fact
stringlengths
6
3.84k
type
stringclasses
11 values
library
stringclasses
32 values
imports
listlengths
1
14
filename
stringlengths
20
95
symbolic_name
stringlengths
1
90
docstring
stringlengths
7
20k
eq_of_locally_eq₂ {U₁ U₂ V : Opens X} (i₁ : U₁ ⟶ V) (i₂ : U₂ ⟶ V) (hcover : V ≤ U₁ ⊔ U₂) (s t : ToType (F.1.obj (op V))) (h₁ : F.1.map i₁.op s = F.1.map i₁.op t) (h₂ : F.1.map i₂.op s = F.1.map i₂.op t) : s = t := by classical fapply F.eq_of_locally_eq' fun t : Bool => if t then U₁ else U₂ · exact fun i => if h : i then eqToHom (if_pos h) ≫ i₁ else eqToHom (if_neg h) ≫ i₂ · refine le_trans hcover ?_ rw [sup_le_iff] constructor · exact le_iSup (fun t : Bool => if t then U₁ else U₂) true · exact le_iSup (fun t : Bool => if t then U₁ else U₂) false · rintro ⟨_ | _⟩ any_goals exact h₁ any_goals exact h₂
theorem
Topology
[ "Mathlib.Topology.Sheaves.Forget", "Mathlib.Topology.Sheaves.SheafCondition.PairwiseIntersections", "Mathlib.CategoryTheory.Limits.Types.Shapes" ]
Mathlib/Topology/Sheaves/SheafCondition/UniqueGluing.lean
eq_of_locally_eq₂
null
IsTransitiveRel (V : Set (X × X)) : Prop := ∀ ⦃x y z⦄, (x, y) ∈ V → (y, z) ∈ V → (x, z) ∈ V
def
Topology
[ "Mathlib.Topology.UniformSpace.Defs", "Mathlib.Topology.Bases" ]
Mathlib/Topology/UniformSpace/Ultra/Basic.lean
IsTransitiveRel
The relation is transitive.
IsTransitiveRel.comp_subset_self {s : Set (X × X)} (h : IsTransitiveRel s) : s ○ s ⊆ s := fun ⟨_, _⟩ ⟨_, hxz, hzy⟩ ↦ h hxz hzy
lemma
Topology
[ "Mathlib.Topology.UniformSpace.Defs", "Mathlib.Topology.Bases" ]
Mathlib/Topology/UniformSpace/Ultra/Basic.lean
IsTransitiveRel.comp_subset_self
null
isTransitiveRel_iff_comp_subset_self {s : Set (X × X)} : IsTransitiveRel s ↔ s ○ s ⊆ s := ⟨IsTransitiveRel.comp_subset_self, fun h _ _ _ hx hy ↦ h ⟨_, hx, hy⟩⟩
lemma
Topology
[ "Mathlib.Topology.UniformSpace.Defs", "Mathlib.Topology.Bases" ]
Mathlib/Topology/UniformSpace/Ultra/Basic.lean
isTransitiveRel_iff_comp_subset_self
null
isTransitiveRel_empty : IsTransitiveRel (X := X) ∅ := by simp [IsTransitiveRel]
lemma
Topology
[ "Mathlib.Topology.UniformSpace.Defs", "Mathlib.Topology.Bases" ]
Mathlib/Topology/UniformSpace/Ultra/Basic.lean
isTransitiveRel_empty
null
isTransitiveRel_idRel : IsTransitiveRel (idRel : Set (X × X)) := by simp [IsTransitiveRel, idRel]
lemma
Topology
[ "Mathlib.Topology.UniformSpace.Defs", "Mathlib.Topology.Bases" ]
Mathlib/Topology/UniformSpace/Ultra/Basic.lean
isTransitiveRel_idRel
null
isTransitiveRel_univ : IsTransitiveRel (X := X) Set.univ := by simp [IsTransitiveRel]
lemma
Topology
[ "Mathlib.Topology.UniformSpace.Defs", "Mathlib.Topology.Bases" ]
