blob_id
stringlengths 40
40
| directory_id
stringlengths 40
40
| path
stringlengths 4
214
| content_id
stringlengths 40
40
| detected_licenses
listlengths 0
50
| license_type
stringclasses 2
values | repo_name
stringlengths 6
115
| snapshot_id
stringlengths 40
40
| revision_id
stringlengths 40
40
| branch_name
stringclasses 21
values | visit_date
timestamp[us] | revision_date
timestamp[us] | committer_date
timestamp[us] | github_id
int64 141k
586M
⌀ | star_events_count
int64 0
30.4k
| fork_events_count
int64 0
9.67k
| gha_license_id
stringclasses 8
values | gha_event_created_at
timestamp[us] | gha_created_at
timestamp[us] | gha_language
stringclasses 50
values | src_encoding
stringclasses 23
values | language
stringclasses 1
value | is_vendor
bool 1
class | is_generated
bool 1
class | length_bytes
int64 5
10.4M
| extension
stringclasses 29
values | filename
stringlengths 2
96
| content
stringlengths 5
10.4M
|
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
76c1ac800318ae8484fcdeb45c0040f07609603f
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/551/CH9/EX9.9/9.sce
|
25948018c28eeecac98ab16129fbf30eea381c08
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 827
|
sce
|
9.sce
|
clc
p=1.3; //bar
R0=8.314;
M_CO2=44;
M_O2=32;
M_N2=28;
M_CO=28;
m_O2=0.1;
m_N2=0.7;
m_CO2=0.15;
m_CO=0.05;
//Considering 1 kg of mixture
m=1; //kg
//let moles be denoted by n
n_O2=m_O2/M_O2;
n_N2=m_N2/M_N2;
n_CO2=m_CO2/M_CO2;
n_CO=m_CO/M_CO;
M=1/(m_O2/M_O2 + m_N2/M_N2 + m_CO2/M_CO2 + m_CO/M_CO);
n=m/M;
x_O2=n_O2/n;
x_N2=n_N2/n;
x_CO2=n_CO2/n;
x_CO=n_CO/n;
disp("(i) Partial pressures of the constituents")
P_O2=x_O2*p;
disp("Partial pressure of O2=")
disp(P_O2)
disp("bar")
P_N2=x_N2*p;
disp("Partial pressure of N2=")
disp(P_N2)
disp("bar")
P_CO2=x_CO2*p;
disp("Partial pressure of CO2=")
disp(P_CO2)
disp("bar")
P_CO=x_CO*p;
disp("Partial pressure of CO=")
disp(P_CO)
disp("bar")
disp("Gas constant of mixture =")
R_mix=R0/M;
disp(R_mix)
disp("kJ/kg K")
|
633b045656b4bc1d36a9c4332ae8def87a5dcf6a
|
81a7e7bbbdadf675a70f5ac7dd91aabafd748348
|
/Assignment 4/EigenValuePM.sce
|
72261b68b749a783405960b94a83925c4b820ed9
|
[] |
no_license
|
SreejeshSaya/LinearAlgrabra-SciLab
|
089cef88d83e9bea68b3df0c20386957c7b7dcb0
|
0b0c22e2775b998701d2f8e44aa178d9dbc43d19
|
refs/heads/master
| 2020-12-29T20:38:17.084259
| 2020-04-06T06:50:12
| 2020-04-06T06:50:12
| 238,723,714
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 710
|
sce
|
EigenValuePM.sce
|
//Given Matrix
//A=[1, 6, 1; 1, 2, 0; 0, 0, 3]
rows = 3;
cols = 3;
A = zeros(rows,cols);
disp("Inputs to all matrices to be sequential left to right, top to bottom");
disp("Inputs to A begin");
for i = 1:rows
for j = 1:cols
A(i,j) = input("value for A:")
end
end
disp(A, 'The given matrix is')
// initial vector
u0=[1, 1, 1]';
disp(u0, 'The initial vector is')
v=A*u0;
a=max(u0);
disp(a, 'First approximation to eigen value is');
while abs(max(v)-a)>0.002
disp(v, 'Current Eigen vector is');
a=max(v);
disp(a, 'Current Eigen value is');
u0=v/max(v);
v=A*u0;
end
format('v', 4);
disp(max(v), 'The largest Eigen value is:');
format('v', 5)
disp(u0, 'The corresponding Eigen Vector is:');
|
f1e9d70dab3ffd86ba651e8afd95993e6aedf86e
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1244/CH2/EX2.10/Example210.sce
|
785bfaaedc9df9c22b50d67e348dc6f54e636022
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,367
|
sce
|
Example210.sce
|
// Display mode
mode(0);
// Display warning for floating point exception
ieee(1);
clc;
disp("Principles of Heat Transfer, 7th Ed. Frank Kreith et. al Chapter - 2 Example # 2.10 ")
//Diameter of copper wire in m
D = 0.1/100;
//Initial temperature in degree C
To = 150;
//Final surrounding temperature in degree C of air and water
Tinfinity = 40;
//From table 12, appendix 2, we get the following data values for copper
//Thermal conductivity in W/mK
k = 391;
//Specific heat in J/kgK
c = 383;
//Density in kg/m3
rho = 8930;
//Surface area of wire per unit length in m
A = %pi*D;
//Volume of wire per unit length in m2
V = ((%pi*D)*D)/4;
//Heat transfer coefficient in the case of water in W/m2K
h = 80;
//Biot number in water
bi = (h*D)/(4*k);
//The temperature response is given by Eq. (2.84)
//For water Bi*Fo is 0.0936t
//For air Bi*Fo is 0.0117t
for i = 1:130
//Position of grid
x(1,i) = i;
// Temperature of water in degree C
Twater(1,i) = Tinfinity+(To-Tinfinity)*exp(-0.0936*i);
// Temperature of air in degree C
Tair(1,i) = Tinfinity+(To-Tinfinity)*exp(-0.0117*i);
end;
//Plotting curve
plot(x,Twater,"--r")
set(gca(),"auto_clear","off")
//Plotting curve
plot(x,Tair)
//Labelling axis
xlabel("time")
ylabel("temperature")
disp("Temperature drop in water is more than that of air")
|
c3a3225fb54165db97295a92eae30a7b6bb5e2f7
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1529/CH10/EX10.4/10_04.sce
|
c8479d0df3a566790f51b849adb841253942dd53
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 671
|
sce
|
10_04.sce
|
//Chapter 10, Problem 4, figure 10.10
clc;
R=500; //load resistance
V=10; //supply voltage
ra=50; //ammeter resistance
Ie=V/R; //calculating expected current
Ia=V/(R+ra); //calculating actual current
P=Ia^2*ra; //calculating power dissipated in the ammeter
Pl=Ia^2*R; //calculating power dissipated in load resistor
printf("(a) Expected ammeter reading = %f mA\n\n\n",Ie*1000);
printf("(b) Actual ammeter reading = %f mA\n\n\n",Ia*1000);
printf("(c) Power dissipated in the ammeter = %f mW\n\n\n",P*1000);
printf("(d) Power dissipated in the load resistor = %f mW\n\n\n",Pl*1000);
|
69046797e0d8afe306fa0e86604dcafea9dcd369
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/800/DEPENDENCIES/5_3.sci
|
4900c0e08f4f1c671877f61979b8cc39933014c4
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 54
|
sci
|
5_3.sci
|
CHCl= [1 4 2 .1 .5];
rHCl = [1.2 2 1.36 .36 .74]*1e7;
|
fd9eeabe2ec405349940762495c00aaebd843430
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2252/CH2/EX2.6/Ex2_6.sce
|
8b7f5df4c00c998a6a159cd7a7ca08afcbdf38f4
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 456
|
sce
|
Ex2_6.sce
|
C1=100D-6 //capacitance of first capacitor which is to be charged
V=200 //voltage across C1
Q=C1*V
//Let Q1, Q2, Q3, Q4 be the charges on respective capacitors after connection
Q2=4000D-6
Q3=5000D-6
Q4=6000D-6
Q1=Q-(Q2+Q3+Q4)
C2=C1*(Q2/Q1)
C3=C1*(Q3/Q1)
C4=C1*(Q4/Q1)
mprintf("Three capacitors have capacitances %d microF, %d microF and %d microF\n", C2*10^6,C3*10^6,C4*10^6)
Vt=Q1/C1
mprintf("Voltage across the combination =%f V", Vt)
|
1156c550c00bbce9a1c4a2501382ce6efb8373b7
|
a5f0fbcba032f945a9ee629716f6487647cafd5f
|
/Machine_cloud/tests/RunDemos.sce
|
2758e913ef323367f6da118ff90225acc3e4bbe9
|
[
"BSD-2-Clause"
] |
permissive
|
SoumitraAgarwal/Scilab-gsoc
|
692c00e3fb7a5faf65082e6c23765620f4ecdf35
|
678e8f80c8a03ef0b9f4c1173bdda7f3e16d716f
|
refs/heads/master
| 2021-04-15T17:55:48.334164
| 2018-08-07T13:43:26
| 2018-08-07T13:43:26
| 126,500,126
| 1
| 1
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 294
|
sce
|
RunDemos.sce
|
getd('../macros')
scripts = listfiles('../demos')
numfiles = size(scripts)
for i = 1:numfiles(1)
script = scripts(i);
disp('Running ' + string(i) + ' of ' + string(numfiles(1)) + ' : ' + script)
if(strcmp('Datasets', script) ~= 0)
exec('../demos/' + script, -1)
end
disp('Complete')
end
|
c91100c2ed8e2b37f115e7e6fd34dbb01163fce4
|
c0ea72a2b7f0d595aae5a90ccc20f711888f0001
|
/gaussjordan.sce
|
ff3f42ad437971d1a4c5583ba7a1e73a59967585
|
[
"Apache-2.0"
] |
permissive
|
TANYA-CHAN/Linear-Algebra-Codes
|
4e94e9e0ab066f07a514d1086645375d552d932b
|
69a0a7c05f19702614f85620e9ea5c947c08f28a
|
refs/heads/main
| 2023-04-14T22:58:10.479315
| 2021-04-22T17:55:13
| 2021-04-22T17:55:13
| 360,629,255
| 5
| 0
|
Apache-2.0
| 2021-04-22T17:52:41
| 2021-04-22T17:32:03
|
Scilab
|
UTF-8
|
Scilab
| false
| false
| 603
|
sce
|
gaussjordan.sce
|
//Find the inverse of the following matrices: A=[1 0 0, 1 1 1, 0 0 1]
clc;
clear;
A= [1 0 0; 1 1 1; 0 0 1];
n = length ( A (1 ,:) ) ;
Aug = [A ,eye(n , n ) ]; // ForwardElimination
for j = 1: n -1
for i = j +1: n
Aug(i,j:2*n )=Aug(i,j:2*n)-Aug(i,j)/Aug(j,j)*Aug(j,j:2*n);
end
end
//BackwardElirination
for j = n : -1:2
Aug(1:j -1 ,:) = Aug(1: j -1 ,:)-Aug(1: j -1 , j )/Aug(j,j)*Aug(j,:);
end
// DiagonalNormalization
for j =1: n
Aug (j ,:) = Aug (j ,:) / Aug (j , j ) ;
end
B=Aug (:,n +1:2*n) ;
disp('The Inverse of A is',B);
|
fef203f36011945041531d10fc4e07a3dd6faa00
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2708/CH7/EX7.5/ex_7_5.sce
|
dc0f0a297946b8b4046a617e8fc833a845ba5965
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 195
|
sce
|
ex_7_5.sce
|
//Example 7.5 // Dielelctric constant
clc;
clear;
//given data :
v=.62;// velocity factor of coaxial
Er=1/v^2;// relative permittivity constant
disp(Er,"dielectric constant of insulator")
|
18a1d862dc6822ab49c6a87dc1b4af71263f3d24
|
0577305335a94b42b5326da932fa216f0a3be24b
|
/Assignment 4/Gram_Schmidt_Orthogonalization.sce
|
1701eea51eaafe26e7907f463b1cb64210c7d6a3
|
[] |
no_license
|
RITIKHARIANI/Scilab-Assignment
|
540ff67cce176b49c556e7d21cebbb03a8653e0f
|
b979fb6771f0e0855fa632a216a54aca892114ea
|
refs/heads/master
| 2020-12-18T20:37:55.331452
| 2020-06-03T10:49:33
| 2020-06-03T10:49:33
| 235,514,808
| 2
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 721
|
sce
|
Gram_Schmidt_Orthogonalization.sce
|
//vector a
disp('Please enter the vector a');
a11=input("Enter a11: ");
a21=input("Enter a21: ");
a31=input("Enter a31: ");
//vector b
disp('Please enter the vector b');
b11=input("Enter b11: ");
b21=input("Enter b21: ");
b31=input("Enter b31: ");
//vector c
disp('Please enter the vector c');
c11=input("Enter c11: ");
c21=input("Enter c21: ");
c31=input("Enter c31: ");
A=[a11,b11,c11;a21,b21,c21;a31,b31,c31];
//vectors as independent columns of A
disp(A,'A=');
[m,n]=size(A);
for k=1:n
V(:,k) = A(:,k);
for j=1:k-1
R(j,k)=V(:,j)'*A(:,k);
V(:,k)=V(:,k)-R(j,k)*V(:,j);
end
R(k,k)=norm(V(:,k));
V(:,k)=V(:,k)/R(k,k);
end
disp('The set of orthonormal vectors are ;');
disp(V,'Q=');
|
51d98bacfd525e9f94b8f2d275a2331d4725b4e8
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2594/CH8/EX8.1/Ex8_1.sce
|
7fe87cb871ebbe0366c6fb43c08a7d45094661e7
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 850
|
sce
|
Ex8_1.sce
|
clc
Nd=10^16
disp("Nd = "+string(Nd)+" /cm^3") //initializing value of donor ion concentration.
Er=3.9
disp("Er = "+string(Er)) //initializing value of relative dielectric permittivity constant .
Eo=8.854*10^-14
disp("Eo = "+string(Eo)+" F/cm") //initializing value of permittivity of free space.
W=0.5*10^-4
disp("W = "+string(W)+" cm") //initializing value of width of p-substrate.
L=10^-4
disp("L = "+string(L)+" cm") //initializing value of length of p-substrate.
tox=400*10^-8
disp("tox = "+string(tox)+" cm") //initializing value of thickness of p-substrate.
E=Eo*Er
disp("total permittivity,E=Eo*Er="+string(E)+" F/cm")//calculation
Cox=(E*W*L)/tox
disp("Oxide capacitance,Cox=(E*W*L)/tox)="+string(Cox)+" F")//calculation
Co=(Cox/(W*L))
disp("Capacitance per unit area,Co=(Cox/(W*L)))="+string(Co)+" F/cm^2")//calculation
|
4ce95f4a1d0eac453afdeea98084e2af46532515
|
1db0a7f58e484c067efa384b541cecee64d190ab
|
/macros/chebwin.sci
|
781bb6e542cecb688d8d9a8387b577aeb9772ca3
|
[] |
no_license
|
sonusharma55/Signal-Toolbox
|
3eff678d177633ee8aadca7fb9782b8bd7c2f1ce
|
89bfeffefc89137fe3c266d3a3e746a749bbc1e9
|
refs/heads/master
| 2020-03-22T21:37:22.593805
| 2018-07-12T12:35:54
| 2018-07-12T12:35:54
| 140,701,211
| 2
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 919
|
sci
|
chebwin.sci
|
function w = chebwin (m, at)
//This function returns the filter coefficients of a Dolph-Chebyshev window.
//Calling Sequence
//w = chebwin (m)
//w = chebwin (m, at)
//Parameters
//m: positive integer value
//at: real scalar value
//w: output variable, vector of real numbers
//Description
//This is an Octave function.
//This function returns the filter coefficients of a Dolph-Chebyshev window of length m supplied as input, to the output vector w.
//The second parameter is the stop band attenuation of the Fourier transform in dB. The default value is 100 dB.
//Examples
//chebwin(7)
//ans =
// 0.0565041
// 0.3166085
// 0.7601208
// 1.
