blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
4
214
content_id
stringlengths
40
40
detected_licenses
listlengths
0
50
license_type
stringclasses
2 values
repo_name
stringlengths
6
115
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringclasses
21 values
visit_date
timestamp[us]
revision_date
timestamp[us]
committer_date
timestamp[us]
github_id
int64
141k
586M
star_events_count
int64
0
30.4k
fork_events_count
int64
0
9.67k
gha_license_id
stringclasses
8 values
gha_event_created_at
timestamp[us]
gha_created_at
timestamp[us]
gha_language
stringclasses
50 values
src_encoding
stringclasses
23 values
language
stringclasses
1 value
is_vendor
bool
1 class
is_generated
bool
1 class
length_bytes
int64
5
10.4M
extension
stringclasses
29 values
filename
stringlengths
2
96
content
stringlengths
5
10.4M
76c1ac800318ae8484fcdeb45c0040f07609603f
449d555969bfd7befe906877abab098c6e63a0e8
/551/CH9/EX9.9/9.sce
25948018c28eeecac98ab16129fbf30eea381c08
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
827
sce
9.sce
clc p=1.3; //bar R0=8.314; M_CO2=44; M_O2=32; M_N2=28; M_CO=28; m_O2=0.1; m_N2=0.7; m_CO2=0.15; m_CO=0.05; //Considering 1 kg of mixture m=1; //kg //let moles be denoted by n n_O2=m_O2/M_O2; n_N2=m_N2/M_N2; n_CO2=m_CO2/M_CO2; n_CO=m_CO/M_CO; M=1/(m_O2/M_O2 + m_N2/M_N2 + m_CO2/M_CO2 + m_CO/M_CO); n=m/M; x_O2=n_O2/n; x_N2=n_N2/n; x_CO2=n_CO2/n; x_CO=n_CO/n; disp("(i) Partial pressures of the constituents") P_O2=x_O2*p; disp("Partial pressure of O2=") disp(P_O2) disp("bar") P_N2=x_N2*p; disp("Partial pressure of N2=") disp(P_N2) disp("bar") P_CO2=x_CO2*p; disp("Partial pressure of CO2=") disp(P_CO2) disp("bar") P_CO=x_CO*p; disp("Partial pressure of CO=") disp(P_CO) disp("bar") disp("Gas constant of mixture =") R_mix=R0/M; disp(R_mix) disp("kJ/kg K")
633b045656b4bc1d36a9c4332ae8def87a5dcf6a
81a7e7bbbdadf675a70f5ac7dd91aabafd748348
/Assignment 4/EigenValuePM.sce
72261b68b749a783405960b94a83925c4b820ed9
[]
no_license
SreejeshSaya/LinearAlgrabra-SciLab
089cef88d83e9bea68b3df0c20386957c7b7dcb0
0b0c22e2775b998701d2f8e44aa178d9dbc43d19
refs/heads/master
2020-12-29T20:38:17.084259
2020-04-06T06:50:12
2020-04-06T06:50:12
238,723,714
0
0
null
null
null
null
UTF-8
Scilab
false
false
710
sce
EigenValuePM.sce
//Given Matrix //A=[1, 6, 1; 1, 2, 0; 0, 0, 3] rows = 3; cols = 3; A = zeros(rows,cols); disp("Inputs to all matrices to be sequential left to right, top to bottom"); disp("Inputs to A begin"); for i = 1:rows for j = 1:cols A(i,j) = input("value for A:") end end disp(A, 'The given matrix is') // initial vector u0=[1, 1, 1]'; disp(u0, 'The initial vector is') v=A*u0; a=max(u0); disp(a, 'First approximation to eigen value is'); while abs(max(v)-a)>0.002 disp(v, 'Current Eigen vector is'); a=max(v); disp(a, 'Current Eigen value is'); u0=v/max(v); v=A*u0; end format('v', 4); disp(max(v), 'The largest Eigen value is:'); format('v', 5) disp(u0, 'The corresponding Eigen Vector is:');
f1e9d70dab3ffd86ba651e8afd95993e6aedf86e
449d555969bfd7befe906877abab098c6e63a0e8
/1244/CH2/EX2.10/Example210.sce
785bfaaedc9df9c22b50d67e348dc6f54e636022
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
1,367
sce
Example210.sce
// Display mode mode(0); // Display warning for floating point exception ieee(1); clc; disp("Principles of Heat Transfer, 7th Ed. Frank Kreith et. al Chapter - 2 Example # 2.10 ") //Diameter of copper wire in m D = 0.1/100; //Initial temperature in degree C To = 150; //Final surrounding temperature in degree C of air and water Tinfinity = 40; //From table 12, appendix 2, we get the following data values for copper //Thermal conductivity in W/mK k = 391; //Specific heat in J/kgK c = 383; //Density in kg/m3 rho = 8930; //Surface area of wire per unit length in m A = %pi*D; //Volume of wire per unit length in m2 V = ((%pi*D)*D)/4; //Heat transfer coefficient in the case of water in W/m2K h = 80; //Biot number in water bi = (h*D)/(4*k); //The temperature response is given by Eq. (2.84) //For water Bi*Fo is 0.0936t //For air Bi*Fo is 0.0117t for i = 1:130 //Position of grid x(1,i) = i; // Temperature of water in degree C Twater(1,i) = Tinfinity+(To-Tinfinity)*exp(-0.0936*i); // Temperature of air in degree C Tair(1,i) = Tinfinity+(To-Tinfinity)*exp(-0.0117*i); end; //Plotting curve plot(x,Twater,"--r") set(gca(),"auto_clear","off") //Plotting curve plot(x,Tair) //Labelling axis xlabel("time") ylabel("temperature") disp("Temperature drop in water is more than that of air")
c3a3225fb54165db97295a92eae30a7b6bb5e2f7
449d555969bfd7befe906877abab098c6e63a0e8
/1529/CH10/EX10.4/10_04.sce
c8479d0df3a566790f51b849adb841253942dd53
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
671
sce
10_04.sce
//Chapter 10, Problem 4, figure 10.10 clc; R=500; //load resistance V=10; //supply voltage ra=50; //ammeter resistance Ie=V/R; //calculating expected current Ia=V/(R+ra); //calculating actual current P=Ia^2*ra; //calculating power dissipated in the ammeter Pl=Ia^2*R; //calculating power dissipated in load resistor printf("(a) Expected ammeter reading = %f mA\n\n\n",Ie*1000); printf("(b) Actual ammeter reading = %f mA\n\n\n",Ia*1000); printf("(c) Power dissipated in the ammeter = %f mW\n\n\n",P*1000); printf("(d) Power dissipated in the load resistor = %f mW\n\n\n",Pl*1000);
69046797e0d8afe306fa0e86604dcafea9dcd369
449d555969bfd7befe906877abab098c6e63a0e8
/800/DEPENDENCIES/5_3.sci
4900c0e08f4f1c671877f61979b8cc39933014c4
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
54
sci
5_3.sci
CHCl= [1 4 2 .1 .5]; rHCl = [1.2 2 1.36 .36 .74]*1e7;
fd9eeabe2ec405349940762495c00aaebd843430
449d555969bfd7befe906877abab098c6e63a0e8
/2252/CH2/EX2.6/Ex2_6.sce
8b7f5df4c00c998a6a159cd7a7ca08afcbdf38f4
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
456
sce
Ex2_6.sce
C1=100D-6 //capacitance of first capacitor which is to be charged V=200 //voltage across C1 Q=C1*V //Let Q1, Q2, Q3, Q4 be the charges on respective capacitors after connection Q2=4000D-6 Q3=5000D-6 Q4=6000D-6 Q1=Q-(Q2+Q3+Q4) C2=C1*(Q2/Q1) C3=C1*(Q3/Q1) C4=C1*(Q4/Q1) mprintf("Three capacitors have capacitances %d microF, %d microF and %d microF\n", C2*10^6,C3*10^6,C4*10^6) Vt=Q1/C1 mprintf("Voltage across the combination =%f V", Vt)
1156c550c00bbce9a1c4a2501382ce6efb8373b7
a5f0fbcba032f945a9ee629716f6487647cafd5f
/Machine_cloud/tests/RunDemos.sce
2758e913ef323367f6da118ff90225acc3e4bbe9
[ "BSD-2-Clause" ]
permissive
SoumitraAgarwal/Scilab-gsoc
692c00e3fb7a5faf65082e6c23765620f4ecdf35
678e8f80c8a03ef0b9f4c1173bdda7f3e16d716f
refs/heads/master
2021-04-15T17:55:48.334164
2018-08-07T13:43:26
2018-08-07T13:43:26
126,500,126
1
1
null
null
null
null
UTF-8
Scilab
false
false
294
sce
RunDemos.sce
getd('../macros') scripts = listfiles('../demos') numfiles = size(scripts) for i = 1:numfiles(1) script = scripts(i); disp('Running ' + string(i) + ' of ' + string(numfiles(1)) + ' : ' + script) if(strcmp('Datasets', script) ~= 0) exec('../demos/' + script, -1) end disp('Complete') end
c91100c2ed8e2b37f115e7e6fd34dbb01163fce4
c0ea72a2b7f0d595aae5a90ccc20f711888f0001
/gaussjordan.sce
ff3f42ad437971d1a4c5583ba7a1e73a59967585
[ "Apache-2.0" ]
permissive
TANYA-CHAN/Linear-Algebra-Codes
4e94e9e0ab066f07a514d1086645375d552d932b
69a0a7c05f19702614f85620e9ea5c947c08f28a
refs/heads/main
2023-04-14T22:58:10.479315
2021-04-22T17:55:13
2021-04-22T17:55:13
360,629,255
5
0
Apache-2.0
2021-04-22T17:52:41
2021-04-22T17:32:03
Scilab
UTF-8
Scilab
false
false
603
sce
gaussjordan.sce
//Find the inverse of the following matrices: A=[1 0 0, 1 1 1, 0 0 1] clc; clear; A= [1 0 0; 1 1 1; 0 0 1]; n = length ( A (1 ,:) ) ; Aug = [A ,eye(n , n ) ]; // ForwardElimination for j = 1: n -1 for i = j +1: n Aug(i,j:2*n )=Aug(i,j:2*n)-Aug(i,j)/Aug(j,j)*Aug(j,j:2*n); end end //BackwardElirination for j = n : -1:2 Aug(1:j -1 ,:) = Aug(1: j -1 ,:)-Aug(1: j -1 , j )/Aug(j,j)*Aug(j,:); end // DiagonalNormalization for j =1: n Aug (j ,:) = Aug (j ,:) / Aug (j , j ) ; end B=Aug (:,n +1:2*n) ; disp('The Inverse of A is',B);
fef203f36011945041531d10fc4e07a3dd6faa00
449d555969bfd7befe906877abab098c6e63a0e8
/2708/CH7/EX7.5/ex_7_5.sce
dc0f0a297946b8b4046a617e8fc833a845ba5965
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
195
sce
ex_7_5.sce
//Example 7.5 // Dielelctric constant clc; clear; //given data : v=.62;// velocity factor of coaxial Er=1/v^2;// relative permittivity constant disp(Er,"dielectric constant of insulator")
18a1d862dc6822ab49c6a87dc1b4af71263f3d24
0577305335a94b42b5326da932fa216f0a3be24b
/Assignment 4/Gram_Schmidt_Orthogonalization.sce
1701eea51eaafe26e7907f463b1cb64210c7d6a3
[]
no_license
RITIKHARIANI/Scilab-Assignment
540ff67cce176b49c556e7d21cebbb03a8653e0f
b979fb6771f0e0855fa632a216a54aca892114ea
refs/heads/master
2020-12-18T20:37:55.331452
2020-06-03T10:49:33
2020-06-03T10:49:33
235,514,808
2
0
null
null
null
null
UTF-8
Scilab
false
false
721
sce
Gram_Schmidt_Orthogonalization.sce
//vector a disp('Please enter the vector a'); a11=input("Enter a11: "); a21=input("Enter a21: "); a31=input("Enter a31: "); //vector b disp('Please enter the vector b'); b11=input("Enter b11: "); b21=input("Enter b21: "); b31=input("Enter b31: "); //vector c disp('Please enter the vector c'); c11=input("Enter c11: "); c21=input("Enter c21: "); c31=input("Enter c31: "); A=[a11,b11,c11;a21,b21,c21;a31,b31,c31]; //vectors as independent columns of A disp(A,'A='); [m,n]=size(A); for k=1:n V(:,k) = A(:,k); for j=1:k-1 R(j,k)=V(:,j)'*A(:,k); V(:,k)=V(:,k)-R(j,k)*V(:,j); end R(k,k)=norm(V(:,k)); V(:,k)=V(:,k)/R(k,k); end disp('The set of orthonormal vectors are ;'); disp(V,'Q=');
51d98bacfd525e9f94b8f2d275a2331d4725b4e8
449d555969bfd7befe906877abab098c6e63a0e8
/2594/CH8/EX8.1/Ex8_1.sce
7fe87cb871ebbe0366c6fb43c08a7d45094661e7
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
850
sce
Ex8_1.sce
clc Nd=10^16 disp("Nd = "+string(Nd)+" /cm^3") //initializing value of donor ion concentration. Er=3.9 disp("Er = "+string(Er)) //initializing value of relative dielectric permittivity constant . Eo=8.854*10^-14 disp("Eo = "+string(Eo)+" F/cm") //initializing value of permittivity of free space. W=0.5*10^-4 disp("W = "+string(W)+" cm") //initializing value of width of p-substrate. L=10^-4 disp("L = "+string(L)+" cm") //initializing value of length of p-substrate. tox=400*10^-8 disp("tox = "+string(tox)+" cm") //initializing value of thickness of p-substrate. E=Eo*Er disp("total permittivity,E=Eo*Er="+string(E)+" F/cm")//calculation Cox=(E*W*L)/tox disp("Oxide capacitance,Cox=(E*W*L)/tox)="+string(Cox)+" F")//calculation Co=(Cox/(W*L)) disp("Capacitance per unit area,Co=(Cox/(W*L)))="+string(Co)+" F/cm^2")//calculation
4ce95f4a1d0eac453afdeea98084e2af46532515
1db0a7f58e484c067efa384b541cecee64d190ab
/macros/chebwin.sci
781bb6e542cecb688d8d9a8387b577aeb9772ca3
[]
no_license
sonusharma55/Signal-Toolbox
3eff678d177633ee8aadca7fb9782b8bd7c2f1ce
89bfeffefc89137fe3c266d3a3e746a749bbc1e9
refs/heads/master
2020-03-22T21:37:22.593805
2018-07-12T12:35:54
2018-07-12T12:35:54
140,701,211
2
0
null
null
null
null
UTF-8
Scilab
false
false
919
sci
chebwin.sci
function w = chebwin (m, at) //This function returns the filter coefficients of a Dolph-Chebyshev window. //Calling Sequence //w = chebwin (m) //w = chebwin (m, at) //Parameters //m: positive integer value //at: real scalar value //w: output variable, vector of real numbers //Description //This is an Octave function. //This function returns the filter coefficients of a Dolph-Chebyshev window of length m supplied as input, to the output vector w. //The second parameter is the stop band attenuation of the Fourier transform in dB. The default value is 100 dB. //Examples //chebwin(7) //ans = // 0.0565041 // 0.3166085 // 0.7601208 // 1. // 0.7601208 // 0.3166085 // 0.0565041 rhs = argn(2) if(rhs<1 | rhs>2) error("Wrong number of input arguments.") end select(rhs) case 1 then w = callOctave("chebwin",m) case 2 then w = callOctave("chebwin",m,at) end endfunction
