fact
stringlengths
6
3.84k
type
stringclasses
11 values
library
stringclasses
32 values
imports
listlengths
1
14
filename
stringlengths
20
95
symbolic_name
stringlengths
1
90
docstring
stringlengths
7
20k
res : F.obj (op (iSup U)) ⟶ piOpens.{v'} F U := Pi.lift fun i : ι => F.map (TopologicalSpace.Opens.leSupr U i).op @[simp, elementwise]
def
Topology
[ "Mathlib.CategoryTheory.Limits.Shapes.Equalizers", "Mathlib.CategoryTheory.Limits.Shapes.Products", "Mathlib.Topology.Sheaves.SheafCondition.PairwiseIntersections" ]
Mathlib/Topology/Sheaves/SheafCondition/EqualizerProducts.lean
res
The morphism `F.obj U ⟶ Π F.obj (U i)` whose components are given by the restriction maps from `U j` to `U i ⊓ U j`.
res_π (i : ι) : res F U ≫ limit.π _ ⟨i⟩ = F.map (Opens.leSupr U i).op := by rw [res, limit.lift_π, Fan.mk_π_app]
theorem
Topology
[ "Mathlib.CategoryTheory.Limits.Shapes.Equalizers", "Mathlib.CategoryTheory.Limits.Shapes.Products", "Mathlib.Topology.Sheaves.SheafCondition.PairwiseIntersections" ]
Mathlib/Topology/Sheaves/SheafCondition/EqualizerProducts.lean
res_π
null
@[ext] piOpens.hom_ext {X : C} {f f' : X ⟶ piOpens F U} (w : ∀ j, f ≫ limit.π _ j = f' ≫ limit.π _ j) : f = f' := limit.hom_ext w
theorem
Topology
[ "Mathlib.CategoryTheory.Limits.Shapes.Equalizers", "Mathlib.CategoryTheory.Limits.Shapes.Products", "Mathlib.Topology.Sheaves.SheafCondition.PairwiseIntersections" ]
Mathlib/Topology/Sheaves/SheafCondition/EqualizerProducts.lean
piOpens.hom_ext
Copy of `limit.hom_ext`, specialized to `piOpens` for use by the `ext` tactic.
@[ext] piInters.hom_ext {X : C} {f f' : X ⟶ piInters F U} (w : ∀ j, f ≫ limit.π _ j = f' ≫ limit.π _ j) : f = f' := limit.hom_ext w @[elementwise]
theorem
Topology
[ "Mathlib.CategoryTheory.Limits.Shapes.Equalizers", "Mathlib.CategoryTheory.Limits.Shapes.Products", "Mathlib.Topology.Sheaves.SheafCondition.PairwiseIntersections" ]
Mathlib/Topology/Sheaves/SheafCondition/EqualizerProducts.lean
piInters.hom_ext
Copy of `limit.hom_ext`, specialized to `piInters` for use by the `ext` tactic.
w : res F U ≫ leftRes F U = res F U ≫ rightRes F U := by dsimp [res, leftRes, rightRes] ext simp only [limit.lift_π, limit.lift_π_assoc, Fan.mk_π_app, Category.assoc] rw [← F.map_comp] rw [← F.map_comp] congr 1
theorem
Topology
[ "Mathlib.CategoryTheory.Limits.Shapes.Equalizers", "Mathlib.CategoryTheory.Limits.Shapes.Products", "Mathlib.Topology.Sheaves.SheafCondition.PairwiseIntersections" ]
Mathlib/Topology/Sheaves/SheafCondition/EqualizerProducts.lean
w
null
diagram : WalkingParallelPair ⥤ C := parallelPair (leftRes.{v'} F U) (rightRes F U)
abbrev
Topology
[ "Mathlib.CategoryTheory.Limits.Shapes.Equalizers", "Mathlib.CategoryTheory.Limits.Shapes.Products", "Mathlib.Topology.Sheaves.SheafCondition.PairwiseIntersections" ]
Mathlib/Topology/Sheaves/SheafCondition/EqualizerProducts.lean
diagram
The equalizer diagram for the sheaf condition.
fork : Fork.{v} (leftRes F U) (rightRes F U) := Fork.ofι _ (w F U) @[simp]
def
Topology
[ "Mathlib.CategoryTheory.Limits.Shapes.Equalizers", "Mathlib.CategoryTheory.Limits.Shapes.Products", "Mathlib.Topology.Sheaves.SheafCondition.PairwiseIntersections" ]
Mathlib/Topology/Sheaves/SheafCondition/EqualizerProducts.lean
fork
The restriction map `F.obj U ⟶ Π F.obj (U i)` gives a cone over the equalizer diagram for the sheaf condition. The sheaf condition asserts this cone is a limit cone.
fork_pt : (fork F U).pt = F.obj (op (iSup U)) := rfl @[simp]
theorem
Topology
[ "Mathlib.CategoryTheory.Limits.Shapes.Equalizers", "Mathlib.CategoryTheory.Limits.Shapes.Products", "Mathlib.Topology.Sheaves.SheafCondition.PairwiseIntersections" ]
Mathlib/Topology/Sheaves/SheafCondition/EqualizerProducts.lean
fork_pt
null
fork_ι : (fork F U).ι = res F U := rfl @[simp]
theorem
Topology
[ "Mathlib.CategoryTheory.Limits.Shapes.Equalizers", "Mathlib.CategoryTheory.Limits.Shapes.Products", "Mathlib.Topology.Sheaves.SheafCondition.PairwiseIntersections" ]
Mathlib/Topology/Sheaves/SheafCondition/EqualizerProducts.lean
fork_ι
null
fork_π_app_walkingParallelPair_zero : (fork F U).π.app WalkingParallelPair.zero = res F U := rfl @[simp]
theorem
Topology
[ "Mathlib.CategoryTheory.Limits.Shapes.Equalizers", "Mathlib.CategoryTheory.Limits.Shapes.Products", "Mathlib.Topology.Sheaves.SheafCondition.PairwiseIntersections" ]
Mathlib/Topology/Sheaves/SheafCondition/EqualizerProducts.lean
fork_π_app_walkingParallelPair_zero
null
fork_π_app_walkingParallelPair_one : (fork F U).π.app WalkingParallelPair.one = res F U ≫ leftRes F U := rfl variable {F} {G : Presheaf C X}
theorem
Topology
[ "Mathlib.CategoryTheory.Limits.Shapes.Equalizers", "Mathlib.CategoryTheory.Limits.Shapes.Products", "Mathlib.Topology.Sheaves.SheafCondition.PairwiseIntersections" ]
Mathlib/Topology/Sheaves/SheafCondition/EqualizerProducts.lean
fork_π_app_walkingParallelPair_one
null
@[simp] piOpens.isoOfIso (α : F ≅ G) : piOpens F U ≅ piOpens.{v'} G U := Pi.mapIso fun _ => α.app _
def
Topology
[ "Mathlib.CategoryTheory.Limits.Shapes.Equalizers", "Mathlib.CategoryTheory.Limits.Shapes.Products", "Mathlib.Topology.Sheaves.SheafCondition.PairwiseIntersections" ]
Mathlib/Topology/Sheaves/SheafCondition/EqualizerProducts.lean
piOpens.isoOfIso
Isomorphic presheaves have isomorphic `piOpens` for any cover `U`.
@[simp] piInters.isoOfIso (α : F ≅ G) : piInters F U ≅ piInters.{v'} G U := Pi.mapIso fun _ => α.app _
def
Topology
[ "Mathlib.CategoryTheory.Limits.Shapes.Equalizers", "Mathlib.CategoryTheory.Limits.Shapes.Products", "Mathlib.Topology.Sheaves.SheafCondition.PairwiseIntersections" ]
Mathlib/Topology/Sheaves/SheafCondition/EqualizerProducts.lean
piInters.isoOfIso
Isomorphic presheaves have isomorphic `piInters` for any cover `U`.
diagram.isoOfIso (α : F ≅ G) : diagram F U ≅ diagram.{v'} G U := NatIso.ofComponents (by rintro ⟨⟩ · exact piOpens.isoOfIso U α · exact piInters.isoOfIso U α) (by rintro ⟨⟩ ⟨⟩ ⟨⟩ · simp · dsimp ext simp only [leftRes, limit.lift_map, limit.lift_π, Cones.postcompose_obj_π, NatTrans.comp_app, Fan.mk_π_app, Discrete.natIso_hom_app, Iso.app_hom, Category.assoc, NatTrans.naturality, limMap_π_assoc] · dsimp [diagram] ext simp only [rightRes, limit.lift_map, limit.lift_π, Cones.postcompose_obj_π, NatTrans.comp_app, Fan.mk_π_app, Discrete.natIso_hom_app, Iso.app_hom, Category.assoc, NatTrans.naturality, limMap_π_assoc] · simp)
def
Topology
[ "Mathlib.CategoryTheory.Limits.Shapes.Equalizers", "Mathlib.CategoryTheory.Limits.Shapes.Products", "Mathlib.Topology.Sheaves.SheafCondition.PairwiseIntersections" ]
Mathlib/Topology/Sheaves/SheafCondition/EqualizerProducts.lean
diagram.isoOfIso
Isomorphic presheaves have isomorphic sheaf condition diagrams.
fork.isoOfIso (α : F ≅ G) : fork F U ≅ (Cones.postcompose (diagram.isoOfIso U α).inv).obj (fork G U) := by fapply Fork.ext · apply α.app · dsimp ext dsimp only [Fork.ι] simp only [res, diagram.isoOfIso, piOpens.isoOfIso, Cones.postcompose_obj_π, NatTrans.comp_app, fork_π_app_walkingParallelPair_zero, NatIso.ofComponents_inv_app, Functor.mapIso_inv, lim_map, limit.lift_map, Category.assoc, limit.lift_π, Fan.mk_π_app, Discrete.natIso_inv_app, Iso.app_inv, NatTrans.naturality, Iso.hom_inv_id_app_assoc]
def
Topology
[ "Mathlib.CategoryTheory.Limits.Shapes.Equalizers", "Mathlib.CategoryTheory.Limits.Shapes.Products", "Mathlib.Topology.Sheaves.SheafCondition.PairwiseIntersections" ]
Mathlib/Topology/Sheaves/SheafCondition/EqualizerProducts.lean
fork.isoOfIso
If `F G : Presheaf C X` are isomorphic presheaves, then the `fork F U`, the canonical cone of the sheaf condition diagram for `F`, is isomorphic to `fork F G` postcomposed with the corresponding isomorphism between sheaf condition diagrams.
IsSheafEqualizerProducts (F : Presheaf.{v', v, u} C X) : Prop := ∀ ⦃ι : Type v'⦄ (U : ι → Opens X), Nonempty (IsLimit (SheafConditionEqualizerProducts.fork F U)) /-! The remainder of this file shows that the "equalizer products" sheaf condition is equivalent to the "pairwise intersections" sheaf condition. -/
def
Topology
[ "Mathlib.CategoryTheory.Limits.Shapes.Equalizers", "Mathlib.CategoryTheory.Limits.Shapes.Products", "Mathlib.Topology.Sheaves.SheafCondition.PairwiseIntersections" ]
Mathlib/Topology/Sheaves/SheafCondition/EqualizerProducts.lean
IsSheafEqualizerProducts
The sheaf condition for a `F : Presheaf C X` requires that the morphism `F.obj U ⟶ ∏ᶜ F.obj (U i)` (where `U` is some open set which is the union of the `U i`) is the equalizer of the two morphisms `∏ᶜ F.obj (U i) ⟶ ∏ᶜ F.obj (U i) ⊓ (U j)`.
