fact
stringlengths
6
3.84k
type
stringclasses
11 values
library
stringclasses
32 values
imports
listlengths
1
14
filename
stringlengths
20
95
symbolic_name
stringlengths
1
90
docstring
stringlengths
7
20k
RelCWComplex.cellFrontier_subset_finite_openCell [RelCWComplex C D] (n : ℕ) (i : cell C n) : ∃ I : Π m, Finset (cell C m), cellFrontier n i ⊆ D ∪ (⋃ (m < n) (j ∈ I m), openCell m j) := by induction n using Nat.case_strong_induction_on with | hz => simp [cellFrontier_zero_eq_empty] | hi n hn => classical obtain ⟨J, hJ⟩ := cellFrontier_subset_base_union_finite_closedCell n.succ i choose p hp using hn let I m := J m ∪ ((Finset.range n.succ).biUnion (fun l ↦ (J l).biUnion (fun y ↦ if h : l ≤ n then p l h y m else ∅))) use I intro x hx specialize hJ hx simp only [mem_union, mem_iUnion, exists_prop] at hJ ⊢ rcases hJ with hJ | hJ · exact .inl hJ obtain ⟨l, hln, j, hj, hxj⟩ := hJ rw [← cellFrontier_union_openCell_eq_closedCell] at hxj rcases hxj with hxj | hxj · specialize hp l (Nat.le_of_lt_succ hln) j hxj simp_rw [mem_union, mem_iUnion, exists_prop] at hp refine .imp_right (fun ⟨k, hkl, i, hi, hxi⟩ ↦ ⟨k, lt_trans hkl hln, i, ?_, hxi⟩) hp simp only [Nat.succ_eq_add_one, Finset.mem_union, Finset.mem_biUnion, Finset.mem_range, I] exact .inr ⟨l, hln, j, hj, by simp [Nat.le_of_lt_succ hln, hi]⟩ · right use l, hln, j simp only [Nat.succ_eq_add_one, Finset.mem_union, I] exact ⟨Or.intro_left _ hj, hxj⟩
lemma
Topology
[ "Mathlib.Analysis.Normed.Module.RCLike.Real", "Mathlib.Data.ENat.Basic", "Mathlib.Logic.Equiv.PartialEquiv", "Mathlib.Topology.MetricSpace.ProperSpace.Real" ]
Mathlib/Topology/CWComplex/Classical/Basic.lean
RelCWComplex.cellFrontier_subset_finite_openCell
A version of `cellFrontier_subset_base_union_finite_closedCell` using open cells: The boundary of a cell is contained in a finite union of open cells of a lower dimension.
CWComplex.cellFrontier_subset_finite_openCell [CWComplex C] (n : ℕ) (i : cell C n) : ∃ I : Π m, Finset (cell C m), cellFrontier n i ⊆ ⋃ (m < n) (j ∈ I m), openCell m j := by simpa using RelCWComplex.cellFrontier_subset_finite_openCell n i
lemma
Topology
[ "Mathlib.Analysis.Normed.Module.RCLike.Real", "Mathlib.Data.ENat.Basic", "Mathlib.Logic.Equiv.PartialEquiv", "Mathlib.Topology.MetricSpace.ProperSpace.Real" ]
Mathlib/Topology/CWComplex/Classical/Basic.lean
CWComplex.cellFrontier_subset_finite_openCell
A version of `cellFrontier_subset_finite_closedCell` using open cells: The boundary of a cell is contained in a finite union of open cells of a lower dimension.
Subcomplex (C : Set X) {D : Set X} [RelCWComplex C D] where /-- The underlying set of the subcomplex. -/ carrier : Set X /-- The indexing set of cells of the subcomplex. -/ I : Π n, Set (cell C n) /-- A subcomplex is closed. -/ closed' : IsClosed carrier /-- The union of all open cells of the subcomplex equals the subcomplex. -/ union' : D ∪ ⋃ (n : ℕ) (j : I n), openCell (C := C) n j = carrier
structure
Topology
[ "Mathlib.Analysis.Normed.Module.RCLike.Real", "Mathlib.Data.ENat.Basic", "Mathlib.Logic.Equiv.PartialEquiv", "Mathlib.Topology.MetricSpace.ProperSpace.Real" ]
Mathlib/Topology/CWComplex/Classical/Basic.lean
Subcomplex
A subcomplex is a closed subspace of a CW complex that is the union of open cells of the CW complex.
mem_carrier {E : Subcomplex C} {x : X} : x ∈ E.carrier ↔ x ∈ (E : Set X) := Iff.rfl
lemma
Topology
[ "Mathlib.Analysis.Normed.Module.RCLike.Real", "Mathlib.Data.ENat.Basic", "Mathlib.Logic.Equiv.PartialEquiv", "Mathlib.Topology.MetricSpace.ProperSpace.Real" ]
Mathlib/Topology/CWComplex/Classical/Basic.lean
mem_carrier
null
coe_eq_carrier {E : Subcomplex C} : (E : Set X) = E.carrier := rfl @[ext] lemma ext {E F : Subcomplex C} (h : ∀ x, x ∈ E ↔ x ∈ F) : E = F := SetLike.ext h
lemma
Topology
[ "Mathlib.Analysis.Normed.Module.RCLike.Real", "Mathlib.Data.ENat.Basic", "Mathlib.Logic.Equiv.PartialEquiv", "Mathlib.Topology.MetricSpace.ProperSpace.Real" ]
Mathlib/Topology/CWComplex/Classical/Basic.lean
coe_eq_carrier
null
eq_iff (E F : Subcomplex C) : E = F ↔ (E : Set X) = F := SetLike.coe_injective.eq_iff.symm
lemma
Topology
[ "Mathlib.Analysis.Normed.Module.RCLike.Real", "Mathlib.Data.ENat.Basic", "Mathlib.Logic.Equiv.PartialEquiv", "Mathlib.Topology.MetricSpace.ProperSpace.Real" ]
Mathlib/Topology/CWComplex/Classical/Basic.lean
eq_iff
null
protected copy (E : Subcomplex C) (F : Set X) (hF : F = E) (J : (n : ℕ) → Set (cell C n)) (hJ : J = E.I) : Subcomplex C := { carrier := F I := J closed' := hF.symm ▸ E.closed' union' := hF.symm ▸ hJ ▸ E.union' } @[simp] lemma coe_copy (E : Subcomplex C) (F : Set X) (hF : F = E) (J : (n : ℕ) → Set (cell C n)) (hJ : J = E.I) : (E.copy F hF J hJ : Set X) = F := rfl
def
Topology
[ "Mathlib.Analysis.Normed.Module.RCLike.Real", "Mathlib.Data.ENat.Basic", "Mathlib.Logic.Equiv.PartialEquiv", "Mathlib.Topology.MetricSpace.ProperSpace.Real" ]
Mathlib/Topology/CWComplex/Classical/Basic.lean
copy
Copy of a `Subcomplex` with a new `carrier` equal to the old one. Useful to fix definitional equalities.
copy_eq (E : Subcomplex C) (F : Set X) (hF : F = E) (J : (n : ℕ) → Set (cell C n)) (hJ : J = E.I) : E.copy F hF J hJ = E := SetLike.coe_injective hF
lemma
Topology
[ "Mathlib.Analysis.Normed.Module.RCLike.Real", "Mathlib.Data.ENat.Basic", "Mathlib.Logic.Equiv.PartialEquiv", "Mathlib.Topology.MetricSpace.ProperSpace.Real" ]
Mathlib/Topology/CWComplex/Classical/Basic.lean
copy_eq
null
union (E : Subcomplex C) : D ∪ ⋃ (n : ℕ) (j : E.I n), openCell (C := C) n j.1 = E := by rw [E.union'] rfl
lemma
Topology
[ "Mathlib.Analysis.Normed.Module.RCLike.Real", "Mathlib.Data.ENat.Basic", "Mathlib.Logic.Equiv.PartialEquiv", "Mathlib.Topology.MetricSpace.ProperSpace.Real" ]
Mathlib/Topology/CWComplex/Classical/Basic.lean
union
null
closed (E : Subcomplex C) : IsClosed (E : Set X) := E.closed'
lemma
Topology
[ "Mathlib.Analysis.Normed.Module.RCLike.Real", "Mathlib.Data.ENat.Basic", "Mathlib.Logic.Equiv.PartialEquiv", "Mathlib.Topology.MetricSpace.ProperSpace.Real" ]
Mathlib/Topology/CWComplex/Classical/Basic.lean
closed
null
CWComplex.Subcomplex.union {C : Set X} [CWComplex C] {E : Subcomplex C} : ⋃ (n : ℕ) (j : E.I n), openCell (C := C) n j = E := by have := RelCWComplex.Subcomplex.union E (C := C) rw [empty_union] at this exact this
lemma
Topology
[ "Mathlib.Analysis.Normed.Module.RCLike.Real", "Mathlib.Data.ENat.Basic", "Mathlib.Logic.Equiv.PartialEquiv", "Mathlib.Topology.MetricSpace.ProperSpace.Real" ]
Mathlib/Topology/CWComplex/Classical/Basic.lean
CWComplex.Subcomplex.union
null
@[simps -isSimp] RelCWComplex.Subcomplex.mk' [T2Space X] (C : Set X) {D : Set X} [RelCWComplex C D] (E : Set X) (I : Π n, Set (cell C n)) (closedCell_subset : ∀ (n : ℕ) (i : I n), closedCell (C := C) n i ⊆ E) (union : D ∪ ⋃ (n : ℕ) (j : I n), openCell (C := C) n j = E) : Subcomplex C where carrier := E I := I closed' := by have hEC : (E : Set X) ⊆ C := by simp_rw [← union, ← union_iUnion_openCell_eq_complex (C := C)] exact union_subset_union_right D (iUnion_mono fun n ↦ iUnion_subset fun i ↦ subset_iUnion _ (i : cell C n)) apply isClosed_of_disjoint_openCell_or_isClosed_inter_closedCell hEC · have : D ⊆ E := by rw [← union] exact subset_union_left rw [inter_eq_right.2 this] exact isClosedBase C intro n _ j by_cases h : j ∈ I n · right suffices closedCell n j ⊆ E by rw [inter_eq_right.2 this] exact isClosed_closedCell exact closedCell_subset n ⟨j, h⟩ · left simp_rw [← union, disjoint_union_left, disjoint_iUnion_left] exact ⟨disjointBase n j |>.symm, fun _ _ ↦ disjoint_openCell_of_ne (by aesop)⟩ union' := union
def
Topology
[ "Mathlib.Analysis.Normed.Module.RCLike.Real", "Mathlib.Data.ENat.Basic", "Mathlib.Logic.Equiv.PartialEquiv", "Mathlib.Topology.MetricSpace.ProperSpace.Real" ]
Mathlib/Topology/CWComplex/Classical/Basic.lean
RelCWComplex.Subcomplex.mk'
An alternative version of `Subcomplex.mk`: Instead of requiring that `E` is closed it requires that for every cell of the subcomplex the corresponding closed cell is a subset of `E`.
@[simps! -isSimp] CWComplex.Subcomplex.mk' [T2Space X] (C : Set X) [CWComplex C] (E : Set X) (I : Π n, Set (cell C n)) (closedCell_subset : ∀ (n : ℕ) (i : I n), closedCell (C := C) n i ⊆ E) (union : ⋃ (n : ℕ) (j : I n), openCell (C := C) n j = E) : Subcomplex C := RelCWComplex.Subcomplex.mk' C E I closedCell_subset (by rw [empty_union]; exact union)
def
Topology
[ "Mathlib.Analysis.Normed.Module.RCLike.Real", "Mathlib.Data.ENat.Basic", "Mathlib.Logic.Equiv.PartialEquiv", "Mathlib.Topology.MetricSpace.ProperSpace.Real" ]
Mathlib/Topology/CWComplex/Classical/Basic.lean
CWComplex.Subcomplex.mk'
An alternative version of `Subcomplex.mk`: Instead of requiring that `E` is closed it requires that for every cell of the subcomplex the corresponding closed cell is a subset of `E`.
