blob_id
stringlengths 40
40
| directory_id
stringlengths 40
40
| path
stringlengths 4
214
| content_id
stringlengths 40
40
| detected_licenses
listlengths 0
50
| license_type
stringclasses 2
values | repo_name
stringlengths 6
115
| snapshot_id
stringlengths 40
40
| revision_id
stringlengths 40
40
| branch_name
stringclasses 21
values | visit_date
timestamp[us] | revision_date
timestamp[us] | committer_date
timestamp[us] | github_id
int64 141k
586M
⌀ | star_events_count
int64 0
30.4k
| fork_events_count
int64 0
9.67k
| gha_license_id
stringclasses 8
values | gha_event_created_at
timestamp[us] | gha_created_at
timestamp[us] | gha_language
stringclasses 50
values | src_encoding
stringclasses 23
values | language
stringclasses 1
value | is_vendor
bool 1
class | is_generated
bool 1
class | length_bytes
int64 5
10.4M
| extension
stringclasses 29
values | filename
stringlengths 2
96
| content
stringlengths 5
10.4M
|
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
f7453114e9607e52a6e1a00e87c6f5cad83fb68b
|
1197c75e059134023f14d6e150d0fc667e4ae03e
|
/Misc/MPArith/supptest/manifest.tst
|
a672b7656b6463b03ab9b6ad39a3146d4462c829
|
[
"Zlib"
] |
permissive
|
Alexey-T/Wolfgang_Ehrhardt_codes
|
66d9658fcfe348e8d1fc260632b2568316e3f436
|
949aae35fb69c29ff77397b754e645392e697564
|
refs/heads/master
| 2022-11-21T18:30:30.449056
| 2020-08-01T09:05:14
| 2020-08-01T09:05:14
| 284,037,174
| 5
| 0
| null | null | null | null |
WINDOWS-1250
|
Scilab
| false
| false
| 3,716
|
tst
|
manifest.tst
|
bitarray.pas Bit array context with max 524160 bits
coshmult.ari ARIBAS script to calculate s_mp_coshmult test cases
jacobi.ari ARIBAS script to calculate Jacobi test cases
kron.gp Pari/GP script to calculate Kronecker test cases
manifest.tst This file
mem_util.pas Utility procedures for Hex/Base64 and memory compare
pell.ari ARIBAS script to calculate pell/pell4 test cases
ratexp.gp Pari/GP script to calculate rational exponentiation test cases
readme.tst Archive description
red2k.ari ARIBAS script to calculate reduce_2k test cases
t_#p1.pas Demo program for factorization, find factors of n#+1
t_02nm1.pas Demo program for factorization, find factors of 2^n-1
t_02np1.pas Demo program for factorization, find factors of 2^n+1
t_10nm1.pas Demo program for factorization, find factors of (10^n-1)/9
t_10np1.pas Demo program for factorization, find factors of 10^n+1
t_carmic.* Compute Carmichael numbers
t_ciexp1.pas Test program for generating include file for bits of exp(1)
t_ciln10.pas Test program for generating include file for bits of ln(10)
t_ciln2.pas Test program for generating include file for bits of ln(2)
t_cincpi.pas Test program for generating include file for bits of pi
t_cmpfac.pas Demo program comparing different factorial implementations
t_dlog32.pas Test program for dlog32
t_ecm_nx.pas Demo program mp_ecm_factor/mp_ecm_simple
t_ferm2.pas Demo program for factorization, find factors of Fermat[p]
t_gcdblx.pas Test program for timing binary and Lehmer (X)GCD
t_harm.pas Demo program for mp_ratio: calculate harmonic numbers
t_icbrt.pas Test program complete check and bench for icbrt32
t_ksqrt.pas Test program to compare recursive Newton vs. Karatsuba sqrt
t_ktune?.pas Test programs to tune Karatsuba cutoffs
t_lpsp.pas (Strong) Lucas pseudo primes with Selfridge A method
t_lwbps.pas Calculate Lambert W branch point series coefficients
t_mers3.pas Calculate Mersenne primes using Lucas-Lehmer test
t_mpi_01.pas Test program associativity/distributivity of mul and add/sub
t_mpi_02.pas Test program for mp_xxx_int routines
t_mpi_03.pas Test program misc. routines
t_mpmodw.pas Test program for mp_mod_w
t_mpmulw.pas Test program for mp_mul_w
t_nps.pas Check if nextprime versions with and without sieve produce same results
t_part.pas Demo program for mpf_numpart
t_pbit16.pas Test program to calculate bit flag array for prime test
t_pi*.pas Demo programs to calculate pi to max 60000 digits
t_pmtab2.pas Calculate bit arrays for mp_is_square2
t_pmtabs.pas Calculate bit arrays for s_mp_is_pth_power
t_popcnt.pas Test program for population count functions
t_powtab.pas Calculate tables for AMath.power function
t_prim1.pas Benchmark/validation for is_spsp32, IsPrime32
t_prim2.pas Benchmark and partial validation for next/prevprim32
t_provp.pas Demo program for mp_provable_prime
t_rat*.pas Test programs for rational arithmetic routines
t_rcnp.pas Calculates tables for prime residue classes mod 30 or mod 210
t_rootpk.pas Exhaustive test of sqrt, cbrt mod p^k for small p and k
t_rqffu.pas Fundamental units of Q(sqrt(n)), n<2^31
t_rsa*.pas Demo programs for mp_rsa unit
t_sumalt.pas Demo program mpf_sumalt: Pi, ln(2), Zeta(2), Ap‚ry, Catalan
t_toom3.pas Test programs for Toom-3 cutoffs
t_tunepr.pas Test program to tune mp_primor_cutoff
unitcrt.zip CRT unit for Delphi
|
158f490be78682865f48c2ebb1c5ff87735fbc8e
|
a62e0da056102916ac0fe63d8475e3c4114f86b1
|
/set7/s_Electronic_Measurements_And_Instrumentation_P._Sharma_876.zip/Electronic_Measurements_And_Instrumentation_P._Sharma_876/CH2/EX2.6/Ex2_6.sce
|
3ff9faf1366a79d30762811f4d530ba5c4021807
|
[] |
no_license
|
hohiroki/Scilab_TBC
|
cb11e171e47a6cf15dad6594726c14443b23d512
|
98e421ab71b2e8be0c70d67cca3ecb53eeef1df6
|
refs/heads/master
| 2021-01-18T02:07:29.200029
| 2016-04-29T07:01:39
| 2016-04-29T07:01:39
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 385
|
sce
|
Ex2_6.sce
|
errcatch(-1,"stop");mode(2);//caption:Find error in computed value of power dissipation
//Ex2.6
R=100//resistor(in ohm)
Rer=0.2//error in current measurment(in ohm)
I=2//current(in A)
Ier=0.01//error in current measurment(in ohm)
dR=(Rer/R)*100
dI=(Ier/I)*100
P=(I^2)*R
dPo=2*dI+dR
dP=(P*dPo)/100
disp(dP,'error in computed value of power dissipation(in W)=')
exit();
|
c92ca7927a65ce23dc474b77adc44cb81f39a699
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/758/CH6/EX6.4/Ex_6_4.sce
|
95a51d54e72651f5d1c8c6d1433e48f148dc4fe2
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 602
|
sce
|
Ex_6_4.sce
|
//Example 6.4
clc;clear;close;
a=0.5;
n=1:50;
x=ones(1,50);
h=a^n;
//Calculation of linear convolution
for i=1:50
y(1,i)=sum(h(1:i));
end
disp('First Sequence is x(n)=u(n) ');
disp(a,'Second Sequence is h(n)=a^n*u(n) where a= ');
disp(y,'Output sequence is y(n): ');
subplot(3,1,1);
plot2d3(x);
title('First Seqence x[n]:');ylabel('Amplitude-->');xlabel('n-->')
subplot(3,1,2);
plot2d3(h);
title('Second Seqence h[n]:');ylabel('Amplitude-->');xlabel('n-->')
subplot(3,1,3);
plot2d3(y);
title('Convolution Seqence y[n]=x[n]*h[n] :');ylabel('Amplitude-->');xlabel('n-->')
|
b4946fa3d7283c1972455a15f2de44574d498f53
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3782/CH1/EX1.12/Ex1_12.sce
|
169fe082db95ca21253ee134a338a0265f29e9a8
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 178
|
sce
|
Ex1_12.sce
|
clear
//ch-1 page-33, pb-12
//
x=(380.0285/2.5754)
PA=x
AQ=367-x
al=180-(36.45+86.55)
bt=86.35-40-35
TA=AQ*tan(46*(%pi/180))
printf("\n width of river is %0.3f meters',TA)
|
b2be000465373de49e33f83dac31dc1b245a7abe
|
181f67b4868e49ca80872d6ac088a51540f90da6
|
/186A7/A7F.sce
|
9c7298d237b443254c14bf9daddbb53b69f74056
|
[] |
no_license
|
nobody51/AP186
|
567f25ba1ad7f71ad2983860078eeaccffa46080
|
cb916fc9b38b508026403a2227ffc76d490fe948
|
refs/heads/master
| 2021-08-28T09:35:55.488122
| 2017-12-11T21:34:46
| 2017-12-11T21:34:46
| 104,969,401
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 550
|
sce
|
A7F.sce
|
lunar = imread('C:\Users\Anton Cruz\Desktop\186\AP186\186A7\7F\canvas.JPG');
lunar = double(lunar);
graylunar = mat2gray(lunar(:,:,1));
f=scf();
imshow(graylunar);
isoview();
xs2png(gcf(),'graylunar');
lunarFT = fft2(graylunar);
f=scf();
imshow(imnorm(log(abs(fftshift(lunarFT)))));
isoview();
xs2png(gcf(),'graylunarFT');
mask = imread('C:\Users\Anton Cruz\Desktop\186\AP186\186A7\7F\rfilter.png');
mask = double(mask)
image = imnorm(abs(fftshift(fft2(mask))));
f=scf();
imshow(uint8(image*255));
isoview();
xs2png(gcf(),'graylunarFixedAlt');
|
1e9c334bf27c4142a342ec3fe15f61f3ac79066b
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2825/CH14/EX14.9/Ex14_9.sce
|
7c9e17b6cfcd2749a23c72694a239edb81d24810
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 262
|
sce
|
Ex14_9.sce
|
//Ex14_9 Pg-698
clc
n1=1.45 //core refracrive index
NA=0.16//cladding refractive index
lamda=0.9*10^(-6) //cut-off wavelength
d=60/100 //core radius in m
V=(%pi*d*NA)/lamda //normalised frequency
printf("Normalised frequency = %.2f*1e5 \n",V*1e-5)
|
395e24cd4d976da6da3c8f50e24d1d72055f0575
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3782/CH8/EX8.5/Ex8_5.sce
|
145b639f23a86fc280b0c4979acb562dbe3593e8
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 329
|
sce
|
Ex8_5.sce
|
//
//
printf("\n bottom section')
L=40//m
B=30//m
a1=L*B//m2
printf("\n area A1= %0.3f sq. meters",a1)
printf("\n mid section')
b=40//m
sh=2.5//m
l=L+2*2*sh
b=B+2*2*sh
a2=l*b
printf("\n area A2= %0.3f sq. meters",a2)
printf("\n top section')
sh=5
l1=L+2*sh
b1=B*2*2*sh
a3=l1*b1
printf("\n area A3= %0.3f sq. meters",a3)
|
4dd3510df4579f952f53d6d17c1a2c25f1e666ed
|
3d9eb570cc25f2789bfcc4876cb4ba7ac1094b20
|
/Transcendental Equations Solving Methods/False Position Method.sci
|
7ef0b8a9996c9dce0b7486aa7544ad7c381a17dd
|
[] |
no_license
|
laisdutra/NumericalComputing
|
0c858f029621767723fb28d824dcff8a48aa8905
|
84f7f4600056a98bf24b924d647818cc0f17e4cf
|
refs/heads/master
| 2022-01-27T08:06:26.686036
| 2019-05-23T01:41:55
| 2019-05-23T01:41:55
| 185,099,679
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 676
|
sci
|
False Position Method.sci
|
function y = f(x)
y = 1 - (1+x).^-9 - (140/26.5)*x //função que se procura a raiz
endfunction
a = 0.12;
b = 0.13;
x = a; //para calcular o primeiro erro relativo
while(1)
x_ant = x //guarda o valor do x para cálculo do erro relativo
x = a - (b-a)*f(a)/(f(b)-f(a)) //ponto em que a reta que liga os intervalos corta o eixo
Er = abs((x - x_ant)/x) //calcula o erro relativo
if(Er < 10^-3)
break
end
if(f(a)*f(x) < 0) then //verifica em que intervalo está a raiz, método de Bolzano
b = x //redefine o intervalo sendo o intervalo da esquerda
else
a = x //redefine o intervalo sendo o intervalo da direita
end
end
|
338832becd300d62210a0b45269860e9e1c6cb13
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1226/CH20/EX20.42/EX20_42.sce
|
8a5e5acdcdd7dc50e4c832244a14cf0531180353
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,735
|
sce
|
EX20_42.sce
|
clc;funcprot(0);//EXAMPLE 20.42
// Initialisation of Variables
rp=3.6;..........//Pressure ratio
die=0.35;.......//Diameter of inlet eye of compressor in m
Cf=140;..........//Axial velocity in m/s
m=12;.............//Mass flow in kg/s
Cbl2=120;.........//Velocity in the delivery duct in m/s
Ci=460;..........//The tip speed of the impeller in m/s
N=16000;............//Speed of impeller in rpm
etaisen=0.8;.......//Isentropic efficiency
pc=0.73;........//Pressure co efficient
pa=1.013;..........//Ambient pressure in bar
ta=273+15;................//Ambient temperature in K
ga=1.4;..........//Ratio of specific heats
cp=1.005;.........//Specific heat at constant pressure in kJ/kgK
R=0.287;........//Gas constant in kJ/kgK
//Calculations
delt=((ta*((rp^((ga-1)/ga))-1))/etaisen);.......//Rise in temperature
t02=ta+delt;............//Total head temperature in K
disp(t02,"Total head temperature in K:")
t2=t02-((Cbl2*Cbl2)/(2*cp*1000));..........//Static temperature at outlet in K
disp(t2,"Static temperature at outlet in K:")
p02=pa*rp;
p2=p02/(1+((Cbl2*Cbl2)/(2*R*t2*1000)));...........//Static pressure at exit in bar
disp(p2,"Static pressure at exit in bar:")
t1=ta-((Cf*Cf)/(2*cp*1000));.............//Static temperature at inlet in K
disp(t1,"Static temperature at inlet in K:")
p1=pa/(1+((Cf*Cf)/(2*R*t1*1000)));...........//Static pressure at inlet in bar
disp(p1,"Static pressure at inlet in bar:")
rp=p2/p1;.....//Static pressure ratio
disp(rp,"Static pressure ratio:")
W=cp*delt;...........//Work done on air in kJ/kg of air
disp(W,"Work done on air in kJ/kg:")
P=m*cp*delt;..........//Power required to drive the compressor in kW
disp(P,"Power required to drve the compressor in kW:")
|
75b1e6ede0001efd7a4e4b80574809fe0bd9c002
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3472/CH40/EX40.5/Example40_5.sce
|
480c63bfd7b9252f68eb4e2454872b1447eb4e3b
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,134
|
sce
|
Example40_5.sce
|
// A Texbook on POWER SYSTEM ENGINEERING
// A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar
// DHANPAT RAI & Co.
// SECOND EDITION
// PART IV : UTILIZATION AND TRACTION
// CHAPTER 2: HEATING AND WELDING
// EXAMPLE : 2.5 :
// Page number 728-729
clear ; clc ; close ; // Clear the work space and console
// Given data
V_2 = 12.0 // Secondary voltage(V)
P = 30.0*10**3 // Power(W)
PF = 0.5 // Power factor
// Calculations
I_2 = P/(V_2*PF) // Secondary current(A)
Z_2 = V_2/I_2 // Secondary impedance(ohm)
R_2 = Z_2*PF // Secondary resistance(ohm)
sin_phi = (1-PF**2)**0.5
X_2 = Z_2*sin_phi // Secondary reactance(ohm)
h = R_2/X_2
H_m = h // Height up to which the crucible should be filled to obtain maximum heating effect in terms of H_c
// Results
disp("PART IV - EXAMPLE : 2.5 : SOLUTION :-")
printf("\nHeight up to which the crucible should be filled to obtain maximum heating effect, H_m = %.3f*H_c \n", H_m)
printf("\nNOTE: ERROR: Calculation mistake in textbook solution and P is 30 kW not 300 kW")
|
3e627349a67992e3805fb1298f7058e4065ebb87
|
62caa60525e4b9083ff0969ad308b8ff9c1b1faf
|
/src/ar.sci
|
6356e3b06edda1f8f7235474c997005ce9cd7b87
|
[
"Apache-2.0"
] |
permissive
|
buptliuhs/ARE
|
a06c78fda5b51e6cffccefdf49d1005c9b590ab5
|
e5d9471d6dcb3229c0fbc121de32f418cb96eb41
|
refs/heads/master
| 2021-01-10T12:57:11.928817
| 2018-08-08T03:45:51
| 2018-08-08T03:45:51
| 45,362,322
| 1
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 5,100
|
sci
|
ar.sci
|
stacksize('max');
fall=4;
moving=3;
walking=2;
shuffling=1;
standing=0;
sitting=-1;
lying=-2;
inverted=-3;
undefined=-4;
s_freq=100;
path='__SRC_FILE__';
output_file_name='__DST_FILE__';
disp("path=" + path);
disp("output_file_name=" + output_file_name);
////////////////////////////////////////
function [angle_dot,seg_val_ang,diff_angle,seg_val_ang_vel]=FN_Angle_and_AV(stat_vect,x_axis,y_axis,z_axis,s_freq)
angle_dot=FN_Angle(stat_vect,x_axis,y_axis,z_axis);
seg_cnt=floor(length(x_axis)/s_freq);
clear seg_val_ang
seg_val_ang_raw=matrix(angle_dot(1:(seg_cnt*s_freq),1),s_freq,seg_cnt);
seg_val_ang=mean(seg_val_ang_raw,1).';
//fcut_off=0.5;
//fsample=s_freq;
//order=2;
//fc = fcut_off;
//wn=(fc*2)/(fsample);
//[B,A] = butter(order,wn);
B = [241.359049041961e-006 482.718098083923e-006 241.359049041961e-006];
A = [1.00000000000000e+000 -1.95557824031504e+000 956.543676511203e-003];
angle = filter(B, A, angle_dot);
diff_angle=diff(angle);
diff_angle=diff_angle*s_freq;
diff_angle=[0;diff_angle];
clear seg_cnt_ang_vel
win=s_freq/2;
seg_cnt_ang_vel=floor(length(diff_angle)/win);
seg_val_ang_vel_raw=matrix(diff_angle(1:(seg_cnt_ang_vel*win),1),win,seg_cnt_ang_vel);
seg_val_ang_vel=mean(seg_val_ang_vel_raw,1).';
endfunction
////////////////////////////////////////
function angle_dot=FN_Angle(stat_vect,x_axis,y_axis,z_axis)
a1 = stat_vect(1,1).*ones(1,length(x_axis));
a2 = stat_vect(2,1).*ones(1,length(x_axis));
a3 = stat_vect(3,1).*ones(1,length(x_axis));
Pss_A_EX = [a1' a2' a3'];
a1=[x_axis,y_axis,z_axis].';
a2=Pss_A_EX.';
a3=sum(a1.*a2, "r");
n=a3.';
aT_UD=FN_RSS(x_axis,y_axis,z_axis);
aT_Pss=FN_RSS(Pss_A_EX(:,1),Pss_A_EX(:,2),Pss_A_EX(:,3));
d=aT_UD.*aT_Pss;
angle_dot=acos(n./d)*57.3;
endfunction
////////////////////////////////////////
function aT=FN_RSS(x_axis,y_axis,z_axis)
a1=x_axis.*x_axis;
a2=y_axis.*y_axis;
a3=z_axis.*z_axis;
aT=sqrt(a1+a2+a3);
endfunction
///////////////////////////////////
function SMA_value=FN_SMA(signal_3D,s_freq)
T_interval=s_freq;
SMA_total_down_sample=signal_3D(1:length(signal_3D(:,1)),1:3);
seg_nums=floor(length(SMA_total_down_sample(:,1))/T_interval);
SMA_value=zeros(length(seg_nums),1);
//fcut_off_low=0.75;
//fcut_off_high=15;
//fsample=100;
//order=1;
//fc1 = fcut_off_low;
//fc2 = fcut_off_high;
//w1=(fc1*2)/(fsample);
//w2=(fc2*2)/(fsample);
//wn = [w1 w2];
//[B,A] = butter(order,wn,'bandpass');
B = [0.324412497742493 0 -0.324412497742493];
A = [1.000000000000000 -1.319111188642744 0.351175004515013];
//fcut_off_low=0.75;
//fcut_off_high=10;
//fsample=100;
//order=1;
//fc1 = fcut_off_low;
//fc2 = fcut_off_high;
//w1=(fc1*2)/(fsample);
//w2=(fc2*2)/(fsample);
//wn = [w1 w2];
//[B,A] = butter(order,wn,'bandpass');
//B = [0.230214638655737 0 -0.230214638655737];
//A = [1.000000000000000 -1.516172417624503 0.539570722688527];
for Axis_SMA=1:3
SMA_total_filt(:,Axis_SMA)=filter(B, A, SMA_total_down_sample(:,Axis_SMA));
SMA_total_filt(:,Axis_SMA)=abs(SMA_total_filt(:,Axis_SMA));
end
for SMA_jmp=1:T_interval:(seg_nums*T_interval)
SMA_segment=SMA_total_filt(SMA_jmp:(SMA_jmp+T_interval-1),1:3);
SMA_total_sum=sum(SMA_segment,1);
Count_total=sum(SMA_total_sum,2);
SMA_value(1+((SMA_jmp-1)/T_interval),1)=Count_total;
end
endfunction
/////////////////////////////////////////////////////////////////////////
disp("Loading file ...");
tic();
tmp=csvRead(path);
y=toc();
disp("Loading file done: " + string(y) + " seconds");
signal_file=[tmp(:,1),tmp(:,2),tmp(:,3)];
clear fileCAL;
fileCAL(:,1)=(1:length(signal_file(:,1)))/(s_freq*60);
//f_cut_off_higher=10;
//wn=(f_cut_off_higher*2)/s_freq;
//order=2;
//[B,A] = butter(order,wn);
B = [67.4552738890719e-003 134.910547778144e-003 67.4552738890719e-003];
A = [1.00000000000000e+000 -1.14298050253990e+000 412.801598096189e-003];
disp("Filtering signal ...");
tic();
for CAL=1:3
fileCAL(:,CAL+1)=signal_file(:,CAL);
[fileCAL(:,CAL+1),zf]=filter(B, A, fileCAL(:,CAL+1));
end
y=toc();
disp("Filtering signal done: " + string(y) + " seconds");
x_axis=fileCAL(:,2);
y_axis=fileCAL(:,3);
z_axis=fileCAL(:,4);
signal_3D=[x_axis, y_axis, z_axis];
g_mean = [0 1 0];
Pss_A=g_mean';
stat_vect=Pss_A;
disp("Calculating SMA ...");
tic();
SMA_value=FN_SMA(signal_3D,s_freq);
SMA_value(1)=SMA_value(2);
y=toc();
disp("Calculating SMA done: " + string(y) + " seconds");
disp("Calculating Angle ...");
tic();
[angle_dot,seg_val_ang,diff_angle,seg_val_ang_vel]=FN_Angle_and_AV(stat_vect,x_axis,y_axis,z_axis,s_freq);
y=toc();
disp("Calculating Angle done: " + string(y) + " seconds");
disp("Writing files ...");
tic();
output_file = fullfile(output_file_name+'.sma');
disp("writing ... :" + output_file);
csvWrite(SMA_value, output_file);
output_file = fullfile(output_file_name+'.seg_val_ang');
disp("writing ... :" + output_file);
csvWrite(seg_val_ang, output_file);
output_file = fullfile(output_file_name+'.seg_val_ang_vel');
disp("writing ... :" + output_file);
csvWrite(seg_val_ang_vel, output_file);
y=toc();
disp("Writing files done: " + string(y) + " seconds");
exit;
|
2b8ad6f3dcbcb87d04bfb48dd351f5822ded5fa1
|
f542bc49c4d04b47d19c88e7c89d5db60922e34e
|
/PresentationFiles_Subjects/CONT/VW42LKU/ATWM1_Working_Memory_MEG_VW42LKU_Session2/ATWM1_Working_Memory_MEG_Nonsalient_Cued_Run2.sce
|
fb944e753c51663f076e7f09717d03400d480b6f
|
[] |
no_license
|
atwm1/Presentation
|
65c674180f731f050aad33beefffb9ba0caa6688
|
9732a004ca091b184b670c56c55f538ff6600c08
|
refs/heads/master
| 2020-04-15T14:04:41.900640
| 2020-02-14T16:10:11
| 2020-02-14T16:10:11
| 56,771,016
| 0
| 1
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 49,599
|
sce
|
ATWM1_Working_Memory_MEG_Nonsalient_Cued_Run2.sce
|
# ATWM1 MEG Experiment
scenario = "ATWM1_Working_Memory_MEG_salient_cued_run2";
#scenario_type = fMRI; # Fuer Scanner
#scenario_type = fMRI_emulation; # Zum Testen
scenario_type = trials; # for MEG
#scan_period = 2000; # TR
#pulses_per_scan = 1;
#pulse_code = 1;
pulse_width=6;
default_monitor_sounds = false;
active_buttons = 2;
response_matching = simple_matching;
button_codes = 10, 20;
default_font_size = 28;
default_font = "Arial";
default_background_color = 0 ,0 ,0 ;
write_codes=true; # for MEG only
begin;
#Picture definitions
box { height = 300; width = 300; color = 0, 0, 0;} frame1;
box { height = 290; width = 290; color = 255, 255, 255;} frame2;
box { height = 30; width = 4; color = 0, 0, 0;} fix1;
box { height = 4; width = 30; color = 0, 0, 0;} fix2;
box { height = 30; width = 4; color = 255, 0, 0;} fix3;
box { height = 4; width = 30; color = 255, 0, 0;} fix4;
box { height = 290; width = 290; color = 128, 128, 128;} background;
TEMPLATE "StimuliDeclaration.tem" {};
trial {
sound sound_incorrect;
time = 0;
duration = 1;
} wrong;
trial {
sound sound_correct;
time = 0;
duration = 1;
} right;
trial {
sound sound_no_response;
time = 0;
duration = 1;
} miss;
# Start of experiment (MEG only) - sync with CTF software
trial {
picture {
box frame1; x=0; y=0;
box frame2; x=0; y=0;
box background; x=0; y=0;
bitmap fixation_cross_black; x=0; y=0;
} expStart;
time = 0;
duration = 1000;
code = "ExpStart";
port_code = 80;
};
# baselinePre (at the beginning of the session)
trial {
picture {
box frame1; x=0; y=0;
box frame2; x=0; y=0;
box background; x=0; y=0;
bitmap fixation_cross_black; x=0; y=0;
}default;
time = 0;
duration = 10000;
#mri_pulse = 1;
code = "BaselinePre";
port_code = 91;
};
TEMPLATE "ATWM1_Working_Memory_MEG.tem" {
trigger_encoding trigger_retrieval cue_time preparation_time encoding_time single_stimulus_presentation_time delay_time retrieval_time intertrial_interval alerting_cross stim_enc1 stim_enc2 stim_enc3 stim_enc4 stim_enc_alt1 stim_enc_alt2 stim_enc_alt3 stim_enc_alt4 trial_code stim_retr1 stim_retr2 stim_retr3 stim_retr4 stim_cue1 stim_cue2 stim_cue3 stim_cue4 fixationcross_cued retr_code the_target_button posX1 posY1 posX2 posY2 posX3 posY3 posX4 posY4;
43 61 292 292 399 125 2042 2992 2242 fixation_cross gabor_161 gabor_004 gabor_092 gabor_076 gabor_161_alt gabor_004_alt gabor_092 gabor_076 "2_1_Encoding_Working_Memory_MEG_P5_LR_Nonsalient_DoChange_CuedRetrieval_300_300_399_2050_3000_2250_gabor_patch_orientation_161_004_092_076_target_position_3_4_retrieval_position_4" gabor_circ gabor_circ gabor_circ gabor_031_framed blank blank blank blank fixation_cross_target_position_3_4 "2_1_Retrieval_Working_Memory_MEG_P5_LR_Nonsalient_DoChange_CuedRetrieval_retrieval_patch_orientation_031_retrieval_position_4" 2 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96;
43 61 292 292 399 125 1742 2992 2242 fixation_cross gabor_153 gabor_004 gabor_087 gabor_123 gabor_153 gabor_004_alt gabor_087_alt gabor_123 "2_2_Encoding_Working_Memory_MEG_P5_LR_Nonsalient_DoChange_CuedRetrieval_300_300_399_1750_3000_2250_gabor_patch_orientation_153_004_087_123_target_position_1_4_retrieval_position_4" gabor_circ gabor_circ gabor_circ gabor_172_framed blank blank blank blank fixation_cross_target_position_1_4 "2_2_Retrieval_Working_Memory_MEG_P5_LR_Nonsalient_DoChange_CuedRetrieval_retrieval_patch_orientation_172_retrieval_position_4" 2 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96;
43 61 292 292 399 125 2142 2992 2542 fixation_cross gabor_151 gabor_020 gabor_002 gabor_126 gabor_151_alt gabor_020_alt gabor_002 gabor_126 "2_3_Encoding_Working_Memory_MEG_P5_LR_Nonsalient_DoChange_CuedRetrieval_300_300_399_2150_3000_2550_gabor_patch_orientation_151_020_002_126_target_position_3_4_retrieval_position_4" gabor_circ gabor_circ gabor_circ gabor_079_framed blank blank blank blank fixation_cross_target_position_3_4 "2_3_Retrieval_Working_Memory_MEG_P5_LR_Nonsalient_DoChange_CuedRetrieval_retrieval_patch_orientation_079_retrieval_position_4" 2 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96;
43 62 292 292 399 125 1742 2992 2292 fixation_cross gabor_002 gabor_049 gabor_092 gabor_073 gabor_002_alt gabor_049_alt gabor_092 gabor_073 "2_4_Encoding_Working_Memory_MEG_P5_LR_Nonsalient_NoChange_CuedRetrieval_300_300_399_1750_3000_2300_gabor_patch_orientation_002_049_092_073_target_position_3_4_retrieval_position_4" gabor_circ gabor_circ gabor_circ gabor_073_framed blank blank blank blank fixation_cross_target_position_3_4 "2_4_Retrieval_Working_Memory_MEG_P5_LR_Nonsalient_NoChange_CuedRetrieval_retrieval_patch_orientation_073_retrieval_position_4" 1 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96;
43 61 292 292 399 125 2092 2992 1892 fixation_cross gabor_104 gabor_154 gabor_174 gabor_038 gabor_104 gabor_154_alt gabor_174_alt gabor_038 "2_5_Encoding_Working_Memory_MEG_P5_LR_Nonsalient_DoChange_CuedRetrieval_300_300_399_2100_3000_1900_gabor_patch_orientation_104_154_174_038_target_position_1_4_retrieval_position_4" gabor_circ gabor_circ gabor_circ gabor_087_framed blank blank blank blank fixation_cross_target_position_1_4 "2_5_Retrieval_Working_Memory_MEG_P5_LR_Nonsalient_DoChange_CuedRetrieval_retrieval_patch_orientation_087_retrieval_position_4" 2 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96;
43 62 292 292 399 125 1742 2992 2292 fixation_cross gabor_026 gabor_178 gabor_156 gabor_109 gabor_026_alt gabor_178 gabor_156 gabor_109_alt "2_6_Encoding_Working_Memory_MEG_P5_LR_Nonsalient_NoChange_CuedRetrieval_300_300_399_1750_3000_2300_gabor_patch_orientation_026_178_156_109_target_position_2_3_retrieval_position_2" gabor_circ gabor_178_framed gabor_circ gabor_circ blank blank blank blank fixation_cross_target_position_2_3 "2_6_Retrieval_Working_Memory_MEG_P5_LR_Nonsalient_NoChange_CuedRetrieval_retrieval_patch_orientation_178_retrieval_position_2" 1 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96;
43 62 292 292 399 125 1842 2992 2442 fixation_cross gabor_169 gabor_153 gabor_119 gabor_009 gabor_169 gabor_153_alt gabor_119_alt gabor_009 "2_7_Encoding_Working_Memory_MEG_P5_LR_Nonsalient_NoChange_CuedRetrieval_300_300_399_1850_3000_2450_gabor_patch_orientation_169_153_119_009_target_position_1_4_retrieval_position_1" gabor_169_framed gabor_circ gabor_circ gabor_circ blank blank blank blank fixation_cross_target_position_1_4 "2_7_Retrieval_Working_Memory_MEG_P5_LR_Nonsalient_NoChange_CuedRetrieval_retrieval_patch_orientation_169_retrieval_position_1" 1 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96;
43 64 292 292 399 125 2092 2992 1992 fixation_cross gabor_100 gabor_028 gabor_012 gabor_167 gabor_100 gabor_028 gabor_012_alt gabor_167_alt "2_8_Encoding_Working_Memory_MEG_P5_LR_Nonsalient_NoChange_UncuedRetriev_300_300_399_2100_3000_2000_gabor_patch_orientation_100_028_012_167_target_position_1_2_retrieval_position_4" gabor_circ gabor_circ gabor_circ gabor_167_framed blank blank blank blank fixation_cross_target_position_1_2 "2_8_Retrieval_Working_Memory_MEG_P5_LR_Nonsalient_NoChange_UncuedRetriev_retrieval_patch_orientation_167_retrieval_position_4" 1 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96;
43 62 292 292 399 125 2242 2992 1892 fixation_cross gabor_095 gabor_005 gabor_028 gabor_133 gabor_095 gabor_005 gabor_028_alt gabor_133_alt "2_9_Encoding_Working_Memory_MEG_P5_LR_Nonsalient_NoChange_CuedRetrieval_300_300_399_2250_3000_1900_gabor_patch_orientation_095_005_028_133_target_position_1_2_retrieval_position_2" gabor_circ gabor_005_framed gabor_circ gabor_circ blank blank blank blank fixation_cross_target_position_1_2 "2_9_Retrieval_Working_Memory_MEG_P5_LR_Nonsalient_NoChange_CuedRetrieval_retrieval_patch_orientation_005_retrieval_position_2" 1 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96;
43 62 292 292 399 125 1942 2992 2242 fixation_cross gabor_094 gabor_024 gabor_164 gabor_049 gabor_094 gabor_024_alt gabor_164_alt gabor_049 "2_10_Encoding_Working_Memory_MEG_P5_LR_Nonsalient_NoChange_CuedRetrieval_300_300_399_1950_3000_2250_gabor_patch_orientation_094_024_164_049_target_position_1_4_retrieval_position_1" gabor_094_framed gabor_circ gabor_circ gabor_circ blank blank blank blank fixation_cross_target_position_1_4 "2_10_Retrieval_Working_Memory_MEG_P5_LR_Nonsalient_NoChange_CuedRetrieval_retrieval_patch_orientation_094_retrieval_position_1" 1 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96;
43 61 292 292 399 125 2192 2992 2142 fixation_cross gabor_128 gabor_038 gabor_092 gabor_060 gabor_128 gabor_038 gabor_092_alt gabor_060_alt "2_11_Encoding_Working_Memory_MEG_P5_LR_Nonsalient_DoChange_CuedRetrieval_300_300_399_2200_3000_2150_gabor_patch_orientation_128_038_092_060_target_position_1_2_retrieval_position_1" gabor_176_framed gabor_circ gabor_circ gabor_circ blank blank blank blank fixation_cross_target_position_1_2 "2_11_Retrieval_Working_Memory_MEG_P5_LR_Nonsalient_DoChange_CuedRetrieval_retrieval_patch_orientation_176_retrieval_position_1" 2 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96;
43 64 292 292 399 125 1742 2992 2092 fixation_cross gabor_114 gabor_056 gabor_139 gabor_005 gabor_114 gabor_056_alt gabor_139_alt gabor_005 "2_12_Encoding_Working_Memory_MEG_P5_LR_Nonsalient_NoChange_UncuedRetriev_300_300_399_1750_3000_2100_gabor_patch_orientation_114_056_139_005_target_position_1_4_retrieval_position_3" gabor_circ gabor_circ gabor_139_framed gabor_circ blank blank blank blank fixation_cross_target_position_1_4 "2_12_Retrieval_Working_Memory_MEG_P5_LR_Nonsalient_NoChange_UncuedRetriev_retrieval_patch_orientation_139_retrieval_position_3" 1 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96;
43 62 292 292 399 125 2242 2992 1892 fixation_cross gabor_151 gabor_015 gabor_082 gabor_167 gabor_151_alt gabor_015_alt gabor_082 gabor_167 "2_13_Encoding_Working_Memory_MEG_P5_LR_Nonsalient_NoChange_CuedRetrieval_300_300_399_2250_3000_1900_gabor_patch_orientation_151_015_082_167_target_position_3_4_retrieval_position_3" gabor_circ gabor_circ gabor_082_framed gabor_circ blank blank blank blank fixation_cross_target_position_3_4 "2_13_Retrieval_Working_Memory_MEG_P5_LR_Nonsalient_NoChange_CuedRetrieval_retrieval_patch_orientation_082_retrieval_position_3" 1 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96;
43 61 292 292 399 125 1842 2992 1942 fixation_cross gabor_041 gabor_083 gabor_173 gabor_098 gabor_041_alt gabor_083 gabor_173 gabor_098_alt "2_14_Encoding_Working_Memory_MEG_P5_LR_Nonsalient_DoChange_CuedRetrieval_300_300_399_1850_3000_1950_gabor_patch_orientation_041_083_173_098_target_position_2_3_retrieval_position_2" gabor_circ gabor_129_framed gabor_circ gabor_circ blank blank blank blank fixation_cross_target_position_2_3 "2_14_Retrieval_Working_Memory_MEG_P5_LR_Nonsalient_DoChange_CuedRetrieval_retrieval_patch_orientation_129_retrieval_position_2" 2 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96;
43 61 292 292 399 125 1792 2992 2492 fixation_cross gabor_116 gabor_081 gabor_133 gabor_051 gabor_116_alt gabor_081_alt gabor_133 gabor_051 "2_15_Encoding_Working_Memory_MEG_P5_LR_Nonsalient_DoChange_CuedRetrieval_300_300_399_1800_3000_2500_gabor_patch_orientation_116_081_133_051_target_position_3_4_retrieval_position_4" gabor_circ gabor_circ gabor_circ gabor_001_framed blank blank blank blank fixation_cross_target_position_3_4 "2_15_Retrieval_Working_Memory_MEG_P5_LR_Nonsalient_DoChange_CuedRetrieval_retrieval_patch_orientation_001_retrieval_position_4" 2 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96;
43 61 292 292 399 125 1942 2992 2392 fixation_cross gabor_135 gabor_153 gabor_177 gabor_013 gabor_135_alt gabor_153_alt gabor_177 gabor_013 "2_16_Encoding_Working_Memory_MEG_P5_LR_Nonsalient_DoChange_CuedRetrieval_300_300_399_1950_3000_2400_gabor_patch_orientation_135_153_177_013_target_position_3_4_retrieval_position_4" gabor_circ gabor_circ gabor_circ gabor_063_framed blank blank blank blank fixation_cross_target_position_3_4 "2_16_Retrieval_Working_Memory_MEG_P5_LR_Nonsalient_DoChange_CuedRetrieval_retrieval_patch_orientation_063_retrieval_position_4" 2 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96;
43 63 292 292 399 125 2092 2992 2542 fixation_cross gabor_144 gabor_038 gabor_124 gabor_169 gabor_144 gabor_038_alt gabor_124 gabor_169_alt "2_17_Encoding_Working_Memory_MEG_P5_LR_Nonsalient_DoChange_UncuedRetriev_300_300_399_2100_3000_2550_gabor_patch_orientation_144_038_124_169_target_position_1_3_retrieval_position_2" gabor_circ gabor_087_framed gabor_circ gabor_circ blank blank blank blank fixation_cross_target_position_1_3 "2_17_Retrieval_Working_Memory_MEG_P5_LR_Nonsalient_DoChange_UncuedRetriev_retrieval_patch_orientation_087_retrieval_position_2" 2 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96;
43 62 292 292 399 125 1792 2992 2192 fixation_cross gabor_163 gabor_002 gabor_019 gabor_128 gabor_163_alt gabor_002 gabor_019_alt gabor_128 "2_18_Encoding_Working_Memory_MEG_P5_LR_Nonsalient_NoChange_CuedRetrieval_300_300_399_1800_3000_2200_gabor_patch_orientation_163_002_019_128_target_position_2_4_retrieval_position_2" gabor_circ gabor_002_framed gabor_circ gabor_circ blank blank blank blank fixation_cross_target_position_2_4 "2_18_Retrieval_Working_Memory_MEG_P5_LR_Nonsalient_NoChange_CuedRetrieval_retrieval_patch_orientation_002_retrieval_position_2" 1 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96;
43 62 292 292 399 125 1992 2992 2342 fixation_cross gabor_078 gabor_009 gabor_117 gabor_139 gabor_078 gabor_009_alt gabor_117_alt gabor_139 "2_19_Encoding_Working_Memory_MEG_P5_LR_Nonsalient_NoChange_CuedRetrieval_300_300_399_2000_3000_2350_gabor_patch_orientation_078_009_117_139_target_position_1_4_retrieval_position_1" gabor_078_framed gabor_circ gabor_circ gabor_circ blank blank blank blank fixation_cross_target_position_1_4 "2_19_Retrieval_Working_Memory_MEG_P5_LR_Nonsalient_NoChange_CuedRetrieval_retrieval_patch_orientation_078_retrieval_position_1" 1 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96;
43 63 292 292 399 125 2192 2992 2542 fixation_cross gabor_020 gabor_004 gabor_109 gabor_139 gabor_020 gabor_004 gabor_109_alt gabor_139_alt "2_20_Encoding_Working_Memory_MEG_P5_LR_Nonsalient_DoChange_UncuedRetriev_300_300_399_2200_3000_2550_gabor_patch_orientation_020_004_109_139_target_position_1_2_retrieval_position_3" gabor_circ gabor_circ gabor_062_framed gabor_circ blank blank blank blank fixation_cross_target_position_1_2 "2_20_Retrieval_Working_Memory_MEG_P5_LR_Nonsalient_DoChange_UncuedRetriev_retrieval_patch_orientation_062_retrieval_position_3" 2 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96;
43 62 292 292 399 125 1842 2992 1892 fixation_cross gabor_170 gabor_145 gabor_112 gabor_087 gabor_170_alt gabor_145 gabor_112_alt gabor_087 "2_21_Encoding_Working_Memory_MEG_P5_LR_Nonsalient_NoChange_CuedRetrieval_300_300_399_1850_3000_1900_gabor_patch_orientation_170_145_112_087_target_position_2_4_retrieval_position_4" gabor_circ gabor_circ gabor_circ gabor_087_framed blank blank blank blank fixation_cross_target_position_2_4 "2_21_Retrieval_Working_Memory_MEG_P5_LR_Nonsalient_NoChange_CuedRetrieval_retrieval_patch_orientation_087_retrieval_position_4" 1 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96;
43 61 292 292 399 125 1892 2992 2042 fixation_cross gabor_098 gabor_159 gabor_122 gabor_053 gabor_098_alt gabor_159 gabor_122 gabor_053_alt "2_22_Encoding_Working_Memory_MEG_P5_LR_Nonsalient_DoChange_CuedRetrieval_300_300_399_1900_3000_2050_gabor_patch_orientation_098_159_122_053_target_position_2_3_retrieval_position_3" gabor_circ gabor_circ gabor_073_framed gabor_circ blank blank blank blank fixation_cross_target_position_2_3 "2_22_Retrieval_Working_Memory_MEG_P5_LR_Nonsalient_DoChange_CuedRetrieval_retrieval_patch_orientation_073_retrieval_position_3" 2 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96;
43 61 292 292 399 125 1992 2992 2042 fixation_cross gabor_173 gabor_107 gabor_048 gabor_134 gabor_173_alt gabor_107 gabor_048_alt gabor_134 "2_23_Encoding_Working_Memory_MEG_P5_LR_Nonsalient_DoChange_CuedRetrieval_300_300_399_2000_3000_2050_gabor_patch_orientation_173_107_048_134_target_position_2_4_retrieval_position_2" gabor_circ gabor_157_framed gabor_circ gabor_circ blank blank blank blank fixation_cross_target_position_2_4 "2_23_Retrieval_Working_Memory_MEG_P5_LR_Nonsalient_DoChange_CuedRetrieval_retrieval_patch_orientation_157_retrieval_position_2" 2 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96;
43 64 292 292 399 125 1892 2992 2292 fixation_cross gabor_012 gabor_027 gabor_178 gabor_047 gabor_012 gabor_027_alt gabor_178_alt gabor_047 "2_24_Encoding_Working_Memory_MEG_P5_LR_Nonsalient_NoChange_UncuedRetriev_300_300_399_1900_3000_2300_gabor_patch_orientation_012_027_178_047_target_position_1_4_retrieval_position_3" gabor_circ gabor_circ gabor_178_framed gabor_circ blank blank blank blank fixation_cross_target_position_1_4 "2_24_Retrieval_Working_Memory_MEG_P5_LR_Nonsalient_NoChange_UncuedRetriev_retrieval_patch_orientation_178_retrieval_position_3" 1 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96;
43 61 292 292 399 125 2192 2992 1992 fixation_cross gabor_166 gabor_146 gabor_105 gabor_036 gabor_166 gabor_146_alt gabor_105_alt gabor_036 "2_25_Encoding_Working_Memory_MEG_P5_LR_Nonsalient_DoChange_CuedRetrieval_300_300_399_2200_3000_2000_gabor_patch_orientation_166_146_105_036_target_position_1_4_retrieval_position_4" gabor_circ gabor_circ gabor_circ gabor_084_framed blank blank blank blank fixation_cross_target_position_1_4 "2_25_Retrieval_Working_Memory_MEG_P5_LR_Nonsalient_DoChange_CuedRetrieval_retrieval_patch_orientation_084_retrieval_position_4" 2 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96;
43 61 292 292 399 125 1742 2992 1992 fixation_cross gabor_150 gabor_081 gabor_034 gabor_001 gabor_150_alt gabor_081_alt gabor_034 gabor_001 "2_26_Encoding_Working_Memory_MEG_P5_LR_Nonsalient_DoChange_CuedRetrieval_300_300_399_1750_3000_2000_gabor_patch_orientation_150_081_034_001_target_position_3_4_retrieval_position_3" gabor_circ gabor_circ gabor_170_framed gabor_circ blank blank blank blank fixation_cross_target_position_3_4 "2_26_Retrieval_Working_Memory_MEG_P5_LR_Nonsalient_DoChange_CuedRetrieval_retrieval_patch_orientation_170_retrieval_position_3" 2 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96;
43 62 292 292 399 125 1992 2992 2592 fixation_cross gabor_126 gabor_051 gabor_081 gabor_164 gabor_126_alt gabor_051 gabor_081_alt gabor_164 "2_27_Encoding_Working_Memory_MEG_P5_LR_Nonsalient_NoChange_CuedRetrieval_300_300_399_2000_3000_2600_gabor_patch_orientation_126_051_081_164_target_position_2_4_retrieval_position_2" gabor_circ gabor_051_framed gabor_circ gabor_circ blank blank blank blank fixation_cross_target_position_2_4 "2_27_Retrieval_Working_Memory_MEG_P5_LR_Nonsalient_NoChange_CuedRetrieval_retrieval_patch_orientation_051_retrieval_position_2" 1 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96;
43 62 292 292 399 125 2142 2992 2392 fixation_cross gabor_078 gabor_141 gabor_112 gabor_163 gabor_078 gabor_141 gabor_112_alt gabor_163_alt "2_28_Encoding_Working_Memory_MEG_P5_LR_Nonsalient_NoChange_CuedRetrieval_300_300_399_2150_3000_2400_gabor_patch_orientation_078_141_112_163_target_position_1_2_retrieval_position_2" gabor_circ gabor_141_framed gabor_circ gabor_circ blank blank blank blank fixation_cross_target_position_1_2 "2_28_Retrieval_Working_Memory_MEG_P5_LR_Nonsalient_NoChange_CuedRetrieval_retrieval_patch_orientation_141_retrieval_position_2" 1 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96;
43 64 292 292 399 125 2142 2992 1892 fixation_cross gabor_121 gabor_171 gabor_100 gabor_155 gabor_121_alt gabor_171 gabor_100 gabor_155_alt "2_29_Encoding_Working_Memory_MEG_P5_LR_Nonsalient_NoChange_UncuedRetriev_300_300_399_2150_3000_1900_gabor_patch_orientation_121_171_100_155_target_position_2_3_retrieval_position_4" gabor_circ gabor_circ gabor_circ gabor_155_framed blank blank blank blank fixation_cross_target_position_2_3 "2_29_Retrieval_Working_Memory_MEG_P5_LR_Nonsalient_NoChange_UncuedRetriev_retrieval_patch_orientation_155_retrieval_position_4" 1 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96;
43 62 292 292 399 125 2042 2992 1942 fixation_cross gabor_169 gabor_092 gabor_132 gabor_026 gabor_169_alt gabor_092 gabor_132_alt gabor_026 "2_30_Encoding_Working_Memory_MEG_P5_LR_Nonsalient_NoChange_CuedRetrieval_300_300_399_2050_3000_1950_gabor_patch_orientation_169_092_132_026_target_position_2_4_retrieval_position_2" gabor_circ gabor_092_framed gabor_circ gabor_circ blank blank blank blank fixation_cross_target_position_2_4 "2_30_Retrieval_Working_Memory_MEG_P5_LR_Nonsalient_NoChange_CuedRetrieval_retrieval_patch_orientation_092_retrieval_position_2" 1 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96;
43 62 292 292 399 125 1792 2992 2342 fixation_cross gabor_173 gabor_055 gabor_090 gabor_019 gabor_173 gabor_055 gabor_090_alt gabor_019_alt "2_31_Encoding_Working_Memory_MEG_P5_LR_Nonsalient_NoChange_CuedRetrieval_300_300_399_1800_3000_2350_gabor_patch_orientation_173_055_090_019_target_position_1_2_retrieval_position_1" gabor_173_framed gabor_circ gabor_circ gabor_circ blank blank blank blank fixation_cross_target_position_1_2 "2_31_Retrieval_Working_Memory_MEG_P5_LR_Nonsalient_NoChange_CuedRetrieval_retrieval_patch_orientation_173_retrieval_position_1" 1 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96;
43 62 292 292 399 125 2242 2992 2342 fixation_cross gabor_141 gabor_157 gabor_092 gabor_180 gabor_141_alt gabor_157 gabor_092 gabor_180_alt "2_32_Encoding_Working_Memory_MEG_P5_LR_Nonsalient_NoChange_CuedRetrieval_300_300_399_2250_3000_2350_gabor_patch_orientation_141_157_092_180_target_position_2_3_retrieval_position_2" gabor_circ gabor_157_framed gabor_circ gabor_circ blank blank blank blank fixation_cross_target_position_2_3 "2_32_Retrieval_Working_Memory_MEG_P5_LR_Nonsalient_NoChange_CuedRetrieval_retrieval_patch_orientation_157_retrieval_position_2" 1 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96;
