blob_id
stringlengths 40
40
| directory_id
stringlengths 40
40
| path
stringlengths 4
214
| content_id
stringlengths 40
40
| detected_licenses
listlengths 0
50
| license_type
stringclasses 2
values | repo_name
stringlengths 6
115
| snapshot_id
stringlengths 40
40
| revision_id
stringlengths 40
40
| branch_name
stringclasses 21
values | visit_date
timestamp[us] | revision_date
timestamp[us] | committer_date
timestamp[us] | github_id
int64 141k
586M
⌀ | star_events_count
int64 0
30.4k
| fork_events_count
int64 0
9.67k
| gha_license_id
stringclasses 8
values | gha_event_created_at
timestamp[us] | gha_created_at
timestamp[us] | gha_language
stringclasses 50
values | src_encoding
stringclasses 23
values | language
stringclasses 1
value | is_vendor
bool 1
class | is_generated
bool 1
class | length_bytes
int64 5
10.4M
| extension
stringclasses 29
values | filename
stringlengths 2
96
| content
stringlengths 5
10.4M
|
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0b070dc88fbcae6562cf89d164705c60a8f72a70
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/167/CH3/EX3.8/ex8.sce
|
36415b4d41f24545330e8521d71ed2d8dd951322
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 438
|
sce
|
ex8.sce
|
//ques8
//Approximating Compressed Liquid as Saturated Liquid
clc
u1=333.82;//(a) internal energy in KJ/Kg @ P=5MPa and T=80 C from table A-7
printf("\n(a) Data as from compress liquid table, u= %.2f kJ/kg\n",u1);
u2=334.97;//(b)internal energy in KJ/Kg @80 C from table A-4
printf("(b) Data as from saturated liquid table, u = %.2f kJ/kg",u2);
er=(u2-u1)/u1*100;//(c) %age error
printf('\n(c)Error involved = %.2f percent',er);
|
e7ea2c19bfa8fe362f2d10859990046e89507523
|
4b23780b6d64c6c05ac10deda01521b98af8284f
|
/Item03/getSolution_Error.sci
|
7e14c050939757efad8f583cc0f85ff279a1d2ad
|
[] |
no_license
|
SumrainChan/Numerical-Calculation-Collection
|
7ab48f125e2b2a16906270f894adb0760d15b55f
|
d583df6ba68ba25962c7f08985c0f0c70e53b051
|
refs/heads/master
| 2020-07-10T13:07:07.093579
| 2019-08-25T09:11:48
| 2019-08-25T09:11:48
| 204,269,639
| 2
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 381
|
sci
|
getSolution_Error.sci
|
function [x, x_error] = getSolution_Error(A, b)
[H_set, Q, R] = Householder(A)
[m, n] = size(A)
Rmao = R(1:n, 1:n)
dmao = Q' * b
dmao = dmao(1:n)
x = inv(Rmao) * dmao
list_error = b - A * x
sum_error = 0
for i = 1:length(list_error)
sum_error = sum_error + list_error(i)^2
end
x_error = sqrt(sum_error)
endfunction
|
704c5bb0b0c903531b9a886e3673cfcd5c79ba4a
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3733/CH24/EX24.1/Ex24_1.sce
|
902c6483aa80e65ca22aa5e65fee8941dd293f6a
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 911
|
sce
|
Ex24_1.sce
|
// Example 24_1
clc;funcprot(0);
//Given data
P_1=1;// bar
P_2=5;// bar
T_1=27+273// K
T_3=650+273;// K
C_p=1;// kJ/kg.°C
//C_p=C_pg=C_pa;
r=1.4;//The specific heat ratio
m=5;//kg/s
//Air-fuel ratio,AF_r=m_air/m_fuel
AF_r=60/1;
n_c=0.80;// Isentropic efficiency of compressor
n_t=0.85;// Isentropic efficiency of turbine
//Calculation
//T'2=T_2a;T'4=T_4a;
T_2a=T_1*(P_2/P_1)^((r-1)/r);// K
T_2=((T_2a-T_1)/n_c)+T_1;// Modified equation in K
T_4a=T_3*(P_1/P_2)^((r-1)/r);// K
T_4=T_3-(n_t*(T_3-T_4a));// Modified equation in K
n_th=(((AF_r+1)*(T_3-T_4))-(AF_r*(T_2-T_1)))/((AF_r+1)*(T_3-T_2));
n_th=n_th*100;// %
printf('The thermal efficiency of the cycle,n_th=%0.0f percentage\n',n_th);
W=(C_p*(1+60)*(T_3-T_4))-(C_p*60*(T_2-T_1));//kJ/kg of fuel
P=(W*m)/1000;// MW
printf('The power generating capacity of the plant,P=%0.1f MW\n',P);
// The answer vary due to round off error
|
43b6d77d316277199bc694d3381b6eb9356620ba
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1553/CH11/EX11.8/11Ex8.sce
|
014e8422f304fbc2027a4799e623adfc9177ec51
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 146
|
sce
|
11Ex8.sce
|
//Ex 8
clc;
clear;
close;
cp=1;
cp_18=18; sp_18=21;
gainPercent=(3/18)*100;
mprintf("The profit percent is %3.2f percent",gainPercent);
|
cdc2f76086b8c3bd0092901c23aa2d35f7b004f4
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1394/CH18/EX18.2.1/Ex18_2_1.sce
|
9f6ea361bd9cb61cf74ef4dd09110fc4e4807f82
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 347
|
sce
|
Ex18_2_1.sce
|
clc
//initialization of variables
p1 = 10^-10 // cm^3(stp)cm/cm^2-sec-cm-Hg
c = 1/(22.4*10^3) // mol at stp /cc
P = p1*c // for proper units
R = 6240 // cmHg cm^3 //mol-K (gas constant)
T = 298 // Kelvin
//Calculations
DH = P*R*T*10^9 // Permeability in x*10^-9 cm^2/sec
//Results
printf("The permeability is %.1f x10^-9 cm^2/sec",DH)
|
aa5d72c24d9df32b5e9a56868cf739f2a6521597
|
efa427de3490f3bb884d8ac0a7d78829ec7990f9
|
/days-of-a-month.sce
|
0626fa8ada5657503b6a89818a553295ef356d07
|
[] |
no_license
|
letyrobueno/Scilab
|
a47648473aa681556561d5cea20659d143e4f492
|
2f23623dccea89a3ab2db12ec1f615186f785aa4
|
refs/heads/master
| 2020-09-01T19:00:30.804237
| 2019-11-01T17:45:22
| 2019-11-01T17:45:22
| 219,031,973
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 317
|
sce
|
days-of-a-month.sce
|
month = input("Give the number of a month: ")
// Return the number of days of a given month
if month==2
printf("The number of days is 28")
elseif month==1 | month==3 | month==5 | month==7 | month==8 | month==10 | month==12
printf("The number of days is 31")
else
printf("The number of days is 30")
end
|
fd526273720b29de2ffd5962d4d98ba5ea4d2343
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3864/CH8/EX8.8/Ex8_8.sce
|
4ae842bcffae979ed5189337ada56e29f7005fe9
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 285
|
sce
|
Ex8_8.sce
|
clear
//
//
//Initilization of Variables
d=600 //mm //Diameter of sherical shell
t=10 //mm //Thickness
f=80 //N/mm**2 //Permissible stress
rho=0.75 //Efficiency joint
//Calculations
//Max Pressure
p=f*4*t*rho*d**-1 //N/mm**2
//Result
printf("\n Max Pressure is %0.2f N/mm**2",p)
|
c433b5457d113f6727968c7c87a70e59aad69df1
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3440/CH12/EX12.3/Ex12_3.sce
|
0d7565738c599d0086cc991c3bf17f9561e0c870
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 168
|
sce
|
Ex12_3.sce
|
clc
row=2.7*10^-6//ohm cm
l=10^-1//cm
tm=0.5*10^-4//cm
sw=0.5*10^-4//cm
epsiloni=8.85*10^-14
RC=(row*l/tm^2)*epsiloni*2.7*(tm*l/sw)
disp(RC,"RC in sec is= ")
|
1f7e87a8bcd613aece0da2c2347850f30a584219
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/617/CH9/EX9.4/Example9_4.sci
|
5d93ead763cef9c3ea002658948c498b275a2853
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 697
|
sci
|
Example9_4.sci
|
clc();
clear;
// To calculate the overall heat transfer coefficient
r2 = 3/96; // Outer radius in ft
x = 0.1/12; // Thickness of plate in ft
r1 = r2-x; // Outer radius in ft
k = 200; // thermal conductivity in Btu/hr-ft-degF
h1 = 280; // Inner film coefficient in Btu/hr-ft^2-degF
h2 = 2000; // Outer film coefficient in Btu/hr-ft^2-degF
U = 1/((r2/(h1*r1))+(r2*log(r2/r1)/k)+(1/h2)); // Overall heat transer coeeficient in Btu-hr-ft^2-degF
printf("Overall heat transfer coefficient is %d Btu/hr-ft^2-degF",U);
|
57651c22003f4710e3c6d1d4910c8d192c848304
|
7ade43db106eee8cea7004cef1fa4d23473a4fa0
|
/algoritmoGenetico/geneticAlgorithm.sce
|
05f0402f4007cffe7724c8b82b20abc9865dae98
|
[] |
no_license
|
samuel-cavalcanti/DCA0115--OTIMIZACAO-DE-SISTEMAS
|
834b29a4e9fecfce35570c31a597c2b7067ebc9a
|
8d020ff214a24b8300db1b8e64ae4c47b160461c
|
refs/heads/master
| 2020-05-30T18:31:06.261975
| 2019-06-03T03:31:35
| 2019-06-03T03:31:35
| 189,898,949
| 1
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 9,276
|
sce
|
geneticAlgorithm.sce
|
clear
clc
function s_best = geneticAlgorithm(population_size,problem_size,p_mutation,epochs,max_variance)
population = initialize_population(population_size,problem_size)
population = evaluate_population(population)
s_best = get_best_solution(population)
//disp("first best " + string(s_best.score))
epoch = 0
variance_population = 10*max_variance
while epoch < epochs // && variance_population > max_variance
parents = select_parents(population,population_size)
childrens = list()
// garantir que a varivel parents possua sempre um tamanho par
for i=1: round(length(parents)/2)
new_childrens = crossover(parents(i),parents(length(parents) -i +1))
childrens($+1) = mutate(new_childrens(1),p_mutation)
childrens($+1) = mutate(new_childrens(2),p_mutation)
end
childrens = evaluate_population(childrens)
best_children = get_best_solution(childrens)
if best_children.score < s_best.score
s_best = best_children
end
population = replace(population,childrens,s_best,best_children)
epoch = 1 + epoch
variance_population = calcule_variance(population)
// disp(" best " + string(s_best.score))
// disp("variance "+ string(variance_population))
//disp(" ")
end
//for individual=population
// disp("score "+string(individual.score))
//end
//disp("variance "+ string(variance_population))
//disp("epoch "+ string(epoch))
endfunction
function individual = individual_new(chromossome_x, chromossome_y,max_value,min_value)
individual = tlist(["T_individual","chromossome_x","chromossome_y","max","min","score"])
individual.chromossome_x = chromossome_x
individual.chromossome_y = chromossome_y
individual.max = max_value
individual.min = min_value
individual.score = -%inf
endfunction
function value = bit_to_float(bit_vector,max_value,min_value)
value = 0
length_vec = length(bit_vector)
for i=2:length_vec
value = bit_vector(i)*2^(1-i) + value
end
value = inv_normalize(value,max_value,min_value)
endfunction
function norm_value = normalize_value(value,max_value,min_value)
norm_value = (value - min_value)/(max_value - min_value)
endfunction
function real_value = inv_normalize(value,max_value,min_value)
real_value = value*(max_value - min_value) + min_value
endfunction
function bit_vector = real_to_bit(real_value,max_value,min_value)
norm_value = normalize_value(real_value,max_value,min_value)
number_bits = 50
bit_vector = []
for i=1:number_bits
bit_vector(i) = int(norm_value)
norm_value = norm_value - bit_vector(i)
norm_value = norm_value *2
end
endfunction
function individual = generate_random_individual(problem_size)
x = inv_normalize(rand(1,"uniform"),problem_size(1),problem_size(2))
y = inv_normalize(rand(1,"uniform"),problem_size(1),problem_size(2))
chromossome_x = real_to_bit(x,problem_size(1),problem_size(2))
chromossome_y = real_to_bit(y,problem_size(1),problem_size(2))
individual = individual_new(chromossome_x,chromossome_y,problem_size(1),problem_size(2))
endfunction
function population = initialize_population(population_size,problem_size)
population = list()
for i=1:population_size
population($+1) = generate_random_individual(problem_size)
end
endfunction
function value = fitness_function(x,y)
z =-x*sin(sqrt(abs(x)))-y*sin(sqrt(abs(y)))
// r: Rosenbrock's function
r1=(y-x^2)^2+(1-x)^2;
value= z*exp(sin(r1));
endfunction
function score = evaluate_individual(individual)
x = bit_to_float(individual.chromossome_x,individual.max,individual.min)
y = bit_to_float(individual.chromossome_y,individual.max,individual.min)
score = fitness_function(x,y)
individual.score = score
endfunction
function population = evaluate_population(population)
for i=1:length(population)
population(i).score = evaluate_individual(population(i))
//disp("population("+ string(i)+ ") "+ string(population(i).score))
end
endfunction
function s_best = get_best_solution(population)
s_best = population(1)
best_score = population(1).score
for individual=population
if individual.score < best_score
best_score = individual.score
s_best = individual
end
end
endfunction
function roulette = create_roulette(population)
big_M = 3000
total = 0
for individual=population
total = -individual.score + big_M + total
end
roulette = list()
limit_min = 0
for individual= population
prob = (-individual.score + big_M)/total
limit_max = limit_min + prob
roulette($+1) = [limit_min,limit_max ]
limit_min = limit_min + prob
end
endfunction
function parents = spin_roulette(roulette,n_spins,population)
parents = list()
for i=1:n_spins
chossen = rand()
for j =1:length(roulette)
if roulette(j)(1) <= chossen && chossen <= roulette(j)(2)
parents($+1) = population(j)
break
end
end
end
endfunction
function parents = select_parents(population,population_size)
roulette = create_roulette(population)
parents = spin_roulette(roulette,population_size,population)
endfunction
function childrens= crossover(father, mother)
n_bits = length(father.chromossome_x)
child_1_chromossome_x = []
child_1_chromossome_y = []
child_2_chromossome_x = []
child_2_chromossome_y = []
childrens= list()
point = round(rand(1,1,"uniform")*(n_bits-1) +1)
for i=1:point
child_1_chromossome_x(i) = father.chromossome_x(i)
child_1_chromossome_y(i) = father.chromossome_y(i)
child_2_chromossome_x(i) = mother.chromossome_x(i)
child_2_chromossome_y(i) = mother.chromossome_y(i)
end
for i=point:n_bits
child_1_chromossome_x(i) = mother.chromossome_x(i)
child_1_chromossome_y(i) = mother.chromossome_y(i)
child_2_chromossome_x(i) = father.chromossome_x(i)
child_2_chromossome_y(i) = father.chromossome_y(i)
end
new_child_1 = individual_new(child_1_chromossome_x, child_1_chromossome_y,father.max,father.min)
new_child_2 = individual_new(child_2_chromossome_x,child_2_chromossome_y,father.max,father.min)
childrens($+1)= new_child_1
childrens($+1)= new_child_2
endfunction
function children = mutate(child,p_mutation)
if rand()< p_mutation
children = execute_mutation(child)
else
children = child
end
endfunction
function children = execute_mutation(child)
n_bits = length(child.chromossome_x)
n_mutate_bits = 5
for i=1:n_mutate_bits
rand_pos = round(rand(1,1,"uniform")*(n_bits-1)+1)
child.chromossome_x(rand_pos) = round(rand(1,1,"uniform"))
rand_pos = round(rand(1,1,"uniform")*(n_bits-1)+1)
child.chromossome_y(rand_pos) = round(rand(1,1,"uniform"))
end
children = child
endfunction
function new_population = replace(population,childrens,s_best,best_child)
if best_child.score < s_best.score
new_population = childrens
else
new_population = list()
new_population($+1) = s_best
for i=2:length(childrens)
new_population($+1) = childrens(i)
end
end
endfunction
function variance_population = calcule_variance(population)
variance_vector = []
for individual=population
variance_vector($+1) = individual.score
end
variance_population = variance(variance_vector)
endfunction
function new_population = remove_best_solution(population,best)
for i=1:length(population)
if population(i) == best
population(i) = null()
break
end
end
new_population = population
endfunction
function test_GA(population_size,file_name)
problem_size = [500,-500]
p_mutation = 0.01
epochs = 3000
max_variance =0.01
solutions = list()
csv_matrix = []
for i=1:100
solutions($+1) = geneticAlgorithm(population_size,problem_size,p_mutation,epochs,max_variance)
csv_matrix($+1) = solutions($).score
end
csvWrite(csv_matrix,file_name)
disp(file_name + "savend !!")
endfunction
population_size_list = list(4,8,16)
for population_size=population_size_list
file_name = "GA_mutation_0.01_" + string(population_size) + "u.csv"
test_GA(population_size,file_name)
end
|
8ebe6cec84abe175f90c1b80c32551f46932758e
|
d47ef89d1d0330681dd97a1ca4cb131d64b6d609
|
/code/kruskal.sci
|
2726fdcf984e942f22963642e23e52e17777fd9f
|
[] |
no_license
|
jere1882/TSP_Heuristics
|
a035a28bc786a19d0d5fd17364f81d46d70d9c17
|
ca58cb77b986d03b4a92d86161ce812df8d85b17
|
refs/heads/master
| 2022-11-25T05:35:45.053166
| 2020-08-02T23:45:28
| 2020-08-02T23:45:28
| 284,557,182
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,969
|
sci
|
kruskal.sci
|
function [F, valor] = kruskal(G, costos)
// Ejecuta el algoritmo de Kruskal (practica 2) usando la estructura disjoint set union
// Entradas:
// G = vector de 2 filas con los extremos de las aristas del grafo
// costos = vector de costos (cada componente es para una arista)
// Salidas:
// F = vector de 2 filas con los extremos de las aristas del árbol de expansión
// valor = costo del arbol de expansión
nodos = max(G);
[zzz, aristas] = size(G);
// En "orden" se almacenan los índices de las aristas ordenadas de menor a mayor por costo
// Esta operación es O(aristas log(aristas))
[zzz, orden] = gsort([costos;1:aristas],'lc','i');
// Ahora inicializamos la matríz A y el grafo H=(V,F)
// Complejidad O(nodos)
aristas_F = 0
F = [];
valor = 0;
A = [];
for v=1:nodos
A(1,v) = v
A(2,v) = 1
A(3,v) = 0
end
// Corazón del algoritmo, complejidad O(aristas log(nodos))
for i=1:aristas
// Toma la arista según el orden
u = G(1,orden(i));
v = G(2,orden(i));
costo = costos(orden(i));
// Comentar la siguiente linea para no ver evolución
// mprintf('Se procesa arista (%1.0f, %1.0f) con costo = %f\n', u, v, costo)
if A(1,u) ~= A(1,v) then
// Si u y v pertenecen a diferentes componentes, unirlas (ver explicación en práctica 2)
if A(2,A(1,u)) < A(2,A(1,v)) then
v1 = A(1,u);
v2 = A(1,v);
else
v1 = A(1,v);
v2 = A(1,u);
end
A(2,v2) = A(2,v1) + A(2,v2);
r = A(3,v2);
A(3,v2) = v1;
w = v2;
for i=1:A(2,v1)
w = A(3,w);
A(1,w) = v2;
end
A(3,w) = r;
// Agregar la arista a F
aristas_F = aristas_F + 1;
F(1,aristas_F) = u;
F(2,aristas_F) = v;
valor = valor + costo;
// Comentar la siguiente linea para no ver evolución
// mprintf('Se incorpora arista (%1.0f, %1.0f) a F\n', u, v)
end
end
endfunction
|
7bb3c0ee3d3f451673a1a4a35f74e9baaa9a1d6d
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/680/CH3/EX3.03/3_03.sce
|
edd2e989ac47ba268a609498344441f68f46d24a
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 318
|
sce
|
3_03.sce
|
//Problem 3.03:
//initializing the variables:
Pi = 1.0; // in atm
Pf = 3.0; // in atm
Tc = 100; // in °F
Tf = 300; // in °F
qi = 3500; // in acfm
//calculation:
qf = qi*(Pi/Pf)*((Tf + 460)/(Tc + 460))
printf("\n\nResult\n\n")
printf("\n the final (f) volumetric flow rate of a gas is %.0f acfm\n",qf)
|
55c1b4fed0933ada961e6782a9f052f0d94fb685
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/581/CH6/EX6.5/Example6_5.sce
|
b13d3945d811bbe5ce7891575285acd8add188a2
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 912
|
sce
|
Example6_5.sce
|
clear;
clc;
printf("\t Example 6.5\n");
T1=293; //air temperature,K
v=15; //air velocity,m/s
T2=383; // temperature of plate,K
l=0.5; // length of plate,m
w=0.5; //width of plate,m
Pr=0.707; // prandtl no.
Rel=v*l/(0.0000194); //reynplds no.
Nul=0.664*(Rel)^0.5*Pr^(1/3); // nusset no.
h1=367.8*(0.02885)/l; // average convection coefficient, W/(m^2*K)
Q=h1*l^(2)*(T2-T1); // heat transferred,W
h2=h1/2 // convection coefficient at trailing , W/(m^2*K)
a1=4.92*l/(Rel)^0.5*1000 // hydrodynamic boundary layer,m
a2=a1/(Pr)^(1/3); //thermal boundary layer,mm
printf("\t average heat trensfer coefficient is : %.1f W/m^2/K\n",h1);
printf("\t total heat transferred is %.0f W\n",Q);
printf("\t convection coefficient at trailing is : %.1fW/(m^2*K)\n",h2);
printf("\t hydrodynamic boundary layer is : %.2f m\n",a1);
printf("\t thermal boundary layer is : %.2f mm\n",a2);
// end
|
60beec29c18e96ce108da1e048b36035976d90e8
|
991911b2a5fe25b4515d60ea80978b8550f90178
|
/SCILab/Scripts/sessao04.sce
|
853270a693828c59f613f6fcf52e2ce05cb47812
|
[] |
no_license
|
fongoses/comunicacao-dados-2013-2
|
48d2f0cd592ea50c8b1ec6f815c8de62f122c4de
|
2981e42c5be4550ccd8dd4d4ef93b4397a1ea0d3
|
refs/heads/master
| 2016-09-10T10:44:16.480842
| 2013-12-17T12:48:45
| 2013-12-17T12:48:45
| 32,294,010
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 732
|
sce
|
sessao04.sce
|
mode(7);
// Primeira sessao no Scilab (parte 4)
// definicao de uma funcao on line
// Dado um sistema linear S1 e as matrizes de ganho
// do controlador Kr e do observador Ko
// constroi o sistema de malha fechada S2
function S2 = compen(S1, Kr, Ko)
[A,B,C,D] = abcd(S1);
A1 = [A-B*Kr, B*Kr; 0*A, A-Ko*C];
B1 = [B; 0*B];
C1 = [C, 0*C];
S2 = syslin('c',A1,B1,C1);
endfunction
// Entra um sistema linear como espaco de estados
A = [1, 1; 0, 1]; B = [0; 1]; C = [1, 0];
S1 = syslin('c',A,B,C)
// calcula o sistema em malha fechada
S2 = compen(S1, ppol(A,B,[-1,-1]), ppol(A',C',[-1+%i,-1-%i])');
// matriz A do sistema em malha fechada
Aclosed= S2.A
// autovalores em malha fechada
spec(Aclosed)
// fim
mode(0);
|
b585c38e3a61b94bf959ffcbc9f365781633ee70
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2150/CH8/EX8.14/ex8_14.sce
|
72c346b37268fe9dad66170b9429af8a90c5acb3
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 502
|
sce
|
ex8_14.sce
|
// Exa 8.14
clc;
clear;
close;
// Given data
Rf = 250;// in kohm
Vo= '-5*Va+3*Vb';// given expression
// But output voltage of difference amplifier is
// Vo= -Rf/R1*Va+(R2/(R1+R2))*(1+Rf/R1)*Vb (i)
// By comparing (i) with given expression
R1 = Rf/5;// in kohm
disp(R1,"The value of R1 in kΩ is : ");
// (R2/(R1+R2))*(1+Rf/R1)= 3
R2= 3*R1^2/(R1+Rf-3*R1);// in kΩ
disp(R2,"The value of R2 in kΩ is : ")
// Note: There is calculation error to find the value of R2 in the book.
|
7243a82c7616784498b3fa3a92598e079cfa0ae1
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2048/CH4/EX4.3/pz.sce
|
31894dd9de4ad689970ee991fde49d7074abf477
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 260
|
sce
|
pz.sce
|
// To produce pole-zero plots
// 4.3
exec('label.sci',-1);
zero = [0 5/12];
num = poly(zero,'z',"roots");
pole = [1/2 1/3];
den = poly(pole,'z',"roots");
h = syslin('d',num./den);
plzr(h);
label('Pole-Zero Plot',4,'Real(z)','Imaginary(z)',4);
|
b1b010fcccd74624ca50cb838960bea9331a0dca
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2561/CH7/EX7.10/Ex7_10.sce
|
436870be2403cba43117f8dfbec572bfd810942d
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,832
|
sce
|
Ex7_10.sce
|
//Ex7_10
clc
gm=10*10^(-3)
disp("gm = "+string(gm)+" A/V")// transconductance
Cgs=5*10^(-12)
disp("Cgs= "+string(Cgs)+ " farad") // capacitance between gate-source
Cds=1*10^(-12)
disp("Cds= "+string(Cds)+ " farad") // capacitance between drain-source
rd=50*10^(3)
disp("rd= "+string(rd)+ " ohm") //Drain resistance
RG=10*10^(6)
disp("RG= "+string(RG)+ " ohm") //Gate resistance
Rse=1*10^(3)
disp("Rse= "+string(Rse)+ " ohm") //Gate resistance
L=0.5
disp("L= "+string(L)+ " H") //Inductance
C2=0.05*10^(-12)
disp("C2= "+string(C2)+ " farad") // Crystal parameter
C1=1*10^(-12)
disp("C1= "+string(C1)+ " farad") // Crystal parameter
disp("part(i)")
x=C1+[(Cds*Cgs)/(Cds+Cgs)]
CT=1/[(1/C2)+(1/x)]
disp("CT= "+string(CT)+ " farad") // Equivalent series-resonating capacitance
disp("part(ii)")
fo=sqrt(2)/[2*%pi*sqrt(L*CT)]
disp("fo= sqrt(2)/[2*%pi*sqrt(L*CT)]="+string(fo)+" Hz")// frequency of oscillations
disp("part(iii)")
z=sqrt((L*C1*C2)/(C1+C2))
fp=1/[2*%pi*z]
disp("fp= "+string(fp)+" Hz")// parallel-resonant frequency
p=sqrt(L*C2)
fs=1/[2*%pi*p]
disp("fs= "+string(fs)+" Hz")// series-resonant frequency
Q=[sqrt(L/C2)]/(Rse)
disp("Q=[sqrt(L/C2)]/(Rse)= "+string(Q))// Quality factor
disp("part(iv)")
AB=gm*rd*(Cds/Cgs)
disp("AB=gm*rd*(Cds/Cgs)= "+string(AB))//Loop gain
T_bias=RG*(Cgs+Cds)
disp("T_bias=RG*(Cgs+Cds)= "+string(T_bias)+"s")//Bias Time-Constant
T_r = 1/(2*%pi*fo)
disp("T_r =1/(2*%pi*fo)= "+string(T_r)+"s")//resonant Time-Constant for 'fo'
disp("for proper operation T_bias >> T_r")
// in part (ii)... value calculated for series resonant frequecy 'fo' is wrong in textbook.
// NOTE: in part(iii)... there is a misprint in the calculated value of Quality factor 'Q' in the textbook.
//I have used T_r instead of 1/wo (given in the book)
|
a1c6cdb49e223cdeb86b3c18075d0ca0189eb1ab
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/620/CH29/EX29.6/example29_6.sce
|
ba6666400717cd655c53ba0b2bbc5ea0b0f264aa
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 530
|
sce
|
example29_6.sce
|
vo=-6;
vi=0.1;
ri=2;
f=10;
p=6;
k=0.15;
disp("Part a");
av=vo/vi;
disp(av);
a1=av/(1-(k*av));
disp("the voltage gain is"); disp(a1);
disp("Part b");
r=ri*(1-k*av);
disp("the input resistance (in kΩ) is"); disp(r);
disp("Part c");
f1=f*(1-k*av);
disp("the bandwidth (in kHz) is"); disp(f1);
disp("Part d");
p1=p/(1-k*av);
disp("the distortion (in %) is"); disp(p1);
disp("Part e");
gbwp=a1*f1;
disp("the gain-bandwidth product is"); disp(gbwp);
disp("the gain-bandwith prodeuct is same as before feedback");
|
13b9a8954dc6cd072e20e47cbd99e5dcd8621c32
|
7a7243b631b4f0fb324461821ad8dad7d9534fff
|
/macros/napariPath.sci
|
4d554a6e50b9a4e0159b7ca84af2580d8ed08725
|
[] |
no_license
|
Mishrasubha/napari-toolbox
|
1db240ec69cb1c3499fd639c790555716493f54a
|
e1b8dfe5539d457a57ca20dae2661dab55088368
|
refs/heads/master
| 2022-10-11T20:49:00.512777
| 2020-06-15T07:14:11
| 2020-06-15T07:14:11
| 272,357,233
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 572
|
sci
|
napariPath.sci
|
//
// scipython ( http://forge.scilab.org/index.php/p/pims ) - This file is part of scipython
// Copyright (C) 2017 - Scilab Enterprises
//
// This file must be used under the terms of the CeCILL.
