blob_id
stringlengths 40
40
| directory_id
stringlengths 40
40
| path
stringlengths 4
214
| content_id
stringlengths 40
40
| detected_licenses
listlengths 0
50
| license_type
stringclasses 2
values | repo_name
stringlengths 6
115
| snapshot_id
stringlengths 40
40
| revision_id
stringlengths 40
40
| branch_name
stringclasses 21
values | visit_date
timestamp[us] | revision_date
timestamp[us] | committer_date
timestamp[us] | github_id
int64 141k
586M
⌀ | star_events_count
int64 0
30.4k
| fork_events_count
int64 0
9.67k
| gha_license_id
stringclasses 8
values | gha_event_created_at
timestamp[us] | gha_created_at
timestamp[us] | gha_language
stringclasses 50
values | src_encoding
stringclasses 23
values | language
stringclasses 1
value | is_vendor
bool 1
class | is_generated
bool 1
class | length_bytes
int64 5
10.4M
| extension
stringclasses 29
values | filename
stringlengths 2
96
| content
stringlengths 5
10.4M
|
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
c993a6ab709b80db8074402a51105fbb2ae30b97
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3574/CH9/EX9.4/EX9_4.sce
|
03cbf6291447c786a055b40888000df6c914cd44
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,246
|
sce
|
EX9_4.sce
|
// Example 9.4
// Determine (a) Operating frequency (b) Load carried by each machine
// Page 359
clc;
clear;
close;
// Given data
GSR=0.0243; // Governor speed regulation
Frated=60; // Rated frequency
deltaPa=500; // Change in load for alternator A
Prateda=500; // Rated power of alternator A
deltaPb=400; // Change in load for alternator B
Pratedb=300; // Rated power of alternator B
Pch=100; // Change is power (500-400=100 KW))
Pchmach=200; // Power difference (500-300=200 KW)
// (a) Operating frequency
// From the curve in figure 9.17
// GSR*Frated/Prated=deltaP/deltaP
deltaF=(deltaPa-deltaPb)/548.697; // Change in frequency
Fbus=60.5-deltaF;
// (b) Load carried by each machine
deltaPa=(deltaF*Prateda)/(GSR*Frated); // Change in power for machine A
deltaPb=Pch-deltaPa; // Change in power for machine B
Pa=Pchmach+deltaPa;
Pb=Pchmach+deltaPb;
// Display result on command window
printf("\n Operating frequency = %0.3f Hz ",Fbus);
printf("\n Load carried by machine A = %0.2f kW",Pa);
printf("\n Load carried by machine B = %0.2f kW",Pb);
|
4c1b45cfd7d5fedc07502f95145b060e64d58df8
|
f5bb8d58446077a551e4d9a6461a55255db523fe
|
/sistemas_lineares/exemplo5.sce
|
7053a49552127c8399eed3ee568f5ef11f1c680b
|
[] |
no_license
|
appositum/numerical-calculus
|
6be1a9990a1621c705af6ba5694cf8c7b891d06e
|
7759e74ce9ce5c5826f96be7de84a2f7ecb97c91
|
refs/heads/master
| 2021-07-19T18:19:09.336819
| 2018-11-27T21:52:36
| 2018-11-27T21:52:36
| 143,060,426
| 1
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 321
|
sce
|
exemplo5.sce
|
// sistema nao diagonalmente dominante
A = [2, -1, 6; 9, -2, 1; 1, -5, -2]
b = [3;2;-4]
// disp(gaussjacob(A, b, [0;0;0], 0.0001))
// Troque as linhas !--error 10000
// A matriz não é diagonalmente dominante
A2 = [4, -2, 1; 1, -5, -2; 2, -1, 6]
b2 = [2;-4;3]
disp(gaussjacob(A2, b2, [0;0;0], 0.0001))
|
3608ef83d5fb319183180eb897c4d72487b9dc23
|
8217f7986187902617ad1bf89cb789618a90dd0a
|
/browsable_source/2.4/Unix-Windows/scilab-2.4/macros/scicos/standard_document.sci
|
7d904c5d1baa2e412aa6b9fd177ff6fb0175bcfb
|
[
"LicenseRef-scancode-public-domain",
"LicenseRef-scancode-warranty-disclaimer"
] |
permissive
|
clg55/Scilab-Workbench
|
4ebc01d2daea5026ad07fbfc53e16d4b29179502
|
9f8fd29c7f2a98100fa9aed8b58f6768d24a1875
|
refs/heads/master
| 2023-05-31T04:06:22.931111
| 2022-09-13T14:41:51
| 2022-09-13T14:41:51
| 258,270,193
| 0
| 1
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 5,318
|
sci
|
standard_document.sci
|
function texte = standard_document(objet, k)
//
// standard_document - documentation d'un bloc Scicos
//
// Copyright INRIA
MODELE=3
GRAPHIQUE=2
MACRO=5
FONCTION=1
DEPENDANCE=12
TYPE=10
IDENTIFICATION=15
#ENTREES=2
$ENTREES=5
#SORTIES=3
$SORTIES=6
#ENTREES_EVT=4
#SORTIES_EVT=5
$ENTREES_EVT=7
$SORTIES_EVT=8
//liens
IDENTIFICATION_LIAISON=5
TYPE_COULEUR=7
OBJET_ORIGINE=8
OBJET_DESTINATION=9
//
type_objet = objet(1)
//
select type_objet
case 'Block' then
//- Initialisations
modele = objet(MODELE)
graphique = objet(GRAPHIQUE)
macro = objet(MACRO)
//
fonction = modele(FONCTION)
if prod(size(fonction)) > 1 then
if fonction(2) == 0 then
language = '0 (Scilab function type Scicos 2.2)'
elseif fonction(2) == 1 then
language = '1 (Fortran or C code)'
elseif fonction(2) == 2 then
language = '2 (C code)'
elseif fonction(2) == 3 then
language = '3 (Scilab function)'
end
else
language = '0 (Scilab function type Scicos 2.2)'
end
//
if modele(TYPE) == 'c' then
typ = 'continuous'
else
typ = 'discrete'
end
//
if modele(DEPENDANCE)(1) then
dependance_u = 'yes'
else
dependance_u = 'no'
end
if modele(DEPENDANCE)(2) then
dependance_t = 'yes'
else
dependance_t = 'no'
end
//
if size(modele) >= IDENTIFICATION then
identification = modele(IDENTIFICATION)
else
identification = emptystr()
end
//- Informations generales
if modele(1)=='super'|modele(1)=='csuper' then
texte = ['General Informations';
'--------------------';' '
'object type : Super Block'; ..
'Identification : '+identification; ..
'Object number in diagram : '+string(k); ' '; ..
'Drawing function : '+macro;' ']
else
texte = ['General Informations';
'--------------------';' '
'object type : bloc standard'; ..
'Identification : '+identification; ..
'Object number in diagram : '+string(k); ' '; ..
'Drawing function : '+macro; ..
'Simulation function : '+fonction(1); ..
'Simulation Function type : '+language;' '; ..
'Bloc type : '+typ; ..
'Direct feed through : '+dependance_u; ..
'Time varying : '+dependance_t]
if cpr<>list() then
cor = cpr(3)
corinv = cpr(4)
path=list()
for kp=1:size(super_path,'*'),path(kp)=super_path(kp);end
path($+1)=k
ind=cor(path)
if ind>0&ind<=size(corinv) then
txt = ['Compiled structure Index : '+string(cor(path)); ' ']
else
txt = ['Compiled structure Index : suppressed'; ' ']
end
else
txt = ['Compiled structure Index : Not available';' ']
end
texte=[texte;txt]
end
//- Entrees / sorties
tableau = ['Port type', 'Number', 'Size', 'Link'; '-', '-', '-', '-']
//- Entrees standard
for i = 1 : min(size(modele(#ENTREES),'*'),size(graphique($ENTREES),'*'))
tableau = [tableau; 'Regular input', string(i), ..
string(modele(#ENTREES)(i)), string(graphique($ENTREES)(i))]
end
//- Sorties standard
for i = 1 : min(size(modele(#SORTIES),'*'),size(graphique($SORTIES),'*'))
tableau = [tableau; 'Regular output', string(i), ..
string(modele(#SORTIES)(i)), string(graphique($SORTIES)(i))]
end
//- Entrees evenements
for i = 1 : min(size(modele(#ENTREES_EVT),'*'),size(graphique($ENTREES_EVT),'*'))
tableau = [tableau; 'Event input', string(i), ..
string(modele(#ENTREES_EVT)(i)), string(graphique($ENTREES_EVT)(i))]
end
//- Sorties evenements
for i = 1 : min(size(modele(#SORTIES_EVT),'*'),size(graphique($ENTREES_EVT),'*'))
tableau = [tableau; 'Event output', string(i), ..
string(modele(#SORTIES_EVT)(i)), string(graphique($SORTIES_EVT)(i))]
end
//
texte = [texte; 'Input / output';
'--------------';
' '
tabule(tableau); ' ']
//= Liaisons
case 'Link' then
//- Initialisation
identification = objet(IDENTIFICATION_LIAISON)
if objet(TYPE_COULEUR)(2) == 1 then
sous_type = 'Regular Link'
else
sous_type = 'Event link'
end
//- Informations generales
texte = ['General informations';
'--------------------';' '
'Object type : '+sous_type;
'Object Identification : '+identification';
'Object number in diagram : '+string(k); ' ']
from=objet(OBJET_ORIGINE)
if cpr<>list() then
if sous_type == 'Regular Link' then
while %t
if scs_m(from(1))(3)(1)=='lsplit' then
#link=scs_m(from(1))(2)(5)
from=scs_m(#link)(OBJET_ORIGINE)
else
break
end
end
cor = cpr(3)
path=list()
for kp=1:size(super_path,'*'),path(kp)=super_path(kp);end
path($+1)=from(1)
ind=cor(path)
kl=cpr(2)('outlnk')(cpr(2)('outptr')(ind)+(from(2)-1))
beg=cpr(2)('lnkptr')(kl)
fin=cpr(2)('lnkptr')(kl+1)-1
txt = ['Compiled link memory zone : ['+..
string(beg)+','+string(fin)+']'; ' ']
end
else
txt = ['Compiled link memory zone : Not available';' ']
end
texte=[texte;txt]
//- Connexions
tableau = [' ', 'Block', 'Port' ; '-', '-', '-';
'From', string(objet(OBJET_ORIGINE));
'to', string(objet(OBJET_DESTINATION))]
//
texte = [texte;
'Connections';
'-----------';' '
tabule(tableau); ' ']
//
else
texte=[]
end
|
ed7a05c1383119dd172b5b468230a9e38465d885
|
be96e52def8294f354d9eb84ba5fd00c3306a984
|
/Templates/NativeEntitySetService.tst
|
b3ac9f37b3c579f5ed8b7ca750a8677046b92b3b
|
[
"MIT"
] |
permissive
|
FuryTechs/FuryTech.OdataTypescriptServiceGenerator
|
e6177564000a74e38e34bf82bd311a8d075b2a33
|
234c226ebe8a2faeb4f4661d2acca7bbeeb54e95
|
refs/heads/master
| 2023-04-28T06:05:05.934471
| 2023-04-18T05:34:27
| 2023-04-18T05:34:27
| 76,648,222
| 18
| 11
|
MIT
| 2023-04-18T05:34:28
| 2016-12-16T11:22:28
|
TypeScript
|
UTF-8
|
Scilab
| false
| false
| 296
|
tst
|
NativeEntitySetService.tst
|
// created by FuryTech.ODataTypeScriptGenerator
$imports$
import { NativeOdataServiceBase } from '../NativeOdataServiceBase';
export class $Name$ extends NativeOdataServiceBase<$entityTypeName$> {
$customActions$$customFunctions$
constructor() {
super('$entitySetUrl$');
}
}
|
12a68ed0eb0eb647f41f01f1b6dbe623167fc5f1
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/545/CH4/EX4.14/ch_4_eg_14.sce
|
2bf4b4c74b5b7edd3259d12335126caf00c10216
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,531
|
sce
|
ch_4_eg_14.sce
|
clc
//given rxn A+B--k1-->C
// B+C--k2-->D
k1=1, k2=1 //given rate constants
disp("the solution of eg 4.14 -->Batch Reactors")
function dA_by_dt=f1a(t,A,B,C,D),
dA_by_dt=-A*B,
endfunction
function dB_by_dt=f2a(t,A,B,C,D),
dB_by_dt=-A*B-B*C,
endfunction
function dC_by_dt=f3a(t,A,B,C,D),
dC_by_dt=A*B-B*C,
endfunction
function dD_by_dt=f4a(t,A,B,C,D),
dD_by_dt=B*C,
endfunction
A=1,B=1,C=0,D=0 //initial values
for t=.1:.1:10,
h=.1 //step increment of 0.1
k1=h*f1a(t,A,B,C,D)
l1=h*f2a(t,A,B,C,D)
m1=h*f3a(t,A,B,C,D)
n1=h*f4a(t,A,B,C,D)
k2=h*f1a(t+h/2,A+k1/2,B+l1/2,C+m1/2,D+n1/2)
l2=h*f2a(t+h/2,A+k1/2,B+l1/2,C+m1/2,D+n1/2)
m2=h*f3a(t+h/2,A+k1/2,B+l1/2,C+m1/2,D+n1/2)
n2=h*f4a(t+h/2,A+k1/2,B+l1/2,C+m1/2,D+n1/2)
k3=h*f1a(t+h/2,A+k2/2,B+l2/2,C+m2/2,D+n2/2)
l3=h*f2a(t+h/2,A+k2/2,B+l2/2,C+m2/2,D+n2/2)
m3=h*f3a(t+h/2,A+k2/2,B+l2/2,C+m2/2,D+n2/2)
n3=h*f4a(t+h/2,A+k2/2,B+l2/2,C+m2/2,D+n2/2)
k4=h*f1a(t+h,A+k3,B+l3,C+m3,D+n3)
l4=h*f2a(t+h,A+k3,B+l3,C+m3,D+n3)
m4=h*f3a(t+h,A+k3,B+l3,C+m3,D+n3)
n4=h*f4a(t+h,A+k3,B+l3,C+m3,D+n3)
A=A+(k1+2*k2+2*k3+k4)/6
B=B+(l1+2*l2+2*l3+l4)/6
C=C+(m1+2*m2+2*m3+m4)/6
D=D+(n1+2*n2+2*n3+n4)/6
if t==.5 |t==1|t==2|t==5 then disp(D,C,B,A,"secs is",t,"the conc. of A,B,C,D after");
end
end
disp(D,C,B,A,"the conc. of A,B,C,D after 10 secs respectively is");
|
d0c1d7a2dc211e3226bdcc1ad7748f37388c30bf
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3831/CH4/EX4.11/Ex4_11.sce
|
67a05560e50b088a72c3396106f62a67657b1408
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 504
|
sce
|
Ex4_11.sce
|
// Example 4_11
clc;funcprot(0);
// Given data
W_actual=150;// hp
W_reversible=233;// hp
m_in=1.10;// lbm/min
E=20.0*10^3;// Btu/lbm
// Solution
W_in=(E*m_in*60)/2545;// hp
// (a)
n_c=(W_actual/W_in)*100;// The energy conversion efficiency of the engine in %
// (b)
n_W=(W_actual/W_reversible)*100;// The work efficiency of the engine.
printf('\n(a)The energy conversion efficiency of the engine,n_c=%2.1f percentage \n(b)The work efficiency of the engine,n_W=%2.1f percentage',n_c,n_W);
|
9269224527db84f4c2640b3e73dd218375d8b381
|
c61d570c37971fa455028a89d2163f455f91c291
|
/script_fisico/regrid.sci
|
c246b82799f8dd484c665809844a4063238f9248
|
[] |
no_license
|
OgliariNatan/-ScientificComputing
|
a0af891f900f3f146a9751fd169f96052bd4ba83
|
070ea9d70430ef0c9e7944f491426b73af7c12b0
|
refs/heads/master
| 2020-04-04T23:13:12.585946
| 2017-07-03T21:46:18
| 2017-07-03T21:46:18
| 81,988,821
| 1
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 899
|
sci
|
regrid.sci
|
function [fun,a0,a1] = regrid(x,y)
// [fun,a0,a1] -> variaveis de saída
// -> fun é a função linearizada
// -> a0 é o coeficiente Linear
// -> a1 é o coeficiente angular
// fun = a0 +a1*x
// (x,y) -> variaveis de entrada
// -> x - dados da variavel independente
// -> y - dados da variavel dependente
//Exemplo de Chamada
//exec ('path\regrid.sci',-1) {-1 não mostra o código de execução}
//x = [1 2 5 7 9 21]
//y = [4 5 6 7 9 20]
//[fun,a,b]=regrid(x,y)
//Autor: Daniel HC Souza
//IMPLEMENTACAÇÃO....
[mx,nx] = size(x);
[my,ny] = size(y);
plot(x,y,'*');
xgrid;
sum_x = sum(x);
sum_y = sum(y);
sum_x2 = sum(x.^2);
sum_y2 = sum(y.^2);
sum_xy = sum(x.*y);
med_x = sum_x/nx;
med_y = sum_y/ny;
a1 = ((nx*sum_xy)-(sum_x*sum_y))/((nx*sum_x2)-(sum_x^2));
a0 = (med_y-(a1*med_x));
jota = linspace(x(1),x(nx));
fun = a0+a1.*jota;
plot(jota,fun,'red');
endfunction
|
6c029319972a78f9b40f9cfde0c5cfde3d3916ed
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3768/CH9/EX9.5/Ex9_5.sce
|
ed97e4289398436c2598ea4584aaeec0e8c7dbb1
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 609
|
sce
|
Ex9_5.sce
|
//Example number 9.5, Page number 204
clc;clear;
close;
//Variable declaration
w=72.6; //atomic weight
e=1.6*10**-19; //charge(c)
mew_e=0.4; //electron mobility(m**2/Vs)
mew_h=0.2; //hole mobility(m**2/Vs)
T=300; //temperature(K)
x=4.83*10**21;
Eg=0.7; //band gap(eV)
y=0.052;
//Calculation
ni=x*(T**(3/2))*exp(-Eg/y); //carrier density(per m**3)
sigma=ni*e*(mew_e+mew_h); //conductivity(ohm-1 m-1)
//Result
printf("carrier density is %.2e per m^3",ni)
printf("\n conductivity is %.2f (ohm-m)^-1",sigma)
//answer in the book varies due to rounding off errors
|
ebcbed729cae2e87deeb6628ccb09cde70a5b797
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/98/CH7/EX7.5/example7_5.sce
|
d41d6f92c3a279ef293b2b9cadeeb236540c44c3
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 744
|
sce
|
example7_5.sce
|
//Chapter 7
//Example 7_5
//Page 149
clear;clc;
l=50;
mva=5;
pf=0.8;
kv=33;
n=0.9;
sr=2.85*1e-8;
p=mva*1e6*pf;
w=0.1*p;
//Single phase 2-wire system
i1=mva*1e6/kv/1000;
area1=2*sr*i1^2*l*1000/w;
vol1=2*area1*l*1000;
//3-phase 3-wire system
i2=mva*1e6/sqrt(3)/kv/1000;
area2=3*i2^2*sr*l*1000/w;
vol2=3*area2*l*1000;
printf("(I) SINGLE PHASE, 2-WIRE SYSTEM: \n");
printf("Line current = %.1f A \n", i1);
printf("Area of cross section = %.3f*10^-4 m^2 \n", area1*1e4);
printf("Volume of conductor required = %.2f m^3 \n\n", vol1);
printf("(II) 3-PHASE, 3-WIRE SYSTEM: \n");
printf("Line current = %.1f A \n", i2);
printf("Area of cross section = %.3f*10^-4 m^2 \n", area2*1e4);
printf("Volume of conductor required = %.2f m^3 \n\n", vol2);
|
4f5825ef8bb86a6ef887f256a5a4e3ed2503d592
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2159/CH2/EX2.8/28.sce
|
d969dfd2d9f61a887e9022ecd62e5b278590542d
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 158
|
sce
|
28.sce
|
// problem 2.8
h1=0.05
h2=0.015
s=41/40
l=h1/(s-1)
w1=25
// applying bakance in vertical direction
w=w1*(l+h1)/(h2)
disp(w,"weight of ship in in N")
|
e836f2460c08b883f56c8d9329db94c00429e807
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2534/CH1/EX1.19/Ex1_19.sce
|
1d9f99fea2d1889883cfc6f146631111803b278a
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 336
|
sce
|
Ex1_19.sce
|
//Ex1.19
clc
micro_n = 1300 //eletron mobility
rho_n = 2 //resistivity
e = 1.6*10^-19 //electron charge
disp("micro_n ="+string(micro_n)+" cm.sq/V-s")
disp("rho_n = "+string(rho_n)+"ohm-cm")
disp("e"+string(e)+"C")
disp("nn = 1/(e*micro_n*rho_n) = "+string(1/(e*micro_n*rho_n))+" e/cm.cube") //number of pentavalent impurity
|
97be4fcd3d69b0b802ce2f4c58345acf8326d555
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/135/CH5/EX5.17/EX17.sce
|
33ec5c408d817ddb9ebc48a1a506f6e329112bb9
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 408
|
sce
|
EX17.sce
|
// Example 5.17: (i) IC1 and IC2
// (ii) RC so that Vo = 6 V
clc, clear
bta=200;
// From Fig. 5.31
disp("Part (i)");
I_ref=(12-0.7)/15; // in amperes
I1=0.7/2.8; // in amperes
IC=(I_ref-I1)*bta/(bta+2); // in mili-amperes
disp(IC,"IC1 (mA) =");
disp(IC,"IC2 (mA) =");
disp("Part (ii)");
Vo=6; // in volts
RC=(12-Vo)/IC; // in kilo-ohms
disp(RC,"RC so that (Vo = 6 V) (kΩ) =");
|
3441f3e6de47260100363476b5f853476c4b9843
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1820/CH6/EX6.4/Example6_4.sce
|
72b982f6c6c50674fcfaaf1c138de1056c384f95
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,708
|
sce
|
Example6_4.sce
|
// ELECTRIC POWER TRANSMISSION SYSTEM ENGINEERING ANALYSIS AND DESIGN
// TURAN GONEN
// CRC PRESS
// SECOND EDITION
// CHAPTER : 6 : DIRECT-CURRENT POWER TRANSMISSION
// EXAMPLE : 6.4 :
clear ; clc ; close ; // Clear the work space and console
// GIVEN DATA
E_LN = 53.418803 ; // Wye-side kV rating . From exa 6.3
I = 1600 ; // current rating of bridge rectifier in A
I_d = I ; // Max continuous current in A
X_tr = 0.10 ; // impedance of rectifier transformer in pu Ω
// For case (a)
sc_MVA1 = 4000 ; // short-ckt MVA
// For case (b)
sc_MVA2 = 2500 ; // short-ckt MVA
// For case (c)
sc_MVA3 = 1000 ; // short-ckt MVA
// CALCULATIONS
nom_kV = sqrt(3) * E_LN ; // Nominal kV_L-L
I_1ph = sqrt(2/3) * I_d ; // rms value of wye-side phase current
E_LN1 = E_LN * 10^3 ; // Wye-side rating in kV
X_B = (E_LN1/I_1ph) ; // Associated reactance base in Ω
// For case (a)
X_sys1 = nom_kV^2/sc_MVA1 ; // system reactance in Ω
X_tra = X_tr * X_B ; // Reactance of rectifier transformer
X_C = X_sys1 + X_tra ; // Commutating reactance in Ω
// For case (b)
X_sys2 = nom_kV^2/sc_MVA2 ; // system reactance in Ω
X_C2 = X_sys2 + X_tra ; // Commutating reactance in Ω
// For case (b) When breaker 1 & 2 are open
X_sys3 = nom_kV^2/sc_MVA3 ; // system reactance in Ω
X_C3 = X_sys3 + X_tra ; // Commutating reactance in Ω
// DISPLAY RESULTS
disp("EXAMPLE : 6.4 : SOLUTION :-") ;
printf("\n (a) Commutating reactance When all three breakers are closed, X_C = %.4f Ω \n",X_C) ;
printf("\n (b) Commutating reactance When breaker 1 is open, X_C = %.4f Ω \n",X_C2) ;
printf("\n (c) Commutating reactance When breakers 1 and 2 are open, X_C = %.4f Ω \n",X_C3) ;
|
a8f7e2d4d6f23b7b33a9d3ef9eff7d64e4dfaf3c
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2240/CH1/EX0.12/EXI_12.sce
|
656a48c39ad08c16b708dc8f133b8388ce87efc3
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 343
|
sce
|
EXI_12.sce
|
// Grob's Basic Electronics 11e
// Chapter No. I
// Example No. I_12
clc; clear;
// Divide 5.0*10^7 by 2.0*10^4. Express the final answer in scientific notation.
// Given data
A = 5.0*10^7; // Variable 1
B = 2.0*10^4; // Variable 2
C = A/B;
disp (C,'The division of 5.0*10^7 by 2.0*10^4 is')
disp ('i.e 2.5*10^3')
|
80051201ec45fa9f09f85c7b9575cb288a2bcd7b
|
60acf54211c534dae12601541518c7f3692c9899
|
/Linux/scripts/hs.search.chown.sce
|
3acecadba78bc8767b93d2f322e0a672d3f54378
|
[
"MIT"
] |
permissive
|
webappcreations/dotLinux
|
67159a42510e60d18f059f7c9ac955eee1c3e4f2
|
aac20d0ed2ff28b2701febbe49a0152cb94f50da
|
refs/heads/master
| 2021-05-09T10:35:02.938723
| 2018-03-19T16:14:37
| 2018-03-19T16:14:37
| 118,967,881
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 4,705
|
sce
|
hs.search.chown.sce
|
420 chown -hR goalador /u
421 chown -hR goalador /u edit.phtml
422 sudo chown -hR goalador /u edit.phtml
423 sudo chown -hR goalador root edit.phtml
424 sudo chown -hR goalador root
425 sudo chown -hR goalador .
426 sudo chown -hR goalador:goalador .
434 man chown
420 chown -hR goalador /u
421 chown -hR goalador /u edit.phtml
422 sudo chown -hR goalador /u edit.phtml
423 sudo chown -hR goalador root edit.phtml
424 sudo chown -hR goalador root
425 sudo chown -hR goalador .
426 sudo chown -hR goalador:goalador .
434 man chown
10 sudo chown -hR goalador /u edit.phtml
11 sudo chown -hR goalador root edit.phtml
12 sudo chown -hR goalador root
13 sudo chown -hR goalador .
14 sudo chown -hR goalador:goalador .
22 man chown
474 chown -u goalador ~/.mpdconf
475 chown
476 man chown
477 chown goalador ~/.mpdconf
478 sudo chown goalador ~/.mpdconf
492 chown goalador ~/.mpdconf
405 chown -u goalador ~/.mpdconf
406 chown
407 man chown
408 chown goalador ~/.mpdconf
409 sudo chown goalador ~/.mpdconf
423 chown goalador ~/.mpdconf
305 chown -u goalador ~/.mpdconf
306 chown
307 man chown
308 chown goalador ~/.mpdconf
309 sudo chown goalador ~/.mpdconf
323 chown goalador ~/.mpdconf
469 info chown
484 info chown
486 sudo chown goalador -hR zf_login
492 sudo chown goalador -hR zf_login
73 chown -u goalador ~/.mpdconf
74 chown
75 man chown
76 chown goalador ~/.mpdconf
77 sudo chown goalador ~/.mpdconf
91 chown goalador ~/.mpdconf
237 info chown
252 info chown
254 sudo chown goalador -hR zf_login
260 sudo chown goalador -hR zf_login
470 h chown
471 sudo chown goalador phpunit.xml
50 chown -u goalador ~/.mpdconf
51 chown
52 man chown
53 chown goalador ~/.mpdconf
54 sudo chown goalador ~/.mpdconf
68 chown goalador ~/.mpdconf
214 info chown
229 info chown
231 sudo chown goalador -hR zf_login
237 sudo chown goalador -hR zf_login
447 h chown
448 sudo chown goalador phpunit.xml
50 chown -u goalador ~/.mpdconf
51 chown
52 man chown
53 chown goalador ~/.mpdconf
54 sudo chown goalador ~/.mpdconf
68 chown goalador ~/.mpdconf
214 info chown
229 info chown
231 sudo chown goalador -hR zf_login
237 sudo chown goalador -hR zf_login
447 h chown
448 sudo chown goalador phpunit.xml
50 chown -u goalador ~/.mpdconf
51 chown
52 man chown
53 chown goalador ~/.mpdconf
54 sudo chown goalador ~/.mpdconf
68 chown goalador ~/.mpdconf
214 info chown
229 info chown
231 sudo chown goalador -hR zf_login
237 sudo chown goalador -hR zf_login
447 h chown
448 sudo chown goalador phpunit.xml
115 h chown
116 sudo chown goalador phpunit.xml
257 h chown
258 sudo chown goalador functions.js
260 sudo chown goalador -hR Corinna
267 sudo chown -hR goalador corinna/
287 sudo chown -hR goalador /localhost/Zendtest
179 sudo chown -hR goalador /localhost/Digitalus
293 chown -u goalador zf_motte
294 sudo chown -u goalador zf_motte
295 sudo chown goalador zf_motte
331 sudo chown -u goalador
332 sudo chown zf_motte
335 sudo chown goalador zf_motte
121 sudo chown -hR goalador /localhost/Digitalus
235 chown -u goalador zf_motte
236 sudo chown -u goalador zf_motte
237 sudo chown goalador zf_motte
273 sudo chown -u goalador
274 sudo chown zf_motte
277 sudo chown goalador zf_motte
419 sudo chown goalador /localhost/Digitalus
420 sudo chown -R goalador /localhost/Digitalus
425 sudo chown -R goalador /localhost/Digitalus_sav
429 sudo chown goalador /localhost/Digitalus_sav
436 sudo chown -u goalador /localhost/Digitalus_sav
437 chown -h
438 chown --help
439 sudo chown -R goalador /localhost/Digitalus_sav
441 sudo chown -R goalador /localhost/Digitalus_sav/cache/
444 sudo chown -R goalador.goalador /localhost/Digitalus_sav/cache/
446 sudo chown -R goalador.goalador /localhost/Digitalus_sav/
441 h chown
441 h chown
329 h chown
353 sudo chown root nichtgut/
463 chown goalador 25.04.2011/
464 sudo chown goalador 25.04.2011/
191 sudo chown root nichtgut/
301 chown goalador 25.04.2011/
302 sudo chown goalador 25.04.2011/
165 sudo chown root nichtgut/
275 chown goalador 25.04.2011/
276 sudo chown goalador 25.04.2011/
95 sudo chown root nichtgut/
205 chown goalador 25.04.2011/
206 sudo chown goalador 25.04.2011/
292 sudo chown goalador -hR .
293 sudo chown root -hR .
297 sudo chown goalador -hR zf_motte
404 chown goalador theaterminis/
|
19be4f4c02c975bcf93b13e5e131e86aab0b3bd9
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1949/CH3/EX3.13/Ex3_13.sce
|
4cad1b6cff8a265cfac0bdfb2d5a38f98beaf6b3
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 787
|
sce
|
Ex3_13.sce
|
//Chapter-3,Example 3_13,Page 3-23
clc()
//Given Data:
n1=1.5 //R.I. of core
delta=0.0005 //Fractional index difference
//Calculations:
//(a):
//Delta=(u1-u2)/u1
n2=n1-(n1*delta) //R.I. of cladding
printf('(a)Refractive Index of cladding of fibre is =%.2f \n \n',n2)
//(b):
phi=asin(n2/n1)*180/%pi //Critical internal reflection angle
printf(' (b)Critical internal reflection angle of Fibre is =%.1f degrees \n \n',phi)
//(c):
theta0=asin(sqrt(n1^2-n2^2))*180/%pi //External critical Acceptance angle
printf(' (c)External critical Acceptance angle of Fibre is =%.2f degrees \n \n',theta0)
//(d):
NA=n1*sqrt(2*delta) //Formula to find Numerical Aperture
printf(' (d)Numerical Aperture of Fibre is =%.4f \n',NA)
|
7e027671554a3c2970593fc2839a1c942fd5b258
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1061/CH7/EX7.19/Ex7_19.sce
|
c86e7272e3ca6383043df99baa104076d85b0830
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 261
|
sce
|
Ex7_19.sce
|
//Ex:7.19
clc;
clear;
close;
L1=1.5;// length in km
L2=2/1000;// length in km
Pi=50.1*10^-6;// optical power in W
Po=385.4*10^-6;// output power in W
a=(10/(L1-L2))*log(Po/Pi)/log(10);// attenuation per km
printf("The attenuation per km =%f dB/km", a);
|
a03a434793c95ac0c52d8acb59ff6433c6310b8e
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1385/CH10/EX10.8/10_8.sce
|
af1a4405d8569a25bcefb9c42942a0fa5d8a3c51
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 283
|
sce
|
10_8.sce
|
clc
//initialisation of variables
R= 8.31 //J/mol K
T= 25 //C
F= 96500 //coloums
c= 0.08 //molar
c1= 0.04 //molar
//CALCULATIONS
E= R*(T+273)*log(c/c1)/(2*F)
E1= 2*E
//RESULTS
printf (' potential of the cell = %.4f v',E)
printf (' \n potential of the cell = %.4f v',E1)
|
89ed6538e8f3576a84990dd204c19ac6da4d6ada
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2318/CH2/EX2.19/ex_2_19.sce
|
9c6e8d13b84443770dab7e4bfb07ce1518f62f46
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 359
|
sce
|
ex_2_19.sce
|
//Example 2.19://error
clc;
clear;
close;
n=40;//revolutions
rc=0.12;//registration constant
err=n/rc;//energy recorded in kWh is
e2=22000;//volts
e1=110;//volts
i2=500;//amperes
i1=5;//amperes
i=5.25;//amperes
lv=110;//volts
pf=1;//
t=61;//seconds
ae=((sqrt(3)*e2*lv*i*i2*pf*t)/(e1*i1*3600))*10^-3;//kWh
e=((err-ae)/ae)*100;//
disp(-e,"error (slow) is (%)")
|
9b6caa433c7d3c517889d1e3d164de8896d90441
|
c28130b62911f5891f14826350089c73c907d3b5
|
/exo7_slaplacien.sci
|
b3d3e6c20a22c22496b7482802f3e7f91807fbd9
|
[
"MIT"
] |
permissive
|
zyron92/Simulation_of_Cardiac_Excitation
|
f1709d032613f49427a72716b4e258c3b578b739
|
66813dc24128d9cb171e77d4f780b6bf54011d15
|
refs/heads/master
| 2021-01-19T10:25:43.810588
| 2017-02-16T12:58:38
| 2017-02-16T12:58:38
| 82,180,177
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,381
|
sci
|
exo7_slaplacien.sci
|
function[res]=slaplacien(D,n)
if n>1 then
h=1/(n-1)
//Définir T1 & Tn sous forme de matrice creuse
T1=sparse(-3*eye(n,n)+diag(ones(n-1,1),1)+diag(ones(n-1,1),-1))
T1(1,1)=T1(1,1)+1
T1(n,n)=T1(n,n)+1
T1=(1/(h*h))*T1
//Définir Tk sous forme de matrice creuse
Tk=sparse(-4*eye(n,n)+diag(ones(n-1,1),1)+diag(ones(n-1,1),-1))
Tk(1,1)=Tk(1,1)+1
Tk(n,n)=Tk(n,n)+1
Tk=(1/(h*h))*Tk
//Définir A sous forme de matrice creuse
A=sparse(zeros(n*n,n*n)+(1/(h*h))*diag(ones(n*(n-1),1),n)+(1/(h*h))*diag(ones(n*(n-1),1),-n))
k=1
//Affecter les T1
i= indice_i(k,n)
j= indice_j(k,n)
A([ i : j ],[ i : j ])=T1
k=k+1
//Affecter les Tk
while(k<=n-1),
i= indice_i(k,n)
j= indice_j(k,n)
A([ i : j ],[ i : j ])=Tk
k=k+1
end
//Affecter les T1 au bout de k=n => Tn
if k==n then
i= indice_i(k,n)
j= indice_j(k,n)
A([ i : j ],[ i : j ])=T1
end
//Renvoyer la matrice creuse résultante de (n*n ; n*n)
res=D.*A
else
res=0
end
endfunction
//Calcul de l'indice i de sous-matrice
function[res]=indice_i(k,n)
res=(n*(k-1))+1
endfunction
//Calcul de l'indice j de sous-matrice
function[res]=indice_j(k,n)
res=k*n
endfunction
//-- L'Exemple --//
n=3
D=2
res=slaplacien(D,n)
|
34bba43cfc1ac05bad2f287175d2f12f7a698f1d
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2409/CH12/EX12.10/Ex12_10.sce
|
fe7aaffde87679c9baa1f5149dc654b8f914f48c
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 421
|
sce
|
Ex12_10.sce
|
//Variable Declaration
f=14 //Frequency(GHz)
Ps=-120 //Flux density required to saturate the transponder(dBW/m2)
LOSSES=2 //Propogation Losses(dB)
FSL=207 //Free-space loss(dB)
//Calculation
A0=-21.45-20*log10(f) //Effective antenna aperture(dB)
EIRP=Ps+A0+LOSSES+FSL //Equivalent isotropically radiated power(dB)
//Result
printf("The earth station EIRP required for saturation is %.2f dBW",EIRP)
|
7c294878953e8f68eeb6ce87da76349d086ea79c
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2615/CH7/EX30.1/30_1.sce
|
f0ade6f7b2f9bfbdddb199b595472b8b6c1df83c
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 197
|
sce
|
30_1.sce
|
clc
//initialisation of variables
s=1000//mm
l=800//mm
f=0.2//mm
r=f*l//mm
//CALCULATIONS
T=s/r//min
//RESULTS
printf('the cutter to pass down the entire length of the shaft=% f min',T)
|
442a56ee26a13681a16f6e07ae21b43a94177cf5
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3772/CH4/EX4.15/Ex4_15.sce
|
94c3e359672c9ea00e3575a9da0deed7f6b91652
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,535
|
sce
|
Ex4_15.sce
|
// Problem no 4.4.15,Page No.105
clc;clear;
close;
L=8 //m //Length of beam
L_AD=4 //m //Length of AD
w=300 //KN //u.d.l
//Calculations
//Let R_A and R_C be the reactions at A and C
//R_A+R_C=300
//Taking moment at A
//LEt x be the distance from Pt B L_CB=x
//R_C*(L-L_CB)=300*L*2**-1
//R_C=1200*(8-x)**-1
//After substituting values and further simplifying we get
//R_A=300-R_C
//R_A=1200-300*x*(8-x)**-1
//B.M at D
//M_D=R_A*L_AD-w*2**-1*2=0
//Now substituting value of R_A we get
//M_D=4*1200-300*x*(8-x)**-1-300=0
//Further on simplification we get
L_CB=600*225**-1
x=L_CB;
R_C=1200*(8-x)**-1
R_A=(1200-300*x)*(8-x)**-1
//Pt of contraflexure
//Let E be the pt and BE=y
//V_E=0=-R_A*2**-1*L_BE+R_C
L_BE=R_C*(R_A*2**-1)**-1
L_AE=L-L_BE
L_AC=L-L_CB
L_EC=L_BE-L_CB
//Shear Force at B
V_B=0
//Shear Force at C
V_C1=-w
V_C2=-V_C1+R_C
//Shear Force at A
V_A=-w+R_C
//B.M at C
M_C=-w*L_CB
//B.M at E
M_E=-R_A*L_AE+w*L_AE
//B.M at A
M_A=0
//B.M at B
M_B=0
//Result
printf("The Shear Force and Bending Moment Diagrams are the results")
//Plotting the Shear Force Diagram
subplot(2,1,1)
X1=[0,L_CB,L_CB,L_CB+L_AC,L_CB+L_AC]
Y1=[V_B,V_C1,V_C2,V_A,0]
Z1=[0,0,0,0,0]
plot(X1,Y1,X1,Z1)
xlabel("Length x in m")
ylabel("Shear Force in kN")
title("the Shear Force Diagram")
//Plotting the Bending Moment Diagram
subplot(2,1,2)
X2=[0,L_CB,L_CB+L_EC,L_CB+L_AC]
Y2=[M_B,M_C,M_E,M_A]
Z2=[0,0,0,0]
plot(X2,Y2,X2,Z2)
xlabel("Length in m")
ylabel("Bending Moment in kN.m")
title("the Bending Moment Diagram")
|
31defd0e875c43cefa6bfa798aec6a3d755100bd
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1172/CH3/EX3.16.2/Example3_16b.sce
|
4151748f27583b9d9d14fb7aea5cc8b83571f502
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 541
|
sce
|
Example3_16b.sce
|
clc
//Given that
R = 1.097 // Rydberg’s constant
n1 = 1 // transition state no
n2 = 3 // transition state no
//Sample Problem 16b page No. 142
printf("\n\n\n # Problem 16b # \n")
printf("\n Standard formula Used \n For Lyman series 1/lambda = R*((1/2)^2 -(1/n)^2)")
nu1 = R * (n2^2 - n1^2) / (n1^2 * n2^2) //calculation of frequency of first line of Lyman series
lambda1 = 1/ nu1 //calculation of Wavelength of first line of Lyman series
printf ("\n Wavelength of second line of Lyman series is %d Angstrom. ", lambda1 *1000 )
|
563df1ca6b016ffe98b55b71b261d2365340e0d7
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2384/CH2/EX2.9/ex2_9.sce
|
16804bbcbc9ed8218a415ca2070fe3682beae436
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 432
|
sce
|
ex2_9.sce
|
// Exa 2.9
clc;
clear;
close;
format('v',5)
// Given data
R1 = 6;// in ohm
R2 = 4;// in ohm
R3 = 3;// in ohm
R_L = 6;// in ohm
V1 = 6;// in V
V2 = 15;// in V
// V1 - R1*I - R3*I -V2 = 0
I= (V1-V2)/(R1+R3);
// Vth - R3*I -V2 = 0;
Vth =V2+R3*I;// in V
Rth = ((R1*R3)/(R1+R3)) + R2;// in ohm
// current through 6 ohm resistance
I_L = Vth/(Rth+R_L);// in A
disp(I_L,"The current through 6 ohm resistance in A is");
|
9116f4d9c1c609dd1a07750860d4e52b66526403
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/632/CH10/EX10.19/example10_19.sce
|
f6691c06d5a4374fa2ea244663e5ae82daf34ffb
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 506
|
sce
|
example10_19.sce
|
//clc()
NA = 100;//mol ( basi - 100 mol A in the fresh feed )
Pconv = 95;//%
NApro = NA * (100 - Pconv)/100;
//A = 2B + C
NB = NA * Pconv * 2 / 100;
NC = NA * Pconv/100;
PAent = 0.5;//%
NAent = NApro * 100 / PAent;
PBrec = 1;//%
NBent = NB * 100 / (100 - PBrec);
m = (NAent - NApro + NA);
conv = ((NAent - NApro + NA) - NAent)*100/(NAent - NApro + NA);
disp("%",conv,"(a)single pass converion = ")
Nrecycled = (NAent - NApro) + (NBent - NB);
R = Nrecycled/NA;
disp(R,"(b)recycle ratio = ")
|
86e8d5e9c88e99ea8fb5ad628df4f9ecc39101ec
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/557/CH5/EX5.10/10.sce
|
43d304609602f42864cee18170b2ea766bfc9a49
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 374
|
sce
|
10.sce
|
clc;funcprot(0);//Example 5.10
//Initializing the variables
rho = 1000; // Density of water
Q = 10; //Acceleration of fluid
r2 = 1.6;
r1 = 1.2;
V1 = 2.3;
V2 = 0.2;
rot = 240;
//Calculations
Tf = rho*Q*(V2*r2 - V1*r1);
T = -Tf;
n = rot / 60;
P = 2*%pi*n*T;
disp(T, "Torque exerted (N- m):");
disp(P/1000, "Theoretical power output (kW) :");
|
7db95ea0cdc7125b7455b2788f03dfd19eeec2cd
|
afcf746e249b9463101019f07a47845355c6acc2
|
/starter_files/hw2/Eq.tst
|
1fc0d7588aae1b181e18a0e052632819984723d5
|
[] |
no_license
|
jyuan2pace/CS506
|
afca44ee8df14436d72de97e658a61841091e651
|
fa80d2786f006c226c6e6413ee23fe306d6c57d0
|
refs/heads/master
| 2020-07-28T13:04:37.077116
| 2019-11-24T20:15:20
| 2019-11-24T20:15:20
| 209,419,478
| 8
| 11
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 252
|
tst
|
Eq.tst
|
load Eq.hdl,
output-file Eq.out,
compare-to Eq.cmp,
output-list a%B3.1.3 b%B3.1.3 out%B3.1.3;
set a 0,
set b 0,
eval,
output;
set a 0,
set b 1,
eval,
output;
set a 1,
set b 0,
eval,
output;
set a 1,
set b 1,
eval,
output;
|
6e268f008c0b7be1a90ab41c06e07b3faa99bb55
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/635/CH5/EX5.2/Ch05Ex2.sci
|
19c64663507f1497915e0158c641027f3e666481
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 834
|
sci
|
Ch05Ex2.sci
|
// Scilab Code Ex5.2 Vacancy formation in copper Page-159 (2010)
E = 1; // Energy of formation of vacancy in copper, electron-volt
T = 1356; // Melting point of copper, K
k = 8.614D-5; // Boltzmann constant, electron-volt
N = 6.023D23; // Avogadro's number
// Now fraction of vacancies = f_vacancy = n/N = exp(-E/(k*T)
f = exp(-E/(k*T)); // Fraction of vacancies in the solid at 300 K
n = N*f; // Number of vacancy per mole
delta_d = n + N; // Change in the density due to creation of vacancy
f_d = delta_d/N; // Relative change in the density of copper due to vacancy formation
printf("\nThe relative change in the density of copper due to vacancy formation (n+N)/N, is : %9.7f : 1", f_d);
//Result
// The relative change in the density of copper due to vacancy formation (n+N)/N, is : 1.0001914 : 1
|
ee3e2bcbba90d44983a77d79369220d93b91e899
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3740/CH8/EX8.11/Ex8_11.sce
|
842b5fa6c06cdc09ff1cf5a04406cdd1f8cabc09
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,440
|
sce
|
Ex8_11.sce
|
//Optoelectronics - An Introduction, 2nd Edition by J. Wilson and J.F.B. Hawkes
//Example 8.11
//OS=Windows XP sp3
//Scilab version 5.5.2
clc;
clear;
//given - Case(i)
Lambda0=1e-6;//Wavelength in m
n=1.45;//Dimensionless Refractive index of the fiber
p=0.286;//Dimensionless Photoelastic coefficient of the fiber
Beta=7e-11;//Isothermal compressibility of the fiber in m^2 N^-1
Tf=1400;//Temperature in K
k=1.38e-23;//Boltzmann constant in SI Units
L=1e3;//Length of fiber in m
mprintf("\n For Lambda0 = 1um :");
AlphaR=8*((%pi)^3)/(3*(Lambda0^4))*(n^8)*(p^2)*Beta*k*Tf;//Absorption coefficient due to Rayleigh scattering in m^-1
mprintf("\n AlphaR = %.2e m^(-1)",AlphaR);
Loss=-10*log10(exp(-AlphaR*L));
mprintf("\n Loss = %.2f dB km^(-1)\n",Loss);
//given - Case(ii)
Lambda0=1.55e-6;//Wavelength in m
n=1.46;//Dimensionless Refractive index of the fiber
p=0.286;//Dimensionless Photoelastic coefficient of the fiber
Beta=7e-11;//Isothermal compressibility of the fiber in m^2 N^-1
Tf=1400;//Temperature in K
L=1e3;//Length of fiber in m
mprintf("\n For Lambda0 = 1.55um :");
AlphaR=8*((%pi)^3)/(3*(Lambda0^4))*(n^8)*(p^2)*Beta*k*Tf;//Absorption coefficient due to Rayleigh scattering in m^-1
mprintf("\n AlphaR = %.2e m^(-1)",AlphaR);//The answers vary due to round off error
Loss=-10*log10(exp(-AlphaR*L));
mprintf("\n Loss = %.2f dB km^(-1)",Loss);//The answers vary due to round off error
|
d19d0f1eae428329dbdc3c3a2bef0568164454a7
|
8217f7986187902617ad1bf89cb789618a90dd0a
|
/browsable_source/2.5/Unix-Windows/scilab-2.5/macros/m2sci/sci_isspace.sci
|
ab948ad1cb9933bbbf2efc2446a60441133f7898
|
[
"LicenseRef-scancode-public-domain",
"LicenseRef-scancode-warranty-disclaimer"
] |
permissive
|
clg55/Scilab-Workbench
|
4ebc01d2daea5026ad07fbfc53e16d4b29179502
|
9f8fd29c7f2a98100fa9aed8b58f6768d24a1875
|
refs/heads/master
| 2023-05-31T04:06:22.931111
| 2022-09-13T14:41:51
| 2022-09-13T14:41:51
| 258,270,193
| 0
| 1
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 110
|
sci
|
sci_isspace.sci
|
function [stk,txt,top]=sci_isspace()
txt=[]
stk=list('abs(str2code('+stk(top)(1)+')'')==40','3','1','?','1')
|
ff5eda41a7f98d45bf75618eb86b62309e9e7eda
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3754/CH32/EX32.3/32_3.sce
|
c54c2f673f51a0e7358d9c5e59a5a606d0ba3fee
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 505
|
sce
|
32_3.sce
|
clear//
//Variables
R1 = 2.0 * 10**3 //Resistance (in ohm)
R2 = 20.0 * 10**3 //Resistance (in ohm)
C1 = 0.01 * 10**-6 //Capacitance (in Farad)
C2 = 0.05 * 10**-6 //Capacitance (in Farad)
//Calculation
T = 0.69*(R1*C1 + R2*C2) //Time periode of oscillation (in seconds)
f = 1/T //Frequency of oscillation (in Hertz)
//Result
printf("\n Time period of oscillation is %0.1f ms.\nFrequency of oscillation is %0.2f kHz.",T*10**3,f*10**-3)
|
61b3f62cd64e98ebb4ff561e8a6003ffb25e1300
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3630/CH13/EX13.1/Ex13_1.sce
|
ef715e1877503fc0d6a9ced062f811b47742f6b0
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 140
|
sce
|
Ex13_1.sce
|
clc;
Vgs=-6:1:4;
Vgsoff=-6;
Idss=0.001;
Id=Idss*(1-(Vgs/Vgsoff)).^2;
plot(Vgs,Id*1000,'r')
xgrid
xlabel('Vgs(V)')
ylabel('Id(mA)')
|
9b2cf2d419edc6e221525bff7cb581cc4531151c
|
57a39df08383d18148a77915551223cef3bc8cd6
|
/convolutin_of_ct_signals.sci
|
f4b795839f6e8310b36113017e408f0d0b41a2be
|
[] |
no_license
|
sonusharma55/Misc.-MATLAB-Scilab
|
0abbc7ab22e963b3b3e147a18e17af2f3021d3ce
|
dbfaab1b84719948ef665798c4192e6ca934e46a
|
refs/heads/master
| 2020-07-25T22:00:11.975476
| 2019-09-14T12:31:37
| 2019-09-14T12:31:37
| 208,434,501
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,052
|
sci
|
convolutin_of_ct_signals.sci
|
// Display mode
mode(0);
// Display warning for floating point exception
ieee(1);
//""""Study of Convolution of two continuous time domain signals...
//...x1(t)=1 for t>=1 and t<=10...
//...x2(t)=1 for t>=2 and t<=10""""
clc;
t = 0:0.1:15;//Defining the length of time ''t''
l = max(size(t));//Finding the length of time
x1 = 1 .*(t>=1 & t<=10);//Defining the signal x1(t)
l1 = max(size(x1));//Finding the length of signal x1(t)
x2 = 1 .*(t>=2 & t<=10);//Defining the signal x2(t)
l2 = max(size(x2));//Finding the length of signal x2(t)
x3 = conv(x1,x2);//Finding the convolution of x1(t) & x2(t)
l3 = max(size(x3));//Finding the length of signal x3(t)
t1 = 0:l3-1;//Defining the length of time ''t1''
subplot(3,1,1);//Plot x1(t) versus t
plot(t,x1);
title("Signal x1(t)");
xlabel("t");
ylabel("x1(t)");
subplot(3,1,2);//Plot x2(t) versus t
plot(t,x2);
title("Signal x2(t)");
xlabel("t");
ylabel("x2(t)");
subplot(3,1,3);//Plot x3(t) versus t1
plot(t1,x3);
title("Signal x3(t)");
xlabel("t1");
ylabel("x3(t1)");
|
aa6a1d358f5daf5d143d4a0b4b2349e2dbe9994e
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2774/CH6/EX6.5/Ex6_5.sce
|
a6769ca8fa1ccbe5020b016dd14dd163fa3c1405
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,202
|
sce
|
Ex6_5.sce
|
clc
clear
// solution
//initialization of variables
P2=2*1000 //higher pressure converted in in kPa
P1=10 // lower pressure in kPa
h1=192 // enthalpy at 10 kPa in kJ/kg
h3=3248 // enthalpy @ state 3 in kJ/kg from table C.3
s3=7.128 // entropy @ state 3 in kJ/kg.K from table C.3
s4=s3 // isentropic process
h2=h1 //isenthalpic process
h4=((s4-7.038)/(7.233-7.038))*(3056-2950)+2950 //using adjacent values for
//interpolation from table C.3
h5=3267 // enthalpy at 800 kPa and $00 degree celsius
s5=7.572 // entropy at 800 kPa and $00 degree celsius
s6=s5 // isentropic process
sf=0.6491// entropy of saturated liquid @10 kPa from steam table
sg=8.151 // entropy of saturated vapour @10 kPa from steam table
x=(s6-sf)/(sg-sf)// quality of steam
hf=192 //enthalpy of saturated liquid @10 kPa from steam table
hg=2585 // enthalpy of saturated vapour @10 kPa from steam table
h6=hf+x*(hg-hf)// enthalpy @ state 6
// we now calculate energy input
qb=(h5-h4)+(h3-h2)// heat interaction
// we now calculate work output
wt=(h5-h6)+(h3-h4)// turbine work
eff=(wt)/qb // efficiency of power cycle
printf(" The Efficiency is %.4f9 or %.2f %% \n",eff,eff*100)
|
b73daf270b4fc5e18f460b7aa9a4658de92bc647
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2135/CH2/EX2.7/Exa_2_7.sce
|
b3cb5c73c6ff0c5091c46fdec59bd9758d515179
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 753
|
sce
|
Exa_2_7.sce
|
//Exa 2.7
clc;
clear;
close;
format('v',7);
//Given Data
SigmaW=30;//KJ
n=10;//cycles/min
Q1_2=50;//KJ
//Q2_3=0;//KJ
//Q3_1=0;//KJ
//W1_2=0;//KJ
W2_3=30;//KJ
//W3_1=0;//KJ
deltaU1_2=20;//KJ
deltaU2_3=-10;//KJ
//deltaU3_1=0;//KJ
//Q-W=deltaU
//For Proess 1-2 :
W1_2=Q1_2-deltaU1_2;//KJ
disp(W1_2,"W1-2 in KJ : ");
//For Proess 2-3
Q2_3=W2_3+deltaU2_3;//KJ
disp(Q2_3,"Q2-3 in KJ : ");
//For Proess 3-1
W3_1=SigmaW-W1_2-W2_3;//KJ
disp(W3_1,"W3-1 in KJ : ");
SigmaQ=SigmaW;//KJ
Q3_1=SigmaQ-Q1_2-Q2_3;//KJ
disp(Q3_1,"Q3-1 in KJ : ");
deltaU3_1=Q3_1-W3_1;//KJ
disp(deltaU3_1,"U1-U3 or deltaU3-1 in KJ : ");
RateOfWork=SigmaW*n;//KJ/min
RateOfWork=RateOfWork/60;//KJ/sec or KW
disp(RateOfWork,"Rate of work in KW : ");
|
80422b25529f0fbfae9be9e0e420dcaeb929dae2
|
1db0a7f58e484c067efa384b541cecee64d190ab
|
/macros/yulewalker.sci
|
40fcadb174d370a5c0cca918d4cc5ef4bf3b0c93
|
[] |
no_license
|
sonusharma55/Signal-Toolbox
|
3eff678d177633ee8aadca7fb9782b8bd7c2f1ce
|
89bfeffefc89137fe3c266d3a3e746a749bbc1e9
|
refs/heads/master
| 2020-03-22T21:37:22.593805
| 2018-07-12T12:35:54
| 2018-07-12T12:35:54
| 140,701,211
| 2
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 743
|
sci
|
yulewalker.sci
|
function [A,V]= yulewalker(C)
// Fit an AR (p)-model with Yule-Walker estimates given a vector C of autocovariances '[gamma_0, ..., gamma_p]'.
//Calling Sequence
//A = yulewalker(C)
//[A,V]= yulewalker(C)
//Parameters
//C: Autocovariances
//Description
//Fit an AR (p)-model with Yule-Walker estimates given a vector C of autocovariances '[gamma_0, ..., gamma_p]'.
//Returns the AR coefficients, A, and the variance of white noise, V.
funcprot(0);
lhs=argn(1);
rhs= argn(2);
if(rhs<1 | rhs>1)
error("Wrong number of input arguments");
end
if(lhs<1 | lhs>2)
error("Wrong number of output arguments");
end
select(lhs)
case 1 then
A= callOctave("yulewalker", C);
case 2 then
[A,V]= callOctave("yulewalker", C);
end
endfunction
|
02601005c8330e42be87e8bd609ab3a5780ae7ea
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3411/CH6/EX6.2/Ex6_2.sce
|
1e1c84460c9fbb55856147998000a5be71bbe8ec
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 406
|
sce
|
Ex6_2.sce
|
//Example 6_2
clc();
clear;
//To calculate the Electric field of a bulb
w=10 //units in W
i=(100*w)/(4*%pi*10^2) //Units in W/mts^2
c=3*10^8 //units in mts/sec
u=4*10^-7 //units in SI
n=1
E0=sqrt((i*2*c*u)/n) //units in V/mts
printf("The electric field of the bulb is E0=%.2f V/mts",E0)
//In text book answer is given E0=2.4 V/m but the correct answer is E0=13.82 V/m
|
b7315f322953531bcffe114bc9261dcd80c04475
|
1b969fbb81566edd3ef2887c98b61d98b380afd4
|
/Rez/bivariate-lcmsr-post_mi/bfas_co_aspfin_d/~BivLCM-SR-bfas_co_aspfin_d-PLin-VLin.tst
|
5c43f6f7293dd50443cfa1d47622e04ba18a0456
|
[] |
no_license
|
psdlab/life-in-time-values-and-personality
|
35fbf5bbe4edd54b429a934caf289fbb0edfefee
|
7f6f8e9a6c24f29faa02ee9baffbe8ae556e227e
|
refs/heads/master
| 2020-03-24T22:08:27.964205
| 2019-03-04T17:03:26
| 2019-03-04T17:03:26
| 143,070,821
| 1
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 11,974
|
tst
|
~BivLCM-SR-bfas_co_aspfin_d-PLin-VLin.tst
|
THE OPTIMIZATION ALGORITHM HAS CHANGED TO THE EM ALGORITHM.
ESTIMATED COVARIANCE MATRIX FOR PARAMETER ESTIMATES
1 2 3 4 5
________ ________ ________ ________ ________
1 0.288848D+00
2 -0.379340D-02 0.230217D-02
3 0.887353D-01 -0.247462D-02 0.602423D+00
4 -0.225202D-02 0.629104D-03 -0.850567D-02 0.463177D-02
5 0.639706D-03 -0.124104D-03 -0.497796D-03 0.199033D-03 0.328271D-02
6 -0.201127D-03 0.877889D-04 -0.353457D-03 0.171288D-04 -0.296779D-03
7 -0.120862D-02 -0.342451D-04 0.765879D-03 -0.176689D-03 -0.549440D-03
8 -0.687006D-03 0.122778D-03 -0.306753D-02 0.117523D-03 -0.560227D-03
9 -0.187987D+00 0.106243D-01 -0.167632D+00 0.205525D-02 0.633952D-01
10 -0.546051D-01 -0.805703D-02 0.116075D+00 -0.930959D-02 0.152273D+00
11 0.357277D-02 -0.129311D-02 -0.166274D+00 -0.842467D-02 0.172472D-01
12 0.531767D-01 0.169847D-01 0.133584D+01 -0.137014D-01 -0.429231D-02
13 -0.839470D-01 -0.183737D-02 -0.910612D-01 0.220003D-02 -0.223580D-01
14 0.117075D+00 -0.926489D-02 0.294932D+00 -0.213542D-01 -0.540160D-02
15 -0.157325D+01 -0.295839D-01 -0.111888D+01 -0.198456D-01 -0.109156D+00
16 -0.334528D-01 -0.725666D-03 -0.452812D-02 -0.287106D-02 -0.706126D-03
17 0.908430D-02 0.173414D-03 0.334111D-02 0.424781D-03 -0.433792D-03
18 -0.101430D+01 -0.173750D-01 -0.226682D-01 -0.721024D-01 0.867376D-01
19 0.331570D-01 -0.303814D-02 -0.192201D-01 0.584023D-02 -0.191702D-01
20 0.657880D+00 -0.664368D-01 0.513898D+01 -0.555375D-01 0.682769D-01
21 -0.175122D-01 -0.417399D-02 -0.304459D-01 0.795518D-03 0.181594D-01
22 0.135024D-02 0.453609D-03 0.615420D-02 0.727446D-03 -0.147904D-03
23 0.136782D-02 0.715601D-03 0.440234D-01 0.131796D-01 0.654201D-02
24 -0.158107D-02 0.532100D-03 -0.993652D-02 0.100772D-02 -0.498861D-03
ESTIMATED COVARIANCE MATRIX FOR PARAMETER ESTIMATES
6 7 8 9 10
________ ________ ________ ________ ________
6 0.597486D-03
7 0.615431D-03 0.399443D-02
8 -0.274599D-04 -0.446008D-04 0.314443D-02
9 0.165089D-02 0.114626D-01 -0.369319D-02 0.278039D+02
10 -0.169409D-01 -0.999858D-02 -0.408818D-01 0.145383D+01 0.170194D+02
11 0.126049D-01 0.933125D-02 0.200516D-02 -0.224792D+00 0.135351D+01
12 0.281143D-02 0.144444D-01 0.178657D-01 0.328978D+00 0.185962D-01
13 0.432903D-01 0.123032D+00 -0.326723D-01 0.453807D+00 -0.787310D+00
14 -0.334796D-01 -0.140018D-01 0.274732D+00 -0.174606D+01 0.381530D+01
15 0.379729D-02 0.517041D-01 -0.218185D-01 0.162996D+00 -0.803489D+01
16 -0.609706D-04 0.284617D-02 0.586963D-04 0.457380D+00 -0.541556D-01
17 0.137166D-03 -0.218008D-03 0.221775D-03 -0.940029D-01 -0.394352D-01
18 -0.388225D-01 -0.438934D-01 -0.106616D-01 0.322178D+01 0.338491D+01
19 -0.317776D-02 0.173521D-01 0.318481D-02 -0.162080D+01 -0.673813D+00
20 -0.135781D-01 -0.755721D-01 -0.331477D+00 -0.358036D+01 0.631940D+01
21 0.360781D-02 -0.156884D-01 -0.457559D-02 0.196864D+01 0.598421D+00
22 -0.128555D-03 -0.621289D-03 0.530618D-03 -0.378015D-01 -0.150571D-01
23 -0.140279D-02 -0.326834D-03 0.105169D-02 0.286428D+00 0.362312D+00
24 0.295190D-03 0.697905D-03 0.201502D-03 0.271402D-01 -0.320172D-01
ESTIMATED COVARIANCE MATRIX FOR PARAMETER ESTIMATES
11 12 13 14 15
________ ________ ________ ________ ________
11 0.320266D+02
12 0.585798D+01 0.147123D+03
13 -0.236272D+01 -0.399895D+01 0.142499D+02
14 0.206628D+01 -0.382802D+01 -0.488862D+01 0.107421D+03
15 -0.318172D+01 -0.365599D+01 0.140703D+01 -0.986569D+01 0.202288D+03
16 0.573732D-01 -0.601094D-01 0.554386D-01 -0.295999D-01 0.152174D+01
17 -0.136876D-01 0.358505D-01 0.309177D-02 0.126621D-01 -0.104081D+01
18 -0.489909D+01 -0.184653D+01 -0.560898D+01 -0.653530D+01 0.453149D+02
19 0.243799D+01 0.135186D+01 -0.354850D+00 -0.533701D+00 0.394610D+01
20 -0.102208D+02 -0.170225D+02 0.612899D+01 -0.737115D+02 -0.587175D+01
21 -0.161623D+01 -0.420776D+00 0.170072D+00 0.101935D+01 -0.373790D+01
22 -0.545008D-01 -0.414263D-01 -0.923680D-02 0.643734D-01 -0.171976D+00
23 0.534161D-02 0.170774D+01 0.183236D-01 0.178236D+00 -0.140766D+01
24 0.576489D-02 -0.334027D+00 0.170512D-01 0.128306D-01 0.186834D+00
ESTIMATED COVARIANCE MATRIX FOR PARAMETER ESTIMATES
16 17 18 19 20
________ ________ ________ ________ ________
16 0.333655D+00
17 -0.251169D-01 0.125649D-01
18 0.596611D-01 -0.252227D+00 0.231426D+03
19 0.158005D+00 -0.371806D-01 -0.528612D+00 0.593595D+01
20 -0.111163D+01 0.167331D+00 0.109226D+03 -0.478858D+01 0.812843D+03
21 0.445978D-01 0.255169D-01 0.190687D+01 -0.520895D+01 0.523279D+01
22 -0.413191D-02 0.295216D-02 -0.953028D+00 -0.195936D-01 -0.500696D+00
23 0.126866D-01 0.547832D-02 0.377126D+00 -0.194903D+00 0.613528D+01
24 0.496046D-02 -0.143457D-02 -0.414295D+00 0.302853D-01 -0.364327D+01
ESTIMATED COVARIANCE MATRIX FOR PARAMETER ESTIMATES
21 22 23 24
________ ________ ________ ________
21 0.620949D+01
22 -0.413779D-01 0.115945D-01
23 0.522449D+00 -0.223276D-01 0.138600D+01
24 -0.735059D-01 0.398041D-02 -0.105601D+00 0.424173D-01
ESTIMATED CORRELATION MATRIX FOR PARAMETER ESTIMATES
1 2 3 4 5
________ ________ ________ ________ ________
1 1.000
2 -0.147 1.000
3 0.213 -0.066 1.000
4 -0.062 0.193 -0.161 1.000
5 0.021 -0.045 -0.011 0.051 1.000
6 -0.015 0.075 -0.019 0.010 -0.212
7 -0.036 -0.011 0.016 -0.041 -0.152
8 -0.023 0.046 -0.070 0.031 -0.174
9 -0.066 0.042 -0.041 0.006 0.210
10 -0.025 -0.041 0.036 -0.033 0.644
11 0.001 -0.005 -0.038 -0.022 0.053
12 0.008 0.029 0.142 -0.017 -0.006
13 -0.041 -0.010 -0.031 0.009 -0.103
14 0.021 -0.019 0.037 -0.030 -0.009
15 -0.206 -0.043 -0.101 -0.021 -0.134
16 -0.108 -0.026 -0.010 -0.073 -0.021
17 0.151 0.032 0.038 0.056 -0.068
18 -0.124 -0.024 -0.002 -0.070 0.100
19 0.025 -0.026 -0.010 0.035 -0.137
20 0.043 -0.049 0.232 -0.029 0.042
21 -0.013 -0.035 -0.016 0.005 0.127
22 0.023 0.088 0.074 0.099 -0.024
23 0.002 0.013 0.048 0.164 0.097
24 -0.014 0.054 -0.062 0.072 -0.042
ESTIMATED CORRELATION MATRIX FOR PARAMETER ESTIMATES
6 7 8 9 10
________ ________ ________ ________ ________
6 1.000
7 0.398 1.000
8 -0.020 -0.013 1.000
9 0.013 0.034 -0.012 1.000
10 -0.168 -0.038 -0.177 0.067 1.000
11 0.091 0.026 0.006 -0.008 0.058
12 0.009 0.019 0.026 0.005 0.000
13 0.469 0.516 -0.154 0.023 -0.051
14 -0.132 -0.021 0.473 -0.032 0.089
15 0.011 0.058 -0.027 0.002 -0.137
16 -0.004 0.078 0.002 0.150 -0.023
17 0.050 -0.031 0.035 -0.159 -0.085
18 -0.104 -0.046 -0.012 0.040 0.054
19 -0.053 0.113 0.023 -0.126 -0.067
20 -0.019 -0.042 -0.207 -0.024 0.054
21 0.059 -0.100 -0.033 0.150 0.058
22 -0.049 -0.091 0.088 -0.067 -0.034
23 -0.049 -0.004 0.016 0.046 0.075
24 0.059 0.054 0.017 0.025 -0.038
ESTIMATED CORRELATION MATRIX FOR PARAMETER ESTIMATES
11 12 13 14 15
________ ________ ________ ________ ________
11 1.000
12 0.085 1.000
13 -0.111 -0.087 1.000
14 0.035 -0.030 -0.125 1.000
15 -0.040 -0.021 0.026 -0.067 1.000
16 0.018 -0.009 0.025 -0.005 0.185
17 -0.022 0.026 0.007 0.011 -0.653
18 -0.057 -0.010 -0.098 -0.041 0.209
19 0.177 0.046 -0.039 -0.021 0.114
20 -0.063 -0.049 0.057 -0.249 -0.014
21 -0.115 -0.014 0.018 0.039 -0.105
22 -0.089 -0.032 -0.023 0.058 -0.112
23 0.001 0.120 0.004 0.015 -0.084
24 0.005 -0.134 0.022 0.006 0.064
ESTIMATED CORRELATION MATRIX FOR PARAMETER ESTIMATES
16 17 18 19 20
________ ________ ________ ________ ________
16 1.000
17 -0.388 1.000
18 0.007 -0.148 1.000
19 0.112 -0.136 -0.014 1.000
20 -0.068 0.052 0.252 -0.069 1.000
21 0.031 0.091 0.050 -0.858 0.074
22 -0.066 0.245 -0.582 -0.075 -0.163
23 0.019 0.042 0.021 -0.068 0.183
24 0.042 -0.062 -0.132 0.060 -0.620
ESTIMATED CORRELATION MATRIX FOR PARAMETER ESTIMATES
21 22 23 24
________ ________ ________ ________
21 1.000
22 -0.154 1.000
23 0.178 -0.176 1.000
24 -0.143 0.179 -0.436 1.000
|
742f8c15c5c109a382155d38e01e3fc1500e427a
|
8781912fe931b72e88f06cb03f2a6e1e617f37fe
|
/scilab/final/qscatter/u.sce
|
7b4d9b6252885c7747b7c97fa9a93656274a43c3
|
[] |
no_license
|
mikeg2105/matlab-old
|
fe216267968984e9fb0a0bdc4b9ab5a7dd6e306e
|
eac168097f9060b4787ee17e3a97f2099f8182c1
|
refs/heads/master
| 2021-05-01T07:58:19.274277
| 2018-02-11T22:09:18
| 2018-02-11T22:09:18
| 121,167,118
| 1
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 103
|
sce
|
u.sce
|
//u
function [u]=u(l,r)
alpha=6.12;
e=3;
C=sqrt(e*alpha/25)
u=exp( (-1)*C*r^(-5));
endfunction
|
6e0ef4a422292b2af785d167686b9b7f0eeaa6a9
|
bd4a88a5c028a801cbf0e414d2630de1c1e35449
|
/scilab/Classification.sci
|
45a22a7faa4767e9d2ca66a113c144ec237a275e
|
[] |
no_license
|
edielsonpf/turning-signal-analysis
|
625783cea26b029c87925f96af4ac14aa38c8ae8
|
2fd594e79395caa72f5cebc378878367ff0e7f01
|
refs/heads/master
| 2021-03-13T00:01:23.673430
| 2018-12-24T14:44:39
| 2018-12-24T14:44:39
| 41,508,152
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 209
|
sci
|
Classification.sci
|
function y=Classification(x,W,NN)
//x: vector with testing data
//W: synaptic weight of treined ANN
//NN: ANN arquitecture
y = ann_FF_run(x,NN,W);
y=round(y);
endfunction
|
44651710c21f985c496c425b8202ed3b2262a2eb
|
8016059350f017142cd5cdf2df5cabf94cf3c477
|
/Digital Communication/sine cosine.sce
|
04d61a0169c050575cafaca4b365c0ee8218f22b
|
[] |
no_license
|
aftalam/5th-sem-labworks
|
07062dc9824af810a7d7970c7907ab999fda7c52
|
d3c858587369757ccbed96bc9b29e8a1fa709824
|
refs/heads/master
| 2022-11-11T23:58:51.147782
| 2020-07-05T18:13:59
| 2020-07-05T18:13:59
| 275,115,844
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 418
|
sce
|
sine cosine.sce
|
//Implementation of Sine & Cosine Signals
clc
clear all
t = 0:0.1:10;
s = sin(t);
c = cos(t);
subplot(2,2,1)
plot(t,s)
xtitle('Sine Wave Continuous','Time','Amplitude')
subplot(2,2,2)
plot2d3(t,s)
xtitle('Sine Wave Discrete','Time','Amplitude')
subplot(2,2,3)
plot(t,c)
xtitle('Cosine Wave Continuous','Time','Amplitude')
subplot(2,2,4)
plot2d3(t,c)
xtitle('Cosine Wave Discrete','Time','Amplitude')
|
0732f826817584579466a2ee8d9ac3c0dbd96c8c
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3161/CH1/EX1.3/Ex1_3.sce
|
f7fec6d4d80b5790a651cf712185cc33e2fd3f4f
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 569
|
sce
|
Ex1_3.sce
|
clc;
//page 18
//problem 1.3
//u1(T) vs T
T = [-5:0.0082:5];
u1(T<=0) = 0;
u1(T>0) = 1;
xlabel('T');
ylabel('u(T)')
subplot(131);
plot2d(T,u1);
//u2(T-t) vs T
//Shifting the given signal by t units to the right, we get
//Let us assume the amount of time to be shited is 3 units
t = 3;
T = [-5:0.0082:5];
u2(T<=t) = 0;
u2(T>t) = 1;
xlabel('T');
ylabel('u(T - t)')
subplot(132);
plot2d(T,u2);
//u(t - T) = u(-(T - t))
T = [-5:0.0082:5];
u3(T>=t) = 0;
u3(T<t) = 1;
xlabel('T');
ylabel('u(t - T)')
subplot(133);
plot2d(T,u3);
|
6bf60c3ce3ccfc08b98449aeae5ad8d64da2dc52
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1427/CH22/EX22.1/22_1.sce
|
31afab4f10c465e9668fd115450b7ded08261eb9
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 173
|
sce
|
22_1.sce
|
//ques-22.1
//Calculating volume of a cubic unit cell
clc
a=0.3;//edge length (in nm)
V=a^3;//volume
printf("The volume of the unit cell is %.0f*10^-30 m^3.",V*1000);
|
0915220433293d1577eddc924bd3130706b28319
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3784/CH2/EX2.4/Ex2_4.sce
|
f037999b60f28c56e6510b3afcc1feb62167f5a6
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 306
|
sce
|
Ex2_4.sce
|
clc
//variable initialisation
Va=220 //supply voltage in volts
N1=1500 //speed in rpm
Ra=2 //armature resistance in ohm
La=0.02836 //armature inductance in mH
f=50 //frequency in Hz
//solution
Vl=(Va*%pi)/(3*sqrt(2))
Vm=sqrt(2)*Vl
printf('\n\n The Source Voltage Required=%0.1f Volts\n\n',Vm)
|
345533aa20289256fa3148b8d791a5bace804398
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/172/CH5/EX5.9/ex9.sce
|
e8574c903e95fe217ca1004a8116cee2e4fd2b8c
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 571
|
sce
|
ex9.sce
|
//example 9
//determining amount of heat transfer
clear
clc
P=150 //pressure of nitrogen in cylinder in kPa
V=0.1 //initial volume of cylinder in m^3
T1=25 //initial temperature of nitrogen in celsius
T2=150 //final tempareture of nitrogen in celsius
R=0.2968 //in kJ/kg-K
m=P*V/(R*(T1+273)) //mass of nitrogen in kg
Cv=0.745 //constant volume specific heat for nitrogen in kJ/kg-K
W=-20 //work done on nitrogen gas in kJ
Q=m*Cv*(T2-T1)+W //heat transfer during the process in kJ
printf("\n hence,the heat transfer for the above process is Q=%.1f kJ. \n", Q)
|
c9c253ad3b22ca6b6cac37dbf8e1a6c97eb1a437
|
62e6605ab494919b6833bf1a1b158bcb6f9b79df
|
/Arxtest.sce
|
04aa7f05f4561b7241cc4439157095354058faf1
|
[] |
no_license
|
mani1250/system-identification
|
c597c26d10bb5dd62b1b4db650b3945afc336e37
|
5db0536c792dfaa4a8f01561315263503ff34d3d
|
refs/heads/master
| 2021-01-12T06:56:00.703593
| 2017-03-07T12:18:15
| 2017-03-07T12:18:15
| 76,865,655
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 74
|
sce
|
Arxtest.sce
|
loadmatfile('Arxsim.mat');
data = Arxsim;
model = arx(data,2,1,1);
model
|
334ce7fbc667b06e4440b42ae1dc2044b24503f2
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1697/CH1/EX1.13/Exa1_13.sce
|
66ae1b7f5ac5629de7b5b93f1124c31f2a2316b1
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 364
|
sce
|
Exa1_13.sce
|
//Exa 1.13
clc;
clear;
close;
//given data :
r=1;//in Km
r=1*10^3;//in m
l=1;//in m
Irms=10;//in A
f=5;//in MHz
c=3*10^8;//speed of light i m/s
lambda=c/(f*10^6);//in m
le=2*l/%pi;//in m
Erms=120*%pi*le*Irms/(lambda*r);//in V/m
disp(Erms,"Field strength at 10Km distace in V/m: ");
//Note : Answer in the book is wrong. Mistake during value putting.
|
347ad899a6192ab4e74863a0bacc403e9081ec4f
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1946/CH8/EX8.1.b/Ex_8_1_b.sce
|
7b70e44c34f629d43cc4f921d1dff7a99d94d425
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 309
|
sce
|
Ex_8_1_b.sce
|
// Example 8.1.b;//OPTICAL POWER coupled in fiber
clc;
clear;
close;
B0=100;//in W per cm2 sr
rs=0.002;// radiating radius in cm
a=0.0015;//core radius in cm
NA=0.3;//numerical aperture
Pc=(B0*a^2*%pi^2*NA^2)*10^3;//POWER COUPLED IN FIBER in mili watt
disp(Pc,"POWER COUPLED IN FIBER in mili watt")
|
6517805e5aae5bb781c6c28e1badf355a47f554c
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1301/CH6/EX6.7/ex6_7.sce
|
ba6eef9ba4640beae59fc33cc6680b4e2f2ad17b
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 260
|
sce
|
ex6_7.sce
|
clc;
wa=300; //weight of astronaut in lb
ww=1; //weight in of wrench lb
vw=15; //velocity of wrench in ft/sec
va=(ww*vw)/wa; //calculating va using law of conservation of momentum
disp(va,"Velocity of astronaut in ft/sec = "); //displaying result
|
0cee5d3a222717df5479639d86d2b8d7ed498c96
|
8217f7986187902617ad1bf89cb789618a90dd0a
|
/source/2.0/macros/robust/musolve.sci
|
156c0f6ed3055fba3b1e5f182ba085efcdcec088
|
[
"MIT",
"LicenseRef-scancode-public-domain",
"LicenseRef-scancode-warranty-disclaimer"
] |
permissive
|
clg55/Scilab-Workbench
|
4ebc01d2daea5026ad07fbfc53e16d4b29179502
|
9f8fd29c7f2a98100fa9aed8b58f6768d24a1875
|
refs/heads/master
| 2023-05-31T04:06:22.931111
| 2022-09-13T14:41:51
| 2022-09-13T14:41:51
| 258,270,193
| 0
| 1
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 7,801
|
sci
|
musolve.sci
|
function [mu,D,G]=musolve(M,K,T,params)
// musolve - Structured Singular value problem
// [mu [,D [,G]] ]=musolve(M,K,T [,params])
//
// M - n by n matrix for which the upper bound of SSV is to be computed.
// K - m by 1 vector contains the block structure. K(i), i=1:m, is the
// size of each block, and sum(K) should be equal to n.
// T - m by 1 vector indicates the type of each block.
// T(i)=1 <=> the ith perturbation block is repeated real
// --> D(i) and G(i) blocks are full complex
// T(i)=2 <=> the ith perturbation block is repeated complex
// --> D(i) block is full complex, G(i) = 0
// T(i)=3 <=> the ith perturbation block is full complex
// --> D(i) is repeated real, G(i)=0
// params =[printflg #iter rtol utol ptol #psteps #dsteps]
// if params has less than 7 elements the right most ones are set
// to their default values:
// printflg = 0 : print flag, 0 - nothing is printed
// #iter = 20 : # of iterations allowed
// rtol = 1.d-6 : required relative accuracy.
// utol = 1.d-10 : tolerance for unfeasability
// ptol = 1.d-12 : tolerance for projection
// #pstep = 5 : # of primal dichotomy steps
// #dstep = 5 : # of dual Newton steps
// D - block diagonal positive hermitian n by n matrix
// G - block diagonal hermitian n by n matrix
//%Description
// Minimize mu such that D and G matrices exist which verify :
// M'*D*M +%i*(G*M - M'*G) -mu^2*D<=0
// D>=0
// REFS: Fan, Tits, Doyle IEEE AC Jan 91
// Young, Newlin,Doyle CDC 91 pp 1251-1256
//!
[lhs,rhs]=argn(0)
params_d=[-1 20 1.d-6 1.d-10 1.d-12 5 5 0 0]
withqr=%f;
if rhs==3 then
params=params_d
else
np=prod(size(params))
for ki=np+1:7
params(ki)=params_d(ki)
end
end
[n,n1]=size(M)
if n1<>n then error(20,1),end
nblc=prod(size(K))
if nblc<>prod(size(T)) then
error('the block structure and type vector must have the same size')
end
if sum(K)<>n then
error('sum of block size must equal dimension of M')
end
realcase=(and(imag(M)==0))&(and(T==3)|and(K==1))
if realcase then // REAL CASE
deff('[Q]=func(X)','Q=X')
A=strucbas(K,T,func,'r')
deff('[Q]=func(X)','Q=M''*X*M')
Q=strucbas(K,T,func,'r')
msiz=n
else // COMPLEX CASE
T1=T;k1=find(T1==2);T1(k1)=ones(k1)';
deff('[Q]=func(X)','Q=X')
A=strucbas(K,T1,func,'c')
deff('[Q]=func(X)','Q=M''*X*M')
Qd=strucbas(K,T1,func,'c')
T1=T;zers=find(T1==2|T1==3);T1(zers)=0*zers'
// 5 means full complex blocks of G have zero diagonal
// replace 5 by 1 below for full complex blocks with
// non zero diagonal
// k1=find(T1==1);T1(k1)=5*ones(k1)';
k1=find(T1==1);T1(k1)=1*ones(k1)';
deff('[Q]=func(X)','Q=X')
Ag=strucbas(K,T1,func,'c')
deff('[Y]=func(X)','Y=%i*(X*M - M''*X)')
Qg=strucbas(K,T1,func,'c')
msiz=2*n
[na1,ma1]=size(A)
Q=[Qd;Qg]
A=[A;0*Qg]
end
tmax=(maxi(svd(M))^2)*(1+.1)
// Solve the problem
[na2,ma]=size(A);
if withqr then
[U,aq,rk,e]=qr([A,Q],1.d-10);aq=aq*e';e=[]
A=aq(1:rk,1:ma);Q=aq(1:rk,ma+1:2*ma);aq=[];
else
rk=na2
end
b=A(1,:);
p=Q(1,:);
A(1,:)=[];
Q(1,:)=[];
[na,ma]=size(A);
nx=(na*ma)/(msiz*(msiz+1)/2)
[x1,mu2,info]=nemirov(matrix(A',1,na*ma),b,matrix(Q',1,na*ma),..
p,msiz,0,list(tmax,[0*ones(1,nx)]),params)
//disp(spec(uncompress(x1'*a+b,'s')),'spec(ax+b)=')
//disp(spec(uncompress(-mu2*(x1'*a+b)+(x1'*q+p),'s')),'spec(t*(ax+b)-(qx+p))=')
if info(1)<0 then
warning('projective method fails!');
disp(info,'info = ')
D=[];G=[]
return
end
X=[1,x1'];
A=[b;A];Q=[p;Q];
//disp(spec(uncompress(-mu2*(x*a)+(x*q),'s')),'spec(t*(ax)-(qx))=')
if withqr then
A=U*[A;0*ones(na2-na,ma)],
X=[X,0*ones(1,na2-na)]*U';
end
mu=sqrt(mu2)
// Reconstruct D matrix
if realcase then
D=uncompress(X*A,'s');
G=0*D;
else
D=uncompress(X(1:na1)*A(1:na1,:),'s');
D=D(1:n,1:n)-%i*D(n+1:2*n,1:n);
if Qg==[] then
G=0*ones(n,n)
else
G=uncompress(X(na1+1:na2)*Ag,'s');
G=G(1:n,1:n)-%i*G(n+1:2*n,1:n);
end
end
//disp(spec(m'*d*m),'spec(m''*d*m)=')
//disp(spec(m'*d*m+%i*(g*m-m'*g)-mu^2*d),'spec(m''*d*m+%i*(g*m-m''*g)-mu^2*d)=')
//disp(spec(d),'spec(d)=')
function AA=compress(A)
//For A square and symmetric AA is vector:
// [A(1,1),A(2,1),A(2,2),...,A(q,1),...A(q,q),...]
//!
if norm(A-A','fro')>1.d-5 then
error('non symmetric matrix')
end
[m,n]=size(A)
AA=[]
for l=1:m,AA=[AA A(l,1:l)],end
function A=uncompress(AA,mod)
//Rebuilds A square symmetric or antsymmetric from AA
// mode : 's' : symmetric
// 'a' : skew-symmetric
// [A(1,1),A(2,1),A(2,2),...,A(q,1),...A(q,q),...]