@[simps] coneEquivFunctorObj (c : Cone ((diagram U).op ⋙ F)) : Cone (SheafConditionEqualizerProducts.diagram F U) where pt := c.pt π := { app := fun Z => WalkingParallelPair.casesOn Z (Pi.lift fun i : ι => c.π.app (op (single i))) (Pi.lift fun b : ι × ι => c.π.app (op (pair b.1 b.2))) naturality := fun Y Z f => by cases Y <;> cases Z <;> cases f · dsimp ext simp · dsimp ext ij rcases ij with ⟨i, j⟩ simpa [SheafConditionEqualizerProducts.leftRes] using c.π.naturality (Quiver.Hom.op (Hom.left i j)) · dsimp ext ij rcases ij with ⟨i, j⟩ simpa [SheafConditionEqualizerProducts.rightRes] using c.π.naturality (Quiver.Hom.op (Hom.right i j)) · dsimp ext simp }
def
Topology
[ "Mathlib.CategoryTheory.Limits.Shapes.Equalizers", "Mathlib.CategoryTheory.Limits.Shapes.Products", "Mathlib.Topology.Sheaves.SheafCondition.PairwiseIntersections" ]
Mathlib/Topology/Sheaves/SheafCondition/EqualizerProducts.lean
coneEquivFunctorObj
Implementation of `SheafConditionPairwiseIntersections.coneEquiv`.
@[simps!] coneEquivFunctor : Limits.Cone ((diagram U).op ⋙ F) ⥤ Limits.Cone (SheafConditionEqualizerProducts.diagram F U) where obj c := coneEquivFunctorObj F U c map {c c'} f := { hom := f.hom w := fun j => by cases j <;> · dsimp ext simp }
def
Topology
[ "Mathlib.CategoryTheory.Limits.Shapes.Equalizers", "Mathlib.CategoryTheory.Limits.Shapes.Products", "Mathlib.Topology.Sheaves.SheafCondition.PairwiseIntersections" ]
Mathlib/Topology/Sheaves/SheafCondition/EqualizerProducts.lean
coneEquivFunctor
Implementation of `SheafConditionPairwiseIntersections.coneEquiv`.
@[simps] coneEquivInverseObj (c : Limits.Cone (SheafConditionEqualizerProducts.diagram F U)) : Limits.Cone ((diagram U).op ⋙ F) where pt := c.pt π := { app := by intro x induction x with | op x => ?_ rcases x with (⟨i⟩ | ⟨i, j⟩) · exact c.π.app WalkingParallelPair.zero ≫ Pi.π _ i · exact c.π.app WalkingParallelPair.one ≫ Pi.π _ (i, j) naturality := by intro x y f induction x with | op x => ?_ induction y with | op y => ?_ have ef : f = f.unop.op := rfl revert ef generalize f.unop = f' rintro rfl rcases x with (⟨i⟩ | ⟨⟩) <;> rcases y with (⟨⟩ | ⟨j, j⟩) <;> rcases f' with ⟨⟩ · dsimp rw [F.map_id] simp · dsimp simp only [Category.id_comp, Category.assoc] have h := c.π.naturality WalkingParallelPairHom.left dsimp [SheafConditionEqualizerProducts.leftRes] at h simp only [Category.id_comp] at h have h' := h =≫ Pi.π _ (i, j) rw [h'] simp only [Category.assoc, limit.lift_π, Fan.mk_π_app] rfl · dsimp simp only [Category.id_comp, Category.assoc] have h := c.π.naturality WalkingParallelPairHom.right dsimp [SheafConditionEqualizerProducts.rightRes] at h simp only [Category.id_comp] at h have h' := h =≫ Pi.π _ (j, i) rw [h'] simp rfl · dsimp rw [F.map_id] simp }
def
Topology
[ "Mathlib.CategoryTheory.Limits.Shapes.Equalizers", "Mathlib.CategoryTheory.Limits.Shapes.Products", "Mathlib.Topology.Sheaves.SheafCondition.PairwiseIntersections" ]
Mathlib/Topology/Sheaves/SheafCondition/EqualizerProducts.lean
coneEquivInverseObj
Implementation of `SheafConditionPairwiseIntersections.coneEquiv`.
@[simps!] coneEquivInverse : Limits.Cone (SheafConditionEqualizerProducts.diagram F U) ⥤ Limits.Cone ((diagram U).op ⋙ F) where obj c := coneEquivInverseObj F U c map {c c'} f := { hom := f.hom w := by intro x induction x with | op x => ?_ rcases x with (⟨i⟩ | ⟨i, j⟩) · dsimp dsimp only [Fork.ι] rw [← f.w WalkingParallelPair.zero, Category.assoc] · dsimp rw [← f.w WalkingParallelPair.one, Category.assoc] }
def
Topology
[ "Mathlib.CategoryTheory.Limits.Shapes.Equalizers", "Mathlib.CategoryTheory.Limits.Shapes.Products", "Mathlib.Topology.Sheaves.SheafCondition.PairwiseIntersections" ]
Mathlib/Topology/Sheaves/SheafCondition/EqualizerProducts.lean
coneEquivInverse
Implementation of `SheafConditionPairwiseIntersections.coneEquiv`.
@[simps] coneEquivUnitIsoApp (c : Cone ((diagram U).op ⋙ F)) : (𝟭 (Cone ((diagram U).op ⋙ F))).obj c ≅ (coneEquivFunctor F U ⋙ coneEquivInverse F U).obj c where hom := { hom := 𝟙 _ w := fun j => by induction j with | op j => ?_ rcases j with ⟨⟩ <;> · dsimp [coneEquivInverse] simp only [Limits.Fan.mk_π_app, Category.id_comp, Limits.limit.lift_π] } inv := { hom := 𝟙 _ w := fun j => by induction j with | op j => ?_ rcases j with ⟨⟩ <;> · dsimp [coneEquivInverse] simp only [Limits.Fan.mk_π_app, Category.id_comp, Limits.limit.lift_π] }
def
Topology
[ "Mathlib.CategoryTheory.Limits.Shapes.Equalizers", "Mathlib.CategoryTheory.Limits.Shapes.Products", "Mathlib.Topology.Sheaves.SheafCondition.PairwiseIntersections" ]
Mathlib/Topology/Sheaves/SheafCondition/EqualizerProducts.lean
coneEquivUnitIsoApp
Implementation of `SheafConditionPairwiseIntersections.coneEquiv`.
@[simps!] coneEquivUnitIso : 𝟭 (Limits.Cone ((diagram U).op ⋙ F)) ≅ coneEquivFunctor F U ⋙ coneEquivInverse F U := NatIso.ofComponents (coneEquivUnitIsoApp F U)
def
Topology
[ "Mathlib.CategoryTheory.Limits.Shapes.Equalizers", "Mathlib.CategoryTheory.Limits.Shapes.Products", "Mathlib.Topology.Sheaves.SheafCondition.PairwiseIntersections" ]
Mathlib/Topology/Sheaves/SheafCondition/EqualizerProducts.lean
coneEquivUnitIso
Implementation of `SheafConditionPairwiseIntersections.coneEquiv`.
@[simps!] coneEquivCounitIso : coneEquivInverse F U ⋙ coneEquivFunctor F U ≅ 𝟭 (Limits.Cone (SheafConditionEqualizerProducts.diagram F U)) := NatIso.ofComponents (fun c => { hom := { hom := 𝟙 _ w := by rintro ⟨_ | _⟩ · dsimp ext simp · dsimp ext simp } inv := { hom := 𝟙 _ w := by rintro ⟨_ | _⟩ · dsimp ext simp · dsimp ext simp } }) fun {c d} f => by ext dsimp simp only [Category.comp_id, Category.id_comp]
def
Topology
[ "Mathlib.CategoryTheory.Limits.Shapes.Equalizers", "Mathlib.CategoryTheory.Limits.Shapes.Products", "Mathlib.Topology.Sheaves.SheafCondition.PairwiseIntersections" ]
Mathlib/Topology/Sheaves/SheafCondition/EqualizerProducts.lean
coneEquivCounitIso
Implementation of `SheafConditionPairwiseIntersections.coneEquiv`.
@[simps] coneEquiv : Limits.Cone ((diagram U).op ⋙ F) ≌ Limits.Cone (SheafConditionEqualizerProducts.diagram F U) where functor := coneEquivFunctor F U inverse := coneEquivInverse F U unitIso := coneEquivUnitIso F U counitIso := coneEquivCounitIso F U
def
Topology
[ "Mathlib.CategoryTheory.Limits.Shapes.Equalizers", "Mathlib.CategoryTheory.Limits.Shapes.Products", "Mathlib.Topology.Sheaves.SheafCondition.PairwiseIntersections" ]
Mathlib/Topology/Sheaves/SheafCondition/EqualizerProducts.lean
coneEquiv
Cones over `diagram U ⋙ F` are the same as a cones over the usual sheaf condition equalizer diagram.
isLimitMapConeOfIsLimitSheafConditionFork (P : IsLimit (SheafConditionEqualizerProducts.fork F U)) : IsLimit (F.mapCone (cocone U).op) := IsLimit.ofIsoLimit ((IsLimit.ofConeEquiv (coneEquiv F U).symm).symm P) { hom := { hom := 𝟙 _ w := by intro x induction x with | op x => ?_ rcases x with ⟨⟩ · simp rfl · dsimp [coneEquivInverse, SheafConditionEqualizerProducts.res, SheafConditionEqualizerProducts.leftRes] simp only [limit.lift_π, limit.lift_π_assoc, Category.id_comp, Fan.mk_π_app, Category.assoc] rw [← F.map_comp] rfl } inv := { hom := 𝟙 _ w := by intro x induction x with | op x => ?_ rcases x with ⟨⟩ · simp rfl · dsimp [coneEquivInverse, SheafConditionEqualizerProducts.res, SheafConditionEqualizerProducts.leftRes] simp only [limit.lift_π, limit.lift_π_assoc, Category.id_comp, Fan.mk_π_app, Category.assoc] rw [← F.map_comp] rfl } }
def
Topology
[ "Mathlib.CategoryTheory.Limits.Shapes.Equalizers", "Mathlib.CategoryTheory.Limits.Shapes.Products", "Mathlib.Topology.Sheaves.SheafCondition.PairwiseIntersections" ]
Mathlib/Topology/Sheaves/SheafCondition/EqualizerProducts.lean
isLimitMapConeOfIsLimitSheafConditionFork
If `SheafConditionEqualizerProducts.fork` is an equalizer, then `F.mapCone (cone U)` is a limit cone.
isLimitSheafConditionForkOfIsLimitMapCone (Q : IsLimit (F.mapCone (cocone U).op)) : IsLimit (SheafConditionEqualizerProducts.fork F U) := IsLimit.ofIsoLimit ((IsLimit.ofConeEquiv (coneEquiv F U)).symm Q) { hom := { hom := 𝟙 _ w := by rintro ⟨⟩ · simp rfl · dsimp ext dsimp [coneEquivInverse, SheafConditionEqualizerProducts.res, SheafConditionEqualizerProducts.leftRes] simp only [limit.lift_π, limit.lift_π_assoc, Category.id_comp, Fan.mk_π_app, Category.assoc] rw [← F.map_comp] rfl } inv := { hom := 𝟙 _ w := by rintro ⟨⟩ · simp rfl · dsimp ext dsimp [coneEquivInverse, SheafConditionEqualizerProducts.res, SheafConditionEqualizerProducts.leftRes] simp only [limit.lift_π, limit.lift_π_assoc, Category.id_comp, Fan.mk_π_app, Category.assoc] rw [← F.map_comp] rfl } }
def
Topology
[ "Mathlib.CategoryTheory.Limits.Shapes.Equalizers", "Mathlib.CategoryTheory.Limits.Shapes.Products", "Mathlib.Topology.Sheaves.SheafCondition.PairwiseIntersections" ]
Mathlib/Topology/Sheaves/SheafCondition/EqualizerProducts.lean
isLimitSheafConditionForkOfIsLimitMapCone
If `F.mapCone (cone U)` is a limit cone, then `SheafConditionEqualizerProducts.fork` is an equalizer.
isSheaf_iff_isSheafEqualizerProducts (F : Presheaf C X) : F.IsSheaf ↔ F.IsSheafEqualizerProducts := (isSheaf_iff_isSheafPairwiseIntersections F).trans <| Iff.intro (fun h _ U => ⟨isLimitSheafConditionForkOfIsLimitMapCone F U (h U).some⟩) fun h _ U => ⟨isLimitMapConeOfIsLimitSheafConditionFork F U (h U).some⟩
theorem
Topology
[ "Mathlib.CategoryTheory.Limits.Shapes.Equalizers", "Mathlib.CategoryTheory.Limits.Shapes.Products", "Mathlib.Topology.Sheaves.SheafCondition.PairwiseIntersections" ]
Mathlib/Topology/Sheaves/SheafCondition/EqualizerProducts.lean
isSheaf_iff_isSheafEqualizerProducts
The sheaf condition in terms of an equalizer diagram is equivalent to the default sheaf condition.
