fact
stringlengths
6
3.84k
type
stringclasses
11 values
library
stringclasses
32 values
imports
listlengths
1
14
filename
stringlengths
20
95
symbolic_name
stringlengths
1
90
docstring
stringlengths
7
20k
frontier_ball_eq_empty : frontier (ball x r) = ∅ := isClopen_iff_frontier_eq_empty.mp (isClopen_ball x r)
lemma
Topology
[ "Mathlib.Topology.MetricSpace.Pseudo.Lemmas" ]
Mathlib/Topology/MetricSpace/Ultra/Basic.lean
frontier_ball_eq_empty
null
closedBall_eq_or_disjoint : closedBall x r = closedBall y r ∨ Disjoint (closedBall x r) (closedBall y r) := by refine Set.disjoint_or_nonempty_inter (closedBall x r) (closedBall y r) |>.symm.imp (fun h ↦ ?_) id have h₁ := closedBall_eq_of_mem <| Set.inter_subset_left h.some_mem have h₂ := closedBall_eq_of_mem <| Set.inter_subset_right h.some_mem exact h₁.trans h₂.symm
lemma
Topology
[ "Mathlib.Topology.MetricSpace.Pseudo.Lemmas" ]
Mathlib/Topology/MetricSpace/Ultra/Basic.lean
closedBall_eq_or_disjoint
null
isOpen_closedBall {r : ℝ} (hr : r ≠ 0) : IsOpen (closedBall x r) := by cases lt_or_gt_of_ne hr with | inl h => simp [closedBall_eq_empty.mpr h] | inr h => rw [isOpen_iff] simp only [gt_iff_lt] intro y hy cases closedBall_eq_or_disjoint x y r with | inl hd => use r simp [h, hd, ball_subset_closedBall] | inr hd => simp [closedBall_eq_of_mem hy, h.not_gt] at hd
lemma
Topology
[ "Mathlib.Topology.MetricSpace.Pseudo.Lemmas" ]
Mathlib/Topology/MetricSpace/Ultra/Basic.lean
isOpen_closedBall
null
isClopen_closedBall {r : ℝ} (hr : r ≠ 0) : IsClopen (closedBall x r) := ⟨Metric.isClosed_closedBall, isOpen_closedBall x hr⟩
lemma
Topology
[ "Mathlib.Topology.MetricSpace.Pseudo.Lemmas" ]
Mathlib/Topology/MetricSpace/Ultra/Basic.lean
isClopen_closedBall
null
frontier_closedBall_eq_empty {r : ℝ} (hr : r ≠ 0) : frontier (closedBall x r) = ∅ := isClopen_iff_frontier_eq_empty.mp (isClopen_closedBall x hr)
lemma
Topology
[ "Mathlib.Topology.MetricSpace.Pseudo.Lemmas" ]
Mathlib/Topology/MetricSpace/Ultra/Basic.lean
frontier_closedBall_eq_empty
null
isOpen_sphere {r : ℝ} (hr : r ≠ 0) : IsOpen (sphere x r) := by rw [← closedBall_diff_ball, sdiff_eq] exact (isOpen_closedBall x hr).inter (isClosed_ball x r).isOpen_compl
lemma
Topology
[ "Mathlib.Topology.MetricSpace.Pseudo.Lemmas" ]
Mathlib/Topology/MetricSpace/Ultra/Basic.lean
isOpen_sphere
null
isClopen_sphere {r : ℝ} (hr : r ≠ 0) : IsClopen (sphere x r) := ⟨Metric.isClosed_sphere, isOpen_sphere x hr⟩
lemma
Topology
[ "Mathlib.Topology.MetricSpace.Pseudo.Lemmas" ]
Mathlib/Topology/MetricSpace/Ultra/Basic.lean
isClopen_sphere
null
ContinuousMap.isUltrametricDist {X Y : Type*} [TopologicalSpace X] [CompactSpace X] [MetricSpace Y] [IsUltrametricDist Y] : IsUltrametricDist C(X, Y) := by constructor intro f g h rw [ContinuousMap.dist_le (by positivity)] refine fun x ↦ (dist_triangle_max (f x) (g x) (h x)).trans (max_le_max ?_ ?_) <;> exact ContinuousMap.dist_apply_le_dist x
instance
Topology
[ "Mathlib.Topology.ContinuousMap.Compact", "Mathlib.Topology.MetricSpace.Ultra.Basic" ]
Mathlib/Topology/MetricSpace/Ultra/ContinuousMaps.lean
ContinuousMap.isUltrametricDist
Continuous maps from a compact space to an ultrametric space are an ultrametric space.
Pi.instIsUltrametricDist {ι : Type*} {X : ι → Type*} [Fintype ι] [(i : ι) → PseudoMetricSpace (X i)] [(i : ι) → IsUltrametricDist (X i)] : IsUltrametricDist ((i : ι) → X i) := by constructor intro f g h simp only [dist_pi_def, ← NNReal.coe_max, NNReal.coe_le_coe, ← Finset.sup_sup] exact Finset.sup_mono_fun fun i _ ↦ IsUltrametricDist.dist_triangle_max (f i) (g i) (h i)
instance
Topology
[ "Mathlib.Topology.MetricSpace.Pseudo.Pi", "Mathlib.Topology.MetricSpace.Ultra.Basic" ]
Mathlib/Topology/MetricSpace/Ultra/Pi.lean
Pi.instIsUltrametricDist
null
AlexDisc extends TopCat where [is_alexandrovDiscrete : AlexandrovDiscrete carrier]
structure
Topology
[ "Mathlib.Topology.Specialization" ]
Mathlib/Topology/Order/Category/AlexDisc.lean
AlexDisc
The category of Alexandrov-discrete spaces.