//!
nn=prod(size(AA))
m=maxi(real(roots(poly([-2*nn 1 1],'x','c'))))
s=1;if part(mod,1)=='a' then s=-1,end
A=[]
ptr=1
for l=1:m
A(l,1:l)=AA(ptr:ptr+l-1)
ptr=ptr+l
end
A=A+s*tril(A,-1)'
function [Q]=strucbas(K,T,func,typ)
//strucbas - form a decomposition of linear mapping
// over a block-structured basis
//Syntax
// [Q]=strucbas(K,T,func,typ)
//Parameters
// K :vector of block sizes
// T : types of blocks
// T(i)==1 : ith block of X full complex
// T(i)==3 : ith block of X is a*eye (repeated real)
// T(i)==4 : ith block of X is full real
// T(i)==0 : ith block of X is a zero block
// T(i)==5 : ith block of X complex with a zero diagonal
// func : macro which defines the linear mapping y=func(x)
// typ: 'r' if X is real
// 'c' if X is complex
//
//Remark
// Q is a matrix, each row of which is the compressed form of func(E)
// where E is a basis entry
// in the complex case Q(l,:) contains the compressed form of
// [real(I) imag(I);-imag(i)' real(i)] where I=func(E)
//
// to display the uncompressed form use:
// [m,n]=size(q);for i=1:m,uncompress(q(i,:),'s'),end
//!
ptr=1
n=sum(K)
Q=[]
if typ=='r' then
for ib=1:prod(size(T))
blsiz=K(ib)
sel=ptr:ptr+blsiz-1
if T(ib)==4|(T(ib)==1&K(ib)==1) then
for l=sel
for ki=ptr:l
X=0*ones(n,n);
X(ki,l)=1
X(l,ki)=1
Q=[Q;compress(func(X))]
end
end
elseif T(ib)==3 then
X=0*ones(n,n);
X(sel,sel)=eye(blsiz,blsiz)
Q=[Q;compress(func(X))]
elseif T(ib)==0 then
else
error('block type must be 0 3 4')
end
ptr=ptr+blsiz
end
else //complex
for ib=1:prod(size(T))
blsiz=K(ib)
sel=ptr:ptr+blsiz-1
if T(ib)==1 then
for l=sel
for ki=ptr:l
X=0*ones(n,n);
X(ki,l)=1
X(l,ki)=1
R=func(X)
Q=[Q;compress([real(R) imag(R);-imag(R') real(R)])]
end
end
for l=sel
for ki=ptr:l-1
X=0*ones(n,n);
X(ki,l)=%i
X(l,ki)=-%i
R=func(X)
//disp('I',R);pause
Q=[Q;compress([real(R) imag(R);-imag(R') real(R)])]
end
end
elseif T(ib)==3 then
X=0*ones(n,n);
X(sel,sel)=eye(blsiz,blsiz)
R=func(X)
//pause
Q=[Q;compress([real(R) imag(R);-imag(R') real(R)])]
elseif T(ib)==4 then
for l=sel
for ki=ptr:l
X=0*ones(n,n);
X(ki,l)=1
X(l,ki)=1
R=func(X)
Q=[Q;compress([real(R) imag(R);-imag(R') real(R)])]
end
end
elseif T(ib)==5 then
for l=sel
for ki=ptr:l-1
X=0*ones(n,n);
X(ki,l)=1
X(l,ki)=1
R=func(X)
Q=[Q;compress([real(R) imag(R);-imag(R') real(R)])]
end
end
for l=sel
for ki=ptr:l-1
X=0*ones(n,n);
X(ki,l)=%i
X(l,ki)=-%i
R=func(X)
//disp('I',R);pause
Q=[Q;compress([real(R) imag(R);-imag(R') real(R)])]
end
end
elseif T(ib)==0 then
else
error('block type must be 0 1 2 3')
end
ptr=ptr+blsiz
end
end
function x=decomp(a)
x=uncompress(a,'s')
[m,n]=size(x)
m=m/2
x=x(1:m,1:m)-%i*x(m+1:2*m,1:m)
|
f23ceabf5ef149ad121b18e7dacdebb47bc2635f
|
a62e0da056102916ac0fe63d8475e3c4114f86b1
|
/set6/s_Electrical_Measurements_And_Measuring_Instruments_N._V._Suryanarayana_1376.zip/Electrical_Measurements_And_Measuring_Instruments_N._V._Suryanarayana_1376/CH9/EX9.4/9_4.sci
|
5b5ae9a7cc9bcc32067cd9ea8cc89ae25889bcf6
|
[] |
no_license
|
hohiroki/Scilab_TBC
|
cb11e171e47a6cf15dad6594726c14443b23d512
|
98e421ab71b2e8be0c70d67cca3ecb53eeef1df6
|
refs/heads/master
| 2021-01-18T02:07:29.200029
| 2016-04-29T07:01:39
| 2016-04-29T07:01:39
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 353
|
sci
|
9_4.sci
|
errcatch(-1,"stop");mode(2);//9.4
;
n=1000/5;
Ie=0.7*1000/100;
Tp=1;
n=200;
Ts=200;
R_actual=Ts+(7/5);
Error_ratio=(200-R_actual)*100/R_actual;
printf("Ratio error=%.2f percent",Error_ratio)
Ts=200-(0.5*200/100);
n=199/1;
R_actual=Ts+(7/5);
Error_ratio=(200-R_actual)*100/R_actual;
printf("\nRatio error=%.2f percent",Error_ratio)
exit();
|
eea7a8db1eed1a4182977493b951bed1967380cd
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1523/CH3/EX3.15/3_15.sce
|
b7e0a4b6fffd07d29708d6584a6d4b36392173a7
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 614
|
sce
|
3_15.sce
|
//Network Theorem 2
//pg no 3.16
//example 3.15
a=10;
b=2;
c=(5*a)-(20*b);
x=20;
y=30;
z=5;
r=z+((x*y)/(x+y));
i=c/(r+c);
//Calculation of Vth(Thevenin's voltage)
disp("removing the 10 ohm resistor from the circuit");
printf("\nFor mesh 1, \nI1 = %.f A",a);
printf("\nApplying KVL to mesh 2,, \nI2 = %.f A",b);
printf("\nWriting Vth equation, \n Vth = %.f V",c);
//Calculation of Rth(Thevenin's Resistance)
disp("replacing the current source of 10 A with an open circuit and voltage source of 100 V with a short circuit,");
printf("\nRth = %.f Ohm",r);
//Calculation of IL(load current)
printf("\nIL = %.2f A",i);
|
ec5f1bc8948f42d9ccd533f0c8832c83b2aac365
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2084/CH14/EX14.8w/14_8w.sce
|
bb77c2679f1bf7c42e5b71c494b46203c138bbbf
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 621
|
sce
|
14_8w.sce
|
//developed in windows XP operating system 32bit
//platform Scilab 5.4.1
clc;clear;
//example 14.8w
//calculation of the elastic potential energy stored in the wire
//given data
A=3*10^-6//area(in m^2) of the cross section
l=50*10^-2//natural length(in m)
m=2.1//mass(in kg) hanged
Y=1.9*10^11///Young modulus(in N/m^2) of the wire
g=10//gravitational acceleration(in m/s^2) of the earth
//calculation
V=A*l//volume of the wire
T=m*g//tension in the wire
Ss=T/A//stress
St=Ss/Y//strain
U=(Ss*St*V/2)//elastic potential energy
printf('the elastic potential energy stored in the wire is %3.1e J',U)
|
6838e6e71454e42ce89b8fb4e99db21d1db2fbdd
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3733/CH34/EX34.15/Ex34_15.sce
|
016c78f5ce322c74f9acc00f55431f3e6329e7b2
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 729
|
sce
|
Ex34_15.sce
|
// Example 34_15
clc;funcprot(0);
//Given data
CP=120*1000;// Capacity of the plant in kW
Cc=12000;//Capital cost in per kW installed in rupees
Swrm=600000;// Salaries,wages,repairs and maintainence per year in rupees
MD=80;// MW
F_l=40/100;// Load factor
Fc=400;// Fuel cost per tonne in rupees
F_c=1.2;// kg/kW-hr
//Calculation
Ci=CP*Cc;// Capital investment in rupees
ID=(10/100)*Ci;// Interest and Depriciation in rupees
L_a=MD*10^6*F_l;//Average Load in MW
L_a=L_a/1000;// kW
E_t=L_a*8760;// kW-hr
F_c=F_c*E_t;// Fuel consumption in kg
Fc=(Fc/1000)*F_c;// Fuel cost in rupees
TAC=ID+Fc+Swrm;
C_g=TAC/E_t;//The cost of generation in rupees per kWh.
printf('\nThe cost of generation=Rs.%0.3f kWh',C_g);
|
436e04d8a106cbe0bac240f78f2f2272e5882f71
|
97135f725c599527ba0fd95a5289373c755daf3b
|
/Examples/test-suite/scilab/abstract_inherit_ok_runme.sci
|
ac5fc178751cd521d1ff0e80f61b1328ca40db92
|
[] |
no_license
|
maqalaqil/swag-c-
|
b8880cfc92424d5bbca1fe15ed98663a41063f27
|
6fd1ba2bf1d353f24c116a3c89a8540292b86a7d
|
refs/heads/master
| 2020-07-06T21:02:08.949652
| 2019-09-01T07:56:55
| 2019-09-01T07:56:55
| 203,137,066
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 170
|
sci
|
abstract_inherit_ok_runme.sci
|
exec("alaqiltest.start", -1);
try
Spam = new_Spam()
catch
alaqiltesterror();
end
if Foo_blah(Spam)<>0 then alaqiltesterror; end
exec("alaqiltest.quit", -1);
|
5ea6a2831029ddea423530f3071884fe15e225ee
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2330/CH6/EX6.9/ex6_9.sce
|
6d4ace033e5dd39062d831970bcf1161dae9fe72
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 558
|
sce
|
ex6_9.sce
|
// Example 6.9
format('v',5)
clc;
clear;
close;
// given data
bita= 150;
R1= 10*10^3;// in Ω
R2= 2.2*10^3;// in Ω
R_E= 1*10^3;// in Ω
V_CC= 10;// in V
V_BE= 0.7;// in V
Vt= 25*10^-3;// in V
V_B= R2*V_CC/(R1+R2);// in V
V_E= V_B-V_BE;// in V
// The emitter current,
I_E= V_E/R_E;// in A
r_desh_e= Vt/I_E;// in Ω
Zin_base= bita*r_desh_e;// in Ω
// The input impedance of each stage
Zin= R1*R2*Zin_base/(R1*R2+R1*Zin_base+R2*Zin_base);// in Ω
Zin= Zin*10^-3;// in k ohm
disp(Zin,"The input impedance of each stage in kΩ is : ")
|
f0c7afcf2bf05ee2cd307693c0a11c66654ae394
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2912/CH1/EX1.5/Ex1_5.sce
|
2d54215ba308d8f84f4c476c989cf66bb1fbbbb1
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 566
|
sce
|
Ex1_5.sce
|
//chapter 1
//example 1.5
//calculate compressibility
//page 16
clear;
clc;
//given
r_0=.41; //in mm(lattice constant)
e=1.6E-19; // in C (charge of electron)
E_o= 8.85E-12;// absolute premittivity
n=0.5; // repulsive exponent value
alpha=1.76; // Madelung constant
pi=3.14; // value of pi used in the solution
//calculate
r=.41*1E-3; // since r is in mm
Beta=72*pi*E_o*r^4/(alpha*e^2*(n-1)); // calculation compressibility
printf('\nThe compressibility is\tBeta=%1.2E ',Beta);
// Note: the answer in the book is wrong due to calculation mistake
|
1503982d6d739f488716ab6db64f977e5dfa1f10
|
1bb72df9a084fe4f8c0ec39f778282eb52750801
|
/test/EC42.prev.tst
|
c3a49ff6ded6affe1b99ab0e00a43571e48dab01
|
[
"Apache-2.0",
"LicenseRef-scancode-unknown-license-reference"
] |
permissive
|
gfis/ramath
|
498adfc7a6d353d4775b33020fdf992628e3fbff
|
b09b48639ddd4709ffb1c729e33f6a4b9ef676b5
|
refs/heads/master
| 2023-08-17T00:10:37.092379
| 2023-08-04T07:48:00
| 2023-08-04T07:48:00
| 30,116,803
| 2
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 297,073
|
tst
|
EC42.prev.tst
|
[[-5,-3,-5,-4],[0,5,3,-2],[-3,-5,-3,-1],[-2,-1,1,-3]],det=72 [16,2,-15,-9], chain 2 => [25,-17,-4,-22] => [34,-53,44,29] ?? [-347,-191,2,-58]
[[-5,-3,-5,-4],[1,2,1,1],[-1,1,2,-3],[1,-1,0,4]],det=-55 [16,2,-15,-9], chain 2 => [25,-4,-17,-22] => [60,-22,3,-59] ?? [-13,-40,101,-154]
[[-5,-3,-5,-4],[1,2,1,1],[2,1,1,4],[-2,-1,1,-3]],det=41 [16,2,-15,-9], chain 2 => [25,-4,-17,-22] => [60,-22,-59,3] ?? [49,-40,51,-166]
[[-5,-3,-5,-4],[3,-5,1,5],[-1,-3,0,-2],[-4,1,-3,0]],det=261 [16,2,-15,-9], chain 2 => [25,-22,-4,-17] => [29,96,75,-110] ?? [-368,-868,-97,-245]
[[-5,-2,-5,-4],[0,-4,0,-2],[-3,-3,1,-5],[-2,-1,2,-5]],det=-128 [16,2,-15,-9], chain 2 => [27,10,-24,-19] => [41,-2,-40,-17] ?? [67,42,-72,-75]
[[-5,-2,-5,-4],[0,-4,0,-2],[-3,-3,1,-5],[0,4,0,3]],det=80 [16,2,-15,-9], chain 2 => [27,10,-24,-19] => [41,-2,-40,-17] ?? [67,42,-72,-59]
[[-5,-2,-5,-4],[0,-4,0,-2],[-1,2,-1,3],[-2,-1,2,-5]],det=-208 [16,2,-15,-9], chain 2 => [27,10,-24,-19] => [41,-2,-40,-17] ?? [67,42,-56,-75]
[[-5,-2,-5,-4],[0,-4,0,-2],[-1,2,-1,3],[0,4,0,3]],det=0 [16,2,-15,-9], chain 2 => [27,10,-24,-19] => [41,-2,-40,-17] ?? [67,42,-56,-59]
[[-5,-2,-5,-4],[0,-4,0,-2],[-1,2,2,-2],[-2,-1,-1,0]],det=150 [16,2,-15,-9], chain 2 => [27,10,-24,-19] => [41,-2,-17,-40] ?? [44,88,1,-63]
[[-5,-2,-5,-4],[2,-5,2,-2],[-5,4,-5,3],[-5,2,-5,2]],det=0 [16,2,-15,-9], chain 2 => [27,10,-24,-19] => [41,-6,-32,-33] ?? [99,114,-168,-123]
[[-5,-1,-5,-3],[-2,-1,0,-3],[2,-2,0,5],[1,0,-1,5]],det=-62 [16,2,-15,-9], chain 2 => [20,-7,-17,-14] => [34,9,-16,-33] ?? [0,22,-115,-115]
[[-5,-1,-5,-3],[-1,-5,1,-3],[-5,3,-2,-3],[3,-5,3,0]],det=0 [16,2,-15,-9], chain 2 => [20,-14,-17,-7] => [20,54,-87,79] ?? [44,-614,-1,-471]
[[-5,-1,-5,-3],[-1,-5,1,-3],[2,4,5,-2],[3,-5,3,0]],det=-172 [16,2,-15,-9], chain 2 => [20,-14,-17,-7] => [20,54,-87,79] ?? [44,-614,-337,-471]
[[-5,-1,-5,-3],[3,-5,3,0],[-1,-5,0,-1],[-5,3,-4,0]],det=16 [16,2,-15,-9], chain 2 => [20,-7,-17,-14] => [34,44,29,-53] ?? [-200,-31,-201,-154]
[[-5,-1,-5,-3],[3,-5,3,0],[-1,-5,0,-1],[2,4,3,1]],det=-70 [16,2,-15,-9], chain 2 => [20,-7,-17,-14] => [34,44,29,-53] ?? [-200,-31,-201,278]
[[-5,-1,-5,-3],[3,-5,3,0],[0,2,-1,4],[1,-3,4,-4]],det=-182 [16,2,-15,-9], chain 2 => [20,-7,-17,-14] => [34,44,-53,29] ?? [-36,-277,257,-426]
[[-5,0,-4,-5],[0,-2,0,0],[1,-3,0,3],[0,4,2,0]],det=-40 [16,2,-15,-9], chain 2 => [25,-4,-17,-22] => [53,8,-29,-50] ?? [101,-16,-121,-26]
[[-5,1,-4,-5],[-1,-2,1,-5],[-2,-4,-2,1],[0,-3,3,-3]],det=-174 [16,2,-15,-9], chain 2 => [27,10,-19,-24] => [71,54,-80,-15] ?? [94,-184,-213,-357]
[[-5,2,-4,-5],[-5,-3,-2,-5],[-5,-5,-2,-5],[-3,0,-2,1]],det=-80 [16,2,-15,-9], chain 2 => [29,-11,-15,-27] => [28,53,75,-84] ?? [86,-29,-135,-318]
[[-5,2,-4,-5],[-5,-3,-2,-5],[-5,-5,-2,-5],[2,5,4,1]],det=20 [16,2,-15,-9], chain 2 => [29,-11,-15,-27] => [28,53,75,-84] ?? [86,-29,-135,537]
[[-5,2,-4,-5],[-5,-3,-2,-5],[0,0,4,-5],[-3,0,-2,1]],det=390 [16,2,-15,-9], chain 2 => [29,-11,-15,-27] => [28,53,75,-84] ?? [86,-29,720,-318]
[[-5,2,-4,-5],[-5,-3,-2,-5],[0,0,4,-5],[2,5,4,1]],det=490 [16,2,-15,-9], chain 2 => [29,-11,-15,-27] => [28,53,75,-84] ?? [86,-29,720,537]
[[-5,2,-4,-5],[-4,1,-4,1],[-3,-3,0,-3],[-4,-4,-5,2]],det=-381 [16,2,-15,-9], chain 2 => [29,-11,-27,-15] => [16,-34,-9,33] ?? [-277,-29,-45,183]
[[-5,2,-4,-5],[-4,1,-4,1],[-3,-3,0,-3],[2,-4,2,1]],det=-174 [16,2,-15,-9], chain 2 => [29,-11,-27,-15] => [16,-34,-9,33] ?? [-277,-29,-45,183]
[[-5,2,-4,-5],[-3,-1,-2,-1],[-3,0,-1,-2],[2,-4,1,4]],det=-13 [16,2,-15,-9], chain 2 => [29,-11,-15,-27] => [28,-19,-18,-21] ?? [-1,-8,-24,30]
[[-5,2,-4,-5],[-3,-1,-2,-1],[2,5,5,-2],[2,-4,1,4]],det=-28 [16,2,-15,-9], chain 2 => [29,-11,-15,-27] => [28,-19,-18,-21] ?? [-1,-8,-87,30]
[[-5,2,-4,-5],[0,2,4,-5],[-5,-5,-2,-5],[-3,0,-2,1]],det=-650 [16,2,-15,-9], chain 2 => [29,-11,-15,-27] => [28,53,75,-84] ?? [86,826,-135,-318]
[[-5,2,-4,-5],[0,2,4,-5],[-5,-5,-2,-5],[2,5,4,1]],det=-550 [16,2,-15,-9], chain 2 => [29,-11,-15,-27] => [28,53,75,-84] ?? [86,826,-135,537]
[[-5,2,-4,-5],[0,2,4,-5],[0,0,4,-5],[-3,0,-2,1]],det=-180 [16,2,-15,-9], chain 2 => [29,-11,-15,-27] => [28,53,75,-84] ?? [86,826,720,-318]
[[-5,2,-4,-5],[0,2,4,-5],[0,0,4,-5],[2,5,4,1]],det=-80 [16,2,-15,-9], chain 2 => [29,-11,-15,-27] => [28,53,75,-84] ?? [86,826,720,537]
[[-5,2,-4,-5],[2,1,3,0],[-3,-3,0,-3],[-4,-4,-5,2]],det=-96 [16,2,-15,-9], chain 2 => [29,-11,-27,-15] => [16,-34,-9,33] ?? [-277,-29,-45,183]
[[-5,2,-4,-5],[2,1,3,0],[-3,-3,0,-3],[2,-4,2,1]],det=111 [16,2,-15,-9], chain 2 => [29,-11,-27,-15] => [16,-34,-9,33] ?? [-277,-29,-45,183]
[[-5,2,-4,-5],[2,4,4,-1],[-3,0,-1,-2],[2,-4,1,4]],det=6 [16,2,-15,-9], chain 2 => [29,-11,-15,-27] => [28,-19,-18,-21] ?? [-1,-71,-24,30]
[[-5,2,-4,-5],[2,4,4,-1],[2,5,5,-2],[2,-4,1,4]],det=-9 [16,2,-15,-9], chain 2 => [29,-11,-15,-27] => [28,-19,-18,-21] ?? [-1,-71,-87,30]
[[-5,5,-5,-4],[2,-2,5,-5],[-3,-5,-3,3],[2,-2,3,0]],det=-72 [16,2,-15,-9], chain 2 => [41,-2,-40,-17] => [53,-29,-44,-34] ?? [-54,114,16,32]
[[-4,-5,-5,-5],[2,2,5,-4],[-3,1,-3,4],[2,2,3,3]],det=127 [16,2,-15,-9], chain 2 => [46,-3,-37,-36] => [196,45,-174,-133] ?? [526,144,-553,-439]
[[-4,-5,-5,-3],[-2,4,-2,3],[0,-5,0,1],[1,-2,5,-5]],det=499 [16,2,-15,-9], chain 2 => [28,-21,-19,-18] => [142,-156,87,65] ?? [-418,-887,845,564]
[[-4,-5,-5,-2],[-2,-1,-1,-1],[-2,1,1,-3],[-5,1,-2,-5]],det=36 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [70,-7,-57,-54] ?? [148,-22,-42,27]
[[-4,-5,-5,-2],[-2,-1,-1,-1],[-2,1,1,-3],[4,4,5,0]],det=-12 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [70,-7,-57,-54] ?? [148,-22,-42,-33]
[[-4,-5,-5,-2],[-2,-1,-1,-1],[-1,2,1,-1],[-4,5,-4,1]],det=45 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [70,-7,-54,-57] ?? [139,-22,-81,-156]
[[-4,-5,-5,-2],[-2,-1,-1,-1],[-1,2,1,-1],[3,3,5,-2]],det=-27 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [70,-7,-54,-57] ?? [139,-22,-81,33]
[[-4,-5,-5,-2],[4,-4,2,4],[-5,1,-5,0],[-1,-4,2,-4]],det=-444 [16,2,-15,-9], chain 2 => [19,-10,-3,-18] => [25,38,-90,87] ?? [-14,116,363,-705]
[[-4,-5,-5,-2],[4,-4,2,4],[-5,1,-5,0],[2,-1,5,-3]],det=-342 [16,2,-15,-9], chain 2 => [19,-10,-3,-18] => [25,38,-90,87] ?? [-14,116,363,-699]
[[-4,-5,-5,-2],[4,-4,2,4],[-2,4,-2,1],[-1,-4,2,-4]],det=-270 [16,2,-15,-9], chain 2 => [19,-10,-3,-18] => [25,38,-90,87] ?? [-14,116,369,-705]
[[-4,-5,-5,-2],[4,-4,2,4],[-2,4,-2,1],[2,-1,5,-3]],det=-168 [16,2,-15,-9], chain 2 => [19,-10,-3,-18] => [25,38,-90,87] ?? [-14,116,369,-699]
[[-4,-4,-5,-4],[-3,-5,-5,0],[1,4,1,5],[0,5,3,-1]],det=-102 [16,2,-15,-9], chain 2 => [39,17,-36,-26] => [60,-22,-59,3] ?? [131,225,-72,-290]
[[-4,-3,-5,-4],[-2,3,-4,4],[-4,3,-3,3],[0,2,2,-1]],det=216 [16,2,-15,-9], chain 2 => [41,-2,-40,-17] => [110,4,-101,-67] ?? [321,-72,-326,-127]
[[-4,-3,-5,-4],[-1,1,0,2],[0,-3,0,0],[-3,-3,1,-4]],det=186 [16,2,-15,-9], chain 2 => [41,-32,-6,-33] => [94,-139,96,99] ?? [-835,-35,417,-165]
[[-4,-3,-5,-4],[-1,1,0,2],[0,-3,0,0],[2,-4,2,3]],det=-33 [16,2,-15,-9], chain 2 => [41,-32,-6,-33] => [94,-139,96,99] ?? [-835,-35,417,1233]
[[-4,-3,-5,-4],[2,-2,5,-5],[-3,4,-3,5],[-4,4,-2,-1]],det=-299 [16,2,-15,-9], chain 2 => [41,-2,-40,-17] => [110,-29,-96,-75] ?? [427,173,-533,-289]
[[-4,-3,-5,-4],[4,-3,3,5],[-3,0,2,-5],[-5,-2,-4,-2]],det=460 [16,2,-15,-9], chain 2 => [41,-32,-33,-6] => [121,131,-159,3] ?? [-94,-371,-696,-237]
[[-4,-2,-5,-3],[-5,5,-3,-3],[-5,4,-2,-3],[-3,-3,1,-4]],det=85 [16,2,-15,-9], chain 2 => [34,2,-15,-33] => [34,-16,-33,9] ?? [34,-178,-195,-123]
[[-4,-2,-5,-3],[-5,5,-3,-3],[-5,4,-2,-3],[1,1,4,-1]],det=85 [16,2,-15,-9], chain 2 => [34,2,-15,-33] => [34,-16,-33,9] ?? [34,-178,-195,-123]
[[-4,-2,-5,-3],[-5,5,-3,-3],[-4,-1,-1,-4],[-4,2,0,-3]],det=-65 [16,2,-15,-9], chain 2 => [34,2,-15,-33] => [34,-16,9,-33] ?? [-50,-178,3,-69]
[[-4,-2,-5,-3],[-5,5,-3,-3],[-4,-1,-1,-4],[4,-5,4,3]],det=-142 [16,2,-15,-9], chain 2 => [34,2,-15,-33] => [34,-16,9,-33] ?? [-50,-178,3,153]
[[-4,-2,-5,-3],[-5,5,-3,-3],[0,3,2,-1],[-4,2,0,-3]],det=-119 [16,2,-15,-9], chain 2 => [34,2,-15,-33] => [34,-16,9,-33] ?? [-50,-178,3,-69]
[[-4,-2,-5,-3],[-5,5,-3,-3],[0,3,2,-1],[4,-5,4,3]],det=-94 [16,2,-15,-9], chain 2 => [34,2,-15,-33] => [34,-16,9,-33] ?? [-50,-178,3,153]
[[-4,-2,-5,-3],[-5,5,-3,-3],[3,-3,2,3],[-3,-3,1,-4]],det=204 [16,2,-15,-9], chain 2 => [34,2,-15,-33] => [34,-16,-33,9] ?? [34,-178,111,-123]
[[-4,-2,-5,-3],[-5,5,-3,-3],[3,-3,2,3],[1,1,4,-1]],det=102 [16,2,-15,-9], chain 2 => [34,2,-15,-33] => [34,-16,-33,9] ?? [34,-178,111,-123]
[[-4,-2,-5,-3],[-2,1,-1,0],[0,0,1,2],[-5,-1,-5,-1]],det=-11 [16,2,-15,-9], chain 2 => [34,-15,-33,2] => [53,-50,-29,8] ?? [9,-127,-13,-78]
[[-4,-2,-5,-3],[-2,1,-1,0],[0,0,1,2],[1,2,0,2]],det=-39 [16,2,-15,-9], chain 2 => [34,-15,-33,2] => [53,-50,-29,8] ?? [9,-127,-13,-31]
[[-4,-2,-5,-3],[3,-2,1,3],[-5,4,-2,-3],[-3,-3,1,-4]],det=-153 [16,2,-15,-9], chain 2 => [34,2,-15,-33] => [34,-16,-33,9] ?? [34,128,-195,-123]
[[-4,-2,-5,-3],[3,-2,1,3],[-5,4,-2,-3],[1,1,4,-1]],det=-51 [16,2,-15,-9], chain 2 => [34,2,-15,-33] => [34,-16,-33,9] ?? [34,128,-195,-123]
[[-4,-2,-5,-3],[3,-2,1,3],[-4,-1,-1,-4],[-4,2,0,-3]],det=59 [16,2,-15,-9], chain 2 => [34,2,-15,-33] => [34,-16,9,-33] ?? [-50,44,3,-69]
[[-4,-2,-5,-3],[3,-2,1,3],[-4,-1,-1,-4],[4,-5,4,3]],det=-18 [16,2,-15,-9], chain 2 => [34,2,-15,-33] => [34,-16,9,-33] ?? [-50,44,3,153]
[[-4,-2,-5,-3],[3,-2,1,3],[0,3,2,-1],[-4,2,0,-3]],det=5 [16,2,-15,-9], chain 2 => [34,2,-15,-33] => [34,-16,9,-33] ?? [-50,44,3,-69]
[[-4,-2,-5,-3],[3,-2,1,3],[0,3,2,-1],[4,-5,4,3]],det=30 [16,2,-15,-9], chain 2 => [34,2,-15,-33] => [34,-16,9,-33] ?? [-50,44,3,153]
[[-4,-2,-5,-3],[3,-2,1,3],[3,-3,2,3],[-3,-3,1,-4]],det=-34 [16,2,-15,-9], chain 2 => [34,2,-15,-33] => [34,-16,-33,9] ?? [34,128,111,-123]
[[-4,-2,-5,-3],[3,-2,1,3],[3,-3,2,3],[1,1,4,-1]],det=-34 [16,2,-15,-9], chain 2 => [34,2,-15,-33] => [34,-16,-33,9] ?? [34,128,111,-123]
[[-4,-2,-5,-3],[4,4,4,3],[0,0,1,2],[-5,-1,-5,-1]],det=10 [16,2,-15,-9], chain 2 => [34,-15,-33,2] => [53,-50,-29,8] ?? [9,-80,-13,-78]
[[-4,-2,-5,-3],[4,4,4,3],[0,0,1,2],[1,2,0,2]],det=-18 [16,2,-15,-9], chain 2 => [34,-15,-33,2] => [53,-50,-29,8] ?? [9,-80,-13,-31]
[[-4,-2,-4,-4],[-3,0,-5,5],[-5,-1,-3,-2],[-4,-4,-1,-4]],det=-266 [16,2,-15,-9], chain 2 => [28,-18,-19,-21] => [84,-94,-23,63] ?? [-308,178,-383,-189]
[[-4,-2,-4,-4],[-2,-1,-1,0],[-4,2,-1,-3],[-5,1,-2,-3]],det=6 [16,2,-15,-9], chain 2 => [28,-19,-18,-21] => [82,-19,-69,-60] ?? [226,-76,-117,-111]
[[-4,-2,-4,-4],[-2,-1,-1,0],[-1,-1,-3,5],[0,3,3,-2]],det=-104 [16,2,-15,-9], chain 2 => [28,-19,-18,-21] => [82,-19,-60,-69] ?? [226,-85,-228,-99]
[[-4,-2,-4,-4],[0,3,1,1],[-5,-1,-3,-2],[-4,-4,-1,-4]],det=98 [16,2,-15,-9], chain 2 => [28,-18,-19,-21] => [84,-94,-23,63] ?? [-308,-242,-383,-189]
[[-4,-2,-4,-3],[-3,-5,-5,3],[1,-5,1,1],[-1,5,1,-2]],det=180 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [25,74,48,-81] ?? [-197,-928,-378,555]
[[-4,-1,-5,-5],[-1,2,3,-5],[-3,-4,-2,3],[3,4,2,5]],det=-568 [16,2,-15,-9], chain 2 => [54,-12,-53,-19] => [156,-142,-65,-87] ?? [278,-200,-31,-665]
[[-4,-1,-5,-2],[4,0,3,1],[-2,-2,1,-3],[2,3,5,-2]],det=-148 [16,2,-15,-9], chain 2 => [27,10,-24,-19] => [40,17,-41,2] ?? [24,39,-161,-78]
[[-4,-1,-5,-2],[4,0,3,1],[0,3,-1,5],[2,3,5,-2]],det=174 [16,2,-15,-9], chain 2 => [27,10,-24,-19] => [40,17,-41,2] ?? [24,39,102,-78]
[[-4,-1,-4,-5],[5,-3,2,3],[-2,-3,1,-3],[-1,5,-1,5]],det=270 [16,2,-15,-9], chain 2 => [39,17,-26,-36] => [111,-16,-47,-108] ?? [300,185,103,-684]
[[-4,0,-5,-1],[-5,0,-2,-4],[-4,1,-3,0],[2,-3,1,2]],det=126 [16,2,-15,-9], chain 2 => [20,-14,-17,-7] => [12,-38,-43,51] ?? [116,-178,43,197]
[[-4,0,-5,-1],[-5,0,-2,-4],[3,2,4,1],[2,-3,1,2]],det=39 [16,2,-15,-9], chain 2 => [20,-14,-17,-7] => [12,-38,-43,51] ?? [116,-178,-161,197]
[[-4,0,-5,-1],[-4,3,-1,-4],[1,-3,3,-2],[-1,-5,-2,2]],det=-183 [16,2,-15,-9], chain 2 => [20,-7,-17,-14] => [19,-28,18,21] ?? [-187,-262,115,127]
[[-4,0,-5,-1],[-3,-2,0,-5],[-3,-1,-4,3],[-5,0,-2,-4]],det=-153 [16,2,-15,-9], chain 2 => [20,-7,-17,-14] => [19,24,-27,-10] ?? [69,-55,-3,-1]
[[-4,0,-5,-1],[-3,-2,0,-5],[-3,-1,-4,3],[2,1,5,-3]],det=-110 [16,2,-15,-9], chain 2 => [20,-7,-17,-14] => [19,24,-27,-10] ?? [69,-55,-3,-43]
[[-4,0,-5,-1],[-3,-2,0,-5],[0,-1,1,0],[-1,1,0,0]],det=-40 [16,2,-15,-9], chain 2 => [20,-7,-17,-14] => [19,24,-10,-27] ?? [1,30,-34,5]
[[-4,0,-5,-1],[-3,-2,0,-5],[4,0,3,4],[-5,0,-2,-4]],det=-58 [16,2,-15,-9], chain 2 => [20,-7,-17,-14] => [19,24,-27,-10] ?? [69,-55,-45,-1]
[[-4,0,-5,-1],[-3,-2,0,-5],[4,0,3,4],[2,1,5,-3]],det=-15 [16,2,-15,-9], chain 2 => [20,-7,-17,-14] => [19,24,-27,-10] ?? [69,-55,-45,-43]
[[-4,0,-5,-1],[-3,2,-5,5],[-4,1,-3,0],[2,-3,1,2]],det=-162 [16,2,-15,-9], chain 2 => [20,-14,-17,-7] => [12,-38,-43,51] ?? [116,358,43,197]
[[-4,0,-5,-1],[-3,2,-5,5],[3,2,4,1],[2,-3,1,2]],det=27 [16,2,-15,-9], chain 2 => [20,-14,-17,-7] => [12,-38,-43,51] ?? [116,358,-161,197]
[[-4,0,-5,-1],[-3,2,-2,0],[-3,-4,-5,4],[-3,-2,-3,0]],det=98 [16,2,-15,-9], chain 2 => [20,-14,-17,-7] => [12,-54,53,19] ?? [-332,-250,-9,-87]
[[-4,0,-5,-1],[-3,2,-2,0],[-3,-4,-5,4],[4,-1,4,1]],det=-13 [16,2,-15,-9], chain 2 => [20,-14,-17,-7] => [12,-54,53,19] ?? [-332,-250,-9,333]
[[-4,0,-5,-1],[-3,2,-2,0],[2,-5,5,-4],[-3,-2,-3,0]],det=-135 [16,2,-15,-9], chain 2 => [20,-14,-17,-7] => [12,-54,53,19] ?? [-332,-250,483,-87]
[[-4,0,-5,-1],[-3,2,-2,0],[2,-5,5,-4],[4,-1,4,1]],det=-18 [16,2,-15,-9], chain 2 => [20,-14,-17,-7] => [12,-54,53,19] ?? [-332,-250,483,333]
[[-4,0,-5,-1],[-3,2,-2,0],[4,-3,2,5],[-3,-2,-3,0]],det=107 [16,2,-15,-9], chain 2 => [20,-14,-17,-7] => [12,-54,53,19] ?? [-332,-250,411,-87]
[[-4,0,-5,-1],[-3,2,-2,0],[4,-3,2,5],[4,-1,4,1]],det=-4 [16,2,-15,-9], chain 2 => [20,-14,-17,-7] => [12,-54,53,19] ?? [-332,-250,411,333]
[[-4,0,-5,-1],[2,1,5,-3],[-4,1,-3,0],[2,-3,1,2]],det=90 [16,2,-15,-9], chain 2 => [20,-14,-17,-7] => [12,-38,-43,51] ?? [116,-382,43,197]
[[-4,0,-5,-1],[2,1,5,-3],[3,2,4,1],[2,-3,1,2]],det=3 [16,2,-15,-9], chain 2 => [20,-14,-17,-7] => [12,-38,-43,51] ?? [116,-382,-161,197]
[[-4,0,-5,-1],[4,3,5,1],[-3,-4,-5,4],[-3,-2,-3,0]],det=54 [16,2,-15,-9], chain 2 => [20,-14,-17,-7] => [12,-54,53,19] ?? [-332,170,-9,-87]
[[-4,0,-5,-1],[4,3,5,1],[-3,-4,-5,4],[4,-1,4,1]],det=-57 [16,2,-15,-9], chain 2 => [20,-14,-17,-7] => [12,-54,53,19] ?? [-332,170,-9,333]
[[-4,0,-5,-1],[4,3,5,1],[2,-5,5,-4],[-3,-2,-3,0]],det=-63 [16,2,-15,-9], chain 2 => [20,-14,-17,-7] => [12,-54,53,19] ?? [-332,170,483,-87]
[[-4,0,-5,-1],[4,3,5,1],[2,-5,5,-4],[4,-1,4,1]],det=54 [16,2,-15,-9], chain 2 => [20,-14,-17,-7] => [12,-54,53,19] ?? [-332,170,483,333]
[[-4,0,-5,-1],[4,3,5,1],[4,-3,2,5],[-3,-2,-3,0]],det=63 [16,2,-15,-9], chain 2 => [20,-14,-17,-7] => [12,-54,53,19] ?? [-332,170,411,-87]
[[-4,0,-5,-1],[4,3,5,1],[4,-3,2,5],[4,-1,4,1]],det=-48 [16,2,-15,-9], chain 2 => [20,-14,-17,-7] => [12,-54,53,19] ?? [-332,170,411,333]
[[-4,1,-5,-3],[0,0,-2,2],[-5,-5,-2,-3],[4,5,4,5]],det=290 [16,2,-15,-9], chain 2 => [40,12,-33,-31] => [110,4,-101,-67] ?? [270,68,-167,-279]
[[-4,1,-5,-3],[0,0,-2,2],[5,-1,5,4],[4,5,4,5]],det=-50 [16,2,-15,-9], chain 2 => [40,12,-33,-31] => [110,4,-101,-67] ?? [270,68,-227,-279]
[[-4,1,-4,-4],[-2,-2,-3,0],[-3,1,-2,0],[-2,-2,1,-2]],det=-146 [16,2,-15,-9], chain 2 => [34,9,-16,-33] => [69,-38,-61,-36] ?? [74,121,-123,-51]
[[-4,1,-4,-4],[-2,-2,-3,0],[1,5,1,3],[1,4,2,3]],det=-70 [16,2,-15,-9], chain 2 => [34,9,-16,-33] => [69,-38,-36,-61] ?? [74,46,-340,-338]
[[-4,1,-4,-4],[-2,1,-5,4],[-4,-1,-4,3],[-3,-2,0,-4]],det=-69 [16,2,-15,-9], chain 2 => [34,9,-33,-16] => [69,42,-61,-56] ?? [234,-15,-242,-67]
[[-4,1,-4,-4],[-2,1,-5,4],[3,0,3,4],[-3,-2,0,-4]],det=-72 [16,2,-15,-9], chain 2 => [34,9,-33,-16] => [69,42,-61,-56] ?? [234,-15,-200,-67]
[[-4,1,-4,-4],[-1,-1,-3,2],[-4,0,-2,-2],[-2,-2,1,-2]],det=-94 [16,2,-15,-9], chain 2 => [34,9,-16,-33] => [69,-61,-38,-36] ?? [-41,34,-128,18]
[[-4,1,-4,-4],[-1,-1,-3,2],[1,5,1,3],[0,3,2,1]],det=-140 [16,2,-15,-9], chain 2 => [34,9,-16,-33] => [69,-61,-36,-38] ?? [-41,24,-386,-293]
[[-4,1,-4,-4],[0,-2,-1,1],[-5,1,-3,-2],[-3,-3,1,-4]],det=-184 [16,2,-15,-9], chain 2 => [34,2,-15,-33] => [58,-22,-57,9] ?? [-62,110,-159,-201]
[[-4,1,-4,-4],[0,-2,-1,1],[-5,1,-3,-2],[1,1,4,-1]],det=-78 [16,2,-15,-9], chain 2 => [34,2,-15,-33] => [58,-22,-57,9] ?? [-62,110,-159,-201]
[[-4,1,-4,-4],[0,-2,-1,1],[-4,-1,-1,-4],[-4,-1,-1,-2]],det=64 [16,2,-15,-9], chain 2 => [34,2,-15,-33] => [58,-22,9,-57] ?? [-62,-22,9,-105]
[[-4,1,-4,-4],[0,-2,-1,1],[-4,-1,-1,-4],[0,3,2,1]],det=84 [16,2,-15,-9], chain 2 => [34,2,-15,-33] => [58,-22,9,-57] ?? [-62,-22,9,-105]
[[-4,1,-4,-4],[0,-2,-1,1],[-1,5,0,1],[-3,-3,1,-4]],det=-174 [16,2,-15,-9], chain 2 => [34,2,-15,-33] => [58,-22,-57,9] ?? [-62,110,-159,-201]
[[-4,1,-4,-4],[0,-2,-1,1],[-1,5,0,1],[1,1,4,-1]],det=-68 [16,2,-15,-9], chain 2 => [34,2,-15,-33] => [58,-22,-57,9] ?? [-62,110,-159,-201]
[[-4,1,-4,-4],[0,-2,-1,1],[0,3,2,-1],[-4,-1,-1,-2]],det=-12 [16,2,-15,-9], chain 2 => [34,2,-15,-33] => [58,-22,9,-57] ?? [-62,-22,9,-105]
[[-4,1,-4,-4],[0,-2,-1,1],[0,3,2,-1],[0,3,2,1]],det=8 [16,2,-15,-9], chain 2 => [34,2,-15,-33] => [58,-22,9,-57] ?? [-62,-22,9,-105]
[[-4,1,-4,-4],[2,5,1,2],[-1,-1,1,0],[-1,3,-2,4]],det=-206 [16,2,-15,-9], chain 2 => [34,9,-33,-16] => [69,48,-76,-5] ?? [96,292,-193,207]
[[-4,1,-4,-4],[3,3,0,5],[-4,0,-2,-2],[1,4,2,3]],det=172 [16,2,-15,-9], chain 2 => [34,9,-16,-33] => [69,-36,-38,-61] ?? [84,-206,-78,-334]
[[-4,1,-4,-4],[3,3,0,5],[-3,1,-2,0],[0,3,2,1]],det=200 [16,2,-15,-9], chain 2 => [34,9,-16,-33] => [69,-36,-61,-38] ?? [84,-91,-121,-268]
[[-4,1,-4,-4],[4,2,2,4],[-5,1,-3,-2],[-3,-3,1,-4]],det=76 [16,2,-15,-9], chain 2 => [34,2,-15,-33] => [58,-22,-57,9] ?? [-62,110,-159,-201]
[[-4,1,-4,-4],[4,2,2,4],[-5,1,-3,-2],[1,1,4,-1]],det=182 [16,2,-15,-9], chain 2 => [34,2,-15,-33] => [58,-22,-57,9] ?? [-62,110,-159,-201]
[[-4,1,-4,-4],[4,2,2,4],[-4,-1,-1,-4],[-4,-1,-1,-2]],det=-40 [16,2,-15,-9], chain 2 => [34,2,-15,-33] => [58,-22,9,-57] ?? [-62,-22,9,-105]
[[-4,1,-4,-4],[4,2,2,4],[-4,-1,-1,-4],[0,3,2,1]],det=-20 [16,2,-15,-9], chain 2 => [34,2,-15,-33] => [58,-22,9,-57] ?? [-62,-22,9,-105]
[[-4,1,-4,-4],[4,2,2,4],[-1,5,0,1],[-3,-3,1,-4]],det=86 [16,2,-15,-9], chain 2 => [34,2,-15,-33] => [58,-22,-57,9] ?? [-62,110,-159,-201]
[[-4,1,-4,-4],[4,2,2,4],[-1,5,0,1],[1,1,4,-1]],det=192 [16,2,-15,-9], chain 2 => [34,2,-15,-33] => [58,-22,-57,9] ?? [-62,110,-159,-201]
[[-4,1,-4,-4],[4,2,2,4],[0,3,2,-1],[-4,-1,-1,-2]],det=-116 [16,2,-15,-9], chain 2 => [34,2,-15,-33] => [58,-22,9,-57] ?? [-62,-22,9,-105]
[[-4,1,-4,-4],[4,2,2,4],[0,3,2,-1],[0,3,2,1]],det=-96 [16,2,-15,-9], chain 2 => [34,2,-15,-33] => [58,-22,9,-57] ?? [-62,-22,9,-105]
[[-4,1,-4,-4],[5,2,2,5],[-4,-1,-4,3],[-3,-2,0,-4]],det=18 [16,2,-15,-9], chain 2 => [34,9,-33,-16] => [69,42,-61,-56] ?? [234,27,-242,-67]
[[-4,1,-4,-4],[5,2,2,5],[3,0,3,4],[-3,-2,0,-4]],det=15 [16,2,-15,-9], chain 2 => [34,9,-33,-16] => [69,42,-61,-56] ?? [234,27,-200,-67]
[[-4,2,-4,-3],[-4,4,-5,1],[1,-4,3,-2],[4,1,3,5]],det=25 [16,2,-15,-9], chain 2 => [27,10,-19,-24] => [60,3,-22,-59] ?? [31,-177,100,-118]
[[-4,2,-4,-3],[3,-4,2,0],[1,-4,3,-2],[4,1,3,5]],det=-15 [16,2,-15,-9], chain 2 => [27,10,-19,-24] => [60,3,-22,-59] ?? [31,124,100,-118]
[[-4,4,-3,-5],[-5,-1,-5,-1],[-2,-2,-2,1],[2,-4,5,-2]],det=-50 [16,2,-15,-9], chain 2 => [34,2,-15,-33] => [82,-64,-75,51] ?? [-614,-22,165,-57]
[[-4,4,-3,-5],[-5,-1,-5,-1],[1,-2,3,-2],[-1,-4,0,1]],det=52 [16,2,-15,-9], chain 2 => [34,2,-15,-33] => [82,-64,51,-75] ?? [-362,-526,513,99]
[[-4,4,-3,-5],[-5,-1,-5,-1],[1,-2,3,-2],[3,0,3,4]],det=182 [16,2,-15,-9], chain 2 => [34,2,-15,-33] => [82,-64,51,-75] ?? [-362,-526,513,99]
[[-4,4,-3,-5],[-5,-1,-5,-1],[2,2,1,4],[2,-4,5,-2]],det=-270 [16,2,-15,-9], chain 2 => [34,2,-15,-33] => [82,-64,-75,51] ?? [-614,-22,165,-57]
[[-4,4,-3,-5],[-1,3,-2,2],[-2,-2,-2,1],[2,-4,5,-2]],det=150 [16,2,-15,-9], chain 2 => [34,2,-15,-33] => [82,-64,-75,51] ?? [-614,-22,165,-57]
[[-4,4,-3,-5],[-1,3,-2,2],[1,-2,3,-2],[-1,-4,0,1]],det=-104 [16,2,-15,-9], chain 2 => [34,2,-15,-33] => [82,-64,51,-75] ?? [-362,-526,513,99]
[[-4,4,-3,-5],[-1,3,-2,2],[1,-2,3,-2],[3,0,3,4]],det=26 [16,2,-15,-9], chain 2 => [34,2,-15,-33] => [82,-64,51,-75] ?? [-362,-526,513,99]
[[-4,4,-3,-5],[-1,3,-2,2],[2,2,1,4],[2,-4,5,-2]],det=-70 [16,2,-15,-9], chain 2 => [34,2,-15,-33] => [82,-64,-75,51] ?? [-614,-22,165,-57]
[[-4,5,-3,-4],[0,-4,-3,3],[-3,0,-1,-1],[-3,-5,-5,4]],det=78 [16,2,-15,-9], chain 2 => [27,10,-24,-19] => [90,-25,-38,-87] ?? [-23,-47,-145,-303]
[[-3,-5,-5,-4],[-2,-3,-3,4],[-2,3,1,1],[-3,-5,-2,-4]],det=-369 [16,2,-15,-9], chain 2 => [53,-29,-50,8] => [204,163,-235,54] ?? [-468,24,-100,-1173]
[[-3,-5,-5,-4],[-2,-3,-3,4],[-2,3,1,1],[4,-4,5,-3]],det=-697 [16,2,-15,-9], chain 2 => [53,-29,-50,8] => [204,163,-235,54] ?? [-468,24,-100,-1173]
[[-3,-5,-5,-4],[5,-2,4,5],[-2,3,1,1],[-3,-5,-2,-4]],det=-246 [16,2,-15,-9], chain 2 => [53,-29,-50,8] => [204,163,-235,54] ?? [-468,24,-100,-1173]
[[-3,-5,-5,-4],[5,-2,4,5],[-2,3,1,1],[4,-4,5,-3]],det=-574 [16,2,-15,-9], chain 2 => [53,-29,-50,8] => [204,163,-235,54] ?? [-468,24,-100,-1173]
[[-3,-5,-4,-3],[-5,1,-3,-2],[-5,4,-3,0],[2,1,3,0]],det=-5 [16,2,-15,-9], chain 2 => [29,-15,-27,-11] => [129,-57,-124,-38] ?? [508,-254,-501,-171]
[[-3,-5,-4,-3],[-3,0,-1,-2],[-5,4,-3,0],[0,2,1,0]],det=-30 [16,2,-15,-9], chain 2 => [29,-15,-27,-11] => [129,-38,-124,-57] ?? [470,-149,-425,-200]
[[-3,-5,-4,-3],[0,2,1,0],[-4,5,-3,2],[-2,-5,0,-3]],det=105 [16,2,-15,-9], chain 2 => [29,-11,-27,-15] => [121,-49,-120,42] ?? [236,-218,-285,-123]
[[-3,-5,-4,-3],[0,2,1,0],[-1,2,4,-5],[-4,5,-2,-1]],det=-3 [16,2,-15,-9], chain 2 => [29,-11,-27,-15] => [121,-49,-84,-102] ?? [524,-182,-45,-459]
[[-3,-5,-4,-3],[0,2,1,0],[-1,2,4,-5],[2,5,5,-2]],det=48 [16,2,-15,-9], chain 2 => [29,-11,-27,-15] => [121,-49,-84,-102] ?? [524,-182,-45,-219]
[[-3,-5,-4,-3],[0,2,1,0],[1,4,1,4],[-5,4,-5,2]],det=-18 [16,2,-15,-9], chain 2 => [29,-11,-27,-15] => [121,-49,-102,-84] ?? [542,-200,-513,-459]
[[-3,-5,-4,-3],[0,2,1,0],[1,4,1,4],[1,4,2,1]],det=-9 [16,2,-15,-9], chain 2 => [29,-11,-27,-15] => [121,-49,-102,-84] ?? [542,-200,-513,-363]
[[-3,-5,-4,-3],[0,2,1,0],[2,5,4,1],[-2,-5,0,-3]],det=-18 [16,2,-15,-9], chain 2 => [29,-11,-27,-15] => [121,-49,-120,42] ?? [236,-218,-441,-123]
[[-3,-5,-4,-3],[1,4,1,4],[4,4,4,3],[-3,-4,0,-5]],det=31 [16,2,-15,-9], chain 2 => [29,-27,-15,-11] => [141,-138,-85,76] ?? [379,-192,-100,-251]
[[-3,-5,-4,-3],[4,-3,4,1],[-4,2,-3,0],[-4,5,0,-3]],det=-228 [16,2,-15,-9], chain 2 => [29,-11,-15,-27] => [109,62,-93,-90] ?? [5,-212,-33,144]
[[-3,-5,-4,-2],[-4,0,-5,2],[-1,-2,-2,3],[-1,4,-2,4]],det=-65 [16,2,-15,-9], chain 2 => [20,-7,-17,-14] => [71,-23,-14,-70] ?? [98,-354,-207,-415]
[[-3,-5,-4,-2],[-3,5,-2,1],[2,0,2,1],[5,-5,5,1]],det=20 [16,2,-15,-9], chain 2 => [20,-17,-7,-14] => [81,-145,12,136] ?? [162,-856,322,1326]
[[-3,-5,-4,-2],[-1,1,0,0],[-2,-1,-3,2],[-2,3,0,-1]],det=-26 [16,2,-15,-9], chain 2 => [20,-14,-7,-17] => [72,-34,-39,-65] ?? [240,-106,-123,-181]
[[-3,-5,-4,-2],[-1,1,0,0],[-2,5,2,-5],[-2,3,0,-1]],det=28 [16,2,-15,-9], chain 2 => [20,-14,-7,-17] => [72,-34,-39,-65] ?? [240,-106,-67,-181]
[[-3,-5,-4,-2],[3,1,2,3],[-1,-2,-2,3],[-1,4,-2,4]],det=114 [16,2,-15,-9], chain 2 => [20,-7,-17,-14] => [71,-23,-14,-70] ?? [98,-48,-207,-415]
[[-3,-4,-5,-3],[-4,0,-3,2],[-2,1,1,-2],[-2,1,-3,5]],det=61 [16,2,-15,-9], chain 2 => [46,-37,-27,-30] => [235,-163,-96,-198] ?? [1021,-1048,-333,-1335]
[[-3,-4,-5,-3],[-4,0,-3,2],[-2,4,2,-3],[0,0,2,0]],det=-272 [16,2,-15,-9], chain 2 => [46,-37,-27,-30] => [235,-163,-204,-54] ?? [1129,-436,-1368,-408]
[[-3,-4,-5,-3],[-4,0,-3,2],[0,3,1,2],[-4,-1,-3,1]],det=-13 [16,2,-15,-9], chain 2 => [46,-37,-27,-30] => [235,-163,-198,-96] ?? [1225,-538,-879,-279]
[[-3,-4,-5,-1],[0,-2,-2,5],[-3,3,-1,-1],[0,-3,-2,5]],det=-60 [16,2,-15,-9], chain 2 => [28,-19,-18,-21] => [103,-31,-102,-12] ?? [337,206,-288,237]
[[-3,-4,-3,-5],[-2,-5,-4,1],[3,1,5,-1],[5,-1,5,4]],det=-62 [16,2,-15,-9], chain 2 => [34,9,-16,-33] => [75,-82,64,-51] ?? [166,-47,514,573]
[[-3,-4,-3,-5],[-2,-2,0,-5],[-5,4,-5,4],[0,4,4,-4]],det=-240 [16,2,-15,-9], chain 2 => [34,9,-33,-16] => [41,-6,-33,-32] ?? [160,90,-192,-28]
[[-3,-4,-3,-5],[-2,-2,0,-5],[2,5,2,5],[0,4,4,-4]],det=-36 [16,2,-15,-9], chain 2 => [34,9,-33,-16] => [41,-6,-33,-32] ?? [160,90,-174,-28]
[[-3,-4,-3,-5],[1,-2,2,-3],[-3,3,-3,4],[-3,4,-1,-1]],det=-116 [16,2,-15,-9], chain 2 => [34,9,-33,-16] => [41,-2,-40,-17] ?? [90,16,-77,-74]
[[-3,-4,-3,-5],[1,-2,2,-3],[4,4,4,5],[-3,4,-1,-1]],det=20 [16,2,-15,-9], chain 2 => [34,9,-33,-16] => [41,-2,-40,-17] ?? [90,16,-89,-74]
[[-3,-4,-3,-5],[5,-1,4,1],[-4,-3,-3,-1],[5,-1,5,4]],det=-31 [16,2,-15,-9], chain 2 => [34,9,-16,-33] => [75,64,-82,-51] ?? [20,-68,-195,-303]
[[-3,-4,-3,-5],[5,-1,4,1],[1,-4,1,1],[0,0,1,2]],det=-70 [16,2,-15,-9], chain 2 => [34,9,-16,-33] => [75,64,-51,-82] ?? [82,25,-314,-215]
[[-3,-4,-3,-4],[2,4,2,3],[-3,-2,-2,-2],[-4,0,-1,-3]],det=14 [16,2,-15,-9], chain 2 => [25,-17,-4,-22] => [93,-92,11,-30] ?? [176,-250,-57,-293]
[[-3,-4,-3,-4],[3,5,5,0],[-3,-2,-2,-2],[-5,-1,-4,0]],det=-46 [16,2,-15,-9], chain 2 => [25,-17,-4,-22] => [93,-30,11,-92] ?? [176,184,-57,-479]
[[-3,-4,-2,-5],[-4,5,-1,-4],[2,2,3,1],[1,-1,1,1]],det=-44 [16,2,-15,-9], chain 2 => [19,-3,-18,-10] => [41,-33,-32,-6] ?? [103,-273,-86,36]
[[-3,-4,-2,-5],[-4,5,-1,-4],[3,-3,4,0],[-1,3,3,-5]],det=138 [16,2,-15,-9], chain 2 => [19,-3,-18,-10] => [41,-33,-6,-32] ?? [181,-195,198,2]
[[-3,-4,-2,-5],[-4,5,-1,-4],[3,-3,4,0],[0,4,0,2]],det=-30 [16,2,-15,-9], chain 2 => [19,-3,-18,-10] => [41,-33,-6,-32] ?? [181,-195,198,-196]
[[-3,-4,-2,-5],[-3,1,-3,1],[-5,1,-4,0],[-1,-1,-1,0]],det=-13 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [34,-16,-33,9] ?? [-17,-10,-54,15]
[[-3,-4,-2,-5],[-3,1,-3,1],[1,-5,4,-4],[0,3,0,1]],det=98 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [34,-16,9,-33] ?? [109,-178,282,-81]
[[-3,-4,-2,-5],[-3,1,-3,1],[2,-1,5,-3],[-1,-1,-1,0]],det=-48 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [34,-16,-33,9] ?? [-17,-10,-108,15]
[[-3,-4,-2,-5],[-3,1,-3,1],[3,0,2,4],[0,3,0,1]],det=3 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [34,-16,9,-33] ?? [109,-178,-12,-81]
[[-3,-4,-2,-5],[-3,1,-3,1],[4,4,3,5],[-1,-1,-1,0]],det=-1 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [34,-16,-33,9] ?? [-17,-10,18,15]
[[-3,-4,-2,-5],[-2,-2,-3,3],[2,2,2,1],[1,5,3,-1]],det=17 [16,2,-15,-9], chain 2 => [19,-18,-3,-10] => [71,-23,-14,-70] ?? [257,-264,-2,-16]
[[-3,-4,-2,-5],[-2,1,-2,2],[0,3,3,-4],[3,1,1,5]],det=-28 [16,2,-15,-9], chain 2 => [19,-18,-3,-10] => [71,-70,-23,-14] ?? [183,-194,-223,50]
[[-3,-4,-2,-5],[-2,1,-2,2],[2,2,2,1],[1,2,2,0]],det=-6 [16,2,-15,-9], chain 2 => [19,-18,-3,-10] => [71,-70,-14,-23] ?? [210,-230,-49,-97]
[[-3,-4,-2,-5],[-1,-3,1,-3],[-5,1,-4,0],[-5,1,-5,0]],det=11 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [34,2,-33,-15] ?? [31,-28,-36,-3]
[[-3,-4,-2,-5],[-1,-3,1,-3],[-5,1,-4,0],[2,-1,4,-3]],det=-108 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [34,2,-33,-15] ?? [31,-28,-36,-21]
[[-3,-4,-2,-5],[-1,-3,1,-3],[-5,1,-4,0],[4,4,2,5]],det=1 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [34,2,-33,-15] ?? [31,-28,-36,3]
[[-3,-4,-2,-5],[-1,-3,1,-3],[-3,-3,0,-4],[0,3,0,1]],det=-24 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [34,2,-15,-33] ?? [85,44,24,-27]
[[-3,-4,-2,-5],[-1,-3,1,-3],[-1,2,-2,4],[0,3,0,1]],det=-59 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [34,2,-15,-33] ?? [85,44,-132,-27]
[[-3,-4,-2,-5],[-1,-3,1,-3],[2,-1,5,-3],[-5,1,-5,0]],det=102 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [34,2,-33,-15] ?? [31,-28,-54,-3]
[[-3,-4,-2,-5],[-1,-3,1,-3],[2,-1,5,-3],[2,-1,4,-3]],det=-17 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [34,2,-33,-15] ?? [31,-28,-54,-21]
[[-3,-4,-2,-5],[-1,-3,1,-3],[2,-1,5,-3],[4,4,2,5]],det=-34 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [34,2,-33,-15] ?? [31,-28,-54,3]
[[-3,-4,-2,-5],[-1,-3,1,-3],[4,4,3,5],[-5,1,-5,0]],det=7 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [34,2,-33,-15] ?? [31,-28,-30,-3]
[[-3,-4,-2,-5],[-1,-3,1,-3],[4,4,3,5],[2,-1,4,-3]],det=14 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [34,2,-33,-15] ?? [31,-28,-30,-21]
[[-3,-4,-2,-5],[-1,-3,1,-3],[4,4,3,5],[4,4,2,5]],det=-3 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [34,2,-33,-15] ?? [31,-28,-30,3]
[[-3,-4,-2,-5],[-1,-1,2,-5],[-4,-1,-2,-2],[1,5,3,-1]],det=-140 [16,2,-15,-9], chain 2 => [19,-3,-18,-10] => [41,-2,-17,-40] ?? [119,127,-48,20]
[[-3,-4,-2,-5],[-1,-1,2,-5],[-3,0,-5,5],[1,5,3,-1]],det=-160 [16,2,-15,-9], chain 2 => [19,-3,-18,-10] => [41,-2,-17,-40] ?? [119,127,-238,20]
[[-3,-4,-2,-5],[-1,5,1,-2],[-1,2,1,-1],[1,-1,1,1]],det=27 [16,2,-15,-9], chain 2 => [19,-3,-18,-10] => [41,-32,-33,-6] ?? [101,-222,-132,34]
[[-3,-4,-2,-5],[-1,5,1,-2],[3,-3,4,0],[-3,4,-2,0]],det=-181 [16,2,-15,-9], chain 2 => [19,-3,-18,-10] => [41,-32,-6,-33] ?? [182,-141,195,-239]
[[-3,-4,-2,-5],[0,0,-1,2],[-4,-1,-2,-2],[1,5,3,-1]],det=40 [16,2,-15,-9], chain 2 => [19,-3,-18,-10] => [41,-2,-17,-40] ?? [119,-63,-48,20]
[[-3,-4,-2,-5],[0,0,-1,2],[-3,0,-5,5],[1,5,3,-1]],det=20 [16,2,-15,-9], chain 2 => [19,-3,-18,-10] => [41,-2,-17,-40] ?? [119,-63,-238,20]
[[-3,-4,-2,-5],[0,0,2,-3],[-1,2,1,-1],[-1,3,3,-5]],det=-39 [16,2,-15,-9], chain 2 => [19,-3,-18,-10] => [41,-6,-33,-32] ?? [127,30,-54,2]
[[-3,-4,-2,-5],[0,0,2,-3],[-1,2,1,-1],[0,4,0,2]],det=-36 [16,2,-15,-9], chain 2 => [19,-3,-18,-10] => [41,-6,-33,-32] ?? [127,30,-54,-88]
[[-3,-4,-2,-5],[0,0,2,-3],[2,2,3,1],[-3,4,-2,0]],det=-28 [16,2,-15,-9], chain 2 => [19,-3,-18,-10] => [41,-6,-32,-33] ?? [130,35,-59,-83]
[[-3,-4,-2,-5],[1,1,-1,4],[-1,2,1,-1],[-1,3,3,-5]],det=27 [16,2,-15,-9], chain 2 => [19,-3,-18,-10] => [41,-6,-33,-32] ?? [127,-60,-54,2]
[[-3,-4,-2,-5],[1,1,-1,4],[-1,2,1,-1],[0,4,0,2]],det=30 [16,2,-15,-9], chain 2 => [19,-3,-18,-10] => [41,-6,-33,-32] ?? [127,-60,-54,-88]
[[-3,-4,-2,-5],[1,1,-1,4],[2,2,3,1],[-3,4,-2,0]],det=25 [16,2,-15,-9], chain 2 => [19,-3,-18,-10] => [41,-6,-32,-33] ?? [130,-65,-59,-83]
[[-3,-4,-2,-5],[1,2,-1,5],[-5,1,-4,0],[-5,1,-5,0]],det=60 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [34,2,-33,-15] ?? [31,-4,-36,-3]
[[-3,-4,-2,-5],[1,2,-1,5],[-5,1,-4,0],[2,-1,4,-3]],det=-54 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [34,2,-33,-15] ?? [31,-4,-36,-21]
[[-3,-4,-2,-5],[1,2,-1,5],[-5,1,-4,0],[4,4,2,5]],det=55 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [34,2,-33,-15] ?? [31,-4,-36,3]
[[-3,-4,-2,-5],[1,2,-1,5],[-3,-3,0,-4],[0,3,0,1]],det=66 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [34,2,-15,-33] ?? [85,-112,24,-27]
[[-3,-4,-2,-5],[1,2,-1,5],[-1,2,-2,4],[0,3,0,1]],det=31 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [34,2,-15,-33] ?? [85,-112,-132,-27]
[[-3,-4,-2,-5],[1,2,-1,5],[2,-1,5,-3],[-5,1,-5,0]],det=90 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [34,2,-33,-15] ?? [31,-4,-54,-3]
[[-3,-4,-2,-5],[1,2,-1,5],[2,-1,5,-3],[2,-1,4,-3]],det=-24 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [34,2,-33,-15] ?? [31,-4,-54,-21]
[[-3,-4,-2,-5],[1,2,-1,5],[2,-1,5,-3],[4,4,2,5]],det=-41 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [34,2,-33,-15] ?? [31,-4,-54,3]
[[-3,-4,-2,-5],[1,2,-1,5],[4,4,3,5],[-5,1,-5,0]],det=-5 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [34,2,-33,-15] ?? [31,-4,-30,-3]
[[-3,-4,-2,-5],[1,2,-1,5],[4,4,3,5],[2,-1,4,-3]],det=7 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [34,2,-33,-15] ?? [31,-4,-30,-21]
[[-3,-4,-2,-5],[1,2,-1,5],[4,4,3,5],[4,4,2,5]],det=-10 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [34,2,-33,-15] ?? [31,-4,-30,3]
[[-3,-4,-2,-5],[3,-5,2,2],[-5,1,-1,-5],[-4,-4,-4,-1]],det=357 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [34,65,-72,39] ?? [-413,-289,-228,-147]
[[-3,-4,-2,-5],[3,-5,2,2],[-5,1,-1,-5],[5,-1,3,4]],det=-105 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [34,65,-72,39] ?? [-413,-289,-228,45]
[[-3,-4,-2,-5],[3,-5,2,2],[0,-3,-1,3],[0,3,3,-4]],det=-189 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [34,65,39,-72] ?? [-80,-289,-450,600]
[[-3,-2,-4,-4],[2,-3,1,3],[2,1,2,5],[-2,3,-2,3]],det=-12 [16,2,-15,-9], chain 2 => [44,-16,-41,-23] => [156,26,-125,-123] ?? [472,-260,-527,-353]
[[-3,-2,-4,-4],[2,-3,1,3],[2,1,2,5],[4,3,5,2]],det=37 [16,2,-15,-9], chain 2 => [44,-16,-41,-23] => [156,26,-125,-123] ?? [472,-260,-527,-169]
[[-3,-2,-3,-4],[-4,-2,-2,-3],[-5,1,-1,-4],[-2,1,2,-5]],det=-114 [16,2,-15,-9], chain 2 => [29,-11,-27,-15] => [76,5,-69,-48] ?? [161,-32,-114,-45]
[[-3,-2,-3,-4],[-4,-2,-2,-3],[-3,0,-2,1],[-3,3,-3,2]],det=-55 [16,2,-15,-9], chain 2 => [29,-11,-27,-15] => [76,5,-48,-69] ?? [182,-11,-201,-207]
[[-3,-2,-3,-4],[-4,-2,-2,-3],[-3,0,-2,1],[3,3,4,1]],det=-57 [16,2,-15,-9], chain 2 => [29,-11,-27,-15] => [76,5,-48,-69] ?? [182,-11,-201,-18]
[[-3,-2,-3,-4],[-4,-2,-2,-3],[3,0,5,0],[-3,3,-3,2]],det=94 [16,2,-15,-9], chain 2 => [29,-11,-27,-15] => [76,5,-48,-69] ?? [182,-11,-12,-207]
[[-3,-2,-3,-4],[-4,-2,-2,-3],[3,0,5,0],[3,3,4,1]],det=92 [16,2,-15,-9], chain 2 => [29,-11,-27,-15] => [76,5,-48,-69] ?? [182,-11,-12,-18]
[[-3,-2,-3,-4],[-1,1,-2,3],[-1,-1,0,1],[0,3,2,-1]],det=96 [16,2,-15,-9], chain 2 => [29,-11,-27,-15] => [76,-31,-33,-72] ?? [221,-257,-117,-87]
[[-3,-2,-3,-4],[-1,1,-2,3],[-1,2,-2,5],[0,0,4,-5]],det=3 [16,2,-15,-9], chain 2 => [29,-11,-27,-15] => [76,-31,-72,-33] ?? [182,-62,-159,-123]
[[-3,-2,-3,-4],[-1,1,-2,3],[5,2,5,4],[0,0,4,-5]],det=-4 [16,2,-15,-9], chain 2 => [29,-11,-27,-15] => [76,-31,-72,-33] ?? [182,-62,-174,-123]
[[-3,-2,-3,-4],[2,-4,1,4],[-3,-1,-2,-1],[-1,2,-1,2]],det=78 [16,2,-15,-9], chain 2 => [29,-27,-11,-15] => [60,95,-23,-102] ?? [107,-691,-127,-51]
[[-3,-2,-3,-4],[2,-4,1,4],[-3,-1,-2,-1],[2,5,5,-2]],det=-169 [16,2,-15,-9], chain 2 => [29,-27,-11,-15] => [60,95,-23,-102] ?? [107,-691,-127,684]
[[-3,-2,-3,-4],[2,-4,1,4],[0,2,4,-5],[-1,2,-1,2]],det=196 [16,2,-15,-9], chain 2 => [29,-27,-11,-15] => [60,95,-23,-102] ?? [107,-691,608,-51]
[[-3,-2,-3,-4],[2,-4,1,4],[0,2,4,-5],[2,5,5,-2]],det=-51 [16,2,-15,-9], chain 2 => [29,-27,-11,-15] => [60,95,-23,-102] ?? [107,-691,608,684]
[[-3,-2,-3,-4],[2,-2,5,-4],[-5,1,-1,-4],[-2,1,2,-5]],det=-187 [16,2,-15,-9], chain 2 => [29,-11,-27,-15] => [76,5,-69,-48] ?? [161,-11,-114,-45]
[[-3,-2,-3,-4],[2,-2,5,-4],[-3,0,-2,1],[-3,3,-3,2]],det=-157 [16,2,-15,-9], chain 2 => [29,-11,-27,-15] => [76,5,-48,-69] ?? [182,178,-201,-207]
[[-3,-2,-3,-4],[2,-2,5,-4],[-3,0,-2,1],[3,3,4,1]],det=-159 [16,2,-15,-9], chain 2 => [29,-11,-27,-15] => [76,5,-48,-69] ?? [182,178,-201,-18]
[[-3,-2,-3,-4],[2,-2,5,-4],[3,0,5,0],[-3,3,-3,2]],det=-8 [16,2,-15,-9], chain 2 => [29,-11,-27,-15] => [76,5,-48,-69] ?? [182,178,-12,-207]
[[-3,-2,-3,-4],[2,-2,5,-4],[3,0,5,0],[3,3,4,1]],det=-10 [16,2,-15,-9], chain 2 => [29,-11,-27,-15] => [76,5,-48,-69] ?? [182,178,-12,-18]
[[-3,-2,-3,-4],[5,1,5,2],[-1,-1,0,1],[0,3,2,-1]],det=-91 [16,2,-15,-9], chain 2 => [29,-11,-27,-15] => [76,-31,-33,-72] ?? [221,40,-117,-87]
[[-3,-2,-3,-4],[5,1,5,2],[-1,2,-2,5],[0,0,4,-5]],det=7 [16,2,-15,-9], chain 2 => [29,-11,-27,-15] => [76,-31,-72,-33] ?? [182,-77,-159,-123]
[[-3,-2,-3,-4],[5,1,5,2],[5,2,5,4],[0,0,4,-5]],det=0 [16,2,-15,-9], chain 2 => [29,-11,-27,-15] => [76,-31,-72,-33] ?? [182,-77,-174,-123]
[[-3,-2,-3,-3],[-1,-2,2,-4],[-5,-3,-4,-1],[-2,2,-2,1]],det=-129 [16,2,-15,-9], chain 2 => [20,-14,-17,-7] => [40,2,17,-41] ?? [-52,154,-233,-151]
[[-3,-2,-3,-3],[-1,-2,2,-4],[-5,-3,-4,-1],[5,3,5,2]],det=-6 [16,2,-15,-9], chain 2 => [20,-14,-17,-7] => [40,2,17,-41] ?? [-52,154,-233,209]
[[-3,-2,-3,-3],[-1,-2,2,-4],[2,-2,3,0],[-2,2,-2,1]],det=-48 [16,2,-15,-9], chain 2 => [20,-14,-17,-7] => [40,2,17,-41] ?? [-52,154,127,-151]
[[-3,-2,-3,-3],[-1,-2,2,-4],[2,-2,3,0],[5,3,5,2]],det=75 [16,2,-15,-9], chain 2 => [20,-14,-17,-7] => [40,2,17,-41] ?? [-52,154,127,209]
[[-3,-2,-3,-3],[0,-4,-2,4],[-4,-3,-3,-2],[-4,-2,-4,1]],det=86 [16,2,-15,-9], chain 2 => [20,-14,-7,-17] => [40,2,17,-41] ?? [-52,-206,-135,-273]
[[-3,-2,-3,-3],[0,-4,-2,4],[-4,-3,-3,-2],[4,3,4,3]],det=-6 [16,2,-15,-9], chain 2 => [20,-14,-7,-17] => [40,2,17,-41] ?? [-52,-206,-135,111]
[[-3,-2,-3,-3],[0,-4,-2,4],[4,2,5,0],[-4,-2,-4,1]],det=72 [16,2,-15,-9], chain 2 => [20,-14,-7,-17] => [40,2,17,-41] ?? [-52,-206,249,-273]
[[-3,-2,-3,-3],[0,-4,-2,4],[4,2,5,0],[4,3,4,3]],det=-20 [16,2,-15,-9], chain 2 => [20,-14,-7,-17] => [40,2,17,-41] ?? [-52,-206,249,111]
[[-3,-2,-3,-3],[0,2,3,-3],[-4,-3,-3,-2],[-4,-2,-4,1]],det=-63 [16,2,-15,-9], chain 2 => [20,-14,-7,-17] => [40,2,17,-41] ?? [-52,178,-135,-273]
[[-3,-2,-3,-3],[0,2,3,-3],[-4,-3,-3,-2],[4,3,4,3]],det=0 [16,2,-15,-9], chain 2 => [20,-14,-7,-17] => [40,2,17,-41] ?? [-52,178,-135,111]
[[-3,-2,-3,-3],[0,2,3,-3],[4,2,5,0],[-4,-2,-4,1]],det=-42 [16,2,-15,-9], chain 2 => [20,-14,-7,-17] => [40,2,17,-41] ?? [-52,178,249,-273]
[[-3,-2,-3,-3],[0,2,3,-3],[4,2,5,0],[4,3,4,3]],det=21 [16,2,-15,-9], chain 2 => [20,-14,-7,-17] => [40,2,17,-41] ?? [-52,178,249,111]
[[-3,-2,-3,-3],[1,0,-1,5],[-5,-3,-4,-1],[-2,2,-2,1]],det=120 [16,2,-15,-9], chain 2 => [20,-14,-17,-7] => [40,2,17,-41] ?? [-52,-182,-233,-151]
[[-3,-2,-3,-3],[1,0,-1,5],[-5,-3,-4,-1],[5,3,5,2]],det=-12 [16,2,-15,-9], chain 2 => [20,-14,-17,-7] => [40,2,17,-41] ?? [-52,-182,-233,209]
[[-3,-2,-3,-3],[1,0,-1,5],[2,-2,3,0],[-2,2,-2,1]],det=66 [16,2,-15,-9], chain 2 => [20,-14,-17,-7] => [40,2,17,-41] ?? [-52,-182,127,-151]
[[-3,-2,-3,-3],[1,0,-1,5],[2,-2,3,0],[5,3,5,2]],det=-66 [16,2,-15,-9], chain 2 => [20,-14,-17,-7] => [40,2,17,-41] ?? [-52,-182,127,209]
[[-3,-1,-5,-1],[-3,0,-1,-2],[-4,-1,-4,3],[-1,0,0,-2]],det=10 [16,2,-15,-9], chain 2 => [34,-15,-33,2] => [76,-73,17,-38] ?? [-202,-169,-413,0]
[[-3,-1,-5,-1],[-3,0,-1,-2],[-4,-1,-4,3],[5,3,5,1]],det=-124 [16,2,-15,-9], chain 2 => [34,-15,-33,2] => [76,-73,17,-38] ?? [-202,-169,-413,208]
[[-3,-1,-5,-1],[3,3,4,1],[-4,-1,-4,3],[-1,0,0,-2]],det=76 [16,2,-15,-9], chain 2 => [34,-15,-33,2] => [76,-73,17,-38] ?? [-202,39,-413,0]
[[-3,-1,-5,-1],[3,3,4,1],[-4,-1,-4,3],[5,3,5,1]],det=-58 [16,2,-15,-9], chain 2 => [34,-15,-33,2] => [76,-73,17,-38] ?? [-202,39,-413,208]
[[-3,-1,-4,-1],[-4,0,-3,-1],[-3,0,-2,0],[1,-2,4,-5]],det=25 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [28,-19,-21,-18] ?? [37,-31,-42,72]
[[-3,-1,-4,-1],[-4,0,-3,-1],[-3,0,-2,0],[3,3,2,3]],det=-18 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [28,-19,-21,-18] ?? [37,-31,-42,-69]
[[-3,-1,-4,-1],[-4,0,-3,-1],[-2,1,-2,2],[2,2,2,1]],det=-27 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [28,-19,-18,-21] ?? [28,-37,-81,-39]
[[-3,-1,-4,-1],[0,3,0,1],[-3,0,-2,0],[3,1,4,0]],det=18 [16,2,-15,-9], chain 2 => [19,-3,-18,-10] => [28,-19,-21,-18] ?? [37,-75,-42,-19]
[[-3,-1,-4,-1],[2,2,5,-4],[-3,0,-2,0],[0,1,2,-2]],det=3 [16,2,-15,-9], chain 2 => [19,-3,-18,-10] => [28,-18,-21,-19] ?? [37,-9,-42,-22]
[[-3,-1,-4,-1],[2,2,5,-4],[-3,0,-2,0],[1,2,-1,5]],det=-105 [16,2,-15,-9], chain 2 => [19,-3,-18,-10] => [28,-18,-21,-19] ?? [37,-9,-42,-82]
[[-3,-1,-4,-1],[2,2,5,-4],[2,-1,5,-3],[-5,2,-5,1]],det=-145 [16,2,-15,-9], chain 2 => [19,-3,-18,-10] => [28,-18,-19,-21] ?? [31,9,42,-102]
[[-3,-1,-4,-1],[2,2,5,-4],[3,0,2,4],[-5,2,-5,1]],det=25 [16,2,-15,-9], chain 2 => [19,-3,-18,-10] => [28,-18,-19,-21] ?? [31,9,-38,-102]
[[-3,-1,-4,-1],[3,3,2,3],[-3,0,-2,0],[0,1,2,-2]],det=54 [16,2,-15,-9], chain 2 => [19,-3,-18,-10] => [28,-18,-21,-19] ?? [37,-69,-42,-22]
[[-3,-1,-4,-1],[3,3,2,3],[-3,0,-2,0],[1,2,-1,5]],det=-54 [16,2,-15,-9], chain 2 => [19,-3,-18,-10] => [28,-18,-21,-19] ?? [37,-69,-42,-82]
[[-3,-1,-4,-1],[3,3,2,3],[2,-1,5,-3],[-5,2,-5,1]],det=-60 [16,2,-15,-9], chain 2 => [19,-3,-18,-10] => [28,-18,-19,-21] ?? [31,-71,42,-102]
[[-3,-1,-4,-1],[3,3,2,3],[3,0,2,4],[-5,2,-5,1]],det=110 [16,2,-15,-9], chain 2 => [19,-3,-18,-10] => [28,-18,-19,-21] ?? [31,-71,-38,-102]
[[-3,-1,-4,-1],[5,3,4,4],[-3,0,-2,0],[1,-2,4,-5]],det=26 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [28,-19,-21,-18] ?? [37,-73,-42,72]
[[-3,-1,-4,-1],[5,3,4,4],[-3,0,-2,0],[3,3,2,3]],det=18 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [28,-19,-21,-18] ?? [37,-73,-42,-69]
[[-3,-1,-4,-1],[5,3,4,4],[-2,1,-2,2],[2,2,2,1]],det=30 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [28,-19,-18,-21] ?? [28,-73,-81,-39]
[[-3,-1,-3,-5],[-3,1,-4,5],[1,-2,3,-5],[3,-3,5,0]],det=-75 [16,2,-15,-9], chain 2 => [40,-31,12,-33] => [40,-364,303,273] ?? [-2030,-331,312,2727]
[[-3,-1,-2,-5],[-3,4,-3,1],[-1,0,-2,4],[-3,-1,-1,-2]],det=136 [16,2,-15,-9], chain 2 => [25,-4,-22,-17] => [58,-42,-49,-15] ?? [41,-210,-20,-53]
[[-3,-1,-2,-5],[-1,0,-2,2],[-3,-2,-5,5],[-3,5,1,-4]],det=112 [16,2,-15,-9], chain 2 => [25,-4,-22,-17] => [58,-15,-42,-49] ?? [170,-72,-179,-95]
[[-3,-1,-2,-5],[-1,0,-2,2],[-1,0,-2,4],[-5,3,-2,-3]],det=40 [16,2,-15,-9], chain 2 => [25,-4,-22,-17] => [58,-15,-49,-42] ?? [149,-44,-128,-111]
[[-3,-1,-2,-5],[-1,0,-2,2],[-1,0,-2,4],[2,4,5,-2]],det=34 [16,2,-15,-9], chain 2 => [25,-4,-22,-17] => [58,-15,-49,-42] ?? [149,-44,-128,-105]
[[-3,-1,-2,-5],[1,2,1,1],[-3,4,0,-2],[2,-5,2,1]],det=68 [16,2,-15,-9], chain 2 => [25,-4,-22,-17] => [58,-22,-57,9] ?? [-83,-34,-280,121]
[[-3,-1,-2,-5],[2,1,1,4],[-3,1,-1,-3],[-4,-3,-2,-2]],det=-22 [16,2,-15,-9], chain 2 => [25,-17,-4,-22] => [60,-59,-22,3] ?? [-92,51,-226,-25]
[[-3,-1,-2,-5],[3,2,4,1],[-3,1,-1,-3],[-5,-4,-5,1]],det=90 [16,2,-15,-9], chain 2 => [25,-17,-4,-22] => [60,3,-22,-59] ?? [156,39,22,-261]
[[-3,-1,-2,-5],[4,-4,1,5],[-3,4,0,-2],[-1,1,2,-3]],det=-64 [16,2,-15,-9], chain 2 => [25,-4,-22,-17] => [58,9,-57,-22] ?? [41,29,-94,-97]
[[-3,-1,-2,-5],[4,5,4,2],[-1,0,-2,4],[-3,-1,-1,-2]],det=115 [16,2,-15,-9], chain 2 => [25,-4,-22,-17] => [58,-42,-49,-15] ?? [41,-204,-20,-53]
[[-3,0,-5,-3],[2,2,5,-3],[-4,-5,-2,1],[-3,4,-2,1]],det=-727 [16,2,-15,-9], chain 2 => [54,-12,-53,-19] => [160,-124,-69,-123] ?? [234,96,-5,-961]
[[-3,0,-5,0],[-4,0,-3,0],[0,3,-1,5],[-3,5,-5,3]],det=-176 [16,2,-15,-9], chain 2 => [27,-19,-24,10] => [39,-36,17,-26] ?? [-202,-207,-255,-460]
[[-3,0,-5,0],[-1,0,-1,2],[-3,3,-3,3],[-3,5,-5,3]],det=48 [16,2,-15,-9], chain 2 => [27,-19,-24,10] => [39,17,-36,-26] ?? [63,-55,-36,70]
[[-3,0,-5,0],[4,0,3,1],[-5,-2,-1,-5],[5,3,4,5]],det=-15 [16,2,-15,-9], chain 2 => [27,10,-24,-19] => [39,17,-36,-26] ?? [63,22,-63,-28]
[[-3,0,-5,0],[4,0,3,1],[-3,3,-3,3],[5,3,4,5]],det=-9 [16,2,-15,-9], chain 2 => [27,10,-24,-19] => [39,17,-36,-26] ?? [63,22,-36,-28]
[[-3,1,-3,-5],[-3,-5,-4,2],[0,-1,5,-4],[-3,-1,0,-3]],det=279 [16,2,-15,-9], chain 2 => [44,-16,-41,-23] => [90,66,-97,-47] ?? [322,-306,-363,-195]
[[-3,1,-3,-5],[3,-5,3,1],[0,-1,5,-4],[-3,-1,0,-3]],det=348 [16,2,-15,-9], chain 2 => [44,-16,-41,-23] => [90,66,-97,-47] ?? [322,-398,-363,-195]
[[-3,1,-3,-5],[3,1,2,4],[-4,1,-2,-1],[-2,3,4,-5]],det=242 [16,2,-15,-9], chain 2 => [44,-16,-23,-41] => [126,-94,-105,-23] ?? [-42,-18,-365,-839]
[[-3,1,-3,-5],[3,1,2,4],[-3,2,1,-4],[-3,2,1,-2]],det=-54 [16,2,-15,-9], chain 2 => [44,-16,-23,-41] => [126,-94,-23,-105] ?? [122,-182,-169,-379]
[[-3,1,-2,-5],[-5,0,-4,-1],[-4,-4,-5,2],[0,-3,2,-1]],det=251 [16,2,-15,-9], chain 2 => [29,-11,-15,-27] => [67,-58,-51,30] ?? [-307,-161,279,42]
[[-3,1,-2,-5],[-5,0,-4,-1],[1,1,1,2],[0,-3,2,-1]],det=-85 [16,2,-15,-9], chain 2 => [29,-11,-15,-27] => [67,-58,-51,30] ?? [-307,-161,18,42]
[[-3,1,-2,-5],[-1,4,2,-3],[-4,-4,-5,2],[-5,4,0,-5]],det=50 [16,2,-15,-9], chain 2 => [29,-11,-15,-27] => [67,-22,-51,-54] ?? [149,-95,-33,-153]
[[-3,1,-2,-5],[-1,4,2,-3],[-2,1,-1,0],[-2,4,2,-3]],det=33 [16,2,-15,-9], chain 2 => [29,-11,-15,-27] => [67,-22,-54,-51] ?? [140,-110,-102,-177]
[[-3,1,-2,-5],[-1,4,2,-3],[1,1,1,2],[-5,4,0,-5]],det=44 [16,2,-15,-9], chain 2 => [29,-11,-15,-27] => [67,-22,-51,-54] ?? [149,-95,-114,-153]
[[-3,1,-2,-5],[0,5,2,-1],[-4,-4,-5,2],[0,-3,2,-1]],det=360 [16,2,-15,-9], chain 2 => [29,-11,-15,-27] => [67,-58,-51,30] ?? [-307,-422,279,42]
[[-3,1,-2,-5],[0,5,2,-1],[1,1,1,2],[0,-3,2,-1]],det=24 [16,2,-15,-9], chain 2 => [29,-11,-15,-27] => [67,-58,-51,30] ?? [-307,-422,18,42]
[[-3,2,-5,-5],[-1,3,2,-1],[-4,-1,-1,-2],[2,-1,5,3]],det=80 [16,2,-15,-9], chain 2 => [76,-31,-33,-72] => [235,-163,-96,-198] ?? [439,-718,-285,-441]
[[-3,2,-5,-5],[4,-4,4,3],[-5,-5,-5,2],[-2,1,4,-2]],det=-884 [16,2,-15,-9], chain 2 => [76,-31,-33,-72] => [235,80,-204,-171] ?? [1330,-709,-897,-864]
[[-3,2,-5,-5],[4,-4,4,3],[-4,5,1,-4],[-2,1,4,-2]],det=147 [16,2,-15,-9], chain 2 => [76,-31,-33,-72] => [235,80,-204,-171] ?? [1330,-709,-60,-864]
[[-3,3,-5,-3],[-5,-4,-5,1],[-2,-3,-1,4],[-2,1,-1,-2]],det=-150 [16,2,-15,-9], chain 2 => [60,-22,-59,3] => [40,86,17,-89] ?? [320,-718,-711,167]
[[-3,3,-4,-4],[-4,2,-2,-2],[3,4,5,0],[-1,-2,4,-3]],det=-522 [16,2,-15,-9], chain 2 => [54,-12,-19,-53] => [90,-96,19,53] ?? [-846,-696,-19,19]
[[-3,3,-4,-4],[0,-3,-2,4],[2,-5,5,0],[-3,-2,-1,-2]],det=198 [16,2,-15,-9], chain 2 => [54,-12,-53,-19] => [90,66,-97,-47] ?? [504,-192,-635,-211]
[[-2,-5,-5,-3],[-5,-2,-4,-3],[1,-4,2,0],[2,-2,4,3]],det=-174 [16,2,-15,-9], chain 2 => [60,3,-22,-59] => [152,-41,4,-151] ?? [334,-241,324,-51]
[[-2,-5,-5,-3],[-3,0,-4,1],[1,-4,2,0],[0,-4,4,-1]],det=214 [16,2,-15,-9], chain 2 => [60,3,-22,-59] => [152,-151,4,-41] ?? [554,-513,764,661]
[[-2,-5,-5,-3],[5,2,3,4],[-4,0,-1,-3],[2,-2,4,3]],det=35 [16,2,-15,-9], chain 2 => [60,3,-22,-59] => [152,4,-41,-151] ?? [334,41,-114,-321]
[[-2,-5,-5,-3],[5,2,3,4],[-2,2,-1,1],[0,-4,4,-1]],det=-283 [16,2,-15,-9], chain 2 => [60,3,-22,-59] => [152,4,-151,-41] ?? [554,151,-186,-579]
[[-2,-5,-4,-4],[-4,-1,-3,-1],[2,-3,3,0],[-3,2,0,1]],det=53 [16,2,-15,-9], chain 2 => [54,-12,-19,-53] => [240,-94,87,-239] ?? [598,-888,1023,-1147]
[[-2,-4,-4,-1],[-1,-4,0,-1],[0,3,4,-3],[-1,1,1,-2]],det=27 [16,2,-15,-9], chain 2 => [29,-15,-27,-11] => [121,42,-120,-49] ?? [119,-240,-207,-101]
[[-2,-4,-4,-1],[1,-2,2,1],[1,4,2,1],[-1,1,1,-2]],det=-18 [16,2,-15,-9], chain 2 => [29,-27,-15,-11] => [121,42,-120,-49] ?? [119,-252,0,-101]
[[-2,-4,-4,0],[0,-1,2,-2],[-1,-3,-1,0],[1,3,2,1]],det=-6 [16,2,-15,-9], chain 2 => [20,-14,-7,-17] => [44,34,29,-53] ?? [-340,130,-175,151]
[[-2,-4,-4,0],[0,5,1,1],[-2,0,-1,0],[-2,-4,-4,3]],det=-66 [16,2,-15,-9], chain 2 => [20,-14,-17,-7] => [84,-94,-23,63] ?? [300,-430,-145,489]
[[-2,-4,-4,0],[0,5,1,1],[-2,0,-1,0],[5,-3,3,4]],det=-110 [16,2,-15,-9], chain 2 => [20,-14,-17,-7] => [84,-94,-23,63] ?? [300,-430,-145,885]
[[-2,-4,-3,-4],[-4,-3,-5,5],[0,-1,-2,5],[-2,3,-4,4]],det=-366 [16,2,-15,-9], chain 2 => [41,-40,-17,-2] => [137,31,64,-142] ?? [-22,-1671,-869,-1005]
[[-2,-4,-3,-4],[-4,-3,-5,5],[0,-1,-2,5],[2,4,4,-2]],det=-32 [16,2,-15,-9], chain 2 => [41,-40,-17,-2] => [137,31,64,-142] ?? [-22,-1671,-869,938]
[[-2,-4,-3,-4],[0,-2,3,-1],[0,-1,-2,5],[-2,3,-4,4]],det=-272 [16,2,-15,-9], chain 2 => [41,-40,-17,-2] => [137,31,64,-142] ?? [-22,272,-869,-1005]
[[-2,-4,-3,-4],[0,-2,3,-1],[0,-1,-2,5],[2,4,4,-2]],det=62 [16,2,-15,-9], chain 2 => [41,-40,-17,-2] => [137,31,64,-142] ?? [-22,272,-869,938]
[[-2,-4,-1,-5],[-5,0,-5,1],[-4,0,-2,-3],[0,2,-1,4]],det=-14 [16,2,-15,-9], chain 2 => [20,-14,-7,-17] => [108,-82,-15,-89] ?? [572,-554,-135,-505]
[[-2,-4,-1,-5],[-3,1,-5,4],[-1,4,3,-4],[0,5,1,1]],det=100 [16,2,-15,-9], chain 2 => [20,-7,-17,-14] => [75,-38,-43,-66] ?? [375,-312,-92,-299]
[[-2,-4,-1,-5],[-3,4,-1,-2],[-2,3,-3,4],[1,3,3,-1]],det=62 [16,2,-15,-9], chain 2 => [20,-7,-17,-14] => [75,-43,-66,-38] ?? [278,-255,-233,-214]
[[-2,-4,-1,-5],[-3,4,-1,-2],[-1,1,-1,2],[0,5,1,1]],det=20 [16,2,-15,-9], chain 2 => [20,-7,-17,-14] => [75,-43,-38,-66] ?? [390,-227,-212,-319]
[[-2,-4,-1,-5],[-3,4,-1,-2],[5,4,4,5],[1,3,3,-1]],det=-60 [16,2,-15,-9], chain 2 => [20,-7,-17,-14] => [75,-43,-66,-38] ?? [278,-255,-251,-214]