OpensLeCover : Type w := ObjectProperty.FullSubcategory fun V : Opens X ↦ ∃ i, V ≤ U i deriving Category
def
Topology
[ "Mathlib.Topology.Sheaves.SheafCondition.Sites" ]
Mathlib/Topology/Sheaves/SheafCondition/OpensLeCover.lean
OpensLeCover
The category of open sets contained in some element of the cover.
index (V : OpensLeCover U) : ι := V.property.choose
def
Topology
[ "Mathlib.Topology.Sheaves.SheafCondition.Sites" ]
Mathlib/Topology/Sheaves/SheafCondition/OpensLeCover.lean
index
An arbitrarily chosen index such that `V ≤ U i`.
homToIndex (V : OpensLeCover U) : V.obj ⟶ U (index V) := V.property.choose_spec.hom
def
Topology
[ "Mathlib.Topology.Sheaves.SheafCondition.Sites" ]
Mathlib/Topology/Sheaves/SheafCondition/OpensLeCover.lean
homToIndex
The morphism from `V` to `U i` for some `i`.
opensLeCoverCocone : Cocone (ObjectProperty.ι _ : OpensLeCover U ⥤ Opens X) where pt := iSup U ι := { app := fun V : OpensLeCover U => V.homToIndex ≫ Opens.leSupr U _ }
def
Topology
[ "Mathlib.Topology.Sheaves.SheafCondition.Sites" ]
Mathlib/Topology/Sheaves/SheafCondition/OpensLeCover.lean
opensLeCoverCocone
`iSup U` as a cocone over the opens sets contained in some element of the cover. (In fact this is a colimit cocone.)
IsSheafOpensLeCover : Prop := ∀ ⦃ι : Type w⦄ (U : ι → Opens X), Nonempty (IsLimit (F.mapCone (opensLeCoverCocone U).op))
def
Topology
[ "Mathlib.Topology.Sheaves.SheafCondition.Sites" ]
Mathlib/Topology/Sheaves/SheafCondition/OpensLeCover.lean
IsSheafOpensLeCover
An equivalent formulation of the sheaf condition (which we prove equivalent to the usual one below as `isSheaf_iff_isSheafOpensLeCover`). A presheaf is a sheaf if `F` sends the cone `(opensLeCoverCocone U).op` to a limit cone. (Recall `opensLeCoverCocone U`, has cone point `iSup U`, mapping down to any `V` which is contained in some `U i`.)
@[simps] generateEquivalenceOpensLe_functor' : (ObjectProperty.FullSubcategory fun f : Over Y => (Sieve.generate (presieveOfCoveringAux U Y)).arrows f.hom) ⥤ OpensLeCover U := { obj := fun f => ⟨f.1.left, let ⟨_, h, _, ⟨i, hY⟩, _⟩ := f.2 ⟨i, hY ▸ h.le⟩⟩ map := fun {_ _} g => g.left }
def
Topology
[ "Mathlib.Topology.Sheaves.SheafCondition.Sites" ]
Mathlib/Topology/Sheaves/SheafCondition/OpensLeCover.lean
generateEquivalenceOpensLe_functor'
Given a family of opens `U` and an open `Y` equal to the union of opens in `U`, we may take the presieve on `Y` associated to `U` and the sieve generated by it, and form the full subcategory (subposet) of opens contained in `Y` (`over Y`) consisting of arrows in the sieve. This full subcategory is equivalent to `OpensLeCover U`, the (poset) category of opens contained in some `U i`.
@[simps] generateEquivalenceOpensLe_inverse' (hY : Y = iSup U) : OpensLeCover U ⥤ (ObjectProperty.FullSubcategory fun f : Over Y => (Sieve.generate (presieveOfCoveringAux U Y)).arrows f.hom) where obj := fun V => ⟨⟨V.obj, ⟨⟨⟩⟩, homOfLE <| hY ▸ (V.2.choose_spec.trans (le_iSup U (V.2.choose)))⟩, ⟨U V.2.choose, V.2.choose_spec.hom, homOfLE <| hY ▸ le_iSup U V.2.choose, ⟨V.2.choose, rfl⟩, rfl⟩⟩ map {_ _} g := Over.homMk g map_id _ := by refine Over.OverMorphism.ext ?_ simp only [Functor.id_obj, Sieve.generate_apply, Functor.const_obj_obj, Over.homMk_left, eq_iff_true_of_subsingleton] map_comp {_ _ _} f g := by refine Over.OverMorphism.ext ?_ simp only [Functor.id_obj, Sieve.generate_apply, Functor.const_obj_obj, Over.homMk_left, eq_iff_true_of_subsingleton]
def
Topology
[ "Mathlib.Topology.Sheaves.SheafCondition.Sites" ]
Mathlib/Topology/Sheaves/SheafCondition/OpensLeCover.lean
generateEquivalenceOpensLe_inverse'
Given a family of opens `U` and an open `Y` equal to the union of opens in `U`, we may take the presieve on `Y` associated to `U` and the sieve generated by it, and form the full subcategory (subposet) of opens contained in `Y` (`over Y`) consisting of arrows in the sieve. This full subcategory is equivalent to `OpensLeCover U`, the (poset) category of opens contained in some `U i`.
@[simps] generateEquivalenceOpensLe (hY : Y = iSup U) : (ObjectProperty.FullSubcategory fun f : Over Y => (Sieve.generate (presieveOfCoveringAux U Y)).arrows f.hom) ≌ OpensLeCover U where functor := generateEquivalenceOpensLe_functor' _ inverse := generateEquivalenceOpensLe_inverse' _ hY unitIso := eqToIso <| CategoryTheory.Functor.ext (by rintro ⟨⟨_, _⟩, _⟩; dsimp; congr) (by intros; refine Over.OverMorphism.ext ?_; simp) counitIso := eqToIso <| CategoryTheory.Functor.hext (by intro; refine ObjectProperty.FullSubcategory.ext ?_; rfl) (by intros; rfl)
def
Topology
[ "Mathlib.Topology.Sheaves.SheafCondition.Sites" ]
Mathlib/Topology/Sheaves/SheafCondition/OpensLeCover.lean
generateEquivalenceOpensLe
Given a family of opens `U` and an open `Y` equal to the union of opens in `U`, we may take the presieve on `Y` associated to `U` and the sieve generated by it, and form the full subcategory (subposet) of opens contained in `Y` (`over Y`) consisting of arrows in the sieve. This full subcategory is equivalent to `OpensLeCover U`, the (poset) category of opens contained in some `U i`.
@[simps] whiskerIsoMapGenerateCocone (hY : Y = iSup U) : (F.mapCone (opensLeCoverCocone U).op).whisker (generateEquivalenceOpensLe U hY).op.functor ≅ F.mapCone (Sieve.generate (presieveOfCoveringAux U Y)).arrows.cocone.op where hom := { hom := F.map (eqToHom (congr_arg op hY.symm)) w := fun j => by erw [← F.map_comp] dsimp congr 1 } inv := { hom := F.map (eqToHom (congr_arg op hY)) w := fun j => by erw [← F.map_comp] dsimp congr 1 } hom_inv_id := by ext simp [eqToHom_map] inv_hom_id := by ext simp [eqToHom_map]
def
Topology
[ "Mathlib.Topology.Sheaves.SheafCondition.Sites" ]
Mathlib/Topology/Sheaves/SheafCondition/OpensLeCover.lean
whiskerIsoMapGenerateCocone
Given a family of opens `opensLeCoverCocone U` is essentially the natural cocone associated to the sieve generated by the presieve associated to `U` with indexing category changed using the above equivalence.
isLimitOpensLeEquivGenerate₁ (hY : Y = iSup U) : IsLimit (F.mapCone (opensLeCoverCocone U).op) ≃ IsLimit (F.mapCone (Sieve.generate (presieveOfCoveringAux U Y)).arrows.cocone.op) := (IsLimit.whiskerEquivalenceEquiv (generateEquivalenceOpensLe U hY).op).trans (IsLimit.equivIsoLimit (whiskerIsoMapGenerateCocone F U hY))
def
Topology
[ "Mathlib.Topology.Sheaves.SheafCondition.Sites" ]
Mathlib/Topology/Sheaves/SheafCondition/OpensLeCover.lean
isLimitOpensLeEquivGenerate₁
Given a presheaf `F` on the topological space `X` and a family of opens `U` of `X`, the natural cone associated to `F` and `U` used in the definition of `F.IsSheafOpensLeCover` is a limit cone iff the natural cone associated to `F` and the sieve generated by the presieve associated to `U` is a limit cone.
isLimitOpensLeEquivGenerate₂ (R : Presieve Y) (hR : Sieve.generate R ∈ Opens.grothendieckTopology X Y) : IsLimit (F.mapCone (opensLeCoverCocone (coveringOfPresieve Y R)).op) ≃ IsLimit (F.mapCone (Sieve.generate R).arrows.cocone.op) := by convert isLimitOpensLeEquivGenerate₁ F (coveringOfPresieve Y R) (coveringOfPresieve.iSup_eq_of_mem_grothendieck Y R hR).symm using 1 rw [covering_presieve_eq_self R] variable {F} in
def
Topology
[ "Mathlib.Topology.Sheaves.SheafCondition.Sites" ]
Mathlib/Topology/Sheaves/SheafCondition/OpensLeCover.lean
isLimitOpensLeEquivGenerate₂
Given a presheaf `F` on the topological space `X` and a presieve `R` whose generated sieve is covering for the associated Grothendieck topology (equivalently, the presieve is covering for the associated pretopology), the natural cone associated to `F` and the family of opens associated to `R` is a limit cone iff the natural cone associated to `F` and the generated sieve is a limit cone. Since only the existence of a 1-1 correspondence will be used, the exact definition does not matter, so tactics are used liberally.
IsSheaf.isSheafOpensLeCover (h : F.IsSheaf) : Nonempty (IsLimit (F.mapCone (opensLeCoverCocone U).op)) := by rw [(isLimitOpensLeEquivGenerate₁ F U rfl).nonempty_congr] apply (Presheaf.isSheaf_iff_isLimit _ _).mp h apply presieveOfCovering.mem_grothendieckTopology
theorem
Topology
[ "Mathlib.Topology.Sheaves.SheafCondition.Sites" ]
Mathlib/Topology/Sheaves/SheafCondition/OpensLeCover.lean
IsSheaf.isSheafOpensLeCover
null
isSheaf_iff_isSheafOpensLeCover : F.IsSheaf ↔ F.IsSheafOpensLeCover := by refine ⟨fun h _ ↦ h.isSheafOpensLeCover, fun h ↦ (Presheaf.isSheaf_iff_isLimit _ _).mpr fun Y S ↦ ?_⟩ rw [← Sieve.generate_sieve S] intro hS rw [← (isLimitOpensLeEquivGenerate₂ F S.1 hS).nonempty_congr] apply h
theorem
Topology
[ "Mathlib.Topology.Sheaves.SheafCondition.Sites" ]
Mathlib/Topology/Sheaves/SheafCondition/OpensLeCover.lean
isSheaf_iff_isSheafOpensLeCover
A presheaf `(opens X)ᵒᵖ ⥤ C` on a topological space `X` is a sheaf on the site `opens X` iff it satisfies the `IsSheafOpensLeCover` sheaf condition. The latter is not the official definition of sheaves on spaces, but has the advantage that it does not require `has_products C`.
