blob_id
stringlengths 40
40
| directory_id
stringlengths 40
40
| path
stringlengths 6
214
| content_id
stringlengths 40
40
| detected_licenses
listlengths 0
50
| license_type
stringclasses 2
values | repo_name
stringlengths 6
87
| snapshot_id
stringlengths 40
40
| revision_id
stringlengths 40
40
| branch_name
stringclasses 15
values | visit_date
timestamp[us]date 2016-08-04 09:00:04
2023-09-05 17:18:33
| revision_date
timestamp[us]date 1998-12-11 00:15:10
2023-09-02 05:42:40
| committer_date
timestamp[us]date 2005-04-26 09:58:02
2023-09-02 05:42:40
| github_id
int64 436k
586M
⌀ | star_events_count
int64 0
12.3k
| fork_events_count
int64 0
6.3k
| gha_license_id
stringclasses 7
values | gha_event_created_at
timestamp[us]date 2012-11-16 11:45:07
2023-09-14 20:45:37
⌀ | gha_created_at
timestamp[us]date 2010-03-22 23:34:58
2023-01-07 03:47:44
⌀ | gha_language
stringclasses 36
values | src_encoding
stringclasses 17
values | language
stringclasses 1
value | is_vendor
bool 1
class | is_generated
bool 1
class | length_bytes
int64 5
10.4M
| extension
stringclasses 15
values | filename
stringlengths 2
96
| content
stringlengths 5
10.4M
|
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
861f4cfa72dea07fbfc3f0042e3b82e5780782dd
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/788/CH13/EX13.11.b/13_11_soln.sce
|
c6d6f29a0b28e0ca57693e5114da5c02587905ce
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 389
|
sce
|
13_11_soln.sce
|
clc;
pathname=get_absolute_file_path('13_11_soln.sce')
filename=pathname+filesep()+'13_11_data.sci'
exec(filename)
// Solution:
// upstream temperature in Rankine,
T1=T1+460; //deg R
// absolute downstream pressure,
p2=p2+14.7; //psia
// flow capacity constant,
Cv=(Q/22.7)*sqrt(T1/(p2*del_p));
// Results:
printf("\n Results: ")
printf("\n The flow capacity constant is %.2f.",Cv)
|
ebe1dc9e23757e5da869b512d6f6617e6e93cc23
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3636/CH2/EX2.3/Ex2_3.sce
|
039dbc5e89995bfa9a85f8141af0f1ed3123ee1e
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 456
|
sce
|
Ex2_3.sce
|
clear;
clc;
//Atomic weigths
Si=28.1
Ga=69.7
As=74.9
Na=6.02*10^23 // Avagadro Number in mol^-1
//(a)Si
a=5.43*10^-8 //in cm
n=8 //no. of atoms/cell
//(b)GaAs
a1=5.65*10^-8 //in cm
//Calculation
N=8/a^3 //Atomic Concentration in atoms/cc
N1=4/a1^3 //Atomic Concentration in atoms/cc
Density=(N*Si)/(Na)
Density1=(N1*(Ga+As))/(Na)
mprintf("Density of Si= %1.2f g/cm^3\n",Density)
mprintf("Density of GaAs= %1.2f g/cm^3",Density1)
|
ba9de301fdb22533034e0285f48aea03bb4bd869
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1592/CH7/EX7.11/Example_7_11.sce
|
9510a506b77472150c63577f2aff8785bf4f5ef7
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 550
|
sce
|
Example_7_11.sce
|
//Scilab Code for Example 7.11 of Signals and systems by
//P.Ramakrishna Rao
clear;
clc;
clear x y n;
x=[0,0,2,0,0];
y=[0,0,1,1,0];
n=-2:2;
c = gca();
c.y_location = "origin";
c.x_location = "origin";
plot2d2(n,x,2);
title('x(t)')
xlabel('t')
figure(1);
n=-2:2;
c = gca();
c.y_location = "origin";
c.x_location = "origin";
plot2d2(n,y,5);
title('y(t)')
xlabel('t')
z=conv(x,y);
figure(2);
n=-3:5;
c = gca();
c.y_location = "origin";
c.x_location = "origin";
plot(n,z,2);
title('Convoluted signal z(t)')
xlabel('t')
|
371976356217d53b4b1c0ba9a546583da0e0f2e0
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2441/CH4/EX4.5/Ex4_5.sce
|
d4df3b31917a191ec02fa73b94e2a300600b3304
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 985
|
sce
|
Ex4_5.sce
|
//Exa 4.5
clc;clear;close;
format('v',6);
I=100;//A///Current
V=11;//kV
Xs=4;//ohm/phase
f=50;//Hz
pf=0.8;//Power factor Lagging
//Calculation
theta=acosd(pf);//degree
disp("Part(a)");
E=V*1000/sqrt(3)+I*(cosd(theta)-%i*sind(theta))*%i*Xs;//V
del=atand(imag(E)/real(E));//degree
E=abs(E);//V/phase
disp(E,"Open circuit phase emf(V/phase)");
disp(del,"Angle delta(degree)");
disp("Part(b)");
del_dash=10+del;//degree
P_by_V=E*sind(del_dash)/Xs;//per phase
//P=V*I*cos_fi
I_cos_fi=P_by_V;
//V*1000/sqrt(3)+I*(cos_fi-%i*sin_fi)*%i*Xs=E
I_sin_fi={sqrt(E^2-(4*I_cos_fi^2))-V*1000/sqrt(3)}/4;
tan_fi=I_sin_fi/I_cos_fi;
fi=atand(tan_fi);//degree
I=I_cos_fi/cosd(fi);//A
disp(I,"New load current(A)");
pf=cosd(fi);//lagging power factor
disp(pf,"Its power factor(lagging)");
disp("Part(c)");
pf1=0.8;///original power factor
Idash=I*pf/pf1;//Current
disp(Idash,"New value of load current(A)");
//Answer is slightly differ because of accuracy in calculations.
|
4c4927ceadaff07b190a9e74d60cb991c5ae6e1d
|
7b040f1a7bbc570e36aab9b2ccf77a9e59d3e5c2
|
/Scilab/local/2dof_controller/dc/mpc/scilab/gpc_wt.sce
|
d666277b21bd90742cb088adc37c84b02c3c1d9a
|
[] |
no_license
|
advait23/sbhs-manual
|
e2c380051117e3a36398bb5ad046781f7b379cb9
|
d65043acd98334c44a0f0dbf480473c4c4451834
|
refs/heads/master
| 2021-01-16T19:50:40.218314
| 2012-11-16T04:11:12
| 2012-11-16T04:11:12
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 196
|
sce
|
gpc_wt.sce
|
// Updated(19-7-07)
// 12.4
A=[1 -0.8]; dA=1; B=[0.4 0.6]; dB=1;
rho = 0.8; k = 1;
N1 = 0; N2 = 3; Nu = 2;
getf gpc_N.sci;
[K,KH1,KH2,Tc,dTc,Sc,dSc,R1,dR1] = ...
gpc_N(A,dA,B,dB,k,N1,N2,Nu,rho)
|
cbfb03d9b0ecb89c14416a41c21c7f9bc1803de2
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2354/CH8/EX8.1/8_1.sce
|
f7b72017f7c45dcf19ce96d87899ff3f7f38e629
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 644
|
sce
|
8_1.sce
|
//example 8.1
clc; funcprot(0);
// Initialization of Variable
h1=2758.0;
h2=1794.8;
h3=173.88;
h4=h3+1.0084/1000*(8-0.008)*1000;
neta=(h1-h2-h4+h3)/(h1-h4);
disp(neta*100,"thermal efficiency in %");
bwr=(h4-h3)/(h1-h2);
disp(bwr*100,"back work ratio in %");
mdot=100*1000*3600/(h1-h2-h4+h3);
disp(mdot,"mass flow rate in kg/h");
Qindot=mdot*(h1-h4)/3600/1000;
disp(Qindot,"energy inflow rate in MW");
Qoutdot=mdot*(h2-h3)/3600/1000;
disp(Qoutdot,"energy outflow rate in MW");
disp(Qoutdot/Qindot*100,"ratio of energy outflow/inflow in %");
mcwdot=mdot*(h2-h3)/(146.68-62.99);
disp(mcwdot,"mass flow rate in kg/h");
clear()
|
b0830e8aab346e05ede471bc4c419790a912240b
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/608/CH40/EX40.09/40_09.sce
|
5a247543ee6b677a31b6e33461eff711e506ca69
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 508
|
sce
|
40_09.sce
|
//Problem 40.09: Two parallel wires, each of diameter 5 mm, are uniformly spaced in air at a distance of 50 mm between centres. Determine the capacitance of the line if the total length is 200 m.
//initializing the variables:
e0 = 8.85E-12;
er = 1;
D = 0.05; // in m
d = 0.005; // in m
l = 200; // in m
//calculation:
//capacitance
C = %pi*e0*er/(log(D/(d/2)))
//capacitance of a 200 m length
C200 = C*l
printf("\n\n Result \n\n")
printf("\n capacitance of a 200 m length is %.2E F",C200)
|
0f61436075b163257608fd53212060a5158a487e
|
599a2df49866719b0402643a60ea89f394a845ca
|
/DEMO1/environment/AIRPORT/AIRPORT.tst
|
093b8e4a520b791167bd4161f198fe97cdcdbb97
|
[] |
no_license
|
JOYYUANSH88/DEMO
|
56983a1831555d03d9c320a5d122dc2cac95cfd6
|
f08b4b0e9876d7294548d6dfa1db73c3fd8ec313
|
refs/heads/master
| 2020-03-24T20:25:32.012242
| 2018-07-31T10:40:31
| 2018-07-31T10:40:31
| 142,977,138
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 357
|
tst
|
AIRPORT.tst
|
-- VectorCAST 18.sp2 (07/02/18)
-- Test Case Script
--
-- Environment : AIRPORT
-- Unit(s) Under Test: airport
--
-- Script Features
TEST.SCRIPT_FEATURE:C_DIRECT_ARRAY_INDEXING
TEST.SCRIPT_FEATURE:CPP_CLASS_OBJECT_REVISION
TEST.SCRIPT_FEATURE:MULTIPLE_UUT_SUPPORT
TEST.SCRIPT_FEATURE:MIXED_CASE_NAMES
TEST.SCRIPT_FEATURE:STATIC_HEADER_FUNCS_IN_UUTS
--
|
46d60a2203f82ade0731453b496ce8bb03be1ef1
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2507/CH12/EX12.7/Ex12_7.sce
|
cb3404f139437ce82353bac40048348658dcea45
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,616
|
sce
|
Ex12_7.sce
|
clc
clear
printf("Example 12.7 | Page number 422 \n\n");
//Find
//(a) Actual air
//(b) Excess air
//(c) Percentage theoritical air
//(d) Mass fractions
//(e) Dew point
//Part(a)
printf("Part(a)\n")
mC = 0.65 //kg //mass of C per kg coal
mA = 0.15 //kg //mass of Ash per kg coal
CR = 0.05 //kg //mass of carbon in solid refuse per kg coal
mR = 0.2 //kg //mass of refuse per kg coal
m = mC- CR //kg //mass of carbon burnt per kg coal
//By C balance
x = (14 + 1)*(12/0.6) //kg //mass of burnt coal
//By H2 balance
b = x*(0.06/2)
//By O2 Balance
a = (14 + 0.5 + 3.5 + 4.5)-(x*0.1/32)
actual_air = a*(32+3.76*28)/x //kg/kg coal
printf("Actual air = %.3f kg/kg coal\n\n",actual_air)
//Part(b)
printf("Part(b)\n")
Stoichiometric_air = (0.6*11.45+0.06*34.3)-(0.1/0.232) //kg
excess_air = (actual_air - Stoichiometric_air)/Stoichiometric_air*100
printf("Excess air = %.1f%%\n\n",excess_air)
//Part(c)
printf("Part(c)\n");
printf("Percentage theoritical air = %.1f%%\n\n",100+excess_air)
//Part(d)
printf("Part(d)\n")
m = 14*44 + 1*28 +3.5*32 +81.5*28 +9*18 //kg //mass of combustion product
printf("Mass fraction of CO2 = %.2f%%\n",14*44/m*100)
printf("Mass fraction of CO = %.2f%%\n",1*28/m*100)
printf("Mass fraction of O2 = %.2f%%\n",3.5*32/m*100)
printf("Mass fraction of N2 = %.2f%%\n",81.5*28/m*100)
printf("Mass fraction of H2O = %.2f%%\n\n",9*18/m*100)
//Part(e)
printf("Part(e)\n")
xH2O = 9/(14+1+3.5+81.5+9) //molfraction of H2O
pH2O = xH2O*1e5 //Pa //partial pressure
//From steam table
tdp = 42.5 //°C
printf("Dew point temperature = %.1f °C",tdp)
|
90290d18dd5d090e4fa7176796cc004461a4caac
|
ebd6f68d47e192da7f81c528312358cfe8052c8d
|
/swig/Examples/test-suite/scilab/preproc_runme.sci
|
a54815a34928f468c0cd37752e764df9a9dae659
|
[
"LicenseRef-scancode-swig",
"GPL-3.0-or-later",
"LicenseRef-scancode-unknown-license-reference",
"GPL-3.0-only",
"Apache-2.0"
] |
permissive
|
inishchith/DeepSpeech
|
965ad34d69eb4d150ddf996d30d02a1b29c97d25
|
dcb7c716bc794d7690d96ed40179ed1996968a41
|
refs/heads/master
| 2021-01-16T16:16:05.282278
| 2020-05-19T08:00:33
| 2020-05-19T08:00:33
| 243,180,319
| 1
| 0
|
Apache-2.0
| 2020-02-26T05:54:51
| 2020-02-26T05:54:50
| null |
UTF-8
|
Scilab
| false
| false
| 254
|
sci
|
preproc_runme.sci
|
exec("swigtest.start", -1);
if endif_get() <> 1 then swigtesterror(); end
if define_get() <> 1 then swigtesterror(); end
if defined_get() <> 1 then swigtesterror(); end
if 2 * one_get() <> two_get() then swigtesterror(); end
exec("swigtest.quit", -1);
|
87fd267e278d155f0d3b63f230e2b643cc2f182e
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1373/CH11/EX11.9/Chapter11_Example9.sce
|
331a0b39213b5b2079414d783646a7d59811ca38
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 960
|
sce
|
Chapter11_Example9.sce
|
//Chapter-11, Example 11.9, Page 494
//=============================================================================
clc
clear
//INPUT DATA
T=100;//Temperature of dry steam in degree C
Do=0.025;//Outer diameter of the pipe in m
Ts=84;//Surface temmperature of pipe in degree C
Tf=(T+Ts)/2;//Film temperature in degree C
p1=963.4;//Density of liquid in kg/m^3
u=(306*10^-6);//Dynamic viscosity in N.s/m^2
hfg=2257;//Enthalpy in kJ/kg
pv=0.596;//Density of vapour in kg/m^3
k1=0.677;//Thermal conductivity in W/m.K
//CALCULATIONS
h=(0.725*((9.81*p1*(p1-pv)*k1^3*hfg*1000)/(u*(T-Ts)*Do))^0.25);//Heat transfer coefficient in W/m^2.K
q=(h*3.14*Do*(T-Ts))/1000;//Heat transfer per unit length in kW/m
m=(q/hfg)*3600;//Total mass flow of condensate per unit length in kg/h
//OUTPUT
mprintf('Rate of formation of condensate per unit length is %3.2f kg/h',m)
//=================================END OF PROGRAM==============================
|
e7b802e30267bc050310ba92df3681cc6b347d63
|
8217f7986187902617ad1bf89cb789618a90dd0a
|
/browsable_source/2.3.1/Unix-Windows/scilab-2.3/macros/scicos/standard_outputs.sci
|
abc054bd7318132f49573a6f9654b78b63d6850a
|
[
"MIT",
"LicenseRef-scancode-warranty-disclaimer",
"LicenseRef-scancode-public-domain"
] |
permissive
|
clg55/Scilab-Workbench
|
4ebc01d2daea5026ad07fbfc53e16d4b29179502
|
9f8fd29c7f2a98100fa9aed8b58f6768d24a1875
|
refs/heads/master
| 2023-05-31T04:06:22.931111
| 2022-09-13T14:41:51
| 2022-09-13T14:41:51
| 258,270,193
| 0
| 1
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 909
|
sci
|
standard_outputs.sci
|
function [x,y,typ]=standard_outputs(o)
//get position of inputs ports and clock inputs port for a standard block
// the output ports are located on the right (or left if tilded) vertical
// side of the block, regularly located from bottom to top
// the clock output ports are located on the bottom horizontal side
// of the block, regularly located from left to right
//!
xf=60
yf=40
graphics=o(2)
model=o(3)
orig=graphics(1);sz=graphics(2);orient=graphics(3);
out=size(model(3),1);clkout=size(model(5),1);
if orient then
xo=orig(1)+sz(1)
dx=xf/7
else
xo=orig(1)
dx=-xf/7
end
// output port location
if out==0 then
x=[];y=[],typ=[]
else
y=orig(2)+sz(2)-(sz(2)/(out+1))*(1:out)
x=(xo+dx)*ones(y)
typ=ones(x)
end
// clock output port location
if clkout<>0 then
x=[x,orig(1)+(sz(1)/(clkout+1))*(1:clkout)]
y=[y,(orig(2)-yf/7)*ones(1,clkout)]
typ=[typ,-ones(1,clkout)]
end
|
ba8c344acf5ff85ae5c8485b5de425d55a570c98
|
4ddcc4e4acac0192329e4214a1fe13e7db9341ee
|
/Morse1.sci
|
8940e3c443361dd3ba929611b2a37459c4e5dbfe
|
[] |
no_license
|
Aditisharma1993/Introduction-to-Variational-Monte-Carlo-approach
|
ea9cf6c23061df50ba9db0d6fa023036a3957973
|
24a559cb8698ffa96617a5beb25ae3214464326c
|
refs/heads/main
| 2023-02-04T08:38:25.562650
| 2020-12-27T15:21:30
| 2020-12-27T15:21:30
| 324,772,402
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 2,140
|
sci
|
Morse1.sci
|
function [ECmInv,EeV] = HCl(var,J)
//Written by Aditi and O.S.K.S. Sastri
//var is vector consisting of De, b and Re values.
//Typical input for var for HCl is [5,1,1.27455]
//J is rotational quantum number.
//J = 0 gives pure vibrational levels
//J = 1 gives energy eigen values corresponding to
//first excited rotational for v = 0, 1, 2,...
a0 = 6; // infinite square well width in Angstroms
N0 = 150; //Number of basis functions
[V,E10] = potential(J,var); //Defines the potential function
h = hmatrix(a0,N0,V,E10); //Determines the hmatrix
evals = spec(h); //spec command used for obtaining the eigen values
EeV = gsort(evals); //gsort command used for sorting data in descending order
ECmInv = EeV/(1239.84193*10^(-7));//energies in wavenumbers
endfunction
function [V,E10] = potential(J,var,a0)
// Model parameters
De = var(1); //Molecular dissociation energy expressed in eV
b = var(2); //parameter in Morse potential definition expressed in Angstroms^(-1)
Re = var(3); //equilibrium bond length in Angstroms
R= 0.6:0.001:a0; // discretising distance parameter
// Defining Morse potential
v = De*((exp(-2*b*(R-Re)))-(2*exp(-b*(R-Re))));
mu = 0.9796*931.49410*10^6; // reduced mass of molecule in eV
hbarc = 1973.29; //value is in eV-Angstroms
//Defining centrifugal potential for rotational term
vcf = (J*(J+1)*hbarc^2./(2*mu*R.^2));
V = v+vcf;
plot(R,V);
// ground state energy of infinite square well potential in eV
E10 = (%pi^2*hc^2)/(2*mu*(a0^2));
endfunction
function [h] = hmatrix(a0,N0,V,E10)
h = zeros(N0,N0);
for m = 1:N0
h(m,m) = m^2*E10 + Vmm(m,a0,V); //Diagonal elements
for n = m+1:N0
h(m,n) = Vnm(n,m,a0,V); //Non-Diagonal elements
h(n,m) = h(m,n);
end
end
endfunction
function [I1] = Vmm(m,a0,V)
R = 0.6:0.001:a0;
c1 = 1-cos(2*m*%pi*R/a0);
f1 = c1.*V/a0;
I1 = intsplin(R,f1); // Integration using spline interpolation
endfunction
function [I2] = Vnm(n,m,a0,V)
R = 0.6:0.001:a0;
c1 = cos((n-m)*%pi*R/a0);
c2 = cos((n+m)*%pi*R/a0);
f2 = V.*(c1-c2)/a0;
I2 = intsplin(R,f2); //Integration using spline interpolation
endfunction
|
3a6be5a106c6d9af5a1fa1dbbcdc0ae0f2c6bfd4
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/605/CH13/EX13.1/13_1.sce
|
91cbf1030bba0500a8d7bdd53b3e8981ba88b74b
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 183
|
sce
|
13_1.sce
|
P=10000
V=1000
W1=4*%pi*10^6
Wc=2*%pi*10^8
a=P/V^2
printf("\na=%.2f",a)
//(b)=
A=1000+2*225+2*150+2*75
peak_power=a*A^2
printf("\nA=%.0f V\npeak_power=%.0f W",A,peak_power)
|
45f321dffa17d7aa9f04a2c7761561634a9db4ee
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1787/CH2/EX2.3/Exa2_3.sce
|
c1be6dad5a1b73cb928472ef44fe08d0272db599
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 221
|
sce
|
Exa2_3.sce
|
//Exa 2.3
clc;
clear;
close;
//given data
n=10^24;//electrons/m^3
e=1.6*10^-19;//constant
v=1.5*10^-2;//in m/s
A=1;//in cm^2
A=1*10^-4;//in m^2
I=e*n*v*A;//in Ampere
disp(I,"Magnitude of current in Ampere : ");
|
2143c54c60b010e009e71708d0521eb662ac04c1
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/608/CH16/EX16.12/16_12.sce
|
3f5bbe10c0c0bb02a45f00957459a3ba677129fb
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,399
|
sce
|
16_12.sce
|
//Problem 16.12: A motor has an output of 4.8 kW, an efficiency of 80% and a power factor of 0.625 lagging when operated from a 240 V, 50 Hz supply. It is required to improve the power factor to 0.95 lagging by connecting a capacitor in parallel with the motor. Determine (a) the current taken by the motor, (b) the supply current after power factor correction, (c) the current taken by the capacitor, (d) the capacitance of the capacitor, and (e) the kvar rating of the capacitor.