[[-2,-4,-1,-5],[3,5,3,3],[-4,0,-2,-3],[0,2,-1,4]],det=-4 [16,2,-15,-9], chain 2 => [20,-14,-7,-17] => [108,-82,-15,-89] ?? [572,-398,-135,-505]
[[-2,-4,-1,-5],[4,2,2,5],[-1,4,3,-4],[0,5,1,1]],det=-55 [16,2,-15,-9], chain 2 => [20,-7,-17,-14] => [75,-38,-43,-66] ?? [375,-192,-92,-299]
[[-2,-3,-5,1],[-5,1,-1,-5],[-3,1,0,-3],[0,0,-1,4]],det=-10 [16,2,-15,-9], chain 2 => [28,-18,-19,-21] => [72,-34,-39,-65] ?? [88,-30,-55,-221]
[[-2,-3,-5,1],[-5,1,-1,-5],[-3,1,0,-3],[3,3,5,0]],det=-3 [16,2,-15,-9], chain 2 => [28,-18,-19,-21] => [72,-34,-39,-65] ?? [88,-30,-55,-81]
[[-2,-3,-5,1],[-4,0,0,-5],[2,2,3,1],[-2,1,0,-1]],det=-6 [16,2,-15,-9], chain 2 => [28,-19,-18,-21] => [70,-7,-57,-54] ?? [112,-10,-99,-93]
[[-2,-3,-5,1],[4,-1,3,4],[2,2,3,1],[-2,1,0,-1]],det=-36 [16,2,-15,-9], chain 2 => [28,-19,-18,-21] => [70,-7,-57,-54] ?? [112,-100,-99,-93]
[[-2,-3,-5,2],[-4,5,-1,-4],[2,2,3,1],[1,-1,1,1]],det=32 [16,2,-15,-9], chain 2 => [19,-3,-18,-10] => [41,-33,-32,-6] ?? [165,-273,-86,36]
[[-2,-3,-5,2],[-4,5,-1,-4],[3,-3,4,0],[-1,3,3,-5]],det=60 [16,2,-15,-9], chain 2 => [19,-3,-18,-10] => [41,-33,-6,-32] ?? [-17,-195,198,2]
[[-2,-3,-5,2],[-4,5,-1,-4],[3,-3,4,0],[0,4,0,2]],det=-108 [16,2,-15,-9], chain 2 => [19,-3,-18,-10] => [41,-33,-6,-32] ?? [-17,-195,198,-196]
[[-2,-3,-5,2],[-2,-2,-3,3],[-2,-4,-5,5],[2,5,3,0]],det=-48 [16,2,-15,-9], chain 2 => [19,-18,-10,-3] => [60,19,69,-82] ?? [-686,-611,-951,422]
[[-2,-3,-5,2],[-1,-1,2,-5],[-4,-1,-2,-2],[1,5,3,-1]],det=-120 [16,2,-15,-9], chain 2 => [19,-3,-18,-10] => [41,-2,-17,-40] ?? [-71,127,-48,20]
[[-2,-3,-5,2],[-1,-1,2,-5],[-3,0,-5,5],[1,5,3,-1]],det=-140 [16,2,-15,-9], chain 2 => [19,-3,-18,-10] => [41,-2,-17,-40] ?? [-71,127,-238,20]
[[-2,-3,-5,2],[-1,5,1,-2],[-1,2,1,-1],[1,-1,1,1]],det=-17 [16,2,-15,-9], chain 2 => [19,-3,-18,-10] => [41,-32,-33,-6] ?? [167,-222,-132,34]
[[-2,-3,-5,2],[-1,5,1,-2],[3,-3,4,0],[-3,4,-2,0]],det=-12 [16,2,-15,-9], chain 2 => [19,-3,-18,-10] => [41,-32,-6,-33] ?? [-22,-141,195,-239]
[[-2,-3,-5,2],[0,-2,1,-1],[-4,2,-1,-3],[-3,3,-2,-1]],det=4 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [76,5,-69,-48] ?? [82,-31,-81,-27]
[[-2,-3,-5,2],[0,-2,1,-1],[-1,-1,3,-5],[1,4,3,-2]],det=-8 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [76,5,-48,-69] ?? [-65,11,120,90]
[[-2,-3,-5,2],[0,-2,1,-1],[1,4,1,3],[1,4,3,-2]],det=-17 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [76,5,-48,-69] ?? [-65,11,-159,90]
[[-2,-3,-5,2],[0,0,-1,2],[-4,-1,-2,-2],[1,5,3,-1]],det=60 [16,2,-15,-9], chain 2 => [19,-3,-18,-10] => [41,-2,-17,-40] ?? [-71,-63,-48,20]
[[-2,-3,-5,2],[0,0,-1,2],[-3,0,-5,5],[1,5,3,-1]],det=40 [16,2,-15,-9], chain 2 => [19,-3,-18,-10] => [41,-2,-17,-40] ?? [-71,-63,-238,20]
[[-2,-3,-5,2],[0,0,2,-3],[-1,2,1,-1],[-1,3,3,-5]],det=-27 [16,2,-15,-9], chain 2 => [19,-3,-18,-10] => [41,-6,-33,-32] ?? [37,30,-54,2]
[[-2,-3,-5,2],[0,0,2,-3],[-1,2,1,-1],[0,4,0,2]],det=-24 [16,2,-15,-9], chain 2 => [19,-3,-18,-10] => [41,-6,-33,-32] ?? [37,30,-54,-88]
[[-2,-3,-5,2],[0,0,2,-3],[2,2,3,1],[-3,4,-2,0]],det=-21 [16,2,-15,-9], chain 2 => [19,-3,-18,-10] => [41,-6,-32,-33] ?? [30,35,-59,-83]
[[-2,-3,-5,2],[0,3,4,-4],[-2,-4,-5,5],[-3,-3,-1,-4]],det=85 [16,2,-15,-9], chain 2 => [19,-18,-10,-3] => [60,-82,69,19] ?? [-181,-46,-42,-79]
[[-2,-3,-5,2],[1,-1,4,-4],[-5,1,-4,0],[0,3,3,-4]],det=-152 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [76,-31,-33,-72] ?? [-38,263,-279,96]
[[-2,-3,-5,2],[1,-1,4,-4],[-5,1,-1,-5],[0,3,0,1]],det=-34 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [76,-31,-72,-33] ?? [235,-49,-174,-126]
[[-2,-3,-5,2],[1,-1,4,-4],[2,-1,5,-3],[0,3,3,-4]],det=0 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [76,-31,-33,-72] ?? [-38,263,234,96]
[[-2,-3,-5,2],[1,-1,4,-4],[4,4,3,5],[0,3,3,-4]],det=38 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [76,-31,-33,-72] ?? [-38,263,-279,96]
[[-2,-3,-5,2],[1,1,-1,4],[-1,2,1,-1],[-1,3,3,-5]],det=39 [16,2,-15,-9], chain 2 => [19,-3,-18,-10] => [41,-6,-33,-32] ?? [37,-60,-54,2]
[[-2,-3,-5,2],[1,1,-1,4],[-1,2,1,-1],[0,4,0,2]],det=42 [16,2,-15,-9], chain 2 => [19,-3,-18,-10] => [41,-6,-33,-32] ?? [37,-60,-54,-88]
[[-2,-3,-5,2],[1,1,-1,4],[2,2,3,1],[-3,4,-2,0]],det=32 [16,2,-15,-9], chain 2 => [19,-3,-18,-10] => [41,-6,-32,-33] ?? [30,-65,-59,-83]
[[-2,-3,-5,2],[3,4,2,4],[-5,1,-4,0],[0,3,3,-4]],det=190 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [76,-31,-33,-72] ?? [-38,-250,-279,96]
[[-2,-3,-5,2],[3,4,2,4],[-5,1,-1,-5],[0,3,0,1]],det=71 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [76,-31,-72,-33] ?? [235,-172,-174,-126]
[[-2,-3,-5,2],[3,4,2,4],[2,-1,5,-3],[0,3,3,-4]],det=-38 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [76,-31,-33,-72] ?? [-38,-250,234,96]
[[-2,-3,-5,2],[3,4,2,4],[4,4,3,5],[0,3,3,-4]],det=0 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [76,-31,-33,-72] ?? [-38,-250,-279,96]
[[-2,-3,-4,-2],[1,-4,5,-4],[-4,-1,-1,-2],[4,1,3,1]],det=-51 [16,2,-15,-9], chain 2 => [40,-31,-33,12] => [121,-49,-120,42] ?? [301,-451,-399,117]
[[-2,-3,-4,-2],[1,-1,0,5],[1,-2,3,0],[-4,2,-3,-3]],det=216 [16,2,-15,-9], chain 2 => [40,-31,-33,12] => [121,131,3,-159] ?? [-329,-805,-132,246]
[[-2,-3,-3,-3],[1,2,3,-3],[-5,-5,-5,0],[-3,0,2,-5]],det=-10 [16,2,-15,-9], chain 2 => [34,2,-15,-33] => [70,92,-105,33] ?? [-200,-160,-285,-585]
[[-2,-3,-3,-3],[1,2,3,-3],[-5,-5,-5,0],[1,4,5,-2]],det=-25 [16,2,-15,-9], chain 2 => [34,2,-15,-33] => [70,92,-105,33] ?? [-200,-160,-285,-153]
[[-2,-3,-3,-3],[1,2,3,-3],[-4,2,0,-5],[0,-3,0,3]],det=225 [16,2,-15,-9], chain 2 => [34,2,-15,-33] => [70,92,33,-105] ?? [-200,668,429,-591]
[[-2,-3,-3,-3],[1,2,3,-3],[-1,-1,-2,3],[-3,0,2,-5]],det=17 [16,2,-15,-9], chain 2 => [34,2,-15,-33] => [70,92,-105,33] ?? [-200,-160,147,-585]
[[-2,-3,-3,-3],[1,2,3,-3],[-1,-1,-2,3],[1,4,5,-2]],det=2 [16,2,-15,-9], chain 2 => [34,2,-15,-33] => [70,92,-105,33] ?? [-200,-160,147,-153]
[[-2,-3,-3,-3],[1,2,3,-3],[4,-5,4,1],[0,-3,0,3]],det=-192 [16,2,-15,-9], chain 2 => [34,2,-15,-33] => [70,92,33,-105] ?? [-200,668,-153,-591]
[[-2,-3,-2,-4],[0,0,0,2],[-1,-3,1,-2],[-3,3,-2,1]],det=66 [16,2,-15,-9], chain 2 => [28,-18,-19,-21] => [120,-42,49,-121] ?? [272,-242,297,-705]
[[-2,-3,-2,-4],[2,3,5,-2],[-2,4,2,-4],[1,4,3,0]],det=-36 [16,2,-15,-9], chain 2 => [28,-19,-18,-21] => [121,-49,-84,-102] ?? [481,-121,-198,-327]
[[-2,-3,-2,-4],[2,3,5,-2],[-1,-1,3,-5],[0,3,0,3]],det=-81 [16,2,-15,-9], chain 2 => [28,-19,-18,-21] => [121,-49,42,-120] ?? [301,545,654,-507]
[[-2,-3,-2,-4],[3,-5,5,-2],[-3,0,1,-5],[-2,4,-2,3]],det=182 [16,2,-15,-9], chain 2 => [28,-19,-18,-21] => [121,131,3,-159] ?? [-5,41,435,-201]
[[-2,-3,-2,-4],[3,-5,5,-2],[5,-1,4,4],[-2,4,-2,3]],det=-91 [16,2,-15,-9], chain 2 => [28,-19,-18,-21] => [121,131,3,-159] ?? [-5,41,-150,-201]
[[-2,-2,-4,-3],[-1,1,1,1],[1,4,2,-2],[0,-5,1,2]],det=-98 [16,2,-15,-9], chain 2 => [51,-38,12,-43] => [55,-120,9,116] ?? [-254,-50,-639,841]
[[-2,-1,-5,0],[0,-1,2,0],[0,0,4,-3],[-3,0,-4,2]],det=55 [16,2,-15,-9], chain 2 => [41,-32,-33,-6] => [115,-34,-114,-3] ?? [374,-194,-447,105]
[[-2,-1,-5,0],[2,-1,0,4],[0,-3,3,-2],[3,2,5,1]],det=-36 [16,2,-15,-9], chain 2 => [41,-6,-33,-32] => [89,-40,-17,-86] ?? [-53,-126,241,16]
[[-2,-1,-4,-3],[0,2,1,2],[1,-3,4,0],[0,1,-1,1]],det=-12 [16,2,-15,-9], chain 2 => [53,-29,-50,8] => [99,-92,-60,29] ?? [47,-186,135,-3]
[[-2,-1,-3,-2],[5,-1,5,2],[0,0,3,-2],[0,-1,3,-4]],det=-14 [16,2,-15,-9], chain 2 => [29,-15,-27,-11] => [60,3,-59,-22] ?? [98,-42,-133,-92]
[[-2,-1,-3,-1],[-3,5,-2,1],[1,-4,1,0],[5,-5,5,1]],det=-16 [16,2,-15,-9], chain 2 => [20,-17,-7,-14] => [12,-145,81,136] ?? [-258,-787,673,1326]
[[-2,-1,-3,-1],[-2,-3,-4,4],[-3,1,-2,-1],[3,-4,2,3]],det=-68 [16,2,-15,-9], chain 2 => [20,-14,-7,-17] => [12,-38,-43,51] ?? [92,466,-39,255]
[[-2,-1,-3,-1],[-2,3,1,-3],[-3,1,-2,-1],[3,-4,2,3]],det=42 [16,2,-15,-9], chain 2 => [20,-14,-7,-17] => [12,-38,-43,51] ?? [92,-334,-39,255]
[[-2,-1,-3,-1],[1,-3,4,-4],[-2,5,-1,0],[-2,0,2,-5]],det=36 [16,2,-15,-9], chain 2 => [20,-14,-7,-17] => [12,102,-103,31] ?? [152,-830,589,-385]
[[-2,-1,-3,-1],[2,4,3,1],[-3,-2,0,-5],[3,-1,3,2]],det=18 [16,2,-15,-9], chain 2 => [20,-14,-7,-17] => [12,-54,53,19] ?? [-148,-14,-23,287]
[[-2,-1,-3,-1],[2,4,3,1],[5,-3,3,4],[3,-1,3,2]],det=0 [16,2,-15,-9], chain 2 => [20,-14,-7,-17] => [12,-54,53,19] ?? [-148,-14,457,287]
[[-2,-1,-2,-5],[-1,5,0,0],[-2,4,0,1],[-1,-5,-2,4]],det=-110 [16,2,-15,-9], chain 2 => [41,-6,-33,-32] => [150,-71,-138,-73] ?? [412,-505,-657,189]
[[-2,-1,-2,-5],[-1,5,3,-2],[-2,-5,-3,1],[2,-2,4,0]],det=392 [16,2,-15,-9], chain 2 => [41,-33,-6,-32] => [123,-160,69,124] ?? [-844,-964,471,842]
[[-2,-1,-2,-5],[1,0,2,2],[-3,-3,1,-4],[-3,0,-4,2]],det=-2 [16,2,-15,-9], chain 2 => [41,-32,-33,-6] => [46,-37,-36,-3] ?? [32,-32,-51,0]
[[-2,0,-4,-2],[1,-1,4,-1],[-4,-1,-5,4],[0,-3,4,-4]],det=44 [16,2,-15,-9], chain 2 => [46,-37,-27,-30] => [76,5,-132,123] ?? [130,-580,843,-1035]
[[-2,0,-4,0],[0,1,2,-1],[-1,-1,0,0],[-3,-3,-1,-2]],det=18 [16,2,-15,-9], chain 2 => [28,-19,-18,-21] => [16,-34,-9,33] ?? [4,-85,18,-3]
[[-2,0,-3,-5],[0,1,4,-1],[1,-5,5,-3],[4,-2,2,5]],det=245 [16,2,-15,-9], chain 2 => [58,-49,-42,-15] => [85,-202,138,171] ?? [-1439,179,1272,1875]
[[-2,0,-3,-5],[3,-2,5,2],[5,-1,5,5],[0,0,4,-5]],det=131 [16,2,-15,-9], chain 2 => [58,-49,-42,-15] => [85,32,54,-93] ?? [133,275,198,681]
[[-2,0,-2,-4],[-1,5,-4,5],[3,1,2,4],[-4,2,0,-3]],det=-168 [16,2,-15,-9], chain 2 => [34,9,-16,-33] => [96,-90,-53,-19] ?? [-10,-429,16,-507]
[[-2,0,-1,-5],[-4,0,-3,0],[1,-2,2,0],[-2,-2,-4,5]],det=-130 [16,2,-15,-9], chain 2 => [28,-19,-18,-21] => [67,-58,30,-51] ?? [91,-358,243,-393]
[[-2,0,-1,-4],[-3,0,0,-5],[-4,-1,-2,-2],[2,0,4,-2]],det=24 [16,2,-15,-9], chain 2 => [19,-3,-18,-10] => [20,-7,-17,-14] ?? [33,10,-11,0]
[[-2,0,-1,-4],[-3,0,0,-5],[-4,-1,-2,-2],[3,1,1,5]],det=-16 [16,2,-15,-9], chain 2 => [19,-3,-18,-10] => [20,-7,-17,-14] ?? [33,10,-11,-34]
[[-2,0,-1,-4],[-3,0,0,-5],[-3,0,-5,5],[2,0,4,-2]],det=0 [16,2,-15,-9], chain 2 => [19,-3,-18,-10] => [20,-7,-17,-14] ?? [33,10,-45,0]
[[-2,0,-1,-4],[-3,0,0,-5],[-3,0,-5,5],[3,1,1,5]],det=-40 [16,2,-15,-9], chain 2 => [19,-3,-18,-10] => [20,-7,-17,-14] ?? [33,10,-45,-34]
[[-2,0,-1,-4],[-2,1,-3,2],[-4,-1,-2,-2],[2,0,4,-2]],det=48 [16,2,-15,-9], chain 2 => [19,-3,-18,-10] => [20,-7,-17,-14] ?? [33,-24,-11,0]
[[-2,0,-1,-4],[-2,1,-3,2],[-4,-1,-2,-2],[3,1,1,5]],det=8 [16,2,-15,-9], chain 2 => [19,-3,-18,-10] => [20,-7,-17,-14] ?? [33,-24,-11,-34]
[[-2,0,-1,-4],[-2,1,-3,2],[-3,0,-5,5],[2,0,4,-2]],det=24 [16,2,-15,-9], chain 2 => [19,-3,-18,-10] => [20,-7,-17,-14] ?? [33,-24,-45,0]
[[-2,0,-1,-4],[-2,1,-3,2],[-3,0,-5,5],[3,1,1,5]],det=-16 [16,2,-15,-9], chain 2 => [19,-3,-18,-10] => [20,-7,-17,-14] ?? [33,-24,-45,-34]
[[-2,0,-1,-4],[2,2,2,1],[-4,-1,-2,-2],[-2,-1,-1,-1]],det=6 [16,2,-15,-9], chain 2 => [19,-3,-18,-10] => [20,-14,-17,-7] ?? [5,-29,-18,-2]
[[-2,0,-1,-4],[2,2,2,1],[-3,0,-5,5],[-2,-1,-1,-1]],det=43 [16,2,-15,-9], chain 2 => [19,-3,-18,-10] => [20,-14,-17,-7] ?? [5,-29,-10,-2]
[[-2,2,-4,-1],[-1,2,-1,1],[-3,-1,0,-2],[-3,0,2,-5]],det=101 [16,2,-15,-9], chain 2 => [41,-6,-32,-33] => [67,-54,-51,-22] ?? [-16,-146,-103,-193]
[[-2,2,-4,-1],[-1,2,-1,1],[2,1,5,-1],[-3,0,2,-5]],det=-139 [16,2,-15,-9], chain 2 => [41,-6,-32,-33] => [67,-54,-51,-22] ?? [-16,-146,-153,-193]
[[-2,2,-4,-1],[4,4,4,2],[-3,-1,0,-2],[-3,0,2,-5]],det=172 [16,2,-15,-9], chain 2 => [41,-6,-32,-33] => [67,-54,-51,-22] ?? [-16,-196,-103,-193]
[[-2,2,-4,-1],[4,4,4,2],[2,1,5,-1],[-3,0,2,-5]],det=-68 [16,2,-15,-9], chain 2 => [41,-6,-32,-33] => [67,-54,-51,-22] ?? [-16,-196,-153,-193]
[[-2,2,-2,-3],[-1,-5,-1,0],[-3,0,1,-4],[0,-3,3,-4]],det=-219 [16,2,-15,-9], chain 2 => [29,-11,-27,-15] => [19,53,-54,12] ?? [140,-230,-159,-369]
[[-2,2,-2,-3],[-1,-5,-1,0],[-1,-4,-1,2],[-1,2,-1,2]],det=0 [16,2,-15,-9], chain 2 => [29,-11,-27,-15] => [19,53,12,-54] ?? [206,-296,-351,-33]
[[-2,2,-2,-3],[2,1,0,5],[-5,-5,-3,-2],[0,-3,0,1]],det=-62 [16,2,-15,-9], chain 2 => [29,-11,-27,-15] => [19,-28,21,18] ?? [-190,100,-54,102]
[[-2,2,-2,-3],[2,1,0,5],[-2,-5,2,-5],[-3,-3,-5,4]],det=-46 [16,2,-15,-9], chain 2 => [29,-11,-27,-15] => [19,-28,18,21] ?? [-193,115,33,21]
[[-2,2,-2,-3],[2,1,0,5],[-2,-5,2,-5],[3,-3,2,3]],det=-22 [16,2,-15,-9], chain 2 => [29,-11,-27,-15] => [19,-28,18,21] ?? [-193,115,33,240]
[[-2,2,-2,-3],[2,1,0,5],[1,-5,4,-3],[0,-3,0,1]],det=16 [16,2,-15,-9], chain 2 => [29,-11,-27,-15] => [19,-28,21,18] ?? [-190,100,189,102]
[[-2,3,-5,1],[-5,1,-3,-5],[-2,1,-1,2],[2,3,4,1]],det=-403 [16,2,-15,-9], chain 2 => [40,12,-33,-31] => [90,66,-97,-47] ?? [456,142,-111,-57]
[[-2,3,-5,1],[3,-3,-1,5],[2,5,5,0],[-4,3,-3,2]],det=-758 [16,2,-15,-9], chain 2 => [40,12,-33,-31] => [90,-38,-25,-87] ?? [-256,-26,-135,-573]
[[-2,3,-5,1],[3,-3,-1,5],[2,5,5,0],[-3,-5,0,-3]],det=-307 [16,2,-15,-9], chain 2 => [40,12,-33,-31] => [90,-38,-25,-87] ?? [-256,-26,-135,181]
[[-2,3,-5,1],[5,5,4,2],[-2,1,-1,2],[2,3,4,1]],det=143 [16,2,-15,-9], chain 2 => [40,12,-33,-31] => [90,66,-97,-47] ?? [456,298,-111,-57]
[[-2,3,-2,-4],[2,-1,0,2],[-5,2,-3,0],[-2,-2,-2,3]],det=-62 [16,2,-15,-9], chain 2 => [40,12,-31,-33] => [150,2,-83,-141] ?? [436,16,-497,-561]
[[-2,3,-1,-4],[-2,-1,-5,5],[-2,-4,-3,3],[0,-1,1,0]],det=50 [16,2,-15,-9], chain 2 => [25,-4,-22,-17] => [28,-21,-19,-18] ?? [-28,-30,31,2]
[[-2,3,-1,-4],[-2,-1,-5,5],[5,-3,4,4],[0,-1,1,0]],det=-12 [16,2,-15,-9], chain 2 => [25,-4,-22,-17] => [28,-21,-19,-18] ?? [-28,-30,55,2]
[[-2,3,-1,-4],[2,0,0,4],[-2,-4,-3,3],[-4,-2,-4,1]],det=38 [16,2,-15,-9], chain 2 => [25,-4,-22,-17] => [28,-18,-19,-21] ?? [-7,-28,10,-21]
[[-2,3,-1,-4],[2,0,0,4],[-2,-4,-3,3],[3,-1,3,2]],det=8 [16,2,-15,-9], chain 2 => [25,-4,-22,-17] => [28,-18,-19,-21] ?? [-7,-28,10,3]
[[-2,3,-1,-4],[2,0,0,4],[5,-3,4,4],[-4,-2,-4,1]],det=6 [16,2,-15,-9], chain 2 => [25,-4,-22,-17] => [28,-18,-19,-21] ?? [-7,-28,34,-21]
[[-2,3,-1,-4],[2,0,0,4],[5,-3,4,4],[3,-1,3,2]],det=-24 [16,2,-15,-9], chain 2 => [25,-4,-22,-17] => [28,-18,-19,-21] ?? [-7,-28,34,3]
[[-2,5,-3,-2],[0,-3,-3,5],[-1,-4,3,-4],[2,-2,4,0]],det=32 [16,2,-15,-9], chain 2 => [41,-6,-33,-32] => [51,-43,12,-38] ?? [-277,-97,309,236]
[[-1,-5,-4,0],[-2,2,-2,0],[-4,2,0,-5],[-4,5,1,-4]],det=-30 [16,2,-15,-9], chain 2 => [34,2,-15,-33] => [16,-34,33,-9] ?? [22,-166,-87,-165]
[[-1,-5,-4,0],[-2,2,-2,0],[-4,2,0,-5],[4,-2,5,2]],det=-120 [16,2,-15,-9], chain 2 => [34,2,-15,-33] => [16,-34,33,-9] ?? [22,-166,-87,279]
[[-1,-5,-4,0],[-2,2,-2,0],[-1,-4,0,-1],[-3,0,2,-5]],det=132 [16,2,-15,-9], chain 2 => [34,2,-15,-33] => [16,-34,-9,33] ?? [190,-82,87,-231]
[[-1,-5,-4,0],[-2,2,-2,0],[-1,-4,0,-1],[1,4,5,-2]],det=66 [16,2,-15,-9], chain 2 => [34,2,-15,-33] => [16,-34,-9,33] ?? [190,-82,87,-231]
[[-1,-5,-4,0],[-2,2,-2,0],[3,0,3,2],[-3,0,2,-5]],det=66 [16,2,-15,-9], chain 2 => [34,2,-15,-33] => [16,-34,-9,33] ?? [190,-82,87,-231]
[[-1,-5,-4,0],[-2,2,-2,0],[3,0,3,2],[1,4,5,-2]],det=0 [16,2,-15,-9], chain 2 => [34,2,-15,-33] => [16,-34,-9,33] ?? [190,-82,87,-231]
[[-1,-5,-4,0],[-2,2,-2,0],[4,-5,4,1],[-4,5,1,-4]],det=78 [16,2,-15,-9], chain 2 => [34,2,-15,-33] => [16,-34,33,-9] ?? [22,-166,357,-165]
[[-1,-5,-4,0],[-2,2,-2,0],[4,-5,4,1],[4,-2,5,2]],det=-12 [16,2,-15,-9], chain 2 => [34,2,-15,-33] => [16,-34,33,-9] ?? [22,-166,357,279]
[[-1,-5,-4,0],[1,1,3,-4],[-3,0,-4,5],[3,-2,1,5]],det=104 [16,2,-15,-9], chain 2 => [34,9,-33,-16] => [53,8,-50,-29] ?? [107,27,-104,-52]
[[-1,-5,-4,1],[-5,-4,-5,-1],[-3,2,0,-3],[-3,1,-1,-1]],det=12 [16,2,-15,-9], chain 2 => [25,-4,-17,-22] => [41,-2,-17,-40] ?? [-3,-72,-7,-68]
[[-1,-5,-4,1],[-5,-4,-5,-1],[-2,3,0,-1],[-4,0,-1,-3]],det=-24 [16,2,-15,-9], chain 2 => [25,-4,-17,-22] => [41,-2,-40,-17] ?? [112,20,-71,-73]
[[-1,-5,-4,1],[-4,0,-4,0],[0,-4,0,1],[-3,-2,-2,0]],det=28 [16,2,-15,-9], chain 2 => [25,-4,-17,-22] => [41,-32,-6,-33] ?? [110,-140,95,-47]
[[-1,-5,-4,1],[0,4,2,-2],[-2,0,-1,0],[3,-5,1,5]],det=4 [16,2,-15,-9], chain 2 => [25,-4,-17,-22] => [41,-6,-33,-32] ?? [89,-26,-49,-40]
[[-1,-5,-4,1],[0,4,2,-2],[4,-3,2,5],[-3,-2,-2,0]],det=0 [16,2,-15,-9], chain 2 => [25,-4,-17,-22] => [41,-6,-32,-33] ?? [84,-22,-47,-47]
[[-1,-5,-4,1],[3,1,3,1],[-3,2,0,-3],[-3,1,-1,-1]],det=20 [16,2,-15,-9], chain 2 => [25,-4,-17,-22] => [41,-2,-17,-40] ?? [-3,30,-7,-68]
[[-1,-5,-4,1],[3,1,3,1],[-2,3,0,-1],[-4,0,-1,-3]],det=-15 [16,2,-15,-9], chain 2 => [25,-4,-17,-22] => [41,-2,-40,-17] ?? [112,-16,-71,-73]
[[-1,-5,-4,1],[4,5,4,2],[0,-4,0,1],[-3,-2,-2,0]],det=102 [16,2,-15,-9], chain 2 => [25,-4,-17,-22] => [41,-32,-6,-33] ?? [110,-86,95,-47]
[[-1,-5,-2,-4],[-5,1,-3,-5],[-2,1,-1,2],[2,3,4,1]],det=182 [16,2,-15,-9], chain 2 => [40,12,-33,-31] => [90,66,-97,-47] ?? [-38,142,-111,-57]
[[-1,-5,-2,-4],[1,4,2,-2],[3,4,4,3],[-4,-4,-2,-1]],det=-180 [16,2,-15,-9], chain 2 => [40,12,-31,-33] => [94,92,-55,-113] ?? [8,578,91,-521]
[[-1,-5,-2,-4],[3,-3,-1,5],[2,5,5,0],[-4,3,-3,2]],det=50 [16,2,-15,-9], chain 2 => [40,12,-33,-31] => [90,-38,-25,-87] ?? [498,-26,-135,-573]
[[-1,-5,-2,-4],[3,-3,-1,5],[2,5,5,0],[-3,-5,0,-3]],det=501 [16,2,-15,-9], chain 2 => [40,12,-33,-31] => [90,-38,-25,-87] ?? [498,-26,-135,181]
[[-1,-5,-2,-4],[5,5,4,2],[-2,1,-1,2],[2,3,4,1]],det=0 [16,2,-15,-9], chain 2 => [40,12,-33,-31] => [90,66,-97,-47] ?? [-38,298,-111,-57]
[[-1,-5,-1,-5],[2,5,1,2],[-3,-2,0,-4],[-1,-4,0,1]],det=48 [16,2,-15,-9], chain 2 => [34,9,-16,-33] => [102,31,12,-103] ?? [246,165,44,-329]
[[-1,-5,0,-5],[-3,0,-3,0],[0,3,1,1],[0,4,3,-3]],det=54 [16,2,-15,-9], chain 2 => [19,-3,-18,-10] => [46,-3,-37,-36] ?? [149,-27,-82,-15]
[[-1,-5,0,-5],[-3,0,-3,0],[0,3,1,1],[1,5,0,4]],det=24 [16,2,-15,-9], chain 2 => [19,-3,-18,-10] => [46,-3,-37,-36] ?? [149,-27,-82,-113]
[[-1,-5,0,-5],[-3,0,-3,0],[3,3,3,3],[-3,4,1,-5]],det=81 [16,2,-15,-9], chain 2 => [19,-3,-18,-10] => [46,-3,-36,-37] ?? [154,-30,-90,-1]
[[-1,-5,0,-5],[-3,0,-3,0],[3,3,3,3],[-2,5,-2,2]],det=27 [16,2,-15,-9], chain 2 => [19,-3,-18,-10] => [46,-3,-36,-37] ?? [154,-30,-90,-109]
[[-1,-5,0,-5],[1,2,2,0],[-5,-2,-2,-4],[-1,-1,2,-5]],det=-24 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [46,-37,-27,-30] ?? [289,-82,18,87]
[[-1,-5,0,-5],[1,2,2,0],[-5,-2,-2,-4],[1,4,0,3]],det=-48 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [46,-37,-27,-30] ?? [289,-82,18,-192]
[[-1,-5,0,-5],[1,2,2,0],[-4,2,-4,2],[0,0,2,-3]],det=-8 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [46,-37,-30,-27] ?? [274,-88,-192,21]
[[-1,-5,0,-5],[1,2,2,0],[-4,2,-4,2],[2,5,0,5]],det=-40 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [46,-37,-30,-27] ?? [274,-88,-192,-228]
[[-1,-5,0,-5],[1,2,2,0],[-3,3,-4,4],[-1,-1,2,-5]],det=-6 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [46,-37,-27,-30] ?? [289,-82,-261,87]
[[-1,-5,0,-5],[1,2,2,0],[-3,3,-4,4],[1,4,0,3]],det=-30 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [46,-37,-27,-30] ?? [289,-82,-261,-192]
[[-1,-5,0,-5],[1,2,2,0],[-1,-4,2,-4],[-1,2,0,-1]],det=-52 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [46,-37,-3,-36] ?? [319,-34,240,-84]
[[-1,-5,0,-5],[1,2,2,0],[1,-2,5,-5],[-3,0,-3,0]],det=-45 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [46,-37,-36,-3] ?? [154,-100,-45,-30]
[[-1,-5,0,-5],[1,2,2,0],[1,1,0,4],[-1,2,0,-1]],det=-18 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [46,-37,-3,-36] ?? [319,-34,-135,-84]
[[-1,-5,0,-5],[1,2,2,0],[3,0,5,-1],[0,0,2,-3]],det=-9 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [46,-37,-30,-27] ?? [274,-88,15,21]
[[-1,-5,0,-5],[1,2,2,0],[3,0,5,-1],[2,5,0,5]],det=40 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [46,-37,-30,-27] ?? [274,-88,15,-228]
[[-1,-5,0,-5],[1,2,2,0],[3,3,3,3],[-3,0,-3,0]],det=-18 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [46,-37,-36,-3] ?? [154,-100,-90,-30]
[[-1,-5,0,-5],[1,2,2,0],[4,1,5,1],[-1,-1,2,-5]],det=-24 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [46,-37,-27,-30] ?? [289,-82,-18,87]
[[-1,-5,0,-5],[1,2,2,0],[4,1,5,1],[1,4,0,3]],det=33 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [46,-37,-27,-30] ?? [289,-82,-18,-192]
[[-1,-5,0,-5],[1,4,3,-2],[-5,1,-1,-5],[-3,4,1,-5]],det=-75 [16,2,-15,-9], chain 2 => [19,-3,-18,-10] => [46,-27,-30,-37] ?? [274,-78,-42,-91]
[[-1,-5,0,-5],[1,4,3,-2],[-5,1,-1,-5],[-2,5,-2,2]],det=-195 [16,2,-15,-9], chain 2 => [19,-3,-18,-10] => [46,-27,-30,-37] ?? [274,-78,-42,-241]
[[-1,-5,0,-5],[1,4,3,-2],[-4,2,-4,2],[-3,4,1,-5]],det=30 [16,2,-15,-9], chain 2 => [19,-3,-18,-10] => [46,-27,-30,-37] ?? [274,-78,-192,-91]
[[-1,-5,0,-5],[1,4,3,-2],[-4,2,-4,2],[-2,5,-2,2]],det=-90 [16,2,-15,-9], chain 2 => [19,-3,-18,-10] => [46,-27,-30,-37] ?? [274,-78,-192,-241]
[[-1,-5,0,-5],[2,5,0,5],[-5,1,-1,-5],[-3,4,1,-5]],det=75 [16,2,-15,-9], chain 2 => [19,-3,-18,-10] => [46,-27,-30,-37] ?? [274,-228,-42,-91]
[[-1,-5,0,-5],[2,5,0,5],[-5,1,-1,-5],[-2,5,-2,2]],det=-45 [16,2,-15,-9], chain 2 => [19,-3,-18,-10] => [46,-27,-30,-37] ?? [274,-228,-42,-241]
[[-1,-5,0,-5],[2,5,0,5],[-4,2,-4,2],[-3,4,1,-5]],det=180 [16,2,-15,-9], chain 2 => [19,-3,-18,-10] => [46,-27,-30,-37] ?? [274,-228,-192,-91]
[[-1,-5,0,-5],[2,5,0,5],[-4,2,-4,2],[-2,5,-2,2]],det=60 [16,2,-15,-9], chain 2 => [19,-3,-18,-10] => [46,-27,-30,-37] ?? [274,-228,-192,-241]
[[-1,-5,0,-5],[5,5,5,2],[0,3,1,1],[1,2,5,-5]],det=-21 [16,2,-15,-9], chain 2 => [19,-3,-18,-10] => [46,-30,-37,-27] ?? [239,-159,-154,-64]
[[-1,-5,0,-5],[5,5,5,2],[0,3,1,1],[2,3,2,2]],det=14 [16,2,-15,-9], chain 2 => [19,-3,-18,-10] => [46,-30,-37,-27] ?? [239,-159,-154,-126]
[[-1,-5,0,-5],[5,5,5,2],[4,1,5,1],[-3,4,1,-5]],det=-387 [16,2,-15,-9], chain 2 => [19,-3,-18,-10] => [46,-30,-27,-37] ?? [289,-129,-18,-100]
[[-1,-5,0,-5],[5,5,5,2],[4,1,5,1],[-2,5,-2,2]],det=-126 [16,2,-15,-9], chain 2 => [19,-3,-18,-10] => [46,-30,-27,-37] ?? [289,-129,-18,-262]
[[-1,-4,-5,0],[-1,-5,-1,3],[5,2,3,3],[2,0,2,5]],det=-254 [16,2,-15,-9], chain 2 => [51,-38,12,-43] => [41,-2,86,-89] ?? [-463,-384,192,-191]
[[-1,-3,-4,1],[-4,4,-3,0],[-5,1,-1,-4],[-5,1,-3,-2]],det=-32 [16,2,-15,-9], chain 2 => [29,-11,-27,-15] => [97,-79,-69,-45] ?? [371,-497,-315,-267]
[[-1,-3,-4,1],[-4,4,-3,0],[-5,1,-1,-4],[1,1,4,-3]],det=110 [16,2,-15,-9], chain 2 => [29,-11,-27,-15] => [97,-79,-69,-45] ?? [371,-497,-315,-123]
[[-1,-3,-4,1],[-4,4,-3,0],[0,0,0,3],[-3,3,-3,2]],det=-36 [16,2,-15,-9], chain 2 => [29,-11,-27,-15] => [97,-79,-45,-69] ?? [251,-569,-207,-531]
[[-1,-3,-4,1],[-4,4,-3,0],[0,0,0,3],[3,3,4,1]],det=-150 [16,2,-15,-9], chain 2 => [29,-11,-27,-15] => [97,-79,-45,-69] ?? [251,-569,-207,-195]
[[-1,-3,-4,1],[-2,-3,0,-3],[-1,-1,0,1],[-4,5,-5,4]],det=-230 [16,2,-15,-9], chain 2 => [29,-11,-27,-15] => [97,20,-33,-96] ?? [-121,34,-213,-507]
[[-1,-3,-4,1],[-2,-3,0,-3],[-1,-1,0,1],[2,5,2,3]],det=-20 [16,2,-15,-9], chain 2 => [29,-11,-27,-15] => [97,20,-33,-96] ?? [-121,34,-213,-60]
[[-1,-3,-4,1],[-2,-3,0,-3],[0,3,4,-3],[0,0,4,-5]],det=-36 [16,2,-15,-9], chain 2 => [29,-11,-27,-15] => [97,20,-96,-33] ?? [194,-155,-225,-219]
[[-1,-3,-4,1],[-1,-5,2,-5],[-2,1,1,-2],[-5,4,-2,-3]],det=-150 [16,2,-15,-9], chain 2 => [29,-11,-27,-15] => [97,47,-66,-90] ?? [-64,-14,-33,105]
[[-1,-3,-4,1],[-1,-5,2,-5],[-2,1,1,-2],[1,4,5,-4]],det=-160 [16,2,-15,-9], chain 2 => [29,-11,-27,-15] => [97,47,-66,-90] ?? [-64,-14,-33,315]
[[-1,-3,-4,1],[-1,-5,2,-5],[0,3,1,2],[0,3,-1,4]],det=12 [16,2,-15,-9], chain 2 => [29,-11,-27,-15] => [97,47,-90,-66] ?? [56,-182,-81,-33]
[[-1,-3,-4,1],[2,4,4,-1],[-5,1,-1,-4],[-5,1,-3,-2]],det=-56 [16,2,-15,-9], chain 2 => [29,-11,-27,-15] => [97,-79,-69,-45] ?? [371,-353,-315,-267]
[[-1,-3,-4,1],[2,4,4,-1],[-5,1,-1,-4],[1,1,4,-3]],det=86 [16,2,-15,-9], chain 2 => [29,-11,-27,-15] => [97,-79,-69,-45] ?? [371,-353,-315,-123]
[[-1,-3,-4,1],[2,4,4,-1],[0,0,0,3],[-3,3,-3,2]],det=90 [16,2,-15,-9], chain 2 => [29,-11,-27,-15] => [97,-79,-45,-69] ?? [251,-233,-207,-531]
[[-1,-3,-4,1],[2,4,4,-1],[0,0,0,3],[3,3,4,1]],det=-24 [16,2,-15,-9], chain 2 => [29,-11,-27,-15] => [97,-79,-45,-69] ?? [251,-233,-207,-195]
[[-1,-3,-4,2],[-5,0,-2,-4],[-5,-3,-4,-1],[0,4,1,0]],det=-101 [16,2,-15,-9], chain 2 => [20,-14,-17,-7] => [76,-38,17,-73] ?? [-176,-122,-261,-135]
[[-1,-3,-4,2],[-5,0,-2,-4],[2,-2,3,0],[0,4,1,0]],det=-60 [16,2,-15,-9], chain 2 => [20,-14,-17,-7] => [76,-38,17,-73] ?? [-176,-122,279,-135]
[[-1,-3,-4,2],[-5,2,-4,-1],[1,0,4,-3],[1,0,-1,5]],det=-134 [16,2,-15,-9], chain 2 => [20,-7,-17,-14] => [41,-32,-6,-33] ?? [13,-212,116,-118]
[[-1,-3,-4,2],[-3,2,-5,5],[-5,-3,-4,-1],[0,4,1,0]],det=135 [16,2,-15,-9], chain 2 => [20,-14,-17,-7] => [76,-38,17,-73] ?? [-176,-754,-261,-135]
[[-1,-3,-4,2],[-3,2,-5,5],[2,-2,3,0],[0,4,1,0]],det=-56 [16,2,-15,-9], chain 2 => [20,-14,-17,-7] => [76,-38,17,-73] ?? [-176,-754,279,-135]
[[-1,-3,-4,2],[-1,0,0,-1],[-3,2,0,-3],[1,0,-1,5]],det=26 [16,2,-15,-9], chain 2 => [20,-7,-17,-14] => [41,-6,-32,-33] ?? [39,-8,-36,-92]
[[-1,-3,-4,2],[-1,1,0,0],[0,-5,-2,3],[-4,-5,-5,2]],det=38 [16,2,-15,-9], chain 2 => [20,-14,-7,-17] => [16,-34,33,-9] ?? [-64,-50,77,-77]
[[-1,-3,-4,2],[-1,1,0,0],[0,-5,-2,3],[-4,1,0,-5]],det=84 [16,2,-15,-9], chain 2 => [20,-14,-7,-17] => [16,-34,33,-9] ?? [-64,-50,77,-53]
[[-1,-3,-4,2],[-1,1,0,0],[0,-5,-2,3],[4,0,3,4]],det=-74 [16,2,-15,-9], chain 2 => [20,-14,-7,-17] => [16,-34,33,-9] ?? [-64,-50,77,127]
[[-1,-3,-4,2],[-1,1,0,0],[0,1,3,-4],[-4,-5,-5,2]],det=-36 [16,2,-15,-9], chain 2 => [20,-14,-7,-17] => [16,-34,33,-9] ?? [-64,-50,101,-77]
[[-1,-3,-4,2],[-1,1,0,0],[0,1,3,-4],[-4,1,0,-5]],det=10 [16,2,-15,-9], chain 2 => [20,-14,-7,-17] => [16,-34,33,-9] ?? [-64,-50,101,-53]
[[-1,-3,-4,2],[-1,1,0,0],[0,1,3,-4],[4,0,3,4]],det=-34 [16,2,-15,-9], chain 2 => [20,-14,-7,-17] => [16,-34,33,-9] ?? [-64,-50,101,127]
[[-1,-3,-4,2],[0,1,3,-4],[-4,1,0,-5],[-3,2,-2,0]],det=-23 [16,2,-15,-9], chain 2 => [20,-7,-17,-14] => [41,-2,-17,-40] ?? [-47,107,34,-93]
[[-1,-3,-4,2],[0,1,3,-4],[-4,1,0,-5],[4,3,5,1]],det=3 [16,2,-15,-9], chain 2 => [20,-7,-17,-14] => [41,-2,-17,-40] ?? [-47,107,34,33]
[[-1,-3,-4,2],[2,1,5,-3],[-5,-3,-4,-1],[0,4,1,0]],det=-25 [16,2,-15,-9], chain 2 => [20,-14,-17,-7] => [76,-38,17,-73] ?? [-176,418,-261,-135]
[[-1,-3,-4,2],[2,1,5,-3],[2,-2,3,0],[0,4,1,0]],det=16 [16,2,-15,-9], chain 2 => [20,-14,-17,-7] => [76,-38,17,-73] ?? [-176,418,279,-135]
[[-1,-3,-4,2],[2,3,3,0],[1,0,4,-3],[1,0,-1,5]],det=45 [16,2,-15,-9], chain 2 => [20,-7,-17,-14] => [41,-32,-6,-33] ?? [13,-32,116,-118]
[[-1,-3,-3,-2],[-5,-5,-5,-1],[-4,4,-1,-1],[-4,5,1,-4]],det=-269 [16,2,-15,-9], chain 2 => [41,-6,-32,-33] => [139,18,-123,-94] ?? [364,-76,-267,-213]
[[-1,-3,-3,-2],[-3,2,1,-3],[1,4,2,0],[-2,4,3,-4]],det=-55 [16,2,-15,-9], chain 2 => [41,-32,-6,-33] => [139,-94,-99,-96] ?? [632,-416,-435,-567]
[[-1,-3,-3,-2],[-3,2,1,-3],[1,4,2,0],[3,3,4,3]],det=-40 [16,2,-15,-9], chain 2 => [41,-32,-6,-33] => [139,-94,-99,-96] ?? [632,-416,-435,-549]
[[-1,-3,-3,-2],[0,-3,0,0],[-4,4,-1,-1],[-4,5,1,-4]],det=-141 [16,2,-15,-9], chain 2 => [41,-6,-32,-33] => [139,18,-123,-94] ?? [364,-54,-267,-213]
[[-1,-3,-3,-2],[2,1,2,4],[1,4,2,0],[-2,4,3,-4]],det=10 [16,2,-15,-9], chain 2 => [41,-32,-6,-33] => [139,-94,-99,-96] ?? [632,-398,-435,-567]
[[-1,-3,-3,-2],[2,1,2,4],[1,4,2,0],[3,3,4,3]],det=25 [16,2,-15,-9], chain 2 => [41,-32,-6,-33] => [139,-94,-99,-96] ?? [632,-398,-435,-549]
[[-1,-3,-3,-2],[5,-1,5,1],[-4,4,-1,-1],[-4,5,1,-4]],det=-13 [16,2,-15,-9], chain 2 => [41,-6,-32,-33] => [139,18,-123,-94] ?? [364,-32,-267,-213]
[[-1,-3,-2,-4],[1,2,3,-1],[-5,0,-2,-3],[-1,4,1,2]],det=-87 [16,2,-15,-9], chain 2 => [44,-16,-23,-41] => [214,-16,-51,-213] ?? [788,242,-329,-755]
[[-1,-3,-2,-4],[1,2,3,-1],[-2,3,-2,3],[-4,1,1,-4]],det=165 [16,2,-15,-9], chain 2 => [44,-16,-23,-41] => [214,-16,-213,-51] ?? [464,-406,-203,-881]
[[-1,-3,-1,-4],[-2,1,-4,5],[-3,3,-4,5],[4,3,3,4]],det=52 [16,2,-15,-9], chain 2 => [29,-15,-27,-11] => [87,-20,-79,-54] ?? [268,-148,-275,-165]
[[-1,-3,-1,-3],[-5,0,-5,1],[-4,1,0,-5],[-3,-2,0,-5]],det=-101 [16,2,-15,-9], chain 2 => [20,-14,-17,-7] => [60,-22,-59,3] ?? [56,-2,-277,-151]
[[-1,-3,-1,-3],[-5,0,-5,1],[-4,1,0,-5],[-1,0,-3,4]],det=-22 [16,2,-15,-9], chain 2 => [20,-14,-17,-7] => [60,-22,-59,3] ?? [56,-2,-277,129]
[[-1,-3,-1,-3],[-5,0,-5,1],[-2,3,-3,4],[-3,-2,0,-5]],det=-34 [16,2,-15,-9], chain 2 => [20,-14,-17,-7] => [60,-22,-59,3] ?? [56,-2,3,-151]
[[-1,-3,-1,-3],[-5,0,-5,1],[-2,3,-3,4],[-1,0,-3,4]],det=45 [16,2,-15,-9], chain 2 => [20,-14,-17,-7] => [60,-22,-59,3] ?? [56,-2,3,129]
[[-1,-3,-1,-3],[-5,0,-5,1],[5,4,4,5],[-3,-2,0,-5]],det=26 [16,2,-15,-9], chain 2 => [20,-14,-17,-7] => [60,-22,-59,3] ?? [56,-2,-9,-151]
[[-1,-3,-1,-3],[-5,0,-5,1],[5,4,4,5],[-1,0,-3,4]],det=5 [16,2,-15,-9], chain 2 => [20,-14,-17,-7] => [60,-22,-59,3] ?? [56,-2,-9,129]
[[-1,-3,-1,-3],[-4,4,-4,2],[2,-5,2,1],[-3,-2,-3,0]],det=0 [16,2,-15,-9], chain 2 => [20,-14,-17,-7] => [60,-82,69,19] ?? [60,-806,687,-223]
[[-1,-3,-1,-3],[-4,4,-4,2],[2,-5,2,1],[4,-1,4,1]],det=0 [16,2,-15,-9], chain 2 => [20,-14,-17,-7] => [60,-82,69,19] ?? [60,-806,687,617]
[[-1,-3,-1,-3],[2,1,2,2],[-4,1,0,-5],[-3,-2,0,-5]],det=19 [16,2,-15,-9], chain 2 => [20,-14,-17,-7] => [60,-22,-59,3] ?? [56,-14,-277,-151]
[[-1,-3,-1,-3],[2,1,2,2],[-4,1,0,-5],[-1,0,-3,4]],det=58 [16,2,-15,-9], chain 2 => [20,-14,-17,-7] => [60,-22,-59,3] ?? [56,-14,-277,129]
[[-1,-3,-1,-3],[2,1,2,2],[-2,3,-3,4],[-3,-2,0,-5]],det=-34 [16,2,-15,-9], chain 2 => [20,-14,-17,-7] => [60,-22,-59,3] ?? [56,-14,3,-151]
[[-1,-3,-1,-3],[2,1,2,2],[-2,3,-3,4],[-1,0,-3,4]],det=5 [16,2,-15,-9], chain 2 => [20,-14,-17,-7] => [60,-22,-59,3] ?? [56,-14,3,129]
[[-1,-3,-1,-3],[2,1,2,2],[5,4,4,5],[-3,-2,0,-5]],det=26 [16,2,-15,-9], chain 2 => [20,-14,-17,-7] => [60,-22,-59,3] ?? [56,-14,-9,-151]
[[-1,-3,-1,-3],[2,1,2,2],[5,4,4,5],[-1,0,-3,4]],det=-35 [16,2,-15,-9], chain 2 => [20,-14,-17,-7] => [60,-22,-59,3] ?? [56,-14,-9,129]
[[-1,-3,-1,-3],[2,4,3,1],[-2,2,-2,1],[2,1,4,-1]],det=31 [16,2,-15,-9], chain 2 => [20,-14,-7,-17] => [80,-54,-71,15] ?? [108,-254,-111,-193]
[[-1,-3,-1,-3],[3,5,3,3],[2,-5,2,1],[-3,-2,-3,0]],det=0 [16,2,-15,-9], chain 2 => [20,-14,-17,-7] => [60,-82,69,19] ?? [60,34,687,-223]
[[-1,-3,-1,-3],[3,5,3,3],[2,-5,2,1],[4,-1,4,1]],det=0 [16,2,-15,-9], chain 2 => [20,-14,-17,-7] => [60,-82,69,19] ?? [60,34,687,617]
[[-1,-2,-4,-3],[-4,-3,1,-3],[-4,-4,-2,1],[-3,-3,-5,-1]],det=-98 [16,2,-15,-9], chain 2 => [67,-58,-51,30] => [163,-235,96,198] ?? [-671,-445,294,-462]
[[-1,-2,-3,0],[-5,2,-3,-3],[-2,0,-1,0],[0,4,5,-5]],det=60 [16,2,-15,-9], chain 2 => [25,-4,-17,-22] => [34,-16,-33,9] ?? [97,-130,-35,-274]
[[-1,-2,-2,-4],[0,0,5,-5],[-4,-1,-5,4],[-4,0,-3,2]],det=-115 [16,2,-15,-9], chain 2 => [46,-30,-27,-37] => [216,50,-167,-177] ?? [726,50,-787,-717]
[[-1,-2,-2,-4],[0,3,3,-1],[-2,-4,1,-2],[2,2,3,2]],det=118 [16,2,-15,-9], chain 2 => [46,-30,-37,-27] => [196,-174,45,-133] ?? [594,-254,615,-87]
[[-1,-2,-2,-1],[1,-1,4,-4],[-5,-2,-5,1],[0,3,0,1]],det=-80 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [40,-31,12,-33] ?? [31,251,-231,-126]
[[-1,-2,-2,-1],[1,-1,4,-4],[-5,1,-4,0],[0,0,-1,2]],det=40 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [40,-31,-33,12] ?? [76,-109,-99,57]
[[-1,-2,-2,-1],[1,-1,4,-4],[2,-4,4,-2],[0,3,0,1]],det=8 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [40,-31,12,-33] ?? [31,251,318,-126]
[[-1,-2,-2,-1],[1,-1,4,-4],[2,-1,5,-3],[0,0,-1,2]],det=-4 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [40,-31,-33,12] ?? [76,-109,-90,57]
[[-1,-2,-2,-1],[1,-1,4,-4],[4,4,3,5],[0,0,-1,2]],det=-23 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [40,-31,-33,12] ?? [76,-109,-3,57]
[[-1,-2,-2,-1],[3,4,2,4],[-5,-2,-5,1],[0,3,0,1]],det=65 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [40,-31,12,-33] ?? [31,-112,-231,-126]
[[-1,-2,-2,-1],[3,4,2,4],[-5,1,-4,0],[0,0,-1,2]],det=-43 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [40,-31,-33,12] ?? [76,-22,-99,57]
[[-1,-2,-2,-1],[3,4,2,4],[2,-4,4,-2],[0,3,0,1]],det=-16 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [40,-31,12,-33] ?? [31,-112,318,-126]
[[-1,-2,-2,-1],[3,4,2,4],[2,-1,5,-3],[0,0,-1,2]],det=29 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [40,-31,-33,12] ?? [76,-22,-90,57]
[[-1,-2,-2,-1],[3,4,2,4],[4,4,3,5],[0,0,-1,2]],det=10 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [40,-31,-33,12] ?? [76,-22,-3,57]
[[-1,-2,-2,-1],[4,-4,2,4],[-5,1,-5,0],[-1,-4,2,-4]],det=-282 [16,2,-15,-9], chain 2 => [19,-10,-3,-18] => [25,38,-90,87] ?? [-8,116,363,-705]
[[-1,-2,-2,-1],[4,-4,2,4],[-5,1,-5,0],[2,-1,5,-3]],det=-180 [16,2,-15,-9], chain 2 => [19,-10,-3,-18] => [25,38,-90,87] ?? [-8,116,363,-699]
[[-1,-2,-2,-1],[4,-4,2,4],[-2,4,-2,1],[-1,-4,2,-4]],det=-108 [16,2,-15,-9], chain 2 => [19,-10,-3,-18] => [25,38,-90,87] ?? [-8,116,369,-705]
[[-1,-2,-2,-1],[4,-4,2,4],[-2,4,-2,1],[2,-1,5,-3]],det=-6 [16,2,-15,-9], chain 2 => [19,-10,-3,-18] => [25,38,-90,87] ?? [-8,116,369,-699]
[[-1,-2,0,-5],[-3,-2,-2,-2],[-5,0,-3,-2],[-3,-2,-5,5]],det=58 [16,2,-15,-9], chain 2 => [25,-4,-17,-22] => [93,11,-30,-92] ?? [345,-57,-191,-611]
[[-1,-2,0,-5],[-3,-2,-2,-2],[-2,0,-4,5],[2,3,4,0]],det=-26 [16,2,-15,-9], chain 2 => [25,-4,-17,-22] => [93,11,-92,-30] ?? [35,-57,32,-149]
[[-1,-2,0,-5],[-3,-2,-2,-2],[3,5,5,0],[-3,-2,-5,5]],det=15 [16,2,-15,-9], chain 2 => [25,-4,-17,-22] => [93,11,-30,-92] ?? [345,-57,184,-611]
[[-1,0,-5,2],[-3,-3,-5,3],[-3,-4,-1,-1],[-5,-2,-1,-4]],det=132 [16,2,-15,-9], chain 2 => [41,-6,-32,-33] => [53,-44,-34,-29] ?? [59,56,80,-27]
[[-1,0,-5,2],[-3,-3,-5,3],[-3,-4,-1,-1],[0,0,4,-3]],det=30 [16,2,-15,-9], chain 2 => [41,-6,-32,-33] => [53,-44,-34,-29] ?? [59,56,80,-49]
[[-1,0,-5,2],[-3,-3,-5,3],[2,-2,4,0],[-5,-2,-1,-4]],det=144 [16,2,-15,-9], chain 2 => [41,-6,-32,-33] => [53,-44,-34,-29] ?? [59,56,58,-27]
[[-1,0,-5,2],[-3,-3,-5,3],[2,-2,4,0],[0,0,4,-3]],det=42 [16,2,-15,-9], chain 2 => [41,-6,-32,-33] => [53,-44,-34,-29] ?? [59,56,58,-49]
[[-1,0,-5,2],[2,-1,0,4],[-3,-4,-1,-1],[-5,-2,-1,-4]],det=96 [16,2,-15,-9], chain 2 => [41,-6,-32,-33] => [53,-44,-34,-29] ?? [59,34,80,-27]
[[-1,0,-5,2],[2,-1,0,4],[-3,-4,-1,-1],[0,0,4,-3]],det=-6 [16,2,-15,-9], chain 2 => [41,-6,-32,-33] => [53,-44,-34,-29] ?? [59,34,80,-49]
[[-1,0,-5,2],[2,-1,0,4],[2,-2,4,0],[-5,-2,-1,-4]],det=108 [16,2,-15,-9], chain 2 => [41,-6,-32,-33] => [53,-44,-34,-29] ?? [59,34,58,-27]
[[-1,0,-5,2],[2,-1,0,4],[2,-2,4,0],[0,0,4,-3]],det=6 [16,2,-15,-9], chain 2 => [41,-6,-32,-33] => [53,-44,-34,-29] ?? [59,34,58,-49]
[[-1,0,-3,0],[-2,-3,-3,2],[1,-5,-1,4],[3,-3,4,1]],det=43 [16,2,-15,-9], chain 2 => [29,-11,-15,-27] => [16,-34,-9,33] ?? [11,163,327,147]
[[-1,0,-3,0],[3,2,3,2],[1,-5,-1,4],[3,-3,4,1]],det=-100 [16,2,-15,-9], chain 2 => [29,-11,-15,-27] => [16,-34,-9,33] ?? [11,19,327,147]
[[-1,0,-1,-5],[-2,-1,0,-2],[2,-2,1,4],[-3,-4,-4,5]],det=-138 [16,2,-15,-9], chain 2 => [44,-16,-23,-41] => [184,10,-67,-181] ?? [788,-16,-443,-1229]
[[-1,0,-1,-5],[-2,-1,0,-2],[3,5,3,4],[3,-1,4,3]],det=-171 [16,2,-15,-9], chain 2 => [44,-16,-23,-41] => [184,10,-181,-67] ?? [332,-244,-209,-383]
[[-1,0,0,-5],[-1,1,1,-2],[-4,-1,-5,4],[0,0,1,0]],det=27 [16,2,-15,-9], chain 2 => [29,-11,-27,-15] => [46,-37,-30,-27] ?? [89,-59,-105,-30]
[[-1,0,0,-5],[-1,1,1,-2],[-4,-1,-2,-1],[-2,-2,1,-4]],det=78 [16,2,-15,-9], chain 2 => [29,-11,-27,-15] => [46,-37,-36,-3] ?? [-31,-113,-72,-42]
[[-1,0,0,-5],[-1,1,1,-2],[-3,-3,-3,2],[-2,1,-4,5]],det=-130 [16,2,-15,-9], chain 2 => [29,-11,-27,-15] => [46,-37,-3,-36] ?? [134,-14,-90,-297]
[[-1,0,0,-5],[-1,1,1,-2],[-3,-3,-3,2],[4,1,3,4]],det=52 [16,2,-15,-9], chain 2 => [29,-11,-27,-15] => [46,-37,-3,-36] ?? [134,-14,-90,-6]
[[-1,0,0,-5],[-1,1,1,-2],[2,-1,2,3],[0,0,1,0]],det=-4 [16,2,-15,-9], chain 2 => [29,-11,-27,-15] => [46,-37,-30,-27] ?? [89,-59,-12,-30]
[[-1,0,0,-5],[-1,1,1,-2],[2,-1,5,-2],[-2,-2,1,-4]],det=-99 [16,2,-15,-9], chain 2 => [29,-11,-27,-15] => [46,-37,-36,-3] ?? [-31,-113,-45,-42]
[[-1,0,0,-5],[-1,1,1,-2],[3,-3,4,1],[-2,1,-4,5]],det=-59 [16,2,-15,-9], chain 2 => [29,-11,-27,-15] => [46,-37,-3,-36] ?? [134,-14,201,-297]
[[-1,0,0,-5],[-1,1,1,-2],[3,-3,4,1],[4,1,3,4]],det=123 [16,2,-15,-9], chain 2 => [29,-11,-27,-15] => [46,-37,-3,-36] ?? [134,-14,201,-6]
[[-1,0,0,-5],[-1,1,1,-2],[5,-1,4,5],[-3,0,-1,-2]],det=-48 [16,2,-15,-9], chain 2 => [29,-11,-27,-15] => [46,-37,-27,-30] ?? [104,-50,9,-51]
[[-1,1,-4,-1],[1,-1,1,-2],[1,-2,2,4],[4,-5,4,2]],det=15 [16,2,-15,-9], chain 2 => [55,17,-54,-24] => [202,32,-183,-129] ?? [691,245,-744,-342]
[[-1,1,-4,0],[-1,-3,1,0],[0,0,0,3],[-2,-5,-2,2]],det=33 [16,2,-15,-9], chain 2 => [46,-37,-27,-30] => [25,38,-90,87] ?? [373,-229,261,114]
[[-1,1,-4,0],[4,-5,5,1],[-3,1,0,-1],[-5,-5,-3,-2]],det=-27 [16,2,-15,-9], chain 2 => [46,-30,-37,-27] => [72,122,-141,85] ?? [614,-942,-179,-717]
[[-1,1,-4,3],[-3,0,0,-5],[-4,-1,-2,-2],[2,0,4,-2]],det=-16 [16,2,-15,-9], chain 2 => [19,-3,-18,-10] => [20,-7,-17,-14] ?? [-1,10,-11,0]
[[-1,1,-4,3],[-3,0,0,-5],[-4,-1,-2,-2],[3,1,1,5]],det=-56 [16,2,-15,-9], chain 2 => [19,-3,-18,-10] => [20,-7,-17,-14] ?? [-1,10,-11,-34]
[[-1,1,-4,3],[-3,0,0,-5],[-3,0,-5,5],[2,0,4,-2]],det=-40 [16,2,-15,-9], chain 2 => [19,-3,-18,-10] => [20,-7,-17,-14] ?? [-1,10,-45,0]
[[-1,1,-4,3],[-3,0,0,-5],[-3,0,-5,5],[3,1,1,5]],det=-80 [16,2,-15,-9], chain 2 => [19,-3,-18,-10] => [20,-7,-17,-14] ?? [-1,10,-45,-34]
[[-1,1,-4,3],[-3,1,-3,1],[-5,1,-4,0],[-1,-1,-1,0]],det=-8 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [34,-16,-33,9] ?? [109,-10,-54,15]
[[-1,1,-4,3],[-3,1,-3,1],[1,-5,4,-4],[0,3,0,1]],det=-9 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [34,-16,9,-33] ?? [-185,-178,282,-81]
[[-1,1,-4,3],[-3,1,-3,1],[2,-1,5,-3],[-1,-1,-1,0]],det=3 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [34,-16,-33,9] ?? [109,-10,-108,15]
[[-1,1,-4,3],[-3,1,-3,1],[3,0,2,4],[0,3,0,1]],det=-104 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [34,-16,9,-33] ?? [-185,-178,-12,-81]
[[-1,1,-4,3],[-3,1,-3,1],[4,4,3,5],[-1,-1,-1,0]],det=50 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [34,-16,-33,9] ?? [109,-10,18,15]
[[-1,1,-4,3],[-2,1,-3,2],[-4,-1,-2,-2],[2,0,4,-2]],det=8 [16,2,-15,-9], chain 2 => [19,-3,-18,-10] => [20,-7,-17,-14] ?? [-1,-24,-11,0]
[[-1,1,-4,3],[-2,1,-3,2],[-4,-1,-2,-2],[3,1,1,5]],det=-32 [16,2,-15,-9], chain 2 => [19,-3,-18,-10] => [20,-7,-17,-14] ?? [-1,-24,-11,-34]
[[-1,1,-4,3],[-2,1,-3,2],[-3,0,-5,5],[2,0,4,-2]],det=-16 [16,2,-15,-9], chain 2 => [19,-3,-18,-10] => [20,-7,-17,-14] ?? [-1,-24,-45,0]
[[-1,1,-4,3],[-2,1,-3,2],[-3,0,-5,5],[3,1,1,5]],det=-56 [16,2,-15,-9], chain 2 => [19,-3,-18,-10] => [20,-7,-17,-14] ?? [-1,-24,-45,-34]
[[-1,1,-4,3],[-1,-3,1,-3],[-5,1,-4,0],[-5,1,-5,0]],det=-36 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [34,2,-33,-15] ?? [55,-28,-36,-3]
[[-1,1,-4,3],[-1,-3,1,-3],[-5,1,-4,0],[2,-1,4,-3]],det=-33 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [34,2,-33,-15] ?? [55,-28,-36,-21]
[[-1,1,-4,3],[-1,-3,1,-3],[-5,1,-4,0],[4,4,2,5]],det=76 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [34,2,-33,-15] ?? [55,-28,-36,3]
[[-1,1,-4,3],[-1,-3,1,-3],[-3,-3,0,-4],[0,3,0,1]],det=-3 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [34,2,-15,-33] ?? [-71,44,24,-27]
[[-1,1,-4,3],[-1,-3,1,-3],[-1,2,-2,4],[0,3,0,1]],det=-38 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [34,2,-15,-33] ?? [-71,44,-132,-27]
[[-1,1,-4,3],[-1,-3,1,-3],[2,-1,5,-3],[-5,1,-5,0]],det=3 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [34,2,-33,-15] ?? [55,-28,-54,-3]
[[-1,1,-4,3],[-1,-3,1,-3],[2,-1,5,-3],[2,-1,4,-3]],det=6 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [34,2,-33,-15] ?? [55,-28,-54,-21]
[[-1,1,-4,3],[-1,-3,1,-3],[2,-1,5,-3],[4,4,2,5]],det=-11 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [34,2,-33,-15] ?? [55,-28,-54,3]
[[-1,1,-4,3],[-1,-3,1,-3],[4,4,3,5],[-5,1,-5,0]],det=-92 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [34,2,-33,-15] ?? [55,-28,-30,-3]
[[-1,1,-4,3],[-1,-3,1,-3],[4,4,3,5],[2,-1,4,-3]],det=37 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [34,2,-33,-15] ?? [55,-28,-30,-21]
[[-1,1,-4,3],[-1,-3,1,-3],[4,4,3,5],[4,4,2,5]],det=20 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [34,2,-33,-15] ?? [55,-28,-30,3]
[[-1,1,-4,3],[1,2,-1,5],[-5,1,-4,0],[-5,1,-5,0]],det=13 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [34,2,-33,-15] ?? [55,-4,-36,-3]
[[-1,1,-4,3],[1,2,-1,5],[-5,1,-4,0],[2,-1,4,-3]],det=21 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [34,2,-33,-15] ?? [55,-4,-36,-21]
[[-1,1,-4,3],[1,2,-1,5],[-5,1,-4,0],[4,4,2,5]],det=130 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [34,2,-33,-15] ?? [55,-4,-36,3]
[[-1,1,-4,3],[1,2,-1,5],[-3,-3,0,-4],[0,3,0,1]],det=87 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [34,2,-15,-33] ?? [-71,-112,24,-27]
[[-1,1,-4,3],[1,2,-1,5],[-1,2,-2,4],[0,3,0,1]],det=52 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [34,2,-15,-33] ?? [-71,-112,-132,-27]
[[-1,1,-4,3],[1,2,-1,5],[2,-1,5,-3],[-5,1,-5,0]],det=-9 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [34,2,-33,-15] ?? [55,-4,-54,-3]
[[-1,1,-4,3],[1,2,-1,5],[2,-1,5,-3],[2,-1,4,-3]],det=-1 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [34,2,-33,-15] ?? [55,-4,-54,-21]
[[-1,1,-4,3],[1,2,-1,5],[2,-1,5,-3],[4,4,2,5]],det=-18 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [34,2,-33,-15] ?? [55,-4,-54,3]
[[-1,1,-4,3],[1,2,-1,5],[4,4,3,5],[-5,1,-5,0]],det=-104 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [34,2,-33,-15] ?? [55,-4,-30,-3]
[[-1,1,-4,3],[1,2,-1,5],[4,4,3,5],[2,-1,4,-3]],det=30 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [34,2,-33,-15] ?? [55,-4,-30,-21]
[[-1,1,-4,3],[1,2,-1,5],[4,4,3,5],[4,4,2,5]],det=13 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [34,2,-33,-15] ?? [55,-4,-30,3]
[[-1,1,-4,3],[2,2,2,1],[-4,-1,-2,-2],[-2,-1,-1,-1]],det=-7 [16,2,-15,-9], chain 2 => [19,-3,-18,-10] => [20,-14,-17,-7] ?? [13,-29,-18,-2]
[[-1,1,-4,3],[2,2,2,1],[-3,0,-5,5],[-2,-1,-1,-1]],det=30 [16,2,-15,-9], chain 2 => [19,-3,-18,-10] => [20,-14,-17,-7] ?? [13,-29,-10,-2]
[[-1,1,-4,3],[3,-5,2,2],[-5,1,-1,-5],[-4,-4,-4,-1]],det=-78 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [34,65,-72,39] ?? [436,-289,-228,-147]
[[-1,1,-4,3],[3,-5,2,2],[-5,1,-1,-5],[5,-1,3,4]],det=90 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [34,65,-72,39] ?? [436,-289,-228,45]
[[-1,1,-4,3],[3,-5,2,2],[0,-3,-1,3],[0,3,3,-4]],det=26 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [34,65,39,-72] ?? [-341,-289,-450,600]
[[-1,1,-3,-4],[-1,-4,0,3],[-4,-3,-5,3],[-2,-2,3,-3]],det=-312 [16,2,-15,-9], chain 2 => [67,-51,-22,-54] => [164,-25,-167,64] ?? [56,128,446,-971]
[[-1,1,-3,-3],[-1,-1,-3,2],[-5,2,-3,-1],[-4,2,1,-2]],det=-49 [16,2,-15,-9], chain 2 => [58,9,-22,-57] => [188,-115,-149,-122] ?? [510,130,-601,-887]
[[-1,1,-3,-1],[-2,-2,-2,-2],[-4,0,-1,-2],[-3,0,-1,0]],det=44 [16,2,-15,-9], chain 2 => [40,12,-31,-33] => [98,24,-63,-89] ?? [204,60,-151,-231]
[[-1,1,-3,-1],[-2,-2,-2,-2],[0,-5,2,-1],[0,-3,3,-2]],det=24 [16,2,-15,-9], chain 2 => [40,12,-31,-33] => [98,24,-89,-63] ?? [256,60,-235,-213]
[[-1,1,-2,-1],[-2,2,-1,-1],[-3,5,1,-4],[-2,-4,0,-2]],det=-68 [16,2,-15,-9], chain 2 => [25,-4,-17,-22] => [27,-19,-24,10] ?? [-8,-78,-240,2]
[[-1,1,-2,-1],[-2,2,-1,-1],[-1,-2,1,-2],[-4,3,0,-4]],det=18 [16,2,-15,-9], chain 2 => [25,-4,-17,-22] => [27,-19,10,-24] ?? [-42,-78,69,-69]
[[-1,1,-2,-1],[0,-5,-1,1],[5,-5,4,3],[0,-5,-1,3]],det=-60 [16,2,-15,-9], chain 2 => [25,-4,-17,-22] => [27,15,11,-29] ?? [-5,-115,17,-173]
[[-1,1,-2,-1],[1,2,4,-4],[-4,-2,-4,1],[0,-5,2,-2]],det=168 [16,2,-15,-9], chain 2 => [25,-4,-17,-22] => [27,37,-46,30] ?? [72,-203,32,-337]
[[-1,1,-2,-1],[1,2,4,-4],[1,-3,3,-2],[-5,-4,-5,1]],det=-146 [16,2,-15,-9], chain 2 => [25,-4,-17,-22] => [27,37,30,-46] ?? [-4,405,98,-479]
[[-1,1,-2,-1],[1,2,4,-4],[1,-3,3,-2],[3,1,3,3]],det=61 [16,2,-15,-9], chain 2 => [25,-4,-17,-22] => [27,37,30,-46] ?? [-4,405,98,70]
[[-1,1,-2,-1],[1,2,4,-4],[4,3,4,3],[0,-5,2,-2]],det=-98 [16,2,-15,-9], chain 2 => [25,-4,-17,-22] => [27,37,-46,30] ?? [72,-203,125,-337]
[[-1,1,-1,-3],[1,2,5,-4],[0,0,3,-3],[-1,-1,-1,2]],det=-27 [16,2,-15,-9], chain 2 => [28,-19,-18,-21] => [34,-16,9,-33] ?? [40,179,126,-93]
[[-1,1,-1,-3],[5,-3,5,2],[-4,-4,-3,-1],[-3,0,-3,2]],det=17 [16,2,-15,-9], chain 2 => [28,-19,-18,-21] => [34,65,39,-72] ?? [208,26,-441,-363]
[[-1,2,-5,-1],[-5,-4,-3,-1],[1,-2,4,-1],[-1,-2,3,0]],det=50 [16,2,-15,-9], chain 2 => [72,-34,-39,-65] => [120,-42,49,-121] ?? [-328,-458,521,111]
[[-1,2,-2,-1],[-3,-4,-2,-4],[-5,-2,-4,0],[1,-1,4,-3]],det=-198 [16,2,-15,-9], chain 2 => [27,10,-24,-19] => [60,3,-59,-22] ?? [86,14,-70,-113]
[[-1,2,-2,-1],[-3,-4,-2,-4],[-5,-2,-4,0],[3,4,2,5]],det=12 [16,2,-15,-9], chain 2 => [27,10,-24,-19] => [60,3,-59,-22] ?? [86,14,-70,-36]
[[-1,2,-2,-1],[-1,-2,-5,5],[-5,-2,-4,0],[1,2,5,-4]],det=60 [16,2,-15,-9], chain 2 => [27,10,-24,-19] => [60,-22,-59,3] ?? [11,294,-20,-291]
[[-1,2,-2,-1],[-1,1,-4,4],[-5,-2,-4,0],[1,-1,4,-3]],det=30 [16,2,-15,-9], chain 2 => [27,10,-24,-19] => [60,3,-59,-22] ?? [86,91,-70,-113]
[[-1,2,-2,-1],[-1,1,-4,4],[-5,-2,-4,0],[3,4,2,5]],det=240 [16,2,-15,-9], chain 2 => [27,10,-24,-19] => [60,3,-59,-22] ?? [86,91,-70,-36]
[[-1,3,-4,1],[4,0,5,-1],[3,-2,5,1],[4,3,4,3]],det=70 [16,2,-15,-9], chain 2 => [41,-2,-40,-17] => [96,-19,-90,-53] ?? [154,-13,-177,-192]
[[-1,3,-1,-4],[-5,4,-2,-4],[-5,3,-1,-3],[-2,4,3,-4]],det=31 [16,2,-15,-9], chain 2 => [41,-6,-32,-33] => [105,-33,-92,-70] ?? [168,-193,-322,-338]
[[-1,3,-1,-4],[-5,4,-2,-4],[0,5,4,-2],[-2,4,3,-4]],det=-194 [16,2,-15,-9], chain 2 => [41,-6,-32,-33] => [105,-33,-92,-70] ?? [168,-193,-393,-338]
[[-1,3,1,-5],[-1,1,0,0],[0,-5,-2,3],[-4,-5,-5,2]],det=-30 [16,2,-15,-9], chain 2 => [20,-14,-7,-17] => [16,-34,33,-9] ?? [-40,-50,77,-77]
[[-1,3,1,-5],[-1,1,0,0],[0,-5,-2,3],[-4,1,0,-5]],det=16 [16,2,-15,-9], chain 2 => [20,-14,-7,-17] => [16,-34,33,-9] ?? [-40,-50,77,-53]
[[-1,3,1,-5],[-1,1,0,0],[0,-5,-2,3],[4,0,3,4]],det=33 [16,2,-15,-9], chain 2 => [20,-14,-7,-17] => [16,-34,33,-9] ?? [-40,-50,77,127]
[[-1,3,1,-5],[-1,1,0,0],[0,1,3,-4],[-4,-5,-5,2]],det=-104 [16,2,-15,-9], chain 2 => [20,-14,-7,-17] => [16,-34,33,-9] ?? [-40,-50,101,-77]
[[-1,3,1,-5],[-1,1,0,0],[0,1,3,-4],[-4,1,0,-5]],det=-58 [16,2,-15,-9], chain 2 => [20,-14,-7,-17] => [16,-34,33,-9] ?? [-40,-50,101,-53]
[[-1,3,1,-5],[-1,1,0,0],[0,1,3,-4],[4,0,3,4]],det=73 [16,2,-15,-9], chain 2 => [20,-14,-7,-17] => [16,-34,33,-9] ?? [-40,-50,101,127]
[[-1,4,-4,2],[-2,1,-2,-1],[-1,-1,4,-5],[1,-1,5,-5]],det=-48 [16,2,-15,-9], chain 2 => [34,9,-33,-16] => [102,23,-95,-60] ?? [250,69,-205,-96]
[[-1,4,-4,2],[5,2,5,0],[-1,-1,4,-5],[1,-1,5,-5]],det=124 [16,2,-15,-9], chain 2 => [34,9,-33,-16] => [102,23,-95,-60] ?? [250,81,-205,-96]
[[-1,4,-3,-1],[-1,-1,2,-5],[0,-5,3,-2],[-5,4,0,-4]],det=-128 [16,2,-15,-9], chain 2 => [46,-3,-37,-36] => [89,63,-24,-98] ?? [333,290,-191,199]
[[-1,5,-4,0],[4,-2,3,3],[4,-3,5,4],[-4,3,-5,4]],det=-184 [16,2,-15,-9], chain 2 => [54,-12,-53,-19] => [98,24,-89,-63] ?? [378,-112,-377,-127]
[[-1,5,-1,-5],[-4,2,-2,-2],[5,3,4,5],[2,4,5,2]],det=-428 [16,2,-15,-9], chain 2 => [54,-12,-19,-53] => [170,-96,-107,-141] ?? [162,-376,-571,-861]
[[0,-5,-5,4],[2,-4,1,4],[-4,-1,-4,1],[-4,4,-3,0]],det=282 [16,2,-15,-9], chain 2 => [29,-27,-15,-11] => [166,107,-40,-179] ?? [-1051,-852,-790,-116]
[[0,-5,-5,5],[-3,-4,-1,-3],[2,3,0,5],[2,-5,2,1]],det=320 [16,2,-15,-9], chain 2 => [20,-14,-7,-17] => [20,54,-87,79] ?? [560,-426,597,-325]
[[0,-5,-4,1],[0,-4,4,-4],[-3,0,-1,-3],[2,5,2,5]],det=240 [16,2,-15,-9], chain 2 => [41,-32,-6,-33] => [151,236,-18,-255] ?? [-1363,4,330,171]
[[0,-5,-4,1],[0,-4,4,-4],[2,-1,0,4],[2,5,2,5]],det=-24 [16,2,-15,-9], chain 2 => [41,-32,-6,-33] => [151,236,-18,-255] ?? [-1363,4,-954,171]
[[0,-5,-4,1],[5,-5,5,3],[-3,0,-1,-3],[2,5,2,5]],det=320 [16,2,-15,-9], chain 2 => [41,-32,-6,-33] => [151,236,-18,-255] ?? [-1363,-1280,330,171]
[[0,-5,-4,1],[5,-5,5,3],[2,-1,0,4],[2,5,2,5]],det=56 [16,2,-15,-9], chain 2 => [41,-32,-6,-33] => [151,236,-18,-255] ?? [-1363,-1280,-954,171]
[[0,-5,-2,0],[0,5,1,1],[2,3,3,0],[-2,-3,1,-4]],det=0 [16,2,-15,-9], chain 2 => [20,-14,-7,-17] => [84,-94,-23,63] ?? [516,-430,-183,-161]
[[0,-5,-2,0],[1,-3,4,-4],[4,-1,4,1],[0,5,0,3]],det=-76 [16,2,-15,-9], chain 2 => [20,-14,-7,-17] => [84,102,49,-121] ?? [-608,458,309,147]
[[0,-5,1,-5],[-1,4,1,-1],[-1,1,-1,2],[-4,0,-2,-3]],det=-55 [16,2,-15,-9], chain 2 => [20,-14,-17,-7] => [88,-86,-31,-25] ?? [524,-438,-193,-215]
[[0,-5,1,-5],[-1,4,1,-1],[-1,1,-1,2],[3,1,5,-2]],det=84 [16,2,-15,-9], chain 2 => [20,-14,-17,-7] => [88,-86,-31,-25] ?? [524,-438,-193,73]
[[0,-4,-4,3],[-5,-4,-5,1],[0,-2,-3,5],[2,1,1,4]],det=51 [16,2,-15,-9], chain 2 => [25,-22,-4,-17] => [53,-34,-29,-44] ?? [120,-28,-65,-133]
[[0,-4,-4,3],[-5,-4,-5,1],[3,4,4,0],[2,1,1,4]],det=33 [16,2,-15,-9], chain 2 => [25,-22,-4,-17] => [53,-34,-29,-44] ?? [120,-28,-93,-133]
[[0,-4,-4,3],[-4,3,-3,-1],[-5,2,-3,-1],[-2,-3,1,-4]],det=156 [16,2,-15,-9], chain 2 => [25,-4,-22,-17] => [53,-29,-50,8] ?? [340,-157,-181,-101]
[[0,-4,-4,3],[-4,3,-3,-1],[-4,3,0,-4],[-3,-1,-4,3]],det=-135 [16,2,-15,-9], chain 8 => [25,-4,-22,-17] => [53,-29,-44,-34] => [190,-133,-163,-56] => [1016,-614,-935,47] => [6337,-3148,-6094,1447] => [41309,-17957,-40580,12854] => [272710,-110221,-270523,94912] => [1807712,-704846,-1801151,658919]
[[0,-4,-4,3],[-4,3,-3,-1],[-4,3,0,-4],[4,0,3,4]],det=-108 [16,2,-15,-9], chain 8 => [25,-4,-22,-17] => [53,-29,-44,-34] => [190,-133,-163,-56] => [1016,-614,-935,47] => [6337,-3148,-6094,1447] => [41309,-17957,-40580,12854] => [272710,-110221,-270523,94912] => [1807712,-704846,-1801151,658919]
[[0,-4,-4,3],[-4,3,-3,-1],[-2,2,2,-4],[2,1,1,4]],det=-108 [16,2,-15,-9], chain 2 => [25,-4,-22,-17] => [53,-29,-34,-44] ?? [120,-153,-56,-133]
[[0,-4,-4,3],[-4,3,-3,-1],[2,3,4,0],[-2,-3,1,-4]],det=102 [16,2,-15,-9], chain 2 => [25,-4,-22,-17] => [53,-29,-50,8] ?? [340,-157,-181,-101]
[[0,-4,-4,3],[-2,2,2,-4],[0,-2,-3,5],[2,1,1,4]],det=18 [16,2,-15,-9], chain 2 => [25,-22,-4,-17] => [53,-34,-29,-44] ?? [120,-56,-65,-133]
[[0,-4,-4,3],[-2,2,2,-4],[3,4,4,0],[2,1,1,4]],det=0 [16,2,-15,-9], chain 2 => [25,-22,-4,-17] => [53,-34,-29,-44] ?? [120,-56,-93,-133]
[[0,-4,-4,3],[0,-2,0,0],[-5,2,-3,-1],[1,3,5,-4]],det=-36 [16,2,-15,-9], chain 2 => [25,-4,-22,-17] => [53,8,-50,-29] ?? [81,-16,-70,-57]
[[0,-4,-4,3],[0,-2,0,0],[2,3,4,0],[1,3,5,-4]],det=28 [16,2,-15,-9], chain 2 => [25,-4,-22,-17] => [53,8,-50,-29] ?? [81,-16,-70,-57]
[[0,-4,-4,3],[3,4,4,0],[-5,2,-3,-1],[-2,-3,1,-4]],det=-9 [16,2,-15,-9], chain 2 => [25,-4,-22,-17] => [53,-29,-50,8] ?? [340,-157,-181,-101]
[[0,-4,-4,3],[3,4,4,0],[-4,3,0,-4],[-3,-1,-4,3]],det=-108 [16,2,-15,-9], chain 8 => [25,-4,-22,-17] => [53,-29,-44,-34] => [190,-133,-163,-56] => [1016,-614,-935,47] => [6337,-3148,-6094,1447] => [41309,-17957,-40580,12854] => [272710,-110221,-270523,94912] => [1807712,-704846,-1801151,658919]
[[0,-4,-4,3],[3,4,4,0],[-4,3,0,-4],[4,0,3,4]],det=-81 [16,2,-15,-9], chain 8 => [25,-4,-22,-17] => [53,-29,-44,-34] => [190,-133,-163,-56] => [1016,-614,-935,47] => [6337,-3148,-6094,1447] => [41309,-17957,-40580,12854] => [272710,-110221,-270523,94912] => [1807712,-704846,-1801151,658919]
[[0,-4,-4,3],[3,4,4,0],[-2,2,2,-4],[2,1,1,4]],det=0 [16,2,-15,-9], chain 2 => [25,-4,-22,-17] => [53,-29,-34,-44] ?? [120,-93,-56,-133]
[[0,-4,-4,3],[3,4,4,0],[2,3,4,0],[-2,-3,1,-4]],det=-63 [16,2,-15,-9], chain 2 => [25,-4,-22,-17] => [53,-29,-50,8] ?? [340,-157,-181,-101]
[[0,-4,-3,1],[-5,1,-4,0],[1,-1,1,2],[-4,2,-2,-1]],det=22 [16,2,-15,-9], chain 2 => [28,-18,-19,-21] => [108,-82,-15,-89] ?? [284,-562,-3,-477]
[[0,-4,-3,1],[-5,1,-4,0],[1,-1,1,2],[-1,5,4,-5]],det=104 [16,2,-15,-9], chain 2 => [28,-18,-19,-21] => [108,-82,-15,-89] ?? [284,-562,-3,-133]
[[0,-4,-3,1],[-4,0,-3,0],[-2,1,-3,4],[-4,2,-4,2]],det=-80 [16,2,-15,-9], chain 2 => [28,-19,-21,-18] => [121,-49,-84,-102] ?? [346,-232,-447,-450]
[[0,-4,-3,1],[-4,0,-3,0],[-2,1,-3,4],[-3,3,-1,-1]],det=-77 [16,2,-15,-9], chain 2 => [28,-19,-21,-18] => [121,-49,-84,-102] ?? [346,-232,-447,-324]
[[0,-4,-3,1],[-4,0,-3,0],[-2,1,-3,4],[-2,4,2,-4]],det=-74 [16,2,-15,-9], chain 2 => [28,-19,-21,-18] => [121,-49,-84,-102] ?? [346,-232,-447,-198]
[[0,-4,-3,1],[-4,0,-3,0],[-1,2,0,1],[-4,2,-4,2]],det=-30 [16,2,-15,-9], chain 2 => [28,-19,-21,-18] => [121,-49,-84,-102] ?? [346,-232,-321,-450]
[[0,-4,-3,1],[-4,0,-3,0],[-1,2,0,1],[-3,3,-1,-1]],det=-27 [16,2,-15,-9], chain 2 => [28,-19,-21,-18] => [121,-49,-84,-102] ?? [346,-232,-321,-324]
[[0,-4,-3,1],[-4,0,-3,0],[-1,2,0,1],[-2,4,2,-4]],det=-24 [16,2,-15,-9], chain 2 => [28,-19,-21,-18] => [121,-49,-84,-102] ?? [346,-232,-321,-198]
[[0,-4,-3,1],[-4,0,-3,0],[0,3,3,-2],[-4,2,-4,2]],det=20 [16,2,-15,-9], chain 2 => [28,-19,-21,-18] => [121,-49,-84,-102] ?? [346,-232,-195,-450]
[[0,-4,-3,1],[-4,0,-3,0],[0,3,3,-2],[-3,3,-1,-1]],det=23 [16,2,-15,-9], chain 2 => [28,-19,-21,-18] => [121,-49,-84,-102] ?? [346,-232,-195,-324]
[[0,-4,-3,1],[-4,0,-3,0],[0,3,3,-2],[-2,4,2,-4]],det=26 [16,2,-15,-9], chain 2 => [28,-19,-21,-18] => [121,-49,-84,-102] ?? [346,-232,-195,-198]
[[0,-4,-3,1],[-3,1,0,-3],[-2,1,-3,4],[-4,2,-4,2]],det=-88 [16,2,-15,-9], chain 2 => [28,-19,-21,-18] => [121,-49,-84,-102] ?? [346,-106,-447,-450]
[[0,-4,-3,1],[-3,1,0,-3],[-2,1,-3,4],[-3,3,-1,-1]],det=-85 [16,2,-15,-9], chain 2 => [28,-19,-21,-18] => [121,-49,-84,-102] ?? [346,-106,-447,-324]
[[0,-4,-3,1],[-3,1,0,-3],[-2,1,-3,4],[-2,4,2,-4]],det=-82 [16,2,-15,-9], chain 2 => [28,-19,-21,-18] => [121,-49,-84,-102] ?? [346,-106,-447,-198]
[[0,-4,-3,1],[-3,1,0,-3],[-1,2,0,1],[-4,2,-4,2]],det=-38 [16,2,-15,-9], chain 2 => [28,-19,-21,-18] => [121,-49,-84,-102] ?? [346,-106,-321,-450]
[[0,-4,-3,1],[-3,1,0,-3],[-1,2,0,1],[-3,3,-1,-1]],det=-35 [16,2,-15,-9], chain 2 => [28,-19,-21,-18] => [121,-49,-84,-102] ?? [346,-106,-321,-324]
[[0,-4,-3,1],[-3,1,0,-3],[-1,2,0,1],[-2,4,2,-4]],det=-32 [16,2,-15,-9], chain 2 => [28,-19,-21,-18] => [121,-49,-84,-102] ?? [346,-106,-321,-198]
[[0,-4,-3,1],[-3,1,0,-3],[0,3,3,-2],[-4,2,-4,2]],det=12 [16,2,-15,-9], chain 2 => [28,-19,-21,-18] => [121,-49,-84,-102] ?? [346,-106,-195,-450]
[[0,-4,-3,1],[-3,1,0,-3],[0,3,3,-2],[-3,3,-1,-1]],det=15 [16,2,-15,-9], chain 2 => [28,-19,-21,-18] => [121,-49,-84,-102] ?? [346,-106,-195,-324]
[[0,-4,-3,1],[-3,1,0,-3],[0,3,3,-2],[-2,4,2,-4]],det=18 [16,2,-15,-9], chain 2 => [28,-19,-21,-18] => [121,-49,-84,-102] ?? [346,-106,-195,-198]
[[0,-4,-3,1],[-2,4,2,-4],[1,-1,1,2],[-4,2,-2,-1]],det=-58 [16,2,-15,-9], chain 2 => [28,-18,-19,-21] => [108,-82,-15,-89] ?? [284,-218,-3,-477]
[[0,-4,-3,1],[-2,4,2,-4],[1,-1,1,2],[-1,5,4,-5]],det=24 [16,2,-15,-9], chain 2 => [28,-18,-19,-21] => [108,-82,-15,-89] ?? [284,-218,-3,-133]
[[0,-4,-3,2],[-3,0,-3,0],[0,3,1,1],[0,4,3,-3]],det=-15 [16,2,-15,-9], chain 2 => [19,-3,-18,-10] => [46,-3,-37,-36] ?? [51,-27,-82,-15]
[[0,-4,-3,2],[-3,0,-3,0],[0,3,1,1],[1,5,0,4]],det=-45 [16,2,-15,-9], chain 2 => [19,-3,-18,-10] => [46,-3,-37,-36] ?? [51,-27,-82,-113]
[[0,-4,-3,2],[-3,0,-3,0],[3,3,3,3],[-3,4,1,-5]],det=-27 [16,2,-15,-9], chain 2 => [19,-3,-18,-10] => [46,-3,-36,-37] ?? [46,-30,-90,-1]
[[0,-4,-3,2],[-3,0,-3,0],[3,3,3,3],[-2,5,-2,2]],det=-81 [16,2,-15,-9], chain 2 => [19,-3,-18,-10] => [46,-3,-36,-37] ?? [46,-30,-90,-109]
[[0,-4,-3,2],[-1,0,2,-4],[-3,0,-2,0],[-2,4,1,-4]],det=-96 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [88,-43,-21,-84] ?? [67,206,-222,-33]
[[0,-4,-3,2],[-1,0,2,-4],[2,5,4,0],[2,2,2,1]],det=3 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [88,-43,-84,-21] ?? [382,-172,-375,-99]
[[0,-4,-3,2],[1,4,3,-2],[-5,1,-1,-5],[-3,4,1,-5]],det=-15 [16,2,-15,-9], chain 2 => [19,-3,-18,-10] => [46,-27,-30,-37] ?? [124,-78,-42,-91]
[[0,-4,-3,2],[1,4,3,-2],[-5,1,-1,-5],[-2,5,-2,2]],det=-135 [16,2,-15,-9], chain 2 => [19,-3,-18,-10] => [46,-27,-30,-37] ?? [124,-78,-42,-241]
[[0,-4,-3,2],[1,4,3,-2],[-4,2,-4,2],[-3,4,1,-5]],det=90 [16,2,-15,-9], chain 2 => [19,-3,-18,-10] => [46,-27,-30,-37] ?? [124,-78,-192,-91]
[[0,-4,-3,2],[1,4,3,-2],[-4,2,-4,2],[-2,5,-2,2]],det=-30 [16,2,-15,-9], chain 2 => [19,-3,-18,-10] => [46,-27,-30,-37] ?? [124,-78,-192,-241]
[[0,-4,-3,2],[1,5,0,4],[-3,0,-2,0],[-2,4,1,-4]],det=158 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [88,-43,-21,-84] ?? [67,-463,-222,-33]
[[0,-4,-3,2],[1,5,0,4],[2,5,4,0],[2,2,2,1]],det=-5 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [88,-43,-84,-21] ?? [382,-211,-375,-99]
[[0,-4,-3,2],[2,5,0,5],[-5,1,-1,-5],[-3,4,1,-5]],det=135 [16,2,-15,-9], chain 2 => [19,-3,-18,-10] => [46,-27,-30,-37] ?? [124,-228,-42,-91]
[[0,-4,-3,2],[2,5,0,5],[-5,1,-1,-5],[-2,5,-2,2]],det=15 [16,2,-15,-9], chain 2 => [19,-3,-18,-10] => [46,-27,-30,-37] ?? [124,-228,-42,-241]