// 0.7601208
// 0.3166085
// 0.0565041
rhs = argn(2)
if(rhs<1 | rhs>2)
error("Wrong number of input arguments.")
end
select(rhs)
case 1 then
w = callOctave("chebwin",m)
case 2 then
w = callOctave("chebwin",m,at)
end
endfunction
|
09a2800f2fa52c9017596ffe82464e78e3835d14
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1658/CH20/EX20.10/Ex20_10.sce
|
33a028b736d12ff0b0ade8239437938ea565907d
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 73
|
sce
|
Ex20_10.sce
|
clc;
hfe=50;
hfb=-hfe/(1+hfe);
disp(hfb);
hfc=-(1+hfe);
disp(hfc);
|
f5ba17abb087bff7a348ff37e085532021771992
|
1bb72df9a084fe4f8c0ec39f778282eb52750801
|
/test/SU4.prev.tst
|
50efa0e904f63b8ad5177c42df9a311d952cf23d
|
[
"Apache-2.0",
"LicenseRef-scancode-unknown-license-reference"
] |
permissive
|
gfis/ramath
|
498adfc7a6d353d4775b33020fdf992628e3fbff
|
b09b48639ddd4709ffb1c729e33f6a4b9ef676b5
|
refs/heads/master
| 2023-08-17T00:10:37.092379
| 2023-08-04T07:48:00
| 2023-08-04T07:48:00
| 30,116,803
| 2
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 56
|
tst
|
SU4.prev.tst
|
("4x²+64y⁶").substitute({x=>x/2,y=>y/2}) = x²+y⁶
|
c8a9d85827da3e5a24978e6de679660ad3f10d39
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3792/CH8/EX8.9/Ex8_9.sce
|
7dd8ff5826a3631eb5e0087f37c03045c4de9aff
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,080
|
sce
|
Ex8_9.sce
|
// SAMPLE PROBLEM 8/9
clc;funcprot(0);
// Given data
m=50;// The mass of the cylinder in kg
r=0.5;// The cylinder radius in m
k=75;// The spring constant in N/m
c=10;// The damping coefficient in N.s/m
x=-0.2;// m
t=0;// s
g=9.81;// The acceleration due to gravity in m/s^2
// Calculation
omega_n=sqrt((2/3)*(k/m));// The undamped natural frequency in rad/s
eta=(1/3)*(c/(m*omega_n));// The damping ratio
omega_d=omega_n*(sqrt(1-eta^2));// The damped natural frequency in rad/s
tau_d=(2*%pi)/omega_d;// The period of the damped system in s
function[X]=Candpsi(y)
X(1)=(y(1)*sin(y(2)))-(-0.2);
X(2)=((-0.0667*y(1)*sin(y(2)))+((0.998*y(1)*cos(y(2)))))-0;
endfunction
y=[0.1 1.1];
z=fsolve(y,Candpsi);
C=z(1);// m
psi=z(2);// rad
printf("\n(a)The undamped natural frequency,omega_n=%1.0f rad/s \n(b)The damping ratio,eta=%0.4f \n(c)The damped natural frequency,omega_d=%0.3f rad/s \n(d)The period of the damped system,tau=%1.2f s \nThus, the motion is given by x=%0.3fexp(-%0.4f*t)sin(%0.3ft+%1.3f)m",omega_n,eta,omega_d,tau_d,C,eta,omega_d,psi);
|
d350dd7410f22c0daf2ba22ec09a133a80dbd551
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/51/DEPENDENCIES/8_13.sce
|
fcbbf80369153ad6b24ad7ebd5aed18bec879788
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 686
|
sce
|
8_13.sce
|
clc;
clear;
exec("C:\Program Files\scilab-5.3.0\bin\TCP\8_13data.sci");
x=Q/(%pi/4);//where x=V*(D^2)
KLentrance=0.5;
KLelbow=0.2;
KLexit=1;
//Finding f from Re, roughness and moody's chart
f=0.01528;
sumKL=(n*KLelbow)+KLentrance+KLexit;
y=f*l;
//V^2 = (x^2)/(D^4)
//energy equation with p1=p2pV1=V2=z2=0
z=(2*32.2*z1)/((x^2)*l);
k=sumKL/l;
fn=poly([(-f) (-k) 0 0 0 z],'D','c');
r=roots(fn);
disp("ft",r(1),"The diameter=")
count=1;
len=400:2000;
for i=400:2000
root=roots(poly([(-f) (-(sumKL/i)) 0 0 0 ((2*32.2*z1)/((x^2)*i))],'a','c'));
dia(count)=root(1);
count=count+1;
end
plot2d(len,dia,rect=[0,0,2000,1.8])
xtitle("D vs l","l, ft","D, ft")
|
be5535d4904aacee6f6a085f15304a6dc99878e8
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/409/CH14/EX14.3/Example14_3.sce
|
cd6b9053ee2bc452d7e516d494a686846a28df95
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,190
|
sce
|
Example14_3.sce
|
clear ;
clc;
// Example 14.3
printf('Example 14.3\n\n');
//Page No. 448
// Solution
// Given
Tc = 100 ;// Temperature -[degree C]
T = 273 +Tc ;// Temperature -[K]
P = 90 ;// Pressure [atm]
R = 82.06 ;// gas constant-[(cubic centimetre * atm)/(g mol * K)]
Y_CH4 = 20/100 ;// [mole fraction]
Y_C2H4 = 30/100 ;// [mole fraction]
Y_N2 = 50/100 ;//[mole fraction]
//Additional information from appendix D
Tc_CH4 = 191 ;//[K]
Pc_CH4 = 45.8 ;// [atm]
Tc_C2H4 = 283 ;//[K]
Pc_C2H4 = 50.5 ;// [atm]
Tc_N2 = 126 ;//[K]
Pc_N2 = 33.5 ;// [atm]
//(a)-Ideal gas law
V_sp1 = R * T/P ;// Molar volume-[cubic centimetre/g mol]
printf('(a) The volume per mole of mixture by ideal gas law is %.1f cubic centimetre/g mol.\n',V_sp1);
//(b)
Pc_mix = Pc_CH4 * Y_CH4+Pc_C2H4 * Y_C2H4+Pc_N2 * Y_N2;// [atm]
Tc_mix = Tc_CH4 * Y_CH4+Tc_C2H4 * Y_C2H4+Tc_N2 * Y_N2 ;// [K]
Pr_mix = P/Pc_mix;
Tr_mix = T/Tc_mix;
// With 2 parameters(Pr_mix and Tr_mix) , you can find from figure 14.4b that z * Tr_mix = 1.91
z = 1.91/Tr_mix;
V_sp2 = z * R * T/P ;// Molar volume-[cubic centimetre/g mol]
printf('\n(b) The volume per mole of mixture by treating it to be real gas is %.1f cubic centimetre/g mol.',V_sp2);
|
aee7297343e0ddfedc904a6b020a733c782326f7
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/260/CH14/EX14.2/14_2.sce
|
d098739f6e28c51ebaf97d898f5e7853e850ea49
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 861
|
sce
|
14_2.sce
|
//Eg-14.2
//pg-582
clear
clc
close()
//Approximate the first and second derivatives using central difference formula
//At i = 1 ; 14y0 - 37y1 + 18y2 = 0;
// Using y0 = 0
// -37y1 + 18y2 = 0 (1)
//At i = 2 ; 14y1 - 37y2 + 18y3 = 0; (2)
//At i = 3 ; and taking y4 = 1 ; 14y2 - 37y3 = -18; (3)
//We have 3 equations and 3 unknowns
A = [-37 18 0;14 -37 18;0 14 -37];
B = [0;0;-18];
//Thomas method
b0 = -37;
c0 = 18;
a1 = 14;
b1 = -37;
c1 = 18;
a2 = 14;
b2 = -37;
r0 = 0;
r1 = 0;
r2 = -18;
B0 = b0;
G0 = r0/B0;
B1 = b1 - a1*c0/B0;
G1 = (r1 - a1*r0)/B1;
B2 = b2 - a2*c1/B1;
G2 = (r2 - a2*r1)/B2;
x(3) = G2;
x(2) = G1 - c1*x(3)/B1;
x(1) = G0 - c0*x(2)/B0;
disp(x)
y(1) = 0; //BC 1
y(2:4) = x(1:3);
y(5) = 1 //BC 2
x1 = 0:0.25:1;
plot(x1,y,'ks')
xlabel('x')
ylabel('y')
|
9eaf50512118d5d2258cb9f1466a14856ed1478d
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3835/CH2/EX2.12/Ex2_12.sce
|
88e7d37cef3845793ff715384eb7e69ba5e37924
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 300
|
sce
|
Ex2_12.sce
|
clear
//
//eqns derived from figure
//6v1-4v2=2-->1
//-4v1+7v2=-3-->2
//eqn 1 and 2 are written in matrix form and solved using cramers rule
printf("\n v1=0.0769 V")
printf("\n v2=-0.3846V")
printf("\n current in 0.5ohm resistance is 0.154A,0.25ohm resistance is 1.846,0.66ohm resistor is -1.154A")
|
5b40b45d60e0a6314f366dc721ffcb8743b8fb6e
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1172/CH8/EX8.7/Example8_7.sce
|
6baa792afea4b18167bc24ce569d83a5a389b4a3
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 502
|
sce
|
Example8_7.sce
|
clc
//Given that
t = 27.3 // period of lunar orbit around Earth in days
r = 3.9e5 // distance of satellite from Earth in km
G = 6.67e-11 // universal gravitational constant
// sample problem 7 page No. 301
printf("\n # Problem 7 # \n")
printf("Standard formula used \n T = 2 * pi * sqrt ((r^3)/G*M_e) \n ")
T = t * 24 * 60 * 60// calculation of time in seconds
M_e = 4 * %pi^2 * (r * 1000)^3 / (G * T^2) // calculation of mass of Earth
printf ("\n Estimated mass of Earth is %e kg.", M_e)
|
aabe2568dc516fab6d5d954fbbda004bdc551342
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1367/CH17/EX17.1/17_1.sce
|
b80f67f03167bfa289171bca519d6708761f4ba1
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 252
|
sce
|
17_1.sce
|
//Calculate molecular weight
//Ex:17.1
clc;
clear;
close;
mc=12;//mol wt of carbon
mh=1;;//mol wt of hydrogen
m=8*(mc+mh);//mol wt of C8H8
DOP=10000;//degree of polarization , given
mp=DOP*m;
disp(mp,"Molecualr weight of Styrene polymer = ");
|
40213a9fe5a1763c6f349499ad782da7d7a10096
|
8217f7986187902617ad1bf89cb789618a90dd0a
|
/browsable_source/2.4.1/Unix-Windows/scilab-2.4.1/macros/mtlb/mtlb_zeros.sci
|
f9339726da41fe033b24f6c6e9aa5a8c6474e966
|
[
"LicenseRef-scancode-public-domain",
"LicenseRef-scancode-warranty-disclaimer"
] |
permissive
|
clg55/Scilab-Workbench
|
4ebc01d2daea5026ad07fbfc53e16d4b29179502
|
9f8fd29c7f2a98100fa9aed8b58f6768d24a1875
|
refs/heads/master
| 2023-05-31T04:06:22.931111
| 2022-09-13T14:41:51
| 2022-09-13T14:41:51
| 258,270,193
| 0
| 1
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 112
|
sci
|
mtlb_zeros.sci
|
function r=mtlb_zeros(a)
// Copyright INRIA
if size(a)==[1 1] then
r=zeros(a,a)
else
r=zeros(a(1),a(2))
end
|
c80cb6dce92d20dfcc1d5f359b7f79cf9e5af9af
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2240/CH34/EX33.19/EX33_19.sce
|
ba1dc1cd9047b3af8c12abe48013e027286e2165
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 340
|
sce
|
EX33_19.sce
|
// Grob's Basic Electronics 11e
// Chapter No. 33
// Example No. 33_19
clc; clear;
// Calculate the cutoff frequency, fc.
// Given data
Ri = 1*10^3; // Input resistance=10 kOhms
Ci = 0.1*10^-6; // Input capacitance=0.01 uFarad
fc = 1/(2*%pi*Ri*Ci);
disp (fc,'The Cutoff Frequency in Hertz')
disp ('i.e 1.591 kHz')
|
24182e45661a98d2547b0fc4f6cf702ef7d58bc4
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1964/CH5/EX5.4/ex5_4.sce
|
9714271b0df50b4d79598bbb947a9263403433f8
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 750
|
sce
|
ex5_4.sce
|
//Chapter-5, Example 5.4, Page 161
//=============================================================================
clc
clear
//INPUT DATA
I=10;//given current in A
P=1000;//power in Watts
V=250;//voltage in volts
f=25;//frequency in Hz
//CALCULATIONS
R=P/((I)^2);//resistance in ohms
Z=V/I;//impedance in ohms
Xl=sqrt((Z)^2-(R)^2);//reactance in ohms
L=Xl/(2*%pi*f);//inductance in Henry
Pf=R/Z;//power factor,lagging,pf=cos(phi)
mprintf("thus impedance,resistance,inductance,reactance and powerfactor are %d ohms,%d ohms,%1.3f H,%2.2f ohms and %1.1f respectively",Z,R,L,Xl,Pf);
//=================================END OF PROGRAM======================================================================================================
|
f3176fb1fcbbb6f881ca4307747b94d277fa9af2
|
2c2dc93267283e4aebcffffd5bd76e19ddcf5cc7
|
/output/KNN/resultadoKNN.tst
|
120662d30118058c1287baa7d802707cea4b2ff0
|
[] |
no_license
|
joseangeldiazg/probabilistic_keel
|
c9cf4ddc2cf750cbbeca88e6f84218084892ae1f
|
6c5ddf8c98cc7431d523b291e521d1e8607dc662
|
refs/heads/master
| 2020-05-21T12:26:41.754863
| 2017-01-08T10:29:44
| 2017-01-08T10:29:44
| 55,733,275
| 1
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 16,248
|
tst
|
resultadoKNN.tst
|
@relation abalone19
@attribute Sex {M, F, I}
@attribute Length real [0.075, 0.815]
@attribute Diameter real [0.055, 0.65]
@attribute Height real [0.0, 1.13]
@attribute Whole_weight real [0.002, 2.8255]
@attribute Shucked_weight real [0.001, 1.488]
@attribute Viscera_weight real [5.0E-4, 0.76]
@attribute Shell_weight real [0.0015, 1.005]
@attribute Class {positive, negative}
@data
negative negative
positive negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
positive negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
positive negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
positive negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
positive negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
positive negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
negative negative
|
f4897c19fe95b5fbdf84df5ffb3cd361801214ff
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2672/CH6/EX6.16/Ex6_16.sce
|
83d04b2bd08904b50b9caaadb7594052dade1e4d
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 388
|
sce
|
Ex6_16.sce
|
//Example 6_16
clc;
clear;
close;
format('v',5);
//given data :
Vrms=230;//V
f=50;//Hz
Gamma=0:0.001:0.005;//Ripple factor(Gamma<=0.005)
IL=0.5;//A
Gamma=Gamma(4);//Taken for the solution
Vm=sqrt(2)*Vrms;//V
Vdc=Vm/%pi;//V
Idc=IL;//A
RL=Vdc/Idc;//ohm
C=1/(2*sqrt(3)*f*RL*Gamma)*1000;//mF
disp(C,"Value of capacitance(mF) : ");
//Answer in the textbook is not accurate.