//initializing the variables:
Pout = 4800; // in Watt
eff = 0.8;// effficiency
f = 50; // in ohm
V = 240; // in Volts
pf1 = 0.625// power factor
pf2 = 0.95// power factor
//calculation:
Pin = Pout/eff
Im = Pin/(V*pf1)
phi1 = acos(pf1)
phi1d = phi1*180/%pi
//When a capacitor C is connected in parallel with the motor a current Ic flows which leads V by 90°.
phi2 = acos(pf2)
phi2d = phi2*180/%pi
Imh = Im*cos(phi1)
//Ih = I*cos(phi2)
Ih = Imh
I = Ih/cos(phi2)
Imv = Im*sin(phi1)
Iv = I*sin(phi2)
Ic = Imv - Iv
C = Ic/(2*%pi*f*V)
kvar = V*Ic/1000
printf("\n\n Result \n\n")
printf("\n (a)current taken by the motor, Im = %.0f A",Im)
printf("\n (b)supply current after p.f. correction, I = %.2f A ",I)
printf("\n (c)magnitude of the capacitor current Ic = %.0f A",Ic)
printf("\n (d)capacitance, C = %.0f μF ",(C/1E-6))
printf("\n (d)kvar rating of the capacitor = %.2f kvar ",kvar)
|
26dc12821ea5f96e9f4877f6879cfcc5026c8c12
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2504/CH12/EX12.4/12_4.sce
|
a0d86c7294b14f674d9d81d41f9b8808da08b15c
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 342
|
sce
|
12_4.sce
|
clc
//initialisation of variables
clear
W= 38 //rev/sec
w= 62.4 //lbf/ft^3
m= 2000 //lbm/sec
g= 32.2 //ft/sec^2
ps= 5000 //lbf/ft^2
S3= 4.6
e= 0.91
//CALCULATIONS
S1= W*(w*m^2/(g*ps)^3)^0.25
D= S3*(m^2/(w*g*ps))^0.25
//RESULTS
printf ('S1 = %.3f',S1)
printf ('\n Diameter = %.2f ft',D)
printf ('\n efficiency = %.2f ',e)
|
9d52a07bbabf3ab37e783e0832e52688b07dc9b3
|
99b4e2e61348ee847a78faf6eee6d345fde36028
|
/Toolbox Test/corrmtx/corrmtx12.sce
|
582e87ac1f2aa28fdf07ab0a4c99cf836f4845bb
|
[] |
no_license
|
deecube/fosseetesting
|
ce66f691121021fa2f3474497397cded9d57658c
|
e353f1c03b0c0ef43abf44873e5e477b6adb6c7e
|
refs/heads/master
| 2021-01-20T11:34:43.535019
| 2016-09-27T05:12:48
| 2016-09-27T05:12:48
| 59,456,386
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 175
|
sce
|
corrmtx12.sce
|
//no i/p args are passed to the function
X=corrmtx();
//output
//!--error 4
//Undefined variable: varargin
//at line 88 of function corrmtx called by :
//X=corrmtx();
|
bf4d67aaa54f9d9e7c22cf591853820cfeb22c71
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3875/CH10/EX10.18/10_18.sce
|
b0de5c216f44a771364c9fa24872454c65605d96
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 580
|
sce
|
10_18.sce
|
clc;
clear;
h=6.63*10^-34 //Plancks constant in J-s
c=3*10^8 //velocity of light in m/s
m=9.1*10^-31 //mass in kg
lambda_1=100*10^-12 //wavelength in m
e=1.6*10^-19 //charge in C
//calculation
delta_lambda=(h/(m*c)) //wavelength in m
mprintf("The compton shift is = %1.2e m\n",delta_lambda)
lambda_0=lambda_1-delta_lambda //wavelength of the scattered photon in m
delta_E=(h*c*delta_lambda)/(lambda_1*lambda_0)
mprintf("\nThe kinetic energy imparted to the electron is = %1.2e J or %1.2f eV",delta_E,delta_E/e)
//The answer provided in the textbook is wrong.
|
390c0aca1f21e1e5fd8ee9e42680666d3f0bbf4d
|
8217f7986187902617ad1bf89cb789618a90dd0a
|
/browsable_source/2.4.1/Unix-Windows/scilab-2.4.1/macros/util/zeros.sci
|
c88d03ac2f5f3cb6f0c4573eb6cd2399200c60ca
|
[
"LicenseRef-scancode-public-domain",
"LicenseRef-scancode-warranty-disclaimer"
] |
permissive
|
clg55/Scilab-Workbench
|
4ebc01d2daea5026ad07fbfc53e16d4b29179502
|
9f8fd29c7f2a98100fa9aed8b58f6768d24a1875
|
refs/heads/master
| 2023-05-31T04:06:22.931111
| 2022-09-13T14:41:51
| 2022-09-13T14:41:51
| 258,270,193
| 0
| 1
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 137
|
sci
|
zeros.sci
|
function z=zeros(n,m)
// Copyright INRIA
[lhs,rhs]=argn(0)
if rhs==1 then
z=0*ones(n);return;end
if rhs==2 then
z=0*ones(n,m);return;end
|
1c59e3fe5c9db5219bca43bfc6dfd44d9b75192e
|
4246b94d92c336e870b60035d41bf5616e22c38e
|
/arqtrain/arqtrain/futebol.tst
|
47e300364b9800fe3c3c923e910e122582f2d239
|
[] |
no_license
|
rsboos/FuzzySoccerRobot
|
c14e7d16c0bac0caacdb17e7bcd1853df7d943da
|
2c80729320bc0f72c2d2bea2e0de4d9ce163b36b
|
refs/heads/master
| 2021-01-12T12:52:42.678400
| 2016-09-29T11:25:08
| 2016-09-29T11:25:08
| 69,389,223
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 6,627
|
tst
|
futebol.tst
|
8 2 100
335.000 1.571 0.000 385.000 -2.061 0.000 0 0 -0.375 0.750
335.006 1.566 0.000 384.994 -1.086 0.005 -0.375 0.750 -0.345 0.750
335.064 1.552 -0.000 384.944 -1.100 0.014 -0.345 0.750 -0.285 0.750
335.102 1.528 0.000 384.910 -1.124 0.024 -0.285 0.750 -0.225 0.750
335.126 1.494 -0.000 384.885 -1.157 0.033 -0.225 0.750 -0.165 0.750
335.176 1.453 -0.000 384.822 -1.199 0.042 -0.165 0.750 -0.109 0.750
335.246 1.405 -0.000 384.703 -1.247 0.048 -0.109 0.750 -0.059 0.749
335.271 1.353 -0.001 384.565 -1.300 0.053 -0.059 0.749 -0.014 0.748
335.220 1.300 -0.002 384.404 -1.355 0.054 -0.014 0.748 0.021 0.745
335.102 1.247 -0.004 384.207 -1.412 0.055 0.021 0.745 0.061 0.741
334.926 1.193 -0.006 383.967 -1.470 0.056 0.061 0.741 0.108 0.735
334.728 1.139 -0.009 383.640 -1.529 0.056 0.108 0.735 0.164 0.726
334.427 1.085 -0.013 383.316 -1.589 0.057 0.164 0.726 0.225 0.716
333.996 1.032 -0.017 383.027 -1.650 0.057 0.225 0.716 0.217 0.750
333.355 0.979 -0.021 382.871 -1.713 0.058 0.217 0.750 0.196 0.750
332.452 0.925 -0.026 382.924 -1.776 0.059 0.196 0.750 0.179 0.750
331.343 0.871 -0.031 383.131 -1.840 0.060 0.179 0.750 0.173 0.750
329.995 0.815 -0.036 383.541 -1.907 0.061 0.173 0.750 0.168 0.750
328.433 0.759 -0.042 384.131 -1.974 0.062 0.168 0.750 0.162 0.750
326.605 0.702 -0.048 384.982 -2.043 0.063 0.162 0.750 0.158 0.750
324.517 0.643 -0.054 386.104 -2.115 0.065 0.158 0.750 0.155 0.750
322.177 0.582 -0.060 387.494 -2.188 0.067 0.155 0.750 0.152 0.750
319.606 0.519 -0.065 389.132 -2.264 0.069 0.152 0.750 0.150 0.741
316.803 0.455 -0.071 391.024 -2.342 0.071 0.150 0.741 0.148 0.622
313.728 0.388 -0.077 393.243 -2.421 0.072 0.148 0.622 0.144 0.532
310.406 0.320 -0.083 395.777 -2.501 0.073 0.144 0.532 0.150 0.465
306.924 0.252 -0.088 398.528 -2.580 0.073 0.150 0.465 0.225 0.437
303.300 0.186 -0.092 401.501 -2.657 0.071 0.225 0.437 0.296 0.479
299.498 0.122 -0.097 404.725 -2.731 0.068 0.296 0.479 0.328 0.490
295.501 0.060 -0.101 408.192 -2.802 0.066 0.328 0.490 0.424 0.498
291.333 0.000 -0.104 411.892 -2.870 0.063 0.424 0.498 0.579 0.508
286.986 -0.058 -0.107 415.846 -2.936 0.061 0.579 0.508 0.579 0.516
282.472 -0.116 -0.109 420.050 -2.999 0.059 0.579 0.516 0.578 0.523
277.804 -0.172 -0.110 424.482 -3.060 0.057 0.578 0.523 0.572 0.504
273.021 -0.226 -0.110 429.095 -3.117 0.054 0.572 0.504 0.548 0.426
268.172 -0.276 -0.109 433.833 3.115 0.050 0.548 0.426 0.537 0.354
263.337 -0.321 -0.108 438.635 3.070 0.043 0.537 0.354 0.561 0.290
258.562 -0.359 -0.105 443.463 3.034 0.035 0.561 0.290 0.580 0.236
253.864 -0.390 -0.101 448.287 3.007 0.027 0.580 0.236 0.595 0.192
249.235 -0.412 -0.097 453.097 2.989 0.018 0.595 0.192 0.607 0.160
244.674 -0.426 -0.092 457.890 2.981 0.009 0.607 0.160 0.617 0.140
240.150 -0.431 -0.086 462.677 2.982 -0.000 0.617 0.140 0.625 0.132
235.665 -0.428 -0.080 467.459 2.992 -0.010 0.625 0.132 0.632 0.137
231.212 -0.416 -0.073 460.450 -0.487 -0.018 0.632 0.137 0.638 0.154
226.755 -0.397 -0.066 451.736 -0.461 -0.027 0.638 0.154 0.636 0.182
222.270 -0.369 -0.059 442.929 -0.426 -0.035 0.636 0.182 0.599 0.221
217.700 -0.335 -0.052 433.934 -0.384 -0.041 0.599 0.221 0.564 0.270
213.018 -0.297 -0.044 424.672 -0.339 -0.045 0.564 0.270 0.533 0.324
208.203 -0.258 -0.037 415.075 -0.292 -0.047 0.533 0.324 0.510 0.381
203.254 -0.219 -0.030 405.128 -0.246 -0.045 0.510 0.381 0.522 0.419
198.128 -0.183 -0.023 394.790 -0.202 -0.044 0.522 0.419 0.550 0.478
192.779 -0.147 -0.016 383.990 -0.160 -0.043 0.550 0.478 0.571 0.534
187.207 -0.112 -0.009 372.720 -0.118 -0.042 0.571 0.534 0.588 0.588
181.413 -0.077 -0.003 360.986 -0.077 -0.041 0.588 0.588 0.594 0.633
175.400 -0.042 0.001 348.799 -0.037 -0.039 0.594 0.633 0.600 0.678
169.169 -0.007 0.005 336.170 0.002 -0.039 0.600 0.678 0.603 0.722
162.729 0.028 0.007 323.123 0.041 -0.038 0.603 0.722 0.606 0.737
156.088 0.063 0.009 309.671 0.078 -0.036 0.606 0.737 0.611 0.734
149.273 0.096 0.010 295.844 0.113 -0.035 0.611 0.734 0.608 0.731
142.278 0.128 0.011 281.666 0.147 -0.033 0.608 0.731 0.559 0.729
135.141 0.159 0.010 267.202 0.178 -0.030 0.559 0.729 0.514 0.728
127.921 0.185 0.009 252.577 0.203 -0.025 0.514 0.728 0.475 0.730
120.684 0.207 0.005 237.883 0.221 -0.018 0.475 0.730 0.446 0.737
113.449 0.222 0.001 223.156 0.231 -0.010 0.446 0.737 0.427 0.748
106.221 0.231 -0.006 208.410 0.233 -0.002 0.427 0.748 0.404 0.750
99.008 0.234 -0.015 193.655 0.228 0.006 0.404 0.750 0.382 0.713
91.803 0.231 -0.026 178.867 0.215 0.014 0.382 0.713 0.364 0.667
84.595 0.222 -0.038 164.022 0.194 0.021 0.364 0.667 0.353 0.630
77.396 0.206 -0.051 149.149 0.166 0.029 0.353 0.630 0.311 0.497
70.312 0.189 -0.066 134.459 0.134 0.031 0.311 0.497 0.181 0.377
63.445 0.174 -0.082 120.171 0.103 0.031 0.181 0.377 0.152 0.344
56.813 0.159 -0.098 106.320 0.071 0.031 0.152 0.344 0.175 0.309
50.420 0.145 -0.115 92.921 0.039 0.031 0.175 0.309 0.040 0.102
44.258 0.130 -0.131 79.987 0.008 0.031 0.040 0.102 0.002 -0.003
38.344 0.116 -0.148 67.536 -0.024 0.030 0.002 -0.003 0.068 -0.089
32.653 0.101 -0.162 55.577 -0.056 0.030 0.068 -0.089 0.134 -0.175
27.200 0.086 -0.176 44.116 -0.088 0.029 0.134 -0.175 0.194 -0.250
17.815 0.105 -0.225 33.240 -0.120 0.028 0.194 -0.250 0.200 -0.229
35.378 0.656 -0.844 25.566 -0.162 0.040 0.200 -0.229 -0.579 0.750
83.222 0.969 -1.246 19.126 -0.214 0.050 -0.579 0.750 -0.523 0.750
137.581 1.059 -1.434 12.736 -0.276 0.060 -0.523 0.750 -0.460 0.719
193.780 1.115 -1.539 11.876 -0.295 0.010 -0.460 0.719 -0.528 0.586
250.274 1.162 -1.612 14.041 -0.298 -0.011 -0.528 0.586 -0.424 0.456
306.870 1.191 -1.672 16.230 -0.304 -0.005 -0.424 0.456 -0.390 0.450
363.552 1.204 -1.725 18.373 -0.317 0.004 -0.390 0.450 -0.378 0.453
420.181 1.204 -1.773 20.480 -0.336 0.013 -0.378 0.453 -0.292 0.450
476.655 1.194 -1.818 22.439 -0.360 0.020 -0.292 0.450 -0.143 0.750
532.917 1.176 -1.859 24.300 -0.391 0.027 -0.143 0.750 -0.077 0.750
589.031 1.151 -1.898 26.055 -0.425 0.032 -0.077 0.750 -0.016 0.750
576.610 1.116 -1.891 27.649 -0.462 0.035 -0.016 0.750 0.040 0.750
544.796 1.079 -1.872 28.985 -0.499 0.036 0.040 0.750 0.100 0.750
513.052 1.042 -1.852 30.094 -0.537 0.036 0.100 0.750 0.144 0.750
481.406 1.005 -1.833 30.960 -0.576 0.036 0.144 0.750 0.148 0.750
449.813 0.968 -1.814 31.617 -0.615 0.036 0.148 0.750 0.148 0.750
418.240 0.931 -1.795 32.082 -0.657 0.037 0.148 0.750 -0.282 0.750
386.765 0.890 -1.776 32.383 -0.703 0.042 -0.282 0.750 -0.575 0.750
355.426 0.839 -1.757 32.612 -0.759 0.051 -0.575 0.750 -0.542 0.750
324.252 0.779 -1.739 32.780 -0.825 0.061 -0.542 0.750 -0.511 0.750
293.202 0.709 -1.720 32.948 -0.902 0.070 -0.511 0.750 -0.482 0.750
262.256 0.630 -1.701 33.178 -0.988 0.080 -0.482 0.750 -0.445 0.750
|
fbf8409a58bd29bc2868958b5d0a3f5370c575b4
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/680/CH7/EX7.09/7_09.sce
|
5c63cb071d146d9dae311d99bf00421f6fbb1507
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,103
|
sce
|
7_09.sce
|
//Problem 7.09:
//initializing the variables:
F1 = 50000; // in lb/h
F2 = 60000; // in lb/h
F3 = 80000; // in lb/h
F4 = 60000; // in lb/h
F5 = 40000; // in lb/h
F6 = 35000; // in lb/h
Cp1 = 0.65; // in Btu/lb.degF
Cp2 = 0.58; // in Btu/lb.degF
Cp3 = 0.78; // in Btu/lb.degF
Cp4 = 0.70; // in Btu/lb.degF
Cp5 = 0.52; // in Btu/lb.degF
Cp6 = 0.60; // in Btu/lb.degF
Tin1 = 70; // in deg F
Tin2 = 120; // in deg F
Tin3 = 90; // in deg F
Tin4 = 420; // in deg F
Tin5 = 300; // in deg F
Tin6 = 240; // in deg F
Tout1 = 300; // in deg F
Tout2 = 310; // in deg F
Tout3 = 250; // in deg F
Tout4 = 120; // in deg F
Tout5 = 100; // in deg F
Tout6 = 90; // in deg F
//calculation:
Duty1 = F1*Cp1*(Tout1 - Tin1)
Duty2 = F2*Cp2*(Tout2 - Tin2)
Duty3 = F3*Cp3*(Tout3 - Tin3)
Duty4 = F4*Cp4*abs(Tout4 - Tin4)
Duty5 = F5*Cp5*abs(Tout5 - Tin5)
Duty6 = F6*Cp6*abs(Tout6 - Tin6)
heat = Duty1 + Duty2 + Duty3
cool = Duty4 + Duty5 + Duty6
steam = heat - cool
printf("\n\nResult\n\n")
printf("\n As a minimum %.0f Btu/h will have to be supplied by steam or another hot medium",steam)
|
11943d90508795b6a31d9c097d70b6445d352dc6
|
180e6114e33b1701c31283dcbb71516689b9b7bf
|
/Ex_10_11_cscan.sci
|
09cffa2af1f6d9557b1d8bdda5e467463774131d
|
[
"MIT"
] |
permissive
|
nikita9604/Distance-by-Disk-Scheduling-Algorithms
|
6ddbe15f169355cfc7d21a9c54e4d3a61780115d
|
fb84cb8318937f07daba53f97ec3ae4b80d211a1
|
refs/heads/main
| 2023-01-18T17:21:41.857905
| 2020-11-28T10:35:42
| 2020-11-28T10:35:42
| 316,706,477
| 2
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 2,233
|
sci
|
Ex_10_11_cscan.sci
|
//This Source file is written by Nikita Rath (18BLC1131), VIT Chennai
//Function for C-SCAN
function [] = cscan(a,head,n)
printf("Order of Track ");
seek_count = 0;
ihead = head;
maximum = 4999;
temp1 = 1;
temp2 = 1;
//Traversing through requests
for i = 1:n
//Request greater or less than head
if(a(i)>=head) then
queue1(temp1)=a(i);
temp1 = temp1 + 1;
else
queue2(temp2)=a(i);
temp2 = temp2 + 1;
end
end
//Sort request greater than head (Ascending)
for i = 1:temp1-2
for j = i+1:temp1-1
if (queue1(i) > queue1(j)) then
temp = queue1(i);
queue1(i) = queue1(j);
queue1(j) = temp;
end
end
end
//Sort request less than head (Ascending)
for i = 1:temp2-2
for j = i+1:temp2-1
if (queue2(i) > queue2(j)) then
temp = queue2(i);
queue2(i) = queue2(j);
queue2(j) = temp;
end
end
end
//Request ordering begins
i = 1;
//Traversing to the right side
for j = 1:temp1-1
i = i + 1;
queue(i) = queue1(j);
end
//Reaches the maximum disk limit
queue(i+1) = maximum;
//Turns to the minimum disk limit
queue(i+2) = 0;
i = temp1+2;
//Traversing to the left side
for j = 1:temp2-1
i = i + 1;
queue(i) = queue2(j);
end
queue(1)=head;
//Traversing through final request order
for j = 1:n+2
//Calculate the distance between requests
distance = abs(queue(j+1)-queue(j));
//Increment seek_count with the distance
seek_count = seek_count + distance;
//Order of request execution
printf(" T%d ",j);
//printf(" - %d",queue(j+1));
end
printf(" T%d ",j+1);
printf("\nNo. of Cylinders");
printf(" %d ",ihead);
//Order of request execution
for j = 1:n+2
printf(" %4d ",queue(j+1));
end
//Total distance
printf("\n Total distance : %d", seek_count);
endfunction
|
848260c6023966c0db34e6d39f7e8961e2a889ae
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1430/CH14/EX14.9/exa14_9.sce
|
8f39952c248490bebc157aff722d68c1f1f3d79d
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 447
|
sce
|
exa14_9.sce
|
// Example 14.9
// Calculating a Transfer Function
// From figure 14.21 and ABCD parameters that we found in example 14.7 we have,
// since V_1=V_s
// Z_s=0;
s=%s;
disp("H(s)=I_2/V_1")
disp("=> H(s)=-1/A*Z_L+B")
A=1-2/s;
B=-20/s;
Z_L=2.5*s// Assume
H_s=-1/(A*Z_L+B);
P_s=(s^2-2*s-8); // denominator of H_s
p=roots(P_s);
disp(H_s,"Transfer function=")
disp(P_s,"Characteristic polynomial=")
disp(p,"Poles of transfer function=")
|
0f814fe4ed905c16e250fc87a4618608007860dc
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1055/CH12/EX12.4/ch12_4.sce
|
ba8123690c01fbeb6d5bf3ed7b9a7f9dc77895de
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 261
|
sce
|
ch12_4.sce
|
//Determine the maximum value of transmitted wave
clear
clc;
Z=350;//surge impedencr (ohms)
C=3000*(10^-12);// earth capacitance(F)
t=2*(10^-6);
E=500;
E1=2*E*(1-exp((-1*t/(Z*C))));
mprintf("the maximum value of transmitted voltage=%.0f kV \n",E1);
|
7df3d67968bc400f1e098dffaa9c94e5b1f2b702
|
1bb72df9a084fe4f8c0ec39f778282eb52750801
|
/test/BV2.prev.tst
|
bdab5c284caa007a11905ed072503148842ced04
|
[
"Apache-2.0",
"LicenseRef-scancode-unknown-license-reference"
] |
permissive
|
gfis/ramath
|
498adfc7a6d353d4775b33020fdf992628e3fbff
|
b09b48639ddd4709ffb1c729e33f6a4b9ef676b5
|
refs/heads/master
| 2023-08-17T00:10:37.092379
| 2023-08-04T07:48:00
| 2023-08-04T07:48:00
| 30,116,803
| 2
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 56
|
tst
|
BV2.prev.tst
|
[1,2,-5] + [1,1,1,7] = [2,3,-4,7], original = [1,2,-5]
|
042af1f257262333c9185bfa8c5258991d2d34d5
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3812/CH8/EX8.2.a/8_2_a.sce
|
44a674131b0e87cb3a12040fdb4c529d4ee81817
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 211
|
sce
|
8_2_a.sce
|
//Example 8_2 <a>
//determine the nyquist rate of x(t)=sinc(200*pi*t)
//sinc(t)=cos(t)/t
//cos3(t)=3/4[cos(200)+1/4cos(600)]
clc;
clear all;
wp=200;
F1=wp/2;
Fs=2*F1;
disp('Nyquist Rate=');
disp(Fs);
|
5e4bfbfa55ef8b804b9c02526a2c9d8ad2312b85
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1847/CH2/EX2.39/Ch02Ex39.sce
|
f74275481f3f11c016ef23996d25023fa6c1e408
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 719
|
sce
|
Ch02Ex39.sce
|
// Scilab Code Ex2.39:: Page-2.29 (2009)
clc; clear;
t = 0.75e-06; // Thickness of the glass plate, m
mu = 1.5; // Refractive index of the glass plate
lambda1 = 4000e-010; // First wavelength of visible range, cm
lambda2 = 7000e-010; // Last wavelength of visible range, cm
r = 0; // Angle of refraction for normal incidence, degrees
n = zeros(2);
// For bright fringe in reflected pattern,
// 2*mu*t*cosd(r) = (2*n+1)*lambda/2, solving for n
// For lambda1
n(1) = (4*mu*t*cosd(r)/lambda1-1)/2;
// For lambda2
n(2) = (4*mu*t*cosd(r)/lambda2-1)/2;
printf("\nFor n = %d and n = %d the light is strongly reflected.", n(1), ceil(n(2)));
// Result
// For n = 5 and n = 3 the light is strongly reflected.