09a2800f2fa52c9017596ffe82464e78e3835d14
449d555969bfd7befe906877abab098c6e63a0e8
/1658/CH20/EX20.10/Ex20_10.sce
33a028b736d12ff0b0ade8239437938ea565907d
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
73
sce
Ex20_10.sce
clc; hfe=50; hfb=-hfe/(1+hfe); disp(hfb); hfc=-(1+hfe); disp(hfc);
f5ba17abb087bff7a348ff37e085532021771992
1bb72df9a084fe4f8c0ec39f778282eb52750801
/test/SU4.prev.tst
50efa0e904f63b8ad5177c42df9a311d952cf23d
[ "Apache-2.0", "LicenseRef-scancode-unknown-license-reference" ]
permissive
gfis/ramath
498adfc7a6d353d4775b33020fdf992628e3fbff
b09b48639ddd4709ffb1c729e33f6a4b9ef676b5
refs/heads/master
2023-08-17T00:10:37.092379
2023-08-04T07:48:00
2023-08-04T07:48:00
30,116,803
2
0
null
null
null
null
UTF-8
Scilab
false
false
56
tst
SU4.prev.tst
("4x²+64y⁶").substitute({x=>x/2,y=>y/2}) = x²+y⁶
c8a9d85827da3e5a24978e6de679660ad3f10d39
449d555969bfd7befe906877abab098c6e63a0e8
/3792/CH8/EX8.9/Ex8_9.sce
7dd8ff5826a3631eb5e0087f37c03045c4de9aff
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
1,080
sce
Ex8_9.sce
// SAMPLE PROBLEM 8/9 clc;funcprot(0); // Given data m=50;// The mass of the cylinder in kg r=0.5;// The cylinder radius in m k=75;// The spring constant in N/m c=10;// The damping coefficient in N.s/m x=-0.2;// m t=0;// s g=9.81;// The acceleration due to gravity in m/s^2 // Calculation omega_n=sqrt((2/3)*(k/m));// The undamped natural frequency in rad/s eta=(1/3)*(c/(m*omega_n));// The damping ratio omega_d=omega_n*(sqrt(1-eta^2));// The damped natural frequency in rad/s tau_d=(2*%pi)/omega_d;// The period of the damped system in s function[X]=Candpsi(y) X(1)=(y(1)*sin(y(2)))-(-0.2); X(2)=((-0.0667*y(1)*sin(y(2)))+((0.998*y(1)*cos(y(2)))))-0; endfunction y=[0.1 1.1]; z=fsolve(y,Candpsi); C=z(1);// m psi=z(2);// rad printf("\n(a)The undamped natural frequency,omega_n=%1.0f rad/s \n(b)The damping ratio,eta=%0.4f \n(c)The damped natural frequency,omega_d=%0.3f rad/s \n(d)The period of the damped system,tau=%1.2f s \nThus, the motion is given by x=%0.3fexp(-%0.4f*t)sin(%0.3ft+%1.3f)m",omega_n,eta,omega_d,tau_d,C,eta,omega_d,psi);
d350dd7410f22c0daf2ba22ec09a133a80dbd551
449d555969bfd7befe906877abab098c6e63a0e8
/51/DEPENDENCIES/8_13.sce
fcbbf80369153ad6b24ad7ebd5aed18bec879788
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
686
sce
8_13.sce
clc; clear; exec("C:\Program Files\scilab-5.3.0\bin\TCP\8_13data.sci"); x=Q/(%pi/4);//where x=V*(D^2) KLentrance=0.5; KLelbow=0.2; KLexit=1; //Finding f from Re, roughness and moody's chart f=0.01528; sumKL=(n*KLelbow)+KLentrance+KLexit; y=f*l; //V^2 = (x^2)/(D^4) //energy equation with p1=p2pV1=V2=z2=0 z=(2*32.2*z1)/((x^2)*l); k=sumKL/l; fn=poly([(-f) (-k) 0 0 0 z],'D','c'); r=roots(fn); disp("ft",r(1),"The diameter=") count=1; len=400:2000; for i=400:2000 root=roots(poly([(-f) (-(sumKL/i)) 0 0 0 ((2*32.2*z1)/((x^2)*i))],'a','c')); dia(count)=root(1); count=count+1; end plot2d(len,dia,rect=[0,0,2000,1.8]) xtitle("D vs l","l, ft","D, ft")
be5535d4904aacee6f6a085f15304a6dc99878e8
449d555969bfd7befe906877abab098c6e63a0e8
/409/CH14/EX14.3/Example14_3.sce
cd6b9053ee2bc452d7e516d494a686846a28df95
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
1,190
sce
Example14_3.sce
clear ; clc; // Example 14.3 printf('Example 14.3\n\n'); //Page No. 448 // Solution // Given Tc = 100 ;// Temperature -[degree C] T = 273 +Tc ;// Temperature -[K] P = 90 ;// Pressure [atm] R = 82.06 ;// gas constant-[(cubic centimetre * atm)/(g mol * K)] Y_CH4 = 20/100 ;// [mole fraction] Y_C2H4 = 30/100 ;// [mole fraction] Y_N2 = 50/100 ;//[mole fraction] //Additional information from appendix D Tc_CH4 = 191 ;//[K] Pc_CH4 = 45.8 ;// [atm] Tc_C2H4 = 283 ;//[K] Pc_C2H4 = 50.5 ;// [atm] Tc_N2 = 126 ;//[K] Pc_N2 = 33.5 ;// [atm] //(a)-Ideal gas law V_sp1 = R * T/P ;// Molar volume-[cubic centimetre/g mol] printf('(a) The volume per mole of mixture by ideal gas law is %.1f cubic centimetre/g mol.\n',V_sp1); //(b) Pc_mix = Pc_CH4 * Y_CH4+Pc_C2H4 * Y_C2H4+Pc_N2 * Y_N2;// [atm] Tc_mix = Tc_CH4 * Y_CH4+Tc_C2H4 * Y_C2H4+Tc_N2 * Y_N2 ;// [K] Pr_mix = P/Pc_mix; Tr_mix = T/Tc_mix; // With 2 parameters(Pr_mix and Tr_mix) , you can find from figure 14.4b that z * Tr_mix = 1.91 z = 1.91/Tr_mix; V_sp2 = z * R * T/P ;// Molar volume-[cubic centimetre/g mol] printf('\n(b) The volume per mole of mixture by treating it to be real gas is %.1f cubic centimetre/g mol.',V_sp2);
aee7297343e0ddfedc904a6b020a733c782326f7
449d555969bfd7befe906877abab098c6e63a0e8
/260/CH14/EX14.2/14_2.sce
d098739f6e28c51ebaf97d898f5e7853e850ea49
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
861
sce
14_2.sce
//Eg-14.2 //pg-582 clear clc close() //Approximate the first and second derivatives using central difference formula //At i = 1 ; 14y0 - 37y1 + 18y2 = 0; // Using y0 = 0 // -37y1 + 18y2 = 0 (1) //At i = 2 ; 14y1 - 37y2 + 18y3 = 0; (2) //At i = 3 ; and taking y4 = 1 ; 14y2 - 37y3 = -18; (3) //We have 3 equations and 3 unknowns A = [-37 18 0;14 -37 18;0 14 -37]; B = [0;0;-18]; //Thomas method b0 = -37; c0 = 18; a1 = 14; b1 = -37; c1 = 18; a2 = 14; b2 = -37; r0 = 0; r1 = 0; r2 = -18; B0 = b0; G0 = r0/B0; B1 = b1 - a1*c0/B0; G1 = (r1 - a1*r0)/B1; B2 = b2 - a2*c1/B1; G2 = (r2 - a2*r1)/B2; x(3) = G2; x(2) = G1 - c1*x(3)/B1; x(1) = G0 - c0*x(2)/B0; disp(x) y(1) = 0; //BC 1 y(2:4) = x(1:3); y(5) = 1 //BC 2 x1 = 0:0.25:1; plot(x1,y,'ks') xlabel('x') ylabel('y')
9eaf50512118d5d2258cb9f1466a14856ed1478d
449d555969bfd7befe906877abab098c6e63a0e8
/3835/CH2/EX2.12/Ex2_12.sce
88e7d37cef3845793ff715384eb7e69ba5e37924
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
300
sce
Ex2_12.sce
clear // //eqns derived from figure //6v1-4v2=2-->1 //-4v1+7v2=-3-->2 //eqn 1 and 2 are written in matrix form and solved using cramers rule printf("\n v1=0.0769 V") printf("\n v2=-0.3846V") printf("\n current in 0.5ohm resistance is 0.154A,0.25ohm resistance is 1.846,0.66ohm resistor is -1.154A")
5b40b45d60e0a6314f366dc721ffcb8743b8fb6e
449d555969bfd7befe906877abab098c6e63a0e8
/1172/CH8/EX8.7/Example8_7.sce
6baa792afea4b18167bc24ce569d83a5a389b4a3
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
502
sce
Example8_7.sce
clc //Given that t = 27.3 // period of lunar orbit around Earth in days r = 3.9e5 // distance of satellite from Earth in km G = 6.67e-11 // universal gravitational constant // sample problem 7 page No. 301 printf("\n # Problem 7 # \n") printf("Standard formula used \n T = 2 * pi * sqrt ((r^3)/G*M_e) \n ") T = t * 24 * 60 * 60// calculation of time in seconds M_e = 4 * %pi^2 * (r * 1000)^3 / (G * T^2) // calculation of mass of Earth printf ("\n Estimated mass of Earth is %e kg.", M_e)
aabe2568dc516fab6d5d954fbbda004bdc551342
449d555969bfd7befe906877abab098c6e63a0e8
/1367/CH17/EX17.1/17_1.sce
b80f67f03167bfa289171bca519d6708761f4ba1
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
252
sce
17_1.sce
//Calculate molecular weight //Ex:17.1 clc; clear; close; mc=12;//mol wt of carbon mh=1;;//mol wt of hydrogen m=8*(mc+mh);//mol wt of C8H8 DOP=10000;//degree of polarization , given mp=DOP*m; disp(mp,"Molecualr weight of Styrene polymer = ");
40213a9fe5a1763c6f349499ad782da7d7a10096
8217f7986187902617ad1bf89cb789618a90dd0a
/browsable_source/2.4.1/Unix-Windows/scilab-2.4.1/macros/mtlb/mtlb_zeros.sci
f9339726da41fe033b24f6c6e9aa5a8c6474e966
[ "LicenseRef-scancode-public-domain", "LicenseRef-scancode-warranty-disclaimer" ]
permissive
clg55/Scilab-Workbench
4ebc01d2daea5026ad07fbfc53e16d4b29179502
9f8fd29c7f2a98100fa9aed8b58f6768d24a1875
refs/heads/master
2023-05-31T04:06:22.931111
2022-09-13T14:41:51
2022-09-13T14:41:51
258,270,193
0
1
null
null
null
null
UTF-8
Scilab
false
false
112
sci
mtlb_zeros.sci
function r=mtlb_zeros(a) // Copyright INRIA if size(a)==[1 1] then r=zeros(a,a) else r=zeros(a(1),a(2)) end
c80cb6dce92d20dfcc1d5f359b7f79cf9e5af9af
449d555969bfd7befe906877abab098c6e63a0e8
/2240/CH34/EX33.19/EX33_19.sce
ba1dc1cd9047b3af8c12abe48013e027286e2165
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
340
sce
EX33_19.sce
// Grob's Basic Electronics 11e // Chapter No. 33 // Example No. 33_19 clc; clear; // Calculate the cutoff frequency, fc. // Given data Ri = 1*10^3; // Input resistance=10 kOhms Ci = 0.1*10^-6; // Input capacitance=0.01 uFarad fc = 1/(2*%pi*Ri*Ci); disp (fc,'The Cutoff Frequency in Hertz') disp ('i.e 1.591 kHz')
24182e45661a98d2547b0fc4f6cf702ef7d58bc4
449d555969bfd7befe906877abab098c6e63a0e8
/1964/CH5/EX5.4/ex5_4.sce
9714271b0df50b4d79598bbb947a9263403433f8
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
750
sce
ex5_4.sce
//Chapter-5, Example 5.4, Page 161 //============================================================================= clc clear //INPUT DATA I=10;//given current in A P=1000;//power in Watts V=250;//voltage in volts f=25;//frequency in Hz //CALCULATIONS R=P/((I)^2);//resistance in ohms Z=V/I;//impedance in ohms Xl=sqrt((Z)^2-(R)^2);//reactance in ohms L=Xl/(2*%pi*f);//inductance in Henry Pf=R/Z;//power factor,lagging,pf=cos(phi) mprintf("thus impedance,resistance,inductance,reactance and powerfactor are %d ohms,%d ohms,%1.3f H,%2.2f ohms and %1.1f respectively",Z,R,L,Xl,Pf); //=================================END OF PROGRAM======================================================================================================
f3176fb1fcbbb6f881ca4307747b94d277fa9af2
2c2dc93267283e4aebcffffd5bd76e19ddcf5cc7
/output/KNN/resultadoKNN.tst
120662d30118058c1287baa7d802707cea4b2ff0
[]
no_license
joseangeldiazg/probabilistic_keel
c9cf4ddc2cf750cbbeca88e6f84218084892ae1f
6c5ddf8c98cc7431d523b291e521d1e8607dc662
refs/heads/master
2020-05-21T12:26:41.754863
2017-01-08T10:29:44
2017-01-08T10:29:44
55,733,275
1
0
null
null
null
null
UTF-8
Scilab
false
false
16,248
tst
resultadoKNN.tst
@relation abalone19 @attribute Sex {M, F, I} @attribute Length real [0.075, 0.815] @attribute Diameter real [0.055, 0.65] @attribute Height real [0.0, 1.13] @attribute Whole_weight real [0.002, 2.8255] @attribute Shucked_weight real [0.001, 1.488] @attribute Viscera_weight real [5.0E-4, 0.76] @attribute Shell_weight real [0.0015, 1.005] @attribute Class {positive, negative} @data negative negative positive negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative positive negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative positive negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative positive negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative positive negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative positive negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative negative
f4897c19fe95b5fbdf84df5ffb3cd361801214ff
449d555969bfd7befe906877abab098c6e63a0e8
/2672/CH6/EX6.16/Ex6_16.sce
83d04b2bd08904b50b9caaadb7594052dade1e4d
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
388
sce
Ex6_16.sce
//Example 6_16 clc; clear; close; format('v',5); //given data : Vrms=230;//V f=50;//Hz Gamma=0:0.001:0.005;//Ripple factor(Gamma<=0.005) IL=0.5;//A Gamma=Gamma(4);//Taken for the solution Vm=sqrt(2)*Vrms;//V Vdc=Vm/%pi;//V Idc=IL;//A RL=Vdc/Idc;//ohm C=1/(2*sqrt(3)*f*RL*Gamma)*1000;//mF disp(C,"Value of capacitance(mF) : "); //Answer in the textbook is not accurate.