category : Category AlexDisc := InducedCategory.category toTopCat
instance
Topology
[ "Mathlib.Topology.Specialization" ]
Mathlib/Topology/Order/Category/AlexDisc.lean
category
null
concreteCategory : ConcreteCategory AlexDisc (C(·, ·)) := InducedCategory.concreteCategory toTopCat
instance
Topology
[ "Mathlib.Topology.Specialization" ]
Mathlib/Topology/Order/Category/AlexDisc.lean
concreteCategory
null
instHasForgetToTop : HasForget₂ AlexDisc TopCat := InducedCategory.hasForget₂ toTopCat
instance
Topology
[ "Mathlib.Topology.Specialization" ]
Mathlib/Topology/Order/Category/AlexDisc.lean
instHasForgetToTop
null
forgetToTop_full : (forget₂ AlexDisc TopCat).Full where map_surjective f := ⟨f, rfl⟩
instance
Topology
[ "Mathlib.Topology.Specialization" ]
Mathlib/Topology/Order/Category/AlexDisc.lean
forgetToTop_full
null
forgetToTop_faithful : (forget₂ AlexDisc TopCat).Faithful where
instance
Topology
[ "Mathlib.Topology.Specialization" ]
Mathlib/Topology/Order/Category/AlexDisc.lean
forgetToTop_faithful
null
of (X : Type*) [TopologicalSpace X] [AlexandrovDiscrete X] : AlexDisc where toTopCat := TopCat.of X
abbrev
Topology
[ "Mathlib.Topology.Specialization" ]
Mathlib/Topology/Order/Category/AlexDisc.lean
of
Construct a bundled `AlexDisc` from the underlying topological space.
coe_of (α : Type*) [TopologicalSpace α] [AlexandrovDiscrete α] : ↥(of α) = α := rfl @[simp] lemma forgetToTop_of (α : Type*) [TopologicalSpace α] [AlexandrovDiscrete α] : (forget₂ AlexDisc TopCat).obj (of α) = TopCat.of α := rfl @[simp] lemma coe_forgetToTop (X : AlexDisc) : ↥((forget₂ _ TopCat).obj X) = X := rfl
lemma
Topology
[ "Mathlib.Topology.Specialization" ]
Mathlib/Topology/Order/Category/AlexDisc.lean
coe_of
null
@[simps] Iso.mk {α β : AlexDisc} (e : α ≃ₜ β) : α ≅ β where hom := TopCat.ofHom (e : ContinuousMap α β) inv := TopCat.ofHom (e.symm : ContinuousMap β α) hom_inv_id := by ext; apply e.symm_apply_apply inv_hom_id := by ext; apply e.apply_symm_apply
def
Topology
[ "Mathlib.Topology.Specialization" ]
Mathlib/Topology/Order/Category/AlexDisc.lean
Iso.mk
Constructs an equivalence between preorders from an order isomorphism between them.
@[simps] alexDiscEquivPreord : AlexDisc ≌ Preord where functor := forget₂ _ _ ⋙ topToPreord inverse.obj X := AlexDisc.of (WithUpperSet X) inverse.map f := TopCat.ofHom (WithUpperSet.map f.hom) unitIso := NatIso.ofComponents fun X ↦ AlexDisc.Iso.mk <| by dsimp; exact homeoWithUpperSetTopologyorderIso X counitIso := NatIso.ofComponents fun X ↦ Preord.Iso.mk <| by dsimp; exact (orderIsoSpecializationWithUpperSetTopology X).symm
def
Topology
[ "Mathlib.Topology.Specialization" ]
Mathlib/Topology/Order/Category/AlexDisc.lean
alexDiscEquivPreord
Sends a topological space to its specialisation order.
PT := FrameHom L Prop
abbrev
Topology
[ "Mathlib.Topology.Category.Locale" ]
Mathlib/Topology/Order/Category/FrameAdjunction.lean
PT
The type of points of a complete lattice `L`, where a *point* of a complete lattice is, by definition, a frame homomorphism from `L` to `Prop`.
@[simps] openOfElementHom : FrameHom L (Set (PT L)) where toFun u := {x | x u} map_inf' a b := by simp [Set.setOf_and] map_top' := by simp map_sSup' S := by ext; simp [Prop.exists_iff]
def
Topology
[ "Mathlib.Topology.Category.Locale" ]
Mathlib/Topology/Order/Category/FrameAdjunction.lean
openOfElementHom
The frame homomorphism from a complete lattice `L` to the complete lattice of sets of points of `L`.
instTopologicalSpace : TopologicalSpace (PT L) where IsOpen s := ∃ u, {x | x u} = s isOpen_univ := ⟨⊤, by simp⟩ isOpen_inter := by rintro s t ⟨u, rfl⟩ ⟨v, rfl⟩; use u ⊓ v; simp_rw [map_inf]; rfl isOpen_sUnion S hS := by choose f hf using hS use ⨆ t, ⨆ ht, f t ht simp_rw [map_iSup, iSup_Prop_eq, setOf_exists, hf, sUnion_eq_biUnion]
instance
Topology
[ "Mathlib.Topology.Category.Locale" ]
Mathlib/Topology/Order/Category/FrameAdjunction.lean
instTopologicalSpace
The topology on the set of points of the complete lattice `L`.
isOpen_iff (U : Set (PT L)) : IsOpen U ↔ ∃ u : L, {x | x u} = U := Iff.rfl
lemma
Topology
[ "Mathlib.Topology.Category.Locale" ]
Mathlib/Topology/Order/Category/FrameAdjunction.lean
isOpen_iff
Characterization of when a subset of the space of points is open.
pt : Locale ⥤ TopCat where obj L := .of (PT L.unop) map f := TopCat.ofHom ⟨fun p ↦ p.comp f.unop.hom, continuous_def.2 <| by rintro s ⟨u, rfl⟩; use f.unop u; rfl⟩
def
Topology
[ "Mathlib.Topology.Category.Locale" ]
Mathlib/Topology/Order/Category/FrameAdjunction.lean
pt
The covariant functor `pt` from the category of locales to the category of topological spaces, which sends a locale `L` to the topological space `PT L` of homomorphisms from `L` to `Prop` and a locale homomorphism `f` to a continuous function between the spaces of points.