IsSheafPairwiseIntersections (F : Presheaf C X) : Prop := ∀ ⦃ι : Type w⦄ (U : ι → Opens X), Nonempty (IsLimit (F.mapCone (Pairwise.cocone U).op))
def
Topology
[ "Mathlib.CategoryTheory.Category.Pairwise", "Mathlib.CategoryTheory.Limits.Constructions.BinaryProducts", "Mathlib.CategoryTheory.Limits.Final", "Mathlib.CategoryTheory.Limits.Preserves.Basic", "Mathlib.Topology.Sheaves.SheafCondition.OpensLeCover" ]
Mathlib/Topology/Sheaves/SheafCondition/PairwiseIntersections.lean
IsSheafPairwiseIntersections
An alternative formulation of the sheaf condition (which we prove equivalent to the usual one below as `isSheaf_iff_isSheafPairwiseIntersections`). A presheaf is a sheaf if `F` sends the cone `(Pairwise.cocone U).op` to a limit cone. (Recall `Pairwise.cocone U` has cone point `iSup U`, mapping down to the `U i` and the `U i ⊓ U j`.)
IsSheafPreservesLimitPairwiseIntersections (F : Presheaf C X) : Prop := ∀ ⦃ι : Type w⦄ (U : ι → Opens X), PreservesLimit (Pairwise.diagram U).op F
def
Topology
[ "Mathlib.CategoryTheory.Category.Pairwise", "Mathlib.CategoryTheory.Limits.Constructions.BinaryProducts", "Mathlib.CategoryTheory.Limits.Final", "Mathlib.CategoryTheory.Limits.Preserves.Basic", "Mathlib.Topology.Sheaves.SheafCondition.OpensLeCover" ]
Mathlib/Topology/Sheaves/SheafCondition/PairwiseIntersections.lean
IsSheafPreservesLimitPairwiseIntersections
An alternative formulation of the sheaf condition (which we prove equivalent to the usual one below as `isSheaf_iff_isSheafPreservesLimitPairwiseIntersections`). A presheaf is a sheaf if `F` preserves the limit of `Pairwise.diagram U`. (Recall `Pairwise.diagram U` is the diagram consisting of the pairwise intersections `U i ⊓ U j` mapping into the open sets `U i`. This diagram has limit `iSup U`.)
@[simp] pairwiseToOpensLeCoverObj : Pairwise ι → OpensLeCover U | single i => ⟨U i, ⟨i, le_rfl⟩⟩ | Pairwise.pair i j => ⟨U i ⊓ U j, ⟨i, inf_le_left⟩⟩ open CategoryTheory.Pairwise.Hom
def
Topology
[ "Mathlib.CategoryTheory.Category.Pairwise", "Mathlib.CategoryTheory.Limits.Constructions.BinaryProducts", "Mathlib.CategoryTheory.Limits.Final", "Mathlib.CategoryTheory.Limits.Preserves.Basic", "Mathlib.Topology.Sheaves.SheafCondition.OpensLeCover" ]
Mathlib/Topology/Sheaves/SheafCondition/PairwiseIntersections.lean
pairwiseToOpensLeCoverObj
Implementation detail: the object level of `pairwiseToOpensLeCover : Pairwise ι ⥤ OpensLeCover U`
pairwiseToOpensLeCoverMap : ∀ {V W : Pairwise ι}, (V ⟶ W) → (pairwiseToOpensLeCoverObj U V ⟶ pairwiseToOpensLeCoverObj U W) | _, _, id_single _ => 𝟙 _ | _, _, id_pair _ _ => 𝟙 _ | _, _, left _ _ => homOfLE inf_le_left | _, _, right _ _ => homOfLE inf_le_right
def
Topology
[ "Mathlib.CategoryTheory.Category.Pairwise", "Mathlib.CategoryTheory.Limits.Constructions.BinaryProducts", "Mathlib.CategoryTheory.Limits.Final", "Mathlib.CategoryTheory.Limits.Preserves.Basic", "Mathlib.Topology.Sheaves.SheafCondition.OpensLeCover" ]
Mathlib/Topology/Sheaves/SheafCondition/PairwiseIntersections.lean
pairwiseToOpensLeCoverMap
Implementation detail: the morphism level of `pairwiseToOpensLeCover : Pairwise ι ⥤ OpensLeCover U`
@[simps] pairwiseToOpensLeCover : Pairwise ι ⥤ OpensLeCover U where obj := pairwiseToOpensLeCoverObj U map {_ _} i := pairwiseToOpensLeCoverMap U i
def
Topology
[ "Mathlib.CategoryTheory.Category.Pairwise", "Mathlib.CategoryTheory.Limits.Constructions.BinaryProducts", "Mathlib.CategoryTheory.Limits.Final", "Mathlib.CategoryTheory.Limits.Preserves.Basic", "Mathlib.Topology.Sheaves.SheafCondition.OpensLeCover" ]
Mathlib/Topology/Sheaves/SheafCondition/PairwiseIntersections.lean
pairwiseToOpensLeCover
The category of single and double intersections of the `U i` maps into the category of open sets below some `U i`.
pairwiseDiagramIso : Pairwise.diagram U ≅ pairwiseToOpensLeCover U ⋙ ObjectProperty.ι _ where hom := { app := by rintro (i | ⟨i, j⟩) <;> exact 𝟙 _ } inv := { app := by rintro (i | ⟨i, j⟩) <;> exact 𝟙 _ }
def
Topology
[ "Mathlib.CategoryTheory.Category.Pairwise", "Mathlib.CategoryTheory.Limits.Constructions.BinaryProducts", "Mathlib.CategoryTheory.Limits.Final", "Mathlib.CategoryTheory.Limits.Preserves.Basic", "Mathlib.Topology.Sheaves.SheafCondition.OpensLeCover" ]
Mathlib/Topology/Sheaves/SheafCondition/PairwiseIntersections.lean
pairwiseDiagramIso
The diagram consisting of the `U i` and `U i ⊓ U j` is cofinal in the diagram of all opens contained in some `U i`. -/ instance : Functor.Final (pairwiseToOpensLeCover U) := ⟨fun V => isConnected_of_zigzag fun A B => by rcases A with ⟨⟨⟨⟩⟩, ⟨i⟩ | ⟨i, j⟩, a⟩ <;> rcases B with ⟨⟨⟨⟩⟩, ⟨i'⟩ | ⟨i', j'⟩, b⟩ · refine ⟨[{ left := ⟨⟨⟩⟩ right := pair i i' hom := (le_inf a.le b.le).hom }, _], ?_, rfl⟩ exact List.IsChain.cons_cons (Or.inr ⟨{ left := 𝟙 _ right := left i i' }⟩) (List.IsChain.cons_cons (Or.inl ⟨{ left := 𝟙 _ right := right i i' }⟩) (List.IsChain.singleton _)) · refine ⟨[{ left := ⟨⟨⟩⟩ right := pair i' i hom := (le_inf (b.le.trans inf_le_left) a.le).hom }, { left := ⟨⟨⟩⟩ right := single i' hom := (b.le.trans inf_le_left).hom }, _], ?_, rfl⟩ exact List.IsChain.cons_cons (Or.inr ⟨{ left := 𝟙 _ right := right i' i }⟩) (List.IsChain.cons_cons (Or.inl ⟨{ left := 𝟙 _ right := left i' i }⟩) (List.IsChain.cons_cons (Or.inr ⟨{ left := 𝟙 _ right := left i' j' }⟩) (List.IsChain.singleton _))) · refine ⟨[{ left := ⟨⟨⟩⟩ right := single i hom := (a.le.trans inf_le_left).hom }, { left := ⟨⟨⟩⟩ right := pair i i' hom := (le_inf (a.le.trans inf_le_left) b.le).hom }, _], ?_, rfl⟩ exact List.IsChain.cons_cons (Or.inl ⟨{ left := 𝟙 _ right := left i j }⟩) (List.IsChain.cons_cons (Or.inr ⟨{ left := 𝟙 _ right := left i i' }⟩) (List.IsChain.cons_cons (Or.inl ⟨{ left := 𝟙 _ right := right i i' }⟩) (List.IsChain.singleton _))) · refine ⟨[{ left := ⟨⟨⟩⟩ right := single i hom := (a.le.trans inf_le_left).hom }, { left := ⟨⟨⟩⟩ right := pair i i' hom := (le_inf (a.le.trans inf_le_left) (b.le.trans inf_le_left)).hom }, { left := ⟨⟨⟩⟩ right := single i' hom := (b.le.trans inf_le_left).hom }, _], ?_, rfl⟩ exact List.IsChain.cons_cons (Or.inl ⟨{ left := 𝟙 _ right := left i j }⟩) (List.IsChain.cons_cons (Or.inr ⟨{ left := 𝟙 _ right := left i i' }⟩) (List.IsChain.cons_cons (Or.inl ⟨{ left := 𝟙 _ right := right i i' }⟩) (List.IsChain.cons_cons (Or.inr ⟨{ left := 𝟙 _ right := left i' j' }⟩) (List.IsChain.singleton _))))⟩ /-- The diagram in `Opens X` indexed by pairwise intersections from `U` is isomorphic (in fact, equal) to the diagram factored through `OpensLeCover U`.
pairwiseCoconeIso : (Pairwise.cocone U).op ≅ (Cones.postcomposeEquivalence (NatIso.op (pairwiseDiagramIso U :) :)).functor.obj ((opensLeCoverCocone U).op.whisker (pairwiseToOpensLeCover U).op) := Cones.ext (Iso.refl _) (by cat_disch)
def
Topology
[ "Mathlib.CategoryTheory.Category.Pairwise", "Mathlib.CategoryTheory.Limits.Constructions.BinaryProducts", "Mathlib.CategoryTheory.Limits.Final", "Mathlib.CategoryTheory.Limits.Preserves.Basic", "Mathlib.Topology.Sheaves.SheafCondition.OpensLeCover" ]
Mathlib/Topology/Sheaves/SheafCondition/PairwiseIntersections.lean
pairwiseCoconeIso
The cocone `Pairwise.cocone U` with cocone point `iSup U` over `Pairwise.diagram U` is isomorphic to the cocone `opensLeCoverCocone U` (with the same cocone point) after appropriate whiskering and postcomposition.
isLimitOpensLeCoverEquivPairwise : IsLimit (F.mapCone (opensLeCoverCocone U).op) ≃ IsLimit (F.mapCone (Pairwise.cocone U).op) := calc IsLimit (F.mapCone (opensLeCoverCocone U).op) ≃ IsLimit ((F.mapCone (opensLeCoverCocone U).op).whisker (pairwiseToOpensLeCover U).op) := (Functor.Initial.isLimitWhiskerEquiv (pairwiseToOpensLeCover U).op _).symm _ ≃ IsLimit (F.mapCone ((opensLeCoverCocone U).op.whisker (pairwiseToOpensLeCover U).op)) := (IsLimit.equivIsoLimit F.mapConeWhisker.symm) _ ≃ IsLimit ((Cones.postcomposeEquivalence _).functor.obj (F.mapCone ((opensLeCoverCocone U).op.whisker (pairwiseToOpensLeCover U).op))) := (IsLimit.postcomposeHomEquiv _ _).symm _ ≃ IsLimit (F.mapCone ((Cones.postcomposeEquivalence _).functor.obj ((opensLeCoverCocone U).op.whisker (pairwiseToOpensLeCover U).op))) := (IsLimit.equivIsoLimit (Functor.mapConePostcomposeEquivalenceFunctor _).symm) _ ≃ IsLimit (F.mapCone (Pairwise.cocone U).op) := IsLimit.equivIsoLimit ((Cones.functoriality _ _).mapIso (pairwiseCoconeIso U :).symm)
def
Topology
[ "Mathlib.CategoryTheory.Category.Pairwise", "Mathlib.CategoryTheory.Limits.Constructions.BinaryProducts", "Mathlib.CategoryTheory.Limits.Final", "Mathlib.CategoryTheory.Limits.Preserves.Basic", "Mathlib.Topology.Sheaves.SheafCondition.OpensLeCover" ]
Mathlib/Topology/Sheaves/SheafCondition/PairwiseIntersections.lean
isLimitOpensLeCoverEquivPairwise
The diagram over all `{ V : Opens X // ∃ i, V ≤ U i }` is a limit iff the diagram over `U i` and `U i ⊓ U j` is a limit.