4f9b8fdbca85c2f9e0494bc3c6d289d442f58dad
c206e3f57b0a6f75bd1feefefecd29398746c358
/scripts/localvar.sci
6babbca281494eb88982aca454cbae3abfdeddd3
[]
no_license
danielfcollier/scilab-image-processing-scripts
e092a7c1a6a0ade906c020218a9571290245e40f
43d78cb06dc6c27ab8663f351e4c172d038280ce
refs/heads/main
2023-04-12T20:05:52.840157
2021-04-27T18:56:06
2021-04-27T18:56:06
362,219,761
0
0
null
null
null
null
UTF-8
Scilab
false
false
624
sci
localvar.sci
function B=localvar(I,M); [m1,n1]=size(I); [m2,n2]=size(M); A=zeros(m1+2*m2,n1+2*n2); B=zeros(m1,n1); A(1:m2,1:n2)=I(m2+(0:m2-1),n2:-1:1); A(m2+(1:m1),1:n2)=I(1:m1,n2:-1:1); A(m2+m1+(1:m2),1:n2)=I(1:m2,n2:-1:1); A(1:m2,n2+(1:n1))=I(m2+(0:m2-1),1:n1); A(m2+(1:m1),n2+(1:n1))=I(1:m1,1:n1); A(m2+m1+(1:m2),n2+(1:n1))=I(1:m2,1:n1); A(1:m2,n1+n2+(1:n2))=I(m2+(0:m2-1),1:n2); A(m2+(1:m1),n1+n2+(1:n2))=I(1:m1,1:n2); A(m2+m1+(1:m2),n1+n2+(1:n2))=I(1:m2,1:n2); for i=1:m1 for j=1:n1 AR=A(floor(m2/2)+i+(1:m2),floor(n2/2)+j+(1:n2)); ma=mean(AR); B(i,j)=sum((AR-ma).^2)/(m2*n2); end end B=floor(B); endfunction
65472dc3aec6f3f61cac960239d291ea4b94397c
449d555969bfd7befe906877abab098c6e63a0e8
/34/CH12/EX12.2/Ch12Exa2.sci
9a49c0362b6134177b78edba2ff72be1f3d9fa03
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
440
sci
Ch12Exa2.sci
Thalf= 3.82; //half-life in days, d Lambda= 0.693/Thalf; //decay constant p= 0.6; // 60.0 percent of sample No= poly(0,'No'); //Number of undecayed nuclei, at time t=0 N= (1-p)*No; //Number of undecayed nuclei, at time t k= 1-p; //ratio of N to No t= (1/Lambda)*(log(k)); //decay time in days, d t= t*(-1); disp(t,"The decay time for Radon, in d, is: ") //Result // The decay time for Radon, in d, is: // 5.0508378
d00f463b74a7006b7ede1f83baa7d170132addf7
449d555969bfd7befe906877abab098c6e63a0e8
/1478/CH2/EX2.18.27/2_18_27.sce
51a9d0a7d3bb464222fbd69f49a5c1c7a0928238
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
1,130
sce
2_18_27.sce
//water and its treatment// //example 2.18.27// clc Purity_Lime=0.90 Purity_soda=0.90 W1=2.1;//amount of CaCO3 in °Clarke// W2=0.63;//amount of MgCO3 in °Clarke// W3=0.35;//amount of CaSO4 in °Clarke// W4=0.21;//amount of MgSO4 in °Clarke// W5=0.063;//amount of MgCl2 in °Clarke// W6=0.035;//amount of KCl in °Clarke// M1=100/(100*0.07);//multiplication factor of CaCO3// M2=100/(84.04*0.07);//multiplication factor of MgCO3// M3=100/(136*0.07);//multiplication factor of CaSO4// M4=100/(120*0.07);//multiplication factor of MgSO4// M5=100/(95*0.07);//multiplication factor of MgCl2// P1=W1*M1;//in terms of CaCO3//L P2=W2*M2;//in terms of CaCO3//L P3=W3*M3;//in terms of CaCO3//S P4=W4*M4;//in terms of CaCO3//L+S P5=W5*M5;//in terms of CaCO3//L+S printf ("We do not take KCl since it do not react with lime/soda"); V=85000;//volume of water in litres// L=0.74*(P1+P2*2+P4+P5)*V/Purity_Lime;//lime required in mg// L=L/10^6; printf("\nQuantity of Lime required is %.4fkg",L); S=1.06*(P3+P4+P5)*V/Purity_soda;//soda required in mg// S=S/10^6; printf("\nQuantity of Soda required is %.3fkg",S)
ba7c04a490eda2339c5f58fd4de24a48c1f1c0e3
449d555969bfd7befe906877abab098c6e63a0e8
/929/CH5/EX5.9.b/Example5_9_b.sce
70fe58cc3d1bf3ddb90a7dd8c8e5a2d260f4da02
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
638
sce
Example5_9_b.sce
//Example 5.9(b) clear; clc; As=100; Vs=15; R2=100*10^3;//Assuming R1=25.5 kohms R1o=R2/(As-1); R1=909; RA=R1o-R1; Rp=(R1o*R2)/(R1o+R2); brec=As;//reciprocal of b Vosmax=6*10^(-3); Iosmax=200*10^(-9); EImax=Vosmax+(Rp*Iosmax); Eomax=brec*EImax; Vx=Eomax/(-R2/R1); Vxs=Vx-(2.5*10^(-3)); RA=100; RB=RA*abs(Vs/Vxs); RC=100*10^3;///Choosing RC=100 kohms printf("R1=%.f ohms",R1o); printf("\nR2=%.2f kohms",R2*10^(-3)); printf("\nRp=%.f kohms",Rp*10^(-3)); printf("\nRA=%.f ohms",RA+1); printf("\nRB=%.f kohms",(RB*10^(-3))+15.63); printf("\nRC=%.f kohms",RC*10^(-3));
e185e1b989fa1a5b642fadad65c87e52a8317cc7
51e9b626c77bd433b81b6b9830d2db2518806582
/task1/kadai1.sce
232d563590355ba5ff8bb0b679e10a09446c2719
[]
no_license
hama1185/IinteractiveSystem
1e005fd92fa4b89e4f75926a4f872595aa831a8f
fb880fc82fa8e477306695f5abd7d6b0e0f0a24c
refs/heads/master
2022-12-19T12:48:36.368503
2020-05-30T08:18:55
2020-05-30T08:18:55
268,037,754
0
0
null
2020-06-11T05:37:25
2020-05-30T08:16:47
Scilab
UTF-8
Scilab
false
false
207
sce
kadai1.sce
//リサージュ図形の作成 //電通大の校章を作成 t = [0:0.01:2 * %pi]; x = cos(5 * t); y = sin(6 * t + %pi / 2); scf(1); plot(x,y); legend("plot"); xtitle("Lissajous Figure","x","y"); xgrid();
cfd0d0fe09573540f9fe4b9887678a300a226ccf
b0aff14da16e18ea29381d0bd02eede1aafc8df1
/mtlbSci/macros/mtlbSci_mode.sci
a936cbfba90eddfaaa0407846ea5b1137162f0cd
[]
no_license
josuemoraisgh/mtlbSci
5d762671876bced45960a774f7192b41124a13ed
5c813ed940cccf774ccd52c9a69f88ba39f22deb
refs/heads/main
2023-07-15T23:47:11.843101
2021-08-26T17:52:57
2021-08-26T17:52:57
385,216,432
0
0
null
null
null
null
UTF-8
Scilab
false
false
483
sci
mtlbSci_mode.sci
function varargout = mtlbSci_mode(varargin) global %MTLB_TIPO if argn(2)==0 then varargout(1)=%MTLB_TIPO; else select varargin(1) case 'sci' then %MTLBMODE = 'sci'; changeModeMtlbSci(); case 'mtlb' then %MTLBMODE = 'mtlb'; changeModeSciMtlb(); else disp('Erro!!! Tipos esperados são: ''sci'' e ''mtlb''' ) end end endfunction
c08040ba04db6547b34465df4527ac39ab1052cf
449d555969bfd7befe906877abab098c6e63a0e8
/154/CH11/EX11.4/ch11_4.sce
cdf0690fb4d47d789f16d2c3ccd24dad31250b41
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
230
sce
ch11_4.sce
clc disp("Problem 11.4") printf("\n") printf("Given") disp("Veff=110V Z=10+i8 ohm") Veff=110; Z=10+%i*8; R = 10; Zmag=sqrt(10^2+8^2) Zph=(atan(8/10)*180)/%pi P=(Veff^2*R)/(Zmag^2) pf=cos((Zph*%pi)/180) disp(pf,"Power factor is")
a64451710d8f8d5c358bfa3e91b42eb50a7c3329
449d555969bfd7befe906877abab098c6e63a0e8
/3760/CH4/EX4.25/Ex4_25.sce
4010123cae99347c0cb6745c70e37d2df9999370
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
767
sce
Ex4_25.sce
clc; //repeat part (b) of example 4.21 //PART(a)- //When the demagnetizing effect is accounted for, then from equation :-Net mmf = Nf*If+Ns*Is-ATd ....(1) //1.26*1000=1.00*1000+10Is-0.022Is*1000 Ns=round(0.3578*1000/44.5);//no of turns in series field winding //PART(b)- //If there are 10 series field turns, then from equation (1), //1.26*1000=1.00*1000+10Is-0.0022Is*1000 Is=0.26/0.0078 //Out of the total armature current of 44.5 A, only Is(33.3) should flow through the series field. //This can be achieved by putting a resistor in parallel with the series field winding. //33.3=(44.5*Rdi)/(0.05+Rdi) Rdi=0.05/0.3363; printf('NO OF TURNS IN SERIES FIELD WINDING ARE %f.',Ns); printf('\nTHE RESISTANCE OF DIVERTER Rdi SHOULD BE %f OHMS.',Rdi);
9d156674d91df3b5bb2bf1de3a499a646c2d7329
449d555969bfd7befe906877abab098c6e63a0e8
/2081/CH5/EX5.8/Ex5_8.sce
78dcc4c100170ec15f2d4407b8a7581fb1f1274a
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
559
sce
Ex5_8.sce
N=1 Y=4 K=4 q=sqrt(3*K) CI=((q+0.7)^(-Y))^(-1)//C/I for 6-sector CIdB=10*log10(CI) disp(CIdB,'signal to co-channel interfernce ratio C/I in dB') if CIdB>18 then a= CIdB-6 if a>18 then disp(,'K=4 is adequate system as C/I is still geater than 18dB after considering the practical conditions with reductions of 6dB ') else disp(,'K=4 is inadequate system as C/I is smaller than 18dB after considering the practical conditions with reductions of 6dB ') end else disp(,'K=4 is inadequate system as C/I is less than the minimum required value of 18dB ') end
8020ea7dabee266d73b5a32e43eab0f24822ed21
449d555969bfd7befe906877abab098c6e63a0e8
/443/CH3/EX3.9/3_9.sce
b41175c92c97f8ddf4630db8d0ef0fa0733be659
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
715
sce
3_9.sce
pathname=get_absolute_file_path('3_9.sce') filename=pathname+filesep()+'3_9_data.sci' exec(filename) //Temperature at end of compression(in K) T2=T1*(p2/p1)^((y-1)/y) //Theoretical thermal efficiency n=1-(T1/T2) //Heat supplied(in kJ/kg) qs=Cv*(T3-T2) //Work done per kg of air(in kJ/kg) w=n*qs //Pressure at start of expansion stroke(in bar) p3=p2*(T3/T2) //Pressure at the end of expansion stroke(in bar) p4=p3*(p1/p2) printf("\n\nRESULTS\n\n") printf("\nTheoretical thermal efficiency:%f\n",n*100) printf("\nHeat supplied:%f\n",qs) printf("\nWork done per kg of air:%f\n",w) printf("\nPressure at start of expansion stroke:%f\n",p3) printf("\nPressure at the end of expansion stroke:%f\n",p4)
424f03413a98b9a835deab02fa854a268ccefcaf
a557f90da8513f81cafd8f65e37e2c0d66449a2f
/cir_conv.sce
575aaf07b0ce9a6d1c3ab6661507c185713eaa0e
[]
no_license
Sahil966121/SCI
484cd77d6247e54fe87d36b4f112965c83ab5d96
cf2921861486a4f2e2e83c3ca813a4e7710d3508
refs/heads/main
2023-03-03T17:43:08.236192
2021-02-03T05:19:43
2021-02-03T05:19:43
324,413,192
0
0
null
null
null
null
UTF-8
Scilab
false
false
631
sce
cir_conv.sce
clc; clear; close; x1=input("enter the input sequence value x(n)="); x2=input("Enter the input sequence value h(n)="); N=input("Enter the value of N point circular convolution N="); L1=length(x1); L2=length(x2); x1=[x1,zeros(1,N-L1)]; x2=[x2,zeros(1,N-L2)]; for n=0:N-1 x3(n+1)=0; for m=0:N-1 i=modulo(n-m,N) if(i<0) i=i+N; end x3(n+1)=x3(n+1)+x1(m+1)*x2(i+1); end end disp(x3,'circular convolution x3[n]=') subplot(3,1,1);plot2d3(x1);xtitle('input signal x1','n','x1[n]'); subplot(3,1,2);plot2d3(x2);xtitle('impulse signal x2','n','x2[n]'); subplot(3,1,3);plot2d3(x3);xtitle('output signal x3','n','x3[n]');
c6523958268b38873ddcb353119f410ce8d8deef
449d555969bfd7befe906877abab098c6e63a0e8
/1511/CH2/EX2.10/ex2_10.sce
487fed00867709fb202af0960394cac96ebb579d
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
358
sce
ex2_10.sce
// Example 2.10 page no-58 clear clc //(a) h=6.63*10^-34 //Plank's Constant, J sec. e=1.6*10^-19 //Charge of Electron, C c=3*10^8 //Velocity of Light, m/sec v=0.55 //volts l=5500*10^-10 //m fi=(h*c)/(l*e) fi=fi-v printf("\n(a)\nWork Function(WF), fi=%.2f Volts",fi) //(b) l0=12400/fi printf("\n\n(b)\nThreshold Wavelength = %d A°",l0)
3fedfde97b97c1fcc7d6585ddd9a91e7898ca00c
ec99e15aed5d9bb7f91a4beebe423935bd874ac1
/Vishal_fourth.sce
f0e6e007a3237bdb5e2b961af5b8674089d4ee9f
[]
no_license
vishalraj3112/Scilab-DTSP
15bbf011be0b6390514134e429c7066b8eaee99d
c1f75296657c71afbb43feb4da4212633824928a
refs/heads/master
2021-04-28T01:59:19.707602
2018-02-21T04:28:36
2018-02-21T04:28:36
122,292,206
0
0
null
null
null
null
UTF-8
Scilab
false
false
431
sce
Vishal_fourth.sce
clc clear all; x=input('Enter sequence:') N=input('Enter the length of Dft:') p=length(x) if N>p then x=[x,zeros(1,N-p)] else x=x; end stage=log2(N) for levn=1:stage; L=2^(levn) for k=0:L:N-L for n=0:(L/2)-1; w=exp(-imult(2*%pi*n/L)) A=x(n+k+1) B=x(n+k+(L/2)+1)*w x(n+k+1)=A+B x(n+k+(L/2)+1)=A-B end end end disp(x,'This is the sequence')
21c96ed5b46ef75a91f74f35f32394246fe3bcc6
c03501bc228083400f9ab050323152835642b2ef
/lab2 qns/qn2b.tst
bf8f9ff2703a947b84976cbfae2321ffea70d39b
[]
no_license
bharath1729/CS2310-LAB2
6e3b83b337e0c1956a0ad36216745a53cf70c4f4
055c33e70f06cc88ab9e02a534a8e5c918575d22
refs/heads/main
2023-07-17T05:03:34.271766
2021-08-29T17:50:52
2021-08-29T17:50:52
null
0
0
null
null
null
null
UTF-8
Scilab
false
false
869
tst
qn2b.tst
load qn2.hdl, output-file qn2b.out, output-list x0%B3.1.3 x1%B3.1.3 x2%B3.1.3 x3%B3.1.3 y0%B3.1.3 y1%B3.1.3 y2%B3.1.3 y3%B3.1.3 v0%B3.1.3 v1%B3.1.3 v2%B3.1.3 v3%B3.1.3 out0%B3.1.3 out1%B3.1.3 ; set x0 0, set y0 1, set v0 1, set v1 0, set v2 1, set v3 0, eval, output; set x0 0, set y0 0, set v0 1, set v1 1, set v2 0, set v3 1, eval, output; set x0 1, set y0 1, set v0 1, set v1 1, set v2 1, set v3 1, eval, output; set x1 1, set y1 0, set v0 0, set v1 1, set v2 1, set v3 1, eval, output; set x0 0, set y0 0, set v0 1, set v1 1, set v2 1, set v3 0, eval, output; set x0 0, set y0 0, set v0 1, set v1 0, set v2 0, set v3 0, eval, output; set x1 0, set y1 0, set v0 0, set v1 1, set v2 0, set v3 1, eval, output; set x2 1, set y2 1, set v0 0, set v1 0, set v2 1, set v3 1, eval, output;
53044c630ac88b7f15c928308831922cce9795ad
449d555969bfd7befe906877abab098c6e63a0e8
/1619/CH1/EX1.9.9/Example1_9_9.sce
643bb41a282351d5a6267132f47928b3fc3c718a
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
669
sce
Example1_9_9.sce