@[simps] localePointOfSpacePoint (x : X) : PT (Opens X) where toFun := (x ∈ ·) map_inf' _ _ := rfl map_top' := rfl map_sSup' S := by simp [Prop.exists_iff]
def
Topology
[ "Mathlib.Topology.Category.Locale" ]
Mathlib/Topology/Order/Category/FrameAdjunction.lean
localePointOfSpacePoint
The unit of the adjunction between locales and topological spaces, which associates with a point `x` of the space `X` a point of the locale of opens of `X`.
counitAppCont : FrameHom L (Opens <| PT L) where toFun u := ⟨openOfElementHom L u, u, rfl⟩ map_inf' a b := by simp map_top' := by simp map_sSup' S := by ext; simp
def
Topology
[ "Mathlib.Topology.Category.Locale" ]
Mathlib/Topology/Order/Category/FrameAdjunction.lean
counitAppCont
The counit is a frame homomorphism.
adjunctionTopToLocalePT : topToLocale ⊣ pt where unit := { app := fun X ↦ TopCat.ofHom ⟨localePointOfSpacePoint X, continuous_def.2 <| by rintro _ ⟨u, rfl⟩; simpa using u.2⟩ } counit := { app := fun L ↦ ⟨Frm.ofHom (counitAppCont L)⟩ }
def
Topology
[ "Mathlib.Topology.Category.Locale" ]
Mathlib/Topology/Order/Category/FrameAdjunction.lean
adjunctionTopToLocalePT
The forgetful functor `topToLocale` is left adjoint to the functor `pt`.
ContinuousOrderHom (α β : Type*) [Preorder α] [Preorder β] [TopologicalSpace α] [TopologicalSpace β] extends OrderHom α β where continuous_toFun : Continuous toFun @[inherit_doc] infixr:25 " →Co " => ContinuousOrderHom
structure
Topology
[ "Mathlib.Topology.Continuous", "Mathlib.Topology.ContinuousMap.Defs" ]
Mathlib/Topology/Order/Hom/Basic.lean
ContinuousOrderHom
The type of continuous monotone maps from `α` to `β`, aka Priestley homomorphisms.
ContinuousOrderHomClass (F : Type*) (α β : outParam Type*) [Preorder α] [Preorder β] [TopologicalSpace α] [TopologicalSpace β] [FunLike F α β] : Prop extends ContinuousMapClass F α β where map_monotone (f : F) : Monotone f
class
Topology
[ "Mathlib.Topology.Continuous", "Mathlib.Topology.ContinuousMap.Defs" ]
Mathlib/Topology/Order/Hom/Basic.lean
ContinuousOrderHomClass
`ContinuousOrderHomClass F α β` states that `F` is a type of continuous monotone maps. You should extend this class when you extend `ContinuousOrderHom`.
@[coe] toContinuousOrderHom (f : F) : α →Co β := { toFun := f monotone' := ContinuousOrderHomClass.map_monotone f continuous_toFun := map_continuous f }
def
Topology
[ "Mathlib.Topology.Continuous", "Mathlib.Topology.ContinuousMap.Defs" ]
Mathlib/Topology/Order/Hom/Basic.lean
toContinuousOrderHom
Turn an element of a type `F` satisfying `ContinuousOrderHomClass F α β` into an actual `ContinuousOrderHom`. This is declared as the default coercion from `F` to `α →Co β`.
toContinuousMap (f : α →Co β) : C(α, β) := { f with }
def
Topology
[ "Mathlib.Topology.Continuous", "Mathlib.Topology.ContinuousMap.Defs" ]
Mathlib/Topology/Order/Hom/Basic.lean
toContinuousMap
Reinterpret a `ContinuousOrderHom` as a `ContinuousMap`.
instFunLike : FunLike (α →Co β) α β where coe f := f.toFun coe_injective' f g h := by obtain ⟨⟨_, _⟩, _⟩ := f obtain ⟨⟨_, _⟩, _⟩ := g congr
instance
Topology
[ "Mathlib.Topology.Continuous", "Mathlib.Topology.ContinuousMap.Defs" ]
Mathlib/Topology/Order/Hom/Basic.lean
instFunLike
null
@[simp] coe_toOrderHom (f : α →Co β) : ⇑f.toOrderHom = f := rfl
theorem
Topology
[ "Mathlib.Topology.Continuous", "Mathlib.Topology.ContinuousMap.Defs" ]
Mathlib/Topology/Order/Hom/Basic.lean
coe_toOrderHom
null
toFun_eq_coe {f : α →Co β} : f.toFun = (f : α → β) := rfl @[ext]
theorem
Topology
[ "Mathlib.Topology.Continuous", "Mathlib.Topology.ContinuousMap.Defs" ]
Mathlib/Topology/Order/Hom/Basic.lean
toFun_eq_coe
null
ext {f g : α →Co β} (h : ∀ a, f a = g a) : f = g := DFunLike.ext f g h
theorem
Topology
[ "Mathlib.Topology.Continuous", "Mathlib.Topology.ContinuousMap.Defs" ]
Mathlib/Topology/Order/Hom/Basic.lean
ext
null
protected copy (f : α →Co β) (f' : α → β) (h : f' = f) : α →Co β := ⟨f.toOrderHom.copy f' h, h.symm.subst f.continuous_toFun⟩ @[simp]
def
Topology
[ "Mathlib.Topology.Continuous", "Mathlib.Topology.ContinuousMap.Defs" ]
Mathlib/Topology/Order/Hom/Basic.lean
copy
Copy of a `ContinuousOrderHom` with a new `ContinuousMap` equal to the old one. Useful to fix definitional equalities.