isSheafOpensLeCover_iff_isSheafPairwiseIntersections : F.IsSheafOpensLeCover ↔ F.IsSheafPairwiseIntersections := forall₂_congr fun _ U ↦ (F.isLimitOpensLeCoverEquivPairwise U).nonempty_congr variable {F} in
theorem
Topology
[ "Mathlib.CategoryTheory.Category.Pairwise", "Mathlib.CategoryTheory.Limits.Constructions.BinaryProducts", "Mathlib.CategoryTheory.Limits.Final", "Mathlib.CategoryTheory.Limits.Preserves.Basic", "Mathlib.Topology.Sheaves.SheafCondition.OpensLeCover" ]
Mathlib/Topology/Sheaves/SheafCondition/PairwiseIntersections.lean
isSheafOpensLeCover_iff_isSheafPairwiseIntersections
The sheaf condition in terms of a limit diagram over all `{ V : Opens X // ∃ i, V ≤ U i }` is equivalent to the reformulation in terms of a limit diagram over `U i` and `U i ⊓ U j`.
IsSheaf.isSheafPairwiseIntersections (h : F.IsSheaf) : Nonempty (IsLimit (F.mapCone (Pairwise.cocone U).op)) := (h.isSheafOpensLeCover U).map (F.isLimitOpensLeCoverEquivPairwise _)
theorem
Topology
[ "Mathlib.CategoryTheory.Category.Pairwise", "Mathlib.CategoryTheory.Limits.Constructions.BinaryProducts", "Mathlib.CategoryTheory.Limits.Final", "Mathlib.CategoryTheory.Limits.Preserves.Basic", "Mathlib.Topology.Sheaves.SheafCondition.OpensLeCover" ]
Mathlib/Topology/Sheaves/SheafCondition/PairwiseIntersections.lean
IsSheaf.isSheafPairwiseIntersections
null
isSheaf_iff_isSheafPairwiseIntersections : F.IsSheaf ↔ F.IsSheafPairwiseIntersections := by rw [isSheaf_iff_isSheafOpensLeCover, isSheafOpensLeCover_iff_isSheafPairwiseIntersections] variable {F} in
theorem
Topology
[ "Mathlib.CategoryTheory.Category.Pairwise", "Mathlib.CategoryTheory.Limits.Constructions.BinaryProducts", "Mathlib.CategoryTheory.Limits.Final", "Mathlib.CategoryTheory.Limits.Preserves.Basic", "Mathlib.Topology.Sheaves.SheafCondition.OpensLeCover" ]
Mathlib/Topology/Sheaves/SheafCondition/PairwiseIntersections.lean
isSheaf_iff_isSheafPairwiseIntersections
The sheaf condition in terms of an equalizer diagram is equivalent to the reformulation in terms of a limit diagram over `U i` and `U i ⊓ U j`.
IsSheaf.isSheafPreservesLimitPairwiseIntersections (h : F.IsSheaf) : PreservesLimit (Pairwise.diagram U).op F := preservesLimit_of_preserves_limit_cone (Pairwise.coconeIsColimit U).op (h.isSheafPairwiseIntersections U).some
theorem
Topology
[ "Mathlib.CategoryTheory.Category.Pairwise", "Mathlib.CategoryTheory.Limits.Constructions.BinaryProducts", "Mathlib.CategoryTheory.Limits.Final", "Mathlib.CategoryTheory.Limits.Preserves.Basic", "Mathlib.Topology.Sheaves.SheafCondition.OpensLeCover" ]
Mathlib/Topology/Sheaves/SheafCondition/PairwiseIntersections.lean
IsSheaf.isSheafPreservesLimitPairwiseIntersections
null
isSheaf_iff_isSheafPreservesLimitPairwiseIntersections : F.IsSheaf ↔ F.IsSheafPreservesLimitPairwiseIntersections := by refine ⟨fun h U ↦ h.isSheafPreservesLimitPairwiseIntersections, fun h ↦ F.isSheaf_iff_isSheafPairwiseIntersections.mpr fun ι U ↦ ?_⟩ haveI := h U exact ⟨isLimitOfPreserves _ (Pairwise.coconeIsColimit U).op⟩
theorem
Topology
[ "Mathlib.CategoryTheory.Category.Pairwise", "Mathlib.CategoryTheory.Limits.Constructions.BinaryProducts", "Mathlib.CategoryTheory.Limits.Final", "Mathlib.CategoryTheory.Limits.Preserves.Basic", "Mathlib.Topology.Sheaves.SheafCondition.OpensLeCover" ]
Mathlib/Topology/Sheaves/SheafCondition/PairwiseIntersections.lean
isSheaf_iff_isSheafPreservesLimitPairwiseIntersections
The sheaf condition in terms of an equalizer diagram is equivalent to the reformulation in terms of the presheaf preserving the limit of the diagram consisting of the `U i` and `U i ⊓ U j`.
interUnionPullbackCone : PullbackCone (F.1.map (homOfLE inf_le_left : U ⊓ V ⟶ _).op) (F.1.map (homOfLE inf_le_right).op) := PullbackCone.mk (F.1.map (homOfLE le_sup_left).op) (F.1.map (homOfLE le_sup_right).op) <| by rw [← F.1.map_comp, ← F.1.map_comp] congr 1 @[simp]
def
Topology
[ "Mathlib.CategoryTheory.Category.Pairwise", "Mathlib.CategoryTheory.Limits.Constructions.BinaryProducts", "Mathlib.CategoryTheory.Limits.Final", "Mathlib.CategoryTheory.Limits.Preserves.Basic", "Mathlib.Topology.Sheaves.SheafCondition.OpensLeCover" ]
Mathlib/Topology/Sheaves/SheafCondition/PairwiseIntersections.lean
interUnionPullbackCone
For a sheaf `F`, `F(U ⊔ V)` is the pullback of `F(U) ⟶ F(U ⊓ V)` and `F(V) ⟶ F(U ⊓ V)`. This is the pullback cone.
interUnionPullbackCone_pt : (interUnionPullbackCone F U V).pt = F.1.obj (op <| U ⊔ V) := rfl @[simp]
theorem
Topology
[ "Mathlib.CategoryTheory.Category.Pairwise", "Mathlib.CategoryTheory.Limits.Constructions.BinaryProducts", "Mathlib.CategoryTheory.Limits.Final", "Mathlib.CategoryTheory.Limits.Preserves.Basic", "Mathlib.Topology.Sheaves.SheafCondition.OpensLeCover" ]
Mathlib/Topology/Sheaves/SheafCondition/PairwiseIntersections.lean
interUnionPullbackCone_pt
null
interUnionPullbackCone_fst : (interUnionPullbackCone F U V).fst = F.1.map (homOfLE le_sup_left).op := rfl @[simp]
theorem
Topology
[ "Mathlib.CategoryTheory.Category.Pairwise", "Mathlib.CategoryTheory.Limits.Constructions.BinaryProducts", "Mathlib.CategoryTheory.Limits.Final", "Mathlib.CategoryTheory.Limits.Preserves.Basic", "Mathlib.Topology.Sheaves.SheafCondition.OpensLeCover" ]
Mathlib/Topology/Sheaves/SheafCondition/PairwiseIntersections.lean
interUnionPullbackCone_fst
null
interUnionPullbackCone_snd : (interUnionPullbackCone F U V).snd = F.1.map (homOfLE le_sup_right).op := rfl variable (s : PullbackCone (F.1.map (homOfLE inf_le_left : U ⊓ V ⟶ _).op) (F.1.map (homOfLE inf_le_right).op))
theorem
Topology
[ "Mathlib.CategoryTheory.Category.Pairwise", "Mathlib.CategoryTheory.Limits.Constructions.BinaryProducts", "Mathlib.CategoryTheory.Limits.Final", "Mathlib.CategoryTheory.Limits.Preserves.Basic", "Mathlib.Topology.Sheaves.SheafCondition.OpensLeCover" ]
Mathlib/Topology/Sheaves/SheafCondition/PairwiseIntersections.lean
interUnionPullbackCone_snd
null
interUnionPullbackConeLift : s.pt ⟶ F.1.obj (op (U ⊔ V)) := by let ι : ULift.{w} WalkingPair → Opens X := fun j => WalkingPair.casesOn j.down U V have hι : U ⊔ V = iSup ι := by ext rw [Opens.coe_iSup, Set.mem_iUnion] constructor · rintro (h | h) exacts [⟨⟨WalkingPair.left⟩, h⟩, ⟨⟨WalkingPair.right⟩, h⟩] · rintro ⟨⟨_ | _⟩, h⟩ exacts [Or.inl h, Or.inr h] refine (F.presheaf.isSheaf_iff_isSheafPairwiseIntersections.mp F.2 ι).some.lift ⟨s.pt, { app := ?_ naturality := ?_ }⟩ ≫ F.1.map (eqToHom hι).op · rintro ((_ | _) | (_ | _)) exacts [s.fst, s.snd, s.fst ≫ F.1.map (homOfLE inf_le_left).op, s.snd ≫ F.1.map (homOfLE inf_le_left).op] rintro ⟨i⟩ ⟨j⟩ f let g : j ⟶ i := f.unop have : f = g.op := rfl clear_value g subst this rcases i with (⟨⟨_ | _⟩⟩ | ⟨⟨_ | _⟩, ⟨_⟩⟩) <;> rcases j with (⟨⟨_ | _⟩⟩ | ⟨⟨_ | _⟩, ⟨_⟩⟩) <;> rcases g with ⟨⟩ <;> dsimp [Pairwise.diagram] <;> simp only [ι, Category.id_comp, s.condition, CategoryTheory.Functor.map_id, Category.comp_id] rw [← cancel_mono (F.1.map (eqToHom <| inf_comm U V : U ⊓ V ⟶ _).op), Category.assoc, Category.assoc, ← F.1.map_comp, ← F.1.map_comp] exact s.condition.symm
def
Topology
[ "Mathlib.CategoryTheory.Category.Pairwise", "Mathlib.CategoryTheory.Limits.Constructions.BinaryProducts", "Mathlib.CategoryTheory.Limits.Final", "Mathlib.CategoryTheory.Limits.Preserves.Basic", "Mathlib.Topology.Sheaves.SheafCondition.OpensLeCover" ]
Mathlib/Topology/Sheaves/SheafCondition/PairwiseIntersections.lean
interUnionPullbackConeLift
(Implementation). Every cone over `F(U) ⟶ F(U ⊓ V)` and `F(V) ⟶ F(U ⊓ V)` factors through `F(U ⊔ V)`.