Mathlib/Topology/UniformSpace/Ultra/Basic.lean
isTransitiveRel_univ
null
isTransitiveRel_singleton (x y : X) : IsTransitiveRel {(x, y)} := by simp +contextual [IsTransitiveRel]
lemma
Topology
[ "Mathlib.Topology.UniformSpace.Defs", "Mathlib.Topology.Bases" ]
Mathlib/Topology/UniformSpace/Ultra/Basic.lean
isTransitiveRel_singleton
null
IsTransitiveRel.inter {s t : Set (X × X)} (hs : IsTransitiveRel s) (ht : IsTransitiveRel t) : IsTransitiveRel (s ∩ t) := fun _ _ _ h h' ↦ ⟨hs h.left h'.left, ht h.right h'.right⟩
lemma
Topology
[ "Mathlib.Topology.UniformSpace.Defs", "Mathlib.Topology.Bases" ]
Mathlib/Topology/UniformSpace/Ultra/Basic.lean
IsTransitiveRel.inter
null
IsTransitiveRel.iInter {ι : Type*} {U : (i : ι) → Set (X × X)} (hU : ∀ i, IsTransitiveRel (U i)) : IsTransitiveRel (⋂ i, U i) := by intro _ _ _ h h' simp only [mem_iInter] at h h' ⊢ intro i exact hU i (h i) (h' i)
lemma
Topology
[ "Mathlib.Topology.UniformSpace.Defs", "Mathlib.Topology.Bases" ]
Mathlib/Topology/UniformSpace/Ultra/Basic.lean
IsTransitiveRel.iInter
null
IsTransitiveRel.sInter {s : Set (Set (X × X))} (h : ∀ i ∈ s, IsTransitiveRel i) : IsTransitiveRel (⋂₀ s) := by rw [sInter_eq_iInter] exact IsTransitiveRel.iInter (by simpa)
lemma
Topology
[ "Mathlib.Topology.UniformSpace.Defs", "Mathlib.Topology.Bases" ]
Mathlib/Topology/UniformSpace/Ultra/Basic.lean
IsTransitiveRel.sInter
null
IsTransitiveRel.preimage_prodMap {Y : Type*} {t : Set (Y × Y)} (ht : IsTransitiveRel t) (f : X → Y) : IsTransitiveRel (Prod.map f f ⁻¹' t) := fun _ _ _ h h' ↦ ht h h'
lemma
Topology
[ "Mathlib.Topology.UniformSpace.Defs", "Mathlib.Topology.Bases" ]
Mathlib/Topology/UniformSpace/Ultra/Basic.lean
IsTransitiveRel.preimage_prodMap
null
IsTransitiveRel.symmetrizeRel {s : Set (X × X)} (h : IsTransitiveRel s) : IsTransitiveRel (symmetrizeRel s) := fun _ _ _ hxy hyz ↦ ⟨h hxy.1 hyz.1, h hyz.2 hxy.2⟩
lemma
Topology
[ "Mathlib.Topology.UniformSpace.Defs", "Mathlib.Topology.Bases" ]
Mathlib/Topology/UniformSpace/Ultra/Basic.lean
IsTransitiveRel.symmetrizeRel
null
IsTransitiveRel.comp_eq_of_idRel_subset {s : Set (X × X)} (h : IsTransitiveRel s) (h' : idRel ⊆ s) : s ○ s = s := le_antisymm h.comp_subset_self (subset_comp_self h')
lemma
Topology
[ "Mathlib.Topology.UniformSpace.Defs", "Mathlib.Topology.Bases" ]
Mathlib/Topology/UniformSpace/Ultra/Basic.lean
IsTransitiveRel.comp_eq_of_idRel_subset
null
IsTransitiveRel.prod_subset_trans {s : Set (X × X)} {t u v : Set X} (hs : IsTransitiveRel s) (htu : t ×ˢ u ⊆ s) (huv : u ×ˢ v ⊆ s) (hu : u.Nonempty) : t ×ˢ v ⊆ s := by rintro ⟨a, b⟩ hab simp only [mem_prod] at hab obtain ⟨x, hx⟩ := hu exact hs (@htu ⟨a, x⟩ ⟨hab.left, hx⟩) (@huv ⟨x, b⟩ ⟨hx, hab.right⟩)