|
4f9b8fdbca85c2f9e0494bc3c6d289d442f58dad
|
c206e3f57b0a6f75bd1feefefecd29398746c358
|
/scripts/localvar.sci
|
6babbca281494eb88982aca454cbae3abfdeddd3
|
[] |
no_license
|
danielfcollier/scilab-image-processing-scripts
|
e092a7c1a6a0ade906c020218a9571290245e40f
|
43d78cb06dc6c27ab8663f351e4c172d038280ce
|
refs/heads/main
| 2023-04-12T20:05:52.840157
| 2021-04-27T18:56:06
| 2021-04-27T18:56:06
| 362,219,761
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 624
|
sci
|
localvar.sci
|
function B=localvar(I,M);
[m1,n1]=size(I);
[m2,n2]=size(M);
A=zeros(m1+2*m2,n1+2*n2);
B=zeros(m1,n1);
A(1:m2,1:n2)=I(m2+(0:m2-1),n2:-1:1);
A(m2+(1:m1),1:n2)=I(1:m1,n2:-1:1);
A(m2+m1+(1:m2),1:n2)=I(1:m2,n2:-1:1);
A(1:m2,n2+(1:n1))=I(m2+(0:m2-1),1:n1);
A(m2+(1:m1),n2+(1:n1))=I(1:m1,1:n1);
A(m2+m1+(1:m2),n2+(1:n1))=I(1:m2,1:n1);
A(1:m2,n1+n2+(1:n2))=I(m2+(0:m2-1),1:n2);
A(m2+(1:m1),n1+n2+(1:n2))=I(1:m1,1:n2);
A(m2+m1+(1:m2),n1+n2+(1:n2))=I(1:m2,1:n2);
for i=1:m1
for j=1:n1
AR=A(floor(m2/2)+i+(1:m2),floor(n2/2)+j+(1:n2));
ma=mean(AR);
B(i,j)=sum((AR-ma).^2)/(m2*n2);
end
end
B=floor(B);
endfunction
|
65472dc3aec6f3f61cac960239d291ea4b94397c
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/34/CH12/EX12.2/Ch12Exa2.sci
|
9a49c0362b6134177b78edba2ff72be1f3d9fa03
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 440
|
sci
|
Ch12Exa2.sci
|
Thalf= 3.82; //half-life in days, d
Lambda= 0.693/Thalf; //decay constant
p= 0.6; // 60.0 percent of sample
No= poly(0,'No'); //Number of undecayed nuclei, at time t=0
N= (1-p)*No; //Number of undecayed nuclei, at time t
k= 1-p; //ratio of N to No
t= (1/Lambda)*(log(k)); //decay time in days, d
t= t*(-1);
disp(t,"The decay time for Radon, in d, is: ")
//Result
// The decay time for Radon, in d, is:
// 5.0508378
|
d00f463b74a7006b7ede1f83baa7d170132addf7
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1478/CH2/EX2.18.27/2_18_27.sce
|
51a9d0a7d3bb464222fbd69f49a5c1c7a0928238
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,130
|
sce
|
2_18_27.sce
|
//water and its treatment//
//example 2.18.27//
clc
Purity_Lime=0.90
Purity_soda=0.90
W1=2.1;//amount of CaCO3 in °Clarke//
W2=0.63;//amount of MgCO3 in °Clarke//
W3=0.35;//amount of CaSO4 in °Clarke//
W4=0.21;//amount of MgSO4 in °Clarke//
W5=0.063;//amount of MgCl2 in °Clarke//
W6=0.035;//amount of KCl in °Clarke//
M1=100/(100*0.07);//multiplication factor of CaCO3//
M2=100/(84.04*0.07);//multiplication factor of MgCO3//
M3=100/(136*0.07);//multiplication factor of CaSO4//
M4=100/(120*0.07);//multiplication factor of MgSO4//
M5=100/(95*0.07);//multiplication factor of MgCl2//
P1=W1*M1;//in terms of CaCO3//L
P2=W2*M2;//in terms of CaCO3//L
P3=W3*M3;//in terms of CaCO3//S
P4=W4*M4;//in terms of CaCO3//L+S
P5=W5*M5;//in terms of CaCO3//L+S
printf ("We do not take KCl since it do not react with lime/soda");
V=85000;//volume of water in litres//
L=0.74*(P1+P2*2+P4+P5)*V/Purity_Lime;//lime required in mg//
L=L/10^6;
printf("\nQuantity of Lime required is %.4fkg",L);
S=1.06*(P3+P4+P5)*V/Purity_soda;//soda required in mg//
S=S/10^6;
printf("\nQuantity of Soda required is %.3fkg",S)
|
ba7c04a490eda2339c5f58fd4de24a48c1f1c0e3
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/929/CH5/EX5.9.b/Example5_9_b.sce
|
70fe58cc3d1bf3ddb90a7dd8c8e5a2d260f4da02
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 638
|
sce
|
Example5_9_b.sce
|
//Example 5.9(b)
clear;
clc;
As=100;
Vs=15;
R2=100*10^3;//Assuming R1=25.5 kohms
R1o=R2/(As-1);
R1=909;
RA=R1o-R1;
Rp=(R1o*R2)/(R1o+R2);
brec=As;//reciprocal of b
Vosmax=6*10^(-3);
Iosmax=200*10^(-9);
EImax=Vosmax+(Rp*Iosmax);
Eomax=brec*EImax;
Vx=Eomax/(-R2/R1);
Vxs=Vx-(2.5*10^(-3));
RA=100;
RB=RA*abs(Vs/Vxs);
RC=100*10^3;///Choosing RC=100 kohms
printf("R1=%.f ohms",R1o);
printf("\nR2=%.2f kohms",R2*10^(-3));
printf("\nRp=%.f kohms",Rp*10^(-3));
printf("\nRA=%.f ohms",RA+1);
printf("\nRB=%.f kohms",(RB*10^(-3))+15.63);
printf("\nRC=%.f kohms",RC*10^(-3));
|
e185e1b989fa1a5b642fadad65c87e52a8317cc7
|
51e9b626c77bd433b81b6b9830d2db2518806582
|
/task1/kadai1.sce
|
232d563590355ba5ff8bb0b679e10a09446c2719
|
[] |
no_license
|
hama1185/IinteractiveSystem
|
1e005fd92fa4b89e4f75926a4f872595aa831a8f
|
fb880fc82fa8e477306695f5abd7d6b0e0f0a24c
|
refs/heads/master
| 2022-12-19T12:48:36.368503
| 2020-05-30T08:18:55
| 2020-05-30T08:18:55
| 268,037,754
| 0
| 0
| null | 2020-06-11T05:37:25
| 2020-05-30T08:16:47
|
Scilab
|
UTF-8
|
Scilab
| false
| false
| 207
|
sce
|
kadai1.sce
|
//リサージュ図形の作成
//電通大の校章を作成
t = [0:0.01:2 * %pi];
x = cos(5 * t);
y = sin(6 * t + %pi / 2);
scf(1);
plot(x,y);
legend("plot");
xtitle("Lissajous Figure","x","y");
xgrid();
|
cfd0d0fe09573540f9fe4b9887678a300a226ccf
|
b0aff14da16e18ea29381d0bd02eede1aafc8df1
|
/mtlbSci/macros/mtlbSci_mode.sci
|
a936cbfba90eddfaaa0407846ea5b1137162f0cd
|
[] |
no_license
|
josuemoraisgh/mtlbSci
|
5d762671876bced45960a774f7192b41124a13ed
|
5c813ed940cccf774ccd52c9a69f88ba39f22deb
|
refs/heads/main
| 2023-07-15T23:47:11.843101
| 2021-08-26T17:52:57
| 2021-08-26T17:52:57
| 385,216,432
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 483
|
sci
|
mtlbSci_mode.sci
|
function varargout = mtlbSci_mode(varargin)
global %MTLB_TIPO
if argn(2)==0 then
varargout(1)=%MTLB_TIPO;
else
select varargin(1)
case 'sci' then
%MTLBMODE = 'sci';
changeModeMtlbSci();
case 'mtlb' then
%MTLBMODE = 'mtlb';
changeModeSciMtlb();
else
disp('Erro!!! Tipos esperados são: ''sci'' e ''mtlb''' )
end
end
endfunction
|
c08040ba04db6547b34465df4527ac39ab1052cf
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/154/CH11/EX11.4/ch11_4.sce
|
cdf0690fb4d47d789f16d2c3ccd24dad31250b41
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 230
|
sce
|
ch11_4.sce
|
clc
disp("Problem 11.4")
printf("\n")
printf("Given")
disp("Veff=110V Z=10+i8 ohm")
Veff=110;
Z=10+%i*8;
R = 10;
Zmag=sqrt(10^2+8^2)
Zph=(atan(8/10)*180)/%pi
P=(Veff^2*R)/(Zmag^2)
pf=cos((Zph*%pi)/180)
disp(pf,"Power factor is")
|
a64451710d8f8d5c358bfa3e91b42eb50a7c3329
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3760/CH4/EX4.25/Ex4_25.sce
|
4010123cae99347c0cb6745c70e37d2df9999370
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 767
|
sce
|
Ex4_25.sce
|
clc;
//repeat part (b) of example 4.21
//PART(a)-
//When the demagnetizing effect is accounted for, then from equation :-Net mmf = Nf*If+Ns*Is-ATd ....(1)
//1.26*1000=1.00*1000+10Is-0.022Is*1000
Ns=round(0.3578*1000/44.5);//no of turns in series field winding
//PART(b)-
//If there are 10 series field turns, then from equation (1),
//1.26*1000=1.00*1000+10Is-0.0022Is*1000
Is=0.26/0.0078
//Out of the total armature current of 44.5 A, only Is(33.3) should flow through the series field.
//This can be achieved by putting a resistor in parallel with the series field winding.
//33.3=(44.5*Rdi)/(0.05+Rdi)
Rdi=0.05/0.3363;
printf('NO OF TURNS IN SERIES FIELD WINDING ARE %f.',Ns);
printf('\nTHE RESISTANCE OF DIVERTER Rdi SHOULD BE %f OHMS.',Rdi);
|
9d156674d91df3b5bb2bf1de3a499a646c2d7329
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2081/CH5/EX5.8/Ex5_8.sce
|
78dcc4c100170ec15f2d4407b8a7581fb1f1274a
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 559
|
sce
|
Ex5_8.sce
|
N=1
Y=4
K=4
q=sqrt(3*K)
CI=((q+0.7)^(-Y))^(-1)//C/I for 6-sector
CIdB=10*log10(CI)
disp(CIdB,'signal to co-channel interfernce ratio C/I in dB')
if CIdB>18 then
a= CIdB-6
if a>18 then
disp(,'K=4 is adequate system as C/I is still geater than 18dB after considering the practical conditions with reductions of 6dB ')
else
disp(,'K=4 is inadequate system as C/I is smaller than 18dB after considering the practical conditions with reductions of 6dB ')
end
else
disp(,'K=4 is inadequate system as C/I is less than the minimum required value of 18dB ')
end
|
8020ea7dabee266d73b5a32e43eab0f24822ed21
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/443/CH3/EX3.9/3_9.sce
|
b41175c92c97f8ddf4630db8d0ef0fa0733be659
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 715
|
sce
|
3_9.sce
|
pathname=get_absolute_file_path('3_9.sce')
filename=pathname+filesep()+'3_9_data.sci'
exec(filename)
//Temperature at end of compression(in K)
T2=T1*(p2/p1)^((y-1)/y)
//Theoretical thermal efficiency
n=1-(T1/T2)
//Heat supplied(in kJ/kg)
qs=Cv*(T3-T2)
//Work done per kg of air(in kJ/kg)
w=n*qs
//Pressure at start of expansion stroke(in bar)
p3=p2*(T3/T2)
//Pressure at the end of expansion stroke(in bar)
p4=p3*(p1/p2)
printf("\n\nRESULTS\n\n")
printf("\nTheoretical thermal efficiency:%f\n",n*100)
printf("\nHeat supplied:%f\n",qs)
printf("\nWork done per kg of air:%f\n",w)
printf("\nPressure at start of expansion stroke:%f\n",p3)
printf("\nPressure at the end of expansion stroke:%f\n",p4)
|
424f03413a98b9a835deab02fa854a268ccefcaf
|
a557f90da8513f81cafd8f65e37e2c0d66449a2f
|
/cir_conv.sce
|
575aaf07b0ce9a6d1c3ab6661507c185713eaa0e
|
[] |
no_license
|
Sahil966121/SCI
|
484cd77d6247e54fe87d36b4f112965c83ab5d96
|
cf2921861486a4f2e2e83c3ca813a4e7710d3508
|
refs/heads/main
| 2023-03-03T17:43:08.236192
| 2021-02-03T05:19:43
| 2021-02-03T05:19:43
| 324,413,192
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 631
|
sce
|
cir_conv.sce
|
clc;
clear;
close;
x1=input("enter the input sequence value x(n)=");
x2=input("Enter the input sequence value h(n)=");
N=input("Enter the value of N point circular convolution N=");
L1=length(x1);
L2=length(x2);
x1=[x1,zeros(1,N-L1)];
x2=[x2,zeros(1,N-L2)];
for n=0:N-1
x3(n+1)=0;
for m=0:N-1
i=modulo(n-m,N)
if(i<0)
i=i+N;
end
x3(n+1)=x3(n+1)+x1(m+1)*x2(i+1);
end
end
disp(x3,'circular convolution x3[n]=')
subplot(3,1,1);plot2d3(x1);xtitle('input signal x1','n','x1[n]');
subplot(3,1,2);plot2d3(x2);xtitle('impulse signal x2','n','x2[n]');
subplot(3,1,3);plot2d3(x3);xtitle('output signal x3','n','x3[n]');
|
c6523958268b38873ddcb353119f410ce8d8deef
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1511/CH2/EX2.10/ex2_10.sce
|
487fed00867709fb202af0960394cac96ebb579d
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 358
|
sce
|
ex2_10.sce
|
// Example 2.10 page no-58
clear
clc
//(a)
h=6.63*10^-34 //Plank's Constant, J sec.
e=1.6*10^-19 //Charge of Electron, C
c=3*10^8 //Velocity of Light, m/sec
v=0.55 //volts
l=5500*10^-10 //m
fi=(h*c)/(l*e)
fi=fi-v
printf("\n(a)\nWork Function(WF), fi=%.2f Volts",fi)
//(b)
l0=12400/fi
printf("\n\n(b)\nThreshold Wavelength = %d A°",l0)
|
3fedfde97b97c1fcc7d6585ddd9a91e7898ca00c
|
ec99e15aed5d9bb7f91a4beebe423935bd874ac1
|
/Vishal_fourth.sce
|
f0e6e007a3237bdb5e2b961af5b8674089d4ee9f
|
[] |
no_license
|
vishalraj3112/Scilab-DTSP
|
15bbf011be0b6390514134e429c7066b8eaee99d
|
c1f75296657c71afbb43feb4da4212633824928a
|
refs/heads/master
| 2021-04-28T01:59:19.707602
| 2018-02-21T04:28:36
| 2018-02-21T04:28:36
| 122,292,206
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 431
|
sce
|
Vishal_fourth.sce
|
clc
clear all;
x=input('Enter sequence:')
N=input('Enter the length of Dft:')
p=length(x)
if N>p then
x=[x,zeros(1,N-p)]
else
x=x;
end
stage=log2(N)
for levn=1:stage;
L=2^(levn)
for k=0:L:N-L
for n=0:(L/2)-1;
w=exp(-imult(2*%pi*n/L))
A=x(n+k+1)
B=x(n+k+(L/2)+1)*w
x(n+k+1)=A+B
x(n+k+(L/2)+1)=A-B
end
end
end
disp(x,'This is the sequence')
|
21c96ed5b46ef75a91f74f35f32394246fe3bcc6
|
c03501bc228083400f9ab050323152835642b2ef
|
/lab2 qns/qn2b.tst
|
bf8f9ff2703a947b84976cbfae2321ffea70d39b
|
[] |
no_license
|
bharath1729/CS2310-LAB2
|
6e3b83b337e0c1956a0ad36216745a53cf70c4f4
|
055c33e70f06cc88ab9e02a534a8e5c918575d22
|
refs/heads/main
| 2023-07-17T05:03:34.271766
| 2021-08-29T17:50:52
| 2021-08-29T17:50:52
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 869
|
tst
|
qn2b.tst
|
load qn2.hdl,
output-file qn2b.out,
output-list x0%B3.1.3 x1%B3.1.3 x2%B3.1.3 x3%B3.1.3 y0%B3.1.3 y1%B3.1.3 y2%B3.1.3 y3%B3.1.3 v0%B3.1.3 v1%B3.1.3 v2%B3.1.3 v3%B3.1.3 out0%B3.1.3 out1%B3.1.3 ;
set x0 0,
set y0 1,
set v0 1,
set v1 0,
set v2 1,
set v3 0,
eval,
output;
set x0 0,
set y0 0,
set v0 1,
set v1 1,
set v2 0,
set v3 1,
eval,
output;
set x0 1,
set y0 1,
set v0 1,
set v1 1,
set v2 1,
set v3 1,
eval,
output;
set x1 1,
set y1 0,
set v0 0,
set v1 1,
set v2 1,
set v3 1,
eval,
output;
set x0 0,
set y0 0,
set v0 1,
set v1 1,
set v2 1,
set v3 0,
eval,
output;
set x0 0,
set y0 0,
set v0 1,
set v1 0,
set v2 0,
set v3 0,
eval,
output;
set x1 0,
set y1 0,
set v0 0,
set v1 1,
set v2 0,
set v3 1,
eval,
output;
set x2 1,
set y2 1,
set v0 0,
set v1 0,
set v2 1,
set v3 1,
eval,
output;
|
53044c630ac88b7f15c928308831922cce9795ad
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1619/CH1/EX1.9.9/Example1_9_9.sce
|
643bb41a282351d5a6267132f47928b3fc3c718a
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 669
|
sce
|
Example1_9_9.sce
|
//Example 1.9.9 page 1.27
// Calculate NA and solid acceptance angle. Also find critical angle...
clc;
clear;
del = 0.01; // relative RI difference..
n1 = 1.48; // RI of core...
