blob_id
stringlengths 40
40
| directory_id
stringlengths 40
40
| path
stringlengths 4
214
| content_id
stringlengths 40
40
| detected_licenses
listlengths 0
50
| license_type
stringclasses 2
values | repo_name
stringlengths 6
115
| snapshot_id
stringlengths 40
40
| revision_id
stringlengths 40
40
| branch_name
stringclasses 21
values | visit_date
timestamp[us] | revision_date
timestamp[us] | committer_date
timestamp[us] | github_id
int64 141k
586M
⌀ | star_events_count
int64 0
30.4k
| fork_events_count
int64 0
9.67k
| gha_license_id
stringclasses 8
values | gha_event_created_at
timestamp[us] | gha_created_at
timestamp[us] | gha_language
stringclasses 50
values | src_encoding
stringclasses 23
values | language
stringclasses 1
value | is_vendor
bool 1
class | is_generated
bool 1
class | length_bytes
int64 5
10.4M
| extension
stringclasses 29
values | filename
stringlengths 2
96
| content
stringlengths 5
10.4M
|
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
f5d61a13fcb96108a9645da27e3a2139a7b54c4e
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2912/CH6/EX6.12/Ex6_12.sce
|
1ebf703a53730dde4a09fdc83e38ac02ca808960
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 680
|
sce
|
Ex6_12.sce
|
//chapter 6
//example 6.12
//Calculate electron density for a metal
//page 150
clear;
clc;
//given
E_F_L=4.7; // in eV (Fermi energy in Lithium)
E_F_M=2.35; // in eV (Fermi energy in a metal)
n_L=4.6E28; // in 1/m^3 (density of electron in Lithium)
//calculate
// Since n=((2*m/h)^3/2)*E_F^(3/2)*(8*pi/3) and all things except E_F are constant
// Therefore we have n=C*E_F^(3/2) where C is proportionality constant
// n1/n2=(E_F_1/E_F_2)^(3/2)
// Therefore we have
n_M=n_L*(E_F_M/E_F_L); // calculation of electron density for a metal
printf('\nThe lectron density for a metal is \t=%1.1E 1/m^3', n_M);
//Note: Answer in the book is wrong due to priting error
|
679a4be0bf46d1d5b60f1bd138f04eba7228ad16
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1862/CH17/EX17.7/C17P7.sce
|
62d9f0ce38a6e27a1d0c1d1a3986b5260f7e9f22
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 578
|
sce
|
C17P7.sce
|
clear
clc
//to find time required by body to come halfway
// GIVEN:
//refer to figure 17-15 from page no. 385
//from the equation given
//radius of reference circle
r = 0.35//in m
//angular speed
omega = 8.3//in rad/s
// SOLUTION
//refer to problem 17-5
//angle turned to come halfway
wt = 60//in degree
//time required by body to come halfway
t = ((wt*%pi)/180)/omega//in seconds //taking angle in radians
printf ("\n\n Angle turned to come halfway wt = \n\n %2i degree",wt)
printf ("\n\n Time required by body to come halfway t = \n\n %.2f seconds",t)
|
97e4741d9237ae60389dfa9bf51adaf3e998e675
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2333/CH1/EX1.35/35.sce
|
a18130156f20de52a44b6e5544beff84117f285d
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 357
|
sce
|
35.sce
|
clc
// Given that
BE = 13.6 // Binding energy of electron in eV
c = 3e8 // speed of light in m/sec
// Sample Problem 35 on page no. 60
printf("\n # PROBLEM 35 # \n")
printf(" Standard formula used \n")
printf("\n E = m*c^2 \n")
del_m = BE*1.6e-19/c^2 // loss of mass in kg
printf("\n Loss of mass in formation of one atom of hydrogen is %ekg.",del_m)
clc
|
1b1ac01c31fccd5a12a7e4be6ff072e0c8412f44
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1658/CH27/EX27.16/Ex27_16.sce
|
111918cb33bfe37a5ccaccd3c2dad92a2944d8f0
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 527
|
sce
|
Ex27_16.sce
|
clc;
//e.g 27.16
hfe=99;
hie=2*10**3;
hie1=2000;
hie2=2000;
Rc=22*10**3;
R4=100;
R1=220*10**3;
R2=22*10**3;
RC1=4.7*10**3;
R3=7.8*10**3;
Ri=hie;
a=(R1*R2)/(R1+R2);
b=(a*Rc)/(a+Rc);
R01=(b*hie1)/(b+hie1)
disp('Kohm',R01*10**-3,"R01=");
Ri2=hie;
C=(R3+R4);
R02=(RC1*C)/(RC1+C)
disp('Kohm',R02*10**-3,"R02=");
AV1=hfe*R01/hie;
AV2=hfe*R02/hie;
AV=AV1*AV2;
bta=R4/(R3+R4);
Ri1=Ri*(1+bta*AV);
disp('Kohm',Ri1*10**-3,"Ri1=");
RO2=R02/(1+bta*AV);
disp('ohm',RO2*1,"RO2=");
AV1=AV/(1+bta*AV);
disp(AV1);
|
6941ad9276cddbc45d2dbb796461de47f65cef1b
|
46ffb5fda9448453eba4d6787a1568028b241d88
|
/ABMLangangen/calibration/calibSimplexMeanSquares_05:29:10.297 PM 05-juin-2013.sci
|
e9a59f94bdea970f88855b8f4415e9e625b55925
|
[] |
no_license
|
JusteRaimbault/Models
|
f81f886dc050445dae68e933e0c052c7f9c0b59c
|
52f9c28fe20c8e491fb83e22ef162256eb966d32
|
refs/heads/master
| 2016-09-10T23:23:05.419418
| 2013-07-30T22:02:34
| 2013-07-30T22:02:34
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 816
|
sci
|
calibSimplexMeanSquares_05:29:10.297 PM 05-juin-2013.sci
|
ms=[];incomemean=[];bref=[];bnorm=[];
ms(1)=5.434968908330303E8;
incomemean(1)=10000;
bref(1)=5000;
bnorm(1)=5000;
ms(2)=1.1313075247166609E80;
incomemean(2)=10000;
bref(2)=7000;
bnorm(2)=5000;
ms(3)=5.149266117542891E8;
incomemean(3)=10000;
bref(3)=5000;
bnorm(3)=7000;
ms(4)=3.931488099239337E8;
incomemean(4)=12000;
bref(4)=5000;
bnorm(4)=5000;
ms(5)=3.851424992617375E8;
incomemean(5)=12000;
bref(5)=5000;
bnorm(5)=5000;
ms(6)=3.921528077268047E8;
incomemean(6)=12000;
bref(6)=5000;
bnorm(6)=5000;
ms(7)=5.6532603326403855E87;
incomemean(7)=12000;
bref(7)=7000;
bnorm(7)=5000;
ms(8)=3.839067249312255E8;
incomemean(8)=12000;
bref(8)=5000;
bnorm(8)=7000;
ms(9)=2.26819065977344E8;
incomemean(9)=14000;
bref(9)=5000;
bnorm(9)=5000;
ms(10)=2.3766631696279427E8;
incomemean(10)=14000;
bref(10)=5000;
bnorm(10)=5000;
|
6d52ad3ecbfefc65b8d0be5d92f659af7eef575f
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2093/CH2/EX2.11/exa_2_11.sce
|
218cac9ab997101d963cf1be2ced4ddd3d3e4099
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,547
|
sce
|
exa_2_11.sce
|
// Exa 2.11
clc;
clear;
close;
// Given data
V_DD= 15;// in V
KnWbyL= 0.25;// in mA/V^2
KnWbyL=KnWbyL*10^-3;// in A/V^2
Vt= 1.5;// in V
V_A= 50;// in V
R_D= 10;// in kΩ
R_D= R_D*10^3;// in Ω
R_L= 10;// in kΩ
R_L= R_L*10^3;// in Ω
R_G= 10;// in MΩ
R_G= R_G*10^6;// in Ω
// I_D= 1/2*KnWbyL*(V_D-Vt)^2 , (V_GS= V_D, as dc gate current is zero) (i)
// V_D= V_DD- I_D*R_D (ii)
I_D= 1.06;// in mA
I_D = I_D*10^-3;// in A
V_D= V_DD- I_D*R_D;// in V
V_GS=V_D;// in V
// The coordinates of operating point
V_GSQ= V_D;// in V
I_DQ= I_D*10^3;// in mA
disp("The coordinates of operating points are V_GSQ = "+string(V_GSQ)+" V and I_DQ= "+string(I_DQ)+" mA")
gm= KnWbyL*(V_GS-Vt);// in A/V
r_o= V_A/I_D;//in Ω
// The gain is : Av= vo/vi = -gm*(R_D||R_L||r_o)
Av= -gm*[R_D*R_L*r_o/(R_D*R_L+R_D*r_o+R_L*r_o)];// in V/V
// i_i= (vi-vo)/R_G
// i_i= vi/R_G*(1-vo/vi) and Rin= vi/i_i = R_G/(1-Av)
Rin= R_G/(1-Av);// in Ω
disp(Rin*10^-6,"The input resistance in MΩ is : ")
disp("The largest allowable input signal vi is determined by the need to keep the MOSFET in saturation at all times")
disp(" V_DS >= V_GS- vt")
disp("By enforcing this condition with equality at the point V_GS is maximum and V_DS is correspondingly minimum")
disp(" V_DSmin= V_GSmax -Vt")
disp(" V_DS-|Av| vi = V_GS + vi -Vt")
disp(" 4.4 - 3.3 vi = 4.4 + vi -1.5")
disp("which results in vi= 0.34V")
|
47c45428b1668a1139fb0e47cb59e4b243fe7c9f
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2201/CH4/EX4.6/ex4_6.sce
|
86787f4d0de52fa03a8e917525a1edf9221db719
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 672
|
sce
|
ex4_6.sce
|
// Exa 4.6
clc;
clear;
close;
// Given data
Rho_p = 2;// in ohm-cm
Rho_n = 1;// in ohm cm
q = 1.6*10^-19;// in C
n_i = 2.5*10^13;// atoms per cm^3
Miu_p = 1800;
Miu_n = 3800;
N_A = 1/(Rho_p*q*Miu_p);// in /cm^3
N_D = 1/(Rho_n*q*Miu_n);// in /cm^3
V_T = 26;//in mV
V_T= V_T*10^-3;// in V
V_J = V_T*log((N_A*N_D)/((n_i)^2));//in V
disp(V_J,"The height of the potential energy barrier in V is");
Miu_p = 500;
N_A = 1/(Rho_p*q*Miu_p);// in /cm^3
Miu_n = 1300;
N_D = 1/(Rho_n*q*Miu_n);// in /cm^3
n_i = 1.5*10^10;
V_J = V_T*log((N_A*N_D)/((n_i)^2));//in V
disp("For silicon P-N juction")
disp(V_J,"The height of the potential energy barrier in V is");
|
0ba24e6fef6b9a0cc827b2cdbb67f433defa92be
|
676ffceabdfe022b6381807def2ea401302430ac
|
/solvers/ADRSolver/Tests/Advection2D_dirichlet_regular_MODIFIED_triangle_98.tst
|
f356ac42c81fbb5022864762f67088c1bcddd812
|
[
"MIT"
] |
permissive
|
mathLab/ITHACA-SEM
|
3adf7a49567040398d758f4ee258276fee80065e
|
065a269e3f18f2fc9d9f4abd9d47abba14d0933b
|
refs/heads/master
| 2022-07-06T23:42:51.869689
| 2022-06-21T13:27:18
| 2022-06-21T13:27:18
| 136,485,665
| 10
| 5
|
MIT
| 2019-05-15T08:31:40
| 2018-06-07T14:01:54
|
Makefile
|
UTF-8
|
Scilab
| false
| false
| 715
|
tst
|
Advection2D_dirichlet_regular_MODIFIED_triangle_98.tst
|
<?xml version="1.0" encoding="utf-8"?>
<test>
<description>2D unsteady WeakDG advection MODIFIED, P=3 Dirichlet bcs, regular triangular elements using AVX BwdTrans</description>
<executable>ADRSolver</executable>
<parameters>Advection2D_dirichlet_regular_MODIFIED_triangle_98.xml</parameters>
<files>
<file description="Session File">Advection2D_dirichlet_regular_MODIFIED_triangle_98.xml</file>
</files>
<metrics>
<metric type="L2" id="1">
<value variable="u" tolerance="1e-7"> 0.0014953 </value>
</metric>
<metric type="Linf" id="2">
<value variable="u" tolerance="1e-8"> 0.00385391 </value>
</metric>
</metrics>
</test>
|
a3b8599d7d5a8e0a7c1cc455814edfd11b9a92c4
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1919/CH8/EX8.7/Ex8_7.sce
|
30e753457c74e6d1cb2ac91388b5acbdc92132bb
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,051
|
sce
|
Ex8_7.sce
|
// Theory and Problems of Thermodynamics
// Chapter 8
// Power and Refrigeration Cycles
// Example 7
clear ;clc;
//Given data
P1 = 2.5 // entering pressure of superheated steam in MPa
T1 = 523.15 // entering temperature of superheated steam in K
P_e1 = 10 // condenser pressure of exhaust steam in kPa
P_e2 = 5 // condenser pressure of exhaust steam in kPa
// Steam at 5 kPa
vf = 0.001010 // in m^3/kg
hf = 137.82 // in kJ/kg
hfg = 2423.7 // in kJ/kg
sf = 0.4764 // in kJ/kg K
sfg = 7.9187 // in kJ/kg K
// Steam at 2.5 MPa and 523.15 K
h4 = 2880.1 // in kJ/kg
s4 = 6.4085 // in kJ/kg K
s5 = s4
X5 = (s5-sf)/sfg
h5 = hf + X5*hfg // in kJ/kg
h2_h1 = vf*(P1*1e3-P_e2) // h2_h1 = h2-h1 in kJ/kg
h2 = hf + h2_h1 // in kJ/kg
n = ((h4 - h5)-(h2_h1))/(h4-h2)
// Output Results
mprintf('Thermal efficiency of power plant = %4.4f' ,n);
|
4487b526a2e79130c2d9c1e66a337607ff2fc6c8
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2066/CH6/EX6.4/6_4.sce
|
9108c9bc5875cc06fe70bdb8a263dafa0e9ca6d4
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 303
|
sce
|
6_4.sce
|
clc
clear
//Initialization of variables
Lr=1/10
rhom=2
rhop=1.94
//calculations
Vr=sqrt(Lr)
Tr=Lr/Vr
ar=Vr/Tr
Fr=rhom/rhop *ar*Lr^3
//results
printf("Velocity ratio = %.4f",Vr)
printf("\n Time ratio = %.4f",Tr)
printf("\n Acceleration ratio = %d ",ar)
printf("\n Force ratio = %.6f",Fr)
|
551d417b8c45b3086e2821ea7b21986e8372658d
|
456d61ad6df72c2b22d4b518d913dea4b1c7bb74
|
/test/SL2.prev.tst
|
abdbb4af1703f84cf93dc4685ed6a290683dc5be
|
[
"Apache-2.0",
"LicenseRef-scancode-unknown-license-reference"
] |
permissive
|
gfis/xtool
|
33d38dbccc24f5bf064bd3d79c4fdea19971c345
|
891e1f1ffe57558c6c150e49b2d7976c15bfcc85
|
refs/heads/master
| 2022-02-13T12:50:15.773274
| 2022-01-28T14:34:39
| 2022-01-28T14:34:39
| 30,119,817
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,004
|
tst
|
SL2.prev.tst
|
<?xml version="1.0" encoding="UTF-8"?>
<jcl><!--[1..1] -->
<__unresolvedChoice__><!--[1..n] -->
<comment>normalizedString</comment><!--[1..1] xs:normalizedString normalizedString -->
<data></data><!--[1..1] xs:token token -->
<eof>normalizedString</eof><!--[1..1] xs:normalizedString normalizedString -->
<eoj></eoj><!--[1..1] -->
<stmt label="" op=""><!--[1..1] -->
<parm name=""><!--[1..1] -->
<__unresolvedChoice__><!--[0..1] -->
<group><!--[1..1] -->
<parm></parm><!--[1..1] -->
</group>
<text></text><!--[1..1] xs:token token -->
</__unresolvedChoice__>
<!--@name--><!--[1..1] xs:token token -->
</parm>
<!--@label--><!--[1..1] xs:token token -->
<!--@op--><!--[1..1] xs:token token -->
</stmt>
</__unresolvedChoice__>
</jcl>
|
f73de0383034690fc9854f7011eae51288c4acd7
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/67/CH1/EX1.5/example15.sce
|
e76680fc4b8a8b9154e3822372a95ade31db43c7
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 200
|
sce
|
example15.sce
|
//Example 1.5
//Sketch the signal x(t)=A[u(t+a)-u(t-a)]
clc;
A=1;
a=2;
t=-a:a
x=ones(length(t),1);
plot(t,x)
//this signal is a finite duration signal so it is energy signal
E=integrate('1','t',-a,a);
|
d6f32059a10279b0a73339b70cbe9b62fc10fd06
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/23/CH6/EX6.6/Example_6_6.sce
|
671fa6dc39a30bb057ecbde51e65026780aae128
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 941
|
sce
|
Example_6_6.sce
|
clear;
clc;
//To find Approx Value
function[A]=approx(V,n)
A=round(V*10^n)/10^n;//V-Value n-To what place
funcprot(0)
endfunction
//Example 6.6
//Caption : Program to Find the State of Steam at the Exit Nozzle
//Given values
P1=1000;//[KPa]
T=533.15;//[K]
P2=200;//[KPa]
H1=2965.2;//[KJ/kg] from Steam tables
S1=6.9680;//[KJ/Kg/K] From steam tables
S2=S1;
S_l=1.5301;//[KJ/Kg/K] Entropy Of Saturated Liquid @ 200KPa
S_v=7.1268;//[KJ/Kg/K] Entropy Of Saturated vapor @ 200KPa
H_l=504.7;//[KJ/Kg] Enthalpy Of saturated liquid @ 200KPa
H_v=2706.7;//[KJ/Kg] Enthalpy Of saturated vapor @ 200KPa
//Solution
//find x_v from the eqn S=(1-x_v)S_l+x_c*S_v
x_v=approx((S1-S_l)/(S_v-S_l),4);
//From Eqn(6.73a)
H2=((1-x_v)*H_l)+(x_v*H_v);
del_H=approx(H2-H1,0);//[KJ/Kg]
disp('%',x_v*100,'Percent vapor')
disp('%',(1-x_v)*100,'Percent Liquid')
disp('KJ/Kg',del_H,'Change In Enthalpy')
//End
|
4e70c013ece08719de4c80e26b414ef853c0c3f1
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/683/CH12/EX12.11/W_11.sce
|
33f67dd3ed85fa17b3652898c7ba09e4dc622786
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 258
|
sce
|
W_11.sce
|
// sum 12-11
clc;
clear;
t=30;
sigut=417;
sige=sigut/2;
Ka=0.5;
Kb=0.85;
Kc=0.897;
SCF=1.2;
Kd=1/SCF;
FOS=1.5;
sige1=sige*Ka*Kb*Kc*Kd/FOS;
Pa=60*10^3;
l=Pa/(sige1*t);
// printing data in scilab o/p window
printf("l is %0.1f mm ",l);
|
48a42c91ea2a2209d344764ef77303e9a7ba3ee4
|
36c5f94ce0d09d8d1cc8d0f9d79ecccaa78036bd
|
/Happy Birthday.sce
|
a8fa929244e3c64a1e2948355484239a42488ad5
|
[] |
no_license
|
Ahmad6543/Scenarios
|
cef76bf19d46e86249a6099c01928e4e33db5f20
|
6a4563d241e61a62020f76796762df5ae8817cc8
|
refs/heads/master
| 2023-03-18T23:30:49.653812
| 2020-09-23T06:26:05
| 2020-09-23T06:26:05
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 102,366
|
sce
|
Happy Birthday.sce
|
Name=Happy Birthday
PlayerCharacters=Birthday Player
BotCharacters=Candlelight.bot
IsChallenge=true
Timelimit=10.0
PlayerProfile=Birthday Player
AddedBots=Candlelight.bot;Candlelight.bot;Candlelight.bot;Candlelight.bot;Candlelight.bot;Candlelight.bot;Candlelight.bot;Candlelight.bot
PlayerMaxLives=0
BotMaxLives=1;1;1;1;1;1;1;1
PlayerTeam=1
BotTeams=2;2;2;2;2;2;2;2
MapName=happy_birthday.map
MapScale=1.0
BlockProjectilePredictors=true
BlockCheats=true
InvinciblePlayer=false
InvincibleBots=false
Timescale=1.0
BlockHealthbars=true
TimeRefilledByKill=0.0
ScoreToWin=1.0
ScorePerDamage=0.0
ScorePerKill=0.0
ScorePerMidairDirect=0.0
ScorePerAnyDirect=0.0
ScorePerTime=1.0
ScoreLossPerDamageTaken=0.0
ScoreLossPerDeath=0.0
ScoreLossPerMidairDirected=0.0
ScoreLossPerAnyDirected=0.0
ScoreMultAccuracy=false
ScoreMultDamageEfficiency=false
ScoreMultKillEfficiency=false
GameTag=Fun
WeaponHeroTag=
DifficultyTag=1
AuthorsTag=pleasewait
BlockHitMarkers=false
BlockHitSounds=false
BlockMissSounds=false
BlockFCT=true
Description=Blow out candles quickly.
GameVersion=1.0.7.2
ScorePerDistance=0.0
[Aim Profile]
Name=_
MinReactionTime=0.000001
MaxReactionTime=0.000001
MinSelfMovementCorrectionTime=0.000001
MaxSelfMovementCorrectionTime=0.000001
FlickFOV=90.0
FlickSpeed=10.0
FlickError=0.0
TrackSpeed=10.0
TrackError=0.0
MaxTurnAngleFromPadCenter=360.0
MinRecenterTime=0.0
MaxRecenterTime=0.0
OptimalAimFOV=360.0
OuterAimPenalty=0.0
MaxError=0.0
ShootFOV=90.0
VerticalAimOffset=0.0
MaxTolerableSpread=0.0
MinTolerableSpread=0.0
TolerableSpreadDist=100000.0
MaxSpreadDistFactor=1.0
[Bot Profile]
Name=Candlelight
DodgeProfileNames=
DodgeProfileWeights=
DodgeProfileMaxChangeTime=60.0
DodgeProfileMinChangeTime=60.0
WeaponProfileWeights=1.0;1.0;1.0;1.0;1.0;1.0;1.0;1.0
AimingProfileNames=_;_;_;_;_;_;_;_
WeaponSwitchTime=60.0
UseWeapons=false
CharacterProfile=Candlelight
SeeThroughWalls=false
NoDodging=true
NoAiming=true
[Character Profile]
Name=Birthday Player
MaxHealth=1.0
WeaponProfileNames=Blow;;;;;;;
MinRespawnDelay=0.000001
MaxRespawnDelay=0.000001
StepUpHeight=0.0
CrouchHeightModifier=1.0
CrouchAnimationSpeed=1.0
CameraOffset=X=0.000 Y=0.000 Z=0.000
HeadshotOnly=false
DamageKnockbackFactor=0.0
MovementType=Base
MaxSpeed=0.0
MaxCrouchSpeed=0.0
Acceleration=0.0
AirAcceleration=16000.0
Friction=0.0
BrakingFrictionFactor=0.0
JumpVelocity=0.0
Gravity=0.0
AirControl=0.0
CanCrouch=false
CanPogoJump=false
CanCrouchInAir=false
CanJumpFromCrouch=false
EnemyBodyColor=X=255.000 Y=0.000 Z=0.000
EnemyHeadColor=X=255.000 Y=255.000 Z=255.000
TeamBodyColor=X=0.000 Y=0.000 Z=255.000
TeamHeadColor=X=255.000 Y=255.000 Z=255.000
BlockSelfDamage=false
InvinciblePlayer=true
InvincibleBots=false
BlockTeamDamage=false
AirJumpCount=0
AirJumpVelocity=800.0
MainBBType=Cylindrical
MainBBHeight=72.0
MainBBRadius=16.0
MainBBHasHead=false
MainBBHeadRadius=0.1
MainBBHeadOffset=0.0
MainBBHide=false
ProjBBType=Cylindrical
ProjBBHeight=72.0
ProjBBRadius=16.0
ProjBBHasHead=false
ProjBBHeadRadius=0.1
ProjBBHeadOffset=0.0
ProjBBHide=true
HasJetpack=false
JetpackActivationDelay=0.2
JetpackFullFuelTime=4.0
JetpackFuelIncPerSec=1.0
JetpackFuelRegensInAir=false
JetpackThrust=6000.0
JetpackMaxZVelocity=400.0
JetpackAirControlWithThrust=0.25
AbilityProfileNames=;;;
HideWeapon=false
AerialFriction=0.0
StrafeSpeedMult=1.0
BackSpeedMult=1.0
RespawnInvulnTime=0.0
BlockedSpawnRadius=0.0
BlockSpawnFOV=0.0
BlockSpawnDistance=0.0
RespawnAnimationDuration=0.0
AllowBufferedJumps=false
BounceOffWalls=false
LeanAngle=0.0
LeanDisplacement=0.0
AirJumpExtraControl=0.0
ForwardSpeedBias=1.0
HealthRegainedonkill=0.0
HealthRegenPerSec=0.0
HealthRegenDelay=0.0
JumpSpeedPenaltyDuration=0.0
JumpSpeedPenaltyPercent=0.0
ThirdPersonCamera=false
TPSArmLength=300.0
TPSOffset=X=0.000 Y=150.000 Z=150.000
BrakingDeceleration=0.0
VerticalSpawnOffset=0.0
[Character Profile]
Name=Candlelight
MaxHealth=1.0
WeaponProfileNames=;;;;;;;
MinRespawnDelay=0.000001
MaxRespawnDelay=0.000001
StepUpHeight=0.0
CrouchHeightModifier=1.0
CrouchAnimationSpeed=1.0
CameraOffset=X=0.000 Y=0.000 Z=0.000
HeadshotOnly=false
DamageKnockbackFactor=0.0
MovementType=Base
MaxSpeed=0.0
MaxCrouchSpeed=0.0
Acceleration=0.0
AirAcceleration=16000.0
Friction=0.0
BrakingFrictionFactor=0.0
JumpVelocity=0.0
Gravity=0.0
AirControl=0.0
CanCrouch=false
CanPogoJump=false
CanCrouchInAir=false
CanJumpFromCrouch=false
EnemyBodyColor=X=1.000 Y=1.000 Z=1.000
EnemyHeadColor=X=1.000 Y=0.000 Z=0.000
TeamBodyColor=X=0.000 Y=0.000 Z=255.000
TeamHeadColor=X=255.000 Y=255.000 Z=255.000
BlockSelfDamage=false
InvinciblePlayer=false
InvincibleBots=false
BlockTeamDamage=false
AirJumpCount=0
AirJumpVelocity=800.0
MainBBType=Cylindrical
MainBBHeight=32.0
MainBBRadius=8.0
MainBBHasHead=false
MainBBHeadRadius=0.1
MainBBHeadOffset=0.0
MainBBHide=false
ProjBBType=Cylindrical
ProjBBHeight=64.0
ProjBBRadius=16.0
ProjBBHasHead=false
ProjBBHeadRadius=0.1
ProjBBHeadOffset=0.0
ProjBBHide=true
HasJetpack=false
JetpackActivationDelay=0.2
JetpackFullFuelTime=4.0
JetpackFuelIncPerSec=1.0
JetpackFuelRegensInAir=false
JetpackThrust=6000.0
JetpackMaxZVelocity=400.0
JetpackAirControlWithThrust=0.25
AbilityProfileNames=;;;
HideWeapon=true
AerialFriction=0.0
StrafeSpeedMult=1.0
BackSpeedMult=1.0
RespawnInvulnTime=0.0
BlockedSpawnRadius=0.0
BlockSpawnFOV=0.0
BlockSpawnDistance=0.0
RespawnAnimationDuration=0.0
AllowBufferedJumps=false
BounceOffWalls=false
LeanAngle=0.0
LeanDisplacement=0.0
AirJumpExtraControl=0.0
ForwardSpeedBias=1.0
HealthRegainedonkill=0.0
HealthRegenPerSec=0.0
HealthRegenDelay=0.0
JumpSpeedPenaltyDuration=0.0
JumpSpeedPenaltyPercent=0.0
ThirdPersonCamera=false
TPSArmLength=300.0
TPSOffset=X=0.000 Y=150.000 Z=150.000
BrakingDeceleration=0.0
VerticalSpawnOffset=-16.0
[Weapon Profile]
Name=Blow
Type=Hitscan
ShotsPerClick=1
DamagePerShot=10.0
KnockbackFactor=0.0
TimeBetweenShots=0.1
Pierces=false
Category=SemiAuto
BurstShotCount=1
TimeBetweenBursts=0.5
ChargeStartDamage=10.0
ChargeStartVelocity=X=500.000 Y=0.000 Z=0.000
ChargeTimeToAutoRelease=2.0
ChargeTimeToCap=1.0
ChargeMoveSpeedModifier=1.0
MuzzleVelocityMin=X=2000.000 Y=0.000 Z=0.000
MuzzleVelocityMax=X=2000.000 Y=0.000 Z=0.000
InheritOwnerVelocity=0.0
OriginOffset=X=0.000 Y=0.000 Z=0.000
MaxTravelTime=5.0
MaxHitscanRange=1000000.0
GravityScale=1.0
HeadshotCapable=false
HeadshotMultiplier=2.0
MagazineMax=4
AmmoPerShot=1
ReloadTimeFromEmpty=0.5
ReloadTimeFromPartial=0.5
DamageFalloffStartDistance=1000000.0
DamageFalloffStopDistance=1000000.0
DamageAtMaxRange=100.0
DelayBeforeShot=0.0
HitscanVisualEffect=None
ProjectileGraphic=Ball
VisualLifetime=0.1
WallParticleEffect=None
HitParticleEffect=None
BounceOffWorld=false
BounceFactor=0.5
BounceCount=0
HomingProjectileAcceleration=0.0
ProjectileEnemyHitRadius=1.0
CanAimDownSight=false
ADSZoomDelay=0.000001
ADSZoomSensFactor=1.0
ADSMoveFactor=1.0
ADSStartDelay=0.0
ShootSoundCooldown=0.1
HitSoundCooldown=0.1
HitscanVisualOffset=X=0.000 Y=0.000 Z=-50.000
ADSBlocksShooting=false
ShootingBlocksADS=false
KnockbackFactorAir=0.0
RecoilNegatable=false
DecalType=0
DecalSize=30.0
DelayAfterShooting=0.0
BeamTracksCrosshair=false
AlsoShoot=
ADSShoot=
StunDuration=0.0
CircularSpread=true
SpreadStationaryVelocity=0.0
PassiveCharging=false
BurstFullyAuto=true
FlatKnockbackHorizontal=0.0
FlatKnockbackVertical=0.0
HitscanRadius=0.0
HitscanVisualRadius=6.0
TaggingDuration=0.0
TaggingMaxFactor=1.0
TaggingHitFactor=1.0
ProjectileTrail=None
RecoilCrouchScale=1.0
RecoilADSScale=1.0
PSRCrouchScale=1.0
PSRADSScale=1.0
ProjectileAcceleration=0.0
AccelIncludeVertical=false
AimPunchAmount=0.0
AimPunchResetTime=0.0
AimPunchCooldown=0.0
AimPunchHeadshotOnly=false
AimPunchCosmeticOnly=false
MinimumDecelVelocity=0.0
PSRManualNegation=false
PSRAutoReset=true
AimPunchUpTime=0.05
AmmoReloadedOnKill=4
CancelReloadOnKill=true
FlatKnockbackHorizontalMin=0.0
FlatKnockbackVerticalMin=0.0
ADSScope=No Scope
ADSFOVOverride=90.0
ADSFOVScale=Vertical (1:1)
ADSAllowUserOverrideFOV=true
IsBurstWeapon=false
ForceFirstPersonInADS=true
ZoomBlockedInAir=false
ADSCameraOffsetX=0.0
ADSCameraOffsetY=0.0
ADSCameraOffsetZ=0.0
QuickSwitchTime=0.1
Explosive=false
Radius=0.1
DamageAtCenter=0.0
DamageAtEdge=0.0
SelfDamageMultiplier=0.0
ExplodesOnContactWithEnemy=false
DelayAfterEnemyContact=0.0
ExplodesOnContactWithWorld=false
DelayAfterWorldContact=0.0
ExplodesOnNextAttack=false
DelayAfterSpawn=0.0
BlockedByWorld=false
SpreadSSA=1.0,1.0,0.0,0.0
SpreadSCA=1.0,1.0,0.0,0.0
SpreadMSA=1.0,1.0,0.0,0.0
SpreadMCA=1.0,1.0,0.0,0.0
SpreadSSH=1.0,1.0,0.0,0.0
SpreadSCH=1.0,1.0,0.0,0.0
SpreadMSH=1.0,1.0,0.0,0.0
SpreadMCH=1.0,1.0,0.0,0.0
MaxRecoilUp=0.0
MinRecoilUp=0.0
MinRecoilHoriz=0.0
MaxRecoilHoriz=0.0
FirstShotRecoilMult=1.0
RecoilAutoReset=false
TimeToRecoilPeak=0.1
TimeToRecoilReset=0.1
AAMode=2
AAPreferClosestPlayer=false
AAAlpha=0.0
AAMaxSpeed=360.0
AADeadZone=0.0
AAFOV=360.0
AANeedsLOS=true
TrackHorizontal=false
TrackVertical=false
AABlocksMouse=false
AAOffTimer=0.0
AABackOnTimer=0.0
TriggerBotEnabled=false
TriggerBotDelay=0.0
TriggerBotFOV=1.0
StickyLock=false
HeadLock=false
VerticalOffset=0.0
DisableLockOnKill=true
UsePerShotRecoil=false
PSRLoopStartIndex=0
PSRViewRecoilTracking=0.0
PSRCapUp=9.0
PSRCapRight=4.0
PSRCapLeft=4.0
PSRTimeToPeak=0.175
PSRResetDegreesPerSec=40.0
UsePerBulletSpread=false
PBS0=0.0,0.0
[Map Data]
reflex map version 8
global
entity
type WorldSpawn
String32 targetGameOverCamera end
UInt8 playersMin 1
UInt8 playersMax 16
brush
vertices
160.000000 176.000000 624.000000
352.000000 176.000000 624.000000
352.000000 128.000000 560.000000
352.000000 160.000000 624.000000
160.000000 128.000000 560.000000
160.000000 112.000000 560.000000
160.000000 160.000000 624.000000
352.000000 112.000000 560.000000
faces
0.000000 0.000000 1.000000 1.000000 0.000000 0 1 2 4 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 3 1 0 6 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 0 4 5 6 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 2 1 3 7 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 5 4 2 7 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 3 6 5 7 0x00000000
brush
vertices
71.000000 216.000000 561.000000
73.000000 216.000000 561.000000
73.000000 216.000000 559.000000
71.000000 216.000000 559.000000
71.000000 208.000000 561.000000
73.000000 208.000000 561.000000
73.000000 208.000000 559.000000
71.000000 208.000000 559.000000
faces
0.000000 0.000000 1.000000 1.000000 0.000000 0 1 2 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 6 5 4 7 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 2 1 5 6 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 0 3 7 4 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 3 2 6 7 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 1 0 4 5 0x00000000
brush
vertices
71.000000 216.000000 729.000000
73.000000 216.000000 729.000000
73.000000 216.000000 727.000000
71.000000 216.000000 727.000000
71.000000 208.000000 729.000000
73.000000 208.000000 729.000000
73.000000 208.000000 727.000000
71.000000 208.000000 727.000000
faces
0.000000 0.000000 1.000000 1.000000 0.000000 0 1 2 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 6 5 4 7 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 2 1 5 6 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 0 3 7 4 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 3 2 6 7 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 1 0 4 5 0x00000000
brush
vertices
167.000000 216.000000 825.000000
169.000000 216.000000 825.000000
169.000000 216.000000 823.000000
167.000000 216.000000 823.000000
167.000000 208.000000 825.000000
169.000000 208.000000 825.000000
169.000000 208.000000 823.000000
167.000000 208.000000 823.000000
faces
0.000000 0.000000 1.000000 1.000000 0.000000 0 1 2 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 6 5 4 7 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 2 1 5 6 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 0 3 7 4 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 3 2 6 7 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 1 0 4 5 0x00000000
brush
vertices
343.000000 216.000000 825.000000
345.000000 216.000000 825.000000
345.000000 216.000000 823.000000
343.000000 216.000000 823.000000
343.000000 208.000000 825.000000
345.000000 208.000000 825.000000
345.000000 208.000000 823.000000
343.000000 208.000000 823.000000
faces
0.000000 0.000000 1.000000 1.000000 0.000000 0 1 2 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 6 5 4 7 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 2 1 5 6 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 0 3 7 4 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 3 2 6 7 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 1 0 4 5 0x00000000
brush
vertices
439.000000 216.000000 729.000000
441.000000 216.000000 729.000000
441.000000 216.000000 727.000000
439.000000 216.000000 727.000000
439.000000 208.000000 729.000000
441.000000 208.000000 729.000000
441.000000 208.000000 727.000000
439.000000 208.000000 727.000000
faces
0.000000 0.000000 1.000000 1.000000 0.000000 0 1 2 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 6 5 4 7 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 2 1 5 6 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 0 3 7 4 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 3 2 6 7 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 1 0 4 5 0x00000000
brush
vertices
439.000000 216.000000 561.000000
441.000000 216.000000 561.000000
441.000000 216.000000 559.000000
439.000000 216.000000 559.000000
439.000000 208.000000 561.000000
441.000000 208.000000 561.000000
441.000000 208.000000 559.000000
439.000000 208.000000 559.000000
faces
0.000000 0.000000 1.000000 1.000000 0.000000 0 1 2 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 6 5 4 7 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 2 1 5 6 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 0 3 7 4 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 3 2 6 7 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 1 0 4 5 0x00000000
brush
vertices
343.000000 216.000000 473.000000
345.000000 216.000000 473.000000
345.000000 216.000000 471.000000
343.000000 216.000000 471.000000
343.000000 208.000000 473.000000
345.000000 208.000000 473.000000
345.000000 208.000000 471.000000
343.000000 208.000000 471.000000
faces
0.000000 0.000000 1.000000 1.000000 0.000000 0 1 2 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 6 5 4 7 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 2 1 5 6 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 0 3 7 4 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 3 2 6 7 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 1 0 4 5 0x00000000
brush
vertices
167.000000 216.000000 473.000000
169.000000 216.000000 473.000000
169.000000 216.000000 471.000000
167.000000 216.000000 471.000000
167.000000 208.000000 473.000000
169.000000 208.000000 473.000000
169.000000 208.000000 471.000000
167.000000 208.000000 471.000000
faces
0.000000 0.000000 1.000000 1.000000 0.000000 0 1 2 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 6 5 4 7 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 2 1 5 6 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 0 3 7 4 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 3 2 6 7 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 1 0 4 5 0x00000000
brush
vertices
128.000000 256.000000 320.000000
384.000000 256.000000 320.000000
384.000000 256.000000 192.000000
128.000000 256.000000 192.000000
128.000000 240.000000 320.000000
384.000000 240.000000 320.000000
384.000000 240.000000 192.000000
128.000000 240.000000 192.000000
faces
0.000000 0.000000 1.000000 1.000000 0.000000 0 1 2 3 0x00000000 internal/editor/textures/editor_clip
0.000000 0.000000 1.000000 1.000000 0.000000 6 5 4 7 0x00000000 internal/editor/textures/editor_clip
0.000000 0.000000 1.000000 1.000000 0.000000 2 1 5 6 0x00000000 internal/editor/textures/editor_clip
0.000000 0.000000 1.000000 1.000000 0.000000 0 3 7 4 0x00000000 internal/editor/textures/editor_clip
0.000000 0.000000 1.000000 1.000000 0.000000 3 2 6 7 0x00000000 internal/editor/textures/editor_clip
0.000000 0.000000 1.000000 1.000000 0.000000 1 0 4 5 0x00000000 internal/editor/textures/editor_clip
brush
vertices
64.000000 112.000000 560.000000
66.000000 112.000000 554.000000
66.000000 208.000000 554.000000
72.000000 112.000000 560.000000
72.000000 208.000000 560.000000
64.000000 208.000000 560.000000
faces
0.000000 0.000000 1.000000 1.000000 0.000000 0 1 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 4 2 5 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 3 1 2 4 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 2 1 0 5 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 0 3 4 5 0x00000000
brush
vertices
66.000000 112.000000 554.000000
72.000000 112.000000 552.000000
72.000000 208.000000 552.000000
72.000000 112.000000 560.000000
72.000000 208.000000 560.000000
66.000000 208.000000 554.000000
faces
0.000000 0.000000 1.000000 1.000000 0.000000 0 1 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 4 2 5 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 3 1 2 4 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 2 1 0 5 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 0 3 4 5 0x00000000
brush
vertices
72.000000 112.000000 552.000000
77.999969 112.000000 554.000000
77.999969 208.000000 554.000000
72.000000 112.000000 560.000061
72.000000 208.000000 560.000061
72.000000 208.000000 552.000000
faces
0.000000 0.000000 1.000000 1.000000 0.000000 0 1 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 4 2 5 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 3 1 2 4 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 2 1 0 5 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 0 3 4 5 0x00000000
brush
vertices
77.999969 112.000000 554.000000
79.999969 112.000000 560.000000
79.999969 208.000000 560.000000
72.000000 112.000000 560.000000
72.000000 208.000000 560.000000
77.999969 208.000000 554.000000
faces
0.000000 0.000000 1.000000 1.000000 0.000000 0 1 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 4 2 5 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 3 1 2 4 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 2 1 0 5 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 0 3 4 5 0x00000000
brush
vertices
80.000000 112.000000 560.000000
77.999969 112.000000 566.000000
77.999969 208.000000 566.000000
71.999908 112.000000 560.000000
71.999908 208.000000 560.000000
80.000000 208.000000 560.000000
faces
0.000000 0.000000 1.000000 1.000000 0.000000 0 1 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 4 2 5 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 3 1 2 4 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 2 1 0 5 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 0 3 4 5 0x00000000
brush
vertices
77.999969 112.000000 566.000000
71.999939 112.000000 568.000000
71.999939 208.000000 568.000000
71.999908 112.000000 560.000061
71.999908 208.000000 560.000061
77.999969 208.000000 566.000000
faces
0.000000 0.000000 1.000000 1.000000 0.000000 0 1 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 4 2 5 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 3 1 2 4 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 2 1 0 5 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 0 3 4 5 0x00000000
brush
vertices
72.000000 112.000000 568.000000
66.000031 112.000000 566.000000
66.000031 208.000000 566.000000
71.999939 112.000000 559.999939
71.999939 208.000000 559.999939
72.000000 208.000000 568.000000
faces
0.000000 0.000000 1.000000 1.000000 0.000000 0 1 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 4 2 5 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 3 1 2 4 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 2 1 0 5 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 0 3 4 5 0x00000000
brush
vertices
66.000031 112.000000 566.000000
63.999969 112.000000 560.000000
63.999969 208.000000 560.000000
71.999939 112.000000 560.000000
71.999939 208.000000 560.000000
66.000031 208.000000 566.000000
faces
0.000000 0.000000 1.000000 1.000000 0.000000 0 1 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 4 2 5 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 3 1 2 4 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 2 1 0 5 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 0 3 4 5 0x00000000
brush
vertices
64.000000 112.000000 728.000000
66.000000 112.000000 722.000000
66.000000 208.000000 722.000000
72.000000 112.000000 728.000000
72.000000 208.000000 728.000000
64.000000 208.000000 728.000000
faces
0.000000 0.000000 1.000000 1.000000 0.000000 0 1 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 4 2 5 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 3 1 2 4 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 2 1 0 5 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 0 3 4 5 0x00000000
brush
vertices
66.000000 112.000000 722.000000
72.000000 112.000000 720.000000
72.000000 208.000000 720.000000
72.000000 112.000000 728.000000
72.000000 208.000000 728.000000
66.000000 208.000000 722.000000
faces
0.000000 0.000000 1.000000 1.000000 0.000000 0 1 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 4 2 5 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 3 1 2 4 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 2 1 0 5 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 0 3 4 5 0x00000000
brush
vertices
72.000000 112.000000 720.000000
77.999969 112.000000 722.000000
77.999969 208.000000 722.000000
72.000000 112.000000 728.000061
72.000000 208.000000 728.000061
72.000000 208.000000 720.000000
faces
0.000000 0.000000 1.000000 1.000000 0.000000 0 1 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 4 2 5 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 3 1 2 4 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 2 1 0 5 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 0 3 4 5 0x00000000
brush
vertices
66.000031 112.000000 734.000000
63.999969 112.000000 728.000000
63.999969 208.000000 728.000000
71.999939 112.000000 727.999939
71.999939 208.000000 727.999939
66.000031 208.000000 734.000000
faces
0.000000 0.000000 1.000000 1.000000 0.000000 0 1 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 4 2 5 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 3 1 2 4 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 2 1 0 5 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 0 3 4 5 0x00000000
brush
vertices
80.000000 112.000000 728.000000
77.999969 112.000000 734.000000
77.999969 208.000000 734.000000
71.999908 112.000000 728.000000
71.999908 208.000000 728.000000
80.000000 208.000000 728.000000
faces
0.000000 0.000000 1.000000 1.000000 0.000000 0 1 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 4 2 5 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 3 1 2 4 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 2 1 0 5 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 0 3 4 5 0x00000000
brush
vertices
77.999969 112.000000 734.000000
71.999939 112.000000 736.000000
71.999939 208.000000 736.000000
71.999908 112.000000 728.000000
71.999908 208.000000 728.000000
77.999969 208.000000 734.000000
faces
0.000000 0.000000 1.000000 1.000000 0.000000 0 1 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 4 2 5 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 3 1 2 4 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 2 1 0 5 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 0 3 4 5 0x00000000
brush
vertices
72.000000 112.000000 736.000000
66.000031 112.000000 734.000000
66.000031 208.000000 734.000000
71.999939 112.000000 727.999939
71.999939 208.000000 727.999939
72.000000 208.000000 736.000000
faces
0.000000 0.000000 1.000000 1.000000 0.000000 0 1 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 4 2 5 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 3 1 2 4 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 2 1 0 5 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 0 3 4 5 0x00000000
brush
vertices
77.999969 112.000000 722.000000
79.999969 112.000000 728.000000
79.999969 208.000000 728.000000
72.000000 112.000000 728.000061
72.000000 208.000000 728.000061
77.999969 208.000000 722.000000
faces
0.000000 0.000000 1.000000 1.000000 0.000000 0 1 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 4 2 5 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 3 1 2 4 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 2 1 0 5 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 0 3 4 5 0x00000000
brush
vertices
160.000000 112.000000 824.000000
162.000000 112.000000 818.000000
162.000000 208.000000 818.000000
168.000000 112.000000 824.000000
168.000000 208.000000 824.000000
160.000000 208.000000 824.000000
faces
0.000000 0.000000 1.000000 1.000000 0.000000 0 1 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 4 2 5 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 3 1 2 4 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 2 1 0 5 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 0 3 4 5 0x00000000
brush
vertices
162.000000 112.000000 818.000000
168.000000 112.000000 816.000000
168.000000 208.000000 816.000000
168.000000 112.000000 824.000000
168.000000 208.000000 824.000000
162.000000 208.000000 818.000000
faces
0.000000 0.000000 1.000000 1.000000 0.000000 0 1 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 4 2 5 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 3 1 2 4 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 2 1 0 5 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 0 3 4 5 0x00000000
brush
vertices
168.000000 112.000000 816.000000
173.999969 112.000000 818.000000
173.999969 208.000000 818.000000
168.000000 112.000000 824.000061
168.000000 208.000000 824.000061
168.000000 208.000000 816.000000
faces
0.000000 0.000000 1.000000 1.000000 0.000000 0 1 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 4 2 5 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 3 1 2 4 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 2 1 0 5 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 0 3 4 5 0x00000000
brush
vertices
162.000031 112.000000 830.000000
159.999969 112.000000 824.000000
159.999969 208.000000 824.000000
167.999939 112.000000 823.999939
167.999939 208.000000 823.999939
162.000031 208.000000 830.000000
faces
0.000000 0.000000 1.000000 1.000000 0.000000 0 1 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 4 2 5 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 3 1 2 4 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 2 1 0 5 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 0 3 4 5 0x00000000
brush
vertices
176.000000 112.000000 824.000000
173.999969 112.000000 830.000000
173.999969 208.000000 830.000000
167.999908 112.000000 824.000000
167.999908 208.000000 824.000000
176.000000 208.000000 824.000000
faces
0.000000 0.000000 1.000000 1.000000 0.000000 0 1 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 4 2 5 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 3 1 2 4 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 2 1 0 5 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 0 3 4 5 0x00000000
brush
vertices
173.999969 112.000000 830.000000
167.999939 112.000000 832.000000
167.999939 208.000000 832.000000
167.999908 112.000000 824.000000
167.999908 208.000000 824.000000
173.999969 208.000000 830.000000
faces
0.000000 0.000000 1.000000 1.000000 0.000000 0 1 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 4 2 5 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 3 1 2 4 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 2 1 0 5 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 0 3 4 5 0x00000000
brush
vertices
168.000000 112.000000 832.000000
162.000031 112.000000 830.000000
162.000031 208.000000 830.000000
167.999939 112.000000 823.999939
167.999939 208.000000 823.999939
168.000000 208.000000 832.000000
faces
0.000000 0.000000 1.000000 1.000000 0.000000 0 1 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 4 2 5 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 3 1 2 4 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 2 1 0 5 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 0 3 4 5 0x00000000
brush
vertices
173.999969 112.000000 818.000000
175.999969 112.000000 824.000000
175.999969 208.000000 824.000000
168.000000 112.000000 824.000061
168.000000 208.000000 824.000061
173.999969 208.000000 818.000000
faces
0.000000 0.000000 1.000000 1.000000 0.000000 0 1 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 4 2 5 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 3 1 2 4 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 2 1 0 5 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 0 3 4 5 0x00000000
brush
vertices
336.000000 112.000000 824.000000
338.000000 112.000000 818.000000
338.000000 208.000000 818.000000
344.000000 112.000000 824.000000
344.000000 208.000000 824.000000
336.000000 208.000000 824.000000
faces
0.000000 0.000000 1.000000 1.000000 0.000000 0 1 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 4 2 5 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 3 1 2 4 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 2 1 0 5 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 0 3 4 5 0x00000000
brush
vertices
338.000000 112.000000 818.000000
344.000000 112.000000 816.000000
344.000000 208.000000 816.000000
344.000000 112.000000 824.000000
344.000000 208.000000 824.000000
338.000000 208.000000 818.000000
faces
0.000000 0.000000 1.000000 1.000000 0.000000 0 1 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 4 2 5 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 3 1 2 4 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 2 1 0 5 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 0 3 4 5 0x00000000
brush
vertices
349.999969 112.000000 818.000000
351.999969 112.000000 824.000000
351.999969 208.000000 824.000000
344.000000 112.000000 824.000061
344.000000 208.000000 824.000061
349.999969 208.000000 818.000000
faces
0.000000 0.000000 1.000000 1.000000 0.000000 0 1 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 4 2 5 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 3 1 2 4 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 2 1 0 5 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 0 3 4 5 0x00000000
brush
vertices
338.000031 112.000000 830.000000
335.999969 112.000000 824.000000
335.999969 208.000000 824.000000
343.999939 112.000000 823.999939
343.999939 208.000000 823.999939
338.000031 208.000000 830.000000
faces
0.000000 0.000000 1.000000 1.000000 0.000000 0 1 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 4 2 5 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 3 1 2 4 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 2 1 0 5 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 0 3 4 5 0x00000000
brush
vertices
352.000000 112.000000 824.000000
349.999969 112.000000 830.000000
349.999969 208.000000 830.000000
343.999908 112.000000 824.000000
343.999908 208.000000 824.000000
352.000000 208.000000 824.000000
faces
0.000000 0.000000 1.000000 1.000000 0.000000 0 1 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 4 2 5 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 3 1 2 4 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 2 1 0 5 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 0 3 4 5 0x00000000
brush
vertices
349.999969 112.000000 830.000000
343.999939 112.000000 832.000000
343.999939 208.000000 832.000000
343.999908 112.000000 824.000000
343.999908 208.000000 824.000000
349.999969 208.000000 830.000000
faces
0.000000 0.000000 1.000000 1.000000 0.000000 0 1 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 4 2 5 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 3 1 2 4 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 2 1 0 5 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 0 3 4 5 0x00000000
brush
vertices
344.000000 112.000000 832.000000
338.000031 112.000000 830.000000
338.000031 208.000000 830.000000
343.999939 112.000000 823.999939
343.999939 208.000000 823.999939
344.000000 208.000000 832.000000
faces
0.000000 0.000000 1.000000 1.000000 0.000000 0 1 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 4 2 5 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 3 1 2 4 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 2 1 0 5 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 0 3 4 5 0x00000000
brush
vertices
344.000000 112.000000 816.000000
349.999969 112.000000 818.000000
349.999969 208.000000 818.000000
344.000000 112.000000 824.000061
344.000000 208.000000 824.000061
344.000000 208.000000 816.000000
faces
0.000000 0.000000 1.000000 1.000000 0.000000 0 1 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 4 2 5 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 3 1 2 4 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 2 1 0 5 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 0 3 4 5 0x00000000
brush
vertices
432.000000 112.000000 728.000000
434.000000 112.000000 722.000000
434.000000 208.000000 722.000000
440.000000 112.000000 728.000000
440.000000 208.000000 728.000000
432.000000 208.000000 728.000000
faces
0.000000 0.000000 1.000000 1.000000 0.000000 0 1 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 4 2 5 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 3 1 2 4 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 2 1 0 5 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 0 3 4 5 0x00000000
brush
vertices
434.000000 112.000000 722.000000
440.000000 112.000000 720.000000
440.000000 208.000000 720.000000
440.000000 112.000000 728.000000
440.000000 208.000000 728.000000
434.000000 208.000000 722.000000
faces
0.000000 0.000000 1.000000 1.000000 0.000000 0 1 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 4 2 5 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 3 1 2 4 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 2 1 0 5 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 0 3 4 5 0x00000000
brush
vertices
445.999969 112.000000 722.000000
447.999969 112.000000 728.000000
447.999969 208.000000 728.000000
440.000000 112.000000 728.000061
440.000000 208.000000 728.000061
445.999969 208.000000 722.000000
faces
0.000000 0.000000 1.000000 1.000000 0.000000 0 1 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 4 2 5 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 3 1 2 4 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 2 1 0 5 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 0 3 4 5 0x00000000
brush
vertices
434.000031 112.000000 734.000000
431.999969 112.000000 728.000000
431.999969 208.000000 728.000000
439.999939 112.000000 727.999939
439.999939 208.000000 727.999939
434.000031 208.000000 734.000000
faces
0.000000 0.000000 1.000000 1.000000 0.000000 0 1 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 4 2 5 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 3 1 2 4 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 2 1 0 5 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 0 3 4 5 0x00000000
brush
vertices
448.000000 112.000000 728.000000
445.999969 112.000000 734.000000
445.999969 208.000000 734.000000
439.999908 112.000000 728.000000
439.999908 208.000000 728.000000
448.000000 208.000000 728.000000
faces
0.000000 0.000000 1.000000 1.000000 0.000000 0 1 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 4 2 5 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 3 1 2 4 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 2 1 0 5 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 0 3 4 5 0x00000000
brush
vertices
445.999969 112.000000 734.000000
439.999939 112.000000 736.000000
439.999939 208.000000 736.000000
439.999908 112.000000 728.000000
439.999908 208.000000 728.000000
445.999969 208.000000 734.000000
faces
0.000000 0.000000 1.000000 1.000000 0.000000 0 1 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 4 2 5 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 3 1 2 4 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 2 1 0 5 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 0 3 4 5 0x00000000
brush
vertices
440.000000 112.000000 736.000000
434.000031 112.000000 734.000000
434.000031 208.000000 734.000000
439.999939 112.000000 727.999939
439.999939 208.000000 727.999939
440.000000 208.000000 736.000000
faces
0.000000 0.000000 1.000000 1.000000 0.000000 0 1 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 4 2 5 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 3 1 2 4 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 2 1 0 5 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 0 3 4 5 0x00000000
brush
vertices
440.000000 112.000000 720.000000
445.999969 112.000000 722.000000
445.999969 208.000000 722.000000
440.000000 112.000000 728.000061
440.000000 208.000000 728.000061
440.000000 208.000000 720.000000
faces
0.000000 0.000000 1.000000 1.000000 0.000000 0 1 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 4 2 5 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 3 1 2 4 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 2 1 0 5 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 0 3 4 5 0x00000000
brush
vertices
432.000000 112.000000 560.000000
434.000000 112.000000 554.000000
434.000000 208.000000 554.000000
440.000000 112.000000 560.000000
440.000000 208.000000 560.000000
432.000000 208.000000 560.000000
faces
0.000000 0.000000 1.000000 1.000000 0.000000 0 1 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 4 2 5 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 3 1 2 4 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 2 1 0 5 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 0 3 4 5 0x00000000
brush
vertices
434.000000 112.000000 554.000000
440.000000 112.000000 552.000000
440.000000 208.000000 552.000000
440.000000 112.000000 560.000000
440.000000 208.000000 560.000000
434.000000 208.000000 554.000000
faces
0.000000 0.000000 1.000000 1.000000 0.000000 0 1 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 4 2 5 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 3 1 2 4 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 2 1 0 5 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 0 3 4 5 0x00000000
brush
vertices
445.999969 112.000000 554.000000
447.999969 112.000000 560.000000
447.999969 208.000000 560.000000
440.000000 112.000000 560.000061
440.000000 208.000000 560.000061
445.999969 208.000000 554.000000
faces
0.000000 0.000000 1.000000 1.000000 0.000000 0 1 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 4 2 5 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 3 1 2 4 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 2 1 0 5 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 0 3 4 5 0x00000000
brush
vertices
434.000031 112.000000 566.000000
431.999969 112.000000 560.000000
431.999969 208.000000 560.000000
439.999939 112.000000 559.999939
439.999939 208.000000 559.999939
434.000031 208.000000 566.000000
faces
0.000000 0.000000 1.000000 1.000000 0.000000 0 1 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 4 2 5 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 3 1 2 4 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 2 1 0 5 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 0 3 4 5 0x00000000
brush
vertices
448.000000 112.000000 560.000000
445.999969 112.000000 566.000000
445.999969 208.000000 566.000000
439.999908 112.000000 560.000000
439.999908 208.000000 560.000000
448.000000 208.000000 560.000000
faces
0.000000 0.000000 1.000000 1.000000 0.000000 0 1 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 4 2 5 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 3 1 2 4 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 2 1 0 5 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 0 3 4 5 0x00000000
brush
vertices
445.999969 112.000000 566.000000
439.999939 112.000000 568.000000
439.999939 208.000000 568.000000
439.999908 112.000000 560.000000
439.999908 208.000000 560.000000
445.999969 208.000000 566.000000
faces
0.000000 0.000000 1.000000 1.000000 0.000000 0 1 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 4 2 5 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 3 1 2 4 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 2 1 0 5 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 0 3 4 5 0x00000000
brush
vertices
440.000000 112.000000 568.000000
434.000031 112.000000 566.000000
434.000031 208.000000 566.000000
439.999939 112.000000 559.999939
439.999939 208.000000 559.999939
440.000000 208.000000 568.000000
faces
0.000000 0.000000 1.000000 1.000000 0.000000 0 1 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 4 2 5 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 3 1 2 4 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 2 1 0 5 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 0 3 4 5 0x00000000
brush
vertices
440.000000 112.000000 552.000000
445.999969 112.000000 554.000000
445.999969 208.000000 554.000000
440.000000 112.000000 560.000061
440.000000 208.000000 560.000061
440.000000 208.000000 552.000000
faces
0.000000 0.000000 1.000000 1.000000 0.000000 0 1 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 4 2 5 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 3 1 2 4 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 2 1 0 5 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 0 3 4 5 0x00000000
brush
vertices
336.000000 112.000000 472.000000
338.000000 112.000000 466.000000
338.000000 208.000000 466.000000
344.000000 112.000000 472.000000
344.000000 208.000000 472.000000
336.000000 208.000000 472.000000
faces
0.000000 0.000000 1.000000 1.000000 0.000000 0 1 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 4 2 5 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 3 1 2 4 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 2 1 0 5 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 0 3 4 5 0x00000000
brush
vertices
338.000000 112.000000 466.000000
344.000000 112.000000 464.000000
344.000000 208.000000 464.000000
344.000000 112.000000 472.000000
344.000000 208.000000 472.000000
338.000000 208.000000 466.000000
faces
0.000000 0.000000 1.000000 1.000000 0.000000 0 1 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 4 2 5 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 3 1 2 4 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 2 1 0 5 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 0 3 4 5 0x00000000
brush
vertices
349.999969 112.000000 466.000000
351.999969 112.000000 472.000000