[[0,-4,-3,2],[2,5,0,5],[-4,2,-4,2],[-3,4,1,-5]],det=240 [16,2,-15,-9], chain 2 => [19,-3,-18,-10] => [46,-27,-30,-37] ?? [124,-228,-192,-91]
[[0,-4,-3,2],[2,5,0,5],[-4,2,-4,2],[-2,5,-2,2]],det=120 [16,2,-15,-9], chain 2 => [19,-3,-18,-10] => [46,-27,-30,-37] ?? [124,-228,-192,-241]
[[0,-4,-3,2],[5,5,5,2],[0,3,1,1],[1,2,5,-5]],det=-40 [16,2,-15,-9], chain 2 => [19,-3,-18,-10] => [46,-30,-37,-27] ?? [177,-159,-154,-64]
[[0,-4,-3,2],[5,5,5,2],[0,3,1,1],[2,3,2,2]],det=-5 [16,2,-15,-9], chain 2 => [19,-3,-18,-10] => [46,-30,-37,-27] ?? [177,-159,-154,-126]
[[0,-4,-3,2],[5,5,5,2],[4,1,5,1],[-3,4,1,-5]],det=-72 [16,2,-15,-9], chain 2 => [19,-3,-18,-10] => [46,-30,-27,-37] ?? [127,-129,-18,-100]
[[0,-4,-3,2],[5,5,5,2],[4,1,5,1],[-2,5,-2,2]],det=189 [16,2,-15,-9], chain 2 => [19,-3,-18,-10] => [46,-30,-27,-37] ?? [127,-129,-18,-262]
[[0,-4,-2,-4],[-4,0,-1,-3],[-4,2,-2,3],[-2,1,-5,4]],det=-176 [16,2,-15,-9], chain 2 => [58,-22,-57,9] => [166,-202,-135,183] ?? [346,-1078,-249,873]
[[0,-4,-2,-4],[0,4,2,0],[-4,2,-2,3],[-2,1,-5,4]],det=-256 [16,2,-15,-9], chain 2 => [58,-22,-57,9] => [166,-202,-135,183] ?? [346,-1078,-249,873]
[[0,-4,-2,-2],[-5,-4,-5,2],[-1,2,2,-1],[1,-2,3,-5]],det=-88 [16,2,-15,-9], chain 2 => [40,-31,-33,12] => [166,113,-180,-57] ?? [22,-496,-243,-315]
[[0,-4,-2,-2],[-2,-4,0,-1],[1,1,4,-1],[3,3,4,-2]],det=28 [16,2,-15,-9], chain 2 => [40,-31,-33,12] => [166,32,-135,-129] ?? [400,-331,-213,312]
[[0,-4,0,-4],[-2,2,-3,4],[-4,5,0,-4],[0,3,3,-2]],det=-72 [16,2,-15,-9], chain 2 => [28,-19,-18,-21] => [160,-124,-123,-69] ?? [772,-475,-984,-603]
[[0,-4,0,-4],[-2,2,-3,4],[4,4,3,5],[0,3,3,-2]],det=0 [16,2,-15,-9], chain 2 => [28,-19,-18,-21] => [160,-124,-123,-69] ?? [772,-475,-570,-603]
[[0,-3,-5,2],[-4,-4,-5,-1],[-4,3,2,-5],[-3,-1,1,-3]],det=-40 [16,2,-15,-9], chain 2 => [51,12,-43,-38] => [103,1,-64,-94] ?? [129,-2,-67,-92]
[[0,-3,-5,2],[3,0,0,4],[-4,3,2,-5],[-3,-1,1,-3]],det=-65 [16,2,-15,-9], chain 2 => [51,12,-43,-38] => [103,1,-64,-94] ?? [129,-67,-67,-92]
[[0,-3,-4,3],[-5,3,-5,-1],[-4,5,-5,5],[-1,3,0,1]],det=-36 [16,2,-15,-9], chain 2 => [27,10,-24,-19] => [9,34,-33,-16] ?? [-18,238,219,77]
[[0,-3,-4,3],[-5,3,-5,-1],[-2,1,2,-4],[-5,2,-5,2]],det=-204 [16,2,-15,-9], chain 2 => [27,10,-24,-19] => [9,34,-16,-33] ?? [-137,170,116,37]
[[0,-3,-2,-4],[3,4,4,2],[-4,1,-2,3],[0,3,-1,2]],det=-59 [16,2,-15,-9], chain 2 => [60,-22,-59,3] => [172,-138,-135,-1] ?? [688,-578,-559,-281]
[[0,-3,-1,-5],[2,-1,1,3],[0,-1,4,-1],[-5,2,-5,2]],det=278 [16,2,-15,-9], chain 2 => [54,-12,-53,-19] => [184,10,-181,-67] ?? [486,-24,-667,-129]
[[0,-2,-4,3],[-4,-1,-2,-1],[0,0,-2,5],[-5,0,-4,-1]],det=-126 [16,2,-15,-9], chain 2 => [29,-27,-15,-11] => [81,-48,-25,-74] ?? [-26,-152,-320,-231]
[[0,-2,-4,3],[-4,-1,-2,-1],[1,1,4,-3],[-5,0,-4,-1]],det=34 [16,2,-15,-9], chain 2 => [29,-27,-15,-11] => [81,-48,-25,-74] ?? [-26,-152,155,-231]
[[0,-2,-4,3],[3,0,5,0],[-3,3,-3,2],[3,-4,1,4]],det=-108 [16,2,-15,-9], chain 2 => [29,-27,-15,-11] => [81,12,-145,136] ?? [964,-482,500,594]
[[0,-2,-4,4],[4,3,4,3],[1,-4,-2,5],[-4,-5,-4,0]],det=116 [16,2,-15,-9], chain 2 => [20,-17,-7,-14] => [6,-41,32,33] ?? [86,128,271,53]
[[0,-2,-3,0],[0,-4,1,1],[-1,2,2,-4],[2,5,5,0]],det=-103 [16,2,-15,-9], chain 2 => [41,-32,-6,-33] => [82,89,15,-108] ?? [-223,-449,558,684]
[[0,-2,-3,0],[0,-4,1,1],[4,1,3,3],[2,5,5,0]],det=58 [16,2,-15,-9], chain 2 => [41,-32,-6,-33] => [82,89,15,-108] ?? [-223,-449,138,684]
[[0,-2,-3,0],[5,4,3,5],[-4,-2,-1,-4],[0,-5,2,0]],det=0 [16,2,-15,-9], chain 2 => [41,-2,-17,-40] => [55,-54,17,-24] ?? [57,-10,-33,304]
[[0,-2,-2,-3],[-3,2,-4,5],[-1,-2,2,0],[0,4,0,0]],det=160 [16,2,-15,-9], chain 2 => [53,-29,-50,8] => [134,23,-95,-116] ?? [492,-556,-370,92]
[[0,-2,-2,-3],[1,0,3,0],[-1,-2,2,0],[-4,0,-3,-3]],det=-96 [16,2,-15,-9], chain 2 => [53,-29,-50,8] => [134,-97,-95,-86] ?? [642,-151,-130,7]
[[0,-2,-2,-3],[1,0,3,0],[-1,-2,2,0],[3,1,4,-2]],det=-13 [16,2,-15,-9], chain 2 => [53,-29,-50,8] => [134,-97,-95,-86] ?? [642,-151,-130,97]
[[0,-2,-2,-2],[3,4,3,3],[4,3,5,2],[-1,-5,-2,5]],det=188 [16,2,-15,-9], chain 2 => [44,-16,-23,-41] => [160,-124,-69,-123] ?? [632,-592,-323,-17]
[[0,-2,0,-5],[1,5,5,-1],[-2,-3,-3,1],[1,3,2,1]],det=-13 [16,2,-15,-9], chain 2 => [41,-40,-2,-17] => [165,-152,27,-100] ?? [804,-360,-55,-337]
[[0,-1,-4,2],[-1,-1,-5,5],[1,4,5,-2],[0,4,2,1]],det=-18 [16,2,-15,-9], chain 2 => [40,12,-33,-31] => [58,-42,-15,-49] ?? [4,-186,-87,-247]
[[0,-1,-4,2],[-1,-1,-5,5],[1,4,5,-2],[1,-4,5,-4]],det=72 [16,2,-15,-9], chain 2 => [40,12,-33,-31] => [58,-42,-15,-49] ?? [4,-186,-87,347]
[[0,-1,-4,2],[4,-5,1,3],[1,2,4,-1],[-4,2,0,-3]],det=-25 [16,2,-15,-9], chain 2 => [40,12,-31,-33] => [46,-30,-27,-37] ?? [64,196,-85,-133]
[[0,-1,-3,1],[-2,-5,-3,4],[1,-4,-2,4],[-2,1,-1,0]],det=-48 [16,2,-15,-9], chain 2 => [34,-33,2,-15] => [12,31,102,-103] ?? [-440,-897,-728,-95]
[[0,-1,-3,1],[-1,-1,4,-5],[-5,-5,-2,-5],[-3,1,-5,3]],det=-96 [16,2,-15,-9], chain 2 => [34,-33,-15,2] => [80,-71,15,-54] ?? [-28,321,195,-548]
[[0,-1,-2,-2],[-5,4,0,-5],[-3,-3,-1,-1],[1,2,5,-2]],det=383 [16,2,-15,-9], chain 2 => [46,-27,-30,-37] => [161,-153,10,-84] ?? [301,-997,50,73]
[[0,-1,-2,-2],[2,3,5,0],[-5,-2,-3,-4],[1,4,4,0]],det=-90 [16,2,-15,-9], chain 2 => [46,-37,-3,-36] => [115,-34,-3,-114] ?? [268,113,-42,-33]
[[0,-1,-2,-2],[2,3,5,0],[-2,-2,-4,3],[-1,-4,-1,3]],det=-29 [16,2,-15,-9], chain 2 => [46,-37,-3,-36] => [115,-34,-114,-3] ?? [268,-442,285,126]
[[0,-1,-2,0],[-3,-5,-5,4],[1,1,3,-1],[-2,1,0,-1]],det=24 [16,2,-15,-9], chain 2 => [28,-19,-18,-21] => [55,17,-24,-54] ?? [31,-346,54,-39]
[[0,-1,-2,0],[3,-2,3,2],[-5,1,-4,0],[2,-4,3,0]],det=-86 [16,2,-15,-9], chain 2 => [28,-19,-18,-21] => [55,26,-87,78] ?? [148,8,99,-255]
[[0,-1,-2,0],[3,-2,3,2],[-2,-5,-1,-1],[-1,2,0,1]],det=70 [16,2,-15,-9], chain 2 => [28,-19,-18,-21] => [55,26,78,-87] ?? [-182,173,-231,-90]
[[0,-1,-2,1],[-2,1,0,-3],[1,-2,5,-5],[1,2,5,-5]],det=64 [16,2,-15,-9], chain 2 => [19,-3,-18,-10] => [29,-11,-15,-27] ?? [14,12,111,67]
[[0,-1,-2,1],[-2,1,0,-3],[1,-2,5,-5],[2,3,2,2]],det=48 [16,2,-15,-9], chain 2 => [19,-3,-18,-10] => [29,-11,-15,-27] ?? [14,12,111,-59]
[[0,-1,-2,1],[-2,1,0,-3],[2,-1,2,2],[1,2,5,-5]],det=16 [16,2,-15,-9], chain 2 => [19,-3,-18,-10] => [29,-11,-15,-27] ?? [14,12,-15,67]
[[0,-1,-2,1],[-2,1,0,-3],[2,-1,2,2],[2,3,2,2]],det=0 [16,2,-15,-9], chain 2 => [19,-3,-18,-10] => [29,-11,-15,-27] ?? [14,12,-15,-59]
[[0,-1,-2,1],[-2,1,0,-3],[4,1,5,1],[-1,0,2,-4]],det=-18 [16,2,-15,-9], chain 2 => [19,-3,-18,-10] => [29,-11,-27,-15] ?? [50,-24,-45,-23]
[[0,-1,-2,1],[-2,1,0,-3],[4,1,5,1],[0,1,-1,3]],det=20 [16,2,-15,-9], chain 2 => [19,-3,-18,-10] => [29,-11,-27,-15] ?? [50,-24,-45,-29]
[[0,-1,-2,1],[-1,2,-3,4],[1,-2,5,-5],[1,2,5,-5]],det=0 [16,2,-15,-9], chain 2 => [19,-3,-18,-10] => [29,-11,-15,-27] ?? [14,-114,111,67]
[[0,-1,-2,1],[-1,2,-3,4],[1,-2,5,-5],[2,3,2,2]],det=-16 [16,2,-15,-9], chain 2 => [19,-3,-18,-10] => [29,-11,-15,-27] ?? [14,-114,111,-59]
[[0,-1,-2,1],[-1,2,-3,4],[2,-1,2,2],[1,2,5,-5]],det=-48 [16,2,-15,-9], chain 2 => [19,-3,-18,-10] => [29,-11,-15,-27] ?? [14,-114,-15,67]
[[0,-1,-2,1],[-1,2,-3,4],[2,-1,2,2],[2,3,2,2]],det=-64 [16,2,-15,-9], chain 2 => [19,-3,-18,-10] => [29,-11,-15,-27] ?? [14,-114,-15,-59]
[[0,-1,-2,1],[-1,2,-3,4],[4,1,5,1],[-1,0,2,-4]],det=-16 [16,2,-15,-9], chain 2 => [19,-3,-18,-10] => [29,-11,-27,-15] ?? [50,-30,-45,-23]
[[0,-1,-2,1],[-1,2,-3,4],[4,1,5,1],[0,1,-1,3]],det=22 [16,2,-15,-9], chain 2 => [19,-3,-18,-10] => [29,-11,-27,-15] ?? [50,-30,-45,-29]
[[0,-1,-2,1],[-1,2,0,-1],[1,-2,2,0],[1,2,5,-5]],det=7 [16,2,-15,-9], chain 2 => [19,-3,-18,-10] => [29,-15,-11,-27] ?? [10,-32,37,79]
[[0,-1,-2,1],[-1,2,0,-1],[1,-2,2,0],[2,3,2,2]],det=-2 [16,2,-15,-9], chain 2 => [19,-3,-18,-10] => [29,-15,-11,-27] ?? [10,-32,37,-63]
[[0,-1,-2,1],[-1,2,0,-1],[4,1,5,1],[-1,0,-1,1]],det=18 [16,2,-15,-9], chain 2 => [19,-3,-18,-10] => [29,-15,-27,-11] ?? [58,-48,-45,-13]
[[0,-1,-2,1],[1,4,3,-2],[1,-2,2,0],[-1,0,2,-4]],det=-34 [16,2,-15,-9], chain 2 => [19,-3,-18,-10] => [29,-27,-11,-15] ?? [34,-82,61,9]
[[0,-1,-2,1],[1,4,3,-2],[1,-2,2,0],[0,1,-1,3]],det=32 [16,2,-15,-9], chain 2 => [19,-3,-18,-10] => [29,-27,-11,-15] ?? [34,-82,61,-61]
[[0,-1,-2,1],[1,4,3,-2],[1,-2,5,-5],[-1,0,-1,1]],det=-12 [16,2,-15,-9], chain 2 => [19,-3,-18,-10] => [29,-27,-15,-11] ?? [46,-102,63,-25]
[[0,-1,-2,1],[1,4,3,-2],[2,-1,2,2],[-1,0,-1,1]],det=24 [16,2,-15,-9], chain 2 => [19,-3,-18,-10] => [29,-27,-15,-11] ?? [46,-102,33,-25]
[[0,-1,-2,1],[2,5,0,5],[1,-2,2,0],[-1,0,2,-4]],det=-20 [16,2,-15,-9], chain 2 => [19,-3,-18,-10] => [29,-27,-11,-15] ?? [34,-152,61,9]
[[0,-1,-2,1],[2,5,0,5],[1,-2,2,0],[0,1,-1,3]],det=46 [16,2,-15,-9], chain 2 => [19,-3,-18,-10] => [29,-27,-11,-15] ?? [34,-152,61,-61]
[[0,-1,-2,1],[2,5,0,5],[1,-2,5,-5],[-1,0,-1,1]],det=24 [16,2,-15,-9], chain 2 => [19,-3,-18,-10] => [29,-27,-15,-11] ?? [46,-132,63,-25]
[[0,-1,-2,1],[2,5,0,5],[2,-1,2,2],[-1,0,-1,1]],det=60 [16,2,-15,-9], chain 2 => [19,-3,-18,-10] => [29,-27,-15,-11] ?? [46,-132,33,-25]
[[0,-1,0,-4],[-5,-5,-5,2],[-1,2,-1,2],[4,2,2,4]],det=104 [16,2,-15,-9], chain 2 => [34,-33,-15,2] => [25,74,-81,48] ?? [-266,6,300,278]
[[0,-1,0,-4],[1,-2,-1,2],[1,1,1,4],[-1,3,1,-1]],det=-6 [16,2,-15,-9], chain 2 => [34,9,-33,-16] => [55,17,-54,-24] ?? [79,27,-78,-34]
[[0,-1,0,-3],[-2,-1,-5,5],[2,-5,2,1],[0,-2,3,-3]],det=162 [16,2,-15,-9], chain 2 => [25,-4,-17,-22] => [70,-71,14,23] ?? [2,-24,546,115]
[[0,-1,0,-3],[-2,-1,1,-5],[0,1,4,-4],[0,2,-1,4]],det=30 [16,2,-15,-9], chain 2 => [25,-4,-22,-17] => [55,17,-24,-54] ?? [145,119,137,-158]
[[0,-1,0,-3],[-2,-1,1,-5],[1,5,5,-3],[-1,-2,-2,3]],det=-15 [16,2,-15,-9], chain 2 => [25,-4,-22,-17] => [55,17,-54,-24] ?? [55,-61,-58,-53]
[[0,0,-4,1],[-1,-1,-2,0],[-4,0,1,-4],[1,0,3,1]],det=13 [16,2,-15,-9], chain 2 => [51,12,-43,-38] => [134,23,-95,-116] ?? [264,33,-167,-267]
[[0,0,-3,-1],[-4,2,-2,-2],[-2,-4,-2,1],[-3,-1,2,-3]],det=230 [16,2,-15,-9], chain 2 => [54,-12,-19,-53] => [110,-96,-75,-29] ?? [254,-424,285,-297]
[[0,0,-3,2],[-2,-3,-2,-2],[-4,5,-5,5],[-2,2,0,-1]],det=-96 [16,2,-15,-9], chain 2 => [27,10,-24,-19] => [34,2,-33,-15] ?? [69,22,-36,-49]
[[0,0,-3,2],[-2,-3,-2,-2],[-1,5,0,2],[-5,2,-5,2]],det=64 [16,2,-15,-9], chain 2 => [27,10,-24,-19] => [34,2,-15,-33] ?? [-21,22,-90,-157]
[[0,0,0,-3],[-4,-5,-5,-1],[-3,-2,-1,-2],[2,2,1,5]],det=15 [16,2,-15,-9], chain 2 => [27,10,-19,-24] => [72,-39,-34,-65] ?? [195,142,26,-293]
[[0,1,-3,2],[-1,1,-2,3],[-1,-4,-1,2],[0,0,4,-5]],det=34 [16,2,-15,-9], chain 2 => [29,-11,-27,-15] => [40,-31,12,-33] ?? [-133,-194,6,213]
[[0,1,-3,2],[-1,1,-2,3],[-1,-1,0,1],[0,-3,3,-4]],det=4 [16,2,-15,-9], chain 2 => [29,-11,-27,-15] => [40,-31,-33,12] ?? [92,31,3,-54]
[[0,1,-3,2],[0,0,4,-5],[1,-5,4,-3],[5,-2,4,3]],det=153 [16,2,-15,-9], chain 2 => [29,-15,-27,-11] => [44,-53,29,34] ?? [-72,-54,323,544]
[[0,1,-3,2],[3,0,3,2],[1,1,0,5],[-1,1,-2,3]],det=4 [16,2,-15,-9], chain 2 => [29,-15,-27,-11] => [44,-16,-41,-23] ?? [61,-37,-87,-47]
[[0,1,-3,2],[5,1,5,2],[-1,-4,-1,2],[0,0,4,-5]],det=-85 [16,2,-15,-9], chain 2 => [29,-11,-27,-15] => [40,-31,12,-33] ?? [-133,163,6,213]
[[0,1,-3,2],[5,1,5,2],[-1,-1,0,1],[0,-3,3,-4]],det=-76 [16,2,-15,-9], chain 2 => [29,-11,-27,-15] => [40,-31,-33,12] ?? [92,28,3,-54]
[[0,1,-3,3],[-1,1,0,0],[0,-4,3,-4],[-4,0,-5,2]],det=10 [16,2,-15,-9], chain 2 => [20,-14,-17,-7] => [16,-34,33,-9] ?? [-160,-50,271,-247]
[[0,1,-3,3],[-1,1,0,0],[0,-4,3,-4],[3,1,2,3]],det=-31 [16,2,-15,-9], chain 2 => [20,-14,-17,-7] => [16,-34,33,-9] ?? [-160,-50,271,53]
[[0,1,-3,3],[-1,1,0,0],[2,-2,0,5],[-4,0,-5,2]],det=85 [16,2,-15,-9], chain 2 => [20,-14,-17,-7] => [16,-34,33,-9] ?? [-160,-50,55,-247]
[[0,1,-3,3],[-1,1,0,0],[2,-2,0,5],[3,1,2,3]],det=-70 [16,2,-15,-9], chain 2 => [20,-14,-17,-7] => [16,-34,33,-9] ?? [-160,-50,55,53]
[[0,1,-2,-1],[-1,-2,2,-2],[-1,-4,3,-4],[2,2,1,3]],det=13 [16,2,-15,-9], chain 2 => [41,-32,-33,-6] => [40,-31,12,-33] ?? [-22,112,252,-69]
[[0,1,-1,-3],[-2,2,-2,2],[-1,-2,-1,4],[0,-4,1,0]],det=36 [16,2,-15,-9], chain 2 => [44,-16,-41,-23] => [94,-84,-63,23] ?? [-90,-184,229,273]
[[0,1,-1,-3],[4,2,5,1],[-1,-2,-1,4],[0,-4,1,0]],det=-57 [16,2,-15,-9], chain 2 => [44,-16,-41,-23] => [94,-84,-63,23] ?? [-90,-84,229,273]
[[0,1,0,-3],[-3,-4,0,-5],[0,0,-2,5],[3,-3,4,1]],det=90 [16,2,-15,-9], chain 2 => [29,-11,-15,-27] => [70,92,-105,33] ?? [-7,-743,375,-453]
[[0,1,0,-3],[-3,-4,0,-5],[5,5,4,5],[3,-3,4,1]],det=-200 [16,2,-15,-9], chain 2 => [29,-11,-15,-27] => [70,92,-105,33] ?? [-7,-743,555,-453]
[[0,1,0,-3],[1,-5,1,2],[4,-5,4,1],[-3,5,-3,2]],det=0 [16,2,-15,-9], chain 2 => [29,-27,-15,-11] => [6,127,180,-199] ?? [724,-847,-90,-321]
[[0,1,0,-3],[1,0,0,3],[-4,-4,-3,0],[0,0,4,-5]],det=-15 [16,2,-15,-9], chain 2 => [29,-11,-27,-15] => [34,-16,9,-33] ?? [83,-65,-99,201]
[[0,1,0,-3],[1,0,0,3],[-1,-1,0,1],[4,-2,2,5]],det=2 [16,2,-15,-9], chain 2 => [29,-11,-27,-15] => [34,-16,-33,9] ?? [-43,61,-9,147]
[[0,1,0,-3],[1,0,0,3],[2,-4,4,-1],[0,0,4,-5]],det=-56 [16,2,-15,-9], chain 2 => [29,-11,-27,-15] => [34,-16,9,-33] ?? [83,-65,201,201]
[[0,1,0,-2],[-4,3,-1,-4],[-2,3,1,-3],[5,-2,5,2]],det=-27 [16,2,-15,-9], chain 2 => [20,-7,-14,-17] => [27,-19,-24,10] ?? [-39,-181,-165,73]
[[0,1,0,-2],[-4,3,-1,-4],[1,-3,1,1],[-5,0,-3,-2]],det=-45 [16,2,-15,-9], chain 2 => [20,-7,-14,-17] => [27,-19,10,-24] ?? [29,-79,70,-117]
[[0,1,0,-2],[-4,3,-1,-4],[1,-3,1,1],[2,4,5,-2]],det=102 [16,2,-15,-9], chain 2 => [20,-7,-14,-17] => [27,-19,10,-24] ?? [29,-79,70,76]
[[0,1,0,-2],[-3,-4,-1,-3],[2,3,0,5],[2,-5,2,1]],det=18 [16,2,-15,-9], chain 2 => [20,-14,-7,-17] => [20,54,-87,79] ?? [-104,-426,597,-325]
[[0,1,0,-2],[-1,-3,-1,0],[-4,-5,-4,0],[-1,-2,-2,3]],det=14 [16,2,-15,-9], chain 2 => [20,-7,-14,-17] => [27,15,11,-29] ?? [73,-83,-227,-166]
[[0,1,0,-2],[-1,-3,-1,0],[2,1,2,2],[0,-4,0,1]],det=0 [16,2,-15,-9], chain 2 => [20,-7,-14,-17] => [27,15,-29,11] ?? [-7,-43,33,-49]
[[0,1,0,-2],[-1,-3,-1,0],[3,-1,4,0],[-1,-2,-2,3]],det=-15 [16,2,-15,-9], chain 2 => [20,-7,-14,-17] => [27,15,11,-29] ?? [73,-83,110,-166]
[[0,1,0,-2],[0,-2,2,-3],[-3,2,-2,0],[2,-5,2,1]],det=24 [16,2,-15,-9], chain 2 => [20,-7,-14,-17] => [27,37,-46,30] ?? [-23,-256,85,-193]
[[0,1,0,-2],[5,-3,3,4],[-3,-1,0,-4],[-1,-2,-2,3]],det=63 [16,2,-15,-9], chain 2 => [20,-7,-14,-17] => [27,11,15,-29] ?? [69,31,24,-166]
[[0,1,0,-2],[5,-3,3,4],[2,1,2,2],[1,0,4,-3]],det=92 [16,2,-15,-9], chain 2 => [20,-7,-14,-17] => [27,11,-29,15] ?? [-19,75,37,-134]
[[0,2,-4,1],[-4,-3,-4,-3],[1,-2,5,-1],[1,1,1,3]],det=-24 [16,2,-15,-9], chain 2 => [55,17,-54,-24] => [226,17,-225,-54] ?? [880,107,-879,-144]
[[0,2,-4,1],[3,-2,3,-2],[1,-2,5,-1],[1,1,1,3]],det=-16 [16,2,-15,-9], chain 2 => [55,17,-54,-24] => [226,17,-225,-54] ?? [880,77,-879,-144]
[[0,2,-3,1],[-1,-4,-3,1],[-2,5,0,1],[-4,-1,-1,-2]],det=-186 [16,2,-15,-9], chain 2 => [40,12,-31,-33] => [84,-28,-53,-75] ?? [28,112,-383,-105]
[[0,2,-2,0],[-5,5,-3,-3],[-5,4,-2,-3],[-3,-3,1,-4]],det=0 [16,2,-15,-9], chain 2 => [34,2,-15,-33] => [34,-16,-33,9] ?? [34,-178,-195,-123]
[[0,2,-2,0],[-5,5,-3,-3],[-5,4,-2,-3],[1,1,4,-1]],det=0 [16,2,-15,-9], chain 2 => [34,2,-15,-33] => [34,-16,-33,9] ?? [34,-178,-195,-123]
[[0,2,-2,0],[-5,5,-3,-3],[-4,-1,-1,-4],[-4,2,0,-3]],det=28 [16,2,-15,-9], chain 2 => [34,2,-15,-33] => [34,-16,9,-33] ?? [-50,-178,3,-69]
[[0,2,-2,0],[-5,5,-3,-3],[-4,-1,-1,-4],[4,-5,4,3]],det=-12 [16,2,-15,-9], chain 2 => [34,2,-15,-33] => [34,-16,9,-33] ?? [-50,-178,3,153]
[[0,2,-2,0],[-5,5,-3,-3],[0,3,2,-1],[-4,2,0,-3]],det=-26 [16,2,-15,-9], chain 2 => [34,2,-15,-33] => [34,-16,9,-33] ?? [-50,-178,3,-69]
[[0,2,-2,0],[-5,5,-3,-3],[0,3,2,-1],[4,-5,4,3]],det=36 [16,2,-15,-9], chain 2 => [34,2,-15,-33] => [34,-16,9,-33] ?? [-50,-178,3,153]
[[0,2,-2,0],[-5,5,-3,-3],[3,-3,2,3],[-3,-3,1,-4]],det=34 [16,2,-15,-9], chain 2 => [34,2,-15,-33] => [34,-16,-33,9] ?? [34,-178,111,-123]
[[0,2,-2,0],[-5,5,-3,-3],[3,-3,2,3],[1,1,4,-1]],det=-68 [16,2,-15,-9], chain 2 => [34,2,-15,-33] => [34,-16,-33,9] ?? [34,-178,111,-123]
[[0,2,-2,0],[-1,5,-4,5],[0,-3,3,-2],[0,1,0,2]],det=4 [16,2,-15,-9], chain 2 => [34,9,-33,-16] => [84,63,-94,-23] ?? [314,492,-425,17]
[[0,2,-2,0],[3,-2,1,3],[-5,4,-2,-3],[-3,-3,1,-4]],det=-34 [16,2,-15,-9], chain 2 => [34,2,-15,-33] => [34,-16,-33,9] ?? [34,128,-195,-123]
[[0,2,-2,0],[3,-2,1,3],[-5,4,-2,-3],[1,1,4,-1]],det=68 [16,2,-15,-9], chain 2 => [34,2,-15,-33] => [34,-16,-33,9] ?? [34,128,-195,-123]
[[0,2,-2,0],[3,-2,1,3],[-4,-1,-1,-4],[-4,2,0,-3]],det=20 [16,2,-15,-9], chain 2 => [34,2,-15,-33] => [34,-16,9,-33] ?? [-50,44,3,-69]
[[0,2,-2,0],[3,-2,1,3],[-4,-1,-1,-4],[4,-5,4,3]],det=-20 [16,2,-15,-9], chain 2 => [34,2,-15,-33] => [34,-16,9,-33] ?? [-50,44,3,153]
[[0,2,-2,0],[3,-2,1,3],[0,3,2,-1],[-4,2,0,-3]],det=-34 [16,2,-15,-9], chain 2 => [34,2,-15,-33] => [34,-16,9,-33] ?? [-50,44,3,-69]
[[0,2,-2,0],[3,-2,1,3],[0,3,2,-1],[4,-5,4,3]],det=28 [16,2,-15,-9], chain 2 => [34,2,-15,-33] => [34,-16,9,-33] ?? [-50,44,3,153]
[[0,2,-2,0],[3,-2,1,3],[3,-3,2,3],[-3,-3,1,-4]],det=0 [16,2,-15,-9], chain 2 => [34,2,-15,-33] => [34,-16,-33,9] ?? [34,128,111,-123]
[[0,2,-2,0],[3,-2,1,3],[3,-3,2,3],[1,1,4,-1]],det=0 [16,2,-15,-9], chain 2 => [34,2,-15,-33] => [34,-16,-33,9] ?? [34,128,111,-123]
[[0,2,-2,1],[-4,-3,-2,-4],[-4,-3,-2,-2],[2,-2,0,5]],det=72 [16,2,-15,-9], chain 2 => [25,-4,-22,-17] => [19,24,-10,-27] ?? [41,-20,-74,-145]
[[0,2,-2,1],[-4,-3,-2,-4],[3,-2,5,-1],[2,-2,0,5]],det=-96 [16,2,-15,-9], chain 2 => [25,-4,-22,-17] => [19,24,-10,-27] ?? [41,-20,-14,-145]
[[0,2,-2,1],[3,-2,5,-3],[-4,-3,-2,-2],[2,-2,0,5]],det=120 [16,2,-15,-9], chain 2 => [25,-4,-22,-17] => [19,24,-10,-27] ?? [41,40,-74,-145]
[[0,2,-2,1],[3,-2,5,-3],[3,-2,5,-1],[2,-2,0,5]],det=-48 [16,2,-15,-9], chain 2 => [25,-4,-22,-17] => [19,24,-10,-27] ?? [41,40,-14,-145]
[[0,2,-1,-3],[-5,1,-1,-4],[1,1,5,-3],[-3,-2,-1,0]],det=-115 [16,2,-15,-9], chain 2 => [46,-27,-30,-37] => [87,-79,-20,-54] ?? [24,-278,70,-83]
[[0,2,-1,-3],[-3,0,1,-4],[-1,2,3,-3],[-3,-2,-1,0]],det=46 [16,2,-15,-9], chain 2 => [46,-27,-30,-37] => [87,-20,-79,-54] ?? [201,-124,-202,-142]
[[0,2,0,-4],[3,3,1,3],[5,-3,4,5],[-3,3,-3,4]],det=-74 [16,2,-15,-9], chain 2 => [40,12,-31,-33] => [156,26,-125,-123] ?? [544,52,-413,-507]
[[0,2,0,-4],[3,3,1,3],[5,-3,4,5],[4,-5,4,3]],det=10 [16,2,-15,-9], chain 2 => [40,12,-31,-33] => [156,26,-125,-123] ?? [544,52,-413,-375]
[[0,2,1,-4],[-3,-2,-5,5],[0,-5,-1,1],[4,3,4,3]],det=-60 [16,2,-15,-9], chain 2 => [25,-22,-4,-17] => [20,-96,97,-33] ?? [37,-518,350,81]
[[0,2,1,-4],[0,4,2,0],[0,-5,-1,1],[4,3,4,3]],det=96 [16,2,-15,-9], chain 2 => [25,-22,-4,-17] => [20,-96,97,-33] ?? [37,-190,350,81]
[[0,3,-5,0],[3,-5,3,2],[-4,-4,-1,-1],[-2,-3,3,-1]],det=-39 [16,2,-15,-9], chain 2 => [81,-25,-48,-74] => [165,76,-102,-157] ?? [738,-505,-705,-707]
[[0,3,-5,3],[0,3,3,-3],[-3,-1,-1,2],[4,-4,5,0]],det=-294 [16,2,-15,-9], chain 2 => [54,-12,-53,-19] => [172,-138,-135,-1] ?? [258,-816,-245,565]
[[0,3,-3,-2],[-3,-1,1,-3],[-5,-4,0,-3],[-5,-2,-5,3]],det=-252 [16,2,-15,-9], chain 2 => [69,-38,-61,-36] => [141,-122,-85,-72] ?? [33,-170,-1,-252]
[[0,3,-3,0],[-5,1,-3,-5],[3,-2,4,3],[0,5,2,2]],det=24 [16,2,-15,-9], chain 2 => [51,12,-43,-38] => [165,76,-157,-102] ?? [699,232,-591,-138]
[[0,3,-3,0],[-1,5,-3,3],[3,-2,4,3],[1,-3,5,-3]],det=-144 [16,2,-15,-9], chain 2 => [51,12,-43,-38] => [165,24,-157,-86] ?? [543,168,-439,-434]
[[0,3,-3,0],[2,5,2,0],[3,-2,4,3],[0,5,2,2]],det=228 [16,2,-15,-9], chain 2 => [51,12,-43,-38] => [165,76,-157,-102] ?? [699,396,-591,-138]
[[0,3,-2,-2],[-2,1,0,-2],[4,-3,5,4],[2,-3,3,0]],det=-80 [16,2,-15,-9], chain 2 => [54,-12,-53,-19] => [108,-82,-89,-15] ?? [-38,-268,173,195]
[[0,3,1,-4],[-4,-5,-5,-1],[-4,-1,-4,2],[0,-5,0,1]],det=-144 [16,2,-15,-9], chain 2 => [27,10,-24,-19] => [82,-19,-60,-69] ?? [159,136,-207,26]
[[0,3,1,-4],[-4,-5,-5,-1],[1,-2,0,4],[-5,-4,-4,-1]],det=4 [16,2,-15,-9], chain 2 => [27,10,-24,-19] => [82,-19,-69,-60] ?? [114,172,-120,2]
[[0,3,1,-4],[-1,4,0,-2],[-2,-2,-2,2],[4,-4,2,5]],det=8 [16,2,-15,-9], chain 2 => [27,10,-24,-19] => [82,51,-64,-75] ?? [389,272,-288,-379]
[[0,5,-5,3],[3,-2,5,-1],[-5,-5,-1,-2],[1,1,3,-4]],det=-10 [16,2,-15,-9], chain 2 => [58,-22,-57,9] => [202,-76,-141,-171] ?? [-188,224,-147,387]
[[0,5,-5,3],[3,-2,5,-1],[-1,-1,2,1],[1,1,3,-4]],det=215 [16,2,-15,-9], chain 2 => [58,-22,-57,9] => [202,-76,-141,-171] ?? [-188,224,-579,387]
[[0,5,-5,3],[3,-2,5,-1],[0,-3,4,-1],[-4,-1,-2,-5]],det=74 [16,2,-15,-9], chain 2 => [58,-22,-57,9] => [202,-76,-171,-141] ?? [52,44,-315,315]
[[0,5,-5,3],[3,-2,5,-1],[0,-3,4,-1],[0,3,1,-2]],det=105 [16,2,-15,-9], chain 2 => [58,-22,-57,9] => [202,-76,-171,-141] ?? [52,44,-315,-117]
[[0,5,-5,3],[3,-2,5,-1],[3,3,5,4],[1,1,3,-4]],det=440 [16,2,-15,-9], chain 2 => [58,-22,-57,9] => [202,-76,-141,-171] ?? [-188,224,-1011,387]
[[0,5,-5,5],[1,2,1,4],[-2,1,-1,2],[1,-2,3,-5]],det=100 [16,2,-15,-9], chain 2 => [40,-31,-33,12] => [70,-7,-54,-57] ?? [-50,-226,-207,207]
[[0,5,-2,-4],[-4,0,-1,-2],[2,-4,2,3],[-4,-4,0,0]],det=-12 [16,2,-15,-9], chain 2 => [76,-31,-33,-72] => [199,-127,-6,-180] ?? [97,-430,354,-288]
[[0,5,-1,-1],[-4,5,-3,-2],[-2,2,-2,2],[-4,-1,-1,-2]],det=-32 [16,2,-15,-9], chain 2 => [34,9,-16,-33] => [94,23,-84,-63] ?? [262,117,-100,-189]
[[0,5,-1,-1],[-2,1,-2,-1],[0,0,4,-3],[-1,-3,2,-4]],det=-99 [16,2,-15,-9], chain 2 => [34,9,-33,-16] => [94,23,-84,-63] ?? [262,66,-147,-79]
[[0,5,-1,-1],[0,-2,-1,1],[-5,1,-3,-2],[-3,-3,1,-4]],det=-92 [16,2,-15,-9], chain 2 => [34,2,-15,-33] => [58,-22,-57,9] ?? [-62,110,-159,-201]
[[0,5,-1,-1],[0,-2,-1,1],[-5,1,-3,-2],[1,1,4,-1]],det=14 [16,2,-15,-9], chain 2 => [34,2,-15,-33] => [58,-22,-57,9] ?? [-62,110,-159,-201]
[[0,5,-1,-1],[0,-2,-1,1],[-4,-1,-1,-4],[-4,-1,-1,-2]],det=56 [16,2,-15,-9], chain 2 => [34,2,-15,-33] => [58,-22,9,-57] ?? [-62,-22,9,-105]
[[0,5,-1,-1],[0,-2,-1,1],[-4,-1,-1,-4],[0,3,2,1]],det=76 [16,2,-15,-9], chain 2 => [34,2,-15,-33] => [58,-22,9,-57] ?? [-62,-22,9,-105]
[[0,5,-1,-1],[0,-2,-1,1],[-1,5,0,1],[-3,-3,1,-4]],det=-82 [16,2,-15,-9], chain 2 => [34,2,-15,-33] => [58,-22,-57,9] ?? [-62,110,-159,-201]
[[0,5,-1,-1],[0,-2,-1,1],[-1,5,0,1],[1,1,4,-1]],det=24 [16,2,-15,-9], chain 2 => [34,2,-15,-33] => [58,-22,-57,9] ?? [-62,110,-159,-201]
[[0,5,-1,-1],[0,-2,-1,1],[0,3,2,-1],[-4,-1,-1,-2]],det=-20 [16,2,-15,-9], chain 2 => [34,2,-15,-33] => [58,-22,9,-57] ?? [-62,-22,9,-105]
[[0,5,-1,-1],[0,-2,-1,1],[0,3,2,-1],[0,3,2,1]],det=0 [16,2,-15,-9], chain 2 => [34,2,-15,-33] => [58,-22,9,-57] ?? [-62,-22,9,-105]
[[0,5,-1,-1],[4,2,2,4],[-5,1,-3,-2],[-3,-3,1,-4]],det=168 [16,2,-15,-9], chain 2 => [34,2,-15,-33] => [58,-22,-57,9] ?? [-62,110,-159,-201]
[[0,5,-1,-1],[4,2,2,4],[-5,1,-3,-2],[1,1,4,-1]],det=274 [16,2,-15,-9], chain 2 => [34,2,-15,-33] => [58,-22,-57,9] ?? [-62,110,-159,-201]
[[0,5,-1,-1],[4,2,2,4],[-4,-1,-1,-4],[-4,-1,-1,-2]],det=-48 [16,2,-15,-9], chain 2 => [34,2,-15,-33] => [58,-22,9,-57] ?? [-62,-22,9,-105]
[[0,5,-1,-1],[4,2,2,4],[-4,-1,-1,-4],[0,3,2,1]],det=-28 [16,2,-15,-9], chain 2 => [34,2,-15,-33] => [58,-22,9,-57] ?? [-62,-22,9,-105]
[[0,5,-1,-1],[4,2,2,4],[-1,5,0,1],[-3,-3,1,-4]],det=178 [16,2,-15,-9], chain 2 => [34,2,-15,-33] => [58,-22,-57,9] ?? [-62,110,-159,-201]
[[0,5,-1,-1],[4,2,2,4],[-1,5,0,1],[1,1,4,-1]],det=284 [16,2,-15,-9], chain 2 => [34,2,-15,-33] => [58,-22,-57,9] ?? [-62,110,-159,-201]
[[0,5,-1,-1],[4,2,2,4],[0,3,2,-1],[-4,-1,-1,-2]],det=-124 [16,2,-15,-9], chain 2 => [34,2,-15,-33] => [58,-22,9,-57] ?? [-62,-22,9,-105]
[[0,5,-1,-1],[4,2,2,4],[0,3,2,-1],[0,3,2,1]],det=-104 [16,2,-15,-9], chain 2 => [34,2,-15,-33] => [58,-22,9,-57] ?? [-62,-22,9,-105]
[[0,5,-1,-1],[5,2,5,0],[0,0,4,-3],[-1,-3,2,-4]],det=266 [16,2,-15,-9], chain 2 => [34,9,-33,-16] => [94,23,-84,-63] ?? [262,96,-147,-79]
[[1,-5,-3,0],[1,1,-2,4],[-4,-5,0,-4],[-4,0,1,-4]],det=144 [16,2,-15,-9], chain 2 => [51,12,-38,-43] => [105,-33,-92,-70] ?? [546,-24,25,-232]
[[1,-5,-3,0],[1,1,-2,4],[3,-1,5,1],[-4,0,1,-4]],det=270 [16,2,-15,-9], chain 2 => [51,12,-38,-43] => [105,-33,-92,-70] ?? [546,-24,-182,-232]
[[1,-4,-4,3],[-1,1,0,2],[0,-3,0,0],[-3,-3,1,-4]],det=105 [16,2,-15,-9], chain 2 => [41,-32,-6,-33] => [94,-139,96,99] ?? [563,-35,417,-165]
[[1,-4,-4,3],[-1,1,0,2],[0,-3,0,0],[2,-4,2,3]],det=-114 [16,2,-15,-9], chain 2 => [41,-32,-6,-33] => [94,-139,96,99] ?? [563,-35,417,1233]
[[1,-4,-2,1],[-5,1,-4,1],[-4,2,-3,0],[-1,-2,-3,4]],det=45 [16,2,-15,-9], chain 2 => [29,-27,-15,-11] => [156,-123,-125,26] ?? [924,-377,-495,569]
[[1,-4,-2,1],[-5,1,-4,1],[-4,2,-3,0],[0,-1,3,-4]],det=-86 [16,2,-15,-9], chain 2 => [29,-27,-15,-11] => [156,-123,-125,26] ?? [924,-377,-495,-356]
[[1,-4,-2,1],[0,-4,-1,2],[-1,-4,-3,4],[-4,2,-1,-2]],det=-82 [16,2,-15,-9], chain 2 => [29,-11,-15,-27] => [76,5,-48,-69] ?? [83,-110,-228,-108]
[[1,-4,-2,1],[0,-4,-1,2],[-1,-1,-2,3],[-4,-1,-2,-1]],det=-95 [16,2,-15,-9], chain 2 => [29,-11,-15,-27] => [76,5,-69,-48] ?? [146,-47,-87,-123]
[[1,-4,-2,1],[0,-4,-1,2],[-1,-1,-2,3],[1,4,4,-1]],det=46 [16,2,-15,-9], chain 2 => [29,-11,-15,-27] => [76,5,-69,-48] ?? [146,-47,-87,-132]
[[1,-4,-2,1],[0,-4,-1,2],[4,1,3,4],[-4,2,-1,-2]],det=-52 [16,2,-15,-9], chain 2 => [29,-11,-15,-27] => [76,5,-48,-69] ?? [83,-110,-111,-108]
[[1,-4,-2,1],[0,-4,-1,2],[4,4,4,3],[-4,-1,-2,-1]],det=-53 [16,2,-15,-9], chain 2 => [29,-11,-15,-27] => [76,5,-69,-48] ?? [146,-47,-96,-123]
[[1,-4,-2,1],[0,-4,-1,2],[4,4,4,3],[1,4,4,-1]],det=88 [16,2,-15,-9], chain 2 => [29,-11,-15,-27] => [76,5,-69,-48] ?? [146,-47,-96,-132]
[[1,-4,-2,1],[1,-3,-1,4],[-4,-1,-4,1],[-5,1,-1,-4]],det=-158 [16,2,-15,-9], chain 2 => [29,-11,-15,-27] => [76,-31,-72,-33] ?? [311,109,-18,-207]
[[1,-4,-2,1],[1,-3,-1,4],[1,4,2,1],[-5,1,-1,-4]],det=-40 [16,2,-15,-9], chain 2 => [29,-11,-15,-27] => [76,-31,-72,-33] ?? [311,109,-225,-207]
[[1,-4,-2,1],[5,1,5,2],[-1,-4,-3,4],[-4,2,-1,-2]],det=-81 [16,2,-15,-9], chain 2 => [29,-11,-15,-27] => [76,5,-48,-69] ?? [83,7,-228,-108]
[[1,-4,-2,1],[5,1,5,2],[-1,-1,-2,3],[-4,-1,-2,-1]],det=-153 [16,2,-15,-9], chain 2 => [29,-11,-15,-27] => [76,5,-69,-48] ?? [146,-56,-87,-123]
[[1,-4,-2,1],[5,1,5,2],[-1,-1,-2,3],[1,4,4,-1]],det=-12 [16,2,-15,-9], chain 2 => [29,-11,-15,-27] => [76,5,-69,-48] ?? [146,-56,-87,-132]
[[1,-4,-2,1],[5,1,5,2],[4,1,3,4],[-4,2,-1,-2]],det=-51 [16,2,-15,-9], chain 2 => [29,-11,-15,-27] => [76,5,-48,-69] ?? [83,7,-111,-108]
[[1,-4,-2,1],[5,1,5,2],[4,4,4,3],[-4,-1,-2,-1]],det=-111 [16,2,-15,-9], chain 2 => [29,-11,-15,-27] => [76,5,-69,-48] ?? [146,-56,-96,-123]
[[1,-4,-2,1],[5,1,5,2],[4,4,4,3],[1,4,4,-1]],det=30 [16,2,-15,-9], chain 2 => [29,-11,-15,-27] => [76,5,-69,-48] ?? [146,-56,-96,-132]
[[1,-4,-2,2],[-5,3,-1,-5],[0,-1,4,-5],[-5,2,-4,-1]],det=-81 [16,2,-15,-9], chain 2 => [20,-14,-17,-7] => [96,-90,-19,-53] ?? [388,-466,279,-531]
[[1,-4,-2,2],[-5,3,-1,-5],[0,-1,4,-5],[2,3,3,0]],det=71 [16,2,-15,-9], chain 2 => [20,-14,-17,-7] => [96,-90,-19,-53] ?? [388,-466,279,-135]
[[1,-4,-2,2],[-5,3,-1,-5],[2,1,1,4],[-5,2,-4,-1]],det=-54 [16,2,-15,-9], chain 2 => [20,-14,-17,-7] => [96,-90,-19,-53] ?? [388,-466,-129,-531]
[[1,-4,-2,2],[-5,3,-1,-5],[2,1,1,4],[2,3,3,0]],det=-16 [16,2,-15,-9], chain 2 => [20,-14,-17,-7] => [96,-90,-19,-53] ?? [388,-466,-129,-135]
[[1,-4,-2,2],[-3,-4,-4,2],[-4,1,0,-5],[-2,5,-1,0]],det=170 [16,2,-15,-9], chain 2 => [20,-14,-17,-7] => [96,50,-59,-93] ?? [-172,-438,131,117]
[[1,-4,-2,2],[-3,-4,-4,2],[-2,3,-3,4],[-2,5,-1,0]],det=-120 [16,2,-15,-9], chain 2 => [20,-14,-17,-7] => [96,50,-59,-93] ?? [-172,-438,-237,117]
[[1,-4,-2,2],[-3,-4,-4,2],[5,4,4,5],[-2,5,-1,0]],det=-310 [16,2,-15,-9], chain 2 => [20,-14,-17,-7] => [96,50,-59,-93] ?? [-172,-438,-21,117]
[[1,-4,-2,2],[-3,-2,0,-5],[-4,1,0,-5],[-2,3,-2,2]],det=20 [16,2,-15,-9], chain 2 => [20,-7,-17,-14] => [54,24,-17,-55] ?? [-118,65,83,-112]
[[1,-4,-2,2],[-3,-2,0,-5],[-4,1,0,-5],[5,4,5,3]],det=11 [16,2,-15,-9], chain 2 => [20,-7,-17,-14] => [54,24,-17,-55] ?? [-118,65,83,116]
[[1,-4,-2,2],[-3,1,-2,-1],[-4,-2,-4,1],[-5,3,-4,0]],det=-42 [16,2,-15,-9], chain 2 => [20,-7,-17,-14] => [54,-19,-12,-53] ?? [48,-104,-183,-279]
[[1,-4,-2,2],[-3,1,-2,-1],[-4,-2,-4,1],[2,4,3,1]],det=-45 [16,2,-15,-9], chain 2 => [20,-7,-17,-14] => [54,-19,-12,-53] ?? [48,-104,-183,-57]
[[1,-4,-2,2],[-3,1,-2,-1],[0,2,-1,4],[-2,0,0,-2]],det=54 [16,2,-15,-9], chain 2 => [20,-7,-17,-14] => [54,-19,-53,-12] ?? [212,-63,-33,-84]
[[1,-4,-2,2],[-3,1,-2,-1],[3,-1,3,2],[-5,3,-4,0]],det=-43 [16,2,-15,-9], chain 2 => [20,-7,-17,-14] => [54,-19,-12,-53] ?? [48,-104,39,-279]
[[1,-4,-2,2],[-3,1,-2,-1],[3,-1,3,2],[2,4,3,1]],det=-46 [16,2,-15,-9], chain 2 => [20,-7,-17,-14] => [54,-19,-12,-53] ?? [48,-104,39,-57]
[[1,-4,-2,2],[-3,5,-4,4],[0,-1,4,-5],[-5,2,-4,-1]],det=108 [16,2,-15,-9], chain 2 => [20,-14,-17,-7] => [96,-90,-19,-53] ?? [388,-874,279,-531]
[[1,-4,-2,2],[-3,5,-4,4],[0,-1,4,-5],[2,3,3,0]],det=-53 [16,2,-15,-9], chain 2 => [20,-14,-17,-7] => [96,-90,-19,-53] ?? [388,-874,279,-135]
[[1,-4,-2,2],[-3,5,-4,4],[2,1,1,4],[-5,2,-4,-1]],det=135 [16,2,-15,-9], chain 2 => [20,-14,-17,-7] => [96,-90,-19,-53] ?? [388,-874,-129,-531]
[[1,-4,-2,2],[-3,5,-4,4],[2,1,1,4],[2,3,3,0]],det=-140 [16,2,-15,-9], chain 2 => [20,-14,-17,-7] => [96,-90,-19,-53] ?? [388,-874,-129,-135]
[[1,-4,-2,2],[0,5,4,-4],[-2,-3,-2,1],[1,-4,-2,5]],det=42 [16,2,-15,-9], chain 2 => [20,-14,-17,-7] => [96,-110,29,75] ?? [628,-734,155,853]
[[1,-4,-2,2],[0,5,4,-4],[5,-2,5,2],[1,-4,-2,5]],det=9 [16,2,-15,-9], chain 2 => [20,-14,-17,-7] => [96,-110,29,75] ?? [628,-734,995,853]
[[1,-4,-2,2],[1,-1,-1,4],[-1,1,2,-3],[-5,3,-4,0]],det=89 [16,2,-15,-9], chain 2 => [20,-7,-17,-14] => [54,-12,-19,-53] ?? [34,-127,55,-230]
[[1,-4,-2,2],[1,-1,-1,4],[-1,1,2,-3],[2,4,3,1]],det=-42 [16,2,-15,-9], chain 2 => [20,-7,-17,-14] => [54,-12,-19,-53] ?? [34,-127,55,-50]
[[1,-4,-2,2],[4,-3,3,3],[-4,1,0,-5],[-2,5,-1,0]],det=85 [16,2,-15,-9], chain 2 => [20,-14,-17,-7] => [96,50,-59,-93] ?? [-172,-222,131,117]
[[1,-4,-2,2],[4,-3,3,3],[-2,3,-3,4],[-2,5,-1,0]],det=92 [16,2,-15,-9], chain 2 => [20,-14,-17,-7] => [96,50,-59,-93] ?? [-172,-222,-237,117]
[[1,-4,-2,2],[4,-3,3,3],[5,4,4,5],[-2,5,-1,0]],det=-98 [16,2,-15,-9], chain 2 => [20,-14,-17,-7] => [96,50,-59,-93] ?? [-172,-222,-21,117]
[[1,-4,-2,2],[4,2,5,0],[-4,-2,-4,1],[-5,3,-4,0]],det=75 [16,2,-15,-9], chain 2 => [20,-7,-17,-14] => [54,-19,-12,-53] ?? [48,118,-183,-279]
[[1,-4,-2,2],[4,2,5,0],[-4,-2,-4,1],[2,4,3,1]],det=72 [16,2,-15,-9], chain 2 => [20,-7,-17,-14] => [54,-19,-12,-53] ?? [48,118,-183,-57]
[[1,-4,-2,2],[4,2,5,0],[0,2,-1,4],[-2,0,0,-2]],det=-88 [16,2,-15,-9], chain 2 => [20,-7,-17,-14] => [54,-19,-53,-12] ?? [212,-87,-33,-84]
[[1,-4,-2,2],[4,2,5,0],[3,-1,3,2],[-5,3,-4,0]],det=74 [16,2,-15,-9], chain 2 => [20,-7,-17,-14] => [54,-19,-12,-53] ?? [48,118,39,-279]
[[1,-4,-2,2],[4,2,5,0],[3,-1,3,2],[2,4,3,1]],det=71 [16,2,-15,-9], chain 2 => [20,-7,-17,-14] => [54,-19,-12,-53] ?? [48,118,39,-57]
[[1,-4,1,-4],[2,-4,1,4],[-4,-1,-4,1],[-4,4,-3,0]],det=-52 [16,2,-15,-9], chain 2 => [29,-27,-15,-11] => [166,107,-40,-179] ?? [414,-852,-790,-116]
[[1,-4,1,-4],[2,-2,5,-4],[-5,1,-3,-2],[-4,5,-3,2]],det=-96 [16,2,-15,-9], chain 2 => [29,-11,-15,-27] => [166,113,-57,-180] ?? [377,541,-186,-288]
[[1,-4,1,-4],[2,2,3,2],[0,5,-1,4],[-2,-2,-2,1]],det=-35 [16,2,-15,-9], chain 2 => [29,-27,-11,-15] => [186,-59,-184,3] ?? [226,-292,-99,117]
[[1,-4,1,-4],[2,2,3,2],[0,5,-1,4],[1,1,4,-3]],det=85 [16,2,-15,-9], chain 2 => [29,-27,-11,-15] => [186,-59,-184,3] ?? [226,-292,-99,-618]
[[1,-4,1,-3],[-5,0,-3,-2],[-2,5,-1,0],[3,2,2,4]],det=-43 [16,2,-15,-9], chain 2 => [20,-17,-7,-14] => [123,-51,-118,-44] ?? [341,-173,-383,-145]
[[1,-4,1,-3],[-3,-1,-3,1],[4,-1,4,1],[0,5,0,3]],det=0 [16,2,-15,-9], chain 2 => [20,-14,-7,-17] => [120,-42,49,-121] ?? [700,-586,597,-573]
[[1,-4,1,-3],[-3,2,-2,0],[-5,3,-5,2],[0,-2,2,-3]],det=21 [16,2,-15,-9], chain 2 => [20,-14,-17,-7] => [80,-54,-71,15] ?? [180,-206,-177,-79]
[[1,-4,1,-3],[-3,2,-2,0],[2,4,2,3],[0,-2,2,-3]],det=-18 [16,2,-15,-9], chain 2 => [20,-14,-17,-7] => [80,-54,-71,15] ?? [180,-206,-153,-79]
[[1,-4,1,-3],[-2,5,-1,0],[-3,5,-1,-1],[0,-1,-2,5]],det=-21 [16,2,-15,-9], chain 2 => [20,-7,-14,-17] => [85,-61,-64,-50] ?? [415,-411,-446,-61]
[[1,-4,1,-3],[4,3,5,1],[-5,3,-5,2],[0,-2,2,-3]],det=27 [16,2,-15,-9], chain 2 => [20,-14,-17,-7] => [80,-54,-71,15] ?? [180,-182,-177,-79]
[[1,-4,1,-3],[4,3,5,1],[2,4,2,3],[0,-2,2,-3]],det=-12 [16,2,-15,-9], chain 2 => [20,-14,-17,-7] => [80,-54,-71,15] ?? [180,-182,-153,-79]
[[1,-4,1,-3],[5,4,5,3],[4,-1,4,1],[0,5,0,3]],det=0 [16,2,-15,-9], chain 2 => [20,-14,-7,-17] => [120,-42,49,-121] ?? [700,314,597,-573]
[[1,-3,-4,5],[-2,-1,1,-5],[0,4,5,-5],[-3,-4,-2,-1]],det=-18 [16,2,-15,-9], chain 2 => [25,-4,-22,-17] => [40,17,-41,2] ?? [163,-148,-147,-108]
[[1,-3,-4,5],[-2,-1,1,-5],[0,4,5,-5],[4,-3,5,0]],det=-85 [16,2,-15,-9], chain 2 => [25,-4,-22,-17] => [40,17,-41,2] ?? [163,-148,-147,-96]
[[1,-3,-4,5],[1,-4,-1,3],[-5,-1,-4,0],[1,0,1,2]],det=150 [16,2,-15,-9], chain 2 => [25,-4,-22,-17] => [40,12,-33,-31] ?? [-19,-68,-80,-55]
[[1,-3,-4,5],[1,-4,-1,3],[2,0,3,1],[1,0,1,2]],det=-33 [16,2,-15,-9], chain 2 => [25,-4,-22,-17] => [40,12,-33,-31] ?? [-19,-68,-50,-55]
[[1,-3,-3,0],[-2,5,-5,4],[-2,-2,0,2],[-5,-2,-4,0]],det=536 [16,2,-15,-9], chain 2 => [55,17,-54,-24] => [166,149,-192,-93] ?? [295,1001,-816,-360]
[[1,-3,-3,0],[-2,5,-5,4],[-2,-2,0,2],[2,-1,3,1]],det=-342 [16,2,-15,-9], chain 2 => [55,17,-54,-24] => [166,149,-192,-93] ?? [295,1001,-816,-486]
[[1,-3,-3,0],[-2,5,-5,4],[-2,4,5,-5],[-5,-2,-4,0]],det=-756 [16,2,-15,-9], chain 2 => [55,17,-54,-24] => [166,149,-192,-93] ?? [295,1001,-231,-360]
[[1,-3,-3,0],[-2,5,-5,4],[-2,4,5,-5],[2,-1,3,1]],det=157 [16,2,-15,-9], chain 2 => [55,17,-54,-24] => [166,149,-192,-93] ?? [295,1001,-231,-486]
[[1,-3,-3,0],[0,1,-4,5],[-5,1,-1,-1],[0,3,2,0]],det=114 [16,2,-15,-9], chain 2 => [55,17,-54,-24] => [166,113,-180,-57] ?? [367,548,-480,-21]
[[1,-3,-3,0],[1,-1,1,-2],[-4,5,0,0],[4,-5,4,2]],det=64 [16,2,-15,-9], chain 2 => [55,17,-54,-24] => [166,32,-135,-129] ?? [475,257,-504,-294]
[[1,-3,-3,3],[0,-2,-2,5],[-5,-2,-5,1],[-3,0,-3,2]],det=90 [16,2,-15,-9], chain 2 => [28,-19,-18,-21] => [76,-31,-33,-72] ?? [52,-232,-225,-273]
[[1,-3,-3,3],[2,-3,0,5],[-2,1,-3,4],[1,1,0,4]],det=132 [16,2,-15,-9], chain 2 => [28,-19,-21,-18] => [94,23,-84,-63] ?? [88,-196,-165,-135]
[[1,-3,-3,3],[2,-3,0,5],[-2,1,-3,4],[2,2,3,1]],det=168 [16,2,-15,-9], chain 2 => [28,-19,-21,-18] => [94,23,-84,-63] ?? [88,-196,-165,-81]
[[1,-3,-3,3],[2,-3,0,5],[-1,2,0,1],[1,1,0,4]],det=48 [16,2,-15,-9], chain 2 => [28,-19,-21,-18] => [94,23,-84,-63] ?? [88,-196,-111,-135]
[[1,-3,-3,3],[2,-3,0,5],[-1,2,0,1],[2,2,3,1]],det=84 [16,2,-15,-9], chain 2 => [28,-19,-21,-18] => [94,23,-84,-63] ?? [88,-196,-111,-81]
[[1,-3,-3,3],[2,-3,0,5],[0,3,3,-2],[1,1,0,4]],det=-36 [16,2,-15,-9], chain 2 => [28,-19,-21,-18] => [94,23,-84,-63] ?? [88,-196,-57,-135]
[[1,-3,-3,3],[2,-3,0,5],[0,3,3,-2],[2,2,3,1]],det=0 [16,2,-15,-9], chain 2 => [28,-19,-21,-18] => [94,23,-84,-63] ?? [88,-196,-57,-81]
[[1,-3,-3,3],[2,0,4,-1],[-4,2,-1,-3],[1,1,2,1]],det=32 [16,2,-15,-9], chain 2 => [28,-19,-18,-21] => [76,5,-69,-48] ?? [124,-76,-81,-105]
[[1,-3,-3,3],[2,0,4,-1],[-3,0,-2,0],[0,3,3,-2]],det=18 [16,2,-15,-9], chain 2 => [28,-19,-18,-21] => [76,5,-48,-69] ?? [-2,29,-132,9]
[[1,-3,-3,3],[3,-2,3,2],[-2,1,-3,4],[1,1,0,4]],det=120 [16,2,-15,-9], chain 2 => [28,-19,-21,-18] => [94,23,-84,-63] ?? [88,-142,-165,-135]
[[1,-3,-3,3],[3,-2,3,2],[-2,1,-3,4],[2,2,3,1]],det=156 [16,2,-15,-9], chain 2 => [28,-19,-21,-18] => [94,23,-84,-63] ?? [88,-142,-165,-81]
[[1,-3,-3,3],[3,-2,3,2],[-1,2,0,1],[1,1,0,4]],det=36 [16,2,-15,-9], chain 2 => [28,-19,-21,-18] => [94,23,-84,-63] ?? [88,-142,-111,-135]
[[1,-3,-3,3],[3,-2,3,2],[-1,2,0,1],[2,2,3,1]],det=72 [16,2,-15,-9], chain 2 => [28,-19,-21,-18] => [94,23,-84,-63] ?? [88,-142,-111,-81]
[[1,-3,-3,3],[3,-2,3,2],[0,3,3,-2],[1,1,0,4]],det=-48 [16,2,-15,-9], chain 2 => [28,-19,-21,-18] => [94,23,-84,-63] ?? [88,-142,-57,-135]
[[1,-3,-3,3],[3,-2,3,2],[0,3,3,-2],[2,2,3,1]],det=-12 [16,2,-15,-9], chain 2 => [28,-19,-21,-18] => [94,23,-84,-63] ?? [88,-142,-57,-81]
[[1,-3,-3,3],[3,0,2,4],[-3,-5,-5,4],[-3,3,1,-4]],det=78 [16,2,-15,-9], chain 2 => [28,-18,-19,-21] => [76,-38,17,-73] ?? [-80,-30,-415,-33]
[[1,-3,-3,3],[3,0,2,4],[0,-2,1,0],[-3,3,1,-4]],det=45 [16,2,-15,-9], chain 2 => [28,-18,-19,-21] => [76,-38,17,-73] ?? [-80,-30,93,-33]
[[1,-3,-2,0],[-2,-1,-2,3],[-1,-1,4,-5],[-2,1,-4,2]],det=180 [16,2,-15,-9], chain 2 => [40,-31,-33,12] => [199,53,-201,45] ?? [442,86,-1281,549]
[[1,-3,-1,0],[-2,-1,-2,0],[-4,1,-3,0],[5,-3,4,4]],det=20 [16,2,-15,-9], chain 2 => [25,-4,-17,-22] => [54,-12,-53,-19] ?? [143,10,-69,18]
[[1,-3,0,-2],[-4,0,-3,0],[-2,1,-3,4],[-4,2,-4,2]],det=-46 [16,2,-15,-9], chain 2 => [28,-19,-21,-18] => [121,-49,-84,-102] ?? [472,-232,-447,-450]
[[1,-3,0,-2],[-4,0,-3,0],[-2,1,-3,4],[-3,3,-1,-1]],det=-43 [16,2,-15,-9], chain 2 => [28,-19,-21,-18] => [121,-49,-84,-102] ?? [472,-232,-447,-324]
[[1,-3,0,-2],[-4,0,-3,0],[-2,1,-3,4],[-2,4,2,-4]],det=-40 [16,2,-15,-9], chain 2 => [28,-19,-21,-18] => [121,-49,-84,-102] ?? [472,-232,-447,-198]
[[1,-3,0,-2],[-4,0,-3,0],[-1,2,0,1],[-4,2,-4,2]],det=4 [16,2,-15,-9], chain 2 => [28,-19,-21,-18] => [121,-49,-84,-102] ?? [472,-232,-321,-450]
[[1,-3,0,-2],[-4,0,-3,0],[-1,2,0,1],[-3,3,-1,-1]],det=7 [16,2,-15,-9], chain 2 => [28,-19,-21,-18] => [121,-49,-84,-102] ?? [472,-232,-321,-324]
[[1,-3,0,-2],[-4,0,-3,0],[-1,2,0,1],[-2,4,2,-4]],det=10 [16,2,-15,-9], chain 2 => [28,-19,-21,-18] => [121,-49,-84,-102] ?? [472,-232,-321,-198]
[[1,-3,0,-2],[-4,0,-3,0],[0,3,3,-2],[-4,2,-4,2]],det=54 [16,2,-15,-9], chain 2 => [28,-19,-21,-18] => [121,-49,-84,-102] ?? [472,-232,-195,-450]
[[1,-3,0,-2],[-4,0,-3,0],[0,3,3,-2],[-3,3,-1,-1]],det=57 [16,2,-15,-9], chain 2 => [28,-19,-21,-18] => [121,-49,-84,-102] ?? [472,-232,-195,-324]
[[1,-3,0,-2],[-4,0,-3,0],[0,3,3,-2],[-2,4,2,-4]],det=60 [16,2,-15,-9], chain 2 => [28,-19,-21,-18] => [121,-49,-84,-102] ?? [472,-232,-195,-198]
[[1,-3,0,-2],[-3,1,0,-3],[-2,1,-3,4],[-4,2,-4,2]],det=-54 [16,2,-15,-9], chain 2 => [28,-19,-21,-18] => [121,-49,-84,-102] ?? [472,-106,-447,-450]
[[1,-3,0,-2],[-3,1,0,-3],[-2,1,-3,4],[-3,3,-1,-1]],det=-51 [16,2,-15,-9], chain 2 => [28,-19,-21,-18] => [121,-49,-84,-102] ?? [472,-106,-447,-324]
[[1,-3,0,-2],[-3,1,0,-3],[-2,1,-3,4],[-2,4,2,-4]],det=-48 [16,2,-15,-9], chain 2 => [28,-19,-21,-18] => [121,-49,-84,-102] ?? [472,-106,-447,-198]
[[1,-3,0,-2],[-3,1,0,-3],[-1,2,0,1],[-4,2,-4,2]],det=-4 [16,2,-15,-9], chain 2 => [28,-19,-21,-18] => [121,-49,-84,-102] ?? [472,-106,-321,-450]
[[1,-3,0,-2],[-3,1,0,-3],[-1,2,0,1],[-3,3,-1,-1]],det=-1 [16,2,-15,-9], chain 2 => [28,-19,-21,-18] => [121,-49,-84,-102] ?? [472,-106,-321,-324]
[[1,-3,0,-2],[-3,1,0,-3],[-1,2,0,1],[-2,4,2,-4]],det=2 [16,2,-15,-9], chain 2 => [28,-19,-21,-18] => [121,-49,-84,-102] ?? [472,-106,-321,-198]
[[1,-3,0,-2],[-3,1,0,-3],[0,3,3,-2],[-4,2,-4,2]],det=46 [16,2,-15,-9], chain 2 => [28,-19,-21,-18] => [121,-49,-84,-102] ?? [472,-106,-195,-450]
[[1,-3,0,-2],[-3,1,0,-3],[0,3,3,-2],[-3,3,-1,-1]],det=49 [16,2,-15,-9], chain 2 => [28,-19,-21,-18] => [121,-49,-84,-102] ?? [472,-106,-195,-324]
[[1,-3,0,-2],[-3,1,0,-3],[0,3,3,-2],[-2,4,2,-4]],det=52 [16,2,-15,-9], chain 2 => [28,-19,-21,-18] => [121,-49,-84,-102] ?? [472,-106,-195,-198]
[[1,-3,0,-1],[-5,-1,-3,-3],[-4,5,-1,-4],[-4,5,0,-4]],det=-72 [16,2,-15,-9], chain 2 => [19,-10,-3,-18] => [67,-22,-51,-54] ?? [187,2,-111,-162]
[[1,-3,0,-1],[-2,2,0,-2],[-4,5,-1,-4],[-4,5,0,-4]],det=-4 [16,2,-15,-9], chain 2 => [19,-10,-3,-18] => [67,-22,-51,-54] ?? [187,-70,-111,-162]
[[1,-3,0,-1],[1,5,3,-1],[-4,5,-1,-4],[-4,5,0,-4]],det=64 [16,2,-15,-9], chain 2 => [19,-10,-3,-18] => [67,-22,-51,-54] ?? [187,-142,-111,-162]
[[1,-2,-2,-2],[0,-2,0,2],[-3,-4,2,-3],[3,3,1,4]],det=-114 [16,2,-15,-9], chain 2 => [60,-22,-59,3] => [216,50,-219,67] ?? [420,34,-1487,847]
[[1,-2,-2,-2],[0,-2,0,2],[-3,5,-1,4],[3,3,1,4]],det=224 [16,2,-15,-9], chain 2 => [60,-22,-59,3] => [216,50,-219,67] ?? [420,34,89,847]
[[1,-2,0,-3],[2,0,-2,5],[-4,1,-3,1],[2,2,3,3]],det=-3 [16,2,-15,-9], chain 2 => [39,17,-26,-36] => [113,-50,-97,-74] ?? [435,50,-285,-387]
[[1,-2,2,-5],[-4,-5,-5,-1],[-4,2,0,-4],[5,-3,5,2]],det=-720 [16,2,-15,-9], chain 2 => [27,10,-24,-19] => [54,-19,-12,-53] ?? [333,-8,-42,161]
[[1,-1,-4,5],[1,4,2,1],[0,0,0,3],[-2,-3,0,-3]],det=30 [16,2,-15,-9], chain 2 => [29,-15,-27,-11] => [97,-96,-33,20] ?? [425,-333,60,34]
[[1,-1,-2,-4],[0,-3,2,2],[-5,-3,-1,0],[0,3,0,-1]],det=-103 [16,2,-15,-9], chain 2 => [80,-54,-71,15] => [216,50,-167,-177] ?? [1208,-838,-1063,327]
[[1,-1,-2,-1],[-3,-1,-3,5],[-4,1,-4,3],[1,2,2,-2]],det=38 [16,2,-15,-9], chain 2 => [53,-50,-29,8] => [153,18,-122,-121] ?? [500,-716,-469,187]
[[1,-1,-1,0],[-5,0,-4,-1],[-3,0,1,-4],[2,2,1,4]],det=17 [16,2,-15,-9], chain 2 => [29,-11,-27,-15] => [67,-22,-54,-51] ?? [143,-68,-51,-168]
[[1,-1,-1,0],[-5,0,-4,-1],[0,0,3,-2],[-1,2,-1,2]],det=11 [16,2,-15,-9], chain 2 => [29,-11,-27,-15] => [67,-22,-51,-54] ?? [140,-77,-45,-168]
[[1,-1,-1,0],[-4,-2,-2,-3],[-2,1,-1,0],[-1,-4,-1,2]],det=63 [16,2,-15,-9], chain 2 => [29,-11,-15,-27] => [55,17,-54,-24] ?? [92,-74,-39,-117]
[[1,-1,-1,0],[-4,-2,-2,-3],[-2,1,-1,0],[4,1,5,2]],det=6 [16,2,-15,-9], chain 2 => [29,-11,-15,-27] => [55,17,-54,-24] ?? [92,-74,-39,-81]
[[1,-1,-1,0],[-2,3,-4,5],[-2,-5,-4,5],[2,2,1,4]],det=-312 [16,2,-15,-9], chain 2 => [29,-11,-27,-15] => [67,-58,30,-51] ?? [95,-683,-219,-156]
[[1,-1,-1,0],[-2,3,-4,5],[0,0,3,-2],[-1,-4,0,-1]],det=10 [16,2,-15,-9], chain 2 => [29,-11,-27,-15] => [67,-58,-51,30] ?? [176,46,-213,135]
[[1,-1,-1,0],[-2,3,-4,5],[4,-5,3,4],[2,2,1,4]],det=-259 [16,2,-15,-9], chain 2 => [29,-11,-27,-15] => [67,-58,30,-51] ?? [95,-683,444,-156]
[[1,-1,-1,0],[0,0,3,-2],[-2,1,-1,0],[2,1,3,0]],det=-8 [16,2,-15,-9], chain 2 => [29,-27,-15,-11] => [71,-23,-70,-14] ?? [164,-182,-95,-91]
[[1,-1,-1,0],[1,0,3,-2],[-3,0,1,-4],[2,2,1,4]],det=-10 [16,2,-15,-9], chain 2 => [29,-11,-27,-15] => [67,-22,-54,-51] ?? [143,7,-51,-168]
[[1,-1,-1,0],[1,0,3,-2],[0,0,3,-2],[-1,2,-1,2]],det=0 [16,2,-15,-9], chain 2 => [29,-11,-27,-15] => [67,-22,-51,-54] ?? [140,22,-45,-168]
[[1,-1,-1,0],[1,3,4,-3],[-2,1,-1,0],[-1,-4,-1,2]],det=25 [16,2,-15,-9], chain 2 => [29,-11,-15,-27] => [55,17,-54,-24] ?? [92,-38,-39,-117]
[[1,-1,-1,0],[1,3,4,-3],[-2,1,-1,0],[4,1,5,2]],det=-32 [16,2,-15,-9], chain 2 => [29,-11,-15,-27] => [55,17,-54,-24] ?? [92,-38,-39,-81]
[[1,-1,-1,0],[4,3,3,4],[-2,-5,-4,5],[2,2,1,4]],det=75 [16,2,-15,-9], chain 2 => [29,-11,-27,-15] => [67,-58,30,-51] ?? [95,-20,-219,-156]
[[1,-1,-1,0],[4,3,3,4],[0,0,3,-2],[-1,-4,0,-1]],det=95 [16,2,-15,-9], chain 2 => [29,-11,-27,-15] => [67,-58,-51,30] ?? [176,61,-213,135]
[[1,-1,-1,0],[4,3,3,4],[4,-5,3,4],[2,2,1,4]],det=128 [16,2,-15,-9], chain 2 => [29,-11,-27,-15] => [67,-58,30,-51] ?? [95,-20,444,-156]
[[1,-1,-1,0],[5,-2,4,3],[-2,-5,0,-3],[-1,5,2,-1]],det=-153 [16,2,-15,-9], chain 2 => [29,-11,-15,-27] => [55,26,78,-87] ?? [-49,274,21,318]
[[1,-1,-1,1],[-3,-4,-1,-3],[-2,-3,-2,1],[-5,2,-4,-1]],det=-121 [16,2,-15,-9], chain 2 => [20,-14,-17,-7] => [44,34,29,-53] ?? [-72,-138,-301,-215]
[[1,-1,-1,1],[-3,-4,-1,-3],[-2,-3,-2,1],[2,3,3,0]],det=29 [16,2,-15,-9], chain 2 => [20,-14,-17,-7] => [44,34,29,-53] ?? [-72,-138,-301,277]
[[1,-1,-1,1],[-3,-4,-1,-3],[5,-2,5,2],[-5,2,-4,-1]],det=-79 [16,2,-15,-9], chain 2 => [20,-14,-17,-7] => [44,34,29,-53] ?? [-72,-138,191,-215]
[[1,-1,-1,1],[-3,-4,-1,-3],[5,-2,5,2],[2,3,3,0]],det=71 [16,2,-15,-9], chain 2 => [20,-14,-17,-7] => [44,34,29,-53] ?? [-72,-138,191,277]
[[1,-1,0,-3],[-4,-2,-5,1],[3,1,3,5],[2,1,4,-1]],det=59 [16,2,-15,-9], chain 2 => [41,-2,-40,-17] => [94,23,-84,-63] ?? [260,-65,-262,-62]
[[1,-1,0,-3],[-3,5,2,-4],[-5,1,-3,-3],[-3,-3,1,-4]],det=512 [16,2,-15,-9], chain 2 => [41,-32,-6,-33] => [172,-163,-120,99] ?? [38,-1967,-960,-543]
[[1,-1,0,-3],[-3,5,2,-4],[-5,1,-3,-3],[2,-4,2,3]],det=344 [16,2,-15,-9], chain 2 => [41,-32,-6,-33] => [172,-163,-120,99] ?? [38,-1967,-960,1053]
[[1,-1,0,-3],[-3,5,2,-4],[0,0,-2,4],[-3,-3,1,-4]],det=152 [16,2,-15,-9], chain 2 => [41,-32,-6,-33] => [172,-163,-120,99] ?? [38,-1967,636,-543]
[[1,-1,0,-3],[-3,5,2,-4],[0,0,-2,4],[2,-4,2,3]],det=-16 [16,2,-15,-9], chain 2 => [41,-32,-6,-33] => [172,-163,-120,99] ?? [38,-1967,636,1053]
[[1,-1,0,-3],[2,4,3,3],[-5,1,-3,-3],[-3,-3,1,-4]],det=312 [16,2,-15,-9], chain 2 => [41,-32,-6,-33] => [172,-163,-120,99] ?? [38,-371,-960,-543]
[[1,-1,0,-3],[2,4,3,3],[-5,1,-3,-3],[2,-4,2,3]],det=144 [16,2,-15,-9], chain 2 => [41,-32,-6,-33] => [172,-163,-120,99] ?? [38,-371,-960,1053]
[[1,-1,0,-3],[2,4,3,3],[0,0,-2,4],[-3,-3,1,-4]],det=-48 [16,2,-15,-9], chain 2 => [41,-32,-6,-33] => [172,-163,-120,99] ?? [38,-371,636,-543]
[[1,-1,0,-3],[2,4,3,3],[0,0,-2,4],[2,-4,2,3]],det=-216 [16,2,-15,-9], chain 2 => [41,-32,-6,-33] => [172,-163,-120,99] ?? [38,-371,636,1053]
[[1,-1,2,-5],[-4,-1,-2,-1],[0,0,-2,5],[-5,0,-4,-1]],det=-50 [16,2,-15,-9], chain 2 => [29,-27,-15,-11] => [81,-48,-25,-74] ?? [449,-152,-320,-231]
[[1,-1,2,-5],[-4,-1,-2,-1],[1,1,4,-3],[-5,0,-4,-1]],det=110 [16,2,-15,-9], chain 2 => [29,-27,-15,-11] => [81,-48,-25,-74] ?? [449,-152,155,-231]
[[1,-1,2,-5],[3,0,5,0],[-3,3,-3,2],[3,-4,1,4]],det=8 [16,2,-15,-9], chain 2 => [29,-27,-15,-11] => [81,12,-145,136] ?? [-901,-482,500,594]
[[1,-1,2,-4],[-3,-1,0,-4],[0,-1,4,-5],[0,1,0,1]],det=24 [16,2,-15,-9], chain 2 => [20,-14,-17,-7] => [28,-18,-19,-21] ?? [92,18,47,-39]
[[1,-1,2,-4],[-3,-1,0,-4],[2,1,1,4],[0,1,0,1]],det=18 [16,2,-15,-9], chain 2 => [20,-14,-17,-7] => [28,-18,-19,-21] ?? [92,18,-65,-39]
[[1,-1,2,-4],[-1,1,-3,5],[0,-1,4,-5],[0,1,0,1]],det=0 [16,2,-15,-9], chain 2 => [20,-14,-17,-7] => [28,-18,-19,-21] ?? [92,-94,47,-39]
[[1,-1,2,-4],[-1,1,-3,5],[2,1,1,4],[0,1,0,1]],det=-6 [16,2,-15,-9], chain 2 => [20,-14,-17,-7] => [28,-18,-19,-21] ?? [92,-94,-65,-39]
[[1,0,-3,3],[1,1,4,-1],[4,4,4,3],[-5,-1,-5,-1]],det=-29 [16,2,-15,-9], chain 2 => [34,-33,-15,2] => [85,-61,-50,-64] ?? [43,-112,-296,-50]
[[1,0,-2,3],[1,2,2,0],[-5,-2,-2,-4],[-1,-1,2,-5]],det=24 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [46,-37,-27,-30] ?? [10,-82,18,87]
[[1,0,-2,3],[1,2,2,0],[-5,-2,-2,-4],[1,4,0,3]],det=0 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [46,-37,-27,-30] ?? [10,-82,18,-192]
[[1,0,-2,3],[1,2,2,0],[-4,2,-4,2],[0,0,2,-3]],det=28 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [46,-37,-30,-27] ?? [25,-88,-192,21]
[[1,0,-2,3],[1,2,2,0],[-4,2,-4,2],[2,5,0,5]],det=-4 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [46,-37,-30,-27] ?? [25,-88,-192,-228]
[[1,0,-2,3],[1,2,2,0],[-3,3,-4,4],[-1,-1,2,-5]],det=42 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [46,-37,-27,-30] ?? [10,-82,-261,87]
[[1,0,-2,3],[1,2,2,0],[-3,3,-4,4],[1,4,0,3]],det=18 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [46,-37,-27,-30] ?? [10,-82,-261,-192]
[[1,0,-2,3],[1,2,2,0],[-1,-4,2,-4],[-1,2,0,-1]],det=-4 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [46,-37,-3,-36] ?? [-56,-34,240,-84]
[[1,0,-2,3],[1,2,2,0],[1,-2,5,-5],[-3,0,-3,0]],det=0 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [46,-37,-36,-3] ?? [109,-100,-45,-30]
[[1,0,-2,3],[1,2,2,0],[1,1,0,4],[-1,2,0,-1]],det=30 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [46,-37,-3,-36] ?? [-56,-34,-135,-84]
[[1,0,-2,3],[1,2,2,0],[3,0,5,-1],[0,0,2,-3]],det=-26 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [46,-37,-30,-27] ?? [25,-88,15,21]
[[1,0,-2,3],[1,2,2,0],[3,0,5,-1],[2,5,0,5]],det=23 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [46,-37,-30,-27] ?? [25,-88,15,-228]
[[1,0,-2,3],[1,2,2,0],[3,3,3,3],[-3,0,-3,0]],det=27 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [46,-37,-36,-3] ?? [109,-100,-90,-30]
[[1,0,-2,3],[1,2,2,0],[4,1,5,1],[-1,-1,2,-5]],det=-39 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [46,-37,-27,-30] ?? [10,-82,-18,87]
[[1,0,-2,3],[1,2,2,0],[4,1,5,1],[1,4,0,3]],det=18 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [46,-37,-27,-30] ?? [10,-82,-18,-192]
[[1,0,-1,-3],[-3,1,2,-3],[-1,5,3,-4],[-4,-4,-2,0]],det=110 [16,2,-15,-9], chain 2 => [58,-49,-15,-42] => [199,-127,-180,-6] ?? [397,-1066,-1350,72]
[[1,0,-1,-3],[-3,1,2,-3],[-1,5,3,-4],[2,-1,3,3]],det=-233 [16,2,-15,-9], chain 2 => [58,-49,-15,-42] => [199,-127,-180,-6] ?? [397,-1066,-1350,-33]
[[1,0,-1,-3],[-3,1,2,-3],[0,0,-2,5],[-4,-4,-2,0]],det=170 [16,2,-15,-9], chain 2 => [58,-49,-15,-42] => [199,-127,-180,-6] ?? [397,-1066,330,72]
[[1,0,-1,-3],[-3,1,2,-3],[0,0,-2,5],[2,-1,3,3]],det=-14 [16,2,-15,-9], chain 2 => [58,-49,-15,-42] => [199,-127,-180,-6] ?? [397,-1066,330,-33]
[[1,0,-1,-3],[-2,1,-2,-1],[1,-1,0,4],[-2,4,1,2]],det=-72 [16,2,-15,-9], chain 2 => [58,9,-22,-57] => [251,-6,-179,-216] ?? [1078,66,-607,-1137]
[[1,0,-1,-3],[0,-2,3,0],[-3,-3,-2,-1],[-3,0,-1,1]],det=-72 [16,2,-15,-9], chain 2 => [58,-49,-15,-42] => [199,53,45,-201] ?? [757,29,-645,-843]
[[1,0,-1,-3],[0,-2,3,0],[-3,-3,-2,-1],[3,3,4,4]],det=17 [16,2,-15,-9], chain 2 => [58,-49,-15,-42] => [199,53,45,-201] ?? [757,29,-645,132]
[[1,0,-1,-3],[0,-2,3,0],[3,0,3,2],[-3,0,-1,1]],det=8 [16,2,-15,-9], chain 2 => [58,-49,-15,-42] => [199,53,45,-201] ?? [757,29,330,-843]
[[1,0,-1,-3],[0,-2,3,0],[3,0,3,2],[3,3,4,4]],det=97 [16,2,-15,-9], chain 2 => [58,-49,-15,-42] => [199,53,45,-201] ?? [757,29,330,132]
[[1,0,1,-3],[-5,1,-1,-5],[-3,1,0,-3],[0,0,-1,4]],det=4 [16,2,-15,-9], chain 2 => [28,-18,-19,-21] => [72,-34,-39,-65] ?? [228,-30,-55,-221]
[[1,0,1,-3],[-5,1,-1,-5],[-3,1,0,-3],[3,3,5,0]],det=11 [16,2,-15,-9], chain 2 => [28,-18,-19,-21] => [72,-34,-39,-65] ?? [228,-30,-55,-81]
[[1,2,-3,4],[-2,0,-2,1],[-5,-2,-5,2],[0,0,-2,5]],det=-48 [16,2,-15,-9], chain 2 => [29,-11,-27,-15] => [28,-19,-18,-21] ?? [-40,-41,-54,-69]
[[1,2,-3,4],[-2,0,-2,1],[-2,-2,0,-1],[-4,-1,-1,-4]],det=20 [16,2,-15,-9], chain 2 => [29,-11,-27,-15] => [28,-19,-21,-18] ?? [-19,-32,0,0]
[[1,2,-3,4],[-2,0,-2,1],[1,-2,2,1],[0,0,-2,5]],det=-12 [16,2,-15,-9], chain 2 => [29,-11,-27,-15] => [28,-19,-18,-21] ?? [-40,-41,9,-69]
[[1,2,-3,4],[4,0,5,0],[-5,-2,-5,2],[0,0,-2,5]],det=24 [16,2,-15,-9], chain 2 => [29,-11,-27,-15] => [28,-19,-18,-21] ?? [-40,22,-54,-69]
[[1,2,-3,4],[4,0,5,0],[-2,-2,0,-1],[-4,-1,-1,-4]],det=17 [16,2,-15,-9], chain 2 => [29,-11,-27,-15] => [28,-19,-21,-18] ?? [-19,7,0,0]
[[1,2,-3,4],[4,0,5,0],[1,-2,2,1],[0,0,-2,5]],det=60 [16,2,-15,-9], chain 2 => [29,-11,-27,-15] => [28,-19,-18,-21] ?? [-40,22,9,-69]
[[1,2,-1,-2],[0,2,1,2],[1,-3,4,0],[-3,-2,-4,0]],det=-24 [16,2,-15,-9], chain 2 => [53,-29,-50,8] => [29,-92,-60,99] ?? [-293,-46,65,337]
[[1,2,-1,-2],[0,2,1,2],[1,-3,4,0],[4,-1,3,1]],det=109 [16,2,-15,-9], chain 2 => [53,-29,-50,8] => [29,-92,-60,99] ?? [-293,-46,65,127]
[[1,2,-1,-1],[0,-5,-2,4],[1,3,3,0],[2,-5,3,2]],det=135 [16,2,-15,-9], chain 2 => [44,-16,-23,-41] => [76,-38,-73,17] ?? [56,404,-257,157]
[[1,2,0,-1],[-3,-4,-3,0],[-5,-5,-5,0],[-5,1,-1,-4]],det=-40 [16,2,-15,-9], chain 2 => [29,-11,-15,-27] => [34,2,-15,-33] ?? [71,-65,-105,-21]
[[1,2,0,-1],[-3,-4,-3,0],[-2,-2,-2,1],[-3,3,2,-5]],det=-51 [16,2,-15,-9], chain 2 => [29,-11,-15,-27] => [34,2,-33,-15] ?? [53,-11,-21,-87]
[[1,2,0,-1],[-3,-4,-3,0],[0,0,1,0],[-5,1,-1,-4]],det=15 [16,2,-15,-9], chain 2 => [29,-11,-15,-27] => [34,2,-15,-33] ?? [71,-65,-15,-21]
[[1,2,0,-1],[-3,-4,-3,0],[3,3,4,1],[-3,3,2,-5]],det=10 [16,2,-15,-9], chain 2 => [29,-11,-15,-27] => [34,2,-33,-15] ?? [53,-11,-39,-87]
[[1,2,0,-1],[0,-1,0,1],[-2,-2,-2,1],[-5,-5,-3,-2]],det=-7 [16,2,-15,-9], chain 2 => [29,-11,-15,-27] => [34,-16,-33,9] ?? [-7,25,39,-9]
[[1,2,0,-1],[0,-1,0,1],[-2,-2,-2,1],[0,0,3,-2]],det=-1 [16,2,-15,-9], chain 2 => [29,-11,-15,-27] => [34,-16,-33,9] ?? [-7,25,39,-117]
[[1,2,0,-1],[0,-1,0,1],[3,-3,2,3],[-5,1,-1,-4]],det=-1 [16,2,-15,-9], chain 2 => [29,-11,-15,-27] => [34,-16,9,-33] ?? [35,-17,69,-63]
[[1,2,0,-1],[0,-1,0,1],[3,3,4,1],[-5,-5,-3,-2]],det=5 [16,2,-15,-9], chain 2 => [29,-11,-15,-27] => [34,-16,-33,9] ?? [-7,25,-69,-9]
[[1,2,0,-1],[0,-1,0,1],[3,3,4,1],[0,0,3,-2]],det=11 [16,2,-15,-9], chain 2 => [29,-11,-15,-27] => [34,-16,-33,9] ?? [-7,25,-69,-117]
[[1,2,0,-1],[2,1,3,0],[-5,-5,-5,0],[-5,1,-1,-4]],det=-50 [16,2,-15,-9], chain 2 => [29,-11,-15,-27] => [34,2,-15,-33] ?? [71,25,-105,-21]
[[1,2,0,-1],[2,1,3,0],[-2,-2,-2,1],[-3,3,2,-5]],det=11 [16,2,-15,-9], chain 2 => [29,-11,-15,-27] => [34,2,-33,-15] ?? [53,-29,-21,-87]
[[1,2,0,-1],[2,1,3,0],[0,0,1,0],[-5,1,-1,-4]],det=5 [16,2,-15,-9], chain 2 => [29,-11,-15,-27] => [34,2,-15,-33] ?? [71,25,-15,-21]
[[1,2,0,-1],[2,1,3,0],[3,3,4,1],[-3,3,2,-5]],det=72 [16,2,-15,-9], chain 2 => [29,-11,-15,-27] => [34,2,-33,-15] ?? [53,-29,-39,-87]
[[1,2,0,0],[-5,2,-4,-1],[-3,-4,-1,-3],[-1,-5,0,-1]],det=-29 [16,2,-15,-9], chain 2 => [20,-7,-14,-17] => [6,-41,33,32] ?? [-76,-276,17,167]
[[1,2,0,0],[-5,2,-4,-1],[2,-2,4,-2],[1,-3,3,-2]],det=-18 [16,2,-15,-9], chain 2 => [20,-7,-14,-17] => [6,-41,32,33] ?? [-76,-273,156,159]
[[1,2,0,0],[4,-4,3,2],[-3,-4,-1,-3],[-3,5,1,-4]],det=-133 [16,2,-15,-9], chain 2 => [20,-7,-14,-17] => [6,32,33,-41] ?? [70,-87,-56,339]
[[1,3,-4,4],[-1,0,-1,4],[0,-3,5,-5],[4,4,2,5]],det=-42 [16,2,-15,-9], chain 2 => [46,-37,-36,-3] => [67,-22,-54,-51] ?? [13,-217,51,-183]
[[1,3,-4,4],[-1,0,-1,4],[1,-2,5,-3],[3,3,2,3]],det=-62 [16,2,-15,-9], chain 2 => [46,-37,-36,-3] => [67,-22,-51,-54] ?? [-11,-232,18,-129]
[[1,3,-4,4],[1,-1,4,-1],[1,-2,5,-3],[0,0,-1,2]],det=11 [16,2,-15,-9], chain 2 => [46,-37,-36,-3] => [67,-58,-51,30] ?? [217,-109,-162,111]
[[1,3,-1,-1],[-1,-4,-2,1],[3,-5,2,5],[-3,0,1,-3]],det=50 [16,2,-15,-9], chain 2 => [46,-3,-37,-36] => [110,4,-101,-67] ?? [290,9,-227,-230]
[[1,3,0,-2],[-1,-1,-2,0],[-5,-1,-4,1],[-2,1,-1,2]],det=40 [16,2,-15,-9], chain 2 => [40,12,-31,-33] => [142,10,-121,-103] ?? [378,90,-339,-359]
[[1,3,0,-2],[-1,-1,-2,0],[1,-4,2,1],[-1,-4,0,1]],det=12 [16,2,-15,-9], chain 2 => [40,12,-31,-33] => [142,10,-103,-121] ?? [414,54,-225,-303]
[[1,3,1,-3],[-1,-1,0,-3],[-3,0,-1,0],[-4,-3,-3,-1]],det=56 [16,2,-15,-9], chain 2 => [34,9,-33,-16] => [76,5,-69,-48] ?? [166,63,-159,-64]
[[1,3,1,-3],[-1,-1,0,-3],[-3,0,-1,0],[3,-2,4,0]],det=-114 [16,2,-15,-9], chain 2 => [34,9,-33,-16] => [76,5,-69,-48] ?? [166,63,-159,-58]
[[1,3,1,-3],[1,-2,-1,2],[1,1,4,-1],[-4,0,-2,-2]],det=38 [16,2,-15,-9], chain 2 => [34,9,-33,-16] => [76,17,-73,-38] ?? [168,39,-161,-82]
[[1,3,1,-3],[1,-2,-1,2],[1,1,4,-1],[3,1,5,-1]],det=0 [16,2,-15,-9], chain 2 => [34,9,-33,-16] => [76,17,-73,-38] ?? [168,39,-161,-82]
[[1,3,2,-4],[-1,-3,1,-2],[0,-3,-1,3],[-2,1,0,-1]],det=12 [16,2,-15,-9], chain 2 => [28,-19,-18,-21] => [19,53,12,-54] ?? [418,-58,-333,69]
[[1,3,2,-4],[-1,-3,1,-2],[0,3,1,1],[0,-3,4,-5]],det=-54 [16,2,-15,-9], chain 2 => [28,-19,-18,-21] => [19,53,-96,90] ?? [-374,-454,153,-993]
[[1,3,2,-4],[-1,-3,1,-2],[4,-5,3,3],[4,4,5,2]],det=396 [16,2,-15,-9], chain 2 => [28,-19,-18,-21] => [19,53,90,-96] ?? [742,104,-207,546]
[[1,3,2,-4],[3,4,5,0],[3,-3,4,0],[1,-5,0,3]],det=58 [16,2,-15,-9], chain 2 => [28,-19,-18,-21] => [19,-82,69,60] ?? [-329,74,579,609]
[[1,4,-4,5],[2,0,1,0],[-4,-4,0,-4],[-2,3,-3,5]],det=36 [16,2,-15,-9], chain 2 => [39,17,-36,-26] => [121,42,-120,-49] ?? [524,122,-456,-1]
[[1,4,-4,5],[2,0,1,0],[-4,-4,0,-4],[2,1,4,0]],det=8 [16,2,-15,-9], chain 2 => [39,17,-36,-26] => [121,42,-120,-49] ?? [524,122,-456,-196]
[[1,4,-2,-3],[3,0,4,4],[-5,-4,-3,-2],[-4,-5,0,0]],det=5 [16,2,-15,-9], chain 2 => [81,-48,-25,-74] => [161,-153,10,-84] ?? [-219,187,-55,121]
[[1,4,-1,-4],[0,-5,4,-3],[0,-3,1,5],[4,-3,4,4]],det=-25 [16,2,-15,-9], chain 2 => [75,-43,-66,-38] => [121,65,-127,13] ?? [456,-872,-257,-167]
[[1,4,1,-2],[0,-4,-3,3],[1,-5,5,-5],[3,-5,2,3]],det=-297 [16,2,-15,-9], chain 2 => [27,10,-24,-19] => [81,-25,-48,-74] ?? [81,22,336,50]
[[1,4,1,-2],[0,-4,-3,3],[3,0,3,3],[3,-5,2,3]],det=135 [16,2,-15,-9], chain 2 => [27,10,-24,-19] => [81,-25,-48,-74] ?? [81,22,-123,50]
[[1,4,1,-2],[0,-1,-2,2],[-3,-2,-4,3],[2,5,5,-1]],det=90 [16,2,-15,-9], chain 2 => [27,10,-19,-24] => [96,-20,-97,33] ?? [-147,280,239,-426]
[[1,5,-3,2],[2,3,5,-5],[-3,-4,-3,2],[2,-5,3,3]],det=-50 [16,2,-15,-9], chain 2 => [53,8,-29,-50] => [80,235,-204,-171] ?? [1525,700,-910,-2140]
[[1,5,-1,0],[2,1,3,-1],[0,-5,2,0],[-1,-5,0,-1]],det=-12 [16,2,-15,-9], chain 2 => [41,-2,-40,-17] => [71,-23,-70,-14] ?? [26,-77,-25,58]
[[1,5,-1,0],[5,1,5,1],[0,-5,2,0],[-4,-5,-2,-3]],det=-6 [16,2,-15,-9], chain 2 => [41,-2,-40,-17] => [71,-14,-70,-23] ?? [71,-32,-70,-5]
[[1,5,2,-5],[-2,0,3,-5],[-4,-1,-1,-5],[-5,1,0,-5]],det=-280 [16,2,-15,-9], chain 2 => [41,-32,-6,-33] => [34,65,39,-72] ?? [797,409,120,255]
[[1,5,2,-5],[-2,0,3,-5],[-4,-1,-1,-5],[0,0,1,2]],det=-161 [16,2,-15,-9], chain 2 => [41,-32,-6,-33] => [34,65,39,-72] ?? [797,409,120,-105]
