans <| if_neg hxy one_ne_zero <| hfy1.symm.trans hfy0 @[simp]
theorem
Algebra
[ "Mathlib.Algebra.Algebra.Subalgebra.Basic", "Mathlib.Algebra.Algebra.Subalgebra.Lattice", "Mathlib.Algebra.FreeMonoid.UniqueProds", "Mathlib.Algebra.MonoidAlgebra.Basic", "Mathlib.Algebra.MonoidAlgebra.NoZeroDivisors" ]
Mathlib/Algebra/FreeAlgebra.lean
ι_injective
null
ι_inj [Nontrivial R] (x y : X) : ι R x = ι R y ↔ x = y := ι_injective.eq_iff @[simp]
theorem
Algebra
[ "Mathlib.Algebra.Algebra.Subalgebra.Basic", "Mathlib.Algebra.Algebra.Subalgebra.Lattice", "Mathlib.Algebra.FreeMonoid.UniqueProds", "Mathlib.Algebra.MonoidAlgebra.Basic", "Mathlib.Algebra.MonoidAlgebra.NoZeroDivisors" ]
Mathlib/Algebra/FreeAlgebra.lean
ι_inj
null
ι_ne_algebraMap [Nontrivial R] (x : X) (r : R) : ι R x ≠ algebraMap R _ r := fun h ↦ by let f0 : FreeAlgebra R X →ₐ[R] R := lift R 0 let f1 : FreeAlgebra R X →ₐ[R] R := lift R 1 have hf0 : f0 (ι R x) = 0 := lift_ι_apply _ _ have hf1 : f1 (ι R x) = 1 := lift_ι_apply _ _ rw [h, f0.commutes, Algebra.algebraMap_self_apply] at hf0 rw [h, f1.commutes, Algebra.algebraMap_self_apply] at hf1 exact zero_ne_one (hf0.symm.trans hf1) @[simp]
theorem
Algebra
[ "Mathlib.Algebra.Algebra.Subalgebra.Basic", "Mathlib.Algebra.Algebra.Subalgebra.Lattice", "Mathlib.Algebra.FreeMonoid.UniqueProds", "Mathlib.Algebra.MonoidAlgebra.Basic", "Mathlib.Algebra.MonoidAlgebra.NoZeroDivisors" ]
Mathlib/Algebra/FreeAlgebra.lean
ι_ne_algebraMap
null
ι_ne_zero [Nontrivial R] (x : X) : ι R x ≠ 0 := ι_ne_algebraMap x 0 @[simp]
theorem
Algebra
[ "Mathlib.Algebra.Algebra.Subalgebra.Basic", "Mathlib.Algebra.Algebra.Subalgebra.Lattice", "Mathlib.Algebra.FreeMonoid.UniqueProds", "Mathlib.Algebra.MonoidAlgebra.Basic", "Mathlib.Algebra.MonoidAlgebra.NoZeroDivisors" ]
Mathlib/Algebra/FreeAlgebra.lean
ι_ne_zero
null
ι_ne_one [Nontrivial R] (x : X) : ι R x ≠ 1 := ι_ne_algebraMap x 1
theorem
Algebra
[ "Mathlib.Algebra.Algebra.Subalgebra.Basic", "Mathlib.Algebra.Algebra.Subalgebra.Lattice", "Mathlib.Algebra.FreeMonoid.UniqueProds", "Mathlib.Algebra.MonoidAlgebra.Basic", "Mathlib.Algebra.MonoidAlgebra.NoZeroDivisors" ]
Mathlib/Algebra/FreeAlgebra.lean
ι_ne_one
null
@[elab_as_elim, induction_eliminator] induction {motive : FreeAlgebra R X → Prop} (grade0 : ∀ r, motive (algebraMap R (FreeAlgebra R X) r)) (grade1 : ∀ x, motive (ι R x)) (mul : ∀ a b, motive a → motive b → motive (a * b)) (add : ∀ a b, motive a → motive b → motive (a + b)) (a : FreeAlgebra R X) : motive a := by let s : Subalgebra R (FreeAlgebra R X) := { carrier := motive mul_mem' := mul _ _ add_mem' := add _ _ algebraMap_mem' := grade0 } let of : X → s := Subtype.coind (ι R) grade1 have of_id : AlgHom.id R (FreeAlgebra R X) = s.val.comp (lift R of) := by ext simp [of, Subtype.coind] suffices a = lift R of a by rw [this] exact Subtype.prop (lift R of a) simp [AlgHom.ext_iff] at of_id exact of_id a @[simp]
theorem
Algebra
[ "Mathlib.Algebra.Algebra.Subalgebra.Basic", "Mathlib.Algebra.Algebra.Subalgebra.Lattice", "Mathlib.Algebra.FreeMonoid.UniqueProds", "Mathlib.Algebra.MonoidAlgebra.Basic", "Mathlib.Algebra.MonoidAlgebra.NoZeroDivisors" ]
Mathlib/Algebra/FreeAlgebra.lean
induction
An induction principle for the free algebra. If `C` holds for the `algebraMap` of `r : R` into `FreeAlgebra R X`, the `ι` of `x : X`, and is preserved under addition and multiplication, then it holds for all of `FreeAlgebra R X`.
adjoin_range_ι : Algebra.adjoin R (Set.range (ι R : X → FreeAlgebra R X)) = ⊤ := by set S := Algebra.adjoin R (Set.range (ι R : X → FreeAlgebra R X)) refine top_unique fun x hx => ?_; clear hx induction x with | grade0 => exact S.algebraMap_mem _ | add x y hx hy => exact S.add_mem hx hy | mul x y hx hy => exact S.mul_mem hx hy | grade1 x => exact Algebra.subset_adjoin (Set.mem_range_self _) variable {A : Type*} [Semiring A] [Algebra R A]
theorem
Algebra
[ "Mathlib.Algebra.Algebra.Subalgebra.Basic", "Mathlib.Algebra.Algebra.Subalgebra.Lattice", "Mathlib.Algebra.FreeMonoid.UniqueProds", "Mathlib.Algebra.MonoidAlgebra.Basic", "Mathlib.Algebra.MonoidAlgebra.NoZeroDivisors" ]
Mathlib/Algebra/FreeAlgebra.lean
adjoin_range_ι
null
_root_.Algebra.adjoin_range_eq_range_freeAlgebra_lift (f : X → A) : Algebra.adjoin R (Set.range f) = (FreeAlgebra.lift R f).range := by simp only [← Algebra.map_top, ← adjoin_range_ι, AlgHom.map_adjoin, ← Set.range_comp, Function.comp_def, lift_ι_apply]
theorem
Algebra
[ "Mathlib.Algebra.Algebra.Subalgebra.Basic", "Mathlib.Algebra.Algebra.Subalgebra.Lattice", "Mathlib.Algebra.FreeMonoid.UniqueProds", "Mathlib.Algebra.MonoidAlgebra.Basic", "Mathlib.Algebra.MonoidAlgebra.NoZeroDivisors" ]
Mathlib/Algebra/FreeAlgebra.lean
_root_.Algebra.adjoin_range_eq_range_freeAlgebra_lift
Noncommutative version of `Algebra.adjoin_range_eq_range_aeval`.
_root_.Algebra.adjoin_eq_range_freeAlgebra_lift (s : Set A) : Algebra.adjoin R s = (FreeAlgebra.lift R ((↑) : s → A)).range := by rw [← Algebra.adjoin_range_eq_range_freeAlgebra_lift, Subtype.range_coe]
theorem
Algebra
[ "Mathlib.Algebra.Algebra.Subalgebra.Basic", "Mathlib.Algebra.Algebra.Subalgebra.Lattice", "Mathlib.Algebra.FreeMonoid.UniqueProds", "Mathlib.Algebra.MonoidAlgebra.Basic", "Mathlib.Algebra.MonoidAlgebra.NoZeroDivisors" ]
Mathlib/Algebra/FreeAlgebra.lean
_root_.Algebra.adjoin_eq_range_freeAlgebra_lift
Noncommutative version of `Algebra.adjoin_range_eq_range`.
