blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
4
214
content_id
stringlengths
40
40
detected_licenses
listlengths
0
50
license_type
stringclasses
2 values
repo_name
stringlengths
6
115
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringclasses
21 values
visit_date
timestamp[us]
revision_date
timestamp[us]
committer_date
timestamp[us]
github_id
int64
141k
586M
star_events_count
int64
0
30.4k
fork_events_count
int64
0
9.67k
gha_license_id
stringclasses
8 values
gha_event_created_at
timestamp[us]
gha_created_at
timestamp[us]
gha_language
stringclasses
50 values
src_encoding
stringclasses
23 values
language
stringclasses
1 value
is_vendor
bool
1 class
is_generated
bool
1 class
length_bytes
int64
5
10.4M
extension
stringclasses
29 values
filename
stringlengths
2
96
content
stringlengths
5
10.4M
401b8da55f809f2ace4b327a2d822ba99f2c1422
156b497136c197cef4610c8a85e14f6b02ea7c86
/logistic_map1.sce
989a617997d5119ec21bcd40c567a7573b640d72
[]
no_license
vk9696/Logistic-Map
90399826a4f2e68554e28f2e5a92ed8f71687b99
30357994a27feeaeef5ea548854c0c8fc795e064
refs/heads/main
2023-06-03T15:51:50.651028
2021-06-25T19:57:48
2021-06-25T19:57:48
380,340,436
0
0
null
null
null
null
UTF-8
Scilab
false
false
330
sce
logistic_map1.sce
//BY VINAY KUMAR //Roll No PH20MSCST11001 //NON LINEAR DYNAMICS PROJECT // PLOTTING x_n+1 = r*x_n*(1-x_n) clear clc j=1 r=3.1 for i=0:0.001:1 x(j)=i y(j)=r*i*(1-i) j=j+1 end xtitle("$\huge x_{n+1} = r x_n (1-x_{n})$") xlabel("$\huge x_{n} $") ylabel("$\huge x_{n+1}$") plot(x,y,'o')
cf04d6fa61cf159cd1f38758c8ed5f491d8ffd63
a62e0da056102916ac0fe63d8475e3c4114f86b1
/set14/s_Material_Science_V._Rajendran_1826.zip/Material_Science_V._Rajendran_1826/CH2/EX2.4/ex2_4.sce
f49a9192766e4a55667ff2952ef3bc906a3c6f46
[]
no_license
hohiroki/Scilab_TBC
cb11e171e47a6cf15dad6594726c14443b23d512
98e421ab71b2e8be0c70d67cca3ecb53eeef1df6
refs/heads/master
2021-01-18T02:07:29.200029
2016-04-29T07:01:39
2016-04-29T07:01:39
null
0
0
null
null
null
null
UTF-8
Scilab
false
false
232
sce
ex2_4.sce
errcatch(-1,"stop");mode(2);// Example 2.4, page no-31 d=4*10^3//kg/m^3 awtcs=132.9 awtcl=35.5 a=4.12*10^-10 m=d*a^3 N=(awtcs+awtcl)/m printf("The value of Avogadro Constant %.4f *10^26 per kg mole",N*10^-26) exit();
9544800e98e96c163c59dc9350cf89db5c6b88fa
449d555969bfd7befe906877abab098c6e63a0e8
/257/CH7/EX7.1/example_7_1.sce
95a3a2983a4bcdd2a5e6202271b6c64e01516b81
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
382
sce
example_7_1.sce
p=poly([2 1],'s','coeff'); q=poly([0 4 5 1],'s','coeff'); G=40*p/q //gain FACTOR=40 H=1 y=G*H //type 1 syms s Kp=limit(s*y/s,s,0) //Kp= position error coefficient Kv=limit(s*G*H,s,0) //Kv= velocity error coefficient Ka=limit(s^2*G*H,s,0) //Ka= accelaration error coefficient disp(Ka ,"Ka = ") disp(Kv ,"Kv = ") disp(Kp ,"Kp = ") Ess=4/Kv disp(Ess, "Ess = ")
424c33ee8583fd710e11309fa937203ee0da8faf
449d555969bfd7befe906877abab098c6e63a0e8
/2192/CH4/EX4.10/4_10.sce
b9265d5b0af725dcdbdedfdfd09f73aa0daab3e8
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
756
sce
4_10.sce
clc,clear printf('Example 4.10\n\n') P=20*1000 //power supplied in watts V=220 //supply voltage e=0.9;k=0.6; //emissivity and radiant efficiency rho=100*10^-6//specific resistance l_by_d2 = %pi*V^2/(4*rho*P) //ratio of l and d^2 (i) T1=1170+273; T2=500+273; //temperatures of wire and charge H=5.72*k*e*(T1^4-T2^4)/1000^4 //heat dissipated from surface //Surface area = %pi*d*l //total heat dissipated = electric power input and squaring the equation d2l2= ( P/(H*%pi) )^2 // d^2 * l^2 (ii) //using expression (i) and expression (ii) l =(d2l2*l_by_d2)^(1/3) printf('Length of wire = %.1f metres',l/100) d=sqrt( l/l_by_d2 ) printf('\nSize of wire = %.1f cm',d)
61de6a093eed750fa7231f57b5ded12f18e6cc62
3833ff7333211b06d301339b8ae11fc22cb118d4
/plsql/teste_1.tst
808ec185eda76bcd53d744b7e4b8bff1b46cef73
[]
no_license
evertonagilar/study
c4a6fed603b01bc8549813e7ef09e11a206ada99
03af0f0fa87e7ab90b4ce0dbc333c532b5610067
refs/heads/master
2023-03-09T01:43:46.393800
2023-03-04T10:58:20
2023-03-04T10:58:20
54,847,850
3
0
null
2023-03-02T14:18:01
2016-03-27T20:59:24
C
ISO-8859-1
Scilab
false
false
501
tst
teste_1.tst
PL/SQL Developer Test script 3.0 15 -- Created on 14/09/2010 by AGILAR declare -- Local variables here i integer; vResult boolean; MeuCliente pkg_comercial.TCliente; begin vResult:= pkg_comercial.getDadosSegundaViaFatura(vIdCliente => 1, vCliente => MeuCliente); if vResult then dbms_output.put_line('encontrado!'); dbms_output.put_line(MeuCliente.nome || ' CPF: ' || MeuCliente.cpf); else dbms_output.put_line('não encontrado!'); end if; end; 0 0
c821619e2f9aea70ae28ded33d5a674b2c6fe9ee
449d555969bfd7befe906877abab098c6e63a0e8
/3446/CH11/EX11.3/Ex11_3.sce
55bbea7957d90adeb7e115f9182000a2a7de3d3c
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
268
sce
Ex11_3.sce
// Exa 11.3 // To find the minimum number of PN chips. clc; clear all; BW=100; //in MHz Fspac=10; //frequency spacing in kHz //solution FreqTones=BW*10^3/Fspac; Chips=log2(FreqTones); printf('Minimum number of chips required are %d chips \n ',Chips);
7f76639b54736283bd988988edc9cbd4698221bb
449d555969bfd7befe906877abab098c6e63a0e8
/2609/CH1/EX1.1/ex_1_1.sce
7fbb7253d49dcb05e7e10ca2f1cf1a254898551b
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
249
sce
ex_1_1.sce
//Ex 1.1 clc; clear; close; format('v',5); Iout=8;//micro A VBE=0.7;//V Beta=80;//unitless VCC=20;//V IREF=Iout*(1+2/Beta);//micro A R=(VCC-VBE)/IREF;//Mohm disp(IREF,"Reference current(micro A)"); disp(R,"Resistance required(Mohm)");;
705b9d261f9a05fecf2f61fd6a315e13413e55c5
449d555969bfd7befe906877abab098c6e63a0e8
/2741/CH2/EX2.3/Chapter2_Example3.sce
5f7bff95efe468b3d5c4d1847a440e10824cae09
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
483
sce
Chapter2_Example3.sce
clc clear //Input data L=800;//The length of the wire in cm r=0.2;//The radius of the wire in cm t=10;//The temperature fall in degree centigrade a=12*10^-6;//The coefficient of linear expansion of steel wire in per degree centigrade y=2*10^12;//The youngs modulus of elasticity of steel in dynes/cm^2 pi=(22/7);//Mathematical constant pi //Calculations I=y*a*t*pi*r^2;//The increase in tension in dynes //Output printf('The increase in tension is %3g dynes',I)
26d07835a0ab57f168bd6a177438d47426fbabee
449d555969bfd7befe906877abab098c6e63a0e8
/671/CH2/EX2.1/2_1.sce
03bbb420294a8c7fd61a2bf2050bbc7c09842373
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
328
sce
2_1.sce
function s=series(r1,r2) s=r1+r2 endfunction function p=parallel(r1,r2) p=r1*r2/(r1+r2) endfunction r1=series(12,8) r2=parallel(20,r1) r3=series(r2,50) r4=parallel(30,r3) r5=series(10,r4) r6=series(r5,20) Req_ab=parallel(r5,40) disp(Req_ab) r7=40+20+10 //series Req_bc=parallel(r4,r7) disp(Req_bc)
0925885440fa814ead698a2895ff3efeb81e1936
449d555969bfd7befe906877abab098c6e63a0e8
/788/CH2/EX2.6.a/2_6_data.sci
fc0613dc4c084feda4c36a3fd263d025bd0aa18f
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
95
sci
2_6_data.sci
// Aim:To find tube height of a Barometer // Given: // liquid used is Water instead of Mercury.
f0c112912d6cb8af06aea0c1eefc5d8c52d70e78
449d555969bfd7befe906877abab098c6e63a0e8
/1628/CH8/EX8.4/Ex8_4.sce
2de0c6e1b95b463fc2fec6447a1a7c8bc1458ec3
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
1,109
sce
Ex8_4.sce
// Example 8.4 // From the diagram 4.5 V1=20; // Source voltage R=80; // Series resistance io1=V1/R; // Steay state current disp(' Steay state current (at t=0- ) = '+string(io1)+' Amp'); // Because current in inducor can't charge instantaneously disp(' Steay state current (at t=0+ ) = '+string(io1)+' Amp'); V2=40; // Source voltage Io2=(V1+V2)/R; // Steay state current at t= infinity disp(' Steay state current (at t= infinity ) = '+string(Io2)+' Amp'); L=40*10^-3; // Inductor t1=L/R; // Time COnstant t=0.001; // Time of 1 ms // By the formula ==> i(1 ms)= io1*(io1-Io2)*(1-e-(t/t1)) Ims=io1+(Io2-io1)*(1-exp (-t/t1)); // Steay state current (at t=1ms) disp(' Steay state current (at t= 1ms ) = '+string(Ims)+' Amp'); // p 279 8.4
263eafb2644d4a25886818fa0cbb0a7ea9c83384
449d555969bfd7befe906877abab098c6e63a0e8
/191/CH4/EX4.13/Example4_13.sce
13af20e4eff7e153756c7234f47c1147b3429f08
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
706
sce
Example4_13.sce
//Orthogonal decomposition - QR method //reduce A to tridiagonal form clc; clear; close(); format('v',7); A1 = [1 4 2;-1 2 0;1 3 -1]; disp(A1, 'A = '); // zero is created in lower triangle //by taking the rotation matrix X1=[c s 0;-s c 0;0 0 1]; where c=cos and s=sin //O is theta Q = eye(3,3); for i=2:3 for j=1:i-1 p=i;q=j; O = -atan(A1(p,q)/(A1(q,q))); c = cos(O); s = sin(O); X = eye(3,3); X(p,p)=c; X(q,q)=c; X(p,q)=-s; X(q,p)=s; A1 = X'*A1; Q = Q*X; disp(A1,X,'The X and A matrix : '); end end R = A1; disp(R,Q,'Hence the original matrix can be decomposed as : ')
84bedd0b766f444f718dcd29ac5010a89f488e6b
449d555969bfd7befe906877abab098c6e63a0e8
/1244/CH8/EX8.5/Example85.sce
12d3e51d215ad5ecfddca297191a406f4cb4ddd8
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
272
sce
Example85.sce
// Display mode mode(0); // Display warning for floating point exception ieee(1); clc; disp("Principles of Heat Transfer, 7th Ed. Frank Kreith et. al Chapter - 8 Example # 8.5 ") disp("There is no computations in this example.") disp("It is theoretical")
2006000cb44f570975a0dca24b30cb876064aec5
449d555969bfd7befe906877abab098c6e63a0e8
/2258/CH7/EX7.10/7_10.sce
9d7f50a1bf703f54a94d7a3e30f258a34ddb313c
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
376
sce
7_10.sce
clc(); clear; // To calculate the resistance l=1; //length in cm l=l*10^-2; //length in m e=1.6*10^-19; w=1; //width in mm w=w*10^-3; //width in m t=1; //thickness in mm t=t*10^-3; //thickness in m A=w*t; ni=2.5*10^19; mew_e=0.39; mew_p=0.19; sigma=ni*e*(mew_p+mew_e); R=l/(sigma*A); printf("resistance of intrinsic Ge rod is %f ohm",R);
47dbcaecfbd94ffc61d585e373c4a28dc1f9529f
449d555969bfd7befe906877abab098c6e63a0e8
/1478/CH2/EX2.18.6/2_18_6.sce
e4e394d177b6d323db13cf015841b1b4dfd4c956
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
676
sce
2_18_6.sce
//water and its treatment// //example 2.18.6// clc W1=29.2;//MgCO3 in water in mg/lit// W2=36;//MgSO4 in water in mg/lit// W3=22.2;//CaCl2 in water in mg/lit// W4=142.5;//MgCl2 in water in mg/lit// M1=100/84;//multiplication factor of MgCO3// M2=100/120;//multiplication factor of MgSO4// M3=100/111;//multiplication factor of CaCl2// M4=100/95;//multiplication factor of MgCl2// P1=W1*M1;//MgCO3 in terms of CaCO3// P2=W2*M2;//MgSO4 in terms of CaCO3// P3=W3*M3;//CaCl2 in terms of CaCO3// P4=W4*M4;//MgCl2 in terms of CaCO3// T=P1; printf("\nCarbonate hardness is %.2f mg/l or ppm",T); P=P2+P3+P4; printf("\nNon Carbonate hardness is %.0f mg/l or ppm",P);
62ed958ba7dba3db1525bacf48989ab8ee0e227a
449d555969bfd7befe906877abab098c6e63a0e8
/3428/CH9/EX4.9.14/Ex4_9_14.sce
77f6a2bbbc0f89e1bbd2d6742e10670d1303296e
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
286
sce
Ex4_9_14.sce
//Section-4,Example-1,Page no.-I.86 //To find ratio of the peak heights(side chain protons/aromatic protons)in the following clc; T=3/5 disp (T,'Ratio of peak height of toluene') P_xy=6/4 disp(P_xy,'Ratio of peak height of p-xylene') M=9/3 disp(M,'Ratio of peak height of Mesitylene')
f19f0db328322c625258579efdc4f4e94a2d4e1a
449d555969bfd7befe906877abab098c6e63a0e8
/3838/CH3/EX3.24.a/EX3_24_A.sce
26a01bc1d3f1654a360537d29521e735ad851307
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
76
sce
EX3_24_A.sce
//Example 3.24.a clc; Syms s t; x=laplace(((2+t)*(exp(-3*t)),t,s); disp(x);
50ba2ff6742bfca9f32743208f28131a8d25041d
449d555969bfd7befe906877abab098c6e63a0e8
/2873/CH1/EX1.26/Ex1_26.sce
12f28c77aa61ad3022b8f5fcfce1428bc6221324
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
1,292
sce
Ex1_26.sce
// Display mode mode(0); // Display warning for floating point exception ieee(1); clear; clc; disp("Engineering Thermodynamics by Onkar Singh,Chapter 1,Example 26") m1=18;//mass of hydrogen(H2) in kg m2=10;//mass of nitrogen(N2) in kg m3=2;//mass of carbon dioxide(CO2) in kg R=8.314;//universal gas constant in KJ/kg k Pi=101.325;//atmospheric pressure in kpa T=(27+273.15);//ambient temperature in k M1=2;//molar mass of H2 M2=28;//molar mass of N2 M3=44;//molar mass of CO2 disp("gas constant for H2(R1)in KJ/kg k") disp("R1=R/M1") R1=R/M1 disp("gas constant for N2(R2)in KJ/kg k") disp("R2=R/M2") R2=R/M2 disp("gas constant for CO2(R3)in KJ/kg k") disp("R3=R/M3") R3=R/M3 disp("so now gas constant for mixture(Rm)in KJ/kg k") disp("Rm=(m1*R1+m2*R2+m3*R3)/(m1+m2+m3)") Rm=(m1*R1+m2*R2+m3*R3)/(m1+m2+m3) disp("considering gas to be perfect gas") disp("total mass of mixture(m)in kg") disp("m=m1+m2+m3") m=m1+m2+m3 disp("capacity of vessel(V)in m^3") disp("V=(m*Rm*T)/Pi") V=(m*Rm*T)/Pi disp("now final temperature(Tf) is twice of initial temperature(Ti)") disp("so take k=Tf/Ti=2") k=2;//ratio of initial to final temperature disp("for constant volume heating,final pressure(Pf)in kpa shall be") disp("Pf=Pi*k") Pf=Pi*k
d528931f7d646b2d6e7fa0db861ccf75262b8588
449d555969bfd7befe906877abab098c6e63a0e8
/1427/CH18/EX18.11/18_11.sce
da5e0a394350940859b138ec8233a7eb634e17b7
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
211
sce
18_11.sce
//ques-18.11 //Calculating heat to be withdrawn from reservoir clc n=0.42;//efficiency w=203;//work done (in cal) q2=w/n;//heat withdrawn (in cal) printf("Heat withdrawn from reservoir is %.1f cal.",q2);
d753908fa4bba91b1f3c7f2d945d0c790cc08653
449d555969bfd7befe906877abab098c6e63a0e8
/1673/CH6/EX6.15/6_15.sce
d9a4a5d5071026f7dd9b742953f37ebd4b6da4f1
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
394
sce
6_15.sce
//euler's maclaurin formula //example 6.15 //page 233 clc;clear;close; y=[0 1 0]; h=%pi/4; I=h*(y(1)+2*y(2)+y(3))/2+(h^2)/12+(h^4)/720; printf(' the value of integrand with h=%f is : %f\n\n',h,I) h=%pi/8; y=[0 sin(%pi/8) sin(%pi*2/8) sin(%pi*3/8) sin(%pi*4/8)] I=h*(y(1)+2*y(2)+2*y(3)+2*y(4)+y(5))/2+(h^2)/2+(h^2)/12+(h^4)/720; printf(' the value of integrand with h=%f is : %f',h,I)
84a770cc44cc1e17f1daa021a21c043be314a1dd
449d555969bfd7befe906877abab098c6e63a0e8
/3886/CH15/EX15.8/15_8.sce
8d8a838f41e8df76a5166e60fad08e73084a0553
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
551
sce
15_8.sce
//Two incloned planes //refer fig.15.10 (a),(b) and (c) //Let the assembly move down the 60 degree plane by an acceleration a m/sec^2 //Consider the block weighing 100 N //Applying equilibrium conditions N1=50 //N mu=1/3 //From law of friction F1=mu*N1 //N //T+((100*a)/(9.81))=69.93 //Now consider 50 N block N2=50*cosd(30) //N //From the law of friction F2=mu*N2 //((50*a)/(9.81))-T=-39.43 //Solving we get a=(69.93-39.43)*9.81/(100+50) //m/sec^2 T=69.93-(100*1.9947/9.81) //N printf("\na=%.4f m/sec^2\nT=%.2f N",a,T)
986bdda443fb34f1c29240c9f25805a372c4e77a
573df9bfca39973c9bf2fa36f6e5af2643d7771e
/scilab/regressão/exemplo_reg_linear1.sce
18a1b2c0777223473c063761068fa90c37756903
[]
no_license
DCC-CN/152cn
ef92c691edabe211b1a552dbb963f9fd9ceec94a
4fe0b02f961f37935a1335b5eac22d81400fa609
refs/heads/master
2016-08-13T01:34:17.966430
2015-04-07T07:31:58
2015-04-07T07:31:58
44,502,526
1
0
null
null
null
null
UTF-8
Scilab
false
false
300
sce
exemplo_reg_linear1.sce
// // // clear; clc; getd('../lib'); getd('.'); // exemplos do livro Algoritmos Numéricos, 2a. ediçao x = [0.3 2.7 4.5 5.9 7.8]; y = [1.8 1.9 3.1 3.9 3.3]; [b1 b0 r2 s2] = reglin_simples(x, y, %T); x_reg = linspace(0,10,1000); y_reg = b1*x_reg + b0; plot(x, y, 'g.'); plot(x_reg, y_reg, 'r-');
95f17cd2c878a844ee4d02722ac17f2c840cb3a8
20f46832ae88a89a38f61087f5c7b9be092760cf
/tspExamples.sci
00b85543f87e0ea07cf9df8f1ed928e835771873
[]
no_license
valdron/tspscilab
beef362216b51a534e928a51a917f691cb99b846
c148f9a1d08d246966f23bcfb2739f2faa62526d
refs/heads/master
2020-06-11T13:57:36.005279
2016-12-08T20:54:27
2016-12-08T20:54:27
75,650,403
0
0
null
null
null
null
UTF-8
Scilab
false
false
50,051
sci
tspExamples.sci
function tspExamples(example) // TSP examples // // 1) 5 points // 2) 5 cities in Germany (Google Maps) // 3) 22 cities in Germany // 4) 48 cities in North America // 5) 59 cities in Germany // // OUTPUT (global variables): // name ... n x 1 matrix with names // dist ... n x n matrix with distances // pos ... n x 2 matrix with 2D positions // //<-global-- global name dist pos; //--global-> if argn(2) == 0 then example = 1; end select example case 1 then pos = [ 0 0; 2 0; 2 3; 1 5; 0 3; ]; n = size(pos,'r'); dist = zeros(n,n); for i = 1:n for j = 1:n dist(i,j) = sqrt( (pos(i,1) - pos(j,1))^2 + (pos(i,2) - pos(j,2))^2); end end name = [ 'P1' 'P2' 'P3' 'P4' 'P5' ]; case 2 then name = [ 'Berlin' 'Hamburg' 'Koeln' 'Muenchen' 'Stuttgart' ]; pos = [ 13.404954 52.520007 9.993682 53.551085 6.960279 50.937531 11.581981 48.135125 9.182932 48.775846 ]; n = size(name,1); dist = zeros(n,n); for i = 1:n for j = 1:n dist(i,j) = sqrt( (pos(i,1) - pos(j,1))^2 + (pos(i,2) - pos(j,2))^2); end end case 3 name = [ 'Aachen' 'Augsburg' 'Braunschweig' 'Bremen' 'Essen' 'Freiburg' 'Hamburg' 'Hof' 'Karlsruhe' 'Kassel' 'Kiel' 'Koeln' 'Mannheim' 'Muenchen' 'Nuernberg' 'Passau' 'Regensburg' 'Saarbruecken' 'Wuerzburg' 'Bielefeld' 'Luebeck' 'Muenster' ]; dist = [ 0 144 114 105 31 109 135 132 85 79 158 20 73 162 127 190 156 58 87 71 154 55 144 0 144 181 147 76 195 73 64 114 220 135 71 18 39 60 37 101 62 146 205 153 114 144 0 49 86 169 51 78 130 42 76 94 114 154 105 151 125 137 94 46 61 66 105 181 49 0 73 189 31 124 152 67 52 88 135 195 146 197 169 147 123 40 51 49 31 147 86 73 0 128 104 119 97 57 126 17 82 164 122 184 151 80 85 40 123 24 109 76 169 189 128 0 212 126 38 128 238 112 54 92 95 137 110 51 77 148 227 146 135 195 51 31 104 212 0 129 174 85 26 118 157 206 157 201 176 173 141 67 19 79 132 73 78 124 119 126 129 0 92 65 153 115 84 80 35 73 47 118 55 98 136 113 85 64 130 152 97 38 174 92 0 90 200 82 17 82 66 120 89 36 39 112 189 111 79 114 42 67 57 128 85 65 90 0 111 59 73 128 80 137 106 95 57 33 99 48 158 220 76 52 126 238 26 153 200 111 0 141 183 231 182 224 201 198 167 91 19 102 20 135 94 88 17 112 118 115 82 59 141 0 67 153 114 177 142 63 75 52 137 39 73 71 114 135 82 54 157 84 17 73 183 67 0 90 64 123 89 35 28 95 172 95 162 18 154 195 164 92 206 80 82 128 231 153 90 0 49 47 35 119 79 161 214 169 127 39 105 146 122 95 157 35 66 80 182 114 64 49 0 62 28 99 40 113 166 124 190 60 151 197 184 137 201 73 120 137 224 177 123 47 62 0 34 156 102 170 206 183 156 37 125 169 151 110 176 47 89 106 201 142 89 35 28 34 0 123 68 139 183 151 58 101 137 147 80 51 173 118 36 95 198 63 35 119 99 156 123 0 63 106 190 100 87 62 94 123 85 77 141 55 39 57 167 75 28 79 40 102 68 63 0 85 154 91 71 146 46 40 40 148 67 98 112 33 91 52 95 161 113 170 139 106 85 0 85 20 154 205 61 51 123 227 19 136 189 99 19 137 172 214 166 206 183 190 154 85 0 98 55 153 66 49 24 146 79 113 111 48 102 39 95 169 124 183 151 100 91 20 98 0 ] ; pos = [ -57.0 28.0 54.0 -65.0 46.0 79.0 8.0 111.0 -36.0 52.0 -22.0 -76.0 34.0 129.0 74.0 6.0 -6.0 -41.0 21.0 45.0 37.0 155.0 -38.0 35.0 -5.0 -24.0 70.0 -74.0 59.0 -26.0 114.0 -56.0 83.0 -41.0 -40.0 -28.0 21.0 -12.0 0.0 71.0 50.0 140.0 -20.0 70.0 ]; case 4 then pos = [ 6734 1453 2233 10 5530 1424 401 841 3082 1644 7608 4458 7573 3716 7265 1268 6898 1885 1112 2049 5468 2606 5989 2873 4706 2674 4612 2035 6347 2683 6107 669 7611 5184 7462 3590 7732 4723 5900 3561 4483 3369 6101 1110 5199 2182 1633 2809 4307 2322 675 1006 7555 4819 7541 3981 3177 756 7352 4506 7545 2801 3245 3305 6426 3173 4608 1198 23 2216 7248 3779 7762 4595 7392 2244 3484 2829 6271 2135 4985 140 1916 1569 7280 4899 7509 3239 10 2676 6807 2993 5185 3258 3023 1942 ]; name = string(1:size(pos,'r'))'; dist = [ 0 4727 1205 6363 3657 3130 2414 563 463 5654 1713 1604 2368 2201 1290 1004 3833 2258 3419 2267 2957 720 1700 5279 2578 6076 3465 2654 3625 3115 1574 3951 1748 2142 6755 2383 3306 1029 3530 825 2188 4820 3489 1947 6835 1542 2379 3744 4727 0 3588 2012 1842 6977 6501 5187 5028 2327 4148 4723 3635 3125 4907 3930 7463 6338 7243 5105 4043 4022 3677 2863 3106 1850 7173 6630 1204 6814 6001 3447 5253 2656 3123 6274 7183 5622 3085 4564 2756 1591 7027 6186 3472 5461 4390 2088 1205 3588 0 5163 2458 3678 3071 1742 1444 4462 1184 1520 1498 1103 1501 951 4298 2903 3967 2169 2209 652 828 4136 1518 4873 3954 3254 2446 3581 2441 2960 1966 950 5564 2916 3878 2035 2482 1027 1395 3617 3891 2686 5661 2023 1867 2560 6363 2012 5163 0 2799 8064 7727 6878 6581 1402 5366 5946 4679 4378 6225 5709 8417 7578 8296 6135 4802 5707 4982 2322 4178 320 8186 7800 2778 7859 7408 3763 6461 4223 1427 7451 8263 7131 3669 6011 4638 1681 7987 7502 1877 6758 5360 2844 3657 1842 2458 2799 0 5330 4946 4200 3824 2012 2573 3157 1924 1580 3427 3179 5749 4793 5577 3409 2223 3066 2185 1860 1401 2491 5486 5035 894 5141 4611 1669 3677 1590 3113 4682 5533 4352 1252 3227 2426 1169 5313 4706 3241 3962 2651 304 3130 6977 3678 8064 5330 0 743 3209 2670 6929 2831 2266 3407 3854 2178 4076 727 881 293 1930 3310 3672 3315 6199 3932 7745 365 482 5774 261 1659 4513 1746 4431 7910 769 207 2225 4435 2681 5053 6384 550 1224 7805 1670 2704 5230 2414 6501 3071 7727 4946 743 0 2468 1952 6673 2380 1795 3051 3405 1604 3382 1469 168 1020 1681 3110 2993 2827 6009 3552 7412 1104 267 5300 821 916 4348 1270 3890 7698 332 900 1484 4185 2049 4415 6051 1219 482 7635 1054 2432 4884 563 5187 1742 6878 4200 3209 2468 0 718 6203 2241 2051 2920 2762 1687 1304 3932 2331 3487 2669 3487 1175 2260 5840 3141 6596 3563 2728 4120 3240 1559 4507 2082 2658 7304 2512 3364 985 4091 1319 2544 5358 3632 1987 7391 1785 2879 4296 463 5028 1444 6581 3824 2670 1952 718 0 5789 1602 1343 2330 2291 970 1451 3376 1796 2959 1951 2835 1112 1725 5346 2628 6285 3007 2193 3889 2661 1122 3920 1372 2391 6883 1927 2845 611 3543 676 2590 4993 3039 1486 6934 1112 2196 3876 5654 2327 4462 1402 2012 6929 6673 6203 5789 0 4392 4947 3648 3501 5274 5183 7216 6535 7140 5022 3621 5077 4090 922 3207 1131 7014 6714 2437 6707 6477 2476 5432 3599 1102 6376 7121 6284 2497 5160 4318 937 6795 6507 1268 5773 4249 1914 1713 4148 1184 5366 2573 2831 2380 2241 1602 4392 0 586 766 1029 883 2040 3353 2224 3100 1049 1246 1625 503 3841 1196 5054 3042 2488 2945 2676 2087 2331 1114 1650 5459 2132 3037 1958 1997 931 