[[1,5,2,-5],[-2,0,3,-5],[1,-2,0,2],[-5,1,0,-5]],det=-26 [16,2,-15,-9], chain 2 => [41,-32,-6,-33] => [34,65,39,-72] ?? [797,409,-240,255]
[[1,5,2,-5],[-2,0,3,-5],[1,-2,0,2],[0,0,1,2]],det=93 [16,2,-15,-9], chain 2 => [41,-32,-6,-33] => [34,65,39,-72] ?? [797,409,-240,-105]
[[1,5,2,-5],[3,-1,4,2],[-4,-1,-1,-5],[-5,1,0,-5]],det=-344 [16,2,-15,-9], chain 2 => [41,-32,-6,-33] => [34,65,39,-72] ?? [797,49,120,255]
[[1,5,2,-5],[3,-1,4,2],[-4,-1,-1,-5],[0,0,1,2]],det=-225 [16,2,-15,-9], chain 2 => [41,-32,-6,-33] => [34,65,39,-72] ?? [797,49,120,-105]
[[1,5,2,-5],[3,-1,4,2],[1,-2,0,2],[-5,1,0,-5]],det=-90 [16,2,-15,-9], chain 2 => [41,-32,-6,-33] => [34,65,39,-72] ?? [797,49,-240,255]
[[1,5,2,-5],[3,-1,4,2],[1,-2,0,2],[0,0,1,2]],det=29 [16,2,-15,-9], chain 2 => [41,-32,-6,-33] => [34,65,39,-72] ?? [797,49,-240,-105]
[[2,-5,-4,3],[0,3,4,0],[1,5,0,1],[-2,-2,1,-3]],det=19 [16,2,-15,-9], chain 2 => [55,-54,17,-24] => [240,-94,-239,87] ?? [2167,-1238,-143,-792]
[[2,-5,-1,2],[3,-3,3,0],[-5,4,-3,-1],[-5,5,-4,0]],det=15 [16,2,-15,-9], chain 2 => [19,-3,-18,-10] => [51,12,-43,-38] ?? [9,-12,-40,-23]
[[2,-5,1,-2],[2,3,1,3],[-3,-1,-4,3],[-1,0,-2,4]],det=-55 [16,2,-15,-9], chain 2 => [25,-4,-17,-22] => [97,-45,-69,-79] ?? [508,-247,-207,-275]
[[2,-5,1,-2],[2,3,1,3],[0,2,-1,4],[-4,-3,-5,3]],det=18 [16,2,-15,-9], chain 2 => [25,-4,-17,-22] => [97,-45,-79,-69] ?? [478,-227,-287,-65]
[[2,-5,1,-2],[2,3,1,3],[0,2,-1,4],[4,2,3,5]],det=-68 [16,2,-15,-9], chain 2 => [25,-4,-17,-22] => [97,-45,-79,-69] ?? [478,-227,-287,-284]
[[2,-5,1,-2],[2,3,1,3],[5,4,4,5],[-1,0,-2,4]],det=102 [16,2,-15,-9], chain 2 => [25,-4,-17,-22] => [97,-45,-69,-79] ?? [508,-247,-366,-275]
[[2,-4,1,-5],[-5,4,-1,-5],[-3,-1,-1,2],[5,3,4,5]],det=544 [16,2,-15,-9], chain 2 => [54,-12,-53,-19] => [198,-170,-135,-73] ?? [1306,-1170,-435,-425]
[[2,-4,1,-2],[-4,-5,-5,-1],[0,3,2,0],[0,-2,4,-5]],det=10 [16,2,-15,-9], chain 2 => [27,10,-24,-19] => [28,-19,-18,-21] ?? [156,94,-93,71]
[[2,-4,1,-2],[-4,-5,-5,-1],[0,3,2,0],[2,3,2,3]],det=-60 [16,2,-15,-9], chain 2 => [27,10,-24,-19] => [28,-19,-18,-21] ?? [156,94,-93,-100]
[[2,-4,1,-2],[-4,-5,-5,-1],[1,1,4,-2],[-1,0,2,-3]],det=70 [16,2,-15,-9], chain 2 => [27,10,-24,-19] => [28,-19,-21,-18] ?? [147,106,-39,-16]
[[2,-4,1,-2],[-4,-5,-5,-1],[1,1,4,-2],[1,5,0,5]],det=-123 [16,2,-15,-9], chain 2 => [27,10,-24,-19] => [28,-19,-21,-18] ?? [147,106,-39,-157]
[[2,-4,1,-2],[-2,-3,-5,3],[0,3,2,0],[0,1,2,-1]],det=12 [16,2,-15,-9], chain 2 => [27,10,-24,-19] => [28,-21,-18,-19] ?? [160,40,-99,-38]
[[2,-4,1,-2],[-2,-3,-5,3],[1,4,2,2],[-1,0,2,-3]],det=81 [16,2,-15,-9], chain 2 => [27,10,-24,-19] => [28,-21,-19,-18] ?? [157,48,-130,-12]
[[2,-4,1,-2],[-2,-3,-5,3],[1,4,2,2],[1,5,0,5]],det=-54 [16,2,-15,-9], chain 2 => [27,10,-24,-19] => [28,-21,-19,-18] ?? [157,48,-130,-167]
[[2,-3,-4,5],[-2,-2,-5,5],[-2,-2,1,-2],[-3,-4,-1,-1]],det=49 [16,2,-15,-9], chain 2 => [41,-6,-33,-32] => [72,-65,-39,-34] ?? [325,11,15,117]
[[2,-3,-2,3],[1,-3,-1,4],[-2,-2,-2,1],[-2,-5,-1,0]],det=-85 [16,2,-15,-9], chain 2 => [29,-11,-15,-27] => [40,-31,-33,12] ?? [275,214,60,108]
[[2,-3,-2,3],[1,-3,-1,4],[-2,-2,-2,1],[3,0,5,0]],det=-68 [16,2,-15,-9], chain 2 => [29,-11,-15,-27] => [40,-31,-33,12] ?? [275,214,60,-45]
[[2,-3,-2,3],[1,-3,-1,4],[3,3,4,1],[-2,-5,-1,0]],det=136 [16,2,-15,-9], chain 2 => [29,-11,-15,-27] => [40,-31,-33,12] ?? [275,214,-93,108]
[[2,-3,-2,3],[1,-3,-1,4],[3,3,4,1],[3,0,5,0]],det=153 [16,2,-15,-9], chain 2 => [29,-11,-15,-27] => [40,-31,-33,12] ?? [275,214,-93,-45]
[[2,-3,-2,4],[-5,0,-2,-4],[3,1,2,3],[1,0,1,2]],det=15 [16,2,-15,-9], chain 2 => [20,-14,-7,-17] => [28,-18,-19,-21] ?? [64,-18,-35,-33]
[[2,-3,-2,4],[-1,4,1,-1],[-1,1,-1,2],[-4,0,-2,-3]],det=52 [16,2,-15,-9], chain 2 => [20,-14,-17,-7] => [88,-86,-31,-25] ?? [396,-438,-193,-215]
[[2,-3,-2,4],[-1,4,1,-1],[-1,1,-1,2],[3,1,5,-2]],det=-66 [16,2,-15,-9], chain 2 => [20,-14,-17,-7] => [88,-86,-31,-25] ?? [396,-438,-193,73]
[[2,-3,-2,4],[3,-1,1,5],[3,1,2,3],[1,0,1,2]],det=-1 [16,2,-15,-9], chain 2 => [20,-14,-7,-17] => [28,-18,-19,-21] ?? [64,-22,-35,-33]
[[2,-3,0,-2],[-2,-4,-1,-1],[-1,1,0,1],[-3,-1,-3,4]],det=-10 [16,2,-15,-9], chain 2 => [44,-16,-23,-41] => [218,40,-101,-211] ?? [738,-284,-389,-1235]
[[2,-3,0,-2],[-1,0,-3,5],[5,1,4,5],[1,3,3,2]],det=-3 [16,2,-15,-9], chain 2 => [44,-16,-23,-41] => [218,-180,-93,-155] ?? [1286,-714,-237,-911]
[[2,-3,1,-2],[-5,-3,-5,0],[-5,1,-4,1],[-5,4,-5,2]],det=33 [16,2,-15,-9], chain 2 => [29,-11,-27,-15] => [94,23,-63,-84] ?? [224,-224,-279,-231]
[[2,-3,1,-2],[-5,-3,-5,0],[-5,1,-4,1],[1,4,2,1]],det=-3 [16,2,-15,-9], chain 2 => [29,-11,-27,-15] => [94,23,-63,-84] ?? [224,-224,-279,-24]
[[2,-3,1,-2],[-5,-3,-5,0],[-1,2,4,-5],[-4,2,0,-5]],det=266 [16,2,-15,-9], chain 2 => [29,-11,-27,-15] => [94,23,-84,-63] ?? [161,-119,-69,-15]
[[2,-3,1,-2],[-5,-3,-5,0],[1,1,3,0],[-5,4,-5,2]],det=60 [16,2,-15,-9], chain 2 => [29,-11,-27,-15] => [94,23,-63,-84] ?? [224,-224,-72,-231]
[[2,-3,1,-2],[-5,-3,-5,0],[1,1,3,0],[1,4,2,1]],det=24 [16,2,-15,-9], chain 2 => [29,-11,-27,-15] => [94,23,-63,-84] ?? [224,-224,-72,-24]
[[2,-3,1,-2],[-5,4,-5,2],[0,0,3,-2],[-5,-3,-5,0]],det=-154 [16,2,-15,-9], chain 2 => [29,-15,-27,-11] => [98,-92,-59,35] ?? [343,-493,-247,81]
[[2,-3,1,-2],[1,-3,2,-1],[-5,1,-4,1],[-5,4,-5,2]],det=0 [16,2,-15,-9], chain 2 => [29,-11,-27,-15] => [94,23,-63,-84] ?? [224,-17,-279,-231]
[[2,-3,1,-2],[1,-3,2,-1],[-5,1,-4,1],[1,4,2,1]],det=-36 [16,2,-15,-9], chain 2 => [29,-11,-27,-15] => [94,23,-63,-84] ?? [224,-17,-279,-24]
[[2,-3,1,-2],[1,-3,2,-1],[-1,2,4,-5],[-4,2,0,-5]],det=171 [16,2,-15,-9], chain 2 => [29,-11,-27,-15] => [94,23,-84,-63] ?? [161,-80,-69,-15]
[[2,-3,1,-2],[1,-3,2,-1],[1,1,3,0],[-5,4,-5,2]],det=27 [16,2,-15,-9], chain 2 => [29,-11,-27,-15] => [94,23,-63,-84] ?? [224,-17,-72,-231]
[[2,-3,1,-2],[1,-3,2,-1],[1,1,3,0],[1,4,2,1]],det=-9 [16,2,-15,-9], chain 2 => [29,-11,-27,-15] => [94,23,-63,-84] ?? [224,-17,-72,-24]
[[2,-3,1,-1],[-2,2,1,-4],[-2,0,-4,5],[-4,4,-1,-3]],det=-24 [16,2,-15,-9], chain 2 => [20,-7,-17,-14] => [58,-15,-42,-49] ?? [168,8,-193,-103]
[[2,-3,1,-1],[-2,2,1,-4],[1,3,2,1],[0,2,0,2]],det=0 [16,2,-15,-9], chain 2 => [20,-7,-17,-14] => [58,-15,-49,-42] ?? [154,-27,-127,-114]
[[2,-3,1,-1],[-1,1,0,0],[-2,0,2,-5],[-1,3,1,-2]],det=-9 [16,2,-15,-9], chain 2 => [20,-14,-17,-7] => [72,-34,-39,-65] ?? [272,-106,103,-83]
[[2,-3,1,-1],[-1,1,0,0],[0,2,-1,4],[-1,3,1,-2]],det=10 [16,2,-15,-9], chain 2 => [20,-14,-17,-7] => [72,-34,-39,-65] ?? [272,-106,-289,-83]
[[2,-3,2,-5],[-2,0,-5,5],[0,-1,-2,5],[1,5,2,4]],det=-126 [16,2,-15,-9], chain 2 => [41,-2,-17,-40] => [254,-197,-164,-163] ?? [1586,-503,-290,-1711]
[[2,-3,2,-5],[-2,3,1,-1],[-5,-5,-5,2],[0,-3,-3,5]],det=114 [16,2,-15,-9], chain 2 => [41,-32,-33,-6] => [142,-205,108,165] ?? [290,-956,105,1116]
[[2,-3,2,-5],[2,-5,3,1],[5,-1,5,4],[-4,5,-5,3]],det=-86 [16,2,-15,-9], chain 2 => [41,-32,-33,-6] => [142,137,48,-177] ?? [854,-434,105,-654]
[[2,-3,2,-5],[3,-1,2,2],[-1,3,-1,5],[4,-3,5,0]],det=26 [16,2,-15,-9], chain 2 => [41,-2,-40,-17] => [93,11,-92,-30] ?? [119,24,-118,-121]
[[2,-2,-5,3],[-3,-2,-2,1],[-3,-3,1,-4],[1,-2,5,1]],det=-495 [16,2,-15,-9], chain 2 => [76,-31,-33,-72] => [163,-172,120,-99] ?? [-227,-484,543,1008]
[[2,-2,-3,-1],[-4,-1,3,-4],[4,1,-2,5],[-4,-3,-1,1]],det=-102 [16,2,-15,-9], chain 2 => [82,-75,51,-64] => [225,156,-169,-218] ?? [863,-691,304,-1417]
[[2,-2,-3,-1],[-4,-1,3,-4],[4,1,-2,5],[-1,3,3,1]],det=22 [16,2,-15,-9], chain 2 => [82,-75,51,-64] => [225,156,-169,-218] ?? [863,-691,304,-482]
[[2,-2,-3,3],[-2,1,3,-5],[-4,-4,0,-5],[-4,3,1,-4]],det=-122 [16,2,-15,-9], chain 2 => [46,-30,-27,-37] => [122,-18,121,-153] ?? [-542,866,349,191]
[[2,-2,-2,2],[-2,4,0,-4],[-4,2,-3,2],[-2,2,2,-3]],det=36 [16,2,-15,-9], chain 2 => [40,12,-33,-31] => [60,92,-99,-29] ?? [76,364,183,-47]
[[2,-2,-2,2],[-2,4,0,-4],[-1,-1,4,-5],[-5,5,-5,4]],det=-204 [16,2,-15,-9], chain 2 => [40,12,-33,-31] => [60,92,-29,-99] ?? [-204,644,227,-91]
[[2,-2,-2,2],[-2,4,0,-4],[-1,-1,4,-5],[-4,-3,-2,-1]],det=-328 [16,2,-15,-9], chain 2 => [40,12,-33,-31] => [60,92,-29,-99] ?? [-204,644,227,-359]
[[2,-2,-1,1],[-4,2,-4,-1],[-4,2,-3,2],[3,-5,3,1]],det=132 [16,2,-15,-9], chain 2 => [34,9,-33,-16] => [67,30,-51,-58] ?? [67,54,-171,-160]
[[2,-2,-1,1],[-4,2,-4,-1],[-2,1,-1,2],[1,-4,1,1]],det=109 [16,2,-15,-9], chain 2 => [34,9,-33,-16] => [67,30,-58,-51] ?? [81,75,-148,-162]
[[2,-2,-1,1],[-4,2,-4,-1],[3,3,4,3],[3,-5,3,1]],det=114 [16,2,-15,-9], chain 2 => [34,9,-33,-16] => [67,30,-51,-58] ?? [67,54,-87,-160]
[[2,-2,-1,1],[3,3,3,0],[-4,2,-3,2],[3,-5,3,1]],det=-210 [16,2,-15,-9], chain 2 => [34,9,-33,-16] => [67,30,-51,-58] ?? [67,138,-171,-160]
[[2,-2,-1,1],[3,3,3,0],[-2,1,-1,2],[1,-4,1,1]],det=-120 [16,2,-15,-9], chain 2 => [34,9,-33,-16] => [67,30,-58,-51] ?? [81,117,-148,-162]
[[2,-2,-1,1],[3,3,3,0],[3,3,4,3],[3,-5,3,1]],det=-228 [16,2,-15,-9], chain 2 => [34,9,-33,-16] => [67,30,-51,-58] ?? [67,138,-87,-160]
[[2,-2,-1,2],[-2,5,0,-2],[1,-4,2,0],[0,-1,-2,5]],det=31 [16,2,-15,-9], chain 2 => [25,-4,-22,-17] => [46,-36,-3,-37] ?? [93,-198,184,-143]
[[2,-2,-1,2],[0,5,3,-2],[0,-2,0,0],[-2,-1,1,-3]],det=-12 [16,2,-15,-9], chain 2 => [25,-17,-4,-22] => [44,-53,34,29] ?? [218,-221,106,-88]
[[2,-2,-1,2],[1,2,4,-4],[-2,-1,-2,2],[0,-1,-2,5]],det=27 [16,2,-15,-9], chain 2 => [25,-4,-22,-17] => [46,-3,-36,-37] ?? [60,44,-91,-110]
[[2,-2,-1,2],[1,2,4,-4],[5,0,5,3],[0,-1,-2,5]],det=19 [16,2,-15,-9], chain 2 => [25,-4,-22,-17] => [46,-3,-36,-37] ?? [60,44,-61,-110]
[[2,-2,-1,2],[4,5,4,4],[-2,0,2,-5],[-1,0,-2,2]],det=27 [16,2,-15,-9], chain 2 => [25,-22,-17,-4] => [103,-94,-64,1] ?? [460,-310,-339,27]
[[2,-2,0,-2],[0,4,0,5],[3,-3,4,2],[-2,1,0,-3]],det=-120 [16,2,-15,-9], chain 2 => [46,-37,-36,-3] => [172,-163,99,-120] ?? [910,-1252,1161,-147]
[[2,-2,0,0],[2,-3,0,5],[-2,1,-3,4],[1,1,0,4]],det=84 [16,2,-15,-9], chain 2 => [28,-19,-21,-18] => [94,23,-84,-63] ?? [142,-196,-165,-135]
[[2,-2,0,0],[2,-3,0,5],[-2,1,-3,4],[2,2,3,1]],det=120 [16,2,-15,-9], chain 2 => [28,-19,-21,-18] => [94,23,-84,-63] ?? [142,-196,-165,-81]
[[2,-2,0,0],[2,-3,0,5],[-1,2,0,1],[1,1,0,4]],det=0 [16,2,-15,-9], chain 2 => [28,-19,-21,-18] => [94,23,-84,-63] ?? [142,-196,-111,-135]
[[2,-2,0,0],[2,-3,0,5],[-1,2,0,1],[2,2,3,1]],det=36 [16,2,-15,-9], chain 2 => [28,-19,-21,-18] => [94,23,-84,-63] ?? [142,-196,-111,-81]
[[2,-2,0,0],[2,-3,0,5],[0,3,3,-2],[1,1,0,4]],det=-84 [16,2,-15,-9], chain 2 => [28,-19,-21,-18] => [94,23,-84,-63] ?? [142,-196,-57,-135]
[[2,-2,0,0],[2,-3,0,5],[0,3,3,-2],[2,2,3,1]],det=-48 [16,2,-15,-9], chain 2 => [28,-19,-21,-18] => [94,23,-84,-63] ?? [142,-196,-57,-81]
[[2,-2,0,0],[3,-2,3,2],[-2,1,-3,4],[1,1,0,4]],det=72 [16,2,-15,-9], chain 2 => [28,-19,-21,-18] => [94,23,-84,-63] ?? [142,-142,-165,-135]
[[2,-2,0,0],[3,-2,3,2],[-2,1,-3,4],[2,2,3,1]],det=108 [16,2,-15,-9], chain 2 => [28,-19,-21,-18] => [94,23,-84,-63] ?? [142,-142,-165,-81]
[[2,-2,0,0],[3,-2,3,2],[-1,2,0,1],[1,1,0,4]],det=-12 [16,2,-15,-9], chain 2 => [28,-19,-21,-18] => [94,23,-84,-63] ?? [142,-142,-111,-135]
[[2,-2,0,0],[3,-2,3,2],[-1,2,0,1],[2,2,3,1]],det=24 [16,2,-15,-9], chain 2 => [28,-19,-21,-18] => [94,23,-84,-63] ?? [142,-142,-111,-81]
[[2,-2,0,0],[3,-2,3,2],[0,3,3,-2],[1,1,0,4]],det=-96 [16,2,-15,-9], chain 2 => [28,-19,-21,-18] => [94,23,-84,-63] ?? [142,-142,-57,-135]
[[2,-2,0,0],[3,-2,3,2],[0,3,3,-2],[2,2,3,1]],det=-60 [16,2,-15,-9], chain 2 => [28,-19,-21,-18] => [94,23,-84,-63] ?? [142,-142,-57,-81]
[[2,-2,0,1],[-4,2,-2,-3],[-2,-5,-4,4],[-3,4,-2,0]],det=-114 [16,2,-15,-9], chain 2 => [19,-3,-18,-10] => [34,-16,9,-33] ?? [67,-87,-156,-184]
[[2,-2,0,1],[-4,2,-2,-3],[-1,2,1,-1],[-5,-4,-4,-2]],det=-20 [16,2,-15,-9], chain 2 => [19,-3,-18,-10] => [34,-16,-33,9] ?? [109,-129,-108,8]
[[2,-2,0,1],[-4,5,-1,-4],[-2,-5,-4,4],[-3,1,-3,1]],det=-57 [16,2,-15,-9], chain 2 => [19,-3,-18,-10] => [34,-33,9,-16] ?? [118,-246,-3,-178]
[[2,-2,0,1],[-4,5,-1,-4],[-1,-1,0,0],[-5,-4,-4,-2]],det=-21 [16,2,-15,-9], chain 2 => [19,-3,-18,-10] => [34,-33,-16,9] ?? [143,-321,-1,8]
[[2,-2,0,1],[-4,5,-1,-4],[1,-5,4,-4],[-1,0,2,-4]],det=25 [16,2,-15,-9], chain 2 => [19,-3,-18,-10] => [34,-33,2,-15] ?? [119,-243,267,30]
[[2,-2,0,1],[-4,5,-1,-4],[1,-5,4,-4],[0,1,-1,3]],det=0 [16,2,-15,-9], chain 2 => [19,-3,-18,-10] => [34,-33,2,-15] ?? [119,-243,267,-80]
[[2,-2,0,1],[-4,5,-1,-4],[1,-2,5,-5],[-1,-3,1,-3]],det=-129 [16,2,-15,-9], chain 2 => [19,-3,-18,-10] => [34,-33,-15,2] ?? [136,-294,15,44]
[[2,-2,0,1],[-4,5,-1,-4],[1,-2,5,-5],[0,-2,-2,4]],det=-60 [16,2,-15,-9], chain 2 => [19,-3,-18,-10] => [34,-33,-15,2] ?? [136,-294,15,104]
[[2,-2,0,1],[-4,5,-1,-4],[2,-4,1,3],[-1,0,2,-4]],det=15 [16,2,-15,-9], chain 2 => [19,-3,-18,-10] => [34,-33,2,-15] ?? [119,-243,157,30]
[[2,-2,0,1],[-4,5,-1,-4],[2,-4,1,3],[0,1,-1,3]],det=-10 [16,2,-15,-9], chain 2 => [19,-3,-18,-10] => [34,-33,2,-15] ?? [119,-243,157,-80]
[[2,-2,0,1],[-4,5,-1,-4],[2,-1,2,2],[-1,-3,1,-3]],det=-45 [16,2,-15,-9], chain 2 => [19,-3,-18,-10] => [34,-33,-15,2] ?? [136,-294,75,44]
[[2,-2,0,1],[-4,5,-1,-4],[2,-1,2,2],[0,-2,-2,4]],det=24 [16,2,-15,-9], chain 2 => [19,-3,-18,-10] => [34,-33,-15,2] ?? [136,-294,75,104]
[[2,-2,0,1],[-3,3,-5,4],[-2,-5,-4,4],[-3,4,-2,0]],det=43 [16,2,-15,-9], chain 2 => [19,-3,-18,-10] => [34,-16,9,-33] ?? [67,-327,-156,-184]
[[2,-2,0,1],[-3,3,-5,4],[-1,2,1,-1],[-5,-4,-4,-2]],det=15 [16,2,-15,-9], chain 2 => [19,-3,-18,-10] => [34,-16,-33,9] ?? [109,51,-108,8]
[[2,-2,0,1],[-1,-1,-1,0],[-1,2,1,-1],[-1,0,2,-4]],det=5 [16,2,-15,-9], chain 2 => [19,-3,-18,-10] => [34,2,-33,-15] ?? [49,-3,-48,-40]
[[2,-2,0,1],[-1,-1,-1,0],[-1,2,1,-1],[0,1,-1,3]],det=-5 [16,2,-15,-9], chain 2 => [19,-3,-18,-10] => [34,2,-33,-15] ?? [49,-3,-48,-10]
[[2,-2,0,1],[-1,-1,-1,0],[1,-2,5,-5],[-3,4,-2,0]],det=19 [16,2,-15,-9], chain 2 => [19,-3,-18,-10] => [34,2,-15,-33] ?? [31,-21,120,-64]
[[2,-2,0,1],[-1,-1,-1,0],[2,-1,2,2],[-3,4,-2,0]],det=-23 [16,2,-15,-9], chain 2 => [19,-3,-18,-10] => [34,2,-15,-33] ?? [31,-21,-30,-64]
[[2,-2,0,1],[-1,2,0,-1],[-1,2,1,-1],[-1,-3,1,-3]],det=-9 [16,2,-15,-9], chain 2 => [19,-3,-18,-10] => [34,-15,-33,2] ?? [100,-66,-99,-28]
[[2,-2,0,1],[-1,2,0,-1],[-1,2,1,-1],[0,-2,-2,4]],det=6 [16,2,-15,-9], chain 2 => [19,-3,-18,-10] => [34,-15,-33,2] ?? [100,-66,-99,104]
[[2,-2,0,1],[-1,2,0,-1],[1,-5,4,-4],[-3,4,-2,0]],det=-10 [16,2,-15,-9], chain 2 => [19,-3,-18,-10] => [34,-15,2,-33] ?? [65,-31,249,-166]
[[2,-2,0,1],[-1,2,0,-1],[2,-4,1,3],[-3,4,-2,0]],det=8 [16,2,-15,-9], chain 2 => [19,-3,-18,-10] => [34,-15,2,-33] ?? [65,-31,31,-166]
[[2,-2,0,1],[2,-3,3,-1],[-4,-1,-2,-2],[-5,1,-2,-5]],det=-93 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [55,17,-24,-54] ?? [22,41,-81,60]
[[2,-2,0,1],[2,-3,3,-1],[-4,-1,-2,-2],[4,4,5,0]],det=-32 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [55,17,-24,-54] ?? [22,41,-81,168]
[[2,-2,0,1],[2,-3,3,-1],[-1,2,1,-1],[1,1,2,-1]],det=4 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [55,17,-54,-24] ?? [52,-79,-51,-12]
[[2,-2,0,1],[2,-3,3,-1],[5,2,5,3],[-5,1,-2,-5]],det=92 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [55,17,-24,-54] ?? [22,41,27,60]
[[2,-2,0,1],[2,-3,3,-1],[5,2,5,3],[4,4,5,0]],det=153 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [55,17,-24,-54] ?? [22,41,27,168]
[[2,-2,2,-4],[-5,-4,-3,-5],[-4,-4,-5,2],[-4,5,-2,1]],det=-140 [16,2,-15,-9], chain 2 => [34,2,-15,-33] => [166,32,-135,-129] ?? [514,92,-375,-363]
[[2,-2,2,-4],[-5,-4,-3,-5],[-1,-4,-3,4],[1,-2,0,5]],det=258 [16,2,-15,-9], chain 2 => [34,2,-15,-33] => [166,32,-129,-135] ?? [550,104,-447,-573]
[[2,-2,2,-4],[-5,-4,-3,-5],[0,0,-2,5],[-4,5,-2,1]],det=-112 [16,2,-15,-9], chain 2 => [34,2,-15,-33] => [166,32,-135,-129] ?? [514,92,-375,-363]
[[2,-2,2,-4],[-5,-2,-1,-4],[-1,-1,1,-2],[1,-1,2,-2]],det=0 [16,2,-15,-9], chain 2 => [34,-33,-15,2] => [96,-97,-20,33] ?? [214,-398,-85,87]
[[2,-2,2,-4],[-1,0,0,-2],[-4,-4,-5,2],[-4,5,-2,1]],det=-42 [16,2,-15,-9], chain 2 => [34,2,-15,-33] => [166,32,-135,-129] ?? [514,92,-375,-363]
[[2,-2,2,-4],[-1,0,0,-2],[-1,-4,-3,4],[1,-2,0,5]],det=66 [16,2,-15,-9], chain 2 => [34,2,-15,-33] => [166,32,-129,-135] ?? [550,104,-447,-573]
[[2,-2,2,-4],[-1,0,0,-2],[0,0,-2,5],[-4,5,-2,1]],det=-14 [16,2,-15,-9], chain 2 => [34,2,-15,-33] => [166,32,-135,-129] ?? [514,92,-375,-363]
[[2,-2,2,-4],[3,4,3,1],[-4,-4,-5,2],[-4,5,-2,1]],det=56 [16,2,-15,-9], chain 2 => [34,2,-15,-33] => [166,32,-135,-129] ?? [514,92,-375,-363]
[[2,-2,2,-4],[3,4,3,1],[-1,-4,-3,4],[1,-2,0,5]],det=-126 [16,2,-15,-9], chain 2 => [34,2,-15,-33] => [166,32,-129,-135] ?? [550,104,-447,-573]
[[2,-2,2,-4],[3,4,3,1],[0,0,-2,5],[-4,5,-2,1]],det=84 [16,2,-15,-9], chain 2 => [34,2,-15,-33] => [166,32,-135,-129] ?? [514,92,-375,-363]
[[2,-2,2,-3],[0,1,-2,4],[-3,-1,-4,3],[1,-1,0,4]],det=-70 [16,2,-15,-9], chain 2 => [25,-4,-17,-22] => [90,-58,-69,-59] ?? [335,-156,-113,-88]
[[2,-2,2,-3],[0,1,-2,4],[2,1,1,4],[-4,-3,-5,3]],det=100 [16,2,-15,-9], chain 2 => [25,-4,-17,-22] => [90,-58,-59,-69] ?? [385,-216,-213,-98]
[[2,-2,2,-3],[0,1,-2,4],[2,1,1,4],[4,2,3,5]],det=-20 [16,2,-15,-9], chain 2 => [25,-4,-17,-22] => [90,-58,-59,-69] ?? [385,-216,-213,-278]
[[2,-2,2,-3],[0,1,-2,4],[5,4,4,5],[1,-1,0,4]],det=140 [16,2,-15,-9], chain 2 => [25,-4,-17,-22] => [90,-58,-69,-59] ?? [335,-156,-353,-88]
[[2,-2,2,-3],[1,-1,0,4],[4,0,3,4],[2,3,4,-2]],det=51 [16,2,-15,-9], chain 2 => [25,-22,-17,-4] => [72,31,33,-76] ?? [376,-263,83,521]
[[2,-2,3,-5],[-4,0,-3,0],[-2,1,-3,4],[-4,2,-4,2]],det=-12 [16,2,-15,-9], chain 2 => [28,-19,-21,-18] => [121,-49,-84,-102] ?? [598,-232,-447,-450]
[[2,-2,3,-5],[-4,0,-3,0],[-2,1,-3,4],[-3,3,-1,-1]],det=-9 [16,2,-15,-9], chain 2 => [28,-19,-21,-18] => [121,-49,-84,-102] ?? [598,-232,-447,-324]
[[2,-2,3,-5],[-4,0,-3,0],[-2,1,-3,4],[-2,4,2,-4]],det=-6 [16,2,-15,-9], chain 2 => [28,-19,-21,-18] => [121,-49,-84,-102] ?? [598,-232,-447,-198]
[[2,-2,3,-5],[-4,0,-3,0],[-1,2,0,1],[-4,2,-4,2]],det=38 [16,2,-15,-9], chain 2 => [28,-19,-21,-18] => [121,-49,-84,-102] ?? [598,-232,-321,-450]
[[2,-2,3,-5],[-4,0,-3,0],[-1,2,0,1],[-3,3,-1,-1]],det=41 [16,2,-15,-9], chain 2 => [28,-19,-21,-18] => [121,-49,-84,-102] ?? [598,-232,-321,-324]
[[2,-2,3,-5],[-4,0,-3,0],[-1,2,0,1],[-2,4,2,-4]],det=44 [16,2,-15,-9], chain 2 => [28,-19,-21,-18] => [121,-49,-84,-102] ?? [598,-232,-321,-198]
[[2,-2,3,-5],[-4,0,-3,0],[0,3,3,-2],[-4,2,-4,2]],det=88 [16,2,-15,-9], chain 2 => [28,-19,-21,-18] => [121,-49,-84,-102] ?? [598,-232,-195,-450]
[[2,-2,3,-5],[-4,0,-3,0],[0,3,3,-2],[-3,3,-1,-1]],det=91 [16,2,-15,-9], chain 2 => [28,-19,-21,-18] => [121,-49,-84,-102] ?? [598,-232,-195,-324]
[[2,-2,3,-5],[-4,0,-3,0],[0,3,3,-2],[-2,4,2,-4]],det=94 [16,2,-15,-9], chain 2 => [28,-19,-21,-18] => [121,-49,-84,-102] ?? [598,-232,-195,-198]
[[2,-2,3,-5],[-3,1,0,-3],[-2,1,-3,4],[-4,2,-4,2]],det=-20 [16,2,-15,-9], chain 2 => [28,-19,-21,-18] => [121,-49,-84,-102] ?? [598,-106,-447,-450]
[[2,-2,3,-5],[-3,1,0,-3],[-2,1,-3,4],[-3,3,-1,-1]],det=-17 [16,2,-15,-9], chain 2 => [28,-19,-21,-18] => [121,-49,-84,-102] ?? [598,-106,-447,-324]
[[2,-2,3,-5],[-3,1,0,-3],[-2,1,-3,4],[-2,4,2,-4]],det=-14 [16,2,-15,-9], chain 2 => [28,-19,-21,-18] => [121,-49,-84,-102] ?? [598,-106,-447,-198]
[[2,-2,3,-5],[-3,1,0,-3],[-1,2,0,1],[-4,2,-4,2]],det=30 [16,2,-15,-9], chain 2 => [28,-19,-21,-18] => [121,-49,-84,-102] ?? [598,-106,-321,-450]
[[2,-2,3,-5],[-3,1,0,-3],[-1,2,0,1],[-3,3,-1,-1]],det=33 [16,2,-15,-9], chain 2 => [28,-19,-21,-18] => [121,-49,-84,-102] ?? [598,-106,-321,-324]
[[2,-2,3,-5],[-3,1,0,-3],[-1,2,0,1],[-2,4,2,-4]],det=36 [16,2,-15,-9], chain 2 => [28,-19,-21,-18] => [121,-49,-84,-102] ?? [598,-106,-321,-198]
[[2,-2,3,-5],[-3,1,0,-3],[0,3,3,-2],[-4,2,-4,2]],det=80 [16,2,-15,-9], chain 2 => [28,-19,-21,-18] => [121,-49,-84,-102] ?? [598,-106,-195,-450]
[[2,-2,3,-5],[-3,1,0,-3],[0,3,3,-2],[-3,3,-1,-1]],det=83 [16,2,-15,-9], chain 2 => [28,-19,-21,-18] => [121,-49,-84,-102] ?? [598,-106,-195,-324]
[[2,-2,3,-5],[-3,1,0,-3],[0,3,3,-2],[-2,4,2,-4]],det=86 [16,2,-15,-9], chain 2 => [28,-19,-21,-18] => [121,-49,-84,-102] ?? [598,-106,-195,-198]
[[2,-2,3,-4],[-3,0,-5,5],[3,3,2,3],[1,5,3,-1]],det=0 [16,2,-15,-9], chain 2 => [19,-18,-3,-10] => [105,-92,-33,-70] ?? [575,-500,-237,-384]
[[2,-2,3,-4],[-2,1,-2,2],[3,3,2,3],[0,4,0,2]],det=18 [16,2,-15,-9], chain 2 => [19,-18,-3,-10] => [105,-70,-33,-92] ?? [619,-398,-237,-464]
[[2,-2,3,-4],[2,3,2,2],[-2,-5,-1,-1],[-5,-2,-3,-4]],det=-139 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [16,-34,33,-9] ?? [235,-22,114,-75]
[[2,-2,3,-4],[2,3,2,2],[-2,-5,-1,-1],[-3,3,-5,4]],det=5 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [16,-34,33,-9] ?? [235,-22,114,-351]
[[2,-2,3,-4],[2,3,2,2],[-2,-5,-1,-1],[4,1,4,1]],det=52 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [16,-34,33,-9] ?? [235,-22,114,153]
[[2,-2,3,-4],[2,3,2,2],[-1,-1,0,0],[3,-3,3,0]],det=72 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [16,-34,-9,33] ?? [-59,-22,18,123]
[[2,-1,-1,-1],[-5,4,-1,-5],[2,0,1,4],[-4,-2,-1,0]],det=84 [16,2,-15,-9], chain 2 => [54,-12,-19,-53] => [192,-34,-123,-173] ?? [714,-108,-431,-577]
[[2,-1,2,-3],[2,-5,-1,3],[-5,1,-3,-1],[0,-2,1,0]],det=-140 [16,2,-15,-9], chain 2 => [27,10,-24,-19] => [53,-29,-34,-44] ?? [199,153,-148,24]
[[2,-1,2,-3],[2,-5,-1,3],[-1,-4,3,-5],[-4,3,-5,4]],det=215 [16,2,-15,-9], chain 2 => [27,10,-24,-19] => [53,-29,-44,-34] ?? [149,193,101,-215]
[[2,-1,2,-3],[2,-5,-1,3],[-1,5,3,-3],[4,-1,3,4]],det=-89 [16,2,-15,-9], chain 2 => [27,10,-24,-19] => [53,-29,8,-50] ?? [301,93,-24,65]
[[2,-1,2,-3],[2,-5,-1,3],[1,1,1,3],[-4,3,-5,4]],det=-99 [16,2,-15,-9], chain 2 => [27,10,-24,-19] => [53,-29,-44,-34] ?? [149,193,-122,-215]
[[2,0,-3,4],[-1,-1,-2,2],[-4,-5,-1,-3],[-2,-2,1,-2]],det=-24 [16,2,-15,-9], chain 2 => [41,-6,-32,-33] => [46,-37,-3,-36] ?? [-43,-75,112,51]
[[2,0,-3,4],[-1,-1,-2,2],[1,-3,4,-2],[-2,-2,1,-2]],det=32 [16,2,-15,-9], chain 2 => [41,-6,-32,-33] => [46,-37,-3,-36] ?? [-43,-75,217,51]
[[2,0,-3,4],[1,-5,-1,3],[-3,0,2,-5],[-1,1,3,-3]],det=-4 [16,2,-15,-9], chain 2 => [41,-6,-33,-32] => [53,8,-29,-50] ?? [-7,-108,33,18]
[[2,0,-3,4],[4,-5,1,5],[-4,1,1,-5],[-2,-2,1,-2]],det=0 [16,2,-15,-9], chain 2 => [41,-6,-32,-33] => [46,-3,-37,-36] ?? [59,-18,-44,-51]
[[2,0,-3,4],[4,1,3,3],[-4,-5,-1,-3],[-2,-2,1,-2]],det=32 [16,2,-15,-9], chain 2 => [41,-6,-32,-33] => [46,-37,-3,-36] ?? [-43,30,112,51]
[[2,0,-3,4],[4,1,3,3],[1,-3,4,-2],[-2,-2,1,-2]],det=88 [16,2,-15,-9], chain 2 => [41,-6,-32,-33] => [46,-37,-3,-36] ?? [-43,30,217,51]
[[2,0,-1,2],[-5,-3,-2,-5],[-5,-2,-2,-3],[-1,2,-1,2]],det=-27 [16,2,-15,-9], chain 2 => [29,-11,-27,-15] => [55,17,-24,-54] ?? [26,-8,-99,-105]
[[2,0,-1,2],[-5,-3,-2,-5],[-3,0,1,-4],[-3,0,-4,3]],det=51 [16,2,-15,-9], chain 2 => [29,-11,-27,-15] => [55,17,-54,-24] ?? [116,-98,-123,-21]
[[2,0,-1,2],[-5,-3,-2,-5],[-3,0,1,-4],[3,0,3,2]],det=-30 [16,2,-15,-9], chain 2 => [29,-11,-27,-15] => [55,17,-54,-24] ?? [116,-98,-123,-45]
[[2,0,-1,2],[-5,-3,-2,-5],[-2,1,-1,0],[-2,-5,-1,0]],det=108 [16,2,-15,-9], chain 2 => [29,-11,-15,-27] => [19,53,-54,12] ?? [116,-206,69,-249]
[[2,0,-1,2],[-5,-3,-2,-5],[-2,1,-1,0],[3,0,5,0]],det=15 [16,2,-15,-9], chain 2 => [29,-11,-15,-27] => [19,53,-54,12] ?? [116,-206,69,-213]
[[2,0,-1,2],[-5,-3,-2,-5],[1,-2,5,-4],[-1,2,-1,2]],det=-18 [16,2,-15,-9], chain 2 => [29,-11,-27,-15] => [55,17,-24,-54] ?? [26,-8,117,-105]
[[2,0,-1,2],[0,2,4,-5],[-2,1,-1,0],[-2,-5,-1,0]],det=24 [16,2,-15,-9], chain 2 => [29,-11,-15,-27] => [19,53,-54,12] ?? [116,-170,69,-249]
[[2,0,-1,2],[0,2,4,-5],[-2,1,-1,0],[3,0,5,0]],det=-69 [16,2,-15,-9], chain 2 => [29,-11,-15,-27] => [19,53,-54,12] ?? [116,-170,69,-213]
[[2,0,1,-4],[-3,4,-5,3],[-1,4,4,-2],[-4,4,0,-3]],det=-468 [16,2,-15,-9], chain 2 => [53,8,-50,-29] => [172,36,-163,-93] ?? [553,164,-494,-265]
[[2,0,1,-4],[-3,4,-5,3],[-1,4,4,-2],[-3,2,-1,0]],det=-270 [16,2,-15,-9], chain 2 => [53,8,-50,-29] => [172,36,-163,-93] ?? [553,164,-494,-281]
[[2,0,1,-4],[-3,4,-5,3],[-1,4,4,-2],[-2,0,-2,3]],det=-72 [16,2,-15,-9], chain 2 => [53,8,-50,-29] => [172,36,-163,-93] ?? [553,164,-494,-297]
[[2,0,1,-4],[-3,4,-5,3],[-1,4,4,-2],[5,1,5,4]],det=971 [16,2,-15,-9], chain 2 => [53,8,-50,-29] => [172,36,-163,-93] ?? [553,164,-494,-291]
[[2,0,1,-4],[-3,4,-5,3],[0,2,3,1],[-4,4,0,-3]],det=-414 [16,2,-15,-9], chain 2 => [53,8,-50,-29] => [172,36,-163,-93] ?? [553,164,-510,-265]
[[2,0,1,-4],[-3,4,-5,3],[0,2,3,1],[-3,2,-1,0]],det=-216 [16,2,-15,-9], chain 2 => [53,8,-50,-29] => [172,36,-163,-93] ?? [553,164,-510,-281]
[[2,0,1,-4],[-3,4,-5,3],[0,2,3,1],[-2,0,-2,3]],det=-18 [16,2,-15,-9], chain 2 => [53,8,-50,-29] => [172,36,-163,-93] ?? [553,164,-510,-297]
[[2,0,1,-4],[-3,4,-5,3],[0,2,3,1],[5,1,5,4]],det=493 [16,2,-15,-9], chain 2 => [53,8,-50,-29] => [172,36,-163,-93] ?? [553,164,-510,-291]
[[2,0,1,-4],[-3,4,-5,3],[1,0,2,4],[-4,4,0,-3]],det=-360 [16,2,-15,-9], chain 2 => [53,8,-50,-29] => [172,36,-163,-93] ?? [553,164,-526,-265]
[[2,0,1,-4],[-3,4,-5,3],[1,0,2,4],[-3,2,-1,0]],det=-162 [16,2,-15,-9], chain 2 => [53,8,-50,-29] => [172,36,-163,-93] ?? [553,164,-526,-281]
[[2,0,1,-4],[-3,4,-5,3],[1,0,2,4],[-2,0,-2,3]],det=36 [16,2,-15,-9], chain 2 => [53,8,-50,-29] => [172,36,-163,-93] ?? [553,164,-526,-297]
[[2,0,1,-4],[-3,4,-5,3],[1,0,2,4],[5,1,5,4]],det=15 [16,2,-15,-9], chain 2 => [53,8,-50,-29] => [172,36,-163,-93] ?? [553,164,-526,-291]
[[2,0,1,-4],[4,5,2,4],[-1,4,4,-2],[-4,4,0,-3]],det=-655 [16,2,-15,-9], chain 2 => [53,8,-50,-29] => [172,36,-163,-93] ?? [553,170,-494,-265]
[[2,0,1,-4],[4,5,2,4],[-1,4,4,-2],[-3,2,-1,0]],det=-418 [16,2,-15,-9], chain 2 => [53,8,-50,-29] => [172,36,-163,-93] ?? [553,170,-494,-281]
[[2,0,1,-4],[4,5,2,4],[-1,4,4,-2],[-2,0,-2,3]],det=-181 [16,2,-15,-9], chain 2 => [53,8,-50,-29] => [172,36,-163,-93] ?? [553,170,-494,-297]
[[2,0,1,-4],[4,5,2,4],[-1,4,4,-2],[5,1,5,4]],det=862 [16,2,-15,-9], chain 2 => [53,8,-50,-29] => [172,36,-163,-93] ?? [553,170,-494,-291]
[[2,0,1,-4],[4,5,2,4],[0,2,3,1],[-4,4,0,-3]],det=-542 [16,2,-15,-9], chain 2 => [53,8,-50,-29] => [172,36,-163,-93] ?? [553,170,-510,-265]
[[2,0,1,-4],[4,5,2,4],[0,2,3,1],[-3,2,-1,0]],det=-305 [16,2,-15,-9], chain 2 => [53,8,-50,-29] => [172,36,-163,-93] ?? [553,170,-510,-281]
[[2,0,1,-4],[4,5,2,4],[0,2,3,1],[-2,0,-2,3]],det=-68 [16,2,-15,-9], chain 2 => [53,8,-50,-29] => [172,36,-163,-93] ?? [553,170,-510,-297]
[[2,0,1,-4],[4,5,2,4],[0,2,3,1],[5,1,5,4]],det=443 [16,2,-15,-9], chain 2 => [53,8,-50,-29] => [172,36,-163,-93] ?? [553,170,-510,-291]
[[2,0,1,-4],[4,5,2,4],[1,0,2,4],[-4,4,0,-3]],det=-429 [16,2,-15,-9], chain 2 => [53,8,-50,-29] => [172,36,-163,-93] ?? [553,170,-526,-265]
[[2,0,1,-4],[4,5,2,4],[1,0,2,4],[-3,2,-1,0]],det=-192 [16,2,-15,-9], chain 2 => [53,8,-50,-29] => [172,36,-163,-93] ?? [553,170,-526,-281]
[[2,0,1,-4],[4,5,2,4],[1,0,2,4],[-2,0,-2,3]],det=45 [16,2,-15,-9], chain 2 => [53,8,-50,-29] => [172,36,-163,-93] ?? [553,170,-526,-297]
[[2,0,1,-4],[4,5,2,4],[1,0,2,4],[5,1,5,4]],det=24 [16,2,-15,-9], chain 2 => [53,8,-50,-29] => [172,36,-163,-93] ?? [553,170,-526,-291]
[[2,0,2,-3],[4,-3,4,1],[-4,2,-3,0],[-4,5,0,-3]],det=-48 [16,2,-15,-9], chain 2 => [29,-11,-15,-27] => [109,62,-93,-90] ?? [302,-212,-33,144]
[[2,0,2,-2],[-5,0,-5,1],[1,-4,1,0],[3,-1,3,2]],det=0 [16,2,-15,-9], chain 2 => [20,-14,-7,-17] => [60,-82,69,19] ?? [220,-626,457,507]
[[2,0,2,-2],[-2,-1,0,-3],[2,-2,0,5],[1,0,-1,5]],det=4 [16,2,-15,-9], chain 2 => [20,-7,-17,-14] => [34,9,-16,-33] ?? [102,22,-115,-115]
[[2,0,2,-2],[-1,-5,0,-1],[-4,-3,-3,-2],[1,3,0,4]],det=4 [16,2,-15,-9], chain 2 => [20,-17,-7,-14] => [54,79,20,-87] ?? [322,-362,-339,-57]
[[2,0,2,-2],[-1,-5,1,-3],[-5,3,-2,-3],[3,-5,3,0]],det=-86 [16,2,-15,-9], chain 2 => [20,-14,-17,-7] => [20,54,-87,79] ?? [-292,-614,-1,-471]
[[2,0,2,-2],[-1,-5,1,-3],[2,4,5,-2],[3,-5,3,0]],det=-258 [16,2,-15,-9], chain 2 => [20,-14,-17,-7] => [20,54,-87,79] ?? [-292,-614,-337,-471]
[[2,0,2,-2],[-1,4,3,-4],[1,-1,-1,4],[2,1,2,2]],det=-12 [16,2,-15,-9], chain 2 => [20,-17,-7,-14] => [54,-53,-12,-19] ?? [122,-226,43,-7]
[[2,0,2,-2],[2,1,2,2],[1,2,0,3],[-1,-5,-3,4]],det=-62 [16,2,-15,-9], chain 2 => [20,-14,-7,-17] => [60,-22,-59,3] ?? [-4,-14,25,239]
[[2,0,2,-2],[2,1,2,2],[1,2,0,3],[-1,1,2,-3]],det=40 [16,2,-15,-9], chain 2 => [20,-14,-7,-17] => [60,-22,-59,3] ?? [-4,-14,25,-209]
[[2,0,2,-2],[3,-5,3,0],[-1,-5,0,-1],[-5,3,-4,0]],det=-18 [16,2,-15,-9], chain 2 => [20,-7,-17,-14] => [34,44,29,-53] ?? [232,-31,-201,-154]
[[2,0,2,-2],[3,-5,3,0],[-1,-5,0,-1],[2,4,3,1]],det=-104 [16,2,-15,-9], chain 2 => [20,-7,-17,-14] => [34,44,29,-53] ?? [232,-31,-201,278]
[[2,0,2,-2],[3,-5,3,0],[0,2,-1,4],[1,-3,4,-4]],det=108 [16,2,-15,-9], chain 2 => [20,-7,-17,-14] => [34,44,-53,29] ?? [-96,-277,257,-426]
[[2,0,2,-2],[3,5,3,3],[1,-4,1,0],[3,-1,3,2]],det=0 [16,2,-15,-9], chain 2 => [20,-14,-7,-17] => [60,-82,69,19] ?? [220,34,457,507]
[[2,1,-4,2],[-1,-3,3,-4],[3,3,4,3],[-3,0,4,-4]],det=161 [16,2,-15,-9], chain 2 => [76,-31,-33,-72] => [109,206,-213,-72] ?? [1132,-1078,-123,-891]
[[2,1,-4,3],[-4,-1,-2,2],[-2,1,-1,4],[-2,-4,-3,3]],det=234 [16,2,-15,-9], chain 2 => [67,-54,-51,-22] => [218,-156,-225,169] ?? [1687,72,309,1370]
[[2,1,-3,5],[-3,0,-1,0],[-2,-2,1,-4],[-1,0,0,-2]],det=28 [16,2,-15,-9], chain 2 => [34,-33,-15,2] => [90,-87,-25,-38] ?? [-22,-245,121,-14]
[[2,1,-3,5],[-2,4,-1,-2],[-2,-5,0,-1],[-5,2,-4,0]],det=-102 [16,2,-15,-9], chain 2 => [34,9,-33,-16] => [96,33,-97,-20] ?? [416,77,-337,-26]
[[2,1,-3,5],[-2,4,-1,-2],[-2,-5,0,-1],[2,3,3,1]],det=-164 [16,2,-15,-9], chain 2 => [34,9,-33,-16] => [96,33,-97,-20] ?? [416,77,-337,-20]
[[2,1,-2,2],[-1,-1,-1,3],[1,-1,1,4],[-1,-1,3,-4]],det=20 [16,2,-15,-9], chain 2 => [46,-30,-37,-27] => [82,-60,-69,-19] ?? [204,-10,-3,-153]
[[2,1,-2,2],[4,2,4,5],[1,-2,2,2],[-2,1,0,-3]],det=-10 [16,2,-15,-9], chain 2 => [46,-37,-36,-3] => [121,-49,42,-120] ?? [-131,-46,63,69]
[[2,1,-2,2],[4,2,4,5],[1,1,3,1],[-4,2,-5,2]],det=-89 [16,2,-15,-9], chain 2 => [46,-37,-36,-3] => [121,-49,-102,-84] ?? [229,-442,-318,-240]
[[2,1,-1,-3],[-4,-4,-3,5],[3,3,4,3],[-1,-3,0,1]],det=150 [16,2,-15,-9], chain 2 => [76,-72,-33,-31] => [206,-72,-213,109] ?? [226,648,-123,119]
[[2,1,-1,1],[-3,-2,1,-4],[1,-5,5,-4],[1,1,-2,4]],det=-57 [16,2,-15,-9], chain 2 => [40,-31,-33,12] => [94,-139,-18,123] ?? [190,-514,207,483]
[[2,1,-1,1],[-2,4,0,-4],[-5,4,-2,-1],[4,-4,4,3]],det=-176 [16,2,-15,-9], chain 2 => [40,12,-33,-31] => [94,92,-55,-113] ?? [222,632,121,-551]
[[2,1,-1,1],[5,-1,5,-1],[0,4,2,1],[0,0,1,2]],det=-169 [16,2,-15,-9], chain 2 => [40,12,-31,-33] => [90,66,-47,-97] ?? [196,246,73,-241]
[[2,1,0,0],[-2,1,-1,0],[0,0,1,2],[-5,-1,-5,-1]],det=30 [16,2,-15,-9], chain 2 => [34,-15,-33,2] => [53,-50,-29,8] ?? [56,-127,-13,-78]
[[2,1,0,0],[-2,1,-1,0],[0,0,1,2],[1,2,0,2]],det=2 [16,2,-15,-9], chain 2 => [34,-15,-33,2] => [53,-50,-29,8] ?? [56,-127,-13,-31]
[[2,1,0,0],[1,2,3,-3],[-5,-5,-5,0],[-3,0,2,-5]],det=-15 [16,2,-15,-9], chain 2 => [34,2,-15,-33] => [70,92,-105,33] ?? [232,-160,-285,-585]
[[2,1,0,0],[1,2,3,-3],[-5,-5,-5,0],[1,4,5,-2]],det=-30 [16,2,-15,-9], chain 2 => [34,2,-15,-33] => [70,92,-105,33] ?? [232,-160,-285,-153]
[[2,1,0,0],[1,2,3,-3],[-4,2,0,-5],[0,-3,0,3]],det=18 [16,2,-15,-9], chain 2 => [34,2,-15,-33] => [70,92,33,-105] ?? [232,668,429,-591]
[[2,1,0,0],[1,2,3,-3],[-1,-1,-2,3],[-3,0,2,-5]],det=12 [16,2,-15,-9], chain 2 => [34,2,-15,-33] => [70,92,-105,33] ?? [232,-160,147,-585]
[[2,1,0,0],[1,2,3,-3],[-1,-1,-2,3],[1,4,5,-2]],det=-3 [16,2,-15,-9], chain 2 => [34,2,-15,-33] => [70,92,-105,33] ?? [232,-160,147,-153]
[[2,1,0,0],[1,2,3,-3],[4,-5,4,1],[0,-3,0,3]],det=72 [16,2,-15,-9], chain 2 => [34,2,-15,-33] => [70,92,33,-105] ?? [232,668,-153,-591]
[[2,1,0,0],[4,4,4,3],[0,0,1,2],[-5,-1,-5,-1]],det=51 [16,2,-15,-9], chain 2 => [34,-15,-33,2] => [53,-50,-29,8] ?? [56,-80,-13,-78]
[[2,1,0,0],[4,4,4,3],[0,0,1,2],[1,2,0,2]],det=23 [16,2,-15,-9], chain 2 => [34,-15,-33,2] => [53,-50,-29,8] ?? [56,-80,-13,-31]
[[2,1,0,1],[-1,0,-2,2],[-4,0,-1,-3],[-2,-3,-2,1]],det=-26 [16,2,-15,-9], chain 2 => [25,-4,-22,-17] => [29,-15,-27,-11] ?? [32,3,-56,30]
[[2,1,0,1],[-1,0,-2,2],[-4,0,-1,-3],[5,-2,5,2]],det=11 [16,2,-15,-9], chain 2 => [25,-4,-22,-17] => [29,-15,-27,-11] ?? [32,3,-56,18]
[[2,1,0,1],[0,-2,-3,5],[-4,0,-1,-3],[-3,-1,-1,-2]],det=-16 [16,2,-15,-9], chain 2 => [25,-4,-22,-17] => [29,-11,-27,-15] ?? [32,28,-44,-19]
[[2,1,1,-3],[-3,0,-2,2],[3,0,4,-1],[1,-4,0,5]],det=0 [16,2,-15,-9], chain 2 => [46,-36,-3,-37] => [164,-206,163,5] ?? [270,-808,1139,1013]
[[2,1,1,-1],[0,-2,-2,5],[-5,-2,-5,1],[-4,-1,0,-5]],det=-55 [16,2,-15,-9], chain 2 => [28,-19,-18,-21] => [40,-31,-33,12] ?? [4,188,39,-189]
[[2,1,1,-1],[0,-2,-2,5],[-5,-2,-5,1],[4,-2,3,4]],det=-53 [16,2,-15,-9], chain 2 => [28,-19,-18,-21] => [40,-31,-33,12] ?? [4,188,39,171]
[[2,1,1,-1],[0,-2,-2,5],[0,-3,-1,3],[-1,-1,-1,2]],det=-2 [16,2,-15,-9], chain 2 => [28,-19,-18,-21] => [40,-31,12,-33] ?? [94,-127,-18,-87]
[[2,1,1,0],[4,-4,2,4],[-5,1,-5,0],[-1,-4,2,-4]],det=-120 [16,2,-15,-9], chain 2 => [19,-10,-3,-18] => [25,38,-90,87] ?? [-2,116,363,-705]
[[2,1,1,0],[4,-4,2,4],[-5,1,-5,0],[2,-1,5,-3]],det=-18 [16,2,-15,-9], chain 2 => [19,-10,-3,-18] => [25,38,-90,87] ?? [-2,116,363,-699]
[[2,1,1,0],[4,-4,2,4],[-2,4,-2,1],[-1,-4,2,-4]],det=54 [16,2,-15,-9], chain 2 => [19,-10,-3,-18] => [25,38,-90,87] ?? [-2,116,369,-705]
[[2,1,1,0],[4,-4,2,4],[-2,4,-2,1],[2,-1,5,-3]],det=156 [16,2,-15,-9], chain 2 => [19,-10,-3,-18] => [25,38,-90,87] ?? [-2,116,369,-699]
[[2,1,2,-4],[-2,1,-4,2],[-1,-1,-2,5],[0,1,1,2]],det=-38 [16,2,-15,-9], chain 2 => [40,12,-33,-31] => [150,2,-141,-83] ?? [352,100,-285,-305]
[[2,1,3,-5],[-5,-2,-5,-2],[-1,-1,-2,5],[1,-1,-1,5]],det=-12 [16,2,-15,-9], chain 2 => [34,9,-33,-16] => [58,9,-57,-22] ?? [64,21,-63,-4]
[[2,1,3,-5],[-3,0,2,-5],[-1,3,1,-3],[-5,-2,-4,-1]],det=260 [16,2,-15,-9], chain 2 => [34,-33,2,-15] => [116,-23,-86,-97] ?? [436,-35,20,-93]
[[2,1,3,-5],[2,-1,2,-1],[-1,-1,-2,5],[1,-1,-1,5]],det=-6 [16,2,-15,-9], chain 2 => [34,9,-33,-16] => [58,9,-57,-22] ?? [64,15,-63,-4]
[[2,2,-3,3],[-5,-1,-3,-2],[-1,4,0,5],[-4,2,-5,3]],det=84 [16,2,-15,-9], chain 2 => [54,-19,-53,-12] => [193,-68,-190,-25] ?? [745,-277,-590,-33]
[[2,2,-2,-1],[-3,-4,-3,3],[2,-1,4,4],[-4,-3,0,-3]],det=158 [16,2,-15,-9], chain 2 => [75,-38,-66,-43] => [249,-4,-248,-57] ?? [1043,-158,-718,-813]
[[2,2,0,-2],[2,-4,3,-1],[-4,-3,-1,-4],[0,-1,1,4]],det=-24 [16,2,-15,-9], chain 2 => [54,-12,-19,-53] => [190,152,51,-219] ?? [1122,144,-391,-977]
[[2,2,0,-2],[2,-4,3,-1],[-3,-5,-5,4],[-1,1,5,-4]],det=-288 [16,2,-15,-9], chain 2 => [54,-12,-19,-53] => [190,152,-219,51] ?? [582,-936,-31,-1337]
[[2,2,3,-4],[0,-2,1,0],[4,-3,2,2],[-4,-1,-4,2]],det=-40 [16,2,-15,-9], chain 2 => [27,-19,10,-24] => [142,48,137,-177] ?? [1499,41,344,-1518]
[[2,3,-2,3],[0,-1,3,-5],[-1,3,-1,5],[-3,5,-2,1]],det=214 [16,2,-15,-9], chain 2 => [41,-2,-40,-17] => [105,-33,-92,-70] ?? [85,107,-462,-366]
[[2,3,-2,3],[0,-1,3,-5],[0,-5,2,0],[2,4,5,-2]],det=240 [16,2,-15,-9], chain 2 => [41,-2,-40,-17] => [105,-33,-70,-92] ?? [-25,283,25,-88]
[[2,3,-1,0],[-1,1,-2,5],[-2,0,0,2],[-4,-3,-4,-2]],det=-140 [16,2,-15,-9], chain 2 => [53,-29,-50,8] => [69,58,-90,59] ?? [402,464,-20,-208]
[[2,3,-1,0],[-1,1,-2,5],[-2,0,0,2],[3,-2,3,-1]],det=80 [16,2,-15,-9], chain 2 => [53,-29,-50,8] => [69,58,-90,59] ?? [402,464,-20,-238]
[[2,3,-1,1],[-5,-1,-5,1],[-5,-3,0,-5],[-2,-3,-4,5]],det=-110 [16,2,-15,-9], chain 2 => [44,-16,-41,-23] => [58,-22,-57,9] ?? [116,26,-269,223]
[[2,3,-1,1],[-5,-1,-5,1],[-5,-3,0,-5],[4,-3,3,4]],det=-105 [16,2,-15,-9], chain 2 => [44,-16,-41,-23] => [58,-22,-57,9] ?? [116,26,-269,163]
[[2,3,-1,1],[1,-1,2,0],[-5,-3,0,-5],[-2,-3,-4,5]],det=25 [16,2,-15,-9], chain 2 => [44,-16,-41,-23] => [58,-22,-57,9] ?? [116,-34,-269,223]
[[2,3,-1,1],[1,-1,2,0],[-5,-3,0,-5],[4,-3,3,4]],det=30 [16,2,-15,-9], chain 2 => [44,-16,-41,-23] => [58,-22,-57,9] ?? [116,-34,-269,163]
[[2,3,1,-2],[-4,1,1,-5],[1,1,1,1],[-2,1,2,-3]],det=-23 [16,2,-15,-9], chain 2 => [41,-32,-6,-33] => [46,-37,-30,-27] ?? [5,-116,-48,-108]
[[2,3,1,-2],[-4,1,1,-5],[1,1,1,1],[3,0,3,4]],det=-53 [16,2,-15,-9], chain 2 => [41,-32,-6,-33] => [46,-37,-30,-27] ?? [5,-116,-48,-60]
[[2,3,1,-2],[1,0,2,2],[1,1,1,1],[-2,1,2,-3]],det=21 [16,2,-15,-9], chain 2 => [41,-32,-6,-33] => [46,-37,-30,-27] ?? [5,-68,-48,-108]
[[2,3,1,-2],[1,0,2,2],[1,1,1,1],[3,0,3,4]],det=-9 [16,2,-15,-9], chain 2 => [41,-32,-6,-33] => [46,-37,-30,-27] ?? [5,-68,-48,-60]
[[2,3,2,-5],[-1,-5,3,-3],[3,-5,3,3],[-2,3,2,-3]],det=608 [16,2,-15,-9], chain 2 => [53,-44,-34,-29] => [51,152,190,-219] ?? [2033,416,-694,1391]
[[2,3,3,-3],[-5,0,-2,-4],[3,1,2,3],[1,0,1,2]],det=-18 [16,2,-15,-9], chain 2 => [20,-14,-7,-17] => [28,-18,-19,-21] ?? [8,-18,-35,-33]
[[2,3,3,-3],[3,-1,1,5],[3,1,2,3],[1,0,1,2]],det=10 [16,2,-15,-9], chain 2 => [20,-14,-7,-17] => [28,-18,-19,-21] ?? [8,-22,-35,-33]
[[2,4,-1,1],[-5,1,-5,0],[-1,-3,1,0],[1,-2,5,-3]],det=-34 [16,2,-15,-9], chain 2 => [46,-3,-37,-36] => [81,-48,-74,-25] ?? [19,-83,-11,-118]
[[2,4,4,-5],[2,-3,-1,5],[-2,0,-1,0],[-1,-3,-3,5]],det=-5 [16,2,-15,-9], chain 2 => [25,-4,-17,-22] => [76,-31,-33,-72] ?? [256,-82,-119,-244]
[[2,4,4,-5],[2,-3,-1,5],[0,-1,-2,5],[-3,-2,-2,0]],det=25 [16,2,-15,-9], chain 2 => [25,-4,-17,-22] => [76,-31,-72,-33] ?? [-95,152,10,-22]
[[2,4,4,-5],[2,0,0,4],[-1,-5,0,-1],[1,5,2,2]],det=-204 [16,2,-15,-9], chain 2 => [25,-4,-17,-22] => [76,-38,17,-73] ?? [433,-140,187,-226]
[[2,5,-3,0],[3,-4,2,4],[-2,-1,2,-1],[-3,0,5,-5]],det=112 [16,2,-15,-9], chain 2 => [87,-26,-55,-78] => [209,-57,-180,-146] ?? [673,-89,-575,-797]
[[2,5,-2,2],[-3,0,0,-4],[2,-5,5,0],[0,-5,3,-4]],det=-160 [16,2,-15,-9], chain 2 => [54,-12,-53,-19] => [116,-86,-97,-23] ?? [-50,-256,177,231]
[[2,5,0,-2],[4,-2,5,-2],[-3,-4,-1,2],[-3,4,-3,3]],det=-39 [16,2,-15,-9], chain 2 => [60,3,-59,-22] => [179,-17,-177,-57] ?? [387,-21,-406,-245]
[[2,5,4,-5],[-1,-2,-2,0],[1,-5,-1,5],[-3,-5,-2,-1]],det=108 [16,2,-15,-9], chain 2 => [27,10,-24,-19] => [103,1,-94,-64] ?? [155,83,-128,-62]
[[3,-5,-4,2],[-2,4,-5,4],[-2,4,5,-5],[-3,2,3,-2]],det=-159 [16,2,-15,-9], chain 2 => [80,15,-54,-71] => [239,-114,-15,-230] ?? [887,-1779,141,-530]
[[3,-5,0,1],[-2,-3,-3,2],[-4,5,-2,-1],[4,-2,4,3]],det=71 [16,2,-15,-9], chain 2 => [29,-11,-15,-27] => [115,-34,-114,-3] ?? [512,208,-399,63]
[[3,-5,0,1],[3,2,3,2],[-4,5,-2,-1],[4,-2,4,3]],det=-51 [16,2,-15,-9], chain 2 => [29,-11,-15,-27] => [115,-34,-114,-3] ?? [512,-71,-399,63]
[[3,-5,0,2],[-4,1,-5,3],[-1,-3,-1,0],[1,-3,3,-2]],det=-72 [16,2,-15,-9], chain 2 => [20,-14,-7,-17] => [96,-110,29,75] ?? [988,-414,205,363]
[[3,-5,0,2],[-1,4,1,-1],[-2,0,-1,0],[1,5,4,-3]],det=-15 [16,2,-15,-9], chain 2 => [20,-14,-17,-7] => [116,-86,-23,-97] ?? [584,-386,-209,-115]
[[3,-5,0,2],[1,3,0,4],[3,1,2,3],[1,3,2,1]],det=8 [16,2,-15,-9], chain 2 => [20,-14,-7,-17] => [96,-90,-19,-53] ?? [632,-386,1,-265]
[[3,-5,0,2],[4,-3,3,3],[1,2,0,3],[-1,4,0,1]],det=-6 [16,2,-15,-9], chain 2 => [20,-14,-7,-17] => [96,50,-59,-93] ?? [-148,-222,-83,11]
[[3,-5,2,-5],[-3,2,-1,0],[-4,-5,-1,-1],[2,0,1,1]],det=58 [16,2,-15,-9], chain 2 => [53,-29,-50,8] => [164,-167,-25,64] ?? [957,-801,140,367]
[[3,-5,3,-4],[0,2,1,0],[-4,5,-3,2],[-2,-5,0,-3]],det=61 [16,2,-15,-9], chain 2 => [29,-11,-27,-15] => [121,-49,-120,42] ?? [80,-218,-285,-123]
[[3,-5,3,-4],[0,2,1,0],[-1,2,4,-5],[-4,5,-2,-1]],det=-76 [16,2,-15,-9], chain 2 => [29,-11,-27,-15] => [121,-49,-84,-102] ?? [764,-182,-45,-459]
[[3,-5,3,-4],[0,2,1,0],[-1,2,4,-5],[2,5,5,-2]],det=-25 [16,2,-15,-9], chain 2 => [29,-11,-27,-15] => [121,-49,-84,-102] ?? [764,-182,-45,-219]
[[3,-5,3,-4],[0,2,1,0],[1,4,1,4],[-5,4,-5,2]],det=10 [16,2,-15,-9], chain 2 => [29,-11,-27,-15] => [121,-49,-102,-84] ?? [638,-200,-513,-459]
[[3,-5,3,-4],[0,2,1,0],[1,4,1,4],[1,4,2,1]],det=19 [16,2,-15,-9], chain 2 => [29,-11,-27,-15] => [121,-49,-102,-84] ?? [638,-200,-513,-363]
[[3,-5,3,-4],[0,2,1,0],[2,5,4,1],[-2,-5,0,-3]],det=-62 [16,2,-15,-9], chain 2 => [29,-11,-27,-15] => [121,-49,-120,42] ?? [80,-218,-441,-123]
[[3,-4,-5,5],[-2,2,1,-4],[-4,5,3,-5],[-2,-5,1,0]],det=153 [16,2,-15,-9], chain 2 => [70,-7,-54,-57] => [223,20,-192,-159] ?? [754,38,-573,-738]
[[3,-4,-2,5],[-1,4,3,-4],[1,-1,0,2],[-1,3,2,-2]],det=4 [16,2,-15,-9], chain 2 => [25,-17,-4,-22] => [41,-17,-2,-40] ?? [-5,45,-22,-16]
[[3,-4,-1,3],[0,1,2,-1],[2,-1,2,2],[-5,4,-1,-4]],det=-10 [16,2,-15,-9], chain 2 => [28,-19,-18,-21] => [115,-34,-3,-114] ?? [142,74,30,-252]
[[3,-4,-1,3],[0,1,2,-1],[2,-1,2,2],[3,3,2,5]],det=37 [16,2,-15,-9], chain 2 => [28,-19,-18,-21] => [115,-34,-3,-114] ?? [142,74,30,-333]
[[3,-4,-1,4],[-1,-3,-2,2],[0,-3,-2,3],[0,-3,-1,3]],det=9 [16,2,-15,-9], chain 2 => [19,-10,-3,-18] => [28,-19,-18,-21] ?? [94,23,30,12]
[[3,-4,-1,4],[-1,-3,-2,2],[0,-3,-2,3],[3,0,2,4]],det=23 [16,2,-15,-9], chain 2 => [19,-10,-3,-18] => [28,-19,-18,-21] ?? [94,23,30,-36]
[[3,-4,-1,4],[-1,-3,-2,2],[3,0,1,4],[0,-3,-1,3]],det=26 [16,2,-15,-9], chain 2 => [19,-10,-3,-18] => [28,-19,-18,-21] ?? [94,23,-18,12]
[[3,-4,-1,4],[-1,-3,-2,2],[3,0,1,4],[3,0,2,4]],det=40 [16,2,-15,-9], chain 2 => [19,-10,-3,-18] => [28,-19,-18,-21] ?? [94,23,-18,-36]
[[3,-4,-1,4],[1,-1,4,-4],[-2,4,2,-4],[-4,2,-5,2]],det=-4 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [103,-31,-102,-12] ?? [487,-226,-486,12]
[[3,-4,-1,4],[1,-1,4,-4],[-2,4,2,-4],[3,0,4,-1]],det=-4 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [103,-31,-102,-12] ?? [487,-226,-486,-87]
[[3,-4,-1,4],[2,0,1,3],[0,-3,-2,3],[0,-3,-1,3]],det=-27 [16,2,-15,-9], chain 2 => [19,-10,-3,-18] => [28,-19,-18,-21] ?? [94,-25,30,12]
[[3,-4,-1,4],[2,0,1,3],[0,-3,-2,3],[3,0,2,4]],det=-13 [16,2,-15,-9], chain 2 => [19,-10,-3,-18] => [28,-19,-18,-21] ?? [94,-25,30,-36]
[[3,-4,-1,4],[2,0,1,3],[3,0,1,4],[0,-3,-1,3]],det=-10 [16,2,-15,-9], chain 2 => [19,-10,-3,-18] => [28,-19,-18,-21] ?? [94,-25,-18,12]
[[3,-4,-1,4],[2,0,1,3],[3,0,1,4],[3,0,2,4]],det=4 [16,2,-15,-9], chain 2 => [19,-10,-3,-18] => [28,-19,-18,-21] ?? [94,-25,-18,-36]
[[3,-4,-1,4],[3,4,2,4],[-2,4,2,-4],[-4,2,-5,2]],det=-16 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [103,-31,-102,-12] ?? [487,-67,-486,12]
[[3,-4,-1,4],[3,4,2,4],[-2,4,2,-4],[3,0,4,-1]],det=12 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [103,-31,-102,-12] ?? [487,-67,-486,-87]
[[3,-4,-1,4],[5,3,4,4],[0,-3,-2,3],[0,-3,-1,3]],det=-63 [16,2,-15,-9], chain 2 => [19,-10,-3,-18] => [28,-19,-18,-21] ?? [94,-73,30,12]
[[3,-4,-1,4],[5,3,4,4],[0,-3,-2,3],[3,0,2,4]],det=-49 [16,2,-15,-9], chain 2 => [19,-10,-3,-18] => [28,-19,-18,-21] ?? [94,-73,30,-36]
[[3,-4,-1,4],[5,3,4,4],[3,0,1,4],[0,-3,-1,3]],det=-46 [16,2,-15,-9], chain 2 => [19,-10,-3,-18] => [28,-19,-18,-21] ?? [94,-73,-18,12]
[[3,-4,-1,4],[5,3,4,4],[3,0,1,4],[3,0,2,4]],det=-32 [16,2,-15,-9], chain 2 => [19,-10,-3,-18] => [28,-19,-18,-21] ?? [94,-73,-18,-36]
[[3,-4,0,0],[-3,-3,-5,1],[-3,4,0,-1],[-2,4,0,1]],det=20 [16,2,-15,-9], chain 2 => [40,12,-31,-33] => [72,-34,-39,-65] ?? [352,16,-287,-345]
[[3,-4,0,0],[-3,-3,-5,1],[1,-1,3,0],[1,1,4,-1]],det=41 [16,2,-15,-9], chain 2 => [40,12,-31,-33] => [72,-34,-65,-39] ?? [352,172,-89,-183]
[[3,-4,1,0],[-2,2,-4,4],[-2,-1,-2,2],[-5,3,-5,2]],det=80 [16,2,-15,-9], chain 2 => [25,-4,-22,-17] => [69,-38,-36,-61] ?? [323,-314,-150,-401]
[[3,-4,1,0],[-2,2,-4,4],[-2,-1,-2,2],[2,4,2,3]],det=-182 [16,2,-15,-9], chain 2 => [25,-4,-22,-17] => [69,-38,-36,-61] ?? [323,-314,-150,-269]
[[3,-4,1,0],[-2,2,-4,4],[5,0,5,3],[-5,3,-5,2]],det=90 [16,2,-15,-9], chain 2 => [25,-4,-22,-17] => [69,-38,-36,-61] ?? [323,-314,-18,-401]
[[3,-4,1,0],[-2,2,-4,4],[5,0,5,3],[2,4,2,3]],det=-172 [16,2,-15,-9], chain 2 => [25,-4,-22,-17] => [69,-38,-36,-61] ?? [323,-314,-18,-269]
[[3,-4,1,0],[5,3,3,5],[-2,-1,-2,2],[-5,3,-5,2]],det=226 [16,2,-15,-9], chain 2 => [25,-4,-22,-17] => [69,-38,-36,-61] ?? [323,-182,-150,-401]
[[3,-4,1,0],[5,3,3,5],[-2,-1,-2,2],[2,4,2,3]],det=-36 [16,2,-15,-9], chain 2 => [25,-4,-22,-17] => [69,-38,-36,-61] ?? [323,-182,-150,-269]
[[3,-4,1,0],[5,3,3,5],[5,0,5,3],[-5,3,-5,2]],det=236 [16,2,-15,-9], chain 2 => [25,-4,-22,-17] => [69,-38,-36,-61] ?? [323,-182,-18,-401]
[[3,-4,1,0],[5,3,3,5],[5,0,5,3],[2,4,2,3]],det=-26 [16,2,-15,-9], chain 2 => [25,-4,-22,-17] => [69,-38,-36,-61] ?? [323,-182,-18,-269]
[[3,-4,2,-5],[-3,1,-3,-2],[-4,5,-3,5],[-4,-4,-5,3]],det=30 [16,2,-15,-9], chain 2 => [55,17,-54,-24] => [109,62,-93,-90] ?? [343,194,-297,-489]
[[3,-4,2,-5],[-3,1,-3,-2],[-4,5,-3,5],[-4,2,0,-4]],det=-36 [16,2,-15,-9], chain 2 => [55,17,-54,-24] => [109,62,-93,-90] ?? [343,194,-297,48]
[[3,-4,2,-5],[-3,1,-3,-2],[-4,5,-3,5],[3,-3,2,4]],det=16 [16,2,-15,-9], chain 2 => [55,17,-54,-24] => [109,62,-93,-90] ?? [343,194,-297,-405]
[[3,-4,2,-5],[4,2,4,-1],[-4,5,-3,5],[-4,-4,-5,3]],det=-41 [16,2,-15,-9], chain 2 => [55,17,-54,-24] => [109,62,-93,-90] ?? [343,278,-297,-489]
[[3,-4,2,-5],[4,2,4,-1],[-4,5,-3,5],[-4,2,0,-4]],det=150 [16,2,-15,-9], chain 2 => [55,17,-54,-24] => [109,62,-93,-90] ?? [343,278,-297,48]
[[3,-4,2,-5],[4,2,4,-1],[-4,5,-3,5],[3,-3,2,4]],det=-55 [16,2,-15,-9], chain 2 => [55,17,-54,-24] => [109,62,-93,-90] ?? [343,278,-297,-405]
[[3,-4,2,-2],[-2,-1,2,-5],[-2,4,-1,1],[5,5,5,4]],det=-138 [16,2,-15,-9], chain 2 => [28,-19,-18,-21] => [166,32,-135,-129] ?? [358,11,-198,-201]
[[3,-4,2,-2],[-2,-1,2,-5],[1,4,1,3],[2,5,3,2]],det=38 [16,2,-15,-9], chain 2 => [28,-19,-18,-21] => [166,32,-129,-135] ?? [382,53,-240,-165]
[[3,-4,2,-1],[-1,-3,1,-3],[-5,1,-5,0],[-5,1,-4,0]],det=35 [16,2,-15,-9], chain 2 => [19,-10,-3,-18] => [109,62,-90,-93] ?? [-8,-106,-33,-123]
[[3,-4,2,-1],[-1,-3,1,-3],[-5,1,-5,0],[-2,4,-1,1]],det=-5 [16,2,-15,-9], chain 2 => [19,-10,-3,-18] => [109,62,-90,-93] ?? [-8,-106,-33,27]
[[3,-4,2,-1],[-1,-3,1,-3],[-2,4,-2,1],[-5,1,-4,0]],det=31 [16,2,-15,-9], chain 2 => [19,-10,-3,-18] => [109,62,-90,-93] ?? [-8,-106,117,-123]
[[3,-4,2,-1],[-1,-3,1,-3],[-2,4,-2,1],[-2,4,-1,1]],det=-9 [16,2,-15,-9], chain 2 => [19,-10,-3,-18] => [109,62,-90,-93] ?? [-8,-106,117,27]
[[3,-4,2,-1],[2,0,4,-2],[-5,1,-5,0],[-5,1,-4,0]],det=36 [16,2,-15,-9], chain 2 => [19,-10,-3,-18] => [109,62,-90,-93] ?? [-8,44,-33,-123]
[[3,-4,2,-1],[2,0,4,-2],[-5,1,-5,0],[-2,4,-1,1]],det=-4 [16,2,-15,-9], chain 2 => [19,-10,-3,-18] => [109,62,-90,-93] ?? [-8,44,-33,27]
[[3,-4,2,-1],[2,0,4,-2],[-2,4,-2,1],[-5,1,-4,0]],det=32 [16,2,-15,-9], chain 2 => [19,-10,-3,-18] => [109,62,-90,-93] ?? [-8,44,117,-123]
[[3,-4,2,-1],[2,0,4,-2],[-2,4,-2,1],[-2,4,-1,1]],det=-8 [16,2,-15,-9], chain 2 => [19,-10,-3,-18] => [109,62,-90,-93] ?? [-8,44,117,27]
[[3,-4,4,-5],[-3,1,-4,2],[-5,5,-5,3],[1,0,1,2]],det=-24 [16,2,-15,-9], chain 2 => [25,-4,-22,-17] => [88,-25,-86,-31] ?? [175,-7,-228,-60]
[[3,-4,4,-5],[4,2,3,3],[-5,5,-5,3],[1,0,1,2]],det=54 [16,2,-15,-9], chain 2 => [25,-4,-22,-17] => [88,-25,-86,-31] ?? [175,-49,-228,-60]
[[3,-3,0,-2],[4,5,4,4],[-2,3,1,2],[2,-4,2,-1]],det=33 [16,2,-15,-9], chain 2 => [60,-22,-59,3] => [240,-94,-239,87] ?? [828,-118,-827,291]
[[3,-2,-3,5],[-5,-4,-3,-3],[-3,-1,0,-1],[-3,5,-4,5]],det=-484 [16,2,-15,-9], chain 2 => [44,-16,-41,-23] => [172,36,-93,-163] ?? [-92,-236,-389,-779]
[[3,-2,-3,5],[-5,-4,-3,-3],[-3,-1,0,-1],[3,5,3,4]],det=-90 [16,2,-15,-9], chain 2 => [44,-16,-41,-23] => [172,36,-93,-163] ?? [-92,-236,-389,-235]
[[3,-2,-3,5],[1,-4,4,-4],[-3,-1,0,-1],[-3,5,-4,5]],det=140 [16,2,-15,-9], chain 2 => [44,-16,-41,-23] => [172,36,-93,-163] ?? [-92,308,-389,-779]
[[3,-2,-3,5],[1,-4,4,-4],[-3,-1,0,-1],[3,5,3,4]],det=534 [16,2,-15,-9], chain 2 => [44,-16,-41,-23] => [172,36,-93,-163] ?? [-92,308,-389,-235]
[[3,-2,-2,5],[-2,-2,-3,4],[-5,0,-4,-1],[-1,-1,-2,3]],det=30 [16,2,-15,-9], chain 2 => [29,-27,-11,-15] => [88,-31,-86,-25] ?? [373,44,-71,40]
[[3,-2,-2,5],[-2,-2,-3,4],[-5,0,-4,-1],[2,2,4,-1]],det=90 [16,2,-15,-9], chain 2 => [29,-27,-11,-15] => [88,-31,-86,-25] ?? [373,44,-71,-205]
[[3,-2,-2,5],[-2,-2,-3,4],[-2,3,2,-5],[-1,-1,-2,3]],det=5 [16,2,-15,-9], chain 2 => [29,-27,-11,-15] => [88,-31,-86,-25] ?? [373,44,-316,40]
[[3,-2,-2,5],[-2,-2,-3,4],[-2,3,2,-5],[2,2,4,-1]],det=65 [16,2,-15,-9], chain 2 => [29,-27,-11,-15] => [88,-31,-86,-25] ?? [373,44,-316,-205]
[[3,-2,-2,5],[0,0,3,-2],[4,-2,5,0],[-2,3,-4,5]],det=-52 [16,2,-15,-9], chain 2 => [29,-27,-15,-11] => [116,-23,95,-134] ?? [-466,553,985,-1351]
[[3,-2,-2,5],[0,0,3,-2],[4,-2,5,0],[-1,4,2,-3]],det=-44 [16,2,-15,-9], chain 2 => [29,-27,-15,-11] => [116,-23,95,-134] ?? [-466,553,985,384]
[[3,-2,-2,5],[0,2,-2,5],[-2,-2,0,-1],[-5,4,-5,2]],det=248 [16,2,-15,-9], chain 2 => [29,-11,-27,-15] => [88,-43,-21,-84] ?? [-28,-464,-6,-675]
[[3,-2,-2,5],[0,2,-2,5],[-2,-2,0,-1],[1,4,2,1]],det=-124 [16,2,-15,-9], chain 2 => [29,-11,-27,-15] => [88,-43,-21,-84] ?? [-28,-464,-6,-210]
[[3,-2,-2,5],[0,2,-2,5],[-1,2,4,-5],[0,0,-2,5]],det=60 [16,2,-15,-9], chain 2 => [29,-11,-27,-15] => [88,-43,-84,-21] ?? [413,-23,-405,63]
[[3,-2,-2,5],[1,1,3,0],[-5,0,-4,-1],[-1,-1,-2,3]],det=-20 [16,2,-15,-9], chain 2 => [29,-27,-11,-15] => [88,-31,-86,-25] ?? [373,-201,-71,40]
[[3,-2,-2,5],[1,1,3,0],[-5,0,-4,-1],[2,2,4,-1]],det=40 [16,2,-15,-9], chain 2 => [29,-27,-11,-15] => [88,-31,-86,-25] ?? [373,-201,-71,-205]
[[3,-2,-2,5],[1,1,3,0],[-2,3,2,-5],[-1,-1,-2,3]],det=-45 [16,2,-15,-9], chain 2 => [29,-27,-11,-15] => [88,-31,-86,-25] ?? [373,-201,-316,40]
[[3,-2,-2,5],[1,1,3,0],[-2,3,2,-5],[2,2,4,-1]],det=15 [16,2,-15,-9], chain 2 => [29,-27,-11,-15] => [88,-31,-86,-25] ?? [373,-201,-316,-205]
[[3,-2,-1,2],[2,3,4,2],[-5,0,-4,-2],[2,4,5,-2]],det=114 [16,2,-15,-9], chain 2 => [41,-40,-2,-17] => [171,-80,-163,-54] ?? [728,-658,-95,-685]
[[3,-2,0,-1],[-3,4,-5,3],[-1,4,4,-2],[-4,4,0,-3]],det=-306 [16,2,-15,-9], chain 2 => [53,8,-50,-29] => [172,36,-163,-93] ?? [537,164,-494,-265]
[[3,-2,0,-1],[-3,4,-5,3],[-1,4,4,-2],[-3,2,-1,0]],det=-108 [16,2,-15,-9], chain 2 => [53,8,-50,-29] => [172,36,-163,-93] ?? [537,164,-494,-281]
[[3,-2,0,-1],[-3,4,-5,3],[-1,4,4,-2],[-2,0,-2,3]],det=90 [16,2,-15,-9], chain 2 => [53,8,-50,-29] => [172,36,-163,-93] ?? [537,164,-494,-297]
[[3,-2,0,-1],[-3,4,-5,3],[-1,4,4,-2],[5,1,5,4]],det=637 [16,2,-15,-9], chain 2 => [53,8,-50,-29] => [172,36,-163,-93] ?? [537,164,-494,-291]
[[3,-2,0,-1],[-3,4,-5,3],[0,2,3,1],[-4,4,0,-3]],det=-252 [16,2,-15,-9], chain 2 => [53,8,-50,-29] => [172,36,-163,-93] ?? [537,164,-510,-265]
[[3,-2,0,-1],[-3,4,-5,3],[0,2,3,1],[-3,2,-1,0]],det=-54 [16,2,-15,-9], chain 2 => [53,8,-50,-29] => [172,36,-163,-93] ?? [537,164,-510,-281]
[[3,-2,0,-1],[-3,4,-5,3],[0,2,3,1],[-2,0,-2,3]],det=144 [16,2,-15,-9], chain 2 => [53,8,-50,-29] => [172,36,-163,-93] ?? [537,164,-510,-297]
[[3,-2,0,-1],[-3,4,-5,3],[0,2,3,1],[5,1,5,4]],det=159 [16,2,-15,-9], chain 2 => [53,8,-50,-29] => [172,36,-163,-93] ?? [537,164,-510,-291]
[[3,-2,0,-1],[-3,4,-5,3],[1,0,2,4],[-4,4,0,-3]],det=-198 [16,2,-15,-9], chain 2 => [53,8,-50,-29] => [172,36,-163,-93] ?? [537,164,-526,-265]
[[3,-2,0,-1],[-3,4,-5,3],[1,0,2,4],[-3,2,-1,0]],det=0 [16,2,-15,-9], chain 2 => [53,8,-50,-29] => [172,36,-163,-93] ?? [537,164,-526,-281]
[[3,-2,0,-1],[-3,4,-5,3],[1,0,2,4],[-2,0,-2,3]],det=198 [16,2,-15,-9], chain 2 => [53,8,-50,-29] => [172,36,-163,-93] ?? [537,164,-526,-297]
[[3,-2,0,-1],[-3,4,-5,3],[1,0,2,4],[5,1,5,4]],det=-319 [16,2,-15,-9], chain 2 => [53,8,-50,-29] => [172,36,-163,-93] ?? [537,164,-526,-291]
[[3,-2,0,-1],[4,5,2,4],[-1,4,4,-2],[-4,4,0,-3]],det=-416 [16,2,-15,-9], chain 2 => [53,8,-50,-29] => [172,36,-163,-93] ?? [537,170,-494,-265]
[[3,-2,0,-1],[4,5,2,4],[-1,4,4,-2],[-3,2,-1,0]],det=-179 [16,2,-15,-9], chain 2 => [53,8,-50,-29] => [172,36,-163,-93] ?? [537,170,-494,-281]
[[3,-2,0,-1],[4,5,2,4],[-1,4,4,-2],[-2,0,-2,3]],det=58 [16,2,-15,-9], chain 2 => [53,8,-50,-29] => [172,36,-163,-93] ?? [537,170,-494,-297]
[[3,-2,0,-1],[4,5,2,4],[-1,4,4,-2],[5,1,5,4]],det=605 [16,2,-15,-9], chain 2 => [53,8,-50,-29] => [172,36,-163,-93] ?? [537,170,-494,-291]
[[3,-2,0,-1],[4,5,2,4],[0,2,3,1],[-4,4,0,-3]],det=-303 [16,2,-15,-9], chain 2 => [53,8,-50,-29] => [172,36,-163,-93] ?? [537,170,-510,-265]
[[3,-2,0,-1],[4,5,2,4],[0,2,3,1],[-3,2,-1,0]],det=-66 [16,2,-15,-9], chain 2 => [53,8,-50,-29] => [172,36,-163,-93] ?? [537,170,-510,-281]
[[3,-2,0,-1],[4,5,2,4],[0,2,3,1],[-2,0,-2,3]],det=171 [16,2,-15,-9], chain 2 => [53,8,-50,-29] => [172,36,-163,-93] ?? [537,170,-510,-297]
[[3,-2,0,-1],[4,5,2,4],[0,2,3,1],[5,1,5,4]],det=186 [16,2,-15,-9], chain 2 => [53,8,-50,-29] => [172,36,-163,-93] ?? [537,170,-510,-291]
[[3,-2,0,-1],[4,5,2,4],[1,0,2,4],[-4,4,0,-3]],det=-190 [16,2,-15,-9], chain 2 => [53,8,-50,-29] => [172,36,-163,-93] ?? [537,170,-526,-265]
[[3,-2,0,-1],[4,5,2,4],[1,0,2,4],[-3,2,-1,0]],det=47 [16,2,-15,-9], chain 2 => [53,8,-50,-29] => [172,36,-163,-93] ?? [537,170,-526,-281]
[[3,-2,0,-1],[4,5,2,4],[1,0,2,4],[-2,0,-2,3]],det=284 [16,2,-15,-9], chain 2 => [53,8,-50,-29] => [172,36,-163,-93] ?? [537,170,-526,-297]
[[3,-2,0,-1],[4,5,2,4],[1,0,2,4],[5,1,5,4]],det=-233 [16,2,-15,-9], chain 2 => [53,8,-50,-29] => [172,36,-163,-93] ?? [537,170,-526,-291]
[[3,-2,1,0],[-3,0,-1,-2],[-1,-1,0,1],[-5,3,-3,-2]],det=-18 [16,2,-15,-9], chain 2 => [29,-15,-27,-11] => [90,-38,-25,-87] ?? [321,-71,-139,-315]
[[3,-2,1,0],[-2,0,-2,1],[-5,1,-1,-4],[-1,2,2,-3]],det=1 [16,2,-15,-9], chain 2 => [29,-11,-27,-15] => [82,-19,-69,-60] ?? [215,-86,-120,-78]
[[3,-2,1,0],[-2,0,-2,1],[-2,1,-2,3],[-3,3,-3,2]],det=-22 [16,2,-15,-9], chain 2 => [29,-11,-27,-15] => [82,-19,-60,-69] ?? [224,-113,-270,-261]
[[3,-2,1,0],[-2,0,-2,1],[-2,1,-2,3],[3,3,4,1]],det=-3 [16,2,-15,-9], chain 2 => [29,-11,-27,-15] => [82,-19,-60,-69] ?? [224,-113,-270,-120]
[[3,-2,1,0],[-2,0,-2,1],[4,1,5,2],[-3,3,-3,2]],det=-57 [16,2,-15,-9], chain 2 => [29,-11,-27,-15] => [82,-19,-60,-69] ?? [224,-113,-129,-261]
[[3,-2,1,0],[-2,0,-2,1],[4,1,5,2],[3,3,4,1]],det=-38 [16,2,-15,-9], chain 2 => [29,-11,-27,-15] => [82,-19,-60,-69] ?? [224,-113,-129,-120]
[[3,-2,1,0],[-2,3,-1,0],[-4,2,-4,3],[1,-5,-1,4]],det=-23 [16,2,-15,-9], chain 2 => [29,-11,-27,-15] => [82,-64,-75,51] ?? [299,-281,-3,681]
[[3,-2,1,0],[-2,3,-1,0],[2,2,3,2],[1,-5,-1,4]],det=82 [16,2,-15,-9], chain 2 => [29,-11,-27,-15] => [82,-64,-75,51] ?? [299,-281,-87,681]
[[3,-2,1,0],[0,0,3,-2],[-5,1,-3,-2],[-4,1,-4,1]],det=27 [16,2,-15,-9], chain 2 => [29,-27,-15,-11] => [126,-23,-105,-94] ?? [319,-127,-150,-201]
[[3,-2,1,0],[0,0,3,-2],[5,5,4,5],[-4,1,-4,1]],det=-40 [16,2,-15,-9], chain 2 => [29,-27,-15,-11] => [126,-23,-105,-94] ?? [319,-127,-375,-201]
[[3,-2,1,0],[2,-2,2,1],[0,3,-1,4],[1,-5,4,-3]],det=10 [16,2,-15,-9], chain 2 => [29,-11,-15,-27] => [94,23,-126,105] ?? [110,-5,615,-840]
[[3,-2,1,0],[4,0,5,0],[-5,1,-1,-4],[-1,2,2,-3]],det=-77 [16,2,-15,-9], chain 2 => [29,-11,-27,-15] => [82,-19,-69,-60] ?? [215,-17,-120,-78]
[[3,-2,1,0],[4,0,5,0],[-2,1,-2,3],[-3,3,-3,2]],det=67 [16,2,-15,-9], chain 2 => [29,-11,-27,-15] => [82,-19,-60,-69] ?? [224,28,-270,-261]
[[3,-2,1,0],[4,0,5,0],[-2,1,-2,3],[3,3,4,1]],det=86 [16,2,-15,-9], chain 2 => [29,-11,-27,-15] => [82,-19,-60,-69] ?? [224,28,-270,-120]
[[3,-2,1,0],[4,0,5,0],[4,1,5,2],[-3,3,-3,2]],det=32 [16,2,-15,-9], chain 2 => [29,-11,-27,-15] => [82,-19,-60,-69] ?? [224,28,-129,-261]
[[3,-2,1,0],[4,0,5,0],[4,1,5,2],[3,3,4,1]],det=51 [16,2,-15,-9], chain 2 => [29,-11,-27,-15] => [82,-19,-60,-69] ?? [224,28,-129,-120]
[[3,-2,3,-5],[2,-3,1,3],[2,1,2,5],[-2,3,-2,3]],det=-44 [16,2,-15,-9], chain 2 => [44,-16,-41,-23] => [156,26,-125,-123] ?? [656,-260,-527,-353]
[[3,-2,3,-5],[2,-3,1,3],[2,1,2,5],[4,3,5,2]],det=5 [16,2,-15,-9], chain 2 => [44,-16,-41,-23] => [156,26,-125,-123] ?? [656,-260,-527,-169]
[[3,-2,4,-5],[-4,-2,-2,-3],[-5,1,-1,-4],[-2,1,2,-5]],det=-37 [16,2,-15,-9], chain 2 => [29,-11,-27,-15] => [76,5,-69,-48] ?? [182,-32,-114,-45]
[[3,-2,4,-5],[-4,-2,-2,-3],[-3,0,-2,1],[-3,3,-3,2]],det=44 [16,2,-15,-9], chain 2 => [29,-11,-27,-15] => [76,5,-48,-69] ?? [371,-11,-201,-207]
[[3,-2,4,-5],[-4,-2,-2,-3],[-3,0,-2,1],[3,3,4,1]],det=42 [16,2,-15,-9], chain 2 => [29,-11,-27,-15] => [76,5,-48,-69] ?? [371,-11,-201,-18]
[[3,-2,4,-5],[-4,-2,-2,-3],[3,0,5,0],[-3,3,-3,2]],det=193 [16,2,-15,-9], chain 2 => [29,-11,-27,-15] => [76,5,-48,-69] ?? [371,-11,-12,-207]
[[3,-2,4,-5],[-4,-2,-2,-3],[3,0,5,0],[3,3,4,1]],det=191 [16,2,-15,-9], chain 2 => [29,-11,-27,-15] => [76,5,-48,-69] ?? [371,-11,-12,-18]
[[3,-2,4,-5],[-1,1,-2,3],[-1,-1,0,1],[0,3,2,-1]],det=-22 [16,2,-15,-9], chain 2 => [29,-11,-27,-15] => [76,-31,-33,-72] ?? [518,-257,-117,-87]
[[3,-2,4,-5],[-1,1,-2,3],[-1,2,-2,5],[0,0,4,-5]],det=-2 [16,2,-15,-9], chain 2 => [29,-11,-27,-15] => [76,-31,-72,-33] ?? [167,-62,-159,-123]
[[3,-2,4,-5],[-1,1,-2,3],[5,2,5,4],[0,0,4,-5]],det=-9 [16,2,-15,-9], chain 2 => [29,-11,-27,-15] => [76,-31,-72,-33] ?? [167,-62,-174,-123]
[[3,-2,4,-5],[2,-2,5,-4],[-5,1,-1,-4],[-2,1,2,-5]],det=-110 [16,2,-15,-9], chain 2 => [29,-11,-27,-15] => [76,5,-69,-48] ?? [182,-11,-114,-45]