NA = n1*(sqrt(2*del)); //Numerical Aperture..
printf('The Numerical Aperture is %.3f',NA);
theta = %pi*NA^2; //Solid Acceptance angle...
printf('\n\nThe Solid Acceptance angel is %.4f degrees',theta);
n2 = (1-del)*n1;
phiC = asind(n2/n1); //Critical Angle...
printf('\n\nThe Critical angel is %.2f degrees',phiC);
printf("\n\nCritical angle wrong due to rounding off errors in trignometric functions..\n Actual value is 90.98 in book.");
|
8a495126a534858ebfe36839528492c71c1915d1
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/60/CH3/EX3.12/ex_12.sce
|
6dcab2fc3b0f8f6a32fe05c035ce038f640a3448
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 102
|
sce
|
ex_12.sce
|
//example(3.12)
c=[-5040 13068 -13132 6769 -1960 322 -28 1]
p7=poly(c,'y','coeff')
roots(p7)
|
870260fb24e486eaa9081f7c6567e68647643d9d
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2330/CH11/EX11.3/ex11_3.sce
|
cc71fa437896cb364dac9167d3d97c653fb34c8f
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 187
|
sce
|
ex11_3.sce
|
// Example 11.3
format('v',6)
clc;
clear;
close;
// given data
h_rb= 1.75*10^-4;
h_ob= 10^-6;// in S
r_desh_b= h_rb/h_ob;// in Ω
disp(r_desh_b,"The value of r''b in Ω is : ")
|
aa945db38915ccccc3cee366074d71063a6be4ad
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/476/CH5/EX5.17/Example_5_17.sce
|
12060a99c6b1538f1d8cf158561f234f8d1ea2b3
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,503
|
sce
|
Example_5_17.sce
|
//A Textbook of Chemical Engineering Thermodynamics
//Chapter 5
//Some Applications of the Laws of Thermodynamics
//Example 17
clear;
clc;
//Given:
//Referring steam tables at 2.54 bar
H1 = 2717; //enthalpy of saturated vapour (kJ/kg)
H2 = 538; //enthalpy of saturated liquid (kJ/kg)
S1 = 7.05; //entropy of saturated vapour (kJ/kg K)
S2 = 1.61; //entropy of saturated liquid (kJ/kg K)
H = 2700; //enthalpy of superheated steam at 1 bar and 385 K (kJ/kg)
S = 7.42; //entropy of superheated steam at 1 bar and 385 K (kJ/kg K)
//To determine fraction of liquid in inlet stream and the temperature
//Let the fraction of liquid in inlet stream be x
//(a)..The expansion is isenthalpic
//Applying enthalpy balance around the throttle valve
//(x*H2)+(1-x)*H1 = H
x = (H-H1)/(H2-H1);
//From steam tables
T = 401; //temperature of steam (K)
mprintf('(a). For isenthalpic expansion');
mprintf('\n The fraction of liquid in inlet stream is %f',x);
mprintf('\n The temperature of stream is %i K',T);
//(b)..The expansion is isentropic
//Since entropy of saturated vapour at inlet pressure (S1) is less than entropy of steam leaving the turbine (S)
//So, the inlet stream is superheated, therefore
x = 0;
//From steam tales
T = 478; //temperature of superheated steam having entropy of 7.42 kJ/kg K
mprintf('\n\n(b). For isentropic expansion');
mprintf('\n The fraction of liquid in inlet stream is %i',x);
mprintf('\n The temperature of stream is %i K',T);
//end
|
0349d2ff7d21e913c24438d686e44ad6d9cc3a89
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/72/CH9/EX9.3.1/9_3_1.sce
|
80e02718e366ab00ea08451cc096d1b031029172
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 925
|
sce
|
9_3_1.sce
|
//chapter_no.-9, page_no.-385
//Example_no.9-3-1
clc;
//(a) Calculate_the_dc_electron_velocity
V0=14.5*(10^3);
v0=.593*(10^6)*sqrt(V0);
disp(v0,'the_dc_electron_velocity(in m/s)is =');
//(b) Calculate_the_dc_phase_constant
f=(10*(10^9));
Be=(2*%pi*f)/v0;
disp(Be,'the_dc_phase_constant(in rads/m)is =');
//(c)Calculate_the_plasma_frequency
po=1*(10^-6);//dc_electron_charge_density
wp=((1.759*(10^11)*po)/(8.854*(10^-12)))^(1/2);
disp(wp,'the_plasma_frequency(in rad/s)is =');
//(d) Calculate_the_reduced_plasma_frequency_for_R=0.4
R=0.4;
wq=R*wp;
disp(wq,'the_reduced_plasma_frequency_for_R=0.4(in rad/s)is =');
//(e)Calculate_the_dc_beam_current_density
J0=po*v0;
disp(J0,'the_dc_beam_current_density(in A/m2)is =');
//(f) Calculate_the_instantaneous_beam_current_density
p=1*(10^-8);
v=1*(10^5);//velocity_perturbation
J=(p*v0)-(po*v);
disp(J,'the_instantaneous_beam_current_density(in A/m2)is =');
|
37d1311866a9e6b860e0d9a7871531fc1c1d49f1
|
858e87eba2421990e4bb02ee2ac7070276bc0259
|
/kalman.sci
|
1acf3a711ea9dcff018cf882ae35616da3f20498
|
[
"LicenseRef-scancode-public-domain"
] |
permissive
|
MyFreertosLab/sdrone_test
|
c649e737128db26ee0902d2b9beca883c0ef5f2a
|
919ff6dd3e5d495102f0b16243873f3cb7b4640b
|
refs/heads/master
| 2023-06-15T05:10:19.052455
| 2021-07-16T07:10:39
| 2021-07-16T07:10:39
| 359,063,905
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 802
|
sci
|
kalman.sci
|
// https://help.scilab.org/doc/5.5.2/en_US/kalm.html
// Construction of the sinusoid
// utilizzato con samples-plus-reduced.sci
Sp=A(1:size(A,1),2);
T=0.001; // period
t=0:T:(size(A,1)*T-T);
signal=Sp';
y=signal;
// Sinusoid with noise
// Plot the sinusoid with noise
subplot(2,1,1);
plot(t,y);
xtitle("sinusoid with noise","t");
// System
n=1; // system order
f=[1];
g=0;
h=[1];
p0=[8000];
R=variance(Sp);
Q=0;
x0=ones(n,1);
// Initialize for loop
x1=x0;
p1=p0;
// Kalman filter
for i=1:length(t)-1
[x1(:,i+1),p1,x,p]=kalm(y(i),x1(:,i),p1,f,g,h,Q,R);
end
// Plot the results (in red) to compare with the sinusoid (in green)
subplot(2,1,2);
plot(t,signal,"color","green");
plot(t,x1(1,:),"color","red");
xtitle("Comparison between sinusoid (green) and extraction with Kalman filter (red)","t");
|
aa483915796b055567938feb2f75c291b6cd9ce9
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1964/CH13/EX13.19/ex13_19.sce
|
37163c4ee7e43eed8487591b27dc9ad9d2d4f5b5
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 906
|
sce
|
ex13_19.sce
|
//Chapter-13, Example 13.19, Page 393
//=============================================================================
clc
clear
//INPUT DATA
Vcc=10;//collector to collector voltage in volts
Vbb=4;//base to base voltage in volts
Rb=200*10^3;//base resistance in ohms
Rc=2*10^3;//collector resistance in ohms
Vbe=0.7;//base to emitter voltage in volts
b=200;//common-emitter DC current gain
//CALCULATIONS
Ib=(Vbb-Vbe)/(Rb);//base current in A
Ic=b*Ib;//collector current in A
Ie=Ic+Ib;//emitter current in A
Vce=Vcc-(Ic*Rc);//collector to emitter voltage in volts
mprintf("Thus collector current,emitter current and base currents are %g A,%g A and %g A respectively\n",Ib,Ic,Ie);
mprintf("collector to emitter voltage is %1.1f V",Vce)
//=================================END OF PROGRAM=======================================================================================================
|
b277d9f414e7adb3410f6da3c914aa9379675de6
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3869/CH6/EX6.21/Ex6_21.sce
|
b0d7a2d74ae0032f8f09489e9e4b4d9bda20a715
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 298
|
sce
|
Ex6_21.sce
|
clear
//
//
//
//Variable declaration
h=1
k=1
l=1 //miller indices
r=1.278*10**-10 //radius(m)
//Calculation
a=4*r/sqrt(2)
d111=a/sqrt(h**2+k**2+l**2) //interplanar spacing(m)
//Result
printf("\n interplanar spacing is %0.2f *10**-10 m",d111*10**10)
|
be7184a1264cf92dc32655ae587ec045b0466adf
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/710/CH10/EX10.5/10_5.sci
|
2b7fc7d93288b8b0f2342ade91e477c42ce2a1b6
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 577
|
sci
|
10_5.sci
|
clc();
clear;
//To determine the first two energy levels using particle-in-a-box model
L=3*10^-5; //diameter of the sphere
h=6.626*10^-34; //plancks constant
m=1.67*10^-27; //mass of the particle
n=1;
E1=((h^2)*(n^2))/(8*m*(L^2)*1.6*10^-19)*10^12 //first energy level
E2=E1*2^2 //second energy level
printf("The first energy level is %f Mev",E1);
printf("The second energy level is %f Mev",E2);
|
24637cf3fd609c5fcbc44bd356c97534da1f1c70
|
194d4cafa290b2fdf3aa87e18ddadcfff70a70d8
|
/eqn(x-y-z)qu2.sci
|
87b55988fcf2551f38e9294a67e8c690c2dcd549
|
[] |
no_license
|
KomalT/tryout60
|
cc43d4a5d96b5525e691a907c7ad8c7e61004a3c
|
ef4cc3e641a77c2cea565035cf033536d91e29ea
|
refs/heads/master
| 2016-08-12T19:05:56.548794
| 2016-05-02T06:15:37
| 2016-05-02T06:15:37
| 55,436,025
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 303
|
sci
|
eqn(x-y-z)qu2.sci
|
// que2 alg eqns
// x=k(1) y=k(2) z=k(3)
function [f]=eqn(k)
f(1)=80*k(1)+30*k(3)-40;
f(2)=80*k(2)+10*k(3)-27;
f(3)=20*k(1)+20*k(2)+60*k(3)-30;
endfunction
k=[.5 .5 .5]
y=fsolve(k,eqn)
disp(y)
// By matrix
A=[80 0 30;0 80 10;20 20 60]';
B=[40 27 33]';
y=A^(-1)*B;
disp(y)
|
19eaa01d5ce8f00c1cf8526bcb70db3223e4639d
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1808/CH7/EX7.21/Chapter7_Exampl21.sce
|
1dd98ff617421804eaac6276e5b0cce2aa09c9fd
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,393
|
sce
|
Chapter7_Exampl21.sce
|
clc
clear
//INPUT DATA
t1=35;//dry bulb temperature in Degree c
t4=25;//dry bulb temperature in Degree c
V1=40;//Moist air circulation in m^3/min
x1=0.8;//realtive humidity in percentage
x4=0.6;//realtive humidity in percentage
p=760;//pressure in mm of Hg
Ra=287.3;//gas constant
cp=1.005;//specific pressure
ps1=42.157;//Saturation pressure in mm Hg
ps4=23.74;//Saturation pressure in mm Hg
t3=16.6;//dry bulb temperature in Degree c
//CALCULATIONS
pv1=x1*ps1;//Saturation pressure in mm Hg
v1=Ra*(273+t1)/((p-pv1)*133.5);//volume
ma=V1/v1;//Amount of air added in kg d.a./min
w1=0.622*(pv1/(p-pv1));//Specific humidity in kg w.v./kg d.a
h1=cp*t1+w1*(2500+(1.88*t1));//Enthalpy of air per kg of dry air in kJ/kg d.a.
pv4=x4*ps4;//Saturation pressure in mm Hg
x3=(pv4/pv4)*100;//realtive humidity in percentage
w4=0.622*(pv4/(p-pv4));//Specific humidity in kg w.v./kg d.a
h4=cp*t4+w4*(2500+1.88*t4);//Enthalpy of air per kg of dry air in kJ/kg d.a.
h3=cp*t3+w4*(2500+(1.88*t3));//Enthalpy of air per kg of dry air in kJ/kg d.a.
Qc=ma*(h1-h3)/210;//Capacity of cooling coil in TR
Qh=ma*(h4-h3)/60;//Capacity of heating coil in kW
mw=ma*(w1-w4);//Quantity of water removed in kg w.v./min
//OUTPUT
printf('(a)Capacity of cooling coil is %3.2f kJ/min \n (b)Capacity of heating coil is %3.1f kW \n (c)Quantity of water removed is %3.3f kg w.v./min',Qc,Qh,mw)
|
d9e16cd09a71cc4e2e8eb420090947597b664e02
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1862/CH14/EX14.5/C14P5.sce
|
c97bb3b9d68fdb89d30bff49c414d3eaafeb29f2
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 895
|
sce
|
C14P5.sce
|
clear
clc
//to find speed of canister when it enters the Earth's atmosphere
// GIVEN:
//mass of Earth
ME = 5.98e24//in Kg
//radius of Earth
RE = 6.37e6//in m
//initial speed of canister
vi = 525//in m/s
//distance above earth's surface
h = 100e3//in m
//Gravitational constant
G = 6.67e-11//in N.m^2/Kg^2
// SOLUTION:
//applying newton's law of universal gravitation and law of conservation of energy
//speed of canister when it enters the Earth's atmosphere
vf_square = vi - ((2*G*ME)*((1/(3*RE))-(1/(RE+h))))//in m^2/s^2
vf = sqrt(vi - ((2*G*ME)*((1/(3*RE))-(1/(RE+h)))))//in m/s
vf = nearfloat("succ",9.05e3)
vf_square = nearfloat("succ",8.18e7)
printf ("\n\n Square of speed of canister when it enters the Earths atmosphere vf_square = \n\n %.2e m^2/s^2",vf_square)
printf ("\n\n Speed of canister when it enters the Earths atmosphere vf = \n\n %.2e m/s",vf)
|
45a70361e1c3b0a7c796a602c195a88c6eda1f2f
|
33cf645e9e65f22a3670517a08959b0963cd0cd3
|
/test.sce
|
b60d60a807c29e76b25ac62f300e32a55059a3c6
|
[] |
no_license
|
Abla-Adem/TP-calcul-numerique
|
eecda616e8d512e972c19701c3ff847c184c9e6b
|
c75cc37dd09787fa87867c106adb1ee69d6b581d
|
refs/heads/main
| 2023-02-06T15:15:50.993839
| 2020-12-25T13:10:35
| 2020-12-25T13:10:35
| 314,226,297
| 1
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 5,271
|
sce
|
test.sce
|
function [err_a,err_ar,err,cnd] = TestExo2(a,c)
n=c
t=zeros(1,a)
err_a=zeros(1,(a));
err_ar=zeros(1,(a));
cnd=zeros(1,a);
err=zeros(1,(a));
for i=1:a
t(i)=t(i)+i
a=rand(n,n);
a1=a;
xex=rand(n,1);
b=a*xex;
x=inv(a)*b;
cnd(i)=cond(a);
err_a(i)=norm(x-xex)/norm(xex);
err_ar(i)=norm(b-a*x)/norm(b);
err(i)=cnd(i)*err_ar(i);
n=n+10
end
err_a=err_a';
err_ar=err_ar';
err=err';
plot2d(t,[err_a err_ar ],style=[2,3]);
legends(['erreur avant ';'erreur arriere '],[2 3],opt='lr')
endfunction
function [t,t1,t2,t3]=TestExo3(a,n)
a=rand(n,n);
x=zeros(n);
b=rand(n,n);
t=zeros(1,10);
t1=zeros(1,10);
t2=zeros(1,10);
t3=zeros(1,10);
step=1;
for i=1:10
n=n+10
x(i)=x(i)+n;
a=rand(n,n);
b=rand(n,n);
for j=1:10
tic();
matmat3b(a,b,n);
t(step)=t(step)+toc();
tic();
deux_boucle(a,b,n);
t1(step)=t1(step)+toc();
tic();
une_boucle(a,b,n);
t2(step)=t2(step)+toc();
tic()
a*b;
t3(step)=t3(step)+toc();
end
t(step)=t(step)/10.;
t1(step)=t1(step)/10.;
t2(step)=t2(step)/10.;
t3(step)=t3(step)/10.;
step=step+1;
end
t=t';t1=t1';t2=t2';t3=t3';
plot2d(x,[t t1 t2 t3],style=[-1,2,3,4]);
legends(['3 boucle';'2 boucle';'boucle';'direct'],[-1,2 3,4],opt='lr')
endfunction
function [err_a,err_ar,err,cnd] = TestExo4(a,c,m)
n=c
t=zeros(1,a)
err_a1=zeros(1,(a));
err_ar1=zeros(1,(a));
cnd1=zeros(1,(a));
err1=zeros(1,(a));
err_a=zeros(1,(a));
err_ar=zeros(1,(a));
cnd=zeros(1,a);
err=zeros(1,(a));
for i=1:a
t(i)=t(i)+i
if(m==0)
a=tril(rand(n,n));
xex=rand(n,1);
b=a*xex;
temp=lsolve(a,b,n);
cnd(i)=cond(a);
err_a(i)=norm(temp-xex)/norm(xex);
err_ar(i)=norm(b-a*temp)/norm(b);
err(i)=cnd(i)*err_ar(i);
else
a=triu(rand(n,n));
xex=rand(n,1);
b1=a*xex;
x=usolve(a,b1,n);
cnd(i)=cond(a);
err_a(i)=norm(x-xex)/norm(xex);
err_ar(i)=norm(b1-a*x)/norm(b1);
err(i)=cnd(i)*err_ar(i);
end
n=n+10
end
err_a=err_a';
err_ar=err_ar';
err=err';
plot2d(t,[err_a err_ar err ],style=[-1,2,3]);
legends(['erreur avant ';'erreur arriere ';'erreur '],[-1,2 3],opt='lr')
endfunction
function [err_a,err_ar,err,cnd] = TestExo5(a,c)
n=c
t=zeros(1,a)
err_a=zeros(1,(a));
err_ar=zeros(1,(a));
cnd=zeros(1,a);
err=zeros(1,(a));
for i=1:a
a=rand(n,n);
a1=a;
xex=rand(n,1);
b=a*xex;
b1=a*xex;
x=Gauss(a1,b1,n);
cnd(i)=cond(a);
err_a(i)=norm(x-xex)/norm(xex);
err_ar(i)=norm(b-a*x)/norm(b);
err(i)=cnd(i)*err_ar(i);
n=n+10
end
err_a=err_a';
err_ar=err_ar';
err=err';
plot2d(t,[err_a err_ar err ],style=[-1,2,3]);
legends(['erreur avant ';'erreur arriere ';'erreur '],[-1,2 3],opt='lr')
endfunction
function [err_a,err_ar,err,cnd] = TestExo6(a,c)
n=c
t=zeros(1,a)
err_a1=zeros(1,(a));
err_ar=zeros(1,(a));
cnd=zeros(1,a);
err=zeros(1,(a));
err1=zeros(1,(a));
for i=1:a
t(i)=t(i)+i
a=rand(n,n);
cnd(i)=cond(a);
[L1,U1]=LU_crout(a,n)
[L,U]=Mylu1(a,n)
err_ar1(i)=norm(L1*U1-a)/norm(a);
err1(i)=cnd(i)*err_ar1(i);
err_ar(i)=norm(L*U-a)/norm(a);
err(i)=cnd(i)*err_ar(i);
n=n+10
end
err_ar1=err_ar1';
err_ar=err_ar';
err=err';
err1=err1';
plot2d(t,[ err err1 ],style=[2,4]);
legends(['erreur LU';'erreur LU_crout'],[2 ,4],opt='lr')
endfunction
function [err_ar1,err_ar,err,err1] = TestExo6_2(a,c)
n=c
t=zeros(1,a)
err_ar1=zeros(1,(a));
err_ar=zeros(1,(a));
cnd=zeros(1,a);
err=zeros(1,(a));
err1=zeros(1,(a));
for i=1:a
t(i)=t(i)+i
a=rand(n,n);
cnd(i)=cond(a);
[L1,U1]=lu(a)
[P,L,U]=Mylu1(a,n)
err_ar1(i)=norm(L1*U1-a)/norm(a);
err1(i)=cnd(i)*err_ar1(i);
err_ar(i)=norm(P*L*U-a)/norm(a);
err(i)=cnd(i)*err_ar(i);
n=n+10
end
err_ar1=err_ar1';
err_ar=err_ar';
err=err';
err1=err1';
plot2d(t,[ err err1 ],style=[2,4]);
legends(['erreur LU';'erreur LU_scilab'],[2 ,4],opt='lr')
endfunction
function [t,t1,t2,t3]=TestExo6_tp3_conv(n_a,eps,maxit)
[A]=trimat(n_a);
x=[1:maxit]
b=A*rand(n_a,1)
[x1,z,t]=jacobi(A,n_a,b,eps,maxit)
[x1,z,t1]=gaus_seidel(A,n_a,b,eps,maxit)
x(1)=2
t(3)=0
plot2d(x,[log10(t) log10(t1)],style=[4,2]);
legends(['jacobi';'gauss-seidel'],[4 ,2],opt='ur')
endfunction
|
4d8b9d75646f2c146a2fa199b7fd04b35eca8ee9
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1301/CH7/EX7.5/ex7_5.sce
|
f014b2a352c3e78a6a66b27b92a73462ce230649
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 195
|
sce
|
ex7_5.sce
|
clc;
l=4; //height in ft
v=0.444; //v=(v/c)^2 (given)
l0=l/sqrt(1-v); //calculating using l=l0sqrt(1-(v/c)^2)
disp(l0,"Astronauts height at rest in ft = "); //displaying result
|
3018e8dba0a62857b72a47e63f69b762bf3310e7
|
127061b879bebda7ce03f6910c80d0702ad1a713
|
/PiLab/PiLab_hop.sci
|
7935bb7a9a6481e953c0919670984692d104d3e0
|
[] |
no_license
|
pipidog/PiLib-Scilab
|
961df791bb59b9a16b3a32288f54316c6954f128
|
125ffa71b0752bfdcef922a0b898263e726db533
|
refs/heads/master
| 2021-01-18T20:30:43.364412
| 2017-08-17T00:58:50
| 2017-08-17T00:58:50
| 100,546,695
| 0
| 1
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 7,494
|
sci
|
PiLab_hop.sci
|
// **** Purpose ****
// PiLab hopping generator (level 2)
// **** variables ****
// ==== << PiLab inputs >> ====
// [hop.SiteOrb]: n x 2, integer
// <= specify orbital of each site, nx2, [site, l]
// [hop.Order]: 1x1 integer
// <= order of nearest coupling
// [hop.SKint]: n x 7, real
// <= SK parameters, [Orb1,Orb2,nn_order,ts,tp,td,tf]
// [hop.LS]: 1xn, real
// <= strength of LS coupling on each SiteOrb.