351.999969 208.000000 472.000000
344.000000 112.000000 472.000061
344.000000 208.000000 472.000061
349.999969 208.000000 466.000000
faces
0.000000 0.000000 1.000000 1.000000 0.000000 0 1 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 4 2 5 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 3 1 2 4 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 2 1 0 5 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 0 3 4 5 0x00000000
brush
vertices
338.000031 112.000000 478.000000
335.999969 112.000000 472.000000
335.999969 208.000000 472.000000
343.999939 112.000000 471.999939
343.999939 208.000000 471.999939
338.000031 208.000000 478.000000
faces
0.000000 0.000000 1.000000 1.000000 0.000000 0 1 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 4 2 5 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 3 1 2 4 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 2 1 0 5 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 0 3 4 5 0x00000000
brush
vertices
352.000000 112.000000 472.000000
349.999969 112.000000 478.000000
349.999969 208.000000 478.000000
343.999908 112.000000 472.000000
343.999908 208.000000 472.000000
352.000000 208.000000 472.000000
faces
0.000000 0.000000 1.000000 1.000000 0.000000 0 1 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 4 2 5 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 3 1 2 4 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 2 1 0 5 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 0 3 4 5 0x00000000
brush
vertices
349.999969 112.000000 478.000000
343.999939 112.000000 480.000000
343.999939 208.000000 480.000000
343.999908 112.000000 472.000000
343.999908 208.000000 472.000000
349.999969 208.000000 478.000000
faces
0.000000 0.000000 1.000000 1.000000 0.000000 0 1 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 4 2 5 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 3 1 2 4 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 2 1 0 5 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 0 3 4 5 0x00000000
brush
vertices
344.000000 112.000000 480.000000
338.000031 112.000000 478.000000
338.000031 208.000000 478.000000
343.999939 112.000000 471.999939
343.999939 208.000000 471.999939
344.000000 208.000000 480.000000
faces
0.000000 0.000000 1.000000 1.000000 0.000000 0 1 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 4 2 5 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 3 1 2 4 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 2 1 0 5 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 0 3 4 5 0x00000000
brush
vertices
344.000000 112.000000 464.000000
349.999969 112.000000 466.000000
349.999969 208.000000 466.000000
344.000000 112.000000 472.000061
344.000000 208.000000 472.000061
344.000000 208.000000 464.000000
faces
0.000000 0.000000 1.000000 1.000000 0.000000 0 1 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 4 2 5 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 3 1 2 4 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 2 1 0 5 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 0 3 4 5 0x00000000
brush
vertices
160.000000 112.000000 472.000000
162.000000 112.000000 466.000000
162.000000 208.000000 466.000000
168.000000 112.000000 472.000000
168.000000 208.000000 472.000000
160.000000 208.000000 472.000000
faces
0.000000 0.000000 1.000000 1.000000 0.000000 0 1 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 4 2 5 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 3 1 2 4 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 2 1 0 5 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 0 3 4 5 0x00000000
brush
vertices
162.000000 112.000000 466.000000
168.000000 112.000000 464.000000
168.000000 208.000000 464.000000
168.000000 112.000000 472.000000
168.000000 208.000000 472.000000
162.000000 208.000000 466.000000
faces
0.000000 0.000000 1.000000 1.000000 0.000000 0 1 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 4 2 5 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 3 1 2 4 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 2 1 0 5 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 0 3 4 5 0x00000000
brush
vertices
173.999969 112.000000 466.000000
175.999969 112.000000 472.000000
175.999969 208.000000 472.000000
168.000000 112.000000 472.000061
168.000000 208.000000 472.000061
173.999969 208.000000 466.000000
faces
0.000000 0.000000 1.000000 1.000000 0.000000 0 1 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 4 2 5 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 3 1 2 4 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 2 1 0 5 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 0 3 4 5 0x00000000
brush
vertices
162.000031 112.000000 478.000000
159.999969 112.000000 472.000000
159.999969 208.000000 472.000000
167.999939 112.000000 471.999939
167.999939 208.000000 471.999939
162.000031 208.000000 478.000000
faces
0.000000 0.000000 1.000000 1.000000 0.000000 0 1 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 4 2 5 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 3 1 2 4 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 2 1 0 5 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 0 3 4 5 0x00000000
brush
vertices
176.000000 112.000000 472.000000
173.999969 112.000000 478.000000
173.999969 208.000000 478.000000
167.999908 112.000000 472.000000
167.999908 208.000000 472.000000
176.000000 208.000000 472.000000
faces
0.000000 0.000000 1.000000 1.000000 0.000000 0 1 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 4 2 5 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 3 1 2 4 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 2 1 0 5 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 0 3 4 5 0x00000000
brush
vertices
173.999969 112.000000 478.000000
167.999939 112.000000 480.000000
167.999939 208.000000 480.000000
167.999908 112.000000 472.000000
167.999908 208.000000 472.000000
173.999969 208.000000 478.000000
faces
0.000000 0.000000 1.000000 1.000000 0.000000 0 1 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 4 2 5 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 3 1 2 4 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 2 1 0 5 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 0 3 4 5 0x00000000
brush
vertices
168.000000 112.000000 480.000000
162.000031 112.000000 478.000000
162.000031 208.000000 478.000000
167.999939 112.000000 471.999939
167.999939 208.000000 471.999939
168.000000 208.000000 480.000000
faces
0.000000 0.000000 1.000000 1.000000 0.000000 0 1 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 4 2 5 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 3 1 2 4 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 2 1 0 5 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 0 3 4 5 0x00000000
brush
vertices
168.000000 112.000000 464.000000
173.999969 112.000000 466.000000
173.999969 208.000000 466.000000
168.000000 112.000000 472.000061
168.000000 208.000000 472.000061
168.000000 208.000000 464.000000
faces
0.000000 0.000000 1.000000 1.000000 0.000000 0 1 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 4 2 5 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 3 1 2 4 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 2 1 0 5 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 0 3 4 5 0x00000000
brush
vertices
32.000000 112.000000 648.000000
38.000000 112.000000 630.000000
56.000000 144.000000 648.000000
56.000000 112.000000 648.000000
faces
0.000000 0.000000 1.000000 1.000000 0.000000 0 2 1 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 0 1 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 2 0 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 1 2 3 0x00000000
brush
vertices
38.000000 112.000000 630.000000
56.000000 112.000000 624.000000
56.000000 144.000000 648.000000
56.000000 112.000000 648.000000
faces
0.000000 0.000000 1.000000 1.000000 0.000000 0 2 1 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 0 1 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 2 0 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 1 2 3 0x00000000
brush
vertices
56.000000 112.000000 624.000000
74.000031 112.000000 630.000000
56.000000 144.000000 648.000000
56.000000 112.000000 648.000000
faces
0.000000 0.000000 1.000000 1.000000 0.000000 0 2 1 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 0 1 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 2 0 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 1 2 3 0x00000000
brush
vertices
74.000031 112.000000 630.000000
80.000000 112.000000 648.000000
56.000000 144.000000 648.000000
56.000000 112.000000 648.000000
faces
0.000000 0.000000 1.000000 1.000000 0.000000 0 2 1 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 0 1 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 2 0 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 1 2 3 0x00000000
brush
vertices
80.000000 112.000000 648.000000
74.000000 112.000000 666.000000
56.000061 144.000000 648.000061
56.000061 112.000000 648.000061
faces
0.000000 0.000000 1.000000 1.000000 0.000000 0 2 1 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 0 1 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 2 0 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 1 2 3 0x00000000
brush
vertices
74.000000 112.000000 666.000000
56.000031 112.000000 672.000000
56.000061 144.000000 648.000061
56.000061 112.000000 648.000061
faces
0.000000 0.000000 1.000000 1.000000 0.000000 0 2 1 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 0 1 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 2 0 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 1 2 3 0x00000000
brush
vertices
56.000000 112.000000 672.000000
38.000031 112.000000 666.000000
55.999939 144.000000 648.000000
55.999939 112.000000 648.000000
faces
0.000000 0.000000 1.000000 1.000000 0.000000 0 2 1 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 0 1 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 2 0 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 1 2 3 0x00000000
brush
vertices
38.000031 112.000000 666.000000
32.000000 112.000000 648.000000
55.999939 144.000000 648.000000
55.999939 112.000000 648.000000
faces
0.000000 0.000000 1.000000 1.000000 0.000000 0 2 1 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 0 1 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 2 0 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 1 2 3 0x00000000
brush
vertices
432.000000 112.000000 648.000000
438.000000 112.000000 630.000000
456.000000 144.000000 648.000000
456.000000 112.000000 648.000000
faces
0.000000 0.000000 1.000000 1.000000 0.000000 0 2 1 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 0 1 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 2 0 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 1 2 3 0x00000000
brush
vertices
438.000000 112.000000 630.000000
456.000000 112.000000 624.000000
456.000000 144.000000 648.000000
456.000000 112.000000 648.000000
faces
0.000000 0.000000 1.000000 1.000000 0.000000 0 2 1 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 0 1 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 2 0 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 1 2 3 0x00000000
brush
vertices
456.000000 112.000000 624.000000
474.000031 112.000000 630.000000
456.000000 144.000000 648.000000
456.000000 112.000000 648.000000
faces
0.000000 0.000000 1.000000 1.000000 0.000000 0 2 1 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 0 1 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 2 0 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 1 2 3 0x00000000
brush
vertices
474.000031 112.000000 630.000000
480.000000 112.000000 648.000000
456.000000 144.000000 648.000000
456.000000 112.000000 648.000000
faces
0.000000 0.000000 1.000000 1.000000 0.000000 0 2 1 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 0 1 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 2 0 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 1 2 3 0x00000000
brush
vertices
480.000000 112.000000 648.000000
474.000000 112.000000 666.000000
456.000061 144.000000 648.000061
456.000061 112.000000 648.000061
faces
0.000000 0.000000 1.000000 1.000000 0.000000 0 2 1 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 0 1 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 2 0 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 1 2 3 0x00000000
brush
vertices
474.000000 112.000000 666.000000
456.000031 112.000000 672.000000
456.000061 144.000000 648.000061
456.000061 112.000000 648.000061
faces
0.000000 0.000000 1.000000 1.000000 0.000000 0 2 1 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 0 1 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 2 0 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 1 2 3 0x00000000
brush
vertices
456.000000 112.000000 672.000000
438.000031 112.000000 666.000000
455.999939 144.000000 648.000000
455.999939 112.000000 648.000000
faces
0.000000 0.000000 1.000000 1.000000 0.000000 0 2 1 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 0 1 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 2 0 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 1 2 3 0x00000000
brush
vertices
438.000031 112.000000 666.000000
432.000000 112.000000 648.000000
455.999939 144.000000 648.000000
455.999939 112.000000 648.000000
faces
0.000000 0.000000 1.000000 1.000000 0.000000 0 2 1 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 0 1 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 2 0 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 1 2 3 0x00000000
brush
vertices
232.000000 112.000000 448.000000
238.000000 112.000000 430.000000
256.000000 144.000000 448.000000
256.000000 112.000000 448.000000
faces
0.000000 0.000000 1.000000 1.000000 0.000000 0 2 1 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 0 1 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 2 0 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 1 2 3 0x00000000
brush
vertices
238.000000 112.000000 430.000000
256.000000 112.000000 424.000000
256.000000 144.000000 448.000000
256.000000 112.000000 448.000000
faces
0.000000 0.000000 1.000000 1.000000 0.000000 0 2 1 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 0 1 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 2 0 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 1 2 3 0x00000000
brush
vertices
256.000000 112.000000 424.000000
274.000000 112.000000 430.000000
256.000000 144.000000 448.000000
256.000000 112.000000 448.000000
faces
0.000000 0.000000 1.000000 1.000000 0.000000 0 2 1 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 0 1 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 2 0 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 1 2 3 0x00000000
brush
vertices
274.000031 112.000000 430.000000
280.000000 112.000000 448.000000
256.000031 144.000000 448.000000
256.000031 112.000000 448.000000
faces
0.000000 0.000000 1.000000 1.000000 0.000000 0 2 1 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 0 1 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 2 0 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 1 2 3 0x00000000
brush
vertices
280.000000 112.000000 448.000000
274.000000 112.000000 466.000000
256.000000 144.000000 448.000000
256.000000 112.000000 448.000000
faces
0.000000 0.000000 1.000000 1.000000 0.000000 0 2 1 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 0 1 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 2 0 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 1 2 3 0x00000000
brush
vertices
274.000000 112.000000 466.000000
256.000000 112.000000 472.000000
256.000000 144.000000 448.000000
256.000000 112.000000 448.000000
faces
0.000000 0.000000 1.000000 1.000000 0.000000 0 2 1 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 0 1 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 2 0 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 1 2 3 0x00000000
brush
vertices
256.000000 112.000000 472.000000
238.000000 112.000000 466.000000
256.000000 144.000000 448.000000
256.000000 112.000000 448.000000
faces
0.000000 0.000000 1.000000 1.000000 0.000000 0 2 1 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 0 1 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 2 0 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 1 2 3 0x00000000
brush
vertices
238.000031 112.000000 466.000000
232.000031 112.000000 448.000000
256.000000 144.000000 448.000000
256.000000 112.000000 448.000000
faces
0.000000 0.000000 1.000000 1.000000 0.000000 0 2 1 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 0 1 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 2 0 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 1 2 3 0x00000000
brush
vertices
232.000000 112.000000 848.000000
238.000000 112.000000 830.000000
256.000000 144.000000 848.000000
256.000000 112.000000 848.000000
faces
0.000000 0.000000 1.000000 1.000000 0.000000 0 2 1 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 0 1 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 2 0 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 1 2 3 0x00000000
brush
vertices
238.000000 112.000000 830.000000
256.000000 112.000000 824.000000
256.000000 144.000000 848.000000
256.000000 112.000000 848.000000
faces
0.000000 0.000000 1.000000 1.000000 0.000000 0 2 1 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 0 1 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 2 0 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 1 2 3 0x00000000
brush
vertices
256.000000 112.000000 824.000000
274.000031 112.000000 830.000000
256.000000 144.000000 848.000000
256.000000 112.000000 848.000000
faces
0.000000 0.000000 1.000000 1.000000 0.000000 0 2 1 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 0 1 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 2 0 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 1 2 3 0x00000000
brush
vertices
274.000031 112.000000 830.000000
280.000000 112.000000 848.000000
256.000000 144.000000 848.000000
256.000000 112.000000 848.000000
faces
0.000000 0.000000 1.000000 1.000000 0.000000 0 2 1 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 0 1 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 2 0 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 1 2 3 0x00000000
brush
vertices
280.000000 112.000000 848.000000
274.000000 112.000000 866.000000
256.000061 144.000000 848.000061
256.000061 112.000000 848.000061
faces
0.000000 0.000000 1.000000 1.000000 0.000000 0 2 1 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 0 1 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 2 0 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 1 2 3 0x00000000
brush
vertices
274.000000 112.000000 866.000000
256.000031 112.000000 872.000000
256.000061 144.000000 848.000061
256.000061 112.000000 848.000061
faces
0.000000 0.000000 1.000000 1.000000 0.000000 0 2 1 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 0 1 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 2 0 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 1 2 3 0x00000000
brush
vertices
256.000000 112.000000 872.000000
238.000031 112.000000 866.000000
255.999939 144.000000 848.000000
255.999939 112.000000 848.000000
faces
0.000000 0.000000 1.000000 1.000000 0.000000 0 2 1 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 0 1 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 2 0 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 1 2 3 0x00000000
brush
vertices
238.000031 112.000000 866.000000
232.000000 112.000000 848.000000
255.999939 144.000000 848.000000
255.999939 112.000000 848.000000
faces
0.000000 0.000000 1.000000 1.000000 0.000000 0 2 1 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 0 1 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 2 0 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 1 2 3 0x00000000
brush
vertices
92.000000 112.000000 804.000000
83.514679 112.000000 787.029419
108.970581 144.000000 787.029419
108.970581 112.000000 787.029419
faces
0.000000 0.000000 1.000000 1.000000 0.000000 0 2 1 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 0 1 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 2 0 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 1 2 3 0x00000000
brush
vertices
83.514679 112.000000 787.029419
92.000000 112.000000 770.058838
108.970581 144.000000 787.029419
108.970581 112.000000 787.029419
faces
0.000000 0.000000 1.000000 1.000000 0.000000 0 2 1 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 0 1 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 2 0 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 1 2 3 0x00000000
brush
vertices
92.000000 112.000000 770.058838
108.970581 112.000000 761.573547
108.970581 144.000000 787.029419
108.970581 112.000000 787.029419
faces
0.000000 0.000000 1.000000 1.000000 0.000000 0 2 1 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 0 1 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 2 0 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 1 2 3 0x00000000
brush
vertices
108.970581 112.000000 761.573547
125.941132 112.000000 770.058838
108.970581 144.000000 787.029419
108.970581 112.000000 787.029419
faces
0.000000 0.000000 1.000000 1.000000 0.000000 0 2 1 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 0 1 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 2 0 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 1 2 3 0x00000000
brush
vertices
125.941132 112.000000 770.058838
134.426361 112.000000 787.029419
108.970612 144.000000 787.029419
108.970612 112.000000 787.029419
faces
0.000000 0.000000 1.000000 1.000000 0.000000 0 2 1 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 0 1 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 2 0 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 1 2 3 0x00000000
brush
vertices
134.426361 112.000000 787.029419
125.941132 112.000000 804.000000
108.970612 144.000000 787.029419
108.970612 112.000000 787.029419
faces
0.000000 0.000000 1.000000 1.000000 0.000000 0 2 1 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 0 1 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 2 0 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 1 2 3 0x00000000
brush
vertices
125.941132 112.000000 804.000000
108.970581 112.000000 812.485229
108.970520 144.000000 787.029480
108.970520 112.000000 787.029480
faces
0.000000 0.000000 1.000000 1.000000 0.000000 0 2 1 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 0 1 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 2 0 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 1 2 3 0x00000000
brush
vertices
108.970581 112.000000 812.485229
92.000000 112.000000 804.000000
108.970520 144.000000 787.029480
108.970520 112.000000 787.029480
faces
0.000000 0.000000 1.000000 1.000000 0.000000 0 2 1 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 0 1 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 2 0 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 1 2 3 0x00000000
brush
vertices
84.000031 112.000000 510.000000
92.485199 112.000000 493.029419
109.455719 144.000000 509.999939
109.455719 112.000000 509.999939
faces
0.000000 0.000000 1.000000 1.000000 0.000000 0 2 1 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 0 1 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 2 0 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 1 2 3 0x00000000
brush
vertices
92.485199 112.000000 493.029419
109.455841 112.000000 484.544128
109.455811 144.000000 510.000000
109.455811 112.000000 510.000000
faces
0.000000 0.000000 1.000000 1.000000 0.000000 0 2 1 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 0 1 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 2 0 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 1 2 3 0x00000000
brush
vertices
109.455841 112.000000 484.544128
126.426422 112.000000 493.029419
109.455811 144.000000 510.000000
109.455811 112.000000 510.000000
faces
0.000000 0.000000 1.000000 1.000000 0.000000 0 2 1 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 0 1 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 2 0 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 1 2 3 0x00000000
brush
vertices
126.426422 112.000000 493.029419
134.911713 112.000000 510.000000
109.455811 144.000000 510.000000
109.455811 112.000000 510.000000
faces
0.000000 0.000000 1.000000 1.000000 0.000000 0 2 1 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 0 1 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 2 0 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 1 2 3 0x00000000
brush
vertices
134.911713 112.000000 510.000000
126.426361 112.000000 526.970520
109.455811 144.000000 510.000000
109.455811 112.000000 510.000000
faces
0.000000 0.000000 1.000000 1.000000 0.000000 0 2 1 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 0 1 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 2 0 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 1 2 3 0x00000000
brush
vertices
126.426361 112.000000 526.970520
109.455811 112.000000 535.455811
109.455841 144.000000 510.000122
109.455841 112.000000 510.000122
faces
0.000000 0.000000 1.000000 1.000000 0.000000 0 2 1 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 0 1 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 2 0 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 1 2 3 0x00000000
brush
vertices
109.455811 112.000000 535.455811
92.485260 112.000000 526.970581
109.455841 144.000000 510.000122
109.455841 112.000000 510.000122
faces
0.000000 0.000000 1.000000 1.000000 0.000000 0 2 1 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 0 1 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 2 0 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 1 2 3 0x00000000
brush
vertices
92.485260 112.000000 526.970520
84.000031 112.000000 510.000000
109.455719 144.000000 509.999939
109.455719 112.000000 509.999939
faces
0.000000 0.000000 1.000000 1.000000 0.000000 0 2 1 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 0 1 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 2 0 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 1 2 3 0x00000000
brush
vertices
378.000000 112.000000 788.000000
386.485260 112.000000 771.029358
403.455780 144.000000 787.999939
403.455780 112.000000 787.999939
faces
0.000000 0.000000 1.000000 1.000000 0.000000 0 2 1 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 0 1 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 2 0 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 1 2 3 0x00000000
brush
vertices
386.485260 112.000000 771.029358
403.455811 112.000000 762.544128
403.455811 144.000000 787.999939
403.455811 112.000000 787.999939
faces
0.000000 0.000000 1.000000 1.000000 0.000000 0 2 1 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 0 1 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 2 0 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 1 2 3 0x00000000
brush
vertices
403.455811 112.000000 762.544128
420.426361 112.000000 771.029358
403.455811 144.000000 787.999939
403.455811 112.000000 787.999939
faces
0.000000 0.000000 1.000000 1.000000 0.000000 0 2 1 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 0 1 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 2 0 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 1 2 3 0x00000000
brush
vertices
420.426361 112.000000 771.029358
428.911682 112.000000 788.000000
403.455811 144.000000 787.999939
403.455811 112.000000 787.999939
faces
0.000000 0.000000 1.000000 1.000000 0.000000 0 2 1 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 0 1 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 2 0 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 1 2 3 0x00000000
brush
vertices
428.911682 112.000000 788.000000
420.426392 112.000000 804.970520
403.455811 144.000000 787.999939
403.455811 112.000000 787.999939
faces
0.000000 0.000000 1.000000 1.000000 0.000000 0 2 1 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 0 1 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 2 0 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 1 2 3 0x00000000
brush
vertices
420.426392 112.000000 804.970520
403.455811 112.000000 813.455811
403.455811 144.000000 788.000061
403.455811 112.000000 788.000061
faces
0.000000 0.000000 1.000000 1.000000 0.000000 0 2 1 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 0 1 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 2 0 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 1 2 3 0x00000000
brush
vertices
403.455811 112.000000 813.455811
386.485260 112.000000 804.970520
403.455811 144.000000 788.000061
403.455811 112.000000 788.000061
faces
0.000000 0.000000 1.000000 1.000000 0.000000 0 2 1 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 0 1 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 2 0 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 1 2 3 0x00000000
brush
vertices
386.485229 112.000000 804.970520
378.000000 112.000000 788.000000
403.455780 144.000000 787.999939
403.455780 112.000000 787.999939
faces
0.000000 0.000000 1.000000 1.000000 0.000000 0 2 1 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 0 1 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 2 0 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 1 2 3 0x00000000
brush
vertices
402.000000 112.000000 534.000000
385.029419 112.000000 525.514771
401.999878 144.000000 508.544250
401.999878 112.000000 508.544250
faces
0.000000 0.000000 1.000000 1.000000 0.000000 0 2 1 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 0 1 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 2 0 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 1 2 3 0x00000000
brush
vertices
385.029419 112.000000 525.514771
376.544067 112.000000 508.544250
401.999939 144.000000 508.544312
401.999939 112.000000 508.544312
faces
0.000000 0.000000 1.000000 1.000000 0.000000 0 2 1 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 0 1 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 2 0 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 1 2 3 0x00000000
brush
vertices
376.544067 112.000000 508.544250
385.029358 112.000000 491.573608
401.999939 144.000000 508.544312
401.999939 112.000000 508.544312
faces
0.000000 0.000000 1.000000 1.000000 0.000000 0 2 1 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 0 1 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 2 0 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 1 2 3 0x00000000
brush
vertices
385.029358 112.000000 491.573608
402.000000 112.000000 483.088318
401.999939 144.000000 508.544312
401.999939 112.000000 508.544312
faces
0.000000 0.000000 1.000000 1.000000 0.000000 0 2 1 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 0 1 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 2 0 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 1 2 3 0x00000000
brush
vertices
402.000000 112.000000 483.088318
418.970581 112.000000 491.573608
401.999939 144.000000 508.544312
401.999939 112.000000 508.544312
faces
0.000000 0.000000 1.000000 1.000000 0.000000 0 2 1 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 0 1 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 2 0 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 1 2 3 0x00000000
brush
vertices
418.970581 112.000000 491.573608
427.455688 112.000000 508.544250
402.000000 144.000000 508.544250
402.000000 112.000000 508.544250
faces
0.000000 0.000000 1.000000 1.000000 0.000000 0 2 1 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 0 1 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 2 0 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 1 2 3 0x00000000
brush
vertices
427.455688 112.000000 508.544250
418.970581 112.000000 525.514771
402.000000 144.000000 508.544250
402.000000 112.000000 508.544250
faces
0.000000 0.000000 1.000000 1.000000 0.000000 0 2 1 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 0 1 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 2 0 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 1 2 3 0x00000000
brush
vertices
418.970459 112.000000 525.514771
402.000000 112.000000 534.000000
401.999878 144.000000 508.544250
401.999878 112.000000 508.544250
faces
0.000000 0.000000 1.000000 1.000000 0.000000 0 2 1 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 0 1 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 2 0 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 1 2 3 0x00000000
brush
vertices
100.000000 -16.000000 428.000000
144.000000 -16.000000 408.000000
144.000000 112.000000 408.000000
256.000000 -16.000000 648.000000
256.000000 112.000000 648.000000
100.000000 112.000000 428.000000
faces
0.000000 0.000000 1.000000 1.000000 0.000000 0 1 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 4 2 5 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 3 1 2 4 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 2 1 0 5 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 0 3 4 5 0x00000000
brush
vertices
64.000000 -16.000000 456.000000
100.000000 -16.000000 428.000000
100.000000 112.000000 428.000000
256.000000 -16.000000 648.000000
256.000000 112.000000 648.000000
64.000000 112.000000 456.000000
faces
0.000000 0.000000 1.000000 1.000000 0.000000 0 1 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 4 2 5 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 3 1 2 4 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 2 1 0 5 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 0 3 4 5 0x00000000
brush
vertices
36.000000 -16.000000 492.000000
64.000000 -16.000000 456.000000
64.000000 112.000000 456.000000
256.000000 -16.000000 648.000000
256.000000 112.000000 648.000000
36.000000 112.000000 492.000000
faces
0.000000 0.000000 1.000000 1.000000 0.000000 0 1 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 4 2 5 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 3 1 2 4 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 2 1 0 5 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 0 3 4 5 0x00000000
brush
vertices
16.000000 -16.000000 536.000000
36.000000 -16.000000 492.000000
36.000000 112.000000 492.000000
256.000000 -16.000000 648.000000
256.000000 112.000000 648.000000
16.000000 112.000000 536.000000
faces
0.000000 0.000000 1.000000 1.000000 0.000000 0 1 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 4 2 5 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 3 1 2 4 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 2 1 0 5 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 5 0 3 4 0x00000000
brush
vertices
4.000000 -16.000000 588.000000
16.000000 -16.000000 536.000000
16.000000 112.000000 536.000000
256.000000 -16.000000 648.000000
256.000000 112.000000 648.000000
4.000000 112.000000 588.000000
faces
0.000000 0.000000 1.000000 1.000000 0.000000 0 1 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 4 2 5 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 3 1 2 4 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 2 1 0 5 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 0 3 4 5 0x00000000
brush
vertices
0.000000 -16.000000 648.000000
4.000000 -16.000000 588.000000
4.000000 112.000000 588.000000
256.000000 -16.000000 648.000000
256.000000 112.000000 648.000000
0.000000 112.000000 648.000000
faces
0.000000 0.000000 1.000000 1.000000 0.000000 0 1 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 4 2 5 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 3 1 2 4 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 2 1 0 5 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 0 3 4 5 0x00000000
brush
vertices
4.000000 -16.000000 708.000000
0.000000 -16.000000 648.000000
0.000000 112.000000 648.000000
256.000122 -16.000000 648.000183
256.000122 112.000000 648.000183
4.000000 112.000000 708.000000
faces
0.000000 0.000000 1.000000 1.000000 0.000000 0 1 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 4 2 5 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 3 1 2 4 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 2 1 0 5 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 5 0 3 4 0x00000000
brush
vertices
16.000122 -16.000000 760.000000
4.000000 -16.000000 708.000000
4.000000 112.000000 708.000000
256.000122 -16.000000 648.000183
256.000122 112.000000 648.000183
16.000122 112.000000 760.000000
faces
0.000000 0.000000 1.000000 1.000000 0.000000 0 1 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 4 2 5 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 3 1 2 4 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 2 1 0 5 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 0 3 4 5 0x00000000
brush
vertices
36.000061 -16.000000 804.000061
16.000122 -16.000000 760.000000
16.000122 112.000000 760.000000
256.000122 -16.000000 648.000183
256.000122 112.000000 648.000183
36.000061 112.000000 804.000061
faces
0.000000 0.000000 1.000000 1.000000 0.000000 0 1 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 4 2 5 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 3 1 2 4 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 2 1 0 5 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 0 3 4 5 0x00000000
brush
vertices
64.000122 -16.000000 840.000000
36.000061 -16.000000 804.000061
36.000061 112.000000 804.000061
256.000122 -16.000000 648.000183
256.000122 112.000000 648.000183
64.000122 112.000000 840.000000
faces
0.000000 0.000000 1.000000 1.000000 0.000000 0 1 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 4 2 5 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 3 1 2 4 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 2 1 0 5 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 0 3 4 5 0x00000000
brush
vertices
99.999939 -15.999992 868.000061
64.000122 -15.999992 840.000000
64.000122 112.000000 840.000000
256.000122 -15.999992 648.000183
256.000122 112.000000 648.000183
99.999939 112.000000 868.000061
faces
0.000000 0.000000 1.000000 1.000000 0.000000 0 1 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 4 2 5 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 3 1 2 4 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 2 1 0 5 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 0 3 4 5 0x00000000
brush
vertices
144.000061 -16.000000 888.000061
99.999939 -16.000000 868.000061
99.999939 112.000000 868.000061
256.000122 -16.000000 648.000183
256.000122 112.000000 648.000183
144.000061 112.000000 888.000061
faces
0.000000 0.000000 1.000000 1.000000 0.000000 0 1 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 4 2 5 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 3 1 2 4 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 2 1 0 5 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 5 0 3 4 0x00000000
brush
vertices
196.000061 -15.999992 900.000061
144.000061 -15.999992 888.000061
144.000061 112.000000 888.000061
256.000122 -15.999992 648.000183
256.000122 112.000000 648.000183
196.000061 112.000000 900.000061
faces
0.000000 0.000000 1.000000 1.000000 0.000000 0 1 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 4 2 5 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 3 1 2 4 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 2 1 0 5 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 0 3 4 5 0x00000000
brush
vertices
256.000000 -15.999992 904.000000
196.000061 -15.999992 900.000061
196.000061 112.000000 900.000061
256.000122 -15.999992 648.000183
256.000122 112.000000 648.000183
256.000000 112.000000 904.000000
faces
0.000000 0.000000 1.000000 1.000000 0.000000 0 1 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 4 2 5 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 3 1 2 4 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 2 1 0 5 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 0 3 4 5 0x00000000
brush
vertices
315.999939 -16.000000 900.000000
255.999939 -16.000000 904.000000
255.999939 112.000000 904.000000
256.000122 -16.000000 647.999939
256.000122 112.000000 647.999939
315.999939 112.000000 900.000000
faces
0.000000 0.000000 1.000000 1.000000 0.000000 0 1 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 4 2 5 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 3 1 2 4 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 2 1 0 5 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 5 0 3 4 0x00000000
brush
vertices
368.000000 -16.000000 887.999939
315.999939 -16.000000 900.000000
315.999939 112.000000 900.000000
256.000122 -16.000000 647.999939
256.000122 112.000000 647.999939
368.000000 112.000000 887.999939
faces
0.000000 0.000000 1.000000 1.000000 0.000000 0 1 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 4 2 5 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 3 1 2 4 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 2 1 0 5 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 0 3 4 5 0x00000000
brush
vertices
412.000000 -15.999992 868.000000
368.000000 -15.999992 887.999939
368.000000 112.000000 887.999939
256.000122 -15.999992 647.999939
256.000122 112.000000 647.999939
412.000000 112.000000 868.000000
faces
0.000000 0.000000 1.000000 1.000000 0.000000 0 1 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 4 2 5 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 3 1 2 4 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 2 1 0 5 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 0 3 4 5 0x00000000
brush
vertices
448.000000 -15.999992 840.000000
412.000000 -15.999992 868.000000
412.000000 112.000000 868.000000
256.000122 -15.999992 647.999939
256.000122 112.000000 647.999939
448.000000 112.000000 840.000000
faces
0.000000 0.000000 1.000000 1.000000 0.000000 0 1 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 4 2 5 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 3 1 2 4 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 2 1 0 5 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 0 3 4 5 0x00000000
brush
vertices
476.000061 -16.000000 804.000122
448.000000 -16.000000 840.000000
448.000000 112.000000 840.000000
256.000122 -16.000000 647.999939
256.000122 112.000000 647.999939
476.000061 112.000000 804.000122
faces
0.000000 0.000000 1.000000 1.000000 0.000000 0 1 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 4 2 5 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 3 1 2 4 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 2 1 0 5 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 0 3 4 5 0x00000000
brush
vertices
496.000061 -15.999992 760.000000
476.000061 -15.999992 804.000122
476.000061 112.000000 804.000122
256.000122 -15.999992 647.999939
256.000122 112.000000 647.999939
496.000061 112.000000 760.000000
faces
0.000000 0.000000 1.000000 1.000000 0.000000 0 1 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 4 2 5 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 3 1 2 4 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 2 1 0 5 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 5 0 3 4 0x00000000
brush
vertices
508.000061 -15.999992 708.000000
496.000061 -15.999992 760.000000
496.000061 112.000000 760.000000
256.000122 -15.999992 647.999939
256.000122 112.000000 647.999939
508.000061 112.000000 708.000000
faces
0.000000 0.000000 1.000000 1.000000 0.000000 0 1 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 4 2 5 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 3 1 2 4 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 2 1 0 5 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 0 3 4 5 0x00000000
brush
vertices
512.000000 -16.000000 648.000000
508.000061 -16.000000 708.000000
508.000061 112.000000 708.000000
256.000122 -16.000000 647.999939
256.000122 112.000000 647.999939
512.000000 112.000000 648.000000
faces
0.000000 0.000000 1.000000 1.000000 0.000000 0 1 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 4 2 5 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 3 1 2 4 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 2 1 0 5 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 0 3 4 5 0x00000000
brush
vertices
508.000000 -15.999992 587.999939
512.000000 -15.999992 648.000000
512.000000 112.000000 648.000000
256.000000 -15.999992 647.999878
256.000000 112.000000 647.999878
508.000000 112.000000 587.999939
faces
0.000000 0.000000 1.000000 1.000000 0.000000 0 1 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 4 2 5 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 3 1 2 4 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 2 1 0 5 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 5 0 3 4 0x00000000
brush
vertices
496.000000 -16.000000 535.999939
508.000000 -16.000000 587.999939
508.000000 112.000000 587.999939
256.000000 -16.000000 647.999878
256.000000 112.000000 647.999878
496.000000 112.000000 535.999939
faces
0.000000 0.000000 1.000000 1.000000 0.000000 0 1 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 4 2 5 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 3 1 2 4 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 2 1 0 5 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 0 3 4 5 0x00000000
brush
vertices
476.000000 -16.000000 491.999939
496.000000 -16.000000 535.999939
496.000000 112.000000 535.999939
256.000000 -16.000000 647.999878
256.000000 112.000000 647.999878
476.000000 112.000000 491.999939
faces
0.000000 0.000000 1.000000 1.000000 0.000000 0 1 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 4 2 5 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 3 1 2 4 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 2 1 0 5 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 0 3 4 5 0x00000000
brush
vertices
448.000000 -15.999992 455.999939
476.000000 -15.999992 491.999939
476.000000 112.000000 491.999939
256.000000 -15.999992 647.999878
256.000000 112.000000 647.999878
448.000000 112.000000 455.999939
faces
0.000000 0.000000 1.000000 1.000000 0.000000 0 1 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 4 2 5 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 3 1 2 4 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 2 1 0 5 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 0 3 4 5 0x00000000
brush
vertices
412.000122 -16.000000 427.999878
448.000000 -16.000000 455.999939
448.000000 112.000000 455.999939
256.000000 -16.000000 647.999878
256.000000 112.000000 647.999878
412.000122 112.000000 427.999878
faces
0.000000 0.000000 1.000000 1.000000 0.000000 0 1 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 4 2 5 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 3 1 2 4 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 2 1 0 5 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 0 3 4 5 0x00000000
brush
vertices
368.000000 -16.000000 407.999878
412.000122 -16.000000 427.999878
412.000122 112.000000 427.999878
256.000000 -16.000000 647.999878
256.000000 112.000000 647.999878
368.000000 112.000000 407.999878
faces
0.000000 0.000000 1.000000 1.000000 0.000000 0 1 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 4 2 5 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 3 1 2 4 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 2 1 0 5 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 5 0 3 4 0x00000000
brush
vertices
316.000000 -16.000000 395.999939
368.000000 -16.000000 407.999878
368.000000 112.000000 407.999878
256.000000 -16.000000 647.999878
256.000000 112.000000 647.999878
316.000000 112.000000 395.999939
faces
0.000000 0.000000 1.000000 1.000000 0.000000 0 1 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 4 2 5 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 3 1 2 4 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 2 1 0 5 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 0 3 4 5 0x00000000
brush
vertices
196.000000 -16.000000 396.000000
256.000000 -16.000000 392.000000
256.000000 112.000000 392.000000
256.000000 -16.000000 648.000000
256.000000 112.000000 648.000000
196.000000 112.000000 396.000000
faces
0.000000 0.000000 1.000000 1.000000 0.000000 0 1 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 4 2 5 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 3 1 2 4 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 2 1 0 5 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 5 0 3 4 0x00000000
brush
vertices
144.000000 -16.000000 408.000000
196.000000 -16.000000 396.000000
196.000000 112.000000 396.000000
256.000000 -16.000000 648.000000
256.000000 112.000000 648.000000
144.000000 112.000000 408.000000
faces
0.000000 0.000000 1.000000 1.000000 0.000000 0 1 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 4 2 5 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 3 1 2 4 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 2 1 0 5 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 0 3 4 5 0x00000000
brush
vertices
256.000000 -16.000000 392.000000
316.000000 -16.000000 395.999939
316.000000 112.000000 395.999939
256.000000 -16.000000 647.999878
256.000000 112.000000 647.999878
256.000000 112.000000 392.000000
faces
0.000000 0.000000 1.000000 1.000000 0.000000 0 1 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 4 2 5 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 3 1 2 4 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 2 1 0 5 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 0 3 4 5 0x00000000
entity
type CameraPath
UInt8 posLerp 2
UInt8 angleLerp 2
entity
type PlayerSpawn
Vector3 position 256.000000 256.000000 256.000000
Bool8 teamB 0
Bool8 initialSpawn 0
Bool8 modeCTF 0
Bool8 modeFFA 0
Bool8 modeTDM 0
Bool8 mode1v1 0
Bool8 modeRace 0
Bool8 mode2v2 0
entity
type PlayerSpawn
Vector3 position 72.000000 216.000000 560.000000
Vector3 angles 180.000000 0.000000 0.000000
Bool8 teamA 0
Bool8 initialSpawn 0
Bool8 modeCTF 0
Bool8 modeFFA 0
Bool8 modeTDM 0
Bool8 mode1v1 0
Bool8 modeRace 0
Bool8 mode2v2 0
entity
type PlayerSpawn
Vector3 position 72.000000 216.000000 728.000000
Vector3 angles 180.000000 0.000000 0.000000
Bool8 teamA 0
Bool8 initialSpawn 0
Bool8 modeCTF 0
Bool8 modeFFA 0
Bool8 modeTDM 0
Bool8 mode1v1 0
Bool8 modeRace 0
Bool8 mode2v2 0
entity
type PlayerSpawn
Vector3 position 440.000000 216.000000 560.000000
Vector3 angles 180.000000 0.000000 0.000000
Bool8 teamA 0
Bool8 initialSpawn 0
Bool8 modeCTF 0
Bool8 modeFFA 0
Bool8 modeTDM 0
Bool8 mode1v1 0
Bool8 modeRace 0
Bool8 mode2v2 0
entity
type PlayerSpawn
Vector3 position 440.000000 216.000000 728.000000
Vector3 angles 180.000000 0.000000 0.000000
Bool8 teamA 0
Bool8 initialSpawn 0
Bool8 modeCTF 0
Bool8 modeFFA 0
Bool8 modeTDM 0
Bool8 mode1v1 0
Bool8 modeRace 0
Bool8 mode2v2 0
entity
type PlayerSpawn
Vector3 position 168.000000 216.000000 472.000000
Vector3 angles 180.000000 0.000000 0.000000
Bool8 teamA 0
Bool8 initialSpawn 0
Bool8 modeCTF 0
Bool8 modeFFA 0
Bool8 modeTDM 0
Bool8 mode1v1 0
Bool8 modeRace 0
Bool8 mode2v2 0
entity
type PlayerSpawn
Vector3 position 344.000000 216.000000 472.000000
Vector3 angles 180.000000 0.000000 0.000000
Bool8 teamA 0
Bool8 initialSpawn 0
Bool8 modeCTF 0
Bool8 modeFFA 0
Bool8 modeTDM 0
Bool8 mode1v1 0
Bool8 modeRace 0
Bool8 mode2v2 0
entity
type PlayerSpawn
Vector3 position 168.000000 216.000000 824.000000
Vector3 angles 180.000000 0.000000 0.000000
Bool8 teamA 0
Bool8 initialSpawn 0
Bool8 modeCTF 0
Bool8 modeFFA 0
Bool8 modeTDM 0
Bool8 mode1v1 0
Bool8 modeRace 0
Bool8 mode2v2 0
entity
type PlayerSpawn
Vector3 position 344.000000 216.000000 824.000000
Vector3 angles 180.000000 0.000000 0.000000
Bool8 teamA 0
Bool8 initialSpawn 0
Bool8 modeCTF 0
Bool8 modeFFA 0
Bool8 modeTDM 0
Bool8 mode1v1 0
Bool8 modeRace 0
Bool8 mode2v2 0
|
230811dd371b011519200984ab3d11535c120b27
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1850/CH6/EX6.1/exa_6_1.sce
|
d2def07a8fc8fb5fa7c512df6852b0c06f2fde74
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 479
|
sce
|
exa_6_1.sce
|
// Exa 6.1
clc;
clear;
close;
// Given Data
f_H= 2;// in kHz
f_H= f_H*10^3;// in Hz
C=0.01;// in micro F
C=C*10^-6;// in F
R= 1/(2*%pi*f_H*C);// in ohm
R=R*10^-3;// in kohm
// R may be taken a pot of 10 k ohm
R=10;// in k ohm
// Since the passbond gain is 2.5, so
// 1+Rf/R1= 2.5 or Rf= 1.5*R1
// Since Rf||R1
R1= R*2.5/1.5;// in k ohm
Rf= R1*1.5;// in k ohm
disp("Value of R1 is : "+string(R1)+" k ohm")
disp("Value of Rf is : "+string(Rf)+" k ohm")
|
d34328a0df4cb3bc279aa817e5a87af327d52380
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2642/CH2/EX2.11/Ex2_11.sce
|
51e103ac04379a52f56607295424b4e95d92a870
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 506
|
sce
|
Ex2_11.sce
|
// FUNDAMENTALS OF ELECTICAL MACHINES
// M.A.SALAM
// NAROSA PUBLISHING HOUSE
// SECOND EDITION
// Chapter 2 : BESICS OF MAGNETIC CIRCUITS
// Example : 2.11
clc;clear; // clears the console and command history
// Given data
I = 150 // current through conductor in A
l = 2 // conductor length in m
B = 0.35 // magnetic flux density in T
// caclulations
F = B*l*I // force in N
// display the result
disp("Example 2.11 solution");
printf("\n Force \n F = %.0f N \n", F);
|
9e75e6a0f3c881f99feb521522f22a21f3a2bb9e
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1475/CH6/EX6.36/Example_6_36.sce
|
bfe28349642829f1f1ca520e6aa9b371a85ca45f
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,685
|
sce
|
Example_6_36.sce
|
//Example 6.36 Deseasonalize the following production data
clc;
clear;
Output=[30 49 50 35 49 50 61 20 35 62 60 25 75 79 65 70];
MV1=0;
MV2=0;
MV16=0;
MV3=Output(1)+Output(2)+Output(3)+Output(4);
MV4=Output(2)+Output(3)+Output(4)+Output(5);
MV5=Output(3)+Output(4)+Output(5)+Output(6);
MV6=Output(4)+Output(5)+Output(6)+Output(7);
MV7=Output(5)+Output(6)+Output(7)+Output(8);
MV8=Output(6)+Output(7)+Output(8)+Output(9);
MV9=Output(7)+Output(8)+Output(9)+Output(10);
MV10=Output(8)+Output(9)+Output(10)+Output(11);
MV11=Output(9)+Output(10)+Output(11)+Output(12);
MV12=Output(10)+Output(11)+Output(12)+Output(13);
MV13=Output(11)+Output(12)+Output(13)+Output(14);
MV14=Output(12)+Output(13)+Output(14)+Output(15);
MV15=Output(16)+Output(13)+Output(14)+Output(15);
MVT=[MV1 MV2 MV3 MV4 MV5 MV6 MV7 MV8 MV9 MV10 MV11 MV12 MV13 MV14 MV15 MV16];
T1=0;
T2=0;
T16=0;
T15=0;
T3=MV3+MV4;
T4=MV4+MV5;
T5=MV5+MV6;
T6=MV6+MV7;
T7=MV7+MV8;
T8=MV8+MV9;
T9=MV9+MV10;
T10=MV10+MV11;
T11=MV11+MV12;
T12=MV12+MV13;
T13=MV13+MV14;
T14=MV14+MV15;
T=[T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16];
MA=T./8;
DT=Output-MA;
disp(DT,"Deviation from tend",MA,"4 quarter Moving Total",T,"2 year Moving Total",MVT,"4 year Moving Average ",Output,"Output =");
P1=[0 DT(5) DT(9) DT(13)];
P2=[0 DT(6) DT(10) DT(14)];
P3=[DT(3)DT(7) DT(11) 0];
P4=[DT(4) DT(8) DT(12) 0];
RT1=sum(P1);
RT2=sum(P2);
RT3=sum(P3);
RT4=sum(P4);
RT=[RT1 RT2 RT3 RT4];
AM=RT./3;
SS=AM-(0.57);
M=[SS SS SS SS];
DD=Output-M;
GA=sum(AM)/4;
disp(DD,"Deseasonalised Data =",GA,"Grand Average =",SS,"Seasonal @ =",AM,"Average Movement =",RT,"Total of Deviations = ");
|
671a407ffc10a94f00fe206e6ea577939228a311
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1595/CH1/EX1.7/ex1_7.sce
|
332c713ea43c2c98a2fbed3db3d18c582b3dab25
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,440
|
sce
|
ex1_7.sce
|
//Introductory Topics :example 1-7 : (pg no. 21 & 22)
BW=200*10^3;
k=(1.38*10^-23);
T=(273+22);//converting degrees C into kelvin
R=(10*10^3);
R1=300;
NF1=3;
NF2=8;
NR1=2;
NR2=6.31;
df=((%pi/2)*BW);
Pn=(k*T*df);
en=sqrt(4*Pn*R);
x=(14+20+20);//sum of the power gain of the three stages
y=(x/10);
Pg=(10^y);
Po=(Pn*Pg);
eno=sqrt(Po*R1);
pg1=(10^(1.4));
pg2=(10^(20));
NR=(NR1+((NR2-1)/pg1)+((NR2-1)/(pg1*pg2)));
NF=10*log10(NR);
No=(NR*Pn*Pg);
a=sqrt(No*R1);
//part(a)
printf("\ndelta(f)= (pi/2)*BW = %.f Hz",df);//effective noise bandwidth
printf("\nPn = k.T.delta(f) = %.17f W",Pn);// at the input
printf("\nen=sqrt(4.k.T.delta(f).R) = %.8f V",en);//Voltage
printf("\nTpg = 14dB+20dB+20dB = %.f dB",x);//total power gain in decibels
printf("\n54dB = 10logPG \nPG = %.f",Pg);//total power gain
printf("\nPn(out) = Pn(in).PG = %.12f W",Po);//assuming perfect noiseless amplifiers
printf("\nen(out)= %.6f V",eno);//output driven by 300 Ohm load & P=V^2/R
//part(b)
printf("\nPG1=14dB = 25.1 \nPG2=PG3= 20dB =100 \nNF1= 3dB \nNR1=2 \nNF2=NF3=8dB \nNR2=NR3=6.31");
printf("\nNR=NR1+(NR2-1/PG1)+....+(NRn-1/PG1.PG2...PG(n-1))");//friiss's formula
printf("\nNR = %.3f",NR);//noise ratio
printf("\nNF = %.2f dB",NF);//noise figure
//part(c)
printf("\nNR = (Si/Ni)/(So/No) \nPG = %.1f*10^5",pg1);
printf("\nNR = No/(Ni*PG) \nNo = %.12f W",No);
printf("\nNo = (en^2)/R \nen= %.6f V",a);//outputnoise voltage
|
3a7e0a2273686b8c1fa01667770a13ec07f7b13a
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3293/CH5/EX5.8/Ex5_8.sce
|
09f3ae417bb8c0ea948c40c86b53c5e9fe882a69
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 535
|
sce
|
Ex5_8.sce
|
//page 161
//Example 5.8
clc;
clear;
close;
A = [1 2;3 4];
disp(A,'A = ');
d = det(A);
disp(d,'det A = ','Determinant of A is:');
ad = (det(A) * eye(2,2)) / A;
disp(ad,'adj A = ','Adjoint of A is:');
disp('Thus, A is not invertible as a matrix over the ring of integers.');
disp('But, A can be regarded as a matrix over field of rational numbers.');
in = inv(A);
//The A inverse matrix given in book has a wrong entry of 1/2. It should be -1/2.