[[3,-2,4,-5],[2,-2,5,-4],[-3,0,-2,1],[-3,3,-3,2]],det=-58 [16,2,-15,-9], chain 2 => [29,-11,-27,-15] => [76,5,-48,-69] ?? [371,178,-201,-207]
[[3,-2,4,-5],[2,-2,5,-4],[-3,0,-2,1],[3,3,4,1]],det=-60 [16,2,-15,-9], chain 2 => [29,-11,-27,-15] => [76,5,-48,-69] ?? [371,178,-201,-18]
[[3,-2,4,-5],[2,-2,5,-4],[3,0,5,0],[-3,3,-3,2]],det=91 [16,2,-15,-9], chain 2 => [29,-11,-27,-15] => [76,5,-48,-69] ?? [371,178,-12,-207]
[[3,-2,4,-5],[2,-2,5,-4],[3,0,5,0],[3,3,4,1]],det=89 [16,2,-15,-9], chain 2 => [29,-11,-27,-15] => [76,5,-48,-69] ?? [371,178,-12,-18]
[[3,-2,4,-5],[5,1,5,2],[-1,-1,0,1],[0,3,2,-1]],det=-209 [16,2,-15,-9], chain 2 => [29,-11,-27,-15] => [76,-31,-33,-72] ?? [518,40,-117,-87]
[[3,-2,4,-5],[5,1,5,2],[-1,2,-2,5],[0,0,4,-5]],det=2 [16,2,-15,-9], chain 2 => [29,-11,-27,-15] => [76,-31,-72,-33] ?? [167,-77,-159,-123]
[[3,-2,4,-5],[5,1,5,2],[5,2,5,4],[0,0,4,-5]],det=-5 [16,2,-15,-9], chain 2 => [29,-11,-27,-15] => [76,-31,-72,-33] ?? [167,-77,-174,-123]
[[3,-2,4,-4],[-3,2,-3,2],[-5,2,-4,-1],[2,1,2,2]],det=-3 [16,2,-15,-9], chain 2 => [20,-17,-7,-14] => [122,-101,-92,-19] ?? [276,-330,-425,-79]
[[3,-1,-1,3],[-2,2,-2,0],[-4,2,0,-5],[-4,5,1,-4]],det=56 [16,2,-15,-9], chain 2 => [34,2,-15,-33] => [16,-34,33,-9] ?? [22,-166,-87,-165]
[[3,-1,-1,3],[-2,2,-2,0],[-4,2,0,-5],[4,-2,5,2]],det=40 [16,2,-15,-9], chain 2 => [34,2,-15,-33] => [16,-34,33,-9] ?? [22,-166,-87,279]
[[3,-1,-1,3],[-2,2,-2,0],[-1,-4,0,-1],[-3,0,2,-5]],det=44 [16,2,-15,-9], chain 2 => [34,2,-15,-33] => [16,-34,-9,33] ?? [190,-82,87,-231]
[[3,-1,-1,3],[-2,2,-2,0],[-1,-4,0,-1],[1,4,5,-2]],det=-22 [16,2,-15,-9], chain 2 => [34,2,-15,-33] => [16,-34,-9,33] ?? [190,-82,87,-231]
[[3,-1,-1,3],[-2,2,-2,0],[3,0,3,2],[-3,0,2,-5]],det=-22 [16,2,-15,-9], chain 2 => [34,2,-15,-33] => [16,-34,-9,33] ?? [190,-82,87,-231]
[[3,-1,-1,3],[-2,2,-2,0],[3,0,3,2],[1,4,5,-2]],det=-88 [16,2,-15,-9], chain 2 => [34,2,-15,-33] => [16,-34,-9,33] ?? [190,-82,87,-231]
[[3,-1,-1,3],[-2,2,-2,0],[4,-5,4,1],[-4,5,1,-4]],det=-26 [16,2,-15,-9], chain 2 => [34,2,-15,-33] => [16,-34,33,-9] ?? [22,-166,357,-165]
[[3,-1,-1,3],[-2,2,-2,0],[4,-5,4,1],[4,-2,5,2]],det=-42 [16,2,-15,-9], chain 2 => [34,2,-15,-33] => [16,-34,33,-9] ?? [22,-166,357,279]
[[3,-1,0,2],[-5,-5,-4,-1],[1,-4,0,3],[3,3,3,3]],det=-93 [16,2,-15,-9], chain 2 => [28,-21,-19,-18] => [69,59,58,-90] ?? [-32,-782,-437,288]
[[3,-1,0,2],[-5,1,-4,0],[0,-5,0,1],[-1,-4,-2,3]],det=-72 [16,2,-15,-9], chain 2 => [28,-18,-19,-21] => [60,-82,69,19] ?? [300,-658,429,187]
[[3,-1,0,2],[-5,1,-4,0],[0,-5,0,1],[2,-1,4,-1]],det=-48 [16,2,-15,-9], chain 2 => [28,-18,-19,-21] => [60,-82,69,19] ?? [300,-658,429,459]
[[3,-1,0,2],[-2,4,2,-4],[0,-5,0,1],[-1,-4,-2,3]],det=24 [16,2,-15,-9], chain 2 => [28,-18,-19,-21] => [60,-82,69,19] ?? [300,-386,429,187]
[[3,-1,0,2],[-2,4,2,-4],[0,-5,0,1],[2,-1,4,-1]],det=48 [16,2,-15,-9], chain 2 => [28,-18,-19,-21] => [60,-82,69,19] ?? [300,-386,429,459]
[[3,-1,0,3],[-5,-1,-3,-3],[-2,1,1,-3],[-1,-1,-1,0]],det=-3 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [58,-22,-57,9] ?? [223,-124,-222,21]
[[3,-1,0,3],[-5,-1,-3,-3],[1,-5,4,-4],[-4,5,-4,1]],det=-21 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [58,-22,9,-57] ?? [25,-124,432,-435]
[[3,-1,0,3],[-5,-1,-3,-3],[1,-5,4,-4],[3,3,5,-2]],det=114 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [58,-22,9,-57] ?? [25,-124,432,267]
[[3,-1,0,3],[-5,-1,-3,-3],[3,0,2,4],[-4,5,-4,1]],det=-168 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [58,-22,9,-57] ?? [25,-124,-36,-435]
[[3,-1,0,3],[-5,-1,-3,-3],[3,0,2,4],[3,3,5,-2]],det=21 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [58,-22,9,-57] ?? [25,-124,-36,267]
[[3,-1,0,3],[-5,2,-2,-4],[-4,2,-4,2],[-2,-5,-2,-1]],det=144 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [58,-67,-30,51] ?? [394,-568,-144,228]
[[3,-1,0,3],[-5,2,-2,-4],[2,-4,1,3],[-1,-1,2,-5]],det=66 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [58,-67,51,-30] ?? [151,-406,345,261]
[[3,-1,0,3],[-5,2,-2,-4],[2,-4,1,3],[1,4,0,3]],det=-77 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [58,-67,51,-30] ?? [151,-406,345,-300]
[[3,-1,0,3],[-5,2,-2,-4],[3,0,5,-1],[-2,-5,-2,-1]],det=-54 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [58,-67,-30,51] ?? [394,-568,-27,228]
[[3,-1,0,3],[-3,4,-5,5],[-2,1,1,-3],[-1,-1,-1,0]],det=9 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [58,-22,-57,9] ?? [223,68,-222,21]
[[3,-1,0,3],[-3,4,-5,5],[1,-5,4,-4],[-4,5,-4,1]],det=21 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [58,-22,9,-57] ?? [25,-592,432,-435]
[[3,-1,0,3],[-3,4,-5,5],[1,-5,4,-4],[3,3,5,-2]],det=-249 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [58,-22,9,-57] ?? [25,-592,432,267]
[[3,-1,0,3],[-3,4,-5,5],[3,0,2,4],[-4,5,-4,1]],det=-126 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [58,-22,9,-57] ?? [25,-592,-36,-435]
[[3,-1,0,3],[-3,4,-5,5],[3,0,2,4],[3,3,5,-2]],det=-342 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [58,-22,9,-57] ?? [25,-592,-36,267]
[[3,-1,0,3],[-1,3,0,0],[-3,-3,0,-4],[-3,0,0,-5]],det=0 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [58,-49,-15,-42] ?? [97,-205,141,36]
[[3,-1,0,3],[-1,3,0,0],[-3,-3,0,-4],[-1,5,-2,3]],det=8 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [58,-49,-15,-42] ?? [97,-205,141,-399]
[[3,-1,0,3],[-1,3,0,0],[-1,2,-2,4],[-3,0,0,-5]],det=26 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [58,-49,-15,-42] ?? [97,-205,-294,36]
[[3,-1,0,3],[-1,3,0,0],[-1,2,-2,4],[-1,5,-2,3]],det=34 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [58,-49,-15,-42] ?? [97,-205,-294,-399]
[[3,-1,0,3],[-1,3,0,0],[1,1,3,-1],[-5,1,-5,0]],det=26 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [58,-49,-42,-15] ?? [178,-205,-102,-129]
[[3,-1,0,3],[-1,3,0,0],[1,1,3,-1],[2,-1,4,-3]],det=-37 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [58,-49,-42,-15] ?? [178,-205,-102,42]
[[3,-1,0,3],[-1,3,0,0],[1,1,3,-1],[4,4,2,5]],det=16 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [58,-49,-42,-15] ?? [178,-205,-102,-123]
[[3,-1,0,3],[4,2,4,2],[-2,1,1,-3],[-1,-1,-1,0]],det=6 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [58,-22,-57,9] ?? [223,-22,-222,21]
[[3,-1,0,3],[4,2,4,2],[1,-5,4,-4],[-4,5,-4,1]],det=36 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [58,-22,9,-57] ?? [25,110,432,-435]
[[3,-1,0,3],[4,2,4,2],[1,-5,4,-4],[3,3,5,-2]],det=-234 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [58,-22,9,-57] ?? [25,110,432,267]
[[3,-1,0,3],[4,2,4,2],[3,0,2,4],[-4,5,-4,1]],det=192 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [58,-22,9,-57] ?? [25,110,-36,-435]
[[3,-1,0,3],[4,2,4,2],[3,0,2,4],[3,3,5,-2]],det=-24 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [58,-22,9,-57] ?? [25,110,-36,267]
[[3,-1,0,3],[4,5,5,1],[-4,2,-4,2],[-2,-5,-2,-1]],det=-152 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [58,-67,-30,51] ?? [394,-202,-144,228]
[[3,-1,0,3],[4,5,5,1],[2,-4,1,3],[-1,-1,2,-5]],det=-286 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [58,-67,51,-30] ?? [151,122,345,261]
[[3,-1,0,3],[4,5,5,1],[2,-4,1,3],[1,4,0,3]],det=242 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [58,-67,51,-30] ?? [151,122,345,-300]
[[3,-1,0,3],[4,5,5,1],[3,0,5,-1],[-2,-5,-2,-1]],det=31 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [58,-67,-30,51] ?? [394,-202,-27,228]
[[3,-1,1,-1],[-3,0,-4,0],[-4,-3,-2,-1],[3,3,4,3]],det=-54 [16,2,-15,-9], chain 2 => [40,12,-31,-33] => [110,4,-101,-67] ?? [292,74,-183,-263]
[[3,-1,3,-5],[2,-3,3,2],[-5,-2,-5,3],[2,5,0,5]],det=193 [16,2,-15,-9], chain 2 => [46,-37,-36,-3] => [82,89,15,-108] ?? [742,-274,-987,69]
[[3,-1,3,-5],[5,5,5,2],[-5,5,-4,3],[3,0,5,1]],det=509 [16,2,-15,-9], chain 2 => [46,-3,-37,-36] => [210,-42,-205,-83] ?? [472,-351,-689,-478]
[[3,-1,3,-3],[-5,1,-4,0],[1,-1,1,2],[-4,2,-2,-1]],det=28 [16,2,-15,-9], chain 2 => [28,-18,-19,-21] => [108,-82,-15,-89] ?? [628,-562,-3,-477]
[[3,-1,3,-3],[-5,1,-4,0],[1,-1,1,2],[-1,5,4,-5]],det=110 [16,2,-15,-9], chain 2 => [28,-18,-19,-21] => [108,-82,-15,-89] ?? [628,-562,-3,-133]
[[3,-1,3,-3],[-2,4,2,-4],[1,-1,1,2],[-4,2,-2,-1]],det=-52 [16,2,-15,-9], chain 2 => [28,-18,-19,-21] => [108,-82,-15,-89] ?? [628,-218,-3,-477]
[[3,-1,3,-3],[-2,4,2,-4],[1,-1,1,2],[-1,5,4,-5]],det=30 [16,2,-15,-9], chain 2 => [28,-18,-19,-21] => [108,-82,-15,-89] ?? [628,-218,-3,-133]
[[3,-1,3,-3],[0,-3,2,-2],[-5,1,-2,-3],[3,4,5,0]],det=-355 [16,2,-15,-9], chain 2 => [28,-18,-21,-19] => [96,50,-59,-93] ?? [340,-82,-33,193]
[[3,-1,3,-3],[0,-3,2,-2],[-5,1,-2,-3],[5,3,4,5]],det=-302 [16,2,-15,-9], chain 2 => [28,-18,-21,-19] => [96,50,-59,-93] ?? [340,-82,-33,-71]
[[3,-1,3,-3],[0,-3,2,-2],[-3,0,-3,2],[3,4,5,0]],det=-18 [16,2,-15,-9], chain 2 => [28,-18,-21,-19] => [96,50,-59,-93] ?? [340,-82,-297,193]
[[3,-1,3,-3],[0,-3,2,-2],[-3,0,-3,2],[5,3,4,5]],det=35 [16,2,-15,-9], chain 2 => [28,-18,-21,-19] => [96,50,-59,-93] ?? [340,-82,-297,-71]
[[3,-1,3,-3],[2,-4,1,3],[-5,1,-2,-3],[3,4,5,0]],det=-381 [16,2,-15,-9], chain 2 => [28,-18,-21,-19] => [96,50,-59,-93] ?? [340,-346,-33,193]
[[3,-1,3,-3],[2,-4,1,3],[-5,1,-2,-3],[5,3,4,5]],det=-328 [16,2,-15,-9], chain 2 => [28,-18,-21,-19] => [96,50,-59,-93] ?? [340,-346,-33,-71]
[[3,-1,3,-3],[2,-4,1,3],[-3,0,-3,2],[3,4,5,0]],det=-44 [16,2,-15,-9], chain 2 => [28,-18,-21,-19] => [96,50,-59,-93] ?? [340,-346,-297,193]
[[3,-1,3,-3],[2,-4,1,3],[-3,0,-3,2],[5,3,4,5]],det=9 [16,2,-15,-9], chain 2 => [28,-18,-21,-19] => [96,50,-59,-93] ?? [340,-346,-297,-71]
[[3,-1,3,-3],[2,-3,0,5],[-2,1,-3,4],[1,1,0,4]],det=36 [16,2,-15,-9], chain 2 => [28,-19,-21,-18] => [94,23,-84,-63] ?? [196,-196,-165,-135]
[[3,-1,3,-3],[2,-3,0,5],[-2,1,-3,4],[2,2,3,1]],det=72 [16,2,-15,-9], chain 2 => [28,-19,-21,-18] => [94,23,-84,-63] ?? [196,-196,-165,-81]
[[3,-1,3,-3],[2,-3,0,5],[-1,2,0,1],[1,1,0,4]],det=-48 [16,2,-15,-9], chain 2 => [28,-19,-21,-18] => [94,23,-84,-63] ?? [196,-196,-111,-135]
[[3,-1,3,-3],[2,-3,0,5],[-1,2,0,1],[2,2,3,1]],det=-12 [16,2,-15,-9], chain 2 => [28,-19,-21,-18] => [94,23,-84,-63] ?? [196,-196,-111,-81]
[[3,-1,3,-3],[2,-3,0,5],[0,3,3,-2],[1,1,0,4]],det=-132 [16,2,-15,-9], chain 2 => [28,-19,-21,-18] => [94,23,-84,-63] ?? [196,-196,-57,-135]
[[3,-1,3,-3],[2,-3,0,5],[0,3,3,-2],[2,2,3,1]],det=-96 [16,2,-15,-9], chain 2 => [28,-19,-21,-18] => [94,23,-84,-63] ?? [196,-196,-57,-81]
[[3,-1,3,-3],[3,-2,3,2],[-2,1,-3,4],[1,1,0,4]],det=24 [16,2,-15,-9], chain 2 => [28,-19,-21,-18] => [94,23,-84,-63] ?? [196,-142,-165,-135]
[[3,-1,3,-3],[3,-2,3,2],[-2,1,-3,4],[2,2,3,1]],det=60 [16,2,-15,-9], chain 2 => [28,-19,-21,-18] => [94,23,-84,-63] ?? [196,-142,-165,-81]
[[3,-1,3,-3],[3,-2,3,2],[-1,2,0,1],[1,1,0,4]],det=-60 [16,2,-15,-9], chain 2 => [28,-19,-21,-18] => [94,23,-84,-63] ?? [196,-142,-111,-135]
[[3,-1,3,-3],[3,-2,3,2],[-1,2,0,1],[2,2,3,1]],det=-24 [16,2,-15,-9], chain 2 => [28,-19,-21,-18] => [94,23,-84,-63] ?? [196,-142,-111,-81]
[[3,-1,3,-3],[3,-2,3,2],[0,3,3,-2],[1,1,0,4]],det=-144 [16,2,-15,-9], chain 2 => [28,-19,-21,-18] => [94,23,-84,-63] ?? [196,-142,-57,-135]
[[3,-1,3,-3],[3,-2,3,2],[0,3,3,-2],[2,2,3,1]],det=-108 [16,2,-15,-9], chain 2 => [28,-19,-21,-18] => [94,23,-84,-63] ?? [196,-142,-57,-81]
[[3,-1,3,-2],[-5,2,-5,1],[-5,-5,-3,-3],[1,-2,1,0]],det=-22 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [19,-28,18,21] ?? [97,-220,-72,93]
[[3,-1,3,-2],[-5,2,-5,1],[-4,-4,-3,-1],[0,-3,1,-2]],det=18 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [19,-28,21,18] ?? [112,-238,-45,69]
[[3,-1,3,-2],[-5,2,-5,1],[-3,0,-5,5],[1,-2,1,0]],det=22 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [19,-28,18,21] ?? [97,-220,-42,93]
[[3,-1,3,-2],[-5,2,-5,1],[4,-2,4,2],[1,-2,1,0]],det=0 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [19,-28,18,21] ?? [97,-220,246,93]
[[3,-1,3,-2],[-5,2,-5,1],[5,-1,4,4],[0,-3,1,-2]],det=11 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [19,-28,21,18] ?? [112,-238,279,69]
[[3,-1,3,-2],[-3,-2,-1,-3],[-5,-2,-2,-4],[2,-1,1,2]],det=-6 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [19,-10,-27,24] ?? [-62,-82,-117,69]
[[3,-1,3,-2],[-3,-2,-1,-3],[-3,-3,-3,1],[0,0,2,-3]],det=30 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [19,-10,24,-27] ?? [193,20,-126,129]
[[3,-1,3,-2],[-3,-2,-1,-3],[-3,-3,-3,1],[2,5,0,5]],det=16 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [19,-10,24,-27] ?? [193,20,-126,-147]
[[3,-1,3,-2],[-3,-2,-1,-3],[-3,3,-4,4],[2,-1,1,2]],det=3 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [19,-10,-27,24] ?? [-62,-82,117,69]
[[3,-1,3,-2],[-3,-2,-1,-3],[4,1,5,1],[2,-1,1,2]],det=-87 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [19,-10,-27,24] ?? [-62,-82,-45,69]
[[3,-1,3,-2],[-1,3,-3,5],[-5,-2,-2,-4],[2,-1,1,2]],det=-6 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [19,-10,-27,24] ?? [-62,152,-117,69]
[[3,-1,3,-2],[-1,3,-3,5],[-3,-3,-3,1],[0,0,2,-3]],det=-16 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [19,-10,24,-27] ?? [193,-256,-126,129]
[[3,-1,3,-2],[-1,3,-3,5],[-3,-3,-3,1],[2,5,0,5]],det=-30 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [19,-10,24,-27] ?? [193,-256,-126,-147]
[[3,-1,3,-2],[-1,3,-3,5],[-3,3,-4,4],[2,-1,1,2]],det=3 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [19,-10,-27,24] ?? [-62,152,117,69]
[[3,-1,3,-2],[-1,3,-3,5],[4,1,5,1],[2,-1,1,2]],det=84 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [19,-10,-27,24] ?? [-62,152,-45,69]
[[3,-1,3,-2],[1,-4,0,2],[-5,-2,-5,1],[-5,1,-2,-5]],det=-78 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [19,53,12,-54] ?? [148,-301,-315,204]
[[3,-1,3,-2],[1,-4,0,2],[-5,-2,-5,1],[4,4,5,0]],det=-47 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [19,53,12,-54] ?? [148,-301,-315,348]
[[3,-1,3,-2],[1,-4,0,2],[-1,2,1,-1],[0,0,-1,2]],det=-29 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [19,53,-54,12] ?? [-182,-169,21,78]
[[3,-1,3,-2],[1,-4,0,2],[2,-4,4,-2],[-5,1,-2,-5]],det=174 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [19,53,12,-54] ?? [148,-301,-18,204]
[[3,-1,3,-2],[1,-4,0,2],[2,-4,4,-2],[4,4,5,0]],det=-194 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [19,53,12,-54] ?? [148,-301,-18,348]
[[3,-1,3,-2],[2,0,4,-2],[-5,-5,-3,-3],[1,-2,1,0]],det=86 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [19,-28,18,21] ?? [97,68,-72,93]
[[3,-1,3,-2],[2,0,4,-2],[-4,-4,-3,-1],[0,-3,1,-2]],det=10 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [19,-28,21,18] ?? [112,86,-45,69]
[[3,-1,3,-2],[2,0,4,-2],[-3,0,-5,5],[1,-2,1,0]],det=-22 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [19,-28,18,21] ?? [97,68,-42,93]
[[3,-1,3,-2],[2,0,4,-2],[4,-2,4,2],[1,-2,1,0]],det=-44 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [19,-28,18,21] ?? [97,68,246,93]
[[3,-1,3,-2],[2,0,4,-2],[5,-1,4,4],[0,-3,1,-2]],det=-130 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [19,-28,21,18] ?? [112,86,279,69]
[[3,0,2,-1],[5,-5,1,5],[1,-4,3,-2],[-5,-5,-2,-4]],det=392 [16,2,-15,-9], chain 2 => [27,10,-19,-24] => [67,-54,-22,-51] ?? [208,328,319,183]
[[3,1,-1,4],[4,1,3,4],[-3,-3,-3,2],[4,3,3,4]],det=124 [16,2,-15,-9], chain 2 => [29,-15,-27,-11] => [55,-24,17,-54] ?? [-92,31,-252,-17]
[[3,1,-1,5],[-3,-1,0,-4],[0,-1,4,-5],[0,1,0,1]],det=0 [16,2,-15,-9], chain 2 => [20,-14,-17,-7] => [28,-18,-19,-21] ?? [-20,18,47,-39]
[[3,1,-1,5],[-3,-1,0,-4],[2,1,1,4],[0,1,0,1]],det=-6 [16,2,-15,-9], chain 2 => [20,-14,-17,-7] => [28,-18,-19,-21] ?? [-20,18,-65,-39]
[[3,1,-1,5],[-1,1,-3,5],[0,-1,4,-5],[0,1,0,1]],det=-24 [16,2,-15,-9], chain 2 => [20,-14,-17,-7] => [28,-18,-19,-21] ?? [-20,-94,47,-39]
[[3,1,-1,5],[-1,1,-3,5],[2,1,1,4],[0,1,0,1]],det=-30 [16,2,-15,-9], chain 2 => [20,-14,-17,-7] => [28,-18,-19,-21] ?? [-20,-94,-65,-39]
[[3,1,0,1],[-4,-2,0,-4],[-4,2,-3,2],[4,-2,2,4]],det=56 [16,2,-15,-9], chain 2 => [41,-32,-33,-6] => [85,-76,-141,138] ?? [317,-740,207,762]
[[3,1,0,1],[-4,5,-2,-2],[-4,-1,-1,-2],[-1,1,3,-3]],det=84 [16,2,-15,-9], chain 2 => [41,-6,-33,-32] => [85,-64,-61,-50] ?? [141,-438,-115,-182]
[[3,1,0,1],[-3,2,1,-3],[5,-4,4,5],[4,-2,2,4]],det=36 [16,2,-15,-9], chain 2 => [41,-32,-33,-6] => [85,-202,171,138] ?? [191,-902,2607,1638]
[[3,1,0,1],[0,2,3,-1],[0,3,2,-2],[-1,-1,1,0]],det=6 [16,2,-15,-9], chain 2 => [41,-32,-6,-33] => [58,-49,-42,-15] ?? [110,-209,-201,-51]
[[3,1,0,1],[0,2,3,-1],[5,2,3,5],[-1,-1,1,0]],det=-42 [16,2,-15,-9], chain 2 => [41,-32,-6,-33] => [58,-49,-42,-15] ?? [110,-209,-9,-51]
[[3,1,1,-1],[-4,-5,-4,3],[1,2,3,-1],[-3,-1,-3,2]],det=-18 [16,2,-15,-9], chain 2 => [44,-41,-16,-23] => [98,24,-63,-89] ?? [344,-527,46,-307]
[[3,1,2,-1],[-5,4,-5,2],[-1,2,-2,5],[-1,-5,-4,5]],det=308 [16,2,-15,-9], chain 2 => [29,-15,-27,-11] => [29,-92,-60,99] ?? [-224,-15,402,1166]
[[3,1,2,-1],[0,0,4,-5],[-2,-5,-1,0],[5,-2,4,3]],det=297 [16,2,-15,-9], chain 2 => [29,-15,-27,-11] => [29,-53,44,34] ?? [88,6,163,529]
[[3,1,2,0],[-5,0,-2,-4],[-4,1,-3,0],[2,-3,1,2]],det=2 [16,2,-15,-9], chain 2 => [20,-14,-17,-7] => [12,-38,-43,51] ?? [-88,-178,43,197]
[[3,1,2,0],[-5,0,-2,-4],[3,2,4,1],[2,-3,1,2]],det=-85 [16,2,-15,-9], chain 2 => [20,-14,-17,-7] => [12,-38,-43,51] ?? [-88,-178,-161,197]
[[3,1,2,0],[-4,3,-1,-4],[1,-3,3,-2],[-1,-5,-2,2]],det=-78 [16,2,-15,-9], chain 2 => [20,-7,-17,-14] => [19,-28,18,21] ?? [65,-262,115,127]
[[3,1,2,0],[-3,-2,0,-5],[-3,-1,-4,3],[-5,0,-2,-4]],det=-32 [16,2,-15,-9], chain 2 => [20,-7,-17,-14] => [19,24,-27,-10] ?? [27,-55,-3,-1]
[[3,1,2,0],[-3,-2,0,-5],[-3,-1,-4,3],[2,1,5,-3]],det=11 [16,2,-15,-9], chain 2 => [20,-7,-17,-14] => [19,24,-27,-10] ?? [27,-55,-3,-43]
[[3,1,2,0],[-3,-2,0,-5],[0,-1,1,0],[-1,1,0,0]],det=30 [16,2,-15,-9], chain 2 => [20,-7,-17,-14] => [19,24,-10,-27] ?? [61,30,-34,5]
[[3,1,2,0],[-3,-2,0,-5],[4,0,3,4],[-5,0,-2,-4]],det=63 [16,2,-15,-9], chain 2 => [20,-7,-17,-14] => [19,24,-27,-10] ?? [27,-55,-45,-1]
[[3,1,2,0],[-3,-2,0,-5],[4,0,3,4],[2,1,5,-3]],det=106 [16,2,-15,-9], chain 2 => [20,-7,-17,-14] => [19,24,-27,-10] ?? [27,-55,-45,-43]
[[3,1,2,0],[-3,2,-5,5],[-4,1,-3,0],[2,-3,1,2]],det=6 [16,2,-15,-9], chain 2 => [20,-14,-17,-7] => [12,-38,-43,51] ?? [-88,358,43,197]
[[3,1,2,0],[-3,2,-5,5],[3,2,4,1],[2,-3,1,2]],det=195 [16,2,-15,-9], chain 2 => [20,-14,-17,-7] => [12,-38,-43,51] ?? [-88,358,-161,197]
[[3,1,2,0],[-3,2,-2,0],[-3,-4,-5,4],[-3,-2,-3,0]],det=36 [16,2,-15,-9], chain 2 => [20,-14,-17,-7] => [12,-54,53,19] ?? [88,-250,-9,-87]
[[3,1,2,0],[-3,2,-2,0],[-3,-4,-5,4],[4,-1,4,1]],det=-75 [16,2,-15,-9], chain 2 => [20,-14,-17,-7] => [12,-54,53,19] ?? [88,-250,-9,333]
[[3,1,2,0],[-3,2,-2,0],[2,-5,5,-4],[-3,-2,-3,0]],det=-36 [16,2,-15,-9], chain 2 => [20,-14,-17,-7] => [12,-54,53,19] ?? [88,-250,483,-87]
[[3,1,2,0],[-3,2,-2,0],[2,-5,5,-4],[4,-1,4,1]],det=81 [16,2,-15,-9], chain 2 => [20,-14,-17,-7] => [12,-54,53,19] ?? [88,-250,483,333]
[[3,1,2,0],[-3,2,-2,0],[4,-3,2,5],[-3,-2,-3,0]],det=45 [16,2,-15,-9], chain 2 => [20,-14,-17,-7] => [12,-54,53,19] ?? [88,-250,411,-87]
[[3,1,2,0],[-3,2,-2,0],[4,-3,2,5],[4,-1,4,1]],det=-66 [16,2,-15,-9], chain 2 => [20,-14,-17,-7] => [12,-54,53,19] ?? [88,-250,411,333]
[[3,1,2,0],[2,1,5,-3],[-4,1,-3,0],[2,-3,1,2]],det=-34 [16,2,-15,-9], chain 2 => [20,-14,-17,-7] => [12,-38,-43,51] ?? [-88,-382,43,197]
[[3,1,2,0],[2,1,5,-3],[3,2,4,1],[2,-3,1,2]],det=-121 [16,2,-15,-9], chain 2 => [20,-14,-17,-7] => [12,-38,-43,51] ?? [-88,-382,-161,197]
[[3,1,2,0],[3,5,5,0],[-5,2,-4,-1],[1,-3,4,-4]],det=234 [16,2,-15,-9], chain 2 => [20,-17,-7,-14] => [29,-60,-92,99] ?? [-157,-673,4,-555]
[[3,1,2,0],[4,3,5,1],[-3,-4,-5,4],[-3,-2,-3,0]],det=-8 [16,2,-15,-9], chain 2 => [20,-14,-17,-7] => [12,-54,53,19] ?? [88,170,-9,-87]
[[3,1,2,0],[4,3,5,1],[-3,-4,-5,4],[4,-1,4,1]],det=-119 [16,2,-15,-9], chain 2 => [20,-14,-17,-7] => [12,-54,53,19] ?? [88,170,-9,333]
[[3,1,2,0],[4,3,5,1],[2,-5,5,-4],[-3,-2,-3,0]],det=36 [16,2,-15,-9], chain 2 => [20,-14,-17,-7] => [12,-54,53,19] ?? [88,170,483,-87]
[[3,1,2,0],[4,3,5,1],[2,-5,5,-4],[4,-1,4,1]],det=153 [16,2,-15,-9], chain 2 => [20,-14,-17,-7] => [12,-54,53,19] ?? [88,170,483,333]
[[3,1,2,0],[4,3,5,1],[4,-3,2,5],[-3,-2,-3,0]],det=1 [16,2,-15,-9], chain 2 => [20,-14,-17,-7] => [12,-54,53,19] ?? [88,170,411,-87]
[[3,1,2,0],[4,3,5,1],[4,-3,2,5],[4,-1,4,1]],det=-110 [16,2,-15,-9], chain 2 => [20,-14,-17,-7] => [12,-54,53,19] ?? [88,170,411,333]
[[3,1,3,-4],[-4,-5,-1,-3],[-5,-5,-5,2],[5,5,4,4]],det=148 [16,2,-15,-9], chain 2 => [41,-32,-33,-6] => [16,47,108,-111] ?? [863,-74,-1077,303]
[[3,1,3,-4],[-3,2,-1,-3],[3,-5,4,2],[0,-1,1,0]],det=15 [16,2,-15,-9], chain 2 => [41,-2,-40,-17] => [69,-36,-61,-38] ?? [140,-104,67,-25]
[[3,1,5,-5],[-4,1,-5,3],[-1,-3,-1,0],[1,-3,3,-2]],det=52 [16,2,-15,-9], chain 2 => [20,-14,-7,-17] => [96,-110,29,75] ?? [-52,-414,205,363]
[[3,1,5,-5],[1,3,0,4],[3,1,2,3],[1,3,2,1]],det=-56 [16,2,-15,-9], chain 2 => [20,-14,-7,-17] => [96,-90,-19,-53] ?? [368,-386,1,-265]
[[3,1,5,-5],[4,-3,3,3],[1,2,0,3],[-1,4,0,1]],det=142 [16,2,-15,-9], chain 2 => [20,-14,-7,-17] => [96,50,-59,-93] ?? [508,-222,-83,11]
[[3,2,-1,3],[0,1,4,-3],[-5,-2,-4,1],[4,-2,2,2]],det=-132 [16,2,-15,-9], chain 2 => [40,-31,-33,12] => [127,-199,6,180] ?? [517,-715,-81,1278]
[[3,2,-1,3],[2,-4,-1,3],[-3,3,0,-1],[-3,1,-1,0]],det=-28 [16,2,-15,-9], chain 2 => [40,12,-33,-31] => [84,-28,-53,-75] ?? [24,108,-261,-227]
[[3,2,-1,3],[2,-4,-1,3],[-2,-2,1,-2],[-3,-2,1,-4]],det=6 [16,2,-15,-9], chain 2 => [40,12,-33,-31] => [84,-28,-75,-53] ?? [112,196,-81,-59]
[[3,2,0,2],[-3,-3,1,-4],[-5,-4,-3,-3],[5,2,5,0]],det=11 [16,2,-15,-9], chain 2 => [34,-33,-16,9] => [54,-55,-17,24] ?? [100,-110,-71,75]
[[3,2,0,2],[-3,0,-1,-2],[-4,-1,-4,3],[-1,0,0,-2]],det=14 [16,2,-15,-9], chain 2 => [34,-15,-33,2] => [76,-73,17,-38] ?? [6,-169,-413,0]
[[3,2,0,2],[-3,0,-1,-2],[-4,-1,-4,3],[5,3,5,1]],det=-120 [16,2,-15,-9], chain 2 => [34,-15,-33,2] => [76,-73,17,-38] ?? [6,-169,-413,208]
[[3,2,0,2],[3,3,4,1],[-4,-1,-4,3],[-1,0,0,-2]],det=80 [16,2,-15,-9], chain 2 => [34,-15,-33,2] => [76,-73,17,-38] ?? [6,39,-413,0]
[[3,2,0,2],[3,3,4,1],[-4,-1,-4,3],[5,3,5,1]],det=-54 [16,2,-15,-9], chain 2 => [34,-15,-33,2] => [76,-73,17,-38] ?? [6,39,-413,208]
[[3,2,1,-1],[-2,-1,2,-3],[3,0,4,-1],[-2,4,2,-2]],det=184 [16,2,-15,-9], chain 2 => [46,-37,-3,-36] => [97,47,162,-174] ?? [721,605,1113,666]
[[3,2,2,-4],[0,-5,2,1],[-4,-4,-5,2],[-4,2,0,-2]],det=-520 [16,2,-15,-9], chain 2 => [58,-49,-15,-42] => [214,173,-45,-246] ?? [1882,-1201,-1815,-18]
[[3,2,2,-4],[0,-5,2,1],[-4,-4,-5,2],[2,5,5,1]],det=-88 [16,2,-15,-9], chain 2 => [58,-49,-15,-42] => [214,173,-45,-246] ?? [1882,-1201,-1815,822]
[[3,2,2,-4],[0,-5,2,1],[1,4,5,-4],[-4,2,0,-2]],det=408 [16,2,-15,-9], chain 2 => [58,-49,-15,-42] => [214,173,-45,-246] ?? [1882,-1201,1665,-18]
[[3,2,2,-4],[0,-5,2,1],[1,4,5,-4],[2,5,5,1]],det=-528 [16,2,-15,-9], chain 2 => [58,-49,-15,-42] => [214,173,-45,-246] ?? [1882,-1201,1665,822]
[[3,2,2,-4],[0,-5,2,1],[2,-1,0,5],[-4,2,0,-2]],det=272 [16,2,-15,-9], chain 2 => [58,-49,-15,-42] => [214,173,-45,-246] ?? [1882,-1201,-975,-18]
[[3,2,2,-4],[0,-5,2,1],[2,-1,0,5],[2,5,5,1]],det=704 [16,2,-15,-9], chain 2 => [58,-49,-15,-42] => [214,173,-45,-246] ?? [1882,-1201,-975,822]
[[3,2,3,-3],[-3,1,-5,3],[1,-2,0,3],[-5,1,-3,0]],det=-51 [16,2,-15,-9], chain 2 => [34,2,-15,-33] => [160,-124,-69,-123] ?? [394,-628,39,-717]
[[3,2,3,-3],[-3,1,-5,3],[1,-2,0,3],[-1,5,0,3]],det=-222 [16,2,-15,-9], chain 2 => [34,2,-15,-33] => [160,-124,-69,-123] ?? [394,-628,39,-1149]
[[3,2,3,-3],[-2,1,-5,4],[-4,-1,-4,3],[-3,-2,0,-4]],det=-54 [16,2,-15,-9], chain 2 => [34,9,-33,-16] => [69,42,-61,-56] ?? [276,-15,-242,-67]
[[3,2,3,-3],[-2,1,-5,4],[3,0,3,4],[-3,-2,0,-4]],det=-57 [16,2,-15,-9], chain 2 => [34,9,-33,-16] => [69,42,-61,-56] ?? [276,-15,-200,-67]
[[3,2,3,-3],[2,5,1,2],[-1,-1,1,0],[-1,3,-2,4]],det=-21 [16,2,-15,-9], chain 2 => [34,9,-33,-16] => [69,48,-76,-5] ?? [90,292,-193,207]
[[3,2,3,-3],[5,2,2,5],[-4,-1,-4,3],[-3,-2,0,-4]],det=33 [16,2,-15,-9], chain 2 => [34,9,-33,-16] => [69,42,-61,-56] ?? [276,27,-242,-67]
[[3,2,3,-3],[5,2,2,5],[3,0,3,4],[-3,-2,0,-4]],det=30 [16,2,-15,-9], chain 2 => [34,9,-33,-16] => [69,42,-61,-56] ?? [276,27,-200,-67]
[[3,2,3,-2],[-5,-4,-5,1],[0,-2,-3,5],[2,1,1,4]],det=15 [16,2,-15,-9], chain 2 => [25,-22,-4,-17] => [53,-34,-29,-44] ?? [92,-28,-65,-133]
[[3,2,3,-2],[-5,-4,-5,1],[3,4,4,0],[2,1,1,4]],det=-3 [16,2,-15,-9], chain 2 => [25,-22,-4,-17] => [53,-34,-29,-44] ?? [92,-28,-93,-133]
[[3,2,3,-2],[-2,2,2,-4],[0,-2,-3,5],[2,1,1,4]],det=-18 [16,2,-15,-9], chain 2 => [25,-22,-4,-17] => [53,-34,-29,-44] ?? [92,-56,-65,-133]
[[3,2,3,-2],[-2,2,2,-4],[3,4,4,0],[2,1,1,4]],det=-36 [16,2,-15,-9], chain 2 => [25,-22,-4,-17] => [53,-34,-29,-44] ?? [92,-56,-93,-133]
[[3,2,3,-2],[1,2,1,1],[-1,1,2,-3],[1,-1,0,4]],det=58 [16,2,-15,-9], chain 2 => [25,-4,-17,-22] => [60,-22,3,-59] ?? [263,-40,101,-154]
[[3,2,3,-2],[1,2,1,1],[2,1,1,4],[-2,-1,1,-3]],det=-50 [16,2,-15,-9], chain 2 => [25,-4,-17,-22] => [60,-22,-59,3] ?? [-47,-40,51,-166]
[[3,2,4,-4],[1,2,2,1],[-2,1,1,-3],[-2,-2,2,-5]],det=130 [16,2,-15,-9], chain 2 => [28,-19,-18,-21] => [58,-67,-30,51] ?? [-284,-85,-366,-297]
[[3,2,4,-4],[1,2,2,1],[2,-4,1,3],[2,2,5,-2]],det=-122 [16,2,-15,-9], chain 2 => [28,-19,-18,-21] => [58,-67,51,-30] ?? [364,-4,345,297]
[[3,2,4,-4],[2,-3,3,0],[3,-3,4,0],[-1,5,4,-5]],det=55 [16,2,-15,-9], chain 2 => [28,-19,-18,-21] => [58,59,69,-90] ?? [928,146,273,963]
[[3,2,4,-4],[2,3,5,-2],[-4,-1,-2,-2],[4,1,4,3]],det=85 [16,2,-15,-9], chain 2 => [28,-19,-18,-21] => [58,-49,-15,-42] ?? [184,-22,-69,-3]
[[3,2,4,-4],[2,3,5,-2],[0,0,0,2],[0,0,2,-1]],det=-20 [16,2,-15,-9], chain 2 => [28,-19,-18,-21] => [58,-49,-42,-15] ?? [-32,-211,-30,-69]
[[3,2,4,-3],[3,3,3,3],[5,2,4,3],[-1,0,-1,1]],det=0 [16,2,-15,-9], chain 2 => [19,-18,-3,-10] => [39,-36,17,-26] ?? [191,-18,113,-82]
[[3,3,-2,5],[-2,-4,-2,-3],[-1,2,1,1],[4,-3,5,1]],det=176 [16,2,-15,-9], chain 2 => [39,17,-36,-26] => [110,4,-67,-101] ?? [-29,201,-270,-8]
[[3,3,-1,1],[-5,-2,-4,-3],[1,-4,2,0],[2,-2,4,3]],det=-102 [16,2,-15,-9], chain 2 => [60,3,-22,-59] => [152,-41,4,-151] ?? [178,-241,324,-51]
[[3,3,-1,1],[-3,0,-4,1],[1,-4,2,0],[0,-4,4,-1]],det=-18 [16,2,-15,-9], chain 2 => [60,3,-22,-59] => [152,-151,4,-41] ?? [-42,-513,764,661]
[[3,3,-1,1],[5,2,3,4],[-4,0,-1,-3],[2,-2,4,3]],det=7 [16,2,-15,-9], chain 2 => [60,3,-22,-59] => [152,4,-41,-151] ?? [358,41,-114,-321]
[[3,3,-1,1],[5,2,3,4],[-2,2,-1,1],[0,-4,4,-1]],det=73 [16,2,-15,-9], chain 2 => [60,3,-22,-59] => [152,4,-151,-41] ?? [578,151,-186,-579]
[[3,3,0,3],[-4,-5,-5,-1],[-4,2,0,-4],[5,-3,5,2]],det=0 [16,2,-15,-9], chain 2 => [27,10,-24,-19] => [54,-19,-12,-53] ?? [-54,-8,-42,161]
[[3,3,3,-2],[-5,2,-2,-3],[1,-3,0,0],[-1,-4,0,0]],det=91 [16,2,-15,-9], chain 2 => [27,-19,10,-24] => [102,-121,84,49] ?? [97,-1067,465,382]
[[3,4,-2,5],[-2,3,-4,4],[-4,3,-3,3],[0,2,2,-1]],det=-59 [16,2,-15,-9], chain 2 => [41,-2,-40,-17] => [110,4,-101,-67] ?? [213,-72,-326,-127]
[[3,4,-2,5],[2,-2,5,-5],[-3,4,-3,5],[-4,4,-2,-1]],det=422 [16,2,-15,-9], chain 2 => [41,-2,-40,-17] => [110,-29,-96,-75] ?? [31,173,-533,-289]
[[3,4,1,0],[-1,2,-1,1],[-3,-1,0,-2],[-3,0,2,-5]],det=11 [16,2,-15,-9], chain 2 => [41,-6,-32,-33] => [67,-54,-51,-22] ?? [-66,-146,-103,-193]
[[3,4,1,0],[-1,2,-1,1],[2,1,5,-1],[-3,0,2,-5]],det=-229 [16,2,-15,-9], chain 2 => [41,-6,-32,-33] => [67,-54,-51,-22] ?? [-66,-146,-153,-193]
[[3,4,1,0],[4,4,4,2],[-3,-1,0,-2],[-3,0,2,-5]],det=82 [16,2,-15,-9], chain 2 => [41,-6,-32,-33] => [67,-54,-51,-22] ?? [-66,-196,-103,-193]
[[3,4,1,0],[4,4,4,2],[2,1,5,-1],[-3,0,2,-5]],det=-158 [16,2,-15,-9], chain 2 => [41,-6,-32,-33] => [67,-54,-51,-22] ?? [-66,-196,-153,-193]
[[3,4,4,-5],[-3,3,0,-4],[1,1,4,-1],[0,-1,-1,5]],det=225 [16,2,-15,-9], chain 2 => [41,-6,-33,-32] => [127,-13,-65,-121] ?? [674,64,-25,-527]
[[3,4,4,-5],[-2,-2,-5,5],[-5,-5,-2,-3],[0,-1,-1,5]],det=18 [16,2,-15,-9], chain 2 => [41,-6,-33,-32] => [127,-65,-13,-121] ?? [674,-664,79,-527]
[[3,4,4,-5],[2,2,4,-2],[-1,5,3,-2],[-3,-4,-4,4]],det=34 [16,2,-15,-9], chain 2 => [41,-6,-33,-32] => [127,2,-106,-95] ?? [440,24,-245,-345]
[[3,5,0,-2],[-5,-1,-4,1],[1,-5,4,2],[-5,-5,-2,-3]],det=-40 [16,2,-15,-9], chain 2 => [76,-31,-72,-33] => [139,-94,-123,18] ?? [-89,-91,153,-33]
[[3,5,0,-2],[2,3,4,1],[0,0,4,-3],[2,-1,5,3]],det=245 [16,2,-15,-9], chain 2 => [76,-31,-33,-72] => [217,-145,84,-198] ?? [322,137,930,405]
[[3,5,1,1],[-2,-5,-1,-4],[-5,-4,-3,-3],[-4,5,-2,1]],det=-81 [16,2,-15,-9], chain 2 => [34,9,-16,-33] => [98,35,-59,-92] ?? [318,56,-177,-191]
[[3,5,1,1],[-1,-1,-3,2],[4,-5,4,3],[-1,-3,2,-4]],det=167 [16,2,-15,-9], chain 2 => [34,9,-33,-16] => [98,24,-89,-63] ?? [262,19,-273,-96]
[[3,5,1,1],[5,5,3,4],[-5,-4,-3,-3],[-4,5,-2,1]],det=26 [16,2,-15,-9], chain 2 => [34,9,-16,-33] => [98,35,-59,-92] ?? [318,120,-177,-191]
[[3,5,2,-2],[4,2,4,5],[3,-3,0,5],[-2,-5,-1,1]],det=-172 [16,2,-15,-9], chain 2 => [46,-37,-3,-36] => [19,-82,69,60] ?? [-335,488,603,363]
[[3,5,3,-5],[2,-3,2,5],[0,-3,0,1],[-4,-1,-1,-1]],det=-168 [16,2,-15,-9], chain 2 => [58,-49,-15,-42] => [94,23,105,-126] ?? [1342,-301,-195,-378]
[[3,5,3,-5],[2,-3,2,5],[0,-3,0,1],[2,2,4,2]],det=-112 [16,2,-15,-9], chain 2 => [58,-49,-15,-42] => [94,23,105,-126] ?? [1342,-301,-195,402]
[[3,5,3,-3],[1,1,-2,4],[-2,-4,-3,4],[-1,-4,0,1]],det=1 [16,2,-15,-9], chain 2 => [40,12,-31,-33] => [186,-18,-167,-121] ?? [330,18,-283,-235]
[[3,5,4,-3],[0,-2,0,0],[1,-3,0,3],[0,4,2,0]],det=48 [16,2,-15,-9], chain 2 => [25,-4,-17,-22] => [53,8,-29,-50] ?? [233,-16,-121,-26]
[[4,-4,-2,5],[-3,2,1,-3],[1,4,2,0],[-2,4,3,-4]],det=10 [16,2,-15,-9], chain 2 => [41,-32,-6,-33] => [139,-94,-99,-96] ?? [650,-416,-435,-567]
[[4,-4,-2,5],[-3,2,1,-3],[1,4,2,0],[3,3,4,3]],det=25 [16,2,-15,-9], chain 2 => [41,-32,-6,-33] => [139,-94,-99,-96] ?? [650,-416,-435,-549]
[[4,-4,-2,5],[2,1,2,4],[1,4,2,0],[-2,4,3,-4]],det=75 [16,2,-15,-9], chain 2 => [41,-32,-6,-33] => [139,-94,-99,-96] ?? [650,-398,-435,-567]
[[4,-4,-2,5],[2,1,2,4],[1,4,2,0],[3,3,4,3]],det=90 [16,2,-15,-9], chain 2 => [41,-32,-6,-33] => [139,-94,-99,-96] ?? [650,-398,-435,-549]
[[4,-4,-1,2],[-3,4,-5,3],[-1,4,4,-2],[-4,4,0,-3]],det=-144 [16,2,-15,-9], chain 2 => [53,8,-50,-29] => [172,36,-163,-93] ?? [521,164,-494,-265]
[[4,-4,-1,2],[-3,4,-5,3],[-1,4,4,-2],[-3,2,-1,0]],det=54 [16,2,-15,-9], chain 2 => [53,8,-50,-29] => [172,36,-163,-93] ?? [521,164,-494,-281]
[[4,-4,-1,2],[-3,4,-5,3],[-1,4,4,-2],[-2,0,-2,3]],det=252 [16,2,-15,-9], chain 2 => [53,8,-50,-29] => [172,36,-163,-93] ?? [521,164,-494,-297]
[[4,-4,-1,2],[-3,4,-5,3],[-1,4,4,-2],[5,1,5,4]],det=303 [16,2,-15,-9], chain 2 => [53,8,-50,-29] => [172,36,-163,-93] ?? [521,164,-494,-291]
[[4,-4,-1,2],[-3,4,-5,3],[0,2,3,1],[-4,4,0,-3]],det=-90 [16,2,-15,-9], chain 2 => [53,8,-50,-29] => [172,36,-163,-93] ?? [521,164,-510,-265]
[[4,-4,-1,2],[-3,4,-5,3],[0,2,3,1],[-3,2,-1,0]],det=108 [16,2,-15,-9], chain 2 => [53,8,-50,-29] => [172,36,-163,-93] ?? [521,164,-510,-281]
[[4,-4,-1,2],[-3,4,-5,3],[0,2,3,1],[-2,0,-2,3]],det=306 [16,2,-15,-9], chain 2 => [53,8,-50,-29] => [172,36,-163,-93] ?? [521,164,-510,-297]
[[4,-4,-1,2],[-3,4,-5,3],[0,2,3,1],[5,1,5,4]],det=-175 [16,2,-15,-9], chain 2 => [53,8,-50,-29] => [172,36,-163,-93] ?? [521,164,-510,-291]
[[4,-4,-1,2],[-3,4,-5,3],[1,0,2,4],[-4,4,0,-3]],det=-36 [16,2,-15,-9], chain 2 => [53,8,-50,-29] => [172,36,-163,-93] ?? [521,164,-526,-265]
[[4,-4,-1,2],[-3,4,-5,3],[1,0,2,4],[-3,2,-1,0]],det=162 [16,2,-15,-9], chain 2 => [53,8,-50,-29] => [172,36,-163,-93] ?? [521,164,-526,-281]
[[4,-4,-1,2],[-3,4,-5,3],[1,0,2,4],[-2,0,-2,3]],det=360 [16,2,-15,-9], chain 2 => [53,8,-50,-29] => [172,36,-163,-93] ?? [521,164,-526,-297]
[[4,-4,-1,2],[-3,4,-5,3],[1,0,2,4],[5,1,5,4]],det=-653 [16,2,-15,-9], chain 2 => [53,8,-50,-29] => [172,36,-163,-93] ?? [521,164,-526,-291]
[[4,-4,-1,2],[4,5,2,4],[-1,4,4,-2],[-4,4,0,-3]],det=-177 [16,2,-15,-9], chain 2 => [53,8,-50,-29] => [172,36,-163,-93] ?? [521,170,-494,-265]
[[4,-4,-1,2],[4,5,2,4],[-1,4,4,-2],[-3,2,-1,0]],det=60 [16,2,-15,-9], chain 2 => [53,8,-50,-29] => [172,36,-163,-93] ?? [521,170,-494,-281]
[[4,-4,-1,2],[4,5,2,4],[-1,4,4,-2],[-2,0,-2,3]],det=297 [16,2,-15,-9], chain 2 => [53,8,-50,-29] => [172,36,-163,-93] ?? [521,170,-494,-297]
[[4,-4,-1,2],[4,5,2,4],[-1,4,4,-2],[5,1,5,4]],det=348 [16,2,-15,-9], chain 2 => [53,8,-50,-29] => [172,36,-163,-93] ?? [521,170,-494,-291]
[[4,-4,-1,2],[4,5,2,4],[0,2,3,1],[-4,4,0,-3]],det=-64 [16,2,-15,-9], chain 2 => [53,8,-50,-29] => [172,36,-163,-93] ?? [521,170,-510,-265]
[[4,-4,-1,2],[4,5,2,4],[0,2,3,1],[-3,2,-1,0]],det=173 [16,2,-15,-9], chain 2 => [53,8,-50,-29] => [172,36,-163,-93] ?? [521,170,-510,-281]
[[4,-4,-1,2],[4,5,2,4],[0,2,3,1],[-2,0,-2,3]],det=410 [16,2,-15,-9], chain 2 => [53,8,-50,-29] => [172,36,-163,-93] ?? [521,170,-510,-297]
[[4,-4,-1,2],[4,5,2,4],[0,2,3,1],[5,1,5,4]],det=-71 [16,2,-15,-9], chain 2 => [53,8,-50,-29] => [172,36,-163,-93] ?? [521,170,-510,-291]
[[4,-4,-1,2],[4,5,2,4],[1,0,2,4],[-4,4,0,-3]],det=49 [16,2,-15,-9], chain 2 => [53,8,-50,-29] => [172,36,-163,-93] ?? [521,170,-526,-265]
[[4,-4,-1,2],[4,5,2,4],[1,0,2,4],[-3,2,-1,0]],det=286 [16,2,-15,-9], chain 2 => [53,8,-50,-29] => [172,36,-163,-93] ?? [521,170,-526,-281]
[[4,-4,-1,2],[4,5,2,4],[1,0,2,4],[-2,0,-2,3]],det=523 [16,2,-15,-9], chain 2 => [53,8,-50,-29] => [172,36,-163,-93] ?? [521,170,-526,-297]
[[4,-4,-1,2],[4,5,2,4],[1,0,2,4],[5,1,5,4]],det=-490 [16,2,-15,-9], chain 2 => [53,8,-50,-29] => [172,36,-163,-93] ?? [521,170,-526,-291]
[[4,-4,0,3],[-4,1,-4,1],[-5,4,0,-5],[-2,-2,1,-4]],det=-71 [16,2,-15,-9], chain 2 => [29,-11,-27,-15] => [115,-34,-114,-3] ?? [587,-41,-696,-264]
[[4,-4,0,3],[2,1,3,0],[-5,4,0,-5],[-2,-2,1,-4]],det=51 [16,2,-15,-9], chain 2 => [29,-11,-27,-15] => [115,-34,-114,-3] ?? [587,-146,-696,-264]
[[4,-4,0,4],[-4,4,-4,2],[-3,-1,-1,-2],[0,4,4,-5]],det=-32 [16,2,-15,-9], chain 2 => [20,-14,-17,-7] => [108,-82,-15,-89] ?? [404,-878,-49,57]
[[4,-4,0,4],[3,5,3,3],[-3,-1,-1,-2],[0,4,4,-5]],det=-160 [16,2,-15,-9], chain 2 => [20,-14,-17,-7] => [108,-82,-15,-89] ?? [404,-398,-49,57]
[[4,-4,2,-3],[-2,-3,-3,4],[-2,3,1,1],[-3,-5,-2,-4]],det=328 [16,2,-15,-9], chain 2 => [53,-29,-50,8] => [204,163,-235,54] ?? [-468,24,-100,-1173]
[[4,-4,2,-3],[-2,-3,-3,4],[-2,3,1,1],[4,-4,5,-3]],det=0 [16,2,-15,-9], chain 2 => [53,-29,-50,8] => [204,163,-235,54] ?? [-468,24,-100,-1173]
[[4,-4,2,-3],[5,-2,4,5],[-2,3,1,1],[-3,-5,-2,-4]],det=451 [16,2,-15,-9], chain 2 => [53,-29,-50,8] => [204,163,-235,54] ?? [-468,24,-100,-1173]
[[4,-4,2,-3],[5,-2,4,5],[-2,3,1,1],[4,-4,5,-3]],det=123 [16,2,-15,-9], chain 2 => [53,-29,-50,8] => [204,163,-235,54] ?? [-468,24,-100,-1173]
[[4,-4,3,-2],[1,1,0,5],[2,2,4,-1],[-3,5,-3,2]],det=-160 [16,2,-15,-9], chain 2 => [29,-27,-15,-11] => [201,-53,-45,-199] ?? [1279,-847,315,-1131]
[[4,-4,3,-1],[-4,0,-5,2],[-1,-2,-2,3],[-1,4,-2,4]],det=-106 [16,2,-15,-9], chain 2 => [20,-7,-17,-14] => [71,-23,-14,-70] ?? [404,-354,-207,-415]
[[4,-4,3,-1],[3,1,2,3],[-1,-2,-2,3],[-1,4,-2,4]],det=73 [16,2,-15,-9], chain 2 => [20,-7,-17,-14] => [71,-23,-14,-70] ?? [404,-48,-207,-415]
[[4,-3,-3,3],[2,0,0,3],[-1,-1,5,-5],[0,3,5,0]],det=-78 [16,2,-15,-9], chain 2 => [76,5,-48,-69] => [226,-55,24,-225] ?? [322,-223,1074,-45]
[[4,-3,-3,5],[0,-5,2,1],[-4,-4,-5,2],[-4,2,0,-2]],det=224 [16,2,-15,-9], chain 2 => [58,-49,-15,-42] => [214,173,-45,-246] ?? [-758,-1201,-1815,-18]
[[4,-3,-3,5],[0,-5,2,1],[-4,-4,-5,2],[2,5,5,1]],det=976 [16,2,-15,-9], chain 2 => [58,-49,-15,-42] => [214,173,-45,-246] ?? [-758,-1201,-1815,822]
[[4,-3,-3,5],[0,-5,2,1],[1,4,5,-4],[-4,2,0,-2]],det=-136 [16,2,-15,-9], chain 2 => [58,-49,-15,-42] => [214,173,-45,-246] ?? [-758,-1201,1665,-18]
[[4,-3,-3,5],[0,-5,2,1],[1,4,5,-4],[2,5,5,1]],det=-752 [16,2,-15,-9], chain 2 => [58,-49,-15,-42] => [214,173,-45,-246] ?? [-758,-1201,1665,822]
[[4,-3,-3,5],[0,-5,2,1],[2,-1,0,5],[-4,2,0,-2]],det=-272 [16,2,-15,-9], chain 2 => [58,-49,-15,-42] => [214,173,-45,-246] ?? [-758,-1201,-975,-18]
[[4,-3,-3,5],[0,-5,2,1],[2,-1,0,5],[2,5,5,1]],det=480 [16,2,-15,-9], chain 2 => [58,-49,-15,-42] => [214,173,-45,-246] ?? [-758,-1201,-975,822]
[[4,-3,-1,5],[-2,-1,-1,0],[-4,2,-1,-3],[-5,1,-2,-3]],det=-9 [16,2,-15,-9], chain 2 => [28,-19,-18,-21] => [82,-19,-69,-60] ?? [154,-76,-117,-111]
[[4,-3,-1,5],[-2,-1,-1,0],[-1,-1,-3,5],[0,3,3,-2]],det=76 [16,2,-15,-9], chain 2 => [28,-19,-18,-21] => [82,-19,-60,-69] ?? [100,-85,-228,-99]
[[4,-3,-1,5],[5,2,5,3],[-2,2,0,-1],[-4,-4,-4,1]],det=-156 [16,2,-15,-9], chain 2 => [28,-18,-19,-21] => [80,-54,-71,15] ?? [628,-18,-283,195]
[[4,-3,-1,5],[5,2,5,3],[-2,2,0,-1],[-1,-1,2,-3]],det=-84 [16,2,-15,-9], chain 2 => [28,-18,-19,-21] => [80,-54,-71,15] ?? [628,-18,-283,-213]
[[4,-3,0,2],[0,-3,-3,3],[-5,-1,-1,-4],[2,5,5,0]],det=-135 [16,2,-15,-9], chain 2 => [40,12,-31,-33] => [58,-42,-49,-15] ?? [328,228,-139,-339]
[[4,-3,1,1],[-5,-1,-5,-1],[-2,-2,-2,1],[2,-4,5,-2]],det=225 [16,2,-15,-9], chain 2 => [34,2,-15,-33] => [82,-64,-75,51] ?? [496,-22,165,-57]
[[4,-3,1,1],[-5,-1,-5,-1],[1,-2,3,-2],[-1,-4,0,1]],det=-247 [16,2,-15,-9], chain 2 => [34,2,-15,-33] => [82,-64,51,-75] ?? [496,-526,513,99]
[[4,-3,1,1],[-5,-1,-5,-1],[1,-2,3,-2],[3,0,3,4]],det=-260 [16,2,-15,-9], chain 2 => [34,2,-15,-33] => [82,-64,51,-75] ?? [496,-526,513,99]
[[4,-3,1,1],[-5,-1,-5,-1],[2,2,1,4],[2,-4,5,-2]],det=340 [16,2,-15,-9], chain 2 => [34,2,-15,-33] => [82,-64,-75,51] ?? [496,-22,165,-57]
[[4,-3,1,1],[-3,-5,-4,2],[-5,1,-4,-3],[-4,2,0,-3]],det=-222 [16,2,-15,-9], chain 2 => [34,-16,9,-33] => [160,-124,-123,-69] ?? [820,494,-225,-681]
[[4,-3,1,1],[-3,-5,-4,2],[-1,5,-1,0],[-4,2,0,-3]],det=-105 [16,2,-15,-9], chain 2 => [34,-16,9,-33] => [160,-124,-123,-69] ?? [820,494,-657,-681]
[[4,-3,1,1],[-2,-5,-4,1],[-3,3,0,-1],[1,-1,-1,5]],det=-40 [16,2,-15,-9], chain 2 => [34,9,-33,-16] => [60,3,-59,-22] ?? [150,79,-149,6]
[[4,-3,1,1],[-1,3,-2,2],[-2,-2,-2,1],[2,-4,5,-2]],det=-115 [16,2,-15,-9], chain 2 => [34,2,-15,-33] => [82,-64,-75,51] ?? [496,-22,165,-57]
[[4,-3,1,1],[-1,3,-2,2],[1,-2,3,-2],[-1,-4,0,1]],det=65 [16,2,-15,-9], chain 2 => [34,2,-15,-33] => [82,-64,51,-75] ?? [496,-526,513,99]
[[4,-3,1,1],[-1,3,-2,2],[1,-2,3,-2],[3,0,3,4]],det=52 [16,2,-15,-9], chain 2 => [34,2,-15,-33] => [82,-64,51,-75] ?? [496,-526,513,99]
[[4,-3,1,1],[-1,3,-2,2],[2,2,1,4],[2,-4,5,-2]],det=0 [16,2,-15,-9], chain 2 => [34,2,-15,-33] => [82,-64,-75,51] ?? [496,-22,165,-57]
[[4,-3,1,1],[1,-1,-1,5],[-5,1,-4,-3],[-4,2,0,-3]],det=-93 [16,2,-15,-9], chain 2 => [34,-16,9,-33] => [160,-124,-123,-69] ?? [820,62,-225,-681]
[[4,-3,1,1],[1,-1,-1,5],[-1,5,-1,0],[-4,2,0,-3]],det=24 [16,2,-15,-9], chain 2 => [34,-16,9,-33] => [160,-124,-123,-69] ?? [820,62,-657,-681]
[[4,-3,1,1],[5,-4,3,2],[-3,3,0,-1],[1,-1,-1,5]],det=-30 [16,2,-15,-9], chain 2 => [34,9,-33,-16] => [60,3,-59,-22] ?? [150,67,-149,6]
[[4,-3,2,1],[-5,-1,-3,-3],[-1,2,1,-1],[-4,2,-2,-3]],det=40 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [67,-22,-54,-51] ?? [175,2,-114,-51]
[[4,-3,2,1],[-5,-1,-3,-3],[-1,2,1,-1],[5,5,5,2]],det=28 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [67,-22,-54,-51] ?? [175,2,-114,-147]
[[4,-3,2,1],[-5,-1,-3,-3],[0,3,1,1],[-5,1,-2,-5]],det=34 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [67,-22,-51,-54] ?? [178,2,-171,15]
[[4,-3,2,1],[-5,-1,-3,-3],[0,3,1,1],[4,4,5,0]],det=42 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [67,-22,-51,-54] ?? [178,2,-171,-75]
[[4,-3,2,1],[-3,4,-5,5],[-1,2,1,-1],[-4,2,-2,-3]],det=-32 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [67,-22,-54,-51] ?? [175,-274,-114,-51]
[[4,-3,2,1],[-3,4,-5,5],[-1,2,1,-1],[5,5,5,2]],det=-104 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [67,-22,-54,-51] ?? [175,-274,-114,-147]
[[4,-3,2,1],[-3,4,-5,5],[0,3,1,1],[-5,1,-2,-5]],det=-51 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [67,-22,-51,-54] ?? [178,-304,-171,15]
[[4,-3,2,1],[-3,4,-5,5],[0,3,1,1],[4,4,5,0]],det=-122 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [67,-22,-51,-54] ?? [178,-304,-171,-75]
[[4,-3,2,1],[-2,5,-2,2],[-1,-1,-3,5],[-4,2,-2,-3]],det=80 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [67,-58,30,-51] ?? [451,-586,-354,-291]
[[4,-3,2,1],[-2,5,-2,2],[-1,-1,-3,5],[5,5,5,2]],det=-224 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [67,-58,30,-51] ?? [451,-586,-354,93]
[[4,-3,2,1],[-2,5,-2,2],[0,3,1,1],[2,-4,3,-2]],det=2 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [67,-58,-51,30] ?? [370,-262,-195,153]
[[4,-3,2,1],[4,2,4,2],[-1,2,1,-1],[-4,2,-2,-3]],det=-28 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [67,-22,-54,-51] ?? [175,-94,-114,-51]
[[4,-3,2,1],[4,2,4,2],[-1,2,1,-1],[5,5,5,2]],det=-40 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [67,-22,-54,-51] ?? [175,-94,-114,-147]
[[4,-3,2,1],[4,2,4,2],[0,3,1,1],[-5,1,-2,-5]],det=0 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [67,-22,-51,-54] ?? [178,-88,-171,15]
[[4,-3,2,1],[4,2,4,2],[0,3,1,1],[4,4,5,0]],det=8 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [67,-22,-51,-54] ?? [178,-88,-171,-75]
[[4,-3,2,1],[5,-4,5,0],[-5,1,-4,0],[0,4,3,-3]],det=-22 [16,2,-15,-9], chain 2 => [19,-3,-18,-10] => [39,17,-26,-36] ?? [17,-3,-74,98]
[[4,-3,2,1],[5,-4,5,0],[-5,1,-4,0],[1,5,0,4]],det=130 [16,2,-15,-9], chain 2 => [19,-3,-18,-10] => [39,17,-26,-36] ?? [17,-3,-74,-20]
[[4,-3,2,1],[5,-4,5,0],[3,3,3,3],[5,3,4,4]],det=18 [16,2,-15,-9], chain 2 => [19,-3,-18,-10] => [39,17,-36,-26] ?? [7,-53,-18,-2]
[[4,-3,4,-4],[-5,-4,-3,-5],[-4,5,-5,4],[-4,5,-2,1]],det=-285 [16,2,-15,-9], chain 2 => [34,2,-15,-33] => [202,32,-183,-129] ?? [496,56,-249,-411]
[[4,-3,4,-4],[-5,-4,-3,-5],[-1,-4,-3,4],[-3,3,-3,4]],det=58 [16,2,-15,-9], chain 2 => [34,2,-15,-33] => [202,32,-129,-183] ?? [928,164,-675,-855]
[[4,-3,4,-4],[-2,-2,0,-5],[-5,4,-5,4],[0,4,4,-4]],det=-108 [16,2,-15,-9], chain 2 => [34,9,-33,-16] => [41,-6,-33,-32] ?? [178,90,-192,-28]
[[4,-3,4,-4],[-2,-2,0,-5],[2,5,2,5],[0,4,4,-4]],det=96 [16,2,-15,-9], chain 2 => [34,9,-33,-16] => [41,-6,-33,-32] ?? [178,90,-174,-28]
[[4,-3,4,-4],[-1,0,0,-2],[-4,5,-5,4],[-4,5,-2,1]],det=-57 [16,2,-15,-9], chain 2 => [34,2,-15,-33] => [202,32,-183,-129] ?? [496,56,-249,-411]
[[4,-3,4,-4],[-1,0,0,-2],[-1,-4,-3,4],[-3,3,-3,4]],det=16 [16,2,-15,-9], chain 2 => [34,2,-15,-33] => [202,32,-129,-183] ?? [928,164,-675,-855]
[[4,-3,4,-4],[0,0,1,0],[-5,-2,-4,1],[-2,2,-2,0]],det=-54 [16,2,-15,-9], chain 2 => [34,-15,-33,2] => [41,-33,-6,-32] ?? [367,-6,-147,-136]
[[4,-3,4,-4],[0,0,1,0],[-5,-2,-4,1],[4,5,3,3]],det=33 [16,2,-15,-9], chain 2 => [34,-15,-33,2] => [41,-33,-6,-32] ?? [367,-6,-147,-115]
[[4,-3,4,-4],[0,0,1,0],[1,1,1,4],[-2,2,-2,0]],det=24 [16,2,-15,-9], chain 2 => [34,-15,-33,2] => [41,-33,-6,-32] ?? [367,-6,-126,-136]
[[4,-3,4,-4],[0,0,1,0],[1,1,1,4],[4,5,3,3]],det=111 [16,2,-15,-9], chain 2 => [34,-15,-33,2] => [41,-33,-6,-32] ?? [367,-6,-126,-115]
[[4,-3,4,-4],[1,-4,-2,4],[-3,0,-4,3],[-5,-5,-5,2]],det=-133 [16,2,-15,-9], chain 2 => [34,2,-15,-33] => [202,-76,-141,-171] ?? [1156,104,-555,-267]
[[4,-3,4,-4],[1,-4,-2,4],[-3,0,-4,3],[-1,-1,-2,5]],det=-46 [16,2,-15,-9], chain 2 => [34,2,-15,-33] => [202,-76,-141,-171] ?? [1156,104,-555,-699]
[[4,-3,4,-4],[1,-4,-2,4],[-2,1,-4,5],[-2,-2,-2,3]],det=6 [16,2,-15,-9], chain 2 => [34,2,-15,-33] => [202,-76,-171,-141] ?? [916,284,-501,-333]
[[4,-3,4,-4],[1,-2,2,-3],[-3,3,-3,4],[-3,4,-1,-1]],det=17 [16,2,-15,-9], chain 2 => [34,9,-33,-16] => [41,-2,-40,-17] ?? [78,16,-77,-74]
[[4,-3,4,-4],[1,-2,2,-3],[4,4,4,5],[-3,4,-1,-1]],det=153 [16,2,-15,-9], chain 2 => [34,9,-33,-16] => [41,-2,-40,-17] ?? [78,16,-89,-74]
[[4,-3,4,-4],[3,4,3,1],[-4,5,-5,4],[-4,5,-2,1]],det=171 [16,2,-15,-9], chain 2 => [34,2,-15,-33] => [202,32,-183,-129] ?? [496,56,-249,-411]
[[4,-3,4,-4],[3,4,3,1],[-1,-4,-3,4],[-3,3,-3,4]],det=-26 [16,2,-15,-9], chain 2 => [34,2,-15,-33] => [202,32,-129,-183] ?? [928,164,-675,-855]
[[4,-3,5,-4],[-4,0,-3,-1],[-3,0,-2,0],[1,-2,4,-5]],det=23 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [28,-19,-21,-18] ?? [136,-31,-42,72]
[[4,-3,5,-4],[-4,0,-3,-1],[-3,0,-2,0],[3,3,2,3]],det=24 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [28,-19,-21,-18] ?? [136,-31,-42,-69]
[[4,-3,5,-4],[-4,0,-3,-1],[-2,1,-2,2],[2,2,2,1]],det=24 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [28,-19,-18,-21] ?? [163,-37,-81,-39]
[[4,-3,5,-4],[5,3,4,4],[-3,0,-2,0],[1,-2,4,-5]],det=-63 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [28,-19,-21,-18] ?? [136,-73,-42,72]
[[4,-3,5,-4],[5,3,4,4],[-3,0,-2,0],[3,3,2,3]],det=-27 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [28,-19,-21,-18] ?? [136,-73,-42,-69]
[[4,-3,5,-4],[5,3,4,4],[-2,1,-2,2],[2,2,2,1]],det=-27 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [28,-19,-18,-21] ?? [163,-73,-81,-39]
[[4,-2,-5,5],[2,0,2,3],[0,-4,2,0],[-3,-3,4,-3]],det=76 [16,2,-15,-9], chain 2 => [90,-25,-38,-87] => [165,-157,24,-86] ?? [424,120,676,330]
[[4,-2,0,1],[0,0,-2,2],[-2,2,1,0],[0,-1,3,-1]],det=28 [16,2,-15,-9], chain 2 => [51,12,-43,-38] => [142,10,-121,-103] ?? [445,36,-385,-270]
[[4,-1,-1,4],[2,-2,1,5],[-4,2,0,-3],[0,0,-2,4]],det=-36 [16,2,-15,-9], chain 2 => [41,-32,-33,-6] => [205,83,-210,42] ?? [1115,244,-780,588]
[[4,-1,1,2],[-3,-1,-2,-1],[-3,0,1,-4],[-4,2,-3,0]],det=15 [16,2,-15,-9], chain 2 => [29,-11,-27,-15] => [70,-7,-54,-57] ?? [119,-38,-36,-132]
[[4,-1,1,2],[-3,-1,-2,-1],[-3,0,1,-4],[2,2,4,-1]],det=-12 [16,2,-15,-9], chain 2 => [29,-11,-27,-15] => [70,-7,-54,-57] ?? [119,-38,-36,-33]
[[4,-1,1,2],[-3,-1,-2,-1],[1,1,0,5],[-1,2,-1,2]],det=-44 [16,2,-15,-9], chain 2 => [29,-11,-27,-15] => [70,-7,-57,-54] ?? [122,-35,-207,-135]
[[4,-1,1,2],[-1,-5,-4,5],[-5,-5,-5,0],[2,-1,2,3]],det=-180 [16,2,-15,-9], chain 2 => [29,-11,-15,-27] => [58,-49,-15,-42] ?? [182,37,30,9]
[[4,-1,1,2],[-1,-5,-4,5],[0,0,1,0],[2,-1,2,3]],det=-31 [16,2,-15,-9], chain 2 => [29,-11,-15,-27] => [58,-49,-15,-42] ?? [182,37,-15,9]
[[4,-1,1,2],[-1,4,2,-3],[-5,1,-3,-2],[-5,-5,-3,-2]],det=78 [16,2,-15,-9], chain 2 => [29,-11,-15,-27] => [58,-22,-57,9] ?? [215,-287,-159,-27]
[[4,-1,1,2],[-1,4,2,-3],[-5,1,-3,-2],[0,0,3,-2]],det=33 [16,2,-15,-9], chain 2 => [29,-11,-15,-27] => [58,-22,-57,9] ?? [215,-287,-159,-189]
[[4,-1,1,2],[1,-3,2,-1],[-1,2,-1,2],[2,-4,4,-1]],det=22 [16,2,-15,-9], chain 2 => [29,-11,-15,-27] => [58,59,-90,69] ?? [221,-368,288,-549]
[[4,-1,1,2],[2,2,4,-1],[-1,2,-2,5],[4,0,5,0]],det=-129 [16,2,-15,-9], chain 2 => [29,-15,-27,-11] => [82,-69,-60,-19] ?? [299,-195,-195,28]
[[4,-1,1,2],[3,-1,5,-2],[-3,0,1,-4],[-4,2,-3,0]],det=-12 [16,2,-15,-9], chain 2 => [29,-11,-27,-15] => [70,-7,-54,-57] ?? [119,61,-36,-132]
[[4,-1,1,2],[3,-1,5,-2],[-3,0,1,-4],[2,2,4,-1]],det=-39 [16,2,-15,-9], chain 2 => [29,-11,-27,-15] => [70,-7,-54,-57] ?? [119,61,-36,-33]
[[4,-1,1,2],[3,-1,5,-2],[1,1,0,5],[-1,2,-1,2]],det=85 [16,2,-15,-9], chain 2 => [29,-11,-27,-15] => [70,-7,-57,-54] ?? [122,40,-207,-135]
[[4,-1,1,2],[4,0,2,5],[-5,-5,-5,0],[2,-1,2,3]],det=-135 [16,2,-15,-9], chain 2 => [29,-11,-15,-27] => [58,-49,-15,-42] ?? [182,-8,30,9]
[[4,-1,1,2],[4,0,2,5],[0,0,1,0],[2,-1,2,3]],det=14 [16,2,-15,-9], chain 2 => [29,-11,-15,-27] => [58,-49,-15,-42] ?? [182,-8,-15,9]
[[4,-1,1,3],[-3,1,-2,-1],[-5,0,-3,-2],[0,-1,-1,3]],det=-16 [16,2,-15,-9], chain 2 => [20,-7,-17,-14] => [28,-19,-21,-18] ?? [56,-43,-41,-14]
[[4,-1,1,3],[-3,1,-2,-1],[2,1,4,-1],[0,-1,-1,3]],det=28 [16,2,-15,-9], chain 2 => [20,-7,-17,-14] => [28,-19,-21,-18] ?? [56,-43,-29,-14]
[[4,-1,1,3],[0,1,0,1],[-1,1,2,-3],[0,-1,-1,3]],det=24 [16,2,-15,-9], chain 2 => [20,-7,-17,-14] => [28,-21,-19,-18] ?? [60,-39,-33,-14]
[[4,-1,1,3],[4,2,5,0],[-5,0,-3,-2],[0,-1,-1,3]],det=-4 [16,2,-15,-9], chain 2 => [20,-7,-17,-14] => [28,-19,-21,-18] ?? [56,-31,-41,-14]
[[4,-1,1,3],[4,2,5,0],[2,1,4,-1],[0,-1,-1,3]],det=40 [16,2,-15,-9], chain 2 => [20,-7,-17,-14] => [28,-19,-21,-18] ?? [56,-31,-29,-14]
[[4,-1,2,-1],[-5,-5,-5,-1],[-4,4,-1,-1],[-4,5,1,-4]],det=-140 [16,2,-15,-9], chain 2 => [41,-6,-32,-33] => [139,18,-123,-94] ?? [386,-76,-267,-213]
[[4,-1,2,-1],[-2,3,-1,-1],[-3,1,-1,1],[-3,-1,-4,3]],det=16 [16,2,-15,-9], chain 2 => [41,-2,-40,-17] => [103,-31,-102,-12] ?? [251,-185,-250,94]
[[4,-1,2,-1],[0,-3,0,0],[-4,4,-1,-1],[-4,5,1,-4]],det=-12 [16,2,-15,-9], chain 2 => [41,-6,-32,-33] => [139,18,-123,-94] ?? [386,-54,-267,-213]
[[4,-1,2,-1],[5,-1,5,1],[-4,4,-1,-1],[-4,5,1,-4]],det=116 [16,2,-15,-9], chain 2 => [41,-6,-32,-33] => [139,18,-123,-94] ?? [386,-32,-267,-213]
[[4,-1,4,-3],[0,0,3,-2],[4,-2,5,0],[-2,3,-4,5]],det=136 [16,2,-15,-9], chain 2 => [29,-27,-15,-11] => [116,-23,95,-134] ?? [1269,553,985,-1351]
[[4,-1,4,-3],[0,0,3,-2],[4,-2,5,0],[-1,4,2,-3]],det=144 [16,2,-15,-9], chain 2 => [29,-27,-15,-11] => [116,-23,95,-134] ?? [1269,553,985,384]
[[4,-1,4,-2],[-1,-2,2,-4],[-5,-3,-4,-1],[-2,2,-2,1]],det=-36 [16,2,-15,-9], chain 2 => [20,-14,-17,-7] => [40,2,17,-41] ?? [308,154,-233,-151]
[[4,-1,4,-2],[-1,-2,2,-4],[-5,-3,-4,-1],[5,3,5,2]],det=87 [16,2,-15,-9], chain 2 => [20,-14,-17,-7] => [40,2,17,-41] ?? [308,154,-233,209]
[[4,-1,4,-2],[-1,-2,2,-4],[2,-2,3,0],[-2,2,-2,1]],det=45 [16,2,-15,-9], chain 2 => [20,-14,-17,-7] => [40,2,17,-41] ?? [308,154,127,-151]
[[4,-1,4,-2],[-1,-2,2,-4],[2,-2,3,0],[5,3,5,2]],det=168 [16,2,-15,-9], chain 2 => [20,-14,-17,-7] => [40,2,17,-41] ?? [308,154,127,209]
[[4,-1,4,-2],[1,0,-1,5],[-5,-3,-4,-1],[-2,2,-2,1]],det=9 [16,2,-15,-9], chain 2 => [20,-14,-17,-7] => [40,2,17,-41] ?? [308,-182,-233,-151]
[[4,-1,4,-2],[1,0,-1,5],[-5,-3,-4,-1],[5,3,5,2]],det=-123 [16,2,-15,-9], chain 2 => [20,-14,-17,-7] => [40,2,17,-41] ?? [308,-182,-233,209]
[[4,-1,4,-2],[1,0,-1,5],[2,-2,3,0],[-2,2,-2,1]],det=-45 [16,2,-15,-9], chain 2 => [20,-14,-17,-7] => [40,2,17,-41] ?? [308,-182,127,-151]
[[4,-1,4,-2],[1,0,-1,5],[2,-2,3,0],[5,3,5,2]],det=-177 [16,2,-15,-9], chain 2 => [20,-14,-17,-7] => [40,2,17,-41] ?? [308,-182,127,209]
[[4,0,-2,3],[-3,-5,-3,1],[-2,-2,0,2],[-5,-5,-5,4]],det=-204 [16,2,-15,-9], chain 2 => [67,-22,-54,-51] => [223,20,-192,-159] ?? [799,-352,-804,-891]
[[4,0,-2,4],[2,-3,2,5],[0,-3,0,1],[-4,-1,-1,-1]],det=168 [16,2,-15,-9], chain 2 => [58,-49,-15,-42] => [94,23,105,-126] ?? [-338,-301,-195,-378]
[[4,0,-2,4],[2,-3,2,5],[0,-3,0,1],[2,2,4,2]],det=-96 [16,2,-15,-9], chain 2 => [58,-49,-15,-42] => [94,23,105,-126] ?? [-338,-301,-195,402]
[[4,0,-1,5],[-3,-3,-3,-2],[-1,-4,0,1],[1,-1,2,0]],det=101 [16,2,-15,-9], chain 2 => [34,9,-33,-16] => [89,2,-86,-41] ?? [237,67,-138,-85]
[[4,0,-1,5],[-1,5,-4,5],[-3,-3,1,-4],[-1,3,1,-1]],det=-70 [16,2,-15,-9], chain 2 => [34,9,-33,-16] => [89,63,-98,-24] ?? [334,498,-458,26]
[[4,0,-1,5],[4,-2,4,-1],[-1,-4,0,1],[1,-1,2,0]],det=115 [16,2,-15,-9], chain 2 => [34,9,-33,-16] => [89,2,-86,-41] ?? [237,49,-138,-85]
[[4,0,0,1],[1,1,4,-2],[-2,-1,-1,-4],[-1,-4,-1,5]],det=300 [16,2,-15,-9], chain 2 => [55,-24,17,-54] => [166,207,113,-246] ?? [418,1317,332,-2337]
[[4,0,0,2],[-2,-2,-3,4],[2,2,5,-1],[0,1,5,-4]],det=108 [16,2,-15,-9], chain 2 => [46,-27,-30,-37] => [110,-96,-75,-29] ?? [382,81,-318,-355]
[[4,0,0,2],[-2,1,1,-2],[2,-1,1,5],[0,1,5,-4]],det=-72 [16,2,-15,-9], chain 2 => [46,-27,-30,-37] => [110,-75,-96,-29] ?? [382,-333,54,-439]
[[4,0,1,-1],[-4,0,-1,-3],[-4,2,-2,3],[-2,1,-5,4]],det=128 [16,2,-15,-9], chain 2 => [58,-22,-57,9] => [166,-202,-135,183] ?? [346,-1078,-249,873]
[[4,0,1,-1],[0,4,2,0],[-4,2,-2,3],[-2,1,-5,4]],det=48 [16,2,-15,-9], chain 2 => [58,-22,-57,9] => [166,-202,-135,183] ?? [346,-1078,-249,873]
[[4,0,1,1],[-1,-3,3,-4],[-4,2,-3,2],[4,4,4,0]],det=56 [16,2,-15,-9], chain 2 => [40,-31,-33,12] => [139,-94,-99,-96] ?? [361,230,-639,-216]
[[4,0,1,1],[1,-5,2,-4],[3,1,3,4],[0,3,2,1]],det=227 [16,2,-15,-9], chain 2 => [40,12,-31,-33] => [96,50,-93,-59] ?? [232,-104,-177,-95]
[[4,0,1,1],[1,1,1,-1],[2,-1,3,2],[1,5,2,3]],det=119 [16,2,-15,-9], chain 2 => [40,12,-33,-31] => [96,50,-93,-59] ?? [232,112,-255,-17]
[[4,0,1,1],[1,1,1,-1],[2,-1,3,2],[2,-3,5,-2]],det=-88 [16,2,-15,-9], chain 2 => [40,12,-33,-31] => [96,50,-93,-59] ?? [232,112,-255,-305]
[[4,0,1,1],[1,1,1,-1],[2,2,4,1],[1,2,1,4]],det=59 [16,2,-15,-9], chain 2 => [40,12,-33,-31] => [96,50,-59,-93] ?? [232,180,-37,-235]
[[4,0,2,1],[0,1,1,1],[5,3,3,5],[1,3,2,1]],det=27 [16,2,-15,-9], chain 2 => [25,-22,-4,-17] => [75,-43,-38,-66] ?? [158,-147,-198,-196]
[[4,0,3,-3],[-1,-3,-2,5],[-3,-3,-3,3],[5,5,5,2]],det=-42 [16,2,-15,-9], chain 2 => [46,-37,-36,-3] => [85,122,72,-141] ?? [979,-1300,-1260,1113]
[[4,0,3,-1],[3,0,2,4],[-3,-5,-5,4],[-3,3,1,-4]],det=-138 [16,2,-15,-9], chain 2 => [28,-18,-19,-21] => [76,-38,17,-73] ?? [428,-30,-415,-33]
[[4,0,3,-1],[3,0,2,4],[0,-2,1,0],[-3,3,1,-4]],det=-171 [16,2,-15,-9], chain 2 => [28,-18,-19,-21] => [76,-38,17,-73] ?? [428,-30,93,-33]
[[4,0,3,0],[-5,-1,-3,-3],[-4,5,-1,-4],[-4,5,0,-4]],det=-76 [16,2,-15,-9], chain 2 => [19,-10,-3,-18] => [67,-22,-51,-54] ?? [115,2,-111,-162]
[[4,0,3,0],[-2,2,0,-2],[-4,5,-1,-4],[-4,5,0,-4]],det=-8 [16,2,-15,-9], chain 2 => [19,-10,-3,-18] => [67,-22,-51,-54] ?? [115,-70,-111,-162]
[[4,0,3,0],[1,5,3,-1],[-4,5,-1,-4],[-4,5,0,-4]],det=60 [16,2,-15,-9], chain 2 => [19,-10,-3,-18] => [67,-22,-51,-54] ?? [115,-142,-111,-162]
[[4,0,4,-4],[0,0,-2,2],[-2,1,2,-3],[0,-5,-1,4]],det=-16 [16,2,-15,-9], chain 2 => [40,12,-33,-31] => [152,4,-41,-151] ?? [1048,-220,71,-583]
[[4,0,5,-4],[-3,4,-3,1],[-1,0,-2,4],[-3,-1,-1,-2]],det=-75 [16,2,-15,-9], chain 2 => [25,-4,-22,-17] => [58,-42,-49,-15] ?? [47,-210,-20,-53]
[[4,0,5,-4],[-1,0,-2,2],[-3,-2,-5,5],[-3,5,1,-4]],det=-1 [16,2,-15,-9], chain 2 => [25,-4,-22,-17] => [58,-15,-42,-49] ?? [218,-72,-179,-95]
[[4,0,5,-4],[-1,0,-2,2],[-1,0,-2,4],[-5,3,-2,-3]],det=-18 [16,2,-15,-9], chain 2 => [25,-4,-22,-17] => [58,-15,-49,-42] ?? [155,-44,-128,-111]
[[4,0,5,-4],[-1,0,-2,2],[-1,0,-2,4],[2,4,5,-2]],det=-24 [16,2,-15,-9], chain 2 => [25,-4,-22,-17] => [58,-15,-49,-42] ?? [155,-44,-128,-105]
[[4,0,5,-4],[1,2,1,1],[-3,4,0,-2],[2,-5,2,1]],det=191 [16,2,-15,-9], chain 2 => [25,-4,-22,-17] => [58,-22,-57,9] ?? [-89,-34,-280,121]
[[4,0,5,-4],[4,-4,1,5],[-3,4,0,-2],[-1,1,2,-3]],det=137 [16,2,-15,-9], chain 2 => [25,-4,-22,-17] => [58,9,-57,-22] ?? [35,29,-94,-97]
[[4,0,5,-4],[4,5,4,2],[-1,0,-2,4],[-3,-1,-1,-2]],det=-96 [16,2,-15,-9], chain 2 => [25,-4,-22,-17] => [58,-42,-49,-15] ?? [47,-204,-20,-53]
[[4,1,1,-1],[0,-2,3,-3],[0,-1,2,3],[0,0,1,-2]],det=44 [16,2,-15,-9], chain 2 => [60,-22,-59,3] => [156,-142,-87,-65] ?? [460,218,-227,43]
[[4,1,5,-4],[-4,2,-3,1],[-1,1,-1,-1],[-2,2,0,-1]],det=11 [16,2,-15,-9], chain 2 => [27,-24,10,-19] => [210,-205,-42,-83] ?? [757,-1207,-290,-747]
[[4,2,0,3],[-3,-3,-5,3],[-3,-4,-1,-1],[-5,-2,-1,-4]],det=54 [16,2,-15,-9], chain 2 => [41,-6,-32,-33] => [53,-44,-34,-29] ?? [37,56,80,-27]
[[4,2,0,3],[-3,-3,-5,3],[-3,-4,-1,-1],[0,0,4,-3]],det=-48 [16,2,-15,-9], chain 2 => [41,-6,-32,-33] => [53,-44,-34,-29] ?? [37,56,80,-49]
[[4,2,0,3],[-3,-3,-5,3],[2,-2,4,0],[-5,-2,-1,-4]],det=66 [16,2,-15,-9], chain 2 => [41,-6,-32,-33] => [53,-44,-34,-29] ?? [37,56,58,-27]
[[4,2,0,3],[-3,-3,-5,3],[2,-2,4,0],[0,0,4,-3]],det=-36 [16,2,-15,-9], chain 2 => [41,-6,-32,-33] => [53,-44,-34,-29] ?? [37,56,58,-49]
[[4,2,0,3],[2,-1,0,4],[-3,-4,-1,-1],[-5,-2,-1,-4]],det=18 [16,2,-15,-9], chain 2 => [41,-6,-32,-33] => [53,-44,-34,-29] ?? [37,34,80,-27]
[[4,2,0,3],[2,-1,0,4],[-3,-4,-1,-1],[0,0,4,-3]],det=-84 [16,2,-15,-9], chain 2 => [41,-6,-32,-33] => [53,-44,-34,-29] ?? [37,34,80,-49]
[[4,2,0,3],[2,-1,0,4],[2,-2,4,0],[-5,-2,-1,-4]],det=30 [16,2,-15,-9], chain 2 => [41,-6,-32,-33] => [53,-44,-34,-29] ?? [37,34,58,-27]
[[4,2,0,3],[2,-1,0,4],[2,-2,4,0],[0,0,4,-3]],det=-72 [16,2,-15,-9], chain 2 => [41,-6,-32,-33] => [53,-44,-34,-29] ?? [37,34,58,-49]
[[4,2,0,3],[2,4,4,-2],[-4,-2,-1,-4],[2,0,3,3]],det=48 [16,2,-15,-9], chain 2 => [41,-2,-17,-40] => [40,86,17,-89] ?? [65,670,7,-136]
[[4,2,1,0],[-3,-2,0,-2],[1,0,3,0],[3,-1,3,5]],det=-66 [16,2,-15,-9], chain 2 => [53,-34,-29,-44] => [115,-3,-34,-114] ?? [420,-111,13,-324]
[[4,2,5,-4],[-1,-5,-1,0],[-3,0,1,-4],[0,-3,3,-4]],det=-84 [16,2,-15,-9], chain 2 => [29,-11,-27,-15] => [19,53,-54,12] ?? [-136,-230,-159,-369]
[[4,2,5,-4],[-1,-5,-1,0],[-1,-4,-1,2],[-1,2,-1,2]],det=12 [16,2,-15,-9], chain 2 => [29,-11,-27,-15] => [19,53,12,-54] ?? [458,-296,-351,-33]
[[4,2,5,-4],[2,1,0,5],[-5,-5,-3,-2],[0,-3,0,1]],det=38 [16,2,-15,-9], chain 2 => [29,-11,-27,-15] => [19,-28,21,18] ?? [53,100,-54,102]
[[4,2,5,-4],[2,1,0,5],[-2,-5,2,-5],[-3,-3,-5,4]],det=184 [16,2,-15,-9], chain 2 => [29,-11,-27,-15] => [19,-28,18,21] ?? [26,115,33,21]
[[4,2,5,-4],[2,1,0,5],[-2,-5,2,-5],[3,-3,2,3]],det=208 [16,2,-15,-9], chain 2 => [29,-11,-27,-15] => [19,-28,18,21] ?? [26,115,33,240]
[[4,2,5,-4],[2,1,0,5],[1,-5,4,-3],[0,-3,0,1]],det=116 [16,2,-15,-9], chain 2 => [29,-11,-27,-15] => [19,-28,21,18] ?? [53,100,189,102]
[[4,3,1,4],[2,3,2,2],[-2,-5,-1,-1],[-5,-2,-3,-4]],det=39 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [16,-34,33,-9] ?? [-41,-22,114,-75]
