blob_id
stringlengths 40
40
| directory_id
stringlengths 40
40
| path
stringlengths 4
214
| content_id
stringlengths 40
40
| detected_licenses
listlengths 0
50
| license_type
stringclasses 2
values | repo_name
stringlengths 6
115
| snapshot_id
stringlengths 40
40
| revision_id
stringlengths 40
40
| branch_name
stringclasses 21
values | visit_date
timestamp[us] | revision_date
timestamp[us] | committer_date
timestamp[us] | github_id
int64 141k
586M
⌀ | star_events_count
int64 0
30.4k
| fork_events_count
int64 0
9.67k
| gha_license_id
stringclasses 8
values | gha_event_created_at
timestamp[us] | gha_created_at
timestamp[us] | gha_language
stringclasses 50
values | src_encoding
stringclasses 23
values | language
stringclasses 1
value | is_vendor
bool 1
class | is_generated
bool 1
class | length_bytes
int64 5
10.4M
| extension
stringclasses 29
values | filename
stringlengths 2
96
| content
stringlengths 5
10.4M
|
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
401b8da55f809f2ace4b327a2d822ba99f2c1422
|
156b497136c197cef4610c8a85e14f6b02ea7c86
|
/logistic_map1.sce
|
989a617997d5119ec21bcd40c567a7573b640d72
|
[] |
no_license
|
vk9696/Logistic-Map
|
90399826a4f2e68554e28f2e5a92ed8f71687b99
|
30357994a27feeaeef5ea548854c0c8fc795e064
|
refs/heads/main
| 2023-06-03T15:51:50.651028
| 2021-06-25T19:57:48
| 2021-06-25T19:57:48
| 380,340,436
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 330
|
sce
|
logistic_map1.sce
|
//BY VINAY KUMAR
//Roll No PH20MSCST11001
//NON LINEAR DYNAMICS PROJECT
// PLOTTING x_n+1 = r*x_n*(1-x_n)
clear
clc
j=1
r=3.1
for i=0:0.001:1
x(j)=i
y(j)=r*i*(1-i)
j=j+1
end
xtitle("$\huge x_{n+1} = r x_n (1-x_{n})$")
xlabel("$\huge x_{n} $")
ylabel("$\huge x_{n+1}$")
plot(x,y,'o')
|
cf04d6fa61cf159cd1f38758c8ed5f491d8ffd63
|
a62e0da056102916ac0fe63d8475e3c4114f86b1
|
/set14/s_Material_Science_V._Rajendran_1826.zip/Material_Science_V._Rajendran_1826/CH2/EX2.4/ex2_4.sce
|
f49a9192766e4a55667ff2952ef3bc906a3c6f46
|
[] |
no_license
|
hohiroki/Scilab_TBC
|
cb11e171e47a6cf15dad6594726c14443b23d512
|
98e421ab71b2e8be0c70d67cca3ecb53eeef1df6
|
refs/heads/master
| 2021-01-18T02:07:29.200029
| 2016-04-29T07:01:39
| 2016-04-29T07:01:39
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 232
|
sce
|
ex2_4.sce
|
errcatch(-1,"stop");mode(2);// Example 2.4, page no-31
d=4*10^3//kg/m^3
awtcs=132.9
awtcl=35.5
a=4.12*10^-10
m=d*a^3
N=(awtcs+awtcl)/m
printf("The value of Avogadro Constant %.4f *10^26 per kg mole",N*10^-26)
exit();
|
9544800e98e96c163c59dc9350cf89db5c6b88fa
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/257/CH7/EX7.1/example_7_1.sce
|
95a3a2983a4bcdd2a5e6202271b6c64e01516b81
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 382
|
sce
|
example_7_1.sce
|
p=poly([2 1],'s','coeff');
q=poly([0 4 5 1],'s','coeff');
G=40*p/q //gain FACTOR=40
H=1
y=G*H //type 1
syms s
Kp=limit(s*y/s,s,0) //Kp= position error coefficient
Kv=limit(s*G*H,s,0) //Kv= velocity error coefficient
Ka=limit(s^2*G*H,s,0) //Ka= accelaration error coefficient
disp(Ka ,"Ka = ")
disp(Kv ,"Kv = ")
disp(Kp ,"Kp = ")
Ess=4/Kv
disp(Ess, "Ess = ")
|
424c33ee8583fd710e11309fa937203ee0da8faf
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2192/CH4/EX4.10/4_10.sce
|
b9265d5b0af725dcdbdedfdfd09f73aa0daab3e8
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 756
|
sce
|
4_10.sce
|
clc,clear
printf('Example 4.10\n\n')
P=20*1000 //power supplied in watts
V=220 //supply voltage
e=0.9;k=0.6; //emissivity and radiant efficiency
rho=100*10^-6//specific resistance
l_by_d2 = %pi*V^2/(4*rho*P) //ratio of l and d^2 (i)
T1=1170+273; T2=500+273; //temperatures of wire and charge
H=5.72*k*e*(T1^4-T2^4)/1000^4 //heat dissipated from surface
//Surface area = %pi*d*l
//total heat dissipated = electric power input and squaring the equation
d2l2= ( P/(H*%pi) )^2 // d^2 * l^2 (ii)
//using expression (i) and expression (ii)
l =(d2l2*l_by_d2)^(1/3)
printf('Length of wire = %.1f metres',l/100)
d=sqrt( l/l_by_d2 )
printf('\nSize of wire = %.1f cm',d)
|
61de6a093eed750fa7231f57b5ded12f18e6cc62
|
3833ff7333211b06d301339b8ae11fc22cb118d4
|
/plsql/teste_1.tst
|
808ec185eda76bcd53d744b7e4b8bff1b46cef73
|
[] |
no_license
|
evertonagilar/study
|
c4a6fed603b01bc8549813e7ef09e11a206ada99
|
03af0f0fa87e7ab90b4ce0dbc333c532b5610067
|
refs/heads/master
| 2023-03-09T01:43:46.393800
| 2023-03-04T10:58:20
| 2023-03-04T10:58:20
| 54,847,850
| 3
| 0
| null | 2023-03-02T14:18:01
| 2016-03-27T20:59:24
|
C
|
ISO-8859-1
|
Scilab
| false
| false
| 501
|
tst
|
teste_1.tst
|
PL/SQL Developer Test script 3.0
15
-- Created on 14/09/2010 by AGILAR
declare
-- Local variables here
i integer;
vResult boolean;
MeuCliente pkg_comercial.TCliente;
begin
vResult:= pkg_comercial.getDadosSegundaViaFatura(vIdCliente => 1, vCliente => MeuCliente);
if vResult then
dbms_output.put_line('encontrado!');
dbms_output.put_line(MeuCliente.nome || ' CPF: ' || MeuCliente.cpf);
else
dbms_output.put_line('não encontrado!');
end if;
end;
0
0
|
c821619e2f9aea70ae28ded33d5a674b2c6fe9ee
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3446/CH11/EX11.3/Ex11_3.sce
|
55bbea7957d90adeb7e115f9182000a2a7de3d3c
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 268
|
sce
|
Ex11_3.sce
|
// Exa 11.3
// To find the minimum number of PN chips.
clc;
clear all;
BW=100; //in MHz
Fspac=10; //frequency spacing in kHz
//solution
FreqTones=BW*10^3/Fspac;
Chips=log2(FreqTones);
printf('Minimum number of chips required are %d chips \n ',Chips);
|
7f76639b54736283bd988988edc9cbd4698221bb
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2609/CH1/EX1.1/ex_1_1.sce
|
7fbb7253d49dcb05e7e10ca2f1cf1a254898551b
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 249
|
sce
|
ex_1_1.sce
|
//Ex 1.1
clc;
clear;
close;
format('v',5);
Iout=8;//micro A
VBE=0.7;//V
Beta=80;//unitless
VCC=20;//V
IREF=Iout*(1+2/Beta);//micro A
R=(VCC-VBE)/IREF;//Mohm
disp(IREF,"Reference current(micro A)");
disp(R,"Resistance required(Mohm)");;
|
705b9d261f9a05fecf2f61fd6a315e13413e55c5
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2741/CH2/EX2.3/Chapter2_Example3.sce
|
5f7bff95efe468b3d5c4d1847a440e10824cae09
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 483
|
sce
|
Chapter2_Example3.sce
|
clc
clear
//Input data
L=800;//The length of the wire in cm
r=0.2;//The radius of the wire in cm
t=10;//The temperature fall in degree centigrade
a=12*10^-6;//The coefficient of linear expansion of steel wire in per degree centigrade
y=2*10^12;//The youngs modulus of elasticity of steel in dynes/cm^2
pi=(22/7);//Mathematical constant pi
//Calculations
I=y*a*t*pi*r^2;//The increase in tension in dynes
//Output
printf('The increase in tension is %3g dynes',I)
|
26d07835a0ab57f168bd6a177438d47426fbabee
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/671/CH2/EX2.1/2_1.sce
|
03bbb420294a8c7fd61a2bf2050bbc7c09842373
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 328
|
sce
|
2_1.sce
|
function s=series(r1,r2)
s=r1+r2
endfunction
function p=parallel(r1,r2)
p=r1*r2/(r1+r2)
endfunction
r1=series(12,8)
r2=parallel(20,r1)
r3=series(r2,50)
r4=parallel(30,r3)
r5=series(10,r4)
r6=series(r5,20)
Req_ab=parallel(r5,40)
disp(Req_ab)
r7=40+20+10 //series
Req_bc=parallel(r4,r7)
disp(Req_bc)
|
0925885440fa814ead698a2895ff3efeb81e1936
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/788/CH2/EX2.6.a/2_6_data.sci
|
fc0613dc4c084feda4c36a3fd263d025bd0aa18f
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 95
|
sci
|
2_6_data.sci
|
// Aim:To find tube height of a Barometer
// Given:
// liquid used is Water instead of Mercury.
|
f0c112912d6cb8af06aea0c1eefc5d8c52d70e78
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1628/CH8/EX8.4/Ex8_4.sce
|
2de0c6e1b95b463fc2fec6447a1a7c8bc1458ec3
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,109
|
sce
|
Ex8_4.sce
|
// Example 8.4
// From the diagram 4.5
V1=20; // Source voltage
R=80; // Series resistance
io1=V1/R; // Steay state current
disp(' Steay state current (at t=0- ) = '+string(io1)+' Amp');
// Because current in inducor can't charge instantaneously
disp(' Steay state current (at t=0+ ) = '+string(io1)+' Amp');
V2=40; // Source voltage
Io2=(V1+V2)/R; // Steay state current at t= infinity
disp(' Steay state current (at t= infinity ) = '+string(Io2)+' Amp');
L=40*10^-3; // Inductor
t1=L/R; // Time COnstant
t=0.001; // Time of 1 ms
// By the formula ==> i(1 ms)= io1*(io1-Io2)*(1-e-(t/t1))
Ims=io1+(Io2-io1)*(1-exp (-t/t1)); // Steay state current (at t=1ms)
disp(' Steay state current (at t= 1ms ) = '+string(Ims)+' Amp');
// p 279 8.4
|
263eafb2644d4a25886818fa0cbb0a7ea9c83384
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/191/CH4/EX4.13/Example4_13.sce
|
13af20e4eff7e153756c7234f47c1147b3429f08
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 706
|
sce
|
Example4_13.sce
|
//Orthogonal decomposition - QR method
//reduce A to tridiagonal form
clc;
clear;
close();
format('v',7);
A1 = [1 4 2;-1 2 0;1 3 -1];
disp(A1, 'A = ');
// zero is created in lower triangle
//by taking the rotation matrix X1=[c s 0;-s c 0;0 0 1]; where c=cos and s=sin
//O is theta
Q = eye(3,3);
for i=2:3
for j=1:i-1
p=i;q=j;
O = -atan(A1(p,q)/(A1(q,q)));
c = cos(O);
s = sin(O);
X = eye(3,3);
X(p,p)=c;
X(q,q)=c;
X(p,q)=-s;
X(q,p)=s;
A1 = X'*A1;
Q = Q*X;
disp(A1,X,'The X and A matrix : ');
end
end
R = A1;
disp(R,Q,'Hence the original matrix can be decomposed as : ')
|
84bedd0b766f444f718dcd29ac5010a89f488e6b
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1244/CH8/EX8.5/Example85.sce
|
12d3e51d215ad5ecfddca297191a406f4cb4ddd8
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 272
|
sce
|
Example85.sce
|
// Display mode
mode(0);
// Display warning for floating point exception
ieee(1);
clc;
disp("Principles of Heat Transfer, 7th Ed. Frank Kreith et. al Chapter - 8 Example # 8.5 ")
disp("There is no computations in this example.")
disp("It is theoretical")
|
2006000cb44f570975a0dca24b30cb876064aec5
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2258/CH7/EX7.10/7_10.sce
|
9d7f50a1bf703f54a94d7a3e30f258a34ddb313c
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 376
|
sce
|
7_10.sce
|
clc();
clear;
// To calculate the resistance
l=1; //length in cm
l=l*10^-2; //length in m
e=1.6*10^-19;
w=1; //width in mm
w=w*10^-3; //width in m
t=1; //thickness in mm
t=t*10^-3; //thickness in m
A=w*t;
ni=2.5*10^19;
mew_e=0.39;
mew_p=0.19;
sigma=ni*e*(mew_p+mew_e);
R=l/(sigma*A);
printf("resistance of intrinsic Ge rod is %f ohm",R);
|
47dbcaecfbd94ffc61d585e373c4a28dc1f9529f
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1478/CH2/EX2.18.6/2_18_6.sce
|
e4e394d177b6d323db13cf015841b1b4dfd4c956
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 676
|
sce
|
2_18_6.sce
|
//water and its treatment//
//example 2.18.6//
clc
W1=29.2;//MgCO3 in water in mg/lit//
W2=36;//MgSO4 in water in mg/lit//
W3=22.2;//CaCl2 in water in mg/lit//
W4=142.5;//MgCl2 in water in mg/lit//
M1=100/84;//multiplication factor of MgCO3//
M2=100/120;//multiplication factor of MgSO4//
M3=100/111;//multiplication factor of CaCl2//
M4=100/95;//multiplication factor of MgCl2//
P1=W1*M1;//MgCO3 in terms of CaCO3//
P2=W2*M2;//MgSO4 in terms of CaCO3//
P3=W3*M3;//CaCl2 in terms of CaCO3//
P4=W4*M4;//MgCl2 in terms of CaCO3//
T=P1;
printf("\nCarbonate hardness is %.2f mg/l or ppm",T);
P=P2+P3+P4;
printf("\nNon Carbonate hardness is %.0f mg/l or ppm",P);
|
62ed958ba7dba3db1525bacf48989ab8ee0e227a
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3428/CH9/EX4.9.14/Ex4_9_14.sce
|
77f6a2bbbc0f89e1bbd2d6742e10670d1303296e
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 286
|
sce
|
Ex4_9_14.sce
|
//Section-4,Example-1,Page no.-I.86
//To find ratio of the peak heights(side chain protons/aromatic protons)in the following
clc;
T=3/5
disp (T,'Ratio of peak height of toluene')
P_xy=6/4
disp(P_xy,'Ratio of peak height of p-xylene')
M=9/3
disp(M,'Ratio of peak height of Mesitylene')
|
f19f0db328322c625258579efdc4f4e94a2d4e1a
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3838/CH3/EX3.24.a/EX3_24_A.sce
|
26a01bc1d3f1654a360537d29521e735ad851307
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 76
|
sce
|
EX3_24_A.sce
|
//Example 3.24.a
clc;
Syms s t;
x=laplace(((2+t)*(exp(-3*t)),t,s);
disp(x);
|
50ba2ff6742bfca9f32743208f28131a8d25041d
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2873/CH1/EX1.26/Ex1_26.sce
|
12f28c77aa61ad3022b8f5fcfce1428bc6221324
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,292
|
sce
|
Ex1_26.sce
|
// Display mode
mode(0);
// Display warning for floating point exception
ieee(1);
clear;
clc;
disp("Engineering Thermodynamics by Onkar Singh,Chapter 1,Example 26")
m1=18;//mass of hydrogen(H2) in kg
m2=10;//mass of nitrogen(N2) in kg
m3=2;//mass of carbon dioxide(CO2) in kg
R=8.314;//universal gas constant in KJ/kg k
Pi=101.325;//atmospheric pressure in kpa
T=(27+273.15);//ambient temperature in k
M1=2;//molar mass of H2
M2=28;//molar mass of N2
M3=44;//molar mass of CO2
disp("gas constant for H2(R1)in KJ/kg k")
disp("R1=R/M1")
R1=R/M1
disp("gas constant for N2(R2)in KJ/kg k")
disp("R2=R/M2")
R2=R/M2
disp("gas constant for CO2(R3)in KJ/kg k")
disp("R3=R/M3")
R3=R/M3
disp("so now gas constant for mixture(Rm)in KJ/kg k")
disp("Rm=(m1*R1+m2*R2+m3*R3)/(m1+m2+m3)")
Rm=(m1*R1+m2*R2+m3*R3)/(m1+m2+m3)
disp("considering gas to be perfect gas")
disp("total mass of mixture(m)in kg")
disp("m=m1+m2+m3")
m=m1+m2+m3
disp("capacity of vessel(V)in m^3")
disp("V=(m*Rm*T)/Pi")
V=(m*Rm*T)/Pi
disp("now final temperature(Tf) is twice of initial temperature(Ti)")
disp("so take k=Tf/Ti=2")
k=2;//ratio of initial to final temperature
disp("for constant volume heating,final pressure(Pf)in kpa shall be")
disp("Pf=Pi*k")
Pf=Pi*k
|
d528931f7d646b2d6e7fa0db861ccf75262b8588
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1427/CH18/EX18.11/18_11.sce
|
da5e0a394350940859b138ec8233a7eb634e17b7
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 211
|
sce
|
18_11.sce
|
//ques-18.11
//Calculating heat to be withdrawn from reservoir
clc
n=0.42;//efficiency
w=203;//work done (in cal)
q2=w/n;//heat withdrawn (in cal)
printf("Heat withdrawn from reservoir is %.1f cal.",q2);
|
d753908fa4bba91b1f3c7f2d945d0c790cc08653
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1673/CH6/EX6.15/6_15.sce
|
d9a4a5d5071026f7dd9b742953f37ebd4b6da4f1
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 394
|
sce
|
6_15.sce
|
//euler's maclaurin formula
//example 6.15
//page 233
clc;clear;close;
y=[0 1 0];
h=%pi/4;
I=h*(y(1)+2*y(2)+y(3))/2+(h^2)/12+(h^4)/720;
printf(' the value of integrand with h=%f is : %f\n\n',h,I)
h=%pi/8;
y=[0 sin(%pi/8) sin(%pi*2/8) sin(%pi*3/8) sin(%pi*4/8)]
I=h*(y(1)+2*y(2)+2*y(3)+2*y(4)+y(5))/2+(h^2)/2+(h^2)/12+(h^4)/720;
printf(' the value of integrand with h=%f is : %f',h,I)
|
84a770cc44cc1e17f1daa021a21c043be314a1dd
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3886/CH15/EX15.8/15_8.sce
|
8d8a838f41e8df76a5166e60fad08e73084a0553
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 551
|
sce
|
15_8.sce
|
//Two incloned planes
//refer fig.15.10 (a),(b) and (c)
//Let the assembly move down the 60 degree plane by an acceleration a m/sec^2
//Consider the block weighing 100 N
//Applying equilibrium conditions
N1=50 //N
mu=1/3
//From law of friction
F1=mu*N1 //N
//T+((100*a)/(9.81))=69.93
//Now consider 50 N block
N2=50*cosd(30) //N
//From the law of friction
F2=mu*N2
//((50*a)/(9.81))-T=-39.43
//Solving we get
a=(69.93-39.43)*9.81/(100+50) //m/sec^2
T=69.93-(100*1.9947/9.81) //N
printf("\na=%.4f m/sec^2\nT=%.2f N",a,T)
|
986bdda443fb34f1c29240c9f25805a372c4e77a
|
573df9bfca39973c9bf2fa36f6e5af2643d7771e
|
/scilab/regressão/exemplo_reg_linear1.sce
|
18a1b2c0777223473c063761068fa90c37756903
|
[] |
no_license
|
DCC-CN/152cn
|
ef92c691edabe211b1a552dbb963f9fd9ceec94a
|
4fe0b02f961f37935a1335b5eac22d81400fa609
|
refs/heads/master
| 2016-08-13T01:34:17.966430
| 2015-04-07T07:31:58
| 2015-04-07T07:31:58
| 44,502,526
| 1
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 300
|
sce
|
exemplo_reg_linear1.sce
|
//
//
//
clear;
clc;
getd('../lib');
getd('.');
// exemplos do livro Algoritmos Numéricos, 2a. ediçao
x = [0.3 2.7 4.5 5.9 7.8];
y = [1.8 1.9 3.1 3.9 3.3];
[b1 b0 r2 s2] = reglin_simples(x, y, %T);
x_reg = linspace(0,10,1000);
y_reg = b1*x_reg + b0;
plot(x, y, 'g.');
plot(x_reg, y_reg, 'r-');
|
95f17cd2c878a844ee4d02722ac17f2c840cb3a8
|
20f46832ae88a89a38f61087f5c7b9be092760cf
|
/tspExamples.sci
|
00b85543f87e0ea07cf9df8f1ed928e835771873
|
[] |
no_license
|
valdron/tspscilab
|
beef362216b51a534e928a51a917f691cb99b846
|
c148f9a1d08d246966f23bcfb2739f2faa62526d
|
refs/heads/master
| 2020-06-11T13:57:36.005279
| 2016-12-08T20:54:27
| 2016-12-08T20:54:27
| 75,650,403
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 50,051
|
sci
|
tspExamples.sci
|
function tspExamples(example)
// TSP examples
//
// 1) 5 points
// 2) 5 cities in Germany (Google Maps)
// 3) 22 cities in Germany
// 4) 48 cities in North America
// 5) 59 cities in Germany
//
// OUTPUT (global variables):
// name ... n x 1 matrix with names
// dist ... n x n matrix with distances
// pos ... n x 2 matrix with 2D positions
//
//<-global--
global name dist pos;
//--global->
if argn(2) == 0 then
example = 1;
end
select example
case 1 then
pos = [
0 0;
2 0;
2 3;
1 5;
0 3;
];
n = size(pos,'r');
dist = zeros(n,n);
for i = 1:n
for j = 1:n
dist(i,j) = sqrt( (pos(i,1) - pos(j,1))^2 + (pos(i,2) - pos(j,2))^2);
end
end
name = [
'P1'
'P2'
'P3'
'P4'
'P5'
];
case 2 then
name = [
'Berlin'
'Hamburg'
'Koeln'
'Muenchen'
'Stuttgart'
];
pos = [
13.404954 52.520007
9.993682 53.551085
6.960279 50.937531
11.581981 48.135125
9.182932 48.775846
];
n = size(name,1);
dist = zeros(n,n);
for i = 1:n
for j = 1:n
dist(i,j) = sqrt( (pos(i,1) - pos(j,1))^2 + (pos(i,2) - pos(j,2))^2);
end
end
case 3
name = [
'Aachen'
'Augsburg'
'Braunschweig'
'Bremen'
'Essen'
'Freiburg'
'Hamburg'
'Hof'
'Karlsruhe'
'Kassel'
'Kiel'
'Koeln'
'Mannheim'
'Muenchen'
'Nuernberg'
'Passau'
'Regensburg'
'Saarbruecken'
'Wuerzburg'
'Bielefeld'
'Luebeck'
'Muenster'
];
dist = [
0 144 114 105 31 109 135 132 85 79 158 20 73 162 127 190 156 58 87 71 154 55
144 0 144 181 147 76 195 73 64 114 220 135 71 18 39 60 37 101 62 146 205 153
114 144 0 49 86 169 51 78 130 42 76 94 114 154 105 151 125 137 94 46 61 66
105 181 49 0 73 189 31 124 152 67 52 88 135 195 146 197 169 147 123 40 51 49
31 147 86 73 0 128 104 119 97 57 126 17 82 164 122 184 151 80 85 40 123 24
109 76 169 189 128 0 212 126 38 128 238 112 54 92 95 137 110 51 77 148 227 146
135 195 51 31 104 212 0 129 174 85 26 118 157 206 157 201 176 173 141 67 19 79
132 73 78 124 119 126 129 0 92 65 153 115 84 80 35 73 47 118 55 98 136 113
85 64 130 152 97 38 174 92 0 90 200 82 17 82 66 120 89 36 39 112 189 111
79 114 42 67 57 128 85 65 90 0 111 59 73 128 80 137 106 95 57 33 99 48
158 220 76 52 126 238 26 153 200 111 0 141 183 231 182 224 201 198 167 91 19 102
20 135 94 88 17 112 118 115 82 59 141 0 67 153 114 177 142 63 75 52 137 39
73 71 114 135 82 54 157 84 17 73 183 67 0 90 64 123 89 35 28 95 172 95
162 18 154 195 164 92 206 80 82 128 231 153 90 0 49 47 35 119 79 161 214 169
127 39 105 146 122 95 157 35 66 80 182 114 64 49 0 62 28 99 40 113 166 124
190 60 151 197 184 137 201 73 120 137 224 177 123 47 62 0 34 156 102 170 206 183
156 37 125 169 151 110 176 47 89 106 201 142 89 35 28 34 0 123 68 139 183 151
58 101 137 147 80 51 173 118 36 95 198 63 35 119 99 156 123 0 63 106 190 100
87 62 94 123 85 77 141 55 39 57 167 75 28 79 40 102 68 63 0 85 154 91
71 146 46 40 40 148 67 98 112 33 91 52 95 161 113 170 139 106 85 0 85 20
154 205 61 51 123 227 19 136 189 99 19 137 172 214 166 206 183 190 154 85 0 98
55 153 66 49 24 146 79 113 111 48 102 39 95 169 124 183 151 100 91 20 98 0
] ;
pos = [
-57.0 28.0
54.0 -65.0
46.0 79.0
8.0 111.0
-36.0 52.0
-22.0 -76.0
34.0 129.0
74.0 6.0
-6.0 -41.0
21.0 45.0
37.0 155.0
-38.0 35.0
-5.0 -24.0
70.0 -74.0
59.0 -26.0
114.0 -56.0
83.0 -41.0
-40.0 -28.0
21.0 -12.0
0.0 71.0
50.0 140.0
-20.0 70.0
];
case 4 then
pos = [
6734 1453
2233 10
5530 1424
401 841
3082 1644
7608 4458
7573 3716
7265 1268
6898 1885
1112 2049
5468 2606
5989 2873
4706 2674
4612 2035
6347 2683
6107 669
7611 5184
7462 3590
7732 4723
5900 3561
4483 3369
6101 1110
5199 2182
1633 2809
4307 2322
675 1006
7555 4819
7541 3981
3177 756
7352 4506
7545 2801
3245 3305
6426 3173
4608 1198
23 2216
7248 3779
7762 4595
7392 2244
3484 2829
6271 2135
4985 140
1916 1569
7280 4899
7509 3239
10 2676
6807 2993
5185 3258
3023 1942
];
name = string(1:size(pos,'r'))';
dist = [
0 4727 1205 6363 3657 3130 2414 563 463 5654 1713 1604 2368 2201 1290 1004 3833 2258 3419 2267 2957 720 1700 5279 2578 6076 3465 2654 3625 3115 1574 3951 1748 2142 6755 2383 3306 1029 3530 825 2188 4820 3489 1947 6835 1542 2379 3744
4727 0 3588 2012 1842 6977 6501 5187 5028 2327 4148 4723 3635 3125 4907 3930 7463 6338 7243 5105 4043 4022 3677 2863 3106 1850 7173 6630 1204 6814 6001 3447 5253 2656 3123 6274 7183 5622 3085 4564 2756 1591 7027 6186 3472 5461 4390 2088
1205 3588 0 5163 2458 3678 3071 1742 1444 4462 1184 1520 1498 1103 1501 951 4298 2903 3967 2169 2209 652 828 4136 1518 4873 3954 3254 2446 3581 2441 2960 1966 950 5564 2916 3878 2035 2482 1027 1395 3617 3891 2686 5661 2023 1867 2560
6363 2012 5163 0 2799 8064 7727 6878 6581 1402 5366 5946 4679 4378 6225 5709 8417 7578 8296 6135 4802 5707 4982 2322 4178 320 8186 7800 2778 7859 7408 3763 6461 4223 1427 7451 8263 7131 3669 6011 4638 1681 7987 7502 1877 6758 5360 2844
3657 1842 2458 2799 0 5330 4946 4200 3824 2012 2573 3157 1924 1580 3427 3179 5749 4793 5577 3409 2223 3066 2185 1860 1401 2491 5486 5035 894 5141 4611 1669 3677 1590 3113 4682 5533 4352 1252 3227 2426 1169 5313 4706 3241 3962 2651 304
3130 6977 3678 8064 5330 0 743 3209 2670 6929 2831 2266 3407 3854 2178 4076 727 881 293 1930 3310 3672 3315 6199 3932 7745 365 482 5774 261 1659 4513 1746 4431 7910 769 207 2225 4435 2681 5053 6384 550 1224 7805 1670 2704 5230
2414 6501 3071 7727 4946 743 0 2468 1952 6673 2380 1795 3051 3405 1604 3382 1469 168 1020 1681 3110 2993 2827 6009 3552 7412 1104 267 5300 821 916 4348 1270 3890 7698 332 900 1484 4185 2049 4415 6051 1219 482 7635 1054 2432 4884
563 5187 1742 6878 4200 3209 2468 0 718 6203 2241 2051 2920 2762 1687 1304 3932 2331 3487 2669 3487 1175 2260 5840 3141 6596 3563 2728 4120 3240 1559 4507 2082 2658 7304 2512 3364 985 4091 1319 2544 5358 3632 1987 7391 1785 2879 4296
463 5028 1444 6581 3824 2670 1952 718 0 5789 1602 1343 2330 2291 970 1451 3376 1796 2959 1951 2835 1112 1725 5346 2628 6285 3007 2193 3889 2661 1122 3920 1372 2391 6883 1927 2845 611 3543 676 2590 4993 3039 1486 6934 1112 2196 3876