FreeNonUnitalNonAssocAlgebra := MonoidAlgebra R (FreeMagma X)
abbrev
Algebra
[ "Mathlib.Algebra.Free", "Mathlib.Algebra.MonoidAlgebra.Basic" ]
Mathlib/Algebra/FreeNonUnitalNonAssocAlgebra.lean
FreeNonUnitalNonAssocAlgebra
If `α` is a type, and `R` is a semiring, then `FreeNonUnitalNonAssocAlgebra R α` is the free non-unital non-associative `R`-algebra generated by `α`. This is an `R`-algebra equipped with a function `FreeNonUnitalNonAssocAlgebra.of R : α → FreeNonUnitalNonAssocAlgebra R α` which has the following universal property: if `A` is any `R`-algebra, and `f : α → A` is any function, then this function is the composite of `FreeNonUnitalNonAssocAlgebra.of R` and a unique non-unital `R`-algebra homomorphism `FreeNonUnitalNonAssocAlgebra.lift R f : FreeNonUnitalNonAssocAlgebra R α →ₙₐ[R] A`. A typical element of `FreeNonUnitalNonAssocAlgebra R α` is an `R`-linear combination of nonempty formal (non-commutative, non-associative) products of elements of `α`. For example if `x` and `y` are terms of type `α` and `a`, `b` are terms of type `R` then `(3 * a * a) • (x * (y * x)) + (2 * b + 1) • (y * x)` is a "typical" element of `FreeNonUnitalNonAssocAlgebra R α`.
of : X → FreeNonUnitalNonAssocAlgebra R X := MonoidAlgebra.ofMagma R _ ∘ FreeMagma.of variable {A : Type w} [NonUnitalNonAssocSemiring A] variable [Module R A] [IsScalarTower R A A] [SMulCommClass R A A]
def
Algebra
[ "Mathlib.Algebra.Free", "Mathlib.Algebra.MonoidAlgebra.Basic" ]
Mathlib/Algebra/FreeNonUnitalNonAssocAlgebra.lean
of
The embedding of `X` into the free algebra with coefficients in `R`.
lift : (X → A) ≃ (FreeNonUnitalNonAssocAlgebra R X →ₙₐ[R] A) := FreeMagma.lift.trans (MonoidAlgebra.liftMagma R) @[simp]
def
Algebra
[ "Mathlib.Algebra.Free", "Mathlib.Algebra.MonoidAlgebra.Basic" ]
Mathlib/Algebra/FreeNonUnitalNonAssocAlgebra.lean
lift
The functor `X ↦ FreeNonUnitalNonAssocAlgebra R X` from the category of types to the category of non-unital, non-associative algebras over `R` is adjoint to the forgetful functor in the other direction.
lift_symm_apply (F : FreeNonUnitalNonAssocAlgebra R X →ₙₐ[R] A) : (lift R).symm F = F ∘ of R := rfl @[simp]
theorem
Algebra
[ "Mathlib.Algebra.Free", "Mathlib.Algebra.MonoidAlgebra.Basic" ]
Mathlib/Algebra/FreeNonUnitalNonAssocAlgebra.lean
lift_symm_apply
null
of_comp_lift (f : X → A) : lift R f ∘ of R = f := (lift R).left_inv f @[simp]
theorem
Algebra
[ "Mathlib.Algebra.Free", "Mathlib.Algebra.MonoidAlgebra.Basic" ]
Mathlib/Algebra/FreeNonUnitalNonAssocAlgebra.lean
of_comp_lift
null
lift_unique (f : X → A) (F : FreeNonUnitalNonAssocAlgebra R X →ₙₐ[R] A) : F ∘ of R = f ↔ F = lift R f := (lift R).symm_apply_eq @[simp]
theorem
Algebra
[ "Mathlib.Algebra.Free", "Mathlib.Algebra.MonoidAlgebra.Basic" ]
Mathlib/Algebra/FreeNonUnitalNonAssocAlgebra.lean
lift_unique
null
lift_of_apply (f : X → A) (x) : lift R f (of R x) = f x := congr_fun (of_comp_lift _ f) x @[simp]
theorem
Algebra
[ "Mathlib.Algebra.Free", "Mathlib.Algebra.MonoidAlgebra.Basic" ]
Mathlib/Algebra/FreeNonUnitalNonAssocAlgebra.lean
lift_of_apply
null
lift_comp_of (F : FreeNonUnitalNonAssocAlgebra R X →ₙₐ[R] A) : lift R (F ∘ of R) = F := (lift R).apply_symm_apply F @[ext]
theorem
Algebra
[ "Mathlib.Algebra.Free", "Mathlib.Algebra.MonoidAlgebra.Basic" ]
Mathlib/Algebra/FreeNonUnitalNonAssocAlgebra.lean
lift_comp_of
null
hom_ext {F₁ F₂ : FreeNonUnitalNonAssocAlgebra R X →ₙₐ[R] A} (h : ∀ x, F₁ (of R x) = F₂ (of R x)) : F₁ = F₂ := (lift R).symm.injective <| funext h
theorem
Algebra
[ "Mathlib.Algebra.Free", "Mathlib.Algebra.MonoidAlgebra.Basic" ]
Mathlib/Algebra/FreeNonUnitalNonAssocAlgebra.lean
hom_ext
null
GradedMonoid (A : ι → Type*) := Sigma A
def
Algebra
[ "Mathlib.Algebra.BigOperators.Group.List.Lemmas", "Mathlib.Algebra.Group.Action.Hom", "Mathlib.Algebra.Group.Submonoid.Defs", "Mathlib.Data.List.FinRange", "Mathlib.Data.SetLike.Basic", "Mathlib.Data.Sigma.Basic", "Lean.Elab.Tactic", "Mathlib.Algebra.BigOperators.Group.Finset.Basic" ]
Mathlib/Algebra/GradedMonoid.lean
GradedMonoid
A type alias of sigma types for graded monoids.
mk {A : ι → Type*} : ∀ i, A i → GradedMonoid A := Sigma.mk /-! ### Actions -/
def
Algebra
[ "Mathlib.Algebra.BigOperators.Group.List.Lemmas", "Mathlib.Algebra.Group.Action.Hom", "Mathlib.Algebra.Group.Submonoid.Defs", "Mathlib.Data.List.FinRange", "Mathlib.Data.SetLike.Basic", "Mathlib.Data.Sigma.Basic", "Lean.Elab.Tactic", "Mathlib.Algebra.BigOperators.Group.Finset.Basic" ]
Mathlib/Algebra/GradedMonoid.lean
mk
Construct an element of a graded monoid.
GOne [Zero ι] where /-- The term `one` of grade 0 -/ one : A 0
class
Algebra
[ "Mathlib.Algebra.BigOperators.Group.List.Lemmas", "Mathlib.Algebra.Group.Action.Hom", "Mathlib.Algebra.Group.Submonoid.Defs", "Mathlib.Data.List.FinRange", "Mathlib.Data.SetLike.Basic", "Mathlib.Data.Sigma.Basic", "Lean.Elab.Tactic", "Mathlib.Algebra.BigOperators.Group.Finset.Basic" ]
Mathlib/Algebra/GradedMonoid.lean
GOne
If `R` acts on each `A i`, then it acts on `GradedMonoid A` via the `.2` projection. -/ instance [∀ i, SMul α (A i)] : SMul α (GradedMonoid A) where smul r g := GradedMonoid.mk g.1 (r • g.2) @[simp] theorem fst_smul [∀ i, SMul α (A i)] (a : α) (x : GradedMonoid A) : (a • x).fst = x.fst := rfl @[simp] theorem snd_smul [∀ i, SMul α (A i)] (a : α) (x : GradedMonoid A) : (a • x).snd = a • x.snd := rfl theorem smul_mk [∀ i, SMul α (A i)] {i} (c : α) (a : A i) : c • mk i a = mk i (c • a) := rfl instance [∀ i, SMul α (A i)] [∀ i, SMul β (A i)] [∀ i, SMulCommClass α β (A i)] : SMulCommClass α β (GradedMonoid A) where smul_comm a b g := Sigma.ext rfl <| heq_of_eq <| smul_comm a b g.2 instance [SMul α β] [∀ i, SMul α (A i)] [∀ i, SMul β (A i)] [∀ i, IsScalarTower α β (A i)] : IsScalarTower α β (GradedMonoid A) where smul_assoc a b g := Sigma.ext rfl <| heq_of_eq <| smul_assoc a b g.2 instance [Monoid α] [∀ i, MulAction α (A i)] : MulAction α (GradedMonoid A) where one_smul g := Sigma.ext rfl <| heq_of_eq <| one_smul _ g.2 mul_smul r₁ r₂ g := Sigma.ext rfl <| heq_of_eq <| mul_smul r₁ r₂ g.2 end actions /-! ### Typeclasses -/ section Defs variable (A : ι → Type*) /-- A graded version of `One`, which must be of grade 0.