[[4,3,1,4],[2,3,2,2],[-2,-5,-1,-1],[-3,3,-5,4]],det=183 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [16,-34,33,-9] ?? [-41,-22,114,-351]
[[4,3,1,4],[2,3,2,2],[-2,-5,-1,-1],[4,1,4,1]],det=-84 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [16,-34,33,-9] ?? [-41,-22,114,153]
[[4,3,1,4],[2,3,2,2],[-1,-1,0,0],[3,-3,3,0]],det=-54 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [16,-34,-9,33] ?? [85,-22,18,123]
[[4,3,2,-4],[-2,-1,1,-2],[-4,-4,0,0],[0,-3,0,3]],det=36 [16,2,-15,-9], chain 2 => [76,-31,-72,-33] => [199,-127,-180,-6] ?? [79,-439,-288,363]
[[4,3,2,0],[-3,-3,-2,1],[1,1,-2,4],[-3,-5,0,-3]],det=-10 [16,2,-15,-9], chain 2 => [40,-33,12,-31] => [85,-76,-141,138] ?? [-170,393,843,-289]
[[4,3,4,-4],[-4,-1,-3,1],[-1,-3,1,0],[-1,-4,-1,2]],det=-40 [16,2,-15,-9], chain 2 => [46,-30,-37,-27] => [54,-70,7,57] ?? [-194,-110,163,333]
[[4,3,4,-2],[0,-5,0,1],[-2,1,-2,2],[-5,-5,-4,-1]],det=30 [16,2,-15,-9], chain 2 => [28,-19,-18,-21] => [25,74,-81,48] ?? [-98,-322,282,-219]
[[4,3,4,-2],[0,-5,0,1],[2,-1,5,-3],[2,2,2,3]],det=-246 [16,2,-15,-9], chain 2 => [28,-19,-18,-21] => [25,74,48,-81] ?? [676,-451,459,51]
[[4,3,4,-1],[2,2,3,1],[-3,0,0,-5],[3,1,1,5]],det=-16 [16,2,-15,-9], chain 2 => [19,-18,-3,-10] => [20,-17,-7,-14] ?? [15,-29,10,-34]
[[4,3,4,-1],[2,2,3,1],[2,2,2,1],[-2,-1,-1,-1]],det=6 [16,2,-15,-9], chain 2 => [19,-18,-3,-10] => [20,-17,-14,-7] ?? [-20,-43,-29,-2]
[[4,3,5,-5],[1,-5,-1,1],[-4,-4,-5,4],[-4,0,-4,3]],det=13 [16,2,-15,-9], chain 2 => [40,12,-33,-31] => [186,-18,-167,-121] ?? [460,322,-321,-439]
[[4,4,0,5],[2,-5,-1,3],[-5,1,-3,-1],[0,-2,1,0]],det=189 [16,2,-15,-9], chain 2 => [27,10,-24,-19] => [53,-29,-34,-44] ?? [-124,153,-148,24]
[[4,4,0,5],[2,-5,-1,3],[-1,-4,3,-5],[-4,3,-5,4]],det=-246 [16,2,-15,-9], chain 2 => [27,10,-24,-19] => [53,-29,-44,-34] ?? [-74,193,101,-215]
[[4,4,0,5],[2,-5,-1,3],[-1,5,3,-3],[4,-1,3,4]],det=-56 [16,2,-15,-9], chain 2 => [27,10,-24,-19] => [53,-29,8,-50] ?? [-154,93,-24,65]
[[4,4,0,5],[2,-5,-1,3],[1,1,1,3],[-4,3,-5,4]],det=-560 [16,2,-15,-9], chain 2 => [27,10,-24,-19] => [53,-29,-44,-34] ?? [-74,193,-122,-215]
[[4,4,2,-2],[-1,2,-4,5],[-5,3,-4,5],[-4,0,-1,-3]],det=-388 [16,2,-15,-9], chain 2 => [60,3,-59,-22] => [178,72,-165,-115] ?? [900,51,-589,-202]
[[4,4,3,0],[-3,-1,-4,0],[1,-5,5,-5],[0,-5,0,1]],det=-183 [16,2,-15,-9], chain 2 => [27,10,-24,-19] => [76,5,-48,-69] ?? [180,-41,156,-94]
[[4,4,3,0],[-3,-1,-4,0],[1,-2,0,4],[2,-3,3,0]],det=92 [16,2,-15,-9], chain 2 => [27,10,-24,-19] => [76,5,-69,-48] ?? [117,43,-126,-70]
[[4,4,3,0],[-3,-1,-4,0],[3,0,3,3],[0,-5,0,1]],det=90 [16,2,-15,-9], chain 2 => [27,10,-24,-19] => [76,5,-48,-69] ?? [180,-41,-123,-94]
[[4,4,3,0],[4,0,3,1],[3,-3,2,4],[-4,-3,-1,-4]],det=65 [16,2,-15,-9], chain 2 => [27,10,-24,-19] => [76,17,-73,-38] ?? [153,47,-121,-130]
[[4,4,3,0],[4,0,3,1],[3,-3,2,4],[-2,2,-3,4]],det=-40 [16,2,-15,-9], chain 2 => [27,10,-24,-19] => [76,17,-73,-38] ?? [153,47,-121,-51]
[[4,5,3,0],[-2,-3,-3,2],[1,-5,-1,4],[3,-3,4,1]],det=-40 [16,2,-15,-9], chain 2 => [29,-11,-15,-27] => [16,-34,-9,33] ?? [-133,163,327,147]
[[4,5,3,0],[3,2,3,2],[1,-5,-1,4],[3,-3,4,1]],det=-183 [16,2,-15,-9], chain 2 => [29,-11,-15,-27] => [16,-34,-9,33] ?? [-133,19,327,147]
[[4,5,4,-3],[-5,4,-2,-4],[-5,3,-1,-3],[-2,4,3,-4]],det=-62 [16,2,-15,-9], chain 2 => [41,-6,-32,-33] => [105,-33,-92,-70] ?? [97,-193,-322,-338]
[[4,5,4,-3],[-5,4,-2,-4],[0,5,4,-2],[-2,4,3,-4]],det=-287 [16,2,-15,-9], chain 2 => [41,-6,-32,-33] => [105,-33,-92,-70] ?? [97,-193,-393,-338]
[[5,-5,1,3],[-4,-1,0,-5],[0,4,0,3],[-1,5,2,-2]],det=121 [16,2,-15,-9], chain 2 => [28,-21,-19,-18] => [172,-1,-138,-135] ?? [322,-12,-409,-183]
[[5,-5,1,3],[3,4,2,5],[-5,4,-1,-4],[-3,0,-5,5]],det=-15 [16,2,-15,-9], chain 2 => [28,-19,-21,-18] => [160,-124,-123,-69] ?? [1090,-607,-897,-210]
[[5,-5,1,3],[3,4,2,5],[-5,4,-1,-4],[-2,1,-2,2]],det=-1 [16,2,-15,-9], chain 2 => [28,-19,-21,-18] => [160,-124,-123,-69] ?? [1090,-607,-897,-336]
[[5,-5,1,3],[3,4,2,5],[-5,4,-1,-4],[-1,2,1,-1]],det=13 [16,2,-15,-9], chain 2 => [28,-19,-21,-18] => [160,-124,-123,-69] ?? [1090,-607,-897,-462]
[[5,-5,1,3],[3,4,2,5],[-5,4,-1,-4],[0,3,4,-4]],det=27 [16,2,-15,-9], chain 2 => [28,-19,-21,-18] => [160,-124,-123,-69] ?? [1090,-607,-897,-588]
[[5,-5,1,3],[4,5,5,2],[-5,4,-1,-4],[-3,0,-5,5]],det=-1 [16,2,-15,-9], chain 2 => [28,-19,-21,-18] => [160,-124,-123,-69] ?? [1090,-733,-897,-210]
[[5,-5,1,3],[4,5,5,2],[-5,4,-1,-4],[-2,1,-2,2]],det=13 [16,2,-15,-9], chain 2 => [28,-19,-21,-18] => [160,-124,-123,-69] ?? [1090,-733,-897,-336]
[[5,-5,1,3],[4,5,5,2],[-5,4,-1,-4],[-1,2,1,-1]],det=27 [16,2,-15,-9], chain 2 => [28,-19,-21,-18] => [160,-124,-123,-69] ?? [1090,-733,-897,-462]
[[5,-5,1,3],[4,5,5,2],[-5,4,-1,-4],[0,3,4,-4]],det=41 [16,2,-15,-9], chain 2 => [28,-19,-21,-18] => [160,-124,-123,-69] ?? [1090,-733,-897,-588]
[[5,-5,1,4],[2,3,2,2],[-4,5,0,-4],[-3,0,-3,0]],det=0 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [115,-34,-114,-3] ?? [619,-106,-618,-3]
[[5,-5,1,4],[5,-3,5,1],[-5,4,-4,-1],[-2,-5,-1,-1]],det=-102 [16,2,-15,-9], chain 2 => [19,-10,-3,-18] => [70,92,-105,33] ?? [-83,-418,405,-528]
[[5,-5,1,4],[5,-3,5,1],[-5,4,-4,-1],[1,-2,2,0]],det=-34 [16,2,-15,-9], chain 2 => [19,-10,-3,-18] => [70,92,-105,33] ?? [-83,-418,405,-324]
[[5,-5,1,4],[5,-3,5,1],[-5,4,-4,-1],[4,1,5,1]],det=34 [16,2,-15,-9], chain 2 => [19,-10,-3,-18] => [70,92,-105,33] ?? [-83,-418,405,-120]
[[5,-5,1,4],[5,-3,5,1],[-3,0,0,-5],[-4,-1,-5,3]],det=326 [16,2,-15,-9], chain 2 => [19,-10,-3,-18] => [70,92,33,-105] ?? [-497,134,315,-852]
[[5,-5,1,4],[5,-3,5,1],[-3,0,0,-5],[-1,2,-2,4]],det=146 [16,2,-15,-9], chain 2 => [19,-10,-3,-18] => [70,92,33,-105] ?? [-497,134,315,-372]
[[5,-5,1,4],[5,-3,5,1],[-3,0,0,-5],[2,5,1,5]],det=-34 [16,2,-15,-9], chain 2 => [19,-10,-3,-18] => [70,92,33,-105] ?? [-497,134,315,108]
[[5,-5,1,4],[5,-3,5,1],[0,3,3,-4],[-4,-1,-5,3]],det=10 [16,2,-15,-9], chain 2 => [19,-10,-3,-18] => [70,92,33,-105] ?? [-497,134,795,-852]
[[5,-5,1,4],[5,-3,5,1],[0,3,3,-4],[-1,2,-2,4]],det=-170 [16,2,-15,-9], chain 2 => [19,-10,-3,-18] => [70,92,33,-105] ?? [-497,134,795,-372]
[[5,-5,1,4],[5,-3,5,1],[0,3,3,-4],[2,5,1,5]],det=-350 [16,2,-15,-9], chain 2 => [19,-10,-3,-18] => [70,92,33,-105] ?? [-497,134,795,108]
[[5,-5,3,-1],[-2,4,-4,3],[0,-2,-1,3],[-5,1,0,-5]],det=176 [16,2,-15,-9], chain 2 => [34,9,-16,-33] => [110,-67,-101,4] ?? [578,-72,247,-637]
[[5,-5,4,-1],[0,-2,1,-1],[-4,2,-1,-3],[-3,3,-2,-1]],det=8 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [76,5,-69,-48] ?? [127,-31,-81,-27]
[[5,-5,4,-1],[0,-2,1,-1],[-1,-1,3,-5],[1,4,3,-2]],det=-77 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [76,5,-48,-69] ?? [232,11,120,90]
[[5,-5,4,-1],[0,-2,1,-1],[1,4,1,3],[1,4,3,-2]],det=149 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [76,5,-48,-69] ?? [232,11,-159,90]
[[5,-5,4,-1],[1,-1,4,-4],[-5,1,-4,0],[0,3,3,-4]],det=-76 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [76,-31,-33,-72] ?? [475,263,-279,96]
[[5,-5,4,-1],[1,-1,4,-4],[-5,1,-1,-5],[0,3,0,1]],det=-53 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [76,-31,-72,-33] ?? [280,-49,-174,-126]
[[5,-5,4,-1],[1,-1,4,-4],[2,-1,5,-3],[0,3,3,-4]],det=76 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [76,-31,-33,-72] ?? [475,263,234,96]
[[5,-5,4,-1],[1,-1,4,-4],[4,4,3,5],[0,3,3,-4]],det=323 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [76,-31,-33,-72] ?? [475,263,-279,96]
[[5,-5,4,-1],[3,4,2,4],[-5,1,-4,0],[0,3,3,-4]],det=-133 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [76,-31,-33,-72] ?? [475,-250,-279,96]
[[5,-5,4,-1],[3,4,2,4],[-5,1,-1,-5],[0,3,0,1]],det=-74 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [76,-31,-72,-33] ?? [280,-172,-174,-126]
[[5,-5,4,-1],[3,4,2,4],[2,-1,5,-3],[0,3,3,-4]],det=-361 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [76,-31,-33,-72] ?? [475,-250,234,96]
[[5,-5,4,-1],[3,4,2,4],[4,4,3,5],[0,3,3,-4]],det=-114 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [76,-31,-33,-72] ?? [475,-250,-279,96]
[[5,-5,5,-5],[2,-1,0,2],[-5,2,-3,0],[-2,-2,-2,3]],det=-60 [16,2,-15,-9], chain 2 => [40,12,-31,-33] => [150,2,-83,-141] ?? [1030,16,-497,-561]
[[5,-4,2,-2],[2,-1,3,-2],[-4,4,-1,2],[2,-3,2,2]],det=-38 [16,2,-15,-9], chain 2 => [60,3,-59,-22] => [214,-16,-213,-51] ?? [810,-93,-809,-52]
[[5,-4,2,-1],[-1,2,-4,4],[-2,0,1,-1],[0,4,1,4]],det=-130 [16,2,-15,-9], chain 2 => [51,12,-38,-43] => [174,-47,-97,-162] ?? [1026,-528,-283,-933]
[[5,-4,2,-1],[1,1,-2,4],[1,-4,4,-1],[-1,-5,2,-2]],det=252 [16,2,-15,-9], chain 2 => [51,12,-43,-38] => [159,-3,-131,-121] ?? [666,-66,-232,-164]
[[5,-3,-1,4],[-4,-2,-2,-1],[0,1,0,4],[1,0,4,0]],det=371 [16,2,-15,-9], chain 2 => [53,-29,-34,-44] => [210,-42,-205,-83] ?? [1049,-263,-374,-610]
[[5,-3,0,5],[-3,3,-4,5],[-2,1,-4,5],[4,3,3,4]],det=-42 [16,2,-15,-9], chain 2 => [29,-27,-15,-11] => [171,-163,-80,-54] ?? [1074,-952,-455,-261]
[[5,-3,0,5],[-3,3,-4,5],[-1,2,2,-3],[4,3,3,4]],det=-12 [16,2,-15,-9], chain 2 => [29,-27,-15,-11] => [171,-163,-80,-54] ?? [1074,-952,-495,-261]
[[5,-3,0,5],[-2,4,2,-3],[-2,1,-4,5],[4,3,3,4]],det=-21 [16,2,-15,-9], chain 2 => [29,-27,-15,-11] => [171,-163,-80,-54] ?? [1074,-992,-455,-261]
[[5,-3,0,5],[-2,4,2,-3],[-1,2,2,-3],[4,3,3,4]],det=9 [16,2,-15,-9], chain 2 => [29,-27,-15,-11] => [171,-163,-80,-54] ?? [1074,-992,-495,-261]
[[5,-3,0,5],[-1,1,-2,3],[1,4,1,4],[-4,-1,-4,1]],det=66 [16,2,-15,-9], chain 2 => [29,-11,-27,-15] => [103,-31,-102,-12] ?? [548,34,-171,15]
[[5,-3,0,5],[-1,1,-2,3],[1,4,1,4],[2,-1,3,0]],det=152 [16,2,-15,-9], chain 2 => [29,-11,-27,-15] => [103,-31,-102,-12] ?? [548,34,-171,-69]
[[5,-3,0,5],[5,1,5,2],[1,4,1,4],[-4,-1,-4,1]],det=-265 [16,2,-15,-9], chain 2 => [29,-11,-27,-15] => [103,-31,-102,-12] ?? [548,-50,-171,15]
[[5,-3,0,5],[5,1,5,2],[1,4,1,4],[2,-1,3,0]],det=-179 [16,2,-15,-9], chain 2 => [29,-11,-27,-15] => [103,-31,-102,-12] ?? [548,-50,-171,-69]
[[5,-3,3,0],[-4,4,-3,0],[-5,1,-1,-4],[-5,1,-3,-2]],det=-44 [16,2,-15,-9], chain 2 => [29,-11,-27,-15] => [97,-79,-69,-45] ?? [515,-497,-315,-267]
[[5,-3,3,0],[-4,4,-3,0],[-5,1,-1,-4],[1,1,4,-3]],det=98 [16,2,-15,-9], chain 2 => [29,-11,-27,-15] => [97,-79,-69,-45] ?? [515,-497,-315,-123]
[[5,-3,3,0],[-4,4,-3,0],[0,0,0,3],[-3,3,-3,2]],det=18 [16,2,-15,-9], chain 2 => [29,-11,-27,-15] => [97,-79,-45,-69] ?? [587,-569,-207,-531]
[[5,-3,3,0],[-4,4,-3,0],[0,0,0,3],[3,3,4,1]],det=-96 [16,2,-15,-9], chain 2 => [29,-11,-27,-15] => [97,-79,-45,-69] ?? [587,-569,-207,-195]
[[5,-3,3,0],[-2,-3,0,-3],[-1,-1,0,1],[-4,5,-5,4]],det=-90 [16,2,-15,-9], chain 2 => [29,-11,-27,-15] => [97,20,-33,-96] ?? [326,34,-213,-507]
[[5,-3,3,0],[-2,-3,0,-3],[-1,-1,0,1],[2,5,2,3]],det=120 [16,2,-15,-9], chain 2 => [29,-11,-27,-15] => [97,20,-33,-96] ?? [326,34,-213,-60]
[[5,-3,3,0],[-2,-3,0,-3],[0,3,4,-3],[0,0,4,-5]],det=78 [16,2,-15,-9], chain 2 => [29,-11,-27,-15] => [97,20,-96,-33] ?? [137,-155,-225,-219]
[[5,-3,3,0],[-1,-5,2,-5],[-2,1,1,-2],[-5,4,-2,-3]],det=155 [16,2,-15,-9], chain 2 => [29,-11,-27,-15] => [97,47,-66,-90] ?? [146,-14,-33,105]
[[5,-3,3,0],[-1,-5,2,-5],[-2,1,1,-2],[1,4,5,-4]],det=145 [16,2,-15,-9], chain 2 => [29,-11,-27,-15] => [97,47,-66,-90] ?? [146,-14,-33,315]
[[5,-3,3,0],[-1,-5,2,-5],[0,3,1,2],[0,3,-1,4]],det=-96 [16,2,-15,-9], chain 2 => [29,-11,-27,-15] => [97,47,-90,-66] ?? [74,-182,-81,-33]
[[5,-3,3,0],[2,4,4,-1],[-5,1,-1,-4],[-5,1,-3,-2]],det=-68 [16,2,-15,-9], chain 2 => [29,-11,-27,-15] => [97,-79,-69,-45] ?? [515,-353,-315,-267]
[[5,-3,3,0],[2,4,4,-1],[-5,1,-1,-4],[1,1,4,-3]],det=74 [16,2,-15,-9], chain 2 => [29,-11,-27,-15] => [97,-79,-69,-45] ?? [515,-353,-315,-123]
[[5,-3,3,0],[2,4,4,-1],[0,0,0,3],[-3,3,-3,2]],det=144 [16,2,-15,-9], chain 2 => [29,-11,-27,-15] => [97,-79,-45,-69] ?? [587,-233,-207,-531]
[[5,-3,3,0],[2,4,4,-1],[0,0,0,3],[3,3,4,1]],det=30 [16,2,-15,-9], chain 2 => [29,-11,-27,-15] => [97,-79,-45,-69] ?? [587,-233,-207,-195]
[[5,-3,3,1],[0,5,1,1],[-2,0,-1,0],[-2,-4,-4,3]],det=77 [16,2,-15,-9], chain 2 => [20,-14,-17,-7] => [84,-94,-23,63] ?? [696,-430,-145,489]
[[5,-3,3,1],[0,5,1,1],[-2,0,-1,0],[5,-3,3,4]],det=33 [16,2,-15,-9], chain 2 => [20,-14,-17,-7] => [84,-94,-23,63] ?? [696,-430,-145,885]
[[5,-3,4,-3],[0,-4,-1,1],[-2,-1,1,-1],[-4,-5,-5,2]],det=139 [16,2,-15,-9], chain 2 => [41,-2,-40,-17] => [102,31,-103,12] ?? [-31,-9,-350,-24]
[[5,-2,-2,4],[-5,-1,-5,0],[-4,2,2,-4],[1,1,5,0]],det=0 [16,2,-15,-9], chain 2 => [70,-7,-54,-57] => [244,-73,-174,-207] ?? [886,-277,-642,-699]
[[5,-2,-2,4],[-4,2,2,-4],[-4,3,-1,-4],[0,-3,1,4]],det=0 [16,2,-15,-9], chain 2 => [70,-54,-7,-57] => [244,-174,-207,-73] ?? [1690,-1446,-999,23]
[[5,-2,-1,5],[-1,2,-3,4],[3,-5,5,0],[2,-1,5,-1]],det=-317 [16,2,-15,-9], chain 2 => [46,-3,-37,-36] => [93,-85,-32,-54] ?? [397,-383,544,165]
[[5,-2,-1,5],[-1,2,3,-3],[2,2,3,2],[-2,-1,2,-3]],det=-94 [16,2,-15,-9], chain 2 => [46,-30,-27,-37] => [132,-76,-123,-5] ?? [910,-638,-267,-419]
[[5,-2,-1,5],[1,-2,-2,5],[3,-5,5,0],[0,3,4,-2]],det=-497 [16,2,-15,-9], chain 2 => [46,-3,-37,-36] => [93,-54,-32,-85] ?? [180,-160,389,-120]
[[5,-2,-1,5],[5,2,4,3],[-3,-5,-2,1],[2,-1,5,-1]],det=-421 [16,2,-15,-9], chain 2 => [46,-3,-37,-36] => [93,-32,-85,-54] ?? [344,-101,-3,-153]
[[5,-2,2,2],[-1,2,-2,4],[-5,-4,-4,-1],[5,-4,5,2]],det=-492 [16,2,-15,-9], chain 2 => [28,-18,-19,-21] => [96,-110,29,75] ?? [908,-74,-231,1215]
[[5,-2,2,2],[-1,2,-2,4],[-2,-1,2,-5],[5,-4,5,2]],det=38 [16,2,-15,-9], chain 2 => [28,-18,-19,-21] => [96,-110,29,75] ?? [908,-74,-399,1215]
[[5,-2,2,2],[0,-3,2,-2],[-5,1,-2,-3],[3,4,5,0]],det=-83 [16,2,-15,-9], chain 2 => [28,-18,-21,-19] => [96,50,-59,-93] ?? [76,-82,-33,193]
[[5,-2,2,2],[0,-3,2,-2],[-5,1,-2,-3],[5,3,4,5]],det=-30 [16,2,-15,-9], chain 2 => [28,-18,-21,-19] => [96,50,-59,-93] ?? [76,-82,-33,-71]
[[5,-2,2,2],[0,-3,2,-2],[-3,0,-3,2],[3,4,5,0]],det=254 [16,2,-15,-9], chain 2 => [28,-18,-21,-19] => [96,50,-59,-93] ?? [76,-82,-297,193]
[[5,-2,2,2],[0,-3,2,-2],[-3,0,-3,2],[5,3,4,5]],det=307 [16,2,-15,-9], chain 2 => [28,-18,-21,-19] => [96,50,-59,-93] ?? [76,-82,-297,-71]
[[5,-2,2,2],[2,-4,1,3],[-5,1,-2,-3],[3,4,5,0]],det=-109 [16,2,-15,-9], chain 2 => [28,-18,-21,-19] => [96,50,-59,-93] ?? [76,-346,-33,193]
[[5,-2,2,2],[2,-4,1,3],[-5,1,-2,-3],[5,3,4,5]],det=-56 [16,2,-15,-9], chain 2 => [28,-18,-21,-19] => [96,50,-59,-93] ?? [76,-346,-33,-71]
[[5,-2,2,2],[2,-4,1,3],[-3,0,-3,2],[3,4,5,0]],det=228 [16,2,-15,-9], chain 2 => [28,-18,-21,-19] => [96,50,-59,-93] ?? [76,-346,-297,193]
[[5,-2,2,2],[2,-4,1,3],[-3,0,-3,2],[5,3,4,5]],det=281 [16,2,-15,-9], chain 2 => [28,-18,-21,-19] => [96,50,-59,-93] ?? [76,-346,-297,-71]
[[5,-2,2,2],[2,-4,4,-2],[-3,4,-2,1],[-2,-5,1,-4]],det=-44 [16,2,-15,-9], chain 2 => [28,-18,-19,-21] => [96,94,-139,99] ?? [212,-938,465,-1197]
[[5,-2,2,2],[2,5,4,0],[-5,-4,-4,-1],[5,-4,5,2]],det=-31 [16,2,-15,-9], chain 2 => [28,-18,-19,-21] => [96,-110,29,75] ?? [908,-242,-231,1215]
[[5,-2,2,2],[2,5,4,0],[-2,-1,2,-5],[5,-4,5,2]],det=499 [16,2,-15,-9], chain 2 => [28,-18,-19,-21] => [96,-110,29,75] ?? [908,-242,-399,1215]
[[5,-2,2,2],[3,3,3,3],[-2,-1,-1,0],[-2,1,0,-1]],det=-27 [16,2,-15,-9], chain 2 => [28,-18,-19,-21] => [96,-90,-19,-53] ?? [516,-198,-83,-229]
[[5,-2,2,2],[3,3,3,3],[1,2,5,-4],[-2,1,0,-1]],det=60 [16,2,-15,-9], chain 2 => [28,-18,-19,-21] => [96,-90,-19,-53] ?? [516,-198,33,-229]
[[5,-2,2,3],[-2,-1,-1,-1],[-2,1,1,-3],[-5,1,-2,-5]],det=32 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [70,-7,-57,-54] ?? [88,-22,-42,27]
[[5,-2,2,3],[-2,-1,-1,-1],[-2,1,1,-3],[4,4,5,0]],det=-16 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [70,-7,-57,-54] ?? [88,-22,-42,-33]
[[5,-2,2,3],[-2,-1,-1,-1],[-1,2,1,-1],[-4,5,-4,1]],det=-36 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [70,-7,-54,-57] ?? [85,-22,-81,-156]
[[5,-2,2,3],[-2,-1,-1,-1],[-1,2,1,-1],[3,3,5,-2]],det=30 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [70,-7,-54,-57] ?? [85,-22,-81,33]
[[5,-1,2,1],[3,-2,0,3],[0,-4,3,-3],[-1,-4,2,-2]],det=-9 [16,2,-15,-9], chain 2 => [39,17,-26,-36] => [90,-25,-38,-87] ?? [312,59,247,108]
[[5,-1,5,-4],[2,-3,3,-4],[-2,-3,-2,2],[-5,-5,-3,-1]],det=-5 [16,2,-15,-9], chain 2 => [39,17,-26,-36] => [192,93,-149,-166] ?? [786,322,-697,-812]
[[5,0,1,4],[-5,0,-4,-1],[-4,-4,-3,0],[-4,2,-3,0]],det=-90 [16,2,-15,-9], chain 2 => [29,-11,-27,-15] => [58,-22,9,-57] ?? [71,-269,-171,-303]
[[5,0,1,4],[-5,0,-4,-1],[-4,-4,-3,0],[2,2,4,-1]],det=-90 [16,2,-15,-9], chain 2 => [29,-11,-27,-15] => [58,-22,9,-57] ?? [71,-269,-171,165]
[[5,0,1,4],[-5,0,-4,-1],[1,1,0,5],[4,-2,2,5]],det=165 [16,2,-15,-9], chain 2 => [29,-11,-27,-15] => [58,-22,-57,9] ?? [269,-71,81,207]
[[5,0,1,4],[-5,0,-4,-1],[2,-4,4,-1],[-4,2,-3,0]],det=-90 [16,2,-15,-9], chain 2 => [29,-11,-27,-15] => [58,-22,9,-57] ?? [71,-269,297,-303]
[[5,0,1,4],[-5,0,-4,-1],[2,-4,4,-1],[2,2,4,-1]],det=-90 [16,2,-15,-9], chain 2 => [29,-11,-27,-15] => [58,-22,9,-57] ?? [71,-269,297,165]
[[5,0,1,4],[-5,3,-3,-2],[-4,-1,-5,4],[1,-5,-1,4]],det=58 [16,2,-15,-9], chain 2 => [29,-11,-27,-15] => [58,-67,-30,51] ?? [464,-503,189,627]
[[5,0,1,4],[-5,3,-3,-2],[2,-1,2,3],[1,-5,-1,4]],det=232 [16,2,-15,-9], chain 2 => [29,-11,-27,-15] => [58,-67,-30,51] ?? [464,-503,276,627]
[[5,0,1,4],[0,2,1,0],[-2,-2,-3,4],[-2,1,-1,0]],det=36 [16,2,-15,-9], chain 2 => [29,-11,-27,-15] => [58,-49,-15,-42] ?? [107,-113,-141,-150]
[[5,0,1,4],[0,2,1,0],[3,0,2,5],[-1,-1,1,-2]],det=-61 [16,2,-15,-9], chain 2 => [29,-11,-27,-15] => [58,-49,-42,-15] ?? [188,-140,15,-21]
[[5,0,1,4],[0,2,1,0],[4,-2,4,3],[-2,1,-1,0]],det=65 [16,2,-15,-9], chain 2 => [29,-11,-27,-15] => [58,-49,-15,-42] ?? [107,-113,144,-150]
[[5,0,1,4],[1,0,3,-2],[-4,-4,-3,0],[-4,2,-3,0]],det=84 [16,2,-15,-9], chain 2 => [29,-11,-27,-15] => [58,-22,9,-57] ?? [71,199,-171,-303]
[[5,0,1,4],[1,0,3,-2],[-4,-4,-3,0],[2,2,4,-1]],det=84 [16,2,-15,-9], chain 2 => [29,-11,-27,-15] => [58,-22,9,-57] ?? [71,199,-171,165]
[[5,0,1,4],[1,0,3,-2],[1,1,0,5],[4,-2,2,5]],det=-154 [16,2,-15,-9], chain 2 => [29,-11,-27,-15] => [58,-22,-57,9] ?? [269,-131,81,207]
[[5,0,1,4],[1,0,3,-2],[2,-4,4,-1],[-4,2,-3,0]],det=84 [16,2,-15,-9], chain 2 => [29,-11,-27,-15] => [58,-22,9,-57] ?? [71,199,297,-303]
[[5,0,1,4],[1,0,3,-2],[2,-4,4,-1],[2,2,4,-1]],det=84 [16,2,-15,-9], chain 2 => [29,-11,-27,-15] => [58,-22,9,-57] ?? [71,199,297,165]
[[5,0,1,4],[1,3,4,-3],[-4,-1,-5,4],[1,-5,-1,4]],det=-319 [16,2,-15,-9], chain 2 => [29,-11,-27,-15] => [58,-67,-30,51] ?? [464,-416,189,627]
[[5,0,1,4],[1,3,4,-3],[2,-1,2,3],[1,-5,-1,4]],det=-145 [16,2,-15,-9], chain 2 => [29,-11,-27,-15] => [58,-67,-30,51] ?? [464,-416,276,627]
[[5,0,2,1],[-1,1,2,-3],[0,-5,2,0],[4,0,2,4]],det=252 [16,2,-15,-9], chain 2 => [41,-17,-40,-2] => [123,-132,5,76] ?? [701,-473,670,806]
[[5,0,2,1],[4,3,3,3],[-1,-3,3,-3],[-5,0,-3,-2]],det=-81 [16,2,-15,-9], chain 2 => [41,-2,-40,-17] => [108,-13,-104,-51] ?? [281,-72,-228,-126]
[[5,0,3,-2],[0,2,1,2],[1,-3,4,0],[0,1,-1,1]],det=51 [16,2,-15,-9], chain 2 => [53,-29,-50,8] => [99,-92,-60,29] ?? [257,-186,135,-3]
[[5,0,4,-1],[1,1,0,5],[-1,2,-1,2],[-3,-1,-2,-1]],det=8 [16,2,-15,-9], chain 2 => [29,-27,-15,-11] => [96,-53,-90,-19] ?? [139,-52,-150,-36]
[[5,0,4,0],[-4,1,-3,0],[3,-2,1,4],[-4,-5,-4,0]],det=-4 [16,2,-15,-9], chain 2 => [20,-17,-7,-14] => [72,-76,31,33] ?? [484,-457,531,-32]
[[5,0,4,0],[-1,1,0,0],[-2,-1,-3,2],[-2,3,0,-1]],det=11 [16,2,-15,-9], chain 2 => [20,-14,-7,-17] => [72,-34,-39,-65] ?? [204,-106,-123,-181]
[[5,0,4,0],[-1,1,0,0],[-2,5,2,-5],[-2,3,0,-1]],det=-18 [16,2,-15,-9], chain 2 => [20,-14,-7,-17] => [72,-34,-39,-65] ?? [204,-106,-67,-181]
[[5,1,-4,5],[-5,1,3,-3],[4,-1,1,3],[0,0,4,-3]],det=-131 [16,2,-15,-9], chain 2 => [97,-96,20,-33] => [144,-422,405,179] ?? [-427,-464,1940,1083]
[[5,1,0,4],[1,2,2,3],[-1,-1,3,-3],[2,2,5,-4]],det=-229 [16,2,-15,-9], chain 2 => [46,-37,-36,-3] => [181,-109,-108,-150] ?? [196,-703,54,204]
[[5,1,1,3],[-5,2,-3,0],[2,-1,3,2],[-2,4,-3,1]],det=-66 [16,2,-15,-9], chain 2 => [40,-31,-33,12] => [172,-163,36,-93] ?? [454,-1294,429,-1197]
[[5,1,1,3],[-3,-5,0,-3],[1,1,4,-1],[-4,5,-5,1]],det=-20 [16,2,-15,-9], chain 2 => [40,-31,-33,12] => [172,-1,-135,-138] ?? [310,-97,-231,-156]
[[5,1,2,2],[-2,1,-1,0],[4,5,3,3],[0,-3,0,3]],det=63 [16,2,-15,-9], chain 2 => [34,-15,2,-33] => [93,-85,-32,-54] ?? [208,-239,-311,93]
[[5,1,2,3],[0,5,3,-2],[-3,-5,-3,-1],[-2,-1,1,-3]],det=9 [16,2,-15,-9], chain 2 => [25,-17,-4,-22] => [34,-53,44,29] ?? [292,-191,2,-58]
[[5,1,3,-1],[-5,-4,-1,-4],[0,-3,2,-1],[2,2,2,4]],det=112 [16,2,-15,-9], chain 2 => [46,-37,-27,-30] => [142,65,87,-156] ?? [1192,-433,135,-36]
[[5,1,3,-1],[1,1,3,0],[-3,3,1,-3],[-4,0,0,-3]],det=128 [16,2,-15,-9], chain 2 => [46,-27,-30,-37] => [150,-71,-138,-73] ?? [338,-335,-582,-381]
[[5,1,3,1],[-3,-2,-4,3],[-2,-2,-3,3],[2,2,5,-2]],det=-15 [16,2,-15,-9], chain 2 => [28,-19,-18,-21] => [46,-37,-27,-30] ?? [82,-46,-27,-57]
[[5,1,3,1],[-3,-2,-4,3],[-2,1,1,-3],[2,-1,1,4]],det=14 [16,2,-15,-9], chain 2 => [28,-19,-18,-21] => [46,-37,-30,-27] ?? [76,-25,-78,-9]
[[5,1,3,1],[-3,-2,-4,3],[2,-1,2,2],[-1,2,3,-4]],det=-41 [16,2,-15,-9], chain 2 => [28,-19,-18,-21] => [46,-37,-3,-36] ?? [148,-160,51,15]
[[5,1,3,2],[-3,-5,-5,3],[1,-5,1,1],[-1,5,1,-2]],det=-100 [16,2,-15,-9], chain 2 => [19,-10,-18,-3] => [25,74,48,-81] ?? [181,-928,-378,555]
[[5,2,3,0],[2,0,1,0],[-4,-4,0,-4],[-2,3,-3,5]],det=-16 [16,2,-15,-9], chain 2 => [39,17,-36,-26] => [121,42,-120,-49] ?? [329,122,-456,-1]
[[5,2,3,0],[2,0,1,0],[-4,-4,0,-4],[2,1,4,0]],det=-44 [16,2,-15,-9], chain 2 => [39,17,-36,-26] => [121,42,-120,-49] ?? [329,122,-456,-196]
[[5,3,3,0],[0,-3,-3,5],[1,4,5,-2],[-2,0,3,-5]],det=210 [16,2,-15,-9], chain 2 => [41,-6,-33,-32] => [88,-43,-84,-21] ?? [59,276,-462,-323]
[[5,3,3,0],[2,-4,-1,5],[1,4,5,-2],[-4,1,1,-5]],det=198 [16,2,-15,-9], chain 2 => [41,-6,-33,-32] => [88,-21,-84,-43] ?? [125,129,-330,-242]
[[5,3,5,-1],[0,-4,-2,4],[-4,-3,-3,-2],[-4,-2,-4,1]],det=-2 [16,2,-15,-9], chain 2 => [20,-14,-7,-17] => [40,2,17,-41] ?? [332,-206,-135,-273]
[[5,3,5,-1],[0,-4,-2,4],[-4,-3,-3,-2],[4,3,4,3]],det=-94 [16,2,-15,-9], chain 2 => [20,-14,-7,-17] => [40,2,17,-41] ?? [332,-206,-135,111]
[[5,3,5,-1],[0,-4,-2,4],[4,2,5,0],[-4,-2,-4,1]],det=-16 [16,2,-15,-9], chain 2 => [20,-14,-7,-17] => [40,2,17,-41] ?? [332,-206,249,-273]
[[5,3,5,-1],[0,-4,-2,4],[4,2,5,0],[4,3,4,3]],det=-108 [16,2,-15,-9], chain 2 => [20,-14,-7,-17] => [40,2,17,-41] ?? [332,-206,249,111]
[[5,3,5,-1],[0,2,3,-3],[-4,-3,-3,-2],[-4,-2,-4,1]],det=-7 [16,2,-15,-9], chain 2 => [20,-14,-7,-17] => [40,2,17,-41] ?? [332,178,-135,-273]
[[5,3,5,-1],[0,2,3,-3],[-4,-3,-3,-2],[4,3,4,3]],det=56 [16,2,-15,-9], chain 2 => [20,-14,-7,-17] => [40,2,17,-41] ?? [332,178,-135,111]
[[5,3,5,-1],[0,2,3,-3],[4,2,5,0],[-4,-2,-4,1]],det=14 [16,2,-15,-9], chain 2 => [20,-14,-7,-17] => [40,2,17,-41] ?? [332,178,249,-273]
[[5,3,5,-1],[0,2,3,-3],[4,2,5,0],[4,3,4,3]],det=77 [16,2,-15,-9], chain 2 => [20,-14,-7,-17] => [40,2,17,-41] ?? [332,178,249,111]
[[5,4,-1,4],[1,-4,2,0],[-5,-2,1,-5],[-5,-5,-2,-1]],det=41 [16,2,-15,-9], chain 2 => [67,-22,-54,-51] => [97,47,-90,-66] ?? [499,-271,-339,-474]
[[5,4,0,0],[-2,-3,5,-3],[-2,-1,0,-1],[-4,-3,-5,4]],det=15 [16,2,-15,-9], chain 2 => [88,-86,-25,-31] => [96,50,-59,-93] ?? [680,-358,-149,-611]
[[5,4,0,0],[-2,-3,5,-3],[-2,-1,0,-1],[0,1,4,-3]],det=-44 [16,2,-15,-9], chain 2 => [88,-86,-25,-31] => [96,50,-59,-93] ?? [680,-358,-149,93]
[[5,4,0,0],[-1,-2,2,4],[-4,-3,-3,0],[-2,-1,1,-2]],det=8 [16,2,-15,-9], chain 2 => [88,-86,-25,-31] => [96,-90,-19,-53] ?? [120,-166,-57,-15]
[[5,4,1,-1],[-4,-1,3,-4],[4,1,-2,5],[-4,-3,-1,1]],det=13 [16,2,-15,-9], chain 2 => [82,-75,51,-64] => [225,156,-169,-218] ?? [1798,-691,304,-1417]
[[5,4,1,-1],[-4,-1,3,-4],[4,1,-2,5],[-1,3,3,1]],det=137 [16,2,-15,-9], chain 2 => [82,-75,51,-64] => [225,156,-169,-218] ?? [1798,-691,304,-482]
[[5,4,2,-2],[-4,0,-4,3],[-1,-4,2,2],[5,-4,4,5]],det=192 [16,2,-15,-9], chain 2 => [76,-31,-72,-33] => [178,-115,-162,51] ?? [4,89,60,957]
[[5,4,2,0],[3,-3,2,3],[-1,-3,3,-2],[-1,2,5,-5]],det=-220 [16,2,-15,-9], chain 2 => [58,-15,-49,-42] => [132,-5,-76,-123] ?? [488,-110,-99,93]
[[5,4,2,0],[3,-3,2,3],[-1,-3,3,-2],[0,-3,0,4]],det=-155 [16,2,-15,-9], chain 2 => [58,-15,-49,-42] => [132,-5,-76,-123] ?? [488,-110,-99,-477]
[[5,4,4,-2],[2,3,2,5],[-1,-1,2,-5],[-4,-4,0,-4]],det=64 [16,2,-15,-9], chain 2 => [46,-37,-3,-36] => [142,-205,165,108] ?? [334,539,-147,-180]
[[5,4,4,1],[4,-4,2,4],[-5,1,-5,0],[-1,-4,2,-4]],det=42 [16,2,-15,-9], chain 2 => [19,-10,-3,-18] => [25,38,-90,87] ?? [4,116,363,-705]
[[5,4,4,1],[4,-4,2,4],[-5,1,-5,0],[2,-1,5,-3]],det=144 [16,2,-15,-9], chain 2 => [19,-10,-3,-18] => [25,38,-90,87] ?? [4,116,363,-699]
[[5,4,4,1],[4,-4,2,4],[-2,4,-2,1],[-1,-4,2,-4]],det=216 [16,2,-15,-9], chain 2 => [19,-10,-3,-18] => [25,38,-90,87] ?? [4,116,369,-705]
[[5,4,4,1],[4,-4,2,4],[-2,4,-2,1],[2,-1,5,-3]],det=318 [16,2,-15,-9], chain 2 => [19,-10,-3,-18] => [25,38,-90,87] ?? [4,116,369,-699]
[[5,4,5,-3],[-3,-3,-5,1],[-4,-3,-5,4],[-3,3,-3,4]],det=-97 [16,2,-15,-9], chain 2 => [40,12,-31,-33] => [192,-34,-173,-123] ?? [328,268,-293,-651]
[[5,4,5,-3],[-3,-3,-5,1],[-4,-3,-5,4],[4,-5,4,3]],det=191 [16,2,-15,-9], chain 2 => [40,12,-31,-33] => [192,-34,-173,-123] ?? [328,268,-293,-123]
[[5,5,0,4],[-3,0,0,-4],[2,-5,5,0],[1,2,2,1]],det=215 [16,2,-15,-9], chain 2 => [54,-12,-53,-19] => [134,-86,-97,-95] ?? [-140,-22,213,-327]
[[5,5,3,2],[5,-5,1,5],[4,5,5,2],[0,3,-1,5]],det=-764 [16,2,-15,-9], chain 2 => [27,10,-19,-24] => [80,-54,15,-71] ?? [33,330,-17,-532]
elapsed time: 23201 s
|
cde1c6f8ea084c6c479909bce1da59b2dceba103
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1946/CH6/EX6.4/Ex_6_4.sce
|
74041a259de31b4ba16888968a2e073ca4a2bb35
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 207
|
sce
|
Ex_6_4.sce
|
// Example 6.4;//optical gain
clc;
clear;
close;
R1=0.32;
R2=0.32;
alpha=10;// in cm
L=500;//in micro meter
gth=alpha+(1/(2*L*10^-4)*log(1/(R1*R2)));
disp(gth,"Optical gain in per centimeter is ")
|
e5da9ae55fd9d8db8e37fc7f2404391c03a0cd23
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3556/CH11/EX11.1/Ex11_1.sce
|
6eadd8f9ffa3c0a29af2b6e850cf3ecbb20b42bf
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 594
|
sce
|
Ex11_1.sce
|
clc
// Fundamental of Electric Circuit
// Charles K. Alexander and Matthew N.O Sadiku
// Mc Graw Hill of New York
// 5th Edition
// Part 2 : AC Circuits
// Chapter 11 : AC Power Analysis
// Example 11 - 1
clear; clc; close;
// Given data
Vm_mag = 120.0000;
Vm_angle = 45.0000;
Im_mag = 10.0000;
Im_angle = -10.0000;
//
// Calculations Average Power
P = 0.5000 * Vm_mag * Im_mag * cosd(Vm_angle - Im_angle);
//
// Display the result
disp("Example 11-1 Solution : ");
printf(" \n P = Average Power = %.3f Watt",P)
|
8c9c1d8e204ea1c08a8d8e0604bf723333275e65
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/132/CH4/EX4.3.e/Example4_3_e.sce
|
222bfb993f30ea455aedc87e8e1ccba2c2915601
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 547
|
sce
|
Example4_3_e.sce
|
//Example 4.3(e)
//Program to determine the Rectification Efficiency of Centre-tap Full Wave Rectifier
clear;
clc ;
close ;
//Given Circuit Data
Rl=1*10^(3); //Ohms
rd=10; //Ohms
Vm=220; //Volts(Peak Value of Voltage)
//Calculation
Im=Vm/(rd+Rl);//Peak Value of Current
Idc=2*Im/%pi;//DC Value of Current
Irms=Im/sqrt(2);//RMS Value of Current
Pdc=Idc^2*Rl;
Pac=Irms^2*(rd+Rl);
n=Pdc/Pac;//Rectification Efficiency
//Displaying The Results in Command Window
printf("\n\t The Rectification EFficiency n(eeta) = %f percent.",n*100);
|
438df9d353253f0af54d8e80253aba92ff7bc1b4
|
a62e0da056102916ac0fe63d8475e3c4114f86b1
|
/set14/s_Linear_Integrated_Circuits_J._B._Gupta_1850.zip/Linear_Integrated_Circuits_J._B._Gupta_1850/CH2/EX2.11/exa_2_11.sce
|
bf8050688b6396cbbe5b898dbab412ecd2de39fb
|
[] |
no_license
|
hohiroki/Scilab_TBC
|
cb11e171e47a6cf15dad6594726c14443b23d512
|
98e421ab71b2e8be0c70d67cca3ecb53eeef1df6
|
refs/heads/master
| 2021-01-18T02:07:29.200029
| 2016-04-29T07:01:39
| 2016-04-29T07:01:39
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 210
|
sce
|
exa_2_11.sce
|
errcatch(-1,"stop");mode(2);// Exa 2.11
;
;
// Given data
format('v',9)
dV_out=20;// in volt
dt= 4;// in micro seconds
SR= dV_out/dt;// in V/micro sec
disp(SR,"Slew rate in V/micro sec");
exit();
|
181c0925931bf165aa3fcb614c3c5a8acdcc1291
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/635/CH8/EX8.6/Ch08Ex6.sci
|
8f1e6f5b9a1638fd7cb9b29aa5a95a7f13d9c3da
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 959
|
sci
|
Ch08Ex6.sci
|
// Scilab Code Ex8.6 Calculation of atomic number from wavelength using Moseley's law Page-256 (2010)
c = 3.0e+08; // Speed of light, m/s
h = 6.626e-034; // Planck's constant, Js
epsilon_0 = 8.85e-012; // Absolute electrical permittivity of free space, coulomb square per newton per metre square
m = 9.1e-031; // Mass of an electron, kg
e = 1.6e-019; // Charge on an electron, C
lambda = 0.7185e-010; // Wavelength of K_alpha line of unknown element
b = 1; // Mosley's constant for K-series
n_1 = 1; n_2 = 2; // Lower and upper energy levels
// We know that f = c/lambda = m*e^4*(Z-b)^2/(8*epsilon_0^2*h^3)*(1/n_2^2-1/n_1^2)
// This implies that lambda = (8*epsilon_0^2*c*h^3/(m*e^4*(Z-b)^2*(1/n_2^2-1/n_1^2))
// Solving for Z
Z = sqrt(8*epsilon_0^2*c*h^3/(m*e^4*lambda*(1/n_1^2-1/n_2^2)))+b; // Atomic number unknown element
printf("\nThe atomic number unknown element = %2d", Z);
// Result
// The atomic number unknown element = 42
|
cf010dc7f7d9adb29467d7c731a644f8f041a916
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1457/CH4/EX4.6/4_6.sce
|
670f9b956948e36ff44364124be5a64590c5d2d2
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 182
|
sce
|
4_6.sce
|
clc
//Initialization of variables
z=3 //ft
s=0.82
//calculations
ua=sqrt(z*2*32.2)
ub=sqrt(2*32.2*(-2*(1-s) +ua^2 /(2*32.2)))
//results
printf("Velocity at B= %.1f fps",ub)
|
0d9ad39430e9ae898bf6b4e89276a98080f74b77
|
333d6160f9a6d9e23a6bea06cd03e5e8fa8785a9
|
/RobotLab2/SciLab/PlotModelAndData_dima.sce
|
61de73d9a57ca5b36ce2c3d9d9540950d3d5d437
|
[
"MIT"
] |
permissive
|
DmitryIo/ROBOTS
|
6f6bb12a8e08dd28024136ee1a8a84ea7254da60
|
777f0884a098c4f21d044985c25a8be276334116
|
refs/heads/master
| 2023-04-30T12:52:54.082977
| 2021-05-17T19:55:34
| 2021-05-17T19:55:34
| 294,091,170
| 3
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 631
|
sce
|
PlotModelAndData_dima.sce
|
idx = string(currIdx * 10)
data = read(get_absolute_file_path("PlotModelAndData_dima.sce") + "..\Data\log" + idx + ".txt", -1, 2);
data(:, 1) = data(:, 1)*%pi/180
fprintfMat(get_absolute_file_path("PlotModelAndData_dima.sce") + "..\Sim\Theta_simply_Sim" + idx + ".txt",[Theta_simplified.values Theta_simplified.time], "%.5f");
fprintfMat(get_absolute_file_path("PlotModelAndData_dima.sce") + "..\Sim\ThetaDot_simply_Sim" + idx + ".txt",[W_simplified.values W_simplified.time], "%.5f");
plot2d(data(:, 2), data(:, 1), 3)
plot2d(Theta_simplified.time, Theta_simplified.values, 2)
plot2d(W_simplified.time, W_simplified.values, 2)
|
b900255163e752f7334bc4aa39bf4e7b18889a00
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1943/CH2/EX2.2/Ex2_2.sce
|
7acb57e2bbd87757e80dd9f9efa452ce7cca7f68
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,694
|
sce
|
Ex2_2.sce
|
clc
clear
//Input data
p1=90//Initial pressure of steam in bar
T1=500//Initial temperature of steam in degree C
O=(500*1000)//Output in kW
T2=40//Condensation temperature in degree C
nhp=0.92//Efficiency of h.p turbine
nlp=0.9//Efficiency of l.p turbine
np=0.75//Isentropic efficiency of the pump
TTD=-1.6//Temperature in degree C
//Calculations
p2=(0.2*p1)//Optimum reheat pressure in bar
h1=3386.1//Enthalpy in kJ/kg
s1=6.6576//Entropy in kJ/kg.K
s2s=s1//Entropy in kJ/kg.K
h2s=2915//Enthalpy in kJ/kg
h3=3469.8//Enthalpy in kJ/kg
s3=7.4825//Entropy in kJ/kg.K
x4s=(s3-0.5725)/7.6845//Dryness fraction
h4s=(167.57+x4s*2406.7)//Enthalpy in kJ/kg
h5=167.57//Enthalpy in kJ/kg
h7=883.42//Enthalpy in kJ/kg
Wps=(0.001008*p1*10)//Workdone by the pump in kJ/kg
h6s=176.64//Enthalpy in kJ/kg
dh1h2=(nhp*(h1-h2s))//Difference in enthalpy (h1-h2) in kJ/kg
h2=h1-dh1h2//Enthalpy in kJ/kg
dh3h4=(nlp*(h3-h4s))//Difference in enthalpy (h3-h4) in kJ/kg
h4=h3-dh3h4//Enthalpy in kJ/kg
Wp=(Wps/np)//Workdone by the pump in kJ/kg
h6=(Wp+h5)//Enthalpy in kJ/kg
tsat=207.15//Saturation temperature at 18 bar in degree C
t9=(tsat-TTD)//Temperature in degree C
h9=875//Enthalpy in kJ/kg
m=((h9-h6)/(h2-h7))//Mass of steam in kg
WT=(dh1h2+(1-m)*dh3h4)//Workdone by the turbine in kJ/kg
Wnet=(WT-Wp)//Net workdone in kJ/kg
ws=(O/Wnet)//Mass flow rate of steam at turbine inlet in kg/s
Q1=((h1-h9)+(1-m)*(h3-h2))//Heat input in kJ/kg
n=(Wnet/Q1)*100//Efficiency of the cycle in percent
Wr=(Wnet/WT)//Work ratio
//Output
printf('(a)Mass flow rate of steam at turbine inlet is %3.0f kg/s \n (b)The cycle efficiency is %3.2f percent \n (c)Work ratio is %3.3f',ws,n,Wr)
|
b9424c125b50d396ec12469abb077764e0ceffbb
|
8217f7986187902617ad1bf89cb789618a90dd0a
|
/source/2.4/macros/metanet/neighbors.sci
|
53ca0b8dc86d916c67d1b2c10f78d6b841b38a60
|
[
"LicenseRef-scancode-public-domain",
"LicenseRef-scancode-warranty-disclaimer"
] |
permissive
|
clg55/Scilab-Workbench
|
4ebc01d2daea5026ad07fbfc53e16d4b29179502
|
9f8fd29c7f2a98100fa9aed8b58f6768d24a1875
|
refs/heads/master
| 2023-05-31T04:06:22.931111
| 2022-09-13T14:41:51
| 2022-09-13T14:41:51
| 258,270,193
| 0
| 1
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 301
|
sci
|
neighbors.sci
|
function [d]=neighbors(i,g)
// Copyright INRIA
[lhs,rhs]=argn(0)
if rhs<>2 then error(39), end
n=g('node_number');
// check i
if (i<1|i>n) then
error(string(i)+' is not a node number')
end
ta=g('tail');he=g('head');
[ir,ic]=find(ta==i);
d1=he(ic);
[ir,ic]=find(he==i);
d2=ta(ic);
d=-sort(-[d1 d2]);
|
f2585da729bb0bc7af90997d630ec6fc832e5e5a
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3428/CH9/EX4.9.10/Ex4_9_10.sce
|
e36fce2093b53b8e1f9abcd2a90cca10e46ae5a4
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 350
|
sce
|
Ex4_9_10.sce
|
//Section-4,Example-3,Page no.-I.66
//To calculate percentage of light absorbed by the given solution.
z_1=40/100 //z_1=(I/I_0)
x=2
C_1=20
y=(log10(100/40)/(x*C_1)) //y=e/M
C_2=40
z_2=y*C_2*x //z_2=log(I_0/I_t)=log(z_3)where z_3=(I_0/I_t)
z_3=10^z_2
I_t=(100/z_3)
p_l=(100-I_t)
disp (p_l,'Percentage of light absorbed')
|
ba2af26bc30fb084215e2cd0dae41846b5fcd1d5
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2915/CH5/EX5.16/Ex5_16.sce
|
d94f4255cd3fcc2a30a2155b84bc0de52b26834f
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 269
|
sce
|
Ex5_16.sce
|
clc,clear;
//Example 5.16
//To determine inverse cosine function of a given value
given = cos(4*%pi/3); //given value
answer= acos(given); //final answer
printf('Required answer is %f radians',answer);
printf('\n\nOR \n\n(pi/3)*%f radians',answer*(3/%pi));
|
1b8fea05732d554150302c390de054a878656ed6
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/761/CH1/EX1.9/1_9.sce
|
9a2bdd295ef9501b2834483c158ef6fb6c69b125
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 247
|
sce
|
1_9.sce
|
clc;
//page no 25
//prob no 1.9
//Given: Si=100uW; Ni=1uW; So=1uW; No=0.03W
Si=100; Ni=1; So=1; No= 0.03// all powers are in uW
r1=Si/Ni;// input SNR
r2=So/No;// output SNR
NF=r1/r2;// Amplifier noise figure
disp(NF,'Te noise figure is');
|
578358def3b700e9acae9d8c8c3f11ade35e66ad
|
99b4e2e61348ee847a78faf6eee6d345fde36028
|
/Toolbox Test/stmcb/stmcb6.sce
|
d6312b1c465a3c1f1e01d622b46c8970b5f1f98c
|
[] |
no_license
|
deecube/fosseetesting
|
ce66f691121021fa2f3474497397cded9d57658c
|
e353f1c03b0c0ef43abf44873e5e477b6adb6c7e
|
refs/heads/master
| 2021-01-20T11:34:43.535019
| 2016-09-27T05:12:48
| 2016-09-27T05:12:48
| 59,456,386
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 634
|
sce
|
stmcb6.sce
|
ai=[1.0 4.410692054951665 8.291296554539644 -7.970990704911278 3.378878204393383];
y=[1 3 4 %i];
x=[2 3 5 2];
[b,a]=stmcb(x,y,4,4,5,ai);
disp(b);
disp(a);
//output
//!--error 10000
//filter: Wrong type for input argument #3: Real matrix expected.
//at line 46 of function filter called by :
//at line 52 of function stmcb called by :
//[b,a]=stmcb(x,y,4,4,5,ai);
//
//Matlab o/p :
//
//b =
//
// 2.0000 - 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i
//
//>> a
//
//a =
//
// 1.0000 + 0.0000i 1.5000 - 0.0000i -0.7500 - 0.0000i -3.6250 + 1.0000i 0.0000 + 0.0000i
filter
|
3ed32db29997d7999110f44d232616505d721177
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3557/CH17/EX17.15/Ex17_15.sce
|
ffe787a5c953cf6e73bcba5b7de6d2c0e82c0f69
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,764
|
sce
|
Ex17_15.sce
|
//Example 17.15//
//(a)
y1=1190;// degree C //y1 coordinate of the location where the line crosses the y axis.
y2=1414;// degree C //y2 coordinate of the location where the line crosses the y axis.
x1=99.985;;// wt % //composition of Si
x2=100; //wt % // composition of Si
a=y2-y1;//(subracting y intercept of linear euation)
//mprintf("a = %i",a)
a1=x2-x1 //(subracting m slope of line of linear equation)
//mprintf("a1 = %f ",a1)
m=a/a1; //(Obtaining m value)
mprintf("m = %e ",m)
b=y2-m*x2; //(Obtaining b value)
mprintf("\nb = %e ",b)
y3=1360;//degree C //composition
x=(y3-b)/m
mprintf("\nx = %f ",x)
//The segregation coefficienct is calculated in terms of impurity levels
Cs=x2-x
mprintf("\nCs = %f wt percent Al",Cs)
x3=90;//percent //si composition
Cl=x2-x3;
mprintf("\nCl = %i wt percent Al",Cl)
K=Cs/Cl
mprintf("\nK = %e ",K)
//(b) For the liquids line a similar staright line expression take place on the values
a4=y2-y3;//(subracting y intercept of linear euation)
//mprintf("a4 = %i",a4)
a5=x2-x3 //(subracting m slope of line of linear equation)
//mprintf("a5 = %f ",a5)
m1=a4/a5; //(Obtaining m value)
mprintf("\nm1 = %e ",m1)
b1=y2-m1*x2; //(Obtaining b value)
mprintf("\nb1 = %f ",b1)
//A 99 wt % Si bar will have a liquids temperature
x4=99;//
T=m1*(x4)+b1
mprintf("\nT = %f degree C",T)
//The corresponding solids composition is given by
x5=(T-b)/m
mprintf("\nx1 = %f wt percent Si",x1)
//An alternate composition expression
x5=99.999638;//Wt % Si
c=100;//percent
i=(x2-x5)/c
mprintf("\ni = %e Al",i)
mprintf("\nor 3.62 parts per million Al")
mprintf("\nThese calculations are susceptible to round-off errors. Values of m and bin the solidus line equation must be carried to several palces")
|
2a9747cf3b3fafd451ad542176676aeb4385f24d
|
1d7cb1dbfad2558a4145c06cbe3f5fa3fc6d2c08
|
/Scilab/PCIeGen3/HSpiceUtilities/HSPiceUtilities.sci
|
822a424933d5d28bc249cec533f22cc6415c92ef
|
[] |
no_license
|
lrayzman/SI-Scripts
|
5b5f6a8e4ae19ccff53b8dab7b5773e0acde710d
|
9ab161c6deff2a27c9da906e37aa68964fabb036
|
refs/heads/master
| 2020-09-25T16:23:23.389526
| 2020-02-09T02:13:46
| 2020-02-09T02:13:46
| 66,975,754
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 51,110
|
sci
|
HSPiceUtilities.sci
|
// Common function for HSpice similuations
//
// (c)2008-2010 L. Rayzman
// Created : 10/11/2008
// Last Modified: 10/14/2008 - Added Eye Measurement Tool
// 11/08/2008 - Added DJ convolution to eye measure tool
// - Added tUI as input to eye measure tool until that time when bit
// rate algorithm is perfected.
// 11/08/2008 - Added DJ convolution to eye measure tool
// 02/10/2009 - Added Pulse Response Tool
// 03/15/2009 - Added PWL read tool (to be used in conjuction with HSpice converter)
// 03/25/2009 - Added pulse response to frequency file conversion
// 04/03/2009 - Added pulse response to PWL file conversion for StatEye time-domain
// 05/18/2009 - Removed DC offset in the 'pulse_convolver_td' file
// 08/11/2009 - Fixed issue with convert_str_to_float no recognizing femtoseconds
// 08/15/2009 - Added DFE emulation functions (DFE_pr, quantizerNbit, Gausk)
// Added Linear Filter Convolution from frequency table function
// Broke pulse_convolver_td function into read_pwl and write_pwl
// functions to allow for Linear Filter and DFE
// 10/25/2009 - Fix in DFE emulation to handle negative pulses
// Fixed issue with non-symmetrical max and min range in quantizerNbit
// 01/05/2010 - Corrected major issue in Linear Filter function: imported transfer
// function needed to mirror "negative" frequencies
// Added removal of redundant time entries in 'extract_from_PWL'
//
//
//
// TODO: FIX THE BIT RATE EXTRACTION ALGORITHM IN EYE MEASURE TOOL
//
//////////////////////////////////////Extraction Function////////////////////////////////////
function [t, D, Desc] = extract_from_CSDF(filename)
// Extracts waveform data from CSDF ASCII files
//
// Inputs:
// filename - Filename of the CSDF file
//
// Outputs:
// t - time points
// D - Waveform data matrix
// Desc - Title and names of the waveforms (string)
stopflag = %F; // Stop loop flag
readline=emptystr();
tempstr=emptystr(); // Temporary string
ttlstr=emptystr(); // Title
nodecount=0; // Nodecount
idxcnt=1; // Timestamp index count;
t=[]; // Initialize function output vectors
D=[];
//Open File
[fhandle,err]=mopen(filename, "r");
if err<0 then
error("Header Parser: Unable to open data file");
end
//
//Parse the header
//
//Find start of header
while stopflag == %F,
if meof(fhandle) then //If end of file, stop
stopflag = %T;
error("Header Parser: Unable to find start of header in file");
else
readline=mgetl(fhandle,1)
if (convstr(part(readline,[1:2]),"u") == "#H") then //If reached start of header
stopflag = %T;
end
end
end
stopflag=%F; // Reset stop flag
//Read in the Title Line
while stopflag == %F,
if meof(fhandle) then //If end of file, stop
stopflag = %T;
error("Header Parser: Unable to find title line in header");
else
readline=mgetl(fhandle,1)
if (convstr(part(readline,[1:5]),"u") == "TITLE") then //If reached nodecount line
tempstr=tokens(readline, "''");
ttlstr=tempstr(2);
stopflag = %T;
end
end
end
stopflag=%F; // Reset stop flag
//Read in nodecount
while stopflag == %F,
if meof(fhandle) then //If end of file, stop
stopflag = %T;
error("Header Parser: Unable to find nodecount line in header");
else
readline=mgetl(fhandle,1)
if (convstr(part(readline,[1:5]),"u") == "NODES") then //If reached nodecount
tempstr=tokens(readline, "''");
nodecount=sscanf(tempstr(2),"%d");
stopflag = %T;
end
end
end
nodenames=emptystr(1, nodecount); // Nodenames
stopflag=%F; // Reset stop flag
// Look For Node name line
while stopflag == %F,
if meof(fhandle) then //If end of file, stop
stopflag = %T;
error("Header Parser: Unable to find nodenames line in header");
else
readline=mgetl(fhandle,1)
if (convstr(part(readline,[1:2]),"u") == "#N") then //If reached nodename line
tempstr=strsplit(readline,2); //Process first nodename line
tempstr=tempstr(2);
readline=mgetl(fhandle,1); //Process subsequent lines until start of data portion
while (part(readline, 1) ~= "#") & (~meof(fhandle)),
tempstr = tempstr + readline;
readline=mgetl(fhandle,1);
end
stopflag = %T;
tempstr=strcat(tokens(tempstr)); // Process all names
nodenames=tokens(tempstr, "''");
end
end
end
if size(nodenames,1) ~= nodecount then
error("Header Parser: Node count does not match number of node names");
end
Desc = [ttlstr,nodenames'];
stopflag=%F; // Reset stop flag
while stopflag == %F,
if meof(fhandle) then //If end of file, stop
stopflag = %T;
error("Data Parser: Premature end of file");
else
if (convstr(part(readline,[1:2]),"u") == "#C") then //If reached data line for current timestamp
tempstr=strsplit(readline,2); //Process data linet
tempstr=tempstr(2);
readline=mgetl(fhandle,1); //Process subsequent lines until start of next timestep
while (part(readline, [1:2]) ~= "#C") & (part(readline, [1:2]) ~= "#;") & (~meof(fhandle)) ,
tempstr = tempstr + readline;
readline=mgetl(fhandle,1);
end
tempstr=tokens(tempstr); // Process all data entries
t(idxcnt)=sscanf(tempstr(1), "%f"); // Get timestamp
if sscanf(tempstr(2), "%d") ~= nodecount then
error("Data Parser: Reported node count does not match the count in data");
end
for k=1:(size(tempstr,1)-2),
D(idxcnt,k)=sscanf(tempstr(k+2), "%f");
end
idxcnt = idxcnt + 1;
end
if (convstr(part(readline,[1:2]),"u") == "#;") then // End of file
stopflag = %T;
end
end
end
mclose(fhandle);
// Cleanup variables
clear stopflag;
clear readline;
clear tempstr;
clear ttlstr;
clear nodecount;
clear idxcnt;
endfunction
//////////////////////////////////String to Floating Point conversion//////////////////////////////////
function y = convert_str_to_float(str)
// Conversion function to take in
// a string in format:
//
// xx.xxxxz
// where xx is numbers
// z is multiplier (one of "p", "n", or "m")
//
// Sscanf could do this but SCILAB is Piece of Shit,
// so I have to dupe it
// Inputs:
// str - Input string
//
// Outputs:
// y - floating point number
mult=1;
y=0;
//Find multiplier
c=part(str, length(str));
select c,
case 'f' then mult=1e-15;
case 'p' then mult=1e-12;
case 'n' then mult=1e-9;
case 'u' then mult=1e-6;
case 'm' then mult=1e-3;
end
//find location of decimal point
decidx=strindex(str, '.');
//get raw string
if mult <> 1 then
rawstring=strcat(tokens(part(str, (1:length(str)-1)), '.'));
else
rawstring=strcat(tokens(str, '.'));
end
//Compute y
pwr=10^(decidx-[1:length(rawstring)]-1);
y=sum(pwr.*str2code(rawstring)')*mult;
endfunction
//////////////////////////////////////PWL File Extraction Function////////////////////////////////////
function [t, D] = extract_from_PWL(filename)
// Extracts waveform data from PWL ASCII files
// This file is to be generated from *.tr? files
// using HSpice converter utility
//
// Only a single node is supported in this version
//
//
//
// Inputs:
// filename - Filename of the PWL file
//
// Outputs:
// t - time points
// D - Waveform data matrix
stopflag = %F; // Stop loop flag
dupentrytrue= %F; // Found identical time entries
readline=emptystr();
tempstr=emptystr(); // Temporary string
tempt=0; // Temporary time
idxcnt=0; // Data line index count;
t=[]; // Initialize function output vectors
D=[];
//Open File
[fhandle,err]=mopen(filename, "r");
if err<0 then
error("PWL Parser: Unable to open data file");
end
//
//Parse the header
//
//Find start of header
while stopflag == %F,
readline=mgetl(fhandle,1)
if meof(fhandle) then //If end of file, stop
stopflag = %T;
if (idxcnt == 0) then
error("PWL Parser: Unable to find data in file");
end
else
if (part(readline,[1:2]) == " +") then //If reached data line
tempstr=tokens(readline);
tempt=convert_str_to_float(tempstr(2));
if t(idxcnt)<> tempt then // Remove reduntant time
idxcnt = idxcnt + 1;
else
dupentrytrue=%T;
end
t(idxcnt)= tempt
D(idxcnt)=sscanf(tempstr(3), "%f");
end
end
end
mclose(fhandle);
// Report if found duplicate time entries
if dupentrytrue==%T then
warning("PWL Parser: Found and removed identical time entries in file");
end
// Cleanup variables
clear stopflag;
clear readline;
clear tempstr;
clear idxcnt;
endfunction
//////////////////////////////////////Eye Measure////////////////////////////////////
function [tUIm, eh, ew] = eye_measure(t, D, hyst, dj, tUI)
// Extracts eye information from waveform data
//
// Inputs:
// t - time points from waveform (output from function "extract_from_CSDF")
// D - Waveform data vector (output from function "extract_from_CSDF")
// hyst - Hysteresis voltage (reject noise/ripples below this level as false transitions)
// dj - Dj to convolve with computed waveform.
// tUI - Nominal Unit Interval (seconds).
// NOTE: variable is planned to be obsoleted once accurate bit rate extraction algorithm is perfected
//
// Outputs:
// tUIm - Measured Unit Interval (seconds)
// NOTE: currently this return value is identical to the tUI input parameter, until such time
// as bit rate extraction algorithm is perfected
// eh - Measured eye height (volts)
// ew - Measured eye width.
//
// Important notes:
// - Edges must be monotonic
// - This tool operates only on zero-volt balanced waveforms
//
// TODO:
// FIX BIT RATE extraction algorithm
//
// Let's do some error checking on inputs before we go on
if length(t) ~= length(D) then
error("EM: Number of samples in time vector does not equal to number of samples of data");
end
if dj < 0 then
error("EM: Dj parameter cannot be negative value");
end
if tUI <= 0 then
error("EM: tUI must be greater than 0 seconds");
end
//Function variables
startidx=0; // Start marker of transition region to be interpolated
endidx=0; // End marker of transition regition to be interpolated
numsample=0; // Size of waveform vector(# of samples)
numUI=0; // Number of UIs
posedgebin=[]; // Time points of positive edges
negedgebin=[]; // Time points of negative edges
posleadedge=%F; // Leading edge is positive
eyetimes=[]; // Eye widths of all eye times
lte=%F; // Unit interval error level flag
eyevolt=0; // Voltage level used for eye height measurements
numsample=length(t);
//Rectify positive and negative hemisphere around hysteresis
Drect = (D.*(D>hyst))+ (D.*(D<-hyst));
for n=2:numsample, //For each sample in a collapsed waveform
if (Drect(n-1) > 0) & (Drect(n) <= 0) then // if previous to current = falling & current is zero
startidx=n-1;
end
if (Drect(n-1) >=0) & (Drect(n) < 0) then // if previous is zero & previous to current = falling
endidx=n;
if (startidx ~= 0) & (endidx ~= 0) then // if detected negative zero xing
for k=startidx:endidx, // interpolate zero xing and put into negative edge bin
if (D(k-1) > 0) & (D(k) < 0) then
negedgebin=cat(2, negedgebin, [interpln([D(k-1) D(k);t(k-1) t(k)],0); (k-1); k] );
end
end
startidx=0; // Ready markers for next transition
endidx=0;
end
end
if (Drect(n-1) < 0) & (Drect(n) >= 0) then // if previous to current = rising & current = zero
startidx=n-1;
end
if (Drect(n-1) <=0) & (Drect(n) > 0) then // if previous is zero and previous to current = rising
endidx=n;
if (startidx ~= 0) & (endidx ~= 0) then // if detected negative zero xing
for k=startidx:endidx, // interpolate zero xing and put into positive edge bin
if (D(k-1) < 0) & (D(k) > 0) then
posedgebin=cat(2, posedgebin, [interpln([D(k-1) D(k);t(k-1) t(k)], 0); (k-1); k]);
end
end
startidx=0; // Ready markers for next transition
endidx=0;
end
end
end
clear Drect;
//Check that number of positive and negative edges is within 1
if abs(size(negedgebin,1) - size(posedgebin,1)) > 1 then
error("EM: Large disparity in number of positive versuse negative transitions");
end
//Figure out which transition occurs first
if negedgebin(1,1) > posedgebin(1,1) then
posleadedge=%T;
end
//Obtain the eye times
for m=1:min(size(negedgebin,2),size(posedgebin,2))-1,
for l=1:2,
if posleadedge==%T then // If positive edge leads
if l==1 then
eyetimes=cat(2, eyetimes, [(negedgebin(1, m)-posedgebin(1, m)); 0]);
else
eyetimes=cat(2, eyetimes, [(posedgebin(1,m+1)-negedgebin(1, m)); 0]);
end // If negative edge leads
else
if l==1 then
eyetimes=cat(2, eyetimes, [(posedgebin(1, m)-negedgebin(1, m)); 0]);
else
eyetimes=cat(2, eyetimes, [(negedgebin(1, m+1)-posedgebin(1, m)); 0]);
end
end
end
end
//Bit rate extraction: REVIEW AND IMPROVE
maxui=max(eyetimes(1,:));
minui=min(eyetimes(1,:));
maxinmincnt=round(maxui/minui);
//oldtUI=(minui+(maxui-(maxinmincnt-1)*minui))/2; // Take average of these to find average over max and min <<===== ALGORITHM DIDN'T WORK
eyetimes(2,:)=round(eyetimes(1,:)/tUI); // Find number of UI per eyetime <<===== ALGORITHM DIDN'T WORK
// Calculate average UI
numUI=sum(eyetimes(2,:));
//while lte==%F, //!!!!! <<===== ALGORITHM DIDN'T WORK
// oldtUI=tUI;
// tUIaccum=eyetimes(1,:)-(eyetimes(2,:))*oldtUI;
// tUIerr=median(tUIaccum);
//tUIerr=(max(tUIaccum)-min(tUIaccum))/2+min(tUIaccum);
// tUI=tUI+tUIerr;
// if (abs(tUI-oldtUI)/tUI) < 1e-12 then
// lte=%T;
// end
//end
tUIm=tUI;
//Find the starting offset
if posleadedge==%T then
soffset=posedgebin(1, 1);
offsetaccum=modulo(posedgebin(1,:)-posedgebin(1, 1), tUI);
for a=1:length(offsetaccum),
if offsetaccum(a) >= tUI/2 then
offsetaccum(a) = offsetaccum(a)-tUI;
end
end
soffseterr=(max(offsetaccum)-min(offsetaccum))/2+min(offsetaccum);
soffset=soffset+soffseterr;
else
soffset=negedgebin(1, 1);
offsetaccum=modulo(negedgebin(1,:)-negedgebin(1, 1), tUI);
for a=1:length(offsetaccum),
if offsetaccum(a) >= tUI/2 then
offsetaccum(a) = offsetaccum(a)-tUI;
end
end
soffseterr=(max(offsetaccum)-min(offsetaccum))/2+min(offsetaccum);
soffset=soffset+soffseterr;
end
//
//Calculate eye width
offsetaccum=cat(2, modulo(posedgebin(1,:)-soffset, tUI), modulo(negedgebin(1,:)-soffset, tUI)); //Find phase between nominal location and all edges
for a=1:length(offsetaccum), // Unwrap for negative phase error
if offsetaccum(a) >= tUI/2 then
offsetaccum(a) = offsetaccum(a)-tUI;
end
end
ew=tUI-abs(max(offsetaccum)-min(offsetaccum))-dj; // Calculate eye width
//
//Calculate eye height
//
for x=0:(numUI-1), // Measure voltage for all eyes
eyecenter=soffset+(x+0.5)*tUI;
for h=2:numsample, // Search for start point
if (t(h-1)<= eyecenter) & (t(h)>eyecenter) then
eyevolt=cat(2, eyevolt, mean([D(h-1) D(h)]));
end
end
end
eyevolt=cat(2, eyevolt.*(eyevolt>=0), eyevolt.*(eyevolt<0)); // Find the minimum eye height
eyevolt=unique(eyevolt);
eh=abs(eyevolt(vectorfind(eyevolt, 0, "c")+1)-eyevolt(vectorfind(eyevolt, 0, "c")-1));
startidx=1;
endidx=1;
//xinit();
clf();
drawlater;
//Plot the Eye
//Plot eye twice, first for positive DJ
for j=1:numUI,
tidealstime=soffset+dj/2+(j-0.5)*tUI;
tidealptime=soffset+dj/2+(j+1+0.5)*tUI;
for h=2:numsample, // Search for start point
if (t(h-1)<= tidealstime) & (t(h)>tidealstime) then
startidx=h;
end
end
for h=startidx:numsample, // Search for end point
if (t(h-1)< tidealptime) & (t(h)>=tidealptime) then
endidx=h-1;
end
end
timeaxis=(t(startidx:endidx)-tidealstime - 0.5*tUI)/1e-12 ;
plot2d(timeaxis, D(startidx:endidx), frameflag=8, style=2);
end
for j=1:numUI, //....second for negative
tidealstime=soffset-dj/2+(j-0.5)*tUI;
tidealptime=soffset-dj/2+(j+1+0.5)*tUI;
for h=2:numsample, // Search for start point
if (t(h-1)<= tidealstime) & (t(h)>tidealstime) then
startidx=h;
end
end
for h=startidx:numsample, // Search for end point
if (t(h-1)< tidealptime) & (t(h)>=tidealptime) then
endidx=h-1;
end
end
timeaxis=(t(startidx:endidx)-tidealstime - 0.5*tUI)/1e-12 ;
plot2d(timeaxis, D(startidx:endidx), frameflag=8, style=2);
end
xgrid(4);
xtitle('','Time (ps)', 'Volts') ;
drawnow;
// Cleanup variables
clear startidx;
clear endidx;
clear numsample;
clear numUI;
clear posedgebin;
clear negedgebin;
clear posleadedge;
clear eyetimes;
clear maxui;
clear minui;
clear maxinmincnt;
clear oldtUI;
clear lte;
clear tUIaccum;
clear tUIerr;
clear soffset;
clear offsetaccum;
clear soffseterr;
clear eyevolt;
endfunction
///////////////////////////////////Pulse Response ////////////////////////////////////
function [PreErr, PostErr] = pulse_response(t, D, tUI )
// Measures post- & pre-cursor errors
//
// Inputs:
// t - time points from waveform (output from function "extract_from_CSDF")
// D - Waveform data vector (output from function "extract_from_CSDF")
// tUI - Nominal Unit Interval (seconds).
//
// Outputs:
// PreErr - Integrated voltage error in Pre-cursors
// PostErr - Integrated voltage error in Post-cursors
//
// Important notes:
// - This tool operates only on zero-volt referenced waveforms
//
// TODO:
//
// Let's do some error checking on inputs before we go on
if length(t) ~= length(D) then
error("EM: Number of samples in time vector does not equal to number of samples of data");
end
// Function variables
tpeakidx=0; // Index of the peak location
tnorm=t; // Initialize peak-referenced time vector
tUI=t; // Initialize the UI time vector
numsample=length(t); // Number of time samples
// Find location of and set time vector t=0 at that location
tpeakidx=vectorfind(D,max(abs(D)),'c');
tnorm=tnorm-(tnorm(tpeakidx));
// Bin the samples into UI time-slots
tUI=tnorm/tUI;
clear tnorm;
clear tpeakidx;
// Compute the integrated voltage of the main cursors
// Compute the integrated voltage of the other cursors
// Compute relative post- & pre-cursor error
PreErr = 0;
PostErr = 0;
endfunction
//////////////////////////////////////Pulse Response to Frequency File Conversion////////////////////////////////////
function [] = pulse_convolver_sp(FilenameIn, FilenameOut, wavename, M, tUI)
// Extracts eye information from waveform data
//
// Inputs:
// FilenameIn - Filename of the source *.tr* file
// FilenameOut - Filename of the output *.s*p file
// wavename - Name of the waveform to be converted
// M - Oversampling rate (bits per UI)
// tUI - Nominal Unit Interval (seconds).