5654 2327 4462 1402 2012 6929 6673 6203 5789 0 4392 4947 3648 3501 5274 5183 7216 6535 7140 5022 3621 5077 4090 922 3207 1131 7014 6714 2437 6707 6477 2476 5432 3599 1102 6376 7121 6284 2497 5160 4318 937 6795 6507 1268 5773 4249 1914
1713 4148 1184 5366 2573 2831 2380 2241 1602 4392 0 586 766 1029 883 2040 3353 2224 3100 1049 1246 1625 503 3841 1196 5054 3042 2488 2945 2676 2087 2331 1114 1650 5459 2132 3037 1958 1997 931 2513 3701 2923 2137 5459 1394 711 2534
1604 4723 1520 5946 3157 2266 1795 2051 1343 4947 586 0 1299 1612 406 2208 2824 1639 2542 694 1586 1767 1050 4357 1770 5633 2498 1907 3520 2128 1558 2778 531 2171 6003 1552 2472 1538 2506 791 2912 4277 2403 1564 5983 827 892 3109
2368 3635 1498 4679 1924 3407 3051 2920 2330 3648 766 1299 0 646 1642 2446 3840 2905 3655 1488 730 2096 697 3076 533 4363 3567 3122 2453 3219 2842 1592 1791 1480 4706 2772 3610 2721 1232 1656 2550 3001 3403 2860 4697 2126 756 1836
2201 3125 1103 4378 1580 3854 3405 2762 2291 3501 1029 1612 646 0 1853 2026 4349 3247 4119 1997 1341 1753 606 3078 419 4070 4052 3517 1923 3690 3032 1866 2142 838 4593 3161 4060 2788 1380 1663 1932 2736 3915 3138 4647 2395 1351 1592
1290 4907 1501 6225 3427 2178 1604 1687 970 5274 883 406 1642 1853 0 2029 2803 1438 2466 986 1987 1593 1253 4716 2072 5915 2454 1764 3710 2082 1204 3164 497 2287 6342 1419 2379 1134 2867 554 2885 4569 2405 1289 6338 555 1297 3406
1004 3930 951 5709 3179 4076 3382 1304 1451 5183 2040 2208 2446 2026 2029 0 4759 3220 4368 2900 3151 442 1765 4960 2444 5443 4396 3610 2932 4034 2572 3891 2525 1590 6278 3313 4261 2033 3398 1476 1241 4287 4390 2928 6419 2428 2749 3337
3833 7463 4298 8417 5749 727 1469 3932 3376 7216 3353 2824 3840 4349 2803 4759 0 1601 477 2359 3617 4345 3851 6433 4372 8098 370 1206 6267 726 2384 4754 2335 4991 8148 1452 609 2949 4752 3331 5687 6746 437 1948 8005 2334 3098 5618
2258 6338 2903 7578 4793 881 168 2331 1796 6535 2224 1639 2905 3247 1438 3220 1601 0 1165 1563 2988 2829 2666 5882 3401 7263 1233 399 5138 923 794 4227 1117 3724 7565 286 1049 1348 4051 1881 4248 5903 1322 355 7508 887 2302 4736
3419 7243 3967 8296 5577 293 1020 3487 2959 7140 3100 2542 3655 4119 2466 4368 477 1165 0 2170 3520 3965 3588 6393 4183 7977 202 767 6041 438 1932 4706 2027 4711 8107 1061 132 2503 4652 2972 5344 6617 486 1501 7989 1962 2939 5469
2267 5105 2169 6135 3409 1930 1681 2669 1951 5022 1049 694 1488 1997 986 2900 2359 1563 2170 0 1430 2460 1547 4333 2019 5817 2079 1694 3910 1733 1813 2668 654 2694 6029 1366 2130 1991 2525 1474 3542 4455 1923 1641 5957 1071 777 3302
2957 4043 2209 4802 2223 3310 3110 3487 2835 3621 1246 1586 730 1341 1987 3151 3617 2988 3520 1430 0 2779 1387 2905 1062 4482 3398 3119 2922 3087 3115 1240 1953 2175 4607 2796 3501 3119 1136 2173 3268 3136 3189 3029 4527 2355 711 2042
720 4022 652 5707 3066 3672 2993 1175 1112 5077 1625 1767 2096 1753 1593 442 4345 2829 3965 2460 2779 0 1401 4781 2166 5427 3984 3212 2946 3620 2224 3603 2089 1496 6178 2906 3861 1719 3132 1040 1479 4211 3969 2553 6290 2012 2336 3189
1700 3677 828 4982 2185 3315 2827 2260 1725 4090 503 1050 697 606 1253 1765 3851 2666 3588 1547 1387 1401 0 3621 903 4675 3537 2954 2475 3169 2427 2254 1578 1148 5177 2598 3521 2194 1833 1074 2054 3340 3423 2541 5213 1801 1077 2190
5279 2863 4136 2322 1860 6199 6009 5840 5346 922 3841 4357 3076 3078 4716 4960 6433 5882 6393 4333 2905 4781 3621 0 2718 2042 6254 6024 2569 5966 5913 1687 4807 3384 1716 5699 6384 5787 1852 4687 4285 1272 6022 5892 1629 5178 3581 1639
2578 3106 1518 4178 1401 3932 3552 3141 2628 3207 1196 1770 533 419 2072 2444 4372 3401 4183 2019 1062 2166 903 2718 0 3864 4097 3635 1932 3748 3274 1448 2284 1164 4286 3283 4136 3086 967 1973 2285 2507 3935 3331 4312 2589 1284 1340
6076 1850 4873 320 2491 7745 7412 6596 6285 1131 5054 5633 4363 4070 5915 5443 8098 7263 7977 5817 4482 5427 4675 2042 3864 0 7866 7483 2515 7539 7101 3449 6146 3938 1375 7134 7944 6831 3349 5709 4397 1363 7667 7190 1798 6446 5041 2528
3465 7173 3954 8186 5486 365 1104 3563 3007 7014 3042 2498 3567 4052 2454 4396 370 1233 202 2079 3398 3984 3537 6254 4097 7866 0 839 5973 374 2019 4569 1996 4669 7970 1085 305 2581 4532 2976 5339 6509 287 1581 7844 1974 2838 5369
2654 6630 3254 7800 5035 482 267 2728 2193 6714 2488 1907 3122 3517 1764 3610 1206 399 767 1694 3119 3212 2954 6024 3635 7483 839 0 5427 558 1181 4349 1377 4044 7723 356 653 1744 4218 2241 4614 6121 955 743 7644 1231 2465 4957
3625 1204 2446 2778 894 5774 5300 4120 3889 2437 2945 3520 2453 1923 3710 2932 6267 5138 6041 3910 2922 2946 2475 2569 1932 2515 5973 5427 0 5612 4824 2550 4050 1498 3476 5071 5980 4470 2096 3388 1911 1501 5831 4994 3704 4264 3209 1196
3115 6814 3581 7859 5141 261 821 3240 2661 6707 2676 2128 3219 3690 2082 4034 726 923 438 1733 3087 3620 3169 5966 3748 7539 374 558 5612 0 1716 4280 1624 4298 7679 735 420 2263 4216 2606 4967 6179 400 1277 7567 1609 2501 5032
1574 6001 2441 7408 4611 1659 916 1559 1122 6477 2087 1558 2842 3032 1204 2572 2384 794 1932 1813 3115 2224 2427 5913 3274 7101 2019 1181 4824 1716 0 4330 1180 3346 7545 1023 1808 578 4062 1438 3693 5763 2115 440 7537 763 2404 4603
3951 3447 2960 3763 1669 4513 4348 4507 3920 2476 2331 2778 1592 1866 3164 3891 4754 4227 4706 2668 1240 3603 2254 1687 1448 3449 4569 4349 2550 4280 4330 0 3184 2510 3402 4031 4698 4281 533 3245 3612 2187 4339 4265 3296 3576 1941 1381
1748 5253 1966 6461 3677 1746 1270 2082 1372 5432 1114 531 1791 2142 497 2525 2335 1117 2027 654 1953 2089 1578 4807 2284 6146 1996 1377 4050 1624 1180 3184 0 2685 6475 1022 1952 1341 2963 1050 3358 4787 1926 1086 6436 422 1244 3619
2142 2656 950 4223 1590 4431 3890 2658 2391 3599 1650 2171 1480 838 2287 1590 4991 3724 4711 2694 2175 1496 1148 3384 1164 3938 4669 4044 1498 4298 3346 2510 2685 0 4697 3693 4636 2975 1981 1909 1124 2718 4565 3548 4830 2839 2140 1751
6755 3123 5564 1427 3113 7910 7698 7304 6883 1102 5459 6003 4706 4593 6342 6278 8148 7565 8107 6029 4607 6178 5177 1716 4286 1375 7970 7723 3476 7679 7545 3402 6475 4697 0 7393 8097 7370 3515 6249 5379 2001 7738 7556 461 6829 5267 3013
2383 6274 2916 7451 4682 769 332 2512 1927 6376 2132 1552 2772 3161 1419 3313 1452 286 1061 1366 2796 2906 2598 5699 3283 7134 1085 356 5071 735 1023 4031 1022 3693 7393 0 965 1542 3883 1913 4286 5772 1121 600 7322 902 2128 4608
3306 7183 3878 8263 5533 207 900 3364 2845 7121 3037 2472 3610 4060 2379 4261 609 1049 132 2130 3501 3861 3521 6384 4136 7944 305 653 5980 420 1808 4698 1952 4636 8097 965 0 2380 4629 2877 5250 6583 570 1380 7986 1866 2904 5432
1029 5622 2035 7131 4352 2225 1484 985 611 6284 1958 1538 2721 2788 1134 2033 2949 1348 2503 1991 3119 1719 2194 5787 3086 6831 2581 1744 4470 2263 578 4281 1341 2975 7370 1542 2380 0 3952 1127 3197 5518 2658 1002 7395 951 2429 4380
3530 3085 2482 3669 1252 4435 4185 4091 3543 2497 1997 2506 1232 1380 2867 3398 4752 4051 4652 2525 1136 3132 1833 1852 967 3349 4532 4218 2096 4216 4062 533 2963 1981 3515 3883 4629 3952 0 2873 3080 2012 4324 4046 3478 3328 1755 1000
825 4564 1027 6011 3227 2681 2049 1319 676 5160 931 791 1656 1663 554 1476 3331 1881 2972 1474 2173 1040 1074 4687 1973 5709 2976 2241 3388 2606 1438 3245 1050 1909 6249 1913 2877 1127 2873 0 2374 4392 2943 1659 6285 1012 1563 3254
2188 2756 1395 4638 2426 5053 4415 2544 2590 4318 2513 2912 2550 1932 2885 1241 5687 4248 5344 3542 3268 1479 2054 4285 2285 4397 5339 4614 1911 4967 3693 3612 3358 1124 5379 4286 5250 3197 3080 2374 0 3386 5284 3997 5585 3386 3125 2664
4820 1591 3617 1681 1169 6384 6051 5358 4993 937 3701 4277 3001 2736 4569 4287 6746 5903 6617 4455 3136 4211 3340 1272 2507 1363 6509 6121 1501 6179 5763 2187 4787 2718 2001 5772 6583 5518 2012 4392 3386 0 6314 5837 2205 5095 3680 1169
3489 7027 3891 7987 5313 550 1219 3632 3039 6795 2923 2403 3403 3915 2405 4390 437 1322 486 1923 3189 3969 3423 6022 3935 7667 287 955 5831 400 2115 4339 1926 4565 7738 1121 570 2658 4324 2943 5284 6314 0 1676 7603 1964 2662 5184
1947 6186 2686 7502 4706 1224 482 1987 1486 6507 2137 1564 2860 3138 1289 2928 1948 355 1501 1641 3029 2553 2541 5892 3331 7190 1581 743 4994 1277 440 4265 1086 3548 7556 600 1380 1002 4046 1659 3997 5837 1676 0 7521 744 2325 4670
6835 3472 5661 1877 3241 7805 7635 7391 6934 1268 5459 5983 4697 4647 6338 6419 8005 7508 7989 5957 4527 6290 5213 1629 4312 1798 7844 7644 3704 7567 7537 3296 6436 4830 461 7322 7986 7395 3478 6285 5585 2205 7603 7521 0 6805 5208 3102
1542 5461 2023 6758 3962 1670 1054 1785 1112 5773 1394 827 2126 2395 555 2428 2334 887 1962 1071 2355 2012 1801 5178 2589 6446 1974 1231 4264 1609 763 3576 422 2839 6829 902 1866 951 3328 1012 3386 5095 1964 744 6805 0 1644 3928
2379 4390 1867 5360 2651 2704 2432 2879 2196 4249 711 892 756 1351 1297 2749 3098 2302 2939 777 711 2336 1077 3581 1284 5041 2838 2465 3209 2501 2404 1941 1244 2140 5267 2128 2904 2429 1755 1563 3125 3680 2662 2325 5208 1644 0 2532
3744 2088 2560 2844 304 5230 4884 4296 3876 1914 2534 3109 1836 1592 3406 3337 5618 4736 5469 3302 2042 3189 2190 1639 1340 2528 5369 4957 1196 5032 4603 1381 3619 1751 3013 4608 5432 4380 1000 3254 2664 1169 5184 4670 3102 3928 2532 0
];
case 5 then
name = [
'Augsburg'
'Bielefeld'
'Bochum'
'Bremen'
'Darmstadt'
'Essen'
'Freiburg'
'Giessen'
'Hamburg'
'Hannover'
'Heilbronn'
'Kaiserslautern'
'Karlsruhe'
'Kassel'
'Kempten'
'Koblenz'
'Koeln'
'Landshut'
'Lichtenfels'
'Mainz'
'Muenchen'
'Muenster'
'Neuss'
'Nuernburg'
'Oldenburg'
'Regensburg'
'Rendsburg'
'Stuttgart'
'Ulm'
'Wuerzburg'
'Aachen'
'Ansbach'
'Aschaffenburg'
'Bamberg'
'Bayreuth'
'Bonn'
'Braunschweig'
'Bremen'
'Coburg'
'Dortmund'
'Duesseldorf'
'Duisburg'
'Erlangen'
'Frankfurt'
'Fulda'
'Fuerth'
'Gelsen-Kirchen'
'Gummersburg'
'Hagen'
'Hersbruck'
'Ingolstadt'
'Kiel'
'Mannheim'
'Marburg'
'Offenburg'
'Osnabrueck'
'Reutlingen'
'Saarbruecken'
'Siegen'
];
dist = [
0 146 145 181 77 147 76 100 195 151 49 84 64 114 29 108 135 32 64 88 18 153 145 39 188 37 219 44 24 57 144 38 74 57 58 126 144 189 69 140 144 151 44 84 85 40 149 127 138 40 19 220 71 106 72 160 42 101 116
146 0 35 40 80 40 148 51 67 30 109 99 112 33 165 65 52 154 92 74 161 20 50 113 43 139 86 120 139 88 71 108 78 95 102 57 46 47 87 27 47 47 108 71 61 111 37 42 33 116 134 91 95 43 130 14 129 106 45
145 35 0 69 69 5 129 45 100 66 100 79 97 52 158 43 19 160 104 60 162 20 15 119 66 147 115 110 132 89 36 110 71 104 113 28 81 74 99 10 12 12 114 61 67 116 4 18 7 123 137 122 81 41 111 35 119 81 29
181 40 69 0 120 73 189 91 31 33 149 140 152 67 203 105 88 185 122 115 195 49 84 146 13 169 46 160 177 125 105 143 118 127 131 96 49 7 117 63 81 78 140 111 97 144 69 81 70 148 168 52 135 83 170 34 169 147 86
77 80 69 120 0 71 70 29 141 96 31 27 32 57 89 31 58 97 57 11 94 81 68 60 123 88 164 41 63 30 68 47 6 53 64 49 98 127 56 66 67 74 57 9 33 57 73 51 63 65 73 167 16 37 52 91 50 45 40
147 40 5 73 71 0 128 48 104 71 102 79 97 57 160 43 17 163 107 61 164 24 10 122 69 151 119 111 134 92 31 113 73 108 117 27 86 77 103 15 8 7 118 63 71 119 4 20 11 126 140 126 82 44 111 39 120 80 31
76 148 129 189 70 128 0 98 212 167 50 50 38 128 61 86 112 109 109 74 92 146 121 95 190 110 234 43 53 83 109 81 74 101 110 101 169 195 111 130 122 128 96 79 102 93 132 112 125 99 89 238 54 106 18 158 38 51 104
100 51 45 91 29 48 98 0 114 69 59 50 61 32 116 26 40 115 61 24 117 53 49 74 94 103 135 70 90 44 57 65 27 60 70 35 74 98 58 39 47 53 70 20 25 71 49 28 38 78 92 139 44 8 80 62 78 62 17
195 67 100 31 141 104 212 114 0 45 168 164 174 85 219 132 118 193 132 138 206 79 114 157 41 176 25 179 194 141 135 157 138 138 140 124 51 31 126 93 111 109 151 133 114 155 99 109 99 157 179 26 157 105 194 64 188 173 112
151 30 66 33 96 71 167 69 45 0 123 120 129 39 174 90 82 152 90 94 163 50 81 114 44 136 69 133 149 96 101 113 93 95 99 86 18 41 84 57 78 78 108 88 69 112 68 70 63 115 136 71 112 61 149 38 142 131 71
49 109 100 149 31 102 50 59 168 123 0 35 18 83 58 60 88 76 59 40 68 112 98 48 152 71 191 11 32 32 95 33 31 51 60 78 121 156 60 97 97 104 48 39 54 45 104 82 94 53 51 194 22 66 36 122 20 52 71
84 99 79 140 27 79 50 50 164 120 35 0 21 82 87 36 63 111 82 25 102 96 73 80 140 105 185 40 64 53 64 65 33 77 87 52 124 146 82 80 73 80 78 33 61 77 83 62 75 85 86 190 16 58 32 108 45 19 54
64 112 97 152 32 97 38 61 174 129 18 21 0 90 65 54 82 93 75 38 82 111 92 66 155 89 196 19 43 47 85 51 36 68 78 72 130 159 76 96 92 99 66 41 64 64 100 79 91 71 69 200 17 69 20 123 24 36 69
114 33 52 67 57 57 128 32 85 39 83 82 90 0 136 57 59 120 59 56 128 48 64 80 73 106 108 94 110 57 79 76 53 62 68 59 42 74 53 42 61 64 75 49 30 78 56 45 46 83 102 111 73 25 110 48 103 95 40
29 165 158 203 89 160 61 116 219 174 58 87 65 136 0 117 146 58 91 98 35 170 156 67 208 66 243 48 26 78 151 62 88 83 86 136 169 210 95 155 155 162 71 97 105 67 162 140 152 69 48 245 78 123 64 178 41 99 129
108 65 43 105 31 43 86 26 132 90 60 36 54 57 117 0 28 128 82 19 126 60 38 90 105 118 151 69 92 59 37 77 35 80 90 18 98 111 80 44 38 45 86 26 49 87 47 26 39 95 104 157 38 31 68 73 76 41 19
135 52 19 88 58 17 112 40 118 82 88 63 82 59 146 28 0 154 102 47 153 39 10 114 85 142 134 97 120 83 20 103 61 101 111 10 94 93 98 25 10 16 110 51 66 111 21 14 19 118 130 141 67 40 95 54 105 63 23
32 154 160 185 97 163 109 115 193 152 76 111 93 120 58 128 154 0 62 109 23 165 163 41 193 16 218 74 56 71 166 51 93 58 53 146 141 192 67 154 162 168 46 103 94 43 164 144 153 38 24 217 96 119 104 168 74 129 132
64 92 104 122 57 107 109 61 132 90 59 82 75 59 91 82 102 62 0 67 73 105 110 25 131 47 157 66 69 29 118 30 51 8 9 96 80 130 5 96 108 113 20 58 36 24 108 89 96 25 47 157 67 63 95 107 73 101 79
88 74 60 115 11 61 74 24 138 94 40 25 38 56 98 19 47 109 67 0 106 73 58 71 117 99 160 50 73 41 57 58 16 63 74 38 98 121 65 58 57 63 68 9 38 68 64 41 54 76 84 164 21 32 55 85 58 39 31
18 161 162 195 94 164 92 117 206 163 68 102 82 128 35 126 153 23 73 106 0 169 163 49 202 35 231 63 41 73 162 52 91 67 66 144 154 202 79 157 162 168 54 101 99 50 166 144 155 48 26 231 90 122 89 175 60 119 133
153 20 20 49 81 24 146 53 79 50 112 96 111 48 170 60 39 165 105 73 169 0 34 124 46 151 95 123 143 96 55 117 81 107 115 47 66 54 100 16 32 29 119 72 71 121 19 34 21 127 144 102 95 47 128 15 131 100 42
145 50 15 84 68 10 121 49 114 81 98 73 92 64 156 38 10 163 110 58 163 34 0 123 79 151 129 108 131 92 21 112 71 110 119 20 95 88 106 24 3 7 119 61 73 120 15 20 18 127 140 136 77 47 105 50 115 72 31
39 113 119 146 60 122 95 74 157 114 48 80 66 80 67 90 114 41 25 71 49 124 123 0 153 28 181 52 48 31 127 15 55 18 18 106 105 153 30 113 121 127 5 64 53 3 123 103 112 5 22 182 64 78 83 128 56 99 92
188 43 66 13 123 69 190 94 41 44 152 140 155 73 208 105 85 193 131 117 202 46 79 153 0 178 50 163 182 131 100 150 121 135 140 93 61 10 125 62 77 73 148 114 103 151 64 80 68 156 175 58 138 86 172 32 172 146 86
37 139 147 169 88 151 110 103 176 136 71 105 89 106 66 118 142 16 47 99 35 151 151 28 178 0 201 71 58 59 156 41 83 43 37 135 125 177 52 140 150 156 32 92 80 31 151 131 140 24 21 201 89 106 102 154 73 123 120
219 86 115 46 164 119 234 135 25 69 191 185 196 108 243 151 134 218 157 160 231 95 129 181 50 201 0 202 218 165 150 181 161 163 165 142 76 41 151 110 127 123 176 155 138 180 114 127 116 182 204 10 179 127 215 80 211 193 132
44 120 110 160 41 111 43 70 179 133 11 40 19 94 48 69 97 74 66 50 63 123 108 52 163 71 202 0 24 41 103 38 42 58 67 87 132 167 68 108 107 114 53 50 65 50 114 92 104 56 51 205 30 77 31 132 9 56 81
24 139 132 177 63 134 53 90 194 149 32 64 43 110 26 92 120 56 69 73 41 143 131 48 182 58 218 24 0 53 127 39 62 61 66 111 144 184 73 129 130 137 51 71 80 47 136 114 126 51 37 220 53 97 48 152 19 79 103
57 88 89 125 30 92 83 44 141 96 32 53 47 57 78 59 83 71 29 41 73 96 92 31 131 59 165 41 53 0 96 20 24 23 34 75 92 132 29 84 91 97 27 33 27 28 94 73 82 35 48 167 37 49 67 102 49 72 61
144 71 36 105 68 31 109 57 135 101 95 64 85 79 151 37 20 166 118 57 162 55 21 127 100 156 150 103 127 96 0 115 72 116 127 22 114 109 115 44 24 26 124 63 83 124 36 33 38 132 142 158 73 59 94 71 110 58 41
38 108 110 143 47 113 81 65 157 113 33 65 51 76 62 77 103 51 30 58 52 117 112 15 150 41 181 38 39 20 115 0 42 22 29 95 107 151 34 104 111 117 14 52 47 12 114 93 103 20 27 183 49 70 68 122 43 84 82
74 78 71 118 6 73 74 27 138 93 31 33 36 53 88 35 61 93 51 16 91 81 71 55 121 83 161 42 62 24 72 42 0 47 58 52 94 125 50 67 70 76 51 9 28 52 75 53 64 60 69 164 20 35 56 90 51 51 41
57 95 104 127 53 108 101 60 138 95 51 77 68 62 83 80 101 58 8 63 67 107 110 18 135 43 163 58 61 23 116 22 47 0 11 94 87 135 12 97 107 113 13 54 37 17 108 89 97 20 41 163 61 63 87 110 65 96 78
58 102 113 131 64 117 110 70 140 99 60 87 78 68 86 90 111 53 9 74 66 115 119 18 140 37 165 67 66 34 127 29 58 11 0 105 89 139 15 106 117 123 15 65 46 19 117 99 106 18 40 165 71 72 96 117 72 106 88
126 57 28 96 49 27 101 35 124 86 78 52 72 59 136 18 10 146 96 38 144 47 20 106 93 135 142 87 111 75 22 95 52 94 105 0 97 101 93 32 20 27 102 43 60 103 31 15 26 111 122 148 57 37 84 62 95 53 19
144 46 81 49 98 86 169 74 51 18 121 124 130 42 169 98 94 141 80 98 154 66 95 105 61 125 76 132 144 92 114 107 94 87 89 97 0 56 75 71 92 93 100 91 67 104 83 82 77 106 128 76 114 67 151 56 141 137 80
189 47 74 7 127 77 195 98 31 41 156 146 159 74 210 111 93 192 130 121 202 54 88 153 10 177 41 167 184 132 109 151 125 135 139 101 56 0 124 69 85 82 148 118 104 151 73 86 75 155 175 48 142 90 177 39 176 152 92
69 87 99 117 56 103 111 58 126 84 60 82 76 53 95 80 98 67 5 65 79 100 106 30 125 52 151 68 73 29 115 34 50 12 15 93 75 124 0 91 104 109 25 56 32 29 103 86 92 31 52 152 67 59 96 102 76 101 75
140 27 10 63 66 15 130 39 93 57 97 80 96 42 155 44 25 154 96 58 157 16 24 113 62 140 110 108 129 84 44 104 67 97 106 32 71 69 91 0 21 22 108 57 60 110 13 18 6 116 132 116 79 34 112 30 116 84 26
144 47 12 81 67 8 122 47 111 78 97 73 92 61 155 38 10 162 108 57 162 32 3 121 77 150 127 107 130 91 24 111 70 107 117 20 92 85 104 21 0 6 117 60 71 118 12 18 15 125 138 134 77 45 105 47 115 73 29
151 47 12 78 74 7 128 53 109 78 104 80 99 64 162 45 16 168 113 63 168 29 7 127 73 156 123 114 137 97 26 117 76 113 123 27 93 82 109 22 6 0 123 66 76 124 10 24 18 131 145 131 84 50 111 45 122 79 35
44 108 114 140 57 118 96 70 151 108 48 78 66 75 71 86 110 46 20 68 54 119 119 5 148 32 176 53 51 27 124 14 51 13 15 102 100 148 25 108 117 123 0 60 48 4 119 99 107 8 27 177 62 73 83 122 58 97 87
84 71 61 111 9 63 79 20 133 88 39 33 41 49 97 26 51 103 58 9 101 72 61 64 114 92 155 50 71 33 63 52 9 54 65 43 91 118 56 57 60 66 60 0 29 61 65 43 55 69 79 159 24 28 60 82 59 48 32
85 61 67 97 33 71 102 25 114 69 54 61 64 30 105 49 66 94 36 38 99 71 73 53 103 80 138 65 80 27 83 47 28 37 46 60 67 104 32 60 71 76 48 29 0 50 71 53 60 56 73 140 49 26 84 75 74 77 43
40 111 116 144 57 119 93 71 155 112 45 77 64 78 67 87 111 43 24 68 50 121 120 3 151 31 180 50 47 28 124 12 52 17 19 103 104 151 29 110 118 124 4 61 50 0 121 100 109 8 24 181 61 75 81 125 55 96 89
149 37 4 69 73 4 132 49 99 68 104 83 100 56 162 47 21 164 108 64 166 19 15 123 64 151 114 114 136 94 36 114 75 108 117 31 83 73 103 13 12 10 119 65 71 121 0 22 11 127 142 121 85 45 115 35 122 84 33
127 42 18 81 51 20 112 28 109 70 82 62 79 45 140 26 14 144 89 41 144 34 20 103 80 131 127 92 114 73 33 93 53 89 99 15 82 86 86 18 18 24 99 43 53 100 22 0 13 107 120 133 62 27 94 48 100 65 11
138 33 7 70 63 11 125 38 99 63 94 75 91 46 152 39 19 153 96 54 155 21 18 112 68 140 116 104 126 82 38 103 64 97 106 26 77 75 92 6 15 18 107 55 60 109 11 13 0 116 130 122 75 34 107 36 113 78 22
40 116 123 148 65 126 99 78 157 115 53 85 71 83 69 95 118 38 25 76 48 127 127 5 156 24 182 56 51 35 132 20 60 20 18 111 106 155 31 116 125 131 8 69 56 8 127 107 116 0 22 183 69 82 88 130 61 104 96
19 134 137 168 73 140 89 92 179 136 51 86 69 102 48 104 130 24 47 84 26 144 140 22 175 21 204 51 37 48 142 27 69 41 40 122 128 175 52 132 138 145 27 79 73 24 142 120 130 22 0 204 72 97 81 149 51 104 109
220 91 122 52 167 126 238 139 26 71 194 190 200 111 245 157 141 217 157 164 231 102 136 182 58 201 10 205 220 167 158 183 164 163 165 148 76 48 152 116 134 131 177 159 140 181 121 133 122 183 204 0 183 131 219 86 214 198 137
71 95 81 135 16 82 54 44 157 112 22 16 17 73 78 38 67 96 67 21 90 95 77 64 138 89 179 30 53 37 73 49 20 61 71 57 114 142 67 79 77 84 62 24 49 61 85 62 75 69 72 183 0 52 36 106 38 35 53
106 43 41 83 37 44 106 8 105 61 66 58 69 25 123 31 40 119 63 32 122 47 47 78 86 106 127 77 97 49 59 70 35 63 72 37 67 90 59 34 45 50 73 28 26 75 45 27 34 82 97 131 52 0 88 55 86 70 18
72 130 111 170 52 111 18 80 194 149 36 32 20 110 64 68 95 104 95 55 89 128 105 83 172 102 215 31 48 67 94 68 56 87 96 84 151 177 96 112 105 111 83 60 84 81 115 94 107 88 81 219 36 88 0 140 30 37 86
160 14 35 34 91 39 158 62 64 38 122 108 123 48 178 73 54 168 107 85 175 15 50 128 32 154 80 132 152 102 71 122 90 110 117 62 56 39 102 30 47 45 122 82 75 125 35 48 36 130 149 86 106 55 140 0 141 114 54
42 129 119 169 50 120 38 78 188 142 20 45 24 103 41 76 105 74 73 58 60 131 115 56 172 73 211 9 19 49 110 43 51 65 72 95 141 176 76 116 115 122 58 59 74 55 122 100 113 61 51 214 38 86 30 141 0 60 90
101 106 81 147 45 80 51 62 173 131 52 19 36 95 99 41 63 129 101 39 119 100 72 99 146 123 193 56 79 72 58 84 51 96 106 53 137 152 101 84 73 79 97 48 77 96 84 65 78 104 104 198 35 70 37 114 60 0 60
116 45 29 86 40 31 104 17 112 71 71 54 69 40 129 19 23 132 79 31 133 42 31 92 86 120 132 81 103 61 41 82 41 78 88 19 80 92 75 26 29 35 87 32 43 89 33 11 22 96 109 137 53 18 86 54 90 60 0
];
pos = [
54.0 -65.0
0.0 71.0
-31.0 53.0
8.0 111.0
1.0 -9.0
-36.0 52.0
-22.0 -76.0
0.0 20.0
34.0 129.0
28.0 84.0
12.0 -38.0
-21.0 -26.0
-6.0 -41.0
21.0 45.0
38.0 -90.0
-24.0 10.0
-38.0 35.0
86.0 -57.0
58.0 -1.0
-9.0 -3.0
70.0 -74.0
-20.0 70.0
-43.0 44.0
59.0 -26.0
-5.0 114.0
83.0 -41.0
27.0 153.0
12.0 -49.0
30.0 -65.0
31.0 -12.0
-57.0 28.0
44.0 -28.0
7.0 -7.0
54.0 -8.0
65.0 -8.0
-35.0 25.0
46.0 79.0
5.0 118.0
56.0 4.0
-21.0 54.0
-40.0 45.0
-43.0 51.0
57.0 -21.0
0.0 0.0
25.0 15.0
56.0 -25.0
-34.0 56.0
-24.0 36.0
-25.0 49.0
64.0 -26.0
63.0 -48.0
37.0 155.0
-5.0 -24.0
2.0 28.0
-18.0 -58.0
-10.0 82.0
12.0 -58.0
-40.0 -28.0
-16.0 28.0
];
end
endfunction
|
a64a5e427183996003c5d42e30a2de1e5927b9df
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3369/CH12/EX12.7/Ex12_7.sce
|
d21a8d60e1d6eacf42e7be36867da274243fc56f
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 417
|
sce
|
Ex12_7.sce
|
//Chapter 12,Example 7, page 410
//Determine the induced sheath voltage
clear
clc
D = 15 // cm
rsh = 5.5/2 // Sheath diameter converted to radius in cm
I = 250 // A
E = 2*10^-7*314*I*log(D/rsh)*10^3
printf("\n Induced sheath voltage per Km = %f V/km",E)
printf("\n If the sheaths are bonded at one end, the voltage between them at the other end = = %f V/km",E*sqrt(3))
// Answers may vary due to round off errors.