43 61 292 292 399 125 2192 2992 1942 fixation_cross gabor_095 gabor_062 gabor_175 gabor_130 gabor_095_alt gabor_062 gabor_175 gabor_130_alt "2_33_Encoding_Working_Memory_MEG_P5_LR_Nonsalient_DoChange_CuedRetrieval_300_300_399_2200_3000_1950_gabor_patch_orientation_095_062_175_130_target_position_2_3_retrieval_position_3" gabor_circ gabor_circ gabor_040_framed gabor_circ blank blank blank blank fixation_cross_target_position_2_3 "2_33_Retrieval_Working_Memory_MEG_P5_LR_Nonsalient_DoChange_CuedRetrieval_retrieval_patch_orientation_040_retrieval_position_3" 2 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96;
43 63 292 292 399 125 1792 2992 2092 fixation_cross gabor_167 gabor_054 gabor_009 gabor_122 gabor_167 gabor_054_alt gabor_009_alt gabor_122 "2_34_Encoding_Working_Memory_MEG_P5_LR_Nonsalient_DoChange_UncuedRetriev_300_300_399_1800_3000_2100_gabor_patch_orientation_167_054_009_122_target_position_1_4_retrieval_position_2" gabor_circ gabor_099_framed gabor_circ gabor_circ blank blank blank blank fixation_cross_target_position_1_4 "2_34_Retrieval_Working_Memory_MEG_P5_LR_Nonsalient_DoChange_UncuedRetriev_retrieval_patch_orientation_099_retrieval_position_2" 2 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96;
43 62 292 292 399 125 2092 2992 2592 fixation_cross gabor_097 gabor_122 gabor_081 gabor_162 gabor_097 gabor_122_alt gabor_081_alt gabor_162 "2_35_Encoding_Working_Memory_MEG_P5_LR_Nonsalient_NoChange_CuedRetrieval_300_300_399_2100_3000_2600_gabor_patch_orientation_097_122_081_162_target_position_1_4_retrieval_position_1" gabor_097_framed gabor_circ gabor_circ gabor_circ blank blank blank blank fixation_cross_target_position_1_4 "2_35_Retrieval_Working_Memory_MEG_P5_LR_Nonsalient_NoChange_CuedRetrieval_retrieval_patch_orientation_097_retrieval_position_1" 1 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96;
43 61 292 292 399 125 1892 2992 2442 fixation_cross gabor_114 gabor_173 gabor_032 gabor_146 gabor_114 gabor_173 gabor_032_alt gabor_146_alt "2_36_Encoding_Working_Memory_MEG_P5_LR_Nonsalient_DoChange_CuedRetrieval_300_300_399_1900_3000_2450_gabor_patch_orientation_114_173_032_146_target_position_1_2_retrieval_position_1" gabor_067_framed gabor_circ gabor_circ gabor_circ blank blank blank blank fixation_cross_target_position_1_2 "2_36_Retrieval_Working_Memory_MEG_P5_LR_Nonsalient_DoChange_CuedRetrieval_retrieval_patch_orientation_067_retrieval_position_1" 2 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96;
43 62 292 292 399 125 2142 2992 2392 fixation_cross gabor_158 gabor_176 gabor_014 gabor_036 gabor_158_alt gabor_176 gabor_014_alt gabor_036 "2_37_Encoding_Working_Memory_MEG_P5_LR_Nonsalient_NoChange_CuedRetrieval_300_300_399_2150_3000_2400_gabor_patch_orientation_158_176_014_036_target_position_2_4_retrieval_position_4" gabor_circ gabor_circ gabor_circ gabor_036_framed blank blank blank blank fixation_cross_target_position_2_4 "2_37_Retrieval_Working_Memory_MEG_P5_LR_Nonsalient_NoChange_CuedRetrieval_retrieval_patch_orientation_036_retrieval_position_4" 1 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96;
43 61 292 292 399 125 1942 2992 2592 fixation_cross gabor_078 gabor_033 gabor_120 gabor_097 gabor_078_alt gabor_033_alt gabor_120 gabor_097 "2_38_Encoding_Working_Memory_MEG_P5_LR_Nonsalient_DoChange_CuedRetrieval_300_300_399_1950_3000_2600_gabor_patch_orientation_078_033_120_097_target_position_3_4_retrieval_position_3" gabor_circ gabor_circ gabor_167_framed gabor_circ blank blank blank blank fixation_cross_target_position_3_4 "2_38_Retrieval_Working_Memory_MEG_P5_LR_Nonsalient_DoChange_CuedRetrieval_retrieval_patch_orientation_167_retrieval_position_3" 2 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96;
43 62 292 292 399 125 2042 2992 2242 fixation_cross gabor_088 gabor_176 gabor_043 gabor_159 gabor_088 gabor_176_alt gabor_043 gabor_159_alt "2_39_Encoding_Working_Memory_MEG_P5_LR_Nonsalient_NoChange_CuedRetrieval_300_300_399_2050_3000_2250_gabor_patch_orientation_088_176_043_159_target_position_1_3_retrieval_position_1" gabor_088_framed gabor_circ gabor_circ gabor_circ blank blank blank blank fixation_cross_target_position_1_3 "2_39_Retrieval_Working_Memory_MEG_P5_LR_Nonsalient_NoChange_CuedRetrieval_retrieval_patch_orientation_088_retrieval_position_1" 1 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96;
43 61 292 292 399 125 1792 2992 2492 fixation_cross gabor_175 gabor_150 gabor_018 gabor_105 gabor_175_alt gabor_150 gabor_018 gabor_105_alt "2_40_Encoding_Working_Memory_MEG_P5_LR_Nonsalient_DoChange_CuedRetrieval_300_300_399_1800_3000_2500_gabor_patch_orientation_175_150_018_105_target_position_2_3_retrieval_position_3" gabor_circ gabor_circ gabor_066_framed gabor_circ blank blank blank blank fixation_cross_target_position_2_3 "2_40_Retrieval_Working_Memory_MEG_P5_LR_Nonsalient_DoChange_CuedRetrieval_retrieval_patch_orientation_066_retrieval_position_3" 2 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96;
43 62 292 292 399 125 2042 2992 2142 fixation_cross gabor_141 gabor_092 gabor_056 gabor_075 gabor_141_alt gabor_092 gabor_056 gabor_075_alt "2_41_Encoding_Working_Memory_MEG_P5_LR_Nonsalient_NoChange_CuedRetrieval_300_300_399_2050_3000_2150_gabor_patch_orientation_141_092_056_075_target_position_2_3_retrieval_position_3" gabor_circ gabor_circ gabor_056_framed gabor_circ blank blank blank blank fixation_cross_target_position_2_3 "2_41_Retrieval_Working_Memory_MEG_P5_LR_Nonsalient_NoChange_CuedRetrieval_retrieval_patch_orientation_056_retrieval_position_3" 1 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96;
43 63 292 292 399 125 2092 2992 1942 fixation_cross gabor_177 gabor_120 gabor_144 gabor_092 gabor_177_alt gabor_120 gabor_144_alt gabor_092 "2_42_Encoding_Working_Memory_MEG_P5_LR_Nonsalient_DoChange_UncuedRetriev_300_300_399_2100_3000_1950_gabor_patch_orientation_177_120_144_092_target_position_2_4_retrieval_position_1" gabor_037_framed gabor_circ gabor_circ gabor_circ blank blank blank blank fixation_cross_target_position_2_4 "2_42_Retrieval_Working_Memory_MEG_P5_LR_Nonsalient_DoChange_UncuedRetriev_retrieval_patch_orientation_037_retrieval_position_1" 2 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96;
43 61 292 292 399 125 2092 2992 1992 fixation_cross gabor_158 gabor_026 gabor_089 gabor_008 gabor_158 gabor_026_alt gabor_089 gabor_008_alt "2_43_Encoding_Working_Memory_MEG_P5_LR_Nonsalient_DoChange_CuedRetrieval_300_300_399_2100_3000_2000_gabor_patch_orientation_158_026_089_008_target_position_1_3_retrieval_position_3" gabor_circ gabor_circ gabor_139_framed gabor_circ blank blank blank blank fixation_cross_target_position_1_3 "2_43_Retrieval_Working_Memory_MEG_P5_LR_Nonsalient_DoChange_CuedRetrieval_retrieval_patch_orientation_139_retrieval_position_3" 2 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96;
43 61 292 292 399 125 1992 2992 2442 fixation_cross gabor_069 gabor_014 gabor_100 gabor_031 gabor_069 gabor_014_alt gabor_100 gabor_031_alt "2_44_Encoding_Working_Memory_MEG_P5_LR_Nonsalient_DoChange_CuedRetrieval_300_300_399_2000_3000_2450_gabor_patch_orientation_069_014_100_031_target_position_1_3_retrieval_position_3" gabor_circ gabor_circ gabor_052_framed gabor_circ blank blank blank blank fixation_cross_target_position_1_3 "2_44_Retrieval_Working_Memory_MEG_P5_LR_Nonsalient_DoChange_CuedRetrieval_retrieval_patch_orientation_052_retrieval_position_3" 2 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96;
43 61 292 292 399 125 2242 2992 1992 fixation_cross gabor_076 gabor_060 gabor_042 gabor_098 gabor_076 gabor_060_alt gabor_042_alt gabor_098 "2_45_Encoding_Working_Memory_MEG_P5_LR_Nonsalient_DoChange_CuedRetrieval_300_300_399_2250_3000_2000_gabor_patch_orientation_076_060_042_098_target_position_1_4_retrieval_position_4" gabor_circ gabor_circ gabor_circ gabor_148_framed blank blank blank blank fixation_cross_target_position_1_4 "2_45_Retrieval_Working_Memory_MEG_P5_LR_Nonsalient_DoChange_CuedRetrieval_retrieval_patch_orientation_148_retrieval_position_4" 2 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96;
43 62 292 292 399 125 2142 2992 2142 fixation_cross gabor_103 gabor_069 gabor_044 gabor_159 gabor_103_alt gabor_069 gabor_044 gabor_159_alt "2_46_Encoding_Working_Memory_MEG_P5_LR_Nonsalient_NoChange_CuedRetrieval_300_300_399_2150_3000_2150_gabor_patch_orientation_103_069_044_159_target_position_2_3_retrieval_position_3" gabor_circ gabor_circ gabor_044_framed gabor_circ blank blank blank blank fixation_cross_target_position_2_3 "2_46_Retrieval_Working_Memory_MEG_P5_LR_Nonsalient_NoChange_CuedRetrieval_retrieval_patch_orientation_044_retrieval_position_3" 1 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96;
43 61 292 292 399 125 1792 2992 2092 fixation_cross gabor_052 gabor_034 gabor_004 gabor_111 gabor_052 gabor_034 gabor_004_alt gabor_111_alt "2_47_Encoding_Working_Memory_MEG_P5_LR_Nonsalient_DoChange_CuedRetrieval_300_300_399_1800_3000_2100_gabor_patch_orientation_052_034_004_111_target_position_1_2_retrieval_position_2" gabor_circ gabor_172_framed gabor_circ gabor_circ blank blank blank blank fixation_cross_target_position_1_2 "2_47_Retrieval_Working_Memory_MEG_P5_LR_Nonsalient_DoChange_CuedRetrieval_retrieval_patch_orientation_172_retrieval_position_2" 2 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96;
43 63 292 292 399 125 1842 2992 2542 fixation_cross gabor_157 gabor_179 gabor_009 gabor_117 gabor_157_alt gabor_179_alt gabor_009 gabor_117 "2_48_Encoding_Working_Memory_MEG_P5_LR_Nonsalient_DoChange_UncuedRetriev_300_300_399_1850_3000_2550_gabor_patch_orientation_157_179_009_117_target_position_3_4_retrieval_position_2" gabor_circ gabor_134_framed gabor_circ gabor_circ blank blank blank blank fixation_cross_target_position_3_4 "2_48_Retrieval_Working_Memory_MEG_P5_LR_Nonsalient_DoChange_UncuedRetriev_retrieval_patch_orientation_134_retrieval_position_2" 2 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96;
43 61 292 292 399 125 2142 2992 2592 fixation_cross gabor_064 gabor_088 gabor_126 gabor_148 gabor_064 gabor_088 gabor_126_alt gabor_148_alt "2_49_Encoding_Working_Memory_MEG_P5_LR_Nonsalient_DoChange_CuedRetrieval_300_300_399_2150_3000_2600_gabor_patch_orientation_064_088_126_148_target_position_1_2_retrieval_position_1" gabor_019_framed gabor_circ gabor_circ gabor_circ blank blank blank blank fixation_cross_target_position_1_2 "2_49_Retrieval_Working_Memory_MEG_P5_LR_Nonsalient_DoChange_CuedRetrieval_retrieval_patch_orientation_019_retrieval_position_1" 2 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96;
43 62 292 292 399 125 1842 2992 2442 fixation_cross gabor_071 gabor_089 gabor_132 gabor_024 gabor_071_alt gabor_089_alt gabor_132 gabor_024 "2_50_Encoding_Working_Memory_MEG_P5_LR_Nonsalient_NoChange_CuedRetrieval_300_300_399_1850_3000_2450_gabor_patch_orientation_071_089_132_024_target_position_3_4_retrieval_position_3" gabor_circ gabor_circ gabor_132_framed gabor_circ blank blank blank blank fixation_cross_target_position_3_4 "2_50_Retrieval_Working_Memory_MEG_P5_LR_Nonsalient_NoChange_CuedRetrieval_retrieval_patch_orientation_132_retrieval_position_3" 1 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96;
43 63 292 292 399 125 1892 2992 2392 fixation_cross gabor_095 gabor_051 gabor_131 gabor_074 gabor_095 gabor_051 gabor_131_alt gabor_074_alt "2_51_Encoding_Working_Memory_MEG_P5_LR_Nonsalient_DoChange_UncuedRetriev_300_300_399_1900_3000_2400_gabor_patch_orientation_095_051_131_074_target_position_1_2_retrieval_position_4" gabor_circ gabor_circ gabor_circ gabor_024_framed blank blank blank blank fixation_cross_target_position_1_2 "2_51_Retrieval_Working_Memory_MEG_P5_LR_Nonsalient_DoChange_UncuedRetriev_retrieval_patch_orientation_024_retrieval_position_4" 2 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96;
43 62 292 292 399 125 1992 2992 2092 fixation_cross gabor_048 gabor_154 gabor_089 gabor_073 gabor_048_alt gabor_154_alt gabor_089 gabor_073 "2_52_Encoding_Working_Memory_MEG_P5_LR_Nonsalient_NoChange_CuedRetrieval_300_300_399_2000_3000_2100_gabor_patch_orientation_048_154_089_073_target_position_3_4_retrieval_position_4" gabor_circ gabor_circ gabor_circ gabor_073_framed blank blank blank blank fixation_cross_target_position_3_4 "2_52_Retrieval_Working_Memory_MEG_P5_LR_Nonsalient_NoChange_CuedRetrieval_retrieval_patch_orientation_073_retrieval_position_4" 1 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96;
43 61 292 292 399 125 2042 2992 2292 fixation_cross gabor_068 gabor_101 gabor_130 gabor_047 gabor_068 gabor_101_alt gabor_130_alt gabor_047 "2_53_Encoding_Working_Memory_MEG_P5_LR_Nonsalient_DoChange_CuedRetrieval_300_300_399_2050_3000_2300_gabor_patch_orientation_068_101_130_047_target_position_1_4_retrieval_position_1" gabor_019_framed gabor_circ gabor_circ gabor_circ blank blank blank blank fixation_cross_target_position_1_4 "2_53_Retrieval_Working_Memory_MEG_P5_LR_Nonsalient_DoChange_CuedRetrieval_retrieval_patch_orientation_019_retrieval_position_1" 2 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96;
43 61 292 292 399 125 2242 2992 2192 fixation_cross gabor_146 gabor_105 gabor_084 gabor_161 gabor_146 gabor_105_alt gabor_084_alt gabor_161 "2_54_Encoding_Working_Memory_MEG_P5_LR_Nonsalient_DoChange_CuedRetrieval_300_300_399_2250_3000_2200_gabor_patch_orientation_146_105_084_161_target_position_1_4_retrieval_position_4" gabor_circ gabor_circ gabor_circ gabor_026_framed blank blank blank blank fixation_cross_target_position_1_4 "2_54_Retrieval_Working_Memory_MEG_P5_LR_Nonsalient_DoChange_CuedRetrieval_retrieval_patch_orientation_026_retrieval_position_4" 2 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96;
43 61 292 292 399 125 1942 2992 1942 fixation_cross gabor_095 gabor_163 gabor_019 gabor_139 gabor_095 gabor_163_alt gabor_019 gabor_139_alt "2_55_Encoding_Working_Memory_MEG_P5_LR_Nonsalient_DoChange_CuedRetrieval_300_300_399_1950_3000_1950_gabor_patch_orientation_095_163_019_139_target_position_1_3_retrieval_position_1" gabor_049_framed gabor_circ gabor_circ gabor_circ blank blank blank blank fixation_cross_target_position_1_3 "2_55_Retrieval_Working_Memory_MEG_P5_LR_Nonsalient_DoChange_CuedRetrieval_retrieval_patch_orientation_049_retrieval_position_1" 2 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96;
43 62 292 292 399 125 2192 2992 2342 fixation_cross gabor_136 gabor_080 gabor_112 gabor_170 gabor_136 gabor_080_alt gabor_112_alt gabor_170 "2_56_Encoding_Working_Memory_MEG_P5_LR_Nonsalient_NoChange_CuedRetrieval_300_300_399_2200_3000_2350_gabor_patch_orientation_136_080_112_170_target_position_1_4_retrieval_position_4" gabor_circ gabor_circ gabor_circ gabor_170_framed blank blank blank blank fixation_cross_target_position_1_4 "2_56_Retrieval_Working_Memory_MEG_P5_LR_Nonsalient_NoChange_CuedRetrieval_retrieval_patch_orientation_170_retrieval_position_4" 1 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96;
43 62 292 292 399 125 1742 2992 2492 fixation_cross gabor_031 gabor_014 gabor_049 gabor_159 gabor_031 gabor_014_alt gabor_049 gabor_159_alt "2_57_Encoding_Working_Memory_MEG_P5_LR_Nonsalient_NoChange_CuedRetrieval_300_300_399_1750_3000_2500_gabor_patch_orientation_031_014_049_159_target_position_1_3_retrieval_position_3" gabor_circ gabor_circ gabor_049_framed gabor_circ blank blank blank blank fixation_cross_target_position_1_3 "2_57_Retrieval_Working_Memory_MEG_P5_LR_Nonsalient_NoChange_CuedRetrieval_retrieval_patch_orientation_049_retrieval_position_3" 1 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96;
43 64 292 292 399 125 1842 2992 2292 fixation_cross gabor_062 gabor_009 gabor_167 gabor_091 gabor_062_alt gabor_009 gabor_167 gabor_091_alt "2_58_Encoding_Working_Memory_MEG_P5_LR_Nonsalient_NoChange_UncuedRetriev_300_300_399_1850_3000_2300_gabor_patch_orientation_062_009_167_091_target_position_2_3_retrieval_position_4" gabor_circ gabor_circ gabor_circ gabor_091_framed blank blank blank blank fixation_cross_target_position_2_3 "2_58_Retrieval_Working_Memory_MEG_P5_LR_Nonsalient_NoChange_UncuedRetriev_retrieval_patch_orientation_091_retrieval_position_4" 1 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96;
43 61 292 292 399 125 2242 2992 2042 fixation_cross gabor_141 gabor_020 gabor_170 gabor_055 gabor_141 gabor_020 gabor_170_alt gabor_055_alt "2_59_Encoding_Working_Memory_MEG_P5_LR_Nonsalient_DoChange_CuedRetrieval_300_300_399_2250_3000_2050_gabor_patch_orientation_141_020_170_055_target_position_1_2_retrieval_position_1" gabor_094_framed gabor_circ gabor_circ gabor_circ blank blank blank blank fixation_cross_target_position_1_2 "2_59_Retrieval_Working_Memory_MEG_P5_LR_Nonsalient_DoChange_CuedRetrieval_retrieval_patch_orientation_094_retrieval_position_1" 2 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96;
43 63 292 292 399 125 1892 2992 2192 fixation_cross gabor_048 gabor_077 gabor_109 gabor_154 gabor_048_alt gabor_077 gabor_109_alt gabor_154 "2_60_Encoding_Working_Memory_MEG_P5_LR_Nonsalient_DoChange_UncuedRetriev_300_300_399_1900_3000_2200_gabor_patch_orientation_048_077_109_154_target_position_2_4_retrieval_position_1" gabor_001_framed gabor_circ gabor_circ gabor_circ blank blank blank blank fixation_cross_target_position_2_4 "2_60_Retrieval_Working_Memory_MEG_P5_LR_Nonsalient_DoChange_UncuedRetriev_retrieval_patch_orientation_001_retrieval_position_1" 2 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96;
43 62 292 292 399 125 1892 2992 2242 fixation_cross gabor_150 gabor_114 gabor_087 gabor_005 gabor_150_alt gabor_114 gabor_087 gabor_005_alt "2_61_Encoding_Working_Memory_MEG_P5_LR_Nonsalient_NoChange_CuedRetrieval_300_300_399_1900_3000_2250_gabor_patch_orientation_150_114_087_005_target_position_2_3_retrieval_position_3" gabor_circ gabor_circ gabor_087_framed gabor_circ blank blank blank blank fixation_cross_target_position_2_3 "2_61_Retrieval_Working_Memory_MEG_P5_LR_Nonsalient_NoChange_CuedRetrieval_retrieval_patch_orientation_087_retrieval_position_3" 1 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96;
43 61 292 292 399 125 1942 2992 2142 fixation_cross gabor_175 gabor_036 gabor_142 gabor_015 gabor_175 gabor_036 gabor_142_alt gabor_015_alt "2_62_Encoding_Working_Memory_MEG_P5_LR_Nonsalient_DoChange_CuedRetrieval_300_300_399_1950_3000_2150_gabor_patch_orientation_175_036_142_015_target_position_1_2_retrieval_position_2" gabor_circ gabor_086_framed gabor_circ gabor_circ blank blank blank blank fixation_cross_target_position_1_2 "2_62_Retrieval_Working_Memory_MEG_P5_LR_Nonsalient_DoChange_CuedRetrieval_retrieval_patch_orientation_086_retrieval_position_2" 2 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96;
43 61 292 292 399 125 1842 2992 2192 fixation_cross gabor_054 gabor_128 gabor_039 gabor_102 gabor_054_alt gabor_128 gabor_039 gabor_102_alt "2_63_Encoding_Working_Memory_MEG_P5_LR_Nonsalient_DoChange_CuedRetrieval_300_300_399_1850_3000_2200_gabor_patch_orientation_054_128_039_102_target_position_2_3_retrieval_position_3" gabor_circ gabor_circ gabor_084_framed gabor_circ blank blank blank blank fixation_cross_target_position_2_3 "2_63_Retrieval_Working_Memory_MEG_P5_LR_Nonsalient_DoChange_CuedRetrieval_retrieval_patch_orientation_084_retrieval_position_3" 2 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96;
43 64 292 292 399 125 2192 2992 2042 fixation_cross gabor_102 gabor_134 gabor_053 gabor_012 gabor_102_alt gabor_134_alt gabor_053 gabor_012 "2_64_Encoding_Working_Memory_MEG_P5_LR_Nonsalient_NoChange_UncuedRetriev_300_300_399_2200_3000_2050_gabor_patch_orientation_102_134_053_012_target_position_3_4_retrieval_position_2" gabor_circ gabor_134_framed gabor_circ gabor_circ blank blank blank blank fixation_cross_target_position_3_4 "2_64_Retrieval_Working_Memory_MEG_P5_LR_Nonsalient_NoChange_UncuedRetriev_retrieval_patch_orientation_134_retrieval_position_2" 1 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96;
43 62 292 292 399 125 1892 2992 2042 fixation_cross gabor_085 gabor_025 gabor_042 gabor_062 gabor_085 gabor_025 gabor_042_alt gabor_062_alt "2_65_Encoding_Working_Memory_MEG_P5_LR_Nonsalient_NoChange_CuedRetrieval_300_300_399_1900_3000_2050_gabor_patch_orientation_085_025_042_062_target_position_1_2_retrieval_position_1" gabor_085_framed gabor_circ gabor_circ gabor_circ blank blank blank blank fixation_cross_target_position_1_2 "2_65_Retrieval_Working_Memory_MEG_P5_LR_Nonsalient_NoChange_CuedRetrieval_retrieval_patch_orientation_085_retrieval_position_1" 1 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96;
43 62 292 292 399 125 2042 2992 2142 fixation_cross gabor_017 gabor_049 gabor_156 gabor_123 gabor_017 gabor_049_alt gabor_156 gabor_123_alt "2_66_Encoding_Working_Memory_MEG_P5_LR_Nonsalient_NoChange_CuedRetrieval_300_300_399_2050_3000_2150_gabor_patch_orientation_017_049_156_123_target_position_1_3_retrieval_position_3" gabor_circ gabor_circ gabor_156_framed gabor_circ blank blank blank blank fixation_cross_target_position_1_3 "2_66_Retrieval_Working_Memory_MEG_P5_LR_Nonsalient_NoChange_CuedRetrieval_retrieval_patch_orientation_156_retrieval_position_3" 1 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96;
43 61 292 292 399 125 1792 2992 2192 fixation_cross gabor_094 gabor_034 gabor_178 gabor_120 gabor_094_alt gabor_034_alt gabor_178 gabor_120 "2_67_Encoding_Working_Memory_MEG_P5_LR_Nonsalient_DoChange_CuedRetrieval_300_300_399_1800_3000_2200_gabor_patch_orientation_094_034_178_120_target_position_3_4_retrieval_position_4" gabor_circ gabor_circ gabor_circ gabor_071_framed blank blank blank blank fixation_cross_target_position_3_4 "2_67_Retrieval_Working_Memory_MEG_P5_LR_Nonsalient_DoChange_CuedRetrieval_retrieval_patch_orientation_071_retrieval_position_4" 2 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96;
43 62 292 292 399 125 1992 2992 2492 fixation_cross gabor_051 gabor_115 gabor_033 gabor_006 gabor_051 gabor_115 gabor_033_alt gabor_006_alt "2_68_Encoding_Working_Memory_MEG_P5_LR_Nonsalient_NoChange_CuedRetrieval_300_300_399_2000_3000_2500_gabor_patch_orientation_051_115_033_006_target_position_1_2_retrieval_position_2" gabor_circ gabor_115_framed gabor_circ gabor_circ blank blank blank blank fixation_cross_target_position_1_2 "2_68_Retrieval_Working_Memory_MEG_P5_LR_Nonsalient_NoChange_CuedRetrieval_retrieval_patch_orientation_115_retrieval_position_2" 1 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96;
43 64 292 292 399 125 1742 2992 2342 fixation_cross gabor_086 gabor_056 gabor_071 gabor_004 gabor_086_alt gabor_056 gabor_071_alt gabor_004 "2_69_Encoding_Working_Memory_MEG_P5_LR_Nonsalient_NoChange_UncuedRetriev_300_300_399_1750_3000_2350_gabor_patch_orientation_086_056_071_004_target_position_2_4_retrieval_position_3" gabor_circ gabor_circ gabor_071_framed gabor_circ blank blank blank blank fixation_cross_target_position_2_4 "2_69_Retrieval_Working_Memory_MEG_P5_LR_Nonsalient_NoChange_UncuedRetriev_retrieval_patch_orientation_071_retrieval_position_3" 1 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96;
43 62 292 292 399 125 1942 2992 2092 fixation_cross gabor_177 gabor_140 gabor_099 gabor_014 gabor_177_alt gabor_140 gabor_099_alt gabor_014 "2_70_Encoding_Working_Memory_MEG_P5_LR_Nonsalient_NoChange_CuedRetrieval_300_300_399_1950_3000_2100_gabor_patch_orientation_177_140_099_014_target_position_2_4_retrieval_position_4" gabor_circ gabor_circ gabor_circ gabor_014_framed blank blank blank blank fixation_cross_target_position_2_4 "2_70_Retrieval_Working_Memory_MEG_P5_LR_Nonsalient_NoChange_CuedRetrieval_retrieval_patch_orientation_014_retrieval_position_4" 1 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96;
};
# baselinePost (at the end of the session)
trial {
picture {
box frame1; x=0; y=0;
box frame2; x=0; y=0;
box background; x=0; y=0;
bitmap fixation_cross_black; x=0; y=0;
};
time = 0;
duration = 5000;
code = "BaselinePost";
port_code = 92;
};
|
9826e0c98fef41f2d5af4e588f114bf0e86ffafa
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/506/CH10/EX10.1.a/Example10_1a.sce
|
ae264791dd78a64e24fbf9a4d508abcdb89fbd46
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 421
|
sce
|
Example10_1a.sce
|
clear;
clc;
//Caption: Pinch off V and channel half width of silicon FET
//Given Values
a=3*(10^-4);//in cm
Nd=10^15;//in electrons/cm^3
q=1.6*(10^-19)//in C
eo=8.85*(10^-12);//Permittivity of free space
e=12*eo;//Relative Permittivity
Vp=(q*Nd*a*a*10^6*10^-4)/(2*e);//in V
//a is in cm so 10^-4 is multiplied and Nd is in electrons/cm^3 so 10^6 is multiplied
disp('V',Vp,'Pinch off Voltage =');
//end
|
b75e553c122f55dae8a933fd65273ef1683c10af
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3843/CH12/EX12.6/Ex12_6.sce
|
6dda123b7fc5ba452b0f0b737699e0ed3f9e9514
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 758
|
sce
|
Ex12_6.sce
|
// Example 12_6
clc;funcprot(0);
// Given data
T_1=25;// °C
P=1;// atm
T_2=600;// K
// The combustion equation C_3H_8+5(O_2+3.76N_2)--->3CO_2+4H_2O(l)+18.8N_2
N_CO2=3;// mol
N_H2O=4;// mol
N_N2=18.8;// mol
hbar0_fp=-103850;// kJ/kmol (C_3H8)
hbar0_fCO2=-393520;// kJ/kmol
hbar_CO2=22280;// kJ/kmol
hbar0_CO2=9360;// kJ/kmol
hbar0_fH2O=-241810;// kJ/kmol
hbar_H2O=20400;// kJ/kmol
hbar0_H2O=9900;// kJ/kmol
hbar0_fN2=0;// kJ/kmol
hbar_N2=17560;// kJ/kmol
hbar0_N2=8670;// kJ/kmol
// Calculation
Q=(N_CO2*(hbar0_fCO2+hbar_CO2-hbar0_CO2))+(N_H2O*(hbar0_fH2O+hbar_H2O-hbar0_H2O))+(N_N2*(hbar0_fN2+hbar_N2-hbar0_N2))-(hbar0_fp);// The required heat transfer in kJ/kmol fuel
printf("\nThe required heat transfer,Q=%7.0f kJ/kmol fuel",Q);
|
17f7c2943b6930efc7b19251c76232613ac59937
|
527c41bcbfe7e4743e0e8897b058eaaf206558c7
|
/NZFunctions/Data-Mining/SP_GLM-NZ-UM-01.tst
|
13a28c1939a8df24c943786770c5aeef43bec3cb
|
[] |
no_license
|
kamleshm/intern_fuzzy
|
c2dd079bf08bede6bca79af898036d7a538ab4e2
|
aaef3c9dc9edf3759ef0b981597746d411d05d34
|
refs/heads/master
| 2021-01-23T06:25:46.162332
| 2017-07-12T07:12:25
| 2017-07-12T07:12:25
| 93,021,923
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 3,029
|
tst
|
SP_GLM-NZ-UM-01.tst
|
-- Fuzzy Logix, LLC: Functional Testing Script for DB Lytix functions on Netezza
--
-- Copyright (c): 2016 Fuzzy Logix, LLC
--
-- NOTICE: All information contained herein is, and remains the property of Fuzzy Logix, LLC.
-- The intellectual and technical concepts contained herein are proprietary to Fuzzy Logix, LLC.
-- and may be covered by U.S. and Foreign Patents, patents in process, and are protected by trade
-- secret or copyright law. Dissemination of this information or reproduction of this material is
-- strictly forbidden unless prior written permission is obtained from Fuzzy Logix, LLC.
--
--
-- Functional Test Specifications:
--
-- Test Category: Data Mining Functions
--
-- Last Updated: 05-29-2017
--
-- Author: <deept.mahendiratta@fuzzylogix.com>
--
-- BEGIN: TEST SCRIPT
--timing on
-- BEGIN: TEST(s)
-----*******************************************************************************************************************************
---SP_GLM
-----*******************************************************************************************************************************
--Insert into fzzlGLMColumns table for ColSpecID
SELECT '***** EXECUTING SP_GLM *****';
DELETE FROM fzzlGLMColumns
WHERE SPECID IN ('GLM1', 'GLM2');
INSERT INTO fzzlGLMColumns
VALUES ('GLM1', 1 ,'ObsID');
INSERT INTO fzzlGLMColumns
VALUES ('GLM1', 1 ,'Drug');
INSERT INTO fzzlGLMColumns
VALUES ('GLM2', 2 ,'Disease');
-----Insert into fzzlGLMIntColumns table for IntSpecID
DELETE FROM fzzlGLMIntColumns
WHERE SPECID IN ( 'Int1', 'Int2') ;
INSERT INTO fzzlGLMIntColumns
VALUES ('Int1', 1 ,'DRUG','Disease');
INSERT INTO fzzlGLMIntColumns
VALUES ('Int2', 1 ,'DISEASE','Trial');
--Insert into fzzlLinRegrModelVarSpec table for ColSpecID
DELETE FROM fzzlLinRegrModelVarSpec
WHERE SPECID IN ('GLM1', 'GLM2');
INSERT INTO fzzlLinRegrModelVarSpec
VALUES ('GLM1', 1 ,'I');
INSERT INTO fzzlLinRegrModelVarSpec
VALUES ('GLM1', 2 ,'I');
INSERT INTO fzzlLinRegrModelVarSpec
VALUES ('GLM2', 3 ,'I');
-----Insert into fzzlLogRegrModelVarSpec table for IntSpecID
DELETE FROM fzzlLinRegrModelVarSpec
WHERE SPECID IN ( 'Int1', 'Int2') ;
INSERT INTO fzzlLinRegrModelVarSpec
VALUES ('Int1', 4 ,'I');
INSERT INTO fzzlLinRegrModelVarSpec
VALUES ('Int2', 4 ,'I');
INSERT INTO fzzlLinRegrModelVarSpec
VALUES ('Int2', 1 ,'I');
CALL SP_GLM('tblDrugWide',
'ObsID',
'Effect',
'GLM2', 'Int1', 'Drug',
'HelloWorld');
SELECT a.*
FROM fzzlGLMRegrCoeffs a
WHERE a.AnalysisID = (SELECT AnalysisID
FROM fzzlGLMinfo
WHERE Note='HelloWorld')
ORDER BY 2, 3
LIMIT 20;
SELECT a.*
FROM fzzlGLMLSMeans a
WHERE a.AnalysisID = (SELECT AnalysisID
FROM fzzlGLMinfo
WHERE Note='HelloWorld')
ORDER BY 2, 3
LIMIT 20;
SELECT a.*
FROM fzzlGLMRegrStats a
WHERE a.AnalysisID = (SELECT AnalysisID
FROM fzzlGLMinfo
WHERE Note='HelloWorld')
ORDER BY 2
LIMIT 20;
-- END: TEST(s)
-- END: TEST SCRIPT
--timing off
|
e1de404ff40acf0604e8889e38c8885294d95776
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2288/CH1/EX1.22.6/ex1_22_6.sce
|
48157ccb4d761315522a75538a60b4bb6a9e84a3
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 282
|
sce
|
ex1_22_6.sce
|
// Exa 1.22.6
clc;
clear;
close;
// Given data
d = 5.2;// in gm/cc
n = 2;
M = 120;
N_A = 6.023*10^23;
m = M/N_A;//mass of 1 atom in gm
m = n*m;//mass of unit cell in gm
g = 20;// in gm
m = g/m;// in unit cells
disp(m,"The number of unit cell in its 20 gm is : ");
|
4e5e1c65e8082234db50a2e6082b3794cccbc615
|
8aff21ee3944bdacbff38a386556c89c38377c6a
|
/zero.sci
|
f7bd3450f20a06dd65d1bb54acdba9cb68424e72
|
[] |
no_license
|
rutup1595/control-system
|
bd4704a4aa437a66260301a22adb5e55b49c5c84
|
b30d559d8835cd278cc6d6bb81f821cdfcc9ee55
|
refs/heads/master
| 2021-01-17T10:17:03.192056
| 2019-10-10T05:28:46
| 2019-10-10T05:28:46
| 59,283,553
| 0
| 1
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 4,061
|
sci
|
zero.sci
|
function[x,k]= zero(sys,varargin)
//
//Calling Sequence
//function[x]=zpkdata(sys) --- for zeros of continuous siso systems
//function[x,k]=zpkdata(sys) ----for zeros and gain of continuous siso systems
//function[x]=zpkdata(sys,1) ---for zeros of arrays of siso systems (Continuous)
//function[x,k]=zpkdata(sys,1) --- for zeros and gain of arrays of siso systems (Continuous)
//Parameters
//sys- SISO or array of SISO models
//x - zero of the system
//k - gain of the system
//Description
//zero function calculates the zeroes of the system .The system can be either SISO or array of SISO .
//this function is not defined for MIMO . thus this function considers any MIMO function as an array of SISO
//Examples:
// 1.s=poly(0,'s');
//sys=syslin('c',(4.2*s^2 +0.25*s-0.004)/(s^2+9.6*s+17));
//[z1 b1]= zero(sys)
// 2. aa=pid(rand(2,2,3),3,4,5);
//[z2 b2]=zero(aa,1);
//3.a=ssrand(2,2,3)
//[z3 b3]=zero(a,1)
//See also
// ndims,cell,factors,roots
//Authors
//Rutuja Moharil
//Bibliography
//https://in.mathworks.com/help/control/ref/zero.html
n=length(varargin);
if n>1 then
error("Too many input arguments")
end
//---------------check siso------------------//
if (n==0)& ndims(sys)==2 then //for SISO simply enter the system
select typeof(sys)
case "state-space" then //check if state-space
sys=ss2tf(sys); //convert state-space to rational
end;
if(size(sys)==[1 1]) then //check if the system is SISO
x=roots(sys.num); // extracting the zeros
[y,o]=factors(sys.num); //extracting gain
k=o;
else
error(msprintf(_("\n %s: Wrong type of input argument #%d: SISO model expected.\n"),"zero",1))
end
//----------check siso array-------------------//
elseif varargin(1)==1 then
select typeof(sys)
case "state-space" then
error(msprintf(_("\n %s: Wrong type of input argument #%d: SISO array model expected.\n"),"zero",1))
end;
m = size(sys); //find the size of array of SISO
nd = length(m);
//--------------siso array---------------------//
if(nd>2) then //3-D matrix or hypermatrix case
x=cell(size(sys,'r'),size(sys,'c'),size(sys,3)) // creating cell array of empty matrices of zeroes
for i=1:size(sys,'r')
for j=1:size(sys,'c')
for l=1:size(sys,3)
x(i,j,l).entries=(roots(sys(i,j,l).num)); //extracting the sub cell values of zeroes and display as matrix
[y,nn]=factors(sys(i,j,l).num);
k(i,j,l).entries=nn;
end
end
end
else
x=cell(size(sys,'r'),size(sys,'c')) //2-D siso array
for i=1:size(sys,'r')
for j=1:size(sys,'c')
x(i,j).entries=roots(sys(i,j).num); // creating cell array of empty matrices of zeroes
[y,nn]=factors(sys(i,j).num);
k(i,j).entries=nn;
end
end
end
end
endfunction
|
4feb6341e57dadeed17c5d1bee1735d8a15676ba
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2870/CH17/EX17.3/Ex17_3.sce
|
3bcbe259d164854628716da927b919e356b34d55
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 563
|
sce
|
Ex17_3.sce
|
clc;clear;
//Example 17.3
//given data
T0=200+273;//converted in K
P0=1400;
//stagnant temp. & pressure is same as inlet due to small inlet velocity
P=1200;
m=3;
//from Table A-2a
cp=0.846;//in kJ/kg-K
R=0.1889;//in kJ/kg-K
k=1.289;
//calculations
T=T0*(P/P0)^((k-1)/k);
V=sqrt(2*cp*(T0-T)*1000);//factor of 1000 to convert kJ to J
p=P/(R*T);
A=m/(p*V);
c=sqrt(k*R*T*1000);//factor of 1000 to convert kJ to J
Ma=V/c;
disp(V,'velocity in m/s');
disp(p,'density in kg/m^3');
disp((A*10000),'flow area in cm^2');
disp(Ma,'Mach number');
|
2f4db6364ea0705bd49f205584cc84d4af3ab612
|
03984e719d7492c5989e6daf1506148c61aa45cf
|
/Tinh Toan Co Dac _ Scilab/data.sce
|
52e16df9fcb68dfe38b8f577c29608e220a082b7
|
[] |
no_license
|
bkt92/chemeng_calc_collection
|
e07cf63a0fbfd967d381e4098f5512d9b0403fba
|
e07d6a16297d32c85abc47c403deb421d8495bf5
|
refs/heads/master
| 2021-01-23T12:21:33.651560
| 2017-06-02T11:57:38
| 2017-06-02T11:57:38
| 93,152,647
| 3
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 4,517
|
sce
|
data.sce
|
// BẢNG SỐ LIỆU //
// Nước //
// Bảng các thông số của hơi nước bão hoà (bảng I.251 tr 314 sổ tay qttb 1)
ph2o={0.01,0.015,0.02,0.025,0.03,0.04,0.05,0.06,0.08,0.1,0.12,0.15,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1,1.2,1.4,1.6,1.8,2,3,4,5,6,7,8,9,10,11,12};
th2o={6.6,12.7,17.1,20.7,23.7,28.6,32.5,35.8,41.1,,45.4,49,53.6,59.7,68.7,75.4,80.9,85.5,89.3,93,96.2,99.1,104.2,108.7,112.7,116.3,119.6,132.9,142.9,151.1,158.1,164.2,169.6,174.5,179,183.2,187.1};
ih2o={2506,2518,2526,2533,2539,2548,2556,2562,2573,2581,2588,2596,2607,2620,2632,2642,2650,2657,2663,2668,2677,2686,2693,2703,2709,2710,2730,2744,2754,2768,2769,2776,2780,2784,2787,2790}*1e3;
rh2o={2478,2465,2455,2447,2440,2429,2420,2413,2400,2390,2382,2372,2358,2336,2320,2307,2296,2286,2278,2270,2264,2249,2237,2227,2217,2208,2171,2141,2117,2095,2075,2057,2040,2024,2009,1995}*1e3;
roh2o={0.00760,0.01116,0.01465,0.01809,0.02149,0.02820,0.03481,0.04133,0.05420,0.06686,0.07937,0.09789,0.1283,0.1876,0.2456,0.3027,0.3590,0.4147,0.4699,0.5246,0.5790,0.6865,0.7631,0.808,1.003,1.107,1.618,2.120,2.614,3.104,3.591,4.075,4.556,5.037,5.516,5.996};
// Bảng các thông số của nước lỏng tại đường bão hoà (bảng 1.249 sổ tay qttb 1)
tn={5,10,15,20,25,30,35,40,45,50,55,60,65,70,75,80,85,90,95,100,110,120,130,140,150,160,170,180,190,200};
ron={999.8,999.7,999,998.2,996.9,995.7,994.,992.2,990.1,988.1,985.6,983.2,980.5,977.8,974.8,971.8,968.6,965.3,961.8,958.4,951,943.1,934.8,926.1,917,907.4,897.3,886.9,876,863,};
cn={4203,4191,4187,4183,4178,4178,4178,4178,4178,4178,4178,4183,4183,4187,4191,4195,4203,4268,4216,4220,4233,4250,4266,4287,4312,4340,4370,4417,4459,4505};
lambdan={56.3,57.5,58.7,59.8,60.8,61.7,62.6,63.4,64.1,64.7,65.3,65.9,66.3,66.8,67.1,67.5,67.8,68,68.1,68.2,68.4,68.6,68.6,68.4,68.3,68.2,67.9,67.4,66.9,66.2}*1e-2;
muyn={1.548,1.306,1.152,1.002,0.892,0.801,0.722,0.653,0.598,0.549,0.507,0.470,0.434,0.399,0.378,0.355,0.331,0.315,0.297,0.282,0.259,0.237,0.218,0.201,0.186,0.174,0.163,0.153,0.144,0.136}*1e-3;
//-------------------------------------------------------------------------------------------------------------------------//
// Bảng tính hệ số A ( bảng 1.5 tr27 sách qttb3)
tm={0,20,40,60,80,100,120,140,160,180,200};
A={104,120,139,155,169,179,188,194,197,199,199};
//-------------------------------------------------------------------------------------------------------------------------//
//-------------------------------------------------------------------------------------------------------------------------//
// Dung dịch NaCl//
m=58.5;
// Tổn thất nhiệt độ do nồng độ delta0 (bảng VI.2 sổ tay qttb 2)
xtt={3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28};
delta0={0.5,0.7,0.9,1.06,1.25,1.48,1.7,1.9,2.15,2.4,2.65,2.9,3.25,3.5,3.85,4.25,4.5,4.85,5.2,5.6,6.05,6.5,7,7.5,8,8.5};
// Khối lượng riêng theo nhiệt độ và nồng độ (bảng 1.57 tr.45 sổ tay qttb 1)
tdd={0,10,25,40,60,80,100};
xdd={1,2,4,8,12,16,20,24,26};
rodd={1.00747,1.01509,1.03038,1.06121,1.09244,1.12419,1.15663,1.18999,1.20709;1.00707,1.01442,1.02920,1.05907,1.08946,1.12056,1.15254,1.18557,1.20254;1.00409,1.01112,1.02530,1.05412,1.08365,1.11401,1.14533,1.17776,1.19443;0.99908,1.00593,1.01977,1.04798,1.07699,1.10688,1.13774,1.16971,1.18614;0.9900,0.9967,1.0103,1.0381,1.0667,1.0962,1.1268,1.1584,1.1747;0.9785,0.9852,0.9988,1.0261,1.0549,1.0842,1.1146,1.1463,1.1626;0.9651,0.9719,0.9855,1.0134,1.0420,1.0713,1.1017,1.1331,1.1492}*1e3;
// Độ nhớt của dung dịch theo nhiệt độ và nồng độ (bảng 1.107 tr.100 sổ tay qttb 1)
tmdd={0,10,20,30,40,50,60,80};
xmdd={5,10,15,20};
muy={1.86,2.01,2.27,2.67;1.39,1.51,1.69,1.99;1.07,1.19,1.34,1.56;0.87,0.95,1.07,1.24;0.71,0.78,0.89,1.030;0.60,0.67,0.75,0.87;0.51,0.57,0.64,0.74;0.4,0.45,0.50,0.57}*1e-3;
//-------------------------------------------------------------------------------------------------------------------------//
g=9.81; //(m/s^2)
deltatuong=0.002; //m chiều dày ống truyền nhiệt
lambda=50.2; // Thép 12MX
rt1=0.232e-3;
Gd=4.7; //(kg/s)
P1=5; //=P hơi đốt (at)
Png=0.2; //(at)
xd=5; //%m
xc=18; //%m
H=2; //m
dtr=0.034;//m đường kính trong ống truyền nhiệt.
dng=0.038;//{m} đường kính ngoài ống truyền nhiệt.
rt2=0.192e-3; // tr4, sổ tay qttb2
delta31=1.2; //trở lực đường ống ở nồi 1
delta32=1.2; //trở lực đường ống ở nồi 2
h1=0.5; // khoảng cách từ bề mặt dd đến ống truyền nhiệt.
|
8e410781277847e1603815f403e2b40251188184
|
3a5107b829276ce4530b98283206e13ef2bfff7c
|
/Interpolação Linear.sce
|
e8f21845effef028675fc57df0678685ec2ad172
|
[] |
no_license
|
daniel1sender/T-picos-de-F-sica-Computacional
|
902932aaa0616171ecd7e21650cb41ed4a29ef72
|
755a3b085f2190d579fcac90d562a7668f4f60d1
|
refs/heads/main
| 2023-04-23T04:15:27.660423
| 2021-05-10T15:57:41
| 2021-05-10T15:57:41
| 339,199,113
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 329
|
sce
|
Interpolação Linear.sce
|
//interpolação linear
x= [0,15,30,45,60,75,90]
y= [1.000,0.9659,0.8660,0.7071,0.5000,0.2588,0.0000]
i=[1,2,3,4,5,6]
Xi=82.5;//Ponto que eu quero calcular a interpolação
for i=1:(length(x)-1)
if (Xi>= x(i) & Xi<x(i+1))
Yi= y(i) + ((y(i+1)-y(i))/(x(i+1)-x(i)))*(Xi-x(i))
end
end
plot(x,y,'k-o')
disp(Yi)
|
e4a686787d3d177aae94c88f1de3cb4f7953071b
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/29/CH9/EX9.10.17/exa9_10_17.sce
|
70fc9f05270dcb380ed43d89e8af1d088d9e276c
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 279
|
sce
|
exa9_10_17.sce
|
//caption:determine_transfer_matrix
//example 9.10.17
//page 407
s=%s
A=[-3 1;0 -1]
B=[1;1]
C=[1 1]
D=0;
[r c]=size(A);//size of matrix A
p=s*eye(r,c)-A;//s*I-A where I is identity matrix
r=inv(p)//inverse of sI-A
G=C*r*B//transfer matrix
disp(G,"transfer matrix=")
|
bfe4bd33beebffea546062d1ef1f234ef1fd556a
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2231/CH4/EX4.1/Ex_4_1.sce
|
84a19d266256a7f0bd0d3c5f45c34896750405e2
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 213
|
sce
|
Ex_4_1.sce
|
//Example 4_1
clc;
clear;close;
//Given data:
V=230;//V
Vav=150;//V
f=1*1000;//Hz
//Solution :
T=1/f;//s
Ton=Vav*T/V;//s
Toff=T-Ton;//s
disp(Toff,Ton,"Periods of conduction & blocking(seconds)");
|
419d8ecfbf52ba5142b5a63ce9aa9be8347f92f5
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1904/CH2/EX2.11/2_11.sce
|
0238e3c287fb0d7204dd4ba2b259bed0215e6e55
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 2,215
|
sce
|
2_11.sce
|
//To determine the Thirty min maximum diversified
//Page 62
clc;
clear;
printf('NOTE\n\n')
printf('The figure 1 attached along with this code is the Maximum diversified 30- min demand characteristics of various residential loads;\n A = Clothes dryer; D = range; E = lighting and miscellaneous appliances; J = refrigerator\n (Only the loads required for this problem have been mentioned)\n \n')
Ndt=50; //Number of distribution transformers
Nr=900; //Number of residences
//When the loads are six.
PavMax6=[1.6,0.8,0.066,0.61]; //Average Maximum diversified demands (in kW) per house for dryer, range, refrigerator, for lighting and misc aapliances respectively according to the figure 1 attached with code.
Mddt= sum(6*PavMax6); //30 min maximum diversified demand on the distribution transformer
//When the loads are 900.
PavMax900=[1.2,0.53,0.044,0.52]; ////Average Maximum diversified demands (in kW) per house for dryer, range, refreigerato, for lighting and misc aapliances respectively according to the figure 1 attached with code.