interUnionPullbackConeLift_left : interUnionPullbackConeLift F U V s ≫ F.1.map (homOfLE le_sup_left).op = s.fst := by erw [Category.assoc] simp_rw [← F.1.map_comp] exact (F.presheaf.isSheaf_iff_isSheafPairwiseIntersections.mp F.2 _).some.fac _ <| op <| Pairwise.single <| ULift.up WalkingPair.left
theorem
Topology
[ "Mathlib.CategoryTheory.Category.Pairwise", "Mathlib.CategoryTheory.Limits.Constructions.BinaryProducts", "Mathlib.CategoryTheory.Limits.Final", "Mathlib.CategoryTheory.Limits.Preserves.Basic", "Mathlib.Topology.Sheaves.SheafCondition.OpensLeCover" ]
Mathlib/Topology/Sheaves/SheafCondition/PairwiseIntersections.lean
interUnionPullbackConeLift_left
null
interUnionPullbackConeLift_right : interUnionPullbackConeLift F U V s ≫ F.1.map (homOfLE le_sup_right).op = s.snd := by erw [Category.assoc] simp_rw [← F.1.map_comp] exact (F.presheaf.isSheaf_iff_isSheafPairwiseIntersections.mp F.2 _).some.fac _ <| op <| Pairwise.single <| ULift.up WalkingPair.right
theorem
Topology
[ "Mathlib.CategoryTheory.Category.Pairwise", "Mathlib.CategoryTheory.Limits.Constructions.BinaryProducts", "Mathlib.CategoryTheory.Limits.Final", "Mathlib.CategoryTheory.Limits.Preserves.Basic", "Mathlib.Topology.Sheaves.SheafCondition.OpensLeCover" ]
Mathlib/Topology/Sheaves/SheafCondition/PairwiseIntersections.lean
interUnionPullbackConeLift_right
null
isLimitPullbackCone : IsLimit (interUnionPullbackCone F U V) := by let ι : ULift.{w} WalkingPair → Opens X := fun ⟨j⟩ => WalkingPair.casesOn j U V have hι : U ⊔ V = iSup ι := by ext rw [Opens.coe_iSup, Set.mem_iUnion] constructor · rintro (h | h) exacts [⟨⟨WalkingPair.left⟩, h⟩, ⟨⟨WalkingPair.right⟩, h⟩] · rintro ⟨⟨_ | _⟩, h⟩ exacts [Or.inl h, Or.inr h] apply PullbackCone.isLimitAux' intro s use interUnionPullbackConeLift F U V s refine ⟨?_, ?_, ?_⟩ · apply interUnionPullbackConeLift_left · apply interUnionPullbackConeLift_right · intro m h₁ h₂ rw [← cancel_mono (F.1.map (eqToHom hι.symm).op)] apply (F.presheaf.isSheaf_iff_isSheafPairwiseIntersections.mp F.2 ι).some.hom_ext rintro ((_ | _) | (_ | _)) <;> rw [Category.assoc, Category.assoc] · erw [← F.1.map_comp] convert h₁ apply interUnionPullbackConeLift_left · erw [← F.1.map_comp] convert h₂ apply interUnionPullbackConeLift_right all_goals dsimp only [Functor.op, Pairwise.cocone_ι_app, Functor.mapCone_π_app, Cocone.op, Pairwise.coconeιApp, unop_op, op_comp, NatTrans.op] simp_rw [F.1.map_comp, ← Category.assoc] congr 1 simp_rw [Category.assoc, ← F.1.map_comp] · convert h₁ apply interUnionPullbackConeLift_left · convert h₂ apply interUnionPullbackConeLift_right
def
Topology
[ "Mathlib.CategoryTheory.Category.Pairwise", "Mathlib.CategoryTheory.Limits.Constructions.BinaryProducts", "Mathlib.CategoryTheory.Limits.Final", "Mathlib.CategoryTheory.Limits.Preserves.Basic", "Mathlib.Topology.Sheaves.SheafCondition.OpensLeCover" ]
Mathlib/Topology/Sheaves/SheafCondition/PairwiseIntersections.lean
isLimitPullbackCone
For a sheaf `F`, `F(U ⊔ V)` is the pullback of `F(U) ⟶ F(U ⊓ V)` and `F(V) ⟶ F(U ⊓ V)`.
isProductOfDisjoint (h : U ⊓ V = ⊥) : IsLimit (BinaryFan.mk (F.1.map (homOfLE le_sup_left : _ ⟶ U ⊔ V).op) (F.1.map (homOfLE le_sup_right : _ ⟶ U ⊔ V).op)) := isProductOfIsTerminalIsPullback _ _ _ _ (F.isTerminalOfEqEmpty h) (isLimitPullbackCone F U V)
def
Topology
[ "Mathlib.CategoryTheory.Category.Pairwise", "Mathlib.CategoryTheory.Limits.Constructions.BinaryProducts", "Mathlib.CategoryTheory.Limits.Final", "Mathlib.CategoryTheory.Limits.Preserves.Basic", "Mathlib.Topology.Sheaves.SheafCondition.OpensLeCover" ]
Mathlib/Topology/Sheaves/SheafCondition/PairwiseIntersections.lean
isProductOfDisjoint
If `U, V` are disjoint, then `F(U ⊔ V) = F(U) × F(V)`.
coveringOfPresieve (U : Opens X) (R : Presieve U) : (Σ V, { f : V ⟶ U // R f }) → Opens X := fun f => f.1 @[simp]
def
Topology
[ "Mathlib.CategoryTheory.Sites.Spaces", "Mathlib.Topology.Sheaves.Sheaf", "Mathlib.CategoryTheory.Sites.DenseSubsite.Basic" ]
Mathlib/Topology/Sheaves/SheafCondition/Sites.lean
coveringOfPresieve
Given a presieve `R` on `U`, we obtain a covering family of open sets in `X`, by taking as index type the type of dependent pairs `(V, f)`, where `f : V ⟶ U` is in `R`.
coveringOfPresieve_apply (U : Opens X) (R : Presieve U) (f : Σ V, { f : V ⟶ U // R f }) : coveringOfPresieve U R f = f.1 := rfl
theorem
Topology
[ "Mathlib.CategoryTheory.Sites.Spaces", "Mathlib.Topology.Sheaves.Sheaf", "Mathlib.CategoryTheory.Sites.DenseSubsite.Basic" ]
Mathlib/Topology/Sheaves/SheafCondition/Sites.lean
coveringOfPresieve_apply
null
iSup_eq_of_mem_grothendieck (hR : Sieve.generate R ∈ Opens.grothendieckTopology X U) : iSup (coveringOfPresieve U R) = U := by apply le_antisymm · refine iSup_le ?_ intro f exact f.2.1.le intro x hxU rw [Opens.coe_iSup, Set.mem_iUnion] obtain ⟨V, iVU, ⟨W, iVW, iWU, hiWU, -⟩, hxV⟩ := hR x hxU exact ⟨⟨W, ⟨iWU, hiWU⟩⟩, iVW.le hxV⟩
theorem
Topology
[ "Mathlib.CategoryTheory.Sites.Spaces", "Mathlib.Topology.Sheaves.Sheaf", "Mathlib.CategoryTheory.Sites.DenseSubsite.Basic" ]
Mathlib/Topology/Sheaves/SheafCondition/Sites.lean
iSup_eq_of_mem_grothendieck
If `R` is a presieve in the Grothendieck topology on `Opens X`, the covering family associated to `R` really is _covering_, i.e. the union of all open sets equals `U`.
presieveOfCoveringAux {ι : Type v} (U : ι → Opens X) (Y : Opens X) : Presieve Y := fun V _ => ∃ i, V = U i
def
Topology
[ "Mathlib.CategoryTheory.Sites.Spaces", "Mathlib.Topology.Sheaves.Sheaf", "Mathlib.CategoryTheory.Sites.DenseSubsite.Basic" ]
Mathlib/Topology/Sheaves/SheafCondition/Sites.lean
presieveOfCoveringAux
Given a family of opens `U : ι → Opens X` and any open `Y : Opens X`, we obtain a presieve on `Y` by declaring that a morphism `f : V ⟶ Y` is a member of the presieve if and only if there exists an index `i : ι` such that `V = U i`.
presieveOfCovering {ι : Type v} (U : ι → Opens X) : Presieve (iSup U) := presieveOfCoveringAux U (iSup U)
def
Topology
[ "Mathlib.CategoryTheory.Sites.Spaces", "Mathlib.Topology.Sheaves.Sheaf", "Mathlib.CategoryTheory.Sites.DenseSubsite.Basic" ]
Mathlib/Topology/Sheaves/SheafCondition/Sites.lean
presieveOfCovering
Take `Y` to be `iSup U` and obtain a presieve over `iSup U`.
@[simp] covering_presieve_eq_self {Y : Opens X} (R : Presieve Y) : presieveOfCoveringAux (coveringOfPresieve Y R) Y = R := by funext Z ext f exact ⟨fun ⟨⟨_, f', h⟩, rfl⟩ => by rwa [Subsingleton.elim f f'], fun h => ⟨⟨Z, f, h⟩, rfl⟩⟩
theorem
Topology
[ "Mathlib.CategoryTheory.Sites.Spaces", "Mathlib.Topology.Sheaves.Sheaf", "Mathlib.CategoryTheory.Sites.DenseSubsite.Basic" ]
Mathlib/Topology/Sheaves/SheafCondition/Sites.lean
covering_presieve_eq_self
Given a presieve `R` on `Y`, if we take its associated family of opens via `coveringOfPresieve` (which may not cover `Y` if `R` is not covering), and take the presieve on `Y` associated to the family of opens via `presieveOfCoveringAux`, then we get back the original presieve `R`.
mem_grothendieckTopology : Sieve.generate (presieveOfCovering U) ∈ Opens.grothendieckTopology X (iSup U) := by intro x hx obtain ⟨i, hxi⟩ := Opens.mem_iSup.mp hx exact ⟨U i, Opens.leSupr U i, ⟨U i, 𝟙 _, Opens.leSupr U i, ⟨i, rfl⟩, Category.id_comp _⟩, hxi⟩
theorem
Topology
[ "Mathlib.CategoryTheory.Sites.Spaces", "Mathlib.Topology.Sheaves.Sheaf", "Mathlib.CategoryTheory.Sites.DenseSubsite.Basic" ]
Mathlib/Topology/Sheaves/SheafCondition/Sites.lean
mem_grothendieckTopology
The sieve generated by `presieveOfCovering U` is a member of the Grothendieck topology.
homOfIndex (i : ι) : Σ V, { f : V ⟶ iSup U // presieveOfCovering U f } := ⟨U i, Opens.leSupr U i, i, rfl⟩
def
Topology
[ "Mathlib.CategoryTheory.Sites.Spaces", "Mathlib.Topology.Sheaves.Sheaf", "Mathlib.CategoryTheory.Sites.DenseSubsite.Basic" ]
Mathlib/Topology/Sheaves/SheafCondition/Sites.lean
homOfIndex
An index `i : ι` can be turned into a dependent pair `(V, f)`, where `V` is an open set and `f : V ⟶ iSup U` is a member of `presieveOfCovering U f`.
indexOfHom (f : Σ V, { f : V ⟶ iSup U // presieveOfCovering U f }) : ι := f.2.2.choose
def
Topology
[ "Mathlib.CategoryTheory.Sites.Spaces", "Mathlib.Topology.Sheaves.Sheaf", "Mathlib.CategoryTheory.Sites.DenseSubsite.Basic" ]
Mathlib/Topology/Sheaves/SheafCondition/Sites.lean
indexOfHom
By using the axiom of choice, a dependent pair `(V, f)` where `f : V ⟶ iSup U` is a member of `presieveOfCovering U f` can be turned into an index `i : ι`, such that `V = U i`.