|
257b8b149cb5a20b4651691228e643a60ec1d48e
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1445/CH7/EX7.4/ch7_ex_4.sce
|
61e99861b24df254d4c4f3fd40c2a37d4ca8f035
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 781
|
sce
|
ch7_ex_4.sce
|
//CHAPTER 7- SINGLE PHASE TRANSFORMER
//Example 4
disp("CHAPTER 7");
disp("EXAMPLE 4");
//VARIABLE INITIALIZATION
va=10*1000; //apparent power
N1=50; //number of turns on primary side
N2=10; //number of turns on secondary side
v1=440; //primary voltage in Volts
f=50; //in Hertz
//SOLUTION
//solution (a)
v2=v1*(N2/N1);
disp(sprintf("(a) The secondary voltage on no load is %d V",v2));
//solution (b)
I1=va/v1;
disp(sprintf("(b) The full load primary current is %f A",I1));
I2=va/v2;
disp(sprintf("The full load secondary current is %f A",I2));
//solution (c)
phi_m=v2/(4.44*N1*N2);
disp(sprintf("(c) The maximum value of the flux is %f mWb",phi_m*1000));
//END
|
0f55f895b3124bd3aa84bac5443f7e15c9ef94f0
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3840/CH4/EX4.11/Ex4_11.sce
|
f6026a98c15dfc9188d6f37133e7dd9985082578
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 584
|
sce
|
Ex4_11.sce
|
clear
//
//
//
//Variable declaration
L=2*10**-10 //length(m)
n2=2
n4=4
m=9.1*10**-31 //mass(kg)
e=1.6*10**-19 //charge(c)
h=6.63*10**-34 //plank constant
//Calculation
E1=h**2/(8*m*e*L**2) //minimum energy(eV)
E2=n2**2*E1 //energy of 1st excited state(eV)
E4=n4**2*E1 //energy of 2nd excited state(eV)
//Result
printf("\n ground state energy is %0.2f eV",E1)
printf("\n energy of 1st excited state is %0.3f eV",E2)
printf("\n energy of 2nd excited state is %0.2f eV",E4)
printf("\n answers for energy of 1st and 2nd states given in the book are wrong")
|
005c148dc76d26feb41874be5415741ce0544df0
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2837/CH23/EX23.6/Ex23_6.sce
|
ce93cb311dc5474cd3ec67d14865925c739540bb
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 447
|
sce
|
Ex23_6.sce
|
clc
clear
//Initalization of variables
rel=0.6
p1=0.6982 //psia
pa=14.7 //psia
t1=90 //F
t2=54.94 //F
cp=0.24
p2=0.2136 //psia
vol=4000 //ft
t3=538 //R
R=53.35
//calculations
act1=rel*p1
sh1=0.622*act1/(pa-act1)
hm1=cp*t1+sh1*1100.9
sh2=0.622*p2/(pa-p2)
hm2=cp*t2+sh2*1085.8
con=sh1-sh2
enth=con*23.01
heat=hm1-hm2-enth
mass=144*(pa-p2)*vol/(R*(t3))
tonnage=mass*heat/200
//results
printf("Tonnage = %.1f tons ",tonnage)
|
02d0d2ddccb518f5b5a884f8e9fc5b50a3c2b464
|
8217f7986187902617ad1bf89cb789618a90dd0a
|
/source/2.2/macros/auto/lqe.sci
|
c1de1cebe9dfae1f9636f242afaf7d3bff8d5bcc
|
[
"MIT",
"LicenseRef-scancode-warranty-disclaimer",
"LicenseRef-scancode-public-domain"
] |
permissive
|
clg55/Scilab-Workbench
|
4ebc01d2daea5026ad07fbfc53e16d4b29179502
|
9f8fd29c7f2a98100fa9aed8b58f6768d24a1875
|
refs/heads/master
| 2023-05-31T04:06:22.931111
| 2022-09-13T14:41:51
| 2022-09-13T14:41:51
| 258,270,193
| 0
| 1
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 102
|
sci
|
lqe.sci
|
function [K,X]=lqe(P21)
[A,B1,C2,D21,xo,dom]=P21(2:7)
[kk,X]=lqr(syslin(dom,A',C2',B1',D21'));
K=kk';
|
ab95f4a33c888820a459bcfd621819ea333e14fe
|
36c5f94ce0d09d8d1cc8d0f9d79ecccaa78036bd
|
/funscenario-invincible.sce
|
e6edfe346718493c1d2e666517d453298f2672b5
|
[] |
no_license
|
Ahmad6543/Scenarios
|
cef76bf19d46e86249a6099c01928e4e33db5f20
|
6a4563d241e61a62020f76796762df5ae8817cc8
|
refs/heads/master
| 2023-03-18T23:30:49.653812
| 2020-09-23T06:26:05
| 2020-09-23T06:26:05
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 41,749
|
sce
|
funscenario-invincible.sce
|
Name=funscenario-invincible
PlayerCharacters=A_air_lg_frozen;MovingTarget
BotCharacters=MovingTarget.bot
IsChallenge=true
Timelimit=30.0
PlayerProfile=A_air_lg_frozen
AddedBots=MovingTarget.bot
PlayerMaxLives=0
BotMaxLives=0
PlayerTeam=1
BotTeams=2
MapName=square_1wall_clip_med_1spawn.map
MapScale=1.0
BlockProjectilePredictors=true
BlockCheats=true
InvinciblePlayer=false
InvincibleBots=true
Timescale=1.0
BlockHealthbars=false
TimeRefilledByKill=0.0
ScoreToWin=1.0
ScorePerDamage=1.0
ScorePerKill=0.0
ScorePerMidairDirect=0.0
ScorePerAnyDirect=0.0
ScorePerTime=0.0
ScoreLossPerDamageTaken=0.0
ScoreLossPerDeath=0.0
ScoreLossPerMidairDirected=0.0
ScoreLossPerAnyDirected=0.0
ScoreMultAccuracy=false
ScoreMultDamageEfficiency=false
ScoreMultKillEfficiency=false
GameTag=fun
WeaponHeroTag=lg
DifficultyTag=3
AuthorsTag=faleene, apa3
BlockHitMarkers=false
BlockHitSounds=false
BlockMissSounds=true
BlockFCT=false
Description=flicktrack bounce edit
GameVersion=1.0.6.2
ScorePerDistance=0.0
[Aim Profile]
Name=Default
MinReactionTime=0.3
MaxReactionTime=0.4
MinSelfMovementCorrectionTime=0.001
MaxSelfMovementCorrectionTime=0.05
FlickFOV=30.0
FlickSpeed=1.5
FlickError=15.0
TrackSpeed=3.5
TrackError=3.5
MaxTurnAngleFromPadCenter=75.0
MinRecenterTime=0.3
MaxRecenterTime=0.5
OptimalAimFOV=30.0
OuterAimPenalty=1.0
MaxError=40.0
ShootFOV=15.0
VerticalAimOffset=0.0
MaxTolerableSpread=5.0
MinTolerableSpread=1.0
TolerableSpreadDist=2000.0
MaxSpreadDistFactor=2.0
[Bot Profile]
Name=MovingTarget
DodgeProfileNames=Long Strafes 2
DodgeProfileWeights=1.0
DodgeProfileMaxChangeTime=5.0
DodgeProfileMinChangeTime=1.0
WeaponProfileWeights=1.0;1.0;1.0;1.0;1.0;1.0;1.0;1.0
AimingProfileNames=Default;Default;Default;Default;Default;Default;Default;Default
WeaponSwitchTime=3.0
UseWeapons=false
CharacterProfile=MovingTarget
SeeThroughWalls=false
[Character Profile]
Name=A_air_lg_frozen
MaxHealth=100.0
WeaponProfileNames=LG;;;;;;;
MinRespawnDelay=1.0
MaxRespawnDelay=5.0
StepUpHeight=75.0
CrouchHeightModifier=0.5
CrouchAnimationSpeed=1.0
CameraOffset=X=0.000 Y=0.000 Z=0.000
HeadshotOnly=false
DamageKnockbackFactor=8.0
MovementType=Base
MaxSpeed=0.0
MaxCrouchSpeed=500.0
Acceleration=16000.0
AirAcceleration=16000.0
Friction=8.0
BrakingFrictionFactor=2.0
JumpVelocity=0.0
Gravity=0.2
AirControl=1.0
CanCrouch=true
CanPogoJump=false
CanCrouchInAir=false
CanJumpFromCrouch=false
EnemyBodyColor=X=255.000 Y=0.000 Z=0.000
EnemyHeadColor=X=255.000 Y=255.000 Z=255.000
TeamBodyColor=X=0.000 Y=0.000 Z=255.000
TeamHeadColor=X=255.000 Y=255.000 Z=255.000
BlockSelfDamage=false
InvinciblePlayer=false
InvincibleBots=false
BlockTeamDamage=false
AirJumpCount=0
AirJumpVelocity=800.0
MainBBType=Cylindrical
MainBBHeight=230.0
MainBBRadius=55.0
MainBBHasHead=true
MainBBHeadRadius=45.0
MainBBHeadOffset=0.0
MainBBHide=false
ProjBBType=Cylindrical
ProjBBHeight=230.0
ProjBBRadius=55.0
ProjBBHasHead=true
ProjBBHeadRadius=45.0
ProjBBHeadOffset=0.0
ProjBBHide=true
HasJetpack=false
JetpackActivationDelay=0.2
JetpackFullFuelTime=4.0
JetpackFuelIncPerSec=1.0
JetpackFuelRegensInAir=false
JetpackThrust=6000.0
JetpackMaxZVelocity=400.0
JetpackAirControlWithThrust=0.25
AbilityProfileNames=;;;
HideWeapon=false
AerialFriction=0.3
StrafeSpeedMult=1.0
BackSpeedMult=1.0
RespawnInvulnTime=0.0
BlockedSpawnRadius=0.0
BlockSpawnFOV=0.0
BlockSpawnDistance=0.0
RespawnAnimationDuration=0.5
AllowBufferedJumps=true
BounceOffWalls=false
LeanAngle=0.0
LeanDisplacement=0.0
AirJumpExtraControl=0.0
ForwardSpeedBias=1.0
HealthRegainedonkill=0.0
HealthRegenPerSec=0.0
HealthRegenDelay=0.0
JumpSpeedPenaltyDuration=0.0
JumpSpeedPenaltyPercent=0.0
ThirdPersonCamera=false
TPSArmLength=300.0
TPSOffset=X=0.000 Y=150.000 Z=150.000
BrakingDeceleration=2048.0
VerticalSpawnOffset=0.0
[Character Profile]
Name=MovingTarget
MaxHealth=10000.0
WeaponProfileNames=;;;;;;;
MinRespawnDelay=0.1
MaxRespawnDelay=0.4
StepUpHeight=75.0
CrouchHeightModifier=1.0
CrouchAnimationSpeed=1.0
CameraOffset=X=0.000 Y=0.000 Z=0.000
HeadshotOnly=false
DamageKnockbackFactor=0.0
MovementType=Base
MaxSpeed=1000.0
MaxCrouchSpeed=1.0
Acceleration=4000.0
AirAcceleration=16000.0
Friction=0.0
BrakingFrictionFactor=0.0
JumpVelocity=1700.0
Gravity=2.0
AirControl=0.25
CanCrouch=false
CanPogoJump=false
CanCrouchInAir=false
CanJumpFromCrouch=false
EnemyBodyColor=X=1.000 Y=0.725 Z=0.000
EnemyHeadColor=X=255.000 Y=0.725 Z=0.000
TeamBodyColor=X=0.000 Y=0.000 Z=255.000
TeamHeadColor=X=255.000 Y=255.000 Z=255.000
BlockSelfDamage=false
InvinciblePlayer=false
InvincibleBots=false
BlockTeamDamage=false
AirJumpCount=0
AirJumpVelocity=400.0
MainBBType=Spheroid
MainBBHeight=76.0
MainBBRadius=38.0
MainBBHasHead=false
MainBBHeadRadius=35.0
MainBBHeadOffset=-50.0
MainBBHide=false
ProjBBType=Spheroid
ProjBBHeight=0.2
ProjBBRadius=0.1
ProjBBHasHead=false
ProjBBHeadRadius=0.1
ProjBBHeadOffset=0.0
ProjBBHide=true
HasJetpack=false
JetpackActivationDelay=0.0
JetpackFullFuelTime=100000.0
JetpackFuelIncPerSec=0.1
JetpackFuelRegensInAir=true
JetpackThrust=6000.0
JetpackMaxZVelocity=400.0
JetpackAirControlWithThrust=0.0
AbilityProfileNames=;;;
HideWeapon=true
AerialFriction=0.0
StrafeSpeedMult=1.0
BackSpeedMult=1.0
RespawnInvulnTime=0.0
BlockedSpawnRadius=0.0
BlockSpawnFOV=0.0
BlockSpawnDistance=0.0
RespawnAnimationDuration=0.0
AllowBufferedJumps=true
BounceOffWalls=false
LeanAngle=0.0
LeanDisplacement=0.0
AirJumpExtraControl=0.0
ForwardSpeedBias=1.0
HealthRegainedonkill=0.0
HealthRegenPerSec=0.0
HealthRegenDelay=0.0
JumpSpeedPenaltyDuration=0.0
JumpSpeedPenaltyPercent=0.0
ThirdPersonCamera=false
TPSArmLength=300.0
TPSOffset=X=0.000 Y=150.000 Z=150.000
BrakingDeceleration=2048.0
VerticalSpawnOffset=0.0
[Dodge Profile]
Name=Long Strafes 2
MaxTargetDistance=1.0
MinTargetDistance=0.0
ToggleLeftRight=true
ToggleForwardBack=false
MinLRTimeChange=1.0
MaxLRTimeChange=2.0
MinFBTimeChange=10.0
MaxFBTimeChange=10.0
DamageReactionChangesDirection=true
DamageReactionChanceToIgnore=0.5
DamageReactionMinimumDelay=0.125
DamageReactionMaximumDelay=0.25
DamageReactionCooldown=1.0
DamageReactionThreshold=50.0
DamageReactionResetTimer=0.5
JumpFrequency=0.5
CrouchInAirFrequency=0.0
CrouchOnGroundFrequency=0.0
TargetStrafeOverride=Ignore
TargetStrafeMinDelay=0.125
TargetStrafeMaxDelay=0.25
MinProfileChangeTime=0.0
MaxProfileChangeTime=0.0
MinCrouchTime=0.3
MaxCrouchTime=0.6
MinJumpTime=0.001
MaxJumpTime=0.001
LeftStrafeTimeMult=1.0
RightStrafeTimeMult=1.0
StrafeSwapMinPause=0.0
StrafeSwapMaxPause=0.0
BlockedMovementPercent=1.0
BlockedMovementReactionMin=0.0001
BlockedMovementReactionMax=0.0001
[Weapon Profile]
Name=LG
Type=Hitscan
ShotsPerClick=1
DamagePerShot=1.0
KnockbackFactor=2.0
TimeBetweenShots=0.046
Pierces=false
Category=FullyAuto
BurstShotCount=1
TimeBetweenBursts=0.5
ChargeStartDamage=10.0
ChargeStartVelocity=X=500.000 Y=0.000 Z=0.000
ChargeTimeToAutoRelease=2.0
ChargeTimeToCap=1.0
ChargeMoveSpeedModifier=1.0
MuzzleVelocityMin=X=2000.000 Y=0.000 Z=0.000
MuzzleVelocityMax=X=2000.000 Y=0.000 Z=0.000
InheritOwnerVelocity=0.0
OriginOffset=X=0.000 Y=0.000 Z=0.000
MaxTravelTime=5.0
MaxHitscanRange=100000.0
GravityScale=1.0
HeadshotCapable=false
HeadshotMultiplier=2.0
MagazineMax=0
AmmoPerShot=1
ReloadTimeFromEmpty=0.5
ReloadTimeFromPartial=0.5
DamageFalloffStartDistance=100000.0
DamageFalloffStopDistance=100000.0
DamageAtMaxRange=7.0
DelayBeforeShot=0.0
HitscanVisualEffect=Tracer
ProjectileGraphic=Ball
VisualLifetime=0.05
WallParticleEffect=None
HitParticleEffect=None
BounceOffWorld=false
BounceFactor=0.0
BounceCount=0
HomingProjectileAcceleration=0.0
ProjectileEnemyHitRadius=1.0
CanAimDownSight=false
ADSZoomDelay=0.0
ADSZoomSensFactor=0.7
ADSMoveFactor=1.0
ADSStartDelay=0.0
ShootSoundCooldown=0.08
HitSoundCooldown=0.08
HitscanVisualOffset=X=0.000 Y=0.000 Z=-80.000
ADSBlocksShooting=false
ShootingBlocksADS=false
KnockbackFactorAir=9.0
RecoilNegatable=false
DecalType=0
DecalSize=30.0
DelayAfterShooting=0.0
BeamTracksCrosshair=true
AlsoShoot=
ADSShoot=
StunDuration=0.0
CircularSpread=true
SpreadStationaryVelocity=0.0
PassiveCharging=false
BurstFullyAuto=true
FlatKnockbackHorizontal=0.0
FlatKnockbackVertical=0.0
HitscanRadius=0.0
HitscanVisualRadius=6.0
TaggingDuration=0.0
TaggingMaxFactor=1.0
TaggingHitFactor=1.0
ProjectileTrail=None
RecoilCrouchScale=1.0
RecoilADSScale=1.0
PSRCrouchScale=1.0
PSRADSScale=1.0
ProjectileAcceleration=0.0
AccelIncludeVertical=true
AimPunchAmount=0.0
AimPunchResetTime=0.05
AimPunchCooldown=0.5
AimPunchHeadshotOnly=false
AimPunchCosmeticOnly=true
MinimumDecelVelocity=0.0
PSRManualNegation=false
PSRAutoReset=true
AimPunchUpTime=0.05
AmmoReloadedOnKill=0
CancelReloadOnKill=false
FlatKnockbackHorizontalMin=0.0
FlatKnockbackVerticalMin=0.0
ADSScope=No Scope
ADSFOVOverride=72.099998
ADSFOVScale=Horizontal (4:3)
ADSAllowUserOverrideFOV=true
ForceFirstPersonInADS=true
ZoomBlockedInAir=false
ADSCameraOffsetX=0.0
ADSCameraOffsetY=0.0
ADSCameraOffsetZ=0.0
Explosive=false
Radius=500.0
DamageAtCenter=100.0
DamageAtEdge=0.0
SelfDamageMultiplier=0.5
ExplodesOnContactWithEnemy=false
DelayAfterEnemyContact=0.0
ExplodesOnContactWithWorld=false
DelayAfterWorldContact=0.0
ExplodesOnNextAttack=false
DelayAfterSpawn=0.0
BlockedByWorld=false
SpreadSSA=1.0,1.0,-1.0,0.0
SpreadSCA=1.0,1.0,-1.0,0.0
SpreadMSA=1.0,1.0,-1.0,0.0
SpreadMCA=1.0,1.0,-1.0,0.0
SpreadSSH=1.0,1.0,-1.0,0.0
SpreadSCH=1.0,1.0,-1.0,0.0
SpreadMSH=1.0,1.0,-1.0,0.0
SpreadMCH=1.0,1.0,-1.0,0.0
MaxRecoilUp=0.0
MinRecoilUp=0.0
MinRecoilHoriz=0.0
MaxRecoilHoriz=0.0
FirstShotRecoilMult=1.0
RecoilAutoReset=false
TimeToRecoilPeak=0.05
TimeToRecoilReset=0.35
AAMode=1
AAPreferClosestPlayer=false
AAAlpha=0.9
AAMaxSpeed=2.5
AADeadZone=0.0
AAFOV=360.0
AANeedsLOS=true
TrackHorizontal=true
TrackVertical=true
AABlocksMouse=false
AAOffTimer=0.0
AABackOnTimer=0.0
TriggerBotEnabled=false
TriggerBotDelay=0.0
TriggerBotFOV=1.0
StickyLock=false
HeadLock=false
VerticalOffset=0.0
DisableLockOnKill=false
UsePerShotRecoil=false
PSRLoopStartIndex=0
PSRViewRecoilTracking=0.45
PSRCapUp=9.0
PSRCapRight=4.0
PSRCapLeft=4.0
PSRTimeToPeak=0.095
PSRResetDegreesPerSec=40.0
UsePerBulletSpread=false
PBS0=0.0,0.0
[Map Data]
reflex map version 8
global
entity
type WorldSpawn
String32 targetGameOverCamera end
UInt8 playersMin 1
UInt8 playersMax 16
brush
vertices
-1616.000000 1032.000000 1240.000000
1808.000000 1032.000000 1240.000000
1808.000000 1032.000000 -856.000000
-1616.000000 1032.000000 -856.000000
-1616.000000 688.000000 1240.000000
1808.000000 688.000000 1240.000000
1808.000000 688.000000 -856.000000
-1616.000000 688.000000 -856.000000
faces
0.000000 0.000000 1.000000 1.000000 0.000000 0 1 2 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 6 5 4 7 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 2 1 5 6 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 0 3 7 4 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 3 2 6 7 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 1 0 4 5 0x00000000
brush
vertices
1784.000000 912.000000 1248.000000
1936.000000 912.000000 1248.000000
1936.000000 912.000000 -824.000000
1784.000000 912.000000 -824.000000
1784.000000 -1152.000000 1248.000000
1936.000000 -1152.000000 1248.000000
1936.000000 -1152.000000 -824.000000
1784.000000 -1152.000000 -824.000000
faces
0.000000 0.000000 1.000000 1.000000 0.000000 0 1 2 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 6 5 4 7 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 2 1 5 6 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 0 3 7 4 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 3 2 6 7 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 1 0 4 5 0x00000000
brush
vertices
-1888.000000 -1136.000000 592.000000
1952.000000 -1136.000000 592.000000
1952.000000 -1136.000000 -800.000000
-1888.000000 -1136.000000 -800.000000
-1888.000000 -1152.000000 592.000000
1952.000000 -1152.000000 592.000000
1952.000000 -1152.000000 -800.000000
-1888.000000 -1152.000000 -800.000000
faces
0.000000 0.000000 1.000000 1.000000 0.000000 0 1 2 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 6 5 4 7 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 2 1 5 6 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 0 3 7 4 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 3 2 6 7 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 1 0 4 5 0x00000000
brush
vertices
-1792.000000 912.000000 1288.000000
-1608.000000 912.000000 1288.000000
-1608.000000 912.000000 -816.000000
-1792.000000 912.000000 -816.000000
-1792.000000 -1184.000000 1288.000000
-1608.000000 -1184.000000 1288.000000
-1608.000000 -1184.000000 -816.000000
-1792.000000 -1184.000000 -816.000000
faces
0.000000 0.000000 1.000000 1.000000 0.000000 0 1 2 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 6 5 4 7 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 2 1 5 6 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 0 3 7 4 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 3 2 6 7 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 1 0 4 5 0x00000000
brush
vertices
-1640.000000 920.000000 -768.000000
1784.000000 920.000000 -768.000000
1784.000000 920.000000 -1104.000000
-1640.000000 920.000000 -1104.000000
-1640.000000 -1144.000000 -768.000000
1784.000000 -1144.000000 -768.000000
1784.000000 -1144.000000 -1104.000000
-1640.000000 -1144.000000 -1104.000000
faces
0.000000 0.000000 1.000000 1.000000 0.000000 0 1 2 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 6 5 4 7 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 2 1 5 6 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 0 3 7 4 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 3 2 6 7 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 1 0 4 5 0x00000000
brush
vertices
2752.000000 -912.000000 -560.000000
2928.000000 -912.000000 -560.000000
2928.000000 -912.000000 -640.000000
2752.000000 -912.000000 -640.000000
2752.000000 -928.000000 -560.000000
2928.000000 -928.000000 -560.000000
2928.000000 -928.000000 -640.000000
2752.000000 -928.000000 -640.000000
faces
0.000000 0.000000 1.000000 1.000000 0.000000 0 1 2 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 6 5 4 7 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 2 1 5 6 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 0 3 7 4 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 3 2 6 7 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 1 0 4 5 0x00000000
brush
vertices
1616.000000 816.000000 576.000000
1808.000000 816.000000 576.000000
1808.000000 816.000000 -400.000000
1616.000000 816.000000 -400.000000
1616.000000 -1136.000000 576.000000
1808.000000 -1136.000000 576.000000
1808.000000 -1136.000000 -400.000000
1616.000000 -1136.000000 -400.000000
faces
0.000000 0.000000 1.000000 1.000000 0.000000 0 1 2 3 0x00000000 internal/editor/textures/editor_clip
0.000000 0.000000 1.000000 1.000000 0.000000 6 5 4 7 0x00000000 internal/editor/textures/editor_clip
0.000000 0.000000 1.000000 1.000000 0.000000 2 1 5 6 0x00000000 internal/editor/textures/editor_clip
0.000000 0.000000 1.000000 1.000000 0.000000 0 3 7 4 0x00000000 internal/editor/textures/editor_clip
0.000000 0.000000 1.000000 1.000000 0.000000 3 2 6 7 0x00000000 internal/editor/textures/editor_clip
0.000000 0.000000 1.000000 1.000000 0.000000 1 0 4 5 0x00000000 internal/editor/textures/editor_clip
brush
vertices
-2080.000000 1112.000000 584.000000
1672.000000 1112.000000 584.000000
1672.000000 1112.000000 -536.000000
-2080.000000 1112.000000 -536.000000
-2080.000000 -1128.000000 584.000000
1672.000000 -1128.000000 584.000000
1672.000000 -1128.000000 -536.000000
-2080.000000 -1128.000000 -536.000000
faces
256.000000 0.000000 1.000000 1.000000 0.000000 0 1 2 3 0x00000000 internal/editor/textures/editor_clip
256.000000 0.000000 1.000000 1.000000 0.000000 6 5 4 7 0x00000000 internal/editor/textures/editor_clip
256.000000 0.000000 1.000000 1.000000 0.000000 2 1 5 6 0x00000000 internal/editor/textures/editor_clip
256.000000 0.000000 1.000000 1.000000 0.000000 0 3 7 4 0x00000000 internal/editor/textures/editor_clip
256.000000 0.000000 1.000000 1.000000 0.000000 3 2 6 7 0x00000000 internal/editor/textures/editor_clip
256.000000 0.000000 1.000000 1.000000 0.000000 1 0 4 5 0x00000000 internal/editor/textures/editor_clip
brush
vertices
-1624.000000 936.000000 1296.000000
1936.000000 936.000000 1296.000000
1936.000000 936.000000 1232.000000
-1624.000000 936.000000 1232.000000
-1624.000000 -1088.000000 1296.000000
1936.000000 -1088.000000 1296.000000
1936.000000 -1088.000000 1232.000000
-1624.000000 -1088.000000 1232.000000
faces
0.000000 0.000000 1.000000 1.000000 0.000000 0 1 2 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 6 5 4 7 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 2 1 5 6 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 0 3 7 4 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 3 2 6 7 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 1 0 4 5 0x00000000
brush
vertices
-1792.000000 -1056.000000 1280.000000
1936.000000 -1056.000000 1280.000000
1936.000000 -1056.000000 584.000000
-1792.000000 -1056.000000 584.000000
-1792.000000 -1152.000000 1280.000000
1936.000000 -1152.000000 1280.000000
1936.000000 -1152.000000 584.000000
-1792.000000 -1152.000000 584.000000
faces
-768.000000 0.000000 1.000000 1.000000 0.000000 0 1 2 3 0x00000000
-768.000000 0.000000 1.000000 1.000000 0.000000 6 5 4 7 0x00000000
-768.000000 0.000000 1.000000 1.000000 0.000000 2 1 5 6 0x00000000
-768.000000 0.000000 1.000000 1.000000 0.000000 0 3 7 4 0x00000000
-768.000000 0.000000 1.000000 1.000000 0.000000 3 2 6 7 0x00000000
-768.000000 0.000000 1.000000 1.000000 0.000000 1 0 4 5 0x00000000
brush
vertices
-1648.000000 -576.000000 -544.000000
1840.000000 -576.000000 -544.000000
1840.000000 -576.000000 -768.000000
-1648.000000 -576.000000 -768.000000
-1648.000000 -592.000000 -544.000000
1840.000000 -592.000000 -544.000000
1840.000000 -592.000000 -768.000000
-1648.000000 -592.000000 -768.000000
faces
0.000000 0.000000 1.000000 1.000000 0.000000 0 1 2 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 6 5 4 7 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 2 1 5 6 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 0 3 7 4 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 3 2 6 7 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 1 0 4 5 0x00000000
brush
vertices
1616.000000 -88.000000 -200.000000
1800.000000 -88.000000 -200.000000
1800.000000 -88.000000 -536.000000
1616.000000 -88.000000 -536.000000
1616.000000 -360.000000 -200.000000
1800.000000 -360.000000 -200.000000
1800.000000 -360.000000 -536.000000
1616.000000 -360.000000 -536.000000
faces
256.000000 0.000000 1.000000 1.000000 0.000000 0 1 2 3 0x00000000 internal/editor/textures/editor_clip
256.000000 0.000000 1.000000 1.000000 0.000000 6 5 4 7 0x00000000 internal/editor/textures/editor_clip
256.000000 0.000000 1.000000 1.000000 0.000000 2 1 5 6 0x00000000 internal/editor/textures/editor_clip
256.000000 0.000000 1.000000 1.000000 0.000000 0 3 7 4 0x00000000 internal/editor/textures/editor_clip
256.000000 0.000000 1.000000 1.000000 0.000000 3 2 6 7 0x00000000 internal/editor/textures/editor_clip
256.000000 0.000000 1.000000 1.000000 0.000000 1 0 4 5 0x00000000 internal/editor/textures/editor_clip
brush
vertices
1760.000000 -800.000000 -752.000000
1776.000000 -800.000000 -752.000000
1776.000000 -800.000000 -768.000000
1760.000000 -800.000000 -768.000000
1760.000000 -912.000000 -752.000000
1776.000000 -912.000000 -752.000000
1776.000000 -912.000000 -768.000000
1760.000000 -912.000000 -768.000000
faces
0.000000 0.000000 -1.500000 0.000000 180.000000 0 1 2 3 0x00000000
0.000000 0.000000 -1.500000 0.000000 180.000000 6 5 4 7 0x00000000
0.000000 0.000000 -1.500000 0.000000 180.000000 2 1 5 6 0x00000000
0.000000 0.000000 -1.500000 0.000000 180.000000 0 3 7 4 0x00000000
0.000000 0.000000 -1.500000 0.000000 180.000000 3 2 6 7 0x00000000
0.000000 0.000000 -1.500000 0.000000 180.000000 1 0 4 5 0x00000000
brush
vertices
1728.000000 -896.000000 -752.000000
1760.000000 -896.000000 -752.000000
1760.000000 -896.000000 -768.000000
1728.000000 -896.000000 -768.000000
1728.000000 -912.000000 -752.000000
1760.000000 -912.000000 -752.000000
1760.000000 -912.000000 -768.000000
1728.000000 -912.000000 -768.000000
faces
0.000000 0.000000 -1.500000 0.000000 180.000000 0 1 2 3 0x00000000
0.000000 0.000000 -1.500000 0.000000 180.000000 6 5 4 7 0x00000000
0.000000 0.000000 -1.500000 0.000000 180.000000 2 1 5 6 0x00000000
0.000000 0.000000 -1.500000 0.000000 180.000000 0 3 7 4 0x00000000
0.000000 0.000000 -1.500000 0.000000 180.000000 3 2 6 7 0x00000000
0.000000 0.000000 -1.500000 0.000000 180.000000 1 0 4 5 0x00000000
brush
vertices
1728.000000 -800.000000 -752.000000
1760.000000 -800.000000 -752.000000
1760.000000 -800.000000 -768.000000
1728.000000 -800.000000 -768.000000
1728.000000 -816.000000 -752.000000
1760.000000 -816.000000 -752.000000
1760.000000 -816.000000 -768.000000
1728.000000 -816.000000 -768.000000
faces
0.000000 0.000000 -1.500000 0.000000 180.000000 0 1 2 3 0x00000000
0.000000 0.000000 -1.500000 0.000000 180.000000 6 5 4 7 0x00000000
0.000000 0.000000 -1.500000 0.000000 180.000000 2 1 5 6 0x00000000
0.000000 0.000000 -1.500000 0.000000 180.000000 0 3 7 4 0x00000000
0.000000 0.000000 -1.500000 0.000000 180.000000 3 2 6 7 0x00000000
0.000000 0.000000 -1.500000 0.000000 180.000000 1 0 4 5 0x00000000
brush
vertices
1712.000000 -816.000000 -752.000000
1728.000000 -816.000000 -752.000000
1728.000000 -816.000000 -768.000000
1712.000000 -816.000000 -768.000000
1712.000000 -896.000000 -752.000000
1728.000000 -896.000000 -752.000000
1728.000000 -896.000000 -768.000000
1712.000000 -896.000000 -768.000000
faces
0.000000 0.000000 -1.500000 0.000000 180.000000 0 1 2 3 0x00000000
0.000000 0.000000 -1.500000 0.000000 180.000000 6 5 4 7 0x00000000
0.000000 0.000000 -1.500000 0.000000 180.000000 2 1 5 6 0x00000000
0.000000 0.000000 -1.500000 0.000000 180.000000 0 3 7 4 0x00000000
0.000000 0.000000 -1.500000 0.000000 180.000000 3 2 6 7 0x00000000
0.000000 0.000000 -1.500000 0.000000 180.000000 1 0 4 5 0x00000000
brush
vertices
1680.000000 -800.000000 -752.000000
1696.000000 -800.000000 -752.000000
1696.000000 -800.000000 -768.000000
1680.000000 -800.000000 -768.000000
1680.000000 -912.000000 -752.000000
1696.000000 -912.000000 -752.000000
1696.000000 -912.000000 -768.000000
1680.000000 -912.000000 -768.000000
faces
0.000000 0.000000 -1.500000 0.000000 180.000000 0 1 2 3 0x00000000
0.000000 0.000000 -1.500000 0.000000 180.000000 6 5 4 7 0x00000000
0.000000 0.000000 -1.500000 0.000000 180.000000 2 1 5 6 0x00000000
0.000000 0.000000 -1.500000 0.000000 180.000000 0 3 7 4 0x00000000