@[simps -isSimp] RelCWComplex.Subcomplex.mk'' [T2Space X] (C : Set X) {D : Set X} [RelCWComplex C D] (E : Set X) (I : Π n, Set (cell C n)) [RelCWComplex E D] (union : D ∪ ⋃ (n : ℕ) (j : I n), openCell (C := C) n j = E) : Subcomplex C where carrier := E I := I closed' := isClosed union' := union
def
Topology
[ "Mathlib.Analysis.Normed.Module.RCLike.Real", "Mathlib.Data.ENat.Basic", "Mathlib.Logic.Equiv.PartialEquiv", "Mathlib.Topology.MetricSpace.ProperSpace.Real" ]
Mathlib/Topology/CWComplex/Classical/Basic.lean
RelCWComplex.Subcomplex.mk''
An alternative version of `Subcomplex.mk`: Instead of requiring that `E` is closed it requires that `E` is a CW-complex.
@[simps -isSimp] CWComplex.Subcomplex.mk'' [T2Space X] (C : Set X) [h : CWComplex C] (E : Set X) (I : Π n, Set (cell C n)) [CWComplex E] (union : ⋃ (n : ℕ) (j : I n), openCell (C := C) n j = E) : Subcomplex C where carrier := E I := I closed' := RelCWComplex.isClosed union' := by rw [empty_union] exact union
def
Topology
[ "Mathlib.Analysis.Normed.Module.RCLike.Real", "Mathlib.Data.ENat.Basic", "Mathlib.Logic.Equiv.PartialEquiv", "Mathlib.Topology.MetricSpace.ProperSpace.Real" ]
Mathlib/Topology/CWComplex/Classical/Basic.lean
CWComplex.Subcomplex.mk''
An alternative version of `Subcomplex.mk`: Instead of requiring that `E` is closed it requires that `E` is a CW-complex.
RelCWComplex.Subcomplex.subset_complex {C D : Set X} [RelCWComplex C D] (E : Subcomplex C) : ↑E ⊆ C := by simp_rw [← union, ← RelCWComplex.union_iUnion_openCell_eq_complex] exact union_subset_union_right _ (iUnion_mono fun _ ↦ iUnion_mono' fun j ↦ ⟨j, subset_rfl⟩)
lemma
Topology
[ "Mathlib.Analysis.Normed.Module.RCLike.Real", "Mathlib.Data.ENat.Basic", "Mathlib.Logic.Equiv.PartialEquiv", "Mathlib.Topology.MetricSpace.ProperSpace.Real" ]
Mathlib/Topology/CWComplex/Classical/Basic.lean
RelCWComplex.Subcomplex.subset_complex
null
RelCWComplex.Subcomplex.base_subset {C D : Set X} [RelCWComplex C D] (E : Subcomplex C) : D ⊆ E := by simp_rw [← union] exact subset_union_left
lemma
Topology
[ "Mathlib.Analysis.Normed.Module.RCLike.Real", "Mathlib.Data.ENat.Basic", "Mathlib.Logic.Equiv.PartialEquiv", "Mathlib.Topology.MetricSpace.ProperSpace.Real" ]
Mathlib/Topology/CWComplex/Classical/Basic.lean
RelCWComplex.Subcomplex.base_subset
null
@[simps! -isSimp, irreducible] skeletonLT (C : Set X) {D : Set X} [RelCWComplex C D] (n : ℕ∞) : Subcomplex C := Subcomplex.mk' _ (D ∪ ⋃ (m : ℕ) (_ : m < n) (j : cell C m), closedCell m j) (fun l ↦ {x : cell C l | l < n}) (by intro l ⟨i, hi⟩ apply subset_union_of_subset_right apply subset_iUnion₂_of_subset l hi exact subset_iUnion _ _) (by rw [← RelCWComplex.iUnion_openCell_eq_iUnion_closedCell] congrm D ∪ ?_ apply iUnion_congr fun m ↦ ?_ rw [iUnion_subtype, iUnion_comm] rfl)
def
Topology
[ "Mathlib.Analysis.Normed.Module.RCLike.Real", "Mathlib.Data.ENat.Basic", "Mathlib.Logic.Equiv.PartialEquiv", "Mathlib.Topology.MetricSpace.ProperSpace.Real" ]
Mathlib/Topology/CWComplex/Classical/Basic.lean
skeletonLT
A non-standard definition of the `n`-skeleton of a CW complex for `n ∈ ℕ ∪ {∞}`. This allows the base case of induction to be about the base instead of being about the union of the base and some points. The standard `skeleton` is defined in terms of `skeletonLT`. `skeletonLT` is preferred in statements. You should then derive the statement about `skeleton`.
skeleton (C : Set X) {D : Set X} [RelCWComplex C D] (n : ℕ∞) : Subcomplex C := skeletonLT C (n + 1)
abbrev
Topology
[ "Mathlib.Analysis.Normed.Module.RCLike.Real", "Mathlib.Data.ENat.Basic", "Mathlib.Logic.Equiv.PartialEquiv", "Mathlib.Topology.MetricSpace.ProperSpace.Real" ]
Mathlib/Topology/CWComplex/Classical/Basic.lean
skeleton
The `n`-skeleton of a CW complex, for `n ∈ ℕ ∪ {∞}`. For statements use `skeletonLT` instead and then derive the statement about `skeleton`.
RelCWComplex.skeletonLT_zero_eq_base [RelCWComplex C D] : skeletonLT C 0 = D := by simp [coe_skeletonLT]
lemma
Topology
[ "Mathlib.Analysis.Normed.Module.RCLike.Real", "Mathlib.Data.ENat.Basic", "Mathlib.Logic.Equiv.PartialEquiv", "Mathlib.Topology.MetricSpace.ProperSpace.Real" ]
Mathlib/Topology/CWComplex/Classical/Basic.lean
RelCWComplex.skeletonLT_zero_eq_base
null
CWComplex.skeletonLT_zero_eq_empty [CWComplex C] : (skeletonLT C 0 : Set X) = ∅ := RelCWComplex.skeletonLT_zero_eq_base @[simp] lemma RelCWComplex.skeletonLT_top [RelCWComplex C D] : skeletonLT C ⊤ = C := by simp [coe_skeletonLT, union] @[simp] lemma RelCWComplex.skeleton_top [RelCWComplex C D] : skeleton C ⊤ = C := skeletonLT_top
lemma
Topology
[ "Mathlib.Analysis.Normed.Module.RCLike.Real", "Mathlib.Data.ENat.Basic", "Mathlib.Logic.Equiv.PartialEquiv", "Mathlib.Topology.MetricSpace.ProperSpace.Real" ]
Mathlib/Topology/CWComplex/Classical/Basic.lean
CWComplex.skeletonLT_zero_eq_empty
null
RelCWComplex.skeletonLT_mono [RelCWComplex C D] {n m : ℕ∞} (h : m ≤ n) : (skeletonLT C m : Set X) ⊆ skeletonLT C n := by simp_rw [coe_skeletonLT] apply union_subset_union_right intro x xmem simp_rw [mem_iUnion, exists_prop] at xmem ⊢ obtain ⟨l, lltm, xmeml⟩ := xmem exact ⟨l, lt_of_lt_of_le lltm h, xmeml⟩
lemma
Topology
[ "Mathlib.Analysis.Normed.Module.RCLike.Real", "Mathlib.Data.ENat.Basic", "Mathlib.Logic.Equiv.PartialEquiv", "Mathlib.Topology.MetricSpace.ProperSpace.Real" ]
Mathlib/Topology/CWComplex/Classical/Basic.lean
RelCWComplex.skeletonLT_mono
null
RelCWComplex.skeletonLT_monotone [RelCWComplex C D] : Monotone (skeletonLT C) := fun _ _ h ↦ skeletonLT_mono h
lemma
Topology
[ "Mathlib.Analysis.Normed.Module.RCLike.Real", "Mathlib.Data.ENat.Basic", "Mathlib.Logic.Equiv.PartialEquiv", "Mathlib.Topology.MetricSpace.ProperSpace.Real" ]
Mathlib/Topology/CWComplex/Classical/Basic.lean
RelCWComplex.skeletonLT_monotone
null
RelCWComplex.skeleton_mono [RelCWComplex C D] {n m : ℕ∞} (h : m ≤ n) : (skeleton C m : Set X) ⊆ skeleton C n := skeletonLT_mono (add_le_add_right h 1)
lemma
Topology
[ "Mathlib.Analysis.Normed.Module.RCLike.Real", "Mathlib.Data.ENat.Basic", "Mathlib.Logic.Equiv.PartialEquiv", "Mathlib.Topology.MetricSpace.ProperSpace.Real" ]
Mathlib/Topology/CWComplex/Classical/Basic.lean
RelCWComplex.skeleton_mono
null
RelCWComplex.skeleton_monotone [RelCWComplex C D] : Monotone (skeleton C) := fun _ _ h ↦ skeleton_mono h
lemma
Topology
[ "Mathlib.Analysis.Normed.Module.RCLike.Real", "Mathlib.Data.ENat.Basic", "Mathlib.Logic.Equiv.PartialEquiv", "Mathlib.Topology.MetricSpace.ProperSpace.Real" ]
Mathlib/Topology/CWComplex/Classical/Basic.lean
RelCWComplex.skeleton_monotone
null
RelCWComplex.closedCell_subset_skeletonLT [RelCWComplex C D] (n : ℕ) (j : cell C n) : closedCell n j ⊆ skeletonLT C (n + 1) := by intro x xmem rw [coe_skeletonLT] right simp_rw [mem_iUnion, exists_prop] refine ⟨n, (by norm_cast; exact lt_add_one n), ⟨j,xmem⟩⟩
lemma
Topology
[ "Mathlib.Analysis.Normed.Module.RCLike.Real", "Mathlib.Data.ENat.Basic", "Mathlib.Logic.Equiv.PartialEquiv", "Mathlib.Topology.MetricSpace.ProperSpace.Real" ]
Mathlib/Topology/CWComplex/Classical/Basic.lean
RelCWComplex.closedCell_subset_skeletonLT
null
RelCWComplex.closedCell_subset_skeleton [RelCWComplex C D] (n : ℕ) (j : cell C n) : closedCell n j ⊆ skeleton C n := closedCell_subset_skeletonLT n j
lemma
Topology
[ "Mathlib.Analysis.Normed.Module.RCLike.Real", "Mathlib.Data.ENat.Basic", "Mathlib.Logic.Equiv.PartialEquiv", "Mathlib.Topology.MetricSpace.ProperSpace.Real" ]
Mathlib/Topology/CWComplex/Classical/Basic.lean
RelCWComplex.closedCell_subset_skeleton
null
RelCWComplex.openCell_subset_skeletonLT [RelCWComplex C D] (n : ℕ) (j : cell C n) : openCell n j ⊆ skeletonLT C (n + 1) := (openCell_subset_closedCell _ _).trans (closedCell_subset_skeletonLT _ _)
lemma
Topology
[ "Mathlib.Analysis.Normed.Module.RCLike.Real", "Mathlib.Data.ENat.Basic", "Mathlib.Logic.Equiv.PartialEquiv", "Mathlib.Topology.MetricSpace.ProperSpace.Real" ]
Mathlib/Topology/CWComplex/Classical/Basic.lean
RelCWComplex.openCell_subset_skeletonLT
null
RelCWComplex.openCell_subset_skeleton [RelCWComplex C D] (n : ℕ) (j : cell C n) : openCell n j ⊆ skeleton C n := (openCell_subset_closedCell _ _).trans (closedCell_subset_skeleton _ _)
lemma
Topology
[ "Mathlib.Analysis.Normed.Module.RCLike.Real", "Mathlib.Data.ENat.Basic", "Mathlib.Logic.Equiv.PartialEquiv", "Mathlib.Topology.MetricSpace.ProperSpace.Real" ]
Mathlib/Topology/CWComplex/Classical/Basic.lean
RelCWComplex.openCell_subset_skeleton
null
RelCWComplex.cellFrontier_subset_skeletonLT [RelCWComplex C D] (n : ℕ) (j : cell C n) : cellFrontier n j ⊆ skeletonLT C n := by obtain ⟨I, hI⟩ := cellFrontier_subset_base_union_finite_closedCell n j apply subset_trans hI rw [coe_skeletonLT] apply union_subset_union_right intro x xmem simp only [mem_iUnion, exists_prop] at xmem ⊢ obtain ⟨i, iltn, j, _, xmem⟩ := xmem exact ⟨i, by norm_cast, j, xmem⟩
lemma
Topology