GOne.toOne [Zero ι] [GOne A] : One (GradedMonoid A) := ⟨⟨_, GOne.one⟩⟩ @[simp] theorem fst_one [Zero ι] [GOne A] : (1 : GradedMonoid A).fst = 0 := rfl @[simp] theorem snd_one [Zero ι] [GOne A] : (1 : GradedMonoid A).snd = GOne.one := rfl
instance
Algebra
[ "Mathlib.Algebra.BigOperators.Group.List.Lemmas", "Mathlib.Algebra.Group.Action.Hom", "Mathlib.Algebra.Group.Submonoid.Defs", "Mathlib.Data.List.FinRange", "Mathlib.Data.SetLike.Basic", "Mathlib.Data.Sigma.Basic", "Lean.Elab.Tactic", "Mathlib.Algebra.BigOperators.Group.Finset.Basic" ]
Mathlib/Algebra/GradedMonoid.lean
GOne.toOne
`GOne` implies `One (GradedMonoid A)`
GMul [Add ι] where /-- The homogeneous multiplication map `mul` -/ mul {i j} : A i → A j → A (i + j)
class
Algebra
[ "Mathlib.Algebra.BigOperators.Group.List.Lemmas", "Mathlib.Algebra.Group.Action.Hom", "Mathlib.Algebra.Group.Submonoid.Defs", "Mathlib.Data.List.FinRange", "Mathlib.Data.SetLike.Basic", "Mathlib.Data.Sigma.Basic", "Lean.Elab.Tactic", "Mathlib.Algebra.BigOperators.Group.Finset.Basic" ]
Mathlib/Algebra/GradedMonoid.lean
GMul
A graded version of `Mul`. Multiplication combines grades additively, like `AddMonoidAlgebra`.
GMul.toMul [Add ι] [GMul A] : Mul (GradedMonoid A) := ⟨fun x y : GradedMonoid A => ⟨_, GMul.mul x.snd y.snd⟩⟩ @[simp] theorem fst_mul [Add ι] [GMul A] (x y : GradedMonoid A) : (x * y).fst = x.fst + y.fst := rfl @[simp] theorem snd_mul [Add ι] [GMul A] (x y : GradedMonoid A) : (x * y).snd = GMul.mul x.snd y.snd := rfl
instance
Algebra
[ "Mathlib.Algebra.BigOperators.Group.List.Lemmas", "Mathlib.Algebra.Group.Action.Hom", "Mathlib.Algebra.Group.Submonoid.Defs", "Mathlib.Data.List.FinRange", "Mathlib.Data.SetLike.Basic", "Mathlib.Data.Sigma.Basic", "Lean.Elab.Tactic", "Mathlib.Algebra.BigOperators.Group.Finset.Basic" ]
Mathlib/Algebra/GradedMonoid.lean
GMul.toMul
`GMul` implies `Mul (GradedMonoid A)`.
mk_mul_mk [Add ι] [GMul A] {i j} (a : A i) (b : A j) : mk i a * mk j b = mk (i + j) (GMul.mul a b) := rfl
theorem
Algebra
[ "Mathlib.Algebra.BigOperators.Group.List.Lemmas", "Mathlib.Algebra.Group.Action.Hom", "Mathlib.Algebra.Group.Submonoid.Defs", "Mathlib.Data.List.FinRange", "Mathlib.Data.SetLike.Basic", "Mathlib.Data.Sigma.Basic", "Lean.Elab.Tactic", "Mathlib.Algebra.BigOperators.Group.Finset.Basic" ]
Mathlib/Algebra/GradedMonoid.lean
mk_mul_mk
null
gnpowRec : ∀ (n : ℕ) {i}, A i → A (n • i) | 0, i, _ => cast (congr_arg A (zero_nsmul i).symm) GOne.one | n + 1, i, a => cast (congr_arg A (succ_nsmul i n).symm) (GMul.mul (gnpowRec _ a) a) @[simp]
def
Algebra
[ "Mathlib.Algebra.BigOperators.Group.List.Lemmas", "Mathlib.Algebra.Group.Action.Hom", "Mathlib.Algebra.Group.Submonoid.Defs", "Mathlib.Data.List.FinRange", "Mathlib.Data.SetLike.Basic", "Mathlib.Data.Sigma.Basic", "Lean.Elab.Tactic", "Mathlib.Algebra.BigOperators.Group.Finset.Basic" ]
Mathlib/Algebra/GradedMonoid.lean
gnpowRec
A default implementation of power on a graded monoid, like `npowRec`. `GMonoid.gnpow` should be used instead.
gnpowRec_zero (a : GradedMonoid A) : GradedMonoid.mk _ (gnpowRec 0 a.snd) = 1 := Sigma.ext (zero_nsmul _) (heq_of_cast_eq _ rfl).symm @[simp]
theorem
Algebra
[ "Mathlib.Algebra.BigOperators.Group.List.Lemmas", "Mathlib.Algebra.Group.Action.Hom", "Mathlib.Algebra.Group.Submonoid.Defs", "Mathlib.Data.List.FinRange", "Mathlib.Data.SetLike.Basic", "Mathlib.Data.Sigma.Basic", "Lean.Elab.Tactic", "Mathlib.Algebra.BigOperators.Group.Finset.Basic" ]
Mathlib/Algebra/GradedMonoid.lean
gnpowRec_zero
null
gnpowRec_succ (n : ℕ) (a : GradedMonoid A) : (GradedMonoid.mk _ <| gnpowRec n.succ a.snd) = ⟨_, gnpowRec n a.snd⟩ * a := Sigma.ext (succ_nsmul _ _) (heq_of_cast_eq _ rfl).symm
theorem
Algebra
[ "Mathlib.Algebra.BigOperators.Group.List.Lemmas", "Mathlib.Algebra.Group.Action.Hom", "Mathlib.Algebra.Group.Submonoid.Defs", "Mathlib.Data.List.FinRange", "Mathlib.Data.SetLike.Basic", "Mathlib.Data.Sigma.Basic", "Lean.Elab.Tactic", "Mathlib.Algebra.BigOperators.Group.Finset.Basic" ]
Mathlib/Algebra/GradedMonoid.lean
gnpowRec_succ
null
GMonoid [AddMonoid ι] extends GMul A, GOne A where /-- Multiplication by `one` on the left is the identity -/ one_mul (a : GradedMonoid A) : 1 * a = a /-- Multiplication by `one` on the right is the identity -/ mul_one (a : GradedMonoid A) : a * 1 = a /-- Multiplication is associative -/ mul_assoc (a b c : GradedMonoid A) : a * b * c = a * (b * c) /-- Optional field to allow definitional control of natural powers -/ gnpow : ∀ (n : ℕ) {i}, A i → A (n • i) := GMonoid.gnpowRec /-- The zeroth power will yield 1 -/ gnpow_zero' : ∀ a : GradedMonoid A, GradedMonoid.mk _ (gnpow 0 a.snd) = 1 := by apply_gmonoid_gnpowRec_zero_tac /-- Successor powers behave as expected -/ gnpow_succ' : ∀ (n : ℕ) (a : GradedMonoid A), (GradedMonoid.mk _ <| gnpow n.succ a.snd) = ⟨_, gnpow n a.snd⟩ * a := by apply_gmonoid_gnpowRec_succ_tac
class
Algebra
[ "Mathlib.Algebra.BigOperators.Group.List.Lemmas", "Mathlib.Algebra.Group.Action.Hom", "Mathlib.Algebra.Group.Submonoid.Defs", "Mathlib.Data.List.FinRange", "Mathlib.Data.SetLike.Basic", "Mathlib.Data.Sigma.Basic", "Lean.Elab.Tactic", "Mathlib.Algebra.BigOperators.Group.Finset.Basic" ]
Mathlib/Algebra/GradedMonoid.lean
GMonoid
A tactic to for use as an optional value for `GMonoid.gnpow_zero'`. -/ macro "apply_gmonoid_gnpowRec_zero_tac" : tactic => `(tactic| apply GMonoid.gnpowRec_zero) /-- A tactic to for use as an optional value for `GMonoid.gnpow_succ'`. -/ macro "apply_gmonoid_gnpowRec_succ_tac" : tactic => `(tactic| apply GMonoid.gnpowRec_succ) /-- A graded version of `Monoid` Like `Monoid.npow`, this has an optional `GMonoid.gnpow` field to allow definitional control of natural powers of a graded monoid.