lemma
Topology
[ "Mathlib.Topology.UniformSpace.Defs", "Mathlib.Topology.Bases" ]
Mathlib/Topology/UniformSpace/Ultra/Basic.lean
IsTransitiveRel.prod_subset_trans
null
IsTransitiveRel.mem_filter_prod_trans {s : Set (X × X)} {f g h : Filter X} [g.NeBot] (hs : IsTransitiveRel s) (hfg : s ∈ f ×ˢ g) (hgh : s ∈ g ×ˢ h) : s ∈ f ×ˢ h := Eventually.trans_prod (by simpa using hfg) (by simpa using hgh) hs
lemma
Topology
[ "Mathlib.Topology.UniformSpace.Defs", "Mathlib.Topology.Bases" ]
Mathlib/Topology/UniformSpace/Ultra/Basic.lean
IsTransitiveRel.mem_filter_prod_trans
null
IsTransitiveRel.mem_filter_prod_comm {s : Set (X × X)} {f g h : Filter X} [g.NeBot] (hs : IsTransitiveRel s) (hfg : s ∈ f ×ˢ g) (hgh : s ∈ g ×ˢ h) : s ∈ f ×ˢ h := by rw [mem_prod_iff] at hfg hgh ⊢ obtain ⟨t, ht, u, hu, htu⟩ := hfg obtain ⟨v, hv, w, hw, hvw⟩ := hgh replace htu : t ×ˢ (u ∩ v) ⊆ s := by rw [Set.prod_inter] refine inter_subset_left.trans htu replace hvw : (u ∩ v) ×ˢ w ⊆ s := by rw [Set.inter_prod] refine inter_subset_right.trans hvw refine ⟨_, ht, _, hw, hs.prod_subset_trans htu hvw <| g.nonempty_of_mem ?_⟩ simp [hu, hv] open UniformSpace in
lemma
Topology
[ "Mathlib.Topology.UniformSpace.Defs", "Mathlib.Topology.Bases" ]
Mathlib/Topology/UniformSpace/Ultra/Basic.lean
IsTransitiveRel.mem_filter_prod_comm
null
IsTransitiveRel.ball_subset_of_mem {V : Set (X × X)} (h : IsTransitiveRel V) {x y : X} (hy : y ∈ ball x V) : ball y V ⊆ ball x V := ball_subset_of_comp_subset hy (h.comp_subset_self)
lemma
Topology
[ "Mathlib.Topology.UniformSpace.Defs", "Mathlib.Topology.Bases" ]
Mathlib/Topology/UniformSpace/Ultra/Basic.lean
IsTransitiveRel.ball_subset_of_mem
null
UniformSpace.ball_eq_of_mem_of_isSymmetricRel_of_isTransitiveRel {V : Set (X × X)} (h_symm : IsSymmetricRel V) (h_trans : IsTransitiveRel V) {x y : X} (hy : y ∈ ball x V) : ball x V = ball y V := by refine le_antisymm (h_trans.ball_subset_of_mem ?_) (h_trans.ball_subset_of_mem hy) rwa [← mem_ball_symmetry h_symm] variable [UniformSpace X] variable (X) in
lemma
Topology
[ "Mathlib.Topology.UniformSpace.Defs", "Mathlib.Topology.Bases" ]
Mathlib/Topology/UniformSpace/Ultra/Basic.lean
UniformSpace.ball_eq_of_mem_of_isSymmetricRel_of_isTransitiveRel
null
IsUltraUniformity : Prop where hasBasis : (𝓤 X).HasBasis (fun s : Set (X × X) => s ∈ 𝓤 X ∧ IsSymmetricRel s ∧ IsTransitiveRel s) id
class
Topology
[ "Mathlib.Topology.UniformSpace.Defs", "Mathlib.Topology.Bases" ]
Mathlib/Topology/UniformSpace/Ultra/Basic.lean
IsUltraUniformity
A uniform space is ultrametric if the uniformity `𝓤 X` has a basis of equivalence relations.