|
0fe67974e0a379f3c169dbca4f81c6ad86a053db
|
ae90aa32e949a5eab9665f526f886f05860161d2
|
/code/nand2tetris/08/FunctionCalls/FibonacciElement/FibonacciElement.tst
|
f92caaf936212141c8e0791691a9fc1f3bfbba73
|
[
"CC-BY-SA-3.0",
"MIT"
] |
permissive
|
cccbook/sp
|
4097ab760cfb013b689dc4739a439de29d85d324
|
aff23e6b18ba6221022b14b024fd562427c46d9a
|
refs/heads/master
| 2022-05-22T03:31:33.324045
| 2019-06-06T07:04:37
| 2019-06-06T07:04:37
| 156,299,694
| 257
| 96
|
MIT
| 2022-03-19T08:48:32
| 2018-11-05T23:56:37
|
Assembly
|
UTF-8
|
Scilab
| false
| false
| 466
|
tst
|
FibonacciElement.tst
|
// This file is part of www.nand2tetris.org
// and the book "The Elements of Computing Systems"
// by Nisan and Schocken, MIT Press.
// File name: projects/08/FunctionCalls/FibonacciElement/FibonacciElement.tst
// FibonacciElement.asm is the result of translating both Main.vm and Sys.vm.
load FibonacciElement.asm,
output-file FibonacciElement.out,
compare-to FibonacciElement.cmp,
output-list RAM[0]%D1.6.1 RAM[261]%D1.6.1;
repeat 6000 {
ticktock;
}
output;
|
386746389eb4c4794f3a7c81fee1fa0f13290ef7
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3136/CH5/EX5.5/Ex5_5.sce
|
0733379deff4108797fa79fbbae457a32b6a99a5
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 2,451
|
sce
|
Ex5_5.sce
|
clear all; clc;
disp("Since the pressure changes are small compared with the barometric pressure,constant densities are assumed that is rho3 =rho2=rhoa where rhoa=pa/(RTa)")
p_a=14.6
T_a=535
R=53.3
rho_a=(p_a*144)/(R*T_a)//144 is the conversion factor
printf("rhoa= %0.4f lbm/ft^3",rho_a)
A2=5*6.5
printf("\nA2 equals %g in^2",A2)
disp("On converting A2=0.225ft^2")
A3=%pi*6.065^2/4
printf("\nA3 equals %0.1f in^2",A3)
disp("On converting A3=0.2007ft^2")
disp("From (rho3*V3^2)/2=rhow*g*pv3,V3 can be calculated")
rho_w=62.4
g=32.2
rho_3=0.0737
j=sqrt(2*rho_w*g/(rho_3*12))
printf("V3=%0.1f * pv3^0.5 ft/s",j)
disp("The inlet flow rate can be calculated as Q=Q3=V3*A3=0.2007*60*V3=12.04*V3")
disp("Also the dynamic pressure can be calculated as pv2=pv3*((A3/A2)^2)*(rho3/rho2)=(0.2/0.225)^2*pv3=0.79pv3")
disp("The total pressure pt2=ps2+pv2")
disp("To correct these data to a fixed speed of 3500rpm,the fan laws can be used as Qdash=Q*3500/N,pt2dash=pt2*((3500/N)^2) and Hdash=H*((3500/N)^3).")
disp("The total efficiency can be calculated as ETAt=(rhow*g*pt2dash*Qdash)/(Hdash)")
disp("On simplifying ETAt=Qdash*pt2dash/(6346*Hdash)")
p_v3=[2.4 2.1 1.9 1.5 1.2 0.8 0.4];
p_s2=[2.5 4.2 6.0 6.8 7.6 8.5 9.5];
N=[3450 3520 3500 3420 3430 3500 3520];
H=[1.1 1.25 1.49 1.55 1.67 1.72 1.81];
V_3=zeros(1,length(p_v3));
Q=zeros(1,length(p_v3));
p_v2=zeros(1,length(p_v3));
p_t2=zeros(1,length(p_v3));
Qdash=zeros(1,length(p_v3));
tenpt2dash=zeros(1,length(p_v3));
tenHdash=zeros(1,length(p_v3));
eta_t=zeros(1,length(p_v3));
for i = 1: length(p_v3)
V_3(i) = 67.4*sqrt(p_v3(i));
Q(i) = 12.04*V_3(i);
p_v2(i) =0.79*p_v3(i);
p_t2(i)= p_s2(i)+p_v2(i);
Qdash(i)= Q(i)*(3500/(N(i)));
tenpt2dash(i)= 10*p_t2(i)*((3500/N(i))^2);
tenHdash(i)= 10*H(i)*((3500/(N(i)))^3);
eta_t(i)= ((Qdash(i)*(tenpt2dash(i))/10)/(6346*(tenHdash(i))/10))*100;
end
disp("The table is in the order given in the book,that is pv3, ps2, N, H, V3, Q, pv2, pt2, Qdash, tenpt2dash, tenHdash and etat.")
table=[p_v3' p_s2' N' H' V_3' Q' p_v2' p_t2' Qdash' tenpt2dash' tenHdash' eta_t' ];
disp(table)
plot(Q,tenpt2dash,'o',Q,tenHdash,'d',Q,eta_t,'s')
legend("tenpt2dash (inches of water)","tenHdash (hp)","eta_t (%)",-1)
xlabel("Q(cfm)")
ylabel("tenpt2dash (inches of water), tenHdash (hp) , eta_t (%)")
set(gca(),"grid",[1 1])
|
6620e86a689d37d6f996f43be912cd51f8015b4f
|
f78a758dc17a311b355e12366d1315f7a9c2b763
|
/GM/GMW3172 2010/9.2.17 Crank Pulse Capability and Durability 2.tst
|
f4e251585d06b85d18d3620191ec89312d718cd8
|
[] |
no_license
|
CZPFOX/Standards
|
9dbf036f7e3e5767c23872c884ae7da83e66f81c
|
af34157e6e447d1a2b39136b9f3734feb663d9bb
|
refs/heads/master
| 2020-06-18T12:58:06.033918
| 2019-07-11T02:55:42
| 2019-07-11T02:55:42
| 196,309,147
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 3,604
|
tst
|
9.2.17 Crank Pulse Capability and Durability 2.tst
|
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<AutoTestC version="2.0.0">
<Pulse>CUSTOM WAVE</Pulse>
<Title>Waveform 3</Title>
<Organization>GM</Organization>
<Standard>GMW3172 2010</Standard>
<Item>9.2.17 Crank Pulse Capability and Durability</Item>
<voltage>14</voltage>
<count>49000</count>
<wave id="0">
<type>0</type>
<dspin id="0">12</dspin>
<time>75</time>
<timeUnit>1</timeUnit>
</wave>
<wave id="1">
<type>1</type>
<dspin id="0">12</dspin>
<dspin id="1">6</dspin>
<comboindex id="0">0</comboindex>
<time>4</time>
<timeUnit>1</timeUnit>
</wave>
<wave id="2">
<type>0</type>
<dspin id="0">6</dspin>
<time>11</time>
<timeUnit>1</timeUnit>
</wave>
<wave id="3">
<type>1</type>
<dspin id="0">6</dspin>
<dspin id="1">9.25</dspin>
<comboindex id="0">0</comboindex>
<time>98</time>
<timeUnit>1</timeUnit>
</wave>
<wave id="4">
<type>1</type>
<dspin id="0">9.25</dspin>
<dspin id="1">8.5</dspin>
<comboindex id="0">0</comboindex>
<time>97</time>
<timeUnit>1</timeUnit>
</wave>
<wave id="5">
<type>1</type>
<dspin id="0">8.5</dspin>
<dspin id="1">9.5</dspin>
<comboindex id="0">0</comboindex>
<time>53</time>
<timeUnit>1</timeUnit>
</wave>
<wave id="6">
<type>1</type>
<dspin id="0">9.5</dspin>
<dspin id="1">8.75</dspin>
<comboindex id="0">0</comboindex>
<time>90</time>
<timeUnit>1</timeUnit>
</wave>
<wave id="7">
<type>1</type>
<dspin id="0">8.75</dspin>
<dspin id="1">9.55</dspin>
<comboindex id="0">0</comboindex>
<time>52</time>
<timeUnit>1</timeUnit>
</wave>
<wave id="8">
<type>1</type>
<dspin id="0">9.55</dspin>
<dspin id="1">8.75</dspin>
<comboindex id="0">0</comboindex>
<time>83</time>
<timeUnit>1</timeUnit>
</wave>
<wave id="9">
<type>1</type>
<dspin id="0">8.75</dspin>
<dspin id="1">9.76</dspin>
<comboindex id="0">0</comboindex>
<time>45</time>
<timeUnit>1</timeUnit>
</wave>
<wave id="10">
<type>1</type>
<dspin id="0">9.76</dspin>
<dspin id="1">9</dspin>
<comboindex id="0">0</comboindex>
<time>67</time>
<timeUnit>1</timeUnit>
</wave>
<wave id="11">
<type>1</type>
<dspin id="0">9</dspin>
<dspin id="1">10</dspin>
<comboindex id="0">0</comboindex>
<time>60</time>
<timeUnit>1</timeUnit>
</wave>
<wave id="12">
<type>1</type>
<dspin id="0">10</dspin>
<dspin id="1">9.5</dspin>
<comboindex id="0">0</comboindex>
<time>15</time>
<timeUnit>1</timeUnit>
</wave>
<wave id="13">
<type>1</type>
<dspin id="0">9.5</dspin>
<dspin id="1">11</dspin>
<comboindex id="0">0</comboindex>
<time>60</time>
<timeUnit>1</timeUnit>
</wave>
<wave id="14">
<type>1</type>
<dspin id="0">11</dspin>
<dspin id="1">12</dspin>
<comboindex id="0">0</comboindex>
<time>315</time>
<timeUnit>1</timeUnit>
</wave>
<wave id="15">
<type>0</type>
<dspin id="0">12</dspin>
<time>300</time>
<timeUnit>1</timeUnit>
</wave>
</AutoTestC>
|
0438eaa35f17e15a76cebf8e447b9723964cd1d6
|
af301357b0dfd5c5ca0825378008dd7924e7d5db
|
/Sistemas.sci
|
7db83db7515b935530c40f2fe9fd7c41ee613f3d
|
[] |
no_license
|
fonte-nele/Metodos-Numerico-Scilab
|
c544f1a9951f33708f62bdee38a7cddf7699625b
|
62a2be7afb3a1f7901bc5f005500475f52f2caae
|
refs/heads/master
| 2020-06-10T11:31:42.291337
| 2019-07-03T18:10:03
| 2019-07-03T18:10:03
| 193,640,719
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 2,339
|
sci
|
Sistemas.sci
|
clc;clear;
printf("\nBalanço de Massa\nMétodos Decomposição LU e Jacobi\n\n")
/*ordem = input("Qual a ordem da matriz? ")
printf("Preencha os valores da matriz dos coeficientes:\n")
for i = 1:ordem
printf("Linha %d\n", i)
for j = 1:ordem
printf("Coluna %d", j)
A(i, j) = input("Valor: ")
end
end
printf("Preencha os valores dos termos independentes:\n")
for i = 1:ordem
B(i) = input("Termo: ")
end*/
n = 3;
//A = [0.8 0.8 0.9; 0.05 0.9 0.9; 0.02 0.02 0.05];
//b = [500 300 200];
A = [-130 30 0; 90 -90 0; 40 60 -120];
b = [-200 0 -500]
L = zeros(n,n); // Matriz triangular inferior com os coeficientes
U = zeros(n,n); // Matriz que resta da eliminação de Gauss
// Decomposição LU
for j = 1:n
L(j,j) = 1; // diagonal principal com 1
for i = 1:j
soma = 0.0;
for k=1:i-1
soma = soma + L(i,k)*U(k,j);
end
U(i,j) = A(i,j) - soma; // Cálculo da matriz U
end
for i = j+1:n
soma = 0.0;
for k=1:j-1
soma = soma + L(i,k)*U(k,j);
end
L(i,j) = (A(i,j)-soma)/U(j,j); // Cálculo da matriz L
end
end
printf('Matriz L: \n')
disp(L)
printf('\nMatriz U: \n')
disp(U)
// resolve L*y = b: substituicao progressiva
y = zeros(1,n);
y(1) = b(1)/L(1,1);
for i=2:n
soma = 0.0;
for j=1:i-1
soma = soma + L(i,j)*y(j);
end
y(i) = (b(i)-soma)/L(i,i);
end
// resolve U*x = y: substituicao regressiva
x(n) = y(n)/U(n,n);
for i=n-1:-1:1
soma = 0.0;
for j=i+1:n
soma = soma + U(i,j)*x(j);
end
x(i) = (y(i)-soma)/U(i,i);
end
printf('\nResultados pelo método da Decomposição LU: \n')
disp(x)
function [x, erro] = Jacobi(A, b, n, x)
xAnt = x
erro = 0.0
for i = 1:n
soma = 0.0
for j = 1:n
if (j <> i) then
soma = soma + (A(i, j)*xAnt(j))
end
end
x(i) = (b(i) - soma)/A(i, i)
if (abs(x(i) - xAnt(i)) > erro)
erro = abs(x(i) - xAnt(i))
end
end
endfunction
precisao = 0.001 // Critério de parada!
maxIter = 100 // Critério de parada!
k = 1
erro = 1000
x = [0; 0; 0] // Solução Inicial
while (k < maxIter & erro > precisao) then
[x, erro] = Jacobi(A, b, n, x)
k = k + 1
end
printf("\nResultados pelo método iterativo Jacobi: \n")
disp(x)
|
988a588814c7d7ad9f7b595e8752a1474bad2eb5
|
1b969fbb81566edd3ef2887c98b61d98b380afd4
|
/Rez/bivariate-lcmsr-post_mi/bfas_ea_usi/~BivLCM-SR-bfas_ea_usi-PLin-VLin.tst
|
d13951af4f01520f04da7285abd74c7f7e63bb88
|
[] |
no_license
|
psdlab/life-in-time-values-and-personality
|
35fbf5bbe4edd54b429a934caf289fbb0edfefee
|
7f6f8e9a6c24f29faa02ee9baffbe8ae556e227e
|
refs/heads/master
| 2020-03-24T22:08:27.964205
| 2019-03-04T17:03:26
| 2019-03-04T17:03:26
| 143,070,821
| 1
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 11,974
|
tst
|
~BivLCM-SR-bfas_ea_usi-PLin-VLin.tst
|
THE OPTIMIZATION ALGORITHM HAS CHANGED TO THE EM ALGORITHM.