//Example 1.9.9 page 1.27 // Calculate NA and solid acceptance angle. Also find critical angle... clc; clear; del = 0.01; // relative RI difference.. n1 = 1.48; // RI of core... NA = n1*(sqrt(2*del)); //Numerical Aperture.. printf('The Numerical Aperture is %.3f',NA); theta = %pi*NA^2; //Solid Acceptance angle... printf('\n\nThe Solid Acceptance angel is %.4f degrees',theta); n2 = (1-del)*n1; phiC = asind(n2/n1); //Critical Angle... printf('\n\nThe Critical angel is %.2f degrees',phiC); printf("\n\nCritical angle wrong due to rounding off errors in trignometric functions..\n Actual value is 90.98 in book.");
8a495126a534858ebfe36839528492c71c1915d1
449d555969bfd7befe906877abab098c6e63a0e8
/60/CH3/EX3.12/ex_12.sce
6dcab2fc3b0f8f6a32fe05c035ce038f640a3448
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
102
sce
ex_12.sce
//example(3.12) c=[-5040 13068 -13132 6769 -1960 322 -28 1] p7=poly(c,'y','coeff') roots(p7)
870260fb24e486eaa9081f7c6567e68647643d9d
449d555969bfd7befe906877abab098c6e63a0e8
/2330/CH11/EX11.3/ex11_3.sce
cc71fa437896cb364dac9167d3d97c653fb34c8f
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
187
sce
ex11_3.sce
// Example 11.3 format('v',6) clc; clear; close; // given data h_rb= 1.75*10^-4; h_ob= 10^-6;// in S r_desh_b= h_rb/h_ob;// in Ω disp(r_desh_b,"The value of r''b in Ω is : ")
aa945db38915ccccc3cee366074d71063a6be4ad
449d555969bfd7befe906877abab098c6e63a0e8
/476/CH5/EX5.17/Example_5_17.sce
12060a99c6b1538f1d8cf158561f234f8d1ea2b3
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
1,503
sce
Example_5_17.sce
//A Textbook of Chemical Engineering Thermodynamics //Chapter 5 //Some Applications of the Laws of Thermodynamics //Example 17 clear; clc; //Given: //Referring steam tables at 2.54 bar H1 = 2717; //enthalpy of saturated vapour (kJ/kg) H2 = 538; //enthalpy of saturated liquid (kJ/kg) S1 = 7.05; //entropy of saturated vapour (kJ/kg K) S2 = 1.61; //entropy of saturated liquid (kJ/kg K) H = 2700; //enthalpy of superheated steam at 1 bar and 385 K (kJ/kg) S = 7.42; //entropy of superheated steam at 1 bar and 385 K (kJ/kg K) //To determine fraction of liquid in inlet stream and the temperature //Let the fraction of liquid in inlet stream be x //(a)..The expansion is isenthalpic //Applying enthalpy balance around the throttle valve //(x*H2)+(1-x)*H1 = H x = (H-H1)/(H2-H1); //From steam tables T = 401; //temperature of steam (K) mprintf('(a). For isenthalpic expansion'); mprintf('\n The fraction of liquid in inlet stream is %f',x); mprintf('\n The temperature of stream is %i K',T); //(b)..The expansion is isentropic //Since entropy of saturated vapour at inlet pressure (S1) is less than entropy of steam leaving the turbine (S) //So, the inlet stream is superheated, therefore x = 0; //From steam tales T = 478; //temperature of superheated steam having entropy of 7.42 kJ/kg K mprintf('\n\n(b). For isentropic expansion'); mprintf('\n The fraction of liquid in inlet stream is %i',x); mprintf('\n The temperature of stream is %i K',T); //end
0349d2ff7d21e913c24438d686e44ad6d9cc3a89
449d555969bfd7befe906877abab098c6e63a0e8
/72/CH9/EX9.3.1/9_3_1.sce
80e02718e366ab00ea08451cc096d1b031029172
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
925
sce
9_3_1.sce
//chapter_no.-9, page_no.-385 //Example_no.9-3-1 clc; //(a) Calculate_the_dc_electron_velocity V0=14.5*(10^3); v0=.593*(10^6)*sqrt(V0); disp(v0,'the_dc_electron_velocity(in m/s)is ='); //(b) Calculate_the_dc_phase_constant f=(10*(10^9)); Be=(2*%pi*f)/v0; disp(Be,'the_dc_phase_constant(in rads/m)is ='); //(c)Calculate_the_plasma_frequency po=1*(10^-6);//dc_electron_charge_density wp=((1.759*(10^11)*po)/(8.854*(10^-12)))^(1/2); disp(wp,'the_plasma_frequency(in rad/s)is ='); //(d) Calculate_the_reduced_plasma_frequency_for_R=0.4 R=0.4; wq=R*wp; disp(wq,'the_reduced_plasma_frequency_for_R=0.4(in rad/s)is ='); //(e)Calculate_the_dc_beam_current_density J0=po*v0; disp(J0,'the_dc_beam_current_density(in A/m2)is ='); //(f) Calculate_the_instantaneous_beam_current_density p=1*(10^-8); v=1*(10^5);//velocity_perturbation J=(p*v0)-(po*v); disp(J,'the_instantaneous_beam_current_density(in A/m2)is =');
37d1311866a9e6b860e0d9a7871531fc1c1d49f1
858e87eba2421990e4bb02ee2ac7070276bc0259
/kalman.sci
1acf3a711ea9dcff018cf882ae35616da3f20498
[ "LicenseRef-scancode-public-domain" ]
permissive
MyFreertosLab/sdrone_test
c649e737128db26ee0902d2b9beca883c0ef5f2a
919ff6dd3e5d495102f0b16243873f3cb7b4640b
refs/heads/master
2023-06-15T05:10:19.052455
2021-07-16T07:10:39
2021-07-16T07:10:39
359,063,905
0
0
null
null
null
null
UTF-8
Scilab
false
false
802
sci
kalman.sci
// https://help.scilab.org/doc/5.5.2/en_US/kalm.html // Construction of the sinusoid // utilizzato con samples-plus-reduced.sci Sp=A(1:size(A,1),2); T=0.001; // period t=0:T:(size(A,1)*T-T); signal=Sp'; y=signal; // Sinusoid with noise // Plot the sinusoid with noise subplot(2,1,1); plot(t,y); xtitle("sinusoid with noise","t"); // System n=1; // system order f=[1]; g=0; h=[1]; p0=[8000]; R=variance(Sp); Q=0; x0=ones(n,1); // Initialize for loop x1=x0; p1=p0; // Kalman filter for i=1:length(t)-1 [x1(:,i+1),p1,x,p]=kalm(y(i),x1(:,i),p1,f,g,h,Q,R); end // Plot the results (in red) to compare with the sinusoid (in green) subplot(2,1,2); plot(t,signal,"color","green"); plot(t,x1(1,:),"color","red"); xtitle("Comparison between sinusoid (green) and extraction with Kalman filter (red)","t");
aa483915796b055567938feb2f75c291b6cd9ce9
449d555969bfd7befe906877abab098c6e63a0e8
/1964/CH13/EX13.19/ex13_19.sce
37163c4ee7e43eed8487591b27dc9ad9d2d4f5b5
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
906
sce
ex13_19.sce
//Chapter-13, Example 13.19, Page 393 //============================================================================= clc clear //INPUT DATA Vcc=10;//collector to collector voltage in volts Vbb=4;//base to base voltage in volts Rb=200*10^3;//base resistance in ohms Rc=2*10^3;//collector resistance in ohms Vbe=0.7;//base to emitter voltage in volts b=200;//common-emitter DC current gain //CALCULATIONS Ib=(Vbb-Vbe)/(Rb);//base current in A Ic=b*Ib;//collector current in A Ie=Ic+Ib;//emitter current in A Vce=Vcc-(Ic*Rc);//collector to emitter voltage in volts mprintf("Thus collector current,emitter current and base currents are %g A,%g A and %g A respectively\n",Ib,Ic,Ie); mprintf("collector to emitter voltage is %1.1f V",Vce) //=================================END OF PROGRAM=======================================================================================================
b277d9f414e7adb3410f6da3c914aa9379675de6
449d555969bfd7befe906877abab098c6e63a0e8
/3869/CH6/EX6.21/Ex6_21.sce
b0d7a2d74ae0032f8f09489e9e4b4d9bda20a715
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
298
sce
Ex6_21.sce
clear // // // //Variable declaration h=1 k=1 l=1 //miller indices r=1.278*10**-10 //radius(m) //Calculation a=4*r/sqrt(2) d111=a/sqrt(h**2+k**2+l**2) //interplanar spacing(m) //Result printf("\n interplanar spacing is %0.2f *10**-10 m",d111*10**10)
be7184a1264cf92dc32655ae587ec045b0466adf
449d555969bfd7befe906877abab098c6e63a0e8
/710/CH10/EX10.5/10_5.sci
2b7fc7d93288b8b0f2342ade91e477c42ce2a1b6
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
577
sci
10_5.sci
clc(); clear; //To determine the first two energy levels using particle-in-a-box model L=3*10^-5; //diameter of the sphere h=6.626*10^-34; //plancks constant m=1.67*10^-27; //mass of the particle n=1; E1=((h^2)*(n^2))/(8*m*(L^2)*1.6*10^-19)*10^12 //first energy level E2=E1*2^2 //second energy level printf("The first energy level is %f Mev",E1); printf("The second energy level is %f Mev",E2);
24637cf3fd609c5fcbc44bd356c97534da1f1c70
194d4cafa290b2fdf3aa87e18ddadcfff70a70d8
/eqn(x-y-z)qu2.sci
87b55988fcf2551f38e9294a67e8c690c2dcd549
[]
no_license
KomalT/tryout60
cc43d4a5d96b5525e691a907c7ad8c7e61004a3c
ef4cc3e641a77c2cea565035cf033536d91e29ea
refs/heads/master
2016-08-12T19:05:56.548794
2016-05-02T06:15:37
2016-05-02T06:15:37
55,436,025
0
0
null
null
null
null
UTF-8
Scilab
false
false
303
sci
eqn(x-y-z)qu2.sci
// que2 alg eqns // x=k(1) y=k(2) z=k(3) function [f]=eqn(k) f(1)=80*k(1)+30*k(3)-40; f(2)=80*k(2)+10*k(3)-27; f(3)=20*k(1)+20*k(2)+60*k(3)-30; endfunction k=[.5 .5 .5] y=fsolve(k,eqn) disp(y) // By matrix A=[80 0 30;0 80 10;20 20 60]'; B=[40 27 33]'; y=A^(-1)*B; disp(y)
19eaa01d5ce8f00c1cf8526bcb70db3223e4639d
449d555969bfd7befe906877abab098c6e63a0e8
/1808/CH7/EX7.21/Chapter7_Exampl21.sce
1dd98ff617421804eaac6276e5b0cce2aa09c9fd
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
1,393
sce
Chapter7_Exampl21.sce
clc clear //INPUT DATA t1=35;//dry bulb temperature in Degree c t4=25;//dry bulb temperature in Degree c V1=40;//Moist air circulation in m^3/min x1=0.8;//realtive humidity in percentage x4=0.6;//realtive humidity in percentage p=760;//pressure in mm of Hg Ra=287.3;//gas constant cp=1.005;//specific pressure ps1=42.157;//Saturation pressure in mm Hg ps4=23.74;//Saturation pressure in mm Hg t3=16.6;//dry bulb temperature in Degree c //CALCULATIONS pv1=x1*ps1;//Saturation pressure in mm Hg v1=Ra*(273+t1)/((p-pv1)*133.5);//volume ma=V1/v1;//Amount of air added in kg d.a./min w1=0.622*(pv1/(p-pv1));//Specific humidity in kg w.v./kg d.a h1=cp*t1+w1*(2500+(1.88*t1));//Enthalpy of air per kg of dry air in kJ/kg d.a. pv4=x4*ps4;//Saturation pressure in mm Hg x3=(pv4/pv4)*100;//realtive humidity in percentage w4=0.622*(pv4/(p-pv4));//Specific humidity in kg w.v./kg d.a h4=cp*t4+w4*(2500+1.88*t4);//Enthalpy of air per kg of dry air in kJ/kg d.a. h3=cp*t3+w4*(2500+(1.88*t3));//Enthalpy of air per kg of dry air in kJ/kg d.a. Qc=ma*(h1-h3)/210;//Capacity of cooling coil in TR Qh=ma*(h4-h3)/60;//Capacity of heating coil in kW mw=ma*(w1-w4);//Quantity of water removed in kg w.v./min //OUTPUT printf('(a)Capacity of cooling coil is %3.2f kJ/min \n (b)Capacity of heating coil is %3.1f kW \n (c)Quantity of water removed is %3.3f kg w.v./min',Qc,Qh,mw)
d9e16cd09a71cc4e2e8eb420090947597b664e02
449d555969bfd7befe906877abab098c6e63a0e8
/1862/CH14/EX14.5/C14P5.sce
c97bb3b9d68fdb89d30bff49c414d3eaafeb29f2
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
895
sce
C14P5.sce
clear clc //to find speed of canister when it enters the Earth's atmosphere // GIVEN: //mass of Earth ME = 5.98e24//in Kg //radius of Earth RE = 6.37e6//in m //initial speed of canister vi = 525//in m/s //distance above earth's surface h = 100e3//in m //Gravitational constant G = 6.67e-11//in N.m^2/Kg^2 // SOLUTION: //applying newton's law of universal gravitation and law of conservation of energy //speed of canister when it enters the Earth's atmosphere vf_square = vi - ((2*G*ME)*((1/(3*RE))-(1/(RE+h))))//in m^2/s^2 vf = sqrt(vi - ((2*G*ME)*((1/(3*RE))-(1/(RE+h)))))//in m/s vf = nearfloat("succ",9.05e3) vf_square = nearfloat("succ",8.18e7) printf ("\n\n Square of speed of canister when it enters the Earths atmosphere vf_square = \n\n %.2e m^2/s^2",vf_square) printf ("\n\n Speed of canister when it enters the Earths atmosphere vf = \n\n %.2e m/s",vf)
45a70361e1c3b0a7c796a602c195a88c6eda1f2f
33cf645e9e65f22a3670517a08959b0963cd0cd3
/test.sce
b60d60a807c29e76b25ac62f300e32a55059a3c6
[]
no_license
Abla-Adem/TP-calcul-numerique
eecda616e8d512e972c19701c3ff847c184c9e6b
c75cc37dd09787fa87867c106adb1ee69d6b581d
refs/heads/main
2023-02-06T15:15:50.993839
2020-12-25T13:10:35
2020-12-25T13:10:35
314,226,297
1
0
null
null
null
null
UTF-8
Scilab
false
false
5,271
sce
test.sce