// This source file is licensed as described in the file COPYING, which
// you should have received as part of this distribution. The terms
// are also available at
// http://www.cecill.info/licences/Licence_CeCILL_V2-en.txt
//
function napariPath = napariPath()
[macros, macroPath] = libraryinfo("naparilib");
napariPath = fullpath(macroPath + '/..');
endfunction
|
425587084225946389329d1370947e446e14bc62
|
a62e0da056102916ac0fe63d8475e3c4114f86b1
|
/set6/s_Electric_Machines_D._P._Kothari_And_I._J._Nagrath_503.zip/Electric_Machines_D._P._Kothari_And_I._J._Nagrath_503/CH7/EX7.23/ch7_23.sci
|
ee20f10c9fa084c2250cbc5d110aa85a23933fd3
|
[] |
no_license
|
hohiroki/Scilab_TBC
|
cb11e171e47a6cf15dad6594726c14443b23d512
|
98e421ab71b2e8be0c70d67cca3ecb53eeef1df6
|
refs/heads/master
| 2021-01-18T02:07:29.200029
| 2016-04-29T07:01:39
| 2016-04-29T07:01:39
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 369
|
sci
|
ch7_23.sci
|
errcatch(-1,"stop");mode(2);//to calculate no series turns
;
I_sf=5.6;
N_f=1000;
AT_f=I_sf*N_f;
I_a=205.6;
Z=400;
I_L=200;
AT_d=Z*(I_a/I_L);
V_t=250;
R_a=0.05;
R_se=.01;
E_a=V_t+I_a*(R_a+R_se);
n=1150;
nn=1200;
Ea=E_a*(nn/n);
I_fnet=6.2;
ATnet=I_fnet*N_f;
ATse=ATnet+AT_d-AT_f;
Nse=ceil(ATse/I_a);
disp(Nse,'no of series turns/pole');
exit();
|
d6062d4c54bfe82a8439fe9a235c1bca48df14b8
|
cd0d51f98a949adab03c180d38f190dca704c9f2
|
/Metodo_de_Gauss_Seidel_y_Jacobi/Gauss_Seidel.sce
|
615ff5fc8225789faa4545b9b08caafba287316c
|
[] |
no_license
|
victornjr/metodosnumericos
|
a05e06a43ddb751f84d337e702b492a64eb26fb4
|
b1c49db48390d6b39e48b230aead07da06e3d7fa
|
refs/heads/master
| 2020-12-07T15:17:43.681367
| 2017-06-26T20:11:27
| 2017-06-26T20:11:27
| 95,484,590
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 139
|
sce
|
Gauss_Seidel.sce
|
AUM = [A B]
X = AUM
TAM = size(A,1)
X = zeros(N,1)
ITER = 0
valor = 0
for i=1:1:cX-1
for j=1:1:rX
X[i,j] = X[i,j]*
end
end
|
53f11c4b21427a8ee352af44cb7704050f328c7c
|
12009fd2a775bd21033976dee643504ce6e130ff
|
/Scilab/PLS_Obfuscation.sce
|
af24a7ace32e88593aeca3e25090a45eb1f74c56
|
[] |
no_license
|
rftafas/physical_layer_crypto
|
902020859a94338eddb02b61c5c350321716600c
|
484107185a7a1e7e75bcb9a6189c65e2cb651ef2
|
refs/heads/master
| 2022-11-24T18:34:50.788145
| 2020-07-29T10:09:54
| 2020-07-29T10:09:54
| 283,462,078
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,203
|
sce
|
PLS_Obfuscation.sce
|
close
clear
//GERAL
N = 8 //number of symbols
O = 2 //tx oversample
uf_n = 1:(O*N)
ef_n = 1:(O*N)
df_n = ef_n
uf = uf_n //inicializa
ef = ef_n //inicializa
df = df_n //inicializa
//gera a mensagem
tmp = grand(1, N, "uin", -3, 3)
//gera a mensagem sobreamostrada
for i = 1:N
for j = 1:O
uf(O*i-O+j) = tmp(i);
end
end
//gera o ruído
noise = ( grand(1, N*O, "uin", -100, 100) ) / 1000
//DCT
jam = ones(O*N) - 2*grand(1, O*N, "uin", 0, 1)
//wjam = ones(O*N) - 2*grand(1, O*N, "uin", 0, 1)
wjam = jam
//jam = ones(O*N)
dct_type = "dct4"
norm_factor = 1/(2*N*O)
tmp1 = dct(uf,1,dct_type)
ef = norm_factor*dct((tmp1 . *jam),-1,dct_type)//+ jam2)
ef = ef //+ noise
tmp2 = dct(ef,1,dct_type)
df = norm_factor*dct((tmp2 . *wjam),-1,dct_type)//- jam2)
tmp3 = dct(uf,1,dct_type)
subplot (331)
xtitle('input')
plot2d2 (uf_n,uf)
//plot2d2 (n,m)
subplot (332)
xtitle('line')
plot2d2 (ef_n,ef)
subplot (333)
xtitle('output')
//plot2d2 (n,r)
plot2d2(df_n,df)
subplot (334)
xtitle ('fft(m)')
plot2d3(uf_n,tmp1)
subplot (335)
xtitle ('fft(x)')
plot2d3(ef_n,tmp2)
subplot (336)
xtitle ('fft(r)')
plot2d3(uf_n,tmp3)
//subplot (337)
//xtitle ('fft(r)')
//plot2d2(uf_n,uf+noise)
|
20978bea5af1d68e3f02e927bba5f4e63e774533
|
f542bc49c4d04b47d19c88e7c89d5db60922e34e
|
/PresentationFiles_Subjects/CONT/ZU41QPG/ATWM1_Working_Memory_MEG_ZU41QPG_Session2/ATWM1_Working_Memory_MEG_Nonsalient_Uncued_Run2.sce
|
bf1df517b59559e2cfe1a4926646c340eb7297ef
|
[] |
no_license
|
atwm1/Presentation
|
65c674180f731f050aad33beefffb9ba0caa6688
|
9732a004ca091b184b670c56c55f538ff6600c08
|
refs/heads/master
| 2020-04-15T14:04:41.900640
| 2020-02-14T16:10:11
| 2020-02-14T16:10:11
| 56,771,016
| 0
| 1
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 48,620
|
sce
|
ATWM1_Working_Memory_MEG_Nonsalient_Uncued_Run2.sce
|
# ATWM1 MEG Experiment
scenario = "ATWM1_Working_Memory_MEG_salient_cued_run2";
#scenario_type = fMRI; # Fuer Scanner
#scenario_type = fMRI_emulation; # Zum Testen
scenario_type = trials; # for MEG
#scan_period = 2000; # TR
#pulses_per_scan = 1;
#pulse_code = 1;
pulse_width=6;
default_monitor_sounds = false;
active_buttons = 2;
response_matching = simple_matching;
button_codes = 10, 20;
default_font_size = 28;
default_font = "Arial";
default_background_color = 0 ,0 ,0 ;
write_codes=true; # for MEG only
begin;
#Picture definitions
box { height = 300; width = 300; color = 0, 0, 0;} frame1;
box { height = 290; width = 290; color = 255, 255, 255;} frame2;
box { height = 30; width = 4; color = 0, 0, 0;} fix1;
box { height = 4; width = 30; color = 0, 0, 0;} fix2;
box { height = 30; width = 4; color = 255, 0, 0;} fix3;
box { height = 4; width = 30; color = 255, 0, 0;} fix4;
box { height = 290; width = 290; color = 128, 128, 128;} background;
TEMPLATE "StimuliDeclaration.tem" {};
trial {
sound sound_incorrect;
time = 0;
duration = 1;
} wrong;
trial {
sound sound_correct;
time = 0;
duration = 1;
} right;
trial {
sound sound_no_response;
time = 0;
duration = 1;
} miss;
# Start of experiment (MEG only) - sync with CTF software
trial {
picture {
box frame1; x=0; y=0;
box frame2; x=0; y=0;
box background; x=0; y=0;
bitmap fixation_cross_black; x=0; y=0;
} expStart;
time = 0;
duration = 1000;
code = "ExpStart";
port_code = 80;
};
# baselinePre (at the beginning of the session)
trial {
picture {
box frame1; x=0; y=0;
box frame2; x=0; y=0;
box background; x=0; y=0;
bitmap fixation_cross_black; x=0; y=0;
}default;
time = 0;
duration = 10000;
#mri_pulse = 1;
code = "BaselinePre";
port_code = 91;
};
TEMPLATE "ATWM1_Working_Memory_MEG.tem" {
trigger_encoding trigger_retrieval cue_time preparation_time encoding_time single_stimulus_presentation_time delay_time retrieval_time intertrial_interval alerting_cross stim_enc1 stim_enc2 stim_enc3 stim_enc4 stim_enc_alt1 stim_enc_alt2 stim_enc_alt3 stim_enc_alt4 trial_code stim_retr1 stim_retr2 stim_retr3 stim_retr4 stim_cue1 stim_cue2 stim_cue3 stim_cue4 fixationcross_cued retr_code the_target_button posX1 posY1 posX2 posY2 posX3 posY3 posX4 posY4;
44 61 292 292 399 125 2092 2992 1942 fixation_cross gabor_069 gabor_159 gabor_040 gabor_101 gabor_069 gabor_159 gabor_040_alt gabor_101_alt "2_1_Encoding_Working_Memory_MEG_P6_RL_Nonsalient_DoChange_CuedRetrieval_300_300_399_2100_3000_1950_gabor_patch_orientation_069_159_040_101_target_position_1_2_retrieval_position_2" gabor_circ gabor_023_framed gabor_circ gabor_circ blank blank blank blank fixation_cross_white "2_1_Retrieval_Working_Memory_MEG_P6_RL_Nonsalient_DoChange_CuedRetrieval_retrieval_patch_orientation_023_retrieval_position_2" 1 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96;
44 61 292 292 399 125 2192 2992 2492 fixation_cross gabor_011 gabor_096 gabor_140 gabor_075 gabor_011 gabor_096_alt gabor_140 gabor_075_alt "2_2_Encoding_Working_Memory_MEG_P6_RL_Nonsalient_DoChange_CuedRetrieval_300_300_399_2200_3000_2500_gabor_patch_orientation_011_096_140_075_target_position_1_3_retrieval_position_1" gabor_056_framed gabor_circ gabor_circ gabor_circ blank blank blank blank fixation_cross_white "2_2_Retrieval_Working_Memory_MEG_P6_RL_Nonsalient_DoChange_CuedRetrieval_retrieval_patch_orientation_056_retrieval_position_1" 1 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96;
44 62 292 292 399 125 1992 2992 2592 fixation_cross gabor_014 gabor_036 gabor_052 gabor_096 gabor_014 gabor_036_alt gabor_052_alt gabor_096 "2_3_Encoding_Working_Memory_MEG_P6_RL_Nonsalient_NoChange_CuedRetrieval_300_300_399_2000_3000_2600_gabor_patch_orientation_014_036_052_096_target_position_1_4_retrieval_position_4" gabor_circ gabor_circ gabor_circ gabor_096_framed blank blank blank blank fixation_cross_white "2_3_Retrieval_Working_Memory_MEG_P6_RL_Nonsalient_NoChange_CuedRetrieval_retrieval_patch_orientation_096_retrieval_position_4" 2 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96;
44 61 292 292 399 125 1742 2992 1942 fixation_cross gabor_033 gabor_150 gabor_103 gabor_167 gabor_033_alt gabor_150 gabor_103 gabor_167_alt "2_4_Encoding_Working_Memory_MEG_P6_RL_Nonsalient_DoChange_CuedRetrieval_300_300_399_1750_3000_1950_gabor_patch_orientation_033_150_103_167_target_position_2_3_retrieval_position_2" gabor_circ gabor_014_framed gabor_circ gabor_circ blank blank blank blank fixation_cross_white "2_4_Retrieval_Working_Memory_MEG_P6_RL_Nonsalient_DoChange_CuedRetrieval_retrieval_patch_orientation_014_retrieval_position_2" 1 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96;
44 63 292 292 399 125 1842 2992 2592 fixation_cross gabor_123 gabor_177 gabor_070 gabor_008 gabor_123 gabor_177_alt gabor_070_alt gabor_008 "2_5_Encoding_Working_Memory_MEG_P6_RL_Nonsalient_DoChange_UncuedRetriev_300_300_399_1850_3000_2600_gabor_patch_orientation_123_177_070_008_target_position_1_4_retrieval_position_2" gabor_circ gabor_037_framed gabor_circ gabor_circ blank blank blank blank fixation_cross_white "2_5_Retrieval_Working_Memory_MEG_P6_RL_Nonsalient_DoChange_UncuedRetriev_retrieval_patch_orientation_037_retrieval_position_2" 1 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96;
44 61 292 292 399 125 1942 2992 2292 fixation_cross gabor_082 gabor_066 gabor_106 gabor_027 gabor_082_alt gabor_066_alt gabor_106 gabor_027 "2_6_Encoding_Working_Memory_MEG_P6_RL_Nonsalient_DoChange_CuedRetrieval_300_300_399_1950_3000_2300_gabor_patch_orientation_082_066_106_027_target_position_3_4_retrieval_position_3" gabor_circ gabor_circ gabor_151_framed gabor_circ blank blank blank blank fixation_cross_white "2_6_Retrieval_Working_Memory_MEG_P6_RL_Nonsalient_DoChange_CuedRetrieval_retrieval_patch_orientation_151_retrieval_position_3" 1 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96;
44 61 292 292 399 125 1892 2992 2392 fixation_cross gabor_024 gabor_080 gabor_152 gabor_168 gabor_024_alt gabor_080_alt gabor_152 gabor_168 "2_7_Encoding_Working_Memory_MEG_P6_RL_Nonsalient_DoChange_CuedRetrieval_300_300_399_1900_3000_2400_gabor_patch_orientation_024_080_152_168_target_position_3_4_retrieval_position_3" gabor_circ gabor_circ gabor_105_framed gabor_circ blank blank blank blank fixation_cross_white "2_7_Retrieval_Working_Memory_MEG_P6_RL_Nonsalient_DoChange_CuedRetrieval_retrieval_patch_orientation_105_retrieval_position_3" 1 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96;
44 62 292 292 399 125 2042 2992 2092 fixation_cross gabor_035 gabor_093 gabor_169 gabor_009 gabor_035_alt gabor_093_alt gabor_169 gabor_009 "2_8_Encoding_Working_Memory_MEG_P6_RL_Nonsalient_NoChange_CuedRetrieval_300_300_399_2050_3000_2100_gabor_patch_orientation_035_093_169_009_target_position_3_4_retrieval_position_3" gabor_circ gabor_circ gabor_169_framed gabor_circ blank blank blank blank fixation_cross_white "2_8_Retrieval_Working_Memory_MEG_P6_RL_Nonsalient_NoChange_CuedRetrieval_retrieval_patch_orientation_169_retrieval_position_3" 2 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96;
44 62 292 292 399 125 1842 2992 2092 fixation_cross gabor_027 gabor_007 gabor_077 gabor_151 gabor_027 gabor_007_alt gabor_077 gabor_151_alt "2_9_Encoding_Working_Memory_MEG_P6_RL_Nonsalient_NoChange_CuedRetrieval_300_300_399_1850_3000_2100_gabor_patch_orientation_027_007_077_151_target_position_1_3_retrieval_position_1" gabor_027_framed gabor_circ gabor_circ gabor_circ blank blank blank blank fixation_cross_white "2_9_Retrieval_Working_Memory_MEG_P6_RL_Nonsalient_NoChange_CuedRetrieval_retrieval_patch_orientation_027_retrieval_position_1" 2 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96;
44 63 292 292 399 125 1992 2992 2242 fixation_cross gabor_013 gabor_036 gabor_141 gabor_161 gabor_013 gabor_036_alt gabor_141 gabor_161_alt "2_10_Encoding_Working_Memory_MEG_P6_RL_Nonsalient_DoChange_UncuedRetriev_300_300_399_2000_3000_2250_gabor_patch_orientation_013_036_141_161_target_position_1_3_retrieval_position_2" gabor_circ gabor_084_framed gabor_circ gabor_circ blank blank blank blank fixation_cross_white "2_10_Retrieval_Working_Memory_MEG_P6_RL_Nonsalient_DoChange_UncuedRetriev_retrieval_patch_orientation_084_retrieval_position_2" 1 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96;
44 62 292 292 399 125 2142 2992 2042 fixation_cross gabor_169 gabor_083 gabor_117 gabor_154 gabor_169 gabor_083 gabor_117_alt gabor_154_alt "2_11_Encoding_Working_Memory_MEG_P6_RL_Nonsalient_NoChange_CuedRetrieval_300_300_399_2150_3000_2050_gabor_patch_orientation_169_083_117_154_target_position_1_2_retrieval_position_2" gabor_circ gabor_083_framed gabor_circ gabor_circ blank blank blank blank fixation_cross_white "2_11_Retrieval_Working_Memory_MEG_P6_RL_Nonsalient_NoChange_CuedRetrieval_retrieval_patch_orientation_083_retrieval_position_2" 2 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96;
44 62 292 292 399 125 1992 2992 2292 fixation_cross gabor_174 gabor_136 gabor_020 gabor_094 gabor_174_alt gabor_136 gabor_020_alt gabor_094 "2_12_Encoding_Working_Memory_MEG_P6_RL_Nonsalient_NoChange_CuedRetrieval_300_300_399_2000_3000_2300_gabor_patch_orientation_174_136_020_094_target_position_2_4_retrieval_position_4" gabor_circ gabor_circ gabor_circ gabor_094_framed blank blank blank blank fixation_cross_white "2_12_Retrieval_Working_Memory_MEG_P6_RL_Nonsalient_NoChange_CuedRetrieval_retrieval_patch_orientation_094_retrieval_position_4" 2 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96;
44 62 292 292 399 125 1792 2992 2242 fixation_cross gabor_145 gabor_066 gabor_121 gabor_031 gabor_145 gabor_066_alt gabor_121 gabor_031_alt "2_13_Encoding_Working_Memory_MEG_P6_RL_Nonsalient_NoChange_CuedRetrieval_300_300_399_1800_3000_2250_gabor_patch_orientation_145_066_121_031_target_position_1_3_retrieval_position_1" gabor_145_framed gabor_circ gabor_circ gabor_circ blank blank blank blank fixation_cross_white "2_13_Retrieval_Working_Memory_MEG_P6_RL_Nonsalient_NoChange_CuedRetrieval_retrieval_patch_orientation_145_retrieval_position_1" 2 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96;
44 62 292 292 399 125 2242 2992 2592 fixation_cross gabor_077 gabor_107 gabor_049 gabor_028 gabor_077 gabor_107 gabor_049_alt gabor_028_alt "2_14_Encoding_Working_Memory_MEG_P6_RL_Nonsalient_NoChange_CuedRetrieval_300_300_399_2250_3000_2600_gabor_patch_orientation_077_107_049_028_target_position_1_2_retrieval_position_2" gabor_circ gabor_107_framed gabor_circ gabor_circ blank blank blank blank fixation_cross_white "2_14_Retrieval_Working_Memory_MEG_P6_RL_Nonsalient_NoChange_CuedRetrieval_retrieval_patch_orientation_107_retrieval_position_2" 2 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96;
44 62 292 292 399 125 2042 2992 1992 fixation_cross gabor_062 gabor_035 gabor_105 gabor_152 gabor_062_alt gabor_035 gabor_105_alt gabor_152 "2_15_Encoding_Working_Memory_MEG_P6_RL_Nonsalient_NoChange_CuedRetrieval_300_300_399_2050_3000_2000_gabor_patch_orientation_062_035_105_152_target_position_2_4_retrieval_position_2" gabor_circ gabor_035_framed gabor_circ gabor_circ blank blank blank blank fixation_cross_white "2_15_Retrieval_Working_Memory_MEG_P6_RL_Nonsalient_NoChange_CuedRetrieval_retrieval_patch_orientation_035_retrieval_position_2" 2 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96;
44 62 292 292 399 125 1742 2992 2542 fixation_cross gabor_019 gabor_056 gabor_170 gabor_106 gabor_019 gabor_056_alt gabor_170 gabor_106_alt "2_16_Encoding_Working_Memory_MEG_P6_RL_Nonsalient_NoChange_CuedRetrieval_300_300_399_1750_3000_2550_gabor_patch_orientation_019_056_170_106_target_position_1_3_retrieval_position_3" gabor_circ gabor_circ gabor_170_framed gabor_circ blank blank blank blank fixation_cross_white "2_16_Retrieval_Working_Memory_MEG_P6_RL_Nonsalient_NoChange_CuedRetrieval_retrieval_patch_orientation_170_retrieval_position_3" 2 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96;
44 64 292 292 399 125 2242 2992 2442 fixation_cross gabor_089 gabor_124 gabor_065 gabor_140 gabor_089_alt gabor_124 gabor_065 gabor_140_alt "2_17_Encoding_Working_Memory_MEG_P6_RL_Nonsalient_NoChange_UncuedRetriev_300_300_399_2250_3000_2450_gabor_patch_orientation_089_124_065_140_target_position_2_3_retrieval_position_4" gabor_circ gabor_circ gabor_circ gabor_140_framed blank blank blank blank fixation_cross_white "2_17_Retrieval_Working_Memory_MEG_P6_RL_Nonsalient_NoChange_UncuedRetriev_retrieval_patch_orientation_140_retrieval_position_4" 2 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96;
44 61 292 292 399 125 2242 2992 2542 fixation_cross gabor_143 gabor_110 gabor_165 gabor_035 gabor_143 gabor_110 gabor_165_alt gabor_035_alt "2_18_Encoding_Working_Memory_MEG_P6_RL_Nonsalient_DoChange_CuedRetrieval_300_300_399_2250_3000_2550_gabor_patch_orientation_143_110_165_035_target_position_1_2_retrieval_position_1" gabor_094_framed gabor_circ gabor_circ gabor_circ blank blank blank blank fixation_cross_white "2_18_Retrieval_Working_Memory_MEG_P6_RL_Nonsalient_DoChange_CuedRetrieval_retrieval_patch_orientation_094_retrieval_position_1" 1 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96;
44 62 292 292 399 125 2142 2992 2242 fixation_cross gabor_054 gabor_021 gabor_087 gabor_129 gabor_054_alt gabor_021 gabor_087_alt gabor_129 "2_19_Encoding_Working_Memory_MEG_P6_RL_Nonsalient_NoChange_CuedRetrieval_300_300_399_2150_3000_2250_gabor_patch_orientation_054_021_087_129_target_position_2_4_retrieval_position_2" gabor_circ gabor_021_framed gabor_circ gabor_circ blank blank blank blank fixation_cross_white "2_19_Retrieval_Working_Memory_MEG_P6_RL_Nonsalient_NoChange_CuedRetrieval_retrieval_patch_orientation_021_retrieval_position_2" 2 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96;
44 62 292 292 399 125 1892 2992 1892 fixation_cross gabor_032 gabor_121 gabor_095 gabor_048 gabor_032 gabor_121_alt gabor_095_alt gabor_048 "2_20_Encoding_Working_Memory_MEG_P6_RL_Nonsalient_NoChange_CuedRetrieval_300_300_399_1900_3000_1900_gabor_patch_orientation_032_121_095_048_target_position_1_4_retrieval_position_1" gabor_032_framed gabor_circ gabor_circ gabor_circ blank blank blank blank fixation_cross_white "2_20_Retrieval_Working_Memory_MEG_P6_RL_Nonsalient_NoChange_CuedRetrieval_retrieval_patch_orientation_032_retrieval_position_1" 2 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96;
44 64 292 292 399 125 1942 2992 2592 fixation_cross gabor_075 gabor_107 gabor_001 gabor_090 gabor_075 gabor_107_alt gabor_001 gabor_090_alt "2_21_Encoding_Working_Memory_MEG_P6_RL_Nonsalient_NoChange_UncuedRetriev_300_300_399_1950_3000_2600_gabor_patch_orientation_075_107_001_090_target_position_1_3_retrieval_position_4" gabor_circ gabor_circ gabor_circ gabor_090_framed blank blank blank blank fixation_cross_white "2_21_Retrieval_Working_Memory_MEG_P6_RL_Nonsalient_NoChange_UncuedRetriev_retrieval_patch_orientation_090_retrieval_position_4" 2 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96;
44 61 292 292 399 125 1992 2992 1942 fixation_cross gabor_021 gabor_109 gabor_093 gabor_143 gabor_021 gabor_109_alt gabor_093_alt gabor_143 "2_22_Encoding_Working_Memory_MEG_P6_RL_Nonsalient_DoChange_CuedRetrieval_300_300_399_2000_3000_1950_gabor_patch_orientation_021_109_093_143_target_position_1_4_retrieval_position_1" gabor_067_framed gabor_circ gabor_circ gabor_circ blank blank blank blank fixation_cross_white "2_22_Retrieval_Working_Memory_MEG_P6_RL_Nonsalient_DoChange_CuedRetrieval_retrieval_patch_orientation_067_retrieval_position_1" 1 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96;
44 62 292 292 399 125 1942 2992 2342 fixation_cross gabor_141 gabor_060 gabor_015 gabor_124 gabor_141_alt gabor_060 gabor_015_alt gabor_124 "2_23_Encoding_Working_Memory_MEG_P6_RL_Nonsalient_NoChange_CuedRetrieval_300_300_399_1950_3000_2350_gabor_patch_orientation_141_060_015_124_target_position_2_4_retrieval_position_2" gabor_circ gabor_060_framed gabor_circ gabor_circ blank blank blank blank fixation_cross_white "2_23_Retrieval_Working_Memory_MEG_P6_RL_Nonsalient_NoChange_CuedRetrieval_retrieval_patch_orientation_060_retrieval_position_2" 2 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96;
44 61 292 292 399 125 2092 2992 2292 fixation_cross gabor_109 gabor_089 gabor_173 gabor_052 gabor_109 gabor_089_alt gabor_173 gabor_052_alt "2_24_Encoding_Working_Memory_MEG_P6_RL_Nonsalient_DoChange_CuedRetrieval_300_300_399_2100_3000_2300_gabor_patch_orientation_109_089_173_052_target_position_1_3_retrieval_position_3" gabor_circ gabor_circ gabor_034_framed gabor_circ blank blank blank blank fixation_cross_white "2_24_Retrieval_Working_Memory_MEG_P6_RL_Nonsalient_DoChange_CuedRetrieval_retrieval_patch_orientation_034_retrieval_position_3" 1 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96;
44 62 292 292 399 125 2242 2992 1992 fixation_cross gabor_058 gabor_032 gabor_098 gabor_180 gabor_058 gabor_032_alt gabor_098 gabor_180_alt "2_25_Encoding_Working_Memory_MEG_P6_RL_Nonsalient_NoChange_CuedRetrieval_300_300_399_2250_3000_2000_gabor_patch_orientation_058_032_098_180_target_position_1_3_retrieval_position_1" gabor_058_framed gabor_circ gabor_circ gabor_circ blank blank blank blank fixation_cross_white "2_25_Retrieval_Working_Memory_MEG_P6_RL_Nonsalient_NoChange_CuedRetrieval_retrieval_patch_orientation_058_retrieval_position_1" 2 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96;
44 62 292 292 399 125 1792 2992 2042 fixation_cross gabor_173 gabor_064 gabor_033 gabor_014 gabor_173_alt gabor_064 gabor_033_alt gabor_014 "2_26_Encoding_Working_Memory_MEG_P6_RL_Nonsalient_NoChange_CuedRetrieval_300_300_399_1800_3000_2050_gabor_patch_orientation_173_064_033_014_target_position_2_4_retrieval_position_4" gabor_circ gabor_circ gabor_circ gabor_014_framed blank blank blank blank fixation_cross_white "2_26_Retrieval_Working_Memory_MEG_P6_RL_Nonsalient_NoChange_CuedRetrieval_retrieval_patch_orientation_014_retrieval_position_4" 2 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96;
44 61 292 292 399 125 2192 2992 2242 fixation_cross gabor_170 gabor_039 gabor_154 gabor_024 gabor_170_alt gabor_039 gabor_154 gabor_024_alt "2_27_Encoding_Working_Memory_MEG_P6_RL_Nonsalient_DoChange_CuedRetrieval_300_300_399_2200_3000_2250_gabor_patch_orientation_170_039_154_024_target_position_2_3_retrieval_position_2" gabor_circ gabor_084_framed gabor_circ gabor_circ blank blank blank blank fixation_cross_white "2_27_Retrieval_Working_Memory_MEG_P6_RL_Nonsalient_DoChange_CuedRetrieval_retrieval_patch_orientation_084_retrieval_position_2" 1 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96;
44 64 292 292 399 125 1792 2992 2192 fixation_cross gabor_026 gabor_149 gabor_089 gabor_108 gabor_026 gabor_149 gabor_089_alt gabor_108_alt "2_28_Encoding_Working_Memory_MEG_P6_RL_Nonsalient_NoChange_UncuedRetriev_300_300_399_1800_3000_2200_gabor_patch_orientation_026_149_089_108_target_position_1_2_retrieval_position_4" gabor_circ gabor_circ gabor_circ gabor_108_framed blank blank blank blank fixation_cross_white "2_28_Retrieval_Working_Memory_MEG_P6_RL_Nonsalient_NoChange_UncuedRetriev_retrieval_patch_orientation_108_retrieval_position_4" 2 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96;
44 62 292 292 399 125 1742 2992 2392 fixation_cross gabor_066 gabor_178 gabor_007 gabor_092 gabor_066 gabor_178 gabor_007_alt gabor_092_alt "2_29_Encoding_Working_Memory_MEG_P6_RL_Nonsalient_NoChange_CuedRetrieval_300_300_399_1750_3000_2400_gabor_patch_orientation_066_178_007_092_target_position_1_2_retrieval_position_1" gabor_066_framed gabor_circ gabor_circ gabor_circ blank blank blank blank fixation_cross_white "2_29_Retrieval_Working_Memory_MEG_P6_RL_Nonsalient_NoChange_CuedRetrieval_retrieval_patch_orientation_066_retrieval_position_1" 2 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96;
44 62 292 292 399 125 1742 2992 2142 fixation_cross gabor_047 gabor_172 gabor_102 gabor_133 gabor_047_alt gabor_172 gabor_102_alt gabor_133 "2_30_Encoding_Working_Memory_MEG_P6_RL_Nonsalient_NoChange_CuedRetrieval_300_300_399_1750_3000_2150_gabor_patch_orientation_047_172_102_133_target_position_2_4_retrieval_position_4" gabor_circ gabor_circ gabor_circ gabor_133_framed blank blank blank blank fixation_cross_white "2_30_Retrieval_Working_Memory_MEG_P6_RL_Nonsalient_NoChange_CuedRetrieval_retrieval_patch_orientation_133_retrieval_position_4" 2 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96;
44 64 292 292 399 125 1792 2992 2492 fixation_cross gabor_017 gabor_050 gabor_098 gabor_125 gabor_017_alt gabor_050 gabor_098 gabor_125_alt "2_31_Encoding_Working_Memory_MEG_P6_RL_Nonsalient_NoChange_UncuedRetriev_300_300_399_1800_3000_2500_gabor_patch_orientation_017_050_098_125_target_position_2_3_retrieval_position_4" gabor_circ gabor_circ gabor_circ gabor_125_framed blank blank blank blank fixation_cross_white "2_31_Retrieval_Working_Memory_MEG_P6_RL_Nonsalient_NoChange_UncuedRetriev_retrieval_patch_orientation_125_retrieval_position_4" 2 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96;
44 61 292 292 399 125 1942 2992 2142 fixation_cross gabor_123 gabor_038 gabor_013 gabor_080 gabor_123_alt gabor_038_alt gabor_013 gabor_080 "2_32_Encoding_Working_Memory_MEG_P6_RL_Nonsalient_DoChange_CuedRetrieval_300_300_399_1950_3000_2150_gabor_patch_orientation_123_038_013_080_target_position_3_4_retrieval_position_3" gabor_circ gabor_circ gabor_148_framed gabor_circ blank blank blank blank fixation_cross_white "2_32_Retrieval_Working_Memory_MEG_P6_RL_Nonsalient_DoChange_CuedRetrieval_retrieval_patch_orientation_148_retrieval_position_3" 1 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96;
44 62 292 292 399 125 2092 2992 2192 fixation_cross gabor_022 gabor_133 gabor_004 gabor_064 gabor_022_alt gabor_133 gabor_004 gabor_064_alt "2_33_Encoding_Working_Memory_MEG_P6_RL_Nonsalient_NoChange_CuedRetrieval_300_300_399_2100_3000_2200_gabor_patch_orientation_022_133_004_064_target_position_2_3_retrieval_position_2" gabor_circ gabor_133_framed gabor_circ gabor_circ blank blank blank blank fixation_cross_white "2_33_Retrieval_Working_Memory_MEG_P6_RL_Nonsalient_NoChange_CuedRetrieval_retrieval_patch_orientation_133_retrieval_position_2" 2 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96;
44 62 292 292 399 125 2042 2992 2042 fixation_cross gabor_128 gabor_108 gabor_048 gabor_164 gabor_128 gabor_108_alt gabor_048 gabor_164_alt "2_34_Encoding_Working_Memory_MEG_P6_RL_Nonsalient_NoChange_CuedRetrieval_300_300_399_2050_3000_2050_gabor_patch_orientation_128_108_048_164_target_position_1_3_retrieval_position_3" gabor_circ gabor_circ gabor_048_framed gabor_circ blank blank blank blank fixation_cross_white "2_34_Retrieval_Working_Memory_MEG_P6_RL_Nonsalient_NoChange_CuedRetrieval_retrieval_patch_orientation_048_retrieval_position_3" 2 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96;
44 63 292 292 399 125 2042 2992 2042 fixation_cross gabor_156 gabor_090 gabor_051 gabor_033 gabor_156_alt gabor_090_alt gabor_051 gabor_033 "2_35_Encoding_Working_Memory_MEG_P6_RL_Nonsalient_DoChange_UncuedRetriev_300_300_399_2050_3000_2050_gabor_patch_orientation_156_090_051_033_target_position_3_4_retrieval_position_1" gabor_111_framed gabor_circ gabor_circ gabor_circ blank blank blank blank fixation_cross_white "2_35_Retrieval_Working_Memory_MEG_P6_RL_Nonsalient_DoChange_UncuedRetriev_retrieval_patch_orientation_111_retrieval_position_1" 1 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96;
44 62 292 292 399 125 2192 2992 2142 fixation_cross gabor_110 gabor_092 gabor_050 gabor_072 gabor_110 gabor_092 gabor_050_alt gabor_072_alt "2_36_Encoding_Working_Memory_MEG_P6_RL_Nonsalient_NoChange_CuedRetrieval_300_300_399_2200_3000_2150_gabor_patch_orientation_110_092_050_072_target_position_1_2_retrieval_position_2" gabor_circ gabor_092_framed gabor_circ gabor_circ blank blank blank blank fixation_cross_white "2_36_Retrieval_Working_Memory_MEG_P6_RL_Nonsalient_NoChange_CuedRetrieval_retrieval_patch_orientation_092_retrieval_position_2" 2 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96;
44 61 292 292 399 125 1792 2992 1942 fixation_cross gabor_028 gabor_104 gabor_062 gabor_174 gabor_028_alt gabor_104 gabor_062_alt gabor_174 "2_37_Encoding_Working_Memory_MEG_P6_RL_Nonsalient_DoChange_CuedRetrieval_300_300_399_1800_3000_1950_gabor_patch_orientation_028_104_062_174_target_position_2_4_retrieval_position_2" gabor_circ gabor_150_framed gabor_circ gabor_circ blank blank blank blank fixation_cross_white "2_37_Retrieval_Working_Memory_MEG_P6_RL_Nonsalient_DoChange_CuedRetrieval_retrieval_patch_orientation_150_retrieval_position_2" 1 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96;
44 61 292 292 399 125 2092 2992 2292 fixation_cross gabor_180 gabor_163 gabor_009 gabor_052 gabor_180_alt gabor_163 gabor_009_alt gabor_052 "2_38_Encoding_Working_Memory_MEG_P6_RL_Nonsalient_DoChange_CuedRetrieval_300_300_399_2100_3000_2300_gabor_patch_orientation_180_163_009_052_target_position_2_4_retrieval_position_2" gabor_circ gabor_117_framed gabor_circ gabor_circ blank blank blank blank fixation_cross_white "2_38_Retrieval_Working_Memory_MEG_P6_RL_Nonsalient_DoChange_CuedRetrieval_retrieval_patch_orientation_117_retrieval_position_2" 1 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96;
44 61 292 292 399 125 1942 2992 1992 fixation_cross gabor_138 gabor_117 gabor_027 gabor_083 gabor_138_alt gabor_117 gabor_027_alt gabor_083 "2_39_Encoding_Working_Memory_MEG_P6_RL_Nonsalient_DoChange_CuedRetrieval_300_300_399_1950_3000_2000_gabor_patch_orientation_138_117_027_083_target_position_2_4_retrieval_position_2" gabor_circ gabor_067_framed gabor_circ gabor_circ blank blank blank blank fixation_cross_white "2_39_Retrieval_Working_Memory_MEG_P6_RL_Nonsalient_DoChange_CuedRetrieval_retrieval_patch_orientation_067_retrieval_position_2" 1 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96;
44 62 292 292 399 125 1992 2992 2142 fixation_cross gabor_054 gabor_069 gabor_141 gabor_035 gabor_054_alt gabor_069_alt gabor_141 gabor_035 "2_40_Encoding_Working_Memory_MEG_P6_RL_Nonsalient_NoChange_CuedRetrieval_300_300_399_2000_3000_2150_gabor_patch_orientation_054_069_141_035_target_position_3_4_retrieval_position_3" gabor_circ gabor_circ gabor_141_framed gabor_circ blank blank blank blank fixation_cross_white "2_40_Retrieval_Working_Memory_MEG_P6_RL_Nonsalient_NoChange_CuedRetrieval_retrieval_patch_orientation_141_retrieval_position_3" 2 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96;
44 63 292 292 399 125 2242 2992 2392 fixation_cross gabor_063 gabor_143 gabor_090 gabor_036 gabor_063 gabor_143_alt gabor_090 gabor_036_alt "2_41_Encoding_Working_Memory_MEG_P6_RL_Nonsalient_DoChange_UncuedRetriev_300_300_399_2250_3000_2400_gabor_patch_orientation_063_143_090_036_target_position_1_3_retrieval_position_2" gabor_circ gabor_005_framed gabor_circ gabor_circ blank blank blank blank fixation_cross_white "2_41_Retrieval_Working_Memory_MEG_P6_RL_Nonsalient_DoChange_UncuedRetriev_retrieval_patch_orientation_005_retrieval_position_2" 1 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96;