ESTIMATED COVARIANCE MATRIX FOR PARAMETER ESTIMATES
1 2 3 4 5
________ ________ ________ ________ ________
1 0.409234D+00
2 -0.600470D-02 0.298930D-02
3 0.287096D-01 -0.628111D-03 0.265272D+00
4 -0.607017D-03 0.190080D-03 -0.230958D-02 0.214526D-02
5 0.628083D-03 0.884542D-05 -0.122089D-02 0.510410D-04 0.442288D-02
6 -0.145443D-02 0.895127D-04 0.877126D-04 0.428116D-04 0.163920D-03
7 -0.588537D-03 0.868556D-04 0.535821D-03 0.175638D-03 -0.331832D-03
8 0.177998D-02 -0.346083D-05 0.401361D-03 -0.243721D-04 -0.338197D-04
9 -0.427189D+00 0.630535D-02 -0.100268D+00 -0.338619D-02 0.208490D+00
10 -0.107615D+00 -0.609398D-02 0.396361D-01 0.541826D-02 0.235957D+00
11 -0.108569D+00 0.528872D-02 -0.102844D+00 0.301163D-02 0.187628D-02
12 0.515517D+00 -0.139242D-01 0.195080D+00 -0.125307D-02 0.291524D-01
13 0.142378D-01 0.392501D-02 0.665874D-01 0.112197D-01 -0.864610D-02
14 0.234568D-01 0.798119D-02 0.242018D+00 0.503095D-02 -0.216854D-01
15 -0.376483D+01 0.689497D-02 -0.108509D+01 0.165504D-01 -0.199778D+00
16 0.108678D-02 -0.119051D-01 0.599614D-02 -0.339623D-02 0.187032D-02
17 0.371953D-02 -0.654447D-04 0.922609D-03 -0.903262D-04 -0.106467D-02
18 -0.100580D+01 0.183313D-01 -0.548586D+00 -0.323700D-01 0.499094D-01
19 0.252045D-01 -0.271740D-02 0.962044D-01 -0.303538D-02 -0.662418D-02
20 -0.634381D+00 0.572207D-02 0.384391D+00 0.220868D-01 -0.580400D-01
21 -0.118683D-01 -0.415103D-02 -0.142371D+00 0.323475D-02 0.736462D-02
22 0.147408D-03 -0.826476D-04 0.327865D-02 -0.112125D-03 -0.711818D-04
23 -0.116610D-01 -0.637962D-03 0.185632D-01 0.246784D-02 0.181553D-02
24 0.173406D-02 -0.146482D-03 -0.692761D-03 0.169295D-03 -0.767654D-04
ESTIMATED COVARIANCE MATRIX FOR PARAMETER ESTIMATES
6 7 8 9 10
________ ________ ________ ________ ________
6 0.139913D-02
7 0.819704D-03 0.172728D-02
8 -0.934351D-05 0.172704D-03 0.248053D-02
9 -0.144991D-01 -0.147670D-01 -0.136919D-01 0.601987D+02
10 0.165782D-01 -0.110300D-01 0.580188D-03 0.116435D+02 0.248927D+02
11 0.257780D-01 -0.944556D-03 0.185696D-01 -0.143214D+01 0.242073D+01
12 0.748848D-03 0.230249D-01 0.797215D-01 0.155201D+01 0.804168D+00
13 0.449242D-01 0.557489D-01 0.529113D-02 -0.661527D+00 -0.164683D+01
14 0.376110D-02 -0.727169D-02 0.123021D+00 -0.217310D+01 -0.136696D-01
15 0.556154D-01 0.569981D-01 0.433392D-01 -0.172970D+02 -0.167897D+02
16 0.627201D-03 0.137263D-02 0.187336D-03 0.985575D+00 0.233543D+00
17 -0.403716D-03 -0.372085D-03 -0.397006D-03 -0.174649D+00 -0.680283D-01
18 -0.465741D-02 -0.433087D-01 0.127925D-01 0.510611D+01 0.455479D+00
19 -0.344571D-02 0.631692D-02 -0.195965D-02 -0.152819D+01 -0.189630D+00
20 0.273151D-01 0.228779D-01 -0.103798D+00 -0.114139D+01 0.542223D+00
21 0.409997D-02 -0.471264D-02 0.294213D-03 0.184018D+01 0.396190D+00
22 -0.495868D-03 -0.317721D-03 -0.282554D-04 -0.114655D-01 0.450706D-02
23 -0.775302D-03 -0.943663D-03 0.284390D-03 0.257330D+00 0.127546D+00
24 -0.157082D-03 -0.136226D-05 -0.298820D-03 -0.139140D-01 -0.189416D-01
ESTIMATED COVARIANCE MATRIX FOR PARAMETER ESTIMATES
11 12 13 14 15
________ ________ ________ ________ ________
11 0.190230D+02
12 -0.374440D+01 0.426757D+02
13 -0.115546D+01 0.118805D+01 0.698389D+01
14 0.178748D+01 0.164060D+01 -0.349853D+00 0.203450D+02
15 0.729962D+01 0.409862D+01 0.300423D+01 0.238653D+01 0.467326D+03
16 0.177427D+00 -0.868150D-02 0.653839D-02 0.662157D-02 0.203901D+01
17 -0.388976D-01 -0.426458D-01 -0.299953D-01 -0.338259D-02 -0.193291D+01
18 -0.333866D+01 0.481958D+01 -0.174642D+01 -0.135240D+01 0.508643D+02
19 0.158113D+00 0.410370D+00 -0.894557D-01 -0.207075D+00 0.124866D+01
20 0.934194D+00 -0.173440D+02 0.205496D+01 -0.847035D+01 0.511139D+01
21 0.803031D-01 -0.302096D+00 0.136788D-02 0.200335D+00 -0.523808D+00
22 -0.114466D-01 -0.242058D-01 -0.254049D-01 0.748884D-02 -0.209540D+00
23 -0.323407D-01 0.163265D+00 -0.239018D-01 -0.144298D-01 -0.448544D+00
24 -0.165669D-01 -0.782930D-02 -0.355557D-02 -0.299096D-01 -0.100049D-01
ESTIMATED COVARIANCE MATRIX FOR PARAMETER ESTIMATES
16 17 18 19 20
________ ________ ________ ________ ________
16 0.741613D+00
17 -0.571123D-01 0.221180D-01
18 0.392084D+00 -0.194825D+00 0.161416D+03
19 0.242272D+00 -0.136552D-01 -0.180812D+01 0.341557D+01
20 0.109388D-01 -0.147473D-02 -0.229870D+01 0.221891D+01 0.166329D+03
21 0.227399D-01 -0.105505D-01 0.324377D+01 -0.304210D+01 -0.296453D+01
22 -0.118746D-01 0.277990D-02 -0.714558D+00 0.822435D-02 0.509266D-01
23 0.252292D-01 -0.208582D-02 -0.399801D+00 -0.727744D-01 0.110386D+01
24 -0.386908D-02 0.666586D-03 0.652552D-01 -0.694525D-02 -0.757600D+00
ESTIMATED COVARIANCE MATRIX FOR PARAMETER ESTIMATES
21 22 23 24
________ ________ ________ ________
21 0.379590D+01
22 -0.511015D-01 0.845816D-02
23 0.793710D-01 0.486220D-03 0.212960D+00
24 0.824856D-02 -0.674485D-03 -0.158574D-01 0.769294D-02
ESTIMATED CORRELATION MATRIX FOR PARAMETER ESTIMATES
1 2 3 4 5
________ ________ ________ ________ ________
1 1.000
2 -0.172 1.000
3 0.087 -0.022 1.000
4 -0.020 0.075 -0.097 1.000
5 0.015 0.002 -0.036 0.017 1.000
6 -0.061 0.044 0.005 0.025 0.066
7 -0.022 0.038 0.025 0.091 -0.120
8 0.056 -0.001 0.016 -0.011 -0.010
9 -0.086 0.015 -0.025 -0.009 0.404
10 -0.034 -0.022 0.015 0.023 0.711
11 -0.039 0.022 -0.046 0.015 0.006
12 0.123 -0.039 0.058 -0.004 0.067
13 0.008 0.027 0.049 0.092 -0.049
14 0.008 0.032 0.104 0.024 -0.072
15 -0.272 0.006 -0.097 0.017 -0.139
16 0.002 -0.253 0.014 -0.085 0.033
17 0.039 -0.008 0.012 -0.013 -0.108
18 -0.124 0.026 -0.084 -0.055 0.059
19 0.021 -0.027 0.101 -0.035 -0.054
20 -0.077 0.008 0.058 0.037 -0.068
21 -0.010 -0.039 -0.142 0.036 0.057
22 0.003 -0.016 0.069 -0.026 -0.012
23 -0.040 -0.025 0.078 0.115 0.059
24 0.031 -0.031 -0.015 0.042 -0.013
ESTIMATED CORRELATION MATRIX FOR PARAMETER ESTIMATES
6 7 8 9 10
________ ________ ________ ________ ________
6 1.000
7 0.527 1.000
8 -0.005 0.083 1.000
9 -0.050 -0.046 -0.035 1.000
10 0.089 -0.053 0.002 0.301 1.000
11 0.158 -0.005 0.085 -0.042 0.111
12 0.003 0.085 0.245 0.031 0.025
13 0.454 0.508 0.040 -0.032 -0.125
14 0.022 -0.039 0.548 -0.062 -0.001
15 0.069 0.063 0.040 -0.103 -0.156
16 0.019 0.038 0.004 0.148 0.054
17 -0.073 -0.060 -0.054 -0.151 -0.092
18 -0.010 -0.082 0.020 0.052 0.007
19 -0.050 0.082 -0.021 -0.107 -0.021
20 0.057 0.043 -0.162 -0.011 0.008
21 0.056 -0.058 0.003 0.122 0.041
22 -0.144 -0.083 -0.006 -0.016 0.010
23 -0.045 -0.049 0.012 0.072 0.055
24 -0.048 0.000 -0.068 -0.020 -0.043
ESTIMATED CORRELATION MATRIX FOR PARAMETER ESTIMATES
11 12 13 14 15
________ ________ ________ ________ ________
11 1.000
12 -0.131 1.000
13 -0.100 0.069 1.000
14 0.091 0.056 -0.029 1.000
15 0.077 0.029 0.053 0.024 1.000
16 0.047 -0.002 0.003 0.002 0.110
17 -0.060 -0.044 -0.076 -0.005 -0.601
18 -0.060 0.058 -0.052 -0.024 0.185
19 0.020 0.034 -0.018 -0.025 0.031
20 0.017 -0.206 0.060 -0.146 0.018
21 0.009 -0.024 0.000 0.023 -0.012
22 -0.029 -0.040 -0.105 0.018 -0.105
23 -0.016 0.054 -0.020 -0.007 -0.045
24 -0.043 -0.014 -0.015 -0.076 -0.005
ESTIMATED CORRELATION MATRIX FOR PARAMETER ESTIMATES
16 17 18 19 20
________ ________ ________ ________ ________
16 1.000
17 -0.446 1.000
18 0.036 -0.103 1.000
19 0.152 -0.050 -0.077 1.000
20 0.001 -0.001 -0.014 0.093 1.000
21 0.014 -0.036 0.131 -0.845 -0.118
22 -0.150 0.203 -0.612 0.048 0.043
23 0.063 -0.030 -0.068 -0.085 0.185
24 -0.051 0.051 0.059 -0.043 -0.670
ESTIMATED CORRELATION MATRIX FOR PARAMETER ESTIMATES
21 22 23 24
________ ________ ________ ________
21 1.000
22 -0.285 1.000
23 0.088 0.011 1.000
24 0.048 -0.084 -0.392 1.000
|
aa352fa9ba81f32fa6a5a47ed32e25d1fe599041
|
99b4e2e61348ee847a78faf6eee6d345fde36028
|
/Toolbox Test/falltime/falltime7.sce
|
7dd6496f97460f732cfa9ec566ef5264361710b5
|
[] |
no_license
|
deecube/fosseetesting
|
ce66f691121021fa2f3474497397cded9d57658c
|
e353f1c03b0c0ef43abf44873e5e477b6adb6c7e
|
refs/heads/master
| 2021-01-20T11:34:43.535019
| 2016-09-27T05:12:48
| 2016-09-27T05:12:48
| 59,456,386
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 330
|
sce
|
falltime7.sce
|
x=[2.30256624769934;
2.29071803023829;
2.26283604900314;
2.35145015316178;
2.27686291358213;
2.29805616201205;
2.32805830340568;
2.30878734371402;
2.29343801980763;
2.23019030245799];
fs=4e6;
t=(1/fs);
[F,LT,UT]=falltime(x,fs);
disp(F);
disp(LT);
disp(UT);
//output
// 0.0000002
//
// 0.0000022
//
// 0.0000020
//
|
1759054d6cd6995ca1fb8cac7bc11e61a23c9876
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3772/CH5/EX5.1/Ex5_1.sce
|
943575825889f4966bd5146750980ecaecfbf70c
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 586
|
sce
|
Ex5_1.sce
|
// Problem 5.1,Page no.121
clc;clear;
close;
b=100 //mm //width of timber joist
d=200 //mm //depth of joist
L=3 //m //Length of beam
sigma=7 //KN/mm**2 //bending stress
w_1=5 //KN/mm**2 //unit weight of timber
//Calculations
w=0.1*0.2*1*5*100 //N/m //self weight of the joist
I_xx=1*12**-1*100*200**3 //mm**4 //M.I of section about N.A
//M=W*L+w*L**2*2**-1 //Max Bending moment
//Therefore,M=(3*W+450)
//using the relation M*I**-1=sigma*y**-1,we get
W=(((7*2*10**8)*(100*10**3*3)**-1)-450)*3**-1 //N //Max Load applied
//Result
printf("The Max value of Load applied is %.2f N",W)
|
39b55ff9ece7231242d43dc232bc48c524e8c9d6
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/491/CH11/EX11.1/11_1.sce
|
3d224d29a748abb56cf82b79a9189b64968779d5
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 664
|
sce
|
11_1.sce
|
E = 29000; // Modulus of elasticity in ksi
spl = 42 ; // Proportional limit in ksi
L = 25 ; // Total length of coloum in ft
n = 2.5 ; // factor of safety
I1 = 98 ; // Moment of inertia on horizontal axis
I2 = 21.7 ; // Moment of inertia on vertical axis
A = 8.25 ; // Area of the cross section
Pcr2 = (4*%pi^2*E*I2)/((L*12)^2) ; // Criticle load if column buckles in the plane of paper
Pcr1 = (%pi^2*E*I1)/((L*12)^2) ; // Criticle load if column buckles in the plane of paper
Pcr = min(Pcr1,Pcr2) ; // Minimum pressure would govern the design
scr = Pcr/A ; // Criticle stress
Pa = Pcr/n ; // Allowable load in k
disp("k",Pa,"The allowable load is ")
|
63ade8fdcbce4a197b8dd90b96bd643bc0e39b2d
|
8217f7986187902617ad1bf89cb789618a90dd0a
|
/source/2.5/tests/examples/print.man.tst
|
27c445f6f4635691206cf944b4a15f51616da4c7
|
[
"LicenseRef-scancode-public-domain",
"LicenseRef-scancode-warranty-disclaimer"
] |
permissive
|
clg55/Scilab-Workbench
|
4ebc01d2daea5026ad07fbfc53e16d4b29179502
|
9f8fd29c7f2a98100fa9aed8b58f6768d24a1875
|
refs/heads/master
| 2023-05-31T04:06:22.931111
| 2022-09-13T14:41:51
| 2022-09-13T14:41:51
| 258,270,193
| 0
| 1
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 110
|
tst
|
print.man.tst
|
clear;lines(0);
a=rand(3,3);p=poly([1,2,3],'s');l=list(1,'asdf',[1 2 3]);
print(%io(2),a,p,l)
write(%io(2),a)
|
11a10a730176e81a493ccec15a7e784833a4b54d
|
e806e966b06a53388fb300d89534354b222c2cad
|
/macros/erode.sci
|
336e2202a00999cb0033aaaac745fda8e1e76b7c
|
[] |
no_license
|
gursimarsingh/FOSSEE_Image_Processing_Toolbox
|
76c9d524193ade302c48efe11936fe640f4de200
|
a6df67e8bcd5159cde27556f4f6a315f8dc2215f
|
refs/heads/master
| 2021-01-22T02:08:45.870957
| 2017-01-15T21:26:17
| 2017-01-15T21:26:17
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 303
|
sci
|
erode.sci
|
function [out]=erode(input_image ,kernel,actualkernel,anchorX,anchorY)
input_image1=mattolist(input_image);
a=opencv_erode(input_image1 ,kernel,actualkernel,anchorX,anchorY);
dimension=size(a)
for i = 1:dimension
out(:,:,i)=a(i);
end
endfunction;
|
10d96318df9ffd73a7dc4bc815bce00d09ed8aee
|
3c47dba28e5d43bda9b77dca3b741855c25d4802
|
/microdaq/macros/microdaq_blocks/mdaq_dio_get.sci
|
4299264e436abbe7abe0a97b248c0e2ad0c68571
|
[
"BSD-3-Clause"
] |
permissive
|
microdaq/Scilab
|
78dd3b4a891e39ec20ebc4e9b77572fd12c90947
|
ce0baa6e6a1b56347c2fda5583fb1ccdb120afaf
|
refs/heads/master
| 2021-09-29T11:55:21.963637
| 2019-10-18T09:47:29
| 2019-10-18T09:47:29
| 35,049,912
| 6
| 3
|
BSD-3-Clause
| 2019-10-18T09:47:30
| 2015-05-04T17:48:48
|
Scilab
|
UTF-8
|
Scilab
| false
| false
| 2,236
|
sci
|
mdaq_dio_get.sci
|
function [x,y,typ] = mdaq_dio_get(job,arg1,arg2)
dio_get_desc = ["This block reads MicroDAQ DIO input state.";
"";
"DIO pin: 1...32";
"";
"Set block parameters:"];
x=[];y=[];typ=[];
select job
case 'set' then
x=arg1
model=arg1.model;
graphics=arg1.graphics;
exprs=graphics.exprs;
while %t do
try
getversion('scilab');
[ok,dio_pin,exprs]=..
scicos_getvalue(dio_get_desc,..
['DIO pin:'],..
list('vec',1),exprs)
catch
[ok,dio_pin,exprs]=..
scicos_getvalue(dio_get_desc,..
['DIO pin:'],..
list('vec',1),exprs)
end;
if ~ok then
break
end
if dio_pin > 32 | dio_pin < 1 then
ok = %f;
message("Wrong DIO pin selected, use value from 1 to 32!");
end
if ok then
[model,graphics,ok] = check_io(model,graphics, [], 1, 1, []);
graphics.exprs = exprs;
model.rpar = [];
model.ipar = [dio_pin];
model.dstate = [];
x.graphics = graphics;
x.model = model;
x.graphics.style=["mdaq_dio_get;blockWithLabel;verticalLabelPosition=center;displayedLabel=DIO%1$s;fontColor=#5f5f5f"]
break
end
end
case 'define' then
dio_pin = 1;
model=scicos_model()
model.sim=list('mdaq_dio_get_sim',5)
model.in =[]
model.outtyp=1
model.out=1
model.out2=1
model.evtin=1
model.rpar=[];
model.ipar=[dio_pin]
model.dstate=[];
model.blocktype='d'
model.dep_ut=[%t %f]
exprs=[sci2exp(dio_pin)]
gr_i=['xstringb(orig(1),orig(2),[''DIO'' ; string(dio_pin)],sz(1),sz(2),''fill'');']
x=standard_define([4 3],model,exprs,gr_i)
x.graphics.in_implicit=[];
x.graphics.exprs=exprs;
x.graphics.style=["blockWithLabel;verticalLabelPosition=center;displayedLabel=DIO%1$s;fontColor=#5f5f5f"]
end
endfunction
|
f80a57ea89a92acd2341ca76ef59310dbcf37ea2
|
e806e966b06a53388fb300d89534354b222c2cad
|
/macros/convexhull.sci
|
0937f555eec4158d1c81ea60bbec288d9cbae179
|
[] |
no_license
|
gursimarsingh/FOSSEE_Image_Processing_Toolbox
|
76c9d524193ade302c48efe11936fe640f4de200
|
a6df67e8bcd5159cde27556f4f6a315f8dc2215f
|
refs/heads/master
| 2021-01-22T02:08:45.870957
| 2017-01-15T21:26:17
| 2017-01-15T21:26:17
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 139
|
sci
|
convexhull.sci
|
function [out]=convexhull(pstData,clkwise,returnpoints)
out=opencv_convexhull(pstData,clkwise,returnpoints);
endfunction;
|
dae7e9c1571830fa01e436f485693eba167f086d
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1694/CH7/EX1.7/EX1_7.sce
|
a554924df8a6fe382889863c76a3df94991a92c5
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 434
|
sce
|
EX1_7.sce
|
clear;
clc;
printf("\nEx1.7\n");
//page no.-9
//given
rho=2700;.......//density of potassium bromide in kg/m^3
m=119;.........//molecular wt.
n=4;...........//molecules per unit cell for F.C.C.
N=6.02*10^26;...//avagadro no.
M=(n*m)/N;..........//mass in each unit cell
//as density=mass/volume, so volume is a^3
a=(M/rho)^(1/3)......//lattice constant in Angstrom
printf("\nlattice constant is 6.64 angstrom\n");
|
306a56e0bae8cbc034052684a25c1557a26ebccd
|
e16ed2b1e5415e101f10dbee6680d11e6fdb5e6d
|
/MPages/dcp_mp_acm_worklist/script/DCP_Patient_list_MPage_Scripts.tst
|
118d3671ea5788ae2949990bf7db529414dbe74c
|
[] |
no_license
|
mikeysjob/ccl
|
484145533a1e880c9369022c02c9756c86cfdce2
|
2e7b7cbc7a5bad0f035f744e1bab07a19d250f9a
|
refs/heads/master
| 2023-02-09T23:40:06.341187
| 2021-01-06T17:31:02
| 2021-01-06T17:31:02
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,573
|
tst
|
DCP_Patient_list_MPage_Scripts.tst
|
;Create new list
/*declare json = vc go
set json = '{"LISTREQUEST":{"patient_list_id":0.0,"name":"Test List 1","description":"","patient_list_type_cd":2177315703.0,"\
owner_prsnl_id":18811197.0,"arguments":[{"argument_name":"ACMPRSNLGROUPS","argument_value":"","parent_entity_id":20705740.0,"\
parent_entity_name":"PRSNL_GROUP"}{"argument_name":"PPRCODES","argument_value":"","parent_entity_id":1115.0,"parent_entity_name\
":"PERSON_PRSNL_RELTN"}{"argument_name":"GENDER","argument_value":"","parent_entity_id":363.0,"parent_entity_name":"CODE_VALUE"}{"argument_name":"AGEMIN","argument_value":"18","parent_entity_id":0.0,"parent_entity_name":""}]}}' go
execute mp_dcp_upd_patient_list "MINE", json go
*/
; Update existing list
declare json = vc go
set json = '{"LISTREQUEST":{"patient_list_id":4386056.0,"name":"Test List 1","description":"","patient_list_type_cd":2177315703.0,"\
owner_prsnl_id":18811197.0,"arguments":[{"argument_name":"ACMPRSNLGROUPS","argument_value":"","parent_entity_id":20523635.0,"\
parent_entity_name":"PRSNL_GROUP"}{"argument_name":"PPRCODES","argument_value":"","parent_entity_id":1115.0,"parent_entity_name\
":"PERSON_PRSNL_RELTN"}{"argument_name":"GENDER","argument_value":"","parent_entity_id":363.0,"parent_entity_name":"CODE_VALUE"}{"argument_name":"AGEMIN","argument_value":"18","parent_entity_id":0.0,"parent_entity_name":""}]}}' go
execute mp_dcp_upd_patient_list "MINE", json go
/*
free record request go
record request
(
1 owner_prsnl_id = f8
) go
set request->owner_prsnl_id = 18811197.0 go
mp_dcp_retrieve_patient_lists go*/
|
9ca502f1aec147b1fb636f7c40459cbe1f85aaa7
|
f782561b1f8fe3d916355f7823306c0ddfcd4e1c
|
/Assignment 8/TestCaseIntegerArithmetic.tst
|
374c04ea7f757c226d21625de474cfe6ca483cd9
|
[] |
no_license
|
rohit01010/Computer-System-Design
|
17866493199ecea3e65c15558d6e598b552fd537
|
24609e7712e0f996ebc468c7d45d5cfafad0da87
|
refs/heads/main
| 2023-06-21T21:28:29.274768
| 2021-07-19T16:23:52
| 2021-07-19T16:23:52
| 387,509,305
| 1
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 369
|
tst
|
TestCaseIntegerArithmetic.tst
|
load HackComputer.hdl;
output-file TestCaseIntegerArithmetic.out;
//Loading program to instruction memory
ROM32K load TestCaseIntegerArithmetic.hack;
//Expression being evaluated is d=a+b-c with -
//a=100
//b=50
//c=10
//Value of d is stored at address 19
output-list RAM64[19]%D1.3.1;
set reset 1;
tick,tock;
set reset 0;
output;
repeat 20 {
tick,tock;
}
output;
|
43d32c6009fea45397ebb691af5e2da4e3b882bb
|
cab1992a709a3eb977bef46f17eadab0c7bbbc5f
|
/modeling_simulation/ofc_smtransf.sce
|
ac1f9c6cb3dc33dffe1657420c9560c466dd286b
|
[] |
no_license
|
andreinakagawa/neuroscience
|
80ab70cfc2c7df7d7891373cc9c889b4b8f83dd6
|
681125f0e1248269665749ed8bf17d5cfe6c2fda
|
refs/heads/master
| 2021-06-07T09:37:51.810764
| 2017-10-05T11:32:03
| 2017-10-05T11:32:03
| 15,914,740
| 1
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 7,899
|
sce
|
ofc_smtransf.sce
|
//------------------------------------------------------------------------------
// FEDERAL UNIVERSITY OF UBERLANDIA
// Faculty of Electrical Engineering
// Biomedical Engineering Lab
// Uberlandia, Brazil
//------------------------------------------------------------------------------
// Author: Andrei Nakagawa, MSc
// Contact: andrei.ufu@gmail.com
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
// Description: Combining a sensorimotor transformation
// function with optimal feedback control to explain online
// corrections to visual perturbations.