IsUltraUniformity.mk_of_hasBasis {ι : Type*} {p : ι → Prop} {s : ι → Set (X × X)} (h_basis : (𝓤 X).HasBasis p s) (h_symm : ∀ i, p i → IsSymmetricRel (s i)) (h_trans : ∀ i, p i → IsTransitiveRel (s i)) : IsUltraUniformity X where hasBasis := h_basis.to_hasBasis' (fun i hi ↦ ⟨s i, ⟨h_basis.mem_of_mem hi, h_symm i hi, h_trans i hi⟩, subset_rfl⟩) (fun _ hs ↦ hs.1)
lemma
Topology
[ "Mathlib.Topology.UniformSpace.Defs", "Mathlib.Topology.Bases" ]
Mathlib/Topology/UniformSpace/Ultra/Basic.lean
IsUltraUniformity.mk_of_hasBasis
null
IsUltraUniformity.mem_nhds_iff_symm_trans [IsUltraUniformity X] {x : X} {s : Set X} : s ∈ 𝓝 x ↔ ∃ V ∈ 𝓤 X, IsSymmetricRel V ∧ IsTransitiveRel V ∧ UniformSpace.ball x V ⊆ s := by rw [UniformSpace.mem_nhds_iff] constructor · rintro ⟨V, V_in, V_sub⟩ rw [IsUltraUniformity.hasBasis.mem_iff'] at V_in obtain ⟨U, ⟨U_in, U_sym, U_trans⟩, U_sub⟩ := V_in refine ⟨U, U_in, U_sym, U_trans, (UniformSpace.ball_mono U_sub _).trans V_sub⟩ · rintro ⟨V, V_in, _, _, V_sub⟩ exact ⟨V, V_in, V_sub⟩
lemma
Topology
[ "Mathlib.Topology.UniformSpace.Defs", "Mathlib.Topology.Bases" ]
Mathlib/Topology/UniformSpace/Ultra/Basic.lean
IsUltraUniformity.mem_nhds_iff_symm_trans
null
_root_.IsTransitiveRel.isOpen_ball_of_mem_uniformity (x : X) {V : Set (X × X)} (h : IsTransitiveRel V) (h' : V ∈ 𝓤 X) : IsOpen (ball x V) := by rw [isOpen_iff_ball_subset] intro y hy exact ⟨V, h', h.ball_subset_of_mem hy⟩
lemma
Topology
[ "Mathlib.Topology.UniformSpace.Defs", "Mathlib.Topology.Bases" ]
Mathlib/Topology/UniformSpace/Ultra/Basic.lean
_root_.IsTransitiveRel.isOpen_ball_of_mem_uniformity
null
isClosed_ball_of_isSymmetricRel_of_isTransitiveRel_of_mem_uniformity (x : X) {V : Set (X × X)} (h_symm : IsSymmetricRel V) (h_trans : IsTransitiveRel V) (h' : V ∈ 𝓤 X) : IsClosed (ball x V) := by rw [← isOpen_compl_iff, isOpen_iff_ball_subset] exact fun y hy ↦ ⟨V, h', fun z hyz hxz ↦ hy <| h_trans hxz <| h_symm.mk_mem_comm.mp hyz⟩
lemma
Topology
[ "Mathlib.Topology.UniformSpace.Defs", "Mathlib.Topology.Bases" ]
Mathlib/Topology/UniformSpace/Ultra/Basic.lean
isClosed_ball_of_isSymmetricRel_of_isTransitiveRel_of_mem_uniformity
null
isClopen_ball_of_isSymmetricRel_of_isTransitiveRel_of_mem_uniformity (x : X) {V : Set (X × X)} (h_symm : IsSymmetricRel V) (h_trans : IsTransitiveRel V) (h' : V ∈ 𝓤 X) : IsClopen (ball x V) := ⟨isClosed_ball_of_isSymmetricRel_of_isTransitiveRel_of_mem_uniformity _ ‹_› ‹_› ‹_›, h_trans.isOpen_ball_of_mem_uniformity _ ‹_›⟩ variable [IsUltraUniformity X]
lemma
Topology
[ "Mathlib.Topology.UniformSpace.Defs", "Mathlib.Topology.Bases" ]
Mathlib/Topology/UniformSpace/Ultra/Basic.lean
isClopen_ball_of_isSymmetricRel_of_isTransitiveRel_of_mem_uniformity
null
nhds_basis_clopens (x : X) : (𝓝 x).HasBasis (fun s : Set X => x ∈ s ∧ IsClopen s) id := by refine (nhds_basis_uniformity' (IsUltraUniformity.hasBasis)).to_hasBasis' ?_ ?_ · intro V ⟨hV, h_symm, h_trans⟩ refine ⟨ball x V, ⟨?_, isClopen_ball_of_isSymmetricRel_of_isTransitiveRel_of_mem_uniformity _ h_symm h_trans hV⟩, le_rfl⟩ exact mem_ball_self _ hV · rintro u ⟨hx, hu⟩ simp [hu.right.mem_nhds_iff, hx]
lemma
Topology
[ "Mathlib.Topology.UniformSpace.Defs", "Mathlib.Topology.Bases" ]
Mathlib/Topology/UniformSpace/Ultra/Basic.lean
nhds_basis_clopens
null
_root_.TopologicalSpace.isTopologicalBasis_clopens : TopologicalSpace.IsTopologicalBasis {s : Set X | IsClopen s} := .of_hasBasis_nhds fun x ↦ by simpa [and_comm] using nhds_basis_clopens x
lemma
Topology
[ "Mathlib.Topology.UniformSpace.Defs", "Mathlib.Topology.Bases" ]
Mathlib/Topology/UniformSpace/Ultra/Basic.lean
_root_.TopologicalSpace.isTopologicalBasis_clopens
A uniform space with a nonarchimedean uniformity is zero-dimensional.
