fact
stringlengths
6
3.84k
type
stringclasses
11 values
library
stringclasses
32 values
imports
listlengths
1
14
filename
stringlengths
20
95
symbolic_name
stringlengths
1
90
docstring
stringlengths
7
20k
equivIoc : AddCircle p ≃ Ioc a (a + p) := QuotientAddGroup.equivIocMod hp.out a
def
Topology
[ "Mathlib.Algebra.Order.ToIntervalMod", "Mathlib.Algebra.Ring.AddAut", "Mathlib.Data.Nat.Totient", "Mathlib.GroupTheory.Divisible", "Mathlib.Topology.Algebra.IsUniformGroup.Basic", "Mathlib.Topology.Algebra.Order.Field", "Mathlib.Topology.IsLocalHomeomorph", "Mathlib.Topology.Order.T5" ]
Mathlib/Topology/Instances/AddCircle/Defs.lean
equivIoc
The equivalence between `AddCircle p` and the half-open interval `(a, a + p]`, whose inverse is the natural quotient map.
liftIco (f : 𝕜 → B) : AddCircle p → B := restrict _ f ∘ AddCircle.equivIco p a
def
Topology
[ "Mathlib.Algebra.Order.ToIntervalMod", "Mathlib.Algebra.Ring.AddAut", "Mathlib.Data.Nat.Totient", "Mathlib.GroupTheory.Divisible", "Mathlib.Topology.Algebra.IsUniformGroup.Basic", "Mathlib.Topology.Algebra.Order.Field", "Mathlib.Topology.IsLocalHomeomorph", "Mathlib.Topology.Order.T5" ]
Mathlib/Topology/Instances/AddCircle/Defs.lean
liftIco
Given a function on `𝕜`, return the unique function on `AddCircle p` agreeing with `f` on `[a, a + p)`.
liftIoc (f : 𝕜 → B) : AddCircle p → B := restrict _ f ∘ AddCircle.equivIoc p a variable {p a}
def
Topology
[ "Mathlib.Algebra.Order.ToIntervalMod", "Mathlib.Algebra.Ring.AddAut", "Mathlib.Data.Nat.Totient", "Mathlib.GroupTheory.Divisible", "Mathlib.Topology.Algebra.IsUniformGroup.Basic", "Mathlib.Topology.Algebra.Order.Field", "Mathlib.Topology.IsLocalHomeomorph", "Mathlib.Topology.Order.T5" ]
Mathlib/Topology/Instances/AddCircle/Defs.lean
liftIoc
Given a function on `𝕜`, return the unique function on `AddCircle p` agreeing with `f` on `(a, a + p]`.
coe_eq_coe_iff_of_mem_Ico {x y : 𝕜} (hx : x ∈ Ico a (a + p)) (hy : y ∈ Ico a (a + p)) : (x : AddCircle p) = y ↔ x = y := by refine ⟨fun h => ?_, by tauto⟩ suffices (⟨x, hx⟩ : Ico a (a + p)) = ⟨y, hy⟩ by exact Subtype.mk.inj this apply_fun equivIco p a at h rw [← (equivIco p a).right_inv ⟨x, hx⟩, ← (equivIco p a).right_inv ⟨y, hy⟩] exact h
theorem
Topology
[ "Mathlib.Algebra.Order.ToIntervalMod", "Mathlib.Algebra.Ring.AddAut", "Mathlib.Data.Nat.Totient", "Mathlib.GroupTheory.Divisible", "Mathlib.Topology.Algebra.IsUniformGroup.Basic", "Mathlib.Topology.Algebra.Order.Field", "Mathlib.Topology.IsLocalHomeomorph", "Mathlib.Topology.Order.T5" ]
Mathlib/Topology/Instances/AddCircle/Defs.lean
coe_eq_coe_iff_of_mem_Ico
null
liftIco_coe_apply {f : 𝕜 → B} {x : 𝕜} (hx : x ∈ Ico a (a + p)) : liftIco p a f ↑x = f x := by have : (equivIco p a) x = ⟨x, hx⟩ := by rw [Equiv.apply_eq_iff_eq_symm_apply] rfl rw [liftIco, comp_apply, this] rfl
theorem
Topology
[ "Mathlib.Algebra.Order.ToIntervalMod", "Mathlib.Algebra.Ring.AddAut", "Mathlib.Data.Nat.Totient", "Mathlib.GroupTheory.Divisible", "Mathlib.Topology.Algebra.IsUniformGroup.Basic", "Mathlib.Topology.Algebra.Order.Field", "Mathlib.Topology.IsLocalHomeomorph", "Mathlib.Topology.Order.T5" ]
Mathlib/Topology/Instances/AddCircle/Defs.lean
liftIco_coe_apply
null
liftIoc_coe_apply {f : 𝕜 → B} {x : 𝕜} (hx : x ∈ Ioc a (a + p)) : liftIoc p a f ↑x = f x := by have : (equivIoc p a) x = ⟨x, hx⟩ := by rw [Equiv.apply_eq_iff_eq_symm_apply] rfl rw [liftIoc, comp_apply, this] rfl
theorem
Topology
[ "Mathlib.Algebra.Order.ToIntervalMod", "Mathlib.Algebra.Ring.AddAut", "Mathlib.Data.Nat.Totient", "Mathlib.GroupTheory.Divisible", "Mathlib.Topology.Algebra.IsUniformGroup.Basic", "Mathlib.Topology.Algebra.Order.Field", "Mathlib.Topology.IsLocalHomeomorph", "Mathlib.Topology.Order.T5" ]
Mathlib/Topology/Instances/AddCircle/Defs.lean
liftIoc_coe_apply
null
eq_coe_Ico (a : AddCircle p) : ∃ b, b ∈ Ico 0 p ∧ ↑b = a := by let b := QuotientAddGroup.equivIcoMod hp.out 0 a exact ⟨b.1, by simpa only [zero_add] using b.2, (QuotientAddGroup.equivIcoMod hp.out 0).symm_apply_apply a⟩
lemma
Topology
[ "Mathlib.Algebra.Order.ToIntervalMod", "Mathlib.Algebra.Ring.AddAut", "Mathlib.Data.Nat.Totient", "Mathlib.GroupTheory.Divisible", "Mathlib.Topology.Algebra.IsUniformGroup.Basic", "Mathlib.Topology.Algebra.Order.Field", "Mathlib.Topology.IsLocalHomeomorph", "Mathlib.Topology.Order.T5" ]
Mathlib/Topology/Instances/AddCircle/Defs.lean
eq_coe_Ico
null
coe_eq_zero_iff_of_mem_Ico (ha : a ∈ Ico 0 p) : (a : AddCircle p) = 0 ↔ a = 0 := by have h0 : 0 ∈ Ico 0 (0 + p) := by simpa [zero_add, left_mem_Ico] using hp.out have ha' : a ∈ Ico 0 (0 + p) := by rwa [zero_add] rw [← AddCircle.coe_eq_coe_iff_of_mem_Ico ha' h0, QuotientAddGroup.mk_zero] variable (p a)
lemma
Topology
[ "Mathlib.Algebra.Order.ToIntervalMod", "Mathlib.Algebra.Ring.AddAut", "Mathlib.Data.Nat.Totient", "Mathlib.GroupTheory.Divisible", "Mathlib.Topology.Algebra.IsUniformGroup.Basic", "Mathlib.Topology.Algebra.Order.Field", "Mathlib.Topology.IsLocalHomeomorph", "Mathlib.Topology.Order.T5" ]
Mathlib/Topology/Instances/AddCircle/Defs.lean
coe_eq_zero_iff_of_mem_Ico
null
@[continuity] continuous_equivIco_symm : Continuous (equivIco p a).symm := continuous_quotient_mk'.comp continuous_subtype_val @[continuity]
theorem
Topology
[ "Mathlib.Algebra.Order.ToIntervalMod", "Mathlib.Algebra.Ring.AddAut", "Mathlib.Data.Nat.Totient", "Mathlib.GroupTheory.Divisible", "Mathlib.Topology.Algebra.IsUniformGroup.Basic", "Mathlib.Topology.Algebra.Order.Field", "Mathlib.Topology.IsLocalHomeomorph", "Mathlib.Topology.Order.T5" ]
Mathlib/Topology/Instances/AddCircle/Defs.lean
continuous_equivIco_symm
null
continuous_equivIoc_symm : Continuous (equivIoc p a).symm := continuous_quotient_mk'.comp continuous_subtype_val variable [OrderTopology 𝕜] {x : AddCircle p}
theorem
Topology
[ "Mathlib.Algebra.Order.ToIntervalMod", "Mathlib.Algebra.Ring.AddAut", "Mathlib.Data.Nat.Totient", "Mathlib.GroupTheory.Divisible", "Mathlib.Topology.Algebra.IsUniformGroup.Basic", "Mathlib.Topology.Algebra.Order.Field", "Mathlib.Topology.IsLocalHomeomorph", "Mathlib.Topology.Order.T5" ]
Mathlib/Topology/Instances/AddCircle/Defs.lean
continuous_equivIoc_symm
null
continuousAt_equivIco (hx : x ≠ a) : ContinuousAt (equivIco p a) x := by induction x using QuotientAddGroup.induction_on rw [ContinuousAt, Filter.Tendsto, QuotientAddGroup.nhds_eq, Filter.map_map] exact (continuousAt_toIcoMod hp.out a hx).codRestrict _
theorem
Topology
[ "Mathlib.Algebra.Order.ToIntervalMod", "Mathlib.Algebra.Ring.AddAut", "Mathlib.Data.Nat.Totient", "Mathlib.GroupTheory.Divisible", "Mathlib.Topology.Algebra.IsUniformGroup.Basic", "Mathlib.Topology.Algebra.Order.Field", "Mathlib.Topology.IsLocalHomeomorph", "Mathlib.Topology.Order.T5" ]
Mathlib/Topology/Instances/AddCircle/Defs.lean
continuousAt_equivIco
null
continuousAt_equivIoc (hx : x ≠ a) : ContinuousAt (equivIoc p a) x := by induction x using QuotientAddGroup.induction_on rw [ContinuousAt, Filter.Tendsto, QuotientAddGroup.nhds_eq, Filter.map_map] exact (continuousAt_toIocMod hp.out a hx).codRestrict _
theorem
Topology
[ "Mathlib.Algebra.Order.ToIntervalMod", "Mathlib.Algebra.Ring.AddAut", "Mathlib.Data.Nat.Totient", "Mathlib.GroupTheory.Divisible", "Mathlib.Topology.Algebra.IsUniformGroup.Basic", "Mathlib.Topology.Algebra.Order.Field", "Mathlib.Topology.IsLocalHomeomorph", "Mathlib.Topology.Order.T5" ]
Mathlib/Topology/Instances/AddCircle/Defs.lean
continuousAt_equivIoc
null
@[simps] openPartialHomeomorphCoe [DiscreteTopology (zmultiples p)] : OpenPartialHomeomorph 𝕜 (AddCircle p) where toFun := (↑) invFun := fun x ↦ equivIco p a x source := Ioo a (a + p) target := {↑a}ᶜ map_source' := by intro x hx hx' exact hx.1.ne' ((coe_eq_coe_iff_of_mem_Ico (Ioo_subset_Ico_self hx) (left_mem_Ico.mpr (lt_add_of_pos_right a hp.out))).mp hx') map_target' := by intro x hx exact (eq_left_or_mem_Ioo_of_mem_Ico (equivIco p a x).2).resolve_left (hx ∘ ((equivIco p a).symm_apply_apply x).symm.trans ∘ congrArg _) left_inv' := fun x hx ↦ congrArg _ ((equivIco p a).apply_symm_apply ⟨x, Ioo_subset_Ico_self hx⟩) right_inv' := fun x _ ↦ (equivIco p a).symm_apply_apply x open_source := isOpen_Ioo open_target := isOpen_compl_singleton continuousOn_toFun := (AddCircle.continuous_mk' p).continuousOn continuousOn_invFun := by exact continuousOn_of_forall_continuousAt (fun _ ↦ continuousAt_subtype_val.comp ∘ continuousAt_equivIco p a) @[deprecated (since := "2025-08-29")] noncomputable alias partialHomeomorphCoe := openPartialHomeomorphCoe
def
Topology
[ "Mathlib.Algebra.Order.ToIntervalMod", "Mathlib.Algebra.Ring.AddAut", "Mathlib.Data.Nat.Totient", "Mathlib.GroupTheory.Divisible", "Mathlib.Topology.Algebra.IsUniformGroup.Basic", "Mathlib.Topology.Algebra.Order.Field", "Mathlib.Topology.IsLocalHomeomorph", "Mathlib.Topology.Order.T5" ]
Mathlib/Topology/Instances/AddCircle/Defs.lean
openPartialHomeomorphCoe
The quotient map `𝕜 → AddCircle p` as an open partial homeomorphism.