//------------------------------------------------------------------------------
// Algorithm: Before running the simulation, find the optimal
// time-varying feedback gains according to the task goal.
// Using a delayed visual feedback, whenever target location
// in motor space changes, the gains should be recomputed
// given the amount of time left to complete the reach and
// applied to the simulation. Corrections are only necessary
// if cursor is not inside the target (to avoid error oscillations).
// Delayed feedback and reaction times will be combined
// (see Li and Todorov, 2007) with a constant value (200 ms).
//------------------------------------------------------------------------------
//Kalman filter
function [xplus,pplus] = kalman(F,G,H,Q,R,xk,pk,yk,uk)
//time update (prediction)
xminus = F*xk + G*uk;
pminus = F*pk*F' + G*Q*G';
//measurement update (correction)
measureError = yk - (H*xminus);
kalmanGain = pminus*H' * inv(H*pminus*H' + R);
//state estimate
xplus = xminus + kalmanGain * measureError;
//covariance
pplus = pminus - kalmanGain*H*pminus;
endfunction
//------------------------------------------------------------------------------
//Optimal time-varying feedback gains
function Kopt = computeGain(Ad,Bd,Qd,Rd,S0,time)
Kopt = [];
for k=1:length(time)
//Calculating the time-varying gain
K = inv(Bd'*S0*Bd + Rd)*(Bd'*S0*Ad);
//New riccati solution
S0 = Ad'*S0*Ad - Ad'*S0*Bd*((Rd + Bd'*S0*Bd)^-1)*Bd'*S0*Ad + Qd;
//Stores the gain
Kopt = [Kopt K];
end
endfunction
//------------------------------------------------------------------------------
//States
//Position and velocity in X
//Position and velocity in Y
//Inputs
//Force in X and Y
function [Ac,Bc,Cc] = pointMassModel(m)
Ac = [0 1 0 0; 0 0 0 0; 0 0 0 1; 0 0 0 0];
Bc = [0 0; 1/m 0; 0 0; 0 1/m];
Cc = eye(size(Ac,1),size(Ac,2))
endfunction
//------------------------------------------------------------------------------
//Function that specifies the task goal in motor space according to visual space
function mtarget=smTransf(vcursor, vtarget, mhand)
//movement vector in visual space
vvector = vtarget - vcursor;
//magnitude
magnitude = norm(vvector);
//direction
if(vvector(1) == 0)
direction = (90*%pi)/180;
else
direction = abs(atan(vvector(2)/vvector(1)));
end
//estimating target location in motor space
mtarget = zeros(1,2);
//x-axis
mtarget(1) = mhand(1) + (sign(vvector(1)) * magnitude * cos(direction));
//y-axis
mtarget(2) = mhand(2) + (sign(vvector(2)) * magnitude * sin(direction));
endfunction
//------------------------------------------------------------------------------
[A,B,C] = pointMassModel(1);
//------------------------------------------------------------------------------
//Simulation parameters
t0=0;
tf=6;
dt = 0.01;
t = t0:dt:tf;
//Continuous-time system
contSys = syslin('c',A,B,C);
//Discrete-time system
discSys = dscr(contSys,dt);
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
//Weight matrices
Qd=diag([0.1,0.1,0.1,0.1]);
Rd=diag([0.001,0.001]);
//Discrete riccati
Ad = discSys(2); //A
Bd = discSys(3); //B
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
//Differential Riccati Equation - Discrete-time
//Calculating the solution to riccati for each instant in time
//and then finding the time-varying gain for each time step
//------------------------------------------------------------------------------
Sdisc = [];
Kdisc = [];
S0 = diag([50,0,50,0]); //Estimate for the Riccati matrix
for k=1:length(t)
//Calculating the time-varying gain
K = inv(Bd'*S0*Bd + Rd)*(Bd'*S0*Ad);
//New riccati solution
S0 = Ad'*S0*Ad - Ad'*S0*Bd*((Rd + Bd'*S0*Bd)^-1)*Bd'*S0*Ad + Qd;
//Stores the riccati solution
Sdisc = [Sdisc S0];
//Stores the gain
Kdisc = [Kdisc K];
end
//------------------------------------------------------------------------------
cont = 1;
//Desired setpoints or reference trajectory
xd = [0;0;5;0];
vtarget = [xd(1),xd(3)];
xint = []; //stores all the states during integration
uint = []; //stores all the inputs during integration
costQ = [0]; //cost of states
costR = [0]; //cost of control
x0 = [0;0;0;0]; //temporary variable for storing states
u0 = [0;0];
x = x0;
xint = [xint x0];
uint = [uint u0];
//Perturbation
//Rotation matrix
perturbation = 30; //degrees
Ck = [cos((perturbation*%pi)/180) 0 -sin((perturbation*%pi)/180) 0; sin((perturbation*%pi)/180) 0 cos((perturbation*%pi)/180) 0];
yint = [x0];
yaux = x0;
//Delayed feedback and reaction time
delay = 0.200; //Every 200 ms, target in motor space will be updated
t0 = t(1); //first time-step
//Target jump
targetJump = 0;
//------------------------------------------------------------------------------
for k=1:length(t)-1
//Calculating the input (force)
u = -Kdisc(:,cont:cont+3) * (x-xd);
//Calculating the new states
x = Ad*x + Bd*u;
//perturbation
y = Ck*x;
y = [y(1);0;y(2);0];
aux = [yint y];
yvx = diff(yint(1,:));
if yvx == [] then
yvx = 0;
end
yvy = diff(yint(3,:));
if yvy == [] then
yvy = 0;
end
yaux(1) = y(1);
yaux(2) = yvx($);
yaux(3) = y(3);
yaux(4) = yvy($);
yint = [yint yaux];
//Checks if visual feedback should be updated
if(t(k) - t0 >= delay)
t0 = t(k);
vcursor = [yint(1,k),yint(3,k)];
//vtarget = [xd(1), xd(3)];
mhand = [xint(1,k),xint(3,k)];
motorTarget = smTransf(vcursor,vtarget,mhand);
if(motorTarget ~= [xd(1),xd(3)])
xd(1) = motorTarget(1);
xd(3) = motorTarget(2);
newTime = t(k:$);
Kdisc = computeGain(Ad,Bd,Qd,Rd,S0,newTime);
cont = 1;
disp('updated');
end
end
//Storing the new states
xint = [xint x];
//Storing the new inputs
uint = [uint u];
//Stores the cost in this step
costQ = [costQ (x-xd)'*Qd*(x-xd)];
//Stores the cost in this step
costR = [costR u'*Rd*u];
//Increments the counter to loop through the gain matrix
cont = cont + 4;
end
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
figure();
plot(xint(1,:),xint(3,:),'k');
plot(yint(1,:),yint(3,:),'b');
plot(xint(1,$),xint(3,$),'k.');
plot(vtarget(1),vtarget(2),'r.');
plot(x0(1),x0(3),'b.');
xlabel('x-axis','fontsize',4);
ylabel('y-axis','fontsize',4);
legend('Hand movement', 'Cursor motion');
a=get("current_axes");
a.font_size=3;
ax=gca();
ax.data_bounds=[-3 -1; 3 6];
ax.labels_font_size=3;
figure();
plot(t,xint(2,:),'r');
plot(t,xint(4,:),'g');
plot(t,uint(1,:),'k');
plot(t,uint(2,:),'k');
figure();
plot(t,costQ,'r');
plot(t,costR,'b');
title("Cost");
//------------------------------------------------------------------------------
|
e727f074fa33e58a79df0f81e971b68da907bf94
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/149/CH2/EX2.51/ex51.sce
|
064d172ed8f9155e25bd68447ce828b114f88976
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 316
|
sce
|
ex51.sce
|
clear
clc
disp("2*x1*x2+2*x1*x3-2*x2*x3 ")
disp("The matrix of the given quadratic form is ")
A=[0 1 1;1 0 -1;1 -1 0]
disp("let R represents the matrix of transformation and P represents a diagonal matrix whose values are the eigen values of A.then ")
[R P]=spec(A)
disp("so,canonical form is -2*x^2+y^2+z^2")
|
eb8b6b6799e3590543a92f2c0fe094d2dcc07110
|
8217f7986187902617ad1bf89cb789618a90dd0a
|
/source/2.5/tests/examples/genlib.man.tst
|
db612b1c6314ea69bc46cb9f598c4bd145a54d87
|
[
"LicenseRef-scancode-public-domain",
"LicenseRef-scancode-warranty-disclaimer"
] |
permissive
|
clg55/Scilab-Workbench
|
4ebc01d2daea5026ad07fbfc53e16d4b29179502
|
9f8fd29c7f2a98100fa9aed8b58f6768d24a1875
|
refs/heads/master
| 2023-05-31T04:06:22.931111
| 2022-09-13T14:41:51
| 2022-09-13T14:41:51
| 258,270,193
| 0
| 1
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 62
|
tst
|
genlib.man.tst
|
clear;lines(0);
genlib('auto1','SCI/macros/auto')
disp(auto1)
|
1cfbc9891064f2dcbef375badebc0c7d9e0dad31
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1709/CH10/EX10.1/10_1.sce
|
cc50f27f8e647d2f3e73263724070d57454a4e91
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 199
|
sce
|
10_1.sce
|
clc
//Initialization of variables
m=2
M=28
M2=32
PN=300 //psia
Pt=400 //psia
//calculations
nN=m/M
PO=Pt-PN
nO=nN*PO/PN
mO=M2*nO
//results
printf("Mass of oxygen added = %.3f lbm",mO)
|
4f06622c43c6e007052c094a1f81a341e04da4db
|
f04d3d47f893de08cd99a31b4870112915b80d5b
|
/Datasets/australian/data5.tst
|
034593e9f0d8b73e32076476fe89858b59ecd8c7
|
[] |
no_license
|
MesumRaza/MyWorkInPython
|
f5364b8514943e44c7200123653da9f4551251b1
|
bd8c9b3ca2fb02ae6d2b626054fa3cd32c28b330
|
refs/heads/master
| 2021-08-19T21:46:41.412995
| 2017-11-27T13:37:52
| 2017-11-27T13:37:52
| 111,728,604
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 5,355
|
tst
|
data5.tst
|
0 0.651579 0.0119643 0.5 0.153846 0.5 0.0350877 1 0 0 1 0.5 0.126 0.02197 class0
1 0.037594 0.0298214 0.5 0.461538 0.375 0.00298246 1 0 0 0 0 0.1 0 class0
1 0.286917 0.0892857 0.5 0.923077 0.875 0.0964912 1 1 0.0895522 0 0.5 0.08 0.02072 class1
1 0.518797 0.895893 0.5 0.615385 0.375 0.0614035 1 1 0.0447761 0 0.5 0.06 0.00014 class1
1 0.307068 0.0982143 0.5 0.153846 0.5 0.0877193 0 0 0 1 0.5 0.116 0.002 class0
1 0.0688722 0.0432143 0 0.692308 0.125 0 0 0 0 0 0.5 0.05 0 class0
1 0.458647 0.0178571 0.5 0.461538 0.375 0.377193 1 0 0 0 0 0.2 0 class0
1 0.378496 0.0625 0.5 0.230769 0.375 0.0175439 0 0 0 1 0.5 0.15 2e-05 class0
1 0.26812 0.0267857 0 0.384615 0.375 0.122807 0 0 0 1 0.5 0.16 0 class0
1 0.170376 0.0610714 0.5 1 0.375 0.0584211 1 1 0.0149254 1 0.5 0.1975 0.0002 class1
1 0.776992 0.392857 0.5 0.692308 1 0.701754 1 1 0.104478 1 0.5 0.011 0 class1
1 0.414737 0 0.5 0.538462 0.5 0.526316 1 0 0 0 0.5 0 0 class1
1 0.263158 0.0401786 0.5 0 0 0 0 1 0.0149254 0 0.5 0.048 0.00019 class0
0 0.345865 0.168214 0.5 0 0 0 0 0 0 0 0.5 0.08 0 class0
1 0.279398 0.267857 0.5 0.692308 0.5 0.055614 1 0 0 1 0 0.21 0 class0
0 0.273233 0.111607 0.5 0 0 0.106667 0 1 0.0298507 1 0.5 0.1 4e-05 class0
1 0.166617 0.0982143 0.5 0.538462 0.375 0.0789474 1 1 0.0895522 0 0.5 0.092 0.006 class1
1 0.122857 0.0192857 0 1 0.375 0.00140351 1 1 0.0149254 1 0.5 0.42 0.00059 class1
1 0.308271 0.107143 0.5 0.923077 0.875 0.260175 1 0 0 1 0.5 0 0 class1
1 0.572632 0.107143 0 0 0 0.0526316 0 0 0 0 0.5 0.09 4e-05 class0
0 0.26797 0.0535714 0.5 0 0 0 0 1 0.0298507 1 0.5 0.1 0.00105 class0
1 0.370977 0.0251786 0.5 0.538462 0.375 0.0131579 0 1 0.0298507 0 0.5 0.1125 0.005 class0
1 0.382256 0.0610714 0.5 1 0.375 0.00438596 1 1 0.0746269 1 0.5 0.24 0 class1
1 0.0664662 0.0878571 0.5 0.538462 0.75 0.0336842 0 1 0.0298507 1 0.5 0.08 0.00587 class0
1 0.379699 0.178571 0.5 0.923077 0.375 0.122807 1 1 0.149254 1 0.5 0 0 class1
1 0.093985 0.394464 0.5 0.538462 0.375 0.0701754 0 0 0 1 0.5 0.068 0 class0
1 0.285714 0.0833929 0.5 0.0769231 0.875 0.201754 0 0 0 1 0.5 0.146 0 class0
1 0.0726316 0.203929 0.5 0.0769231 0.375 0.0189474 0 0 0 0 0.5 0.06 0 class0
0 0.0312782 0.272321 0.5 0.769231 0.375 0.00438596 0 1 0.0149254 1 0.5 0 0.0016 class0
1 0.384662 0.209821 0.5 0.923077 0.875 0.350877 1 1 0.208955 1 0.5 0.1995 0 class1
0 0.0876692 0.02375 0.5 0.615385 0.375 0.0584211 0 0 0 0 0.5 0.11 5e-05 class0
1 0.113985 0.375 0.5 0.538462 0.375 0.105263 1 0 0 1 0.5 0 0 class1
0 0.134135 0.0267857 0.5 0.538462 0.375 0.0701754 0 1 0.0298507 1 0.5 0.1 0.00394 class0
1 0.179248 0.116071 0.5 0.538462 0.875 0.0803509 0 1 0.0149254 1 0.5 0.208 0.00021 class0
1 0.110226 0.360179 0 0.692308 0.875 0.0438596 0 0 0 0 0.5 0.13 0 class0
0 0.530075 0.0535714 0.5 0.307692 0.25 0 1 0 0 1 0.5 0.05 0.00027 class0
1 0.10406 0.188929 0.5 0.769231 0.375 0.0131579 1 1 0.0149254 0 0.5 0.08 0 class0
0 0.0890226 0.0075 0.5 0.769231 0.875 0.0101754 1 1 0.164179 0 0.5 0.04 0.00099 class1
1 0.121504 0.00892857 0.5 0.0769231 0.875 0.0233333 1 0 0 1 0.5 0 0 class1
1 0.196692 0.0192857 0.5 0.230769 0 0 0 0 0 0 0.5 0.05 0 class0
0 0.373383 0.178571 0.5 0.923077 0.375 0.473684 1 0 0 1 0.5 0.49 0 class0
0 0.546316 0.447857 0.5 0.384615 0.375 0.0803509 1 1 0.0447761 1 0.5 0.078 0 class1
0 0.0300752 0.0133929 0.5 0.538462 0.375 0.0350877 0 0 0 0 0.5 0.06 0.00018 class0
0 0.161654 0.455357 0.5 0.538462 0.5 0.166667 1 1 0.0298507 0 0.5 0.0365 0.00444 class1
1 0.109023 0.171071 0 0.615385 0.375 0.0789474 1 1 0.0149254 1 0.5 0.04 0.003 class1
1 0.125263 0.392857 0.5 0.923077 0.375 0.0233333 1 0 0 0 0.5 0.05 0 class1
1 0.613985 0.33625 0.5 0 0 0.505789 1 1 0.164179 1 0.5 0.015 0.003 class1
1 0.0651128 0.196429 0.5 0.230769 0.375 0.0175439 1 0 0 0 0.5 0.04 0 class1
1 0.344662 0.157679 0 0.230769 0.375 0.00877193 1 1 0.149254 1 0.5 0.16 0 class1
1 0.367218 0.361607 0.5 1 0.375 0.0877193 1 1 0.0895522 0 0.5 0.26 0.00196 class1
1 0.121504 0.055 0.5 0.230769 0.375 0.00298246 0 0 0 1 0.5 0.178 0 class0
0 0.573985 0.232143 0.5 0.153846 0.5 0.108246 0 0 0 1 0.5 0.0365 0 class0
1 0.126617 0.0803571 0.5 0.153846 0.375 0.00438596 0 0 0 0 0.5 0.08 0.0001 class0
1 0.581504 0.0535714 0.5 0.0769231 0.375 0.131579 0 0 0 1 0.5 0 0.0035 class0
0 0.709323 0.178571 0.5 0.384615 0.375 0.140351 1 1 0.0597015 0 0.5 0 0.00099 class1
1 0.0965414 0.200893 0.5 0.615385 0.375 0.06 1 0 0 0 0 0.06 0 class1
1 0.142857 0.142857 0.5 0.538462 0.5 0.00877193 1 0 0 1 0.5 0.08 0 class1
1 0.337143 0.015 0 0.615385 0.375 0.0101754 0 0 0 1 0.5 0.1545 2e-05 class0
0 0.428571 0.0625 0 0.538462 0.375 0 0 0 0 1 0.5 0.075 1e-05 class0
1 0.14782 0.0298214 0.5 0.153846 0.875 0.00298246 0 0 0 1 0.5 0.11 5e-05 class0
0 0.334586 0.0357143 0.5 0.538462 0.375 0.0701754 1 1 0.164179 0 0.5 0 0.00456 class1
1 0.388421 0.178571 0.5 0 0 0 0 1 0.0298507 0 0.5 0.0085 1e-05 class0
0 0.076391 0.157679 0 0.538462 0.875 0.105263 1 0 0 0 0.5 0.12 0 class1
1 0.203008 0.0223214 0.5 0.384615 0.375 0.0159649 1 0 0 1 0.5 0.1 0 class0
1 0.280752 0.107143 0.5 0.0769231 0.375 0.00578947 0 0 0 1 0.5 0.06 0 class0
1 0.0852632 0.0535714 0 0.923077 0.375 0.0701754 1 0 0 1 0.5 0.05 0.0002 class0
0 0.132782 0.383929 0.5 0.769231 0.375 0.0145614 1 1 0.0746269 1 0.5 0 0.0056 class1
1 0.393534 0.221786 0.5 0.769231 0.375 0.00140351 1 1 0.0149254 0 0.5 0.1 0.003 class1
1 0.134135 0.00589286 0.5 0.538462 0.25 0.0789474 0 0 0 1 0 0 0 class1
|
665df5c75fc026211b4e8940246c265790395bb9
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/174/CH2/EX2.2/example2_2.sce
|
04c4ab0b376d83613fcd9709393cead7e9a42097
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 560
|
sce
|
example2_2.sce
|
// To convert flux density to different units
// Modern Electronic Instrumentation And Measurement Techniques
// By Albert D. Helfrick, William D. Cooper
// First Edition Second Impression, 2009
// Dorling Kindersly Pvt. Ltd. India
// Example 2-2 in Page 29
clear; clc; close;
// Given data
B_cm = 20; // flux density in maxwell/sq.cm
//Calculations
B_in = B_cm *2.54^2; // converting to lines/sq.inch
printf("The flux density in lines/sq.in = %d lines/(in^2)",B_in);
//Result
// The flux density in lines/sq.in = 129 lines/(in^2)
|
36b7cb21779591d53a2a521d95822c202ea25e63
|
8217f7986187902617ad1bf89cb789618a90dd0a
|
/source/2.3/macros/percent/%lsslp.sci
|
0998ebd77ca445fe16316ed354c26686d9c3f725
|
[
"MIT",
"LicenseRef-scancode-warranty-disclaimer",
"LicenseRef-scancode-public-domain"
] |
permissive
|
clg55/Scilab-Workbench
|
4ebc01d2daea5026ad07fbfc53e16d4b29179502
|
9f8fd29c7f2a98100fa9aed8b58f6768d24a1875
|
refs/heads/master
| 2023-05-31T04:06:22.931111
| 2022-09-13T14:41:51
| 2022-09-13T14:41:51
| 258,270,193
| 0
| 1
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 192
|
sci
|
%lsslp.sci
|
function [sr]=%lsslp(s,p)
//sr=%lsslp(s,p) <=> sr=s\p
// p polynomial matrix
// s syslin list
//!