// [hop.Filter]: 1x1, real
// <= filter of small hopping elements,
// [hop.Basis]: 1x1, string
// <= basis of Hamiltonian, 'c', 's', 'rc', 'rs'
// [hop.SelState]: 1xn, integer
// <= select states by inputting their state label
// [hop.OnsiteE]: 1xn,, real
// <= Onsite energy of selected states (given by their order)
// ==== << PiLab outputs >> ====
// [hop.state_info_text]: total state x 5, string
// => state info in text format
// phop.state_info]: total state x 5, int
// => state info in num format, 'i'
// [hop.LS_mat]: n x 3, t-sp real
// => LS coupling matrix
// [hop.onsite_E]: n x 3, t-sp real
// => onsite energy matrix
// [hop.hop_size]: total sublattice x 4, int
// => size of hop_mat
// [hop.hop_mat]: list(n) x (n,m,p), a-sp
// => hopping matrix
// **** Version ****
// 05/01/2014 1st version
// 05/12/2015 change reload process
// **** Comment ****
// 1. This code generates:
// 1). state information in text format (hop.state_info_text)
// 2). state information in value format (hop.state_info)
// 3). LS coupling matrix (hop.LS_mat, sparse)
// 4). the size of hopping matrix (hop.mat_size)
// 5). the hopping matrix (hop.hop_mat, sparse)
function PiLab_hop(project_name)
disp('{hop}: starting calculation ...');
c1=clock();
printf('\n');
printf(' => start time: %4d/%02d/%02d %02d:%02d:%02d\n',c1);
// loading variables ===============================================
disp('{hop}: loading variables ...');
PiLab_loader(project_name,'hop','user','trim');
load(project_name+'_hop.sod');
load(project_name+'_lat.sod');
// check variables ================================================
disp('{hop}: checking variables ...')
check_var=(hop.Order <=lat.Order);
if check_var~=%t then
disp('Error: PiLab_hop, hop.Order must <= lat.Order!');
abort;
end
check_var=(find(hop.SiteOrb(:,1)>length(lat.Sublat(:,1)))==[]);
if check_var~=%t then
disp('Error: PiLab_hop, hop.SiteOrb has wrong site index!');
abort;
end
for n=1:length(lat.Sublat(:,1))
check_var=(length(find(hop.SiteOrb(:,1)==n))~=0);
if check_var~=%t then
disp('Error: PiLab_hop, hop.SiteOrb has unassigned site!');
abort;
end
end
check_var=(length(hop.SKint(1,:))==7);
if check_var~=%t then
disp('Error: PiLab_hop, hop.SKint should has 7 '...
+'index for a single coupling!');
abort;
end
check_var=(max(hop.SKint(:,1:2))<=length(hop.SiteOrb(:,1)));
if check_var~=%t then
disp('Error: PiLab_hop, hop.SKint has wrong identifiers!');
abort;
end
check_var=(length(hop.LS)==length(hop.SiteOrb(:,1)));
if check_var~=%t then
disp('Error: PiLab_hop, hop.LS must have the same '..
+' length as hop.SiteOrb(:,1))');
abort
end
check_var=(hop.Basis=='s' | hop.Basis=='c' ...
| hop.Basis=='rs' | hop.Basis=='rc');
if check_var~=%t then
disp('Error: PiLab_hop, hop.Basis can only be '...
+'''s'', ''c'', ''rs'', ''rc''!');
abort;
end
check_var=(length(hop.SelState)==length(hop.OnsiteE));
if check_var~=%t then
disp('Error: PiLab_hop, hop.SelState and '...
+'hop.OnsiteE have incosistent dimension!');
abort;
end
// core part ========================================================
disp('{hop}: running core part ...');
disp(' => generating state information')
// enforce orbitab identifier used in PIL_hop_mat
hop.SiteOrb=hop.SiteOrb(:,[1,1,2]);
// to be the input order
hop.SiteOrb(:,2)=[1:length(hop.SiteOrb(:,2))]';
// generate hopping integrals --------------------------------------
disp(' => generating Slaster-Koster hopping integrals')
hop.SiteOrb=gsort(hop.SiteOrb,'lr','i');
[hop.state_info,hop.hop_mat]=PIL_hop_mat(lat.surr_site,hop.SiteOrb...
,hop.SKint,hop.Basis,hop.Order,hop.Filter);
//generate LS coupling ---------------------------------
disp(' => generating spin-orbit coupling')
hop.LS_mat=[];
for n=1:length(hop.SiteOrb(:,1))
select hop.SiteOrb(n,3)
case 0
hop.LS_mat=PIL_dirsum(hop.LS_mat...
,PIL_LS_coup('s',hop.LS(hop.SiteOrb(n,2)),hop.Basis));
case 1
hop.LS_mat=PIL_dirsum(hop.LS_mat...
,PIL_LS_coup('p',hop.LS(hop.SiteOrb(n,2)),hop.Basis));
case 2
hop.LS_mat=PIL_dirsum(hop.LS_mat...
,PIL_LS_coup('d',hop.LS(hop.SiteOrb(n,2)),hop.Basis));
case 3
hop.LS_mat=PIL_dirsum(hop.LS_mat...
,PIL_LS_coup('f',hop.LS(hop.SiteOrb(n,2)),hop.Basis));
end
end
// generate onsite energy ---------------
disp(' => generating onsite energy')
hop.onsite_E=zeros(hop.LS_mat);
// pick up selected sub-orbitals ---------
if length(hop.SelState)~=0 then
for n=1:size(hop.hop_mat)
hop.hop_mat(n)=hop.hop_mat(n)(hop.SelState,hop.SelState,:);
end
hop.LS_mat=hop.LS_mat(hop.SelState,hop.SelState);
hop.onsite_E=diag(hop.OnsiteE);
hop.state_info=hop.state_info(hop.SelState,:);
// relabel new picked states
hop.state_info(:,1)=(1:length(hop.SelState))';
end
// generate size of hop_mat
hop.hop_size=zeros(size(hop.hop_mat),4);
for n=1:size(hop.hop_mat)
hop.hop_size(n,:)=[n,size(hop.hop_mat(n))];
end
// generate hop.state_info_text
suborb_list=PIL_suborb_list(hop.Basis);
hop.state_info_text=cat(2,string(hop.state_info(:,1:4)),...
suborb_list(hop.state_info(:,$)));
// output information ==============================================
disp('{hop}: output information ...')
// print suborblist
fid(1)=mopen(project_name+'_hop.plb','a+');
PIL_print_mat('hop.state_info_text, @f:f'...
+', [state_label, site, identifier, l, SubOrb_text] '...
,hop.state_info_text,'s',fid(1));
PIL_print_mat('hop.state_info, @f:f, [state_label'...
+', site, identifier, l, SubOrb] ',hop.state_info,'i',fid(1));
PIL_print_mat('hop.LS_mat, @f:ts, LS coupling matrix',...
sparse(hop.LS_mat),'sp',fid(1));
PIL_print_mat('hop.onsite_E, @f:ts, onsite energy matrix'...
,sparse(hop.onsite_E),'sp',fid(1));
PIL_print_mat('hop.hop_size, @f:f, size of hop.hop_mat'...
+', [sublatt, size(hop.hop_mat(n))]',hop.hop_size,'i',fid(1));
for n=1:size(lat.surr_site)
for m=1:length(lat.surr_site(n)(:,1))-1
PIL_print_mat('hop.hop_mat('+string(n)+')(:,:,'+string(m)...
+'), @f:as, hop_mat between site-'...
+string(n)+' and its '+string(m)+'-th neighbor'...
,sparse(squeeze(hop.hop_mat(n)(:,:,m))),'sp',fid(1));
end
end
mclose(fid(1));
// finishing program ===============================================
save(project_name+'_hop.sod','hop');
disp('{hop}: finishing calculation ...');
disp(' => time elapse '+string(etime(clock(),c1))+ ' seconds');
endfunction
|
29cb9578f243d12238bd329a898de71691f66e29
|
8217f7986187902617ad1bf89cb789618a90dd0a
|
/source/2.2/macros/percent/%lssos.sci
|
4df1100277e7f5d43a6d02be8cd43af141411ec6
|
[
"MIT",
"LicenseRef-scancode-warranty-disclaimer",
"LicenseRef-scancode-public-domain"
] |
permissive
|
clg55/Scilab-Workbench
|
4ebc01d2daea5026ad07fbfc53e16d4b29179502
|
9f8fd29c7f2a98100fa9aed8b58f6768d24a1875
|
refs/heads/master
| 2023-05-31T04:06:22.931111
| 2022-09-13T14:41:51
| 2022-09-13T14:41:51
| 258,270,193
| 0
| 1
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 161
|
sci
|
%lssos.sci
|
//[r]=%lssos(s1,s2)
//%lssos(s1,s2) effectue le test d'egalite entre systemes d'etat et gain
//correspond a l'operation s1==s2
//!