coe_copy (f : α →Co β) (f' : α → β) (h : f' = f) : ⇑(f.copy f' h) = f' := rfl
theorem
Topology
[ "Mathlib.Topology.Continuous", "Mathlib.Topology.ContinuousMap.Defs" ]
Mathlib/Topology/Order/Hom/Basic.lean
coe_copy
null
copy_eq (f : α →Co β) (f' : α → β) (h : f' = f) : f.copy f' h = f := DFunLike.ext' h variable (α)
theorem
Topology
[ "Mathlib.Topology.Continuous", "Mathlib.Topology.ContinuousMap.Defs" ]
Mathlib/Topology/Order/Hom/Basic.lean
copy_eq
null
protected id : α →Co α := ⟨OrderHom.id, continuous_id⟩
def
Topology
[ "Mathlib.Topology.Continuous", "Mathlib.Topology.ContinuousMap.Defs" ]
Mathlib/Topology/Order/Hom/Basic.lean
id
`id` as a `ContinuousOrderHom`.
@[simp, norm_cast] coe_id : ⇑(ContinuousOrderHom.id α) = id := rfl variable {α} @[simp]
theorem
Topology
[ "Mathlib.Topology.Continuous", "Mathlib.Topology.ContinuousMap.Defs" ]
Mathlib/Topology/Order/Hom/Basic.lean
coe_id
null
id_apply (a : α) : ContinuousOrderHom.id α a = a := rfl
theorem
Topology
[ "Mathlib.Topology.Continuous", "Mathlib.Topology.ContinuousMap.Defs" ]
Mathlib/Topology/Order/Hom/Basic.lean
id_apply
null
comp (f : β →Co γ) (g : α →Co β) : ContinuousOrderHom α γ := ⟨f.toOrderHom.comp g.toOrderHom, f.continuous_toFun.comp g.continuous_toFun⟩ @[simp]
def
Topology
[ "Mathlib.Topology.Continuous", "Mathlib.Topology.ContinuousMap.Defs" ]
Mathlib/Topology/Order/Hom/Basic.lean
comp
Composition of `ContinuousOrderHom`s as a `ContinuousOrderHom`.
coe_comp (f : β →Co γ) (g : α →Co β) : (f.comp g : α → γ) = f ∘ g := rfl @[simp]
theorem
Topology
[ "Mathlib.Topology.Continuous", "Mathlib.Topology.ContinuousMap.Defs" ]
Mathlib/Topology/Order/Hom/Basic.lean
coe_comp
null
comp_apply (f : β →Co γ) (g : α →Co β) (a : α) : (f.comp g) a = f (g a) := rfl @[simp]
theorem
Topology
[ "Mathlib.Topology.Continuous", "Mathlib.Topology.ContinuousMap.Defs" ]
Mathlib/Topology/Order/Hom/Basic.lean
comp_apply
null
comp_assoc (f : γ →Co δ) (g : β →Co γ) (h : α →Co β) : (f.comp g).comp h = f.comp (g.comp h) := rfl @[simp]
theorem
Topology
[ "Mathlib.Topology.Continuous", "Mathlib.Topology.ContinuousMap.Defs" ]
Mathlib/Topology/Order/Hom/Basic.lean
comp_assoc
null
comp_id (f : α →Co β) : f.comp (ContinuousOrderHom.id α) = f := ext fun _ => rfl @[simp]
theorem
Topology
[ "Mathlib.Topology.Continuous", "Mathlib.Topology.ContinuousMap.Defs" ]
Mathlib/Topology/Order/Hom/Basic.lean
comp_id
null
id_comp (f : α →Co β) : (ContinuousOrderHom.id β).comp f = f := ext fun _ => rfl @[simp]
theorem
Topology
[ "Mathlib.Topology.Continuous", "Mathlib.Topology.ContinuousMap.Defs" ]
Mathlib/Topology/Order/Hom/Basic.lean
id_comp
null
cancel_right {g₁ g₂ : β →Co γ} {f : α →Co β} (hf : Surjective f) : g₁.comp f = g₂.comp f ↔ g₁ = g₂ := ⟨fun h => ext <| hf.forall.2 <| DFunLike.ext_iff.1 h, fun h => congr_arg₂ _ h rfl⟩ @[simp]
theorem
Topology
[ "Mathlib.Topology.Continuous", "Mathlib.Topology.ContinuousMap.Defs" ]
Mathlib/Topology/Order/Hom/Basic.lean
cancel_right
null
cancel_left {g : β →Co γ} {f₁ f₂ : α →Co β} (hg : Injective g) : g.comp f₁ = g.comp f₂ ↔ f₁ = f₂ := ⟨fun h => ext fun a => hg <| by rw [← comp_apply, h, comp_apply], congr_arg _⟩
theorem
Topology
[ "Mathlib.Topology.Continuous", "Mathlib.Topology.ContinuousMap.Defs" ]
Mathlib/Topology/Order/Hom/Basic.lean
cancel_left
null
PseudoEpimorphism (α β : Type*) [Preorder α] [Preorder β] extends α →o β where exists_map_eq_of_map_le' ⦃a : α⦄ ⦃b : β⦄ : toFun a ≤ b → ∃ c, a ≤ c ∧ toFun c = b
structure
Topology
[ "Mathlib.Order.Hom.Bounded", "Mathlib.Topology.Order.Hom.Basic" ]
Mathlib/Topology/Order/Hom/Esakia.lean
PseudoEpimorphism
The type of pseudo-epimorphisms, aka p-morphisms, aka bounded maps, from `α` to `β`.
