blob_id
stringlengths 40
40
| directory_id
stringlengths 40
40
| path
stringlengths 4
214
| content_id
stringlengths 40
40
| detected_licenses
listlengths 0
50
| license_type
stringclasses 2
values | repo_name
stringlengths 6
115
| snapshot_id
stringlengths 40
40
| revision_id
stringlengths 40
40
| branch_name
stringclasses 21
values | visit_date
timestamp[us] | revision_date
timestamp[us] | committer_date
timestamp[us] | github_id
int64 141k
586M
⌀ | star_events_count
int64 0
30.4k
| fork_events_count
int64 0
9.67k
| gha_license_id
stringclasses 8
values | gha_event_created_at
timestamp[us] | gha_created_at
timestamp[us] | gha_language
stringclasses 50
values | src_encoding
stringclasses 23
values | language
stringclasses 1
value | is_vendor
bool 1
class | is_generated
bool 1
class | length_bytes
int64 5
10.4M
| extension
stringclasses 29
values | filename
stringlengths 2
96
| content
stringlengths 5
10.4M
|
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
f6937da115bde35d76c31f787af8636b4b09ee60
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3763/CH7/EX7.1/Ex7_1.sce
|
32c451ebe8b29c2a5fdde2d45e5bc24e682f0288
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 297
|
sce
|
Ex7_1.sce
|
clear
//
//
//
//Variable declaration
El=10**-2*50 //energy loss(J)
H=El*60 //heat produced(J)
d=7.7*10**3 //iron rod(kg/m**3)
s=0.462*10**-3 //specific heat(J/kg K)
//Calculation
theta=H/(d*s) //temperature rise(K)
//Result
printf("\n temperature rise is %0.2f K",theta)
|
eef5b297cedc629ac0ee3401d93d79fca95266b3
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1151/CH2/EX2.24/example24.sce
|
f7e2557388e0756be88b553bbcf9818abaca3d51
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 552
|
sce
|
example24.sce
|
printf("given G(s)=K/(s*(1+s*T)) \n Mp=20 percent \n resonant frequency=6 rad/sec\n we have to determine the value of K,T,resonant peak")
printf(" H(s)=1 \n C(s)/R(s)=G(s)/(1+G(s)*H(s)) \n =(K/T)/(s^2+s/T+(K/T)");
printf("compare with w^2/(s^2+2*d*w*s+w^2)");
d1=log(0.2);
d=sqrt(d1^2/(d1^2+%pi^2));
wr=6;
w=wr/sqrt(1-(2*(d^2)));
K=sqrt(4*d*w^2);
T=sqrt(4*d/w^2);
mr=1/(2*d*sqrt(1-d^2));
disp(w,"undamped natural frequency (in rad/sec)=")
disp(d,"damping ratio=")
disp(K,"value of K=")
disp(T,"value of T=")
disp(mr,"resonance peak=")
|
d97b99da3265da8a78e2e5390f579873dfa143d0
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1373/CH8/EX8.14/Chapter8_Example14.sce
|
92f3eca2f420969d67c6a1eac6926ad98772c01f
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 860
|
sce
|
Chapter8_Example14.sce
|
//Chapter-8, Example 8.14, Page 356
//=============================================================================
clc
clear
//INPUT DATA
d=0.0254;//Diatance between the plates in m
Tl=60;//Temperature of the lower panel n degree C
Tu=15.6;//Temperature of the upper panel in degree C
//CALCULATIONS
Tf=(Tl+Tu)/2;//Film temperature in degree C
p=1.121;//Density in kg/m^3
k=0.0292;//Thermal conductivity in W/m.K
v1=(0.171*10^-4);//Kinematic viscosity in m^2/s
b=(3.22*10^-3);//Coefficient of thermal expansion in 1/K
Pr=0.7;//Prantl number
Gr=((9.81*b*d^3*(Tl-Tu))/(v1^2));//Grashof number
Nu=(0.195*Gr^0.25);//Nussults number
q=(Nu*k*(Tl-Tu))/d;//Heat flux across the gap in W/m^2
//OUTPUT
mprintf('Free convection heat transfer is %3.1f W/m^2',q)
//=================================END OF PROGRAM==============================
|
07aa6203665436b88c1f048f258540a2e1ce924b
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3250/CH6/EX6.7/Ex6_7.sce
|
5f600821ad4d99ef60ed60527c72918ea6917779
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,024
|
sce
|
Ex6_7.sce
|
clc
// Given that
f = 0.2 // Feed rate in cm/min
l = 2.54 // Length of tool face in cm
w = 2.54 // Width of tool face in cm
T_b = 95 // Boiling temperature of electrolyte in °C
Nita = 0.876e-3 // Viscosity of electrolyte in kg/m-sec
D_e = 1.088 // Density of electrolyte in g/cm^3
c = .997 // Specific heat of electrolyte
V = 10 // DC supply voltage in Volt
k = 0.2 // Conductivity of electrolyte in ohm^-1-cm^-1
T = 35 // Ambient temperature in °C
Vo = 1.5 // Total overvoltage in Volt
F = 96500 // Faraday constant in coulombs per mole
// Sample Problem 7 on page no. 355
printf("\n # PROBLEM 6.7 # \n")
A = 55.85 // Atomic gram weight of iron in gm
Z = 2 // Valency of dissolation of iron
D = 7.86 // Density of iron in gm/cm^3
Ye = k*A*(V-Vo)*60/(D*Z*F*f)
J = k*(V-Vo)/(Ye)
D_T = T_b -T
v = (J^2)*(l)/(k*D_T*D_e*c)
Re = ((D_e*v*2*Ye)/Nita)*(0.1)
p = 0.3164*D_e*(v^2)*l/(4*Ye*(Re^0.25))*(10^-4)
A = l*w
F = p*A*(10^-1)*(1/2)
printf("\n Total force acting on the tool = %d N",F)
// Answer in the book is given as 79 N
|
1182e08c8a94037932389780958aedb5026d5187
|
35071fb08cee13f4a9e79c396f7c8c028f69db0e
|
/Tests/Syntaxe/OK/INT_OK.tst
|
18bdbc6f726bb671656be550fb3ce1f5d4e7756e
|
[] |
no_license
|
V1nc3ntL/Compilation
|
2cd9d4fa728055cebd44659cba517e49298142bc
|
e2008449ddb509021f6ddcfd0a92226807bec9ab
|
refs/heads/master
| 2023-06-01T09:42:01.069684
| 2021-06-02T19:15:13
| 2021-06-02T19:15:13
| 357,205,127
| 0
| 0
| null | 2021-05-31T12:13:32
| 2021-04-12T13:30:46
|
C
|
UTF-8
|
Scilab
| false
| false
| 52
|
tst
|
INT_OK.tst
|
void main()
{
int a = 100, b = -1, c = a;
c = b;
}
|
05d1a73b52f3acc3266912da95dda7ff99dbfe18
|
b29e9715ab76b6f89609c32edd36f81a0dcf6a39
|
/ketpicscifiles6/Setcolor.sci
|
51b8e0c3807a99788c2de121c30a8507660353d4
|
[] |
no_license
|
ketpic/ketcindy-scilab-support
|
e1646488aa840f86c198818ea518c24a66b71f81
|
3df21192d25809ce980cd036a5ef9f97b53aa918
|
refs/heads/master
| 2021-05-11T11:40:49.725978
| 2018-01-16T14:02:21
| 2018-01-16T14:02:21
| 117,643,554
| 1
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 633
|
sci
|
Setcolor.sci
|
// 11.05.28
// 11.08.24
// 15.05.03
function Setcolor(varargin)
global Wfile FID;
Nargs=length(varargin);
Color='black';
Kosa=1;
Color=varargin(1);
if length(varargin)>1
Kosa=varargin(2);
end;
Iro=Ratiocmyk(Color);
if type(Iro)==10
Str='\color{'+Iro+"}%";
else
if size(Iro,2)>3
Str='\color[cmyk]{';
else
Str='\color[rgb]{';
end;
for J=1:size(Iro,2)
Str=Str+string(Kosa*Iro(J));
if J<size(Iro,2)
Str=Str+',';
end;
end;
Str=Str+'}%';
end;
if Wfile=='default'
mprintf('%s\n',Str);
else
mfprintf(FID,'%s\n',Str);
end
endfunction
|
fbdea80ba4c3d413c4d561d01ccb5d9f1bd55c79
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1994/CH9/EX9.32/Example9_32.sce
|
bb3f1af54666818094da658ad3b1f03cc10b4a33
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 527
|
sce
|
Example9_32.sce
|
//Chapter-9,Example9_32,pg 9_86
Po=7.46*10^3
V=250
Ilo=5
Ra=0.5
Rsh=250
Ish=V/Rsh
Iao=Ilo-Ish
Acl=(Iao^2)*Ra
Fcl=(Ish^2)*Rsh
Pi=V*Ilo
FWl=Pi-Acl-Fcl//friction and windage loss
//Pin=Eb*Ia=(V-Ia*Ra)*Ia
//0.5*(Ia^2)-250*Ia+8452=0
b=-250
a=0.5
c=8452
Ia=(-b-sqrt((b^2)-4*a*c))/(2*a)//neglecting higher value
TL=(Ia^2)*Ra+(Ish^2)*Rsh+FWl
n=Po*100/(Po+TL)
//for max. efficiency
Ia=sqrt((FWl+Fcl)/Ra)
Eb=V-Ia*Ra
Pm=Eb*Ia
//Po at nmax
Po=Pm-FWl
printf("maximum efficiency output\n")
printf("Po=%.3f W",Po)
|
1022d2613d7ead000ccdc8a4c1f07bb05cbe0315
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3012/CH7/EX7.5/Ex7_5.sce
|
e6639a76e17c3f2e7e2f01cbbb28e77b4af039f6
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,529
|
sce
|
Ex7_5.sce
|
// Given:-
p1 = 3.0 // entry pressure in Mpa
p2 = 0.5 // exit pressure in Mpa
T1 = 320.0 // entry temperature in degree celcius
T0 = 25.0 // in degree celcius
p0 = 1.0 // in atm
// From table A-4
h1 = 3043.4 // in kj/kg
s1 = 6.6245 // in kj/kg.k
h2 = h1 // from reduction of the steady-state mass and energy rate balances
s2 = 7.4223 // Interpolating at a pressure of 0.5 MPa with h2 = h1, units in kj/kg.k
// From table A-2
h0 = 104.89 // in kj/kg
s0 = 0.3674 // in kj/kg.k
// Calculations
ef1 = h1-h0-(T0+273)*(s1-s0) // flow exergy at the inlet
ef2 = h2-h0-(T0+273)*(s2-s0) // flow exergy at the exit
// From the steady-state form of the exergy rate balance
Ed = ef1-ef2 // the exergy destruction per unit of mass flowing is
// Results
printf( ' The specific flow exergy at the inlet is %.2f kJ/kg.',ef1)
printf( ' The specific flow exergy at the exit is %.2f kJ/kg.',ef2)
printf( ' The exergy destruction per unit of mass flowing is %.2f kJ/kg.',Ed)
|
b041ee68f9f6e7fc52c58dd7398d68a5c12acbc1
|
6bd47868c9c7b3e9469b27f60a4757816a62060b
|
/Integrasi Numerik/trapezoida.sci
|
5beea861dcfe9aed0bac57c06dd5598fefb47057
|
[] |
no_license
|
fahrioghanial/Program-Metode-Numerik
|
555401132e47516ff38ab7d38e1056c16e45ab1a
|
83cfe9144c72a3adbabbe71923f32ab6209b02e8
|
refs/heads/master
| 2023-02-28T16:14:24.353765
| 2021-02-04T08:04:46
| 2021-02-04T08:04:46
| 335,882,015
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 762
|
sci
|
trapezoida.sci
|
/*
Nama : Mohamad Fahrio Ghanial Fatihah
NPM : 140810190005
Deskripsi : Program Metode Trapezoida
*/
clear;
clc;
printf('\nProgram Integrasi Numerik Metode Trapezoida\n');
X = [0.10 0.12 0.14 0.16 0.18 0.20];
Y = [0.004 0.006 0.008 0.011 0.015 0.018];
printf('Diketahui Data Berikut:\n');
//Menampilkan data
printf('x\tf(x)\n');
for i=1:6
printf('%.2f\t%.3f\n', X(i),Y(i));
end
a=input('Masukkan batas awal x = ');
b=input('Masukkan batas akhir x = ');
h = 0.02;
n=(b-a)/h;
for i=1:6
if a == X(i)
index=i;
end
if b == X(i)
indexAkhir=i;
end
end
I = Y(index) + Y(indexAkhir);
sigma=0;
for i=1 :(n-1)
sigma=sigma+2*Y(index+1);
index=index+1;
end
I=(I+sigma)*h/2;
printf('Jadi luas daerahnya adalah : %.6f', I);
|
a0672c22fdf44631b4e4c10cd3408a8687c4e354
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3760/CH4/EX4.82/Ex4_82.sce
|
ce3ec351d9379270368725535a9e8f5f8e26aacc
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,118
|
sce
|
Ex4_82.sce
|
clc;
// plot for open circuit characteristics is given in fig 4.10
IF=[ 0 11.5 23 36.5 59.5 79 110 160];
EA=[0 40 80 120 160 180 200 220 ];
subplot(221);
plot(IF,EA);
xlabel('field ATs');
ylabel('voltage');
title('magnetising curve');
nf=800; // field winding turns
rd=0.5; // total armature resistance along d-axis
ifl=0.2; // field winding current
d=10; // product of (difference between mmf of compensating winding and armature mmf along d-circuit)and load current
nf1=nf*ifl; // field winding turns for field current of 200mA
il=nf1/d; // maximum load current
printf('Maximum field current is %d A\n',il);
IL=[0 2 4 6 8 10 12 14 16]; // load currents
ATD=nf1-d*IL; // net d-axis ATs
disp('Net d-axis ATs is');
disp(ATD);
// corresponding to each ATD open circuit EMF is obtained from magnetising curve
EO=[220 213 204.7 194 180.5 161.4 128 70 0 ]; // open circuit EMF
VRD=rd*IL; // d-axis resistance drop
VO=EO-VRD;
disp('Output voltage(V) is ');
disp(VO);
subplot(222);
plot(IL,VO);
xlabel('load current(A)');
ylabel('Output voltage(v)');
title('Output voltage vs Load current');
|
b89d83d549193a47f36b5afdbcacd4006f12934d
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2732/CH10/EX10.7/Ex10_7.sce
|
275a56d116a18f3dfb2690b95ef56483bbdb94f3
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 373
|
sce
|
Ex10_7.sce
|
clc
//initialization of variables
clear
L=1 //m
w=10 //kg
h=50 //cm
A=1 //cm^2
E=2*10^6 //kg/cm^2
Ar=1 //cm^2
Ec=3*10^4 //kg/cm^2
// For steel
del=w*L*100/(A*E)
P=w*(1+sqrt(1+(2*h/del)))
printf('Stress in steeel = %d kg/cm^2 ',P)
// for cloth laminate
del=w*L*100/(A*Ec)
P=w*(1+sqrt(1+(2*h/del)))
printf('\n Stress in cloth laminate = %.1f kg/cm^2 ',P)
|
9ceaffc9e485786c762717597615cfc6cbf53e1d
|
d963a50c09b7380dd7b1b97cd9997e9bd17ea8f3
|
/r35/xmpl/algint.tst
|
27ce848ac2b740441cdbb29f4edde4deb49daa46
|
[
"BSD-3-Clause"
] |
permissive
|
reduce-algebra/reduce-historical
|
8220e211b116e0e01ff1a38f51917cac9db6069f
|
e014152729c4d62bb1ce4f5c311a027042a5495a
|
refs/heads/master
| 2023-04-10T22:54:00.796596
| 2021-04-16T08:52:19
| 2021-04-16T08:52:19
| 343,245,204
| 7
| 1
|
NOASSERTION
| 2021-04-16T08:53:31
| 2021-03-01T00:15:22
|
TeX
|
UTF-8
|
Scilab
| false
| false
| 15,596
|
tst
|
algint.tst
|
COMMENT
THE REDUCE INTEGRATION TEST PACKAGE
Edited By
Anthony C. Hearn
The RAND Corporation
This file is designed to provide a set of representative tests of the
Reduce integration package. Not all examples go through, even when an
integral exists, since some of the arguments are outside the domain of
applicability of the current package. However, future improvements to
the package will result in more closed-form evaluations in later
releases. We would appreciate any additional contributions to this test
file either because they illustrate some feature (good or bad) of the
current package, or suggest domains which future versions should handle.
Any suggestions for improved organization of this test file (e.g., in a
way which corresponds more directly to the organization of a standard
integration table book such as Gradshteyn and Ryznik) are welcome.
Acknowledgments:
The examples in this file have been contributed by the following.
Any omissions to this list should be reported to the Editor.
David M. Dahm
James H. Davenport
John P. Fitch
Steven Harrington
Anthony C. Hearn
K. Siegfried Koelbig
Ernst Krupnikov
Arthur C. Norman
Herbert Stoyan
;
Comment we first set up a suitable testing functions;
fluid '(gcknt!*);
global '(faillist!* gcnumber!* inittime number!-of!-integrals
unintlist!*);
symbolic operator time;
symbolic procedure initialize!-integral!-test;
begin
faillist!* := unintlist!* := nil;
number!-of!-integrals := 0;
gcnumber!* := gcknt!*;
inittime := time()
end;
symbolic procedure summarize!-integral!-test;
begin scalar totaltime;
totaltime := time()-inittime;
prin2t
" ***** SUMMARY OF INTEGRAL TESTS *****";
terpri();
prin2 "Number of integrals tested: ";
prin2t number!-of!-integrals;
terpri();
prin2 "Total time taken: ";
prin2 totaltime;
prin2t " ms";
terpri();
if gcnumber!*
then <<prin2 "Number of garbage collections: ";
prin2t (gcknt!* - gcnumber!*);
terpri()>>;
prin2 "Number of incorrect integrals: ";
prin2t length faillist!*;
terpri();
prin2 "Number of unevaluated integrals: ";
prin2t length unintlist!*;
terpri();
if faillist!*
then <<prin2t "Integrands of incorrect integrals are:";
for each x in reverse faillist!* do mathprint car x>>;
if unintlist!*
then <<prin2t "Integrands of unevaluated integrals are:";
terpri();
for each x in reverse unintlist!* do mathprint car x>>
end;
procedure testint(a,b);
begin scalar der,diffce,res,tt;
tt:=time();
symbolic (number!-of!-integrals := number!-of!-integrals + 1);
res:=int(a,b);
% write "time for integral: ",time()-tt," ms";
der := df(res,b);
diffce := der-a;
if diffce neq 0
then begin for all x let cot x=cos x/sin x,
sec x=1/cos x,
sin x**2=1-cos x**2,
tan x=sin x/cos x,
tan(x/2)=sin x/(1+cos x),
tanh x=
(e**(x)-e**(-x))/(e**x+e**(-x)),
coth x= 1/tanh x;
diffce := diffce;
for all x clear cot x,sec x,sin x**2,tan x,tan(x/2),
tanh x,coth x
end;
%hopefully, difference appeared non-zero due to absence of
%above transformations;
if diffce neq 0
then <<on combineexpt; diffce := diffce; off combineexpt>>;
if diffce neq 0
then <<write
" ***** DERIVATIVE OF INTEGRAL NOT EQUAL TO INTEGRAND *****";
symbolic(faillist!* := list(a,b,res,der) . faillist!*)>>;
symbolic if smemq('int,res)
then unintlist!* := list(a,b,res) . unintlist!*;
return res
end;
symbolic initialize!-integral!-test();
% References are to Gradshteyn and Ryznik.
testint(1+x+x**2,x);
testint(x**2*(2*x**2+x)**2,x);
testint(x*(x**2+2*x+1),x);
testint(1/x,x); % 2.01 #2;
testint((x+1)**3/(x-1)**4,x);
testint(1/(x*(x-1)*(x+1)**2),x);
testint((a*x+b)/((x-p)*(x-q)),x);
testint(1/(a*x**2+b*x+c),x);
testint((a*x+b)/(1+x**2),x);
testint(1/(x**2-2*x+3),x);
% Rational function examples from Hardy, Pure Mathematics, p 253 et seq.
testint(1/((x-1)*(x**2+1))**2,x);
testint(x/((x-a)*(x-b)*(x-c)),x);
testint(x/((x**2+a**2)*(x**2+b**2)),x);
testint(x**2/((x**2+a**2)*(x**2+b**2)),x);
testint(x/((x-1)*(x**2+1)),x);
testint(x/(1+x**3),x);
testint(x**3/((x-1)**2*(x**3+1)),x);
testint(1/(1+x**4),x);
testint(x**2/(1+x**4),x);
testint(1/(1+x**2+x**4),x);
% Examples involving a+b*x.
z := a+b*x;
testint(z**p,x);
testint(x*z**p,x);
testint(x**2*z**p,x);
testint(1/z,x);
testint(1/z**2,x);
testint(x/z,x);
testint(x**2/z,x);
testint(1/(x*z),x);
testint(1/(x**2*z),x);
testint(1/(x*z)**2,x);
testint(1/(c**2+x**2),x);
testint(1/(c**2-x**2),x);
% More complicated rational function examples, mostly contributed
% by David M. Dahm, who also developed the code to integrate them.
testint(1/(2*x**3-1),x);
testint(1/(x**3-2),x);
testint(1/(a*x**3-b),x);
testint(1/(x**4-2),x);
testint(1/(5*x**4-1),x);
testint(1/(3*x**4+7),x);
testint(1/(x**4+3*x**2-1),x);
testint(1/(x**4-3*x**2-1),x);
testint(1/(x**4-3*x**2+1),x);
testint(1/(x**4-4*x**2+1),x);
testint(1/(x**4+4*x**2+1),x);
testint(1/(x**4+x**2+2),x);
testint(1/(x**4-x**2+2),x);
testint(1/(x**6-1),x);
testint(1/(x**6-2),x);
testint(1/(x**6+2),x);
testint(1/(x**8+1),x);
testint(1/(x**8-1),x);
testint(1/(x**8-x**4+1),x);
testint(x**7/(x**12+1),x);
% Examples involving logarithms.
testint(log x,x);
testint(x*log x,x);
testint(x**2*log x,x);
testint(x**p*log x,x);
testint((log x)**2,x);
testint(x**9*log x**11,x);
testint(log x**2/x,x);
testint(1/log x,x);
testint(1/log(x+1),x);
testint(1/(x*log x),x);
testint(1/(x*log x)**2,x);
testint((log x)**p/x,x);
testint(log x *(a*x+b),x);
testint((a*x+b)**2*log x,x);
testint(log x/(a*x+b)**2,x);
testint(x*log (a*x+b),x);
testint(x**2*log(a*x+b),x);
testint(log(x**2+a**2),x);
testint(x*log(x**2+a**2),x);
testint(x**2*log(x**2+a**2),x);
testint(x**4*log(x**2+a**2),x);
testint(log(x**2-a**2),x);
testint(log(log(log(log(x)))),x);
% Examples involving circular functions.
testint(sin x,x); % 2.01 #5;
testint(cos x,x); % #6;
testint(tan x,x); % #11;
testint(1/tan(x),x); % 2.01 #12;
testint(1/(1+tan(x))**2,x);
testint(1/cos x,x);
testint(1/sin x,x);
testint(sin x**2,x);
testint(x**3*sin(x**2),x);
testint(sin x**3,x);
testint(sin x**p,x);
testint((sin x**2+1)**2*cos x,x);
testint(cos x**2,x);
testint(cos x**3,x);
testint(sin(a*x+b),x);
testint(1/cos x**2,x);
testint(sin x*sin(2*x),x);
testint(x*sin x,x);
testint(x**2*sin x,x);
testint(x*sin x**2,x);
testint(x**2*sin x**2,x);
testint(x*sin x**3,x);
testint(x*cos x,x);
testint(x**2*cos x,x);
testint(x*cos x**2,x);
testint(x**2*cos x**2,x);
testint(x*cos x**3,x);
testint(sin x/x,x);
testint(cos x/x,x);
testint(sin x/x**2,x);
testint(sin x**2/x,x);
testint(tan x**3,x);
% z := a+b*x;
testint(sin z,x);
testint(cos z,x);
testint(tan z,x);
testint(1/tan z,x);
testint(1/sin z,x);
testint(1/cos z,x);
testint(sin z**2,x);
testint(sin z**3,x);
testint(cos z**2,x);
testint(cos z**3,x);
testint(1/cos z**2,x);
testint(1/(1+cos x),x);
testint(1/(1-cos x),x);
testint(1/(1+sin x),x);
testint(1/(1-sin x),x);
testint(1/(a+b*sin x),x);
testint(1/(a+b*sin x+cos x),x);
testint(x**2*sin z**2,x);
testint(cos x*cos(2*x),x);
testint(x**2*cos z**2,x);
testint(1/tan x**3,x);
testint(x**3*tan(x)**4,x);
testint(x**3*tan(x)**6,x);
testint(x*tan(x)**2,x);
testint(sin(2*x)*cos(3*x),x);
testint(sin x**2*cos x**2,x);
testint(1/(sin x**2*cos x**2),x);
testint(d**x*sin x,x);
testint(d**x*cos x,x);
testint(x*d**x*sin x,x);
testint(x*d**x*cos x,x);
testint(x**2*d**x*sin x,x);
testint(x**2*d**x*cos x,x);
testint(x**3*d**x*sin x,x);
testint(x**3*d**x*cos x,x);
testint(sin x*sin(2*x)*sin(3*x),x);
testint(cos x*cos(2*x)*cos(3*x),x);
testint(sin(x*kx)**3*x**2,x);
testint(x*cos(xi/sin(x))*cos(x)/sin(x)**2,x);
% Mixed angles and half angles.