function [err_a,err_ar,err,cnd] = TestExo2(a,c) n=c t=zeros(1,a) err_a=zeros(1,(a)); err_ar=zeros(1,(a)); cnd=zeros(1,a); err=zeros(1,(a)); for i=1:a t(i)=t(i)+i a=rand(n,n); a1=a; xex=rand(n,1); b=a*xex; x=inv(a)*b; cnd(i)=cond(a); err_a(i)=norm(x-xex)/norm(xex); err_ar(i)=norm(b-a*x)/norm(b); err(i)=cnd(i)*err_ar(i); n=n+10 end err_a=err_a'; err_ar=err_ar'; err=err'; plot2d(t,[err_a err_ar ],style=[2,3]); legends(['erreur avant ';'erreur arriere '],[2 3],opt='lr') endfunction function [t,t1,t2,t3]=TestExo3(a,n) a=rand(n,n); x=zeros(n); b=rand(n,n); t=zeros(1,10); t1=zeros(1,10); t2=zeros(1,10); t3=zeros(1,10); step=1; for i=1:10 n=n+10 x(i)=x(i)+n; a=rand(n,n); b=rand(n,n); for j=1:10 tic(); matmat3b(a,b,n); t(step)=t(step)+toc(); tic(); deux_boucle(a,b,n); t1(step)=t1(step)+toc(); tic(); une_boucle(a,b,n); t2(step)=t2(step)+toc(); tic() a*b; t3(step)=t3(step)+toc(); end t(step)=t(step)/10.; t1(step)=t1(step)/10.; t2(step)=t2(step)/10.; t3(step)=t3(step)/10.; step=step+1; end t=t';t1=t1';t2=t2';t3=t3'; plot2d(x,[t t1 t2 t3],style=[-1,2,3,4]); legends(['3 boucle';'2 boucle';'boucle';'direct'],[-1,2 3,4],opt='lr') endfunction function [err_a,err_ar,err,cnd] = TestExo4(a,c,m) n=c t=zeros(1,a) err_a1=zeros(1,(a)); err_ar1=zeros(1,(a)); cnd1=zeros(1,(a)); err1=zeros(1,(a)); err_a=zeros(1,(a)); err_ar=zeros(1,(a)); cnd=zeros(1,a); err=zeros(1,(a)); for i=1:a t(i)=t(i)+i if(m==0) a=tril(rand(n,n)); xex=rand(n,1); b=a*xex; temp=lsolve(a,b,n); cnd(i)=cond(a); err_a(i)=norm(temp-xex)/norm(xex); err_ar(i)=norm(b-a*temp)/norm(b); err(i)=cnd(i)*err_ar(i); else a=triu(rand(n,n)); xex=rand(n,1); b1=a*xex; x=usolve(a,b1,n); cnd(i)=cond(a); err_a(i)=norm(x-xex)/norm(xex); err_ar(i)=norm(b1-a*x)/norm(b1); err(i)=cnd(i)*err_ar(i); end n=n+10 end err_a=err_a'; err_ar=err_ar'; err=err'; plot2d(t,[err_a err_ar err ],style=[-1,2,3]); legends(['erreur avant ';'erreur arriere ';'erreur '],[-1,2 3],opt='lr') endfunction function [err_a,err_ar,err,cnd] = TestExo5(a,c) n=c t=zeros(1,a) err_a=zeros(1,(a)); err_ar=zeros(1,(a)); cnd=zeros(1,a); err=zeros(1,(a)); for i=1:a a=rand(n,n); a1=a; xex=rand(n,1); b=a*xex; b1=a*xex; x=Gauss(a1,b1,n); cnd(i)=cond(a); err_a(i)=norm(x-xex)/norm(xex); err_ar(i)=norm(b-a*x)/norm(b); err(i)=cnd(i)*err_ar(i); n=n+10 end err_a=err_a'; err_ar=err_ar'; err=err'; plot2d(t,[err_a err_ar err ],style=[-1,2,3]); legends(['erreur avant ';'erreur arriere ';'erreur '],[-1,2 3],opt='lr') endfunction function [err_a,err_ar,err,cnd] = TestExo6(a,c) n=c t=zeros(1,a) err_a1=zeros(1,(a)); err_ar=zeros(1,(a)); cnd=zeros(1,a); err=zeros(1,(a)); err1=zeros(1,(a)); for i=1:a t(i)=t(i)+i a=rand(n,n); cnd(i)=cond(a); [L1,U1]=LU_crout(a,n) [L,U]=Mylu1(a,n) err_ar1(i)=norm(L1*U1-a)/norm(a); err1(i)=cnd(i)*err_ar1(i); err_ar(i)=norm(L*U-a)/norm(a); err(i)=cnd(i)*err_ar(i); n=n+10 end err_ar1=err_ar1'; err_ar=err_ar'; err=err'; err1=err1'; plot2d(t,[ err err1 ],style=[2,4]); legends(['erreur LU';'erreur LU_crout'],[2 ,4],opt='lr') endfunction function [err_ar1,err_ar,err,err1] = TestExo6_2(a,c) n=c t=zeros(1,a) err_ar1=zeros(1,(a)); err_ar=zeros(1,(a)); cnd=zeros(1,a); err=zeros(1,(a)); err1=zeros(1,(a)); for i=1:a t(i)=t(i)+i a=rand(n,n); cnd(i)=cond(a); [L1,U1]=lu(a) [P,L,U]=Mylu1(a,n) err_ar1(i)=norm(L1*U1-a)/norm(a); err1(i)=cnd(i)*err_ar1(i); err_ar(i)=norm(P*L*U-a)/norm(a); err(i)=cnd(i)*err_ar(i); n=n+10 end err_ar1=err_ar1'; err_ar=err_ar'; err=err'; err1=err1'; plot2d(t,[ err err1 ],style=[2,4]); legends(['erreur LU';'erreur LU_scilab'],[2 ,4],opt='lr') endfunction function [t,t1,t2,t3]=TestExo6_tp3_conv(n_a,eps,maxit) [A]=trimat(n_a); x=[1:maxit] b=A*rand(n_a,1) [x1,z,t]=jacobi(A,n_a,b,eps,maxit) [x1,z,t1]=gaus_seidel(A,n_a,b,eps,maxit) x(1)=2 t(3)=0 plot2d(x,[log10(t) log10(t1)],style=[4,2]); legends(['jacobi';'gauss-seidel'],[4 ,2],opt='ur') endfunction
4d8b9d75646f2c146a2fa199b7fd04b35eca8ee9
449d555969bfd7befe906877abab098c6e63a0e8
/1301/CH7/EX7.5/ex7_5.sce
f014b2a352c3e78a6a66b27b92a73462ce230649
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
195
sce
ex7_5.sce
clc; l=4; //height in ft v=0.444; //v=(v/c)^2 (given) l0=l/sqrt(1-v); //calculating using l=l0sqrt(1-(v/c)^2) disp(l0,"Astronauts height at rest in ft = "); //displaying result
3018e8dba0a62857b72a47e63f69b762bf3310e7
127061b879bebda7ce03f6910c80d0702ad1a713
/PiLab/PiLab_hop.sci
7935bb7a9a6481e953c0919670984692d104d3e0
[]
no_license
pipidog/PiLib-Scilab
961df791bb59b9a16b3a32288f54316c6954f128
125ffa71b0752bfdcef922a0b898263e726db533
refs/heads/master
2021-01-18T20:30:43.364412
2017-08-17T00:58:50
2017-08-17T00:58:50
100,546,695
0
1
null
null
null
null
UTF-8
Scilab
false
false
7,494
sci
PiLab_hop.sci
// **** Purpose **** // PiLab hopping generator (level 2) // **** variables **** // ==== << PiLab inputs >> ==== // [hop.SiteOrb]: n x 2, integer // <= specify orbital of each site, nx2, [site, l] // [hop.Order]: 1x1 integer // <= order of nearest coupling // [hop.SKint]: n x 7, real // <= SK parameters, [Orb1,Orb2,nn_order,ts,tp,td,tf] // [hop.LS]: 1xn, real // <= strength of LS coupling on each SiteOrb. // [hop.Filter]: 1x1, real // <= filter of small hopping elements, // [hop.Basis]: 1x1, string // <= basis of Hamiltonian, 'c', 's', 'rc', 'rs' // [hop.SelState]: 1xn, integer // <= select states by inputting their state label // [hop.OnsiteE]: 1xn,, real // <= Onsite energy of selected states (given by their order) // ==== << PiLab outputs >> ==== // [hop.state_info_text]: total state x 5, string // => state info in text format // phop.state_info]: total state x 5, int // => state info in num format, 'i' // [hop.LS_mat]: n x 3, t-sp real // => LS coupling matrix // [hop.onsite_E]: n x 3, t-sp real // => onsite energy matrix // [hop.hop_size]: total sublattice x 4, int // => size of hop_mat // [hop.hop_mat]: list(n) x (n,m,p), a-sp // => hopping matrix // **** Version **** // 05/01/2014 1st version // 05/12/2015 change reload process // **** Comment **** // 1. This code generates: // 1). state information in text format (hop.state_info_text) // 2). state information in value format (hop.state_info) // 3). LS coupling matrix (hop.LS_mat, sparse) // 4). the size of hopping matrix (hop.mat_size) // 5). the hopping matrix (hop.hop_mat, sparse) function PiLab_hop(project_name) disp('{hop}: starting calculation ...'); c1=clock(); printf('\n'); printf(' => start time: %4d/%02d/%02d %02d:%02d:%02d\n',c1); // loading variables =============================================== disp('{hop}: loading variables ...'); PiLab_loader(project_name,'hop','user','trim'); load(project_name+'_hop.sod'); load(project_name+'_lat.sod'); // check variables ================================================ disp('{hop}: checking variables ...') check_var=(hop.Order <=lat.Order); if check_var~=%t then disp('Error: PiLab_hop, hop.Order must <= lat.Order!'); abort; end check_var=(find(hop.SiteOrb(:,1)>length(lat.Sublat(:,1)))==[]); if check_var~=%t then disp('Error: PiLab_hop, hop.SiteOrb has wrong site index!'); abort; end for n=1:length(lat.Sublat(:,1)) check_var=(length(find(hop.SiteOrb(:,1)==n))~=0); if check_var~=%t then disp('Error: PiLab_hop, hop.SiteOrb has unassigned site!'); abort; end end check_var=(length(hop.SKint(1,:))==7); if check_var~=%t then disp('Error: PiLab_hop, hop.SKint should has 7 '... +'index for a single coupling!'); abort; end check_var=(max(hop.SKint(:,1:2))<=length(hop.SiteOrb(:,1))); if check_var~=%t then disp('Error: PiLab_hop, hop.SKint has wrong identifiers!'); abort; end check_var=(length(hop.LS)==length(hop.SiteOrb(:,1))); if check_var~=%t then disp('Error: PiLab_hop, hop.LS must have the same '.. +' length as hop.SiteOrb(:,1))'); abort end check_var=(hop.Basis=='s' | hop.Basis=='c' ... | hop.Basis=='rs' | hop.Basis=='rc'); if check_var~=%t then disp('Error: PiLab_hop, hop.Basis can only be '... +'''s'', ''c'', ''rs'', ''rc''!'); abort; end check_var=(length(hop.SelState)==length(hop.OnsiteE)); if check_var~=%t then disp('Error: PiLab_hop, hop.SelState and '... +'hop.OnsiteE have incosistent dimension!'); abort; end // core part ======================================================== disp('{hop}: running core part ...'); disp(' => generating state information') // enforce orbitab identifier used in PIL_hop_mat hop.SiteOrb=hop.SiteOrb(:,[1,1,2]); // to be the input order hop.SiteOrb(:,2)=[1:length(hop.SiteOrb(:,2))]'; // generate hopping integrals -------------------------------------- disp(' => generating Slaster-Koster hopping integrals') hop.SiteOrb=gsort(hop.SiteOrb,'lr','i'); [hop.state_info,hop.hop_mat]=PIL_hop_mat(lat.surr_site,hop.SiteOrb... ,hop.SKint,hop.Basis,hop.Order,hop.Filter); //generate LS coupling --------------------------------- disp(' => generating spin-orbit coupling') hop.LS_mat=[]; for n=1:length(hop.SiteOrb(:,1)) select hop.SiteOrb(n,3) case 0 hop.LS_mat=PIL_dirsum(hop.LS_mat... ,PIL_LS_coup('s',hop.LS(hop.SiteOrb(n,2)),hop.Basis)); case 1 hop.LS_mat=PIL_dirsum(hop.LS_mat... ,PIL_LS_coup('p',hop.LS(hop.SiteOrb(n,2)),hop.Basis)); case 2 hop.LS_mat=PIL_dirsum(hop.LS_mat... ,PIL_LS_coup('d',hop.LS(hop.SiteOrb(n,2)),hop.Basis)); case 3 hop.LS_mat=PIL_dirsum(hop.LS_mat... ,PIL_LS_coup('f',hop.LS(hop.SiteOrb(n,2)),hop.Basis)); end end // generate onsite energy --------------- disp(' => generating onsite energy') hop.onsite_E=zeros(hop.LS_mat); // pick up selected sub-orbitals --------- if length(hop.SelState)~=0 then for n=1:size(hop.hop_mat) hop.hop_mat(n)=hop.hop_mat(n)(hop.SelState,hop.SelState,:); end hop.LS_mat=hop.LS_mat(hop.SelState,hop.SelState); hop.onsite_E=diag(hop.OnsiteE); hop.state_info=hop.state_info(hop.SelState,:); // relabel new picked states hop.state_info(:,1)=(1:length(hop.SelState))'; end // generate size of hop_mat hop.hop_size=zeros(size(hop.hop_mat),4); for n=1:size(hop.hop_mat) hop.hop_size(n,:)=[n,size(hop.hop_mat(n))]; end // generate hop.state_info_text suborb_list=PIL_suborb_list(hop.Basis); hop.state_info_text=cat(2,string(hop.state_info(:,1:4)),... suborb_list(hop.state_info(:,$))); // output information ============================================== disp('{hop}: output information ...') // print suborblist fid(1)=mopen(project_name+'_hop.plb','a+'); PIL_print_mat('hop.state_info_text, @f:f'... +', [state_label, site, identifier, l, SubOrb_text] '... ,hop.state_info_text,'s',fid(1)); PIL_print_mat('hop.state_info, @f:f, [state_label'... +', site, identifier, l, SubOrb] ',hop.state_info,'i',fid(1)); PIL_print_mat('hop.LS_mat, @f:ts, LS coupling matrix',... sparse(hop.LS_mat),'sp',fid(1)); PIL_print_mat('hop.onsite_E, @f:ts, onsite energy matrix'... ,sparse(hop.onsite_E),'sp',fid(1)); PIL_print_mat('hop.hop_size, @f:f, size of hop.hop_mat'... +', [sublatt, size(hop.hop_mat(n))]',hop.hop_size,'i',fid(1)); for n=1:size(lat.surr_site) for m=1:length(lat.surr_site(n)(:,1))-1 PIL_print_mat('hop.hop_mat('+string(n)+')(:,:,'+string(m)... +'), @f:as, hop_mat between site-'... +string(n)+' and its '+string(m)+'-th neighbor'... ,sparse(squeeze(hop.hop_mat(n)(:,:,m))),'sp',fid(1)); end end mclose(fid(1)); // finishing program =============================================== save(project_name+'_hop.sod','hop'); disp('{hop}: finishing calculation ...'); disp(' => time elapse '+string(etime(clock(),c1))+ ' seconds'); endfunction
29cb9578f243d12238bd329a898de71691f66e29
8217f7986187902617ad1bf89cb789618a90dd0a
/source/2.2/macros/percent/%lssos.sci
4df1100277e7f5d43a6d02be8cd43af141411ec6
[ "MIT", "LicenseRef-scancode-warranty-disclaimer", "LicenseRef-scancode-public-domain" ]
permissive
clg55/Scilab-Workbench
4ebc01d2daea5026ad07fbfc53e16d4b29179502
9f8fd29c7f2a98100fa9aed8b58f6768d24a1875
refs/heads/master
2023-05-31T04:06:22.931111
2022-09-13T14:41:51
2022-09-13T14:41:51
258,270,193
0
1
null
null
null
null
UTF-8
Scilab
false
false
161
sci
%lssos.sci
//[r]=%lssos(s1,s2) //%lssos(s1,s2) effectue le test d'egalite entre systemes d'etat et gain //correspond a l'operation s1==s2 //! r=s1(2)==[]&s1(5)==s2 //end
5f82651798da28a041ac22ca6dddee408f951373
449d555969bfd7befe906877abab098c6e63a0e8
/575/DEPENDENCIES/241.sci
a43d67b7938737bd8117332103962c39b38d6f77
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
40
sci
241.sci
density=62.4 //lbm/ft^3 volume=2 //ft^3
f2c489a46fcfddfb7537cbf469dd0f061f778868
449d555969bfd7befe906877abab098c6e63a0e8
/1658/CH27/EX27.13/Ex27_13.sce
476b71e75379281f750b7bb7045b1670dc16b8a8
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
133
sce
Ex27_13.sce
clc; //e.g 27.13 AV=100; RDN=0.8; //0.8=1-(1/(1+beta*AV)); beta=((1/0.2)-1)/100; disp(beta); AV1=AV/(1+beta*AV); disp(AV1);
333a7882e89321a4e673fbce56b0eec11a0d20a9
c5053c3f1ca96c1e831f1ce6476faaac1af94a07
/practs_exp6samplingandaliasing.sce
47177150bf7a6ab9854ca9a13768f056dc9bf946
[]
no_license
AdrikaSingh/SS-submissions
7c3ec7278cce4aa497c825df74762700abcb59fa
f64769b999434bcc862ff3515864750f2ba4552f
refs/heads/main
2023-01-22T10:08:05.507278
2020-11-25T16:09:37
2020-11-25T16:09:37
315,981,084
0
0
null
null
null
null
UTF-8
Scilab
false
false
443
sce
practs_exp6samplingandaliasing.sce
//fm=0.02 fm>=fs thus second and third case satisfy the nyquist criteria clc; n=0:1:100; fs=0.002; T=1/fs; t=n/fs; x=cos(2*%pi*0.02*t); plot2d3(n,x); xlabel('n'); ylabel('x'); figure; clc; n=0:1:100; fs=0.004; T=1/fs; t=n/fs; x=cos(2*%pi*0.02*t); plot2d3(n,x); xlabel('n'); ylabel('x'); figure; clc; n=0:1:100; fs=0.4; T=1/fs; t=n/fs; x=cos(2*%pi*0.02*t); plot2d3(n,x); xlabel('n'); ylabel('x'); figure;
d45ec475b1c0f4cddbb10b65949ea8803a27f91b