Mdf=sum(Nr*PavMax900); //30 min maximum diversified demand on the feeder
//From the figure 2 attached to this code
Hdd4=[0.38,0.24,0.9,0.32]; //Hourly variation factor at time 4 PM for dryer, range, refrigerator, lighting and misc appliances
Hdd5=[0.30,0.80,0.9,0.70]; //Hourly variation factor at time 5 PM for dryer, range, refrigerator, lighting and misc appliances
Hdd6=[0.22,1.0,0.9,0.92]; //Hourly variation factor at time 6 PM for dryer, range, refrigerator, lighting and misc appliances
Thdd4=(6*PavMax6)*Hdd4'; //Gives the total hourly diversified demand in kW at time 4 PM
Thdd5=(6*PavMax6)*Hdd5'; //Gives the total hourly diversified demand in kW at time 5 PM
Thdd6=(6*PavMax6)*Hdd6'; //Gives the total hourly diversified demand in kW at time 6 PM
printf(' a) The 30 min maximum diversified demand on the distribution transformer = %g kW\n',Mddt)
printf(' b) The 30 min maximum diversified demand on the distribution transformer = %g kW\n',Mdf)
printf(' c) The total hourly diversified demands at:\n')
printf(' i) 4.00 PM = %g kW\n',Thdd4)
printf(' ii) 5.00 PM = %g kW\n',Thdd5)
printf(' iii) 6.00 PM = %g kW\n',Thdd6)
|
8bd57581aa0a881434069557f4fca13b8626c6be
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1332/CH15/EX15.18/15_18.sce
|
8290bfa986048b0c0652a8978124fa504ab25c6d
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 521
|
sce
|
15_18.sce
|
//Example 15.18
//Runge Kutta Merson Method
//Page no. 532
clc;clear;close;
deff('y=f(x,y)','y=x+y')
y=1;x=0;h=0.1;
printf('n\t Xn\t Yn\t K1\t K2\t K3\t K4\t K5\tY(n+1)\n----------------------------------------------------------------------')
for i=0:14
K1=h*f(x,y);
K2=h*f(x+h/3,y+K1/3);
K3=h*f(x+h/3,y+(K1+K2)/6);
K4=h*f(x+h/2,y+(K1+3*K3)/8);
K5=h*f(x+h,y+(K1-3*K3+4*K4)/2)
y1=y+(K1+4*K4+K5)/6
printf('\n %i\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f',i,x,y,K1,K2,K3,K4,K5,y1)
y=y1;
x=x+h;
end
|
a0048b95d4a837c572e30986bb9b2b41d577d3be
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2528/CH7/EX7.5/Ex7_5.sce
|
06144615f16088959c54c96041af932e82c2d6d0
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,175
|
sce
|
Ex7_5.sce
|
// Chapter7
// Page.No-231
// Example_7_5
// Sketch the Transfer Curve
// Given
clc;
clear;
Vz1=1; //in V
Vz2=2.2; //in V
Rf=12000; //in Ohm
Ri=10000; //in Ohm
R2=15000; //in Ohm
R1=20000; //in Ohm
Vbreak1=Vz1+0.7;
printf("\n Vbreak1_in +_ %.2f V",Vbreak1);
Vbreak2=Vz2+0.7;
printf("\n Vbreak2_in +_ %.2f V",Vbreak2);
Av=-Rf/Ri;
printf("\n Av %.1f ",Av);
Av1=-Rf*(Ri+R1)/(R1*Ri);
printf("\n Av1 %.1f ",Av1);
Av2=-Rf*(Ri*R1+R1*R2+R2*Ri)/(R1*Ri*R2);
printf("\n Av2 %.1f ",Av2);
Vbreak1_out=Av*Vbreak1
Vbreak2_out=Vbreak1_out+Av2*(Vbreak2-Vbreak1);
printf("\n Vbreak1_out %.2f V ",Vbreak1_out);
printf("\n Vbreak2_out %.2f V",Vbreak2_out);
//graph
t=-5:0.01:5;
L=length(t);
for i=1:L
//if t(i)< then
//end
if t(i)<-2.9 then
x1(i)=Av2*t(i)-3;
elseif t(i)<-1.15 then
x1(i)=Av1*t(i)-0.67;
elseif t(i)<1.15 then
x1(i)=Av*t(i) ;
elseif t(i)<2.9 then
x1(i)=Av1*t(i)+0.67 ;
elseif t(i)>2.9 then
x1(i)=Av2*t(i)+3;
end;
end;
clf;
plot2d1(t,x1);
xtitle('Transfer Characteristics','Vin','Vout')
|
9cd830638fdf3a7f88d5c47c6955a11aa55d8b39
|
1b969fbb81566edd3ef2887c98b61d98b380afd4
|
/Rez/bivariate-lcmsr-post_mi/bfi_n_usi/~BivLCM-SR-bfi_n_usi-PLin-VLin.tst
|
f3186bfe27c91caf068e7ea7d6da7374565cde1a
|
[] |
no_license
|
psdlab/life-in-time-values-and-personality
|
35fbf5bbe4edd54b429a934caf289fbb0edfefee
|
7f6f8e9a6c24f29faa02ee9baffbe8ae556e227e
|
refs/heads/master
| 2020-03-24T22:08:27.964205
| 2019-03-04T17:03:26
| 2019-03-04T17:03:26
| 143,070,821
| 1
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 11,974
|
tst
|
~BivLCM-SR-bfi_n_usi-PLin-VLin.tst
|
THE OPTIMIZATION ALGORITHM HAS CHANGED TO THE EM ALGORITHM.
ESTIMATED COVARIANCE MATRIX FOR PARAMETER ESTIMATES
1 2 3 4 5
________ ________ ________ ________ ________
1 0.482229D+00
2 -0.691887D-02 0.389069D-02
3 0.539138D-02 0.100864D-03 0.258828D+00
4 -0.930085D-04 0.277124D-04 -0.221118D-02 0.212520D-02
5 -0.702640D-03 0.127709D-03 -0.479821D-03 -0.370491D-04 0.224996D-02
6 -0.149962D-02 -0.481440D-04 -0.244315D-03 0.482430D-04 0.283095D-03
7 -0.699896D-03 0.663106D-04 -0.848773D-03 0.253565D-04 0.228613D-03
8 -0.176212D-02 0.465894D-04 0.409197D-03 -0.298076D-04 -0.102175D-03
9 -0.728051D+00 -0.109271D-02 -0.158674D+00 0.375404D-03 0.314900D-01
10 -0.672048D-02 0.136423D-01 0.233449D+00 -0.147862D-02 0.160377D+00
11 0.724249D-01 0.476924D-02 0.158681D-01 -0.247710D-02 0.122214D-01
12 -0.124181D+00 -0.500303D-02 0.183495D+00 -0.721057D-03 -0.284014D-01
13 -0.102638D+00 0.350254D-02 -0.428541D-01 -0.336330D-02 0.344321D-01
14 0.263139D-01 -0.496804D-03 0.240952D+00 0.497685D-02 -0.352755D-02
15 -0.361739D+00 0.419652D-01 -0.128483D+01 0.201887D-01 -0.107108D+00
16 0.603223D-01 -0.122282D-02 0.278860D-01 -0.286978D-02 -0.817275D-03
17 0.464330D-03 0.548382D-03 0.272652D-02 0.475793D-03 -0.472438D-03
18 -0.103372D+01 0.373166D-01 0.334948D-01 0.723218D-02 -0.305214D-02
19 0.923072D-01 0.700819D-02 0.263501D-01 0.537476D-02 0.251276D-02
20 0.412793D-01 0.997174D-02 0.230598D+00 0.210292D-01 -0.263455D-01
21 -0.143009D-01 -0.116295D-01 0.712697D-02 -0.558869D-02 -0.202777D-02
22 0.361231D-03 0.300030D-03 -0.489189D-03 0.148844D-03 -0.101740D-03
23 0.158255D-01 0.867092D-03 0.210380D-01 0.258810D-02 0.116081D-03
24 0.456052D-04 0.152754D-03 -0.194332D-05 0.142910D-03 0.803127D-04
ESTIMATED COVARIANCE MATRIX FOR PARAMETER ESTIMATES
6 7 8 9 10
________ ________ ________ ________ ________
6 0.178618D-02
7 0.602349D-03 0.109374D-02
8 0.280111D-03 0.485269D-04 0.256778D-02
9 0.306498D-02 -0.370572D-01 0.817060D-02 0.125832D+03
10 0.484110D-01 0.321891D-01 -0.543705D-02 0.224982D+01 0.319545D+02
11 -0.360530D-01 0.105538D-01 -0.383998D-01 -0.725767D+01 0.829605D+00
12 -0.303894D-01 -0.316282D-02 0.777280D-01 0.338617D+01 -0.167268D+01
13 0.704586D-01 0.505854D-01 0.163150D-01 -0.253796D+01 0.340743D+01
14 0.260900D-01 0.568586D-02 0.130525D+00 0.187708D+00 0.106196D+01
15 -0.727796D-01 -0.519714D-02 0.606620D-01 -0.602521D+00 -0.201416D+02
16 -0.814523D-03 0.368697D-03 -0.254552D-03 0.141092D+01 -0.271917D+00
17 0.162680D-03 -0.340381D-04 -0.436786D-03 -0.261715D+00 -0.406182D-01
18 -0.358285D-01 -0.343652D-01 -0.388164D-01 0.627093D+01 -0.722983D+01
19 -0.118368D-01 0.722701D-02 -0.116754D-01 0.437052D+00 -0.241009D+00
20 -0.278601D-01 -0.313845D-01 -0.120544D+00 -0.778658D+01 0.832875D+01
21 0.999023D-02 -0.736363D-02 0.100663D-01 -0.532093D+00 -0.732359D-01
22 -0.358953D-03 -0.177861D-03 0.437461D-04 0.776169D-02 0.213731D-01
23 -0.350329D-03 -0.798872D-04 -0.294923D-04 -0.665831D-04 0.636612D-01
24 0.186802D-03 0.946126D-04 -0.271093D-03 0.409997D-02 -0.320278D-01
ESTIMATED COVARIANCE MATRIX FOR PARAMETER ESTIMATES
11 12 13 14 15
________ ________ ________ ________ ________
11 0.306974D+02
12 -0.182941D+01 0.428313D+02
13 -0.396524D+01 -0.104584D+01 0.102642D+02
14 -0.429540D+01 0.140935D+01 0.261722D+01 0.210624D+02
15 0.109973D+02 0.877549D+01 -0.324819D+01 -0.587048D+01 0.547896D+03
16 -0.676768D-01 0.147182D-01 -0.554103D-01 -0.134564D+00 0.436434D+01
17 -0.470798D-01 -0.425734D-01 -0.882647D-04 -0.165117D-03 -0.253923D+01
18 0.189284D+01 0.263975D+01 -0.434669D+01 -0.427741D+01 0.402265D+02
19 0.234548D+01 -0.968740D-01 -0.196346D+00 -0.879783D+00 -0.171940D+00
20 0.773845D+01 -0.173473D+02 -0.481513D+01 -0.969057D+01 0.179144D+02
21 -0.187611D+01 0.168577D-01 0.119874D+00 0.836632D+00 0.952260D+00
22 -0.578079D-01 0.494614D-02 -0.179393D-01 0.747841D-02 -0.154187D+00
23 -0.755719D-02 0.190828D+00 -0.465786D-01 -0.403452D-01 0.446881D+00
24 -0.633205D-02 -0.120832D-01 0.874458D-02 -0.290632D-01 -0.171593D+00
ESTIMATED COVARIANCE MATRIX FOR PARAMETER ESTIMATES
16 17 18 19 20
________ ________ ________ ________ ________
16 0.795558D+00
17 -0.648923D-01 0.264201D-01
18 0.419045D+00 -0.145966D+00 0.213673D+03
19 -0.331057D-01 0.322060D-02 -0.375382D+00 0.497660D+01
20 -0.181824D+00 -0.920711D-01 0.131029D+02 -0.259180D+01 0.167488D+03
21 0.107468D+00 -0.822059D-02 0.369605D+01 -0.416757D+01 0.297360D+01
22 -0.264123D-02 0.982404D-03 -0.104834D+01 -0.372798D-01 -0.851786D-02
23 0.144553D-01 -0.446601D-02 0.380939D+00 0.169224D+00 0.113538D+01
24 -0.763939D-03 0.154313D-02 -0.650789D-01 0.666469D-02 -0.765526D+00
ESTIMATED COVARIANCE MATRIX FOR PARAMETER ESTIMATES
21 22 23 24
________ ________ ________ ________
21 0.464990D+01
22 -0.158718D-01 0.115713D-01
23 -0.810194D-01 -0.489972D-02 0.216619D+00
24 -0.150592D-01 0.661309D-03 -0.160399D-01 0.785860D-02
ESTIMATED CORRELATION MATRIX FOR PARAMETER ESTIMATES
1 2 3 4 5
________ ________ ________ ________ ________
1 1.000
2 -0.160 1.000
3 0.015 0.003 1.000
4 -0.003 0.010 -0.094 1.000
5 -0.021 0.043 -0.020 -0.017 1.000
6 -0.051 -0.018 -0.011 0.025 0.141
7 -0.030 0.032 -0.050 0.017 0.146
8 -0.050 0.015 0.016 -0.013 -0.043
9 -0.093 -0.002 -0.028 0.001 0.059
10 -0.002 0.039 0.081 -0.006 0.598
11 0.019 0.014 0.006 -0.010 0.047
12 -0.027 -0.012 0.055 -0.002 -0.091
13 -0.046 0.018 -0.026 -0.023 0.227
14 0.008 -0.002 0.103 0.024 -0.016
15 -0.022 0.029 -0.108 0.019 -0.096
16 0.097 -0.022 0.061 -0.070 -0.019
17 0.004 0.054 0.033 0.063 -0.061
18 -0.102 0.041 0.005 0.011 -0.004
19 0.060 0.050 0.023 0.052 0.024
20 0.005 0.012 0.035 0.035 -0.043
21 -0.010 -0.086 0.006 -0.056 -0.020
22 0.005 0.045 -0.009 0.030 -0.020
23 0.049 0.030 0.089 0.121 0.005
24 0.001 0.028 0.000 0.035 0.019
ESTIMATED CORRELATION MATRIX FOR PARAMETER ESTIMATES
6 7 8 9 10
________ ________ ________ ________ ________
6 1.000
7 0.431 1.000
8 0.131 0.029 1.000
9 0.006 -0.100 0.014 1.000
10 0.203 0.172 -0.019 0.035 1.000
11 -0.154 0.058 -0.137 -0.117 0.026
12 -0.110 -0.015 0.234 0.046 -0.045
13 0.520 0.477 0.100 -0.071 0.188
14 0.135 0.037 0.561 0.004 0.041
15 -0.074 -0.007 0.051 -0.002 -0.152
16 -0.022 0.012 -0.006 0.141 -0.054
17 0.024 -0.006 -0.053 -0.144 -0.044
18 -0.058 -0.071 -0.052 0.038 -0.087
19 -0.126 0.098 -0.103 0.017 -0.019
20 -0.051 -0.073 -0.184 -0.054 0.114
21 0.110 -0.103 0.092 -0.022 -0.006
22 -0.079 -0.050 0.008 0.006 0.035
23 -0.018 -0.005 -0.001 0.000 0.024
24 0.050 0.032 -0.060 0.004 -0.064
ESTIMATED CORRELATION MATRIX FOR PARAMETER ESTIMATES
11 12 13 14 15
________ ________ ________ ________ ________
11 1.000
12 -0.050 1.000
13 -0.223 -0.050 1.000
14 -0.169 0.047 0.178 1.000
15 0.085 0.057 -0.043 -0.055 1.000
16 -0.014 0.003 -0.019 -0.033 0.209
17 -0.052 -0.040 0.000 0.000 -0.667
18 0.023 0.028 -0.093 -0.064 0.118
19 0.190 -0.007 -0.027 -0.086 -0.003
20 0.108 -0.205 -0.116 -0.163 0.059
21 -0.157 0.001 0.017 0.085 0.019
22 -0.097 0.007 -0.052 0.015 -0.061
23 -0.003 0.063 -0.031 -0.019 0.041
24 -0.013 -0.021 0.031 -0.071 -0.083
ESTIMATED CORRELATION MATRIX FOR PARAMETER ESTIMATES
16 17 18 19 20
________ ________ ________ ________ ________
16 1.000
17 -0.448 1.000
18 0.032 -0.061 1.000
19 -0.017 0.009 -0.012 1.000
20 -0.016 -0.044 0.069 -0.090 1.000
21 0.056 -0.023 0.117 -0.866 0.107
22 -0.028 0.056 -0.667 -0.155 -0.006
23 0.035 -0.059 0.056 0.163 0.188
24 -0.010 0.107 -0.050 0.034 -0.667
ESTIMATED CORRELATION MATRIX FOR PARAMETER ESTIMATES
21 22 23 24
________ ________ ________ ________
21 1.000
22 -0.068 1.000
23 -0.081 -0.098 1.000
24 -0.079 0.069 -0.389 1.000
|
3bcd0f8b3d602894f1fd4fe94090232dc635e186
|
8217f7986187902617ad1bf89cb789618a90dd0a
|
/source/2.5/tests/examples/rcond.man.tst
|
6147acf67dae331c8bb46a400c314d971c677c7d
|
[
"LicenseRef-scancode-public-domain",
"LicenseRef-scancode-warranty-disclaimer"
] |
permissive
|
clg55/Scilab-Workbench
|
4ebc01d2daea5026ad07fbfc53e16d4b29179502
|
9f8fd29c7f2a98100fa9aed8b58f6768d24a1875
|
refs/heads/master
| 2023-05-31T04:06:22.931111
| 2022-09-13T14:41:51
| 2022-09-13T14:41:51
| 258,270,193
| 0
| 1
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 67
|
tst
|
rcond.man.tst
|
clear;lines(0);
A=diag([1:10]);
rcond(A)
A(1,1)=0.000001;
rcond(A)
|
a6dd5f935df6d484b2e8e684f9489a38c4a11fcd
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1118/CH3/EX3.1/eg3_1.sce
|
1664e24adca109c1146f67eebf06e4e54971ead3
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 936
|
sce
|
eg3_1.sce
|
clear;
clc;
ld=100; //load in KW
v=500;............// voltage in volts
res=1.75*(.000001);...........//restivity in milli ohm per cm sq
nos_cores=2;.......//number of feeder core
l=0.8;.............//length of tx line in km
area=1;...........//area in cm sq
cost_of_energy=0.12;..//cost in Rs per unit
dep=0.1..............//depreciation percentage is 10%
flc=(ld*1000)/500;..//full load current
ra=(res*l*1000*ld);..//resistance* area in ohm-m
pow_loss=2*(flc*flc*ra*.001);...//(power loss*area) for the two cores in the cable
ann_en_loss=pow_loss*365*24;..//annual energy loss in KWH
cost=ann_en_loss*cost_of_energy;..//(cost*area) of annual energy loss in Rs
ann_dep=6*l*1000*dep;........//(ann_dep*area) in Rs
c=(cost/ann_dep);
area=sqrt(c);.......//area in cm sq
d=(area*4/(%pi));
dia=sqrt(d);..........//diameter in cm
printf("\n the most economical size is: %.2f cm\n ",dia);
|
eb2a4f0e7156bf20d93a5672567cedb3a1475c00
|
717ddeb7e700373742c617a95e25a2376565112c
|
/3460/CH3/EX3.13/ex3_13.sce
|
b41d807da662abead62d584fee1c074ba6419a9a
|
[] |
no_license
|
appucrossroads/Scilab-TBC-Uploads
|
b7ce9a8665d6253926fa8cc0989cda3c0db8e63d
|
1d1c6f68fe7afb15ea12fd38492ec171491f8ce7
|
refs/heads/master
| 2021-01-22T04:15:15.512674
| 2017-09-19T11:51:56
| 2017-09-19T11:51:56
| 92,444,732
| 0
| 0
| null | 2017-05-25T21:09:20
| 2017-05-25T21:09:19
| null |
UTF-8
|
Scilab
| false
| false
| 162
|
sce
|
ex3_13.sce
|
clc;
clear all;
BW1=3500;//bandwidth at 60 db attenuation
BW2=1750;//bandwidth at 6 db attenuation
SF=BW1/BW2;//shape factor
disp(SF,'shape factor is=');
|
4d0def17aea5874eb2d3a140a2b585c6a4c7cd44
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2276/CH1/EX1.9/chapter1_ex9.sce
|
307ebc9ae53994b88f4f25c4a213fd3ef7185c64
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,412
|
sce
|
chapter1_ex9.sce
|
clc
clear
//input
//AB,BC,CD,DA are arms of a wheatstone bridge
r1=5;//resistance in arm AB in ohms
r2=20;//resistance in arm BC in ohms
r3=15;//resistance in arm CD in ohms
r4=4;//resistance in arm DA in ohms
v=4;//d.c. supply given between points A and C in volt
r0=0.5;// internal resistances pf the d.c. supply in ohms
r5=15;//resistance in arm BD in ohms
//calculations
//BCD is replaced by equivalent star connection
//assume N as star piont after conversion
bRn=(r2*r3)/(r3+r2+r5);//resistance in arm BN in ohms
cRn=(r2*r5)/(r3+r2+r5);//resistance in arm CN in ohms
dRn=(r5*r3)/(r3+r2+r5);//resistance in arm DN in ohms
R=r0+cRn+(((r1+bRn)*(r4+dRn))/(r1+bRn+r4+dRn));//total resistance in ohms after conversion
I=v/R;//totalcurrent supply in amperes
I1=(v/R)*((r4+dRn)/(r1+bRn+r4+dRn));//current between points A and B in amperes
I2=I-I1;//current between points A and D in amperes
V1=I1*r1;//voltage drop across r1 in volts
V2=I2*r4;//voltage drop across r4 in volts
V3=V2-V1;//voltage drop across r5 in volts and B is positive to D
I3=V3/r5;//current between points B and D in amperes
I4=I1-I3;//current between points B and C in amperes
I5=I2+I3;//current between points D and C in amperes
//output
mprintf('the currents in each part of the circuit are \n It= %3.3f A \n aIb= %3.3f A \n aId= %3.3f A \n bId= %3.3f A \n bIc= %3.3f A \n dIc= %3.3f A',I,I1,I2,I3,I4,I5)
|
7c849b45d1f62248d55870cbece260712eebf500
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2309/CH4/EX4.6/Ex4_6.sce
|
ec66d53db3ac98e744ae4420a399f83bbec0fecd
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 664
|
sce
|
Ex4_6.sce
|
// Chapter 4 Example 6
//==============================================================================
clc;
clear;
// input data
E = 100 // Energy of electron in eV
h = 6.625*10^-34 // plancks constant
m = 9.11*10^-31 // mass of electron in Kg
e = 1.6*10^-19 // Charge of electron in Columbs
// Calculations
E1 = E*e // Energy conversion from eV to Joule
lamda = h/(sqrt(2*m*E1)) // de Broglie wavelength
// Output
mprintf('The de-Broglie wavelength = %3.3f Å',lamda*10^10);
//==============================================================================
|
1007a2e483fabc1f3f88410f2f40aa8735a9f4d9
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1019/CH2/EX2.17/Example_2_17.sce
|
5a18e776e62932355131b687115aa3ab268d4ee3
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 935
|
sce
|
Example_2_17.sce
|
//Example 2.17
clear;
clc;
//Given
R=8.314;// gas constant in J K^-1 mol^-1
v1=11.2; //initial gas volume in dm^3
Cv=2.5*R; //specific heat capacity at constant volume of the gas in J K^-1 mol^-1
n=2;//moles of the gas
T1=273; //initial temperature in K
T2=373; //final temperature in K
// To determine q,w,delE and delH
Cp=Cv+R;//specific heat capacity at constant pressure of the gas in J K^-1 mol^-1
delE=n*Cv*(T2-T1);//internal energy change in J
delH=delE+(n*R*(T2-T1));//enthalpy change in J
q=delE;//heat absorbed in J
w=n*R*(T2-T1);//work done in J
mprintf('(a) For isochoric process,');
mprintf('\n delE = %f J',delE);
mprintf('\n delH = %f J',delH);
mprintf('\n Heat absorbed,q = %f J',delE);
mprintf('\n (b) For isobaric process,');
mprintf('\n delE = %f J',delE);
mprintf('\n delH = %f J',delH);
mprintf('\n Work done by the system,w = %f J',w);
mprintf('\n Heat absorbed,q = %f J',delE);
//end
|
b0944e31fc9813bc3f7765a001fd04b00c839127
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2891/CH7/EX7.3/Ex7_3.sce
|
04a1ea2c862b1a346f673514a74f682c3f7a049c
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 548
|
sce
|
Ex7_3.sce
|
//Exa 7.3
clc;
clear;
close;
// given :
D_a=0.15 // mouth Diameter of paraboloid in m
c=3*10^8 // speed of light in m/s
f=10 // frequency in GHz
f=10*10^9 // frequency in Hz
lambda=c/f // wavelength in m
BWFN=140*(lambda/D_a) // null-to-null beamwidth in degrees
HPBW=70*(lambda/D_a) // half power beamwidth in degrees
disp(BWFN,"null-to-null beamwidth in degrees:")
disp(HPBW,"half power beamwidth in degrees:")
G_p=6.4*(D_a/lambda)^2 // power gain of paraboloid
G_p=10*log10(G_p) // power gain in dB
disp(G_p,"power gain in dB")
|
2a978323d4864680d25c56e3ca9b342f4ca8fcfd
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/647/CH12/EX12.17/Example12_17.sce
|
5988e86e32749e7e194e6862499830f1ec24fc43
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 862
|
sce
|
Example12_17.sce
|
clear;
clc;
// Example: 12.17
// Page: 501
printf("Example: 12.17 - Page: 501\n\n");
// Solution
//*****Data******//
// Reaction: A(s) ---------> B(s) + C(g)
deff('[deltaG] = f1(T)','deltaG = 85000 - 213.73*T + 6.71*T*log(T) - 0.00028*T^2');// [J]
T1 = 400;// [K]
T2 = 700;// [K]
Pc = 1;// [bar]
R = 8.314;// [J/mol K]
//**************//
deltaG_400 = f1(400);// [J]
deltaG_700 = f1(700);// [J]
K_400 = exp(-(deltaG_400/(R*T1)));// [bar]
K_700 = exp(-(deltaG_700/(R*T2)));// [bar]
printf("The decomposition pressure is %.4f bar at 400 K\n",K_400);
printf("The decomposition pressure is %.2f bar at 700 K\n",K_700);
// Equilibrium constant for solid - gas reaction is:
// K = aB*aC/aA = aC = fC = Pc
deff('[y] = f2(T)','y = Pc - exp(-f1(T)/(R*T))');
T = fsolve(900,f2);// [K]
printf("The decomposition temperature is %.3f K",T);
|
7dffb09b0ed9fa82cbf016b24e0257bb8472a4e3
|
b6bf377ad0dd93166c29119fdaf090d104caf3b7
|
/ extensiblesimulationofplanetsandcomets --username lasxrcista/BodyConfig.sci
|
64d60a340735f792797d731f213d66ed609019c0
|
[] |
no_license
|
tectronics/extensiblesimulationofplanetsandcomets
|
d69905f0406bf552043dd0e244ea889a55922ef9
|
d9d59841d1d177026e60245d3f99c879ee0f8ca0
|
refs/heads/master
| 2018-01-11T15:15:54.659208
| 2009-07-21T21:22:33
| 2009-07-21T21:22:33
| 47,740,385
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 4,905
|
sci
|
BodyConfig.sci
|
//the variables that we are going to look for in the config.cfg file.
//If you need to add in a parameter to that config file, then you must add
//Read in the configuration files of the bodies in question
fileHandle= 'C:\Documents and Settings\Administrator\My Documents\CSCI\Thesis\ThesisProjectSource\';
exec (fileHandle + 'ESPCConfig.sci');
//this gets the body definition directory name through the ESPCConfig.sci file
//it's basically the Utilities.py file of the scilab files associated with this project.
bodyConfigFilesDir = getBodyDefinitionDir();
//instead of using fileHandle here, we should use the current working directory.
//and now we do!
thedir = getcwd() + '\';
y = listfiles(thedir + bodyConfigFilesDir + '\*.cfg');
[numFiles, col] = size(y);
//the appropriate values here too as well as a function to retrieve it, as you can see below.
name = 1;
xPosition = 2;
yPosition = 3;
xVelocity = 4;
yVelocity = 5;
radius = 6;
mass = 7;
redColor = 8;
greenColor = 9;
blueColor = 10;
textureImage = 11;
parentBody = 12;
aphelionFromParent = 13;
perihelionFromParent = 14;
g = 15
rotationAngleXYPlane = 16
data = [""];
for j=1:numFiles
//there will be a for loop here to loop through all the body config files.
openConfigFile = mopen(y(j,1), 'r');
configFile = mgetl(openConfigFile,-1);
mclose(openConfigFile);
[m,n] = size(configFile);
for i=1:m
commentIndex = strindex( configFile(i,1), '#')
if commentIndex > 1 then
stringMatrix = strsplit( configFile(i,1), [commentIndex-1])
theString = stripblanks(stringMatrix(1))
elseif commentIndex == [] then
theString = configFile(i,1)
else
theString = ''
end
index = strindex( theString, ':');
if index <> [] then
key = strsplit(theString, [index+1]);
if key(1) == 'name: ' then
data(name, j) = key(2);
elseif key(1) == 'xPosition: ' then
data(xPosition, j) = key(2); //meters
elseif key(1) == 'yPosition: ' then
data(yPosition, j) = key(2); //meters
elseif key(1) == 'xVelocity: ' then
data(xVelocity, j) = key(2); //meters per second
elseif key(1) == 'yVelocity: ' then
data(yVelocity, j) = key(2); //meters per second
elseif key(1) == 'radius: ' then
data(radius, j) = key(2); //meters
elseif key(1) == 'mass: ' then
data(mass, j) = key(2); //kilograms
elseif key(1) == 'redColor: ' then
data(redColor, j) = key(2);
elseif key(1) == 'greenColor: ' then
data(greenColor, j) = key(2);
elseif key(1) == 'blueColor: ' then
data(blueColor, j) = key(2);
elseif key(1) == 'textureImage: ' then
data(textureImage, j) = key(2);
elseif key(1) == 'parentBody: ' then
data(parentBody, j) = key(2);
elseif key(1) == 'aphelionFromParent: ' then
data(aphelionFromParent, j) = key(2); //meters
elseif key(1) == 'perihelionFromParent: ' then
data(perihelionFromParent, j) = key(2); //meters
elseif key(1) == 'g: ' then
data(g, j) = key(2); //m^3/(kg s^2)
elseif key(1) == 'rotationAngleXYPlane: ' then
data(rotationAngleXYPlane, j) = key(2); //degrees
end
end
end
end
function value=getName();
value = data(name,:);
endfunction
function value=getXPosition(); //meters
value = data(xPosition,:);
endfunction
function value=getYPosition(); //meters
value = data(yPosition,:);
endfunction
function value=getXVelocity(); //meters per second
value = data(xVelocity,:);
endfunction
function value=getYVelocity(); //meters per second
value = data(yVelocity,:);
endfunction
function value=getRadius(); //meters
value = data(radius,:);
endfunction
function value=getMass(); //kilograms
value = data(mass,:);
endfunction
function value=getRedColor();
value = data(redColor,:);
endfunction
function value=getGreenColor();
value = data(greenColor,:);
endfunction
function value=getBlueColor();
value = data(blueColor,:);
endfunction
function value=getTextureImage();
value = data(textureImage,:);
endfunction
function value=getParentBody();
value = data(parentBody,:);
endfunction
function value=getAphelionFromParent(); //meters
value = data(aphelionFromParent,:);
endfunction
function value=getPerihelionFromParent(); //meters
value = data(perihelionFromParent,:);
endfunction
function value=getG(); //m^3/(kg s^2)
value = data(g,:);
endfunction
function value=getRotationAngleXYPlane(); //degrees
value = data(rotationAngleXYPlane,:);
endfunction
function value=GetAllBodyData();
value = data;
endfunction
|
65e51bd0033c8f420da829eee4ec963488bad8bd
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/213/CH13/EX13.14/13_14.sce
|
af75d66aa23988dc0c8d7bbadf10df0f72f063aa
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 819
|
sce
|
13_14.sce
|
//To find number of teeth and speed
clc
//Given:
NA=300 //rpm
TD=40, TE=30, TF=50, TG=80, TH=40, TK=20, TL=30
//Solution:
//Refer Fig. 13.18 and Table 13.13
//Calculating the speed of wheel E
NE=NA*(TD/TE) //rpm
//Calculating the number of teeth on wheel C
TC=TH+TK+TL
//Speed and direction of rotation of shaft B:
//Calculating the values of x and y
//We have, -x-y = -400, or x+y = 400 .....(i)
//Also, x*(TH/TK)*(TL/TC)-y = 0 .....(ii)
A=[1 1; (TH/TK)*(TL/TC) -1]
B=[400; 0]
V=A \ B
x=V(1)
y=V(2)
//Calculating the speed of wheel F
NF=-y //rpm
//Calculating the speed of shaft B
NB=-NF*(TF/TG) //Speed of shaft B, rpm
//Results:
printf("\n\n Number of teeth on wheel C, TC = %d.\n\n",TC)
printf(" Speed of shaft B = %d rpm, anticlockwise.\n\n",NB)
|
d5450202018a55492fee4fb61b3b6f7bcac5c6d2
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3537/CH5/EX5.3/Ex5_3.sce
|
57eba41930765a60fe8c47fb6f7028999ee1e902
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 281
|
sce
|
Ex5_3.sce
|
//Example 5_3
clc();
clear;
//To determine the interplanar spacing
a=450 //units in nm
h=2
k=2
l=0
d220=a/sqrt(h^2+k^2+l^2) //units in nm
printf("Inter planar spacing d220=%.1f nm",d220)
//in text book the answer is printed wrong as 15.1 nm The answer is 159 nm
|
35f4b996978e7335f9fe7f76e8a46a0139b24aa1
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1931/CH12/EX12.1/1.sce
|
f39774d72096cf1b09f6097f6e60d3d7b5972e71
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 396
|
sce
|
1.sce
|
clc
clear
//INPUT DATA
M1=202//mass number of mercury
a=0.50//coefficient of mass number
T1=4.2//temperature in k for mass number 200
M2=200//mass number of mercury
//CALCULATION
T2=((M1/M2)^a)*T1//The transition temperature for the isotope of mercury of mass number 200 in k
//OUTPUT
printf('The transition temperature for the isotope of mercury of mass number200 is %3.4f k',T2)
|
2d3b50dd6aa899a7d6c5bb1b9ca00bdb3750b426
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/506/CH13/EX13.4.c/Example13_4c.sce
|
237afc46fa364ff056e533efc22d5010bb809a43
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 759
|
sce
|
Example13_4c.sce
|
clear;
clc;
//Caption: To find gain and resistance of Voltage Shunt Feedback
//Given Values
Rc=4;//in K
r=40;//in K
Rs=10;//in K
hie=1.1;//in K
hfe=50;
hre=0;
hoe=0;
//Required Formulae
rc=(Rc*r)/(Rc+r);
R=(Rs*r)/(Rs+r);
Rm=-(hfe*rc*R)/(R+hie);
disp('K',Rm,'Rm=');
B=-1/r;//in mA/V
D=1+(B*Rm);
Rmf=Rm/D;
//Avf = Vo/Vs = Vo/(Is*Rs) = Rmf/Rs
Avf=Rmf/Rs;
Ri = (R*hie)/(R+hie);
Rif=Ri/D;
//If the input resistance looking to the right of Rs is rif then Rif=(rif*Rs)/(rif+Rs)
rif=(Rif*Rs)/(Rs-Rif);
disp('K',Rs+rif,'The impedence seen by the voltage source=Rif=');
Ro=40;//in K
r=40;//in K
Rm = -(hfe*r*R)/(R+hie);
Rof=Ro/(1+(B*Rm));
//We are writting Rof' = rof
rof=(Rof*Rc)/(Rof+Rc);
disp('K',rof,'rof=');
//End
|
19848d21305fa7d8d4f3f15b699557455e696afe
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3281/CH5/EX5.1/ex5_1.sce
|
b1a705ba026db914f79efa9c2e3e42259473361f
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 553
|
sce
|
ex5_1.sce
|
//Page Number: 288
//Example 5.1
clc;
//Given
f=10D+9; //Hz
v=9D+3; //V
i=40D-3; //A
l=3; //cm
l1=l/100; //m
G=2D-6; //mho
bet=0.92;
j1x=0.582;
x=1.841;
ebym=1.7D+11; //J
//Maximum voltage
w=2*%pi*f;
v0x=sqrt(2*ebym);
thet=(w*l1)/(v0x*sqrt(v));
av=(bet^2*thet*i*j1x)/(x*v*G);
disp('V',av,'Maximum voltage:');
//Power Gain
ic=2*i*j1x;
v2=(bet*ic)/G;
pout=bet*ic*v2;
pin=2*i*v;
//Efficiency
eet=pout/pin;
disp('%',eet*100,'Power gain:');
//Answer for effciency comes out to be wrong, it is calculted wrongly in book
|
2bbb907e9d92fd28320ff30186392a87e0db58d5
|
d01bf962afff16bc1ce292c49da5923ebbe59775
|
/Maths/Test.sce
|
62c67707ff52770622255e2ffcd1532ab068b66e
|
[] |
no_license
|
fredkerdraon/Reference-research
|
71d0af22f84605ed0c53907acd6b248400c47388
|
1f48fdfebbe766bbd268b4f1853ab98162f57425
|
refs/heads/master
| 2023-05-05T12:18:18.655367
| 2020-02-08T22:08:15
| 2020-02-08T22:08:15
| 71,020,179
| 0
| 0
| null | 2023-04-19T18:37:49
| 2016-10-15T23:49:14
|
POV-Ray SDL
|
UTF-8
|
Scilab
| false
| false
| 450
|
sce
|
Test.sce
|
//Serie definition
u=[1:50]
for n=1:20
w(n)=1/n^2
//disp([n,u(n)])
end
a=gca();
a.tight_limits = "on";
//a.x_ticks=string([1 10 20 30 40 50]);
//x_label=a.x_label;
//x_label.text=" Weight"
//x_label.font_style= 5;
//a.y_label.foreground = 12;
//a.auto_ticks="on";
tmp=a.x_ticks;
tmp.locations=[1:5:20];
tmp.labels=string(tmp.locations);
a.x_ticks=tmp;
//a.auto_scale="on";
//a.sub_ticks=[.5,1]
bar(w)
hl=legend(['1/n^2'],pos=4,boxed=%f);
|
bab876cf8471403512387ff5572f55eec6929c9e
|
e176c804d3e82d065a9c9635dad92da21c1483a9
|
/libs/display_gray.sci
|
0a764c8d37172c95e19f7c49398d7c2b38781986
|
[
"MIT"
] |
permissive
|
Exia-Aix-2016/ExoLife
|
38f7d5e54a1fd26333f19d99a8b63f0d64cc4c4c
|
a88d4bc3b852f8a85b6c8cc0979ced29fb28b751
|
refs/heads/master
| 2021-09-07T01:47:04.742247
| 2018-02-15T11:57:47
| 2018-02-15T11:57:47
| 120,471,380
| 1
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 435
|
sci
|
display_gray.sci
|
// displaying an 8 bites gray level coded image (0..255)
// usage examples:
// display_gray(u); (without zoom)
// display_gray(u,3); (with zoom x3)
// display_gray([u;v]); (2 images side by side)
function display_gray(u,varargin)
clf()
xset("colormap",graycolormap(256))
if size(varargin)==0 then z=1, else z=varargin(1), end
xset("wdim",size(u,1)*z-1,size(u,2)*z-1)
xsetech(arect=[0 0 0 0])
Matplot(u',"020")
endfunction
|
f2e99cc2ec1edf89cf125c6844d2ab1f6c68b2a0
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/135/CH4/EX4.8/EX8.sce
|
5737ff3e352223eac1914560e91bb5a51220ba38
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,096
|
sce
|
EX8.sce
|
// Example 4.8: :Labelled voltages and currents
clc, clear
betaf=100; // Current gain
disp("Let us assume that the transistor is in active region.");
VBE_active=-0.7; // in volts
// From Fig. 4.25(a)
VCC=-10; // in volts
VEE=10; // in volts
RE=6.8e3; // in ohms
RC=10e3; // in ohms
R1=300e3; // in ohms
R2=180e3; // in ohms
// Applying Thevnin's theorem at point B
R_th=R1*R2/(R1+R2); // in ohms
V_th=VEE-(R2*(VEE-VCC)/(R1+R2)); // in volts
// From the Thevnin equivalent circuit in Fig. 4.25(b)
// Writing KVL for base-emitter circuit and putting Ic= βF*Ib
IB=(VEE-V_th+VBE_active)/(R_th+(1+betaf)*RE); // in amperes
IB=IB*1e3; // in miliamperes
IC=betaf*IB; // in miliamperes
IE=IB+IC; // in miliamperes
VC=VCC+IC*RC*1e-3; // in volts
VE=VEE-IE*RE*1e-3; // in volts
VB=V_th+IB*R_th*1e-3; // in volts
I1=(VEE-VB)/R2; // in amperes
I1=I1*1e3; // in miliamperes
I2=I1+IB; // in miliamperes
disp(IC,"IC (mA) =");
disp(IE,"IE (mA) =");
disp(IB,"IB (mA) =");
disp(I1,"I1 (mA) =");
disp(I2,"I2 (mA) =");
disp(VC,"VC (V) =");
disp(VE,"VE (V) =");
disp(VB,"VB (V) =");
|
a6fcb2949029176efce2ea7d3352906be7e8acd7
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/671/CH12/EX12.9/12_9.sce
|
4c61c7f31a1eab28a58c6c647635232f37d6a398
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 72
|
sce
|
12_9.sce
|
Is_by_Ifl=5
sfl=0.04
Ts_by_Tfl=Is_by_Ifl^2*sfl
disp("pu",Ts_by_Tfl)
|
1f35e2caa3342f0c45c7650b93e0e83e7c8aee33
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3673/CH9/EX9.19/Ex9_19.sce
|
c8e602aecfeef008e28f7c320489ea1992afe149
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,570
|
sce
|
Ex9_19.sce
|
//Example 9_19 page no:377
clc;
Z1real=4;
Z1img=8;
Z1mag=sqrt(Z1real^2+Z1img^2);
Z1ang=atand(Z1img/Z1real);
Z2real=3;
Z2img=4;
Z2mag=sqrt(Z2real^2+Z2img^2);
Z2ang=atand(Z2img/Z2real);
Z3real=15;
Z3img=20;
Z3mag=sqrt(Z3real^2+Z3img^2);
Z3ang=atand(Z3img/Z3real);
Vl=400;
Vrnmag=230.94;
Vrnang=0;
Vynmag=230.94;
Vynang=-120;
Vbnmag=230.94;
Vbnang=-240;
//calculating the line currents
Irmag=Vrnmag/Z1mag;
Irang=Vrnang-Z1ang;
Irreal=Irmag*cosd(Irang);
Irimg=Irmag*sind(Irang);
Iymag=Vynmag/Z2mag;
Iyang=Vynang-Z2ang;
Iyreal=Iymag*cosd(Iyang);
Iyimg=Iymag*sind(Iyang);
Ibmag=Vbnmag/Z3mag;
Ibang=Vbnang-Z3ang;
Ibreal=Ibmag*cosd(Ibang);
Ibimg=Ibmag*sind(Ibang);
disp(Irmag,"the magnitude of Ir current is (in A)");
disp(Irang,"the angle of Ir current is (in degree)");
disp(Iymag,"the magnitude of Iy current is (in A)");
disp(Iyang,"the angle of Iy current is (in degree)");
disp(Ibmag,"the magnitude of Ib current is (in A)");
disp(Ibang,"the angle of Ib current is (in degree)");
//calculating the neutral current
Inreal=-(Irreal+Iyreal+Ibreal);
Inimg=-(Irimg+Iyimg+Ibimg);
Inmag=sqrt(Inreal^2+Inimg^2);
Inang=atand(Inimg/Inreal);
disp(Inmag,"the magnitude of neutral current is (in A)");
disp(Inang,"the degree of neutral current is (in A)");
//calculating the power in each phase
Pr=Irmag^2*Z1real;
Py=Iymag^2*Z2real;
Pb=Ibmag^2*Z3real;
P=Pr+Py+Pb;
disp(P,"the total power absorbed by the load is (in W)");
//in text book decimal values of variables used in power calculating are rounded off so power varies by 2 watts
|
cb2c3c17951f7201b4ee7c2a2c3585c11803d412
|
92c39b1bfa02d70fb861a7fa8c907a2a24613ebf
|
/rotE.sci
|
49f6c180625b4332034a4875aceea9c11493729a
|
[] |
no_license
|
UTEC-mateIII/TAP-2
|
7e9d8aba21430ef00987dbf14418444f27cd20e7
|
faeae752299402b9c7f43c37cf7d62b6a0daa42d
|
refs/heads/master
| 2022-06-29T17:15:47.667656
| 2020-05-04T23:56:57
| 2020-05-04T23:56:57
| 260,448,794
| 0
| 2
| null | 2020-05-01T14:16:39
| 2020-05-01T12:00:47
| null |
UTF-8
|
Scilab
| false
| false
| 237
|
sci
|
rotE.sci
|
// Alberto Oporto Ames 100%
exec("projection.sci")
exec("rot.sci")
// theta debe estar en grados
function [A, B, C, D] = rotE(u, theta, d)
[_A _B _C _D] = projection(d)
[A B C D] = rot(u, theta, _A, _B, _C, _D)
endfunction
|
d42fd23aa3cc152c1229074441b7b6179798056e
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2528/CH4/EX4.10/Ex4_10.sce
|
1a8b5e9f2cebd0a3cfcc2230d88c426ffc7fd143
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 180
|
sce
|
Ex4_10.sce
|
clc;
clear;
close;
//figure 4.15
//pagec no 107
//Figure 4.15
Iload=100*10^-6; //In Amp
Vin=10; //In Volt
gm=Iload/Vin;
Ri=1/gm;
disp("ohm",Ri,"Value of Ri")
|
77ea2c4d5c42fe0dad95d4b0d404754db5abf552
|
58b2bdd4808aac101e5b04d98226b02c64043a5a
|
/GNGrobin.sce
|
55e9d18c4f836bbd12c4efdb7d54e26995163dd2
|
[] |
no_license
|
Robstei/Praxisprojekt
|
b1ab0fc0775e190a0ab7da408e183b921d039d2c
|
fd38b5cd8dbd188b997706010c120fa12623904e
|
refs/heads/master
| 2021-07-24T17:12:42.185717
| 2018-10-11T07:11:50
| 2018-10-11T07:11:50
| 134,337,007
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 2,347
|
sce
|
GNGrobin.sce
|
begin;
$inheight = 800;
$inwidth = 1280;
array{
bitmap {filename = "instructions/original/instruction1.jpg";description = "instruction1";height=$inheight;width=$inwidth;};
bitmap {filename = "instructions/original/play1.jpg";description = "play1";height=$inheight;width=$inwidth;};
bitmap {filename = "instructions/original/play2.jpg";description = "play2";height=$inheight;width=$inwidth;};
bitmap {filename = "instructions/original/play3.jpg";description = "play3";height=$inheight;width=$inwidth;};
bitmap {filename = "instructions/original/play4.jpg";description = "play4";height=$inheight;width=$inwidth;};
bitmap {filename = "instructions/original/practice1.jpg";description = "practice1";height=$inheight;width=$inwidth;};
bitmap {filename = "instructions/original/practice2.jpg";description = "practice2";height=$inheight;width=$inwidth;};
bitmap {filename = "instructions/original/practice3.jpg";description = "practice3";height=$inheight;width=$inwidth;};
bitmap {filename = "instructions/original/practice4.jpg";description = "practice4";height=$inheight;width=$inwidth;};
bitmap {filename = "instructions/original/practice5.jpg";description = "practice5";height=$inheight;width=$inwidth;};
bitmap {filename = "instructions/original/practice6.jpg";description = "practice6";height=$inheight;width=$inwidth;};
}instructions;
array{
bitmap {filename = "instructions/original/block_A_1.jpg";description = "block_A_1";height=$inheight;width=$inwidth;};
bitmap {filename = "instructions/original/block_A_2.jpg";description = "block_A_2";height=$inheight;width=$inwidth;};
}blockA;
array{
bitmap {filename = "instructions/original/block_B_1.jpg";description = "block_B_1";height=$inheight;width=$inwidth;};
bitmap {filename = "instructions/original/block_B_2.jpg";description = "block_B_2";height=$inheight;width=$inwidth;};
}blockB;
sound { wavefile { filename = "sounds/original/Kugelschreiber.wav"; };attenuation = 0.05;}sound1;
sound { wavefile { filename = "sounds/original/Locher.wav"; };attenuation = 0.05;}sound2;
sound { wavefile { filename = "sounds/original/Schere_zweimal.wav"; };attenuation = 0.05;}sound3;
sound { wavefile { filename = "sounds/original/Tacker.wav"; };attenuation = 0.05;}sound4;
trial {
} main_trial;
begin_pcl;
|
a71160b732212433208c2f67f09d88a111abe6ac
|
9209079c67b9efa4a8e619f0621165bac930c82d
|
/nand2tetris/vm/tests/fixtures/SimpleSub/SimpleSubVME.tst
|
43bae468130dae128094d3394392df31d278cb5f
|
[] |
no_license
|
AlexMost/my-courses
|
c29c5c65bae36245443c8f95a076e6cdfb6703fe
|
3d9148879399232312244d7b0b61a06690ee8cca
|
refs/heads/master
| 2021-01-18T22:09:24.416646
| 2018-07-05T22:09:48
| 2018-07-05T22:09:48
| 21,182,354
| 2
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 509
|
tst
|
SimpleSubVME.tst
|
// This file is part of www.nand2tetris.org
// and the book "The Elements of Computing Systems"
// by Nisan and Schocken, MIT Press.