int(cos(x)/(sin(x)*tan(x/2)),x);
% This integral produces a messy result because the code for
% converting half angle tans to sin and cos is not effective enough.
testint(sin(a*x)/(b+c*sin(a*x))**2,x);
% Examples involving logarithms and circular functions.
testint(sin log x,x);
testint(cos log x,x);
% Examples involving exponentials.
testint(e**x,x); % 2.01 #3;
testint(a**x,x); % 2.01 #4;
testint(e**(a*x),x);
testint(e**(a*x)/x,x);
testint(1/(a+b*e**(m*x)),x);
testint(e**(2*x)/(1+e**x),x);
testint(e**(2*x)*e**(a*x),x);
testint(1/(a*e**(m*x)+b*e**(-m*x)),x);
testint(x*e**(a*x),x);
testint(x**20*e**x,x);
testint(a**x/b**x,x);
testint(a**x*b**x,x);
testint(a**x/x**2,x);
testint(x*a**x/(1+b*x)**2,x);
testint(x*e**(a*x)/(1+a*x)**2,x);
testint(x*k**(x**2),x);
testint(e**(x**2),x);
testint(x*e**(x**2),x);
testint((x+1)*e**(1/x)/x**4,x);
testint((2*x**3+x)*(e**(x**2))**2*e**(1-x*e**(x**2))/(1-x*e**(x**2))**2,
x);
testint(e**(e**(e**(e**x))),x);
% Examples involving exponentials and logarithms.
testint(e**x*log x,x);
testint(x*e**x*log x,x);
testint(e**(2*x)*log(e**x),x);
% Examples involving square roots.
testint(sqrt(2)*x**2 + 2*x,x);
testint(log x/sqrt(a*x+b),x);
u:=sqrt(a+b*x);
v:=sqrt(c+d*x);
testint(u*v,x);
testint(u,x);
testint(x*u,x);
testint(x**2*u,x);
testint(u/x,x);
testint(u/x**2,x);
testint(1/u,x);
testint(x/u,x);
testint(x**2/u,x);
testint(1/(x*u),x);
testint(1/(x**2*u),x);
testint(u**p,x);
testint(x*u**p,x);
testint(atan((-sqrt(2)+2*x)/sqrt(2)),x);
testint(1/sqrt(x**2-1),x);
testint(sqrt(x+1)*sqrt x,x);
% Examples from James Davenport's thesis:
testint(1/sqrt(x**2-1)+10/sqrt(x**2-4),x); % p. 173
testint(sqrt(x+sqrt(x**2+a**2))/x,x);
% Examples generated by differentiating various functions.
testint(df(sqrt(1+x**2)/(1-x),x),x);
testint(df(log(x+sqrt(1+x**2)),x),x);
testint(df(sqrt(x)+sqrt(x+1)+sqrt(x+2),x),x);
testint(df(sqrt(x**5-2*x+1)-sqrt(x**3+1),x),x);
% Another such example from James Davenport's thesis (p. 146).
% It contains a point of order 3, which is found by use of Mazur's
% bound on the torsion of elliptic curves over the rationals;
testint(df(log(1+sqrt(x**3+1)),x),x);
% Examples quoted by Joel Moses:
testint(1/sqrt(2*h*r**2-alpha**2),r);
testint(1/(r*sqrt(2*h*r**2-alpha**2-epsilon**2)),r);
testint(1/(r*sqrt(2*h*r**2-alpha**2-2*k*r)),r);
testint(1/(r*sqrt(2*h*r**2-alpha**2-epsilon**2-2*k*r)),r);
testint(r/sqrt(2*e*r**2-alpha**2),r);
testint(r/sqrt(2*e*r**2-alpha**2-epsilon**2),r);
testint(r/sqrt(2*e*r**2-alpha**2-2*k*r**4),r);
testint(r/sqrt(2*e*r**2-alpha**2-2*k*r),r);
testint(1/(r*sqrt(2*h*r**2-alpha**2-2*k*r**4)),r);
testint(1/(r*sqrt(2*h*r**2-alpha**2-epsilon**2-2*k*r**4)),r);
Comment many of these integrals used to require Steve Harrington's
code to evaluate. They originated in Novosibirsk as examples
of using Analytik. There are still a few examples that could
be evaluated using better heuristics;
testint(a*sin(3*x+5)**2*cos(3*x+5),x);
testint(log(x**2)/x**3,x);
testint(x*sin(x+a),x);
testint((log(x)*(1-x)-1)/(e**x*log(x)**2),x);
testint(x**3*(a*x**2+b)**(-1),x);
testint(x**(1/2)*(x+1)**(-7/2),x);
testint(x**(-1)*(x+1)**(-1),x);
testint(x**(-1/2)*(2*x-1)**(-1),x);
testint((x**2+1)*x**(1/2),x);
testint(x**(-1)*(x-a)**(1/3),x);
testint(x*sinh(x),x);
testint(x*cosh(x),x);
testint(sinh(2*x)/cosh(2*x),x);
testint((i*eps*sinh x-1)/(eps*i*cosh x+i*a-x),x);
testint(sin(2*x+3)*cos(x)**2,x);
testint(x*atan(x),x);
testint(x*acot(x),x);
testint(x*log(x**2+a),x);
testint(sin(x+a)*cos(x),x);
testint(cos(x+a)*sin(x),x);
testint((1+sin(x))**(1/2),x);
testint((1-sin(x))**(1/2),x);
testint((1+cos(x))**(1/2),x);
testint((1-cos(x))**(1/2),x);
testint(1/(x**(1/2)-(x-1)**(1/2)),x);
testint(1/(1-(x+1)**(1/2)),x);
testint(x/(x**4+36)**(1/2),x);
testint(1/(x**(1/3)+x**(1/2)),x);
testint(log(2+3*x**2),x);
testint(cot(x),x);
testint(cot x**4,x);
testint(tanh(x),x);
testint(coth(x),x);
testint(b**x,x);
testint((x**4+x**(-4)+2)**(1/2),x);
testint((2*x+1)/(3*x+2),x);
testint(x*log(x+(x**2+1)**(1/2)),x);
testint(x*(e**x*sin(x)+1)**2,x);
testint(x*e**x*cos(x),x);
Comment the following set came from Herbert Stoyan;
testint(1/(x-3)**4,x);
testint(x/(x**3-1),x);
testint(x/(x**4-1),x);
testint(log(x)*(x**3+1)/(x**4+2),x);
testint(log(x)+log(x+1)+log(x+2),x);
testint(1/(x**3+5),x);
testint(1/sqrt(1+x**2),x);
testint(sqrt(x**2+3),x);
testint(x/(x+1)**2,x);
COMMENT The following integrals were used among others as a test of
Moses' SIN program;
testint(asin x,x);
testint(x**2*asin x,x);
testint(sec x**2/(1+sec x**2-3*tan x),x);
testint(1/sec x**2,x);
testint((5*x**2-3*x-2)/(x**2*(x-2)),x);
testint(1/(4*x**2+9)**(1/2),x);
testint((x**2+4)**(-1/2),x);
testint(1/(9*x**2-12*x+10),x);
testint(1/(x**8-2*x**7+2*x**6-2*x**5+x**4),x);
testint((a*x**3+b*x**2+c*x+d)/((x+1)*x*(x-3)),x);
testint(1/(2-log(x**2+1))**5,x);
% The next integral appeared in Risch's 1968 paper.
testint(2*x*e**(x**2)*log(x)+e**(x**2)/x+(log(x)-2)/(log(x)**2+x)**2+
((2/x)*log(x)+(1/x)+1)/(log(x)**2+x),x);
% The following integral would not evaluate in REDUCE 3.3.
testint(exp(x*ze+x/2)*sin(pi*ze)**4*x**4,ze);
% This one evaluates:
testint(erf(x),x);
% So why not this one?
testint(erf(x+a),x);
Comment some interesting integrals of algebraic functions;
% The Chebyshev integral.
testint((2*x**6+4*x**5+7*x**4-3*x**3-x*x-8*x-8)/
((2*x**2-1)**2*sqrt(x**4+4*x**3+2*x**2+1)),x);
% This integral came from Dr. G.S. Joyce of Imperial College London.
testint((1+2*y)*sqrt(1-5*y-5*y**2)/(y*(1+y)*(2+y)*sqrt(1-y-y**2)),y);
% This one has a simple result.
testint(x*(sqrt(x**2-1)*x**2-4*sqrt(x**2-1)+sqrt(x**2-4)*x**2
-sqrt(x**2-4))/((1+sqrt(x**2-4)+sqrt(x**2-1))*(x**4-5*x**2+4)),x);
% This used to reveal bugs in the integrator which have been fixed.
% Since it takes a long time and doesn't have a closed form result,
% it has been commented out.
% testint(sqrt(-4*sqrt(2)+9)*x-sqrt(x**4+2*x**2+4*x+1)*sqrt(2),x);
Comment here is an example of using the integrator with pattern
matching;
for all m,n let int(k1**m*log(k1)**n/(p**2-k1**2),k1)=foo(m,n),
int(k1*log(k1)**n/(p**2-k1**2),k1)=foo(1,n),
int(k1**m*log(k1)/(p**2-k1**2),k1)=foo(m,1),
int(k1*log(k1)/(p**2-k1**2),k1)=foo(1,1),
int(log(k1)**n/(k1*(p**2-k1**2)),k1)=foo(-1,n);
int(k1**2*log(k1)/(p**2-k1**2),k1);
COMMENT It is interesting to see how much of this one can be done;
let f1s= (12*log(s/mc**2)*s**2*pi**2*mc**3*(-8*s-12*mc**2+3*mc)
+ pi**2*(12*s**4*mc+3*s**4+176*s**3*mc**3-24*s**3*mc**2
-144*s**2*mc**5-48*s*mc**7+24*s*mc**6+4*mc**9-3*mc**8))
/(384*e**(s/y)*s**2);
int(f1s,s);
factor int;
ws;
Comment the following integrals reveal deficiencies in the current
integrator;
%high degree denominator;
%testint(1/(2-log(x**2+1))**5,x);
%this example should evaluate;
testint(sin(2*x)/cos(x),x);
%this example, which appeared in Tobey's thesis, needs factorization
%over algebraic fields. It currently gives an ugly answer and so has
%been suppressed;
% testint((7*x**13+10*x**8+4*x**7-7*x**6-4*x**3-4*x**2+3*x+3)/
% (x**14-2*x**8-2*x**7-2*x**4-4*x**3-x**2+2*x+1),x);
symbolic summarize!-integral!-test();
end;
|
b91cb53b29a690b064f1984f2c6090707001e64a
|
f7d0f456b8e29ce4f81d9cbe1ca2a57fede3bc5d
|
/solvers/cyclist/bench/entl/17.tst
|
b519cb3403207fa98dc0a621648b3ee059af2190
|
[] |
no_license
|
mihasighi/smtcomp14-sl
|
22467201b3f7e74e2001e259134c040d80afd6b6
|
8dd4ff648e16e31acd193f882082df349e211251
|
refs/heads/master
| 2021-06-06T17:01:18.752298
| 2018-06-28T10:04:32
| 2018-06-28T10:04:32
| 19,853,856
| 1
| 3
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 54
|
tst
|
17.tst
|
BinTreeSeg(x,z) * BinTreeSeg(z,y) |- BinTreeSeg(x,y)
|
deee6f583675a18a2c9e6cc5eb6224140acd640f
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1938/CH5/EX5.1/5_1.sce
|
a459d78641b6db2dde624e18e976f09bb74afde8
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 704
|
sce
|
5_1.sce
|
clc,clear
printf('Example 5.1\n\n')
P=1000*10^3 //load power
phi=acosd(0.8) //power factor lagging angle
V_L=11*10^3 //rated terminal voltae
R_a=0.4 //armature resistance per phase
X_s=3//synchronous reactance per phase
I_L=P/(sqrt(3)*V_L*cosd(phi))
I_aph=I_L //for star connected load
I_a=I_L//current through armature
V_ph=V_L/sqrt(3) //rated terminal volatge phase value
E_ph= sqrt( (V_ph*cosd(phi)+I_a*R_a)^2+(V_ph*sind(phi)+I_a*X_s)^2 ) //emf generated phase value
E_line=E_ph*sqrt(3) //line value of emf generated
regulation=100*(E_ph-V_ph)/V_ph //pecentage regulation
printf('Line value of e.m.f generated is %.2f kV\nRegulation is %.3f percent',E_line*10^-3,regulation)
|
1f82d8a5dc41c81b1a8441b184c0c93ee9fb206c
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/291/CH9/EX9.1a/eg9_1a.sce
|
098d61eca5413dcb38eba9ccc80323c28feb18d7
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 154
|
sce
|
eg9_1a.sce
|
X= [100 110 120 130 140 150 160 170 180 190];
Y= [45 52 54 63 62 68 75 76 92 88];
plot2d(X, Y, -1);
disp("A linear regression model seems appropriate")
|
e1c16dacbf2225d8d1d7c24d2b5ba6deb71774c9
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2375/CH11/EX11.10/ex11_10.sce
|
91bc312afe1ae06b8587a2a3fba0094d493b8138
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 238
|
sce
|
ex11_10.sce
|
// Exa 11.10
clc;
clear;
close;
format('v',6)
// Given data
Cs = 0.04;// in pF
C_M = 2;// in pF
Per = (1/2)*(Cs/C_M)*100;// in %
disp("Parallel resonant frequency is greater than series resonant frequency by "+string(Per)+" %")
|
4a2c6df6e480f1ed545b821813ec33f04717a2c2
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/876/CH8/EX8.1/Ex8_1.sce
|
a267f5a5fa87502a760cff8cfbb9ce7006a0cc59
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 365
|
sce
|
Ex8_1.sce
|
//caption:find deflection sensitivity of CRO
//Ex8.1
clc
clear
close
l=20*10^-3//axial length of deflection plate(in meter)
L=0.2//distance from the centre of the deflection plates to the screen(in meter)
s=5*10^-3//spacing between two plates(in meter)
V=2500//accelerating voltage(in Volt)
S=(l*L)/(2*s*V)
disp(S,'deflection sensitivity of CRO(in m/V)=')
|
677fe55369e4b0f644c2665eef1b759a62b52f07
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1913/CH2/EX2.28/ex28.sce
|
96da2fd9351844c21c7059abef248e300df2b4fd
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 732
|
sce
|
ex28.sce
|
clc
clear
//Input data
m1=100;//Air flow rate in kg/hr
q1=600;//The heat generated by each person in kJ/hr
h1=85;//The enthalpy of air entering the room in kJ/kg
h2=60;//The enthalpy of air leaving the room in kJ/kg
Q1=0.2;//The heat added by each lamp in the room in kW
P1=0.2;//The power consumed by each fan in kW
//Calculations
q=(5*q1)/3600;//The heat generated by 5 persons in the room in kW
Q=3*Q1;//The heat added by three lamps in the room in kW
P=2*P1;//The power consumed by two fans in the room in kW
m=m1/3600;//Mass flow rate of air in kg/s
H=[q+Q+P]+[m*(h1-h2)];//Heat to be removed by the cooler in kW
//Output
printf('The rate at which the heat is to be removed by cooler X = %3.3f kJ/sec ',H)
|
12ca664ce09612a40955546362a027e7e877761b
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/534/CH11/EX11.3/11_3_Crossflow_finned_tube_HeatX.sce
|
ef5e9baa672690a44e0a13a736dbdb7778f26afa
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,141
|
sce
|
11_3_Crossflow_finned_tube_HeatX.sce
|
clear;
clc;
printf('FUNDAMENTALS OF HEAT AND MASS TRANSFER \n Incropera / Dewitt / Bergman / Lavine \n EXAMPLE 11.3 Page 692 \n'); //Example 11.3
// Required gas side surface area
//Operating Conditions
Tho = 100+273 ;//[K] Hot Fluid outlet Temperature
Thi = 300+273 ;//[K] Hot Fluid intlet Temperature
Tci = 35+273 ;//[K] Cold Fluid intlet Temperature
Tco = 125+273 ; //[K] Cold Fluid outlet Temperature
mc = 1 ;//[kg/s] Cold Fluid flow rate
Uh = 100 ;//[W/m^2.K] Coefficient of heat transfer
//Table A.5 Water Properties T = 353 K
cph = 1000 ; //[J/kg.K] Specific Heat
//Table A.6 Saturated water Liquid Properties Tc = 308 K
cpc = 4197 ; //[J/kg.K] Specific Heat
Cc = mc*cpc;
//Equation 11.6b and 11.7b
Ch = Cc*(Tco-Tci)/(Thi-Tho);
// Equation 11.18
qmax = Ch*(Thi-Tci);
//Equation 11.7b
q = mc*cpc*(Tco-Tci);
e = q/qmax;
ratio = Ch/Cc;
printf("\n As effectiveness is %.2f with Ratio Cmin/Cmax = %.2f, It follows from figure 11.14 that NTU = 2.1",e,ratio);
NTU = 2.1;
A = 2.1*Ch/Uh;
printf("\n Required gas side surface area = %.1f m^2",A);
//END
|
14a0b79fc195199ee47b2929b36a4b76b24b0b0a
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3845/CH5/EX5.6/Ex5_6.sce
|
8aa6e31295cc54fb62cf364845aa55a60663ed46
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 338
|
sce
|
Ex5_6.sce
|
//Example 5.6
F_by_A=5.00*10^7;//Force per unit area at 5km depth (N/m^2)
B=2.2*10^9;//Bulk modulus (N/m^2), See Table 5.3
v=(F_by_A)/B;//Fractional decrease in volume
printf('Fractional decrease in volume (in percentage) = %0.1f%%',v*100)
//Openstax - College Physics
//Download for free at http://cnx.org/content/col11406/latest
|
866085c4d1afeedf41ba03d81da37643de81bad3
|
99b4e2e61348ee847a78faf6eee6d345fde36028
|
/Toolbox Test/vco/vco12.sce
|
80c9435467be7b078d4b7dd2da733bbb0f744f14
|
[] |
no_license
|
deecube/fosseetesting
|
ce66f691121021fa2f3474497397cded9d57658c
|
e353f1c03b0c0ef43abf44873e5e477b6adb6c7e
|
refs/heads/master
| 2021-01-20T11:34:43.535019
| 2016-09-27T05:12:48
| 2016-09-27T05:12:48
| 59,456,386
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 235
|
sce
|
vco12.sce
|
//i/p vector contains imaginary elements
x=[1 0.2 0.3 0.5*%i];
y=vco(x,150,500);
disp(y);
//output
// column 1 to 3
//
// - 0.3090170 - 0.5358268 0.9510565
//
// column 4
//
// - 0.8687447 - 0.8804820i
|
2fedf1e12289419012148d134dea9dccaca9a1f0
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3774/CH8/EX8.7/Ex8_7.sce
|
002a1565f5e233687acfffe3645c6893bd879a77
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,918
|
sce
|
Ex8_7.sce
|
// exa 8.7 Pg 232
clc;clear;close;
// Given Data
dv=30;// mm
Wv=10;// N
Wl=25;// N
lf=100;// mm
del1=20;// mm
p=3.5;// N/mm.sq.
valve_lift=2;// mm
C=6;// spring index
tau=500;// N/mm.sq.
G=0.84*10**5;// N/mm.sq.