//origine S Steer INRIA 1992
sr=s\tlist(['lss','A','B','C','D','X0','dt'],[],[],[],p,[],[])
|
d2408956342be88c43c1d2e18686c4b6632289ad
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1133/CH8/EX8.32/Example8_32.sce
|
643f04818ebc031c43d16bc8044c692e7bfd7929
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 533
|
sce
|
Example8_32.sce
|
//Example 8.32
clc
disp("Cascading four 74161 (each 4-bit) counters we get 16 (4 x 4) bit counter as shown in fig 8.63.")
disp("Therefore, we get 2^16 = 65,536 modulus counter")
disp("However, we require divide-by-40,000 counter. The difference between 65,536 and 40,000 is 25,536, which is the number of states those must be skipped from the full modulus sequence. This can be achieved by presetting the counting from 25,536 upto 65,536 on each ful cycle. Therefore, each full cycle of the counter consists of 40,000 states.")
|
b9840d275a3208adc4dddf1c98ba5aea701109a9
|
b6b875fb04ec6df2c0fb0d28f36962fa9aebb2bf
|
/TD4/Scripts/Service 3/serveur3_histo.sce
|
28e13016bc68505d2ab95b58528fc2f908346598
|
[] |
no_license
|
MFrizzy/Modelisation
|
51794b2edf421f9d2206cb73972d8d8d7b1e9759
|
0ca819afbcbe00f58f3bbaa8fc97164ae2c1d3cb
|
refs/heads/master
| 2021-08-29T12:02:20.042037
| 2017-12-13T22:39:21
| 2017-12-13T22:39:21
| 106,943,303
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 539
|
sce
|
serveur3_histo.sce
|
clf;
clear;
clc;
load('C:\Users\tangu\OneDrive\Documents\GitHub\Modelisation\TD4\NetworkData.sod')
// Extraction des temps de service
index_bool = ( data(:, 3) == 3 )
tabS3 = data(index_bool, :)
t_s3 = tabS3(1:$,4);
deciles=perctl(t_s3,10:10:90);
for i=2:10
ClassesDeciles(i)=deciles(i-1)
end
ClassesDeciles(1)=min(t_s3)
ClassesDeciles(11)=max(t_s3)
histplot(ClassesDeciles,t_s3,style=2)
legend("Histogramme d isofréquence du serveur 3")
// Définition des paramètres d'affichages
a=gca();
a.x_location = "origin";
a.grid=[5,5];
|
a381d5caf1b63c68cff0325a02d67150fe743b26
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1271/CH22/EX22.1/example22_1.sce
|
309428687d617a917ee46c9285929d76abadcef4
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 306
|
sce
|
example22_1.sce
|
clc
// Given that
d = 12e-6 // diameter in m
d_ = 90e-9 // diameter of nanoparticle in m
// Sample Problem 1 on page no. 22.13
printf("\n # PROBLEM 1 # \n")
r = d / 2
r_ = d_ / 2
k = r / 3
k_ = r_ / 3
R = k_ / k
printf("\n The ratio of the value of Nb/Ns of spherical particle and nanoparticle = %e .",R)
|
ff6f9a5c14d1f6671275720242bbd82b1db130ee
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/281/CH12/EX12.4/example12_4.sce
|
54de3ae47cc157f5b49739115d667c2a7b587436
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 2,007
|
sce
|
example12_4.sce
|
disp('chapter 12 ex12.4')
disp('given')
disp("output =10V to 15V")
Vomax=15
disp("max load current=4000mA")
Il=.4
disp("Vsmin=Vomax+3 V")
Vsmin=Vomax+3
disp('volts',Vsmin)
disp("allowing Vrs=3V(p to p)")
Vrs=3
disp("Vs=Vsmin+Vrs/2")
Vs=Vsmin+Vrs/2
disp('volts',Vs)
disp("ZENER CIRCUIT")
disp("let Vz=Vo/2")
Vz=Vomax/2
disp('volts',Vz)
disp("Iz=20mA")
Iz=.02
disp("R1=(Vo-Vz)/Iz")
R1=(Vomax-Vz)/Iz
disp('ohms',R1)
disp("R1=330 ohm std value")
R1=390
disp("POTENTIAL DIVIDER")
disp("let I2>>Ibmax I2=50uA Vomin=10")
I2=50*10^(-6)
Vomin=10
disp("R2=(Vomin-Vz)/I2")
Vz=7.5
R2=(Vomin-Vz)/I2
disp('ohms',R2)
disp("R2=47kohm std value")
R2=47000
disp("I2=(Vomin-Vz)/R2")
I2=(Vomin-Vz)/R2
disp('amperes',I2)
disp("R34=R3+R4=Vz/Iz")
R34=Vz/I2
disp('ohms',R34)
disp("when Vo is at its max,moving contact is at bottom of R4")
disp("I2=Vomax/(R2+R34)")
I2=Vomax/(R2+R34)
disp('amperes',I2)
disp("R3=Vz/Iz")
R3=Vz/I2
disp('ohms',R3)
disp("use 100 k ohm std value")
R3=100000
disp("R4=(R3+R4)-R3")
R4=R34-R3
disp('ohms',R4)
disp("use 50 k ohm std value")
disp("CAPACITOR")
disp("select C1=100uF")
C1=100*10^(-6)
disp("Q1 specification")
disp("Vcemax=Vsmax=Vs+Vrs/2")
Vcemax=Vs+Vrs/2
disp('volts',Vcemax)
Ie=Il
disp("P=Vce*Il=(Vs-Vomin)*Il")
P=(Vs-Vomin)*Il
disp('watts',P)
disp("A 2N3055 is a suitable device")
disp("Q2 specification")
disp("Vcemax=Vsmax=Vs+Vrs/2")
Vcemax=Vs+Vrs/2
disp('volts',Vcemax)
disp("Ie=Il/hFE1 ,hFE1=20 for Q1")
hFE1=20
Ie=Il/hFE1
disp('amperes',Ie)
disp("P=Vce*Il=(Vs-Vomin)*Il")
P=(Vs-Vomin)*Il
disp('watts',P)
disp("A 2N3904 is a suitable device")
disp("R5 Calculation")
disp("let Ie2min=0.5mA,Vbe1=0.7")
Ie2min=0.5*10^(-3)
Vbe1=0.7
disp("R5=(Vomin+Vbe1)/Ie2min")
R5=(Vomin+Vbe1)/Ie2min
disp('ohms',R5)
disp("R5=18kohm std value")
disp("OPERATIONAL AMPLIFIER")
disp("because I2 is sselected for bipolar opamp either a bipolar or BIFEt opamp can be used")
disp("supply voltage Vs=19.5V")
Vs=19.5
disp("Input supply voltage range=Vs/2-Vz")
ipvoltage=(Vs/2)-Vz
disp('volts',ipvoltage)
|
95886c0179991db799d2f4420c8b2d9947454283
|
cb3612e7507309a5c30d1ea7f640c0ccde8f8bf9
|
/unattended_rivalry.sce
|
8e36486e63d65472d2c58c4409f79d77dc293416
|
[] |
no_license
|
aforehand/thesis
|
b797c6646b5f6bc48d58c3df318c014038fc6c84
|
8189db373898e264544a5d9d52fc00296ea4abb6
|
refs/heads/master
| 2021-01-01T04:54:01.627632
| 2017-07-26T16:46:02
| 2017-07-26T16:46:02
| 97,270,443
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 13,269
|
sce
|
unattended_rivalry.sce
|
scenario = "Unattended Rivalry";
response_matching = simple_matching;
active_buttons = 2;
button_codes = 1,2;
default_font = "Calibri";
default_font_size = 18;
default_text_color = 100,100,100;
default_clear_active_stimuli = false;
response_logging = log_all;
write_codes = true;
pulse_width = 6;
response_port_output=true;
begin;
#intro text
text {caption = "Click the mouse when you see a letter from two positions back repeated. Focus only on the letters at the center of the screen and do not move during the experiment.\n
When instructed, click to continue.\n
Good luck!"; max_text_width = 400;
} intro_text;
#fixation text
text{caption = "When you have focused on the letter above, click to begin the experiment"; max_text_width = 400;} fixation_text;
#feedback text
text {caption = " ";} feedback_text;
#trial beginning text
text {caption = "Trial beginning...";} next_trial;
#end of trial text
text {caption = "Finished!\nPlease wait for further instructions.";} end_text;
#letter array
array {
bitmap {filename = "\letters\\A.png";} A;
bitmap {filename = "\letters\\B.png";} B;
bitmap {filename = "\letters\\C.png";} C;
bitmap {filename = "\letters\\D.png";} D;
bitmap {filename = "\letters\\E.png";} E;
bitmap {filename = "\letters\\F.png";} F;
bitmap {filename = "\letters\\G.png";} G;
bitmap {filename = "\letters\\H.png";} H;
bitmap {filename = "\letters\\I.png";} I;
bitmap {filename = "\letters\\J.png";} J;
bitmap {filename = "\letters\\K.png";} K;
bitmap {filename = "\letters\\L.png";} L;
bitmap {filename = "\letters\\M.png";} M;
bitmap {filename = "\letters\\N.png";} N;
bitmap {filename = "\letters\\O.png";} O;
bitmap {filename = "\letters\\P.png";} P;
bitmap {filename = "\letters\\Q.png";} Q;
bitmap {filename = "\letters\\R.png";} R;
bitmap {filename = "\letters\\S.png";} S;
bitmap {filename = "\letters\\T.png";} T;
bitmap {filename = "\letters\\U.png";} U;
bitmap {filename = "\letters\\V.png";} V;
bitmap {filename = "\letters\\W.png";} W;
bitmap {filename = "\letters\\X.png";} X;
bitmap {filename = "\letters\\Y.png";} Y;
bitmap {filename = "\letters\\Z.png";} Z;
} letters;
#template
bitmap {filename = "\letters\\template.png";} template;
#frequency-tagged houses
array {
LOOP $i 10;
bitmap {filename = "house_tag_$i.png";} "house$i";
ENDLOOP;
} houses;
#frequency-tagged faces
array {
LOOP $i 10;
bitmap {filename = "face_tag_$i.png";} "face$i";
ENDLOOP;
} faces;
#frequency-tagged boxes
array {
LOOP $i 10;
bitmap {filename = "box_tag_$i.png";} "box$i";
ENDLOOP;
} boxes;
#frequency-tagged helmets
array {
LOOP $i 10;
bitmap {filename = "helmet_tag_$i.png";} "helmet$i";
ENDLOOP;
} helmets;
#helmet-face transitions
array {
LOOP $i 49;
bitmap {filename = "helmet_face_$i.png";} "helmet-face$i";
ENDLOOP;
} helmets_faces;
array {
LOOP $i 49;
bitmap {filename = "helmet_face_alt_$i.png";} "helmet-face-alt$i";
ENDLOOP;
} helmets_faces_alt;
array {
LOOP $i 49;
bitmap {filename = "helmet_face_dif_$i.png";} "helmet-face-dif$i";
ENDLOOP;
} helmets_faces_dif;
#box-house transitions
array {
LOOP $i 49;
bitmap {filename = "box_house_$i.png";} "box-house$i";
ENDLOOP;
} boxes_houses;
array {
LOOP $i 49;
bitmap {filename = "box_house_alt_$i.png";} "box-house-alt$i";
ENDLOOP;
} boxes_houses_alt;
array {
LOOP $i 49;
bitmap {filename = "box_house_dif_$i.png";} "box-house-dif$i";
ENDLOOP;
} boxes_houses_dif;
#placeholder image
bitmap {filename = "lines_small.png";} placeholder;
#fixation mark
picture {
bitmap {filename = "lines.png";}; x = 0; y = 0;
bitmap A; x = -250; y = 0;
bitmap A; x = 250; y = 0;
text fixation_text; x = -250; y = -250;
text fixation_text; x = 250; y = -250;
} fixation_pic;
#trial picture
picture {
bitmap {filename = "lines.png";}; x = 0; y = 0;
bitmap placeholder; x = -250; y = 75;
bitmap template; x = -250; y = 0;
bitmap placeholder; x = 250; y = 75;
bitmap template; x = 250; y = 0;
} trial_pic;
#wait trial
trial {
trial_duration = forever;
trial_type = first_response;
picture {
text intro_text;
x = -250; y = 0;
text intro_text;
x = 250; y = 0;
};
} wait_trial;
#trial beginning
trial {
trial_duration = 1000;
trial_type =fixed;
picture {
text next_trial;
x = -250; y = 0;
text next_trial;
x = 250; y = 0;
};
} begin_trial;
#fixation trial
trial {
trial_duration = forever;
trial_type = first_response;
picture fixation_pic;
} fixation_trial;
#stimulus trial; variable duration
trial {
trial_type = fixed;
terminator_button = 2;
stimulus_event {
picture trial_pic;
stimulus_time_in = 100;
stimulus_time_out = 2000;
} stim_event;
} stim_trial;
#feedback trial
trial {
trial_duration = forever;
trial_type = first_response;
picture {
text feedback_text;
x = -250; y = 0;
text feedback_text;
x = 250; y = 0;
}feedback_pic;
} feedback_trial;
#end trial
trial {
trial_duration = forever;
trial_type = first_response;
stimulus_event{
picture {
text end_text;
x = -250; y = 0;
text end_text;
x = 250; y = 0;
} end_pic;
port_code = 255;
} end_event;
} end_trial;
##############################################################################
begin_pcl;
##############################################################################
#variables
double scenario_time = 2.4e5; #length of the scenario in ms: 6e5=10mins;4.8e5=8mins;1.2e5=2mins
double before_trans_time = 5.8e4;#time before switching from the non-target images in ms
double target_prop = 0.2; #proportion of targets in a trial
int n_back = 2; #n-back value
##############################################################################
#trial durations
int b_dur = 78; #duration of frequency-tagged image b, 12.5 Hz
int c_dur = 58; #duration of frequency-tagged image c, 16.67 Hz
int gcd = 18; #greatest common demominator of b_dur and c_dur
#letter timing
int letter_dur;
int total_dur;
#stimuli and image parameters
int num_targs = 0; #number of targets presented so far
int num_non_targs = 0; #number of non-targets presented so far
array<int> is_target[0]; #array of target positions
array<int> last_left_image[1] = {1};
array<int> last_right_image[1] = {1};
int left_image = 1;
int right_image = 1;
int trans_length = 49;
#modulo parameters
int left_mod = 3;
int right_mod = 4;
int trans_mod = 5;
#last n stimuli
array<int> last_n_letters[0];
loop int x = 1 until x > n_back begin
last_n_letters.add(1);
x = x + 1;
end;
#event codes
int box_img = 1;
int helmet = 2;
int house = 3;
int face = 4;
#face-house transitions
array<bitmap> box_house_trans[0][0];
box_house_trans.add(boxes_houses);
box_house_trans.add(boxes_houses_alt);
box_house_trans.add(boxes_houses_dif);
#house-face transitions
array<bitmap> helmet_face_trans[0][0];
helmet_face_trans.add(helmets_faces);
helmet_face_trans.add(helmets_faces_alt);
helmet_face_trans.add(helmets_faces_dif);
int trans_set_count = box_house_trans.count();
#for feedback
int correct_count = 0;
int false_alarm_count = 0;
int total_hits = 0;
int total_fas = 0;
#width of stimuli from file
input_file get_width = new input_file;
get_width.open("\logfiles\\width_setting.txt");
int width = get_width.get_int();
get_width.close();
fixation_pic.set_part_x(2, -width);
fixation_pic.set_part_x(3, width);
#fixation_pic.set_part_x(4, -width);
#fixation_pic.set_part_x(5, width);
trial_pic.set_part_x(2, -width);
trial_pic.set_part_x(3, -width);
trial_pic.set_part_x(4, width);
trial_pic.set_part_x(5, width);
##############################################################################
#subroutines
##############################################################################
#generates random stimulus array index
sub
int random_exclude(int first, int last, array<int> exclude[n_back])
begin
int rval = random(first, last - 1);
loop
int i = 1;
until
i > exclude.count()
begin
if rval == exclude[i] then
rval = random_exclude(first, last, exclude);
i = 1;
else
i = i + 1;
end;
end;
return rval
end;
#generates an array of target positions
sub
array<int, 1> is_target(int letter_count)
begin
array<int> targs[0];
loop int i = 1 until i > letter_count begin
if i <= int(floor(double(letter_count) * target_prop)) then
targs.add(1);
else
targs.add(0);
end;
i = i + 1;
end;
loop int i = 1 until i > n_back begin
if targs[i] == 0 then
i = i + 1;
else
targs.shuffle();
i = 1;
end;
end;
return targs
end;
#runs a trial
sub
do_run(int run, int before_trans, int duration, array<bitmap> non_targs[2][10],
array<bitmap> transitions[2][trans_set_count][trans_length], array<bitmap> targets[2][10])
begin
array<bitmap> images[2][10] = non_targs;
bool transitioned = false;
int trans_index = 1;
int trans_set = 1;
int letter_index = 1;
int letter_counter = 1;
loop
int k = 1;
until
k > duration
begin
if k > before_trans then
images = targets;
end;
if transitioned || (k <= before_trans) then
if mod(k,left_mod) == 0 then
left_image = random_exclude(1, 10, last_left_image);
trial_pic.set_part(2, images[1][left_image]);
last_left_image[1] = left_image;
end;
if mod(k,right_mod) == 0 then
right_image = random_exclude(1, 10, last_right_image);
trial_pic.set_part(4, images[2][right_image]);
last_right_image[1] = right_image;
end;
else
if mod(k,trans_mod) == 0 then
trial_pic.set_part(2, transitions[1][trans_set][trans_index]);
trial_pic.set_part(4, transitions[2][trans_set][trans_index]);
trans_set = trans_set + 1;
if mod(trans_set,4) == 0 then
trans_index = trans_index + 1;
trans_set = 1;
end;
if trans_index > trans_length then
transitioned = true;
end;
end;
end;
#letters
if mod(k,total_dur) == 0 then
if is_target[letter_counter] == 1 then
letter_index = last_n_letters[n_back];
num_targs = num_targs + 1;
stim_event.set_target_button(1);
stim_event.set_stimulus_time_out(2000);
else
letter_index = random_exclude(1, 26, last_n_letters);
num_non_targs = num_non_targs + 1;
stim_event.set_target_button(0);
stim_event.set_response_active(true);
stim_event.set_stimulus_time_out(total_dur*gcd);
end;
trial_pic.set_part(3, letters[letter_index]);
trial_pic.set_part(5, letters[letter_index]);
letter_counter = letter_counter + 1;
loop
int j = last_n_letters.count();
until
j == 1
begin
last_n_letters[j] = last_n_letters[j-1];
j = j - 1;
end;
last_n_letters[1] = letter_index;
end;
if mod(k,total_dur) == letter_dur then
trial_pic.set_part(3, template);
trial_pic.set_part(5, template);
end;
stim_trial.present();
if mod(k,total_dur) == 0 then
stim_event.set_target_button(0);
stim_event.set_event_code("");
stim_event.set_port_code(0);
end;
k = k + 1;
end;
end;
#displays results
sub
display_results
begin
correct_count = response_manager.total_hits() - total_hits;
false_alarm_count = response_manager.total_false_alarms() - total_fas;
double performance = double(correct_count - false_alarm_count) / double(num_targs);
string cap = "Results:";
cap = cap + "\nNumber of Targets: " + string(num_targs);
cap = cap + "\nHits: " + string(correct_count);
cap = cap + "\nFalse Alarms: " + string(false_alarm_count);
cap = cap + "\nPercentage Correct: " + printf(performance * 100.0, "%.1f") + "%";
cap = cap + "\n\nPlease call the experimenter in.\nWhen instructed, press the mouse to continue.";
feedback_text.set_caption(cap);
feedback_text.redraw();
feedback_trial.present();
total_hits = total_hits + correct_count;
total_fas = total_fas + false_alarm_count;
num_targs = 0;
num_non_targs = 0;
end;
#main
sub
main
begin
input_file in = new input_file;
in.open("\logfiles\\difficulty.txt");
letter_dur = int(in.get_line()) / gcd;
total_dur = int(in.get_line()) / gcd;
in.close();
wait_trial.present();
int duration = int(scenario_time) / gcd;
int before_trans = int(before_trans_time) / gcd;
array<bitmap> non_targs[0][0];
array<bitmap> targs[0][0];
array<bitmap> trans[0][0][0];
is_target.resize(1 + (duration / total_dur));
is_target = is_target(is_target.count());
loop int i = 1 until i > 2 begin
begin_trial.present();
fixation_trial.present();
if i == 1 then
non_targs.add(boxes);
non_targs.add(helmets);
trans.add(box_house_trans);
trans.add(helmet_face_trans);
targs.add(houses);
targs.add(faces);
else
non_targs.add(helmets);
non_targs.add(boxes);
trans.add(helmet_face_trans);
trans.add(box_house_trans);
targs.add(faces);
targs.add(houses);
end;
do_run(i, before_trans, duration, non_targs, trans, targs);
display_results();
i = i + 1;
end;
end_trial.present();
end;
main();
|
a0482a8ea045df9b24bc3841190570681c134f27
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1904/CH7/EX7.3/7_3.sce
|
878a7f9a877024ce4529dce47210c24f21f1ce79
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 788
|
sce
|
7_3.sce
|
//To Calculate the Voltage Drop and Verify The Cable Selected
//Page 329
clc;
clear;
pf=0.9; //Power Factor
Vb=120; //Base Voltage
//From The Tables
r=0.334; //Resistance per thousand feet
x=0.0299; //Reactance per thousand feet
K1=0.02613; //Voltage Drop
//Assumed Cable
I=100; //Secodary line Current
Ls=100; //Length of Secondary line in feet
R=r*Ls/1000; // Resistance Value for a 100 feet Line
X=x*Ls/1000; // Reactance Value for a 100 feet Line
VD=I*((R*pf)+(X*sind(acosd(pf)))); //Voltage Drop
VDpu=VD/Vb; //Per unit value
printf('\nThe Cable Selected is of 100 feet, carrying 100A and cable size #2 AWG\n')
printf('The Voltage drop for the above cable is %g pu V\n',VDpu)
printf('The Above Value is Close to the Value(%g pu V) in the table given.\n',K1)
|
e6c7667872cb342e9f0143b8154cbc51767219d2
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/52/CH1/EX1.5.c/Example1_5_c.sce
|
08cd6aa2f8ed077a334a4f1646c9d9330b9ed52f
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 394
|
sce
|
Example1_5_c.sce
|
//Example 1.5 (c)
//To Determine Whether Given Signal is Periodic or not
clear;
clc ;
close ;
t=0:0.01:10;
x1=cos(2*%pi*t/3);
subplot(1,2,1);
plot(t,x1);
xlabel('t');
ylabel('x(t)');
title('CONTINUOUS TIME PLOT');
n=0:0.2:10;
x2=cos(2*%pi*n/3);
subplot(1,2,2);
plot2d3(n,x2);
xlabel('n');
ylabel('x(n)');
title('DISCRETE TIME PLOT');
//Hence Given Signal is Periodic with N=3
|
13a74315e7687f4dcff4d0f6ef4aacb1fe5267c5
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2087/CH5/EX5.9/example5_9.sce
|
c5bab49fc3f692742a0ea399b89ae3a4ea772543
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 412
|
sce
|
example5_9.sce
|
//example 5.9
//calculate input h.p of pump
clc;
//given
A=20; //area of field
H=129; //level to the highest land
h1=120.2; //water level in well during discharge
Du=800; //duty for rise;
eita=0.6; //efficiency of the pump
Q=A/Du;
w=Q*1000;
lift=H-h1;
//design lift is taken as 9m
wd=w*9;
o=wd/75;
i=o/eita;
mprintf("Input h.p of pump=%i h.p",i);
|
7c18521127bc7d0856cbd0dcb13f1ee6ad4a3f18
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/593/CH11/EX11.8/ex11_8.sce
|
b2e80ff116ec1dc5ecb931f49e2e41bd6461a431
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,214
|
sce
|
ex11_8.sce
|
clear;
//clc();
// Example 11.8
// Page: 287
printf("Example-11.8 Page no.-287\n\n");
//***Data***//
T_i = 50;//[F] Initial temperature of the system
T_f = 20;//[F] Final temperature of the system
M_gas = 115;//[g/mol] Molecular weight of gasoline at room temperature
M_water = 18;//[g/mol] Molecular weight of water at the room temperaature
d = 720;//[g/L] density of gasoline at the room temperature
// From Figure 11.10 ( page 288 ), solubility of the water in gasoline ( similar to solubility of water in cyclohexane ) at 50 deg F is given as
s_50 = 0.00026;//[mol fraction]
// And linearly extraploting the cyclohexane curve in figure 11.10 to 20 deg F, we get the solubility of water at 20deg F as
s_20 = 0.0001;//[mol fraction]
// So, rejected water is
s_rej = s_50 - s_20;// mol of water per mole of gasoline
// In terms of weight, rejected water will be
w = (s_rej*d*M_water)/M_gas;//[g water/L gasoline]
printf(" The amount of water that will come out of the solution in the gasoline will be %f g water/L gasoline\n",w);
printf(" At 20 deg F we would expect this water to become solid ice, forming a piece large enough to plug the fuel line of a parked auto.");
|
2663ea8b2d1d63047b4c3121bc0aaf7b8133a287
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1067/CH23/EX23.03/23_03.sce
|
84362596894cc9227aa72fa15023cf9ac55df105
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 380
|
sce
|
23_03.sce
|
clear;
clc;
vf=1;
r=1250e3;
V=600;
x1=.5;
x2=.5;
x3=.02;
ia2=vf/(x1+x2+x3);
ia=3*ia2;
ia1=ia2;
ia0=ia1;
iab=r/(sqrt(3)*V);
iab=round(iab/10)*10;
ia=round(ia*100)/100;
If=ia*iab;//the difference in result is due to erroneous calculation in textbook.