2513 3701 2923 2137 5459 1394 711 2534 1604 4723 1520 5946 3157 2266 1795 2051 1343 4947 586 0 1299 1612 406 2208 2824 1639 2542 694 1586 1767 1050 4357 1770 5633 2498 1907 3520 2128 1558 2778 531 2171 6003 1552 2472 1538 2506 791 2912 4277 2403 1564 5983 827 892 3109 2368 3635 1498 4679 1924 3407 3051 2920 2330 3648 766 1299 0 646 1642 2446 3840 2905 3655 1488 730 2096 697 3076 533 4363 3567 3122 2453 3219 2842 1592 1791 1480 4706 2772 3610 2721 1232 1656 2550 3001 3403 2860 4697 2126 756 1836 2201 3125 1103 4378 1580 3854 3405 2762 2291 3501 1029 1612 646 0 1853 2026 4349 3247 4119 1997 1341 1753 606 3078 419 4070 4052 3517 1923 3690 3032 1866 2142 838 4593 3161 4060 2788 1380 1663 1932 2736 3915 3138 4647 2395 1351 1592 1290 4907 1501 6225 3427 2178 1604 1687 970 5274 883 406 1642 1853 0 2029 2803 1438 2466 986 1987 1593 1253 4716 2072 5915 2454 1764 3710 2082 1204 3164 497 2287 6342 1419 2379 1134 2867 554 2885 4569 2405 1289 6338 555 1297 3406 1004 3930 951 5709 3179 4076 3382 1304 1451 5183 2040 2208 2446 2026 2029 0 4759 3220 4368 2900 3151 442 1765 4960 2444 5443 4396 3610 2932 4034 2572 3891 2525 1590 6278 3313 4261 2033 3398 1476 1241 4287 4390 2928 6419 2428 2749 3337 3833 7463 4298 8417 5749 727 1469 3932 3376 7216 3353 2824 3840 4349 2803 4759 0 1601 477 2359 3617 4345 3851 6433 4372 8098 370 1206 6267 726 2384 4754 2335 4991 8148 1452 609 2949 4752 3331 5687 6746 437 1948 8005 2334 3098 5618 2258 6338 2903 7578 4793 881 168 2331 1796 6535 2224 1639 2905 3247 1438 3220 1601 0 1165 1563 2988 2829 2666 5882 3401 7263 1233 399 5138 923 794 4227 1117 3724 7565 286 1049 1348 4051 1881 4248 5903 1322 355 7508 887 2302 4736 3419 7243 3967 8296 5577 293 1020 3487 2959 7140 3100 2542 3655 4119 2466 4368 477 1165 0 2170 3520 3965 3588 6393 4183 7977 202 767 6041 438 1932 4706 2027 4711 8107 1061 132 2503 4652 2972 5344 6617 486 1501 7989 1962 2939 5469 2267 5105 2169 6135 3409 1930 1681 2669 1951 5022 1049 694 1488 1997 986 2900 2359 1563 2170 0 1430 2460 1547 4333 2019 5817 2079 1694 3910 1733 1813 2668 654 2694 6029 1366 2130 1991 2525 1474 3542 4455 1923 1641 5957 1071 777 3302 2957 4043 2209 4802 2223 3310 3110 3487 2835 3621 1246 1586 730 1341 1987 3151 3617 2988 3520 1430 0 2779 1387 2905 1062 4482 3398 3119 2922 3087 3115 1240 1953 2175 4607 2796 3501 3119 1136 2173 3268 3136 3189 3029 4527 2355 711 2042 720 4022 652 5707 3066 3672 2993 1175 1112 5077 1625 1767 2096 1753 1593 442 4345 2829 3965 2460 2779 0 1401 4781 2166 5427 3984 3212 2946 3620 2224 3603 2089 1496 6178 2906 3861 1719 3132 1040 1479 4211 3969 2553 6290 2012 2336 3189 1700 3677 828 4982 2185 3315 2827 2260 1725 4090 503 1050 697 606 1253 1765 3851 2666 3588 1547 1387 1401 0 3621 903 4675 3537 2954 2475 3169 2427 2254 1578 1148 5177 2598 3521 2194 1833 1074 2054 3340 3423 2541 5213 1801 1077 2190 5279 2863 4136 2322 1860 6199 6009 5840 5346 922 3841 4357 3076 3078 4716 4960 6433 5882 6393 4333 2905 4781 3621 0 2718 2042 6254 6024 2569 5966 5913 1687 4807 3384 1716 5699 6384 5787 1852 4687 4285 1272 6022 5892 1629 5178 3581 1639 2578 3106 1518 4178 1401 3932 3552 3141 2628 3207 1196 1770 533 419 2072 2444 4372 3401 4183 2019 1062 2166 903 2718 0 3864 4097 3635 1932 3748 3274 1448 2284 1164 4286 3283 4136 3086 967 1973 2285 2507 3935 3331 4312 2589 1284 1340 6076 1850 4873 320 2491 7745 7412 6596 6285 1131 5054 5633 4363 4070 5915 5443 8098 7263 7977 5817 4482 5427 4675 2042 3864 0 7866 7483 2515 7539 7101 3449 6146 3938 1375 7134 7944 6831 3349 5709 4397 1363 7667 7190 1798 6446 5041 2528 3465 7173 3954 8186 5486 365 1104 3563 3007 7014 3042 2498 3567 4052 2454 4396 370 1233 202 2079 3398 3984 3537 6254 4097 7866 0 839 5973 374 2019 4569 1996 4669 7970 1085 305 2581 4532 2976 5339 6509 287 1581 7844 1974 2838 5369 2654 6630 3254 7800 5035 482 267 2728 2193 6714 2488 1907 3122 3517 1764 3610 1206 399 767 1694 3119 3212 2954 6024 3635 7483 839 0 5427 558 1181 4349 1377 4044 7723 356 653 1744 4218 2241 4614 6121 955 743 7644 1231 2465 4957 3625 1204 2446 2778 894 5774 5300 4120 3889 2437 2945 3520 2453 1923 3710 2932 6267 5138 6041 3910 2922 2946 2475 2569 1932 2515 5973 5427 0 5612 4824 2550 4050 1498 3476 5071 5980 4470 2096 3388 1911 1501 5831 4994 3704 4264 3209 1196 3115 6814 3581 7859 5141 261 821 3240 2661 6707 2676 2128 3219 3690 2082 4034 726 923 438 1733 3087 3620 3169 5966 3748 7539 374 558 5612 0 1716 4280 1624 4298 7679 735 420 2263 4216 2606 4967 6179 400 1277 7567 1609 2501 5032 1574 6001 2441 7408 4611 1659 916 1559 1122 6477 2087 1558 2842 3032 1204 2572 2384 794 1932 1813 3115 2224 2427 5913 3274 7101 2019 1181 4824 1716 0 4330 1180 3346 7545 1023 1808 578 4062 1438 3693 5763 2115 440 7537 763 2404 4603 3951 3447 2960 3763 1669 4513 4348 4507 3920 2476 2331 2778 1592 1866 3164 3891 4754 4227 4706 2668 1240 3603 2254 1687 1448 3449 4569 4349 2550 4280 4330 0 3184 2510 3402 4031 4698 4281 533 3245 3612 2187 4339 4265 3296 3576 1941 1381 1748 5253 1966 6461 3677 1746 1270 2082 1372 5432 1114 531 1791 2142 497 2525 2335 1117 2027 654 1953 2089 1578 4807 2284 6146 1996 1377 4050 1624 1180 3184 0 2685 6475 1022 1952 1341 2963 1050 3358 4787 1926 1086 6436 422 1244 3619 2142 2656 950 4223 1590 4431 3890 2658 2391 3599 1650 2171 1480 838 2287 1590 4991 3724 4711 2694 2175 1496 1148 3384 1164 3938 4669 4044 1498 4298 3346 2510 2685 0 4697 3693 4636 2975 1981 1909 1124 2718 4565 3548 4830 2839 2140 1751 6755 3123 5564 1427 3113 7910 7698 7304 6883 1102 5459 6003 4706 4593 6342 6278 8148 7565 8107 6029 4607 6178 5177 1716 4286 1375 7970 7723 3476 7679 7545 3402 6475 4697 0 7393 8097 7370 3515 6249 5379 2001 7738 7556 461 6829 5267 3013 2383 6274 2916 7451 4682 769 332 2512 1927 6376 2132 1552 2772 3161 1419 3313 1452 286 1061 1366 2796 2906 2598 5699 3283 7134 1085 356 5071 735 1023 4031 1022 3693 7393 0 965 1542 3883 1913 4286 5772 1121 600 7322 902 2128 4608 3306 7183 3878 8263 5533 207 900 3364 2845 7121 3037 2472 3610 4060 2379 4261 609 1049 132 2130 3501 3861 3521 6384 4136 7944 305 653 5980 420 1808 4698 1952 4636 8097 965 0 2380 4629 2877 5250 6583 570 1380 7986 1866 2904 5432 1029 5622 2035 7131 4352 2225 1484 985 611 6284 1958 1538 2721 2788 1134 2033 2949 1348 2503 1991 3119 1719 2194 5787 3086 6831 2581 1744 4470 2263 578 4281 1341 2975 7370 1542 2380 0 3952 1127 3197 5518 2658 1002 7395 951 2429 4380 3530 3085 2482 3669 1252 4435 4185 4091 3543 2497 1997 2506 1232 1380 2867 3398 4752 4051 4652 2525 1136 3132 1833 1852 967 3349 4532 4218 2096 4216 4062 533 2963 1981 3515 3883 4629 3952 0 2873 3080 2012 4324 4046 3478 3328 1755 1000 825 4564 1027 6011 3227 2681 2049 1319 676 5160 931 791 1656 1663 554 1476 3331 1881 2972 1474 2173 1040 1074 4687 1973 5709 2976 2241 3388 2606 1438 3245 1050 1909 6249 1913 2877 1127 2873 0 2374 4392 2943 1659 6285 1012 1563 3254 2188 2756 1395 4638 2426 5053 4415 2544 2590 4318 2513 2912 2550 1932 2885 1241 5687 4248 5344 3542 3268 1479 2054 4285 2285 4397 5339 4614 1911 4967 3693 3612 3358 1124 5379 4286 5250 3197 3080 2374 0 3386 5284 3997 5585 3386 3125 2664 4820 1591 3617 1681 1169 6384 6051 5358 4993 937 3701 4277 3001 2736 4569 4287 6746 5903 6617 4455 3136 4211 3340 1272 2507 1363 6509 6121 1501 6179 5763 2187 4787 2718 2001 5772 6583 5518 2012 4392 3386 0 6314 5837 2205 5095 3680 1169 3489 7027 3891 7987 5313 550 1219 3632 3039 6795 2923 2403 3403 3915 2405 4390 437 1322 486 1923 3189 3969 3423 6022 3935 7667 287 955 5831 400 2115 4339 1926 4565 7738 1121 570 2658 4324 2943 5284 6314 0 1676 7603 1964 2662 5184 1947 6186 2686 7502 4706 1224 482 1987 1486 6507 2137 1564 2860 3138 1289 2928 1948 355 1501 1641 3029 2553 2541 5892 3331 7190 1581 743 4994 1277 440 4265 1086 3548 7556 600 1380 1002 4046 1659 3997 5837 1676 0 7521 744 2325 4670 6835 3472 5661 1877 3241 7805 7635 7391 6934 1268 5459 5983 4697 4647 6338 6419 8005 7508 7989 5957 4527 6290 5213 1629 4312 1798 7844 7644 3704 7567 7537 3296 6436 4830 461 7322 7986 7395 3478 6285 5585 2205 7603 7521 0 6805 5208 3102 1542 5461 2023 6758 3962 1670 1054 1785 1112 5773 1394 827 2126 2395 555 2428 2334 887 1962 1071 2355 2012 1801 5178 2589 6446 1974 1231 4264 1609 763 3576 422 2839 6829 902 1866 951 3328 1012 3386 5095 1964 744 6805 0 1644 3928 2379 4390 1867 5360 2651 2704 2432 2879 2196 4249 711 892 756 1351 1297 2749 3098 2302 2939 777 711 2336 1077 3581 1284 5041 2838 2465 3209 2501 2404 1941 1244 2140 5267 2128 2904 2429 1755 1563 3125 3680 2662 2325 5208 1644 0 2532 3744 2088 2560 2844 304 5230 4884 4296 3876 1914 2534 3109 1836 1592 3406 3337 5618 4736 5469 3302 2042 3189 2190 1639 1340 2528 5369 4957 1196 5032 4603 1381 3619 1751 3013 4608 5432 4380 1000 3254 2664 1169 5184 4670 3102 3928 2532 0 ]; case 5 then name = [ 'Augsburg' 'Bielefeld' 'Bochum' 'Bremen' 'Darmstadt' 'Essen' 'Freiburg' 'Giessen' 'Hamburg' 'Hannover' 'Heilbronn' 'Kaiserslautern' 'Karlsruhe' 'Kassel' 'Kempten' 'Koblenz' 'Koeln' 'Landshut' 'Lichtenfels' 'Mainz' 'Muenchen' 'Muenster' 'Neuss' 'Nuernburg' 'Oldenburg' 'Regensburg' 'Rendsburg' 'Stuttgart' 'Ulm' 'Wuerzburg' 'Aachen' 'Ansbach' 'Aschaffenburg' 'Bamberg' 'Bayreuth' 'Bonn' 'Braunschweig' 'Bremen' 'Coburg' 'Dortmund' 'Duesseldorf' 'Duisburg' 'Erlangen' 'Frankfurt' 'Fulda' 'Fuerth' 'Gelsen-Kirchen' 'Gummersburg' 'Hagen' 'Hersbruck' 'Ingolstadt' 'Kiel' 'Mannheim' 'Marburg' 'Offenburg' 'Osnabrueck' 'Reutlingen' 'Saarbruecken' 'Siegen' ]; dist = [ 0 146 145 181 77 147 76 100 195 151 49 84 64 114 29 108 135 32 64 88 18 153 145 39 188 37 219 44 24 57 144 38 74 57 58 126 144 189 69 140 144 151 44 84 85 40 149 127 138 40 19 220 71 106 72 160 42 101 116 146 0 35 40 80 40 148 51 67 30 109 99 112 33 165 65 52 154 92 74 161 20 50 113 43 139 86 120 139 88 71 108 78 95 102 57 46 47 87 27 47 47 108 71 61 111 37 42 33 116 134 91 95 43 130 14 129 106 45 145 35 0 69 69 5 129 45 100 66 100 79 97 52 158 43 19 160 104 60 162 20 15 119 66 147 115 110 132 89 36 110 71 104 113 28 81 74 99 10 12 12 114 61 67 116 4 18 7 123 137 122 81 41 111 35 119 81 29 181 40 69 0 120 73 189 91 31 33 149 140 152 67 203 105 88 185 122 115 195 49 84 146 13 169 46 160 177 125 105 143 118 127 131 96 49 7 117 63 81 78 140 111 97 144 69 81 70 148 168 52 135 83 170 34 169 147 86 77 80 69 120 0 71 70 29 141 96 31 27 32 57 89 31 58 97 57 11 94 81 68 60 123 88 164 41 63 30 68 47 6 53 64 49 98 127 56 66 67 74 57 9 33 57 73 51 63 65 73 167 16 37 52 91 50 45 40 147 40 5 73 71 0 128 48 104 71 102 79 97 57 160 43 17 163 107 61 164 24 10 122 69 151 119 111 134 92 31 113 73 108 117 27 86 77 103 15 8 7 118 63 71 119 4 20 11 126 140 126 82 44 111 39 120 80 31 76 148 129 189 70 128 0 98 212 167 50 50 38 128 61 86 112 109 109 74 92 146 121 95 190 110 234 43 53 83 109 81 74 101 110 101 169 195 111 130 122 128 96 79 102 93 132 112 125 99 89 238 54 106 18 158 38 51 104 100 51 45 91 29 48 98 0 114 69 59 50 61 32 116 26 40 115 61 24 117 53 49 74 94 103 135 70 90 44 57 65 27 60 70 35 74 98 58 39 47 53 70 20 25 71 49 28 38 78 92 139 44 8 80 62 78 62 17 195 67 100 31 141 104 212 114 0 45 168 164 174 85 219 132 118 193 132 138 206 79 114 157 41 176 25 179 194 141 135 157 138 138 140 124 51 31 126 93 111 109 151 133 114 155 99 109 99 157 179 26 157 105 194 64 188 173 112 151 30 66 33 96 71 167 69 45 0 123 120 129 39 174 90 82 152 90 94 163 50 81 114 44 136 69 133 149 96 101 113 93 95 99 86 18 41 84 57 78 78 108 88 69 112 68 70 63 115 136 71 112 61 149 38 142 131 71 49 109 100 149 31 102 50 59 168 123 0 35 18 83 58 60 88 76 59 40 68 112 98 48 152 71 191 11 32 32 95 33 31 51 60 78 121 156 60 97 97 104 48 39 54 45 104 82 94 53 51 194 22 66 36 122 20 52 71 84 99 79 140 27 79 50 50 164 120 35 0 21 82 87 36 63 111 82 25 102 96 73 80 140 105 185 40 64 53 64 65 33 77 87 52 124 146 82 80 73 80 78 33 61 77 83 62 75 85 86 190 16 58 32 108 45 19 54 64 112 97 152 32 97 38 61 174 129 18 21 0 90 65 54 82 93 75 38 82 111 92 66 155 89 196 19 43 47 85 51 36 68 78 72 130 159 76 96 92 99 66 41 64 64 100 79 91 71 69 200 17 69 20 123 24 36 69 114 33 52 67 57 57 128 32 85 39 83 82 90 0 136 57 59 120 59 56 128 48 64 80 73 106 108 94 110 57 79 76 53 62 68 59 42 74 53 42 61 64 75 49 30 78 56 45 46 83 102 111 73 25 110 48 103 95 40 29 165 158 203 89 160 61 116 219 174 58 87 65 136 0 117 146 58 91 98 35 170 156 67 208 66 243 48 26 78 151 62 88 83 86 136 169 210 95 155 155 162 71 97 105 67 162 140 152 69 48 245 78 123 64 178 41 99 129 108 65 43 105 31 43 86 26 132 90 60 36 54 57 117 0 28 128 82 19 126 60 38 90 105 118 151 69 92 59 37 77 35 80 90 18 98 111 80 44 38 45 86 26 49 87 47 26 39 95 104 157 38 31 68 73 76 41 19 135 52 19 88 58 17 112 40 118 82 88 63 82 59 146 28 0 154 102 47 153 39 10 114 85 142 134 97 120 83 20 103 61 101 111 10 94 93 98 25 10 16 110 51 66 111 21 14 19 118 130 141 67 40 95 54 105 63 23 32 154 160 185 97 163 109 115 193 152 76 111 93 120 58 128 154 0 62 109 23 165 163 41 193 16 218 74 56 71 166 51 93 58 53 146 141 192 67 154 162 168 46 103 94 43 164 144 153 38 24 217 96 119 104 168 74 129 132 64 92 104 122 57 107 109 61 132 90 59 82 75 59 91 82 102 62 0 67 73 105 110 25 131 47 157 66 69 29 118 30 51 8 9 96 80 130 5 96 108 113 20 58 36 24 108 89 96 25 47 157 67 63 95 107 73 101 79 88 74 60 115 11 61 74 24 138 94 40 25 38 56 98 19 47 109 67 0 106 73 58 71 117 99 160 50 73 41 57 58 16 63 74 38 98 121 65 58 57 63 68 9 38 68 64 41 54 76 84 164 21 32 55 85 58 39 31 18 161 162 195 94 164 92 117 206 163 68 102 82 128 35 126 153 23 73 106 0 169 163 49 202 35 231 63 41 73 162 52 91 67 66 144 154 202 79 157 162 168 54 101 99 50 166 144 155 48 26 231 90 122 89 175 60 119 133 153 20 20 49 81 24 146 53 79 50 112 96 111 48 170 60 39 165 105 73 169 0 34 124 46 151 95 123 143 96 55 117 81 107 115 47 66 54 100 16 32 29 119 72 71 121 19 34 21 127 144 102 95 47 128 15 131 100 42 145 50 15 84 68 10 121 49 114 81 98 73 92 64 156 38 10 163 110 58 163 34 0 123 79 151 129 108 131 92 21 112 71 110 119 20 95 88 106 24 3 7 119 61 73 120 15 20 18 127 140 136 77 47 105 50 115 72 31 39 113 119 146 60 122 95 74 157 114 48 80 66 80 67 90 114 41 25 71 49 124 123 0 153 28 181 52 48 31 127 15 55 18 18 106 105 153 30 113 121 127 5 64 53 3 123 103 112 5 22 182 64 78 83 128 56 99 92 188 43 66 13 123 69 190 94 41 44 152 140 155 73 208 105 85 193 131 117 202 46 79 153 0 178 50 163 182 131 100 150 121 135 140 93 61 10 125 62 77 73 148 114 103 151 64 80 68 156 175 58 138 86 172 32 172 146 86 37 139 147 169 88 151 110 103 176 136 71 105 89 106 66 118 142 16 47 99 35 151 151 28 178 0 201 71 58 59 156 41 83 43 37 135 125 177 52 140 150 156 32 92 80 31 151 131 140 24 21 201 89 106 102 154 73 123 120 219 86 115 46 164 119 234 135 25 69 191 185 196 108 243 151 134 218 157 160 231 95 129 181 50 201 0 202 218 165 150 181 161 163 165 142 76 41 151 110 127 123 176 155 138 180 114 127 116 182 204 10 179 127 215 80 211 193 132 44 120 110 160 41 111 43 70 179 133 11 40 19 94 48 69 97 74 66 50 63 123 108 52 163 71 202 0 24 41 103 38 42 58 67 87 132 167 68 108 107 114 53 50 65 50 114 92 104 56 51 205 30 77 31 132 9 56 81 24 139 132 177 63 134 53 90 194 149 32 64 43 110 26 92 120 56 69 73 41 143 131 48 182 58 218 24 0 53 127 39 62 61 66 111 144 184 73 129 130 137 51 71 80 47 136 114 126 51 37 220 53 97 48 152 19 79 103 57 88 89 125 30 92 83 44 141 96 32 53 47 57 78 59 83 71 29 41 73 96 92 31 131 59 165 41 53 0 96 20 24 23 34 75 92 132 29 84 91 97 27 33 27 28 94 73 82 35 48 167 37 49 67 102 49 72 61 144 71 36 105 68 31 109 57 135 101 95 64 85 79 151 37 20 166 118 57 162 55 21 127 100 156 150 103 127 96 0 115 72 116 127 22 114 109 115 44 24 26 124 63 83 124 36 33 38 132 142 158 73 59 94 71 110 58 41 38 108 110 143 47 113 81 65 157 113 33 65 51 76 62 77 103 51 30 58 52 117 112 15 150 41 181 38 39 20 115 0 42 22 29 95 107 151 34 104 111 117 14 52 47 12 114 93 103 20 27 183 49 70 68 122 43 84 82 74 78 71 118 6 73 74 27 138 93 31 33 36 53 88 35 61 93 51 16 91 81 71 55 121 83 161 42 62 24 72 42 0 47 58 52 94 125 50 67 70 76 51 9 28 52 75 53 64 60 69 164 20 35 56 90 51 51 41 57 95 104 127 53 108 101 60 138 95 51 77 68 62 83 80 101 58 8 63 67 107 110 18 135 43 163 58 61 23 116 22 47 0 11 94 87 135 12 97 107 113 13 54 37 17 108 89 97 20 41 163 61 63 87 110 65 96 78 58 102 113 131 64 117 110 70 140 99 60 87 78 68 86 90 111 53 9 74 66 115 119 18 140 37 165 67 66 34 127 29 58 11 0 105 89 139 15 106 117 123 15 65 46 19 117 99 106 18 40 165 71 72 96 117 72 106 88 126 57 28 96 49 27 101 35 124 86 78 52 72 59 136 18 10 146 96 38 144 47 20 106 93 135 142 87 111 75 22 95 52 94 105 0 97 101 93 32 20 27 102 43 60 103 31 15 26 111 122 148 57 37 84 62 95 53 19 144 46 81 49 98 86 169 74 51 18 121 124 130 42 169 98 94 141 80 98 154 66 95 105 61 125 76 132 144 92 114 107 94 87 89 97 0 56 75 71 92 93 100 91 67 104 83 82 77 106 128 76 114 67 151 56 141 137 80 189 47 74 7 127 77 195 98 31 41 156 146 159 74 210 111 93 192 130 121 202 54 88 153 10 177 41 167 184 132 109 151 125 135 139 101 56 0 124 69 85 82 148 118 104 151 73 86 75 155 175 48 142 90 177 39 176 152 92 69 87 99 117 56 103 111 58 126 84 60 82 76 53 95 80 98 67 5 65 79 100 106 30 125 52 151 68 73 29 115 34 50 12 15 93 75 124 0 91 104 109 25 56 32 29 103 86 92 31 52 152 67 59 96 102 76 101 75 140 27 10 63 66 15 130 39 93 57 97 80 96 42 155 44 25 154 96 58 157 16 24 113 62 140 110 108 129 84 44 104 67 97 106 32 71 69 91 0 21 22 108 57 60 110 13 18 6 116 132 116 79 34 112 30 116 84 26 144 47 12 81 67 8 122 47 111 78 97 73 92 61 155 38 10 162 108 57 162 32 3 121 77 150 127 107 130 91 24 111 70 107 117 20 92 85 104 21 0 6 117 60 71 118 12 18 15 125 138 134 77 45 105 47 115 73 29 151 47 12 78 74 7 128 53 109 78 104 80 99 64 162 45 16 168 113 63 168 29 7 127 73 156 123 114 137 97 26 117 76 113 123 27 93 82 109 22 6 0 123 66 76 124 10 24 18 131 145 131 84 50 111 45 122 79 35 44 108 114 140 57 118 96 70 151 108 48 78 66 75 71 86 110 46 20 68 54 119 119 5 148 32 176 53 51 27 124 14 51 13 15 102 100 148 25 108 117 123 0 60 48 4 119 99 107 8 27 177 62 73 83 122 58 97 87 84 71 61 111 9 63 79 20 133 88 39 33 41 49 97 26 51 103 58 9 101 72 61 64 114 92 155 50 71 33 63 52 9 54 65 43 91 118 56 57 60 66 60 0 29 61 65 43 55 69 79 159 24 28 60 82 59 48 32 85 61 67 97 33 71 102 25 114 69 54 61 64 30 105 49 66 94 36 38 99 71 73 53 103 80 138 65 80 27 83 47 28 37 46 60 67 104 32 60 71 76 48 29 0 50 71 53 60 56 73 140 49 26 84 75 74 77 43 40 111 116 144 57 119 93 71 155 112 45 77 64 78 67 87 111 43 24 68 50 121 120 3 151 31 180 50 47 28 124 12 52 17 19 103 104 151 29 110 118 124 4 61 50 0 121 100 109 8 24 181 61 75 81 125 55 96 89 149 37 4 69 73 4 132 49 99 68 104 83 100 56 162 47 21 164 108 64 166 19 15 123 64 151 114 114 136 94 36 114 75 108 117 31 83 73 103 13 12 10 119 65 71 121 0 22 11 127 142 121 85 45 115 35 122 84 33 127 42 18 81 51 20 112 28 109 70 82 62 79 45 140 26 14 144 89 41 144 34 20 103 80 131 127 92 114 73 33 93 53 89 99 15 82 86 86 18 18 24 99 43 53 100 22 0 13 107 120 133 62 27 94 48 100 65 11 138 33 7 70 63 11 125 38 99 63 94 75 91 46 152 39 19 153 96 54 155 21 18 112 68 140 116 104 126 82 38 103 64 97 106 26 77 75 92 6 15 18 107 55 60 109 11 13 0 116 130 122 75 34 107 36 113 78 22 40 116 123 148 65 126 99 78 157 115 53 85 71 83 69 95 118 38 25 76 48 127 127 5 156 24 182 56 51 35 132 20 60 20 18 111 106 155 31 116 125 131 8 69 56 8 127 107 116 0 22 183 69 82 88 130 61 104 96 19 134 137 168 73 140 89 92 179 136 51 86 69 102 48 104 130 24 47 84 26 144 140 22 175 21 204 51 37 48 142 27 69 41 40 122 128 175 52 132 138 145 27 79 73 24 142 120 130 22 0 204 72 97 81 149 51 104 109 220 91 122 52 167 126 238 139 26 71 194 190 200 111 245 157 141 217 157 164 231 102 136 182 58 201 10 205 220 167 158 183 164 163 165 148 76 48 152 116 134 131 177 159 140 181 121 133 122 183 204 0 183 131 219 86 214 198 137 71 95 81 135 16 82 54 44 157 112 22 16 17 73 78 38 67 96 67 21 90 95 77 64 138 89 179 30 53 37 73 49 20 61 71 57 114 142 67 79 77 84 62 24 49 61 85 62 75 69 72 183 0 52 36 106 38 35 53 106 43 41 83 37 44 106 8 105 61 66 58 69 25 123 31 40 119 63 32 122 47 47 78 86 106 127 77 97 49 59 70 35 63 72 37 67 90 59 34 45 50 73 28 26 75 45 27 34 82 97 131 52 0 88 55 86 70 18 72 130 111 170 52 111 18 80 194 149 36 32 20 110 64 68 95 104 95 55 89 128 105 83 172 102 215 31 48 67 94 68 56 87 96 84 151 177 96 112 105 111 83 60 84 81 115 94 107 88 81 219 36 88 0 140 30 37 86 160 14 35 34 91 39 158 62 64 38 122 108 123 48 178 73 54 168 107 85 175 15 50 128 32 154 80 132 152 102 71 122 90 110 117 62 56 39 102 30 47 45 122 82 75 125 35 48 36 130 149 86 106 55 140 0 141 114 54 42 129 119 169 50 120 38 78 188 142 20 45 24 103 41 76 105 74 73 58 60 131 115 56 172 73 211 9 19 49 110 43 51 65 72 95 141 176 76 116 115 122 58 59 74 55 122 100 113 61 51 214 38 86 30 141 0 60 90 101 106 81 147 45 80 51 62 173 131 52 19 36 95 99 41 63 129 101 39 119 100 72 99 146 123 193 56 79 72 58 84 51 96 106 53 137 152 101 84 73 79 97 48 77 96 84 65 78 104 104 198 35 70 37 114 60 0 60 116 45 29 86 40 31 104 17 112 71 71 54 69 40 129 19 23 132 79 31 133 42 31 92 86 120 132 81 103 61 41 82 41 78 88 19 80 92 75 26 29 35 87 32 43 89 33 11 22 96 109 137 53 18 86 54 90 60 0 ]; pos = [ 54.0 -65.0 0.0 71.0 -31.0 53.0 8.0 111.0 1.0 -9.0 -36.0 52.0 -22.0 -76.0 0.0 20.0 34.0 129.0 28.0 84.0 12.0 -38.0 -21.0 -26.0 -6.0 -41.0 21.0 45.0 38.0 -90.0 -24.0 10.0 -38.0 35.0 86.0 -57.0 58.0 -1.0 -9.0 -3.0 70.0 -74.0 -20.0 70.0 -43.0 44.0 59.0 -26.0 -5.0 114.0 83.0 -41.0 27.0 153.0 12.0 -49.0 30.0 -65.0 31.0 -12.0 -57.0 28.0 44.0 -28.0 7.0 -7.0 54.0 -8.0 65.0 -8.0 -35.0 25.0 46.0 79.0 5.0 118.0 56.0 4.0 -21.0 54.0 -40.0 45.0 -43.0 51.0 57.0 -21.0 0.0 0.0 25.0 15.0 56.0 -25.0 -34.0 56.0 -24.0 36.0 -25.0 49.0 64.0 -26.0 63.0 -48.0 37.0 155.0 -5.0 -24.0 2.0 28.0 -18.0 -58.0 -10.0 82.0 12.0 -58.0 -40.0 -28.0 -16.0 28.0 ]; end endfunction
a64a5e427183996003c5d42e30a2de1e5927b9df
449d555969bfd7befe906877abab098c6e63a0e8
/3369/CH12/EX12.7/Ex12_7.sce
d21a8d60e1d6eacf42e7be36867da274243fc56f
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
417
sce
Ex12_7.sce
//Chapter 12,Example 7, page 410 //Determine the induced sheath voltage clear clc D = 15 // cm rsh = 5.5/2 // Sheath diameter converted to radius in cm I = 250 // A E = 2*10^-7*314*I*log(D/rsh)*10^3 printf("\n Induced sheath voltage per Km = %f V/km",E) printf("\n If the sheaths are bonded at one end, the voltage between them at the other end = = %f V/km",E*sqrt(3)) // Answers may vary due to round off errors.