isLocalHomeomorph_coe [DiscreteTopology (zmultiples p)] [DenselyOrdered 𝕜] : IsLocalHomeomorph ((↑) : 𝕜 → AddCircle p) := by intro a obtain ⟨b, hb1, hb2⟩ := exists_between (sub_lt_self a hp.out) exact ⟨openPartialHomeomorphCoe p b, ⟨hb2, lt_add_of_sub_right_lt hb1⟩, rfl⟩
lemma
Topology
[ "Mathlib.Algebra.Order.ToIntervalMod", "Mathlib.Algebra.Ring.AddAut", "Mathlib.Data.Nat.Totient", "Mathlib.GroupTheory.Divisible", "Mathlib.Topology.Algebra.IsUniformGroup.Basic", "Mathlib.Topology.Algebra.Order.Field", "Mathlib.Topology.IsLocalHomeomorph", "Mathlib.Topology.Order.T5" ]
Mathlib/Topology/Instances/AddCircle/Defs.lean
isLocalHomeomorph_coe
null
@[simp] coe_image_Ico_eq : ((↑) : 𝕜 → AddCircle p) '' Ico a (a + p) = univ := by rw [image_eq_range] exact (equivIco p a).symm.range_eq_univ
theorem
Topology
[ "Mathlib.Algebra.Order.ToIntervalMod", "Mathlib.Algebra.Ring.AddAut", "Mathlib.Data.Nat.Totient", "Mathlib.GroupTheory.Divisible", "Mathlib.Topology.Algebra.IsUniformGroup.Basic", "Mathlib.Topology.Algebra.Order.Field", "Mathlib.Topology.IsLocalHomeomorph", "Mathlib.Topology.Order.T5" ]
Mathlib/Topology/Instances/AddCircle/Defs.lean
coe_image_Ico_eq
The image of the closed-open interval `[a, a + p)` under the quotient map `𝕜 → AddCircle p` is the entire space.
@[simp] coe_image_Ioc_eq : ((↑) : 𝕜 → AddCircle p) '' Ioc a (a + p) = univ := by rw [image_eq_range] exact (equivIoc p a).symm.range_eq_univ
theorem
Topology
[ "Mathlib.Algebra.Order.ToIntervalMod", "Mathlib.Algebra.Ring.AddAut", "Mathlib.Data.Nat.Totient", "Mathlib.GroupTheory.Divisible", "Mathlib.Topology.Algebra.IsUniformGroup.Basic", "Mathlib.Topology.Algebra.Order.Field", "Mathlib.Topology.IsLocalHomeomorph", "Mathlib.Topology.Order.T5" ]
Mathlib/Topology/Instances/AddCircle/Defs.lean
coe_image_Ioc_eq
The image of the closed-open interval `[a, a + p)` under the quotient map `𝕜 → AddCircle p` is the entire space.
@[simp] coe_image_Icc_eq : ((↑) : 𝕜 → AddCircle p) '' Icc a (a + p) = univ := eq_top_mono (image_mono Ico_subset_Icc_self) <| coe_image_Ico_eq _ _
theorem
Topology
[ "Mathlib.Algebra.Order.ToIntervalMod", "Mathlib.Algebra.Ring.AddAut", "Mathlib.Data.Nat.Totient", "Mathlib.GroupTheory.Divisible", "Mathlib.Topology.Algebra.IsUniformGroup.Basic", "Mathlib.Topology.Algebra.Order.Field", "Mathlib.Topology.IsLocalHomeomorph", "Mathlib.Topology.Order.T5" ]
Mathlib/Topology/Instances/AddCircle/Defs.lean
coe_image_Icc_eq
The image of the closed interval `[0, p]` under the quotient map `𝕜 → AddCircle p` is the entire space.
equivAddCircle (hp : p ≠ 0) (hq : q ≠ 0) : AddCircle p ≃+ AddCircle q := QuotientAddGroup.congr _ _ (AddAut.mulRight <| (Units.mk0 p hp)⁻¹ * Units.mk0 q hq) <| by rw [AddMonoidHom.map_zmultiples, AddMonoidHom.coe_coe, AddAut.mulRight_apply, Units.val_mul, Units.val_mk0, Units.val_inv_eq_inv_val, Units.val_mk0, mul_inv_cancel_left₀ hp] @[simp]
def
Topology
[ "Mathlib.Algebra.Order.ToIntervalMod", "Mathlib.Algebra.Ring.AddAut", "Mathlib.Data.Nat.Totient", "Mathlib.GroupTheory.Divisible", "Mathlib.Topology.Algebra.IsUniformGroup.Basic", "Mathlib.Topology.Algebra.Order.Field", "Mathlib.Topology.IsLocalHomeomorph", "Mathlib.Topology.Order.T5" ]
Mathlib/Topology/Instances/AddCircle/Defs.lean
equivAddCircle
The rescaling equivalence between additive circles with different periods.
equivAddCircle_apply_mk (hp : p ≠ 0) (hq : q ≠ 0) (x : 𝕜) : equivAddCircle p q hp hq (x : 𝕜) = (x * (p⁻¹ * q) : 𝕜) := rfl @[simp]
theorem
Topology
[ "Mathlib.Algebra.Order.ToIntervalMod", "Mathlib.Algebra.Ring.AddAut", "Mathlib.Data.Nat.Totient", "Mathlib.GroupTheory.Divisible", "Mathlib.Topology.Algebra.IsUniformGroup.Basic", "Mathlib.Topology.Algebra.Order.Field", "Mathlib.Topology.IsLocalHomeomorph", "Mathlib.Topology.Order.T5" ]
Mathlib/Topology/Instances/AddCircle/Defs.lean
equivAddCircle_apply_mk
null
equivAddCircle_symm_apply_mk (hp : p ≠ 0) (hq : q ≠ 0) (x : 𝕜) : (equivAddCircle p q hp hq).symm (x : 𝕜) = (x * (q⁻¹ * p) : 𝕜) := rfl
theorem
Topology
[ "Mathlib.Algebra.Order.ToIntervalMod", "Mathlib.Algebra.Ring.AddAut", "Mathlib.Data.Nat.Totient", "Mathlib.GroupTheory.Divisible", "Mathlib.Topology.Algebra.IsUniformGroup.Basic", "Mathlib.Topology.Algebra.Order.Field", "Mathlib.Topology.IsLocalHomeomorph", "Mathlib.Topology.Order.T5" ]
Mathlib/Topology/Instances/AddCircle/Defs.lean
equivAddCircle_symm_apply_mk
null
homeomorphAddCircle (hp : p ≠ 0) (hq : q ≠ 0) : AddCircle p ≃ₜ AddCircle q := ⟨equivAddCircle p q hp hq, (continuous_quotient_mk'.comp (continuous_mul_right (p⁻¹ * q))).quotient_lift _, (continuous_quotient_mk'.comp (continuous_mul_right (q⁻¹ * p))).quotient_lift _⟩ @[simp]
def
Topology
[ "Mathlib.Algebra.Order.ToIntervalMod", "Mathlib.Algebra.Ring.AddAut", "Mathlib.Data.Nat.Totient", "Mathlib.GroupTheory.Divisible", "Mathlib.Topology.Algebra.IsUniformGroup.Basic", "Mathlib.Topology.Algebra.Order.Field", "Mathlib.Topology.IsLocalHomeomorph", "Mathlib.Topology.Order.T5" ]
Mathlib/Topology/Instances/AddCircle/Defs.lean
homeomorphAddCircle
The rescaling homeomorphism between additive circles with different periods.
homeomorphAddCircle_apply_mk (hp : p ≠ 0) (hq : q ≠ 0) (x : 𝕜) : homeomorphAddCircle p q hp hq (x : 𝕜) = (x * (p⁻¹ * q) : 𝕜) := rfl @[simp]
theorem
Topology
[ "Mathlib.Algebra.Order.ToIntervalMod", "Mathlib.Algebra.Ring.AddAut", "Mathlib.Data.Nat.Totient", "Mathlib.GroupTheory.Divisible", "Mathlib.Topology.Algebra.IsUniformGroup.Basic", "Mathlib.Topology.Algebra.Order.Field", "Mathlib.Topology.IsLocalHomeomorph", "Mathlib.Topology.Order.T5" ]
Mathlib/Topology/Instances/AddCircle/Defs.lean
homeomorphAddCircle_apply_mk
null
homeomorphAddCircle_symm_apply_mk (hp : p ≠ 0) (hq : q ≠ 0) (x : 𝕜) : (homeomorphAddCircle p q hp hq).symm (x : 𝕜) = (x * (q⁻¹ * p) : 𝕜) := rfl
theorem
Topology
[ "Mathlib.Algebra.Order.ToIntervalMod", "Mathlib.Algebra.Ring.AddAut", "Mathlib.Data.Nat.Totient", "Mathlib.GroupTheory.Divisible", "Mathlib.Topology.Algebra.IsUniformGroup.Basic", "Mathlib.Topology.Algebra.Order.Field", "Mathlib.Topology.IsLocalHomeomorph", "Mathlib.Topology.Order.T5" ]
Mathlib/Topology/Instances/AddCircle/Defs.lean
homeomorphAddCircle_symm_apply_mk
null
natCast_div_mul_eq_nsmul (r : 𝕜) (m : ℕ) : (↑(↑m / q * r) : AddCircle p) = m • (r / q : AddCircle p) := by rw [mul_comm_div, ← nsmul_eq_mul, coe_nsmul]
lemma
Topology
[ "Mathlib.Algebra.Order.ToIntervalMod", "Mathlib.Algebra.Ring.AddAut", "Mathlib.Data.Nat.Totient", "Mathlib.GroupTheory.Divisible", "Mathlib.Topology.Algebra.IsUniformGroup.Basic", "Mathlib.Topology.Algebra.Order.Field", "Mathlib.Topology.IsLocalHomeomorph", "Mathlib.Topology.Order.T5" ]
Mathlib/Topology/Instances/AddCircle/Defs.lean
natCast_div_mul_eq_nsmul
null
intCast_div_mul_eq_zsmul (r : 𝕜) (m : ℤ) : (↑(↑m / q * r) : AddCircle p) = m • (r / q : AddCircle p) := by rw [mul_comm_div, ← zsmul_eq_mul, coe_zsmul] variable [LinearOrder 𝕜] [IsStrictOrderedRing 𝕜] [hp : Fact (0 < p)]
lemma
Topology
[ "Mathlib.Algebra.Order.ToIntervalMod", "Mathlib.Algebra.Ring.AddAut", "Mathlib.Data.Nat.Totient", "Mathlib.GroupTheory.Divisible", "Mathlib.Topology.Algebra.IsUniformGroup.Basic", "Mathlib.Topology.Algebra.Order.Field", "Mathlib.Topology.IsLocalHomeomorph", "Mathlib.Topology.Order.T5" ]
Mathlib/Topology/Instances/AddCircle/Defs.lean
intCast_div_mul_eq_zsmul
null
@[simp] coe_equivIco_mk_apply (x : 𝕜) : (equivIco p 0 <| QuotientAddGroup.mk x : 𝕜) = Int.fract (x / p) * p := toIcoMod_eq_fract_mul _ x
theorem
Topology
[ "Mathlib.Algebra.Order.ToIntervalMod", "Mathlib.Algebra.Ring.AddAut", "Mathlib.Data.Nat.Totient", "Mathlib.GroupTheory.Divisible", "Mathlib.Topology.Algebra.IsUniformGroup.Basic", "Mathlib.Topology.Algebra.Order.Field", "Mathlib.Topology.IsLocalHomeomorph", "Mathlib.Topology.Order.T5" ]
Mathlib/Topology/Instances/AddCircle/Defs.lean
coe_equivIco_mk_apply
null
@[simp] coe_fract (x : 𝕜) : (↑(Int.fract x) : AddCircle (1 : 𝕜)) = x := by simp [← Int.self_sub_floor]
lemma
Topology
[ "Mathlib.Algebra.Order.ToIntervalMod", "Mathlib.Algebra.Ring.AddAut", "Mathlib.Data.Nat.Totient", "Mathlib.GroupTheory.Divisible", "Mathlib.Topology.Algebra.IsUniformGroup.Basic", "Mathlib.Topology.Algebra.Order.Field", "Mathlib.Topology.IsLocalHomeomorph", "Mathlib.Topology.Order.T5" ]
Mathlib/Topology/Instances/AddCircle/Defs.lean
coe_fract
null
addOrderOf_period_div {n : ℕ} (h : 0 < n) : addOrderOf ((p / n : 𝕜) : AddCircle p) = n := by rw [addOrderOf_eq_iff h] replace h : 0 < (n : 𝕜) := Nat.cast_pos.2 h refine ⟨?_, fun m hn h0 => ?_⟩ <;> simp only [Ne, ← coe_nsmul, nsmul_eq_mul] · rw [mul_div_cancel₀ _ h.ne', coe_period] rw [coe_eq_zero_of_pos_iff p hp.out (mul_pos (Nat.cast_pos.2 h0) <| div_pos hp.out h)] rintro ⟨k, hk⟩ rw [mul_div, eq_div_iff h.ne', nsmul_eq_mul, mul_right_comm, ← Nat.cast_mul, (mul_left_injective₀ hp.out.ne').eq_iff, Nat.cast_inj, mul_comm] at hk exact (Nat.le_of_dvd h0 ⟨_, hk.symm⟩).not_gt hn variable (p) in
theorem
Topology