IsUniformInducing.isUltraUniformity [IsUltraUniformity Y] {f : X → Y} (hf : IsUniformInducing f) : IsUltraUniformity X := hf.comap_uniformSpace ▸ .comap inferInstance f
lemma
Topology
[ "Mathlib.Topology.UniformSpace.Completion", "Mathlib.Topology.UniformSpace.Ultra.Basic", "Mathlib.Topology.UniformSpace.Ultra.Constructions" ]
Mathlib/Topology/UniformSpace/Ultra/Completion.lean
IsUniformInducing.isUltraUniformity
null
IsSymmetricRel.cauchyFilter_gen {s : Set (X × X)} (h : IsSymmetricRel s) : IsSymmetricRel (CauchyFilter.gen s) := by simp [IsSymmetricRel, CauchyFilter.gen, h.mem_filter_prod_comm]
lemma
Topology
[ "Mathlib.Topology.UniformSpace.Completion", "Mathlib.Topology.UniformSpace.Ultra.Basic", "Mathlib.Topology.UniformSpace.Ultra.Constructions" ]
Mathlib/Topology/UniformSpace/Ultra/Completion.lean
IsSymmetricRel.cauchyFilter_gen
null
IsTransitiveRel.cauchyFilter_gen {s : Set (X × X)} (hs : IsTransitiveRel s) : IsTransitiveRel (CauchyFilter.gen s) := by simp only [IsTransitiveRel, CauchyFilter.gen, mem_setOf_eq] intro f g h hfg hgh exact hs.mem_filter_prod_comm hfg hgh
lemma
Topology
[ "Mathlib.Topology.UniformSpace.Completion", "Mathlib.Topology.UniformSpace.Ultra.Basic", "Mathlib.Topology.UniformSpace.Ultra.Constructions" ]
Mathlib/Topology/UniformSpace/Ultra/Completion.lean
IsTransitiveRel.cauchyFilter_gen
null
IsUltraUniformity.cauchyFilter [IsUltraUniformity X] : IsUltraUniformity (CauchyFilter X) := by apply mk_of_hasBasis (CauchyFilter.basis_uniformity IsUltraUniformity.hasBasis) · exact fun _ ⟨_, hU, _⟩ ↦ hU.cauchyFilter_gen · exact fun _ ⟨_, _, hU⟩ ↦ hU.cauchyFilter_gen @[simp] lemma IsUltraUniformity.cauchyFilter_iff : IsUltraUniformity (CauchyFilter X) ↔ IsUltraUniformity X := ⟨fun _ ↦ CauchyFilter.isUniformInducing_pureCauchy.isUltraUniformity, fun _ ↦ inferInstance⟩
instance
Topology
[ "Mathlib.Topology.UniformSpace.Completion", "Mathlib.Topology.UniformSpace.Ultra.Basic", "Mathlib.Topology.UniformSpace.Ultra.Constructions" ]
Mathlib/Topology/UniformSpace/Ultra/Completion.lean
IsUltraUniformity.cauchyFilter
null
IsUltraUniformity.separationQuotient [IsUltraUniformity X] : IsUltraUniformity (SeparationQuotient X) := by have := IsUltraUniformity.hasBasis.map (Prod.map SeparationQuotient.mk (SeparationQuotient.mk (X := X))) rw [← SeparationQuotient.uniformity_eq] at this apply mk_of_hasBasis this · exact fun _ ⟨_, hU, _⟩ ↦ hU.image_prodMap _ · refine fun U ⟨hU', _, hU⟩ ↦ ?_ rintro x y z simp only [id_eq, Set.mem_image, Prod.exists, Prod.map_apply, Prod.mk.injEq, forall_exists_index, and_imp] rintro a b hab rfl rfl c d hcd hc rfl have hbc : (b, c) ∈ U := by rw [eq_comm, SeparationQuotient.mk_eq_mk, inseparable_iff_ker_uniformity, Filter.mem_ker] at hc exact hc _ hU' exact ⟨a, d, hU (hU hab hbc) hcd, by simp, by simp⟩ @[simp] lemma IsUltraUniformity.separationQuotient_iff : IsUltraUniformity (SeparationQuotient X) ↔ IsUltraUniformity X := ⟨fun _ ↦ SeparationQuotient.isUniformInducing_mk.isUltraUniformity, fun _ ↦ inferInstance⟩ @[simp] lemma IsUltraUniformity.completion_iff : IsUltraUniformity (UniformSpace.Completion X) ↔ IsUltraUniformity X := by rw [iff_comm, ← cauchyFilter_iff, ← separationQuotient_iff] exact Iff.rfl