W=(%pi/4)*dv**2*p;// N (load on the valve at operating condition)
W1=W-Wv;//N (Net load on the valve at operating condition)
//W1*100=Wl*150+S1*200+P*300 // taking momens about the fulcrum
//S1*200+P*300=W1*100-Wl*150 ...eqn(1)
valve_lift=20*100/200;// mm //from figure (when spring is extended by 20 mm)
spring_extension=2*200/100;// mm // from figure (when valve is lifted 2 mm)
valve_load=W*12/10;// N // (when valve is lifted 2 mm)
W2=valve_load-Wv;// N // (when valve is lifted 2 mm)
del2=del1+4;// mm (when valve is lifted)
//S2=S1*del2/del1;// spring force when valve is lifted
//S1*del2/del1-s2=0 ... eqn(1)
//W2*100=Wl*150+S2*200+P*300 // taking momens about the fulcrum
//S2*200+P*300 =W2*100-Wl*150 ... eqn(2)
//S1*200+P*300=W1*100-Wl*150 ...eqn(3)
// solving above 3 eqn. by matrix method
A=[del2/del1 -1 0;200 0 300;0 200 300];
B=[0;W1*100-Wl*150;W2*100-Wl*150];
X=A**-1*B;// solution matrix
S1=X(1);// N
S2=X(2);// N
printf('\n Spring force when valve is lifted = %.1f N',S2)
printf('\n\n Design of spring - ')
k=(S2-S1)/(del2-del1);// N/mm (Spring stiffness)
printf('\n Spring stiffness = %.2f N/mm',k)
Kw=(4*C-1)/(4*C-4)+0.615/C;// Wahl's correction factor
printf('\n Wahl''s correction factor = %.4f',Kw)
// tau=Kw*8*S2*C/%pi/d**2 max. shear stress
d=sqrt(Kw*8*S2*C/%pi/tau);// mm (spring diameter)
printf('\n spring diameter = %.2f mm or %.f mm',d,d)
d=ceil(d);// mm
// k=G*d/(8*C**3*n) (Spring stiffness)
n=G*d/(8*C**3*k);// no. of active coils
printf('\n no. of active coils = %.2f. Use n=7',n)
n=ceil(n);// rounding
nt=n+1;// total no. of active coils
printf('\n total no. of active coils = %.f',nt)
p=lf/(n-1);// mm (pitch of coils)
printf('\n pitch of coils = %.2f mm',p)
|
076810f4fc483afa80dd2997198637182234a0e2
|
fcd4bce0080771389b4a69338ed6443153942183
|
/cores/n64/mupen64plus-rsp-paraLLEl/lightning/check/carry.tst
|
180d896fcc811422f073a5bef6e6a322b4534107
|
[
"GPL-2.0-only",
"GPL-3.0-only",
"LGPL-3.0-only",
"MIT",
"LGPL-2.1-only",
"MPL-1.1",
"LicenseRef-scancode-mame",
"GPL-1.0-or-later",
"Zlib",
"LGPL-2.1-or-later",
"MPL-2.0",
"CC-PDDC",
"LicenseRef-scancode-public-domain",
"LicenseRef-scancode-proprietary-license",
"LicenseRef-scancode-brian-gladman-3-clause",
"BSD-3-Clause",
"LicenseRef-scancode-generic-cla",
"GFDL-1.1-or-later",
"LicenseRef-scancode-other-copyleft",
"GFDL-1.1-only"
] |
permissive
|
wulfebw/retro
|
d4fcf9229b257b3c495f54b1aeb3ea36004ae4aa
|
dad4b509e99e729e39a2f27e9ee4120e3b607f58
|
refs/heads/master
| 2022-10-23T07:17:55.320585
| 2020-06-12T01:38:06
| 2020-06-12T01:38:06
| 260,832,205
| 8
| 1
|
MIT
| 2020-06-12T01:38:08
| 2020-05-03T05:06:17
|
C
|
UTF-8
|
Scilab
| false
| false
| 5,661
|
tst
|
carry.tst
|
#define ix0 0
#define lx0 0
#define ix1 1
#define lx1 1
#define ix2 2
#define lx2 2
#define ix4 4
#define lx4 4
#if __WORDSIZE == 32
# define ix7fe 0x7ffffffe
# define ix7f 0x7fffffff
# define ix80 0x80000000
# define iff 0xffffffff
# define ife 0xfffffffe
# define ifd 0xfffffffd
# define ifc 0xfffffffc
#else
# define ix7fe 0x7ffffffffffffffe
# define ix7f 0x7fffffffffffffff
# define ix80 0x8000000000000000
# define iff 0xffffffffffffffff
# define ife 0xfffffffffffffffe
# define ifd 0xfffffffffffffffd
# define ifc 0xfffffffffffffffc
#endif
/* check jumps are taken and result value is correct */
#define bopr_t(l, u, op, r0, r1, il, ir, iv) \
movi %r0 il \
movi %r1 ir \
b##op##r##u op##u##r##l##r0##r1 %r0 %r1 \
/* validate did jump */ \
movi %r0 0x5a5a5a5a \
op##u##r##l##r0##r1: \
beqi op##u##r##l##ok##r0##r1 %r0 iv \
calli @abort \
op##u##r##l##ok##r0##r1:
#define bopi_t(l, u, op, r0, il, ir, iv) \
movi %r0 il \
b##op##i##u op##u##i##l##r0##r1 %r0 ir \
/* validate did jump */ \
movi %r0 0x5a5a5a5a \
op##u##i##l##r0##r1: \
beqi op##u##i##l##ok##r0##r1 %r0 iv \
calli @abort \
op##u##i##l##ok##r0##r1:
#define bopr_f(l, u, op, r0, r1, il, ir, iv) \
movi %r0 il \
movi %r1 ir \
b##op##r##u op##u##r##l##r0##r1 %r0 %r1 \
beqi op##u##r##l##ok##r0##r1 %r0 iv \
op##u##r##l##r0##r1: \
calli @abort \
op##u##r##l##ok##r0##r1:
#define bopi_f(l, u, op, r0, il, ir, iv) \
movi %r0 il \
b##op##i##u op##u##i##l##r0##r1 %r0 ir \
beqi op##u##i##l##ok##r0##r1 %r0 iv \
op##u##i##l##r0##r1: \
calli @abort \
op##u##i##l##ok##r0##r1:
#define ccop(cc, l, u, op, r0, r1, il, ir, iv) \
bopr##cc(l, u, op, r0, r1, i##il, i##ir, i##iv) \
bopi##cc(l, u, op, r0, i##il, i##ir, i##iv)
#define tadd(l, u, r0, r1, il, ir, iv) \
ccop(_t, l, u, oadd, r0, r1, il, ir, iv) \
ccop(_f, l, u, xadd, r0, r1, il, ir, iv)
#define fadd(l, u, r0, r1, il, ir, iv) \
ccop(_f, l, u, oadd, r0, r1, il, ir, iv) \
ccop(_t, l, u, xadd, r0, r1, il, ir, iv)
#define tsub(l, u, r0, r1, il, ir, iv) \
ccop(_t, l, u, osub, r0, r1, il, ir, iv) \
ccop(_f, l, u, xsub, r0, r1, il, ir, iv)
#define fsub(l, u, r0, r1, il, ir, iv) \
ccop(_f, l, u, osub, r0, r1, il, ir, iv) \
ccop(_t, l, u, xsub, r0, r1, il, ir, iv)
#define xopr6(l,op,r0,r1,r2,r3,r4,r5,llo,lhi,rlo,rhi,vlo,vhi) \
movi %r1 llo \
movi %r2 lhi \
movi %r4 rlo \
movi %r5 rhi \
op##cr %r0 %r1 %r4 \
op##xr %r3 %r2 %r5 \
beqi op##l##L##r0##r1##r2##r3##r4##r5 %r0 vlo \
calli @abort \
op##l##L##r0##r1##r2##r3##r4##r5: \
beqi op##l##H##r0##r1##r2##r3##r4##r5 %r3 vhi \
calli @abort \
op##l##H##r0##r1##r2##r3##r4##r5:
#define xopr4_(l,op,r0,r1,r2,r3,llo,lhi,rlo,rhi,vlo,vhi) \
movi %r0 llo \
movi %r1 lhi \
movi %r2 rlo \
movi %r3 rhi \
op##cr %r0 %r0 %r2 \
op##xr %r1 %r1 %r3 \
beqi op##l##L_##r0##r1##r2##r3 %r0 vlo \
calli @abort \
op##l##L_##r0##r1##r2##r3: \
beqi op##l##H_##r0##r1##r2##r3 %r1 vhi \
calli @abort \
op##l##H_##r0##r1##r2##r3:
#define xopr_4(l,op,r0,r1,r2,r3,llo,lhi,rlo,rhi,vlo,vhi) \
movi %r0 rlo \
movi %r1 rhi \
movi %r2 llo \
movi %r3 lhi \
op##cr %r0 %r2 %r0 \
op##xr %r1 %r3 %r1 \
beqi op##l##_L##r0##r1##r2##r3 %r0 vlo \
calli @abort \
op##l##_L##r0##r1##r2##r3: \
beqi op##l##_H##r0##r1##r2##r3 %r1 vhi \
calli @abort \
op##l##_H##r0##r1##r2##r3:
#define xaddr(l,llo,lhi,rlo,rhi,vlo,vhi) \
xopr6(l,add,r0,r1,r2,v0,v1,v2,i##llo,i##lhi,i##rlo,i##rhi,i##vlo,i##vhi) \
xopr4_(l,add,r0,r1,r2,v0,i##llo,i##lhi,i##rlo,i##rhi,i##vlo,i##vhi) \
xopr_4(l,add,r0,r1,r2,v0,i##llo,i##lhi,i##rlo,i##rhi,i##vlo,i##vhi)
#define xsubr(l,llo,lhi,rlo,rhi,vlo,vhi) \
xopr6(l,sub,r0,r1,r2,v0,v1,v2,i##llo,i##lhi,i##rlo,i##rhi,i##vlo,i##vhi) \
xopr4_(l,sub,r0,r1,r2,v0,i##llo,i##lhi,i##rlo,i##rhi,i##vlo,i##vhi) \
xopr_4(l,sub,r0,r1,r2,v0,i##llo,i##lhi,i##rlo,i##rhi,i##vlo,i##vhi)
.data 16
ok:
.c "ok\n"
.code
prolog
tadd(__LINE__, , r0, r1, x7f, x1, x80)
fadd(__LINE__, , r0, r1, x7fe, x1, x7f)
tsub(__LINE__, , r0, r1, x80, x1, x7f)
fsub(__LINE__, , r0, r1, x7f, x1, x7fe)
tadd(__LINE__, _u, r0, r1, ff, x1, x0)
fadd(__LINE__, _u, r0, r1, x7f, x1, x80)
tsub(__LINE__, _u, r0, r1, x0, x1, ff)
fsub(__LINE__, _u, r0, r1, x80, x1, x7f)
/* 0xffffffffffffffff + 1 = 0x10000000000000000 */
xaddr(__LINE__, ff, ff, x1, x0, x0, x0)
/* 1 + 0xffffffffffffffff = 0x10000000000000000 */
xaddr(__LINE__, x1, x0, ff, ff, x0, x0)
/* 0xfffffffeffffffff + 1 = 0xffffffff00000000 */
xaddr(__LINE__, ff, fe, x1, x0, x0, ff)
/* 1 + 0xfffffffeffffffff = 0xffffffff00000000 */
xaddr(__LINE__, x1, x0, ff, fe, x0, ff)
/* 0xfffffffefffffffe + 2 = 0xffffffff00000000 */
xaddr(__LINE__, fe, fe, x2, x0, x0, ff)
/* 2 + 0xfffffffefffffffe = 0xffffffff00000000 */
xaddr(__LINE__, x2, x0, fe, fe, x0, ff)
/* 0xffffffffffffffff - 1 = 0xfffffffffffffffe */
xsubr(__LINE__, ff, ff, x1, x0, fe, ff)
/* 1 - 0xffffffffffffffff = -0xfffffffffffffffe */
xsubr(__LINE__, x1, x0, ff, ff, x2, x0)
/* 0xfffffffeffffffff - 1 = 0xfffffffefffffffe */
xsubr(__LINE__, ff, fe, x1, x0, fe, fe)
/* 1 - 0xfffffffeffffffff = -0xfffffffefffffffe */
xsubr(__LINE__, x1, x0, ff, fe, x2, x1)
/* 0xfffffffefffffffe - 2 = 0xfffffffefffffffc */
xsubr(__LINE__, fe, fe, x2, x0, fc, fe)
/* 2 + 0xfffffffefffffffe = -0xfffffffefffffffc */
xsubr(__LINE__, x2, x0, fe, fe, x4, x1)
prepare
pushargi ok
ellipsis
finishi @printf
ret
epilog
|
d5787cd0e2c0d28220d6cd8a9be82bfdeb10c0a7
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2045/CH4/EX4.21/Ex4_21.sce
|
6df0c4225293f90eb3713af77074722b3f6a5130
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 208
|
sce
|
Ex4_21.sce
|
//example 21
clear
emicur=1*10^-3;//ampere
colcur=0.995*10^-3;//ampere
alpha1=colcur/emicur;
beta1=alpha1/(1-alpha1);
disp("alpha = "+string((alpha1)));
disp("beta = "+string((beta1)));
|
5e97303fb53c2597d18034f93fe51f07afc665cf
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1865/CH3/EX3.3/prob_3.sce
|
f03a1e35c57427d2e565c3edee2613fb96815e71
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 527
|
sce
|
prob_3.sce
|
//Problem 3
//calculate the energy falling on the target material per second and also calculate the cutoff wavelength of the X-rays
clear
clc
V=20*10^3// potential difference in V
e=1.6*10^(-19)//charge on an electron in C
h=6.6*10^(-34)//planck's constant in J-s
c=3*10^(8)//velocity of light in m/s
i=1//current in mA
E=i*V*10^(-3)//energy in j/s
w=(h*c)/(e*V)//wavelength in nm
printf('energy falling on the target material per second = %.1f j/s \n',E)
printf('cutoff wavelength of the X-rays = %.3f nm',w*10^9)
|
d3527a337436dbff8b70b6e9e403c6f5bfb586a1
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2969/CH7/EX7.6/Ex7_6.sce
|
91bbc09d80879e7bb5df911bda60c213bc171f57
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,378
|
sce
|
Ex7_6.sce
|
clc
clear
//DATA GIVEN
D=0.2; //diameter of engine cylinder in m
L=0.350; //length of stroke in m
Pmico=6.5; //mean effective pressure on cover side in bar
Pmicr=7; //mean effective pressure on crank side in bar
N=420; //engine speed in R.P.M.
Drod=0.02; //diameter of piston rod in m
W=1370; //dead load on the brake in N
S=145; //spring balance reading in N
Db=1.2; //diameter of brake wheel in m
d=0.02; //diameter of rope in m
n=1; //no. of cylinders
k=0.5; //for 4-stroke cylinder
//INDICTED POWER ,I.P.=(n*Pmi*l*A*N*k*10)/6 kW
Aco=(%pi/4)*(D^2); //area of cylinder om cover end in m^2
Acr=(%pi/4)*(D^2-Drod^2); //area of cylinder om crank end in m^2
IPco=(n*Pmico*L*Aco*N*k*10)/6; //IP on cover end side in kW
IPcr=(n*Pmicr*L*Acr*N*k*10)/6; //IP on crank end side in kW
IPtotal=IPco+IPcr; //IP total in kW
//Brake Power, B.P.=(W-S)(pi)(Db+d)N/(60*1000) kW
BP=(W-S)*(%pi)*(Db+d)*N/(60*1000);
eta=BP/IPtotal; //mechanical efficiency
printf('Mechanical efficiency is: %5.4f or %5.2f percent.\n',eta,(eta*100));
|
9a9f39815840df415224ed3a8d047452ba86cc09
|
85ae6a29ca5c892bd94c5f4f4be8b8b8eece3fdf
|
/03/1/DFF1.tst
|
f8fa8d326ddd94e7ba166a4cf91d547bdba8a93c
|
[] |
no_license
|
ddanhviet/xjtecs
|
5bc63cd16362e220b9601080db8c0df4fe5f486f
|
5c24f11e1dacc4ebfb21cec445fd4c413db4420e
|
refs/heads/master
| 2021-01-10T11:54:20.504211
| 2009-09-02T00:51:08
| 2009-09-02T00:51:08
| 50,390,547
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 716
|
tst
|
DFF1.tst
|
// This file is part of the materials accompanying the book
// "The Elements of Computing Systems" by Nisan and Schocken,
// MIT Press. Book site: www.idc.ac.il/tecs
// File name: projects/03/1/DFF1.tst
// created by Xin Jia
load DFF.hdl,
output-file DFF1.out,
//compare-to Bit.cmp,
output-list time%S1.4.1 in%B2.1.2 out%B2.1.2;
set in 0,
tick,
output;
tock,
output;
set in 1,
tick,
output;
tock,
output;
set in 0,
tick,
output;
tock,
output;
set in 1,
tick,
output;
tock,
output;
set in 0,
tick,
output;
tock,
output;
set in 1,
tick,
output;
tock,
output;
set in 0,
tick,
output;
tock,
output;
set in 1,
tick,
output;
tock,
output;
|
bcb8e449f9b16a7f0dc4341d04efdc66596c7db8
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/40/CH8/EX8.8/Exa_8_8.sce
|
47c388aed35b181e979611818e130ffae0ec892c
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 184
|
sce
|
Exa_8_8.sce
|
//Relating DFT and DTFT
xn=[1 2 1 0];
XDFT=fft(xn,-1);
//for F=k/4,k=0,1,2,3
for k=1:4
XF(k)=1+2*%e^(-%i*%pi*(k-1)/2)+%e^(-%i*%pi*(k-1));
end
XF,XDFT
disp(XF,'The DFT of x[n] is');
|
e2e9420fd777d7d7e4499537fd9fe0b2ecccf108
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3136/CH2/EX2.6/Ex2_6.sce
|
59ba4d5c2fadb8f7ea682714ea87e0848a71ad5d
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 491
|
sce
|
Ex2_6.sce
|
clear all; clc;
//This numerical is Ex 2_1S,page 29.
Q1=18.2
N1=1000
N2=1500
delta_p1=10.3
P_s1=6
Q2=Q1*N2/N1
printf("\n The value of Q2 is equal to %g m^3/h",Q2)
delta_p2=delta_p1*((N2/N1)^2)
printf("\n The value of delta_p2 is equal to %0.1f bars",delta_p2)
P_s2=P_s1*(N2/N1)^3
printf("\n The value of P_s2 is equal to %g kW",P_s2)
E1=((Q1/3600)*delta_p1*10^2)/(P_s1)
printf("\n The value of E1=E2 is equal to %g ",E1)
disp("Thus the efficiency is equal to 86.8%")
|
728942ecfeb80f2454a67672af8d4103d50521ab
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2126/CH3/EX3.12/12.sce
|
150c5abc03d5cebc99220debad73e9e5b5383314
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,500
|
sce
|
12.sce
|
clc
clear
//input data
M1=0.25 //Mach number at entrance
f=0.04/4 //frictional factor
D=0.15 //inner duct diameter in m
p1=0.9 //Stagnation pressure ratio at exit to entry when loss in stagnation pressure is 10%
ds=190 ///Change in entropy in J/kg-K
k=1.3 //Adiabatic constant
R=287 //Specific Gas constant in J/kg-K, wrong printing in question
//calculation
p2=2.4064 //Ratio of stagnation pressures at inlet to critical state from gas tables fanno flow tables @M1,k=1.3
X1=8.537 //frictional constant fanno parameter from gas tables,fanno flow tables @M1,k=1.3
p3=p1*p2 //Ratio of stagnation pressures at exit to critical state from gas tables fanno flow tables @M1,k=1.3
M2=0.28 //Mach number at p1=0.9 from gas tables @p3
X2=6.357 //frictional constant fanno parameter from gas tables,fanno flow tables @M2,k=1.3
X3=X1-X2 //overall frictional constant fanno parameter
L1=(X3*D)/(4*f) //Length of the pipe in m
p4=exp(ds/R) //Ratio of Stagnation pressure at entry to Stagnation pressure where ds=190
p5=p1/p4 //Ratio of Stagnation pressures where ds=190 to critical state
M3=0.56 //Mach number where ds=190
X4=0.674 //frictional constant fanno parameter from gas tables,fanno flow tables @M3,k=1.3
X5=X1-X4 //overall frictional constant fanno parameter
L2=(X5*D)/(4*f) //Length of the pipe in m
//output
printf('(A)Length of the pipe is %3.3f m\n (B)Length of the pipe would require to rise entropy by %3i J/kg-K is %3.5f m\n (C)Mach number is %3.2f',L1,ds,L2,M3)
|
ab926660ad04e606ebf5262bb385fba642c85607
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/42/CH4/EX4.8/sadiku_4_8.sce
|
9fc78384591f74cd78ac930a41c620ac08a08288
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 169
|
sce
|
sadiku_4_8.sce
|
clear;
clc;
r1=0,r2=1,z1=-2,z2=2,q1=0,q2=2*%pi;
Q=integrate('p^2','p',r1,r2)*integrate('(cos(Q)^2)','Q',q1,q2)*integrate('1','z',z1,z2);
disp(Q,'Total charge is =');
|
248d8b24705a5533a4d0f7d1dacc15ff305b8344
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1658/CH32/EX32.4/Ex32_4.sce
|
197c410e1880874a5600747031da378c087f7203
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 354
|
sce
|
Ex32_4.sce
|
clc;
Vpk=10;
slewrate=0.5*10**6;
fmax=slewrate/(2*%pi*Vpk);
disp('HZ',fmax*1,"fmax=");//value of microamp 741
slewrate=13*10**6;
fmax=slewrate/(2*%pi*Vpk);
disp('kHZ',fmax*10**-3,"fmax=");//TLO 81
//value of microamp 741 is much lower than that of the input signal.And value of TLO81 is much higher than input signal,therefore TLO81 can be used
|
ea78e8ce1b03676c4d77e6ce1e0726f93993bc72
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1460/CH12/EX12.10/12_10.sce
|
d87e50d734babd95e11bc3b3b06076fecd642bbe
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 439
|
sce
|
12_10.sce
|
clc
//initialization of variables
T1=69 //F
T2=84 //F
P=14.7 //lb/in^2
//calculations
disp("from wet bulb n dry bulb temperature charts,")
sh=82/7000
rh=47
Pwv=0.27
T=62 //F
h=33.3
//results
printf("Specific humidity = %.4f lbm/lbm",sh)
printf("\n Relative humidity = %d ",rh)
printf("\n Partial pressure = %.2f lb/in^2",Pwv)
printf("\n Dew point = %d F",T)
printf("\n Enthalpy per pound of air = %.1f V/lbm dry air",h)
|
100dc92015cc736d913fe7f97cc031bc1133d0bf
|
244971ae8af51184d278cdc2be1c80775413adae
|
/SSSoEDFAgainNoise.sci
|
89c75b84803bfa1242f936c52dc6ae92d346956f
|
[] |
no_license
|
MSCA-SIMFREE/748767
|
5879f1f139b608c7cd2f1bd62325b281c9c1e7d1
|
4726206e514f1e47e939e73b9339c056057866db
|
refs/heads/master
| 2020-12-27T15:21:13.646362
| 2020-02-03T11:40:00
| 2020-02-03T11:40:00
| 237,951,088
| 1
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,158
|
sci
|
SSSoEDFAgainNoise.sci
|
// The code was developed under Horizon2020 Framework Programme
// Project: 748767 — SIMFREE
function Out=SSSoEDFAgainNoise(In,G_dB,NF_dB)
// Optical Amplifier
//
// Calling Sequence
// Out=SSSoEDFAgainNoise(In,G_dB,NF_dB)
//
// Parameters
// In : Optical Input
// G_dB : Small Signal Gain [dB]
// G_dB : Noise Figure [dB]
// Out : Optical Output
//
// Description
// A simple optical amplifier model with constant gain and white stationary noied added.
// The amplifier gain is flat with wavelength.