GMonoid.toMonoid [AddMonoid ι] [GMonoid A] : Monoid (GradedMonoid A) where one := 1 mul := (· * ·) npow n a := GradedMonoid.mk _ (GMonoid.gnpow n a.snd) npow_zero a := GMonoid.gnpow_zero' a npow_succ n a := GMonoid.gnpow_succ' n a one_mul := GMonoid.one_mul mul_one := GMonoid.mul_one mul_assoc := GMonoid.mul_assoc @[simp] theorem fst_pow [AddMonoid ι] [GMonoid A] (x : GradedMonoid A) (n : ℕ) : (x ^ n).fst = n • x.fst := rfl @[simp] theorem snd_pow [AddMonoid ι] [GMonoid A] (x : GradedMonoid A) (n : ℕ) : (x ^ n).snd = GMonoid.gnpow n x.snd := rfl
instance
Algebra
[ "Mathlib.Algebra.BigOperators.Group.List.Lemmas", "Mathlib.Algebra.Group.Action.Hom", "Mathlib.Algebra.Group.Submonoid.Defs", "Mathlib.Data.List.FinRange", "Mathlib.Data.SetLike.Basic", "Mathlib.Data.Sigma.Basic", "Lean.Elab.Tactic", "Mathlib.Algebra.BigOperators.Group.Finset.Basic" ]
Mathlib/Algebra/GradedMonoid.lean
GMonoid.toMonoid
`GMonoid` implies a `Monoid (GradedMonoid A)`.
mk_pow [AddMonoid ι] [GMonoid A] {i} (a : A i) (n : ℕ) : mk i a ^ n = mk (n • i) (GMonoid.gnpow _ a) := rfl
theorem
Algebra
[ "Mathlib.Algebra.BigOperators.Group.List.Lemmas", "Mathlib.Algebra.Group.Action.Hom", "Mathlib.Algebra.Group.Submonoid.Defs", "Mathlib.Data.List.FinRange", "Mathlib.Data.SetLike.Basic", "Mathlib.Data.Sigma.Basic", "Lean.Elab.Tactic", "Mathlib.Algebra.BigOperators.Group.Finset.Basic" ]
Mathlib/Algebra/GradedMonoid.lean
mk_pow
null
GCommMonoid [AddCommMonoid ι] extends GMonoid A where /-- Multiplication is commutative -/ mul_comm (a : GradedMonoid A) (b : GradedMonoid A) : a * b = b * a
class
Algebra
[ "Mathlib.Algebra.BigOperators.Group.List.Lemmas", "Mathlib.Algebra.Group.Action.Hom", "Mathlib.Algebra.Group.Submonoid.Defs", "Mathlib.Data.List.FinRange", "Mathlib.Data.SetLike.Basic", "Mathlib.Data.Sigma.Basic", "Lean.Elab.Tactic", "Mathlib.Algebra.BigOperators.Group.Finset.Basic" ]
Mathlib/Algebra/GradedMonoid.lean
GCommMonoid
A graded version of `CommMonoid`.
GCommMonoid.toCommMonoid [AddCommMonoid ι] [GCommMonoid A] : CommMonoid (GradedMonoid A) := { GMonoid.toMonoid A with mul_comm := GCommMonoid.mul_comm }
instance
Algebra
[ "Mathlib.Algebra.BigOperators.Group.List.Lemmas", "Mathlib.Algebra.Group.Action.Hom", "Mathlib.Algebra.Group.Submonoid.Defs", "Mathlib.Data.List.FinRange", "Mathlib.Data.SetLike.Basic", "Mathlib.Data.Sigma.Basic", "Lean.Elab.Tactic", "Mathlib.Algebra.BigOperators.Group.Finset.Basic" ]
Mathlib/Algebra/GradedMonoid.lean
GCommMonoid.toCommMonoid
`GCommMonoid` implies a `CommMonoid (GradedMonoid A)`, although this is only used as an instance locally to define notation in `gmonoid` and similar typeclasses.
@[nolint unusedArguments] GradeZero.one : One (A 0) := ⟨GOne.one⟩
instance
Algebra
[ "Mathlib.Algebra.BigOperators.Group.List.Lemmas", "Mathlib.Algebra.Group.Action.Hom", "Mathlib.Algebra.Group.Submonoid.Defs", "Mathlib.Data.List.FinRange", "Mathlib.Data.SetLike.Basic", "Mathlib.Data.Sigma.Basic", "Lean.Elab.Tactic", "Mathlib.Algebra.BigOperators.Group.Finset.Basic" ]
Mathlib/Algebra/GradedMonoid.lean
GradeZero.one
`1 : A 0` is the value provided in `GOne.one`.
GradeZero.smul (i : ι) : SMul (A 0) (A i) where smul x y := @Eq.rec ι (0+i) (fun a _ => A a) (GMul.mul x y) i (zero_add i)
instance
Algebra
[ "Mathlib.Algebra.BigOperators.Group.List.Lemmas", "Mathlib.Algebra.Group.Action.Hom", "Mathlib.Algebra.Group.Submonoid.Defs", "Mathlib.Data.List.FinRange", "Mathlib.Data.SetLike.Basic", "Mathlib.Data.Sigma.Basic", "Lean.Elab.Tactic", "Mathlib.Algebra.BigOperators.Group.Finset.Basic" ]
Mathlib/Algebra/GradedMonoid.lean
GradeZero.smul
`(•) : A 0 → A i → A i` is the value provided in `GradedMonoid.GMul.mul`, composed with an `Eq.rec` to turn `A (0 + i)` into `A i`.
GradeZero.mul : Mul (A 0) where mul := (· • ·) variable {A} @[simp]
instance
Algebra
[ "Mathlib.Algebra.BigOperators.Group.List.Lemmas", "Mathlib.Algebra.Group.Action.Hom", "Mathlib.Algebra.Group.Submonoid.Defs", "Mathlib.Data.List.FinRange", "Mathlib.Data.SetLike.Basic", "Mathlib.Data.Sigma.Basic", "Lean.Elab.Tactic", "Mathlib.Algebra.BigOperators.Group.Finset.Basic" ]
Mathlib/Algebra/GradedMonoid.lean
GradeZero.mul
`(*) : A 0 → A 0 → A 0` is the value provided in `GradedMonoid.GMul.mul`, composed with an `Eq.rec` to turn `A (0 + 0)` into `A 0`.