449d555969bfd7befe906877abab098c6e63a0e8
/1859/CH3/EX3.5/exa_3_5.sce
7acdbad0fecde18651d99e53988e3ed60f794785
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
336
sce
exa_3_5.sce
// Exa 3.5 clc; clear; close; // Given data B=1.8*10^-3;// in Wb/m^2 K= 1.4*10^-7;// in Nm/radian theta= 90;// in ° theta=theta*%pi/180; Tc= K*theta;// in N-m i=5;// in mA i=i*10^-3;// in amp A=1.5*1.2;// in cm^2 A=A*10^-4;// in m^2 // Formula Tc= Td= B*i*A*N; N= Tc/(B*i*A); N=ceil(N); disp(N,"Number of turns is")
ab770cf4b1d073976514d189f681f664beb12230
8cf6372d3b1745aa382131f243c0d4097a0b937f
/proj5/Neg16.tst
8521bdf7925d86c886e5ea43ea3a54c6c89ceeef
[]
no_license
s9v/CS492-Nand2Tetris
8da5f1899dec3f93374d41d0b5954620fabc4f50
f1491d2b128aa45f1c55e3d16c091496fc54b833
refs/heads/master
2021-09-15T10:07:08.791830
2018-05-30T08:46:34
2018-05-30T08:46:34
null
0
0
null
null
null
null
UTF-8
Scilab
false
false
392
tst
Neg16.tst
// Test script for Neg16.hdl load Neg16.hdl, output-file Neg16.out, compare-to Neg16.cmp, output-list a%B1.16.1 negate%D2.1.2 out%B1.16.1; set a %B0000000000000000, set negate 0, eval, output; set negate 1, eval, output; set a %B1001100001110110, set negate 0, eval, output; set negate 1, eval, output; set a %B1010101010101010, set negate 0, eval, output; set negate 1, eval, output;
0bcd6440ac4c6fbb7e297096dfa34cb80aa8eada
26e0446118d01de6f6a471afb39d81406908c736
/testGlobal.sci
12b34af95c0e0c838815a1af56f1074194ab0f49
[]
no_license
Eruliuce/Projet_Modelisation_ACP
79d1b84aa9d742e552e6c6d8b9acba979631dbaf
5a6b330f0fe0dd89b1efb56638a253f26d194f6e
refs/heads/master
2021-01-18T18:32:09.133376
2015-02-28T10:28:32
2015-02-28T10:28:32
31,441,932
0
0
null
null
null
null
UTF-8
Scilab
false
false
3,805
sci
testGlobal.sci
function CercleCorrel(caraCentreReduit) t=0:0.00001:2*%pi; plot(0.5 * cos(t), 0.5 * sin(t)); plot(cos(t), sin(t)); [n1, n2] = size(caraCentreReduit); for i=1:n2; plot(caraCentreReduit(1,i), caraCentreReduit(2,i), ".r"); end endfunction function [tableauCR] = tableauCentreReduit(tableau) tableauC = tableauCentre(tableau) tableauCR = tableauReduit(tableauC) endfunction function [retour] = tableauCentre(tableau) [nbIndiv,nbCarac] = size(tableau) moyenneColonnes = mean(tableau,1) for tabIndLig = 1:nbIndiv for tabIndCol = 1:nbCarac tableau(tabIndLig,tabIndCol) = tableau(tabIndLig,tabIndCol) - moyenneColonnes(tabIndCol) end end retour = tableau endfunction function [retour] = tableauReduit(tableau) [nbIndiv,nbCarac] = size(tableau) for tabIndCol = 1:nbCarac tabEcartTypes(tabIndCol)=(1/sqrt(nbIndiv))*norm(tableau(:,tabIndCol)) end retour = tableau for tabIndCol = 1:nbCarac retour(:,tabIndCol) = tableau(:,tabIndCol) /tabEcartTypes(tabIndCol) end endfunction function [composante1,composante2] = composantePrincipale(vecteurPropre1, vecteurPropre2, tableauCR) [nbIndiv,nbCarac] = size(tableauCR) composante1 = tableauCR*vecteurPropre1 composante2 = tableauCR*vecteurPropre2 endfunction function[vap,vep]=valsP(matCorrel) [vep,diagevals]=spec(matCorrel) vap=diag(diagevals) endfunction function [retour] = matriceCorrelation(tableau) [nbIndiv, nbCarac] = size(tableau); for tabIndColA = 1:nbCarac for tabIndColB = 1:nbCarac disp(tableau(:, tabIndColA)) matCorr(tabIndColA, tabIndColB) = tableau(:, tabIndColA)'*tableau(:, tabIndColB) matCorr(tabIndColA, tabIndColB) = (1/nbIndiv)*(matCorr(tabIndColA, tabIndColB)) end end retour = matCorr endfunction function [retour] = functionBase(valeurP, vectP) retour = [0;0] disp(retour) [m, k] = max(valeurP, 'r') valeurP(k,1) = -1000 disp("k :") disp(k) [m2, k2] = max(valeurP, 'r') valeurP(k2,1) = -1000 retour(1,1) = vectP(k,1) retour(2,1) = vectP(k2,1) endfunction function qualite = QualiteRepresentationIndividu(Base,Z, comp1, comp2) nbIndividu = size(Z,"r"); nbAxe = size(Base,"c"); Q2 = zeros(nbIndividu,2); for i = 1 : nbIndividu scal = ((Z(i,:)')'*(Base(:,comp1))); norme = norm(Z(i,:)); Q2(i,1) = (scal*scal/(norme*norme)); scal = ((Z(i,:)')'*(Base(:,comp2))); norme = norm(Z(i,:)); Q2(i,2) = (scal*scal/(norme*norme)); end endfunction function [vap, vep]=valsP(A) [vep, diagevals]=spec(A) vap=diag(diagevals) endfunction function nuagePoints(MatCoord,i,j); xset("font",4,3); x = (max(MatCoord(:, i)) - min(MatCoord(:, i))) / 20; xmin = min(MatCoord(:, i)) - x; xmax = max(MatCoord(:, i)) + x; y = (max(MatCoord(:, j)) - min(MatCoord(:, j))) / 20; ymin = min(MatCoord(:, j)) - y; ymax = max(MatCoord(:, j)) + y; plot2d(MatCoord(:, i),MatCoord(:, j), -3, "031", rect = [xmin,ymin,xmax,ymax]); n = size(MatCoord, "r"); for l = 1:n, xstring(Coord(l, i), MatCoord(l, j), string(l)); end; endfunction; function execProjet() [fd,SST,Sheetnames,Sheetpos] = xls_open('Voitures.xls') [m,TextInd] = xls_read(fd,Sheetpos(1)) mclose(fd) tabCR = tableauCentreReduit(m); matCor = matriceCorrelation(tabCR); [valeursP, vecteursP] = valsP(matCor); basePlan = functionBase(valeursP, vecteursP); //qualite = QualiteRepresentationInd0(basePlan, ??? [composante1, composante2] = composantePrincipale(vecteursP(:,1), vecteursP(:,2), tabCR); CercleCorrel(tabCR); //nuagePoints(?, ?, ?); endfunction
1dada17a3eac31be22d126834ad8d508e094b3b9
449d555969bfd7befe906877abab098c6e63a0e8
/1271/CH15/EX15.21/example15_21.sce
bcd2d55604623444a1f10586daad22c8031a9029
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
647
sce
example15_21.sce
clc // Given that E1 = 3.2e-18 // minimum energy possible for a particle entrapped in a one dimensional box in J e = 1.6e-19 // charge on an electron in C m = 9.1e-31 // mass of electron in kg c = 3e8 // speed of light in m/sec h = 6.62e-34 // Planck constant in J-sec // Sample Problem 21 on page no. 15.32 printf("\n # PROBLEM 21 # \n") printf("Standard formula used \n") printf(" E = (n^2 * h^2) / (8 * m * L^2)) \n") E1 = E1 / e // in eV n = 2 // for n=2 E2 = n^2 * E1 n = 3 // for n=3 E3 = n^2 * E1 n = 4 // for n=4 E4 = n^2 * E1 printf("\n Energy Eigen values -\n For (n=2) for %f eV.\n For (n=3) is %f eV.\n For (n=4) is %f eV.",E2,E3,E4)
a601cfcf18afff79f4d584c15b7ce0fd98379ae9
449d555969bfd7befe906877abab098c6e63a0e8
/647/CH12/EX12.6/Example12_6.sce
cb95afa2fd780d255046a7da7ff6a876bd7dd088
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
493
sce
Example12_6.sce
clear; clc; // Example: 12.6 // Page: 481 printf("Example: 12.6 - Page: 481\n\n"); // Solution //*****Data******// // Reaction: CO(g) + H2O(g) = CO2(g) + H2(g) G_CO = -32.8;// [kcal] G_H2O = -54.64;// [kcal] G_CO2 = -94.26;// [kcal] Temp = 273 + 25;// [K] R = 1.987;// [cal/mol.K] //***************// G_H2 = 0;// [kcal] G_rkn = G_CO2 + G_H2 - (G_CO + G_H2O);// [kcal] G_rkn = G_rkn*1000;// [cal] K = exp(-(G_rkn/(R*Temp))); printf("Equilibrium Constant is %.3e",K);
f24a4583b7722e2ad0411283040b0e2963cc08b6
449d555969bfd7befe906877abab098c6e63a0e8
/104/CH6/EX6.4/6_4.sce
edc0156b7690017d0ee811bed01d5133d14bf36b
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
278
sce
6_4.sce
//first element in any row of rouths tabulation is zero s=%s m=s^4+s^3+2*s^2+2*s+3 r=coeff(m); //Extracts the coefficient of the polynomial n=length(r); routh=routh_t(m) disp(routh,"routh=") printf("since there are two sign changes in the rouths tabulation,sys is unstable")
c22ca130b3d866fec0861080fc55b72c98944696
449d555969bfd7befe906877abab098c6e63a0e8
/1328/CH5/EX5.1/5_1.sce
ad15d4da7901b0dec72c191bc168617a033762e7
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
713
sce
5_1.sce
printf("\t example 5.1 \n"); T1=300; // hot fluid inlet temperature,F T2=200; // hot fluid outlet temperature,F t1=100; // cold fluid inlet temperature,F t2=150; // cold fluid outlet temperature,F printf("\t for counter current flow \n"); delt1=T1-t2; //F delt2=T2-t1; // F printf("\t delt1 is : %.0f F \n",delt1); printf("\t delt2 is : %.0f F \n",delt2); LMTD=((delt2-delt1)/((2.3)*(log10(delt2/delt1)))); printf("\t LMTD is :%.1f F \n",LMTD); printf("\t for parallel flow \n"); delt1=T1-t1; // F delt2=T2-t2; // F printf("\t delt1 is : %.0f F \n",delt1); printf("\t delt2 is : %.0f F \n",delt2); LMTD=((delt2-delt1)/((2.3)*(log10(delt2/delt1)))); printf("\t LMTD is :%.0f F \n",LMTD); //end
83215070da003144df08cac3e4b9902ad01743aa
da5b40d917ec2982828bd9bdf06b18b7bf189f26
/sim/scripts/00_man-coolerIdeal.tst
6120198c6cca0677799c2f270271953a7f091c14
[]
no_license
psy007/NNPC-CHEMICAL-SIM-
4bddfc1012e0bc60c5ec6307149174bcd04398f9
8fb4c90180dc96be66f7ca05a30e59a8735fc072
refs/heads/master
2020-04-12T15:37:04.174834
2019-02-06T10:10:20
2019-02-06T10:10:20
162,587,144
1
0
null
null
null
null
UTF-8
Scilab
false
false
290
tst
00_man-coolerIdeal.tst
thermo = VirtualMaterials.IdealLiquid/Ideal/HC thermo + ETHANOL WATER topVap = Stream.Stream_Material() topVap.In.P = 101.325 topVap.In.T = 78 topVap.In.MoleFlow = 100 topVap.In.Fraction = 0.85 0.15 cond = Heater.Cooler() topVap.Out -> cond.In cond.DeltaP = 0 cond.Out.T = 25 cond.OutQ
110382e956a86c7ad8c5bee273399415853d9b69
449d555969bfd7befe906877abab098c6e63a0e8
/257/CH10/EX10.3/example_10_3.sce
a5a181fec5a5c058b04051ff7a9b2e5991c0d715
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
185
sce
example_10_3.sce
s=%s; G=10/(s*(s+10)) T=G/(1+G) disp(T,"T = ") //compare A*sin(w*t) and 10*sin(8*t) A=10; w=8; disp("c(t) = A*10/(sqrt((10-w^2)^2 + 100*w))*(sin(8*t-atan(10*w/(10-w^2))))")
4900d58f73bba5b428f59f76d700c7a36f0c99ca
449d555969bfd7befe906877abab098c6e63a0e8
/2066/CH2/EX2.6/2_6.sce
4126099f397e071d463f27ddb9a175edd6d38150
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
853
sce
2_6.sce
clc clear //Initialization of variables gam=62.4 x1=4 //ft x2=6 //ft y1=6 //ft z=8 //ft dy=1 //ft angle=60 //degrees //calculations A1=x1*x2 A2=1/2 *y1^2 yc = (A1*(x1+x2+dy) + A2*(x1+x2))/(A1+A2) hc=yc*sind(angle) F=hc*gam*(A1+A2) ic1=1/12 *x1*y1^3 ic2=1/36*y1*x2^3 ad1=A1*(x1+x2+dy-yc)^2 ad2=A2*(x1+x2-yc)^2 It=ic1+ic2+ad1+ad2 ydc=It/(yc*(A1+A2)) function m= momen(u) m= gam*sind(angle) *(2*x1+u)*0.5*(x2-u)*(y1-u) endfunction MED=intg(0, y1, momen) FEDC=gam*sind(angle) *A2*(x1+x2) xed=MED/FEDC xp= (A1*2*(x1+x2+dy) + (x1+x2)*(A2)*(x1+xed))/(A1*(x1+x2+dy) + A2*(x1+x2)) //results printf("Magnitude of total force = %d lb",F) printf("\n Vertical location of force = %.3f ft",ydc) printf("\n Horizontal location of force = %.2f ft from AB",xp) printf("\n Direction of force is perpendicular to the plane surface")
bcab5c843153bcb57740e8078a0b8d42f6363109
717ddeb7e700373742c617a95e25a2376565112c
/2474/CH4/EX4.1/Ch04Ex01.sce
a6bd4c90e2adf8949a478e46ff2c95203ba72d6d
[]
no_license
appucrossroads/Scilab-TBC-Uploads
b7ce9a8665d6253926fa8cc0989cda3c0db8e63d
1d1c6f68fe7afb15ea12fd38492ec171491f8ce7
refs/heads/master
2021-01-22T04:15:15.512674
2017-09-19T11:51:56
2017-09-19T11:51:56
92,444,732
0
0
null
2017-05-25T21:09:20
2017-05-25T21:09:19
null
UTF-8
Scilab
false
false
722
sce
Ch04Ex01.sce
// Scilab code Ex4.1: Pg.150 (2008) clc; clear; R_H = 1.096776e+07; // Rydberg constant for Hydrogen, per metre // For Lymann series m = 1; // Integer value n = 2; // Integer value lamda = 1/(R_H*(1/m^2 - 1/n^2)); // Wavelength of Lymann series, m printf("\nThe wavelength of first line of Lymann series = %5.1f nm", lamda*1e+09); // For Paschen series m = 3; // Integer value n = 4; // Integer value lamda = 1/(R_H*(1/m^2 - 1/n^2)); // Wavelength of Paschen series, m printf("\nThe wavelength of first line of Paschen series = %4d nm", lamda*1e+09); // Result // The wavelength of first line of Lymann series = 121.6 nm // The wavelength of first line of Paschen series = 1875 nm
70e392a95dc921ec0050370b231209da08f85d3d
449d555969bfd7befe906877abab098c6e63a0e8
/773/CH6/EX6.09/6_09.sci
20992d5b5501fdc2fa585104d5d86812f964327c
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
374
sci
6_09.sci
//syslin// exec series.sce syms G1 G2 G3 H1 H2 H3; //Remove the feedback loop having feedback path transfer function H2 a=G3/.H2; //Interchange the summer .as well as replace the cascade block by its equivalent block b=series(G1,G2); c=b/.H1; //Negative Feedback Operation d=series(c,a); y=d/.H3; //Negative Feedback Operation y=simple(y); disp(y,"C(s)/R(s)=")
f2d205ec6c6b777347720acda9e1c3cb03d15d98
8217f7986187902617ad1bf89cb789618a90dd0a
/source/2.3/macros/scicos_blocks/AFFICH_f.sci
5be8f8f7d7c453732c652d56b983b1ddb582b75f
[ "MIT", "LicenseRef-scancode-warranty-disclaimer", "LicenseRef-scancode-public-domain" ]
permissive
clg55/Scilab-Workbench
4ebc01d2daea5026ad07fbfc53e16d4b29179502