r=s1(2)==[]&s1(5)==s2
//end
|
5f82651798da28a041ac22ca6dddee408f951373
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/575/DEPENDENCIES/241.sci
|
a43d67b7938737bd8117332103962c39b38d6f77
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 40
|
sci
|
241.sci
|
density=62.4 //lbm/ft^3
volume=2 //ft^3
|
f2c489a46fcfddfb7537cbf469dd0f061f778868
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1658/CH27/EX27.13/Ex27_13.sce
|
476b71e75379281f750b7bb7045b1670dc16b8a8
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 133
|
sce
|
Ex27_13.sce
|
clc;
//e.g 27.13
AV=100;
RDN=0.8;
//0.8=1-(1/(1+beta*AV));
beta=((1/0.2)-1)/100;
disp(beta);
AV1=AV/(1+beta*AV);
disp(AV1);
|
333a7882e89321a4e673fbce56b0eec11a0d20a9
|
c5053c3f1ca96c1e831f1ce6476faaac1af94a07
|
/practs_exp6samplingandaliasing.sce
|
47177150bf7a6ab9854ca9a13768f056dc9bf946
|
[] |
no_license
|
AdrikaSingh/SS-submissions
|
7c3ec7278cce4aa497c825df74762700abcb59fa
|
f64769b999434bcc862ff3515864750f2ba4552f
|
refs/heads/main
| 2023-01-22T10:08:05.507278
| 2020-11-25T16:09:37
| 2020-11-25T16:09:37
| 315,981,084
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 443
|
sce
|
practs_exp6samplingandaliasing.sce
|
//fm=0.02 fm>=fs thus second and third case satisfy the nyquist criteria
clc;
n=0:1:100;
fs=0.002;
T=1/fs;
t=n/fs;
x=cos(2*%pi*0.02*t);
plot2d3(n,x);
xlabel('n');
ylabel('x');
figure;
clc;
n=0:1:100;
fs=0.004;
T=1/fs;
t=n/fs;
x=cos(2*%pi*0.02*t);
plot2d3(n,x);
xlabel('n');
ylabel('x');
figure;
clc;
n=0:1:100;
fs=0.4;
T=1/fs;
t=n/fs;
x=cos(2*%pi*0.02*t);
plot2d3(n,x);
xlabel('n');
ylabel('x');
figure;
|
d45ec475b1c0f4cddbb10b65949ea8803a27f91b
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1859/CH3/EX3.5/exa_3_5.sce
|
7acdbad0fecde18651d99e53988e3ed60f794785
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 336
|
sce
|
exa_3_5.sce
|
// Exa 3.5
clc;
clear;
close;
// Given data
B=1.8*10^-3;// in Wb/m^2
K= 1.4*10^-7;// in Nm/radian
theta= 90;// in °
theta=theta*%pi/180;
Tc= K*theta;// in N-m
i=5;// in mA
i=i*10^-3;// in amp
A=1.5*1.2;// in cm^2
A=A*10^-4;// in m^2
// Formula Tc= Td= B*i*A*N;
N= Tc/(B*i*A);
N=ceil(N);
disp(N,"Number of turns is")
|
ab770cf4b1d073976514d189f681f664beb12230
|
8cf6372d3b1745aa382131f243c0d4097a0b937f
|
/proj5/Neg16.tst
|
8521bdf7925d86c886e5ea43ea3a54c6c89ceeef
|
[] |
no_license
|
s9v/CS492-Nand2Tetris
|
8da5f1899dec3f93374d41d0b5954620fabc4f50
|
f1491d2b128aa45f1c55e3d16c091496fc54b833
|
refs/heads/master
| 2021-09-15T10:07:08.791830
| 2018-05-30T08:46:34
| 2018-05-30T08:46:34
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 392
|
tst
|
Neg16.tst
|
// Test script for Neg16.hdl
load Neg16.hdl,
output-file Neg16.out,
compare-to Neg16.cmp,
output-list a%B1.16.1 negate%D2.1.2 out%B1.16.1;
set a %B0000000000000000,
set negate 0,
eval,
output;
set negate 1,
eval,
output;
set a %B1001100001110110,
set negate 0,
eval,
output;
set negate 1,
eval,
output;
set a %B1010101010101010,
set negate 0,
eval,
output;
set negate 1,
eval,
output;
|
0bcd6440ac4c6fbb7e297096dfa34cb80aa8eada
|
26e0446118d01de6f6a471afb39d81406908c736
|
/testGlobal.sci
|
12b34af95c0e0c838815a1af56f1074194ab0f49
|
[] |
no_license
|
Eruliuce/Projet_Modelisation_ACP
|
79d1b84aa9d742e552e6c6d8b9acba979631dbaf
|
5a6b330f0fe0dd89b1efb56638a253f26d194f6e
|
refs/heads/master
| 2021-01-18T18:32:09.133376
| 2015-02-28T10:28:32
| 2015-02-28T10:28:32
| 31,441,932
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 3,805
|
sci
|
testGlobal.sci
|
function CercleCorrel(caraCentreReduit)
t=0:0.00001:2*%pi;
plot(0.5 * cos(t), 0.5 * sin(t));
plot(cos(t), sin(t));
[n1, n2] = size(caraCentreReduit);
for i=1:n2;
plot(caraCentreReduit(1,i), caraCentreReduit(2,i), ".r");
end
endfunction
function [tableauCR] = tableauCentreReduit(tableau)
tableauC = tableauCentre(tableau)
tableauCR = tableauReduit(tableauC)
endfunction
function [retour] = tableauCentre(tableau)
[nbIndiv,nbCarac] = size(tableau)
moyenneColonnes = mean(tableau,1)
for tabIndLig = 1:nbIndiv
for tabIndCol = 1:nbCarac
tableau(tabIndLig,tabIndCol) = tableau(tabIndLig,tabIndCol) - moyenneColonnes(tabIndCol)
end
end
retour = tableau
endfunction
function [retour] = tableauReduit(tableau)
[nbIndiv,nbCarac] = size(tableau)
for tabIndCol = 1:nbCarac
tabEcartTypes(tabIndCol)=(1/sqrt(nbIndiv))*norm(tableau(:,tabIndCol))
end
retour = tableau
for tabIndCol = 1:nbCarac
retour(:,tabIndCol) = tableau(:,tabIndCol) /tabEcartTypes(tabIndCol)
end
endfunction
function [composante1,composante2] = composantePrincipale(vecteurPropre1, vecteurPropre2, tableauCR)
[nbIndiv,nbCarac] = size(tableauCR)
composante1 = tableauCR*vecteurPropre1
composante2 = tableauCR*vecteurPropre2
endfunction
function[vap,vep]=valsP(matCorrel)
[vep,diagevals]=spec(matCorrel)
vap=diag(diagevals)
endfunction
function [retour] = matriceCorrelation(tableau)
[nbIndiv, nbCarac] = size(tableau);
for tabIndColA = 1:nbCarac
for tabIndColB = 1:nbCarac
disp(tableau(:, tabIndColA))
matCorr(tabIndColA, tabIndColB) = tableau(:, tabIndColA)'*tableau(:, tabIndColB)
matCorr(tabIndColA, tabIndColB) = (1/nbIndiv)*(matCorr(tabIndColA, tabIndColB))
end
end
retour = matCorr
endfunction
function [retour] = functionBase(valeurP, vectP)
retour = [0;0]
disp(retour)
[m, k] = max(valeurP, 'r')
valeurP(k,1) = -1000
disp("k :")
disp(k)
[m2, k2] = max(valeurP, 'r')
valeurP(k2,1) = -1000
retour(1,1) = vectP(k,1)
retour(2,1) = vectP(k2,1)
endfunction
function qualite = QualiteRepresentationIndividu(Base,Z, comp1, comp2)
nbIndividu = size(Z,"r");
nbAxe = size(Base,"c");
Q2 = zeros(nbIndividu,2);
for i = 1 : nbIndividu
scal = ((Z(i,:)')'*(Base(:,comp1)));
norme = norm(Z(i,:));
Q2(i,1) = (scal*scal/(norme*norme));
scal = ((Z(i,:)')'*(Base(:,comp2)));
norme = norm(Z(i,:));
Q2(i,2) = (scal*scal/(norme*norme));
end
endfunction
function [vap, vep]=valsP(A)
[vep, diagevals]=spec(A)
vap=diag(diagevals)
endfunction
function nuagePoints(MatCoord,i,j);
xset("font",4,3);
x = (max(MatCoord(:, i)) - min(MatCoord(:, i))) / 20;
xmin = min(MatCoord(:, i)) - x;
xmax = max(MatCoord(:, i)) + x;
y = (max(MatCoord(:, j)) - min(MatCoord(:, j))) / 20;
ymin = min(MatCoord(:, j)) - y;
ymax = max(MatCoord(:, j)) + y;
plot2d(MatCoord(:, i),MatCoord(:, j), -3, "031", rect = [xmin,ymin,xmax,ymax]);
n = size(MatCoord, "r");
for l = 1:n,
xstring(Coord(l, i), MatCoord(l, j), string(l));
end;
endfunction;
function execProjet()
[fd,SST,Sheetnames,Sheetpos] = xls_open('Voitures.xls')
[m,TextInd] = xls_read(fd,Sheetpos(1))
mclose(fd)
tabCR = tableauCentreReduit(m);
matCor = matriceCorrelation(tabCR);
[valeursP, vecteursP] = valsP(matCor);
basePlan = functionBase(valeursP, vecteursP);
//qualite = QualiteRepresentationInd0(basePlan, ???
[composante1, composante2] = composantePrincipale(vecteursP(:,1), vecteursP(:,2), tabCR);
CercleCorrel(tabCR);
//nuagePoints(?, ?, ?);
endfunction
|
1dada17a3eac31be22d126834ad8d508e094b3b9
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1271/CH15/EX15.21/example15_21.sce
|
bcd2d55604623444a1f10586daad22c8031a9029
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 647
|
sce
|
example15_21.sce
|
clc
// Given that
E1 = 3.2e-18 // minimum energy possible for a particle entrapped in a one dimensional box in J
e = 1.6e-19 // charge on an electron in C
m = 9.1e-31 // mass of electron in kg
c = 3e8 // speed of light in m/sec
h = 6.62e-34 // Planck constant in J-sec
// Sample Problem 21 on page no. 15.32
printf("\n # PROBLEM 21 # \n")
printf("Standard formula used \n")
printf(" E = (n^2 * h^2) / (8 * m * L^2)) \n")
E1 = E1 / e // in eV
n = 2 // for n=2
E2 = n^2 * E1
n = 3 // for n=3
E3 = n^2 * E1
n = 4 // for n=4
E4 = n^2 * E1
printf("\n Energy Eigen values -\n For (n=2) for %f eV.\n For (n=3) is %f eV.\n For (n=4) is %f eV.",E2,E3,E4)
|
a601cfcf18afff79f4d584c15b7ce0fd98379ae9
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/647/CH12/EX12.6/Example12_6.sce
|
cb95afa2fd780d255046a7da7ff6a876bd7dd088
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 493
|
sce
|
Example12_6.sce
|
clear;
clc;
// Example: 12.6
// Page: 481
printf("Example: 12.6 - Page: 481\n\n");
// Solution
//*****Data******//
// Reaction: CO(g) + H2O(g) = CO2(g) + H2(g)
G_CO = -32.8;// [kcal]
G_H2O = -54.64;// [kcal]
G_CO2 = -94.26;// [kcal]
Temp = 273 + 25;// [K]
R = 1.987;// [cal/mol.K]
//***************//
G_H2 = 0;// [kcal]
G_rkn = G_CO2 + G_H2 - (G_CO + G_H2O);// [kcal]
G_rkn = G_rkn*1000;// [cal]
K = exp(-(G_rkn/(R*Temp)));
printf("Equilibrium Constant is %.3e",K);
|
f24a4583b7722e2ad0411283040b0e2963cc08b6
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/104/CH6/EX6.4/6_4.sce
|
edc0156b7690017d0ee811bed01d5133d14bf36b
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 278
|
sce
|
6_4.sce
|
//first element in any row of rouths tabulation is zero
s=%s
m=s^4+s^3+2*s^2+2*s+3
r=coeff(m); //Extracts the coefficient of the polynomial
n=length(r);
routh=routh_t(m)
disp(routh,"routh=")
printf("since there are two sign changes in the rouths tabulation,sys is unstable")
|
c22ca130b3d866fec0861080fc55b72c98944696
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1328/CH5/EX5.1/5_1.sce
|
ad15d4da7901b0dec72c191bc168617a033762e7
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 713
|
sce
|
5_1.sce
|
printf("\t example 5.1 \n");
T1=300; // hot fluid inlet temperature,F
T2=200; // hot fluid outlet temperature,F
t1=100; // cold fluid inlet temperature,F
t2=150; // cold fluid outlet temperature,F
printf("\t for counter current flow \n");
delt1=T1-t2; //F
delt2=T2-t1; // F
printf("\t delt1 is : %.0f F \n",delt1);
printf("\t delt2 is : %.0f F \n",delt2);
LMTD=((delt2-delt1)/((2.3)*(log10(delt2/delt1))));
printf("\t LMTD is :%.1f F \n",LMTD);
printf("\t for parallel flow \n");
delt1=T1-t1; // F
delt2=T2-t2; // F
printf("\t delt1 is : %.0f F \n",delt1);
printf("\t delt2 is : %.0f F \n",delt2);
LMTD=((delt2-delt1)/((2.3)*(log10(delt2/delt1))));
printf("\t LMTD is :%.0f F \n",LMTD);
//end
|
83215070da003144df08cac3e4b9902ad01743aa
|
da5b40d917ec2982828bd9bdf06b18b7bf189f26
|
/sim/scripts/00_man-coolerIdeal.tst
|
6120198c6cca0677799c2f270271953a7f091c14
|
[] |
no_license
|
psy007/NNPC-CHEMICAL-SIM-
|
4bddfc1012e0bc60c5ec6307149174bcd04398f9
|
8fb4c90180dc96be66f7ca05a30e59a8735fc072
|
refs/heads/master
| 2020-04-12T15:37:04.174834
| 2019-02-06T10:10:20
| 2019-02-06T10:10:20
| 162,587,144
| 1
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 290
|
tst
|
00_man-coolerIdeal.tst
|
thermo = VirtualMaterials.IdealLiquid/Ideal/HC
thermo + ETHANOL WATER
topVap = Stream.Stream_Material()
topVap.In.P = 101.325
topVap.In.T = 78
topVap.In.MoleFlow = 100
topVap.In.Fraction = 0.85 0.15
cond = Heater.Cooler()
topVap.Out -> cond.In
cond.DeltaP = 0
cond.Out.T = 25
cond.OutQ
|
110382e956a86c7ad8c5bee273399415853d9b69
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/257/CH10/EX10.3/example_10_3.sce
|
a5a181fec5a5c058b04051ff7a9b2e5991c0d715
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 185
|
sce
|
example_10_3.sce
|
s=%s;
G=10/(s*(s+10))
T=G/(1+G)
disp(T,"T = ")
//compare A*sin(w*t) and 10*sin(8*t)
A=10;
w=8;
disp("c(t) = A*10/(sqrt((10-w^2)^2 + 100*w))*(sin(8*t-atan(10*w/(10-w^2))))")
|
4900d58f73bba5b428f59f76d700c7a36f0c99ca
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2066/CH2/EX2.6/2_6.sce
|
4126099f397e071d463f27ddb9a175edd6d38150
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 853
|
sce
|
2_6.sce
|
clc
clear
//Initialization of variables
gam=62.4
x1=4 //ft
x2=6 //ft
y1=6 //ft
z=8 //ft
dy=1 //ft
angle=60 //degrees
//calculations
A1=x1*x2
A2=1/2 *y1^2
yc = (A1*(x1+x2+dy) + A2*(x1+x2))/(A1+A2)
hc=yc*sind(angle)
F=hc*gam*(A1+A2)
ic1=1/12 *x1*y1^3
ic2=1/36*y1*x2^3
ad1=A1*(x1+x2+dy-yc)^2
ad2=A2*(x1+x2-yc)^2
It=ic1+ic2+ad1+ad2
ydc=It/(yc*(A1+A2))
function m= momen(u)
m= gam*sind(angle) *(2*x1+u)*0.5*(x2-u)*(y1-u)
endfunction
MED=intg(0, y1, momen)
FEDC=gam*sind(angle) *A2*(x1+x2)
xed=MED/FEDC
xp= (A1*2*(x1+x2+dy) + (x1+x2)*(A2)*(x1+xed))/(A1*(x1+x2+dy) + A2*(x1+x2))
//results
printf("Magnitude of total force = %d lb",F)
printf("\n Vertical location of force = %.3f ft",ydc)
printf("\n Horizontal location of force = %.2f ft from AB",xp)
printf("\n Direction of force is perpendicular to the plane surface")
|
bcab5c843153bcb57740e8078a0b8d42f6363109
|
717ddeb7e700373742c617a95e25a2376565112c
|
/2474/CH4/EX4.1/Ch04Ex01.sce
|
a6bd4c90e2adf8949a478e46ff2c95203ba72d6d
|
[] |
no_license
|
appucrossroads/Scilab-TBC-Uploads
|
b7ce9a8665d6253926fa8cc0989cda3c0db8e63d
|
1d1c6f68fe7afb15ea12fd38492ec171491f8ce7
|
refs/heads/master
| 2021-01-22T04:15:15.512674
| 2017-09-19T11:51:56
| 2017-09-19T11:51:56
| 92,444,732
| 0
| 0
| null | 2017-05-25T21:09:20
| 2017-05-25T21:09:19
| null |
UTF-8
|
Scilab
| false
| false
| 722
|
sce
|
Ch04Ex01.sce
|
// Scilab code Ex4.1: Pg.150 (2008)
clc; clear;
R_H = 1.096776e+07; // Rydberg constant for Hydrogen, per metre
// For Lymann series
m = 1; // Integer value
n = 2; // Integer value
lamda = 1/(R_H*(1/m^2 - 1/n^2)); // Wavelength of Lymann series, m
printf("\nThe wavelength of first line of Lymann series = %5.1f nm", lamda*1e+09);
// For Paschen series
m = 3; // Integer value
n = 4; // Integer value
lamda = 1/(R_H*(1/m^2 - 1/n^2)); // Wavelength of Paschen series, m
printf("\nThe wavelength of first line of Paschen series = %4d nm", lamda*1e+09);
// Result
// The wavelength of first line of Lymann series = 121.6 nm
// The wavelength of first line of Paschen series = 1875 nm
|
70e392a95dc921ec0050370b231209da08f85d3d
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/773/CH6/EX6.09/6_09.sci
|
20992d5b5501fdc2fa585104d5d86812f964327c
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 374
|
sci
|
6_09.sci
|
//syslin//
exec series.sce
syms G1 G2 G3 H1 H2 H3;
//Remove the feedback loop having feedback path transfer function H2
a=G3/.H2;
//Interchange the summer .as well as replace the cascade block by its equivalent block
b=series(G1,G2);
c=b/.H1; //Negative Feedback Operation
d=series(c,a);
y=d/.H3; //Negative Feedback Operation
y=simple(y);
disp(y,"C(s)/R(s)=")
|
f2d205ec6c6b777347720acda9e1c3cb03d15d98
|
8217f7986187902617ad1bf89cb789618a90dd0a
|
/source/2.3/macros/scicos_blocks/AFFICH_f.sci
|
5be8f8f7d7c453732c652d56b983b1ddb582b75f
|
[
"MIT",
"LicenseRef-scancode-warranty-disclaimer",
"LicenseRef-scancode-public-domain"
] |
permissive
|
clg55/Scilab-Workbench
|
4ebc01d2daea5026ad07fbfc53e16d4b29179502
|
9f8fd29c7f2a98100fa9aed8b58f6768d24a1875
|
refs/heads/master
| 2023-05-31T04:06:22.931111
| 2022-09-13T14:41:51
| 2022-09-13T14:41:51
| 258,270,193
| 0
| 1
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 2,069
|
sci
|
AFFICH_f.sci
|
function [x,y,typ]=AFFICH_f(job,arg1,arg2)
x=[];y=[];typ=[]
select job
case 'plot' then
standard_draw(arg1)
case 'getinputs' then
[x,y,typ]=standard_inputs(o)
case 'getoutputs' then
x=[];y=[];typ=[];
case 'getorigin' then
[x,y]=standard_origin(arg1)
case 'set' then
x=arg1;
graphics=arg1(2);label=graphics(4)
model=arg1(3);
if size(label,'*')==4 then label(4)=' ';label(5)=' ';end //compatibility
while %t do
[ok,font,fontsize,color,nt,nd,label]=getvalue(..