mk_zero_smul {i} (a : A 0) (b : A i) : mk _ (a • b) = mk _ a * mk _ b := Sigma.ext (zero_add _).symm <| eqRec_heq _ _ @[scoped simp]
theorem
Algebra
[ "Mathlib.Algebra.BigOperators.Group.List.Lemmas", "Mathlib.Algebra.Group.Action.Hom", "Mathlib.Algebra.Group.Submonoid.Defs", "Mathlib.Data.List.FinRange", "Mathlib.Data.SetLike.Basic", "Mathlib.Data.Sigma.Basic", "Lean.Elab.Tactic", "Mathlib.Algebra.BigOperators.Group.Finset.Basic" ]
Mathlib/Algebra/GradedMonoid.lean
mk_zero_smul
null
GradeZero.smul_eq_mul (a b : A 0) : a • b = a * b := rfl
theorem
Algebra
[ "Mathlib.Algebra.BigOperators.Group.List.Lemmas", "Mathlib.Algebra.Group.Action.Hom", "Mathlib.Algebra.Group.Submonoid.Defs", "Mathlib.Data.List.FinRange", "Mathlib.Data.SetLike.Basic", "Mathlib.Data.Sigma.Basic", "Lean.Elab.Tactic", "Mathlib.Algebra.BigOperators.Group.Finset.Basic" ]
Mathlib/Algebra/GradedMonoid.lean
GradeZero.smul_eq_mul
null
@[simp] mk_zero_pow (a : A 0) (n : ℕ) : mk _ (a ^ n) = mk _ a ^ n := Sigma.ext (nsmul_zero n).symm <| eqRec_heq _ _
theorem
Algebra
[ "Mathlib.Algebra.BigOperators.Group.List.Lemmas", "Mathlib.Algebra.Group.Action.Hom", "Mathlib.Algebra.Group.Submonoid.Defs", "Mathlib.Data.List.FinRange", "Mathlib.Data.SetLike.Basic", "Mathlib.Data.Sigma.Basic", "Lean.Elab.Tactic", "Mathlib.Algebra.BigOperators.Group.Finset.Basic" ]
Mathlib/Algebra/GradedMonoid.lean
mk_zero_pow
null
GradeZero.monoid : Monoid (A 0) := Function.Injective.monoid (mk 0) sigma_mk_injective rfl mk_zero_smul mk_zero_pow
instance
Algebra
[ "Mathlib.Algebra.BigOperators.Group.List.Lemmas", "Mathlib.Algebra.Group.Action.Hom", "Mathlib.Algebra.Group.Submonoid.Defs", "Mathlib.Data.List.FinRange", "Mathlib.Data.SetLike.Basic", "Mathlib.Data.Sigma.Basic", "Lean.Elab.Tactic", "Mathlib.Algebra.BigOperators.Group.Finset.Basic" ]
Mathlib/Algebra/GradedMonoid.lean
GradeZero.monoid
The `Monoid` structure derived from `GMonoid A`.
GradeZero.commMonoid : CommMonoid (A 0) := Function.Injective.commMonoid (mk 0) sigma_mk_injective rfl mk_zero_smul mk_zero_pow
instance
Algebra
[ "Mathlib.Algebra.BigOperators.Group.List.Lemmas", "Mathlib.Algebra.Group.Action.Hom", "Mathlib.Algebra.Group.Submonoid.Defs", "Mathlib.Data.List.FinRange", "Mathlib.Data.SetLike.Basic", "Mathlib.Data.Sigma.Basic", "Lean.Elab.Tactic", "Mathlib.Algebra.BigOperators.Group.Finset.Basic" ]
Mathlib/Algebra/GradedMonoid.lean
GradeZero.commMonoid
The `CommMonoid` structure derived from `GCommMonoid A`.
mkZeroMonoidHom : A 0 →* GradedMonoid A where toFun := mk 0 map_one' := rfl map_mul' := mk_zero_smul
def
Algebra
[ "Mathlib.Algebra.BigOperators.Group.List.Lemmas", "Mathlib.Algebra.Group.Action.Hom", "Mathlib.Algebra.Group.Submonoid.Defs", "Mathlib.Data.List.FinRange", "Mathlib.Data.SetLike.Basic", "Mathlib.Data.Sigma.Basic", "Lean.Elab.Tactic", "Mathlib.Algebra.BigOperators.Group.Finset.Basic" ]
Mathlib/Algebra/GradedMonoid.lean
mkZeroMonoidHom
`GradedMonoid.mk 0` is a `MonoidHom`, using the `GradedMonoid.GradeZero.monoid` structure.
GradeZero.mulAction {i} : MulAction (A 0) (A i) := letI := MulAction.compHom (GradedMonoid A) (mkZeroMonoidHom A) Function.Injective.mulAction (mk i) sigma_mk_injective mk_zero_smul
instance
Algebra
[ "Mathlib.Algebra.BigOperators.Group.List.Lemmas", "Mathlib.Algebra.Group.Action.Hom", "Mathlib.Algebra.Group.Submonoid.Defs", "Mathlib.Data.List.FinRange", "Mathlib.Data.SetLike.Basic", "Mathlib.Data.Sigma.Basic", "Lean.Elab.Tactic", "Mathlib.Algebra.BigOperators.Group.Finset.Basic" ]
Mathlib/Algebra/GradedMonoid.lean
GradeZero.mulAction
Each grade `A i` derives an `A 0`-action structure from `GMonoid A`.
List.dProdIndex (l : List α) (fι : α → ι) : ι := l.foldr (fun i b => fι i + b) 0 @[simp]
def
Algebra
[ "Mathlib.Algebra.BigOperators.Group.List.Lemmas", "Mathlib.Algebra.Group.Action.Hom", "Mathlib.Algebra.Group.Submonoid.Defs", "Mathlib.Data.List.FinRange", "Mathlib.Data.SetLike.Basic", "Mathlib.Data.Sigma.Basic", "Lean.Elab.Tactic", "Mathlib.Algebra.BigOperators.Group.Finset.Basic" ]
Mathlib/Algebra/GradedMonoid.lean
List.dProdIndex
The index used by `List.dProd`. Propositionally this is equal to `(l.map fι).Sum`, but definitionally it needs to have a different form to avoid introducing `Eq.rec`s in `List.dProd`.
List.dProdIndex_nil (fι : α → ι) : ([] : List α).dProdIndex fι = 0 := rfl @[simp]
theorem
Algebra
[ "Mathlib.Algebra.BigOperators.Group.List.Lemmas", "Mathlib.Algebra.Group.Action.Hom", "Mathlib.Algebra.Group.Submonoid.Defs", "Mathlib.Data.List.FinRange", "Mathlib.Data.SetLike.Basic", "Mathlib.Data.Sigma.Basic", "Lean.Elab.Tactic", "Mathlib.Algebra.BigOperators.Group.Finset.Basic" ]
Mathlib/Algebra/GradedMonoid.lean
List.dProdIndex_nil
null
List.dProdIndex_cons (a : α) (l : List α) (fι : α → ι) : (a :: l).dProdIndex fι = fι a + l.dProdIndex fι := rfl
theorem
Algebra
[ "Mathlib.Algebra.BigOperators.Group.List.Lemmas", "Mathlib.Algebra.Group.Action.Hom", "Mathlib.Algebra.Group.Submonoid.Defs", "Mathlib.Data.List.FinRange", "Mathlib.Data.SetLike.Basic", "Mathlib.Data.Sigma.Basic", "Lean.Elab.Tactic", "Mathlib.Algebra.BigOperators.Group.Finset.Basic" ]
Mathlib/Algebra/GradedMonoid.lean
List.dProdIndex_cons
null
List.dProdIndex_eq_map_sum (l : List α) (fι : α → ι) : l.dProdIndex fι = (l.map fι).sum := by match l with | [] => simp | head::tail => simp [List.dProdIndex_eq_map_sum tail fι]
theorem
Algebra
[ "Mathlib.Algebra.BigOperators.Group.List.Lemmas", "Mathlib.Algebra.Group.Action.Hom", "Mathlib.Algebra.Group.Submonoid.Defs", "Mathlib.Data.List.FinRange", "Mathlib.Data.SetLike.Basic", "Mathlib.Data.Sigma.Basic", "Lean.Elab.Tactic", "Mathlib.Algebra.BigOperators.Group.Finset.Basic" ]
Mathlib/Algebra/GradedMonoid.lean
List.dProdIndex_eq_map_sum
null
List.dProd (l : List α) (fι : α → ι) (fA : ∀ a, A (fι a)) : A (l.dProdIndex fι) := l.foldrRecOn _ GradedMonoid.GOne.one fun _ x a _ => GradedMonoid.GMul.mul (fA a) x @[simp]
def
Algebra
[ "Mathlib.Algebra.BigOperators.Group.List.Lemmas", "Mathlib.Algebra.Group.Action.Hom", "Mathlib.Algebra.Group.Submonoid.Defs", "Mathlib.Data.List.FinRange", "Mathlib.Data.SetLike.Basic", "Mathlib.Data.Sigma.Basic", "Lean.Elab.Tactic", "Mathlib.Algebra.BigOperators.Group.Finset.Basic" ]
Mathlib/Algebra/GradedMonoid.lean
List.dProd
A dependent product for graded monoids represented by the indexed family of types `A i`. This is a dependent version of `(l.map fA).prod`. For a list `l : List α`, this computes the product of `fA a` over `a`, where each `fA` is of type `A (fι a)`.