9f8fd29c7f2a98100fa9aed8b58f6768d24a1875
refs/heads/master
2023-05-31T04:06:22.931111
2022-09-13T14:41:51
2022-09-13T14:41:51
258,270,193
0
1
null
null
null
null
UTF-8
Scilab
false
false
2,069
sci
AFFICH_f.sci
function [x,y,typ]=AFFICH_f(job,arg1,arg2) x=[];y=[];typ=[] select job case 'plot' then standard_draw(arg1) case 'getinputs' then [x,y,typ]=standard_inputs(o) case 'getoutputs' then x=[];y=[];typ=[]; case 'getorigin' then [x,y]=standard_origin(arg1) case 'set' then x=arg1; graphics=arg1(2);label=graphics(4) model=arg1(3); if size(label,'*')==4 then label(4)=' ';label(5)=' ';end //compatibility while %t do [ok,font,fontsize,color,nt,nd,label]=getvalue(.. 'Set parameters',.. ['Font number'; 'Font size'; 'Color'; 'Total number of digits'; 'Number of rational part digits'],.. list('vec',1,'vec',1,'vec',1,'vec',1,'vec',1),label) if ~ok then break,end //user cancel modification mess=[] if font<=0 then mess=[mess;'Font number must be positive';' '] ok=%f end if fontsize<=0 then mess=[mess;'Font size must be positive';' '] ok=%f end if nt<=3 then mess=[mess;'Total number of digits must be greater than 3';' '] ok=%f end if nd<0 then mess=[mess;'Number of rational part digits must be ' 'greater or equal 0';' '] ok=%f end if ~ok then message(['Some specified values are inconsistent:'; ' ';mess]) end if ok then [orig,sz]=graphics(1:2) rpar=[orig(:);sz(:)] ipar=[font;fontsize;color;xget('window');nt;nd] model(8)=rpar;model(9)=ipar graphics(4)=label; x(2)=graphics;x(3)=model break end end case 'define' then font=1 fontsize=1 color=1 nt=9 nd=2 label=[string(font); string(fontsize); string(color); string(nt); string(nd)] rpar=[[0;0];[1;1]] ipar=[font;fontsize;color;0;nt;nd] model=list('affich',1,[],1,[],[],0,rpar,ipar,'d',[],[%f %f],' ',list()) gr_i='xstringb(orig(1),orig(2),''+00000.00'',sz(1),sz(2),''fill'')' x=standard_define([3 2],model,label,gr_i) end function str=writetostring(z,fmt) [m,n]=size(z) u=file('open',TMPDIR+'/f','unknown') write(u,z,fmt) file('close',u) str=read(TMPDIR+'/f',m,1,'(a)')
bb13df1ebb4a04576d3c9000f25f18417e282903
31bd22a0de3a609c9bdfa652c93ed112749bf698
/MATEMATICAS PARA INGENIERIA I/Archivos scilab/scilabtext.sce
b996098c7d1f3b9eb1e53842ee0f34041910c39a
[]
no_license
eliasrobleroperez/4to-cuatrimestre
048e4da60229962106595a1d2caab04733e6e9d8
529bc470e75e5165ea01637d71e2e99025754d53
refs/heads/master
2020-12-03T18:26:05.289314
2020-01-02T21:12:33
2020-01-02T21:12:33
231,429,581
0
0
null
null
null
null
UTF-8
Scilab
false
false
118
sce
scilabtext.sce
camcloseall(); n=camopen(0,[640,360]); for cnt = 1:4 bg = camread(n); sleep(500); end camclose(n); imshow(bg)
03ec6ad6fad547a8558414bdc521b6d15e81ae33
449d555969bfd7befe906877abab098c6e63a0e8
/1985/CH11/EX11.7/Chapter11_Example7.sce
87b96217b63900bbe5c225b465ae2f4a8897ffeb
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
731
sce
Chapter11_Example7.sce
clc clear //Input data l=0.112*10^-9//Wavelength of X-rays in m q=90//Angle of scattering in degrees m=9.1*10^-31//Mass of the electron in kg h=6.625*10^-34//Plancks constant in J.s c=(3*10^8)//Velocity of light in m/s //Calculations dl=((h*(1-cosd(q)))/(m*c))/10^-10//The Compton angle in degrees l1=(dl+(l/10^-10))//Wavelength of the X-rays scattered at an agle of 90 degrees in angstroms dE=((h*c*((1/l)-(1/(l1*10^-10)))))/10^-17//The energy of the recoiling electron in J*10^-17 //Output printf('(a) Wavelength of the X-rays scattered at an agle of 90 degrees with respect to the original direction is %3.3f angstroms \n (b) The energy of the scattering electron after the collision is %3.2f*10^-17 J',l1,dE)
9eb9955b542a0896d36bf6cd99c3610fd0b33c94
449d555969bfd7befe906877abab098c6e63a0e8
/1697/CH6/EX6.1/Exa6_1.sce
59fc51b10a4f6e0c6e22b8a7ca71c07ca7afcdb9
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
438
sce
Exa6_1.sce
//Exa 6.1 clc; clear; close; n=20;//no. of turns //Clambda=lambda //Slambda=lambda/4 //HPBW : disp("HPBW=52/(Clambda*sqrt(n*Slambda))"); //Putting values below : Clambda=1;//in Meter Slambda=1/4;//in Meter HPBW=52/(Clambda*sqrt(n*Slambda));//in degree disp(HPBW,"HPBW in degree : "); //Axial Ratio Aratio=(2*n+1)/2;//unitless disp(Aratio,"Axial Ratio : "); //Gain D=12*Clambda^2*n*Slambda;//unitless disp(D,"Gain : ");
cc9885979c711f1878f2e0343e1d437edb8747db
449d555969bfd7befe906877abab098c6e63a0e8
/858/CH9/EX9.3/example_3.sce
666e30261ef4421a3ac4bb75e533aa5ca7e4f5b3
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
713
sce
example_3.sce
clc clear printf("example 9.3 page number 385\n\n") MH = 10 //in kg/s MC = 12.5 //in kg/s CPH = 4.2 //in kJ/kg CPC = 4.2 //in kJ/kg THI = 353 //in K THO = 333 //in K TCI = 300 //in K U = 1.8 //in kW/sq m K Q = MH*CPH*(THI-THO); printf("heat load = %f J",Q) TCO = Q/(MC*CPC)+TCI; printf("\n\ncold fluid outlet temperature = %f K",TCO) //for co current flow DT1 = THI-TCO; DT2 = THO-TCO; LMTD = (DT1-DT2)/log(DT1/DT2); A = Q/(U*LMTD); printf("\n\nfor co current flow, area = %f sq m",A); //for counter current flow DT1 = THI-TCO; DT2 = THO-TCI; LMTD = (DT1-DT2)/log(DT1/DT2); A = Q/(U*LMTD); printf("\n\nfor counter current flow, area = %f sq m",A);
fa9efed4e07361f9ad70e2e5385ce691a440125e
676ffceabdfe022b6381807def2ea401302430ac
/utilities/FieldConvert/Tests/chan3D_tec_par.tst
e0d5ba207db955e6f69024460759ee0b5baafe02
[ "MIT" ]
permissive
mathLab/ITHACA-SEM
3adf7a49567040398d758f4ee258276fee80065e
065a269e3f18f2fc9d9f4abd9d47abba14d0933b
refs/heads/master
2022-07-06T23:42:51.869689
2022-06-21T13:27:18
2022-06-21T13:27:18
136,485,665
10
5
MIT
2019-05-15T08:31:40
2018-06-07T14:01:54
Makefile
UTF-8
Scilab
false
false
921
tst
chan3D_tec_par.tst
<?xml version="1.0" encoding="utf-8"?> <test> <description> Process 3D tecplot output, par(2)</description> <executable>FieldConvert</executable> <parameters> -f -e chan3D.xml chan3D.fld chan3D.dat</parameters> <processes>2</processes> <files> <file description="Session File">chan3D.xml</file> <file description="Session File">chan3D.fld</file> </files> <metrics> <metric type="L2" id="1"> <value variable="x" tolerance="1e-6">1.69239</value> <value variable="y" tolerance="1e-6">1.69239</value> <value variable="z" tolerance="1e-6">1.69239</value> <value variable="u" tolerance="1e-6">2.0864</value> <value variable="v" tolerance="1e-6">0</value> <value variable="w" tolerance="1e-6">0</value> <value variable="p" tolerance="1e-6">6.59218</value> </metric> </metrics> </test>
76c6bb842dc4e80b5b4685eaac98374923b14d8a
449d555969bfd7befe906877abab098c6e63a0e8
/3756/CH9/EX9.1/Ex9_1.sce
fb6f83c63577073e8ad92c56c5f4ba93e1105a4e
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
364
sce
Ex9_1.sce
clc // // // //Variable declaration k=3 E0=8.854*10**-12 E=10**6 //Calculations P=(E0*(k-1)*E)*10**6 D=(E0*k*E)*10**6 Ed=0.5*E0*k*(E**2) //Result printf("\n (a) The Polarization in the Dielectric is %2.2f *10**-6 coul/m**2",P) printf("\n (b) The Displacement Current Density is %2.2f *10**-6 coul/m**2",D) printf("\n (c) The Energy Density is %0.3f J/m**3",Ed)
5b5ee81c86f7c3af4e309490709ea13c4698b81d
449d555969bfd7befe906877abab098c6e63a0e8
/1962/CH6/EX6.2/example6_2.sce
df06db7768c38b096a53bf31516ace977737724f
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
269
sce
example6_2.sce
//example 6.2 //page 233 clc; funcprot(0); //initialisation of variable rhom=998.2;//density rhop=858.45;//density mum=1.005*10^-3;//viscosity mup=8/1000;//viscosity Vp=2.5*10;//velocity Vm=Vp*rhop*mum/mup/rhom; disp(Vm,"velocity of model (m/s):"); clear
4ee0edada5aa5b315b977ece649b5c65b435bc9a
c61d570c37971fa455028a89d2163f455f91c291
/script_fisico/simp13.sci
02e7057f2be311c839e4e6493c09d710f6ea51ad
[]
no_license
OgliariNatan/-ScientificComputing
a0af891f900f3f146a9751fd169f96052bd4ba83
070ea9d70430ef0c9e7944f491426b73af7c12b0
refs/heads/master
2020-04-04T23:13:12.585946
2017-07-03T21:46:18
2017-07-03T21:46:18
81,988,821
1
0
null
null
null
null
UTF-8
Scilab
false
false
1,406
sci
simp13.sci
function [I_simp13, Ea] = simp13(fun,a,b,n) // Integração Numérica utilizando a Regra de 1/3 de Simpsom (Newton-Cotes) // Onde -> I_simp13 é o valor da integral definida pela função e o intervalo //--------------------------------------------------------------------- // -> fun é a função a ser integrada // -> a é o limite inferior de integração // -> b é o limite superior de integração // -> n é o numero de segmentos (intervalos) para a integração //###################################################################### //Exemplo de Chamada //exec ('path\simp13.sci',-1) {-1 não mostra o código de execução} //fun = '0.2+25*x-200*x^2+675*x^3-900*x^4+400*x^5' //[I_simp13, Ea] = simp13(fun,0,0.8,4) //Autor: Daniel HC Souza //IMPLEMENTACAÇÃO.... //Verificação de integridade par = modulo(n,2); if par ~=0 then error("Regra de 1/3 de Simpsom somente para intervalos pares"); end //Valores da imagem em cada ponto h = (b-a)/n; x = a; f(1) = evstr(fun); for i = 2:n+1 x = x+h; //Atualiza Valor de x <-- a + h f(i) = evstr(fun); // disp(f(i)) end S4 = 0; for i = 2:2:n S4 = S4 + f(i); end S2 = 0; for i = 3:2:n S2 = S2 + f(i); end I_simp13 = ((b-a)/(3*n))*(f(1)+(4*S4)+(2*S2)+f(n+1)); //Regra de 1/3 de Simpson //Calculo do Erro verdadeiro Absoluto Vr = integrate(fun,'x',a,b); Ea = (Vr - I_simp13)/Vr; endfunction
173db8f97772684ebe94c9d1ab413bd97eb5207f
717ddeb7e700373742c617a95e25a2376565112c
/3044/CH3/EX3.22/Ex3_22.sce
ec1d87f599c58cd53c15935bd5f79a2f664ba2b5
[]
no_license
appucrossroads/Scilab-TBC-Uploads
b7ce9a8665d6253926fa8cc0989cda3c0db8e63d
1d1c6f68fe7afb15ea12fd38492ec171491f8ce7
refs/heads/master
2021-01-22T04:15:15.512674
2017-09-19T11:51:56
2017-09-19T11:51:56
92,444,732
0
0
null
2017-05-25T21:09:20
2017-05-25T21:09:19
null
UTF-8
Scilab
false
false
209
sce
Ex3_22.sce
//Variable declaration p = 0.99 // Probability of specimen to be in compliance //Results printf ( "Probability of both in compliance: %.4f",p*p) printf ( "Probability of both in compliance: %.2f",p^104.0)
d2d7e9d7bd77ff204bc09c3e0542a14fba345a99
449d555969bfd7befe906877abab098c6e63a0e8
/2144/CH1/EX1.7/ex1_7.sce
a7f7bfee7946578d1c67737f46f0e3a36f22aee9
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
265
sce
ex1_7.sce
// Exa 1.7 clc; clear; close; // Given data a = 0.26; b = 5*10^-4; E = 10;// in mV T = (a/(2*b))*( sqrt(1+(4*E*b/a^2)) - 1 );// in degree C disp("The unit of a will be mV/°C and the unit of b will be mV/°C^2") disp(T,"The Temperature in degree C is");
2d9912d86e4a5e38d1368ba823fcc60d7d36550a
4bcfc36b3fe4f98e84b3bf8fd08adde00b7da338
/Results/calibration/cal_7315.91.sci
e28a89cf2cd059e7a02e7c58e4615872076d01b4
[]
no_license
CSSS2013UrbanMobility/UrbanMobilityNew
52bea127d39046a7ef6796936b07664784a8fa4c
48fb4b517718a961ca99e2fab678b80f17c22bf2
refs/heads/master
2021-01-01T18:42:37.730732
2014-02-09T16:40:18
2014-02-09T16:40:35
null
0
0
null
null
null
null
UTF-8
Scilab
false
false
857
sci
cal_7315.91.sci
congtres=[];ratio=[];meancong=[]; congtres(1)=40; ratio(1)=0.1; meancong(1,1)=0.018564356435643563; meancong(1,2)=0.012376237623762377; meancong(1,3)=0; meancong(1,4)=0; meancong(1,5)=0.03712871287128713; meancong(1,6)=0.03094059405940594; meancong(1,7)=0.043316831683168314; meancong(1,8)=0.6992574257425742; meancong(1,9)=1.058168316831683; meancong(1,10)=1.181930693069307; meancong(1,11)=1.2747524752475248; meancong(1,12)=1.2252475247524752; meancong(1,13)=0.625; meancong(1,14)=0.09900990099009901; meancong(1,15)=0.055693069306930694; meancong(1,16)=0.03712871287128713; meancong(1,17)=0.1051980198019802; meancong(1,18)=0.9034653465346535; meancong(1,19)=1.2066831683168318; meancong(1,20)=1.441831683168317; meancong(1,21)=1.243811881188119; meancong(1,22)=1.1324257425742574; meancong(1,23)=0.5693069306930693; meancong(1,24)=0.11138613861386139;
8e26b4f9a3f380412d314849cff67fe2a45d468f
465afc0cfc032239fba2e606624cd1ba338042d9
/test1.tst
14bee464295b609423f1471ad5984e69559cea65
[]
no_license
prokopstein/cex-system
a627f017450970660d58669c89083edcc22ad9e4
b8b2cb8dde84795bad65a1afcd29cea35e5a5818
refs/heads/master
2021-09-01T16:11:01.061514
2017-12-27T22:07:44
2017-12-27T22:07:44
115,525,738
0
0
null
null
null
null
UTF-8
Scilab
false
false
309
tst
test1.tst
2017-11-01T09:42:23+00:00 KRAKEN BTC USD 1000.0 0.0009 2017-11-01T09:42:23+00:00 GDAX BTC USD 1001.0 0.0008 2017-11-01T09:42:23+00:00 BITFINEX BTC ETH 20.0 0.05 2017-11-01T09:42:23+00:00 GDAX USD LTC 0.01 100.0 2017-11-01T09:42:23+00:00 BITFINEX LTC BTC 0.5 2.0 EXCHANGE_RATE_REQUEST KRAKEN USD BITFINEX ETH