instance
Topology
[ "Mathlib.Topology.UniformSpace.Completion", "Mathlib.Topology.UniformSpace.Ultra.Basic", "Mathlib.Topology.UniformSpace.Ultra.Constructions" ]
Mathlib/Topology/UniformSpace/Ultra/Completion.lean
IsUltraUniformity.separationQuotient
null
IsUltraUniformity.completion [IsUltraUniformity X] : IsUltraUniformity (UniformSpace.Completion X) := completion_iff.2 inferInstance
instance
Topology
[ "Mathlib.Topology.UniformSpace.Completion", "Mathlib.Topology.UniformSpace.Ultra.Basic", "Mathlib.Topology.UniformSpace.Ultra.Constructions" ]
Mathlib/Topology/UniformSpace/Ultra/Completion.lean
IsUltraUniformity.completion
null
IsTransitiveRel.entourageProd {s : Set (X × X)} {t : Set (Y × Y)} (hs : IsTransitiveRel s) (ht : IsTransitiveRel t) : IsTransitiveRel (entourageProd s t) := fun _ _ _ h h' ↦ ⟨hs h.left h'.left, ht h.right h'.right⟩
lemma
Topology
[ "Mathlib.Topology.UniformSpace.DiscreteUniformity", "Mathlib.Topology.UniformSpace.Pi", "Mathlib.Topology.UniformSpace.Ultra.Basic" ]
Mathlib/Topology/UniformSpace/Ultra/Constructions.lean
IsTransitiveRel.entourageProd
null
IsUltraUniformity.comap {u : UniformSpace Y} (h : IsUltraUniformity Y) (f : X → Y) : @IsUltraUniformity _ (u.comap f) := by letI := u.comap f refine .mk_of_hasBasis (h.hasBasis.comap (Prod.map f f)) ?_ ?_ · exact fun _ ⟨_, hU, _⟩ ↦ hU.preimage_prodMap f · exact fun _ ⟨_, _, hU⟩ ↦ hU.preimage_prodMap f
lemma
Topology
[ "Mathlib.Topology.UniformSpace.DiscreteUniformity", "Mathlib.Topology.UniformSpace.Pi", "Mathlib.Topology.UniformSpace.Ultra.Basic" ]
Mathlib/Topology/UniformSpace/Ultra/Constructions.lean
IsUltraUniformity.comap
null
IsUltraUniformity.inf {u u' : UniformSpace X} (h : @IsUltraUniformity _ u) (h' : @IsUltraUniformity _ u') : @IsUltraUniformity _ (u ⊓ u') := by letI := u ⊓ u' refine .mk_of_hasBasis (h.hasBasis.inf h'.hasBasis) ?_ ?_ · exact fun _ ⟨⟨_, hU, _⟩, _, hU', _⟩ ↦ hU.inter hU' · exact fun _ ⟨⟨_, _, hU⟩, _, _, hU'⟩ ↦ hU.inter hU'
lemma
Topology
[ "Mathlib.Topology.UniformSpace.DiscreteUniformity", "Mathlib.Topology.UniformSpace.Pi", "Mathlib.Topology.UniformSpace.Ultra.Basic" ]
Mathlib/Topology/UniformSpace/Ultra/Constructions.lean
IsUltraUniformity.inf
null
IsUltraUniformity.prod [UniformSpace X] [UniformSpace Y] [IsUltraUniformity X] [IsUltraUniformity Y] : IsUltraUniformity (X × Y) := .inf (.comap ‹_› _) (.comap ‹_› _)
instance
Topology
[ "Mathlib.Topology.UniformSpace.DiscreteUniformity", "Mathlib.Topology.UniformSpace.Pi", "Mathlib.Topology.UniformSpace.Ultra.Basic" ]
Mathlib/Topology/UniformSpace/Ultra/Constructions.lean
IsUltraUniformity.prod
The product of uniform spaces with nonarchimedean uniformities has a nonarchimedean uniformity.