//
[lhs,rhs]=argn(0);
global MNT MNS MSR MLA
select rhs
case 0 then
error("Expect at least one argument");
case 1 then
G_dB=0; NF_dB=0;
case 2 then
NF_dB=0;
end
NF=10^(NF_dB/10);
G=10^(G_dB/10);
c=299792458;
h=6.62607e-34;
df=1e9*MSR/MNS;
L=1e-9*MLA;
sASE=sqrt(1e3*G*NF*df*h*c/L/4);
x=complex(grand(MNT,1,'nor',0,sASE),grand(MNT,1,'nor',0,sASE));
y=complex(grand(MNT,1,'nor',0,sASE),grand(MNT,1,'nor',0,sASE));
Out=sqrt(G)*In;
Out(:,1)= Out(:,1)+x;
Out(:,2)= Out(:,2)+y;
endfunction
|
a088dab639c40e7e155f14b2bc3ddd140afa36fe
|
a550430672dfb5984bd8561b894897323028b7f5
|
/tests/results/kar02.tst
|
2e700fbede92e874256fa104992b9682fdfe4bc4
|
[] |
no_license
|
carlosmata/LabelPropagation
|
c91f68489a941e6f8cfb15de478d2fe28eadbcad
|
2f169cc4ece49a0d0f868fee15e5eefe02bbc6df
|
refs/heads/master
| 2020-12-18T17:46:23.501020
| 2020-05-09T06:13:16
| 2020-05-09T06:13:16
| 235,474,033
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 165
|
tst
|
kar02.tst
|
argc:7
Dataset: ../datasets/converted/karate.net
Nodes Edges Com Mod NMI Time
seq semisync 34 156 3 0.451841 -1 6.7428e-05
par semisync 34 156 5 0.4442 -1 0.06915
|
e2e8fc03caf54c21c10195485425e006a2766619
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/257/CH13/EX13.9/Example_13_9.sce
|
1568e3a69f9459ad44864e312a2bfb4e6928fbbc
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 98
|
sce
|
Example_13_9.sce
|
s=%s;
A=[-2 -3;4 2]
B=[3;5]
C=[1 1]
TF=C*inv(s*eye(2,2)-A) *B
disp(TF,"transfer function = ")
|
77508fcb4341c644b8b4e5dcbda019d8c9169c24
|
952f05b9b2293792559cddaf7ee402ccc22b0b8d
|
/icclim/test-cases/test-cases-360-days/03-360-day.tst
|
c4d836694ad09880e205a59771129c76361feb3f
|
[
"Apache-2.0"
] |
permissive
|
ptrgast/icclim
|
a5c768bde9f5ce0562ef8250262ca1d70213c461
|
1c43cc7fc5d779f04fb72361a80bde3b232a9580
|
refs/heads/master
| 2020-05-18T18:44:15.153378
| 2020-02-04T07:46:40
| 2020-02-04T07:46:40
| 184,594,303
| 0
| 0
|
NOASSERTION
| 2020-02-04T07:46:41
| 2019-05-02T14:19:16
|
Python
|
UTF-8
|
Scilab
| false
| false
| 268
|
tst
|
03-360-day.tst
|
[Read-the-docs-example-1-360-day] # Read the docs - example 1
indice_name: SU
in_files: ['tasmax_day_HadGEM2-ES_historical_r1i1p1_19891201-19991130.nc', 'tasmax_day_HadGEM2-ES_historical_r1i1p1_19991201-20051130.nc']
dt1: 1990-01-01
dt2: 2004-12-31
slice_mode: month
|
dc1c5d8cf11bfe0fbcb6f7d9cad62988b52b32c7
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2495/CH8/EX8.18.14/Ex8_18_14.sce
|
0cae518828085e84750264b810fcd4b753f3c9d0
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 346
|
sce
|
Ex8_18_14.sce
|
clear
clc
m=[0.01,0.02,0.05,0.10,0.20];//
n=0.01;//
mu=m+n;//
E=[1.0495,1.0315,1.0073,0.9885,0.9694]
E2=0.2225;//in V
R=0.05913;//in V
O=log10(m/n);//
K=(E-E2)/R +O;//
plot(mu,K,'mo-');//
[m,c]=reglin(mu,K)
Ksp=10^-c;//
printf('Ksp=%.2f*10^-14',Ksp/10^-14)
//There are some errors in the solution given in textbook
//page 491
|
71e2be34cf9d8246a90bddc73ab46c22b4450146
|
717ddeb7e700373742c617a95e25a2376565112c
|
/3428/CH23/EX14.23.27/Ex14_23_27.sce
|
c494a934565b10846b41405ec403c0a4fce7d7e3
|
[] |
no_license
|
appucrossroads/Scilab-TBC-Uploads
|
b7ce9a8665d6253926fa8cc0989cda3c0db8e63d
|
1d1c6f68fe7afb15ea12fd38492ec171491f8ce7
|
refs/heads/master
| 2021-01-22T04:15:15.512674
| 2017-09-19T11:51:56
| 2017-09-19T11:51:56
| 92,444,732
| 0
| 0
| null | 2017-05-25T21:09:20
| 2017-05-25T21:09:19
| null |
UTF-8
|
Scilab
| false
| false
| 579
|
sce
|
Ex14_23_27.sce
|
//Section-14,Example-2,Page no.-PC.126
clc;
CH_3COONa_1=0.01
CH_3COOH_1=0.1
K_a=1.75*10^-5
pK_a=-log10(K_a)
pH1=pK_a +(log10(CH_3COONa_1/CH_3COOH_1))
disp(pH1,'pH of the given buffer solution')
HCl=0.0002
CH_3COONa_2=0.01+0.0002
CH_3COOH_2=0.1-0.002
pH2=pK_a +(log10(CH_3COONa_2/CH_3COOH_2))
disp(pH2,'pH of the solution after addition of HCl')
C_1=pH1-pH2 //change in pH
CH_3COONa_3=0.01+0.002
CH_3COOH_3=0.1-0.002
pH3=pK_a +(log10(CH_3COONa_3/CH_3COOH_3))
pH4=pH1-pH3 //change in pH
disp(pH4,'Required pH')
|
2f5563ad955ea640210e3a036cef8f62dfd1c957
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/55/CH11/EX11.5/11ex5.sci
|
a127423a1b01abd99414b345c45a41751975fb21
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 226
|
sci
|
11ex5.sci
|
disp('the GCD of the following numbers is:')
V=int32([12,18]);
[thegcd]=gcd(V)
V=int32([12,-18]);
[thegcd]=gcd(V)
V=int32([12,-16]);
[thegcd]=gcd(V)
V=int32([29,15]);
[thegcd]=gcd(V)
V=int32([14,49]);
[thegcd]=gcd(V)
|
0c3c2100001654a7087921827f29f97f162339c6
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3828/CH11/EX11.5/Ex11_5.sce
|
2098f693b2b0d94bc2d5f94a57d6524a967bbba3
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 218
|
sce
|
Ex11_5.sce
|
//Chapter 11 : Free Electron Theory Of Metals
clear;
//Variable declaration
fE=0.01 //probability
delE=8*10**-20 //ev to J
//Calculations
T=5797/log(99)
//Result
disp('K',T,"Temperature=")
|
e26e6fdc7e13e38f83116efeb55bd1b9d722c666
|
a45f93853fdb67523e71e3e7fb88c4298eae1ef7
|
/Screens/Arms Selection Screen.tst
|
b72fbd75d1efa7541a60bb20d917daf0aac83bbb
|
[] |
no_license
|
voarsh/Disney-Treasure-Planet-Battle-at-Procyon
|
68192cbfdf8b823bc8399e3ea1e62d4976b74aed
|
99cbbc70701ef6e8f9d95eba1052635de992910f
|
refs/heads/master
| 2020-04-16T01:44:03.761947
| 2016-06-08T10:25:05
| 2016-06-08T10:25:05
| 38,745,932
| 3
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 4,495
|
tst
|
Arms Selection Screen.tst
|
ScreenName String 'Arms Selection Screen'
ImplName String 'NULL SCREEN'
ElementChunkArray Int 14
ScreenElementType Int 0
ImplName String 'Assemble Fleet Backdrop'
TabIndex Int 8
Selectable Bool False
Enabled Bool True
ReferenceArea Rect( 0, 0, 800, 600 ) # left,top,right,bottom
ScreenElementType Int 1
ImplName String 'Fleet Select Button'
TabIndex Int 11
Selectable Bool True
Enabled Bool True
ReferenceArea Rect( 27, 479, 459, 559 ) # left,top,right,bottom
Font String 'UniversBold14'
Text String 'IDGS_TPFRONTENDTEXT_SCREENS_NULL'
Color Colour( 1.000000, 1.000000, 1.000000, 1.000000 )
HotKey Int -1
ScreenElementType Int 1
ImplName String 'AutoAssign Button'
TabIndex Int 1
Selectable Bool False
Enabled Bool True
ReferenceArea Rect( 168, 427, 320, 465 ) # left,top,right,bottom
Font String 'BlackChancery16'
Text String 'IDGS_TPFRONTENDTEXT_SCREENS_AUTO_ASSIGN'
Color Colour( 1.000000, 1.000000, 1.000000, 1.000000 )
HotKey Int -1
ScreenElementType Int 1
ImplName String 'Open Arms Selection Screen'
TabIndex Int 5
Selectable Bool False
Enabled Bool True
ReferenceArea Rect( 308, 45, 434, 83 ) # left,top,right,bottom
Font String 'BlackChancery16'
Text String 'IDGS_TPFRONTENDTEXT_SCREENS_ARMS'
Color Colour( 1.000000, 1.000000, 1.000000, 1.000000 )
HotKey Int -1
ScreenElementType Int 1
ImplName String 'Open Crew Selection Screen'
TabIndex Int 4
Selectable Bool False
Enabled Bool True
ReferenceArea Rect( 177, 45, 303, 83 ) # left,top,right,bottom
Font String 'BlackChancery16'
Text String 'IDGS_TPFRONTENDTEXT_SCREENS_CREW'
Color Colour( 1.000000, 1.000000, 1.000000, 1.000000 )
HotKey Int -1
ScreenElementType Int 1
ImplName String 'Open Ship Selection Screen'
TabIndex Int 3
Selectable Bool False
Enabled Bool True
ReferenceArea Rect( 46, 45, 172, 83 ) # left,top,right,bottom
Font String 'BlackChancery16'
Text String 'IDGS_TPFRONTENDTEXT_SCREENS_SHIPS'
Color Colour( 1.000000, 1.000000, 1.000000, 1.000000 )
HotKey Int -1
ScreenElementType Int 5
ImplName String 'Arms Types Available'
TabIndex Int 7
Selectable Bool True
Enabled Bool True
ReferenceArea Rect( 516, 330, 770, 504 ) # left,top,right,bottom
Font String 'Univers12'
ScreenElementType Int 1
ImplName String 'Ship Victory Points'
TabIndex Int 15
Selectable Bool False
Enabled Bool True
ReferenceArea Rect( 488, 79, 772, 109 ) # left,top,right,bottom
Font String 'UniversLightBold14'
Text String 'IDGS_TPFRONTENDTEXT_SCREENS_BUTTON'
Color Colour( 1.000000, 1.000000, 1.000000, 1.000000 )
HotKey Int -1
ScreenElementType Int 1
ImplName String 'Open Load Arms Profile Dialog Button'
TabIndex Int 18
Selectable Bool False
Enabled Bool True
ReferenceArea Rect( 502, 45, 628, 83 ) # left,top,right,bottom
Font String 'BlackChancery16'
Text String 'IDGS_TPFRONTENDTEXT_SCREENS_LOAD_ARMS'
Color Colour( 1.000000, 1.000000, 1.000000, 1.000000 )
HotKey Int -1
ScreenElementType Int 1
ImplName String 'Open Save Arms Profile Dialog Button'
TabIndex Int 19
Selectable Bool False
Enabled Bool True
ReferenceArea Rect( 634, 45, 759, 83 ) # left,top,right,bottom
Font String 'BlackChancery16'
Text String 'IDGS_TPFRONTENDTEXT_SCREENS_SAVE_ARMS'
Color Colour( 1.000000, 1.000000, 1.000000, 1.000000 )
HotKey Int -1
ScreenElementType Int 1
ImplName String 'Open Next Arrow Button'
TabIndex Int 2
Selectable Bool False
Enabled Bool True
ReferenceArea Rect( 590, 510, 670, 590 ) # left,top,right,bottom
Font String 'BlackChancery16'
Text String 'IDGS_TPFRONTENDTEXT_SCREENS_NULL'
Color Colour( 1.000000, 1.000000, 1.000000, 1.000000 )
HotKey Int -1
ScreenElementType Int 1
ImplName String 'Arms Information Button'
TabIndex Int 16
Selectable Bool True
Enabled Bool True
ReferenceArea Rect( 526, 121, 776, 280 ) # left,top,right,bottom
Font String 'Univers10'
Text String 'IDGS_TPFRONTENDTEXT_SCREENS_BUTTON'
Color Colour( 1.000000, 1.000000, 1.000000, 1.000000 )
HotKey Int -1
ScreenElementType Int 1
ImplName String 'Arms Upgrade Info Button'
TabIndex Int 20
Selectable Bool True
Enabled Bool True
ReferenceArea Rect( 67, 163, 243, 294 ) # left,top,right,bottom
Font String 'Univers12'
Text String 'IDGS_TPFRONTENDTEXT_BUTTON_CREW'
Color Colour( 1.000000, 1.000000, 1.000000, 1.000000 )
HotKey Int -1
ScreenElementType Int 1
ImplName String 'Modify Arms Position Button'
TabIndex Int 17
Selectable Bool True
Enabled Bool True
ReferenceArea Rect( 46, 91, 438, 371 ) # left,top,right,bottom
Font String 'Univers10'
Text String 'IDGS_TPFRONTENDTEXT_SCREENS_BUTTON'
Color Colour( 1.000000, 1.000000, 1.000000, 1.000000 )
HotKey Int -1
|
2b905b7ae17b737942e17ed167dfa3a09a51728d
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/978/CH10/EX10.9/Example10_9.sce
|
e9aba09bc9d953c7e1dda75d0fa8639efa4ceaa0
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 429
|
sce
|
Example10_9.sce
|
//chapter-10,Example10_9,pg 503
err=0.5*10^-2//(+/-)0.5%
R=100*10^6//test resistance
//Re=((R*2*Rip)/(R+(2*Rip)))
Re1=R-(err*R)//err=+0.5
Re2=R-(-err*R)//err=-0.5
Rip1=((R*Re1)/(2*(R-Re1)))//err=+0.5
Rip2=((R*Re2)/(2*(R-Re2)))//err=-0.5
printf("resistance of each insulating post-1\n")
printf("Rip1=%.2f ohm\n",Rip1)
printf("resistance of each insulating post-2\n")
printf("Rip2=%.2f ohm",Rip2)
|
f3b0048a83e70ee972aad8772a5155e2a7d950fb
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2333/CH4/EX4.19/19.sce
|
82567c4eada2562c89b1f159eca2edd7afeeb32a
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 577
|
sce
|
19.sce
|
clc
// Given that
lambda = 7620 // Wavelength of light in angstrom
mu_r = 1.53914 // refractive index of quartz for right handed circularly polarized light
mu_l = 1.5392 // refractive index of quartz for left handed circularly polarized light
t = 0.5 // thickness of plate in mm
// Sample Problem 19 on page no. 220
printf("\n # PROBLEM 19 # \n")
theta = %pi*t*(mu_l-mu_r)/(lambda*1e-7)*180/%pi // Rotation of plane of polarization
printf("\n Standard formula used \n theta = pi*t*(mu_l-mu_r)/(lambda). \n")
printf("\n Rotation of plane of polarization is %f degree.",theta)
|
0bbdb19df15860df542a248136f75d40dad76c0f
|
181f67b4868e49ca80872d6ac088a51540f90da6
|
/186A3/grating.sce
|
16a965de13db1397065a41d680abe6c14a7d81f0
|
[] |
no_license
|
nobody51/AP186
|
567f25ba1ad7f71ad2983860078eeaccffa46080
|
cb916fc9b38b508026403a2227ffc76d490fe948
|
refs/heads/master
| 2021-08-28T09:35:55.488122
| 2017-12-11T21:34:46
| 2017-12-11T21:34:46
| 104,969,401
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 237
|
sce
|
grating.sce
|
nx = 500; ny = 500;
x = linspace(-1,1,nx);
y = linspace(-1,1,ny);
[X,Y] = ndgrid(x,y);
A = sin(20*X);
A (find(A>0.0 ) ) = 1;
A (find(A<0.0 ) ) = 0;
f = scf();
grayplot(x,y,A);
f.color_map = graycolormap(32);
xs2png(gcf(),'grating.png');
|
456d4be68b94344d3cbd3bb9e0ba747e52c33bd6
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2024/CH13/EX13.2/13_2.sce
|
f7572ff50f78de723ce582d98d3d7ecda1a43880
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 832
|
sce
|
13_2.sce
|
clc
//Initialization of variables
rv=8
k=1.4
Qa=1280
pa=14.7 //psia
R=10.73/29
Ta=540 //R
J=778
cv=0.17 //Btu/lbm R
//calculations
etat=1-1/rv^(k-1)
W=etat*Qa
va=R*Ta/pa
vb=va/rv
Tb=Ta*rv^(k-1)
dt=Qa/cv
Tc=Tb+dt
pb=pa*(rv)^(k-1)
pc= Tc*pb/Tb
Td=Tc*(1/rv)^(k-1)
pd=pa*Td/Ta
imep = W*J/144/(va-vb)
//results
printf("Thermal efficiency = %.1f percent",etat*100)
printf("\n Work done = %d btu/lbm air",W)
printf("\n Imep = %d lbf/in^2",imep)
printf("\n Pressure and temperature at A = %.1f psia and %d R",pa,Ta)
printf("\n Pressure and temperature at B = %d psia and %d R",pb,Tb)
printf("\n Pressure and temperature at C = %d psia and %d R",pc,Tc)
printf("\n Pressure and temperature at D = %d psia and %d R",pd,Td)
printf("\n The pressures given in textbook are wrong. Please check using a calculator")
|
712301dca8ec8c053686fad0cb60db111e490794
|
8217f7986187902617ad1bf89cb789618a90dd0a
|
/source/2.4/macros/percent/%p_o_lss.sci
|
536b434bfccf31ec55c76d7862908bfb8b762cdd
|
[
"LicenseRef-scancode-public-domain",
"LicenseRef-scancode-warranty-disclaimer"
] |
permissive
|
clg55/Scilab-Workbench
|
4ebc01d2daea5026ad07fbfc53e16d4b29179502
|
9f8fd29c7f2a98100fa9aed8b58f6768d24a1875
|
refs/heads/master
| 2023-05-31T04:06:22.931111
| 2022-09-13T14:41:51
| 2022-09-13T14:41:51
| 258,270,193
| 0
| 1
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 131
|
sci
|
%p_o_lss.sci
|
function [r]=%p_o_lss(s1,s2)
//r=%p_o_lss(s1,s2) <=> r=(s1==s2) polynomail==state-space syslin list
//!
// Copyright INRIA
r=%f
|
8e8c8e88ce9078fbaedcc8f1a84eaf1b6c495f9d
|
78ff3e16a288175ff606f38ee5ee877d4844773e
|
/6_chapter/6_05_solution.sce
|
43e02eee0a37b9615c7628b576d9b90f1a61b19f
|
[] |
no_license
|
rngalvan/fluid-mech-cengel
|
16c12ed8f71f25c812700be4322328c5663b71cf
|
ee45f924e73cbb8b5716fac43504dac15ffd1f64
|
refs/heads/master
| 2021-05-27T20:52:22.586023
| 2013-04-17T04:25:37
| 2013-04-17T04:25:37
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 708
|
sce
|
6_05_solution.sce
|
//Solution 6-5
WD=get_absolute_file_path('6_05_solution.sce');
datafile=WD+filesep()+'6_05_example.sci';
clc;
exec(datafile)
//unit conversion
V_1 = V_1 * 1000 / 3600 //from [km/hr] to [m/s]
Wdot_act = Wdot_act * 1000 //from [kW] to [W]
//(a)
A_1 = %pi / 4 * D**2 //cross-sectional area of turbine blade span
mdot = rho * V_1 * A_1
Wdot_max = mdot * V_1**2 / 2
eta_turbine = Wdot_act / Wdot_max
printf("The efficiency of wind turbine generator is %1.2f percent", eta_turbine * 100)
//(b)
V_2 = V_1 * sqrt(1 - eta_turbine)
F_R = mdot * (V_2 - V_1) //momentum equation in x direction
printf("The Horizontal force exerted by wind in positive x direction on the supporting mast of wind turbine is %1.0f N", F_R)
|
51062d6a60f2e1b8fa3c054d498bd74733b42b08
|
8217f7986187902617ad1bf89cb789618a90dd0a
|
/source/2.4/macros/m2sci/%52sci.sci
|
5f2641be491a5ab3f4bdb4d521a1d0e142d3d3ba
|
[
"LicenseRef-scancode-public-domain",
"LicenseRef-scancode-warranty-disclaimer"
] |
permissive
|
clg55/Scilab-Workbench
|
4ebc01d2daea5026ad07fbfc53e16d4b29179502
|
9f8fd29c7f2a98100fa9aed8b58f6768d24a1875
|
refs/heads/master
| 2023-05-31T04:06:22.931111
| 2022-09-13T14:41:51
| 2022-09-13T14:41:51
| 258,270,193
| 0
| 1
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 201
|
sci
|
%52sci.sci
|
function [stk,txt,top]=%52sci()
// genere le code relatif a la negation
//!
// Copyright INRIA
txt=[]
s2=stk(top)
if s2(2)=='2' then s2(1)='('+s2(1)+')',end
stk=list('~'+s2(1),s2(2),s2(3),s2(4),'4')
|
68012bbf4056499bf203c07c838d2c21dcc1c938
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/683/CH3/EX3.13/MS_13.sce
|
83397ef6b24257b992b2f9b2ea4d42a5d4111793
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 172
|
sce
|
MS_13.sce
|
// sum 3-13
clc;
clear;
R1=50;
p=75;
pmax=125;
R2=sqrt((pmax+p)*R1^2/(pmax-p));
t=R2-R1;
// printing data in scilab o/p window
printf("t is %0.1f mm ",t);
|
36175f602a5eca518fa36b630ac28a5b11f5ed47
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/980/CH4/EX4.23/4_23.sce
|
f27dfe5054bd21879c1822850ff109dc062c50cf
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 282
|
sce
|
4_23.sce
|
clc;
clear;
format('v',11);
Er=-110; //as electric field has only radial component
Re=6350000;
Dr=8.85*10^-12*Er;
Q=Dr*4*3.14*Re^2;
disp(Q,"total charge dispersed on the earth(in coulomb)=");
rho_s=Q/(4*3.14*Re^2);
disp(rho_s,"surface charge density(in C/m^2)=");
|
f7eadb99622d8f7be93780f06c04f6392380cb69
|
59e7c95649eb8894e1d6f0bcac3ca7ea2b023217
|
/Raiz de C.sce
|
378899c776835ec8b9c432f232d7b6c5ce5a749b
|
[] |
no_license
|
nascimento-luciano/Scilab-Matlab
|
cb5ee9d97df3ed0f4311573df0fd37a88b3394d8
|
1cba42b68cc7954ff4c7dd6b13c7d8e6bd3d039e
|
refs/heads/main
| 2023-03-19T21:06:18.691193
| 2021-03-18T00:57:29
| 2021-03-18T00:57:29
| 348,877,701
| 1
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 211
|
sce
|
Raiz de C.sce
|
//Calcular raiz quadrada de C
c = input ("Digitar valor de c = ");
xa = 1; xf = (xa + c/xa)/2
while xf <> xa
xa = xf; xf = (xa + c/xa)/2
end
printf("raiz quadrada de %10.2f = %10.7f", c, xa);
|
8d68006e05a8a70b0e27317086543de5ab5ee04a
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/135/CH1/EX1.4/EX4.sce
|
4d5031afc051f2ee651a2ea2b0669395d12f285e
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 475
|
sce
|
EX4.sce
|
// Example 1.4: Contact difference of potential
clc, clear
N=5e22; // Number of acceptor or donor atoms per metres cube of step graded p-n junction
ni=1.45e16; // Intrinsic carrier concentration in inverse metres cube
VT=25e-3; // Voltage equivalent to temperatue at room temperature in volts
Vo=VT*log(N^2/ni^2); // Contact difference of potential in volts
Vo=Vo*1e3; // Contact difference of potential in milivolts
disp(Vo,"Contact difference of potential (mV) = ");
|
4dd2cbbfd54cda20dadf551f08fa9ef81a0a9790
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1523/CH4/EX4.33/ex4_33.sce
|
6b76d6219c98932d068cbb5f0d42124a16fc317a
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 453
|
sce
|
ex4_33.sce
|
//AC Circuits : example 4.33 :pg(4.27)
Vm=177;
Im=14.14;
phi=30;
V=(Vm/sqrt(2));
I=(Im/sqrt(2));
pf=cosd(30);
P=(V*I*pf);
disp("v(t)=177sin(314t+10)");// value of 10 is in degrees
disp("i(t)=14.14sin(314t-20)");//value of 20 is in degrees
mprintf("\nCurrent i(t) lags behind voltage v(t) by 30degrees");
disp("phi=30degrees");
printf("Power factor pf=cos(30)=%.3f (lagging)",pf);
printf("\nPower consumed P=V*I*cos(phi)=%.1f W",P);
|
ecb6a1605ee5f0110b2c98c621c03664c979ecfd
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/608/CH14/EX14.08/14_08.sce
|
6153070dabcad4f538bd6c04c196fdc755785898
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 349
|
sce
|
14_08.sce
|
//Problem 14.08: A supply voltage has a mean value of 150 V. Determine its maximum value and its rms value
//initializing the variables:
Vmean = 150; // in Volts
//calculation:
//for a sine wave
Vmax = Vmean/0.637
Vrms = 0.707*Vmax
printf("\n\n Result \n\n")
printf("\n peak value = %.1f V",Vmax)
printf("\n rms value = %.1f V",Vrms)
|
9d889d642588694e9020e915f20f7f06d4be36fa
|
56743f362de98f910919780918c86679ec136d3e
|
/exercicios-propostas-fichas/ficha9.sce
|
84d9656edcb4c8202a2a33bf9e856d95676f4bbd
|
[] |
no_license
|
andre-paulo98/fichas-ei-a1s2-MD
|
aaf75e6b45cbac7ebbf92949deb783ce6f1201b7
|
99c50eb08cf409ce8e5aa8301728dbe9148e16c5
|
refs/heads/master
| 2022-02-24T23:13:49.293944
| 2019-10-06T17:50:26
| 2019-10-06T17:50:26
| 171,472,323
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 909
|
sce
|
ficha9.sce
|
clc
clear
exec('tree_plot.sce',-1)
function ordenacao=em_ordem(Arvore)
n=length(Arvore)
Arvore(n+1:2^ceil(log2(n))-1)=0
n=length(Arvore)
ordenacao=zeros(1,n)
potencia=floor(log2(n))
passo=2^potencia
k=1
while k<n & passo>=1
for i=passo:passo:n
if ordenacao(1,i)==0 then
ordenacao(1,i)=k
k=k+1
end
end
passo=passo/2
end
endfunction
function isBusca(Arvore)
ordem = em_ordem(Arvore)
EBusca = %T
for i=1:length(Arvore)-1
if Arvore(i) > Arvore(i+1)
printf('Falhou no indice %d, o valor %d é maior que %d\n', i, Arvore(i), Arvore(i+1))
EBusca = %F
end
end
disp(EBusca)
endfunction
//Exemplo:
//Arvore=[60 55 65 22 56 62 71 3 23 0 58]
Arvore=[60 55 65 22 0 0 0 56 0 62 71 3 23 0 58]
tree_plot(Arvore)
isBusca(Arvore)
|
150c0a888a9de9e2caeb7245f007360721012279
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/995/CH8/EX8.2/Ex8_2.sce
|
0ed9b7f55d0c6f025d45f7d3c3136ec8cdf17fec
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 117
|
sce
|
Ex8_2.sce
|
//Ex:8.2
clc;
clear;
close;
V_in=5*10^-3;
R_in=2*10^6;
I_in=V_in/R_in;
printf("Input current = %e A",I_in);
|
e460941d3c8b8a6c6bf2cb1a875b36b11b365dcc
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3281/CH2/EX2.7/ex2_7.sce
|
e442d13fc4d650b7e349f68ced090a132fb59df7
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 655
|
sce
|
ex2_7.sce
|
//Page Number: 95
//Example 2.5
clc;
//Given,
c=3D+8; //m/s
a=4; //cm
b=2; //cm
//(i) Mode
lamc=2*a; //cm
lamcm=lamc/100; //m
fc=c/lamcm;
//20% above fc
f=1.2*fc; //Hz
//Operating wavelength
lam1=c/f; //cm
//For TE10 mode
lamc10=2*b;//cm
lamcm10=lamc10/100;//m
fc10=c/lamcm10;
disp('Hence mode of operation is TE10','Hz',fc,'Since guide is operating at');
//(ii)Guide wavelength
lamm1=lam1*100;//cm
lamg=lamm1/(sqrt(1-(lamm1/lamc)^2));
disp('cm',lamg,'Guide wavelength:');
//(iii) Phase velocity
vp=f*lamg;
disp('m/s',vp/100,'Phase velocity:');
//(iii) Group velocity
vg=c^2/vp;
disp('m/s',vg,'Group velocity:');
|
79ec189d929790f63867b474f0bd499e6ef50118
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2660/CH22/EX22.3/Ex22_3.sce
|
6333c28ca39d71a423d618a879c81093c9b93b29
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 874
|
sce
|
Ex22_3.sce
|
clc
z = 6 // number of steps
n1 = 180 // rev/min
n2 = 100 // rev/min
Rn = n1/n2
phi = (Rn)^(1/(z-1)) // common ratio
n3 = phi*n2 // rev/min
n4 = (phi)^2*n2 // rev/min
n5 = (phi)^3*n2 // rev/min
n6 = (phi)^4*n2 // rev/min
n7 = 225 // speed of input shaft in rev/min
Ta=poly(0,'Ta')
tb=n7/n5*Ta
Ta=roots(tb+Ta-52)
tb=horner(tb,Ta)
tb = ceil(tb)
Tc=poly(0,'Tc')
td=n7/n6*Tc
Tc=roots(td+Tc-52)
td=horner(td,Tc)
Tc = ceil(Tc)
Te=poly(0,'Te')
tf=n7/n1*Te
Te=roots(tf+Te-52)
tf=horner(tf,Te)
tf = ceil(tf)
Th=poly(0,'Th')
tj=n2/n5*Th
Th=roots(tj+Th-46)
Th = ceil(Th)
tj=horner(tj,Th)
tj = floor(tj)
Ti=poly(0,'Ti')
tg=n5/n5*Ti
Ti=roots(tg+Ti-46)
tg=horner(tg,Ti)
printf("\n Ta = %d Tb = %d \n Tc = %d Td = %d \n Te = %d tf = %d \n Th = %d Tj = %d \n Ti = %d Tg = %d" , Ta,tb,Tc,td,Te,tf,tj,Th,Ti,tg)
// 'Answers vary due to round off error'
|
d83e88a87596d9e99f0701e5ef64b6fd8cee46e7
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/611/CH14/EX14.10/Chap14_Ex10.sce
|
45776ca7185b52e22a62f2202ee4c473665e5721
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 6,053
|
sce
|
Chap14_Ex10.sce
|
// Y.V.C.Rao ,1997.Chemical Engineering Thermodynamics.Universities Press,Hyderabad,India.