0.000000 0.000000 -1.500000 0.000000 180.000000 3 2 6 7 0x00000000
0.000000 0.000000 -1.500000 0.000000 180.000000 1 0 4 5 0x00000000
brush
vertices
1632.000000 -800.000000 -752.000000
1648.000000 -800.000000 -752.000000
1648.000000 -800.000000 -768.000000
1632.000000 -800.000000 -768.000000
1632.000000 -912.000000 -752.000000
1648.000000 -912.000000 -752.000000
1648.000000 -912.000000 -768.000000
1632.000000 -912.000000 -768.000000
faces
0.000000 0.000000 -1.500000 0.000000 180.000000 0 1 2 3 0x00000000
0.000000 0.000000 -1.500000 0.000000 180.000000 6 5 4 7 0x00000000
0.000000 0.000000 -1.500000 0.000000 180.000000 2 1 5 6 0x00000000
0.000000 0.000000 -1.500000 0.000000 180.000000 0 3 7 4 0x00000000
0.000000 0.000000 -1.500000 0.000000 180.000000 3 2 6 7 0x00000000
0.000000 0.000000 -1.500000 0.000000 180.000000 1 0 4 5 0x00000000
brush
vertices
1648.000000 -896.000000 -752.000000
1680.000000 -896.000000 -752.000000
1680.000000 -896.000000 -768.000000
1648.000000 -896.000000 -768.000000
1648.000000 -912.000000 -752.000000
1680.000000 -912.000000 -752.000000
1680.000000 -912.000000 -768.000000
1648.000000 -912.000000 -768.000000
faces
0.000000 0.000000 -1.500000 0.000000 180.000000 0 1 2 3 0x00000000
0.000000 0.000000 -1.500000 0.000000 180.000000 6 5 4 7 0x00000000
0.000000 0.000000 -1.500000 0.000000 180.000000 2 1 5 6 0x00000000
0.000000 0.000000 -1.500000 0.000000 180.000000 0 3 7 4 0x00000000
0.000000 0.000000 -1.500000 0.000000 180.000000 3 2 6 7 0x00000000
0.000000 0.000000 -1.500000 0.000000 180.000000 1 0 4 5 0x00000000
brush
vertices
1648.000000 -800.000000 -752.000000
1680.000000 -800.000000 -752.000000
1680.000000 -800.000000 -768.000000
1648.000000 -800.000000 -768.000000
1648.000000 -816.000000 -752.000000
1680.000000 -816.000000 -752.000000
1680.000000 -816.000000 -768.000000
1648.000000 -816.000000 -768.000000
faces
0.000000 0.000000 -1.500000 0.000000 180.000000 0 1 2 3 0x00000000
0.000000 0.000000 -1.500000 0.000000 180.000000 6 5 4 7 0x00000000
0.000000 0.000000 -1.500000 0.000000 180.000000 2 1 5 6 0x00000000
0.000000 0.000000 -1.500000 0.000000 180.000000 0 3 7 4 0x00000000
0.000000 0.000000 -1.500000 0.000000 180.000000 3 2 6 7 0x00000000
0.000000 0.000000 -1.500000 0.000000 180.000000 1 0 4 5 0x00000000
brush
vertices
1600.000000 -800.000000 -752.000000
1616.000000 -800.000000 -752.000000
1616.000000 -800.000000 -768.000000
1600.000000 -800.000000 -768.000000
1600.000000 -912.000000 -752.000000
1616.000000 -912.000000 -752.000000
1616.000000 -912.000000 -768.000000
1600.000000 -912.000000 -768.000000
faces
0.000000 0.000000 -1.500000 0.000000 180.000000 0 1 2 3 0x00000000
0.000000 0.000000 -1.500000 0.000000 180.000000 6 5 4 7 0x00000000
0.000000 0.000000 -1.500000 0.000000 180.000000 2 1 5 6 0x00000000
0.000000 0.000000 -1.500000 0.000000 180.000000 0 3 7 4 0x00000000
0.000000 0.000000 -1.500000 0.000000 180.000000 3 2 6 7 0x00000000
0.000000 0.000000 -1.500000 0.000000 180.000000 1 0 4 5 0x00000000
brush
vertices
1552.000000 -800.000000 -752.000000
1568.000000 -800.000000 -752.000000
1568.000000 -800.000000 -768.000000
1552.000000 -800.000000 -768.000000
1552.000000 -864.000000 -752.000000
1568.000000 -864.000000 -752.000000
1568.000000 -864.000000 -768.000000
1552.000000 -864.000000 -768.000000
faces
0.000000 0.000000 -1.500000 0.000000 180.000000 0 1 2 3 0x00000000
0.000000 0.000000 -1.500000 0.000000 180.000000 6 5 4 7 0x00000000
0.000000 0.000000 -1.500000 0.000000 180.000000 2 1 5 6 0x00000000
0.000000 0.000000 -1.500000 0.000000 180.000000 0 3 7 4 0x00000000
0.000000 0.000000 -1.500000 0.000000 180.000000 3 2 6 7 0x00000000
0.000000 0.000000 -1.500000 0.000000 180.000000 1 0 4 5 0x00000000
brush
vertices
1568.000000 -800.000000 -752.000000
1600.000000 -800.000000 -752.000000
1600.000000 -800.000000 -768.000000
1568.000000 -800.000000 -768.000000
1568.000000 -816.000000 -752.000000
1600.000000 -816.000000 -752.000000
1600.000000 -816.000000 -768.000000
1568.000000 -816.000000 -768.000000
faces
0.000000 0.000000 -1.500000 0.000000 180.000000 0 1 2 3 0x00000000
0.000000 0.000000 -1.500000 0.000000 180.000000 6 5 4 7 0x00000000
0.000000 0.000000 -1.500000 0.000000 180.000000 2 1 5 6 0x00000000
0.000000 0.000000 -1.500000 0.000000 180.000000 0 3 7 4 0x00000000
0.000000 0.000000 -1.500000 0.000000 180.000000 3 2 6 7 0x00000000
0.000000 0.000000 -1.500000 0.000000 180.000000 1 0 4 5 0x00000000
brush
vertices
1568.000000 -848.000000 -752.000000
1600.000000 -848.000000 -752.000000
1600.000000 -848.000000 -768.000000
1568.000000 -848.000000 -768.000000
1568.000000 -864.000000 -752.000000
1600.000000 -864.000000 -752.000000
1600.000000 -864.000000 -768.000000
1568.000000 -864.000000 -768.000000
faces
0.000000 0.000000 -1.500000 0.000000 180.000000 0 1 2 3 0x00000000
0.000000 0.000000 -1.500000 0.000000 180.000000 6 5 4 7 0x00000000
0.000000 0.000000 -1.500000 0.000000 180.000000 2 1 5 6 0x00000000
0.000000 0.000000 -1.500000 0.000000 180.000000 0 3 7 4 0x00000000
0.000000 0.000000 -1.500000 0.000000 180.000000 3 2 6 7 0x00000000
0.000000 0.000000 -1.500000 0.000000 180.000000 1 0 4 5 0x00000000
brush
vertices
1520.000000 -800.000000 -752.000000
1536.000000 -800.000000 -752.000000
1536.000000 -800.000000 -768.000000
1520.000000 -800.000000 -768.000000
1520.000000 -912.000000 -752.000000
1536.000000 -912.000000 -752.000000
1536.000000 -912.000000 -768.000000
1520.000000 -912.000000 -768.000000
faces
0.000000 0.000000 -1.500000 0.000000 180.000000 0 1 2 3 0x00000000
0.000000 0.000000 -1.500000 0.000000 180.000000 6 5 4 7 0x00000000
0.000000 0.000000 -1.500000 0.000000 180.000000 2 1 5 6 0x00000000
0.000000 0.000000 -1.500000 0.000000 180.000000 0 3 7 4 0x00000000
0.000000 0.000000 -1.500000 0.000000 180.000000 3 2 6 7 0x00000000
0.000000 0.000000 -1.500000 0.000000 180.000000 1 0 4 5 0x00000000
brush
vertices
1472.000000 -800.000000 -752.000000
1520.000000 -800.000000 -752.000000
1520.000000 -800.000000 -768.000000
1472.000000 -800.000000 -768.000000
1472.000000 -816.000000 -752.000000
1520.000000 -816.000000 -752.000000
1520.000000 -816.000000 -768.000000
1472.000000 -816.000000 -768.000000
faces
0.000000 0.000000 -1.500000 0.000000 180.000000 0 1 2 3 0x00000000
0.000000 0.000000 -1.500000 0.000000 180.000000 6 5 4 7 0x00000000
0.000000 0.000000 -1.500000 0.000000 180.000000 2 1 5 6 0x00000000
0.000000 0.000000 -1.500000 0.000000 180.000000 0 3 7 4 0x00000000
0.000000 0.000000 -1.500000 0.000000 180.000000 3 2 6 7 0x00000000
0.000000 0.000000 -1.500000 0.000000 180.000000 1 0 4 5 0x00000000
brush
vertices
1472.000000 -848.000000 -752.000000
1520.000000 -848.000000 -752.000000
1520.000000 -848.000000 -768.000000
1472.000000 -848.000000 -768.000000
1472.000000 -864.000000 -752.000000
1520.000000 -864.000000 -752.000000
1520.000000 -864.000000 -768.000000
1472.000000 -864.000000 -768.000000
faces
0.000000 0.000000 -1.500000 0.000000 180.000000 0 1 2 3 0x00000000
0.000000 0.000000 -1.500000 0.000000 180.000000 6 5 4 7 0x00000000
0.000000 0.000000 -1.500000 0.000000 180.000000 2 1 5 6 0x00000000
0.000000 0.000000 -1.500000 0.000000 180.000000 0 3 7 4 0x00000000
0.000000 0.000000 -1.500000 0.000000 180.000000 3 2 6 7 0x00000000
0.000000 0.000000 -1.500000 0.000000 180.000000 1 0 4 5 0x00000000
brush
vertices
1472.000000 -896.000000 -752.000000
1520.000000 -896.000000 -752.000000
1520.000000 -896.000000 -768.000000
1472.000000 -896.000000 -768.000000
1472.000000 -912.000000 -752.000000
1520.000000 -912.000000 -752.000000
1520.000000 -912.000000 -768.000000
1472.000000 -912.000000 -768.000000
faces
0.000000 0.000000 -1.500000 0.000000 180.000000 0 1 2 3 0x00000000
0.000000 0.000000 -1.500000 0.000000 180.000000 6 5 4 7 0x00000000
0.000000 0.000000 -1.500000 0.000000 180.000000 2 1 5 6 0x00000000
0.000000 0.000000 -1.500000 0.000000 180.000000 0 3 7 4 0x00000000
0.000000 0.000000 -1.500000 0.000000 180.000000 3 2 6 7 0x00000000
0.000000 0.000000 -1.500000 0.000000 180.000000 1 0 4 5 0x00000000
brush
vertices
1440.000000 -800.000000 -752.000000
1456.000000 -800.000000 -752.000000
1456.000000 -800.000000 -768.000000
1440.000000 -800.000000 -768.000000
1440.000000 -912.000000 -752.000000
1456.000000 -912.000000 -752.000000
1456.000000 -912.000000 -768.000000
1440.000000 -912.000000 -768.000000
faces
0.000000 0.000000 -1.500000 0.000000 180.000000 0 1 2 3 0x00000000
0.000000 0.000000 -1.500000 0.000000 180.000000 6 5 4 7 0x00000000
0.000000 0.000000 -1.500000 0.000000 180.000000 2 1 5 6 0x00000000
0.000000 0.000000 -1.500000 0.000000 180.000000 0 3 7 4 0x00000000
0.000000 0.000000 -1.500000 0.000000 180.000000 3 2 6 7 0x00000000
0.000000 0.000000 -1.500000 0.000000 180.000000 1 0 4 5 0x00000000
brush
vertices
1392.000000 -800.000000 -752.000000
1440.000000 -800.000000 -752.000000
1440.000000 -800.000000 -768.000000
1392.000000 -800.000000 -768.000000
1392.000000 -816.000000 -752.000000
1440.000000 -816.000000 -752.000000
1440.000000 -816.000000 -768.000000
1392.000000 -816.000000 -768.000000
faces
0.000000 0.000000 -1.500000 0.000000 180.000000 0 1 2 3 0x00000000
0.000000 0.000000 -1.500000 0.000000 180.000000 6 5 4 7 0x00000000
0.000000 0.000000 -1.500000 0.000000 180.000000 2 1 5 6 0x00000000
0.000000 0.000000 -1.500000 0.000000 180.000000 0 3 7 4 0x00000000
0.000000 0.000000 -1.500000 0.000000 180.000000 3 2 6 7 0x00000000
0.000000 0.000000 -1.500000 0.000000 180.000000 1 0 4 5 0x00000000
brush
vertices
1392.000000 -848.000000 -752.000000
1440.000000 -848.000000 -752.000000
1440.000000 -848.000000 -768.000000
1392.000000 -848.000000 -768.000000
1392.000000 -864.000000 -752.000000
1440.000000 -864.000000 -752.000000
1440.000000 -864.000000 -768.000000
1392.000000 -864.000000 -768.000000
faces
0.000000 0.000000 -1.500000 0.000000 180.000000 0 1 2 3 0x00000000
0.000000 0.000000 -1.500000 0.000000 180.000000 6 5 4 7 0x00000000
0.000000 0.000000 -1.500000 0.000000 180.000000 2 1 5 6 0x00000000
0.000000 0.000000 -1.500000 0.000000 180.000000 0 3 7 4 0x00000000
0.000000 0.000000 -1.500000 0.000000 180.000000 3 2 6 7 0x00000000
0.000000 0.000000 -1.500000 0.000000 180.000000 1 0 4 5 0x00000000
brush
vertices
1360.000000 -800.000000 -752.000000
1376.000000 -800.000000 -752.000000
1376.000000 -800.000000 -768.000000
1360.000000 -800.000000 -768.000000
1360.000000 -912.000000 -752.000000
1376.000000 -912.000000 -752.000000
1376.000000 -912.000000 -768.000000
1360.000000 -912.000000 -768.000000
faces
0.000000 0.000000 -1.500000 0.000000 180.000000 0 1 2 3 0x00000000
0.000000 0.000000 -1.500000 0.000000 180.000000 6 5 4 7 0x00000000
0.000000 0.000000 -1.500000 0.000000 180.000000 2 1 5 6 0x00000000
0.000000 0.000000 -1.500000 0.000000 180.000000 0 3 7 4 0x00000000
0.000000 0.000000 -1.500000 0.000000 180.000000 3 2 6 7 0x00000000
0.000000 0.000000 -1.500000 0.000000 180.000000 1 0 4 5 0x00000000
brush
vertices
1280.000000 -800.000000 -752.000000
1344.000000 -800.000000 -752.000000
1344.000000 -800.000000 -768.000000
1280.000000 -800.000000 -768.000000
1280.000000 -816.000000 -752.000000
1344.000000 -816.000000 -752.000000
1344.000000 -816.000000 -768.000000
1280.000000 -816.000000 -768.000000
faces
0.000000 0.000000 -1.500000 0.000000 180.000000 0 1 2 3 0x00000000
0.000000 0.000000 -1.500000 0.000000 180.000000 6 5 4 7 0x00000000
0.000000 0.000000 -1.500000 0.000000 180.000000 2 1 5 6 0x00000000
0.000000 0.000000 -1.500000 0.000000 180.000000 0 3 7 4 0x00000000
0.000000 0.000000 -1.500000 0.000000 180.000000 3 2 6 7 0x00000000
0.000000 0.000000 -1.500000 0.000000 180.000000 1 0 4 5 0x00000000
brush
vertices
1328.000000 -816.000000 -752.000000
1344.000000 -816.000000 -752.000000
1344.000000 -816.000000 -768.000000
1328.000000 -816.000000 -768.000000
1328.000000 -864.000000 -752.000000
1344.000000 -864.000000 -752.000000
1344.000000 -864.000000 -768.000000
1328.000000 -864.000000 -768.000000
faces
0.000000 0.000000 -1.500000 0.000000 180.000000 0 1 2 3 0x00000000
0.000000 0.000000 -1.500000 0.000000 180.000000 6 5 4 7 0x00000000
0.000000 0.000000 -1.500000 0.000000 180.000000 2 1 5 6 0x00000000
0.000000 0.000000 -1.500000 0.000000 180.000000 0 3 7 4 0x00000000
0.000000 0.000000 -1.500000 0.000000 180.000000 3 2 6 7 0x00000000
0.000000 0.000000 -1.500000 0.000000 180.000000 1 0 4 5 0x00000000
brush
vertices
1280.000000 -848.000000 -752.000000
1328.000000 -848.000000 -752.000000
1328.000000 -848.000000 -768.000000
1280.000000 -848.000000 -768.000000
1280.000000 -864.000000 -752.000000
1328.000000 -864.000000 -752.000000
1328.000000 -864.000000 -768.000000
1280.000000 -864.000000 -768.000000
faces
0.000000 0.000000 -1.500000 0.000000 180.000000 0 1 2 3 0x00000000
0.000000 0.000000 -1.500000 0.000000 180.000000 6 5 4 7 0x00000000
0.000000 0.000000 -1.500000 0.000000 180.000000 2 1 5 6 0x00000000
0.000000 0.000000 -1.500000 0.000000 180.000000 0 3 7 4 0x00000000
0.000000 0.000000 -1.500000 0.000000 180.000000 3 2 6 7 0x00000000
0.000000 0.000000 -1.500000 0.000000 180.000000 1 0 4 5 0x00000000
brush
vertices
1280.000000 -864.000000 -752.000000
1296.000000 -864.000000 -752.000000
1296.000000 -864.000000 -768.000000
1280.000000 -864.000000 -768.000000
1280.000000 -912.000000 -752.000000
1296.000000 -912.000000 -752.000000
1296.000000 -912.000000 -768.000000
1280.000000 -912.000000 -768.000000
faces
0.000000 0.000000 -1.500000 0.000000 180.000000 0 1 2 3 0x00000000
0.000000 0.000000 -1.500000 0.000000 180.000000 6 5 4 7 0x00000000
0.000000 0.000000 -1.500000 0.000000 180.000000 2 1 5 6 0x00000000
0.000000 0.000000 -1.500000 0.000000 180.000000 0 3 7 4 0x00000000
0.000000 0.000000 -1.500000 0.000000 180.000000 3 2 6 7 0x00000000
0.000000 0.000000 -1.500000 0.000000 180.000000 1 0 4 5 0x00000000
brush
vertices
1296.000000 -896.000000 -752.000000
1344.000000 -896.000000 -752.000000
1344.000000 -896.000000 -768.000000
1296.000000 -896.000000 -768.000000
1296.000000 -912.000000 -752.000000
1344.000000 -912.000000 -752.000000
1344.000000 -912.000000 -768.000000
1296.000000 -912.000000 -768.000000
faces
0.000000 0.000000 -1.500000 0.000000 180.000000 0 1 2 3 0x00000000
0.000000 0.000000 -1.500000 0.000000 180.000000 6 5 4 7 0x00000000
0.000000 0.000000 -1.500000 0.000000 180.000000 2 1 5 6 0x00000000
0.000000 0.000000 -1.500000 0.000000 180.000000 0 3 7 4 0x00000000
0.000000 0.000000 -1.500000 0.000000 180.000000 3 2 6 7 0x00000000
0.000000 0.000000 -1.500000 0.000000 180.000000 1 0 4 5 0x00000000
brush
vertices
1248.000000 -800.000000 -752.000000
1264.000000 -800.000000 -752.000000
1264.000000 -800.000000 -768.000000
1248.000000 -800.000000 -768.000000
1248.000000 -912.000000 -752.000000
1264.000000 -912.000000 -752.000000
1264.000000 -912.000000 -768.000000
1248.000000 -912.000000 -768.000000
faces
0.000000 0.000000 -1.500000 0.000000 180.000000 0 1 2 3 0x00000000
0.000000 0.000000 -1.500000 0.000000 180.000000 6 5 4 7 0x00000000
0.000000 0.000000 -1.500000 0.000000 180.000000 2 1 5 6 0x00000000
0.000000 0.000000 -1.500000 0.000000 180.000000 0 3 7 4 0x00000000
0.000000 0.000000 -1.500000 0.000000 180.000000 3 2 6 7 0x00000000
0.000000 0.000000 -1.500000 0.000000 180.000000 1 0 4 5 0x00000000
brush
vertices
1216.000000 -848.000000 -752.000000
1248.000000 -848.000000 -752.000000
1248.000000 -848.000000 -768.000000
1216.000000 -848.000000 -768.000000
1216.000000 -864.000000 -752.000000
1248.000000 -864.000000 -752.000000
1248.000000 -864.000000 -768.000000
1216.000000 -864.000000 -768.000000
faces
0.000000 0.000000 -1.500000 0.000000 180.000000 0 1 2 3 0x00000000
0.000000 0.000000 -1.500000 0.000000 180.000000 6 5 4 7 0x00000000
0.000000 0.000000 -1.500000 0.000000 180.000000 2 1 5 6 0x00000000
0.000000 0.000000 -1.500000 0.000000 180.000000 0 3 7 4 0x00000000
0.000000 0.000000 -1.500000 0.000000 180.000000 3 2 6 7 0x00000000
0.000000 0.000000 -1.500000 0.000000 180.000000 1 0 4 5 0x00000000
brush
vertices
1200.000000 -800.000000 -752.000000
1216.000000 -800.000000 -752.000000
1216.000000 -800.000000 -768.000000
1200.000000 -800.000000 -768.000000
1200.000000 -912.000000 -752.000000
1216.000000 -912.000000 -752.000000
1216.000000 -912.000000 -768.000000
1200.000000 -912.000000 -768.000000
faces
0.000000 0.000000 -1.500000 0.000000 180.000000 0 1 2 3 0x00000000
0.000000 0.000000 -1.500000 0.000000 180.000000 6 5 4 7 0x00000000
0.000000 0.000000 -1.500000 0.000000 180.000000 2 1 5 6 0x00000000
0.000000 0.000000 -1.500000 0.000000 180.000000 0 3 7 4 0x00000000
0.000000 0.000000 -1.500000 0.000000 180.000000 3 2 6 7 0x00000000
0.000000 0.000000 -1.500000 0.000000 180.000000 1 0 4 5 0x00000000
entity
type PlayerSpawn
Vector3 position -36.000000 -584.000000 -648.000000
Bool8 teamB 0
Bool8 modeCTF 0
Bool8 modeFFA 0
Bool8 modeTDM 0
Bool8 mode1v1 0
Bool8 modeRace 0
Bool8 mode2v2 0
entity
type CameraPath
UInt8 posLerp 2
UInt8 angleLerp 2
entity
type Effect
Vector3 position 0.000000 256.000000 0.000000
String64 effectName internal/misc/reflectionprobe
entity
type PlayerSpawn
Vector3 position 36.000000 -584.000000 1192.000000
Bool8 teamA 0
|
3bdba870f862149586f5b8f2c2a0786f86ff9616
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1445/CH7/EX7.12/ch7_ex_12.sce
|
ee0c6f9044487e53b9ac72606a78c611ebf5df6a
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 765
|
sce
|
ch7_ex_12.sce
|
//CHAPTER 7- SINGLE PHASE TRANSFORMER
//Example 12
disp("CHAPTER 7");
disp("EXAMPLE 12");
//VARIABLE INITIALIZATION
v1=400; //primary voltage in Volts
f=50; //Hz
Io=10; //in Amp no load current
pf =0.25; //lagging
N1=500; //given
//SOLUTION
// N1/N2=V1/V2
phi0=acos(pf);
Iphi=Io*sin(phi0);
disp("SOLUTION (a)");
disp(sprintf("The magnetic component of no load current is %f Amp",Iphi));
//
ironLoss=v1*Io*pf;
disp("SOLUTION (b)");
disp(sprintf("The iron loss on no load is %f W",ironLoss));
//
//E1=4.44.f.N1.φm
phiM=v1/(4.44*f*N1);
disp("SOLUTION (c)");
disp(sprintf("The value of flux in the core is %f Wb",phiM));
disp(" ");
//
//END
|
a0226f9b2943d364e37fb54ccbdb0f6e3207d867
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3311/CH4/EX4.5/Ex4_5.sce
|
1191703efd5162178c86ffdeea8555588320d6df
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,029
|
sce
|
Ex4_5.sce
|
// chapter 4
// example 4.5
// Determine the current taken by each SCR and value of equal resistors
// page-132
clear;
clc;
// given
// V1=0.9+2.4E-4*I_T1 (voltage characteristics of SCR 1)
// V2=1.0+2.3E-4*I_T2 (voltage characteristics of SCR 2)
I1=500, I2=1000, I3=1500, I4=2000; // in A (total current)
neta=10; // in percentage
// calculate
// since SCR are in parallel, therefore V1=V2 or
// 0.9+2.4E-4*I_T1=1.0+2.3E-4*I_T2. Simplifying this we get
// 2.4E-4*I_T1-2.3E-4*I_T2=0.1 (i)
// since I_T1+I_T2=I (ii)
// from (i) in (ii), we get
// 2.4E-4*I_T1-2.3E-4*(I-I_T1)=0.1 or
// 4.7E-4*I_T1=0.1+2.3E-4*I
// simplifying for I_T1, we get
// I_T1=(0.1+2.3E-4*I)/4.7E-4
for I=500:500:2000
I_T1=(0.1+2.3E-4*I)/4.7E-4;
I_T2=I-I_T1;
printf("\n\nFor I=%.f A,\t I_T1=%.f A \t and \t I_T2=%.f A",I,I_T1,I_T2);
end
// For 10 % sharing I_T1=1100 A and I_T2=900 A , therefore
I_T1=1100, I_T2=900; // in A
R=(0.1+2.3E-4*I-4.7E-4*I_T1)/(I_T1-I_T2);
printf("\n\nThe value of equal resistors is \t R=%.3f m-ohm",R*1E3);
|
bafed34c66eec3506d4980284be901893c14a181
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2414/CH8/EX8.1/Ex8_1.sce
|
bfd1aa90ef51a59c7591cf43561b181159b2e779
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 247
|
sce
|
Ex8_1.sce
|
clc;
close();
clear();
//page no 277
//prob no. 8.1
W=5000; //Hz
fs=2*W;
mprintf('(a) The minimum sampling rate is %i samples per second.\n',fs);
T=1/fs; //second
mprintf(' (b) Maximum interval between samples is %f seconds',T);
|
2d55b125918bb15a42efb48a12cff92e0068208c
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3428/CH10/EX5.10.2/Ex5_10_2.sce
|
5d7053a8b4fccfcc2f87f5f72e430f25e20f1451
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 420
|
sce
|
Ex5_10_2.sce
|
//Section-5,Example-2,Page no.-D.5
//To find the fraction of sample remains after 100 minutes of reaction.
clc;
t_h=50 //t_h=t_1/2(Time required for the completion of one half of the reaction)
k=(0.693/t_h) //Since, k=2.303/t*log(R_0/R_t)
t=(t_h)*2 //Time required for the complete reaction.
R=10^((-k*t)/2.303) //R=(R_t)/(R_0)
disp(R,'Required fraction of sample')
|
bf3652ccd9b5cd170d5e20f817e7f5ed07add022
|
881e0bcc7118244a24f736786ac36140acfb885e
|
/yeast/results/GAssist-ADI-C.yeast-1/result6s0.tst
|
3427e21b03f1681911c729d92ae77e1e47aae5c5
|
[] |
no_license
|
woshahua/Experiment_File
|
3e34e5a4a622d6d260fbdf8d5ef2711712aad9bc
|
6a139cd3f779373799cb926ba90d978235b0de0d
|
refs/heads/master
| 2021-01-01T06:57:13.285197
| 2017-07-28T08:17:38
| 2017-07-28T08:17:38
| 97,557,409
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,585
|
tst
|
result6s0.tst
|
@relation yeast-1
@attribute Mcg real [0.11, 1.0]
@attribute Gvh real [0.13, 1.0]
@attribute Alm real [0.21, 1.0]
@attribute Mit real [0.0, 1.0]
@attribute Erl real [0.5, 1.0]
@attribute Pox real [0.0, 0.83]
@attribute Vac real [0.0, 0.73]
@attribute Nuc real [0.0, 1.0]
@attribute Class {MIT, NUC, CYT, ME1, ME2, ME3, EXC, VAC, POX, ERL}
@inputs Mcg, Gvh, Alm, Mit, Erl, Pox, Vac, Nuc
@outputs Class
CYT CYT
MIT MIT
NUC NUC
NUC NUC
CYT MIT
NUC NUC
NUC ME3
NUC NUC
ME3 ME3
NUC CYT
CYT CYT
NUC NUC
CYT NUC
CYT CYT
CYT CYT
CYT MIT
CYT CYT
ME1 ME1
CYT CYT
MIT MIT
MIT ME1
POX POX
CYT CYT
NUC NUC
ME2 ME2
ME3 ME3
CYT NUC
CYT CYT
CYT NUC
NUC MIT
NUC CYT
ME3 ME3
CYT CYT
NUC CYT
CYT CYT
NUC CYT
NUC CYT
CYT NUC
MIT CYT
NUC NUC
ME3 ME3
MIT MIT
MIT CYT
ME3 ME3
ME2 ME3
MIT MIT
ME3 CYT
CYT MIT
ME3 ME3
CYT CYT
MIT CYT
MIT CYT
NUC NUC
MIT CYT
MIT MIT
MIT CYT
MIT MIT
NUC NUC
NUC CYT
NUC NUC
MIT CYT
NUC NUC
NUC CYT
NUC MIT
NUC CYT
MIT CYT
CYT CYT
CYT CYT
MIT MIT
VAC CYT
CYT NUC
EXC ME1
NUC ME3
EXC ME1
ME2 ME1
ME2 ME1
POX CYT
CYT CYT
MIT MIT
MIT MIT
MIT CYT
NUC NUC
CYT MIT
NUC CYT
NUC CYT
NUC NUC
CYT NUC
CYT CYT
CYT CYT
CYT CYT
CYT CYT
CYT MIT
ME3 ME3
CYT CYT
CYT NUC
CYT CYT
ME2 NUC
MIT CYT
CYT MIT
NUC NUC
NUC CYT
NUC NUC
ME3 ME3
CYT CYT
NUC NUC
NUC CYT
NUC CYT
ME3 ME3
ME3 ME3
EXC CYT
ME3 ME3
CYT CYT
CYT MIT
NUC NUC
CYT NUC
CYT CYT
CYT CYT
ME1 ME1
VAC ME3
NUC NUC
CYT CYT
VAC NUC
CYT CYT
NUC NUC
ME1 ME1
ME1 ME1
ME3 ME3
NUC NUC
ME3 ME3
EXC ME1
ME1 ME1
ME3 ME3
NUC NUC
MIT MIT
NUC NUC
CYT CYT
MIT MIT
CYT ME3
CYT CYT
NUC CYT
NUC CYT
CYT CYT
MIT MIT
MIT MIT
ME3 ME3
CYT CYT
NUC NUC
NUC CYT
|
47b138b063700f70e1be10ce0bd5a4b689cb5ae3
|
5f48beee3dc825617c83ba20a7c82c544061af65
|
/tests/s/109.tst
|
91b5e8deeeb1c823106dc6ce32eac3131286c512
|
[] |
no_license
|
grenkin/compiler
|
bed06cd6dac49c1ca89d2723174210cd3dc8efea
|
30634ec46fba10333cf284399f577be7fb8e5b61
|
refs/heads/master
| 2020-06-20T12:44:17.903582
| 2016-11-27T03:08:20
| 2016-11-27T03:08:20
| 74,863,612
| 3
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 41
|
tst
|
109.tst
|
int main(void)
{
int *p, *q;
*p * *q;
}
|
7197703ee0b37f4a7f8f79a3ea4533845e87e2cc
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2135/CH4/EX4.22/Exa_4_22.sce
|
8670035fc39e8fa5418b27d94cd565bac5f967f0
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 387
|
sce
|
Exa_4_22.sce
|
//Exa 4.22
clc;
clear;
close;
format('v',7);
//Given Data :
Cpg=1.05;//KJ/KgK
t1=400;//degree centigrade
t2=360;//degree centigrade
T=30+273;//K
Q=Cpg*(t1-t2);//KJ/Kg
deltaSsurr=Q/T;//KJ/KgK
deltaSsystem=integrate('Cpg/T','T',t1+273,t2+273);//KJ/KgK
deltaSuniverse=deltaSsystem+deltaSsurr;//KJ/KgK
disp(deltaSuniverse,"Change in entropy of the universe in KJ/KgK : ");
|
cad589c0937061f691c5708fd1a733f16b3f6d52
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/49/CH6/EX6.4/ex4.sce
|
6e4b6f240e7afd9e9d7290b6575036bb216109b6
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,285
|
sce
|
ex4.sce
|
//CHAPTER 6 _ PRESSURE AND SOUND MEASUREMENT
//Caption : Design of Pressure Transducers
// Example 4 // Page 338
p_max=10*10^6 //('Enter the capacity of the transducer=:')
D=.05 //('Enter the diameter of diaphragm=:')
R=D/2;
v=0.3; // poissons ratio
E=200*10^9;
// We know that
// y=3pR^4(1-v^2)/16t^3E
// if y<t/4, the non linearity is restricted to 0.3%
//So t is given by
t=(3*p_max*R^4*(1-v^2)/(4*E))^(1/4)
disp(t)
printf('thickness comes out to be %fd m\n',t);
Sr_max=(3*p_max*R^2)/(4*t^2)
printf('So the max radial stress is %fd Pa\n',Sr_max)
printf('The given fatigue strength is 500MPa\n' )
if Sr_max > 500*10^6 then
disp("The diaphragm must be redesigned");
t1=((3*p_max*R^2)/(4*500*10^6))^(1/2);
printf('The required thickness is %fd m\n',t1)
else
disp("The design is OK");
end
// Let the voltage ratio be represented by Err
Err=(820*p_max*R^2*(1-v^2))/(E*(t1^2))
printf('The voltage ratio is %fd\n', Err)
// For maximum power dissipation
PT=1
RT=120
Ei=2*(PT*RT)^(1/2);
disp("Let the sensitivity of the transducer be represented by ss")
ss=(820*R^2*(1-v^2)*Ei)/(E*t1^2)
printf('sensitivity is %fd\n', ss)
// Part c
S_LVDT=(ss*16*t^3*E)/(3*R^4*(1-v^2)*Ei)
printf('SENSITIVITY OF LVDT IS %fd \n',S_LVDT)
|
48548958422c4c1feace41ddda4d9e95e7ab95b3
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2510/CH17/EX17.6/Ex17_6.sce
|
1ff551c5acd46409a337f07d9d5b0be791790bad
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 796
|
sce
|
Ex17_6.sce
|
//Variable declaration:
w = 0.2/100.0 //Width of fin (m)
t = 0.2/100.0 //Thickness of fin (m)
L = 1.0/100.0 //Length of fin (m)
h = 16.0 //Heat transfer coefficient (W/m^2.K)
k = 400.0 //Thermal conductivity of fin (W/m.K)
Tc = 100.0 //Circuit temperature ( C)
Ta = 25.0 //Air temperature ( C)
//Calculation:
P = 4*w //Fin cross-section parameter (m)
Ac = w*t //Cross-sectional area of fin (m^2)
Lc = L+Ac/P //Corrected height of fin (m)
m = sqrt((h*P)/(k*Ac)) //Location of minimum temperature (m^-1)
Q = (sqrt(h*P*k*Ac))*(Tc-Ta)*atan(h)*(m*Lc) //Heat transfer from each micro-fin (W)
//Result:
printf("The heat transfer from each micro-fin is : %.2f W .",Q)
|
079f8c467f3e0c031ab3889dcd7f3b8ab0fdb8fd
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1118/CH6/EX6.4/eg6_4.sce
|
6c5704b0d83fae2ae1f80c9bc2e1a9a0261d4e78
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 419
|
sce
|
eg6_4.sce
|
clear;
clc;
wc=.594;
a=64.5;
t=9.53;
d=3*3.45;
sag=3.96;
p=40;
E=12700;
l=160;
alpha=1.7*10^(-5);
wi=(%pi)*t*(t+d)*913.5*10^(-6);
wh=(d+2*t)*p*10^(-3);