EsakiaHom (α β : Type*) [TopologicalSpace α] [Preorder α] [TopologicalSpace β] [Preorder β] extends α →Co β where exists_map_eq_of_map_le' ⦃a : α⦄ ⦃b : β⦄ : toFun a ≤ b → ∃ c, a ≤ c ∧ toFun c = b
structure
Topology
[ "Mathlib.Order.Hom.Bounded", "Mathlib.Topology.Order.Hom.Basic" ]
Mathlib/Topology/Order/Hom/Esakia.lean
EsakiaHom
The type of Esakia morphisms, aka continuous pseudo-epimorphisms, from `α` to `β`.
PseudoEpimorphismClass (F : Type*) (α β : outParam Type*) [Preorder α] [Preorder β] [FunLike F α β] : Prop extends RelHomClass F ((· ≤ ·) : α → α → Prop) ((· ≤ ·) : β → β → Prop) where exists_map_eq_of_map_le (f : F) ⦃a : α⦄ ⦃b : β⦄ : f a ≤ b → ∃ c, a ≤ c ∧ f c = b
class
Topology
[ "Mathlib.Order.Hom.Bounded", "Mathlib.Topology.Order.Hom.Basic" ]
Mathlib/Topology/Order/Hom/Esakia.lean
PseudoEpimorphismClass
`PseudoEpimorphismClass F α β` states that `F` is a type of `⊔`-preserving morphisms. You should extend this class when you extend `PseudoEpimorphism`.
EsakiaHomClass (F : Type*) (α β : outParam Type*) [TopologicalSpace α] [Preorder α] [TopologicalSpace β] [Preorder β] [FunLike F α β] : Prop extends ContinuousOrderHomClass F α β where exists_map_eq_of_map_le (f : F) ⦃a : α⦄ ⦃b : β⦄ : f a ≤ b → ∃ c, a ≤ c ∧ f c = b
class
Topology
[ "Mathlib.Order.Hom.Bounded", "Mathlib.Topology.Order.Hom.Basic" ]
Mathlib/Topology/Order/Hom/Esakia.lean
EsakiaHomClass
`EsakiaHomClass F α β` states that `F` is a type of lattice morphisms. You should extend this class when you extend `EsakiaHom`.
instFunLike : FunLike (PseudoEpimorphism α β) α β where coe f := f.toFun coe_injective' f g h := by obtain ⟨⟨_, _⟩, _⟩ := f obtain ⟨⟨_, _⟩, _⟩ := g congr
instance
Topology
[ "Mathlib.Order.Hom.Bounded", "Mathlib.Topology.Order.Hom.Basic" ]
Mathlib/Topology/Order/Hom/Esakia.lean
instFunLike
null
@[simp] toOrderHom_eq_coe (f : PseudoEpimorphism α β) : ⇑f.toOrderHom = f := rfl
theorem
Topology
[ "Mathlib.Order.Hom.Bounded", "Mathlib.Topology.Order.Hom.Basic" ]
Mathlib/Topology/Order/Hom/Esakia.lean
toOrderHom_eq_coe
null
toFun_eq_coe {f : PseudoEpimorphism α β} : f.toFun = (f : α → β) := rfl @[ext]
theorem
Topology
[ "Mathlib.Order.Hom.Bounded", "Mathlib.Topology.Order.Hom.Basic" ]
Mathlib/Topology/Order/Hom/Esakia.lean
toFun_eq_coe
null
ext {f g : PseudoEpimorphism α β} (h : ∀ a, f a = g a) : f = g := DFunLike.ext f g h
theorem
Topology
[ "Mathlib.Order.Hom.Bounded", "Mathlib.Topology.Order.Hom.Basic" ]
Mathlib/Topology/Order/Hom/Esakia.lean
ext
null
protected copy (f : PseudoEpimorphism α β) (f' : α → β) (h : f' = f) : PseudoEpimorphism α β := ⟨f.toOrderHom.copy f' h, by simpa only [h.symm, toFun_eq_coe] using f.exists_map_eq_of_map_le'⟩ @[simp]
def
Topology
[ "Mathlib.Order.Hom.Bounded", "Mathlib.Topology.Order.Hom.Basic" ]
Mathlib/Topology/Order/Hom/Esakia.lean
copy
Copy of a `PseudoEpimorphism` with a new `toFun` equal to the old one. Useful to fix definitional equalities.
coe_copy (f : PseudoEpimorphism α β) (f' : α → β) (h : f' = f) : ⇑(f.copy f' h) = f' := rfl
theorem
Topology
[ "Mathlib.Order.Hom.Bounded", "Mathlib.Topology.Order.Hom.Basic" ]
Mathlib/Topology/Order/Hom/Esakia.lean
coe_copy
null
copy_eq (f : PseudoEpimorphism α β) (f' : α → β) (h : f' = f) : f.copy f' h = f := DFunLike.ext' h variable (α)
theorem
Topology
[ "Mathlib.Order.Hom.Bounded", "Mathlib.Topology.Order.Hom.Basic" ]
Mathlib/Topology/Order/Hom/Esakia.lean
copy_eq
null
protected id : PseudoEpimorphism α α := ⟨OrderHom.id, fun _ b h => ⟨b, h, rfl⟩⟩
def
Topology
[ "Mathlib.Order.Hom.Bounded", "Mathlib.Topology.Order.Hom.Basic" ]
Mathlib/Topology/Order/Hom/Esakia.lean
id
`id` as a `PseudoEpimorphism`.