disp(in,'inv(A) = ','Then, A is invertible and Inverse of A is:');
//end
|
b2232812e5322cff0aad2331a8ac6f93f1c04583
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2075/CH3/EX3.6/pe3_6.sce
|
8d0f901b0e86957682337dc2c232d65f550f6b4e
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 132
|
sce
|
pe3_6.sce
|
//example 3.6
clc; funcprot(0);
// Initialization of Variable
Ip=3;
f=100000;
I=Ip/3^.5;
disp(I,"rms current in A")
clear()
|
1263449a779f5d5610a1b20db17b716c29cd02fb
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3769/CH5/EX5.9/Ex5_9.sce
|
7048fe8bd1eeac4453ef89a9052ad95640eb1f05
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 196
|
sce
|
Ex5_9.sce
|
clear
//Given
I=2.4
A=0.30*10**-6
m=9.1*10**-31
n=8.4*10**28
e=1.6*10**-19
E=7.5
//Calculation
J=I/A
t=m*J/(n*e**2*E)
//Result
printf("\n Average relaxation time is %0.2f *10**-16 S",t*10**16)
|
b6c7039a7add5f9dc6c299064a802008a45c9f50
|
a095402148fd6b18b79f79dcaf460ddd3a81cd14
|
/exp3/filternew.sci
|
e607ed80805764d5f84b6bf8cc04decd2549e48f
|
[] |
no_license
|
avravikiran/sip-lab
|
b3ccc5b4e4f9d3353aff364adc966d9d46835f10
|
213d7e63bd08da70e286484dcc3d4e55fb43fbcd
|
refs/heads/master
| 2021-06-22T19:03:10.747224
| 2017-08-10T20:59:57
| 2017-08-10T20:59:57
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 5,627
|
sci
|
filternew.sci
|
function filternew(pic,RGB,tp1,winSize1,winSize2,sigma,path)
//******************************************************
//code developed by: L.N.Eeti,Research Assistant,CSRE.
//Date:25-02-2011
//input name of any filter shall exactly match as given under
//Gaussian filter/Lee filter/Average(Mean) filter/Median filter/Circular
//filter
//contents of param.txt
// %filter name e.g. Median filter
// %window size1(rows) e.g. 3
// %windoe size2(cols) e.g. 5
// %test image name e.g. inputimage
// %sigma value(for gaussian)/k value(sigma filter/LEE filter) **sigma=[0.5 3];
// %**k=[1 2] (for sigma filter)
// %**k=[0 1) (for lee filter)
//%contents of RGB.txt: band numbers e.g. 4 3 2
//% outputs: histogram of each band before and after filtering;a filtered image
//%***********************************************************
stacksize('max');
mode(-1);
tp11=ascii(part(tp1,1));
tp12=ascii(part(tp1,3));
[img,RbandVal,GbandVal,BbandVal] = imgdisplay1(pic,RGB,path);
bnd=[RbandVal, GbandVal, BbandVal];
[r,c,b]=size(img);
img=double(img);
fil_img = zeros(r,c,b);
filImg = zeros(r,c,b);
if (tp11==65) //average filter
out_fname = path+'FilteredImage.jpg';
F=ones(winSize1,winSize2)/winSize1/winSize2;
F=double(F);
for i=1:b
fil_img(:,:,i)=conv2(img(:,:,i),F,"same");
end
elseif isequal(tp11,67) //circular filter
out_fname = path+'FilteredImage.jpg';
p2=floor(sqrt(winSize1*winSize2));
F=circularfilter(p2);
for i=1:b
fil_img(:,:,i)=conv2(img(:,:,i),F,"same");
end
elseif isequal(tp11,71) //gaussian filter
out_fname = path+'FilteredImage.jpg';
w=[winSize1,winSize2];
F=fspecial('gaussian',w,sigma);
for i=1:b
fil_img(:,:,i)=conv2(img(:,:,i),F,"same");
end
elseif isequal(tp11,76)//lee filter
out_fname = path+'FilteredImage.jpg';
var1=sigma;
siz=[winSize1 winSize2];
win_centre=floor(([winSize1 winSize2]+1)/2);
u=win_centre-1;
img1= zeros(r+2*u(1,1),c+2*u(1,2),b);
for i=1:b
img1(:,:,i)=padding(img(:,:,i),[u(1,1) u(1,2)]);
end
fil_img= leefilter(img1,siz,var1,win_centre);
elseif (isequal(tp11,77) & isequal(tp12,101))//median filter
out_fname = path+'FilteredImage.jpg';
for i=1:b
fil_img(:,:,i)=medfilt2(img(:,:,i),[winSize1 winSize2]);
end
elseif isequal(tp11,83) //sigma filter
out_fname = path+'FilteredImage.jpg';
var1=sigma;
win_centre=floor(([winSize1 winSize2]+1)/2);
u=win_centre-1;
siz=[winSize1 winSize2];
img1= zeros(r+2*u(1,1),c+2*u(1,2),b);
for i=1:b
img1(:,:,i)=padding(img(:,:,i),[u(1,1) u(1,2)]);
end
fil_img= sigmafilter(img1,siz,var1);
elseif isequal(tp11,77) & isequal(tp12,111) //mode filter
out_fname=path+'FilteredImage.jpg';
win_centre=floor(([winSize1 winSize2]+1)/2);
u=win_centre-1;
img1= zeros(r+2*u(1,1),c+2*u(1,2),b);
for i=1:b
img1(:,:,i)=padding(img(:,:,i),[u(1,1) u(1,2)]);
end
for j = 1:r - winSize1 + 1
for i = 1:c - winSize2 + 1
win = double(img1(j:j + winSize1 - 1, i:i + winSize2 - 1, :));
for k=1:b
x_mode=modefilter(win(:,:,k));
fil_img(((2*j+winSize1-1)/2)-1,((2*i+winSize2-1)/2)-1,k)=x_mode;
end
end
end
elseif isequal(tp11,87)//weighted average filter
out_fname=path+'FilteredImage.jpg';
COF="COF.txt";
kern1=getcof(COF);
[m,n]=size(kern1);
coff_sum=sum(sum(kern1));
if (coff_sum >1)
kern1=kern1./ coff_sum;
end
if (b>1)
kern=zeros(m,n,3);
for i=1:b
kern(:,:,i)=kern1;
end
end
siz=[winSize1 winSize2];
win_centre=floor(([winSize1 winSize2]+1)/2);
u=win_centre-1;
img1= zeros(r+2*u(1,1),c+2*u(1,2),b);
for i=1:b
img1(:,:,i)=padding(img(:,:,i),[u(1,1) u(1,2)]);
end
fil_img=weightavgfilter(img1,siz,kern);
end
for i=1:size(filImg,3)
minPxlVal = min(min(fil_img(:,:,i)));
maxPxlVal = max(max(fil_img(:,:,i)));
maxmin = 1/(maxPxlVal - minPxlVal);
filImg(:,:,i) = 255*((fil_img(:,:,i)-minPxlVal).*maxmin);
end
filImg=uint8(filImg);
imwrite(filImg,out_fname);
//Histogram start
if (isequal(RbandVal,GbandVal) & isequal(GbandVal,BbandVal)) then
for k=1:256
h(k)=length(find(filImg(:,:,1)==(k-1)));
end
scf(1);
plot2d3('gnn',[1:256],h);
xlabel("Gray value","color","red");
ylabel("Number of pixels","color","red");
title('Histogram of band '+string(RbandVal)+' of '+pic+' AFTER '+tp1+' smoothening ','color','red');
xs2jpg(gcf(),path+"out_hist_afterfilter '+string(RbandVal)+'.jpg");
xdel(winsid());
else
for i=1:b
for k=1:256
h(k)=length(find(filImg(:,:,i)==(k-1)));
end
scf(1);
plot2d3('gnn',[1:256],h);
xlabel("Gray value","color","red");
ylabel("Number of pixels","color","red");
title("Histogram of band "+string(bnd(i))+" of '+pic+' AFTER '+tp1+' smoothening ',"color","red");
xs2jpg(gcf(),path+"out_hist_afterfilter band "+string(bnd(i))+".jpg");
xdel(winsid());
end
end
endfunction
|
69cc7d0499c77aa443f68e8676be615b771d2b29
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/32/CH11/EX11.17/11_17.sce
|
6b74b7609f3f6859f5174fb8068be5e4b374692b
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,204
|
sce
|
11_17.sce
|
//pathname=get_absolute_file_path('11.17.sce')
//filename=pathname+filesep()+'11.17-data.sci'
//exec(filename)
//Pressure at which steam is generated(in bar):
p=20
//Temperature at which steam is generated(in C):
Ts=300
//Temperature of feed water supplied to the boiler(in C):
T1=50
//Calorific value of fuel(in kJ/kg):
C=30000
//Rate at which coal is used(in kg/hr):
r=600
//Rate at which steam is generated(in kg/hr):
r1=5000
//Temperature of the boiler unit(in C):
T=100
//Latent heat(in kJ/kg.K):
L=2257
//Steam generation per unit coal burnt per hour:
ms=r1/r
//Final enthalpy of the steam(in kJ/kg):
hfi=3023.5
//Enthalpy of feed water(in kJ/kg):
hfw=209.33
//Overall efficiency of boiler:
no=ms*(hfi-hfw)/C*100
//Equivalent evaporation of boiler unit(in kg steam per kg of coal):
Ee=ms*(hfi-hfw)/L
//Equivalent evaporation of boiler unit at 100 C(in kg/hr):
Eea=Ee*r
//After fitting economiser the enthalp of feed water(in kJ/kg):
hfw1=313.93
//Modified overall efficiency of boiler unit:
nom=no+5
//Coal consumption(in kg/hr):
mc=(hfi-hfw1)*r1*100/(C*nom)
//Saving of coal(in kg/hr):
s=r-mc
printf("\n RESULT \n")
printf("\nSaving of coal = %f kg/hr",s)
|
56fe254f403330e70a954989c14624d51fa67f2b
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1586/CH17/EX17.4/EX17_4.sce
|
d8953a372102624253a57fd6721ff96128f34f85
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,458
|
sce
|
EX17_4.sce
|
clc;funcprot(0);//EXAMPLE 17.4
// Initialisation of Variables
rho1=0.95;...........//Density of polyethylene in g/cm^3
rho2=2.4;...........//Density of clay in g/cm^3
f1=0.65;...............//Volume fraction of Polyethylene
f2=0.35;...............//Volume fraction of Clay
f3=1.67;.............//Volume fraction of polyethylene after sacrifice
f4=1.06;.............//Volume fraction of Clay after sacrifice
pa1=650;............// No. of parts of polyethylene in 1000cm^3 composite in cm^3
pa2=350;............// No. of parts of clay in 1000cm^3 composite in cm^3
//Calculations
pa3=(pa1*rho1)/454;.........//No. of parts of Polyethylene in 1000cm^3 composite in lb
pa4=(pa2*rho2)/454;.........//No. of parts of clay in 1000cm^3 composite in lb
co1=pa3* 0.05;................//Cost of material Polyethylenein Dollars
co2=pa4* 0.05;................//Cost of materials clay in Dollars
c0=co1+co2;...................//Cost of materials in Dollars
rho3=(f1*rho1)+(f2*rho2);.........//Composite density in g/cm^3
co3=f3* 0.05;................//Cost of material polyethylene after savings in Dollars
co4=f4* 0.05;................//Cost of material clay after savings in Dollars
c1=co3+co4;.................//Cost of materials after savings in Dollars
rho4=(0.8*rho1)+(0.2*rho2);..............//Density of composite after saving in g/cm^3
disp(rho3,"Composite density in g/cm^3:")
disp(rho4,"Composite densityafter saving in g/cm^3:")
|
07a255fea0dd5ce8c34bfe465396986fcfc532fb
|
35071fb08cee13f4a9e79c396f7c8c028f69db0e
|
/Tests/Syntaxe/KO/return_bool_false_from_void.tst
|
87d6ac0b7cc0671111d76e4e0f670d83a0a2a6ed
|
[] |
no_license
|
V1nc3ntL/Compilation
|
2cd9d4fa728055cebd44659cba517e49298142bc
|
e2008449ddb509021f6ddcfd0a92226807bec9ab
|
refs/heads/master
| 2023-06-01T09:42:01.069684
| 2021-06-02T19:15:13
| 2021-06-02T19:15:13
| 357,205,127
| 0
| 0
| null | 2021-05-31T12:13:32
| 2021-04-12T13:30:46
|
C
|
UTF-8
|
Scilab
| false
| false
| 85
|
tst
|
return_bool_false_from_void.tst
|
void main()
{
bool var = false;
if(var)
{
return 0;
}
else
{
return 1;
}
}
|
9f0d398f519725bdd70f4881646fe0bbf753f1e2
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1472/CH8/EX8.1/8_1.sce
|
eee7115983bcba8c9e213ec7859f71524fa0c587
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 159
|
sce
|
8_1.sce
|
clc
//initialization of varaibles
T1=85+460 //R
T2=50+460 //R
//calculations
eta=(T1-T2)/T1
//results
printf("Max. efficiency = %.1f percent",eta*100)
|
87b6ae530565e962264cc9d6257f0291f33c3b4f
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3826/CH1/EX1.3/Ex1_3.sce
|
451bab3768d406346cd8a203a3ee9d8da461527d
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 872
|
sce
|
Ex1_3.sce
|
//Example 1_3 page no:42
clc;
//given
armature_resitance = 0.086//in ohm
fl_arm_current = 150;
volt = 220;
power = 30;//in kiloWatt
ini_brk_current = 200;
full_ld_speed = 535;// in rev/min
back_emf = volt - (fl_arm_current * armature_resitance);
tot_volt = volt + back_emf;
resistance_req = tot_volt / ini_brk_current;
res_added = resistance_req - armature_resitance;
disp(res_added,"the resistance to be added is (in ohm)");
full_ld_torque = (power*1000*60)/(%pi*2*full_ld_speed);
ini_brk_torque = full_ld_torque * ini_brk_current / fl_arm_current;
back_emf = 208/2;//back emf at half speed
current = (volt + back_emf)/resistance_req;
ele_brk_torque = full_ld_torque * current / fl_arm_current;
disp(ele_brk_torque,"Electric braking torque at half speed is (in Nm)");
//the value vary slightly with textbook hence values are rounded off in text book
|
79d4c1e3d9dc35625fb2165c9228ccfca22c6f1b
|
244971ae8af51184d278cdc2be1c80775413adae
|
/SSSeSourceData.sci
|
8890ab1de019a1f0c36ec5d6c766a8087f05c696
|
[] |
no_license
|
MSCA-SIMFREE/748767
|
5879f1f139b608c7cd2f1bd62325b281c9c1e7d1
|
4726206e514f1e47e939e73b9339c056057866db
|
refs/heads/master
| 2020-12-27T15:21:13.646362
| 2020-02-03T11:40:00
| 2020-02-03T11:40:00
| 237,951,088
| 1
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 2,853
|
sci
|
SSSeSourceData.sci
|
// The code was developed under Horizon2020 Framework Programme
// Project: 748767 — SIMFREE
function OUT=SSSeSourceData(Amplitude,OffsetBit,DutyCycle,Sequence_Hex)
// Generates binary pseudorandom sequence
//
// Calling Sequence
// OUT=SSSeSourceData(Amplitude,OffsetBit,DutyCycle,Sequence_Hex)
//
// Parameters
// Amplitude : Difference between '1' and '0' levels
// OffsetBit : Value of '0' level
// DutyCycle : The fraction of a bit-period that is 'high' for l's
// Sequence_Hex : User defined bit sequence in Hex. This is read bit-wise from left to right.
// OUT : Electrical Output
// Description
// Generates a user defined binary (cyclic) sequence.
// The Sequence_Hex is set in a string as a Hexadecimal code word.
// The sequence must be an integer power of two long and will be cyclic.
// The bit-rate and code length are set in the SSSconfig component.
// If the user does not wire his own Sequence_Hex then default (pseudorandom) sequence is chosen depending on the value of m set at the SSSconfig.
//
global MNT MNS;
[lhs,rhs]=argn(0);
select rhs
case 0 then
Amplitude=1; OffsetBit=0; DutyCycle=1; Sequence_Hex="";
case 1 then
OffsetBit=0; DutyCycle=1; Sequence_Hex="";
case 2 then
DutyCycle=1; Sequence_Hex="";
case 3 then
Sequence_Hex="";
end
function x=hex2bin4(x)
for i=0:15
x=strsubst(x,dec2hex(i),dec2bin(i,4));
end
x=strsplit(x)';
x=bin2dec(x);
endfunction
if isempty(Sequence_Hex) then
select log2(round(MNS))
case 0 then; x=1;
case 1 then; x=[1 0];
case 2 then; x=hex2bin4("3");
case 3 then; x=hex2bin4("17");
case 4 then; x=hex2bin4("09AF");
case 5 then; x=hex2bin4("04B3E375");
case 6 then; x=hex2bin4("0218A7A392DD9ABF");
case 7 then; x=hex2bin4("0106147916753E87126D6F634BB9957F");
case 8 then; x=hex2bin4("008E25C0C93720ADACB0FB7AE886C79CC5A452A7767BF4CD460EABE509FE178D");
case 9 then; x=hex2bin4("0042309CAB0DE9B9142B4FD925BF26A6603194697F458EB2CF1F741ADBB05AFAA814AF2EE073A4F5D448670BDB343BC3FE0F7C5CC8253B479F362A471B571311");
case 10 then; x=hex2bin4("002048832684A87AEB6C0306CC2B5C6FC479EDA0285AA3EF25826451B703C77F218B74356796C8224C0B14ECE2FD45DAC336A0E9E9A9383E737A2ADF09D1D7DA4214AC73FB08D393C37631EFA4A068CBA5A22CD291876F05CAE77733ABBD944D8872F94CCAA7E635E6B4C4B85EAAFF4152F15EEA6E471FF80E1FB89F19F59649");
end
else
x=hex2bin4(Sequence_Hex);
end
if DutyCycle <0 then DutyCycle=0; end;
if DutyCycle >1 then DutyCycle=1; end;
d=MNT/MNS;
OUT=matrix([repmat(x,round(DutyCycle*d),1), zeros(MNS,round((1-DutyCycle)*d))],MNT,1);
OUT=Amplitude*OUT+OffsetBit;
endfunction
|
c5fa33eae29436d663693baaf1bf30cdc1f069f9
|
8217f7986187902617ad1bf89cb789618a90dd0a
|
/browsable_source/2.3.1/Unix-Windows/scilab-2.3/macros/tdcs/gpeche.sci
|
e0c1796e7517296669a8db9ac0708efddf8a21cb
|
[
"MIT",
"LicenseRef-scancode-warranty-disclaimer",
"LicenseRef-scancode-public-domain"
] |
permissive
|
clg55/Scilab-Workbench
|
4ebc01d2daea5026ad07fbfc53e16d4b29179502
|
9f8fd29c7f2a98100fa9aed8b58f6768d24a1875
|
refs/heads/master
| 2023-05-31T04:06:22.931111
| 2022-09-13T14:41:51
| 2022-09-13T14:41:51
| 258,270,193
| 0
| 1
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 973
|
sci
|
gpeche.sci
|
function [xk,ukp1]=gpeche(uk,pasg)
// pour une loi de commande uk
// calcule la trajectoire associee xk
// imprime le valeur du cout
// calcule une nouvelle valeur de commande
//!
[xk,pk]=equad(uk);
tk=(1/(npts-1))*(0:(npts-1));
xset("window",1)
if xget("window")=0 , xinit('unix:0.0'),xset("window",1),end
plot2d(tk',uk',[1,-1],"121","commande");
x0=30;
gcout = sum( uk.*xk-c*uk);
ppenco= gcout-ppen*(xk(npts)-x0)**2;
write(%io(2),gcout,'('' gain '',f7.2)')
write(%io(2),ppenco,'('' gain-penalise '',f7.2)')
grad = xk-c*ones(xk) - pk.*xk
//gradient projete su [0,umax]
umax=10;
ukp1=maxi(mini(uk- pasg*grad,umax*ones(1,npts)),0*ones(1,npts));
function [ut]=peche(t)
//[ut]=peche(t)
// la loi de commande u(t) constante par morceaux
// construite sur la loi de comande discrete uk
//!
[n1,n2]=size(uk);
ut=uk(mini(maxi(ent(t*npts),1),n2));
function [pdot]=pechep(t,p)
//[pdot]=pechep(t,p)
//equation adjointe
//!
pdot=-p*(10*( 1 -2*traj(t)/K) - peche(t)) - peche(t)
|
c437f474e35c8c9fbbb5f3ad68b1c545f826474b
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1619/CH5/EX5.3.3/Example5_3_3.sce
|
8aab22b2a708f3f86f07fdb35b1617f5a81471ff
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 458
|
sce
|
Example5_3_3.sce
|
//Example 5.3.3 page 5.8;
clc;
clear;
Ps= 5;
Lcoupling = 3;
Lc= 2;
L_splicing = 50*0.1;
F_atten = 25;
L_total = Lcoupling+Lc+L_splicing+F_atten;
P_avail = Ps-L_total;
sensitivity = -40;
loss_margin = -sensitivity-(-P_avail);
printf("The loss margin of the system is -%d dBm",loss_margin);
sensitivity_fet = -32;
loss_margin_fet=-sensitivity_fet-(-P_avail);
printf("\n\nThe loss marging for the FET receiver is -%d dBm",loss_margin_fet);
|
017625ecbb1d30b8f2d760cf3674786712223dc5
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2075/CH6/EX6.6/pe6_6.sce
|
9abb237791460a1ea9650ef78b0818e269c36f40
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 467
|
sce
|
pe6_6.sce
|
//example 6.6
clc; funcprot(0);
clf()
// Initialization of Variable
Vol=0.7;
Iol=40.0/1000;//current
Epullup=28.0;
Rpullup=(Epullup-Vol)/Iol;
disp(Rpullup,"resistance in ohm")
printf('pick up resistance=680 ohm');
Rpullup=680.0;
C=640;
trise=2.2*Rpullup*C;
disp(trise/1000,"rise time in ns");
//for plotting
x=[0 .1 1.9 4.1 5 5.1 5.3 5.6 6 9.3];
y=[27.8 .1 .1 .1 .1 5 13.5 21 27 27.8];
plot(x,y);
xtitle('Vout vs time','time(mus)','Vout')
clear()
|
2a5c5981e05d0f07bce48511fc6d30e4af1abcfa
|
b0aff14da16e18ea29381d0bd02eede1aafc8df1
|
/mtlbSci/macros/moc_ismember.sci
|
eda7d4c489c773b924604e1ec6e977c98dff6366
|
[] |
no_license
|
josuemoraisgh/mtlbSci
|
5d762671876bced45960a774f7192b41124a13ed
|
5c813ed940cccf774ccd52c9a69f88ba39f22deb
|
refs/heads/main
| 2023-07-15T23:47:11.843101
| 2021-08-26T17:52:57
| 2021-08-26T17:52:57
| 385,216,432
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 8,942
|
sci
|
moc_ismember.sci
|
function [tf, a_idx] = moc_ismember (a, s, rows_opt)
//Checks which elements of one matrix are member of an other matrix
//Calling Sequence
//tf = moc_ismember (A, S)
//[tf,S_idx] = moc_ismember (A, S)
//[tf,S_idx] = moc_ismember (A, S,'rows')
//
// Description
// Return a matrix tf with the same shape as A which has a 1 if
// A(i,j) is in S and 0 if it is not. If a second output argument
// is requested, the index into S of each of the matching elements is
// also returned.
//
// With the optional third argument "rows", and matrices
// A and S with the same number of columns, compare rows in
// A with the rows in S.
//
// Examples
// a = [3, 10, 1];
// s = [0:9];
// [tf, s_idx] = moc_ismember (a, s)
//
// a = [1:3; 5:7; 4:6];
// s = [0:2; 1:3; 2:4; 3:5; 4:6];
// [tf, s_idx] = moc_ismember(a, s, 'rows')
// Authors
// Paul Kienzle pkienzle@users.sf.net
// Søren Hauberg hauberg@gmail.com
// Ben Abbott bpabbott@mac.com
// jwe
// H. Nahrstaedt - 2011 - 2013
// Copyright (C) 2000, 2005, 2006, 2007, 2008, 2009 Paul Kienzle
//
// This file is part of Octave.
//
// Octave is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 3 of the License, or (at
// your option) any later version.
//
// Octave is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with Octave; see the file COPYING. If not, see
// <http://www.gnu.org/licenses/>.
[nargout,nargin]=argn(0);
if (nargin == 2 | nargin == 3)
if (iscell (a) | iscell (s))
error ("moc_ismember: a and must not be cells!");
else
if (nargin == 3)
// The 'rows' argument is handled in a fairly ugly way. A better
// solution would be to vectorize this loop over 'r' below.
if ( (rows_opt== "rows") & min(size (a))>1 & min(size (s))>1 & size (a,2) == size (s,2))
rs = size (s,1);
ra = size (a,1);
a_idx = zeros (ra, 1);
for r = 1:ra
tmp = ones (rs, 1) * a(r,:);
f = find (and (tmp' == s',1), 1);
if ( ~isempty (f))
a_idx(r) = f;
end
end
tf = (a_idx)~=0;
elseif ( (rows_opt== "rows"))
error ("moc_ismember: with rows both sets must be matrices with an equal number of columns");
else
error ("moc_ismember: invalid input");
end
else
// Input checking
if (~type(a)==type(s))
error ("moc_ismember: both input arguments must be the same type");
elseif ( ~type (a)==10 & ~or(type(a)==[1 5 8]) )
error ("moc_ismember: input arguments must be arrays, cell arrays, or strings");
elseif (type (a)==10 & type(s)==10)
a = ascii (a);
s = ascii (s);
end
// Convert matrices to vectors.
if (and (size (a) > 1))
a = a(:);
end
if (and (size (s) > 1))
s = s(:);
end
// Do the actual work.
if (isempty (a) | isempty (s))
tf = zeros (size (a,1),size(a,2))~=0;
a_idx = zeros (size (a,1),size(a,2));
elseif (length (s) == 1)
tf = (a == s);
a_idx = double (tf);
elseif (length (a) == 1)
f = find (a == s, 1);
tf = ~isempty (f);
a_idx = f;
if (isempty (a_idx))
a_idx = 0;
end
else
// Magic: the following code determines for each a, the index i
// such that s(i)<= a < s(i+1). It does this by sorting the a
// into s and remembering the source index where each element came
// from. Since all the a's originally came after all the s's, if
// the source index is less than the length of s, then the element
// came from s. We can then do a cumulative sum on the indices to
// figure out which element of s each a comes after.
// E.g., s=[2 4 6], a=[1 2 3 4 5 6 7]
// unsorted [s a] = [ 2 4 6 1 2 3 4 5 6 7 ]
// sorted [s a] = [ 1 2 2 3 4 4 5 6 6 7 ]
// source index p = [ 4 1 5 6 2 7 8 3 9 10 ]
// boolean p<=l(s) = [ 0 1 0 0 1 0 0 1 0 0 ]
// cumsum(p<=l(s)) = [ 0 1 1 1 2 2 2 3 3 3 ]
// Note that this leaves a(1) coming after s(0) which doesn't
// exist. So arbitrarily, we will dump all elements less than
// s(1) into the interval after s(1). We do this by dropping s(1)
// from the sort! E.g., s=[2 4 6], a=[1 2 3 4 5 6 7]
// unsorted [s(2:3) a] =[4 6 1 2 3 4 5 6 7 ]
// sorted [s(2:3) a] = [ 1 2 3 4 4 5 6 6 7 ]
// source index p = [ 3 4 5 1 6 7 2 8 9 ]
// boolean p<=l(s)-1 = [ 0 0 0 1 0 0 1 0 0 ]
// cumsum(p<=l(s)-1) = [ 0 0 0 1 1 1 2 2 2 ]
// Now we can use Octave's lvalue indexing to "invert" the sort,
// and assign all these indices back to the appropriate a and s,
// giving s_idx = [ -- 1 2], a_idx = [ 0 0 0 1 1 2 2 ]. Add 1 to
// a_idx, and we know which interval s(i) contains a. It is
// easy to now check membership by comparing s(a_idx) == a. This
// magic works because s starts out sorted, and because sort
// preserves the relative order of identical elements.
lt = max(size(s));
[s, sidx] = mtlb_sort (s);
tmp=s(2:lt);
[v, p] = mtlb_sort ([tmp(:); a(:)]);
idx(p) = cumsum (p <= lt-1) + 1;
idx = idx(lt:$);
tf = (a == matrix (s(idx), size (a)));
a_idx = zeros (size (tf,1),size(tf,2));
a_idx(tf) = sidx(idx(tf));
end
// Resize result to the original size of 'a'
size_a = size (a);
tf = matrix (tf, size_a);
a_idx = matrix (a_idx, size_a);
end
end
else
error ("wrong usage");
end
endfunction
//!assert (ismember ({''}, {'abc', 'def'}), false);
//!assert (ismember ('abc', {'abc', 'def'}), true);
//!assert (isempty (ismember ([], [1, 2])), true);
//!assert (isempty (ismember ({}, {'a', 'b'})), true);
//!assert (ismember ('', {'abc', 'def'}), false);
//!fail ('ismember ([], {1, 2})');
//!fail ('ismember ({[]}, {1, 2})');
//!fail ('ismember ({}, {1, 2})');
//!fail ('ismember ({1}, {''1'', ''2''})');
//!fail ('ismember (1, ''abc'')');
//!fail ('ismember ({''1''}, {''1'', ''2''},''rows'')');
//!fail ('ismember ([1 2 3], [5 4 3 1], ''rows'')');
//!assert (ismember ({'foo', 'bar'}, {'foobar'}), logical ([0, 0]));
//!assert (ismember ({'foo'}, {'foobar'}), false);
//!assert (ismember ({'bar'}, {'foobar'}), false);
//!assert (ismember ({'bar'}, {'foobar', 'bar'}), true);
//!assert (ismember ({'foo', 'bar'}, {'foobar', 'bar'}), logical ([0, 1]));
//!assert (ismember ({'xfb', 'f', 'b'}, {'fb', 'b'}), logical ([0, 0, 1]));
//!assert (ismember ("1", "0123456789."), true);
//!test
//! [result, a_idx] = ismember ([1, 2], []);
//! assert (result, logical ([0, 0]))
//! assert (a_idx, [0, 0]);
//!test
//! [result, a_idx] = ismember ([], [1, 2]);
//! assert (result, logical ([]))
//! assert (a_idx, []);
//!test
//! [result, a_idx] = ismember ({'a', 'b'}, '');
//! assert (result, logical ([0, 0]))
//! assert (a_idx, [0, 0]);
//!test
//! [result, a_idx] = ismember ({'a', 'b'}, {});
//! assert (result, logical ([0, 0]))
//! assert (a_idx, [0, 0]);
//!test
//! [result, a_idx] = ismember ('', {'a', 'b'});
//! assert (result, false)
//! assert (a_idx, 0);
//!test
//! [result, a_idx] = ismember ({}, {'a', 'b'});
//! assert (result, logical ([]))
//! assert (a_idx, []);
//!test
//! [result, a_idx] = ismember([1 2 3 4 5], [3]);
//! assert (all (result == logical ([0 0 1 0 0])) && all (a_idx == [0 0 1 0 0]));
//!test
//! [result, a_idx] = ismember([1 6], [1 2 3 4 5 1 6 1]);
//! assert (all (result == logical ([1 1])) && all (a_idx == [8 7]));
//!test
//! [result, a_idx] = ismember ([3,10,1], [0,1,2,3,4,5,6,7,8,9]);
//! assert (all (result == logical ([1, 0, 1])) && all (a_idx == [4, 0, 2]));
//!test
//! [result, a_idx] = ismember ("1.1", "0123456789.1");
//! assert (all (result == logical ([1, 1, 1])) && all (a_idx == [12, 11, 12]));
//!test
//! [result, a_idx] = ismember([1:3; 5:7; 4:6], [0:2; 1:3; 2:4; 3:5; 4:6], 'rows');
//! assert (all (result == logical ([1; 0; 1])) && all (a_idx == [2; 0; 5]));
//!test
//! [result, a_idx] = ismember([1.1,1.2,1.3; 2.1,2.2,2.3; 10,11,12], [1.1,1.2,1.3; 10,11,12; 2.12,2.22,2.32], 'rows');
//! assert (all (result == logical ([1; 0; 1])) && all (a_idx == [1; 0; 2]));
|
894ba46e26a5b113f656e41f685970578c7a2f9d
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3472/CH16/EX16.1/Example16_1.sce
|
e94acc2f1cced1a5178f2d49414efdbcebdc0a67
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,820
|
sce
|
Example16_1.sce
|
// A Texbook on POWER SYSTEM ENGINEERING
// A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar
// DHANPAT RAI & Co.