List.dProd_nil (fι : α → ι) (fA : ∀ a, A (fι a)) : (List.nil : List α).dProd fι fA = GradedMonoid.GOne.one := rfl @[simp]
theorem
Algebra
[ "Mathlib.Algebra.BigOperators.Group.List.Lemmas", "Mathlib.Algebra.Group.Action.Hom", "Mathlib.Algebra.Group.Submonoid.Defs", "Mathlib.Data.List.FinRange", "Mathlib.Data.SetLike.Basic", "Mathlib.Data.Sigma.Basic", "Lean.Elab.Tactic", "Mathlib.Algebra.BigOperators.Group.Finset.Basic" ]
Mathlib/Algebra/GradedMonoid.lean
List.dProd_nil
null
List.dProd_cons (fι : α → ι) (fA : ∀ a, A (fι a)) (a : α) (l : List α) : (a :: l).dProd fι fA = (GradedMonoid.GMul.mul (fA a) (l.dProd fι fA) :) := rfl
theorem
Algebra
[ "Mathlib.Algebra.BigOperators.Group.List.Lemmas", "Mathlib.Algebra.Group.Action.Hom", "Mathlib.Algebra.Group.Submonoid.Defs", "Mathlib.Data.List.FinRange", "Mathlib.Data.SetLike.Basic", "Mathlib.Data.Sigma.Basic", "Lean.Elab.Tactic", "Mathlib.Algebra.BigOperators.Group.Finset.Basic" ]
Mathlib/Algebra/GradedMonoid.lean
List.dProd_cons
null
GradedMonoid.mk_list_dProd (l : List α) (fι : α → ι) (fA : ∀ a, A (fι a)) : GradedMonoid.mk _ (l.dProd fι fA) = (l.map fun a => GradedMonoid.mk (fι a) (fA a)).prod := by match l with | [] => simp only [List.dProdIndex_nil, List.dProd_nil, List.map_nil, List.prod_nil]; rfl | head::tail => simp [← GradedMonoid.mk_list_dProd tail _ _, GradedMonoid.mk_mul_mk, List.prod_cons]
theorem
Algebra
[ "Mathlib.Algebra.BigOperators.Group.List.Lemmas", "Mathlib.Algebra.Group.Action.Hom", "Mathlib.Algebra.Group.Submonoid.Defs", "Mathlib.Data.List.FinRange", "Mathlib.Data.SetLike.Basic", "Mathlib.Data.Sigma.Basic", "Lean.Elab.Tactic", "Mathlib.Algebra.BigOperators.Group.Finset.Basic" ]
Mathlib/Algebra/GradedMonoid.lean
GradedMonoid.mk_list_dProd
null
GradedMonoid.list_prod_map_eq_dProd (l : List α) (f : α → GradedMonoid A) : (l.map f).prod = GradedMonoid.mk _ (l.dProd (fun i => (f i).1) fun i => (f i).2) := by rw [GradedMonoid.mk_list_dProd, GradedMonoid.mk] simp_rw [Sigma.eta]
theorem
Algebra
[ "Mathlib.Algebra.BigOperators.Group.List.Lemmas", "Mathlib.Algebra.Group.Action.Hom", "Mathlib.Algebra.Group.Submonoid.Defs", "Mathlib.Data.List.FinRange", "Mathlib.Data.SetLike.Basic", "Mathlib.Data.Sigma.Basic", "Lean.Elab.Tactic", "Mathlib.Algebra.BigOperators.Group.Finset.Basic" ]
Mathlib/Algebra/GradedMonoid.lean
GradedMonoid.list_prod_map_eq_dProd
A variant of `GradedMonoid.mk_list_dProd` for rewriting in the other direction.
GradedMonoid.list_prod_ofFn_eq_dProd {n : ℕ} (f : Fin n → GradedMonoid A) : (List.ofFn f).prod = GradedMonoid.mk _ ((List.finRange n).dProd (fun i => (f i).1) fun i => (f i).2) := by rw [List.ofFn_eq_map, GradedMonoid.list_prod_map_eq_dProd]
theorem
Algebra
[ "Mathlib.Algebra.BigOperators.Group.List.Lemmas", "Mathlib.Algebra.Group.Action.Hom", "Mathlib.Algebra.Group.Submonoid.Defs", "Mathlib.Data.List.FinRange", "Mathlib.Data.SetLike.Basic", "Mathlib.Data.Sigma.Basic", "Lean.Elab.Tactic", "Mathlib.Algebra.BigOperators.Group.Finset.Basic" ]
Mathlib/Algebra/GradedMonoid.lean
GradedMonoid.list_prod_ofFn_eq_dProd
null
@[simps one] One.gOne [Zero ι] [One R] : GradedMonoid.GOne fun _ : ι => R where one := 1 @[simps mul]
instance
Algebra
[ "Mathlib.Algebra.BigOperators.Group.List.Lemmas", "Mathlib.Algebra.Group.Action.Hom", "Mathlib.Algebra.Group.Submonoid.Defs", "Mathlib.Data.List.FinRange", "Mathlib.Data.SetLike.Basic", "Mathlib.Data.Sigma.Basic", "Lean.Elab.Tactic", "Mathlib.Algebra.BigOperators.Group.Finset.Basic" ]
Mathlib/Algebra/GradedMonoid.lean
One.gOne
null
Mul.gMul [Add ι] [Mul R] : GradedMonoid.GMul fun _ : ι => R where mul x y := x * y
instance
Algebra
[ "Mathlib.Algebra.BigOperators.Group.List.Lemmas", "Mathlib.Algebra.Group.Action.Hom", "Mathlib.Algebra.Group.Submonoid.Defs", "Mathlib.Data.List.FinRange", "Mathlib.Data.SetLike.Basic", "Mathlib.Data.Sigma.Basic", "Lean.Elab.Tactic", "Mathlib.Algebra.BigOperators.Group.Finset.Basic" ]
Mathlib/Algebra/GradedMonoid.lean
Mul.gMul
null
@[simps gnpow] Monoid.gMonoid [AddMonoid ι] [Monoid R] : GradedMonoid.GMonoid fun _ : ι => R := { One.gOne ι with mul := fun x y => x * y one_mul := fun _ => Sigma.ext (zero_add _) (heq_of_eq (one_mul _)) mul_one := fun _ => Sigma.ext (add_zero _) (heq_of_eq (mul_one _)) mul_assoc := fun _ _ _ => Sigma.ext (add_assoc _ _ _) (heq_of_eq (mul_assoc _ _ _)) gnpow := fun n _ a => a ^ n gnpow_zero' := fun _ => Sigma.ext (zero_nsmul _) (heq_of_eq (Monoid.npow_zero _)) gnpow_succ' := fun _ ⟨_, _⟩ => Sigma.ext (succ_nsmul _ _) (heq_of_eq (Monoid.npow_succ _ _)) }
instance
Algebra
[ "Mathlib.Algebra.BigOperators.Group.List.Lemmas", "Mathlib.Algebra.Group.Action.Hom", "Mathlib.Algebra.Group.Submonoid.Defs", "Mathlib.Data.List.FinRange", "Mathlib.Data.SetLike.Basic", "Mathlib.Data.Sigma.Basic", "Lean.Elab.Tactic", "Mathlib.Algebra.BigOperators.Group.Finset.Basic" ]
Mathlib/Algebra/GradedMonoid.lean
Monoid.gMonoid
If all grades are the same type and themselves form a monoid, then there is a trivial grading structure.
CommMonoid.gCommMonoid [AddCommMonoid ι] [CommMonoid R] : GradedMonoid.GCommMonoid fun _ : ι => R := { Monoid.gMonoid ι with mul_comm := fun _ _ => Sigma.ext (add_comm _ _) (heq_of_eq (mul_comm _ _)) }
instance
Algebra
[ "Mathlib.Algebra.BigOperators.Group.List.Lemmas", "Mathlib.Algebra.Group.Action.Hom", "Mathlib.Algebra.Group.Submonoid.Defs", "Mathlib.Data.List.FinRange", "Mathlib.Data.SetLike.Basic", "Mathlib.Data.Sigma.Basic", "Lean.Elab.Tactic", "Mathlib.Algebra.BigOperators.Group.Finset.Basic" ]
Mathlib/Algebra/GradedMonoid.lean
CommMonoid.gCommMonoid
If all grades are the same type and themselves form a commutative monoid, then there is a trivial grading structure.