44 61 292 292 399 125 1892 2992 2192 fixation_cross gabor_037 gabor_060 gabor_114 gabor_005 gabor_037 gabor_060_alt gabor_114_alt gabor_005 "2_42_Encoding_Working_Memory_MEG_P6_RL_Nonsalient_DoChange_CuedRetrieval_300_300_399_1900_3000_2200_gabor_patch_orientation_037_060_114_005_target_position_1_4_retrieval_position_1" gabor_177_framed gabor_circ gabor_circ gabor_circ blank blank blank blank fixation_cross_white "2_42_Retrieval_Working_Memory_MEG_P6_RL_Nonsalient_DoChange_CuedRetrieval_retrieval_patch_orientation_177_retrieval_position_1" 1 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96;
44 62 292 292 399 125 1892 2992 2042 fixation_cross gabor_089 gabor_013 gabor_059 gabor_043 gabor_089 gabor_013_alt gabor_059_alt gabor_043 "2_43_Encoding_Working_Memory_MEG_P6_RL_Nonsalient_NoChange_CuedRetrieval_300_300_399_1900_3000_2050_gabor_patch_orientation_089_013_059_043_target_position_1_4_retrieval_position_4" gabor_circ gabor_circ gabor_circ gabor_043_framed blank blank blank blank fixation_cross_white "2_43_Retrieval_Working_Memory_MEG_P6_RL_Nonsalient_NoChange_CuedRetrieval_retrieval_patch_orientation_043_retrieval_position_4" 2 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96;
44 64 292 292 399 125 2192 2992 2492 fixation_cross gabor_071 gabor_105 gabor_134 gabor_177 gabor_071_alt gabor_105_alt gabor_134 gabor_177 "2_44_Encoding_Working_Memory_MEG_P6_RL_Nonsalient_NoChange_UncuedRetriev_300_300_399_2200_3000_2500_gabor_patch_orientation_071_105_134_177_target_position_3_4_retrieval_position_2" gabor_circ gabor_105_framed gabor_circ gabor_circ blank blank blank blank fixation_cross_white "2_44_Retrieval_Working_Memory_MEG_P6_RL_Nonsalient_NoChange_UncuedRetriev_retrieval_patch_orientation_105_retrieval_position_2" 2 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96;
44 61 292 292 399 125 2242 2992 2342 fixation_cross gabor_095 gabor_034 gabor_053 gabor_161 gabor_095 gabor_034_alt gabor_053 gabor_161_alt "2_45_Encoding_Working_Memory_MEG_P6_RL_Nonsalient_DoChange_CuedRetrieval_300_300_399_2250_3000_2350_gabor_patch_orientation_095_034_053_161_target_position_1_3_retrieval_position_3" gabor_circ gabor_circ gabor_008_framed gabor_circ blank blank blank blank fixation_cross_white "2_45_Retrieval_Working_Memory_MEG_P6_RL_Nonsalient_DoChange_CuedRetrieval_retrieval_patch_orientation_008_retrieval_position_3" 1 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96;
44 62 292 292 399 125 2142 2992 2242 fixation_cross gabor_093 gabor_176 gabor_062 gabor_041 gabor_093_alt gabor_176 gabor_062_alt gabor_041 "2_46_Encoding_Working_Memory_MEG_P6_RL_Nonsalient_NoChange_CuedRetrieval_300_300_399_2150_3000_2250_gabor_patch_orientation_093_176_062_041_target_position_2_4_retrieval_position_2" gabor_circ gabor_176_framed gabor_circ gabor_circ blank blank blank blank fixation_cross_white "2_46_Retrieval_Working_Memory_MEG_P6_RL_Nonsalient_NoChange_CuedRetrieval_retrieval_patch_orientation_176_retrieval_position_2" 2 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96;
44 61 292 292 399 125 1892 2992 2342 fixation_cross gabor_069 gabor_101 gabor_037 gabor_144 gabor_069 gabor_101_alt gabor_037 gabor_144_alt "2_47_Encoding_Working_Memory_MEG_P6_RL_Nonsalient_DoChange_CuedRetrieval_300_300_399_1900_3000_2350_gabor_patch_orientation_069_101_037_144_target_position_1_3_retrieval_position_1" gabor_118_framed gabor_circ gabor_circ gabor_circ blank blank blank blank fixation_cross_white "2_47_Retrieval_Working_Memory_MEG_P6_RL_Nonsalient_DoChange_CuedRetrieval_retrieval_patch_orientation_118_retrieval_position_1" 1 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96;
44 61 292 292 399 125 1742 2992 2142 fixation_cross gabor_096 gabor_051 gabor_066 gabor_136 gabor_096_alt gabor_051_alt gabor_066 gabor_136 "2_48_Encoding_Working_Memory_MEG_P6_RL_Nonsalient_DoChange_CuedRetrieval_300_300_399_1750_3000_2150_gabor_patch_orientation_096_051_066_136_target_position_3_4_retrieval_position_3" gabor_circ gabor_circ gabor_116_framed gabor_circ blank blank blank blank fixation_cross_white "2_48_Retrieval_Working_Memory_MEG_P6_RL_Nonsalient_DoChange_CuedRetrieval_retrieval_patch_orientation_116_retrieval_position_3" 1 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96;
44 63 292 292 399 125 1892 2992 2442 fixation_cross gabor_118 gabor_005 gabor_046 gabor_134 gabor_118 gabor_005_alt gabor_046_alt gabor_134 "2_49_Encoding_Working_Memory_MEG_P6_RL_Nonsalient_DoChange_UncuedRetriev_300_300_399_1900_3000_2450_gabor_patch_orientation_118_005_046_134_target_position_1_4_retrieval_position_3" gabor_circ gabor_circ gabor_091_framed gabor_circ blank blank blank blank fixation_cross_white "2_49_Retrieval_Working_Memory_MEG_P6_RL_Nonsalient_DoChange_UncuedRetriev_retrieval_patch_orientation_091_retrieval_position_3" 1 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96;
44 61 292 292 399 125 1842 2992 1892 fixation_cross gabor_139 gabor_107 gabor_024 gabor_050 gabor_139 gabor_107_alt gabor_024 gabor_050_alt "2_50_Encoding_Working_Memory_MEG_P6_RL_Nonsalient_DoChange_CuedRetrieval_300_300_399_1850_3000_1900_gabor_patch_orientation_139_107_024_050_target_position_1_3_retrieval_position_3" gabor_circ gabor_circ gabor_161_framed gabor_circ blank blank blank blank fixation_cross_white "2_50_Retrieval_Working_Memory_MEG_P6_RL_Nonsalient_DoChange_CuedRetrieval_retrieval_patch_orientation_161_retrieval_position_3" 1 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96;
44 62 292 292 399 125 1842 2992 2092 fixation_cross gabor_091 gabor_006 gabor_124 gabor_162 gabor_091_alt gabor_006 gabor_124 gabor_162_alt "2_51_Encoding_Working_Memory_MEG_P6_RL_Nonsalient_NoChange_CuedRetrieval_300_300_399_1850_3000_2100_gabor_patch_orientation_091_006_124_162_target_position_2_3_retrieval_position_2" gabor_circ gabor_006_framed gabor_circ gabor_circ blank blank blank blank fixation_cross_white "2_51_Retrieval_Working_Memory_MEG_P6_RL_Nonsalient_NoChange_CuedRetrieval_retrieval_patch_orientation_006_retrieval_position_2" 2 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96;
44 62 292 292 399 125 2192 2992 1892 fixation_cross gabor_005 gabor_045 gabor_160 gabor_071 gabor_005_alt gabor_045_alt gabor_160 gabor_071 "2_52_Encoding_Working_Memory_MEG_P6_RL_Nonsalient_NoChange_CuedRetrieval_300_300_399_2200_3000_1900_gabor_patch_orientation_005_045_160_071_target_position_3_4_retrieval_position_4" gabor_circ gabor_circ gabor_circ gabor_071_framed blank blank blank blank fixation_cross_white "2_52_Retrieval_Working_Memory_MEG_P6_RL_Nonsalient_NoChange_CuedRetrieval_retrieval_patch_orientation_071_retrieval_position_4" 2 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96;
44 61 292 292 399 125 1842 2992 1892 fixation_cross gabor_131 gabor_018 gabor_097 gabor_167 gabor_131 gabor_018_alt gabor_097_alt gabor_167 "2_53_Encoding_Working_Memory_MEG_P6_RL_Nonsalient_DoChange_CuedRetrieval_300_300_399_1850_3000_1900_gabor_patch_orientation_131_018_097_167_target_position_1_4_retrieval_position_1" gabor_081_framed gabor_circ gabor_circ gabor_circ blank blank blank blank fixation_cross_white "2_53_Retrieval_Working_Memory_MEG_P6_RL_Nonsalient_DoChange_CuedRetrieval_retrieval_patch_orientation_081_retrieval_position_1" 1 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96;
44 63 292 292 399 125 1992 2992 2092 fixation_cross gabor_064 gabor_141 gabor_031 gabor_111 gabor_064_alt gabor_141 gabor_031_alt gabor_111 "2_54_Encoding_Working_Memory_MEG_P6_RL_Nonsalient_DoChange_UncuedRetriev_300_300_399_2000_3000_2100_gabor_patch_orientation_064_141_031_111_target_position_2_4_retrieval_position_3" gabor_circ gabor_circ gabor_080_framed gabor_circ blank blank blank blank fixation_cross_white "2_54_Retrieval_Working_Memory_MEG_P6_RL_Nonsalient_DoChange_UncuedRetriev_retrieval_patch_orientation_080_retrieval_position_3" 1 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96;
44 62 292 292 399 125 2142 2992 2442 fixation_cross gabor_052 gabor_171 gabor_092 gabor_107 gabor_052 gabor_171 gabor_092_alt gabor_107_alt "2_55_Encoding_Working_Memory_MEG_P6_RL_Nonsalient_NoChange_CuedRetrieval_300_300_399_2150_3000_2450_gabor_patch_orientation_052_171_092_107_target_position_1_2_retrieval_position_2" gabor_circ gabor_171_framed gabor_circ gabor_circ blank blank blank blank fixation_cross_white "2_55_Retrieval_Working_Memory_MEG_P6_RL_Nonsalient_NoChange_CuedRetrieval_retrieval_patch_orientation_171_retrieval_position_2" 2 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96;
44 61 292 292 399 125 2092 2992 2542 fixation_cross gabor_093 gabor_033 gabor_139 gabor_118 gabor_093 gabor_033_alt gabor_139 gabor_118_alt "2_56_Encoding_Working_Memory_MEG_P6_RL_Nonsalient_DoChange_CuedRetrieval_300_300_399_2100_3000_2550_gabor_patch_orientation_093_033_139_118_target_position_1_3_retrieval_position_3" gabor_circ gabor_circ gabor_004_framed gabor_circ blank blank blank blank fixation_cross_white "2_56_Retrieval_Working_Memory_MEG_P6_RL_Nonsalient_DoChange_CuedRetrieval_retrieval_patch_orientation_004_retrieval_position_3" 1 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96;
44 62 292 292 399 125 2142 2992 2292 fixation_cross gabor_125 gabor_176 gabor_037 gabor_154 gabor_125_alt gabor_176 gabor_037 gabor_154_alt "2_57_Encoding_Working_Memory_MEG_P6_RL_Nonsalient_NoChange_CuedRetrieval_300_300_399_2150_3000_2300_gabor_patch_orientation_125_176_037_154_target_position_2_3_retrieval_position_3" gabor_circ gabor_circ gabor_037_framed gabor_circ blank blank blank blank fixation_cross_white "2_57_Retrieval_Working_Memory_MEG_P6_RL_Nonsalient_NoChange_CuedRetrieval_retrieval_patch_orientation_037_retrieval_position_3" 2 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96;
44 61 292 292 399 125 1842 2992 2392 fixation_cross gabor_015 gabor_131 gabor_176 gabor_095 gabor_015_alt gabor_131 gabor_176_alt gabor_095 "2_58_Encoding_Working_Memory_MEG_P6_RL_Nonsalient_DoChange_CuedRetrieval_300_300_399_1850_3000_2400_gabor_patch_orientation_015_131_176_095_target_position_2_4_retrieval_position_4" gabor_circ gabor_circ gabor_circ gabor_047_framed blank blank blank blank fixation_cross_white "2_58_Retrieval_Working_Memory_MEG_P6_RL_Nonsalient_DoChange_CuedRetrieval_retrieval_patch_orientation_047_retrieval_position_4" 1 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96;
44 61 292 292 399 125 1742 2992 1992 fixation_cross gabor_001 gabor_078 gabor_034 gabor_058 gabor_001_alt gabor_078 gabor_034_alt gabor_058 "2_59_Encoding_Working_Memory_MEG_P6_RL_Nonsalient_DoChange_CuedRetrieval_300_300_399_1750_3000_2000_gabor_patch_orientation_001_078_034_058_target_position_2_4_retrieval_position_4" gabor_circ gabor_circ gabor_circ gabor_107_framed blank blank blank blank fixation_cross_white "2_59_Retrieval_Working_Memory_MEG_P6_RL_Nonsalient_DoChange_CuedRetrieval_retrieval_patch_orientation_107_retrieval_position_4" 1 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96;
44 61 292 292 399 125 1792 2992 2492 fixation_cross gabor_151 gabor_035 gabor_089 gabor_067 gabor_151 gabor_035_alt gabor_089_alt gabor_067 "2_60_Encoding_Working_Memory_MEG_P6_RL_Nonsalient_DoChange_CuedRetrieval_300_300_399_1800_3000_2500_gabor_patch_orientation_151_035_089_067_target_position_1_4_retrieval_position_1" gabor_106_framed gabor_circ gabor_circ gabor_circ blank blank blank blank fixation_cross_white "2_60_Retrieval_Working_Memory_MEG_P6_RL_Nonsalient_DoChange_CuedRetrieval_retrieval_patch_orientation_106_retrieval_position_1" 1 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96;
44 61 292 292 399 125 1942 2992 2342 fixation_cross gabor_103 gabor_156 gabor_133 gabor_172 gabor_103_alt gabor_156 gabor_133 gabor_172_alt "2_61_Encoding_Working_Memory_MEG_P6_RL_Nonsalient_DoChange_CuedRetrieval_300_300_399_1950_3000_2350_gabor_patch_orientation_103_156_133_172_target_position_2_3_retrieval_position_2" gabor_circ gabor_021_framed gabor_circ gabor_circ blank blank blank blank fixation_cross_white "2_61_Retrieval_Working_Memory_MEG_P6_RL_Nonsalient_DoChange_CuedRetrieval_retrieval_patch_orientation_021_retrieval_position_2" 1 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96;
44 61 292 292 399 125 2192 2992 2342 fixation_cross gabor_118 gabor_142 gabor_086 gabor_164 gabor_118_alt gabor_142 gabor_086_alt gabor_164 "2_62_Encoding_Working_Memory_MEG_P6_RL_Nonsalient_DoChange_CuedRetrieval_300_300_399_2200_3000_2350_gabor_patch_orientation_118_142_086_164_target_position_2_4_retrieval_position_2" gabor_circ gabor_002_framed gabor_circ gabor_circ blank blank blank blank fixation_cross_white "2_62_Retrieval_Working_Memory_MEG_P6_RL_Nonsalient_DoChange_CuedRetrieval_retrieval_patch_orientation_002_retrieval_position_2" 1 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96;
44 63 292 292 399 125 1792 2992 2542 fixation_cross gabor_038 gabor_104 gabor_170 gabor_126 gabor_038 gabor_104_alt gabor_170 gabor_126_alt "2_63_Encoding_Working_Memory_MEG_P6_RL_Nonsalient_DoChange_UncuedRetriev_300_300_399_1800_3000_2550_gabor_patch_orientation_038_104_170_126_target_position_1_3_retrieval_position_2" gabor_circ gabor_059_framed gabor_circ gabor_circ blank blank blank blank fixation_cross_white "2_63_Retrieval_Working_Memory_MEG_P6_RL_Nonsalient_DoChange_UncuedRetriev_retrieval_patch_orientation_059_retrieval_position_2" 1 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96;
44 61 292 292 399 125 2042 2992 2192 fixation_cross gabor_080 gabor_096 gabor_037 gabor_162 gabor_080 gabor_096_alt gabor_037_alt gabor_162 "2_64_Encoding_Working_Memory_MEG_P6_RL_Nonsalient_DoChange_CuedRetrieval_300_300_399_2050_3000_2200_gabor_patch_orientation_080_096_037_162_target_position_1_4_retrieval_position_1" gabor_126_framed gabor_circ gabor_circ gabor_circ blank blank blank blank fixation_cross_white "2_64_Retrieval_Working_Memory_MEG_P6_RL_Nonsalient_DoChange_CuedRetrieval_retrieval_patch_orientation_126_retrieval_position_1" 1 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96;
44 62 292 292 399 125 2092 2992 2192 fixation_cross gabor_124 gabor_095 gabor_068 gabor_178 gabor_124_alt gabor_095_alt gabor_068 gabor_178 "2_65_Encoding_Working_Memory_MEG_P6_RL_Nonsalient_NoChange_CuedRetrieval_300_300_399_2100_3000_2200_gabor_patch_orientation_124_095_068_178_target_position_3_4_retrieval_position_3" gabor_circ gabor_circ gabor_068_framed gabor_circ blank blank blank blank fixation_cross_white "2_65_Retrieval_Working_Memory_MEG_P6_RL_Nonsalient_NoChange_CuedRetrieval_retrieval_patch_orientation_068_retrieval_position_3" 2 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96;
44 61 292 292 399 125 2042 2992 1942 fixation_cross gabor_147 gabor_037 gabor_008 gabor_123 gabor_147_alt gabor_037 gabor_008_alt gabor_123 "2_66_Encoding_Working_Memory_MEG_P6_RL_Nonsalient_DoChange_CuedRetrieval_300_300_399_2050_3000_1950_gabor_patch_orientation_147_037_008_123_target_position_2_4_retrieval_position_2" gabor_circ gabor_086_framed gabor_circ gabor_circ blank blank blank blank fixation_cross_white "2_66_Retrieval_Working_Memory_MEG_P6_RL_Nonsalient_DoChange_CuedRetrieval_retrieval_patch_orientation_086_retrieval_position_2" 1 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96;
44 64 292 292 399 125 2142 2992 1892 fixation_cross gabor_033 gabor_075 gabor_144 gabor_162 gabor_033 gabor_075 gabor_144_alt gabor_162_alt "2_67_Encoding_Working_Memory_MEG_P6_RL_Nonsalient_NoChange_UncuedRetriev_300_300_399_2150_3000_1900_gabor_patch_orientation_033_075_144_162_target_position_1_2_retrieval_position_3" gabor_circ gabor_circ gabor_144_framed gabor_circ blank blank blank blank fixation_cross_white "2_67_Retrieval_Working_Memory_MEG_P6_RL_Nonsalient_NoChange_UncuedRetriev_retrieval_patch_orientation_144_retrieval_position_3" 2 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96;
44 61 292 292 399 125 1842 2992 2092 fixation_cross gabor_173 gabor_009 gabor_092 gabor_125 gabor_173_alt gabor_009 gabor_092_alt gabor_125 "2_68_Encoding_Working_Memory_MEG_P6_RL_Nonsalient_DoChange_CuedRetrieval_300_300_399_1850_3000_2100_gabor_patch_orientation_173_009_092_125_target_position_2_4_retrieval_position_2" gabor_circ gabor_148_framed gabor_circ gabor_circ blank blank blank blank fixation_cross_white "2_68_Retrieval_Working_Memory_MEG_P6_RL_Nonsalient_DoChange_CuedRetrieval_retrieval_patch_orientation_148_retrieval_position_2" 1 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96;
44 62 292 292 399 125 1742 2992 1992 fixation_cross gabor_016 gabor_053 gabor_105 gabor_136 gabor_016_alt gabor_053 gabor_105_alt gabor_136 "2_69_Encoding_Working_Memory_MEG_P6_RL_Nonsalient_NoChange_CuedRetrieval_300_300_399_1750_3000_2000_gabor_patch_orientation_016_053_105_136_target_position_2_4_retrieval_position_4" gabor_circ gabor_circ gabor_circ gabor_136_framed blank blank blank blank fixation_cross_white "2_69_Retrieval_Working_Memory_MEG_P6_RL_Nonsalient_NoChange_CuedRetrieval_retrieval_patch_orientation_136_retrieval_position_4" 2 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96;
44 64 292 292 399 125 1892 2992 2442 fixation_cross gabor_094 gabor_124 gabor_169 gabor_149 gabor_094 gabor_124 gabor_169_alt gabor_149_alt "2_70_Encoding_Working_Memory_MEG_P6_RL_Nonsalient_NoChange_UncuedRetriev_300_300_399_1900_3000_2450_gabor_patch_orientation_094_124_169_149_target_position_1_2_retrieval_position_4" gabor_circ gabor_circ gabor_circ gabor_149_framed blank blank blank blank fixation_cross_white "2_70_Retrieval_Working_Memory_MEG_P6_RL_Nonsalient_NoChange_UncuedRetriev_retrieval_patch_orientation_149_retrieval_position_4" 2 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96;
};
# baselinePost (at the end of the session)
trial {
picture {
box frame1; x=0; y=0;
box frame2; x=0; y=0;
box background; x=0; y=0;
bitmap fixation_cross_black; x=0; y=0;
};
time = 0;
duration = 5000;
code = "BaselinePost";
port_code = 92;
};
|
de67799cd35d53e76a56cb2360bddab4c4d73b85
|
b29e9715ab76b6f89609c32edd36f81a0dcf6a39
|
/ketpicscifiles6/InWindow.sci
|
9dacd30c4ef976501b710c719dac64df24cd8285
|
[] |
no_license
|
ketpic/ketcindy-scilab-support
|
e1646488aa840f86c198818ea518c24a66b71f81
|
3df21192d25809ce980cd036a5ef9f97b53aa918
|
refs/heads/master
| 2021-05-11T11:40:49.725978
| 2018-01-16T14:02:21
| 2018-01-16T14:02:21
| 117,643,554
| 1
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 194
|
sci
|
InWindow.sci
|
function Rx=InWindow(PA)
global XMIN XMAX YMIN YMAX
Eps=10.0^(-6);
X=PA(1); Y=PA(2);
if X>XMIN-Eps & X<XMAX+Eps & Y>YMIN-Eps & Y<YMAX+Eps
Rx='i'
else
Rx='o'
end
endfunction
|
2569d20f57acc428c591510d6f823bbda2d63852
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1286/CH15/EX15.6/15_6.sce
|
e14fde6dda79f429be3729973b3d2a05c3f664ad
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 359
|
sce
|
15_6.sce
|
clc
//initialisation
a1=2
a2=6
a3=16
a4=2
b1=1
b2=3
b3=4
b4=7
//CALCULATIONS
a=a1+a2+a3+a4
x=a1*b1+a2*b2+a3*b3+a4*b4
p2=a1/a
p6=a2/a
p16=a3/a
d=x/a
//results
printf(' \n probability of state 2= % 1f ',p2)
printf(' \n probability of state 6= % 1f ',p6)
printf(' \n probability of state 16= % 1f ',p16)
printf(' \n value of <x>= % 1f ',d)
|
88fefb4ebb6071f67b6ed1bbbcab80616d86cc90
|
1bb72df9a084fe4f8c0ec39f778282eb52750801
|
/test/JP02.prev.tst
|
4a6a7ae2e30e9d1fa330ce2ece64346b2533bc0b
|
[
"Apache-2.0",
"LicenseRef-scancode-unknown-license-reference"
] |
permissive
|
gfis/ramath
|
498adfc7a6d353d4775b33020fdf992628e3fbff
|
b09b48639ddd4709ffb1c729e33f6a4b9ef676b5
|
refs/heads/master
| 2023-08-17T00:10:37.092379
| 2023-08-04T07:48:00
| 2023-08-04T07:48:00
| 30,116,803
| 2
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 107
|
tst
|
JP02.prev.tst
|
A038126 post 0 ~~;floor(;sqrt(;2;Pi;*;sqrt);n;*;floor);*~~;floor(;n;2;sqrt(;2;sqrt);^;*;floor)~~;n;17;= 0
|
1e20f54f20c8974521b22b27c0bc598d3f92a7e0
|
e806e966b06a53388fb300d89534354b222c2cad
|
/macros/lineToBorderPoints.sci
|
eab84efb83c02e3d5cb355f81ada709c0f576cd3
|
[] |
no_license
|
gursimarsingh/FOSSEE_Image_Processing_Toolbox
|
76c9d524193ade302c48efe11936fe640f4de200
|
a6df67e8bcd5159cde27556f4f6a315f8dc2215f
|
refs/heads/master
| 2021-01-22T02:08:45.870957
| 2017-01-15T21:26:17
| 2017-01-15T21:26:17
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,161
|
sci
|
lineToBorderPoints.sci
|
function [points] = lineToBorderPoints(lines,isize)
// Points of intersection of line(s) with the image border
//
// Calling Sequence
// points = lineToBorderPoints(lines,isize)
//
// Parameters
// lines : It is a MX3 matrix. If a line is represented by A*x + B*y + C = 0, then each row is of the form [A B C] and M is the number of lines.
// isize : It is the size of the image. It is of the form as that returned by the function size.
// points : It is a MX4 matrix. It returns the points of intersection of the line with the image border. Each row is of the form [x1,y1,x2,y2] where (x1,y1) and (x2,y2) are the two points of intersection. If a given line does not intersect the image border, the function returns [-1 -1 -1 -1].
//
// Description
// The function calculates the points of intersection of one or more lines with the image border.
//
// Examples
// // Load an image
// I = imread('rice.png');
// // Define a line : 2*x + y = 300
// line = [2 1 -300];
// // Calculate the points of intersection
// points = lineToBorderPoints(line,size(I(1)))
//
// Authors
// Asmita Bhar
//
points = opencv_lineToBorderPoints(lines,isize)
endfunction
|
9e373868c522eb018ad2288e044b9f8a431d11e8
|
8217f7986187902617ad1bf89cb789618a90dd0a
|
/browsable_source/2.4/Unix-Windows/scilab-2.4/macros/scicos_blocks/RAND_f.sci
|
75c275a6c3fe5f816cb3520d45ef73bb2e58952a
|
[
"LicenseRef-scancode-public-domain",
"LicenseRef-scancode-warranty-disclaimer"
] |
permissive
|
clg55/Scilab-Workbench
|
4ebc01d2daea5026ad07fbfc53e16d4b29179502
|
9f8fd29c7f2a98100fa9aed8b58f6768d24a1875
|
refs/heads/master
| 2023-05-31T04:06:22.931111
| 2022-09-13T14:41:51
| 2022-09-13T14:41:51
| 258,270,193
| 0
| 1
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,519
|
sci
|
RAND_f.sci
|
function [x,y,typ]=RAND_f(job,arg1,arg2)
// Copyright INRIA
x=[];y=[];typ=[];
select job
case 'plot' then //normal position
standard_draw(arg1)
case 'getinputs' then
[x,y,typ]=standard_inputs(arg1)
case 'getoutputs' then
[x,y,typ]=standard_outputs(arg1)
case 'getorigin' then
[x,y]=standard_origin(arg1)
case 'set' then
x=arg1;
graphics=arg1(2);label=graphics(4)
model=arg1(3);
if size(label,'*')==5 then label=label(1:3),end //compatibility
while %t do
[ok,flag,a,b,label]=getvalue([
'Set Random generator block parameters';
'flag = 0 : Uniform distribution A is min and A+B max';
'flag = 1 : Normal distribution A is mean and B deviation';
' ';
'A and B must be vector with equal sizes'],..
['flag';'A';'B'],..
list('vec',1,'vec',-1,'vec','size(x2,''*'')'),label)
if ~ok then break,end
if flag<>0&flag<>1 then
message('flag must be equal to 1 or 0')
else
nout=size(a,'*')
graphics(4)=label
model(3)=nout
model(6)(1)=rand
model(9)=flag
model(8)=[a(:);b(:);0]
model(7)=[0*a(:);0]
model(11)=[] //compatibility
x(2)=graphics;x(3)=model
break
end
end
case 'define' then
a=0
b=1
dt=0
out=1
flag=0
model=list('rndblk',[],out,1,[],[],[rand;0*a(:)],[a(:);b(:);dt],flag,'d',[],[%f %f],' ',list())
label=[string(flag);sci2exp(a(:));sci2exp(b(:))]
gr_i=['txt=[''random'';''generator''];';
'xstringb(orig(1),orig(2),txt,sz(1),sz(2),''fill'')']
x=standard_define([3 2],model,label,gr_i)
end
|
40f4b079df2fc31887e5aa87b7519c2c36efe36a
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1859/CH3/EX3.10/exa_3_10.sce
|
1c950e2bc3d27aa4c44b90c421b912c3ba74fd8c
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 403
|
sce
|
exa_3_10.sce
|
// Exa 3.10
clc;
clear;
close;
// Given data
Im= 50;// in micro amp
Im=Im*10^-6;// in amp
Rm= 49;// in ohm
Rs= 1;// in ohm
Is= Im*Rm/Rs;//in amp
I= Im+Is;// in amp
// (i)
I1= I;// in amp
I2= I*0.5;// in amp
I3= I*0.1;// in amp
disp(I1*10^3,"Main circuit current at FSD in mA")
disp(I2*10^3,"Main circuit current at 0.5 FSD in mA")
disp(I3*10^3,"Main circuit current at 0.1 FSD in mA")
|
0538b90ddfc81a3b0a1637ad4951f0a36564a2fe
|
8236d6101d21f50dda499c4ead7862c922885aee
|
/Scilab/Filters/spectrumBPFilter.sce
|
1251bef1da764a86e2727d5b6355807a432dd110
|
[
"MIT"
] |
permissive
|
manasdas17/NightcoreThis
|
fdd498dc39ad870b7439e3bdaf63fa3e4fa97b56
|
fce141ad69f159e4cd4d9e741c6603761d882411
|
refs/heads/master
| 2021-01-22T09:04:10.071096
| 2016-01-30T11:27:52
| 2016-01-30T11:27:52
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,463
|
sce
|
spectrumBPFilter.sce
|
Fss = 10000;// a variable for defining they sample frequency called FFs because FS already existed
N=size(t,'*');//Aantal samples
sin_700Hz = 0.5*sin(2*%pi*700*t);
sin_1000Hz = 2*sin(2*%pi*1000*t);
sin_1800Hz = 2*sin(2*%pi*1800*t);
sin_2200Hz = 0.5*sin(2*%pi*2200*t);
testsign = sin_700Hz + sin_1800Hz + sin_2200Hz + sin_1000Hz;//samengesteld signaal
Freq_FFT = abs(fft(testsign));
//abs take absolute value
//FFT() kan je een signaal decomposeren in de sinuscompenten waarmee dit signaal is samengesteld.
f = Fss*(0:(N/2))/N;//geassocieerde frequentie vector
n=size(f,'*');//n krijg de grootte van het aantal samples in f
figure;//grijze achtergrond
plot(f,Freq_FFT(1:n));
//f is an arry with values
//Freq_FFT(1:n) voor elk element in de array een absolute gedecomposeerde waarde van het samegesteld signaal toe wijzen
[BP_coeff, amplitude, frequentie] = wfir('bp',100,[800/Fss,2000/Fss],'hm',[0 0]);
//Bp = lowpas filter; 100 = orde; 800/Fss,2000/Fss = cut of frequentie; hm = hamming filter; window parameters
//cut of frequentie mag niet hoger zijn dan 0.5 (vanwege de nyquistfrequentie)
//frequentie = Frequency grid
//amplitude = frequency domain filter response on the grid fr
//time domain filter coefficients niet nodig voor deze toepassing
plot(frequentie*Fss, amplitude*N, 'r');
//frequentie = Frequency grid
//N = aantal keren een frequentie voor komt * amplitude om totale hoogte van een peak te krijgen
//filter output weergeven in rood
|
7b64a0e2baa919ad56eb64163d4e638cbdb524d3
|
b0b730fc9d47f41994b920daf707000d5d55f04f
|
/JPEG/example/testfiles/h5ex_d_jpeg.tst
|
d3f3bf87f4fe08a4cb8152b759d336d8ff4c4a65
|
[
"LicenseRef-scancode-warranty-disclaimer"
] |
no_license
|
hyoklee/hdf5_plugins-1
|
3fea57373b70fb00036237d3c3875c9e12ae146b
|
8d198875a4e801a4ef6ab8172b2a83683a0d6529
|
refs/heads/master
| 2023-03-27T02:54:04.710393
| 2021-03-29T16:46:59
| 2021-03-29T16:46:59
| 352,704,856
| 0
| 0
|
NOASSERTION
| 2021-03-29T16:09:24
| 2021-03-29T16:09:24
| null |
UTF-8
|
Scilab
| false
| false
| 630
|
tst
|
h5ex_d_jpeg.tst
|
jpeg filter is available for encoding and decoding.
....Create dataset ................
....Writing jpeg compressed data ................
....Close the file and reopen for reading ........
Filter info is available from the dataset creation property
Filter identifier is 32019
Number of parameters is 4 with the value 100
To find more about the filter check HDF5 jpeg filter; see http://www.hdfgroup.org/services/contributions.html
....Reading jpeg compressed data ................
JPEG quality=100, percent of differing array elements=0.000000
jpeg filter is available now since H5Dread triggered loading of the filter.
|
1d4d42515d9815243938f186d436d7990f72e127
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1439/CH3/EX3.4/3_4.sce
|
bb7221f0b19acb20a595bc5beda009ccb5855697
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 159
|
sce
|
3_4.sce
|
clc
//initialisation of variables
Cp= 0.096 //cal deg g^-1
//RESULTS
printf ('Cp of zinc at constant pressure a room temperature= % 3f cal deg g^-1',Cp)
|
68bf8ee7b49f7d203f08613842e1fd2bb57121e1
|
a985f04df7e36acafddf7c2db82fd91f7a6c0ac7
|
/SUI/du/negatives.tst
|
9e5092957ed0b6a4e546402010b945ee5dae0f0d
|
[] |
no_license
|
kateriska/6.-semestr-FIT
|
f5b9c564ea8579fff4003ebe7152be11de0e41dd
|
695079d3ebe751c7fb472d23f1cce126cdb998f5
|
refs/heads/master
| 2023-08-13T05:17:28.114132
| 2021-10-04T15:13:29
| 2021-10-04T15:13:29
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 63,345
|
tst
|
negatives.tst
|
0 0 0.0 0.0 0 0.0 0
0 0 0.0 0.0 0 0.0 0
0 0 0.0 0.0 0 0.0 0
0 0 0.0 0.0 0 0.0 0
9 2 0.10112359550561797 0.10526315789473684 3 0.15789473684210525 1
0 0 0.0 0.0 0 0.0 0
0 0 0.0 0.0 0 0.0 0
3 1 0.027522935779816515 0.047619047619047616 1 0.1 0
29 7 0.21641791044776118 0.4117647058823529 2 0.25 2
8 1 0.09302325581395349 0.045454545454545456 1 0.1 0
0 0 0.0 0.0 0 0.0 0
16 2 0.7619047619047619 0.5 9 0.32142857142857145 6
11 1 0.2682926829268293 0.07692307692307693 2 0.11764705882352941 0
0 0 0.0 0.0 0 0.0 0
6 1 0.05172413793103448 0.043478260869565216 1 0.1111111111111111 0
20 2 0.7407407407407407 0.4 6 0.21428571428571427 2
63 7 0.7974683544303798 0.7777777777777778 7 0.4117647058823529 7
27 7 0.15976331360946747 0.3181818181818182 1 0.3333333333333333 1
0 0 0.0 0.0 0 0.0 0
0 0 0.0 0.0 0 0.0 0
4 2 0.02877697841726619 0.09090909090909091 2 0.2 2
0 0 0.0 0.0 0 0.0 0
14 5 0.14736842105263157 0.29411764705882354 2 0.25 0
9 4 0.25 0.4444444444444444 3 0.13636363636363635 2
0 0 0.0 0.0 0 0.0 0
19 2 0.5277777777777778 0.18181818181818182 3 0.13636363636363635 0
0 0 0.0 0.0 0 0.0 0
5 3 0.08064516129032258 0.17647058823529413 2 0.11764705882352941 1
8 2 0.13114754098360656 0.18181818181818182 2 0.09523809523809523 1
3 2 0.04838709677419355 0.15384615384615385 2 0.14285714285714285 2
18 3 0.09 0.12 1 0.2 1
0 0 0.0 0.0 0 0.0 0
0 0 0.0 0.0 0 0.0 0
40 9 0.42105263157894735 0.5 4 0.36363636363636365 4
9 2 0.225 0.3333333333333333 3 0.12 2
11 2 0.171875 0.14285714285714285 3 0.15789473684210525 1
11 2 0.06285714285714286 0.08333333333333333 1 0.25 1
23 3 0.115 0.12 2 0.5 2
16 1 0.17582417582417584 0.037037037037037035 2 0.2857142857142857 0
9 2 0.20930232558139536 0.2857142857142857 4 0.21052631578947367 3
75 5 1.875 0.45454545454545453 5 0.2631578947368421 0
32 10 0.6808510638297872 0.7142857142857143 4 0.4 0
0 0 0.0 0.0 0 0.0 0
11 4 0.4583333333333333 0.6666666666666666 3 0.125 1
14 2 0.12389380530973451 0.09090909090909091 1 0.16666666666666666 0
12 1 0.11764705882352941 0.04 3 0.3333333333333333 0
71 11 0.4930555555555556 0.6111111111111112 2 0.4 2
4 1 0.024096385542168676 0.047619047619047616 2 0.125 2
0 0 0.0 0.0 0 0.0 0
2 1 0.03333333333333333 0.043478260869565216 1 0.1 1
24 4 0.36923076923076925 0.36363636363636365 2 0.13333333333333333 2
0 0 0.0 0.0 0 0.0 0
8 3 0.1111111111111111 0.16666666666666666 4 0.2857142857142857 3
0 0 0.0 0.0 0 0.0 0
0 0 0.0 0.0 0 0.0 0
12 6 0.2222222222222222 0.6666666666666666 5 0.25 5
0 0 0.0 0.0 0 0.0 0
0 0 0.0 0.0 0 0.0 0
9 4 0.05421686746987952 0.19047619047619047 3 0.1875 3
0 0 0.0 0.0 0 0.0 0
4 1 0.04081632653061224 0.041666666666666664 1 0.16666666666666666 0
19 4 0.4222222222222222 0.25 5 0.2777777777777778 3
19 5 0.6551724137931034 0.5555555555555556 4 0.16 1
0 0 0.0 0.0 0 0.0 0
0 0 0.0 0.0 0 0.0 0
21 4 0.12962962962962962 0.17391304347826086 1 0.2 0
15 2 0.625 0.3333333333333333 7 0.2692307692307692 7
0 0 0.0 0.0 0 0.0 0
7 2 0.19444444444444445 0.13333333333333333 2 0.09523809523809523 0
0 0 0.0 0.0 0 0.0 0
14 8 0.6666666666666666 1.3333333333333333 10 0.4166666666666667 10
9 2 0.10714285714285714 0.08 1 0.1111111111111111 0
28 3 1.3333333333333333 0.42857142857142855 8 0.36363636363636365 0
0 0 0.0 0.0 0 0.0 0
40 7 1.1111111111111112 0.7777777777777778 4 0.25 1
0 0 0.0 0.0 0 0.0 0
0 0 0.0 0.0 0 0.0 0
0 0 0.0 0.0 0 0.0 0