printf("fault current If=%fA",If);
disp("the difference in result is due to erroneous calculation in textbook.")
|
a319726ca27bdf16189354465eec4b3b27dce265
|
28a8d47c4d79b231f8bebc28925792a290f67e9f
|
/db/others/sql/dynamic_sql/test_type.tst
|
17fd687588980ef342f8f262e4c8a91c308cefa5
|
[] |
no_license
|
ZVlad1980/doo
|
a1fe7d18ccfd0acf6ced7dbb33927c86a925aae8
|
e81be8f524b78b9a6ec06b7f83a8c13354fc6412
|
refs/heads/master
| 2021-08-17T02:03:54.553822
| 2017-11-20T17:21:03
| 2017-11-20T17:21:03
| 111,440,129
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 489
|
tst
|
test_type.tst
|
PL/SQL Developer Test script 3.0
21
-- Created on 08.09.2014 by ZHURAVOV_VB
declare
-- Local variables here
a anydata;
o xxdoo_cntr_contractor_typ;
c xxdoo_cntr_contractors_typ;
--
procedure show(a anydata) is
l_type_code pls_integer;
l_type anytype;
begin
l_type_code := a.GetType(l_type);
dbms_output.put_line(l_type_code);
end;
begin
-- Test statements here
show(anydata.ConvertObject(o));
show(anydata.ConvertCollection(c));
end;
0
0
|
90a2bf787e5c3bf872b5e645ed992f416eeefe45
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1752/CH8/EX8.2/exa_8_2.sce
|
cd0ca0fb7e4902e13e79c1bb27c9ccc79a74d104
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 644
|
sce
|
exa_8_2.sce
|
//Exa 8.2
clc;
clear;
close;
//given data
t_hi=160;// in degree C
t_ci=25;// in degree C
t_ho=60;// in degree C
Mh=2;// in kg/s
Mc=2;// in kg/s
Cph=2.035; // in kJ/kg degree C
Cpc=4.187;// in kJ/kg degree C
U=250;// in W/m^2 K
d=0.5;// in m
// Energy balance Mh*Cph*(t_hi-t_ho) = Mc*Cpc*(t_co-t_ci)
t_co= Mh*Cph*(t_hi-t_ho)/(Mc*Cpc)+t_ci;// in degree C
del_t1=t_hi-t_co;//in degree C
del_t2=t_ho-t_ci;//in degree C
del_tm= (del_t1-del_t2)/log(del_t1/del_t2);
Cph=Cph*10^3;// in J/kg degree C
q=Mh*Cph*(t_hi-t_ho);
//Formula q=U*%pi*d*l*del_tm
l=q/(U*%pi*d*del_tm);
disp(l,"Length of the heat exchanger in meter")
|
183f73ba92f00f994f9100d558d22e88ad4310d5
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1358/CH4/EX4.5/Example45.sce
|
4015f7fc870ab71adaf415b9ce091932951e7648
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 647
|
sce
|
Example45.sce
|
// Display mode
mode(0);
// Display warning for floating point exception
ieee(1);
clear;
clc;
disp("Turbomachinery Design and Theory,Rama S. R. Gorla and Aijaz A. Khan, Chapter 4, Example 5")
disp("Impeller tip speed is given by")
D = 0.914;
N = 9000;
U2 = %pi*D*N/60
disp("Since the exit is radial and no slip, Cw2 = U2 = 431 m/s")
disp("From the velocity triangle,")
alpha2 = 20;
Cw2 = U2;
Cr2 = U2*tan(alpha2 *%pi/180)
disp("For radial exit, relative velocity is exactly perpendicular to rotational velocity U2. Thus the angle beta2 is 90degrees for radial exit.")
disp("Using the velocity triangle")
C2 = (U2^2 + Cr2^2)^0.5
|
2cfb006aeee33f77348eb9ef6ea42c9e3b1168d8
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/38/CH2/EX2.8/8.sce
|
61182b7f2f1f953c7b775aa91c6064af9b34e78b
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 249
|
sce
|
8.sce
|
// Caption: Finding per unit system
clear;
close;
clc;
Z_baseH=2400/20.8;
Z_baseX=240/208;
I_x=5.41/208;//per unit at low voltage side
Z_eqH=(1.42+%i*1.82)/115.2;//per unit
disp(Z_eqH,'equivalent impedence referred to high voltage side')
|
e765d095d6f7e29c2694d32fd30de743e720b063
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/683/CH12/EX12.5/W_5.sce
|
1df88106d519b2af2383f82c830edddc63614173
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 315
|
sce
|
W_5.sce
|
// sum 12-5
clc;
clear;
h=10;
t=10/sqrt(2);
Ta=80;
x=((50*25)+(50*0))/(50+50);
y=x;
ra=sqrt(x^2+37.5^2);
Ixx=(7.07*50^3/12)+(50*7.07*(12.5^2))+(50*7.07*12.5^2);
IG=2*Ixx;
e=100+(50-12.5);
Tr=16.09*10^-3;
P=Ta/Tr;
P=P*10^-3;
// printing data in scilab o/p window
printf("P is %0.3f KN ",P);
|
679dd1f8d0597256f51bb649f79e04ec797fb49f
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3760/CH3/EX3.43/Ex3_43.sce
|
1755e5c5373c595d1593aee8fc8b2edb8a6cbde7
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 181
|
sce
|
Ex3_43.sce
|
clc;
t=1/2; //ratio of continuous rating to one hour rating
p=2; // ratio of new KVA rating to old KVA rating
al=2*(p*t);
printf('Ratio of core loss to ohmic loss is %f ',al);
|
2e9ce964af57c1f328fedb2cb03defafaa94edab
|
4d6665df181a576d17b4899b006151b1e6d54804
|
/Eigen.sce
|
08211ae3bba0e6aa55d17d01d1e7ba8216c33b0f
|
[] |
no_license
|
Udbhavps/La-Scilab-Assignment
|
b3a7a9c31e07e1abc83685c74d93dc2d8fa681b2
|
8deb5fe83fca574dbb6fc7ee96b417bcec9d91c4
|
refs/heads/master
| 2022-09-21T15:31:29.258278
| 2020-06-03T18:11:42
| 2020-06-03T18:11:42
| 239,132,393
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,143
|
sce
|
Eigen.sce
|
clc;close;clear;
function [A]=Eigen(A)
lam = poly(0,'lam')
lam = lam
charMat = A-lam*eye(3,3)
disp(charMat,'The characteristic matrix is')
charPoly = poly(A,'lam')
disp(charPoly,'the characteristic polynomial is')
lam = spec(A)
disp(lam,'the eigen values of A are')
function[x,lam]=eigenvectors(A)
[n,m]=size(A);
lam=spec(A)';
x=[];
for k = 1:3
B=A-lam(k)*eye(3,3);
C=B(1:n-1,1:n-1);
b=B(1:n-1,n)
y=C\b;
y=[y;1];
y=y/norm(y);
x=[x y];
end
endfunction
get('eigenvectors')
[x,lam]=eigenvectors(A)
disp(x,'The eigen vectors of A are');
endfunction
function main()
A=[0,0,0;0,0,0;0,0,0]
A(1,1)=input("enter a11: ")
A(1,2)=input("enter a12: ")
A(1,3)=input("enter a13: ")
A(2,1)=input("enter a21: ")
A(2,2)=input("enter a22: ")
A(2,3)=input("enter a23: ")
A(3,1)=input("enter a31: ")
A(3,2)=input("enter a32: ")
A(3,3)=input("enter a33: ")
[A]=Eigen(A);
endfunction
main();
|
7df5218607a84286ca73d10c0861a41cdb023f7b
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1382/CH2/EX2.38.a/EX_2_38_a.sce
|
65b2788390b9d823a425a5bc8cfcc2a674e6ea75
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 268
|
sce
|
EX_2_38_a.sce
|
// Example 2.38.a:S
clc;
clear;
close;
Beta=180;//Common emitter D.C. Current gain
Re=1;// Collector resistance in killo ohms
R1=5.76;// resistance in killo ohms
R2=34.67;// resistance in killo ohms
S=1+Beta;
disp(S,"Stability factor in fixed bias case is")
|
8e5a4095a8359f9371ffc2a2e12af83d503b29e7
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2279/CH5/EX5.1/Ex5_1.sce
|
cd9426dd7ccf7bec71eb11bcc445811584b5093c
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,092
|
sce
|
Ex5_1.sce
|
//Continuous Time Fourier Series Coefficients of
//a periodic signal x(t) = sin(2*Wot)
clear;
close;
clc;
t = 0:0.01:1;
T = 1;
Wo = 2*%pi/T;
xt = sin(2*Wo*t);
for k =0:4
C(k+1,:) = exp(-sqrt(-1)*Wo*t.*k);
a(k+1) = xt*C(k+1,:)'/length(t);
if(abs(a(k+1))<=0.01)
a(k+1)=0;
end
end
a =a';
ak = [-a,a(2:$)]
for i=1:length(ak)
if real(ak(i))== 0 then
phase(i)=0;
else
if i<length(ak)/2 then
phase(i)= atan(imag(ak(i))/real(ak(i)));
else
phase(i)= -atan(imag(ak(i))/real(ak(i)));
end
end
end
disp("The fourier series coefficients are...")
disp(ak)
disp("magnitude of Fourier series coefficient")
disp(abs(ak))
disp("Phase of Fourier series coefficient in radians")
disp(phase)
n=-4:4;
subplot(2,1,1)
plot(n,abs(ak),'.');
xtitle("|ak|","k","|ak|");
subplot(2,1,2)
for i=1:length(n)
if n(i)== -2 then
phase(i)=3.14/2;
elseif n(i)== 2 then
phase(i)= -3.14/2;
else
phase(i)=0;
end
end
plot(n,phase,'.');
xtitle("/_ak","k","/_ak");
|
5af661f3e3750aac95462d7990a2476ea883ae7f
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3838/CH2/EX2.3.a/EX2_3_a.sce
|
d2bd8c46648e62ec3c11f3c2efda4c796a1da325
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 396
|
sce
|
EX2_3_a.sce
|
//ex_2.3.a even and odd signals of x(t)
clear;
clc;
close;
t = 0:0.01:5;
x=exp(t)
figure
a=gca();
xtitle('x(t)')
plot2d(t,x)
figure
a=gca();
xtitle('even signal')
plot2d(t,x/2)
t1=-5:1/100:0;
plot2d(t1,x($:-1:1)/2)
a.y_location='origin'
figure
a=gca();
xtitle('odd signal')
plot2d(t,x/2)
t1=-5:1/100:0;
plot2d(t1,-x($:-1:1)/2)
a.y_location='origin'
a.x_location='origin'
|
d53922ca5759f6154e5255efbdffa76ec857473d
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/257/CH2/EX2.2/example_2_2.sce
|
bcccd9fc0f886f695abb5d38bcfc8813efee4bf5
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 55
|
sce
|
example_2_2.sce
|
syms t s w;
y=laplace('sin(w*t)',t,s);
disp(y,"ans=")
|
a05a7412ba9e8efa1d6b93e8d9cae9015253d357
|
ac1f8441b0319b4a391cd5a959bd3bb7988edfa7
|
/data/news2015/news2015/EnCh/ench12.tst
|
fece4ad6f21631e6082abc02bb9f63fa502a1d05
|
[
"MIT"
] |
permissive
|
SaeedNajafi/transliterator
|
4d58b8604fa31f52ee2dce7845e002a18214fd5e
|
523a087b777a5d6eec041165dabb43848f6222e6
|
refs/heads/master
| 2021-09-18T17:02:59.083727
| 2018-07-17T06:01:21
| 2018-07-17T06:01:21
| 129,796,130
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 7,269
|
tst
|
ench12.tst
|
aaltonen
abano
abra
achille
adina
adjani
adnet
agate
agnello
agneta
agostini
agustin
ahrweiler
ahuja
ajit
alberdi
albertini
albo
albornoz
alcaide
alem
alesana
alessio
alia
alina
alken
allegri
alvear
alvina
amaral
amati
amendola
ananta
anda
anderer
andrada
andros
anis
anja
anka
ansari
anselmo
ansgar
antes
antin
antje
apostol
aprile
apro
arama
arca
argenta
arik
arnal
arriaga
artem
artur
arya
asker
aspen
assar
atal
attilio
aubusson
aurelio
avenel
avez
azad
azevedo
baba
bachmann
backofen
bade
balada
balcon
baltazar
banana
banda
bandiera
bandy
banky
bara
baran
barbosa
barda
basim
bataillon
batra
baudouin
bayliss
becerra
beda
beneden
benno
benoist
benzi
berken
berlanga
bermejo
bermudez
bernardes
berthier
bertoni
besch
besnard
betancourt
bettendorf
beutler
bhajan
bhargava
bianco
bianka
biba
bidet
biela
bindra
biondo
birgit
birkenfeld
birla
bischof
biskup
blech
bloem
bloemen
blomberg
bole
bonne
bonnes
borisov
borne
boru
boscolo
botez
botta
bourges
boylston
brach
branca
braune
braunfels
breitling
bresson
bretton
brockhaus
broda
bronnen
bruna
brunet
buca
buda
calogero
cami
camilleri
campeggio
canali
canina
canseco
canteloup
capello
capito
cara
carbo
carmelo
carneiro
carnevale
carola
carpi
carvajal
casas
caselli
castaneda
castellana
castelnuovo
castiglioni
catena
cava
cecchi
celaya
celestino
centeno
cerezo
cervo
cesaro
cesi
ceska
chabot
chagas
chambord
chant
chantal
charan
charmes
chauvet
chauvin
chavan
chiara
chmura
choisy
christos
cifra
cimino
cipolla
cipriani
civil
cobos
coen
coger
conca
concha
conforto
consagra
conscience
consiglio
convers
cornel
cosa
couture
covarrubias
craciun
creme
crespi
cuche
damaschke
dando
danuta
darko
ded
degen
delahaye
deleuze
delmas
delorean
denes
denize
dens
deodato
deshmukh
diaconescu
dieppe
diez
dilip
dina
divo
dixit
djordje
domin
donoso
doppelt
doyen
drews
duchesne
dumoulin
dus
dusan
dusch
duse
eastlake
ebner
edsel
einar
einem
emanuele
emin
encina
ender
enghien
epik
erdem
ernani
eskola
espinosa
estevez
fabiani
fabienne
faccio
faenza
faithfull
fang
fangen
fau
favre
federer
federn
feine
feingold
ferne
ferragamo
fersen
fiamma
figueroa
filippini
fiorentini
firenzuola
fitting
flaminio
flammarion
florinda
fodor
fondato
fontenelle
fortes
fosco
foyer
franceschini
francia
freccia
freire
fresenius
freundlich
friso
fuente
furet
gabe
gabor
gabrielli
gallegos
gallus
gamba
gamboa
ganguly
garay
gardel
garfunkel
garneau
garofalo
gasparini
gaudin
gavino
geert
genot
geoffroy
georgiev
gerda
giacomelli
giannini
giardini
giardino
gilberto
ginette
gioia
giordani
giorni
girardin
girish
glanz
glazer
goel
golda
gonda
gontier
gonzaga
gordan
goscinny
gotta
gotthard
goulart
gracia
gramatica
graupner
gravina
greggio
gregoire
grenier
gretchen
grissom
grosser
grosso
grub
grube
grund
gruppi
guadagno
gualtieri
guillot
guimaraes
gun
gunilla
gura
guthrie
hafner
halimi
halvorsen
hamza
hanne
hannes
hannu
harel
hauch
hausen
hayat
hedberg
hedda
hellsing
helper
helst
henriette
heran
heribert
hertog
hilmi
hinojosa
hirn
hoekstra
hopf
huerta
huet
huguet
huisman
humm
huni
hut
hylla
ignacio
ignacy
ilse
imam
imelda
inga
ingegneri
ingenieros
inger
ingo
innocenti
insel
irigoyen
ishiguro
istvan
izquierdo
izrael
jadwiga
jain
jakes
jaloux
jameel
jami
janik
janine
janny
janssens
jaramillo
jardim
jauch
javier
jeannine
jere
jobim
jochen
joliet
jongen
joni
jonny
joop
jordana
joris
josep
jourdain
joyeux
julieta
jurado
juste
justine
jusuf
kaku
kalas
kalat
kalkbrenner
kampf
kanji
kante
kardon
karina
karjala
kass
katerina
kazimierz
keighley
kelp
kerns
kirilenko
klerk
klim
klima
kluger
kneipp
kocka
konuk
kostka
krishnan
kristal
kroner
krupa
kuen
kuhlmann
kunst
lacerda
lafont
laforet
lagarde
lagu
lakatos
lakshmi
lampedusa
langenscheidt
lapierre
laube
lauda
launay
lauper
lebon
lebrun
lechner
legat
lehtinen
leibovitz
lelouch
lemme
lemoine
lemoyne
leopoldo
leshan
ligne
liguori
lipinski
lisette
lispector
lobato
locatelli
loreto
lugosi
lukas
lule
lupo
lupton
maciel
macomb
maeve
maffei
maga
magnuson
maia
maison
maisonneuve
malgorzata
manai
mangano
manne
manos
mansour
manzi
mapu
maravilla
marcela
marchal
marchesi
mardin
marija
marisa
marita
marken
maroto
martial
masina
masri
materna
mattsson
maul
maus
mauve
mayenne
mcgrath
medecin
medved
megan
meinhof
meireles
melis
mena
mende
meneses
menno
menten
merce
meres
merino
mesrine
messager
messerschmitt
mester
milena
milka
miodrag
mische
miska
mistry
mitin
moch
mochi
mocky
modugno
mokhtar
moles
molinaro
molino
monday
monin
montagne
montaner
montes
montmorency
moraes
morandini
moreira
morella
morello
morena
moret
mosquera
mostar
motto
mraz
mufti
munari
munteanu
nabi
naim
namora
nan
narain
nascimento
naval
neckermann
nedim
negrete
neugebauer
neveu
nevo
nicanor
nijhoff
niki
nikolas
noack
nobre
noguera
nordin
noreen
ofer
ohlsson
oke
oker
olle
ora
orellana
orem
oriana
ory
ovens
oyen
ozgur
paes
paloma
pankow
paolucci
papa
papas
paquin
pareja
parenti
parodi
partos
parvis
pascale
pascoal
pasqua
pasquier
pato
pauwels
pecas
pelzer
penna
pensi
pente
peon
pere
perego
perpetua
pescatore
petrescu
petros
petrova
petrucci
pfeifer
pfizer
pharaon
piani
picchi
piccolo
pichler
pignatelli
piles
pini
pinilla
pininfarina
pippa
pirelli
pizzi
pizzo
placido
plettenberg
poirier
pollo
pombal
pommier
ponti
popa
porcino
porro
portales
portola
posse
postma
pracht
prati
preda
preuss
prieto
prima
primo
printemps
puente
pueyo
pugno
puja
pujol
pulaski
puma
quadri
quadros
queiroz
quercia
querido
raiffeisen
raimo
rajesh
raju
ramachandran
ramana
ramona
rampa
rampal
rams
rasp
rathbone
raucher
reclam
ree
rege
reggiani
regine
reining
remedios
resch
reusch
reza
ribes
richer
rieger
rietveld
ripa
rivadavia
riviere
rizzoli
roar
rocha
rocher
rogo
rohan
rosado
rosalinda
ruano
rune
saavedra
sabina
sacher
safar
sagar
sakar
salminen
samaniego
sanda
sandino
sandoz
santi
santorini
saraiva
sarrazin
sartori
sasha
sauvage
sauveur
savia
savona
schaumburg
schede