wr=sqrt((wc+wi)^2 + wh^2);
w1=wr;
T1=w1*l*l/(sag*8);
w2=wc;
t1=-5.5;
T2=wc*T1/w1;
//by using the formula t2^2(t2-K+b)=w2^2*l*l*e*a/24
t2=t1+(T1-T2)/(alpha*E*a);
printf("The temperature at which the sag will remain the same:%.2f degC",t2);
|
e8adcdd4d21c4c00e18be94b933ad43ebaff8b4d
|
0225f07f11230da9818e159324b578abd0a88cec
|
/Webasto X250_3/Webasto X250_3.tst
|
d1f9f2b5697cbd670c52e758b7149992c964893c
|
[] |
no_license
|
zzzmarikzzz/eagle
|
a57ac554d1bea0f07d6d9c3a9494dd59a73beb3a
|
13374a4fcb5c181b1047f207df8618054ec5ee2a
|
refs/heads/master
| 2021-01-18T15:09:34.371046
| 2020-06-21T20:29:00
| 2020-06-21T20:29:00
| 54,958,216
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 18,129
|
tst
|
Webasto X250_3.tst
|
G75*
%MOIN*%
%OFA0B0*%
%FSLAX25Y25*%
%IPPOS*%
%LPD*%
%AMOC8*
5,1,8,0,0,1.08239X$1,22.5*
%
%ADD10C,0.01600*%
%ADD11C,0.00000*%
%ADD12C,0.08800*%
%ADD13R,0.09068X0.06706*%
%ADD14R,0.06706X0.09068*%
%ADD15C,0.15200*%
%ADD16R,0.03950X0.04343*%
%ADD17R,0.09461X0.03162*%
%ADD18R,0.04737X0.05131*%
D10*
X0002859Y0002438D02*
X0109109Y0002438D01*
X0109109Y0076188D01*
X0002859Y0076188D01*
X0002859Y0002438D01*
D11*
X0006359Y0009938D02*
X0006361Y0010064D01*
X0006367Y0010190D01*
X0006377Y0010316D01*
X0006391Y0010442D01*
X0006409Y0010567D01*
X0006431Y0010691D01*
X0006456Y0010815D01*
X0006486Y0010938D01*
X0006519Y0011059D01*
X0006557Y0011180D01*
X0006598Y0011299D01*
X0006643Y0011418D01*
X0006691Y0011534D01*
X0006743Y0011649D01*
X0006799Y0011762D01*
X0006859Y0011874D01*
X0006922Y0011983D01*
X0006988Y0012091D01*
X0007057Y0012196D01*
X0007130Y0012299D01*
X0007207Y0012400D01*
X0007286Y0012498D01*
X0007368Y0012594D01*
X0007454Y0012687D01*
X0007542Y0012778D01*
X0007633Y0012865D01*
X0007727Y0012950D01*
X0007823Y0013031D01*
X0007922Y0013110D01*
X0008023Y0013185D01*
X0008127Y0013257D01*
X0008233Y0013326D01*
X0008341Y0013392D01*
X0008451Y0013454D01*
X0008563Y0013512D01*
X0008676Y0013567D01*
X0008792Y0013618D01*
X0008909Y0013666D01*
X0009027Y0013710D01*
X0009147Y0013750D01*
X0009268Y0013786D01*
X0009390Y0013819D01*
X0009513Y0013848D01*
X0009637Y0013872D01*
X0009761Y0013893D01*
X0009886Y0013910D01*
X0010012Y0013923D01*
X0010138Y0013932D01*
X0010264Y0013937D01*
X0010391Y0013938D01*
X0010517Y0013935D01*
X0010643Y0013928D01*
X0010769Y0013917D01*
X0010894Y0013902D01*
X0011019Y0013883D01*
X0011143Y0013860D01*
X0011267Y0013834D01*
X0011389Y0013803D01*
X0011511Y0013769D01*
X0011631Y0013730D01*
X0011750Y0013688D01*
X0011868Y0013643D01*
X0011984Y0013593D01*
X0012099Y0013540D01*
X0012211Y0013483D01*
X0012322Y0013423D01*
X0012431Y0013359D01*
X0012538Y0013292D01*
X0012643Y0013222D01*
X0012746Y0013148D01*
X0012846Y0013071D01*
X0012944Y0012991D01*
X0013039Y0012908D01*
X0013131Y0012822D01*
X0013221Y0012733D01*
X0013308Y0012641D01*
X0013391Y0012547D01*
X0013472Y0012450D01*
X0013550Y0012350D01*
X0013625Y0012248D01*
X0013696Y0012144D01*
X0013764Y0012037D01*
X0013828Y0011929D01*
X0013889Y0011818D01*
X0013947Y0011706D01*
X0014001Y0011592D01*
X0014051Y0011476D01*
X0014098Y0011359D01*
X0014141Y0011240D01*
X0014180Y0011120D01*
X0014216Y0010999D01*
X0014247Y0010876D01*
X0014275Y0010753D01*
X0014299Y0010629D01*
X0014319Y0010504D01*
X0014335Y0010379D01*
X0014347Y0010253D01*
X0014355Y0010127D01*
X0014359Y0010001D01*
X0014359Y0009875D01*
X0014355Y0009749D01*
X0014347Y0009623D01*
X0014335Y0009497D01*
X0014319Y0009372D01*
X0014299Y0009247D01*
X0014275Y0009123D01*
X0014247Y0009000D01*
X0014216Y0008877D01*
X0014180Y0008756D01*
X0014141Y0008636D01*
X0014098Y0008517D01*
X0014051Y0008400D01*
X0014001Y0008284D01*
X0013947Y0008170D01*
X0013889Y0008058D01*
X0013828Y0007947D01*
X0013764Y0007839D01*
X0013696Y0007732D01*
X0013625Y0007628D01*
X0013550Y0007526D01*
X0013472Y0007426D01*
X0013391Y0007329D01*
X0013308Y0007235D01*
X0013221Y0007143D01*
X0013131Y0007054D01*
X0013039Y0006968D01*
X0012944Y0006885D01*
X0012846Y0006805D01*
X0012746Y0006728D01*
X0012643Y0006654D01*
X0012538Y0006584D01*
X0012431Y0006517D01*
X0012322Y0006453D01*
X0012211Y0006393D01*
X0012099Y0006336D01*
X0011984Y0006283D01*
X0011868Y0006233D01*
X0011750Y0006188D01*
X0011631Y0006146D01*
X0011511Y0006107D01*
X0011389Y0006073D01*
X0011267Y0006042D01*
X0011143Y0006016D01*
X0011019Y0005993D01*
X0010894Y0005974D01*
X0010769Y0005959D01*
X0010643Y0005948D01*
X0010517Y0005941D01*
X0010391Y0005938D01*
X0010264Y0005939D01*
X0010138Y0005944D01*
X0010012Y0005953D01*
X0009886Y0005966D01*
X0009761Y0005983D01*
X0009637Y0006004D01*
X0009513Y0006028D01*
X0009390Y0006057D01*
X0009268Y0006090D01*
X0009147Y0006126D01*
X0009027Y0006166D01*
X0008909Y0006210D01*
X0008792Y0006258D01*
X0008676Y0006309D01*
X0008563Y0006364D01*
X0008451Y0006422D01*
X0008341Y0006484D01*
X0008233Y0006550D01*
X0008127Y0006619D01*
X0008023Y0006691D01*
X0007922Y0006766D01*
X0007823Y0006845D01*
X0007727Y0006926D01*
X0007633Y0007011D01*
X0007542Y0007098D01*
X0007454Y0007189D01*
X0007368Y0007282D01*
X0007286Y0007378D01*
X0007207Y0007476D01*
X0007130Y0007577D01*
X0007057Y0007680D01*
X0006988Y0007785D01*
X0006922Y0007893D01*
X0006859Y0008002D01*
X0006799Y0008114D01*
X0006743Y0008227D01*
X0006691Y0008342D01*
X0006643Y0008458D01*
X0006598Y0008577D01*
X0006557Y0008696D01*
X0006519Y0008817D01*
X0006486Y0008938D01*
X0006456Y0009061D01*
X0006431Y0009185D01*
X0006409Y0009309D01*
X0006391Y0009434D01*
X0006377Y0009560D01*
X0006367Y0009686D01*
X0006361Y0009812D01*
X0006359Y0009938D01*
X0006359Y0068688D02*
X0006361Y0068814D01*
X0006367Y0068940D01*
X0006377Y0069066D01*
X0006391Y0069192D01*
X0006409Y0069317D01*
X0006431Y0069441D01*
X0006456Y0069565D01*
X0006486Y0069688D01*
X0006519Y0069809D01*
X0006557Y0069930D01*
X0006598Y0070049D01*
X0006643Y0070168D01*
X0006691Y0070284D01*
X0006743Y0070399D01*
X0006799Y0070512D01*
X0006859Y0070624D01*
X0006922Y0070733D01*
X0006988Y0070841D01*
X0007057Y0070946D01*
X0007130Y0071049D01*
X0007207Y0071150D01*
X0007286Y0071248D01*
X0007368Y0071344D01*
X0007454Y0071437D01*
X0007542Y0071528D01*
X0007633Y0071615D01*
X0007727Y0071700D01*
X0007823Y0071781D01*
X0007922Y0071860D01*
X0008023Y0071935D01*
X0008127Y0072007D01*
X0008233Y0072076D01*
X0008341Y0072142D01*
X0008451Y0072204D01*
X0008563Y0072262D01*
X0008676Y0072317D01*
X0008792Y0072368D01*
X0008909Y0072416D01*
X0009027Y0072460D01*
X0009147Y0072500D01*
X0009268Y0072536D01*
X0009390Y0072569D01*
X0009513Y0072598D01*
X0009637Y0072622D01*
X0009761Y0072643D01*
X0009886Y0072660D01*
X0010012Y0072673D01*
X0010138Y0072682D01*
X0010264Y0072687D01*
X0010391Y0072688D01*
X0010517Y0072685D01*
X0010643Y0072678D01*
X0010769Y0072667D01*
X0010894Y0072652D01*
X0011019Y0072633D01*
X0011143Y0072610D01*
X0011267Y0072584D01*
X0011389Y0072553D01*
X0011511Y0072519D01*
X0011631Y0072480D01*
X0011750Y0072438D01*
X0011868Y0072393D01*
X0011984Y0072343D01*
X0012099Y0072290D01*
X0012211Y0072233D01*
X0012322Y0072173D01*
X0012431Y0072109D01*
X0012538Y0072042D01*
X0012643Y0071972D01*
X0012746Y0071898D01*
X0012846Y0071821D01*
X0012944Y0071741D01*
X0013039Y0071658D01*
X0013131Y0071572D01*
X0013221Y0071483D01*
X0013308Y0071391D01*
X0013391Y0071297D01*
X0013472Y0071200D01*
X0013550Y0071100D01*
X0013625Y0070998D01*
X0013696Y0070894D01*
X0013764Y0070787D01*
X0013828Y0070679D01*
X0013889Y0070568D01*
X0013947Y0070456D01*
X0014001Y0070342D01*
X0014051Y0070226D01*
X0014098Y0070109D01*
X0014141Y0069990D01*
X0014180Y0069870D01*
X0014216Y0069749D01*
X0014247Y0069626D01*
X0014275Y0069503D01*
X0014299Y0069379D01*
X0014319Y0069254D01*
X0014335Y0069129D01*
X0014347Y0069003D01*
X0014355Y0068877D01*
X0014359Y0068751D01*
X0014359Y0068625D01*
X0014355Y0068499D01*
X0014347Y0068373D01*
X0014335Y0068247D01*
X0014319Y0068122D01*
X0014299Y0067997D01*
X0014275Y0067873D01*
X0014247Y0067750D01*
X0014216Y0067627D01*
X0014180Y0067506D01*
X0014141Y0067386D01*
X0014098Y0067267D01*
X0014051Y0067150D01*
X0014001Y0067034D01*
X0013947Y0066920D01*
X0013889Y0066808D01*
X0013828Y0066697D01*
X0013764Y0066589D01*
X0013696Y0066482D01*
X0013625Y0066378D01*
X0013550Y0066276D01*
X0013472Y0066176D01*
X0013391Y0066079D01*
X0013308Y0065985D01*
X0013221Y0065893D01*
X0013131Y0065804D01*
X0013039Y0065718D01*
X0012944Y0065635D01*
X0012846Y0065555D01*
X0012746Y0065478D01*
X0012643Y0065404D01*
X0012538Y0065334D01*
X0012431Y0065267D01*
X0012322Y0065203D01*
X0012211Y0065143D01*
X0012099Y0065086D01*
X0011984Y0065033D01*
X0011868Y0064983D01*
X0011750Y0064938D01*
X0011631Y0064896D01*
X0011511Y0064857D01*
X0011389Y0064823D01*
X0011267Y0064792D01*
X0011143Y0064766D01*
X0011019Y0064743D01*
X0010894Y0064724D01*
X0010769Y0064709D01*
X0010643Y0064698D01*
X0010517Y0064691D01*
X0010391Y0064688D01*
X0010264Y0064689D01*
X0010138Y0064694D01*
X0010012Y0064703D01*
X0009886Y0064716D01*
X0009761Y0064733D01*
X0009637Y0064754D01*
X0009513Y0064778D01*
X0009390Y0064807D01*
X0009268Y0064840D01*
X0009147Y0064876D01*
X0009027Y0064916D01*
X0008909Y0064960D01*
X0008792Y0065008D01*
X0008676Y0065059D01*
X0008563Y0065114D01*
X0008451Y0065172D01*
X0008341Y0065234D01*
X0008233Y0065300D01*
X0008127Y0065369D01*
X0008023Y0065441D01*
X0007922Y0065516D01*
X0007823Y0065595D01*
X0007727Y0065676D01*
X0007633Y0065761D01*
X0007542Y0065848D01*
X0007454Y0065939D01*
X0007368Y0066032D01*
X0007286Y0066128D01*
X0007207Y0066226D01*
X0007130Y0066327D01*
X0007057Y0066430D01*
X0006988Y0066535D01*
X0006922Y0066643D01*
X0006859Y0066752D01*
X0006799Y0066864D01*
X0006743Y0066977D01*
X0006691Y0067092D01*
X0006643Y0067208D01*
X0006598Y0067327D01*
X0006557Y0067446D01*
X0006519Y0067567D01*
X0006486Y0067688D01*
X0006456Y0067811D01*
X0006431Y0067935D01*
X0006409Y0068059D01*
X0006391Y0068184D01*
X0006377Y0068310D01*
X0006367Y0068436D01*
X0006361Y0068562D01*
X0006359Y0068688D01*
X0097609Y0068688D02*
X0097611Y0068814D01*
X0097617Y0068940D01*
X0097627Y0069066D01*
X0097641Y0069192D01*
X0097659Y0069317D01*
X0097681Y0069441D01*
X0097706Y0069565D01*
X0097736Y0069688D01*
X0097769Y0069809D01*
X0097807Y0069930D01*
X0097848Y0070049D01*
X0097893Y0070168D01*
X0097941Y0070284D01*
X0097993Y0070399D01*
X0098049Y0070512D01*
X0098109Y0070624D01*
X0098172Y0070733D01*
X0098238Y0070841D01*
X0098307Y0070946D01*
X0098380Y0071049D01*
X0098457Y0071150D01*
X0098536Y0071248D01*
X0098618Y0071344D01*
X0098704Y0071437D01*
X0098792Y0071528D01*
X0098883Y0071615D01*
X0098977Y0071700D01*
X0099073Y0071781D01*
X0099172Y0071860D01*
X0099273Y0071935D01*
X0099377Y0072007D01*
X0099483Y0072076D01*
X0099591Y0072142D01*
X0099701Y0072204D01*
X0099813Y0072262D01*
X0099926Y0072317D01*
X0100042Y0072368D01*
X0100159Y0072416D01*
X0100277Y0072460D01*
X0100397Y0072500D01*
X0100518Y0072536D01*
X0100640Y0072569D01*
X0100763Y0072598D01*
X0100887Y0072622D01*
X0101011Y0072643D01*
X0101136Y0072660D01*
X0101262Y0072673D01*
X0101388Y0072682D01*
X0101514Y0072687D01*
X0101641Y0072688D01*
X0101767Y0072685D01*
X0101893Y0072678D01*
X0102019Y0072667D01*
X0102144Y0072652D01*
X0102269Y0072633D01*
X0102393Y0072610D01*
X0102517Y0072584D01*
X0102639Y0072553D01*
X0102761Y0072519D01*
X0102881Y0072480D01*
X0103000Y0072438D01*
X0103118Y0072393D01*
X0103234Y0072343D01*
X0103349Y0072290D01*
X0103461Y0072233D01*
X0103572Y0072173D01*
X0103681Y0072109D01*
X0103788Y0072042D01*
X0103893Y0071972D01*
X0103996Y0071898D01*
X0104096Y0071821D01*
X0104194Y0071741D01*
X0104289Y0071658D01*
X0104381Y0071572D01*
X0104471Y0071483D01*
X0104558Y0071391D01*
X0104641Y0071297D01*
X0104722Y0071200D01*
X0104800Y0071100D01*
X0104875Y0070998D01*
X0104946Y0070894D01*
X0105014Y0070787D01*
X0105078Y0070679D01*
X0105139Y0070568D01*
X0105197Y0070456D01*
X0105251Y0070342D01*
X0105301Y0070226D01*
X0105348Y0070109D01*
X0105391Y0069990D01*
X0105430Y0069870D01*
X0105466Y0069749D01*
X0105497Y0069626D01*
X0105525Y0069503D01*
X0105549Y0069379D01*
X0105569Y0069254D01*
X0105585Y0069129D01*
X0105597Y0069003D01*
X0105605Y0068877D01*
X0105609Y0068751D01*
X0105609Y0068625D01*
X0105605Y0068499D01*
X0105597Y0068373D01*
X0105585Y0068247D01*
X0105569Y0068122D01*
X0105549Y0067997D01*
X0105525Y0067873D01*
X0105497Y0067750D01*
X0105466Y0067627D01*
X0105430Y0067506D01*
X0105391Y0067386D01*
X0105348Y0067267D01*
X0105301Y0067150D01*
X0105251Y0067034D01*
X0105197Y0066920D01*
X0105139Y0066808D01*
X0105078Y0066697D01*
X0105014Y0066589D01*
X0104946Y0066482D01*
X0104875Y0066378D01*
X0104800Y0066276D01*
X0104722Y0066176D01*
X0104641Y0066079D01*
X0104558Y0065985D01*
X0104471Y0065893D01*
X0104381Y0065804D01*
X0104289Y0065718D01*
X0104194Y0065635D01*
X0104096Y0065555D01*
X0103996Y0065478D01*
X0103893Y0065404D01*
X0103788Y0065334D01*
X0103681Y0065267D01*
X0103572Y0065203D01*
X0103461Y0065143D01*
X0103349Y0065086D01*
X0103234Y0065033D01*
X0103118Y0064983D01*
X0103000Y0064938D01*
X0102881Y0064896D01*
X0102761Y0064857D01*
X0102639Y0064823D01*
X0102517Y0064792D01*
X0102393Y0064766D01*
X0102269Y0064743D01*
X0102144Y0064724D01*
X0102019Y0064709D01*
X0101893Y0064698D01*
X0101767Y0064691D01*
X0101641Y0064688D01*
X0101514Y0064689D01*
X0101388Y0064694D01*
X0101262Y0064703D01*
X0101136Y0064716D01*
X0101011Y0064733D01*
X0100887Y0064754D01*
X0100763Y0064778D01*
X0100640Y0064807D01*
X0100518Y0064840D01*
X0100397Y0064876D01*
X0100277Y0064916D01*
X0100159Y0064960D01*
X0100042Y0065008D01*
X0099926Y0065059D01*
X0099813Y0065114D01*
X0099701Y0065172D01*
X0099591Y0065234D01*
X0099483Y0065300D01*
X0099377Y0065369D01*
X0099273Y0065441D01*
X0099172Y0065516D01*
X0099073Y0065595D01*
X0098977Y0065676D01*
X0098883Y0065761D01*
X0098792Y0065848D01*
X0098704Y0065939D01*
X0098618Y0066032D01*
X0098536Y0066128D01*
X0098457Y0066226D01*
X0098380Y0066327D01*
X0098307Y0066430D01*
X0098238Y0066535D01*
X0098172Y0066643D01*
X0098109Y0066752D01*
X0098049Y0066864D01*
X0097993Y0066977D01*
X0097941Y0067092D01*
X0097893Y0067208D01*
X0097848Y0067327D01*
X0097807Y0067446D01*
X0097769Y0067567D01*
X0097736Y0067688D01*
X0097706Y0067811D01*
X0097681Y0067935D01*
X0097659Y0068059D01*
X0097641Y0068184D01*
X0097627Y0068310D01*
X0097617Y0068436D01*
X0097611Y0068562D01*
X0097609Y0068688D01*
X0097609Y0009938D02*
X0097611Y0010064D01*
X0097617Y0010190D01*
X0097627Y0010316D01*
X0097641Y0010442D01*
X0097659Y0010567D01*
X0097681Y0010691D01*
X0097706Y0010815D01*
X0097736Y0010938D01*
X0097769Y0011059D01*
X0097807Y0011180D01*
X0097848Y0011299D01*
X0097893Y0011418D01*
X0097941Y0011534D01*
X0097993Y0011649D01*
X0098049Y0011762D01*
X0098109Y0011874D01*
X0098172Y0011983D01*
X0098238Y0012091D01*
X0098307Y0012196D01*
X0098380Y0012299D01*
X0098457Y0012400D01*
X0098536Y0012498D01*
X0098618Y0012594D01*
X0098704Y0012687D01*
X0098792Y0012778D01*
X0098883Y0012865D01*
X0098977Y0012950D01*
X0099073Y0013031D01*
X0099172Y0013110D01*
X0099273Y0013185D01*
X0099377Y0013257D01*
X0099483Y0013326D01*
X0099591Y0013392D01*
X0099701Y0013454D01*
X0099813Y0013512D01*
X0099926Y0013567D01*
X0100042Y0013618D01*
X0100159Y0013666D01*
X0100277Y0013710D01*
X0100397Y0013750D01*
X0100518Y0013786D01*
X0100640Y0013819D01*
X0100763Y0013848D01*
X0100887Y0013872D01*
X0101011Y0013893D01*
X0101136Y0013910D01*
X0101262Y0013923D01*
X0101388Y0013932D01*
X0101514Y0013937D01*
X0101641Y0013938D01*
X0101767Y0013935D01*
X0101893Y0013928D01*
X0102019Y0013917D01*
X0102144Y0013902D01*
X0102269Y0013883D01*
X0102393Y0013860D01*
X0102517Y0013834D01*
X0102639Y0013803D01*
X0102761Y0013769D01*
X0102881Y0013730D01*
X0103000Y0013688D01*
X0103118Y0013643D01*
X0103234Y0013593D01*
X0103349Y0013540D01*
X0103461Y0013483D01*
X0103572Y0013423D01*
X0103681Y0013359D01*
X0103788Y0013292D01*
X0103893Y0013222D01*
X0103996Y0013148D01*
X0104096Y0013071D01*
X0104194Y0012991D01*
X0104289Y0012908D01*
X0104381Y0012822D01*
X0104471Y0012733D01*
X0104558Y0012641D01*
X0104641Y0012547D01*
X0104722Y0012450D01*
X0104800Y0012350D01*
X0104875Y0012248D01*
X0104946Y0012144D01*
X0105014Y0012037D01*
X0105078Y0011929D01*
X0105139Y0011818D01*
X0105197Y0011706D01*
X0105251Y0011592D01*
X0105301Y0011476D01*
X0105348Y0011359D01*
X0105391Y0011240D01*
X0105430Y0011120D01*
X0105466Y0010999D01*
X0105497Y0010876D01*
X0105525Y0010753D01*
X0105549Y0010629D01*
X0105569Y0010504D01*
X0105585Y0010379D01*
X0105597Y0010253D01*
X0105605Y0010127D01*
X0105609Y0010001D01*
X0105609Y0009875D01*
X0105605Y0009749D01*
X0105597Y0009623D01*
X0105585Y0009497D01*
X0105569Y0009372D01*
X0105549Y0009247D01*
X0105525Y0009123D01*
X0105497Y0009000D01*
X0105466Y0008877D01*
X0105430Y0008756D01*
X0105391Y0008636D01*
X0105348Y0008517D01*
X0105301Y0008400D01*
X0105251Y0008284D01*
X0105197Y0008170D01*
X0105139Y0008058D01*
X0105078Y0007947D01*
X0105014Y0007839D01*
X0104946Y0007732D01*
X0104875Y0007628D01*
X0104800Y0007526D01*
X0104722Y0007426D01*
X0104641Y0007329D01*
X0104558Y0007235D01*
X0104471Y0007143D01*
X0104381Y0007054D01*
X0104289Y0006968D01*
X0104194Y0006885D01*
X0104096Y0006805D01*
X0103996Y0006728D01*
X0103893Y0006654D01*
X0103788Y0006584D01*
X0103681Y0006517D01*
X0103572Y0006453D01*
X0103461Y0006393D01*
X0103349Y0006336D01*
X0103234Y0006283D01*
X0103118Y0006233D01*
X0103000Y0006188D01*
X0102881Y0006146D01*
X0102761Y0006107D01*
X0102639Y0006073D01*
X0102517Y0006042D01*
X0102393Y0006016D01*
X0102269Y0005993D01*
X0102144Y0005974D01*
X0102019Y0005959D01*
X0101893Y0005948D01*
X0101767Y0005941D01*
X0101641Y0005938D01*
X0101514Y0005939D01*
X0101388Y0005944D01*
X0101262Y0005953D01*
X0101136Y0005966D01*
X0101011Y0005983D01*
X0100887Y0006004D01*
X0100763Y0006028D01*
X0100640Y0006057D01*
X0100518Y0006090D01*
X0100397Y0006126D01*
X0100277Y0006166D01*
X0100159Y0006210D01*
X0100042Y0006258D01*
X0099926Y0006309D01*
X0099813Y0006364D01*
X0099701Y0006422D01*
X0099591Y0006484D01*
X0099483Y0006550D01*
X0099377Y0006619D01*
X0099273Y0006691D01*
X0099172Y0006766D01*
X0099073Y0006845D01*
X0098977Y0006926D01*
X0098883Y0007011D01*
X0098792Y0007098D01*
X0098704Y0007189D01*
X0098618Y0007282D01*
X0098536Y0007378D01*
X0098457Y0007476D01*
X0098380Y0007577D01*
X0098307Y0007680D01*
X0098238Y0007785D01*
X0098172Y0007893D01*
X0098109Y0008002D01*
X0098049Y0008114D01*
X0097993Y0008227D01*
X0097941Y0008342D01*
X0097893Y0008458D01*
X0097848Y0008577D01*
X0097807Y0008696D01*
X0097769Y0008817D01*
X0097736Y0008938D01*
X0097706Y0009061D01*
X0097681Y0009185D01*
X0097659Y0009309D01*
X0097641Y0009434D01*
X0097627Y0009560D01*
X0097617Y0009686D01*
X0097611Y0009812D01*
X0097609Y0009938D01*
D12*
X0101609Y0009938D03*
X0101609Y0068688D03*
X0010359Y0068688D03*
X0010359Y0009938D03*
D13*
X0065721Y0020301D03*
X0065721Y0034474D03*
D14*
X0039058Y0039488D03*
X0024885Y0039488D03*
D15*
X0013546Y0041188D03*
X0013571Y0024300D03*
X0039109Y0053687D03*
X0056609Y0054912D03*
X0072859Y0047437D03*
X0084109Y0059962D03*
X0096609Y0047437D03*
X0021609Y0057437D03*
D16*
X0078869Y0030525D03*
X0086349Y0030525D03*
X0082609Y0038399D03*
X0081584Y0018599D03*
X0085324Y0010725D03*
X0077844Y0010725D03*
D17*
X0049908Y0013000D03*
X0049908Y0018000D03*
X0049908Y0023000D03*
X0049908Y0028000D03*
X0029435Y0028000D03*
X0029435Y0023000D03*
X0029435Y0018000D03*
X0029435Y0013000D03*
D18*
X0048687Y0034188D03*
X0055380Y0034188D03*
X0053237Y0043025D03*
X0059930Y0043025D03*
X0076712Y0024250D03*
X0083405Y0024250D03*
X0093262Y0026725D03*
X0099955Y0026725D03*
X0103018Y0034938D03*
X0096325Y0034938D03*
X0071043Y0011525D03*
X0064350Y0011525D03*
M02*
|
7bb58efd39cadae8a0995b4b026a5bf5ec318a89
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3769/CH11/EX11.9/Ex11_9.sce
|
6e58981f3d5a4db3882bf9dabd438cec82cc2424
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 175
|
sce
|
Ex11_9.sce
|
clear
//Given
H=4*10**3 //A/m
a=60
b=0.12
//Calculation
n=a/b
I=H/n
//Result
printf("\n Current should be sent through the solenoid is %0.3f A", I)
|
499d92a2d9522ac5620de142254d623d206bff94
|
4a1effb7ec08302914dbd9c5e560c61936c1bb99
|
/Project 2/Experiments/FURIA-C/results/FURIA-C.vowel-10-1tra/result0s0.tst
|
59b4fd3eb652d50d708516ef18426baca044a4d0
|
[] |
no_license
|
nickgreenquist/Intro_To_Intelligent_Systems
|
964cad20de7099b8e5808ddee199e3e3343cf7d5
|
7ad43577b3cbbc0b620740205a14c406d96a2517
|
refs/heads/master
| 2021-01-20T13:23:23.931062
| 2017-05-04T20:08:05
| 2017-05-04T20:08:05
| 90,484,366
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 980
|
tst
|
result0s0.tst
|
@relation vowel
@attribute TT integer[0,1]
@attribute SpeakerNumber integer[0,14]
@attribute Sex integer[0,1]
@attribute F0 real[-5.211,-0.941]
@attribute F1 real[-1.274,5.074]
@attribute F2 real[-2.487,1.431]
@attribute F3 real[-1.409,2.377]
@attribute F4 real[-2.127,1.831]
@attribute F5 real[-0.836,2.327]
@attribute F6 real[-1.537,1.403]
@attribute F7 real[-1.293,2.039]
@attribute F8 real[-1.613,1.309]
@attribute F9 real[-1.68,1.396]
@attribute Class{0,1,2,3,4,5,6,7,8,9,10}
@inputs TT,SpeakerNumber,Sex,F0,F1,F2,F3,F4,F5,F6,F7,F8,F9
@outputs Class
@data
3 4
7 7
7 7
9 9
3 4
5 5
8 8
9 9
10 10
6 6
7 7
6 6
10 10
3 3
8 7
2 2
4 4
7 7
9 9
4 3
9 9
10 10
7 7
0 0
0 0
0 0
4 2
2 2
0 0
8 9
5 5
8 8
2 2
9 9
10 10
10 10
8 8
5 5
3 10
7 7
1 1
5 4
8 10
4 4
0 0
3 3
6 6
5 5
9 8
0 0
3 10
4 4
10 10
2 2
6 6
1 1
10 10
1 1
3 2
4 4
1 1
2 2
6 6
9 9
1 1
4 4
9 9
6 6
7 7
10 10
2 5
0 0
3 3
6 6
10 10
5 10
9 9
1 1
6 7
8 7
0 0
2 2
5 5
7 6
2 2
4 4
6 6
8 9
2 2
1 1
1 1
0 9
4 4
8 8
1 1
3 3
5 5
5 5
7 7
|
427ef5d17b587540d97d2ecee888eb5706af489f
|
8217f7986187902617ad1bf89cb789618a90dd0a
|
/source/2.3/macros/scicos/init_agenda.sci
|
49df814dc1fb0dca64c6795fdddba1129cd1cbfe
|
[
"MIT",
"LicenseRef-scancode-warranty-disclaimer",
"LicenseRef-scancode-public-domain"
] |
permissive
|
clg55/Scilab-Workbench
|
4ebc01d2daea5026ad07fbfc53e16d4b29179502
|
9f8fd29c7f2a98100fa9aed8b58f6768d24a1875
|
refs/heads/master
| 2023-05-31T04:06:22.931111
| 2022-09-13T14:41:51
| 2022-09-13T14:41:51
| 258,270,193
| 0
| 1
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 785
|
sci
|
init_agenda.sci
|
function [tevts,evtspt,pointi]=init_agenda(initexe,clkptr)
// order initial firing events in chronological order.
nblk=size(clkptr,1)-1
timevec=initexe(:,3)
if timevec<>[] then
[timevec,indtime]=sort(-timevec)
initexe=initexe(indtime,:)
else
initexe=[]
end
timevec=[]
//initialize agenda
ninit=size(initexe,1)
pointi=0
nevts=clkptr(nblk+1)-1 //time events agenda size
tevts=0*ones(nevts,1)
if initexe<>[] then
tevts(clkptr(initexe(:,1))+initexe(:,2)-1)=initexe(:,3)
end
evtspt=-ones(nevts,1)
if ninit>0 then
pointi=clkptr(initexe(1,1))+initexe(1,2)-1;
evtspt(pointi)=0
end
if ninit>1 then
evtspt(clkptr(initexe(1:ninit-1,1))+initexe(1:ninit-1,2)-1)=..
clkptr(initexe(2:ninit,1))+initexe(2:ninit,2)-1;
evtspt(clkptr(initexe(ninit,1))+initexe(ninit,2)-1)=0;
end
|
0544d400f4991f55b4f7e589928ef2ceff03c6a5
|
9b66f5243cacf0d4982b973cfea228a4e3a509a9
|
/gumbel.sce
|
5d86da34a6cee766875bf232afe0777a0ea306ba
|
[] |
no_license
|
ece2lr/tp11
|
708f0edb7050f2b95a2ed3d8770db3ce531cca60
|
4af30e22bf2edb43132864e130743b5031579166
|
refs/heads/master
| 2021-09-05T10:29:04.695024
| 2018-01-26T12:20:31
| 2018-01-26T12:20:31
| 119,036,571
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 828
|
sce
|
gumbel.sce
|
exec("histcFix.sci",-1)
N = 10^6
t = grand(1,N,"exp",1)
g = log(t)
scf(0)
clf()
x = linspace(-6,2)
histplot(100,g) // histogramme empirique
plot(x,exp(x) .* exp(-exp(x))) // densité théorique
xtitle("histogramme de la loi de Gumbel")
//disp(mean(g),"moyenne empirique")
//disp(stdev(g),"écart-type empirique")
//mu = mean(g) ; sigma = stdev(g)
//d = sqrt(1/.05)
//disp([mu-d*sigma/sqrt(N),mu+d*sigma/sqrt(N)],"intervalle de confiance")
//scf(1)
//clf()
//xtitle("évolution des moyennes empiriques")
//N = 5*10^2 // longueur de simulation
//for k=1:10
// t = grand(1,N,"exp",1)
// g = log(t)
// m = cumsum(g) ./ (1:N)
// plot(m)
//end
//
//// constante gamma d'Euler
//N = 10^4
//h = sum(1./(1:N-1)) + .5/N
//gamma = h - log(N)
//disp(gamma,"constante gamma d''Euler")
//disp(%e^%pi - %pi,"exp(pi)-pi")
|
3557b98755bdbb6913cf25bbf8e16a5c840c877d
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1553/CH34/EX34.2/34Ex2.sce
|
4c22a5a256bb88c1d5c0a5e964be1ff75de24d1b
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 201
|
sce
|
34Ex2.sce
|
//Chapter 34 Ex 2
clc;
clear;
close;
d1=19;
theta=(60*%pi)/180; //converted into radian
d2=d1*cos(theta);
mprintf("Distance of the foot of the ladder from the wall is %.1f meters",d2);
|
9045a728cd3378dbd5a2bd948b5075481dc77b96
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/671/CH10/EX10.2/10_2.sce
|
598d36290c8b625d3d8f23d2f64dcb1d62ae513e
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 223
|
sce
|
10_2.sce
|
P=4
A=4
ra=0.145
l=0.21
Z=2*33*11
K=Z*P/2/%pi/A
disp(K)
Ap=2*%pi*ra/P*0.7*l
Barc=0.8
flux=Ap*Barc
n=1200
Ea=K*flux*2*%pi*n/60
disp(Ea)
Ia=240
Ic=Ia/A
disp(Ic)
T=K*flux*Ia
disp(T)
Pg=Ea*Ia
disp(Pg)
|
5930fb74ded10e5c91cf9fd4d86385537d9cac30
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3428/CH18/EX12.18.5/Ex12_18_5.sce
|
f60464063f77e2d2c42d21537d5cf12e6a8acfc2
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 279
|
sce
|
Ex12_18_5.sce
|
//Section-12,Example-1,Page no.-SS.39
//To calulate d_200 and d_111 in Lead.
clc;
a=4.95
h_1=2
k_1=0
l_1=0
h_2=1
k_2=1
l_2=1
d_200=a/(sqrt((h_1)^2 + (k_1)^2 + (l_1)^2))
disp(d_200,'In Angstrom')
d_111=a/(sqrt((h_2)^2 + (k_2)^2 + (l_2)^2))
disp(d_111,'In Angstrom')
|
210c91cf4133527ac1fee58d057ff25af08ec7c2
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2510/CH27/EX27.7/Ex27_7.sce
|
e8db5cd70ac6564e200bc72de6a85fb18748e0a5
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,400
|
sce
|
Ex27_7.sce
|
//Variable declaration:
i = 12/100 //Intersest rate
n = 12 //Lifetime period (yr)
CC = 2625000 //Capital cost ($)
IC = 1575000 //Installation cost ($)
//From table 27.3:
Ic1 = 2000000 //Income credit for double pipe ($/yr)
Ic2 = 2500000 //Income credit for Shell-and-tube ($/yr)
AC1 = 1728000 //Total annual cost for double pipe ($/yr)
AC2 = 2080000 //Total annual cost for Shell-and-tube ($/yr)
//Calculation:
CRF = i/(1-(1+i)**-n) //Capital recovery factor
DPc = (CC+IC)*CRF //Annual capital and installation costs for the DP unit ($/yr)
STc = (CC+IC)*CRF //Annual capital and installation costs for the ST unit ($/yr)
DPp = Ic1-AC1 //Profit for the DP unit ($/yr)
STp = Ic2-AC2 //Profit for the ST unit ($/yr)
//Result:
printf("The profit for the shell-and-tube unit is : $ %.0f /yr .",DPp)
printf("The profit for the double pipe unit is : $ %.0f /yr .",STp)
if (STp>DPp) then
printf("A shell-and-tube heat exchanger should therefore be selected based on the above economic analysis.")
else
printf("A double pipe heat exchanger should therefore be selected based on the above economic analysis.")