[ "Mathlib.Analysis.Normed.Module.RCLike.Real", "Mathlib.Data.ENat.Basic", "Mathlib.Logic.Equiv.PartialEquiv", "Mathlib.Topology.MetricSpace.ProperSpace.Real" ]
Mathlib/Topology/CWComplex/Classical/Basic.lean
RelCWComplex.cellFrontier_subset_skeletonLT
null
RelCWComplex.cellFrontier_subset_skeleton [RelCWComplex C D] (n : ℕ) (j : cell C (n + 1)) : cellFrontier (n + 1) j ⊆ skeleton C n := cellFrontier_subset_skeletonLT _ _
lemma
Topology
[ "Mathlib.Analysis.Normed.Module.RCLike.Real", "Mathlib.Data.ENat.Basic", "Mathlib.Logic.Equiv.PartialEquiv", "Mathlib.Topology.MetricSpace.ProperSpace.Real" ]
Mathlib/Topology/CWComplex/Classical/Basic.lean
RelCWComplex.cellFrontier_subset_skeleton
null
RelCWComplex.iUnion_cellFrontier_subset_skeletonLT [RelCWComplex C D] (l : ℕ) : ⋃ (j : cell C l), cellFrontier l j ⊆ skeletonLT C l := iUnion_subset (fun _ ↦ cellFrontier_subset_skeletonLT _ _)
lemma
Topology
[ "Mathlib.Analysis.Normed.Module.RCLike.Real", "Mathlib.Data.ENat.Basic", "Mathlib.Logic.Equiv.PartialEquiv", "Mathlib.Topology.MetricSpace.ProperSpace.Real" ]
Mathlib/Topology/CWComplex/Classical/Basic.lean
RelCWComplex.iUnion_cellFrontier_subset_skeletonLT
null
RelCWComplex.iUnion_cellFrontier_subset_skeleton [RelCWComplex C D] (l : ℕ) : ⋃ (j : cell C l), cellFrontier l j ⊆ skeleton C l := (iUnion_cellFrontier_subset_skeletonLT l).trans (skeletonLT_mono le_self_add)
lemma
Topology
[ "Mathlib.Analysis.Normed.Module.RCLike.Real", "Mathlib.Data.ENat.Basic", "Mathlib.Logic.Equiv.PartialEquiv", "Mathlib.Topology.MetricSpace.ProperSpace.Real" ]
Mathlib/Topology/CWComplex/Classical/Basic.lean
RelCWComplex.iUnion_cellFrontier_subset_skeleton
null
RelCWComplex.skeletonLT_union_iUnion_closedCell_eq_skeletonLT_succ [RelCWComplex C D] (n : ℕ) : (skeletonLT C n : Set X) ∪ ⋃ (j : cell C n), closedCell n j = skeletonLT C (n + 1) := by rw [coe_skeletonLT, coe_skeletonLT, union_assoc] congr norm_cast exact (biUnion_lt_succ _ _).symm
lemma
Topology
[ "Mathlib.Analysis.Normed.Module.RCLike.Real", "Mathlib.Data.ENat.Basic", "Mathlib.Logic.Equiv.PartialEquiv", "Mathlib.Topology.MetricSpace.ProperSpace.Real" ]
Mathlib/Topology/CWComplex/Classical/Basic.lean
RelCWComplex.skeletonLT_union_iUnion_closedCell_eq_skeletonLT_succ
null
RelCWComplex.skeleton_union_iUnion_closedCell_eq_skeleton_succ [RelCWComplex C D] (n : ℕ) : (skeleton C n : Set X) ∪ ⋃ (j : cell C (n + 1)), closedCell (n + 1) j = skeleton C (n + 1) := skeletonLT_union_iUnion_closedCell_eq_skeletonLT_succ _
lemma
Topology
[ "Mathlib.Analysis.Normed.Module.RCLike.Real", "Mathlib.Data.ENat.Basic", "Mathlib.Logic.Equiv.PartialEquiv", "Mathlib.Topology.MetricSpace.ProperSpace.Real" ]
Mathlib/Topology/CWComplex/Classical/Basic.lean
RelCWComplex.skeleton_union_iUnion_closedCell_eq_skeleton_succ
null
RelCWComplex.iUnion_openCell_eq_skeletonLT [RelCWComplex C D] (n : ℕ∞) : D ∪ ⋃ (m : ℕ) (_ : m < n) (j : cell C m), openCell m j = skeletonLT C n := (coe_skeletonLT C _).symm ▸ RelCWComplex.iUnion_openCell_eq_iUnion_closedCell n
lemma
Topology
[ "Mathlib.Analysis.Normed.Module.RCLike.Real", "Mathlib.Data.ENat.Basic", "Mathlib.Logic.Equiv.PartialEquiv", "Mathlib.Topology.MetricSpace.ProperSpace.Real" ]
Mathlib/Topology/CWComplex/Classical/Basic.lean
RelCWComplex.iUnion_openCell_eq_skeletonLT
A version of the definition of `skeletonLT` with open cells.
CWComplex.iUnion_openCell_eq_skeletonLT [CWComplex C] (n : ℕ∞) : ⋃ (m : ℕ) (_ : m < n) (j : cell C m), openCell m j = skeletonLT C n := by rw [← RelCWComplex.iUnion_openCell_eq_skeletonLT, empty_union]
lemma
Topology
[ "Mathlib.Analysis.Normed.Module.RCLike.Real", "Mathlib.Data.ENat.Basic", "Mathlib.Logic.Equiv.PartialEquiv", "Mathlib.Topology.MetricSpace.ProperSpace.Real" ]
Mathlib/Topology/CWComplex/Classical/Basic.lean
CWComplex.iUnion_openCell_eq_skeletonLT
null
RelCWComplex.iUnion_openCell_eq_skeleton [RelCWComplex C D] (n : ℕ∞) : D ∪ ⋃ (m : ℕ) (_ : m < n + 1) (j : cell C m), openCell m j = skeleton C n := iUnion_openCell_eq_skeletonLT _
lemma
Topology
[ "Mathlib.Analysis.Normed.Module.RCLike.Real", "Mathlib.Data.ENat.Basic", "Mathlib.Logic.Equiv.PartialEquiv", "Mathlib.Topology.MetricSpace.ProperSpace.Real" ]
Mathlib/Topology/CWComplex/Classical/Basic.lean
RelCWComplex.iUnion_openCell_eq_skeleton
null
CWComplex.iUnion_openCell_eq_skeleton [CWComplex C] (n : ℕ∞) : ⋃ (m : ℕ) (_ : m < n + 1) (j : cell C m), openCell m j = skeleton C n := iUnion_openCell_eq_skeletonLT _
lemma
Topology
[ "Mathlib.Analysis.Normed.Module.RCLike.Real", "Mathlib.Data.ENat.Basic", "Mathlib.Logic.Equiv.PartialEquiv", "Mathlib.Topology.MetricSpace.ProperSpace.Real" ]
Mathlib/Topology/CWComplex/Classical/Basic.lean
CWComplex.iUnion_openCell_eq_skeleton
null
RelCWComplex.iUnion_skeletonLT_eq_complex [RelCWComplex C D] : ⋃ (n : ℕ), skeletonLT C n = C := by apply subset_antisymm (iUnion_subset_iff.2 fun _ ↦ (skeletonLT C _).subset_complex) simp_rw [← union_iUnion_openCell_eq_complex, union_subset_iff, iUnion₂_subset_iff] exact ⟨subset_iUnion_of_subset 0 (skeletonLT C 0).base_subset, fun n i ↦ subset_iUnion_of_subset _ (openCell_subset_skeletonLT n i)⟩
lemma
Topology
[ "Mathlib.Analysis.Normed.Module.RCLike.Real", "Mathlib.Data.ENat.Basic", "Mathlib.Logic.Equiv.PartialEquiv", "Mathlib.Topology.MetricSpace.ProperSpace.Real" ]
Mathlib/Topology/CWComplex/Classical/Basic.lean
RelCWComplex.iUnion_skeletonLT_eq_complex
null
RelCWComplex.iUnion_skeleton_eq_complex [RelCWComplex C D] : ⋃ (n : ℕ), skeleton C n = C := by apply subset_antisymm (iUnion_subset_iff.2 fun _ ↦ (skeleton C _).subset_complex) simp_rw [← union_iUnion_openCell_eq_complex, union_subset_iff, iUnion₂_subset_iff] exact ⟨subset_iUnion_of_subset 0 (skeleton C 0).base_subset, fun n i ↦ subset_iUnion_of_subset _ (openCell_subset_skeleton n i)⟩
lemma
Topology
[ "Mathlib.Analysis.Normed.Module.RCLike.Real", "Mathlib.Data.ENat.Basic", "Mathlib.Logic.Equiv.PartialEquiv", "Mathlib.Topology.MetricSpace.ProperSpace.Real" ]
Mathlib/Topology/CWComplex/Classical/Basic.lean
RelCWComplex.iUnion_skeleton_eq_complex
null
RelCWComplex.mem_skeletonLT_iff [RelCWComplex C D] {n : ℕ∞} {x : X} : x ∈ skeletonLT C n ↔ x ∈ D ∨ ∃ (m : ℕ) (_ : m < n) (j : cell C m), x ∈ openCell m j := by simp [← SetLike.mem_coe, ← iUnion_openCell_eq_skeletonLT]
lemma
Topology
[ "Mathlib.Analysis.Normed.Module.RCLike.Real", "Mathlib.Data.ENat.Basic", "Mathlib.Logic.Equiv.PartialEquiv", "Mathlib.Topology.MetricSpace.ProperSpace.Real" ]
Mathlib/Topology/CWComplex/Classical/Basic.lean
RelCWComplex.mem_skeletonLT_iff
null
CWComplex.mem_skeletonLT_iff [CWComplex C] {n : ℕ∞} {x : X} : x ∈ skeletonLT C n ↔ ∃ (m : ℕ) (_ : m < n) (j : cell C m), x ∈ openCell m j := by simp [← SetLike.mem_coe, ← iUnion_openCell_eq_skeletonLT]
lemma
Topology
[ "Mathlib.Analysis.Normed.Module.RCLike.Real", "Mathlib.Data.ENat.Basic", "Mathlib.Logic.Equiv.PartialEquiv", "Mathlib.Topology.MetricSpace.ProperSpace.Real" ]
Mathlib/Topology/CWComplex/Classical/Basic.lean
CWComplex.mem_skeletonLT_iff
null
RelCWComplex.mem_skeleton_iff [RelCWComplex C D] {n : ℕ∞} {x : X} : x ∈ skeleton C n ↔ x ∈ D ∨ ∃ (m : ℕ) (_ : m ≤ n) (j : cell C m), x ∈ openCell m j := by rw [skeleton, mem_skeletonLT_iff] suffices ∀ (m : ℕ), m < n + 1 ↔ m ≤ n by simp_rw [this] intro m cases n · simp · rw [← Nat.cast_one, ← Nat.cast_add, Nat.cast_lt, Nat.cast_le, Order.lt_add_one_iff]
lemma
Topology
[ "Mathlib.Analysis.Normed.Module.RCLike.Real", "Mathlib.Data.ENat.Basic", "Mathlib.Logic.Equiv.PartialEquiv", "Mathlib.Topology.MetricSpace.ProperSpace.Real" ]
Mathlib/Topology/CWComplex/Classical/Basic.lean
RelCWComplex.mem_skeleton_iff
null
CWComplex.exists_mem_openCell_of_mem_skeleton [CWComplex C] {n : ℕ∞} {x : X} : x ∈ skeleton C n ↔ ∃ (m : ℕ) (_ : m ≤ n) (j : cell C m), x ∈ openCell m j := by rw [RelCWComplex.mem_skeleton_iff, mem_empty_iff_false, false_or]
lemma
Topology
[ "Mathlib.Analysis.Normed.Module.RCLike.Real", "Mathlib.Data.ENat.Basic", "Mathlib.Logic.Equiv.PartialEquiv", "Mathlib.Topology.MetricSpace.ProperSpace.Real" ]
Mathlib/Topology/CWComplex/Classical/Basic.lean
CWComplex.exists_mem_openCell_of_mem_skeleton
null
RelCWComplex.disjoint_skeletonLT_openCell [RelCWComplex C D] {n : ℕ∞} {m : ℕ} {j : cell C m} (hnm : n ≤ m) : Disjoint (skeletonLT C n : Set X) (openCell m j) := by simp_rw [← iUnion_openCell_eq_skeletonLT, disjoint_union_left, disjoint_iUnion_left] refine ⟨(disjointBase m j).symm, ?_⟩ intro l hln i apply disjoint_openCell_of_ne intro simp_all only [Sigma.mk.inj_iff] exact (lt_self_iff_false m).mp (ENat.coe_lt_coe.1 (hln.trans_le hnm))
lemma
Topology
[ "Mathlib.Analysis.Normed.Module.RCLike.Real", "Mathlib.Data.ENat.Basic", "Mathlib.Logic.Equiv.PartialEquiv", "Mathlib.Topology.MetricSpace.ProperSpace.Real" ]
Mathlib/Topology/CWComplex/Classical/Basic.lean
RelCWComplex.disjoint_skeletonLT_openCell
A skeleton and an open cell of a higher dimension are disjoint.