//Chapter-14,Example 10,Page 500
//Title: Adiabatic reaction temperature
//================================================================================================================
clear
clc
//INPUT
T0=298.15;//temperature at the entrance (feed) in K
P=0.1;//pressure (operating) in MPa
//The reaction is given by: H2(g)+(1/2)O2(g)--->H20(g)
n=[1;-1;-0.5];//stoichiometric coefficients of H2O(g),H2(g)and O2(g) respectively (no unit)
n_r=[1;0.5];//stochiometric coefficients on the reactant side alone for computing the right hand side of Eq.(A)
m=[0;1;0.5];//inlet mole number of H2O(g),H2(g) and O2(g) respectively
//The isobaric molar capacity is given by Cp=a+bT+cT^2+dT^3+eT^-2 in J/molK and T is in K from Appendix A.3
//coefficient in the expression for computing the isobaric molar heat capacity from Appendix A.3 (for H2O(g),H2(g),O2(g) respectively)
a=[28.850;27.012;30.255];
//coefficient in the expression for computing the isobaric molar heat capacity from Appendix A.3 (for H2O(g),H2(g),O2(g) respectively)
b=[12.055*10^-3;3.509*10^-3;4.207*10^-3];
//coefficient in the expression for computing the isobaric molar heat capacity from Appendix A.3 (for H2O(g),H2(g),O2(g) respectively)
c=[0;0;0];
//coefficient in the expression for computing the isobaric molar heat capacity from Appendix A.3 (for H2O(g),H2(g),O2(g) respectively)
d=[0;0;0];
//coefficient in the expression for computing the isobaric molar heat capacity from Appendix A.3 (for H2O(g),H2(g),O2(g) respectively)
e=[1.006*10^5;0.690*10^5;-1.887*10^5];
del_H=-241.997;//enthalpy of reaction at 298.15K in kJ
del_G=-228.600;//Gibbs free energy of reaction at 298.15K in kJ
R=8.314;//universal gas constant in J/molK
//CALCULATION
//Framing the isobaric molar heat capacity expression
del_a=(n(1,:)*a(1,:))+(n(2,:)*a(2,:))+(n(3,:)*a(3,:));
del_b=(n(1,:)*b(1,:))+(n(2,:)*b(2,:))+(n(3,:)*b(3,:));
del_c=(n(1,:)*c(1,:))+(n(2,:)*c(2,:))+(n(3,:)*c(3,:));
del_d=(n(1,:)*d(1,:))+(n(2,:)*d(2,:))+(n(3,:)*d(3,:));
del_e=(n(1,:)*e(1,:))+(n(2,:)*e(2,:))+(n(3,:)*e(3,:));
mtot=m(1,:)+m(2,:)+m(3,:);//calculation of the total mole number of feed entering (no unit)
del_n=n(1,:)+n(2,:)+n(3,:);//calculation of the total mole number (no unit)
//Using Eq.14.21 to compute the value of del_H0 in kJ
del_H0=((del_H*10^3)-((del_a*T0)+((del_b/2)*T0^2)+((del_c/3)*T0^3)+((del_d/4)*T0^4)-(del_e/T0)))*10^-3;
//Using Eq.14.23 to compute the integration constant
I=(1/(R*T0))*(((del_H0*10^3)-(del_a*T0*log(T0))-((del_b/2)*T0^2)-((del_c/6)*T0^3)-((del_d/12)*T0^4)-((del_e/2)*(1/T0))-(del_G*10^3)));
//The conversion is computed by using Eq.(A) and by Eq.(B) and the two are plotted with respect to temperature. The point of intersection gives the adiabatic reaction temeperature and from that the conversion and the composition are determined.Let E_A denote the conversion obtained by using Eq.A and E_B denote the conversion obtained by using Eq.B (no unit)
//For both the equations, conversion is determined for a temperature range of 2000 to 3800K, by incrementing temperature by 100K every time.
T=2000:100:3800;//framing the temperature range in K
l=length(T);//iteration parameter (no unit)
i=1;//iteration parameter
tol=1e-4;//tolerance limit for convergence of the system when using fsolve
while i<l|i==l
del_H_T(i)=((del_H0*10^3)+((del_a*T(:,i))+((del_b/2)*T(:,i)^2)+((del_c/3)*T(:,i)^3)+((del_d/4)*T(:,i)^4)-(del_e/T(:,i))))*10^-3;
del_G_T(i)=((del_H0*10^3)-(del_a*T(:,i)*log(T(:,i)))-((del_b/2)*T(:,i)^2)-((del_c/6)*T(:,i)^3)-((del_d/12)*T(:,i)^4)-((del_e/2)*(1/T(:,i)))-(I*R*T(:,i)))*10^-3;
Ka(i)=exp(-(del_G_T(i)*10^3)/(R*T(:,i)));//calculation of the equilibrium constant (no unit)
//using Eq.A to determine the conversion(no unit)
E_A(i)=(1/del_H_T(i)*10^-3)*(-((((n_r(1,:)*a(2,:))+(n_r(2,:)*a(3,:)))*(T(:,i)-T0))+((((n_r(1,:)*b(2,:))+(n_r(2,:)*b(3,:)))/2)*((T(:,i))^2-(T0^2)))+((((n_r(1,:)*c(2,:))+(n_r(2,:)*c(3,:)))/3)*((T(:,i))^3-(T0^3)))+((((n_r(1,:)*d(2,:))+(n_r(2,:)*d(3,:)))/4)*((T(:,i))^4-(T0^4)))+(((n_r(1,:)*a(2,:))+(n_r(2,:)*a(3,:)))*((1/T(:,i))-(1/T0)))));
Eguess(i)=0.99;//taking a guess value for the conversion (no unit)
function[fn]=solver_func(Ei)
//Function defined for solving the system (Using Eq.B to determine the conversion (no unit))
fn=((((m(1,:)+(n(1,:)*Ei))/(mtot+(del_n*Ei)))^n(1,:))*(((m(2,:)+(n(2,:)*Ei))/(mtot+(del_n*Ei)))^n(2,:))*(((m(3,:)+(n(3,:)*Ei))/(mtot+(del_n*Ei)))^n(3,:)))-Ka(i);
endfunction
[E_B(i)]=fsolve(Eguess(i),solver_func,tol)//using inbuilt function fsolve for solving the system of equations
i=i+1
end
//plotting the conversions determined above (using Eqs.A and B respectively) against temperature to determine the adiabatic reaction temperature in K
plot(T,E_A,T,E_B);
legends(['Equation (A)';'Equation (B)'],[2,3],opt="lr");
xtitle('Plot of degree of conversion versus adiabatic reaction temperature','T(K)','E');
//From the above plot, it is determined that the point of intersection occurs around 3440K, which is taken as the reaction temperature, where the conversion=0.68(no unit). Therefore, the conversion at the adiabatic reaction temperature is 0.68
T_adiabatic=3440;//the adiabatic reaction temperature in K
E_adiabatic=0.68;//conversion at the adiabatic reaction temperature (no unit)
//Calculation of the composition of the burned gas (H2,O2 and H2O respectively) at the adiabatic reaction temperature (no unit)
y_H2=((m(2,:)+(n(2,:)*E_adiabatic))/(mtot+(del_n*E_adiabatic)));
y_O2=((m(3,:)+(n(3,:)*E_adiabatic))/(mtot+(del_n*E_adiabatic)));
y_H2O=((m(1,:)+(n(1,:)*E_adiabatic))/(mtot+(del_n*E_adiabatic)));
//OUTPUT
mprintf('\n The adiabatic reaction temperature=%d K\n',T_adiabatic);
mprintf('\n The composition of the burned gases is given by: y_H2=%0.4f \t y_O2=%0.4f \t y_H2O=%0.4f \n',y_H2,y_O2,y_H2O);
//===============================================END OF PROGRAM===================================================
|
0999516907c55a99a523ef01c8bdc0e9c1ac811d
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2375/CH10/EX10.14/ex10_14.sce
|
409a65398cbcd00623959c45ecc56a2698d0e173
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 274
|
sce
|
ex10_14.sce
|
// Exa 10.14
clc;
clear;
close;
format('v',5)
// Given data
A = 200;
BW = 10;// in kHz
Beta = 10/100;
Af =A/(1+(A*Beta));
disp(Af,"The gain with negative feedback is");
BWf = BW*(1+(A*Beta));// in kHz
disp(BWf,"The bandwidth with negative feedback in kHz is");
|
dcff525b1ead7b650b2778c03c4ba66e366bc9d3
|
6e257f133dd8984b578f3c9fd3f269eabc0750be
|
/ScilabFromTheoryToPractice/Computing/testgrep.sce
|
00c11327f2b9eae8300d58d5a07d8723135d9388
|
[] |
no_license
|
markusmorawitz77/Scilab
|
902ef1b9f356dd38ea2dbadc892fe50d32b44bd0
|
7c98963a7d80915f66a3231a2235010e879049aa
|
refs/heads/master
| 2021-01-19T23:53:52.068010
| 2017-04-22T12:39:21
| 2017-04-22T12:39:21
| 89,051,705
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 529
|
sce
|
testgrep.sce
|
str='This is a character string'
n=strindex(str,'i') // position of character 'i' in str
part(str,n) // string in position n
strsubst(str,'i','*') // replace 'i' with '*'
tokens(str) // split according to the delimiter ' '
tokens(str,'i') // split according to the delimiter 'i'
str='scilab'
strsplit(str) // split characters
strsplit(str,'i') // split according to delimiter 'i'
str = ["hat" "cat" "chat" "tac" "dog"]
grep(str,'a')
str='aababbbaaabba'
[first,last,match]=regexp(str,'/a(b)+/')
|
4383c25f2dd49bbb9c90626190117cb5f8ec0e6e
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2855/CH12/EX12.2/Ex12_2.sce
|
e5a8d729ba2923507bd68fd572f1e297fc6fd0ec
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 278
|
sce
|
Ex12_2.sce
|
//Chapter 12
//page no 431
//given
clc;
clear all;
Pt=25; //in microW
Prd=15; //in dBm
Ptd=10*log10(Pt*10^-6/10^-3) //in dBm
printf("\n Transmitter Power = %0.0f dBm",Ptd);
Pm=Ptd-Prd;
printf("\n Power margin= %0.0f dBm",Pm);
|
8e9a7c82b420f390cf5619e6cc1737d7487cbf03
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3537/CH7/EX7.5/Ex7_5.sce
|
6e544b5ece8cf24a7ca063c0243819c995eefab2
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 520
|
sce
|
Ex7_5.sce
|
//Example 7_5
clc();
clear;
//To calculate number of reflections per meter and total distance covered
n1=1.5
n2=1.49
phi=asin(n2/n1)*180/%pi //units in degrees
a=25 //units in micro meters
leng=2*a*tan(phi*%pi/180) //units inmicro meters
totalnum=10^6/leng
printf("Total number of reflections is %d\n",totalnum)
l=1 //units in meters
distance=l*(sin(phi*%pi/180))
printf("Total distance covered is %.4f Meters",distance)
//in text book answer printed wrong as 1.006mcorrect answer is 0.9933meters
|
0deb484aee85aacb6880ce781eee1d4392829ac5
|
72d7c10733e74eafb60961874dedea7fa2a43569
|
/4.Communication/PM.sce
|
db7e6c94334594b2256e04bfa1f8822e48a31f59
|
[] |
no_license
|
AkshayNachappa/Scilab-Workshop
|
8dc448c41a2e768f3d93bbed928705445b9c007b
|
056436f38a1f3aad7d1e3669595718839108c40e
|
refs/heads/master
| 2023-01-02T00:20:19.968404
| 2020-10-20T17:04:44
| 2020-10-20T17:04:44
| 297,102,650
| 2
| 2
| null | 2020-10-20T17:04:46
| 2020-09-20T15:12:27
|
Scilab
|
UTF-8
|
Scilab
| false
| false
| 491
|
sce
|
PM.sce
|
clc;
clear;
f_s=1;//Signal Frequencies
f_c=8;//Carrier Frequencies
t=0:0.001:5;
Phase_deviation_facotr=35
i_s=2*sin(2*%pi*f_s*t); // Information Signal
c_s=15*sin(2*%pi*f_c*t);// Carrier Signal
Modulated_signal=15.*cos((2*%pi*f_c*t)+(Phase_deviation_facotr.*sin(2*%pi*f_s*t)));
subplot(3,1,1);
plot(i_s)
title('Information Signal');
subplot(3,1,2);
plot(c_s)
title('Carrier Signal');
subplot(3,1,3);
plot(Modulated_signal)
title('Phase Modulation Signal');
|
1b9b8458366ad11fc829b5eeff7a0f86acaaf733
|
e46eeada1bd3e461d9e4c2913bb12e406391f603
|
/Labdig/aaaaa.sce
|
3d6683ff62a40431e0da1719619a65bad4f14383
|
[] |
no_license
|
JoseColombini/Poli
|
fcc73dcf863256055ff0eb5202617ebb3434fcf3
|
c913de4597496164646b262fe2a66f1fdebc05b7
|
refs/heads/master
| 2023-03-11T21:49:04.619768
| 2023-03-04T20:41:46
| 2023-03-04T20:41:46
| 203,501,300
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 3,533
|
sce
|
aaaaa.sce
|
alpha = [1, expm(%i*120*%pi/180), expm(%i*(-120)*%pi/180)]
Vg = 13.8e3
VgL = Vg/(sqrt(3)*expm(%i*30*%pi/180))*alpha
Comp12 = 15;
Comp23 = 8;
Z_eq = %i*1.15;
Z_p = 0.2779 + %i*0.3921;
I_max = 479;// # Corrente máxima que o condutor suporta
Y_eq1 = 1/Z_eq;
Ycond12 = 1/(Z_p*Comp12);
Ycond23 = 1/(Z_p*Comp23);
// -----------------------------------------
//2.1. Carga 1
//-----------------------------------------
Z_cg_1a = 83.91 +%i*33.01;
//Z_cg_1a = 0.01*Z_cg_1a/(0.01 + Z_cg_1a);
Z_cg_1b = 117.47 + %i*46.21;
Z_cg_1c = 73.42 + %i*28.89;
Y_cg_1a = 1/Z_cg_1a;
Y_cg_1b = 1/Z_cg_1b;
Y_cg_1c = 1/Z_cg_1c;
//-----------------------------------------
// 2.2. Carga 2
// -----------------------------------------
Z_cg_2ab = 617.56 + %i*231.35;
//Z_cg_2ab = Z_cg_2ab*0.01/(0.01 + Z_cg_2ab);
Z_cg_2bc = 540.36 + %i*202.43;
Z_cg_2ca = 385.97 + %i*144.59;
Z_cg_2tot = Z_cg_2ab + Z_cg_2bc + Z_cg_2ca;
Z_cg_2a = Z_cg_2ab*Z_cg_2ca/Z_cg_2tot;
Z_cg_2b = Z_cg_2ab*Z_cg_2bc/Z_cg_2tot;
Z_cg_2c = Z_cg_2ca*Z_cg_2bc/Z_cg_2tot;
Y_cg_2a = 1/Z_cg_2a;
Y_cg_2b = 1/Z_cg_2b;
Y_cg_2c = 1/Z_cg_2c;
// -----------------------------------------
// 2.3. Carga 3
// -----------------------------------------
Z_cg_3a = 165.26 + %i*60.83;
Z_cg_3a = 0.01*Z_cg_1a/(0.01 + Z_cg_1a);
Z_cg_3b = 198.32 + %i*73.00;
Z_cg_3c = 123.95 + %i*45.62;
Zn = 5.60 + %i*2.06;
Yn = 1/Zn;
Y_cg_3a = 1/Z_cg_3a;
Y_cg_3b = 1/Z_cg_3b;
Y_cg_3c = 1/Z_cg_3c;
//A //B //C //A' //B' //C'
Y = [Y_eq1 + Y_cg_1a + Ycond12, 0, 0, -Ycond12, 0, 0, 0, 0, 0, 0, 0;
0, Y_eq1 + Y_cg_1b + Ycond12, 0, 0, -Ycond12, 0, 0, 0, 0, 0, 0;
0, 0, Y_eq1 + Y_cg_1c + Ycond12, 0, 0, -Ycond12, 0, 0, 0, 0, 0;
Ycond12, 0, 0, -Ycond12 - Ycond23 - Y_cg_2a, 0, 0, Ycond23, 0, 0, 0, Y_cg_2a;
0, Ycond12, 0, 0, -Ycond12 - Ycond23 - Y_cg_2b, 0,0,Ycond23,0,0,Y_cg_2b;
0,0,Ycond12,0,0,-Ycond12 - Ycond23 - Y_cg_2c,0,0,Ycond23,0,Y_cg_2c;
0,0,0,Ycond23, 0, 0, -Ycond23-Y_cg_3a,0,0,Y_cg_3a,0;
0,0,0,0,Ycond23,0,0,-Ycond23-Y_cg_3b,0,Y_cg_3b,0;
0,0,0,0,0,Ycond23,0,0,-Ycond23-Y_cg_3a,Y_cg_3c,0;
0,0,0,0,0,0,Y_cg_3a,Y_cg_3b,Y_cg_3c,-Y_cg_3a-Y_cg_3b-Y_cg_3c-Yn,0;
0,0,0,Y_cg_2a,Y_cg_2b,Y_cg_2c,0,0,0,0,-Y_cg_2a-Y_cg_2b-Y_cg_2c]
//Vv = [Va1;Vb1;Vc1;Va2;Vb2;Vc2;Va3;Vb3;Vc3;Vn3;Vn2];
E = [VgL(1)*Y_eq1; VgL(2)*Y_eq1; VgL(3)*Y_eq1;0;0;0;0;0;0;0;0];
Vv = inv(Y)*E;
//Vv(4) = Vv(4)*sqrt(3)*expm(%i*30*%pi/180);
//Vv(5) = Vv(5)*sqrt(3)*expm(%i*30*%pi/180);
//Vv(6) = Vv(6)*sqrt(3)*expm(%i*30*%pi/180);
Z = [Z_cg_1a;Z_cg_1b;Z_cg_1c;Z_cg_2a;Z_cg_2b;Z_cg_2c;Z_cg_3a;Z_cg_3b;Z_cg_3c];
//Z = [Z_cg_1a;Z_cg_1b;Z_cg_1c;Z_cg_2a;Z_cg_2b;Z_cg_2c;0.01*Z_cg_3a/(0.01 + Z_cg_3a);Z_cg_3b;Z_cg_3c];
I = [Vv(1)/Z(1); Vv(2)/Z(2); Vv(3)/Z(3); Vv(4)/Z(4); Vv(5)/Z(5); Vv(6)/Z(6); Vv(7)/Z(7); Vv(8)/Z(8); Vv(9)/Z(9)];
As = [Vv(1)*conj(I(1));Vv(2)*conj(I(2));Vv(3)*conj(I(3));Vv(4)*conj(I(4));Vv(5)*conj(I(5));Vv(6)*conj(I(6));Vv(7)*conj(I(7));Vv(8)*conj(I(8));Vv(9)*conj(I(9))];
S = [As(1) + As(2) + As(3);As(4) + As(5) + As(6);As(7) + As(8) + As(9)];
P12 = (I(4) + I(7) + I(5) + I(8) + I(6) + I(9))/Ycond12;
P23 = (I(7)+I(8)+I(9))/Ycond23;
for i = 1:9
vp(i) = sqrt(real(Vv(i))^2 + imag(Vv(i))^2);
vpf(i) = atand(imag(Vv(i))/real(Vv(i)));
end
for i = 1:3
sp(i) = sqrt(real(S(i))^2 + imag(S(i))^2);
spf(i) = atand(imag(S(i))/real(S(i)));
end
pp12 = sqrt(real(P12)^2 + imag(P12)^2);
ppf12 = atand(imag(P12)/real(P12));
pp23 = sqrt(real(P23)^2 + imag(P23)^2);
ppf23 = atand(imag(P23)/real(P23));
|
d46190a0e04c7a4d1bcb778caea9fdb889e3851e
|
f42e0a9f61003756d40b8c09ebfe5dd926081407
|
/TP4/courbe.sci
|
2e2d845ba247cd40a77518cd4866c045e270fc88
|
[] |
no_license
|
BenFradet/MT09
|
04fe085afaef9f8c8d419a3824c633adae0c007a
|
d37451249f2df09932777e2fd64d43462e3d6931
|
refs/heads/master
| 2020-04-14T02:47:55.441807
| 2014-12-22T17:34:50
| 2014-12-22T17:34:50
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 238
|
sci
|
courbe.sci
|
function[] = courbe()
r = 2;
a = linspace(0, 2 * %pi, 100);
x = r * cos(a);
y = r * sin(a);
plot(x, y);
x = linspace(-2, 2, 100);
y = exp(x);
gc = gca();
gc.isoview = 'on';
plot(x, y);
endfunction
|
34cd14364928ee95265c7cb4a670772fca416fb8
|
e04f3a1f9e98fd043a65910a1d4e52bdfff0d6e4
|
/New LSTMAttn Model/.data/lemma-split/DEVELOPMENT-LANGUAGES/niger-congo/nya.tst
|
cafafebfa04bf16c1d3049c9bcf75441bdf22249
|
[] |
no_license
|
davidgu13/Lemma-vs-Form-Splits
|
c154f1c0c7b84ba5b325b17507012d41b9ad5cfe
|
3cce087f756420523f5a14234d02482452a7bfa5
|
refs/heads/master
| 2023-08-01T16:15:52.417307
| 2021-09-14T20:19:28
| 2021-09-14T20:19:28
| 395,023,433
| 3
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 15,149
|
tst
|
nya.tst
|
fulumira V;PL;3;PST
fulumira V;NFIN
fulumira V;PL;1;PRS
fulumira V;PL;1;FUT
fulumira V;SG;3;PST
fulumira V;SG;2;FUT
fulumira V;SG;3;FUT
fulumira V;SG;1;PST
fulumira V;PL;2;PST
fulumira V;PL;2;FUT
fulumira V;PL;3;FUT
fulumira V;SG;1;PRS
fulumira V;SG;2;PST
fulumira V;PL;3;PRS
fulumira V;SG;1;FUT
fulumira V;SG;3;PRS
fulumira V;PL;1;PST
fulumira V;SG;2;PRS
fulumira V;PL;2;PRS
kola V;SG;3;PRS
kola V;PL;2;PST
kola V;PL;2;FUT
kola V;PL;2;PRS
kola V;NFIN
kola V;PL;1;FUT
kola V;SG;2;PRS
kola V;SG;2;FUT
kola V;SG;1;PST
kola V;PL;3;PST
kola V;SG;3;PST
kola V;PL;3;PRS
kola V;SG;2;PST
kola V;SG;1;FUT
kola V;SG;1;PRS
kola V;SG;3;FUT
kola V;PL;3;FUT
kola V;PL;1;PRS
kola V;PL;1;PST
dikira V;SG;2;FUT
dikira V;SG;1;FUT
dikira V;SG;1;PST
dikira V;PL;3;PRS
dikira V;PL;1;PRS
dikira V;SG;3;FUT
dikira V;NFIN
dikira V;SG;2;PST
dikira V;PL;1;FUT
dikira V;PL;1;PST
dikira V;SG;3;PST
dikira V;SG;3;PRS
dikira V;PL;2;PRS
dikira V;SG;2;PRS
dikira V;PL;3;PST