257b8b149cb5a20b4651691228e643a60ec1d48e
449d555969bfd7befe906877abab098c6e63a0e8
/1445/CH7/EX7.4/ch7_ex_4.sce
61e99861b24df254d4c4f3fd40c2a37d4ca8f035
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
781
sce
ch7_ex_4.sce
//CHAPTER 7- SINGLE PHASE TRANSFORMER //Example 4 disp("CHAPTER 7"); disp("EXAMPLE 4"); //VARIABLE INITIALIZATION va=10*1000; //apparent power N1=50; //number of turns on primary side N2=10; //number of turns on secondary side v1=440; //primary voltage in Volts f=50; //in Hertz //SOLUTION //solution (a) v2=v1*(N2/N1); disp(sprintf("(a) The secondary voltage on no load is %d V",v2)); //solution (b) I1=va/v1; disp(sprintf("(b) The full load primary current is %f A",I1)); I2=va/v2; disp(sprintf("The full load secondary current is %f A",I2)); //solution (c) phi_m=v2/(4.44*N1*N2); disp(sprintf("(c) The maximum value of the flux is %f mWb",phi_m*1000)); //END
0f55f895b3124bd3aa84bac5443f7e15c9ef94f0
449d555969bfd7befe906877abab098c6e63a0e8
/3840/CH4/EX4.11/Ex4_11.sce
f6026a98c15dfc9188d6f37133e7dd9985082578
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
584
sce
Ex4_11.sce
clear // // // //Variable declaration L=2*10**-10 //length(m) n2=2 n4=4 m=9.1*10**-31 //mass(kg) e=1.6*10**-19 //charge(c) h=6.63*10**-34 //plank constant //Calculation E1=h**2/(8*m*e*L**2) //minimum energy(eV) E2=n2**2*E1 //energy of 1st excited state(eV) E4=n4**2*E1 //energy of 2nd excited state(eV) //Result printf("\n ground state energy is %0.2f eV",E1) printf("\n energy of 1st excited state is %0.3f eV",E2) printf("\n energy of 2nd excited state is %0.2f eV",E4) printf("\n answers for energy of 1st and 2nd states given in the book are wrong")
005c148dc76d26feb41874be5415741ce0544df0
449d555969bfd7befe906877abab098c6e63a0e8
/2837/CH23/EX23.6/Ex23_6.sce
ce93cb311dc5474cd3ec67d14865925c739540bb
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
447
sce
Ex23_6.sce
clc clear //Initalization of variables rel=0.6 p1=0.6982 //psia pa=14.7 //psia t1=90 //F t2=54.94 //F cp=0.24 p2=0.2136 //psia vol=4000 //ft t3=538 //R R=53.35 //calculations act1=rel*p1 sh1=0.622*act1/(pa-act1) hm1=cp*t1+sh1*1100.9 sh2=0.622*p2/(pa-p2) hm2=cp*t2+sh2*1085.8 con=sh1-sh2 enth=con*23.01 heat=hm1-hm2-enth mass=144*(pa-p2)*vol/(R*(t3)) tonnage=mass*heat/200 //results printf("Tonnage = %.1f tons ",tonnage)
02d0d2ddccb518f5b5a884f8e9fc5b50a3c2b464
8217f7986187902617ad1bf89cb789618a90dd0a
/source/2.2/macros/auto/lqe.sci
c1de1cebe9dfae1f9636f242afaf7d3bff8d5bcc
[ "MIT", "LicenseRef-scancode-warranty-disclaimer", "LicenseRef-scancode-public-domain" ]
permissive
clg55/Scilab-Workbench
4ebc01d2daea5026ad07fbfc53e16d4b29179502
9f8fd29c7f2a98100fa9aed8b58f6768d24a1875
refs/heads/master
2023-05-31T04:06:22.931111
2022-09-13T14:41:51
2022-09-13T14:41:51
258,270,193
0
1
null
null
null
null
UTF-8
Scilab
false
false
102
sci
lqe.sci
function [K,X]=lqe(P21) [A,B1,C2,D21,xo,dom]=P21(2:7) [kk,X]=lqr(syslin(dom,A',C2',B1',D21')); K=kk';
ab95f4a33c888820a459bcfd621819ea333e14fe
36c5f94ce0d09d8d1cc8d0f9d79ecccaa78036bd
/funscenario-invincible.sce
e6edfe346718493c1d2e666517d453298f2672b5
[]
no_license
Ahmad6543/Scenarios
cef76bf19d46e86249a6099c01928e4e33db5f20
6a4563d241e61a62020f76796762df5ae8817cc8
refs/heads/master
2023-03-18T23:30:49.653812
2020-09-23T06:26:05
2020-09-23T06:26:05
null
0
0
null
null
null
null
UTF-8
Scilab
false
false
41,749
sce
funscenario-invincible.sce
Name=funscenario-invincible PlayerCharacters=A_air_lg_frozen;MovingTarget BotCharacters=MovingTarget.bot IsChallenge=true Timelimit=30.0 PlayerProfile=A_air_lg_frozen AddedBots=MovingTarget.bot PlayerMaxLives=0 BotMaxLives=0 PlayerTeam=1 BotTeams=2 MapName=square_1wall_clip_med_1spawn.map MapScale=1.0 BlockProjectilePredictors=true BlockCheats=true InvinciblePlayer=false InvincibleBots=true Timescale=1.0 BlockHealthbars=false TimeRefilledByKill=0.0 ScoreToWin=1.0 ScorePerDamage=1.0 ScorePerKill=0.0 ScorePerMidairDirect=0.0 ScorePerAnyDirect=0.0 ScorePerTime=0.0 ScoreLossPerDamageTaken=0.0 ScoreLossPerDeath=0.0 ScoreLossPerMidairDirected=0.0 ScoreLossPerAnyDirected=0.0 ScoreMultAccuracy=false ScoreMultDamageEfficiency=false ScoreMultKillEfficiency=false GameTag=fun WeaponHeroTag=lg DifficultyTag=3 AuthorsTag=faleene, apa3 BlockHitMarkers=false BlockHitSounds=false BlockMissSounds=true BlockFCT=false Description=flicktrack bounce edit GameVersion=1.0.6.2 ScorePerDistance=0.0 [Aim Profile] Name=Default MinReactionTime=0.3 MaxReactionTime=0.4 MinSelfMovementCorrectionTime=0.001 MaxSelfMovementCorrectionTime=0.05 FlickFOV=30.0 FlickSpeed=1.5 FlickError=15.0 TrackSpeed=3.5 TrackError=3.5 MaxTurnAngleFromPadCenter=75.0 MinRecenterTime=0.3 MaxRecenterTime=0.5 OptimalAimFOV=30.0 OuterAimPenalty=1.0 MaxError=40.0 ShootFOV=15.0 VerticalAimOffset=0.0 MaxTolerableSpread=5.0 MinTolerableSpread=1.0 TolerableSpreadDist=2000.0 MaxSpreadDistFactor=2.0 [Bot Profile] Name=MovingTarget DodgeProfileNames=Long Strafes 2 DodgeProfileWeights=1.0 DodgeProfileMaxChangeTime=5.0 DodgeProfileMinChangeTime=1.0 WeaponProfileWeights=1.0;1.0;1.0;1.0;1.0;1.0;1.0;1.0 AimingProfileNames=Default;Default;Default;Default;Default;Default;Default;Default WeaponSwitchTime=3.0 UseWeapons=false CharacterProfile=MovingTarget SeeThroughWalls=false [Character Profile] Name=A_air_lg_frozen MaxHealth=100.0 WeaponProfileNames=LG;;;;;;; MinRespawnDelay=1.0 MaxRespawnDelay=5.0 StepUpHeight=75.0 CrouchHeightModifier=0.5 CrouchAnimationSpeed=1.0 CameraOffset=X=0.000 Y=0.000 Z=0.000 HeadshotOnly=false DamageKnockbackFactor=8.0 MovementType=Base MaxSpeed=0.0 MaxCrouchSpeed=500.0 Acceleration=16000.0 AirAcceleration=16000.0 Friction=8.0 BrakingFrictionFactor=2.0 JumpVelocity=0.0 Gravity=0.2 AirControl=1.0 CanCrouch=true CanPogoJump=false CanCrouchInAir=false CanJumpFromCrouch=false EnemyBodyColor=X=255.000 Y=0.000 Z=0.000 EnemyHeadColor=X=255.000 Y=255.000 Z=255.000 TeamBodyColor=X=0.000 Y=0.000 Z=255.000 TeamHeadColor=X=255.000 Y=255.000 Z=255.000 BlockSelfDamage=false InvinciblePlayer=false InvincibleBots=false BlockTeamDamage=false AirJumpCount=0 AirJumpVelocity=800.0 MainBBType=Cylindrical MainBBHeight=230.0 MainBBRadius=55.0 MainBBHasHead=true MainBBHeadRadius=45.0 MainBBHeadOffset=0.0 MainBBHide=false ProjBBType=Cylindrical ProjBBHeight=230.0 ProjBBRadius=55.0 ProjBBHasHead=true ProjBBHeadRadius=45.0 ProjBBHeadOffset=0.0 ProjBBHide=true HasJetpack=false JetpackActivationDelay=0.2 JetpackFullFuelTime=4.0 JetpackFuelIncPerSec=1.0 JetpackFuelRegensInAir=false JetpackThrust=6000.0 JetpackMaxZVelocity=400.0 JetpackAirControlWithThrust=0.25 AbilityProfileNames=;;; HideWeapon=false AerialFriction=0.3 StrafeSpeedMult=1.0 BackSpeedMult=1.0 RespawnInvulnTime=0.0 BlockedSpawnRadius=0.0 BlockSpawnFOV=0.0 BlockSpawnDistance=0.0 RespawnAnimationDuration=0.5 AllowBufferedJumps=true BounceOffWalls=false LeanAngle=0.0 LeanDisplacement=0.0 AirJumpExtraControl=0.0 ForwardSpeedBias=1.0 HealthRegainedonkill=0.0 HealthRegenPerSec=0.0 HealthRegenDelay=0.0 JumpSpeedPenaltyDuration=0.0 JumpSpeedPenaltyPercent=0.0 ThirdPersonCamera=false TPSArmLength=300.0 TPSOffset=X=0.000 Y=150.000 Z=150.000 BrakingDeceleration=2048.0 VerticalSpawnOffset=0.0 [Character Profile] Name=MovingTarget MaxHealth=10000.0 WeaponProfileNames=;;;;;;; MinRespawnDelay=0.1 MaxRespawnDelay=0.4 StepUpHeight=75.0 CrouchHeightModifier=1.0 CrouchAnimationSpeed=1.0 CameraOffset=X=0.000 Y=0.000 Z=0.000 HeadshotOnly=false DamageKnockbackFactor=0.0 MovementType=Base MaxSpeed=1000.0 MaxCrouchSpeed=1.0 Acceleration=4000.0 AirAcceleration=16000.0 Friction=0.0 BrakingFrictionFactor=0.0 JumpVelocity=1700.0 Gravity=2.0 AirControl=0.25 CanCrouch=false CanPogoJump=false CanCrouchInAir=false CanJumpFromCrouch=false EnemyBodyColor=X=1.000 Y=0.725 Z=0.000 EnemyHeadColor=X=255.000 Y=0.725 Z=0.000 TeamBodyColor=X=0.000 Y=0.000 Z=255.000 TeamHeadColor=X=255.000 Y=255.000 Z=255.000 BlockSelfDamage=false InvinciblePlayer=false InvincibleBots=false BlockTeamDamage=false AirJumpCount=0 AirJumpVelocity=400.0 MainBBType=Spheroid MainBBHeight=76.0 MainBBRadius=38.0 MainBBHasHead=false MainBBHeadRadius=35.0 MainBBHeadOffset=-50.0 MainBBHide=false ProjBBType=Spheroid ProjBBHeight=0.2 ProjBBRadius=0.1 ProjBBHasHead=false ProjBBHeadRadius=0.1 ProjBBHeadOffset=0.0 ProjBBHide=true HasJetpack=false JetpackActivationDelay=0.0 JetpackFullFuelTime=100000.0 JetpackFuelIncPerSec=0.1 JetpackFuelRegensInAir=true JetpackThrust=6000.0 JetpackMaxZVelocity=400.0 JetpackAirControlWithThrust=0.0 AbilityProfileNames=;;; HideWeapon=true AerialFriction=0.0 StrafeSpeedMult=1.0 BackSpeedMult=1.0 RespawnInvulnTime=0.0 BlockedSpawnRadius=0.0 BlockSpawnFOV=0.0 BlockSpawnDistance=0.0 RespawnAnimationDuration=0.0 AllowBufferedJumps=true BounceOffWalls=false LeanAngle=0.0 LeanDisplacement=0.0 AirJumpExtraControl=0.0 ForwardSpeedBias=1.0 HealthRegainedonkill=0.0 HealthRegenPerSec=0.0 HealthRegenDelay=0.0 JumpSpeedPenaltyDuration=0.0 JumpSpeedPenaltyPercent=0.0 ThirdPersonCamera=false TPSArmLength=300.0 TPSOffset=X=0.000 Y=150.000 Z=150.000 BrakingDeceleration=2048.0 VerticalSpawnOffset=0.0 [Dodge Profile] Name=Long Strafes 2 MaxTargetDistance=1.0 MinTargetDistance=0.0 ToggleLeftRight=true ToggleForwardBack=false MinLRTimeChange=1.0 MaxLRTimeChange=2.0 MinFBTimeChange=10.0 MaxFBTimeChange=10.0 DamageReactionChangesDirection=true DamageReactionChanceToIgnore=0.5 DamageReactionMinimumDelay=0.125 DamageReactionMaximumDelay=0.25 DamageReactionCooldown=1.0 DamageReactionThreshold=50.0 DamageReactionResetTimer=0.5 JumpFrequency=0.5 CrouchInAirFrequency=0.0 CrouchOnGroundFrequency=0.0 TargetStrafeOverride=Ignore TargetStrafeMinDelay=0.125 TargetStrafeMaxDelay=0.25 MinProfileChangeTime=0.0 MaxProfileChangeTime=0.0 MinCrouchTime=0.3 MaxCrouchTime=0.6 MinJumpTime=0.001 MaxJumpTime=0.001 LeftStrafeTimeMult=1.0 RightStrafeTimeMult=1.0 StrafeSwapMinPause=0.0 StrafeSwapMaxPause=0.0 BlockedMovementPercent=1.0 BlockedMovementReactionMin=0.0001 BlockedMovementReactionMax=0.0001 [Weapon Profile] Name=LG Type=Hitscan ShotsPerClick=1 DamagePerShot=1.0 KnockbackFactor=2.0 TimeBetweenShots=0.046 Pierces=false Category=FullyAuto BurstShotCount=1 TimeBetweenBursts=0.5 ChargeStartDamage=10.0 ChargeStartVelocity=X=500.000 Y=0.000 Z=0.000 ChargeTimeToAutoRelease=2.0 ChargeTimeToCap=1.0 ChargeMoveSpeedModifier=1.0 MuzzleVelocityMin=X=2000.000 Y=0.000 Z=0.000 MuzzleVelocityMax=X=2000.000 Y=0.000 Z=0.000 InheritOwnerVelocity=0.0 OriginOffset=X=0.000 Y=0.000 Z=0.000 MaxTravelTime=5.0 MaxHitscanRange=100000.0 GravityScale=1.0 HeadshotCapable=false HeadshotMultiplier=2.0 MagazineMax=0 AmmoPerShot=1 ReloadTimeFromEmpty=0.5 ReloadTimeFromPartial=0.5 DamageFalloffStartDistance=100000.0 DamageFalloffStopDistance=100000.0 DamageAtMaxRange=7.0 DelayBeforeShot=0.0 HitscanVisualEffect=Tracer ProjectileGraphic=Ball VisualLifetime=0.05 WallParticleEffect=None HitParticleEffect=None BounceOffWorld=false BounceFactor=0.0 BounceCount=0 HomingProjectileAcceleration=0.0 ProjectileEnemyHitRadius=1.0 CanAimDownSight=false ADSZoomDelay=0.0 ADSZoomSensFactor=0.7 ADSMoveFactor=1.0 ADSStartDelay=0.0 ShootSoundCooldown=0.08 HitSoundCooldown=0.08 HitscanVisualOffset=X=0.000 Y=0.000 Z=-80.000 ADSBlocksShooting=false ShootingBlocksADS=false KnockbackFactorAir=9.0 RecoilNegatable=false DecalType=0 DecalSize=30.0 DelayAfterShooting=0.0 BeamTracksCrosshair=true AlsoShoot= ADSShoot= StunDuration=0.0 CircularSpread=true SpreadStationaryVelocity=0.0 PassiveCharging=false BurstFullyAuto=true FlatKnockbackHorizontal=0.0 FlatKnockbackVertical=0.0 HitscanRadius=0.0 HitscanVisualRadius=6.0 TaggingDuration=0.0 TaggingMaxFactor=1.0 TaggingHitFactor=1.0 ProjectileTrail=None RecoilCrouchScale=1.0 RecoilADSScale=1.0 PSRCrouchScale=1.0 PSRADSScale=1.0 ProjectileAcceleration=0.0 AccelIncludeVertical=true AimPunchAmount=0.0 AimPunchResetTime=0.05 AimPunchCooldown=0.5 AimPunchHeadshotOnly=false AimPunchCosmeticOnly=true MinimumDecelVelocity=0.0 PSRManualNegation=false PSRAutoReset=true AimPunchUpTime=0.05 AmmoReloadedOnKill=0 CancelReloadOnKill=false FlatKnockbackHorizontalMin=0.0 FlatKnockbackVerticalMin=0.0 ADSScope=No Scope ADSFOVOverride=72.099998 ADSFOVScale=Horizontal (4:3) ADSAllowUserOverrideFOV=true ForceFirstPersonInADS=true ZoomBlockedInAir=false ADSCameraOffsetX=0.0 ADSCameraOffsetY=0.0 ADSCameraOffsetZ=0.0 Explosive=false Radius=500.0 DamageAtCenter=100.0 DamageAtEdge=0.0 SelfDamageMultiplier=0.5 ExplodesOnContactWithEnemy=false DelayAfterEnemyContact=0.0 ExplodesOnContactWithWorld=false DelayAfterWorldContact=0.0 ExplodesOnNextAttack=false DelayAfterSpawn=0.0 BlockedByWorld=false SpreadSSA=1.0,1.0,-1.0,0.0 SpreadSCA=1.0,1.0,-1.0,0.0 SpreadMSA=1.0,1.0,-1.0,0.0 SpreadMCA=1.0,1.0,-1.0,0.0 SpreadSSH=1.0,1.0,-1.0,0.0 SpreadSCH=1.0,1.0,-1.0,0.0 SpreadMSH=1.0,1.0,-1.0,0.0 SpreadMCH=1.0,1.0,-1.0,0.0 MaxRecoilUp=0.0 MinRecoilUp=0.0 MinRecoilHoriz=0.0 MaxRecoilHoriz=0.0 FirstShotRecoilMult=1.0 RecoilAutoReset=false TimeToRecoilPeak=0.05 TimeToRecoilReset=0.35 AAMode=1 AAPreferClosestPlayer=false AAAlpha=0.9 AAMaxSpeed=2.5 AADeadZone=0.0 AAFOV=360.0 AANeedsLOS=true TrackHorizontal=true TrackVertical=true AABlocksMouse=false AAOffTimer=0.0 AABackOnTimer=0.0 TriggerBotEnabled=false TriggerBotDelay=0.0 TriggerBotFOV=1.0 StickyLock=false HeadLock=false VerticalOffset=0.0 DisableLockOnKill=false UsePerShotRecoil=false PSRLoopStartIndex=0 PSRViewRecoilTracking=0.45 PSRCapUp=9.0 PSRCapRight=4.0 PSRCapLeft=4.0 PSRTimeToPeak=0.095 PSRResetDegreesPerSec=40.0 UsePerBulletSpread=false PBS0=0.0,0.0 [Map Data] reflex map version 8 global entity type WorldSpawn String32 targetGameOverCamera end UInt8 playersMin 1 UInt8 playersMax 16 brush vertices -1616.000000 1032.000000 1240.000000 1808.000000 1032.000000 1240.000000 1808.000000 1032.000000 -856.000000 -1616.000000 1032.000000 -856.000000 -1616.000000 688.000000 1240.000000 1808.000000 688.000000 1240.000000 1808.000000 688.000000 -856.000000 -1616.000000 688.000000 -856.000000 faces 0.000000 0.000000 1.000000 1.000000 0.000000 0 1 2 3 0x00000000 0.000000 0.000000 1.000000 1.000000 0.000000 6 5 4 7 0x00000000 0.000000 0.000000 1.000000 1.000000 0.000000 2 1 5 6 0x00000000 0.000000 0.000000 1.000000 1.000000 0.000000 0 3 7 4 0x00000000 0.000000 0.000000 1.000000 1.000000 0.000000 3 2 6 7 0x00000000 0.000000 0.000000 1.000000 1.000000 0.000000 1 0 4 5 0x00000000 brush vertices 1784.000000 912.000000 1248.000000 1936.000000 912.000000 1248.000000 1936.000000 912.000000 -824.000000 1784.000000 912.000000 -824.000000 1784.000000 -1152.000000 1248.000000 1936.000000 -1152.000000 1248.000000 1936.000000 -1152.000000 -824.000000 1784.000000 -1152.000000 -824.000000 faces 0.000000 0.000000 1.000000 1.000000 0.000000 0 1 2 3 0x00000000 0.000000 0.000000 1.000000 1.000000 0.000000 6 5 4 7 0x00000000 0.000000 0.000000 1.000000 1.000000 0.000000 2 1 5 6 0x00000000 0.000000 0.000000 1.000000 1.000000 0.000000 0 3 7 4 0x00000000 0.000000 0.000000 1.000000 1.000000 0.000000 3 2 6 7 0x00000000 0.000000 0.000000 1.000000 1.000000 0.000000 1 0 4 5 0x00000000 brush vertices -1888.000000 -1136.000000 592.000000 1952.000000 -1136.000000 592.000000 1952.000000 -1136.000000 -800.000000 -1888.000000 -1136.000000 -800.000000 -1888.000000 -1152.000000 592.000000 1952.000000 -1152.000000 592.000000 1952.000000 -1152.000000 -800.000000 -1888.000000 -1152.000000 -800.000000 faces 0.000000 0.000000 1.000000 1.000000 0.000000 0 1 2 3 0x00000000 0.000000 0.000000 1.000000 1.000000 0.000000 6 5 4 7 0x00000000 0.000000 0.000000 1.000000 1.000000 0.000000 2 1 5 6 0x00000000 0.000000 0.000000 1.000000 1.000000 0.000000 0 3 7 4 0x00000000 0.000000 0.000000 1.000000 1.000000 0.000000 3 2 6 7 0x00000000 0.000000 0.000000 1.000000 1.000000 0.000000 1 0 4 5 0x00000000 brush vertices -1792.000000 912.000000 1288.000000 -1608.000000 912.000000 1288.000000 -1608.000000 912.000000 -816.000000 -1792.000000 912.000000 -816.000000 -1792.000000 -1184.000000 1288.000000 -1608.000000 -1184.000000 1288.000000 -1608.000000 -1184.000000 -816.000000 -1792.000000 -1184.000000 -816.000000 faces 0.000000 0.000000 1.000000 1.000000 0.000000 0 1 2 3 0x00000000 0.000000 0.000000 1.000000 1.000000 0.000000 6 5 4 7 0x00000000 0.000000 0.000000 1.000000 1.000000 0.000000 2 1 5 6 0x00000000 0.000000 0.000000 1.000000 1.000000 0.000000 0 3 7 4 0x00000000 0.000000 0.000000 1.000000 1.000000 0.000000 3 2 6 7 0x00000000 0.000000 0.000000 1.000000 1.000000 0.000000 1 0 4 5 0x00000000 brush vertices -1640.000000 920.000000 -768.000000 1784.000000 920.000000 -768.000000 1784.000000 920.000000 -1104.000000 -1640.000000 920.000000 -1104.000000 -1640.000000 -1144.000000 -768.000000 1784.000000 -1144.000000 -768.000000 1784.000000 -1144.000000 -1104.000000 -1640.000000 -1144.000000 -1104.000000 faces 0.000000 0.000000 1.000000 1.000000 0.000000 0 1 2 3 0x00000000 0.000000 0.000000 1.000000 1.000000 0.000000 6 5 4 7 0x00000000 0.000000 0.000000 1.000000 1.000000 0.000000 2 1 5 6 0x00000000 0.000000 0.000000 1.000000 1.000000 0.000000 0 3 7 4 0x00000000 0.000000 0.000000 1.000000 1.000000 0.000000 3 2 6 7 0x00000000 0.000000 0.000000 1.000000 1.000000 0.000000 1 0 4 5 0x00000000 brush vertices 2752.000000 -912.000000 -560.000000 2928.000000 -912.000000 -560.000000 2928.000000 -912.000000 -640.000000 2752.000000 -912.000000 -640.000000 2752.000000 -928.000000 -560.000000 2928.000000 -928.000000 -560.000000 2928.000000 -928.000000 -640.000000 2752.000000 -928.000000 -640.000000 faces 0.000000 0.000000 1.000000 1.000000 0.000000 0 1 2 3 0x00000000 0.000000 0.000000 1.000000 1.000000 0.000000 6 5 4 7 0x00000000 0.000000 0.000000 1.000000 1.000000 0.000000 2 1 5 6 0x00000000 0.000000 0.000000 1.000000 1.000000 0.000000 0 3 7 4 0x00000000 0.000000 0.000000 1.000000 1.000000 0.000000 3 2 6 7 0x00000000 0.000000 0.000000 1.000000 1.000000 0.000000 1 0 4 5 0x00000000 brush vertices 1616.000000 816.000000 576.000000 1808.000000 816.000000 576.000000 1808.000000 816.000000 -400.000000 1616.000000 816.000000 -400.000000 1616.000000 -1136.000000 576.000000 1808.000000 -1136.000000 576.000000 1808.000000 -1136.000000 -400.000000 1616.000000 -1136.000000 -400.000000 faces 0.000000 0.000000 1.000000 1.000000 0.000000 0 1 2 3 0x00000000 internal/editor/textures/editor_clip 0.000000 0.000000 1.000000 1.000000 0.000000 6 5 4 7 0x00000000 internal/editor/textures/editor_clip 0.000000 0.000000 1.000000 1.000000 0.000000 2 1 5 6 0x00000000 internal/editor/textures/editor_clip 0.000000 0.000000 1.000000 1.000000 0.000000 0 3 7 4 0x00000000 internal/editor/textures/editor_clip 0.000000 0.000000 1.000000 1.000000 0.000000 3 2 6 7 0x00000000 internal/editor/textures/editor_clip 0.000000 0.000000 1.000000 1.000000 0.000000 1 0 4 5 0x00000000 internal/editor/textures/editor_clip brush vertices -2080.000000 1112.000000 584.000000 1672.000000 1112.000000 584.000000 1672.000000 1112.000000 -536.000000 -2080.000000 1112.000000 -536.000000 -2080.000000 -1128.000000 584.000000 1672.000000 -1128.000000 584.000000 1672.000000 -1128.000000 -536.000000 -2080.000000 -1128.000000 -536.000000 faces 256.000000 0.000000 1.000000 1.000000 0.000000 0 1 2 3 0x00000000 internal/editor/textures/editor_clip 256.000000 0.000000 1.000000 1.000000 0.000000 6 5 4 7 0x00000000 internal/editor/textures/editor_clip 256.000000 0.000000 1.000000 1.000000 0.000000 2 1 5 6 0x00000000 internal/editor/textures/editor_clip 256.000000 0.000000 1.000000 1.000000 0.000000 0 3 7 4 0x00000000 internal/editor/textures/editor_clip 256.000000 0.000000 1.000000 1.000000 0.000000 3 2 6 7 0x00000000 internal/editor/textures/editor_clip 256.000000 0.000000 1.000000 1.000000 0.000000 1 0 4 5 0x00000000 internal/editor/textures/editor_clip brush vertices -1624.000000 936.000000 1296.000000 1936.000000 936.000000 1296.000000 1936.000000 936.000000 1232.000000 -1624.000000 936.000000 1232.000000 -1624.000000 -1088.000000 1296.000000 1936.000000 -1088.000000 1296.000000 1936.000000 -1088.000000 1232.000000 -1624.000000 -1088.000000 1232.000000 faces 0.000000 0.000000 1.000000 1.000000 0.000000 0 1 2 3 0x00000000 0.000000 0.000000 1.000000 1.000000 0.000000 6 5 4 7 0x00000000 0.000000 0.000000 1.000000 1.000000 0.000000 2 1 5 6 0x00000000 0.000000 0.000000 1.000000 1.000000 0.000000 0 3 7 4 0x00000000 0.000000 0.000000 1.000000 1.000000 0.000000 3 2 6 7 0x00000000 0.000000 0.000000 1.000000 1.000000 0.000000 1 0 4 5 0x00000000 brush vertices -1792.000000 -1056.000000 1280.000000 1936.000000 -1056.000000 1280.000000 1936.000000 -1056.000000 584.000000 -1792.000000 -1056.000000 584.000000 -1792.000000 -1152.000000 1280.000000 1936.000000 -1152.000000 1280.000000 1936.000000 -1152.000000 584.000000 -1792.000000 -1152.000000 584.000000 faces -768.000000 0.000000 1.000000 1.000000 0.000000 0 1 2 3 0x00000000 -768.000000 0.000000 1.000000 1.000000 0.000000 6 5 4 7 0x00000000 -768.000000 0.000000 1.000000 1.000000 0.000000 2 1 5 6 0x00000000 -768.000000 0.000000 1.000000 1.000000 0.000000 0 3 7 4 0x00000000 -768.000000 0.000000 1.000000 1.000000 0.000000 3 2 6 7 0x00000000 -768.000000 0.000000 1.000000 1.000000 0.000000 1 0 4 5 0x00000000 brush vertices -1648.000000 -576.000000 -544.000000 1840.000000 -576.000000 -544.000000 1840.000000 -576.000000 -768.000000 -1648.000000 -576.000000 -768.000000 -1648.000000 -592.000000 -544.000000 1840.000000 -592.000000 -544.000000 1840.000000 -592.000000 -768.000000 -1648.000000 -592.000000 -768.000000 faces 0.000000 0.000000 1.000000 1.000000 0.000000 0 1 2 3 0x00000000 0.000000 0.000000 1.000000 1.000000 0.000000 6 5 4 7 0x00000000 0.000000 0.000000 1.000000 1.000000 0.000000 2 1 5 6 0x00000000 0.000000 0.000000 1.000000 1.000000 0.000000 0 3 7 4 0x00000000 0.000000 0.000000 1.000000 1.000000 0.000000 3 2 6 7 0x00000000 0.000000 0.000000 1.000000 1.000000 0.000000 1 0 4 5 0x00000000 brush vertices 1616.000000 -88.000000 -200.000000 1800.000000 -88.000000 -200.000000 1800.000000 -88.000000 -536.000000 1616.000000 -88.000000 -536.000000 1616.000000 -360.000000 -200.000000 1800.000000 -360.000000 -200.000000 1800.000000 -360.000000 -536.000000 1616.000000 -360.000000 -536.000000 faces 256.000000 0.000000 1.000000 1.000000 0.000000 0 1 2 3 0x00000000 internal/editor/textures/editor_clip 256.000000 0.000000 1.000000 1.000000 0.000000 6 5 4 7 0x00000000 internal/editor/textures/editor_clip 256.000000 0.000000 1.000000 1.000000 0.000000 2 1 5 6 0x00000000 internal/editor/textures/editor_clip 256.000000 0.000000 1.000000 1.000000 0.000000 0 3 7 4 0x00000000 internal/editor/textures/editor_clip 256.000000 0.000000 1.000000 1.000000 0.000000 3 2 6 7 0x00000000 internal/editor/textures/editor_clip 256.000000 0.000000 1.000000 1.000000 0.000000 1 0 4 5 0x00000000 internal/editor/textures/editor_clip brush vertices 1760.000000 -800.000000 -752.000000 1776.000000 -800.000000 -752.000000 1776.000000 -800.000000 -768.000000 1760.000000 -800.000000 -768.000000 1760.000000 -912.000000 -752.000000 1776.000000 -912.000000 -752.000000 1776.000000 -912.000000 -768.000000 1760.000000 -912.000000 -768.000000 faces 0.000000 0.000000 -1.500000 0.000000 180.000000 0 1 2 3 0x00000000 0.000000 0.000000 -1.500000 0.000000 180.000000 6 5 4 7 0x00000000 0.000000 0.000000 -1.500000 0.000000 180.000000 2 1 5 6 0x00000000 0.000000 0.000000 -1.500000 0.000000 180.000000 0 3 7 4 0x00000000 0.000000 0.000000 -1.500000 0.000000 180.000000 3 2 6 7 0x00000000 0.000000 0.000000 -1.500000 0.000000 180.000000 1 0 4 5 0x00000000 brush vertices 1728.000000 -896.000000 -752.000000 1760.000000 -896.000000 -752.000000 1760.000000 -896.000000 -768.000000 1728.000000 -896.000000 -768.000000 1728.000000 -912.000000 -752.000000 1760.000000 -912.000000 -752.000000 1760.000000 -912.000000 -768.000000 1728.000000 -912.000000 -768.000000 faces 0.000000 0.000000 -1.500000 0.000000 180.000000 0 1 2 3 0x00000000 0.000000 0.000000 -1.500000 0.000000 180.000000 6 5 4 7 0x00000000 0.000000 0.000000 -1.500000 0.000000 180.000000 2 1 5 6 0x00000000 0.000000 0.000000 -1.500000 0.000000 180.000000 0 3 7 4 0x00000000 0.000000 0.000000 -1.500000 0.000000 180.000000 3 2 6 7 0x00000000 0.000000 0.000000 -1.500000 0.000000 180.000000 1 0 4 5 0x00000000 brush vertices 1728.000000 -800.000000 -752.000000 1760.000000 -800.000000 -752.000000 1760.000000 -800.000000 -768.000000 1728.000000 -800.000000 -768.000000 1728.000000 -816.000000 -752.000000 1760.000000 -816.000000 -752.000000 1760.000000 -816.000000 -768.000000 1728.000000 -816.000000 -768.000000 faces 0.000000 0.000000 -1.500000 0.000000 180.000000 0 1 2 3 0x00000000 0.000000 0.000000 -1.500000 0.000000 180.000000 6 5 4 7 0x00000000 0.000000 0.000000 -1.500000 0.000000 180.000000 2 1 5 6 0x00000000 0.000000 0.000000 -1.500000 0.000000 180.000000 0 3 7 4 0x00000000 0.000000 0.000000 -1.500000 0.000000 180.000000 3 2 6 7 0x00000000 0.000000 0.000000 -1.500000 0.000000 180.000000 1 0 4 5 0x00000000 brush vertices 1712.000000 -816.000000 -752.000000 1728.000000 -816.000000 -752.000000 1728.000000 -816.000000 -768.000000 1712.000000 -816.000000 -768.000000 1712.000000 -896.000000 -752.000000 1728.000000 -896.000000 -752.000000 1728.000000 -896.000000 -768.000000 1712.000000 -896.000000 -768.000000 faces 0.000000 0.000000 -1.500000 0.000000 180.000000 0 1 2 3 0x00000000 0.000000 0.000000 -1.500000 0.000000 180.000000 6 5 4 7 0x00000000 0.000000 0.000000 -1.500000 0.000000 180.000000 2 1 5 6 0x00000000 0.000000 0.000000 -1.500000 0.000000 180.000000 0 3 7 4 0x00000000 0.000000 0.000000 -1.500000 0.000000 180.000000 3 2 6 7 0x00000000 0.000000 0.000000 -1.500000 0.000000 180.000000 1 0 4 5 0x00000000 brush vertices 1680.000000 -800.000000 -752.000000 1696.000000 -800.000000 -752.000000 1696.000000 -800.000000 -768.000000 1680.000000 -800.000000 -768.000000 1680.000000 -912.000000 -752.000000 1696.000000 -912.000000 -752.000000 1696.000000 -912.000000 -768.000000 1680.000000 -912.000000 -768.000000 faces 0.000000 0.000000 -1.500000 0.000000 180.000000 0 1 2 3 0x00000000 0.000000 0.000000 -1.500000 0.000000 180.000000 6 5 4 7 0x00000000 0.000000 0.000000 -1.500000 0.000000 180.000000 2 1 5 6 0x00000000 0.000000 0.000000 -1.500000 0.000000 180.000000 0 3 7 4 0x00000000 0.000000 0.000000 -1.500000 0.000000 180.000000 3 2 6 7 0x00000000 0.000000 0.000000 -1.500000 0.000000 180.000000 1 0 4 5 0x00000000 brush vertices 1632.000000 -800.000000 -752.000000 1648.000000 -800.000000 -752.000000 1648.000000 -800.000000 -768.000000 1632.000000 -800.000000 -768.000000 1632.000000 -912.000000 -752.000000 1648.000000 -912.000000 -752.000000 1648.000000 -912.000000 -768.000000 1632.000000 -912.000000 -768.000000 faces 0.000000 0.000000 -1.500000 0.000000 180.000000 0 1 2 3 0x00000000 0.000000 0.000000 -1.500000 0.000000 180.000000 6 5 4 7 0x00000000 0.000000 0.000000 -1.500000 0.000000 180.000000 2 1 5 6 0x00000000 0.000000 0.000000 -1.500000 0.000000 180.000000 0 3 7 4 0x00000000 0.000000 0.000000 -1.500000 0.000000 180.000000 3 2 6 7 0x00000000 0.000000 0.000000 -1.500000 0.000000 180.000000 1 0 4 5 0x00000000 brush vertices 1648.000000 -896.000000 -752.000000 1680.000000 -896.000000 -752.000000 1680.000000 -896.000000 -768.000000 1648.000000 -896.000000 -768.000000 1648.000000 -912.000000 -752.000000 1680.000000 -912.000000 -752.000000 1680.000000 -912.000000 -768.000000 1648.000000 -912.000000 -768.000000 faces 0.000000 0.000000 -1.500000 0.000000 180.000000 0 1 2 3 0x00000000 0.000000 0.000000 -1.500000 0.000000 180.000000 6 5 4 7 0x00000000 0.000000 0.000000 -1.500000 0.000000 180.000000 2 1 5 6 0x00000000 0.000000 0.000000 -1.500000 0.000000 180.000000 0 3 7 4 0x00000000 0.000000 0.000000 -1.500000 0.000000 180.000000 3 2 6 7 0x00000000 0.000000 0.000000 -1.500000 0.000000 180.000000 1 0 4 5 0x00000000 brush vertices 1648.000000 -800.000000 -752.000000 1680.000000 -800.000000 -752.000000 1680.000000 -800.000000 -768.000000 1648.000000 -800.000000 -768.000000 1648.000000 -816.000000 -752.000000 1680.000000 -816.000000 -752.000000 1680.000000 -816.000000 -768.000000 1648.000000 -816.000000 -768.000000 faces 0.000000 0.000000 -1.500000 0.000000 180.000000 0 1 2 3 0x00000000 0.000000 0.000000 -1.500000 0.000000 180.000000 6 5 4 7 0x00000000 0.000000 0.000000 -1.500000 0.000000 180.000000 2 1 5 6 0x00000000 0.000000 0.000000 -1.500000 0.000000 180.000000 0 3 7 4 0x00000000 0.000000 0.000000 -1.500000 0.000000 180.000000 3 2 6 7 0x00000000 0.000000 0.000000 -1.500000 0.000000 180.000000 1 0 4 5 0x00000000 brush vertices 1600.000000 -800.000000 -752.000000 1616.000000 -800.000000 -752.000000 1616.000000 -800.000000 -768.000000 1600.000000 -800.000000 -768.000000 1600.000000 -912.000000 -752.000000 1616.000000 -912.000000 -752.000000 1616.000000 -912.000000 -768.000000 1600.000000 -912.000000 -768.000000 faces 0.000000 0.000000 -1.500000 0.000000 180.000000 0 1 2 3 0x00000000 0.000000 0.000000 -1.500000 0.000000 180.000000 6 5 4 7 0x00000000 0.000000 0.000000 -1.500000 0.000000 180.000000 2 1 5 6 0x00000000 0.000000 0.000000 -1.500000 0.000000 180.000000 0 3 7 4 0x00000000 0.000000 0.000000 -1.500000 0.000000 180.000000 3 2 6 7 0x00000000 0.000000 0.000000 -1.500000 0.000000 180.000000 1 0 4 5 0x00000000 brush vertices 1552.000000 -800.000000 -752.000000 1568.000000 -800.000000 -752.000000 1568.000000 -800.000000 -768.000000 1552.000000 -800.000000 -768.000000 1552.000000 -864.000000 -752.000000 1568.000000 -864.000000 -752.000000 1568.000000 -864.000000 -768.000000 1552.000000 -864.000000 -768.000000 faces 0.000000 0.000000 -1.500000 0.000000 180.000000 0 1 2 3 0x00000000 0.000000 0.000000 -1.500000 0.000000 180.000000 6 5 4 7 0x00000000 0.000000 0.000000 -1.500000 0.000000 180.000000 2 1 5 6 0x00000000 0.000000 0.000000 -1.500000 0.000000 180.000000 0 3 7 4 0x00000000 0.000000 0.000000 -1.500000 0.000000 180.000000 3 2 6 7 0x00000000 0.000000 0.000000 -1.500000 0.000000 180.000000 1 0 4 5 0x00000000 brush vertices 1568.000000 -800.000000 -752.000000 1600.000000 -800.000000 -752.000000 1600.000000 -800.000000 -768.000000 1568.000000 -800.000000 -768.000000 1568.000000 -816.000000 -752.000000 1600.000000 -816.000000 -752.000000 1600.000000 -816.000000 -768.000000 1568.000000 -816.000000 -768.000000 faces 0.000000 0.000000 -1.500000 0.000000 180.000000 0 1 2 3 0x00000000 0.000000 0.000000 -1.500000 0.000000 180.000000 6 5 4 7 0x00000000 0.000000 0.000000 -1.500000 0.000000 180.000000 2 1 5 6 0x00000000 0.000000 0.000000 -1.500000 0.000000 180.000000 0 3 7 4 0x00000000 0.000000 0.000000 -1.500000 0.000000 180.000000 3 2 6 7 0x00000000 0.000000 0.000000 -1.500000 0.000000 180.000000 1 0 4 5 0x00000000 brush vertices 1568.000000 -848.000000 -752.000000 1600.000000 -848.000000 -752.000000 1600.000000 -848.000000 -768.000000 1568.000000 -848.000000 -768.000000 1568.000000 -864.000000 -752.000000 1600.000000 -864.000000 -752.000000 1600.000000 -864.000000 -768.000000 1568.000000 -864.000000 -768.000000 faces 0.000000 0.000000 -1.500000 0.000000 180.000000 0 1 2 3 0x00000000 0.000000 0.000000 -1.500000 0.000000 180.000000 6 5 4 7 0x00000000 0.000000 0.000000 -1.500000 0.000000 180.000000 2 1 5 6 0x00000000 0.000000 0.000000 -1.500000 0.000000 180.000000 0 3 7 4 0x00000000 0.000000 0.000000 -1.500000 0.000000 180.000000 3 2 6 7 0x00000000 0.000000 0.000000 -1.500000 0.000000 180.000000 1 0 4 5 0x00000000 brush vertices 1520.000000 -800.000000 -752.000000 1536.000000 -800.000000 -752.000000 1536.000000 -800.000000 -768.000000 1520.000000 -800.000000 -768.000000 1520.000000 -912.000000 -752.000000 1536.000000 -912.000000 -752.000000 1536.000000 -912.000000 -768.000000 1520.000000 -912.000000 -768.000000 faces 0.000000 0.000000 -1.500000 0.000000 180.000000 0 1 2 3 0x00000000 0.000000 0.000000 -1.500000 0.000000 180.000000 6 5 4 7 0x00000000 0.000000 0.000000 -1.500000 0.000000 180.000000 2 1 5 6 0x00000000 0.000000 0.000000 -1.500000 0.000000 180.000000 0 3 7 4 0x00000000 0.000000 0.000000 -1.500000 0.000000 180.000000 3 2 6 7 0x00000000 0.000000 0.000000 -1.500000 0.000000 180.000000 1 0 4 5 0x00000000 brush vertices 1472.000000 -800.000000 -752.000000 1520.000000 -800.000000 -752.000000 1520.000000 -800.000000 -768.000000 1472.000000 -800.000000 -768.000000 1472.000000 -816.000000 -752.000000 1520.000000 -816.000000 -752.000000 1520.000000 -816.000000 -768.000000 1472.000000 -816.000000 -768.000000 faces 0.000000 0.000000 -1.500000 0.000000 180.000000 0 1 2 3 0x00000000 0.000000 0.000000 -1.500000 0.000000 180.000000 6 5 4 7 0x00000000 0.000000 0.000000 -1.500000 0.000000 180.000000 2 1 5 6 0x00000000 0.000000 0.000000 -1.500000 0.000000 180.000000 0 3 7 4 0x00000000 0.000000 0.000000 -1.500000 0.000000 180.000000 3 2 6 7 0x00000000 0.000000 0.000000 -1.500000 0.000000 180.000000 1 0 4 5 0x00000000 brush vertices 1472.000000 -848.000000 -752.000000 1520.000000 -848.000000 -752.000000 1520.000000 -848.000000 -768.000000 1472.000000 -848.000000 -768.000000 1472.000000 -864.000000 -752.000000 1520.000000 -864.000000 -752.000000 1520.000000 -864.000000 -768.000000 1472.000000 -864.000000 -768.000000 faces 0.000000 0.000000 -1.500000 0.000000 180.000000 0 1 2 3 0x00000000 0.000000 0.000000 -1.500000 0.000000 180.000000 6 5 4 7 0x00000000 0.000000 0.000000 -1.500000 0.000000 180.000000 2 1 5 6 0x00000000 0.000000 0.000000 -1.500000 0.000000 180.000000 0 3 7 4 0x00000000 0.000000 0.000000 -1.500000 0.000000 180.000000 3 2 6 7 0x00000000 0.000000 0.000000 -1.500000 0.000000 180.000000 1 0 4 5 0x00000000 brush vertices 1472.000000 -896.000000 -752.000000 1520.000000 -896.000000 -752.000000 1520.000000 -896.000000 -768.000000 1472.000000 -896.000000 -768.000000 1472.000000 -912.000000 -752.000000 1520.000000 -912.000000 -752.000000 1520.000000 -912.000000 -768.000000 1472.000000 -912.000000 -768.000000 faces 0.000000 0.000000 -1.500000 0.000000 180.000000 0 1 2 3 0x00000000 0.000000 0.000000 -1.500000 0.000000 180.000000 6 5 4 7 0x00000000 0.000000 0.000000 -1.500000 0.000000 180.000000 2 1 5 6 0x00000000 0.000000 0.000000 -1.500000 0.000000 180.000000 0 3 7 4 0x00000000 0.000000 0.000000 -1.500000 0.000000 180.000000 3 2 6 7 0x00000000 0.000000 0.000000 -1.500000 0.000000 180.000000 1 0 4 5 0x00000000 brush vertices 1440.000000 -800.000000 -752.000000 1456.000000 -800.000000 -752.000000 1456.000000 -800.000000 -768.000000 1440.000000 -800.000000 -768.000000 1440.000000 -912.000000 -752.000000 1456.000000 -912.000000 -752.000000 1456.000000 -912.000000 -768.000000 1440.000000 -912.000000 -768.000000 faces 0.000000 0.000000 -1.500000 0.000000 180.000000 0 1 2 3 0x00000000 0.000000 0.000000 -1.500000 0.000000 180.000000 6 5 4 7 0x00000000 0.000000 0.000000 -1.500000 0.000000 180.000000 2 1 5 6 0x00000000 0.000000 0.000000 -1.500000 0.000000 180.000000 0 3 7 4 0x00000000 0.000000 0.000000 -1.500000 0.000000 180.000000 3 2 6 7 0x00000000 0.000000 0.000000 -1.500000 0.000000 180.000000 1 0 4 5 0x00000000 brush vertices 1392.000000 -800.000000 -752.000000 1440.000000 -800.000000 -752.000000 1440.000000 -800.000000 -768.000000 1392.000000 -800.000000 -768.000000 1392.000000 -816.000000 -752.000000 1440.000000 -816.000000 -752.000000 1440.000000 -816.000000 -768.000000 1392.000000 -816.000000 -768.000000 faces 0.000000 0.000000 -1.500000 0.000000 180.000000 0 1 2 3 0x00000000 0.000000 0.000000 -1.500000 0.000000 180.000000 6 5 4 7 0x00000000 0.000000 0.000000 -1.500000 0.000000 180.000000 2 1 5 6 0x00000000 0.000000 0.000000 -1.500000 0.000000 180.000000 0 3 7 4 0x00000000 0.000000 0.000000 -1.500000 0.000000 180.000000 3 2 6 7 0x00000000 0.000000 0.000000 -1.500000 0.000000 180.000000 1 0 4 5 0x00000000 brush vertices 1392.000000 -848.000000 -752.000000 1440.000000 -848.000000 -752.000000 1440.000000 -848.000000 -768.000000 1392.000000 -848.000000 -768.000000 1392.000000 -864.000000 -752.000000 1440.000000 -864.000000 -752.000000 1440.000000 -864.000000 -768.000000 1392.000000 -864.000000 -768.000000 faces 0.000000 0.000000 -1.500000 0.000000 180.000000 0 1 2 3 0x00000000 0.000000 0.000000 -1.500000 0.000000 180.000000 6 5 4 7 0x00000000 0.000000 0.000000 -1.500000 0.000000 180.000000 2 1 5 6 0x00000000 0.000000 0.000000 -1.500000 0.000000 180.000000 0 3 7 4 0x00000000 0.000000 0.000000 -1.500000 0.000000 180.000000 3 2 6 7 0x00000000 0.000000 0.000000 -1.500000 0.000000 180.000000 1 0 4 5 0x00000000 brush vertices 1360.000000 -800.000000 -752.000000 1376.000000 -800.000000 -752.000000 1376.000000 -800.000000 -768.000000 1360.000000 -800.000000 -768.000000 1360.000000 -912.000000 -752.000000 1376.000000 -912.000000 -752.000000 1376.000000 -912.000000 -768.000000 1360.000000 -912.000000 -768.000000 faces 0.000000 0.000000 -1.500000 0.000000 180.000000 0 1 2 3 0x00000000 0.000000 0.000000 -1.500000 0.000000 180.000000 6 5 4 7 0x00000000 0.000000 0.000000 -1.500000 0.000000 180.000000 2 1 5 6 0x00000000 0.000000 0.000000 -1.500000 0.000000 180.000000 0 3 7 4 0x00000000 0.000000 0.000000 -1.500000 0.000000 180.000000 3 2 6 7 0x00000000 0.000000 0.000000 -1.500000 0.000000 180.000000 1 0 4 5 0x00000000 brush vertices 1280.000000 -800.000000 -752.000000 1344.000000 -800.000000 -752.000000 1344.000000 -800.000000 -768.000000 1280.000000 -800.000000 -768.000000 1280.000000 -816.000000 -752.000000 1344.000000 -816.000000 -752.000000 1344.000000 -816.000000 -768.000000 1280.000000 -816.000000 -768.000000 faces 0.000000 0.000000 -1.500000 0.000000 180.000000 0 1 2 3 0x00000000 0.000000 0.000000 -1.500000 0.000000 180.000000 6 5 4 7 0x00000000 0.000000 0.000000 -1.500000 0.000000 180.000000 2 1 5 6 0x00000000 0.000000 0.000000 -1.500000 0.000000 180.000000 0 3 7 4 0x00000000 0.000000 0.000000 -1.500000 0.000000 180.000000 3 2 6 7 0x00000000 0.000000 0.000000 -1.500000 0.000000 180.000000 1 0 4 5 0x00000000 brush vertices 1328.000000 -816.000000 -752.000000 1344.000000 -816.000000 -752.000000 1344.000000 -816.000000 -768.000000 1328.000000 -816.000000 -768.000000 1328.000000 -864.000000 -752.000000 1344.000000 -864.000000 -752.000000 1344.000000 -864.000000 -768.000000 1328.000000 -864.000000 -768.000000 faces 0.000000 0.000000 -1.500000 0.000000 180.000000 0 1 2 3 0x00000000 0.000000 0.000000 -1.500000 0.000000 180.000000 6 5 4 7 0x00000000 0.000000 0.000000 -1.500000 0.000000 180.000000 2 1 5 6 0x00000000 0.000000 0.000000 -1.500000 0.000000 180.000000 0 3 7 4 0x00000000 0.000000 0.000000 -1.500000 0.000000 180.000000 3 2 6 7 0x00000000 0.000000 0.000000 -1.500000 0.000000 180.000000 1 0 4 5 0x00000000 brush vertices 1280.000000 -848.000000 -752.000000 1328.000000 -848.000000 -752.000000 1328.000000 -848.000000 -768.000000 1280.000000 -848.000000 -768.000000 1280.000000 -864.000000 -752.000000 1328.000000 -864.000000 -752.000000 1328.000000 -864.000000 -768.000000 1280.000000 -864.000000 -768.000000 faces 0.000000 0.000000 -1.500000 0.000000 180.000000 0 1 2 3 0x00000000 0.000000 0.000000 -1.500000 0.000000 180.000000 6 5 4 7 0x00000000 0.000000 0.000000 -1.500000 0.000000 180.000000 2 1 5 6 0x00000000 0.000000 0.000000 -1.500000 0.000000 180.000000 0 3 7 4 0x00000000 0.000000 0.000000 -1.500000 0.000000 180.000000 3 2 6 7 0x00000000 0.000000 0.000000 -1.500000 0.000000 180.000000 1 0 4 5 0x00000000 brush vertices 1280.000000 -864.000000 -752.000000 1296.000000 -864.000000 -752.000000 1296.000000 -864.000000 -768.000000 1280.000000 -864.000000 -768.000000 1280.000000 -912.000000 -752.000000 1296.000000 -912.000000 -752.000000 1296.000000 -912.000000 -768.000000 1280.000000 -912.000000 -768.000000 faces 0.000000 0.000000 -1.500000 0.000000 180.000000 0 1 2 3 0x00000000 0.000000 0.000000 -1.500000 0.000000 180.000000 6 5 4 7 0x00000000 0.000000 0.000000 -1.500000 0.000000 180.000000 2 1 5 6 0x00000000 0.000000 0.000000 -1.500000 0.000000 180.000000 0 3 7 4 0x00000000 0.000000 0.000000 -1.500000 0.000000 180.000000 3 2 6 7 0x00000000 0.000000 0.000000 -1.500000 0.000000 180.000000 1 0 4 5 0x00000000 brush vertices 1296.000000 -896.000000 -752.000000 1344.000000 -896.000000 -752.000000 1344.000000 -896.000000 -768.000000 1296.000000 -896.000000 -768.000000 1296.000000 -912.000000 -752.000000 1344.000000 -912.000000 -752.000000 1344.000000 -912.000000 -768.000000 1296.000000 -912.000000 -768.000000 faces 0.000000 0.000000 -1.500000 0.000000 180.000000 0 1 2 3 0x00000000 0.000000 0.000000 -1.500000 0.000000 180.000000 6 5 4 7 0x00000000 0.000000 0.000000 -1.500000 0.000000 180.000000 2 1 5 6 0x00000000 0.000000 0.000000 -1.500000 0.000000 180.000000 0 3 7 4 0x00000000 0.000000 0.000000 -1.500000 0.000000 180.000000 3 2 6 7 0x00000000 0.000000 0.000000 -1.500000 0.000000 180.000000 1 0 4 5 0x00000000 brush vertices 1248.000000 -800.000000 -752.000000 1264.000000 -800.000000 -752.000000 1264.000000 -800.000000 -768.000000 1248.000000 -800.000000 -768.000000 1248.000000 -912.000000 -752.000000 1264.000000 -912.000000 -752.000000 1264.000000 -912.000000 -768.000000 1248.000000 -912.000000 -768.000000 faces 0.000000 0.000000 -1.500000 0.000000 180.000000 0 1 2 3 0x00000000 0.000000 0.000000 -1.500000 0.000000 180.000000 6 5 4 7 0x00000000 0.000000 0.000000 -1.500000 0.000000 180.000000 2 1 5 6 0x00000000 0.000000 0.000000 -1.500000 0.000000 180.000000 0 3 7 4 0x00000000 0.000000 0.000000 -1.500000 0.000000 180.000000 3 2 6 7 0x00000000 0.000000 0.000000 -1.500000 0.000000 180.000000 1 0 4 5 0x00000000 brush vertices 1216.000000 -848.000000 -752.000000 1248.000000 -848.000000 -752.000000 1248.000000 -848.000000 -768.000000 1216.000000 -848.000000 -768.000000 1216.000000 -864.000000 -752.000000 1248.000000 -864.000000 -752.000000 1248.000000 -864.000000 -768.000000 1216.000000 -864.000000 -768.000000 faces 0.000000 0.000000 -1.500000 0.000000 180.000000 0 1 2 3 0x00000000 0.000000 0.000000 -1.500000 0.000000 180.000000 6 5 4 7 0x00000000 0.000000 0.000000 -1.500000 0.000000 180.000000 2 1 5 6 0x00000000 0.000000 0.000000 -1.500000 0.000000 180.000000 0 3 7 4 0x00000000 0.000000 0.000000 -1.500000 0.000000 180.000000 3 2 6 7 0x00000000 0.000000 0.000000 -1.500000 0.000000 180.000000 1 0 4 5 0x00000000 brush vertices 1200.000000 -800.000000 -752.000000 1216.000000 -800.000000 -752.000000 1216.000000 -800.000000 -768.000000 1200.000000 -800.000000 -768.000000 1200.000000 -912.000000 -752.000000 1216.000000 -912.000000 -752.000000 1216.000000 -912.000000 -768.000000 1200.000000 -912.000000 -768.000000 faces 0.000000 0.000000 -1.500000 0.000000 180.000000 0 1 2 3 0x00000000 0.000000 0.000000 -1.500000 0.000000 180.000000 6 5 4 7 0x00000000 0.000000 0.000000 -1.500000 0.000000 180.000000 2 1 5 6 0x00000000 0.000000 0.000000 -1.500000 0.000000 180.000000 0 3 7 4 0x00000000 0.000000 0.000000 -1.500000 0.000000 180.000000 3 2 6 7 0x00000000 0.000000 0.000000 -1.500000 0.000000 180.000000 1 0 4 5 0x00000000 entity type PlayerSpawn Vector3 position -36.000000 -584.000000 -648.000000 Bool8 teamB 0 Bool8 modeCTF 0 Bool8 modeFFA 0 Bool8 modeTDM 0 Bool8 mode1v1 0 Bool8 modeRace 0 Bool8 mode2v2 0 entity type CameraPath UInt8 posLerp 2 UInt8 angleLerp 2 entity type Effect Vector3 position 0.000000 256.000000 0.000000 String64 effectName internal/misc/reflectionprobe entity type PlayerSpawn Vector3 position 36.000000 -584.000000 1192.000000 Bool8 teamA 0
3bdba870f862149586f5b8f2c2a0786f86ff9616
449d555969bfd7befe906877abab098c6e63a0e8
/1445/CH7/EX7.12/ch7_ex_12.sce
ee0c6f9044487e53b9ac72606a78c611ebf5df6a
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
765
sce
ch7_ex_12.sce
//CHAPTER 7- SINGLE PHASE TRANSFORMER //Example 12 disp("CHAPTER 7"); disp("EXAMPLE 12"); //VARIABLE INITIALIZATION v1=400; //primary voltage in Volts f=50; //Hz Io=10; //in Amp no load current pf =0.25; //lagging N1=500; //given //SOLUTION // N1/N2=V1/V2 phi0=acos(pf); Iphi=Io*sin(phi0); disp("SOLUTION (a)"); disp(sprintf("The magnetic component of no load current is %f Amp",Iphi)); // ironLoss=v1*Io*pf; disp("SOLUTION (b)"); disp(sprintf("The iron loss on no load is %f W",ironLoss)); // //E1=4.44.f.N1.φm phiM=v1/(4.44*f*N1); disp("SOLUTION (c)"); disp(sprintf("The value of flux in the core is %f Wb",phiM)); disp(" "); // //END
a0226f9b2943d364e37fb54ccbdb0f6e3207d867
449d555969bfd7befe906877abab098c6e63a0e8
/3311/CH4/EX4.5/Ex4_5.sce
1191703efd5162178c86ffdeea8555588320d6df
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
1,029
sce
Ex4_5.sce
// chapter 4 // example 4.5 // Determine the current taken by each SCR and value of equal resistors // page-132 clear; clc; // given // V1=0.9+2.4E-4*I_T1 (voltage characteristics of SCR 1) // V2=1.0+2.3E-4*I_T2 (voltage characteristics of SCR 2) I1=500, I2=1000, I3=1500, I4=2000; // in A (total current) neta=10; // in percentage // calculate // since SCR are in parallel, therefore V1=V2 or // 0.9+2.4E-4*I_T1=1.0+2.3E-4*I_T2. Simplifying this we get // 2.4E-4*I_T1-2.3E-4*I_T2=0.1 (i) // since I_T1+I_T2=I (ii) // from (i) in (ii), we get // 2.4E-4*I_T1-2.3E-4*(I-I_T1)=0.1 or // 4.7E-4*I_T1=0.1+2.3E-4*I // simplifying for I_T1, we get // I_T1=(0.1+2.3E-4*I)/4.7E-4 for I=500:500:2000 I_T1=(0.1+2.3E-4*I)/4.7E-4; I_T2=I-I_T1; printf("\n\nFor I=%.f A,\t I_T1=%.f A \t and \t I_T2=%.f A",I,I_T1,I_T2); end // For 10 % sharing I_T1=1100 A and I_T2=900 A , therefore I_T1=1100, I_T2=900; // in A R=(0.1+2.3E-4*I-4.7E-4*I_T1)/(I_T1-I_T2); printf("\n\nThe value of equal resistors is \t R=%.3f m-ohm",R*1E3);
bafed34c66eec3506d4980284be901893c14a181
449d555969bfd7befe906877abab098c6e63a0e8
/2414/CH8/EX8.1/Ex8_1.sce
bfd1aa90ef51a59c7591cf43561b181159b2e779
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
247
sce
Ex8_1.sce
clc; close(); clear(); //page no 277 //prob no. 8.1 W=5000; //Hz fs=2*W; mprintf('(a) The minimum sampling rate is %i samples per second.\n',fs); T=1/fs; //second mprintf(' (b) Maximum interval between samples is %f seconds',T);
2d55b125918bb15a42efb48a12cff92e0068208c
449d555969bfd7befe906877abab098c6e63a0e8
/3428/CH10/EX5.10.2/Ex5_10_2.sce
5d7053a8b4fccfcc2f87f5f72e430f25e20f1451
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
420
sce
Ex5_10_2.sce
//Section-5,Example-2,Page no.-D.5 //To find the fraction of sample remains after 100 minutes of reaction. clc; t_h=50 //t_h=t_1/2(Time required for the completion of one half of the reaction) k=(0.693/t_h) //Since, k=2.303/t*log(R_0/R_t) t=(t_h)*2 //Time required for the complete reaction. R=10^((-k*t)/2.303) //R=(R_t)/(R_0) disp(R,'Required fraction of sample')
bf3652ccd9b5cd170d5e20f817e7f5ed07add022
881e0bcc7118244a24f736786ac36140acfb885e
/yeast/results/GAssist-ADI-C.yeast-1/result6s0.tst
3427e21b03f1681911c729d92ae77e1e47aae5c5
[]
no_license
woshahua/Experiment_File
3e34e5a4a622d6d260fbdf8d5ef2711712aad9bc
6a139cd3f779373799cb926ba90d978235b0de0d
refs/heads/master
2021-01-01T06:57:13.285197
2017-07-28T08:17:38
2017-07-28T08:17:38
97,557,409
0
0
null
null
null
null
UTF-8
Scilab
false
false
1,585
tst
result6s0.tst
@relation yeast-1 @attribute Mcg real [0.11, 1.0] @attribute Gvh real [0.13, 1.0] @attribute Alm real [0.21, 1.0] @attribute Mit real [0.0, 1.0] @attribute Erl real [0.5, 1.0] @attribute Pox real [0.0, 0.83] @attribute Vac real [0.0, 0.73] @attribute Nuc real [0.0, 1.0] @attribute Class {MIT, NUC, CYT, ME1, ME2, ME3, EXC, VAC, POX, ERL} @inputs Mcg, Gvh, Alm, Mit, Erl, Pox, Vac, Nuc @outputs Class CYT CYT MIT MIT NUC NUC NUC NUC CYT MIT NUC NUC NUC ME3 NUC NUC ME3 ME3 NUC CYT CYT CYT NUC NUC CYT NUC CYT CYT CYT CYT CYT MIT CYT CYT ME1 ME1 CYT CYT MIT MIT MIT ME1 POX POX CYT CYT NUC NUC ME2 ME2 ME3 ME3 CYT NUC CYT CYT CYT NUC NUC MIT NUC CYT ME3 ME3 CYT CYT NUC CYT CYT CYT NUC CYT NUC CYT CYT NUC MIT CYT NUC NUC ME3 ME3 MIT MIT MIT CYT ME3 ME3 ME2 ME3 MIT MIT ME3 CYT CYT MIT ME3 ME3 CYT CYT MIT CYT MIT CYT NUC NUC MIT CYT MIT MIT MIT CYT MIT MIT NUC NUC NUC CYT NUC NUC MIT CYT NUC NUC NUC CYT NUC MIT NUC CYT MIT CYT CYT CYT CYT CYT MIT MIT VAC CYT CYT NUC EXC ME1 NUC ME3 EXC ME1 ME2 ME1 ME2 ME1 POX CYT CYT CYT MIT MIT MIT MIT MIT CYT NUC NUC CYT MIT NUC CYT NUC CYT NUC NUC CYT NUC CYT CYT CYT CYT CYT CYT CYT CYT CYT MIT ME3 ME3 CYT CYT CYT NUC CYT CYT ME2 NUC MIT CYT CYT MIT NUC NUC NUC CYT NUC NUC ME3 ME3 CYT CYT NUC NUC NUC CYT NUC CYT ME3 ME3 ME3 ME3 EXC CYT ME3 ME3 CYT CYT CYT MIT NUC NUC CYT NUC CYT CYT CYT CYT ME1 ME1 VAC ME3 NUC NUC CYT CYT VAC NUC CYT CYT NUC NUC ME1 ME1 ME1 ME1 ME3 ME3 NUC NUC ME3 ME3 EXC ME1 ME1 ME1 ME3 ME3 NUC NUC MIT MIT NUC NUC CYT CYT MIT MIT CYT ME3 CYT CYT NUC CYT NUC CYT CYT CYT MIT MIT MIT MIT ME3 ME3 CYT CYT NUC NUC NUC CYT
47b138b063700f70e1be10ce0bd5a4b689cb5ae3
5f48beee3dc825617c83ba20a7c82c544061af65
/tests/s/109.tst
91b5e8deeeb1c823106dc6ce32eac3131286c512
[]
no_license
grenkin/compiler
bed06cd6dac49c1ca89d2723174210cd3dc8efea
30634ec46fba10333cf284399f577be7fb8e5b61
refs/heads/master
2020-06-20T12:44:17.903582
2016-11-27T03:08:20
2016-11-27T03:08:20
74,863,612
3
0
null
null
null
null
UTF-8
Scilab
false
false
41
tst
109.tst
int main(void) { int *p, *q; *p * *q; }
7197703ee0b37f4a7f8f79a3ea4533845e87e2cc
449d555969bfd7befe906877abab098c6e63a0e8
/2135/CH4/EX4.22/Exa_4_22.sce
8670035fc39e8fa5418b27d94cd565bac5f967f0
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
387
sce
Exa_4_22.sce
//Exa 4.22 clc; clear; close; format('v',7); //Given Data : Cpg=1.05;//KJ/KgK t1=400;//degree centigrade t2=360;//degree centigrade T=30+273;//K Q=Cpg*(t1-t2);//KJ/Kg deltaSsurr=Q/T;//KJ/KgK deltaSsystem=integrate('Cpg/T','T',t1+273,t2+273);//KJ/KgK deltaSuniverse=deltaSsystem+deltaSsurr;//KJ/KgK disp(deltaSuniverse,"Change in entropy of the universe in KJ/KgK : ");
cad589c0937061f691c5708fd1a733f16b3f6d52
449d555969bfd7befe906877abab098c6e63a0e8
/49/CH6/EX6.4/ex4.sce
6e4b6f240e7afd9e9d7290b6575036bb216109b6
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
1,285
sce
ex4.sce
//CHAPTER 6 _ PRESSURE AND SOUND MEASUREMENT //Caption : Design of Pressure Transducers // Example 4 // Page 338 p_max=10*10^6 //('Enter the capacity of the transducer=:') D=.05 //('Enter the diameter of diaphragm=:') R=D/2; v=0.3; // poissons ratio E=200*10^9; // We know that // y=3pR^4(1-v^2)/16t^3E // if y<t/4, the non linearity is restricted to 0.3% //So t is given by t=(3*p_max*R^4*(1-v^2)/(4*E))^(1/4) disp(t) printf('thickness comes out to be %fd m\n',t); Sr_max=(3*p_max*R^2)/(4*t^2) printf('So the max radial stress is %fd Pa\n',Sr_max) printf('The given fatigue strength is 500MPa\n' ) if Sr_max > 500*10^6 then disp("The diaphragm must be redesigned"); t1=((3*p_max*R^2)/(4*500*10^6))^(1/2); printf('The required thickness is %fd m\n',t1) else disp("The design is OK"); end // Let the voltage ratio be represented by Err Err=(820*p_max*R^2*(1-v^2))/(E*(t1^2)) printf('The voltage ratio is %fd\n', Err) // For maximum power dissipation PT=1 RT=120 Ei=2*(PT*RT)^(1/2); disp("Let the sensitivity of the transducer be represented by ss") ss=(820*R^2*(1-v^2)*Ei)/(E*t1^2) printf('sensitivity is %fd\n', ss) // Part c S_LVDT=(ss*16*t^3*E)/(3*R^4*(1-v^2)*Ei) printf('SENSITIVITY OF LVDT IS %fd \n',S_LVDT)
48548958422c4c1feace41ddda4d9e95e7ab95b3
449d555969bfd7befe906877abab098c6e63a0e8
/2510/CH17/EX17.6/Ex17_6.sce
1ff551c5acd46409a337f07d9d5b0be791790bad
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
796
sce
Ex17_6.sce
//Variable declaration: w = 0.2/100.0 //Width of fin (m) t = 0.2/100.0 //Thickness of fin (m) L = 1.0/100.0 //Length of fin (m) h = 16.0 //Heat transfer coefficient (W/m^2.K) k = 400.0 //Thermal conductivity of fin (W/m.K) Tc = 100.0 //Circuit temperature ( C) Ta = 25.0 //Air temperature ( C) //Calculation: P = 4*w //Fin cross-section parameter (m) Ac = w*t //Cross-sectional area of fin (m^2) Lc = L+Ac/P //Corrected height of fin (m) m = sqrt((h*P)/(k*Ac)) //Location of minimum temperature (m^-1) Q = (sqrt(h*P*k*Ac))*(Tc-Ta)*atan(h)*(m*Lc) //Heat transfer from each micro-fin (W) //Result: printf("The heat transfer from each micro-fin is : %.2f W .",Q)
079f8c467f3e0c031ab3889dcd7f3b8ab0fdb8fd
449d555969bfd7befe906877abab098c6e63a0e8
/1118/CH6/EX6.4/eg6_4.sce
6c5704b0d83fae2ae1f80c9bc2e1a9a0261d4e78
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
419
sce
eg6_4.sce
clear; clc; wc=.594; a=64.5; t=9.53; d=3*3.45; sag=3.96; p=40; E=12700; l=160; alpha=1.7*10^(-5); wi=(%pi)*t*(t+d)*913.5*10^(-6); wh=(d+2*t)*p*10^(-3); wr=sqrt((wc+wi)^2 + wh^2); w1=wr; T1=w1*l*l/(sag*8); w2=wc; t1=-5.5; T2=wc*T1/w1; //by using the formula t2^2(t2-K+b)=w2^2*l*l*e*a/24 t2=t1+(T1-T2)/(alpha*E*a); printf("The temperature at which the sag will remain the same:%.2f degC",t2);
e8adcdd4d21c4c00e18be94b933ad43ebaff8b4d
0225f07f11230da9818e159324b578abd0a88cec
/Webasto X250_3/Webasto X250_3.tst
d1f9f2b5697cbd670c52e758b7149992c964893c
[]
no_license
zzzmarikzzz/eagle
a57ac554d1bea0f07d6d9c3a9494dd59a73beb3a
13374a4fcb5c181b1047f207df8618054ec5ee2a
refs/heads/master
2021-01-18T15:09:34.371046
2020-06-21T20:29:00
2020-06-21T20:29:00
54,958,216
0
0
null
null
null
null
UTF-8
Scilab
false
false
18,129
tst
Webasto X250_3.tst