end
|
54203e8076bbdbcd1c7587f8ae51f61f82171fba
|
8217f7986187902617ad1bf89cb789618a90dd0a
|
/source/2.3.1/macros/metanet/cycle_basis.sci
|
eb563a0b9b3055a39ef6c469000bb8efda791329
|
[
"LicenseRef-scancode-warranty-disclaimer",
"LicenseRef-scancode-public-domain",
"MIT"
] |
permissive
|
clg55/Scilab-Workbench
|
4ebc01d2daea5026ad07fbfc53e16d4b29179502
|
9f8fd29c7f2a98100fa9aed8b58f6768d24a1875
|
refs/heads/master
| 2023-05-31T04:06:22.931111
| 2022-09-13T14:41:51
| 2022-09-13T14:41:51
| 258,270,193
| 0
| 1
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,215
|
sci
|
cycle_basis.sci
|
function [spc]=cycle_basis(g)
[lhs,rhs]=argn(0)
if rhs<>1 then error(39), end
// finds a cycle basis in a simple connected undirected graph
if (g('directed') == 1) then
error('The graph must be undirected')
end
ii=is_connex(g);
if (ii <> 1) then
error('The graph must be connected')
end
n=g('node_number');m=prod(size(g('tail')));
if ( n < 3) then
error('Not enough nodes in the graph to have a cycle')
end
nu=m-n+1;
ta=g('tail');he=g('head');
spt=sparse([ta' he'],[1:m],[n n]);
spt=spt+spt';
t=min_weight_tree(g);
tat=ta(t);het=he(t);
prev=1000000*ones(1,n);
tag=[tat het];heg=[het tat];
//
ta1=ta;he1=he;
ta1(t)=[];he1(t)=[];
if (ta1 == []) then
error('No cycle in the graph')
end
bac=[];dir=[];
spc=sparse([],[],[nu m]);
t=[0 t];
for i=1:nu,
cycle=[];
i1=ta1(i);i2=he1(i);
bac=[];dir=full(spt(i1,i2));
while ((i1)<>1)
iedge=t(i1);
bac=[iedge bac];i1=ta(iedge)+he(iedge)-i1;
end
while ((i2)<>1)
iedge=t(i2);
dir=[iedge dir];i2=ta(iedge)+he(iedge)-i2;
end
itron=[];jmax=min(size(bac,2),size(dir,2));
for j=1:jmax,
if(bac(j)==dir(j)), itron=[itron j];end;
end;
bac(itron)=[];dir(itron)=[];
cycle=[dir bac($:-1:1)];
ncy=size(cycle,2);
spc(i,1:ncy)=cycle;
end
|
2a49ab82d7ead7c46ead033b40d1d84be6c85652
|
6583b7f11175c40106fb7cc0037578abae125f42
|
/test/questions.tst
|
c86205a64c94d28d202088b208d62138873cfc5b
|
[] |
no_license
|
FREDY1969/tampa-bay-python-avr
|
02f913ee8373bfab4ef88902844476080b560226
|
e0311815ebf81b5e1b128f621bf1f15b4fa28289
|
refs/heads/master
| 2020-04-24T17:45:03.787951
| 2011-10-23T17:58:09
| 2011-10-23T17:58:09
| 40,279,869
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 10,456
|
tst
|
questions.tst
|
# questions.tst
>>> from xml.etree import ElementTree
>>> from ucc.word import questions, xml_access
>>> root = ElementTree.fromstring('''
... <questions>
... <question>
... <name>q1</name>
... <label>Q1</label>
... <type>bool</type>
... </question>
... <question>
... <name>q2</name>
... <label>Q2</label>
... <type>number</type>
... <min>0</min>
... <orderable>False</orderable>
... </question>
... <question>
... <name>q3</name>
... <label>Q3</label>
... <type>int</type>
... <min>0</min>
... <orderable>True</orderable>
... </question>
... <question>
... <name>q4</name>
... <label>Q4</label>
... <type>rational</type>
... <min>0</min>
... <max>1</max>
... </question>
... <question>
... <name>q5</name>
... <label>Q5</label>
... <type>real</type>
... <min>1</min>
... <max>infinite</max>
... <orderable>False</orderable>
... </question>
... <question>
... <name>q6</name>
... <label>Q6</label>
... <type>string</type>
... <min>1</min>
... <max>3</max>
... <orderable>True</orderable>
... </question>
... </questions>
... ''')
>>> q_list = questions.from_xml(root, None)
>>> q_list
[<q_bool q1>, <q_number q2>, <q_int q3>, <q_rational q4>, <q_real q5>, <q_string q6>]
>>> q_list[0].is_optional()
False
>>> q_list[0].is_repeatable()
False
>>> q_list[0].is_orderable()
False
>>> q_list[1].is_optional()
False
>>> q_list[1].is_repeatable()
(0, None)
>>> q_list[1].is_orderable()
False
>>> q_list[2].is_optional()
False
>>> q_list[2].is_repeatable()
(0, None)
>>> q_list[2].is_orderable()
True
>>> q_list[3].is_optional()
True
>>> q_list[3].is_repeatable()
False
>>> q_list[3].is_orderable()
False
>>> q_list[4].is_optional()
False
>>> q_list[4].is_repeatable()
(1, None)
>>> q_list[4].is_orderable()
False
>>> q_list[5].is_optional()
False
>>> q_list[5].is_repeatable()
(1, 3)
>>> q_list[5].is_orderable()
True
>>> root = ElementTree.Element('questions')
>>> q_list[0].add_xml_subelement(root)
>>> q_list[1].add_xml_subelement(root)
>>> q_list[2].add_xml_subelement(root)
>>> q_list[3].add_xml_subelement(root)
>>> q_list[4].add_xml_subelement(root)
>>> q_list[5].add_xml_subelement(root)
>>> xml_access.indent(root)
>>> print(ElementTree.tostring(root))
<questions>
<question>
<name>q1</name>
<label>Q1</label>
<type>bool</type>
</question>
<question>
<name>q2</name>
<label>Q2</label>
<min>0</min>
<max>infinite</max>
<orderable>False</orderable>
<type>number</type>
</question>
<question>
<name>q3</name>
<label>Q3</label>
<min>0</min>
<max>infinite</max>
<orderable>True</orderable>
<type>int</type>
</question>
<question>
<name>q4</name>
<label>Q4</label>
<min>0</min>
<max>1</max>
<type>rational</type>
</question>
<question>
<name>q5</name>
<label>Q5</label>
<min>1</min>
<max>infinite</max>
<orderable>False</orderable>
<type>real</type>
</question>
<question>
<name>q6</name>
<label>Q6</label>
<min>1</min>
<max>3</max>
<orderable>True</orderable>
<type>string</type>
</question>
</questions>
<BLANKLINE>
>>> root = ElementTree.fromstring('''
... <questions>
... <question>
... <name>q1</name>
... <label>Q1</label>
... <type>choice</type>
... <options>
... <option name="HIGH" value="1" />
... <option name="LOW" value="0">
... <questions>
... <question>
... <name>sure</name>
... <label>Are you sure?</label>
... <type>bool</type>
... </question>
... </questions>
... </option>
... </options>
... </question>
... <question>
... <name>q2</name>
... <label>Q2</label>
... <type>choice</type>
... <default>1</default>
... <options>
... <option name="HIGH" value="1" />
... <option name="LOW" value="0">
... <questions>
... <question>
... <name>sure</name>
... <label>Are you sure?</label>
... <type>bool</type>
... </question>
... </questions>
... </option>
... </options>
... </question>
... <question>
... <name>q3</name>
... <label>Q3</label>
... <type>multichoice</type>
... <options>
... <option name="HIGH" value="1" />
... <option name="LOW" value="0">
... <questions>
... <question>
... <name>sure</name>
... <label>Are you sure?</label>
... <type>bool</type>
... </question>
... </questions>
... </option>
... </options>
... </question>
... <question>
... <name>q4</name>
... <label>Q4</label>
... <type>multichoice</type>
... <default>1</default>
... <options>
... <option name="HIGH" value="1" />
... <option name="LOW" value="0">
... <questions>
... <question>
... <name>sure</name>
... <label>Are you sure?</label>
... <type>bool</type>
... </question>
... <questions>
... <name>s1</name>
... <label>S1</label>
... <min>1</min>
... <max>1</max>
... <orderable>False</orderable>
... <question>
... <name>sq1</name>
... <label>SQ1</label>
... <type>int</type>
... </question>
... <question>
... <name>sq2</name>
... <label>SQ2</label>
... <type>string</type>
... </question>
... </questions>
... </questions>
... </option>
... </options>
... </question>
... </questions>
... ''')
>>> q_list = questions.from_xml(root, None)
>>> q_list
[<q_choice q1>, <q_choice q2>, <q_multichoice q3>, <q_multichoice q4>]
>>> q_list[0].default
>>> q_list[0].options
[('HIGH', 1, []), ('LOW', 0, [<q_bool sure>])]
>>> q_list[1].default
1
>>> q_list[1].options
[('HIGH', 1, []), ('LOW', 0, [<q_bool sure>])]
>>> q_list[2].default
>>> q_list[2].options
[('HIGH', 1, []), ('LOW', 0, [<q_bool sure>])]
>>> q_list[3].default
1
>>> q_list[3].options
[('HIGH', 1, []), ('LOW', 0, [<q_bool sure>, <q_series s1>])]
>>> s = q_list[3].options[1][2][1]
>>> s
<q_series s1>
>>> s.min
1
>>> s.max
1
>>> s.subquestions
[<q_int sq1>, <q_string sq2>]
>>> root = ElementTree.Element('questions')
>>> q_list[0].add_xml_subelement(root)
>>> q_list[1].add_xml_subelement(root)
>>> q_list[2].add_xml_subelement(root)
>>> q_list[3].add_xml_subelement(root)
>>> xml_access.indent(root)
>>> print(ElementTree.tostring(root))
<questions>
<question>
<name>q1</name>
<label>Q1</label>
<type>choice</type>
<options>
<option name="HIGH" value="1" />
<option name="LOW" value="0">
<questions>
<question>
<name>sure</name>
<label>Are you sure?</label>
<type>bool</type>
</question>
</questions>
</option>
</options>
</question>
<question>
<name>q2</name>
<label>Q2</label>
<type>choice</type>
<default>1</default>
<options>
<option name="HIGH" value="1" />
<option name="LOW" value="0">
<questions>
<question>
<name>sure</name>
<label>Are you sure?</label>
<type>bool</type>
</question>
</questions>
</option>
</options>
</question>
<question>
<name>q3</name>
<label>Q3</label>
<type>multichoice</type>
<options>
<option name="HIGH" value="1" />
<option name="LOW" value="0">
<questions>
<question>
<name>sure</name>
<label>Are you sure?</label>
<type>bool</type>
</question>
</questions>
</option>
</options>
</question>
<question>
<name>q4</name>
<label>Q4</label>
<type>multichoice</type>
<default>1</default>
<options>
<option name="HIGH" value="1" />
<option name="LOW" value="0">
<questions>
<question>
<name>sure</name>
<label>Are you sure?</label>
<type>bool</type>
</question>
<questions>
<name>s1</name>
<label>S1</label>
<min>1</min>
<max>1</max>
<question>
<name>sq1</name>
<label>SQ1</label>
<type>int</type>
</question>
<question>
<name>sq2</name>
<label>SQ2</label>
<type>string</type>
</question>
</questions>
</questions>
</option>
</options>
</question>
</questions>
<BLANKLINE>
|
a1def4d55288f32930191b3e16931ebc722fab1b
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1826/CH2/EX2.22/ex2_22.sce
|
c2c5553470eaef45bb87093d04dd0c8afa721d3d
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 255
|
sce
|
ex2_22.sce
|
// Example 2.22, page no-42
clear
clc
a=3.81*10^-10//m
h=1
k=3
l=2
lam=0.58*10^-10
n=2
d=a/sqrt(h^2+k^2+l^2)
theta=asin(n*lam/(2*d))
printf("The angle of glancing at which 2nd order diffraction pattern of NaCl occurs is %.2f°",theta*180/%pi)
|
a4af63de3f9b9bfd88ecb62680f8685673b92969
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3755/CH10/EX10.7/Ex10_7.sce
|
2192718ac94115db9553ccf7c1daa66416589a3a
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 424
|
sce
|
Ex10_7.sce
|
clear
//
//
//
//Variable declaration
epsilon0=8.85*10^-12; //relative permeability(F/m)
chi=35.4*10^-12; //electric susceptibility(coul^2/nt-m^2)
//Calculations
k=1+(chi/epsilon0); //dielectric constant
epsilon=epsilon0*k; //permittivity(coul^2/nt-m^2)
//Result
printf("\n dielectric constant is %0.3f ",k)
printf("\n permittivity is %0.2f *10^-12 coul^2/nt-m^2",epsilon*10^12)
|
9a9d602fc0325825bc114153adbb22fa160aa3a2
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/323/CH5/EX5.3/ex5_3.sci
|
3a9fa4ae84e9960f4fc50df44f1fa038f34a3378
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 337
|
sci
|
ex5_3.sci
|
//Chapter 5,Ex5.3,Pg5.5
clc;
//Given f=50Hz V1=240V N1=80 N2=280 A=200sq cm
//V1 is approximately equal to E1 for a transformer
//(i)
B=240/(4.44*50*200*0.0001*80) //E1=4.44fBmAN1
printf("\n Maximum flux density Bm=%.2f Wb/m2 \n",B)
//(ii)
E2=(280/80)*240 //Induced Emf E2=N2/N1*E1
printf("\n Induced EMF E2=%.0f V \n",E2)
|
5ef6b22e62e5c6d1afc5f63df2f550a5f891ba08
|
132b4ac959b21691290ffeefbc31eefe24500a25
|
/a2/Mux8Way.tst
|
d2fa82b4ad2c575900093d9c669ec0a4864328e7
|
[] |
no_license
|
HanlonsStraightRazor/cs310
|
df790b8c10b1ebb942313b4a620fd3ce655a075b
|
0a053116659eb65ffacb9bf410774e31b17e8fbd
|
refs/heads/master
| 2023-03-12T22:35:35.357502
| 2021-03-02T20:47:48
| 2021-03-02T20:47:48
| 343,901,992
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,058
|
tst
|
Mux8Way.tst
|
load Mux8Way.hdl,
output-file Mux8Way.out,
compare-to Mux8Way.cmp,
output-list a%B1.1.1 b%B1.1.1 c%B1.1.1 d%B1.1.1 e%B1.1.1 f%B1.1.1 g%B1.1.1 h%B1.1.1 sel%B1.3.1 out%B1.1.1;
set a 1,
set b 0,
set c 0,
set d 0,
set e 0,
set f 0,
set g 0,
set h 0,
set sel 0,
eval,
output;
set a 0,
set b 1,
set c 0,
set d 0,
set e 0,
set f 0,
set g 0,
set h 0,
set sel 1,
eval,
output;
set a 0,
set b 0,
set c 1,
set d 0,
set e 0,
set f 0,
set g 0,
set h 0,
set sel 2,
eval,
output;
set a 0,
set b 0,
set c 0,
set d 1,
set e 0,
set f 0,
set g 0,
set h 0,
set sel 3,
eval,
output;
set a 0,
set b 0,
set c 0,
set d 0,
set e 1,
set f 0,
set g 0,
set h 0,
set sel 4,
eval,
output;
set a 0,
set b 0,
set c 0,
set d 0,
set e 0,
set f 1,
set g 0,
set h 0,
set sel 5,
eval,
output;
set a 0,
set b 0,
set c 0,
set d 0,
set e 0,
set f 0,
set g 1,
set h 0,
set sel 6,
eval,
output;
set a 0,
set b 0,
set c 0,
set d 0,
set e 0,
set f 0,
set g 0,
set h 1,
set sel 7,
eval,
output;
|
971df96ade0241a0f1791d7a3dc0085b33a483a5
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/830/CH8/EX8.3.2/Backward_Difference.sce
|
0f89d5bd5cc4d2958fe549887f878398b106fb0b
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 256
|
sce
|
Backward_Difference.sce
|
//Graphical//
//Example 8.3.2
//mapping = (z-(z^-1))/T
//To convert analog filter into digital filter
clear;
clc;
close;
s = poly(0,'s');
H = 1/((s+0.1)^2+9)
T =1;//Sampling period T = 1 Second
z = poly(0,'z');
Hz = horner(H,(1/T)*(z-(z^-1)))
|
d39b31953ed0654345813e34ff28023ba662cc92
|
6e257f133dd8984b578f3c9fd3f269eabc0750be
|
/ScilabFromTheoryToPractice/CreatingPlots/testsurf.sce
|
106c0b72a7aecb24972654ecfa9e4362b32686a7
|
[] |
no_license
|
markusmorawitz77/Scilab
|
902ef1b9f356dd38ea2dbadc892fe50d32b44bd0
|
7c98963a7d80915f66a3231a2235010e879049aa
|
refs/heads/master
| 2021-01-19T23:53:52.068010
| 2017-04-22T12:39:21
| 2017-04-22T12:39:21
| 89,051,705
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 341
|
sce
|
testsurf.sce
|
// evaluate over a grid
x=[-1:0.2:1];y=x;[X,Y]=meshgrid(x,y);
Z=X.^2-Y.^2;
// compute a color (0,1,...,10) for each facet
C=round(5*(1+X));
// display the surface
clf;
subplot(221)
surf(Z)
xtitle('surf(z)')
subplot(222)
surf(Z,C)
xtitle('surf(z,C)')
subplot(223)
surf(x,y,Z,C)
xtitle('surf(x,y,z,C)')
subplot(224)
mesh(Z)
xtitle('mesh(z)')
|
86bd14cfc4597f95a459ffd7d71293bd2622935c
|
4246cbb6bfbd96e60074b607df96d71e7b4ee070
|
/opp6code/nocopy.tst
|
d481ac9a624143ad3d3ba2e680c1546a00c07328
|
[] |
no_license
|
thangduong3010/PL-SQL
|
bc0fa5c3400e46acc0ab63156573590935607b5d
|
1415772c87750bd30625eacf2bd116fb7e0c0aae
|
refs/heads/master
| 2020-05-22T06:57:54.352234
| 2016-12-26T04:47:27
| 2016-12-26T04:47:27
| 39,061,697
| 1
| 3
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,782
|
tst
|
nocopy.tst
|
SET SERVEROUTPUT ON
CREATE OR REPLACE PACKAGE nocopy_test
IS
TYPE number_varray IS VARRAY (10) OF NUMBER;
PROCEDURE pass_by_value (
nums IN OUT number_varray
);
PROCEDURE pass_by_ref (
nums IN OUT NOCOPY number_varray
);
END;
/
CREATE OR REPLACE PACKAGE BODY nocopy_test
IS
PROCEDURE pass_by_value (
nums IN OUT number_varray
)
IS
BEGIN
FOR indx IN nums.FIRST .. nums.LAST
LOOP
nums (indx) := nums (indx) * 2;
IF indx > 2
THEN
RAISE VALUE_ERROR;
END IF;
END LOOP;
END;
PROCEDURE pass_by_ref (
nums IN OUT NOCOPY number_varray
)
IS
BEGIN
FOR indx IN nums.FIRST .. nums.LAST
LOOP
nums (indx) := nums (indx) * 2;
IF indx > 2
THEN
RAISE VALUE_ERROR;
END IF;
END LOOP;
END;
END;
/
DECLARE
nums1 nocopy_test.number_varray
:= nocopy_test.number_varray (1, 2, 3, 4, 5);
nums2 nocopy_test.number_varray
:= nocopy_test.number_varray (1, 2, 3, 4, 5);
PROCEDURE shownums (
str IN VARCHAR2
, nums IN nocopy_test.number_varray
)
IS
BEGIN
DBMS_OUTPUT.put_line (str);
FOR indx IN nums.FIRST .. nums.LAST
LOOP
DBMS_OUTPUT.put (nums (indx) || '-');
END LOOP;
DBMS_OUTPUT.new_line;
END;
BEGIN
shownums ('Before By Value', nums1);
BEGIN
nocopy_test.pass_by_value (nums1);
EXCEPTION
WHEN OTHERS
THEN
shownums ('After By Value', nums1);
END;
shownums ('Before NOCOPY', nums2);
BEGIN
nocopy_test.pass_by_ref (nums2);
EXCEPTION
WHEN OTHERS
THEN
shownums ('After NOCOPY', nums2);
END;
END;
/
|
9b3e4091d9a3ff3fa0c213e3bd6d60101ef0447c
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2885/CH6/EX6.11/ex6_11.sce
|
7933b1be4aa99623f52303f39d4a0172c393202c
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 829
|
sce
|
ex6_11.sce
|
//Calculate Q point in voltage divider
clear;
clc;
//soltion
//given
B=100; //dc beta
Rc=2*10^3;//ohm //resistor connected to collector
R1=10*10^3;//ohm //voltage divider resistor 1
R2=1*10^3;//ohm //voltage divider resistor 2
Re=200;//ohm //resistor connected to emitter
Vcc=10;//V //Voltage supply across the collector resistor
Vbe=0.3;//V //base to emitter voltage
I=Vcc/(R1+R2); //current through voltage divider
Vb=I*R2; //voltage at base
Ve=Vb-Vbe;
Ie=Ve/Re;
Ic=Ie //approaximating Ib is nearly equal to 0
Vc=Vcc-Ic*Rc;
Vce=ceil(Vc)-Ve;
printf("The Q point is (%.1f V, %.0f mA)",Vce,Ic*1000);
Ibc=I/20; //critical value of base current
Ib=Ic/B; //actual base current
//Since Ib < Ibc, hence assumption is alright
|
3cc45a30c8e0fc67fd462927bc1bf2c558dc4625
|
05db16b4f57b0182fa452e2c11554c3de6fff271
|
/branches/vac4.52_sac_cuda/dev/vac4.52mkg_24_06_2010/scilab/startup.sci
|
27ec97198d17af3408aca46987ff1707b23fd03e
|
[] |
no_license
|
SpungMan/smaug-all
|
09b4fcf6fcec2fc7be1fa85c5c7f2d68c79e504b
|
01df12e98c734529ff984662badc26eaa3a9138b
|
refs/heads/master
| 2021-11-29T14:09:47.094457
| 2018-06-08T09:48:05
| 2018-06-08T09:48:05
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,648
|
sci
|
startup.sci
|
// Display mode
mode(0);
// Display warning for floating point exception
ieee(1);
clc
exec('defaults.sci');
exec('str2arr.sci');
exec('askstr.sci');
exec('studyfile.sci');
exec('dispnum.sci');
exec('fprintnum.sci');
exec('asknum.sci');
exec('str2mat.sci');
exec('trim.sci');
//exec('read_transform_par.sci');
//exec('get_body.sci');
//exec('get_head.sci');
disp("Welcome to the MATLAB visualization for VAC");
disp("*******************************************");
disp("By Gabor Toth, October 1996");
disp("********** COMMANDS ***********");
disp("getpict read snapshots from 1 or more files");
disp("plotfunc plot functions of last data read by getpict or animate");
disp("animate read and plot sequence of pictures from 1 or more files");
disp("playmovie play the movie stored in Movie by animate");
disp("getlog read the data from a log file");
disp("polargrid transform coordinates and vector variables to polar");
disp("defaults clear data, set variables back to defaults values");
disp("********** FUNCTIONS **********");
disp("gradx(f,x) row-wise gradient of f");
disp("grady(f,y) column-wise gradient of f");
disp("********** CUTTING ************");
disp("cut=''2:9,5'' for all functions f plot f(2:9,5) only");
disp("cut='''' plot the whole function again");
disp("********** ADDING/CHANGING ****");
disp("Doask=1 for confirmation by RETURN, default is Doask=0");
disp("Put extra function definitions into Matlab/get_func.m");
disp("Change the default values in Matlab/defaults.m if you want to");
disp(" ");
// !! L.25: Unknown function defaults not converted, original calling sequence used.
|
52f527d44386910858b2df23af6dfc5aabda87c4
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3808/CH7/EX7.11/Ex7_11.sce
|
025b4134fd6446c1d5f660eaa52f457ce38fdd95
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 577
|
sce
|
Ex7_11.sce
|
//Chapter 07: Discrete Probability
clc;
clear;
spam_msg=2000 //no of spam messages
nspam_msg=1000 //no of messages that are not spam
o_msg_spam=400 //occurrence of stock in spam
o_msg_nspam=60 //occurrence of stock in non spam
o_msg1_spam=200 //occurrence of undervalued in spam
o_msg1_nspam=25 //occurrence of undervalued in non spam
threshold=0.9
p1=o_msg_spam/spam_msg
q1=o_msg_nspam/nspam_msg
p2=o_msg1_spam/spam_msg
q2=o_msg1_nspam/nspam_msg
r=(p1*p2)/(p1*p2+q1*q2)
if r>threshold then
disp(r,'R=')
disp('Reject')
end
|
6a493a830e410e7fca71aba2d5151d9f42a6b85b
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2741/CH10/EX10.51/ExampleA51.sce
|
0a799dcf385138d3879bda584874b0a5dad612b2
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 341
|
sce
|
ExampleA51.sce
|
clc
clear
//Page number 493
//Input data
V1=10^-3;//One litre of monoatomic perfect gas at NTP in m^3
V2=(V1/2);//The final volume in m^3
g=1.67;//The adiabatic index
//Calculations
W=(1/(g-1))*((1/(V2)^(g-1))-(1/(V1)^(g-1)));//The work done on the gas in J
//Output
printf('The work done on the gas is %3.1f J ',W)
|
da4cae2c232db50fc7a70fd76bf4f3cdc99a64a7
|
01c58d561d53587ec3a0b2e3faa240e8cb497cf0
|
/branches/utils/gettingOfGraphics/viewStatistic.sce
|
26d8ad12b55823064123543e087bc93d2562a7d9
|
[] |
no_license
|
Al-xandr1/SelfSimTraffic
|
072b514d35422ce9d037688c9403615c520cbed4
|
d525f0208e8d67e16b7d35bdc16ec1e4a2dbdee9
|
refs/heads/master
| 2020-06-03T15:25:20.244934
| 2014-10-07T17:29:50
| 2014-10-07T17:29:50
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 6,823
|
sce
|
viewStatistic.sce
|
PATH = 'C:\Users\Alexander\University\Telecommunications\WORK_read_only\gettingOfGraphics\statistics\';
TRAFFIC_TYPE = "traffic.xml";
PROFILE_TYPE = "profile.xml";
SEPARATOR = "_";
COUNT_ELEMENT_IN_NAME = 3;//3 части в названии файла
BYTESPERSEC_INDEX = 1; TRAFFIC_MEAN_INDEX = 1;
TRAFFIC_VARIANCE_INDEX = 2; LIFETIME_MEAN_INDEX = 2;
HURST_INDEX = 3; SOURCE_BORN_RATE_INDEX = 3;
//Функция считывающая необходимые скалярные величины из файла типа *_traffic.xml
function [result] = getSimplePoint_traffic(fileName)
documentTraffic = xmlRead(PATH + fileName);
result(1) = getNumber(documentTraffic, "BYTESPERSEC");//take element from <BYTESPERSEC> ...</>
result(2) = getNumber(documentTraffic, "TRAFFIC-VARIANCE"); //take element from <TRAFFIC-VARIANCE> ...</>
result(3) = getNumber(documentTraffic, "HURST");//take element from <HURST> ...</>
endfunction
//Функция считывающая необходимые скалярные величины из файла типа *_profile.xml
function [result] = getSimplePoint_profile(fileName)
documentProfile = xmlRead(PATH + fileName);
result(1) = getNumber(documentProfile, "TRAFFIC-MEAN");//take element from <TRAFFIC-MEAN> ...</> //эта величина в псевдопакетах!!!
result(2) = getNumber(documentProfile, "LIFETIME-MEAN"); //take element from <LIFETIME-MEAN> ...</>
result(3) = getNumber(documentProfile, "SOURCE-BORN-RATE");//take element from <SOURCE-BORN-RATE> ...</>
endfunction
//Вырезает нужное сечение в матрице точек
// index = 1, 2, 3
// 1 - "BYTESPERSEC" or "TRAFFIC-MEAN"
// 2 - "TRAFFIC-VARIANCE" or "LIFETIME-MEAN"
// 3 - HURST" or "SOURCE-BORN-RATE"
function [y] = getSingleVector(complexVector, index)
n = size(complexVector, 1);
y = complexVector(1:n, index);
endfunction
//Получение данных из всех файлов. fileNames список (вектор-столбец) файлов
function [trafficPoints, trafficTimes, profilePoints, profileTimes] = processAllFiles(fileNames)
fileCount = size(fileNames, 1);
trafficPoints = [];
trafficTimes = [];
profilePoints = [];
profileTimes = [];
if (fileCount < 1) then
error(msprintf("processAllFiles: нет файлов для обработки"));
end
for i = 1 : fileCount
fileName = fileNames(i);
elements = strsplit(fileName, SEPARATOR, COUNT_ELEMENT_IN_NAME);//3 части в названии файла
typeOfFile = elements(3);
if (strcmpi(typeOfFile, TRAFFIC_TYPE) == 0) then
//[BYTESPERSEC TRAFFIC-VARIANCE HURST]
trafficPoint = getSimplePoint_traffic(fileName)';
trafficPoints = addToArray(trafficPoints, trafficPoint);
trafficTimes = addToArray(trafficTimes, elements(1));
elseif (strcmpi(typeOfFile, PROFILE_TYPE) == 0) then
//[TRAFFIC-MEAN LIFETIME-MEAN SOURCE-BORN-RATE]
profilePoint = getSimplePoint_profile(fileName)';
profilePoints = addToArray(profilePoints, profilePoint);
profileTimes = addToArray(profileTimes, elements(1));
else
error(msprintf("processAllFiles: неизвестный тип файла"));
end
end
endfunction
function viewStatistic(folder)
PATH = PATH + folder + '\';
xmlFiles = getAppropriateFiles("*.xml");
xmlFiles = invert(xmlFiles);
printf("Список фалов: "); disp(xmlFiles);
printf("\n");
[trafficPoints, trafficTimes, profilePoints, profileTimes] = processAllFiles(xmlFiles)
printf("\n");
printf("Матрица точек для файлов _Traffic: "); disp(trafficPoints);
printf("Массив лет: "); disp(trafficTimes);
printf("\n");
printf("Матрица точек для файлов _Profile: "); disp(profilePoints);
printf("Массив лет: "); disp(profileTimes);
bytePerSecGRAPHIC = getSingleVector(trafficPoints, BYTESPERSEC_INDEX)';// ' - для получения вектор строки
trafficVarianceGRAPHIC = getSingleVector(trafficPoints, TRAFFIC_VARIANCE_INDEX)';// ' - для получения вектор строки
hurstGRAPHIC = getSingleVector(trafficPoints, HURST_INDEX)';// ' - для получения вектор строки
trafficMeanGRAPHIC = getSingleVector(trafficPoints, TRAFFIC_MEAN_INDEX)';// ' - для получения вектор строки
liftTimeMeanGRAPHIC = getSingleVector(trafficPoints, LIFETIME_MEAN_INDEX)';// ' - для получения вектор строки
sourceBornRateGRAPHIC = getSingleVector(trafficPoints, SOURCE_BORN_RATE_INDEX)';// ' - для получения вектор строки
scf();//0
plot2d(getIndexes(trafficTimes)', bytePerSecGRAPHIC, [1], leg = "bytePerSec");
scf();//1
plot2d(getIndexes(trafficTimes)', trafficVarianceGRAPHIC, [2], leg = "trafficVarianceGRAPHIC");
scf();//2
plot2d(getIndexes(trafficTimes)', hurstGRAPHIC, [3], leg = "hurstGRAPHIC");
scf();//3
plot2d(getIndexes(profileTimes)', trafficMeanGRAPHIC, [4], leg = "trafficMeanGRAPHIC");
scf();//4
plot2d(getIndexes(profileTimes)', liftTimeMeanGRAPHIC, [5], leg = "liftTimeMeanGRAPHIC");
scf();//5
plot2d(getIndexes(profileTimes)', sourceBornRateGRAPHIC, [6], leg = "sourceBornRateGRAPHIC");
endfunction
//-------------------------------HELPER METHODS---------------------------------
//Получение числа их тега с именем _string из xml документа document
function [Number] = getNumber(document, _string)
xmlList = xmlXPath(document, "//" + _string + "/text()");//take element from <%_string%> ...</>
Number = strtod(xmlList(1).content);// string parsing
endfunction
//Получение списка файлов, соответствующих шаблону из директории по умолчанию
function [fileNames] = getAppropriateFiles(pattern)
cd(PATH);
fileNames = ls(pattern);
endfunction
function [result] = addToArray(array, item)
result = [array ; item]
endfunction
function [y] = getIndexes(x)
n = size(x, 'r');
y = [];
for i = 1 : n
y(i) = i;
end
endfunction
//Инвертируем массив-столбец
function [invX] = invert(x)
n = size(x, 'r');
invX = [];
for (i = 1 : n )
invX = addToArray(invX, x(n - i + 1));
end
endfunction
|
e8f2597d89612c983480d6dc7955537446f51b8b
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2084/CH3/EX3.8/3_8.sce
|
630c1768e2ec4c6448d5be39151e72cf097495ec
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 969
|
sce
|
3_8.sce
|
//developed in windows XP operating system 32bit
//platform Scilab 5.4.1
clc;clear;
//example 3.8
//calculation of velocity and position of the particle
//given data
a=1.5; //acceleration(in m/s^2) of the particle
theta=37; //angle(in degree) made by particle with X axis
ux=8; //x component of initial velocity(in m/s) of the particle
uy=0; //y component of initial velocity(in m/s) of the particle
t=4; //time(in s)
//calculation
ax=a*cosd(theta);
ay=a*sind(theta);
vx=ux+(ax*t); //formula of x component of final velocity
vy=uy+(ay*t); //formula of y component of final velocity
v=sqrt((vx*vx)+(vy*vy));
thetav=atand(vy/vx);
x=(ux*t)+((ax*t*t)/2); //formula for x coordinate of particle at time t
y=(uy*t)+((ay*t*t)/2); //formula for y coordinate of particle at time t
printf('the velocity of the particle at t=4 s is %f m/s and angle made with X axis is %f degree',v,thetav)
printf('the particle is at(%f,%f)m at time t=4 s',x,y)
|
fa9f026f10ea55935e5882d503a37f9476f7f529
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/409/CH8/EX8.4/Example8_4.sce
|
2fbdc4b948f116ec6baf27eddc64177b76637fdf
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,040
|
sce
|
Example8_4.sce
|
clear ;
clc;
// Example 8.4
printf('Example 8.4\n\n');
// Page no. 205
// Solution Fig E8.4
// Given
A = 200 ;// Mass of added solution [kg]
P_H2SO4 = .1863 ;//Fraction of H2SO4 in P(Final solution)
P_H2O = .8137 ;//Fraction of H2O in P(Final solution)
A_H2SO4 = .777 ;//Fraction of H2SO4 in A(Added solution)
A_H2O = .223 ;//Fraction of H2O in A(Added solution)
F_H2SO4 = .1243 ;//Fraction of H2SO4 in F(Original solution)
F_H2O = .8757 ;//Fraction of H2O in F(Original solution)
// By analysis for degree of freedom , DOF comes to be zero
// Solve following equations simultaneously for F and P,
// P*P_H2O - F*F_H2O = A*A_H2O - By H2O balance
// P - F = A - By overall balance
a = [P_H2O -F_H2O;1 -1] ;// Matrix of coefficient
b = [A*A_H2O;A] ;// Matrix of contants
x = a\b ;// Matrix of solutions- P = x(1) and F = x(2)
printf(' Original solution taken- %.0i kg\n',x(2) );
printf(' Final solution or kilograms of battery acid formed- %.0i kg\n',x(1) );
|
9470bddceceb13d316285e972b43b32a12fa65e1
|
1232196a72221f6cc0ee0a9a47111ef1188dafe9
|
/xcos_blocks/peakdet_block.sci
|
474ac4cfffaf2e3d52dcf1faf31a025368295f7c
|
[] |
no_license
|
sumagin/rasp30
|
06dc2ee1587a4eaf3cf5fb992375b8589617f882
|
a11dcffaed22dbac1f93c2f4798a48c7b0b1f795
|
refs/heads/master
| 2021-01-24T23:51:54.459864
| 2016-07-08T22:03:43
| 2016-07-08T22:03:43
| 16,685,217
| 2
| 3
| null | 2015-07-23T15:28:49
| 2014-02-10T05:17:38
|
C
|
UTF-8
|
Scilab
| false
| false
| 2,517
|
sci
|
peakdet_block.sci
|
function [x,y,typ]=peakdet_block(job,arg1,arg2)
// Copyright INRIA
x=[];y=[];typ=[];
select job
case 'plot' then
standard_draw(arg1)
case 'getinputs' then
[x,y,typ]=standard_inputs(arg1)
case 'getoutputs' then
[x,y,typ]=standard_outputs(arg1)
case 'getorigin' then
[x,y]=standard_origin(arg1)
case 'set' then
x=arg1;
graphics=arg1.graphics;exprs=graphics.exprs
model=arg1.model;
while %t do
[ok,in_out_num,xx,ib,caps,exprs]=getvalue('Set Peak Detector Parameters',..
['Number of Peak Detector Blocks';'State';'Ib (A)';'Capacitance 64fF [1-6X]'],..
list('vec',1,'vec',-1,'vec',-1,'vec',-1),exprs)
if ~ok then break,end
if length(xx) ~= in_out_num then
message('The number of initial state values that you have entered does not match the number of Peak Detector blocks.');
ok=%f;
end
if length(ib) ~= in_out_num then
message('The number of current values that you have entered does not match the number of Peak Detector blocks.');
ok=%f;
end
if length(caps) ~= in_out_num then
message('The number of capacitance values that you have entered does not match the number of Peak Detector blocks.');
ok=%f;
end
if ok then
model.in=in_out_num
model.out=in_out_num
model.ipar=in_out_num
model.rpar = [ib;caps]
model.state = xx
graphics.exprs=exprs;
x.graphics=graphics;x.model=model
break
end
end
case 'define' then
in_out_num=1
state= 0
Ib = 0.5*10^(-9)
C = 6
model=scicos_model()
model.sim=list('peakdet_func',5)
model.in=[in_out_num;in_out_num]
model.in2=[1;1]
model.intyp=-1
model.out=in_out_num
model.out2=1
model.outtyp=-1
model.ipar=in_out_num
model.rpar = [Ib;C]
model.state= state
model.nzcross=1;
model.blocktype='c'
model.dep_ut=[%f %t]
exprs=[sci2exp(in_out_num); sci2exp(state) ; sci2exp(Ib); sci2exp(C)]
gr_i=['txt=''Peak Detector'';';'xstringb(orig(1),orig(2),txt,sz(1),sz(2),''fill'')']
x=standard_define([5 2],model,exprs,gr_i)
end
endfunction
|
345f975f7d6ff2360e2a55ac28720f00abc77f7f
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2240/CH34/EX33.7/EX33_7.sce
|
e21c279b1f0739a34ed40a5c903a532edf9c789a
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 347
|
sce
|
EX33_7.sce
|
// Grob's Basic Electronics 11e
// Chapter No. 33
// Example No. 33_7
clc; clear;
// Calculate the 5-V power bandwidth.
// Given data
Vo = 10; // Output voltage=10 Volts(p-p)
Sr = 0.5/10^-6; // Slew rate=0.5 V/us
Vpk = Vo/2;
fo = Sr/(2*%pi*Vpk);
disp (fo,'The Output Frequency in Hertz')
disp ('i.e 15.915 kHz')
|
8c2678c60c8700b7a5e82ca721aacbc6d657c333
|
59e7c95649eb8894e1d6f0bcac3ca7ea2b023217
|
/Curvas de Nível.sce
|
46be54e3465ded9da7d7be2ae0660ecd1f459162
|
[] |
no_license
|
nascimento-luciano/Scilab-Matlab
|
cb5ee9d97df3ed0f4311573df0fd37a88b3394d8
|
1cba42b68cc7954ff4c7dd6b13c7d8e6bd3d039e
|
refs/heads/main
| 2023-03-19T21:06:18.691193
| 2021-03-18T00:57:29
| 2021-03-18T00:57:29
| 348,877,701
| 1
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 231
|
sce
|
Curvas de Nível.sce
|
clc
clear
close
nz=10; // número de níveis
a=eye(5,10)+rand(5,10)+ones(5,10);// matriz para a plotagem
z= min(a) + (1:nz)*(max(a)-min(a))/(nz+1); //valor numérico de cada nível
x=size(a);
contour2d(1:x(1),1:x(2),a,nz);
|
4ad098d14c416f0633dc354549d5f62412a3a8f5
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/462/CH10/EX10.3/ex_10_3.sce
|
34aded3223391f2c1cf5bd3afb00a29b9311ad92
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 493
|
sce
|
ex_10_3.sce
|
//example 10.3//
clc
//clears the window//
clear
//clears already existing variables//
disp('since the 1''s compliment representations of the positive numbers +0 to +7 are same as the representations of the unipolar binary numbers, no offset voltage is required for these inputs.')
disp('For the negative numbers 1111 to 1000, the output analog voltage is to be offset by -15V. This can be achieved by operating a switch with MSB of input to introduce proper value of Voff.')