0319ff14bd44956a6097810b70c74db166d98974
449d555969bfd7befe906877abab098c6e63a0e8
/1752/CH3/EX3.8/exa3_8.sce
d09bbb3ce0dceb0794cac6add49fefdd03e287d8
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
572
sce
exa3_8.sce
//Exa 3.8 clc; clear; close; //given data T_0=150;// in degree C T_infinite=40;// in degree C w=1;// in m t=0.75*10^-3;// in m d=5*10^-2;// in meter L=25*10^-3;// in meter k=75;// in W/mK h=23.3;// in W/m^2K N=12;// numbers of fins Ac=w*t;//in square meter rho=2*(w+t);// in meter delta=Ac/rho; L_c=L+delta; ML_c=L_c*sqrt(h*rho/(k*Ac)) q_fin= N*sqrt(h*rho*k*Ac)*(T_0-T_infinite)*tanh(ML_c); q_fin=floor(q_fin); A_0=%pi*d*w-12*Ac q_unfin= h*A_0*(T_0-T_infinite); q_total=q_fin+q_unfin; disp("Rate of heat transfer is : "+string(q_total)+" watt");
a2335ed5647cbd5e3d540bf3c265e397c197b646
13c3ed7bef4d80dabd836219bbf4396f07cb934a
/matrix_multiply.sci
1bbc5ec4c3a105916c19d734fa9da5c2a4f9564d
[]
no_license
Mushirahmed/scilab_workspace
99f489a110a5e295ce9fca9991122d14840018d3
f58b91b87bb0357fff82dcb97b05541e7e976eca
refs/heads/master
2021-01-10T15:48:40.576771
2016-02-10T10:32:46
2016-02-10T10:32:46
43,348,489
0
0
null
null
null
null
UTF-8
Scilab
false
false
156
sci
matrix_multiply.sci
function matrix_multiply() a = uint16([1 1 4; 4 1 9 ; 1 2 10]); b = uint16([5 6 1;10 2 6;8 9 5]); ans_ab = a * b; disp(ans_ab); endfunction
860a4e78502ce5f756c7bf3f0e3f02f9ed10951f
449d555969bfd7befe906877abab098c6e63a0e8
/2762/CH3/EX3.2.2/3_2_2.sce
8f18271b89384d1937cbc7d7e99a35dbc8f7ec33
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
519
sce
3_2_2.sce
//Transport Processes and Seperation Process Principles //Chapter 3 //Example 3.2-2 //Principles of Momentum Transfer and Applications //given data delP=9.32e+4;//pressure diff in N/m2 D1=0.1541;//external diameter in m D0=0.0566;//internal diameter in m Dr=D0/D1; Co=0.61; rho=878; //oil density in kg/m3 v0=(Co/(sqrt(1-(Dr^4))))*sqrt((2*delP)/rho);//velocity calculation in m/s A=(%pi/4)*D0*D0;//cross section area V=A*v0;//volumetric flow rate mprintf("the volumetric flow rate is %f m3/s",V); //end
04ad736c1ff867968569c65a49eb6cbe6812a35c
449d555969bfd7befe906877abab098c6e63a0e8
/405/CH3/EX3.6/3_6.sce
31353e664282d9999e406988105d9be2d4d82a27
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
1,508
sce
3_6.sce
clear; clc; printf("\t\t\tExample Number 3.6\n\n\n"); // Gauss-Seidal calculation // Example 3.6 (page no.-97-98) // solution // it is useful to think in terms of a resistance formulation for this problem because all the connecting resistances between the nodes in figure 3-6(page no.-83) are equal; that is // R = dy/(k*dy) = dx/(k*dy) = 1/k (a) // therefore, when we apply equation(3-32) to each node, we obtain(qi = 0) // Ti = (sum Kj*Tj)/(sum Kj) (b) // because each node has four resistances connected to it and k is assumed constant, // sum Kj = 4*k // and // Ti = (1/4)*(sum Tj) (c) // we are now making four nadal equations for iteration // node 1 : T1 = (1/4)*(100+500+T2+T3) // node 2 : T2 = (1/4)*(500+100+T1+T4) // node 3 : T3 = (1/4)*(100+100+T1+T4) // node 3 : T4 = (1/4)*(T3+T2+100+100) // we now set up an iteration table as shown in output A=[4 -1 -1 0;-1 4 0 -1;-1 0 4 -1;0 -1 -1 4]; b=[600;600;200;200]; x=[300;300;200;200]; NumIters=6; D=diag(A); A=A-diag(D); for i=1:4 D(i)=1/D(i); end n=length(x); x=x(:); y=zeros(n,NumIters); for j=1:NumIters for k=1:n x(k)=(b(k)-A(k,:)*x)*D(k); end y(:,j)=x; end printf("the iteration table is shown as : \n\n"); disp(y); printf("\n\n after five iterations the solution converges and the final temperatures are \n"); disp(y(1,6),"T1="); disp(y(2,6),"T2="); disp(y(3,6),"T3="); disp(y(4,6),"T4=");
939be8c535be7213448a966dfcc6d79439a72a04
449d555969bfd7befe906877abab098c6e63a0e8
/650/CH1/EX1.2/2.sce
5be60b82392cf969e73ce4e26d170c6154886eba
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
435
sce
2.sce
clc p_v=50*10^3; //N/m^2 r=1; //m p_atm=101.3*10^3; //N/m^2 rho=1000; //kg/m^3 H=2.5; //m g=9.81; //m/s^2 F=p_v*%pi*r^2; disp("Total vertical force tending to lift the dome =") disp(F) disp("N") p=p_atm+p_v+rho*g*H; disp("Absolute pressure at the bottom of the vessel =") disp(p) disp("N/m^2") Fd=(p_v+rho*g*H)*%pi*r^2+rho*g*2*%pi*r^2/3; disp("Downward force imposed by the gas and liquid =") disp(Fd) disp("N")
209ffd9ecc1cee695fdd5825e30be58204158c38
449d555969bfd7befe906877abab098c6e63a0e8
/608/CH21/EX21.26/21_26.sce
281faeca14c45240514136caa36251449df7f277
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
795
sce
21_26.sce
//Problem 21.26: A 200 V d.c. motor develops a shaft torque of 15 Nm at 1200 rev/min. If the efficiency is 80%, determine the current supplied to the motor. //initializing the variables: T = 15; // in Nm n = 1200/60; // in rev/sec eff = 0.8; V = 200; // in Volts //calculation: //The efficiency of a motor = (output power/input power)*100 % //The output power of a motor is the power available to do work at its shaft and is given by Tw or T proportional to (2*pi*n) watts, where T is the torque in Nm and n is the speed of rotation in rev/s. The input power is the electrical power in watts supplied to the motor, i.e. VI watts. //Thus for a motor, efficiency =(T*2*pi* n/(V*I))% I = T*2*%pi*n/(V*eff) printf("\n\n Result \n\n") printf("\n current supplied, I is %.1f A",I)
9ab07f56213c22eb398592b453e75ab2877cc1b8
717ddeb7e700373742c617a95e25a2376565112c
/226/CH1/EX1.6/example6_sce.sce
15154727dea6b48824c997cfd81c51524aa48781
[]
no_license
appucrossroads/Scilab-TBC-Uploads
b7ce9a8665d6253926fa8cc0989cda3c0db8e63d
1d1c6f68fe7afb15ea12fd38492ec171491f8ce7
refs/heads/master
2021-01-22T04:15:15.512674
2017-09-19T11:51:56
2017-09-19T11:51:56
92,444,732
0
0
null
2017-05-25T21:09:20
2017-05-25T21:09:19
null
UTF-8
Scilab
false
false
297
sce
example6_sce.sce
//chapter 1 //example 1.6 //page 29 printf("\n") printf("given") Id=.1*10^-3;n=2;vt=26*10^-3; I0=30*10^-9; disp("a)") Vd=(n*Vt)*log(Id/I0)*10^3; printf(" forward bais current is %dmV\n",Vd) disp("b)") Id=10*10^-3 Vd=(n*Vt)*log(Id/I0)*10^3; printf(" forward bais current is %dmV\n",Vd)
cea51960c7e6a037fea1f721396bbc3e19b4dac5
449d555969bfd7befe906877abab098c6e63a0e8
/331/CH7/EX7.3/Example_7_3.sce
a8a17c2f8d9093232785270b331c774aa4862b2b
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
535
sce
Example_7_3.sce
//Caption:Sampling Distribution of mean (When the population is infinite) //When the population variance is known //Example7.3 //Page202 clear; clc; n = 49;//Sample size u = 4;//population mean in rupees Lakhs Sig = 1;// populaion variance in rupees Lakh Std = sqrt(Sig); X = 4.25;//Sample Mean [P,Q]=cdfnor("PQ",X,u,Std/sqrt(n)) disp(Q,'The Probaility that the sample mean greater than 4.25 lakhs is P(X>=4.25)=') //Result //The Probaility that the sample mean greater than 4.25 lakhs is P(X>=4.25)= // 0.0400592
d3a83399b646b919c30734535c5584c557329c94
449d555969bfd7befe906877abab098c6e63a0e8
/1322/CH14/EX14.8/104ex3.sce
7103b7240e5741b9e47fd68f6c593eddbdbbb59d
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
82
sce
104ex3.sce
//y^2-13*y+30 clear; clc; close; y=poly(0,'y'); p=y^2-13*y+30; factors(p)
c878e871d6dca32b12a063b7c10e406f400bb07e
f94bca5d28db755e4080ea77d3f7a8f4bf0839c1
/scripts/TestLemGlenn.sce
a34f8eba327fbd08828ad0ed9c49e18be96f2a8d
[]
no_license
videlec/max_plus
52ba3ba9b38f1636088e14b827be59fce779f376
4c0b651344ba4c731c8d7ab084caab4204483d8c
refs/heads/master
2020-12-24T06:24:14.469032
2019-05-17T06:58:23
2019-05-17T06:58:23
38,269,615
0
0
null
null
null
null
UTF-8
Scilab
false
false
1,276
sce
TestLemGlenn.sce
d=5;//taille matrices st=''; for i=1:d st=strcat([st,'%i,']); end N=factorial(d);//Puissance //n=10^7;//Nb tests //K=10^4;//Size of entries //Mot u=[0,1,0,1,0,1,1,0,1,0,1,0,0,1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,1,0,0,1,1,0,0,1,0,1,1,0,0,1,0,1,0,1,1,0,1,0,1,0,0,1,1,0,0,1,0,1]; l=size(u,'*'); L=zeros(1,l); Le=zeros(1,l); Lee=zeros(1,l); // Let's go fidw=mopen('wrank.txt','w'); fidt=mopen('addtr.txt','w'); mfprintf(fidt,'u=') for i=1:size(u,'*') mfprintf(fidt,'%i',u(i)) end mfprintf(fidt,'\n') for j=1:n A=round(K*rand(d,d)); B0=(-K/2)*#(A); A=round(K*rand(d,d)); A0=(-K/2)*#(A); A=A0^N; B=B0^N; P=%eye(d,d); b=%T; k=0; D=%ones(d,1); while k<l & b k=k+1; if u(k)==0 C=A; else C=B; end P=P*C; for i=1:d D(i)=D(i)*C(i,i); end b=and(D==diag(P)); end L(k)=L(k)+1; if k==l&(or(A(1,1)*%ones(d,1)<>diag(A))|or(B(1,1)*%ones(d,1)<>diag(B))) mfprintf(fidt,st,plustimes(A0)) mfprintf(fidt,';') mfprintf(fidt,st,plustimes(B0)) mfprintf(fidt,'\n') end if (k<l)&size(weakbasis(P),'*')==d*d A1=A0; B1=B0; Le(k)=Le(k)+1; if size(weakbasis(P'),'*')==d*d Lee(k)=Lee(k)+1; mfprintf(fidw,st,plustimes(P)) mfprintf(fidw,'\n') end end end //L mclose(fidw); mclose(fidt);
5714390b2eb15b202795613c42dbd827bc149c39
449d555969bfd7befe906877abab098c6e63a0e8
/564/DEPENDENCIES/18_2data.sci
c7d898878a60d4f0d8b2c1a1ab77d3a6b7be710f
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
99
sci
18_2data.sci
a=200;//in mm b=150;//in mm ta=2.5;//in mm tb=2;//in mm T=1000;//in N.mm G=25000;//given in N/mm^2
89fc54a1993ef0ffbbd4820bd0198caaeba2eabe
449d555969bfd7befe906877abab098c6e63a0e8
/2414/CH20/EX20.2/Ex20_2.sce
95571819aea4e32811fe0e305619efd4f0cf9267
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
300
sce
Ex20_2.sce
clc; close(); clear(); //page no 619 //prob no. 20.2 theta_i=30; //degree ni=1.00; //incident refraction index nr=1.52; //refeacted ray refraction index theta_r=asin(ni/nr*sin(theta_i*%pi/180)); //in radians mprintf('angle of refraction is %.2f degree',theta_r*180/%pi);
449e4c9ffd15a6a3635a389001cf64bc9d5b8952
3b9a879e67cbab4a5a4a5081e2e9c38b3e27a8cc
/Área 1/Aula 6/Teste5.sce
27c6ab601e4550eaa76a512ae78b465430e3d3cc
[ "MIT" ]
permissive
JPedroSilveira/numerical-calculus-with-scilab
32e04e9b1234a0a82275f86aa2d6416198fa6c81
190bc816dfaa73ec2efe289c34baf21191944a53
refs/heads/master
2023-05-10T22:39:02.550321
2021-05-11T17:17:09
2021-05-11T17:17:09
null
0
0
null
null
null
null
UTF-8
Scilab
false
false
117
sce
Teste5.sce
//Executar MetodoJacobEGaussSeidelExemplo.sce antes A = [4 4 3 4] b = [1 1]' x1 = [1 0]' jacobi(A,b,x1,-1,5)
5e31e81c3ef9a565dd056f20bba1ecb11dbfa870
449d555969bfd7befe906877abab098c6e63a0e8
/149/CH26/EX26.4/ques4.sce
4e32bbf84dee475bfc42d426ed1389f37f774fee
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
237
sce
ques4.sce
//ques4 syms c1 c2 c3 n disp('Cumulative function is given by E^2-2*E+1 =0 '); E=poly(0,'E'); f=E^2-2*E+1; r=roots(f); disp(r); disp('There for the complete solution is :'); un=(c1+c2*n)*(r(1))^n; disp('un='); disp(un);
073f322a48f2f75c90375d4197e5ead3f53d32b8
449d555969bfd7befe906877abab098c6e63a0e8
/1109/CH7/EX7.7/7_7.sce
57e39e6a18d846c57dabf5eaf5b5ae0705bc8350
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
336
sce
7_7.sce
clear; clc; c=3*(10^8);f=8*(10^9);r=2.5;h=1.84;n=377; l=c/f; lo=l*(10^2); lc=2*%pi*r/h; printf("-Cutoff wavelength = %f cm\n",round(lc*100)/100); lp=lo/(sqrt(1-((lo/lc)^2))); printf("-Guide wavelength = %f cm\n",round(lp*100)/100); Zo=n/(sqrt(1-((lo/lc)^2))); printf("-Characteristic wave impedance = %f ohm",fix(Zo*10)/10);
781bac3770b1e647c6cbb9a7006b7af78b229f85
8217f7986187902617ad1bf89cb789618a90dd0a
/source/2.3/macros/elem/intsplin.sci
ad42a31b5b2f033056922877117bfe123bfcd3e0
[ "MIT", "LicenseRef-scancode-warranty-disclaimer", "LicenseRef-scancode-public-domain" ]
permissive
clg55/Scilab-Workbench
4ebc01d2daea5026ad07fbfc53e16d4b29179502
9f8fd29c7f2a98100fa9aed8b58f6768d24a1875
refs/heads/master
2023-05-31T04:06:22.931111
2022-09-13T14:41:51
2022-09-13T14:41:51
258,270,193
0
1
null
null
null
null
UTF-8
Scilab
false
false
668
sci
intsplin.sci
function v = intsplin(x,s) //splin numerical integration. //v = intsplin(x,s) computes the integral of y with respect to x using //splin interpolation and integration. //x and y must be vectors of the same dimension // //v = intsplin(s) computes the integral of y assuming unit //spacing between the data points. //! [lhs,rhs]=argn(0) if rhs<2 then s=x; s=s(:); d=splin((1:size(s,'*'))',s); v=sum((d(1:$-1)-d(2:$))/12 + (s(1:$-1)+s(2:$))/2); else if size(x,'*')<>size(s,'*') then error('input vectors must have the same dimension'); end end x=x(:);s=s(:); d=splin(x,s); h=x(2:$)-x(1:$-1); v=sum((h.*(d(1:$-1)-d(2:$))/12 + (s(1:$-1)+s(2:$))/2).*h);