RelCWComplex.disjoint_skeleton_openCell [RelCWComplex C D] {n : ℕ∞} {m : ℕ} {j : cell C m} (nlem : n < m) : Disjoint (skeleton C n : Set X) (openCell m j) := disjoint_skeletonLT_openCell (Order.add_one_le_of_lt nlem)
lemma
Topology
[ "Mathlib.Analysis.Normed.Module.RCLike.Real", "Mathlib.Data.ENat.Basic", "Mathlib.Logic.Equiv.PartialEquiv", "Mathlib.Topology.MetricSpace.ProperSpace.Real" ]
Mathlib/Topology/CWComplex/Classical/Basic.lean
RelCWComplex.disjoint_skeleton_openCell
A skeleton and an open cell of a higher dimension are disjoint.
RelCWComplex.skeletonLT_inter_closedCell_eq_skeletonLT_inter_cellFrontier [RelCWComplex C D] {n : ℕ∞} {m : ℕ} {j : cell C m} (hnm : n ≤ m) : (skeletonLT C n : Set X) ∩ closedCell m j = (skeletonLT C n : Set X) ∩ cellFrontier m j := by refine subset_antisymm ?_ (inter_subset_inter_right _ (cellFrontier_subset_closedCell _ _)) rw [← cellFrontier_union_openCell_eq_closedCell, inter_union_distrib_left] apply union_subset (by rfl) rw [(disjoint_skeletonLT_openCell hnm).inter_eq] exact empty_subset _
lemma
Topology
[ "Mathlib.Analysis.Normed.Module.RCLike.Real", "Mathlib.Data.ENat.Basic", "Mathlib.Logic.Equiv.PartialEquiv", "Mathlib.Topology.MetricSpace.ProperSpace.Real" ]
Mathlib/Topology/CWComplex/Classical/Basic.lean
RelCWComplex.skeletonLT_inter_closedCell_eq_skeletonLT_inter_cellFrontier
A skeleton intersected with a closed cell of a higher dimension is the skeleton intersected with the boundary of the cell.
RelCWComplex.skeleton_inter_closedCell_eq_skeleton_inter_cellFrontier [RelCWComplex C D] {n : ℕ∞} {m : ℕ} {j : cell C m} (hnm : n < m) : (skeleton C n : Set X) ∩ closedCell m j = (skeleton C n : Set X) ∩ cellFrontier m j := skeletonLT_inter_closedCell_eq_skeletonLT_inter_cellFrontier (Order.add_one_le_of_lt hnm)
lemma
Topology
[ "Mathlib.Analysis.Normed.Module.RCLike.Real", "Mathlib.Data.ENat.Basic", "Mathlib.Logic.Equiv.PartialEquiv", "Mathlib.Topology.MetricSpace.ProperSpace.Real" ]
Mathlib/Topology/CWComplex/Classical/Basic.lean
RelCWComplex.skeleton_inter_closedCell_eq_skeleton_inter_cellFrontier
Version of `skeletonLT_inter_closedCell_eq_skeletonLT_inter_cellFrontier` using `skeleton`.
RelCWComplex.disjoint_interior_base_closedCell [T2Space X] [RelCWComplex C D] {n : ℕ} {j : cell C n} : Disjoint (interior D) (closedCell n j) := by rw [disjoint_iff_inter_eq_empty] by_contra h push_neg at h rw [← closure_openCell_eq_closedCell, inter_comm, closure_inter_open_nonempty_iff isOpen_interior] at h rcases h with ⟨x, xmemcell, xmemD⟩ suffices x ∈ (skeletonLT C 0 : Set X) ∩ openCell n j by rwa [(disjoint_skeletonLT_openCell n.cast_nonneg').inter_eq] at this exact ⟨(skeletonLT C 0).base_subset (interior_subset xmemD), xmemcell⟩
lemma
Topology
[ "Mathlib.Analysis.Normed.Module.RCLike.Real", "Mathlib.Data.ENat.Basic", "Mathlib.Logic.Equiv.PartialEquiv", "Mathlib.Topology.MetricSpace.ProperSpace.Real" ]
Mathlib/Topology/CWComplex/Classical/Basic.lean
RelCWComplex.disjoint_interior_base_closedCell
null
RelCWComplex.disjoint_interior_base_iUnion_closedCell [T2Space X] [RelCWComplex C D] : Disjoint (interior D) (⋃ (n : ℕ) (j : cell C n), closedCell n j) := by simp_rw [disjoint_iff_inter_eq_empty, inter_iUnion, disjoint_interior_base_closedCell.inter_eq, iUnion_empty]
lemma
Topology
[ "Mathlib.Analysis.Normed.Module.RCLike.Real", "Mathlib.Data.ENat.Basic", "Mathlib.Logic.Equiv.PartialEquiv", "Mathlib.Topology.MetricSpace.ProperSpace.Real" ]
Mathlib/Topology/CWComplex/Classical/Basic.lean
RelCWComplex.disjoint_interior_base_iUnion_closedCell
null
RelCWComplex.FiniteDimensional.{u} {X : Type u} [TopologicalSpace X] (C : Set X) {D : Set X} [RelCWComplex C D] : Prop where /-- For some natural number `n`, the type `cell C m` is empty for all `m ≥ n`. -/ eventually_isEmpty_cell : ∀ᶠ n in Filter.atTop, IsEmpty (cell C n)
class
Topology
[ "Mathlib.Topology.CWComplex.Classical.Basic" ]
Mathlib/Topology/CWComplex/Classical/Finite.lean
RelCWComplex.FiniteDimensional.
A CW complex is finite dimensional if `cell C n` is empty for all but finitely many `n`.
RelCWComplex.FiniteType.{u} {X : Type u} [TopologicalSpace X] (C : Set X) {D : Set X} [RelCWComplex C D] : Prop where /-- `cell C n` is finite for every `n`. -/ finite_cell (n : ℕ) : Finite (cell C n)
class
Topology
[ "Mathlib.Topology.CWComplex.Classical.Basic" ]
Mathlib/Topology/CWComplex/Classical/Finite.lean
RelCWComplex.FiniteType.
A CW complex is of finite type if `cell C n` is finite for every `n`.
RelCWComplex.Finite {X : Type*} [TopologicalSpace X] (C : Set X) {D : Set X} [RelCWComplex C D] extends FiniteDimensional C, FiniteType C variable {X : Type*} [TopologicalSpace X] (C : Set X) {D : Set X} [RelCWComplex C D]
class
Topology
[ "Mathlib.Topology.CWComplex.Classical.Basic" ]
Mathlib/Topology/CWComplex/Classical/Finite.lean
RelCWComplex.Finite
A CW complex is finite if it is finite dimensional and of finite type.
RelCWComplex.finite_of_finiteDimensional_finiteType [FiniteDimensional C] [FiniteType C] : Finite C where eventually_isEmpty_cell := FiniteDimensional.eventually_isEmpty_cell finite_cell n := FiniteType.finite_cell n
lemma
Topology
[ "Mathlib.Topology.CWComplex.Classical.Basic" ]
Mathlib/Topology/CWComplex/Classical/Finite.lean
RelCWComplex.finite_of_finiteDimensional_finiteType
null
@[simps -isSimp] RelCWComplex.mkFiniteType.{u} {X : Type u} [TopologicalSpace X] (C : Set X) (D : outParam (Set X)) (cell : (n : ℕ) → Type u) (map : (n : ℕ) → (i : cell n) → PartialEquiv (Fin n → ℝ) X) (finite_cell : ∀ (n : ℕ), _root_.Finite (cell n)) (source_eq : ∀ (n : ℕ) (i : cell n), (map n i).source = ball 0 1) (continuousOn : ∀ (n : ℕ) (i : cell n), ContinuousOn (map n i) (closedBall 0 1)) (continuousOn_symm : ∀ (n : ℕ) (i : cell n), ContinuousOn (map n i).symm (map n i).target) (pairwiseDisjoint' : (univ : Set (Σ n, cell n)).PairwiseDisjoint (fun ni ↦ map ni.1 ni.2 '' ball 0 1)) (disjointBase' : ∀ (n : ℕ) (i : cell n), Disjoint (map n i '' ball 0 1) D) (mapsTo : ∀ (n : ℕ) (i : cell n), MapsTo (map n i) (sphere 0 1) (D ∪ ⋃ (m < n) (j : cell m), map m j '' closedBall 0 1)) (closed' : ∀ (A : Set X) (_ : A ⊆ C), ((∀ n j, IsClosed (A ∩ map n j '' closedBall 0 1)) ∧ IsClosed (A ∩ D)) → IsClosed A) (isClosedBase : IsClosed D) (union' : D ∪ ⋃ (n : ℕ) (j : cell n), map n j '' closedBall 0 1 = C) : RelCWComplex C D where cell := cell map := map source_eq := source_eq continuousOn := continuousOn continuousOn_symm := continuousOn_symm pairwiseDisjoint' := pairwiseDisjoint' disjointBase' := disjointBase' mapsTo n i := by use fun m ↦ finite_univ.toFinset (s := (univ : Set (cell m))) simp only [Finite.mem_toFinset, mem_univ, iUnion_true] exact mapsTo n i closed' := closed' isClosedBase := isClosedBase union' := union'
def
Topology
[ "Mathlib.Topology.CWComplex.Classical.Basic" ]
Mathlib/Topology/CWComplex/Classical/Finite.lean
RelCWComplex.mkFiniteType.