G75* %MOIN*% %OFA0B0*% %FSLAX25Y25*% %IPPOS*% %LPD*% %AMOC8* 5,1,8,0,0,1.08239X$1,22.5* % %ADD10C,0.01600*% %ADD11C,0.00000*% %ADD12C,0.08800*% %ADD13R,0.09068X0.06706*% %ADD14R,0.06706X0.09068*% %ADD15C,0.15200*% %ADD16R,0.03950X0.04343*% %ADD17R,0.09461X0.03162*% %ADD18R,0.04737X0.05131*% D10* X0002859Y0002438D02* X0109109Y0002438D01* X0109109Y0076188D01* X0002859Y0076188D01* X0002859Y0002438D01* D11* X0006359Y0009938D02* X0006361Y0010064D01* X0006367Y0010190D01* X0006377Y0010316D01* X0006391Y0010442D01* X0006409Y0010567D01* X0006431Y0010691D01* X0006456Y0010815D01* X0006486Y0010938D01* X0006519Y0011059D01* X0006557Y0011180D01* X0006598Y0011299D01* X0006643Y0011418D01* X0006691Y0011534D01* X0006743Y0011649D01* X0006799Y0011762D01* X0006859Y0011874D01* X0006922Y0011983D01* X0006988Y0012091D01* X0007057Y0012196D01* X0007130Y0012299D01* X0007207Y0012400D01* X0007286Y0012498D01* X0007368Y0012594D01* X0007454Y0012687D01* X0007542Y0012778D01* X0007633Y0012865D01* X0007727Y0012950D01* X0007823Y0013031D01* X0007922Y0013110D01* X0008023Y0013185D01* X0008127Y0013257D01* X0008233Y0013326D01* X0008341Y0013392D01* X0008451Y0013454D01* X0008563Y0013512D01* X0008676Y0013567D01* X0008792Y0013618D01* X0008909Y0013666D01* X0009027Y0013710D01* X0009147Y0013750D01* X0009268Y0013786D01* X0009390Y0013819D01* X0009513Y0013848D01* X0009637Y0013872D01* X0009761Y0013893D01* X0009886Y0013910D01* X0010012Y0013923D01* X0010138Y0013932D01* X0010264Y0013937D01* X0010391Y0013938D01* X0010517Y0013935D01* X0010643Y0013928D01* X0010769Y0013917D01* X0010894Y0013902D01* X0011019Y0013883D01* X0011143Y0013860D01* X0011267Y0013834D01* X0011389Y0013803D01* X0011511Y0013769D01* X0011631Y0013730D01* X0011750Y0013688D01* X0011868Y0013643D01* X0011984Y0013593D01* X0012099Y0013540D01* X0012211Y0013483D01* X0012322Y0013423D01* X0012431Y0013359D01* X0012538Y0013292D01* X0012643Y0013222D01* X0012746Y0013148D01* X0012846Y0013071D01* X0012944Y0012991D01* X0013039Y0012908D01* X0013131Y0012822D01* X0013221Y0012733D01* X0013308Y0012641D01* X0013391Y0012547D01* X0013472Y0012450D01* X0013550Y0012350D01* X0013625Y0012248D01* X0013696Y0012144D01* X0013764Y0012037D01* X0013828Y0011929D01* X0013889Y0011818D01* X0013947Y0011706D01* X0014001Y0011592D01* X0014051Y0011476D01* X0014098Y0011359D01* X0014141Y0011240D01* X0014180Y0011120D01* X0014216Y0010999D01* X0014247Y0010876D01* X0014275Y0010753D01* X0014299Y0010629D01* X0014319Y0010504D01* X0014335Y0010379D01* X0014347Y0010253D01* X0014355Y0010127D01* X0014359Y0010001D01* X0014359Y0009875D01* X0014355Y0009749D01* X0014347Y0009623D01* X0014335Y0009497D01* X0014319Y0009372D01* X0014299Y0009247D01* X0014275Y0009123D01* X0014247Y0009000D01* X0014216Y0008877D01* X0014180Y0008756D01* X0014141Y0008636D01* X0014098Y0008517D01* X0014051Y0008400D01* X0014001Y0008284D01* X0013947Y0008170D01* X0013889Y0008058D01* X0013828Y0007947D01* X0013764Y0007839D01* X0013696Y0007732D01* X0013625Y0007628D01* X0013550Y0007526D01* X0013472Y0007426D01* X0013391Y0007329D01* X0013308Y0007235D01* X0013221Y0007143D01* X0013131Y0007054D01* X0013039Y0006968D01* X0012944Y0006885D01* X0012846Y0006805D01* X0012746Y0006728D01* X0012643Y0006654D01* X0012538Y0006584D01* X0012431Y0006517D01* X0012322Y0006453D01* X0012211Y0006393D01* X0012099Y0006336D01* X0011984Y0006283D01* X0011868Y0006233D01* X0011750Y0006188D01* X0011631Y0006146D01* X0011511Y0006107D01* X0011389Y0006073D01* X0011267Y0006042D01* X0011143Y0006016D01* X0011019Y0005993D01* X0010894Y0005974D01* X0010769Y0005959D01* X0010643Y0005948D01* X0010517Y0005941D01* X0010391Y0005938D01* X0010264Y0005939D01* X0010138Y0005944D01* X0010012Y0005953D01* X0009886Y0005966D01* X0009761Y0005983D01* X0009637Y0006004D01* X0009513Y0006028D01* X0009390Y0006057D01* X0009268Y0006090D01* X0009147Y0006126D01* X0009027Y0006166D01* X0008909Y0006210D01* X0008792Y0006258D01* X0008676Y0006309D01* X0008563Y0006364D01* X0008451Y0006422D01* X0008341Y0006484D01* X0008233Y0006550D01* X0008127Y0006619D01* X0008023Y0006691D01* X0007922Y0006766D01* X0007823Y0006845D01* X0007727Y0006926D01* X0007633Y0007011D01* X0007542Y0007098D01* X0007454Y0007189D01* X0007368Y0007282D01* X0007286Y0007378D01* X0007207Y0007476D01* X0007130Y0007577D01* X0007057Y0007680D01* X0006988Y0007785D01* X0006922Y0007893D01* X0006859Y0008002D01* X0006799Y0008114D01* X0006743Y0008227D01* X0006691Y0008342D01* X0006643Y0008458D01* X0006598Y0008577D01* X0006557Y0008696D01* X0006519Y0008817D01* X0006486Y0008938D01* X0006456Y0009061D01* X0006431Y0009185D01* X0006409Y0009309D01* X0006391Y0009434D01* X0006377Y0009560D01* X0006367Y0009686D01* X0006361Y0009812D01* X0006359Y0009938D01* X0006359Y0068688D02* X0006361Y0068814D01* X0006367Y0068940D01* X0006377Y0069066D01* X0006391Y0069192D01* X0006409Y0069317D01* X0006431Y0069441D01* X0006456Y0069565D01* X0006486Y0069688D01* X0006519Y0069809D01* X0006557Y0069930D01* X0006598Y0070049D01* X0006643Y0070168D01* X0006691Y0070284D01* X0006743Y0070399D01* X0006799Y0070512D01* X0006859Y0070624D01* X0006922Y0070733D01* X0006988Y0070841D01* X0007057Y0070946D01* X0007130Y0071049D01* X0007207Y0071150D01* X0007286Y0071248D01* X0007368Y0071344D01* X0007454Y0071437D01* X0007542Y0071528D01* X0007633Y0071615D01* X0007727Y0071700D01* X0007823Y0071781D01* X0007922Y0071860D01* X0008023Y0071935D01* X0008127Y0072007D01* X0008233Y0072076D01* X0008341Y0072142D01* X0008451Y0072204D01* X0008563Y0072262D01* X0008676Y0072317D01* X0008792Y0072368D01* X0008909Y0072416D01* X0009027Y0072460D01* X0009147Y0072500D01* X0009268Y0072536D01* X0009390Y0072569D01* X0009513Y0072598D01* X0009637Y0072622D01* X0009761Y0072643D01* X0009886Y0072660D01* X0010012Y0072673D01* X0010138Y0072682D01* X0010264Y0072687D01* X0010391Y0072688D01* X0010517Y0072685D01* X0010643Y0072678D01* X0010769Y0072667D01* X0010894Y0072652D01* X0011019Y0072633D01* X0011143Y0072610D01* X0011267Y0072584D01* X0011389Y0072553D01* X0011511Y0072519D01* X0011631Y0072480D01* X0011750Y0072438D01* X0011868Y0072393D01* X0011984Y0072343D01* X0012099Y0072290D01* X0012211Y0072233D01* X0012322Y0072173D01* X0012431Y0072109D01* X0012538Y0072042D01* X0012643Y0071972D01* X0012746Y0071898D01* X0012846Y0071821D01* X0012944Y0071741D01* X0013039Y0071658D01* X0013131Y0071572D01* X0013221Y0071483D01* X0013308Y0071391D01* X0013391Y0071297D01* X0013472Y0071200D01* X0013550Y0071100D01* X0013625Y0070998D01* X0013696Y0070894D01* X0013764Y0070787D01* X0013828Y0070679D01* X0013889Y0070568D01* X0013947Y0070456D01* X0014001Y0070342D01* X0014051Y0070226D01* X0014098Y0070109D01* X0014141Y0069990D01* X0014180Y0069870D01* X0014216Y0069749D01* X0014247Y0069626D01* X0014275Y0069503D01* X0014299Y0069379D01* X0014319Y0069254D01* X0014335Y0069129D01* X0014347Y0069003D01* X0014355Y0068877D01* X0014359Y0068751D01* X0014359Y0068625D01* X0014355Y0068499D01* X0014347Y0068373D01* X0014335Y0068247D01* X0014319Y0068122D01* X0014299Y0067997D01* X0014275Y0067873D01* X0014247Y0067750D01* X0014216Y0067627D01* X0014180Y0067506D01* X0014141Y0067386D01* X0014098Y0067267D01* X0014051Y0067150D01* X0014001Y0067034D01* X0013947Y0066920D01* X0013889Y0066808D01* X0013828Y0066697D01* X0013764Y0066589D01* X0013696Y0066482D01* X0013625Y0066378D01* X0013550Y0066276D01* X0013472Y0066176D01* X0013391Y0066079D01* X0013308Y0065985D01* X0013221Y0065893D01* X0013131Y0065804D01* X0013039Y0065718D01* X0012944Y0065635D01* X0012846Y0065555D01* X0012746Y0065478D01* X0012643Y0065404D01* X0012538Y0065334D01* X0012431Y0065267D01* X0012322Y0065203D01* X0012211Y0065143D01* X0012099Y0065086D01* X0011984Y0065033D01* X0011868Y0064983D01* X0011750Y0064938D01* X0011631Y0064896D01* X0011511Y0064857D01* X0011389Y0064823D01* X0011267Y0064792D01* X0011143Y0064766D01* X0011019Y0064743D01* X0010894Y0064724D01* X0010769Y0064709D01* X0010643Y0064698D01* X0010517Y0064691D01* X0010391Y0064688D01* X0010264Y0064689D01* X0010138Y0064694D01* X0010012Y0064703D01* X0009886Y0064716D01* X0009761Y0064733D01* X0009637Y0064754D01* X0009513Y0064778D01* X0009390Y0064807D01* X0009268Y0064840D01* X0009147Y0064876D01* X0009027Y0064916D01* X0008909Y0064960D01* X0008792Y0065008D01* X0008676Y0065059D01* X0008563Y0065114D01* X0008451Y0065172D01* X0008341Y0065234D01* X0008233Y0065300D01* X0008127Y0065369D01* X0008023Y0065441D01* X0007922Y0065516D01* X0007823Y0065595D01* X0007727Y0065676D01* X0007633Y0065761D01* X0007542Y0065848D01* X0007454Y0065939D01* X0007368Y0066032D01* X0007286Y0066128D01* X0007207Y0066226D01* X0007130Y0066327D01* X0007057Y0066430D01* X0006988Y0066535D01* X0006922Y0066643D01* X0006859Y0066752D01* X0006799Y0066864D01* X0006743Y0066977D01* X0006691Y0067092D01* X0006643Y0067208D01* X0006598Y0067327D01* X0006557Y0067446D01* X0006519Y0067567D01* X0006486Y0067688D01* X0006456Y0067811D01* X0006431Y0067935D01* X0006409Y0068059D01* X0006391Y0068184D01* X0006377Y0068310D01* X0006367Y0068436D01* X0006361Y0068562D01* X0006359Y0068688D01* X0097609Y0068688D02* X0097611Y0068814D01* X0097617Y0068940D01* X0097627Y0069066D01* X0097641Y0069192D01* X0097659Y0069317D01* X0097681Y0069441D01* X0097706Y0069565D01* X0097736Y0069688D01* X0097769Y0069809D01* X0097807Y0069930D01* X0097848Y0070049D01* X0097893Y0070168D01* X0097941Y0070284D01* X0097993Y0070399D01* X0098049Y0070512D01* X0098109Y0070624D01* X0098172Y0070733D01* X0098238Y0070841D01* X0098307Y0070946D01* X0098380Y0071049D01* X0098457Y0071150D01* X0098536Y0071248D01* X0098618Y0071344D01* X0098704Y0071437D01* X0098792Y0071528D01* X0098883Y0071615D01* X0098977Y0071700D01* X0099073Y0071781D01* X0099172Y0071860D01* X0099273Y0071935D01* X0099377Y0072007D01* X0099483Y0072076D01* X0099591Y0072142D01* X0099701Y0072204D01* X0099813Y0072262D01* X0099926Y0072317D01* X0100042Y0072368D01* X0100159Y0072416D01* X0100277Y0072460D01* X0100397Y0072500D01* X0100518Y0072536D01* X0100640Y0072569D01* X0100763Y0072598D01* X0100887Y0072622D01* X0101011Y0072643D01* X0101136Y0072660D01* X0101262Y0072673D01* X0101388Y0072682D01* X0101514Y0072687D01* X0101641Y0072688D01* X0101767Y0072685D01* X0101893Y0072678D01* X0102019Y0072667D01* X0102144Y0072652D01* X0102269Y0072633D01* X0102393Y0072610D01* X0102517Y0072584D01* X0102639Y0072553D01* X0102761Y0072519D01* X0102881Y0072480D01* X0103000Y0072438D01* X0103118Y0072393D01* X0103234Y0072343D01* X0103349Y0072290D01* X0103461Y0072233D01* X0103572Y0072173D01* X0103681Y0072109D01* X0103788Y0072042D01* X0103893Y0071972D01* X0103996Y0071898D01* X0104096Y0071821D01* X0104194Y0071741D01* X0104289Y0071658D01* X0104381Y0071572D01* X0104471Y0071483D01* X0104558Y0071391D01* X0104641Y0071297D01* X0104722Y0071200D01* X0104800Y0071100D01* X0104875Y0070998D01* X0104946Y0070894D01* X0105014Y0070787D01* X0105078Y0070679D01* X0105139Y0070568D01* X0105197Y0070456D01* X0105251Y0070342D01* X0105301Y0070226D01* X0105348Y0070109D01* X0105391Y0069990D01* X0105430Y0069870D01* X0105466Y0069749D01* X0105497Y0069626D01* X0105525Y0069503D01* X0105549Y0069379D01* X0105569Y0069254D01* X0105585Y0069129D01* X0105597Y0069003D01* X0105605Y0068877D01* X0105609Y0068751D01* X0105609Y0068625D01* X0105605Y0068499D01* X0105597Y0068373D01* X0105585Y0068247D01* X0105569Y0068122D01* X0105549Y0067997D01* X0105525Y0067873D01* X0105497Y0067750D01* X0105466Y0067627D01* X0105430Y0067506D01* X0105391Y0067386D01* X0105348Y0067267D01* X0105301Y0067150D01* X0105251Y0067034D01* X0105197Y0066920D01* X0105139Y0066808D01* X0105078Y0066697D01* X0105014Y0066589D01* X0104946Y0066482D01* X0104875Y0066378D01* X0104800Y0066276D01* X0104722Y0066176D01* X0104641Y0066079D01* X0104558Y0065985D01* X0104471Y0065893D01* X0104381Y0065804D01* X0104289Y0065718D01* X0104194Y0065635D01* X0104096Y0065555D01* X0103996Y0065478D01* X0103893Y0065404D01* X0103788Y0065334D01* X0103681Y0065267D01* X0103572Y0065203D01* X0103461Y0065143D01* X0103349Y0065086D01* X0103234Y0065033D01* X0103118Y0064983D01* X0103000Y0064938D01* X0102881Y0064896D01* X0102761Y0064857D01* X0102639Y0064823D01* X0102517Y0064792D01* X0102393Y0064766D01* X0102269Y0064743D01* X0102144Y0064724D01* X0102019Y0064709D01* X0101893Y0064698D01* X0101767Y0064691D01* X0101641Y0064688D01* X0101514Y0064689D01* X0101388Y0064694D01* X0101262Y0064703D01* X0101136Y0064716D01* X0101011Y0064733D01* X0100887Y0064754D01* X0100763Y0064778D01* X0100640Y0064807D01* X0100518Y0064840D01* X0100397Y0064876D01* X0100277Y0064916D01* X0100159Y0064960D01* X0100042Y0065008D01* X0099926Y0065059D01* X0099813Y0065114D01* X0099701Y0065172D01* X0099591Y0065234D01* X0099483Y0065300D01* X0099377Y0065369D01* X0099273Y0065441D01* X0099172Y0065516D01* X0099073Y0065595D01* X0098977Y0065676D01* X0098883Y0065761D01* X0098792Y0065848D01* X0098704Y0065939D01* X0098618Y0066032D01* X0098536Y0066128D01* X0098457Y0066226D01* X0098380Y0066327D01* X0098307Y0066430D01* X0098238Y0066535D01* X0098172Y0066643D01* X0098109Y0066752D01* X0098049Y0066864D01* X0097993Y0066977D01* X0097941Y0067092D01* X0097893Y0067208D01* X0097848Y0067327D01* X0097807Y0067446D01* X0097769Y0067567D01* X0097736Y0067688D01* X0097706Y0067811D01* X0097681Y0067935D01* X0097659Y0068059D01* X0097641Y0068184D01* X0097627Y0068310D01* X0097617Y0068436D01* X0097611Y0068562D01* X0097609Y0068688D01* X0097609Y0009938D02* X0097611Y0010064D01* X0097617Y0010190D01* X0097627Y0010316D01* X0097641Y0010442D01* X0097659Y0010567D01* X0097681Y0010691D01* X0097706Y0010815D01* X0097736Y0010938D01* X0097769Y0011059D01* X0097807Y0011180D01* X0097848Y0011299D01* X0097893Y0011418D01* X0097941Y0011534D01* X0097993Y0011649D01* X0098049Y0011762D01* X0098109Y0011874D01* X0098172Y0011983D01* X0098238Y0012091D01* X0098307Y0012196D01* X0098380Y0012299D01* X0098457Y0012400D01* X0098536Y0012498D01* X0098618Y0012594D01* X0098704Y0012687D01* X0098792Y0012778D01* X0098883Y0012865D01* X0098977Y0012950D01* X0099073Y0013031D01* X0099172Y0013110D01* X0099273Y0013185D01* X0099377Y0013257D01* X0099483Y0013326D01* X0099591Y0013392D01* X0099701Y0013454D01* X0099813Y0013512D01* X0099926Y0013567D01* X0100042Y0013618D01* X0100159Y0013666D01* X0100277Y0013710D01* X0100397Y0013750D01* X0100518Y0013786D01* X0100640Y0013819D01* X0100763Y0013848D01* X0100887Y0013872D01* X0101011Y0013893D01* X0101136Y0013910D01* X0101262Y0013923D01* X0101388Y0013932D01* X0101514Y0013937D01* X0101641Y0013938D01* X0101767Y0013935D01* X0101893Y0013928D01* X0102019Y0013917D01* X0102144Y0013902D01* X0102269Y0013883D01* X0102393Y0013860D01* X0102517Y0013834D01* X0102639Y0013803D01* X0102761Y0013769D01* X0102881Y0013730D01* X0103000Y0013688D01* X0103118Y0013643D01* X0103234Y0013593D01* X0103349Y0013540D01* X0103461Y0013483D01* X0103572Y0013423D01* X0103681Y0013359D01* X0103788Y0013292D01* X0103893Y0013222D01* X0103996Y0013148D01* X0104096Y0013071D01* X0104194Y0012991D01* X0104289Y0012908D01* X0104381Y0012822D01* X0104471Y0012733D01* X0104558Y0012641D01* X0104641Y0012547D01* X0104722Y0012450D01* X0104800Y0012350D01* X0104875Y0012248D01* X0104946Y0012144D01* X0105014Y0012037D01* X0105078Y0011929D01* X0105139Y0011818D01* X0105197Y0011706D01* X0105251Y0011592D01* X0105301Y0011476D01* X0105348Y0011359D01* X0105391Y0011240D01* X0105430Y0011120D01* X0105466Y0010999D01* X0105497Y0010876D01* X0105525Y0010753D01* X0105549Y0010629D01* X0105569Y0010504D01* X0105585Y0010379D01* X0105597Y0010253D01* X0105605Y0010127D01* X0105609Y0010001D01* X0105609Y0009875D01* X0105605Y0009749D01* X0105597Y0009623D01* X0105585Y0009497D01* X0105569Y0009372D01* X0105549Y0009247D01* X0105525Y0009123D01* X0105497Y0009000D01* X0105466Y0008877D01* X0105430Y0008756D01* X0105391Y0008636D01* X0105348Y0008517D01* X0105301Y0008400D01* X0105251Y0008284D01* X0105197Y0008170D01* X0105139Y0008058D01* X0105078Y0007947D01* X0105014Y0007839D01* X0104946Y0007732D01* X0104875Y0007628D01* X0104800Y0007526D01* X0104722Y0007426D01* X0104641Y0007329D01* X0104558Y0007235D01* X0104471Y0007143D01* X0104381Y0007054D01* X0104289Y0006968D01* X0104194Y0006885D01* X0104096Y0006805D01* X0103996Y0006728D01* X0103893Y0006654D01* X0103788Y0006584D01* X0103681Y0006517D01* X0103572Y0006453D01* X0103461Y0006393D01* X0103349Y0006336D01* X0103234Y0006283D01* X0103118Y0006233D01* X0103000Y0006188D01* X0102881Y0006146D01* X0102761Y0006107D01* X0102639Y0006073D01* X0102517Y0006042D01* X0102393Y0006016D01* X0102269Y0005993D01* X0102144Y0005974D01* X0102019Y0005959D01* X0101893Y0005948D01* X0101767Y0005941D01* X0101641Y0005938D01* X0101514Y0005939D01* X0101388Y0005944D01* X0101262Y0005953D01* X0101136Y0005966D01* X0101011Y0005983D01* X0100887Y0006004D01* X0100763Y0006028D01* X0100640Y0006057D01* X0100518Y0006090D01* X0100397Y0006126D01* X0100277Y0006166D01* X0100159Y0006210D01* X0100042Y0006258D01* X0099926Y0006309D01* X0099813Y0006364D01* X0099701Y0006422D01* X0099591Y0006484D01* X0099483Y0006550D01* X0099377Y0006619D01* X0099273Y0006691D01* X0099172Y0006766D01* X0099073Y0006845D01* X0098977Y0006926D01* X0098883Y0007011D01* X0098792Y0007098D01* X0098704Y0007189D01* X0098618Y0007282D01* X0098536Y0007378D01* X0098457Y0007476D01* X0098380Y0007577D01* X0098307Y0007680D01* X0098238Y0007785D01* X0098172Y0007893D01* X0098109Y0008002D01* X0098049Y0008114D01* X0097993Y0008227D01* X0097941Y0008342D01* X0097893Y0008458D01* X0097848Y0008577D01* X0097807Y0008696D01* X0097769Y0008817D01* X0097736Y0008938D01* X0097706Y0009061D01* X0097681Y0009185D01* X0097659Y0009309D01* X0097641Y0009434D01* X0097627Y0009560D01* X0097617Y0009686D01* X0097611Y0009812D01* X0097609Y0009938D01* D12* X0101609Y0009938D03* X0101609Y0068688D03* X0010359Y0068688D03* X0010359Y0009938D03* D13* X0065721Y0020301D03* X0065721Y0034474D03* D14* X0039058Y0039488D03* X0024885Y0039488D03* D15* X0013546Y0041188D03* X0013571Y0024300D03* X0039109Y0053687D03* X0056609Y0054912D03* X0072859Y0047437D03* X0084109Y0059962D03* X0096609Y0047437D03* X0021609Y0057437D03* D16* X0078869Y0030525D03* X0086349Y0030525D03* X0082609Y0038399D03* X0081584Y0018599D03* X0085324Y0010725D03* X0077844Y0010725D03* D17* X0049908Y0013000D03* X0049908Y0018000D03* X0049908Y0023000D03* X0049908Y0028000D03* X0029435Y0028000D03* X0029435Y0023000D03* X0029435Y0018000D03* X0029435Y0013000D03* D18* X0048687Y0034188D03* X0055380Y0034188D03* X0053237Y0043025D03* X0059930Y0043025D03* X0076712Y0024250D03* X0083405Y0024250D03* X0093262Y0026725D03* X0099955Y0026725D03* X0103018Y0034938D03* X0096325Y0034938D03* X0071043Y0011525D03* X0064350Y0011525D03* M02*
7bb58efd39cadae8a0995b4b026a5bf5ec318a89
449d555969bfd7befe906877abab098c6e63a0e8
/3769/CH11/EX11.9/Ex11_9.sce
6e58981f3d5a4db3882bf9dabd438cec82cc2424
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
175
sce
Ex11_9.sce
clear //Given H=4*10**3 //A/m a=60 b=0.12 //Calculation n=a/b I=H/n //Result printf("\n Current should be sent through the solenoid is %0.3f A", I)
499d92a2d9522ac5620de142254d623d206bff94
4a1effb7ec08302914dbd9c5e560c61936c1bb99
/Project 2/Experiments/FURIA-C/results/FURIA-C.vowel-10-1tra/result0s0.tst
59b4fd3eb652d50d708516ef18426baca044a4d0
[]
no_license
nickgreenquist/Intro_To_Intelligent_Systems
964cad20de7099b8e5808ddee199e3e3343cf7d5
7ad43577b3cbbc0b620740205a14c406d96a2517
refs/heads/master
2021-01-20T13:23:23.931062
2017-05-04T20:08:05
2017-05-04T20:08:05
90,484,366
0
0
null
null
null
null
UTF-8
Scilab
false
false
980
tst
result0s0.tst
@relation vowel @attribute TT integer[0,1] @attribute SpeakerNumber integer[0,14] @attribute Sex integer[0,1] @attribute F0 real[-5.211,-0.941] @attribute F1 real[-1.274,5.074] @attribute F2 real[-2.487,1.431] @attribute F3 real[-1.409,2.377] @attribute F4 real[-2.127,1.831] @attribute F5 real[-0.836,2.327] @attribute F6 real[-1.537,1.403] @attribute F7 real[-1.293,2.039] @attribute F8 real[-1.613,1.309] @attribute F9 real[-1.68,1.396] @attribute Class{0,1,2,3,4,5,6,7,8,9,10} @inputs TT,SpeakerNumber,Sex,F0,F1,F2,F3,F4,F5,F6,F7,F8,F9 @outputs Class @data 3 4 7 7 7 7 9 9 3 4 5 5 8 8 9 9 10 10 6 6 7 7 6 6 10 10 3 3 8 7 2 2 4 4 7 7 9 9 4 3 9 9 10 10 7 7 0 0 0 0 0 0 4 2 2 2 0 0 8 9 5 5 8 8 2 2 9 9 10 10 10 10 8 8 5 5 3 10 7 7 1 1 5 4 8 10 4 4 0 0 3 3 6 6 5 5 9 8 0 0 3 10 4 4 10 10 2 2 6 6 1 1 10 10 1 1 3 2 4 4 1 1 2 2 6 6 9 9 1 1 4 4 9 9 6 6 7 7 10 10 2 5 0 0 3 3 6 6 10 10 5 10 9 9 1 1 6 7 8 7 0 0 2 2 5 5 7 6 2 2 4 4 6 6 8 9 2 2 1 1 1 1 0 9 4 4 8 8 1 1 3 3 5 5 5 5 7 7
427ef5d17b587540d97d2ecee888eb5706af489f
8217f7986187902617ad1bf89cb789618a90dd0a
/source/2.3/macros/scicos/init_agenda.sci
49df814dc1fb0dca64c6795fdddba1129cd1cbfe
[ "MIT", "LicenseRef-scancode-warranty-disclaimer", "LicenseRef-scancode-public-domain" ]
permissive
clg55/Scilab-Workbench
4ebc01d2daea5026ad07fbfc53e16d4b29179502
9f8fd29c7f2a98100fa9aed8b58f6768d24a1875
refs/heads/master
2023-05-31T04:06:22.931111
2022-09-13T14:41:51
2022-09-13T14:41:51
258,270,193
0
1
null
null
null
null
UTF-8
Scilab
false
false
785
sci
init_agenda.sci
function [tevts,evtspt,pointi]=init_agenda(initexe,clkptr) // order initial firing events in chronological order. nblk=size(clkptr,1)-1 timevec=initexe(:,3) if timevec<>[] then [timevec,indtime]=sort(-timevec) initexe=initexe(indtime,:) else initexe=[] end timevec=[] //initialize agenda ninit=size(initexe,1) pointi=0 nevts=clkptr(nblk+1)-1 //time events agenda size tevts=0*ones(nevts,1) if initexe<>[] then tevts(clkptr(initexe(:,1))+initexe(:,2)-1)=initexe(:,3) end evtspt=-ones(nevts,1) if ninit>0 then pointi=clkptr(initexe(1,1))+initexe(1,2)-1; evtspt(pointi)=0 end if ninit>1 then evtspt(clkptr(initexe(1:ninit-1,1))+initexe(1:ninit-1,2)-1)=.. clkptr(initexe(2:ninit,1))+initexe(2:ninit,2)-1; evtspt(clkptr(initexe(ninit,1))+initexe(ninit,2)-1)=0; end
0544d400f4991f55b4f7e589928ef2ceff03c6a5
9b66f5243cacf0d4982b973cfea228a4e3a509a9
/gumbel.sce
5d86da34a6cee766875bf232afe0777a0ea306ba
[]
no_license
ece2lr/tp11
708f0edb7050f2b95a2ed3d8770db3ce531cca60
4af30e22bf2edb43132864e130743b5031579166
refs/heads/master
2021-09-05T10:29:04.695024
2018-01-26T12:20:31
2018-01-26T12:20:31
119,036,571
0
0
null
null
null
null
UTF-8
Scilab
false
false
828
sce
gumbel.sce
exec("histcFix.sci",-1) N = 10^6 t = grand(1,N,"exp",1) g = log(t) scf(0) clf() x = linspace(-6,2) histplot(100,g) // histogramme empirique plot(x,exp(x) .* exp(-exp(x))) // densité théorique xtitle("histogramme de la loi de Gumbel") //disp(mean(g),"moyenne empirique") //disp(stdev(g),"écart-type empirique") //mu = mean(g) ; sigma = stdev(g) //d = sqrt(1/.05) //disp([mu-d*sigma/sqrt(N),mu+d*sigma/sqrt(N)],"intervalle de confiance") //scf(1) //clf() //xtitle("évolution des moyennes empiriques") //N = 5*10^2 // longueur de simulation //for k=1:10 // t = grand(1,N,"exp",1) // g = log(t) // m = cumsum(g) ./ (1:N) // plot(m) //end // //// constante gamma d'Euler //N = 10^4 //h = sum(1./(1:N-1)) + .5/N //gamma = h - log(N) //disp(gamma,"constante gamma d''Euler") //disp(%e^%pi - %pi,"exp(pi)-pi")
3557b98755bdbb6913cf25bbf8e16a5c840c877d
449d555969bfd7befe906877abab098c6e63a0e8
/1553/CH34/EX34.2/34Ex2.sce
4c22a5a256bb88c1d5c0a5e964be1ff75de24d1b
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
201
sce
34Ex2.sce
//Chapter 34 Ex 2 clc; clear; close; d1=19; theta=(60*%pi)/180; //converted into radian d2=d1*cos(theta); mprintf("Distance of the foot of the ladder from the wall is %.1f meters",d2);
9045a728cd3378dbd5a2bd948b5075481dc77b96
449d555969bfd7befe906877abab098c6e63a0e8
/671/CH10/EX10.2/10_2.sce
598d36290c8b625d3d8f23d2f64dcb1d62ae513e
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
223
sce
10_2.sce
P=4 A=4 ra=0.145 l=0.21 Z=2*33*11 K=Z*P/2/%pi/A disp(K) Ap=2*%pi*ra/P*0.7*l Barc=0.8 flux=Ap*Barc n=1200 Ea=K*flux*2*%pi*n/60 disp(Ea) Ia=240 Ic=Ia/A disp(Ic) T=K*flux*Ia disp(T) Pg=Ea*Ia disp(Pg)
5930fb74ded10e5c91cf9fd4d86385537d9cac30
449d555969bfd7befe906877abab098c6e63a0e8
/3428/CH18/EX12.18.5/Ex12_18_5.sce
f60464063f77e2d2c42d21537d5cf12e6a8acfc2
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
279
sce
Ex12_18_5.sce
//Section-12,Example-1,Page no.-SS.39 //To calulate d_200 and d_111 in Lead. clc; a=4.95 h_1=2 k_1=0 l_1=0 h_2=1 k_2=1 l_2=1 d_200=a/(sqrt((h_1)^2 + (k_1)^2 + (l_1)^2)) disp(d_200,'In Angstrom') d_111=a/(sqrt((h_2)^2 + (k_2)^2 + (l_2)^2)) disp(d_111,'In Angstrom')
210c91cf4133527ac1fee58d057ff25af08ec7c2
449d555969bfd7befe906877abab098c6e63a0e8
/2510/CH27/EX27.7/Ex27_7.sce
e8db5cd70ac6564e200bc72de6a85fb18748e0a5
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
1,400
sce
Ex27_7.sce
//Variable declaration: i = 12/100 //Intersest rate n = 12 //Lifetime period (yr) CC = 2625000 //Capital cost ($) IC = 1575000 //Installation cost ($) //From table 27.3: Ic1 = 2000000 //Income credit for double pipe ($/yr) Ic2 = 2500000 //Income credit for Shell-and-tube ($/yr) AC1 = 1728000 //Total annual cost for double pipe ($/yr) AC2 = 2080000 //Total annual cost for Shell-and-tube ($/yr) //Calculation: CRF = i/(1-(1+i)**-n) //Capital recovery factor DPc = (CC+IC)*CRF //Annual capital and installation costs for the DP unit ($/yr) STc = (CC+IC)*CRF //Annual capital and installation costs for the ST unit ($/yr) DPp = Ic1-AC1 //Profit for the DP unit ($/yr) STp = Ic2-AC2 //Profit for the ST unit ($/yr) //Result: printf("The profit for the shell-and-tube unit is : $ %.0f /yr .",DPp) printf("The profit for the double pipe unit is : $ %.0f /yr .",STp) if (STp>DPp) then printf("A shell-and-tube heat exchanger should therefore be selected based on the above economic analysis.") else printf("A double pipe heat exchanger should therefore be selected based on the above economic analysis.") end
54203e8076bbdbcd1c7587f8ae51f61f82171fba
8217f7986187902617ad1bf89cb789618a90dd0a
/source/2.3.1/macros/metanet/cycle_basis.sci
eb563a0b9b3055a39ef6c469000bb8efda791329
[ "LicenseRef-scancode-warranty-disclaimer", "LicenseRef-scancode-public-domain", "MIT" ]
permissive
clg55/Scilab-Workbench
4ebc01d2daea5026ad07fbfc53e16d4b29179502
9f8fd29c7f2a98100fa9aed8b58f6768d24a1875
refs/heads/master
2023-05-31T04:06:22.931111
2022-09-13T14:41:51
2022-09-13T14:41:51
258,270,193
0
1
null
null
null
null
UTF-8
Scilab
false
false
1,215
sci
cycle_basis.sci
function [spc]=cycle_basis(g) [lhs,rhs]=argn(0) if rhs<>1 then error(39), end // finds a cycle basis in a simple connected undirected graph if (g('directed') == 1) then error('The graph must be undirected') end ii=is_connex(g); if (ii <> 1) then error('The graph must be connected') end n=g('node_number');m=prod(size(g('tail'))); if ( n < 3) then error('Not enough nodes in the graph to have a cycle') end nu=m-n+1; ta=g('tail');he=g('head'); spt=sparse([ta' he'],[1:m],[n n]); spt=spt+spt'; t=min_weight_tree(g); tat=ta(t);het=he(t); prev=1000000*ones(1,n); tag=[tat het];heg=[het tat]; // ta1=ta;he1=he; ta1(t)=[];he1(t)=[]; if (ta1 == []) then error('No cycle in the graph') end bac=[];dir=[]; spc=sparse([],[],[nu m]); t=[0 t]; for i=1:nu, cycle=[]; i1=ta1(i);i2=he1(i); bac=[];dir=full(spt(i1,i2)); while ((i1)<>1) iedge=t(i1); bac=[iedge bac];i1=ta(iedge)+he(iedge)-i1; end while ((i2)<>1) iedge=t(i2); dir=[iedge dir];i2=ta(iedge)+he(iedge)-i2; end itron=[];jmax=min(size(bac,2),size(dir,2)); for j=1:jmax, if(bac(j)==dir(j)), itron=[itron j];end; end; bac(itron)=[];dir(itron)=[]; cycle=[dir bac($:-1:1)]; ncy=size(cycle,2); spc(i,1:ncy)=cycle; end
2a49ab82d7ead7c46ead033b40d1d84be6c85652
6583b7f11175c40106fb7cc0037578abae125f42
/test/questions.tst
c86205a64c94d28d202088b208d62138873cfc5b
[]
no_license
FREDY1969/tampa-bay-python-avr
02f913ee8373bfab4ef88902844476080b560226
e0311815ebf81b5e1b128f621bf1f15b4fa28289
refs/heads/master
2020-04-24T17:45:03.787951
2011-10-23T17:58:09
2011-10-23T17:58:09
40,279,869
0
0
null
null
null
null
UTF-8
Scilab
false
false
10,456
tst
questions.tst
# questions.tst >>> from xml.etree import ElementTree >>> from ucc.word import questions, xml_access >>> root = ElementTree.fromstring(''' ... <questions> ... <question> ... <name>q1</name> ... <label>Q1</label> ... <type>bool</type> ... </question> ... <question> ... <name>q2</name> ... <label>Q2</label> ... <type>number</type> ... <min>0</min> ... <orderable>False</orderable> ... </question> ... <question> ... <name>q3</name> ... <label>Q3</label> ... <type>int</type> ... <min>0</min> ... <orderable>True</orderable> ... </question> ... <question> ... <name>q4</name> ... <label>Q4</label> ... <type>rational</type> ... <min>0</min> ... <max>1</max> ... </question> ... <question> ... <name>q5</name> ... <label>Q5</label> ... <type>real</type> ... <min>1</min> ... <max>infinite</max> ... <orderable>False</orderable> ... </question> ... <question> ... <name>q6</name> ... <label>Q6</label> ... <type>string</type> ... <min>1</min> ... <max>3</max> ... <orderable>True</orderable> ... </question> ... </questions> ... ''') >>> q_list = questions.from_xml(root, None) >>> q_list [<q_bool q1>, <q_number q2>, <q_int q3>, <q_rational q4>, <q_real q5>, <q_string q6>] >>> q_list[0].is_optional() False >>> q_list[0].is_repeatable() False >>> q_list[0].is_orderable() False >>> q_list[1].is_optional() False >>> q_list[1].is_repeatable() (0, None) >>> q_list[1].is_orderable() False >>> q_list[2].is_optional() False >>> q_list[2].is_repeatable() (0, None) >>> q_list[2].is_orderable() True >>> q_list[3].is_optional() True >>> q_list[3].is_repeatable() False >>> q_list[3].is_orderable() False >>> q_list[4].is_optional() False >>> q_list[4].is_repeatable() (1, None) >>> q_list[4].is_orderable() False >>> q_list[5].is_optional() False >>> q_list[5].is_repeatable() (1, 3) >>> q_list[5].is_orderable() True >>> root = ElementTree.Element('questions') >>> q_list[0].add_xml_subelement(root) >>> q_list[1].add_xml_subelement(root) >>> q_list[2].add_xml_subelement(root) >>> q_list[3].add_xml_subelement(root) >>> q_list[4].add_xml_subelement(root) >>> q_list[5].add_xml_subelement(root) >>> xml_access.indent(root) >>> print(ElementTree.tostring(root)) <questions> <question> <name>q1</name> <label>Q1</label> <type>bool</type> </question> <question> <name>q2</name> <label>Q2</label> <min>0</min> <max>infinite</max> <orderable>False</orderable> <type>number</type> </question> <question> <name>q3</name> <label>Q3</label> <min>0</min> <max>infinite</max> <orderable>True</orderable> <type>int</type> </question> <question> <name>q4</name> <label>Q4</label> <min>0</min> <max>1</max> <type>rational</type> </question> <question> <name>q5</name> <label>Q5</label> <min>1</min> <max>infinite</max> <orderable>False</orderable> <type>real</type> </question> <question> <name>q6</name> <label>Q6</label> <min>1</min> <max>3</max> <orderable>True</orderable> <type>string</type> </question> </questions> <BLANKLINE> >>> root = ElementTree.fromstring(''' ... <questions> ... <question> ... <name>q1</name> ... <label>Q1</label> ... <type>choice</type> ... <options> ... <option name="HIGH" value="1" /> ... <option name="LOW" value="0"> ... <questions> ... <question> ... <name>sure</name> ... <label>Are you sure?</label> ... <type>bool</type> ... </question> ... </questions> ... </option> ... </options> ... </question> ... <question> ... <name>q2</name> ... <label>Q2</label> ... <type>choice</type> ... <default>1</default> ... <options> ... <option name="HIGH" value="1" /> ... <option name="LOW" value="0"> ... <questions> ... <question> ... <name>sure</name> ... <label>Are you sure?</label> ... <type>bool</type> ... </question> ... </questions> ... </option> ... </options> ... </question> ... <question> ... <name>q3</name> ... <label>Q3</label> ... <type>multichoice</type> ... <options> ... <option name="HIGH" value="1" /> ... <option name="LOW" value="0"> ... <questions> ... <question> ... <name>sure</name> ... <label>Are you sure?</label> ... <type>bool</type> ... </question> ... </questions> ... </option> ... </options> ... </question> ... <question> ... <name>q4</name> ... <label>Q4</label> ... <type>multichoice</type> ... <default>1</default> ... <options> ... <option name="HIGH" value="1" /> ... <option name="LOW" value="0"> ... <questions> ... <question> ... <name>sure</name> ... <label>Are you sure?</label> ... <type>bool</type> ... </question> ... <questions> ... <name>s1</name> ... <label>S1</label> ... <min>1</min> ... <max>1</max> ... <orderable>False</orderable> ... <question> ... <name>sq1</name> ... <label>SQ1</label> ... <type>int</type> ... </question> ... <question> ... <name>sq2</name> ... <label>SQ2</label> ... <type>string</type> ... </question> ... </questions> ... </questions> ... </option> ... </options> ... </question> ... </questions> ... ''') >>> q_list = questions.from_xml(root, None) >>> q_list [<q_choice q1>, <q_choice q2>, <q_multichoice q3>, <q_multichoice q4>] >>> q_list[0].default >>> q_list[0].options [('HIGH', 1, []), ('LOW', 0, [<q_bool sure>])] >>> q_list[1].default 1 >>> q_list[1].options [('HIGH', 1, []), ('LOW', 0, [<q_bool sure>])] >>> q_list[2].default >>> q_list[2].options [('HIGH', 1, []), ('LOW', 0, [<q_bool sure>])] >>> q_list[3].default 1 >>> q_list[3].options [('HIGH', 1, []), ('LOW', 0, [<q_bool sure>, <q_series s1>])] >>> s = q_list[3].options[1][2][1] >>> s <q_series s1> >>> s.min 1 >>> s.max 1 >>> s.subquestions [<q_int sq1>, <q_string sq2>] >>> root = ElementTree.Element('questions') >>> q_list[0].add_xml_subelement(root) >>> q_list[1].add_xml_subelement(root) >>> q_list[2].add_xml_subelement(root) >>> q_list[3].add_xml_subelement(root) >>> xml_access.indent(root) >>> print(ElementTree.tostring(root)) <questions> <question> <name>q1</name> <label>Q1</label> <type>choice</type> <options> <option name="HIGH" value="1" /> <option name="LOW" value="0"> <questions> <question> <name>sure</name> <label>Are you sure?</label> <type>bool</type> </question> </questions> </option> </options> </question> <question> <name>q2</name> <label>Q2</label> <type>choice</type> <default>1</default> <options> <option name="HIGH" value="1" /> <option name="LOW" value="0"> <questions> <question> <name>sure</name> <label>Are you sure?</label> <type>bool</type> </question> </questions> </option> </options> </question> <question> <name>q3</name> <label>Q3</label> <type>multichoice</type> <options> <option name="HIGH" value="1" /> <option name="LOW" value="0"> <questions> <question> <name>sure</name> <label>Are you sure?</label> <type>bool</type> </question> </questions> </option> </options> </question> <question> <name>q4</name> <label>Q4</label> <type>multichoice</type> <default>1</default> <options> <option name="HIGH" value="1" /> <option name="LOW" value="0"> <questions> <question> <name>sure</name> <label>Are you sure?</label> <type>bool</type> </question> <questions> <name>s1</name> <label>S1</label> <min>1</min> <max>1</max> <question> <name>sq1</name> <label>SQ1</label> <type>int</type> </question> <question> <name>sq2</name> <label>SQ2</label> <type>string</type> </question> </questions> </questions> </option> </options> </question> </questions> <BLANKLINE>
a1def4d55288f32930191b3e16931ebc722fab1b