// File name: projects/07/StackArithmetic/SimpleAdd/SimpleAddVME.tst
load SimpleSub.vm,
output-file SimpleAdd.out,
compare-to SimpleAdd.cmp,
output-list RAM[0]%D2.6.2 RAM[256]%D2.6.2;
set RAM[0] 256, // initializes the stack pointer
repeat 3 { // SimpleAdd.vm has 3 instructions
vmstep;
}
output; // the stack pointer and the stack base
|
e81a070e5fec71587a80233bb52dce119247a699
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1373/CH14/EX14.3/Chapter14_Example3.sce
|
dfbcf66b81dd68dbc4c72e5689c16a7b11e2345d
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 775
|
sce
|
Chapter14_Example3.sce
|
//Chapter-14, Example 14.3, Page 583
//=============================================================================
clc
clear
//INPUT DATA
T=27;//Temperature of dry air in degree C
p=1;//Pressure of dry air in atm
L=0.5;//Length of the plate in m
v=50;//Velocity in m/s
//CALCULATIONS
DAB=(0.26*10^-4)//DAB value in m^2/s
p=1.16;//Density in kg/m^3
u=(184.6*10^-7);//Dynamic viscosity in N.s/m^2
Pr=0.707;//Prantl number
Sc=(u/(p*DAB));//Schmidt number
Re=(p*v*L)/u;//Reynolds number
jm=(0.0296*(Re^(-1/5)));//jm value
h=(jm*v)/Sc^(2/3);//Mass transfer coefficient of water vapour in m/s
//OUTPUT
mprintf('Mass transfer coefficient of water vapour is %3.3f m/s',h)
//=================================END OF PROGRAM==============================
|
ae4d8956ba1ec7b5c6e0054c04a77ec12069fd38
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1571/CH11/EX11.7/Chapter11_Example7.sce
|
62667c85603ff7e281bac2410ff499070f512648
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 566
|
sce
|
Chapter11_Example7.sce
|
clc
clear
//INPUT
w=23;//thermal capacity of calorimeter in cal
m=440;//mass of water in gm
l=14.6;//lenght of the rubber tube in cm
dt=0.019;//rate of change in temperature in deg.C/sec
t=100;//temperature of steam in deg.C
t1=22;//temperature of the water in deg.C
t2=t1;//temperature of calorimeter in deg.C
r1=1;//external radii in cm
r2=0.75;//internal radii in cm
//CALCULATIONS
k=(w+m)*dt*log(r1/r2)/(2*3.14*l*(t-((t1+t2)/2)));//thermal conductivity in cgs unit
//OUTPUT
mprintf('thermal cnductivity of rubber tube is %3.5f cgs unit',k)
|
ae1adcbd362d5356dbeab314dab8d43899db6d7f
|
98562ca6f70bda880aea47df44925c542b87f96f
|
/codes/i2c-sensors/ssd1306/hello.ino.tst
|
7bfb5458f8e557876a3d25fdd2c5ce704844c530
|
[] |
no_license
|
SixNationsPolytechnic/2021-WaterAndEnviromentalMonitoring
|
1bcc7e86535c6e87f80dacfdc823a053c135a3c0
|
faa47bf9a0a32acf8f29ac6c3387c3b464c5d1d9
|
refs/heads/main
| 2023-07-14T12:03:25.235341
| 2021-08-06T15:46:37
| 2021-08-06T15:46:37
| 354,346,863
| 0
| 0
| null | 2021-07-30T16:09:29
| 2021-04-03T16:59:40
|
CSS
|
UTF-8
|
Scilab
| false
| false
| 265
|
tst
|
hello.ino.tst
|
#include "SSD1306.h"
SSD1306 display(0x3c, 21, 22);
void setup() {
Serial.begin(115200);
Serial.println"Hello World");
display.init();
display.setFont(ArialMT_Plain_24);
display.drawString(0, 0, "Hello World");
display.display();
}
void loop() {
}
|
9d0509d1712b23d474a3586b5aa95ef35e5e8858
|
e82d1909ffc4f200b5f6d16cffb9868f3b695f2a
|
/Lista 5/Questao4.sce
|
86bcac079ee7ab499dc25835073b7bff433b6490
|
[] |
no_license
|
AugustoCam95/Computational-Linear-Algebra
|
eb14307dd3b45ccc79617efe74d1faca639c36c5
|
99b1a1f9499fbc4343bd5c878444e9e281952774
|
refs/heads/master
| 2020-03-30T22:26:23.790763
| 2018-10-05T03:34:06
| 2018-10-05T03:34:06
| 151,666,289
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 774
|
sce
|
Questao4.sce
|
function [Q,T] =Questao4(A)
[l,c] = size(A)
Q = eye(l,l)
p = min(l,c)
T = A
for i=1:p
for j=i+1:l
//calcular o coseno e o seno, em seguida armazena nas variáveis cosen e sen
cosen = T(i,i)/ (sqrt(T(i,i)^2 + T(j,i)^2 ))
sen = T(j,i)/(sqrt(T(i,i)^2 + T(j,i)^2))
//Inicia a Matriz R(Gt) igual a identidade
Gt = eye(l,l)
//Monta a matriz R(Gt)
Gt(i,i) = cosen
Gt(i,j) = sen
Gt(j,i) = -sen
Gt(j,j) = cosen
//Operações para encontrar a T e Q'
T=Gt*T
Q=Gt*Q
end
end
//Transpoem a Q e retorna
Q=Q'
endfunction
|
106793bc9d3741a2c9640b4a130ac00737baf501
|
ba5d14a99711f45c6f3d2d28e4e8c12c9120e536
|
/Calculando algumas funções.sce
|
a86cd00caa378adaafe0699efef163fe8d795a07
|
[] |
no_license
|
RuanXavierSantos/Exercicios_Scilab
|
0bf7aa6cc0b94e84bd560861c77d7a1a6c17bc2b
|
219c1609766e1ac1ad27f9469012d7f3bb6c8dea
|
refs/heads/main
| 2023-09-03T00:50:12.356763
| 2021-10-20T13:29:22
| 2021-10-20T13:29:22
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 134
|
sce
|
Calculando algumas funções.sce
|
x=input("informe x: ");
a=x+2;
b=x-2*x;
c=(x^2)-4;
d=(x^3)+2*(x^2)-6*x+2;
mprintf(" %d %d %d %d",a,b,c,d);
|
8b6d39af2bed64d89e14dd10d0163c9ce1992cb0
|
482cdc3e27e99afe860829eff3e593caa62202e3
|
/src/Assignment1_Tests/test2.tst
|
e1ec5ced1a745cc8b61bf75043cb76c719305828
|
[] |
no_license
|
abrageddon/DLXCompiler
|
e153430de4412fe48a34955851352d0fd73ab2d8
|
2d1abd102f723c2e1f0ed5893e86c7d0ceb42914
|
refs/heads/master
| 2020-12-30T10:50:20.955331
| 2011-12-02T03:34:59
| 2011-12-02T03:34:59
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 42
|
tst
|
test2.tst
|
main
{
var number;
number <- 44;
}
.
|
9c8794f517070ab3869ba61b1571425fdcffc963
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3544/CH4/EX4.5.3/Ex4_5_3.sce
|
35d0259ab1ccdc7975324ce932337bb4b76a71ce
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 471
|
sce
|
Ex4_5_3.sce
|
//ElGamal Key Decryption
// Move scilab to current file directory
[u,t,n] = file()
n = strcat(n)
file_name = basename(n)+fileext(n)
file_name = strcat(file_name)
ind=strindex(n,file_name)
path = part(n,1:ind-1)
chdir(path)
exec("Chapter_4.sci",-1)
p = 11
r = 4
pt = 7
d = 3
e1 = 2
e2 = modulo(e1^d,p)
c1 = modulo(e1^r,p)
c2 = modulo(pt*e2^r,p)
x =c1^d
x_inv = mod_inv(x,p)
pt = modulo(c2*x_inv,p)
disp("Original plaintext")
disp(pt)
|
d8ac323bfdc173ac9020bf9aac7e0478de982c87
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/167/CH6/EX6.3/ex3.sce
|
2b790b7da895d683e00f165ddf4e936d3bb89168
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 429
|
sce
|
ex3.sce
|
//ques3
//Heat Rejection by a Refrigerator
clear
clc
//(a)
Ql=6;//heat of sink in kJ/s
W=2;//work done on refrigerator in kW
COPr=Ql/W;//coefficient of performance of refrigerator
printf(' (a) The coefficient of performance of the refrigerator is = %.0f \n',COPr);
//(b)
Qh=Ql+W;//heat of reservoir in kJ/s
printf(' (b)The rate at which heat is rejected to the room that houses the refrigerator = %.0f kJ/s \n',Qh);
|
9cad545b5322d7384952c7d3d5dd534165a4189a
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2609/CH4/EX4.11/ex_4_11.sce
|
a04ad73e3dd182f6c2c03bf1e48220409e7018f2
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 293
|
sce
|
ex_4_11.sce
|
////Ex 4.11
clc;
clear;
close;
format('v',5);
Ri=2;//kohm
Rf=200;//kohm
//For 741C
fo=5;//Hz
AOL=2*10^5;//unitless
UGB=1;//MHz
ACL=-AOL*Rf/(Rf+Ri+AOL*Ri);//unitless(Exact)
disp(ACL,"Close loop voltage gain");
fodash=fo*AOL/-ACL;//Hz
disp(fodash/1000,"Bandwidth, fo_dash(kHz)");
|
565e885d92b4e0606dcf75a5c2b778d6f2e4a34e
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3651/CH8/EX8.9/9.sce
|
63b255e22dc16ebf801924314676f4c90c6c2393
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 318
|
sce
|
9.sce
|
//variable declaration
N_a=0.3
gamma=45
//Calculations
theta_a=asin(N_a)
theta_as=asin((N_a)/cos(gamma))
//Results
printf('Acceptance angle, theta_a =%0.3f degrees\n',(theta_a*180/%pi))
printf('For skew rays,theta_as %0.3f degrees\n',(theta_as*180/%pi))
printf('//Answer given in the textbook is wrong')
|
b242980ef66564f301f60cd0dbd4f101a2595eda
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1364/CH14/EX14.5.1/14_5_1.sce
|
7af81f1a3a4042748275a02d1587e533ba4a29c2
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 279
|
sce
|
14_5_1.sce
|
clc
//initialisation of variables
H= 900 //ft
P= 1665 //h.p
N= 755
//CALCULATIONS
P1= P/(H)^1.5
N1= N/(H)^0.5
Ns= N*sqrt(P)/H^1.25
//RESULTS
printf ('Unit power= %.4f h.p',P1)
printf (' \n Unit speed= %.1f rev/min',N1)
printf (' \n Specific speed= %.2f rev/min',Ns)
|
3117625f78f213e596c52061aae06a5c7ea04867
|
089894a36ef33cb3d0f697541716c9b6cd8dcc43
|
/NLP_Project/test/tweet/bow/bow.15_6.tst
|
b80d66c1e811602b7cde2cc0e7befc8823e17ff7
|
[] |
no_license
|
mandar15/NLP_Project
|
3142cda82d49ba0ea30b580c46bdd0e0348fe3ec
|
1dcb70a199a0f7ab8c72825bfd5b8146e75b7ec2
|
refs/heads/master
| 2020-05-20T13:36:05.842840
| 2013-07-31T06:53:59
| 2013-07-31T06:53:59
| 6,534,406
| 0
| 1
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 26,365
|
tst
|
bow.15_6.tst
|
15 11:0.125 56:0.14285714285714285 631:1.0 2124:1.0 5695:1.0 6239:1.0 6616:1.0 6680:1.0 6681:2.0 7755:1.0 7762:1.0 8810:1.0
15 14:0.5 16:0.09523809523809523 43:0.25 52:1.0 53:0.1111111111111111 56:0.14285714285714285 102:1.0 272:0.5 367:1.0 415:0.5 521:1.0 549:0.5 693:2.0 983:0.3333333333333333 1928:1.0 4812:1.0 5284:0.3333333333333333 5592:1.0 6576:1.0 6614:1.0
15 16:0.047619047619047616 53:0.1111111111111111 289:0.3333333333333333 322:1.0 4863:1.0 5273:1.0 5326:0.16666666666666666 5404:0.5 5405:1.0 5474:1.0 5542:2.0 5927:1.0 6140:1.0 6373:1.0 6562:1.0 7120:0.5 7378:0.5
15 16:0.047619047619047616 21:1.0 31:0.047619047619047616 33:0.14285714285714285 43:0.5 52:1.0 61:0.2 248:0.5 547:0.4 2286:1.0 2338:1.0 2484:1.0 3285:1.0 5831:1.0
15 7:1.0 8:0.16666666666666666 9:0.25 11:0.125 42:1.0 43:0.5 52:1.0 71:0.3333333333333333 349:1.0 499:1.0 549:0.5 925:1.0 1470:0.5 2115:0.3333333333333333 2676:1.0 2862:1.0 5304:1.0 5326:0.16666666666666666 5353:0.75 5363:0.16666666666666666 5477:1.0 5498:1.0 5712:1.0 7262:1.0 7600:1.0
15 100:1.0 146:0.3333333333333333 1249:1.0 1907:1.0 2599:0.5 3786:1.0 9162:1.0
15 11:0.125 16:0.047619047619047616 43:0.25 53:0.1111111111111111 146:0.3333333333333333 209:0.25 289:0.3333333333333333 935:0.16666666666666666 949:0.5 1009:1.0 1470:0.5 1725:0.3333333333333333 3498:1.0 3608:1.0 5509:1.0 6074:1.0 7645:1.0 7981:1.0
15 31:0.047619047619047616 39:0.5 42:1.0 53:0.2222222222222222 56:0.14285714285714285 160:0.07692307692307693 280:1.0 333:0.25 418:0.6666666666666666 439:1.0 554:1.0 737:0.5 1452:0.5 2119:1.0 2476:2.0 2569:1.0 3590:1.0 5284:0.3333333333333333 5324:0.5 5353:0.25 5429:0.5 5455:1.0 5625:1.0 6048:1.0 6253:1.0 6411:1.0 7488:1.0 9535:1.0 9734:1.0
15 31:0.09523809523809523 56:0.14285714285714285 218:1.0 284:0.3333333333333333 442:0.3333333333333333 782:0.5 949:0.5 1127:1.0 1130:0.3333333333333333 2476:1.0 4045:1.0 5284:0.3333333333333333 5286:0.3333333333333333 5315:0.25 6007:1.0 6104:1.0 6611:2.0 6612:2.0 6614:1.0 6703:1.0 7669:1.0 7901:1.0 9402:1.0
15 31:0.047619047619047616 53:0.1111111111111111 284:0.3333333333333333 5312:1.0 5405:1.0 5592:1.0 6007:1.0 6608:1.0 7139:1.0 8176:1.0 8178:1.0 9932:1.0
15 9:0.25 24:0.3333333333333333 53:0.2222222222222222 56:0.14285714285714285 100:1.0 102:1.0 225:1.0 262:0.3333333333333333 275:0.2 414:0.14285714285714285 418:0.3333333333333333 983:0.3333333333333333 1133:1.0 1526:1.0 2115:0.3333333333333333 3444:1.0 4201:1.0 4347:1.0 5265:2.0 5284:0.3333333333333333 5286:0.3333333333333333 5326:0.16666666666666666 5353:0.5 5397:1.0 5426:0.5 5529:0.3333333333333333 5595:0.5 5789:1.0 5886:1.0 6074:1.0 6075:1.0 6284:1.0 6487:1.0 6700:1.0 6737:0.5 6791:1.0
15 11:0.125 52:1.0 78:0.3333333333333333 547:0.2 554:1.0 590:0.5 1663:1.0 4755:1.0 5265:1.0 5326:0.16666666666666666 5374:1.0 5494:1.0 5533:1.0 6253:1.0 6485:1.0 6829:1.0 7060:1.0 7214:1.0 7762:1.0 8298:1.0
15 31:0.09523809523809523 43:0.5 53:0.1111111111111111 56:0.42857142857142855 228:0.5 235:0.3333333333333333 275:0.2 284:0.3333333333333333 286:0.3333333333333333 453:1.0 561:1.0 724:0.5 1662:1.0 1679:1.0 6010:1.0 6011:1.0 6242:1.0 6759:1.0 7060:1.0 7602:1.0 8546:1.0 8681:1.0
15 53:0.2222222222222222 78:0.3333333333333333 146:0.3333333333333333 289:0.6666666666666666 333:0.25 549:0.5 633:0.5 721:0.5 768:1.0 1321:0.5 2955:1.0 5304:1.0 5324:1.0 5348:1.0 5396:1.0 5466:1.0 5503:1.0 5607:0.25 5700:1.0 6319:1.0 6322:1.0 7139:1.0 7511:1.0 7635:1.0 7975:1.0 8312:1.0 8502:1.0 9668:1.0 9931:1.0
15 9:0.25 16:0.09523809523809523 31:0.09523809523809523 33:0.14285714285714285 43:0.25 56:0.14285714285714285 60:0.2 61:0.4 78:0.3333333333333333 90:0.14285714285714285 266:0.5 284:0.3333333333333333 425:1.0 549:0.5 737:0.5 1127:1.0 1212:1.0 2219:1.0 2694:1.0 3014:1.0 5276:0.3333333333333333 5376:0.25 5402:1.0 5428:1.0 5489:1.0
15 16:0.09523809523809523 24:0.3333333333333333 31:0.09523809523809523 33:0.2857142857142857 43:0.5 53:0.2222222222222222 154:1.0 181:1.0 218:1.0 225:1.0 275:0.2 311:0.5 364:1.0 631:2.0 1089:1.0 1773:1.0 2870:1.0 3318:1.0 4386:1.0 4404:1.0 5324:0.5 5396:1.0 6195:1.0 7120:0.5 8151:1.0
15 14:0.5 61:0.4 97:1.0 499:1.0 554:1.0 1056:1.0 1249:1.0 3426:1.0 3941:0.5 5265:2.0 5276:0.3333333333333333 5284:0.3333333333333333 5286:0.3333333333333333 5315:0.25 5324:0.5 5388:1.0 5499:0.3333333333333333 5542:1.0 6697:1.0 6890:1.0 7183:1.0 7342:1.0 9334:1.0
15 9:0.5 43:0.25 132:0.5 301:1.0 418:0.3333333333333333 638:1.0 758:0.3333333333333333 1133:1.0 1518:1.0 5276:0.3333333333333333 5466:1.0 6790:0.5 6791:1.0 8366:1.0
15 14:0.5 16:0.047619047619047616 235:0.3333333333333333 395:1.0 414:0.2857142857142857 935:0.16666666666666666 1393:1.0 3486:1.0 3617:1.0
15 275:0.2 414:0.2857142857142857 5324:0.5 5339:0.3333333333333333 5375:1.0 5499:0.6666666666666666 6421:1.0 6640:1.0 6727:0.5 7823:1.0 9661:1.0
15 181:0.5 554:1.0 5321:0.25 5327:1.0 5339:0.6666666666666666 5353:0.25 5363:0.16666666666666666 5542:1.0 5567:1.0 5614:1.0 5688:1.0 5834:1.0 5966:0.5 6214:1.0 6322:1.0 6424:1.0 6469:1.0 6625:1.0 7106:1.0
15 11:0.125 16:0.047619047619047616 53:0.1111111111111111 56:0.14285714285714285 60:0.1 90:0.07142857142857142 146:0.3333333333333333 218:1.0 521:1.0 590:0.5 604:1.0 633:0.5 866:0.25 1526:1.0 1856:0.5 2146:1.0 2317:1.0 4340:1.0 5326:0.16666666666666666 5376:0.25 5555:1.0 6191:1.0 6685:1.0 7120:0.5 8169:1.0 8289:1.0 8652:1.0 9563:1.0
15 16:0.047619047619047616 129:1.0 414:0.14285714285714285 590:0.5 1237:0.25 1249:1.0 1931:1.0 2034:1.0 2115:0.6666666666666666 4698:1.0 5363:0.16666666666666666 5375:1.0 5595:0.5 5721:0.2 6571:0.5 6572:1.0 8439:1.0
15 9:0.25 11:0.125 16:0.047619047619047616 53:0.1111111111111111 61:0.2 78:0.3333333333333333 453:1.0 547:0.2 1040:1.0 1470:0.5 2115:0.3333333333333333 2758:1.0 3530:1.0 3777:1.0 3836:1.0 4561:0.5 5284:0.3333333333333333 5286:0.3333333333333333 5319:1.0 5339:0.3333333333333333 5353:0.25 5363:0.16666666666666666 5368:1.0 5418:1.0 5429:0.25 5567:2.0 5592:1.0 5684:1.0 5700:1.0 5714:1.0 5789:1.0 6008:1.0 6414:1.0 6470:1.0 6717:1.0 7416:1.0 7503:1.0 7606:1.0 8652:1.0 9062:1.0 9656:1.0
15 9:0.5 10:1.0 43:0.25 44:0.3333333333333333 116:1.0 183:0.25 364:1.0 418:0.3333333333333333 547:0.2 1127:1.0 1248:1.0 2339:0.5 2454:1.0 2768:1.0 3969:1.0 7720:1.0 8806:2.0
15 16:0.047619047619047616 31:0.047619047619047616 180:1.0 235:0.3333333333333333 262:0.3333333333333333 454:1.0 544:1.0 547:0.2 554:1.0 935:0.16666666666666666 949:0.5 990:1.0 2115:0.3333333333333333 5368:1.0 5542:2.0 5668:1.0 5893:1.0 6029:1.0 6232:1.0 7214:1.0 7922:1.0
15 14:0.5 16:0.09523809523809523 33:0.14285714285714285 1103:1.0 1928:1.0 2276:1.0 5284:0.3333333333333333 5327:1.0 5502:0.5 5572:1.0 5595:0.5 6191:0.5 6196:1.0 6462:1.0 6576:1.0 7275:1.0
15 11:0.125 16:0.047619047619047616 43:0.25 53:0.2222222222222222 70:0.1 116:1.0 232:0.5 256:1.0 461:0.3333333333333333 1742:0.5 5276:0.3333333333333333 5305:1.0 5611:1.0 6487:1.0
15 11:0.125 16:0.047619047619047616 29:0.3333333333333333 43:0.25 53:0.1111111111111111 70:0.1 78:0.3333333333333333 116:1.0 142:1.0 216:1.0 274:1.0 290:0.3333333333333333 812:1.0 1470:0.5 2103:1.0 2880:1.0 3194:1.0 4561:0.5 5265:1.0 5284:1.3333333333333333 5324:0.5 5326:0.3333333333333333 5339:0.6666666666666666 5361:1.0 5496:1.0 5509:1.0 6044:1.0 6157:1.0 6403:1.0 6700:1.0 7155:1.0 7378:0.5 7413:1.0 7508:1.0 8248:1.0 8897:1.0 9599:1.0
15 11:0.125 14:0.5 24:0.3333333333333333 53:0.4444444444444444 78:1.3333333333333333 275:0.2 364:1.0 425:1.0 981:1.0 2115:0.3333333333333333 3372:2.0 4670:1.0 5268:1.0 5315:0.5 5363:0.16666666666666666 5368:1.0 5388:1.0 5405:1.0 5409:1.0 5477:0.3333333333333333 5487:1.0 5611:1.0 5773:1.0 5966:0.5 6057:1.0 6382:1.0 7162:1.0 7937:1.0 9027:1.0
15 7:1.0 11:0.375 16:0.09523809523809523 24:0.3333333333333333 43:0.25 53:0.1111111111111111 70:0.1 146:0.3333333333333333 181:0.5 208:0.5 256:1.0 275:0.2 289:0.3333333333333333 343:1.0 365:1.0 414:0.14285714285714285 693:1.0 793:1.0 812:1.0 1614:2.0 2115:0.3333333333333333 3169:1.0 5284:1.0 5304:3.0 5353:0.25 5363:0.3333333333333333 5702:1.5 5773:1.0 6044:1.0 6045:1.0 6866:1.0 7155:2.0 9153:1.0 9620:1.0
15 16:0.047619047619047616 31:0.047619047619047616 33:0.14285714285714285 61:0.2 70:0.1 113:1.0 184:1.0 521:1.0 935:0.16666666666666666 949:0.5 1429:0.5 1697:1.0 3007:1.0 5276:0.3333333333333333 5315:0.25 5395:1.0 5734:1.0 5920:1.0 6896:1.0 6927:1.0 7120:0.5 7378:0.5 8999:1.0
15 9:0.25 24:0.3333333333333333 53:0.1111111111111111 56:0.14285714285714285 248:0.5 265:0.5 631:1.0 633:0.5 818:1.0 872:1.0 886:1.0 2115:0.3333333333333333 2421:1.0 2761:1.0 3686:1.0 4201:1.0 4315:1.0 5312:1.0 5324:0.5 5339:0.3333333333333333 5363:0.16666666666666666 5376:0.25 5429:0.25 5477:0.3333333333333333 5574:1.0 5607:0.25 5789:1.0 5969:1.0 6156:1.0 6196:1.0 6322:1.0 6445:1.0 7169:1.0 8441:1.0 9544:1.0
15 9:0.75 11:0.125 31:0.047619047619047616 33:0.14285714285714285 53:0.1111111111111111 146:0.3333333333333333 209:0.25 268:0.14285714285714285 521:1.0 672:1.0 935:0.16666666666666666 1027:1.0 1629:0.5 1856:0.5 2087:1.0 3005:1.0 3143:1.0 5026:1.0 5265:1.0 5395:1.0 5429:0.25 5489:1.0 6074:1.0 7171:1.0 7383:1.0
15 9:0.25 24:0.3333333333333333 120:1.0 248:0.5 265:0.5 872:1.0 4315:1.0 5312:1.0 5429:0.25 5835:1.0 6608:1.0 6876:2.0 7169:1.0 7640:1.0
15 53:0.1111111111111111 146:0.3333333333333333 289:0.3333333333333333 431:1.0 1361:1.0 1851:1.0 2130:0.5 3103:1.0 5292:1.0 5445:1.0 5583:1.0 6424:1.0 6576:1.0 8180:0.5
15 42:1.0 43:0.25 52:1.0 262:0.3333333333333333 549:0.5 5279:0.2 5304:1.0 5307:0.3333333333333333 5374:1.0 6092:1.0
15 9:0.25 11:0.125 16:0.09523809523809523 24:0.3333333333333333 25:1.0 33:0.14285714285714285 43:0.5 52:1.0 160:0.07692307692307693 264:1.0 304:0.2 387:0.25 614:1.0 672:1.0 949:0.5 1009:1.0 1017:1.0 1832:1.0 2276:1.0 2995:1.0 3143:1.0 3420:1.0 4620:1.0 4702:1.0 5509:1.0 5660:1.0 6172:1.0 6735:1.0
15 8:0.16666666666666666 9:0.25 14:0.5 16:0.047619047619047616 53:0.2222222222222222 70:0.1 94:0.5 230:0.25 262:0.3333333333333333 265:0.5 266:0.5 290:0.3333333333333333 678:1.0 1535:1.0 3019:1.0 3113:1.0 3484:1.0 4941:1.0 5487:1.0 5550:0.5 5567:1.0 5595:0.5 5712:1.0 5828:1.0 6140:1.0 6145:1.0 6258:1.0 6305:1.0 6411:1.0 6608:1.0 6611:1.0 6616:1.0 6617:1.0 7761:1.0 7762:1.0 8391:1.0 9932:1.0
15 11:0.125 218:1.0 235:0.3333333333333333 554:1.0 672:1.0 1679:1.0 2115:0.3333333333333333 3143:1.0 3686:1.0 5265:1.0 5284:0.6666666666666666 5304:1.0 5315:0.25 5324:0.5 5376:0.25 5403:1.0 5487:1.0 5494:1.0 5498:1.0 5718:1.0 6195:1.0 6325:1.0 8150:1.0 8889:1.0 9937:1.0
15 43:0.25 50:0.5 52:1.0 53:0.1111111111111111 56:0.14285714285714285 90:0.07142857142857142 179:1.0 239:1.0 265:0.5 547:0.2 724:0.5 1611:0.5 2219:1.0 2317:1.0 4404:1.0 5274:1.0 5375:1.0 5825:0.3333333333333333 6145:1.0
15 935:0.16666666666666666 1301:1.0 5268:1.0 5284:0.3333333333333333 5359:1.0 5391:1.0 5475:1.0 6442:1.0 6495:1.0 6717:1.0 7651:1.0 8806:1.0
15 53:0.2222222222222222 5280:0.5 5281:1.0 5282:1.0 5283:1.0 5284:0.3333333333333333 5285:1.0 5286:0.3333333333333333 5287:1.0 5288:1.0 5315:0.25 5324:0.5 5327:1.0 5342:1.0 5458:1.0 5574:1.0 6576:1.0 6604:1.0 6605:1.0 6829:1.0 6988:0.3333333333333333 6990:1.0 7105:1.0 7403:1.0 8318:1.0 8914:1.0 9169:1.0 9541:1.0
15 11:0.125 78:0.3333333333333333 154:1.0 160:0.07692307692307693 724:0.5 4964:1.0 5284:0.6666666666666666 5286:0.3333333333333333 5312:1.0 5404:0.5 5595:0.5 6153:1.0 8157:1.0 8167:1.0 8452:1.0
15 4:0.5 70:0.1 90:0.07142857142857142 97:1.0 155:0.5 183:0.25 232:0.5 289:0.3333333333333333 414:0.2857142857142857 549:0.5 1057:0.5 1700:1.0 2955:1.0 3259:1.0 3686:1.0 5284:0.3333333333333333 5304:1.0 5340:0.25 5341:1.0 5376:0.25 5477:0.3333333333333333 5567:1.0 5684:1.0 5734:1.0 6008:1.0 6120:1.0 6325:1.0 6826:1.0 7218:1.0 8424:1.0 8654:1.0 9419:1.0 9446:1.0
15 10:1.0 21:1.0 43:0.5 56:0.14285714285714285 78:0.3333333333333333 160:0.07692307692307693 311:1.0 418:0.3333333333333333 549:1.5 803:1.0 1526:1.0 2128:1.0 2696:1.0 2955:1.0 3308:1.0 3318:1.0 4201:1.0 5265:1.0 5353:0.25 5521:1.0 6584:1.0 6794:1.0 6876:2.0 8086:1.0
15 4:0.5 9:0.25 11:0.125 16:0.047619047619047616 43:0.25 53:0.1111111111111111 72:1.0 90:0.07142857142857142 275:0.2 866:0.25 1009:1.0 1026:1.0 1630:1.0 1866:1.0 2159:1.0 2955:3.0 5326:0.16666666666666666 5339:0.3333333333333333 5342:1.0 5363:0.16666666666666666 5376:0.25 5397:1.0 5574:1.0 5966:0.5 6254:1.0 7423:1.0 7633:1.0 9419:1.0
15 16:0.09523809523809523 43:0.25 53:0.1111111111111111 56:0.14285714285714285 57:0.16666666666666666 60:0.1 61:0.2 90:0.07142857142857142 219:1.0 660:1.0 893:1.0 1102:1.0 2676:1.0 2696:1.0 2700:0.5 5284:0.6666666666666666 5321:0.25 5324:0.5 5375:1.0 5376:0.25 5533:1.0 5771:1.0 5789:1.0 6008:1.0 6145:1.0 7023:1.0 7105:1.0 7218:1.0 7423:1.0 7454:1.0 9544:1.0
15 60:0.1 72:1.0 90:0.07142857142857142 547:0.2 554:1.0 962:0.25 2115:0.3333333333333333 2768:1.0 5265:1.0 5284:0.3333333333333333 5286:0.3333333333333333 5290:1.0 5324:0.5 5353:0.5 5363:0.16666666666666666 5607:0.25 5789:1.0 6008:1.0 6195:1.0 6490:1.0 7023:1.0 7633:1.0 7971:1.0 9142:1.0
15 4:0.5 24:0.3333333333333333 43:0.25 52:1.0 53:0.2222222222222222 56:0.14285714285714285 57:0.16666666666666666 60:0.1 72:1.0 78:0.3333333333333333 280:1.0 289:0.3333333333333333 604:1.0 803:1.0 2115:0.3333333333333333 2364:1.0 5258:1.0 5284:0.6666666666666666 5324:0.5 5396:1.0 5418:1.0 6604:1.0 7413:1.0 7823:1.0 8330:1.0
15 43:0.25 61:0.2 78:0.3333333333333333 167:1.0 199:1.0 450:0.5 762:1.0 1547:1.0 3038:1.0 3969:1.0 5025:1.0 5038:1.0 5076:1.0 5276:0.3333333333333333 5326:0.16666666666666666 5592:1.0 6044:1.0 6487:1.0 7182:1.0 8389:1.0 8779:1.0 8780:1.0 8781:1.0 8782:1.0 8783:1.0 8916:1.0
15 31:0.047619047619047616 53:0.1111111111111111 56:0.14285714285714285 77:0.5 78:0.6666666666666666 290:0.3333333333333333 414:0.14285714285714285 544:1.0 707:1.0 872:1.0 983:1.0 1527:1.0 2734:1.0 3758:1.0 4201:1.0 5265:1.0 5268:1.0 5276:0.3333333333333333 5321:0.25 5324:0.5 5326:0.16666666666666666 5353:0.25 5403:1.0 5494:1.0 5555:1.0 5896:1.0 6029:1.0 6030:1.0 6262:1.0 6896:0.3333333333333333 7052:1.0 9599:2.0
15 9:0.25 14:0.5 33:0.14285714285714285 60:0.1 61:0.2 78:0.3333333333333333 90:0.07142857142857142 333:0.25 415:0.5 547:0.2 906:1.0 991:1.0 2276:1.0 5276:0.3333333333333333 5342:1.0 5348:2.0 5352:1.0 5353:0.75 5359:1.0 5473:1.0 5474:1.0 5475:1.0 6526:1.0 6671:1.0
15 8:0.16666666666666666 14:0.5 16:0.09523809523809523 24:0.3333333333333333 32:1.0 70:0.1 218:1.0 275:0.2 521:1.0 2258:1.0 5268:1.0 5371:1.0 6986:3.0 7770:1.0 7962:1.0 8026:1.0
15 208:0.5 414:0.14285714285714285 962:0.25 2115:0.3333333333333333 3315:1.0 4201:1.0 5284:0.3333333333333333 5304:1.0 5315:0.25 5327:1.0 5345:1.0 5353:0.5 5360:2.0 5368:1.0 5388:1.0 5542:1.0 5721:0.2 5840:1.0 5882:2.0 6359:0.5 6424:1.0 7028:1.0 7029:1.0 7030:1.0 7031:1.0 7622:1.0 7981:1.0 9081:1.0
15 16:0.09523809523809523 53:0.1111111111111111 56:0.42857142857142855 181:0.5 364:1.0 414:0.14285714285714285 949:0.5 1370:1.0 2115:0.3333333333333333 3444:1.0 5286:0.3333333333333333 5304:1.0 5313:0.3333333333333333 5339:0.3333333333333333 5342:1.0 5353:0.25 5363:0.16666666666666666 5378:1.0 5425:0.5 5499:0.3333333333333333 5538:0.5 5702:0.5 5921:1.0 6324:1.0 6469:1.0 6625:1.0 6932:1.0 7036:1.0 7037:2.0 7408:1.0 7838:1.0 9055:1.0 9279:1.0
15 11:0.125 53:0.1111111111111111 61:0.2 554:1.0 1304:1.0 1879:1.0 5284:0.3333333333333333 5326:0.16666666666666666 5327:1.0 5708:1.0 6393:0.5 6586:1.0 6757:1.0 8550:1.0 8826:1.0 8906:1.0
15 53:0.1111111111111111 2115:0.3333333333333333 5284:0.3333333333333333 5324:0.5 5340:0.25 5378:1.0 5404:0.5 5567:1.0 5612:1.0 6081:1.0 6477:1.0 7214:1.0 7675:1.0 8541:1.0 8688:1.0 9450:3.0
15 14:1.0 16:0.09523809523809523 31:0.047619047619047616 43:0.25 53:0.1111111111111111 56:0.14285714285714285 60:0.1 61:0.2 72:1.0 78:0.3333333333333333 94:0.5 100:1.0 246:1.0 256:1.0 311:0.5 415:0.5 439:1.0 499:1.0 546:1.0 609:1.0 1026:1.0 1316:1.0 1478:1.0 1546:1.0 3444:1.0 4316:0.5 4340:2.0 5265:1.0 5279:0.2 5284:0.3333333333333333 5286:0.3333333333333333 5304:1.0 5315:0.25 5353:0.25 5404:0.5 5477:0.3333333333333333 6145:1.0 6235:1.0 6589:1.0 6896:0.3333333333333333 8502:1.0
15 14:0.5 53:0.1111111111111111 414:0.14285714285714285 544:1.0 1773:1.0 2115:0.3333333333333333 3686:1.0 4314:1.0 4741:1.0 5265:1.0 5268:1.0 5284:0.6666666666666666 5304:1.0 5319:1.0 5326:0.3333333333333333 5327:1.0 5389:1.0 5542:2.0 5574:1.0 5580:0.5 5607:0.25 5611:1.0 5771:1.0 5837:1.0 5872:1.0 6161:1.0 6195:1.0 6264:1.0 6424:1.0 6999:1.0 7105:1.0 7271:1.0 7446:1.0 7981:1.0 8157:1.0 8216:1.0 8457:1.0 8654:1.0 8826:1.0 8827:1.0 8862:1.0 8906:1.0
15 8:0.16666666666666666 9:0.25 14:0.5 37:2.0 43:0.25 53:0.1111111111111111 56:0.14285714285714285 61:0.4 64:0.6666666666666666 77:0.5 78:0.6666666666666666 184:1.0 215:1.0 276:1.0 414:0.2857142857142857 450:0.5 521:1.0 549:0.5 784:1.0 1249:1.0 1522:1.0 1845:1.0 1923:1.0 3309:1.0 5284:0.3333333333333333 6576:1.0 6999:1.0 9662:1.0
15 53:0.1111111111111111 414:0.2857142857142857 2955:1.0 5284:1.0 5304:1.0 5326:0.16666666666666666 5342:1.0 5365:1.0 5499:0.6666666666666666 5721:0.2 5789:1.0 6196:1.0 7218:1.0 7303:1.0 9662:1.0 9904:1.0
15 16:0.047619047619047616 53:0.3333333333333333 57:0.16666666666666666 83:0.5 90:0.07142857142857142 248:0.5 307:1.0 609:1.0 1773:1.0 2034:1.0 2115:0.3333333333333333 4687:1.0 5290:1.0 5313:0.3333333333333333 5332:1.0 5353:0.25 5397:1.0 6145:1.0 6172:1.0 6796:1.0 7785:1.0
15 160:0.07692307692307693 5284:0.6666666666666666 5327:1.0 5348:1.0 5353:0.25 5363:0.16666666666666666 5466:1.0 5789:1.0 5807:0.5 5856:1.0 5920:1.0 6063:1.0 6829:1.0 7124:1.0 8319:1.0 9543:1.0 9869:1.0 9870:1.0
15 53:0.1111111111111111 61:0.2 414:0.14285714285714285 3686:1.0 4514:1.0 5284:0.6666666666666666 5353:0.25 5376:0.25 5455:1.0 6184:1.0 6191:0.5 6411:1.0 6614:1.0 6625:1.0 6890:1.0 7762:1.0 8169:1.0
15 4:0.5 8:0.16666666666666666 9:0.25 43:0.25 44:0.3333333333333333 52:1.0 56:0.14285714285714285 129:1.0 262:0.3333333333333333 268:0.14285714285714285 275:0.2 437:1.0 738:1.0 1429:0.5 1630:1.0 2364:1.0 3067:1.0 4842:0.5 5340:0.25 5341:1.0 6271:1.0 7240:1.0 7241:1.0 8679:1.0 8702:1.0
15 53:0.1111111111111111 146:0.3333333333333333 289:0.3333333333333333 721:0.5 5286:0.6666666666666666 5326:0.16666666666666666 5339:0.3333333333333333 5353:0.75 5389:1.0 5395:1.0 5477:0.6666666666666666 5496:1.0 5514:1.0 5700:1.0 5721:0.2 6322:1.0 6996:1.0 7258:1.0 7259:1.0 7260:1.0 7261:1.0 7612:1.0 8457:1.0 8679:1.0 9142:1.0
15 50:0.5 53:0.1111111111111111 56:0.14285714285714285 290:0.3333333333333333 521:1.0 935:0.16666666666666666 949:0.5 1130:0.3333333333333333 1679:1.0 3530:1.0 4561:0.5 5339:0.6666666666666666 5404:0.5 5409:1.0 5487:1.0 5496:1.0 5502:0.5 5789:1.0 5976:1.0 6204:1.0 6215:1.0 6708:1.0 6735:1.0 7009:1.0 7378:0.5 7418:1.0 7976:1.0 8132:1.0 8318:1.0 8912:1.0
15 44:0.3333333333333333 47:1.0 100:1.0 2317:1.0 5265:1.0 5340:0.25 5356:1.0 5533:1.0 5567:1.0 5595:0.5 6028:1.0 7608:1.0
15 10:1.0 27:1.0 43:0.25 53:0.1111111111111111 61:0.4 77:0.5 78:0.3333333333333333 209:0.25 230:0.25 415:0.5 2317:1.0 4315:1.0 5375:1.0 5595:0.5 5734:1.0 5784:1.0 6681:1.0 9209:1.0
15 9:0.25 16:0.19047619047619047 53:0.1111111111111111 61:0.2 179:1.0 278:1.0 521:2.0 1582:0.5 1700:1.0 2115:1.0 4145:1.0 5286:0.3333333333333333 5319:1.0 5326:0.5 5339:0.6666666666666666 5353:0.25 5363:0.16666666666666666 5496:1.0 5574:1.0 5708:0.5 5834:1.0 5837:1.0 6116:1.0 6191:0.5 6455:1.0 7161:1.0 8169:1.0 8279:1.0 9581:1.0
15 9:0.25 16:0.047619047619047616 43:0.5 53:0.1111111111111111 56:0.14285714285714285 71:0.3333333333333333 77:0.5 102:1.0 209:0.25 311:0.5 364:1.0 415:0.5 453:1.0 489:1.0 549:0.5 557:0.5 724:0.5 937:1.0 1009:1.0 1382:1.0 1527:1.0 1648:1.0 1773:1.0 1923:1.0 3150:1.0 3788:1.0 4130:1.0 4702:1.0 5268:1.0 5397:1.0 5403:1.0 5771:1.0 6074:1.0 6116:1.0 6120:1.0 6762:1.0 7313:1.0 7636:1.0 7658:1.0 9191:1.0
15 53:0.1111111111111111 181:1.0 5321:0.25 5326:0.16666666666666666 5353:0.25 5574:1.0 5614:1.0 5787:1.0 6512:1.0 6589:1.0 6726:1.0 6990:1.0 7633:1.0 7973:1.0
15 31:0.047619047619047616 33:0.14285714285714285 43:0.25 53:0.1111111111111111 56:0.14285714285714285 333:0.25 453:1.0 554:1.0 596:1.0 2115:0.3333333333333333 5312:1.0 5326:0.16666666666666666 5339:0.3333333333333333 5363:0.16666666666666666 5607:0.25 6144:1.0 7044:1.0 7174:1.0
15 9:0.25 26:0.5 33:0.14285714285714285 43:0.25 78:0.3333333333333333 275:0.6 449:0.5 453:1.0 949:0.5 2989:1.0 8196:1.0 8321:1.0
15 5279:0.2 5312:1.0 5353:0.5 5477:0.3333333333333333 5702:0.5 6974:1.0
15 16:0.047619047619047616 52:1.0 53:0.1111111111111111 228:0.5 268:0.14285714285714285 276:1.0 5276:0.3333333333333333 5370:1.0
15 53:0.2222222222222222 57:0.16666666666666666 131:2.0 132:0.5 224:1.0 657:1.0 1248:1.0 2115:0.3333333333333333 2813:1.0 5265:1.0 5276:0.6666666666666666 5284:0.3333333333333333 5312:1.0 5449:1.0 5451:1.0 5551:1.0 5734:2.0 6102:1.0 6280:1.0 6362:1.0 6741:1.0 6890:1.0 6927:1.0 8155:1.0 9833:1.0
15 11:0.125 31:0.047619047619047616 44:0.3333333333333333 53:0.1111111111111111 115:1.0 129:1.0 286:0.3333333333333333 484:1.0 544:1.0 729:1.0 1155:1.0 1522:0.5 1662:1.0 2862:1.0 3039:1.0 3426:1.0 4579:1.0 4955:1.0 5265:2.0 5268:1.0 5284:0.3333333333333333 5340:0.25 5342:1.0 5363:0.16666666666666666 5375:1.0 5390:0.5 5477:0.3333333333333333 5542:1.0 5595:0.5 5625:1.0 6052:1.0 6102:1.0 6813:1.0 7218:1.0 7360:1.0
15 4:1.0 9:0.25 14:0.5 53:0.2222222222222222 60:0.1 113:1.0 262:0.3333333333333333 480:1.0 547:0.2 554:1.0 866:0.25 1667:1.0 1707:1.0 1742:0.5 2115:0.6666666666666666 3638:1.0 4567:1.0 5076:1.0 5284:0.3333333333333333 5326:0.16666666666666666 5340:0.25 5429:0.25 5547:1.0 5592:1.0 6052:1.0 6526:1.0 6648:1.0 7347:1.0 7839:1.0 8129:1.0 9357:1.0 9376:1.0
15 31:0.09523809523809523 333:0.25 1025:1.0 1185:1.0 1522:0.5 4559:1.0 5313:0.3333333333333333 5315:0.25 5322:1.0 5326:0.16666666666666666 5353:0.25 5363:0.16666666666666666 5426:0.5 5580:0.5 5872:1.0 6406:1.0 7981:1.0
15 11:0.125 14:0.5 16:0.047619047619047616 70:0.1 90:0.07142857142857142 286:0.3333333333333333 862:1.0 937:1.0 1016:1.0 1745:0.3333333333333333 2219:1.0 3817:1.0 5265:1.0 5268:1.0 5397:1.0 5426:0.5 5607:0.25 5611:1.0 5817:1.0 6177:1.0 9740:1.0 9878:1.0
15 9:0.75 11:0.125 14:0.5 26:0.5 42:2.0 43:0.25 53:0.1111111111111111 56:0.14285714285714285 129:1.0 248:0.5 289:0.3333333333333333 364:2.0 414:0.14285714285714285 418:0.3333333333333333 437:1.0 453:1.0 547:0.2 549:0.5 983:0.3333333333333333 1133:1.0 1199:1.0 1542:1.0 1782:1.0 2146:1.0 3969:1.0 4571:1.0 5276:0.3333333333333333 5377:1.0 5429:0.25 5886:1.0 6141:1.0 6526:1.0 6717:1.0 6791:1.0 8292:1.0 9429:1.0
15 39:0.5 100:1.0 181:0.5 554:2.0 1249:1.0 2115:0.3333333333333333 3786:1.0 4201:1.0 5284:1.0 5319:1.0 5339:0.6666666666666666 5353:0.25 5529:0.3333333333333333 5886:1.0 6407:1.0 6856:1.0 7073:1.0 7174:1.0 7218:1.0
15 43:0.25 56:0.14285714285714285 61:0.2 209:0.25 311:0.5 478:1.0 499:1.0 2276:1.0 2797:1.0 5276:0.3333333333333333 5279:0.4 5315:0.25 5339:0.3333333333333333 5404:0.5 5487:1.0 5555:1.0 5807:0.5 6157:1.0 6234:1.0 9878:1.0
15 8:0.16666666666666666 43:0.25 50:0.5 144:0.25 275:0.2 546:1.0 549:0.5 793:1.0 803:1.0 949:0.5 1248:1.0 1547:1.0 2561:1.0 2599:0.5 2690:1.0 4835:1.0 5087:1.0 5734:1.0 7383:1.0
15 4201:2.0 5342:1.0 5353:0.25 8527:1.0
15 78:0.3333333333333333 414:0.14285714285714285 549:0.5 758:0.3333333333333333 1017:1.0 5230:1.0 5305:1.0 5340:0.25 5342:2.0 5348:1.0 5353:0.25 5456:1.0 5721:0.4 5784:1.0 5999:1.0 6081:1.0 6829:1.0 6996:1.0
15 53:0.1111111111111111 56:0.14285714285714285 61:0.2 124:0.5 129:1.0 146:0.3333333333333333 183:0.25 478:1.0 872:1.0 2115:0.3333333333333333 4741:1.0 5273:1.0 5342:1.0 5353:0.25 6004:1.0 6625:1.0
15 9:0.5 11:0.25 14:0.5 16:0.047619047619047616 26:0.5 32:1.0 43:0.5 50:0.5 57:0.16666666666666666 61:0.2 230:0.25 275:0.2 453:1.0 914:1.0 982:1.0 1079:1.0 1130:0.3333333333333333 1249:1.0 1528:1.0 1630:1.0 2364:1.0 2599:0.5 2646:1.0 2732:1.0 4842:0.5 6467:1.0 7450:1.0 7785:1.0 9044:1.0
15 43:0.25 44:0.3333333333333333 556:1.0 935:0.16666666666666666 5284:0.3333333333333333 5286:0.6666666666666666 5315:0.25 5356:1.0 5404:0.5 6349:1.0 6829:1.0 7423:1.0 7554:1.0 7790:1.0 7791:1.0 7994:1.0 8312:1.0 8834:1.0 8836:1.0
15 53:0.1111111111111111 631:1.0 2115:0.3333333333333333 5076:2.0 5286:0.3333333333333333 5315:0.25 5326:0.16666666666666666 5342:1.0 5397:1.0 5398:1.0 5404:0.5 5440:1.0 5541:1.0 5688:1.0 6225:1.0 6324:1.0 6424:1.0 6649:1.0 8950:1.0
15 4:0.5 16:0.047619047619047616 24:0.3333333333333333 27:1.0 53:0.1111111111111111 56:0.14285714285714285 78:0.3333333333333333 116:1.0 181:0.5 289:0.3333333333333333 547:0.2 741:1.0 759:1.0 1379:1.0 2128:1.0 4201:1.0 5326:0.16666666666666666 5340:0.25 5664:1.0 5856:1.0 5907:1.0 6028:1.0 6145:1.0 6608:1.0 6996:1.0 7561:1.0 8968:1.0
15 16:0.047619047619047616 53:0.1111111111111111 116:1.0 414:0.14285714285714285 453:1.0 547:0.2 554:1.0 741:1.0 886:1.0 1379:1.0 3686:1.0 4201:1.0 5076:1.0 5304:1.0 5326:0.16666666666666666 5345:1.0 5352:1.0 5353:0.25 5363:0.16666666666666666 5477:0.3333333333333333 5625:3.0 5664:1.0 5721:0.2 5856:1.0 5872:1.0 6478:1.0 6625:1.0 6996:1.0 7187:1.0 7561:1.0 8968:1.0
15 53:0.1111111111111111 289:0.3333333333333333 414:0.14285714285714285 2115:0.3333333333333333 2774:1.0 5319:1.0 5326:0.16666666666666666 5353:0.25 5574:1.0 5578:1.0 5614:1.0 5734:1.0 5789:1.0 6384:1.0 9734:1.0 9736:1.0
15 16:0.047619047619047616 56:0.14285714285714285 78:0.3333333333333333 179:1.0 547:0.2 1185:1.0 2115:0.3333333333333333 4409:1.0 5304:1.0 5353:0.25 5693:1.0 5734:1.0 6104:2.0 6625:1.0 6805:1.0 6927:1.0 8575:1.0 9427:1.0
15 9:0.5 10:1.0 47:1.0 50:0.5 53:0.1111111111111111 286:0.3333333333333333 549:0.5 1203:1.0 1297:1.0 1426:1.0 1486:1.0 2034:1.0 2115:0.3333333333333333 3194:1.0 5284:0.3333333333333333 5326:0.16666666666666666 5646:0.3333333333333333 5768:0.3333333333333333 5792:1.0 6876:1.0 6979:1.0 7161:1.0 7823:1.0 7941:1.0 8598:1.0 9220:1.0
15 16:0.047619047619047616 61:0.2 275:0.2 2021:1.0 2115:0.3333333333333333 5284:0.3333333333333333 5474:1.0 5529:0.3333333333333333 5985:2.0 7774:0.5 8129:1.0 8723:1.0
15 9:0.25 10:1.0 31:0.09523809523809523 53:0.1111111111111111 100:1.0 218:1.0 418:0.3333333333333333 554:1.0 1035:1.0 1165:1.0 1454:1.0 1478:1.0 1527:1.0 2168:1.0 2364:1.0 2379:1.0 2416:1.0 4997:1.0 5115:1.0 5324:0.5 5963:1.0 6551:1.0 7996:1.0 8668:1.0
15 11:0.125 53:0.2222222222222222 181:0.5 453:1.0 554:2.0 886:1.0 2346:1.0 2955:1.0 5284:0.3333333333333333 5315:0.25 5326:0.16666666666666666 5339:0.3333333333333333 5390:0.5 5567:1.0 5602:1.0 5834:1.0 6011:1.0 6196:1.0 6322:1.0 6797:1.0 7148:1.0 7187:1.0 7415:1.0 7441:1.0 8033:1.0 9156:1.0
|
901d7b2a189f65f08f4aba4aa83d0bd6616d34e7
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2252/CH3/EX3.5/Ex3_5.sce
|
da1ec43b5cd00785436388eec013362f21f9aa5a
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 170
|
sce
|
Ex3_5.sce
|
B=.06//flux density
I=40D-3//current in coil
l=4D-2//length of coil side
F=B*I*l
N=50//no. of turns
mprintf("Force acting on each coil side=%f*10^-3 N",F*N*10^3)
|
f775e00e1d12b0e036baa59b4dafd96afdbc7c70
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/226/CH10/EX10.12/example12_sce.sce
|
53c93686b4fabd170259174255d007a020cd7777
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 405
|
sce
|
example12_sce.sce
|
//chapter 10
//example 10.12
//page 415
printf("\n")
printf("given")
Idss=5*10^-3;Vgsoff=6;Rs=3.3*10^3;Vdd=20;Rd=Rs;
disp("when Id=0, Vgs=Vs=0")
Id=0;Vgs=0;Vs=0;
disp(" at point A universal transfer characteristic Id/Idss and Vgs/Vgsoff=0")
Id=1.5*10^-3;
Vgs=Id*Rs
y=Id/Idss;
x=Vgs/Vgsoff;
disp(" point B the universal transfer charecteristic x=.825 and y=.3")
Id=.2*Idss
Vds=Vdd-Id*(Rd+Rs)
|
94ebd13a6f612af1047028063a838bc80c92ead8
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3169/CH7/EX7.7/Ex7_7.sce
|
88be033c8c2d8311ff121745ac978c2413c67032
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 645
|
sce
|
Ex7_7.sce
|
//developed in windows XP operating system
//platform Scilab 5.4.1
clc;clear all;
//example 7.7
//Estimation of values of mutual inductance,resistance and capacitance
//given data
It=10*10^3//impulse current(in A)
Vmt=10//meter reading(in V) for full scale deflection
dibydt=10^11//rate of change of current(in A/s)
//calculation
MbyCR=Vmt/It
t=It/dibydt
f=1/(4*t)
omega=2*%pi*f
CR=10*%pi/omega
M=10^-3*CR
R=2*10^3//assume resistance(in ohm)
C=CR/R
printf('The value of mutual inductance is %d nH',M*10^9)
printf('\nThe value of resistance is %3.0e ohm',R)
printf('\nThe value of capacitance is %d pF',round(C*10^12))
|
4792829bfb0ab416fb078e1f0ab82ef96a4fa3e5
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3012/CH2/EX2.3/Ex2_3.sce
|
b338e7196fa9238ac37b9c166a906a7a0fe867ca
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,683
|
sce
|
Ex2_3.sce
|
// Given:-
clc;
patm = 10**5 // atmospheric pressure in pascal.
mp = 45.0 // mass of piston in Kg
A = 0.09 // face area of piston in m2
deltaV = 0.045 // increment of the volume of air in m3
m = 0.27 // mass of air in kg
deltau = 42.0 // specific internal energy increase of air in kJ/kg
g = 9.81 // local acceleration of gravity
// Part (a) i.e. air is system
// Calculations
p = (mp*g)/A + patm // constant pressure of air obtained from equilibrium of piston
w = (p*deltaV)/1000 // work done in KJ
deltaU = m*deltau // internal energy change of air in KJ
Q = w + deltaU // applying first with air as system
// Result
printf( '\nheat transfer from resistor to air in KJ for air alone as system is: %.2f',Q)
// The answer given in book is incorrect. deltaU is incorrect in book.