dikira V;PL;2;FUT
dikira V;PL;3;FUT
dikira V;PL;2;PST
dikira V;SG;1;PRS
sinja V;SG;3;PST
sinja V;SG;1;FUT
sinja V;PL;3;PRS
sinja V;PL;2;PRS
sinja V;SG;3;FUT
sinja V;SG;1;PRS
sinja V;PL;1;FUT
sinja V;SG;3;PRS
sinja V;SG;2;PRS
sinja V;PL;1;PST
sinja V;PL;3;FUT
sinja V;PL;2;PST
sinja V;NFIN
sinja V;SG;1;PST
sinja V;SG;2;FUT
sinja V;PL;3;PST
sinja V;PL;2;FUT
sinja V;SG;2;PST
sinja V;PL;1;PRS
bala V;SG;1;PST
bala V;SG;1;PRS
bala V;SG;1;FUT
bala V;NFIN
bala V;PL;2;FUT
bala V;PL;3;FUT
bala V;PL;1;FUT
bala V;SG;2;PST
bala V;SG;3;FUT
bala V;SG;3;PRS
bala V;PL;1;PST
bala V;PL;3;PST
bala V;PL;3;PRS
bala V;PL;2;PRS
bala V;SG;3;PST
bala V;SG;2;FUT
bala V;PL;1;PRS
bala V;SG;2;PRS
bala V;PL;2;PST
gwira V;PL;3;PRS
gwira V;SG;3;PST
gwira V;SG;2;FUT
gwira V;PL;1;FUT
gwira V;SG;1;FUT
gwira V;PL;3;FUT
gwira V;PL;2;PRS
gwira V;PL;3;PST
gwira V;SG;3;PRS
gwira V;SG;1;PRS
gwira V;SG;1;PST
gwira V;PL;1;PST
gwira V;SG;2;PST
gwira V;SG;3;FUT
gwira V;SG;2;PRS
gwira V;PL;2;PST
gwira V;PL;2;FUT
gwira V;NFIN
gwira V;PL;1;PRS
yenda V;SG;3;PST
yenda V;SG;1;PST
yenda V;PL;1;PST
yenda V;PL;2;PRS
yenda V;PL;3;PST
yenda V;SG;3;PRS
yenda V;PL;1;PRS
yenda V;SG;3;FUT
yenda V;PL;3;FUT
yenda V;SG;2;FUT
yenda V;PL;2;FUT
yenda V;PL;1;FUT
yenda V;NFIN
yenda V;PL;3;PRS
yenda V;PL;2;PST
yenda V;SG;2;PRS
yenda V;SG;1;PRS
yenda V;SG;1;FUT
yenda V;SG;2;PST
bisala V;PL;2;FUT
bisala V;PL;3;FUT
bisala V;SG;3;PST
bisala V;SG;2;PRS
bisala V;PL;1;FUT
bisala V;SG;3;FUT
bisala V;NFIN
bisala V;PL;1;PST
bisala V;PL;3;PRS
bisala V;PL;3;PST
bisala V;PL;2;PST
bisala V;SG;1;FUT
bisala V;SG;2;PST
bisala V;SG;1;PST
bisala V;SG;3;PRS
bisala V;SG;1;PRS
bisala V;PL;2;PRS
bisala V;PL;1;PRS
bisala V;SG;2;FUT
batiza V;NFIN
batiza V;PL;3;PST
batiza V;PL;1;FUT
batiza V;SG;2;FUT
batiza V;PL;1;PST
batiza V;PL;1;PRS
batiza V;PL;2;FUT
batiza V;PL;3;PRS
batiza V;PL;3;FUT
batiza V;SG;3;FUT
batiza V;SG;1;PST
batiza V;SG;3;PST
batiza V;PL;2;PRS
batiza V;SG;2;PRS
batiza V;SG;1;FUT
batiza V;SG;1;PRS
batiza V;SG;2;PST
batiza V;PL;2;PST
batiza V;SG;3;PRS
fupika V;SG;2;FUT
fupika V;SG;1;PRS
fupika V;PL;3;PST
fupika V;SG;3;PRS
fupika V;PL;1;PRS
fupika V;PL;3;PRS
fupika V;SG;2;PRS
fupika V;SG;1;PST
fupika V;SG;3;FUT
fupika V;PL;2;FUT
fupika V;PL;1;FUT
fupika V;PL;3;FUT
fupika V;PL;2;PRS
fupika V;PL;1;PST
fupika V;SG;2;PST
fupika V;PL;2;PST
fupika V;SG;3;PST
fupika V;NFIN
fupika V;SG;1;FUT
chira V;SG;1;PRS
chira V;PL;3;FUT
chira V;SG;3;PRS
chira V;SG;2;PST
chira V;SG;2;FUT
chira V;PL;1;PST
chira V;SG;1;PST
chira V;SG;3;PST
chira V;SG;3;FUT
chira V;PL;2;PST
chira V;SG;2;PRS
chira V;PL;2;FUT
chira V;NFIN
chira V;PL;1;FUT
chira V;PL;3;PRS
chira V;PL;1;PRS
chira V;SG;1;FUT
chira V;PL;2;PRS
chira V;PL;3;PST
talika V;SG;2;PST
talika V;SG;3;PRS
talika V;PL;2;FUT
talika V;SG;1;PRS
talika V;PL;1;PST
talika V;SG;2;FUT
talika V;SG;3;FUT
talika V;PL;3;PST
talika V;PL;1;FUT
talika V;PL;2;PRS
talika V;NFIN
talika V;PL;3;PRS
talika V;SG;3;PST
talika V;SG;1;PST
talika V;SG;2;PRS
talika V;PL;2;PST
talika V;PL;1;PRS
talika V;PL;3;FUT
talika V;SG;1;FUT
wala V;PL;1;PRS
wala V;SG;3;PST
wala V;PL;1;FUT
wala V;SG;2;FUT
wala V;SG;1;PRS
wala V;PL;2;PRS
wala V;NFIN
wala V;SG;3;FUT
wala V;PL;1;PST
wala V;SG;1;FUT
wala V;PL;3;FUT
wala V;PL;3;PST
wala V;SG;1;PST
wala V;SG;2;PST
wala V;SG;3;PRS
wala V;PL;3;PRS
wala V;SG;2;PRS
wala V;PL;2;PST
wala V;PL;2;FUT
sanduka V;PL;2;FUT
sanduka V;NFIN
sanduka V;PL;1;PST
sanduka V;SG;2;PST
sanduka V;SG;2;PRS
sanduka V;PL;3;PST
sanduka V;PL;1;FUT
sanduka V;PL;1;PRS
sanduka V;PL;2;PST
sanduka V;SG;3;PST
sanduka V;SG;1;PRS
sanduka V;SG;1;PST
sanduka V;PL;3;PRS
sanduka V;PL;3;FUT
sanduka V;SG;2;FUT
sanduka V;SG;3;PRS
sanduka V;PL;2;PRS
sanduka V;SG;1;FUT
sanduka V;SG;3;FUT
choka V;SG;1;PRS
choka V;SG;3;FUT
choka V;SG;2;PST
choka V;PL;2;PST
choka V;PL;1;PST
choka V;SG;2;FUT
choka V;SG;1;FUT
choka V;PL;1;PRS
choka V;PL;3;PST
choka V;SG;1;PST
choka V;SG;3;PRS
choka V;SG;3;PST
choka V;PL;1;FUT
choka V;PL;2;PRS
choka V;PL;3;PRS
choka V;PL;3;FUT
choka V;SG;2;PRS
choka V;PL;2;FUT
choka V;NFIN
omba V;NFIN
omba V;SG;1;PST
omba V;SG;1;PRS
omba V;PL;2;PRS
omba V;SG;3;PRS
omba V;PL;1;FUT
omba V;PL;3;PRS
omba V;SG;2;PRS
omba V;PL;1;PST
omba V;SG;3;PST
omba V;PL;3;FUT
omba V;SG;2;PST
omba V;SG;1;FUT
omba V;PL;2;PST
omba V;SG;2;FUT
omba V;PL;3;PST
omba V;PL;1;PRS
omba V;SG;3;FUT
omba V;PL;2;FUT
tuma V;SG;3;FUT
tuma V;PL;1;FUT
tuma V;SG;2;FUT
tuma V;PL;1;PRS
tuma V;PL;2;FUT
tuma V;PL;3;FUT
tuma V;SG;3;PRS
tuma V;SG;2;PRS
tuma V;NFIN
tuma V;SG;3;PST
tuma V;PL;3;PST
tuma V;PL;3;PRS
tuma V;SG;1;PST
tuma V;SG;1;FUT
tuma V;SG;2;PST
tuma V;PL;2;PST
tuma V;PL;2;PRS
tuma V;SG;1;PRS
tuma V;PL;1;PST
seka V;PL;2;FUT
seka V;SG;2;PRS
seka V;PL;1;PST
seka V;PL;3;PRS
seka V;SG;1;PST
seka V;PL;2;PST
seka V;SG;1;FUT
seka V;PL;1;PRS
seka V;SG;3;FUT
seka V;PL;2;PRS
seka V;PL;3;PST
seka V;SG;2;FUT
seka V;PL;3;FUT
seka V;PL;1;FUT
seka V;SG;3;PRS
seka V;SG;2;PST
seka V;SG;1;PRS
seka V;SG;3;PST
seka V;NFIN
yamba V;SG;1;FUT
yamba V;PL;3;FUT
yamba V;SG;3;FUT
yamba V;NFIN
yamba V;SG;3;PST
yamba V;SG;1;PST
yamba V;PL;1;PST
yamba V;PL;2;PRS
yamba V;SG;2;FUT
yamba V;PL;3;PRS
yamba V;PL;3;PST
yamba V;SG;3;PRS
yamba V;PL;2;PST
yamba V;PL;1;FUT
yamba V;SG;2;PRS
yamba V;SG;2;PST
yamba V;SG;1;PRS
yamba V;PL;1;PRS
yamba V;PL;2;FUT
zindikira V;SG;1;PRS
zindikira V;SG;3;FUT
zindikira V;PL;2;FUT
zindikira V;PL;1;FUT
zindikira V;PL;3;PRS
zindikira V;SG;3;PST
zindikira V;SG;2;PRS
zindikira V;PL;3;PST
zindikira V;PL;3;FUT
zindikira V;PL;1;PST
zindikira V;NFIN
zindikira V;PL;1;PRS
zindikira V;SG;2;FUT
zindikira V;PL;2;PRS
zindikira V;SG;2;PST
zindikira V;SG;1;PST
zindikira V;SG;3;PRS
zindikira V;PL;2;PST
zindikira V;SG;1;FUT
kalamba V;SG;1;PST
kalamba V;SG;3;PRS
kalamba V;SG;1;PRS
kalamba V;SG;2;PRS
kalamba V;SG;3;PST
kalamba V;PL;2;PST
kalamba V;SG;1;FUT
kalamba V;PL;2;FUT
kalamba V;SG;2;FUT
kalamba V;PL;2;PRS
kalamba V;PL;3;PST
kalamba V;NFIN
kalamba V;PL;1;PST
kalamba V;SG;3;FUT
kalamba V;PL;1;PRS
kalamba V;SG;2;PST
kalamba V;PL;3;FUT
kalamba V;PL;3;PRS
kalamba V;PL;1;FUT
funsani V;SG;1;FUT
funsani V;PL;1;FUT
funsani V;PL;2;PRS
funsani V;PL;3;FUT
funsani V;SG;2;PRS
funsani V;SG;2;PST
funsani V;SG;1;PRS
funsani V;SG;3;FUT
funsani V;SG;1;PST
funsani V;PL;2;PST
funsani V;PL;3;PST
funsani V;SG;3;PRS
funsani V;PL;1;PST
funsani V;PL;2;FUT
funsani V;PL;3;PRS
funsani V;SG;2;FUT
funsani V;NFIN
funsani V;PL;1;PRS
funsani V;SG;3;PST
bvoma V;SG;3;PRS
bvoma V;SG;3;FUT
bvoma V;SG;3;PST
bvoma V;PL;3;PST
bvoma V;PL;2;PRS
bvoma V;PL;3;PRS
bvoma V;SG;1;PST
bvoma V;SG;1;FUT
bvoma V;PL;1;PST
bvoma V;SG;2;FUT
bvoma V;SG;2;PRS
bvoma V;SG;1;PRS
bvoma V;PL;1;PRS
bvoma V;NFIN
bvoma V;PL;2;FUT
bvoma V;PL;1;FUT
bvoma V;PL;3;FUT
bvoma V;SG;2;PST
bvoma V;PL;2;PST
tsata V;PL;1;FUT
tsata V;SG;2;FUT
tsata V;SG;1;PST
tsata V;SG;3;PST
tsata V;PL;3;FUT
tsata V;SG;1;FUT
tsata V;PL;1;PRS
tsata V;NFIN
tsata V;PL;3;PST
tsata V;SG;3;PRS
tsata V;SG;2;PST
tsata V;PL;2;PST
tsata V;PL;3;PRS
tsata V;SG;3;FUT
tsata V;PL;2;FUT
tsata V;SG;1;PRS
tsata V;SG;2;PRS
tsata V;PL;1;PST
tsata V;PL;2;PRS
dandaula V;SG;3;PRS
dandaula V;SG;2;FUT
dandaula V;PL;3;PRS
dandaula V;PL;3;PST
dandaula V;SG;1;PST
dandaula V;PL;1;PRS
dandaula V;SG;2;PST
dandaula V;SG;3;PST
dandaula V;SG;1;FUT
dandaula V;PL;1;PST
dandaula V;PL;2;FUT
dandaula V;SG;1;PRS
dandaula V;SG;3;FUT
dandaula V;PL;3;FUT
dandaula V;SG;2;PRS
dandaula V;PL;2;PST
dandaula V;PL;2;PRS
dandaula V;PL;1;FUT
dandaula V;NFIN
zungulira V;SG;1;PRS
zungulira V;PL;2;FUT
zungulira V;PL;3;PST
zungulira V;SG;3;FUT
zungulira V;PL;1;FUT
zungulira V;PL;3;FUT
zungulira V;SG;3;PST
zungulira V;PL;1;PST
zungulira V;SG;3;PRS
zungulira V;SG;2;PST
zungulira V;NFIN
zungulira V;SG;1;FUT
zungulira V;SG;1;PST
zungulira V;SG;2;PRS
zungulira V;PL;2;PST
zungulira V;PL;1;PRS
zungulira V;SG;2;FUT
zungulira V;PL;3;PRS
zungulira V;PL;2;PRS
yang'ana V;SG;3;PRS
yang'ana V;SG;3;FUT
yang'ana V;SG;2;FUT
yang'ana V;PL;1;FUT
yang'ana V;SG;1;FUT
yang'ana V;SG;1;PST
yang'ana V;PL;3;PST
yang'ana V;NFIN
yang'ana V;SG;2;PRS
yang'ana V;PL;3;PRS
yang'ana V;SG;1;PRS
yang'ana V;SG;3;PST
yang'ana V;PL;2;FUT
yang'ana V;PL;1;PST
yang'ana V;PL;2;PST
yang'ana V;PL;2;PRS
yang'ana V;SG;2;PST
yang'ana V;PL;3;FUT
yang'ana V;PL;1;PRS
gwa V;SG;2;PST
gwa V;PL;3;FUT
gwa V;SG;1;PST
gwa V;SG;3;PST
gwa V;SG;1;PRS
gwa V;SG;2;FUT
gwa V;PL;1;FUT
gwa V;PL;2;FUT
gwa V;PL;2;PRS
gwa V;PL;3;PST
gwa V;PL;1;PRS
gwa V;PL;1;PST
gwa V;NFIN
gwa V;SG;3;FUT
gwa V;SG;2;PRS
gwa V;PL;3;PRS
gwa V;PL;2;PST
gwa V;SG;3;PRS
gwa V;SG;1;FUT
pempha V;PL;3;PST
pempha V;PL;2;PRS
pempha V;SG;1;FUT
pempha V;PL;1;FUT
pempha V;SG;2;PRS
pempha V;SG;3;FUT
pempha V;SG;3;PRS
pempha V;PL;2;PST
pempha V;PL;3;FUT
pempha V;SG;3;PST
pempha V;SG;1;PRS
pempha V;SG;2;FUT
pempha V;PL;1;PRS
pempha V;SG;1;PST
pempha V;PL;2;FUT
pempha V;SG;2;PST
pempha V;PL;1;PST
pempha V;NFIN
pempha V;PL;3;PRS
dula V;SG;2;PRS
dula V;SG;1;PST
dula V;SG;2;FUT
dula V;PL;2;PRS
dula V;PL;1;PRS
dula V;PL;1;PST
dula V;SG;3;PRS
dula V;NFIN
dula V;PL;2;PST
dula V;PL;3;FUT
dula V;SG;2;PST
dula V;SG;1;FUT
dula V;PL;1;FUT
dula V;SG;3;FUT
dula V;PL;2;FUT
dula V;PL;3;PRS
dula V;SG;3;PST
dula V;SG;1;PRS
dula V;PL;3;PST
patsa V;SG;1;PRS
patsa V;PL;2;PST
patsa V;PL;1;PRS
patsa V;PL;1;FUT
patsa V;PL;3;PST
patsa V;PL;1;PST
patsa V;PL;3;FUT
patsa V;SG;1;PST
patsa V;SG;2;PST
patsa V;SG;2;FUT
patsa V;PL;2;PRS
patsa V;SG;1;FUT
patsa V;SG;3;PRS
patsa V;SG;3;PST
patsa V;PL;2;FUT
patsa V;PL;3;PRS
patsa V;NFIN
patsa V;SG;3;FUT
patsa V;SG;2;PRS
kwiya V;SG;3;PRS
kwiya V;PL;2;PST
kwiya V;PL;1;PRS
kwiya V;NFIN
kwiya V;PL;1;PST
kwiya V;SG;3;PST
kwiya V;SG;2;PST
kwiya V;PL;3;PRS
kwiya V;SG;1;FUT
kwiya V;PL;2;PRS
kwiya V;SG;1;PST
kwiya V;SG;2;FUT
kwiya V;PL;3;FUT
kwiya V;PL;2;FUT
kwiya V;PL;3;PST
kwiya V;SG;1;PRS
kwiya V;SG;3;FUT
kwiya V;SG;2;PRS
kwiya V;PL;1;FUT
imba V;SG;3;PST
imba V;SG;1;PST
imba V;PL;1;PRS
imba V;SG;1;PRS
imba V;PL;1;FUT
imba V;SG;1;FUT
imba V;PL;3;FUT
imba V;SG;2;PRS
imba V;PL;3;PST
imba V;SG;2;FUT
imba V;SG;3;PRS
imba V;PL;3;PRS
imba V;PL;2;PRS
imba V;SG;2;PST
imba V;PL;2;FUT
imba V;NFIN
imba V;PL;1;PST
imba V;PL;2;PST
imba V;SG;3;FUT
lamula V;PL;1;PST
lamula V;SG;2;PST
lamula V;SG;1;FUT
lamula V;PL;3;FUT
lamula V;PL;2;PRS
lamula V;SG;3;PRS
lamula V;SG;2;FUT
lamula V;PL;2;PST
lamula V;PL;2;FUT
lamula V;PL;1;PRS
lamula V;PL;1;FUT
lamula V;SG;3;FUT
lamula V;SG;1;PST
lamula V;SG;1;PRS
lamula V;SG;3;PST
lamula V;NFIN
lamula V;PL;3;PST
lamula V;SG;2;PRS
lamula V;PL;3;PRS
peza V;PL;2;PRS
peza V;PL;1;FUT
peza V;PL;2;FUT
peza V;SG;2;FUT
peza V;PL;3;PST
peza V;SG;2;PRS
peza V;SG;2;PST
peza V;NFIN
peza V;SG;1;FUT
peza V;PL;1;PRS
peza V;SG;3;FUT
peza V;PL;3;PRS
peza V;SG;1;PST
peza V;SG;1;PRS
peza V;PL;1;PST
peza V;SG;3;PST
peza V;SG;3;PRS
peza V;PL;3;FUT
peza V;PL;2;PST
mera V;PL;2;PRS
mera V;SG;1;PRS
mera V;PL;3;PST
mera V;PL;2;FUT
mera V;SG;1;PST
mera V;SG;2;PRS
mera V;PL;1;PRS
mera V;PL;3;PRS
mera V;SG;3;PST
mera V;SG;3;FUT
mera V;PL;3;FUT
mera V;SG;3;PRS
mera V;SG;2;FUT
mera V;PL;1;FUT
mera V;SG;2;PST
mera V;NFIN
mera V;PL;2;PST
mera V;SG;1;FUT
mera V;PL;1;PST
tsiriza V;PL;3;PST
tsiriza V;SG;1;PRS
tsiriza V;SG;2;PST
tsiriza V;PL;2;PRS
tsiriza V;SG;1;FUT
tsiriza V;SG;1;PST
tsiriza V;PL;1;PRS
tsiriza V;PL;1;PST
tsiriza V;SG;2;FUT
tsiriza V;PL;3;PRS
tsiriza V;NFIN
tsiriza V;PL;1;FUT
tsiriza V;PL;2;FUT
tsiriza V;SG;2;PRS
tsiriza V;SG;3;PRS
tsiriza V;SG;3;PST
tsiriza V;PL;2;PST
tsiriza V;SG;3;FUT
tsiriza V;PL;3;FUT
pitani V;SG;2;FUT
pitani V;SG;1;PST
pitani V;SG;3;PST
pitani V;SG;3;FUT
pitani V;PL;2;FUT
pitani V;PL;3;FUT
pitani V;PL;3;PRS
pitani V;SG;2;PST
pitani V;SG;3;PRS
pitani V;NFIN
pitani V;PL;1;FUT
pitani V;PL;2;PST
pitani V;PL;3;PST
pitani V;PL;1;PST
pitani V;PL;1;PRS
pitani V;SG;1;PRS
pitani V;PL;2;PRS
pitani V;SG;1;FUT
pitani V;SG;2;PRS
khazika V;SG;2;PST
khazika V;PL;2;FUT
khazika V;SG;3;PRS
khazika V;PL;1;FUT
khazika V;PL;3;FUT
khazika V;SG;2;PRS
khazika V;PL;3;PST
khazika V;SG;1;PST
khazika V;PL;2;PRS
khazika V;PL;1;PST
khazika V;SG;3;FUT
khazika V;SG;1;FUT
khazika V;PL;2;PST
khazika V;SG;2;FUT
khazika V;SG;1;PRS
khazika V;PL;1;PRS
khazika V;PL;3;PRS
khazika V;SG;3;PST
khazika V;NFIN
dalira V;SG;1;FUT
dalira V;PL;1;PRS
dalira V;PL;1;PST
dalira V;SG;2;PRS
dalira V;SG;1;PRS
dalira V;PL;3;PRS
dalira V;PL;2;PRS
dalira V;PL;2;PST
dalira V;SG;1;PST
dalira V;PL;1;FUT
dalira V;SG;3;FUT
dalira V;SG;2;FUT
dalira V;PL;3;PST
dalira V;PL;2;FUT
dalira V;PL;3;FUT
dalira V;SG;2;PST
dalira V;NFIN
dalira V;SG;3;PST
dalira V;SG;3;PRS
lemba V;SG;1;PRS
lemba V;PL;1;PST
lemba V;PL;1;PRS
lemba V;PL;2;FUT
lemba V;SG;1;FUT
lemba V;SG;3;PRS
lemba V;SG;3;PST
lemba V;PL;3;PST
lemba V;SG;2;PRS
lemba V;SG;2;PST
lemba V;PL;2;PST
lemba V;PL;1;FUT
lemba V;PL;2;PRS
lemba V;SG;2;FUT
lemba V;NFIN
lemba V;PL;3;FUT
lemba V;SG;3;FUT
lemba V;PL;3;PRS
lemba V;SG;1;PST
da V;SG;1;PRS
da V;PL;3;FUT
da V;NFIN
da V;SG;2;PST
da V;SG;2;FUT
da V;PL;1;FUT
da V;PL;3;PST
da V;PL;1;PST
da V;PL;2;PRS
da V;SG;1;FUT
da V;PL;3;PRS
da V;SG;3;PST
da V;SG;3;PRS
da V;SG;1;PST
da V;PL;2;FUT
da V;SG;3;FUT
da V;PL;2;PST
da V;SG;2;PRS
da V;PL;1;PRS
pita V;PL;3;PST
pita V;SG;2;PST
pita V;SG;1;FUT
pita V;PL;2;PST
pita V;SG;1;PST
pita V;PL;2;PRS
pita V;PL;3;FUT
pita V;PL;1;FUT
pita V;SG;1;PRS
pita V;PL;3;PRS
pita V;PL;1;PRS
pita V;SG;3;PST
pita V;PL;1;PST
pita V;SG;2;FUT
pita V;NFIN
pita V;PL;2;FUT
pita V;SG;3;PRS
pita V;SG;3;FUT
pita V;SG;2;PRS
sangalala V;SG;3;PRS
sangalala V;PL;3;PRS
sangalala V;PL;3;PST
sangalala V;PL;2;FUT
sangalala V;SG;1;PRS
sangalala V;SG;2;FUT
sangalala V;PL;3;FUT
sangalala V;SG;3;PST
sangalala V;SG;1;FUT
sangalala V;PL;1;FUT
sangalala V;SG;3;FUT
sangalala V;SG;2;PRS
sangalala V;PL;2;PRS
sangalala V;NFIN
sangalala V;PL;1;PRS
sangalala V;PL;2;PST
sangalala V;PL;1;PST
sangalala V;SG;1;PST
sangalala V;SG;2;PST
taya V;SG;2;PRS
taya V;PL;1;PRS
taya V;PL;1;PST
taya V;PL;3;PST
taya V;PL;2;PRS
taya V;SG;1;PST
taya V;PL;3;PRS
taya V;PL;2;FUT
taya V;SG;3;FUT
taya V;SG;3;PRS
taya V;PL;3;FUT
taya V;PL;2;PST
taya V;SG;2;PST
taya V;SG;3;PST
taya V;SG;1;FUT
taya V;SG;1;PRS
taya V;PL;1;FUT
taya V;NFIN
taya V;SG;2;FUT
tsegula V;SG;2;PRS
tsegula V;PL;2;PRS
tsegula V;SG;1;PRS
tsegula V;PL;3;FUT
tsegula V;SG;1;PST
tsegula V;PL;2;PST
tsegula V;PL;1;PST
tsegula V;PL;3;PST
tsegula V;SG;3;FUT
tsegula V;PL;1;PRS
tsegula V;SG;2;PST
tsegula V;SG;2;FUT
tsegula V;PL;3;PRS
tsegula V;SG;3;PST
tsegula V;SG;1;FUT
tsegula V;NFIN
tsegula V;PL;2;FUT
tsegula V;PL;1;FUT
tsegula V;SG;3;PRS
|
1a5e0820947b1f3a0c41f7ea123264b2dad5277f
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2534/CH8/EX8.4/Ex8_4.sce
|
5854a192a0e64a50a55c3c8786a37da888dd9044
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,358
|
sce
|
Ex8_4.sce
|
//Ex8_4
clc
RL=5*10^3
Rs=1.2*10^3
hre=2.5*10^-4
hie=1.1*10^3
hfe=100
hoe=25*10^-6
disp("RL = "+string(RL)+"ohm")//load resistance
disp("Rs = "+string(Rs)+"ohm")//source resistance
//h-parameters for CE transistor amplifier are as follows:
disp("hie = "+string(hie)+"ohm")//input resistance of CE transistor
disp("hre = "+string(hre))//voltage gain of CE transistor
disp("hfe = "+string(hfe))//current gain of CE transistor
disp("hoe = "+string(hoe)+"mho")//output conductance of CE transistor
//calculation for current gain:
Ai=-hfe/(1+(hoe*RL))
disp("Ai = -hfe/(1+(hoe*RL)) = "+string(abs(Ai)))
//calculation for input resistance:
Ri = hie+(hre*Ai*RL)
disp("Ri = hie+(hre*Ai*RL) = "+string(Ri)+"ohm")
//calculation for voltage gain:
Av = Ai*RL/Ri
disp("Av = Ai*RL/Ri = "+string(Av))
//calculation for output resistance:
Go=hoe-((hre*hfe)/(hie+Rs))
Ro = 1/Go
disp("Ro = 1/Go")
disp("Go = hoe-((hre*hfe)/(hie+Rs)) = "+string(Go)+"mho")
disp("Ro = "+string(Ro)+"ohm")
//note : in the textbook, above problem has given two values for "hfe" and no value for "hre"...