// SECOND EDITION
// PART II : TRANSMISSION AND DISTRIBUTION
// CHAPTER 9: LOAD FLOW STUDY USING COMPUTER TECHNIQUES
// EXAMPLE : 9.1 :
// Page number 235-236
clear ; clc ; close ; // Clear the work space and console
// Given data
Z_L1 = complex(14.3,97) // Series impedance of line L1(ohm)
Z_PL1 = complex(0,-3274) // Shunt impedance of line L1(ohm)
Z_L2 = complex(7.13,48.6) // Series impedance of line L2(ohm)
Z_PL2 = complex(0,-6547) // Shunt impedance of line L2(ohm)
Z_L3 = complex(9.38,64) // Series impedance of line L3(ohm)
Z_PL3 = complex(0,-4976) // Shunt impedance of line L3(ohm)
// Calculations
Y_S12 = 1.0/Z_L1 // Series admittance(mho)
Y_P12 = 1.0/Z_PL1 // Shunt admittance(mho)
Y_S23 = 1.0/Z_L3 // Series admittance(mho)
Y_P23 = 1.0/Z_PL3 // Shunt admittance(mho)
Y_S13 = 1.0/Z_L2 // Series admittance(mho)
Y_P13 = 1.0/Z_PL2 // Shunt admittance(mho)
Y_11 = Y_P12+Y_P13+Y_S12+Y_S13 // Admittance(mho)
Y_12 = -Y_S12 // Admittance(mho)
Y_13 = -Y_S13 // Admittance(mho)
Y_21 = Y_12 // Admittance(mho)
Y_22 = Y_P12+Y_P23+Y_S12+Y_S23 // Admittance(mho)
Y_23 = -Y_S23 // Admittance(mho)
Y_31 = Y_13 // Admittance(mho)
Y_32 = Y_23 // Admittance(mho)
Y_33 = Y_P13+Y_P23+Y_S23+Y_S13 // Admittance(mho)
Y_bus = [[Y_11, Y_12, Y_13],
[Y_21, Y_22, Y_23],
[Y_31, Y_32, Y_33]]
// Results
disp("PART II - EXAMPLE : 9.1 : SOLUTION :-")
printf("\n[Y_bus] = \n"); disp(Y_bus)
|
78b88a26cf3fde26c5ebb0d7c260c9762a273f9b
|
5f48beee3dc825617c83ba20a7c82c544061af65
|
/tests/s/108.tst
|
29fab92eafc9fdfa141546ce2c4af4120a69fce7
|
[] |
no_license
|
grenkin/compiler
|
bed06cd6dac49c1ca89d2723174210cd3dc8efea
|
30634ec46fba10333cf284399f577be7fb8e5b61
|
refs/heads/master
| 2020-06-20T12:44:17.903582
| 2016-11-27T03:08:20
| 2016-11-27T03:08:20
| 74,863,612
| 3
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 33
|
tst
|
108.tst
|
int main(void)
{
int a;
a[a];
}
|
8ce0ca99c41d4dddefc77892dee7af07e0819941
|
e806e966b06a53388fb300d89534354b222c2cad
|
/macros/getStructuringElement.sci
|
23b384c1cf45bc0dcaf348133edc200f78604732
|
[] |
no_license
|
gursimarsingh/FOSSEE_Image_Processing_Toolbox
|
76c9d524193ade302c48efe11936fe640f4de200
|
a6df67e8bcd5159cde27556f4f6a315f8dc2215f
|
refs/heads/master
| 2021-01-22T02:08:45.870957
| 2017-01-15T21:26:17
| 2017-01-15T21:26:17
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 199
|
sci
|
getStructuringElement.sci
|
function structuring_element = getStructuringElement(gettype, cols, rows, anchorX, anchorY)
structuring_element = opencv_getStructuringElement(gettype, cols, rows, anchorX, anchorY)
endfunction
|
fe6f78ca5ad7f5776c6fecf51dfe4ea5bfa44997
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2912/CH9/EX9.6/Ex9_6.sce
|
5a8477e9f359e8e6abfdfcdee5415225bde653c1
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,361
|
sce
|
Ex9_6.sce
|
// chapter 9
// example 9.6
// find intrinsic concuctivity and doping conductivity
// page 274
clear;
clc;
// given
ni=1.5E16; // in /m^3 (intrinsic carrier density)
ue=0.13; // in m^2/(V-s) (electron mobilities)
uh=0.05; // in m^2/(V-s) (hole mobilities)
e=1.6E-19; // in C (charge of electron)
ne=5E20; // in /m^3 (concentration of donor type impurity)
nh=5E20; // in /m^3 (concentration of acceptor type impurity)
// calculate
// part-i
sigma=ni*e*(ue+uh); // calculation of intrinsic conductivity
printf('\nThe intrinsic conductivity for silicon is %1.2E (ohm-m)^-1',sigma);
// part-ii
// since 1 donor atom is in 1E8 Si atoms, hence holes concentration can be neglected
sigma=ne*e*ue; // calculation of conductivity after doping with donor type impurity
printf('\n\nThe conductivity after doping with donor type impurity is %.1f (ohm-m)^-1',sigma);
// part-iii
// since 1 acceptor atom is in 1E8 Si atoms, hence electron concentration can be neglected
sigma=nh*e*uh; // calculation of conductivity after doping with acceptor type impurity
printf('\n\nThe conductivity after doping with acceptor type impurity is %.f (ohm-m)^-1',sigma);
// Note: In question the value of ne and nh has been misprinted as 5E28 atoms/m^3 which is too big but the solution has used the correct value 5E20 atoms/m^3. I have also used this value.
|
a37703eb0db7531deb4542a884520b25dc32605e
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1760/CH2/EX2.70/EX2_70.sce
|
513998f6e6c9eeb1cc2bdcf1e1c27d85400a7d35
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 725
|
sce
|
EX2_70.sce
|
//EXAMPLE 2-70 PG NO-110-111
ZA=-%i*227.36; //IMPEDANCE
ZB=-%i*795.77; //IMPEDANCE
ZC=500; //IMPEDANCE
V=230+%i*0; //VOLTAGE
IA=V/ZA; //CURRENT
disp('i) CURRENT (IA) is in polar form = '+string (IA) +' A ');
IB=V/ZB;
disp('i) CURRENT (IB) is in polar form = '+string (IB) +' A ');
IC=V/ZC;
disp('i) CURRENT (IC) is in polar form = '+string (IC) +' A ');
I=IA+IB+IC;
disp('i) CURRENT (I) is in polar form = '+string (I) +' A ');
P=V*I*0.334;
disp('i) POWER (P) is in polar form = '+string (P) +' W ');
Z=V/I;
disp('vi) IMPEDANCE (Z) is = '+string (Z) +' ohm ');
|
6ea7c5ebaf9695f6831a0fe4b44cfa84ffb74450
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2213/CH1/EX1.4/ex_1_4.sce
|
91b5bda1ee3efb36d8a2ee351be9d1c01f4d7037
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 730
|
sce
|
ex_1_4.sce
|
//Example 1.4 // loading in kW and efficiency of the tank
clc;
clear;
close;
format('v',5)
a=6;//area in m^2
l=a/6;//one side of tank in meter
V=l*l*l;//volume in m^2
e=90/100;//capacity
wh=6*e*1000;//water to be heated daily in kg
s=4200;//specific heat of water in J/Kg/degree celsius
t1=65;//in degree celsius
t2=20;//in degree celsius
hr=wh*s*(t1-t2)*10^-6;//heat required to raise the temperture of water
hr1=hr/3.6;//heat required in kWh
d=6.3;//difference in watts
l=((d*a*(t1-t2)*24)/1000);//losses from the surface of the tank in kWh
es=hr1+l;//energy supplied in kWh
lk=es/24;//loading in kW
ef=(hr1/es)*100;//efficiency of the tank in percentage
disp(lk,"loading in kW")
disp(ef,"efficiency of the tank in percentage")
|
7e77bfed2e220b0a76dd020eb1ad47de5518b7dd
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1370/CH2/EX2.28/example2_28.sce
|
bbcd2cadf00a076ebc337e1f900ffce6a2a8db86
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 276
|
sce
|
example2_28.sce
|
//exmaple2.28
clc
disp("P=6, A=2 as wave, Z=492, psi=30 mWb, I_a=40 A")
disp("T=(psi*P*Z*I_a)/(2*pi*A) Nm")
t=(40*6*492*30*10^-3)/(2*%pi*2)
format(9)
disp(t,"Therefore, T(in Nm)=")
disp("as 1N=(1/9.81)kg")
t=281.8952/9.81
format(8)
disp(t,"Therefore, T(in kgm)=")
|
06f5914de88b346f59c5f92baf0e1357d8e2b728
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/668/CH4/EX4.1/eg4_1.sce
|
9451bd8daadda4372e032c370bcb0816243d9dcf
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 650
|
sce
|
eg4_1.sce
|
Nd = 10^16; //in per cm cube
p = 10^18; //in per cm cube
Na = 10^18; //in per cm cube
Nc = 2.8 * 10^19; //in per cm cube
Nv = 10^19; //in per cm cube
kT = 26*10^-3; //in eV
eps0 = 8.84*10^-12; //in F/m
eps = 11.9*eps0;
Eg = 1.1; //in eV
q = 1.6*10^-19;
En = kT*log(Nd/Nc);
disp(En,"The Fermi level positions in the n-region relative to the conduction band (in eV) = ")
Ep = -kT*log(p/Nv);
disp(Ep,"The Fermi level positions in the p-region relative to the valence band (in eV) = ")
Vbi = Eg + En - Ep;
disp(Vbi,"built-in potential = ")
Wp = (2*eps*Vbi*Nd/(q*Na*10^6*(Na+Nd)))^0.5;
disp(Wp,"depletion width on the p-side (in m) = ")
|
b0a0c1e5d1f5cbbdc7ef3372e794c7a3041ae984
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3755/CH10/EX10.17/Ex10_17.sce
|
6fc6f09a3adcc51d06922d9f4255db9dfd286e12
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 339
|
sce
|
Ex10_17.sce
|
clear
//
//
//
//Variable declaration
epsilonr=4.94; //dielectric constant
n2=2.69;
//Calculations
x=(epsilonr-1)/(epsilonr+2);
y=(n2-1)/(n2+2);
alpha=1/((x/y)-1); //ratio between electronic and ionic polarizability
//Result
printf("\n ratio between electronic and ionic polarizability is %0.3f ",alpha)
|
ba4b65e55e04c864eba9117118c5b4a4e789c18b
|
e770dc26235168913bdcd5b2332f3a38a95a8bc7
|
/Toolbox Test/schurrc/schurrc1.sce
|
f3a850b642abbacbb2582f51a5d9bb9eb4422384
|
[] |
no_license
|
deecube/majorTom
|
f00eca4e2effff2c5eba746878f2c0842fe14680
|
84365fc032fc0ca44abac8330ec4ac6d85a85b3f
|
refs/heads/master
| 2021-01-21T14:04:23.323717
| 2016-05-23T06:05:31
| 2016-05-23T06:05:31
| 51,731,222
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 144
|
sce
|
schurrc1.sce
|
//check o/p for a matrix i/p
r=[0.0455;0.0705;0.0888;0.1144;0.1194;0.1144;0.0888;0.0705;0.0455];
k = schurrc(r(5:$));
disp(k);
//output
|
018db1cdeff21bfbe6fb680fb2a5909e37b7af06
|
8217f7986187902617ad1bf89cb789618a90dd0a
|
/browsable_source/2.3/Unix-Windows/scilab-2.3/macros/percent/%rns.sci
|
64c19335f3131e6a15bc86b5866d51771ad155e8
|
[
"LicenseRef-scancode-warranty-disclaimer",
"LicenseRef-scancode-public-domain",
"MIT"
] |
permissive
|
clg55/Scilab-Workbench
|
4ebc01d2daea5026ad07fbfc53e16d4b29179502
|
9f8fd29c7f2a98100fa9aed8b58f6768d24a1875
|
refs/heads/master
| 2023-05-31T04:06:22.931111
| 2022-09-13T14:41:51
| 2022-09-13T14:41:51
| 258,270,193
| 0
| 1
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 164
|
sci
|
%rns.sci
|
function [r]=%rns(l1,l2)
//%rns(l1,l2) <=> l1<>l2 rational<>constant
r=degree(l1(2))==0°ree(l1(3))==0
if r then r=coeff(l1(2))./coeff(l1(3))==l2,end
r=~r
|
8e123082f491e112bfc32a9982c921b58d4ba1e9
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2297/CH7/EX7.3/Ex7_3.sce
|
bfec38c49c9bef4623c0c84d5f104013bb107205
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 794
|
sce
|
Ex7_3.sce
|
//Example 7.3// voltage and current
clc;
clear;
close;
l=0.2;//length meter
w=0.1;//width in meter
th=25;//thickness in mm
vw=l*w*th*10^-3;//volume of wood in m^3
ww=600;//weight of wood in kg/m^3
ww1=vw*ww;//weight of wood kg
shw=1500;//specific heat of wood in J/kg/degree celsius
t=200;//temperature in degree celsius
rg=t*shw*ww1;//energy in joules
h=(rg/(3.6*10^3));//Wh
t=15;//time in minutes
pr=h*(60/t);//power required in Watt
eo=8.854*10^-12;//permittivity constant
er=5;//permittivity of wood
c=((eo*er*l*w)/(th*10^-3));//capacitance in Farads
f=50;//frequency in MHz
pf=0.5;//power factor
ph=acosd(pf);//phase angle degree
v=sqrt((pr)/(c*2*%pi*f*10^6*0.05));//voltage in volts
disp(round(v),"voltage is ,(V)=")
ic=v*2*%pi*f*10^6*c;//current in amperes
disp(ic,"current is,(A)=")
|
d0ea94ff8d064e6f53ca46f892f00c51d0785d8f
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3834/CH10/EX10.4.1/Ex10_4_1.sce
|
2b2f44718f1db88545ef217a1e6d47d403b379a5
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 823
|
sce
|
Ex10_4_1.sce
|
//Fiber-optics communication technology, by Djafer K. Mynbaev and Lowell L. Scheiner
//Example 10.4.1
//windows 7
//Scilab version-6.0.0
clc;
clear ;
//given
//case 1
R=0.035;//Reflectivity for the air-silica interface
NAt=0.275;//Typical Numerical Aperture in a GI multimode fiber
D=1;//Ratio of the diameter of the fiber core to the diameter of the source
X=2*(D^2);
Y=1-1/X;
ETAcgi=(NAt^2)*Y;//The amount of light coupling in a GI multimode fiber
mprintf("The amount of light coupling in a GI multimode fiber is = %.3f",ETAcgi);
//case 2
NAt2=0.13;//Typical Numerical Aperture in a SI singlemode fiber
EATcsi=NAt2^2;//The amount of light coupling in a SI singlemode fiber
mprintf("\nThe amount of light coupling in a SI singlemode fiber is = %.3f",EATcsi);
//the answers vary due to rounding
|
ff38f8efc467d5879494a3ae786a1f51fd437d3d
|
6bbc9f4f7e12ef440acd3fe25a51b4f048cde42d
|
/Image-Enhancement-in-the-Frequency-Domain/Gaussian-LPF.sce
|
a994827c3ee3793fefaf47a62ddd626b535a0058
|
[] |
no_license
|
krisbimantara/Image-Processing-SCILAB
|
9dee568676b4f2943c54074d8c88c84cb33b3bb2
|
bf8e8905efcdd6e3e0096f7a87cce8212fe0f14c
|
refs/heads/main
| 2023-03-27T04:55:37.463238
| 2021-03-29T13:30:26
| 2021-03-29T13:30:26
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,492
|
sce
|
Gaussian-LPF.sce
|
clear;clc;clear;
a=imread('bima1.jpg');
a=double(a);
r=size(a,1);
c=size(a,2);
d0=50;
for u=1:1:r
for v=1:1:c
d=(((u-(r/2))^2)+((v-(c/2))^2))^0.5;
dd=d*d;
h(u,v)=exp(-dd/(2*d0*d0));
end
end
//merah
me=a(:,:,1);
bme=fft2(me);
cme=fftshift(bme);
c1me=uint16(cme);
newme=cme.*h;
new2me=uint16(newme);
new1me=abs(fft(newme,1));
//hijau
hi=a(:,:,2);
bhi=fft2(hi);
chi=fftshift(bhi);
c1hi=uint16(chi);
newhi=chi.*h;
new2hi=uint16(newhi);
new1hi=abs(fft(newhi,1));
//biru
bi=a(:,:,3);
bbi=fft2(bi);
cbi=fftshift(bbi);
c1bi=uint16(cbi);
newbi=cbi.*h;
new2bi=uint16(newbi);
new1bi=abs(fft(newbi,1));
figure();
subplot(321);imshow(uint8(cat(3, me, zeros(hi), zeros(bi))));xtitle('Lapisan Merah');
subplot(322);imshow(uint8(cat(3, new1me, zeros(new1hi), zeros(new1bi))));xtitle(['Filtered Image with radius = 50']);
subplot(323);imshow(uint8(cat(3, zeros(me), hi, zeros(bi))));xtitle('Lapisan Hijau');
subplot(324);imshow(uint8(cat(3, zeros(new1me), new1hi, zeros(new1bi))));xtitle(['Filtered Image with radius = 50']);
subplot(325);imshow(uint8(cat(3, zeros(me), zeros(hi), bi)));xtitle('Lapisan Biru');
subplot(326);imshow(uint8(cat(3, zeros(new1me), zeros(new1hi), new1bi)));xtitle(['Filtered Image with radius = 50']);
figure();
subplot(121);imshow(uint8(cat(3,me,hi,bi)));xtitle('Gambar Asli')
subplot(122);imshow(uint8(cat(3,new1me,new1hi,new1bi)));xtitle(['Filtered Image with radius = 50']);
figure();
surf(h);xtitle('filter function response with radius = 50')
|
0e31d820a219733a5599105236790805daa52465
|
527c41bcbfe7e4743e0e8897b058eaaf206558c7
|
/Positive_Negative_test/Netezza-Base-MachineLearning/FLInfoVal-TD-01.tst
|
593a29a8138b861baef870cc90e798fce7369101
|
[] |
no_license
|
kamleshm/intern_fuzzy
|
c2dd079bf08bede6bca79af898036d7a538ab4e2
|
aaef3c9dc9edf3759ef0b981597746d411d05d34
|
refs/heads/master
| 2021-01-23T06:25:46.162332
| 2017-07-12T07:12:25
| 2017-07-12T07:12:25
| 93,021,923
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 7,685
|
tst
|
FLInfoVal-TD-01.tst
|
-- Fuzzy Logix, LLC: Functional Testing Script for DB Lytix functions on Teradata
--
-- Copyright (c): 2014 Fuzzy Logix, LLC
--
-- NOTICE: All information contained herein is, and remains the property of Fuzzy Logix, LLC.
-- The intellectual and technical concepts contained herein are proprietary to Fuzzy Logix, LLC.
-- and may be covered by U.S. and Foreign Patents, patents in process, and are protected by trade
-- secret or copyright law. Dissemination of this information or reproduction of this material is
-- strictly forbidden unless prior written permission is obtained from Fuzzy Logix, LLC.
-- Functional Test Specifications:
--
-- Test Category: Data Mining
--
-- Test Unit Number: FLInfoVal-TD-01
--
-- Name(s): FLInfoVal
--
-- Description: Calculates the information Values
--
-- Applications:
--
-- Signature: FLInfoVal(BinId BIGINT,
-- Events BIGINT,
-- NonEvents BIGINT,
-- ReqdBinID BIGINT)
--
-- Parameters: See Documentation
--
-- Return value: Double Precision
--
-- Last Updated: 04-07-2014
--
-- Author: <gandhari.sen@fuzzyl.com>
--
-- BEGIN: TEST SCRIPT
.run file=../PulsarLogOn.sql
.set width 2500
SELECT a.BinID,
a.Events,
a.NonEvents
FROM tblInfoVal a
ORDER BY 1;
--- CREATE test table
DROP TABLE tblInfovalTest;
CREATE TABLE tblInfovalTest (
BinID INTEGER,
Events INTEGER,
NonEvents INTEGER)
PRIMARY INDEX ( BinID );
--populate the test table
INSERT INTO tblInfovalTest
SELECT a.*
FROM tblInfoVal a;
-- BEGIN: POSITIVE TEST(s)
---- Positive Test 1:
---Output : Good
SELECT b.SerialVal - 1 AS BinID,
FLInfoVal(a.BinID, a.Events, a.NonEvents, b.SerialVal - 1) AS InfoVal
FROM tblInfoValTest a,
fzzlSerial b
WHERE b.SerialVal <= 6
GROUP BY b.SerialVal
ORDER BY 1;
-- PositiveTest 2 Param4 is 0
--- goes through and returns the cumulative infoval
DELETE FROM tblInfoValTest ALL;
INSERT INTO tblInfoValTest
SELECT *
FROM tblInfoval;
SELECT FLInfoVal(a.BinID, a.Events, a.NonEvents, 0) AS Infoval
FROM tblInfoVal a;
--PositiveTest case 3: constant BinID
--Output --returns 0 good
DELETE FROM tblInfoValTest ALL;
INSERT INTO tblInfoValTest
SELECT 2,
a.Events,
a.NonEvents
FROM tblInfoVal a;
SELECT FLInfoVal(a.BinID, a.Events, a.NonEvents, 2)
FROM tblInfoValTest a;
--Positive Test case 4: dupilcate BinID s
DELETE FROM tblInfoValTest ALL;
INSERT INTO tblInfoValTest
SELECT CASE WHEN a.BinID =1 THEN 2 ELSE a.BinID END,
a.Events,
a.NonEvents
FROM tblInfoVal a;
SELECT *
FROM tblInfoValTest
ORDER BY 1;
SELECT FLInfoVal(a.BinID, a.Events, a.NonEvents, 3)
FROM tblInfoValTest a;
--Positive test 5
--when one of the Bins doesnt start from 1
DELETE FROM tblInfoValTest ALL;
INSERT INTO tblInfoValTest
SELECT * FROM tblInfoval
WHERE BINID > 1;
SELECT FLInfoVal(a.BinID, a.Events, a.NonEvents, 3)
FROM tblInfoValTest a;
-- END: POSITIVE TEST(s)
-- BEGIN: NEGATIVE TEST(s)
---- Negative Test 1: No data
--- Output Null, Good
---- Negative test
DELETE FROM tblInfoValTest ALL;
SELECT FLInfoVal(a.BinID, a.Events, a.NonEvents, 2)
FROM tblInfoValTest a;
--Populate the test table
--populate the test table
INSERT INTO tblInfovalTest
SELECT a.*
FROM tblInfoVal a;
--Negative test case 2: NULL arg#1
--Output NULL, Good
SELECT FLInfoVal(NULL, a.Events, a.NonEvents, 2)
FROM tblInfoValTest a;
--Negative test case 3: the column is not there in the input table
--Output Error message, Good
SELECT FLInfoVal(a.NonBinID, a.Events, a.NonEvents, 2)
FROM tblInfoValTest a;
--Negative Test case 4: negative BinID
--Output --Error message :
--good
DELETE FROM tblInfoValTest ALL;
INSERT INTO tblInfoValTest
SELECT CASE WHEN a.BinID IN ( 5, 3,1 ) THEN -a.BinId ELSE a.BinID END,
a.Events,
a.NonEvents
FROM tblInfoVal a;
SELECT FLInfoVal(a.BinID, a.Events, a.NonEvents, 2)
FROM tblInfoValTest a;
--Negative test case 7 NULL arg#2
--Output NULL, Good
SELECT FLInfoVal(a.BinID, NULL, a.NonEvents, 2)
FROM tblInfoValTest a;
--Negative test case 8: the column is not there in the input table
--Output Error message, Good
SELECT FLInfoVal(a.BinID, a.NotExistEvents, a.NonEvents, 2)
FROM tblInfoValTest a;
--Negative Test case 9: negative events
--Output --Error message :
DELETE FROM tblInfoValTest ALL;
INSERT INTO tblInfoValTest
SELECT a.BinID,
CASE WHEN a.BinID IN ( 5, 3,1 ) THEN -a.Events ELSE a.Events END,
a.NonEvents
FROM tblInfoVal a;
SELECT FLInfoVal(a.BinID, a.Events, a.NonEvents, 2)
FROM tblInfoValTest a;
--Negative Test case 10: 0 events for all
--Output --Error message
DELETE FROM tblInfoValTest ALL;
INSERT INTO tblInfoValTest
SELECT a.BinID,
0,
a.NonEvents
FROM tblInfoVal a;
SELECT FLInfoVal(a.BinID, a.Events, a.NonEvents, 2)
FROM tblInfoValTest a;
--Negative Test case 11 : some BinIDs have 0 events
--Output --Error message
DELETE FROM tblInfoValTest ALL;
INSERT INTO tblInfoValTest
SELECT a.BinID,
CASE WHEN BinID IN (1,2 ,3) THEN 0 ELSE a.Events END,
a.NonEvents
FROM tblInfoVal a;
SELECT FLInfoVal(a.BinID, a.Events, a.NonEvents, 2)
FROM tblInfoValTest a;
--Negative test case 12 :NULL arg#3
--Output NULL, Good
SELECT FLInfoVal(a.BinID, a.Events,NULL, 2)
FROM tblInfoValTest a;
--Negative test case 13: the column is not there in the input table
--Output Error message, Good
SELECT FLInfoVal(a.BinID, a.Events, a.NotExistNonEvents, 2)
FROM tblInfoValTest a;
--Negative Test case 14: negative non events
--Output --Error message :
DELETE FROM tblInfoValTest ALL;
INSERT INTO tblInfoValTest
SELECT a.BinID,
a.Events,
CASE WHEN a.BinID IN ( 5, 3,1 ) THEN -a.NonEvents ELSE a.NonEvents END
FROM tblInfoVal a;
SELECT FLInfoVal(a.BinID, a.Events, a.NonEvents, 2)
FROM tblInfoValTest a;
--Negative Test case 15: 0 non events for all
--Output --Error message
DELETE FROM tblInfoValTest ALL;
INSERT INTO tblInfoValTest
SELECT a.BinID,
a.Events,
0
FROM tblInfoVal a;
SELECT FLInfoVal(a.BinID, a.Events, a.NonEvents, 2)
FROM tblInfoValTest a;
--Negative Test case 16 : some BinIDs have 0 nonevents
--Output --Error message
DELETE FROM tblInfoValTest ALL;
INSERT INTO tblInfoValTest
SELECT a.BinID,
a.Events,
CASE WHEN BinID IN (1,2 ,3) THEN 0 ELSE a.NonEvents END
FROM tblInfoVal a;
SELECT FLInfoVal(a.BinID, a.Events, a.NonEvents, 2)
FROM tblInfoValTest a;
--Negative Test case 17 ..Param 4 is NULL
----Output NULL, Good
DELETE FROM tblInfoValTest ALL;
INSERT INTO tblInfoValTest
SELECT *
FROM tblInfoVal a;
SELECT FLInfoVal(a.BinID, a.Events, a.NonEvents, NULL )
FROM tblInfoValTest a;
--Negative Test case 18 ..Param 4 is negative
----Output : FL generated error message , Good
SELECT FLInfoVal(a.BinID, a.Events, a.NonEvents, -1)
FROM tblInfoValTest a;
---- Negative Test 19: Param4 is out of range.i.e ReqdBinID value is greater than binInds in the table
----Output : FL generated error message , Good
SELECT FLInfoVal(a.BinID, a.Events, a.NonEvents, 6)
FROM tblInfoVal a;
--Negative Test 20 when one of the Bins are missing from the group
DELETE FROM tblInfoValTest ALL;
INSERT INTO tblInfoValTest
SELECT * FROM tblInfoval
WHERE BINID <>3;
SELECT FLInfoVal(a.BinID, a.Events, a.NonEvents, 3)
FROM tblInfoValTest a;
-- END: NEGATIVE TEST(s)
--Drop Test table
DROP TABLE tblInfoValTest;
-- END: TEST SCRIPT
|
99b2e848ff563d5b029565da51a070c366eca8b6
|
67310b5d7500649b9d53cf62226ec2d23468413c
|
/tags/archive/TestCaseGenerator-Plugin-OpeningSequenceCoverage/trunk/tests/large-system-tests/inputs/jEdit/ground_truth/OpeningSequenceCoverage/length-1/max-150/t71.tst
|
be09bf592b7f1f2aa642945618a3d6bfa48025d4
|
[] |
no_license
|
csnowleopard/guitar
|
e09cb77b2fe8b7e38d471be99b79eb7a66a5eb02
|
1fa5243fcf4de80286d26057db142b5b2357f614
|
refs/heads/master
| 2021-01-19T07:53:57.863136
| 2013-06-06T15:26:25
| 2013-06-06T15:26:25
| 10,353,457
| 1
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 660
|
tst
|
t71.tst
|
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<TestCase>
<Step>
<EventId>e4</EventId>
<ReachingStep>false</ReachingStep>
</Step>
<Step>
<EventId>e65</EventId>
<ReachingStep>false</ReachingStep>
</Step>
<Step>
<EventId>e38</EventId>
<ReachingStep>false</ReachingStep>
</Step>
<Step>
<EventId>e60</EventId>
<ReachingStep>false</ReachingStep>
</Step>
<Step>
<EventId>e75</EventId>
<ReachingStep>false</ReachingStep>
</Step>
<Step>
<EventId>e39</EventId>
<ReachingStep>false</ReachingStep>
</Step>
</TestCase>
|
ffcac635567f1c0afdb4cf3cbd94b28a090eb6ec
|
406877a1e5c75964b9d737de5ec061117b8b0c8d
|
/image_compression.sce
|
af0ae9b612a29beb5d5e74a52e40c4dec8a612a8
|
[] |
no_license
|
SupreetRonad/IMAGE-COMPRESSION-Using-SVD
|
c8de985097ac8f5d3492084894c038f51e0f7621
|
311656498716c549a0eaf6f9d105ee1d01b0ad44
|
refs/heads/main
| 2023-04-14T05:23:20.509314
| 2021-05-01T17:17:02
| 2021-05-01T17:17:02
| 363,464,373
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 644
|
sce
|
image_compression.sce
|
clear;close;
function imCompressed = compress(imFullOneChannel, SingularValuesToKeep)
[U, Sigma, V] = svd(imFullOneChannel);
SingularValues = diag(Sigma)
imCompressed = U(:, 1:SingularValuesToKeep)*diag(SingularValues(1:SingularValuesToKeep))*V(:, 1:SingularValuesToKeep)'
endfunction
im = imread('F:\Grand\Downloads\WhatsApp\LA\a4.jpg');
//imshow(im);
imFull = double(im);
imCompressed(:, :, 1) = compress(imFull(:, :, 1), 10);
imCompressed(:, :, 2) = compress(imFull(:, :, 2), 10);
imCompressed(:, :, 3) = compress(imFull(:, :, 3), 10);
imCompressedFinal = uint8(imCompressed);
imshow(imCompressedFinal)
|
daad03455715b978cbaa18e57d01d7176976dcd4
|
58f8869b2dcd9296bbe82d9923d1d7d801937351
|
/2 Error Analysis/Q6.sce
|
70d4dfc48b32aa8661dcc534f8599b72ac467ead
|
[
"MIT"
] |
permissive
|
keivalya/2ME01
|
f325d38ea7adace9a10bc3d83e7868d59dbc4066
|
3147e0d7319ddeb6e79fde5d0851dcc423a7e23d
|
refs/heads/master
| 2023-02-10T20:15:29.593282
| 2021-01-09T02:39:20
| 2021-01-09T02:39:20
| 282,954,965
| 0
| 0
|
MIT
| 2020-10-04T02:22:40
| 2020-07-27T16:33:06
|
Scilab
|
UTF-8
|
Scilab
| false
| false
| 454
|
sce
|
Q6.sce
|
//Documentation by Keivalya Pandya
//s -> inital variable (refer method)
//term -> initial variable
//fact -> initialisation(aka. flag)
//x -> function input that is 0.3*%pi or 0.9424777...
//ea = aka epsilon(a)
s = 1.0
term = 1.0
fact = 1.0
x = 0.3*%pi
for i = 2:2:50
fact = fact*i*(i-1);
term = (-1)*term*x*x/fact;
s = s + term;
ea = term/s;
disp(s, ea);
if ea<0 then ea = -ea, end
if ea < 0.000000005 then break, end
end
|
4bde0529a426a31c1c60199788359fc8738e0e5b
|
089894a36ef33cb3d0f697541716c9b6cd8dcc43
|
/NLP_Project/test/tweet/bow/bow.14_3.tst
|
0587affed331acde1fd96c7678ed9e13dafbdce5
|
[] |
no_license
|
mandar15/NLP_Project
|
3142cda82d49ba0ea30b580c46bdd0e0348fe3ec
|
1dcb70a199a0f7ab8c72825bfd5b8146e75b7ec2
|
refs/heads/master
| 2020-05-20T13:36:05.842840
| 2013-07-31T06:53:59
| 2013-07-31T06:53:59
| 6,534,406
| 0
| 1
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 45,900
|
tst
|
bow.14_3.tst
|
14 1:0.1111111111111111 6:0.043478260869565216 37:0.09090909090909091 42:0.25 73:1.0 171:0.5 191:0.5 319:0.0625 427:0.034482758620689655 566:1.0 647:0.5 768:0.5 776:1.0 1939:1.0 3000:0.25 3968:1.0 5165:0.5 5212:1.0 5431:1.0 5927:1.0 7123:1.0
14 1:0.2222222222222222 6:0.13043478260869565 17:0.2 31:1.0 42:0.25 56:1.0 82:0.16666666666666666 97:0.5 117:0.03571428571428571 128:0.5 135:0.5 185:1.0 191:0.5 206:1.0 273:0.3333333333333333 290:1.0 368:1.0 370:1.0 399:0.5 427:0.06896551724137931 462:1.0 466:1.0 549:2.0 681:0.2 768:0.5 1345:1.0 1388:1.0 1472:1.0 1939:1.0 2069:1.0 3000:0.25 3208:1.0 3249:1.0 5132:1.0 5309:1.0 5639:2.0 5673:1.0 5736:1.0 5744:1.0 6008:1.0 6032:1.0 6379:1.0 6443:1.0 6638:1.0 6657:1.0 7287:1.0
14 5:0.3333333333333333 15:0.07692307692307693 37:0.18181818181818182 49:0.3333333333333333 60:1.0 63:1.0 73:3.0 82:0.16666666666666666 97:0.5 171:1.5 188:1.0 191:0.5 215:0.2 235:1.0 238:0.125 254:0.5 275:1.0 350:0.038461538461538464 373:0.038461538461538464 407:1.0 427:0.034482758620689655 549:1.0 566:1.0 717:0.3333333333333333 778:1.0 866:1.0 878:1.0 1036:0.5 1062:1.0 1448:1.0 2145:1.0 2478:0.25 2678:1.0 2680:1.0 2705:0.3333333333333333 3659:1.0 5103:0.14285714285714285 5106:1.0 5116:0.14285714285714285 5236:1.0 5519:1.0 5846:1.0 6085:1.0 6215:0.3333333333333333
14 6:0.043478260869565216 34:0.15384615384615385 64:0.5 261:0.03571428571428571 273:0.3333333333333333 275:1.0 350:0.038461538461538464 427:0.034482758620689655 488:0.5 534:2.0 549:2.0 714:1.0 872:1.0 908:1.0 1028:0.5 1036:0.5 1389:1.0 1448:1.0 2779:1.0 3050:1.0 4513:1.0 5120:0.08333333333333333 6008:1.0 6085:1.0
14 1:0.4444444444444444 6:0.043478260869565216 15:0.07692307692307693 34:0.07692307692307693 37:0.09090909090909091 42:0.25 97:0.5 150:0.038461538461538464 169:1.0 197:0.5 223:1.0 251:0.3333333333333333 320:1.0 427:0.06896551724137931 549:1.0 1288:1.0 1569:0.3333333333333333 4167:1.0 5113:0.030303030303030304 5118:0.2 5120:0.08333333333333333 5165:0.5 5199:1.0 5776:1.0
14 1:0.3333333333333333 5:0.3333333333333333 6:0.08695652173913043 34:0.07692307692307693 37:0.18181818181818182 42:0.25 56:0.3333333333333333 63:0.5 73:1.0 171:0.5 177:0.5 191:2.0 251:0.3333333333333333 254:0.5 261:0.03571428571428571 339:1.0 350:0.038461538461538464 373:0.038461538461538464 395:1.0 473:0.3333333333333333 482:1.0 512:1.0 515:1.0 549:1.0 681:0.2 717:0.3333333333333333 768:0.5 1975:1.0 2069:1.0 2118:1.0 2221:1.0 2652:1.0 2678:1.0 2759:0.5 3000:0.25 5103:0.2857142857142857 5120:0.08333333333333333 5125:1.0 5142:1.0 5165:0.5 5487:1.0 5852:1.0 6443:1.0 6496:1.0 6855:1.0 7074:1.0 7261:1.0
14 1:0.3333333333333333 5:0.3333333333333333 6:0.08695652173913043 23:0.125 34:0.07692307692307693 37:0.09090909090909091 56:0.3333333333333333 73:1.0 82:0.3333333333333333 97:0.5 150:0.07692307692307693 157:1.0 169:1.0 171:0.5 185:1.0 191:2.0 254:0.5 261:0.07142857142857142 371:1.0 373:0.038461538461538464 427:0.06896551724137931 482:1.0 549:1.0 681:0.2 737:0.5 927:1.0 1028:0.5 2541:1.0 2678:1.0 3736:1.0 4110:1.0 4153:1.0 5105:1.0 5116:0.14285714285714285 5120:0.16666666666666666 5271:1.0 5310:1.0 5639:1.0 5934:1.0 6116:0.25 6577:1.0 6657:1.0 7022:1.0 7178:1.0 7288:1.0
14 1:0.2222222222222222 5:0.3333333333333333 17:0.2 23:0.125 42:0.25 56:0.3333333333333333 73:1.0 82:0.16666666666666666 114:0.5 135:0.5 177:0.5 191:0.5 192:1.0 339:1.0 350:0.11538461538461539 549:1.0 677:1.0 708:1.0 949:1.0 1661:0.5 1751:1.0 1775:1.0 1975:1.0 2139:1.0 2216:0.5 2678:1.0 3002:1.0 5142:1.0 5165:0.5 5256:1.0 5418:1.0 5959:1.0 6855:1.0
14 6:0.043478260869565216 37:0.18181818181818182 42:0.25 73:2.0 82:0.16666666666666666 97:0.5 171:0.5 185:1.0 223:1.0 320:1.0 350:0.038461538461538464 407:1.0 427:0.034482758620689655 441:1.0 489:1.0 615:0.14285714285714285 1421:0.5 1448:1.0 2084:1.0 5113:0.030303030303030304 5118:0.2 5125:1.0 5199:1.0 5634:1.0 6033:1.0 6137:1.0 6424:1.0 6443:1.0
14 5:0.3333333333333333 17:0.2 42:0.25 54:1.0 114:0.5 155:0.06666666666666667 191:1.0 246:1.0 339:2.0 347:1.0 350:0.038461538461538464 423:1.0 427:0.06896551724137931 428:1.0 534:1.0 549:1.0 681:0.2 1042:1.0 1349:1.0 1669:0.16666666666666666 1740:0.5 1775:1.0 3066:1.0 3085:1.0 5106:1.0 5107:1.0 5165:0.5 5166:1.0 5172:1.0 5174:1.0 5256:1.0 6344:1.0
14 5:0.3333333333333333 6:0.08695652173913043 34:0.07692307692307693 37:0.2727272727272727 42:0.25 73:2.0 82:0.16666666666666666 150:0.038461538461538464 171:0.5 177:0.5 223:1.0 320:1.0 427:0.034482758620689655 489:1.0 549:1.0 927:1.0 1028:1.0 1345:1.0 2004:1.0 4498:1.0 5111:1.0 5113:0.030303030303030304 5116:0.14285714285714285 5120:0.08333333333333333 5142:1.0 5199:1.0 5467:0.14285714285714285 6116:0.25 6137:1.0 7262:1.0
14 1:0.1111111111111111 5:0.3333333333333333 6:0.08695652173913043 15:0.07692307692307693 23:0.125 25:0.5 34:0.07692307692307693 45:1.0 73:2.0 82:0.3333333333333333 117:0.03571428571428571 128:0.5 138:0.14285714285714285 150:0.038461538461538464 159:1.0 191:0.5 246:1.0 350:0.038461538461538464 359:0.5 367:0.5 384:1.0 407:1.0 426:1.0 427:0.06896551724137931 488:0.5 549:1.0 561:1.0 574:0.25 615:0.14285714285714285 768:0.5 791:0.5 1028:0.5 1189:1.0 1448:1.0 1651:0.14285714285714285 1939:1.0 2959:1.0 5103:0.14285714285714285 5125:1.0 5165:0.5 5174:1.0 5182:1.0 5280:0.5 5348:1.0 5950:1.0 6345:1.0 6356:1.0 6443:1.0
14 1:0.4444444444444444 5:0.3333333333333333 6:0.043478260869565216 15:0.07692307692307693 17:0.2 37:0.09090909090909091 42:0.25 56:0.3333333333333333 73:2.0 82:0.3333333333333333 140:0.5 171:1.0 204:1.0 223:1.0 254:0.5 320:1.0 350:0.07692307692307693 407:1.0 427:0.034482758620689655 549:1.0 776:1.0 924:1.0 927:1.0 930:0.2 1384:0.5 1420:1.0 1421:0.5 1448:2.0 1730:2.0 1790:0.3333333333333333 2478:0.125 2678:1.0 3000:0.25 4304:1.0 5113:0.030303030303030304 5120:0.08333333333333333 5125:1.0 5199:1.0 6085:1.0 6329:1.0
14 4:0.5 5:1.0 6:0.043478260869565216 27:1.0 37:0.2727272727272727 45:1.0 56:0.3333333333333333 73:1.0 82:0.16666666666666666 117:0.03571428571428571 128:0.5 135:0.5 138:0.14285714285714285 149:1.0 160:1.0 171:0.5 254:0.5 275:1.0 350:0.07692307692307693 359:0.5 373:0.038461538461538464 407:1.0 438:0.3333333333333333 487:1.0 534:1.0 549:1.0 588:1.0 927:1.0 1423:0.5 1445:0.3333333333333333 1561:1.0 1572:1.0 1730:1.0 1885:1.0 1939:2.0 1998:1.0 2216:0.5 2478:0.125 2492:1.0 2792:1.0 4054:1.0 5273:1.0 5280:0.5 5393:1.0 5394:1.0 5639:1.0 5735:1.0 5915:1.0 6675:1.0 6694:1.0 6804:1.0 6813:1.0
14 1:0.2222222222222222 5:0.3333333333333333 15:0.07692307692307693 25:0.5 34:0.07692307692307693 37:0.09090909090909091 42:0.25 171:0.5 181:0.125 185:1.0 192:1.0 275:1.0 534:1.0 549:1.0 768:0.5 1036:0.5 1602:1.0 2216:0.5 4054:1.0 5116:0.14285714285714285 5120:0.08333333333333333 5583:1.0 5584:1.0 5586:1.0 5677:1.0 5744:1.0 7022:2.0 7056:1.0 7078:1.0 7287:1.0
14 1:0.1111111111111111 6:0.17391304347826086 15:0.07692307692307693 34:0.15384615384615385 37:0.09090909090909091 45:1.0 56:0.3333333333333333 73:3.0 138:0.14285714285714285 155:0.06666666666666667 171:1.0 181:0.125 373:0.038461538461538464 399:0.5 427:0.06896551724137931 573:1.0 615:0.14285714285714285 647:0.5 1036:0.5 1580:2.0 1992:1.0 2370:1.0 3000:0.25 3050:1.0 4633:0.25 5103:0.14285714285714285 5116:0.14285714285714285 5125:2.0 5309:1.0 5473:1.0 5790:0.2 5855:1.0 5869:0.3333333333333333 6344:1.0 6732:1.0 7025:1.0
14 1:0.4444444444444444 4:0.5 5:0.6666666666666666 6:0.2608695652173913 15:0.07692307692307693 17:0.2 34:0.15384615384615385 37:0.09090909090909091 49:0.3333333333333333 56:0.6666666666666666 60:2.0 73:3.0 95:1.0 135:0.5 160:1.0 169:1.0 171:1.0 180:1.0 201:0.5 204:1.0 350:0.038461538461538464 359:0.5 399:0.5 427:0.06896551724137931 527:1.0 566:1.0 587:1.0 811:1.0 949:1.0 1299:1.0 1345:1.0 1376:1.0 1561:1.0 1992:1.0 1998:1.0 2036:1.0 2478:0.125 2716:1.0 3767:1.0 4162:1.0 4633:0.25 4677:1.0 5097:1.0 5103:0.14285714285714285 5116:0.42857142857142855 5418:1.0 5473:1.0 5539:1.0 6622:1.0 6630:1.0 6772:1.0 7123:1.0
14 1:0.1111111111111111 5:0.3333333333333333 6:0.043478260869565216 15:0.07692307692307693 17:0.2 34:0.3076923076923077 45:1.0 56:0.3333333333333333 64:1.0 73:3.0 82:0.16666666666666666 97:0.5 160:1.0 171:0.5 177:0.5 338:1.0 350:0.07692307692307693 359:0.5 427:0.034482758620689655 443:0.3333333333333333 549:1.0 562:1.0 677:1.0 714:1.0 776:1.0 995:1.0 1028:0.5 1123:1.0 1472:1.0 1580:1.0 1651:0.2857142857142857 1939:1.0 1992:1.0 2216:0.5 2378:0.3333333333333333 2478:0.125 4031:1.0 4641:1.0 5116:0.14285714285714285 5125:1.0 5134:1.0 5318:1.0 5600:1.0 5677:1.0 5700:1.0 6443:1.0 6630:1.0 7022:1.0 7186:1.0
14 1:0.2222222222222222 5:0.6666666666666666 6:0.17391304347826086 17:0.6 34:0.15384615384615385 37:0.09090909090909091 42:0.25 73:2.0 82:0.16666666666666666 97:0.5 160:1.0 171:0.5 177:0.5 241:1.0 339:1.0 527:1.0 647:0.5 648:1.0 677:1.0 768:0.5 776:1.0 966:0.5 1537:0.5 1580:1.0 1734:1.0 1752:1.0 2101:1.0 2921:1.0 2940:1.0 3000:0.25 3623:1.0 5115:1.0 5116:0.14285714285714285 5120:0.08333333333333333 5639:1.0 5736:1.0 6085:1.0 6434:1.0
14 1:0.1111111111111111 4:0.5 5:0.6666666666666666 15:0.15384615384615385 34:0.07692307692307693 37:0.09090909090909091 45:1.0 56:0.3333333333333333 82:0.16666666666666666 96:0.16666666666666666 128:0.5 160:1.0 164:0.25 177:0.5 191:0.5 246:1.0 319:0.0625 350:0.038461538461538464 427:0.06896551724137931 428:1.0 488:0.5 489:1.0 615:0.14285714285714285 714:2.0 1013:1.0 1448:1.0 1651:0.14285714285714285 1669:0.16666666666666666 1768:2.0 1998:1.0 5103:0.14285714285714285 5125:1.0 5165:0.5 5166:1.0 5172:1.0 5174:1.0 6344:1.0 6658:1.0
14 15:0.07692307692307693 25:0.5 34:0.07692307692307693 37:0.09090909090909091 42:0.25 45:1.0 51:0.25 73:2.0 82:0.16666666666666666 160:2.0 171:0.5 223:1.0 275:1.0 320:1.0 427:0.034482758620689655 477:1.0 615:0.14285714285714285 838:1.0 914:1.0 1537:0.5 2478:0.125 2567:1.0 2688:1.0 2759:0.5 2921:1.0 5104:0.125 5113:0.030303030303030304 5199:1.0 5223:1.0 5487:1.0 5600:1.0 6622:1.0
14 1:0.2222222222222222 5:0.6666666666666666 6:0.08695652173913043 22:2.0 23:0.25 34:0.07692307692307693 37:0.2727272727272727 56:0.3333333333333333 97:1.0 107:0.5 117:0.03571428571428571 135:0.5 147:0.5 150:0.038461538461538464 171:0.5 177:0.5 192:1.0 350:0.15384615384615385 397:1.0 399:0.5 424:1.0 427:0.034482758620689655 438:0.3333333333333333 689:1.0 931:1.0 1124:1.0 1330:1.0 1426:1.0 1468:1.0 1487:1.0 1635:1.0 1826:1.0 2539:1.0 2541:1.0 3379:1.0 5103:0.2857142857142857 5120:0.08333333333333333 5125:1.0 5172:1.0 5555:1.0 6027:1.0 6034:1.0 6077:1.0 6570:1.0 6584:1.0 6844:1.0 7208:1.0
14 1:0.1111111111111111 6:0.043478260869565216 23:0.125 34:0.15384615384615385 37:0.18181818181818182 73:1.0 97:0.5 138:0.14285714285714285 150:0.07692307692307693 171:2.0 191:2.0 261:0.07142857142857142 350:0.07692307692307693 367:1.0 373:0.038461538461538464 423:1.0 427:0.034482758620689655 534:1.0 549:1.0 615:0.14285714285714285 677:1.0 778:1.0 1448:2.0 4054:1.0 4636:1.0 5103:0.14285714285714285 5116:0.14285714285714285 5120:0.16666666666666666 5400:1.0 5416:1.0 5586:1.0 5587:1.0 5934:1.0 5943:1.0 6924:1.0 7288:1.0
14 5:0.3333333333333333 6:0.17391304347826086 15:0.15384615384615385 37:0.2727272727272727 55:1.0 60:1.0 63:0.5 73:2.0 82:0.16666666666666666 135:0.5 150:0.038461538461538464 171:1.0 177:0.5 191:0.5 197:0.5 235:1.0 245:0.5 373:0.038461538461538464 427:0.034482758620689655 473:0.3333333333333333 635:1.0 644:1.0 681:0.2 778:1.0 1609:1.0 1730:1.0 2705:0.3333333333333333 2759:0.5 3013:1.0 3736:1.0 5103:0.14285714285714285 5118:0.2 5120:0.08333333333333333 5148:1.0 5400:1.0 5915:1.0 6108:1.0 6215:0.3333333333333333 6644:1.0 6760:1.0