//answer//
|
6ee53a10c15393f15fbb4d5606bd1e672aa22162
|
d59fc6d78ee6e8fa0436ad3ec6de36d524a63231
|
/Simulations/HG_Function.sci
|
cd49244a256f9b7ae55b9f9682c30d84dc5848f5
|
[] |
no_license
|
senhadjielrhazi/projet-edf
|
3a1be6edda3e1ede10298c29f249a94eec82361a
|
fab03a4afdb641c99066e789394454f612debe1d
|
refs/heads/master
| 2020-12-03T08:09:21.229054
| 2017-06-28T11:39:33
| 2017-06-28T11:39:33
| 95,662,149
| 0
| 0
| null | null | null | null |
WINDOWS-1250
|
Scilab
| false
| false
| 19,507
|
sci
|
HG_Function.sci
|
///////////////////////////////////////////////////////////////////////////////////////////////
///////////////////////////// Modele hyperbolqique/////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////
// Fonction Densite_NIG
////////////////////////////////////////////////////////
function densite_NIG = Densite_NIG(x,alpha,beta,delta,mu)
// Calcul de la densité NIG
// x vecteur position
// alpha beta delta mu parametres du NIG
///////////////////////////////////////////////////////
n = length(x);
densite_NIG = zeros(1,n);
gama = sqrt(alpha^2-beta^2);
y = sqrt(delta^2+(x-mu)^2);
densite_NIG = ((alpha*delta)/%pi)*exp(delta*gama+beta*(x-mu)).*(besselk(1,alpha*y)')./y;
endfunction
////////////////////////////////////////////////////////
// Fonction Densite_VG
////////////////////////////////////////////////////////
function densite_VG = Densite_VG(x,lambda,alpha,beta,mu)
// Calcul de la densité VG
// x vecteur position
// lambda alpha beta mu parametres du VG
///////////////////////////////////////////////////////
n = length(x);
densite_VG = zeros(1,n);
gama = sqrt(alpha^2-beta^2);
y = abs(x-mu);
densite_VG = ((gama^(2*lambda))/(sqrt(%pi)*((2*alpha)^(lambda-0.5))*gamma(lambda)))*exp(beta*(x-mu)).*(besselk(lambda-0.5,alpha*y)').*y^(lambda-0.5);
endfunction
////////////////////////////////////////////////////////
// Fonction Phi_NIG
////////////////////////////////////////////////////////
function phi_NIG = Phi_NIG(x,alpha,beta,delta,mu)
// Calcul de l exposant caracteristique laplace du NIG
// x vecteur position
// alpha beta delta mu parametres du NIG
///////////////////////////////////////////////////////
n = length(x);
phi_NIG = zeros(1,n);
gama1 = sqrt(alpha^2-beta^2);
gama2 = sqrt(alpha^2-(beta+x)^2);
phi_NIG = mu*x+delta*(gama1-gama2);
endfunction
////////////////////////////////////////////////////////
// Fonction Phi_VG
////////////////////////////////////////////////////////
function phi_VG = Phi_VG(x,lambda,alpha,beta,mu)
// Calcul de l exposant caracteristique laplace du VG
// x vecteur position
// lambda alpha beta mu parametres du VG
///////////////////////////////////////////////////////
n = length(x);
phi_VG = zeros(1,n);
gama1 = sqrt(alpha^2-beta^2);
gama2 = sqrt(alpha^2-(beta+x)^2);
phi_VG = mu*x+2*lambda*log(gama1./gama2);
endfunction
////////////////////////////////////////////////////////
// Fonction Var_NIG
////////////////////////////////////////////////////////
function var_NIG = Var_NIG(n,alpha,beta,delta,mu)
// Simulation dune variable aleatoire NIG
// n nombre de simulations
// alpha beta delta mu parametres du NIG
///////////////////////////////////////////////////////
gama = sqrt(alpha^2-beta^2);
V = rand(1,n,'normal')^2;
Z1 = (delta/gama)+(1/(2*gama^2))*(V-sqrt(V^2+4*gama*delta*V));
Z2 = (delta/gama)+(1/(2*gama^2))*(V+sqrt(V^2+4*gama*delta*V));
p1 = delta*ones(1,n)./(delta+gama*Z1);
U = rand(1,n,'uniform');
Z = Z1.*(U<p1)+Z2.*(1-(U<p1));
var_NIG = mu + beta*Z + sqrt(Z).*rand(1,n,'normal');
endfunction
////////////////////////////////////////////////////////
// Fonction Var_VG
////////////////////////////////////////////////////////
function var_VG = Var_VG(n,lambda,alpha,beta,mu)
// Simulation dune variable aleatoire VG
// n nombre de simulations
// lambda alpha beta mu parametres du VG
// lambda >= 0
///////////////////////////////////////////////////////
gama = sqrt(alpha^2-beta^2);
m = 0;
Z = zeros(1,n);
k1 = 0;
k2 = 0;
l = 0;
lambda1 = 0;
c = exp(1)*sqrt(6/%pi);
if(lambda < 1)
lambda1 = lambda + 1;
else
lambda1 = lambda;
end
while(m < n)
U1 = rand(1,2*n,'uniform');
index = find((U1<>0)&(U1<>1));
U = U1(index);
V1 = (U-1/2)./sqrt(U.*(1-U))*sqrt(3*lambda1-3/4)+(lambda1-1);
index = find(V1>=0);
V = V1(index);
k1 = length(index);
if(k1<>0)
index = find(V^(lambda1-1).*exp(-V)/gamma(lambda1) > c*rand(1,k1,'uniform').*((1+(V-lambda1+1)^2/(3*lambda1-3/4))^(-3/2)/(2*sqrt(3*lambda1-3/4))));
k2 = length(index);
if(k2>(n-l))
Z((l+1):n) = V(index(1:(n-l)));
m = n;
else
Z((l+1):(l+k2)) = V(index);
m = l+k2;
l = l+k2;
end
end
end
if(lambda < 1)
Z = Z.*rand(1,n,'uniform')^(1/lambda);
end
var_VG = mu + beta*2*Z/gama^2 + sqrt(2*Z/gama^2).*rand(1,n,'normal');
endfunction
////////////////////////////////////////////////////////
// Fonction Simul_XT_NIG
////////////////////////////////////////////////////////
function simul_XT_NIG = Simul_XT_NIG(m,n,T0,Tf,t,alpha,beta,delta,mu,a,sigma)
// Simuler la variable XT pour option europeenne NIG
// n nombre de pas
// m nombre de tirages
// alpha beta delta mu parametres du NIG
// kk T0 Tf T parametre du Call
// a sigma parametre du processus
///////////////////////////////////////////////////////
h = (T0-t)/n;
Ti = t + (0:(n-1))*h;
simul_XT_NIG = zeros(1,m);
Val = -Phi_NIG(sigma*exp(-a*(Tf-Ti)),alpha,beta,delta,mu)*h;
for i=1:m
Y = sigma*exp(-a*(Tf-Ti)).*Var_NIG(n,alpha,beta,delta*h,mu*h);
simul_XT_NIG(i) = sum(Y+Val);
end
endfunction
////////////////////////////////////////////////////////
// Fonction Simul_XT_VG
////////////////////////////////////////////////////////
function simul_XT_VG = Simul_XT_VG(m,n,T0,Tf,t,lambda,alpha,beta,mu,a,sigma)
// Simuler la variable XT pour option europeenne VG
// n nombre de pas
// m nombre de tirages
// lambda alpha beta mu parametres du VG
// kk T0 Tf T parametre du Call
// a sigma parametre du processus
///////////////////////////////////////////////////////
h = (T0-t)/n;
Ti = t + (0:(n-1))*h;
simul_XT_VG = zeros(1,m);
Val = -Phi_VG(sigma*exp(-a*(Tf-Ti)),lambda,alpha,beta,mu)*h;
for i=1:m
Y = sigma*exp(-a*(Tf-Ti)).*Var_VG(n,lambda*h,alpha,beta,mu*h);
simul_XT_VG(i) = sum(Y+Val);
end
endfunction
////////////////////////////////////////////////////////
// Fonction Kernel_NIG
////////////////////////////////////////////////////////
function kernel_NIG = Kernel_NIG(s,k,eta,T0,Tf,t,alpha,beta,delta,mu,a,sigma)
// Calcul la fonction d integration du FTT
// h pas de temps
// N nombre de pas
// alpha beta delta mu parametres du NIG
// k T0 Tf T parametre du Call
// a sigma parametre du processus
// A borne d integration
// eta constante
///////////////////////////////////////////////////////
I = %i;
reel = integrate('real(Phi_NIG((I*s+1+eta)*sigma*exp(-a*(Tf-y)),alpha,beta,delta,mu)-(I*s+1+eta)*Phi_NIG(sigma*exp(-a*(Tf-y)),alpha,beta,delta,mu))','y',t,T0);
imagi = integrate('imag(Phi_NIG((I*s+1+eta)*sigma*exp(-a*(Tf-y)),alpha,beta,delta,mu)-(I*s+1+eta)*Phi_NIG(sigma*exp(-a*(Tf-y)),alpha,beta,delta,mu))','y',t,T0);
kernel_NIG = (exp(reel)/((eta^2+eta-s^2)^2+s^2*(2*eta+1)^2))*((eta^2+eta-s^2)*cos(-s*k+imagi)+(s*(2*eta+1))*sin(-s*k+imagi));
endfunction
////////////////////////////////////////////////////////
// Fonction Kernel_VG
////////////////////////////////////////////////////////
function kernel_VG = Kernel_VG(s,k,eta,T0,Tf,t,lambda,alpha,beta,mu,a,sigma)
// Calcul la fonction d integration du FTT
// h pas de temps
// N nombre de pas
// lambda alpha beta mu parametres du VG
// k T0 Tf T parametre du Call
// a sigma parametre du processus
// A borne d integration
// eta constante
///////////////////////////////////////////////////////
I = %i;
reel = integrate('real(Phi_VG((I*s+1+eta)*sigma*exp(-a*(Tf-y)),lambda,alpha,beta,mu)-(I*s+1+eta)*Phi_VG(sigma*exp(-a*(Tf-y)),lambda,alpha,beta,mu))','y',t,T0);
imagi = integrate('imag(Phi_VG((I*s+1+eta)*sigma*exp(-a*(Tf-y)),lambda,alpha,beta,mu)-(I*s+1+eta)*Phi_VG(sigma*exp(-a*(Tf-y)),lambda,alpha,beta,mu))','y',t,T0);
kernel_VG = (exp(reel)/((eta^2+eta-s^2)^2+s^2*(2*eta+1)^2))*((eta^2+eta-s^2)*cos(-s*k+imagi)+(s*(2*eta+1))*sin(-s*k+imagi));
endfunction
////////////////////////////////////////////////////////
// Fonction Call_NIG_Fermee
////////////////////////////////////////////////////////
function call_NIG_Fermee = Call_NIG_Fermee(r,K,x,eta,T0,Tf,t,alpha,beta,delta,mu,a,sigma, epsilon,h)
// Calcul du prix call NIG avec une formule fermee
// h pas de temps
// N nombre de pas
// alpha beta delta mu parametres du NIG
// x K T0 Tf T parametre du Call
// a sigma parametre du processus
// A borne d integration
// epsilon erreur sur le prix
// eta constante
///////////////////////////////////////////////////////
f1 = 0;
A1 = 0;
M = 0;
Integrale = 0;
k = log(K/x);
A = x*exp(-eta*k-r*(T0-t)+integrate('Phi_NIG((eta+1)*sigma*exp(-a*(Tf-q)),alpha,beta,delta,mu)-(eta+1)*Phi_NIG(sigma*exp(-a*(Tf-q)),alpha,beta,delta,mu)','q',t,T0))/(%pi*(epsilon/3));
for j=1:1000
A1 = j*A/1000;
f1 = Kernel_NIG(A1,k,eta,T0,Tf,t,alpha,beta,delta,mu,a,sigma);
M = abs(f1)*(A-A1);
if(M<(epsilon/3))
break
end
end
A = A1;
for j=1:1000
A1 = j*A/1000;
f1 = Kernel_NIG(A1,k,eta,T0,Tf,t,alpha,beta,delta,mu,a,sigma);
M = abs(f1)*(A-A1);
if(M<(epsilon/3))
break
end
end
N = floor(A1/h)+1;
Val = zeros(2,N);
for i=1:N
Val(1,i) = (i-1)*h;
Val(2,i) = Kernel_NIG(Val(1,i),k,eta,T0,Tf,t,alpha,beta,delta,mu,a,sigma)
end
Integrale = inttrap(Val(1,:),Val(2,:));
call_NIG_Fermee = (x*exp(-eta*k)*exp(-r*(T0-t))/(%pi))*Integrale;
endfunction
////////////////////////////////////////////////////////
// Fonction Call_VG_Fermee
////////////////////////////////////////////////////////
function call_VG_Fermee = Call_VG_Fermee(r,K,x,eta,T0,Tf,t,lambda,alpha,beta,mu,a,sigma,epsilon,h)
// Calcul du prix call VG avec une formule fermee
// h pas de temps
// N nombre de pas
// lambda alpha beta mu parametres du VG
// x K T0 Tf T parametre du Call
// a sigma parametre du processus
// A borne d integration
// epsilon erreur sur le prix
// eta constante
///////////////////////////////////////////////////////
f1 = 0;
A1 = 0;
M = 0;
Integrale = 0;
k = log(K/x);
A = x*exp(-eta*k-r*(T0-t)+integrate('Phi_VG((eta+1)*sigma*exp(-a*(Tf-q)),lambda,alpha,beta,mu)-(eta+1)*Phi_VG(sigma*exp(-a*(Tf-q)),lambda,alpha,beta,mu)','q',t,T0))/(%pi*(epsilon/3));
for j=1:1000
A1 = j*A/1000;
f1 = Kernel_VG(A1,k,eta,T0,Tf,t,lambda,alpha,beta,mu,a,sigma);
M = abs(f1)*(A-A1);
if(M<(epsilon/3))
break
end
end
A = A1;
for j=1:1000
A1 = j*A/1000;
f1 = Kernel_VG(A1,k,eta,T0,Tf,t,lambda,alpha,beta,mu,a,sigma);
M = abs(f1)*(A-A1);
if(M<(epsilon/3))
break
end
end
N = floor(A1/h)+1;
Val = zeros(2,N);
for i=1:N
Val(1,i) = (i-1)*h;
Val(2,i) = Kernel_VG(Val(1,i),k,eta,T0,Tf,t,lambda,alpha,beta,mu,a,sigma)
end
Integrale = inttrap(Val(1,:),Val(2,:));
call_VG_Ferme = (x*exp(-eta*k)*exp(-r*(T0-t))/(%pi))*Integrale;
endfunction
//////////////////////////////////////////////Calage////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////
// Fonction Phi0_NIG
////////////////////////////////////////////////////////
function phi0_NIG = Phi0_NIG(n,h,phi1,omega,alpha,beta,delta,mu)
// Fonction support pour le calcul de phi0(i)
// n nombre de simulations
// h le pas de temps des simulations
// alpha beta delta mu parametres du NIG
// omega prime de risque
// a sigma parametre du processus
///////////////////////////////////////////////////////
//A = zeros(1,n);
//disp([phi1 omega alpha beta delta mu], "phi1,omega,alpha,beta,delta,mu");
//for i = 1:30
//A(i) = integrate('Phi_NIG(omega+phi1^(x/h),alpha,beta,delta,mu)','x',(i-1)*h,i*h)/h-Phi_NIG(omega,alpha,beta,delta,mu);
//end
//phi0_NIG = -cumsum(A)+phi1*cumsum({0,A(1:(n-1))});
phi0_NIG = zeros(1,n);
for i=1:n
phi0_NIG(i) = -integrate('Phi_NIG(omega+phi1^(x/h),alpha,beta,delta,mu)-Phi_NIG(omega,alpha,beta,delta,mu)','x',0,i*h)/h+phi1*integrate('Phi_NIG(omega+phi1^(x/h),alpha,beta,delta,mu)-Phi_NIG(omega,alpha,beta,delta,mu)','x',0,(i-1)*h)/h;
end
endfunction
////////////////////////////////////////////////////////
// Fonction Simul_NIG_Process
////////////////////////////////////////////////////////
function simul_NIG_Process = Simul_NIG_Process(n,h,a,sigma,omega,alpha,beta,delta,mu)
// Simuler un processus OU NIG
// h pas de temps
// n nombre de tirages
// alpha beta delta mu parametres du NIG
// omega prime de risque
// a sigma parametre du processus
///////////////////////////////////////////////////////
phi1 = exp(-a*h);
omega_bar = omega/sigma;
alpha_bar = alpha/sigma;
beta_bar = beta/sigma;
delta_bar = delta*h*sigma;
mu_bar = mu*h*sigma;
simul_NIG_Process = zeros(1,n);
phi0_NIG = Phi0_NIG(n,h,phi1,omega_bar,alpha_bar,beta_bar,delta_bar,mu_bar);
simul_NIG_Process(1) = phi0_NIG(1) + Var_NIG(1,alpha_bar,beta_bar,delta_bar,mu_bar);
for i=2:n
simul_NIG_Process(i) = phi1*simul_NIG_Process(i-1) + phi0_NIG(i) + Var_NIG(1,alpha_bar,beta_bar,delta_bar,mu_bar);
end
endfunction
////////////////////////////////////////////////////////
// Fonction Calage_NIG
////////////////////////////////////////////////////////
function [alpha_e, beta_e, delta_e, mu_e] = Calaga_Const_NIG(n,h,Et)
// Calage des residus du modele OU un facteur NIG
// h pas de temps
// n nombre de pas
// Et Residus
// alpha beta delta mu parametres du NIG
///////////////////////////////////////////////////////
alpha_bar_init = 7;
beta_bar_init = 2;
delta_bar_init = 7;
mu_bar_init = -3;
//LB = [0.00001 -40 0.00001 -100 ];
//UB = [60 40 70 100];'b',LB,UB,
//disp([alpha_bar_init beta_bar_init delta_bar_init mu_bar_init],"phi1_init omega_bar_init alpha_bar_init beta_bar_init delta_bar_init mu_bar_init");
[Lv, Param, gradopt] = optim(list(Log_vraisemblance_NIG,Et,n,h),[alpha_bar_init beta_bar_init delta_bar_init mu_bar_init],'gc')
alpha_e = Param(1);
beta_e = Param(2);
delta_e = Param(3);
mu_e = Param(4);
endfunction
////////////////////////////////////////////////////////
// Fonction Log_vraisemblance_NIG
////////////////////////////////////////////////////////
function [Lv, grad, ind] = Log_vraisemblance_NIG(x,ind,X,n,h)
// Log-vraisemblance pour un processus d'OU NIG
// h pas de temps
// X Residus
// n nombre d echantillon
// grad le gradient de la Log-vraisemblance
// Lv la vraisemblance
// x parametres a optimiser phi1, omega...
////////////////////////////////////////////////////////
alpha = x(1);
beta = x(2);
delta = x(3);
mu = x(4);
//disp([alpha beta delta mu],"alpha beta delta mu");
if(abs(beta)>=abs(alpha) | alpha<0 | delta<0)// | alpha_bar+delta_bar>50)
x(1) = 10;
x(2) = 0;
x(3) = 10;
Lv = -100;
grad = 100*ones(1,4);
disp([alpha beta delta],'probleme');
else
gama = sqrt(alpha^2-beta^2);
S = (X-mu*ones(1,n))/(delta*h);
P = sqrt(1+S^2);
K = besselk(1,alpha*h*delta*P)'
R = besselk(2,alpha*h*delta*P)'./K;
//disp(size(K./P),"R");
Lv = -n*log(%pi)+n*log(alpha)+n*delta*h*gama+n*mean(beta*delta*h*S+log(K./P));
grad(1) = n*(2/alpha + delta*h*alpha/gama) - n*mean(delta*h*P.*R);
grad(2) = -n*delta*h*beta/gama + n*mean(delta*h*S);
grad(3) = n*(1/delta + gama*h) - n*mean(alpha*h*R./P);
grad(4) = -n*beta*h + n*mean(alpha*h*S.*R./P);
//disp("ok");
disp([Lv grad(1) grad(2) grad(3) grad(4) alpha beta delta mu],"lv grad alpha beta delta mu");
//Lv = Log_vraisemblance_NIG_Value({phi1,omega_bar,alpha_bar,beta_bar,delta_bar,mu_bar},n,h,X,X0);
//grad = numdiff(list(Log_vraisemblance_NIG_Value,n,h,X,X0),{phi1,omega_bar,alpha_bar,beta_bar,delta_bar,mu_bar});
end
Lv = -Lv;
grad = -grad;
endfunction
////////////////////////////////////////////////////////
// Fonction Phi0_NIG_Func
////////////////////////////////////////////////////////
function phi0_NIG_Func = Phi0_NIG_Func(theta,n,h,i)
// Fonction support pour le calcul de phi0(i)
// n nombre de simulations
// h le pas de temps des simulations
// alpha beta delta mu parametres du NIG
// omega prime de risque
// a sigma parametre du processus
///////////////////////////////////////////////////////
phi1 = theta(1);
omega = theta(2);
alpha = theta(3);
beta = theta(4);
delta = theta(5);
mu = theta(6);
phi0_NIG_Func = -integrate('Phi_NIG(omega+phi1^(x/h),alpha,beta,delta,mu)-Phi_NIG(omega,alpha,beta,delta,mu)','x',0,i*h)/h+phi1*integrate('Phi_NIG(omega+phi1^(x/h),alpha,beta,delta,mu)-Phi_NIG(omega,alpha,beta,delta,mu)','x',0,(i-1)*h)/h;
endfunction
////////////////////////////////////////////////////////
// Fonction Phi0_NIG
////////////////////////////////////////////////////////
function phi0_VG = Phi0_VG(n,h,phi1,omega,lambda,alpha,beta,mu)
// Fonction support pour le calcul de phi0(i)
// n nombre de simulations
// h le pas de temps des simulations
// lambda alpha beta mu parametres du VG
// omega prime de risque
// a sigma parametre du processus
///////////////////////////////////////////////////////
phi0_VG = zeros(1,n);
for i=1:n
phi0_VG(i) = -integrate('Phi_VG(omega+phi1^(x/h),lambda,alpha,beta,mu)-Phi_VG(omega,lambda,alpha,beta,mu)','x',0,i*h)/h+phi1*integrate('Phi_VG(omega+phi1^(x/h),lambda,alpha,beta,mu)-Phi_VG(omega,lambda,alpha,beta,mu)','x',0,(i-1)*h)/h;
end
endfunction
////////////////////////////////////////////////////////
// Fonction Simul_NIG_Process
////////////////////////////////////////////////////////
function simul_VG_Process = Simul_VG_Process(n,h,a,sigma,omega,lambda,alpha,beta,mu)
// Simuler un processus OU VG
// h pas de temps
// n nombre de tirages
// lambda alpha beta mu parametres du VG
// omega prime de risque
// a sigma parametre du processus
///////////////////////////////////////////////////////
phi1 = exp(-a*h);
omega_bar = omega/sigma;
alpha_bar = alpha/sigma;
beta_bar = beta/sigma;
lambda_bar = lambda*h;
mu_bar = mu*h*sigma;
simul_VG_Process = zeros(1,n);
phi0_VG = Phi0_VG(n,h,phi1,omega_bar,lambda_bar,alpha_bar,beta_bar,mu_bar);
cc = Var_VG(1,lambda_bar,alpha_bar,beta_bar,mu_bar);
simul_VG_Process(1) = phi0_VG(1) + Var_VG(1,lambda_bar,alpha_bar,beta_bar,mu_bar);
for i=2:n
simul_VG_Process(i) = phi1*simul_VG_Process(i-1) + phi0_VG(i) + Var_VG(1,lambda_bar,alpha_bar,beta_bar,mu_bar);
end
endfunction
////////////////////////////////////////////////////////
// Fonction Phi0_VG_Func
////////////////////////////////////////////////////////
function phi0_VG_Func = Phi0_VG_Func(theta,n,h,i)
// Fonction support pour le calcul de phi0(i)
// n nombre de simulations
// h le pas de temps des simulations
// lambda alpha beta mu parametres du VG
// omega prime de risque
// a sigma parametre du processus
///////////////////////////////////////////////////////
phi1 = theta(1);
omega = theta(2);
lambda = theta(3);
alpha = theta(4);
beta = theta(5);
mu = theta(6);
phi0_VG_Func = -integrate('Phi_VG(omega+phi1^(x/h),lambda,alpha,beta,mu)-Phi_VG(omega,lambda,alpha,beta,mu)','x',0,i*h)/h+phi1*integrate('Phi_VG(omega+phi1^(x/h),lambda,alpha,beta,mu)-Phi_VG(omega,lambda,alpha,beta,mu)','x',0,(i-1)*h)/h;
endfunction
|
b0a89e02d2b193f549627e85f82821bd59471489
|
178822612bcd418dc12ba7a649304a24ab618d60
|
/Numerical Analysis/El Hadji NGOM projet Scilab(Amélioré)/Projet 1 Méthodes directes et iteratives/Jacobi.sci
|
992d8454e99da8a80764c081ec51d1d69cad03fe
|
[] |
no_license
|
engom/Math_Problem_Solving
|
b56c6cbfbff6c416c519795b9ab8f0c0bbba5ea3
|
6538c476681ae4ee803ea9b3a8944c5f370e1961
|
refs/heads/master
| 2022-05-25T01:13:16.123161
| 2016-02-13T11:32:28
| 2016-02-13T11:32:28
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 472
|
sci
|
Jacobi.sci
|
A = [1 2 -2;1 1 1;2 2 1]
b = [1;-2;3]
tol = 10^-8
x0=zeros(b)
iterMax = 100
function[x,iter]=Jacobi(A,b,tol,iterMax,x0)
n=size(A,'c')
r=norm(A*x0-b)
iter=0
while (r>tol & iter<iterMax)
iter=iter+1
x=x0
for i=1:n
s=0
for j=1:n-1
s=s+A(i,j)*x(j)
end
for j=i+1:n
s=s+A(i,j)*x(j)
end
x(i)=(b(i)-s)/A(i,i)
end
end
endfunction
|
c3efe6629f50588faa6bb8bba87d786ced3be303
|
66106821c3fd692db68c20ab2934f0ce400c0890
|
/test/interpreter/lsl03.tst
|
31174181771159aa1a0b531a2757f1609908dbb0
|
[] |
no_license
|
aurelf/avrora
|
491023f63005b5b61e0a0d088b2f07e152f3a154
|
c270f2598c4a340981ac4a53e7bd6813e6384546
|
refs/heads/master
| 2021-01-19T05:39:01.927906
| 2008-01-27T22:03:56
| 2008-01-27T22:03:56
| 4,779,104
| 2
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 273
|
tst
|
lsl03.tst
|
; @Harness: simulator
; @Format: atmel
; @Arch: avr
; @Purpose: "Test the LSL (logical shift left instruction"
; @Result: "flags.h = 1, flags.s = 0, flags.v = 1, flags.n = 1, flags.z = 0, flags.c = 0, r16 = -112"
start:
ldi r16, 0b01001000
lsl r16
end:
break
|
0cd5018e16bd67cef6d10848c30d9a60b29d8c64
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1388/CH1/EX1.7/1_7.sce
|
407529442e31de215e739be321877ac8f021b906
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 749
|
sce
|
1_7.sce
|
clc
//initialisation of variables
T= 0 //C
T1= 100 //C
R= 8.314 //atm lit/mol K
n= 3
M= 2.016 //gm
M1= 28.02 //gm
M2= 146.1 //gm
//CALCULATIONS
u= sqrt(n*R*10^7*(T+273.2)/M)
u1= sqrt(n*R*10^7*(T+273.2)/M1)
u2= sqrt(n*R*10^7*(T+273.2)/M2)
u3= sqrt(n*R*10^7*(T1+273.2)/M)
u4= sqrt(n*R*10^7*(T1+273.2)/M1)
u5= sqrt(n*R*10^7*(T1+273.2)/M2)
//RESULTS
printf (' root mean square velocity = %.2f cm/sec',u*10^-4)
printf (' \n root mean square velocity = %.2f cm/sec',u1*10^-4)
printf (' \n root mean square velocity = %.2f cm/sec',u2*10^-4)
printf (' \n root mean square velocity = %.2f cm/sec',u3*10^-4)
printf (' \n root mean square velocity = %.2f cm/sec',u4*10^-4)
printf (' \n root mean square velocity = %.2f cm/sec',u5*10^-4)
|
6ae031ef24a07c77cd4572826707e59cad69b49d
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1553/CH26/EX26.5/26Ex5.sce
|
6f12429778d385f45d0057b5f09053011e7f1299
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 289
|
sce
|
26Ex5.sce
|
//Chapter 26 Ex5
clc;
clear;
close;
lagBA=40; lagCA=64; //distance B and C are lagging from A
//assuming A covers 1000 m
A=1000;
B=A-lagBA; //from given condition
C=A-lagCA;
lagCB=A*(C/B); //Distance C is lagging from B
mprintf("B should give C a start of %.0f meter",A-lagCB);
|
9d457cab5acc0d1838ecf16c72c3c97307ab9c20
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3428/CH15/EX9.15.6/Ex9_15_6.sce
|
b20573d1262226c79d3f27eb21c550ae1c2a4cec
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 297
|
sce
|
Ex9_15_6.sce
|
//Section-9,Example-2,Page no.-E.9
//To find K_eq for the given reaction.
clc;
E0_Ag=0.80
E0_Cu=0.34
E0=E0_Ag-E0_Cu //E0_cell in volt
n=2
F=96500
R=8.314
T=298
K=(n*F*E0)/(R*T)
//K_eq=antilog(K)
K_eq=%e^K
disp(K_eq,'K_eq for the given reaction')
//Answer in the book is wrong.
|
1a1af26f070f91624a11b288c96a5c7a0c742752
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/122/DEPENDENCIES/freqch.sci
|
e4c6304c346bda789bd38ab065f7a72154ce3674
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 543
|
sci
|
freqch.sci
|
// Frequency response characteristics
function [Mr,wr,bw,repf] = freqch(G,omega)
repf = repfreq(G,omega); // frequency response (complex numbers)
[mag phi] = dbphi(repf); // mag in db
[Mr k] = max(mag); // resonant peak
wr = omega(k); // resonant freq.
mag = abs(mag + 3); // mag = abs( mag - (- 3dB) )
[M j] = min(mag); // j : is the point where mag == -3db
bw = omega(j);
disp(wr,'resonant frequency = ');
disp(Mr,'resonant peak (dB)= ');
disp(bw,'bandwidth = ');
endfunction
|
24c09393e5db7d8243bb08dcc9705dd337403c52
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1529/CH13/EX13.3/13_03.sce
|
a3ea73ee97babdfe17797f86d39ebaaaec41f499
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 504
|
sce
|
13_03.sce
|
//Chapter 13, Problem 3, Figure 13.7
clc;
A=[0.5 2;-5 7];
B=[16;12];
X=A\B;
I1=X(1,1); //I1 and I2 is a branch current
I2=X(2,1);
disp("From figure 13.8");
disp("The network is divided into two loops");
printf("Applying Kirchhoff’s voltage law to both loops gives,");
printf("16 = 0.5I1 + 2I2 \n12 = −5I1 + 7I2\n\n\n");
printf("Solving these equation we get,\n");
printf("I1 = %.2f A\n",I1);
printf("I2 = %.2f A\n",I2);
printf("Current flowing in R3 = %.2f A",I1-I2);
|
fcd89bfbb97d1cbf4b055955f28a98d07817901c
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3012/CH6/EX6.8/Ex6_8.sce
|
f35d72b2ea12712e0d5d55de5d300d2a376e5e52
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 3,148
|
sce
|
Ex6_8.sce
|
// Given:-
P1 = 3.5 // pressure of refrigerant entering the compressor in bars
T1 = 268.0 // temperature of refrigerant entering the compressor in kelvin
P2 = 14.0 // pressure of refrigerant entering the condenser in bars
T2 = 348.0 // temperature of refrigerant entering the condenser in kelvin
P3 = 14.0 // pressure of refrigerant exiting the condenser in bars
T3 = 301.0 // temperature of refrigerant exiting the condenser in kelvin
P4 = 3.5 // pressure of refrigerant after passing through expansion valve in bars
P5 = 1.0 // pressure of indoor return air entering the condenser in bars
T5 = 293.0 // temperature of indoor return air entering the condenser in kelvin
AV5 = 0.42 // volumetric flow rate of indoor return air entering the condenser in m^3/s
P6 = 1.0 // pressure of return air exiting the condenser in bar
T6 = 323.0 // temperature of return air exiting the condenser in kelvin
// Part(a)
// From table A-9
s1 = 0.9572 // in kj/kg.k
// Interpolating in table A-9
s2 = 0.98225 // in kj/kg.k
h2 = 294.17 // in kj/kg
// From table A-7
s3 = 0.2936 // in kj/kg.k
h3 = 79.05 // in kj/kg
h4 = h3 // since expansion through valve is throttling process
// From table A-8
hf4 = 33.09 // in kj/kg
hg4 = 246.00 // in kj/kg
sf4 = 0.1328 // in kj/kg.k
sg4 = 0.9431 // in kj/kg.k
cp = 1.005 // in kj/kg.k
// Calculations
x4 = (h4-hf4)/(hg4-hf4) // quality at state 4
s4 = sf4 + x4*(sg4-sf4) // specific entropy at state 4
// CONDENSER!!
v5 = ((8314/28.97)*T5)/(P5*(10**5)) // specific volume at state 5
mairdot = AV5/v5
h6 = cp*T6
h5 = cp*T5
mrefdot = mairdot*(h6-h5)/(h2-h3)
deltaS65 = cp*log(T6/T5)-(8.314/28.97)*log(P6/P5) // change in specific entropy
sigmacond = (mrefdot*(s3-s2)) + (mairdot*(deltaS65))
// COMPRESSOR!!
sigmacomp = mrefdot*(s2-s1)
// VALVE!!
sigmavalve = mrefdot *(s4-s3)
// Results
printf( ' The rates of entropy production for control volume enclosing the condenser is %f kw/k',sigmacond);
printf( ' The rates of entropy production for control volume enclosing the compressor is %f kW/K.',sigmacomp);
printf( ' The rates of entropy production for control volume enclosing the expansion valve is %f kW/K ',sigmavalve)
|
ec6e94a09c80609660f16e07108b6bf184616d64
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2339/CH1/EX1.1.6/Ex1_6.sce
|
b1ec7dc7e101232a2c7bf455121cbdb263a8774f
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 360
|
sce
|
Ex1_6.sce
|
clc
clear
Th=0.22; //Thermal Efficiency
Hr=1260; //Heat Rejected in MJ/hr
CV=42; //Calorific Value of Coal
X=1-Th;
HI=Hr/X; //Heat Input in MJ/hr
O=((HI-Hr)*1000)/3600; //Output
Mf=HI/CV; //Mass of Fuel Used
printf('Power Output is %2.2f kW',O);
printf('\n');
printf('Mass of Fuel used per hour: %2.1f kg/hr',Mf);
|
304e4bb793bd23183333e7d9c73d9bbedc72f05a
|
b29e9715ab76b6f89609c32edd36f81a0dcf6a39
|
/ketpic2escifiles6/Translate3data.sci
|
98d69544dcf6cb2b7e89ce7cf0e43949ba54cfee
|
[] |
no_license
|
ketpic/ketcindy-scilab-support
|
e1646488aa840f86c198818ea518c24a66b71f81
|
3df21192d25809ce980cd036a5ef9f97b53aa918
|
refs/heads/master
| 2021-05-11T11:40:49.725978
| 2018-01-16T14:02:21
| 2018-01-16T14:02:21
| 117,643,554
| 1
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 707
|
sci
|
Translate3data.sci
|
// 08.08.15
// 15.04.12
function Out=Translate3data(varargin)
Nargs=length(varargin);
Pd3=varargin(1);
Pd3=Flattenlist(Pd3); // 15.04.12
Mv=varargin(2);
if type(Mv)==1 & length(Mv)==1
Mv=[varargin(2),varargin(3),varargin(4)];
end;
// if Mixtype(Pd3)==1 // 15.04.12 from
// Pd3=MixS(Pd3);
// elseif Mixtype(Pd3)==3
// Tmp=[];
// for I=1:Mixlength(Pd3)
// Tmp=Mixjoin(Tmp,Mixop(I,Pd3));
// end;
// Pd3=Tmp;
// end;
Out=[];
for I=1:length(Pd3)
PD=Op(I,Pd3);
Ans=[];
for J=1:size(PD,1)
P=PD(J,:);
Tmp=P+Mv;;
Ans=[Ans;Tmp];
end;
Out=Mixadd(Out,Ans);
end;
if length(Out)==1
Out=Op(1,Out);
end;
endfunction
|
0853565e9ed0b8b5cfd2f75ff93c007df9f60600
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3814/CH1/EX1.6/Ex1_6.sce
|
4dfeaffe94f7c74a120f606b2f3da8ecfc295eeb
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 205
|
sce
|
Ex1_6.sce
|
// to design shear stress no calculations is there in this chapter only formula
clc
mprintf('\n shear stress t=u(dv/dr)=u.B/4u(-2r)')
mprintf('\n for r=D/2; t=-BD/4')
mprintf('\n r=D/4 ; t =-BD/8')
|
1079fc08fc5dc6670e1fb397a352460bad8b8f6c
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2258/CH2/EX2.14/2_14.sce
|
ebef1a637f00b3bdeefa09fdccd33a86d1b26e61
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 601
|
sce
|
2_14.sce
|
clc();
clear;
// To calculate the order of magnitude of velocity of molecules
MH=1.008*2*1.67*10^-27; //mass in kg
T=30; //temperature in C
T=T+273; //temperature in K
KB=1.38*10^-23; //boltzmann constant in J/k
KE=(3/2)*KB*T; //kinetic energy in J
KEeV=KE*6.24*10^18; //kinetic energy in eV
cbar=sqrt((3*KB*T)/MH);
printf("average kinetic energy in J is");
disp(KE);
printf("average kinetic energy in eV is");
disp(KEeV);
printf("velocity of molecules is %f m/s",cbar);
//answers for average kinetic energy in eV and velocity of electrons given in the book are wrong
|
66359747c1583b0da60f66116276585d83f65b13
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1862/CH11/EX11.4/C11P4.sce
|
907be6399b4dbe32ed313ccbab58bb82f5c02d8a
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,001
|
sce
|
C11P4.sce
|
clear
clc
//to find work done by gravity
//to find work done by the spring
//to find work done by the hand
// GIVEN::
//refer to figure 11-15(a) from page no. 237
//mass of block
m = 6.40//in kg
//distance streched by spring
d = 0.124//in meters
//acceleration due to gravity
g = 9.8//in m/s^2
// SOLUTION:
//refer to figure 11-8(b)and 11-5(c) from page no. 237
//applying equillibrium condition in y direction
//force constant of spring
k = m*g/d//in N/m
//work done by gravity
Wg = m*g*d//in J
//work done by the spring
Ws = (-1/2)*k*d^2//in J
//-ve sign as force and displacement are in opposite directions
//work done by the hand
//intergrating force in y direction
Wh = m*g*(-d)+(1/2)*k*(-d)^2//in J
k = round(k)
printf ("\n\n Force constant of spring k = \n\n %3i N/m",k);
printf ("\n\n Work done by gravity Wg = \n\n %.2f J",Wg);
printf ("\n\n Work done by the spring Ws = \n\n %.2f J",Ws);
printf ("\n\n Work done by the hand Wh = \n\n %.2f J",Wh);
|
d54418e822078b5e860797b9b6776bcb47b11a1f
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/830/CH3/EX3.1.2/Signal1.sce
|
3576d3bd4cc6f94c43737b1c31c2a2c44579704d
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 162
|
sce
|
Signal1.sce
|
//Graphical//
//Example 3.1.2
//Z transform of x[n] = (0.5)^n. u[n]
clear;
clc;
close;
syms n z;
x=(0.5)^n
X=symsum(x*(z^(-n)),n,0,%inf)
disp(X,"ans=")
|
73d34dbb29c20a69ff5a00c13923ca293bf26fc0
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3772/CH10/EX10.8/Ex10_8.sce
|
9c7f6088ab03e5c6f3a72fa3b0d2722185eb9f5b
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,461
|
sce
|
Ex10_8.sce
|
// Problem no 10.8,Page No.262
clc;clear;
close;
F_c=20 //KN //Force at C
F_d=5 //KN //Force at D
F_e=15 //KN //Force at E
F_f=10 //KN //Force at F
L_CD=3.6 //m //Length of CD
L_DE=3.6 //m //Length of DE
L_EF=4.8 //m //Length of EF
L_AD=3.6;L_BE=3.6 //m //Length of AD & BE
//Calculations
//Let R_A and R_B be the reactions at pts at A and B
//Taking moment at A
R_B=-(-F_f*(L_DE+L_EF)+F_c*L_CD-F_e*L_DE)*(L_DE)**-1
R_A=50-R_B
//Considering section 1-1 through members AB,DB,DE and taking F.B.D of left side of section 1-1
//Taking moment at B
sigma_1=(F_d*L_DE+F_c*(L_CD+L_DE)-R_A*L_DE)*L_AD**-1 //Force i member DE
//Taking moment @ D
sigma_3=(F_c*L_CD)*L_AD**-1 //KN //force in member AB
//Consider triangle DBE
theta=atan(L_BE*L_DE**-1)*(180*%pi**-1)
//Taking moment @ A
sigma_2=(-sigma_1*L_AD+F_c*L_CD)*(L_AD*cos(theta*%pi*180**-1))**-1 //Force in member F_DE
//Now considering section 2-2 passing through members AB,AD,CD and taking left hand F.B.D
//Taking moment @C
sigma_5=(R_A*L_CD-sigma_3*L_AD)*L_CD**-1 //Force in member AD
//Taking moment @A=0
sigma_4=F_c*L_CD*L_AD**-1 //Force in member CD
//Result
printf("Force in member CD is %.2f",sigma_4);printf(" KN(Compressive)")
printf("\n Force in member AD is %.2f",sigma_5);printf(" KN(Tensile)")
printf("\n Force in member BD is %.2f",sigma_2);printf(" KN(Compression)")
printf("\n Force in member AB is %.2f",sigma_1);printf(" KN(Tension)")
// Answer is wrong in the textbook.