[ "Mathlib.Algebra.Order.ToIntervalMod", "Mathlib.Algebra.Ring.AddAut", "Mathlib.Data.Nat.Totient", "Mathlib.GroupTheory.Divisible", "Mathlib.Topology.Algebra.IsUniformGroup.Basic", "Mathlib.Topology.Algebra.Order.Field", "Mathlib.Topology.IsLocalHomeomorph", "Mathlib.Topology.Order.T5" ]
Mathlib/Topology/Instances/AddCircle/Defs.lean
addOrderOf_period_div
null
gcd_mul_addOrderOf_div_eq {n : ℕ} (m : ℕ) (hn : 0 < n) : m.gcd n * addOrderOf (↑(↑m / ↑n * p) : AddCircle p) = n := by rw [natCast_div_mul_eq_nsmul, IsOfFinAddOrder.addOrderOf_nsmul] · rw [addOrderOf_period_div hn, Nat.gcd_comm, Nat.mul_div_cancel'] exact n.gcd_dvd_left m · rwa [← addOrderOf_pos_iff, addOrderOf_period_div hn]
theorem
Topology
[ "Mathlib.Algebra.Order.ToIntervalMod", "Mathlib.Algebra.Ring.AddAut", "Mathlib.Data.Nat.Totient", "Mathlib.GroupTheory.Divisible", "Mathlib.Topology.Algebra.IsUniformGroup.Basic", "Mathlib.Topology.Algebra.Order.Field", "Mathlib.Topology.IsLocalHomeomorph", "Mathlib.Topology.Order.T5" ]
Mathlib/Topology/Instances/AddCircle/Defs.lean
gcd_mul_addOrderOf_div_eq
null
addOrderOf_div_of_gcd_eq_one {m n : ℕ} (hn : 0 < n) (h : m.gcd n = 1) : addOrderOf (↑(↑m / ↑n * p) : AddCircle p) = n := by convert gcd_mul_addOrderOf_div_eq p m hn rw [h, one_mul]
theorem
Topology
[ "Mathlib.Algebra.Order.ToIntervalMod", "Mathlib.Algebra.Ring.AddAut", "Mathlib.Data.Nat.Totient", "Mathlib.GroupTheory.Divisible", "Mathlib.Topology.Algebra.IsUniformGroup.Basic", "Mathlib.Topology.Algebra.Order.Field", "Mathlib.Topology.IsLocalHomeomorph", "Mathlib.Topology.Order.T5" ]
Mathlib/Topology/Instances/AddCircle/Defs.lean
addOrderOf_div_of_gcd_eq_one
null
addOrderOf_div_of_gcd_eq_one' {m : ℤ} {n : ℕ} (hn : 0 < n) (h : m.natAbs.gcd n = 1) : addOrderOf (↑(↑m / ↑n * p) : AddCircle p) = n := by cases m · simp only [Int.ofNat_eq_coe, Int.cast_natCast, Int.natAbs_natCast] at h ⊢ exact addOrderOf_div_of_gcd_eq_one hn h · simp only [Int.cast_negSucc, neg_div, neg_mul, coe_neg, addOrderOf_neg] exact addOrderOf_div_of_gcd_eq_one hn h
theorem
Topology
[ "Mathlib.Algebra.Order.ToIntervalMod", "Mathlib.Algebra.Ring.AddAut", "Mathlib.Data.Nat.Totient", "Mathlib.GroupTheory.Divisible", "Mathlib.Topology.Algebra.IsUniformGroup.Basic", "Mathlib.Topology.Algebra.Order.Field", "Mathlib.Topology.IsLocalHomeomorph", "Mathlib.Topology.Order.T5" ]
Mathlib/Topology/Instances/AddCircle/Defs.lean
addOrderOf_div_of_gcd_eq_one'
null
addOrderOf_coe_rat {q : ℚ} : addOrderOf (↑(↑q * p) : AddCircle p) = q.den := by have : (↑(q.den : ℤ) : 𝕜) ≠ 0 := by norm_cast exact q.pos.ne.symm rw [← q.num_divInt_den, Rat.cast_divInt_of_ne_zero _ this, Int.cast_natCast, Rat.num_divInt_den, addOrderOf_div_of_gcd_eq_one' q.pos q.reduced]
theorem
Topology
[ "Mathlib.Algebra.Order.ToIntervalMod", "Mathlib.Algebra.Ring.AddAut", "Mathlib.Data.Nat.Totient", "Mathlib.GroupTheory.Divisible", "Mathlib.Topology.Algebra.IsUniformGroup.Basic", "Mathlib.Topology.Algebra.Order.Field", "Mathlib.Topology.IsLocalHomeomorph", "Mathlib.Topology.Order.T5" ]
Mathlib/Topology/Instances/AddCircle/Defs.lean
addOrderOf_coe_rat
null
nsmul_eq_zero_iff {u : AddCircle p} {n : ℕ} (h : 0 < n) : n • u = 0 ↔ ∃ m < n, ↑(↑m / ↑n * p) = u := by refine ⟨QuotientAddGroup.induction_on u fun k hk ↦ ?_, ?_⟩ · rw [← addOrderOf_dvd_iff_nsmul_eq_zero] rintro ⟨m, -, rfl⟩ constructor; rw [mul_comm, eq_comm] exact gcd_mul_addOrderOf_div_eq p m h rw [← coe_nsmul, coe_eq_zero_iff] at hk obtain ⟨a, ha⟩ := hk refine ⟨a.natMod n, Int.natMod_lt h.ne', ?_⟩ have h0 : (n : 𝕜) ≠ 0 := Nat.cast_ne_zero.2 h.ne' rw [nsmul_eq_mul, mul_comm, ← div_eq_iff h0, ← a.ediv_mul_add_emod n, add_smul, add_div, zsmul_eq_mul, Int.cast_mul, Int.cast_natCast, mul_assoc, ← mul_div, mul_comm _ p, mul_div_cancel_right₀ p h0] at ha rw [← ha, coe_add, ← Int.cast_natCast, Int.natMod, Int.toNat_of_nonneg, zsmul_eq_mul, mul_div_right_comm, eq_comm, add_eq_right, ←zsmul_eq_mul, coe_zsmul, coe_period, smul_zero] exact Int.emod_nonneg _ (by exact_mod_cast h.ne')
theorem
Topology
[ "Mathlib.Algebra.Order.ToIntervalMod", "Mathlib.Algebra.Ring.AddAut", "Mathlib.Data.Nat.Totient", "Mathlib.GroupTheory.Divisible", "Mathlib.Topology.Algebra.IsUniformGroup.Basic", "Mathlib.Topology.Algebra.Order.Field", "Mathlib.Topology.IsLocalHomeomorph", "Mathlib.Topology.Order.T5" ]
Mathlib/Topology/Instances/AddCircle/Defs.lean
nsmul_eq_zero_iff
null
addOrderOf_eq_pos_iff {u : AddCircle p} {n : ℕ} (h : 0 < n) : addOrderOf u = n ↔ ∃ m < n, m.gcd n = 1 ∧ ↑(↑m / ↑n * p) = u := by refine ⟨QuotientAddGroup.induction_on u ?_, ?_⟩ · rintro ⟨m, -, h₁, rfl⟩ exact addOrderOf_div_of_gcd_eq_one h h₁ rintro k rfl obtain ⟨m, hm, hk⟩ := (nsmul_eq_zero_iff h).mp (addOrderOf_nsmul_eq_zero (k : AddCircle p)) refine ⟨m, hm, mul_right_cancel₀ h.ne' ?_, hk⟩ convert gcd_mul_addOrderOf_div_eq p m h using 1 · rw [hk] · apply one_mul
theorem
Topology
[ "Mathlib.Algebra.Order.ToIntervalMod", "Mathlib.Algebra.Ring.AddAut", "Mathlib.Data.Nat.Totient", "Mathlib.GroupTheory.Divisible", "Mathlib.Topology.Algebra.IsUniformGroup.Basic", "Mathlib.Topology.Algebra.Order.Field", "Mathlib.Topology.IsLocalHomeomorph", "Mathlib.Topology.Order.T5" ]
Mathlib/Topology/Instances/AddCircle/Defs.lean
addOrderOf_eq_pos_iff
null
exists_gcd_eq_one_of_isOfFinAddOrder {u : AddCircle p} (h : IsOfFinAddOrder u) : ∃ m : ℕ, m.gcd (addOrderOf u) = 1 ∧ m < addOrderOf u ∧ ↑((m : 𝕜) / addOrderOf u * p) = u := let ⟨m, hl, hg, he⟩ := (addOrderOf_eq_pos_iff h.addOrderOf_pos).1 rfl ⟨m, hg, hl, he⟩
theorem
Topology
[ "Mathlib.Algebra.Order.ToIntervalMod", "Mathlib.Algebra.Ring.AddAut", "Mathlib.Data.Nat.Totient", "Mathlib.GroupTheory.Divisible", "Mathlib.Topology.Algebra.IsUniformGroup.Basic", "Mathlib.Topology.Algebra.Order.Field", "Mathlib.Topology.IsLocalHomeomorph", "Mathlib.Topology.Order.T5" ]
Mathlib/Topology/Instances/AddCircle/Defs.lean
exists_gcd_eq_one_of_isOfFinAddOrder
null
not_isOfFinAddOrder_iff_forall_rat_ne_div {a : 𝕜} : ¬ IsOfFinAddOrder (a : AddCircle p) ↔ ∀ q : ℚ, (q : 𝕜) ≠ a / p := by simp +contextual [← QuotientAddGroup.mk_zsmul, mul_comm (Int.cast _), mem_zmultiples_iff, eq_div_iff (Fact.out : 0 < p).ne', isOfFinAddOrder_iff_zsmul_eq_zero, Rat.forall, div_eq_iff, div_mul_eq_mul_div] grind
lemma
Topology
[ "Mathlib.Algebra.Order.ToIntervalMod", "Mathlib.Algebra.Ring.AddAut", "Mathlib.Data.Nat.Totient", "Mathlib.GroupTheory.Divisible", "Mathlib.Topology.Algebra.IsUniformGroup.Basic", "Mathlib.Topology.Algebra.Order.Field", "Mathlib.Topology.IsLocalHomeomorph", "Mathlib.Topology.Order.T5" ]
Mathlib/Topology/Instances/AddCircle/Defs.lean
not_isOfFinAddOrder_iff_forall_rat_ne_div
null
isOfFinAddOrder_iff_exists_rat_eq_div {a : 𝕜} : IsOfFinAddOrder (a : AddCircle p) ↔ ∃ q : ℚ, (q : 𝕜) = a / p := by simpa using not_isOfFinAddOrder_iff_forall_rat_ne_div.not_right @[deprecated not_isOfFinAddOrder_iff_forall_rat_ne_div (since := "2025-08-13")]
lemma
Topology
[ "Mathlib.Algebra.Order.ToIntervalMod", "Mathlib.Algebra.Ring.AddAut", "Mathlib.Data.Nat.Totient", "Mathlib.GroupTheory.Divisible", "Mathlib.Topology.Algebra.IsUniformGroup.Basic", "Mathlib.Topology.Algebra.Order.Field", "Mathlib.Topology.IsLocalHomeomorph", "Mathlib.Topology.Order.T5" ]
Mathlib/Topology/Instances/AddCircle/Defs.lean
isOfFinAddOrder_iff_exists_rat_eq_div
null
addOrderOf_coe_eq_zero_iff_forall_rat_ne_div {a : 𝕜} : addOrderOf (a : AddCircle p) = 0 ↔ ∀ q : ℚ, (q : 𝕜) ≠ a / p := by simp [not_isOfFinAddOrder_iff_forall_rat_ne_div] variable (p)
theorem
Topology
[ "Mathlib.Algebra.Order.ToIntervalMod", "Mathlib.Algebra.Ring.AddAut", "Mathlib.Data.Nat.Totient", "Mathlib.GroupTheory.Divisible", "Mathlib.Topology.Algebra.IsUniformGroup.Basic", "Mathlib.Topology.Algebra.Order.Field", "Mathlib.Topology.IsLocalHomeomorph", "Mathlib.Topology.Order.T5" ]
Mathlib/Topology/Instances/AddCircle/Defs.lean
addOrderOf_coe_eq_zero_iff_forall_rat_ne_div
null
setAddOrderOfEquiv {n : ℕ} (hn : 0 < n) : { u : AddCircle p | addOrderOf u = n } ≃ { m | m < n ∧ m.gcd n = 1 } := Equiv.symm <| Equiv.ofBijective (fun m => ⟨↑((m : 𝕜) / n * p), addOrderOf_div_of_gcd_eq_one hn m.prop.2⟩) (by refine ⟨fun m₁ m₂ h => Subtype.ext ?_, fun u => ?_⟩ · simp_rw [Subtype.mk_eq_mk, natCast_div_mul_eq_nsmul] at h refine nsmul_injOn_Iio_addOrderOf ?_ ?_ h <;> rw [addOrderOf_period_div hn] exacts [m₁.2.1, m₂.2.1] · obtain ⟨m, hmn, hg, he⟩ := (addOrderOf_eq_pos_iff hn).mp u.2 exact ⟨⟨m, hmn, hg⟩, Subtype.ext he⟩) @[simp]
def
Topology
[ "Mathlib.Algebra.Order.ToIntervalMod", "Mathlib.Algebra.Ring.AddAut", "Mathlib.Data.Nat.Totient", "Mathlib.GroupTheory.Divisible", "Mathlib.Topology.Algebra.IsUniformGroup.Basic", "Mathlib.Topology.Algebra.Order.Field", "Mathlib.Topology.IsLocalHomeomorph", "Mathlib.Topology.Order.T5" ]
Mathlib/Topology/Instances/AddCircle/Defs.lean
setAddOrderOfEquiv
The natural bijection between points of order `n` and natural numbers less than and coprime to `n`. The inverse of the map sends `m ↦ (m/n * p : AddCircle p)` where `m` is coprime to `n` and satisfies `0 ≤ m < n`.