If we want to construct a relative CW complex of finite type, we can add the condition `finite_cell` and relax the condition `mapsTo`.
RelCWComplex.finiteType_mkFiniteType.{u} {X : Type u} [TopologicalSpace X] (C : Set X) (D : outParam (Set X)) (cell : (n : ℕ) → Type u) (map : (n : ℕ) → (i : cell n) → PartialEquiv (Fin n → ℝ) X) (finite_cell : ∀ (n : ℕ), _root_.Finite (cell n)) (source_eq : ∀ (n : ℕ) (i : cell n), (map n i).source = ball 0 1) (continuousOn : ∀ (n : ℕ) (i : cell n), ContinuousOn (map n i) (closedBall 0 1)) (continuousOn_symm : ∀ (n : ℕ) (i : cell n), ContinuousOn (map n i).symm (map n i).target) (pairwiseDisjoint' : (univ : Set (Σ n, cell n)).PairwiseDisjoint (fun ni ↦ map ni.1 ni.2 '' ball 0 1)) (disjointBase' : ∀ (n : ℕ) (i : cell n), Disjoint (map n i '' ball 0 1) D) (mapsTo : ∀ (n : ℕ) (i : cell n), MapsTo (map n i) (sphere 0 1) (D ∪ ⋃ (m < n) (j : cell m), map m j '' closedBall 0 1)) (closed' : ∀ (A : Set X) (_ : A ⊆ C), ((∀ n j, IsClosed (A ∩ map n j '' closedBall 0 1)) ∧ IsClosed (A ∩ D)) → IsClosed A) (isClosedBase : IsClosed D) (union' : D ∪ ⋃ (n : ℕ) (j : cell n), map n j '' closedBall 0 1 = C) : letI := mkFiniteType C D cell map finite_cell source_eq continuousOn continuousOn_symm pairwiseDisjoint' disjointBase' mapsTo closed' isClosedBase union' FiniteType C := letI := mkFiniteType C D cell map finite_cell source_eq continuousOn continuousOn_symm pairwiseDisjoint' disjointBase' mapsTo closed' isClosedBase union' { finite_cell := finite_cell }
lemma
Topology
[ "Mathlib.Topology.CWComplex.Classical.Basic" ]
Mathlib/Topology/CWComplex/Classical/Finite.lean
RelCWComplex.finiteType_mkFiniteType.
A CW complex that was constructed using `RelCWComplex.mkFiniteType` is of finite type.
@[simps -isSimp] CWComplex.mkFiniteType.{u} {X : Type u} [TopologicalSpace X] (C : Set X) (cell : (n : ℕ) → Type u) (map : (n : ℕ) → (i : cell n) → PartialEquiv (Fin n → ℝ) X) (finite_cell : ∀ (n : ℕ), _root_.Finite (cell n)) (source_eq : ∀ (n : ℕ) (i : cell n), (map n i).source = ball 0 1) (continuousOn : ∀ (n : ℕ) (i : cell n), ContinuousOn (map n i) (closedBall 0 1)) (continuousOn_symm : ∀ (n : ℕ) (i : cell n), ContinuousOn (map n i).symm (map n i).target) (pairwiseDisjoint' : (univ : Set (Σ n, cell n)).PairwiseDisjoint (fun ni ↦ map ni.1 ni.2 '' ball 0 1)) (mapsTo : ∀ (n : ℕ) (i : cell n), MapsTo (map n i) (sphere 0 1) (⋃ (m < n) (j : cell m), map m j '' closedBall 0 1)) (closed' : ∀ (A : Set X) (_ : A ⊆ C), (∀ n j, IsClosed (A ∩ map n j '' closedBall 0 1)) → IsClosed A) (union' : ⋃ (n : ℕ) (j : cell n), map n j '' closedBall 0 1 = C) : CWComplex C where cell := cell map := map source_eq := source_eq continuousOn := continuousOn continuousOn_symm := continuousOn_symm pairwiseDisjoint' := pairwiseDisjoint' mapsTo' n i := by use fun m ↦ finite_univ.toFinset (s := (univ : Set (cell m))) simp only [Finite.mem_toFinset, mem_univ, iUnion_true] exact mapsTo n i closed' := closed' union' := union'
def
Topology
[ "Mathlib.Topology.CWComplex.Classical.Basic" ]
Mathlib/Topology/CWComplex/Classical/Finite.lean
CWComplex.mkFiniteType.
If we want to construct a CW complex of finite type, we can add the condition `finite_cell` and relax the condition `mapsTo`.
CWComplex.finiteType_mkFiniteType.{u} {X : Type u} [TopologicalSpace X] (C : Set X) (cell : (n : ℕ) → Type u) (map : (n : ℕ) → (i : cell n) → PartialEquiv (Fin n → ℝ) X) (finite_cell : ∀ (n : ℕ), _root_.Finite (cell n)) (source_eq : ∀ (n : ℕ) (i : cell n), (map n i).source = ball 0 1) (continuousOn : ∀ (n : ℕ) (i : cell n), ContinuousOn (map n i) (closedBall 0 1)) (continuousOn_symm : ∀ (n : ℕ) (i : cell n), ContinuousOn (map n i).symm (map n i).target) (pairwiseDisjoint' : (univ : Set (Σ n, cell n)).PairwiseDisjoint (fun ni ↦ map ni.1 ni.2 '' ball 0 1)) (mapsTo : ∀ (n : ℕ) (i : cell n), MapsTo (map n i) (sphere 0 1) (⋃ (m < n) (j : cell m), map m j '' closedBall 0 1)) (closed' : ∀ (A : Set X) (_ : A ⊆ C), (∀ n j, IsClosed (A ∩ map n j '' closedBall 0 1)) → IsClosed A) (union' : ⋃ (n : ℕ) (j : cell n), map n j '' closedBall 0 1 = C) : letI := mkFiniteType C cell map finite_cell source_eq continuousOn continuousOn_symm pairwiseDisjoint' mapsTo closed' union' FiniteType C := letI := mkFiniteType C cell map finite_cell source_eq continuousOn continuousOn_symm pairwiseDisjoint' mapsTo closed' union' { finite_cell := finite_cell }
lemma
Topology
[ "Mathlib.Topology.CWComplex.Classical.Basic" ]
Mathlib/Topology/CWComplex/Classical/Finite.lean
CWComplex.finiteType_mkFiniteType.
A CW complex that was constructed using `CWComplex.mkFiniteType` is of finite type.
@[simps -isSimp] RelCWComplex.mkFinite.{u} {X : Type u} [TopologicalSpace X] (C : Set X) (D : outParam (Set X)) (cell : (n : ℕ) → Type u) (map : (n : ℕ) → (i : cell n) → PartialEquiv (Fin n → ℝ) X) (eventually_isEmpty_cell : ∀ᶠ n in Filter.atTop, IsEmpty (cell n)) (finite_cell : ∀ (n : ℕ), _root_.Finite (cell n)) (source_eq : ∀ (n : ℕ) (i : cell n), (map n i).source = ball 0 1) (continuousOn : ∀ (n : ℕ) (i : cell n), ContinuousOn (map n i) (closedBall 0 1)) (continuousOn_symm : ∀ (n : ℕ) (i : cell n), ContinuousOn (map n i).symm (map n i).target) (pairwiseDisjoint' : (univ : Set (Σ n, cell n)).PairwiseDisjoint (fun ni ↦ map ni.1 ni.2 '' ball 0 1)) (disjointBase' : ∀ (n : ℕ) (i : cell n), Disjoint (map n i '' ball 0 1) D) (mapsTo : ∀ (n : ℕ) (i : cell n), MapsTo (map n i) (sphere 0 1) (D ∪ ⋃ (m < n) (j : cell m), map m j '' closedBall 0 1)) (isClosedBase : IsClosed D) (union' : D ∪ ⋃ (n : ℕ) (j : cell n), map n j '' closedBall 0 1 = C) : RelCWComplex C D where cell := cell map := map source_eq := source_eq continuousOn := continuousOn continuousOn_symm := continuousOn_symm pairwiseDisjoint' := pairwiseDisjoint' disjointBase' := disjointBase' mapsTo n i := by use fun m ↦ finite_univ.toFinset (s := (univ : Set (cell m))) simp only [Finite.mem_toFinset, mem_univ, iUnion_true] exact mapsTo n i closed' A asubc := by intro h rw [← inter_eq_left.2 asubc] simp_rw [Filter.eventually_atTop, ge_iff_le] at eventually_isEmpty_cell obtain ⟨N, hN⟩ := eventually_isEmpty_cell suffices IsClosed (A ∩ (D ∪ ⋃ (n : {n : ℕ // n < N}), ⋃ j, ↑(map n j) '' closedBall 0 1)) by convert this using 2 rw [← union', iUnion_subtype] congrm D ∪ ⋃ n, ?_ refine subset_antisymm ?_ (iUnion_subset (fun i ↦ by rfl)) apply iUnion_subset intro i have : n < N := Decidable.byContradiction fun h ↦ (hN n (Nat.ge_of_not_lt h)).false i exact subset_iUnion₂ (s := fun _ i ↦ (map n i) '' closedBall 0 1) this i simp_rw [inter_union_distrib_left, inter_iUnion] exact h.2.union (isClosed_iUnion_of_finite (fun n ↦ isClosed_iUnion_of_finite (h.1 n.1))) isClosedBase := isClosedBase union' := union'
def
Topology
[ "Mathlib.Topology.CWComplex.Classical.Basic" ]
Mathlib/Topology/CWComplex/Classical/Finite.lean
RelCWComplex.mkFinite.
If we want to construct a finite relative CW complex we can add the conditions `eventually_isEmpty_cell` and `finite_cell`, relax the condition `mapsTo` and remove the condition `closed'`.
RelCWComplex.finite_mkFinite.{u} {X : Type u} [TopologicalSpace X] (C : Set X) (D : outParam (Set X)) (cell : (n : ℕ) → Type u) (map : (n : ℕ) → (i : cell n) → PartialEquiv (Fin n → ℝ) X) (eventually_isEmpty_cell : ∀ᶠ n in Filter.atTop, IsEmpty (cell n)) (finite_cell : ∀ (n : ℕ), _root_.Finite (cell n)) (source_eq : ∀ (n : ℕ) (i : cell n), (map n i).source = ball 0 1) (continuousOn : ∀ (n : ℕ) (i : cell n), ContinuousOn (map n i) (closedBall 0 1)) (continuousOn_symm : ∀ (n : ℕ) (i : cell n), ContinuousOn (map n i).symm (map n i).target) (pairwiseDisjoint' : (univ : Set (Σ n, cell n)).PairwiseDisjoint (fun ni ↦ map ni.1 ni.2 '' ball 0 1)) (disjointBase' : ∀ (n : ℕ) (i : cell n), Disjoint (map n i '' ball 0 1) D) (mapsTo : ∀ (n : ℕ) (i : cell n), MapsTo (map n i) (sphere 0 1) (D ∪ ⋃ (m < n) (j : cell m), map m j '' closedBall 0 1)) (isClosedBase : IsClosed D) (union' : D ∪ ⋃ (n : ℕ) (j : cell n), map n j '' closedBall 0 1 = C) : letI := mkFinite C D cell map eventually_isEmpty_cell finite_cell source_eq continuousOn continuousOn_symm pairwiseDisjoint' disjointBase' mapsTo isClosedBase union' Finite C := letI := mkFinite C D cell map eventually_isEmpty_cell finite_cell source_eq continuousOn continuousOn_symm pairwiseDisjoint' disjointBase' mapsTo isClosedBase union' { eventually_isEmpty_cell := eventually_isEmpty_cell finite_cell := finite_cell }
lemma
Topology
[ "Mathlib.Topology.CWComplex.Classical.Basic" ]
Mathlib/Topology/CWComplex/Classical/Finite.lean
RelCWComplex.finite_mkFinite.