449d555969bfd7befe906877abab098c6e63a0e8
/1826/CH2/EX2.22/ex2_22.sce
c2c5553470eaef45bb87093d04dd0c8afa721d3d
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
255
sce
ex2_22.sce
// Example 2.22, page no-42 clear clc a=3.81*10^-10//m h=1 k=3 l=2 lam=0.58*10^-10 n=2 d=a/sqrt(h^2+k^2+l^2) theta=asin(n*lam/(2*d)) printf("The angle of glancing at which 2nd order diffraction pattern of NaCl occurs is %.2f°",theta*180/%pi)
a4af63de3f9b9bfd88ecb62680f8685673b92969
449d555969bfd7befe906877abab098c6e63a0e8
/3755/CH10/EX10.7/Ex10_7.sce
2192718ac94115db9553ccf7c1daa66416589a3a
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
424
sce
Ex10_7.sce
clear // // // //Variable declaration epsilon0=8.85*10^-12; //relative permeability(F/m) chi=35.4*10^-12; //electric susceptibility(coul^2/nt-m^2) //Calculations k=1+(chi/epsilon0); //dielectric constant epsilon=epsilon0*k; //permittivity(coul^2/nt-m^2) //Result printf("\n dielectric constant is %0.3f ",k) printf("\n permittivity is %0.2f *10^-12 coul^2/nt-m^2",epsilon*10^12)
9a9d602fc0325825bc114153adbb22fa160aa3a2
449d555969bfd7befe906877abab098c6e63a0e8
/323/CH5/EX5.3/ex5_3.sci
3a9fa4ae84e9960f4fc50df44f1fa038f34a3378
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
337
sci
ex5_3.sci
//Chapter 5,Ex5.3,Pg5.5 clc; //Given f=50Hz V1=240V N1=80 N2=280 A=200sq cm //V1 is approximately equal to E1 for a transformer //(i) B=240/(4.44*50*200*0.0001*80) //E1=4.44fBmAN1 printf("\n Maximum flux density Bm=%.2f Wb/m2 \n",B) //(ii) E2=(280/80)*240 //Induced Emf E2=N2/N1*E1 printf("\n Induced EMF E2=%.0f V \n",E2)
5ef6b22e62e5c6d1afc5f63df2f550a5f891ba08
132b4ac959b21691290ffeefbc31eefe24500a25
/a2/Mux8Way.tst
d2fa82b4ad2c575900093d9c669ec0a4864328e7
[]
no_license
HanlonsStraightRazor/cs310
df790b8c10b1ebb942313b4a620fd3ce655a075b
0a053116659eb65ffacb9bf410774e31b17e8fbd
refs/heads/master
2023-03-12T22:35:35.357502
2021-03-02T20:47:48
2021-03-02T20:47:48
343,901,992
0
0
null
null
null
null
UTF-8
Scilab
false
false
1,058
tst
Mux8Way.tst
load Mux8Way.hdl, output-file Mux8Way.out, compare-to Mux8Way.cmp, output-list a%B1.1.1 b%B1.1.1 c%B1.1.1 d%B1.1.1 e%B1.1.1 f%B1.1.1 g%B1.1.1 h%B1.1.1 sel%B1.3.1 out%B1.1.1; set a 1, set b 0, set c 0, set d 0, set e 0, set f 0, set g 0, set h 0, set sel 0, eval, output; set a 0, set b 1, set c 0, set d 0, set e 0, set f 0, set g 0, set h 0, set sel 1, eval, output; set a 0, set b 0, set c 1, set d 0, set e 0, set f 0, set g 0, set h 0, set sel 2, eval, output; set a 0, set b 0, set c 0, set d 1, set e 0, set f 0, set g 0, set h 0, set sel 3, eval, output; set a 0, set b 0, set c 0, set d 0, set e 1, set f 0, set g 0, set h 0, set sel 4, eval, output; set a 0, set b 0, set c 0, set d 0, set e 0, set f 1, set g 0, set h 0, set sel 5, eval, output; set a 0, set b 0, set c 0, set d 0, set e 0, set f 0, set g 1, set h 0, set sel 6, eval, output; set a 0, set b 0, set c 0, set d 0, set e 0, set f 0, set g 0, set h 1, set sel 7, eval, output;
971df96ade0241a0f1791d7a3dc0085b33a483a5
449d555969bfd7befe906877abab098c6e63a0e8
/830/CH8/EX8.3.2/Backward_Difference.sce
0f89d5bd5cc4d2958fe549887f878398b106fb0b
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
256
sce
Backward_Difference.sce
//Graphical// //Example 8.3.2 //mapping = (z-(z^-1))/T //To convert analog filter into digital filter clear; clc; close; s = poly(0,'s'); H = 1/((s+0.1)^2+9) T =1;//Sampling period T = 1 Second z = poly(0,'z'); Hz = horner(H,(1/T)*(z-(z^-1)))
d39b31953ed0654345813e34ff28023ba662cc92
6e257f133dd8984b578f3c9fd3f269eabc0750be
/ScilabFromTheoryToPractice/CreatingPlots/testsurf.sce
106c0b72a7aecb24972654ecfa9e4362b32686a7
[]
no_license
markusmorawitz77/Scilab
902ef1b9f356dd38ea2dbadc892fe50d32b44bd0
7c98963a7d80915f66a3231a2235010e879049aa
refs/heads/master
2021-01-19T23:53:52.068010
2017-04-22T12:39:21
2017-04-22T12:39:21
89,051,705
0
0
null
null
null
null
UTF-8
Scilab
false
false
341
sce
testsurf.sce
// evaluate over a grid x=[-1:0.2:1];y=x;[X,Y]=meshgrid(x,y); Z=X.^2-Y.^2; // compute a color (0,1,...,10) for each facet C=round(5*(1+X)); // display the surface clf; subplot(221) surf(Z) xtitle('surf(z)') subplot(222) surf(Z,C) xtitle('surf(z,C)') subplot(223) surf(x,y,Z,C) xtitle('surf(x,y,z,C)') subplot(224) mesh(Z) xtitle('mesh(z)')
86bd14cfc4597f95a459ffd7d71293bd2622935c
4246cbb6bfbd96e60074b607df96d71e7b4ee070
/opp6code/nocopy.tst
d481ac9a624143ad3d3ba2e680c1546a00c07328
[]
no_license
thangduong3010/PL-SQL
bc0fa5c3400e46acc0ab63156573590935607b5d
1415772c87750bd30625eacf2bd116fb7e0c0aae
refs/heads/master
2020-05-22T06:57:54.352234
2016-12-26T04:47:27
2016-12-26T04:47:27
39,061,697
1
3
null
null
null
null
UTF-8
Scilab
false
false
1,782
tst
nocopy.tst
SET SERVEROUTPUT ON CREATE OR REPLACE PACKAGE nocopy_test IS TYPE number_varray IS VARRAY (10) OF NUMBER; PROCEDURE pass_by_value ( nums IN OUT number_varray ); PROCEDURE pass_by_ref ( nums IN OUT NOCOPY number_varray ); END; / CREATE OR REPLACE PACKAGE BODY nocopy_test IS PROCEDURE pass_by_value ( nums IN OUT number_varray ) IS BEGIN FOR indx IN nums.FIRST .. nums.LAST LOOP nums (indx) := nums (indx) * 2; IF indx > 2 THEN RAISE VALUE_ERROR; END IF; END LOOP; END; PROCEDURE pass_by_ref ( nums IN OUT NOCOPY number_varray ) IS BEGIN FOR indx IN nums.FIRST .. nums.LAST LOOP nums (indx) := nums (indx) * 2; IF indx > 2 THEN RAISE VALUE_ERROR; END IF; END LOOP; END; END; / DECLARE nums1 nocopy_test.number_varray := nocopy_test.number_varray (1, 2, 3, 4, 5); nums2 nocopy_test.number_varray := nocopy_test.number_varray (1, 2, 3, 4, 5); PROCEDURE shownums ( str IN VARCHAR2 , nums IN nocopy_test.number_varray ) IS BEGIN DBMS_OUTPUT.put_line (str); FOR indx IN nums.FIRST .. nums.LAST LOOP DBMS_OUTPUT.put (nums (indx) || '-'); END LOOP; DBMS_OUTPUT.new_line; END; BEGIN shownums ('Before By Value', nums1); BEGIN nocopy_test.pass_by_value (nums1); EXCEPTION WHEN OTHERS THEN shownums ('After By Value', nums1); END; shownums ('Before NOCOPY', nums2); BEGIN nocopy_test.pass_by_ref (nums2); EXCEPTION WHEN OTHERS THEN shownums ('After NOCOPY', nums2); END; END; /
9b3e4091d9a3ff3fa0c213e3bd6d60101ef0447c
449d555969bfd7befe906877abab098c6e63a0e8
/2885/CH6/EX6.11/ex6_11.sce
7933b1be4aa99623f52303f39d4a0172c393202c
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
829
sce
ex6_11.sce
//Calculate Q point in voltage divider clear; clc; //soltion //given B=100; //dc beta Rc=2*10^3;//ohm //resistor connected to collector R1=10*10^3;//ohm //voltage divider resistor 1 R2=1*10^3;//ohm //voltage divider resistor 2 Re=200;//ohm //resistor connected to emitter Vcc=10;//V //Voltage supply across the collector resistor Vbe=0.3;//V //base to emitter voltage I=Vcc/(R1+R2); //current through voltage divider Vb=I*R2; //voltage at base Ve=Vb-Vbe; Ie=Ve/Re; Ic=Ie //approaximating Ib is nearly equal to 0 Vc=Vcc-Ic*Rc; Vce=ceil(Vc)-Ve; printf("The Q point is (%.1f V, %.0f mA)",Vce,Ic*1000); Ibc=I/20; //critical value of base current Ib=Ic/B; //actual base current //Since Ib < Ibc, hence assumption is alright
3cc45a30c8e0fc67fd462927bc1bf2c558dc4625
05db16b4f57b0182fa452e2c11554c3de6fff271
/branches/vac4.52_sac_cuda/dev/vac4.52mkg_24_06_2010/scilab/startup.sci
27ec97198d17af3408aca46987ff1707b23fd03e
[]
no_license
SpungMan/smaug-all
09b4fcf6fcec2fc7be1fa85c5c7f2d68c79e504b
01df12e98c734529ff984662badc26eaa3a9138b
refs/heads/master
2021-11-29T14:09:47.094457
2018-06-08T09:48:05
2018-06-08T09:48:05
null
0
0
null
null
null
null
UTF-8
Scilab
false
false
1,648
sci
startup.sci
// Display mode mode(0); // Display warning for floating point exception ieee(1); clc exec('defaults.sci'); exec('str2arr.sci'); exec('askstr.sci'); exec('studyfile.sci'); exec('dispnum.sci'); exec('fprintnum.sci'); exec('asknum.sci'); exec('str2mat.sci'); exec('trim.sci'); //exec('read_transform_par.sci'); //exec('get_body.sci'); //exec('get_head.sci'); disp("Welcome to the MATLAB visualization for VAC"); disp("*******************************************"); disp("By Gabor Toth, October 1996"); disp("********** COMMANDS ***********"); disp("getpict read snapshots from 1 or more files"); disp("plotfunc plot functions of last data read by getpict or animate"); disp("animate read and plot sequence of pictures from 1 or more files"); disp("playmovie play the movie stored in Movie by animate"); disp("getlog read the data from a log file"); disp("polargrid transform coordinates and vector variables to polar"); disp("defaults clear data, set variables back to defaults values"); disp("********** FUNCTIONS **********"); disp("gradx(f,x) row-wise gradient of f"); disp("grady(f,y) column-wise gradient of f"); disp("********** CUTTING ************"); disp("cut=''2:9,5'' for all functions f plot f(2:9,5) only"); disp("cut='''' plot the whole function again"); disp("********** ADDING/CHANGING ****"); disp("Doask=1 for confirmation by RETURN, default is Doask=0"); disp("Put extra function definitions into Matlab/get_func.m"); disp("Change the default values in Matlab/defaults.m if you want to"); disp(" "); // !! L.25: Unknown function defaults not converted, original calling sequence used.
52f527d44386910858b2df23af6dfc5aabda87c4
449d555969bfd7befe906877abab098c6e63a0e8
/3808/CH7/EX7.11/Ex7_11.sce
025b4134fd6446c1d5f660eaa52f457ce38fdd95
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
577
sce
Ex7_11.sce
//Chapter 07: Discrete Probability clc; clear; spam_msg=2000 //no of spam messages nspam_msg=1000 //no of messages that are not spam o_msg_spam=400 //occurrence of stock in spam o_msg_nspam=60 //occurrence of stock in non spam o_msg1_spam=200 //occurrence of undervalued in spam o_msg1_nspam=25 //occurrence of undervalued in non spam threshold=0.9 p1=o_msg_spam/spam_msg q1=o_msg_nspam/nspam_msg p2=o_msg1_spam/spam_msg q2=o_msg1_nspam/nspam_msg r=(p1*p2)/(p1*p2+q1*q2) if r>threshold then disp(r,'R=') disp('Reject') end
6a493a830e410e7fca71aba2d5151d9f42a6b85b
449d555969bfd7befe906877abab098c6e63a0e8
/2741/CH10/EX10.51/ExampleA51.sce
0a799dcf385138d3879bda584874b0a5dad612b2
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
341
sce
ExampleA51.sce
clc clear //Page number 493 //Input data V1=10^-3;//One litre of monoatomic perfect gas at NTP in m^3 V2=(V1/2);//The final volume in m^3 g=1.67;//The adiabatic index //Calculations W=(1/(g-1))*((1/(V2)^(g-1))-(1/(V1)^(g-1)));//The work done on the gas in J //Output printf('The work done on the gas is %3.1f J ',W)
da4cae2c232db50fc7a70fd76bf4f3cdc99a64a7
01c58d561d53587ec3a0b2e3faa240e8cb497cf0
/branches/utils/gettingOfGraphics/viewStatistic.sce
26d8ad12b55823064123543e087bc93d2562a7d9
[]
no_license
Al-xandr1/SelfSimTraffic
072b514d35422ce9d037688c9403615c520cbed4
d525f0208e8d67e16b7d35bdc16ec1e4a2dbdee9
refs/heads/master
2020-06-03T15:25:20.244934
2014-10-07T17:29:50
2014-10-07T17:29:50
null
0
0
null
null
null
null
UTF-8
Scilab
false
false
6,823
sce
viewStatistic.sce
PATH = 'C:\Users\Alexander\University\Telecommunications\WORK_read_only\gettingOfGraphics\statistics\'; TRAFFIC_TYPE = "traffic.xml"; PROFILE_TYPE = "profile.xml"; SEPARATOR = "_"; COUNT_ELEMENT_IN_NAME = 3;//3 части в названии файла BYTESPERSEC_INDEX = 1; TRAFFIC_MEAN_INDEX = 1; TRAFFIC_VARIANCE_INDEX = 2; LIFETIME_MEAN_INDEX = 2; HURST_INDEX = 3; SOURCE_BORN_RATE_INDEX = 3; //Функция считывающая необходимые скалярные величины из файла типа *_traffic.xml function [result] = getSimplePoint_traffic(fileName) documentTraffic = xmlRead(PATH + fileName); result(1) = getNumber(documentTraffic, "BYTESPERSEC");//take element from <BYTESPERSEC> ...</> result(2) = getNumber(documentTraffic, "TRAFFIC-VARIANCE"); //take element from <TRAFFIC-VARIANCE> ...</> result(3) = getNumber(documentTraffic, "HURST");//take element from <HURST> ...</> endfunction //Функция считывающая необходимые скалярные величины из файла типа *_profile.xml function [result] = getSimplePoint_profile(fileName) documentProfile = xmlRead(PATH + fileName); result(1) = getNumber(documentProfile, "TRAFFIC-MEAN");//take element from <TRAFFIC-MEAN> ...</> //эта величина в псевдопакетах!!! result(2) = getNumber(documentProfile, "LIFETIME-MEAN"); //take element from <LIFETIME-MEAN> ...</> result(3) = getNumber(documentProfile, "SOURCE-BORN-RATE");//take element from <SOURCE-BORN-RATE> ...</> endfunction //Вырезает нужное сечение в матрице точек // index = 1, 2, 3 // 1 - "BYTESPERSEC" or "TRAFFIC-MEAN" // 2 - "TRAFFIC-VARIANCE" or "LIFETIME-MEAN" // 3 - HURST" or "SOURCE-BORN-RATE" function [y] = getSingleVector(complexVector, index) n = size(complexVector, 1); y = complexVector(1:n, index); endfunction //Получение данных из всех файлов. fileNames список (вектор-столбец) файлов function [trafficPoints, trafficTimes, profilePoints, profileTimes] = processAllFiles(fileNames) fileCount = size(fileNames, 1); trafficPoints = []; trafficTimes = []; profilePoints = []; profileTimes = []; if (fileCount < 1) then error(msprintf("processAllFiles: нет файлов для обработки")); end for i = 1 : fileCount fileName = fileNames(i); elements = strsplit(fileName, SEPARATOR, COUNT_ELEMENT_IN_NAME);//3 части в названии файла typeOfFile = elements(3); if (strcmpi(typeOfFile, TRAFFIC_TYPE) == 0) then //[BYTESPERSEC TRAFFIC-VARIANCE HURST] trafficPoint = getSimplePoint_traffic(fileName)'; trafficPoints = addToArray(trafficPoints, trafficPoint); trafficTimes = addToArray(trafficTimes, elements(1)); elseif (strcmpi(typeOfFile, PROFILE_TYPE) == 0) then //[TRAFFIC-MEAN LIFETIME-MEAN SOURCE-BORN-RATE] profilePoint = getSimplePoint_profile(fileName)'; profilePoints = addToArray(profilePoints, profilePoint); profileTimes = addToArray(profileTimes, elements(1)); else error(msprintf("processAllFiles: неизвестный тип файла")); end end endfunction function viewStatistic(folder) PATH = PATH + folder + '\'; xmlFiles = getAppropriateFiles("*.xml"); xmlFiles = invert(xmlFiles); printf("Список фалов: "); disp(xmlFiles); printf("\n"); [trafficPoints, trafficTimes, profilePoints, profileTimes] = processAllFiles(xmlFiles) printf("\n"); printf("Матрица точек для файлов _Traffic: "); disp(trafficPoints); printf("Массив лет: "); disp(trafficTimes); printf("\n"); printf("Матрица точек для файлов _Profile: "); disp(profilePoints); printf("Массив лет: "); disp(profileTimes); bytePerSecGRAPHIC = getSingleVector(trafficPoints, BYTESPERSEC_INDEX)';// ' - для получения вектор строки trafficVarianceGRAPHIC = getSingleVector(trafficPoints, TRAFFIC_VARIANCE_INDEX)';// ' - для получения вектор строки hurstGRAPHIC = getSingleVector(trafficPoints, HURST_INDEX)';// ' - для получения вектор строки trafficMeanGRAPHIC = getSingleVector(trafficPoints, TRAFFIC_MEAN_INDEX)';// ' - для получения вектор строки liftTimeMeanGRAPHIC = getSingleVector(trafficPoints, LIFETIME_MEAN_INDEX)';// ' - для получения вектор строки sourceBornRateGRAPHIC = getSingleVector(trafficPoints, SOURCE_BORN_RATE_INDEX)';// ' - для получения вектор строки scf();//0 plot2d(getIndexes(trafficTimes)', bytePerSecGRAPHIC, [1], leg = "bytePerSec"); scf();//1 plot2d(getIndexes(trafficTimes)', trafficVarianceGRAPHIC, [2], leg = "trafficVarianceGRAPHIC"); scf();//2 plot2d(getIndexes(trafficTimes)', hurstGRAPHIC, [3], leg = "hurstGRAPHIC"); scf();//3 plot2d(getIndexes(profileTimes)', trafficMeanGRAPHIC, [4], leg = "trafficMeanGRAPHIC"); scf();//4 plot2d(getIndexes(profileTimes)', liftTimeMeanGRAPHIC, [5], leg = "liftTimeMeanGRAPHIC"); scf();//5 plot2d(getIndexes(profileTimes)', sourceBornRateGRAPHIC, [6], leg = "sourceBornRateGRAPHIC"); endfunction //-------------------------------HELPER METHODS--------------------------------- //Получение числа их тега с именем _string из xml документа document function [Number] = getNumber(document, _string) xmlList = xmlXPath(document, "//" + _string + "/text()");//take element from <%_string%> ...</> Number = strtod(xmlList(1).content);// string parsing endfunction //Получение списка файлов, соответствующих шаблону из директории по умолчанию function [fileNames] = getAppropriateFiles(pattern) cd(PATH); fileNames = ls(pattern); endfunction function [result] = addToArray(array, item) result = [array ; item] endfunction function [y] = getIndexes(x) n = size(x, 'r'); y = []; for i = 1 : n y(i) = i; end endfunction //Инвертируем массив-столбец function [invX] = invert(x) n = size(x, 'r'); invX = []; for (i = 1 : n ) invX = addToArray(invX, x(n - i + 1)); end endfunction
e8f2597d89612c983480d6dc7955537446f51b8b
449d555969bfd7befe906877abab098c6e63a0e8
/2084/CH3/EX3.8/3_8.sce
630c1768e2ec4c6448d5be39151e72cf097495ec
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
969
sce
3_8.sce
//developed in windows XP operating system 32bit //platform Scilab 5.4.1 clc;clear; //example 3.8 //calculation of velocity and position of the particle //given data a=1.5; //acceleration(in m/s^2) of the particle theta=37; //angle(in degree) made by particle with X axis ux=8; //x component of initial velocity(in m/s) of the particle uy=0; //y component of initial velocity(in m/s) of the particle t=4; //time(in s) //calculation ax=a*cosd(theta); ay=a*sind(theta); vx=ux+(ax*t); //formula of x component of final velocity vy=uy+(ay*t); //formula of y component of final velocity v=sqrt((vx*vx)+(vy*vy)); thetav=atand(vy/vx); x=(ux*t)+((ax*t*t)/2); //formula for x coordinate of particle at time t y=(uy*t)+((ay*t*t)/2); //formula for y coordinate of particle at time t printf('the velocity of the particle at t=4 s is %f m/s and angle made with X axis is %f degree',v,thetav) printf('the particle is at(%f,%f)m at time t=4 s',x,y)
fa9f026f10ea55935e5882d503a37f9476f7f529
449d555969bfd7befe906877abab098c6e63a0e8
/409/CH8/EX8.4/Example8_4.sce
2fbdc4b948f116ec6baf27eddc64177b76637fdf
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
1,040
sce
Example8_4.sce
clear ; clc; // Example 8.4 printf('Example 8.4\n\n'); // Page no. 205 // Solution Fig E8.4 // Given A = 200 ;// Mass of added solution [kg] P_H2SO4 = .1863 ;//Fraction of H2SO4 in P(Final solution) P_H2O = .8137 ;//Fraction of H2O in P(Final solution) A_H2SO4 = .777 ;//Fraction of H2SO4 in A(Added solution) A_H2O = .223 ;//Fraction of H2O in A(Added solution) F_H2SO4 = .1243 ;//Fraction of H2SO4 in F(Original solution) F_H2O = .8757 ;//Fraction of H2O in F(Original solution) // By analysis for degree of freedom , DOF comes to be zero // Solve following equations simultaneously for F and P, // P*P_H2O - F*F_H2O = A*A_H2O - By H2O balance // P - F = A - By overall balance a = [P_H2O -F_H2O;1 -1] ;// Matrix of coefficient b = [A*A_H2O;A] ;// Matrix of contants x = a\b ;// Matrix of solutions- P = x(1) and F = x(2) printf(' Original solution taken- %.0i kg\n',x(2) ); printf(' Final solution or kilograms of battery acid formed- %.0i kg\n',x(1) );
9470bddceceb13d316285e972b43b32a12fa65e1
1232196a72221f6cc0ee0a9a47111ef1188dafe9
/xcos_blocks/peakdet_block.sci
474ac4cfffaf2e3d52dcf1faf31a025368295f7c
[]
no_license
sumagin/rasp30
06dc2ee1587a4eaf3cf5fb992375b8589617f882
a11dcffaed22dbac1f93c2f4798a48c7b0b1f795
refs/heads/master
2021-01-24T23:51:54.459864
2016-07-08T22:03:43
2016-07-08T22:03:43
16,685,217
2
3
null
2015-07-23T15:28:49
2014-02-10T05:17:38
C
UTF-8
Scilab
false
false
2,517
sci
peakdet_block.sci
function [x,y,typ]=peakdet_block(job,arg1,arg2) // Copyright INRIA x=[];y=[];typ=[]; select job case 'plot' then standard_draw(arg1) case 'getinputs' then [x,y,typ]=standard_inputs(arg1) case 'getoutputs' then [x,y,typ]=standard_outputs(arg1) case 'getorigin' then [x,y]=standard_origin(arg1) case 'set' then x=arg1; graphics=arg1.graphics;exprs=graphics.exprs model=arg1.model; while %t do [ok,in_out_num,xx,ib,caps,exprs]=getvalue('Set Peak Detector Parameters',.. ['Number of Peak Detector Blocks';'State';'Ib (A)';'Capacitance 64fF [1-6X]'],.. list('vec',1,'vec',-1,'vec',-1,'vec',-1),exprs) if ~ok then break,end if length(xx) ~= in_out_num then message('The number of initial state values that you have entered does not match the number of Peak Detector blocks.'); ok=%f; end if length(ib) ~= in_out_num then message('The number of current values that you have entered does not match the number of Peak Detector blocks.'); ok=%f; end if length(caps) ~= in_out_num then message('The number of capacitance values that you have entered does not match the number of Peak Detector blocks.'); ok=%f; end if ok then model.in=in_out_num model.out=in_out_num model.ipar=in_out_num model.rpar = [ib;caps] model.state = xx graphics.exprs=exprs; x.graphics=graphics;x.model=model break end end case 'define' then in_out_num=1 state= 0 Ib = 0.5*10^(-9) C = 6 model=scicos_model() model.sim=list('peakdet_func',5) model.in=[in_out_num;in_out_num] model.in2=[1;1] model.intyp=-1 model.out=in_out_num model.out2=1 model.outtyp=-1 model.ipar=in_out_num model.rpar = [Ib;C] model.state= state model.nzcross=1; model.blocktype='c' model.dep_ut=[%f %t] exprs=[sci2exp(in_out_num); sci2exp(state) ; sci2exp(Ib); sci2exp(C)] gr_i=['txt=''Peak Detector'';';'xstringb(orig(1),orig(2),txt,sz(1),sz(2),''fill'')'] x=standard_define([5 2],model,exprs,gr_i) end endfunction
345f975f7d6ff2360e2a55ac28720f00abc77f7f
449d555969bfd7befe906877abab098c6e63a0e8
/2240/CH34/EX33.7/EX33_7.sce
e21c279b1f0739a34ed40a5c903a532edf9c789a
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
347
sce
EX33_7.sce
// Grob's Basic Electronics 11e // Chapter No. 33 // Example No. 33_7 clc; clear; // Calculate the 5-V power bandwidth. // Given data Vo = 10; // Output voltage=10 Volts(p-p) Sr = 0.5/10^-6; // Slew rate=0.5 V/us Vpk = Vo/2; fo = Sr/(2*%pi*Vpk); disp (fo,'The Output Frequency in Hertz') disp ('i.e 15.915 kHz')
8c2678c60c8700b7a5e82ca721aacbc6d657c333
59e7c95649eb8894e1d6f0bcac3ca7ea2b023217
/Curvas de Nível.sce
46be54e3465ded9da7d7be2ae0660ecd1f459162
[]
no_license
nascimento-luciano/Scilab-Matlab
cb5ee9d97df3ed0f4311573df0fd37a88b3394d8
1cba42b68cc7954ff4c7dd6b13c7d8e6bd3d039e
refs/heads/main
2023-03-19T21:06:18.691193
2021-03-18T00:57:29
2021-03-18T00:57:29
348,877,701
1
0
null
null
null
null
UTF-8
Scilab
false
false
231
sce
Curvas de Nível.sce
clc clear close nz=10; // número de níveis a=eye(5,10)+rand(5,10)+ones(5,10);// matriz para a plotagem z= min(a) + (1:nz)*(max(a)-min(a))/(nz+1); //valor numérico de cada nível x=size(a); contour2d(1:x(1),1:x(2),a,nz);
4ad098d14c416f0633dc354549d5f62412a3a8f5
449d555969bfd7befe906877abab098c6e63a0e8
/462/CH10/EX10.3/ex_10_3.sce
34aded3223391f2c1cf5bd3afb00a29b9311ad92
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
493
sce
ex_10_3.sce
//example 10.3// clc //clears the window// clear //clears already existing variables// disp('since the 1''s compliment representations of the positive numbers +0 to +7 are same as the representations of the unipolar binary numbers, no offset voltage is required for these inputs.') disp('For the negative numbers 1111 to 1000, the output analog voltage is to be offset by -15V. This can be achieved by operating a switch with MSB of input to introduce proper value of Voff.') //answer//
6ee53a10c15393f15fbb4d5606bd1e672aa22162
d59fc6d78ee6e8fa0436ad3ec6de36d524a63231
/Simulations/HG_Function.sci
cd49244a256f9b7ae55b9f9682c30d84dc5848f5
[]
no_license
senhadjielrhazi/projet-edf
3a1be6edda3e1ede10298c29f249a94eec82361a
fab03a4afdb641c99066e789394454f612debe1d
refs/heads/master
2020-12-03T08:09:21.229054
2017-06-28T11:39:33
2017-06-28T11:39:33
95,662,149
0
0
null
null
null
null
WINDOWS-1250
Scilab
false
false
19,507
sci
HG_Function.sci