@[simp, norm_cast] coe_id : ⇑(PseudoEpimorphism.id α) = id := rfl @[simp, norm_cast]
theorem
Topology
[ "Mathlib.Order.Hom.Bounded", "Mathlib.Topology.Order.Hom.Basic" ]
Mathlib/Topology/Order/Hom/Esakia.lean
coe_id
null
coe_id_orderHom : (PseudoEpimorphism.id α : α →o α) = OrderHom.id := rfl variable {α} @[simp]
theorem
Topology
[ "Mathlib.Order.Hom.Bounded", "Mathlib.Topology.Order.Hom.Basic" ]
Mathlib/Topology/Order/Hom/Esakia.lean
coe_id_orderHom
null
id_apply (a : α) : PseudoEpimorphism.id α a = a := rfl
theorem
Topology
[ "Mathlib.Order.Hom.Bounded", "Mathlib.Topology.Order.Hom.Basic" ]
Mathlib/Topology/Order/Hom/Esakia.lean
id_apply
null
comp (g : PseudoEpimorphism β γ) (f : PseudoEpimorphism α β) : PseudoEpimorphism α γ := ⟨g.toOrderHom.comp f.toOrderHom, fun a b h₀ => by obtain ⟨b, h₁, rfl⟩ := g.exists_map_eq_of_map_le' h₀ obtain ⟨b, h₂, rfl⟩ := f.exists_map_eq_of_map_le' h₁ exact ⟨b, h₂, rfl⟩⟩ @[simp]
def
Topology
[ "Mathlib.Order.Hom.Bounded", "Mathlib.Topology.Order.Hom.Basic" ]
Mathlib/Topology/Order/Hom/Esakia.lean
comp
Composition of `PseudoEpimorphism`s as a `PseudoEpimorphism`.
coe_comp (g : PseudoEpimorphism β γ) (f : PseudoEpimorphism α β) : (g.comp f : α → γ) = g ∘ f := rfl @[simp]
theorem
Topology
[ "Mathlib.Order.Hom.Bounded", "Mathlib.Topology.Order.Hom.Basic" ]
Mathlib/Topology/Order/Hom/Esakia.lean
coe_comp
null
coe_comp_orderHom (g : PseudoEpimorphism β γ) (f : PseudoEpimorphism α β) : (g.comp f : α →o γ) = (g : β →o γ).comp f := rfl @[simp]
theorem
Topology
[ "Mathlib.Order.Hom.Bounded", "Mathlib.Topology.Order.Hom.Basic" ]
Mathlib/Topology/Order/Hom/Esakia.lean
coe_comp_orderHom
null
comp_apply (g : PseudoEpimorphism β γ) (f : PseudoEpimorphism α β) (a : α) : (g.comp f) a = g (f a) := rfl @[simp]
theorem
Topology
[ "Mathlib.Order.Hom.Bounded", "Mathlib.Topology.Order.Hom.Basic" ]
Mathlib/Topology/Order/Hom/Esakia.lean
comp_apply
null
comp_assoc (h : PseudoEpimorphism γ δ) (g : PseudoEpimorphism β γ) (f : PseudoEpimorphism α β) : (h.comp g).comp f = h.comp (g.comp f) := rfl @[simp]
theorem
Topology
[ "Mathlib.Order.Hom.Bounded", "Mathlib.Topology.Order.Hom.Basic" ]
Mathlib/Topology/Order/Hom/Esakia.lean
comp_assoc
null
comp_id (f : PseudoEpimorphism α β) : f.comp (PseudoEpimorphism.id α) = f := ext fun _ => rfl @[simp]
theorem
Topology
[ "Mathlib.Order.Hom.Bounded", "Mathlib.Topology.Order.Hom.Basic" ]
Mathlib/Topology/Order/Hom/Esakia.lean
comp_id
null
id_comp (f : PseudoEpimorphism α β) : (PseudoEpimorphism.id β).comp f = f := ext fun _ => rfl @[simp]
theorem
Topology
[ "Mathlib.Order.Hom.Bounded", "Mathlib.Topology.Order.Hom.Basic" ]
Mathlib/Topology/Order/Hom/Esakia.lean
id_comp
null
cancel_right {g₁ g₂ : PseudoEpimorphism β γ} {f : PseudoEpimorphism α β} (hf : Surjective f) : g₁.comp f = g₂.comp f ↔ g₁ = g₂ := ⟨fun h => ext <| hf.forall.2 <| DFunLike.ext_iff.1 h, congr_arg (comp · f)⟩ @[simp]
theorem
Topology
[ "Mathlib.Order.Hom.Bounded", "Mathlib.Topology.Order.Hom.Basic" ]
Mathlib/Topology/Order/Hom/Esakia.lean
cancel_right
null
cancel_left {g : PseudoEpimorphism β γ} {f₁ f₂ : PseudoEpimorphism α β} (hg : Injective g) : g.comp f₁ = g.comp f₂ ↔ f₁ = f₂ := ⟨fun h => ext fun a => hg <| by rw [← comp_apply, h, comp_apply], congr_arg _⟩
theorem
Topology
[ "Mathlib.Order.Hom.Bounded", "Mathlib.Topology.Order.Hom.Basic" ]
Mathlib/Topology/Order/Hom/Esakia.lean
cancel_left
null
toPseudoEpimorphism (f : EsakiaHom α β) : PseudoEpimorphism α β := { f with }
def
Topology
[ "Mathlib.Order.Hom.Bounded", "Mathlib.Topology.Order.Hom.Basic" ]