card_addOrderOf_eq_totient {n : ℕ} : Nat.card { u : AddCircle p // addOrderOf u = n } = n.totient := by rcases n.eq_zero_or_pos with (rfl | hn) · simp only [Nat.totient_zero, addOrderOf_eq_zero_iff] rcases em (∃ u : AddCircle p, ¬IsOfFinAddOrder u) with (⟨u, hu⟩ | h) · have : Infinite { u : AddCircle p // ¬IsOfFinAddOrder u } := by rw [← coe_setOf, infinite_coe_iff] exact infinite_not_isOfFinAddOrder hu exact Nat.card_eq_zero_of_infinite · have : IsEmpty { u : AddCircle p // ¬IsOfFinAddOrder u } := by simpa [isEmpty_subtype] using h exact Nat.card_of_isEmpty · rw [← coe_setOf, Nat.card_congr (setAddOrderOfEquiv p hn), n.totient_eq_card_lt_and_coprime] simp only [Nat.gcd_comm]
theorem
Topology
[ "Mathlib.Algebra.Order.ToIntervalMod", "Mathlib.Algebra.Ring.AddAut", "Mathlib.Data.Nat.Totient", "Mathlib.GroupTheory.Divisible", "Mathlib.Topology.Algebra.IsUniformGroup.Basic", "Mathlib.Topology.Algebra.Order.Field", "Mathlib.Topology.IsLocalHomeomorph", "Mathlib.Topology.Order.T5" ]
Mathlib/Topology/Instances/AddCircle/Defs.lean
card_addOrderOf_eq_totient
null
finite_setOf_addOrderOf_eq {n : ℕ} (hn : 0 < n) : {u : AddCircle p | addOrderOf u = n}.Finite := finite_coe_iff.mp <| Nat.finite_of_card_ne_zero <| by simp [hn.ne'] @[deprecated (since := "2025-03-26")] alias finite_setOf_add_order_eq := finite_setOf_addOrderOf_eq
theorem
Topology
[ "Mathlib.Algebra.Order.ToIntervalMod", "Mathlib.Algebra.Ring.AddAut", "Mathlib.Data.Nat.Totient", "Mathlib.GroupTheory.Divisible", "Mathlib.Topology.Algebra.IsUniformGroup.Basic", "Mathlib.Topology.Algebra.Order.Field", "Mathlib.Topology.IsLocalHomeomorph", "Mathlib.Topology.Order.T5" ]
Mathlib/Topology/Instances/AddCircle/Defs.lean
finite_setOf_addOrderOf_eq
null
finite_torsion {n : ℕ} (hn : 0 < n) : { u : AddCircle p | n • u = 0 }.Finite := by convert Set.finite_range (fun m : Fin n ↦ (↑(↑m / ↑n * p) : AddCircle p)) simp_rw [nsmul_eq_zero_iff hn, range, Fin.exists_iff, exists_prop]
theorem
Topology
[ "Mathlib.Algebra.Order.ToIntervalMod", "Mathlib.Algebra.Ring.AddAut", "Mathlib.Data.Nat.Totient", "Mathlib.GroupTheory.Divisible", "Mathlib.Topology.Algebra.IsUniformGroup.Basic", "Mathlib.Topology.Algebra.Order.Field", "Mathlib.Topology.IsLocalHomeomorph", "Mathlib.Topology.Order.T5" ]
Mathlib/Topology/Instances/AddCircle/Defs.lean
finite_torsion
null
EndpointIdent : Icc a (a + p) → Icc a (a + p) → Prop | mk : EndpointIdent ⟨a, left_mem_Icc.mpr <| le_add_of_nonneg_right hp.out.le⟩ ⟨a + p, right_mem_Icc.mpr <| le_add_of_nonneg_right hp.out.le⟩ variable [Archimedean 𝕜]
inductive
Topology
[ "Mathlib.Algebra.Order.ToIntervalMod", "Mathlib.Algebra.Ring.AddAut", "Mathlib.Data.Nat.Totient", "Mathlib.GroupTheory.Divisible", "Mathlib.Topology.Algebra.IsUniformGroup.Basic", "Mathlib.Topology.Algebra.Order.Field", "Mathlib.Topology.IsLocalHomeomorph", "Mathlib.Topology.Order.T5" ]
Mathlib/Topology/Instances/AddCircle/Defs.lean
EndpointIdent
The relation identifying the endpoints of `Icc a (a + p)`.
equivIccQuot : 𝕋 ≃ Quot (EndpointIdent p a) where toFun x := Quot.mk _ <| inclusion Ico_subset_Icc_self (equivIco _ _ x) invFun x := Quot.liftOn x (↑) <| by rintro _ _ ⟨_⟩ exact (coe_add_period p a).symm left_inv := (equivIco p a).symm_apply_apply right_inv := Quot.ind <| by rintro ⟨x, hx⟩ rcases ne_or_eq x (a + p) with (h | rfl) · revert x dsimp only intro x hx h congr ext1 apply congr_arg Subtype.val ((equivIco p a).right_inv ⟨x, hx.1, hx.2.lt_of_ne h⟩) · rw [← Quot.sound EndpointIdent.mk] dsimp only congr ext1 apply congr_arg Subtype.val ((equivIco p a).right_inv ⟨a, le_refl a, lt_add_of_pos_right a hp.out⟩)
def
Topology
[ "Mathlib.Algebra.Order.ToIntervalMod", "Mathlib.Algebra.Ring.AddAut", "Mathlib.Data.Nat.Totient", "Mathlib.GroupTheory.Divisible", "Mathlib.Topology.Algebra.IsUniformGroup.Basic", "Mathlib.Topology.Algebra.Order.Field", "Mathlib.Topology.IsLocalHomeomorph", "Mathlib.Topology.Order.T5" ]
Mathlib/Topology/Instances/AddCircle/Defs.lean
equivIccQuot
The equivalence between `AddCircle p` and the quotient of `[a, a + p]` by the relation identifying the endpoints.
equivIccQuot_comp_mk_eq_toIcoMod : equivIccQuot p a ∘ Quotient.mk'' = fun x => Quot.mk _ ⟨toIcoMod hp.out a x, Ico_subset_Icc_self <| toIcoMod_mem_Ico _ _ x⟩ := rfl
theorem
Topology
[ "Mathlib.Algebra.Order.ToIntervalMod", "Mathlib.Algebra.Ring.AddAut", "Mathlib.Data.Nat.Totient", "Mathlib.GroupTheory.Divisible", "Mathlib.Topology.Algebra.IsUniformGroup.Basic", "Mathlib.Topology.Algebra.Order.Field", "Mathlib.Topology.IsLocalHomeomorph", "Mathlib.Topology.Order.T5" ]
Mathlib/Topology/Instances/AddCircle/Defs.lean
equivIccQuot_comp_mk_eq_toIcoMod
null
equivIccQuot_comp_mk_eq_toIocMod : equivIccQuot p a ∘ Quotient.mk'' = fun x => Quot.mk _ ⟨toIocMod hp.out a x, Ioc_subset_Icc_self <| toIocMod_mem_Ioc _ _ x⟩ := by rw [equivIccQuot_comp_mk_eq_toIcoMod] funext x by_cases h : a ≡ x [PMOD p] · simp_rw [(modEq_iff_toIcoMod_eq_left hp.out).1 h, (modEq_iff_toIocMod_eq_right hp.out).1 h] exact Quot.sound EndpointIdent.mk · simp_rw [(not_modEq_iff_toIcoMod_eq_toIocMod hp.out).1 h]
theorem
Topology
[ "Mathlib.Algebra.Order.ToIntervalMod", "Mathlib.Algebra.Ring.AddAut", "Mathlib.Data.Nat.Totient", "Mathlib.GroupTheory.Divisible", "Mathlib.Topology.Algebra.IsUniformGroup.Basic", "Mathlib.Topology.Algebra.Order.Field", "Mathlib.Topology.IsLocalHomeomorph", "Mathlib.Topology.Order.T5" ]
Mathlib/Topology/Instances/AddCircle/Defs.lean
equivIccQuot_comp_mk_eq_toIocMod
null
homeoIccQuot [TopologicalSpace 𝕜] [OrderTopology 𝕜] : 𝕋 ≃ₜ Quot (EndpointIdent p a) where toEquiv := equivIccQuot p a continuous_toFun := by simp_rw [isQuotientMap_quotient_mk'.continuous_iff, continuous_iff_continuousAt, continuousAt_iff_continuous_left_right] intro x; constructor on_goal 1 => erw [equivIccQuot_comp_mk_eq_toIocMod] on_goal 2 => erw [equivIccQuot_comp_mk_eq_toIcoMod] all_goals apply continuous_quot_mk.continuousAt.comp_continuousWithinAt rw [IsInducing.subtypeVal.continuousWithinAt_iff] · apply continuous_left_toIocMod · apply continuous_right_toIcoMod continuous_invFun := continuous_quot_lift _ ((AddCircle.continuous_mk' p).comp continuous_subtype_val) /-! We now show that a continuous function on `[a, a + p]` satisfying `f a = f (a + p)` is the pullback of a continuous function on `AddCircle p`, by first showing that various lifts are equivalent. -/ variable {p a}
def
Topology
[ "Mathlib.Algebra.Order.ToIntervalMod", "Mathlib.Algebra.Ring.AddAut", "Mathlib.Data.Nat.Totient", "Mathlib.GroupTheory.Divisible", "Mathlib.Topology.Algebra.IsUniformGroup.Basic", "Mathlib.Topology.Algebra.Order.Field", "Mathlib.Topology.IsLocalHomeomorph", "Mathlib.Topology.Order.T5" ]
Mathlib/Topology/Instances/AddCircle/Defs.lean
homeoIccQuot
The natural map from `[a, a + p] ⊂ 𝕜` with endpoints identified to `𝕜 / ℤ • p`, as a homeomorphism of topological spaces.