/////////////////////////////////////////////////////////////////////////////////////////////// ///////////////////////////// Modele hyperbolqique///////////////////////////////////////////// /////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////// // Fonction Densite_NIG //////////////////////////////////////////////////////// function densite_NIG = Densite_NIG(x,alpha,beta,delta,mu) // Calcul de la densité NIG // x vecteur position // alpha beta delta mu parametres du NIG /////////////////////////////////////////////////////// n = length(x); densite_NIG = zeros(1,n); gama = sqrt(alpha^2-beta^2); y = sqrt(delta^2+(x-mu)^2); densite_NIG = ((alpha*delta)/%pi)*exp(delta*gama+beta*(x-mu)).*(besselk(1,alpha*y)')./y; endfunction //////////////////////////////////////////////////////// // Fonction Densite_VG //////////////////////////////////////////////////////// function densite_VG = Densite_VG(x,lambda,alpha,beta,mu) // Calcul de la densité VG // x vecteur position // lambda alpha beta mu parametres du VG /////////////////////////////////////////////////////// n = length(x); densite_VG = zeros(1,n); gama = sqrt(alpha^2-beta^2); y = abs(x-mu); densite_VG = ((gama^(2*lambda))/(sqrt(%pi)*((2*alpha)^(lambda-0.5))*gamma(lambda)))*exp(beta*(x-mu)).*(besselk(lambda-0.5,alpha*y)').*y^(lambda-0.5); endfunction //////////////////////////////////////////////////////// // Fonction Phi_NIG //////////////////////////////////////////////////////// function phi_NIG = Phi_NIG(x,alpha,beta,delta,mu) // Calcul de l exposant caracteristique laplace du NIG // x vecteur position // alpha beta delta mu parametres du NIG /////////////////////////////////////////////////////// n = length(x); phi_NIG = zeros(1,n); gama1 = sqrt(alpha^2-beta^2); gama2 = sqrt(alpha^2-(beta+x)^2); phi_NIG = mu*x+delta*(gama1-gama2); endfunction //////////////////////////////////////////////////////// // Fonction Phi_VG //////////////////////////////////////////////////////// function phi_VG = Phi_VG(x,lambda,alpha,beta,mu) // Calcul de l exposant caracteristique laplace du VG // x vecteur position // lambda alpha beta mu parametres du VG /////////////////////////////////////////////////////// n = length(x); phi_VG = zeros(1,n); gama1 = sqrt(alpha^2-beta^2); gama2 = sqrt(alpha^2-(beta+x)^2); phi_VG = mu*x+2*lambda*log(gama1./gama2); endfunction //////////////////////////////////////////////////////// // Fonction Var_NIG //////////////////////////////////////////////////////// function var_NIG = Var_NIG(n,alpha,beta,delta,mu) // Simulation dune variable aleatoire NIG // n nombre de simulations // alpha beta delta mu parametres du NIG /////////////////////////////////////////////////////// gama = sqrt(alpha^2-beta^2); V = rand(1,n,'normal')^2; Z1 = (delta/gama)+(1/(2*gama^2))*(V-sqrt(V^2+4*gama*delta*V)); Z2 = (delta/gama)+(1/(2*gama^2))*(V+sqrt(V^2+4*gama*delta*V)); p1 = delta*ones(1,n)./(delta+gama*Z1); U = rand(1,n,'uniform'); Z = Z1.*(U<p1)+Z2.*(1-(U<p1)); var_NIG = mu + beta*Z + sqrt(Z).*rand(1,n,'normal'); endfunction //////////////////////////////////////////////////////// // Fonction Var_VG //////////////////////////////////////////////////////// function var_VG = Var_VG(n,lambda,alpha,beta,mu) // Simulation dune variable aleatoire VG // n nombre de simulations // lambda alpha beta mu parametres du VG // lambda >= 0 /////////////////////////////////////////////////////// gama = sqrt(alpha^2-beta^2); m = 0; Z = zeros(1,n); k1 = 0; k2 = 0; l = 0; lambda1 = 0; c = exp(1)*sqrt(6/%pi); if(lambda < 1) lambda1 = lambda + 1; else lambda1 = lambda; end while(m < n) U1 = rand(1,2*n,'uniform'); index = find((U1<>0)&(U1<>1)); U = U1(index); V1 = (U-1/2)./sqrt(U.*(1-U))*sqrt(3*lambda1-3/4)+(lambda1-1); index = find(V1>=0); V = V1(index); k1 = length(index); if(k1<>0) index = find(V^(lambda1-1).*exp(-V)/gamma(lambda1) > c*rand(1,k1,'uniform').*((1+(V-lambda1+1)^2/(3*lambda1-3/4))^(-3/2)/(2*sqrt(3*lambda1-3/4)))); k2 = length(index); if(k2>(n-l)) Z((l+1):n) = V(index(1:(n-l))); m = n; else Z((l+1):(l+k2)) = V(index); m = l+k2; l = l+k2; end end end if(lambda < 1) Z = Z.*rand(1,n,'uniform')^(1/lambda); end var_VG = mu + beta*2*Z/gama^2 + sqrt(2*Z/gama^2).*rand(1,n,'normal'); endfunction //////////////////////////////////////////////////////// // Fonction Simul_XT_NIG //////////////////////////////////////////////////////// function simul_XT_NIG = Simul_XT_NIG(m,n,T0,Tf,t,alpha,beta,delta,mu,a,sigma) // Simuler la variable XT pour option europeenne NIG // n nombre de pas // m nombre de tirages // alpha beta delta mu parametres du NIG // kk T0 Tf T parametre du Call // a sigma parametre du processus /////////////////////////////////////////////////////// h = (T0-t)/n; Ti = t + (0:(n-1))*h; simul_XT_NIG = zeros(1,m); Val = -Phi_NIG(sigma*exp(-a*(Tf-Ti)),alpha,beta,delta,mu)*h; for i=1:m Y = sigma*exp(-a*(Tf-Ti)).*Var_NIG(n,alpha,beta,delta*h,mu*h); simul_XT_NIG(i) = sum(Y+Val); end endfunction //////////////////////////////////////////////////////// // Fonction Simul_XT_VG //////////////////////////////////////////////////////// function simul_XT_VG = Simul_XT_VG(m,n,T0,Tf,t,lambda,alpha,beta,mu,a,sigma) // Simuler la variable XT pour option europeenne VG // n nombre de pas // m nombre de tirages // lambda alpha beta mu parametres du VG // kk T0 Tf T parametre du Call // a sigma parametre du processus /////////////////////////////////////////////////////// h = (T0-t)/n; Ti = t + (0:(n-1))*h; simul_XT_VG = zeros(1,m); Val = -Phi_VG(sigma*exp(-a*(Tf-Ti)),lambda,alpha,beta,mu)*h; for i=1:m Y = sigma*exp(-a*(Tf-Ti)).*Var_VG(n,lambda*h,alpha,beta,mu*h); simul_XT_VG(i) = sum(Y+Val); end endfunction //////////////////////////////////////////////////////// // Fonction Kernel_NIG //////////////////////////////////////////////////////// function kernel_NIG = Kernel_NIG(s,k,eta,T0,Tf,t,alpha,beta,delta,mu,a,sigma) // Calcul la fonction d integration du FTT // h pas de temps // N nombre de pas // alpha beta delta mu parametres du NIG // k T0 Tf T parametre du Call // a sigma parametre du processus // A borne d integration // eta constante /////////////////////////////////////////////////////// I = %i; reel = integrate('real(Phi_NIG((I*s+1+eta)*sigma*exp(-a*(Tf-y)),alpha,beta,delta,mu)-(I*s+1+eta)*Phi_NIG(sigma*exp(-a*(Tf-y)),alpha,beta,delta,mu))','y',t,T0); imagi = integrate('imag(Phi_NIG((I*s+1+eta)*sigma*exp(-a*(Tf-y)),alpha,beta,delta,mu)-(I*s+1+eta)*Phi_NIG(sigma*exp(-a*(Tf-y)),alpha,beta,delta,mu))','y',t,T0); kernel_NIG = (exp(reel)/((eta^2+eta-s^2)^2+s^2*(2*eta+1)^2))*((eta^2+eta-s^2)*cos(-s*k+imagi)+(s*(2*eta+1))*sin(-s*k+imagi)); endfunction //////////////////////////////////////////////////////// // Fonction Kernel_VG //////////////////////////////////////////////////////// function kernel_VG = Kernel_VG(s,k,eta,T0,Tf,t,lambda,alpha,beta,mu,a,sigma) // Calcul la fonction d integration du FTT // h pas de temps // N nombre de pas // lambda alpha beta mu parametres du VG // k T0 Tf T parametre du Call // a sigma parametre du processus // A borne d integration // eta constante /////////////////////////////////////////////////////// I = %i; reel = integrate('real(Phi_VG((I*s+1+eta)*sigma*exp(-a*(Tf-y)),lambda,alpha,beta,mu)-(I*s+1+eta)*Phi_VG(sigma*exp(-a*(Tf-y)),lambda,alpha,beta,mu))','y',t,T0); imagi = integrate('imag(Phi_VG((I*s+1+eta)*sigma*exp(-a*(Tf-y)),lambda,alpha,beta,mu)-(I*s+1+eta)*Phi_VG(sigma*exp(-a*(Tf-y)),lambda,alpha,beta,mu))','y',t,T0); kernel_VG = (exp(reel)/((eta^2+eta-s^2)^2+s^2*(2*eta+1)^2))*((eta^2+eta-s^2)*cos(-s*k+imagi)+(s*(2*eta+1))*sin(-s*k+imagi)); endfunction //////////////////////////////////////////////////////// // Fonction Call_NIG_Fermee //////////////////////////////////////////////////////// function call_NIG_Fermee = Call_NIG_Fermee(r,K,x,eta,T0,Tf,t,alpha,beta,delta,mu,a,sigma, epsilon,h) // Calcul du prix call NIG avec une formule fermee // h pas de temps // N nombre de pas // alpha beta delta mu parametres du NIG // x K T0 Tf T parametre du Call // a sigma parametre du processus // A borne d integration // epsilon erreur sur le prix // eta constante /////////////////////////////////////////////////////// f1 = 0; A1 = 0; M = 0; Integrale = 0; k = log(K/x); A = x*exp(-eta*k-r*(T0-t)+integrate('Phi_NIG((eta+1)*sigma*exp(-a*(Tf-q)),alpha,beta,delta,mu)-(eta+1)*Phi_NIG(sigma*exp(-a*(Tf-q)),alpha,beta,delta,mu)','q',t,T0))/(%pi*(epsilon/3)); for j=1:1000 A1 = j*A/1000; f1 = Kernel_NIG(A1,k,eta,T0,Tf,t,alpha,beta,delta,mu,a,sigma); M = abs(f1)*(A-A1); if(M<(epsilon/3)) break end end A = A1; for j=1:1000 A1 = j*A/1000; f1 = Kernel_NIG(A1,k,eta,T0,Tf,t,alpha,beta,delta,mu,a,sigma); M = abs(f1)*(A-A1); if(M<(epsilon/3)) break end end N = floor(A1/h)+1; Val = zeros(2,N); for i=1:N Val(1,i) = (i-1)*h; Val(2,i) = Kernel_NIG(Val(1,i),k,eta,T0,Tf,t,alpha,beta,delta,mu,a,sigma) end Integrale = inttrap(Val(1,:),Val(2,:)); call_NIG_Fermee = (x*exp(-eta*k)*exp(-r*(T0-t))/(%pi))*Integrale; endfunction //////////////////////////////////////////////////////// // Fonction Call_VG_Fermee //////////////////////////////////////////////////////// function call_VG_Fermee = Call_VG_Fermee(r,K,x,eta,T0,Tf,t,lambda,alpha,beta,mu,a,sigma,epsilon,h) // Calcul du prix call VG avec une formule fermee // h pas de temps // N nombre de pas // lambda alpha beta mu parametres du VG // x K T0 Tf T parametre du Call // a sigma parametre du processus // A borne d integration // epsilon erreur sur le prix // eta constante /////////////////////////////////////////////////////// f1 = 0; A1 = 0; M = 0; Integrale = 0; k = log(K/x); A = x*exp(-eta*k-r*(T0-t)+integrate('Phi_VG((eta+1)*sigma*exp(-a*(Tf-q)),lambda,alpha,beta,mu)-(eta+1)*Phi_VG(sigma*exp(-a*(Tf-q)),lambda,alpha,beta,mu)','q',t,T0))/(%pi*(epsilon/3)); for j=1:1000 A1 = j*A/1000; f1 = Kernel_VG(A1,k,eta,T0,Tf,t,lambda,alpha,beta,mu,a,sigma); M = abs(f1)*(A-A1); if(M<(epsilon/3)) break end end A = A1; for j=1:1000 A1 = j*A/1000; f1 = Kernel_VG(A1,k,eta,T0,Tf,t,lambda,alpha,beta,mu,a,sigma); M = abs(f1)*(A-A1); if(M<(epsilon/3)) break end end N = floor(A1/h)+1; Val = zeros(2,N); for i=1:N Val(1,i) = (i-1)*h; Val(2,i) = Kernel_VG(Val(1,i),k,eta,T0,Tf,t,lambda,alpha,beta,mu,a,sigma) end Integrale = inttrap(Val(1,:),Val(2,:)); call_VG_Ferme = (x*exp(-eta*k)*exp(-r*(T0-t))/(%pi))*Integrale; endfunction //////////////////////////////////////////////Calage//////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////// // Fonction Phi0_NIG //////////////////////////////////////////////////////// function phi0_NIG = Phi0_NIG(n,h,phi1,omega,alpha,beta,delta,mu) // Fonction support pour le calcul de phi0(i) // n nombre de simulations // h le pas de temps des simulations // alpha beta delta mu parametres du NIG // omega prime de risque // a sigma parametre du processus /////////////////////////////////////////////////////// //A = zeros(1,n); //disp([phi1 omega alpha beta delta mu], "phi1,omega,alpha,beta,delta,mu"); //for i = 1:30 //A(i) = integrate('Phi_NIG(omega+phi1^(x/h),alpha,beta,delta,mu)','x',(i-1)*h,i*h)/h-Phi_NIG(omega,alpha,beta,delta,mu); //end //phi0_NIG = -cumsum(A)+phi1*cumsum({0,A(1:(n-1))}); phi0_NIG = zeros(1,n); for i=1:n phi0_NIG(i) = -integrate('Phi_NIG(omega+phi1^(x/h),alpha,beta,delta,mu)-Phi_NIG(omega,alpha,beta,delta,mu)','x',0,i*h)/h+phi1*integrate('Phi_NIG(omega+phi1^(x/h),alpha,beta,delta,mu)-Phi_NIG(omega,alpha,beta,delta,mu)','x',0,(i-1)*h)/h; end endfunction //////////////////////////////////////////////////////// // Fonction Simul_NIG_Process //////////////////////////////////////////////////////// function simul_NIG_Process = Simul_NIG_Process(n,h,a,sigma,omega,alpha,beta,delta,mu) // Simuler un processus OU NIG // h pas de temps // n nombre de tirages // alpha beta delta mu parametres du NIG // omega prime de risque // a sigma parametre du processus /////////////////////////////////////////////////////// phi1 = exp(-a*h); omega_bar = omega/sigma; alpha_bar = alpha/sigma; beta_bar = beta/sigma; delta_bar = delta*h*sigma; mu_bar = mu*h*sigma; simul_NIG_Process = zeros(1,n); phi0_NIG = Phi0_NIG(n,h,phi1,omega_bar,alpha_bar,beta_bar,delta_bar,mu_bar); simul_NIG_Process(1) = phi0_NIG(1) + Var_NIG(1,alpha_bar,beta_bar,delta_bar,mu_bar); for i=2:n simul_NIG_Process(i) = phi1*simul_NIG_Process(i-1) + phi0_NIG(i) + Var_NIG(1,alpha_bar,beta_bar,delta_bar,mu_bar); end endfunction //////////////////////////////////////////////////////// // Fonction Calage_NIG //////////////////////////////////////////////////////// function [alpha_e, beta_e, delta_e, mu_e] = Calaga_Const_NIG(n,h,Et) // Calage des residus du modele OU un facteur NIG // h pas de temps // n nombre de pas // Et Residus // alpha beta delta mu parametres du NIG /////////////////////////////////////////////////////// alpha_bar_init = 7; beta_bar_init = 2; delta_bar_init = 7; mu_bar_init = -3; //LB = [0.00001 -40 0.00001 -100 ]; //UB = [60 40 70 100];'b',LB,UB, //disp([alpha_bar_init beta_bar_init delta_bar_init mu_bar_init],"phi1_init omega_bar_init alpha_bar_init beta_bar_init delta_bar_init mu_bar_init"); [Lv, Param, gradopt] = optim(list(Log_vraisemblance_NIG,Et,n,h),[alpha_bar_init beta_bar_init delta_bar_init mu_bar_init],'gc') alpha_e = Param(1); beta_e = Param(2); delta_e = Param(3); mu_e = Param(4); endfunction //////////////////////////////////////////////////////// // Fonction Log_vraisemblance_NIG //////////////////////////////////////////////////////// function [Lv, grad, ind] = Log_vraisemblance_NIG(x,ind,X,n,h) // Log-vraisemblance pour un processus d'OU NIG // h pas de temps // X Residus // n nombre d echantillon // grad le gradient de la Log-vraisemblance // Lv la vraisemblance // x parametres a optimiser phi1, omega... //////////////////////////////////////////////////////// alpha = x(1); beta = x(2); delta = x(3); mu = x(4); //disp([alpha beta delta mu],"alpha beta delta mu"); if(abs(beta)>=abs(alpha) | alpha<0 | delta<0)// | alpha_bar+delta_bar>50) x(1) = 10; x(2) = 0; x(3) = 10; Lv = -100; grad = 100*ones(1,4); disp([alpha beta delta],'probleme'); else gama = sqrt(alpha^2-beta^2); S = (X-mu*ones(1,n))/(delta*h); P = sqrt(1+S^2); K = besselk(1,alpha*h*delta*P)' R = besselk(2,alpha*h*delta*P)'./K; //disp(size(K./P),"R"); Lv = -n*log(%pi)+n*log(alpha)+n*delta*h*gama+n*mean(beta*delta*h*S+log(K./P)); grad(1) = n*(2/alpha + delta*h*alpha/gama) - n*mean(delta*h*P.*R); grad(2) = -n*delta*h*beta/gama + n*mean(delta*h*S); grad(3) = n*(1/delta + gama*h) - n*mean(alpha*h*R./P); grad(4) = -n*beta*h + n*mean(alpha*h*S.*R./P); //disp("ok"); disp([Lv grad(1) grad(2) grad(3) grad(4) alpha beta delta mu],"lv grad alpha beta delta mu"); //Lv = Log_vraisemblance_NIG_Value({phi1,omega_bar,alpha_bar,beta_bar,delta_bar,mu_bar},n,h,X,X0); //grad = numdiff(list(Log_vraisemblance_NIG_Value,n,h,X,X0),{phi1,omega_bar,alpha_bar,beta_bar,delta_bar,mu_bar}); end Lv = -Lv; grad = -grad; endfunction //////////////////////////////////////////////////////// // Fonction Phi0_NIG_Func //////////////////////////////////////////////////////// function phi0_NIG_Func = Phi0_NIG_Func(theta,n,h,i) // Fonction support pour le calcul de phi0(i) // n nombre de simulations // h le pas de temps des simulations // alpha beta delta mu parametres du NIG // omega prime de risque // a sigma parametre du processus /////////////////////////////////////////////////////// phi1 = theta(1); omega = theta(2); alpha = theta(3); beta = theta(4); delta = theta(5); mu = theta(6); phi0_NIG_Func = -integrate('Phi_NIG(omega+phi1^(x/h),alpha,beta,delta,mu)-Phi_NIG(omega,alpha,beta,delta,mu)','x',0,i*h)/h+phi1*integrate('Phi_NIG(omega+phi1^(x/h),alpha,beta,delta,mu)-Phi_NIG(omega,alpha,beta,delta,mu)','x',0,(i-1)*h)/h; endfunction //////////////////////////////////////////////////////// // Fonction Phi0_NIG //////////////////////////////////////////////////////// function phi0_VG = Phi0_VG(n,h,phi1,omega,lambda,alpha,beta,mu) // Fonction support pour le calcul de phi0(i) // n nombre de simulations // h le pas de temps des simulations // lambda alpha beta mu parametres du VG // omega prime de risque // a sigma parametre du processus /////////////////////////////////////////////////////// phi0_VG = zeros(1,n); for i=1:n phi0_VG(i) = -integrate('Phi_VG(omega+phi1^(x/h),lambda,alpha,beta,mu)-Phi_VG(omega,lambda,alpha,beta,mu)','x',0,i*h)/h+phi1*integrate('Phi_VG(omega+phi1^(x/h),lambda,alpha,beta,mu)-Phi_VG(omega,lambda,alpha,beta,mu)','x',0,(i-1)*h)/h; end endfunction //////////////////////////////////////////////////////// // Fonction Simul_NIG_Process //////////////////////////////////////////////////////// function simul_VG_Process = Simul_VG_Process(n,h,a,sigma,omega,lambda,alpha,beta,mu) // Simuler un processus OU VG // h pas de temps // n nombre de tirages // lambda alpha beta mu parametres du VG // omega prime de risque // a sigma parametre du processus /////////////////////////////////////////////////////// phi1 = exp(-a*h); omega_bar = omega/sigma; alpha_bar = alpha/sigma; beta_bar = beta/sigma; lambda_bar = lambda*h; mu_bar = mu*h*sigma; simul_VG_Process = zeros(1,n); phi0_VG = Phi0_VG(n,h,phi1,omega_bar,lambda_bar,alpha_bar,beta_bar,mu_bar); cc = Var_VG(1,lambda_bar,alpha_bar,beta_bar,mu_bar); simul_VG_Process(1) = phi0_VG(1) + Var_VG(1,lambda_bar,alpha_bar,beta_bar,mu_bar); for i=2:n simul_VG_Process(i) = phi1*simul_VG_Process(i-1) + phi0_VG(i) + Var_VG(1,lambda_bar,alpha_bar,beta_bar,mu_bar); end endfunction //////////////////////////////////////////////////////// // Fonction Phi0_VG_Func //////////////////////////////////////////////////////// function phi0_VG_Func = Phi0_VG_Func(theta,n,h,i) // Fonction support pour le calcul de phi0(i) // n nombre de simulations // h le pas de temps des simulations // lambda alpha beta mu parametres du VG // omega prime de risque // a sigma parametre du processus /////////////////////////////////////////////////////// phi1 = theta(1); omega = theta(2); lambda = theta(3); alpha = theta(4); beta = theta(5); mu = theta(6); phi0_VG_Func = -integrate('Phi_VG(omega+phi1^(x/h),lambda,alpha,beta,mu)-Phi_VG(omega,lambda,alpha,beta,mu)','x',0,i*h)/h+phi1*integrate('Phi_VG(omega+phi1^(x/h),lambda,alpha,beta,mu)-Phi_VG(omega,lambda,alpha,beta,mu)','x',0,(i-1)*h)/h; endfunction
b0a89e02d2b193f549627e85f82821bd59471489
178822612bcd418dc12ba7a649304a24ab618d60
/Numerical Analysis/El Hadji NGOM projet Scilab(Amélioré)/Projet 1 Méthodes directes et iteratives/Jacobi.sci
992d8454e99da8a80764c081ec51d1d69cad03fe
[]
no_license
engom/Math_Problem_Solving
b56c6cbfbff6c416c519795b9ab8f0c0bbba5ea3
6538c476681ae4ee803ea9b3a8944c5f370e1961
refs/heads/master
2022-05-25T01:13:16.123161
2016-02-13T11:32:28
2016-02-13T11:32:28
null
0
0
null
null
null
null
UTF-8
Scilab
false
false
472
sci
Jacobi.sci
A = [1 2 -2;1 1 1;2 2 1] b = [1;-2;3] tol = 10^-8 x0=zeros(b) iterMax = 100 function[x,iter]=Jacobi(A,b,tol,iterMax,x0) n=size(A,'c') r=norm(A*x0-b) iter=0 while (r>tol & iter<iterMax) iter=iter+1 x=x0 for i=1:n s=0 for j=1:n-1 s=s+A(i,j)*x(j) end for j=i+1:n s=s+A(i,j)*x(j) end x(i)=(b(i)-s)/A(i,i) end end endfunction
c3efe6629f50588faa6bb8bba87d786ced3be303
66106821c3fd692db68c20ab2934f0ce400c0890
/test/interpreter/lsl03.tst
31174181771159aa1a0b531a2757f1609908dbb0
[]
no_license
aurelf/avrora
491023f63005b5b61e0a0d088b2f07e152f3a154
c270f2598c4a340981ac4a53e7bd6813e6384546
refs/heads/master
2021-01-19T05:39:01.927906
2008-01-27T22:03:56
2008-01-27T22:03:56
4,779,104
2
0
null
null
null
null
UTF-8
Scilab
false
false
273
tst
lsl03.tst
; @Harness: simulator ; @Format: atmel ; @Arch: avr ; @Purpose: "Test the LSL (logical shift left instruction" ; @Result: "flags.h = 1, flags.s = 0, flags.v = 1, flags.n = 1, flags.z = 0, flags.c = 0, r16 = -112" start: ldi r16, 0b01001000 lsl r16 end: break
0cd5018e16bd67cef6d10848c30d9a60b29d8c64
449d555969bfd7befe906877abab098c6e63a0e8
/1388/CH1/EX1.7/1_7.sce
407529442e31de215e739be321877ac8f021b906
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
749
sce
1_7.sce
clc //initialisation of variables T= 0 //C T1= 100 //C R= 8.314 //atm lit/mol K n= 3 M= 2.016 //gm M1= 28.02 //gm M2= 146.1 //gm //CALCULATIONS u= sqrt(n*R*10^7*(T+273.2)/M) u1= sqrt(n*R*10^7*(T+273.2)/M1) u2= sqrt(n*R*10^7*(T+273.2)/M2) u3= sqrt(n*R*10^7*(T1+273.2)/M) u4= sqrt(n*R*10^7*(T1+273.2)/M1) u5= sqrt(n*R*10^7*(T1+273.2)/M2) //RESULTS printf (' root mean square velocity = %.2f cm/sec',u*10^-4) printf (' \n root mean square velocity = %.2f cm/sec',u1*10^-4) printf (' \n root mean square velocity = %.2f cm/sec',u2*10^-4) printf (' \n root mean square velocity = %.2f cm/sec',u3*10^-4) printf (' \n root mean square velocity = %.2f cm/sec',u4*10^-4) printf (' \n root mean square velocity = %.2f cm/sec',u5*10^-4)
6ae031ef24a07c77cd4572826707e59cad69b49d
449d555969bfd7befe906877abab098c6e63a0e8
/1553/CH26/EX26.5/26Ex5.sce
6f12429778d385f45d0057b5f09053011e7f1299
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
289
sce
26Ex5.sce
//Chapter 26 Ex5 clc; clear; close; lagBA=40; lagCA=64; //distance B and C are lagging from A //assuming A covers 1000 m A=1000; B=A-lagBA; //from given condition C=A-lagCA; lagCB=A*(C/B); //Distance C is lagging from B mprintf("B should give C a start of %.0f meter",A-lagCB);
9d457cab5acc0d1838ecf16c72c3c97307ab9c20
449d555969bfd7befe906877abab098c6e63a0e8
/3428/CH15/EX9.15.6/Ex9_15_6.sce
b20573d1262226c79d3f27eb21c550ae1c2a4cec
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
297
sce
Ex9_15_6.sce
//Section-9,Example-2,Page no.-E.9 //To find K_eq for the given reaction. clc; E0_Ag=0.80 E0_Cu=0.34 E0=E0_Ag-E0_Cu //E0_cell in volt n=2 F=96500 R=8.314 T=298 K=(n*F*E0)/(R*T) //K_eq=antilog(K) K_eq=%e^K disp(K_eq,'K_eq for the given reaction') //Answer in the book is wrong.
1a1af26f070f91624a11b288c96a5c7a0c742752
449d555969bfd7befe906877abab098c6e63a0e8
/122/DEPENDENCIES/freqch.sci
e4c6304c346bda789bd38ab065f7a72154ce3674
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
543
sci
freqch.sci
// Frequency response characteristics function [Mr,wr,bw,repf] = freqch(G,omega) repf = repfreq(G,omega); // frequency response (complex numbers) [mag phi] = dbphi(repf); // mag in db [Mr k] = max(mag); // resonant peak wr = omega(k); // resonant freq. mag = abs(mag + 3); // mag = abs( mag - (- 3dB) ) [M j] = min(mag); // j : is the point where mag == -3db bw = omega(j); disp(wr,'resonant frequency = '); disp(Mr,'resonant peak (dB)= '); disp(bw,'bandwidth = '); endfunction
24c09393e5db7d8243bb08dcc9705dd337403c52
449d555969bfd7befe906877abab098c6e63a0e8
/1529/CH13/EX13.3/13_03.sce
a3ea73ee97babdfe17797f86d39ebaaaec41f499
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
504
sce
13_03.sce
//Chapter 13, Problem 3, Figure 13.7 clc; A=[0.5 2;-5 7]; B=[16;12]; X=A\B; I1=X(1,1); //I1 and I2 is a branch current I2=X(2,1); disp("From figure 13.8"); disp("The network is divided into two loops"); printf("Applying Kirchhoff’s voltage law to both loops gives,"); printf("16 = 0.5I1 + 2I2 \n12 = −5I1 + 7I2\n\n\n"); printf("Solving these equation we get,\n"); printf("I1 = %.2f A\n",I1); printf("I2 = %.2f A\n",I2); printf("Current flowing in R3 = %.2f A",I1-I2);
fcd89bfbb97d1cbf4b055955f28a98d07817901c
449d555969bfd7befe906877abab098c6e63a0e8
/3012/CH6/EX6.8/Ex6_8.sce
f35d72b2ea12712e0d5d55de5d300d2a376e5e52
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
3,148
sce
Ex6_8.sce
// Given:- P1 = 3.5 // pressure of refrigerant entering the compressor in bars T1 = 268.0 // temperature of refrigerant entering the compressor in kelvin P2 = 14.0 // pressure of refrigerant entering the condenser in bars T2 = 348.0 // temperature of refrigerant entering the condenser in kelvin P3 = 14.0 // pressure of refrigerant exiting the condenser in bars T3 = 301.0 // temperature of refrigerant exiting the condenser in kelvin P4 = 3.5 // pressure of refrigerant after passing through expansion valve in bars P5 = 1.0 // pressure of indoor return air entering the condenser in bars T5 = 293.0 // temperature of indoor return air entering the condenser in kelvin AV5 = 0.42 // volumetric flow rate of indoor return air entering the condenser in m^3/s P6 = 1.0 // pressure of return air exiting the condenser in bar T6 = 323.0 // temperature of return air exiting the condenser in kelvin // Part(a) // From table A-9 s1 = 0.9572 // in kj/kg.k // Interpolating in table A-9 s2 = 0.98225 // in kj/kg.k h2 = 294.17 // in kj/kg // From table A-7 s3 = 0.2936 // in kj/kg.k h3 = 79.05 // in kj/kg h4 = h3 // since expansion through valve is throttling process // From table A-8 hf4 = 33.09 // in kj/kg hg4 = 246.00 // in kj/kg sf4 = 0.1328 // in kj/kg.k sg4 = 0.9431 // in kj/kg.k cp = 1.005 // in kj/kg.k // Calculations x4 = (h4-hf4)/(hg4-hf4) // quality at state 4 s4 = sf4 + x4*(sg4-sf4) // specific entropy at state 4 // CONDENSER!! v5 = ((8314/28.97)*T5)/(P5*(10**5)) // specific volume at state 5 mairdot = AV5/v5 h6 = cp*T6 h5 = cp*T5 mrefdot = mairdot*(h6-h5)/(h2-h3) deltaS65 = cp*log(T6/T5)-(8.314/28.97)*log(P6/P5) // change in specific entropy sigmacond = (mrefdot*(s3-s2)) + (mairdot*(deltaS65)) // COMPRESSOR!! sigmacomp = mrefdot*(s2-s1) // VALVE!! sigmavalve = mrefdot *(s4-s3) // Results printf( ' The rates of entropy production for control volume enclosing the condenser is %f kw/k',sigmacond); printf( ' The rates of entropy production for control volume enclosing the compressor is %f kW/K.',sigmacomp); printf( ' The rates of entropy production for control volume enclosing the expansion valve is %f kW/K ',sigmavalve)
ec6e94a09c80609660f16e07108b6bf184616d64
449d555969bfd7befe906877abab098c6e63a0e8
/2339/CH1/EX1.1.6/Ex1_6.sce
b1ec7dc7e101232a2c7bf455121cbdb263a8774f
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
360
sce
Ex1_6.sce
clc clear Th=0.22; //Thermal Efficiency Hr=1260; //Heat Rejected in MJ/hr CV=42; //Calorific Value of Coal X=1-Th; HI=Hr/X; //Heat Input in MJ/hr O=((HI-Hr)*1000)/3600; //Output Mf=HI/CV; //Mass of Fuel Used printf('Power Output is %2.2f kW',O); printf('\n'); printf('Mass of Fuel used per hour: %2.1f kg/hr',Mf);
304e4bb793bd23183333e7d9c73d9bbedc72f05a
b29e9715ab76b6f89609c32edd36f81a0dcf6a39
/ketpic2escifiles6/Translate3data.sci
98d69544dcf6cb2b7e89ce7cf0e43949ba54cfee
[]
no_license
ketpic/ketcindy-scilab-support
e1646488aa840f86c198818ea518c24a66b71f81
3df21192d25809ce980cd036a5ef9f97b53aa918
refs/heads/master
2021-05-11T11:40:49.725978
2018-01-16T14:02:21
2018-01-16T14:02:21
117,643,554
1
0
null
null
null
null
UTF-8
Scilab
false
false
707
sci
Translate3data.sci
// 08.08.15 // 15.04.12 function Out=Translate3data(varargin) Nargs=length(varargin); Pd3=varargin(1); Pd3=Flattenlist(Pd3); // 15.04.12 Mv=varargin(2); if type(Mv)==1 & length(Mv)==1 Mv=[varargin(2),varargin(3),varargin(4)]; end; // if Mixtype(Pd3)==1 // 15.04.12 from // Pd3=MixS(Pd3); // elseif Mixtype(Pd3)==3 // Tmp=[]; // for I=1:Mixlength(Pd3) // Tmp=Mixjoin(Tmp,Mixop(I,Pd3)); // end; // Pd3=Tmp; // end; Out=[]; for I=1:length(Pd3) PD=Op(I,Pd3); Ans=[]; for J=1:size(PD,1) P=PD(J,:); Tmp=P+Mv;; Ans=[Ans;Tmp]; end; Out=Mixadd(Out,Ans); end; if length(Out)==1 Out=Op(1,Out); end; endfunction
0853565e9ed0b8b5cfd2f75ff93c007df9f60600
449d555969bfd7befe906877abab098c6e63a0e8
/3814/CH1/EX1.6/Ex1_6.sce
4dfeaffe94f7c74a120f606b2f3da8ecfc295eeb
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
205
sce
Ex1_6.sce
// to design shear stress no calculations is there in this chapter only formula clc mprintf('\n shear stress t=u(dv/dr)=u.B/4u(-2r)') mprintf('\n for r=D/2; t=-BD/4') mprintf('\n r=D/4 ; t =-BD/8')
1079fc08fc5dc6670e1fb397a352460bad8b8f6c
449d555969bfd7befe906877abab098c6e63a0e8
/2258/CH2/EX2.14/2_14.sce
ebef1a637f00b3bdeefa09fdccd33a86d1b26e61
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
601
sce
2_14.sce
clc(); clear; // To calculate the order of magnitude of velocity of molecules MH=1.008*2*1.67*10^-27; //mass in kg T=30; //temperature in C T=T+273; //temperature in K KB=1.38*10^-23; //boltzmann constant in J/k KE=(3/2)*KB*T; //kinetic energy in J KEeV=KE*6.24*10^18; //kinetic energy in eV cbar=sqrt((3*KB*T)/MH); printf("average kinetic energy in J is"); disp(KE); printf("average kinetic energy in eV is"); disp(KEeV); printf("velocity of molecules is %f m/s",cbar); //answers for average kinetic energy in eV and velocity of electrons given in the book are wrong
66359747c1583b0da60f66116276585d83f65b13
449d555969bfd7befe906877abab098c6e63a0e8
/1862/CH11/EX11.4/C11P4.sce
907be6399b4dbe32ed313ccbab58bb82f5c02d8a
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
1,001
sce
C11P4.sce
clear clc //to find work done by gravity //to find work done by the spring //to find work done by the hand // GIVEN:: //refer to figure 11-15(a) from page no. 237 //mass of block m = 6.40//in kg //distance streched by spring d = 0.124//in meters //acceleration due to gravity g = 9.8//in m/s^2 // SOLUTION: //refer to figure 11-8(b)and 11-5(c) from page no. 237 //applying equillibrium condition in y direction //force constant of spring k = m*g/d//in N/m //work done by gravity Wg = m*g*d//in J //work done by the spring Ws = (-1/2)*k*d^2//in J //-ve sign as force and displacement are in opposite directions //work done by the hand //intergrating force in y direction Wh = m*g*(-d)+(1/2)*k*(-d)^2//in J k = round(k) printf ("\n\n Force constant of spring k = \n\n %3i N/m",k); printf ("\n\n Work done by gravity Wg = \n\n %.2f J",Wg); printf ("\n\n Work done by the spring Ws = \n\n %.2f J",Ws); printf ("\n\n Work done by the hand Wh = \n\n %.2f J",Wh);
d54418e822078b5e860797b9b6776bcb47b11a1f
449d555969bfd7befe906877abab098c6e63a0e8
/830/CH3/EX3.1.2/Signal1.sce
3576d3bd4cc6f94c43737b1c31c2a2c44579704d
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
162
sce
Signal1.sce
//Graphical// //Example 3.1.2 //Z transform of x[n] = (0.5)^n. u[n] clear; clc; close; syms n z; x=(0.5)^n X=symsum(x*(z^(-n)),n,0,%inf) disp(X,"ans=")
73d34dbb29c20a69ff5a00c13923ca293bf26fc0
449d555969bfd7befe906877abab098c6e63a0e8
/3772/CH10/EX10.8/Ex10_8.sce
9c7f6088ab03e5c6f3a72fa3b0d2722185eb9f5b
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
1,461
sce
Ex10_8.sce
// Problem no 10.8,Page No.262 clc;clear; close; F_c=20 //KN //Force at C F_d=5 //KN //Force at D F_e=15 //KN //Force at E F_f=10 //KN //Force at F L_CD=3.6 //m //Length of CD L_DE=3.6 //m //Length of DE L_EF=4.8 //m //Length of EF L_AD=3.6;L_BE=3.6 //m //Length of AD & BE //Calculations //Let R_A and R_B be the reactions at pts at A and B //Taking moment at A R_B=-(-F_f*(L_DE+L_EF)+F_c*L_CD-F_e*L_DE)*(L_DE)**-1 R_A=50-R_B //Considering section 1-1 through members AB,DB,DE and taking F.B.D of left side of section 1-1 //Taking moment at B sigma_1=(F_d*L_DE+F_c*(L_CD+L_DE)-R_A*L_DE)*L_AD**-1 //Force i member DE //Taking moment @ D sigma_3=(F_c*L_CD)*L_AD**-1 //KN //force in member AB //Consider triangle DBE theta=atan(L_BE*L_DE**-1)*(180*%pi**-1) //Taking moment @ A sigma_2=(-sigma_1*L_AD+F_c*L_CD)*(L_AD*cos(theta*%pi*180**-1))**-1 //Force in member F_DE //Now considering section 2-2 passing through members AB,AD,CD and taking left hand F.B.D //Taking moment @C sigma_5=(R_A*L_CD-sigma_3*L_AD)*L_CD**-1 //Force in member AD //Taking moment @A=0 sigma_4=F_c*L_CD*L_AD**-1 //Force in member CD //Result printf("Force in member CD is %.2f",sigma_4);printf(" KN(Compressive)") printf("\n Force in member AD is %.2f",sigma_5);printf(" KN(Tensile)") printf("\n Force in member BD is %.2f",sigma_2);printf(" KN(Compression)") printf("\n Force in member AB is %.2f",sigma_1);printf(" KN(Tension)") // Answer is wrong in the textbook.