14 1:0.1111111111111111 5:0.3333333333333333 6:0.08695652173913043 37:0.18181818181818182 42:0.25 60:1.0 73:1.0 150:0.038461538461538464 160:1.0 171:1.0 191:0.5 223:1.0 320:1.0 350:0.07692307692307693 373:0.038461538461538464 438:0.3333333333333333 553:1.0 583:1.0 615:0.14285714285714285 647:0.5 1448:1.0 1579:1.0 1730:1.0 1998:1.0 2139:1.0 2154:1.0 2541:1.0 4633:0.25 5113:0.030303030303030304 5125:1.0 5142:1.0 5165:0.5 5199:1.0 5261:1.0 5396:1.0 5658:1.0 7201:1.0
14 1:0.3333333333333333 5:2.3333333333333335 6:0.08695652173913043 25:0.5 37:0.09090909090909091 63:0.5 73:2.0 75:0.5 128:0.5 165:0.1 169:1.0 171:1.5 177:1.0 196:1.0 215:0.4 281:1.0 350:0.11538461538461539 370:1.0 373:0.07692307692307693 397:0.5 427:0.034482758620689655 473:0.3333333333333333 763:1.0 768:0.5 776:1.0 778:2.0 938:1.0 1011:1.0 1407:1.0 1580:1.0 1750:1.0 1752:1.0 1844:1.0 1998:1.0 2039:1.0 2221:1.0 2554:1.0 3379:1.0 3590:1.0 3780:1.0 3817:1.0 4054:1.0 4117:1.0 4242:1.0 5103:0.14285714285714285 5116:0.14285714285714285 5125:1.0 5132:1.0 5228:1.0 5263:1.0 5264:1.0 5337:1.0 5634:1.0 5690:1.0 5697:1.0 5745:1.0 5752:1.0 5975:1.0 6085:1.0
14 1:0.1111111111111111 5:0.3333333333333333 6:0.13043478260869565 15:0.15384615384615385 34:0.07692307692307693 37:0.09090909090909091 42:0.75 44:1.0 56:0.3333333333333333 73:2.0 82:0.16666666666666666 97:1.0 128:0.5 141:1.0 171:0.5 191:0.5 231:1.0 319:0.125 350:0.038461538461538464 423:1.0 427:0.034482758620689655 473:0.6666666666666666 566:1.0 615:0.14285714285714285 677:1.0 872:1.0 955:0.2 1472:1.0 1702:0.5 2216:1.0 3000:0.25 5080:1.0 5103:0.14285714285714285 5116:0.14285714285714285 5130:1.0 5264:1.0 6612:1.0 6658:1.0 6673:1.0
14 1:0.3333333333333333 4:0.5 5:0.6666666666666666 6:0.08695652173913043 15:0.07692307692307693 37:0.09090909090909091 42:0.5 73:2.0 82:0.16666666666666666 128:0.5 135:0.5 138:0.2857142857142857 150:0.038461538461538464 164:0.25 171:0.5 254:0.5 411:0.3333333333333333 427:0.034482758620689655 443:0.3333333333333333 774:1.0 1013:1.0 1160:1.0 1511:1.0 2003:1.0 3133:1.0 3626:1.0 4633:0.25 4695:1.0 5103:0.2857142857142857 5115:1.0 5125:1.0 5183:1.0 5295:1.0 5309:1.0 6292:1.0 6443:1.0
14 1:0.2222222222222222 5:0.3333333333333333 16:0.1111111111111111 34:0.07692307692307693 42:0.5 45:1.0 128:0.5 138:0.14285714285714285 150:0.038461538461538464 171:0.5 177:0.5 223:1.0 254:0.5 320:1.0 339:1.0 384:1.0 427:0.06896551724137931 438:0.3333333333333333 643:1.0 776:1.0 1028:0.5 1036:0.5 2678:1.0 2786:1.0 5113:0.030303030303030304 5116:0.14285714285714285 5120:0.08333333333333333 5178:1.0 5199:1.0 5256:1.0 5690:1.0 5697:1.0 5976:1.0
14 1:0.2222222222222222 4:0.5 17:0.2 34:0.15384615384615385 37:0.18181818181818182 60:1.0 73:1.0 82:0.16666666666666666 177:0.5 190:0.5 191:0.5 197:0.5 251:0.3333333333333333 254:0.5 287:1.0 427:0.034482758620689655 561:1.0 1036:0.5 1345:1.0 1752:1.0 1939:1.0 2003:1.0 2478:0.125 3626:1.0 3705:1.0 4633:0.25 5103:0.42857142857142855 5104:0.125 5125:1.0 5142:1.0 5165:0.5 5745:1.0 5946:1.0 6379:1.0 6483:1.0 6638:1.0
14 1:0.3333333333333333 5:0.3333333333333333 6:0.08695652173913043 17:0.2 56:0.3333333333333333 73:2.0 98:0.5 150:0.038461538461538464 171:1.0 177:0.5 192:1.0 292:1.0 320:1.0 427:0.10344827586206896 443:0.3333333333333333 473:0.3333333333333333 511:0.5 534:1.0 549:1.0 647:0.5 768:0.5 930:0.2 1160:1.0 3000:0.25 3337:1.0 3748:1.0 4633:0.25 4677:1.0 5116:0.2857142857142857 5175:1.0 5561:1.0 5570:1.0 5600:1.0 5605:1.0 5677:1.0 5758:1.0 5979:1.0 6816:1.0
14 1:0.1111111111111111 4:1.0 15:0.07692307692307693 17:0.2 37:0.18181818181818182 42:0.25 63:0.5 73:2.0 117:0.03571428571428571 128:0.5 160:2.0 171:1.0 206:1.0 223:1.0 320:1.0 407:1.0 427:0.034482758620689655 549:1.0 872:1.0 1775:1.0 2216:0.5 3423:1.0 4131:1.0 5111:1.0 5113:0.030303030303030304 5116:0.14285714285714285 5199:1.0 5788:1.0
14 6:0.08695652173913043 23:0.125 34:0.23076923076923078 42:0.25 45:1.0 73:1.0 97:0.5 128:0.5 171:1.0 177:0.5 223:1.0 320:1.0 427:0.034482758620689655 1028:0.5 1044:1.0 1651:0.14285714285714285 1752:1.0 1939:1.0 3699:1.0 3700:1.0 5103:0.14285714285714285 5113:0.030303030303030304 5116:0.14285714285714285 5120:0.16666666666666666 5125:1.0 5178:1.0 5199:1.0 5212:1.0 5697:1.0 5790:0.2
14 1:0.1111111111111111 4:0.5 5:1.0 6:0.043478260869565216 15:0.07692307692307693 34:0.07692307692307693 45:1.0 56:0.6666666666666666 64:1.0 73:1.0 108:0.5 135:0.5 150:0.11538461538461539 171:1.0 191:1.5 238:0.125 254:0.5 319:0.0625 339:1.0 350:0.038461538461538464 359:0.5 399:0.5 427:0.06896551724137931 440:1.0 488:0.5 549:1.0 615:0.14285714285714285 647:0.5 672:1.0 677:1.0 716:1.0 816:0.5 999:1.0 1140:1.0 1345:1.0 2297:1.0 2363:1.0 4131:1.0 5103:0.2857142857142857 5116:0.14285714285714285 5120:0.16666666666666666 5255:1.0 5271:1.0 5634:1.0 5806:1.0
14 6:0.043478260869565216 17:0.2 34:0.07692307692307693 37:0.09090909090909091 42:0.75 45:1.0 73:1.0 191:0.5 223:2.0 229:1.0 245:0.5 320:2.0 427:0.034482758620689655 549:1.0 1028:0.5 1036:0.5 1384:0.5 1775:1.0 2591:0.3333333333333333 5113:0.06060606060606061 5114:1.0 5199:1.0 5586:1.0 6261:1.0
14 1:0.1111111111111111 2:1.0 4:0.5 5:0.3333333333333333 15:0.07692307692307693 17:0.2 34:0.07692307692307693 37:0.09090909090909091 42:0.25 155:0.06666666666666667 164:0.25 171:1.0 280:1.0 370:1.0 407:1.0 427:0.06896551724137931 473:0.3333333333333333 549:1.0 583:1.0 587:1.0 992:1.0 1028:0.5 1042:1.0 1165:1.0 1349:1.0 1574:1.0 1638:1.0 2069:1.0 2492:1.0 3000:0.25 3085:1.0 3311:1.0 5103:0.14285714285714285 5120:0.08333333333333333 5165:0.5 5424:2.0 5758:1.0 5772:1.0
14 1:0.1111111111111111 5:0.3333333333333333 6:0.08695652173913043 34:0.15384615384615385 42:0.25 45:1.0 73:1.0 97:0.5 105:0.5 128:0.5 150:0.038461538461538464 160:1.0 171:0.5 177:1.0 190:0.5 191:0.5 359:0.5 373:0.038461538461538464 427:0.06896551724137931 428:1.0 473:0.3333333333333333 488:0.5 549:1.0 587:1.0 647:0.5 681:0.2 714:1.0 776:1.0 811:1.0 861:1.0 1281:1.0 1360:0.5 1376:1.0 1409:2.0 1669:0.16666666666666666 1743:1.0 1885:1.0 1939:1.0 2039:1.0 2276:1.0 2567:1.0 4054:1.0 4636:1.0 5116:0.14285714285714285 5120:0.16666666666666666 5165:0.5 5172:1.0 5174:1.0 5178:1.0 5343:1.0 6067:1.0
14 1:0.1111111111111111 5:1.0 6:0.21739130434782608 17:0.2 34:0.07692307692307693 42:0.5 54:1.0 73:1.0 147:0.5 155:0.06666666666666667 171:1.0 191:0.5 201:0.5 423:1.0 427:0.034482758620689655 482:1.0 488:0.5 615:0.14285714285714285 647:0.5 681:0.2 717:0.3333333333333333 930:0.2 1042:1.0 1097:1.0 1160:1.0 1256:1.0 1349:1.0 1537:0.5 1669:0.16666666666666666 1740:0.5 1775:1.0 2009:1.0 2688:1.0 3085:1.0 3286:1.0 3433:1.0 4557:1.0 4616:1.0 5103:0.14285714285714285 5120:0.08333333333333333 5175:1.0 5223:1.0 5432:1.0 5605:1.0 5758:1.0 6504:1.0 6582:1.0
14 1:0.1111111111111111 5:0.3333333333333333 17:0.2 37:0.09090909090909091 42:0.25 73:2.0 160:1.0 169:1.0 185:1.0 223:1.0 246:1.0 320:2.0 350:0.038461538461538464 427:0.034482758620689655 428:1.0 473:0.3333333333333333 549:1.0 615:0.14285714285714285 908:1.0 1347:1.0 1448:1.0 1484:1.0 1885:1.0 1998:1.0 2216:0.5 3840:1.0 4633:0.5 5113:0.030303030303030304 5116:0.14285714285714285 5120:0.16666666666666666 5165:0.5 5174:1.0 5199:1.0 5277:1.0 5437:1.0 6108:1.0 6319:1.0
14 1:0.1111111111111111 4:0.5 5:0.6666666666666666 6:0.08695652173913043 73:2.0 82:0.16666666666666666 123:1.0 135:0.5 155:0.06666666666666667 171:0.5 177:0.5 181:0.125 191:0.5 233:1.0 275:1.0 339:1.0 350:0.07692307692307693 373:0.038461538461538464 427:0.034482758620689655 430:1.0 445:1.0 615:0.14285714285714285 627:1.0 690:1.0 768:0.5 931:1.0 1036:0.5 1345:1.0 1434:1.0 1445:0.3333333333333333 1448:1.0 1602:1.0 1752:1.0 2052:1.0 2448:1.0 2478:0.25 3066:1.0 4621:1.0 5116:0.14285714285714285 5120:0.16666666666666666 5125:1.0 5172:1.0 5212:1.0 5228:1.0 5255:1.0 5432:1.0 5789:1.0 6034:1.0 6562:1.0 6673:1.0 6966:1.0 7187:1.0
14 5:0.6666666666666666 6:0.043478260869565216 25:0.5 42:0.5 45:1.0 51:0.25 56:0.3333333333333333 73:1.0 82:0.16666666666666666 97:0.5 135:0.5 140:0.5 150:0.038461538461538464 177:0.5 223:2.0 289:1.0 320:2.0 374:1.0 549:1.0 627:1.0 1019:1.0 1580:1.0 1645:1.0 1790:0.3333333333333333 1998:1.0 2039:1.0 2527:1.0 2759:0.5 3379:1.0 3590:1.0 3780:1.0 5041:1.0 5113:0.06060606060606061 5115:1.0 5120:0.16666666666666666 5158:1.0 5199:2.0 5859:1.0 5946:1.0
14 1:0.1111111111111111 5:0.3333333333333333 6:0.30434782608695654 15:0.07692307692307693 17:0.4 23:0.125 37:0.18181818181818182 42:0.25 56:0.3333333333333333 73:1.0 96:0.16666666666666666 97:1.0 108:0.5 150:0.038461538461538464 171:1.0 191:0.5 261:0.03571428571428571 368:1.0 427:0.06896551724137931 542:0.5 549:1.0 550:1.0 574:0.25 597:1.0 681:0.2 708:1.0 776:1.0 872:1.0 955:0.2 995:1.0 1036:0.5 1445:0.3333333333333333 1661:0.5 1790:0.3333333333333333 1939:1.0 2069:1.0 3623:1.0 3647:1.0 3794:1.0 4085:1.0 4259:1.0 4695:1.0 5116:0.14285714285714285 5138:1.0 5142:1.0 5165:0.5 5212:1.0 5280:0.5 5400:1.0 6031:1.0 6116:0.25 6572:1.0
14 1:0.3333333333333333 4:0.5 6:0.08695652173913043 15:0.07692307692307693 37:0.09090909090909091 42:0.25 56:0.3333333333333333 102:0.3333333333333333 135:0.5 150:0.038461538461538464 164:0.25 169:1.0 177:0.5 185:1.0 223:1.0 226:1.0 251:0.3333333333333333 320:1.0 427:0.034482758620689655 473:0.3333333333333333 488:0.5 647:0.5 1028:0.5 1790:0.3333333333333333 1823:0.3333333333333333 2539:1.0 5113:0.030303030303030304 5199:1.0 5571:1.0 6434:1.0 6644:1.0 6657:1.0
14 1:0.2222222222222222 6:0.043478260869565216 25:0.5 34:0.15384615384615385 42:0.5 56:0.3333333333333333 73:2.0 82:0.16666666666666666 135:0.5 150:0.07692307692307693 171:1.0 177:0.5 180:1.0 190:0.5 245:0.5 251:0.3333333333333333 338:1.0 350:0.038461538461538464 367:0.5 368:1.0 373:0.07692307692307693 394:1.0 427:0.034482758620689655 473:0.3333333333333333 549:1.0 569:1.0 615:0.14285714285714285 897:1.0 908:1.0 925:1.0 1028:0.5 1036:0.5 1059:1.0 1241:0.3333333333333333 1413:1.0 1823:0.3333333333333333 1882:1.0 1939:1.0 1998:1.0 2068:1.0 2500:1.0 3098:1.0 4259:1.0 4513:1.0 4636:1.0 4901:1.0 5120:0.08333333333333333 5134:1.0 5207:1.0 5223:1.0 5375:1.0 5432:1.0 5470:1.0 6260:0.5 6288:1.0 6854:1.0 7258:1.0 7269:1.0
14 6:0.08695652173913043 42:0.25 97:0.5 147:0.5 155:0.06666666666666667 171:1.0 191:0.5 223:1.0 319:0.1875 350:0.038461538461538464 409:1.0 427:0.06896551724137931 473:0.3333333333333333 671:1.0 872:1.0 1028:0.5 1042:1.0 1349:1.0 1574:1.0 2652:1.0 3085:2.0 3423:1.0 3700:1.0 4473:2.0 5120:0.08333333333333333 5165:0.5 5256:1.0 5569:1.0 6044:1.0 6771:1.0 6791:1.0 7127:1.0
14 1:0.2222222222222222 5:0.3333333333333333 6:0.043478260869565216 15:0.15384615384615385 37:0.09090909090909091 42:0.25 64:0.5 82:0.16666666666666666 95:1.0 128:0.5 150:0.34615384615384615 160:1.0 169:1.0 171:0.5 176:1.0 191:1.0 215:0.2 238:0.125 350:0.038461538461538464 427:0.034482758620689655 482:1.0 560:1.0 561:1.0 1160:1.0 1537:0.5 1998:1.0 2009:1.0 2216:0.5 2429:0.5 3481:1.0 3567:1.0 4979:1.0 5294:1.0 5368:1.0 5370:1.0 5566:1.0 5870:1.0 5954:1.0 6296:1.0 6425:1.0 6859:1.0 6871:1.0 7121:1.0
14 1:0.1111111111111111 4:0.5 5:0.3333333333333333 6:0.043478260869565216 34:0.07692307692307693 37:0.09090909090909091 42:0.5 56:0.3333333333333333 60:1.0 73:1.0 82:0.16666666666666666 116:1.0 155:0.06666666666666667 223:1.0 238:0.125 246:1.0 275:1.0 320:3.0 373:0.038461538461538464 428:1.0 438:0.3333333333333333 677:1.0 768:0.5 890:1.0 1036:0.5 1800:0.25 1997:1.0 2478:0.125 2759:0.5 3000:0.25 3379:1.0 3567:1.0 4153:1.0 4553:1.0 4835:1.0 5113:0.030303030303030304 5114:1.0 5132:1.0 5174:1.0 5273:1.0 5343:1.0 5528:1.0 6259:1.0 6338:1.0
14 4:0.5 5:0.6666666666666666 6:0.08695652173913043 17:0.2 42:0.5 171:0.5 191:1.0 223:1.0 226:1.0 238:0.125 240:1.0 320:1.0 350:0.038461538461538464 366:1.0 373:0.038461538461538464 418:1.0 427:0.034482758620689655 443:0.3333333333333333 488:0.5 598:1.0 908:1.0 955:0.4 1028:0.5 1256:1.0 1346:1.0 1423:0.5 1661:0.5 1800:0.25 2188:1.0 2500:1.0 2684:1.0 3249:1.0 3954:1.0 4031:1.0 4295:1.0 4835:1.0 5113:0.030303030303030304 5119:1.0 5120:0.08333333333333333 5132:1.0 5199:1.0 5260:1.0 5280:0.5 5422:1.0 5734:1.0 6226:1.0 6443:1.0
14 1:0.2222222222222222 5:1.0 6:0.08695652173913043 15:0.07692307692307693 17:0.8 23:0.125 25:1.0 37:0.18181818181818182 42:0.75 73:1.0 82:0.3333333333333333 96:0.16666666666666666 97:0.5 135:0.5 138:0.14285714285714285 160:1.0 169:1.0 171:0.5 177:0.5 191:0.5 251:0.3333333333333333 319:0.0625 373:0.038461538461538464 384:1.0 427:0.06896551724137931 445:1.0 483:1.0 489:1.0 543:0.5 566:1.0 648:1.0 677:1.0 695:1.0 768:0.5 872:1.0 1219:1.0 1227:1.0 1460:1.0 1609:1.0 1956:1.0 1997:1.0 2039:1.0 2064:0.5 3590:1.0 4131:1.0 5116:0.14285714285714285 5120:0.08333333333333333 5207:1.0 5487:2.0 5946:1.0 6035:1.0 6108:1.0 6216:1.0 6572:1.0 6577:1.0 6701:1.0
14 5:0.3333333333333333 6:0.043478260869565216 34:0.07692307692307693 42:0.5 73:1.0 95:1.0 96:0.16666666666666666 150:0.07692307692307693 223:1.0 233:1.0 251:0.3333333333333333 293:1.0 320:1.0 527:1.0 549:1.0 647:0.5 671:1.0 866:1.0 982:1.0 1094:1.0 1389:1.0 1421:0.5 1651:0.14285714285714285 1657:1.0 1939:1.0 2026:1.0 3000:0.25 4621:1.0 5113:0.030303030303030304 5199:1.0 5368:1.0 5430:1.0 5432:1.0 6216:1.0 6217:1.0 6495:1.0 7032:1.0 7043:1.0
14 1:0.4444444444444444 5:2.0 6:0.043478260869565216 15:0.15384615384615385 25:0.5 42:0.25 73:1.0 105:0.5 106:1.0 107:0.5 135:1.0 143:0.3333333333333333 147:0.5 150:0.07692307692307693 155:0.06666666666666667 169:1.0 223:1.0 320:1.0 350:0.038461538461538464 427:0.034482758620689655 473:0.3333333333333333 477:1.0 488:0.5 627:1.0 914:1.0 1123:1.0 1407:1.0 1537:0.5 1638:1.0 1956:1.0 2276:1.0 2744:1.0 2849:1.0 2956:1.0 3840:1.0 4054:1.0 4104:1.0 4475:1.0 4498:1.0 5113:0.030303030303030304 5199:1.0 5376:1.0 5571:1.0 5574:1.0 5835:1.0
14 1:0.2222222222222222 4:0.5 5:0.6666666666666666 17:0.2 34:0.15384615384615385 42:0.25 82:0.16666666666666666 128:0.5 135:0.5 146:1.0 150:0.038461538461538464 165:0.2 171:0.5 226:1.0 238:0.125 254:0.5 350:0.038461538461538464 366:1.0 367:0.5 373:0.038461538461538464 388:1.0 411:0.3333333333333333 489:1.0 613:1.0 778:1.0 837:1.0 955:0.2 1160:1.0 1360:0.5 1403:1.0 1448:1.0 1596:1.0 1775:1.0 1939:2.0 1956:1.0 2678:1.0 3865:1.0 4054:1.0 4563:1.0 4636:1.0 5368:1.0 5639:1.0 5690:1.0 5753:1.0 6348:1.0 6577:1.0 6907:1.0
14 1:0.2222222222222222 5:1.0 6:0.043478260869565216 56:0.3333333333333333 73:1.0 82:0.16666666666666666 138:0.14285714285714285 150:0.038461538461538464 171:0.5 191:0.5 201:0.5 226:2.0 246:1.0 399:0.5 427:0.06896551724137931 428:1.0 443:0.3333333333333333 473:0.3333333333333333 622:1.0 668:1.0 908:1.0 1028:0.5 1484:1.0 1669:0.16666666666666666 4766:1.0 5118:0.2 5120:0.08333333333333333 5165:0.5 5168:1.0 5172:1.0 5174:1.0 5368:1.0 7282:1.0
14 1:0.2222222222222222 6:0.08695652173913043 26:1.0 97:0.5 135:0.5 150:0.07692307692307693 159:1.0 171:1.0 177:0.5 191:0.5 211:1.0 272:0.5 327:0.16666666666666666 359:1.0 367:1.0 373:0.038461538461538464 427:0.034482758620689655 527:1.0 574:0.25 1028:0.5 1195:1.0 1389:1.0 1668:1.0 2216:0.5 2253:1.0 2652:2.0 3169:1.0 4633:0.25 5116:0.14285714285714285 5142:1.0 5165:0.5 5211:1.0 5343:1.0 5424:1.0 5906:1.0 6280:1.0 6890:1.0
14 1:0.1111111111111111 6:0.08695652173913043 56:0.6666666666666666 73:1.0 82:0.16666666666666666 97:0.5 185:1.0 190:1.0 191:0.5 251:0.3333333333333333 350:0.038461538461538464 418:1.0 549:1.0 561:2.0 615:0.14285714285714285 681:0.2 995:1.0 1109:1.0 1448:1.0 1471:1.0 1692:1.0 2216:0.5 2249:1.0 2942:1.0 3659:1.0 4633:0.25 5120:0.08333333333333333 5368:1.0 5407:1.0 5627:1.0 5628:2.0 5697:1.0 5838:1.0 6280:1.0 6935:1.0
14 5:1.0 6:0.043478260869565216 51:0.25 56:0.3333333333333333 73:1.0 105:0.5 169:1.0 171:1.0 190:0.5 191:0.5 219:0.3333333333333333 231:1.0 679:1.0 1095:1.0 1154:1.0 1360:0.5 1471:1.0 1790:0.3333333333333333 1847:1.0 1939:1.0 2015:0.5 2118:1.0 2462:1.0 2567:1.0 2959:1.0 3337:1.0 3590:1.0 5236:1.0 5257:1.0 5373:1.0 5417:1.0 5627:1.0 5628:2.0
14 5:0.3333333333333333 6:0.043478260869565216 42:0.25 51:0.25 73:1.0 96:0.16666666666666666 128:0.5 138:0.14285714285714285 150:0.07692307692307693 190:0.5 191:1.0 219:0.3333333333333333 231:1.0 367:0.5 399:0.5 418:1.0 427:0.10344827586206896 473:0.3333333333333333 561:1.0 768:0.5 1005:1.0 1790:0.3333333333333333 1978:1.0 2087:1.0 2253:1.0 2478:0.125 2652:1.0 3169:1.0 4734:1.0 5257:1.0 5337:1.0 5339:1.0 5373:1.0 5376:1.0 5422:1.0 6280:1.0
14 1:0.1111111111111111 5:0.3333333333333333 25:0.5 34:0.07692307692307693 96:0.16666666666666666 97:0.5 181:0.125 275:1.0 280:1.0 319:0.0625 367:0.5 427:0.034482758620689655 908:1.0 925:1.0 930:0.2 1160:1.0 1407:1.0 1426:1.0 1740:0.5 2478:0.125 3738:1.0 4054:1.0 5116:0.14285714285714285 5256:1.0 5586:1.0 5587:1.0 5662:1.0 5663:1.0 6058:1.0
14 5:0.6666666666666666 15:0.07692307692307693 42:0.5 56:0.3333333333333333 96:0.16666666666666666 123:1.0 128:0.5 146:1.0 147:1.5 165:0.1 191:0.5 223:1.0 281:2.0 287:1.0 320:1.0 353:0.5 373:0.038461538461538464 409:1.0 427:0.034482758620689655 443:0.3333333333333333 549:1.0 1036:0.5 1674:1.0 1823:0.3333333333333333 2054:1.0 2084:1.0 2135:1.0 2291:1.0 2297:2.0 3567:1.0 5113:0.030303030303030304 5120:0.08333333333333333 5199:1.0 5233:1.0 5617:1.0 6226:1.0
14 1:0.1111111111111111 4:0.5 5:0.6666666666666666 6:0.08695652173913043 23:0.125 34:0.07692307692307693 37:0.09090909090909091 56:0.3333333333333333 128:0.5 146:2.0 147:1.0 164:0.25 171:0.5 177:1.0 350:0.07692307692307693 677:1.0 717:0.3333333333333333 2141:1.0 5103:0.14285714285714285 5118:0.4 5125:1.0 5222:1.0 5294:1.0 5686:1.0 6245:1.0 6844:1.0
14 6:0.043478260869565216 25:0.5 34:0.15384615384615385 37:0.09090909090909091 56:0.3333333333333333 82:0.16666666666666666 150:0.038461538461538464 177:0.5 246:1.0 350:0.038461538461538464 428:1.0 473:0.3333333333333333 615:0.14285714285714285 647:0.5 768:0.5 1882:1.0 1939:1.0 1998:1.0 2759:0.5 5172:1.0 5174:1.0 5186:1.0 5255:1.0 5273:1.0 5407:1.0 6152:1.0 6258:1.0
14 1:0.2222222222222222 6:0.043478260869565216 15:0.07692307692307693 34:0.15384615384615385 37:0.09090909090909091 42:0.25 150:0.07692307692307693 155:0.06666666666666667 177:0.5 350:0.07692307692307693 427:0.06896551724137931 428:1.0 473:0.3333333333333333 1042:1.0 1349:1.0 1574:1.0 1882:1.0 1939:1.0 1992:1.0 1998:1.0 2216:0.5 2321:1.0 3738:1.0 5097:1.0 5165:0.5 5369:1.0 5373:1.0 6525:1.0 6707:1.0
14 5:0.3333333333333333 6:0.08695652173913043 15:0.07692307692307693 17:0.2 34:0.07692307692307693 37:0.09090909090909091 42:0.25 45:1.0 73:1.0 150:0.038461538461538464 160:1.0 246:1.0 273:0.3333333333333333 350:0.038461538461538464 373:0.038461538461538464 384:1.0 427:0.034482758620689655 428:1.0 574:0.25 615:0.14285714285714285 681:0.2 1044:1.0 1227:1.0 1448:1.0 1669:0.16666666666666666 1694:1.0 1956:1.0 1998:1.0 2216:0.5 2567:1.0 2759:0.5 3738:1.0 5120:0.16666666666666666 5166:1.0 5172:1.0 5174:1.0 5438:0.3333333333333333 5963:1.0 6035:1.0 6433:1.0 7145:1.0
14 1:0.1111111111111111 6:0.08695652173913043 15:0.07692307692307693 37:0.09090909090909091 56:0.3333333333333333 63:0.5 73:2.0 96:0.16666666666666666 147:0.5 160:2.0 171:1.0 191:2.0 320:1.0 350:0.038461538461538464 367:2.0 427:0.034482758620689655 441:1.0 480:1.0 561:1.0 615:0.14285714285714285 829:2.0 1140:1.0 1448:2.0 1882:1.0 1998:2.0 2059:1.0 2069:1.0 2216:0.5 2807:0.5 3683:1.0 3767:1.0 5125:1.0 5151:1.0 5233:1.0 6204:1.0 6205:1.0
14 6:0.13043478260869565 15:0.07692307692307693 37:0.09090909090909091 42:0.5 56:0.3333333333333333 63:0.5 73:1.0 160:2.0 171:0.5 185:1.0 191:1.0 223:2.0 320:2.0 347:1.0 350:0.038461538461538464 549:1.0 615:0.14285714285714285 681:0.2 776:1.0 1036:0.5 1140:1.0 1448:1.0 1561:1.0 1823:0.3333333333333333 1882:1.0 1909:1.0 1998:2.0 2059:1.0 2069:1.0 3683:1.0 3767:1.0 5113:0.030303030303030304 5116:0.14285714285714285 5125:1.0 5165:0.5 5199:1.0 5487:1.0 6044:1.0
14 1:0.1111111111111111 4:0.5 5:0.3333333333333333 6:0.08695652173913043 23:0.125 34:0.07692307692307693 37:0.09090909090909091 56:0.3333333333333333 73:2.0 160:1.0 171:0.5 181:0.125 185:1.0 223:1.0 251:0.3333333333333333 350:0.038461538461538464 427:0.034482758620689655 615:0.14285714285714285 1037:1.0 1384:0.5 1421:0.5 1448:1.0 1657:1.0 2025:1.0 2539:1.0 5125:1.0 5132:1.0 5179:1.0 5430:1.0
14 1:0.1111111111111111 15:0.07692307692307693 23:0.125 34:0.07692307692307693 116:1.0 135:0.5 138:0.14285714285714285 190:0.5 427:0.034482758620689655 598:1.0 1171:1.0 1740:0.5 1885:1.0 2069:1.0 2216:0.5 3146:1.0 5118:0.2 5446:1.0 6244:1.0
14 5:0.3333333333333333 6:0.043478260869565216 15:0.07692307692307693 34:0.23076923076923078 66:1.0 73:1.0 94:0.5 97:0.5 191:0.5 201:0.5 367:0.5 443:0.3333333333333333 473:0.3333333333333333 618:1.0 717:0.3333333333333333 1039:1.0 1057:1.0 1621:1.0 1661:0.5 2462:1.0 2468:1.0 3829:1.0 4766:1.0 5146:1.0 5165:0.5 5168:1.0 5624:1.0 5625:0.5 5654:1.0
14 1:0.1111111111111111 6:0.08695652173913043 15:0.07692307692307693 23:0.125 37:0.09090909090909091 56:0.3333333333333333 63:0.5 73:1.0 97:0.5 128:0.5 164:0.25 185:1.0 549:1.0 1564:1.0 2559:0.2 3739:1.0 5103:0.14285714285714285 5163:1.0 5164:1.0 5487:1.0 5527:1.0 6434:1.0
14 1:0.1111111111111111 5:0.3333333333333333 6:0.043478260869565216 15:0.07692307692307693 42:0.25 64:0.5 82:0.16666666666666666 128:0.5 150:0.07692307692307693 190:0.5 191:1.5 223:1.0 249:0.5 251:0.3333333333333333 320:1.0 427:0.06896551724137931 482:1.0 534:1.0 549:1.0 561:1.0 681:0.2 982:1.0 2312:1.0 3705:1.0 4667:1.0 5103:0.14285714285714285 5113:0.030303030303030304 5120:0.08333333333333333 5163:1.0 5199:1.0 5293:1.0 5336:1.0 5343:1.0 5370:1.0 5662:1.0
14 1:0.1111111111111111 4:0.5 5:0.3333333333333333 17:0.2 23:0.125 34:0.07692307692307693 73:2.0 82:0.16666666666666666 95:1.0 97:0.5 150:0.038461538461538464 153:0.5 164:0.25 171:0.5 175:1.0 185:1.0 191:0.5 238:0.125 254:0.5 373:0.038461538461538464 402:1.0 427:0.034482758620689655 473:0.3333333333333333 549:2.0 647:0.5 878:1.0 1410:1.0 2276:1.0 2435:1.0 3595:0.5 5116:0.2857142857142857 5132:1.0 5277:1.0 5528:1.0 5916:1.0 6329:1.0 7109:1.0
14 1:0.1111111111111111 6:0.043478260869565216 37:0.09090909090909091 42:0.5 135:0.5 223:2.0 320:2.0 2216:0.5 5112:1.0 5113:0.030303030303030304 5114:1.0 5168:1.0 5199:1.0 5291:1.0 7022:1.0
14 1:0.1111111111111111 6:0.043478260869565216 17:0.2 22:1.0 23:0.125 37:0.09090909090909091 42:0.25 135:0.5 138:0.14285714285714285 160:1.0 287:1.0 350:0.038461538461538464 427:0.034482758620689655 681:0.2 768:0.5 955:0.2 992:1.0 1028:0.5 1241:0.3333333333333333 1992:1.0 1998:1.0 5103:0.14285714285714285 5432:1.0 5605:1.0 6147:1.0 6583:1.0
14 1:0.1111111111111111 5:0.3333333333333333 6:0.08695652173913043 16:0.1111111111111111 23:0.125 34:0.07692307692307693 37:0.09090909090909091 56:0.3333333333333333 66:1.0 82:0.16666666666666666 116:1.0 191:1.0 293:1.0 350:0.038461538461538464 407:1.0 671:1.0 829:2.0 872:1.0 881:0.5 908:1.0 1280:1.0 1522:1.0 2786:1.0 2974:2.0 3353:1.0 4361:1.0 5120:0.08333333333333333 5368:1.0 5630:1.0 6012:1.0 6543:1.0 7051:1.0
14 16:0.1111111111111111 17:0.2 42:0.25 73:1.0 75:0.5 114:1.0 117:0.03571428571428571 147:0.5 150:0.038461538461538464 171:0.5 185:1.0 191:1.0 223:1.0 273:0.3333333333333333 319:0.0625 320:1.0 350:0.038461538461538464 427:0.034482758620689655 480:1.0 549:1.0 561:1.0 644:1.0 717:0.3333333333333333 829:2.0 2132:1.0 2567:1.0 2680:1.0 2974:1.0 5113:0.030303030303030304 5116:0.14285714285714285 5161:1.0 5199:1.0 5630:1.0 5750:1.0 6804:1.0 7210:1.0
14 5:0.3333333333333333 6:0.043478260869565216 34:0.07692307692307693 96:0.16666666666666666 191:1.5 235:1.0 249:0.5 261:0.03571428571428571 474:1.0 549:1.0 561:1.0 644:1.0 717:0.3333333333333333 829:1.0 4473:1.0 4633:0.25 5103:0.14285714285714285 5118:0.2 5120:0.08333333333333333 5290:0.5 5432:1.0 5819:1.0 6469:1.0 7199:1.0
14 1:0.1111111111111111 5:0.3333333333333333 34:0.07692307692307693 73:1.0 82:0.5 123:1.0 160:1.0 171:1.0 181:0.125 427:0.034482758620689655 534:1.0 542:0.5 549:1.0 615:0.14285714285714285 1123:1.0 1580:1.0 1998:1.0 3623:1.0 3807:1.0 5125:1.0 5142:1.0 5165:0.5 5212:1.0 5280:0.5 5376:1.0 5383:1.0 5407:1.0 5432:1.0 5790:0.2 6058:1.0 6116:0.25
14 6:0.043478260869565216 34:0.07692307692307693 73:1.0 82:0.16666666666666666 146:1.0 147:0.5 169:1.0 171:1.0 190:0.5 191:1.0 192:1.0 251:0.3333333333333333 427:0.034482758620689655 549:1.0 561:1.0 647:0.5 982:1.0 1123:1.0 1885:1.0 1998:1.0 5103:0.14285714285714285 5106:1.0 5120:0.08333333333333333 5125:1.0 5165:0.5 5168:1.0 5343:1.0 5370:1.0 5383:1.0 5720:0.5
14 1:0.1111111111111111 4:0.5 5:0.6666666666666666 6:0.13043478260869565 42:0.25 150:0.038461538461538464 155:0.06666666666666667 353:0.5 411:0.3333333333333333 427:0.034482758620689655 473:0.3333333333333333 587:1.0 646:1.0 647:0.5 1042:1.0 1349:1.0 1574:1.0 2216:0.5 2559:0.2 3085:1.0 5120:0.08333333333333333 5125:1.0 5165:0.5 5383:1.0 5968:1.0 6644:1.0
14 1:0.2222222222222222 6:0.08695652173913043 37:0.09090909090909091 42:0.25 56:0.3333333333333333 82:0.16666666666666666 128:0.5 135:0.5 181:0.125 185:1.0 191:0.5 223:1.0 261:0.03571428571428571 320:1.0 427:0.034482758620689655 549:1.0 588:1.0 717:0.3333333333333333 768:0.5 1201:1.0 1909:1.0 2431:1.0 5113:0.030303030303030304 5116:0.14285714285714285 5168:1.0 5199:1.0 5295:1.0 5333:1.0 5432:1.0 6033:1.0
14 5:0.6666666666666666 6:0.043478260869565216 37:0.09090909090909091 42:0.75 82:0.16666666666666666 117:0.03571428571428571 147:1.0 150:0.038461538461538464 191:0.5 196:1.0 204:1.0 223:1.0 290:1.0 320:1.0 368:1.0 427:0.06896551724137931 549:1.0 677:1.0 681:0.2 1036:0.5 1389:1.0 1669:0.16666666666666666 3730:1.0 5103:0.14285714285714285 5113:0.030303030303030304 5120:0.08333333333333333 5178:1.0 5199:1.0 5200:1.0 5432:1.0 5554:1.0 6165:1.0
14 5:0.3333333333333333 6:0.08695652173913043 17:0.2 42:0.75 64:0.5 73:1.0 82:0.16666666666666666 157:1.0 160:1.0 171:1.0 185:1.0 191:1.0 226:1.0 254:0.5 305:1.0 350:0.038461538461538464 373:0.038461538461538464 549:1.0 763:1.0 776:1.0 823:1.0 955:0.2 1028:0.5 1036:0.5 1241:0.3333333333333333 1537:0.5 1740:0.5 1775:1.0 1997:1.0 2216:0.5 2478:0.125 2532:1.0 2921:1.0 4097:1.0 4770:1.0 5103:0.14285714285714285 5119:1.0 5120:0.16666666666666666 5855:1.0 5968:1.0 6254:1.0 6525:1.0 6572:1.0 6877:1.0
14 1:0.2222222222222222 5:0.3333333333333333 6:0.08695652173913043 15:0.07692307692307693 17:0.2 34:0.15384615384615385 42:0.25 73:2.0 171:1.0 181:0.125 191:0.5 192:1.0 319:0.0625 373:0.038461538461538464 423:1.0 427:0.13793103448275862 473:0.6666666666666666 549:1.0 566:1.0 615:0.14285714285714285 647:0.5 768:0.5 872:1.0 1140:1.0 1537:0.5 1909:1.0 2366:1.0 3739:1.0 4054:1.0 4259:1.0 4636:1.0 5103:0.14285714285714285 5105:1.0 5116:0.14285714285714285 5120:0.08333333333333333 5160:1.0 5165:0.5 7186:1.0
14 5:0.6666666666666666 6:0.043478260869565216 15:0.07692307692307693 25:0.5 34:0.07692307692307693 42:0.25 45:1.0 56:0.3333333333333333 123:1.0 150:0.038461538461538464 171:0.5 181:0.125 350:0.038461538461538464 373:0.038461538461538464 615:0.14285714285714285 823:1.0 955:0.2 1123:1.0 1409:1.0 1448:1.0 1537:0.5 1882:1.0 1998:1.0 2688:1.0 2807:0.5 3738:1.0 4054:1.0 4636:1.0 5120:0.08333333333333333 5125:1.0 5386:1.0 5432:1.0 5587:1.0 5690:1.0
14 1:0.2222222222222222 6:0.043478260869565216 17:0.2 34:0.07692307692307693 96:0.16666666666666666 102:0.3333333333333333 117:0.03571428571428571 169:1.0 177:0.5 191:0.5 251:0.3333333333333333 319:0.0625 347:1.0 427:0.034482758620689655 474:1.0 488:0.5 561:1.0 566:1.0 872:1.0 927:1.0 1882:1.0 1998:1.0 2366:1.0 2705:0.3333333333333333 3766:1.0 3787:1.0 5116:0.14285714285714285 5176:1.0 6130:1.0 6201:1.0 6371:1.0
14 1:0.1111111111111111 5:0.3333333333333333 6:0.08695652173913043 15:0.07692307692307693 17:0.4 22:1.0 34:0.07692307692307693 37:0.2727272727272727 56:0.3333333333333333 146:1.0 147:0.5 150:0.038461538461538464 177:0.5 350:0.038461538461538464 407:1.0 549:1.0 648:1.0 881:0.5 930:0.2 1160:1.0 1416:0.3333333333333333 1580:1.0 1882:1.0 1998:1.0 2541:1.0 2559:0.2 2635:1.0 2636:1.0 5109:1.0 5120:0.08333333333333333 5160:1.0 5179:1.0 5212:1.0 5271:1.0 5306:1.0 5375:1.0 5690:1.0 5736:1.0 5889:1.0 5918:1.0 6523:1.0
14 5:0.3333333333333333 34:0.07692307692307693 42:0.25 96:0.16666666666666666 138:0.14285714285714285 191:0.5 204:1.0 223:1.0 275:1.0 320:1.0 427:0.034482758620689655 488:0.5 549:1.0 646:1.0 908:1.0 925:1.0 2478:0.125 3264:1.0 4054:1.0 5113:0.030303030303030304 5165:0.5 5199:1.0 5229:1.0 5345:1.0 5346:1.0 5496:1.0 5584:1.0 5690:1.0 5718:1.0 6810:1.0
14 5:1.0 6:0.043478260869565216 15:0.07692307692307693 16:0.1111111111111111 17:0.2 34:0.07692307692307693 37:0.2727272727272727 56:0.3333333333333333 73:1.0 135:0.5 146:1.0 147:0.5 150:0.038461538461538464 160:1.0 185:1.0 191:1.0 254:0.5 339:1.0 407:1.0 427:0.034482758620689655 549:1.0 647:0.5 1123:1.0 2559:0.2 2635:1.0 2636:1.0 2678:1.0 2923:1.0 4131:1.0 4259:1.0 5070:1.0 5125:2.0 5161:1.0 5228:1.0 5376:1.0 5431:1.0 5446:1.0 5916:1.0 5918:1.0 6904:1.0 6908:1.0
14 1:0.1111111111111111 5:0.3333333333333333 6:0.043478260869565216 37:0.09090909090909091 42:0.5 45:1.0 63:0.5 105:0.5 147:0.5 150:0.038461538461538464 155:0.06666666666666667 190:0.5 191:1.5 246:1.0 275:1.0 305:1.0 350:0.038461538461538464 427:0.10344827586206896 441:1.0 473:0.6666666666666666 549:2.0 615:0.14285714285714285 785:1.0 1019:1.0 1036:0.5 1416:0.3333333333333333 1448:1.0 1522:1.0 1537:0.5 1669:0.16666666666666666 1740:0.5 1790:0.3333333333333333 1882:1.0 1909:1.0 2003:1.0 2015:0.5 2297:1.0 2478:0.25 2621:1.0 3870:1.0 4104:1.0 5103:0.14285714285714285 5106:1.0 5111:1.0 5120:0.16666666666666666 5132:1.0 5165:0.5 5172:1.0 5174:1.0 5175:1.0 6352:1.0 6450:1.0 6763:1.0 6771:1.0 6924:1.0
14 1:0.1111111111111111 4:0.5 5:0.3333333333333333 6:0.13043478260869565 34:0.15384615384615385 42:0.25 56:0.3333333333333333 150:0.038461538461538464 171:0.5 191:0.5 223:1.0 320:1.0 373:0.038461538461538464 417:1.0 427:0.034482758620689655 443:0.3333333333333333 549:1.0 643:1.0 897:1.0 1123:1.0 1740:0.5 2455:1.0 2598:1.0 2702:1.0 5104:0.125 5113:0.030303030303030304 5120:0.08333333333333333 5131:1.0 5132:1.0 5160:1.0 5199:1.0 5229:1.0 5256:1.0 5291:1.0 6908:1.0 7259:1.0
14 6:0.08695652173913043 17:0.2 42:0.5 82:0.5 117:0.03571428571428571 155:0.06666666666666667 171:0.5 191:1.0 192:1.0 261:0.03571428571428571 287:1.0 427:0.06896551724137931 473:0.3333333333333333 549:1.0 681:0.2 737:0.5 778:1.0 1036:0.5 1042:1.0 1349:1.0 1574:1.0 1939:1.0 2275:1.0 2786:1.0 3085:1.0 3705:1.0 5103:0.14285714285714285 5104:0.125 5116:0.14285714285714285 5165:0.5 5417:1.0 6382:1.0 6409:1.0
14 1:0.2222222222222222 5:0.3333333333333333 6:0.13043478260869565 17:0.2 23:0.125 34:0.15384615384615385 37:0.09090909090909091 73:1.0 96:0.16666666666666666 97:0.5 135:0.5 150:0.038461538461538464 160:1.0 169:1.0 171:1.0 177:0.5 211:1.0 254:0.5 290:1.0 350:0.07692307692307693 427:0.10344827586206896 549:1.0 615:0.14285714285714285 1499:1.0 1740:0.5 2069:1.0 2678:1.0 2927:1.0 3072:1.0 3146:1.0 5103:0.14285714285714285 5116:0.2857142857142857 5138:1.0 5625:0.5 6083:1.0 6165:1.0 6357:1.0 6908:1.0
14 1:0.3333333333333333 5:0.3333333333333333 6:0.043478260869565216 42:0.25 56:0.6666666666666666 96:0.16666666666666666 135:1.0 147:0.5 171:0.5 191:1.0 223:1.0 275:1.0 319:0.0625 320:1.0 350:0.038461538461538464 399:0.5 427:0.034482758620689655 549:1.0 647:0.5 737:0.5 1258:1.0 1882:1.0 2064:0.5 2216:1.0 2759:0.5 4677:1.0 5105:1.0 5113:0.030303030303030304 5115:1.0 5120:0.08333333333333333 5125:2.0 5148:1.0 5199:1.0 5480:1.0 5744:1.0 6508:1.0 6981:1.0
14 1:0.1111111111111111 5:0.6666666666666666 6:0.043478260869565216 17:0.2 37:0.09090909090909091 73:1.0 82:0.16666666666666666 116:1.0 135:1.0 138:0.14285714285714285 150:0.11538461538461539 171:0.5 180:1.0 222:0.3333333333333333 254:0.5 275:1.0 350:0.038461538461538464 427:0.034482758620689655 473:0.6666666666666666 549:1.0 587:1.0 647:0.5 648:1.0 675:1.0 677:1.0 1028:0.5 1036:0.5 1882:1.0 2235:1.0 2478:0.125 2678:1.0 3659:1.0 5103:0.14285714285714285 5120:0.25 5170:1.0 5171:1.0 5369:1.0 5420:1.0 5431:1.0 5744:1.0 6229:1.0 6241:1.0 6538:1.0 7028:1.0 7033:1.0
14 5:0.3333333333333333 56:0.3333333333333333 73:1.0 82:0.16666666666666666 147:0.5 254:0.5 261:0.03571428571428571 350:0.038461538461538464 549:1.0 872:1.0 1448:1.0 1609:1.0 1669:0.16666666666666666 1730:1.0 2139:1.0 2678:1.0 3705:2.0 5104:0.25 5116:0.14285714285714285 5118:0.2 5120:0.08333333333333333 5176:1.0 5210:1.0 5256:1.0 5432:1.0 5672:1.0
14 5:0.3333333333333333 6:0.08695652173913043 15:0.07692307692307693 25:0.5 42:0.5 45:1.0 56:0.3333333333333333 73:1.0 82:0.16666666666666666 138:0.14285714285714285 171:0.5 181:0.125 226:1.0 290:1.0 367:1.0 373:0.07692307692307693 427:0.034482758620689655 443:0.3333333333333333 598:1.0 1537:0.5 1591:1.0 1939:1.0 1997:1.0 2807:0.5 3780:1.0 5201:1.0 5368:1.0 5400:1.0 5575:0.5 5576:1.0 5625:0.5 5627:1.0 5628:2.0 5859:1.0 6165:1.0 6818:1.0
14 1:0.1111111111111111 5:0.6666666666666666 6:0.043478260869565216 34:0.07692307692307693 37:0.09090909090909091 42:0.5 45:1.0 56:0.3333333333333333 135:0.5 147:0.5 177:0.5 191:0.5 339:1.0 350:0.038461538461538464 367:0.5 443:0.3333333333333333 615:0.14285714285714285 677:2.0 1019:1.0 1036:0.5 1421:0.5 1669:0.16666666666666666 1790:0.3333333333333333 1882:1.0 3000:0.25 3730:1.0 3780:1.0 5103:0.14285714285714285 5120:0.08333333333333333 5368:1.0 5425:1.0 5744:1.0 5859:1.0 6620:1.0 6846:1.0 6847:1.0
14 1:0.5555555555555556 5:0.3333333333333333 15:0.07692307692307693 56:0.6666666666666666 73:1.0 82:0.16666666666666666 116:1.0 135:1.0 171:0.5 191:1.5 261:0.03571428571428571 339:1.0 350:0.15384615384615385 397:0.5 399:0.5 427:0.06896551724137931 549:1.0 1241:0.3333333333333333 1775:1.0 2221:1.0 3146:1.0 4633:0.25 5104:0.125 5116:0.14285714285714285 5120:0.08333333333333333 5201:1.0 5262:1.0 5309:1.0 5959:1.0 6612:1.0 7014:1.0
14 1:0.2222222222222222 5:0.3333333333333333 34:0.07692307692307693 45:1.0 82:0.3333333333333333 101:1.0 108:0.5 117:0.03571428571428571 128:0.5 150:0.038461538461538464 171:1.0 190:0.5 191:1.0 197:0.5 204:1.0 219:0.3333333333333333 226:1.0 251:0.6666666666666666 254:0.5 339:1.0 350:0.038461538461538464 367:0.5 474:1.0 488:0.5 549:1.0 561:1.0 675:1.0 778:1.0 834:1.0 908:1.0 927:1.0 1019:1.0 1360:0.5 1537:0.5 1939:1.0 2678:1.0 2959:1.0 4016:1.0 5103:0.14285714285714285 5116:0.14285714285714285 5125:1.0 5167:1.0 5188:1.0 5286:1.0 5673:1.0 5718:1.0 6058:1.0
14 6:0.043478260869565216 15:0.15384615384615385 17:0.2 34:0.07692307692307693 42:0.75 45:1.0 82:0.16666666666666666 97:0.5 150:0.07692307692307693 185:1.0 191:0.5 251:0.3333333333333333 350:0.038461538461538464 427:0.06896551724137931 677:1.0 1028:0.5 1036:0.5 1609:1.0 1669:0.16666666666666666 3072:1.0 5109:1.0 5112:1.0 5120:0.16666666666666666 5125:1.0 5126:1.0 5130:1.0 5662:1.0 5870:1.0 6058:1.0 6908:1.0
|
574a2c6376439771d19aeb3bebcf41e264753754
|
1bb72df9a084fe4f8c0ec39f778282eb52750801
|
/test/RT30.prev.tst
|
8f4d97863f4cc9620bec4638dce65539e0f889a4
|
[
"Apache-2.0",
"LicenseRef-scancode-unknown-license-reference"
] |
permissive
|
gfis/ramath
|
498adfc7a6d353d4775b33020fdf992628e3fbff
|
b09b48639ddd4709ffb1c729e33f6a4b9ef676b5
|
refs/heads/master
| 2023-08-17T00:10:37.092379
| 2023-08-04T07:48:00
| 2023-08-04T07:48:00
| 30,116,803
| 2
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 363
|
tst
|
RT30.prev.tst
|
[3,2,1] | [1,1] =
quot[0,1] = 1, remd = [[3],[2,1]], prod = [[0],[1,1]]
quot[0,0] = 1, remd = [[3],[1], prod = [[1],[1]
reduce: [[3],[2,1]] / [[1],[1] -> [[1],[1] rest [[2]]
quot[1,0] = 1/2, remd = [[1],[1], prod = [[0],[1]
quot[0,0] = 1/2, remd = [[1]], prod = [[1]]
reduce: [[1],[1] / [[2]] -> [[1/2],[1/2] rest [[0]]
reduced: [[2]]
result: [[2]]
|
7a5ddd9dcee7399d06bed7306c59916fec646b05
|
a439c420539294c6e178cc89c43c4231246f9cbe
|
/Scripts/21. Signal/transforms/fft2.sce
|
d17f46fa39c7fe4bfb34d95d9dd7bbb512d70dae
|
[] |
no_license
|
PirateKing19902016/Scilab-Spoken-Tutorials
|
b7927e196acbefa47abdbdeb326d37385d5cbc34
|
a110fc425c123f7041cb9ee8eca42ce08619ae60
|
refs/heads/master
| 2021-05-02T06:14:37.089440
| 2018-02-09T16:23:27
| 2018-02-09T16:23:27
| 120,855,481
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 472
|
sce
|
fft2.sce
|
//make a signal
t=0:0.1:1000;
x=3*sin(t)+8*sin(3*t)+0.5*sin(5*t)+3*rand(t);
//compute the fft
y=fft(x,-1);
//display
clf();
subplot(2,1,1);plot2d(abs(y))
subplot(2,1,2);plot2d(fftshift(abs(y)))
//make a 2D image
t=0:0.1:30;
x=3*sin(t')*cos(2*t)+8*sin(3*t')*sin(5*t)+..