liftIoc_eq_liftIco {f : 𝕜 → B} (hf : f a = f (a + p)) : liftIoc p a f = liftIco p a f := by ext q obtain ⟨x, hx, rfl⟩ := by simpa only [mem_image] using coe_image_Ico_eq p a ▸ mem_univ q rw [liftIco_coe_apply hx] obtain (⟨rfl, -⟩ | h) := by rwa [mem_Ico, le_iff_eq_or_lt, or_and_right] at hx · rw [← coe_add_period, liftIoc_coe_apply (by simp [hp.out]), hf] · exact liftIoc_coe_apply ⟨h.1, h.2.le⟩
theorem
Topology
[ "Mathlib.Algebra.Order.ToIntervalMod", "Mathlib.Algebra.Ring.AddAut", "Mathlib.Data.Nat.Totient", "Mathlib.GroupTheory.Divisible", "Mathlib.Topology.Algebra.IsUniformGroup.Basic", "Mathlib.Topology.Algebra.Order.Field", "Mathlib.Topology.IsLocalHomeomorph", "Mathlib.Topology.Order.T5" ]
Mathlib/Topology/Instances/AddCircle/Defs.lean
liftIoc_eq_liftIco
null
liftIco_eq_lift_Icc {f : 𝕜 → B} (h : f a = f (a + p)) : liftIco p a f = Quot.lift (restrict (Icc a <| a + p) f) (by rintro _ _ ⟨_⟩ exact h) ∘ equivIccQuot p a := rfl
theorem
Topology
[ "Mathlib.Algebra.Order.ToIntervalMod", "Mathlib.Algebra.Ring.AddAut", "Mathlib.Data.Nat.Totient", "Mathlib.GroupTheory.Divisible", "Mathlib.Topology.Algebra.IsUniformGroup.Basic", "Mathlib.Topology.Algebra.Order.Field", "Mathlib.Topology.IsLocalHomeomorph", "Mathlib.Topology.Order.T5" ]
Mathlib/Topology/Instances/AddCircle/Defs.lean
liftIco_eq_lift_Icc
null
liftIoc_eq_lift_Icc {f : 𝕜 → B} (h : f a = f (a + p)) : liftIoc p a f = Quot.lift (restrict (Icc a <| a + p) f) (by rintro _ _ ⟨_⟩ exact h) ∘ equivIccQuot p a := by rw [← liftIco_eq_lift_Icc h] exact liftIoc_eq_liftIco h
theorem
Topology
[ "Mathlib.Algebra.Order.ToIntervalMod", "Mathlib.Algebra.Ring.AddAut", "Mathlib.Data.Nat.Totient", "Mathlib.GroupTheory.Divisible", "Mathlib.Topology.Algebra.IsUniformGroup.Basic", "Mathlib.Topology.Algebra.Order.Field", "Mathlib.Topology.IsLocalHomeomorph", "Mathlib.Topology.Order.T5" ]
Mathlib/Topology/Instances/AddCircle/Defs.lean
liftIoc_eq_lift_Icc
null
liftIco_zero_coe_apply {f : 𝕜 → B} {x : 𝕜} (hx : x ∈ Ico 0 p) : liftIco p 0 f ↑x = f x := liftIco_coe_apply (by rwa [zero_add])
theorem
Topology
[ "Mathlib.Algebra.Order.ToIntervalMod", "Mathlib.Algebra.Ring.AddAut", "Mathlib.Data.Nat.Totient", "Mathlib.GroupTheory.Divisible", "Mathlib.Topology.Algebra.IsUniformGroup.Basic", "Mathlib.Topology.Algebra.Order.Field", "Mathlib.Topology.IsLocalHomeomorph", "Mathlib.Topology.Order.T5" ]
Mathlib/Topology/Instances/AddCircle/Defs.lean
liftIco_zero_coe_apply
null
liftIoc_zero_coe_apply {f : 𝕜 → B} {x : 𝕜} (hx : x ∈ Ioc 0 p) : liftIoc p 0 f ↑x = f x := liftIoc_coe_apply (by rwa [zero_add]) variable [TopologicalSpace 𝕜] [OrderTopology 𝕜]
theorem
Topology
[ "Mathlib.Algebra.Order.ToIntervalMod", "Mathlib.Algebra.Ring.AddAut", "Mathlib.Data.Nat.Totient", "Mathlib.GroupTheory.Divisible", "Mathlib.Topology.Algebra.IsUniformGroup.Basic", "Mathlib.Topology.Algebra.Order.Field", "Mathlib.Topology.IsLocalHomeomorph", "Mathlib.Topology.Order.T5" ]
Mathlib/Topology/Instances/AddCircle/Defs.lean
liftIoc_zero_coe_apply
null
liftIco_continuous [TopologicalSpace B] {f : 𝕜 → B} (hf : f a = f (a + p)) (hc : ContinuousOn f <| Icc a (a + p)) : Continuous (liftIco p a f) := by rw [liftIco_eq_lift_Icc hf] refine Continuous.comp ?_ (homeoIccQuot p a).continuous_toFun exact continuous_coinduced_dom.mpr (continuousOn_iff_continuous_restrict.mp hc)
theorem
Topology
[ "Mathlib.Algebra.Order.ToIntervalMod", "Mathlib.Algebra.Ring.AddAut", "Mathlib.Data.Nat.Totient", "Mathlib.GroupTheory.Divisible", "Mathlib.Topology.Algebra.IsUniformGroup.Basic", "Mathlib.Topology.Algebra.Order.Field", "Mathlib.Topology.IsLocalHomeomorph", "Mathlib.Topology.Order.T5" ]
Mathlib/Topology/Instances/AddCircle/Defs.lean
liftIco_continuous
null
liftIco_zero_continuous [TopologicalSpace B] {f : 𝕜 → B} (hf : f 0 = f p) (hc : ContinuousOn f <| Icc 0 p) : Continuous (liftIco p 0 f) := liftIco_continuous (by rwa [zero_add] : f 0 = f (0 + p)) (by rwa [zero_add])
theorem
Topology
[ "Mathlib.Algebra.Order.ToIntervalMod", "Mathlib.Algebra.Ring.AddAut", "Mathlib.Data.Nat.Totient", "Mathlib.GroupTheory.Divisible", "Mathlib.Topology.Algebra.IsUniformGroup.Basic", "Mathlib.Topology.Algebra.Order.Field", "Mathlib.Topology.IsLocalHomeomorph", "Mathlib.Topology.Order.T5" ]
Mathlib/Topology/Instances/AddCircle/Defs.lean
liftIco_zero_continuous
null
liftIoc_continuous [TopologicalSpace B] {f : 𝕜 → B} (hf : f a = f (a + p)) (hc : ContinuousOn f <| Icc a (a + p)) : Continuous (liftIoc p a f) := by rw [liftIoc_eq_lift_Icc hf] refine Continuous.comp ?_ (homeoIccQuot p a).continuous_toFun exact continuous_coinduced_dom.mpr (continuousOn_iff_continuous_restrict.mp hc)
theorem
Topology
[ "Mathlib.Algebra.Order.ToIntervalMod", "Mathlib.Algebra.Ring.AddAut", "Mathlib.Data.Nat.Totient", "Mathlib.GroupTheory.Divisible", "Mathlib.Topology.Algebra.IsUniformGroup.Basic", "Mathlib.Topology.Algebra.Order.Field", "Mathlib.Topology.IsLocalHomeomorph", "Mathlib.Topology.Order.T5" ]
Mathlib/Topology/Instances/AddCircle/Defs.lean
liftIoc_continuous
null
liftIoc_zero_continuous [TopologicalSpace B] {f : 𝕜 → B} (hf : f 0 = f p) (hc : ContinuousOn f <| Icc 0 p) : Continuous (liftIoc p 0 f) := liftIoc_continuous (by rwa [zero_add] : f 0 = f (0 + p)) (by rwa [zero_add])
theorem
Topology
[ "Mathlib.Algebra.Order.ToIntervalMod", "Mathlib.Algebra.Ring.AddAut", "Mathlib.Data.Nat.Totient", "Mathlib.GroupTheory.Divisible", "Mathlib.Topology.Algebra.IsUniformGroup.Basic", "Mathlib.Topology.Algebra.Order.Field", "Mathlib.Topology.IsLocalHomeomorph", "Mathlib.Topology.Order.T5" ]
Mathlib/Topology/Instances/AddCircle/Defs.lean
liftIoc_zero_continuous
null
dense_addSubgroupClosure_pair_iff {a b : ℝ} : Dense (AddSubgroup.closure {a, b} : Set ℝ) ↔ Irrational (a / b) := by rcases eq_or_ne b 0 with rfl | hb · rw [pair_comm] simpa [← AddSubgroup.zmultiples_eq_closure] using not_denseRange_zsmul constructor · rintro hd ⟨r, hr⟩ refine not_denseRange_zsmul (a := b / r.den) <| hd.mono ?_ rw [← AddSubgroup.coe_zmultiples, SetLike.coe_subset_coe, AddSubgroup.closure_le, AddSubgroup.coe_zmultiples, pair_subset_iff] refine ⟨⟨r.num, ?_⟩, r.den, ?_⟩ · simp [field, mul_div_left_comm _ b, ← Rat.cast_def, hr] · simp [field] · intro h contrapose! h rcases (AddSubgroup.dense_or_cyclic _).resolve_left h with ⟨c, hc⟩ have : {a, b} ⊆ range (· • c : ℤ → ℝ) := by rw [← AddSubgroup.coe_zmultiples, AddSubgroup.zmultiples_eq_closure, ← hc] apply AddSubgroup.subset_closure rcases pair_subset_iff.1 this with ⟨⟨m, rfl⟩, n, rfl⟩ simp_all [mul_div_mul_right]
theorem
Topology
[ "Mathlib.Data.Real.Irrational", "Mathlib.Topology.Instances.AddCircle.Defs", "Mathlib.Topology.Algebra.Order.Archimedean" ]
Mathlib/Topology/Instances/AddCircle/DenseSubgroup.lean
dense_addSubgroupClosure_pair_iff
The additive subgroup of real numbers generated by `a` and `b` is dense iff `a / b` is an irrational number. Here we rely on the fact that `a / 0 = 0` in Mathlib, so we don't need to add `b ≠ 0` as an assumption.
denseRange_zsmul_coe_iff {a p : ℝ} : DenseRange (· • a : ℤ → AddCircle p) ↔ Irrational (a / p) := by rw [← dense_addSubgroupClosure_pair_iff, DenseRange, ← QuotientAddGroup.dense_preimage_mk, ← QuotientAddGroup.coe_mk', ← AddSubgroup.coe_zmultiples, ← AddSubgroup.coe_comap, ← AddMonoidHom.map_zmultiples, AddSubgroup.comap_map_eq, QuotientAddGroup.ker_mk', AddSubgroup.zmultiples_eq_closure, AddSubgroup.zmultiples_eq_closure, ← AddSubgroup.closure_union, insert_eq]
theorem
Topology
[ "Mathlib.Data.Real.Irrational", "Mathlib.Topology.Instances.AddCircle.Defs", "Mathlib.Topology.Algebra.Order.Archimedean" ]
Mathlib/Topology/Instances/AddCircle/DenseSubgroup.lean
denseRange_zsmul_coe_iff
The multiples of a number `a` are dense on a circle of length `p` iff `a / p` is irrational.
denseRange_zsmul_iff {p : ℝ} [Fact (0 < p)] {a : AddCircle p} : DenseRange (· • a : ℤ → AddCircle p) ↔ addOrderOf a = 0 := by rcases QuotientAddGroup.mk_surjective a with ⟨a, rfl⟩ simp [denseRange_zsmul_coe_iff, isOfFinAddOrder_iff_exists_rat_eq_div, Irrational]
theorem
Topology
[ "Mathlib.Data.Real.Irrational", "Mathlib.Topology.Instances.AddCircle.Defs", "Mathlib.Topology.Algebra.Order.Archimedean" ]
Mathlib/Topology/Instances/AddCircle/DenseSubgroup.lean
denseRange_zsmul_iff
The multiples of a number `a` are dense on a circle of length `p > 0` iff `a` has infinite additive order.