'Set parameters',..
['Font number';
'Font size';
'Color';
'Total number of digits';
'Number of rational part digits'],..
list('vec',1,'vec',1,'vec',1,'vec',1,'vec',1),label)
if ~ok then break,end //user cancel modification
mess=[]
if font<=0 then
mess=[mess;'Font number must be positive';' ']
ok=%f
end
if fontsize<=0 then
mess=[mess;'Font size must be positive';' ']
ok=%f
end
if nt<=3 then
mess=[mess;'Total number of digits must be greater than 3';' ']
ok=%f
end
if nd<0 then
mess=[mess;'Number of rational part digits must be '
'greater or equal 0';' ']
ok=%f
end
if ~ok then
message(['Some specified values are inconsistent:';
' ';mess])
end
if ok then
[orig,sz]=graphics(1:2)
rpar=[orig(:);sz(:)]
ipar=[font;fontsize;color;xget('window');nt;nd]
model(8)=rpar;model(9)=ipar
graphics(4)=label;
x(2)=graphics;x(3)=model
break
end
end
case 'define' then
font=1
fontsize=1
color=1
nt=9
nd=2
label=[string(font);
string(fontsize);
string(color);
string(nt);
string(nd)]
rpar=[[0;0];[1;1]]
ipar=[font;fontsize;color;0;nt;nd]
model=list('affich',1,[],1,[],[],0,rpar,ipar,'d',[],[%f %f],' ',list())
gr_i='xstringb(orig(1),orig(2),''+00000.00'',sz(1),sz(2),''fill'')'
x=standard_define([3 2],model,label,gr_i)
end
function str=writetostring(z,fmt)
[m,n]=size(z)
u=file('open',TMPDIR+'/f','unknown')
write(u,z,fmt)
file('close',u)
str=read(TMPDIR+'/f',m,1,'(a)')
|
bb13df1ebb4a04576d3c9000f25f18417e282903
|
31bd22a0de3a609c9bdfa652c93ed112749bf698
|
/MATEMATICAS PARA INGENIERIA I/Archivos scilab/scilabtext.sce
|
b996098c7d1f3b9eb1e53842ee0f34041910c39a
|
[] |
no_license
|
eliasrobleroperez/4to-cuatrimestre
|
048e4da60229962106595a1d2caab04733e6e9d8
|
529bc470e75e5165ea01637d71e2e99025754d53
|
refs/heads/master
| 2020-12-03T18:26:05.289314
| 2020-01-02T21:12:33
| 2020-01-02T21:12:33
| 231,429,581
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 118
|
sce
|
scilabtext.sce
|
camcloseall();
n=camopen(0,[640,360]);
for cnt = 1:4
bg = camread(n);
sleep(500);
end
camclose(n);
imshow(bg)
|
03ec6ad6fad547a8558414bdc521b6d15e81ae33
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1985/CH11/EX11.7/Chapter11_Example7.sce
|
87b96217b63900bbe5c225b465ae2f4a8897ffeb
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 731
|
sce
|
Chapter11_Example7.sce
|
clc
clear
//Input data
l=0.112*10^-9//Wavelength of X-rays in m
q=90//Angle of scattering in degrees
m=9.1*10^-31//Mass of the electron in kg
h=6.625*10^-34//Plancks constant in J.s
c=(3*10^8)//Velocity of light in m/s
//Calculations
dl=((h*(1-cosd(q)))/(m*c))/10^-10//The Compton angle in degrees
l1=(dl+(l/10^-10))//Wavelength of the X-rays scattered at an agle of 90 degrees in angstroms
dE=((h*c*((1/l)-(1/(l1*10^-10)))))/10^-17//The energy of the recoiling electron in J*10^-17
//Output
printf('(a) Wavelength of the X-rays scattered at an agle of 90 degrees with respect to the original direction is %3.3f angstroms \n (b) The energy of the scattering electron after the collision is %3.2f*10^-17 J',l1,dE)
|
9eb9955b542a0896d36bf6cd99c3610fd0b33c94
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1697/CH6/EX6.1/Exa6_1.sce
|
59fc51b10a4f6e0c6e22b8a7ca71c07ca7afcdb9
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 438
|
sce
|
Exa6_1.sce
|
//Exa 6.1
clc;
clear;
close;
n=20;//no. of turns
//Clambda=lambda
//Slambda=lambda/4
//HPBW :
disp("HPBW=52/(Clambda*sqrt(n*Slambda))");
//Putting values below :
Clambda=1;//in Meter
Slambda=1/4;//in Meter
HPBW=52/(Clambda*sqrt(n*Slambda));//in degree
disp(HPBW,"HPBW in degree : ");
//Axial Ratio
Aratio=(2*n+1)/2;//unitless
disp(Aratio,"Axial Ratio : ");
//Gain
D=12*Clambda^2*n*Slambda;//unitless
disp(D,"Gain : ");
|
cc9885979c711f1878f2e0343e1d437edb8747db
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/858/CH9/EX9.3/example_3.sce
|
666e30261ef4421a3ac4bb75e533aa5ca7e4f5b3
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 713
|
sce
|
example_3.sce
|
clc
clear
printf("example 9.3 page number 385\n\n")
MH = 10 //in kg/s
MC = 12.5 //in kg/s
CPH = 4.2 //in kJ/kg
CPC = 4.2 //in kJ/kg
THI = 353 //in K
THO = 333 //in K
TCI = 300 //in K
U = 1.8 //in kW/sq m K
Q = MH*CPH*(THI-THO);
printf("heat load = %f J",Q)
TCO = Q/(MC*CPC)+TCI;
printf("\n\ncold fluid outlet temperature = %f K",TCO)
//for co current flow
DT1 = THI-TCO;
DT2 = THO-TCO;
LMTD = (DT1-DT2)/log(DT1/DT2);
A = Q/(U*LMTD);
printf("\n\nfor co current flow, area = %f sq m",A);
//for counter current flow
DT1 = THI-TCO;
DT2 = THO-TCI;
LMTD = (DT1-DT2)/log(DT1/DT2);
A = Q/(U*LMTD);
printf("\n\nfor counter current flow, area = %f sq m",A);
|
fa9efed4e07361f9ad70e2e5385ce691a440125e
|
676ffceabdfe022b6381807def2ea401302430ac
|
/utilities/FieldConvert/Tests/chan3D_tec_par.tst
|
e0d5ba207db955e6f69024460759ee0b5baafe02
|
[
"MIT"
] |
permissive
|
mathLab/ITHACA-SEM
|
3adf7a49567040398d758f4ee258276fee80065e
|
065a269e3f18f2fc9d9f4abd9d47abba14d0933b
|
refs/heads/master
| 2022-07-06T23:42:51.869689
| 2022-06-21T13:27:18
| 2022-06-21T13:27:18
| 136,485,665
| 10
| 5
|
MIT
| 2019-05-15T08:31:40
| 2018-06-07T14:01:54
|
Makefile
|
UTF-8
|
Scilab
| false
| false
| 921
|
tst
|
chan3D_tec_par.tst
|
<?xml version="1.0" encoding="utf-8"?>
<test>
<description> Process 3D tecplot output, par(2)</description>
<executable>FieldConvert</executable>
<parameters> -f -e chan3D.xml chan3D.fld chan3D.dat</parameters>
<processes>2</processes>
<files>
<file description="Session File">chan3D.xml</file>
<file description="Session File">chan3D.fld</file>
</files>
<metrics>
<metric type="L2" id="1">
<value variable="x" tolerance="1e-6">1.69239</value>
<value variable="y" tolerance="1e-6">1.69239</value>
<value variable="z" tolerance="1e-6">1.69239</value>
<value variable="u" tolerance="1e-6">2.0864</value>
<value variable="v" tolerance="1e-6">0</value>
<value variable="w" tolerance="1e-6">0</value>
<value variable="p" tolerance="1e-6">6.59218</value>
</metric>
</metrics>
</test>
|
76c6bb842dc4e80b5b4685eaac98374923b14d8a
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3756/CH9/EX9.1/Ex9_1.sce
|
fb6f83c63577073e8ad92c56c5f4ba93e1105a4e
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 364
|
sce
|
Ex9_1.sce
|
clc
//
//
//
//Variable declaration
k=3
E0=8.854*10**-12
E=10**6
//Calculations
P=(E0*(k-1)*E)*10**6
D=(E0*k*E)*10**6
Ed=0.5*E0*k*(E**2)
//Result
printf("\n (a) The Polarization in the Dielectric is %2.2f *10**-6 coul/m**2",P)
printf("\n (b) The Displacement Current Density is %2.2f *10**-6 coul/m**2",D)
printf("\n (c) The Energy Density is %0.3f J/m**3",Ed)
|
5b5ee81c86f7c3af4e309490709ea13c4698b81d
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1962/CH6/EX6.2/example6_2.sce
|
df06db7768c38b096a53bf31516ace977737724f
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 269
|
sce
|
example6_2.sce
|
//example 6.2
//page 233
clc; funcprot(0);
//initialisation of variable
rhom=998.2;//density
rhop=858.45;//density
mum=1.005*10^-3;//viscosity
mup=8/1000;//viscosity
Vp=2.5*10;//velocity
Vm=Vp*rhop*mum/mup/rhom;
disp(Vm,"velocity of model (m/s):");
clear
|
4ee0edada5aa5b315b977ece649b5c65b435bc9a
|
c61d570c37971fa455028a89d2163f455f91c291
|
/script_fisico/simp13.sci
|
02e7057f2be311c839e4e6493c09d710f6ea51ad
|
[] |
no_license
|
OgliariNatan/-ScientificComputing
|
a0af891f900f3f146a9751fd169f96052bd4ba83
|
070ea9d70430ef0c9e7944f491426b73af7c12b0
|
refs/heads/master
| 2020-04-04T23:13:12.585946
| 2017-07-03T21:46:18
| 2017-07-03T21:46:18
| 81,988,821
| 1
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,406
|
sci
|
simp13.sci
|
function [I_simp13, Ea] = simp13(fun,a,b,n)
// Integração Numérica utilizando a Regra de 1/3 de Simpsom (Newton-Cotes)
// Onde -> I_simp13 é o valor da integral definida pela função e o intervalo
//---------------------------------------------------------------------
// -> fun é a função a ser integrada
// -> a é o limite inferior de integração
// -> b é o limite superior de integração
// -> n é o numero de segmentos (intervalos) para a integração
//######################################################################
//Exemplo de Chamada
//exec ('path\simp13.sci',-1) {-1 não mostra o código de execução}
//fun = '0.2+25*x-200*x^2+675*x^3-900*x^4+400*x^5'
//[I_simp13, Ea] = simp13(fun,0,0.8,4)
//Autor: Daniel HC Souza
//IMPLEMENTACAÇÃO....
//Verificação de integridade
par = modulo(n,2);
if par ~=0 then
error("Regra de 1/3 de Simpsom somente para intervalos pares");
end
//Valores da imagem em cada ponto
h = (b-a)/n;
x = a;
f(1) = evstr(fun);
for i = 2:n+1
x = x+h; //Atualiza Valor de x <-- a + h
f(i) = evstr(fun);
// disp(f(i))
end
S4 = 0;
for i = 2:2:n
S4 = S4 + f(i);
end
S2 = 0;
for i = 3:2:n
S2 = S2 + f(i);
end
I_simp13 = ((b-a)/(3*n))*(f(1)+(4*S4)+(2*S2)+f(n+1)); //Regra de 1/3 de Simpson
//Calculo do Erro verdadeiro Absoluto
Vr = integrate(fun,'x',a,b);
Ea = (Vr - I_simp13)/Vr;
endfunction
|
173db8f97772684ebe94c9d1ab413bd97eb5207f
|
717ddeb7e700373742c617a95e25a2376565112c
|
/3044/CH3/EX3.22/Ex3_22.sce
|
ec1d87f599c58cd53c15935bd5f79a2f664ba2b5
|
[] |
no_license
|
appucrossroads/Scilab-TBC-Uploads
|
b7ce9a8665d6253926fa8cc0989cda3c0db8e63d
|
1d1c6f68fe7afb15ea12fd38492ec171491f8ce7
|
refs/heads/master
| 2021-01-22T04:15:15.512674
| 2017-09-19T11:51:56
| 2017-09-19T11:51:56
| 92,444,732
| 0
| 0
| null | 2017-05-25T21:09:20
| 2017-05-25T21:09:19
| null |
UTF-8
|
Scilab
| false
| false
| 209
|
sce
|
Ex3_22.sce
|
//Variable declaration
p = 0.99 // Probability of specimen to be in compliance
//Results
printf ( "Probability of both in compliance: %.4f",p*p)
printf ( "Probability of both in compliance: %.2f",p^104.0)
|
d2d7e9d7bd77ff204bc09c3e0542a14fba345a99
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2144/CH1/EX1.7/ex1_7.sce
|
a7f7bfee7946578d1c67737f46f0e3a36f22aee9
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 265
|
sce
|
ex1_7.sce
|
// Exa 1.7
clc;
clear;
close;
// Given data
a = 0.26;
b = 5*10^-4;
E = 10;// in mV
T = (a/(2*b))*( sqrt(1+(4*E*b/a^2)) - 1 );// in degree C
disp("The unit of a will be mV/°C and the unit of b will be mV/°C^2")
disp(T,"The Temperature in degree C is");
|
2d9912d86e4a5e38d1368ba823fcc60d7d36550a
|
4bcfc36b3fe4f98e84b3bf8fd08adde00b7da338
|
/Results/calibration/cal_7315.91.sci
|
e28a89cf2cd059e7a02e7c58e4615872076d01b4
|
[] |
no_license
|
CSSS2013UrbanMobility/UrbanMobilityNew
|
52bea127d39046a7ef6796936b07664784a8fa4c
|
48fb4b517718a961ca99e2fab678b80f17c22bf2
|
refs/heads/master
| 2021-01-01T18:42:37.730732
| 2014-02-09T16:40:18
| 2014-02-09T16:40:35
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 857
|
sci
|
cal_7315.91.sci
|
congtres=[];ratio=[];meancong=[];
congtres(1)=40;
ratio(1)=0.1;
meancong(1,1)=0.018564356435643563;
meancong(1,2)=0.012376237623762377;
meancong(1,3)=0;
meancong(1,4)=0;
meancong(1,5)=0.03712871287128713;
meancong(1,6)=0.03094059405940594;
meancong(1,7)=0.043316831683168314;
meancong(1,8)=0.6992574257425742;
meancong(1,9)=1.058168316831683;
meancong(1,10)=1.181930693069307;
meancong(1,11)=1.2747524752475248;
meancong(1,12)=1.2252475247524752;
meancong(1,13)=0.625;
meancong(1,14)=0.09900990099009901;
meancong(1,15)=0.055693069306930694;
meancong(1,16)=0.03712871287128713;
meancong(1,17)=0.1051980198019802;
meancong(1,18)=0.9034653465346535;
meancong(1,19)=1.2066831683168318;
meancong(1,20)=1.441831683168317;
meancong(1,21)=1.243811881188119;
meancong(1,22)=1.1324257425742574;
meancong(1,23)=0.5693069306930693;
meancong(1,24)=0.11138613861386139;
|
8e26b4f9a3f380412d314849cff67fe2a45d468f
|
465afc0cfc032239fba2e606624cd1ba338042d9
|
/test1.tst
|
14bee464295b609423f1471ad5984e69559cea65
|
[] |
no_license
|
prokopstein/cex-system
|
a627f017450970660d58669c89083edcc22ad9e4
|
b8b2cb8dde84795bad65a1afcd29cea35e5a5818
|
refs/heads/master
| 2021-09-01T16:11:01.061514
| 2017-12-27T22:07:44
| 2017-12-27T22:07:44
| 115,525,738
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 309
|
tst
|
test1.tst
|
2017-11-01T09:42:23+00:00 KRAKEN BTC USD 1000.0 0.0009
2017-11-01T09:42:23+00:00 GDAX BTC USD 1001.0 0.0008
2017-11-01T09:42:23+00:00 BITFINEX BTC ETH 20.0 0.05
2017-11-01T09:42:23+00:00 GDAX USD LTC 0.01 100.0
2017-11-01T09:42:23+00:00 BITFINEX LTC BTC 0.5 2.0
EXCHANGE_RATE_REQUEST KRAKEN USD BITFINEX ETH
|
0319ff14bd44956a6097810b70c74db166d98974
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1752/CH3/EX3.8/exa3_8.sce
|
d09bbb3ce0dceb0794cac6add49fefdd03e287d8
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 572
|
sce
|
exa3_8.sce
|
//Exa 3.8
clc;
clear;
close;
//given data
T_0=150;// in degree C