10 3 0.30303030303030304 0.2 3 0.11538461538461539 0
4 2 0.08695652173913043 0.13333333333333333 1 0.07142857142857142 0
2 1 0.041666666666666664 0.07692307692307693 1 0.06666666666666667 0
8 2 0.16666666666666666 0.11764705882352941 1 0.07142857142857142 0
0 0 0.0 0.0 0 0.0 0
4 2 0.1111111111111111 0.25 3 0.12 3
18 2 0.72 0.2222222222222222 5 0.22727272727272727 1
0 0 0.0 0.0 0 0.0 0
0 0 0.0 0.0 0 0.0 0
9 5 0.17647058823529413 0.35714285714285715 4 0.2857142857142857 3
20 3 0.9090909090909091 0.3333333333333333 8 0.32 4
5 1 0.13157894736842105 0.043478260869565216 1 0.07142857142857142 0
7 2 0.06306306306306306 0.11764705882352941 2 0.16666666666666666 2
0 0 0.0 0.0 0 0.0 0
19 3 0.1366906474820144 0.13636363636363635 1 0.125 1
0 0 0.0 0.0 0 0.0 0
0 0 0.0 0.0 0 0.0 0
7 3 0.05982905982905983 0.14285714285714285 1 0.125 0
0 0 0.0 0.0 0 0.0 0
7 2 0.2413793103448276 0.2222222222222222 3 0.16666666666666666 0
0 0 0.0 0.0 0 0.0 0
0 0 0.0 0.0 0 0.0 0
5 1 0.058823529411764705 0.04 1 0.09090909090909091 0
30 5 0.5660377358490566 0.25 7 0.35 2
13 4 0.20634920634920634 0.3333333333333333 4 0.25 3
0 0 0.0 0.0 0 0.0 0
41 8 1.2058823529411764 0.5 9 0.45 2
0 0 0.0 0.0 0 0.0 0
53 7 0.33125 0.35 4 0.4444444444444444 4
0 0 0.0 0.0 0 0.0 0
21 4 0.21212121212121213 0.23529411764705882 3 0.375 3
18 3 0.12080536912751678 0.17647058823529413 6 0.3157894736842105 6
18 3 0.75 0.375 7 0.25925925925925924 2
11 4 0.5238095238095238 1.3333333333333333 8 0.27586206896551724 7
33 10 0.7674418604651163 1.0 3 0.21428571428571427 0
0 0 0.0 0.0 0 0.0 0
0 0 0.0 0.0 0 0.0 0
6 2 0.16666666666666666 0.16666666666666666 3 0.17647058823529413 2
13 2 0.09352517985611511 0.1 3 0.2727272727272727 3
7 1 0.056451612903225805 0.037037037037037035 1 0.3333333333333333 0
8 1 0.13114754098360656 0.04 1 0.125 0
5 1 0.14705882352941177 0.07692307692307693 2 0.1 1
24 7 0.18045112781954886 0.3684210526315789 3 0.6 0
6 3 0.09523809523809523 0.15789473684210525 3 0.3 1
0 0 0.0 0.0 0 0.0 0
0 0 0.0 0.0 0 0.0 0
0 0 0.0 0.0 0 0.0 0
28 4 0.36363636363636365 0.2 5 0.35714285714285715 2
6 2 0.03 0.08 1 0.2 1
15 4 0.5357142857142857 0.3076923076923077 6 0.3157894736842105 3
16 7 0.43243243243243246 0.7777777777777778 8 0.4 0
27 8 0.19708029197080293 0.38095238095238093 4 0.5 3
0 0 0.0 0.0 0 0.0 0
16 3 0.10526315789473684 0.125 2 0.4 2
34 9 0.5151515151515151 0.5 4 0.36363636363636365 1
8 2 0.07017543859649122 0.07407407407407407 1 0.5 1
9 5 0.4090909090909091 0.625 6 0.24 6
4 1 0.03636363636363636 0.041666666666666664 1 0.125 0
0 0 0.0 0.0 0 0.0 0
7 1 0.06422018348623854 0.043478260869565216 1 0.1 0
0 0 0.0 0.0 0 0.0 0
0 0 0.0 0.0 0 0.0 0
0 0 0.0 0.0 0 0.0 0
9 3 0.18 0.17647058823529413 2 0.14285714285714285 0
13 4 0.1262135922330097 0.16666666666666666 2 0.2 1
13 4 0.14444444444444443 0.2222222222222222 3 0.2727272727272727 2
27 5 0.16666666666666666 0.25 2 0.18181818181818182 2
9 3 0.140625 0.17647058823529413 1 0.05555555555555555 1
3 1 0.03409090909090909 0.04 1 0.125 0
6 3 0.10714285714285714 0.23076923076923078 2 0.13333333333333333 2
9 2 0.10227272727272728 0.07407407407407407 1 0.5 0
19 6 0.16521739130434782 0.3 3 0.3333333333333333 3
0 0 0.0 0.0 0 0.0 0
16 3 0.13008130081300814 0.11538461538461539 2 0.3333333333333333 1
0 0 0.0 0.0 0 0.0 0
14 3 0.10294117647058823 0.125 4 0.4 1
7 2 0.1 0.1111111111111111 2 0.18181818181818182 0
0 0 0.0 0.0 0 0.0 0
5 1 0.032467532467532464 0.037037037037037035 1 0.16666666666666666 0
16 2 0.5714285714285714 0.2222222222222222 5 0.21739130434782608 0
31 14 0.4626865671641791 0.9333333333333333 4 0.4 3
13 1 0.08441558441558442 0.037037037037037035 2 0.4 0
5 4 0.13513513513513514 0.4444444444444444 4 0.17391304347826086 4
24 3 0.4528301886792453 0.3 7 0.3181818181818182 3
0 0 0.0 0.0 0 0.0 0
26 5 0.14285714285714285 0.20833333333333334 1 0.5 1
33 7 0.4852941176470588 0.4666666666666667 1 0.07692307692307693 1
0 0 0.0 0.0 0 0.0 0
14 2 0.07734806629834254 0.07692307692307693 1 0.25 0
9 3 0.18 0.125 4 0.26666666666666666 0
0 0 0.0 0.0 0 0.0 0
0 0 0.0 0.0 0 0.0 0
40 7 0.3418803418803419 0.35 3 0.3 2
0 0 0.0 0.0 0 0.0 0
0 0 0.0 0.0 0 0.0 0
3 1 0.10714285714285714 0.1 1 0.0625 0
4 2 0.05128205128205128 0.08333333333333333 2 0.3333333333333333 1
25 4 0.15337423312883436 0.16 2 0.5 0
0 0 0.0 0.0 0 0.0 0
0 0 0.0 0.0 0 0.0 0
0 0 0.0 0.0 0 0.0 0
7 4 0.23333333333333334 0.36363636363636365 4 0.15384615384615385 2
66 10 0.8918918918918919 0.7692307692307693 8 0.4 4
16 4 0.09302325581395349 0.16 1 0.5 0
0 0 0.0 0.0 0 0.0 0
0 0 0.0 0.0 0 0.0 0
0 0 0.0 0.0 0 0.0 0
11 1 0.10091743119266056 0.037037037037037035 2 0.5 0
66 8 1.2692307692307692 0.8888888888888888 4 0.25 3
10 3 0.4166666666666667 0.75 3 0.1111111111111111 1
0 0 0.0 0.0 0 0.0 0
14 1 0.15555555555555556 0.037037037037037035 2 0.5 0
13 3 0.4482758620689655 0.42857142857142855 4 0.16 4
56 5 0.3660130718954248 0.2631578947368421 5 0.625 0
30 6 0.3409090909090909 0.35294117647058826 6 0.5454545454545454 6
19 6 0.6333333333333333 0.46153846153846156 4 0.2 0
0 0 0.0 0.0 0 0.0 0
0 0 0.0 0.0 0 0.0 0
18 2 0.2903225806451613 0.18181818181818182 4 0.26666666666666666 1
0 0 0.0 0.0 0 0.0 0
10 5 0.4166666666666667 0.625 6 0.2222222222222222 3
0 0 0.0 0.0 0 0.0 0
6 1 0.05172413793103448 0.037037037037037035 1 0.25 0
20 4 0.9523809523809523 0.4 6 0.2608695652173913 2
13 6 0.5416666666666666 1.2 10 0.4 10
0 0 0.0 0.0 0 0.0 0
3 1 0.045454545454545456 0.05263157894736842 1 0.08333333333333333 1
27 5 0.7941176470588235 0.625 5 0.25 0
13 4 0.6190476190476191 0.8 6 0.23076923076923078 4
7 2 0.04375 0.08333333333333333 1 0.2 1
17 5 0.2982456140350877 0.5 2 0.13333333333333333 2
17 5 0.37777777777777777 0.29411764705882354 6 0.3333333333333333 5
24 3 0.1509433962264151 0.11538461538461539 3 0.5 0
2 1 0.05263157894736842 0.043478260869565216 1 0.07142857142857142 0
71 8 0.5419847328244275 0.42105263157894735 3 0.6 0
18 3 0.6428571428571429 0.5 6 0.20689655172413793 0
23 4 0.16546762589928057 0.18181818181818182 2 0.25 2
9 3 0.08411214953271028 0.12 2 0.2857142857142857 0
0 0 0.0 0.0 0 0.0 0
0 0 0.0 0.0 0 0.0 0
0 0 0.0 0.0 0 0.0 0
11 2 0.09090909090909091 0.09523809523809523 2 0.25 1
8 5 0.14285714285714285 0.29411764705882354 4 0.19047619047619047 4
0 0 0.0 0.0 0 0.0 0
47 8 0.5662650602409639 1.0 3 0.23076923076923078 2
78 10 1.0985915492957747 0.8333333333333334 4 0.3333333333333333 2
9 3 0.2903225806451613 0.21428571428571427 3 0.25 2
26 8 0.7647058823529411 0.6666666666666666 7 0.3684210526315789 3
0 0 0.0 0.0 0 0.0 0
10 3 0.14925373134328357 0.15 4 0.26666666666666666 2
0 0 0.0 0.0 0 0.0 0
7 3 0.3333333333333333 0.5 4 0.16 4
5 2 0.07936507936507936 0.14285714285714285 3 0.2 3
0 0 0.0 0.0 0 0.0 0
0 0 0.0 0.0 0 0.0 0
10 2 0.06329113924050633 0.08333333333333333 1 0.14285714285714285 0
0 0 0.0 0.0 0 0.0 0
21 2 1.0 0.4 7 0.2413793103448276 0
14 5 0.1728395061728395 0.29411764705882354 1 0.125 1
0 0 0.0 0.0 0 0.0 0
0 0 0.0 0.0 0 0.0 0
18 5 0.5454545454545454 0.5555555555555556 2 0.1 0
9 2 0.14516129032258066 0.14285714285714285 3 0.16666666666666666 2
0 0 0.0 0.0 0 0.0 0
25 7 0.25 0.5384615384615384 3 0.3333333333333333 3
14 5 0.175 0.2631578947368421 5 0.2777777777777778 1
5 3 0.10204081632653061 0.15 1 0.09090909090909091 0
4 2 0.058823529411764705 0.13333333333333333 2 0.15384615384615385 1
14 6 0.5185185185185185 0.6666666666666666 6 0.2727272727272727 2
0 0 0.0 0.0 0 0.0 0
12 5 0.6666666666666666 1.25 6 0.2222222222222222 3
14 6 0.7777777777777778 1.2 10 0.37037037037037035 10
28 4 0.16374269005847952 0.16 2 0.6666666666666666 0
0 0 0.0 0.0 0 0.0 0
0 0 0.0 0.0 0 0.0 0
13 3 0.08783783783783784 0.12 1 0.2 1
0 0 0.0 0.0 0 0.0 0
0 0 0.0 0.0 0 0.0 0
0 0 0.0 0.0 0 0.0 0
6 3 0.046511627906976744 0.11538461538461539 1 0.5 0
0 0 0.0 0.0 0 0.0 0
27 4 0.54 0.2222222222222222 4 0.3076923076923077 2
8 5 0.2 0.5 7 0.35 6
0 0 0.0 0.0 0 0.0 0
0 0 0.0 0.0 0 0.0 0
0 0 0.0 0.0 0 0.0 0
10 3 0.19230769230769232 0.17647058823529413 3 0.15789473684210525 2
0 0 0.0 0.0 0 0.0 0
0 0 0.0 0.0 0 0.0 0
0 0 0.0 0.0 0 0.0 0
4 1 0.0975609756097561 0.0625 2 0.1 2
18 3 0.8571428571428571 0.75 6 0.20689655172413793 0
0 0 0.0 0.0 0 0.0 0
0 0 0.0 0.0 0 0.0 0
28 4 0.27184466019417475 0.21052631578947367 1 0.2 0
15 4 0.2459016393442623 0.25 9 0.42857142857142855 8
0 0 0.0 0.0 0 0.0 0
12 1 0.07692307692307693 0.037037037037037035 2 0.3333333333333333 0
0 0 0.0 0.0 0 0.0 0
8 2 0.0761904761904762 0.1111111111111111 1 0.058823529411764705 1
13 1 0.07878787878787878 0.037037037037037035 2 0.5 0
11 2 0.09649122807017543 0.13333333333333333 1 0.125 0
19 7 0.3333333333333333 0.7 5 0.3333333333333333 5
3 1 0.07317073170731707 0.125 1 0.041666666666666664 0
0 0 0.0 0.0 0 0.0 0
9 3 0.14516129032258066 0.1875 5 0.2777777777777778 5
0 0 0.0 0.0 0 0.0 0
0 0 0.0 0.0 0 0.0 0
9 2 0.140625 0.09523809523809523 2 0.2 2
28 3 0.22950819672131148 0.15 3 0.375 0
23 3 0.22115384615384615 0.16666666666666666 3 0.25 3
0 0 0.0 0.0 0 0.0 0
12 2 0.18461538461538463 0.15384615384615385 2 0.1111111111111111 2
16 6 0.5161290322580645 0.5454545454545454 5 0.3125 5
7 3 0.06363636363636363 0.11538461538461539 1 0.5 0
0 0 0.0 0.0 0 0.0 0
2 1 0.05555555555555555 0.045454545454545456 1 0.05 0
10 4 0.15873015873015872 0.25 4 0.3333333333333333 2
17 2 0.1574074074074074 0.08 3 0.375 0
7 3 0.07865168539325842 0.12 4 0.4 3
0 0 0.0 0.0 0 0.0 0
26 3 0.41935483870967744 0.15789473684210525 3 0.23076923076923078 1
2 1 0.034482758620689655 0.125 1 0.05 1
0 0 0.0 0.0 0 0.0 0
0 0 0.0 0.0 0 0.0 0
16 2 0.13675213675213677 0.08 3 0.3 1
4 2 0.05333333333333334 0.125 2 0.09090909090909091 1
20 4 0.18018018018018017 0.18181818181818182 1 0.125 1
0 0 0.0 0.0 0 0.0 0
0 0 0.0 0.0 0 0.0 0
29 4 0.16201117318435754 0.16666666666666666 3 0.75 0
16 3 0.24242424242424243 0.2727272727272727 2 0.14285714285714285 0
49 8 0.2916666666666667 0.4444444444444444 2 0.3333333333333333 2
2 1 0.022988505747126436 0.058823529411764705 1 0.09090909090909091 0
30 4 0.2912621359223301 0.18181818181818182 5 0.35714285714285715 0
0 0 0.0 0.0 0 0.0 0
19 3 0.1557377049180328 0.14285714285714285 5 0.5 2
16 1 0.14545454545454545 0.045454545454545456 2 0.16666666666666666 0
4 2 0.0449438202247191 0.15384615384615385 2 0.11764705882352941 2
28 4 0.2978723404255319 0.2 2 0.2 0
0 0 0.0 0.0 0 0.0 0
58 13 0.46774193548387094 0.8666666666666667 4 0.4 4
0 0 0.0 0.0 0 0.0 0
13 3 0.06951871657754011 0.11538461538461539 1 0.3333333333333333 0
0 0 0.0 0.0 0 0.0 0
5 1 0.04 0.041666666666666664 1 0.1 0
8 4 0.32 0.3333333333333333 1 0.05 0
0 0 0.0 0.0 0 0.0 0
16 5 0.09523809523809523 0.23809523809523808 3 0.2 3
15 9 0.6818181818181818 1.8 11 0.44 9
7 1 0.05426356589147287 0.04 1 0.16666666666666666 1
0 0 0.0 0.0 0 0.0 0
14 3 0.12612612612612611 0.12 3 0.42857142857142855 0
0 0 0.0 0.0 0 0.0 0
12 2 0.1 0.18181818181818182 2 0.13333333333333333 1
0 0 0.0 0.0 0 0.0 0
0 0 0.0 0.0 0 0.0 0
41 8 1.0789473684210527 0.6666666666666666 4 0.26666666666666666 1
15 6 0.18518518518518517 0.2608695652173913 4 0.4444444444444444 0
13 3 0.09848484848484848 0.13636363636363635 2 0.18181818181818182 1
0 0 0.0 0.0 0 0.0 0
0 0 0.0 0.0 0 0.0 0
34 2 0.2537313432835821 0.08333333333333333 5 0.38461538461538464 0
16 3 0.32 0.3 4 0.25 2
8 5 0.16326530612244897 0.35714285714285715 5 0.3333333333333333 4
0 0 0.0 0.0 0 0.0 0
12 2 0.14285714285714285 0.07692307692307693 2 0.5 0
0 0 0.0 0.0 0 0.0 0
10 4 0.15625 0.21052631578947367 1 0.058823529411764705 1
0 0 0.0 0.0 0 0.0 0
17 2 0.15315315315315314 0.08333333333333333 2 0.3333333333333333 0
27 3 0.5625 0.375 5 0.23809523809523808 2
0 0 0.0 0.0 0 0.0 0
11 4 0.07482993197278912 0.16666666666666666 3 0.3333333333333333 2
21 5 0.125 0.21739130434782608 2 0.2857142857142857 2
22 2 0.205607476635514 0.1 3 0.23076923076923078 0
12 5 0.32432432432432434 0.2631578947368421 5 0.4166666666666667 0
3 1 0.02158273381294964 0.04 1 0.16666666666666666 0
13 5 0.13829787234042554 0.3333333333333333 2 0.16666666666666666 0
14 5 0.3783783783783784 0.8333333333333334 5 0.2777777777777778 4
8 5 0.1702127659574468 0.3333333333333333 6 0.46153846153846156 5
16 4 0.12121212121212122 0.18181818181818182 3 0.2727272727272727 2
7 3 0.13725490196078433 0.3 3 0.2 2
46 11 0.575 1.375 5 0.23809523809523808 3
33 4 0.22758620689655173 0.16666666666666666 3 0.375 0
0 0 0.0 0.0 0 0.0 0
0 0 0.0 0.0 0 0.0 0
73 10 1.140625 0.9090909090909091 5 0.3125 1
0 0 0.0 0.0 0 0.0 0
28 3 0.22580645161290322 0.12 2 0.5 0
0 0 0.0 0.0 0 0.0 0
21 4 0.109375 0.16666666666666666 3 0.375 3
10 2 0.2857142857142857 0.15384615384615385 4 0.17391304347826086 2
7 3 0.2916666666666667 0.16666666666666666 2 0.09090909090909091 1
5 2 0.1282051282051282 0.14285714285714285 2 0.10526315789473684 0
7 1 0.043209876543209874 0.04 1 0.14285714285714285 0
0 0 0.0 0.0 0 0.0 0
0 0 0.0 0.0 0 0.0 0
0 0 0.0 0.0 0 0.0 0
17 4 0.16346153846153846 0.3076923076923077 1 0.16666666666666666 1
20 5 0.18181818181818182 0.2777777777777778 3 0.3 3
0 0 0.0 0.0 0 0.0 0
9 2 0.09782608695652174 0.08695652173913043 2 0.3333333333333333 1
6 3 0.05217391304347826 0.2 3 0.13636363636363635 3
14 11 0.14 0.6875 8 0.6153846153846154 8
44 6 0.3013698630136986 0.2608695652173913 2 0.4 0
2 1 0.029411764705882353 0.038461538461538464 1 0.14285714285714285 0
32 5 0.1927710843373494 0.25 2 0.3333333333333333 1
0 0 0.0 0.0 0 0.0 0
0 0 0.0 0.0 0 0.0 0
23 6 0.17692307692307693 0.2608695652173913 3 0.375 3
20 3 0.36363636363636365 0.23076923076923078 1 0.058823529411764705 0
78 17 2.5161290322580645 4.25 7 0.4666666666666667 6
0 0 0.0 0.0 0 0.0 0
0 0 0.0 0.0 0 0.0 0
10 2 0.13157894736842105 0.09523809523809523 2 0.2222222222222222 1
13 2 0.4642857142857143 0.2 4 0.2 3
0 0 0.0 0.0 0 0.0 0
0 0 0.0 0.0 0 0.0 0
0 0 0.0 0.0 0 0.0 0
0 0 0.0 0.0 0 0.0 0
7 1 0.07954545454545454 0.058823529411764705 1 0.05555555555555555 0
15 2 0.625 0.2 4 0.17391304347826086 0
17 2 0.1574074074074074 0.07692307692307693 3 0.6 0
11 2 0.3793103448275862 0.2 4 0.18181818181818182 0
15 6 0.16666666666666666 0.3333333333333333 3 0.2727272727272727 1
16 3 0.14035087719298245 0.13043478260869565 2 0.16666666666666666 0
0 0 0.0 0.0 0 0.0 0
15 6 0.5555555555555556 0.5454545454545454 6 0.2727272727272727 4
0 0 0.0 0.0 0 0.0 0
0 0 0.0 0.0 0 0.0 0
0 0 0.0 0.0 0 0.0 0
15 3 0.08670520231213873 0.11538461538461539 1 0.5 0
0 0 0.0 0.0 0 0.0 0
5 5 0.044642857142857144 0.23809523809523808 5 0.4166666666666667 5
14 5 0.5833333333333334 0.25 5 0.3125 3
20 6 0.43478260869565216 0.6 5 0.23809523809523808 5
12 2 0.06896551724137931 0.07407407407407407 1 0.5 0
11 3 0.08943089430894309 0.12 1 0.2 0
5 1 0.07142857142857142 0.038461538461538464 1 0.14285714285714285 0
0 0 0.0 0.0 0 0.0 0
19 3 0.0945273631840796 0.11538461538461539 1 0.3333333333333333 1
26 3 0.4126984126984127 0.1875 5 0.25 1
46 9 0.3150684931506849 0.45 5 0.4166666666666667 5
22 9 0.43137254901960786 0.6428571428571429 3 0.21428571428571427 2
34 3 0.25757575757575757 0.125 4 0.4444444444444444 0
7 2 0.043478260869565216 0.07407407407407407 1 0.5 1
9 5 0.24324324324324326 0.35714285714285715 7 0.3333333333333333 7
0 0 0.0 0.0 0 0.0 0
19 6 0.4418604651162791 0.46153846153846156 6 0.2608695652173913 1
58 7 0.4915254237288136 0.7 3 0.21428571428571427 1
12 4 0.5217391304347826 0.8 10 0.4 10
13 3 0.09090909090909091 0.11538461538461539 1 0.5 0
5 3 0.08064516129032258 0.14285714285714285 3 0.23076923076923078 3
0 0 0.0 0.0 0 0.0 0
6 3 0.2608695652173913 0.75 5 0.18518518518518517 5
0 0 0.0 0.0 0 0.0 0
12 5 0.11214953271028037 0.25 2 0.15384615384615385 2
5 3 0.18518518518518517 0.3333333333333333 5 0.35714285714285715 5
6 1 0.06 0.045454545454545456 1 0.125 0
8 1 0.13114754098360656 0.08333333333333333 1 0.05 0
32 12 0.8421052631578947 1.3333333333333333 7 0.4375 0
0 0 0.0 0.0 0 0.0 0
0 0 0.0 0.0 0 0.0 0
0 0 0.0 0.0 0 0.0 0
12 3 0.48 0.375 9 0.3333333333333333 7
41 5 1.5185185185185186 0.5555555555555556 5 0.29411764705882354 0
19 3 1.0 0.5 6 0.2727272727272727 1
22 5 0.25287356321839083 0.29411764705882354 3 0.2727272727272727 3
0 0 0.0 0.0 0 0.0 0
15 4 0.625 1.3333333333333333 10 0.37037037037037035 8
0 0 0.0 0.0 0 0.0 0
11 4 0.6470588235294118 1.0 4 0.15384615384615385 2
58 9 0.3625 0.45 2 0.4 2
0 0 0.0 0.0 0 0.0 0
26 4 0.23214285714285715 0.17391304347826086 2 0.2857142857142857 0
0 0 0.0 0.0 0 0.0 0
0 0 0.0 0.0 0 0.0 0
42 11 0.9333333333333333 0.7857142857142857 2 0.125 0
0 0 0.0 0.0 0 0.0 0
7 1 0.06542056074766354 0.037037037037037035 2 0.2857142857142857 0
0 0 0.0 0.0 0 0.0 0
12 3 0.1411764705882353 0.2 3 0.16666666666666666 2
5 1 0.08928571428571429 0.058823529411764705 1 0.08333333333333333 0
0 0 0.0 0.0 0 0.0 0
6 3 0.05357142857142857 0.125 3 0.3333333333333333 3
0 0 0.0 0.0 0 0.0 0
4 1 0.029850746268656716 0.03571428571428571 1 0.25 0
0 0 0.0 0.0 0 0.0 0
0 0 0.0 0.0 0 0.0 0
0 0 0.0 0.0 0 0.0 0
0 0 0.0 0.0 0 0.0 0
0 0 0.0 0.0 0 0.0 0
33 8 0.4342105263157895 0.7272727272727273 5 0.25 3
8 3 0.05970149253731343 0.11538461538461539 1 0.5 0
7 1 0.06930693069306931 0.043478260869565216 1 0.07692307692307693 0
0 0 0.0 0.0 0 0.0 0
12 4 0.125 0.18181818181818182 3 0.375 0
10 4 0.23255813953488372 0.25 6 0.3 5
34 5 0.8095238095238095 0.38461538461538464 1 0.09090909090909091 0
9 9 0.3 0.9 7 0.2692307692307692 5
0 0 0.0 0.0 0 0.0 0
49 10 0.3223684210526316 0.5263157894736842 3 0.5 3
0 0 0.0 0.0 0 0.0 0
4 2 0.08888888888888889 0.11764705882352941 1 0.058823529411764705 0
0 0 0.0 0.0 0 0.0 0
0 0 0.0 0.0 0 0.0 0
32 8 0.38095238095238093 0.47058823529411764 4 0.26666666666666666 3
0 0 0.0 0.0 0 0.0 0
0 0 0.0 0.0 0 0.0 0
0 0 0.0 0.0 0 0.0 0
0 0 0.0 0.0 0 0.0 0
51 6 0.5151515151515151 0.35294117647058826 3 0.375 3
24 2 0.15894039735099338 0.08 3 0.42857142857142855 0
12 1 0.08759124087591241 0.041666666666666664 2 0.2857142857142857 0
21 2 1.0 0.5 7 0.25 0
0 0 0.0 0.0 0 0.0 0
20 5 0.15873015873015872 0.20833333333333334 3 0.5 0
24 3 1.0909090909090908 1.5 8 0.27586206896551724 4
16 3 0.09090909090909091 0.13636363636363635 2 0.2222222222222222 2
0 0 0.0 0.0 0 0.0 0
20 5 0.3508771929824561 0.3333333333333333 5 0.2777777777777778 5
23 4 0.23232323232323232 0.2222222222222222 1 0.08333333333333333 1
0 0 0.0 0.0 0 0.0 0
0 0 0.0 0.0 0 0.0 0
14 4 0.08974358974358974 0.17391304347826086 3 0.5 1
4 1 0.03361344537815126 0.03571428571428571 1 0.3333333333333333 0
0 0 0.0 0.0 0 0.0 0
0 0 0.0 0.0 0 0.0 0
12 3 0.09302325581395349 0.16666666666666666 1 0.125 1
0 0 0.0 0.0 0 0.0 0
0 0 0.0 0.0 0 0.0 0
4 2 0.04395604395604396 0.09523809523809523 2 0.18181818181818182 2
30 5 0.20270270270270271 0.20833333333333334 1 0.3333333333333333 0
21 7 0.13125 0.3181818181818182 3 0.42857142857142855 3
32 8 0.6274509803921569 0.7272727272727273 7 0.3888888888888889 1
5 1 0.04950495049504951 0.043478260869565216 1 0.07692307692307693 0
9 2 0.15517241379310345 0.08695652173913043 1 0.14285714285714285 1
3 2 0.10714285714285714 0.2 2 0.18181818181818182 2
13 2 0.24074074074074073 0.1111111111111111 3 0.1875 3
0 0 0.0 0.0 0 0.0 0
0 0 0.0 0.0 0 0.0 0
0 0 0.0 0.0 0 0.0 0
0 0 0.0 0.0 0 0.0 0
0 0 0.0 0.0 0 0.0 0
0 0 0.0 0.0 0 0.0 0
2 1 0.013986013986013986 0.038461538461538464 1 0.16666666666666666 1
6 1 0.04316546762589928 0.03571428571428571 1 0.5 0
0 0 0.0 0.0 0 0.0 0
0 0 0.0 0.0 0 0.0 0
19 3 0.2375 0.13043478260869565 5 0.45454545454545453 0
0 0 0.0 0.0 0 0.0 0
34 12 2.0 3.0 10 0.5 5
5 1 0.034482758620689655 0.05263157894736842 1 0.058823529411764705 1
17 3 0.25757575757575757 0.16666666666666666 4 0.26666666666666666 1
60 6 0.42857142857142855 0.2857142857142857 3 0.5 0
0 0 0.0 0.0 0 0.0 0
0 0 0.0 0.0 0 0.0 0
17 5 0.3333333333333333 0.3125 4 0.26666666666666666 3
0 0 0.0 0.0 0 0.0 0
0 0 0.0 0.0 0 0.0 0
36 8 0.5538461538461539 0.5714285714285714 8 0.47058823529411764 2
0 0 0.0 0.0 0 0.0 0
21 8 0.5833333333333334 0.5714285714285714 1 0.08333333333333333 0
16 5 0.5 0.5 7 0.3333333333333333 4
46 5 0.27710843373493976 0.21739130434782608 3 0.5 0
30 5 0.15625 0.20833333333333334 1 0.5 1
20 4 0.23529411764705882 0.2222222222222222 1 0.07692307692307693 0
0 0 0.0 0.0 0 0.0 0
7 4 0.15555555555555556 0.25 4 0.2222222222222222 3
18 3 0.6 0.23076923076923078 6 0.24 0
14 2 0.1308411214953271 0.1111111111111111 3 0.3 0
6 1 0.125 0.05263157894736842 1 0.07142857142857142 0
30 4 0.15 0.16 1 0.5 1
3 1 0.06 0.041666666666666664 1 0.06666666666666667 0
25 7 0.3968253968253968 0.5833333333333334 4 0.23529411764705882 4
0 0 0.0 0.0 0 0.0 0
0 0 0.0 0.0 0 0.0 0
15 4 0.2459016393442623 0.21052631578947367 5 0.5555555555555556 0
0 0 0.0 0.0 0 0.0 0
35 5 0.2631578947368421 0.20833333333333334 1 0.3333333333333333 1
0 0 0.0 0.0 0 0.0 0
9 2 0.09278350515463918 0.09523809523809523 1 0.16666666666666666 1
0 0 0.0 0.0 0 0.0 0
48 4 0.9411764705882353 0.3333333333333333 6 0.35294117647058826 2
0 0 0.0 0.0 0 0.0 0
22 5 0.22448979591836735 0.38461538461538464 4 0.23529411764705882 3
0 0 0.0 0.0 0 0.0 0
9 4 0.08411214953271028 0.26666666666666666 3 0.3333333333333333 3
0 0 0.0 0.0 0 0.0 0
15 4 0.12396694214876033 0.2 2 0.16666666666666666 2
0 0 0.0 0.0 0 0.0 0
28 7 0.2616822429906542 0.3684210526315789 2 0.2222222222222222 2
21 3 1.0 1.0 7 0.2413793103448276 0
0 0 0.0 0.0 0 0.0 0
4 1 0.044444444444444446 0.06666666666666667 1 0.1111111111111111 1
19 3 0.25333333333333335 0.23076923076923078 1 0.058823529411764705 1
0 0 0.0 0.0 0 0.0 0
0 0 0.0 0.0 0 0.0 0
0 0 0.0 0.0 0 0.0 0
8 3 0.06722689075630252 0.125 2 0.2222222222222222 2
16 1 0.10596026490066225 0.037037037037037035 2 0.3333333333333333 0
21 1 0.75 0.25 7 0.2413793103448276 2
13 4 0.5416666666666666 0.5714285714285714 8 0.36363636363636365 7
0 0 0.0 0.0 0 0.0 0
0 0 0.0 0.0 0 0.0 0
21 4 0.4375 0.2222222222222222 5 0.2777777777777778 1
6 5 0.11538461538461539 0.35714285714285715 5 0.3125 4
0 0 0.0 0.0 0 0.0 0
25 7 1.4705882352941178 2.3333333333333335 9 0.36 6
0 0 0.0 0.0 0 0.0 0
18 1 0.8571428571428571 0.2 6 0.20689655172413793 0
0 0 0.0 0.0 0 0.0 0
16 2 0.08290155440414508 0.07692307692307693 2 0.4 1
0 0 0.0 0.0 0 0.0 0
8 2 0.05063291139240506 0.07692307692307693 2 0.3333333333333333 0
0 0 0.0 0.0 0 0.0 0
3 1 0.022556390977443608 0.045454545454545456 1 0.1111111111111111 1
0 0 0.0 0.0 0 0.0 0
15 8 0.625 1.3333333333333333 10 0.43478260869565216 10
0 0 0.0 0.0 0 0.0 0
12 2 0.3333333333333333 0.14285714285714285 3 0.14285714285714285 0
0 0 0.0 0.0 0 0.0 0
0 0 0.0 0.0 0 0.0 0
0 0 0.0 0.0 0 0.0 0
0 0 0.0 0.0 0 0.0 0
9 1 0.1956521739130435 0.058823529411764705 2 0.13333333333333333 0
14 1 0.6086956521739131 0.2 4 0.16 0
9 1 0.2571428571428571 0.058823529411764705 2 0.10526315789473684 0
25 6 0.9615384615384616 0.75 7 0.3181818181818182 1
0 0 0.0 0.0 0 0.0 0
0 0 0.0 0.0 0 0.0 0
0 0 0.0 0.0 0 0.0 0
6 2 0.09230769230769231 0.16666666666666666 1 0.047619047619047616 1
0 0 0.0 0.0 0 0.0 0
28 7 0.1590909090909091 0.3181818181818182 3 0.5 3
17 3 0.11888111888111888 0.11538461538461539 2 0.5 1
0 0 0.0 0.0 0 0.0 0
15 3 0.4411764705882353 0.21428571428571427 5 0.20833333333333334 2
0 0 0.0 0.0 0 0.0 0
0 0 0.0 0.0 0 0.0 0
9 2 0.057692307692307696 0.08 1 0.25 1
0 0 0.0 0.0 0 0.0 0
32 5 0.19047619047619047 0.20833333333333334 2 0.4 2
19 3 0.1623931623931624 0.16666666666666666 1 0.1 1
0 0 0.0 0.0 0 0.0 0
27 5 0.140625 0.20833333333333334 3 0.75 3
0 0 0.0 0.0 0 0.0 0
19 3 0.13286713286713286 0.1875 4 0.2222222222222222 4
0 0 0.0 0.0 0 0.0 0
0 0 0.0 0.0 0 0.0 0
19 4 0.20430107526881722 0.17391304347826086 2 0.25 1
8 1 0.11267605633802817 0.043478260869565216 2 0.2 0
1 1 0.008 0.037037037037037035 1 0.25 0
8 2 0.06837606837606838 0.08333333333333333 2 0.2857142857142857 2
27 9 0.18493150684931506 0.45 3 0.5 3
0 0 0.0 0.0 0 0.0 0
14 3 0.3783783783783784 0.25 5 0.25 1
51 8 0.3167701863354037 0.38095238095238093 3 0.42857142857142855 3
7 2 0.12727272727272726 0.09523809523809523 3 0.2 2
0 0 0.0 0.0 0 0.0 0
26 2 0.6190476190476191 0.25 4 0.14814814814814814 1
0 0 0.0 0.0 0 0.0 0
0 0 0.0 0.0 0 0.0 0
27 2 0.2523364485981308 0.08 3 0.25 0
0 0 0.0 0.0 0 0.0 0
0 0 0.0 0.0 0 0.0 0
0 0 0.0 0.0 0 0.0 0
56 6 0.3684210526315789 0.2727272727272727 3 0.5 0
2 1 0.0273972602739726 0.05263157894736842 1 0.125 1
0 0 0.0 0.0 0 0.0 0
0 0 0.0 0.0 0 0.0 0
0 0 0.0 0.0 0 0.0 0
10 1 0.14285714285714285 0.038461538461538464 2 0.2857142857142857 0
14 3 0.2413793103448276 0.13043478260869565 3 0.42857142857142855 0
0 0 0.0 0.0 0 0.0 0
6 1 0.046511627906976744 0.05555555555555555 1 0.07142857142857142 0
2 1 0.06666666666666667 0.047619047619047616 1 0.05263157894736842 1
17 3 0.5151515151515151 0.3 4 0.2857142857142857 2
13 3 0.0625 0.11538461538461539 1 0.5 1
9 2 0.225 0.2 2 0.1 1
0 0 0.0 0.0 0 0.0 0
6 1 0.031914893617021274 0.037037037037037035 1 0.25 0
12 2 0.0821917808219178 0.07692307692307693 1 0.2 1
29 4 0.2457627118644068 0.16666666666666666 4 0.3333333333333333 0
0 0 0.0 0.0 0 0.0 0
25 4 0.17482517482517482 0.17391304347826086 3 0.42857142857142855 2
0 0 0.0 0.0 0 0.0 0
5 1 0.0684931506849315 0.058823529411764705 2 0.10526315789473684 1
39 9 0.3277310924369748 0.45 5 0.45454545454545453 5
16 1 0.1523809523809524 0.05555555555555555 2 0.2222222222222222 0
27 4 0.3103448275862069 0.2857142857142857 3 0.25 3
26 7 0.4482758620689655 0.875 3 0.23076923076923078 1
12 4 0.1875 0.18181818181818182 2 0.14285714285714285 2
26 2 0.17687074829931973 0.08 3 0.42857142857142855 0
0 0 0.0 0.0 0 0.0 0
3 1 0.029411764705882353 0.038461538461538464 1 0.16666666666666666 0
0 0 0.0 0.0 0 0.0 0
0 0 0.0 0.0 0 0.0 0
29 7 0.16477272727272727 0.3181818181818182 2 0.4 2
0 0 0.0 0.0 0 0.0 0
4 1 0.10526315789473684 0.08333333333333333 1 0.05555555555555555 0
12 4 0.5714285714285714 1.3333333333333333 7 0.25 5
0 0 0.0 0.0 0 0.0 0
19 7 0.4523809523809524 0.875 7 0.25925925925925924 6
8 2 0.07142857142857142 0.07692307692307693 2 0.2857142857142857 0
12 3 0.18461538461538463 0.11538461538461539 3 0.5 0
50 8 0.36764705882352944 0.4444444444444444 5 0.45454545454545453 5
19 2 0.18446601941747573 0.08695652173913043 3 0.42857142857142855 1
50 4 0.2840909090909091 0.18181818181818182 2 0.5 2
0 0 0.0 0.0 0 0.0 0
30 10 0.30612244897959184 0.5555555555555556 2 0.3333333333333333 2
4 1 0.03418803418803419 0.05 1 0.07142857142857142 0
0 0 0.0 0.0 0 0.0 0
12 5 0.21052631578947367 0.20833333333333334 3 0.5 0
19 3 0.1450381679389313 0.16666666666666666 1 0.14285714285714285 1
7 1 0.08974358974358974 0.038461538461538464 2 0.25 0
9 2 0.08333333333333333 0.08333333333333333 2 0.18181818181818182 0
27 12 0.8709677419354839 1.3333333333333333 7 0.4117647058823529 4
6 3 0.15384615384615385 0.375 2 0.13333333333333333 1
3 1 0.04054054054054054 0.07692307692307693 2 0.1 2
49 7 0.8166666666666667 0.4117647058823529 8 0.38095238095238093 2
24 3 0.12834224598930483 0.11538461538461539 2 0.5 0
4 1 0.06060606060606061 0.07692307692307693 1 0.1 1
33 9 0.8918918918918919 1.2857142857142858 2 0.18181818181818182 0
0 0 0.0 0.0 0 0.0 0
11 5 0.4782608695652174 0.7142857142857143 6 0.2857142857142857 6
0 0 0.0 0.0 0 0.0 0
8 1 0.0784313725490196 0.04 1 0.1111111111111111 0
15 7 0.14563106796116504 0.4375 7 0.4375 6
39 6 0.2727272727272727 0.2727272727272727 3 0.5 0
18 3 0.4864864864864865 0.3333333333333333 4 0.2222222222222222 1
0 0 0.0 0.0 0 0.0 0
14 3 0.4827586206896552 0.3333333333333333 9 0.4090909090909091 7
3 1 0.06976744186046512 0.09090909090909091 2 0.10526315789473684 1
39 7 0.291044776119403 0.3684210526315789 4 0.3333333333333333 2
26 9 0.9285714285714286 0.9 4 0.25 0
0 0 0.0 0.0 0 0.0 0
7 1 0.08333333333333333 0.04 1 0.1111111111111111 0
6 1 0.13043478260869565 0.038461538461538464 1 0.2 0
14 7 0.1891891891891892 0.35 2 0.25 0
0 0 0.0 0.0 0 0.0 0
72 10 1.0285714285714285 0.9090909090909091 10 0.5263157894736842 7
7 2 0.04697986577181208 0.08695652173913043 1 0.3333333333333333 0
12 5 0.5 0.5 4 0.17391304347826086 2
0 0 0.0 0.0 0 0.0 0
67 13 1.4565217391304348 1.4444444444444444 2 0.16666666666666666 2
44 8 0.3055555555555556 0.38095238095238093 3 0.6 3
10 4 0.2564102564102564 0.5 2 0.13333333333333333 2
0 0 0.0 0.0 0 0.0 0
0 0 0.0 0.0 0 0.0 0
34 5 0.4146341463414634 0.3333333333333333 3 0.21428571428571427 3
0 0 0.0 0.0 0 0.0 0
53 12 0.5145631067961165 0.75 5 0.45454545454545453 5
21 2 1.0 0.4 6 0.2222222222222222 0
0 0 0.0 0.0 0 0.0 0
13 3 0.16883116883116883 0.12 2 0.3333333333333333 0
17 2 0.6071428571428571 0.2222222222222222 4 0.16666666666666666 0
48 6 0.3037974683544304 0.2608695652173913 2 0.3333333333333333 0
18 4 0.23684210526315788 0.19047619047619047 2 0.2 2
14 4 0.15217391304347827 0.17391304347826086 3 0.2727272727272727 1
10 1 0.09803921568627451 0.041666666666666664 2 0.15384615384615385 0
4 2 0.05333333333333334 0.08333333333333333 2 0.3333333333333333 1
3 1 0.043478260869565216 0.043478260869565216 1 0.125 0
24 5 0.2376237623762376 0.25 2 0.3333333333333333 1
0 0 0.0 0.0 0 0.0 0
5 2 0.03875968992248062 0.11764705882352941 1 0.1 0
0 0 0.0 0.0 0 0.0 0
0 0 0.0 0.0 0 0.0 0
6 1 0.06451612903225806 0.038461538461538464 2 0.2857142857142857 0
0 0 0.0 0.0 0 0.0 0
0 0 0.0 0.0 0 0.0 0
0 0 0.0 0.0 0 0.0 0
0 0 0.0 0.0 0 0.0 0
0 0 0.0 0.0 0 0.0 0
0 0 0.0 0.0 0 0.0 0
16 2 0.07881773399014778 0.07407407407407407 1 0.5 0
0 0 0.0 0.0 0 0.0 0
0 0 0.0 0.0 0 0.0 0
18 5 0.1125 0.20833333333333334 3 0.5 0
0 0 0.0 0.0 0 0.0 0
0 0 0.0 0.0 0 0.0 0
0 0 0.0 0.0 0 0.0 0
31 4 0.4305555555555556 0.3333333333333333 4 0.18181818181818182 3
9 3 0.32142857142857145 0.3 3 0.15789473684210525 2
39 3 1.2580645161290323 0.3333333333333333 8 0.42105263157894735 2
21 3 0.84 0.75 7 0.2692307692307692 0
36 4 0.225 0.2 3 0.3 1
29 6 0.20863309352517986 0.2608695652173913 4 0.5714285714285714 0
37 9 0.3490566037735849 0.5 5 0.45454545454545453 1
0 0 0.0 0.0 0 0.0 0
8 1 0.043478260869565216 0.043478260869565216 2 0.2 2
0 0 0.0 0.0 0 0.0 0
0 0 0.0 0.0 0 0.0 0
0 0 0.0 0.0 0 0.0 0
46 7 0.34328358208955223 0.3181818181818182 3 0.5 0
0 0 0.0 0.0 0 0.0 0
40 5 0.21621621621621623 0.20833333333333334 2 0.6666666666666666 0
0 0 0.0 0.0 0 0.0 0
5 3 0.054945054945054944 0.14285714285714285 2 0.18181818181818182 2
0 0 0.0 0.0 0 0.0 0
30 8 0.967741935483871 1.0 9 0.391304347826087 8
0 0 0.0 0.0 0 0.0 0
25 3 0.13020833333333334 0.125 3 0.375 3
16 3 0.2962962962962963 0.2 3 0.13636363636363635 1
15 6 0.23076923076923078 0.75 7 0.4117647058823529 6
4 1 0.07547169811320754 0.1 1 0.047619047619047616 0
14 2 0.1206896551724138 0.08333333333333333 1 0.16666666666666666 0
0 0 0.0 0.0 0 0.0 0
0 0 0.0 0.0 0 0.0 0
33 2 0.25190839694656486 0.08333333333333333 3 0.5 0
0 0 0.0 0.0 0 0.0 0
0 0 0.0 0.0 0 0.0 0
0 0 0.0 0.0 0 0.0 0
5 2 0.1388888888888889 0.2 2 0.09090909090909091 2
13 3 0.09352517985611511 0.12 3 0.5 0
0 0 0.0 0.0 0 0.0 0
0 0 0.0 0.0 0 0.0 0
0 0 0.0 0.0 0 0.0 0
39 4 0.6190476190476191 0.36363636363636365 5 0.29411764705882354 1
7 2 0.06796116504854369 0.09090909090909091 2 0.14285714285714285 0
0 0 0.0 0.0 0 0.0 0
10 1 0.5263157894736842 0.16666666666666666 2 0.07692307692307693 0
0 0 0.0 0.0 0 0.0 0
27 5 0.2109375 0.23809523809523808 1 0.2 1
12 3 0.11650485436893204 0.1875 3 0.1875 2
26 9 0.21311475409836064 0.5625 6 0.5 5
0 0 0.0 0.0 0 0.0 0
19 3 0.1357142857142857 0.11538461538461539 2 0.2857142857142857 0
57 8 0.3392857142857143 0.38095238095238093 1 0.5 1
0 0 0.0 0.0 0 0.0 0
19 3 0.76 0.75 7 0.2692307692307692 3
78 9 0.7722772277227723 0.75 5 0.3333333333333333 5
41 4 0.43157894736842106 0.25 4 0.36363636363636365 1
25 5 0.13020833333333334 0.20833333333333334 1 0.5 1
42 7 0.25 0.3333333333333333 3 0.375 3
5 2 0.05747126436781609 0.08333333333333333 1 0.16666666666666666 0
0 0 0.0 0.0 0 0.0 0
15 6 0.75 1.5 10 0.35714285714285715 10
7 1 0.0707070707070707 0.038461538461538464 1 0.14285714285714285 0