dense_addSubgroup_iff_ne_zmultiples {p : ℝ} [Fact (0 < p)] {s : AddSubgroup (AddCircle p)} : Dense (s : Set (AddCircle p)) ↔ ∀ a, addOrderOf a ≠ 0 → s ≠ .zmultiples a := by constructor · rintro hd a ha rfl rw [AddSubgroup.coe_zmultiples, ← DenseRange, denseRange_zsmul_iff] at hd exact ha hd · intro h contrapose! h obtain ⟨a, rfl⟩ : ∃ a, s = .zmultiples a := by rw [← QuotientAddGroup.dense_preimage_mk, ← QuotientAddGroup.coe_mk', ← AddSubgroup.coe_comap, xor_iff_not_iff'.1 (AddSubgroup.dense_xor'_cyclic _)] at h rcases h with ⟨a, ha⟩ use a rw [← QuotientAddGroup.coe_mk', ← AddMonoidHom.map_zmultiples, ← ha, AddSubgroup.map_comap_eq_self_of_surjective] exact Quot.mk_surjective exact ⟨a, denseRange_zsmul_iff.not.mp h, rfl⟩
theorem
Topology
[ "Mathlib.Data.Real.Irrational", "Mathlib.Topology.Instances.AddCircle.Defs", "Mathlib.Topology.Algebra.Order.Archimedean" ]
Mathlib/Topology/Instances/AddCircle/DenseSubgroup.lean
dense_addSubgroup_iff_ne_zmultiples
A subgroup of the circle `ℝ⧸pℤ`, `p > 0`, is dense iff it is not generated by a single element of finite additive order.
pathConnectedSpace : PathConnectedSpace <| AddCircle p := (inferInstance : PathConnectedSpace (Quotient _))
instance
Topology
[ "Mathlib.Topology.Connected.PathConnected", "Mathlib.Topology.Instances.AddCircle.Defs", "Mathlib.Topology.Instances.ZMultiples" ]
Mathlib/Topology/Instances/AddCircle/Real.lean
pathConnectedSpace
null
compactSpace [Fact (0 < p)] : CompactSpace <| AddCircle p := by rw [← isCompact_univ_iff, ← coe_image_Icc_eq p 0] exact isCompact_Icc.image (AddCircle.continuous_mk' p)
instance
Topology
[ "Mathlib.Topology.Connected.PathConnected", "Mathlib.Topology.Instances.AddCircle.Defs", "Mathlib.Topology.Instances.ZMultiples" ]
Mathlib/Topology/Instances/AddCircle/Real.lean
compactSpace
The "additive circle" `ℝ ⧸ (ℤ ∙ p)` is compact.
UnitAddCircle := AddCircle (1 : ℝ)
abbrev
Topology
[ "Mathlib.Topology.Connected.PathConnected", "Mathlib.Topology.Instances.AddCircle.Defs", "Mathlib.Topology.Instances.ZMultiples" ]
Mathlib/Topology/Instances/AddCircle/Real.lean
UnitAddCircle
The action on `ℝ` by right multiplication of its the subgroup `zmultiples p` (the multiples of `p:ℝ`) is properly discontinuous. -/ instance : ProperlyDiscontinuousVAdd (zmultiples p).op ℝ := (zmultiples p).properlyDiscontinuousVAdd_opposite_of_tendsto_cofinite (AddSubgroup.tendsto_zmultiples_subtype_cofinite p) end AddCircle section UnitAddCircle /-- The unit circle `ℝ ⧸ ℤ`.
noncomputable toAddCircle : ZMod N →+ UnitAddCircle := lift N ⟨AddMonoidHom.mk' (fun j ↦ ↑(j / N : ℝ)) (by simp [add_div]), by simp [div_self (NeZero.ne _)]⟩
def
Topology
[ "Mathlib.Topology.Connected.PathConnected", "Mathlib.Topology.Instances.AddCircle.Defs", "Mathlib.Topology.Instances.ZMultiples" ]
Mathlib/Topology/Instances/AddCircle/Real.lean
toAddCircle
The `AddMonoidHom` from `ZMod N` to `ℝ / ℤ` sending `j mod N` to `j / N mod 1`.
toAddCircle_intCast (j : ℤ) : toAddCircle (j : ZMod N) = ↑(j / N : ℝ) := by simp [toAddCircle]
lemma
Topology
[ "Mathlib.Topology.Connected.PathConnected", "Mathlib.Topology.Instances.AddCircle.Defs", "Mathlib.Topology.Instances.ZMultiples" ]
Mathlib/Topology/Instances/AddCircle/Real.lean
toAddCircle_intCast
null
toAddCircle_natCast (j : ℕ) : toAddCircle (j : ZMod N) = ↑(j / N : ℝ) := by simpa using toAddCircle_intCast (N := N) j
lemma
Topology
[ "Mathlib.Topology.Connected.PathConnected", "Mathlib.Topology.Instances.AddCircle.Defs", "Mathlib.Topology.Instances.ZMultiples" ]
Mathlib/Topology/Instances/AddCircle/Real.lean
toAddCircle_natCast
null
toAddCircle_apply (j : ZMod N) : toAddCircle j = ↑(j.val / N : ℝ) := by rw [← toAddCircle_natCast, natCast_zmod_val] variable (N) in
lemma
Topology
[ "Mathlib.Topology.Connected.PathConnected", "Mathlib.Topology.Instances.AddCircle.Defs", "Mathlib.Topology.Instances.ZMultiples" ]
Mathlib/Topology/Instances/AddCircle/Real.lean
toAddCircle_apply
Explicit formula for `toCircle j`. Note that this is "evil" because it uses `ZMod.val`. Where possible, it is recommended to lift `j` to `ℤ` and use `toAddCircle_intCast` instead.
toAddCircle_injective : Function.Injective (toAddCircle : ZMod N → _) := by intro x y hxy have : (0 : ℝ) < N := Nat.cast_pos.mpr (NeZero.pos _) rwa [toAddCircle_apply, toAddCircle_apply, AddCircle.coe_eq_coe_iff_of_mem_Ico, div_left_inj' this.ne', Nat.cast_inj, (val_injective N).eq_iff] at hxy <;> exact ⟨by positivity, by simpa only [zero_add, div_lt_one this, Nat.cast_lt] using val_lt _⟩ @[simp] lemma toAddCircle_inj {j k : ZMod N} : toAddCircle j = toAddCircle k ↔ j = k := (toAddCircle_injective N).eq_iff @[simp] lemma toAddCircle_eq_zero {j : ZMod N} : toAddCircle j = 0 ↔ j = 0 := map_eq_zero_iff _ (toAddCircle_injective N)
lemma
Topology
[ "Mathlib.Topology.Connected.PathConnected", "Mathlib.Topology.Instances.AddCircle.Defs", "Mathlib.Topology.Instances.ZMultiples" ]
Mathlib/Topology/Instances/AddCircle/Real.lean
toAddCircle_injective
null
isOpen_ne_top : IsOpen { a : ℝ≥0∞ | a ≠ ∞ } := isOpen_ne
theorem
Topology
[ "Mathlib.Algebra.BigOperators.Intervals", "Mathlib.Data.ENNReal.BigOperators", "Mathlib.Tactic.Bound", "Mathlib.Topology.Order.LiminfLimsup", "Mathlib.Topology.EMetricSpace.Lipschitz", "Mathlib.Topology.Instances.NNReal.Lemmas", "Mathlib.Topology.MetricSpace.Pseudo.Real", "Mathlib.Topology.MetricSpace.ProperSpace.Real", "Mathlib.Topology.Metrizable.Uniformity" ]
Mathlib/Topology/Instances/ENNReal/Lemmas.lean
isOpen_ne_top
null
isOpen_Ico_zero : IsOpen (Ico 0 b) := by rw [ENNReal.Ico_eq_Iio] exact isOpen_Iio
theorem
Topology
[ "Mathlib.Algebra.BigOperators.Intervals", "Mathlib.Data.ENNReal.BigOperators", "Mathlib.Tactic.Bound", "Mathlib.Topology.Order.LiminfLimsup", "Mathlib.Topology.EMetricSpace.Lipschitz", "Mathlib.Topology.Instances.NNReal.Lemmas", "Mathlib.Topology.MetricSpace.Pseudo.Real", "Mathlib.Topology.MetricSpace.ProperSpace.Real", "Mathlib.Topology.Metrizable.Uniformity" ]
Mathlib/Topology/Instances/ENNReal/Lemmas.lean
isOpen_Ico_zero
null
coe_range_mem_nhds : range ((↑) : ℝ≥0 → ℝ≥0∞) ∈ 𝓝 (r : ℝ≥0∞) := IsOpen.mem_nhds isOpenEmbedding_coe.isOpen_range <| mem_range_self _ @[fun_prop]
theorem
Topology
[ "Mathlib.Algebra.BigOperators.Intervals", "Mathlib.Data.ENNReal.BigOperators", "Mathlib.Tactic.Bound", "Mathlib.Topology.Order.LiminfLimsup", "Mathlib.Topology.EMetricSpace.Lipschitz", "Mathlib.Topology.Instances.NNReal.Lemmas", "Mathlib.Topology.MetricSpace.Pseudo.Real", "Mathlib.Topology.MetricSpace.ProperSpace.Real", "Mathlib.Topology.Metrizable.Uniformity" ]
Mathlib/Topology/Instances/ENNReal/Lemmas.lean
coe_range_mem_nhds
null
continuous_coe : Continuous ((↑) : ℝ≥0 → ℝ≥0∞) := isEmbedding_coe.continuous
theorem
Topology
[ "Mathlib.Algebra.BigOperators.Intervals", "Mathlib.Data.ENNReal.BigOperators", "Mathlib.Tactic.Bound", "Mathlib.Topology.Order.LiminfLimsup", "Mathlib.Topology.EMetricSpace.Lipschitz", "Mathlib.Topology.Instances.NNReal.Lemmas", "Mathlib.Topology.MetricSpace.Pseudo.Real", "Mathlib.Topology.MetricSpace.ProperSpace.Real", "Mathlib.Topology.Metrizable.Uniformity" ]
Mathlib/Topology/Instances/ENNReal/Lemmas.lean
continuous_coe
null
tendsto_coe_toNNReal {a : ℝ≥0∞} (ha : a ≠ ⊤) : Tendsto (↑) (𝓝 a.toNNReal) (𝓝 a) := by nth_rewrite 2 [← coe_toNNReal ha] exact continuous_coe.tendsto _
lemma
Topology
[ "Mathlib.Algebra.BigOperators.Intervals", "Mathlib.Data.ENNReal.BigOperators", "Mathlib.Tactic.Bound", "Mathlib.Topology.Order.LiminfLimsup", "Mathlib.Topology.EMetricSpace.Lipschitz", "Mathlib.Topology.Instances.NNReal.Lemmas", "Mathlib.Topology.MetricSpace.Pseudo.Real", "Mathlib.Topology.MetricSpace.ProperSpace.Real", "Mathlib.Topology.Metrizable.Uniformity" ]
Mathlib/Topology/Instances/ENNReal/Lemmas.lean
tendsto_coe_toNNReal
null
continuous_coe_iff {α} [TopologicalSpace α] {f : α → ℝ≥0} : (Continuous fun a => (f a : ℝ≥0∞)) ↔ Continuous f := isEmbedding_coe.continuous_iff.symm
theorem
Topology
[ "Mathlib.Algebra.BigOperators.Intervals", "Mathlib.Data.ENNReal.BigOperators", "Mathlib.Tactic.Bound", "Mathlib.Topology.Order.LiminfLimsup", "Mathlib.Topology.EMetricSpace.Lipschitz", "Mathlib.Topology.Instances.NNReal.Lemmas", "Mathlib.Topology.MetricSpace.Pseudo.Real", "Mathlib.Topology.MetricSpace.ProperSpace.Real", "Mathlib.Topology.Metrizable.Uniformity" ]
Mathlib/Topology/Instances/ENNReal/Lemmas.lean
continuous_coe_iff
null
nhds_coe {r : ℝ≥0} : 𝓝 (r : ℝ≥0∞) = (𝓝 r).map (↑) := (isOpenEmbedding_coe.map_nhds_eq r).symm
theorem
Topology