// Part(b) i.e. (air+piston) is system
// Calculations
wd = (patm*deltaV)/1000 // work done in KJ
deltaz = (deltaV)/A // change in elevation of piston
deltaPE = (mp*g*deltaz)/1000 // change in potential energy of piston in KJ
Qt = wd + deltaPE + deltaU // applying first law with air plus piston as system
// Result
printf( '\nheat transfer from resistor to air in KJ for air + piston as system is: %.2f',Qt)
// note : The answer given in book is incorrect.They have miscalculated deltaU.
|
61d3573c213f0576438e6b18c39fea0cb5459c2a
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/647/CH5/EX5.4/Example5_4.sce
|
bf7a9c7e53e518ef4568aa4b422e9d88ebeb2860
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 589
|
sce
|
Example5_4.sce
|
clear;
clc;
// Example: 5.4
// Page: 151
printf("Example: 5.4 - Page: 151\n\n");
// Solution
//*****Data*****//
m = 1;// [kg]
Tl = 273;// [K]
Th = 295;// [K]
Ql = 335;// [kJ/kg]
//*************//
// Solution (a)
// The coeffecient of performance of refrigerating machine is:
// COP = Ql/Wnet = Tl/(Th - Tl)
Wnet = Ql*(Th - Tl)/Tl;// [kJ]
printf("Minimum Work requirement is %d kJ\n",round(Wnet));
// Solution (b)
// Amount of heat released:
// Wnet = Qh - Ql
Qh = Wnet + Ql;// [kJ]
printf("Amount of heat released to the surrounding is %d kJ\n",round(Qh));
|
127579edcd49d69fe4fb94f78f94c3bc56394e8c
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2495/CH8/EX8.18.8/Ex8_18_8.sce
|
630f841f7e1399113f2cd1f643d2a505cf5656cd
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 286
|
sce
|
Ex8_18_8.sce
|
clear
clc
E1=1.51;//in V
E2=-0.49;//in v
E=(E1-E2);//in V
n=2;//
F=96500;//in C/mol
R=8.314;//in J/Kmol
T=298;//in K
Keq=10^((n*F*E)/(2.303*R*T));//equilibrium constant
printf('Keq=%.d10^331',Keq/10^331)
//There are some errors in the solution given in textbook
//page 486
|
101eb463e8dddd826bdc0d5c87880aff180932f1
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1709/CH12/EX12.9/12_9.sce
|
341624e9ce3bc9470e0d6aea1fee7481c11c54b8
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 384
|
sce
|
12_9.sce
|
clc
//Initialization of variables
P1=14.7 //psia
P4=14.7 //psia
T1=530 //R
T3=1960 //R
P2=60 //psia
P3=P2
g=1.4
eta1=0.85
eta2=0.9
//calculations
T2=T1*(P2/P1)^((g-1)/g)
T4=T3*(P4/P3)^((g-1)/g)
T2d=(T2-T1)/eta1 + T1
T4d=-eta2*(T3-T4) +T3
Wact=0.24*(T3-T4d - (T2d-T1))
Qh=0.24*(T3-T2d)
etath=Wact/Qh
//results
printf("Thermal efficiency = %.1f percent",etath*100)
|
b27cc3fe3c0cd5bdf07da28aadabce8326f87478
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1703/CH4/EX4.5/4_5.sce
|
a53d1786aa44a00dab1ebe35907b5de21b0fc629
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 160
|
sce
|
4_5.sce
|
clc
//initialisation of variables
g= 32.2 //ft/sec^2
//CALCULATIONS
r= g^2/((sqrt(2))^2*g^2)
//RESULTS
printf ('coefficient of contraction = %.1f ',r)
|
0c35c3d9061570e53a7fcc5d17cf3d96a6d4687c
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/617/CH3/EX3.1/Example3_1.sci
|
6a40fa31ae032b14a7408336d668dae157732af6
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 487
|
sci
|
Example3_1.sci
|
clear;
clc();
// To find heat loss per square feet of wall surface per hour
deltax=9/12; // thickness of wall in ft
k=0.18; // thermal conductivity of wall in B/hr-ft-degF
t1=1500; // inside temperature of oven wall in degF
t2=400; // outside temperature of oven wall in degF
q=k*(t1-t2)/deltax; // heat loss in Btu/hr
printf("\n The heat loss for each square foot of wall surface is %d Btu/hr-ft^2",q);
|
b46735e9429c33f4e32a31174a897324a710fb93
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2333/CH1/EX1.12/12.sce
|
26cdf504728b400dc3776fac18bfc941dfca03ae
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 448
|
sce
|
12.sce
|
clc
// Given that
l_0 = 1// let initial length of rod in m
c = 3e8 // speed of light in m/s
v = 0.8*c // speed of frame of reference in m/s
// Sample Problem 12 on page no. 29
printf("\n # PROBLEM 12 # \n")
printf(" Standard formula used \n")
printf(" l = l_0/((1-v^2/c^2)^1/2) \n")
l = l_0*sqrt(1-(v/c)^2) // apparent length of rod in m
change_l_per = 100*(l_0-l)/l_0
printf("\n Percentage contraction in length is %d percent. ",change_l_per)
|
ec2e187ea759caf4dac174f79b98cc4002d2a4e9
|
527c41bcbfe7e4743e0e8897b058eaaf206558c7
|
/NZFunctions/StatisticalFunctions/FLKurtosisNZ-UM-01.tst
|
fed15cb687161760256760953fd370fa08e2ebf6
|
[] |
no_license
|
kamleshm/intern_fuzzy
|
c2dd079bf08bede6bca79af898036d7a538ab4e2
|
aaef3c9dc9edf3759ef0b981597746d411d05d34
|
refs/heads/master
| 2021-01-23T06:25:46.162332
| 2017-07-12T07:12:25
| 2017-07-12T07:12:25
| 93,021,923
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,138
|
tst
|
FLKurtosisNZ-UM-01.tst
|
-- The intellectual and technical concepts contained herein are proprietary to Fuzzy Logix, LLC.
-- and may be covered by U.S. and Foreign Patents, patents in process, and are protected by trade
-- secret or copyright law. Dissemination of this information or reproduction of this material is
-- strictly forbidden unless prior written permission is obtained from Fuzzy Logix, LLC.
-- Functional Test Specifications:
--
-- Test Category: Statistical Functions
--
-- Last Updated: 05-30-2017
--
-- Author: <kamlesh.meena@fuzzyl.com>
--
-- BEGIN: TEST SCRIPT
-- BEGIN: TEST(s)
-----*******************************************************************************************************************************
---FLKurtosis
-----****************************************************************
SELECT a.TickerSymbol,
FLKurtosis(a.ClosePrice) AS FLKurtosis
FROM finStockPrice a
WHERE a.TickerSymbol IN ('AAPL','HPQ','IBM','MSFT','ORCL')
GROUP BY a.TickerSymbol
ORDER BY 1;
---------------------------------------------------------------------
-----****************************************************************
|
05e6988ea725698212041d6f72391716b335b3f1
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/72/CH12/EX12.4.2/12_4_2.sce
|
cb8106b5a4599914f4594a058d2762b460da17a4
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 203
|
sce
|
12_4_2.sce
|
//chapter_no.-12, page_no.-536
//Example_no.12-4-2
clc;
n=5;//number_of_turns
w=50;//film_width
s=100;//separation
d0=2.5*n*(w+s);
L=.03125*(n^2)*d0;
disp(L,'the_inductance(in (nH/mil)is =');
|
a361c2136b6a3912bc489638562f8e79a3ec17b4
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1580/CH5/EX5.10/Ch05Ex10.sce
|
af84f22570cdd21422d4e1ca8a452d510fcd8146
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 400
|
sce
|
Ch05Ex10.sce
|
// Scilab Code Ex 5.10 : Page-5.24 (2004)
clc;clear;
h = 6.626e-34; // Planck's const, Js
m = 9.1e-31; // Mass of electron, kg
L = 4e-10; // Side of the box, m
n1 = 1; // nx box lowest quantum number
E = (h^2)/(8*m*(L^2))*((n1)^2); //Lowest Energy level for electron confinement , in eV
printf("\nMinimum Energy = %2.3e joule", E);
// Results
// Minimum Energy = 3.769e-19 joule
|
b3c3c47f61f019e348afd6b6ee51ab87cd3d2f83
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2258/CH7/EX7.3/7_3.sce
|
e81c5b276a0c89a77f462b4d38cadbd97e565564
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 634
|
sce
|
7_3.sce
|
clc();
clear;
// To calculate the conductivity of intrinsic silicon and resultant conductivity
ni=1.5*10^16; //intrinsic concentration per m^3
e=1.6*10^-19;
mew_e=0.13; //mobility of electrons in m^2/Vs
mew_h=0.05; //mobility of holes in m^2/Vs
ND=5*10^20; //conductivity in atoms/m^3
sigma1=ni*e*(mew_e+mew_h);
nd=(ni^2)/ND;
sigma2=ND*e*mew_e;
NA=5*10^20;
na=(ni^2)/NA;
sigma3=NA*e*mew_h;
printf("intrinsic conductivity of Si is %f ohm-1 m-1",sigma1);
printf("conductivity of Si during donor impurity is %f ohm-1 m-1",sigma2);
printf("conductivity of Si during acceptor impurity is %f ohm-1 m-1",sigma3);
|
631ea0ca985a049a1d600335da7dbb3805d4ac88
|
5f2ca8e18735204f5995ac7e44a6e301eb23ea0b
|
/scripts/eqm/stability_deriv.sci
|
1193d707aec3d068ce5dd2fa293bca1d66b5b681
|
[] |
no_license
|
Jettanakorn/mcflight
|
4e7d4e20976e8f3621bf13fec2a8b522ecfc49a9
|
e6579a11e10c5e9ae9ee558f464a6b88e1ae7a26
|
refs/heads/master
| 2023-03-17T10:49:28.906700
| 2019-10-30T20:20:58
| 2019-10-30T20:20:58
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 5,409
|
sci
|
stability_deriv.sci
|
exec('eqm/aerodata_f16.sci');
function [long, lat] = stability_deriv(eqm_fun, X0, controls, params, dX)
[out, inp] = argn(0);
if(inp<5) then
onedeg_rad = 1/180*%pi;
dX = [
1 //(1)V_ftps
onedeg_rad //(2)alpha_rad
onedeg_rad //(3)beta_rad
onedeg_rad //(4)phi_rad
onedeg_rad //(5)theta_rad
onedeg_rad //(6)psi_rad
onedeg_rad //(7)p_rps
onedeg_rad //(8)q_rps
onedeg_rad //(9)r_rps
1 //(10)north position ft
1 //(11)east position ft
1 //(12)alt_ft
1 //(13)power_perc
];
end
rad2deg = 180/%pi;
// Alpha derivatives
CZ_up = CZ((X0(2)+dX(2)/2)*rad2deg, X0(3)*rad2deg, controls.elev_deg);
CZ_down = CZ((X0(2)-dX(2)/2)*rad2deg, X0(3)*rad2deg, controls.elev_deg);
long.CZalpha = (CZ_up - CZ_down)./dX(2);
CX_up = CX((X0(2)+dX(2)/2)*rad2deg, controls.elev_deg);
CX_down = CX((X0(2)-dX(2)/2)*rad2deg, controls.elev_deg);
long.CXalpha = (CX_up - CX_down)./dX(2);
CM_up = CM((X0(2)+dX(2)/2)*rad2deg, controls.elev_deg);
CM_down = CM((X0(2)-dX(2)/2)*rad2deg, controls.elev_deg);
long.CMalpha = (CM_up - CM_down)./dX(2);
X = X0;
X(2) = X0(2) + dX(2)/2;
[XD_up, out_up] = eqm_fun(0, X, controls, params);
X(2) = X0(2) - dX(2)/2
[XD_down, out_down] = eqm_fun(0, X, controls, params);
long.CZalphadot = (out_up.aero_forces(3) - out_down.aero_forces(3))./(XD_up(2) - XD_down(2));
long.CMalphadot = (out_up.aero_moments(3) - out_down.aero_moments(3))./(XD_up(2) - XD_down(2));
// Speed derivatives
X = X0;
X(1) = X0(1)-dX(1)/2;
[XD_down, out_down] = eqm_fun(0, X, controls, params);
X(1) = X0(1)+dX(1)/2;
[XD_up, out_up] = eqm_fun(0, X, controls, params);
long.CZv = (out_up.aero_forces(3) - out_down.aero_forces(3))./dX(1);
long.CXv = (out_up.aero_forces(1) - out_down.aero_forces(1))./dX(1);
long.CMv = (out_up.aero_moments(2) - out_down.aero_forces(2))./dX(1);
long.Thrust_v = (out_up.thrust_pound - out_down.thrust_pound)./dX(1);
// Pitch derivatives
D = aerodynamic_damp(X0(2)*rad2deg);
long.CXq = D(1);
long.CZq = D(4);
long.CMq = D(7);
// Elevator
X = X0;
dElev = 1;
elev_deg_down = controls.elev_deg - dElev/2;
elev_deg_up = controls.elev_deg + dElev/2;
CZ_up = CZ(X0(2)*rad2deg, X0(3)*rad2deg, elev_deg_up);
CZ_down = CZ(X0(2)*rad2deg, X0(3)*rad2deg, elev_deg_down);
long.CZelev = (CZ_up - CZ_down)./dElev;
CX_up = CX(X0(2)*rad2deg, elev_deg_up);
CX_down = CX(X0(2)*rad2deg, elev_deg_down);
long.CXelev = (CX_up - CX_down)./dElev;
CM_up = CM(X0(2)*rad2deg, elev_deg_up);
CM_down = CM(X0(2)*rad2deg, elev_deg_down)
long.CMelev = (CM_up - CM_down)./dElev;
// Throttle
X = X0;
dThrottle = 1;
X(13) = X0(13) - dThrottle/2;
[XD_down, out_down] = eqm_fun(0, X, controls, params);
X(13) = X0(13) + dThrottle/2;
[XD_up, out_up] = eqm_fun(0, X, controls, params);
long.Thrust_throttle = (out_up.thrust_pound - out_down.thrust_pound)./dThrottle;
long.CMthrottle = (out_up.aero_moments(2) - out_down.aero_forces(2))./dThrottle;
Q_lbfpft2 = out_down.Q_lbfpft2;
// Dimensional derivatives
qS = Q_lbfpft2*params.geom.wing_ft2;
qSc = qS*params.geom.chord_ft;
m = params.mass.mass_slug;
Iyy = params.mass.AYY;
long.Zalpha = qS/m * long.CZalpha;
long.Xalpha = qS/m * long.CXalpha;
long.Malpha = qSc/Iyy * long.CMalpha;
long.Zalphadot = qSc/(2*m*params.VT_ftps) * long.CZalphadot;
long.Malphadot = qSc/(2*Iyy*params.VT_ftps) * long.CMalphadot;
long.Zelev = qS/m * long.CZelev;
long.Xelev = qS/m * long.CXelev;
long.Melev = qSc/Iyy * long.CMelev;
long.Zq = qS/(2*m*params.VT_ftps) * long.CZq;
long.Mq = qSc/(2*Iyy*params.VT_ftps) * long.CMq;
long.Zv = qS/m * params.VT_ftps * long.CZv;
long.Xv = qS/m * params.VT_ftps * long.CXv;
long.Mv = qSc/Iyy * params.VT_ftps * long.CMv;
long.XTv = long.Thrust_v/m;
long.Xthrottle = long.Thrust_throttle/m;
long.Mthrottle = qS/m * long.CMthrottle;
//Matrices for state [alpha q V theta]
long.E = [params.VT_ftps-long.Zalphadot 0 0 0
-long.Malphadot 1 0 0
0 0 1 0
0 0 0 1];
long.A = [long.Zalpha params.VT_ftps+long.Zq long.Zv-long.XTv*sin(X0(2)) -params.g0_ftps2*sin(X0(5)-X0(2))
long.Malpha long.Mq long.Mv 0
long.Xalpha 0 long.Xv+long.XTv*cos(X0(2)) -params.g0_ftps2*cos(X0(5)-X0(2))
0 1 0 0];
long.B = [long.Zelev -long.Xthrottle*sin(X0(2))
long.Melev long.Mthrottle
long.Xelev long.Xthrottle*cos(X0(2))
0 0];
// Turning [alpha q V theta] -> [V alpha theta q]
T = [0 0 1 0
1 0 0 0
0 0 0 1
0 1 0 0];
long.E = T*long.E*T';
long.A = T*long.A*T';
long.B = T*long.B;
long.state_labels = ['V' 'alpha' 'theta' 'q'];
long.input_labels = ['elev' 'throttle'];
// TODO: lateral derivatives
lat = struct();
endfunction
|
f827bce7655235a0f7e7156884710a9fbc466643
|
1bb72df9a084fe4f8c0ec39f778282eb52750801
|
/test/H04.prev.tst
|
667ba8cc1615b635a96641c649defe8a674bab7a
|
[
"Apache-2.0",
"LicenseRef-scancode-unknown-license-reference"
] |
permissive
|
gfis/ramath
|
498adfc7a6d353d4775b33020fdf992628e3fbff
|
b09b48639ddd4709ffb1c729e33f6a4b9ef676b5
|
refs/heads/master
| 2023-08-17T00:10:37.092379
| 2023-08-04T07:48:00
| 2023-08-04T07:48:00
| 30,116,803
| 2
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 78,880
|
tst
|
H04.prev.tst
|
n071: (2*x + 2*x*y)^2 + (x^2 - 2*y - y^2 - 1)^2 - (x^2 + 2*y + y^2 + 1)^2 = 0
test: 0
n071: (2*x + 2*x*y)^2 + (x^2 - 2*y - y^2 - 1)^2 - (x^2 + 2*y + y^2 + 1)^2 = 0
test: 0
n071: (2*x - 2*x*y)^2 + (x^2 + 2*y - y^2 - 1)^2 - (x^2 - 2*y + y^2 + 1)^2 = 0
test: 0
n071: (2*x - 2*x*y)^2 + (x^2 + 2*y - y^2 - 1)^2 - (x^2 - 2*y + y^2 + 1)^2 = 0
test: 0
n071: (2*x + 2*x*y)^2 + (x^2 - 2*y - y^2 - 1)^2 - (x^2 + 2*y + y^2 + 1)^2 = 0
test: 0
n071: (2*x + 2*x*y)^2 + (x^2 - 2*y - y^2 - 1)^2 - (x^2 + 2*y + y^2 + 1)^2 = 0
test: 0
n071: (2*x - 2*x*y)^2 + (x^2 + 2*y - y^2 - 1)^2 - (x^2 - 2*y + y^2 + 1)^2 = 0
test: 0
n071: (2*x - 2*x*y)^2 + (x^2 + 2*y - y^2 - 1)^2 - (x^2 - 2*y + y^2 + 1)^2 = 0
test: 0
n071: (2*x - 2*x*y)^2 + (x^2 + 2*y - y^2 - 1)^2 - (x^2 - 2*y + y^2 + 1)^2 = 0
test: 0
n071: (2*x - 2*x*y)^2 + (x^2 + 2*y - y^2 - 1)^2 - (x^2 - 2*y + y^2 + 1)^2 = 0
test: 0
n071: (2*x + 2*x*y)^2 + (x^2 - 2*y - y^2 - 1)^2 - (x^2 + 2*y + y^2 + 1)^2 = 0
test: 0
n071: (2*x + 2*x*y)^2 + (x^2 - 2*y - y^2 - 1)^2 - (x^2 + 2*y + y^2 + 1)^2 = 0
test: 0
n071: (2*x - 2*x*y)^2 + (x^2 + 2*y - y^2 - 1)^2 - (x^2 - 2*y + y^2 + 1)^2 = 0
test: 0
n071: (2*x - 2*x*y)^2 + (x^2 + 2*y - y^2 - 1)^2 - (x^2 - 2*y + y^2 + 1)^2 = 0
test: 0
n071: (2*x + 2*x*y)^2 + (x^2 - 2*y - y^2 - 1)^2 - (x^2 + 2*y + y^2 + 1)^2 = 0
test: 0
n071: (2*x + 2*x*y)^2 + (x^2 - 2*y - y^2 - 1)^2 - (x^2 + 2*y + y^2 + 1)^2 = 0
test: 0
n045: (2*x*y)^2 + (x^2 - y^2)^2 - (x^2 + y^2)^2 = 0
test: 0
n045: (2*x*y)^2 + (x^2 - y^2)^2 - (x^2 + y^2)^2 = 0
test: 0
n045: (2*x*y)^2 + (x^2 - y^2)^2 - (x^2 + y^2)^2 = 0
test: 0
n045: (2*x*y)^2 + (x^2 - y^2)^2 - (x^2 + y^2)^2 = 0
test: 0
n045: (2*x*y)^2 + (x^2 - y^2)^2 - (x^2 + y^2)^2 = 0
test: 0
n045: (2*x*y)^2 + (x^2 - y^2)^2 - (x^2 + y^2)^2 = 0
test: 0
n045: (2*x*y)^2 + (x^2 - y^2)^2 - (x^2 + y^2)^2 = 0
test: 0
n045: (2*x*y)^2 + (x^2 - y^2)^2 - (x^2 + y^2)^2 = 0
test: 0
n045: (2*x*y)^2 + (x^2 - y^2)^2 - (x^2 + y^2)^2 = 0
test: 0
n045: (2*x*y)^2 + (x^2 - y^2)^2 - (x^2 + y^2)^2 = 0
test: 0
n045: (2*x*y)^2 + (x^2 - y^2)^2 - (x^2 + y^2)^2 = 0
test: 0
n045: (2*x*y)^2 + (x^2 - y^2)^2 - (x^2 + y^2)^2 = 0
test: 0
n045: (2*x*y)^2 + (x^2 - y^2)^2 - (x^2 + y^2)^2 = 0
test: 0
n045: (2*x*y)^2 + (x^2 - y^2)^2 - (x^2 + y^2)^2 = 0
test: 0
n045: (2*x*y)^2 + (x^2 - y^2)^2 - (x^2 + y^2)^2 = 0
test: 0
n045: (2*x*y)^2 + (x^2 - y^2)^2 - (x^2 + y^2)^2 = 0
test: 0
n045: (2*x*y)^2 + (x^2 - y^2)^2 - (x^2 + y^2)^2 = 0
test: 0
n045: (2*x*y)^2 + (x^2 - y^2)^2 - (x^2 + y^2)^2 = 0
test: 0
n045: (2*x*y)^2 + (x^2 - y^2)^2 - (x^2 + y^2)^2 = 0
test: 0
n045: (2*x*y)^2 + (x^2 - y^2)^2 - (x^2 + y^2)^2 = 0
test: 0
n045: (2*x*y)^2 + (x^2 - y^2)^2 - (x^2 + y^2)^2 = 0
test: 0
n045: (2*x*y)^2 + (x^2 - y^2)^2 - (x^2 + y^2)^2 = 0
test: 0
n045: (2*x*y)^2 + (x^2 - y^2)^2 - (x^2 + y^2)^2 = 0
test: 0
n045: (2*x*y)^2 + (x^2 - y^2)^2 - (x^2 + y^2)^2 = 0
test: 0
n045: (2*x*y)^2 + (x^2 - y^2)^2 - (x^2 + y^2)^2 = 0
test: 0
n045: (2*x*y)^2 + (x^2 - y^2)^2 - (x^2 + y^2)^2 = 0
test: 0
n045: (2*x*y)^2 + (x^2 - y^2)^2 - (x^2 + y^2)^2 = 0
test: 0
n045: (2*x*y)^2 + (x^2 - y^2)^2 - (x^2 + y^2)^2 = 0
test: 0
n045: (2*x*y)^2 + (x^2 - y^2)^2 - (x^2 + y^2)^2 = 0
test: 0
n045: (2*x*y)^2 + (x^2 - y^2)^2 - (x^2 + y^2)^2 = 0
test: 0
n045: (2*x*y)^2 + (x^2 - y^2)^2 - (x^2 + y^2)^2 = 0
test: 0
n045: (2*x*y)^2 + (x^2 - y^2)^2 - (x^2 + y^2)^2 = 0
test: 0
n071: (2*y - 2*x*y)^2 + (2*x - x^2 + y^2 - 1)^2 - (2*x - x^2 - y^2 - 1)^2 = 0
test: 0
n071: (2*y - 2*x*y)^2 + (2*x - x^2 + y^2 - 1)^2 - (2*x - x^2 - y^2 - 1)^2 = 0
test: 0
n071: (2*y + 2*x*y)^2 + (2*x + x^2 - y^2 + 1)^2 - (2*x + x^2 + y^2 + 1)^2 = 0
test: 0
n071: (2*y + 2*x*y)^2 + (2*x + x^2 - y^2 + 1)^2 - (2*x + x^2 + y^2 + 1)^2 = 0
test: 0
n071: (2*y - 2*x*y)^2 + (2*x - x^2 + y^2 - 1)^2 - (2*x - x^2 - y^2 - 1)^2 = 0
test: 0
n071: (2*y - 2*x*y)^2 + (2*x - x^2 + y^2 - 1)^2 - (2*x - x^2 - y^2 - 1)^2 = 0
test: 0
n071: (2*y + 2*x*y)^2 + (2*x + x^2 - y^2 + 1)^2 - (2*x + x^2 + y^2 + 1)^2 = 0
test: 0
n071: (2*y + 2*x*y)^2 + (2*x + x^2 - y^2 + 1)^2 - (2*x + x^2 + y^2 + 1)^2 = 0
test: 0
n071: (2*y - 2*x*y)^2 + (2*x - x^2 + y^2 - 1)^2 - (2*x - x^2 - y^2 - 1)^2 = 0
test: 0
n071: (2*y - 2*x*y)^2 + (2*x - x^2 + y^2 - 1)^2 - (2*x - x^2 - y^2 - 1)^2 = 0
test: 0
n071: (2*y + 2*x*y)^2 + (2*x + x^2 - y^2 + 1)^2 - (2*x + x^2 + y^2 + 1)^2 = 0
test: 0
n071: (2*y + 2*x*y)^2 + (2*x + x^2 - y^2 + 1)^2 - (2*x + x^2 + y^2 + 1)^2 = 0
test: 0
n071: (2*y - 2*x*y)^2 + (2*x - x^2 + y^2 - 1)^2 - (2*x - x^2 - y^2 - 1)^2 = 0
test: 0
n071: (2*y - 2*x*y)^2 + (2*x - x^2 + y^2 - 1)^2 - (2*x - x^2 - y^2 - 1)^2 = 0
test: 0
n071: (2*y + 2*x*y)^2 + (2*x + x^2 - y^2 + 1)^2 - (2*x + x^2 + y^2 + 1)^2 = 0
test: 0
n071: (2*y + 2*x*y)^2 + (2*x + x^2 - y^2 + 1)^2 - (2*x + x^2 + y^2 + 1)^2 = 0
test: 0
n089: (2*x + 2*y + 2*x*y + 2)^2 + (2*x + x^2 - 2*y - y^2)^2 - (2*x + x^2 + 2*y + y^2 + 2)^2 = 0
test: 0
n089: (2*x + 2*y - 2*x*y - 2)^2 + (2*x - x^2 - 2*y + y^2)^2 - (2*x - x^2 + 2*y - y^2 - 2)^2 = 0
test: 0
n089: (2*x + 2*y + 2*x*y + 2)^2 + (2*x + x^2 - 2*y - y^2)^2 - (2*x + x^2 + 2*y + y^2 + 2)^2 = 0
test: 0
n089: (2*x + 2*y - 2*x*y - 2)^2 + (2*x - x^2 - 2*y + y^2)^2 - (2*x - x^2 + 2*y - y^2 - 2)^2 = 0
test: 0
n089: (2*x - 2*y - 2*x*y + 2)^2 + (2*x + x^2 + 2*y - y^2)^2 - (2*x + x^2 - 2*y + y^2 + 2)^2 = 0
test: 0
n089: (2*x - 2*y + 2*x*y - 2)^2 + (2*x - x^2 + 2*y + y^2)^2 - (2*x - x^2 - 2*y - y^2 - 2)^2 = 0
test: 0
n089: (2*x - 2*y - 2*x*y + 2)^2 + (2*x + x^2 + 2*y - y^2)^2 - (2*x + x^2 - 2*y + y^2 + 2)^2 = 0
test: 0
n089: (2*x - 2*y + 2*x*y - 2)^2 + (2*x - x^2 + 2*y + y^2)^2 - (2*x - x^2 - 2*y - y^2 - 2)^2 = 0
test: 0
n045: (2*x*y)^2 + (x^2 - y^2)^2 - (x^2 + y^2)^2 = 0
test: 0
n045: (2*x*y)^2 + (x^2 - y^2)^2 - (x^2 + y^2)^2 = 0
test: 0
n045: (2*x*y)^2 + (x^2 - y^2)^2 - (x^2 + y^2)^2 = 0
test: 0
n045: (2*x*y)^2 + (x^2 - y^2)^2 - (x^2 + y^2)^2 = 0
test: 0
n045: (2*x*y)^2 + (x^2 - y^2)^2 - (x^2 + y^2)^2 = 0
test: 0
n045: (2*x*y)^2 + (x^2 - y^2)^2 - (x^2 + y^2)^2 = 0
test: 0
n045: (2*x*y)^2 + (x^2 - y^2)^2 - (x^2 + y^2)^2 = 0
test: 0
n045: (2*x*y)^2 + (x^2 - y^2)^2 - (x^2 + y^2)^2 = 0
test: 0
n045: (2*x*y)^2 + (x^2 - y^2)^2 - (x^2 + y^2)^2 = 0
test: 0
n045: (2*x*y)^2 + (x^2 - y^2)^2 - (x^2 + y^2)^2 = 0
test: 0
n045: (2*x*y)^2 + (x^2 - y^2)^2 - (x^2 + y^2)^2 = 0
test: 0
n045: (2*x*y)^2 + (x^2 - y^2)^2 - (x^2 + y^2)^2 = 0
test: 0
n045: (2*x*y)^2 + (x^2 - y^2)^2 - (x^2 + y^2)^2 = 0
test: 0
n045: (2*x*y)^2 + (x^2 - y^2)^2 - (x^2 + y^2)^2 = 0
test: 0
n045: (2*x*y)^2 + (x^2 - y^2)^2 - (x^2 + y^2)^2 = 0
test: 0
n045: (2*x*y)^2 + (x^2 - y^2)^2 - (x^2 + y^2)^2 = 0
test: 0
n045: (2*x*y)^2 + (x^2 - y^2)^2 - (x^2 + y^2)^2 = 0
test: 0
n045: (2*x*y)^2 + (x^2 - y^2)^2 - (x^2 + y^2)^2 = 0
test: 0
n045: (2*x*y)^2 + (x^2 - y^2)^2 - (x^2 + y^2)^2 = 0
test: 0
n045: (2*x*y)^2 + (x^2 - y^2)^2 - (x^2 + y^2)^2 = 0
test: 0
n045: (2*x*y)^2 + (x^2 - y^2)^2 - (x^2 + y^2)^2 = 0
test: 0
n045: (2*x*y)^2 + (x^2 - y^2)^2 - (x^2 + y^2)^2 = 0
test: 0
n045: (2*x*y)^2 + (x^2 - y^2)^2 - (x^2 + y^2)^2 = 0
test: 0
n045: (2*x*y)^2 + (x^2 - y^2)^2 - (x^2 + y^2)^2 = 0
test: 0
n045: (2*x*y)^2 + (x^2 - y^2)^2 - (x^2 + y^2)^2 = 0
test: 0
n045: (2*x*y)^2 + (x^2 - y^2)^2 - (x^2 + y^2)^2 = 0
test: 0
n045: (2*x*y)^2 + (x^2 - y^2)^2 - (x^2 + y^2)^2 = 0
test: 0
n045: (2*x*y)^2 + (x^2 - y^2)^2 - (x^2 + y^2)^2 = 0
test: 0
n045: (2*x*y)^2 + (x^2 - y^2)^2 - (x^2 + y^2)^2 = 0
test: 0
n045: (2*x*y)^2 + (x^2 - y^2)^2 - (x^2 + y^2)^2 = 0
test: 0
n045: (2*x*y)^2 + (x^2 - y^2)^2 - (x^2 + y^2)^2 = 0
test: 0
n045: (2*x*y)^2 + (x^2 - y^2)^2 - (x^2 + y^2)^2 = 0
test: 0
n089: (2*x - 2*y + 2*x*y - 2)^2 + (2*x - x^2 + 2*y + y^2)^2 - (2*x - x^2 - 2*y - y^2 - 2)^2 = 0
test: 0
n089: (2*x - 2*y - 2*x*y + 2)^2 + (2*x + x^2 + 2*y - y^2)^2 - (2*x + x^2 - 2*y + y^2 + 2)^2 = 0
test: 0
n089: (2*x - 2*y + 2*x*y - 2)^2 + (2*x - x^2 + 2*y + y^2)^2 - (2*x - x^2 - 2*y - y^2 - 2)^2 = 0
test: 0
n089: (2*x - 2*y - 2*x*y + 2)^2 + (2*x + x^2 + 2*y - y^2)^2 - (2*x + x^2 - 2*y + y^2 + 2)^2 = 0
test: 0
n089: (2*x + 2*y - 2*x*y - 2)^2 + (2*x - x^2 - 2*y + y^2)^2 - (2*x - x^2 + 2*y - y^2 - 2)^2 = 0
test: 0
n089: (2*x + 2*y + 2*x*y + 2)^2 + (2*x + x^2 - 2*y - y^2)^2 - (2*x + x^2 + 2*y + y^2 + 2)^2 = 0
test: 0
n089: (2*x + 2*y - 2*x*y - 2)^2 + (2*x - x^2 - 2*y + y^2)^2 - (2*x - x^2 + 2*y - y^2 - 2)^2 = 0
test: 0
n089: (2*x + 2*y + 2*x*y + 2)^2 + (2*x + x^2 - 2*y - y^2)^2 - (2*x + x^2 + 2*y + y^2 + 2)^2 = 0
test: 0
n039: (2*x)^2 + (x^2 - 1)^2 - (x^2 + 1)^2 = 0
test: 0
n039: (2*x)^2 + (x^2 - 1)^2 - (x^2 + 1)^2 = 0
test: 0
n039: (2*x)^2 + (x^2 - 1)^2 - (x^2 + 1)^2 = 0
test: 0
n039: (2*x)^2 + (x^2 - 1)^2 - (x^2 + 1)^2 = 0
test: 0
n039: (2*x)^2 + (x^2 - 1)^2 - (x^2 + 1)^2 = 0
test: 0
n039: (2*x)^2 + (x^2 - 1)^2 - (x^2 + 1)^2 = 0
test: 0
n039: (2*x)^2 + (x^2 - 1)^2 - (x^2 + 1)^2 = 0
test: 0
n039: (2*x)^2 + (x^2 - 1)^2 - (x^2 + 1)^2 = 0
test: 0
n039: (2*x)^2 + (x^2 - 1)^2 - (x^2 + 1)^2 = 0
test: 0
n039: (2*x)^2 + (x^2 - 1)^2 - (x^2 + 1)^2 = 0
test: 0
n039: (2*x)^2 + (x^2 - 1)^2 - (x^2 + 1)^2 = 0
test: 0
n039: (2*x)^2 + (x^2 - 1)^2 - (x^2 + 1)^2 = 0
test: 0
n039: (2*x)^2 + (x^2 - 1)^2 - (x^2 + 1)^2 = 0
test: 0
n039: (2*x)^2 + (x^2 - 1)^2 - (x^2 + 1)^2 = 0
test: 0
n039: (2*x)^2 + (x^2 - 1)^2 - (x^2 + 1)^2 = 0
test: 0
n039: (2*x)^2 + (x^2 - 1)^2 - (x^2 + 1)^2 = 0
test: 0
n051: (2*x + 2)^2 + (2*x + x^2)^2 - (2*x + x^2 + 2)^2 = 0
test: 0
n051: (2*x + 2)^2 + (2*x + x^2)^2 - (2*x + x^2 + 2)^2 = 0
test: 0
n051: (2*x - 2)^2 + (2*x - x^2)^2 - (2*x - x^2 - 2)^2 = 0
test: 0
n051: (2*x - 2)^2 + (2*x - x^2)^2 - (2*x - x^2 - 2)^2 = 0
test: 0
n051: (2*x + 2)^2 + (2*x + x^2)^2 - (2*x + x^2 + 2)^2 = 0
test: 0
n051: (2*x + 2)^2 + (2*x + x^2)^2 - (2*x + x^2 + 2)^2 = 0
test: 0
n051: (2*x - 2)^2 + (2*x - x^2)^2 - (2*x - x^2 - 2)^2 = 0
test: 0
n051: (2*x - 2)^2 + (2*x - x^2)^2 - (2*x - x^2 - 2)^2 = 0
test: 0
n051: (2*x - 2)^2 + (2*x - x^2)^2 - (2*x - x^2 - 2)^2 = 0
test: 0
n051: (2*x - 2)^2 + (2*x - x^2)^2 - (2*x - x^2 - 2)^2 = 0
test: 0
n051: (2*x + 2)^2 + (2*x + x^2)^2 - (2*x + x^2 + 2)^2 = 0
test: 0
n051: (2*x + 2)^2 + (2*x + x^2)^2 - (2*x + x^2 + 2)^2 = 0
test: 0
n051: (2*x - 2)^2 + (2*x - x^2)^2 - (2*x - x^2 - 2)^2 = 0
test: 0
n051: (2*x - 2)^2 + (2*x - x^2)^2 - (2*x - x^2 - 2)^2 = 0
test: 0
n051: (2*x + 2)^2 + (2*x + x^2)^2 - (2*x + x^2 + 2)^2 = 0
test: 0
n051: (2*x + 2)^2 + (2*x + x^2)^2 - (2*x + x^2 + 2)^2 = 0
test: 0
n039: (2*x)^2 + (x^2 - 1)^2 - (x^2 + 1)^2 = 0
test: 0
n039: (2*x)^2 + (x^2 - 1)^2 - (x^2 + 1)^2 = 0
test: 0
n039: (2*x)^2 + (x^2 - 1)^2 - (x^2 + 1)^2 = 0
test: 0
n039: (2*x)^2 + (x^2 - 1)^2 - (x^2 + 1)^2 = 0
test: 0
n039: (2*x)^2 + (x^2 - 1)^2 - (x^2 + 1)^2 = 0
test: 0
n039: (2*x)^2 + (x^2 - 1)^2 - (x^2 + 1)^2 = 0
test: 0
n039: (2*x)^2 + (x^2 - 1)^2 - (x^2 + 1)^2 = 0
test: 0
n039: (2*x)^2 + (x^2 - 1)^2 - (x^2 + 1)^2 = 0
test: 0
n039: (2*x)^2 + (x^2 - 1)^2 - (x^2 + 1)^2 = 0
test: 0
n039: (2*x)^2 + (x^2 - 1)^2 - (x^2 + 1)^2 = 0
test: 0
n039: (2*x)^2 + (x^2 - 1)^2 - (x^2 + 1)^2 = 0
test: 0
n039: (2*x)^2 + (x^2 - 1)^2 - (x^2 + 1)^2 = 0
test: 0
n039: (2*x)^2 + (x^2 - 1)^2 - (x^2 + 1)^2 = 0
test: 0
n039: (2*x)^2 + (x^2 - 1)^2 - (x^2 + 1)^2 = 0
test: 0
n039: (2*x)^2 + (x^2 - 1)^2 - (x^2 + 1)^2 = 0
test: 0
n039: (2*x)^2 + (x^2 - 1)^2 - (x^2 + 1)^2 = 0
test: 0
n051: (2*x + 2)^2 + (2*x + x^2)^2 - (2*x + x^2 + 2)^2 = 0
test: 0
n051: (2*x + 2)^2 + (2*x + x^2)^2 - (2*x + x^2 + 2)^2 = 0
test: 0
n051: (2*x - 2)^2 + (2*x - x^2)^2 - (2*x - x^2 - 2)^2 = 0
test: 0
n051: (2*x - 2)^2 + (2*x - x^2)^2 - (2*x - x^2 - 2)^2 = 0
test: 0
n051: (2*x + 2)^2 + (2*x + x^2)^2 - (2*x + x^2 + 2)^2 = 0
test: 0
n051: (2*x + 2)^2 + (2*x + x^2)^2 - (2*x + x^2 + 2)^2 = 0
test: 0
n051: (2*x - 2)^2 + (2*x - x^2)^2 - (2*x - x^2 - 2)^2 = 0
test: 0
n051: (2*x - 2)^2 + (2*x - x^2)^2 - (2*x - x^2 - 2)^2 = 0
test: 0
n051: (2*x - 2)^2 + (2*x - x^2)^2 - (2*x - x^2 - 2)^2 = 0
test: 0
n051: (2*x - 2)^2 + (2*x - x^2)^2 - (2*x - x^2 - 2)^2 = 0
test: 0
n051: (2*x + 2)^2 + (2*x + x^2)^2 - (2*x + x^2 + 2)^2 = 0
test: 0
n051: (2*x + 2)^2 + (2*x + x^2)^2 - (2*x + x^2 + 2)^2 = 0
test: 0
n051: (2*x - 2)^2 + (2*x - x^2)^2 - (2*x - x^2 - 2)^2 = 0
test: 0
n051: (2*x - 2)^2 + (2*x - x^2)^2 - (2*x - x^2 - 2)^2 = 0
test: 0
n051: (2*x + 2)^2 + (2*x + x^2)^2 - (2*x + x^2 + 2)^2 = 0
test: 0
n051: (2*x + 2)^2 + (2*x + x^2)^2 - (2*x + x^2 + 2)^2 = 0
test: 0
n073: (2*x - 2*y)^2 + (x^2 - 2*x*y + y^2 - 1)^2 - (x^2 - 2*x*y + y^2 + 1)^2 = 0
test: 0
n073: (2*x - 2*y)^2 + (x^2 - 2*x*y + y^2 - 1)^2 - (x^2 - 2*x*y + y^2 + 1)^2 = 0
test: 0
n073: (2*x - 2*y)^2 + (x^2 - 2*x*y + y^2 - 1)^2 - (x^2 - 2*x*y + y^2 + 1)^2 = 0
test: 0
n073: (2*x - 2*y)^2 + (x^2 - 2*x*y + y^2 - 1)^2 - (x^2 - 2*x*y + y^2 + 1)^2 = 0
test: 0
n073: (2*x - 2*y)^2 + (x^2 - 2*x*y + y^2 - 1)^2 - (x^2 - 2*x*y + y^2 + 1)^2 = 0
test: 0
n073: (2*x - 2*y)^2 + (x^2 - 2*x*y + y^2 - 1)^2 - (x^2 - 2*x*y + y^2 + 1)^2 = 0
test: 0
n073: (2*x - 2*y)^2 + (x^2 - 2*x*y + y^2 - 1)^2 - (x^2 - 2*x*y + y^2 + 1)^2 = 0
test: 0
n073: (2*x - 2*y)^2 + (x^2 - 2*x*y + y^2 - 1)^2 - (x^2 - 2*x*y + y^2 + 1)^2 = 0
test: 0
n073: (2*x + 2*y)^2 + (x^2 + 2*x*y + y^2 - 1)^2 - (x^2 + 2*x*y + y^2 + 1)^2 = 0
test: 0
n073: (2*x + 2*y)^2 + (x^2 + 2*x*y + y^2 - 1)^2 - (x^2 + 2*x*y + y^2 + 1)^2 = 0
test: 0
n073: (2*x + 2*y)^2 + (x^2 + 2*x*y + y^2 - 1)^2 - (x^2 + 2*x*y + y^2 + 1)^2 = 0
test: 0
n073: (2*x + 2*y)^2 + (x^2 + 2*x*y + y^2 - 1)^2 - (x^2 + 2*x*y + y^2 + 1)^2 = 0
test: 0
n073: (2*x + 2*y)^2 + (x^2 + 2*x*y + y^2 - 1)^2 - (x^2 + 2*x*y + y^2 + 1)^2 = 0
test: 0
n073: (2*x + 2*y)^2 + (x^2 + 2*x*y + y^2 - 1)^2 - (x^2 + 2*x*y + y^2 + 1)^2 = 0
test: 0
n073: (2*x + 2*y)^2 + (x^2 + 2*x*y + y^2 - 1)^2 - (x^2 + 2*x*y + y^2 + 1)^2 = 0
test: 0
n073: (2*x + 2*y)^2 + (x^2 + 2*x*y + y^2 - 1)^2 - (x^2 + 2*x*y + y^2 + 1)^2 = 0
test: 0
n097: (2*x - 2*y + 2)^2 + (2*x + x^2 - 2*y - 2*x*y + y^2)^2 - (2*x + x^2 - 2*y - 2*x*y + y^2 + 2)^2 = 0
test: 0
n097: (2*x - 2*y - 2)^2 + (2*x - x^2 - 2*y + 2*x*y - y^2)^2 - (2*x - x^2 - 2*y + 2*x*y - y^2 - 2)^2 = 0
test: 0
n097: (2*x + 2*y + 2)^2 + (2*x + x^2 + 2*y + 2*x*y + y^2)^2 - (2*x + x^2 + 2*y + 2*x*y + y^2 + 2)^2 = 0
test: 0
n097: (2*x + 2*y - 2)^2 + (2*x - x^2 + 2*y - 2*x*y - y^2)^2 - (2*x - x^2 + 2*y - 2*x*y - y^2 - 2)^2 = 0
test: 0
n097: (2*x - 2*y - 2)^2 + (2*x - x^2 - 2*y + 2*x*y - y^2)^2 - (2*x - x^2 - 2*y + 2*x*y - y^2 - 2)^2 = 0
test: 0
n097: (2*x - 2*y + 2)^2 + (2*x + x^2 - 2*y - 2*x*y + y^2)^2 - (2*x + x^2 - 2*y - 2*x*y + y^2 + 2)^2 = 0
test: 0
n097: (2*x + 2*y - 2)^2 + (2*x - x^2 + 2*y - 2*x*y - y^2)^2 - (2*x - x^2 + 2*y - 2*x*y - y^2 - 2)^2 = 0
test: 0
n097: (2*x + 2*y + 2)^2 + (2*x + x^2 + 2*y + 2*x*y + y^2)^2 - (2*x + x^2 + 2*y + 2*x*y + y^2 + 2)^2 = 0
test: 0
n097: (2*x + 2*y + 2*x*y + 2*y^2)^2 + (x^2 - 2*y + 2*x*y - 1)^2 - (x^2 + 2*y + 2*x*y + 2*y^2 + 1)^2 = 0
test: 0
n097: (2*x + 2*y + 2*x*y + 2*y^2)^2 + (x^2 - 2*y + 2*x*y - 1)^2 - (x^2 + 2*y + 2*x*y + 2*y^2 + 1)^2 = 0
test: 0
n097: (2*x + 2*y - 2*x*y - 2*y^2)^2 + (x^2 + 2*y + 2*x*y - 1)^2 - (x^2 - 2*y + 2*x*y + 2*y^2 + 1)^2 = 0
test: 0
n097: (2*x + 2*y - 2*x*y - 2*y^2)^2 + (x^2 + 2*y + 2*x*y - 1)^2 - (x^2 - 2*y + 2*x*y + 2*y^2 + 1)^2 = 0
test: 0
n097: (2*x - 2*y - 2*x*y + 2*y^2)^2 + (x^2 + 2*y - 2*x*y - 1)^2 - (x^2 - 2*y - 2*x*y + 2*y^2 + 1)^2 = 0
test: 0
n097: (2*x - 2*y - 2*x*y + 2*y^2)^2 + (x^2 + 2*y - 2*x*y - 1)^2 - (x^2 - 2*y - 2*x*y + 2*y^2 + 1)^2 = 0
test: 0
n097: (2*x - 2*y + 2*x*y - 2*y^2)^2 + (x^2 - 2*y - 2*x*y - 1)^2 - (x^2 + 2*y - 2*x*y + 2*y^2 + 1)^2 = 0
test: 0
n097: (2*x - 2*y + 2*x*y - 2*y^2)^2 + (x^2 - 2*y - 2*x*y - 1)^2 - (x^2 + 2*y - 2*x*y + 2*y^2 + 1)^2 = 0
test: 0
n065: (2*x*y + 2*y^2)^2 + (x^2 + 2*x*y)^2 - (x^2 + 2*x*y + 2*y^2)^2 = 0
test: 0
n065: (2*x*y + 2*y^2)^2 + (x^2 + 2*x*y)^2 - (x^2 + 2*x*y + 2*y^2)^2 = 0
test: 0
n065: (2*x*y + 2*y^2)^2 + (x^2 + 2*x*y)^2 - (x^2 + 2*x*y + 2*y^2)^2 = 0
test: 0
n065: (2*x*y + 2*y^2)^2 + (x^2 + 2*x*y)^2 - (x^2 + 2*x*y + 2*y^2)^2 = 0
test: 0
n065: (2*x*y - 2*y^2)^2 + (x^2 - 2*x*y)^2 - (x^2 - 2*x*y + 2*y^2)^2 = 0
test: 0
n065: (2*x*y - 2*y^2)^2 + (x^2 - 2*x*y)^2 - (x^2 - 2*x*y + 2*y^2)^2 = 0
test: 0
n065: (2*x*y - 2*y^2)^2 + (x^2 - 2*x*y)^2 - (x^2 - 2*x*y + 2*y^2)^2 = 0
test: 0
n065: (2*x*y - 2*y^2)^2 + (x^2 - 2*x*y)^2 - (x^2 - 2*x*y + 2*y^2)^2 = 0
test: 0