T_infinite=40;// in degree C
w=1;// in m
t=0.75*10^-3;// in m
d=5*10^-2;// in meter
L=25*10^-3;// in meter
k=75;// in W/mK
h=23.3;// in W/m^2K
N=12;// numbers of fins
Ac=w*t;//in square meter
rho=2*(w+t);// in meter
delta=Ac/rho;
L_c=L+delta;
ML_c=L_c*sqrt(h*rho/(k*Ac))
q_fin= N*sqrt(h*rho*k*Ac)*(T_0-T_infinite)*tanh(ML_c);
q_fin=floor(q_fin);
A_0=%pi*d*w-12*Ac
q_unfin= h*A_0*(T_0-T_infinite);
q_total=q_fin+q_unfin;
disp("Rate of heat transfer is : "+string(q_total)+" watt");
|
a2335ed5647cbd5e3d540bf3c265e397c197b646
|
13c3ed7bef4d80dabd836219bbf4396f07cb934a
|
/matrix_multiply.sci
|
1bbc5ec4c3a105916c19d734fa9da5c2a4f9564d
|
[] |
no_license
|
Mushirahmed/scilab_workspace
|
99f489a110a5e295ce9fca9991122d14840018d3
|
f58b91b87bb0357fff82dcb97b05541e7e976eca
|
refs/heads/master
| 2021-01-10T15:48:40.576771
| 2016-02-10T10:32:46
| 2016-02-10T10:32:46
| 43,348,489
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 156
|
sci
|
matrix_multiply.sci
|
function matrix_multiply()
a = uint16([1 1 4; 4 1 9 ; 1 2 10]);
b = uint16([5 6 1;10 2 6;8 9 5]);
ans_ab = a * b;
disp(ans_ab);
endfunction
|
860a4e78502ce5f756c7bf3f0e3f02f9ed10951f
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2762/CH3/EX3.2.2/3_2_2.sce
|
8f18271b89384d1937cbc7d7e99a35dbc8f7ec33
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 519
|
sce
|
3_2_2.sce
|
//Transport Processes and Seperation Process Principles
//Chapter 3
//Example 3.2-2
//Principles of Momentum Transfer and Applications
//given data
delP=9.32e+4;//pressure diff in N/m2
D1=0.1541;//external diameter in m
D0=0.0566;//internal diameter in m
Dr=D0/D1;
Co=0.61;
rho=878; //oil density in kg/m3
v0=(Co/(sqrt(1-(Dr^4))))*sqrt((2*delP)/rho);//velocity calculation in m/s
A=(%pi/4)*D0*D0;//cross section area
V=A*v0;//volumetric flow rate
mprintf("the volumetric flow rate is %f m3/s",V);
//end
|
04ad736c1ff867968569c65a49eb6cbe6812a35c
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/405/CH3/EX3.6/3_6.sce
|
31353e664282d9999e406988105d9be2d4d82a27
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,508
|
sce
|
3_6.sce
|
clear;
clc;
printf("\t\t\tExample Number 3.6\n\n\n");
// Gauss-Seidal calculation
// Example 3.6 (page no.-97-98)
// solution
// it is useful to think in terms of a resistance formulation for this problem because all the connecting resistances between the nodes in figure 3-6(page no.-83) are equal; that is
// R = dy/(k*dy) = dx/(k*dy) = 1/k (a)
// therefore, when we apply equation(3-32) to each node, we obtain(qi = 0)
// Ti = (sum Kj*Tj)/(sum Kj) (b)
// because each node has four resistances connected to it and k is assumed constant,
// sum Kj = 4*k
// and
// Ti = (1/4)*(sum Tj) (c)
// we are now making four nadal equations for iteration
// node 1 : T1 = (1/4)*(100+500+T2+T3)
// node 2 : T2 = (1/4)*(500+100+T1+T4)
// node 3 : T3 = (1/4)*(100+100+T1+T4)
// node 3 : T4 = (1/4)*(T3+T2+100+100)
// we now set up an iteration table as shown in output
A=[4 -1 -1 0;-1 4 0 -1;-1 0 4 -1;0 -1 -1 4];
b=[600;600;200;200];
x=[300;300;200;200];
NumIters=6;
D=diag(A);
A=A-diag(D);
for i=1:4
D(i)=1/D(i);
end
n=length(x);
x=x(:);
y=zeros(n,NumIters);
for j=1:NumIters
for k=1:n
x(k)=(b(k)-A(k,:)*x)*D(k);
end
y(:,j)=x;
end
printf("the iteration table is shown as : \n\n");
disp(y);
printf("\n\n after five iterations the solution converges and the final temperatures are \n");
disp(y(1,6),"T1=");
disp(y(2,6),"T2=");
disp(y(3,6),"T3=");
disp(y(4,6),"T4=");
|
939be8c535be7213448a966dfcc6d79439a72a04
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/650/CH1/EX1.2/2.sce
|
5be60b82392cf969e73ce4e26d170c6154886eba
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 435
|
sce
|
2.sce
|
clc
p_v=50*10^3; //N/m^2
r=1; //m
p_atm=101.3*10^3; //N/m^2
rho=1000; //kg/m^3
H=2.5; //m
g=9.81; //m/s^2
F=p_v*%pi*r^2;
disp("Total vertical force tending to lift the dome =")
disp(F)
disp("N")
p=p_atm+p_v+rho*g*H;
disp("Absolute pressure at the bottom of the vessel =")
disp(p)
disp("N/m^2")
Fd=(p_v+rho*g*H)*%pi*r^2+rho*g*2*%pi*r^2/3;
disp("Downward force imposed by the gas and liquid =")
disp(Fd)
disp("N")
|
209ffd9ecc1cee695fdd5825e30be58204158c38
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/608/CH21/EX21.26/21_26.sce
|
281faeca14c45240514136caa36251449df7f277
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 795
|
sce
|
21_26.sce
|
//Problem 21.26: A 200 V d.c. motor develops a shaft torque of 15 Nm at 1200 rev/min. If the efficiency is 80%, determine the current supplied to the motor.
//initializing the variables:
T = 15; // in Nm
n = 1200/60; // in rev/sec
eff = 0.8;
V = 200; // in Volts
//calculation:
//The efficiency of a motor = (output power/input power)*100 %
//The output power of a motor is the power available to do work at its shaft and is given by Tw or T proportional to (2*pi*n) watts, where T is the torque in Nm and n is the speed of rotation in rev/s. The input power is the electrical power in watts supplied to the motor, i.e. VI watts.
//Thus for a motor, efficiency =(T*2*pi*n/(V*I))%
I = T*2*%pi*n/(V*eff)
printf("\n\n Result \n\n")
printf("\n current supplied, I is %.1f A",I)
|
9ab07f56213c22eb398592b453e75ab2877cc1b8
|
717ddeb7e700373742c617a95e25a2376565112c
|
/226/CH1/EX1.6/example6_sce.sce
|
15154727dea6b48824c997cfd81c51524aa48781
|
[] |
no_license
|
appucrossroads/Scilab-TBC-Uploads
|
b7ce9a8665d6253926fa8cc0989cda3c0db8e63d
|
1d1c6f68fe7afb15ea12fd38492ec171491f8ce7
|
refs/heads/master
| 2021-01-22T04:15:15.512674
| 2017-09-19T11:51:56
| 2017-09-19T11:51:56
| 92,444,732
| 0
| 0
| null | 2017-05-25T21:09:20
| 2017-05-25T21:09:19
| null |
UTF-8
|
Scilab
| false
| false
| 297
|
sce
|
example6_sce.sce
|
//chapter 1
//example 1.6
//page 29
printf("\n")
printf("given")
Id=.1*10^-3;n=2;vt=26*10^-3;
I0=30*10^-9;
disp("a)")
Vd=(n*Vt)*log(Id/I0)*10^3;
printf(" forward bais current is %dmV\n",Vd)
disp("b)")
Id=10*10^-3
Vd=(n*Vt)*log(Id/I0)*10^3;
printf(" forward bais current is %dmV\n",Vd)
|
cea51960c7e6a037fea1f721396bbc3e19b4dac5
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/331/CH7/EX7.3/Example_7_3.sce
|
a8a17c2f8d9093232785270b331c774aa4862b2b
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 535
|
sce
|
Example_7_3.sce
|
//Caption:Sampling Distribution of mean (When the population is infinite)
//When the population variance is known
//Example7.3
//Page202
clear;
clc;
n = 49;//Sample size
u = 4;//population mean in rupees Lakhs
Sig = 1;// populaion variance in rupees Lakh
Std = sqrt(Sig);
X = 4.25;//Sample Mean
[P,Q]=cdfnor("PQ",X,u,Std/sqrt(n))
disp(Q,'The Probaility that the sample mean greater than 4.25 lakhs is P(X>=4.25)=')
//Result
//The Probaility that the sample mean greater than 4.25 lakhs is P(X>=4.25)=
// 0.0400592
|
d3a83399b646b919c30734535c5584c557329c94
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1322/CH14/EX14.8/104ex3.sce
|
7103b7240e5741b9e47fd68f6c593eddbdbbb59d
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 82
|
sce
|
104ex3.sce
|
//y^2-13*y+30
clear;
clc;
close;
y=poly(0,'y');
p=y^2-13*y+30;
factors(p)
|
c878e871d6dca32b12a063b7c10e406f400bb07e
|
f94bca5d28db755e4080ea77d3f7a8f4bf0839c1
|
/scripts/TestLemGlenn.sce
|
a34f8eba327fbd08828ad0ed9c49e18be96f2a8d
|
[] |
no_license
|
videlec/max_plus
|
52ba3ba9b38f1636088e14b827be59fce779f376
|
4c0b651344ba4c731c8d7ab084caab4204483d8c
|
refs/heads/master
| 2020-12-24T06:24:14.469032
| 2019-05-17T06:58:23
| 2019-05-17T06:58:23
| 38,269,615
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,276
|
sce
|
TestLemGlenn.sce
|
d=5;//taille matrices
st='';
for i=1:d
st=strcat([st,'%i,']);
end
N=factorial(d);//Puissance
//n=10^7;//Nb tests
//K=10^4;//Size of entries
//Mot
u=[0,1,0,1,0,1,1,0,1,0,1,0,0,1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,1,0,0,1,1,0,0,1,0,1,1,0,0,1,0,1,0,1,1,0,1,0,1,0,0,1,1,0,0,1,0,1];
l=size(u,'*');
L=zeros(1,l);
Le=zeros(1,l);
Lee=zeros(1,l);
// Let's go
fidw=mopen('wrank.txt','w');
fidt=mopen('addtr.txt','w');
mfprintf(fidt,'u=')
for i=1:size(u,'*')
mfprintf(fidt,'%i',u(i))
end
mfprintf(fidt,'\n')
for j=1:n
A=round(K*rand(d,d));
B0=(-K/2)*#(A);
A=round(K*rand(d,d));
A0=(-K/2)*#(A);
A=A0^N;
B=B0^N;
P=%eye(d,d);
b=%T;
k=0;
D=%ones(d,1);
while k<l & b
k=k+1;
if u(k)==0
C=A;
else
C=B;
end
P=P*C;
for i=1:d
D(i)=D(i)*C(i,i);
end
b=and(D==diag(P));
end
L(k)=L(k)+1;
if k==l&(or(A(1,1)*%ones(d,1)<>diag(A))|or(B(1,1)*%ones(d,1)<>diag(B)))
mfprintf(fidt,st,plustimes(A0))
mfprintf(fidt,';')
mfprintf(fidt,st,plustimes(B0))
mfprintf(fidt,'\n')
end
if (k<l)&size(weakbasis(P),'*')==d*d
A1=A0;
B1=B0;
Le(k)=Le(k)+1;
if size(weakbasis(P'),'*')==d*d
Lee(k)=Lee(k)+1;
mfprintf(fidw,st,plustimes(P))
mfprintf(fidw,'\n')
end
end
end
//L
mclose(fidw);
mclose(fidt);
|
5714390b2eb15b202795613c42dbd827bc149c39
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/564/DEPENDENCIES/18_2data.sci
|
c7d898878a60d4f0d8b2c1a1ab77d3a6b7be710f
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 99
|
sci
|
18_2data.sci
|
a=200;//in mm
b=150;//in mm
ta=2.5;//in mm
tb=2;//in mm
T=1000;//in N.mm
G=25000;//given in N/mm^2
|
89fc54a1993ef0ffbbd4820bd0198caaeba2eabe
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2414/CH20/EX20.2/Ex20_2.sce
|
95571819aea4e32811fe0e305619efd4f0cf9267
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 300
|
sce
|
Ex20_2.sce
|
clc;
close();
clear();
//page no 619
//prob no. 20.2
theta_i=30; //degree
ni=1.00; //incident refraction index
nr=1.52; //refeacted ray refraction index
theta_r=asin(ni/nr*sin(theta_i*%pi/180)); //in radians
mprintf('angle of refraction is %.2f degree',theta_r*180/%pi);
|
449e4c9ffd15a6a3635a389001cf64bc9d5b8952
|
3b9a879e67cbab4a5a4a5081e2e9c38b3e27a8cc
|
/Área 1/Aula 6/Teste5.sce
|
27c6ab601e4550eaa76a512ae78b465430e3d3cc
|
[
"MIT"
] |
permissive
|
JPedroSilveira/numerical-calculus-with-scilab
|
32e04e9b1234a0a82275f86aa2d6416198fa6c81
|
190bc816dfaa73ec2efe289c34baf21191944a53
|
refs/heads/master
| 2023-05-10T22:39:02.550321
| 2021-05-11T17:17:09
| 2021-05-11T17:17:09
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 117
|
sce
|
Teste5.sce
|
//Executar MetodoJacobEGaussSeidelExemplo.sce antes
A = [4 4
3 4]
b = [1 1]'
x1 = [1 0]'
jacobi(A,b,x1,-1,5)
|
5e31e81c3ef9a565dd056f20bba1ecb11dbfa870
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/149/CH26/EX26.4/ques4.sce
|
4e32bbf84dee475bfc42d426ed1389f37f774fee
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 237
|
sce
|
ques4.sce
|
//ques4
syms c1 c2 c3 n
disp('Cumulative function is given by E^2-2*E+1 =0 ');
E=poly(0,'E');
f=E^2-2*E+1;
r=roots(f);
disp(r);
disp('There for the complete solution is :');
un=(c1+c2*n)*(r(1))^n;
disp('un=');
disp(un);
|
073f322a48f2f75c90375d4197e5ead3f53d32b8
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1109/CH7/EX7.7/7_7.sce
|
57e39e6a18d846c57dabf5eaf5b5ae0705bc8350
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 336
|
sce
|
7_7.sce
|
clear;
clc;
c=3*(10^8);f=8*(10^9);r=2.5;h=1.84;n=377;
l=c/f;
lo=l*(10^2);
lc=2*%pi*r/h;
printf("-Cutoff wavelength = %f cm\n",round(lc*100)/100);
lp=lo/(sqrt(1-((lo/lc)^2)));
printf("-Guide wavelength = %f cm\n",round(lp*100)/100);
Zo=n/(sqrt(1-((lo/lc)^2)));
printf("-Characteristic wave impedance = %f ohm",fix(Zo*10)/10);
|
781bac3770b1e647c6cbb9a7006b7af78b229f85
|
8217f7986187902617ad1bf89cb789618a90dd0a
|
/source/2.3/macros/elem/intsplin.sci
|
ad42a31b5b2f033056922877117bfe123bfcd3e0
|
[
"MIT",
"LicenseRef-scancode-warranty-disclaimer",
"LicenseRef-scancode-public-domain"
] |
permissive
|
clg55/Scilab-Workbench
|
4ebc01d2daea5026ad07fbfc53e16d4b29179502
|
9f8fd29c7f2a98100fa9aed8b58f6768d24a1875
|
refs/heads/master
| 2023-05-31T04:06:22.931111
| 2022-09-13T14:41:51
| 2022-09-13T14:41:51
| 258,270,193
| 0
| 1
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 668
|
sci
|
intsplin.sci
|
function v = intsplin(x,s)
//splin numerical integration.
//v = intsplin(x,s) computes the integral of y with respect to x using
//splin interpolation and integration.
//x and y must be vectors of the same dimension
//
//v = intsplin(s) computes the integral of y assuming unit
//spacing between the data points.
//!
[lhs,rhs]=argn(0)
if rhs<2 then
s=x;
s=s(:);
d=splin((1:size(s,'*'))',s);
v=sum((d(1:$-1)-d(2:$))/12 + (s(1:$-1)+s(2:$))/2);
else
if size(x,'*')<>size(s,'*') then
error('input vectors must have the same dimension');
end
end
x=x(:);s=s(:);
d=splin(x,s);
h=x(2:$)-x(1:$-1);
v=sum((h.*(d(1:$-1)-d(2:$))/12 + (s(1:$-1)+s(2:$))/2).*h);
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.