7 4 0.15555555555555556 0.2857142857142857 2 0.13333333333333333 2
20 6 0.9523809523809523 0.6666666666666666 6 0.4 1
0 0 0.0 0.0 0 0.0 0
25 5 0.22727272727272727 0.3333333333333333 3 0.23076923076923078 2
0 0 0.0 0.0 0 0.0 0
11 2 0.10679611650485436 0.09523809523809523 1 0.1111111111111111 0
12 3 0.5 0.3 4 0.19047619047619047 3
49 8 0.3202614379084967 0.38095238095238093 3 0.42857142857142855 3
16 4 0.1415929203539823 0.18181818181818182 2 0.25 0
0 0 0.0 0.0 0 0.0 0
10 3 0.19230769230769232 0.12 2 0.2857142857142857 0
34 6 0.2328767123287671 0.3333333333333333 3 0.42857142857142855 1
9 2 0.1956521739130435 0.18181818181818182 4 0.2222222222222222 4
10 4 0.18518518518518517 0.21052631578947367 3 0.16666666666666666 2
11 2 0.1527777777777778 0.1 2 0.14285714285714285 2
0 0 0.0 0.0 0 0.0 0
0 0 0.0 0.0 0 0.0 0
0 0 0.0 0.0 0 0.0 0
0 0 0.0 0.0 0 0.0 0
5 3 0.10869565217391304 0.2727272727272727 3 0.21428571428571427 2
14 4 0.07 0.16 4 0.4444444444444444 4
0 0 0.0 0.0 0 0.0 0
24 4 0.12 0.16 1 0.3333333333333333 1
0 0 0.0 0.0 0 0.0 0
8 3 0.2222222222222222 0.21428571428571427 3 0.13043478260869565 2
15 4 0.09554140127388536 0.16666666666666666 3 0.42857142857142855 2
0 0 0.0 0.0 0 0.0 0
9 3 0.10465116279069768 0.13636363636363635 2 0.18181818181818182 0
0 0 0.0 0.0 0 0.0 0
0 0 0.0 0.0 0 0.0 0
4 2 0.04878048780487805 0.11764705882352941 1 0.058823529411764705 1
0 0 0.0 0.0 0 0.0 0
18 4 1.0 0.8 11 0.4074074074074074 11
0 0 0.0 0.0 0 0.0 0
10 1 0.07194244604316546 0.05 2 0.18181818181818182 0
76 11 1.4615384615384615 1.375 5 0.2631578947368421 0
9 2 0.05 0.07407407407407407 2 0.6666666666666666 0
14 3 0.12727272727272726 0.1875 1 0.09090909090909091 1
16 2 0.11188811188811189 0.07407407407407407 2 0.5 0
10 2 0.14084507042253522 0.1 4 0.3076923076923077 3
0 0 0.0 0.0 0 0.0 0
21 7 0.375 0.5384615384615384 5 0.3333333333333333 4
0 0 0.0 0.0 0 0.0 0
57 8 0.41007194244604317 0.38095238095238093 2 0.3333333333333333 0
20 1 0.46511627906976744 0.1111111111111111 3 0.15789473684210525 0
17 8 0.16346153846153846 0.47058823529411764 7 0.5 6
4 1 0.06153846153846154 0.045454545454545456 1 0.125 0
0 0 0.0 0.0 0 0.0 0
0 0 0.0 0.0 0 0.0 0
0 0 0.0 0.0 0 0.0 0
43 8 0.25595238095238093 0.38095238095238093 3 0.5 3
5 1 0.2631578947368421 0.06666666666666667 2 0.09090909090909091 0
0 0 0.0 0.0 0 0.0 0
78 8 0.7155963302752294 0.5333333333333333 8 0.5714285714285714 1
16 2 0.08602150537634409 0.08 2 0.6666666666666666 2
14 3 0.3333333333333333 0.375 4 0.19047619047619047 2
7 1 0.041666666666666664 0.047619047619047616 1 0.125 1
0 0 0.0 0.0 0 0.0 0
0 0 0.0 0.0 0 0.0 0
14 5 0.16091954022988506 0.29411764705882354 3 0.2727272727272727 3
0 0 0.0 0.0 0 0.0 0
0 0 0.0 0.0 0 0.0 0
0 0 0.0 0.0 0 0.0 0
0 0 0.0 0.0 0 0.0 0
53 9 0.7571428571428571 0.75 7 0.3684210526315789 2
21 6 1.0 1.5 5 0.18518518518518517 0
0 0 0.0 0.0 0 0.0 0
28 5 0.1728395061728395 0.20833333333333334 2 0.4 0
0 0 0.0 0.0 0 0.0 0
5 1 0.11627906976744186 0.07142857142857142 1 0.058823529411764705 0
53 8 0.3231707317073171 0.38095238095238093 2 0.5 2
8 2 0.27586206896551724 0.25 2 0.08695652173913043 1
7 2 0.28 0.25 3 0.11538461538461539 0
0 0 0.0 0.0 0 0.0 0
0 0 0.0 0.0 0 0.0 0
0 0 0.0 0.0 0 0.0 0
0 0 0.0 0.0 0 0.0 0
0 0 0.0 0.0 0 0.0 0
10 5 0.1282051282051282 0.5 2 0.1111111111111111 2
0 0 0.0 0.0 0 0.0 0
18 2 0.1836734693877551 0.15384615384615385 2 0.2857142857142857 2
0 0 0.0 0.0 0 0.0 0
11 3 0.08088235294117647 0.2727272727272727 2 0.1111111111111111 2
20 2 0.15503875968992248 0.1111111111111111 2 0.25 2
2 1 0.03125 0.043478260869565216 1 0.09090909090909091 0
10 4 0.09345794392523364 0.21052631578947367 3 0.3 2
43 8 0.3739130434782609 0.5333333333333333 5 0.4166666666666667 4
0 0 0.0 0.0 0 0.0 0
47 6 0.34558823529411764 0.6 1 0.0625 1
0 0 0.0 0.0 0 0.0 0
12 6 0.10256410256410256 0.2608695652173913 4 0.5 3
14 3 0.4827586206896552 0.25 4 0.18181818181818182 1
19 5 0.5757575757575758 0.5 6 0.2727272727272727 1
0 0 0.0 0.0 0 0.0 0
5 1 0.06944444444444445 0.08333333333333333 3 0.13636363636363635 3
0 0 0.0 0.0 0 0.0 0
23 5 0.22115384615384615 0.23809523809523808 3 0.25 3
20 2 0.5128205128205128 0.18181818181818182 5 0.22727272727272727 1
33 5 0.2462686567164179 0.20833333333333334 3 0.42857142857142855 0
0 0 0.0 0.0 0 0.0 0
16 1 0.13675213675213677 0.041666666666666664 2 0.2 0
44 6 0.24858757062146894 0.2608695652173913 1 0.5 0
48 11 0.366412213740458 1.2222222222222223 5 0.5555555555555556 5
21 3 0.20192307692307693 0.13043478260869565 2 0.2222222222222222 0
9 3 0.10344827586206896 0.125 1 0.16666666666666666 0
0 0 0.0 0.0 0 0.0 0
20 4 0.8333333333333334 0.5714285714285714 4 0.16 1
0 0 0.0 0.0 0 0.0 0
22 4 0.12941176470588237 0.16 2 0.5 2
13 5 0.2765957446808511 0.35714285714285715 4 0.23529411764705882 3
0 0 0.0 0.0 0 0.0 0
0 0 0.0 0.0 0 0.0 0
7 1 0.1891891891891892 0.05263157894736842 2 0.16666666666666666 1
3 1 0.02857142857142857 0.06666666666666667 1 0.125 0
32 5 0.5161290322580645 0.2631578947368421 5 0.38461538461538464 1
10 5 0.15625 0.625 2 0.10526315789473684 2
3 1 0.043478260869565216 0.047619047619047616 1 0.07692307692307693 1
13 5 0.203125 0.625 5 0.2631578947368421 4
14 5 0.56 0.625 7 0.2692307692307692 4
0 0 0.0 0.0 0 0.0 0
14 8 0.2978723404255319 0.6666666666666666 8 0.38095238095238093 7
0 0 0.0 0.0 0 0.0 0
0 0 0.0 0.0 0 0.0 0
0 0 0.0 0.0 0 0.0 0
0 0 0.0 0.0 0 0.0 0
42 6 0.47191011235955055 0.2727272727272727 3 0.42857142857142855 0
0 0 0.0 0.0 0 0.0 0
13 3 0.16666666666666666 0.11538461538461539 1 0.3333333333333333 0
24 3 0.16216216216216217 0.15 1 0.1 0
2 1 0.0625 0.06666666666666667 1 0.058823529411764705 0
17 2 0.12056737588652482 0.07692307692307693 2 0.4 0
8 2 0.23529411764705882 0.125 4 0.14814814814814814 3
0 0 0.0 0.0 0 0.0 0
28 8 0.3218390804597701 0.5333333333333333 2 0.18181818181818182 2
12 3 0.17391304347826086 0.15 2 0.25 1
14 2 0.3333333333333333 0.25 4 0.18181818181818182 4
19 2 0.1347517730496454 0.08 3 0.2727272727272727 2
9 2 0.07964601769911504 0.07407407407407407 1 0.3333333333333333 0
0 0 0.0 0.0 0 0.0 0
55 6 0.514018691588785 0.4 8 0.42105263157894735 0
38 6 0.2638888888888889 0.3 2 0.25 1
0 0 0.0 0.0 0 0.0 0
3 1 0.028037383177570093 0.04 1 0.09090909090909091 1
0 0 0.0 0.0 0 0.0 0
5 2 0.10204081632653061 0.14285714285714285 2 0.13333333333333333 1
9 2 0.1267605633802817 0.13333333333333333 1 0.07692307692307693 1
0 0 0.0 0.0 0 0.0 0
0 0 0.0 0.0 0 0.0 0
0 0 0.0 0.0 0 0.0 0
0 0 0.0 0.0 0 0.0 0
10 2 0.2857142857142857 0.08333333333333333 5 0.45454545454545453 0
15 2 0.12396694214876033 0.08695652173913043 3 0.5 0
11 4 0.3142857142857143 0.23529411764705882 2 0.10526315789473684 1
0 0 0.0 0.0 0 0.0 0
17 2 0.425 0.3333333333333333 6 0.24 2
14 2 0.08695652173913043 0.07407407407407407 2 0.4 0
0 0 0.0 0.0 0 0.0 0
2 1 0.013986013986013986 0.03571428571428571 1 0.5 1
5 1 0.044642857142857144 0.038461538461538464 1 0.14285714285714285 0
0 0 0.0 0.0 0 0.0 0
9 4 0.2647058823529412 0.3076923076923077 2 0.15384615384615385 2
0 0 0.0 0.0 0 0.0 0
0 0 0.0 0.0 0 0.0 0
17 10 0.32075471698113206 1.1111111111111112 8 0.36363636363636365 8
12 3 0.14285714285714285 0.21428571428571427 2 0.125 2
0 0 0.0 0.0 0 0.0 0
0 0 0.0 0.0 0 0.0 0
34 6 0.2764227642276423 0.2608695652173913 4 0.5714285714285714 0
13 3 0.38235294117647056 0.3 1 0.047619047619047616 0
6 1 0.04316546762589928 0.043478260869565216 1 0.2 0
0 0 0.0 0.0 0 0.0 0
98 13 1.0 1.0 2 0.2857142857142857 1
0 0 0.0 0.0 0 0.0 0
5 1 0.02717391304347826 0.043478260869565216 1 0.14285714285714285 1
10 2 0.10309278350515463 0.09090909090909091 4 0.4444444444444444 2
19 3 0.12582781456953643 0.13043478260869565 1 0.3333333333333333 1
0 0 0.0 0.0 0 0.0 0
16 3 0.10062893081761007 0.14285714285714285 2 0.25 2
0 0 0.0 0.0 0 0.0 0
8 3 0.18604651162790697 0.21428571428571427 2 0.1111111111111111 1
25 4 0.125 0.16 1 0.3333333333333333 1
2 1 0.014084507042253521 0.041666666666666664 1 0.16666666666666666 1
12 8 0.46153846153846156 1.6 10 0.4166666666666667 5
11 2 0.12643678160919541 0.1111111111111111 2 0.2 2
0 0 0.0 0.0 0 0.0 0
35 7 0.19886363636363635 0.3181818181818182 1 0.5 1
0 0 0.0 0.0 0 0.0 0
0 0 0.0 0.0 0 0.0 0
0 0 0.0 0.0 0 0.0 0
0 0 0.0 0.0 0 0.0 0
13 3 0.40625 0.375 3 0.14285714285714285 1
17 4 0.6071428571428571 0.4 3 0.15789473684210525 2
7 3 0.13725490196078433 0.17647058823529413 3 0.15789473684210525 2
11 2 0.4583333333333333 0.5 7 0.25925925925925924 7
25 3 0.16339869281045752 0.125 3 0.375 0
0 0 0.0 0.0 0 0.0 0
10 3 0.12658227848101267 0.17647058823529413 2 0.2 1
6 3 0.14634146341463414 0.2727272727272727 3 0.23076923076923078 3
0 0 0.0 0.0 0 0.0 0
2 1 0.023255813953488372 0.05263157894736842 1 0.09090909090909091 1
6 2 0.25 0.2857142857142857 3 0.13636363636363635 0
22 5 0.6285714285714286 0.45454545454545453 1 0.07692307692307693 1
0 0 0.0 0.0 0 0.0 0
3 1 0.03296703296703297 0.041666666666666664 1 0.14285714285714285 0
6 2 0.13333333333333333 0.125 2 0.1111111111111111 1
1 1 0.014925373134328358 0.07142857142857142 1 0.0625 1
39 4 0.28888888888888886 0.16666666666666666 2 0.5 0
0 0 0.0 0.0 0 0.0 0
0 0 0.0 0.0 0 0.0 0
56 5 0.4148148148148148 0.22727272727272727 5 0.5555555555555556 0
0 0 0.0 0.0 0 0.0 0
53 10 0.9636363636363636 0.7692307692307693 6 0.35294117647058826 5
11 3 0.16176470588235295 0.13636363636363635 2 0.18181818181818182 0
13 10 0.5652173913043478 3.3333333333333335 10 0.35714285714285715 9
0 0 0.0 0.0 0 0.0 0
82 13 1.0 1.0833333333333333 4 0.5714285714285714 4
0 0 0.0 0.0 0 0.0 0
17 4 0.3148148148148148 0.4444444444444444 3 0.15 3
16 5 0.7619047619047619 2.5 9 0.32142857142857145 6
8 3 0.1568627450980392 0.25 3 0.17647058823529413 3
20 3 0.9523809523809523 1.0 9 0.3103448275862069 4
0 0 0.0 0.0 0 0.0 0
0 0 0.0 0.0 0 0.0 0
0 0 0.0 0.0 0 0.0 0
0 0 0.0 0.0 0 0.0 0
24 8 0.34782608695652173 0.5333333333333333 4 0.3333333333333333 3
13 3 0.24074074074074073 0.125 1 0.09090909090909091 0
0 0 0.0 0.0 0 0.0 0
13 6 0.3170731707317073 0.4 3 0.16666666666666666 2
7 1 0.05303030303030303 0.043478260869565216 1 0.1 0
9 2 0.11688311688311688 0.18181818181818182 2 0.125 2
24 1 0.13043478260869565 0.038461538461538464 3 0.5 0
0 0 0.0 0.0 0 0.0 0
0 0 0.0 0.0 0 0.0 0
0 0 0.0 0.0 0 0.0 0
0 0 0.0 0.0 0 0.0 0
9 2 0.09 0.10526315789473684 1 0.0625 0
0 0 0.0 0.0 0 0.0 0
40 7 0.2484472049689441 0.3333333333333333 2 0.5 2
10 2 0.07194244604316546 0.1 4 0.36363636363636365 1
0 0 0.0 0.0 0 0.0 0
17 4 0.1259259259259259 0.25 2 0.15384615384615385 2
35 6 0.20833333333333334 0.2857142857142857 3 0.42857142857142855 3
10 3 0.3448275862068966 0.25 4 0.21052631578947367 3
4 1 0.06153846153846154 0.07142857142857142 1 0.08333333333333333 0
0 0 0.0 0.0 0 0.0 0
12 3 0.09917355371900827 0.1875 3 0.23076923076923078 3
31 4 0.3974358974358974 0.23529411764705882 6 0.4 2
11 3 0.2894736842105263 0.23076923076923078 1 0.05263157894736842 0
12 3 0.10810810810810811 0.15 1 0.14285714285714285 0
5 2 0.10869565217391304 0.18181818181818182 1 0.06666666666666667 0
2 1 0.017241379310344827 0.045454545454545456 1 0.1111111111111111 0
0 0 0.0 0.0 0 0.0 0
0 0 0.0 0.0 0 0.0 0
12 7 0.14457831325301204 0.3181818181818182 3 0.6 1
0 0 0.0 0.0 0 0.0 0
46 10 1.1794871794871795 0.9090909090909091 8 0.5 4
16 2 0.7619047619047619 0.3333333333333333 5 0.17857142857142858 0
0 0 0.0 0.0 0 0.0 0
14 3 0.10852713178294573 0.12 2 0.4 1
0 0 0.0 0.0 0 0.0 0
13 4 0.40625 0.3333333333333333 5 0.23809523809523808 2
0 0 0.0 0.0 0 0.0 0
0 0 0.0 0.0 0 0.0 0
8 4 0.14545454545454545 0.4444444444444444 4 0.21052631578947367 4
0 0 0.0 0.0 0 0.0 0
18 3 0.16216216216216217 0.125 3 0.42857142857142855 2
18 5 0.34615384615384615 0.38461538461538464 7 0.3888888888888889 7
32 9 0.7804878048780488 1.125 4 0.26666666666666666 1
35 8 1.0294117647058822 1.1428571428571428 8 0.3333333333333333 2
0 0 0.0 0.0 0 0.0 0
23 4 0.23 0.16666666666666666 3 0.3333333333333333 0
0 0 0.0 0.0 0 0.0 0
10 2 0.35714285714285715 0.18181818181818182 4 0.25 3
14 4 0.4375 0.4 2 0.25 1
23 2 0.8214285714285714 0.18181818181818182 6 0.2222222222222222 0
15 4 0.30612244897959184 0.3333333333333333 5 0.3333333333333333 4
17 3 0.19318181818181818 0.15789473684210525 6 0.42857142857142855 1
0 0 0.0 0.0 0 0.0 0
12 1 0.09022556390977443 0.037037037037037035 2 0.3333333333333333 0
0 0 0.0 0.0 0 0.0 0
4 2 0.0975609756097561 0.09090909090909091 2 0.15384615384615385 2
19 4 0.20430107526881722 0.19047619047619047 1 0.09090909090909091 1
29 3 0.3258426966292135 0.12 4 0.4 0
4 1 0.08333333333333333 0.05555555555555555 1 0.05555555555555555 0
28 8 0.8 1.0 6 0.3333333333333333 4
0 0 0.0 0.0 0 0.0 0
0 0 0.0 0.0 0 0.0 0
0 0 0.0 0.0 0 0.0 0
0 0 0.0 0.0 0 0.0 0
9 2 0.19148936170212766 0.14285714285714285 3 0.17647058823529413 1
0 0 0.0 0.0 0 0.0 0
11 3 0.09482758620689655 0.14285714285714285 2 0.2857142857142857 1
11 1 0.12643678160919541 0.07692307692307693 3 0.13636363636363635 2
0 0 0.0 0.0 0 0.0 0
15 2 0.11811023622047244 0.07692307692307693 2 0.3333333333333333 0
3 2 0.06382978723404255 0.1111111111111111 2 0.16666666666666666 2
0 0 0.0 0.0 0 0.0 0
39 5 0.24375 0.29411764705882354 7 0.4666666666666667 7
0 0 0.0 0.0 0 0.0 0
19 5 0.41304347826086957 0.3333333333333333 5 0.2631578947368421 2
12 5 0.12244897959183673 0.2631578947368421 5 0.35714285714285715 5
39 6 0.3023255813953488 0.3333333333333333 1 0.09090909090909091 1
19 6 0.59375 0.4 7 0.3888888888888889 3
23 6 0.71875 0.8571428571428571 8 0.47058823529411764 6
24 9 1.263157894736842 1.2857142857142858 6 0.3 2
12 3 0.4444444444444444 0.375 4 0.14814814814814814 0
0 0 0.0 0.0 0 0.0 0
26 3 0.27956989247311825 0.125 4 0.5 0
5 2 0.14705882352941177 0.125 3 0.1111111111111111 2
37 5 0.20108695652173914 0.20833333333333334 1 0.5 0
0 0 0.0 0.0 0 0.0 0
26 5 0.20967741935483872 0.25 4 0.36363636363636365 1
27 4 0.1956521739130435 0.16666666666666666 4 0.5714285714285714 0
46 11 0.5476190476190477 0.9166666666666666 3 0.23076923076923078 1
43 10 0.3467741935483871 0.5882352941176471 6 0.5 6
23 4 0.1796875 0.18181818181818182 1 0.16666666666666666 0
0 0 0.0 0.0 0 0.0 0
7 3 0.11475409836065574 0.15 2 0.18181818181818182 0
0 0 0.0 0.0 0 0.0 0
0 0 0.0 0.0 0 0.0 0
0 0 0.0 0.0 0 0.0 0
0 0 0.0 0.0 0 0.0 0
16 3 0.11428571428571428 0.12 4 0.4 0
16 4 0.14814814814814814 0.18181818181818182 3 0.3333333333333333 3
8 4 0.21621621621621623 0.19047619047619047 3 0.15789473684210525 2
0 0 0.0 0.0 0 0.0 0
0 0 0.0 0.0 0 0.0 0
10 4 0.09900990099009901 0.2 1 0.16666666666666666 1
0 0 0.0 0.0 0 0.0 0
0 0 0.0 0.0 0 0.0 0
19 2 0.1417910447761194 0.08333333333333333 3 0.375 0
15 2 0.1485148514851485 0.07407407407407407 2 0.6666666666666666 0
23 4 0.17829457364341086 0.21052631578947367 1 0.25 0
10 2 0.18181818181818182 0.09523809523809523 1 0.06666666666666667 1
26 13 0.32098765432098764 1.0833333333333333 8 0.47058823529411764 8
0 0 0.0 0.0 0 0.0 0
23 4 0.3333333333333333 0.25 5 0.3125 0
39 4 0.2708333333333333 0.2222222222222222 6 0.3157894736842105 6
4 2 0.07017543859649122 0.2 2 0.09523809523809523 2
13 5 0.1780821917808219 0.2631578947368421 4 0.5 2
5 2 0.05154639175257732 0.07407407407407407 2 0.5 0
7 3 0.16279069767441862 0.2 2 0.1111111111111111 0
0 0 0.0 0.0 0 0.0 0
43 7 0.4056603773584906 0.3684210526315789 2 0.25 1
0 0 0.0 0.0 0 0.0 0
5 2 0.07462686567164178 0.18181818181818182 1 0.07142857142857142 1
28 6 0.3888888888888889 0.5 2 0.25 2
0 0 0.0 0.0 0 0.0 0
24 8 0.3870967741935484 0.47058823529411764 7 0.4117647058823529 4
0 0 0.0 0.0 0 0.0 0
8 7 0.2222222222222222 0.7 5 0.35714285714285715 4
8 2 0.26666666666666666 0.16666666666666666 3 0.16666666666666666 1
0 0 0.0 0.0 0 0.0 0
12 6 0.23076923076923078 0.42857142857142855 8 0.38095238095238093 8
0 0 0.0 0.0 0 0.0 0
16 2 0.7272727272727273 0.2857142857142857 6 0.23076923076923078 0
0 0 0.0 0.0 0 0.0 0
0 0 0.0 0.0 0 0.0 0
20 4 1.25 0.6666666666666666 7 0.25 2
0 0 0.0 0.0 0 0.0 0
15 3 0.1282051282051282 0.11538461538461539 1 0.5 0
0 0 0.0 0.0 0 0.0 0
4 1 0.04597701149425287 0.06666666666666667 1 0.05263157894736842 1
27 6 0.28125 0.4 3 0.2727272727272727 3
21 2 0.109375 0.08333333333333333 4 0.5 4
0 0 0.0 0.0 0 0.0 0
36 10 0.972972972972973 3.3333333333333335 9 0.4090909090909091 5
0 0 0.0 0.0 0 0.0 0
7 3 0.3333333333333333 0.75 3 0.1111111111111111 3
14 3 0.6666666666666666 1.5 9 0.3103448275862069 7
5 2 0.125 0.14285714285714285 2 0.125 1
15 4 0.19480519480519481 0.21052631578947367 5 0.35714285714285715 5
27 4 0.17763157894736842 0.17391304347826086 2 0.2857142857142857 2
14 2 0.22950819672131148 0.08333333333333333 1 0.1 1
17 2 0.4358974358974359 0.18181818181818182 3 0.17647058823529413 1
16 4 0.6666666666666666 0.8 7 0.2916666666666667 6
0 0 0.0 0.0 0 0.0 0
1 1 0.015625 0.045454545454545456 1 0.1111111111111111 1
13 1 0.11304347826086956 0.06666666666666667 2 0.09090909090909091 2
56 10 1.2173913043478262 0.6666666666666666 2 0.2222222222222222 1
23 6 0.2804878048780488 0.2857142857142857 3 0.3333333333333333 1
0 0 0.0 0.0 0 0.0 0
8 2 0.05405405405405406 0.08333333333333333 1 0.14285714285714285 0
32 2 0.24615384615384617 0.08333333333333333 4 0.25 0
22 5 0.15492957746478872 0.20833333333333334 4 0.4444444444444444 0
13 3 0.0896551724137931 0.17647058823529413 5 0.3333333333333333 5
17 7 0.6296296296296297 0.7777777777777778 7 0.35 6
47 4 0.3219178082191781 0.17391304347826086 4 0.5 0
10 3 0.22727272727272727 0.1875 5 0.2631578947368421 4
13 3 0.18571428571428572 0.1875 2 0.18181818181818182 2
8 3 0.08333333333333333 0.14285714285714285 1 0.1111111111111111 0
0 0 0.0 0.0 0 0.0 0
0 0 0.0 0.0 0 0.0 0
0 0 0.0 0.0 0 0.0 0
26 7 0.5306122448979592 0.6363636363636364 5 0.2777777777777778 2
4 1 0.056338028169014086 0.05555555555555555 1 0.09090909090909091 0
0 0 0.0 0.0 0 0.0 0
0 0 0.0 0.0 0 0.0 0
48 6 0.2857142857142857 0.2857142857142857 4 0.4 4
8 1 0.058823529411764705 0.03571428571428571 1 0.2 0
0 0 0.0 0.0 0 0.0 0
24 3 0.1951219512195122 0.12 2 0.4 0
4 1 0.042105263157894736 0.037037037037037035 1 0.16666666666666666 0
0 0 0.0 0.0 0 0.0 0
0 0 0.0 0.0 0 0.0 0
25 7 0.4098360655737705 0.5384615384615384 6 0.42857142857142855 1
0 0 0.0 0.0 0 0.0 0
0 0 0.0 0.0 0 0.0 0
11 3 0.11702127659574468 0.13043478260869565 2 0.18181818181818182 2
6 1 0.03592814371257485 0.03571428571428571 1 0.2 0
0 0 0.0 0.0 0 0.0 0
0 0 0.0 0.0 0 0.0 0
8 5 0.07920792079207921 0.2777777777777778 4 0.3333333333333333 3
0 0 0.0 0.0 0 0.0 0
40 5 0.24390243902439024 0.20833333333333334 2 0.5 0
0 0 0.0 0.0 0 0.0 0
20 4 0.32786885245901637 0.23529411764705882 3 0.15 0
23 2 0.2875 0.18181818181818182 6 0.2857142857142857 6
21 3 1.0 1.0 7 0.25 0
54 7 0.3068181818181818 0.3181818181818182 2 0.6666666666666666 2
12 3 0.1348314606741573 0.125 4 0.4444444444444444 3
0 0 0.0 0.0 0 0.0 0
0 0 0.0 0.0 0 0.0 0
24 6 0.16326530612244897 0.2857142857142857 2 0.25 2
8 4 0.20512820512820512 0.4444444444444444 5 0.23809523809523808 4
14 4 0.10294117647058823 0.16666666666666666 2 0.2857142857142857 1
0 0 0.0 0.0 0 0.0 0
0 0 0.0 0.0 0 0.0 0
0 0 0.0 0.0 0 0.0 0
0 0 0.0 0.0 0 0.0 0
20 4 0.30303030303030304 0.4444444444444444 3 0.1875 3
8 2 0.12903225806451613 0.125 2 0.125 2
16 3 0.21333333333333335 0.17647058823529413 2 0.18181818181818182 0
24 3 0.15584415584415584 0.11538461538461539 2 0.4 0
36 7 1.125 0.7 5 0.23809523809523808 2
21 4 0.15328467153284672 0.2222222222222222 2 0.2 2
2 1 0.05405405405405406 0.09090909090909091 1 0.05 1
0 0 0.0 0.0 0 0.0 0
0 0 0.0 0.0 0 0.0 0
0 0 0.0 0.0 0 0.0 0
0 0 0.0 0.0 0 0.0 0
0 0 0.0 0.0 0 0.0 0
0 0 0.0 0.0 0 0.0 0
2 1 0.02702702702702703 0.07692307692307693 1 0.05 1
0 0 0.0 0.0 0 0.0 0
8 1 0.21621621621621623 0.07142857142857142 3 0.14285714285714285 2
21 2 0.26582278481012656 0.08 4 0.3076923076923077 0
32 7 0.8888888888888888 0.6363636363636364 8 0.36363636363636365 4
15 4 0.625 0.4444444444444444 5 0.25 2
32 18 0.8205128205128205 3.6 10 0.47619047619047616 10
35 3 0.19021739130434784 0.13043478260869565 4 0.4 4
5 1 0.06944444444444445 0.043478260869565216 1 0.125 0
6 2 0.15789473684210525 0.15384615384615385 4 0.2 4
9 5 0.10975609756097561 0.23809523809523808 4 0.2857142857142857 2
0 0 0.0 0.0 0 0.0 0
35 9 0.29914529914529914 0.6428571428571429 6 0.42857142857142855 5
0 0 0.0 0.0 0 0.0 0
0 0 0.0 0.0 0 0.0 0
11 2 0.07692307692307693 0.10526315789473684 1 0.06666666666666667 1
0 0 0.0 0.0 0 0.0 0
0 0 0.0 0.0 0 0.0 0
25 4 0.176056338028169 0.16666666666666666 2 0.3333333333333333 1
2 1 0.07142857142857142 0.09090909090909091 1 0.04 1
33 3 1.1379310344827587 0.375 5 0.2631578947368421 3
0 0 0.0 0.0 0 0.0 0
7 2 0.1076923076923077 0.15384615384615385 3 0.16666666666666666 3
8 3 0.36363636363636365 0.42857142857142855 5 0.21739130434782608 5
0 0 0.0 0.0 0 0.0 0
21 4 0.84 1.0 6 0.2222222222222222 0
6 2 0.09090909090909091 0.13333333333333333 2 0.09090909090909091 1
27 6 0.47368421052631576 0.2857142857142857 3 0.375 2
0 0 0.0 0.0 0 0.0 0
0 0 0.0 0.0 0 0.0 0
22 3 0.125 0.11538461538461539 1 0.3333333333333333 0
0 0 0.0 0.0 0 0.0 0
16 5 0.43243243243243246 0.45454545454545453 8 0.34782608695652173 7
0 0 0.0 0.0 0 0.0 0
0 0 0.0 0.0 0 0.0 0
11 2 0.3055555555555556 0.14285714285714285 4 0.17391304347826086 2
13 2 0.08125 0.1 1 0.25 1
0 0 0.0 0.0 0 0.0 0
34 6 0.425 0.2727272727272727 3 0.375 0
19 4 0.9047619047619048 1.3333333333333333 12 0.4444444444444444 10
27 5 0.627906976744186 0.5 7 0.30434782608695654 5
0 0 0.0 0.0 0 0.0 0
19 11 0.3584905660377358 1.2222222222222223 6 0.35294117647058826 6
6 1 0.061855670103092786 0.037037037037037035 1 0.125 0
0 0 0.0 0.0 0 0.0 0
0 0 0.0 0.0 0 0.0 0
0 0 0.0 0.0 0 0.0 0
24 7 0.1610738255033557 0.3181818181818182 3 0.42857142857142855 1
10 1 0.11904761904761904 0.09090909090909091 3 0.15789473684210525 2
0 0 0.0 0.0 0 0.0 0
12 4 0.20689655172413793 0.2222222222222222 2 0.2 1
6 6 0.13333333333333333 0.35294117647058826 5 0.2777777777777778 5
20 4 0.45454545454545453 0.4 4 0.2222222222222222 2
0 0 0.0 0.0 0 0.0 0
19 3 0.13286713286713286 0.11538461538461539 1 0.5 0
33 4 0.2619047619047619 0.2222222222222222 5 0.5 5
6 2 0.20689655172413793 0.16666666666666666 3 0.12 3
13 6 0.2708333333333333 0.4 5 0.3125 4
28 4 0.717948717948718 0.4 6 0.2608695652173913 1
10 6 0.3448275862068966 0.75 8 0.3076923076923077 5
29 8 0.20279720279720279 0.4444444444444444 5 0.45454545454545453 5
0 0 0.0 0.0 0 0.0 0
0 0 0.0 0.0 0 0.0 0
34 4 0.32075471698113206 0.4 2 0.14285714285714285 0
9 4 0.23684210526315788 0.3076923076923077 5 0.25 4
11 1 0.08333333333333333 0.037037037037037035 2 0.25 0
25 3 0.17857142857142858 0.125 3 0.3333333333333333 1
23 6 0.8518518518518519 0.8571428571428571 3 0.13043478260869565 2
0 0 0.0 0.0 0 0.0 0
0 0 0.0 0.0 0 0.0 0
9 3 0.375 0.42857142857142855 5 0.19230769230769232 4
21 4 0.9545454545454546 0.6666666666666666 5 0.25 3
6 2 0.21428571428571427 0.2857142857142857 4 0.18181818181818182 4
12 2 0.096 0.08333333333333333 3 0.3 2
0 0 0.0 0.0 0 0.0 0
0 0 0.0 0.0 0 0.0 0
6 3 0.05357142857142857 0.11538461538461539 2 0.6666666666666666 0
0 0 0.0 0.0 0 0.0 0
18 5 0.21951219512195122 0.21739130434782608 3 0.3 0
47 6 0.43119266055045874 0.3 1 0.25 0
14 2 0.3111111111111111 0.11764705882352941 4 0.2222222222222222 1
22 3 0.18803418803418803 0.14285714285714285 1 0.125 1
0 0 0.0 0.0 0 0.0 0
37 5 0.21637426900584794 0.20833333333333334 2 0.6666666666666666 0
12 7 0.5714285714285714 1.4 8 0.36363636363636365 7
0 0 0.0 0.0 0 0.0 0
0 0 0.0 0.0 0 0.0 0
0 0 0.0 0.0 0 0.0 0
0 0 0.0 0.0 0 0.0 0
0 0 0.0 0.0 0 0.0 0
14 3 0.358974358974359 0.3 6 0.2608695652173913 5
0 0 0.0 0.0 0 0.0 0
0 0 0.0 0.0 0 0.0 0
0 0 0.0 0.0 0 0.0 0
21 2 0.14583333333333334 0.07692307692307693 2 0.4 0
0 0 0.0 0.0 0 0.0 0
26 4 0.17218543046357615 0.19047619047619047 3 0.3333333333333333 2
8 4 0.4 0.5714285714285714 4 0.21052631578947367 3
72 9 0.6545454545454545 0.6428571428571429 1 0.06666666666666667 0
0 0 0.0 0.0 0 0.0 0
5 1 0.06578947368421052 0.04 2 0.18181818181818182 1
44 7 0.27848101265822783 0.3181818181818182 3 0.6 3
9 2 0.06569343065693431 0.08 1 0.2 1
9 2 0.046632124352331605 0.07407407407407407 1 0.5 0
0 0 0.0 0.0 0 0.0 0
0 0 0.0 0.0 0 0.0 0
7 1 0.041666666666666664 0.05 1 0.058823529411764705 1
3 1 0.0410958904109589 0.05 1 0.08333333333333333 0
14 1 0.08917197452229299 0.037037037037037035 2 0.4 0
0 0 0.0 0.0 0 0.0 0
37 4 0.29133858267716534 0.21052631578947367 4 0.3076923076923077 2
17 3 0.11805555555555555 0.14285714285714285 2 0.2 0
8 2 0.3076923076923077 0.15384615384615385 3 0.13043478260869565 0
5 1 0.026595744680851064 0.037037037037037035 1 0.25 0
0 0 0.0 0.0 0 0.0 0
0 0 0.0 0.0 0 0.0 0
0 0 0.0 0.0 0 0.0 0
0 0 0.0 0.0 0 0.0 0
21 1 0.75 0.25 7 0.2413793103448276 2
0 0 0.0 0.0 0 0.0 0
0 0 0.0 0.0 0 0.0 0
48 8 0.2857142857142857 0.38095238095238093 4 0.5714285714285714 4
0 0 0.0 0.0 0 0.0 0
53 4 0.4380165289256198 0.19047619047619047 7 0.4666666666666667 0
37 11 1.608695652173913 1.375 6 0.35294117647058826 3
0 0 0.0 0.0 0 0.0 0
21 2 0.75 0.3333333333333333 7 0.2413793103448276 2
15 3 0.2727272727272727 0.23076923076923078 6 0.3333333333333333 6
0 0 0.0 0.0 0 0.0 0
13 4 0.43333333333333335 0.4444444444444444 8 0.34782608695652173 7
0 0 0.0 0.0 0 0.0 0
16 3 0.08695652173913043 0.13043478260869565 1 0.125 1
0 0 0.0 0.0 0 0.0 0
0 0 0.0 0.0 0 0.0 0
29 9 1.2608695652173914 1.8 8 0.32 3
0 0 0.0 0.0 0 0.0 0
13 9 0.29545454545454547 0.9 7 0.3888888888888889 7
38 4 0.23170731707317074 0.16666666666666666 3 0.42857142857142855 0
0 0 0.0 0.0 0 0.0 0
0 0 0.0 0.0 0 0.0 0
8 2 0.2962962962962963 0.2 3 0.10714285714285714 2
0 0 0.0 0.0 0 0.0 0
0 0 0.0 0.0 0 0.0 0
0 0 0.0 0.0 0 0.0 0
0 0 0.0 0.0 0 0.0 0
8 4 0.07142857142857142 0.2222222222222222 2 0.2 0
0 0 0.0 0.0 0 0.0 0
13 3 0.14444444444444443 0.13043478260869565 3 0.21428571428571427 2
7 2 0.22580645161290322 0.15384615384615385 3 0.14285714285714285 0
12 1 0.32432432432432434 0.047619047619047616 3 0.15789473684210525 0
13 5 0.35135135135135137 0.5555555555555556 6 0.3 4
3 1 0.04838709677419355 0.058823529411764705 1 0.07142857142857142 0
39 9 0.26 0.47368421052631576 4 0.4 4
22 4 0.16296296296296298 0.17391304347826086 2 0.3333333333333333 1
0 0 0.0 0.0 0 0.0 0
0 0 0.0 0.0 0 0.0 0
5 2 0.058823529411764705 0.07692307692307693 1 0.3333333333333333 1
0 0 0.0 0.0 0 0.0 0
0 0 0.0 0.0 0 0.0 0
0 0 0.0 0.0 0 0.0 0
4 1 0.10256410256410256 0.07142857142857142 1 0.06666666666666667 0
16 2 0.10884353741496598 0.08 3 0.5 0
0 0 0.0 0.0 0 0.0 0
12 6 0.375 0.5454545454545454 3 0.25 1
0 0 0.0 0.0 0 0.0 0
2 1 0.020833333333333332 0.04 1 0.14285714285714285 1
0 0 0.0 0.0 0 0.0 0
23 4 0.21904761904761905 0.26666666666666666 1 0.125 0
0 0 0.0 0.0 0 0.0 0
0 0 0.0 0.0 0 0.0 0
0 0 0.0 0.0 0 0.0 0
4 2 0.029850746268656716 0.08 2 0.3333333333333333 0
0 0 0.0 0.0 0 0.0 0
0 0 0.0 0.0 0 0.0 0
0 0 0.0 0.0 0 0.0 0
0 0 0.0 0.0 0 0.0 0
0 0 0.0 0.0 0 0.0 0
26 6 0.32098765432098764 0.3157894736842105 2 0.25 1
4 1 0.06060606060606061 0.047619047619047616 1 0.09090909090909091 0
0 0 0.0 0.0 0 0.0 0
10 2 0.08333333333333333 0.08 3 0.6 1
15 2 0.09933774834437085 0.07407407407407407 1 0.5 0
0 0 0.0 0.0 0 0.0 0
50 12 0.42016806722689076 0.9230769230769231 8 0.5333333333333333 7
43 9 0.3049645390070922 0.45 1 0.3333333333333333 0
30 6 0.9375 0.6 6 0.2857142857142857 1
32 5 0.2 0.25 4 0.4 4
0 0 0.0 0.0 0 0.0 0
0 0 0.0 0.0 0 0.0 0
0 0 0.0 0.0 0 0.0 0
7 2 0.2413793103448276 0.25 1 0.05263157894736842 1
0 0 0.0 0.0 0 0.0 0
19 6 0.19791666666666666 0.3 4 0.36363636363636365 3
0 0 0.0 0.0 0 0.0 0
9 4 0.2903225806451613 0.5714285714285714 3 0.15789473684210525 1
0 0 0.0 0.0 0 0.0 0
11 4 0.12222222222222222 0.2 3 0.25 2
7 4 0.16279069767441862 0.26666666666666666 4 0.2222222222222222 3
16 7 0.6956521739130435 1.0 9 0.3333333333333333 7
12 2 0.2926829268292683 0.13333333333333333 5 0.2777777777777778 1
0 0 0.0 0.0 0 0.0 0
0 0 0.0 0.0 0 0.0 0
13 2 0.125 0.1 2 0.16666666666666666 0
0 0 0.0 0.0 0 0.0 0
9 8 0.12162162162162163 0.7272727272727273 6 0.375 6
12 3 0.16 0.11538461538461539 2 0.5 0
0 0 0.0 0.0 0 0.0 0
0 0 0.0 0.0 0 0.0 0
6 1 0.1875 0.05263157894736842 2 0.13333333333333333 0
10 4 0.5882352941176471 0.4 2 0.09523809523809523 1
10 6 0.5555555555555556 1.2 7 0.2692307692307692 7
0 0 0.0 0.0 0 0.0 0
0 0 0.0 0.0 0 0.0 0
8 2 0.046242774566473986 0.08 1 0.14285714285714285 0
11 2 0.08088235294117647 0.07692307692307693 1 0.25 0
35 7 1.09375 0.6363636363636364 6 0.3157894736842105 3
0 0 0.0 0.0 0 0.0 0
8 3 0.21052631578947367 0.23076923076923078 3 0.15 2
15 1 0.09433962264150944 0.037037037037037035 2 0.3333333333333333 0
0 0 0.0 0.0 0 0.0 0
5 1 0.050505050505050504 0.04 1 0.1111111111111111 0
8 1 0.0975609756097561 0.07692307692307693 1 0.0625 0
2 1 0.10526315789473684 0.125 1 0.041666666666666664 0
0 0 0.0 0.0 0 0.0 0
0 0 0.0 0.0 0 0.0 0
15 5 0.125 0.20833333333333334 2 0.4 0
0 0 0.0 0.0 0 0.0 0
0 0 0.0 0.0 0 0.0 0
0 0 0.0 0.0 0 0.0 0
11 3 0.09649122807017543 0.13043478260869565 3 0.25 0
0 0 0.0 0.0 0 0.0 0
5 1 0.23809523809523808 0.14285714285714285 2 0.08 0
15 5 0.28846153846153844 0.45454545454545453 5 0.3333333333333333 5
4 1 0.027972027972027972 0.041666666666666664 1 0.14285714285714285 0
0 0 0.0 0.0 0 0.0 0
0 0 0.0 0.0 0 0.0 0
0 0 0.0 0.0 0 0.0 0
0 0 0.0 0.0 0 0.0 0
|
85fd50cee6e272928edb40baaa7aa34288f02a80
|
7b7be9b58f50415293def4aa99ef5795e6394954
|
/sim/cmd/test/man-propsensor.tst
|
d75a4865559b20b2e3db3b89369e43b14542280e
|
[] |
no_license
|
sabualkaz/sim42
|
80d1174e4bc6ae14122f70c65e259a9a2472ad47
|
27b5afe75723c4e5414904710fa6425d5f27e13c
|
refs/heads/master
| 2022-07-30T06:23:20.119353
| 2020-05-23T16:30:01
| 2020-05-23T16:30:01
| 265,842,394
| 0
| 0
| null | 2020-05-21T12:26:00
| 2020-05-21T12:26:00
| null |
UTF-8
|
Scilab
| false
| false
| 851
|
tst
|
man-propsensor.tst
|
#Property Sensor Example
#generate a table of enthalpy versus molar fractions
$thermo = VirtualMaterials.Advanced_Peng-Robinson
/ -> $thermo
thermo + WATER TRIETHYLENE_GLYCOL
#generate WATER/TEG bubble temperature curve
units Field
s = Stream.Stream_Material()
s.In.P = 1 atm
s.In.VapFrac = 0.0
ps = Sensor.PropertySensor()
s.Out -> ps.In
ps.SignalType = H
#generate enthalpy composition curve
s.In.Fraction = 0.0 1.0
ps.Signal
s.In.Fraction = 0.1 0.9
ps.Signal
s.In.Fraction = 0.2 0.8
ps.Signal
s.In.Fraction = 0.3 0.7
ps.Signal
s.In.Fraction = 0.4 0.6
ps.Signal
s.In.Fraction = 0.5 0.5
ps.Signal
s.In.Fraction = 0.6 0.4
ps.Signal
s.In.Fraction = 0.7 0.3
ps.Signal
s.In.Fraction = 0.8 0.2
ps.Signal
s.In.Fraction = 0.9 0.1
ps.Signal
s.In.Fraction = 1.0 0.0
ps.Signal
copy /
paste /
/RootClone.ps.Signal
|
11fa63977a415dfcc6104714e19fe318b7da5451
|
a5321d12fc26fafe2f14ace53b080c2c40493708
|
/arithmetic.tst
|
f3858f835615680d5efd405b47bc13cf37ba4620
|
[] |
no_license
|
madhavmittal2001/hackcpu2310
|
de7ba63b324497b40957843be409ef4b024e89f5
|
d3ecb6d33adfceea9f6095c02213ca97a4b36ea9
|
refs/heads/main
| 2023-06-17T10:08:36.841125
| 2021-07-19T18:34:47
| 2021-07-19T18:34:47
| 387,557,138
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,225
|
tst
|
arithmetic.tst
|
// This file is a part of Assignment 8
// by Team 12 - Mandala Tejesh, Madhav Mittal, Kshitij Raj
// file name: arithmetic.tst
/***********************************************************
arithmetic.tst:
Used to check arithmetic instruction on HackComputer.
d = a + b - c
***********************************************************/
load HackComputer.hdl,
output-file arithmetic.out,
output-list RAM64[16]%D2.5.4 RAM64[17]%D2.5.4 RAM64[18]%D2.5.4 RAM64[19]%D2.5.4 ;
ROM32K load arithmetic.hack ,
set RAM64[16] 61 , //a
set RAM64[17] 62 , //b
set RAM64[18] 29 , //c
set RAM64[19] 0 ; //d
set reset 1,
tick, tock ;
set reset 0 ,
repeat 8 {
tick, tock , output; //output at each of the 8 iterations.