[ "Mathlib.Algebra.BigOperators.Intervals", "Mathlib.Data.ENNReal.BigOperators", "Mathlib.Tactic.Bound", "Mathlib.Topology.Order.LiminfLimsup", "Mathlib.Topology.EMetricSpace.Lipschitz", "Mathlib.Topology.Instances.NNReal.Lemmas", "Mathlib.Topology.MetricSpace.Pseudo.Real", "Mathlib.Topology.MetricSpace.ProperSpace.Real", "Mathlib.Topology.Metrizable.Uniformity" ]
Mathlib/Topology/Instances/ENNReal/Lemmas.lean
nhds_coe
null
tendsto_nhds_coe_iff {α : Type*} {l : Filter α} {x : ℝ≥0} {f : ℝ≥0∞ → α} : Tendsto f (𝓝 ↑x) l ↔ Tendsto (f ∘ (↑) : ℝ≥0 → α) (𝓝 x) l := by rw [nhds_coe, tendsto_map'_iff]
theorem
Topology
[ "Mathlib.Algebra.BigOperators.Intervals", "Mathlib.Data.ENNReal.BigOperators", "Mathlib.Tactic.Bound", "Mathlib.Topology.Order.LiminfLimsup", "Mathlib.Topology.EMetricSpace.Lipschitz", "Mathlib.Topology.Instances.NNReal.Lemmas", "Mathlib.Topology.MetricSpace.Pseudo.Real", "Mathlib.Topology.MetricSpace.ProperSpace.Real", "Mathlib.Topology.Metrizable.Uniformity" ]
Mathlib/Topology/Instances/ENNReal/Lemmas.lean
tendsto_nhds_coe_iff
null
continuousAt_coe_iff {α : Type*} [TopologicalSpace α] {x : ℝ≥0} {f : ℝ≥0∞ → α} : ContinuousAt f ↑x ↔ ContinuousAt (f ∘ (↑) : ℝ≥0 → α) x := tendsto_nhds_coe_iff
theorem
Topology
[ "Mathlib.Algebra.BigOperators.Intervals", "Mathlib.Data.ENNReal.BigOperators", "Mathlib.Tactic.Bound", "Mathlib.Topology.Order.LiminfLimsup", "Mathlib.Topology.EMetricSpace.Lipschitz", "Mathlib.Topology.Instances.NNReal.Lemmas", "Mathlib.Topology.MetricSpace.Pseudo.Real", "Mathlib.Topology.MetricSpace.ProperSpace.Real", "Mathlib.Topology.Metrizable.Uniformity" ]
Mathlib/Topology/Instances/ENNReal/Lemmas.lean
continuousAt_coe_iff
null
continuous_ofReal : Continuous ENNReal.ofReal := (continuous_coe_iff.2 continuous_id).comp continuous_real_toNNReal
theorem
Topology
[ "Mathlib.Algebra.BigOperators.Intervals", "Mathlib.Data.ENNReal.BigOperators", "Mathlib.Tactic.Bound", "Mathlib.Topology.Order.LiminfLimsup", "Mathlib.Topology.EMetricSpace.Lipschitz", "Mathlib.Topology.Instances.NNReal.Lemmas", "Mathlib.Topology.MetricSpace.Pseudo.Real", "Mathlib.Topology.MetricSpace.ProperSpace.Real", "Mathlib.Topology.Metrizable.Uniformity" ]
Mathlib/Topology/Instances/ENNReal/Lemmas.lean
continuous_ofReal
null
tendsto_ofReal {f : Filter α} {m : α → ℝ} {a : ℝ} (h : Tendsto m f (𝓝 a)) : Tendsto (fun a => ENNReal.ofReal (m a)) f (𝓝 (ENNReal.ofReal a)) := (continuous_ofReal.tendsto a).comp h
theorem
Topology
[ "Mathlib.Algebra.BigOperators.Intervals", "Mathlib.Data.ENNReal.BigOperators", "Mathlib.Tactic.Bound", "Mathlib.Topology.Order.LiminfLimsup", "Mathlib.Topology.EMetricSpace.Lipschitz", "Mathlib.Topology.Instances.NNReal.Lemmas", "Mathlib.Topology.MetricSpace.Pseudo.Real", "Mathlib.Topology.MetricSpace.ProperSpace.Real", "Mathlib.Topology.Metrizable.Uniformity" ]
Mathlib/Topology/Instances/ENNReal/Lemmas.lean
tendsto_ofReal
null
tendsto_toNNReal {a : ℝ≥0∞} (ha : a ≠ ∞) : Tendsto ENNReal.toNNReal (𝓝 a) (𝓝 a.toNNReal) := by lift a to ℝ≥0 using ha rw [nhds_coe, tendsto_map'_iff] exact tendsto_id
theorem
Topology
[ "Mathlib.Algebra.BigOperators.Intervals", "Mathlib.Data.ENNReal.BigOperators", "Mathlib.Tactic.Bound", "Mathlib.Topology.Order.LiminfLimsup", "Mathlib.Topology.EMetricSpace.Lipschitz", "Mathlib.Topology.Instances.NNReal.Lemmas", "Mathlib.Topology.MetricSpace.Pseudo.Real", "Mathlib.Topology.MetricSpace.ProperSpace.Real", "Mathlib.Topology.Metrizable.Uniformity" ]
Mathlib/Topology/Instances/ENNReal/Lemmas.lean
tendsto_toNNReal
null
tendsto_toNNReal_iff {f : α → ℝ≥0∞} {u : Filter α} (ha : a ≠ ∞) (hf : ∀ x, f x ≠ ∞) : Tendsto (ENNReal.toNNReal ∘ f) u (𝓝 (a.toNNReal)) ↔ Tendsto f u (𝓝 a) := by refine ⟨fun h => ?_, fun h => (ENNReal.tendsto_toNNReal ha).comp h⟩ rw [← coe_comp_toNNReal_comp hf] exact (tendsto_coe_toNNReal ha).comp h
theorem
Topology
[ "Mathlib.Algebra.BigOperators.Intervals", "Mathlib.Data.ENNReal.BigOperators", "Mathlib.Tactic.Bound", "Mathlib.Topology.Order.LiminfLimsup", "Mathlib.Topology.EMetricSpace.Lipschitz", "Mathlib.Topology.Instances.NNReal.Lemmas", "Mathlib.Topology.MetricSpace.Pseudo.Real", "Mathlib.Topology.MetricSpace.ProperSpace.Real", "Mathlib.Topology.Metrizable.Uniformity" ]
Mathlib/Topology/Instances/ENNReal/Lemmas.lean
tendsto_toNNReal_iff
null
tendsto_toNNReal_iff' {f : α → ℝ≥0∞} {u : Filter α} {a : ℝ≥0} (hf : ∀ x, f x ≠ ∞) : Tendsto (ENNReal.toNNReal ∘ f) u (𝓝 a) ↔ Tendsto f u (𝓝 a) := by rw [← toNNReal_coe a] exact tendsto_toNNReal_iff coe_ne_top hf
theorem
Topology
[ "Mathlib.Algebra.BigOperators.Intervals", "Mathlib.Data.ENNReal.BigOperators", "Mathlib.Tactic.Bound", "Mathlib.Topology.Order.LiminfLimsup", "Mathlib.Topology.EMetricSpace.Lipschitz", "Mathlib.Topology.Instances.NNReal.Lemmas", "Mathlib.Topology.MetricSpace.Pseudo.Real", "Mathlib.Topology.MetricSpace.ProperSpace.Real", "Mathlib.Topology.Metrizable.Uniformity" ]
Mathlib/Topology/Instances/ENNReal/Lemmas.lean
tendsto_toNNReal_iff'
null
eventuallyEq_of_toReal_eventuallyEq {l : Filter α} {f g : α → ℝ≥0∞} (hfi : ∀ᶠ x in l, f x ≠ ∞) (hgi : ∀ᶠ x in l, g x ≠ ∞) (hfg : (fun x => (f x).toReal) =ᶠ[l] fun x => (g x).toReal) : f =ᶠ[l] g := by filter_upwards [hfi, hgi, hfg] with _ hfx hgx _ rwa [← ENNReal.toReal_eq_toReal hfx hgx]
theorem
Topology
[ "Mathlib.Algebra.BigOperators.Intervals", "Mathlib.Data.ENNReal.BigOperators", "Mathlib.Tactic.Bound", "Mathlib.Topology.Order.LiminfLimsup", "Mathlib.Topology.EMetricSpace.Lipschitz", "Mathlib.Topology.Instances.NNReal.Lemmas", "Mathlib.Topology.MetricSpace.Pseudo.Real", "Mathlib.Topology.MetricSpace.ProperSpace.Real", "Mathlib.Topology.Metrizable.Uniformity" ]
Mathlib/Topology/Instances/ENNReal/Lemmas.lean
eventuallyEq_of_toReal_eventuallyEq
null
continuousOn_toNNReal : ContinuousOn ENNReal.toNNReal { a | a ≠ ∞ } := fun _a ha => ContinuousAt.continuousWithinAt (tendsto_toNNReal ha)
theorem
Topology
[ "Mathlib.Algebra.BigOperators.Intervals", "Mathlib.Data.ENNReal.BigOperators", "Mathlib.Tactic.Bound", "Mathlib.Topology.Order.LiminfLimsup", "Mathlib.Topology.EMetricSpace.Lipschitz", "Mathlib.Topology.Instances.NNReal.Lemmas", "Mathlib.Topology.MetricSpace.Pseudo.Real", "Mathlib.Topology.MetricSpace.ProperSpace.Real", "Mathlib.Topology.Metrizable.Uniformity" ]
Mathlib/Topology/Instances/ENNReal/Lemmas.lean
continuousOn_toNNReal
null
tendsto_toReal {a : ℝ≥0∞} (ha : a ≠ ∞) : Tendsto ENNReal.toReal (𝓝 a) (𝓝 a.toReal) := NNReal.tendsto_coe.2 <| tendsto_toNNReal ha
theorem
Topology
[ "Mathlib.Algebra.BigOperators.Intervals", "Mathlib.Data.ENNReal.BigOperators", "Mathlib.Tactic.Bound", "Mathlib.Topology.Order.LiminfLimsup", "Mathlib.Topology.EMetricSpace.Lipschitz", "Mathlib.Topology.Instances.NNReal.Lemmas", "Mathlib.Topology.MetricSpace.Pseudo.Real", "Mathlib.Topology.MetricSpace.ProperSpace.Real", "Mathlib.Topology.Metrizable.Uniformity" ]
Mathlib/Topology/Instances/ENNReal/Lemmas.lean
tendsto_toReal
null
continuousOn_toReal : ContinuousOn ENNReal.toReal { a | a ≠ ∞ } := NNReal.continuous_coe.comp_continuousOn continuousOn_toNNReal
lemma
Topology
[ "Mathlib.Algebra.BigOperators.Intervals", "Mathlib.Data.ENNReal.BigOperators", "Mathlib.Tactic.Bound", "Mathlib.Topology.Order.LiminfLimsup", "Mathlib.Topology.EMetricSpace.Lipschitz", "Mathlib.Topology.Instances.NNReal.Lemmas", "Mathlib.Topology.MetricSpace.Pseudo.Real", "Mathlib.Topology.MetricSpace.ProperSpace.Real", "Mathlib.Topology.Metrizable.Uniformity" ]
Mathlib/Topology/Instances/ENNReal/Lemmas.lean
continuousOn_toReal
null
continuousAt_toReal (hx : x ≠ ∞) : ContinuousAt ENNReal.toReal x := continuousOn_toReal.continuousAt (isOpen_ne_top.mem_nhds_iff.mpr hx)
lemma
Topology
[ "Mathlib.Algebra.BigOperators.Intervals", "Mathlib.Data.ENNReal.BigOperators", "Mathlib.Tactic.Bound", "Mathlib.Topology.Order.LiminfLimsup", "Mathlib.Topology.EMetricSpace.Lipschitz", "Mathlib.Topology.Instances.NNReal.Lemmas", "Mathlib.Topology.MetricSpace.Pseudo.Real", "Mathlib.Topology.MetricSpace.ProperSpace.Real", "Mathlib.Topology.Metrizable.Uniformity" ]
Mathlib/Topology/Instances/ENNReal/Lemmas.lean
continuousAt_toReal
null
neTopHomeomorphNNReal : { a | a ≠ ∞ } ≃ₜ ℝ≥0 where toEquiv := neTopEquivNNReal continuous_toFun := continuousOn_iff_continuous_restrict.1 continuousOn_toNNReal continuous_invFun := continuous_coe.subtype_mk _
def
Topology
[ "Mathlib.Algebra.BigOperators.Intervals", "Mathlib.Data.ENNReal.BigOperators", "Mathlib.Tactic.Bound", "Mathlib.Topology.Order.LiminfLimsup", "Mathlib.Topology.EMetricSpace.Lipschitz", "Mathlib.Topology.Instances.NNReal.Lemmas", "Mathlib.Topology.MetricSpace.Pseudo.Real", "Mathlib.Topology.MetricSpace.ProperSpace.Real", "Mathlib.Topology.Metrizable.Uniformity" ]
Mathlib/Topology/Instances/ENNReal/Lemmas.lean
neTopHomeomorphNNReal
The set of finite `ℝ≥0∞` numbers is homeomorphic to `ℝ≥0`.