indexOfHom_spec (f : Σ V, { f : V ⟶ iSup U // presieveOfCovering U f }) : f.1 = U (indexOfHom U f) := f.2.2.choose_spec
theorem
Topology
[ "Mathlib.CategoryTheory.Sites.Spaces", "Mathlib.Topology.Sheaves.Sheaf", "Mathlib.CategoryTheory.Sites.DenseSubsite.Basic" ]
Mathlib/Topology/Sheaves/SheafCondition/Sites.lean
indexOfHom_spec
null
coverDense_iff_isBasis [Category ι] (B : ι ⥤ Opens X) : B.IsCoverDense (Opens.grothendieckTopology X) ↔ Opens.IsBasis (Set.range B.obj) := by rw [Opens.isBasis_iff_nbhd] constructor · intro hd U x hx; rcases hd.1 U x hx with ⟨V, f, ⟨i, f₁, f₂, _⟩, hV⟩ exact ⟨B.obj i, ⟨i, rfl⟩, f₁.le hV, f₂.le⟩ intro hb; constructor; intro U x hx; rcases hb hx with ⟨_, ⟨i, rfl⟩, hx, hi⟩ exact ⟨B.obj i, ⟨⟨hi⟩⟩, ⟨⟨i, 𝟙 _, ⟨⟨hi⟩⟩, rfl⟩⟩, hx⟩
theorem
Topology
[ "Mathlib.CategoryTheory.Sites.Spaces", "Mathlib.Topology.Sheaves.Sheaf", "Mathlib.CategoryTheory.Sites.DenseSubsite.Basic" ]
Mathlib/Topology/Sheaves/SheafCondition/Sites.lean
coverDense_iff_isBasis
null
coverDense_inducedFunctor {B : ι → Opens X} (h : Opens.IsBasis (Set.range B)) : (inducedFunctor B).IsCoverDense (Opens.grothendieckTopology X) := (coverDense_iff_isBasis _).2 h
theorem
Topology
[ "Mathlib.CategoryTheory.Sites.Spaces", "Mathlib.Topology.Sheaves.Sheaf", "Mathlib.CategoryTheory.Sites.DenseSubsite.Basic" ]
Mathlib/Topology/Sheaves/SheafCondition/Sites.lean
coverDense_inducedFunctor
null
Topology.IsOpenEmbedding.compatiblePreserving (hf : IsOpenEmbedding f) : CompatiblePreserving (Opens.grothendieckTopology Y) hf.isOpenMap.functor := by haveI : Mono f := (TopCat.mono_iff_injective f).mpr hf.injective apply compatiblePreservingOfDownwardsClosed intro U V i refine ⟨(Opens.map f).obj V, eqToIso <| Opens.ext <| Set.image_preimage_eq_of_subset fun x h ↦ ?_⟩ obtain ⟨_, _, rfl⟩ := i.le h exact ⟨_, rfl⟩
theorem
Topology
[ "Mathlib.CategoryTheory.Sites.Spaces", "Mathlib.Topology.Sheaves.Sheaf", "Mathlib.CategoryTheory.Sites.DenseSubsite.Basic" ]
Mathlib/Topology/Sheaves/SheafCondition/Sites.lean
Topology.IsOpenEmbedding.compatiblePreserving
null
IsOpenMap.coverPreserving (hf : IsOpenMap f) : CoverPreserving (Opens.grothendieckTopology X) (Opens.grothendieckTopology Y) hf.functor := by constructor rintro U S hU _ ⟨x, hx, rfl⟩ obtain ⟨V, i, hV, hxV⟩ := hU x hx exact ⟨_, hf.functor.map i, ⟨_, i, 𝟙 _, hV, rfl⟩, Set.mem_image_of_mem f hxV⟩
theorem
Topology
[ "Mathlib.CategoryTheory.Sites.Spaces", "Mathlib.Topology.Sheaves.Sheaf", "Mathlib.CategoryTheory.Sites.DenseSubsite.Basic" ]
Mathlib/Topology/Sheaves/SheafCondition/Sites.lean
IsOpenMap.coverPreserving
null
Topology.IsOpenEmbedding.functor_isContinuous (h : IsOpenEmbedding f) : h.isOpenMap.functor.IsContinuous (Opens.grothendieckTopology X) (Opens.grothendieckTopology Y) := by apply Functor.isContinuous_of_coverPreserving · exact h.compatiblePreserving · exact h.isOpenMap.coverPreserving
lemma
Topology
[ "Mathlib.CategoryTheory.Sites.Spaces", "Mathlib.Topology.Sheaves.Sheaf", "Mathlib.CategoryTheory.Sites.DenseSubsite.Basic" ]
Mathlib/Topology/Sheaves/SheafCondition/Sites.lean
Topology.IsOpenEmbedding.functor_isContinuous
null
TopCat.Presheaf.isSheaf_of_isOpenEmbedding (h : IsOpenEmbedding f) (hF : F.IsSheaf) : IsSheaf (h.isOpenMap.functor.op ⋙ F) := by have := h.functor_isContinuous exact Functor.op_comp_isSheaf _ _ _ ⟨_, hF⟩ variable (f)
theorem
Topology
[ "Mathlib.CategoryTheory.Sites.Spaces", "Mathlib.Topology.Sheaves.Sheaf", "Mathlib.CategoryTheory.Sites.DenseSubsite.Basic" ]
Mathlib/Topology/Sheaves/SheafCondition/Sites.lean
TopCat.Presheaf.isSheaf_of_isOpenEmbedding
null
compatiblePreserving_opens_map : CompatiblePreserving (Opens.grothendieckTopology X) (Opens.map f) := compatiblePreservingOfFlat _ _
theorem
Topology
[ "Mathlib.CategoryTheory.Sites.Spaces", "Mathlib.Topology.Sheaves.Sheaf", "Mathlib.CategoryTheory.Sites.DenseSubsite.Basic" ]
Mathlib/Topology/Sheaves/SheafCondition/Sites.lean
compatiblePreserving_opens_map
null
coverPreserving_opens_map : CoverPreserving (Opens.grothendieckTopology Y) (Opens.grothendieckTopology X) (Opens.map f) := by constructor intro U S hS x hx obtain ⟨V, i, hi, hxV⟩ := hS (f x) hx exact ⟨_, (Opens.map f).map i, ⟨_, _, 𝟙 _, hi, Subsingleton.elim _ _⟩, hxV⟩
theorem
Topology
[ "Mathlib.CategoryTheory.Sites.Spaces", "Mathlib.Topology.Sheaves.Sheaf", "Mathlib.CategoryTheory.Sites.DenseSubsite.Basic" ]
Mathlib/Topology/Sheaves/SheafCondition/Sites.lean
coverPreserving_opens_map
null
isTerminalOfEmpty (F : Sheaf C X) : Limits.IsTerminal (F.val.obj (op ⊥)) := F.isTerminalOfBotCover ⊥ (fun _ h => h.elim)
def
Topology
[ "Mathlib.CategoryTheory.Sites.Spaces", "Mathlib.Topology.Sheaves.Sheaf", "Mathlib.CategoryTheory.Sites.DenseSubsite.Basic" ]
Mathlib/Topology/Sheaves/SheafCondition/Sites.lean
isTerminalOfEmpty
The empty component of a sheaf is terminal.
isTerminalOfEqEmpty (F : X.Sheaf C) {U : Opens X} (h : U = ⊥) : Limits.IsTerminal (F.val.obj (op U)) := by convert F.isTerminalOfEmpty
def
Topology
[ "Mathlib.CategoryTheory.Sites.Spaces", "Mathlib.Topology.Sheaves.Sheaf", "Mathlib.CategoryTheory.Sites.DenseSubsite.Basic" ]
Mathlib/Topology/Sheaves/SheafCondition/Sites.lean
isTerminalOfEqEmpty
A variant of `isTerminalOfEmpty` that is easier to `apply`.
restrictHomEquivHom (h : Opens.IsBasis (Set.range B)) : ((inducedFunctor B).op ⋙ F ⟶ (inducedFunctor B).op ⋙ F'.1) ≃ (F ⟶ F'.1) := @Functor.IsCoverDense.restrictHomEquivHom _ _ _ _ _ _ _ _ (Opens.coverDense_inducedFunctor h) _ F F' @[simp]
def
Topology
[ "Mathlib.CategoryTheory.Sites.Spaces", "Mathlib.Topology.Sheaves.Sheaf", "Mathlib.CategoryTheory.Sites.DenseSubsite.Basic" ]
Mathlib/Topology/Sheaves/SheafCondition/Sites.lean
restrictHomEquivHom
If a family `B` of open sets forms a basis of the topology on `X`, and if `F'` is a sheaf on `X`, then a homomorphism between a presheaf `F` on `X` and `F'` is equivalent to a homomorphism between their restrictions to the indexing type `ι` of `B`, with the induced category structure on `ι`.
extend_hom_app (h : Opens.IsBasis (Set.range B)) (α : (inducedFunctor B).op ⋙ F ⟶ (inducedFunctor B).op ⋙ F'.1) (i : ι) : (restrictHomEquivHom F F' h α).app (op (B i)) = α.app (op i) := by nth_rw 2 [← (restrictHomEquivHom F F' h).left_inv α] rfl
theorem
Topology
[ "Mathlib.CategoryTheory.Sites.Spaces", "Mathlib.Topology.Sheaves.Sheaf", "Mathlib.CategoryTheory.Sites.DenseSubsite.Basic" ]
Mathlib/Topology/Sheaves/SheafCondition/Sites.lean
extend_hom_app
null
hom_ext (h : Opens.IsBasis (Set.range B)) {α β : F ⟶ F'.1} (he : ∀ i, α.app (op (B i)) = β.app (op (B i))) : α = β := by apply (restrictHomEquivHom F F' h).symm.injective ext i exact he i.unop
theorem
Topology
[ "Mathlib.CategoryTheory.Sites.Spaces", "Mathlib.Topology.Sheaves.Sheaf", "Mathlib.CategoryTheory.Sites.DenseSubsite.Basic" ]
Mathlib/Topology/Sheaves/SheafCondition/Sites.lean
hom_ext
null
IsCompatible (sf : ∀ i : ι, ToType (F.obj (op (U i)))) : Prop := ∀ i j : ι, F.map (infLELeft (U i) (U j)).op (sf i) = F.map (infLERight (U i) (U j)).op (sf j)
def
Topology
[ "Mathlib.Topology.Sheaves.Forget", "Mathlib.Topology.Sheaves.SheafCondition.PairwiseIntersections", "Mathlib.CategoryTheory.Limits.Types.Shapes" ]
Mathlib/Topology/Sheaves/SheafCondition/UniqueGluing.lean
IsCompatible
A family of sections `sf` is compatible, if the restrictions of `sf i` and `sf j` to `U i ⊓ U j` agree, for all `i` and `j`
IsGluing (sf : ∀ i : ι, ToType (F.obj (op (U i)))) (s : ToType (F.obj (op (iSup U)))) : Prop := ∀ i : ι, F.map (Opens.leSupr U i).op s = sf i
def
Topology
[ "Mathlib.Topology.Sheaves.Forget", "Mathlib.Topology.Sheaves.SheafCondition.PairwiseIntersections", "Mathlib.CategoryTheory.Limits.Types.Shapes" ]
Mathlib/Topology/Sheaves/SheafCondition/UniqueGluing.lean
IsGluing
A section `s` is a gluing for a family of sections `sf` if it restricts to `sf i` on `U i`, for all `i`
IsSheafUniqueGluing : Prop := ∀ ⦃ι : Type x⦄ (U : ι → Opens X) (sf : ∀ i : ι, ToType (F.obj (op (U i)))), IsCompatible F U sf → ∃! s : ToType (F.obj (op (iSup U))), IsGluing F U sf s
def
Topology
[ "Mathlib.Topology.Sheaves.Forget", "Mathlib.Topology.Sheaves.SheafCondition.PairwiseIntersections", "Mathlib.CategoryTheory.Limits.Types.Shapes" ]
Mathlib/Topology/Sheaves/SheafCondition/UniqueGluing.lean
IsSheafUniqueGluing
The sheaf condition in terms of unique gluings. A presheaf `F : Presheaf C X` satisfies this sheaf condition if and only if, for every compatible family of sections `sf : Π i : ι, F.obj (op (U i))`, there exists a unique gluing `s : F.obj (op (iSup U))`. We prove this to be equivalent to the usual one below in `TopCat.Presheaf.isSheaf_iff_isSheafUniqueGluing`
objPairwiseOfFamily (sf : ∀ i, F.obj (op (U i))) : ∀ i, ((Pairwise.diagram U).op ⋙ F).obj i | ⟨Pairwise.single i⟩ => sf i | ⟨Pairwise.pair i j⟩ => F.map (infLELeft (U i) (U j)).op (sf i) attribute [local instance] Types.instFunLike Types.instConcreteCategory
def
Topology
[ "Mathlib.Topology.Sheaves.Forget", "Mathlib.Topology.Sheaves.SheafCondition.PairwiseIntersections", "Mathlib.CategoryTheory.Limits.Types.Shapes" ]
Mathlib/Topology/Sheaves/SheafCondition/UniqueGluing.lean
objPairwiseOfFamily
Given sections over a family of open sets, extend it to include sections over pairwise intersections of the open sets.