}
set RAM64[16] 23 , //a
set RAM64[17] 46 , //b
set RAM64[18] 69 , //c
set RAM64[19] 0 ; //d
set reset 1,
tick, tock ;
set reset 0 ,
repeat 8 {
tick, tock , output; //output at each of the 8 iterations.
}
set RAM64[16] 24 , //a
set RAM64[17] 12 , //b
set RAM64[18] 48 , //c
set RAM64[19] 0 ; //d
set reset 1,
tick, tock ;
set reset 0 ,
repeat 8 {
tick, tock , output; //output at each of the 8 iterations.
}
|
4c5267e8fcbb9aa0a62ac3ae7848a57ec8e28efe
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/269/CH7/EX7.1/example1.sce
|
01d741e3599e3547d2ef1ba963e85a1e10093b45
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 187
|
sce
|
example1.sce
|
Syms t s
disp('given')
disp('u(t)=1 for t>=0 else its 0')
y=laplace(1,t,s)
disp("The laplace is")
disp(y)
disp('similarly')
disp('laplace of V0 is')
x=laplace('V0',t,s)
disp(x)
|
e54828863d0af01065395d408d7a593836e64f11
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3446/CH2/EX2.1/Ex2_1.sce
|
d205b7c4168f65ae195179e94775356a93c48274
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 312
|
sce
|
Ex2_1.sce
|
// Exa 2.1
// TO get Gos during BH(Busy Hour).
clc;
clear all;
LC=10; //Lost calls
CC=380; //Carried calls
// soution
OC=LC+CC; //Total offered calls
//Gos=Blocking probability=(number of Lost calls/Total number of offered calls)
Gos=LC/OC;
printf('The Gos during busy hour is %f \n ', Gos);
|
888889d3bdfcf17e6d8edcdc977a211d0f693c5c
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2006/CH14/EX14.6/ex14_6.sce
|
ec8d04571f45760184012884081be0f0eeb29f1f
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,111
|
sce
|
ex14_6.sce
|
clc;
// The complete chemical equation is //[0.14H2+0.03CH4+0.27CO+0.045CO2+0.01O2+0.505N2]+0.255(O2+3.75N2) →0.2H2O+0.345CO2+1.44N2
a=0.14; // Composition of H2 in air
b=0.03; // Composition of CH4 in air
c=0.27; // Composition of CO in air
d=0.045; // Composition of CO2 in air
e=0.01; // Composition of O2 in air
f=0.505; // Composition of N2 in air
g=(0.265-0.01); // O2 requirement from atmospheric air with 1% O2 already in fuel
h=3.76; // By nitrogen balance
i=1; // mole of the air
AFvol=(g+(g*h))/i; // Air fuel ratio (theroretical)
AFv=1.1*AFvol; // Air fuel ratio on mol (volume) basis
disp ("kmol actual air/kmol fuel",AFv,"Air fuel ratio on mol (volume) basis =")
M1=2; // Molecular mass of H2
M2=16; // Molecular mass of CH4
M3=28; // Molecular mass of CO
M4=44; // Molecular mass of CO2
M5=32; // Molecular mass of O2
M=a*M1+b*M2+c*M3+d*M4+e*M5+f*M3; // Molecular mass of Fuel
Ma=28.84; // Molecular mass of air
AFm=AFv*Ma/(i*M); // Air fuel ratio on mass basis
disp ("kg air / kg fuel",AFm,"Air fuel ratio on mass basis = ");
|
66d4e4dc792692d2fef0b07a5cb654a94520464c
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1439/CH8/EX8.3/8_3.sce
|
7af4569beef359cca477939c93e3f4d359bf81ed
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 216
|
sce
|
8_3.sce
|
clc
//initialisation of variables
Kb= 2.53 //deg molal^-1
w2= 1 //gms
Tb= 0.3 //C
w1= 50 //gms
//CALCULATIONS
M2= Kb*w2*1000/(Tb*w1)
//RESULTS
printf ('molecular weight of dinitrozene = %.f g mole^-1',M2)
|
876f3653ef907b93edb0026c083d5f60b70a3a39
|
4bbc2bd7e905b75d38d36d8eefdf3e34ba805727
|
/ee/contrib/dspic/Flex-Sim/dll_builder.sci
|
0efb63422a71f93fe0e7bad4840de09889d246d6
|
[] |
no_license
|
mannychang/erika2_Scicos-FLEX
|
397be88001bdef59c0515652a365dbd645d60240
|
12bb5aa162fa6b6fd6601e0dacc972d7b5f508ba
|
refs/heads/master
| 2021-02-08T17:01:20.857172
| 2012-07-10T12:18:28
| 2012-07-10T12:18:28
| 244,174,890
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 5,601
|
sci
|
dll_builder.sci
|
function libn = dll_builder(names, files, libs, flag, makename, loadername, libname, ldflags, cflags, fflags, cc)
// Copyright Enpc
// Generate a shared library which can be used by link
// command.
// names = names of entry points or the name of the library to
// be built (when flag == 'g')
// files = object files to be built
// flag = 'c' or 'f' or '
//
//** assume some default values depending the argument list
[lhs,rhs] = argn(0);
info = 1
if rhs <= 4 then makename = 'Makelib';end
if rhs <= 5 then loadername = 'loader.sce';end
if rhs <= 6 then libname = ""; end
if rhs <= 7 then ldflags = ""; end
if rhs <= 8 then cflags = ""; end
if rhs <= 9 then fflags = ""; end
if rhs <= 10 then cc = ""; end
//** Generate a loader file
if info==1 then write(%io(2),' generate a loader file');end
//** This function is included in this file
dll_link_gen_loader(names,flag,loadername,libs,libname);
//** ... done
//** Generate a Makefile
if info==1 then write(%io(2),' generate a Makefile: [Makelib.mak]');end
dll_link_gen_Make(names,files,libs,makename,libname,ldflags,cflags,fflags,cc,flag);
//** Done
//** Call make
if info==1 then write(%io(2),' running the makefile');end
if libname=="" then libname = names(1);end
libn=ilib_compile('lib'+libname,makename,files);
if info==1 then disp('Shared library: Ready');end
endfunction
//**=======================================================================
function dll_link_gen_loader(names,flag,loadername,libs,libname)
//------------------------------------
rhs=argn(2)
if rhs <= 4 then libname = ""; end
if rhs <= 3 then libs=[]; end
if rhs <= 2 then loadername = 'loader.sce' ; end
comp_target = COMPILER;
// suffix to be used for dll
lib_suf='dll';
//** Name of the shared library for the
if libname=="" then libname = names(1);end
fd=mopen(loadername,"w");
mfprintf(fd,"// generated by [dll_builder]: Please do not edit this file \n");
mfprintf(fd,"// ------------------------------------------------------\n");
mfprintf(fd,"%s_path=get_absolute_file_path(''%s'');\n",libname,basename(loadername+'.x'));
//** This section is obsolete .......
// nl=size(libs,'*')
// for i=1:nl
// if part(libs(i),1)=='/' then
// mfprintf(fd,"link(''%s.%s'');\n",libs(i),lib_suf);
// else
// [diri,basenamei,exti]=fileparts(libs(i));
// if (diri == '') then
// mfprintf(fd,"link(%s_path+''%s.%s'');\n",libname,libs(i),lib_suf);
// else
// mfprintf(fd,"link(''%s.%s'');\n",libs(i),lib_suf);
// end
// end
// end
//
//** Print the line that load the library and the ass. entry point
//** first part
mfprintf(fd,"link(%s_path+''lib%s.%s'',[",libname,libname,lib_suf);
//** second part
names=names(:)';
n = size(names,'*');
for i=1:n
mfprintf(fd,"''%s''",names(i))
if i <>n ; mfprintf(fd,","); else mfprintf(fd,"],");end
end
mfprintf(fd,"''%s'');\n",flag); //** add the otional flag
mclose(fd); //** Close the output file
endfunction
//**======================================================================================
function dll_link_gen_Make(names,files,libs,makename,libname,ldflags,cflags,fflags,cc,flag)
//------------------------------------
// generate a Makefile for gateway
[lhs,rhs]=argn(0);
if rhs <= 2 then libs = [];end
if rhs <= 3 then makename = 'Makelib';end
if rhs <= 4 then libname = "";end
if rhs <= 5 then ldflags = ""; end
if rhs <= 6 then cflags = ""; end
if rhs <= 7 then fflags = ""; end
if rhs <= 8 then cc = ""; end
if rhs <= 9 then flag = "c"; end
comp_target = COMPILER;
Makename = makename+".mak'; //** for Windows systems
dll_link_gen_Make_win32(names,files,libs,Makename,libname,ldflags,cflags,fflags,cc)
endfunction
//**===================================================================================
function dll_link_gen_Make_win32(names,files,libs,Makename,libname,ldflags,cflags,fflags,cc)
if libname=="" then libname = names(1);end
fd=mopen(Makename,"w");
mfprintf(fd,"# generated by [dll_builder] : Please do not edit this file \n");
mfprintf(fd,"# ------------------------------------------------------\n");
mfprintf(fd,"SCIDIR =%s\n",SCI);
mfprintf(fd,"SCIDIR1 =%s\n",pathconvert(SCI,%f,%f,'w'));
mfprintf(fd,"# name of the dll to be built\n");
mfprintf(fd,"LIBRARY = lib%s\n",libname);
mfprintf(fd,"# list of objects file\n");
mfprintf(fd,"OBJS =");
for x=files(:)' ; mfprintf(fd," %s",strsubst(x,".o",".obj"));end
if libs=="" then
mfprintf(fd,"\n# No added libraries \n");
else
mfprintf(fd,"\n# added libraries \n");
mfprintf(fd,"OTHERLIBS = ");
for x=libs(:)' ; mfprintf(fd," ""%s.ilib"" ",x);end
mfprintf(fd,"\n");
end
mfprintf(fd,"!include $(SCIDIR1)\\Makefile.incl.mak\n");
if cc<>"" then
mfprintf(fd,"CC="+cc+ "\n");
end
mfprintf(fd,"CFLAGS = $(CC_OPTIONS) -DFORDLL -I\""$(SCIDIR)/routines\"""+...
" -Dmexfunction_=mex$*_ -DmexFunction=mex_$* "+ cflags +" \n");
mfprintf(fd,"FFLAGS = $(FC_OPTIONS) -DFORDLL -I\""$(SCIDIR)/routines\"""+...
" -Dmexfunction=mex$* "+ fflags +"\n");
mfprintf(fd,"EXTRA_LDFLAGS = "+ ldflags+"\n");
mfprintf(fd,"!include $(SCIDIR1)\\config\\Makedll.incl \n");
mclose(fd);
endfunction
//**=======================================================================================
|
bc13d01ca9e8c6338a10e66a5654291627b9d33b
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/317/CH22/EX22.7/example7.sce
|
21823c4f4e640f87401eb519b0474e7b6cfd0829
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 725
|
sce
|
example7.sce
|
// find output voltage, closed loop time constant
// Electronic Principles
// By Albert Malvino , David Bates
// Seventh Edition
// The McGraw-Hill Companies
// Example 22-7, page 865
clear;clc; close;
// Given data
Avol=100000;// open loop voltage gain
Vin=8;// input voltage in volts
C=1*10^-6;// capacitance in faraday
R=2*10^3;// resistance in ohms
T=10^-3;// in seconds
// Calculations
t=R*C*(1+Avol);// closed loop time constant in seconds
V=(T*Vin)/(R*C);// magnitude of negative output voltage at end of pulse in volts
disp("seconds",t,"time constant=")
disp("Volts",V,"output voltage=")
// Result
// Closed loop time constant is 200 seconds
// Output voltage at end of pulse is -4 volts
|
7fb7c57ef85ee8720e459a3c0c6a6314ea6c72f1
|
9a3cd47433581fc13c4eaceab5a95aacdaff8ca1
|
/FourierT(1)_60002190017_Aryaman_Paigankar.sce
|
9b311ca5387043713738b975d18df130b081361c
|
[] |
no_license
|
aryaman-paigankar/SS-Experiments
|
c844eecca63148dda96cb4e9bede9f55bbd28a26
|
2ea34cb220d941b744d2664c9b301dff40e7fa75
|
refs/heads/main
| 2023-01-16T02:55:40.358834
| 2020-11-25T17:09:52
| 2020-11-25T17:09:52
| 315,990,354
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 97
|
sce
|
FourierT(1)_60002190017_Aryaman_Paigankar.sce
|
t=-1:0.02:1;
w=2*%pi;
n_har=10;
n=1:1:n_har;
b=2 ./(n*%pi);
x=0.5+b*sin(w*n'*t);
plot(x);
|
a638953f15d3c6b965aca809a8683d2262a4a0b5
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2175/CH4/EX4.14/4_14.sce
|
c2f36c052ceba9e31d3e743ae3b45d8a26d966cc
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 367
|
sce
|
4_14.sce
|
clc;
T2=90;//K
T3=40;//K
T1=15;//K
y=(T3-T1)/(T2-T3);
cp=1.005;
h3=40;
h1=15;
h2=90;
T0=288;//K
T3=313;//K
T1=288;//K
T2=363;//K
s3_s1=cp*log(T3/T1);
inc=cp*(h3-h1)-T0*s3_s1;
s2_s3=cp*log(T2/T3)
loss=0.5*[cp*(h2-h3)-T0*(s2_s3)]
e=inc/loss;
disp("effectiveness is:");
disp("%",e*100);//ans diff due to differance in value of logarithmic values
|
88abafcf4f658548f1833c917832905731a81b59
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2417/CH7/EX7.13/Ex7_13.sce
|
b284677ccc01bc262a275ea9793c2b4d102fe6a2
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 693
|
sce
|
Ex7_13.sce
|
//scilab 5.4.1
clear;
clc;
printf("\t\t\tProblem Number 7.13\n\n\n");
// Chapter 7 : Mixtures Of Ideal Gases
// Problem 7.13 (page no. 338)
// Solution
//Referring to figure 7.6,it will be seen that the cooling of an air-water vapor mixture from B to A proceeds at constant pressure until the saturation curve is reached.
//At 80 F(the mixture temperature),the Steam Tables give us a saturation pressure of a 0.5073 psia,and because the relative humidity is 50%,the vapor pressure of the water is 0.5*0.5073=0.2537 psia.
//Using the steam tables,the saturation temperature corresponding to 0.2537 psia is 60 F.
//So,
printf("The dew point temperature of the air is 60 F\n")
|
34034e63d4c895ccd43e8ae6551f8f2fad829be3
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1946/CH4/EX4.18/Ex_4_18.sce
|
1d7f709051af86ce8310ba350434cb35471bb7d7
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 398
|
sce
|
Ex_4_18.sce
|
// Example 4.18;//Pulse broadning
clc;
clear;
close;
M=95;//dispersion parametr picosecond per nano meter per kilometer
L=1;//distance in Km
h=0.85;//WAVELENGTH IN MICRO METERS
Sh=0.0012*h*10^-6;// Spectral width in nano meter
Sm=(Sh*L*M)*10^6;//Pulse broadning due to material dispersion in nano second
disp(Sm,"Pulse broadning due to material dispersion in nano second per kilo meter")
|
2f5df34e3fc2178725cf4b3f90af2a74103a3923
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3760/CH6/EX6.56/Ex6_56.sce
|
9a9bb42b3b4f82a4bc8299e4d909df9e9055cda1
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 561
|
sce
|
Ex6_56.sce
|
clc;
p=10000; // rated power of motor
v=400; // rated voltage of motor
n=0.87; // full load efficiency
pf=0.85; // power factor
ir=5; // ratio of starting current to full load current
tr=1.5; // ratio of starting torque to full load torque
disp('case a');
vt=v/sqrt(tr);
printf('Voltage applied to motor terminal is %f V\n',vt);
disp('case b');
ifl=p/(sqrt(3)*v*pf*n); // full load current
il=(ir*vt*ifl)/v;
printf('Current drawn by motor is %f A\n',il);
disp('case c');
i=(vt/v)*il;
printf('Line current drawn from supply mains is %f A',i);
|
b4fd0a9d03cb654991c939bafe8ce209741e4680
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1430/CH4/EX4.5/exa4_5.sce
|
f9f6da5221271ee542dd93bcbe524c0dc5de8471
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 587
|
sce
|
exa4_5.sce
|
// Example 4.5
// Node analysis with a Supernode
// From figure 4.15, Applying KCL at Supernode
disp("((v_1-30)-v_2)/2-1+(v_1-v_2)/10+(v_1-50)/5=0 -------- Equation 1")
//Applying KCL at node 2
disp("(v_2-v_1)/10+(v_2-(v_1-30))/2+v_2-7=0 --------- Equation 2")
disp("Rearrangement then yields a pair of equations in standard form,")
disp("0.8v_1-0.6v_2=26")
disp("-0.6v_1+1.6v_2=-8")
G=[0.8,-0.6;-0.6,1.6]; // Conductance Matrix
i=[26;-8]; // Current Matrix
v=G\i;
v_1=v(1,1);
v_2=v(2,1);
disp(v_1,"Voltage at Node 1(in Volts)=")
disp(v_2,"Voltage at Node 2(in Volts)=")
|
b6b6d9e47a491e9381aa6aebb9989a45ed8b8540
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3269/CH3/EX3.2/Ex3_2.sce
|
9affc9560adcf44add4a950b00d96d178598a920
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 377
|
sce
|
Ex3_2.sce
|
// Example 3.2
clear all;
clc;
// Given data
sigmaf = 582; // Fission cross section of U-235 on bombardment of neutron in barn
sigmay = 99; // Radiative capture cross section of U-235 on bombardment of neutron in barn
// Calculation
pf = sigmaf/(sigmaf+sigmay);
// Result
printf('\n Probability of fission = %.3f = %3.1f percent\n',pf,pf*100);
|
09c545672683ea579df60e3fd75b4f0c33970f32
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/581/CH7/EX7.4/example7_4.sce
|
c528314eef6b2050f3cc1d5fc0007d61f620d589
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,137
|
sce
|
example7_4.sce
|
clear;
clc;
printf("\t Example 7.3\n");
m=21.5; //mass flow rate, kg/s
e=260*10^-6; //wall roughness,m
D=0.12; //diameter of pipe, m
T1=363; //pipe temperature,K
T2=323; //bulk temp. of fluid,K
a=977; //density, kg/m^3
u=m/(a*3.14*(D/2)^2); //average velocity,m/s
Re=u*D/(4.07*10^-7); //reynolds no.
Uw=3.1*10^-4; // wall side viscosity,N*s/m^2
Ub=5.38*10^-4; //bulk viscosity, N*s/m^2
Pr=2.47; //prandtl no.
f=1/(1.8/2.303*log(6.9/Re+(e/D/3.7)^1.11))^2; //friction factor from haaland equation.
Re1=Re*e/D*(f/8)^0.5; //roughness reynols no.
Nu=(f/8)*Re*Pr/(1+(f/8)^0.5*(4.5*Re1^(0.2)*Pr^(0.5)-8.48)); //correlation for local nusselt no.
h=Nu*0.661/D/1000; //convection heat transfer coefficient, kW/(m^2*K)
printf("\t correlation friction factor is :%.5f\n",f);
printf("\t convection heat transfer coefficient is :%.1f kw/(m^2*K)\n",h);
printf("\t in this case wall roughness causes a factor of 1.8 increase in h and a factor of 2 increase in f and the pumping power.we have omitted the variable properties hre as they were developed for smooth walled pipes.")
//end
|
e472f31f34e3ba308f495d6e04a5ef9e8da909f4
|
b29e9715ab76b6f89609c32edd36f81a0dcf6a39
|
/ketpic2escifiles6/Assignset.sci
|
bb77c105eea856f846d3662e3fc1fe22b7627f39
|
[] |
no_license
|
ketpic/ketcindy-scilab-support
|
e1646488aa840f86c198818ea518c24a66b71f81
|
3df21192d25809ce980cd036a5ef9f97b53aa918
|
refs/heads/master
| 2021-05-11T11:40:49.725978
| 2018-01-16T14:02:21
| 2018-01-16T14:02:21
| 117,643,554
| 1
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 108
|
sci
|
Assignset.sci
|
// 09.10.21
function Assignset(varargin)
I=1:length(varargin);
Tmp=Assign(varargin(I));;
endfunction;
|
4129f6822ae4ff18a12580b0d90e1f6e4f12fa31
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3415/CH7/EX7.3/Ex7_3.sce
|
54655fa9a0985dbc6079e8b987009f5cea4d31af
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 451
|
sce
|
Ex7_3.sce
|
//fiber optic communications by joseph c. palais
//example 7.3
//OS=Windows XP sp3
//Scilab version 5.4.1
clc;
clear all;
//given
R=50;//load resistor in ohm
P=1*10^-6;//optic power absorbed by the detector
Row=6.4*10^-3;//responsivity in A/W
//to find
i=Row*P;//current produced by detector in A
v=i*R;//output voltage in V
mprintf('voltage across the 50 ohm load resistor=%fnV',v*1e9)//multiplication by 1e9 converts unit from V to nV
|
5fa96217a9b32a1dc29913e152a59c30bd0b0840
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3739/CH7/EX7.4/EX7_4.sce
|
760bb21f3ddd911a981c8771385a10664422c8f9
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 412
|
sce
|
EX7_4.sce
|
//Chapter 7, Example 7.4, page 302
clc
//Initialisation
hr=-1 //obstacle height and fresnel radius ratio
//Calculation
Ad=-20*hr+10 //Diffraction loss in dB
Ad2=16 //from fig 7.8
Ad3=43
//Results
printf("(1) Obstacle loss = %.1f dB",Ad)
printf("\n(2) Knife edge obstacle = %.1f dB",Ad2)
printf("\n(3) Rounded obstacle = %.1f dB",Ad3)
|
c884b2fa84ded6215ecd4b33ebb008361ce24771
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1910/CH7/EX7.10/Chapter710.sce
|
694b1eabac8218f2abfd5c8d24ea516b2b5ba30a
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 2,112
|
sce
|
Chapter710.sce
|
// Display mode
mode(0);
// Display warning for floating point exception
ieee(1);
clear;
clc;
disp("Introduction to heat transfer by S.K.Som, Chapter 7, Example 10")
//Air at one atmospheric pressure and temprature(Tbi=75°C) enters a tube of internal diameter(D)=4.0mm with average velocity(U)=2m/s
Tbi=75;
D=4*10^-3;
U=2;
//The heated tube length is L=0.04m and a constant heat flux is imposed by the tube surface on the air over the entire length.
L=0.04;
//An exit bulk mean temprature(Tbo)=125°C is required.
Tbo=125;
//The properties of air 100°C are density(rho=0.95kg/m^3),Prandtl number(Pr=0.70),conductivity(k=0.03W/(m*K)),viscosity(mu=2.18*10^-5kg/(m*s)),specific heat(cp=1.01kJ/(kg/K))
rho=0.95;
Pr=0.70;
k=0.03;
mu=2.18*10^-5;
cp=1.01*10^3;
//Re is the reynolds number
disp("Reynold number is")
Re=rho*U*D/mu
//Leh is the hydrodynamic entrance length
disp("Therefore the flow is laminar.The hydrodynamic entrance length in m is")
Leh=0.05*Re*D
//Let is thermal entrance length
disp("The thermal entrance length in m is")
Let=0.05*Re*Pr*D
disp("The thermal entrance length is greater than the tube length Therefore the flow is hydrodynamically developed but not thermally developed" )
//We calculate the inverse graetz number at x=L=0.04m
x=0.04;
//Gr_1 is inverse of graetz number
disp("The inverse of graetz number Gr_1 is")
Gr_1=(x/D)*(1/(Re*Pr))
//For constant surface heat flux nusselt number is Nu=4.7 and Graetz number is Gr=4.1*10^-2
Nu=4.7;
Gr=4.1*10^-2;
//hL is the local heat transfer coefficient
disp("Therefore the local heat transfer coefficient in W/(m^2*K) is")
hL=Nu*(k/D)
//from an energy balance qw*pi*D*L=mdot*cp*(Tbo-Tbi)
//mdot is the mass flow rate
disp("The mass flow rate of air in kg/s is")
mdot=rho*(%pi/4)*D^2*U
//qw is the surface heat flux
disp("Therefore surafce heat flux qw in W/m^2 is")
qw=[mdot*cp*(Tbo-Tbi)]/(%pi*D*L)
//Let Twe be the surface temprature at the exit plane.Then we can write hL*(Twe-Tbo)=qw
disp("The tube surface temprature at the exit plane in °C is ")
Twe=Tbo+(qw/hL)
|
b9e84de7ed1f0658e96c3b9693a4378238d37806
|
bbf1ae079309eca11270422d3f0d259d1515d430
|
/numerical-tours/matlab/toolbox_graph/myisfield.sci
|
004c7edbd15bb09d5136eab91d6c5daba33d4c90
|
[
"BSD-2-Clause"
] |
permissive
|
ZichaoDi/Di_MATLABTool
|
5e6a67b613c4bcf4d904ddc47c2744b4bcea4885
|
c071291c63685c236f507b2cb893c0316ab6415c
|
refs/heads/master
| 2021-08-11T07:28:34.286526
| 2021-08-04T18:26:46
| 2021-08-04T18:26:46
| 149,222,333
| 9
| 5
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 233
|
sci
|
myisfield.sci
|
function r = myisfield(options, f)
// myisfield - emulation of isfield
//
// r = myisfield(options, f);
//
// test if options.f exists.
//
// Copyright (c) 2008 Gabriel Peyre
r = getfield(1,options);
r = or(r(3:$)==f);
endfunction
|
f8b05fcd7dd9276a69091a689a62d5d04546829e
|
8217f7986187902617ad1bf89cb789618a90dd0a
|
/source/2.4.1/macros/util/trisolve.sci
|
fc23cc6cc697bcd10a45e96fa4c5040fe9c25c2c
|
[
"LicenseRef-scancode-public-domain",
"LicenseRef-scancode-warranty-disclaimer"
] |
permissive
|
clg55/Scilab-Workbench
|
4ebc01d2daea5026ad07fbfc53e16d4b29179502
|
9f8fd29c7f2a98100fa9aed8b58f6768d24a1875
|
refs/heads/master
| 2023-05-31T04:06:22.931111
| 2022-09-13T14:41:51
| 2022-09-13T14:41:51
| 258,270,193
| 0
| 1
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 919
|
sci
|
trisolve.sci
|
function [b,sexp]=trisolve(a,b,sexp)
//[x [,sexp]] = trisolve(A,b [,sexp]) symbolically solves A*x =b
// when A and b are matrices of character strings, A being assumed to be
// upper triangular.
//sexp : vector of common subexpressions in A, b and x.
//!
//origine F. D. S. Steer INRIA 1989
//
// Copyright INRIA
[lhs,rhs]=argn(0)
[n0,m]=size(b)
if rhs==2 then
for n=n0:-1:1
pivot=a(n,n)
for k=1:m,b(n,k)=ldivf(pivot,b(n,k)),end
if n==1 then return,end
for l=1:n-1
for k=1:m,
b(l,k)=addf(b(l,k),mulf(mulf('-1',a(l,n)),b(n,k)))
end
end
end
else
ns=prod(size(sexp))
for n=n0:-1:1
pivot=a(n,n)
for k=1:m,
ns=ns+1
sexp(ns)=ldivf(pivot,b(n,k))
b(n,k)='%('+string(ns)+')';
end
if n==1 then return,end
for l=1:n-1
for k=1:m,
b(l,k)=addf(b(l,k),mulf(mulf('-1',a(l,n)),b(n,k)))
end
end
end
end
|
38a0910fb94a60d8d7119cea5558e4156418cca3
|
f934e15695c77d0a1015c230c5ed65c4f16a2425
|
/applying_filtering.sce
|
a85d9760d4898bec53ac54c4976b0a10e3c3c69e
|
[] |
no_license
|
manasdas17/Scilab-for-Signal-Processing-
|
6efc5adb507243c7302f7b4f3f12d12060112038
|
5f6e6ce941c0a11212a83674b5d35d97a2cf4396
|
refs/heads/master
| 2021-01-10T07:49:58.006357
| 2016-04-07T07:45:26
| 2016-04-07T07:45:26
| 55,673,271
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,242
|
sce
|
applying_filtering.sce
|
//By Manas,FOSSEE,IITB
// Creating signals with sampling frequency of 1000 Hz
Fs = 1000;
t = 0:1/Fs:1;
n = length(t);
f = linspace(0,Fs,length(t)); // Create frequency vectors
x1 = sin(2*%pi*10*t); // 10 Hz Sine Wave
x2 = sin(2*%pi*100*t); // 100 Hz Sine Wave
x = x1 + x2; // Combination of 10 Hz and 100 Hz Sine Wave
plot(t,x); // Time Domain representation of the sine waves
X = fft(x)./(length(x)/2); // Creating frequency response of the signal
plot(f(1:n/2),abs(X(1:n/2))); // Frequency Domain representation
// Design of a low-pass butterworth filter with 50 Hz cut off frequency
hz = iir(8,'lp','butt',50/Fs,[]);
[hzm,fr]=frmag(hz,256);
fr2 = fr.*Fs;
plot(fr2,hzm)
//To make it clearer, I overlap 2 graphs together:
plot(f(1:n/2),abs(X(1:n/2)),fr2,hzm);
//The green color line indicates the "passband”, or the allowed zone for the signal, and looks like it will pass through the 10 Hz component and eliminates the 100 Hz component!
// Applying filter to the signal
y = flts(x,hz);
Y = fft(y)./(length(x)/2);
// Compare the frequency domain of filtered signal with filter response
plot(f(1:n/2),abs(Y(1:n/2)),fr2,hzm);
//Finally, compare the original 10Hz signal with the filtered signal.
plot(t,x1,t,y);
legend(['x1';'y'])
|
b215be3ae67ac4f192cd87a1526da9093ed460ee
|
c5a5b51d0d9d4bb57cc4508c2ffc453ccf47aeba
|
/ssbdemod_test.sce
|
497cd8d14e1368d354daaa7a93ab290a06865351
|
[] |
no_license
|
PolaPriyanka/ScilabCommunication
|
2adca45f772b2ca6a602e10e4801576eeb0da33d
|
5b5c704e591f20be6944800a1b4b25cf06f56592
|
refs/heads/master
| 2021-01-01T18:22:48.761766
| 2015-12-16T07:26:29
| 2015-12-16T07:26:29
| 42,721,104
| 1
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 823
|
sce
|
ssbdemod_test.sce
|
// To test ssbdemod function with this example, ssbmod function is needed.
Fs =200;
t = [0:2*Fs+1]'/Fs;
ini_phase = 5;
Fc = 20;
fm1= 2;
fm2= 3
x =sin(2*fm1*%pi*t)+sin(2*fm2*%pi*t);
y = ssbmod(x,Fc,Fs,ini_phase);
o = ssbdemod(y,Fc,Fs,ini_phase);
z =fft(y);
zz =abs(z(1:length(z)/2+1 ));
axis = (0:Fs/length(zz):Fs -(Fs/length(zz)))/2;
figure
subplot(3,1,1); plot(x);
title(' Message signal');
subplot(3,1,2); plot(y);
title('Amplitude modulated signal');
subplot(3,1,3); plot(axis,zz);
title('Spectrum of amplitude modulated signal');
z1 =fft(o);
zz1 =abs(z1(1:length(z1)/2+1 ));
axis = (0:Fs/length(zz1):Fs -(Fs/length(zz1)))/2;
figure
subplot(3,1,1); plot(y);
title(' Modulated signal');
subplot(3,1,2); plot(o);
title('Demodulated signal');
subplot(3,1,3); plot(axis,zz1);
title('Spectrum of Demodulated signal');
|
4b7120df74266bf019e9bc78925eeb2bd4b0d969
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/331/CH6/EX6.5/Example_6_5.sce
|
03644c5123cdd4f00f0bbcf338b6e6110e3bffc0
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,216
|
sce
|
Example_6_5.sce
|
//Caption: Poisson Distribution
//Example6.5
//Page179
clear;
clc;
//(a): Probability no piece in the sample is defective
X1= 0; //nil defective
p= 0.04;//probability that an inspected piece will be defective
n = 25; //number of sample units
Mean = n*p;//mean of the poisson distribution
[P1,Q1]=cdfpoi("PQ",X1,Mean)
disp(P1,'No piece will be defective P(X=0,1) is =')
//(b): Probability 3 pieces in the sample will be defective
X2 = 3; //3 pieces in the sample will be defective
P2 = exp(-Mean)*(Mean^X2)/(factorial(X2))
disp(P2,'Probability 3 pieces will be defective P(X=3,1) is =')
//(c): at most 2 pieces will be defective
X3 = 2;
[P3,Q3]=cdfpoi("PQ",X3,Mean)
disp(P3,'Atmost 2 pieces will be defective P(X<=2,1) is =')
//(d): at least 3 pieces will be defective
P4 = 1-P3
disp(P4,'At least 3 pieces will be defective P(X>=3,1) is=')
//Result
//
// No piece will be defective P(X=0,1) is =
//
// 0.3678794
//
// Probability 3 pieces will be defective P(X=3,1) is =
//
// 0.0613132
//
// Atmost 2 pieces will be defective P(X<=2,1) is =
//
// 0.9196986
//
// At least 3 pieces will be defective P(X>=3,1) is=
//
// 0.0803014
|
c4c9168e50f64addec60dd58937cb989b97759a0
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1955/CH4/EX4.10/example10.sce
|
6347e831d7744b2596c22901a2ee79fd4766b6f9
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 3,740
|
sce
|
example10.sce
|
clc
clear
//input data
Uh=150//The blade root velocity in m/s
Um=200//The mean velocity in m/s
Ut=250//The tip velocity in m/s
dT0=20//The total change in temperature in K
Ca1m=150//The axial velocity in m/s
l=0.93//The work done factor
Rm=0.5//Reaction at mean radius
N=9000//Rotational speed in rpm
R=287//The universal gas constant in J/kg.K
Cp=1005//The specific heat of air at constant pressure in J/kg.K
r=1.4//The ratio of specific heats of air
//calculations
dtb1tb2=((Cp*dT0)/(l*Um*Ca1m))//The difference between the tangent angles of blade angles at mean
atb1tb2=((2*Rm*Um)/(Ca1m))//The sum of the tangent angles of blade angles at mean
b1m=atand((atb1tb2+dtb1tb2)/2)//The inlet blade angle in degree at mean
a2m=b1m//The exit air angle in degree as the Reaction at mean radius is 0.5
b2m=atand(tand(b1m)-dtb1tb2)//The exit blade angle in degree at mean
a1m=b2m//The inlet air angle in degree as the reaction at mean radius is 0.5
Dh=(Uh*60)/(3.141*N)//Hub diameter in m
Dm=(Um*60)/(3.141*N)//Mean diameter in m
Cx1m=Ca1m*tand(a1m)//The whirl velocity at inlet at mean in m/s
Cx2m=Ca1m*tand(a2m)//The whirl velocity at exit at mean in m/s
Cx1h=(Cx1m*(Dh/2)/(Dm/2))//The whirl velocity at inlet at hub in m/s
Cx2h=(Cx2m*(Dh/2)/(Dm/2))//The whirl velocity at exit at hub in m/s
K1=(Ca1m^2)+(2*(Cx1m^2))//Sectional velocity in m/s
Ca1h=((K1)-(2*(Cx1h^2)))^(1/2)//The axial velocity at hub inlet in (m/s)^2
w=(2*3.141*N)/60//Angular velocity of blade in rad/s
K2=(Ca1m^2)+(2*(Cx2m^2))-(2*((Cx2h/(Dh/2))-(Cx1m/(Dm/2))))*(w*(Dm/2)^(2))//Sectional velocity in (m/s)^2
Ca2h=(K2-(2*Cx2h^2)+(2*((Cx2h/(Dh/2))-(Cx1h/(Dh/2))))*(w*(Dh/2)^(2)))^(1/2)//Axial velocity at hub outlet in m/s
a1h=atand(Cx1h/Ca1h)//Air angle at inlet in hub in degree
b1h=atand((Uh-Cx1h)/Ca1h)//Blade angle at inlet in hub in degree
a2h=atand(Cx2h/Ca2h)//Air angle at exit in hub in degree
b2h=atand((Uh-Cx2h)/Ca2h)//Blade angle at exit in hub in degree
W1=Ca1h/cosd(b1h)//Relative velocity at entry in hub in m/s
W2=Ca2h/cosd(b2h)//Relative velocity at exit in hub in m/s
Rh=((W1^2)-(W2^2))/(2*Uh*(Cx2h-Cx1h))//The degree of reaction at hub
Dt=(Ut*60)/(3.141*N)//Tip diameter in m
Cx1t=(Cx1m*(Dt/2)/(Dm/2))//The whirl velocity at inlet at tip in m/s
Cx2t=(Cx2m*(Dt/2)/(Dm/2))//The whirl velocity at exit at tip in m/s
Ca1t=(K1-(2*Cx1t^2))^(1/2)//Axial velocity at tip inlet in m/s
Ca2t=(K2-(2*Cx2t^2)+(2*((Cx2t/(Dt/2))-(Cx1t/(Dt/2))))*(w*(Dt/2)^(2)))^(1/2)//Axial velocity at tip outlet in m/s
a1t=atand(Cx1t/Ca1t)//Air angle at inlet in tip in degree
b1t=atand((Ut-Cx1t)/Ca1t)//Blade angle at inlet in tip in degree
a2t=atand(Cx2t/Ca2t)//Air angle at exit in tip in degree
b2t=atand((Ut-Cx2t)/Ca2t)//Blade angle at exit in tip in degree
W1=Ca1t/cosd(b1t)//Relative velocity at entry in tip in m/s
W2=Ca2t/cosd(b2t)//Relative velocity at exit in tip in m/s
Rt=((W1^2)-(W2^2))/(2*Ut*(Cx2t-Cx1t))//The degree of reaction at tip
//output
printf('(a)At the mean\n (1)The inlet blade angle is %3.2f degree\n (2)The inlet air angle is %3.2f degree\n (3)The outlet blade angle is %3.2f degree\n (4)The outlet air angle is %3.2f degree\n (5)Degree of reaction is %3.1f \n(b)At the root\n (1)The inlet blade angle is %3.2f degree\n (2)The inlet air angle is %3.1f degree\n (3)The outlet blade angle is %3.1f degree\n (4)The outlet air angle is %3.1f degree\n (5)Degree of reaction is %3.1f\n(c)At the tip\n (1)The inlet blade angle is %3.2f degree\n (2)The inlet air angle is %3.2f degree\n (3)The outlet blade angle is %3.2f degree\n (4)The outlet air angle is %3.2f degree\n (5)Degree of reaction is %3.1f\n',b1m,a1m,b2m,a2m,Rm,b1h,a1h,b2h,a2h,Rh,b1t,a1t,b2t,a2t,Rt)
|
ca7a9a034bb262a3739d313c682c084ecca6ffeb
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3648/CH22/EX22.8/Ex22_8.sce
|
04b6fca6580a05fc96cd8acfbbd47f2ac40a0b84
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 311
|
sce
|
Ex22_8.sce
|
//Example 22_8
clc();
clear;
//To find the image positon and size
d1=-20 //units in cm
d2=40 //units in cm
i=(d1*d2)/(d2-d1) //Units in cm
printf("\nThe image is located at i=%.2f cm",i)
d3=3 //units in cm
I=(-i*d3)/d2 //units in cm
printf("\nThe Size of the image is I=%d cm",I)
|
f9cb4b5892707e69d9ae3594599513a8e8049147
|
e6d5f1d801a3fe887b5dc04b8cc0a9eabc1fd432
|
/Semana_10/interpolacion_newton.sce
|
231fac242cd1ce718245877305360060097092cc
|
[] |
no_license
|
lordjuacs/MateIII
|
70def332063e56eb10fb47678a7e6130dc0dca63
|
164c53b61c9e35e565121f77ba2c578680a3ab56
|
refs/heads/master
| 2021-05-24T15:56:01.078904
| 2020-07-27T19:57:34
| 2020-07-27T19:57:34
| 253,643,962
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 217
|
sce
|
interpolacion_newton.sce
|
function polinomio = interpolacion_newton(x, y)
n = length(x)
dfd = diferencias_divididas(x, y)
P = dfd(1,1);
for i=2:n
P = P + dfd(i,i) * poly (x(1:(i-1)), "x");
end
polinomio = P
endfunction
|
d5d639b7afbc323d42d1bba1fe0f168354c81a26
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2870/CH2/EX2.7/Ex2_7.sce
|
31fd1ab6e5a0235f74884390b7ef6ededb13dcee
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 166
|
sce
|
Ex2_7.sce
|
clc;clear;
//Example 2.7
//given values
T=200;
n=4000/60;//converting rpm into rps
//calculation
Wsh=2*3.14*n*T/1000;
disp(Wsh,'Power transmitted in kW')
|
e7cca03595274e0ea72032e4f3da4f28a7920f4a
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1640/CH2/EX2.5/2_5.sce
|
9043dfcb3c9ae77d0673ef924f44d5250a56882a
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 312
|
sce
|
2_5.sce
|
clc
//initialisation of variables
d1= 15 //in
d2= 6//in
h= 10 //in of mercury
C= 0.98
sm= 13.6
w= 12
g= 32.2 //ft/sec^2
//CALCULATIONS
a1= %pi*(d1/12)^2/4
a2= %pi*(d2/12)^2/4
h1= h*(sm-1)/w
Q= C*(a1*a2/(sqrt(a1^2-a2^2)))*sqrt(2*g)*sqrt(h1)*6.24*60*60
//RESULTS
printf ('Discharge = %.f gph ',Q)
|
3eb9625b407a5069982437de501321f9f3c0eb8c
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/887/CH13/EX13.4/13_4.sce
|
d937e7a60eb6db734a2eb965b21fedc28fb891b7
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,485
|
sce
|
13_4.sce
|
clc
//ex13.4
V_CC=15;
B=100; //beta value
R_B=200*10^3;
R_C=1*10^3;
//we proceed in such a way that the required values will be displayed according to the satisfied condition of the below three cases
//a)cut-off region
V_BE=15; //no voltage drop across R_B in cut-off state
V_CE=15; //no voltage drop across R_C in cut-off state
i_C=0; //no collector current flows as there is no voltage drop
i_B=0; //no base current flows as there is no voltage drop
if(V_BE<0.5) then, //cut-off condition
disp(i_C,'collector current in amperes')
disp(V_CE,'collector to emitter voltage in volts')
end
//b)saturation region
V_BE=0.7; //base to emitter voltage in saturation state
V_CE=0.2; //collector to emitter voltage in saturation state
i_C=(V_CC-V_CE)/R_C; //collector current
i_B=(V_CC-V_BE)/R_B; //base current
if((B*i_B>i_C)&(i_B>0)) then, //saturation state conditions
disp(i_C,'collector current in amperes')
disp(V_CE,'collector to emitter voltage in volts')
end
//c)active region
V_BE=0.7; //base to emitter voltage in active state
i_B=(V_CC-V_BE)/R_B; //base current
i_C=B*i_B; //collector current in active state
V_CE=V_CC-i_C*R_C; //collector to emitter voltage
if((V_CE>0.2)&(i_B>0)) then, //active state conditions
disp(i_C,'collector current in amperes')
disp(V_CE,'collector to emitter voltage in volts')
end
|
b6051ec0a0869dbc20f55a0e78d04eaec709a0b5
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1898/CH1/EX1.6/Ex1_6.sce
|
d37447bb0f76eecdc96b0114de0a2fa5722b3952
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 897
|
sce
|
Ex1_6.sce
|
clear all; clc;
disp("Scilab Code Ex 1.6 :")
//Given:
netf_b = 18*(10 ^3); //N Net force at B.