@[simp] List.dProd_monoid {α} [AddMonoid ι] [Monoid R] (l : List α) (fι : α → ι) (fA : α → R) : @List.dProd _ _ (fun _ : ι => R) _ _ l fι fA = (l.map fA).prod := by match l with | [] => rw [List.dProd_nil, List.map_nil, List.prod_nil] rfl | head::tail => rw [List.dProd_cons, List.map_cons, List.prod_cons, List.dProd_monoid tail _ _] rfl
theorem
Algebra
[ "Mathlib.Algebra.BigOperators.Group.List.Lemmas", "Mathlib.Algebra.Group.Action.Hom", "Mathlib.Algebra.Group.Submonoid.Defs", "Mathlib.Data.List.FinRange", "Mathlib.Data.SetLike.Basic", "Mathlib.Data.Sigma.Basic", "Lean.Elab.Tactic", "Mathlib.Algebra.BigOperators.Group.Finset.Basic" ]
Mathlib/Algebra/GradedMonoid.lean
List.dProd_monoid
When all the indexed types are the same, the dependent product is just the regular product.
SetLike.GradedOne {S : Type*} [SetLike S R] [One R] [Zero ι] (A : ι → S) : Prop where /-- One has grade zero -/ one_mem : (1 : R) ∈ A 0
class
Algebra
[ "Mathlib.Algebra.BigOperators.Group.List.Lemmas", "Mathlib.Algebra.Group.Action.Hom", "Mathlib.Algebra.Group.Submonoid.Defs", "Mathlib.Data.List.FinRange", "Mathlib.Data.SetLike.Basic", "Mathlib.Data.Sigma.Basic", "Lean.Elab.Tactic", "Mathlib.Algebra.BigOperators.Group.Finset.Basic" ]
Mathlib/Algebra/GradedMonoid.lean
SetLike.GradedOne
A version of `GradedMonoid.GOne` for internally graded objects.
SetLike.one_mem_graded {S : Type*} [SetLike S R] [One R] [Zero ι] (A : ι → S) [SetLike.GradedOne A] : (1 : R) ∈ A 0 := SetLike.GradedOne.one_mem
theorem
Algebra
[ "Mathlib.Algebra.BigOperators.Group.List.Lemmas", "Mathlib.Algebra.Group.Action.Hom", "Mathlib.Algebra.Group.Submonoid.Defs", "Mathlib.Data.List.FinRange", "Mathlib.Data.SetLike.Basic", "Mathlib.Data.Sigma.Basic", "Lean.Elab.Tactic", "Mathlib.Algebra.BigOperators.Group.Finset.Basic" ]
Mathlib/Algebra/GradedMonoid.lean
SetLike.one_mem_graded
null
SetLike.gOne {S : Type*} [SetLike S R] [One R] [Zero ι] (A : ι → S) [SetLike.GradedOne A] : GradedMonoid.GOne fun i => A i where one := ⟨1, SetLike.one_mem_graded _⟩ @[simp]
instance
Algebra
[ "Mathlib.Algebra.BigOperators.Group.List.Lemmas", "Mathlib.Algebra.Group.Action.Hom", "Mathlib.Algebra.Group.Submonoid.Defs", "Mathlib.Data.List.FinRange", "Mathlib.Data.SetLike.Basic", "Mathlib.Data.Sigma.Basic", "Lean.Elab.Tactic", "Mathlib.Algebra.BigOperators.Group.Finset.Basic" ]
Mathlib/Algebra/GradedMonoid.lean
SetLike.gOne
null
SetLike.coe_gOne {S : Type*} [SetLike S R] [One R] [Zero ι] (A : ι → S) [SetLike.GradedOne A] : ↑(@GradedMonoid.GOne.one _ (fun i => A i) _ _) = (1 : R) := rfl
theorem
Algebra
[ "Mathlib.Algebra.BigOperators.Group.List.Lemmas", "Mathlib.Algebra.Group.Action.Hom", "Mathlib.Algebra.Group.Submonoid.Defs", "Mathlib.Data.List.FinRange", "Mathlib.Data.SetLike.Basic", "Mathlib.Data.Sigma.Basic", "Lean.Elab.Tactic", "Mathlib.Algebra.BigOperators.Group.Finset.Basic" ]
Mathlib/Algebra/GradedMonoid.lean
SetLike.coe_gOne
null
SetLike.GradedMul {S : Type*} [SetLike S R] [Mul R] [Add ι] (A : ι → S) : Prop where /-- Multiplication is homogeneous -/ mul_mem : ∀ ⦃i j⦄ {gi gj}, gi ∈ A i → gj ∈ A j → gi * gj ∈ A (i + j)
class
Algebra
[ "Mathlib.Algebra.BigOperators.Group.List.Lemmas", "Mathlib.Algebra.Group.Action.Hom", "Mathlib.Algebra.Group.Submonoid.Defs", "Mathlib.Data.List.FinRange", "Mathlib.Data.SetLike.Basic", "Mathlib.Data.Sigma.Basic", "Lean.Elab.Tactic", "Mathlib.Algebra.BigOperators.Group.Finset.Basic" ]
Mathlib/Algebra/GradedMonoid.lean
SetLike.GradedMul
A version of `GradedMonoid.ghas_one` for internally graded objects.
SetLike.mul_mem_graded {S : Type*} [SetLike S R] [Mul R] [Add ι] {A : ι → S} [SetLike.GradedMul A] ⦃i j⦄ {gi gj} (hi : gi ∈ A i) (hj : gj ∈ A j) : gi * gj ∈ A (i + j) := SetLike.GradedMul.mul_mem hi hj
theorem
Algebra
[ "Mathlib.Algebra.BigOperators.Group.List.Lemmas", "Mathlib.Algebra.Group.Action.Hom", "Mathlib.Algebra.Group.Submonoid.Defs", "Mathlib.Data.List.FinRange", "Mathlib.Data.SetLike.Basic", "Mathlib.Data.Sigma.Basic", "Lean.Elab.Tactic", "Mathlib.Algebra.BigOperators.Group.Finset.Basic" ]
Mathlib/Algebra/GradedMonoid.lean
SetLike.mul_mem_graded
null
SetLike.gMul {S : Type*} [SetLike S R] [Mul R] [Add ι] (A : ι → S) [SetLike.GradedMul A] : GradedMonoid.GMul fun i => A i where mul := fun a b => ⟨(a * b : R), SetLike.mul_mem_graded a.prop b.prop⟩ @[simp]
instance
Algebra
[ "Mathlib.Algebra.BigOperators.Group.List.Lemmas", "Mathlib.Algebra.Group.Action.Hom", "Mathlib.Algebra.Group.Submonoid.Defs", "Mathlib.Data.List.FinRange", "Mathlib.Data.SetLike.Basic", "Mathlib.Data.Sigma.Basic", "Lean.Elab.Tactic", "Mathlib.Algebra.BigOperators.Group.Finset.Basic" ]
Mathlib/Algebra/GradedMonoid.lean
SetLike.gMul
null
SetLike.coe_gMul {S : Type*} [SetLike S R] [Mul R] [Add ι] (A : ι → S) [SetLike.GradedMul A] {i j : ι} (x : A i) (y : A j) : ↑(@GradedMonoid.GMul.mul _ (fun i => A i) _ _ _ _ x y) = (x * y : R) := rfl
theorem
Algebra
[ "Mathlib.Algebra.BigOperators.Group.List.Lemmas", "Mathlib.Algebra.Group.Action.Hom", "Mathlib.Algebra.Group.Submonoid.Defs", "Mathlib.Data.List.FinRange", "Mathlib.Data.SetLike.Basic", "Mathlib.Data.Sigma.Basic", "Lean.Elab.Tactic", "Mathlib.Algebra.BigOperators.Group.Finset.Basic" ]
Mathlib/Algebra/GradedMonoid.lean
SetLike.coe_gMul
null
SetLike.GradedMonoid {S : Type*} [SetLike S R] [Monoid R] [AddMonoid ι] (A : ι → S) : Prop extends SetLike.GradedOne A, SetLike.GradedMul A
class
Algebra
[ "Mathlib.Algebra.BigOperators.Group.List.Lemmas", "Mathlib.Algebra.Group.Action.Hom", "Mathlib.Algebra.Group.Submonoid.Defs", "Mathlib.Data.List.FinRange", "Mathlib.Data.SetLike.Basic", "Mathlib.Data.Sigma.Basic", "Lean.Elab.Tactic", "Mathlib.Algebra.BigOperators.Group.Finset.Basic" ]
Mathlib/Algebra/GradedMonoid.lean
SetLike.GradedMonoid
A version of `GradedMonoid.GMonoid` for internally graded objects.