Mathlib/Topology/Order/Hom/Esakia.lean
toPseudoEpimorphism
null
instFunLike : FunLike (EsakiaHom α β) α β where coe f := f.toFun coe_injective' f g h := by obtain ⟨⟨⟨_, _⟩, _⟩, _⟩ := f obtain ⟨⟨⟨_, _⟩, _⟩, _⟩ := g congr
instance
Topology
[ "Mathlib.Order.Hom.Bounded", "Mathlib.Topology.Order.Hom.Basic" ]
Mathlib/Topology/Order/Hom/Esakia.lean
instFunLike
null
@[simp] toContinuousOrderHom_coe {f : EsakiaHom α β} : f.toContinuousOrderHom = (f : α → β) := rfl
theorem
Topology
[ "Mathlib.Order.Hom.Bounded", "Mathlib.Topology.Order.Hom.Basic" ]
Mathlib/Topology/Order/Hom/Esakia.lean
toContinuousOrderHom_coe
null
toFun_eq_coe {f : EsakiaHom α β} : f.toFun = (f : α → β) := rfl @[ext]
theorem
Topology
[ "Mathlib.Order.Hom.Bounded", "Mathlib.Topology.Order.Hom.Basic" ]
Mathlib/Topology/Order/Hom/Esakia.lean
toFun_eq_coe
null
ext {f g : EsakiaHom α β} (h : ∀ a, f a = g a) : f = g := DFunLike.ext f g h
theorem
Topology
[ "Mathlib.Order.Hom.Bounded", "Mathlib.Topology.Order.Hom.Basic" ]
Mathlib/Topology/Order/Hom/Esakia.lean
ext
null
protected copy (f : EsakiaHom α β) (f' : α → β) (h : f' = f) : EsakiaHom α β := ⟨f.toContinuousOrderHom.copy f' h, by simpa only [h.symm, toFun_eq_coe] using f.exists_map_eq_of_map_le'⟩ @[simp]
def
Topology
[ "Mathlib.Order.Hom.Bounded", "Mathlib.Topology.Order.Hom.Basic" ]
Mathlib/Topology/Order/Hom/Esakia.lean
copy
Copy of an `EsakiaHom` with a new `toFun` equal to the old one. Useful to fix definitional equalities.
coe_copy (f : EsakiaHom α β) (f' : α → β) (h : f' = f) : ⇑(f.copy f' h) = f' := rfl
theorem
Topology
[ "Mathlib.Order.Hom.Bounded", "Mathlib.Topology.Order.Hom.Basic" ]
Mathlib/Topology/Order/Hom/Esakia.lean
coe_copy
null
copy_eq (f : EsakiaHom α β) (f' : α → β) (h : f' = f) : f.copy f' h = f := DFunLike.ext' h variable (α)
theorem
Topology
[ "Mathlib.Order.Hom.Bounded", "Mathlib.Topology.Order.Hom.Basic" ]
Mathlib/Topology/Order/Hom/Esakia.lean
copy_eq
null
protected id : EsakiaHom α α := ⟨ContinuousOrderHom.id α, fun _ b h => ⟨b, h, rfl⟩⟩
def
Topology
[ "Mathlib.Order.Hom.Bounded", "Mathlib.Topology.Order.Hom.Basic" ]
Mathlib/Topology/Order/Hom/Esakia.lean
id
`id` as an `EsakiaHom`.
@[simp, norm_cast] coe_id : ⇑(EsakiaHom.id α) = id := rfl @[simp, norm_cast]
theorem
Topology
[ "Mathlib.Order.Hom.Bounded", "Mathlib.Topology.Order.Hom.Basic" ]
Mathlib/Topology/Order/Hom/Esakia.lean
coe_id
null
coe_id_pseudoEpimorphism : (EsakiaHom.id α : PseudoEpimorphism α α) = PseudoEpimorphism.id α := rfl variable {α} @[simp]
theorem
Topology
[ "Mathlib.Order.Hom.Bounded", "Mathlib.Topology.Order.Hom.Basic" ]
Mathlib/Topology/Order/Hom/Esakia.lean
coe_id_pseudoEpimorphism
null
id_apply (a : α) : EsakiaHom.id α a = a := rfl @[simp, norm_cast]
theorem
Topology
[ "Mathlib.Order.Hom.Bounded", "Mathlib.Topology.Order.Hom.Basic" ]
Mathlib/Topology/Order/Hom/Esakia.lean
id_apply
null
coe_id_continuousOrderHom : (EsakiaHom.id α : α →Co α) = ContinuousOrderHom.id α := rfl
theorem
Topology
[ "Mathlib.Order.Hom.Bounded", "Mathlib.Topology.Order.Hom.Basic" ]
Mathlib/Topology/Order/Hom/Esakia.lean
coe_id_continuousOrderHom
null
comp (g : EsakiaHom β γ) (f : EsakiaHom α β) : EsakiaHom α γ := ⟨g.toContinuousOrderHom.comp f.toContinuousOrderHom, fun a b h₀ => by obtain ⟨b, h₁, rfl⟩ := g.exists_map_eq_of_map_le' h₀ obtain ⟨b, h₂, rfl⟩ := f.exists_map_eq_of_map_le' h₁ exact ⟨b, h₂, rfl⟩⟩ @[simp]
def
Topology
[ "Mathlib.Order.Hom.Bounded", "Mathlib.Topology.Order.Hom.Basic" ]
Mathlib/Topology/Order/Hom/Esakia.lean
comp
Composition of `EsakiaHom`s as an `EsakiaHom`.