n065: (2*x*y + 2*y^2)^2 + (x^2 + 2*x*y)^2 - (x^2 + 2*x*y + 2*y^2)^2 = 0
test: 0
n065: (2*x*y + 2*y^2)^2 + (x^2 + 2*x*y)^2 - (x^2 + 2*x*y + 2*y^2)^2 = 0
test: 0
n065: (2*x*y + 2*y^2)^2 + (x^2 + 2*x*y)^2 - (x^2 + 2*x*y + 2*y^2)^2 = 0
test: 0
n065: (2*x*y + 2*y^2)^2 + (x^2 + 2*x*y)^2 - (x^2 + 2*x*y + 2*y^2)^2 = 0
test: 0
n065: (2*x*y - 2*y^2)^2 + (x^2 - 2*x*y)^2 - (x^2 - 2*x*y + 2*y^2)^2 = 0
test: 0
n065: (2*x*y - 2*y^2)^2 + (x^2 - 2*x*y)^2 - (x^2 - 2*x*y + 2*y^2)^2 = 0
test: 0
n065: (2*x*y - 2*y^2)^2 + (x^2 - 2*x*y)^2 - (x^2 - 2*x*y + 2*y^2)^2 = 0
test: 0
n065: (2*x*y - 2*y^2)^2 + (x^2 - 2*x*y)^2 - (x^2 - 2*x*y + 2*y^2)^2 = 0
test: 0
n103: (2*y - 2*x*y - 2*y^2)^2 + (2*x - x^2 + 2*y - 2*x*y - 1)^2 - (2*x - x^2 + 2*y - 2*x*y - 2*y^2 - 1)^2 = 0
test: 0
n103: (2*y + 2*x*y + 2*y^2)^2 + (2*x + x^2 + 2*y + 2*x*y + 1)^2 - (2*x + x^2 + 2*y + 2*x*y + 2*y^2 + 1)^2 = 0
test: 0
n103: (2*y - 2*x*y + 2*y^2)^2 + (2*x - x^2 - 2*y + 2*x*y - 1)^2 - (2*x - x^2 - 2*y + 2*x*y - 2*y^2 - 1)^2 = 0
test: 0
n103: (2*y + 2*x*y - 2*y^2)^2 + (2*x + x^2 - 2*y - 2*x*y + 1)^2 - (2*x + x^2 - 2*y - 2*x*y + 2*y^2 + 1)^2 = 0
test: 0
n065: (2*x*y + 2*y^2)^2 + (x^2 + 2*x*y)^2 - (x^2 + 2*x*y + 2*y^2)^2 = 0
test: 0
n065: (2*x*y + 2*y^2)^2 + (x^2 + 2*x*y)^2 - (x^2 + 2*x*y + 2*y^2)^2 = 0
test: 0
n065: (2*x*y + 2*y^2)^2 + (x^2 + 2*x*y)^2 - (x^2 + 2*x*y + 2*y^2)^2 = 0
test: 0
n065: (2*x*y + 2*y^2)^2 + (x^2 + 2*x*y)^2 - (x^2 + 2*x*y + 2*y^2)^2 = 0
test: 0
n065: (2*x*y - 2*y^2)^2 + (x^2 - 2*x*y)^2 - (x^2 - 2*x*y + 2*y^2)^2 = 0
test: 0
n065: (2*x*y - 2*y^2)^2 + (x^2 - 2*x*y)^2 - (x^2 - 2*x*y + 2*y^2)^2 = 0
test: 0
n065: (2*x*y - 2*y^2)^2 + (x^2 - 2*x*y)^2 - (x^2 - 2*x*y + 2*y^2)^2 = 0
test: 0
n065: (2*x*y - 2*y^2)^2 + (x^2 - 2*x*y)^2 - (x^2 - 2*x*y + 2*y^2)^2 = 0
test: 0
n065: (2*x*y + 2*y^2)^2 + (x^2 + 2*x*y)^2 - (x^2 + 2*x*y + 2*y^2)^2 = 0
test: 0
n065: (2*x*y + 2*y^2)^2 + (x^2 + 2*x*y)^2 - (x^2 + 2*x*y + 2*y^2)^2 = 0
test: 0
n065: (2*x*y + 2*y^2)^2 + (x^2 + 2*x*y)^2 - (x^2 + 2*x*y + 2*y^2)^2 = 0
test: 0
n065: (2*x*y + 2*y^2)^2 + (x^2 + 2*x*y)^2 - (x^2 + 2*x*y + 2*y^2)^2 = 0
test: 0
n065: (2*x*y - 2*y^2)^2 + (x^2 - 2*x*y)^2 - (x^2 - 2*x*y + 2*y^2)^2 = 0
test: 0
n065: (2*x*y - 2*y^2)^2 + (x^2 - 2*x*y)^2 - (x^2 - 2*x*y + 2*y^2)^2 = 0
test: 0
n065: (2*x*y - 2*y^2)^2 + (x^2 - 2*x*y)^2 - (x^2 - 2*x*y + 2*y^2)^2 = 0
test: 0
n065: (2*x*y - 2*y^2)^2 + (x^2 - 2*x*y)^2 - (x^2 - 2*x*y + 2*y^2)^2 = 0
test: 0
n039: (2*x)^2 + (x^2 - 1)^2 - (x^2 + 1)^2 = 0
test: 0
n039: (2*x)^2 + (x^2 - 1)^2 - (x^2 + 1)^2 = 0
test: 0
n039: (2*x)^2 + (x^2 - 1)^2 - (x^2 + 1)^2 = 0
test: 0
n039: (2*x)^2 + (x^2 - 1)^2 - (x^2 + 1)^2 = 0
test: 0
n039: (2*x)^2 + (x^2 - 1)^2 - (x^2 + 1)^2 = 0
test: 0
n039: (2*x)^2 + (x^2 - 1)^2 - (x^2 + 1)^2 = 0
test: 0
n039: (2*x)^2 + (x^2 - 1)^2 - (x^2 + 1)^2 = 0
test: 0
n039: (2*x)^2 + (x^2 - 1)^2 - (x^2 + 1)^2 = 0
test: 0
n039: (2*x)^2 + (x^2 - 1)^2 - (x^2 + 1)^2 = 0
test: 0
n039: (2*x)^2 + (x^2 - 1)^2 - (x^2 + 1)^2 = 0
test: 0
n039: (2*x)^2 + (x^2 - 1)^2 - (x^2 + 1)^2 = 0
test: 0
n039: (2*x)^2 + (x^2 - 1)^2 - (x^2 + 1)^2 = 0
test: 0
n039: (2*x)^2 + (x^2 - 1)^2 - (x^2 + 1)^2 = 0
test: 0
n039: (2*x)^2 + (x^2 - 1)^2 - (x^2 + 1)^2 = 0
test: 0
n039: (2*x)^2 + (x^2 - 1)^2 - (x^2 + 1)^2 = 0
test: 0
n039: (2*x)^2 + (x^2 - 1)^2 - (x^2 + 1)^2 = 0
test: 0
n051: (2*x + 2)^2 + (2*x + x^2)^2 - (2*x + x^2 + 2)^2 = 0
test: 0
n051: (2*x + 2)^2 + (2*x + x^2)^2 - (2*x + x^2 + 2)^2 = 0
test: 0
n051: (2*x - 2)^2 + (2*x - x^2)^2 - (2*x - x^2 - 2)^2 = 0
test: 0
n051: (2*x - 2)^2 + (2*x - x^2)^2 - (2*x - x^2 - 2)^2 = 0
test: 0
n051: (2*x + 2)^2 + (2*x + x^2)^2 - (2*x + x^2 + 2)^2 = 0
test: 0
n051: (2*x + 2)^2 + (2*x + x^2)^2 - (2*x + x^2 + 2)^2 = 0
test: 0
n051: (2*x - 2)^2 + (2*x - x^2)^2 - (2*x - x^2 - 2)^2 = 0
test: 0
n051: (2*x - 2)^2 + (2*x - x^2)^2 - (2*x - x^2 - 2)^2 = 0
test: 0
n051: (2*x - 2)^2 + (2*x - x^2)^2 - (2*x - x^2 - 2)^2 = 0
test: 0
n051: (2*x - 2)^2 + (2*x - x^2)^2 - (2*x - x^2 - 2)^2 = 0
test: 0
n051: (2*x + 2)^2 + (2*x + x^2)^2 - (2*x + x^2 + 2)^2 = 0
test: 0
n051: (2*x + 2)^2 + (2*x + x^2)^2 - (2*x + x^2 + 2)^2 = 0
test: 0
n051: (2*x - 2)^2 + (2*x - x^2)^2 - (2*x - x^2 - 2)^2 = 0
test: 0
n051: (2*x - 2)^2 + (2*x - x^2)^2 - (2*x - x^2 - 2)^2 = 0
test: 0
n051: (2*x + 2)^2 + (2*x + x^2)^2 - (2*x + x^2 + 2)^2 = 0
test: 0
n051: (2*x + 2)^2 + (2*x + x^2)^2 - (2*x + x^2 + 2)^2 = 0
test: 0
n039: (2*x)^2 + (x^2 - 1)^2 - (x^2 + 1)^2 = 0
test: 0
n039: (2*x)^2 + (x^2 - 1)^2 - (x^2 + 1)^2 = 0
test: 0
n039: (2*x)^2 + (x^2 - 1)^2 - (x^2 + 1)^2 = 0
test: 0
n039: (2*x)^2 + (x^2 - 1)^2 - (x^2 + 1)^2 = 0
test: 0
n039: (2*x)^2 + (x^2 - 1)^2 - (x^2 + 1)^2 = 0
test: 0
n039: (2*x)^2 + (x^2 - 1)^2 - (x^2 + 1)^2 = 0
test: 0
n039: (2*x)^2 + (x^2 - 1)^2 - (x^2 + 1)^2 = 0
test: 0
n039: (2*x)^2 + (x^2 - 1)^2 - (x^2 + 1)^2 = 0
test: 0
n039: (2*x)^2 + (x^2 - 1)^2 - (x^2 + 1)^2 = 0
test: 0
n039: (2*x)^2 + (x^2 - 1)^2 - (x^2 + 1)^2 = 0
test: 0
n039: (2*x)^2 + (x^2 - 1)^2 - (x^2 + 1)^2 = 0
test: 0
n039: (2*x)^2 + (x^2 - 1)^2 - (x^2 + 1)^2 = 0
test: 0
n039: (2*x)^2 + (x^2 - 1)^2 - (x^2 + 1)^2 = 0
test: 0
n039: (2*x)^2 + (x^2 - 1)^2 - (x^2 + 1)^2 = 0
test: 0
n039: (2*x)^2 + (x^2 - 1)^2 - (x^2 + 1)^2 = 0
test: 0
n039: (2*x)^2 + (x^2 - 1)^2 - (x^2 + 1)^2 = 0
test: 0
n051: (2*x + 2)^2 + (2*x + x^2)^2 - (2*x + x^2 + 2)^2 = 0
test: 0
n051: (2*x + 2)^2 + (2*x + x^2)^2 - (2*x + x^2 + 2)^2 = 0
test: 0
n051: (2*x - 2)^2 + (2*x - x^2)^2 - (2*x - x^2 - 2)^2 = 0
test: 0
n051: (2*x - 2)^2 + (2*x - x^2)^2 - (2*x - x^2 - 2)^2 = 0
test: 0
n051: (2*x + 2)^2 + (2*x + x^2)^2 - (2*x + x^2 + 2)^2 = 0
test: 0
n051: (2*x + 2)^2 + (2*x + x^2)^2 - (2*x + x^2 + 2)^2 = 0
test: 0
n051: (2*x - 2)^2 + (2*x - x^2)^2 - (2*x - x^2 - 2)^2 = 0
test: 0
n051: (2*x - 2)^2 + (2*x - x^2)^2 - (2*x - x^2 - 2)^2 = 0
test: 0
n051: (2*x - 2)^2 + (2*x - x^2)^2 - (2*x - x^2 - 2)^2 = 0
test: 0
n051: (2*x - 2)^2 + (2*x - x^2)^2 - (2*x - x^2 - 2)^2 = 0
test: 0
n051: (2*x + 2)^2 + (2*x + x^2)^2 - (2*x + x^2 + 2)^2 = 0
test: 0
n051: (2*x + 2)^2 + (2*x + x^2)^2 - (2*x + x^2 + 2)^2 = 0
test: 0
n051: (2*x - 2)^2 + (2*x - x^2)^2 - (2*x - x^2 - 2)^2 = 0
test: 0
n051: (2*x - 2)^2 + (2*x - x^2)^2 - (2*x - x^2 - 2)^2 = 0
test: 0
n051: (2*x + 2)^2 + (2*x + x^2)^2 - (2*x + x^2 + 2)^2 = 0
test: 0
n051: (2*x + 2)^2 + (2*x + x^2)^2 - (2*x + x^2 + 2)^2 = 0
test: 0
n097: (2*x - 2*y + 2*x*y - 2*y^2)^2 + (x^2 - 2*y - 2*x*y - 1)^2 - (x^2 + 2*y - 2*x*y + 2*y^2 + 1)^2 = 0
test: 0
n097: (2*x - 2*y + 2*x*y - 2*y^2)^2 + (x^2 - 2*y - 2*x*y - 1)^2 - (x^2 + 2*y - 2*x*y + 2*y^2 + 1)^2 = 0
test: 0
n097: (2*x - 2*y - 2*x*y + 2*y^2)^2 + (x^2 + 2*y - 2*x*y - 1)^2 - (x^2 - 2*y - 2*x*y + 2*y^2 + 1)^2 = 0
test: 0
n097: (2*x - 2*y - 2*x*y + 2*y^2)^2 + (x^2 + 2*y - 2*x*y - 1)^2 - (x^2 - 2*y - 2*x*y + 2*y^2 + 1)^2 = 0
test: 0
n097: (2*x + 2*y - 2*x*y - 2*y^2)^2 + (x^2 + 2*y + 2*x*y - 1)^2 - (x^2 - 2*y + 2*x*y + 2*y^2 + 1)^2 = 0
test: 0
n097: (2*x + 2*y - 2*x*y - 2*y^2)^2 + (x^2 + 2*y + 2*x*y - 1)^2 - (x^2 - 2*y + 2*x*y + 2*y^2 + 1)^2 = 0
test: 0
n097: (2*x + 2*y + 2*x*y + 2*y^2)^2 + (x^2 - 2*y + 2*x*y - 1)^2 - (x^2 + 2*y + 2*x*y + 2*y^2 + 1)^2 = 0
test: 0
n097: (2*x + 2*y + 2*x*y + 2*y^2)^2 + (x^2 - 2*y + 2*x*y - 1)^2 - (x^2 + 2*y + 2*x*y + 2*y^2 + 1)^2 = 0
test: 0
n065: (2*x*y - 2*y^2)^2 + (x^2 - 2*x*y)^2 - (x^2 - 2*x*y + 2*y^2)^2 = 0
test: 0
n065: (2*x*y - 2*y^2)^2 + (x^2 - 2*x*y)^2 - (x^2 - 2*x*y + 2*y^2)^2 = 0
test: 0
n065: (2*x*y - 2*y^2)^2 + (x^2 - 2*x*y)^2 - (x^2 - 2*x*y + 2*y^2)^2 = 0
test: 0
n065: (2*x*y - 2*y^2)^2 + (x^2 - 2*x*y)^2 - (x^2 - 2*x*y + 2*y^2)^2 = 0
test: 0
n065: (2*x*y + 2*y^2)^2 + (x^2 + 2*x*y)^2 - (x^2 + 2*x*y + 2*y^2)^2 = 0
test: 0
n065: (2*x*y + 2*y^2)^2 + (x^2 + 2*x*y)^2 - (x^2 + 2*x*y + 2*y^2)^2 = 0
test: 0
n065: (2*x*y + 2*y^2)^2 + (x^2 + 2*x*y)^2 - (x^2 + 2*x*y + 2*y^2)^2 = 0
test: 0
n065: (2*x*y + 2*y^2)^2 + (x^2 + 2*x*y)^2 - (x^2 + 2*x*y + 2*y^2)^2 = 0
test: 0
n065: (2*x*y - 2*y^2)^2 + (x^2 - 2*x*y)^2 - (x^2 - 2*x*y + 2*y^2)^2 = 0
test: 0
n065: (2*x*y - 2*y^2)^2 + (x^2 - 2*x*y)^2 - (x^2 - 2*x*y + 2*y^2)^2 = 0
test: 0
n065: (2*x*y - 2*y^2)^2 + (x^2 - 2*x*y)^2 - (x^2 - 2*x*y + 2*y^2)^2 = 0
test: 0
n065: (2*x*y - 2*y^2)^2 + (x^2 - 2*x*y)^2 - (x^2 - 2*x*y + 2*y^2)^2 = 0
test: 0
n065: (2*x*y + 2*y^2)^2 + (x^2 + 2*x*y)^2 - (x^2 + 2*x*y + 2*y^2)^2 = 0
test: 0
n065: (2*x*y + 2*y^2)^2 + (x^2 + 2*x*y)^2 - (x^2 + 2*x*y + 2*y^2)^2 = 0
test: 0
n065: (2*x*y + 2*y^2)^2 + (x^2 + 2*x*y)^2 - (x^2 + 2*x*y + 2*y^2)^2 = 0
test: 0
n065: (2*x*y + 2*y^2)^2 + (x^2 + 2*x*y)^2 - (x^2 + 2*x*y + 2*y^2)^2 = 0
test: 0
n103: (2*y - 2*x*y + 2*y^2)^2 + (2*x - x^2 - 2*y + 2*x*y - 1)^2 - (2*x - x^2 - 2*y + 2*x*y - 2*y^2 - 1)^2 = 0
test: 0
n103: (2*y + 2*x*y - 2*y^2)^2 + (2*x + x^2 - 2*y - 2*x*y + 1)^2 - (2*x + x^2 - 2*y - 2*x*y + 2*y^2 + 1)^2 = 0
test: 0
n103: (2*y - 2*x*y - 2*y^2)^2 + (2*x - x^2 + 2*y - 2*x*y - 1)^2 - (2*x - x^2 + 2*y - 2*x*y - 2*y^2 - 1)^2 = 0
test: 0
n103: (2*y + 2*x*y + 2*y^2)^2 + (2*x + x^2 + 2*y + 2*x*y + 1)^2 - (2*x + x^2 + 2*y + 2*x*y + 2*y^2 + 1)^2 = 0
test: 0
n065: (2*x*y - 2*y^2)^2 + (x^2 - 2*x*y)^2 - (x^2 - 2*x*y + 2*y^2)^2 = 0
test: 0
n065: (2*x*y - 2*y^2)^2 + (x^2 - 2*x*y)^2 - (x^2 - 2*x*y + 2*y^2)^2 = 0
test: 0
n065: (2*x*y - 2*y^2)^2 + (x^2 - 2*x*y)^2 - (x^2 - 2*x*y + 2*y^2)^2 = 0
test: 0
n065: (2*x*y - 2*y^2)^2 + (x^2 - 2*x*y)^2 - (x^2 - 2*x*y + 2*y^2)^2 = 0
test: 0
n065: (2*x*y + 2*y^2)^2 + (x^2 + 2*x*y)^2 - (x^2 + 2*x*y + 2*y^2)^2 = 0
test: 0
n065: (2*x*y + 2*y^2)^2 + (x^2 + 2*x*y)^2 - (x^2 + 2*x*y + 2*y^2)^2 = 0
test: 0
n065: (2*x*y + 2*y^2)^2 + (x^2 + 2*x*y)^2 - (x^2 + 2*x*y + 2*y^2)^2 = 0
test: 0
n065: (2*x*y + 2*y^2)^2 + (x^2 + 2*x*y)^2 - (x^2 + 2*x*y + 2*y^2)^2 = 0
test: 0
n065: (2*x*y - 2*y^2)^2 + (x^2 - 2*x*y)^2 - (x^2 - 2*x*y + 2*y^2)^2 = 0
test: 0
n065: (2*x*y - 2*y^2)^2 + (x^2 - 2*x*y)^2 - (x^2 - 2*x*y + 2*y^2)^2 = 0
test: 0
n065: (2*x*y - 2*y^2)^2 + (x^2 - 2*x*y)^2 - (x^2 - 2*x*y + 2*y^2)^2 = 0
test: 0
n065: (2*x*y - 2*y^2)^2 + (x^2 - 2*x*y)^2 - (x^2 - 2*x*y + 2*y^2)^2 = 0
test: 0
n065: (2*x*y + 2*y^2)^2 + (x^2 + 2*x*y)^2 - (x^2 + 2*x*y + 2*y^2)^2 = 0
test: 0
n065: (2*x*y + 2*y^2)^2 + (x^2 + 2*x*y)^2 - (x^2 + 2*x*y + 2*y^2)^2 = 0
test: 0
n065: (2*x*y + 2*y^2)^2 + (x^2 + 2*x*y)^2 - (x^2 + 2*x*y + 2*y^2)^2 = 0
test: 0
n065: (2*x*y + 2*y^2)^2 + (x^2 + 2*x*y)^2 - (x^2 + 2*x*y + 2*y^2)^2 = 0
test: 0
n071: (2*x + 2*x*y)^2 + (x^2 - 2*y - y^2 - 1)^2 - (x^2 + 2*y + y^2 + 1)^2 = 0
test: 0
n071: (2*x + 2*x*y)^2 + (x^2 - 2*y - y^2 - 1)^2 - (x^2 + 2*y + y^2 + 1)^2 = 0
test: 0
n071: (2*x - 2*x*y)^2 + (x^2 + 2*y - y^2 - 1)^2 - (x^2 - 2*y + y^2 + 1)^2 = 0
test: 0
n071: (2*x - 2*x*y)^2 + (x^2 + 2*y - y^2 - 1)^2 - (x^2 - 2*y + y^2 + 1)^2 = 0
test: 0
n071: (2*x + 2*x*y)^2 + (x^2 - 2*y - y^2 - 1)^2 - (x^2 + 2*y + y^2 + 1)^2 = 0
test: 0
n071: (2*x + 2*x*y)^2 + (x^2 - 2*y - y^2 - 1)^2 - (x^2 + 2*y + y^2 + 1)^2 = 0
test: 0
n071: (2*x - 2*x*y)^2 + (x^2 + 2*y - y^2 - 1)^2 - (x^2 - 2*y + y^2 + 1)^2 = 0
test: 0
n071: (2*x - 2*x*y)^2 + (x^2 + 2*y - y^2 - 1)^2 - (x^2 - 2*y + y^2 + 1)^2 = 0
test: 0
n071: (2*x - 2*x*y)^2 + (x^2 + 2*y - y^2 - 1)^2 - (x^2 - 2*y + y^2 + 1)^2 = 0
test: 0
n071: (2*x - 2*x*y)^2 + (x^2 + 2*y - y^2 - 1)^2 - (x^2 - 2*y + y^2 + 1)^2 = 0
test: 0
n071: (2*x + 2*x*y)^2 + (x^2 - 2*y - y^2 - 1)^2 - (x^2 + 2*y + y^2 + 1)^2 = 0
test: 0
n071: (2*x + 2*x*y)^2 + (x^2 - 2*y - y^2 - 1)^2 - (x^2 + 2*y + y^2 + 1)^2 = 0
test: 0
n071: (2*x - 2*x*y)^2 + (x^2 + 2*y - y^2 - 1)^2 - (x^2 - 2*y + y^2 + 1)^2 = 0
test: 0
n071: (2*x - 2*x*y)^2 + (x^2 + 2*y - y^2 - 1)^2 - (x^2 - 2*y + y^2 + 1)^2 = 0
test: 0
n071: (2*x + 2*x*y)^2 + (x^2 - 2*y - y^2 - 1)^2 - (x^2 + 2*y + y^2 + 1)^2 = 0
test: 0
n071: (2*x + 2*x*y)^2 + (x^2 - 2*y - y^2 - 1)^2 - (x^2 + 2*y + y^2 + 1)^2 = 0
test: 0
n045: (2*x*y)^2 + (x^2 - y^2)^2 - (x^2 + y^2)^2 = 0
test: 0
n045: (2*x*y)^2 + (x^2 - y^2)^2 - (x^2 + y^2)^2 = 0
test: 0
n045: (2*x*y)^2 + (x^2 - y^2)^2 - (x^2 + y^2)^2 = 0
test: 0
n045: (2*x*y)^2 + (x^2 - y^2)^2 - (x^2 + y^2)^2 = 0
test: 0
n045: (2*x*y)^2 + (x^2 - y^2)^2 - (x^2 + y^2)^2 = 0
test: 0
n045: (2*x*y)^2 + (x^2 - y^2)^2 - (x^2 + y^2)^2 = 0
test: 0
n045: (2*x*y)^2 + (x^2 - y^2)^2 - (x^2 + y^2)^2 = 0
test: 0
n045: (2*x*y)^2 + (x^2 - y^2)^2 - (x^2 + y^2)^2 = 0
test: 0
n045: (2*x*y)^2 + (x^2 - y^2)^2 - (x^2 + y^2)^2 = 0
test: 0
n045: (2*x*y)^2 + (x^2 - y^2)^2 - (x^2 + y^2)^2 = 0
test: 0
n045: (2*x*y)^2 + (x^2 - y^2)^2 - (x^2 + y^2)^2 = 0
test: 0
n045: (2*x*y)^2 + (x^2 - y^2)^2 - (x^2 + y^2)^2 = 0
test: 0
n045: (2*x*y)^2 + (x^2 - y^2)^2 - (x^2 + y^2)^2 = 0
test: 0
n045: (2*x*y)^2 + (x^2 - y^2)^2 - (x^2 + y^2)^2 = 0
test: 0
n045: (2*x*y)^2 + (x^2 - y^2)^2 - (x^2 + y^2)^2 = 0
test: 0
n045: (2*x*y)^2 + (x^2 - y^2)^2 - (x^2 + y^2)^2 = 0
test: 0
n045: (2*x*y)^2 + (x^2 - y^2)^2 - (x^2 + y^2)^2 = 0
test: 0
n045: (2*x*y)^2 + (x^2 - y^2)^2 - (x^2 + y^2)^2 = 0
test: 0
n045: (2*x*y)^2 + (x^2 - y^2)^2 - (x^2 + y^2)^2 = 0
test: 0
n045: (2*x*y)^2 + (x^2 - y^2)^2 - (x^2 + y^2)^2 = 0
test: 0
n045: (2*x*y)^2 + (x^2 - y^2)^2 - (x^2 + y^2)^2 = 0
test: 0
n045: (2*x*y)^2 + (x^2 - y^2)^2 - (x^2 + y^2)^2 = 0
test: 0
n045: (2*x*y)^2 + (x^2 - y^2)^2 - (x^2 + y^2)^2 = 0
test: 0
n045: (2*x*y)^2 + (x^2 - y^2)^2 - (x^2 + y^2)^2 = 0
test: 0
n045: (2*x*y)^2 + (x^2 - y^2)^2 - (x^2 + y^2)^2 = 0
test: 0
n045: (2*x*y)^2 + (x^2 - y^2)^2 - (x^2 + y^2)^2 = 0
test: 0
n045: (2*x*y)^2 + (x^2 - y^2)^2 - (x^2 + y^2)^2 = 0
test: 0
n045: (2*x*y)^2 + (x^2 - y^2)^2 - (x^2 + y^2)^2 = 0
test: 0
n045: (2*x*y)^2 + (x^2 - y^2)^2 - (x^2 + y^2)^2 = 0
test: 0
n045: (2*x*y)^2 + (x^2 - y^2)^2 - (x^2 + y^2)^2 = 0
test: 0
n045: (2*x*y)^2 + (x^2 - y^2)^2 - (x^2 + y^2)^2 = 0
test: 0
n045: (2*x*y)^2 + (x^2 - y^2)^2 - (x^2 + y^2)^2 = 0
test: 0
n071: (2*y - 2*x*y)^2 + (2*x - x^2 + y^2 - 1)^2 - (2*x - x^2 - y^2 - 1)^2 = 0
test: 0
n071: (2*y - 2*x*y)^2 + (2*x - x^2 + y^2 - 1)^2 - (2*x - x^2 - y^2 - 1)^2 = 0
test: 0
n071: (2*y + 2*x*y)^2 + (2*x + x^2 - y^2 + 1)^2 - (2*x + x^2 + y^2 + 1)^2 = 0
test: 0
n071: (2*y + 2*x*y)^2 + (2*x + x^2 - y^2 + 1)^2 - (2*x + x^2 + y^2 + 1)^2 = 0
test: 0
n071: (2*y - 2*x*y)^2 + (2*x - x^2 + y^2 - 1)^2 - (2*x - x^2 - y^2 - 1)^2 = 0
test: 0
n071: (2*y - 2*x*y)^2 + (2*x - x^2 + y^2 - 1)^2 - (2*x - x^2 - y^2 - 1)^2 = 0
test: 0
n071: (2*y + 2*x*y)^2 + (2*x + x^2 - y^2 + 1)^2 - (2*x + x^2 + y^2 + 1)^2 = 0
test: 0
n071: (2*y + 2*x*y)^2 + (2*x + x^2 - y^2 + 1)^2 - (2*x + x^2 + y^2 + 1)^2 = 0
test: 0
n071: (2*y - 2*x*y)^2 + (2*x - x^2 + y^2 - 1)^2 - (2*x - x^2 - y^2 - 1)^2 = 0
test: 0
n071: (2*y - 2*x*y)^2 + (2*x - x^2 + y^2 - 1)^2 - (2*x - x^2 - y^2 - 1)^2 = 0
test: 0
n071: (2*y + 2*x*y)^2 + (2*x + x^2 - y^2 + 1)^2 - (2*x + x^2 + y^2 + 1)^2 = 0
test: 0
n071: (2*y + 2*x*y)^2 + (2*x + x^2 - y^2 + 1)^2 - (2*x + x^2 + y^2 + 1)^2 = 0
test: 0
n071: (2*y - 2*x*y)^2 + (2*x - x^2 + y^2 - 1)^2 - (2*x - x^2 - y^2 - 1)^2 = 0
test: 0
n071: (2*y - 2*x*y)^2 + (2*x - x^2 + y^2 - 1)^2 - (2*x - x^2 - y^2 - 1)^2 = 0
test: 0
n071: (2*y + 2*x*y)^2 + (2*x + x^2 - y^2 + 1)^2 - (2*x + x^2 + y^2 + 1)^2 = 0
test: 0
n071: (2*y + 2*x*y)^2 + (2*x + x^2 - y^2 + 1)^2 - (2*x + x^2 + y^2 + 1)^2 = 0
test: 0
n089: (2*x + 2*y + 2*x*y + 2)^2 + (2*x + x^2 - 2*y - y^2)^2 - (2*x + x^2 + 2*y + y^2 + 2)^2 = 0
test: 0
n089: (2*x + 2*y - 2*x*y - 2)^2 + (2*x - x^2 - 2*y + y^2)^2 - (2*x - x^2 + 2*y - y^2 - 2)^2 = 0
test: 0
n089: (2*x + 2*y + 2*x*y + 2)^2 + (2*x + x^2 - 2*y - y^2)^2 - (2*x + x^2 + 2*y + y^2 + 2)^2 = 0
test: 0
n089: (2*x + 2*y - 2*x*y - 2)^2 + (2*x - x^2 - 2*y + y^2)^2 - (2*x - x^2 + 2*y - y^2 - 2)^2 = 0
test: 0
n089: (2*x - 2*y - 2*x*y + 2)^2 + (2*x + x^2 + 2*y - y^2)^2 - (2*x + x^2 - 2*y + y^2 + 2)^2 = 0
test: 0
n089: (2*x - 2*y + 2*x*y - 2)^2 + (2*x - x^2 + 2*y + y^2)^2 - (2*x - x^2 - 2*y - y^2 - 2)^2 = 0
test: 0
n089: (2*x - 2*y - 2*x*y + 2)^2 + (2*x + x^2 + 2*y - y^2)^2 - (2*x + x^2 - 2*y + y^2 + 2)^2 = 0
test: 0
n089: (2*x - 2*y + 2*x*y - 2)^2 + (2*x - x^2 + 2*y + y^2)^2 - (2*x - x^2 - 2*y - y^2 - 2)^2 = 0
test: 0
n045: (2*x*y)^2 + (x^2 - y^2)^2 - (x^2 + y^2)^2 = 0
test: 0
n045: (2*x*y)^2 + (x^2 - y^2)^2 - (x^2 + y^2)^2 = 0
test: 0
n045: (2*x*y)^2 + (x^2 - y^2)^2 - (x^2 + y^2)^2 = 0
test: 0
n045: (2*x*y)^2 + (x^2 - y^2)^2 - (x^2 + y^2)^2 = 0
test: 0
n045: (2*x*y)^2 + (x^2 - y^2)^2 - (x^2 + y^2)^2 = 0
test: 0
n045: (2*x*y)^2 + (x^2 - y^2)^2 - (x^2 + y^2)^2 = 0
test: 0
n045: (2*x*y)^2 + (x^2 - y^2)^2 - (x^2 + y^2)^2 = 0
test: 0
n045: (2*x*y)^2 + (x^2 - y^2)^2 - (x^2 + y^2)^2 = 0
test: 0
n045: (2*x*y)^2 + (x^2 - y^2)^2 - (x^2 + y^2)^2 = 0
test: 0
n045: (2*x*y)^2 + (x^2 - y^2)^2 - (x^2 + y^2)^2 = 0
test: 0
n045: (2*x*y)^2 + (x^2 - y^2)^2 - (x^2 + y^2)^2 = 0
test: 0
n045: (2*x*y)^2 + (x^2 - y^2)^2 - (x^2 + y^2)^2 = 0
test: 0
n045: (2*x*y)^2 + (x^2 - y^2)^2 - (x^2 + y^2)^2 = 0
test: 0
n045: (2*x*y)^2 + (x^2 - y^2)^2 - (x^2 + y^2)^2 = 0
test: 0
n045: (2*x*y)^2 + (x^2 - y^2)^2 - (x^2 + y^2)^2 = 0
test: 0
n045: (2*x*y)^2 + (x^2 - y^2)^2 - (x^2 + y^2)^2 = 0
test: 0
n045: (2*x*y)^2 + (x^2 - y^2)^2 - (x^2 + y^2)^2 = 0
test: 0
n045: (2*x*y)^2 + (x^2 - y^2)^2 - (x^2 + y^2)^2 = 0
test: 0
n045: (2*x*y)^2 + (x^2 - y^2)^2 - (x^2 + y^2)^2 = 0
test: 0
n045: (2*x*y)^2 + (x^2 - y^2)^2 - (x^2 + y^2)^2 = 0
test: 0
n045: (2*x*y)^2 + (x^2 - y^2)^2 - (x^2 + y^2)^2 = 0
test: 0
n045: (2*x*y)^2 + (x^2 - y^2)^2 - (x^2 + y^2)^2 = 0
test: 0
n045: (2*x*y)^2 + (x^2 - y^2)^2 - (x^2 + y^2)^2 = 0
test: 0
n045: (2*x*y)^2 + (x^2 - y^2)^2 - (x^2 + y^2)^2 = 0
test: 0
n045: (2*x*y)^2 + (x^2 - y^2)^2 - (x^2 + y^2)^2 = 0
test: 0
n045: (2*x*y)^2 + (x^2 - y^2)^2 - (x^2 + y^2)^2 = 0
test: 0
n045: (2*x*y)^2 + (x^2 - y^2)^2 - (x^2 + y^2)^2 = 0
test: 0
n045: (2*x*y)^2 + (x^2 - y^2)^2 - (x^2 + y^2)^2 = 0
test: 0
n045: (2*x*y)^2 + (x^2 - y^2)^2 - (x^2 + y^2)^2 = 0
test: 0
n045: (2*x*y)^2 + (x^2 - y^2)^2 - (x^2 + y^2)^2 = 0
test: 0
n045: (2*x*y)^2 + (x^2 - y^2)^2 - (x^2 + y^2)^2 = 0
test: 0
n045: (2*x*y)^2 + (x^2 - y^2)^2 - (x^2 + y^2)^2 = 0
test: 0
n089: (2*x - 2*y + 2*x*y - 2)^2 + (2*x - x^2 + 2*y + y^2)^2 - (2*x - x^2 - 2*y - y^2 - 2)^2 = 0
test: 0
n089: (2*x - 2*y - 2*x*y + 2)^2 + (2*x + x^2 + 2*y - y^2)^2 - (2*x + x^2 - 2*y + y^2 + 2)^2 = 0
test: 0
n089: (2*x - 2*y + 2*x*y - 2)^2 + (2*x - x^2 + 2*y + y^2)^2 - (2*x - x^2 - 2*y - y^2 - 2)^2 = 0
test: 0
n089: (2*x - 2*y - 2*x*y + 2)^2 + (2*x + x^2 + 2*y - y^2)^2 - (2*x + x^2 - 2*y + y^2 + 2)^2 = 0
test: 0
n089: (2*x + 2*y - 2*x*y - 2)^2 + (2*x - x^2 - 2*y + y^2)^2 - (2*x - x^2 + 2*y - y^2 - 2)^2 = 0
test: 0
n089: (2*x + 2*y + 2*x*y + 2)^2 + (2*x + x^2 - 2*y - y^2)^2 - (2*x + x^2 + 2*y + y^2 + 2)^2 = 0
test: 0
n089: (2*x + 2*y - 2*x*y - 2)^2 + (2*x - x^2 - 2*y + y^2)^2 - (2*x - x^2 + 2*y - y^2 - 2)^2 = 0
test: 0
n089: (2*x + 2*y + 2*x*y + 2)^2 + (2*x + x^2 - 2*y - y^2)^2 - (2*x + x^2 + 2*y + y^2 + 2)^2 = 0
test: 0
n039: (2*x)^2 + (x^2 - 1)^2 - (x^2 + 1)^2 = 0
test: 0
n039: (2*x)^2 + (x^2 - 1)^2 - (x^2 + 1)^2 = 0
test: 0
n039: (2*x)^2 + (x^2 - 1)^2 - (x^2 + 1)^2 = 0
test: 0
n039: (2*x)^2 + (x^2 - 1)^2 - (x^2 + 1)^2 = 0
test: 0
n039: (2*x)^2 + (x^2 - 1)^2 - (x^2 + 1)^2 = 0
test: 0
n039: (2*x)^2 + (x^2 - 1)^2 - (x^2 + 1)^2 = 0
test: 0
n039: (2*x)^2 + (x^2 - 1)^2 - (x^2 + 1)^2 = 0
test: 0
n039: (2*x)^2 + (x^2 - 1)^2 - (x^2 + 1)^2 = 0
test: 0
n039: (2*x)^2 + (x^2 - 1)^2 - (x^2 + 1)^2 = 0
test: 0
n039: (2*x)^2 + (x^2 - 1)^2 - (x^2 + 1)^2 = 0
test: 0
n039: (2*x)^2 + (x^2 - 1)^2 - (x^2 + 1)^2 = 0
test: 0
n039: (2*x)^2 + (x^2 - 1)^2 - (x^2 + 1)^2 = 0
test: 0
n039: (2*x)^2 + (x^2 - 1)^2 - (x^2 + 1)^2 = 0
test: 0
n039: (2*x)^2 + (x^2 - 1)^2 - (x^2 + 1)^2 = 0
test: 0
n039: (2*x)^2 + (x^2 - 1)^2 - (x^2 + 1)^2 = 0
test: 0
n039: (2*x)^2 + (x^2 - 1)^2 - (x^2 + 1)^2 = 0
test: 0
n051: (2*x + 2)^2 + (2*x + x^2)^2 - (2*x + x^2 + 2)^2 = 0
test: 0
n051: (2*x + 2)^2 + (2*x + x^2)^2 - (2*x + x^2 + 2)^2 = 0
test: 0
n051: (2*x - 2)^2 + (2*x - x^2)^2 - (2*x - x^2 - 2)^2 = 0
test: 0
n051: (2*x - 2)^2 + (2*x - x^2)^2 - (2*x - x^2 - 2)^2 = 0
test: 0
n051: (2*x + 2)^2 + (2*x + x^2)^2 - (2*x + x^2 + 2)^2 = 0
test: 0
n051: (2*x + 2)^2 + (2*x + x^2)^2 - (2*x + x^2 + 2)^2 = 0
test: 0
n051: (2*x - 2)^2 + (2*x - x^2)^2 - (2*x - x^2 - 2)^2 = 0
test: 0
n051: (2*x - 2)^2 + (2*x - x^2)^2 - (2*x - x^2 - 2)^2 = 0
test: 0
n051: (2*x - 2)^2 + (2*x - x^2)^2 - (2*x - x^2 - 2)^2 = 0
test: 0
n051: (2*x - 2)^2 + (2*x - x^2)^2 - (2*x - x^2 - 2)^2 = 0
test: 0
n051: (2*x + 2)^2 + (2*x + x^2)^2 - (2*x + x^2 + 2)^2 = 0
test: 0
n051: (2*x + 2)^2 + (2*x + x^2)^2 - (2*x + x^2 + 2)^2 = 0
test: 0
n051: (2*x - 2)^2 + (2*x - x^2)^2 - (2*x - x^2 - 2)^2 = 0
test: 0
n051: (2*x - 2)^2 + (2*x - x^2)^2 - (2*x - x^2 - 2)^2 = 0
test: 0
n051: (2*x + 2)^2 + (2*x + x^2)^2 - (2*x + x^2 + 2)^2 = 0
test: 0
n051: (2*x + 2)^2 + (2*x + x^2)^2 - (2*x + x^2 + 2)^2 = 0
test: 0
n039: (2*x)^2 + (x^2 - 1)^2 - (x^2 + 1)^2 = 0
test: 0
n039: (2*x)^2 + (x^2 - 1)^2 - (x^2 + 1)^2 = 0
test: 0
n039: (2*x)^2 + (x^2 - 1)^2 - (x^2 + 1)^2 = 0
test: 0
n039: (2*x)^2 + (x^2 - 1)^2 - (x^2 + 1)^2 = 0
test: 0
n039: (2*x)^2 + (x^2 - 1)^2 - (x^2 + 1)^2 = 0
test: 0
n039: (2*x)^2 + (x^2 - 1)^2 - (x^2 + 1)^2 = 0
test: 0
n039: (2*x)^2 + (x^2 - 1)^2 - (x^2 + 1)^2 = 0
test: 0
n039: (2*x)^2 + (x^2 - 1)^2 - (x^2 + 1)^2 = 0
test: 0
n039: (2*x)^2 + (x^2 - 1)^2 - (x^2 + 1)^2 = 0
test: 0
n039: (2*x)^2 + (x^2 - 1)^2 - (x^2 + 1)^2 = 0
test: 0
n039: (2*x)^2 + (x^2 - 1)^2 - (x^2 + 1)^2 = 0
test: 0
n039: (2*x)^2 + (x^2 - 1)^2 - (x^2 + 1)^2 = 0
test: 0
n039: (2*x)^2 + (x^2 - 1)^2 - (x^2 + 1)^2 = 0
test: 0
n039: (2*x)^2 + (x^2 - 1)^2 - (x^2 + 1)^2 = 0
test: 0
n039: (2*x)^2 + (x^2 - 1)^2 - (x^2 + 1)^2 = 0
test: 0
n039: (2*x)^2 + (x^2 - 1)^2 - (x^2 + 1)^2 = 0
test: 0
n051: (2*x + 2)^2 + (2*x + x^2)^2 - (2*x + x^2 + 2)^2 = 0
test: 0
n051: (2*x + 2)^2 + (2*x + x^2)^2 - (2*x + x^2 + 2)^2 = 0
test: 0
n051: (2*x - 2)^2 + (2*x - x^2)^2 - (2*x - x^2 - 2)^2 = 0
test: 0
n051: (2*x - 2)^2 + (2*x - x^2)^2 - (2*x - x^2 - 2)^2 = 0
test: 0
n051: (2*x + 2)^2 + (2*x + x^2)^2 - (2*x + x^2 + 2)^2 = 0
test: 0
n051: (2*x + 2)^2 + (2*x + x^2)^2 - (2*x + x^2 + 2)^2 = 0
test: 0
n051: (2*x - 2)^2 + (2*x - x^2)^2 - (2*x - x^2 - 2)^2 = 0
test: 0
n051: (2*x - 2)^2 + (2*x - x^2)^2 - (2*x - x^2 - 2)^2 = 0
test: 0
n051: (2*x - 2)^2 + (2*x - x^2)^2 - (2*x - x^2 - 2)^2 = 0
test: 0
n051: (2*x - 2)^2 + (2*x - x^2)^2 - (2*x - x^2 - 2)^2 = 0
test: 0
n051: (2*x + 2)^2 + (2*x + x^2)^2 - (2*x + x^2 + 2)^2 = 0
test: 0
n051: (2*x + 2)^2 + (2*x + x^2)^2 - (2*x + x^2 + 2)^2 = 0
test: 0
n051: (2*x - 2)^2 + (2*x - x^2)^2 - (2*x - x^2 - 2)^2 = 0
test: 0
n051: (2*x - 2)^2 + (2*x - x^2)^2 - (2*x - x^2 - 2)^2 = 0
test: 0
n051: (2*x + 2)^2 + (2*x + x^2)^2 - (2*x + x^2 + 2)^2 = 0
test: 0
n051: (2*x + 2)^2 + (2*x + x^2)^2 - (2*x + x^2 + 2)^2 = 0
test: 0
n073: (2*x - 2*y)^2 + (x^2 - 2*x*y + y^2 - 1)^2 - (x^2 - 2*x*y + y^2 + 1)^2 = 0
test: 0
n073: (2*x - 2*y)^2 + (x^2 - 2*x*y + y^2 - 1)^2 - (x^2 - 2*x*y + y^2 + 1)^2 = 0
test: 0
n073: (2*x - 2*y)^2 + (x^2 - 2*x*y + y^2 - 1)^2 - (x^2 - 2*x*y + y^2 + 1)^2 = 0
test: 0
n073: (2*x - 2*y)^2 + (x^2 - 2*x*y + y^2 - 1)^2 - (x^2 - 2*x*y + y^2 + 1)^2 = 0
test: 0
n073: (2*x - 2*y)^2 + (x^2 - 2*x*y + y^2 - 1)^2 - (x^2 - 2*x*y + y^2 + 1)^2 = 0
test: 0
n073: (2*x - 2*y)^2 + (x^2 - 2*x*y + y^2 - 1)^2 - (x^2 - 2*x*y + y^2 + 1)^2 = 0
test: 0
n073: (2*x - 2*y)^2 + (x^2 - 2*x*y + y^2 - 1)^2 - (x^2 - 2*x*y + y^2 + 1)^2 = 0
test: 0
n073: (2*x - 2*y)^2 + (x^2 - 2*x*y + y^2 - 1)^2 - (x^2 - 2*x*y + y^2 + 1)^2 = 0
test: 0
n073: (2*x + 2*y)^2 + (x^2 + 2*x*y + y^2 - 1)^2 - (x^2 + 2*x*y + y^2 + 1)^2 = 0
test: 0
n073: (2*x + 2*y)^2 + (x^2 + 2*x*y + y^2 - 1)^2 - (x^2 + 2*x*y + y^2 + 1)^2 = 0
test: 0
n073: (2*x + 2*y)^2 + (x^2 + 2*x*y + y^2 - 1)^2 - (x^2 + 2*x*y + y^2 + 1)^2 = 0
test: 0
n073: (2*x + 2*y)^2 + (x^2 + 2*x*y + y^2 - 1)^2 - (x^2 + 2*x*y + y^2 + 1)^2 = 0
test: 0
n073: (2*x + 2*y)^2 + (x^2 + 2*x*y + y^2 - 1)^2 - (x^2 + 2*x*y + y^2 + 1)^2 = 0
test: 0
n073: (2*x + 2*y)^2 + (x^2 + 2*x*y + y^2 - 1)^2 - (x^2 + 2*x*y + y^2 + 1)^2 = 0
test: 0
n073: (2*x + 2*y)^2 + (x^2 + 2*x*y + y^2 - 1)^2 - (x^2 + 2*x*y + y^2 + 1)^2 = 0
test: 0
n073: (2*x + 2*y)^2 + (x^2 + 2*x*y + y^2 - 1)^2 - (x^2 + 2*x*y + y^2 + 1)^2 = 0
test: 0
n097: (2*x - 2*y + 2)^2 + (2*x + x^2 - 2*y - 2*x*y + y^2)^2 - (2*x + x^2 - 2*y - 2*x*y + y^2 + 2)^2 = 0
test: 0
n097: (2*x - 2*y - 2)^2 + (2*x - x^2 - 2*y + 2*x*y - y^2)^2 - (2*x - x^2 - 2*y + 2*x*y - y^2 - 2)^2 = 0
test: 0
n097: (2*x + 2*y + 2)^2 + (2*x + x^2 + 2*y + 2*x*y + y^2)^2 - (2*x + x^2 + 2*y + 2*x*y + y^2 + 2)^2 = 0
test: 0
n097: (2*x + 2*y - 2)^2 + (2*x - x^2 + 2*y - 2*x*y - y^2)^2 - (2*x - x^2 + 2*y - 2*x*y - y^2 - 2)^2 = 0
test: 0
n097: (2*x - 2*y - 2)^2 + (2*x - x^2 - 2*y + 2*x*y - y^2)^2 - (2*x - x^2 - 2*y + 2*x*y - y^2 - 2)^2 = 0
test: 0
n097: (2*x - 2*y + 2)^2 + (2*x + x^2 - 2*y - 2*x*y + y^2)^2 - (2*x + x^2 - 2*y - 2*x*y + y^2 + 2)^2 = 0
test: 0
n097: (2*x + 2*y - 2)^2 + (2*x - x^2 + 2*y - 2*x*y - y^2)^2 - (2*x - x^2 + 2*y - 2*x*y - y^2 - 2)^2 = 0
test: 0
n097: (2*x + 2*y + 2)^2 + (2*x + x^2 + 2*y + 2*x*y + y^2)^2 - (2*x + x^2 + 2*y + 2*x*y + y^2 + 2)^2 = 0
test: 0
n097: (2*x + 2*y + 2*x*y + 2*y^2)^2 + (x^2 - 2*y + 2*x*y - 1)^2 - (x^2 + 2*y + 2*x*y + 2*y^2 + 1)^2 = 0
test: 0
n097: (2*x + 2*y + 2*x*y + 2*y^2)^2 + (x^2 - 2*y + 2*x*y - 1)^2 - (x^2 + 2*y + 2*x*y + 2*y^2 + 1)^2 = 0
test: 0
n097: (2*x + 2*y - 2*x*y - 2*y^2)^2 + (x^2 + 2*y + 2*x*y - 1)^2 - (x^2 - 2*y + 2*x*y + 2*y^2 + 1)^2 = 0
test: 0
n097: (2*x + 2*y - 2*x*y - 2*y^2)^2 + (x^2 + 2*y + 2*x*y - 1)^2 - (x^2 - 2*y + 2*x*y + 2*y^2 + 1)^2 = 0
test: 0
n097: (2*x - 2*y - 2*x*y + 2*y^2)^2 + (x^2 + 2*y - 2*x*y - 1)^2 - (x^2 - 2*y - 2*x*y + 2*y^2 + 1)^2 = 0
test: 0
n097: (2*x - 2*y - 2*x*y + 2*y^2)^2 + (x^2 + 2*y - 2*x*y - 1)^2 - (x^2 - 2*y - 2*x*y + 2*y^2 + 1)^2 = 0
test: 0
n097: (2*x - 2*y + 2*x*y - 2*y^2)^2 + (x^2 - 2*y - 2*x*y - 1)^2 - (x^2 + 2*y - 2*x*y + 2*y^2 + 1)^2 = 0
test: 0
n097: (2*x - 2*y + 2*x*y - 2*y^2)^2 + (x^2 - 2*y - 2*x*y - 1)^2 - (x^2 + 2*y - 2*x*y + 2*y^2 + 1)^2 = 0
test: 0
n065: (2*x*y + 2*y^2)^2 + (x^2 + 2*x*y)^2 - (x^2 + 2*x*y + 2*y^2)^2 = 0
test: 0
n065: (2*x*y + 2*y^2)^2 + (x^2 + 2*x*y)^2 - (x^2 + 2*x*y + 2*y^2)^2 = 0
test: 0
n065: (2*x*y + 2*y^2)^2 + (x^2 + 2*x*y)^2 - (x^2 + 2*x*y + 2*y^2)^2 = 0
test: 0
n065: (2*x*y + 2*y^2)^2 + (x^2 + 2*x*y)^2 - (x^2 + 2*x*y + 2*y^2)^2 = 0
test: 0
n065: (2*x*y - 2*y^2)^2 + (x^2 - 2*x*y)^2 - (x^2 - 2*x*y + 2*y^2)^2 = 0
test: 0
n065: (2*x*y - 2*y^2)^2 + (x^2 - 2*x*y)^2 - (x^2 - 2*x*y + 2*y^2)^2 = 0
test: 0
n065: (2*x*y - 2*y^2)^2 + (x^2 - 2*x*y)^2 - (x^2 - 2*x*y + 2*y^2)^2 = 0
test: 0
n065: (2*x*y - 2*y^2)^2 + (x^2 - 2*x*y)^2 - (x^2 - 2*x*y + 2*y^2)^2 = 0
test: 0
n065: (2*x*y + 2*y^2)^2 + (x^2 + 2*x*y)^2 - (x^2 + 2*x*y + 2*y^2)^2 = 0
test: 0
n065: (2*x*y + 2*y^2)^2 + (x^2 + 2*x*y)^2 - (x^2 + 2*x*y + 2*y^2)^2 = 0
test: 0
n065: (2*x*y + 2*y^2)^2 + (x^2 + 2*x*y)^2 - (x^2 + 2*x*y + 2*y^2)^2 = 0
test: 0
n065: (2*x*y + 2*y^2)^2 + (x^2 + 2*x*y)^2 - (x^2 + 2*x*y + 2*y^2)^2 = 0
test: 0
n065: (2*x*y - 2*y^2)^2 + (x^2 - 2*x*y)^2 - (x^2 - 2*x*y + 2*y^2)^2 = 0
test: 0
n065: (2*x*y - 2*y^2)^2 + (x^2 - 2*x*y)^2 - (x^2 - 2*x*y + 2*y^2)^2 = 0
test: 0
n065: (2*x*y - 2*y^2)^2 + (x^2 - 2*x*y)^2 - (x^2 - 2*x*y + 2*y^2)^2 = 0
test: 0
n065: (2*x*y - 2*y^2)^2 + (x^2 - 2*x*y)^2 - (x^2 - 2*x*y + 2*y^2)^2 = 0
test: 0
n103: (2*y - 2*x*y - 2*y^2)^2 + (2*x - x^2 + 2*y - 2*x*y - 1)^2 - (2*x - x^2 + 2*y - 2*x*y - 2*y^2 - 1)^2 = 0
test: 0
n103: (2*y + 2*x*y + 2*y^2)^2 + (2*x + x^2 + 2*y + 2*x*y + 1)^2 - (2*x + x^2 + 2*y + 2*x*y + 2*y^2 + 1)^2 = 0
test: 0
n103: (2*y - 2*x*y + 2*y^2)^2 + (2*x - x^2 - 2*y + 2*x*y - 1)^2 - (2*x - x^2 - 2*y + 2*x*y - 2*y^2 - 1)^2 = 0
test: 0
n103: (2*y + 2*x*y - 2*y^2)^2 + (2*x + x^2 - 2*y - 2*x*y + 1)^2 - (2*x + x^2 - 2*y - 2*x*y + 2*y^2 + 1)^2 = 0
test: 0
n065: (2*x*y + 2*y^2)^2 + (x^2 + 2*x*y)^2 - (x^2 + 2*x*y + 2*y^2)^2 = 0
test: 0
n065: (2*x*y + 2*y^2)^2 + (x^2 + 2*x*y)^2 - (x^2 + 2*x*y + 2*y^2)^2 = 0
test: 0
n065: (2*x*y + 2*y^2)^2 + (x^2 + 2*x*y)^2 - (x^2 + 2*x*y + 2*y^2)^2 = 0
test: 0
n065: (2*x*y + 2*y^2)^2 + (x^2 + 2*x*y)^2 - (x^2 + 2*x*y + 2*y^2)^2 = 0
test: 0
n065: (2*x*y - 2*y^2)^2 + (x^2 - 2*x*y)^2 - (x^2 - 2*x*y + 2*y^2)^2 = 0
test: 0
n065: (2*x*y - 2*y^2)^2 + (x^2 - 2*x*y)^2 - (x^2 - 2*x*y + 2*y^2)^2 = 0
test: 0
n065: (2*x*y - 2*y^2)^2 + (x^2 - 2*x*y)^2 - (x^2 - 2*x*y + 2*y^2)^2 = 0
test: 0
n065: (2*x*y - 2*y^2)^2 + (x^2 - 2*x*y)^2 - (x^2 - 2*x*y + 2*y^2)^2 = 0
test: 0
n065: (2*x*y + 2*y^2)^2 + (x^2 + 2*x*y)^2 - (x^2 + 2*x*y + 2*y^2)^2 = 0
test: 0
n065: (2*x*y + 2*y^2)^2 + (x^2 + 2*x*y)^2 - (x^2 + 2*x*y + 2*y^2)^2 = 0
test: 0
n065: (2*x*y + 2*y^2)^2 + (x^2 + 2*x*y)^2 - (x^2 + 2*x*y + 2*y^2)^2 = 0
test: 0
n065: (2*x*y + 2*y^2)^2 + (x^2 + 2*x*y)^2 - (x^2 + 2*x*y + 2*y^2)^2 = 0
test: 0
n065: (2*x*y - 2*y^2)^2 + (x^2 - 2*x*y)^2 - (x^2 - 2*x*y + 2*y^2)^2 = 0
test: 0
n065: (2*x*y - 2*y^2)^2 + (x^2 - 2*x*y)^2 - (x^2 - 2*x*y + 2*y^2)^2 = 0
test: 0
n065: (2*x*y - 2*y^2)^2 + (x^2 - 2*x*y)^2 - (x^2 - 2*x*y + 2*y^2)^2 = 0
test: 0
n065: (2*x*y - 2*y^2)^2 + (x^2 - 2*x*y)^2 - (x^2 - 2*x*y + 2*y^2)^2 = 0
test: 0
n039: (2*x)^2 + (x^2 - 1)^2 - (x^2 + 1)^2 = 0
test: 0
n039: (2*x)^2 + (x^2 - 1)^2 - (x^2 + 1)^2 = 0
test: 0
n039: (2*x)^2 + (x^2 - 1)^2 - (x^2 + 1)^2 = 0
test: 0
n039: (2*x)^2 + (x^2 - 1)^2 - (x^2 + 1)^2 = 0
test: 0
n039: (2*x)^2 + (x^2 - 1)^2 - (x^2 + 1)^2 = 0
test: 0
n039: (2*x)^2 + (x^2 - 1)^2 - (x^2 + 1)^2 = 0
test: 0
n039: (2*x)^2 + (x^2 - 1)^2 - (x^2 + 1)^2 = 0
test: 0
n039: (2*x)^2 + (x^2 - 1)^2 - (x^2 + 1)^2 = 0
test: 0
n039: (2*x)^2 + (x^2 - 1)^2 - (x^2 + 1)^2 = 0
test: 0
n039: (2*x)^2 + (x^2 - 1)^2 - (x^2 + 1)^2 = 0
test: 0
n039: (2*x)^2 + (x^2 - 1)^2 - (x^2 + 1)^2 = 0