@[simps] submonoid : Submonoid R where carrier := A 0 mul_mem' ha hb := add_zero (0 : ι) ▸ SetLike.mul_mem_graded ha hb one_mem' := SetLike.one_mem_graded A
def
Algebra
[ "Mathlib.Algebra.BigOperators.Group.List.Lemmas", "Mathlib.Algebra.Group.Action.Hom", "Mathlib.Algebra.Group.Submonoid.Defs", "Mathlib.Data.List.FinRange", "Mathlib.Data.SetLike.Basic", "Mathlib.Data.Sigma.Basic", "Lean.Elab.Tactic", "Mathlib.Algebra.BigOperators.Group.Finset.Basic" ]
Mathlib/Algebra/GradedMonoid.lean
submonoid
The submonoid `A 0` of `R`.
instMonoid : Monoid (A 0) := inferInstanceAs <| Monoid (GradeZero.submonoid A)
instance
Algebra
[ "Mathlib.Algebra.BigOperators.Group.List.Lemmas", "Mathlib.Algebra.Group.Action.Hom", "Mathlib.Algebra.Group.Submonoid.Defs", "Mathlib.Data.List.FinRange", "Mathlib.Data.SetLike.Basic", "Mathlib.Data.Sigma.Basic", "Lean.Elab.Tactic", "Mathlib.Algebra.BigOperators.Group.Finset.Basic" ]
Mathlib/Algebra/GradedMonoid.lean
instMonoid
The monoid `A 0` inherited from `R` in the presence of `SetLike.GradedMonoid A`.
instCommMonoid {R S : Type*} [SetLike S R] [CommMonoid R] {A : ι → S} [SetLike.GradedMonoid A] : CommMonoid (A 0) := inferInstanceAs <| CommMonoid (GradeZero.submonoid A) @[simp, norm_cast] theorem coe_one : ↑(1 : A 0) = (1 : R) := rfl @[simp, norm_cast] theorem coe_mul (a b : A 0) : ↑(a * b) = (↑a * ↑b : R) := rfl @[simp, norm_cast] theorem coe_pow (a : A 0) (n : ℕ) : ↑(a ^ n) = (↑a : R) ^ n := rfl
instance
Algebra
[ "Mathlib.Algebra.BigOperators.Group.List.Lemmas", "Mathlib.Algebra.Group.Action.Hom", "Mathlib.Algebra.Group.Submonoid.Defs", "Mathlib.Data.List.FinRange", "Mathlib.Data.SetLike.Basic", "Mathlib.Data.Sigma.Basic", "Lean.Elab.Tactic", "Mathlib.Algebra.BigOperators.Group.Finset.Basic" ]
Mathlib/Algebra/GradedMonoid.lean
instCommMonoid
The commutative monoid `A 0` inherited from `R` in the presence of `SetLike.GradedMonoid A`.
pow_mem_graded (n : ℕ) {r : R} {i : ι} (h : r ∈ A i) : r ^ n ∈ A (n • i) := by match n with | 0 => rw [pow_zero, zero_nsmul] exact one_mem_graded _ | n + 1 => rw [pow_succ', succ_nsmul'] exact mul_mem_graded h (pow_mem_graded n h)
theorem
Algebra
[ "Mathlib.Algebra.BigOperators.Group.List.Lemmas", "Mathlib.Algebra.Group.Action.Hom", "Mathlib.Algebra.Group.Submonoid.Defs", "Mathlib.Data.List.FinRange", "Mathlib.Data.SetLike.Basic", "Mathlib.Data.Sigma.Basic", "Lean.Elab.Tactic", "Mathlib.Algebra.BigOperators.Group.Finset.Basic" ]
Mathlib/Algebra/GradedMonoid.lean
pow_mem_graded
null
list_prod_map_mem_graded {ι'} (l : List ι') (i : ι' → ι) (r : ι' → R) (h : ∀ j ∈ l, r j ∈ A (i j)) : (l.map r).prod ∈ A (l.map i).sum := by match l with | [] => rw [List.map_nil, List.map_nil, List.prod_nil, List.sum_nil] exact one_mem_graded _ | head::tail => rw [List.map_cons, List.map_cons, List.prod_cons, List.sum_cons] exact mul_mem_graded (h _ List.mem_cons_self) (list_prod_map_mem_graded tail _ _ fun j hj => h _ <| List.mem_cons_of_mem _ hj)
theorem
Algebra
[ "Mathlib.Algebra.BigOperators.Group.List.Lemmas", "Mathlib.Algebra.Group.Action.Hom", "Mathlib.Algebra.Group.Submonoid.Defs", "Mathlib.Data.List.FinRange", "Mathlib.Data.SetLike.Basic", "Mathlib.Data.Sigma.Basic", "Lean.Elab.Tactic", "Mathlib.Algebra.BigOperators.Group.Finset.Basic" ]
Mathlib/Algebra/GradedMonoid.lean
list_prod_map_mem_graded
null
list_prod_ofFn_mem_graded {n} (i : Fin n → ι) (r : Fin n → R) (h : ∀ j, r j ∈ A (i j)) : (List.ofFn r).prod ∈ A (List.ofFn i).sum := by rw [List.ofFn_eq_map, List.ofFn_eq_map] exact list_prod_map_mem_graded _ _ _ fun _ _ => h _
theorem
Algebra
[ "Mathlib.Algebra.BigOperators.Group.List.Lemmas", "Mathlib.Algebra.Group.Action.Hom", "Mathlib.Algebra.Group.Submonoid.Defs", "Mathlib.Data.List.FinRange", "Mathlib.Data.SetLike.Basic", "Mathlib.Data.Sigma.Basic", "Lean.Elab.Tactic", "Mathlib.Algebra.BigOperators.Group.Finset.Basic" ]
Mathlib/Algebra/GradedMonoid.lean
list_prod_ofFn_mem_graded
null
SetLike.gMonoid {S : Type*} [SetLike S R] [Monoid R] [AddMonoid ι] (A : ι → S) [SetLike.GradedMonoid A] : GradedMonoid.GMonoid fun i => A i := { SetLike.gOne A, SetLike.gMul A with one_mul := fun ⟨_, _, _⟩ => Sigma.subtype_ext (zero_add _) (one_mul _) mul_one := fun ⟨_, _, _⟩ => Sigma.subtype_ext (add_zero _) (mul_one _) mul_assoc := fun ⟨_, _, _⟩ ⟨_, _, _⟩ ⟨_, _, _⟩ => Sigma.subtype_ext (add_assoc _ _ _) (mul_assoc _ _ _) gnpow := fun n _ a => ⟨(a:R)^n, SetLike.pow_mem_graded n a.prop⟩ gnpow_zero' := fun _ => Sigma.subtype_ext (zero_nsmul _) (pow_zero _) gnpow_succ' := fun _ _ => Sigma.subtype_ext (succ_nsmul _ _) (pow_succ _ _) } @[simp]
instance
Algebra
[ "Mathlib.Algebra.BigOperators.Group.List.Lemmas", "Mathlib.Algebra.Group.Action.Hom", "Mathlib.Algebra.Group.Submonoid.Defs", "Mathlib.Data.List.FinRange", "Mathlib.Data.SetLike.Basic", "Mathlib.Data.Sigma.Basic", "Lean.Elab.Tactic", "Mathlib.Algebra.BigOperators.Group.Finset.Basic" ]
Mathlib/Algebra/GradedMonoid.lean
SetLike.gMonoid
Build a `GMonoid` instance for a collection of subobjects.