netf_c = 8*(10^3); //N Net force at C.
f_a = 12 *(10^3); //N Force at A.
f_d = 22* (10^3); //N Force at D.
w = 35; //mm Width.
t = 10; //mm Thickness.
//calculations:
p_bc = netf_b + f_a; //N Net force in region BC.
a = w*t; //m^2 The area of the cross section.
avg_normal_stress = p_bc/a; //Average Normal Stress.
// Displaying results:
printf('\n\n Net force in the region BC = %.2f N',p_bc);
printf('\nThe Area of cross section = %.2f m^2',a);
printf('\nThe Average Normal Stress in the bar when subjected to load = %.2f MPa',avg_normal_stress);
//---------------------------------------------------------END----------------------------------------------------------------------------------------
|
89a1315333f011ab852d11c0bbf76d1617b99432
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/135/CH5/EX5.12/EX12.sce
|
0a73faece4fa6f1c4a0d601c8cf341b7a575c803
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,096
|
sce
|
EX12.sce
|
// Example 5.12: Variation of IC over the temperature range -65°C to 175°C
clc, clear
RB_RE=2; // RB/RE
RE=4.7e3; // in ohms
IC=2e-3; // at 25°C in amperes
// From Table 5.1
bta=50; // at 25°C
S_ICO=(1+bta)*(1+RB_RE)/(1+bta+RB_RE);
S_VBE=-bta/(RE*(1+bta+RB_RE));
// From Table 5.1
bta1=20; // at -65°C
bta2=120; // at 175°C
S_bta1=IC*(1+RB_RE)/(bta*(1+bta1+RB_RE)); // For 25°C to -65°C
S_bta2=IC*(1+RB_RE)/(bta*(1+bta2+RB_RE)); // For 25°C to 175°C
// From Table 5.1
// For 25°C to -65°C
del_ICO=(0.2e-3-0.1)*1e-9; // in amperes
del_VBE=0.85-0.65; // in volts
del_bta=bta1-bta;
del_IC=S_ICO*del_ICO+S_VBE*del_VBE+S_bta1*del_bta; // in amperes
IC1=IC+del_IC; // at -65°C in amperes
IC1=IC1*1e3; // at -65°C in mili-amperes
disp(IC1,"IC at -65°C (mA) =");
// For 25°C to 175°C
del_ICO=(3.3e3-0.1)*1e-9; // in amperes
del_VBE=0.30-0.65; // in volts
del_bta=bta2-bta;
del_IC=S_ICO*del_ICO+S_VBE*del_VBE+S_bta2*del_bta; // in amperes
IC2=IC+del_IC; // at 175°C in amperes
IC2=IC2*1e3; // at 175°C in mili-amperes
disp(IC2,"IC at 175°C (mA) =");
|
037d148e527a58d35c227b2f6560dd02d91ebd77
|
940067908a620ecf3af07168e750cd30769047e4
|
/ode.sce
|
68f2b03001915064b54fef61f532eb3ab42a28d7
|
[
"MIT"
] |
permissive
|
davidfotsa/Numerical_Methods_With_Scilab
|
9bada60e6feba012fa7a52ce0e0ea85a40afd0d4
|
a3c731888b8a7a77f0d851210bc62e00e348ace9
|
refs/heads/main
| 2023-08-01T13:11:14.528993
| 2021-09-28T04:19:38
| 2021-09-28T04:19:38
| 407,939,339
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 165
|
sce
|
ode.sce
|
a=5;
b=3;
c=1;
function y=f(t,x)
y=a*x-(b*x)-(c*(x^2));
endfunction
x0=10;
t0=0;
t=0:0.01:10;
y = ode(x0,t0,t,f);
plot(t,y,)
xlabel('time')
ylabel('population')
|
2b74510b87b1c3f0c73bcc772560e57cc8985b3a
|
a617a2a0835b5800a12c9ff4126b81b96e78c59b
|
/Q-3-Resolucao.sce
|
b54c7bc65c0e881c94eb1d9f479a89e4b6e66a83
|
[] |
no_license
|
chagas-junior/scilab
|
d515e5399536081b12742a58879be3057c52f476
|
e0ca4ed7b4f264a46d410a1b6d4b6830bb28ed4b
|
refs/heads/master
| 2023-02-26T06:57:01.468742
| 2021-02-03T01:57:03
| 2021-02-03T01:57:03
| 335,104,373
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 60
|
sce
|
Q-3-Resolucao.sce
|
t = 0:0.01:6;
x = (%e^(-(t)/2)).*cos(t)+sqrt(t);
plot(t,x);
|
5c45ba6fa4e32d0d1bd0b42102b9c7994e7a3c1d
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3841/CH5/EX5.1/Ex5_1.sce
|
9655c7aa02d941512bcba31e0ce95e7fda4a3bec
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 159
|
sce
|
Ex5_1.sce
|
clear
//given
//find the heat required
t2=185
t1=95
W1=42
cp=0.5
g=0.92
w1=8.31*g
W=W1*w1
Q=W*cp*(t2-t1)
printf("\n W")
printf("\n heat required is %.2f ", Q)
|
ffcf6fcac5c3b26f7a89478ed1624429bb42ad49
|
e04f3a1f9e98fd043a65910a1d4e52bdfff0d6e4
|
/New LSTMAttn Model/.data/lemma-split/GOLD-TEST/nya.tst
|
175e268a9b6e7c954e02fcca4fb66ff34411cf7b
|
[] |
no_license
|
davidgu13/Lemma-vs-Form-Splits
|
c154f1c0c7b84ba5b325b17507012d41b9ad5cfe
|
3cce087f756420523f5a14234d02482452a7bfa5
|
refs/heads/master
| 2023-08-01T16:15:52.417307
| 2021-09-14T20:19:28
| 2021-09-14T20:19:28
| 395,023,433
| 3
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 24,410
|
tst
|
nya.tst
|
fulumira anafulumira V;PL;3;PST
fulumira kufulumira V;NFIN
fulumira timafulumira V;PL;1;PRS
fulumira tidzafulumira V;PL;1;FUT
fulumira anafulumira V;SG;3;PST
fulumira mudzafulumira V;SG;2;FUT
fulumira adzafulumira V;SG;3;FUT
fulumira ndinafulumira V;SG;1;PST
fulumira munafulumira V;PL;2;PST
fulumira mudzafulumira V;PL;2;FUT
fulumira adzafulumira V;PL;3;FUT
fulumira ndimafulumira V;SG;1;PRS
fulumira munafulumira V;SG;2;PST
fulumira amafulumira V;PL;3;PRS
fulumira ndidzafulumira V;SG;1;FUT
fulumira amafulumira V;SG;3;PRS
fulumira tinafulumira V;PL;1;PST
fulumira mumafulumira V;SG;2;PRS
fulumira mumafulumira V;PL;2;PRS
kola amakola V;SG;3;PRS
kola munakola V;PL;2;PST
kola mudzakola V;PL;2;FUT
kola mumakola V;PL;2;PRS
kola kukola V;NFIN
kola tidzakola V;PL;1;FUT
kola mumakola V;SG;2;PRS
kola mudzakola V;SG;2;FUT
kola ndinakola V;SG;1;PST
kola anakola V;PL;3;PST
kola anakola V;SG;3;PST
kola amakola V;PL;3;PRS
kola munakola V;SG;2;PST
kola ndidzakola V;SG;1;FUT
kola ndimakola V;SG;1;PRS
kola adzakola V;SG;3;FUT
kola adzakola V;PL;3;FUT
kola timakola V;PL;1;PRS
kola tinakola V;PL;1;PST
dikira mudzadikira V;SG;2;FUT
dikira ndidzadikira V;SG;1;FUT
dikira ndinadikira V;SG;1;PST
dikira amadikira V;PL;3;PRS
dikira timadikira V;PL;1;PRS
dikira adzadikira V;SG;3;FUT
dikira kudikira V;NFIN
dikira munadikira V;SG;2;PST
dikira tidzadikira V;PL;1;FUT
dikira tinadikira V;PL;1;PST
dikira anadikira V;SG;3;PST
dikira amadikira V;SG;3;PRS
dikira mumadikira V;PL;2;PRS
dikira mumadikira V;SG;2;PRS
dikira anadikira V;PL;3;PST
dikira mudzadikira V;PL;2;FUT
dikira adzadikira V;PL;3;FUT
dikira munadikira V;PL;2;PST
dikira ndimadikira V;SG;1;PRS
sinja anasinja V;SG;3;PST
sinja ndidzasinja V;SG;1;FUT
sinja amasinja V;PL;3;PRS
sinja mumasinja V;PL;2;PRS
sinja adzasinja V;SG;3;FUT
sinja ndimasinja V;SG;1;PRS
sinja tidzasinja V;PL;1;FUT
sinja amasinja V;SG;3;PRS
sinja mumasinja V;SG;2;PRS
sinja tinasinja V;PL;1;PST
sinja adzasinja V;PL;3;FUT
sinja munasinja V;PL;2;PST
sinja kusinja V;NFIN
sinja ndinasinja V;SG;1;PST
sinja mudzasinja V;SG;2;FUT
sinja anasinja V;PL;3;PST
sinja mudzasinja V;PL;2;FUT
sinja munasinja V;SG;2;PST
sinja timasinja V;PL;1;PRS
bala ndinabala V;SG;1;PST
bala ndimabala V;SG;1;PRS
bala ndidzabala V;SG;1;FUT
bala kubala V;NFIN
bala mudzabala V;PL;2;FUT
bala adzabala V;PL;3;FUT
bala tidzabala V;PL;1;FUT
bala munabala V;SG;2;PST
bala adzabala V;SG;3;FUT
bala amabala V;SG;3;PRS
bala tinabala V;PL;1;PST
bala anabala V;PL;3;PST
bala amabala V;PL;3;PRS
bala mumabala V;PL;2;PRS
bala anabala V;SG;3;PST
bala mudzabala V;SG;2;FUT
bala timabala V;PL;1;PRS
bala mumabala V;SG;2;PRS
bala munabala V;PL;2;PST
gwira amagwira V;PL;3;PRS
gwira anagwira V;SG;3;PST
gwira mudzagwira V;SG;2;FUT
gwira tidzagwira V;PL;1;FUT
gwira ndidzagwira V;SG;1;FUT
gwira adzagwira V;PL;3;FUT
gwira mumagwira V;PL;2;PRS
gwira anagwira V;PL;3;PST
gwira amagwira V;SG;3;PRS
gwira ndimagwira V;SG;1;PRS
gwira ndinagwira V;SG;1;PST
gwira tinagwira V;PL;1;PST
gwira munagwira V;SG;2;PST
gwira adzagwira V;SG;3;FUT
gwira mumagwira V;SG;2;PRS
gwira munagwira V;PL;2;PST
gwira mudzagwira V;PL;2;FUT
gwira kugwira V;NFIN
gwira timagwira V;PL;1;PRS
yenda anayenda V;SG;3;PST
yenda ndinayenda V;SG;1;PST
yenda tinayenda V;PL;1;PST
yenda mumayenda V;PL;2;PRS
yenda anayenda V;PL;3;PST
yenda amayenda V;SG;3;PRS
yenda timayenda V;PL;1;PRS
yenda adzayenda V;SG;3;FUT
yenda adzayenda V;PL;3;FUT
yenda mudzayenda V;SG;2;FUT
yenda mudzayenda V;PL;2;FUT
yenda tidzayenda V;PL;1;FUT
yenda kuyenda V;NFIN
yenda amayenda V;PL;3;PRS
yenda munayenda V;PL;2;PST
yenda mumayenda V;SG;2;PRS
yenda ndimayenda V;SG;1;PRS
yenda ndidzayenda V;SG;1;FUT
yenda munayenda V;SG;2;PST
bisala mudzabisala V;PL;2;FUT
bisala adzabisala V;PL;3;FUT
bisala anabisala V;SG;3;PST
bisala mumabisala V;SG;2;PRS
bisala tidzabisala V;PL;1;FUT
bisala adzabisala V;SG;3;FUT
bisala kubisala V;NFIN
bisala tinabisala V;PL;1;PST
bisala amabisala V;PL;3;PRS
bisala anabisala V;PL;3;PST
bisala munabisala V;PL;2;PST
bisala ndidzabisala V;SG;1;FUT
bisala munabisala V;SG;2;PST
bisala ndinabisala V;SG;1;PST
bisala amabisala V;SG;3;PRS
bisala ndimabisala V;SG;1;PRS
bisala mumabisala V;PL;2;PRS
bisala timabisala V;PL;1;PRS
bisala mudzabisala V;SG;2;FUT
batiza kubatiza V;NFIN
batiza anabatiza V;PL;3;PST
batiza tidzabatiza V;PL;1;FUT
batiza mudzabatiza V;SG;2;FUT
batiza tinabatiza V;PL;1;PST
batiza timabatiza V;PL;1;PRS
batiza mudzabatiza V;PL;2;FUT
batiza amabatiza V;PL;3;PRS
batiza adzabatiza V;PL;3;FUT
batiza adzabatiza V;SG;3;FUT
batiza ndinabatiza V;SG;1;PST
batiza anabatiza V;SG;3;PST
batiza mumabatiza V;PL;2;PRS
batiza mumabatiza V;SG;2;PRS
batiza ndidzabatiza V;SG;1;FUT
batiza ndimabatiza V;SG;1;PRS
batiza munabatiza V;SG;2;PST
batiza munabatiza V;PL;2;PST
batiza amabatiza V;SG;3;PRS
fupika mudzafupika V;SG;2;FUT
fupika ndimafupika V;SG;1;PRS
fupika anafupika V;PL;3;PST
fupika amafupika V;SG;3;PRS
fupika timafupika V;PL;1;PRS
fupika amafupika V;PL;3;PRS
fupika mumafupika V;SG;2;PRS
fupika ndinafupika V;SG;1;PST
fupika adzafupika V;SG;3;FUT
fupika mudzafupika V;PL;2;FUT
fupika tidzafupika V;PL;1;FUT
fupika adzafupika V;PL;3;FUT
fupika mumafupika V;PL;2;PRS
fupika tinafupika V;PL;1;PST
fupika munafupika V;SG;2;PST
fupika munafupika V;PL;2;PST
fupika anafupika V;SG;3;PST
fupika kufupika V;NFIN
fupika ndidzafupika V;SG;1;FUT
chira ndimachira V;SG;1;PRS
chira adzachira V;PL;3;FUT
chira amachira V;SG;3;PRS
chira munachira V;SG;2;PST
chira mudzachira V;SG;2;FUT
chira tinachira V;PL;1;PST
chira ndinachira V;SG;1;PST
chira anachira V;SG;3;PST
chira adzachira V;SG;3;FUT
chira munachira V;PL;2;PST
chira mumachira V;SG;2;PRS
chira mudzachira V;PL;2;FUT
chira kuchira V;NFIN
chira tidzachira V;PL;1;FUT
chira amachira V;PL;3;PRS
chira timachira V;PL;1;PRS
chira ndidzachira V;SG;1;FUT
chira mumachira V;PL;2;PRS
chira anachira V;PL;3;PST
talika munatalika V;SG;2;PST
talika amatalika V;SG;3;PRS
talika mudzatalika V;PL;2;FUT
talika ndimatalika V;SG;1;PRS
talika tinatalika V;PL;1;PST
talika mudzatalika V;SG;2;FUT
talika adzatalika V;SG;3;FUT
talika anatalika V;PL;3;PST
talika tidzatalika V;PL;1;FUT
talika mumatalika V;PL;2;PRS
talika kutalika V;NFIN
talika amatalika V;PL;3;PRS
talika anatalika V;SG;3;PST
talika ndinatalika V;SG;1;PST
talika mumatalika V;SG;2;PRS
talika munatalika V;PL;2;PST
talika timatalika V;PL;1;PRS
talika adzatalika V;PL;3;FUT
talika ndidzatalika V;SG;1;FUT
wala timawala V;PL;1;PRS
wala anawala V;SG;3;PST
wala tidzawala V;PL;1;FUT
wala mudzawala V;SG;2;FUT
wala ndimawala V;SG;1;PRS
wala mumawala V;PL;2;PRS
wala kuwala V;NFIN
wala adzawala V;SG;3;FUT
wala tinawala V;PL;1;PST
wala ndidzawala V;SG;1;FUT
wala adzawala V;PL;3;FUT
wala anawala V;PL;3;PST
wala ndinawala V;SG;1;PST
wala munawala V;SG;2;PST
wala amawala V;SG;3;PRS
wala amawala V;PL;3;PRS
wala mumawala V;SG;2;PRS
wala munawala V;PL;2;PST
wala mudzawala V;PL;2;FUT
sanduka mudzasanduka V;PL;2;FUT
sanduka kusanduka V;NFIN
sanduka tinasanduka V;PL;1;PST
sanduka munasanduka V;SG;2;PST
sanduka mumasanduka V;SG;2;PRS
sanduka anasanduka V;PL;3;PST
sanduka tidzasanduka V;PL;1;FUT
sanduka timasanduka V;PL;1;PRS
sanduka munasanduka V;PL;2;PST
sanduka anasanduka V;SG;3;PST
sanduka ndimasanduka V;SG;1;PRS
sanduka ndinasanduka V;SG;1;PST
sanduka amasanduka V;PL;3;PRS
sanduka adzasanduka V;PL;3;FUT
sanduka mudzasanduka V;SG;2;FUT
sanduka amasanduka V;SG;3;PRS
sanduka mumasanduka V;PL;2;PRS
sanduka ndidzasanduka V;SG;1;FUT
sanduka adzasanduka V;SG;3;FUT
choka ndimachoka V;SG;1;PRS
choka adzachoka V;SG;3;FUT
choka munachoka V;SG;2;PST
choka munachoka V;PL;2;PST
choka tinachoka V;PL;1;PST
choka mudzachoka V;SG;2;FUT
choka ndidzachoka V;SG;1;FUT
choka timachoka V;PL;1;PRS
choka anachoka V;PL;3;PST
choka ndinachoka V;SG;1;PST
choka amachoka V;SG;3;PRS
choka anachoka V;SG;3;PST
choka tidzachoka V;PL;1;FUT
choka mumachoka V;PL;2;PRS
choka amachoka V;PL;3;PRS
choka adzachoka V;PL;3;FUT
choka mumachoka V;SG;2;PRS
choka mudzachoka V;PL;2;FUT
choka kuchoka V;NFIN
omba kuomba V;NFIN
omba ndinaomba V;SG;1;PST
omba ndimaomba V;SG;1;PRS
omba mumaomba V;PL;2;PRS
omba amaomba V;SG;3;PRS
omba tidzaomba V;PL;1;FUT
omba amaomba V;PL;3;PRS
omba mumaomba V;SG;2;PRS
omba tinaomba V;PL;1;PST
omba anaomba V;SG;3;PST
omba adzaomba V;PL;3;FUT
omba munaomba V;SG;2;PST
omba ndidzaomba V;SG;1;FUT
omba munaomba V;PL;2;PST
omba mudzaomba V;SG;2;FUT
omba anaomba V;PL;3;PST
omba timaomba V;PL;1;PRS
omba adzaomba V;SG;3;FUT
omba mudzaomba V;PL;2;FUT
tuma adzatuma V;SG;3;FUT
tuma tidzatuma V;PL;1;FUT
tuma mudzatuma V;SG;2;FUT
tuma timatuma V;PL;1;PRS
tuma mudzatuma V;PL;2;FUT
tuma adzatuma V;PL;3;FUT
tuma amatuma V;SG;3;PRS
tuma mumatuma V;SG;2;PRS
tuma kutuma V;NFIN
tuma anatuma V;SG;3;PST
tuma anatuma V;PL;3;PST
tuma amatuma V;PL;3;PRS
tuma ndinatuma V;SG;1;PST
tuma ndidzatuma V;SG;1;FUT
tuma munatuma V;SG;2;PST
tuma munatuma V;PL;2;PST
tuma mumatuma V;PL;2;PRS
tuma ndimatuma V;SG;1;PRS
tuma tinatuma V;PL;1;PST
seka mudzaseka V;PL;2;FUT
seka mumaseka V;SG;2;PRS
seka tinaseka V;PL;1;PST
seka amaseka V;PL;3;PRS
seka ndinaseka V;SG;1;PST
seka munaseka V;PL;2;PST
seka ndidzaseka V;SG;1;FUT
seka timaseka V;PL;1;PRS
seka adzaseka V;SG;3;FUT
seka mumaseka V;PL;2;PRS
seka anaseka V;PL;3;PST
seka mudzaseka V;SG;2;FUT
seka adzaseka V;PL;3;FUT
seka tidzaseka V;PL;1;FUT
seka amaseka V;SG;3;PRS
seka munaseka V;SG;2;PST
seka ndimaseka V;SG;1;PRS
seka anaseka V;SG;3;PST
seka kuseka V;NFIN
yamba ndidzayamba V;SG;1;FUT
yamba adzayamba V;PL;3;FUT
yamba adzayamba V;SG;3;FUT
yamba kuyamba V;NFIN
yamba anayamba V;SG;3;PST
yamba ndinayamba V;SG;1;PST
yamba tinayamba V;PL;1;PST
yamba mumayamba V;PL;2;PRS
yamba mudzayamba V;SG;2;FUT
yamba amayamba V;PL;3;PRS
yamba anayamba V;PL;3;PST
yamba amayamba V;SG;3;PRS
yamba munayamba V;PL;2;PST
yamba tidzayamba V;PL;1;FUT
yamba mumayamba V;SG;2;PRS
yamba munayamba V;SG;2;PST
yamba ndimayamba V;SG;1;PRS
yamba timayamba V;PL;1;PRS
yamba mudzayamba V;PL;2;FUT
zindikira ndimazindikira V;SG;1;PRS
zindikira adzazindikira V;SG;3;FUT
zindikira mudzazindikira V;PL;2;FUT
zindikira tidzazindikira V;PL;1;FUT
zindikira amazindikira V;PL;3;PRS
zindikira anazindikira V;SG;3;PST
zindikira mumazindikira V;SG;2;PRS
zindikira anazindikira V;PL;3;PST
zindikira adzazindikira V;PL;3;FUT
zindikira tinazindikira V;PL;1;PST
zindikira kuzindikira V;NFIN
zindikira timazindikira V;PL;1;PRS
zindikira mudzazindikira V;SG;2;FUT
zindikira mumazindikira V;PL;2;PRS
zindikira munazindikira V;SG;2;PST
zindikira ndinazindikira V;SG;1;PST
zindikira amazindikira V;SG;3;PRS
zindikira munazindikira V;PL;2;PST
zindikira ndidzazindikira V;SG;1;FUT
kalamba ndinakalamba V;SG;1;PST
kalamba amakalamba V;SG;3;PRS
kalamba ndimakalamba V;SG;1;PRS
kalamba mumakalamba V;SG;2;PRS
kalamba anakalamba V;SG;3;PST
kalamba munakalamba V;PL;2;PST
kalamba ndidzakalamba V;SG;1;FUT
kalamba mudzakalamba V;PL;2;FUT
kalamba mudzakalamba V;SG;2;FUT
kalamba mumakalamba V;PL;2;PRS
kalamba anakalamba V;PL;3;PST
kalamba kukalamba V;NFIN
kalamba tinakalamba V;PL;1;PST
kalamba adzakalamba V;SG;3;FUT
kalamba timakalamba V;PL;1;PRS
kalamba munakalamba V;SG;2;PST
kalamba adzakalamba V;PL;3;FUT
kalamba amakalamba V;PL;3;PRS
kalamba tidzakalamba V;PL;1;FUT
funsani ndidzafunsani V;SG;1;FUT
funsani tidzafunsani V;PL;1;FUT
funsani mumafunsani V;PL;2;PRS
funsani adzafunsani V;PL;3;FUT
funsani mumafunsani V;SG;2;PRS
funsani munafunsani V;SG;2;PST
funsani ndimafunsani V;SG;1;PRS
funsani adzafunsani V;SG;3;FUT
funsani ndinafunsani V;SG;1;PST
funsani munafunsani V;PL;2;PST
funsani anafunsani V;PL;3;PST
funsani amafunsani V;SG;3;PRS
funsani tinafunsani V;PL;1;PST
funsani mudzafunsani V;PL;2;FUT
funsani amafunsani V;PL;3;PRS
funsani mudzafunsani V;SG;2;FUT
funsani kufunsani V;NFIN
funsani timafunsani V;PL;1;PRS
funsani anafunsani V;SG;3;PST
bvoma amabvoma V;SG;3;PRS
bvoma adzabvoma V;SG;3;FUT
bvoma anabvoma V;SG;3;PST
bvoma anabvoma V;PL;3;PST
bvoma mumabvoma V;PL;2;PRS
bvoma amabvoma V;PL;3;PRS
bvoma ndinabvoma V;SG;1;PST
bvoma ndidzabvoma V;SG;1;FUT
bvoma tinabvoma V;PL;1;PST
bvoma mudzabvoma V;SG;2;FUT
bvoma mumabvoma V;SG;2;PRS
bvoma ndimabvoma V;SG;1;PRS
bvoma timabvoma V;PL;1;PRS
bvoma kubvoma V;NFIN
bvoma mudzabvoma V;PL;2;FUT
bvoma tidzabvoma V;PL;1;FUT
bvoma adzabvoma V;PL;3;FUT
bvoma munabvoma V;SG;2;PST
bvoma munabvoma V;PL;2;PST
tsata tidzatsata V;PL;1;FUT
tsata mudzatsata V;SG;2;FUT
tsata ndinatsata V;SG;1;PST
tsata anatsata V;SG;3;PST
tsata adzatsata V;PL;3;FUT
tsata ndidzatsata V;SG;1;FUT
tsata timatsata V;PL;1;PRS
tsata kutsata V;NFIN
tsata anatsata V;PL;3;PST
tsata amatsata V;SG;3;PRS
tsata munatsata V;SG;2;PST
tsata munatsata V;PL;2;PST
tsata amatsata V;PL;3;PRS
tsata adzatsata V;SG;3;FUT
tsata mudzatsata V;PL;2;FUT
tsata ndimatsata V;SG;1;PRS
tsata mumatsata V;SG;2;PRS
tsata tinatsata V;PL;1;PST
tsata mumatsata V;PL;2;PRS
dandaula amadandaula V;SG;3;PRS
dandaula mudzadandaula V;SG;2;FUT
dandaula amadandaula V;PL;3;PRS
dandaula anadandaula V;PL;3;PST
dandaula ndinadandaula V;SG;1;PST
dandaula timadandaula V;PL;1;PRS
dandaula munadandaula V;SG;2;PST
dandaula anadandaula V;SG;3;PST
dandaula ndidzadandaula V;SG;1;FUT
dandaula tinadandaula V;PL;1;PST
dandaula mudzadandaula V;PL;2;FUT
dandaula ndimadandaula V;SG;1;PRS
dandaula adzadandaula V;SG;3;FUT
dandaula adzadandaula V;PL;3;FUT
dandaula mumadandaula V;SG;2;PRS
dandaula munadandaula V;PL;2;PST
dandaula mumadandaula V;PL;2;PRS
dandaula tidzadandaula V;PL;1;FUT
dandaula kudandaula V;NFIN
zungulira ndimazungulira V;SG;1;PRS
zungulira mudzazungulira V;PL;2;FUT
zungulira anazungulira V;PL;3;PST
zungulira adzazungulira V;SG;3;FUT
zungulira tidzazungulira V;PL;1;FUT
zungulira adzazungulira V;PL;3;FUT
zungulira anazungulira V;SG;3;PST
zungulira tinazungulira V;PL;1;PST
zungulira amazungulira V;SG;3;PRS
zungulira munazungulira V;SG;2;PST
zungulira kuzungulira V;NFIN
zungulira ndidzazungulira V;SG;1;FUT
zungulira ndinazungulira V;SG;1;PST
zungulira mumazungulira V;SG;2;PRS
zungulira munazungulira V;PL;2;PST
zungulira timazungulira V;PL;1;PRS
zungulira mudzazungulira V;SG;2;FUT
zungulira amazungulira V;PL;3;PRS
zungulira mumazungulira V;PL;2;PRS
yang'ana amayang'ana V;SG;3;PRS
yang'ana adzayang'ana V;SG;3;FUT
yang'ana mudzayang'ana V;SG;2;FUT
yang'ana tidzayang'ana V;PL;1;FUT
yang'ana ndidzayang'ana V;SG;1;FUT
yang'ana ndinayang'ana V;SG;1;PST
yang'ana anayang'ana V;PL;3;PST
yang'ana kuyang'ana V;NFIN
yang'ana mumayang'ana V;SG;2;PRS
yang'ana amayang'ana V;PL;3;PRS
yang'ana ndimayang'ana V;SG;1;PRS
yang'ana anayang'ana V;SG;3;PST
yang'ana mudzayang'ana V;PL;2;FUT
yang'ana tinayang'ana V;PL;1;PST
yang'ana munayang'ana V;PL;2;PST
yang'ana mumayang'ana V;PL;2;PRS
yang'ana munayang'ana V;SG;2;PST
yang'ana adzayang'ana V;PL;3;FUT
yang'ana timayang'ana V;PL;1;PRS
gwa munagwa V;SG;2;PST
gwa adzagwa V;PL;3;FUT
gwa ndinagwa V;SG;1;PST
gwa anagwa V;SG;3;PST
gwa ndimagwa V;SG;1;PRS
gwa mudzagwa V;SG;2;FUT
gwa tidzagwa V;PL;1;FUT
gwa mudzagwa V;PL;2;FUT
gwa mumagwa V;PL;2;PRS
gwa anagwa V;PL;3;PST
gwa timagwa V;PL;1;PRS
gwa tinagwa V;PL;1;PST
gwa kugwa V;NFIN
gwa adzagwa V;SG;3;FUT
gwa mumagwa V;SG;2;PRS
gwa amagwa V;PL;3;PRS
gwa munagwa V;PL;2;PST
gwa amagwa V;SG;3;PRS
gwa ndidzagwa V;SG;1;FUT
pempha anapempha V;PL;3;PST
pempha mumapempha V;PL;2;PRS
pempha ndidzapempha V;SG;1;FUT
pempha tidzapempha V;PL;1;FUT
pempha mumapempha V;SG;2;PRS
pempha adzapempha V;SG;3;FUT
pempha amapempha V;SG;3;PRS
pempha munapempha V;PL;2;PST
pempha adzapempha V;PL;3;FUT
pempha anapempha V;SG;3;PST
pempha ndimapempha V;SG;1;PRS
pempha mudzapempha V;SG;2;FUT
pempha timapempha V;PL;1;PRS
pempha ndinapempha V;SG;1;PST
pempha mudzapempha V;PL;2;FUT
pempha munapempha V;SG;2;PST
pempha tinapempha V;PL;1;PST
pempha kupempha V;NFIN
pempha amapempha V;PL;3;PRS
dula mumadula V;SG;2;PRS
dula ndinadula V;SG;1;PST
dula mudzadula V;SG;2;FUT
dula mumadula V;PL;2;PRS
dula timadula V;PL;1;PRS
dula tinadula V;PL;1;PST
dula amadula V;SG;3;PRS
dula kudula V;NFIN
dula munadula V;PL;2;PST
dula adzadula V;PL;3;FUT
dula munadula V;SG;2;PST
dula ndidzadula V;SG;1;FUT
dula tidzadula V;PL;1;FUT
dula adzadula V;SG;3;FUT
dula mudzadula V;PL;2;FUT
dula amadula V;PL;3;PRS
dula anadula V;SG;3;PST
dula ndimadula V;SG;1;PRS
dula anadula V;PL;3;PST
patsa ndimapatsa V;SG;1;PRS
patsa munapatsa V;PL;2;PST
patsa timapatsa V;PL;1;PRS
patsa tidzapatsa V;PL;1;FUT
patsa anapatsa V;PL;3;PST
patsa tinapatsa V;PL;1;PST
patsa adzapatsa V;PL;3;FUT
patsa ndinapatsa V;SG;1;PST
patsa munapatsa V;SG;2;PST
patsa mudzapatsa V;SG;2;FUT
patsa mumapatsa V;PL;2;PRS
patsa ndidzapatsa V;SG;1;FUT
patsa amapatsa V;SG;3;PRS
patsa anapatsa V;SG;3;PST
patsa mudzapatsa V;PL;2;FUT
patsa amapatsa V;PL;3;PRS
patsa kupatsa V;NFIN
patsa adzapatsa V;SG;3;FUT
patsa mumapatsa V;SG;2;PRS
kwiya amakwiya V;SG;3;PRS
kwiya munakwiya V;PL;2;PST
kwiya timakwiya V;PL;1;PRS
kwiya kukwiya V;NFIN
kwiya tinakwiya V;PL;1;PST
kwiya anakwiya V;SG;3;PST
kwiya munakwiya V;SG;2;PST
kwiya amakwiya V;PL;3;PRS
kwiya ndidzakwiya V;SG;1;FUT
kwiya mumakwiya V;PL;2;PRS
kwiya ndinakwiya V;SG;1;PST
kwiya mudzakwiya V;SG;2;FUT
kwiya adzakwiya V;PL;3;FUT
kwiya mudzakwiya V;PL;2;FUT
kwiya anakwiya V;PL;3;PST
kwiya ndimakwiya V;SG;1;PRS
kwiya adzakwiya V;SG;3;FUT
kwiya mumakwiya V;SG;2;PRS
kwiya tidzakwiya V;PL;1;FUT
imba anaimba V;SG;3;PST
imba ndinaimba V;SG;1;PST
imba timaimba V;PL;1;PRS
imba ndimaimba V;SG;1;PRS
imba tidzaimba V;PL;1;FUT
imba ndidzaimba V;SG;1;FUT
imba adzaimba V;PL;3;FUT
imba mumaimba V;SG;2;PRS
imba anaimba V;PL;3;PST
imba mudzaimba V;SG;2;FUT
imba amaimba V;SG;3;PRS
imba amaimba V;PL;3;PRS
imba mumaimba V;PL;2;PRS
imba munaimba V;SG;2;PST
imba mudzaimba V;PL;2;FUT
imba kuimba V;NFIN
imba tinaimba V;PL;1;PST
imba munaimba V;PL;2;PST
imba adzaimba V;SG;3;FUT
lamula tinalamula V;PL;1;PST
lamula munalamula V;SG;2;PST
lamula ndidzalamula V;SG;1;FUT
lamula adzalamula V;PL;3;FUT
lamula mumalamula V;PL;2;PRS
lamula amalamula V;SG;3;PRS
lamula mudzalamula V;SG;2;FUT
lamula munalamula V;PL;2;PST
lamula mudzalamula V;PL;2;FUT
lamula timalamula V;PL;1;PRS
lamula tidzalamula V;PL;1;FUT
lamula adzalamula V;SG;3;FUT
lamula ndinalamula V;SG;1;PST
lamula ndimalamula V;SG;1;PRS
lamula analamula V;SG;3;PST
lamula kulamula V;NFIN
lamula analamula V;PL;3;PST
lamula mumalamula V;SG;2;PRS
lamula amalamula V;PL;3;PRS
peza mumapeza V;PL;2;PRS
peza tidzapeza V;PL;1;FUT
peza mudzapeza V;PL;2;FUT
peza mudzapeza V;SG;2;FUT
peza anapeza V;PL;3;PST
peza mumapeza V;SG;2;PRS
peza munapeza V;SG;2;PST
peza kupeza V;NFIN
peza ndidzapeza V;SG;1;FUT
peza timapeza V;PL;1;PRS
peza adzapeza V;SG;3;FUT
peza amapeza V;PL;3;PRS
peza ndinapeza V;SG;1;PST
peza ndimapeza V;SG;1;PRS
peza tinapeza V;PL;1;PST
peza anapeza V;SG;3;PST
peza amapeza V;SG;3;PRS
peza adzapeza V;PL;3;FUT
peza munapeza V;PL;2;PST
mera mumamera V;PL;2;PRS
mera ndimamera V;SG;1;PRS
mera anamera V;PL;3;PST
mera mudzamera V;PL;2;FUT
mera ndinamera V;SG;1;PST
mera mumamera V;SG;2;PRS
mera timamera V;PL;1;PRS
mera amamera V;PL;3;PRS
mera anamera V;SG;3;PST
mera adzamera V;SG;3;FUT
mera adzamera V;PL;3;FUT
mera amamera V;SG;3;PRS
mera mudzamera V;SG;2;FUT
mera tidzamera V;PL;1;FUT
mera munamera V;SG;2;PST
mera kumera V;NFIN
mera munamera V;PL;2;PST
mera ndidzamera V;SG;1;FUT
mera tinamera V;PL;1;PST
tsiriza anatsiriza V;PL;3;PST
tsiriza ndimatsiriza V;SG;1;PRS
tsiriza munatsiriza V;SG;2;PST
tsiriza mumatsiriza V;PL;2;PRS
tsiriza ndidzatsiriza V;SG;1;FUT
tsiriza ndinatsiriza V;SG;1;PST
tsiriza timatsiriza V;PL;1;PRS
tsiriza tinatsiriza V;PL;1;PST
tsiriza mudzatsiriza V;SG;2;FUT
tsiriza amatsiriza V;PL;3;PRS
tsiriza kutsiriza V;NFIN
tsiriza tidzatsiriza V;PL;1;FUT
tsiriza mudzatsiriza V;PL;2;FUT
tsiriza mumatsiriza V;SG;2;PRS
tsiriza amatsiriza V;SG;3;PRS
tsiriza anatsiriza V;SG;3;PST
tsiriza munatsiriza V;PL;2;PST
tsiriza adzatsiriza V;SG;3;FUT
tsiriza adzatsiriza V;PL;3;FUT
pitani mudzapitani V;SG;2;FUT
pitani ndinapitani V;SG;1;PST
pitani anapitani V;SG;3;PST
pitani adzapitani V;SG;3;FUT
pitani mudzapitani V;PL;2;FUT
pitani adzapitani V;PL;3;FUT
pitani amapitani V;PL;3;PRS
pitani munapitani V;SG;2;PST
pitani amapitani V;SG;3;PRS
pitani kupitani V;NFIN
pitani tidzapitani V;PL;1;FUT
pitani munapitani V;PL;2;PST
pitani anapitani V;PL;3;PST
pitani tinapitani V;PL;1;PST
pitani timapitani V;PL;1;PRS
pitani ndimapitani V;SG;1;PRS
pitani mumapitani V;PL;2;PRS
pitani ndidzapitani V;SG;1;FUT
pitani mumapitani V;SG;2;PRS
khazika munakhazika V;SG;2;PST
khazika mudzakhazika V;PL;2;FUT
khazika amakhazika V;SG;3;PRS
khazika tidzakhazika V;PL;1;FUT
khazika adzakhazika V;PL;3;FUT
khazika mumakhazika V;SG;2;PRS
khazika anakhazika V;PL;3;PST
khazika ndinakhazika V;SG;1;PST
khazika mumakhazika V;PL;2;PRS
khazika tinakhazika V;PL;1;PST
khazika adzakhazika V;SG;3;FUT
khazika ndidzakhazika V;SG;1;FUT
khazika munakhazika V;PL;2;PST
khazika mudzakhazika V;SG;2;FUT
khazika ndimakhazika V;SG;1;PRS
khazika timakhazika V;PL;1;PRS
khazika amakhazika V;PL;3;PRS
khazika anakhazika V;SG;3;PST
khazika kukhazika V;NFIN
dalira ndidzadalira V;SG;1;FUT
dalira timadalira V;PL;1;PRS
dalira tinadalira V;PL;1;PST
dalira mumadalira V;SG;2;PRS
dalira ndimadalira V;SG;1;PRS
dalira amadalira V;PL;3;PRS
dalira mumadalira V;PL;2;PRS
dalira munadalira V;PL;2;PST
dalira ndinadalira V;SG;1;PST
dalira tidzadalira V;PL;1;FUT