IsCompatible.sectionPairwise {sf} (h : IsCompatible F U sf) : ((Pairwise.diagram U).op ⋙ F).sections := by refine ⟨objPairwiseOfFamily sf, ?_⟩ let G := (Pairwise.diagram U).op ⋙ F rintro (i|⟨i,j⟩) (i'|⟨i',j'⟩) (_ | _ | _ | _) · exact congr_fun (G.map_id <| op <| Pairwise.single i) _ · rfl · exact (h i' i).symm · exact congr_fun (G.map_id <| op <| Pairwise.pair i j) _
def
Topology
[ "Mathlib.Topology.Sheaves.Forget", "Mathlib.Topology.Sheaves.SheafCondition.PairwiseIntersections", "Mathlib.CategoryTheory.Limits.Types.Shapes" ]
Mathlib/Topology/Sheaves/SheafCondition/UniqueGluing.lean
IsCompatible.sectionPairwise
Given a compatible family of sections over open sets, extend it to a section of the functor `(Pairwise.diagram U).op ⋙ F`.
isGluing_iff_pairwise {sf s} : IsGluing F U sf s ↔ ∀ i, (F.mapCone (Pairwise.cocone U).op).π.app i s = objPairwiseOfFamily sf i := by refine ⟨fun h ↦ ?_, fun h i ↦ h (op <| Pairwise.single i)⟩ rintro (i|⟨i,j⟩) · exact h i · rw [← (F.mapCone (Pairwise.cocone U).op).w (op <| Pairwise.Hom.left i j)] exact congr_arg _ (h i)
theorem
Topology
[ "Mathlib.Topology.Sheaves.Forget", "Mathlib.Topology.Sheaves.SheafCondition.PairwiseIntersections", "Mathlib.CategoryTheory.Limits.Types.Shapes" ]
Mathlib/Topology/Sheaves/SheafCondition/UniqueGluing.lean
isGluing_iff_pairwise
null
IsSheaf.isSheafUniqueGluing_types (h : F.IsSheaf) (sf : ∀ i : ι, F.obj (op (U i))) (cpt : IsCompatible F U sf) : ∃! s : F.obj (op (iSup U)), IsGluing F U sf s := by simp_rw [isGluing_iff_pairwise] exact (Types.isLimit_iff _).mp (h.isSheafPairwiseIntersections U) _ cpt.sectionPairwise.prop variable (F)
theorem
Topology
[ "Mathlib.Topology.Sheaves.Forget", "Mathlib.Topology.Sheaves.SheafCondition.PairwiseIntersections", "Mathlib.CategoryTheory.Limits.Types.Shapes" ]
Mathlib/Topology/Sheaves/SheafCondition/UniqueGluing.lean
IsSheaf.isSheafUniqueGluing_types
null
isSheaf_iff_isSheafUniqueGluing_types : F.IsSheaf ↔ F.IsSheafUniqueGluing := by simp_rw [isSheaf_iff_isSheafPairwiseIntersections, IsSheafPairwiseIntersections, Types.isLimit_iff, IsSheafUniqueGluing, isGluing_iff_pairwise] refine forall₂_congr fun ι U ↦ ⟨fun h sf cpt ↦ ?_, fun h s hs ↦ ?_⟩ · exact h _ cpt.sectionPairwise.prop · specialize h (fun i ↦ s <| op <| Pairwise.single i) fun i j ↦ (hs <| op <| Pairwise.Hom.left i j).trans (hs <| op <| Pairwise.Hom.right i j).symm convert h; ext (i|⟨i,j⟩) · rfl · exact (hs <| op <| Pairwise.Hom.left i j).symm
theorem
Topology
[ "Mathlib.Topology.Sheaves.Forget", "Mathlib.Topology.Sheaves.SheafCondition.PairwiseIntersections", "Mathlib.CategoryTheory.Limits.Types.Shapes" ]
Mathlib/Topology/Sheaves/SheafCondition/UniqueGluing.lean
isSheaf_iff_isSheafUniqueGluing_types
For type-valued presheaves, the sheaf condition in terms of unique gluings is equivalent to the usual sheaf condition.
isSheaf_of_isSheafUniqueGluing_types (Fsh : F.IsSheafUniqueGluing) : F.IsSheaf := (isSheaf_iff_isSheafUniqueGluing_types F).mpr Fsh
theorem
Topology
[ "Mathlib.Topology.Sheaves.Forget", "Mathlib.Topology.Sheaves.SheafCondition.PairwiseIntersections", "Mathlib.CategoryTheory.Limits.Types.Shapes" ]
Mathlib/Topology/Sheaves/SheafCondition/UniqueGluing.lean
isSheaf_of_isSheafUniqueGluing_types
The usual sheaf condition can be obtained from the sheaf condition in terms of unique gluings.
IsSheaf.isSheafUniqueGluing (h : F.IsSheaf) {ι : Type*} (U : ι → Opens X) (sf : ∀ i : ι, ToType (F.obj (op (U i)))) (cpt : IsCompatible F U sf) : ∃! s : ToType (F.obj (op (iSup U))), IsGluing F U sf s := ((isSheaf_iff_isSheaf_comp' (forget C) F).mp h).isSheafUniqueGluing_types sf cpt variable (F)
theorem
Topology
[ "Mathlib.Topology.Sheaves.Forget", "Mathlib.Topology.Sheaves.SheafCondition.PairwiseIntersections", "Mathlib.CategoryTheory.Limits.Types.Shapes" ]
Mathlib/Topology/Sheaves/SheafCondition/UniqueGluing.lean
IsSheaf.isSheafUniqueGluing
null
isSheaf_iff_isSheafUniqueGluing : F.IsSheaf ↔ F.IsSheafUniqueGluing := Iff.trans (isSheaf_iff_isSheaf_comp' (forget C) F) (isSheaf_iff_isSheafUniqueGluing_types (F ⋙ forget C))
theorem
Topology
[ "Mathlib.Topology.Sheaves.Forget", "Mathlib.Topology.Sheaves.SheafCondition.PairwiseIntersections", "Mathlib.CategoryTheory.Limits.Types.Shapes" ]
Mathlib/Topology/Sheaves/SheafCondition/UniqueGluing.lean
isSheaf_iff_isSheafUniqueGluing
For presheaves valued in a concrete category, whose forgetful functor reflects isomorphisms and preserves limits, the sheaf condition in terms of unique gluings is equivalent to the usual one.
existsUnique_gluing (sf : ∀ i : ι, ToType (F.1.obj (op (U i)))) (h : IsCompatible F.1 U sf) : ∃! s : ToType (F.1.obj (op (iSup U))), IsGluing F.1 U sf s := IsSheaf.isSheafUniqueGluing F.cond U sf h
theorem
Topology
[ "Mathlib.Topology.Sheaves.Forget", "Mathlib.Topology.Sheaves.SheafCondition.PairwiseIntersections", "Mathlib.CategoryTheory.Limits.Types.Shapes" ]
Mathlib/Topology/Sheaves/SheafCondition/UniqueGluing.lean
existsUnique_gluing
A more convenient way of obtaining a unique gluing of sections for a sheaf.
existsUnique_gluing' (V : Opens X) (iUV : ∀ i : ι, U i ⟶ V) (hcover : V ≤ iSup U) (sf : ∀ i : ι, ToType (F.1.obj (op (U i)))) (h : IsCompatible F.1 U sf) : ∃! s : ToType (F.1.obj (op V)), ∀ i : ι, F.1.map (iUV i).op s = sf i := by have V_eq_supr_U : V = iSup U := le_antisymm hcover (iSup_le fun i => (iUV i).le) obtain ⟨gl, gl_spec, gl_uniq⟩ := F.existsUnique_gluing U sf h refine ⟨F.1.map (eqToHom V_eq_supr_U).op gl, ?_, ?_⟩ · intro i rw [← ConcreteCategory.comp_apply, ← F.1.map_comp] exact gl_spec i · intro gl' gl'_spec convert congr_arg _ (gl_uniq (F.1.map (eqToHom V_eq_supr_U.symm).op gl') fun i => _) <;> rw [← ConcreteCategory.comp_apply, ← F.1.map_comp] · rw [eqToHom_op, eqToHom_op, eqToHom_trans, eqToHom_refl, F.1.map_id, ConcreteCategory.id_apply] · exact gl'_spec i @[ext]
theorem
Topology
[ "Mathlib.Topology.Sheaves.Forget", "Mathlib.Topology.Sheaves.SheafCondition.PairwiseIntersections", "Mathlib.CategoryTheory.Limits.Types.Shapes" ]
Mathlib/Topology/Sheaves/SheafCondition/UniqueGluing.lean
existsUnique_gluing'
In this version of the lemma, the inclusion homs `iUV` can be specified directly by the user, which can be more convenient in practice.
eq_of_locally_eq (s t : ToType (F.1.obj (op (iSup U)))) (h : ∀ i, F.1.map (Opens.leSupr U i).op s = F.1.map (Opens.leSupr U i).op t) : s = t := by let sf : ∀ i : ι, ToType (F.1.obj (op (U i))) := fun i => F.1.map (Opens.leSupr U i).op s have sf_compatible : IsCompatible _ U sf := by intro i j simp_rw [sf, ← ConcreteCategory.comp_apply, ← F.1.map_comp] rfl obtain ⟨gl, -, gl_uniq⟩ := F.existsUnique_gluing U sf sf_compatible trans gl · apply gl_uniq intro i rfl · symm apply gl_uniq intro i rw [← h]
theorem
Topology
[ "Mathlib.Topology.Sheaves.Forget", "Mathlib.Topology.Sheaves.SheafCondition.PairwiseIntersections", "Mathlib.CategoryTheory.Limits.Types.Shapes" ]
Mathlib/Topology/Sheaves/SheafCondition/UniqueGluing.lean
eq_of_locally_eq
null
eq_of_locally_eq' (V : Opens X) (iUV : ∀ i : ι, U i ⟶ V) (hcover : V ≤ iSup U) (s t : ToType (F.1.obj (op V))) (h : ∀ i, F.1.map (iUV i).op s = F.1.map (iUV i).op t) : s = t := by have V_eq_supr_U : V = iSup U := le_antisymm hcover (iSup_le fun i => (iUV i).le) suffices F.1.map (eqToHom V_eq_supr_U.symm).op s = F.1.map (eqToHom V_eq_supr_U.symm).op t by convert congr_arg (F.1.map (eqToHom V_eq_supr_U).op) this <;> rw [← ConcreteCategory.comp_apply, ← F.1.map_comp, eqToHom_op, eqToHom_op, eqToHom_trans, eqToHom_refl, F.1.map_id, ConcreteCategory.id_apply] apply eq_of_locally_eq intro i rw [← ConcreteCategory.comp_apply, ← ConcreteCategory.comp_apply, ← F.1.map_comp] exact h i
theorem
Topology
[ "Mathlib.Topology.Sheaves.Forget", "Mathlib.Topology.Sheaves.SheafCondition.PairwiseIntersections", "Mathlib.CategoryTheory.Limits.Types.Shapes" ]
Mathlib/Topology/Sheaves/SheafCondition/UniqueGluing.lean
eq_of_locally_eq'
In this version of the lemma, the inclusion homs `iUV` can be specified directly by the user, which can be more convenient in practice.