// thus assuming value for "hre = 2.5*10^-4" as taken in previous example 8_2
// and "hfe=100"
//note : in text LOAD RESISTANCE is noted as Rc in question, but RL in solution.
// I have work with Load Resistance with notification RL.
|
f2902e8425d7c6d79c3a7bcac280baba573b813e
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1523/CH8/EX8.13/8_13.sce
|
414e27672042a70e73a31b119cd4e874aca0478a
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 555
|
sce
|
8_13.sce
|
//Transient analysis
//pg no - 8.17
//example no - 8.13
a=((10*30)/(10+30));
d=5/a;
b=0;
c=5*(20/30);
printf("iL(0-) = %.2f A", d);
printf("\nvb(0-) = %.f", b);
printf("\nva(0-) = %.2f V", c);
disp("Applying Kcl equations at t=0+");
disp("((va(0+)-5)/10)+(va(0+)/10)+(va(0+)-vb(0+))/20 = 0"); //equation 1
disp("((vb(0+)-va(0+))/20)+((vb(0+)-5)/10)+(2/3) = 0"); //equation 2
//solving 1 and 2
M=[0.25, -0.05; -0.05, 0.15];
N=[0.5, -0.167]';
O=inv(M);
X=O*N;
disp(X);
disp("va(0+)= 1.9 A");
disp("vb(0+)= -0.477 A");
|
e83af842d124e30dc2a578affe950ac27f81a26b
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1055/CH17/EX17.9/ch17_9.sce
|
65d8efa01c980c4cf7a42726e59dabef80a0c5f5
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 871
|
sce
|
ch17_9.sce
|
//Determine the reduced admittance matrices for prefault, fault and post fault conditions and determine the power angle characterstics for three conditions.
clear
clc;
Y=[-%i*8.33 0 %i*8.33 0;0 -%i*28.57 0 %i*28.75;%i*8.33 0 -%i*15.67 %i*7.33;0 %i*28.57 %i*7.33 -%i*35.9];
YBB=[-%i*15.67 %i*7.33;%i*7.33 -%i*35.9];
YAA=[-%i*8.33 0;0 -%i*28.57];
YAB=[%i*8.33 0;0 %i*28.57];
YBA=YAB;
Y=YAA-(YAB*(inv(YBB))*YBA);
Y1=([-%i*8.33 0;0 -%i*28.57])-(([0;(%i*28.57/-%i*35.9)]*[0 %i*28.57]));
disp(Y1,"Reduced admittance matrix during fault=");
Yfull=[-%i*8.33 0 %i*8.33 0;0 -%i*28.57 0 %i*28.75;%i*8.33 0 -%i*12.33 %i*4;0 %i*28.57 %i*4 -%i*32.57];
YBB=[-%i*12.33 %i*4;%i*4 -%i*32.57];
Y=YAA-(YAB*(inv(YBB))*YBA);
disp(Y,"(i) Post fault condition ,reduced matrix=");
Y12=Y(1,2);
E1=1.1;
E2=1;
printf("\n Power angle characterstics , Pe= %fsind",abs(Y12)*E1*E2);
|
330c0b07945942039e7385b42fc2594e7f862887
|
05db16b4f57b0182fa452e2c11554c3de6fff271
|
/branches/vac4.52mkg_24_06_2010/Idl/savevtk_xym.sci
|
cd02e7aca083eec31d0ed9fa4860ff427ecb864a
|
[] |
no_license
|
SpungMan/smaug-all
|
09b4fcf6fcec2fc7be1fa85c5c7f2d68c79e504b
|
01df12e98c734529ff984662badc26eaa3a9138b
|
refs/heads/master
| 2021-11-29T14:09:47.094457
| 2018-06-08T09:48:05
| 2018-06-08T09:48:05
| null | 0
| 0
| null | null | null | null |
WINDOWS-1252
|
Scilab
| false
| false
| 1,768
|
sci
|
savevtk_xym.sci
|
function [fd,err]=savevtk_xym(x,y,m,VarName)
// Save Sci variables in VTK format
// x is a list of points
// y is a list of values in the x points
// VarName is the Variable Name
// Example:
//
// mtst=[11 12 13 14; 21 22 23 24];
// [f,c]=size(mtst);
// savevtk_xym(1:c,1:f,mtst,'2DMatrix');
//
// Coded by Sebastian Jardi Estadella
// http://www.tinet.org/~sje/index_en.htm
//
// rotates the matrix -90 º.
xaux=x;
x=y;
y=xaux;
m=m';
nx=length(x);
ny=length(y);
[nf,nc]=size(m);
if nx<>nc then
disp('length(nx) and length(nc) have to be equals.');
disp(nx);
disp(nc);
abort;
end
if ny<>nf then
disp('length(ny) and kength(nf) have to be equals.');
disp(ny);
disp(nf);
abort;
end
filename=sprintf('%s.vtk',VarName);
mputl('# vtk DataFile Version 2.0',filename); // Delete previous content in filename
[fd,err]=mopen(filename, 'a'); // Opens the file to Append.
mfprintf(fd,'Structured Grid\n');
mfprintf(fd,'ASCII\n');
mfprintf(fd,'\n');
mfprintf(fd,'DATASET RECTILINEAR_GRID\n');
mfprintf(fd,'DIMENSIONS %d %d %d\n',nx,ny,1); //??
mfprintf(fd,'X_COORDINATES %d double\n',nx);
for i=1:nx
mfprintf(fd,'%e\n',x(i));
end
mfprintf(fd,'\n');
mfprintf(fd,'Y_COORDINATES %d double\n',ny);
for i=1:ny
mfprintf(fd,'%e\n',y(i));
end
mfprintf(fd,'\n');
mfprintf(fd,'Z_COORDINATES 1 double\n');
mfprintf(fd,'0 \n');
mfprintf(fd,'\n');
mfprintf(fd,'POINT_DATA %d\n',nx*ny);
mfprintf(fd,'SCALARS ');
mfprintf(fd,VarName);
mfprintf(fd,' double 1\n');
mfprintf(fd,'LOOKUP_TABLE TableName\n');
for i_f=1:nf
for i_c=1:nc
mfprintf(fd,'%e ',m(i_f,i_c));
end
mfprintf(fd,'\n');
end
mfprintf(fd,'\n');
err=mclose(fd);
endfunction
|
070d3efa512f069f0da3730a6f5d3d3948d2f8da
|
10646794149c56eb4d1299d3d8a6cbb0a9ca3d05
|
/test/notoktests/maskjmp3.tst
|
ef5823419e8a08a6bc219e6e4407cf6417693825
|
[] |
no_license
|
pilki/FPdNaCl
|
7256b5c116774ab70fc584db9a18eaf0f5ef66ac
|
54ed0e63fecb82ac163d153b1ffa17695cdb987d
|
refs/heads/master
| 2020-05-20T08:14:44.612852
| 2011-05-12T14:31:38
| 2011-05-12T14:31:38
| 1,535,615
| 1
| 2
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 160
|
tst
|
maskjmp3.tst
|
;improperly masked indirect jump
%2 <- %1 and 0xffffffe0; not twice the same register
; (should be accepted in a future version)
ijmp %2
|
3b8f5281c25374fa0bd84db6ce987565f7d10897
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1109/CH1/EX1.2/1_2.sce
|
86ec0564e6bfc918e8da2f0c64d4bc2d45022d68
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 418
|
sce
|
1_2.sce
|
clear;
clc;
Zo=2039.6;f=800; //value of Zo as taken in solution
P=0.054* exp(%i*(%pi/(180/87.9)));
w=2*%pi*f;
Z=Zo*P;
R=real(Z);
printf('-Resistance R = %f ohms/km\n',R);
L=(imag(Z))/w;
printf('-Inductance L = %f mH/km\n',L*(10^3));
Y=P/Zo;
G=real(Y);
printf('-Conductance G = %f micromhos/km\n',G*(10^6));
C=((imag(Y))/w)*(10^6);c=round(C*10000)/10000
printf('-Capacitance C = %f microfarads/km\n',c);
|
580e743fe3fc07d3b0fe76829cc7c100735acfc8
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2360/CH6/EX6.42/ex6_42.sce
|
318cae2ee45a1790c86276214e81d52d4e47f303
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 451
|
sce
|
ex6_42.sce
|
// Exa 6.42
format('v',7);clc;clear;close;
// Given data
Q = 1;// in k ohm
Q = Q * 10^3;// in ohm
S = Q;// in ohm
P = 500;// in ohm
r = 100;// in ohm
C = 0.5;// in µF
C = C * 10^-6;// in F
//Using standard condition, Rx = (R2*R3)/R4;
Rx = (P*Q)/S;// in ohm
disp(Rx,"The value of Rx in Ω is");
//Lx = ((C*R2)/R4) * ( (R3*r) + (R4*r) + (R3*R4) );
Lx = ((C*P)/S) * ( (Q*r) + (S*r) + (Q*S) );// in H
disp(Lx,"The value of Lx in H is");
|
cf2632c31b002aef4afb5cca37653e580517a12a
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1913/CH1/EX1.1/ex1.sce
|
6f51a33cb2614fc25c96d99ac1eb7ef4f15cde38
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 245
|
sce
|
ex1.sce
|
clc
clear
//Input data
p=700;//pressure of fluid in kN/m^2
v1=0.28;//Initial volume of fluid in m^3
v2=1.68;//Final volume of fluid in m^3
//Calculations
W=p*(v2-v1);//Work done in kJ
//Output
printf('The Work done W= %3.2f kJ',W)
|
11a10a730176e81a493ccec15a7e784833a4b54d
|
e806e966b06a53388fb300d89534354b222c2cad
|
/macros/erode.sci
|
336e2202a00999cb0033aaaac745fda8e1e76b7c
|
[] |
no_license
|
gursimarsingh/FOSSEE_Image_Processing_Toolbox
|
76c9d524193ade302c48efe11936fe640f4de200
|
a6df67e8bcd5159cde27556f4f6a315f8dc2215f
|
refs/heads/master
| 2021-01-22T02:08:45.870957
| 2017-01-15T21:26:17
| 2017-01-15T21:26:17
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 303
|
sci
|
erode.sci
|
function [out]=erode(input_image ,kernel,actualkernel,anchorX,anchorY)
input_image1=mattolist(input_image);
a=opencv_erode(input_image1 ,kernel,actualkernel,anchorX,anchorY);
dimension=size(a)
for i = 1:dimension
out(:,:,i)=a(i);
end
endfunction;
|
36eff557e5ac3759a82b00944d90812608b46e33
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1976/CH8/EX8.3/Ex8_3.sce
|
b8c9c86eea905e47e7d75729e0419f3db1f46ca8
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 473
|
sce
|
Ex8_3.sce
|
//To Determine the Annual output of copper
//Page 456
clc;
clear;
I=2000; //Current Passed
NW=52; //Number of weeks in a Year
T=100*3600; //Number of seconds per week
TC=NW*T*I; //Total Charge supplied all over the year.
ECu=31.8; //Equivalent Weight of Copper in grams
F=96500; //One Farad of Charge
// 1 F of charge gives 31.8 gms of copper
W=(TC/F)*ECu/(1000*1000); //Weight of copper in tonnes
printf('The Annual Output of Copper is %g Tonnes\n',W)
|
84ec24762658581f1d7865cecb4630965103736d
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1970/CH3/EX3.7/Ch03Exa7.sce
|
72dc750c92248c56e73b1f9e21084e50f8ffa965
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 596
|
sce
|
Ch03Exa7.sce
|
// Scilab code Exa3.7: : Page 125(2011)
clc; clear;
Z = 82; // Atomic number
E = 1; // Energy of the beta paricle, MeV
I_l = 800; // Ionisation loss, MeV
R = Z*E/I_l; // Ratio of radiation loss to ionisation loss
E_1 = I_l/Z; // Energy of the beta particle when radiation radiation loss is equal to ionisation loss, MeV
printf("\nThe ratio of radiation loss to ionisation loss = %5.3e \nThe energy of the beta particle = %4.2f MeV ", R, E_1);
// Result
// The ratio of radiation loss to ionisation loss = 1.025e-01
// The energy of the beta particle = 9.76 MeV
|
fa77e1950a12649a4fe8ae638b6912267a570eb9
|
8217f7986187902617ad1bf89cb789618a90dd0a
|
/source/2.4/macros/percent/%hm_rand.sci
|
6ecb55a8e6df57188c372ab6d240e72ae91c1d72
|
[
"LicenseRef-scancode-public-domain",
"LicenseRef-scancode-warranty-disclaimer"
] |
permissive
|
clg55/Scilab-Workbench
|
4ebc01d2daea5026ad07fbfc53e16d4b29179502
|
9f8fd29c7f2a98100fa9aed8b58f6768d24a1875
|
refs/heads/master
| 2023-05-31T04:06:22.931111
| 2022-09-13T14:41:51
| 2022-09-13T14:41:51
| 258,270,193
| 0
| 1
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 249
|
sci
|
%hm_rand.sci
|
function M=%hm_rand(M)
// Copyright INRIA
//creates a random hypermatrix with shape given by vector of dimensions or an
//hypermatrix
if type(M)==1 then
dims=M
else
dims=M('dims')
end
M=mlist(['hm','dims','entries'],dims,rand(prod(dims),1))
|
86efadd94e88dde41fe3de0a064961a159f722f5
|
18bf68cdf766092ccdcba8d231e8140063833a5a
|
/DefiniteIntegral.sce
|
f9b0931f40adeaf2e6d15d9611c43f2225b877af
|
[] |
no_license
|
goodengineer/Scilab-Exercises
|
b51cc9a4c938f0289a32875d2d21eb9061d0e68e
|
3c268211fe48e7e4d0002e44757ea8b50cda10f9
|
refs/heads/master
| 2022-12-24T23:30:12.875423
| 2020-10-05T06:27:20
| 2020-10-05T06:27:20
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 200
|
sce
|
DefiniteIntegral.sce
|
clear;
clf;
clc;
ts = 0;
te = 2;
dt = 1/1000;
t = te : dt : ts;
x = 2*ones(1, (te-ts)/dt);
z = sum(x)*dt;
disp(z);
t1 = 0;
t2 = 2*%pi;
T = t1 : dt : t2;
y = sin(T);
k = sum(y)*dt;
disp(k);
plot(T,y)
|
7f667bc6ae4c95846c022e68b64e7c131483c5ba
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2414/CH13/EX13.9/Ex13_9.sce
|
5e8eb4a5c9cee0fa00e57716ffcecc6b3ef365a3
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 556
|
sce
|
Ex13_9.sce
|
clc;
close();
clear();
//page no 456
//prob no. 13.9
//Data form ex13.8
Pe=10^-5;
R=2*10^6; //bits/s (changed)
k=1.38*10^-23; //Boltzmann cons
Ti=475; //K
Te=250; //K
Tsys=Ti+Te;
nsys=k*Tsys; //W/Hz
function Eb=E(rhodb) //function for Eb
rho=10^(rhodb/10);
Eb=nsys*rho;
endfunction
function Pr=P(E) //function for Pr
Pr=R*Eb;
endfunction
rhodb=9.6;
Eb=E(rhodb);
Pr=P(E);
mprintf('\nBit energy , Eb=%.2f*10^-21 J \n',Eb*10^21);
mprintf(' Required reciver carrier power , Pr=%.2f fW \n',Pr*10^15);
|
42f629bd7120b078c9ff58631474cb865ab71c6f
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3864/CH2/EX2.4/Ex2_4.sce
|
d8c5efd5af1ffefe24970c1a34485d385260c9d1
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 916
|
sce
|
Ex2_4.sce
|
clear
//
//
//Initilization of Variables
d=25 //mm //diameter of steel
d2=18 //mm //Diameter at neck
L=200 //mm //length of stee
P=80*10**3 //KN //Load
P1=160*10**3 //N //Load at Elastic Limit
P2=180*10**3 //N //Max Load
L1=56 //mm //Total Extension
dell_l=0.16 //mm //Extension
//Calculations
A=%pi*d**2*4**-1 //Area of steel //mm**2
p=P1*A**-1 //Stress at Elastic Limit //N/mm**2
Y=P*L*(A*dell_l)**-1 //Modulus of elasticity
//Let % elongation be x
x=L1*L**-1*100
//Percentage reduction in area
//Let % A be a
a=((%pi*4**-1*d**2)-(%pi*4**-1*d2**2))*(%pi*4**-1*d**2)**-1*100
//Ultimate tensile stress
sigma=P2*A**-1 //N/mm**2
//result
printf("\n Stress at Elastic limit is %0.2f N/mm**2",p)
printf("\n Youngs Modulus is %0.2f N/mm**2",Y)
printf("\n Percentage Elongation is %0.2f ",a)
printf("\n Percentage reduction in area is %0.2f ",P2)
printf("\n Ultimate tensile stress %0.2f N/mm**2",sigma)
|
d74ccc8b12d9003afda4608adf09559876016771
|
717ddeb7e700373742c617a95e25a2376565112c
|
/10/CH7/EX6/cha7_6.sce
|
22f5e7534c919b33186f9aaee3a9f27acab14fe8
|
[] |
no_license
|
appucrossroads/Scilab-TBC-Uploads
|
b7ce9a8665d6253926fa8cc0989cda3c0db8e63d
|
1d1c6f68fe7afb15ea12fd38492ec171491f8ce7
|
refs/heads/master
| 2021-01-22T04:15:15.512674
| 2017-09-19T11:51:56
| 2017-09-19T11:51:56
| 92,444,732
| 0
| 0
| null | 2017-05-25T21:09:20
| 2017-05-25T21:09:19
| null |
UTF-8
|
Scilab
| false
| false
| 246
|
sce
|
cha7_6.sce
|
V=120;F=60;N=2000;A=0.6;
Ohm=20;L=0.25;
V=120;F=60;N=2000;Ia=0.6;
a=20;L=0.25;
Edc=V-(Ia*Ra)
X=2*%pi*F*L
Eac=(-Ia*Ra)+sqrt(V^2-(Ia*X)^2)
Nac=N*(Eac/Edc)
Pf=(Eac+(Ia*Ra))/V
Pmech=Eac*Ia
Wm=(Nac*2*%pi)/F
T=Pmech/Wm
|
388a97c167f172d8ed45aca0bb0b996c6691d09a
|
f04d3d47f893de08cd99a31b4870112915b80d5b
|
/Datasets/australian/data9.tst
|
f707e2f8ee611429d258d71628863d27e79a8ed2
|
[] |
no_license
|
MesumRaza/MyWorkInPython
|
f5364b8514943e44c7200123653da9f4551251b1
|
bd8c9b3ca2fb02ae6d2b626054fa3cd32c28b330
|
refs/heads/master
| 2021-08-19T21:46:41.412995
| 2017-11-27T13:37:52
| 2017-11-27T13:37:52
| 111,728,604
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 5,287
|
tst
|
data9.tst
|
0 0.418496 0.0371429 0.5 0.384615 0.375 0.0233333 0 0 0 0 0.5 0.12 0.00237 class0
1 0.538797 0.678571 0.5 0 0 0 1 1 0.0149254 0 0.5 0.047 0 class0
0 0.303308 0.0566071 0 0 0 0 1 0 0 0 0.5 0.16 0 class0
1 0.0815038 0.142857 0 0.153846 0.375 0.0350877 0 0 0 1 0.5 0.18 0.01 class0
0 0.161654 0.08625 0 0.538462 0.375 0 0 0 0 0 0.5 0.06 0 class0
1 0.14406 0.0535714 0.5 0.538462 0.875 0.0496491 1 0 0 0 0.5 0.211 0.002 class1
1 0.833383 0.321429 0.5 0 0 0.140351 0 1 0.0149254 0 0.5 0.035 6e-05 class0
1 0.510075 0.0103571 0.5 0.538462 0.5 0.526316 1 1 0.298507 0 0.5 0 0.15 class1
0 0.293233 0.0892857 0 0.538462 0.375 0.0877193 0 0 0 1 0.5 0 2e-05 class0
1 0.443609 0.107143 0.5 0.769231 0.875 0.210526 1 1 0.164179 0 0.5 0.04 0 class1
1 0.139098 0.0223214 0 0.384615 0.375 0.00438596 1 0 0 0 0.5 0.09 1e-05 class0
1 0.315789 0.0892857 0.5 0.923077 0.5 0.0175439 0 0 0 0 0.5 0.174 0 class0
1 0.64406 0.660714 0.5 0.0769231 0.5 0.526316 1 1 0.253731 1 0.5 0 0 class1
0 0.457444 0.238036 0.5 0.769231 0.375 0.258772 1 1 0.0447761 1 0.5 0 0 class1
0 0.45985 0 0.5 0.538462 0.375 0.0877193 1 0 0 0 0.5 0 0 class1
1 0.308271 0.0625 0.5 0.615385 0.5 0.00877193 1 0 0 1 0.5 0.0815 0 class0
0 0.469925 0.16375 0.5 0.230769 0.875 0.0350877 0 0 0 1 0 0.12 0 class0
1 0.253083 0.0967857 0 0.461538 0.375 0.00438596 0 0 0 1 0 0.04 0 class0
1 0.209323 0.0267857 0.5 0.769231 0.875 0.00578947 0 0 0 1 0.5 0.11 0.00251 class0
1 0.0852632 0.258929 0.5 0.461538 0.375 0.00140351 0 1 0.0149254 0 0.5 0.05 1e-05 class0
0 0.414737 0.0357143 0.5 0.153846 0.5 0.0789474 1 0 0 1 0.5 0 0.003 class1
0 0.146617 0.0535714 0.5 0.615385 0.375 0.0307018 0 0 0 1 0.5 0.08 0 class0
1 0.269474 0.0296429 0.5 1 0.375 0.0468421 1 1 0.119403 1 0.5 0.1515 0.0329 class1