test: 0
n039: (2*x)^2 + (x^2 - 1)^2 - (x^2 + 1)^2 = 0
test: 0
n039: (2*x)^2 + (x^2 - 1)^2 - (x^2 + 1)^2 = 0
test: 0
n039: (2*x)^2 + (x^2 - 1)^2 - (x^2 + 1)^2 = 0
test: 0
n039: (2*x)^2 + (x^2 - 1)^2 - (x^2 + 1)^2 = 0
test: 0
n039: (2*x)^2 + (x^2 - 1)^2 - (x^2 + 1)^2 = 0
test: 0
n051: (2*x + 2)^2 + (2*x + x^2)^2 - (2*x + x^2 + 2)^2 = 0
test: 0
n051: (2*x + 2)^2 + (2*x + x^2)^2 - (2*x + x^2 + 2)^2 = 0
test: 0
n051: (2*x - 2)^2 + (2*x - x^2)^2 - (2*x - x^2 - 2)^2 = 0
test: 0
n051: (2*x - 2)^2 + (2*x - x^2)^2 - (2*x - x^2 - 2)^2 = 0
test: 0
n051: (2*x + 2)^2 + (2*x + x^2)^2 - (2*x + x^2 + 2)^2 = 0
test: 0
n051: (2*x + 2)^2 + (2*x + x^2)^2 - (2*x + x^2 + 2)^2 = 0
test: 0
n051: (2*x - 2)^2 + (2*x - x^2)^2 - (2*x - x^2 - 2)^2 = 0
test: 0
n051: (2*x - 2)^2 + (2*x - x^2)^2 - (2*x - x^2 - 2)^2 = 0
test: 0
n051: (2*x - 2)^2 + (2*x - x^2)^2 - (2*x - x^2 - 2)^2 = 0
test: 0
n051: (2*x - 2)^2 + (2*x - x^2)^2 - (2*x - x^2 - 2)^2 = 0
test: 0
n051: (2*x + 2)^2 + (2*x + x^2)^2 - (2*x + x^2 + 2)^2 = 0
test: 0
n051: (2*x + 2)^2 + (2*x + x^2)^2 - (2*x + x^2 + 2)^2 = 0
test: 0
n051: (2*x - 2)^2 + (2*x - x^2)^2 - (2*x - x^2 - 2)^2 = 0
test: 0
n051: (2*x - 2)^2 + (2*x - x^2)^2 - (2*x - x^2 - 2)^2 = 0
test: 0
n051: (2*x + 2)^2 + (2*x + x^2)^2 - (2*x + x^2 + 2)^2 = 0
test: 0
n051: (2*x + 2)^2 + (2*x + x^2)^2 - (2*x + x^2 + 2)^2 = 0
test: 0
n039: (2*x)^2 + (x^2 - 1)^2 - (x^2 + 1)^2 = 0
test: 0
n039: (2*x)^2 + (x^2 - 1)^2 - (x^2 + 1)^2 = 0
test: 0
n039: (2*x)^2 + (x^2 - 1)^2 - (x^2 + 1)^2 = 0
test: 0
n039: (2*x)^2 + (x^2 - 1)^2 - (x^2 + 1)^2 = 0
test: 0
n039: (2*x)^2 + (x^2 - 1)^2 - (x^2 + 1)^2 = 0
test: 0
n039: (2*x)^2 + (x^2 - 1)^2 - (x^2 + 1)^2 = 0
test: 0
n039: (2*x)^2 + (x^2 - 1)^2 - (x^2 + 1)^2 = 0
test: 0
n039: (2*x)^2 + (x^2 - 1)^2 - (x^2 + 1)^2 = 0
test: 0
n039: (2*x)^2 + (x^2 - 1)^2 - (x^2 + 1)^2 = 0
test: 0
n039: (2*x)^2 + (x^2 - 1)^2 - (x^2 + 1)^2 = 0
test: 0
n039: (2*x)^2 + (x^2 - 1)^2 - (x^2 + 1)^2 = 0
test: 0
n039: (2*x)^2 + (x^2 - 1)^2 - (x^2 + 1)^2 = 0
test: 0
n039: (2*x)^2 + (x^2 - 1)^2 - (x^2 + 1)^2 = 0
test: 0
n039: (2*x)^2 + (x^2 - 1)^2 - (x^2 + 1)^2 = 0
test: 0
n039: (2*x)^2 + (x^2 - 1)^2 - (x^2 + 1)^2 = 0
test: 0
n039: (2*x)^2 + (x^2 - 1)^2 - (x^2 + 1)^2 = 0
test: 0
n051: (2*x + 2)^2 + (2*x + x^2)^2 - (2*x + x^2 + 2)^2 = 0
test: 0
n051: (2*x + 2)^2 + (2*x + x^2)^2 - (2*x + x^2 + 2)^2 = 0
test: 0
n051: (2*x - 2)^2 + (2*x - x^2)^2 - (2*x - x^2 - 2)^2 = 0
test: 0
n051: (2*x - 2)^2 + (2*x - x^2)^2 - (2*x - x^2 - 2)^2 = 0
test: 0
n051: (2*x + 2)^2 + (2*x + x^2)^2 - (2*x + x^2 + 2)^2 = 0
test: 0
n051: (2*x + 2)^2 + (2*x + x^2)^2 - (2*x + x^2 + 2)^2 = 0
test: 0
n051: (2*x - 2)^2 + (2*x - x^2)^2 - (2*x - x^2 - 2)^2 = 0
test: 0
n051: (2*x - 2)^2 + (2*x - x^2)^2 - (2*x - x^2 - 2)^2 = 0
test: 0
n051: (2*x - 2)^2 + (2*x - x^2)^2 - (2*x - x^2 - 2)^2 = 0
test: 0
n051: (2*x - 2)^2 + (2*x - x^2)^2 - (2*x - x^2 - 2)^2 = 0
test: 0
n051: (2*x + 2)^2 + (2*x + x^2)^2 - (2*x + x^2 + 2)^2 = 0
test: 0
n051: (2*x + 2)^2 + (2*x + x^2)^2 - (2*x + x^2 + 2)^2 = 0
test: 0
n051: (2*x - 2)^2 + (2*x - x^2)^2 - (2*x - x^2 - 2)^2 = 0
test: 0
n051: (2*x - 2)^2 + (2*x - x^2)^2 - (2*x - x^2 - 2)^2 = 0
test: 0
n051: (2*x + 2)^2 + (2*x + x^2)^2 - (2*x + x^2 + 2)^2 = 0
test: 0
n051: (2*x + 2)^2 + (2*x + x^2)^2 - (2*x + x^2 + 2)^2 = 0
test: 0
n097: (2*x - 2*y + 2*x*y - 2*y^2)^2 + (x^2 - 2*y - 2*x*y - 1)^2 - (x^2 + 2*y - 2*x*y + 2*y^2 + 1)^2 = 0
test: 0
n097: (2*x - 2*y + 2*x*y - 2*y^2)^2 + (x^2 - 2*y - 2*x*y - 1)^2 - (x^2 + 2*y - 2*x*y + 2*y^2 + 1)^2 = 0
test: 0
n097: (2*x - 2*y - 2*x*y + 2*y^2)^2 + (x^2 + 2*y - 2*x*y - 1)^2 - (x^2 - 2*y - 2*x*y + 2*y^2 + 1)^2 = 0
test: 0
n097: (2*x - 2*y - 2*x*y + 2*y^2)^2 + (x^2 + 2*y - 2*x*y - 1)^2 - (x^2 - 2*y - 2*x*y + 2*y^2 + 1)^2 = 0
test: 0
n097: (2*x + 2*y - 2*x*y - 2*y^2)^2 + (x^2 + 2*y + 2*x*y - 1)^2 - (x^2 - 2*y + 2*x*y + 2*y^2 + 1)^2 = 0
test: 0
n097: (2*x + 2*y - 2*x*y - 2*y^2)^2 + (x^2 + 2*y + 2*x*y - 1)^2 - (x^2 - 2*y + 2*x*y + 2*y^2 + 1)^2 = 0
test: 0
n097: (2*x + 2*y + 2*x*y + 2*y^2)^2 + (x^2 - 2*y + 2*x*y - 1)^2 - (x^2 + 2*y + 2*x*y + 2*y^2 + 1)^2 = 0
test: 0
n097: (2*x + 2*y + 2*x*y + 2*y^2)^2 + (x^2 - 2*y + 2*x*y - 1)^2 - (x^2 + 2*y + 2*x*y + 2*y^2 + 1)^2 = 0
test: 0
n065: (2*x*y - 2*y^2)^2 + (x^2 - 2*x*y)^2 - (x^2 - 2*x*y + 2*y^2)^2 = 0
test: 0
n065: (2*x*y - 2*y^2)^2 + (x^2 - 2*x*y)^2 - (x^2 - 2*x*y + 2*y^2)^2 = 0
test: 0
n065: (2*x*y - 2*y^2)^2 + (x^2 - 2*x*y)^2 - (x^2 - 2*x*y + 2*y^2)^2 = 0
test: 0
n065: (2*x*y - 2*y^2)^2 + (x^2 - 2*x*y)^2 - (x^2 - 2*x*y + 2*y^2)^2 = 0
test: 0
n065: (2*x*y + 2*y^2)^2 + (x^2 + 2*x*y)^2 - (x^2 + 2*x*y + 2*y^2)^2 = 0
test: 0
n065: (2*x*y + 2*y^2)^2 + (x^2 + 2*x*y)^2 - (x^2 + 2*x*y + 2*y^2)^2 = 0
test: 0
n065: (2*x*y + 2*y^2)^2 + (x^2 + 2*x*y)^2 - (x^2 + 2*x*y + 2*y^2)^2 = 0
test: 0
n065: (2*x*y + 2*y^2)^2 + (x^2 + 2*x*y)^2 - (x^2 + 2*x*y + 2*y^2)^2 = 0
test: 0
n065: (2*x*y - 2*y^2)^2 + (x^2 - 2*x*y)^2 - (x^2 - 2*x*y + 2*y^2)^2 = 0
test: 0
n065: (2*x*y - 2*y^2)^2 + (x^2 - 2*x*y)^2 - (x^2 - 2*x*y + 2*y^2)^2 = 0
test: 0
n065: (2*x*y - 2*y^2)^2 + (x^2 - 2*x*y)^2 - (x^2 - 2*x*y + 2*y^2)^2 = 0
test: 0
n065: (2*x*y - 2*y^2)^2 + (x^2 - 2*x*y)^2 - (x^2 - 2*x*y + 2*y^2)^2 = 0
test: 0
n065: (2*x*y + 2*y^2)^2 + (x^2 + 2*x*y)^2 - (x^2 + 2*x*y + 2*y^2)^2 = 0
test: 0
n065: (2*x*y + 2*y^2)^2 + (x^2 + 2*x*y)^2 - (x^2 + 2*x*y + 2*y^2)^2 = 0
test: 0
n065: (2*x*y + 2*y^2)^2 + (x^2 + 2*x*y)^2 - (x^2 + 2*x*y + 2*y^2)^2 = 0
test: 0
n065: (2*x*y + 2*y^2)^2 + (x^2 + 2*x*y)^2 - (x^2 + 2*x*y + 2*y^2)^2 = 0
test: 0
n103: (2*y - 2*x*y + 2*y^2)^2 + (2*x - x^2 - 2*y + 2*x*y - 1)^2 - (2*x - x^2 - 2*y + 2*x*y - 2*y^2 - 1)^2 = 0
test: 0
n103: (2*y + 2*x*y - 2*y^2)^2 + (2*x + x^2 - 2*y - 2*x*y + 1)^2 - (2*x + x^2 - 2*y - 2*x*y + 2*y^2 + 1)^2 = 0
test: 0
n103: (2*y - 2*x*y - 2*y^2)^2 + (2*x - x^2 + 2*y - 2*x*y - 1)^2 - (2*x - x^2 + 2*y - 2*x*y - 2*y^2 - 1)^2 = 0
test: 0
n103: (2*y + 2*x*y + 2*y^2)^2 + (2*x + x^2 + 2*y + 2*x*y + 1)^2 - (2*x + x^2 + 2*y + 2*x*y + 2*y^2 + 1)^2 = 0
test: 0
n065: (2*x*y - 2*y^2)^2 + (x^2 - 2*x*y)^2 - (x^2 - 2*x*y + 2*y^2)^2 = 0
test: 0
n065: (2*x*y - 2*y^2)^2 + (x^2 - 2*x*y)^2 - (x^2 - 2*x*y + 2*y^2)^2 = 0
test: 0
n065: (2*x*y - 2*y^2)^2 + (x^2 - 2*x*y)^2 - (x^2 - 2*x*y + 2*y^2)^2 = 0
test: 0
n065: (2*x*y - 2*y^2)^2 + (x^2 - 2*x*y)^2 - (x^2 - 2*x*y + 2*y^2)^2 = 0
test: 0
n065: (2*x*y + 2*y^2)^2 + (x^2 + 2*x*y)^2 - (x^2 + 2*x*y + 2*y^2)^2 = 0
test: 0
n065: (2*x*y + 2*y^2)^2 + (x^2 + 2*x*y)^2 - (x^2 + 2*x*y + 2*y^2)^2 = 0
test: 0
n065: (2*x*y + 2*y^2)^2 + (x^2 + 2*x*y)^2 - (x^2 + 2*x*y + 2*y^2)^2 = 0
test: 0
n065: (2*x*y + 2*y^2)^2 + (x^2 + 2*x*y)^2 - (x^2 + 2*x*y + 2*y^2)^2 = 0
test: 0
n065: (2*x*y - 2*y^2)^2 + (x^2 - 2*x*y)^2 - (x^2 - 2*x*y + 2*y^2)^2 = 0
test: 0
n065: (2*x*y - 2*y^2)^2 + (x^2 - 2*x*y)^2 - (x^2 - 2*x*y + 2*y^2)^2 = 0
test: 0
n065: (2*x*y - 2*y^2)^2 + (x^2 - 2*x*y)^2 - (x^2 - 2*x*y + 2*y^2)^2 = 0
test: 0
n065: (2*x*y - 2*y^2)^2 + (x^2 - 2*x*y)^2 - (x^2 - 2*x*y + 2*y^2)^2 = 0
test: 0
n065: (2*x*y + 2*y^2)^2 + (x^2 + 2*x*y)^2 - (x^2 + 2*x*y + 2*y^2)^2 = 0
test: 0
n065: (2*x*y + 2*y^2)^2 + (x^2 + 2*x*y)^2 - (x^2 + 2*x*y + 2*y^2)^2 = 0
test: 0
n065: (2*x*y + 2*y^2)^2 + (x^2 + 2*x*y)^2 - (x^2 + 2*x*y + 2*y^2)^2 = 0
test: 0
n065: (2*x*y + 2*y^2)^2 + (x^2 + 2*x*y)^2 - (x^2 + 2*x*y + 2*y^2)^2 = 0
test: 0
n055: (2*x + 1)^2 + (2*x + 2*x^2)^2 - (2*x + 2*x^2 + 1)^2 = 0
test: 0
n055: (2*x + 1)^2 + (2*x + 2*x^2)^2 - (2*x + 2*x^2 + 1)^2 = 0
test: 0
n055: (2*x - 1)^2 + (2*x - 2*x^2)^2 - (2*x - 2*x^2 - 1)^2 = 0
test: 0
n055: (2*x - 1)^2 + (2*x - 2*x^2)^2 - (2*x - 2*x^2 - 1)^2 = 0
test: 0
n055: (2*x + 1)^2 + (2*x + 2*x^2)^2 - (2*x + 2*x^2 + 1)^2 = 0
test: 0
n055: (2*x + 1)^2 + (2*x + 2*x^2)^2 - (2*x + 2*x^2 + 1)^2 = 0
test: 0
n055: (2*x - 1)^2 + (2*x - 2*x^2)^2 - (2*x - 2*x^2 - 1)^2 = 0
test: 0
n055: (2*x - 1)^2 + (2*x - 2*x^2)^2 - (2*x - 2*x^2 - 1)^2 = 0
test: 0
n055: (2*x - 1)^2 + (2*x - 2*x^2)^2 - (2*x - 2*x^2 - 1)^2 = 0
test: 0
n055: (2*x - 1)^2 + (2*x - 2*x^2)^2 - (2*x - 2*x^2 - 1)^2 = 0
test: 0
n055: (2*x + 1)^2 + (2*x + 2*x^2)^2 - (2*x + 2*x^2 + 1)^2 = 0
test: 0
n055: (2*x + 1)^2 + (2*x + 2*x^2)^2 - (2*x + 2*x^2 + 1)^2 = 0
test: 0
n055: (2*x - 1)^2 + (2*x - 2*x^2)^2 - (2*x - 2*x^2 - 1)^2 = 0
test: 0
n055: (2*x - 1)^2 + (2*x - 2*x^2)^2 - (2*x - 2*x^2 - 1)^2 = 0
test: 0
n055: (2*x + 1)^2 + (2*x + 2*x^2)^2 - (2*x + 2*x^2 + 1)^2 = 0
test: 0
n055: (2*x + 1)^2 + (2*x + 2*x^2)^2 - (2*x + 2*x^2 + 1)^2 = 0
test: 0
n055: (2*x + 1)^2 + (2*x + 2*x^2)^2 - (2*x + 2*x^2 + 1)^2 = 0
test: 0
n055: (2*x + 1)^2 + (2*x + 2*x^2)^2 - (2*x + 2*x^2 + 1)^2 = 0
test: 0
n055: (2*x - 1)^2 + (2*x - 2*x^2)^2 - (2*x - 2*x^2 - 1)^2 = 0
test: 0
n055: (2*x - 1)^2 + (2*x - 2*x^2)^2 - (2*x - 2*x^2 - 1)^2 = 0
test: 0
n055: (2*x + 1)^2 + (2*x + 2*x^2)^2 - (2*x + 2*x^2 + 1)^2 = 0
test: 0
n055: (2*x + 1)^2 + (2*x + 2*x^2)^2 - (2*x + 2*x^2 + 1)^2 = 0
test: 0
n055: (2*x - 1)^2 + (2*x - 2*x^2)^2 - (2*x - 2*x^2 - 1)^2 = 0
test: 0
n055: (2*x - 1)^2 + (2*x - 2*x^2)^2 - (2*x - 2*x^2 - 1)^2 = 0
test: 0
n055: (2*x - 1)^2 + (2*x - 2*x^2)^2 - (2*x - 2*x^2 - 1)^2 = 0
test: 0
n055: (2*x - 1)^2 + (2*x - 2*x^2)^2 - (2*x - 2*x^2 - 1)^2 = 0
test: 0
n055: (2*x + 1)^2 + (2*x + 2*x^2)^2 - (2*x + 2*x^2 + 1)^2 = 0
test: 0
n055: (2*x + 1)^2 + (2*x + 2*x^2)^2 - (2*x + 2*x^2 + 1)^2 = 0
test: 0
n055: (2*x - 1)^2 + (2*x - 2*x^2)^2 - (2*x - 2*x^2 - 1)^2 = 0
test: 0
n055: (2*x - 1)^2 + (2*x - 2*x^2)^2 - (2*x - 2*x^2 - 1)^2 = 0
test: 0
n055: (2*x + 1)^2 + (2*x + 2*x^2)^2 - (2*x + 2*x^2 + 1)^2 = 0
test: 0
n055: (2*x + 1)^2 + (2*x + 2*x^2)^2 - (2*x + 2*x^2 + 1)^2 = 0
test: 0
n065: (2*x*y + y^2)^2 + (2*x^2 + 2*x*y)^2 - (2*x^2 + 2*x*y + y^2)^2 = 0
test: 0
n065: (2*x*y + y^2)^2 + (2*x^2 + 2*x*y)^2 - (2*x^2 + 2*x*y + y^2)^2 = 0
test: 0
n065: (2*x*y + y^2)^2 + (2*x^2 + 2*x*y)^2 - (2*x^2 + 2*x*y + y^2)^2 = 0
test: 0
n065: (2*x*y + y^2)^2 + (2*x^2 + 2*x*y)^2 - (2*x^2 + 2*x*y + y^2)^2 = 0
test: 0
n065: (2*x*y - y^2)^2 + (2*x^2 - 2*x*y)^2 - (2*x^2 - 2*x*y + y^2)^2 = 0
test: 0
n065: (2*x*y - y^2)^2 + (2*x^2 - 2*x*y)^2 - (2*x^2 - 2*x*y + y^2)^2 = 0
test: 0
n065: (2*x*y - y^2)^2 + (2*x^2 - 2*x*y)^2 - (2*x^2 - 2*x*y + y^2)^2 = 0
test: 0
n065: (2*x*y - y^2)^2 + (2*x^2 - 2*x*y)^2 - (2*x^2 - 2*x*y + y^2)^2 = 0
test: 0
n065: (2*x*y + y^2)^2 + (2*x^2 + 2*x*y)^2 - (2*x^2 + 2*x*y + y^2)^2 = 0
test: 0
n065: (2*x*y + y^2)^2 + (2*x^2 + 2*x*y)^2 - (2*x^2 + 2*x*y + y^2)^2 = 0
test: 0
n065: (2*x*y + y^2)^2 + (2*x^2 + 2*x*y)^2 - (2*x^2 + 2*x*y + y^2)^2 = 0
test: 0
n065: (2*x*y + y^2)^2 + (2*x^2 + 2*x*y)^2 - (2*x^2 + 2*x*y + y^2)^2 = 0
test: 0
n065: (2*x*y - y^2)^2 + (2*x^2 - 2*x*y)^2 - (2*x^2 - 2*x*y + y^2)^2 = 0
test: 0
n065: (2*x*y - y^2)^2 + (2*x^2 - 2*x*y)^2 - (2*x^2 - 2*x*y + y^2)^2 = 0
test: 0
n065: (2*x*y - y^2)^2 + (2*x^2 - 2*x*y)^2 - (2*x^2 - 2*x*y + y^2)^2 = 0
test: 0
n065: (2*x*y - y^2)^2 + (2*x^2 - 2*x*y)^2 - (2*x^2 - 2*x*y + y^2)^2 = 0
test: 0
n103: (2*x + 2*y + 2*x*y + y^2 + 1)^2 + (2*x + 2*x^2 + 2*x*y)^2 - (2*x + 2*x^2 + 2*y + 2*x*y + y^2 + 1)^2 = 0
test: 0
n103: (2*x + 2*y - 2*x*y - y^2 - 1)^2 + (2*x - 2*x^2 - 2*x*y)^2 - (2*x - 2*x^2 + 2*y - 2*x*y - y^2 - 1)^2 = 0
test: 0
n103: (2*x - 2*y - 2*x*y + y^2 + 1)^2 + (2*x + 2*x^2 - 2*x*y)^2 - (2*x + 2*x^2 - 2*y - 2*x*y + y^2 + 1)^2 = 0
test: 0
n103: (2*x - 2*y + 2*x*y - y^2 - 1)^2 + (2*x - 2*x^2 + 2*x*y)^2 - (2*x - 2*x^2 - 2*y + 2*x*y - y^2 - 1)^2 = 0
test: 0
n065: (2*x*y + y^2)^2 + (2*x^2 + 2*x*y)^2 - (2*x^2 + 2*x*y + y^2)^2 = 0
test: 0
n065: (2*x*y + y^2)^2 + (2*x^2 + 2*x*y)^2 - (2*x^2 + 2*x*y + y^2)^2 = 0
test: 0
n065: (2*x*y + y^2)^2 + (2*x^2 + 2*x*y)^2 - (2*x^2 + 2*x*y + y^2)^2 = 0
test: 0
n065: (2*x*y + y^2)^2 + (2*x^2 + 2*x*y)^2 - (2*x^2 + 2*x*y + y^2)^2 = 0
test: 0
n065: (2*x*y - y^2)^2 + (2*x^2 - 2*x*y)^2 - (2*x^2 - 2*x*y + y^2)^2 = 0
test: 0
n065: (2*x*y - y^2)^2 + (2*x^2 - 2*x*y)^2 - (2*x^2 - 2*x*y + y^2)^2 = 0
test: 0
n065: (2*x*y - y^2)^2 + (2*x^2 - 2*x*y)^2 - (2*x^2 - 2*x*y + y^2)^2 = 0
test: 0
n065: (2*x*y - y^2)^2 + (2*x^2 - 2*x*y)^2 - (2*x^2 - 2*x*y + y^2)^2 = 0
test: 0
n065: (2*x*y + y^2)^2 + (2*x^2 + 2*x*y)^2 - (2*x^2 + 2*x*y + y^2)^2 = 0
test: 0
n065: (2*x*y + y^2)^2 + (2*x^2 + 2*x*y)^2 - (2*x^2 + 2*x*y + y^2)^2 = 0
test: 0
n065: (2*x*y + y^2)^2 + (2*x^2 + 2*x*y)^2 - (2*x^2 + 2*x*y + y^2)^2 = 0
test: 0
n065: (2*x*y + y^2)^2 + (2*x^2 + 2*x*y)^2 - (2*x^2 + 2*x*y + y^2)^2 = 0
test: 0
n065: (2*x*y - y^2)^2 + (2*x^2 - 2*x*y)^2 - (2*x^2 - 2*x*y + y^2)^2 = 0
test: 0
n065: (2*x*y - y^2)^2 + (2*x^2 - 2*x*y)^2 - (2*x^2 - 2*x*y + y^2)^2 = 0
test: 0
n065: (2*x*y - y^2)^2 + (2*x^2 - 2*x*y)^2 - (2*x^2 - 2*x*y + y^2)^2 = 0
test: 0
n065: (2*x*y - y^2)^2 + (2*x^2 - 2*x*y)^2 - (2*x^2 - 2*x*y + y^2)^2 = 0
test: 0
n097: (2*x + 2*x*y + y^2 - 1)^2 + (2*x - 2*x^2 + 2*y - 2*x*y)^2 - (2*x - 2*x^2 - 2*x*y - y^2 - 1)^2 = 0
test: 0
n097: (2*x + 2*x*y + y^2 - 1)^2 + (2*x - 2*x^2 + 2*y - 2*x*y)^2 - (2*x - 2*x^2 - 2*x*y - y^2 - 1)^2 = 0
test: 0
n097: (2*x - 2*x*y - y^2 + 1)^2 + (2*x + 2*x^2 + 2*y + 2*x*y)^2 - (2*x + 2*x^2 + 2*x*y + y^2 + 1)^2 = 0
test: 0
n097: (2*x - 2*x*y - y^2 + 1)^2 + (2*x + 2*x^2 + 2*y + 2*x*y)^2 - (2*x + 2*x^2 + 2*x*y + y^2 + 1)^2 = 0
test: 0
n097: (2*x - 2*x*y + y^2 - 1)^2 + (2*x - 2*x^2 - 2*y + 2*x*y)^2 - (2*x - 2*x^2 + 2*x*y - y^2 - 1)^2 = 0
test: 0
n097: (2*x - 2*x*y + y^2 - 1)^2 + (2*x - 2*x^2 - 2*y + 2*x*y)^2 - (2*x - 2*x^2 + 2*x*y - y^2 - 1)^2 = 0
test: 0
n097: (2*x + 2*x*y - y^2 + 1)^2 + (2*x + 2*x^2 - 2*y - 2*x*y)^2 - (2*x + 2*x^2 - 2*x*y + y^2 + 1)^2 = 0
test: 0
n097: (2*x + 2*x*y - y^2 + 1)^2 + (2*x + 2*x^2 - 2*y - 2*x*y)^2 - (2*x + 2*x^2 - 2*x*y + y^2 + 1)^2 = 0
test: 0
n055: (2*x + 1)^2 + (2*x + 2*x^2)^2 - (2*x + 2*x^2 + 1)^2 = 0
test: 0
n055: (2*x + 1)^2 + (2*x + 2*x^2)^2 - (2*x + 2*x^2 + 1)^2 = 0
test: 0
n055: (2*x - 1)^2 + (2*x - 2*x^2)^2 - (2*x - 2*x^2 - 1)^2 = 0
test: 0
n055: (2*x - 1)^2 + (2*x - 2*x^2)^2 - (2*x - 2*x^2 - 1)^2 = 0
test: 0
n055: (2*x + 1)^2 + (2*x + 2*x^2)^2 - (2*x + 2*x^2 + 1)^2 = 0
test: 0
n055: (2*x + 1)^2 + (2*x + 2*x^2)^2 - (2*x + 2*x^2 + 1)^2 = 0
test: 0
n055: (2*x - 1)^2 + (2*x - 2*x^2)^2 - (2*x - 2*x^2 - 1)^2 = 0
test: 0
n055: (2*x - 1)^2 + (2*x - 2*x^2)^2 - (2*x - 2*x^2 - 1)^2 = 0
test: 0
n055: (2*x - 1)^2 + (2*x - 2*x^2)^2 - (2*x - 2*x^2 - 1)^2 = 0
test: 0
n055: (2*x - 1)^2 + (2*x - 2*x^2)^2 - (2*x - 2*x^2 - 1)^2 = 0
test: 0
n055: (2*x + 1)^2 + (2*x + 2*x^2)^2 - (2*x + 2*x^2 + 1)^2 = 0
test: 0
n055: (2*x + 1)^2 + (2*x + 2*x^2)^2 - (2*x + 2*x^2 + 1)^2 = 0
test: 0
n055: (2*x - 1)^2 + (2*x - 2*x^2)^2 - (2*x - 2*x^2 - 1)^2 = 0
test: 0
n055: (2*x - 1)^2 + (2*x - 2*x^2)^2 - (2*x - 2*x^2 - 1)^2 = 0
test: 0
n055: (2*x + 1)^2 + (2*x + 2*x^2)^2 - (2*x + 2*x^2 + 1)^2 = 0
test: 0
n055: (2*x + 1)^2 + (2*x + 2*x^2)^2 - (2*x + 2*x^2 + 1)^2 = 0
test: 0
n055: (2*x + 1)^2 + (2*x + 2*x^2)^2 - (2*x + 2*x^2 + 1)^2 = 0
test: 0
n055: (2*x + 1)^2 + (2*x + 2*x^2)^2 - (2*x + 2*x^2 + 1)^2 = 0
test: 0
n055: (2*x - 1)^2 + (2*x - 2*x^2)^2 - (2*x - 2*x^2 - 1)^2 = 0
test: 0
n055: (2*x - 1)^2 + (2*x - 2*x^2)^2 - (2*x - 2*x^2 - 1)^2 = 0
test: 0
n055: (2*x + 1)^2 + (2*x + 2*x^2)^2 - (2*x + 2*x^2 + 1)^2 = 0
test: 0
n055: (2*x + 1)^2 + (2*x + 2*x^2)^2 - (2*x + 2*x^2 + 1)^2 = 0
test: 0
n055: (2*x - 1)^2 + (2*x - 2*x^2)^2 - (2*x - 2*x^2 - 1)^2 = 0
test: 0
n055: (2*x - 1)^2 + (2*x - 2*x^2)^2 - (2*x - 2*x^2 - 1)^2 = 0
test: 0
n055: (2*x - 1)^2 + (2*x - 2*x^2)^2 - (2*x - 2*x^2 - 1)^2 = 0
test: 0
n055: (2*x - 1)^2 + (2*x - 2*x^2)^2 - (2*x - 2*x^2 - 1)^2 = 0
test: 0
n055: (2*x + 1)^2 + (2*x + 2*x^2)^2 - (2*x + 2*x^2 + 1)^2 = 0
test: 0
n055: (2*x + 1)^2 + (2*x + 2*x^2)^2 - (2*x + 2*x^2 + 1)^2 = 0
test: 0
n055: (2*x - 1)^2 + (2*x - 2*x^2)^2 - (2*x - 2*x^2 - 1)^2 = 0
test: 0
n055: (2*x - 1)^2 + (2*x - 2*x^2)^2 - (2*x - 2*x^2 - 1)^2 = 0
test: 0
n055: (2*x + 1)^2 + (2*x + 2*x^2)^2 - (2*x + 2*x^2 + 1)^2 = 0
test: 0
n055: (2*x + 1)^2 + (2*x + 2*x^2)^2 - (2*x + 2*x^2 + 1)^2 = 0
test: 0
n065: (2*x*y - y^2)^2 + (2*x^2 - 2*x*y)^2 - (2*x^2 - 2*x*y + y^2)^2 = 0
test: 0
n065: (2*x*y - y^2)^2 + (2*x^2 - 2*x*y)^2 - (2*x^2 - 2*x*y + y^2)^2 = 0
test: 0
n065: (2*x*y - y^2)^2 + (2*x^2 - 2*x*y)^2 - (2*x^2 - 2*x*y + y^2)^2 = 0
test: 0
n065: (2*x*y - y^2)^2 + (2*x^2 - 2*x*y)^2 - (2*x^2 - 2*x*y + y^2)^2 = 0
test: 0
n065: (2*x*y + y^2)^2 + (2*x^2 + 2*x*y)^2 - (2*x^2 + 2*x*y + y^2)^2 = 0
test: 0
n065: (2*x*y + y^2)^2 + (2*x^2 + 2*x*y)^2 - (2*x^2 + 2*x*y + y^2)^2 = 0
test: 0
n065: (2*x*y + y^2)^2 + (2*x^2 + 2*x*y)^2 - (2*x^2 + 2*x*y + y^2)^2 = 0
test: 0
n065: (2*x*y + y^2)^2 + (2*x^2 + 2*x*y)^2 - (2*x^2 + 2*x*y + y^2)^2 = 0
test: 0
n065: (2*x*y - y^2)^2 + (2*x^2 - 2*x*y)^2 - (2*x^2 - 2*x*y + y^2)^2 = 0
test: 0
n065: (2*x*y - y^2)^2 + (2*x^2 - 2*x*y)^2 - (2*x^2 - 2*x*y + y^2)^2 = 0
test: 0
n065: (2*x*y - y^2)^2 + (2*x^2 - 2*x*y)^2 - (2*x^2 - 2*x*y + y^2)^2 = 0
test: 0
n065: (2*x*y - y^2)^2 + (2*x^2 - 2*x*y)^2 - (2*x^2 - 2*x*y + y^2)^2 = 0
test: 0
n065: (2*x*y + y^2)^2 + (2*x^2 + 2*x*y)^2 - (2*x^2 + 2*x*y + y^2)^2 = 0
test: 0
n065: (2*x*y + y^2)^2 + (2*x^2 + 2*x*y)^2 - (2*x^2 + 2*x*y + y^2)^2 = 0
test: 0
n065: (2*x*y + y^2)^2 + (2*x^2 + 2*x*y)^2 - (2*x^2 + 2*x*y + y^2)^2 = 0
test: 0
n065: (2*x*y + y^2)^2 + (2*x^2 + 2*x*y)^2 - (2*x^2 + 2*x*y + y^2)^2 = 0
test: 0
n097: (2*x + 2*x*y - y^2 + 1)^2 + (2*x + 2*x^2 - 2*y - 2*x*y)^2 - (2*x + 2*x^2 - 2*x*y + y^2 + 1)^2 = 0
test: 0
n097: (2*x + 2*x*y - y^2 + 1)^2 + (2*x + 2*x^2 - 2*y - 2*x*y)^2 - (2*x + 2*x^2 - 2*x*y + y^2 + 1)^2 = 0
test: 0
n097: (2*x - 2*x*y + y^2 - 1)^2 + (2*x - 2*x^2 - 2*y + 2*x*y)^2 - (2*x - 2*x^2 + 2*x*y - y^2 - 1)^2 = 0
test: 0
n097: (2*x - 2*x*y + y^2 - 1)^2 + (2*x - 2*x^2 - 2*y + 2*x*y)^2 - (2*x - 2*x^2 + 2*x*y - y^2 - 1)^2 = 0
test: 0
n097: (2*x - 2*x*y - y^2 + 1)^2 + (2*x + 2*x^2 + 2*y + 2*x*y)^2 - (2*x + 2*x^2 + 2*x*y + y^2 + 1)^2 = 0
test: 0
n097: (2*x - 2*x*y - y^2 + 1)^2 + (2*x + 2*x^2 + 2*y + 2*x*y)^2 - (2*x + 2*x^2 + 2*x*y + y^2 + 1)^2 = 0
test: 0
n097: (2*x + 2*x*y + y^2 - 1)^2 + (2*x - 2*x^2 + 2*y - 2*x*y)^2 - (2*x - 2*x^2 - 2*x*y - y^2 - 1)^2 = 0
test: 0
n097: (2*x + 2*x*y + y^2 - 1)^2 + (2*x - 2*x^2 + 2*y - 2*x*y)^2 - (2*x - 2*x^2 - 2*x*y - y^2 - 1)^2 = 0
test: 0
n065: (2*x*y - y^2)^2 + (2*x^2 - 2*x*y)^2 - (2*x^2 - 2*x*y + y^2)^2 = 0
test: 0
n065: (2*x*y - y^2)^2 + (2*x^2 - 2*x*y)^2 - (2*x^2 - 2*x*y + y^2)^2 = 0
test: 0
n065: (2*x*y - y^2)^2 + (2*x^2 - 2*x*y)^2 - (2*x^2 - 2*x*y + y^2)^2 = 0
test: 0
n065: (2*x*y - y^2)^2 + (2*x^2 - 2*x*y)^2 - (2*x^2 - 2*x*y + y^2)^2 = 0
test: 0
n065: (2*x*y + y^2)^2 + (2*x^2 + 2*x*y)^2 - (2*x^2 + 2*x*y + y^2)^2 = 0
test: 0
n065: (2*x*y + y^2)^2 + (2*x^2 + 2*x*y)^2 - (2*x^2 + 2*x*y + y^2)^2 = 0
test: 0
n065: (2*x*y + y^2)^2 + (2*x^2 + 2*x*y)^2 - (2*x^2 + 2*x*y + y^2)^2 = 0
test: 0
n065: (2*x*y + y^2)^2 + (2*x^2 + 2*x*y)^2 - (2*x^2 + 2*x*y + y^2)^2 = 0
test: 0
n065: (2*x*y - y^2)^2 + (2*x^2 - 2*x*y)^2 - (2*x^2 - 2*x*y + y^2)^2 = 0
test: 0
n065: (2*x*y - y^2)^2 + (2*x^2 - 2*x*y)^2 - (2*x^2 - 2*x*y + y^2)^2 = 0
test: 0
n065: (2*x*y - y^2)^2 + (2*x^2 - 2*x*y)^2 - (2*x^2 - 2*x*y + y^2)^2 = 0
test: 0
n065: (2*x*y - y^2)^2 + (2*x^2 - 2*x*y)^2 - (2*x^2 - 2*x*y + y^2)^2 = 0
test: 0
n065: (2*x*y + y^2)^2 + (2*x^2 + 2*x*y)^2 - (2*x^2 + 2*x*y + y^2)^2 = 0
test: 0
n065: (2*x*y + y^2)^2 + (2*x^2 + 2*x*y)^2 - (2*x^2 + 2*x*y + y^2)^2 = 0
test: 0
n065: (2*x*y + y^2)^2 + (2*x^2 + 2*x*y)^2 - (2*x^2 + 2*x*y + y^2)^2 = 0
test: 0
n065: (2*x*y + y^2)^2 + (2*x^2 + 2*x*y)^2 - (2*x^2 + 2*x*y + y^2)^2 = 0
test: 0
n103: (2*x - 2*y + 2*x*y - y^2 - 1)^2 + (2*x - 2*x^2 + 2*x*y)^2 - (2*x - 2*x^2 - 2*y + 2*x*y - y^2 - 1)^2 = 0
test: 0
n103: (2*x - 2*y - 2*x*y + y^2 + 1)^2 + (2*x + 2*x^2 - 2*x*y)^2 - (2*x + 2*x^2 - 2*y - 2*x*y + y^2 + 1)^2 = 0
test: 0
n103: (2*x + 2*y - 2*x*y - y^2 - 1)^2 + (2*x - 2*x^2 - 2*x*y)^2 - (2*x - 2*x^2 + 2*y - 2*x*y - y^2 - 1)^2 = 0
test: 0
n103: (2*x + 2*y + 2*x*y + y^2 + 1)^2 + (2*x + 2*x^2 + 2*x*y)^2 - (2*x + 2*x^2 + 2*y + 2*x*y + y^2 + 1)^2 = 0
test: 0
n055: (2*x + 1)^2 + (2*x + 2*x^2)^2 - (2*x + 2*x^2 + 1)^2 = 0
test: 0
n055: (2*x + 1)^2 + (2*x + 2*x^2)^2 - (2*x + 2*x^2 + 1)^2 = 0
test: 0
n055: (2*x - 1)^2 + (2*x - 2*x^2)^2 - (2*x - 2*x^2 - 1)^2 = 0
test: 0
n055: (2*x - 1)^2 + (2*x - 2*x^2)^2 - (2*x - 2*x^2 - 1)^2 = 0
test: 0
n055: (2*x + 1)^2 + (2*x + 2*x^2)^2 - (2*x + 2*x^2 + 1)^2 = 0
test: 0
n055: (2*x + 1)^2 + (2*x + 2*x^2)^2 - (2*x + 2*x^2 + 1)^2 = 0
test: 0
n055: (2*x - 1)^2 + (2*x - 2*x^2)^2 - (2*x - 2*x^2 - 1)^2 = 0
test: 0
n055: (2*x - 1)^2 + (2*x - 2*x^2)^2 - (2*x - 2*x^2 - 1)^2 = 0
test: 0
n055: (2*x - 1)^2 + (2*x - 2*x^2)^2 - (2*x - 2*x^2 - 1)^2 = 0
test: 0
n055: (2*x - 1)^2 + (2*x - 2*x^2)^2 - (2*x - 2*x^2 - 1)^2 = 0
test: 0
n055: (2*x + 1)^2 + (2*x + 2*x^2)^2 - (2*x + 2*x^2 + 1)^2 = 0
test: 0
n055: (2*x + 1)^2 + (2*x + 2*x^2)^2 - (2*x + 2*x^2 + 1)^2 = 0
test: 0
n055: (2*x - 1)^2 + (2*x - 2*x^2)^2 - (2*x - 2*x^2 - 1)^2 = 0
test: 0
n055: (2*x - 1)^2 + (2*x - 2*x^2)^2 - (2*x - 2*x^2 - 1)^2 = 0
test: 0
n055: (2*x + 1)^2 + (2*x + 2*x^2)^2 - (2*x + 2*x^2 + 1)^2 = 0
test: 0
n055: (2*x + 1)^2 + (2*x + 2*x^2)^2 - (2*x + 2*x^2 + 1)^2 = 0
test: 0
n055: (2*x + 1)^2 + (2*x + 2*x^2)^2 - (2*x + 2*x^2 + 1)^2 = 0
test: 0
n055: (2*x + 1)^2 + (2*x + 2*x^2)^2 - (2*x + 2*x^2 + 1)^2 = 0
test: 0
n055: (2*x - 1)^2 + (2*x - 2*x^2)^2 - (2*x - 2*x^2 - 1)^2 = 0
test: 0
n055: (2*x - 1)^2 + (2*x - 2*x^2)^2 - (2*x - 2*x^2 - 1)^2 = 0
test: 0
n055: (2*x + 1)^2 + (2*x + 2*x^2)^2 - (2*x + 2*x^2 + 1)^2 = 0
test: 0
n055: (2*x + 1)^2 + (2*x + 2*x^2)^2 - (2*x + 2*x^2 + 1)^2 = 0
test: 0
n055: (2*x - 1)^2 + (2*x - 2*x^2)^2 - (2*x - 2*x^2 - 1)^2 = 0
test: 0
n055: (2*x - 1)^2 + (2*x - 2*x^2)^2 - (2*x - 2*x^2 - 1)^2 = 0
test: 0
n055: (2*x - 1)^2 + (2*x - 2*x^2)^2 - (2*x - 2*x^2 - 1)^2 = 0
test: 0
n055: (2*x - 1)^2 + (2*x - 2*x^2)^2 - (2*x - 2*x^2 - 1)^2 = 0
test: 0
n055: (2*x + 1)^2 + (2*x + 2*x^2)^2 - (2*x + 2*x^2 + 1)^2 = 0
test: 0
n055: (2*x + 1)^2 + (2*x + 2*x^2)^2 - (2*x + 2*x^2 + 1)^2 = 0
test: 0
n055: (2*x - 1)^2 + (2*x - 2*x^2)^2 - (2*x - 2*x^2 - 1)^2 = 0
test: 0
n055: (2*x - 1)^2 + (2*x - 2*x^2)^2 - (2*x - 2*x^2 - 1)^2 = 0
test: 0
n055: (2*x + 1)^2 + (2*x + 2*x^2)^2 - (2*x + 2*x^2 + 1)^2 = 0
test: 0
n055: (2*x + 1)^2 + (2*x + 2*x^2)^2 - (2*x + 2*x^2 + 1)^2 = 0
test: 0
n065: (2*x*y + y^2)^2 + (2*x^2 + 2*x*y)^2 - (2*x^2 + 2*x*y + y^2)^2 = 0
test: 0
n065: (2*x*y + y^2)^2 + (2*x^2 + 2*x*y)^2 - (2*x^2 + 2*x*y + y^2)^2 = 0
test: 0
n065: (2*x*y + y^2)^2 + (2*x^2 + 2*x*y)^2 - (2*x^2 + 2*x*y + y^2)^2 = 0
test: 0
n065: (2*x*y + y^2)^2 + (2*x^2 + 2*x*y)^2 - (2*x^2 + 2*x*y + y^2)^2 = 0
test: 0
n065: (2*x*y - y^2)^2 + (2*x^2 - 2*x*y)^2 - (2*x^2 - 2*x*y + y^2)^2 = 0
test: 0
n065: (2*x*y - y^2)^2 + (2*x^2 - 2*x*y)^2 - (2*x^2 - 2*x*y + y^2)^2 = 0
test: 0
n065: (2*x*y - y^2)^2 + (2*x^2 - 2*x*y)^2 - (2*x^2 - 2*x*y + y^2)^2 = 0
test: 0
n065: (2*x*y - y^2)^2 + (2*x^2 - 2*x*y)^2 - (2*x^2 - 2*x*y + y^2)^2 = 0
test: 0
n065: (2*x*y + y^2)^2 + (2*x^2 + 2*x*y)^2 - (2*x^2 + 2*x*y + y^2)^2 = 0
test: 0
n065: (2*x*y + y^2)^2 + (2*x^2 + 2*x*y)^2 - (2*x^2 + 2*x*y + y^2)^2 = 0
test: 0
n065: (2*x*y + y^2)^2 + (2*x^2 + 2*x*y)^2 - (2*x^2 + 2*x*y + y^2)^2 = 0
test: 0
n065: (2*x*y + y^2)^2 + (2*x^2 + 2*x*y)^2 - (2*x^2 + 2*x*y + y^2)^2 = 0
test: 0
n065: (2*x*y - y^2)^2 + (2*x^2 - 2*x*y)^2 - (2*x^2 - 2*x*y + y^2)^2 = 0
test: 0
n065: (2*x*y - y^2)^2 + (2*x^2 - 2*x*y)^2 - (2*x^2 - 2*x*y + y^2)^2 = 0
test: 0
n065: (2*x*y - y^2)^2 + (2*x^2 - 2*x*y)^2 - (2*x^2 - 2*x*y + y^2)^2 = 0
test: 0
n065: (2*x*y - y^2)^2 + (2*x^2 - 2*x*y)^2 - (2*x^2 - 2*x*y + y^2)^2 = 0
test: 0
n103: (2*x + 2*y + 2*x*y + y^2 + 1)^2 + (2*x + 2*x^2 + 2*x*y)^2 - (2*x + 2*x^2 + 2*y + 2*x*y + y^2 + 1)^2 = 0
test: 0
n103: (2*x + 2*y - 2*x*y - y^2 - 1)^2 + (2*x - 2*x^2 - 2*x*y)^2 - (2*x - 2*x^2 + 2*y - 2*x*y - y^2 - 1)^2 = 0
test: 0
n103: (2*x - 2*y - 2*x*y + y^2 + 1)^2 + (2*x + 2*x^2 - 2*x*y)^2 - (2*x + 2*x^2 - 2*y - 2*x*y + y^2 + 1)^2 = 0
test: 0
n103: (2*x - 2*y + 2*x*y - y^2 - 1)^2 + (2*x - 2*x^2 + 2*x*y)^2 - (2*x - 2*x^2 - 2*y + 2*x*y - y^2 - 1)^2 = 0
test: 0
n065: (2*x*y + y^2)^2 + (2*x^2 + 2*x*y)^2 - (2*x^2 + 2*x*y + y^2)^2 = 0
test: 0
n065: (2*x*y + y^2)^2 + (2*x^2 + 2*x*y)^2 - (2*x^2 + 2*x*y + y^2)^2 = 0
test: 0
n065: (2*x*y + y^2)^2 + (2*x^2 + 2*x*y)^2 - (2*x^2 + 2*x*y + y^2)^2 = 0
test: 0
n065: (2*x*y + y^2)^2 + (2*x^2 + 2*x*y)^2 - (2*x^2 + 2*x*y + y^2)^2 = 0
test: 0
n065: (2*x*y - y^2)^2 + (2*x^2 - 2*x*y)^2 - (2*x^2 - 2*x*y + y^2)^2 = 0
test: 0
n065: (2*x*y - y^2)^2 + (2*x^2 - 2*x*y)^2 - (2*x^2 - 2*x*y + y^2)^2 = 0
test: 0
n065: (2*x*y - y^2)^2 + (2*x^2 - 2*x*y)^2 - (2*x^2 - 2*x*y + y^2)^2 = 0
test: 0
n065: (2*x*y - y^2)^2 + (2*x^2 - 2*x*y)^2 - (2*x^2 - 2*x*y + y^2)^2 = 0
test: 0
n065: (2*x*y + y^2)^2 + (2*x^2 + 2*x*y)^2 - (2*x^2 + 2*x*y + y^2)^2 = 0
test: 0
n065: (2*x*y + y^2)^2 + (2*x^2 + 2*x*y)^2 - (2*x^2 + 2*x*y + y^2)^2 = 0
test: 0
n065: (2*x*y + y^2)^2 + (2*x^2 + 2*x*y)^2 - (2*x^2 + 2*x*y + y^2)^2 = 0
test: 0
n065: (2*x*y + y^2)^2 + (2*x^2 + 2*x*y)^2 - (2*x^2 + 2*x*y + y^2)^2 = 0
test: 0
n065: (2*x*y - y^2)^2 + (2*x^2 - 2*x*y)^2 - (2*x^2 - 2*x*y + y^2)^2 = 0
test: 0
n065: (2*x*y - y^2)^2 + (2*x^2 - 2*x*y)^2 - (2*x^2 - 2*x*y + y^2)^2 = 0
test: 0
n065: (2*x*y - y^2)^2 + (2*x^2 - 2*x*y)^2 - (2*x^2 - 2*x*y + y^2)^2 = 0
test: 0
n065: (2*x*y - y^2)^2 + (2*x^2 - 2*x*y)^2 - (2*x^2 - 2*x*y + y^2)^2 = 0
test: 0
n097: (2*x + 2*x*y + y^2 - 1)^2 + (2*x - 2*x^2 + 2*y - 2*x*y)^2 - (2*x - 2*x^2 - 2*x*y - y^2 - 1)^2 = 0
test: 0
n097: (2*x + 2*x*y + y^2 - 1)^2 + (2*x - 2*x^2 + 2*y - 2*x*y)^2 - (2*x - 2*x^2 - 2*x*y - y^2 - 1)^2 = 0
test: 0
n097: (2*x - 2*x*y - y^2 + 1)^2 + (2*x + 2*x^2 + 2*y + 2*x*y)^2 - (2*x + 2*x^2 + 2*x*y + y^2 + 1)^2 = 0
test: 0
n097: (2*x - 2*x*y - y^2 + 1)^2 + (2*x + 2*x^2 + 2*y + 2*x*y)^2 - (2*x + 2*x^2 + 2*x*y + y^2 + 1)^2 = 0
test: 0
n097: (2*x - 2*x*y + y^2 - 1)^2 + (2*x - 2*x^2 - 2*y + 2*x*y)^2 - (2*x - 2*x^2 + 2*x*y - y^2 - 1)^2 = 0
test: 0
n097: (2*x - 2*x*y + y^2 - 1)^2 + (2*x - 2*x^2 - 2*y + 2*x*y)^2 - (2*x - 2*x^2 + 2*x*y - y^2 - 1)^2 = 0
test: 0
n097: (2*x + 2*x*y - y^2 + 1)^2 + (2*x + 2*x^2 - 2*y - 2*x*y)^2 - (2*x + 2*x^2 - 2*x*y + y^2 + 1)^2 = 0
test: 0
n097: (2*x + 2*x*y - y^2 + 1)^2 + (2*x + 2*x^2 - 2*y - 2*x*y)^2 - (2*x + 2*x^2 - 2*x*y + y^2 + 1)^2 = 0
test: 0
n055: (2*x + 1)^2 + (2*x + 2*x^2)^2 - (2*x + 2*x^2 + 1)^2 = 0
test: 0
n055: (2*x + 1)^2 + (2*x + 2*x^2)^2 - (2*x + 2*x^2 + 1)^2 = 0
test: 0
n055: (2*x - 1)^2 + (2*x - 2*x^2)^2 - (2*x - 2*x^2 - 1)^2 = 0
test: 0
n055: (2*x - 1)^2 + (2*x - 2*x^2)^2 - (2*x - 2*x^2 - 1)^2 = 0
test: 0
n055: (2*x + 1)^2 + (2*x + 2*x^2)^2 - (2*x + 2*x^2 + 1)^2 = 0
test: 0
n055: (2*x + 1)^2 + (2*x + 2*x^2)^2 - (2*x + 2*x^2 + 1)^2 = 0
test: 0
n055: (2*x - 1)^2 + (2*x - 2*x^2)^2 - (2*x - 2*x^2 - 1)^2 = 0
test: 0
n055: (2*x - 1)^2 + (2*x - 2*x^2)^2 - (2*x - 2*x^2 - 1)^2 = 0
test: 0
n055: (2*x - 1)^2 + (2*x - 2*x^2)^2 - (2*x - 2*x^2 - 1)^2 = 0
test: 0
n055: (2*x - 1)^2 + (2*x - 2*x^2)^2 - (2*x - 2*x^2 - 1)^2 = 0
test: 0
n055: (2*x + 1)^2 + (2*x + 2*x^2)^2 - (2*x + 2*x^2 + 1)^2 = 0
test: 0
n055: (2*x + 1)^2 + (2*x + 2*x^2)^2 - (2*x + 2*x^2 + 1)^2 = 0
test: 0
n055: (2*x - 1)^2 + (2*x - 2*x^2)^2 - (2*x - 2*x^2 - 1)^2 = 0
test: 0
n055: (2*x - 1)^2 + (2*x - 2*x^2)^2 - (2*x - 2*x^2 - 1)^2 = 0
test: 0
n055: (2*x + 1)^2 + (2*x + 2*x^2)^2 - (2*x + 2*x^2 + 1)^2 = 0
test: 0
n055: (2*x + 1)^2 + (2*x + 2*x^2)^2 - (2*x + 2*x^2 + 1)^2 = 0
test: 0
n055: (2*x + 1)^2 + (2*x + 2*x^2)^2 - (2*x + 2*x^2 + 1)^2 = 0
test: 0
n055: (2*x + 1)^2 + (2*x + 2*x^2)^2 - (2*x + 2*x^2 + 1)^2 = 0
test: 0
n055: (2*x - 1)^2 + (2*x - 2*x^2)^2 - (2*x - 2*x^2 - 1)^2 = 0
test: 0
n055: (2*x - 1)^2 + (2*x - 2*x^2)^2 - (2*x - 2*x^2 - 1)^2 = 0
test: 0
n055: (2*x + 1)^2 + (2*x + 2*x^2)^2 - (2*x + 2*x^2 + 1)^2 = 0
test: 0
n055: (2*x + 1)^2 + (2*x + 2*x^2)^2 - (2*x + 2*x^2 + 1)^2 = 0
test: 0
n055: (2*x - 1)^2 + (2*x - 2*x^2)^2 - (2*x - 2*x^2 - 1)^2 = 0
test: 0
n055: (2*x - 1)^2 + (2*x - 2*x^2)^2 - (2*x - 2*x^2 - 1)^2 = 0
test: 0
n055: (2*x - 1)^2 + (2*x - 2*x^2)^2 - (2*x - 2*x^2 - 1)^2 = 0
test: 0
n055: (2*x - 1)^2 + (2*x - 2*x^2)^2 - (2*x - 2*x^2 - 1)^2 = 0
test: 0
n055: (2*x + 1)^2 + (2*x + 2*x^2)^2 - (2*x + 2*x^2 + 1)^2 = 0
test: 0
n055: (2*x + 1)^2 + (2*x + 2*x^2)^2 - (2*x + 2*x^2 + 1)^2 = 0
test: 0
n055: (2*x - 1)^2 + (2*x - 2*x^2)^2 - (2*x - 2*x^2 - 1)^2 = 0
test: 0
n055: (2*x - 1)^2 + (2*x - 2*x^2)^2 - (2*x - 2*x^2 - 1)^2 = 0
test: 0
n055: (2*x + 1)^2 + (2*x + 2*x^2)^2 - (2*x + 2*x^2 + 1)^2 = 0
test: 0
n055: (2*x + 1)^2 + (2*x + 2*x^2)^2 - (2*x + 2*x^2 + 1)^2 = 0
test: 0
n065: (2*x*y - y^2)^2 + (2*x^2 - 2*x*y)^2 - (2*x^2 - 2*x*y + y^2)^2 = 0
test: 0
n065: (2*x*y - y^2)^2 + (2*x^2 - 2*x*y)^2 - (2*x^2 - 2*x*y + y^2)^2 = 0
test: 0
n065: (2*x*y - y^2)^2 + (2*x^2 - 2*x*y)^2 - (2*x^2 - 2*x*y + y^2)^2 = 0
test: 0
n065: (2*x*y - y^2)^2 + (2*x^2 - 2*x*y)^2 - (2*x^2 - 2*x*y + y^2)^2 = 0
test: 0
n065: (2*x*y + y^2)^2 + (2*x^2 + 2*x*y)^2 - (2*x^2 + 2*x*y + y^2)^2 = 0
test: 0
n065: (2*x*y + y^2)^2 + (2*x^2 + 2*x*y)^2 - (2*x^2 + 2*x*y + y^2)^2 = 0
test: 0
n065: (2*x*y + y^2)^2 + (2*x^2 + 2*x*y)^2 - (2*x^2 + 2*x*y + y^2)^2 = 0
test: 0
n065: (2*x*y + y^2)^2 + (2*x^2 + 2*x*y)^2 - (2*x^2 + 2*x*y + y^2)^2 = 0
test: 0
n065: (2*x*y - y^2)^2 + (2*x^2 - 2*x*y)^2 - (2*x^2 - 2*x*y + y^2)^2 = 0
test: 0
n065: (2*x*y - y^2)^2 + (2*x^2 - 2*x*y)^2 - (2*x^2 - 2*x*y + y^2)^2 = 0
test: 0
n065: (2*x*y - y^2)^2 + (2*x^2 - 2*x*y)^2 - (2*x^2 - 2*x*y + y^2)^2 = 0
test: 0
n065: (2*x*y - y^2)^2 + (2*x^2 - 2*x*y)^2 - (2*x^2 - 2*x*y + y^2)^2 = 0
test: 0
n065: (2*x*y + y^2)^2 + (2*x^2 + 2*x*y)^2 - (2*x^2 + 2*x*y + y^2)^2 = 0
test: 0
n065: (2*x*y + y^2)^2 + (2*x^2 + 2*x*y)^2 - (2*x^2 + 2*x*y + y^2)^2 = 0