|
ed9c951f20b619e53c10a13e4c2c35e9f1cc818f
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2699/CH10/EX10.4/Ex10_4.sce
|
2c01d8d40e31b256b3dd6888ba5cccf56dfee3fa
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 248
|
sce
|
Ex10_4.sce
|
//EX10_4 PG-10.35
clc
disp("Refer to the figure-10.32 shown")
//the circuit is an inverting amplifier
R1=10e3;
Rf=47e3;//feedback resistance
A=-Rf/R1;//gain of an inverting amplifier
printf("\n the gain is %.1f (inverting amplifier) \n",A)
|
87fd267e278d155f0d3b63f230e2b643cc2f182e
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1373/CH11/EX11.9/Chapter11_Example9.sce
|
331a0b39213b5b2079414d783646a7d59811ca38
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 960
|
sce
|
Chapter11_Example9.sce
|
//Chapter-11, Example 11.9, Page 494
//=============================================================================
clc
clear
//INPUT DATA
T=100;//Temperature of dry steam in degree C
Do=0.025;//Outer diameter of the pipe in m
Ts=84;//Surface temmperature of pipe in degree C
Tf=(T+Ts)/2;//Film temperature in degree C
p1=963.4;//Density of liquid in kg/m^3
u=(306*10^-6);//Dynamic viscosity in N.s/m^2
hfg=2257;//Enthalpy in kJ/kg
pv=0.596;//Density of vapour in kg/m^3
k1=0.677;//Thermal conductivity in W/m.K
//CALCULATIONS
h=(0.725*((9.81*p1*(p1-pv)*k1^3*hfg*1000)/(u*(T-Ts)*Do))^0.25);//Heat transfer coefficient in W/m^2.K
q=(h*3.14*Do*(T-Ts))/1000;//Heat transfer per unit length in kW/m
m=(q/hfg)*3600;//Total mass flow of condensate per unit length in kg/h
//OUTPUT
mprintf('Rate of formation of condensate per unit length is %3.2f kg/h',m)
//=================================END OF PROGRAM==============================
|
97c34b74b3c3f3be3ffe1a74cd656db81050924b
|
292fdfbcaae1142141fcb8c7c2f73dcdb871a582
|
/Tests/6-errors.tst
|
13b33bf1e046ca6f495886dc555b62dec68f9649
|
[] |
no_license
|
Nyktalop/TpCppM1S1
|
f11b362f753656c5c1c7fbc963a71ced6ece211b
|
67a3adae4d943d5e0a6b580b277b39e591d3ad39
|
refs/heads/master
| 2020-08-22T13:54:17.437596
| 2019-12-07T17:35:26
| 2019-12-07T17:35:26
| 216,409,340
| 1
| 1
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 152
|
tst
|
6-errors.tst
|
pow(1,2,3)
log(0)
sqrt(-2)
sqrt(4
polynome(3,5,7,7)
pow(_1,_2,_3)
pow(_2,_1)
sin(
hypot(_ 1)
l=lerp(_1,_2,3)
l(2,5,3)
pow(2,_1) + 2
sin(_1+2)
cos(2+_1)
|
73983160ea7042bc561d8c0554ca6a2eb69f6523
|
8b33899f15bd0509e32f6c06319b7b1557c745f5
|
/c18.sci
|
aad081198ad918b7afda553b51f79df86aa5d588
|
[] |
no_license
|
c00kiemon5ter/NumericalAnalysis
|
fd162663f6a9a4cc6c648e41a1412fa71e83a75c
|
1ff51ff805017100ebb87a98b5fef7acca3d0692
|
refs/heads/master
| 2021-01-01T19:15:21.559444
| 2014-06-25T09:39:25
| 2014-06-25T09:39:25
| 8,290,126
| 1
| 1
| null | 2014-06-25T09:39:25
| 2013-02-19T12:51:16
|
Scilab
|
UTF-8
|
Scilab
| false
| false
| 493
|
sci
|
c18.sci
|
// Exercise C18
// ------------
// Given time(t) velocity(v) and distance(m) for a car
//
// t | 0 | 3 | 5 | 8 | 13 |
// m | 0 | 68 | 117 | 190 | 302 |
// v | 22.8| 23.5| 24.4| 22.5| 21.9|
//
// Using Hermite polynomials find
// (a) the distance when t=10sec
// (b) the time when v=24.6 m/sec
// (c) the max velocity of the car
// (d) the velocity plot
function y = f(x)
endfunction
function y = hermite(f, x)
endfunction
// Results and Commentary
// ----------------------
|
fa46db514d537563f2c75e2a3666d545ee29d1f1
|
31c6b1437c7dc52b977bf6790b1b24eff7f7b5f5
|
/ReadSpectralEnginesData.sci
|
4699a6823e68240227d6f4a0071f72253f4a7245
|
[] |
no_license
|
RobinEccleston/Scilab-Snippets
|
4744c071ef891cc4905cbecc000a1f5bf667a8f7
|
7886058a25ec4821cfeba6d8e148a0a2aced330c
|
refs/heads/master
| 2021-01-26T00:48:02.042794
| 2020-02-26T11:35:49
| 2020-02-26T11:35:49
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 2,150
|
sci
|
ReadSpectralEnginesData.sci
|
ModuleName="plot_both_se_files";
Version="0.03";
DateModified="19-Dec-2015";
DateOfCreation="01-Jul-2015";
Author="Rob Eccleston";
Description="Function to plot both parts from SE development spectrometer...
V0.02 modified as there were some problems with the first 2 blank rows having...
extra values, and so the code now checks the expected number of wavelengths...
and reads in this many values. Also fixed an offset error so that all the...
values are read in. Previously, the the last row was missed out....
...
Update: V0.03 19.12.2016...
With Scilab V6.0.0, there seems to be a problem with the read_csv function, ...
as there are not an equal number of columns. Changed to use function mgetl, ...
which seems to work without any further modifications as the text handling is...
done later by the csvTextScan function.";
mprintf("Loading " + ModuleName + " V" + Version + ", Last Modified: " + DateModified + "\n");
function [ AbsorptionData, Wavelengths, TimeDate ] = ReadSpectralEnginesData(MeasurementFileName)
RowsToSkip=2
ScanFile=mgetl(MeasurementFileName)
NumRows=size(ScanFile,1)
//NumRows=20
ReadWavelengths=csvTextScan(ScanFile(2,:),ascii(9))
Wavelengths=ReadWavelengths(3:$)
ImportedData=[]
Timestamps=[]
Dates=[]
Offset=2
num_wavelengths=size(Wavelengths,2)
for i=1:NumRows-Offset
ThisRow=ScanFile(i+Offset)
SplitData=strsplit(ThisRow,ascii(9))
tmp_imported_data=csvTextScan(ThisRow,ascii(9))
ImportedData(i,:)=tmp_imported_data(1:num_wavelengths+2)
Timestamps(i)=SplitData(1)
Dates(i)=SplitData(2)
end
AbsorptionData=ImportedData(RowsToSkip+1:NumRows-Offset,3:$)
Timestamps=Timestamps(1+RowsToSkip:$)
Dates=Dates(1+RowsToSkip:$)
TimeDate=[ Timestamps, Dates ]
Wavelengths=Wavelengths(:,$:-1:1)
//pause
AbsorptionData=AbsorptionData(:,$:-1:1)
endfunction
|
c31b632352af980cc8d40f8a747f855966bb70e8
|
7c4e0931bb85459599a2fde1bc9b9b0fdab7fb67
|
/mulfi-input.sce
|
ffc16a73e7e36cb26bebc454201523d510abd88d
|
[] |
no_license
|
jendralhxr/directional_fft
|
8182b731666d2cdd94ec244aea20160bc9e6f1ef
|
37861c23da94c95a39b712983e34900a2231b154
|
refs/heads/master
| 2020-04-18T02:01:30.600285
| 2019-05-28T03:53:41
| 2019-05-28T03:53:41
| 167,143,446
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 185
|
sce
|
mulfi-input.sce
|
SAMPLING_FREQ= 240; // Hz
SAMPLING_LENGTH= 600; // samples
x_file=csvRead("lat.txt", ascii(9), 'double');
y_file=csvRead("ver.txt", ascii(9), 'double');
plot(x_file(:,5);
START=400
|
180ede358cd2bfd2d4755d3c77f2d37bd2cfde1f
|
717ddeb7e700373742c617a95e25a2376565112c
|
/1766/CH4/EX4.7/EX4_7.sce
|
3ba6df638e4d452d3474af78400c81903badefec
|
[] |
no_license
|
appucrossroads/Scilab-TBC-Uploads
|
b7ce9a8665d6253926fa8cc0989cda3c0db8e63d
|
1d1c6f68fe7afb15ea12fd38492ec171491f8ce7
|
refs/heads/master
| 2021-01-22T04:15:15.512674
| 2017-09-19T11:51:56
| 2017-09-19T11:51:56
| 92,444,732
| 0
| 0
| null | 2017-05-25T21:09:20
| 2017-05-25T21:09:19
| null |
UTF-8
|
Scilab
| false
| false
| 874
|
sce
|
EX4_7.sce
|
clc;funcprot(0);......//Example 4.7
//Initialization of variables
D=0.2;.........//Diameter of the pipe in m
L=1;...........//Length of the pipe in m
Tw=50;........//Temperature of pipe in degrees celcius
Ta=30;.............//Temperatyre under the water in degrees celcius
v=0.657*10^-6;.......//Viscosity in m^2/s
K=0.628;.......//Thermal conductivity in W/mK
g=9.8;....//Gravitational constant
Pr=4.34;......//Prandlt no
//Calculations
Tf=(Tw+Ta)/2;.........//Film temperature in K
B=1/(Tf+273);........//Temp inverse in K^-1
Grd=(g*B*(Tw-Ta)*D*D*D)/(v^2);.......//Grashoff No
Nud=0.125*(Grd*Pr)^(1/3);............//Nusselt no
h=(Nud*K)/D;.........//Heat transfer co-efficient in W/m^2 K
Q=h*(%pi*D)*(Tw-Ta);.........//Rate of heat loss in W
disp(Q/1000,"Rate of heat loss in kW:")
//The Answer arraived in textbook is found to be wrong when calculated
|
fe561a9329996f3b93b10e32c9e0520775203c11
|
089894a36ef33cb3d0f697541716c9b6cd8dcc43
|
/NLP_Project/test/blog/bow/bow.5_20.tst
|
addec7c847ee7fdb3520ddda93527ffe4a793928
|
[] |
no_license
|
mandar15/NLP_Project
|
3142cda82d49ba0ea30b580c46bdd0e0348fe3ec
|
1dcb70a199a0f7ab8c72825bfd5b8146e75b7ec2
|
refs/heads/master
| 2020-05-20T13:36:05.842840
| 2013-07-31T06:53:59
| 2013-07-31T06:53:59
| 6,534,406
| 0
| 1
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 5,885
|
tst
|
bow.5_20.tst
|
5 56:1.0 119:0.125 251:0.25 266:1.0 308:0.3333333333333333 1389:0.5
5 1:0.5454545454545454 3:0.01694915254237288 7:2.0 25:0.6666666666666666 30:1.0 44:0.125 57:0.06666666666666667 134:1.0 283:1.0 430:1.0 436:1.0 508:1.0 561:1.0 598:1.0 931:1.0 1029:1.0 1105:1.0
5 1:0.18181818181818182 3:0.01694915254237288 14:0.25 25:0.3333333333333333 56:1.0 57:0.06666666666666667 127:1.0 184:1.0 232:1.0 341:1.0 646:1.0 709:1.0 844:1.0 1048:0.16666666666666666
5 1:0.36363636363636365 3:0.01694915254237288 16:0.5 32:0.3333333333333333 51:0.1 56:1.0 57:0.06666666666666667 134:1.0 175:0.5 276:1.0
5 1:0.36363636363636365 3:0.03389830508474576 32:0.3333333333333333 50:0.2 57:0.2 106:1.0 107:1.0 113:1.0 127:1.0 175:0.5 224:1.0 406:1.0 439:0.5 442:1.0 816:1.0 825:1.0 924:1.0 1021:1.0 1022:1.0 1158:1.0 1365:1.0 1938:1.0
5 1:0.36363636363636365 3:0.01694915254237288 16:0.5 32:0.3333333333333333 33:1.0 107:1.0 304:1.0 311:1.0 408:1.0 436:2.0 851:0.3333333333333333 863:1.0 960:1.0 1960:1.0
5 3:0.01694915254237288 14:0.25 25:0.3333333333333333 32:0.3333333333333333 49:1.0 64:0.1 406:1.0 521:1.0 1695:1.0 1855:1.0
5 3:0.01694915254237288 56:1.0 73:0.2 175:0.5 408:1.0 857:1.0
5 1:0.9090909090909091 3:0.01694915254237288 7:1.0 14:0.25 16:1.0 25:0.3333333333333333 57:0.06666666666666667 106:0.5 107:1.0 110:1.0 144:1.0 406:1.0 652:1.0 1158:1.0 1533:1.0
5 1:0.09090909090909091 3:0.03389830508474576 6:1.0 14:0.25 16:0.5 32:0.3333333333333333 50:0.2 57:0.06666666666666667 106:0.5 112:1.0 175:0.5 304:1.0 436:1.0 610:1.0 809:1.0 917:0.25 1351:1.0
5 3:0.01694915254237288 5:1.0 14:0.25 73:0.2 161:0.2 246:1.0 261:0.16666666666666666 406:1.0 765:1.0 978:0.125
5 1:0.09090909090909091 14:0.25 57:0.06666666666666667 175:1.0 385:1.0 595:1.0 835:1.0 1581:1.0 1633:1.0
5 1:0.2727272727272727 14:0.25 16:1.0 32:0.3333333333333333 50:0.2 55:1.0 57:0.3333333333333333 64:0.1 73:0.2 82:0.5 83:1.0 92:1.0 134:1.0 142:1.0 162:2.0 175:0.5 261:0.16666666666666666 286:0.25 299:0.25 302:0.5 364:1.0 413:1.0 442:1.0 468:1.0 543:2.0 681:1.0 917:0.25 965:1.0 1389:0.5
5 57:0.06666666666666667 64:0.1 142:1.0 162:1.0 175:0.5 252:1.0
5 3:0.01694915254237288 14:0.25 96:0.16666666666666666 141:1.0 173:0.5 175:0.5 485:1.0 810:1.0 816:1.0
5 3:0.03389830508474576 32:0.3333333333333333 43:0.25 56:3.0 57:0.06666666666666667 137:1.0 139:1.0 161:0.2 162:1.0 165:0.5 175:0.5 233:1.0 261:0.16666666666666666 333:1.0 402:1.0 440:1.0 809:1.0 828:1.0
5 1:0.09090909090909091 5:1.0 53:0.5 55:1.0 1158:1.0 1464:1.0
5 1:0.09090909090909091 3:0.01694915254237288 14:0.25 25:0.3333333333333333 71:1.0 141:1.0 175:0.5 261:0.16666666666666666 298:1.0 501:1.0 567:1.0 1550:1.0
5 1:0.18181818181818182 3:0.01694915254237288 191:1.0 697:0.2 869:1.0 1403:1.0 1419:1.0 1509:1.0 1581:1.0
5 1:0.18181818181818182 3:0.01694915254237288 5:1.0 14:0.25 16:0.5 44:0.125 53:0.5 55:1.0 64:0.2 70:1.0 96:0.16666666666666666 217:0.5 261:0.3333333333333333 282:0.3333333333333333 295:1.0 308:0.3333333333333333 377:1.0 485:1.0 593:0.5 632:1.0 869:1.0 1175:1.0 1778:1.0
5 1:0.18181818181818182 3:0.06779661016949153 44:0.125 64:0.1 73:0.4 114:1.0 118:1.0 162:1.0 173:2.0 264:2.0 295:1.0 307:0.5 416:0.16666666666666666 485:2.0 924:1.0
5 3:0.01694915254237288 32:0.3333333333333333 295:1.0
5 1:0.18181818181818182 3:0.03389830508474576 25:0.3333333333333333 50:0.8 57:0.13333333333333333 62:1.0 73:0.2 96:0.3333333333333333 178:1.0 224:0.5 253:0.42857142857142855 290:0.5 302:0.5 334:1.0 439:0.5 895:3.0 1158:1.0 1776:1.0
5 3:0.01694915254237288 5:1.0 14:0.25 16:0.5 43:0.25 96:0.16666666666666666 109:1.0 114:1.0 175:0.5 246:1.0 253:0.14285714285714285 280:1.0 381:1.0 435:1.0 869:1.0 1083:1.0
5 162:1.0 1392:1.0
5 1:0.18181818181818182 3:0.01694915254237288 16:0.5 43:0.25 44:0.125 49:1.0 50:0.4 56:1.0 57:0.6 83:1.0 96:0.3333333333333333 142:1.0 173:0.5 175:0.5 246:1.0 301:1.0 357:1.0 536:1.0 628:1.0 650:1.0 870:1.0 933:1.0 1387:1.0 1633:1.0 1695:1.0 1899:1.0
5 3:0.01694915254237288 14:0.25 50:0.2 68:0.3333333333333333 73:0.2 88:0.5 92:1.0 119:0.125 246:1.0 548:1.0 1503:1.0
5 1:0.18181818181818182 3:0.01694915254237288 16:0.5 51:0.1 106:0.5 162:1.0 246:1.0 264:1.0 276:1.0 436:1.0 602:1.0 1642:1.0
5 3:0.01694915254237288 14:0.25 15:1.0 32:0.3333333333333333 161:0.2 162:1.0 246:1.0 308:0.3333333333333333
5 1:0.09090909090909091 3:0.01694915254237288 16:0.5 57:0.26666666666666666 106:0.5 246:1.0 308:0.3333333333333333 411:1.0
5 3:0.05084745762711865 56:1.0 57:0.06666666666666667 246:1.0 253:0.14285714285714285 259:1.0 302:0.5 308:0.3333333333333333 593:0.5 602:1.0
5 1:0.09090909090909091 3:0.03389830508474576 16:1.0 43:0.25 44:0.125 51:0.1 56:1.0 57:0.2 73:0.2 97:1.0 165:0.5 245:1.0 252:1.0 253:0.14285714285714285 308:0.6666666666666666 333:1.0 410:2.0 450:1.0 463:1.0 777:1.0 1011:1.0 1077:1.0
5 1:0.09090909090909091 3:0.01694915254237288 142:2.0 246:1.0 1413:1.0 1419:1.0
5 1:0.18181818181818182 3:0.01694915254237288 55:1.0 57:0.13333333333333333 124:1.0 161:0.2 162:1.0 265:1.0 325:1.0 381:1.0 419:1.0 442:1.0 567:1.0 1292:1.0
5 1:0.09090909090909091 3:0.03389830508474576 5:1.0 57:0.06666666666666667 246:1.0 302:0.5 308:0.3333333333333333 321:1.0 350:1.0 501:1.0
5 3:0.01694915254237288 14:0.25 16:0.5 44:0.125 51:0.1 57:0.06666666666666667 73:0.2 96:0.16666666666666666 162:1.0 233:1.0 281:0.5 298:1.0 308:0.3333333333333333 331:1.0 450:1.0 914:1.0 1395:1.0
5 16:0.5 25:0.3333333333333333 44:0.125 50:0.2 51:0.1 57:0.06666666666666667 73:0.2 162:1.0 175:0.5 253:0.14285714285714285 276:1.0 298:1.0 308:0.3333333333333333
5 3:0.01694915254237288 51:0.1 56:1.0 57:0.13333333333333333 71:1.0 90:1.0 141:1.0 162:1.0 175:1.0 245:1.0 282:0.3333333333333333 298:1.0 308:0.3333333333333333 638:1.0
5 1:0.09090909090909091 14:0.5 44:0.125 64:0.2 96:0.16666666666666666 162:1.0 175:0.5 261:0.16666666666666666 264:1.0 298:2.0 406:1.0 479:0.5 524:1.0 638:1.0
5 1:0.18181818181818182 57:0.06666666666666667 175:0.5 589:1.0 859:1.0 1854:1.0
|
b9d9dd156c5bbc19a73d006ff4f94e0a4fc29baf
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2252/CH5/EX5.11/Ex5_11.sce
|
ab8daa6c5e750ff4cc5da023b54c265efddb793a
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 347
|
sce
|
Ex5_11.sce
|
mu_not=4D-7*%pi
Nb=500//no. of turns in coil B
l=120D-2//mean length of flux path in iron circuit
Na=50//no. of turns in coil A
mu_r=2000//relative permeability of iron
A=80*10^-4//cross-sectional area
M=Nb*mu_not*mu_r*Na*A/(l)
mprintf("Mutual inductance M=%f H\n",M)
di=12
dt=.015
e=-M*di/dt
mprintf("Emf induced in coil B=%f V",e)
|
11c9b27cd9c74b8ad743469c7e7c1d64bb56b9b2
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2021/CH10/EX10.14/EX10_14.sce
|
47ca84b56cdfb15a5271bb4ab58084d84de3eb63
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 265
|
sce
|
EX10_14.sce
|
//Finding of velocity , Dischage
//Given
z=1.5;
sb=0.0003;
B=10;
n=0.012;
y=3;
//To Find
A=(B+(z*y))*y;
P=B+(2*y)*sqrt(1+z^2);
R=A/P;
v=(1/n)*R^(2/3)*sb^(1/2);
q=A*v;
disp("Velocity ="+string(v)+" m/sec^2");
disp("Discharge ="+string(q)+" m^3/sec");
|
343ad7d005994acecf91488779ea0792053f8b75
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1808/CH1/EX1.16/Chapter1_Example16.sce
|
ce2c7588fa6a11bd5916ffc584e845d76e6f6f72
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,617
|
sce
|
Chapter1_Example16.sce
|
clc
clear
//INPUT DATA
pmi=6;//Mean effective pressure in bar
L=0.45;//Stroke in m
d=0.3;//Rope diameter in m
N=12000;//Total revolutions made
nc=1;//number of cylinders
n=2;//for four cylinders
D=1.8;//Brake drum diameter in m
x=0.02136;//difference of W and S
cpw=4.18;//specific pressure of water
cpe=1.005;//specific pressure of air
cv=45000;//calorific value
two=60;//outlet water temperature
twi=15;//inlet water temperature
te=300;//exhaust gas temperature in Degree C
ta=20;//room temperature in Degree C
mf=7.6;//mass flow rate in kg/h
mw=550;//water flo rate in kg/h
me=367.6;//total flow rate in kg/h
//CALCULATIONS
IP=(pmi*102*L*(3.14*(d^2)/4)*N*nc)/(60*60*n);//Indicated power in kW
BP=((x)*3.14*(D+d)*N)/60;//Brake power in kW
nit=(IP/(mf*cv/3600))*100;//Indicetad thermal efficiency in percentage
nm=(BP/IP)*100;//mechanical efficiency in percentage
Qs=mf*cv/60;//heat supplied in kJ/min
a11=(BP/Qs)*100;//% of heat equivalent to BP
Qw=(mw*cpw*(two-twi))/60;//Heat loss to cooling water in kW
b11=(Qw/Qs)*100;//% of heat lost to cooling water
Qe=(me*cpe*(te-ta))/60;//Heat loss to exhaust gases in kW
c11=(Qe/Qs)*100;//% of heat lost to exhaust gases
Qu=(Qs-(BP*60+Qw+Qe));//Enthalpy of unaccount in kW
d11=(Qu/Qs)*100;//unaccounted heat in percentage
//OUTPUT
printf('(i)Indicated power is %3.2f kW \n brake power is %3.2f kW \n (ii)Indicated thermal efficiency is %3.2f percentage \n (iii)Mechanical efficiency is %3.2f percentage \n (iv)HEAT BALANCE SHEET \n (I)Heat supplied %3.i kJ/min \n (II)Heat utilised in the system is %3.2f kW',IP,BP,nit,nm,Qs,Qu)
|
d5ef2b6244031a85b81fe57d23400af22488f102
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/944/CH3/EX3.15/example3_15_TACC.sce
|
515df245ce4df485ac8c66a847bf287c257e5d11
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 524
|
sce
|
example3_15_TACC.sce
|
//example 3.15
clear;
clc;
//Given:
Hc=-5645;//standard enthalpy of combustion of reaction:C12H22O11(s)+12O2(g)->12CO2(g)+11H2O(l) [KJ/mol]
Hf1=-393.51;//standard heat of formation of CO2: C(s)+O2(g)->CO2(g) [KJ/mol]
Hf2=-285.83;//standard heat of formation of H2O: H2(g)+0.5O2(g)->H2O(l) [KJ/mol]
//to find the standard heat of formaton of solid sucrose
//reaction:12C(s)+11H2(g)+5.5O2(g)->C12H22O11(s)
Hf=12*Hf1+11*Hf2-Hc;//[KJ/mol]
printf("Hf(standard heat of formation of solid sucrose)=%f KJ/mol",Hf);
|
f0e8d1c4d38df2574aa1ba3555c14b82ac7c2273
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/530/CH2/EX2.13.a/example_2_13a.sce
|
c34632f627bf416e1884b3ac116cdd0e51ff0042
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 546
|
sce
|
example_2_13a.sce
|
clear;
clc;
// A Textbook on HEAT TRANSFER by S P SUKHATME
// Chapter 2
// Heat Conduction in Solids
// Example 2.13(a)
// Page 73
printf("Example 2.13(a), Page 73 \n\n")
D = 0.003 ; // [m]
L = 0.03 ; // [m]
h = 10 ; // [W/m^2]
Tf = 20 ; // [C]
T1 = 120 ; // [C]
// (a) Copper fin
k = 350 ; // [W/m K]
// For a circular cross section
m = [4*h/(k*D)]^(1/2);
mL = m*0.03 ;
// T at x = L
T = Tf + (T1-Tf)/cosh(m*L);
printf("mL = %f \n",mL);
printf("Temperature at the tip of fin made of copper is %f degree C \n",T);
|
51bd4279153dc417edd62ca430f1f8dc104c8a71
|
7c129ce7f747d44e6c7cedea4c007088e87aa90c
|
/Programs/Goertzel_Filter.sce
|
5e2df0befc968a3e764f5e11c171c3c0bec8526c
|
[] |
no_license
|
KilariSandhya/Digital-Signal-Processing
|
08d97a6d46ff46c533c7a2114c19883980c85e38
|
bad9dab8f5e02a8f1638ce20351e9eba1a0a11d0
|
refs/heads/master
| 2022-11-18T03:23:47.628061
| 2020-07-20T07:46:02
| 2020-07-20T08:00:23
| 281,047,630
| 1
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 227
|
sce
|
Goertzel_Filter.sce
|
clear;close;clc;
f0=500;
fs=8000;
N=8000;
k=N*f0/fs;
w=[-%pi:%pi/25:%pi];
z=exp(-%i*w);
wn=exp(%i*2*%pi*k/N);
hk=1 ./(1-(wn*z));
mag= abs(hk);
f=(fs*w)/(2*%pi);
plot2d(f,mag); xtitle('Magnitude Plot','hz','Magnitude');
|
54259d24ce854a507add404fb30d42d045fd9817
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1199/CH2/EX2.50/2_50.sci
|
b3561b6fdb85522963a0591dd318c1e5a3a0cdef
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 549
|
sci
|
2_50.sci
|
// 2.50
clc;
d=2*10^-12;
t=1*10^-3;
Fmax=0.01;
e0=8.85*10^-12;
er=5;
A=100*10^-6;
Eo_peak_to_peak=2*d*t*Fmax*10^3/(e0*er*A);
printf("\n peak voltage swing under open conditions=%.2f mV",Eo_peak_to_peak)
Rl=100*10^6;
Cl=20*10^-12;
d1=1*10^-3;
Cp=e0*er*A/d1;
C=Cp+Cl;
w=1000;
m=[w*Cp*Rl/[1+(w*C*Rl)^2]^0.5];
El_peak_to_peak=[2*d*t*Fmax*10^3/(e0*er*A)]*m;
printf("\n peak voltage swing under loaded conditions=%.2f mV",El_peak_to_peak)
E=90*10^9;
dt=2*Fmax*t*10^12/(A*E);
printf("\n Maximum change in crystal thickness=%.2f pm",dt)
|
c946421a3d5f204ab2ad8401eb39c107275edac6
|
d71a054f6ca515f305604ba984239870673d7a4d
|
/resuengl/prog/plot.sci
|
5f0cd91da5c26539bee11b0a3209edf398bb6e7e
|
[] |
no_license
|
alexmadon/physics
|
f26450c3fcfa017d93bb613ab2962cdbdedd467c
|
55543a7c64ecf1f7b83b9ace6b48500c0b67abb3
|
refs/heads/master
| 2021-01-25T09:26:45.883289
| 2019-03-09T14:49:25
| 2019-03-09T14:49:25
| 93,838,111
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 3,102
|
sci
|
plot.sci
|
i=100;
str=sprintf('%d',i);
'b'+str+'a';
// SOLUTIONS
// brownian motion:
// S_t=sigma*W_t
// brownian motion + drift
// S_t=sigma*W_t+mu*t
//exponential brownian motion+drift:
// S_t=exp(sigma*W_t+mu*t)
// STOCHASTIC DIFFERENTIAL EQUATIONS
//dX_t=sigma(t,X_t)dW_t+mu(t,X_t)dt
rand('normal')
maxim=32001;
x=0:maxim-1;
y=zeros(1,maxim);
for i=2:maxim
y(i)=y(i-1)+rand;
end;
x=x/1000;
y=y/10;
//=============================
//plotting window 1
xbasc(); //clear window
xdel()//delete window
driver('Rec')
xset("font",4,8) // fontid, fontsize
xsetech([-0.0,-0.0,1.,1.]);//Upper-Left Width Height
xbasc(); //clear window
t=1:1:1001;
rect=[min(x(t)),min(y(t)),max(x(t)),max(y(t))];
plot2d(x(t)',y(t)',-1,'011',' ',rect,[5,3,5,3])
file_ps='b0_5.ps';
xbasimp(0,file_ps,0);
file_psl=file_ps+'.0';
unix_w("BEpsf "+file_psl)
told=t;
xbasc(); //clear window
t=1:6:6000;
rect=[min(x(t)),min(y(t)),max(x(t)),max(y(t))];
plot2d(x(t)',y(t)',-1,'011',' ',rect,[5,3,5,3])
xrect(min(x(told)),max(y(told)),max(x(told))-min(x(told)),max(y(told))-min(y(told)))
file_ps='b0_4.ps';
xbasimp(0,file_ps,0);
file_psl=file_ps+'.0';
unix_w("BEpsf "+file_psl)
told=t;
xbasc(); //clear window
t=1:32:32000;
rect=[min(x(t)),min(y(t)),max(x(t)),max(y(t))];
plot2d(x(t)',y(t)',-1,'011',' ',rect,[5,3,5,3])
xrect(min(x(told)),max(y(told)),max(x(told))-min(x(told)),max(y(told))-min(y(told)))
file_ps='b0_3.ps';
xbasimp(0,file_ps,0);
file_psl=file_ps+'.0';
unix_w("BEpsf "+file_psl)
//========================================
//========================================
maxim=32001;
x=0:maxim-1;
x=x/1000;
y=sin(0.5*x-.9)+sin(1.2*x-.7)+sin(.6*x-.7);
//plot(x,y)
//=============================
//plotting window 1
xbasc(); //clear window
xdel()//delete window
driver('Rec')
xset("font",4,8) // fontid, fontsize
xsetech([-0.0,-0.0,1.,1.]);//Upper-Left Width Height
xbasc(); //clear window
t=1:10:1001;
rect=[min(x(t)),min(y(t)),max(x(t)),max(y(t))];
plot2d(x(t)',y(t)',-1,'011',' ',rect,[5,3,5,3])
file_ps='n0_5.ps';
xbasimp(0,file_ps,0);
file_psl=file_ps+'.0';
unix_w("BEpsf "+file_psl)
told=t;
xbasc(); //clear window
t=1:60:6001;
rect=[min(x(t)),min(y(t)),max(x(t)),max(y(t))];
plot2d(x(t)',y(t)',-1,'011',' ',rect,[5,3,5,3])
xrect(min(x(told)),max(y(told)),max(x(told))-min(x(told)),max(y(told))-min(y(told)))
file_ps='n0_4.ps';
xbasimp(0,file_ps,0);
file_psl=file_ps+'.0';
unix_w("BEpsf "+file_psl)
told=t;
xbasc(); //clear window
t=1:320:32001;
rect=[min(x(t)),min(y(t)),max(x(t)),max(y(t))];
plot2d(x(t)',y(t)',-1,'011',' ',rect,[5,3,5,3])
xrect(min(x(told)),max(y(told)),max(x(told))-min(x(told)),max(y(told))-min(y(told)))
file_ps='n0_3.ps';
xbasimp(0,file_ps,0);
file_psl=file_ps+'.0';
unix_w("BEpsf "+file_psl)
//========================================
//======================
xbasc(); //clear window
xsetech([-0.05,-0.05,1.1,1.1]);
//Upper-Left Width Height
plot2d(x,y,-1,'011',' ',[0.3,-2.3,0.6,-1.4]); //corner_b corner_u
xx=0.3;yy=-.3;ww=0.3;hh=2;
xrect(xx,yy,ww,hh)
// printing
file_ps='0_1.ps';
xbasimp(0,file_ps,0);
file_psl=file_ps+'.0';
unix_w("BEpsf "+file_psl)
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.