dalira adzadalira V;SG;3;FUT
dalira mudzadalira V;SG;2;FUT
dalira anadalira V;PL;3;PST
dalira mudzadalira V;PL;2;FUT
dalira adzadalira V;PL;3;FUT
dalira munadalira V;SG;2;PST
dalira kudalira V;NFIN
dalira anadalira V;SG;3;PST
dalira amadalira V;SG;3;PRS
lemba ndimalemba V;SG;1;PRS
lemba tinalemba V;PL;1;PST
lemba timalemba V;PL;1;PRS
lemba mudzalemba V;PL;2;FUT
lemba ndidzalemba V;SG;1;FUT
lemba amalemba V;SG;3;PRS
lemba analemba V;SG;3;PST
lemba analemba V;PL;3;PST
lemba mumalemba V;SG;2;PRS
lemba munalemba V;SG;2;PST
lemba munalemba V;PL;2;PST
lemba tidzalemba V;PL;1;FUT
lemba mumalemba V;PL;2;PRS
lemba mudzalemba V;SG;2;FUT
lemba kulemba V;NFIN
lemba adzalemba V;PL;3;FUT
lemba adzalemba V;SG;3;FUT
lemba amalemba V;PL;3;PRS
lemba ndinalemba V;SG;1;PST
da ndimada V;SG;1;PRS
da adzada V;PL;3;FUT
da kuda V;NFIN
da munada V;SG;2;PST
da mudzada V;SG;2;FUT
da tidzada V;PL;1;FUT
da anada V;PL;3;PST
da tinada V;PL;1;PST
da mumada V;PL;2;PRS
da ndidzada V;SG;1;FUT
da amada V;PL;3;PRS
da anada V;SG;3;PST
da amada V;SG;3;PRS
da ndinada V;SG;1;PST
da mudzada V;PL;2;FUT
da adzada V;SG;3;FUT
da munada V;PL;2;PST
da mumada V;SG;2;PRS
da timada V;PL;1;PRS
pita anapita V;PL;3;PST
pita munapita V;SG;2;PST
pita ndidzapita V;SG;1;FUT
pita munapita V;PL;2;PST
pita ndinapita V;SG;1;PST
pita mumapita V;PL;2;PRS
pita adzapita V;PL;3;FUT
pita tidzapita V;PL;1;FUT
pita ndimapita V;SG;1;PRS
pita amapita V;PL;3;PRS
pita timapita V;PL;1;PRS
pita anapita V;SG;3;PST
pita tinapita V;PL;1;PST
pita mudzapita V;SG;2;FUT
pita kupita V;NFIN
pita mudzapita V;PL;2;FUT
pita amapita V;SG;3;PRS
pita adzapita V;SG;3;FUT
pita mumapita V;SG;2;PRS
sangalala amasangalala V;SG;3;PRS
sangalala amasangalala V;PL;3;PRS
sangalala anasangalala V;PL;3;PST
sangalala mudzasangalala V;PL;2;FUT
sangalala ndimasangalala V;SG;1;PRS
sangalala mudzasangalala V;SG;2;FUT
sangalala adzasangalala V;PL;3;FUT
sangalala anasangalala V;SG;3;PST
sangalala ndidzasangalala V;SG;1;FUT
sangalala tidzasangalala V;PL;1;FUT
sangalala adzasangalala V;SG;3;FUT
sangalala mumasangalala V;SG;2;PRS
sangalala mumasangalala V;PL;2;PRS
sangalala kusangalala V;NFIN
sangalala timasangalala V;PL;1;PRS
sangalala munasangalala V;PL;2;PST
sangalala tinasangalala V;PL;1;PST
sangalala ndinasangalala V;SG;1;PST
sangalala munasangalala V;SG;2;PST
taya mumataya V;SG;2;PRS
taya timataya V;PL;1;PRS
taya tinataya V;PL;1;PST
taya anataya V;PL;3;PST
taya mumataya V;PL;2;PRS
taya ndinataya V;SG;1;PST
taya amataya V;PL;3;PRS
taya mudzataya V;PL;2;FUT
taya adzataya V;SG;3;FUT
taya amataya V;SG;3;PRS
taya adzataya V;PL;3;FUT
taya munataya V;PL;2;PST
taya munataya V;SG;2;PST
taya anataya V;SG;3;PST
taya ndidzataya V;SG;1;FUT
taya ndimataya V;SG;1;PRS
taya tidzataya V;PL;1;FUT
taya kutaya V;NFIN
taya mudzataya V;SG;2;FUT
tsegula mumatsegula V;SG;2;PRS
tsegula mumatsegula V;PL;2;PRS
tsegula ndimatsegula V;SG;1;PRS
tsegula adzatsegula V;PL;3;FUT
tsegula ndinatsegula V;SG;1;PST
tsegula munatsegula V;PL;2;PST
tsegula tinatsegula V;PL;1;PST
tsegula anatsegula V;PL;3;PST
tsegula adzatsegula V;SG;3;FUT
tsegula timatsegula V;PL;1;PRS
tsegula munatsegula V;SG;2;PST
tsegula mudzatsegula V;SG;2;FUT
tsegula amatsegula V;PL;3;PRS
tsegula anatsegula V;SG;3;PST
tsegula ndidzatsegula V;SG;1;FUT
tsegula kutsegula V;NFIN
tsegula mudzatsegula V;PL;2;FUT
tsegula tidzatsegula V;PL;1;FUT
tsegula amatsegula V;SG;3;PRS
|
eaf2b63fc50dee1b9a68986b4a031c4726e3c6bc
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/476/CH7/EX7.21/Example_7_21.sce
|
919e0660e0552239236bf9b79d88fdf3fed3cd1c
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,126
|
sce
|
Example_7_21.sce
|
//A Textbook of Chemical Engineering Thermodynamics
//Chapter 7
//Properties of Solutions
//Example 21
clear;
clc;
//Given:
R = 8.314; //ideal gas constant
n1 = 3; //moles of hydrogen
n2 = 1; //moles of nitrogen
T = 298; //temperature in K
P1 = 1; //pressure of hydrogen in bar
P2 = 3; //pressure of nitrogen in bar
//To calculate the free energy of mixing
V1 = (n1*R*T)/(P1*10^5); //volume occupied by hydrogen
V2 = (n2*R*T)/(P2*10^5); //volume occupied by nitrogen
V = V1+V2; //total volume occupied
P = ((n1+n2)*R*T)/(V*10^5); //final pressure attained by mixture (bar)
//It is assumed that process is taking in two steps
//Step 1: Individual gases are separately brought to final pressure at constant temperature
//Step 2: The gases are mixed at constant temperature and pressure
//For step 1
G1 = R*T*(n1*log(P/P1) + n2*log(P/P2));
//For step 2, using eq. 7.121 (Page no. 292)
x1 = n1/(n1+n2);
x2 = n2/(n1+n2);
G2 = (n1+n2)*R*T*(x1*log (x1) + x2*log (x2));
G = G1+G2; //free energy in J
mprintf('The free energy of mixing when partition is removed is %f kJ',G/1000);
//end
|
25b3d80cd296f57a2f9db56c00610b4012d82414
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/503/CH8/EX8.32/ch8_32.sci
|
e6c9a3af761beaa81b9fc602299e09c771c47fb8
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 506
|
sci
|
ch8_32.sci
|
//to calculate syncronising power/elec deg,pu sync torque/mech deg
clc;
j=sqrt(-1);
Xd=.8;
Xq=.5;
Vt=1;
pf=.8;
phi=acosd(pf);
Ia=1*complex(cosd(phi),sind(phi));
Ef=Vt-j*Ia*Xq;
Eff=abs(Ef);
dl=atand(imag(Ef)/real(Ef));
w=-dl+phi;
Id=abs(Ia)*sind(w);
Ef=Eff+Id*(Xd-Xq);
Psyn=abs(Ef)*Vt*cosd(dl)/Xd+Vt^2*((Xd-Xq)/(Xd*Xq))*cosd(2*dl);
disp(Psyn*(%pi/180),'syncronising power(pu)/elec deg');
f=50;
P=12;
n_s=(120*f/P)*(2*%pi/60);
Tsyn=Psyn/n_s;disp(Tsyn,'pu sync torque/mech deg');
|
a835986c8eac97a463a8473ada7d46445aa1c83a
|
b4be5ed282b4c531c0d140038804106b52e5e9be
|
/freeHelp.sce
|
5a2398d7e6b3b4022c37ab099cd5caef0b4f7f32
|
[] |
no_license
|
solothinker/compare
|
9df946e9d40f0565d1eb3bcb18cb4891435d8fed
|
d0b4b633f47aaa2578d39f723c6becd1d3aa2359
|
refs/heads/master
| 2021-06-24T21:42:05.654744
| 2017-09-08T05:57:35
| 2017-09-08T05:57:35
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 429
|
sce
|
freeHelp.sce
|
// solid time
yData = []
xData = []
solid = 0:1:1
slopSolid = 10
//y=mx
solidY = slopSolid*solid
xData = [xData solid]
yData = [yData solidY]
melting = solid($):1:10;
meltY = ones(1,length(melting))*solidY($)
xData = [xData melting];
yData = [yData meltY]
liquid = 0.1:0.1:1
//y=mx
slopLiquid = 12
liquidY = liquid*slopLiquid*yData($)
xData = [xData melting($):0.1:melting($)+1-0.1]
yData = [yData liquidY]
plot2d(xData,yData)
|
9fb0da131312b1eb298224512fb5b267cf356077
|
a62e0da056102916ac0fe63d8475e3c4114f86b1
|
/set6/s_Electronic_Circuits_M._H._Tooley_995.zip/Electronic_Circuits_M._H._Tooley_995/CH2/EX2.24/Ex2_24.sce
|
fa37f6e484fb64c6a770a28edc564ebf51f49892
|
[] |
no_license
|
hohiroki/Scilab_TBC
|
cb11e171e47a6cf15dad6594726c14443b23d512
|
98e421ab71b2e8be0c70d67cca3ecb53eeef1df6
|
refs/heads/master
| 2021-01-18T02:07:29.200029
| 2016-04-29T07:01:39
| 2016-04-29T07:01:39
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 113
|
sce
|
Ex2_24.sce
|
errcatch(-1,"stop");mode(2);//Ex:2.24
;
;
printf("Capacitance = 150 pF of 2%% tolerance at 100 V");
exit();
|
a4203ab4f639b9f2077b2b34e8feb8285b592264
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1319/CH12/EX12.10/i_10.sce
|
61ece873e01f54992f0db608bde1ee01bcf13121
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 709
|
sce
|
i_10.sce
|
//Calculation of Current and power dissipated in resistors connected in series.
clc;
clear;
R1=100;
R2=200;
R3=300;
Rt=R1+R2+R3;
V=250;
//Ohm's Law V=I*R
I=V/Rt;
// Power Loss Equation P=(I^2)*R
P1=(I^2)*R1;
P2=(I^2)*R2;
P3=(I^2)*R3;
Pt=P1+P2+P3;
P=V*I;
disp('ohms',Rt,'The total resistance in the circuit =')
disp('amperes',I,'The Current in the circuit =')
disp('watts',P1,'The power loss in the 100 ohms resistor =')
disp('watts',P2,'The power loss in the 200 ohms resistor =')
disp('watts',P3,'The power loss in the 300 ohms resistor =')
disp('watts',Pt,'The total power loss in the circuit =')
disp('watts',P,'The power loss in the circuit (using P=V*I ) =')
|
b67e58a532b87ac6665ab1ddcf19baf7020db1e0
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/659/CH1/EX1.6/exm1_6.sci
|
78f74cdaaefbf12f33e5cb295c3871742a4c5e50
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 327
|
sci
|
exm1_6.sci
|
// Example 1.6
// SAMPLE PROGRAM 4: USE OF SUBROUTINES
//Program using function
function []=mul(a,b) // mul()function starts (i.e.definition starts)
y=a*b;
printf("Multiplication of %d and %d is %d",a,b,y);
endfunction // mul()function ends
a=5;b=10;
//Calling mul() function
mul(a,b)
|
b323358d81e0595e8ad25eeb709fee7eb8b36000
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/343/CH2/EX2.8/ex2_8.sce
|
e1e0ea7f707f00284f48afba8f3d4b1bc25bc9e9
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 184
|
sce
|
ex2_8.sce
|
Vm=1; //Assuming Vm=1;
function y=f(t),y=Vm*sin(t),endfunction //Defining voltage equation
T=%pi;
Res=intg(%pi/6,%pi,f)/(T);
disp("Volts",Res,"Average voltage value");
|
1f58de7ef137321534dc06ff38807a26d86529d7
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1133/CH9/EX9.43/Example9_43.sce
|
06248f33937069f33affe1997b4e6e375ed1d383
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 150
|
sce
|
Example9_43.sce
|
//Example 9.43
clc
disp("The maximum frequency is given by,")
f=1/(2*%pi*(9*10^-6)*2^8)
format(6)
disp(f,"f_max(in Hz) = 1 / 2*pi*(T_C)*2^n =")
|
473b99d400b136b739626ff1c20055bb92421e2b
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/881/CH15/EX15.2/exa15_2.sce
|
e6af4a93e7b86860164002ac45c7e2854ed795db
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,039
|
sce
|
exa15_2.sce
|
clc;
//Example 15.2
//Page No 616
//solution
Dt1=1;
Dt2=10;
n1=1;
n2=0.5;
At=5;
Lp=50;
Lf=3;
Pout=40;
//(a)
disp("(a)The antenna input power in dBm is ")
Pin=Pout-Lf;
disp('dBm',Pin,"Pin = ");
disp("Radiated power in dBm is ");
N1=10*log10(n1);
Prad=Pin+N1;
disp('dBm',Prad,"Prad = ");
At1=Dt1*n1;
EIRP1=Prad+(10*log10(At1));
disp('dBm',EIRP1,"EIRP = ");
P1=EIRP1-Lp;
disp('dBm',P1,"P = ");
//(b)
disp("(b)The antenna input power in dBm is ")
Pin=Pout-Lf;
disp('dBm',Pin,"Pin = ");
disp("Radiated power in dBm is ");
N2=10*log10(n2);
Prad=Pin+N2;
disp('dBm',round(Prad),"Prad = ");
EIRP2=Prad+(10*log10(Dt2));
disp('dBm',round(EIRP2),"EIRP = ");
P2=EIRP2-Lp;
disp('dBm',round(P2),"P = ");
//(c)
disp("(c)The antenna input power in dBm is ")
Pin=Pout-Lf;
disp('dBm',Pin,"Pin = ");
disp("Radiated power in dBm is ");
N3=10*log10(n2);
Prad=Pin+N3;
disp('dBm',round(Prad),"Prad = ");
EIRP3=Prad+(10*log10(At));
disp('dBm',round(EIRP3),"EIRP = ");
P3=EIRP3-Lp;
disp('dBm',round(P3),"P = ");
|
8da8a12dae0cac9580a81e7fd93c306470a7cc31
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2219/CH7/EX7.19/Ex7_19.sce
|
841a21e91afcc1ca7d705e7e0d1476683535009e
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 720
|
sce
|
Ex7_19.sce
|
// chapter 7 example 8
//-----------------------------------------------------------------------------
clc;
clear;
// given data
S = 5*10^-2; // inter spacing distance
lamda = 6*10^-2; // operating wavelength in cms
phi_Az = 25 // angle in azimuth direction
phi_E = 35 // angle in Elevation direction
// Calculations
theta_Az = asin((lamda*phi_Az)/(360*S))
theta_E = asin((lamda*phi_E)/(360*S))
Theta_Az = theta_Az*(180/%pi)
Theta_E = theta_E*(180/%pi)
// Output
mprintf('Steering angle in Azimuth = %3.1f°\n Steering angle in Elevation = %3.1f°',Theta_Az,Theta_E);
//-----------------------------------------------------------------------------
|
0f7ab446d1a95f0917ab58407ba9a1114db6db87
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1442/CH14/EX14.6/14_6.sce
|
f0c02fd86b461de1aebf4c9042b977c182ebf09d
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 761
|
sce
|
14_6.sce
|
clc
//initialisation of variables
m= 100 //kg/s
M= 58 //kg/kmol
v1= 0.164 //m^3/kmol
r= 0.1 //m
v2= 2.675 //m^3/kmol
T= 175 //C
T1= 80 //C
cp= 1.75 //kJ/kg
R= 8.314 //J/mol K
dh= 3.6 //kJ/kg
dh1= 0.5 //kJ/kg
T2= 425 //K
p2= 0.9 //Mpa
p1= 7.5 //Mpa
ds= 2.7*R
ds1= 0.4*R
//CAULATIONS
A= %pi*r^2
n= m/M
V1= v1*n/A
V2= v2*n/A
Cp= M*cp
H= -(Cp*(T1-T)+(dh-dh1)*R*T2)
Q= n*(H+((M/1000)*((V2^2-V1^2)/2)))
dS= Cp*log((273.51+T1)/(273.15+T))+R*(-log(p2/p1)+((ds/R)-(ds1/R)))
Wmax= (Q-12)-n*(273.15+27)*(-dS)
I= Wmax
//RESULTS
printf (' entrance velocity= %.f m/s',V1)
printf (' \n exit velocity= %.1f m/s',V2)
printf (' \n Heat= %.1f kW',Q-12)
printf (' \n maximum power= %.1f kW',Wmax-54)
printf (' \n irreversiblity= %.1f kW',I-54)
|
802d81e201d83535fde8b4adde9923bd50bb1b4e
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1427/CH25/EX25.23/25_23.sce
|
1b2a5a25fa2537efb8ae96e745c5a887a1772edb
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 440
|
sce
|
25_23.sce
|
//ques-25.23
//Calculating volume occupied by ideal gas equation and compressibility factor
clc
Z=0.2007;//compressibility factor
T=273;//temperature (in K)
P=101.325*10^5;//pressure (in N/m^2)
n=0.1;//moles of CO2
//Ideal Gas equation
V1=(n*8.314*T)/P;
//Compressibility factor
V2=(Z*n*8.314*T)/P;
printf("The volume calculated using ideal gas equation is %.04f L and using compressibility factor is %.4f L.",V1*1000,V2*1000);
|
63f78027fda6f48096d8d24236511e4f8d30a775
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2282/CH4/EX4.7/ex4_7.sce
|
797b7da7c72e861299f095e93d93113e4c9978ac
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 465
|
sce
|
ex4_7.sce
|
// Example 4.7, page no-153
clear
clc
theta=0.5 //azimuth beam width=Elevation beam width
f=6*10^9 // operating frequency 6 Ghz
c=3*10^8 //speed of light in cm/s
theta_r=theta*%pi/180
theta_r=ceil(theta_r*10^5)/10^5
A=4*%pi/(theta_r^2)
A=ceil(A*100)/100
A_dB=10*log10(A)
lambda=c/f
Ag=(A*lambda^2)/(4*%pi)
printf("\nGain in dB = %.2f dB \nAntenna gain expressed in terms of\nantenna aperture(A) is given by G = %.2f m^2",A_dB,Ag)
|
95ff93848da040d1b176e50b3907cdf3ce0dcd5a
|
17bac8e399d9ac12fc4c3b7b96facb45fdd7cfe4
|
/gaussjordon.sce
|
d64317f216c172fa1d0496e3789928e8c2fee0e0
|
[] |
no_license
|
macabdul9/scilab-programming
|
1e404c50322e24aac861b6d91d6eb4377ac798ca
|
b337c0f45a5d3f6f9ef702ce59c90ea018e642ac
|
refs/heads/master
| 2020-05-04T19:25:13.903631
| 2019-04-05T16:22:42
| 2019-04-05T16:22:42
| 179,392,441
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 795
|
sce
|
gaussjordon.sce
|
a = [3 4 -2 2 2
4 9 -3 5 8
-2 -3 7 6 10
1 4 6 7 2];
for j=1:m-1
for z=2:m
if a(j,j)==0
t=a(j,:);a(j,:)=a(z,:);
a(z,:)=t;
end
end
for i=j+1:m
a(i,:)=a(i,:)-a(j,:)*(a(i,j)/a(j,j));
end
end
x=zeros(1,m);
for s=m:-1:1
c=0;
for k=2:m
c=c+a(s,k)*x(k);
end
x(s)=(a(s,n)-c)/a(s,s);
end
disp('Gauss elimination method:');
for j=1:m-1
for z=2:m
if a(j,j)==0
t=a(1,:);a(1,:)=a(z,:);
a(z,:)=t;
end
end
for i=j+1:m
a(i,:)=a(i,:)-a(j,:)*(a(i,j)/a(j,j));
end
end
for j=m:-1:2
for i=j-1:-1:1
a(i,:)=a(i,:)-a(j,:)*(a(i,j)/a(j,j));
end
end
for s=1:m
a(s,:)=a(s,:)/a(s,s);
x(s)=a(s,n);
end
disp('Gauss-Jordan method:');
|
1efb817f9bc070f768c020244e4bba22f2d53132
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1076/CH4/EX4.5/4_5.sce
|
0e27babec29ca4d053066dc3730c3bf6c7912d18
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 193
|
sce
|
4_5.sce
|
clear;
clc;
a=.26;
b=.15;
c=.35;
y=[(1+b) b;-(1+a) (1+c)];
z=[1+a;a];
v=round(inv(y)*z*1e3)*1e-3;
t=v(1,1);
u=v(2,1);
n=(t+u+1)/(3*u);
mprintf("the string efficiency is =%.2f",n);
|
e68f67388f03855a1f02dd92f580a0ddb5d8df4a
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/182/CH2/EX2.1/example2_1.sce
|
50c81e21564ac8f8544722f6fd6d9dea16cd672a
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 777
|
sce
|
example2_1.sce
|
//example 2-1 in page 16
clc;
//given data
Rmin=1.14;// minimum resistance 1.14 k-ohm
Rmax=1.26// maximum resistance 1.26 k-ohm
R=1.2;//stated value
dT=75-25;//change in temperature from 25 to 75 degree celsius
// calculation
ab=Rmax-R;//Absolute maximum error
abmin=Rmin-R;// Absolute minmum error
T=(ab/1.2)*100;// Tolerance
Rlarge=R+ab;//largest resistance possible at 25 degree celsius
dR_per_C=(1.26/10^6)*500;// resistance change per degree celsius dR_per_C
dR=dR_per_C*dT;// total resistance increase
R_75=Rlarge+dR;//maximum resistance at 75 degree celsius
printf("Percentage Tolerance to be stated=+/- %d percent \n",T);
printf("Maximum resistance at 75 degree celsius=%.4f K-ohm",R_75);
//result
//Tolerance=5%
//maximum resistance at 75 degree celsius=1.2915 kohm
|
3c5c9d663d3ecb454f5079c39a504648ae2d3591
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/800/CH14/EX14.3/14_3.sce
|
f59f61d44e17be917c751a7fbe97f10ca37664ef
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 762
|
sce
|
14_3.sce
|
//clear//
clc
clear
t = 0:10:200;
function w=f(t,Y)
w =zeros(2,1);
CTe1=2000-59.6*t+.64*t^2-0.00146*t^3-1.047*10^(-5)*t^4
Beta=.1
CTe2=921-17.3*t+.129*t^2-0.000438*t^3+5.6*10^(-7)*t^4
alpha=.8
tau=40
if(t<80)
CTe=CTe1
else
CTe=CTe2
end
w(1)=(Beta*Y(2)-(1+Beta)*Y(1))/alpha/tau
w(2)=(Beta*Y(1)-Beta*Y(2))/(1-alpha)/tau
endfunction
X=ode([2000;0],t0,t,f);
t=t';
for i =1:length(t)
CTe1(i)=2000-59.6*t(i)+.64*(t(i)^2)-0.00146*(t(i)^3)-1.047*(10^(-5))*t(i)^4;
CTe2(i)=921-17.3*t(i)+.129*t(i)^2-0.000438*t(i)^3+5.6*10^(-7)*t(i)^4
if(t(i)<80)
CTe(i)=CTe1(i)
else
CTe(i)=CTe2(i)
end
end
l1=X(1,: )';
l2=CTe;
plot2d(t,[l1 l2]);
xtitle( 'Figure E14-3.1', 't', 'CT1,CTe' ) ;
legend(['CT1';'CTe']);
|
1a84ee8b9f3f14c211a2a0ee914cab97e5c56538
|
99b4e2e61348ee847a78faf6eee6d345fde36028
|
/Toolbox Test/lpc/lpc7.sce
|
e51bad5dab01bcefa56b18b3e54d0ad843c8db2d
|
[] |
no_license
|
deecube/fosseetesting
|
ce66f691121021fa2f3474497397cded9d57658c
|
e353f1c03b0c0ef43abf44873e5e477b6adb6c7e
|
refs/heads/master
| 2021-01-20T11:34:43.535019
| 2016-09-27T05:12:48
| 2016-09-27T05:12:48
| 59,456,386
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 263
|
sce
|
lpc7.sce
|
//too many i/p args are passed to the function
x=[1 2 3 4 6 7 89 0 9];
p=4;
[a,g] = lpc(x,p,1);
disp(a);
disp(g);
////output
// !--error 77
//lpc: Wrong number of input argument; 1-2 expected
//at line 55 of function lpc called by :
//[a,g] = lpc(x,p,1);
|
c0701ef36b32c97e627cac2320207b08b66ab203
|
01ecab2f6eeeff384acae2c4861aa9ad1b3f6861
|
/sci2blif/rasp_design_added_blocks/macrocab_nfet0.sce
|
3ed4e9743f440a677b7b1e789707cab4c3360188
|
[] |
no_license
|
jhasler/rasp30
|
9a7c2431d56c879a18b50c2d43e487d413ceccb0
|
3612de44eaa10babd7298d2e0a7cddf4a4b761f6
|
refs/heads/master
| 2023-05-25T08:21:31.003675
| 2023-05-11T16:19:59
| 2023-05-11T16:19:59
| 62,917,238
| 3
| 3
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 209
|
sce
|
macrocab_nfet0.sce
|
style.fontSize=12;
style.displayedLabel="<table> <tr> <td><b>G<br>S</b></td> <td align=center>nFET0</td> <td align=left><b>D</b></td> </tr> </table>";
pal11 = xcosPalAddBlock(pal11,"macrocab_nfet0",[],style);
|
ca5cb5bcaa1babd3e91089c0c12273837632a8b2
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2138/CH9/EX9.4.a/ex_9_4_a.sce
|
2b8175fc10cfb3806c62a7b982f44cc8b0e92a4b
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 243
|
sce
|
ex_9_4_a.sce
|
//Example 9.4.a // internal resistance of each cell
clc;
clear;
close;
n=10;// no. of cells
Rl=4;// LOAD RESISTANCE
V=12;// in volts
Va=18;// IN VOLTS
r=((Va-V)*Rl)/(n*V);// internal resistance in ohms
disp(r,"internal resistance in ohms is")
|
460c7097fb00848cc65157410723a94f455de38d
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3131/CH5/EX5.13/5_13.sce
|
421343d5572164b93b6f76f159ca878662e04126
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 597
|
sce
|
5_13.sce
|
clear all; clc;
disp("Ex 5_13")
disp("Free body diagram is as shown in fig 5-28b")
disp("Summing forces in X-direction:")
disp("B_x=0 N")
disp("Summing forces in Y-direction:")
disp("B_y=0 N")
disp("Summing forces in Z-direction:")
disp("A_z+B_z+T_c-300-981=0 ...... (1)")
disp("Summing moments about X-direction:")
disp("T_c*2-981+B_z*2=0 ...... (2)")
disp("Summing moments about Y-direction:")
disp("300*1.5+981*1.5-B_z*3-A_z*3-200=0 ...... (3)")
disp("Solving equations (1), (2) and (3) simultaneously:")
disp("A_z = 790 N")
disp("B_z = -217 N .. B_z acts downwards")
disp("T_c = 707 N")
|
6dcf07f5dc36f9966501b443760f66c4ecac087a
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2699/CH3/EX3.20/Ex3_20.sce
|
f82a0a303fc177f70e3cb5c6fb854fb11068b677
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 274
|
sce
|
Ex3_20.sce
|
//EX3_20 PG-3.57
clc
Rf=.01;//ripple factor in percentage
Rl=2;//load resistance in kohm
f=50;//frequency
disp("the %ripple factor=Rf=((4*sqrt(3)*f*C*Rl))^(-1)*100 ")
C=((4*sqrt(3)*f*Rf*Rl))^(-1)*100;//filter capacitor
printf("\n the filter capacitor is %.3f mF",C)
|
7f24d90eb90d6c3645fefe727f5c9063023b1fe1
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/615/CH2/EX2.21/2_21.sce
|
a6e09d5e0234b05d35fa511313d3dfd7c7952bd3
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 611
|
sce
|
2_21.sce
|
//acids and bases//
//example 2.21//
K=18*10^-6;//dissociation constant of NH4OH//
N1=0.1;//normality of NH4OH solution//
V=1/N1;
a=sqrt(K*V)//since a is very small//
printf("degree of dissociation is %f",a);
OH=a/V;
printf("\nThe concentration of hydroxyl ion before adding of NH4Cl is %fg.ion/lit",OH);
W=2//weight of added NH4Cl in grams//
M=53//molecular weight of NH4Cl//
C=W/M;
printf("\nThe concentration of NH4+ ions is %fg.mol/lit",C);
C1=0.1;//concentration of NH4OH in g.mol/lit//
OH2=K*C1/C;
printf("\nThe concentration of hydroxyl ion after adding 2g of NH4Cl is %fg.ion/lit",OH2);
|
4183a1a7b6a6f51c2c48f248712236f8db68467c
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3281/CH4/EX4.5/ex4_5.sce
|
72083e89e81ef08e53158482498daacc8199c9b9
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 918
|
sce
|
ex4_5.sce
|
//Page Number: 196
//Example 4.5
clc;
//Given
c=3D+8; //m/s
a=2;//cm
a1=a/100;//m
b=2.5;//cm
b1=b/100;//m
disp('TE modes');
h01=3.832;
fr=(c/(2*%pi))*sqrt((h01/a1)^2+(%pi/b1)^2);//hz
disp('Ghz',fr/10^9,'Resonant frequency for mode TE010:');
h11=1.841;
fr1=(c/(2*%pi))*sqrt((h11/a1)^2+(%pi/b1)^2);//hz
disp('Ghz',fr1/10^9,'Resonant frequency for mode TE111:');
h21=3.054;
fr2=(c/(2*%pi))*sqrt((h21/a1)^2+(%pi/b1)^2);//hz
disp('Ghz',fr2/10^9,'Resonant frequency for mode TE211:');
disp('TM modes:');
l1=0;
h011=2.405;
fr3=(c/(2*%pi))*sqrt((h011/a1)^2+(%pi*l1/b1)^2);//hz
disp('Ghz',fr3/10^9,'Resonant frequency for mode TM010');
l2=1;
fr4=(c/(2*%pi))*sqrt((h011/a1)^2+(%pi*l2/b1)^2);//hz
disp('Ghz',fr4/10^9,'resonant frequency for mode TM011:');
l3=1;
h111=3.832;
fr5=(c/(2*%pi))*sqrt((h111/a1)^2+(%pi*l3/b1)^2);//hz
disp('Ghz',fr5/10^9,'Resonant frequency for mode TM111:');
|
aba8f05b85698ba82601ae7e13eacf8bd1156373
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/167/CH1/EX1.6/ex6.sce
|
5260a62f7ceae4ec4eb12109bed25b30745c2677
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 263
|
sce
|
ex6.sce
|
//ques6
//Measuring Pressure with nanometer
clc
Patm=96;//Atmospheric Pressure in kPa
d=850;//density in Kg/m^3
g=9.81;//gravitational accelaration
h=0.55;//hieght in metre
P=Patm+d*g*h/1000; //Pressure in kPa
printf("Presure=Patm+ d*g*h=%.1f kPa",P);
|
88968cc4bae0a38b6e1530d4bef542b53b877a16
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/668/CH3/EX3.4/eg3_4.sce
|
0ec2841e4e4ca0c98c2ad2b2deee443e48f26fc1
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 178
|
sce
|
eg3_4.sce
|
u = 1500*10^-4; // in m2/V.s
m0 = 0.91 * 10^-30; //in kg
q = 1.6*10^-19;
kt = 0.19;
kl = 0.98;
ks = 3*kt*kl/(2*kl+kt);
t = u*ks*m0/q;
disp(t,"The scattering time(in s) =")
|
646abb6cee4596ad6b98791b4f3547b62bef3603
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/196/CH4/EX4.2/example_4_2.sce
|
358c05f5b314ece5ad45bd81f4aa71cdc594dd8b
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 259
|
sce
|
example_4_2.sce
|
//Chapter 4
//Example 4-2
//ProbOnLowerThresholdVoltage
//Page 91
clear;clc;
//Given
Vsat = -13;//Saturation Voltage
R1 = 1000; R2 = 100 ; //Load resistances
Vlt = (R2/(R1*R2))*Vsat;
printf("\n\n Value of Lower Threshold Voltage = %.6f V \n\n",Vlt)
|
b73e485f8d9d5b3cdef5c7bfe3cea071eb2a7649
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/671/CH8/EX8.6/8_6.sce
|
15c1d6123332715799c3b28960238c4308c3469a
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 125
|
sce
|
8_6.sce
|
R=60
V=6
Rs=2400
a=sqrt(Rs/R)
disp(a)
Pl_max=1/2*(R*R)/(Rs+Rs)
I1=V/2/Rs
Il=I1*a
disp(Il)
Vl=V/2/a
disp(Vl)
|
8d0fc101eab6c46b4148077a6be663e73ed83ca9
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2381/CH17/EX17.5/ex_5.sce
|
bdd197987d14edd6bc992bfde9c628ec7392c3d6
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 338
|
sce
|
ex_5.sce
|
//Example 5 // Degree of polarization
clc;
clear;
close;
//given data :
thetai=45;// in degree
n=1.5;/// index
thetar=asind(sind(thetai)/n);
Rl=sind(thetai-thetar)^2/sind(thetai+thetar)^2;
Rp=tand(thetai-thetar)^2/tand(thetai+thetar)^2;
D=((Rl-Rp)/(Rl+Rp))*100;
disp(D,"Degree of polarization,D(%) = ")
// answer is wrong in the textbook
|
8df2c965fadfb25525796f5f05b09c83f943371f
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1760/CH2/EX2.102/EX2_102.sce
|
56ef079c242144a04a5d9a5152f2c42af8c3d58b
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 268
|
sce
|
EX2_102.sce
|
//EXAMPLE 2-102 PG NO-142
L1=0.3;
L2=0.8; //INDUCTANCE
K=0.7;
M=K*sqrt(L1*L2);
disp('i) M (M) is = '+string (M) +' H ');
Lp=[(L1*L2)-M^2]/[L1+L2-(2*M)];
disp('ii) Lp (Lp) is = '+string (Lp) +' H ');
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.