0.5*sin(5*t')*sin(5*t)+3*rand(t')*rand(t);
//compute the fft
y=fft(x,-1);
//display
clf();
xset('colormap',hotcolormap(256))
subplot(2,1,1);Matplot(abs(y))
subplot(2,1,2);Matplot(fftshift(abs(y)))
|
b1f2cb3dfcc1e6d36bc07fd431f16b84644dddc1
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3769/CH6/EX6.13/Ex6_13.sce
|
baf9194061d2aa4d8d17df835a5b200f6edb6612
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 234
|
sce
|
Ex6_13.sce
|
clear
//Given
R=2 //ohm
R1=2.4 //ohm
V=4 //V
E=1.5
//Calculation
R11=R+R1
I=V/R11
Vab=I*R
K=Vab
l=E/K
//Result
printf("\n Length for zero galvanometer deflection is %0.3f m", l)
|
f8a6b2e859dcce626c89d4b8c8203d77f8b02ce5
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/51/CH1/EX6/1_6data.sci
|
73b1f8dcd08ae260cb25f5d14fd203d49b512be1
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 46
|
sci
|
1_6data.sci
|
p1=14.7;//psi(abs)
V1=1;//ft^3
V2=0.5;//ft^3
|
1e8a9bf540576fce548cdafd0ce3041350c5dac2
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2300/CH9/EX9.12.8/Ex9_8.sce
|
0534888448b544c62078d904098e934312c47c05
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 519
|
sce
|
Ex9_8.sce
|
//scilab 5.4.1
//Windows 7 operating system
//chapter 9 Basic Voltage and Power Amplifiers
clc
clear
V=10//V=voltage at frequency 5kHz
Vr=7.07//Vr=voltage at frequency 25kHz
//x=10*log10(P/Pr) where x=change in decibel(dB) of power P from some standard power Pr
//P=V^2/R=I^2*R
//Also Pr=Vr^2/R=Ir^2*R
//x=10*(log10(V/Vr))^2=20*log10(V/Vr)
x=20*log10(V/Vr)//x=change in decibel(dB) of voltage V from some standard voltage Vr
format("v",4)
disp("dB",x,"The decibel change in the output power level is =")
|
527557768f5a2c9795e501063c6c573b4f15668a
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3281/CH6/EX6.2/ex6_2.sce
|
b53b9793a940f6d41a6ff97b5ef4877a9a0ad86d
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 184
|
sce
|
ex6_2.sce
|
//Page Number: 332
//Example 6.2
clc;
//Given
I0=20D-3; //A
V0=4D+3; //V
Z0=100; //ohm
N=30;
C=((I0*Z0)/(4*V0))^(1/3);
//Gain
Ap=-9.54+(47.3*C*N);
disp('dB',Ap,'Gain:');
|
13dbd5bbc7038ce686bea18ffce1178b5215fd27
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/278/CH11/EX11.16/ex_11_16.sce
|
1b47e2497c3cebc90b3f1736bc7401ca22ac502c
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,974
|
sce
|
ex_11_16.sce
|
//find a.)dia of fixing bolts,b.)dimension of arms
clc
//soltuion
//given
//refer fig 11.39
pi = %pi;
W=10000//N
q=60//deg
f1=100//N/mm^2
t=60//N/mm^2
Wh=W*sin(%pi/3)//N
printf("the horizontal component is,%f N\n",Wh)
Wv=W*cos(pi/3)//N
printf("the vertical component is,%f N\n",Wv)
Wt1=Wh/4//force on each bolt//N
printf("the direct tensile load on each bolt is,%f N\n",Wt1)
x1=0.05//m//distance of horizontal component from CG
Th=Wh*x1//N-m//torque due to horizntl compnt
Ws=Wv/4//N//shear load on each bolt
printf("shear load on each boltis,%f N\n",Ws)
x2=0.3//m
Tv=Wv*x2//N-m
Tn=Tv-Th//N-m//net moment
printf("net moment is,%f N-m\n",Tn)
L1=(250-175)/2000//m//dis btw 1 and 2 bolt
L3=L1+0.175//m//dis btw 3 and 4 bolt
printf("the value of L3 is,%f m\n",L3)
//let w be load on each bolt
//Te=2*(w*L1)*L1 + 2*(w*L2)*L2=2*w(L1^2 +L2^2)//total moment abt E
//Te=0.093*w//N-m
w=Tn/0.093//N/m
printf("the laod on each per meter distance from E is,%f N/m\n",w)
L2=180//mm
Wt2=w*L3//N
printf("the value of Wt1 is ,%f N\n",Wt1)
printf("the value of Wt2 is,%f N\n",Wt2)
Wt=Wt1+Wt2//N
printf("the value of total force is,%f N\n",Wt)
Wte=0.5*[Wt + sqrt(Wt^2 + 4*Ws^2)]//N
printf("the value of equivalent force is,%f N\n",Wte)
//let dc be core dia
dc=sqrt((4*Wte)/(pi*f1))//mm
printf("the value of core dia is,%f mm\n",dc)
printf("the valuf of core dia from tabl 11.1 instandard condition is 8.18mm\n")
//let t be thickness and b be the width,b=3*t
//A=3*b*t=9*t^2//mm^2
//I={[b*(2*t +b)^3]/12}-{(b-t)*b^3/12}
//I=321*t^4/12
//Z=I/(t+0.5*b)=10.7*t^3//mm^3
//ft1=Wh/A=962/t^2//N/mm^2
Mh=Wh*0.05//N-m
//ft2=Mh/Z=40.5*10^3/t^3//N/mm^2
//Ty=Wv/A=556/t^3//N/mm^2
Mv=Wv*0.3//N-m
//ft3=Mv/Z=140.2*10^3/t^3//N/mm^2
//Ftnet=ft1-ft2+ft3//N/mm^2
//Ftnet=(962/t^2)-(40.5*10^3/t^3)+(140.210^3/t^3)
//Ftnet=(962/t^2)+(99.7*10^3/t^3)
Ftnet=100//N/mm^2
//by hit and trial
//'Ftnet=100=(962/t^2)+(99.7*10^3/t^3)
t=10.4//mm
b=3*t//mm
printf("the thickness is,%f mm\n",t)
printf("the width is,%f mm",b)
|
72d9d5ed035b76fbddcee8f8fd7995858ba0ce81
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3888/CH13/EX13.3/Ex13_3.sce
|
162fca35bf1549c5f0ed687f770ff964557f2f62
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,894
|
sce
|
Ex13_3.sce
|
//Electric Power Generation, Transmission and Distribution by S.N.Singh
//Publisher:PHI Learning Private Limited
//Year: 2012 ; Edition - 2
//Example 13.3
//Scilab Version : 6.0.0 ; OS : Windows
clc;
clear;
A=120; //Normal copper area in mm^2
con_size=(30+7)/6.30; //Conductor size in mm
w=0.4; //Conductor weight in kg/m
Ts=1250; //Tensile strength in kg
Sf=5; //Safety factor
L=200; //Span length in m
t=0.5; //Thickness of ice in cm
p=10; //Wind pressure in kg/m^2
D=(2*4-1)*6.30*10^(-1); //Total diameter of conductor in cm
T=Ts/Sf; //Working stress in kg
d=w*L^(2)/(8*T); //Sag in still air in m
wi=%pi*((D+t)*10^(-2)*t*10^(-2))*915; //Weight of ice in kg/m
W=w+wi; //Total weight of ice in kg/m
d1=W*L^(2)/(8*T); //Sag in m
Ww=(D+2*t)*10^(-2)*p; //Wind loading in kg/m
We=sqrt(Ww^(2)+(w+wi)^(2)) //Effective loading in kg/m
d2=We*L^(2)/(8*T); //Total Sag in m
angle=atand(Ww/(w+wi)); //Sag angle in degree
printf("\nSag in still air %.f m",d);
printf("\nSag,if the conductor is covered with ice of 0.5-cm thickness is % .2f m",d1);
printf("\nSag,if the conductor is covered with ice of 0.5-cm thickness and a wind pressure of 10 kg/m^(2) is acting on the projected area is %.2f m",d2);
printf("\nSag angle is %.2f degree",angle);
|
eda9d8e0b81db49f1b7843e8aa4ed768adfbd83b
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3417/CH13/EX13.4.2/Ex13_4_2.sce
|
a2162e28a0186f929e14357c46efb5f27c2c2857
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 2,309
|
sce
|
Ex13_4_2.sce
|
//Ex13.4.12.;Calculare maximum generator efficiency and the efficiency for maximum power,power output
//seedbeck coefficient(alpha_s);unit=volts/degree celcius
alpha_s1=-190*10^-6;//n-type
alpha_s2=190*10^-6;//p-type
//Specific resistivity(p);unit=Ohm-cm
p1=1.45*10^-3;//n-type
p2=1.8*10^-3;//p-type
//Figure of merit(Z);unit=degree k^-1
Z1=2*10^-3;//n-type
Z2=1.7*10^-3;//p-type
//conductivity (n-type),
k1=(alpha_s1^2)/(p1*Z1);
//similarly
k2=(alpha_s2^2)/(p2*Z2);
printf(" Conductivity k1=%f W/cm degree celcius \n Conductivity k2=%f W/cm degree celcius",k1,k2);
//Z_opt=((alpha_s1-alpha_s2)^2)/[(p1*k1)^2+(p2*k2)^2];
//let
a=(alpha_s1-alpha_s2)
b=(p1*k1)
c=(p2*k2)
A=sqrt(b)
B=sqrt(c)
C=(A+B);
///therefore
Z_opt=(a/C)^2;
printf("\n Z_opt=%f degree k",Z_opt);
//Thermal conductance
A1=2.3;//cm^2
A2=1.303;//cm^2
l1=1.5;//cm
l2=0.653;//cm
K=((k1*A1)/l1)+((k2*A2)/l2)
printf("\n Thermal conductance K=%f W/degree celcius",K);
//R=Resistance of the generator=R1+R2
R=((p1*l1)/A1)+((p2*l2)/A2);
printf("\n Resistance of the generator R=%f ohm",R);
TH=923;//unit=k
TC=323;//unit=k
M_opt=(1+((Z_opt/2)*(TH+TC)))^0.5;
printf("\n M_opt=%f ohm",M_opt);
RL=M_opt*R;
printf("\n RL=%f ohms",RL);
//Optimum efficiency n_opt=(((TH-TC)/TH)*((M_opt-1)/(M_opt+(TC/TH)))*100;
aa=((TH-TC)/TH);
//taking M_opt=1.43
b=(1.43-1)/(1.43+(TC/TH));
n_opt=aa*b*100;
printf("\n Optimum efficiency n_opt=%f persent",n_opt);
//efficiency for max. power output n= (TH-TC)/TH)*m/[((1+m)^2/TH)*(KR/alpha_s_12^2)+(1+m)-(TH-TC)/2TH)]
//Efficiency power output
//RL=R i.e. m=1
// let ab=(1+m)^2/TH;ac=(KR/alpha_s_12^2);ad=(TH-TC)/2TH
m=1;
ab=4/TH;
ac=1/Z_opt;
ad=aa/2;
n_max=[aa/(ab*ac+2-ad)]*100;
printf("\n max. power output n_max %f persent",n_max)
//Power output P_opt=I^2*RL=alpha_s12^2(TH-TC)*RL/(R+RL)^2=alpha_s12^2(TH-TC)/(1+M_opt)^2*RL
//let at=alpha_s12^2(TH-TC);mi=(1+M_opt)^2*RL
at=a*a*(TH-TC)*(TH-TC);
ml=(1+1.43)*(1+1.43)*2.63*10^-3
P_opt=at/ml;
printf("\n Power output P_opt=%f watts",P_opt);
//for max. power P_max (RL=R)
//P_max=alpha_s12^2(TH-TC)*RL/(r+RL)^2=alpha_s12^2(TH-TC)RL*4RL
P_max=at/(4*1.84*10^-3);
printf("\n max. power P_max=%f watts",P_max);
//Many calcuating mistak are there in a following example,which is corrected in program.
|
1f10f7f6a3c7f99fc1bf14aa55731cfd8f98ac83
|
527c41bcbfe7e4743e0e8897b058eaaf206558c7
|
/Positive_Negative_test/Netezza-Base-MatrixOperations/FLMatrixInvStr-NZ-01.tst
|
53d1e24eff3bf48f5d90bcbe4c572173a0665b24
|
[] |
no_license
|
kamleshm/intern_fuzzy
|
c2dd079bf08bede6bca79af898036d7a538ab4e2
|
aaef3c9dc9edf3759ef0b981597746d411d05d34
|
refs/heads/master
| 2021-01-23T06:25:46.162332
| 2017-07-12T07:12:25
| 2017-07-12T07:12:25
| 93,021,923
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 24,218
|
tst
|
FLMatrixInvStr-NZ-01.tst
|
-- Fuzzy Logix, LLC: Functional Testing Script for DB Lytix functions on Netezza
--
-- Copyright (c): 2014 Fuzzy Logix, LLC
--
-- NOTICE: All information contained herein is, and remains the property of Fuzzy Logix, LLC.
-- The intellectual and technical concepts contained herein are proprietary to Fuzzy Logix, LLC.
-- and may be covered by U.S. and Foreign Patents, patents in process, and are protected by trade
-- secret or copyright law. Dissemination of this information or reproduction of this material is
-- strictly forbidden unless prior written permission is obtained from Fuzzy Logix, LLC.
--
--
-- Functional Test Specifications:
--
-- Test Category: Matrix Operation Functions
--
-- Test Unit Number: FLMatrixInvStr-NZ-01
--
-- Name(s): FLMatrixInvStr
--
-- Description: Calculates the inverse of a square matrix
--
-- Applications:
--
-- Signature: FLMatrixInvStr(Row_ID, Col_ID, Cell_Val)
--
-- Parameters: See Documentation
--
-- Return value: Double Precision
--
-- Last Updated: 01-05-2015
--
-- Authors: <Tammy Weng: Tammy.Weng@fuzzyl.com>, <Anurag Reddy: Anurag.Reddy@fuzzyl.com>
--
-- BEGIN: TEST SCRIPT
--.run file=../PulsarLogOn.sql
CREATE TABLE tblMatrixInvTest
(MatrixID INTEGER,
row_id INTEGER,
col_id INTEGER,
cell_val FLOAT)
DISTRIBUTE ON(row_id ,col_id);
CREATE TABLE tblMatrixInvOutput
(OutputMatrixID BIGINT,
OutputRowNum BIGINT,
OutputColNum BIGINT,
OutputVal FLOAT)
DISTRIBUTE ON( OutputMatrixID ,OutputRowNum ,OutputColNum );
-- BEGIN: POSITIVE TEST(s)
---- P1 Test with a 1 * 1 Matrix
---- Simulate X
DELETE FROM tblMatrixInvTest;
INSERT INTO tblMatrixInvTest
SELECT c.SerialVal AS MatrixID,
a.SerialVal AS Row_id,
b.SerialVal AS Col_id,
FLSimNormal(RANDOM(), RANDOM(), RANDOM()+1) AS Cell_Val
FROM fzzlSerial AS a,
fzzlSerial As b,
fzzlSerial AS c
WHERE Row_id <= 1
AND Col_id <= 1
AND MatrixID <= 1;
---- Calculate Inv(X)
DELETE FROM tblMatrixInvOutput;
INSERT INTO tblMatrixInvOutput
SELECT p.MatrixID,
FLMatrixRow(p.Inverse) AS Row,
FLMatrixCol(p.Inverse) AS Col,
FLMatrixVal(p.Inverse) AS Inverse
FROM (
SELECT a.MatrixID,
FLMatrixInvStr(a.Row_id, a.Col_id, a.Cell_Val) OVER (PARTITION BY 1) AS Inverse
FROM tblMatrixInvTest a
) AS p;
---- Inv(X) * X should return identity matrix
SELECT a.MatrixID,
CASE WHEN SumVal = 0 THEN 'Matrix-FT-FLMatrixInvStr-NZ-01P1: PASSED' ELSE 'Matrix-FT-FLMatrixInvStr-NZ-01P1: FAILED' END AS Msg
FROM (SELECT a.MatrixID,
Sum(CASE WHEN FLAbs(NumVal) <= 1e-15 THEN 0 ELSE 1 END) AS SumVal
FROM (SELECT a.MatrixID,
a.Row_ID,
a.Col_ID,
CASE WHEN a.Row_ID = a.Col_ID THEN a.NumVal - 1 ELSE a.NumVal END AS NumVal
FROM (SELECT a.MatrixID,
a.Row_ID,
b.OutputColNum AS Col_ID,
FLSumProd(a.Cell_Val, b.OutputVal) AS NumVal
FROM tblMatrixInvTest AS a,
tblMatrixInvOutput AS b
WHERE b.OutputMatrixID = a.MatrixID
AND b.OutputRowNum = a.Col_ID
GROUP BY 1, 2, 3
) AS a
) AS a
GROUP BY MatrixID
) AS a;
---- P2 Test with a small 50 * 50 Matrix
---- Simulate X
DELETE FROM tblMatrixInvTest;
INSERT INTO tblMatrixInvTest
SELECT c.SerialVal AS MatrixID,
a.SerialVal AS Row_id,
b.SerialVal AS Col_id,
FLSimNormal(RANDOM(), RANDOM(), RANDOM()+1) AS Cell_Val
FROM fzzlSerial AS a,
fzzlSerial As b,
fzzlSerial AS c
WHERE Row_id <= 50
AND Col_id <= 50
AND MatrixID <= 1;
---- Calculate Inv(X)
---- Calculate Inv(X)
DELETE FROM tblMatrixInvOutput;
INSERT INTO tblMatrixInvOutput
SELECT p.MatrixID,
FLMatrixRow(p.Inverse) AS Row,
FLMatrixCol(p.Inverse) AS Col,
FLMatrixVal(p.Inverse) AS Inverse
FROM (
SELECT a.MatrixID,
FLMatrixInvStr(a.Row_id, a.Col_id, a.Cell_Val) OVER (PARTITION BY 1) AS Inverse
FROM tblMatrixInvTest a
) AS p;
---- Inv(X) * X should return identity matrix
SELECT a.MatrixID,
CASE WHEN SumVal = 0 THEN 'Matrix-FT-FLMatrixInvStr-NZ-01P2: PASSED' ELSE 'Matrix-FT-FLMatrixInvStr-NZ-01P2: FAILED' END AS Msg
FROM (SELECT a.MatrixID,
Sum(CASE WHEN FLAbs(NumVal) <= 1e-7 THEN 0 ELSE 1 END) AS SumVal
FROM (SELECT a.MatrixID,
a.Row_ID,
a.Col_ID,
CASE WHEN a.Row_ID = a.Col_ID THEN a.NumVal - 1 ELSE a.NumVal END AS NumVal
FROM (SELECT a.MatrixID,
a.Row_ID,
b.OutputColNum AS Col_ID,
FLSumProd(a.Cell_Val, b.OutputVal) AS NumVal
FROM tblMatrixInvTest AS a,
tblMatrixInvOutput AS b
WHERE b.OutputMatrixID = a.MatrixID
AND b.OutputRowNum = a.Col_ID
GROUP BY 1, 2, 3
) AS a
) AS a
GROUP BY MatrixID
) AS a;
/*
---- P3 Test with a 1000 * 1000 Matrix
---- Simulate X
DELETE FROM tblMatrixInvTest;
INSERT INTO tblMatrixInvTest
SELECT c.SerialVal AS MatrixID,
a.SerialVal AS Row_id,
b.SerialVal AS Col_id,
FLSimNormal(RANDOM(), RANDOM(), RANDOM()+1) AS Cell_Val
FROM fzzlSerial AS a,
fzzlSerial As b,
fzzlSerial AS c
WHERE Row_id <= 1000
AND Col_id <= 1000
AND MatrixID <= 1;
---- Calculate Inv(X)
DELETE FROM tblMatrixInvOutput;
INSERT INTO tblMatrixInvOutput
SELECT t.MatrixID, f.row, f.col, f.value
FROM (
SELECT *,
NVL(LAG(0) OVER (PARTITION BY 1 ORDER BY row_id, col_id), 1) AS begin_flag,
NVL(LEAD(0) OVER (PARTITION BY 1 ORDER BY row_id, col_id), 1) AS end_flag
FROM tblMatrixInvTest
) AS t
,TABLE (FLMtxInvUdt(t.row_id, t.col_id, t.cell_val, t.begin_flag, t.end_flag)) AS f;
---- Inv(X) * X should return identity matrix
SELECT a.MatrixID,
CASE WHEN SumVal = 0 THEN 'Matrix-FT-FLMatrixInvStr-NZ-01P3: PASSED' ELSE 'Matrix-FT-FLMatrixInvStr-NZ-01P3: FAILED' END AS Msg
FROM (SELECT a.MatrixID,
Sum(CASE WHEN FLAbs(NumVal) <= 1e-4 THEN 0 ELSE 1 END) AS SumVal
FROM (SELECT a.MatrixID,
a.Row_ID,
a.Col_ID,
CASE WHEN a.Row_ID = a.Col_ID THEN a.NumVal - 1 ELSE a.NumVal END AS NumVal
FROM (SELECT a.MatrixID,
a.Row_ID,
b.OutputColNum AS Col_ID,
FLSumProd(a.Cell_Val, b.OutputVal) AS NumVal
FROM tblMatrixInvTest AS a,
tblMatrixInvOutput AS b
WHERE b.OutputMatrixID = a.MatrixID
AND b.OutputRowNum = a.Col_ID
GROUP BY 1, 2, 3
) AS a
) AS a
GROUP BY MatrixID
) AS a;
//*/
-- END: POSITIVE TEST(s)
-- BEGIN: NEGATIVE TEST(s)
---- N1 Testing for Non-square Matrix
-------- N1.1 Number of rows greater than number of columns
SELECT p.MatrixID,
FLMatrixRow(p.Inverse) AS Row,
FLMatrixCol(p.Inverse) AS Col,
FLMatrixVal(p.Inverse) AS Inverse
FROM (
SELECT a.MatrixID,
FLMatrixInvStr(a.Row_id, a.Col_id, a.Cell_Val) OVER (PARTITION BY 1) AS Inverse
FROM tblMatrixMulti a
WHERE a.Matrix_ID = 5
AND a.Col_ID < 5
ORDER BY 1, 2
) AS p;
-------- N1.2 Number of rows less than number of columns
SELECT p.MatrixID,
FLMatrixRow(p.Inverse) AS Row,
FLMatrixCol(p.Inverse) AS Col,
FLMatrixVal(p.Inverse) AS Inverse
FROM (
SELECT a.MatrixID,
FLMatrixInvStr(a.Row_id, a.Col_id, a.Cell_Val) OVER (PARTITION BY 1) AS Inverse
FROM tblMatrixMulti a
WHERE a.Matrix_ID = 5
AND a.Row_ID < 5
ORDER BY 1, 2
) AS p;
---- N2 Testing for Singular Matrix
---- N2.1 Testing for a 1 * 1 Matrix with 0 as the Value
DELETE FROM tblMatrixInvTest;
INSERT INTO tblMatrixInvTest (MatrixID, Row_ID, Col_ID, Cell_Val) VALUES (1, 1, 1, 0);
---- Calculate Inv(X), this calculation should return error messages
------Testing Results: Returns the value infinity.
SELECT p.MatrixID,
FLMatrixRow(p.Inverse) AS Row,
FLMatrixCol(p.Inverse) AS Col,
FLMatrixVal(p.Inverse) AS Inverse
FROM (
SELECT a.MatrixID,
FLMatrixInvStr(a.Row_id, a.Col_id, a.Cell_Val) OVER (PARTITION BY 1) AS Inverse
FROM tblMatrixInvTest a
) AS p;
---- N2.2 Testing for a 1 * 1 Matrix with 0 as the Value
DELETE FROM tblMatrixInvTest;
INSERT INTO tblMatrixInvTest (MatrixID, Row_ID, Col_ID, Cell_Val) VALUES (1, 2, 2, 0);
---- Calculate Inv(X), this calculation should return error messages
------Testing Results:ERROR [HY000] ERROR: Matrix is not correctly formed, some elements in the matrix are missing (2 x 2 != 1).
SELECT p.MatrixID,
FLMatrixRow(p.Inverse) AS Row,
FLMatrixCol(p.Inverse) AS Col,
FLMatrixVal(p.Inverse) AS Inverse
FROM (
SELECT a.MatrixID,
FLMatrixInvStr(a.Row_id, a.Col_id, a.Cell_Val) OVER (PARTITION BY 1) AS Inverse
FROM tblMatrixInvTest a
) AS p;
---- N2.3 Testing for a 1 * 1 Matrix with 0 as the Value
DELETE FROM tblMatrixInvTest;
INSERT INTO tblMatrixInvTest (MatrixID, Row_ID, Col_ID, Cell_Val) VALUES (1, 2, 3, 0);
---- Calculate Inv(X), this calculation should return error messages
------Testing Results:ERROR [HY000] ERROR: Number of rows and columns are not the same, matrix is not a square matrix.
SELECT p.MatrixID,
FLMatrixRow(p.Inverse) AS Row,
FLMatrixCol(p.Inverse) AS Col,
FLMatrixVal(p.Inverse) AS Inverse
FROM (
SELECT a.MatrixID,
FLMatrixInvStr(a.Row_id, a.Col_id, a.Cell_Val) OVER (PARTITION BY 1) AS Inverse
FROM tblMatrixInvTest a
) AS p;
---- N2.4 Testing with a simulated 5 * 5 singular matrix
-------------- Testing Results: Cannot detect all singular matrices, some times return non-sense matrix with very large values as result
---- Simulate values for the first 4 columns of X
DELETE FROM tblMatrixInvTest;
INSERT INTO tblMatrixInvTest
SELECT c.SerialVal AS MatrixID,
a.SerialVal AS Row_id,
b.SerialVal AS Col_id,
FLSimNormal(RANDOM(), 0, 10) AS Cell_Val
FROM fzzlSerial AS a,
fzzlSerial As b,
fzzlSerial AS c
WHERE Row_id <= 5
AND Col_id <= 4
AND MatrixID <= 1;
---- Calculate values for the last columns using the summation of values in the first 4 Columns Of X, this implies the matrix will be singular
INSERT INTO tblMatrixInvTest
SELECT a.MatrixID,
a.Row_id,
5,
FLSum(Cell_Val)
FROM tblMatrixInvTest AS a
GROUP BY 1, 2, 3;
---- Calculate Inv(X), this calculation should return error messages
DELETE FROM tblMatrixInvOutput;
INSERT INTO tblMatrixInvOutput
SELECT p.MatrixID,
FLMatrixRow(p.Inverse) AS Row,
FLMatrixCol(p.Inverse) AS Col,
FLMatrixVal(p.Inverse) AS Inverse
FROM (
SELECT a.MatrixID,
FLMatrixInvStr(a.Row_id, a.Col_id, a.Cell_Val) OVER (PARTITION BY 1) AS Inverse
FROM tblMatrixInvTest a
) AS p;
---- Inv(X) * X should return identity matrix
SELECT a.MatrixID,
CASE WHEN SumVal = 0 THEN 'Matrix-FT-FLMatrixInvStr-NZ-01N2.4: PASSED' ELSE 'Matrix-FT-FLMatrixInvStr-NZ-01N2.4: FAILED' END AS Msg
FROM (SELECT a.MatrixID,
Sum(CASE WHEN FLAbs(NumVal) <= 1e-4 THEN 0 ELSE 1 END) AS SumVal
FROM (SELECT a.MatrixID,
a.Row_ID,
a.Col_ID,
CASE WHEN a.Row_ID = a.Col_ID THEN a.NumVal - 1 ELSE a.NumVal END AS NumVal
FROM (SELECT a.MatrixID,
a.Row_ID,
b.OutputColNum AS Col_ID,
FLSumProd(a.Cell_Val, b.OutputVal) AS NumVal
FROM tblMatrixInvTest AS a,
tblMatrixInvOutput AS b
WHERE b.OutputMatrixID = a.MatrixID
AND b.OutputRowNum = a.Col_ID
GROUP BY 1, 2, 3
) AS a
) AS a
GROUP BY MatrixID
) AS a;
---- N3 Testing for Matrix with Missing Cell
DELETE FROM tblMatrixInvTest;
INSERT INTO tblMatrixInvTest
SELECT c.SerialVal AS MatrixID,
a.SerialVal AS Row_id,
b.SerialVal AS Col_id,
FLSimNormal(RANDOM(), 0, 10) AS Cell_Val
FROM fzzlSerial AS a,
fzzlSerial As b,
fzzlSerial AS c
WHERE Row_id <= 5
AND Col_id <= 5
AND MatrixID <= 1;
DELETE FROM tblMatrixInvTest WHERE Row_ID = 2 AND Col_ID = 2;
DELETE FROM tblMatrixInvTest WHERE Row_ID = 5 AND Col_ID = 2;
---- Calculate Inv(X)
--------Testing Results: ERROR [HY000] ERROR: Matrix is not correctly formed, some elements in the matrix are missing (5 x 5 != 23).
DELETE FROM tblMatrixInvOutput;
INSERT INTO tblMatrixInvOutput
SELECT p.MatrixID,
FLMatrixRow(p.Inverse) AS Row,
FLMatrixCol(p.Inverse) AS Col,
FLMatrixVal(p.Inverse) AS Inverse
FROM (
SELECT a.MatrixID,
FLMatrixInvStr(a.Row_id, a.Col_id, a.Cell_Val) OVER (PARTITION BY 1) AS Inverse
FROM tblMatrixInvTest a
) AS p;
---- Inv(X) * X should return identity matrix, the query below should return Err = 0 for all Matrices
SELECT a.MatrixID,
CASE WHEN SumVal = 0 THEN 'Matrix-FT-FLMatrixInvStr-NZ-01N3: PASSED' ELSE 'Matrix-FT-FLMatrixInvStr-NZ-01N3: FAILED' END AS Msg
FROM (SELECT a.MatrixID,
Sum(CASE WHEN FLAbs(NumVal) <= 1e-6 THEN 0 ELSE 1 END) AS SumVal
FROM (SELECT a.MatrixID,
a.Row_ID,
a.Col_ID,
CASE WHEN a.Row_ID = a.Col_ID THEN a.NumVal - 1 ELSE a.NumVal END AS NumVal
FROM (SELECT a.MatrixID,
a.Row_ID,
b.OutputColNum AS Col_ID,
FLSumProd(a.Cell_Val, b.OutputVal) AS NumVal
FROM tblMatrixInvTest AS a,
tblMatrixInvOutput AS b
WHERE b.OutputMatrixID = a.MatrixID
AND b.OutputRowNum = a.Col_ID
GROUP BY 1, 2, 3
) AS a
) AS a
GROUP BY MatrixID
) AS a;
---- N4 Testing for Matrix with Repeat Cell
DELETE FROM tblMatrixInvTest;
INSERT INTO tblMatrixInvTest
SELECT c.SerialVal AS MatrixID,
a.SerialVal AS Row_id,
b.SerialVal AS Col_id,
FLSimNormal(RANDOM(), 0, 10) AS Cell_Val
FROM fzzlSerial AS a,
fzzlSerial As b,
fzzlSerial AS c
WHERE Row_id <= 5
AND Col_id <= 5
AND MatrixID <= 1;
INSERT INTO tblMatrixInvTest (MatrixID, Row_ID, Col_ID, Cell_Val) VALUES (1, 2, 4, 3.5);
---- Calculate Inv(X), this calculation should return error messages
--------Testing Results:ERROR [HY000] ERROR: Matrix is not correctly formed, some elements in the matrix are missing (5 x 5 != 26)
DELETE FROM tblMatrixInvOutput;
INSERT INTO tblMatrixInvOutput
SELECT p.MatrixID,
FLMatrixRow(p.Inverse) AS Row,
FLMatrixCol(p.Inverse) AS Col,
FLMatrixVal(p.Inverse) AS Inverse
FROM (
SELECT a.MatrixID,
FLMatrixInvStr(a.Row_id, a.Col_id, a.Cell_Val) OVER (PARTITION BY 1) AS Inverse
FROM tblMatrixInvTest a
) AS p;
---- Inv(X) * X should return identity matrix
SELECT a.MatrixID,
CASE WHEN SumVal = 0 THEN 'Matrix-FT-FLMatrixInvStr-NZ-01N4: PASSED' ELSE 'Matrix-FT-FLMatrixInvStr-NZ-01N4: FAILED' END AS Msg
FROM (SELECT a.MatrixID,
Sum(CASE WHEN FLAbs(NumVal) <= 1e-6 THEN 0 ELSE 1 END) AS SumVal
FROM (SELECT a.MatrixID,
a.Row_ID,
a.Col_ID,
CASE WHEN a.Row_ID = a.Col_ID THEN a.NumVal - 1 ELSE a.NumVal END AS NumVal
FROM (SELECT a.MatrixID,
a.Row_ID,
b.OutputColNum AS Col_ID,
FLSumProd(a.Cell_Val, b.OutputVal) AS NumVal
FROM tblMatrixInvTest AS a,
tblMatrixInvOutput AS b
WHERE b.OutputMatrixID = a.MatrixID
AND b.OutputRowNum = a.Col_ID
GROUP BY 1, 2, 3
) AS a
) AS a
GROUP BY MatrixID
) AS a;
---- N5 Testing for Matrix with Repeat Cell and Missing Cell
DELETE FROM tblMatrixInvTest;
INSERT INTO tblMatrixInvTest
SELECT c.SerialVal AS MatrixID,
a.SerialVal AS Row_id,
b.SerialVal AS Col_id,
FLSimNormal(RANDOM(), 0, 10) AS Cell_Val
FROM fzzlSerial AS a,
fzzlSerial As b,
fzzlSerial AS c
WHERE Row_id <= 5
AND Col_id <= 5
AND MatrixID <= 1;
DELETE FROM tblMatrixInvTest WHERE Row_ID = 2 AND Col_ID = 4;
INSERT INTO tblMatrixInvTest (MatrixID, Row_ID, Col_ID, Cell_Val) VALUES (1, 2, 3, 3.5);
---- Calculate Inv(X), this calculation should return error messages
--------Testing Results: It calculates the matrix inverse and the result is wrong
DELETE FROM tblMatrixInvOutput;
INSERT INTO tblMatrixInvOutput
SELECT p.MatrixID,
FLMatrixRow(p.Inverse) AS Row,
FLMatrixCol(p.Inverse) AS Col,
FLMatrixVal(p.Inverse) AS Inverse
FROM (
SELECT a.MatrixID,
FLMatrixInvStr(a.Row_id, a.Col_id, a.Cell_Val) OVER (PARTITION BY 1) AS Inverse
FROM tblMatrixInvTest a
) AS p;
---- Inv(X) * X should return identity matrix
SELECT a.MatrixID,
CASE WHEN SumVal = 0 THEN 'Matrix-FT-FLMatrixInvStr-NZ-01N5: PASSED' ELSE 'Matrix-FT-FLMatrixInvStr-NZ-01N5: FAILED' END AS Msg
FROM (SELECT a.MatrixID,
Sum(CASE WHEN FLAbs(NumVal) <= 1e-6 THEN 0 ELSE 1 END) AS SumVal
FROM (SELECT a.MatrixID,
a.Row_ID,
a.Col_ID,
CASE WHEN a.Row_ID = a.Col_ID THEN a.NumVal - 1 ELSE a.NumVal END AS NumVal
FROM (SELECT a.MatrixID,
a.Row_ID,
b.OutputColNum AS Col_ID,
FLSumProd(a.Cell_Val, b.OutputVal) AS NumVal
FROM tblMatrixInvTest AS a,
tblMatrixInvOutput AS b
WHERE b.OutputMatrixID = a.MatrixID
AND b.OutputRowNum = a.Col_ID
GROUP BY 1, 2, 3
) AS a
) AS a
GROUP BY MatrixID
) AS a;
---- N6 Testing for Very Large Matrix (more than 1000 * 1000)
---- Simulate X
DELETE FROM tblMatrixInvTest;
INSERT INTO tblMatrixInvTest
SELECT c.SerialVal AS MatrixID,
a.SerialVal AS Row_id,
b.SerialVal AS Col_id,
FLSimNormal(RANDOM(), RANDOM(), RANDOM()+1) AS Cell_Val
FROM fzzlSerial AS a,
fzzlSerial As b,
fzzlSerial AS c
WHERE Row_id <= 1001
AND Col_id <= 1001
AND MatrixID <= 1;
---- Calculate Inv(X)
------Testing Results:
/* The query returned more than 1000 rows. Extra rows were ignored. */
/* Start time 05-Jan-15 6:31:01 PM, end time 05-Jan-15 6:32:41 PM. */
/* Duration 100.1537285 sec. */
SELECT p.MatrixID,
FLMatrixRow(p.Inverse) AS Row,
FLMatrixCol(p.Inverse) AS Col,
FLMatrixVal(p.Inverse) AS Inverse
FROM (
SELECT a.MatrixID,
FLMatrixInvStr(a.Row_id, a.Col_id, a.Cell_Val) OVER (PARTITION BY 1) AS Inverse
FROM tblMatrixInvTest a
) AS p;
---- N7 Testing for Matrix with RowID and ColID <= 0
-------- N7.1 RowID <= 0
DELETE FROM tblMatrixInvTest;
INSERT INTO tblMatrixInvTest
SELECT c.SerialVal AS MatrixID,
a.SerialVal - 1 AS Row_id,
b.SerialVal AS Col_id,
FLSimNormal(RANDOM(), RANDOM(), RANDOM()+1) AS Cell_Val
FROM fzzlSerial AS a,
fzzlSerial As b,
fzzlSerial AS c
WHERE Row_id <= 10
AND Col_id <= 10
AND MatrixID <= 10;
---- Calculate Inv(X)
------Testing Results:ERROR [HY000] ERROR: Matrix is not correctly formed, some elements in the matrix are missing (10 x 10 != 1100).
DELETE FROM tblMatrixInvOutput;
INSERT INTO tblMatrixInvOutput
SELECT p.MatrixID,
FLMatrixRow(p.Inverse) AS Row,
FLMatrixCol(p.Inverse) AS Col,
FLMatrixVal(p.Inverse) AS Inverse
FROM (
SELECT a.MatrixID,
FLMatrixInvStr(a.Row_id, a.Col_id, a.Cell_Val) OVER (PARTITION BY 1) AS Inverse
FROM tblMatrixInvTest a
) AS p;
---- Inv(X) * X should return identity matrix
SELECT a.MatrixID,
CASE WHEN SumVal = 0 THEN 'Matrix-FT-FLMatrixInvStr-NZ-01N7.1: PASSED' ELSE 'Matrix-FT-FLMatrixInvStr-NZ-01N7.1: FAILED' END AS Msg
FROM (SELECT a.MatrixID,
Sum(CASE WHEN FLAbs(NumVal) <= 1e-9 THEN 0 ELSE 1 END) AS SumVal
FROM (SELECT a.MatrixID,
a.Row_ID,
a.Col_ID,
CASE WHEN a.Row_ID = a.Col_ID THEN a.NumVal - 1 ELSE a.NumVal END AS NumVal
FROM (SELECT a.MatrixID,
a.Row_ID,
b.OutputColNum AS Col_ID,
FLSumProd(a.Cell_Val, b.OutputVal) AS NumVal
FROM tblMatrixInvTest AS a,
tblMatrixInvOutput AS b
WHERE b.OutputMatrixID = a.MatrixID
AND b.OutputRowNum = a.Col_ID
GROUP BY 1, 2, 3
) AS a
) AS a
GROUP BY MatrixID
) AS a;
-------- N7.2 ColID <= 0
DELETE FROM tblMatrixInvTest;
INSERT INTO tblMatrixInvTest
SELECT c.SerialVal AS MatrixID,
a.SerialVal AS Row_id,
b.SerialVal - 1 AS Col_id,
FLSimNormal(RANDOM(), RANDOM(), RANDOM()+1) AS Cell_Val
FROM fzzlSerial AS a,
fzzlSerial As b,
fzzlSerial AS c
WHERE Row_id <= 10
AND Col_id <= 10
AND MatrixID <= 10;
---- Calculate Inv(X)
------Testing Results:ERROR [HY000] ERROR: Matrix is not correctly formed, some elements in the matrix are missing (10 x 10 != 1100).
DELETE FROM tblMatrixInvOutput;
INSERT INTO tblMatrixInvOutput
SELECT p.MatrixID,
FLMatrixRow(p.Inverse) AS Row,
FLMatrixCol(p.Inverse) AS Col,
FLMatrixVal(p.Inverse) AS Inverse
FROM (
SELECT a.MatrixID,
FLMatrixInvStr(a.Row_id, a.Col_id, a.Cell_Val) OVER (PARTITION BY 1) AS Inverse
FROM tblMatrixInvTest a
) AS p;
---- Inv(X) * X should return identity matrix
SELECT a.MatrixID,
CASE WHEN SumVal = 0 THEN 'Matrix-FT-FLMatrixInvStr-NZ-01N7.2: PASSED' ELSE 'Matrix-FT-FLMatrixInvStr-NZ-01N7.2: FAILED' END AS Msg
FROM (SELECT a.MatrixID,
Sum(CASE WHEN FLAbs(NumVal) <= 1e-9 THEN 0 ELSE 1 END) AS SumVal
FROM (SELECT a.MatrixID,
a.Row_ID,
a.Col_ID,
CASE WHEN a.Row_ID = a.Col_ID THEN a.NumVal - 1 ELSE a.NumVal END AS NumVal
FROM (SELECT a.MatrixID,
a.Row_ID,
b.OutputColNum AS Col_ID,
FLSumProd(a.Cell_Val, b.OutputVal) AS NumVal
FROM tblMatrixInvTest AS a,
tblMatrixInvOutput AS b
WHERE b.OutputMatrixID = a.MatrixID
AND b.OutputRowNum = a.Col_ID
GROUP BY 1, 2, 3
) AS a
) AS a
GROUP BY MatrixID
) AS a;
-- END: NEGATIVE TEST(s)
-- Drop schema/indexes by calling associated drop script(s) (OPTIONAL)
DROP TABLE tblMatrixInvTest;
DROP TABLE tblMatrixInvOutput;
-- END: TEST SCRIPT
|
32ed0ca3a612da1f3cc49cb3ce34e7782426b42d
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3863/CH1/EX1.29/Ex1_29.sce
|
abb347fc87349aa9bef0daf9e075a31c49eaab19
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,084
|
sce
|
Ex1_29.sce
|
clear
//
//Given
//Variable declaration
d=3*10 //Diameter of the rod in mm
L=5*10**3 //Area of the rod in sq.mm
T1=95 //Initial temperature in degree celsius
T2=30 //Final temperature in degree celsius
E=2e5*10**6 //Youngs Modulus in N/sq.m
alpha=12e-6 //Co-efficient of linear expansion in per degree celsius
//Calculation
A=%pi/4*(d**2) //Area of the rod
T=T1-T2 //Fall in temperature in degree celsius
//case(i) When the ends do not yield
stress1=int(alpha*T*E*1e-6) //Stress in N/sq.mm
Pull1=(stress1*A) //Pull in the rod in N
//case(ii) When the ends yield by 0.12cm
delL=0.12*10
stress2=int((alpha*T*L-delL)*E/L*1e-6) //Stress in N/sq.mm
Pull2=(stress2*A) //Pull in the rod in N
//Result
printf("\n Stress when the ends do not yield = %0.3f N/mm^2",stress1)
printf("\n Pull in the rod when the ends do not yield = %0.3f N",Pull1)
printf("\n Stress when the ends yield = %0.3f N/mm^2",stress2)
printf("\n Pull in the rod when the ends yield = %0.3f N",Pull2)
|
6d735496faec06d696b19537db2406a5a10d4691
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2627/CH5/EX5.2/Ex5_2.sce
|
a230873f2777bd3beece9356396981e7dac7217a
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,207
|
sce
|
Ex5_2.sce
|
//Ex 5.2
clc;clear;close;
format('v',7);
N1=480;//no. of turns in primary
N2=90;//no. of turns in secondary
lfp=1.8;//m(length of flux path)
ag=0.1;//mm(airgap)
Flux=1.1;//T(flux density)
MF=400;//A/m(Magnetic flux)
c_loss=1.7;//W/kg
f=50;//Hz
d=7800;//kg/m^3(density of core)
V=2200;//V(potential difference)
//Part (a)
fi_m=V/(4.44*N1*f);//Wb
A=fi_m/Flux;//m^2(Cross sectional area)
disp(A,"(a) Cross sectional area(m^2)");
//Part (b)
Vnl2=V*N2/N1;//V(2ndary voltage on no load)
Vnl2=round(Vnl2);//V(2ndary voltage on no load)
disp(Vnl2,"(b) 2ndary voltage on no load(V)");
//Part (c)
format('v',5);
Fm1=MF*lfp;//A(Magnetootive force for the core)
Fm2=Flux/(4*%pi*10^-7)*ag*10^-3;//A(Magnetootive force for airgap)
Fm=Fm1+Fm2;//A(Total magnetomotive force)
Imax=Fm/N1;//A(maximum value of magnetizing current)
Iom=Imax/sqrt(2);//A(rms current)
v=lfp*A;//m^3(Volume of core)
m=v*d;//kg(Mass of core)
coreLoss=c_loss*m;//W(Core Loss)
Io1=coreLoss/V;//A(Core loss component of curent)
Io=sqrt(Iom^2+Io1^2);//A(no load current)
disp(Io,"(c) Primary current on no load(A)");
format('v',6);
pf=Io1/Io;//lagging pf on no load
disp(pf,"(c) Power factor(lagging) on no load");
|
57cb655aa5ffd82c0df62f3d662699bdfd47a926
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3886/CH5/EX5.12/5_12.sce
|
3452ee8a956519cb860235d26e868a8ea0b7d7ec
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 407
|
sce
|
5_12.sce
|
//Least value of alpha and reactions developed
//refer fig. 5.16
//Using law of friction and equilibrium
//FA=0.25*NA
//FB=0.4*NB
//NA+0.4*NB=1100
//0.25*NA=NB
//Solving this we get
NA=1000 //N
FA=0.25*NA //N
NB=0.25*NA //N
FB=0.4*250 //N
//Taking moment about A
alpha=atand(3) //degree
printf("\nNA=%0.2f N\nFA=%0.2f N\nNB=%0.2f N\nFB=%0.2f N\nalpha=%0.2f degree",NA,FA,NB,FB,alpha)
|
c3de20494031662659ae3e8044232d5f47d24bfa
|
e20b143bd16a6a60520c5d3f6c30af9356cc0aa2
|
/demos/welcome.dem.sce
|
7381fd8404e5b1c425d7b9dcfd17e981a7f916e0
|
[] |
no_license
|
slevin48/covid
|
2c4806c1d1d91b2196f3086e2af7c69c420fb4db
|
c482d908ae58b82558f338b63020845cefc43742
|
refs/heads/master
| 2022-05-28T10:40:56.271120
| 2020-04-29T16:08:27
| 2020-04-29T16:08:27
| 258,529,494
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 112
|
sce
|
welcome.dem.sce
|
function demo_welcome()
disp("Welcome in covid toolbox !")
endfunction
demo_welcome();
clear demo_welcome;
|
17145c817dbdcc7a898ea8677472367fcb5ae289
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1061/CH4/EX4.5/Ex4_5.sce
|
9ce0aed5da745943c23b83539f80df3e525166dd
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 793
|
sce
|
Ex4_5.sce
|
//Ex:4.5
clc;
clear;
close;
n1=1.46;// core refractive index
dl=0.03;// relative refractive index difference
y=0.85*10^-6;// operating wavelength in m
a=4*10^-6;// core radous in m
n2=sqrt(n1^2-2*dl*n1^2);// cladding refractive index
Rc=(3*n1^2*y)/(4*%pi*(n1^2-n2^2)^1.5);// critical radius of curvature for multimode fiber
Dl=0.003;// relative refractive index difference
N2=sqrt(n1^2-2*Dl*n1^2);//
yc=(2*%pi*a*n1*(2*Dl)^0.5)/2.405;// cut off wavelength in m
y1=1.55*10^-6;// operating wavelength in m
Rcs=(20*y1*(2.748-0.996*(y1/yc))^-3)/(0.005)^1.5;// critical radius of curvature for a single mode fiber
printf("The critical radius of curvature for multimode fiber =%f um", Rc*10^6);;
printf("\n The critical radius of curvature for a single mode fiber =%f um", Rcs*10^3);
|
49fd8cf892faeafa6fb8dc2c0d01f98db24b1c60
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2135/CH3/EX3.5/Exa_3_5.sce
|
3dc677c4fe08606929d9dfb515acfce4c43f6470
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 468
|
sce
|
Exa_3_5.sce
|
//Exa 3.5
clc;
clear;
close;
format('v',6);
//Given Data :
Eta1=25/100;//efficiency
deltaT=20;//degree centigrade
//T2dash=T2-20;//K
//T1dash=T1;//K
deltaEta1=30/100;
Eta_dash=30/100;//efficiency
//Eta1/Eta_dash=(1-T2dash/T1dash)/(1-T2/T1)
//T1-T2=100;
//0.75*T1-T2=0;
A=[1 -1;0.75 -1];
B=[100;0];
X=A^-1*B;
//Solution for T1 and T2 by matrix
T1=X(1);//K
T2=X(2);//K
disp(T1,"Source temperature in K : ");
disp(T2,"Sink temperature in K : ");
|
bdc9a21e15164c79804202d5e4c3365a31e3bef7
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3472/CH35/EX35.2/Example35_2.sce
|
b64e0793688dc1161ce2b68f60f0a004ff66ffe2
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,029
|
sce
|
Example35_2.sce
|
// A Texbook on POWER SYSTEM ENGINEERING
// A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar
// DHANPAT RAI & Co.