0 0.0613534 0.392857 0.5 1 0.875 0.0350877 1 1 0.164179 0 0.5 0 0.03 class1
0 0.29203 0.0803571 0 0.923077 0.375 0.122807 0 0 0 1 0.5 0.1 0.00141 class0
0 0.582707 0.25 0.5 0.384615 0.875 0.105263 0 0 0 0 0.5 0 0 class0
0 0.175489 0.0401786 0.5 0.769231 0.375 0.0452632 1 1 0.0298507 0 0.5 0.1 0 class0
1 0.403459 0.0535714 0.5 0.153846 0.5 0 0 0 0 0 0 0.15 0 class0
1 0.152932 0.0208929 0 0.923077 0.875 0.00438596 0 0 0 0 0.5 0.12 1e-05 class0
1 0.635338 0.446429 0.5 0.230769 0.875 0.280702 1 0 0 1 0.5 0.012 0.02028 class1
0 0.221805 0.108571 0 1 0.875 0.0891228 1 1 0.0149254 0 0.5 0.035 0 class1
1 0.275639 0.142857 0.5 0.461538 0.375 0.0877193 1 0 0 1 0.5 0.18 0 class1
1 0.111579 0.03125 0 0.538462 0.875 0.00877193 0 0 0 0 0.5 0.14 0.00204 class0
1 0.307068 0.3275 0.5 0.538462 0.375 0.157895 1 1 0.179104 1 0.5 0 0.00221 class1
1 0.443609 0.900357 0.5 0.769231 0.875 0.00736842 1 1 0.0149254 0 0.5 0.38 0.0009 class0
0 0.368421 0.214286 0.5 0.230769 0.375 0.0350877 1 0 0 1 0.5 0 0 class1
1 0.35594 0.0728571 0.5 0.615385 0.375 0.00140351 1 0 0 1 0.5 0.2 0.058 class1
1 0.241805 0.0728571 0 1 0.875 0.00140351 0 0 0 0 0.5 0.064 1e-05 class0
1 0.354586 0.0951786 0.5 0.923077 0.375 0.00578947 0 0 0 1 0.5 0 0.00501 class0
1 0.264361 0.696429 0.5 0.538462 0.375 0.245614 1 1 0.238806 0 0.5 0 0.05 class1
1 0.335789 0.0907143 0.5 0 0 0 0 0 0 0 0.5 0 0.01 class0
1 0.101504 0.08625 0.5 0.538462 0.375 0.0701754 1 1 0.164179 1 0.5 0.1 0.03 class1
1 0.502556 0.208393 0.5 0.615385 0.375 0.192982 0 0 0 0 0.5 0.2325 0.0015 class0
1 0.12406 0.279821 0 0.153846 0.5 0.00578947 0 0 0 1 0.5 0.092 0 class0
1 0.101504 0.357143 0 0.538462 0.375 0.0877193 1 0 0 0 0 0.02 0 class1
1 0.318346 0.0892857 0.5 0.615385 0.375 0 1 0 0 1 0.5 0.1195 0.002 class1
1 0.155338 0.03125 0.5 0.461538 0.375 0.00298246 0 1 0.0597015 0 0.5 0.127 0.0195 class0
1 0.354586 0.232143 0.5 0.461538 0.875 0.149123 1 1 0.179104 1 0.5 0.0465 0 class1
0 0.105263 0.340714 0.5 0.153846 0.375 0.00140351 0 0 0 0 0.5 0.1 0.01 class0
1 0.344662 0.116071 0.5 0.769231 0.875 0.315789 1 0 0 1 0.5 0.051 0.00639 class1
1 0.132782 0.358571 0.5 1 0.375 0.00140351 1 1 0.134328 0 0.5 0.03 0.00396 class1
0 0.198045 0.482143 0.5 0.769231 0.875 0.175439 1 1 0.0298507 0 0.5 0 0.05 class1
0 0.495038 0.0164286 0.5 0.923077 0.875 0.0145614 1 1 0.164179 1 0.5 0.22 6e-05 class1
0 0.577744 0 0 0 0 0 0 0 0 0 0.5 0 0 class0
1 0.382256 0.0892857 0 0.153846 0.875 0.350877 0 0 0 1 0 0.1 0 class0
1 0.382256 0.0580357 0.5 0.538462 0.375 0.0526316 1 1 0.149254 0 0.5 0.093 0.047 class1
0 0.209323 0.0728571 0.5 0.615385 0.375 0.00877193 0 0 0 1 0.5 0.09 0.0005 class0
1 0.0815038 0.339286 0.5 0.615385 0.375 0.0526316 1 0 0 0 0.5 0.06 0.02206 class1
1 0.387218 0.151786 0.5 0.538462 0.5 0.22807 1 1 0.238806 0 0.5 0.0585 0.0121 class1
1 0.340902 0.0267857 0 0.0769231 0.375 0.0205263 0 0 0 0 0.5 0.12 3e-05 class0
1 0.186767 0.00892857 0.5 0.153846 0.5 0 1 0 0 1 0.5 0 0 class1
1 0.386015 0.0610714 0 0.461538 0.375 0.00578947 0 0 0 0 0 0.2 0 class0
1 0.423609 0.015 0.5 0.538462 0.875 0.00736842 1 1 0.0895522 0 0.5 0.11 0.00948 class1
1 0.113985 0.267857 0.5 0.384615 0.375 0.0496491 1 1 0.0149254 0 0.5 0.04 0.098 class1
0 0.095188 0.0446429 0.5 0.538462 0.375 0 0 0 0 0 0.5 0 0 class0
0 0.20797 0.107143 0.5 0.461538 0.375 0.0978947 0 1 0.0149254 1 0.5 0.14 0.0001 class0
1 0.117744 0.0282143 0 0.923077 0.375 0.0233333 0 0 0 0 0.5 0.08 0 class0
1 0.218045 0.183036 0.5 1 0.375 0.166667 1 1 0.0298507 0 0.5 0.21 7e-05 class1
1 0.198045 0.0803571 0.5 0.153846 0.5 0.0175439 0 0 0 1 0.5 0.32 0.04 class0
|
601892b7f6234ba52fc1083a0ee2b385850b3ee6
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1844/CH3/EX3.7/3Q7.sce
|
fa2081842efd82ae4aabff8c0ed12876bbf53382
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 335
|
sce
|
3Q7.sce
|
clc
k= 8 // slope between points in degrees
l=428 //measured length in m
D1=l*cosd(k)
printf('a)Horizontal distance between the points =%f m\n',D1)
h=62
D2=sqrt(l^2-h^2)
printf(' b)Horizontal distance between the points =%f m\n',D2)
k= atan(0.25)
D3=l*cos(k)
printf(' c)Horizontal distance between the points =%f m',D3)
|
db57c372bedfcbb7d2d80da3739b706ffb52fb56
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2453/CH3/EX3.3/3_3.sce
|
d017e54760e55b5e9957dcc6877c366421ceb3b9
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 388
|
sce
|
3_3.sce
|
//To calculate the de Broglie wavelength
m = 1.674*10^-27; //mass of neutron, kg
h = 6.626*10^-34; //planck's constant
e = 1.6*10^-19;
KE = 0.025; //kinetic energy, eV
E = KE*e; //kinetic energy, J
lamda = h/sqrt(2*m*E); //de Broglie wavelength, m
lamda_nm = lamda*10^9; //de Broglie wavelength, nm
printf("de Broglie wavelength is %5.3f nm",lamda_nm);
|
dffabb835abc300c5e4617461b10b87a8553235f
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3764/CH2/EX2.10/Ex2_10.sce
|
64307fb4355f62fbdd1336d5c8f33ada829101ab
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 887
|
sce
|
Ex2_10.sce
|
clc
//
//Variable declaration
G=90 // Modulus of rigidity(ksi)
disp1=0.04 // Displacement of upper rod(in)
Lda=2 // Height of bar(in)
A=8*2.5 // Area of cross section(in**2)
//Calculation
Yxy=(disp1/Lda) // Shearing strain(rad)
Txy=(90*((10**3)))*(0.020) // Shearing stress(psi)
P=(Txy*A)/((10**3)) // Force exerted on the upper plate(kips)
// Results
printf("\n Shearing strain in rod=%1f rad' ,Yxy)
printf("\n Force exerted on the upper plate=%1f kips' ,P)
|
dcc32aefd1d3034cbfa866718cbaba59926f6c41
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2939/CH10/EX10.5/Ex10_5.sce
|
47497d822adf997d5e8a22533b47b488ca1b2ef0
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 412
|
sce
|
Ex10_5.sce
|
//Ex10_5
clc;
// Given:
ai=14000;// counts per min per 0.1 cm^3, initial activity of blood
Si=1.4*10^5;// c min^-1 cm^-3, initial specific activity
a=250;// 250 net counts in 10 min, this implies 25 net counts in a min
// Formula: Si/Sr = V
// Solution:
V=Si/25;// total blood in the patient in cm^3
V1=V/1000;// volume in lit
printf("The volume of blood in the patient is = %f lit",V1)
|
ae0ae06b222f7cb734be19a9fb8656a8cc54913d
|
a62e0da056102916ac0fe63d8475e3c4114f86b1
|
/set14/s_Linear_Algebra_And_Its_Applications_G._Strang_70.zip/Linear_Algebra_And_Its_Applications_G._Strang_70/CH5/EX5.1.1/5_1_1.sci
|
f91863ef8465797095e566e22f6331d2cf69e73e
|
[] |
no_license
|
hohiroki/Scilab_TBC
|
cb11e171e47a6cf15dad6594726c14443b23d512
|
98e421ab71b2e8be0c70d67cca3ecb53eeef1df6
|
refs/heads/master
| 2021-01-18T02:07:29.200029
| 2016-04-29T07:01:39
| 2016-04-29T07:01:39
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 179
|
sci
|
5_1_1.sci
|
errcatch(-1,"stop");mode(2);//page 238
;
;
A=[3 0;0 2];
eig=spec(A);
[V,Val]=spec(A);
disp(eig,'Eigen values:')
x1=V(:,1);
x2=V(:,2);
disp(x1,x2,'Eigen vectors:');
//end
exit();
|
7142c97a4fee071c88d0e5c874f81412143ac92c
|
8217f7986187902617ad1bf89cb789618a90dd0a
|
/source/2.3.1/macros/percent/%col.sci
|
7e8da487f4acf30673dea5284dc6f3159f7d8b3a
|
[
"LicenseRef-scancode-warranty-disclaimer",
"LicenseRef-scancode-public-domain",
"MIT"
] |
permissive
|
clg55/Scilab-Workbench
|
4ebc01d2daea5026ad07fbfc53e16d4b29179502
|
9f8fd29c7f2a98100fa9aed8b58f6768d24a1875
|
refs/heads/master
| 2023-05-31T04:06:22.931111
| 2022-09-13T14:41:51
| 2022-09-13T14:41:51
| 258,270,193
| 0
| 1
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 61
|
sci
|
%col.sci
|
function [r]=%col(l1,l2)
//%col(l1,l2) : l1==l2
//!
r=%f
|
e27e63d177e8b6748573b73171b94ae2e3761540
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1619/CH5/EX5.4.3/Example5_4_3.sce
|
0cfc935eba0aa5d8ffa60c0673a551d8074618b4
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 443
|
sce
|
Example5_4_3.sce
|
//Example 5.4.3 page 5.14
clc;
clear;
Ttx= 8*10^-9;
Tintra= 1*10^-9;
Tmodal=5*10^-9;
Trr= 6*10^-9;
Tsys= sqrt(Ttx^2+(8*Tintra)^2+(8*Tmodal)^2+Trr^2);
BWnrz= 0.7/Tsys;
BWnrz=BWnrz/1000000;//converting in ns for dislaying...
BWrz=0.35/Tsys;
BWrz=BWrz/1000000;//converting in ns for dislaying...
printf("Maximum bit rate for NRZ format is %.2f Mb/sec",BWnrz);
printf("\n\nMaximum bit rate for RZ format is %.2f Mb/sec",BWrz);
|
57e3b658d48d0c574e438c34441fd3f96cdbaa11
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/728/CH4/EX4.10/Ex4_10.sce
|
3c1fc0b5c0c42569512b2ab86eeed4541d61a462
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 435
|
sce
|
Ex4_10.sce
|
//Caption:Calculate (i)-required size of guide,(ii)-frequencies that can be used for this mode of propagation
//Exa:4.10
clc;
clear;
close;
wl_c=10;//in cm
c=3*10^10;//in cm/s
r=wl_c/(2*%pi/1.841);//in cm
area=%pi*r^2;//in sq. cm
f_c=c/wl_c;
disp(r,'Radius of circular waveguide(in cm) =');
disp(area,'Area of cross-section of circular waveguide(in cm) =');
disp('Frequency above');
disp(f_c);
disp('can be propagated');
|
0d1848d9fe00621f1f7f9082431215bfa7b524b9
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2513/CH9/EX9.2/9_2.sce
|
b2e9267b4e80f028ebcc08aa59f602388fc97615
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 347
|
sce
|
9_2.sce
|
clc
//initialisation of variables
p1=1000//ft
p2=50//ft
g=20//ft/mile
v=5280//ft
q=7.5*10^-6//ft
t=60//F
k=2835//ft/days
p=7.5//ft
//CALCULATIONS
S=g/v//ft
W=k*(g/v)//ft/day
Q=W*p1*p2*q//mgd
P=k*p//ft
P1=P*p2//mgd
//RESULTS
printf('the velocity of flow =% f mgd',Q)
printf('the standard coefficient pf permeability=% f mgd',P1)
|
e887ce284aa0e7155a50508e40c63343fcd51e08
|
0d9cd41149e7d432274a5fd4d85a04dc8ef1ed51
|
/fracCont.sce
|
edfa39030863c79cc3d2d616c60d4b2709d5c5d9
|
[] |
no_license
|
ece2lr/tp9
|
870ee16446035aa6268e458facdcc7c8cf190656
|
8d124524a19c7dd6c771c99d4850f2710de12306
|
refs/heads/master
| 2021-05-06T05:34:25.015014
| 2017-12-22T11:39:21
| 2017-12-22T11:39:21
| 115,109,626
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 357
|
sce
|
fracCont.sce
|
function [pp,qq]=suivantFracCont(p,q)
pp = 2*q + p
qq = p + q
endfunction
N=5
p=1
q=1
valeursP = []
valeursQ = []
for k=1:N
valeursP = [valeursP,p]
valeursQ = [valeursQ,q]
[p,q] = suivantFracCont(p,q)
end
A = [1 2 ; 1 1]
[P,D]=spec(A)
//N=5
//p=1
//q=1
//for k=1:N
// disp(A^k)
// [p,q] = suivantFracCont(p,q)
// disp([p,q,p^2-2*q^2])
//end
|
c8e92501d58ada4f465ee8be56eaf44297a62000
|
3a5107b829276ce4530b98283206e13ef2bfff7c
|
/integração trapézios.sce
|
ae4a67d89ac0bacb8b772511b5a6615d7250ea14
|
[] |
no_license
|
daniel1sender/T-picos-de-F-sica-Computacional
|
902932aaa0616171ecd7e21650cb41ed4a29ef72
|
755a3b085f2190d579fcac90d562a7668f4f60d1
|
refs/heads/main
| 2023-04-23T04:15:27.660423
| 2021-05-10T15:57:41
| 2021-05-10T15:57:41
| 339,199,113
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 300
|
sce
|
integração trapézios.sce
|
//achar pi através do método dos trapézios
//achar a área A. Depois fazer pi=4*A
t1=0;
t2=1;
h=0.0001;
x=t1:h:t2;
function y=caio(x)
y=sqrt(1-x.^2);
endfunction
integral=0.0;
y1=caio(x);
for i=1:length(x)-1;
integral= integral+((y1(i)+y1(i+1))/2)*h;
end
pi=4*integral;
disp(pi)
|
b385ab08010dc478d8a630d5f6d3dfdc468bfdab
|
ab845192d4a70fef24adc0f8e4a06542e7c15f99
|
/DC_motor/DC_motor_output/DC_motor_eqn.sce
|
3f0ded8b4ceae0326ac37ae1b24449bdec00122e
|
[] |
no_license
|
kaushikmallick/examples
|
86b3090649eb5a6fa13a6604059dd484fc22b2b9
|
204771be70bef6b878fd37326765182ab7aa0b74
|
refs/heads/master
| 2021-01-10T19:47:58.734279
| 2014-02-22T15:34:37
| 2014-02-22T15:34:37
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 976
|
sce
|
DC_motor_eqn.sce
|
Lk_L = 1;
Ck_C = 1;
La_L = 1;
Rs_R = 1;
Rm_R = 1;
Rk_R = 1;
num_state = 3;
num_invar = 1;
num_outvar = 1;
s = poly(0,'s');
polymat = ...
[[Lk_L*s, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0];
[-1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, -1, 0, 0, 0, 0, 0];
[1, 0, -1, 0, 0, 0, 0, -1, 0, 0, 0, 1, 0, 0, 0, 0, 0];
[0, -Ck_C*s, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0];
[0, 1, 0, 0, 0, 1, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0];
[0, 0, La_L*s, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0];
[0, 0, -Rs_R, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0];
[0, 0, -Rm_R, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1];
[0, 0, 0, 1, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0];
[0, 0, 0, 0, 0, 1, 0, 0, -1, 1, 0, 0, 0, 0, 0, 0, 0];
[0, 0, 0, 0, 0, 1, 0, 0, -1, 0, 1, 0, 0, 0, 0, 0, 0];
[0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0];
[0, 0, 0, 0, 0, 0, 0, Rk_R, 0, 1, 0, 0, 0, 0, 0, 0, 0];
[0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, -1, 0];
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 1, 1] ];
|
18665a71dd128f1ae2ea76210a4e7665437ab0e4
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/632/CH9/EX9.18/example9_18.sce
|
08cffe04f2999da798e5a8743383679fe0a446ee
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 711
|
sce
|
example9_18.sce
|
//clc()
F = 100;//kg
//F, D and W be the flow rates of the feed, the distillate and bottom product resp., xf , xd and xw be the mole fraction of methanol in the fee, distillate and the bottom product resp.
xf = 0.20;
xd = 0.97;
xw = 0.02;
//using, F = D + W and F*xf + D*xd + W*xw,we get
D = 18.95;//kg/h
W = 81.05;//kg/h
R = 3.5;
//R = L / D
//for distillate = 1kg
D1 = 1;//kg
L = R*D1;
//Taking balance around the condenser,
G = L + D1;
mcondensed = G * D / F;
disp("kg",D,"(a)Amount of distillate = ")
disp("kg",W," Amount of Bottom Product = ")
disp("kg",G,"(b)Amount of vapour condensed per kg of distillate = ")
disp("kg",mcondensed,"(c)Amount of vapour condensed per kg of feed = ")
|
d1bfc25f8b20a8d4491f962920fe02e71b31d4d4
|
9715cbe7e8e57bb70f628b3bd021842f99fbad75
|
/taller/soluciones/funcionLnMaclaurin.sci
|
41edb2e43feb7a23685f7e2914bda112b14d041b
|
[] |
no_license
|
UNIVALLE-EISC/numerical-methods
|
a3e3f432a6dc54a5ba845789ace2bf39db7ac6fe
|
3ea9401e281523e15be0525bfe36e48560caf646
|
refs/heads/master
| 2021-01-10T15:22:36.080955
| 2018-10-02T21:37:42
| 2018-10-02T21:37:42
| 51,824,833
| 2
| 2
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 721
|
sci
|
funcionLnMaclaurin.sci
|
//Serie de Maclaurin de la funcion logaritmo natural
//function [et, ea, aprox] = funcionLnMaclaurin(x, iter)
//Entrada:
//x : valor en que la serie sera evaluada
//iter : cantidad de terminos de la serie
//Salida:
//et : vector de errores relativos
//ea : vector de errores aproximados
//aprox : vector con valores aproximados de la serie
function [et, ea, aprox] = funcionLnMaclaurin(x, iter)
verdad = log(1+x);
aprox(1) = x;
et(1) = ((verdad - aprox(1))/verdad)*100;
ea(1) = %nan;
for i = 2:iter
aprox(i) = aprox(i-1) + ((-1)^(i+1))*((x^i)/i);
et(i) = ((verdad - aprox(i))/verdad)*100;
ea(i) = ((aprox(i) - aprox(i-1))/aprox(i))*100;
end
endfunction
|
139acad6e2989642901e15fbfb76a0e443250d41
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1670/CH11/EX11.13/11_13.sce
|
34e0d35dbf1afc5d66ae817625ce1d6b75eda090
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 321
|
sce
|
11_13.sce
|
//Example 11.13
//Eigenvalue Problem
//Page no. 387
clc;clear;close;
h1=1/2;h2=1/3;
lbd=poly(0,'lbd')
mu=9*lbd/16;
r1(1)=64
A=[2*lbd-324,81;243,lbd-324];
disp(determ(A),'Characteristic Equation = ');
r=roots(determ(A))
disp(r,'Roots = ')
r1(2)=r(2)
Q=((h1/h2)^2*r1(2)-r1(1))/((h1/h2)^2-1)
disp(Q,'Q12 = ')
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.