ed9c951f20b619e53c10a13e4c2c35e9f1cc818f
449d555969bfd7befe906877abab098c6e63a0e8
/2699/CH10/EX10.4/Ex10_4.sce
2c01d8d40e31b256b3dd6888ba5cccf56dfee3fa
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
248
sce
Ex10_4.sce
//EX10_4 PG-10.35 clc disp("Refer to the figure-10.32 shown") //the circuit is an inverting amplifier R1=10e3; Rf=47e3;//feedback resistance A=-Rf/R1;//gain of an inverting amplifier printf("\n the gain is %.1f (inverting amplifier) \n",A)
87fd267e278d155f0d3b63f230e2b643cc2f182e
449d555969bfd7befe906877abab098c6e63a0e8
/1373/CH11/EX11.9/Chapter11_Example9.sce
331a0b39213b5b2079414d783646a7d59811ca38
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
960
sce
Chapter11_Example9.sce
//Chapter-11, Example 11.9, Page 494 //============================================================================= clc clear //INPUT DATA T=100;//Temperature of dry steam in degree C Do=0.025;//Outer diameter of the pipe in m Ts=84;//Surface temmperature of pipe in degree C Tf=(T+Ts)/2;//Film temperature in degree C p1=963.4;//Density of liquid in kg/m^3 u=(306*10^-6);//Dynamic viscosity in N.s/m^2 hfg=2257;//Enthalpy in kJ/kg pv=0.596;//Density of vapour in kg/m^3 k1=0.677;//Thermal conductivity in W/m.K //CALCULATIONS h=(0.725*((9.81*p1*(p1-pv)*k1^3*hfg*1000)/(u*(T-Ts)*Do))^0.25);//Heat transfer coefficient in W/m^2.K q=(h*3.14*Do*(T-Ts))/1000;//Heat transfer per unit length in kW/m m=(q/hfg)*3600;//Total mass flow of condensate per unit length in kg/h //OUTPUT mprintf('Rate of formation of condensate per unit length is %3.2f kg/h',m) //=================================END OF PROGRAM==============================
97c34b74b3c3f3be3ffe1a74cd656db81050924b
292fdfbcaae1142141fcb8c7c2f73dcdb871a582
/Tests/6-errors.tst
13b33bf1e046ca6f495886dc555b62dec68f9649
[]
no_license
Nyktalop/TpCppM1S1
f11b362f753656c5c1c7fbc963a71ced6ece211b
67a3adae4d943d5e0a6b580b277b39e591d3ad39
refs/heads/master
2020-08-22T13:54:17.437596
2019-12-07T17:35:26
2019-12-07T17:35:26
216,409,340
1
1
null
null
null
null
UTF-8
Scilab
false
false
152
tst
6-errors.tst
pow(1,2,3) log(0) sqrt(-2) sqrt(4 polynome(3,5,7,7) pow(_1,_2,_3) pow(_2,_1) sin( hypot(_ 1) l=lerp(_1,_2,3) l(2,5,3) pow(2,_1) + 2 sin(_1+2) cos(2+_1)
73983160ea7042bc561d8c0554ca6a2eb69f6523
8b33899f15bd0509e32f6c06319b7b1557c745f5
/c18.sci
aad081198ad918b7afda553b51f79df86aa5d588
[]
no_license
c00kiemon5ter/NumericalAnalysis
fd162663f6a9a4cc6c648e41a1412fa71e83a75c
1ff51ff805017100ebb87a98b5fef7acca3d0692
refs/heads/master
2021-01-01T19:15:21.559444
2014-06-25T09:39:25
2014-06-25T09:39:25
8,290,126
1
1
null
2014-06-25T09:39:25
2013-02-19T12:51:16
Scilab
UTF-8
Scilab
false
false
493
sci
c18.sci
// Exercise C18 // ------------ // Given time(t) velocity(v) and distance(m) for a car // // t | 0 | 3 | 5 | 8 | 13 | // m | 0 | 68 | 117 | 190 | 302 | // v | 22.8| 23.5| 24.4| 22.5| 21.9| // // Using Hermite polynomials find // (a) the distance when t=10sec // (b) the time when v=24.6 m/sec // (c) the max velocity of the car // (d) the velocity plot function y = f(x) endfunction function y = hermite(f, x) endfunction // Results and Commentary // ----------------------
fa46db514d537563f2c75e2a3666d545ee29d1f1
31c6b1437c7dc52b977bf6790b1b24eff7f7b5f5
/ReadSpectralEnginesData.sci
4699a6823e68240227d6f4a0071f72253f4a7245
[]
no_license
RobinEccleston/Scilab-Snippets
4744c071ef891cc4905cbecc000a1f5bf667a8f7
7886058a25ec4821cfeba6d8e148a0a2aced330c
refs/heads/master
2021-01-26T00:48:02.042794
2020-02-26T11:35:49
2020-02-26T11:35:49
null
0
0
null
null
null
null
UTF-8
Scilab
false
false
2,150
sci
ReadSpectralEnginesData.sci
ModuleName="plot_both_se_files"; Version="0.03"; DateModified="19-Dec-2015"; DateOfCreation="01-Jul-2015"; Author="Rob Eccleston"; Description="Function to plot both parts from SE development spectrometer... V0.02 modified as there were some problems with the first 2 blank rows having... extra values, and so the code now checks the expected number of wavelengths... and reads in this many values. Also fixed an offset error so that all the... values are read in. Previously, the the last row was missed out.... ... Update: V0.03 19.12.2016... With Scilab V6.0.0, there seems to be a problem with the read_csv function, ... as there are not an equal number of columns. Changed to use function mgetl, ... which seems to work without any further modifications as the text handling is... done later by the csvTextScan function."; mprintf("Loading " + ModuleName + " V" + Version + ", Last Modified: " + DateModified + "\n"); function [ AbsorptionData, Wavelengths, TimeDate ] = ReadSpectralEnginesData(MeasurementFileName) RowsToSkip=2 ScanFile=mgetl(MeasurementFileName) NumRows=size(ScanFile,1) //NumRows=20 ReadWavelengths=csvTextScan(ScanFile(2,:),ascii(9)) Wavelengths=ReadWavelengths(3:$) ImportedData=[] Timestamps=[] Dates=[] Offset=2 num_wavelengths=size(Wavelengths,2) for i=1:NumRows-Offset ThisRow=ScanFile(i+Offset) SplitData=strsplit(ThisRow,ascii(9)) tmp_imported_data=csvTextScan(ThisRow,ascii(9)) ImportedData(i,:)=tmp_imported_data(1:num_wavelengths+2) Timestamps(i)=SplitData(1) Dates(i)=SplitData(2) end AbsorptionData=ImportedData(RowsToSkip+1:NumRows-Offset,3:$) Timestamps=Timestamps(1+RowsToSkip:$) Dates=Dates(1+RowsToSkip:$) TimeDate=[ Timestamps, Dates ] Wavelengths=Wavelengths(:,$:-1:1) //pause AbsorptionData=AbsorptionData(:,$:-1:1) endfunction
c31b632352af980cc8d40f8a747f855966bb70e8
7c4e0931bb85459599a2fde1bc9b9b0fdab7fb67
/mulfi-input.sce
ffc16a73e7e36cb26bebc454201523d510abd88d
[]
no_license
jendralhxr/directional_fft
8182b731666d2cdd94ec244aea20160bc9e6f1ef
37861c23da94c95a39b712983e34900a2231b154
refs/heads/master
2020-04-18T02:01:30.600285
2019-05-28T03:53:41
2019-05-28T03:53:41
167,143,446
0
0
null
null
null
null
UTF-8
Scilab
false
false
185
sce
mulfi-input.sce
SAMPLING_FREQ= 240; // Hz SAMPLING_LENGTH= 600; // samples x_file=csvRead("lat.txt", ascii(9), 'double'); y_file=csvRead("ver.txt", ascii(9), 'double'); plot(x_file(:,5); START=400
180ede358cd2bfd2d4755d3c77f2d37bd2cfde1f
717ddeb7e700373742c617a95e25a2376565112c
/1766/CH4/EX4.7/EX4_7.sce
3ba6df638e4d452d3474af78400c81903badefec
[]
no_license
appucrossroads/Scilab-TBC-Uploads
b7ce9a8665d6253926fa8cc0989cda3c0db8e63d
1d1c6f68fe7afb15ea12fd38492ec171491f8ce7
refs/heads/master
2021-01-22T04:15:15.512674
2017-09-19T11:51:56
2017-09-19T11:51:56
92,444,732
0
0
null
2017-05-25T21:09:20
2017-05-25T21:09:19
null
UTF-8
Scilab
false
false
874
sce
EX4_7.sce
clc;funcprot(0);......//Example 4.7 //Initialization of variables D=0.2;.........//Diameter of the pipe in m L=1;...........//Length of the pipe in m Tw=50;........//Temperature of pipe in degrees celcius Ta=30;.............//Temperatyre under the water in degrees celcius v=0.657*10^-6;.......//Viscosity in m^2/s K=0.628;.......//Thermal conductivity in W/mK g=9.8;....//Gravitational constant Pr=4.34;......//Prandlt no //Calculations Tf=(Tw+Ta)/2;.........//Film temperature in K B=1/(Tf+273);........//Temp inverse in K^-1 Grd=(g*B*(Tw-Ta)*D*D*D)/(v^2);.......//Grashoff No Nud=0.125*(Grd*Pr)^(1/3);............//Nusselt no h=(Nud*K)/D;.........//Heat transfer co-efficient in W/m^2 K Q=h*(%pi*D)*(Tw-Ta);.........//Rate of heat loss in W disp(Q/1000,"Rate of heat loss in kW:") //The Answer arraived in textbook is found to be wrong when calculated
fe561a9329996f3b93b10e32c9e0520775203c11
089894a36ef33cb3d0f697541716c9b6cd8dcc43
/NLP_Project/test/blog/bow/bow.5_20.tst
addec7c847ee7fdb3520ddda93527ffe4a793928
[]
no_license
mandar15/NLP_Project
3142cda82d49ba0ea30b580c46bdd0e0348fe3ec
1dcb70a199a0f7ab8c72825bfd5b8146e75b7ec2
refs/heads/master
2020-05-20T13:36:05.842840
2013-07-31T06:53:59
2013-07-31T06:53:59
6,534,406
0
1
null
null
null
null
UTF-8
Scilab
false
false
5,885
tst
bow.5_20.tst
5 56:1.0 119:0.125 251:0.25 266:1.0 308:0.3333333333333333 1389:0.5 5 1:0.5454545454545454 3:0.01694915254237288 7:2.0 25:0.6666666666666666 30:1.0 44:0.125 57:0.06666666666666667 134:1.0 283:1.0 430:1.0 436:1.0 508:1.0 561:1.0 598:1.0 931:1.0 1029:1.0 1105:1.0 5 1:0.18181818181818182 3:0.01694915254237288 14:0.25 25:0.3333333333333333 56:1.0 57:0.06666666666666667 127:1.0 184:1.0 232:1.0 341:1.0 646:1.0 709:1.0 844:1.0 1048:0.16666666666666666 5 1:0.36363636363636365 3:0.01694915254237288 16:0.5 32:0.3333333333333333 51:0.1 56:1.0 57:0.06666666666666667 134:1.0 175:0.5 276:1.0 5 1:0.36363636363636365 3:0.03389830508474576 32:0.3333333333333333 50:0.2 57:0.2 106:1.0 107:1.0 113:1.0 127:1.0 175:0.5 224:1.0 406:1.0 439:0.5 442:1.0 816:1.0 825:1.0 924:1.0 1021:1.0 1022:1.0 1158:1.0 1365:1.0 1938:1.0 5 1:0.36363636363636365 3:0.01694915254237288 16:0.5 32:0.3333333333333333 33:1.0 107:1.0 304:1.0 311:1.0 408:1.0 436:2.0 851:0.3333333333333333 863:1.0 960:1.0 1960:1.0 5 3:0.01694915254237288 14:0.25 25:0.3333333333333333 32:0.3333333333333333 49:1.0 64:0.1 406:1.0 521:1.0 1695:1.0 1855:1.0 5 3:0.01694915254237288 56:1.0 73:0.2 175:0.5 408:1.0 857:1.0 5 1:0.9090909090909091 3:0.01694915254237288 7:1.0 14:0.25 16:1.0 25:0.3333333333333333 57:0.06666666666666667 106:0.5 107:1.0 110:1.0 144:1.0 406:1.0 652:1.0 1158:1.0 1533:1.0 5 1:0.09090909090909091 3:0.03389830508474576 6:1.0 14:0.25 16:0.5 32:0.3333333333333333 50:0.2 57:0.06666666666666667 106:0.5 112:1.0 175:0.5 304:1.0 436:1.0 610:1.0 809:1.0 917:0.25 1351:1.0 5 3:0.01694915254237288 5:1.0 14:0.25 73:0.2 161:0.2 246:1.0 261:0.16666666666666666 406:1.0 765:1.0 978:0.125 5 1:0.09090909090909091 14:0.25 57:0.06666666666666667 175:1.0 385:1.0 595:1.0 835:1.0 1581:1.0 1633:1.0 5 1:0.2727272727272727 14:0.25 16:1.0 32:0.3333333333333333 50:0.2 55:1.0 57:0.3333333333333333 64:0.1 73:0.2 82:0.5 83:1.0 92:1.0 134:1.0 142:1.0 162:2.0 175:0.5 261:0.16666666666666666 286:0.25 299:0.25 302:0.5 364:1.0 413:1.0 442:1.0 468:1.0 543:2.0 681:1.0 917:0.25 965:1.0 1389:0.5 5 57:0.06666666666666667 64:0.1 142:1.0 162:1.0 175:0.5 252:1.0 5 3:0.01694915254237288 14:0.25 96:0.16666666666666666 141:1.0 173:0.5 175:0.5 485:1.0 810:1.0 816:1.0 5 3:0.03389830508474576 32:0.3333333333333333 43:0.25 56:3.0 57:0.06666666666666667 137:1.0 139:1.0 161:0.2 162:1.0 165:0.5 175:0.5 233:1.0 261:0.16666666666666666 333:1.0 402:1.0 440:1.0 809:1.0 828:1.0 5 1:0.09090909090909091 5:1.0 53:0.5 55:1.0 1158:1.0 1464:1.0 5 1:0.09090909090909091 3:0.01694915254237288 14:0.25 25:0.3333333333333333 71:1.0 141:1.0 175:0.5 261:0.16666666666666666 298:1.0 501:1.0 567:1.0 1550:1.0 5 1:0.18181818181818182 3:0.01694915254237288 191:1.0 697:0.2 869:1.0 1403:1.0 1419:1.0 1509:1.0 1581:1.0 5 1:0.18181818181818182 3:0.01694915254237288 5:1.0 14:0.25 16:0.5 44:0.125 53:0.5 55:1.0 64:0.2 70:1.0 96:0.16666666666666666 217:0.5 261:0.3333333333333333 282:0.3333333333333333 295:1.0 308:0.3333333333333333 377:1.0 485:1.0 593:0.5 632:1.0 869:1.0 1175:1.0 1778:1.0 5 1:0.18181818181818182 3:0.06779661016949153 44:0.125 64:0.1 73:0.4 114:1.0 118:1.0 162:1.0 173:2.0 264:2.0 295:1.0 307:0.5 416:0.16666666666666666 485:2.0 924:1.0 5 3:0.01694915254237288 32:0.3333333333333333 295:1.0 5 1:0.18181818181818182 3:0.03389830508474576 25:0.3333333333333333 50:0.8 57:0.13333333333333333 62:1.0 73:0.2 96:0.3333333333333333 178:1.0 224:0.5 253:0.42857142857142855 290:0.5 302:0.5 334:1.0 439:0.5 895:3.0 1158:1.0 1776:1.0 5 3:0.01694915254237288 5:1.0 14:0.25 16:0.5 43:0.25 96:0.16666666666666666 109:1.0 114:1.0 175:0.5 246:1.0 253:0.14285714285714285 280:1.0 381:1.0 435:1.0 869:1.0 1083:1.0 5 162:1.0 1392:1.0 5 1:0.18181818181818182 3:0.01694915254237288 16:0.5 43:0.25 44:0.125 49:1.0 50:0.4 56:1.0 57:0.6 83:1.0 96:0.3333333333333333 142:1.0 173:0.5 175:0.5 246:1.0 301:1.0 357:1.0 536:1.0 628:1.0 650:1.0 870:1.0 933:1.0 1387:1.0 1633:1.0 1695:1.0 1899:1.0 5 3:0.01694915254237288 14:0.25 50:0.2 68:0.3333333333333333 73:0.2 88:0.5 92:1.0 119:0.125 246:1.0 548:1.0 1503:1.0 5 1:0.18181818181818182 3:0.01694915254237288 16:0.5 51:0.1 106:0.5 162:1.0 246:1.0 264:1.0 276:1.0 436:1.0 602:1.0 1642:1.0 5 3:0.01694915254237288 14:0.25 15:1.0 32:0.3333333333333333 161:0.2 162:1.0 246:1.0 308:0.3333333333333333 5 1:0.09090909090909091 3:0.01694915254237288 16:0.5 57:0.26666666666666666 106:0.5 246:1.0 308:0.3333333333333333 411:1.0 5 3:0.05084745762711865 56:1.0 57:0.06666666666666667 246:1.0 253:0.14285714285714285 259:1.0 302:0.5 308:0.3333333333333333 593:0.5 602:1.0 5 1:0.09090909090909091 3:0.03389830508474576 16:1.0 43:0.25 44:0.125 51:0.1 56:1.0 57:0.2 73:0.2 97:1.0 165:0.5 245:1.0 252:1.0 253:0.14285714285714285 308:0.6666666666666666 333:1.0 410:2.0 450:1.0 463:1.0 777:1.0 1011:1.0 1077:1.0 5 1:0.09090909090909091 3:0.01694915254237288 142:2.0 246:1.0 1413:1.0 1419:1.0 5 1:0.18181818181818182 3:0.01694915254237288 55:1.0 57:0.13333333333333333 124:1.0 161:0.2 162:1.0 265:1.0 325:1.0 381:1.0 419:1.0 442:1.0 567:1.0 1292:1.0 5 1:0.09090909090909091 3:0.03389830508474576 5:1.0 57:0.06666666666666667 246:1.0 302:0.5 308:0.3333333333333333 321:1.0 350:1.0 501:1.0 5 3:0.01694915254237288 14:0.25 16:0.5 44:0.125 51:0.1 57:0.06666666666666667 73:0.2 96:0.16666666666666666 162:1.0 233:1.0 281:0.5 298:1.0 308:0.3333333333333333 331:1.0 450:1.0 914:1.0 1395:1.0 5 16:0.5 25:0.3333333333333333 44:0.125 50:0.2 51:0.1 57:0.06666666666666667 73:0.2 162:1.0 175:0.5 253:0.14285714285714285 276:1.0 298:1.0 308:0.3333333333333333 5 3:0.01694915254237288 51:0.1 56:1.0 57:0.13333333333333333 71:1.0 90:1.0 141:1.0 162:1.0 175:1.0 245:1.0 282:0.3333333333333333 298:1.0 308:0.3333333333333333 638:1.0 5 1:0.09090909090909091 14:0.5 44:0.125 64:0.2 96:0.16666666666666666 162:1.0 175:0.5 261:0.16666666666666666 264:1.0 298:2.0 406:1.0 479:0.5 524:1.0 638:1.0 5 1:0.18181818181818182 57:0.06666666666666667 175:0.5 589:1.0 859:1.0 1854:1.0
b9d9dd156c5bbc19a73d006ff4f94e0a4fc29baf
449d555969bfd7befe906877abab098c6e63a0e8
/2252/CH5/EX5.11/Ex5_11.sce
ab8daa6c5e750ff4cc5da023b54c265efddb793a
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
347
sce
Ex5_11.sce
mu_not=4D-7*%pi Nb=500//no. of turns in coil B l=120D-2//mean length of flux path in iron circuit Na=50//no. of turns in coil A mu_r=2000//relative permeability of iron A=80*10^-4//cross-sectional area M=Nb*mu_not*mu_r*Na*A/(l) mprintf("Mutual inductance M=%f H\n",M) di=12 dt=.015 e=-M*di/dt mprintf("Emf induced in coil B=%f V",e)
11c9b27cd9c74b8ad743469c7e7c1d64bb56b9b2
449d555969bfd7befe906877abab098c6e63a0e8
/2021/CH10/EX10.14/EX10_14.sce
47ca84b56cdfb15a5271bb4ab58084d84de3eb63
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
265
sce
EX10_14.sce
//Finding of velocity , Dischage //Given z=1.5; sb=0.0003; B=10; n=0.012; y=3; //To Find A=(B+(z*y))*y; P=B+(2*y)*sqrt(1+z^2); R=A/P; v=(1/n)*R^(2/3)*sb^(1/2); q=A*v; disp("Velocity ="+string(v)+" m/sec^2"); disp("Discharge ="+string(q)+" m^3/sec");
343ad7d005994acecf91488779ea0792053f8b75
449d555969bfd7befe906877abab098c6e63a0e8
/1808/CH1/EX1.16/Chapter1_Example16.sce
ce2c7588fa6a11bd5916ffc584e845d76e6f6f72
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
1,617
sce
Chapter1_Example16.sce
clc clear //INPUT DATA pmi=6;//Mean effective pressure in bar L=0.45;//Stroke in m d=0.3;//Rope diameter in m N=12000;//Total revolutions made nc=1;//number of cylinders n=2;//for four cylinders D=1.8;//Brake drum diameter in m x=0.02136;//difference of W and S cpw=4.18;//specific pressure of water cpe=1.005;//specific pressure of air cv=45000;//calorific value two=60;//outlet water temperature twi=15;//inlet water temperature te=300;//exhaust gas temperature in Degree C ta=20;//room temperature in Degree C mf=7.6;//mass flow rate in kg/h mw=550;//water flo rate in kg/h me=367.6;//total flow rate in kg/h //CALCULATIONS IP=(pmi*102*L*(3.14*(d^2)/4)*N*nc)/(60*60*n);//Indicated power in kW BP=((x)*3.14*(D+d)*N)/60;//Brake power in kW nit=(IP/(mf*cv/3600))*100;//Indicetad thermal efficiency in percentage nm=(BP/IP)*100;//mechanical efficiency in percentage Qs=mf*cv/60;//heat supplied in kJ/min a11=(BP/Qs)*100;//% of heat equivalent to BP Qw=(mw*cpw*(two-twi))/60;//Heat loss to cooling water in kW b11=(Qw/Qs)*100;//% of heat lost to cooling water Qe=(me*cpe*(te-ta))/60;//Heat loss to exhaust gases in kW c11=(Qe/Qs)*100;//% of heat lost to exhaust gases Qu=(Qs-(BP*60+Qw+Qe));//Enthalpy of unaccount in kW d11=(Qu/Qs)*100;//unaccounted heat in percentage //OUTPUT printf('(i)Indicated power is %3.2f kW \n brake power is %3.2f kW \n (ii)Indicated thermal efficiency is %3.2f percentage \n (iii)Mechanical efficiency is %3.2f percentage \n (iv)HEAT BALANCE SHEET \n (I)Heat supplied %3.i kJ/min \n (II)Heat utilised in the system is %3.2f kW',IP,BP,nit,nm,Qs,Qu)
d5ef2b6244031a85b81fe57d23400af22488f102
449d555969bfd7befe906877abab098c6e63a0e8
/944/CH3/EX3.15/example3_15_TACC.sce
515df245ce4df485ac8c66a847bf287c257e5d11
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
524
sce
example3_15_TACC.sce
//example 3.15 clear; clc; //Given: Hc=-5645;//standard enthalpy of combustion of reaction:C12H22O11(s)+12O2(g)->12CO2(g)+11H2O(l) [KJ/mol] Hf1=-393.51;//standard heat of formation of CO2: C(s)+O2(g)->CO2(g) [KJ/mol] Hf2=-285.83;//standard heat of formation of H2O: H2(g)+0.5O2(g)->H2O(l) [KJ/mol] //to find the standard heat of formaton of solid sucrose //reaction:12C(s)+11H2(g)+5.5O2(g)->C12H22O11(s) Hf=12*Hf1+11*Hf2-Hc;//[KJ/mol] printf("Hf(standard heat of formation of solid sucrose)=%f KJ/mol",Hf);
f0e8d1c4d38df2574aa1ba3555c14b82ac7c2273
449d555969bfd7befe906877abab098c6e63a0e8
/530/CH2/EX2.13.a/example_2_13a.sce
c34632f627bf416e1884b3ac116cdd0e51ff0042
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
546
sce
example_2_13a.sce
clear; clc; // A Textbook on HEAT TRANSFER by S P SUKHATME // Chapter 2 // Heat Conduction in Solids // Example 2.13(a) // Page 73 printf("Example 2.13(a), Page 73 \n\n") D = 0.003 ; // [m] L = 0.03 ; // [m] h = 10 ; // [W/m^2] Tf = 20 ; // [C] T1 = 120 ; // [C] // (a) Copper fin k = 350 ; // [W/m K] // For a circular cross section m = [4*h/(k*D)]^(1/2); mL = m*0.03 ; // T at x = L T = Tf + (T1-Tf)/cosh(m*L); printf("mL = %f \n",mL); printf("Temperature at the tip of fin made of copper is %f degree C \n",T);
51bd4279153dc417edd62ca430f1f8dc104c8a71
7c129ce7f747d44e6c7cedea4c007088e87aa90c
/Programs/Goertzel_Filter.sce
5e2df0befc968a3e764f5e11c171c3c0bec8526c
[]
no_license
KilariSandhya/Digital-Signal-Processing
08d97a6d46ff46c533c7a2114c19883980c85e38
bad9dab8f5e02a8f1638ce20351e9eba1a0a11d0
refs/heads/master
2022-11-18T03:23:47.628061
2020-07-20T07:46:02
2020-07-20T08:00:23
281,047,630
1
0
null
null
null
null
UTF-8
Scilab
false
false
227
sce
Goertzel_Filter.sce
clear;close;clc; f0=500; fs=8000; N=8000; k=N*f0/fs; w=[-%pi:%pi/25:%pi]; z=exp(-%i*w); wn=exp(%i*2*%pi*k/N); hk=1 ./(1-(wn*z)); mag= abs(hk); f=(fs*w)/(2*%pi); plot2d(f,mag); xtitle('Magnitude Plot','hz','Magnitude');
54259d24ce854a507add404fb30d42d045fd9817
449d555969bfd7befe906877abab098c6e63a0e8
/1199/CH2/EX2.50/2_50.sci
b3561b6fdb85522963a0591dd318c1e5a3a0cdef
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
549
sci
2_50.sci
// 2.50 clc; d=2*10^-12; t=1*10^-3; Fmax=0.01; e0=8.85*10^-12; er=5; A=100*10^-6; Eo_peak_to_peak=2*d*t*Fmax*10^3/(e0*er*A); printf("\n peak voltage swing under open conditions=%.2f mV",Eo_peak_to_peak) Rl=100*10^6; Cl=20*10^-12; d1=1*10^-3; Cp=e0*er*A/d1; C=Cp+Cl; w=1000; m=[w*Cp*Rl/[1+(w*C*Rl)^2]^0.5]; El_peak_to_peak=[2*d*t*Fmax*10^3/(e0*er*A)]*m; printf("\n peak voltage swing under loaded conditions=%.2f mV",El_peak_to_peak) E=90*10^9; dt=2*Fmax*t*10^12/(A*E); printf("\n Maximum change in crystal thickness=%.2f pm",dt)
c946421a3d5f204ab2ad8401eb39c107275edac6
d71a054f6ca515f305604ba984239870673d7a4d
/resuengl/prog/plot.sci
5f0cd91da5c26539bee11b0a3209edf398bb6e7e
[]
no_license
alexmadon/physics
f26450c3fcfa017d93bb613ab2962cdbdedd467c
55543a7c64ecf1f7b83b9ace6b48500c0b67abb3
refs/heads/master
2021-01-25T09:26:45.883289
2019-03-09T14:49:25
2019-03-09T14:49:25
93,838,111
0
0
null
null
null
null
UTF-8
Scilab
false
false
3,102
sci
plot.sci
i=100; str=sprintf('%d',i); 'b'+str+'a'; // SOLUTIONS // brownian motion: // S_t=sigma*W_t // brownian motion + drift // S_t=sigma*W_t+mu*t //exponential brownian motion+drift: // S_t=exp(sigma*W_t+mu*t) // STOCHASTIC DIFFERENTIAL EQUATIONS //dX_t=sigma(t,X_t)dW_t+mu(t,X_t)dt rand('normal') maxim=32001; x=0:maxim-1; y=zeros(1,maxim); for i=2:maxim y(i)=y(i-1)+rand; end; x=x/1000; y=y/10; //============================= //plotting window 1 xbasc(); //clear window xdel()//delete window driver('Rec') xset("font",4,8) // fontid, fontsize xsetech([-0.0,-0.0,1.,1.]);//Upper-Left Width Height xbasc(); //clear window t=1:1:1001; rect=[min(x(t)),min(y(t)),max(x(t)),max(y(t))]; plot2d(x(t)',y(t)',-1,'011',' ',rect,[5,3,5,3]) file_ps='b0_5.ps'; xbasimp(0,file_ps,0); file_psl=file_ps+'.0'; unix_w("BEpsf "+file_psl) told=t; xbasc(); //clear window t=1:6:6000; rect=[min(x(t)),min(y(t)),max(x(t)),max(y(t))]; plot2d(x(t)',y(t)',-1,'011',' ',rect,[5,3,5,3]) xrect(min(x(told)),max(y(told)),max(x(told))-min(x(told)),max(y(told))-min(y(told))) file_ps='b0_4.ps'; xbasimp(0,file_ps,0); file_psl=file_ps+'.0'; unix_w("BEpsf "+file_psl) told=t; xbasc(); //clear window t=1:32:32000; rect=[min(x(t)),min(y(t)),max(x(t)),max(y(t))]; plot2d(x(t)',y(t)',-1,'011',' ',rect,[5,3,5,3]) xrect(min(x(told)),max(y(told)),max(x(told))-min(x(told)),max(y(told))-min(y(told))) file_ps='b0_3.ps'; xbasimp(0,file_ps,0); file_psl=file_ps+'.0'; unix_w("BEpsf "+file_psl) //======================================== //======================================== maxim=32001; x=0:maxim-1; x=x/1000; y=sin(0.5*x-.9)+sin(1.2*x-.7)+sin(.6*x-.7); //plot(x,y) //============================= //plotting window 1 xbasc(); //clear window xdel()//delete window driver('Rec') xset("font",4,8) // fontid, fontsize xsetech([-0.0,-0.0,1.,1.]);//Upper-Left Width Height xbasc(); //clear window t=1:10:1001; rect=[min(x(t)),min(y(t)),max(x(t)),max(y(t))]; plot2d(x(t)',y(t)',-1,'011',' ',rect,[5,3,5,3]) file_ps='n0_5.ps'; xbasimp(0,file_ps,0); file_psl=file_ps+'.0'; unix_w("BEpsf "+file_psl) told=t; xbasc(); //clear window t=1:60:6001; rect=[min(x(t)),min(y(t)),max(x(t)),max(y(t))]; plot2d(x(t)',y(t)',-1,'011',' ',rect,[5,3,5,3]) xrect(min(x(told)),max(y(told)),max(x(told))-min(x(told)),max(y(told))-min(y(told))) file_ps='n0_4.ps'; xbasimp(0,file_ps,0); file_psl=file_ps+'.0'; unix_w("BEpsf "+file_psl) told=t; xbasc(); //clear window t=1:320:32001; rect=[min(x(t)),min(y(t)),max(x(t)),max(y(t))]; plot2d(x(t)',y(t)',-1,'011',' ',rect,[5,3,5,3]) xrect(min(x(told)),max(y(told)),max(x(told))-min(x(told)),max(y(told))-min(y(told))) file_ps='n0_3.ps'; xbasimp(0,file_ps,0); file_psl=file_ps+'.0'; unix_w("BEpsf "+file_psl) //======================================== //====================== xbasc(); //clear window xsetech([-0.05,-0.05,1.1,1.1]); //Upper-Left Width Height plot2d(x,y,-1,'011',' ',[0.3,-2.3,0.6,-1.4]); //corner_b corner_u xx=0.3;yy=-.3;ww=0.3;hh=2; xrect(xx,yy,ww,hh) // printing file_ps='0_1.ps'; xbasimp(0,file_ps,0); file_psl=file_ps+'.0'; unix_w("BEpsf "+file_psl)