// SECOND EDITION
// PART III : SWITCHGEAR AND PROTECTION
// CHAPTER 9: PROTECTION OF TRANSFORMERS
// EXAMPLE : 9.2 :
// Page number 635-636
clear ; clc ; close ; // Clear the work space and console
// Given data
V_lv = 220.0 // LV side voltage of transformer(V)
V_hv = 11000.0 // HV side voltage of transformer(V)
ratio_CT = 600.0/(5/3**0.5) // CT ratio on LV side of transformer
// Calculations
CT_pri = 600.0 // Primary CT
CT_sec = 5.0/3**0.5 // Secondary CT
I_1 = V_lv/V_hv*CT_pri // Line current in secondary of transformer corresponding to primary winding(A)
I_2 = CT_sec*3**0.5 // Current in secondary of CT(A)
// Results
disp("PART III - EXAMPLE : 9.2 : SOLUTION :-")
printf("\nRatio of CTs on 11000 V side = %.f : %.f \n", I_1,I_2)
printf("\nNOTE: ERROR: Mistake in representing the final answer in textbook solution")
|
ce5b556ed45ed4a29a9728fde34ef81f061aba7a
|
5d1fb7124962d54cfee54c049f53f3b0361c2e0f
|
/generated_data/sine.tst
|
e420ceb9341821e43e20b9d404b8d625722b7242
|
[] |
no_license
|
abarthakur/ensemble_combination
|
cb2a1b1b67d85b88e652e8c6babc284cc879ce68
|
1fae79425a09e77f23400a0fe7753c09bc8df327
|
refs/heads/master
| 2022-06-03T06:44:40.995592
| 2020-05-01T16:54:58
| 2020-05-01T16:54:58
| 109,000,598
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 16,661
|
tst
|
sine.tst
|
0.949760482857,-0.486903349137,0.0
1.34057337467,-2.97906632526,0.0
-3.23608491426,4.6303272903,1.0
-4.03447454503,-1.61312862783,0.0
-3.8253607679,3.94696596252,1.0
-3.13467932795,-4.91044578723,0.0
0.842120170881,2.817095373,1.0
-1.98965810099,-1.34669119229,0.0
-3.88059380378,4.41735628026,1.0
0.593195276643,-4.98143685739,0.0
1.9769548892,-4.71616814175,0.0
3.38160610545,2.87923729074,1.0
-0.965087383541,-0.0209476156333,1.0
2.41967905931,3.73799122754,1.0
-0.784952551253,0.211434258139,1.0
3.70564740147,-2.93582941107,1.0
2.97374966101,3.33085964219,1.0
-2.28630430841,-1.00583286217,1.0
-1.03891498535,-3.34173950705,0.0
1.12527653934,3.86494120663,1.0
-0.725990003627,4.10346096002,1.0
0.4485724271,-3.1048343031,0.0
-4.48184838258,4.54354414098,1.0
-4.48023119565,-2.13516014735,1.0
-4.88219906145,1.34361827407,1.0
4.08062220628,-2.11760024097,0.0
-0.857811220296,2.08261452839,1.0
-0.240331833299,-3.54847277391,0.0
-2.70015805647,-2.15539980318,1.0
-1.52789062633,-2.77645178656,0.0
-3.00052675718,-3.35454308344,0.0
-0.246752425582,-4.47884516063,0.0
-2.78460613507,2.7433340409,1.0
4.00101344782,-0.142172246501,1.0
-4.5789039096,0.620849367265,1.0
4.51225144381,1.5532393183,0.0
-0.0167836488124,3.36776072842,1.0
-0.298913988152,4.45606183444,1.0
3.5253658704,1.95877026653,1.0
3.00508591918,-0.0819661187853,0.0
-0.378735487472,-2.36895305639,1.0
3.22627715893,-4.24062590291,0.0
-3.52807603532,0.851733470835,0.0
1.71346691568,3.21603978416,1.0
-2.92871001757,-3.45921549854,0.0
-4.32173213109,-3.45047824375,0.0
-2.35916498797,-3.20829021984,0.0
-4.82990207983,0.398054701288,1.0
-3.53669663172,-4.50026764229,0.0
-4.75176275175,2.50232413382,1.0
-0.087565673688,2.27518129584,1.0
-0.0762672463765,2.50778221261,1.0
4.05424592055,2.28283865408,1.0
-0.437461309122,-1.10139600778,1.0
1.19565142371,-3.86022218029,0.0
0.415164370996,4.33523160188,1.0
-0.331654516768,-2.99545009561,0.0
-4.00329900381,4.6428150931,1.0
2.8453386142,-0.803037698137,0.0
4.02276976219,-4.18890240848,0.0
-2.36434670827,-2.09473205435,1.0
4.42289525845,3.64826706247,1.0
2.13364016531,-3.54183968482,0.0
-2.85256371333,1.80431677389,1.0
-1.81747782664,-3.59845584491,0.0
2.16780811243,0.424443546514,0.0
-0.0948993118706,1.55149051467,1.0
-2.18911802565,1.40650442804,1.0
2.16943217416,-1.9565438804,0.0
-0.251109277866,2.65148874791,1.0
2.28650554177,-1.14298540114,0.0
-2.33140158743,-4.8039872898,0.0
3.35390811124,-0.189125615247,1.0
-4.4734553784,-0.684712786415,1.0
1.42545697891,-2.29699968501,1.0
2.17293054873,-0.119242379151,0.0
1.34853775313,2.23744994101,1.0
1.59707420948,2.73290834072,1.0
1.96367269256,-0.129844551907,1.0
1.41799195228,3.59147584116,1.0
2.82029474859,4.9786549278,1.0
1.18499023101,-1.08563246705,1.0
2.57794504061,4.71345588173,1.0
-3.47361986486,-4.70029268018,0.0
4.12544447823,3.02370386515,1.0
4.62555633087,2.81943157791,0.0
-0.837909089523,-4.51637863131,0.0
-0.89182014177,-2.61865902639,0.0
-2.12280527452,2.19712029608,1.0
-3.88651015895,0.0944749836438,0.0
-3.34951609979,1.18367842895,0.0
-1.07972615983,-1.38338606775,0.0
-1.98747328001,-2.05763466279,0.0
-0.0999932370064,-2.13745046774,0.0
0.156794686085,-3.06294106977,0.0
-0.144817983043,-0.121407897336,1.0
-2.43626046109,-4.46980351063,0.0
-3.07443073624,-2.65147116785,0.0
-3.71184637114,2.39478106393,0.0
4.89836435558,-1.93918406394,0.0
-2.47791813978,2.78293138718,1.0
-4.08563660127,-1.3755644994,0.0
-3.14862812402,-1.81942113959,0.0
-2.04894515643,0.288321351086,0.0
-4.83910380851,2.64050881435,1.0
-4.24293069034,2.14483030412,1.0
-1.29795500196,0.282807430025,0.0
-1.78806450497,-0.692974608014,0.0
-3.02139218391,-3.23027080712,0.0
-1.8569048078,-1.69670697375,0.0
1.05705844243,2.13198518723,1.0
2.12178422873,2.70176243848,1.0
4.08695259771,4.72652179792,1.0
-0.699400437997,4.68980290696,1.0
2.25827967195,-1.68797240993,0.0
-3.16916802354,-0.800114828693,0.0
-2.41090016751,-4.13477110214,0.0
-0.808401306615,3.91859896023,1.0
-0.268905240265,-3.16405014711,0.0
-0.27764714283,0.0291950775439,1.0
4.75634617022,2.08022242177,0.0
3.0881256563,-2.39554438068,0.0
-3.51040942897,-4.81369887641,0.0
-0.0393315516703,-3.35867260171,0.0
-4.0030056413,1.49573724597,0.0
-2.51201642057,-2.59562594482,1.0
-0.87527154582,2.57699115864,1.0
-0.691861468166,-3.91551897448,0.0
0.809438644312,-4.92099172877,0.0
1.33621403092,-0.490684880859,1.0
4.01616706168,-3.19859839006,0.0
4.28251852527,3.70392867842,1.0
2.70327616038,0.752952656623,0.0
-1.51421760801,0.0676864777077,0.0
-2.96959249227,-1.28129991363,1.0
4.89394518703,-2.37010119064,0.0
1.38923061051,3.13091499694,1.0
-3.76356711244,-0.397867541452,0.0
0.464307902714,-0.186738321098,0.0
-1.29030832109,1.0818813204,0.0
1.74873619189,0.704419790344,1.0
-0.833378458097,1.3037355069,1.0
-0.54193766036,3.51966861661,1.0
4.26858291971,-3.12321024951,0.0
4.4146546671,4.52322374514,1.0
-3.67256061293,-2.46987785789,0.0
3.60941648552,-1.71548343628,1.0
2.84470294797,0.8652351794,0.0
3.38036287158,0.344411970238,1.0
-0.343898306964,-1.38439823251,1.0
-1.12431199429,2.48100567707,1.0
1.13456616606,3.45274594679,1.0
-3.7746924038,-1.38443133854,0.0
1.76050874113,1.32735260957,1.0
-2.92842079953,1.18034640324,1.0
-1.13174597946,-2.19415188164,0.0
-1.34856288474,-2.08235306808,0.0
1.31452252056,0.42503505989,1.0
1.31570028539,-1.82517087381,1.0
1.83871687029,4.90136548975,1.0
-2.0615055236,0.275039981304,0.0
-3.23691878637,-2.04438701265,0.0
2.93302149551,-2.33520171392,0.0
4.08524629039,-4.77869044719,0.0
-0.800160145811,1.19762707984,1.0
-2.20221049722,-3.91817982207,0.0
-3.26134371449,-3.90963969296,0.0
-2.1373141873,4.26898761496,1.0
1.79818988362,1.53581296851,1.0
1.2609923531,1.09036267764,1.0
2.90541561144,0.971321314914,0.0
-0.44398939107,1.75720214582,1.0
3.57233744613,1.55746892183,1.0
-3.26151464318,-4.01428925234,0.0
4.92363878734,3.70240127179,1.0
-1.80127174273,4.35768035226,1.0
-0.983329176678,-0.0685141321898,1.0
3.15928408324,0.669939377846,1.0
-1.46446231675,4.20069315285,1.0
4.12819750325,1.51163842677,1.0
-1.43645728767,0.910001054659,0.0
-0.0294506602556,-3.52472475665,0.0
-0.370181312357,2.41666970092,1.0
-2.76943174004,-0.91151312535,1.0
-4.70440908533,-2.39481775817,1.0
-3.02209502819,0.289080777264,1.0
-1.03556449871,0.0158354417089,1.0
-1.74182097207,-0.160689419781,0.0
1.77381211213,-2.85618187449,0.0
-4.10075045209,-4.31847106002,0.0
3.30267287808,4.2007614258,1.0
4.00324157337,2.75815362551,1.0
0.733471004699,-0.688680595686,0.0
0.613668926023,-0.978177231394,0.0
0.641614156804,2.29870773333,0.0
2.86500154771,2.04234292289,0.0
0.163672683794,-2.77276361122,0.0
3.47526498834,-1.30750796966,1.0
4.51554469462,4.13048440888,1.0
1.66637240928,1.53880296505,1.0
2.15556479457,-4.55907180642,0.0
-4.9791785148,0.254133827644,1.0
3.46832723412,-1.27914727694,1.0
-3.20430171504,-4.94565045789,0.0
-1.73535398028,-1.43464859777,0.0
4.20209609271,-2.5312025369,0.0
1.71902311635,0.0870192984371,1.0
1.77489237156,3.48893818754,1.0
4.34699236684,-0.780771959675,0.0
-2.15928403487,-2.5142227274,0.0
3.43836713899,-3.35993185413,0.0
-2.32050225961,3.38196743053,1.0
-4.30695828088,1.75636888678,1.0
1.23154072462,-1.25731083161,1.0
-2.88649030365,0.430048421155,1.0
-2.21916909777,-2.73454487065,0.0
3.03386348211,1.01950524758,1.0
3.82087379742,-2.35459791181,1.0
1.02885902372,-4.99288203686,0.0
-3.0148451312,2.69587045414,1.0
4.11046683425,4.24356922345,1.0
0.312259204468,-2.10153749227,0.0
-3.90010612371,-1.03710915214,0.0
-0.612769757751,-4.39743582274,0.0
0.911690634408,-1.65429039723,0.0
-2.43697788098,-0.184040760607,1.0
-1.12451967007,-0.00205339027909,0.0
-4.78721153505,-3.35832548399,0.0
-2.47489782391,-2.71270821826,1.0
-0.880024215769,0.929216663275,1.0
-4.5334325012,-1.86544250642,1.0
-2.13732586053,0.924168651991,1.0
0.737565609791,-2.40488771963,0.0
4.5835894633,0.922037721516,0.0
2.92359530281,-2.96432978649,0.0
3.73079241594,4.61978784412,1.0
-0.0823880645861,2.35495389838,1.0
-1.28711051739,1.62152090282,0.0
4.41903022844,-2.7737157852,0.0
2.27130430597,2.23606041528,1.0
0.224533052622,2.13907639255,1.0
-0.766721973226,-4.57256116736,0.0
-3.8794984239,-2.32760712149,0.0
-2.88194606799,-0.176777666429,1.0
-0.536775787493,3.45561248658,1.0
-4.23863315125,3.66457553311,1.0
3.67448747318,-3.70888339632,0.0
-4.74420647203,1.50810719898,1.0
-0.762365621077,-1.25970777043,1.0
-0.368136834477,1.97066628454,1.0
2.00913196717,-1.76088885898,0.0
0.779523789592,-0.547366529064,0.0
2.19082205816,2.69630754282,1.0
0.405685070562,0.135861822889,0.0
-1.99591464725,-4.61542682078,0.0
-0.270614482308,1.70471592603,1.0
-3.30803602831,-3.04241162888,0.0
-1.91241069492,2.60172040107,1.0
1.62522751935,2.4831614134,1.0
1.3172246409,-3.50139326973,0.0
-2.05740478309,4.13987043499,1.0
0.378947240123,-1.64464544152,0.0
3.12114945904,2.80904604642,1.0
1.56866583092,-3.1419900083,0.0
-0.474804011453,-4.67752761944,0.0
-3.62913979105,3.19540233751,1.0
2.24658001953,2.9567378115,1.0
-4.60245012124,-2.36734263688,1.0
-4.3143773661,-4.08635602604,0.0
3.4973117654,-1.83689131673,1.0
2.84081422106,0.890220277907,0.0
4.53944782071,0.992894123604,0.0
-3.85112307514,3.22986492839,1.0
-1.5631711645,2.22773323863,0.0
-1.69271776681,4.3673544732,1.0
-4.22380004045,-3.73476162776,0.0
0.054891702476,4.06714944576,1.0
0.160020221494,-4.1820377574,0.0
-0.924714725273,2.40521849193,1.0
-4.74909352736,-3.24070761431,0.0
-3.1806854886,-0.684943477237,0.0
3.6346054085,3.62321601531,1.0
-1.09919777201,1.43200075255,1.0
-2.37745592685,1.59653806898,1.0
-0.532785741841,-4.07806714384,0.0
1.54605766185,-2.87203968459,1.0
4.29923529184,3.58024922991,1.0
-1.31776807526,0.222841342038,0.0
-4.57142826034,4.53113480689,1.0
-4.31043020411,-0.313756304274,1.0
1.56222572449,1.4402072012,1.0
-0.682261124965,-1.04758774923,1.0
-2.1460082355,4.61493440405,1.0
-0.357144724886,0.219508452271,1.0
-2.0664349291,4.39863602935,1.0
-4.94868156539,4.0866473421,1.0
4.56433480463,1.50413225077,0.0
-3.94876678274,-1.56134253499,0.0
4.16322084033,-1.37723157915,0.0
4.2327525828,2.20898334158,1.0
-2.38960127181,-2.15979401467,1.0
0.259973155955,4.25971494622,1.0
2.91138768359,-1.32771583912,0.0
0.969962550088,-2.18129446221,0.0
-4.37836785796,0.25209679647,1.0
-0.464196579105,3.42841234068,1.0
-2.63238478421,0.444658584945,1.0
-4.60630869831,-4.92674752038,0.0
3.2664589519,1.60718850437,1.0
-4.08858650348,4.85420086922,1.0
-1.33810774378,1.29820068751,0.0
-2.91841804145,3.66425221466,1.0
2.07402894626,-3.45207320095,0.0
0.401871675165,-4.74351393211,0.0
3.98072973814,0.541800773255,1.0
-0.545268723894,1.13430994432,1.0
-2.61362664467,-0.0425750862691,1.0
-3.98086123515,-0.498833816934,0.0
-3.38361731807,4.72140071517,1.0
-2.62736562556,4.06967425802,1.0
-1.59019257241,4.32351320385,1.0
-3.59266636361,2.3268427091,0.0
-1.82729033,-1.43217644802,0.0
3.21219052448,1.71695050933,1.0
4.22033038844,2.87549334483,1.0
2.36393287241,-0.82522947443,0.0
2.63830437711,-3.90461687577,0.0
0.677839807096,-1.04592218212,0.0
2.87739809614,0.597202531989,0.0
-4.18033724933,4.31551875865,1.0
-3.39204194689,4.65725613586,1.0
2.64690561219,-4.19455694952,0.0
4.40239412555,-4.94177690729,0.0
-0.96796167169,-2.78944821254,0.0
-2.69150227037,1.73986978063,1.0
1.68288872826,-2.71280341748,1.0
-0.864867522548,-2.96710462921,0.0
3.77785999024,2.74983481198,1.0
-4.76263893339,0.666134007181,1.0
-0.196464429017,-2.94856860488,0.0
1.48928453151,3.39195345457,1.0
-3.08354262831,3.97217092031,1.0
-1.17147854859,0.759346611922,0.0
-3.46140094533,4.05218161285,1.0
4.85929881703,4.51231374188,1.0
3.73148378214,-3.14569426552,0.0
0.791096328573,-2.01217765653,0.0
0.802292027842,1.50295999298,0.0
0.306884390298,-1.58452983781,0.0
-1.6902467878,-3.18356256949,0.0
0.235497855132,-4.89501209202,0.0
1.75543466663,-1.00242415293,1.0
1.05929322254,-2.8619882108,0.0
-1.82899939134,-2.43597566472,0.0
4.11553835936,2.94620524704,1.0
-0.235080290112,-3.89189604642,0.0
2.70764826864,-3.30472048834,0.0
-4.58770566352,4.17288286764,1.0
-4.70720564442,1.89417897057,1.0
-4.46321376519,-0.184707435866,1.0
2.16412210139,-1.7901733832,0.0
-4.85090155181,-4.56534556225,0.0
2.21484535482,2.64668342935,1.0
-1.064555613,-0.129873613502,0.0
-1.97250467581,3.59374752452,1.0
0.743721417064,3.67923199012,1.0
-2.29415750972,3.67734376989,1.0
-2.63679392281,-0.148350264573,1.0
-4.34107038788,3.38562861076,1.0
1.42579748062,1.12153463059,1.0
-4.37652220532,2.78836636899,1.0
4.04690523002,1.47068276743,1.0
-2.8543866294,4.74368878904,1.0
4.51518715161,4.13588989199,1.0
-0.676669310513,-0.973500575766,1.0
-1.28192333921,1.20237560988,0.0
-2.16663816488,-0.0884773140556,1.0
1.80052111473,-2.46379367405,0.0
4.20685276813,-2.30215643265,0.0
-1.69159181772,2.64332854764,0.0
-4.80956182686,1.64836965884,1.0
0.619310231223,-3.14927820911,0.0
3.99182322489,-0.508046486538,1.0
-3.90536651797,-1.57043984104,0.0
-4.6619951479,-4.21933821304,0.0
-4.62496898738,0.127010091987,1.0
3.15181354574,-2.91309505864,0.0
-4.02584464891,2.19940396471,1.0
-0.776746340224,-4.29191210101,0.0
3.30741562969,2.12374058095,1.0
2.26763962662,-1.16971245212,0.0
-2.74413886946,-2.16063313708,1.0
1.55580043027,-4.92619607905,0.0
-4.1499893271,-3.30753802787,0.0
-2.96982319173,-0.999046394667,1.0
1.42888380927,0.796976760988,1.0
-2.50234489278,4.51559102706,1.0
-0.439162992985,3.44037264627,1.0
4.07745420678,-3.64531021298,0.0
-1.14729514021,-2.48178121864,0.0
-1.77113271673,-1.23672773898,0.0
-0.353187129653,-4.59864137221,0.0
4.11334787785,2.36537016757,1.0
4.76261229449,4.84536417386,1.0
3.26553455342,0.659813858468,1.0
-3.28284684954,-4.20512608756,0.0
-1.439783387,-1.53510576264,0.0
-1.52908633239,4.5675633287,1.0
1.26796961071,1.93441765844,1.0
-0.387002183659,0.758905925036,1.0
-4.28255950175,-0.439004889584,1.0
-2.16696171922,0.544890382808,1.0
-4.61060080343,4.12853854586,1.0
0.0722995983987,-4.36988448969,0.0
2.86571251095,-0.917984055175,0.0
2.45693473467,-4.68164147222,0.0
2.18570460461,0.634821517971,0.0
-4.84191980852,4.82169438832,1.0
0.257106981265,-3.85072112764,0.0
4.18080307299,4.9043362129,1.0
4.44378144158,-4.63592883247,0.0
-0.32103551306,2.04397240855,1.0
-4.46297143361,2.75610709291,1.0
4.23351251184,-3.97367484348,0.0
3.20805636548,4.87819056564,1.0
-1.02524093365,3.67584190169,1.0
-0.604729730537,2.83520835223,1.0
-2.73105888746,-4.47505907635,0.0
2.50585692711,1.64165081921,0.0
-1.64512586458,3.27496740134,1.0
4.81865411542,-3.03850329392,0.0
1.68479055054,2.36782570415,1.0
-2.60060527927,-4.88630385963,0.0
-2.27145007818,-2.25657519896,0.0
-2.39753349211,-3.28424656606,0.0
-2.02969929879,3.95506550583,1.0
4.38944290685,0.835095636169,0.0
2.44871878879,-4.53650955944,0.0
0.674628199181,-4.11615481441,0.0
0.928176962352,-1.38375906544,0.0
-2.35900870193,4.8724487301,1.0
4.60110268473,-1.98394808027,0.0
-3.34079125421,-2.79501613447,0.0
-0.625858846666,2.40323768356,1.0
-1.82729843236,-4.14006563868,0.0
4.71356370459,4.00457295345,1.0
-0.31327487613,4.48250218902,1.0
3.33083214766,2.17250919058,1.0
0.823364533383,2.70143873595,1.0
-3.04562174605,-4.7987509629,0.0
0.621563910632,0.101997815613,0.0
-4.02508319537,-0.461770737672,0.0
-2.25560674238,1.68675990385,1.0
3.73141758866,-3.64771115133,0.0
-1.25876584818,0.188046899415,0.0
3.14117364472,1.05206053264,1.0
0.177865530255,-1.10353281036,0.0
4.6932877096,-3.8510957205,0.0
3.18385348381,0.607283985237,1.0
-1.93444665815,0.191339979191,0.0
2.56454934563,-1.96582054306,0.0
-0.0340801605708,2.0864180041,1.0
-1.72472143493,-3.47781861046,0.0
2.55782823314,2.40155404705,0.0
-0.257615471666,-3.45230333342,0.0
0.0199247240497,0.338968915823,1.0
-4.65303626258,-3.78366561437,0.0
-1.68224130106,2.12567465288,0.0
-3.37273344236,2.65384624332,1.0
-1.79169502031,0.0116656939617,0.0
3.01943065971,1.94377880722,1.0
-1.58359867535,4.07406293937,1.0
2.91676134438,-4.45643147095,0.0
2.21219060388,2.40080313596,1.0
-0.340627046038,0.928549517764,1.0
-4.13705954892,-3.95444973151,0.0
2.06057186189,1.75816202319,1.0
-3.53597387564,-0.354128400052,0.0
2.1644012092,1.41786968009,1.0
-3.07245906436,1.35526112898,1.0
-0.535202977344,-2.73700045919,1.0
0.676128458059,0.197959136265,0.0
4.61990294842,3.27900204515,1.0
-4.5785081971,-4.51729890651,0.0
-3.46855960322,0.768785716231,0.0
1.88044012511,-4.56404506523,0.0
-2.80333138315,3.32499561005,1.0
2.52570724079,-3.3419742127,0.0
4.67423438215,4.2736193619,1.0
1.72379714188,0.0709194734755,1.0
-0.504645853681,-4.30175956247,0.0
-4.27449754168,-2.54929175378,0.0
-4.80125537374,-0.137513008749,1.0
-0.32918256584,-1.57833667217,1.0
-4.51536883273,-4.14065449308,0.0
4.48445723313,-4.7475881082,0.0
-4.54445905364,0.822706844855,1.0
-2.41657100158,-4.98948933927,0.0
-4.9332737292,3.66044043534,1.0
-0.160931072334,-2.53898671745,0.0
|
fe5e9842214774e326cc30c284d7d1d4cf2ce6e3
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3754/CH22/EX22.21/22_21.sce
|
537444f8da3ea526d4b49d686f22c847ff121e5c
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,147
|
sce
|
22_21.sce
|
clear//
//Variables
VCC = 9.0 //Source voltage (in volts)
RE = 680.0 //Emitter Resistance (in ohm)
RC = 1.0 //Collector Resistance (in kilo-ohm)
R1 = 33.0 //Resistance (in kilo-ohm)
R2 = 15.0 //Resistance (in kilo-ohm)
VBE = 0.7 //Emitter-to-Base Voltage (in volts)
//Calculation
VB = VCC * R2 / (R1 + R2) //Base voltage (in volts)
VE = VB - VBE //Emitter voltage (in volts)
IE = VE / RE //Emitter current (in Ampere)
IC = IE //Collector current (in Ampere)
VRC = IC * RC * 10**3 //Voltage across collector resistance (in volts)
VC = VCC - VRC //Collector voltage (in volts)
VCE = VC - VE //Collector-to-emitter voltage (in volts)
//Result
printf("\n Operating point values are IC = %0.1f mA and VCE = %0.3f V.",IC*10**3,VCE)
|
2bd35c78439f2b9fe086be1a8e5920aa6c94aa65
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1964/CH5/EX5.45/ex5_45.sce
|
1cc9d1b496d7272ecc02f038cb285fa33acee3d5
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 692
|
sce
|
ex5_45.sce
|
//Chapter-5, Example 5.45, Page 210
//=============================================================================
clc
clear
//INPUT DATA
Vl=415;//voltage in volts
Z=(4+((%i)*6));//impedance in each phase in ohm
//CALCULATIONS
Ip=Vl/Z;//current in each phase in A
ip1=abs(Ip);//magnitude of Ip
Il=(sqrt(3))*(ip1);//line current in A
phi=atan((imag(Ip)/real(Ip)))
P=(sqrt(3))*Vl*Il*cos(phi);//power supplied in W
mprintf("Thus power supplied is %d W",P);
//note:the cosfunction of scilab and calculator will differ slightly
//=================================END OF PROGRAM======================================================================================================
|
a76b4886e92e35f7d014101d54f163064f981b5d
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3828/CH1/EX1.14/Ex1_14.sce
|
aa62a3432319db2e25a0385b67896a4635e095d5
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 197
|
sce
|
Ex1_14.sce
|
//Chapter 1 : Wave Optics
clear;
//Variable declaration
D2=1.40
D1=1.20
//Calculation
myu=(D2/D1)**2
//Result
mprintf("Refractive index of liquid= %0.3f ",myu)
|
0e4dc8705ba2cbec40d8e27417f6d21864f07951
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/416/CH4/EX4.14/exp4_14pp.sce
|
4128f990199bd2f3f1fec2eac265c089905902f2
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 941
|
sce
|
exp4_14pp.sce
|
clc
clear
disp("example 4 14")
c=40*10^(-6) //bank of capacitors in farads
v=400 //line voltage
i=40///line current
pf=0.8//power factor
f=50//line frequency
xc=1/(2*%pi*f*c)
ic=v/(sqrt(3)*xc)
il=i*(pf-sind(acosd(pf))*%i)
til=il+%i*ic
od=atand(imag(til)/real(til))
opf=cosd(od)
nlol=(abs(od)/i)^2
disp("(a)")
printf(" line current of capacitor bank %.1fA \n load current %d%diA \n total line current %d%.1fjA \n overall p.f %.3f \n new line loss to old line loss %.3f",ic,real(il),imag(il),real(til),imag(til),opf,nlol)
pcb=(v/xc)
printf("\n phase current of capacitor bank %.3fA",pcb)
lcb=pcb*sqrt(3)
printf("\n line current of capacitor bank %.1fA",lcb)
tcu=il+lcb*%i
printf("\n total current %d%.1fjA =%.2fA at an angle %.2f",tcu,imag(tcu),abs(tcu),atand(imag(tcu)/real(tcu)))
pf2=cosd(atand(imag(tcu)/real(tcu)))
printf("\n power factor %.1f \n ratio of new line loss to original loss %.3f",pf2,(abs(tcu)/i)^2)
|
d6bb1fa7e8e5755736ce196484d7e8bf0f0dec88
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/172/CH2/EX2.4/ex4.sce
|
6e4c3266e9f3ea2d5719866e5e0ecdf248b6c911
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 321
|
sce
|
ex4.sce
|
//example 4
//Calculating atmospheric pressure
clear
clc
dm=13534 //density of mercury in kg/m^3
H=0.750 //height difference between two columns in metres
g=9.80665 //acc. due to gravity in m/s^2
Patm=dm*H*g/1000 //atmospheric pressure in kPa
printf("\n hence, atmospheric pressure is Patm = %.2f kPa. \n",Patm)
|
b0a0576ed6af180f6804f2359ed1f00b7a8a91c0
|
20de144f57c866e91361673421260cf7779a5931
|
/euler/gui/components/about.sci
|
4782273a9b22fa7dad22822ec3cf69a8920970a7
|
[] |
no_license
|
pablovilas/fisica
|
0ae0db3a6c7a5293d78a9101ef21b20942e32384
|
924d96593f4c300a420257bc9ce9041a46835bf8
|
refs/heads/master
| 2016-08-06T00:19:10.566377
| 2014-10-08T01:50:19
| 2014-10-08T01:50:19
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 239
|
sci
|
about.sci
|
function dlgAbout()
msg = msprintf(gettext("Resolucion de ejercicios de fisica. Gracias a Openeering Team y M. Venturin por los ejemplos de GUI \nAutor: Pablo Vilas"));
messagebox(msg, gettext("Acerca de"), "info", "modal");
endfunction
|
d4c3c3123e59ca0ae3ba71cb329d3c905bdad0a3
|
ef7da921e1289d3deaaf9727db2b6f025656e8d9
|
/BasicCoRelation.sce
|
80632bfa1c4c165ecdfa036aac06f618f402b094
|
[] |
no_license
|
PrayagS/SciLab_Exercises
|
ea88438207f2dc5d3f211c9abfe137a4bd43f68f
|
0495ba76e693750980fefb386c28209a6fd6563e
|
refs/heads/master
| 2020-09-08T01:52:22.914681
| 2019-11-16T05:39:29
| 2019-11-16T05:39:29
| 220,977,317
| 2
| 1
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 195
|
sce
|
BasicCoRelation.sce
|
clear;
clc;
x = [1 2 3];
disp(x);
y = [6 4 5 8];
disp(y);
[z,IZ] = xcorr(x,y); // y is delayed
disp(z);
disp(IZ);
[w,IW] = xcorr(y,x); // x is delayed
disp(w); // w = time inverse of z
disp(IW);
|
67f28daf35489bc8924f0ef2b44fb589ca486f25
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2006/CH5/EX5.2/ex5_2.sce
|
5d9aa959c37d754f1a05a7da3754292ed6d327f1
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 703
|
sce
|
ex5_2.sce
|
clc;
m=5; // Mass of water in a tank in kg
T1=30; // Temperature of water at initial state (1) in degree celcius
T2=95; // Temperature of water at final state (2) in degree celcius
Qout=70; // Heat transfer from the water tank to the surrounding air in kJ
W=75; //Electric energy input to a stirrer inside water in kJ
mf=32.3; // Mass of fel in bomb in grams
u1=125.78; // Internal energy of water from steam table (uf at T1) in kJ/kg
u2=397.88; // Internal energy of water from steam table (uf at T2) in kJ/kg
Qf=m*(u2-u1)-W+Qout; // From First law of thermodynamics
qf=Qf/(mf*10^-3); // Heat consumption per unit mass of fuel
disp ("kJ/kg",qf,"Heat consumption per unit mass of fuel =");
|
39cac992b476a25790afc4bbf8c9f49a9512c24d
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1997/CH6/EX6.9/example9.sce
|
c21f8e548c4c91ed67570cd31622ea8b7110e220
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 454
|
sce
|
example9.sce
|
//Chapter-6 example 9
//=============================================================================
clc;
clear;
//input data
l = 12*10^-3;//gunn diode oscillator length in m
Vd = 2*10^8;//Drift velocity in gunn diode
//Calculations
F = Vd/l;//Frequency of Gunn Diode Oscillator
//output
mprintf('Frequency of Gunn Diode Oscillator is %3.2f Ghz',F/10^9');
//=============end of the program===============================================
|
ccbab75a8648e12509e063bd9ac71fcd8cf5aed4
|
c04fb432166e4832950820b66362a26c125b608a
|
/trip-tests/trip2.tst
|
315c59bf0b94d5fb3aab8e3d592cac670077b9a1
|
[] |
no_license
|
andreaowu/Graphs
|
6d7d7ce1483e01e0c1bf4657f2f4087cbe328046
|
485dae6c2d173c2844898440fad9306ec77e1962
|
refs/heads/master
| 2021-01-25T04:58:12.978046
| 2013-12-04T01:09:45
| 2013-12-04T01:09:45
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 63
|
tst
|
trip2.tst
|
java trip.Main -m trip-tests/trip2.txt trip-tests/trip2.request
|
638266b4e13eb6f358981ecee191df5587cc3f14
|
63e41587daefcf8180d9ee0a356e14531008e696
|
/gui_final.sci
|
7fb25eba7efd378349adadaf4ba4548cee6fe23c
|
[] |
no_license
|
rutup1595/gui-codes
|
10f7415b3a0cb456043e19e9273d78c4860fcaae
|
880b91beac114d16b1c854b27a770903c9ced6fe
|
refs/heads/master
| 2020-12-05T08:39:00.817311
| 2019-08-16T05:00:40
| 2019-08-16T05:00:40
| 67,854,154
| 0
| 2
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 15,772
|
sci
|
gui_final.sci
|
// sys=1/(s+2+s^3)
// sys=((s+3)*(s))/(s+2+s^4)
// sys=(s+4)/(s^2+8*s+9)
global margin_x margin_y;
global frame_w frame_h plot_w plot_h;
// Window Parameters initialization
frame_w = 200; frame_h = 550;// Frame width and height
plot_w = 150; plot_h = frame_h;// Plot width and heigh
margin_x = 150; margin_y = 15;// Horizontal and vertical margin
//for elements
defaultfont = "arial"; // Default Font
axes_w = 2*margin_x + frame_w + plot_w;// axes width
axes_h = 2*margin_y + frame_h; // axes height (100 =>
//toolbar height)
demo_lhy = scf(100001);// Create window with id=100001 and make
//it the current one
// Background and text
demo_lhy.background = -2;
demo_lhy.figure_position = [100 100];
demo_lhy.figure_name = gettext("Control System");
// Change dimensions of the figure
demo_lhy.axes_size = [axes_w axes_h];
// Remove Scilab graphics menus & toolbar
delmenu(demo_lhy.figure_id,gettext("&File"));
delmenu(demo_lhy.figure_id,gettext("&Tools"));
delmenu(demo_lhy.figure_id,gettext("&Edit"));
delmenu(demo_lhy.figure_id,gettext("&?"));
toolbar(demo_lhy.figure_id,"off");
// New menu
h1 = uimenu("parent",demo_lhy, "label",gettext("File"));
h2 = uimenu("parent",demo_lhy, "label",gettext("About"));
h3 = uimenu("parent",demo_lhy, "label",gettext("Response"));
h4 = uimenu("parent",demo_lhy, "label",gettext("Parameters"));
// Populate menu: file
uimenu(h1, "label",gettext("Close"), 'callback',"demo_lhy=get_figure_handle(100001);delete(demo_lhy);");
// Populate menu: about
uimenu(h2, "label",gettext("About"),"callback","About();");
popul1=uimenu(h3, "label",gettext("Plots"),"callback","plt();");
popul2=uimenu(h3, "label",gettext("Margin"),"callback","mrgin();");
popul3=uimenu(h4,"label",gettext("PZdata"),"callback","PZdata();");
popul3=uimenu(h4,"label",gettext("Systemdata"),"callback","Systemdata();");
// Sleep to guarantee a better display (avoiding to see a
//sequential display)
sleep(500);
my_frame = uicontrol("parent",demo_lhy, "relief","groove","style","frame", "units","pixels","position",[margin_x margin_y frame_w+100 frame_h],"horizontalalignment","center", "background",[1 1 1],"tag","frame_control");
my_frame_title = uicontrol("parent",demo_lhy, "style","text","string","System", "units","pixels","position",[70+margin_x margin_y+frame_h-10 frame_w-60 20],"fontname",defaultfont, "fontunits","points","fontsize",16, "horizontalalignment","center","background",[1 1 1], "tag","title_frame_control");
textsys = uicontrol("parent",demo_lhy,"relief","groove","style","edit","units","pixels","position",[margin_x+60 500 frame_w-10 20],"tag","nter");
enter1 = uicontrol("parent",demo_lhy,"relief","groove","style","pushbutton","units","pixels","position",[margin_x+70 400 frame_w-50 40],"string","ENTER","callback","enter();");
dispplay=uicontrol("parent",demo_lhy,"relief","groove","style","text","units","pixels","position",[margin_x+50 250 frame_w-10 100],"tag","disp");
//handles.obj=newaxes();handles.obj.margin=[0 0 0 0];handles.obj.axes_bounds=[1/3,0,2/3,1]
function enter()
editsys = findobj("tag","nter");syst =(editsys.string);
s=%s;
sys=evstr(syst);
sys=syslin('c',sys);
// disp(typeof(sys1))
textsys = findobj("tag","disp");textsys.string=string(syst);
endfunction
////c=enter();
function plt()
tag1 = findobj("tag","p1");
tag1.visible="off"
tag1 = findobj("tag","p2");
tag1.visible="off"
tag1 = findobj("tag","p3");
tag1.visible="off"
tag1 = findobj("tag","p4");
tag1.visible="off"
tag2 = findobj("tag","margin1");
tag2.visible="off"
tag2 = findobj("tag","margin2");
tag2.visible="off"
tag1 = findobj("tag","p5");
tag1.visible="off"
tag1 = findobj("tag","p6");
tag1.visible="off"
tag1 = findobj("tag","p7");
tag1.visible="off"
impls=uicontrol("parent",demo_lhy,"relief","groove","style","pushbutton","units","pixels","position",[margin_x+50 20 frame_w-10 40],"tag","impuls","string","impulse","callback","impuls();");
inital=uicontrol("parent",demo_lhy,"relief","groove","style","pushbutton","units","pixels","position",[margin_x+50 80 frame_w-10 40],"tag","impuls1","string","Sigma","callback","sig();");
iop= uicontrol("parent",demo_lhy,"relief","groove","style","pushbutton","units","pixels","position",[margin_x+50 140 frame_w-10 40],"tag","impuls2","string","iopzplot","callback","iopz();");
endfunction
function mrgin()
tag1 = findobj("tag","impuls");
tag1.visible="off"
tag1 = findobj("tag","impuls1");
tag1.visible="off"
tag2 = findobj("tag","impuls2");
tag2.visible="off"
tag1 = findobj("tag","p1");
tag1.visible="off"
tag1 = findobj("tag","p2");
tag1.visible="off"
tag1 = findobj("tag","p3");
tag1.visible="off"
tag1 = findobj("tag","p4");
tag1.visible="off"
tag1 = findobj("tag","p5");
tag1.visible="off"
tag1 = findobj("tag","p6");
tag1.visible="off"
tag1 = findobj("tag","p7");
tag1.visible="off"
show_mrg=uicontrol("parent",demo_lhy,"relief","groove","style","pushbutton","units","pixels","position",[margin_x+50 20 frame_w-10 40],"tag","margin1","string","Margin","callback","mgin();");
uicontrol("parent",demo_lhy,"relief","groove","style","pushbutton","units","pixels","position",[margin_x+50 80 frame_w-10 40],"tag","bode1","string","Bode","callback","bde();");
endfunction
function impuls()
editsys = findobj("tag","nter");syst =(editsys.string);
s=%s;
sys=evstr(syst);
sys=syslin('c',sys);
demo_lhy1 = scf(100002);
demo_lhy1.background = -2;
demo_lhy1.figure_position = [50 50];
demo_lhy1.axes_size = [axes_w axes_h];
demo_lhy1.figure_name = gettext("IMPULSE PLOT");
impulse(sys);
hh=gca();
hh.auto_clear="on"
endfunction
function sig()
editsys = findobj("tag","nter");syst =(editsys.string);
s=%s;
sys=evstr(syst);
sys=syslin('c',sys);
// set(gca(),"auto clear","on")
demo_lhy1 = scf(100002);
demo_lhy1.background = -2;
demo_lhy1.figure_position = [50 50];
demo_lhy1.axes_size = [axes_w axes_h];
demo_lhy1.figure_name = gettext("SIGMA");
sigma(sys);
hh=gca();
hh.auto_clear="on"
endfunction
function iopz()
editsys = findobj("tag","nter");syst =(editsys.string);
s=%s;
sys=evstr(syst);
sys=syslin('c',sys);
// set(gca(),"auto clear","on")
demo_lhy1 = scf(100002);
demo_lhy1.background = -2;
demo_lhy1.figure_position = [50 50];
demo_lhy1.axes_size = [axes_w axes_h];
demo_lhy1.figure_name = gettext("IOPZPLOT");
iopzplot(sys);
hh=gca();
hh.auto_clear="on"
endfunction
function mgin()
// if ~isempty(handles.obj.children); then
// delete(handles.obj.children)
// end
editsys = findobj("tag","nter");syst =(editsys.string);
s=%s;
sys=evstr(syst);
sys=syslin('c',sys);
demo_lhy1 = scf(100002);
demo_lhy1.background = -2;
demo_lhy1.figure_position = [50 50];
demo_lhy1.axes_size = [axes_w axes_h];
demo_lhy1.figure_name = gettext("MARGIN");
margin(sys)
endfunction
function bde()
// if ~isempty(handles.obj.children); then
// delete(handles.obj.children)
// end
impls.children.visible="off"
iop.children.visible="off"
editsys = findobj("tag","nter");syst =(editsys.string);
s=%s;
sys=evstr(syst);
sys=syslin('c',sys);
demo_lhy1 = scf(100002);
demo_lhy1.background = -2;
demo_lhy1.figure_position = [50 50];
demo_lhy1.axes_size = [axes_w axes_h];
demo_lhy1.figure_name = gettext("BODE");
bode(sys)
endfunction
//------------------------------------------------------------------///-------------------------------------------------------------------------------------
function PZdata()
tag1 = findobj("tag","impuls");
tag1.visible="off"
tag1 = findobj("tag","impuls1");
tag1.visible="off"
tag1 = findobj("tag","impuls2");
tag1.visible="off"
tag2 = findobj("tag","margin1");
tag2.visible="off"
tag2 = findobj("tag","margin2");
tag2.visible="off"
tag1 = findobj("tag","p4");
tag1.visible="off"
tag1 = findobj("tag","p5");
tag1.visible="off"
tag1 = findobj("tag","p6");
tag1.visible="off"
tag1 = findobj("tag","p7");
tag1.visible="off"
uicontrol("parent",demo_lhy,"relief","groove","style","pushbutton","units","pixels","position",[margin_x+50 20 frame_w-10 40],"tag","p1","string","Pole","callback","pol();");
uicontrol("parent",demo_lhy,"relief","groove","style","pushbutton","units","pixels","position",[margin_x+50 80 frame_w-10 40],"tag","p2","string","Zero","callback","zer();");
uicontrol("parent",demo_lhy,"relief","groove","style","pushbutton","units","pixels","position",[margin_x+50 140 frame_w-10 40],"tag","p3","string","ZPK","callback","zpkdat();");
////// uicontrol("parent",demo_lhy,"relief","groove","style","pushbutton","units","pixels","position",[margin_x+50 100 frame_w-10 40],"tag","zpkdata1","string","AllMargin","callback","allmargi();");
////// uicontrol("parent",demo_lhy,"relief","groove","style","pushbutton","units","pixels","position",[margin_x+50 140 frame_w-10 40],"tag","tfdata1","string","StepInfo","callback","stepinf();");
endfunction
function pol()
editsys = findobj("tag","nter");syst =(editsys.string);
s=%s;
sys=evstr(syst);
sys=syslin('c',sys);
poles=cell2mat(pole(sys))
//disp(poles) ;
len = size(poles,1) ;
//disp(len)
page = list() ;
page($+1)=list(list([1 len+1],'frame','Poles'));
for i =1:len
page($+1)=list(list('text',string(i)),list('edit',string(poles(i))));
//disp('hello')
end
guimaker(page,list('Parameters')) ;
endfunction
function zer()
editsys = findobj("tag","nter");syst =(editsys.string);
s=%s;
sys=evstr(syst);
sys=syslin('c',sys);
zeroes = (zero(sys)) ;
//disp(poles) ;
len = size(zeroes,1) ;
//disp(len)
page = list() ;
page($+1)=list(list([1 len+1],'frame','Zeroes'));
for i =1:len
page($+1)=list(list('text',string(i)),list('edit',string(zeroes(i))));
//disp('hello')
end
guimaker(page,list('Parameters')) ;
endfunction
function zpkdat()
editsys = findobj("tag","nter");syst =(editsys.string);
s=%s;
sys=evstr(syst);
sys=syslin('c',sys);
[a,b,c] = zpkdata(sys) ;
[num, den] = tfdata(sys) ;
page = list() ;
page($+1)=list(list([1 2],'frame','Gain Matrix'));
page($+1)=list(list('text','Gain'),list('edit',string(c)));
len = length(num) ;
page($+1)=list(list([1 len+1],'frame','Numerator'));
for i =1:len
page($+1)=list(list('text',string(i)),list('edit',string(num(i))));
//disp('hello')
end
len = length(den) ;
page($+1)=list(list([1 len+1],'frame','Denominator'));
for i =1:len
page($+1)=list(list('text',string(i)),list('edit',string(den(i))));
//disp('hello')
end
guimaker(page,list('Parameters')) ;
endfunction
function Systemdata()
tag1 = findobj("tag","impuls");
tag1.visible="off"
tag1 = findobj("tag","impuls1");
tag1.visible="off"
tag1 = findobj("tag","impuls2");
tag1.visible="off"
tag2 = findobj("tag","margin1");
tag2.visible="off"
tag2 = findobj("tag","margin2");
tag2.visible="off"
tag1 = findobj("tag","p1");
tag1.visible="off"
tag1 = findobj("tag","p2");
tag1.visible="off"
tag1 = findobj("tag","p3");
tag1.visible="off"
uicontrol("parent",demo_lhy,"relief","groove","style","pushbutton","units","pixels","position",[margin_x+50 20 frame_w-10 40],"tag","p4","string","TFdata","callback","tfdat();");
uicontrol("parent",demo_lhy,"relief","groove","style","pushbutton","units","pixels","position",[margin_x+50 80 frame_w-10 40],"tag","p5","string","Bandwidth","callback","bandwid();");
uicontrol("parent",demo_lhy,"relief","groove","style","pushbutton","units","pixels","position",[margin_x+50 140 frame_w-10 40],"tag","p6","string","AllMargin","callback","allmargi();");
uicontrol("parent",demo_lhy,"relief","groove","style","pushbutton","units","pixels","position",[margin_x+50 200 frame_w-10 40],"tag","p7","string","StepInfo","callback","stepinf();");
endfunction
function bandwid()
editsys = findobj("tag","nter");syst =(editsys.string);
s=%s;
sys=evstr(syst);
sys=syslin('c',sys);
band = bandwidth(sys) ;
page = list() ;
page($+1)=list(list([1 2],'frame','Bandwidth'));
page($+1)=list(list('text','Bandwidth'),list('edit',string(band)));
guimaker(page,list('Parameters')) ;
endfunction
function tfdat()
editsys = findobj("tag","nter");syst =(editsys.string);
s=%s;
sys=evstr(syst);
sys=syslin('c',sys);
[num, den] = tfdata(sys) ;
page = list() ;
len = length(num) ;
page($+1)=list(list([1 len+1],'frame','Numerator'));
for i =1:len
page($+1)=list(list('text',string(i)),list('edit',string(num(i))));
//disp('hello')
end
len = length(den) ;
page($+1)=list(list([1 len+1],'frame','Denominator'));
for i =1:len
page($+1)=list(list('text',string(i)),list('edit',string(den(i))));
//disp('hello')
end
guimaker(page,list('Parameters')) ;
endfunction
function stepinf()
editsys = findobj("tag","nter");syst =(editsys.string);
s=%s;
sys=evstr(syst);
sys=syslin('c',sys);
[x1 x2 x3 x4 x5 x6 x7 x8] = stepinfo(sys) ;
page = list() ;
page($+1)=list(list([1 8],'frame','Step Info'));
page($+1)=list(list('text','Rise Time'),list('edit',string(x1)));
page($+1)=list(list('text','Settling Time'),list('edit',string(x2)));
page($+1)=list(list('text','Settling Minimum'),list('edit',string(x3)));
page($+1)=list(list('text','Settling Maximum'),list('edit',string(x4)));
page($+1)=list(list('text','Overshoot'),list('edit',string(x5)));
page($+1)=list(list('text','Undershoot'),list('edit',string(x6)));
page($+1)=list(list('text','Peak'),list('edit',string(x7)));
page($+1)=list(list('text','Peak Time'),list('edit',string(x8)));
guimaker(page,list('Parameters')) ;
endfunction
function allmargi()
editsys = findobj("tag","nter");syst =(editsys.string);
s=%s;
sys=evstr(syst);
sys=syslin('c',sys);
a = allmargin(sys) ;
x1 = a.GMF ;
x2 = a.GM ;
x3 = a.PMF ;
x4 = a.PM ;
x5 = a.DM ;
x6 = a.DMF ;
x7 =a.stable ;
page = list() ;
page($+1)=list(list([1 7],'frame','All Margin'));
page($+1)=list(list('text','Gain Margin Frequency [rad/s]'),list('edit',string(x1)));
page($+1)=list(list('text','Gain Margin [db]'),list('edit',string(x2)));
page($+1)=list(list('text','Phase Margin Frequency [rad/s]'),list('edit',string(x3)));
page($+1)=list(list('text','Phase Margin'),list('edit',string(x4)));
page($+1)=list(list('text','Delay Margin'),list('edit',string(x5)));
page($+1)=list(list('text','Delay Margin Frequency [rad/s]'),list('edit',string(x6)));
page($+1)=list(list('text','Stable'),list('edit',string(x7)));
guimaker(page,list('Parameters')) ;
endfunction
//--------------------------------------------------///--------------------------------------------------------------------------------------------------------
//
|
dd4c2676eacb489b3aae71d56f196ad90b9969a9
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3543/CH6/EX6.31/EX6_31.sce
|
d18d101a79f368d96c5318285e1df0b6abd421a7
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,183
|
sce
|
EX6_31.sce
|
// Example 6.31
// Calculation of a)peak photocurrent , b)shot noise and c)mean square shot noise current
// Page no 489
clc;
clear;
close;
//Given data
n=0.7; // Efficiency
lambda=0.9*10^-6; // Wavelength
R=5*10^3; // Load resistance
I=2*10^-9; // Dark current
P=300*10^-6; // Incident power
B=15*10^6; // Bandwidth
T=298; // Room temperature
h=6.62*10^-34;
c=3*10^8;
e=1.602*10^-19; // Charge of an electron
k=1.381*10^-23; // Boltzman constant
// a)Peak photocurrent
I=(n*P*e*lambda)/(h*c);
I=I*10^6;
//b) Shot noise and mean square shot noise current
s=2*e*B*(2+I);
s=s*10^11;
//c) mean square shot noise current
t=(4*k*T*B)/R;
t=t*10^17;
//Displaying results in the command window
printf("\n Peak photocurrent (in nA)= %0.3f ",I);
printf("\n Shot noise(in 10^-20 A)0 = %0.1f ",s);
printf("\n Mean square shot noise current(in 10^-17 A) = %0.2f ",t);
// The answers vary due to round off error
|
926855ddec0006548de6bab6c5f50c0da52f626f
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2132/CH11/EX11.2/Example11_2.sce
|
ed38e99e47f62855e67f6af2cd4d22261f72879d
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 260
|
sce
|
Example11_2.sce
|
//Example 11.2
clc;
clear;
close;
format('v',5);
//Given data :
Cv=0.975;//Coeff of pilot tube
h=100/1000;//meter
g=9.81;//constant
Sm=13.6;//Sp. gravity
S=0.86;//gravity of turpinre
V=Cv*sqrt(2*g*h*(Sm/S-1));//m/s
disp(V,"Velocity in m/sec : ");
|
e95cc8c87191d43a0a1c31b31c99457c78437957
|
664fdc6470c0da45922ff39e3b58320db9600faf
|
/control/inverter/inverter.sci
|
412bf965e2b3cbdccfa11f0d794b8a7b1526f313
|
[
"MIT"
] |
permissive
|
beandrewang/drone-sim
|
55a60df2b3eb64f56ffc301e739bc3df22a2764d
|
5e932e1a3cec62af0dbf23dbbf8eacea06163796
|
refs/heads/master
| 2021-01-19T11:52:43.493366
| 2017-03-07T01:22:02
| 2017-03-07T01:22:02
| 82,269,144
| 3
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,906
|
sci
|
inverter.sci
|
// implementation for a inverter
function [A, B, C] = l2p3_inverter(a, b, c, t0, t1, t2, n, Vdc)
// this is a two level three phase VIS inverter
// a, the 1st upper MOSFET control
// b, the 2nd upper MOSFET control
// c, the 3rd upper MOSFET control
// t0, the 0 component time
// t1, the 1 component time
// t2, the 2 component time
// n, current sector
// Vdc, the DC voltage source for the inverter
// A, B, C, the 3 phase voltages
clock_freq = (t0 + t1 + t2) / 1000;
scale = 1 / clock_freq;
T = ceil((t0 + t1 + t2) * scale);
A = zeros(1, T + 1);
B = zeros(1, T + 1);
C = zeros(1, T + 1);
T0 = t0 * scale;
T1 = t1 * scale;
T2 = t2 * scale;
if 1 == n then
//sector 1
SA = (T1 / T * 2 / 3 + T2 / T * 1 / 3) * Vdc;
SB = (-T1 / T * 1 / 3 + T2 / T * 1 / 3) * Vdc;
SC = (-T1 / T * 1 / 3 - T2 / T * 2 / 3) * Vdc;
elseif 2 == n then
SA = (-T2 / T * 1 / 3 + T1 / T * 1 / 3) * Vdc;
SB = (T2 / T * 2 / 3 + T1 / T * 1 / 3) * Vdc;
SC = (-T2 / T * 1 / 3 - T1 / T * 2 / 3) * Vdc;
elseif 3 == n then
SA = (-T1 / T * 1 / 3 - T2 / T * 2 / 3) * Vdc;
SB = (T1 / T * 2 / 3 + T2 / T * 1 / 3) * Vdc;
SC = (-T1 / T * 1 / 3 + T2 / T * 1 / 3) * Vdc;
elseif 4 == n then
SA = (-T2 / T * 1 / 3 - T1 / T * 2 / 3) * Vdc;
SB = (-T2 / T * 1 / 3 + T1 / T * 1 / 3) * Vdc;
SC = (T2 / T * 2 / 3 + T1 / T * 1 / 3) * Vdc;
elseif 5 == n then
SA = (-T1 / T * 1 / 3 + T2 / T * 1 / 3) * Vdc;
SB = (-T1 / T * 1 / 3 - T2 / T * 2 / 3) * Vdc;
SC = (T1 / T * 2 / 3 + T2 / T * 1 / 3) * Vdc;
elseif 6 == n then
SA = (T2 / T * 2 / 3 + T1 / T * 1 / 3) * Vdc;
SB = (-T2 / T * 1 / 3 - T1 / T * 2 / 3) * Vdc;
SC = (-T2 / T * 1 / 3 + T1 / T * 1 / 3) * Vdc;
end
endfunction
|
295181d04d3a8a28abd8fd647dd92249450fb40e
|
8781912fe931b72e88f06cb03f2a6e1e617f37fe
|
/scilab/final/wave_intro/run_wave2d_intro.sce
|
e17dc2b2c5266704eb6eff1792182fcac0603c83
|
[] |
no_license
|
mikeg2105/matlab-old
|
fe216267968984e9fb0a0bdc4b9ab5a7dd6e306e
|
eac168097f9060b4787ee17e3a97f2099f8182c1
|
refs/heads/master
| 2021-05-01T07:58:19.274277
| 2018-02-11T22:09:18
| 2018-02-11T22:09:18
| 121,167,118
| 1
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,290
|
sce
|
run_wave2d_intro.sce
|
exec('wave2d.sce');
wavetype=1; //stationary
nsteps=5;
maxamplitude=10;
wavenumber(1)=1*2*%pi;
wavenumber(2)=2*2*%pi;
wavefreq=5;
delta(1)=0.01;
delta(2)=0.01;
nmax(1)=100;
nmax(2)=100;
//Wave packet
npackets=5;
pwavfreq=2;
pwavnum=7;
//clf;
x=1:1:nmax(1);
y=1:1:nmax(2);
z=zeros(nmax(1),nmax(2));
curFig = scf(100001);
clf(curFig,"reset");
drawlater();
xselect(); //raise the graphic window
// set a new colormap
//-------------------
cmap= curFig.color_map; //preserve old setting
curFig.color_map = jetcolormap(64);
plot3d1(x,y,z,35,45,' ');
s=gce(); //the handle on the surface
s.color_flag=1 ; //assign facet color according to Z value
title("evolution of a 3d surface","fontsize",3)
//plot3d1(x,y,zeros(nmax(1),nmax(2)));
for i=1:nsteps
realtimeinit(0.1);;//set time step (0.1 seconds) and date reference
drawnow();
//clf;
//realtime(i);
s.data.z=wave2d(i, wavetype, maxamplitude, wavenumber, wavefreq, delta,nmax);
//plot3d1(x, y, z, 80, 88, 'X@Y@Z', [-1 1 1]);
// plot3d1(x, y, z);
// xset('wshow');
// xset('wwpc');
//xset("Z", wave2d(i, wavetype, maxamplitude, wavenumber, wavefreq, delta,nmax));
//plot2d(x, wavepacket1d(i, wavetype, maxamplitude, wavenumber, wavefreq,pwavnum, pwavfreq, npackets, delta,nmax));
//xpause(1000000);
end
|
03f4f614f87143df25aad4282f7c24fb0491755f
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/191/CH1/EX1.4/Example1_4.sce
|
7be2ed732a3fa8057de41664fb0f581cc90b3014
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 365
|
sce
|
Example1_4.sce
|
//illustrating the induced instability through the deflation method of polynomial factorisation.