coe_comp_continuousOrderHom (g : EsakiaHom β γ) (f : EsakiaHom α β) : (g.comp f : α →Co γ) = (g : β →Co γ).comp f := rfl @[simp]
theorem
Topology
[ "Mathlib.Order.Hom.Bounded", "Mathlib.Topology.Order.Hom.Basic" ]
Mathlib/Topology/Order/Hom/Esakia.lean
coe_comp_continuousOrderHom
null
coe_comp_pseudoEpimorphism (g : EsakiaHom β γ) (f : EsakiaHom α β) : (g.comp f : PseudoEpimorphism α γ) = (g : PseudoEpimorphism β γ).comp f := rfl @[simp]
theorem
Topology
[ "Mathlib.Order.Hom.Bounded", "Mathlib.Topology.Order.Hom.Basic" ]
Mathlib/Topology/Order/Hom/Esakia.lean
coe_comp_pseudoEpimorphism
null
coe_comp (g : EsakiaHom β γ) (f : EsakiaHom α β) : (g.comp f : α → γ) = g ∘ f := rfl @[simp]
theorem
Topology
[ "Mathlib.Order.Hom.Bounded", "Mathlib.Topology.Order.Hom.Basic" ]
Mathlib/Topology/Order/Hom/Esakia.lean
coe_comp
null
comp_apply (g : EsakiaHom β γ) (f : EsakiaHom α β) (a : α) : (g.comp f) a = g (f a) := rfl @[simp]
theorem
Topology
[ "Mathlib.Order.Hom.Bounded", "Mathlib.Topology.Order.Hom.Basic" ]
Mathlib/Topology/Order/Hom/Esakia.lean
comp_apply
null
comp_assoc (h : EsakiaHom γ δ) (g : EsakiaHom β γ) (f : EsakiaHom α β) : (h.comp g).comp f = h.comp (g.comp f) := rfl @[simp]
theorem
Topology
[ "Mathlib.Order.Hom.Bounded", "Mathlib.Topology.Order.Hom.Basic" ]
Mathlib/Topology/Order/Hom/Esakia.lean
comp_assoc
null
comp_id (f : EsakiaHom α β) : f.comp (EsakiaHom.id α) = f := ext fun _ => rfl @[simp]
theorem
Topology
[ "Mathlib.Order.Hom.Bounded", "Mathlib.Topology.Order.Hom.Basic" ]
Mathlib/Topology/Order/Hom/Esakia.lean
comp_id
null
id_comp (f : EsakiaHom α β) : (EsakiaHom.id β).comp f = f := ext fun _ => rfl @[simp]
theorem
Topology
[ "Mathlib.Order.Hom.Bounded", "Mathlib.Topology.Order.Hom.Basic" ]
Mathlib/Topology/Order/Hom/Esakia.lean
id_comp
null
cancel_right {g₁ g₂ : EsakiaHom β γ} {f : EsakiaHom α β} (hf : Surjective f) : g₁.comp f = g₂.comp f ↔ g₁ = g₂ := ⟨fun h => ext <| hf.forall.2 <| DFunLike.ext_iff.1 h, congr_arg (comp · f)⟩ @[simp]
theorem
Topology
[ "Mathlib.Order.Hom.Bounded", "Mathlib.Topology.Order.Hom.Basic" ]
Mathlib/Topology/Order/Hom/Esakia.lean
cancel_right
null
cancel_left {g : EsakiaHom β γ} {f₁ f₂ : EsakiaHom α β} (hg : Injective g) : g.comp f₁ = g.comp f₂ ↔ f₁ = f₂ := ⟨fun h => ext fun a => hg <| by rw [← comp_apply, h, comp_apply], congr_arg _⟩
theorem
Topology
[ "Mathlib.Order.Hom.Bounded", "Mathlib.Topology.Order.Hom.Basic" ]
Mathlib/Topology/Order/Hom/Esakia.lean
cancel_left
null
piOpens : C := ∏ᶜ fun i : ι => F.obj (op (U i))
def
Topology
[ "Mathlib.CategoryTheory.Limits.Shapes.Equalizers", "Mathlib.CategoryTheory.Limits.Shapes.Products", "Mathlib.Topology.Sheaves.SheafCondition.PairwiseIntersections" ]
Mathlib/Topology/Sheaves/SheafCondition/EqualizerProducts.lean
piOpens
The product of the sections of a presheaf over a family of open sets.
piInters : C := ∏ᶜ fun p : ι × ι => F.obj (op (U p.1 ⊓ U p.2))
def
Topology
[ "Mathlib.CategoryTheory.Limits.Shapes.Equalizers", "Mathlib.CategoryTheory.Limits.Shapes.Products", "Mathlib.Topology.Sheaves.SheafCondition.PairwiseIntersections" ]
Mathlib/Topology/Sheaves/SheafCondition/EqualizerProducts.lean
piInters
The product of the sections of a presheaf over the pairwise intersections of a family of open sets.
leftRes : piOpens F U ⟶ piInters.{v'} F U := Pi.lift fun p : ι × ι => Pi.π _ p.1 ≫ F.map (infLELeft (U p.1) (U p.2)).op
def
Topology
[ "Mathlib.CategoryTheory.Limits.Shapes.Equalizers", "Mathlib.CategoryTheory.Limits.Shapes.Products", "Mathlib.Topology.Sheaves.SheafCondition.PairwiseIntersections" ]
Mathlib/Topology/Sheaves/SheafCondition/EqualizerProducts.lean
leftRes
The morphism `Π F.obj (U i) ⟶ Π F.obj (U i) ⊓ (U j)` whose components are given by the restriction maps from `U i` to `U i ⊓ U j`.
rightRes : piOpens F U ⟶ piInters.{v'} F U := Pi.lift fun p : ι × ι => Pi.π _ p.2 ≫ F.map (infLERight (U p.1) (U p.2)).op
def
Topology
[ "Mathlib.CategoryTheory.Limits.Shapes.Equalizers", "Mathlib.CategoryTheory.Limits.Shapes.Products", "Mathlib.Topology.Sheaves.SheafCondition.PairwiseIntersections" ]
Mathlib/Topology/Sheaves/SheafCondition/EqualizerProducts.lean
rightRes
The morphism `Π F.obj (U i) ⟶ Π F.obj (U i) ⊓ (U j)` whose components are given by the restriction maps from `U j` to `U i ⊓ U j`.