test: 0
n065: (2*x*y + y^2)^2 + (2*x^2 + 2*x*y)^2 - (2*x^2 + 2*x*y + y^2)^2 = 0
test: 0
n065: (2*x*y + y^2)^2 + (2*x^2 + 2*x*y)^2 - (2*x^2 + 2*x*y + y^2)^2 = 0
test: 0
n097: (2*x + 2*x*y - y^2 + 1)^2 + (2*x + 2*x^2 - 2*y - 2*x*y)^2 - (2*x + 2*x^2 - 2*x*y + y^2 + 1)^2 = 0
test: 0
n097: (2*x + 2*x*y - y^2 + 1)^2 + (2*x + 2*x^2 - 2*y - 2*x*y)^2 - (2*x + 2*x^2 - 2*x*y + y^2 + 1)^2 = 0
test: 0
n097: (2*x - 2*x*y + y^2 - 1)^2 + (2*x - 2*x^2 - 2*y + 2*x*y)^2 - (2*x - 2*x^2 + 2*x*y - y^2 - 1)^2 = 0
test: 0
n097: (2*x - 2*x*y + y^2 - 1)^2 + (2*x - 2*x^2 - 2*y + 2*x*y)^2 - (2*x - 2*x^2 + 2*x*y - y^2 - 1)^2 = 0
test: 0
n097: (2*x - 2*x*y - y^2 + 1)^2 + (2*x + 2*x^2 + 2*y + 2*x*y)^2 - (2*x + 2*x^2 + 2*x*y + y^2 + 1)^2 = 0
test: 0
n097: (2*x - 2*x*y - y^2 + 1)^2 + (2*x + 2*x^2 + 2*y + 2*x*y)^2 - (2*x + 2*x^2 + 2*x*y + y^2 + 1)^2 = 0
test: 0
n097: (2*x + 2*x*y + y^2 - 1)^2 + (2*x - 2*x^2 + 2*y - 2*x*y)^2 - (2*x - 2*x^2 - 2*x*y - y^2 - 1)^2 = 0
test: 0
n097: (2*x + 2*x*y + y^2 - 1)^2 + (2*x - 2*x^2 + 2*y - 2*x*y)^2 - (2*x - 2*x^2 - 2*x*y - y^2 - 1)^2 = 0
test: 0
n065: (2*x*y - y^2)^2 + (2*x^2 - 2*x*y)^2 - (2*x^2 - 2*x*y + y^2)^2 = 0
test: 0
n065: (2*x*y - y^2)^2 + (2*x^2 - 2*x*y)^2 - (2*x^2 - 2*x*y + y^2)^2 = 0
test: 0
n065: (2*x*y - y^2)^2 + (2*x^2 - 2*x*y)^2 - (2*x^2 - 2*x*y + y^2)^2 = 0
test: 0
n065: (2*x*y - y^2)^2 + (2*x^2 - 2*x*y)^2 - (2*x^2 - 2*x*y + y^2)^2 = 0
test: 0
n065: (2*x*y + y^2)^2 + (2*x^2 + 2*x*y)^2 - (2*x^2 + 2*x*y + y^2)^2 = 0
test: 0
n065: (2*x*y + y^2)^2 + (2*x^2 + 2*x*y)^2 - (2*x^2 + 2*x*y + y^2)^2 = 0
test: 0
n065: (2*x*y + y^2)^2 + (2*x^2 + 2*x*y)^2 - (2*x^2 + 2*x*y + y^2)^2 = 0
test: 0
n065: (2*x*y + y^2)^2 + (2*x^2 + 2*x*y)^2 - (2*x^2 + 2*x*y + y^2)^2 = 0
test: 0
n065: (2*x*y - y^2)^2 + (2*x^2 - 2*x*y)^2 - (2*x^2 - 2*x*y + y^2)^2 = 0
test: 0
n065: (2*x*y - y^2)^2 + (2*x^2 - 2*x*y)^2 - (2*x^2 - 2*x*y + y^2)^2 = 0
test: 0
n065: (2*x*y - y^2)^2 + (2*x^2 - 2*x*y)^2 - (2*x^2 - 2*x*y + y^2)^2 = 0
test: 0
n065: (2*x*y - y^2)^2 + (2*x^2 - 2*x*y)^2 - (2*x^2 - 2*x*y + y^2)^2 = 0
test: 0
n065: (2*x*y + y^2)^2 + (2*x^2 + 2*x*y)^2 - (2*x^2 + 2*x*y + y^2)^2 = 0
test: 0
n065: (2*x*y + y^2)^2 + (2*x^2 + 2*x*y)^2 - (2*x^2 + 2*x*y + y^2)^2 = 0
test: 0
n065: (2*x*y + y^2)^2 + (2*x^2 + 2*x*y)^2 - (2*x^2 + 2*x*y + y^2)^2 = 0
test: 0
n065: (2*x*y + y^2)^2 + (2*x^2 + 2*x*y)^2 - (2*x^2 + 2*x*y + y^2)^2 = 0
test: 0
n103: (2*x - 2*y + 2*x*y - y^2 - 1)^2 + (2*x - 2*x^2 + 2*x*y)^2 - (2*x - 2*x^2 - 2*y + 2*x*y - y^2 - 1)^2 = 0
test: 0
n103: (2*x - 2*y - 2*x*y + y^2 + 1)^2 + (2*x + 2*x^2 - 2*x*y)^2 - (2*x + 2*x^2 - 2*y - 2*x*y + y^2 + 1)^2 = 0
test: 0
n103: (2*x + 2*y - 2*x*y - y^2 - 1)^2 + (2*x - 2*x^2 - 2*x*y)^2 - (2*x - 2*x^2 + 2*y - 2*x*y - y^2 - 1)^2 = 0
test: 0
n103: (2*x + 2*y + 2*x*y + y^2 + 1)^2 + (2*x + 2*x^2 + 2*x*y)^2 - (2*x + 2*x^2 + 2*y + 2*x*y + y^2 + 1)^2 = 0
test: 0
|
762a2443caf31673bcf3c58ddd0091820b65b656
|
c0c48c5a363ac2c0bf21e72833d72a99771dc6ce
|
/Simulation_Codes/lab10_18i190002/ex2c.sce
|
f329f842db1dabb1f1ce911fa67a224c251c6cda
|
[] |
no_license
|
shubham1166/Operarions_Research_Projects
|
3b6664b83d89b2a005b5194489bfd0d95cafe3d8
|
8f28eea93d9e4ff3d6a8e95160c3f9464ce2fc34
|
refs/heads/main
| 2023-03-14T02:48:42.359247
| 2021-03-03T05:51:28
| 2021-03-03T05:51:28
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 135
|
sce
|
ex2c.sce
|
clc,clear,clf
exec('input3.sce',-1)
scatter(S(:,1),S(:,2),xlabel('---x-->'),ylabel('---y --->'),title('Scatter plot of points in S'))
|
68ea98ae59d02e02c04844e101baa82b37002132
|
0592c9e4cfbb77a0755aff6f0c798d9fe31f6ff4
|
/nsp/scripts/price-portfolio.sce
|
cb11e123916d3e9b38dd55519ea2be7d6baa7790
|
[] |
no_license
|
FinancialEngineerLab/premia-13-cpp_FICC
|
e19caa6a9cadb4ad1361053efc0dfc9418071cf9
|
e271da627dbfc8c2c1f7e9f700766544f64c72b2
|
refs/heads/master
| 2023-03-16T11:11:26.830681
| 2016-04-19T05:58:16
| 2016-04-19T05:58:16
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 295
|
sce
|
price-portfolio.sce
|
HOME=getenv("HOME") + "/";
PREMIADIR=HOME + "devel/premia/trunk-dev";
exec(PREMIADIR + '/nsp/libpremia/loader.sce');
premia_init()
pb_list = PBLIST;
t=cputime();
Lpb=pb_list;
for pb=Lpb'
printf("job %s\n",pb)
load(pb);
P.compute[];
end
t=t - cputime();
printf ("cpu : %f\n", t);
|
41d50eb204b47c7dfff6db2f0b6689210a5d26c6
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/896/CH5/EX5.5/5.sce
|
9a1349d6f6e615a974c42a377a6b9126058eaa7d
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 299
|
sce
|
5.sce
|
clc
//Example 5.5
//calculate the velocity of water flowing out of a nozzle
g=32.2//ft/s^2
h=30//ft
M_air=29//dimentionless (molecular weight)
M_CO2=44//dimentionless (molecular weight)
v=(2*g*h*(1-(M_air/M_CO2)))^0.5//ft/s
printf("The velocity of water flowing out of nozzle is %f ft/s",v);
|
1b05ba0175be8320808b46d3932aeca081036267
|
8217f7986187902617ad1bf89cb789618a90dd0a
|
/source/2.3/macros/algebre/projspec.sci
|
6e12897e76c6e685b6ec4d8cba9bc862dadc2fe3
|
[
"MIT",
"LicenseRef-scancode-warranty-disclaimer",
"LicenseRef-scancode-public-domain"
] |
permissive
|
clg55/Scilab-Workbench
|
4ebc01d2daea5026ad07fbfc53e16d4b29179502
|
9f8fd29c7f2a98100fa9aed8b58f6768d24a1875
|
refs/heads/master
| 2023-05-31T04:06:22.931111
| 2022-09-13T14:41:51
| 2022-09-13T14:41:51
| 258,270,193
| 0
| 1
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,308
|
sci
|
projspec.sci
|
function [S,P,D,index]=projspec(A,tol)
//[S,P,D,index]=projspec(A)
//Spectral characteristics of A at 0
//S = reduced resolvent at 0 (S=-Drazin_inverse(A))
//P = spectral projection at 0
//D = Nilpotent operator at 0
//index = index of the 0 eigenvalue
//Author F.D.
//!
[LHS,RHS]=argn(0)
[n,n]=size(A);
if RHS==1 then tol=1.d-8;end;
// A=0 ?
if norm(A,1) < %eps*n*n
P=eye(A),D=A,S=0*P;index=1;end
// nonsingular A: index 0
if rcond(A) > tol
S=inv(A),P=0*eye(A);D=P;index=0;return;
end;
write(%io(2),' rank A^k rcond')
// index 1
index=1;
[B,C,dim]=fullrf(A);
if dim==0
P=eye(n,n);S=0*P;D=A;return
end;
Ck=C;Bk=B;write(%io(2),[dim,rcond(C*B)],'(7x,f3.0,6x,e9.3)');
if norm(Ck*Bk,1)*rcond(Ck*Bk) > tol then
M=inv(C*B);P=eye(A)-B*M*C;S=B*M*M*C;D=0*A;return
end
// Higher index
for k=2:n
[B,C,dim]=fullrf(C*B);
if dim==0
P=eye(n,n);S=0*P;D=A;index=k;return;
end;
Bk=Bk*B;Ck=C*Ck; // Bk*Ck = A^k (Full rank factorization)
index=k;write(%io(2),[dim,rcond(C*B)],'(7x,f3.0,6x,e9.3)');
if norm(C*B)*rcond(C*B) > tol,
M=inv((C*B)**index); // M=inv(Ck*Bk); (Alternative computation)
P=eye(n,n)-Bk*M*Ck; // P=eye(n,n)-Bk*inv(Ck*Bk)*Ck; (")
S=Bk*M*inv(C*B)*Ck; // S=inv(A-P-D)+P (")
D=0.5*(A*P+P*A);return;
end
end;
|
3535950040164a535562e2a655aa520f74d8ea62
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/998/CH29/EX29.36/Ex36.sce
|
753d08934c8939286434501979c5aacb19109d7b
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 385
|
sce
|
Ex36.sce
|
//Ex:36
clc;
clear;
close;
e_irp=51;// EIRP in dbW
g_t=13.12;//G/T ratio in db/k
l_fs=205.34;//free space loss in db
l_ab=0.17;//atmospheric absorption loss in db
df=16;// in MHz
f_v=5;// in MHz
B=df+2*f_v;// in MHz
k=1.38*10^(-23);// Boltzmann's const in J/K
k_b=k*B*10^6;
kB=10*log(k_b)/log(10);
c_n=e_irp-l_fs+g_t-l_ab-kB;
printf("carrier to noise ratio=%f dbw",c_n);
|
7363e079b9393077252c6d398b5831091e83ff59
|
978b15852ad0d9219e0cd69e9da3a9140b84aa97
|
/exo5+exo6/Jacobi+GausseSeidel.sce
|
ee74aef8593fd268842229cd2dc011c489b9e930
|
[] |
no_license
|
nadine867/TP_CN
|
cd2acc700471c7f595ada5f2b799b43ca44590ce
|
fcf09074e27723ca3e9b1eec870386c848b190f9
|
refs/heads/master
| 2023-02-03T04:07:38.525606
| 2020-12-18T20:23:55
| 2020-12-18T20:23:55
| 316,060,516
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,331
|
sce
|
Jacobi+GausseSeidel.sce
|
function[sol,relres,resvec,niter]=jacobi(A,b,tol,nmaxit)
x0=zeros(n,1);
normb=norm(b);
resvec=zeros(nmaxit,1);
res=b-A*x0;
relres=norm(res)/normb;
D=(1.)./diag(A);
niter=0;
while(relres>tol) &(niter<nmaxit)
niter=niter+1;
sol =x0 + D.*res;
x0=sol;
res=b-A*x0;
relres=norm(res)/normb;
resvec(niter)=relres;
end
endfunction
function[sol,relres,resve,niter]= gauss_seidel(A,b,tol,nmaxit)
x0=zeros(n,1);
normb=norm(b);
resve=zeros(nmaxit,1);
res=b-A*x0;
relres=norm(res)/normb;
DmE=tril(A);
niter=0;
while(relres>tol) & (niter<nmaxit)
niter=niter+1;
sol =DmE\res;
sol=sol+x0;
x0=sol;
res=b-A*x0;
relres=norm(res)/normb;
resve(niter)=relres;
end
endfunction
n=3
A=[2 -1 0;-1 2 -1;0 -1 2]
b=[1; 4; 3]
[sol,relres,resvec,niter]= jacobi(A,b,0.01,50)
[sol,relres,resve,niter]= gauss_seidel(A,b,0.01,50)
figure;
plot(1:niter,log10(resvec));
plot(1:nter,log10(resve),'r');
|
120779e26b56f98ebc0cfccedb79c59be0cdfabc
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2213/CH4/EX4.31/ex_4_31.sce
|
729c99024c5a031b9dedb7a6f4fc80d2055219b8
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 742
|
sce
|
ex_4_31.sce
|
//Example 4.31//size and number of projector
clc;
clear;
close;
format('v',6)
watt=[300,500,1000,1500];
lum=[5000,9000,18000,27000];//
el=50;// in lux
dp=0.8;//depreciation factor
wlf=0.5;//waste light factor
uf=1.2;//utiliazation factor
l=60;// in meters
b=15;// in meters
lw=1000;// mscp in watts
a=l*b;//arean in m^2
tl=a*el//total lumens
lwp=((tl*uf)/(wlf*dp));//lumens reaching on the working plane
n = lwp/lum(2);//number of projector required
ang=2*atand(4.5/8);//size
disp(ceil(n+1),"number of projectors are,=")
disp(watt(2),"wattage is,(W)=")
disp(ceil(ang+1),"beam angle is,(degree)=")
disp(""+string(round(n)+1)+ " projectors of "+string(watt(2))+" watts each with beam angle of "+string(round(ang+1))+" degree will be required")
|
745d2c97ff1bae40c8f31d44b1e406fa7e508a22
|
44399e43f8dd4d0a7c8d41f5f407ee36ce8ab651
|
/Puntofijo2.sce
|
47acdf026e4c48f445c8d71ff7a0eacba71047cc
|
[] |
no_license
|
BanderoChinoZF/MetodosNumericos_SciLab
|
e021c3f11e25f7216e0b2b3b015d0737e176edfa
|
eec9fcaa3ff226ca058f515d72b6558923421ad9
|
refs/heads/master
| 2022-11-13T12:33:03.241216
| 2020-07-02T07:00:42
| 2020-07-02T07:00:42
| 276,572,495
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 817
|
sce
|
Puntofijo2.sce
|
function f = fx(x)
//f = (3/(x-2))
//f = x^3 + 2*x^2 +10*x - 20
f = sqrt(x)-cos(x)
endfunction
n=0;
Xo=input('Xo: ');
E=input('Ingrese la tolerancia: ');
n_ite=input("Ingrese el num de iteraciones: ")
fXo=feval(Xo,fx);
eror=10;
it=0;
disp('n f(xi) |Error|')
while (eror>=E)
if(eror>=E)
Xo=fXo;
valorant=fXo;
fXo=feval(Xo,fx);
valoract=fXo;
end
if(n_ite==it)
break;
end
n = n+1;
it = it +1;
eror=abs(valoract-valorant);
printf("%1.0f %2.5f %5.5f %1.5f\n",n,Xo,fXo,eror);
end
printf("\nLa raiz de fx es:%12.5f\n",valoract);
printf("Con una tolerancia de: %1.5f \n",eror);
|
4faca97ac0f77413fa94abe77abdc51244d76ba5
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1208/CH9/EX9.5/Exa5.sce
|
69579a1ead423c8602a5966e9edba00b991e8d6d
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,127
|
sce
|
Exa5.sce
|
//Exa3
clc;
clear;
close;
//given data :
SQa=100//in Kgs
AQa=90//in Kgs
SPa=2//in rupees per Kgs
APa=2.20//in rupees per Kgs
SQb=50//in kg
AQb=60//in Kg
SPb=5//in rupees per Kg
APb=4.50//in rupees per Kg
//(i) MUVa
MUVa=SPa*(SQa-AQa);//in rupees
//(ii) MPVa
MPVa=AQa*(SPa-APa);//in rupees
//(iii) MCVa
MCVa=(SQa*SPa)-(AQa*APa);//in rupees
//(i) MUVb
MUVb=SPb*(SQb-AQb);//in rupees
//(ii) MPVb
MPVb=AQb*(SPb-APb);//in rupees
//(iii) MCVb
MCVb=(SQb*SPb)-(AQb*APb);//in rupees
RSQa=(SQa*150)/(SQa+SQb);
RSQb=(SQb*150)/(SQa+SQb);
//(iv) MMVa
MMVa=SPa*(RSQa-AQa);
//(iv) MMVb
MMVb=SPb*(RSQb-AQb);
//(v) MSUVa
MSUVa=SPa*(SQa-RSQa);
//(v) MSUVb
MSUVb=SPb*(SQb-RSQb);
//material A
disp("Variances for material A")
disp(MUVa,"MUV=");
disp(MPVa,"MPV=");
disp(MCVa,"MCV=");
disp(MMVa,"MMV=");
disp(MSUVa,"MSUV=")
//material B
disp("Variances for material B")
disp(MUVb,"MUV=");
disp(MPVb,"MPV=");
disp(MCVb,"MCV=");
disp(MMVb,"MMV=");
disp(MSUVb,"MSUV=")
disp("Note : ")
disp("Negative variances indicate adverse value ");
disp("Positive variances indicate favourable value ")
|
ff3a0aa619e106034ee1a8abc3a29b9aac1aaa51
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1970/CH6/EX6.13/Ch06Exa13.sce
|
c8d2b33afadf9119a0ef2ba0fcf1e18870c5eb85
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 599
|
sce
|
Ch06Exa13.sce
|
// Scilab code Exa6.13: : Page-245 (2011)
clc; clear;
Q_EC = 850; // Q value for holmium 161, keV
B_p = 2.0; // Binding energy for p-orbital electron, keV
B_s = 1.8; // Binding energy for s-orbital electron, keV
M_ratio = 0.05*(Q_EC-B_p)^2/(Q_EC-B_s)^2; // Matrix ratio
Q_EC = 2.5; // Q value for holmium 163, keV
C_rate = M_ratio*(Q_EC-B_s)^2/(Q_EC-B_p)^2*100; // The relative capture rate in holmium, percent
printf("\nThe relative capture rate in holmium 161 = %3.1f percent", C_rate);
// Result
// The relative capture rate in holmium 161 = 9.8 percent
|
cf051d3097c5e6427820b8a82a534950d60c2f74
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/635/CH5/EX5.21/Ch05Ex21.sci
|
6d251c65c662957ee469ee5ff5d9ebd1e825cca5
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 565
|
sci
|
Ch05Ex21.sci
|
// Scilab Code Ex5.21 Determining tilt angle from dislocation spacing in the boundary of Cu: Page-188 (2010)
a = 3.61e-010; // Lattice parameter of Cu, m
b = a/sqrt(2); // Burger vector magnitude for fcc Cu, m
h = 1.5e-06; // The vertical spacing between two neighbouring edge dislocations, m
theta = atand(b/h)*(%pi/180); // tangent of tilt angle between two tilt boundaries of Cu, radian
printf("\nThe tilt angle between two tilt boundaries of Cu = %3.1e radian", theta);
// Result
// The tilt angle between two tilt boundaries of Cu = 1.7e-004 radian
|
8989389285f5fe3b02dd8d1b6a740665adb165d2
|
8277b4cef8c96ff5b520fc43b2200dc67ea6b2ed
|
/exp5.sce
|
5ec7289fe9e0f4474dd18ec7699128c13d25eacc
|
[] |
no_license
|
divyashah98/OST
|
5f7f3acf268fb9ab7e4ae889229e87d9ad31e6be
|
214ee78db4e98e6387fca13cbe889054f3d9c298
|
refs/heads/master
| 2020-03-24T20:12:02.774742
| 2018-09-25T05:08:32
| 2018-09-25T05:08:32
| 142,964,900
| 1
| 1
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 420
|
sce
|
exp5.sce
|
clc;
clear all;
[y fs] = wavread('s1.wav', [6000, 7999])
sound(y)
n = length(y);
//Plotting audio file against time
t = 1:n
figure(1)
plot(t, y)
//Finding Fs and length of audio file
disp(fs, "fs = ")
disp(n, "length of y = ")
//Finding FFT
//Plotting FFT magnitude against sample number
f = abs(fft(y))
k = 0:(n - 1)
figure(2)
plot(k, f)
//Plotting FFT magnitude against frequency
w = (k/n)*fs
figure(3)
plot(w, f)
|
05e2a7468330fbc804862b06ecb58de2acfa4822
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1931/CH8/EX8.12/12.sce
|
af681418fd5f188847ef81ac3cf094bd90ea1abc
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 499
|
sce
|
12.sce
|
clc
clear
//INPUT DATA
a=1.5*10^-10//each side of cubicalbox in m
n1=1//for lowest energy
n2=1//for lowest energy
n3=1//for lowest energy
h=6.625*10^-34//Planck's constant in m^2 Kg /sec
m=9.11*10^-31//mass of electron in Kg
e=1.6*10^-19//charge of electron in coulombs
//CALCULATION
n=(n1^2+n2^2+n3^2)//total value of n
E=((n*h^2)/(8*m*a^2*e))//The lowest energy of electron ina cubical box in eV
//OUTPUT
printf('The lowest energy of electron ina cubical box is %3.2f in eV',E)
|
3035ea1a0eeaa2d3434fa130b54e58e6e2c8f515
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2120/CH4/EX4.11/ex4_11.sce
|
b8a28c798607042fc2d08c3c74ce5227b7ed2efa
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 805
|
sce
|
ex4_11.sce
|
// Exa 4.11
clc;
clear;
close;
// Given data
T1 = 127;// in °C
T1 = T1 + 273;// in K
R = 287;
V1 = 300;// in m/s
p1 = 2;// in MPa
p2 = 0.5;// in MPa
p1 = p1 * 10^6;// in Pa
p2 = p2 * 10^6;// in Pa
C_P = 1.005*10^3;// in J/ kg-K
Gamma = 1.4;
V2 = sqrt(2 * C_P *T1 *{1-(p2/p1)^((Gamma-1)/Gamma)} + V1^2);// in m/s
disp(V2,"The exit velocity of air in m/s is : ");
m = 600;// in kg/hr
m = m / 3600;// in kg/sec
v1 = (R * T1)/p1;// in m^3 per kg
// m = (A1*V1)/v1 = (A2* V2)/v2
A1 = (m * v1)/V1;// in m^2
A1 = A1 * 10^6;// in mm^2
disp(A1,"Inlet area of the nozzle in square milimeter is : ");
T2 = T1*(p2/p1)^((Gamma-1)/Gamma);// in K
v2 = (R * T2)/(p2);// in m^3/kg
A2 = (m * v2)/V2;// in m^2
A2 = A2 * 10^6;// in mm^2
disp(A2,"Exit area of nozzel in square milimeter is : ");
|
650ce800be5284517950c6f5fc337c905aa7acbc
|
f04d3d47f893de08cd99a31b4870112915b80d5b
|
/Datasets/diabetes/data12.tst
|
f2f9711161a5ed10245a2c334f253fd4c5f1b718
|
[] |
no_license
|
MesumRaza/MyWorkInPython
|
f5364b8514943e44c7200123653da9f4551251b1
|
bd8c9b3ca2fb02ae6d2b626054fa3cd32c28b330
|
refs/heads/master
| 2021-08-19T21:46:41.412995
| 2017-11-27T13:37:52
| 2017-11-27T13:37:52
| 111,728,604
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 4,550
|
tst
|
data12.tst
|
0.235294 0.552764 0.622951 0.20202 0.118203 0.423249 0.0170794 0.1 class0
0.352941 0.40201 0.655738 0.363636 0 0.593145 0.0422716 0.116667 class0
0.588235 0.577889 0 0 0 0 0.0781383 0.15 class1
0.117647 0.638191 0.377049 0.212121 0.395981 0.512668 0.0418446 0.0166667 class0
0.529412 0.824121 0.639344 0 0 0.488823 0.029889 0.4 class1
0.117647 0.467337 0.52459 0.323232 0.189125 0.566319 0.254483 0.0333333 class1
0.176471 0.79397 0.52459 0.131313 0.457447 0.464978 0.0926558 0.05 class0
0.294118 0.633166 0.639344 0.272727 0.0260047 0.441133 0.154142 0.316667 class0
0.588235 0.648241 0.508197 0.363636 0 0.614009 0.154996 0.283333 class1
0 0.673367 0.47541 0.20202 0.343972 0.393443 0.116994 0 class0
0.176471 0.512563 0.606557 0 0 0.439642 0.0183604 0.183333 class0
0.411765 0.939698 0.409836 0.333333 0.463357 0.505216 0.319385 0.216667 class1
0.176471 0.869347 0.639344 0.393939 0.218676 0.503726 0.380871 0.166667 class1
0.588235 0.472362 0.590164 0.181818 0 0.344262 0.220751 0.583333 class0
0.0588235 0.542714 0.491803 0.464646 0.210402 0.529061 0.143894 0.05 class0
0.294118 0.487437 0.622951 0.272727 0 0.530551 0.128096 0.516667 class1
0.235294 0.417085 0.704918 0.191919 0 0.436662 0.10205 0.216667 class0
0.0588235 0.572864 0.540984 0.363636 0.236407 0.567809 0.0900939 0 class0
0.0588235 0.748744 0.557377 0.292929 0.150118 0.436662 0.115713 0.35 class1
0.294118 0.58794 0.704918 0.30303 0.124113 0.582712 0.0738685 0.35 class0
0.0588235 0.557789 0.770492 0 0 0.488823 0.0798463 0.4 class0
0.235294 0.562814 0.639344 0.40404 0 0.587183 0.0674637 0.283333 class0
0.0588235 0.582915 0.639344 0.292929 0.212766 0.538003 0.17848 0.0666667 class0
0 0.708543 0.688525 0.262626 0 0.482861 0.15158 0.0166667 class0
0.117647 0.879397 0.721311 0 0 0.341282 0.105892 0.0166667 class0
0.117647 0.462312 0.42623 0 0 0.448584 0.0269001 0.0166667 class0
0.176471 0.653266 0.639344 0.232323 0.0933806 0.423249 0.104611 0.216667 class1
0.470588 0.603015 0.704918 0 0 0.423249 0.0772844 0.0166667 class1
0.117647 0.874372 0.721311 0.373737 0.141844 0.663189 0.242528 0.05 class1
0.117647 0.532663 0.459016 0.272727 0.195035 0.432191 0.148591 0.0166667 class0
0.117647 0.527638 0.614754 0 0 0.347243 0.205807 0.533333 class0
0.235294 0.477387 0.491803 0.323232 0 0.527571 0.087959 0.116667 class0
0 0.633166 0.704918 0.272727 0.141844 0.408346 0.186593 0 class0
0.470588 0.326633 0.590164 0.232323 0 0.4769 0.222886 0.35 class0
0.117647 0.497487 0.491803 0.171717 0.189125 0.545455 0.16012 0 class0
0.0588235 0.512563 0.606557 0 0 0.588674 0.0918019 0.35 class1
0.647059 0.603015 0.655738 0.373737 0.177305 0.630402 0.301879 0.45 class1
0.176471 0.512563 0.360656 0.20202 0.111111 0.459016 0.137489 0.0833333 class0
0.0588235 0.547739 0.47541 0.181818 0.137116 0.424739 0.060205 0.0166667 class0
0.529412 0.703518 0.770492 0 0 0.487332 0.280102 0.4 class1
0.764706 0.768844 0.721311 0.373737 0.165485 0.605067 0.467976 0.3 class0
0.705882 0.502513 0.688525 0.333333 0.124113 0.447094 0.175064 0.416667 class0
0.0588235 0.738693 0.770492 0.414141 0 0.734724 0.119556 0.1 class1
0.0588235 0.407035 0.606557 0.414141 0.0673759 0.690015 0.434671 0.183333 class0
0.176471 0.939698 0.57377 0.222222 0.236407 0.542474 0.140905 0.25 class1
0.352941 0.81407 0.508197 0 0 0.362146 0.0426985 0.483333 class1
0.235294 0.683417 0.57377 0 0 0.464978 0.471392 0.0166667 class1
0.0588235 0.60804 0.639344 0.393939 0.0874704 0.581222 0.0781383 0.116667 class0
0.176471 0.542714 0.508197 0.242424 0 0.387481 0.0619129 0.0666667 class0
0 0.909548 0.721311 0.444444 0.602837 0.645306 0.0614859 0.0833333 class1
0.470588 0.773869 0.639344 0.323232 0 0.482861 0.15585 0.4 class1
0.0588235 0.643216 0.721311 0.393939 0.130024 0.543964 0.418019 0.266667 class1
0.411765 0.688442 0.737705 0.414141 0 0.4769 0.133646 0.3 class0
0 0.61809 0.590164 0 0 0.540984 0.0768574 0.516667 class1
0.0588235 0.532663 0.622951 0 0 0.558867 0.0508113 0.0833333 class0
0.352941 0.954774 0.754098 0 0 0.529061 0.0853971 0.75 class1
0.117647 0.442211 0.47541 0.262626 0.0189125 0.423249 0.293766 0.0166667 class0
0.529412 0.854271 0.606557 0.313131 0 0.655738 0.13877 0.366667 class1
0.529412 0.447236 0.508197 0 0 0.33532 0.0273271 0.2 class0
0.588235 0.507538 0.622951 0.484848 0.212766 0.490313 0.0397096 0.7 class0
0.117647 0.613065 0.57377 0.272727 0 0.548435 0.11187 0.1 class0
0.294118 0.60804 0.590164 0.232323 0.132388 0.390462 0.0713066 0.15 class0
0.0588235 0.633166 0.491803 0 0 0.448584 0.115713 0.433333 class1
0.0588235 0.467337 0.57377 0.313131 0 0.453055 0.101196 0.0333333 class0
|
c0fb7ac54d803cae523fc71942d07d7f9d00bed8
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/135/CH1/EX1.2/EX2.sce
|
720ec27ae4b09a8ca6b7830cd8d776125afdaa39
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 418
|
sce
|
EX2.sce
|
// Example 1.2: Electric field intensity, Voltage
clc, clear
l=3e-3; // Length of the bar in metres
a=50*10*1e-12; // Cross-sectional area in metres square
I=2e-6; // Current in amperes
rho=2.3e3; // Resistivity in ohm metres
E=I*rho/a; // Electric field intensity in volt per metres
V=E*l; // Voltage across the bar in volt
disp(E,"Electic field intensity (V/m) = ");
disp(V,"Voltage across the bar (V) = ");
|
e61394e4fa68b622d23d378f1f5be2ba454b64c8
|
94c9fb094976265935872b32b6e6a4fd9454ef31
|
/tp1/surface.sce
|
b7a010a73826de9f4de1290f407f9bf7e81ca295
|
[] |
no_license
|
dtbinh/tp-scilab
|
6d2373af479d9cb1d1494f3ccc5abcae0697b8ac
|
4c41c77eb4a4021022fa91614cfe4f7a4417f4e5
|
refs/heads/master
| 2021-01-10T12:23:53.166922
| 2013-12-19T17:23:18
| 2013-12-19T17:23:18
| 49,208,752
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 255
|
sce
|
surface.sce
|
w0=-118.0:0.1:-116.0;
w1=9.0:0.1:11.0;
//[W0,W1] = meshgrid(w0,w1);
[r1, c1] = size(w0');
[r2, c2] = size(w1');
for i=1:r1
for j=1:r2
e = M*[w0(i) w1(j)]' - t;
E(i,j)=1/r1*e'*e;
end;
end;
x = w0;
y = w1;
z = E;
figure();
plot3d(x, y, z);
|
cc42a16b4cd835fdc6b093c902d9a60221ff6828
|
7b040f1a7bbc570e36aab9b2ccf77a9e59d3e5c2
|
/Scilab/virtual/2dof_controller/dc/lqg/scilab/lqg_mac1.sce
|
def4e72fff5d4e78b182c8a0ab24e4c3a797cb6f
|
[] |
no_license
|
advait23/sbhs-manual
|
e2c380051117e3a36398bb5ad046781f7b379cb9
|
d65043acd98334c44a0f0dbf480473c4c4451834
|
refs/heads/master
| 2021-01-16T19:50:40.218314
| 2012-11-16T04:11:12
| 2012-11-16T04:11:12
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 396
|
sce
|
lqg_mac1.sce
|
// Updated(19-7-07)
// 13.5
// MacGregor's first control problem
A = [1 -1.4 0.45]; dA = 2; C = [1 -0.5]; dC = 1;
B = 0.5*[1 -0.9]; dB = 1; k = 1; int1 = 0; F = 1; dF = 0;
V = 1; W = 1; dV = 0; dW = 0;
rho = 1;
getf lqg1.sci;
[R1,dR1,Sc,dSc] = lqg1(A,dA,B,dB,C,dC,k,rho,V,dV,W,dW,F,dF)
[Nu,dNu,Du,dDu,Ny,dNy,Dy,dDy,yvar,uvar] = ...
cl(A,dA,B,dB,C,dC,k,Sc,dSc,R1,dR1,int1);
|
88a7c994548a8f26acd3c55758483cb7a574d9c9
|
8217f7986187902617ad1bf89cb789618a90dd0a
|
/browsable_source/2.5/Unix-Windows/scilab-2.5/tests/examples/xpolys.man.tst
|
1d4c0b406e63f3faf3f9bed79ed9b3482ffaa3b2
|
[
"LicenseRef-scancode-public-domain",
"LicenseRef-scancode-warranty-disclaimer"
] |
permissive
|
clg55/Scilab-Workbench
|
4ebc01d2daea5026ad07fbfc53e16d4b29179502
|
9f8fd29c7f2a98100fa9aed8b58f6768d24a1875
|
refs/heads/master
| 2023-05-31T04:06:22.931111
| 2022-09-13T14:41:51
| 2022-09-13T14:41:51
| 258,270,193
| 0
| 1
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 143
|
tst
|
xpolys.man.tst
|
clear;lines(0);
plot2d(0,0,-1,"012"," ",[0,0,1,1])
rand("uniform")
xset("pattern",3)
xpolys(rand(3,5),rand(3,5),[-1,-2,0,1,2])
xset("default")
|
58d5bafd6cdf36230763b7aff2fd7dfeb1f16a3b
|
1a00eb132340e145c8a7d8fd0ef79a02b24605a2
|
/help/fr_En/DCMOTOR_SB.tst
|
bebb34147731cecffab69fb2b67af36b049d36ba
|
[] |
no_license
|
manasdas17/Scilab-Arduino-Toolbox
|
e848d75dc810cb0700df34b1e5c606802631ada4
|
2a6c9d3f9f2e656e1f201cecccd4adfe737175e7
|
refs/heads/master
| 2018-12-28T15:51:35.378091
| 2015-08-06T07:22:15
| 2015-08-06T07:22:15
| 37,854,821
| 3
| 2
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 2,692
|
tst
|
DCMOTOR_SB.tst
|
\name
DCMOTOR_SB
\palette
Arduino
\smalldescription
Permet de piloter un hacheur (relié à un moteur)
\description
Le bloc DCMOTOR permet de piloter 1 ou plusieurs moteurs à courant continu. La carte Arduino ne délivre pas suffisamment de puissance, c'est pourquoi il est nécessaire d'utiliser un préactionneur de type hacheur en amont du moteur. Il existe plusieurs types de hacheurs qui ne fonctionnent pas tous selon le même principe. Le L298 nécessite par exemple l'utilisation d'un PWM et d'un signal logique spécifiant le sens. Le L293 utilise deux PWM pour spécifier la vitesse et le sens. Des cartes prêtes à l'emploi sont également disponibles.
C'est pourquoi le bloc permet de choisir le type de carte ou de hacheur utilisé et en fonction du choix, un menu propose de spécifier les caractéristiques de chaque composant (numéro des ports utilisés ou bien numéro du moteur...)
On rappelle que le PWM est codé sur 8 bits (de 0 à 255).
Cependant en entrée du bloc, il est possible d'entrer un nombre positif ou négatif quelconque, une saturation logicielle à +- 255 est integrée dans la définition du bloc.
On rappelle que l'échantillonnage est de 8 ms au minimum pour ce bloc.
\dialogbox
Le bloc propose deux menus.
Le premier permet de choisir le type de carte utilisé :
1 pour la carte officielle Motorshield Reverse 3 disponible sur le site arduino.cc,
2 pour un hacheur L298 utilisant un PWM et un sens,
3 pour un hacheur L293 utilisant deux PWM
Le numéro de la carte ne peut pas être modifié pour l'instant.
\image{DCMOTOR_SB_dialogbox1.png}
Le second menu est spécifique au type de carte retenue
Pour la carte Motorshield on renseigne le numéro 1 ou 2 pour le moteur A ou B
\image{DCMOTOR_SB_dialogbox2.png}
Pour le L298, on renseigne le numéro du port de spécification du sens (n'importe quel port digital), le numéro du port PWM pour la vitesse (3,5,6,9,10,11) et le numéro du moteur piloté (limité de 1 à 4)
\image{DCMOTOR_SB_dialogbox3.png}
Pour le L293, on renseigne les numéros des 2 PWM et le numéro du moteur (de 1 à 3)
\image{DCMOTOR_SB_dialogbox1.png}
\example1
L'exemple ci-dessous montre l'utilisation du bloc moteur associé à un potentiomètre. Lorsque le potentiomètre est en position médiane, le moteur ne tourne pas tandis que lorsque le potentiomètre est tourné dans un sens ou dans l'autre, le moteur tourne plus ou moins vite dans un sens ou dans l'autre.
Un gain d'adaptation a été utilisé pour convertir les données numériques codées sur 10 bits et l'entrée moteur codée sur 8 bits.
\image{DCMOTOR_exemple.png}
\seealso
ENCODER_SB
SERVO_WRITE_SB
|
f4b9e347e30dc4df061331201fb3870250d06fb3
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2120/CH9/EX9.10/ex9_10.sce
|
726dcc9fee09f65d891795cd501c206864f26827
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 596
|
sce
|
ex9_10.sce
|
// Exa 9.10
clc;
clear;
close;
// Given data
T_sat = 179.88;// in degree c
T_sat = T_sat + 273;// in k
T_sup = 200;// in degree c
T_sup = T_sup + 273;// in k
L = 2013.6;// in kJ/kg
C_ps = 2.326;
C_pw = 1;
x = 0.8;
phi_wet = C_pw *log(T_sat/273) + ( (x * L)/T_sat);// in kJ/kg-K
disp(phi_wet,"Entropy of wet steam in kJ/kg-K is");
// Part (b)
phi_dry =C_pw * log(T_sat/273)+L/T_sat;// in kJ/kg
disp(phi_dry,"Entropy of dry and saturated steam in kJ/kg-K is");
// Part (c)
phi_sup = phi_dry+C_ps *log(T_sup/T_sat);// in kJ/kg
disp(phi_sup,"Entropy at 200°C in kJ/kg-K is :");
|
e5d8bb18b115976ac9b280feb9cdd658d7ea9803
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2582/CH1/EX1.14/Ex1_14.sce
|
7ed7d2e927d51b2827d8a4207e2edaa30e6af117
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 236
|
sce
|
Ex1_14.sce
|
//Ex 1.14
clc;clear;close;
format('v',5);
Iout=0.5;//mA
VBE=0.7;//V
VCC=5;//V
Beta=50;//unitless
IREF=Iout*(1+2/Beta);//mA
disp(IREF,"Reference current is(mA) : ");
R=(VCC-VBE)/(IREF);//kohm
disp(R,"Resistance is(kohm) : ");
|
25ccc29bf0676246e681df7e88d16f952bbd0077
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1172/CH2/EX2.8/Example2_8.sce
|
5167ba5663a7677f1b854088c63c81d76f4d5c12
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 337
|
sce
|
Example2_8.sce
|
clc
// Given That
E = 100 // magnitude of electric field perpendicular to X axis in N/C
r = 10 // radius of circle in cm
//Sample Problem 8 Page No. 83
printf("\n # Problem 8 # \n ")
ds = (r*1e-2)^2 //calculation of area of coil
phi = E*ds //calculation of Flux through coil
printf("Flux through coil is %d Nm/C \n", phi)
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.