A CW complex that was constructed using `RelCWComplex.mkFinite` is finite.
@[simps! -isSimp] CWComplex.mkFinite.{u} {X : Type u} [TopologicalSpace X] (C : Set X) (cell : (n : ℕ) → Type u) (map : (n : ℕ) → (i : cell n) → PartialEquiv (Fin n → ℝ) X) (eventually_isEmpty_cell : ∀ᶠ n in Filter.atTop, IsEmpty (cell n)) (finite_cell : ∀ (n : ℕ), _root_.Finite (cell n)) (source_eq : ∀ (n : ℕ) (i : cell n), (map n i).source = ball 0 1) (continuousOn : ∀ (n : ℕ) (i : cell n), ContinuousOn (map n i) (closedBall 0 1)) (continuousOn_symm : ∀ (n : ℕ) (i : cell n), ContinuousOn (map n i).symm (map n i).target) (pairwiseDisjoint' : (univ : Set (Σ n, cell n)).PairwiseDisjoint (fun ni ↦ map ni.1 ni.2 '' ball 0 1)) (mapsTo_iff_image_subset : ∀ (n : ℕ) (i : cell n), MapsTo (map n i) (sphere 0 1) (⋃ (m < n) (j : cell m), map m j '' closedBall 0 1)) (union' : ⋃ (n : ℕ) (j : cell n), map n j '' closedBall 0 1 = C) : CWComplex C := (RelCWComplex.mkFinite C ∅ (cell := cell) (map := map) (eventually_isEmpty_cell := eventually_isEmpty_cell) (finite_cell := finite_cell) (source_eq := source_eq) (continuousOn := continuousOn) (continuousOn_symm := continuousOn_symm) (pairwiseDisjoint' := pairwiseDisjoint') (disjointBase' := by simp only [disjoint_empty, implies_true]) (mapsTo := by simpa only [empty_union]) (isClosedBase := isClosed_empty) (union' := by simpa only [empty_union])).toCWComplex
def
Topology
[ "Mathlib.Topology.CWComplex.Classical.Basic" ]
Mathlib/Topology/CWComplex/Classical/Finite.lean
CWComplex.mkFinite.
If we want to construct a finite CW complex we can add the conditions `eventually_isEmpty_cell` and `finite_cell`, relax the condition `mapsTo` and remove the condition `closed'`.
CWComplex.finite_mkFinite.{u} {X : Type u} [TopologicalSpace X] (C : Set X) (cell : (n : ℕ) → Type u) (map : (n : ℕ) → (i : cell n) → PartialEquiv (Fin n → ℝ) X) (eventually_isEmpty_cell : ∀ᶠ n in Filter.atTop, IsEmpty (cell n)) (finite_cell : ∀ (n : ℕ), _root_.Finite (cell n)) (source_eq : ∀ (n : ℕ) (i : cell n), (map n i).source = ball 0 1) (continuousOn : ∀ (n : ℕ) (i : cell n), ContinuousOn (map n i) (closedBall 0 1)) (continuousOn_symm : ∀ (n : ℕ) (i : cell n), ContinuousOn (map n i).symm (map n i).target) (pairwiseDisjoint' : (univ : Set (Σ n, cell n)).PairwiseDisjoint (fun ni ↦ map ni.1 ni.2 '' ball 0 1)) (mapsTo : ∀ (n : ℕ) (i : cell n), MapsTo (map n i) (sphere 0 1) (⋃ (m < n) (j : cell m), map m j '' closedBall 0 1)) (union' : ⋃ (n : ℕ) (j : cell n), map n j '' closedBall 0 1 = C) : letI := mkFinite C cell map eventually_isEmpty_cell finite_cell source_eq continuousOn continuousOn_symm pairwiseDisjoint' mapsTo union' Finite C := letI := mkFinite C cell map eventually_isEmpty_cell finite_cell source_eq continuousOn continuousOn_symm pairwiseDisjoint' mapsTo union' { eventually_isEmpty_cell := eventually_isEmpty_cell finite_cell := finite_cell } variable {X : Type*} [TopologicalSpace X] {C D : Set X} [RelCWComplex C D]
lemma
Topology
[ "Mathlib.Topology.CWComplex.Classical.Basic" ]
Mathlib/Topology/CWComplex/Classical/Finite.lean
CWComplex.finite_mkFinite.
A CW complex that was constructed using `CWComplex.mkFinite` is finite.
RelCWComplex.finite_of_finite_cells (finite : _root_.Finite (Σ n, cell C n)) : Finite C where eventually_isEmpty_cell := by simp only [Filter.eventually_atTop, ge_iff_le] by_cases h : IsEmpty (Σ n, cell C n) · exact ⟨0, by simp_all⟩ push_neg at h have _ := Fintype.ofFinite (Σ n, cell C n) classical let A := (Finset.univ : Finset (Σ n, cell C n)).image Sigma.fst use A.max' (Finset.image_nonempty.2 Finset.univ_nonempty) + 1 intro m _ by_contra! h' have hmA : m ∈ A := by simp only [Finset.mem_image, Finset.mem_univ, true_and, A] simp only [← exists_true_iff_nonempty] at h' obtain ⟨j, _⟩ := h' use ⟨m, j⟩ linarith [A.le_max' m hmA] finite_cell _ := Finite.of_injective (Sigma.mk _) sigma_mk_injective
lemma
Topology
[ "Mathlib.Topology.CWComplex.Classical.Basic" ]
Mathlib/Topology/CWComplex/Classical/Finite.lean
RelCWComplex.finite_of_finite_cells
If the collection of all cells (of any dimension) of a relative CW complex `C` is finite, then `C` is finite as a CW complex.
RelCWComplex.finite_cells_of_finite [finite : Finite C] : _root_.Finite (Σ n, cell C n) := by have h := finite.eventually_isEmpty_cell have _ := finite.finite_cell simp only [Filter.eventually_atTop, ge_iff_le] at h rcases h with ⟨n, hn⟩ have (m) (j : cell C m) : m < n := by by_contra h exact (hn m (not_lt.1 h)).false j let f : (Σ (m : {m : ℕ // m < n}), cell C m) ≃ Σ m, cell C m := { toFun := fun ⟨m, j⟩ ↦ ⟨m, j⟩ invFun := fun ⟨m, j⟩ ↦ ⟨⟨m, this m j⟩, j⟩ left_inv := by simp [Function.LeftInverse] right_inv := by simp [Function.RightInverse, Function.LeftInverse]} rw [← Equiv.finite_iff f] exact Finite.instSigma
lemma
Topology
[ "Mathlib.Topology.CWComplex.Classical.Basic" ]
Mathlib/Topology/CWComplex/Classical/Finite.lean
RelCWComplex.finite_cells_of_finite
If `C` is finite as a CW complex then the collection of all cells (of any dimension) is finite.
RelCWComplex.finite_iff_finite_cells : Finite C ↔ _root_.Finite (Σ n, cell C n) := ⟨fun h ↦ finite_cells_of_finite (finite := h), finite_of_finite_cells⟩
lemma
Topology
[ "Mathlib.Topology.CWComplex.Classical.Basic" ]
Mathlib/Topology/CWComplex/Classical/Finite.lean
RelCWComplex.finite_iff_finite_cells
A CW complex is finite iff the total number of its cells is finite.
RelCWComplex.Subcomplex.closedCell_subset_of_mem [T2Space X] [RelCWComplex C D] (E : Subcomplex C) {n : ℕ} {i : cell C n} (hi : i ∈ E.I n) : closedCell n i ⊆ E := by rw [← closure_openCell_eq_closedCell, E.closed.closure_subset_iff, ← E.union] apply subset_union_of_subset_right exact subset_iUnion_of_subset n (subset_iUnion (fun (j : ↑(E.I n)) ↦ openCell (C := C) n j) ⟨i, hi⟩)
lemma
Topology
[ "Mathlib.Topology.CWComplex.Classical.Finite", "Mathlib.Analysis.Normed.Module.RCLike.Real" ]
Mathlib/Topology/CWComplex/Classical/Subcomplex.lean
RelCWComplex.Subcomplex.closedCell_subset_of_mem
null
RelCWComplex.Subcomplex.openCell_subset_of_mem [T2Space X] [RelCWComplex C D] (E : Subcomplex C) {n : ℕ} {i : cell C n} (hi : i ∈ E.I n) : openCell n i ⊆ E := (openCell_subset_closedCell n i).trans (closedCell_subset_of_mem E hi)
lemma
Topology
[ "Mathlib.Topology.CWComplex.Classical.Finite", "Mathlib.Analysis.Normed.Module.RCLike.Real" ]
Mathlib/Topology/CWComplex/Classical/Subcomplex.lean
RelCWComplex.Subcomplex.openCell_subset_of_mem
null
RelCWComplex.Subcomplex.cellFrontier_subset_of_mem [T2Space X] [RelCWComplex C D] (E : Subcomplex C) {n : ℕ} {i : cell C n} (hi : i ∈ E.I n) : cellFrontier n i ⊆ E := (cellFrontier_subset_closedCell n i).trans (closedCell_subset_of_mem E hi)
lemma
Topology
[ "Mathlib.Topology.CWComplex.Classical.Finite", "Mathlib.Analysis.Normed.Module.RCLike.Real" ]
Mathlib/Topology/CWComplex/Classical/Subcomplex.lean
RelCWComplex.Subcomplex.cellFrontier_subset_of_mem
null
RelCWComplex.Subcomplex.union_closedCell [T2Space X] [RelCWComplex C D] (E : Subcomplex C) : D ∪ ⋃ (n : ℕ) (j : E.I n), closedCell (C := C) n j = E := by apply subset_antisymm · apply union_subset E.base_subset exact iUnion₂_subset fun n i ↦ closedCell_subset_of_mem E i.2 · rw [← E.union] apply union_subset_union_right apply iUnion₂_mono fun n i ↦ ?_ exact openCell_subset_closedCell (C := C) n i
lemma
Topology
[ "Mathlib.Topology.CWComplex.Classical.Finite", "Mathlib.Analysis.Normed.Module.RCLike.Real" ]
Mathlib/Topology/CWComplex/Classical/Subcomplex.lean
RelCWComplex.Subcomplex.union_closedCell
A subcomplex is the union of its closed cells and its base.
CWComplex.Subcomplex.union_closedCell [T2Space X] [CWComplex C] (E : Subcomplex C) : ⋃ (n : ℕ) (j : E.I n), closedCell (C := C) n j = E := (empty_union _ ).symm.trans (RelCWComplex.Subcomplex.union_closedCell E)
lemma
Topology
[ "Mathlib.Topology.CWComplex.Classical.Finite", "Mathlib.Analysis.Normed.Module.RCLike.Real" ]
Mathlib/Topology/CWComplex/Classical/Subcomplex.lean
CWComplex.Subcomplex.union_closedCell
A subcomplex is the union of its closed cells.