ltTopHomeomorphNNReal : { a | a < ∞ } ≃ₜ ℝ≥0 := by refine (Homeomorph.setCongr ?_).trans neTopHomeomorphNNReal simp only [lt_top_iff_ne_top]
def
Topology
[ "Mathlib.Algebra.BigOperators.Intervals", "Mathlib.Data.ENNReal.BigOperators", "Mathlib.Tactic.Bound", "Mathlib.Topology.Order.LiminfLimsup", "Mathlib.Topology.EMetricSpace.Lipschitz", "Mathlib.Topology.Instances.NNReal.Lemmas", "Mathlib.Topology.MetricSpace.Pseudo.Real", "Mathlib.Topology.MetricSpace.ProperSpace.Real", "Mathlib.Topology.Metrizable.Uniformity" ]
Mathlib/Topology/Instances/ENNReal/Lemmas.lean
ltTopHomeomorphNNReal
The set of finite `ℝ≥0∞` numbers is homeomorphic to `ℝ≥0`.
nhds_top : 𝓝 ∞ = ⨅ (a) (_ : a ≠ ∞), 𝓟 (Ioi a) := nhds_top_order.trans <| by simp [lt_top_iff_ne_top, Ioi]
theorem
Topology
[ "Mathlib.Algebra.BigOperators.Intervals", "Mathlib.Data.ENNReal.BigOperators", "Mathlib.Tactic.Bound", "Mathlib.Topology.Order.LiminfLimsup", "Mathlib.Topology.EMetricSpace.Lipschitz", "Mathlib.Topology.Instances.NNReal.Lemmas", "Mathlib.Topology.MetricSpace.Pseudo.Real", "Mathlib.Topology.MetricSpace.ProperSpace.Real", "Mathlib.Topology.Metrizable.Uniformity" ]
Mathlib/Topology/Instances/ENNReal/Lemmas.lean
nhds_top
null
nhds_top' : 𝓝 ∞ = ⨅ r : ℝ≥0, 𝓟 (Ioi ↑r) := nhds_top.trans <| iInf_ne_top _
theorem
Topology
[ "Mathlib.Algebra.BigOperators.Intervals", "Mathlib.Data.ENNReal.BigOperators", "Mathlib.Tactic.Bound", "Mathlib.Topology.Order.LiminfLimsup", "Mathlib.Topology.EMetricSpace.Lipschitz", "Mathlib.Topology.Instances.NNReal.Lemmas", "Mathlib.Topology.MetricSpace.Pseudo.Real", "Mathlib.Topology.MetricSpace.ProperSpace.Real", "Mathlib.Topology.Metrizable.Uniformity" ]
Mathlib/Topology/Instances/ENNReal/Lemmas.lean
nhds_top'
null
nhds_top_basis : (𝓝 ∞).HasBasis (fun a => a < ∞) fun a => Ioi a := _root_.nhds_top_basis
theorem
Topology
[ "Mathlib.Algebra.BigOperators.Intervals", "Mathlib.Data.ENNReal.BigOperators", "Mathlib.Tactic.Bound", "Mathlib.Topology.Order.LiminfLimsup", "Mathlib.Topology.EMetricSpace.Lipschitz", "Mathlib.Topology.Instances.NNReal.Lemmas", "Mathlib.Topology.MetricSpace.Pseudo.Real", "Mathlib.Topology.MetricSpace.ProperSpace.Real", "Mathlib.Topology.Metrizable.Uniformity" ]
Mathlib/Topology/Instances/ENNReal/Lemmas.lean
nhds_top_basis
null
tendsto_nhds_top_iff_nnreal {m : α → ℝ≥0∞} {f : Filter α} : Tendsto m f (𝓝 ∞) ↔ ∀ x : ℝ≥0, ∀ᶠ a in f, ↑x < m a := by simp only [nhds_top', tendsto_iInf, tendsto_principal, mem_Ioi]
theorem
Topology
[ "Mathlib.Algebra.BigOperators.Intervals", "Mathlib.Data.ENNReal.BigOperators", "Mathlib.Tactic.Bound", "Mathlib.Topology.Order.LiminfLimsup", "Mathlib.Topology.EMetricSpace.Lipschitz", "Mathlib.Topology.Instances.NNReal.Lemmas", "Mathlib.Topology.MetricSpace.Pseudo.Real", "Mathlib.Topology.MetricSpace.ProperSpace.Real", "Mathlib.Topology.Metrizable.Uniformity" ]
Mathlib/Topology/Instances/ENNReal/Lemmas.lean
tendsto_nhds_top_iff_nnreal
null
tendsto_nhds_top_iff_nat {m : α → ℝ≥0∞} {f : Filter α} : Tendsto m f (𝓝 ∞) ↔ ∀ n : ℕ, ∀ᶠ a in f, ↑n < m a := tendsto_nhds_top_iff_nnreal.trans ⟨fun h n => by simpa only [ENNReal.coe_natCast] using h n, fun h x => let ⟨n, hn⟩ := exists_nat_gt x (h n).mono fun _ => lt_trans <| by rwa [← ENNReal.coe_natCast, coe_lt_coe]⟩
theorem
Topology
[ "Mathlib.Algebra.BigOperators.Intervals", "Mathlib.Data.ENNReal.BigOperators", "Mathlib.Tactic.Bound", "Mathlib.Topology.Order.LiminfLimsup", "Mathlib.Topology.EMetricSpace.Lipschitz", "Mathlib.Topology.Instances.NNReal.Lemmas", "Mathlib.Topology.MetricSpace.Pseudo.Real", "Mathlib.Topology.MetricSpace.ProperSpace.Real", "Mathlib.Topology.Metrizable.Uniformity" ]
Mathlib/Topology/Instances/ENNReal/Lemmas.lean
tendsto_nhds_top_iff_nat
null
tendsto_nhds_top {m : α → ℝ≥0∞} {f : Filter α} (h : ∀ n : ℕ, ∀ᶠ a in f, ↑n < m a) : Tendsto m f (𝓝 ∞) := tendsto_nhds_top_iff_nat.2 h
theorem
Topology
[ "Mathlib.Algebra.BigOperators.Intervals", "Mathlib.Data.ENNReal.BigOperators", "Mathlib.Tactic.Bound", "Mathlib.Topology.Order.LiminfLimsup", "Mathlib.Topology.EMetricSpace.Lipschitz", "Mathlib.Topology.Instances.NNReal.Lemmas", "Mathlib.Topology.MetricSpace.Pseudo.Real", "Mathlib.Topology.MetricSpace.ProperSpace.Real", "Mathlib.Topology.Metrizable.Uniformity" ]
Mathlib/Topology/Instances/ENNReal/Lemmas.lean
tendsto_nhds_top
null
tendsto_nat_nhds_top : Tendsto (fun n : ℕ => ↑n) atTop (𝓝 ∞) := tendsto_nhds_top fun n => mem_atTop_sets.2 ⟨n + 1, fun _m hm => mem_setOf.2 <| Nat.cast_lt.2 <| Nat.lt_of_succ_le hm⟩ @[simp, norm_cast]
theorem
Topology
[ "Mathlib.Algebra.BigOperators.Intervals", "Mathlib.Data.ENNReal.BigOperators", "Mathlib.Tactic.Bound", "Mathlib.Topology.Order.LiminfLimsup", "Mathlib.Topology.EMetricSpace.Lipschitz", "Mathlib.Topology.Instances.NNReal.Lemmas", "Mathlib.Topology.MetricSpace.Pseudo.Real", "Mathlib.Topology.MetricSpace.ProperSpace.Real", "Mathlib.Topology.Metrizable.Uniformity" ]
Mathlib/Topology/Instances/ENNReal/Lemmas.lean
tendsto_nat_nhds_top
null
tendsto_coe_nhds_top {f : α → ℝ≥0} {l : Filter α} : Tendsto (fun x => (f x : ℝ≥0∞)) l (𝓝 ∞) ↔ Tendsto f l atTop := by rw [tendsto_nhds_top_iff_nnreal, atTop_basis_Ioi.tendsto_right_iff]; simp @[simp]
theorem
Topology
[ "Mathlib.Algebra.BigOperators.Intervals", "Mathlib.Data.ENNReal.BigOperators", "Mathlib.Tactic.Bound", "Mathlib.Topology.Order.LiminfLimsup", "Mathlib.Topology.EMetricSpace.Lipschitz", "Mathlib.Topology.Instances.NNReal.Lemmas", "Mathlib.Topology.MetricSpace.Pseudo.Real", "Mathlib.Topology.MetricSpace.ProperSpace.Real", "Mathlib.Topology.Metrizable.Uniformity" ]
Mathlib/Topology/Instances/ENNReal/Lemmas.lean
tendsto_coe_nhds_top
null
tendsto_ofReal_nhds_top {f : α → ℝ} {l : Filter α} : Tendsto (fun x ↦ ENNReal.ofReal (f x)) l (𝓝 ∞) ↔ Tendsto f l atTop := tendsto_coe_nhds_top.trans Real.tendsto_toNNReal_atTop_iff
theorem
Topology
[ "Mathlib.Algebra.BigOperators.Intervals", "Mathlib.Data.ENNReal.BigOperators", "Mathlib.Tactic.Bound", "Mathlib.Topology.Order.LiminfLimsup", "Mathlib.Topology.EMetricSpace.Lipschitz", "Mathlib.Topology.Instances.NNReal.Lemmas", "Mathlib.Topology.MetricSpace.Pseudo.Real", "Mathlib.Topology.MetricSpace.ProperSpace.Real", "Mathlib.Topology.Metrizable.Uniformity" ]
Mathlib/Topology/Instances/ENNReal/Lemmas.lean
tendsto_ofReal_nhds_top
null
tendsto_ofReal_atTop : Tendsto ENNReal.ofReal atTop (𝓝 ∞) := tendsto_ofReal_nhds_top.2 tendsto_id
theorem
Topology
[ "Mathlib.Algebra.BigOperators.Intervals", "Mathlib.Data.ENNReal.BigOperators", "Mathlib.Tactic.Bound", "Mathlib.Topology.Order.LiminfLimsup", "Mathlib.Topology.EMetricSpace.Lipschitz", "Mathlib.Topology.Instances.NNReal.Lemmas", "Mathlib.Topology.MetricSpace.Pseudo.Real", "Mathlib.Topology.MetricSpace.ProperSpace.Real", "Mathlib.Topology.Metrizable.Uniformity" ]
Mathlib/Topology/Instances/ENNReal/Lemmas.lean
tendsto_ofReal_atTop
null
nhds_zero : 𝓝 (0 : ℝ≥0∞) = ⨅ (a) (_ : a ≠ 0), 𝓟 (Iio a) := nhds_bot_order.trans <| by simp [pos_iff_ne_zero, Iio]
theorem
Topology
[ "Mathlib.Algebra.BigOperators.Intervals", "Mathlib.Data.ENNReal.BigOperators", "Mathlib.Tactic.Bound", "Mathlib.Topology.Order.LiminfLimsup", "Mathlib.Topology.EMetricSpace.Lipschitz", "Mathlib.Topology.Instances.NNReal.Lemmas", "Mathlib.Topology.MetricSpace.Pseudo.Real", "Mathlib.Topology.MetricSpace.ProperSpace.Real", "Mathlib.Topology.Metrizable.Uniformity" ]
Mathlib/Topology/Instances/ENNReal/Lemmas.lean
nhds_zero
null