IsUltraUniformity.iInf {ι : Type*} {U : (i : ι) → UniformSpace X} (hU : ∀ i, @IsUltraUniformity X (U i)) : @IsUltraUniformity _ (⨅ i, U i : UniformSpace X) := by letI : UniformSpace X := ⨅ i, U i refine .mk_of_hasBasis (iInf_uniformity ▸ Filter.HasBasis.iInf fun i ↦ (hU i).hasBasis) ?_ ?_ · exact fun _ ⟨_, h⟩ ↦ IsSymmetricRel.iInter fun i ↦ (h i).right.left · exact fun _ ⟨_, h⟩ ↦ IsTransitiveRel.iInter fun i ↦ (h i).right.right
lemma
Topology
[ "Mathlib.Topology.UniformSpace.DiscreteUniformity", "Mathlib.Topology.UniformSpace.Pi", "Mathlib.Topology.UniformSpace.Ultra.Basic" ]
Mathlib/Topology/UniformSpace/Ultra/Constructions.lean
IsUltraUniformity.iInf
null
IsUltraUniformity.pi {ι : Type*} {X : ι → Type*} [U : Π i, UniformSpace (X i)] [h : ∀ i, IsUltraUniformity (X i)] : IsUltraUniformity (Π i, X i) := by suffices @IsUltraUniformity _ (⨅ i, UniformSpace.comap (Function.eval i) (U i)) by simpa [Pi.uniformSpace_eq _] using this exact .iInf fun i ↦ .comap (h i) (Function.eval i)
instance
Topology
[ "Mathlib.Topology.UniformSpace.DiscreteUniformity", "Mathlib.Topology.UniformSpace.Pi", "Mathlib.Topology.UniformSpace.Ultra.Basic" ]
Mathlib/Topology/UniformSpace/Ultra/Constructions.lean
IsUltraUniformity.pi
The indexed product of uniform spaces with nonarchimedean uniformities has a nonarchimedean uniformity.
IsUltraUniformity.bot [UniformSpace X] [DiscreteUniformity X] : IsUltraUniformity X := by have := Filter.hasBasis_principal (idRel (α := X)) rw [← DiscreteUniformity.eq_principal_idRel] at this apply mk_of_hasBasis this · simpa using isSymmetricRel_idRel · simpa using isTransitiveRel_idRel
instance
Topology
[ "Mathlib.Topology.UniformSpace.DiscreteUniformity", "Mathlib.Topology.UniformSpace.Pi", "Mathlib.Topology.UniformSpace.Ultra.Basic" ]
Mathlib/Topology/UniformSpace/Ultra/Constructions.lean
IsUltraUniformity.bot
null
IsUltraUniformity.top : @IsUltraUniformity X (⊤ : UniformSpace X) := by letI : UniformSpace X := ⊤ have := Filter.hasBasis_top (α := (X × X)) rw [← top_uniformity] at this apply mk_of_hasBasis this · simpa using isSymmetricRel_univ · simpa using isTransitiveRel_univ
lemma
Topology
[ "Mathlib.Topology.UniformSpace.DiscreteUniformity", "Mathlib.Topology.UniformSpace.Pi", "Mathlib.Topology.UniformSpace.Ultra.Basic" ]
Mathlib/Topology/UniformSpace/Ultra/Constructions.lean
IsUltraUniformity.top
null
Recurse.Config where /-- the reducibility setting to use when comparing atoms for defeq -/ red := TransparencyMode.reducible /-- if true, local let variables can be unfolded -/ zetaDelta := false deriving Inhabited, BEq, Repr attribute [nolint unusedArguments] Mathlib.Tactic.AtomM.Recurse.instReprConfig.repr
structure
Util
[ "Mathlib.Util.AtomM" ]
Mathlib/Util/AtomM/Recurse.lean
Recurse.Config
Configuration for `AtomM.Recurse`.