//
// Outputs:
// none
//
//
// TODO:
// Add support for crosstalk (aggressor-victim-aggressor)
fwvfrm = emptystr(); // Converted waveform filename
fcnvpar = emptystr(); // Converter instructions file
cmdlinestr=emptystr(); // HSpice converter command line string.
olddir=emptystr(); // Original directory path
Sparam=[]; // Empty vector
t = []; // Time points vector from tr* file
D = []; // Waveform vector from tr* file
pofn = []; // Pulse response been interpolated and zero padded to sample rate
hofn=[]; // Ideal source pulse
///////////////////
// Load PWL file
///////////////////
version_str=getversion();
version_str=tokens(version_str,'-');
version_str=tokens(version_str(2),'.');
version(1)=msscanf(version_str(1), '%d');
version(2)=msscanf(version_str(2), '%d');
//Set new directory name for Hspice conversion
olddir=getcwd();
chdir(fileparts(FilenameIn, "path"));
//Create conversion command line
cmdlinestr="converter -t PWL -i " + strcat([fileparts(FilenameIn, "fname"), fileparts(FilenameIn, "extension")]) + " -o " + strcat([fileparts(FilenameIn, "fname"), ".dat"]) + " < cnvparams.txt";
//Create converter input file
fcnvpar=strcat([fileparts(FilenameIn, "path"), "cnvparams.txt"]); // Set instructions file.
[fhandle,err]=mopen(fcnvpar, "w");
if err<0 then
chdir(olddir);
error("Pulse Convolver: Unable to create conversion instructions file");
abort;
end
mfprintf(fhandle,"1\n%s\n\n%s\n\n\n",wavename,wavename);
mclose(fhandle);
//run converter
if unix(cmdlinestr) ~= 0 then // Run simulation
if (version(1)==5) & (version(2) >= 1) then // Source file
messagebox("Pulse Convolver: Conversion Failed. Script aborted", "","error","Abort");
else
buttondialog("Pulse Convolver: Conversion Failed. Script aborted", "Abort");
end
chdir(olddir);
abort;
end
fwvfrm = strcat([fileparts(FilenameIn, "fname"), ".dat0"]);
//Extract frequency response from file
[t, D]=extract_from_PWL(fwvfrm);
//Revert to original directory
chdir(olddir);
//Remove DC offset
D=D-D(1);
//Remove duplicate initial entry
if(t(1)==t(2)) then
t=t(2:$);
D=D(2:$);
end
//Restart at t=0
t=t-t(1);
//Remove low frequency wander to ensure proper FFT
D=D-(t/t($))*(D($)-D(1));
clear fwvfrm;
clear fcnvpar;
clear olddir;
///////////////////
// Sampling Rate Stuff
///////////////////
lenpr=ceil(max(t)/tUI); //Length of pulse response (in bits)
Nbit = lenpr; // Number of bits in sequence
deltaT = tUI / M; //Sampling resolution (in seconds)
N=round(2^(ceil(log(Nbit*M)/log(2)))); //Length of sample vector (power of two for efficient FFT)
tofn=([0:1:N-1])*deltaT; //Vector of time points
f=(1/deltaT)/2*linspace(0,1,N/2+1); // Vector of frequency points
clear lenpr;
clear Nbit;
clear deltaT;
///////////////////
// Interpolate Waveform
// to constant
// sampling rate
///////////////////
//Interpolate waveform to sampling points
pofn=interp1(t, D, tofn, 'spline', D($));
///DBG
//xinit()
//plot2d(tofn, pofn, style=2);
//xtitle("Interpolated Pulse Response", "Sample #", "pofn");
clear t;
clear D;
///////////////////
// Deconvolve to
// find impulse response
// h[n]
///////////////////
// recognizing that
// ___N-1
// p[n]=\ h[n-k]
// /
// ----
// k=0
//
// since s[n]=1 for 0<= n< N
//
// and h[n]=0 for n<0
//
// or p[n]=h[n]+h[n-1]+...h[n-(N-1)]
//
// thus,
//
// p[0]=h[0]
// p[1]=h[1]+h[0]
// p[2]=h[2]+h[1]+h[0]
// ...
winId=waitbar('Deconvolution calculation progress'); //Create progress bar
progbardiv=int(N/100);
hofn=zeros(1,N);
hofn2=zeros(1,N);
//Algorithm Ver2
termsmscolm=zeros(1,N);
termsmscolm(1:M:$)=1;
termsmscolm(2:M:$)=-1;
termsmscolm=termsmscolm(:,$:-1:1);
for i=1:N,
hofn(i)=pofn*[termsmscolm($-i+1:$),zeros(1,N-(i))]';
if 0==modulo(i, progbardiv) then //Advance progress bar
waitbar(i/N, winId);
end
end
winclose(winId); //Remove progression bar
H=fft(hofn,-1);
//Try to clean up the FFT
for i=1:(N/M):N,
if i>1 then
H(i)=(real(H(i-1))+real(H(i+1)))/2+%i*(imag(H(i-1))+imag(H(i+1)))/2;
end
end
hofn2=real(fft(H,1));
//Combine clean parts
hofn(find(hofn==max(hofn))+1:$)=hofn2(find(hofn==max(hofn))+1:$);
H=fft(hofn,-1);
///DBG
sofn=[ones(1:M), zeros(1:N-M)];
S=fft(sofn,-1);
Y=H.*S;
yofn=real(ifft(Y));
clf();
plot2d(tofn, yofn, style=2);
xtitle("Impulse response", "Time(s)", "hofn");
clear S;
clear sofn;
clear yofn;
clear Y;
H=H(1:length(f));
clear tofn;
clear hofn;
clear hofn2;
///////////////////
// Create S2P file
///////////////////
Sparam(:,1) = f'; //Frequency column
Sparam(:,2) = zeros(f)'; //S11Mag
Sparam(:,3) = zeros(f)'; //S11Phase
Sparam(:,4) = real(H)'; //S12Mag
Sparam(:,5) = imag(H)'; //S12Phase
Sparam(:,6) = real(H)'; //S21 = S12
Sparam(:,7) = imag(H)';
Sparam(:,8) = zeros(f)'; //S22 = S11
Sparam(:,9) = zeros(f)';
//Write S2P to file
[fhandle, err]=mopen(FilenameOut, 'w');
mfprintf(fhandle, "# Hz S RI R 50\n");
for i=1:length(f),
mfprintf(fhandle, "%0.2f %0.16e %0.16e %0.16e %0.16e %0.16e %0.16e %0.16e %0.16e\n", Sparam(i,1), Sparam(i,2), Sparam(i,3), Sparam(i,4), Sparam(i,5), Sparam(i,6), Sparam(i,7), Sparam(i,8), Sparam(i,9));
end
mclose(fhandle);
clear H;
clear fhandle;
clear err;
clear Sparam;
endfunction
//////////////////////////////////////////////////////////////////////////////////////
//////////////////////////////////////Pulse Response to PWL File Conversion////////////////////////////////////
function [t, D] = read_pwl(FilenameIn, wavename)
// Extracts eye information from waveform data
//
// Inputs:
// FilenameIn - Filename of the source *.tr* file
// wavename - Name of the waveform to be converted
//
// Outputs:
// t - time points of read waveform
// D - Waveform data vector of read waveform
//
//
// TODO:
fwvfrm = emptystr(); // Converted waveform filename
fcnvpar = emptystr(); // Converter instructions file
cmdlinestr=emptystr(); // HSpice converter command line string.
olddir=emptystr(); // Original directory path
t = []; // Time points vector from tr* file
D = []; // Waveform vector from tr* file
///////////////////
// Load PWL file
///////////////////
version_str=getversion();
version_str=tokens(version_str,'-');
version_str=tokens(version_str(2),'.');
version(1)=msscanf(version_str(1), '%d');
version(2)=msscanf(version_str(2), '%d');
//Set new directory name for Hspice conversion
olddir=getcwd();
chdir(fileparts(FilenameIn, "path"));
//Create conversion command line
cmdlinestr="converter -t PWL -i " + strcat([fileparts(FilenameIn, "fname"), fileparts(FilenameIn, "extension")]) + " -o " + strcat([fileparts(FilenameIn, "fname"), ".dat"]) + " < cnvparams.txt";
//Create converter input file
fcnvpar=strcat([fileparts(FilenameIn, "path"), "cnvparams.txt"]); // Set instructions file.
[fhandle,err]=mopen(fcnvpar, "w");
if err<0 then
chdir(olddir);
error("Pulse Convolver: Unable to create conversion instructions file");
abort;
end
mfprintf(fhandle,"1\n%s\n\n%s\n\n\n",wavename,wavename);
mclose(fhandle);
//run converter
if unix(cmdlinestr) ~= 0 then // Run simulation
if (version(1)==5) & (version(2) >= 1) then // Source file
messagebox("Read_pwl: Conversion Failed. Script aborted", "","error","Abort");
else
buttondialog("Read_pwl: Conversion Failed. Script aborted", "Abort");
end
chdir(olddir);
abort;
end
fwvfrm = strcat([fileparts(FilenameIn, "fname"), ".dat0"]);
//Extract frequency response from file
[t, D]=extract_from_PWL(fwvfrm);
//Revert to original directory
chdir(olddir);
clear fwvfrm;
clear fcnvpar;
clear olddir;
endfunction
//////////////////////////////////////////////////////////////////////////////////////
function [] = write_pwl(t, D, FilenameOut)
// Extracts eye information from waveform data
//
// Inputs:
// t - time points of waveform to be output
// D - Waveform data vector of waveform to be output
// FilenameOut - Filename of the output *.inc file
// Outputs:
// none
//
//
// TODO:
///////////////////
// Create PWL source file
///////////////////
[fhandle, err]=mopen(FilenameOut, 'w');
mfprintf(fhandle, ".SUBCKT impulse_src Out Gnd_Src\n");
mfprintf(fhandle, "Vsrc Out Gnd_Src PWL (\n");
for i=1:length(t),
mfprintf(fhandle, "+ %0.6e %0.16e\n", t(i),D(i));
end
mfprintf(fhandle, ")\n");
mfprintf(fhandle, ".ENDS\n");
mclose(fhandle);
clear fhandle;
clear err;
endfunction
//////////////////////////////////////////////////////////////////////////////////////
//////////////////////////////////////DFE emulation////////////////////////////////////
function [t, D, opt_coeff, err] = DFE_pr(tpulse, Dpulse, coeffs, tUI, opt_type)
// Applies DFE to pulse response in time-domain
//
// Inputs:
// tpulse - time points of input pulse response
// Dpulse - Waveform data vector of input pulse response
// coeffs - Nx4 matrix specifying range max, min, number of descrete steps, and peak voltage of DFE,
// where N is number of post-cursor taps:
// | Max cursor 1 Min cursor 1 # of steps for cursor 1 peak voltage |
// | Max cursor 2 Min cursor 2 # of steps for cursor 2 peak voltage |
// | . . . . |
// | . . . . |
// | . . . . |
// | Max cursor N Min cursor N # of steps for cursor N peak voltage |
//
// Conditions: -1 < Max < 1
// -1 < Min < 1
// Min < Max
// Coefficient for each tap is referenced to it's respective peak voltage
// Peak voltage must be a positive number
//
//
// tUI - Unit interval
// opt_type - Cursor optimization algorithm type
// 1 = Minimal midpoint error
// 2 = minimal full-UI error
//
// Outputs:
// t - time points of processed waveform
// D - Waveform data vector of processed waveform
//opt_coeff - Optimal coefficients vector
// err - pulse response RMS error (weighted by peak value)
//
//
// Important notes:
// - Only post-cursors are being implemented
// - Cursor coeffients take on absolute values as a function of peak-voltage specification for each cursor
// - If multiple peak points of same level occur, only the last one is considered the peak
//
//
// TODO:
// CHECK FOR CORNER CONDITION WHEN LAST UI IS INCOMPLETE
//
//////////////////////////////////////SPECIFY//////////////////////////////////////
// Peak-find algorithm parameters
npeakwind=5; // Number of samples (+/- around peak point) for peak-find algorithm
tpeakminres=10; // Minimum time spacing resolution factor
// DFE window paramters
trfwin=20e-12; // Edge rate of DFE window (Note: rise/fall edge must be less than 50% of tUI)
M=ceil(tUI/2e-12); // Number of samples per UI (Gaussian LPF for DFE window);
///////////////////////////////////////////////////////////////////////////////////
///////////////////
// Error checking
///////////////////
// Let's do some error checking on inputs before we go on
if size(coeffs,1) < 1 then // Check that size of number of taps is at least one
error("DFE: Invalid format of coefficients");
end
if size(coeffs,2) ~= 4 then // Check that size of specification matrix is correct
error("DFE: Invalid format of coefficients");
end
for i=1:size(coeffs,1),
if coeffs(i, 4) <= 0 then //Check that coefficients peak voltage is given as a positive number
error("DFE: Invalid peak voltage definition for coefficient %d", i);
end
if (coeffs(i,1) < -1) | (coeffs(i,1) > 1) then
error("DFE: Invalid value definition for max cursor for coefficient %d", i);
end
if (coeffs(i,2) < -1) | (coeffs(i,2) > 1) then
error("DFE: Invalid value definition for min cursor for coefficient %d", i);
end
if coeffs(i,1) <= coeffs(i,2) then
error("DFE: Max cursor value is smaller than min cursor value for coefficient %d", i);
end
end
if length(tpulse) ~= length(Dpulse) then
error("DFE: Number of samples in time vector does not equal to number of samples of data");
end
if (opt_type < 1) | (opt_type > 2) then
error("DFE: Invalid optimization algorithm type");
end
///////////////////
// Initiaization
// stuff
///////////////////
//Restart at t=0
tpulse=tpulse-tpulse(1);
//Remove DC offset
Dpulse=Dpulse-Dpulse(1);
//Remove duplicate initial entry
if(tpulse(1)==tpulse(2)) then
tpulse=tpulse(2:$);
Dpulse=Dpulse(2:$);
end
///////////////////
// Function variables
///////////////////
//Function variables
numoftaps=size(coeffs,1); // Number of taps
opt_coeff=zeros(size(coeffs,1)); // Optimal coefficients
negpulse=%f; // Negative pulse detected
prtpeakidx=[0 0]; // Time index of waveform peak
prtpeak=0; // Time of waveform peak
prmaxval=0; // Peak value of waveform (negative for negative-going waveform)
tpeakwin=[]; // Time vector for peak-find altorithm
Dpeakwin=[]; // peak-find algorithm window waveform
tpeakmin=0; // Minimum time spacing around peak point in data
Ddfewin=[]; // DFE window time-domain waveform
hofDdfe=[]; // DFE windows frequency-domain data
Nbit = ceil(max(tpulse)/tUI); // Number of bits in pulse response
deltaT = tUI / M; //Sampling resolution (in seconds)
N=round(2^(ceil(log(Nbit*M)/log(2)))); //Length of sample vector (power of two for efficient FFT)
tofn=([0:1:N-1])*deltaT; //Vector of time points
//f=(1/deltaT)/2*linspace(0,1,N/2+1); // Vector of frequency points
clear Nbit;
clear M;
///////////////////
// Peak-finding
// algorithm
///////////////////
// Find time and amplitude of the peak based on data
prtpeakidx(1)=max(find(abs(Dpulse)==max(abs(Dpulse))));
// Check for negative going pulses and invert as necessary
if Dpulse(prtpeakidx(1)) < 0 then
Dpulse = -Dpulse;
negpulse=%t;
end
//find minimum voltage at +/-npeakwind points out
vpeakmin=min([Dpulse(prtpeakidx(1)+npeakwind) Dpulse(prtpeakidx(1)-npeakwind)]);
//find min time between any two adjacent time points in the waveform
tpeakmin=min(diff(tpulse(find(Dpulse >= vpeakmin))))/tpeakminres;
prtpeakidx(1)=min(find(Dpulse >= vpeakmin));
prtpeakidx(2)=max(find(Dpulse >= vpeakmin))
// Compute time vector between +/-5 sample window around peak point at tpeakmin resolution
tpeakwin=linspace(tpulse(prtpeakidx(1)), tpulse(prtpeakidx(2)), (tpulse(prtpeakidx(2))-tpulse(prtpeakidx(1)))/tpeakmin+1);
// Spline interpolation waveform points at high resolution
Dpeakwin=interp1(tpulse(prtpeakidx(1):prtpeakidx(2)), Dpulse(prtpeakidx(1):prtpeakidx(2)), tpeakwin, 'spline');
prtpeak=tpeakwin(find(Dpeakwin==max(abs(Dpeakwin))));
prmaxval=Dpeakwin(find(Dpeakwin==max(abs(Dpeakwin))));
//DBG
//xinit();
//plot2d(tpulse(prtpeakidx(1):prtpeakidx(2)), Dpulse(prtpeakidx(1):prtpeakidx(2)));
//plot2d(tpeakwin, Dpeakwin);
clear tpeakmin;
clear npeakwind;
clear tpeakwin;
clear tpeakminres;
clear Dpeakwin;
clear prtpeakidx;
///////////////////
// DFE coefficients
///////////////////
// Minimal midpoint error algorithm
if opt_type == 1 then
for i=1:numoftaps,
pridxtemp=max(find(tpulse <= prtpeak + i*tUI)); // Find time index of center of UI
if pridxtemp == [] then
error("DFE: Minimal midpoint error algorithm unable to find center of UI");
end
opt_coeff(i)=(-1)*interpln([tpulse(pridxtemp) tpulse(pridxtemp+1); Dpulse(pridxtemp) Dpulse(pridxtemp+1)], prtpeak + i*tUI); // Linearly interpolate to obtain offset
opt_coeff(i)=quantizerNbit(opt_coeff(i), coeffs(i,1)*coeffs(i,4), coeffs(i,2)*coeffs(i,4), coeffs(i,3)); // quantize
end
clear pridxtemp;
end
// Minimal full-UI error algorithm
if opt_type == 2 then
for i=1:numoftaps,
pridxtemp=intersect(find(tpulse >= (prtpeak + tUI*(i-0.5))), find(tpulse < (prtpeak + tUI*(i+0.5)))); //Find window of the uI
Dpos=(Dpulse(pridxtemp).*(Dpulse(pridxtemp)>0)); // compute rms error positive values
Drmspos=sqrt(1/length(pridxtemp)*sum(Dpos^2));
Dneg=(Dpulse(pridxtemp).*(Dpulse(pridxtemp)<0)); // compute rms error for negative values
Drmsneg=sqrt(1/length(pridxtemp)*sum(Dneg^2));
opt_coeff(i)=(-1)*(Drmspos-Drmsneg)/2; // Obtain error offset
opt_coeff(i)=quantizerNbit(opt_coeff(i), coeffs(i,1)*coeffs(i,4), coeffs(i,2)*coeffs(i,4), coeffs(i,3)); // quantize
end
clear pridxtemp;
clear Dpos;
clear Dneg;
clear Drmspos;
clear Drmsneg;
end
///////////////////
// DFE window
//
///////////////////
Ddfewin=zeros(D);
for i=1:numoftaps,
Ddfewin(intersect(find(tpulse >= (prtpeak + tUI*(i-0.5))), find(tpulse < (prtpeak + tUI*(i+0.5)))))=opt_coeff(i);
end
//DBG
//xinit();
//plot2d(tpulse, Ddfewin, style=2);
//xtitle("DFE window", "Time", "Voltage");
// compute time vector interpolated to resolution of M points per UI
Ddfewin=interp1(tpulse, Ddfewin, tofn, 'linear', Ddfewin($));
// Apply filter to DFE window
hofDdfe=deltaT*fft(Ddfewin,-1).*Gausk(trfwin, deltaT, N)';
// Take iFFT of DFE window
Ddfewin=1/ deltaT*real(fft(hofDdfe,1));
// Interpolate back and truncate to original time points
Ddfewin=interp1(tofn, Ddfewin, tpulse, 'linear', Ddfewin($));
//DBG
//plot2d(tpulse, Ddfewin, style=3);
//xtitle("Filtered DFE window", "Time", "Voltage");
//clean up
clear hofDdfe;
clear tofn;
///////////////////
// Compute pulse
// response
///////////////////
D=Dpulse+Ddfewin;
t=tpulse;
///////////////////
// Compute pulse
// response residual
// error
///////////////////
Dpulse=D(find(tpulse > (prtpeak + tUI*0.5)));
err=(sqrt(1/length(Dpulse)*sum(((Dpulse.*(Dpulse>0)))^2))+sqrt(1/length(Dpulse)*sum(((Dpulse.*(Dpulse>0)))^2)))/prmaxval;
// Invert pulse back to original, if necessary
if negpulse==%t then
D=-D;
end
//Clean up
clear Ddfewin;
clear numoftaps;
clear trfwin;
clear prmaxval;
clear prtpeak;
clear hofDdfe;
clear Dpulse;
clear tpulse;
endfunction
//////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////Quantizer Function////////////////////////////////////
function y = quantizerNbit(x, ymax, ymin, N)
// N-step quantizer that converts continous amplitude
// sequence x into quantized amplitude sequence y
//
// Inputs:
// x - input point(s)
// ymax - Maximum permitted value
// ymin - Minimum permitted value
// N - Number of steps
//
if modulo(N,2)==0 then // N is even
x=x-ymin; // transform to normalized value
x=x*((N-1)/(ymax-ymin));
y=round(x); // quantize
y=y/((N-1)/(ymax-ymin)); // transform back to original scale
y=y+ymin;
end
if modulo(N,2)==1 then // N is odd
x=x-(ymax+ymin)/2; // transform to normalized value
x=x*((N-1)/(ymax-ymin));
y=round(x); // quantize
y=y/((N-1)/(ymax-ymin)); // transform back to original scale
y=y+(ymax+ymin)/2;
end
y(y>(ymax))=ymax; // clip anything above peak
y(y<(ymin))=ymin;
endfunction
////////////////////////////////Gaussian LFP Function////////////////////////
function [x] = Gausk(r, deltaT, N)
// Ideal gaussian edge low-pass filter function
//
//
// Inputs:
// r - edge rise/fall-time
// deltaT - sampling time-step
// N - number of points in FFT
//
// Outputs:
// x - Frequency domain data
//
qgaussian =0.31 * r;
x=zeros(N);
for m=0:N/2-1
if ((2 * %pi * m)/(N * deltaT) * qgaussian) > 7 then
x(m+1) = 0;
else
x(m+1) = exp (-((2 * %pi * m) / (N * deltaT))^2 * qgaussian^2);
end
end
for m=0:N/2-1
x(m+N/2+1) = x(N/2 - m)
end
endfunction
//////////////////////////////////////////////////////////////////////////////////////
//////////////////////////////////////Linear Filter Convolution////////////////////////////////////
function [t, D] = FT_pr(tpulse, Dpulse, tUI, f_FT, H_FT)
// Applies Linear Filter from frequency table to pulse response in time-domain
//
// Inputs:
// tpulse - time points of input pulse response
// Dpulse - Waveform data vector of input pulse response
// tUI - Unit interval
// f_FT - frequency vector
// H_FT - Complex valued frequency table vector. Must be same length
// as frequency vector
//
// Outputs:
// t - time points of processed waveform
// D - Waveform data vector of processed waveform
//
//
// Important notes:
//
//
// TODO:
//
//////////////////////////////////////SPECIFY//////////////////////////////////////
M=ceil(tUI/2e-12); // Number of samples per UI
///////////////////////////////////////////////////////////////////////////////////
///////////////////
// Error checking
///////////////////
// Let's do some error checking on inputs before we go on
if length(tpulse) ~= length(Dpulse) then
error("FTpr: Number of samples in time vector does not equal to number of samples of data");
end
if length(H_FT) ~= length(f_FT) then
error("FTpr: Number of points in frequency table does not match frequency vector");
end
///////////////////
// Initiaization
// stuff
///////////////////
//Restart at t=0
tpulse=tpulse-tpulse(1);
//Remove DC offset
Dpulse=Dpulse-Dpulse(1);
//Remove duplicate initial entry
if(tpulse(1)==tpulse(2)) then
tpulse=tpulse(2:$);
Dpulse=Dpulse(2:$);
end
// Force frequency points to be real
f_FT=real(f_FT);
//DBG
//xinit();
//plot2d(tpulse, Dpulse, style=2);
//xtitle("Pulse Response", "Time", "Voltage");
///////////////////
// Sampling Rate Stuff
///////////////////
Nbit = ceil(max(tpulse)/tUI); // Number of bits in pulse response
deltaT = tUI / M; //Sampling resolution (in seconds)
N=round(2^(ceil(log(Nbit*M)/log(2)))); //Length of sample vector (power of two for efficient FFT)
t=([0:1:N-1])*deltaT; //Vector of time points
f=(1/deltaT)/2*linspace(0,1,N/2+1); // Vector of frequency points
hofn=[]; // intermediate frequency matrix
clear Nbit;
clear M;
clear N;
// Interpolate pulse response
// compute time vector interpolated to resolution of M points per UI
Dpulse=interp1(tpulse, Dpulse, t, 'linear', 0);
//DBG
//xinit();
//subplot(2,1,1);
//plot2d(f_FT, real(H_FT), style=2);
//subplot(2,1,2);
//plot2d(f_FT, imag(H_FT), style=2);
// Interpolate FT real, imag separately
H_FT=interp(f,f_FT, real(H_FT), splin(f_FT,real(H_FT),"not_a_knot"))+%i*interp(f, f_FT, imag(H_FT), splin(f_FT,imag(H_FT),"not_a_knot"), "linear");
H_FT(1)=abs(H_FT(1));
//DBG
//subplot(2,1,1);
//plot2d(f, real(H_FT), style=3);
//subplot(2,1,2);
//plot2d(f, imag(H_FT), style=3);
//Unfold/mirror/conjugate the negative frequencies
H_FT=cat(2, conj(H_FT), H_FT($-1:-1:2));
// take FFT of interpolated pulse response, convolve with filter
hofn=fft(Dpulse,-1).*H_FT;
// Take iFFT of overall pulse-response
D=real(fft(hofn, 1));
// truncate output to original time
D=D(find(t<=tpulse($)));
t=t(find(t<=tpulse($)));
//DBG
//xinit();
//plot2d(t, D, style=3);
//Clean up
clear Dpulse;
clear hofn;
clear f;
endfunction
//////////////////////////////////////////////////////////////////////////////////////
|
d258088675459c661ef4f3fbecaa81bc9b49f2c2
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3733/CH24/EX24.23/Ex24_23.sce
|
05337e9683d6cf6f41d787d41055a8ff62784284
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,058
|
sce
|
Ex24_23.sce
|
// Example 24_23
clc;funcprot(0);
//Given data
p_1=1;// bar
p_2=5;// bar
p_3=2.5;// bar
T_1=300;// K
T_3=900;// K
T_5=T_3;// K
m_a=10;// kg/sec
CV=33500;// kJ/kg
C_p=1;// kJ/kg.°C
r=1.4;// Specific heat ratio for air and gases
//Calculation
T_2=T_1*(p_2/p_1)^((r-1)/r);// K
T_4=T_3/(p_2/p_3)^((r-1)/r);// K
T_6=T_5/(p_2/p_3)^((r-1)/r);// K
function[X]=massoffuel(y)
X(1)=((1+y(1))*C_p*(T_3-T_2))-(y(1)*CV);
endfunction
y=[0.01];
z=fsolve(y,massoffuel);
m_f1=z(1);// kg/kg of air
function[X]=massoffuel1(x)
X(1)=(C_p*((1+m_f1+x(1))*(T_5-T_4)))-(x(1)*CV);
endfunction
x=[0.001];
y=fsolve(x,massoffuel1);
m_f2=y(1);// kg/kg of air
W_n=((m_a*(1+m_f1)*C_p*(T_3-T_4)))+((m_a*(1+m_f1+m_f2)*C_p*(T_5-T_6)))-(m_a*C_p*(T_2-T_1));// kW
n_g=100;//The generator efficiency is considered 100%
n_th=(W_n/(m_a*(m_f1+m_f2)*CV))*100;// The efficiency of the plant in %
printf('\nThe thermal efficiency of the plant=%0.1f percentage \nPower generating capacity=%0.0f kW',n_th,W_n);
// The answers provided in the textbook is wrong
|
9380b46eae321d435bf9e8868804919a798340b6
|
76b8c4ba0a69d3281b658f0fcf0ec56a96e27581
|
/Workspace/Mission_U1.sce
|
97eac170e3b08ef5125e0ee3140b037f48734607
|
[] |
no_license
|
RomainJunca/ExoLife
|
0824fa566b38c5061f77592df6c38c3614dd8619
|
8da1524432d0ef1137d5e73e80cec339e6ec1c33
|
refs/heads/master
| 2020-05-25T14:08:07.353617
| 2017-03-20T08:31:32
| 2017-03-20T08:31:32
| 84,937,995
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 816
|
sce
|
Mission_U1.sce
|
// Mission U1
// Obtention de l'image
pathname = "C:\Users\Jean-Guillaume P\Documents\Exia\A2\Projets\Imagerie\ExoLife\Images\Mission_U\U1_surface.pbm";
img_in = readpbm(pathname);
// Application de la normalisation afin d'avoir un meilleur contraste lors de l'application d'un filtre des contours
histogramme = histogrammeFct(img_in);
minHisto = debutHistogramme(histogramme);
maxHisto = finHistogramme(histogramme);
img_norma = ameliorationContrasteNormalisation(img_in, minHisto, maxHisto);
// Application du filtre de Sobel afin de ne garder que les contours
img_out = filtreSobel(img_norma);
// Affichage
figure;
display_gray(img_in);
figure;
display_gray(img_out);
// Sauvegarde de l'image
writepbm(img_out, "C:\Users\Jean-Guillaume P\Documents\Exia\A2\Projets\Imagerie\ExoLife\Rendus\MissionU1.pbm");
|
afcda7e197a9d5c45d88fe4531403402112f369f
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1895/CH6/EX6.4/EXAMPLE6_4.SCE
|
b3012b595b5d9faad277609a2932e01077dcb9e2
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 778
|
sce
|
EXAMPLE6_4.SCE
|
//ANALOG AND DIGITAL COMMUNICATION
//BY Dr.SANJAY SHARMA
//CHAPTER 6
//NOISE
clear all;
clc;
printf("EXAMPLE 6.4(PAGENO 283)");
//given
A_1 = 10//voltage gain for first stage
A_2 = 25//volatage gain for second stage
R_i1 = 600//input resistance for first stage in ohms
R_eq1 = 1600//equivalent noise resistance for first stage
R_01 = 27*10^3//Output resistance for first stage
R_i2 = 81*10^3//input resistance for second stage
R_eq2 = 10*10^3//Equivalent noise resistance for second stage
R_02 = 1*10^6//putput resistance for second case
//calculations
R_1 = R_i1 + R_eq1
R_2 = ((R_01*R_i2)/(R_01+R_i2)) + R_eq2
R_3 = R_02
R_eq = R_1 + (R_2/A_1^2) + R_3/(A_1^2 *A_2^2);
//results
printf("\n\nEquivalent input noise resistance = %.2f Ohms",R_eq);
|
c7301bc59fdbd71200c0e455fabfbf2e3b49d036
|
089894a36ef33cb3d0f697541716c9b6cd8dcc43
|
/NLP_Project/test/blog/bow/bow.9_16.tst
|
7e2e5428f2059ff56c96e0a9ad778e3581af6a43
|
[] |
no_license
|
mandar15/NLP_Project
|
3142cda82d49ba0ea30b580c46bdd0e0348fe3ec
|
1dcb70a199a0f7ab8c72825bfd5b8146e75b7ec2
|
refs/heads/master
| 2020-05-20T13:36:05.842840
| 2013-07-31T06:53:59
| 2013-07-31T06:53:59
| 6,534,406
| 0
| 1
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 5,090
|
tst
|
bow.9_16.tst
|
9 36:0.16666666666666666 40:1.0 148:0.3333333333333333 165:1.0 317:1.0 375:1.0 458:0.3333333333333333 519:1.0 1390:1.0
9 11:0.3333333333333333 36:0.16666666666666666 40:1.0 53:0.3333333333333333 114:1.0 158:0.2 339:0.5 735:1.0
9 4:0.5 15:0.25 36:0.16666666666666666 40:1.0 48:0.1 60:0.08333333333333333 99:1.0 126:1.0 148:0.3333333333333333 171:1.0 355:1.0 612:0.3333333333333333 748:1.0
9 1:0.02666666666666667 74:1.0 208:0.3333333333333333 317:1.0 330:1.0
9 1:0.02666666666666667 4:0.5 15:0.25 53:0.3333333333333333 60:0.08333333333333333 74:1.0 76:0.3333333333333333 93:0.043478260869565216 112:1.0 113:1.0 121:1.0 298:0.5 317:1.0 485:1.0 633:0.25 731:1.0 1329:1.0 1469:1.0
9 1:0.02666666666666667 84:1.0 156:1.0 215:0.3333333333333333 221:1.0 317:1.0 354:1.0 731:1.0
9 1:0.02666666666666667 62:0.5 148:0.3333333333333333 166:1.0 259:2.0 481:0.5 762:1.0 889:1.0 1601:1.0
9 1:0.02666666666666667 36:0.16666666666666666 53:0.3333333333333333 76:0.3333333333333333 259:2.0 481:0.5 640:1.0 762:1.0 1360:1.0 1713:1.0
9 1:0.04 10:0.09090909090909091 36:0.3333333333333333 62:1.0 95:0.3333333333333333 156:1.0 208:0.6666666666666666 316:1.0 494:0.5 603:1.0 1501:1.0
9 1:0.013333333333333334
9 1:0.013333333333333334 4:0.5 51:1.0 166:1.0
9 1:0.013333333333333334 148:0.3333333333333333 171:1.0 350:1.0 609:1.0
9 1:0.013333333333333334 36:0.16666666666666666 40:1.0 248:1.0 561:1.0
9 1:0.013333333333333334 36:0.16666666666666666 372:0.5 754:1.0
9 1:0.013333333333333334 17:0.25 34:1.0 60:0.08333333333333333 480:1.0 611:1.0
9 1:0.013333333333333334 36:0.16666666666666666 48:0.1 148:0.3333333333333333 162:1.0 218:1.0 228:1.0 273:1.0 317:1.0 339:0.5 372:1.0 1567:1.0 1772:1.0
9 1:0.013333333333333334 10:0.09090909090909091 17:0.25 62:0.5 122:1.0 126:1.0 568:0.25 679:1.0 1038:1.0
9 4:0.5 22:1.0 53:0.3333333333333333 69:0.3333333333333333 93:0.043478260869565216 114:2.0 192:0.16666666666666666 198:0.16666666666666666 372:0.5 400:0.125 436:1.0 482:1.0 647:1.0
9 1:0.02666666666666667 17:0.25 40:1.0 60:0.08333333333333333 208:0.3333333333333333 240:0.3333333333333333 383:1.0 408:1.0 420:1.0 476:1.0 481:0.5 733:1.0 1236:1.0 1718:1.0
9 1:0.013333333333333334 2:1.0 15:0.25 36:0.16666666666666666 60:0.08333333333333333 76:0.3333333333333333 93:0.043478260869565216 243:1.0 252:1.0 395:1.0 428:1.0 568:0.25 1660:1.0
9 4:0.5 17:0.5 36:0.16666666666666666 44:0.2 48:0.1 62:0.5 69:0.3333333333333333 121:1.0 252:1.0 258:0.5 283:1.0 298:0.5 353:1.0 402:1.0 491:1.0 612:0.3333333333333333 633:0.5 781:1.0 891:1.0
9 4:1.0 17:0.25 36:0.16666666666666666 60:0.16666666666666666 62:0.5 104:1.0 252:1.0 261:1.0 313:1.0 633:0.25 886:1.0 1501:1.0
9 1:0.02666666666666667 4:0.5 10:0.09090909090909091 17:0.25 36:0.3333333333333333 53:0.3333333333333333 84:1.0 93:0.043478260869565216 104:1.0 112:1.0 113:1.0 126:1.0 171:1.0 208:0.3333333333333333 252:1.0 410:1.0 458:0.6666666666666666 462:1.0 485:1.0 568:0.25 679:1.0 797:1.0 1604:1.0
9 1:0.013333333333333334 11:0.3333333333333333 40:1.0 93:0.043478260869565216 158:0.2 252:1.0 688:1.0 796:1.0 1456:1.0 1502:1.0
9 1:0.02666666666666667 2:1.0 15:0.25 17:0.25 36:0.5 48:0.1 60:0.16666666666666666 75:0.5 83:1.0 148:0.3333333333333333 158:0.2 420:1.0 568:0.5 734:1.0 966:1.0 993:1.0 1122:1.0 1656:1.0
9 1:0.013333333333333334 10:0.09090909090909091 15:0.25 27:1.0 51:1.0 76:0.3333333333333333 93:0.043478260869565216 95:0.3333333333333333 197:1.0 208:0.3333333333333333 210:1.0 228:1.0 235:1.0 240:0.3333333333333333 241:1.0 243:1.0 315:1.0 876:1.0 1609:1.0
9 1:0.02666666666666667 2:1.0 4:0.5 14:1.0 53:0.3333333333333333 126:1.0 144:1.0 176:0.5 240:0.6666666666666666 298:0.5 317:1.0 568:0.25 886:1.0 986:1.0
9 1:0.013333333333333334 4:0.5 36:0.3333333333333333 60:0.08333333333333333 76:0.3333333333333333 93:0.043478260869565216 124:1.0 192:0.16666666666666666 208:0.3333333333333333 414:1.0 480:1.0 568:0.25 1628:1.0
9 122:1.0 347:1.0 1501:1.0
9 84:1.0 113:1.0 209:0.5 762:1.0
9 15:0.25 62:0.5 118:1.0 134:1.0 1133:1.0
9 126:1.0 176:0.5 240:0.3333333333333333 1402:1.0
9 1:0.02666666666666667 4:0.5 17:0.25 53:0.3333333333333333 240:0.3333333333333333 330:2.0 347:1.0 437:1.0 826:1.0 924:1.0 986:1.0 1297:1.0 1501:1.0
9 1:0.013333333333333334 2:2.0 4:0.5 10:0.09090909090909091 17:0.25 36:0.16666666666666666 111:1.0 158:0.2 198:0.16666666666666666 232:1.0 240:0.3333333333333333 330:1.0 372:0.5 437:1.0 679:1.0 1122:2.0 1448:1.0
9 1:0.013333333333333334 4:0.5 19:0.5 51:1.0 126:1.0 148:0.3333333333333333 176:0.5 240:0.3333333333333333 437:1.0 886:1.0
9 1:0.013333333333333334 4:0.5 36:0.16666666666666666 84:1.0 126:1.0 228:1.0 243:1.0 259:1.0 353:1.0 375:1.0 385:1.0 395:1.0 506:1.0 633:0.25 750:1.0 1244:1.0 1600:1.0
9 4:0.5 36:0.3333333333333333 44:0.2 51:1.0 53:0.3333333333333333 85:1.0 240:0.3333333333333333 249:1.0 407:1.0
9 4:0.5 17:0.25 53:0.3333333333333333 233:1.0 240:0.6666666666666666 243:1.0 317:1.0 330:2.0 383:1.0 886:1.0 1244:1.0 1354:1.0
9 1:0.02666666666666667 2:1.0 4:1.0 36:0.3333333333333333 40:1.0 62:0.5 79:1.0 125:1.0 156:1.0 158:0.2 208:0.3333333333333333 243:1.0 298:0.5 343:0.125 347:1.0 420:1.0 491:1.0 801:1.0 1129:1.0
|
bcf61fd14e2d0150200496aad2dde47730006c4f
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3862/CH2/EX2.10/Ex2_10.sce
|
75bb34d510601620020a1ea601beaed3d91526de
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 646
|
sce
|
Ex2_10.sce
|
clear
//
//variable declaration
PA=800.0 //Vertical down loading at A,N
PC=400.0 //vertical up loading at B,N
HD=600.0 //Horizontal left loading at A,N
HB=200.0 //Horizontal right loading at B,N
a=1.0 //length of side,m
//sum of vertical Fy & sum of horizontal forces Fx is zero
//Assume direction of Fx is right
//Assume direction of Fy is up
Fx=HB-HD
Fy=PC-PA
R=sqrt((Fx**2)+(Fy**2))
printf("\n R= %0.2f N",R)
theta=atan(Fy/Fx)*180/%pi
printf("\n theta= %0.0f °",theta)
//moment at A
MA=PC*a+HD*a
//Let x be the distance from A along x axis, where resultant cuts AB.
x=MA/Fy
printf("\n x= %0.1f m",(-x))
|
1c8e0a3233b2c530b3ed05c15e18ba0c5a287994
|
a62e0da056102916ac0fe63d8475e3c4114f86b1
|
/set6/s_Electronic_Circuits_M._H._Tooley_995.zip/Electronic_Circuits_M._H._Tooley_995/CH1/EX1.23/Ex1_23.sce
|
8088057df008c998764a770deb04a5a5fa77d8c2
|
[] |
no_license
|
hohiroki/Scilab_TBC
|
cb11e171e47a6cf15dad6594726c14443b23d512
|
98e421ab71b2e8be0c70d67cca3ecb53eeef1df6
|
refs/heads/master
| 2021-01-18T02:07:29.200029
| 2016-04-29T07:01:39
| 2016-04-29T07:01:39
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 176
|
sce
|
Ex1_23.sce
|
errcatch(-1,"stop");mode(2);//Ex:1.23
;
;
u=4*%pi*10^-7;//in H/m
i=20;//in amps
d=50*10^-3;//in meters
B=(u*i)/(2*%pi*d);
printf("Flux Density = %e Tesla",B);
exit();
|
88d079329fceba801bacfa0f342af3141362d2d7
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1670/CH5/EX5.36/5_36.sce
|
8d8e9ef963e36269a9e5fa12136af4714bcafc87
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 501
|
sce
|
5_36.sce
|
//Example 5.36
//Lagrange's Interpolation Method
//Page no. 176
clc;close;clear;
x=[7,8,9,10]
y=[3,1,1,9]
x0=9.5
printf('\tx\ty=f(x)\n-----------------------\n')
for i=1:4
printf('x%i\t%i\t %i\n',i-1,x(i),y(i))
end
p=1;p1=1;i=1;
for k=1:4
for j=1:4
if k~=j then
p=p*(x0-x(j))
p1=p1*(x(k)-x(j))
end
end
L(k)=p/p1
p=1;p1=1;
end
p=0;
for i=1:4
printf('\n L%i (x) = %g\n',i-1,L(i))
p=p+L(i)*y(i)
end
disp(p,"P(9.5) = ")
|
c6379095fcc371be7ef38f5b90f2dc0999bb27a0
|
090c4bc08ecd896fc1d76fa3454c03fa0cb805f0
|
/SciLab/l82.sci
|
9bd0852219d27274bbf43ac865a0ef92545f657d
|
[] |
no_license
|
GennadySX/pLabs
|
6c64cd2fdc87a204e9b675ef7cf54f4cae4356c7
|
50810647bcc7a48ce38d51c321b165a48560b5d6
|
refs/heads/master
| 2020-09-05T17:22:46.474588
| 2019-11-07T06:35:33
| 2019-11-07T06:35:33
| 220,167,548
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 881
|
sci
|
l82.sci
|
clc
function x=anny(a,b)
e=(b-a)/2;
while e>=0.001
y1=3*sin(a)+5*cos(a);
y2=3*sin(b)+5*cos(b);
if y1*y2>0 then
disp('Нет корней');
return
end
x=(a+b)/2;
y=3*sin(x)+5*cos(x);
if y==0 then disp(x,'Точный корень:')
return
elseif y1*y<0 then b=x;
else a=x;
end
e=(b-a)/2;
end
endfunction
xname('График функции y=3*sin(x)+5*cos(x)')
x=0:0.1:15;
y=3*sin(x)+5*cos(x);
plot(x,y)
disp('__________________________________')
x=anny(0,2)
//disp(x,'x=')
disp('__________________________________')
x=anny(2,3)
disp(x,'x=')
disp('__________________________________')
x=anny(5,6)
disp(x,'x=')
disp('__________________________________')
x=anny(8,9)
disp(x,'x=')
disp('__________________________________')
x=anny(11,12)
disp(x,'x=')
disp('__________________________________')
x=anny(14,15)
disp(x,'x=')
|
13c467cbc207a5ddd4ccd3e59e757babe2d2f4bf
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3745/CH1/EX1.5/Ex1_5.sce
|
04511400e1fa1875de08bc0389823db7c9195738
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 473
|
sce
|
Ex1_5.sce
|
// Ex 5 Page 344
clc;clear;close;
// Given
VA=60;//V
I=0.6;//A
// (VB-VA)/20+(VB-VC)/20+VB/20-I=0
//3*VB-VC=72 for node B eqn(1)
//(VC-VA)/50+(VC-VB)/30+(VC-12)/50+VC/100=0
//-5*VB+10*VC=144 eqn(2)
A=[3 -1;-5 10];
B=[72;144];
X=A**-1*B;
VB=X(1);//V
VC=X(2);//V
printf("Voltage acroos 100 ohm = %.1f V",VC)
VC=24;//V
VB=(72+VC)/3 ;// from eqn(1)
// Node C
// (VC-VA)/50+(VC-VB)/20+(VC-12)/50+VC/100+VC/R=0 eqn(3)
R=100*VC/(144+5*VB-10*VC);//ohm
printf("\nR=%.1f ohm",R)
|
566a0abc73d881f528451d98f9bebfd4d75d253a
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3809/CH23/EX23.20/EX23_20.sce
|
137ecd5d6946bf6795a02500e90d13b9cb3b729a
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 216
|
sce
|
EX23_20.sce
|
//Chapter 23, Example 23.17
clc
//Initialisation
x=7046 //decimal number to be convert
//Calculation
z1=dec2hex(x) //conversion to hex number
//Results
printf("Hex of 7046 = %s",z1)
|
ba2bb82a298eec4ad6c4c2bf567c3f4563add900
|
8627886261b3eddf8440c0b470cd9ee25c762d97
|
/24_lab_rabota.sce
|
aacd25d0c632d45480a9faed7e3b513a149262b8
|
[] |
no_license
|
timurzotov/pvis
|
ba75cf86fae91b6adc8dd3fe9cd2672eea561cca
|
d60e8e241d6ce0ad3a9b2a75c8771f92a9b039ba
|
refs/heads/master
| 2020-09-08T07:59:31.719500
| 2019-11-11T21:14:13
| 2019-11-11T21:14:13
| 221,070,925
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 2,609
|
sce
|
24_lab_rabota.sce
|
clc
d=figure('position',[0,0,420,400]);
d.figure_name='Лабораторная работа №24';
set(d,'BackgroundColor',[1,0.9,0.9]);
str1=uicontrol(d,'style','text','position',[25,350,100,30],'string','Введите а');
str1.BackgroundColor='1|1|1';
edit1=uicontrol(d,'style','edit','position',[25,300,100,30]);
str2=uicontrol(d,'style','text','position',[25,250,100,30],'string','Введите b');
str2.BackgroundColor='1|1|1';
edit2=uicontrol(d,'style','edit','position',[25,200,100,30]);
str3=uicontrol(d,'style','text','position',[25,150,100,30],'string','Введите c');
str3.BackgroundColor='1|1|1';
edit3=uicontrol(d,'style','edit','position',[25,100,100,30]);
button1=uicontrol(d,'style','pushbutton','string','Найти корни квадратного уравнения','position',[150,200,250,30],'CallBack','y');
funcprot(0)
function y(button1)
a= evstr()(get(edit1,'string'));
b=evstr()(get(edit2,'string'));
c=evstr()(get(edit3,'string'));
str4=uicontrol(d,'style','text','position',[200,350,200,30],'string','Корни уравнения');
str4.BackgroundColor='1|1|1';
if (a==0 & b==0 & c==0) then
str5=uicontrol(d,'style','text','position',[200,300,200,30],'string','Уравнения не существует'),
str5.BackgroundColor='1|1|1',
set(str4,'string',' '),
set(str6,'string',' '),
str5.BackgroundColor='1|1|1';
elseif (a==0) then
x1=-c/b;
str5=uicontrol(d,'style','text','position',[200,300,200,30],'string','Это линейное уравнение'),
str5.BackgroundColor='1|1|1',
str6=uicontrol(d,'style','text','position',[200,250,200,30],'string',string(x1)),
str6.BackgroundColor='1|1|1';
else
dis=b^2-4*a*c,
x1=(-b-sqrt(dis))/(2*a);
x2=(-b+sqrt(dis))/(2*a);
str5=uicontrol(d,'style','text','position',[200,300,200,30],'string',string(x1));
str5.BackgroundColor='1|1|1';
str6=uicontrol(d,'style','text','position',[200,250,200,30],'string',string(x2));
str6.BackgroundColor='1|1|1';
end
endfunction
button2=uicontrol(d,'style','pushbutton','string','Закрыть приложение','position',[220,10,150,30],'CallBack','cl');
function cl
close(d);
endfunction
button3=uicontrol(d,'style','pushbutton','string','Очистить','position',[50,10,130,30],'CallBack','cc');
function d=cc
set(edit1,'string','')
set(edit2,'string','')
set(edit3,'string','')
set(Str4,'string','')
//set(Str5,'string','')
//set(Str6,'string','')
endfunction
|
f346289d21f079129088358f99011d237a661b52
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/371/CH8/EX8.5/8_5.sci
|
d55d01aceb0bf98d4362c1083335b21db50a233c
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 786
|
sci
|
8_5.sci
|
//Harmonic and Powerfactor with the Converter system//
//Example 8.5//
I11=400/11;//amplitude of 11th harmonic current in Amperes//
V1= 11/(sqrt(3));//Input supply phase voltage in Kilo Volts//
P=7;//supply power per phase of filter in MVAR//
Pc=P+((V1^2*I11^2*10^-3)/(11*P));//AC Converter MVAR rating of the capacitor//
printf('value of MVAR rating of the capacitor=Pc=%fMVAR',Pc);
W=2*3.14*50;
C=(Pc*10^6)/(V1^2*W);//capacitance of the ShuntFilter in microFarad//
printf('\nvalue of the capacitance of shunt filter=C=%fmicrofarads',C);
W11=11*W;
L=10^8/(C*W11^2);//inductance of filter in mHenry//
printf('\nInductance of filter=L=%fmilliHenry',L);
Q=35;//value of Q//
R=(W11*L)/Q;//Resistance of filter in milliOhms//
printf('\nResistance of filter=R=%fmilliOhms',R);
|
210da75df8ff47f9b0a6812f1dd75ddef33af334
|
fa73b9454b1d003e901d57ef2121b7544bcdfef2
|
/scenes/simple.sce
|
bf7264ca6659ba046c48cc8eded571084ac4974e
|
[] |
no_license
|
bernielampe1/ray_tracer
|
ea91cf08188194f6a0d1e8c9e95baa4aea12f021
|
7fa963ccd07695be3a78acd4837af6cd439698b9
|
refs/heads/master
| 2021-01-02T01:16:52.595743
| 2020-03-02T12:36:03
| 2020-03-02T12:36:03
| 239,428,546
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 750
|
sce
|
simple.sce
|
sce1.0
# camera
eyepos 0 -2 1.5
eyedir 0 1 -0.4
eyeup 0.0 0.0 1.0
wdist 1.0
fovy_deg 50
nx 600
ny 300
#options
max_recursion 4
aasample 0
# scene
background 0 0 0.6
ca 0.1 0.1 0.1
{
#ground
cr 0.4 0.5 0.4
cp 0.4 0.4 0.4
triangle -3 -2 0 3 -2 0 3 10 0
triangle -3 -2 0 3 10 0 -3 10 0
}
#spheres
{
ca 0.2 0.2 0.2
cr 0.5 0.5 0.5
cp 0.5 0.5 0.5
shininess 100
push_matrix
translate -0.5 2.0 1.0
rotate 60 1 1 0
scale 1 1 1.6
ball 0.3 0 0 0
pop_matrix
ca 0.2 0.2 0.2
cr 1 0.4 0.4
cp 0.2 0.2 0.2
ball 0.3 0.5 2.0 1.0
}
{
translate -2 0.6 -0.3
rotate 25 0 1 0
scale 0.1 0.1 1.5
cylinder
}
{
translate 1 -1 0
pointlight 3 0 4 0.6 0.6 0.4
}
{
translate -1 -1 5
pointlight 3 0 4 0.4 0.4 0.8
}
end
|
492eb6f5b761617c40d11980a57ea5bd8d7e0f84
|
9cbb0181f0213b9ba6012353a85b932a35f875d8
|
/Data_Processing/plot-6.sce
|
66b7bf5b901fc15f0d473ea76184e0756078acf1
|
[] |
no_license
|
bozhink/sandpile-pi4
|
dfcd24c19f59c6170aef4ff2eeb298411b80518e
|
bd5f158ec9cb8cac2d4f7d66cdc661b672241c6b
|
refs/heads/master
| 2021-01-10T14:21:27.477065
| 2014-03-01T17:05:47
| 2014-03-01T17:05:47
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 3,134
|
sce
|
plot-6.sce
|
// Data collapse
// Z=1,3,4,10 models
taus=[1.347 1.442 1.437 1.436];
D =[1.499 1.784 1.754 1.738];
taut=[1.510 1.793 1.745 1.710];
z =[0.999 0.996 0.993 0.992];
function processT(DIR, suffix, L, Z, betax, taux, fig, figname)
scf(fig);clf();
a = get("current_axes");
a.x_label.font_size=4; a.x_label.text="$\log_{10}(t/L^{z})$";
a.y_label.font_size=4; a.y_label.text="$\log_{10}\left(p\;(t)\,L^{z(\tau_t-1)}\right)$";
a.title.foreground=9; a.title.font_size=4; a.title.text="$\textrm{Data collapse for Z="+string(Z)+" model}$";
nl=max(size(L)); leg=[];
for i=1:nl
fname = DIR + string(L(i)) + suffix;
t = read(fname,-1,4); nt=max(size(t));
x = t(:,1)/(L(i)**betax);
y = t(:,4).*(L(i)**(betax*(taux-1)));
plot2d((x(2:nt)), log10(y(2:nt)),[i]);
leg(i) = '$L='+string(L(i))+'$';
end
ht = legend(leg,3); ht.font_size=3; ht.visible='on';
unix('rm ' + figname);
xs2png(fig, figname);
endfunction
function processS(DIR, suffix, L, Z, betax, taux, fig, figname)
scf(fig);clf();
a = get("current_axes");
a.x_label.font_size=4; a.x_label.text="$\log_{10}(s/L^{D})$";
a.y_label.font_size=4; a.y_label.text="$\log_{10}\left(p\;(s)\,L^{D(\tau_s-1)}\right)$";
a.title.foreground=9; a.title.font_size=4; a.title.text="$\textrm{Data collapse for Z="+string(Z)+" model}$";
nl=max(size(L)); leg=[];
for i=1:nl
fname = DIR + string(L(i)) + suffix;
t = read(fname,-1,4); nt=max(size(t));
x = t(:,1)/(L(i)**betax);
y = t(:,4).*(L(i)**(betax*(taux-1)));
plot2d((x(2:nt)), log10(y(2:nt)),[i]);
leg(i) = '$L='+string(L(i))+'$';
end
ht = legend(leg,3); ht.font_size=3; ht.visible='on';
unix('rm ' + figname);
xs2png(fig, figname);
endfunction
// Z=4
Z=4;
L = [1000,2000,3000,6000];
DIR='th/z04/';
processT(DIR, "n1", L, Z, 1.00, 1.78, 0, 'graphics/data-collapse/L/t-z4-178.png');
processT(DIR, "n1", L, Z, 1.00, 1.75, 0, 'graphics/data-collapse/L/t-z4-175.png');
DIR='sh/z04/';
processS(DIR, "n1", L, Z, 1.78, 1.43, 1, 'graphics/data-collapse/L/s-z4-178.png');
processS(DIR, "n1", L, Z, 1.75, 1.43, 1, 'graphics/data-collapse/L/s-z4-175.png');
// Z=3
Z=3;
L = [1000,2000,3000,6000];
DIR='th/z03/';
processT(DIR, "n1", L, Z, 1.00, 1.75, 2, 'graphics/data-collapse/L/t-z3-175.png');
processT(DIR, "n1", L, Z, 1.00, 1.78, 2, 'graphics/data-collapse/L/t-z3-178.png');
DIR='sh/z03/';
processS(DIR, "n1", L, Z, 1.75, 1.43, 3, 'graphics/data-collapse/L/s-z3-175.png');
processS(DIR, "n1", L, Z, 1.78, 1.43, 3, 'graphics/data-collapse/L/s-z3-178.png');
// Z=10
Z=10;
L = [1000,1500,2000,2500,3000];
DIR='th/z10/';
processT(DIR, "n1", L, Z, 1, 1.75, 4, 'graphics/data-collapse/L/t-z10.png');
DIR='sh/z10/';
processS(DIR, "n1", L, Z, 1.75, 1.42, 5, 'graphics/data-collapse/L/s-z10.png');
// Z=1
Z=1;
L = [1000,1500,2000,2500,3000];
DIR='th/z01/';
processT(DIR, "", L, Z, 1, 1.50, 6, 'graphics/data-collapse/L/t-z1.png');
DIR='sh/z01/';
processS(DIR, "", L, Z, 1.50, 1.33, 7, 'graphics/data-collapse/L/s-z1.png');
|
2b022b7afd784e27d5a826e9af78d15aaeac1289
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/29/CH6/EX6.10.11/exa6_10_11.sce
|
d3c82c930710ba4e26cb10b7d968d6c4f5673b03
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 704
|
sce
|
exa6_10_11.sce
|
//caption:determine_characterstics_eq_and_steady_state_error
//example 6.10.11
//page 181
//J=moment of inertia,f=C,K=controller gain,Wn=natural frequency, zeta=damping ratio
syms f J K Kt
s=%s;
A=sym((1/(J*s^2+f*s)));
J=250;
K=8*10^4;
B=eval(A)
a=(K*B);
H1=s*Kt;
b=(1+a*H1);
b=simple(b);
CL1=a/b;
CL1=simple(CL1);
H=1;
c=1+CL1*H;
c=simple(c);
CL=CL1/c
CL=simple(CL);
disp(CL,"C(s)/R(s)=");
Wn=sqrt(80000/250)//natural frequency
//2*zeta*Wn=(80000*Kt+f)/250
zeta=1;//for critical damping
d=2*zeta*Wn;
v=[320 d 1];
CH=poly(v,'s','coeff');
r=float(5*2*%pi/60);
//steady state error for unit ramp input is:Ess= (2*zeta/Wn)
Ess=(2*zeta/Wn)*r;
disp(Ess,"steady_state_error=");
|
0bb17bcf564ec4ef14d8bd8d7b90783ed83b84ee
|
a62e0da056102916ac0fe63d8475e3c4114f86b1
|
/set11/s_Fundamentals_Of_Thermodynamics_B._Claus_And_R._E._Sonntag_172.zip/Fundamentals_Of_Thermodynamics_B._Claus_And_R._E._Sonntag_172/CH8/EX8.9/ex9.sce
|
a2958451e7885014e8f784d19b113139b17b788a
|
[] |
no_license
|
hohiroki/Scilab_TBC
|
cb11e171e47a6cf15dad6594726c14443b23d512
|
98e421ab71b2e8be0c70d67cca3ecb53eeef1df6
|
refs/heads/master
| 2021-01-18T02:07:29.200029
| 2016-04-29T07:01:39
| 2016-04-29T07:01:39
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 292
|
sce
|
ex9.sce
|
errcatch(-1,"stop");mode(2);//example 9
//entropy generation
Qout=1 //value of heat flux generated by 1kW of electric power
T=600 //temperature of hot wire surface in K
Sgen=Qout/T //entropy generation in kW/K
printf(" \n hence,entropy generation is Sgen=%.5f kW/K.\n",Sgen)
exit();
|
a6b1912802f3464634a0663ede2906b048ec92be
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2951/CH5/EX5.2.A/additional_ex_2.sce
|
74e14541aade216c2ecb2851221ef74e594c1202
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 308
|
sce
|
additional_ex_2.sce
|
clc;
clear;
F_audio=5; //Audio input Frequency in kHz
F_sampling=2*F_audio;
disp(F_sampling,"The Minimum Sampling Frequency (in kHz)");
disp("When the audio Frequency of 6 Khz enters the Sample and Hold circuit");
disp("it will overlap the audio spectrum, and the alaising frequency is 4 kHz");
|
e5f33b4211e3676817fdfe788e5130edc590e64d
|
6e51f2fdd036612dc2b51c405904fed97d2ae8b0
|
/src/test_server_1_b.tst
|
a38f19aff1789e5ed139ed36548c996dc1b07045
|
[
"MIT",
"Zlib",
"BSD-3-Clause",
"OML"
] |
permissive
|
joe-nano/ciyam
|
92c6ccb58029a1b2a641a7e00417ab524cb9f957
|
a92c296b911b29620a7bb3b758eb55339e040219
|
refs/heads/master
| 2022-04-16T14:39:55.822434
| 2020-03-27T06:39:13
| 2020-03-27T06:39:13
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 16,277
|
tst
|
test_server_1_b.tst
|
> file_raw -text blob "Hello World!"
2ccdb4c72e6c263e1dc3e5c6617bad479d267546ced55f88d6b6e4527d2e8da8
> file_raw -text blob "This is a test."
90a1a46903f42ddf0386a9c12fd67a6c109285bb8b3117ee83ed222fd0040ad3
> file_raw -text list "2ccdb4c72e6c263e1dc3e5c6617bad479d267546ced55f88d6b6e4527d2e8da8 hello\n90a1a46903f42ddf0386a9c12fd67a6c109285bb8b3117ee83ed222fd0040ad3 test" root
c158947de2088bcacd73ee2d6c5ca30200f1b4d47d409ea015c13777427a9eb1
> file_raw -text blob "at 0..."
fb9677b46fbcd4bb532d10d305a5d8ebe90c9f252d655747a406ba1e7a859e25
> file_raw -text blob "at 1..."
055ab3dc27be99b17779d4e5087c559f0f8743d5ac8575c5e340936b6d34ab08
> file_raw -text list "fb9677b46fbcd4bb532d10d305a5d8ebe90c9f252d655747a406ba1e7a859e25 0\n055ab3dc27be99b17779d4e5087c559f0f8743d5ac8575c5e340936b6d34ab08 1"
f0e0bbbf3321c7e483e3f7b4072e87791e1ec3cb74c3d4ac0db4faa765f12e32
> file_raw -text list "c158947de2088bcacd73ee2d6c5ca30200f1b4d47d409ea015c13777427a9eb1 first\nf0e0bbbf3321c7e483e3f7b4072e87791e1ec3cb74c3d4ac0db4faa765f12e32 second" root
35dddd1f6a57c18adddca0b99478114fdef5a97cf5b5d0c2474dc777fe029473
> file_hash root
35dddd1f6a57c18adddca0b99478114fdef5a97cf5b5d0c2474dc777fe029473
> file_info -content root
[list] 35dddd1f6a57c18adddca0b99478114fdef5a97cf5b5d0c2474dc777fe029473 (143 B)
c158947de2088bcacd73ee2d6c5ca30200f1b4d47d409ea015c13777427a9eb1 first
f0e0bbbf3321c7e483e3f7b4072e87791e1ec3cb74c3d4ac0db4faa765f12e32 second
> file_info -recurse -d=1 root
[list] 35dddd1f6a57c18adddca0b99478114fdef5a97cf5b5d0c2474dc777fe029473 (143 B)
first
[list] c158947de2088bcacd73ee2d6c5ca30200f1b4d47d409ea015c13777427a9eb1 (141 B)
...
second
[list] f0e0bbbf3321c7e483e3f7b4072e87791e1ec3cb74c3d4ac0db4faa765f12e32 (134 B)
...
> file_info -recurse -d=2 root
[list] 35dddd1f6a57c18adddca0b99478114fdef5a97cf5b5d0c2474dc777fe029473 (143 B)
first
[list] c158947de2088bcacd73ee2d6c5ca30200f1b4d47d409ea015c13777427a9eb1 (141 B)
hello
[blob] 2ccdb4c72e6c263e1dc3e5c6617bad479d267546ced55f88d6b6e4527d2e8da8 (13 B)
...
test
[blob] 90a1a46903f42ddf0386a9c12fd67a6c109285bb8b3117ee83ed222fd0040ad3 (16 B)
...
second
[list] f0e0bbbf3321c7e483e3f7b4072e87791e1ec3cb74c3d4ac0db4faa765f12e32 (134 B)
0
[blob] fb9677b46fbcd4bb532d10d305a5d8ebe90c9f252d655747a406ba1e7a859e25 (8 B)
...
1
[blob] 055ab3dc27be99b17779d4e5087c559f0f8743d5ac8575c5e340936b6d34ab08 (8 B)
...
> file_info -recurse -d=0 root
35dddd1f6a57c18adddca0b99478114fdef5a97cf5b5d0c2474dc777fe029473
c158947de2088bcacd73ee2d6c5ca30200f1b4d47d409ea015c13777427a9eb1
2ccdb4c72e6c263e1dc3e5c6617bad479d267546ced55f88d6b6e4527d2e8da8
90a1a46903f42ddf0386a9c12fd67a6c109285bb8b3117ee83ed222fd0040ad3
f0e0bbbf3321c7e483e3f7b4072e87791e1ec3cb74c3d4ac0db4faa765f12e32
fb9677b46fbcd4bb532d10d305a5d8ebe90c9f252d655747a406ba1e7a859e25
055ab3dc27be99b17779d4e5087c559f0f8743d5ac8575c5e340936b6d34ab08
> file_info -recurse -d=-1 root
[list] 35dddd1f6a57c18adddca0b99478114fdef5a97cf5b5d0c2474dc777fe029473 (143 B)
000000 c158947de2088bcacd73ee2d6c5ca30200f1b4d47d409ea015c13777427a9eb1 first (141 B)
000001 f0e0bbbf3321c7e483e3f7b4072e87791e1ec3cb74c3d4ac0db4faa765f12e32 second (134 B)
> file_info -recurse -d=-2 root
[list] c158947de2088bcacd73ee2d6c5ca30200f1b4d47d409ea015c13777427a9eb1 (141 B)
000000 2ccdb4c72e6c263e1dc3e5c6617bad479d267546ced55f88d6b6e4527d2e8da8 hello (13 B)
000001 90a1a46903f42ddf0386a9c12fd67a6c109285bb8b3117ee83ed222fd0040ad3 test (16 B)
[list] f0e0bbbf3321c7e483e3f7b4072e87791e1ec3cb74c3d4ac0db4faa765f12e32 (134 B)
000000 fb9677b46fbcd4bb532d10d305a5d8ebe90c9f252d655747a406ba1e7a859e25 0 (8 B)
000001 055ab3dc27be99b17779d4e5087c559f0f8743d5ac8575c5e340936b6d34ab08 1 (8 B)
> file_tag fb9677b46fbcd4bb532d10d305a5d8ebe90c9f252d655747a406ba1e7a859e25 test0
> file_tag 055ab3dc27be99b17779d4e5087c559f0f8743d5ac8575c5e340936b6d34ab08 test1
> file_raw list test0,test1 testx
167359887b16cabc3e8293fd11e2cb3a8a9f18145ef52847f5c704819f897033
> file_info -content testx
[list] 167359887b16cabc3e8293fd11e2cb3a8a9f18145ef52847f5c704819f897033 (106 B)
fb9677b46fbcd4bb532d10d305a5d8ebe90c9f252d655747a406ba1e7a859e25 test0
055ab3dc27be99b17779d4e5087c559f0f8743d5ac8575c5e340936b6d34ab08 test1
> file_tags test*
test0
test1
testx
> file_tags -i=te*0,te*1
test0
test1
> file_tags -i=test* -x=*x
test0
test1
> file_tags -i=test* -x=*0,*x
test1
> file_kill testx
> file_tags test*
test0
test1
> file_tag -remove test0,test1
> file_tags test*
> file_kill -recurse root
> ~mkdir test1
>
> file_put 1K*test.jpg test
> file_info -recurse -d=999 test
[list] 61d29770a12587190eeafc6bc9e04e64a58837296597c5f4c24b508b87991d5f (307 B)
test.jpg.00000
[blob] 8f23a8e586d7975095e740da1d43f95cfa057816e1cabddd9e627541a0b6b59d (1.0 kB)
test.jpg.00001
[blob] cd60cc9598f0831062978f58f3b2f04582c2a2b7efa7876dd03dcd058f2d8b74 (1.0 kB)
test.jpg.00002
[blob] e60982ce0b124d64f4f8c8cd2ab2b8fd9bd46c1f022aa43f4afd4618bdd056e7 (1.0 kB)
test.jpg.00003
[blob] 54749b4da930e6db6938a0f6393f5fa1c4dba0a148e9c23da10bed11c081b6f5 (1.0 kB)
test.jpg.00004
[blob] 579ad8961e4dc03ebf3965de840ff2eac2b500fde9a144d4f8d67c77ae01e686 (1.0 kB)
test.jpg.00005
[blob] 096b48069f1b3d0dc3a2b650661e6bbf94a5afe3a1c6694745c4505fcee8e1c2 (1.0 kB)
test.jpg.00006
[blob] 15515fff444eb94e0d3e0074f4c772a8bed8ec9a01bc40c691122e812adedea7 (715 B)
> file_get test *~test.jpg
> file_kill -p=test
> file_put 1K*~test.jpg test
>
> file_info -recurse -d=999 test
[list] f92865d966649c2a0ace9ec7250701511b88a62fa241e509e676414a7d49dfa4 (308 B)
~test.jpg.00000
[blob] 8f23a8e586d7975095e740da1d43f95cfa057816e1cabddd9e627541a0b6b59d (1.0 kB)
~test.jpg.00001
[blob] cd60cc9598f0831062978f58f3b2f04582c2a2b7efa7876dd03dcd058f2d8b74 (1.0 kB)
~test.jpg.00002
[blob] e60982ce0b124d64f4f8c8cd2ab2b8fd9bd46c1f022aa43f4afd4618bdd056e7 (1.0 kB)
~test.jpg.00003
[blob] 54749b4da930e6db6938a0f6393f5fa1c4dba0a148e9c23da10bed11c081b6f5 (1.0 kB)
~test.jpg.00004
[blob] 579ad8961e4dc03ebf3965de840ff2eac2b500fde9a144d4f8d67c77ae01e686 (1.0 kB)
~test.jpg.00005
[blob] 096b48069f1b3d0dc3a2b650661e6bbf94a5afe3a1c6694745c4505fcee8e1c2 (1.0 kB)
~test.jpg.00006
[blob] 15515fff444eb94e0d3e0074f4c772a8bed8ec9a01bc40c691122e812adedea7 (715 B)
> file_crypt 8f23a8e586d7975095e740da1d43f95cfa057816e1cabddd9e627541a0b6b59d abc
> file_crypt cd60cc9598f0831062978f58f3b2f04582c2a2b7efa7876dd03dcd058f2d8b74 abc
> file_crypt e60982ce0b124d64f4f8c8cd2ab2b8fd9bd46c1f022aa43f4afd4618bdd056e7 abc
> file_crypt 54749b4da930e6db6938a0f6393f5fa1c4dba0a148e9c23da10bed11c081b6f5 abc
> file_crypt 579ad8961e4dc03ebf3965de840ff2eac2b500fde9a144d4f8d67c77ae01e686 abc
> file_crypt 096b48069f1b3d0dc3a2b650661e6bbf94a5afe3a1c6694745c4505fcee8e1c2 abc
> file_crypt 15515fff444eb94e0d3e0074f4c772a8bed8ec9a01bc40c691122e812adedea7 abc
> file_crypt test abc
> file_info -recurse -d=999 test
[list] f92865d966649c2a0ace9ec7250701511b88a62fa241e509e676414a7d49dfa4 (308 B) [***]
> file_info -content 8f23a8e586d7975095e740da1d43f95cfa057816e1cabddd9e627541a0b6b59d
[blob] 8f23a8e586d7975095e740da1d43f95cfa057816e1cabddd9e627541a0b6b59d (1.0 kB) [***]
> file_info -content 54749b4da930e6db6938a0f6393f5fa1c4dba0a148e9c23da10bed11c081b6f5
[blob] 54749b4da930e6db6938a0f6393f5fa1c4dba0a148e9c23da10bed11c081b6f5 (1.0 kB) [***]
> file_info -content 15515fff444eb94e0d3e0074f4c772a8bed8ec9a01bc40c691122e812adedea7
[blob] 15515fff444eb94e0d3e0074f4c772a8bed8ec9a01bc40c691122e812adedea7 (715 B) [***]
> file_crypt -recurse test xxx
Error: invalid password to decrypt file 'test'
> file_crypt -recurse test abc
> file_get test *test1/
test1/~test.jpg
> file_kill -recurse test
> file_put 1K*test1/~test.jpg test
>
> session_variable @last_file_put
58b5d2342a3eb5b8750cd1447f00ed376610d7e36774cabd26d95b177833a660
> file_info -recurse -d=999 test
[list] 58b5d2342a3eb5b8750cd1447f00ed376610d7e36774cabd26d95b177833a660 (313 B)
test1/~test.jpg.00000
[blob] 8f23a8e586d7975095e740da1d43f95cfa057816e1cabddd9e627541a0b6b59d (1.0 kB)
test1/~test.jpg.00001
[blob] cd60cc9598f0831062978f58f3b2f04582c2a2b7efa7876dd03dcd058f2d8b74 (1.0 kB)
test1/~test.jpg.00002
[blob] e60982ce0b124d64f4f8c8cd2ab2b8fd9bd46c1f022aa43f4afd4618bdd056e7 (1.0 kB)
test1/~test.jpg.00003
[blob] 54749b4da930e6db6938a0f6393f5fa1c4dba0a148e9c23da10bed11c081b6f5 (1.0 kB)
test1/~test.jpg.00004
[blob] 579ad8961e4dc03ebf3965de840ff2eac2b500fde9a144d4f8d67c77ae01e686 (1.0 kB)
test1/~test.jpg.00005
[blob] 096b48069f1b3d0dc3a2b650661e6bbf94a5afe3a1c6694745c4505fcee8e1c2 (1.0 kB)
test1/~test.jpg.00006
[blob] 15515fff444eb94e0d3e0074f4c772a8bed8ec9a01bc40c691122e812adedea7 (715 B)
> file_info -recurse -d=999 test
[list] 58b5d2342a3eb5b8750cd1447f00ed376610d7e36774cabd26d95b177833a660 (313 B)
test1/~test.jpg.00000
[blob] 8f23a8e586d7975095e740da1d43f95cfa057816e1cabddd9e627541a0b6b59d (1.0 kB)
test1/~test.jpg.00001
[blob] cd60cc9598f0831062978f58f3b2f04582c2a2b7efa7876dd03dcd058f2d8b74 (1.0 kB)
test1/~test.jpg.00002
[blob] e60982ce0b124d64f4f8c8cd2ab2b8fd9bd46c1f022aa43f4afd4618bdd056e7 (1.0 kB)
test1/~test.jpg.00003
[blob] 54749b4da930e6db6938a0f6393f5fa1c4dba0a148e9c23da10bed11c081b6f5 (1.0 kB)
test1/~test.jpg.00004
[blob] 579ad8961e4dc03ebf3965de840ff2eac2b500fde9a144d4f8d67c77ae01e686 (1.0 kB)
test1/~test.jpg.00005
[blob] 096b48069f1b3d0dc3a2b650661e6bbf94a5afe3a1c6694745c4505fcee8e1c2 (1.0 kB)
test1/~test.jpg.00006
[blob] 15515fff444eb94e0d3e0074f4c772a8bed8ec9a01bc40c691122e812adedea7 (715 B)
> file_kill -recurse test
> ~mkdir test2
>
> file_archive -add test1 10MiB test1
> file_archive -add test2 10MiB test2
> file_archive -add test3 10MiB test3
> file_archives
test1 [okay ] (0 B/10.5 MB) test1
test2 [okay ] (0 B/10.5 MB) test2
test3 [bad access] (0 B/10.5 MB) test3
> ~mkdir test3
>
> file_archives -status_update
test1 [okay ] (0 B/10.5 MB) test1
test2 [okay ] (0 B/10.5 MB) test2
test3 [okay ] (0 B/10.5 MB) test3
> session_variable @dummy_timestamp 20170313080001
> file_put test1.jpg
> session_variable @dummy_timestamp 20170313080002
> session_variable @last_file_put
b789eb5b80f6a8fbe9659c8d6ed04222280aa790efb7fe9e972ef8f1ede08cc9
> file_put test2.jpg
> session_variable @dummy_timestamp 20170313080000
> session_variable @last_file_put
efeee26ad65084462385b362e873f64fa22cd11b7f1e3d21ba0c3b5e4db8d92f
> file_put test.jpg
> file_tags ts.*
ts.20170313080000
ts.20170313080001
ts.20170313080002
> file_relegate -n=1
a5ab1c26e5253fb7316b51e7f40687183714e0d683034954e1e8fc67bca42753 test1
> file_tags ts.*
ts.20170313080001
ts.20170313080002
> file_archives
test1 [okay ] (6.5 kB/10.5 MB) test1
test2 [okay ] (0 B/10.5 MB) test2
test3 [okay ] (0 B/10.5 MB) test3
> file_archive -remove test1
(removing file archive)
> file_archives
test2 [okay ] (0 B/10.5 MB) test2
test3 [okay ] (0 B/10.5 MB) test3
> session_variable @dummy_timestamp 20170313080003
> file_retrieve a5ab1c26e5253fb7316b51e7f40687183714e0d683034954e1e8fc67bca42753
Error: unable to retrieve file a5ab1c26e5253fb7316b51e7f40687183714e0d683034954e1e8fc67bca42753 from archival
> file_archive -add test1 10MiB test1
> file_archives
test1 [okay ] (0 B/10.5 MB) test1
test2 [okay ] (0 B/10.5 MB) test2
test3 [okay ] (0 B/10.5 MB) test3
> file_archive -repair test1
(repairing file archive)
> file_archives
test1 [okay ] (6.5 kB/10.5 MB) test1
test2 [okay ] (0 B/10.5 MB) test2
test3 [okay ] (0 B/10.5 MB) test3
> session_variable @dummy_timestamp 20170313080003
> file_retrieve a5ab1c26e5253fb7316b51e7f40687183714e0d683034954e1e8fc67bca42753
test1
> file_tags ts.*
ts.20170313080001
ts.20170313080002
ts.20170313080003
> file_info ts.*
[blob] b789eb5b80f6a8fbe9659c8d6ed04222280aa790efb7fe9e972ef8f1ede08cc9 (5.3 kB)
[blob] efeee26ad65084462385b362e873f64fa22cd11b7f1e3d21ba0c3b5e4db8d92f (2.8 kB)
[blob] a5ab1c26e5253fb7316b51e7f40687183714e0d683034954e1e8fc67bca42753 (6.5 kB)
> file_relegate -s=9KiB test2
b789eb5b80f6a8fbe9659c8d6ed04222280aa790efb7fe9e972ef8f1ede08cc9 test2
efeee26ad65084462385b362e873f64fa22cd11b7f1e3d21ba0c3b5e4db8d92f test2
> file_tags ts.*
ts.20170313080003
> file_relegate -n=1 test3
a5ab1c26e5253fb7316b51e7f40687183714e0d683034954e1e8fc67bca42753 test3
> file_tags ts.*
> file_archives
test1 [okay ] (6.5 kB/10.5 MB) test1
test2 [okay ] (8.1 kB/10.5 MB) test2
test3 [okay ] (6.5 kB/10.5 MB) test3
> session_variable @dummy_timestamp 20170313080000
> file_retrieve a5ab1c26e5253fb7316b51e7f40687183714e0d683034954e1e8fc67bca42753
test1
> session_variable @dummy_timestamp 20170313080001
> file_retrieve b789eb5b80f6a8fbe9659c8d6ed04222280aa790efb7fe9e972ef8f1ede08cc9
test2
> file_get a5ab1c26e5253fb7316b51e7f40687183714e0d683034954e1e8fc67bca42753 ~test.jpg
> file_put ~test.jpg
>
> file_tags ts.*
ts.20170313080000
ts.20170313080001
> file_kill -p=ts.*
> file_tags ts.*
> file_retrieve a5ab1c26e5253fb7316b51e7f40687183714e0d683034954e1e8fc67bca42753 ts.20170313080001
test1
> file_retrieve b789eb5b80f6a8fbe9659c8d6ed04222280aa790efb7fe9e972ef8f1ede08cc9 ts.20170313080002
test2
> file_raw list ts.20170313080001,ts.20170313080002 tst
d9a6301b0a1bfe36b3898dd78697616db6207004ddcb5dca903fb5b25f158f0c
> file_relegate -n=2
a5ab1c26e5253fb7316b51e7f40687183714e0d683034954e1e8fc67bca42753 test1
b789eb5b80f6a8fbe9659c8d6ed04222280aa790efb7fe9e972ef8f1ede08cc9 test1
> file_tags ts*
tst
> file_info -recurse -d=999 tst
[list] d9a6301b0a1bfe36b3898dd78697616db6207004ddcb5dca903fb5b25f158f0c (114 B)
ts.20170313080001
[blob] a5ab1c26e5253fb7316b51e7f40687183714e0d683034954e1e8fc67bca42753 (6.5 kB)
ts.20170313080002
[blob] b789eb5b80f6a8fbe9659c8d6ed04222280aa790efb7fe9e972ef8f1ede08cc9 (5.3 kB)
> file_stats
[3/10000]12.0 kB/10.0 GB:3 tag(s)
> file_kill -p=ts*
> file_archive -destroy test1
(destroying file archive)
> file_archive -destroy test2
(destroying file archive)
> file_archive -destroy test3
(destroying file archive)
> file_archives
> ~rmdir test1
>
> ~rmdir test2
>
> ~rmdir test3
>
> file_put test1.jpg test1.jpg
> file_put test2.jpg test2.jpg
> file_raw list test1.jpg,test2.jpg test.1
048bf68a8b49e8679a54154986a9a98bcced3687dbda5ce565531b39b5c21b33
> file_info -content test.1
[list] 048bf68a8b49e8679a54154986a9a98bcced3687dbda5ce565531b39b5c21b33 (116 B)
b789eb5b80f6a8fbe9659c8d6ed04222280aa790efb7fe9e972ef8f1ede08cc9 test1.jpg
efeee26ad65084462385b362e873f64fa22cd11b7f1e3d21ba0c3b5e4db8d92f test2.jpg
> file_put test.jpg test.jpg
> file_list -a=test.jpg test.1 test.2
326c9c4eb765fbebe5ecc274e25089319a0eee03c4dae4047dc84e18da46347a
> file_info -content test.1
[list] 048bf68a8b49e8679a54154986a9a98bcced3687dbda5ce565531b39b5c21b33 (116 B)
b789eb5b80f6a8fbe9659c8d6ed04222280aa790efb7fe9e972ef8f1ede08cc9 test1.jpg
efeee26ad65084462385b362e873f64fa22cd11b7f1e3d21ba0c3b5e4db8d92f test2.jpg
> file_info -content test.2
[list] 326c9c4eb765fbebe5ecc274e25089319a0eee03c4dae4047dc84e18da46347a (153 B)
b789eb5b80f6a8fbe9659c8d6ed04222280aa790efb7fe9e972ef8f1ede08cc9 test1.jpg
efeee26ad65084462385b362e873f64fa22cd11b7f1e3d21ba0c3b5e4db8d92f test2.jpg
a5ab1c26e5253fb7316b51e7f40687183714e0d683034954e1e8fc67bca42753 test.jpg
> file_list -sort test.2 test.3
e1d98de36694951cd4c6d12e94787f99487065ab5ab68a159450102c7a3995ce
> file_info -content test.1
[list] 048bf68a8b49e8679a54154986a9a98bcced3687dbda5ce565531b39b5c21b33 (116 B)
b789eb5b80f6a8fbe9659c8d6ed04222280aa790efb7fe9e972ef8f1ede08cc9 test1.jpg
efeee26ad65084462385b362e873f64fa22cd11b7f1e3d21ba0c3b5e4db8d92f test2.jpg
> file_info -content test.2
[list] 326c9c4eb765fbebe5ecc274e25089319a0eee03c4dae4047dc84e18da46347a (153 B)
b789eb5b80f6a8fbe9659c8d6ed04222280aa790efb7fe9e972ef8f1ede08cc9 test1.jpg
efeee26ad65084462385b362e873f64fa22cd11b7f1e3d21ba0c3b5e4db8d92f test2.jpg
a5ab1c26e5253fb7316b51e7f40687183714e0d683034954e1e8fc67bca42753 test.jpg
> file_info -content test.3
[list] e1d98de36694951cd4c6d12e94787f99487065ab5ab68a159450102c7a3995ce (153 B)
a5ab1c26e5253fb7316b51e7f40687183714e0d683034954e1e8fc67bca42753 test.jpg
b789eb5b80f6a8fbe9659c8d6ed04222280aa790efb7fe9e972ef8f1ede08cc9 test1.jpg
efeee26ad65084462385b362e873f64fa22cd11b7f1e3d21ba0c3b5e4db8d92f test2.jpg
> file_kill -recurse test.3
> file_tag -unlink test.1,test.2
> file_tags
>
|
571bbd645c2f46018631356af3b220830f8ba93b
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/991/CH18/EX18.14/Example18_14.sce
|
4930471010a9c9b40394131f8395f6a67120e1b0
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 723
|
sce
|
Example18_14.sce
|
//Example 18.14.
clc
format(6)
disp("Load current varies from 0 to 20 mA")
disp(" IZ(min) = 10 mA, IZ(max) = 100 mA")
disp("Here, Vz = Vo = 10 V (constant)")
disp("Applying KVL to a closed loop circuit,")
disp(" 20 = IR + 10")
disp("or IR = 10")
disp("Therefore, R = 10/I ohm, where I is the loop current in amperes")
disp("(i) Let IZ = IZ(min) and IL = 0")
disp(" The total current I = IL + IZ = 10 mA")
r=10/(10*10^-3) // in ohm
disp(r," Therefore, R(ohm) =")
disp("(ii) For IZ = IZ(max) = 100 mA and IL = 20 mA")
i=20+100 // in mA
disp(i," I(mA) = IL + IZ =")
r=10/(120*10^-3)
disp(r," Therefore, R(ohm) =")
disp("(iii) The range of R varies from 83.33 ohm to 1000 ohm")
|
b418e3764cc109f2e2201b3667efcf3510ff4960
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2072/CH27/EX27.8/EX27_8.sce
|
e052a1cf243e03032a87011d0d5d53ce07b20f08
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 187
|
sce
|
EX27_8.sce
|
//Chapter 27
clc
//Example 8
//given
h=6.63*10^-34 //in J.s
m_e=9.11*10^-31 // in Kg
v=1*10^7 //in m/s
lambda=h/(m_e*v)
disp(lambda,"de Broglie wavelength for an electron in meters is")
|
f1efd04adb244e59771d4c97582b69ce03894819
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1223/CH13/EX13.3/Ex13_3.sce
|
18704e15ffda09666eb7d79a30f6915e6cb1c82b
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 924
|
sce
|
Ex13_3.sce
|
clear;
clc;
//Example 13.3
Is1=10^-14;//reverse saturation currents for Q18 Q19
Is2=3*10^-14;//reverse saturation currents for Q14 Q20
Iref=0.72;
Vt=0.026;
Ic13a=0.25*Iref;
printf('\nIc13a=%.2f mA\n',Ic13a)
Vbe19=0.6;
R10=50;
Ir1o=Vbe19/R10;
printf('\ncurrent in Ro=%.3f mA\n',Ir1o)
Ic19=Ic13a-Ir1o;
printf('\ncurrent in Q19 =%.3fmA\n',Ic19)
Ic19=Ic19*0.001;//A
Vbe19=Vt*log(Ic19/Is1);
printf('\nB-E voltage of Q19=%.2f V\n',Vbe19)
b=200;
Ic19=Ic19*10^6;//micro A
Iv19=Ic19*1000;
Ib18=Ic19/b;
Ir1o=Ir1o*1000;
printf('\nbase current in Q18=%.3f microA\n',Ib18)
Ic18=Ir1o+Ib18;
printf('\ncurrents in Q18=%.3f microA\n',Ic18)
Ic18=Ic18*10^-6;
Vbe18=Vt*log(Ic18/Is1);
printf('\nB-E voltage of Q18=%.2f V\n',Vbe18)
Vbb=Vbe18+Vbe19;
printf('\nvoltage difference Vbb=%.2f V\n',Vbb)
Ic14=Is2*exp(Vbb/(2*Vt));
Ic14=Ic14*10^6;//micro A
printf('\nquiescent currents in Q14 and Q20 =%.fmicroA\n',Ic14)
|
fc110711c3e1ab9ac6065d86c6e1c17d2aa4dee1
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1938/CH3/EX3.3/3_3.sce
|
38e5c95e9c893385148aef859f8698fd9b4ad2ae
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 719
|
sce
|
3_3.sce
|
clc,clear
printf('Example 3.3\n\n')
//no load
I=14 //input current
V=230
power_output_FL = 45*10^3
power_input=V*I
I_sh=2.55 //field current
R_a=0.032 //armature resistance
I_a=I-I_sh
cu_loss_NL = I_a^2*R_a //no load copper loss
brush_loss=2*I_a
constant_loss= power_input - cu_loss_NL - brush_loss
//full load
//I=I_a+ 2.55
//Motor input= Motor output + constant loss + brush loss + cu loss
// solving for I_a , I_a^2 - 7125 I_a + 1487700.3 =0
p=[1 -7125 1487700.3]
roots(p)
I_a=ans(2) //ignoring second root as its too large
I=I_a+I_sh
printf('Full load current is %.2f A\n',I)
power_input=V*I
eta=100*(power_output_FL/power_input)
printf('Efficiency at full load is %.2f percent',eta)
|
34341301ebe956a8c4ca5b519bd341b2a6f62e39
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1076/CH2/EX2.8/2_8.sce
|
ef3f51e7d385ecdaaecdba02c0233a20fb55d1cf
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 671
|
sce
|
2_8.sce
|
clear;
clc;
D=3e2;
d1=6e2;
d2=7e2;
rad=.9;
reff=.7788* rad;
Daa=(d1^2 + d1^2)^(1/2);
Dcc=Daa;
Dbb=d2;
GMRa=sqrt(reff*Daa);
GMRb=sqrt(reff*Dbb);
GMRc=sqrt(reff*Dcc);
Ds=(GMRa*GMRb*GMRc)^(1/3);
Ds=round(Ds*10)/10
Dab=(D^2 + ((d2-d1)/2)^2)^(1/2);
Dcb=Dab;
Dc1b1=Dab;
Da1b1=Dab;
Dab1=(D^2 + (((d2-d1)/2)+d1)^2)^(1/2);
Da1b=Dab1;
Dc1b=Dab1;
Dcb1=Dab1;
Dac=2*D;
Da1c1=Dac;
Da1c=(d1);
Dac1=Da1c;
GMRab=(Dab*Da1b1*Da1b*Dab1)^(1/4);
GMRbc=(Dcb*Dc1b1*Dc1b*Dcb1)^(1/4);
GMRac=(Dac*Da1c1*Da1c*Dac1)^(1/4);
Deq=(GMRab*GMRbc*GMRac)^(1/3);
Deq=round(Deq*10)/10
L=2e-7 * log (Deq/Ds) * 1e3;
mprintf("L=%.3f *1e-4 H/phase/km",L*1e4);
|
b7e0bee55efed45026b6290830a3de05d856dbbd
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1583/CH9/EX9.4/PLLA_Ex_9_4.sce
|
684c9291ac8ec131edee6b83887f31e860ca6e33
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 272
|
sce
|
PLLA_Ex_9_4.sce
|
clc
close
//chapter 9: Stability Analysis
//Example 9.4 page no 363
//given
clear
N=2
Kv=0.83*10^3//DC gain
B=1250//closed loop bandwidth
wn=1.27*10^3
wL=wn^2/Kv//corner frequency
s=poly(0,'s')
h=syslin('c',(1/((s^2/wn^2)+0.9*s/wn+1)))
clf();bode(h,1,1000);
|
b9d87f2df1501eb3fc3e4c9c23eeb827ab8d97cb
|
0778f91e335afef58ae45c5a33184587cee76088
|
/Euler.sce
|
2c3dd58a2b85cc48da1329cd6e40476cfe96761d
|
[] |
no_license
|
LtavaresII/CN
|
b38e6f5531a3597f8705bdf163f4cec49f49d51e
|
0dcfb182692dee3ecf71d62162f986f816b3d687
|
refs/heads/master
| 2020-03-25T23:35:53.410172
| 2018-12-05T14:17:32
| 2018-12-05T14:17:32
| 144,282,768
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 281
|
sce
|
Euler.sce
|
function z = g(x,y)
z = -1.2*y+7*exp(-0.3*x);
endfunction
function [x,y] = euler(a,b,h,y0)
x = a:h:b
n = length(x);
y(1)=y0
for i = 1:n-1
y(i+1) = y(i) + g(x(i),y(i))*h;
end
endfunction
[x,ye] = euler(0,2.5,0.5,3)
plot(x',ye,'o')
|
4b55565d66a3759c82650c7edcda84333f729bc3
|
d7087cf730b37f76170323e080c090f8094979ac
|
/test/eval_expr/power_very_big.tst
|
046ac3aa52535a07eafd4a419c20a3b2553a54a4
|
[] |
no_license
|
VladimirMeshcheriakov/42sh
|
025dffe358b86f48eaf7751a5cb08d4d5d5366c4
|
52d782255592526d0838bc40269f6e71f6a51017
|
refs/heads/master
| 2023-03-15T17:26:20.575439
| 2015-06-26T12:44:05
| 2015-06-26T12:44:05
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 24,194
|
tst
|
power_very_big.tst
|
<cmd>
../build/42sh</cmd>
<ref>
bash</ref>
<stdin>
echo $((2**2 + 2**2 + 2**2 + 2**2 + 2**2 + 2**2 + 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2 + 2**2 + 2**2 + 2**2 + 2**2 + 2**2 + 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2 + 2**2 + 2**2 + 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2 + 2**2 + 2**2 + 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2 + 2**2 + 2**2 + 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2 + 2**2 + 2**2 + 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2 + 2**2 + 2**2 + 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2 + 2**2 + 2**2 + 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2 + 2**2 + 2**2 + 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2 + 2**2 + 2**2 + 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2 + 2**2 + 2**2 + 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2 + 2**2 + 2**2 + 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2 + 2**2 + 2**2 + 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2+ 2**2 + 2**2 + 2**2))
</stdin>
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.