RelCWComplex.Subcomplex.disjoint_openCell_subcomplex_of_not_mem [RelCWComplex C D] (E : Subcomplex C) {n : ℕ} {i : cell C n} (h : i ∉ E.I n) : Disjoint (openCell n i) E := by simp_rw [← union, disjoint_union_right, disjoint_iUnion_right] exact ⟨disjointBase n i , fun _ _ ↦ disjoint_openCell_of_ne (by aesop)⟩ open Classical in
lemma
Topology
[ "Mathlib.Topology.CWComplex.Classical.Finite", "Mathlib.Analysis.Normed.Module.RCLike.Real" ]
Mathlib/Topology/CWComplex/Classical/Subcomplex.lean
RelCWComplex.Subcomplex.disjoint_openCell_subcomplex_of_not_mem
null
@[simps] RelCWComplex.Subcomplex.instRelCWComplex [T2Space X] [RelCWComplex C D] (E : Subcomplex C) : RelCWComplex E D where cell n := E.I n map n i := map (C := C) n i source_eq n i := source_eq (C := C) n i continuousOn n i := continuousOn (C := C) n i continuousOn_symm n i := continuousOn_symm (C := C) n i pairwiseDisjoint' := by intro ⟨n, i⟩ _ ⟨m, j⟩ _ hne refine @pairwiseDisjoint' _ _ C D _ ⟨n, i⟩ trivial ⟨m, j⟩ trivial ?_ exact Function.injective_id.sigma_map (fun _ ↦ Subtype.val_injective) |>.ne hne disjointBase' n i := disjointBase' (C := C) n i mapsTo := by intro n i rcases cellFrontier_subset_finite_openCell (C := C) n i with ⟨J, hJ⟩ use fun m ↦ Finset.preimage (J m) Subtype.val Subtype.val_injective.injOn rw [mapsTo_iff_image_subset] intro x hx specialize hJ hx simp_rw [iUnion_coe_set, mem_union, mem_iUnion, Finset.mem_preimage, exists_prop, Decidable.or_iff_not_imp_left] at hJ ⊢ intro h specialize hJ h obtain ⟨m, hmn, j, hj, hxj⟩ := hJ suffices j ∈ E.I m from ⟨m, hmn, j, this, hj, openCell_subset_closedCell _ _ hxj⟩ have : x ∈ (E : Set X) := E.cellFrontier_subset_of_mem i.2 hx by_contra hj' exact E.disjoint_openCell_subcomplex_of_not_mem hj' |>.notMem_of_mem_left hxj this closed' A hA h := by apply isClosed_of_disjoint_openCell_or_isClosed_inter_closedCell (subset_trans hA (subset_complex (C := C) E)) h.2 intro n _ j by_cases hj : j ∈ E.I n · exact Or.intro_right _ (h.1 n ⟨j, hj⟩) · exact Or.intro_left _ ((disjoint_openCell_subcomplex_of_not_mem E hj).symm.mono_left hA) isClosedBase := isClosedBase (C := C) union' := union_closedCell E
instance
Topology
[ "Mathlib.Topology.CWComplex.Classical.Finite", "Mathlib.Analysis.Normed.Module.RCLike.Real" ]
Mathlib/Topology/CWComplex/Classical/Subcomplex.lean
RelCWComplex.Subcomplex.instRelCWComplex
A subcomplex is again a CW complex.
CWComplex.Subcomplex.instCWComplex [T2Space X] [CWComplex C] (E : Subcomplex C) : CWComplex (E : Set X) := RelCWComplex.toCWComplex (E : Set X) @[simp]
instance
Topology
[ "Mathlib.Topology.CWComplex.Classical.Finite", "Mathlib.Analysis.Normed.Module.RCLike.Real" ]
Mathlib/Topology/CWComplex/Classical/Subcomplex.lean
CWComplex.Subcomplex.instCWComplex
A subcomplex is again a CW complex.
CWComplex.Subcomplex.cell_def [T2Space X] [CWComplex C] (E : Subcomplex C) (n : ℕ) : cell (E : Set X) n = E.I (C := C) n := rfl @[simp]
lemma
Topology
[ "Mathlib.Topology.CWComplex.Classical.Finite", "Mathlib.Analysis.Normed.Module.RCLike.Real" ]
Mathlib/Topology/CWComplex/Classical/Subcomplex.lean
CWComplex.Subcomplex.cell_def
null
CWComplex.Subcomplex.map_def [T2Space X] [CWComplex C] (E : Subcomplex C) (n : ℕ) (i : E.I n) : map (C := E) n i = map (C := C) n i := rfl @[simp]
lemma
Topology
[ "Mathlib.Topology.CWComplex.Classical.Finite", "Mathlib.Analysis.Normed.Module.RCLike.Real" ]
Mathlib/Topology/CWComplex/Classical/Subcomplex.lean
CWComplex.Subcomplex.map_def
null
RelCWComplex.Subcomplex.openCell_eq [T2Space X] [RelCWComplex C D] (E : Subcomplex C) (n : ℕ) (i : E.I n) : openCell (C := E) n i = openCell n (i : cell C n) := by rfl @[simp]
lemma
Topology
[ "Mathlib.Topology.CWComplex.Classical.Finite", "Mathlib.Analysis.Normed.Module.RCLike.Real" ]
Mathlib/Topology/CWComplex/Classical/Subcomplex.lean
RelCWComplex.Subcomplex.openCell_eq
null
RelCWComplex.Subcomplex.closedCell_eq [T2Space X] [RelCWComplex C D] (E : Subcomplex C) (n : ℕ) (i : E.I n) : closedCell (C := E) n i = closedCell n (i : cell C n) := by rfl @[simp]
lemma
Topology
[ "Mathlib.Topology.CWComplex.Classical.Finite", "Mathlib.Analysis.Normed.Module.RCLike.Real" ]
Mathlib/Topology/CWComplex/Classical/Subcomplex.lean
RelCWComplex.Subcomplex.closedCell_eq
null
RelCWComplex.Subcomplex.cellFrontier_eq [T2Space X] [RelCWComplex C D] (E : Subcomplex C) (n : ℕ) (i : E.I n) : cellFrontier (C := E) n i = cellFrontier n (i : cell C n) := by rfl
lemma
Topology
[ "Mathlib.Topology.CWComplex.Classical.Finite", "Mathlib.Analysis.Normed.Module.RCLike.Real" ]
Mathlib/Topology/CWComplex/Classical/Subcomplex.lean
RelCWComplex.Subcomplex.cellFrontier_eq
null
RelCWComplex.Subcomplex.finiteType_subcomplex_of_finiteType [T2Space X] [RelCWComplex C D] [FiniteType C] (E : Subcomplex C) : FiniteType (E : Set X) where finite_cell n := let _ := FiniteType.finite_cell (C := C) (D := D) n Subtype.finite
instance
Topology
[ "Mathlib.Topology.CWComplex.Classical.Finite", "Mathlib.Analysis.Normed.Module.RCLike.Real" ]
Mathlib/Topology/CWComplex/Classical/Subcomplex.lean
RelCWComplex.Subcomplex.finiteType_subcomplex_of_finiteType
null
RelCWComplex.Subcomplex.finiteDimensional_subcomplex_of_finiteDimensional [T2Space X] [RelCWComplex C D] [FiniteDimensional C] (E : Subcomplex C) : FiniteDimensional (E : Set X) where eventually_isEmpty_cell := by filter_upwards [FiniteDimensional.eventually_isEmpty_cell (C := C) (D := D)] with n hn simp [isEmpty_subtype]
instance
Topology
[ "Mathlib.Topology.CWComplex.Classical.Finite", "Mathlib.Analysis.Normed.Module.RCLike.Real" ]
Mathlib/Topology/CWComplex/Classical/Subcomplex.lean
RelCWComplex.Subcomplex.finiteDimensional_subcomplex_of_finiteDimensional
null
RelCWComplex.Subcomplex.finite_subcomplex_of_finite [T2Space X] [RelCWComplex C D] [Finite C] (E : Subcomplex C) : Finite (E : Set X) := finite_of_finiteDimensional_finiteType _
instance
Topology
[ "Mathlib.Topology.CWComplex.Classical.Finite", "Mathlib.Analysis.Normed.Module.RCLike.Real" ]
Mathlib/Topology/CWComplex/Classical/Subcomplex.lean
RelCWComplex.Subcomplex.finite_subcomplex_of_finite
A subcomplex of a finite CW complex is again finite.
continuous_right_toIcoMod : ContinuousWithinAt (toIcoMod hp a) (Ici x) x := by intro s h rw [Filter.mem_map, mem_nhdsWithin_iff_exists_mem_nhds_inter] haveI : Nontrivial 𝕜 := ⟨⟨0, p, hp.ne⟩⟩ simp_rw [mem_nhds_iff_exists_Ioo_subset] at h ⊢ obtain ⟨l, u, hxI, hIs⟩ := h let d := toIcoDiv hp a x • p have hd := toIcoMod_mem_Ico hp a x simp_rw [subset_def, mem_inter_iff] refine ⟨_, ⟨l + d, min (a + p) u + d, ?_, fun x => id⟩, fun y => ?_⟩ <;> simp_rw [← sub_mem_Ioo_iff_left, mem_Ioo, lt_min_iff] · exact ⟨hxI.1, hd.2, hxI.2⟩ · rintro ⟨h, h'⟩ apply hIs rw [← toIcoMod_sub_zsmul, (toIcoMod_eq_self _).2] exacts [⟨h.1, h.2.2⟩, ⟨hd.1.trans (sub_le_sub_right h' _), h.2.1⟩]
theorem
Topology
[ "Mathlib.Algebra.Order.ToIntervalMod", "Mathlib.Algebra.Ring.AddAut", "Mathlib.Data.Nat.Totient", "Mathlib.GroupTheory.Divisible", "Mathlib.Topology.Algebra.IsUniformGroup.Basic", "Mathlib.Topology.Algebra.Order.Field", "Mathlib.Topology.IsLocalHomeomorph", "Mathlib.Topology.Order.T5" ]
Mathlib/Topology/Instances/AddCircle/Defs.lean
continuous_right_toIcoMod
null
continuous_left_toIocMod : ContinuousWithinAt (toIocMod hp a) (Iic x) x := by rw [(funext fun y => Eq.trans (by rw [neg_neg]) <| toIocMod_neg _ _ _ : toIocMod hp a = (fun x => p - x) ∘ toIcoMod hp (-a) ∘ Neg.neg)] exact (continuous_sub_left _).continuousAt.comp_continuousWithinAt <| (continuous_right_toIcoMod _ _ _).comp continuous_neg.continuousWithinAt fun y => neg_le_neg variable {x}
theorem
Topology
[ "Mathlib.Algebra.Order.ToIntervalMod", "Mathlib.Algebra.Ring.AddAut", "Mathlib.Data.Nat.Totient", "Mathlib.GroupTheory.Divisible", "Mathlib.Topology.Algebra.IsUniformGroup.Basic", "Mathlib.Topology.Algebra.Order.Field", "Mathlib.Topology.IsLocalHomeomorph", "Mathlib.Topology.Order.T5" ]
Mathlib/Topology/Instances/AddCircle/Defs.lean
continuous_left_toIocMod
null
toIcoMod_eventuallyEq_toIocMod (hx : (x : 𝕜 ⧸ zmultiples p) ≠ a) : toIcoMod hp a =ᶠ[𝓝 x] toIocMod hp a := IsOpen.mem_nhds (by rw [Ico_eq_locus_Ioc_eq_iUnion_Ioo] exact isOpen_iUnion fun i => isOpen_Ioo) <| (not_modEq_iff_toIcoMod_eq_toIocMod hp).1 <| not_modEq_iff_ne_mod_zmultiples.2 hx.symm
theorem
Topology
[ "Mathlib.Algebra.Order.ToIntervalMod", "Mathlib.Algebra.Ring.AddAut", "Mathlib.Data.Nat.Totient", "Mathlib.GroupTheory.Divisible", "Mathlib.Topology.Algebra.IsUniformGroup.Basic", "Mathlib.Topology.Algebra.Order.Field", "Mathlib.Topology.IsLocalHomeomorph", "Mathlib.Topology.Order.T5" ]
Mathlib/Topology/Instances/AddCircle/Defs.lean
toIcoMod_eventuallyEq_toIocMod
null
continuousAt_toIcoMod (hx : (x : 𝕜 ⧸ zmultiples p) ≠ a) : ContinuousAt (toIcoMod hp a) x := let h := toIcoMod_eventuallyEq_toIocMod hp a hx continuousAt_iff_continuous_left_right.2 <| ⟨(continuous_left_toIocMod hp a x).congr_of_eventuallyEq (h.filter_mono nhdsWithin_le_nhds) h.eq_of_nhds, continuous_right_toIcoMod hp a x⟩
theorem
Topology
[ "Mathlib.Algebra.Order.ToIntervalMod", "Mathlib.Algebra.Ring.AddAut", "Mathlib.Data.Nat.Totient", "Mathlib.GroupTheory.Divisible", "Mathlib.Topology.Algebra.IsUniformGroup.Basic", "Mathlib.Topology.Algebra.Order.Field", "Mathlib.Topology.IsLocalHomeomorph", "Mathlib.Topology.Order.T5" ]
Mathlib/Topology/Instances/AddCircle/Defs.lean
continuousAt_toIcoMod
null
continuousAt_toIocMod (hx : (x : 𝕜 ⧸ zmultiples p) ≠ a) : ContinuousAt (toIocMod hp a) x := let h := toIcoMod_eventuallyEq_toIocMod hp a hx continuousAt_iff_continuous_left_right.2 <| ⟨continuous_left_toIocMod hp a x, (continuous_right_toIcoMod hp a x).congr_of_eventuallyEq (h.symm.filter_mono nhdsWithin_le_nhds) h.symm.eq_of_nhds⟩
theorem
Topology
[ "Mathlib.Algebra.Order.ToIntervalMod", "Mathlib.Algebra.Ring.AddAut", "Mathlib.Data.Nat.Totient", "Mathlib.GroupTheory.Divisible", "Mathlib.Topology.Algebra.IsUniformGroup.Basic", "Mathlib.Topology.Algebra.Order.Field", "Mathlib.Topology.IsLocalHomeomorph", "Mathlib.Topology.Order.T5" ]
Mathlib/Topology/Instances/AddCircle/Defs.lean
continuousAt_toIocMod
null
AddCircle [AddCommGroup 𝕜] (p : 𝕜) := 𝕜 ⧸ zmultiples p
abbrev
Topology
[ "Mathlib.Algebra.Order.ToIntervalMod", "Mathlib.Algebra.Ring.AddAut", "Mathlib.Data.Nat.Totient", "Mathlib.GroupTheory.Divisible", "Mathlib.Topology.Algebra.IsUniformGroup.Basic", "Mathlib.Topology.Algebra.Order.Field", "Mathlib.Topology.IsLocalHomeomorph", "Mathlib.Topology.Order.T5" ]
Mathlib/Topology/Instances/AddCircle/Defs.lean
AddCircle
The "additive circle": `𝕜 ⧸ (ℤ ∙ p)`. See also `Circle` and `Real.angle`.