clear;
clc;
close();
x=poly(0,'x');
p3=x^3-13*x^2+32*x-20;//Given Polynomial
roots(p3)
//suppose that an estimate of its largest zero is taken as 10.1.Now devide p3 by (x-10.1)
p2=x^2-2.9*x+2.71;//the quotient
roots(p2)
disp('induced a large error in roots')
|
fa0a72169173b68ef437e1b65f70b04a4b53922b
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2129/CH2/EX2.21.15/ex2_21_15.sce
|
2c2910fb4180382b9f80f497c7b223731e740d5d
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,229
|
sce
|
ex2_21_15.sce
|
// Exa 2.21.15
clc;
clear;
close;
// Given data
q = 1.6 * 10^-19;// in C
N_D = 4.5 * 10^15;// in /cm^3
del_p = 10^21;
e=10;// in cm
A = 1;// in mm^2
A = A * 10^-14;// cm^2
l = 10;// in cm
Torque_p = 1;// in microsec
Torque_p = Torque_p * 10^-6;// in sec
Torque_n = 1;// in microsec
Torque_n = Torque_n * 10^-6;// in sec
n_i = 1.5 * 10^10;// in /cm^3
D_n = 30;// in cm^2/sec
D_p = 12;// in cm^2/sec
n_o = N_D;// in /cm^3
p_o = (n_i)^2/n_o;// in /cm^3
disp(p_o,"Hole concentration at thermal equilibrium per cm^3 is");
l_n = sqrt(D_n * Torque_n);// in cm
disp(l_n,"Diffusion length of electron in cm is");
l_p = sqrt(D_p * Torque_p);// in cm
disp(l_p,"Diffusion length of holes in cm is");
x=34.6*10^-4;// in cm
dpBYdx = del_p *e;// in cm^4
disp(dpBYdx,"Concentration gradient of holes at distance in cm^4 is");
e1 = 1.88 * 10^1;// in cm
dnBYdx = del_p * e1;// in cm^4 check this also...........................
disp(dnBYdx,"Concentration gradient of electrons in per cm^4 is");
J_P = -(q) * D_p * dpBYdx;// in A/cm^2
disp(J_P,"Current density of holes due to diffusion in A/cm^2 is");
J_n = q * D_n * dnBYdx;// in A/cm^2
disp(J_n,"Current density of electrons due to diffusion in A/cm^2 is");
|
5dc58c6b3f870e9809be1165926f6521dbf3f0d0
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/551/CH4/EX4.23/23.sce
|
2396a1171913c7fd40c0e1fd15af7a265144f73a
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 496
|
sce
|
23.sce
|
clc
V1=0.2; //m^3
p1=4*10^5; //N/m^2
T1=403; //K
p2=1.02*10^5; //N/m^2
dH=72.5; //kJ
Q_23=dH;
cp=1; //kJ/kg
cv=0.714; //kJ/kg
y=1.4;
V2=V1*(p1/p2)^(1/y);
T2=T1*((p2/p1)^((y-1)/y));
R=(cp-cv)*1000; //J/kg.K
m=p1*V1/R/T1;
T3=Q_23/(m*cp) +T2;
V3=V2*T3/T2;
W_12=(p1*V1 - p2*V2)/(y-1);
W_23=p2*(V3-V2);
W_123=W_12+W_23;
disp("Total work done = ")
disp(W_123)
disp("J")
disp("(ii) Index of expansion, n")
p3=p2;
n=(p1*V1-p3*V3)/W_123 + 1;
disp("value of index = ")
disp(n)
|
542ce2811ae2ef13dcd157e10c720de2550662c5
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2420/CH5/EX5.5/5_5.sce
|
2c96941344233f6b2ae9abcca35061f8ef2658ee
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 245
|
sce
|
5_5.sce
|
clc
clear
//Initialization of variables
P=200 //psia
x=0.95
m=1//lb
//calculations
disp("From mollier chart,")
hx=1156 //Btu/lb
sx=1.495 //Btu/lb F
//results
printf("Enthalpy = %d Btu/lb",hx)
printf("\n entropy = %.3f Btu/lb F",sx)
|
4cc693873f8630a6e32f4e7d4657aec36223e172
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/683/CH20/EX20.2/FBELT_2.sce
|
28e3cee665c3fd29e45e97abf806bc28fdae6b10
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 771
|
sce
|
FBELT_2.sce
|
// sum 20-2
clc;
clear;
P=12*10^3;
d=0.2;
D=0.5;
C=2;
sigmax=2*10^6;
t=8*10^-3;
//Let density be rho
rho=950;
u=0.38;
N=1500;
//Let angle of contact = thetad
thetad=180-(2*asind((D-d)/(2*C)));
thetad=thetad*%pi/180;
thetaD=(2*%pi)-thetad;
v=(2*%pi*N*d)/(60*2);
//Let T1-T2=T
T=P/v;
x=exp(u*thetad);
b=(T*x)/((1-x)*t*((rho*v^2)-(sigmax)));
b=b*10^3;
//Let breadth of the pulley be b1
b1=b*10^3+13; //Table 20-3
L=sqrt((4*C^2)-(C*(D-d)^2))+((D*thetaD)+(d*thetad))/2;
// Let pulley crown for d=h1, D=h2
h1=0.6; //Table 20-4
h2=1;
// printing data in scilab o/p window
printf("b is %0.2f mm ",b)
printf("\n L is %0.2f m ",L)
printf("\n b1 is %0.2f mm ",b1);
printf("\n h1 is %0.1f mm ",h1);
printf("\n h2 is %0.1f mm ",h2);
|
7bfac3494b93a8d45e872e01657135f6a09c65e5
|
1d7cb1dbfad2558a4145c06cbe3f5fa3fc6d2c08
|
/Scilab/SparamUtilities/LossCurve_to_S4P_converter/LossCurve_to_S4P_Converter_v2.sce
|
0ea50a89c3eec1c7754e4f800cefc1a60179342e
|
[] |
no_license
|
lrayzman/SI-Scripts
|
5b5f6a8e4ae19ccff53b8dab7b5773e0acde710d
|
9ab161c6deff2a27c9da906e37aa68964fabb036
|
refs/heads/master
| 2020-09-25T16:23:23.389526
| 2020-02-09T02:13:46
| 2020-02-09T02:13:46
| 66,975,754
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 14,379
|
sce
|
LossCurve_to_S4P_Converter_v2.sce
|
// ====================== Loss Curve to S-param ====================
//
// Creates an s2p or s4p file based on canonnical loss equation fit
// of loss data
//
//
// loss(dB)=length in inch (DC loss + alpha*f^0.5 + beta*f + gamma * f^2)
//
// where
// alpha, beta, gamma - loss coefficients per inch
//
// (c)2014 L. Rayzman
//
// Created : 03/26/2014
// Last Modified: 03/26/2014 - Initial
// 07/15/2014 - Added parameter extraction from data
// Added DC loss calculation
//
//
//
//
//
// INPUT DATA INSTRUCTIONS:
// 1. Prepare a CSV file containing loss data in the format
// freq pt 1(GHz), loss pt 1(dB/PER INCH)
// freq pt 2(GHz), loss pt 2(dB/PER INCH)
// freq pt 3(GHz), loss pt 3(dB/PER INCH)
// .
// .
// .
// FOR EXCEL:
// Usually this data will come from PCB Material IL Data spreadsheet
//
// Notes: - In Excel you can use Transpose Paste to convert horizontal to vertical data
// - Save Excel data to .CSV file not .xls/.xlsx
// - Frequency data does not have to be in sequential order
//
// FOR S-PARAM FILES:
// It is possible to use SPEX to generate the CSV file
// To do this
// - view the curve you want to output
// - in the plot, set the File->Delimiter to Comma(,)
// - File->Export XY Data to .csv
// - Open in Excel
// Remove header line
// Rescale to loss per inch, as necessary
//
//
//
// 2. Run this script and follow all commands
//
//
//
//
// ====================================================================
// ====================================================================
//clear;
stacksize(128*1024*1024);
///////////////////////////////////////////////////////////////////////////////
fin_csv=emptystr(); // Filename of input CSV data
spin_raw=[]; // Raw input CSV data
spinfreqs=[]; // Input frequency data
spinlossdata=[]; // Input loss data
foutsparam = emptystr(); // Filename of S2p Output file
spoutfreqs=[]; // Output frequency points vector
spoutdata=[]; // Output S-param matrix data
numofports=0; // Number of ports
numofreqs=0; // Number of frequencies
entries_choice=emptystr(); // Text matrix that describes available entries to view
entry_idx=0; //
freqMax=20.0e9; // Minimum and maximum frequencies
freqMin=0;
freqNum=400; // Number of frequency points
alphaf=0; // Line loss parameters
betaf=0;
gammaf=0;
DCloss=0; // DC loss in dB
trc_wd=6; // Trace width for DC calculations
trc_hght=0.65; // Trace height for DC calculations
len_scalar=1; // Length normalization scaling factor
splossdata_fit=[]; // Loss data fit
c_coeff=[]; // Coefficients of fit curve
c_coeff0=[alphaf;betaf;gammaf]; // Initial coefficient values
// PLOTTING STUFF
plot_fig_idx=0; // Plot index
gui_plot_w = 600; // Plot width
gui_plot_h = 400; // Plot height
sHzPrefix=emptystr(); // Frequency scaling text prefix
freqscalar=1; // Frequency scalar
///////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////
//
// Curve fitting function for leastsq
//
//
//
// Inputs:
// f: frequency point
// x: coefficients
// Outputs:
// y: ditto
//
function y=xfit(f, x)
y=x(1)*f.^(0.5)+x(2)*f+x(3)*f.^2
endfunction
//
// Error function for leastsq
//
//
//
// Inputs:
//
// f: frequency points vector
// x_hat: esimated data value
// x: actual data value
// Outputs:
// e: ditto
//
function e=errfunc(x_hat, f, x)
e= x - xfit(f, x_hat)
endfunction
///////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////
///////////////////
// Get Scilab Version
///////////////////
version_str=getversion();
version_str=tokens(version_str,'-');
version_str=tokens(version_str(2),'.');
version(1)=msscanf(version_str(1), '%d');
version(2)=msscanf(version_str(2), '%d');
if (version(1)<5) then
error("Invalid Scilab version. Version 5.5 or greater is required");
elseif (version(2) < 5) then
error("Invalid Scilab version. Version 5.5 or greater is required");
end
///////////////////
// Informational
///////////////////
messagebox("See notes in sce file for instructions on input data format", "modal", "info", "OK");
///////////////////
// Select input data file
///////////////////
fin_csv=uigetfile("*.csv", "", "Please choose phase noise data file");
if fin_csv==emptystr() then
messagebox("Invalid source file selection. Script aborted", "","error","Abort");
abort;
end
disp(strcat(["Info: Begin loading input data file " fin_csv]));
spin_raw=csvRead(fin_csv); // Read raw data
if size(spin_raw,2)<>2 then
messagebox("Invalid dimensions of input data. Expecting data in (freq, data) format. Script aborted", "","error","Abort");
abort;
end
//... and sort in the process
spinfreqs=spin_raw(:,1)*1e9; // In Hz
[spinfreqs,spinorder]=gsort(spinfreqs,'g','i');
spinlossdata=spin_raw(spinorder,2); // In dB
// check loss data, if attenuation make it loss
spinlossdata=spinlossdata.*((spinlossdata<=0)*2-1);
clear spin_raw;
disp("Info: Finished loading data file");
///////////////////
// Get and compute DC loss
///////////////////
labels=["Trace Width(mil)";"Trace Height(mil)"];
[ok,trc_wd,trc_hght]=getvalue("Trace geometry for DC loss",labels,...
list("vec",1,"vec",1),[string(trc_wd);string(trc_hght)])
if ok == 0 then
messagebox("Why did you press cancel. Don''t you like my script?")
abort;
end
//calculate loss
DCloss=20*log10(2/(2+ (0.0254)/(5.8e7*trc_wd*2.54e-5*trc_hght*2.54e-5)/50));
///////////////////
// Get number of ports
///////////////////
sportcnt=x_choices('',list(list('Select number of ports for output:',3,['No output', '2-port','4-port'])));
if sportcnt==1 then //No output
numofports=0;
elseif sportcnt==2 then //2-port
numofports=2;
elseif sportcnt==3 then //4-port
numofports=4;
else
messagebox("Invalid number of ports selected. Script aborted", "","error","Abort");
abort;
end
///////////////////
// Get frequeny range
///////////////////
if numofports>0 then
labels=["Fmin";"Fmax";"Num of pts"];
[ok,freqMin,freqMax,freqNum]=getvalue("Output data frequency range (GHz)",labels,...
list("vec",1,"vec",1,"vec",1),[string(freqMin/1e9);string(freqMax/1e9);string(freqNum)])
else
labels=["Fmin";"Fmax"];
[ok,freqMin,freqMax]=getvalue("Output data frequency range (GHz)",labels,...
list("vec",1,"vec",1),[string(freqMin/1e9);string(freqMax/1e9)])
end
if ok == 0 then
messagebox("Why did you press cancel. Don''t you like my script?")
abort;
end
freqMin=evstr(freqMin)*1e9;
freqMax=evstr(freqMax)*1e9;
freqNum=evstr(freqNum);
//Generate frequency vector
spoutfreqs=freqMin:(freqMax-freqMin)/(freqNum-1):freqMax; //Generate frequency points
///////////////////
// Get scaling factor
///////////////////
if numofports>0 then
[ok,len_scalar]=getvalue(["Length scaling factor"; ""; "Example: 1 meter : 1 inch = 39.37"],"", list("vec",1),"39.37");
if ok == 0 then
messagebox("Why did you press cancel. Don''t you like my script?")
abort;
end
end
///////////////////
// Setup files/directories for output
///////////////////
if numofports>0 then
if numofports==2 then
foutsparam=uigetfile("*.s2p", "", "Please choose destination S-parameters file");
if fileext(foutsparam)==emptystr() then
foutsparam=strcat([foutsparam ".s2p"]);
end
else
foutsparam=uigetfile("*.s4p", "", "Please choose destination S-parameters file");
if fileext(foutsparam)==emptystr() then
foutsparam=strcat([foutsparam ".s4p"]);
end
end
if foutsparam==emptystr() then
messagebox("Invalid destination file selection. Script aborted", "","error","Abort");
abort;
end
end
///////////////////
// Curve fit equation coefficients
///////////////////
[splossdata_fit, c_coeff]=leastsq(list(errfunc, spinfreqs/1e9, spinlossdata-DCloss), c_coeff0);
alphaf=c_coeff(1)*(1e-9)^0.5; // This is workaround(?) for leastsq
betaf=c_coeff(2)*(1e-9); // because it doesn't seem to find small
gammaf=c_coeff(3)*(1e-9)^2; // coefficient values when using the native
// frequency range
clear c_coeff;
clear c_coeff0;
///////////////////
// Create S-param
///////////////////
if numofports>0 then
disp(strcat(["Info: Begin writing output data file " foutsparam]));
numofreqs=length(spoutfreqs);
// Initialize
spoutdata=ones(numofports,numofports,numofreqs)*(10^(-100/20)+1e-9*%i);
if numofports==2 then //2-ports version
for i=1:numofreqs,
spoutdata(2,1,i)=10^((DCloss+alphaf*(spoutfreqs(i)^0.5)+betaf*(spoutfreqs(i))+gammaf*(spoutfreqs(i)^2))*len_scalar/20)+1e-9*%i;
spoutdata(1,2,i)=10^((DCloss+alphaf*(spoutfreqs(i)^0.5)+betaf*(spoutfreqs(i))+gammaf*(spoutfreqs(i)^2))*len_scalar/20)+1e-9*%i;
end
else // 4-port version
for i=1:numofreqs,
spoutdata(2,1,i)=10^((DCloss+alphaf*(spoutfreqs(i)^0.5)+betaf*(spoutfreqs(i))+gammaf*(spoutfreqs(i)^2))*len_scalar/20)+1e-9*%i; // IL
spoutdata(1,2,i)=10^((DCloss+alphaf*(spoutfreqs(i)^0.5)+betaf*(spoutfreqs(i))+gammaf*(spoutfreqs(i)^2))*len_scalar/20)+1e-9*%i;
spoutdata(4,3,i)=10^((DCloss+alphaf*(spoutfreqs(i)^0.5)+betaf*(spoutfreqs(i))+gammaf*(spoutfreqs(i)^2))*len_scalar/20)+1e-9*%i;
spoutdata(3,4,i)=10^((DCloss+alphaf*(spoutfreqs(i)^0.5)+betaf*(spoutfreqs(i))+gammaf*(spoutfreqs(i)^2))*len_scalar/20)+1e-9*%i;
end
end
// Compute data for each freq
sptlbx_writetchstn(foutsparam, spoutfreqs, spoutdata);
disp("Info: Finished writing file");
end
///////////////////
// Plot the fit
///////////////////
// Determaxe frequency scalar for the plot
select find([spoutfreqs($)/1e12 spoutfreqs($)/1e9 spoutfreqs($)/1e6 spoutfreqs($)/1e3 spoutfreqs($)] >= 1, 1)
case 1 then //THz :)
sHzPrefix= "T";
freqscalar=1e12;
case 2 then //GHz
sHzPrefix= "G";
freqscalar=1e9;
case 3 then //MHz
sHzPrefix= "M";
freqscalar=1e6;
case 4 then // KHz
sHzPrefix= "K";
freqscalar=1e3;
case 5 then // Hz
freqscalar=1;
else
freqscalar=1;
end
// Create Plot window
global plot_fig_idx;
plot_fig = scf(plot_fig_idx);
plot_fig.figure_name = gettext(strcat("Insertion Loss Fit Plot"));
plot_fig.axes_size = [gui_plot_w gui_plot_h];
drawlater();
//Plot the fit over the frequency range
plot(spinfreqs/freqscalar, spinlossdata, "kx", spoutfreqs/freqscalar, DCloss+xfit(spoutfreqs, [alphaf;betaf;gammaf]), "b-");
// Lables and things
xtitle("Insertion Loss Fit");
xlabel(strcat(["Freq (" sHzPrefix "Hz)"]));
ylabel("IL (dB/in)");
format('v',6); // All this funkiness to get correct float format in text :)
infotext=strcat(["DC Loss:" string(DCloss) "dB | "]);
format('e',9);
infotext=strcat([infotext "alpha:" string(alphaf) " | beta:" string(betaf) " | gamma:" string(gammaf)])
xinfo(infotext);
format('v',10);
clear infotext;
xgrid(12);
// Set plot axis
x_min=plot_fig.children.data_bounds(1,1);
y_min=floor(DCloss+xfit(spoutfreqs($), [alphaf;betaf;gammaf]));
x_max=plot_fig.children.data_bounds(2,1);
y_max=0;
plot_fig.children.data_bounds=[x_min, y_min; x_max,y_max];
// Pretty-fi
labels=plot_fig.children.x_ticks.labels; // Funky labels workaround
plot_fig.children.x_ticks.labels=labels;
clear labels;
plot_fig.children.x_label.font_size=2;
plot_fig.children.y_label.font_size=2;
plot_fig.children.title.font_size=3;
drawnow();
disp("Done!");
|
356021e3f0a1b42e02900bc305e1fa42ad11953b
|
297b29fb450286d0f7fa619e58c9f4a86949544a
|
/PNsequence.sci
|
a6013119f4d64b89014c29b2d74e9d9a4c180e18
|
[] |
no_license
|
harshal93shah/scilabcom
|
46dc948c1e0d0b37b0a69dfa203347298cc01e40
|
09c5506089a4283968d963ed3812de9823c5a008
|
refs/heads/master
| 2020-04-06T07:03:23.954966
| 2016-10-04T11:49:41
| 2016-10-04T11:49:41
| 54,882,787
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 2,926
|
sci
|
PNsequence.sci
|
function [y,currstate] = PNsequence(genpoly,initialstate,opmask,nbitsout)
y=[];
currstate=[];
// Display mode
mode(0);
// Display warning for floating point exception
ieee(1);
//PNsequence Generates PN sequence
//Y = PNsequence(genpoly,initialstate,opmask,nbitsout) outputs y binary pn sequence(column vector)
//and currstate i.e current state of shift register
//genpoly - Generator polynomial is vector array of bits; must be descending order.
//Initialstate - Vector array (with length of the generator polynomial order)
//of initial shift register values (in bits)
//opmask -Outout mask vector of binary 0 and 1 values is used to specify which
//shift register state bits are XORed to produce the resulting output bit value.
//Initialstate and opmask should have same length and should be equal to degree of gen poly
//
//nbitsout - number of outputbits
//Author - Harshal Shah
//checking conditions on genpoly
if(~isreal(genpoly) | or( isnan(genpoly)) | min(size(genpoly))~=1 | or(genpoly ~= 0 & genpoly ~= 1)) then
error("PNsequence:improper genpoly");
end
if(~genpoly(1)) then
error("PNsequence:improper genpoly");
end
//checking conditions on initial state
if(~isreal(initialstate) | or( isnan(initialstate)) | min(size(initialstate))~=1 | or(initialstate ~= 0 & initialstate ~= 1)) then
error("PNsequence:improper initialstate");
end
//checking conditions on hecking conditions on initial stat
if(~isreal(opmask) | or( isnan(opmask)) | min(size(opmask))~=1 | or(opmask ~= 0 & opmask ~= 1)) then
error("PNsequence:improper opmask");
end
//checking conditions on inbitsout
if (~isreal(nbitsout) | length(nbitsout)~=1 | isnan(nbitsout)|ceil(nbitsout)~=nbitsout|nbitsout<=0) then
error("PNsequence:improper nbitsout");
end
//checking that length of Initialstate, genpoly and opmask are equal
if (length(genpoly)~=(length(initialstate)+1) | length(initialstate)~=length(opmask)) then
error(" Initialstate and opmask should have same length and should be equal to degree of gen poly");
end
buff = initialstate;
for i = 1:nbitsout
//generating output bit
y(i)=maskedxor(buff,opmask);
//generating next beet to feed in shift register
k = maskedxor(buff,genpoly(2:length(genpoly)));
//shifting the register
buff = shift(buff,k);
end
currstate = buff;
endfunction
function out = shift(in,k)
out=[];
for i =length(in):-1:2
out(i)=in(i-1);
end
out(1)=k;
endfunction
function y = maskedxor(in,mask)
y=0;
for i=1:length(in)
if(mask(i)) then
y=y+in(i);
end
end
y=modulo(y,2);
endfunction
|
28645091b17a3166f09228b0240929450ef5372d
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1757/CH11/EX11.3/EX11_3.sce
|
70d25c70c7fb34ebb981f49bda0dfab9440765b7
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 277
|
sce
|
EX11_3.sce
|
//Example11.3 // determine the resolution of 4-bit D/A converter
clc;
clear;
close;
VFS = 12 ;
N = 4 ;
// the resolution of 4-bit D/A converter is defined as
Resolution = VFS/(2^N-1) ;
disp('the resolution of 4-bit D/A converter is = '+string(Resolution)+ ' V ');
|
3ea4b0d1d677ee8b2039be4ebf964e3da7b8ceee
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3446/CH17/EX17.7/Ex17_7.sce
|
ed5893af00da58688411b64c7b4cb321260a320d
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 728
|
sce
|
Ex17_7.sce
|
// Exa 17.7
// To calculate downlink cell load-factor and number of voice users per cell for a WCDMA system.
clc;
clear all;
Ri=12.2*10^3;//Information rate in bps
Rc=3.84*10^6;// Chip rate in chips per second
Eb_Nt=4; // in dB
Eb_Nt=10^(Eb_Nt/10);
B=0.5;//Average interference factor due to other cells
Zeta=0.6; // orthogonality factor
Imargin=2;//Interference margin(3 dB)
Vi=0.65 //assuming Channel activity factor as 0.65
//solution
Loadfactor_peruser=(Zeta+B)*(1/((Rc/Ri)*(1/Eb_Nt)*(1/Vi)))
printf('Downlink cell load factor is %.4f \n ',Loadfactor_peruser);
cellLoading=(Imargin-1)/Imargin;
Voiceusers=cellLoading/Loadfactor_peruser;
printf('No of voice users per cell are %d \n ',Voiceusers);
|
0c94fb490242743d8f25abe19a9b5c5758860c36
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1922/CH8/EX8.3/8_3.sce
|
be78de9294f6193a142f240e0c22c936ef3f9f24
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 505
|
sce
|
8_3.sce
|
clc
clear
//Initialization of variables
ye=0.434
Pt=40.25 //kPa
xe=0.616
Pe1=22.9 //kPa
Pe2=29.6 //kPa
//calculations
ge= ye*Pt/(xe*Pe1)
gb=(1-ye)*Pt/((1-xe)*Pe2)
E= log10(ge) *(1+ (1-xe)*log(gb) /(xe*log(ge)))^2
B= log10(gb) *(1+ xe/(1-xe) *log(ge) /log(gb))^2
xe2=0.4
xb2=0.6
lnge2=E/(1+ E*xe2/(B*xb2))^2
lngb2=B/(1+ B*xb2/(E*xe2))^2
ge2=10^(lnge2)
gb2=10^(lngb2)
Pt1=ge2*Pe1
Pt2=gb2*Pe2
//results
printf("Total pressure in case 1 = %.2f kPa and in case 2 = %.2f kPa",Pt1, Pt2 )
|
8dc54a7c12bf9dcf9b881205035e80452d5591d3
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2912/CH12/EX12.1/Ex12_1.sce
|
6d49d949f875068787dfaba6f72d96eb79fdf8b9
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 368
|
sce
|
Ex12_1.sce
|
// chapter 12
// example 12.1
// calculate fractional index change for a given optical fibre
// page 360
clear;
clc;
// given
u1=1.563; // refractive index of core
u2=1.498; // refractive index of cladding
//calculate
d=(u1-u2)/u1; // calculation of fractional index change
printf('\nThe fractional index change for a given optical fibre is %.4f',d);
|
d48ba5d23ac20f63038a726fe1d91ebd9022c660
|
397456b742a46d88c251aa168bfe794903987f93
|
/Yin-Yang-Pair Optimization Algorithm/standard/scilab/yin-yang-pair-o.sce
|
097863b2f3f35fc3b3af50d5275054b7913b493f
|
[] |
no_license
|
JonesCG/PROJECT-NIOA
|
b5dcc7820d818369a4115fbb34b0f7ba02d7a129
|
7e6a3aa9a5deda6aa4eec9f4d523556844593c8b
|
refs/heads/master
| 2022-08-16T14:06:54.967718
| 2020-05-18T08:17:47
| 2020-05-18T08:17:47
| 264,872,793
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 4,995
|
sce
|
yin-yang-pair-o.sce
|
clear
clc
exec('objective.sce');
disp("RUNNING...")
rand('seed',getdate('s'))
//POPSIZE = 2
DIM = 2
UPPER = 100
LOWER = -100
MAXITER = 50
ARCHMIN = 2
ARCHMAX = 4
//ARCHLIMIT = grand(1,1,"uin",ARCHMIN,ARCHMAX)
ARCHLIMIT = floor(rand()*(ARCHMAX+1-ARCHMIN))+ARCHMIN
ARCHLIMIT = 5
ALPHA = 10
DELTA(1:2) = 0.5
P = rand(2,DIM).*(UPPER-LOWER) + LOWER
FIT = F1(P)
[BESTFIT IND] = min(FIT)
GBESTFIT = BESTFIT
GBESTPOS = P(IND,:)
//P = normalize(P,UPPER,LOWER)
P = (P-LOWER)./(UPPER-LOWER)
ARCHBEST = []
ARCHFIT = []
ARCHCOUNT = 0
xtitle("INITIALIZATION")
square(LOWER,LOWER,UPPER,UPPER)
plot(P(:,1),P(:,2),'b.')
plot(GBESTPOS(:,1),GBESTPOS(:,2),'g.')
xs2png(gcf(),'gif/yypo/ITER0.png')
clf()
for ITER=1:MAXITER
//disp(ITER)
// if P2 is better than P1
if FIT(2)<FIT(1)
// swap P1 and P2
P0 = P(1,:)
P(1,:) = P(2,:)
P(2,:) = P0
// swap their delta also
D0 = DELTA(1)
DELTA(1) = DELTA(2)
DELTA(2) = D0
// swap their fitness
FIT0 = FIT(1)
FIT(1) = FIT(2)
FIT(2) = FIT0
end
// add to archive P1 and P2, their fitness, update archive count
ARCHBEST = [ARCHBEST; P]
ARCHFIT = [ARCHFIT; FIT]
ARCHCOUNT = ARCHCOUNT+1
col = ['c.' 'm.']
for point=1:2
//PP = actualize(P(point,:,:),ubx,uby,lbx,lby)
//plot(PP(1,:,1),PP(1,:,2),COL(point))
if rand()<0.5
// 1-WAY split
// eq. 1
// generate 2D or 2p copies of Ppoint
// C1 is for eq.1.1, p copies
C1 = repmat(P(point,:),[DIM 1]) + rand(DIM,DIM).*DELTA(point)
// C1 is for eq.1.2, p copies
C2 = repmat(P(point,:),[DIM 1]) - rand(DIM,DIM).*DELTA(point)
// combine generated copies, 2p copies all
S = [C1; C2]
else
// create the random binary matrix - no bitstrings are equal
VALPRM = grand(1,"prm",(1:2^DIM))
// Get the first 2D value
DVAL = VALPRM(1:2*DIM)
// convert to binary (string)
BINSTR = dec2bin(DVAL-1,DIM)
// Concatenate/combine all bitstring into a single bitstring
BINCAT = strcat(BINSTR)
// split the bitstring into groups of D matrix
CHOP = strsplit(BINCAT)
// Transform matrix CHOP to a 2D x D matrix
BIN_ARR_STR = matrix(CHOP,[DIM 2*DIM])'
// Convert the BIN_ARR_STR matrix values to intger
B = strtod(BIN_ARR_STR)
// convert 0 to -1 for easy use during eq. 2
B(B==0) = -1
// Eq.2
S = repmat(P(point,:),[DIM*2 1]) + rand(DIM*2,DIM).*B.*(DELTA(point)/sqrt(2))
end
// Bounding variables that are out of bounds
// Reinitialize VARIABLE VALUES that are out of bounds (less than 0; greater than 1)
S(S<0) = rand(length(find(S<0)),1)
S(S>1) = rand(length(find(S>1)),1)
// scale to their actual variable values the 2p copies
S = S.*(UPPER-LOWER)+LOWER
SFIT = F1(S) // evaluate
square(LOWER,LOWER,UPPER,UPPER)
plot(S(:,1),S(:,2),col(point))
[SBESTFIT SBESTIND] = min(SFIT) // get best
// return to scale the 2p copies
S = (S-LOWER)./(UPPER-LOWER)
// update Ppoint and it FITpoint with the fittest point from the generated copies
P(point,:) = S(SBESTIND,:)
FIT(point) = SBESTFIT
end
// ARCHIVING
if ARCHCOUNT==ARCHLIMIT // ARCH limit is reached
if min(ARCHFIT)<FIT(1)
// interchange P1 with the fittest point from the archive
[ARCHBESTFIT ARCHIND] = min(ARCHFIT)
P0 = ARCHBEST(ARCHIND,:)
P(1,:) = ARCHBEST(ARCHIND,:)
ARCHBEST(ARCHIND,:) = P0
// do also for fitness
FIT0 = ARCHBESTFIT
FIT(1) = ARCHBESTFIT
ARCHFIT(1) = FIT0
end
if min(ARCHFIT)<FIT(2)
// make the fittest from the archive be the new P2
[ARCHBESTFIT ARCHIND] = min(ARCHFIT)
P(2,:) = ARCHBEST(ARCHIND,:)
FIT(2) = ARCHBESTFIT
end
// update deltas/ radii
DELTA(1) = DELTA(1)-(DELTA(1)/ALPHA)
DELTA(2) = DELTA(2)+(DELTA(2)/ALPHA)
// clear archive
ARCHBEST = []
ARCHFIT = []
// set ARCHIVE COUNT to 0
ARCHCOUNT = 0
ARCHLIMIT = floor(rand()*(ARCHMAX+1-ARCHMIN))+ARCHMIN
end
// get ITERATION BEST
[BESTFIT IND] = min(FIT)
// update GBEST
if BESTFIT<GBESTFIT
GBESTFIT = BESTFIT
GBESTPOS = P(IND,:).*(UPPER-LOWER)+LOWER
end
FITRUN(ITER) = GBESTFIT
xtitle("ITER "+string(ITER))
square(LOWER,LOWER,UPPER,UPPER)
plot(P(:,1),P(:,2),'b.')
plot(GBESTPOS(:,1),GBESTPOS(:,2),'g.')
xs2png(gcf(),'gif/yypo/ITER'+string(ITER)+'.png')
clf()
end
//plot((1:MAXITER)',FITRUN,'g-')
|
10716b66a05c66a8e66d550f6655e4460a50c94f
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2234/CH2/EX2.14/ex2_14.sce
|
4d3c354146e2e75cd65ef7e767455bfa958f0c8d
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 228
|
sce
|
ex2_14.sce
|
clc;
v=2; //voltage in volts
l=10^-3; //inductance in Henry
i=10*10^-3; //current
di=v/l; //change in current in A/sec
t=i/di; //calculating time
disp(t,"Time required to reach 0.01 A in sec = "); //displaying result
|
94f16db863fbbc22ef670d78ca0174ccf4d2ab9d
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1883/CH3/EX3.6.3/Example3_18.sce
|
8e21496b2d134cd18d52d51206043ef708f10fc1
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 560
|
sce
|
Example3_18.sce
|
//Chapter-3,Example3_6_3,pg 3-18
a=2.2
//ratio= Pout/Pin
//For a length of L=2 km
Pl1=a*2
ratio_1=10^(-Pl1/10) //as Power loss or attenuation is Pl=(-10)*log10(Pout/Pin)
printf("\nThe fractional initial intensity after 2 km is %.3f \n",ratio_1)
//For a length of L=6 km
Pl2=a*6
ratio_2=10^(-Pl2/10) //as Power loss or attenuation is Pl=(-10)*log10(Pout/Pin)
printf("\nThe fractional initial intensity after 6 km is %.3f \n",ratio_2)
|
349e0e799333e3339c4cd3e7ad31cfada036fc08
|
08bfc8a1f8e44adc624d1f1c6250a3d9635f99de
|
/SDKs/swig/Examples/scilab/struct/runme.sci
|
3e9a7f200182e2c68b2719d09833f8be792e8011
|
[] |
no_license
|
Personwithhat/CE_SDKs
|
cd998a2181fcbc9e3de8c58c7cc7b2156ca21d02
|
7afbd2f7767c9c5e95912a1af42b37c24d57f0d4
|
refs/heads/master
| 2020-04-09T22:14:56.917176
| 2019-07-04T00:19:11
| 2019-07-04T00:19:11
| 160,623,495
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 128
|
sci
|
runme.sci
|
version https://git-lfs.github.com/spec/v1
oid sha256:6f86fa54262601a4911a49c4acf471bd1659532dd5f397c1ba33cade325b0e90
size 264
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.