Recurse.Context where /-- A basically empty simp context, passed to the `simp` traversal in `AtomM.onSubexpressions`. -/ ctx : Simp.Context /-- A cleanup routine, which simplifies evaluation results to a more human-friendly format. -/ simp : Simp.Result → MetaM Simp.Result
structure
Util
[ "Mathlib.Util.AtomM" ]
Mathlib/Util/AtomM/Recurse.lean
Recurse.Context
The read-only state of the `AtomM.Recurse` monad.
RecurseM := ReaderT Recurse.Context AtomM
abbrev
Util
[ "Mathlib.Util.AtomM" ]
Mathlib/Util/AtomM/Recurse.lean
RecurseM
The monad for `AtomM.Recurse` contains, in addition to the `AtomM` state, a simp context for the main traversal and a cleanup function to simplify evaluation results.
onSubexpressions (eval : Expr → AtomM Simp.Result) (parent : Expr) (root := true) : RecurseM Simp.Result := fun nctx rctx s ↦ do let pre : Simp.Simproc := fun e => try guard <| root || parent != e -- recursion guard let r' ← eval e rctx s let r ← nctx.simp r' if ← withReducible <| isDefEq r.expr e then return .done { expr := r.expr } pure (.done r) catch _ => pure <| .continue let post := Simp.postDefault #[] (·.1) <$> Simp.main parent nctx.ctx (methods := { pre, post })
def
Util
[ "Mathlib.Util.AtomM" ]
Mathlib/Util/AtomM/Recurse.lean
onSubexpressions
A tactic in the `AtomM.RecurseM` monad which will simplify expression `parent` to a normal form, by running a core operation `eval` (in the `AtomM` monad) on the maximal subexpression(s) on which `eval` does not fail. There is also a subsequent clean-up operation, governed by the context from the `AtomM.RecurseM` monad. * `root`: true if this is a direct call to the function. `AtomM.RecurseM.run` sets this to `false` in recursive mode.
partial RecurseM.run {α : Type} (s : IO.Ref State) (cfg : Recurse.Config) (eval : Expr → AtomM Simp.Result) (simp : Simp.Result → MetaM Simp.Result) (x : RecurseM α) : MetaM α := do let ctx ← Simp.mkContext { zetaDelta := cfg.zetaDelta, singlePass := true } (simpTheorems := #[← Elab.Tactic.simpOnlyBuiltins.foldlM (·.addConst ·) {}]) (congrTheorems := ← getSimpCongrTheorems) let nctx := { ctx, simp } let rec /-- The recursive context. -/ rctx := { red := cfg.red, evalAtom }, /-- The atom evaluator calls `AtomM.onSubexpressions` recursively. -/ evalAtom e := onSubexpressions eval e false nctx rctx s withConfig ({ · with zetaDelta := cfg.zetaDelta }) <| x nctx rctx s
def
Util
[ "Mathlib.Util.AtomM" ]
Mathlib/Util/AtomM/Recurse.lean
RecurseM.run
Runs a tactic in the `AtomM.RecurseM` monad, given initial data: * `s`: a reference to the mutable `AtomM` state, for persisting across calls. This ensures that atom ordering is used consistently. * `cfg`: the configuration options * `eval`: a normalization operation which will be run recursively, potentially dependent on a known atom ordering * `simp`: a cleanup operation which will be used to post-process expressions * `x`: the tactic to run
recurse (s : IO.Ref State) (cfg : Recurse.Config) (eval : Expr → AtomM Simp.Result) (simp : Simp.Result → MetaM Simp.Result) (tgt : Expr) : MetaM Simp.Result := do RecurseM.run s cfg eval simp <| onSubexpressions eval tgt
def
Util
[ "Mathlib.Util.AtomM" ]
Mathlib/Util/AtomM/Recurse.lean
recurse
Normalizes an expression, given initial data: * `s`: a reference to the mutable `AtomM` state, for persisting across calls. This ensures that atom ordering is used consistently. * `cfg`: the configuration options * `eval`: a normalization operation which will be run recursively, potentially dependent on a known atom ordering * `simp`: a cleanup operation which will be used to post-process expressions * `tgt`: the expression to normalize