coe_nsmul {n : ℕ} {x : 𝕜} : (↑(n • x) : AddCircle p) = n • (x : AddCircle p) := rfl
theorem
Topology
[ "Mathlib.Algebra.Order.ToIntervalMod", "Mathlib.Algebra.Ring.AddAut", "Mathlib.Data.Nat.Totient", "Mathlib.GroupTheory.Divisible", "Mathlib.Topology.Algebra.IsUniformGroup.Basic", "Mathlib.Topology.Algebra.Order.Field", "Mathlib.Topology.IsLocalHomeomorph", "Mathlib.Topology.Order.T5" ]
Mathlib/Topology/Instances/AddCircle/Defs.lean
coe_nsmul
null
coe_zsmul {n : ℤ} {x : 𝕜} : (↑(n • x) : AddCircle p) = n • (x : AddCircle p) := rfl
theorem
Topology
[ "Mathlib.Algebra.Order.ToIntervalMod", "Mathlib.Algebra.Ring.AddAut", "Mathlib.Data.Nat.Totient", "Mathlib.GroupTheory.Divisible", "Mathlib.Topology.Algebra.IsUniformGroup.Basic", "Mathlib.Topology.Algebra.Order.Field", "Mathlib.Topology.IsLocalHomeomorph", "Mathlib.Topology.Order.T5" ]
Mathlib/Topology/Instances/AddCircle/Defs.lean
coe_zsmul
null
coe_add (x y : 𝕜) : (↑(x + y) : AddCircle p) = (x : AddCircle p) + (y : AddCircle p) := rfl
theorem
Topology
[ "Mathlib.Algebra.Order.ToIntervalMod", "Mathlib.Algebra.Ring.AddAut", "Mathlib.Data.Nat.Totient", "Mathlib.GroupTheory.Divisible", "Mathlib.Topology.Algebra.IsUniformGroup.Basic", "Mathlib.Topology.Algebra.Order.Field", "Mathlib.Topology.IsLocalHomeomorph", "Mathlib.Topology.Order.T5" ]
Mathlib/Topology/Instances/AddCircle/Defs.lean
coe_add
null
coe_sub (x y : 𝕜) : (↑(x - y) : AddCircle p) = (x : AddCircle p) - (y : AddCircle p) := rfl
theorem
Topology
[ "Mathlib.Algebra.Order.ToIntervalMod", "Mathlib.Algebra.Ring.AddAut", "Mathlib.Data.Nat.Totient", "Mathlib.GroupTheory.Divisible", "Mathlib.Topology.Algebra.IsUniformGroup.Basic", "Mathlib.Topology.Algebra.Order.Field", "Mathlib.Topology.IsLocalHomeomorph", "Mathlib.Topology.Order.T5" ]
Mathlib/Topology/Instances/AddCircle/Defs.lean
coe_sub
null
coe_neg {x : 𝕜} : (↑(-x) : AddCircle p) = -(x : AddCircle p) := rfl @[norm_cast]
theorem
Topology
[ "Mathlib.Algebra.Order.ToIntervalMod", "Mathlib.Algebra.Ring.AddAut", "Mathlib.Data.Nat.Totient", "Mathlib.GroupTheory.Divisible", "Mathlib.Topology.Algebra.IsUniformGroup.Basic", "Mathlib.Topology.Algebra.Order.Field", "Mathlib.Topology.IsLocalHomeomorph", "Mathlib.Topology.Order.T5" ]
Mathlib/Topology/Instances/AddCircle/Defs.lean
coe_neg
null
coe_zero : ↑(0 : 𝕜) = (0 : AddCircle p) := rfl
theorem
Topology
[ "Mathlib.Algebra.Order.ToIntervalMod", "Mathlib.Algebra.Ring.AddAut", "Mathlib.Data.Nat.Totient", "Mathlib.GroupTheory.Divisible", "Mathlib.Topology.Algebra.IsUniformGroup.Basic", "Mathlib.Topology.Algebra.Order.Field", "Mathlib.Topology.IsLocalHomeomorph", "Mathlib.Topology.Order.T5" ]
Mathlib/Topology/Instances/AddCircle/Defs.lean
coe_zero
null
coe_eq_zero_iff {x : 𝕜} : (x : AddCircle p) = 0 ↔ ∃ n : ℤ, n • p = x := by simp [AddSubgroup.mem_zmultiples_iff]
theorem
Topology
[ "Mathlib.Algebra.Order.ToIntervalMod", "Mathlib.Algebra.Ring.AddAut", "Mathlib.Data.Nat.Totient", "Mathlib.GroupTheory.Divisible", "Mathlib.Topology.Algebra.IsUniformGroup.Basic", "Mathlib.Topology.Algebra.Order.Field", "Mathlib.Topology.IsLocalHomeomorph", "Mathlib.Topology.Order.T5" ]
Mathlib/Topology/Instances/AddCircle/Defs.lean
coe_eq_zero_iff
null
coe_period : (p : AddCircle p) = 0 := (QuotientAddGroup.eq_zero_iff p).2 <| mem_zmultiples p
theorem
Topology
[ "Mathlib.Algebra.Order.ToIntervalMod", "Mathlib.Algebra.Ring.AddAut", "Mathlib.Data.Nat.Totient", "Mathlib.GroupTheory.Divisible", "Mathlib.Topology.Algebra.IsUniformGroup.Basic", "Mathlib.Topology.Algebra.Order.Field", "Mathlib.Topology.IsLocalHomeomorph", "Mathlib.Topology.Order.T5" ]
Mathlib/Topology/Instances/AddCircle/Defs.lean
coe_period
null
coe_add_period (x : 𝕜) : ((x + p : 𝕜) : AddCircle p) = x := by rw [coe_add, ← eq_sub_iff_add_eq', sub_self, coe_period] @[continuity, nolint unusedArguments]
theorem
Topology
[ "Mathlib.Algebra.Order.ToIntervalMod", "Mathlib.Algebra.Ring.AddAut", "Mathlib.Data.Nat.Totient", "Mathlib.GroupTheory.Divisible", "Mathlib.Topology.Algebra.IsUniformGroup.Basic", "Mathlib.Topology.Algebra.Order.Field", "Mathlib.Topology.IsLocalHomeomorph", "Mathlib.Topology.Order.T5" ]
Mathlib/Topology/Instances/AddCircle/Defs.lean
coe_add_period
null
protected continuous_mk' [TopologicalSpace 𝕜] : Continuous (QuotientAddGroup.mk' (zmultiples p) : 𝕜 → AddCircle p) := continuous_coinduced_rng variable [LinearOrder 𝕜] [IsOrderedAddMonoid 𝕜]
theorem
Topology
[ "Mathlib.Algebra.Order.ToIntervalMod", "Mathlib.Algebra.Ring.AddAut", "Mathlib.Data.Nat.Totient", "Mathlib.GroupTheory.Divisible", "Mathlib.Topology.Algebra.IsUniformGroup.Basic", "Mathlib.Topology.Algebra.Order.Field", "Mathlib.Topology.IsLocalHomeomorph", "Mathlib.Topology.Order.T5" ]
Mathlib/Topology/Instances/AddCircle/Defs.lean
continuous_mk'
null
coe_eq_zero_of_pos_iff (hp : 0 < p) {x : 𝕜} (hx : 0 < x) : (x : AddCircle p) = 0 ↔ ∃ n : ℕ, n • p = x := by rw [coe_eq_zero_iff] constructor <;> rintro ⟨n, rfl⟩ · replace hx : 0 < n := by contrapose! hx simpa only [← neg_nonneg, ← zsmul_neg, zsmul_neg'] using zsmul_nonneg hp.le (neg_nonneg.2 hx) exact ⟨n.toNat, by rw [← natCast_zsmul, Int.toNat_of_nonneg hx.le]⟩ · exact ⟨(n : ℤ), by simp⟩ variable [hp : Fact (0 < p)] (a : 𝕜) [Archimedean 𝕜]
theorem
Topology
[ "Mathlib.Algebra.Order.ToIntervalMod", "Mathlib.Algebra.Ring.AddAut", "Mathlib.Data.Nat.Totient", "Mathlib.GroupTheory.Divisible", "Mathlib.Topology.Algebra.IsUniformGroup.Basic", "Mathlib.Topology.Algebra.Order.Field", "Mathlib.Topology.IsLocalHomeomorph", "Mathlib.Topology.Order.T5" ]
Mathlib/Topology/Instances/AddCircle/Defs.lean
coe_eq_zero_of_pos_iff
null
equivIco : AddCircle p ≃ Ico a (a + p) := QuotientAddGroup.equivIcoMod hp.out a
def
Topology
[ "Mathlib.Algebra.Order.ToIntervalMod", "Mathlib.Algebra.Ring.AddAut", "Mathlib.Data.Nat.Totient", "Mathlib.GroupTheory.Divisible", "Mathlib.Topology.Algebra.IsUniformGroup.Basic", "Mathlib.Topology.Algebra.Order.Field", "Mathlib.Topology.IsLocalHomeomorph", "Mathlib.Topology.Order.T5" ]
Mathlib/Topology/Instances/AddCircle/Defs.lean
equivIco
The equivalence between `AddCircle p` and the half-open interval `[a, a + p)`, whose inverse is the natural quotient map.