scheibe
schellenberg
schild
schilde
schleich
schock
schottky
schrader
schroder
schwalbe
schwarzer
sciacca
scorsese
sedat
seixas
selva
serato
serban
serif
sesto
severi
severiano
severin
sevigny
shankar
sharma
shekhar
signe
silveira
silvestri
simenon
simonetti
sirota
sitter
siu
skupa
slam
smit
snygg
sobolev
sobrino
solanas
soldat
sole
soledad
soriano
sorin
sotelo
souchon
souza
sova
spagnoli
spero
spira
spire
spirito
sprenger
sprung
staal
staden
stadion
staffan
stallone
stammer
stamos
stamps
stang
stappen
stefani
stefano
steller
stepan
stephanus
steves
stevie
stilling
stolberg
stolze
stoppa
streich
strich
strobl
studer
sune
supper
talavera
taleb
tama
tambo
tancredo
tango
tanin
taucher
tellier
terpstra
terranova
tessin
testa
therese
tiempo
tinker
tinsley
tirso
tisch
tittel
toco
toker
tolbert
tomas
tomasi
tomkins
tomlin
tondo
tone
toomey
torn
torp
toso
tosun
tough
toussaint
towner
tozzi
trager
trainer
traub
traverse
travolta
trench
trevino
trivedi
troller
trudy
trumbull
trusted
tua
tuma
turek
tyrrell
ubaldo
ulloa
ulrike
ultra
umut
under
unica
urdaneta
vadim
valent
valladares
vasant
vasil
vazquez
veil
venger
venuti
verba
verna
vettori
vianney
vich
viel
vijay
vis
visscher
vitek
vitoria
viviani
vivier
voce
vuitton
wach
wachter
wandelt
wedding
weibel
wein
weisheit
weisse
wenden
wich
wilding
witness
wittlich
wojciechowski
wunsch
wurm
yaw
yepes
yglesias
yon
zahar
zahir
zaid
zehnder
zelaya
zender
zijlstra
zina
zoff
zubiri
zulueta
zvonko
zwi
|
2eb621b33cb5b07f016fcbcf546a3c4552eb8f02
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/14/CH10/EX10.2/example_10_2.sce
|
9caadbe1e736ceac3c07c2a0cdb5ff1241fee741
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 914
|
sce
|
example_10_2.sce
|
//Chapter 10
//Example 10.2
//Page 256
//loadedfault
clear;clc;
//Given
Pgm = 30e6;
Vgm = 13.2e3;
Xgm = 0.20;
Xl = 0.10;
Pm = 20e6;pfm = 0.8;Vt_m = 12.8e3;
Pbase = Pgm;
Vbase = Vgm;
Vf = Vt_m / Vbase;
Ibase = Pbase / (sqrt(3) * Vbase);
I_L = (Pm / (pfm * sqrt(3) * Vt_m)) * (cos(36.9 * %pi/180) + %i * sin(36.9 * %pi / 180)) / Ibase;
disp(I_L,'Line Current in per unit is')
Vt_g = Vf + (%i * Xl) * I_L;
E11_g = Vt_g + (%i * Xgm) * I_L;
I11_g = E11_g / (%i * (Xgm + Xl));
I11_gA = Ibase * I11_g;
disp(I11_g,'Fault current in the generator side in per unit')
disp(I11_gA,'Fault current in the generator side in A')
E11_m = Vf - (%i * Xgm) * I_L;
I11_m = E11_m / (%i * (Xgm));
I11_mA = Ibase * I11_m;
disp(I11_m,'Fault current in the motor side in per unit')
disp(I11_mA,'Fault current in the motor side in A')
If = I11_g + I11_m;
disp(If,'Toatl Fault current in per unit')
disp(If * Ibase,'Total Fault current in A')
|
fbef4e91627a262c6efa2bfe15f20ebf382d1317
|
717ddeb7e700373742c617a95e25a2376565112c
|
/3411/CH9/EX1.3.u2/Ex1_3_u2.sce
|
694bb0345ab9c154020304f60740869c7b22e95e
|
[] |
no_license
|
appucrossroads/Scilab-TBC-Uploads
|
b7ce9a8665d6253926fa8cc0989cda3c0db8e63d
|
1d1c6f68fe7afb15ea12fd38492ec171491f8ce7
|
refs/heads/master
| 2021-01-22T04:15:15.512674
| 2017-09-19T11:51:56
| 2017-09-19T11:51:56
| 92,444,732
| 0
| 0
| null | 2017-05-25T21:09:20
| 2017-05-25T21:09:19
| null |
UTF-8
|
Scilab
| false
| false
| 357
|
sce
|
Ex1_3_u2.sce
|
//Example 1_3_u2
clc();
clear;
//To calculate the uncertenity in momentum
h=6.63e-34
deltax=2*%pi*10^-9
deltap=h/(2*deltax) //units in Kg ms^-1
printf("The uncertenity in momentum is delta p=")
disp(deltap)
printf("Kg ms^-1")
//In text book the answer is printed wrong as 0.53*10^-15 Kg ms^-1 the correct answer is 5.276D-26 Kg ms^-1
|
334ffab8357f5415252157ce920ca6350472e73c
|
1b3c63cb7f854378c5f1991637692ae2bf8265ac
|
/stack/stack.sci
|
6714570077350db93274d8554cb3b79524e7db7a
|
[] |
no_license
|
FOSSEE-Internship/FOSSEE-Control-Systems-Toolbox
|
9900107267e5f508f77858d128e01293966e9e10
|
2878a38e4e55806b1777f9da2e0395f321e1c952
|
refs/heads/master
| 2020-12-02T18:20:34.659219
| 2017-10-26T12:26:57
| 2017-10-26T12:26:57
| 96,516,803
| 0
| 1
| null | 2017-10-26T13:44:56
| 2017-07-07T08:24:44
|
Scilab
|
UTF-8
|
Scilab
| false
| false
| 4,739
|
sci
|
stack.sci
|
function [out]=stack(n,varargin)
//build model (cell)array by stacking models along array dimensions
//
//Calling Seqence
//out=stack(n,sys1,sys2.....)
//
//Parameters
//sys : siso or mimo lti system or system array(cell).
//n : arraydimension
//out:(cell)array of input systems
//Description
//out = stack(n,sys1,sys2,...) produces an array of dynamic system models
// out by stacking (concatenating) the models (or arrays) sys1,sys2,...
//along the array dimension. All system models must have the same number of inputs
// and outputs (the same I/O dimensions)
//
//Examples
//s=%s;
//sys1=s/(s*s+5s+1)
//sys2=s/(s+1)
//out1=stack(1,sys1,sys2)
//out1{:,:}
//out2=stack(3,sys1,sys2)
//out2{:,:}
//
//Author
//Ayush Kumar
///////////////////////////////////////////////////////////////////////////////////////
[lhs,rhs]=argn(0)
for i=1:rhs-1
if (typeof(varargin(i))~="state-space"&&typeof(varargin(i))~="rational"&&typeof(varargin(i))~="polynomial"&&typeof(varargin(i))~="ce") then
error(msprintf(gettext("%s :input argument should be a lti sysytem or lti system array"),"stack"))
end,
end,
flag3=0
for i=1:rhs-1
if typeof(varargin(i))=="ce" then flag3=1 end,
end
if flag3==1 then
for i=1:rhs-1 //in case of a cell array input ,all inputs should be a cell array
if typeof(varargin(i))~="ce" then
error(msprintf(gettext("%s:wrong type of input argument input"),"stack"))
end
end
end,
count=0;
for i=1:rhs-1
if typeof(varargin(i))=="rational" || typeof(varargin(i))=="polynomial" then
count=count+1;
end,
if typeof(varargin(i))=="state-space" then
count=count+2;
end,
if typeof(varargin(i))=="ce" then
count=count+3;
end,
end,
/////pure rational or polynomial input models
if count==rhs-1 then
for i=1:rhs-1
testmat{i,1}=varargin(i); //storing data in a cell
end
end
/////////mixture state-space and rational input models///////////////
if count>(rhs-1) then
for i=1:rhs-1
//if flag==1 then
if typeof(varargin(i))=="rational" || typeof(varargin(i))=="polynomial" then
testmat{i,1}=tf2ss(varargin(i)) //converting to state-space
elseif typeof(varargin(i))=="state-space" then
testmat{i,1}=varargin(i);
elseif typeof(varargin(i))=="ce" then
tempcell=varargin(i);
for j=1:prod(size(tempcell))
if typeof(tempcell{j})=="rational" || typeof(tempcell{j})=="polynomial" then
k=tf2ss(tempcell{j})
tempcell{j}=k
end
end
testmat{i,1}=tempcell;
end
end
//k=testmat{1,1}
//[nxip,nuip]=size(k{1,1})
//[nxop,nuop]=size(testmat{1,1}.C)
for i=1:rhs-1
if typeof(testmat{i,1})=="state-space" then
[nxip,nuip]=size(testmat{1,1})
if or(size(testmat{i,1})<>[nxip,nuip]) then
error(msprintf(gettext("%s:input systems should have same input output matrix sizes"),"stack"))
end
end
if typeof(testmat{i,1})=="ce" then
//k=testmat{1,1}
//[nxip,nuip]=size(k{1,1})
for j=1:prod(size(testmat{i,1}))-1
tempcell=testmat{i,1};
if or(size(tempcell{j})<>size(tempcell{j+1})) then
error(msprintf(gettext("%s:input systems should have same input output matrix sizes"),"stack"))
end,
end,
end,
end,
end,
mat=[]
for i=1:n-1
mat(i)=1
end,
mat(n)=rhs-1;
if n==1 then
tempmat=cell(mat,n);
else
tempmat=cell(mat);
end
if n==1 then
for i=1:rhs-1
for j=1:n //adding system in tempmat along array dimension
tempmat{i,j}=testmat{i+j-1,1}
end,
end,
else
for i=1:rhs-1
tempmat{$,i}=testmat{i,1};
end,
end
out=tempmat;
endfunction
//out{:,:}
|
3f63ee03d2ee77e9b390feb9876403023c06cc5c
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/401/CH12/EX12.17/Example12_17.sce
|
a98d3b97f11f45b1b9644f8fa2768f8df6c5ffe4
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,039
|
sce
|
Example12_17.sce
|
//Example 12.17
//Program to calculate:
//(a)The optimium receiver bandwidth
//(b)The peak to peak signal power to rms noise ratio
clear;
clc ;
close ;
//Given data
Tr=12*10^(-9); //s - SYSTEM RISE TIME
fo=20*10^6; //Hz - NOMINAL PULSE RATE
fd=5*10^6; //Hz - PEAK TO PEAK FREQUECY DEVIATION
M=60; //APD MULTIPLICATION FACTOR
R=0.7; //APD RESPONSIVITY
B=6*10^6; //Hz - BASEBAND NOISE BANDWIDTH
Ppo=10^(-7); //Watt - PEAK OPTICAL POWER
in_sq_bar=10^(-17); //A^2 - RECEIVER MEAN SQUARE NOISE CURRENT
//(a)The optimium receiver bandwidth
Bopt=1/Tr;
To=1/fo;
//(b)The peak to peak signal power to rms noise ratio
SNR=3*(To*fd*M*R*Ppo)^2/((2*%pi*Tr*B)^2*in_sq_bar);
//Displaying the Results in Command Window
printf("\n\n\t (a)The optimium receiver bandwidth is %0.1f MHz.",Bopt/10^6);
printf("\n\n\t (b)The peak to peak signal power to rms noise ratio is %0.1f dB.",10*log10(SNR));
|
b1fae72b0e3ae37fd3295f78d4bf3737d5d9152b
|
a5f0fbcba032f945a9ee629716f6487647cafd5f
|
/Experimentation/6 Automated_3/tests/linear_regression2.sce
|
f544b3203fcae3c309f21a1e02ec98b835313260
|
[] |
no_license
|
SoumitraAgarwal/Scilab-gsoc
|
692c00e3fb7a5faf65082e6c23765620f4ecdf35
|
678e8f80c8a03ef0b9f4c1173bdda7f3e16d716f
|
refs/heads/master
| 2021-04-15T17:55:48.334164
| 2018-08-07T13:43:26
| 2018-08-07T13:43:26
| 126,500,126
| 1
| 1
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 277
|
sce
|
linear_regression2.sce
|
// Demo script for linear regression
getd('../')
data_url = 'https://raw.githubusercontent.com/franklinwillemen/Machine_Learning/master/Regression/Simple_Linear_Regression/Salary_Data.csv'
machineLearnURLDownload(data_url)
machineLearnCustomURL('custom', 'preprocessing.py');
|
f32eabef56d36a511cf47396ac293633ebcf8720
|
fd6e45f66c41ad779a3d47c3bf8ebfa140d3d657
|
/P3 - Non-linear equations /Ejercicio 1.sci
|
2b731ba1c2053eb5758002d4a6552bf8d8e74425
|
[] |
no_license
|
jere1882/Numerical-Analysis-Assignments
|
7f474e2020d010f9f9c3dceff5e48c03b0d38652
|
1074f92ca93d0a402259f92a0f61f105f25e5230
|
refs/heads/master
| 2021-09-06T20:00:36.411386
| 2018-02-10T18:04:38
| 2018-02-10T18:04:38
| 121,039,769
| 0
| 0
| null | null | null | null |
ISO-8859-1
|
Scilab
| false
| false
| 844
|
sci
|
Ejercicio 1.sci
|
// EJERCICIO 1 Determine gráficamente valores aproximados de las primeras tres raíces positivas de f(x)=cos(x)cosh(x)+1
deff ('y = f(x)', 'y = cos(x).* cosh(x)+1');
x=0:.01:15; // el 15 sale de ir probando a ver donde estan las raíces.
a=gca(); // declarar un manejador de ejes
a.x_location="middle"; // acceder a una propiedad de un objeto (en este caso a un campo de a, x location)
// otra forma de hacer que represente el x=0 sin gca es plot(x,f(x),x,0)
plot (x,f(x));
disp("las raíces son 8, 11 , 14.14");
//MÉTODO DE LA BISECCIÓN. Converge siempre a una raíz (convergencia global). Para elegir el intervalo donde quiero aplicarlo podemos usar este tipo de gráficas._
|
3ed14543fd34f3fdb3898eeb93c495ae054a9384
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/608/CH20/EX20.24/20_24.sce
|
bdd04556ea3cc35913a8bd0a5a6cd8511c3fb75a
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 843
|
sce
|
20_24.sce
|
//Problem 20.24: An a.c. source of 24 V and internal resistance 15 kohm is matched to a load by a 25:1 ideal transformer. Determine (a) the value of the load resistance and (b) the power dissipated in the load.
//initializing the variables:
tr = 25; // teurn ratio
V = 24; // in Volts
R1 = 15000; // in Ohms
Rin = 15000; // in ohms
//calculation:
//Turns ratio, tr = N1/N2 = V1/V2
//For maximum power transfer R1 needs to be equal to 15 kohm
RL = R1/(tr^2)
//The total input resistance when the source is connected to the matching transformer is
Rt = Rin + R1
//Primary current,
I1 = V/Rt
//N1/N2 = I2/I1
I2 = I1*tr
//Power dissipated in load resistor RL
P = I2*I2*RL
printf("\n\n Result \n\n")
printf("\n (a) the load resistance is %.0f ohm", RL)
printf("\n (b) power dissipated in the load resistor is %.2E W", P)
|
42276d3c74bff9b46f4ddb2633d7fbf8031ad5c4
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1511/CH5/EX5.5/ex5_5.sce
|
fb68c738b179ec3f17c126ccf6234869415f615e
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 309
|
sce
|
ex5_5.sce
|
// Example 5.5 page no-287
clear
clc
b=50 //Beta
vcc=10 //V
rc= 250 //ohm
ib=0.4 //mA
ic=21 //mA
vce=vcc-((ic+ib)*rc/1000)
vce=floor(vce*10)/10//aproximated to
printf("\nVce = %.1fV",vce)
vbe=0.6
rb=(vce-vbe)/ib
s=(b+1)/(1+(b*rc/(rc+rb*1000)))
printf("\nRb = %.0f K-Ohm\nS = %d",rb,ceil(s))
|
863b73ecb7e3e120216a8cb0e53ec12f4a552d44
|
df82401a4fbb64f37b3ed00aa17d82600996f811
|
/sistemas lineares - jacobi.sce
|
59b489b34e3d2c3255e968ccd77c9b64d134aeec
|
[] |
no_license
|
ItaloOliveiraF/Algoritmos
|
9600fa8e95fed942414250e92e93286320548795
|
ff32fb26414e14d7b55b39cba7025eb2f844ea5b
|
refs/heads/master
| 2020-04-04T19:11:32.124542
| 2018-10-26T02:59:35
| 2018-10-26T02:59:35
| 156,195,729
| 1
| 0
| null | 2018-11-05T09:56:50
| 2018-11-05T09:56:49
| null |
UTF-8
|
Scilab
| false
| false
| 733
|
sce
|
sistemas lineares - jacobi.sce
|
clear;
clc;
// Implementação resolução pelo método de Jacobi
function [x, Er]= jacobi(A,b,x0,n)
[l,c]=size(A)
erro = 1;
cont = 1;
x = x0;
while (cont <= n)
xa = x
for i = 1:l
soma=0;
for j = 1:l
if(j~=i) then
soma = soma + A(i,j)*xa(j);
end
end
x(i) = (b(i) - soma)/A(i,i);
end
Er(cont) = max(abs(x-xa))/max(abs(x))
cont = cont + 1;
end
endfunction
//Declarando as variáveis que serão utilizadas
A = [15 5 -5;1 10 1;2 -2 8];
b = [30 23 -10]';
x0 = zeros(1,3);
n = 10;
//Exemplo chamada
[x, Er]= jacobi(A,b,x0,n);
|
1587f010ce46427ec613ed89d77279a0c6f12e76
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/797/CH5/EX5.6.s/5_06_solution.sce
|
f71e09fec596f128ce60853133ba59bf06bc57d6
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 245
|
sce
|
5_06_solution.sce
|
//Solution 5-06
WD=get_absolute_file_path('5_06_solution.sce');
datafile=WD+filesep()+'5_06_example.sci';
clc;
exec(datafile)
V_2 = sqrt(2 * g * z_1); //Toricelli equation
printf("Water leaves the tank with initial velocity of %1.2f m/s", V_2);
|
a6dd5458c4b71b998a7b3984381ec0f2c34a33a6
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1280/CH4/EX4.3/4_3.sce
|
c6797805a01a29196bf87ce5a45722db74b120cb
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 208
|
sce
|
4_3.sce
|
clc
//initialisation of variables
d= 0.275 //in
p= 15
p1= 20
p3= 8
//CALCULATIONS
Fs= (d*p/100)+(d*p1/100)-(d*p3/100)
Fs1= Fs*100/d
//RESULTS
printf ('final available squeeze = %.2f percent',Fs1)
|
4be62ccdd41bc8c16e6f0582b99bcb26915f4969
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2300/CH14/EX14.12.5/Ex14_5.sce
|
1c3ba4b12da426496e5c1dd65ddb8deec4510996
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,085
|
sce
|
Ex14_5.sce
|
//scilab 5.4.1
//Windows 7 operating system
//chapter 14 Integrated Circuits and Operational Amplifiers
clc
clear
R1=1*1000//R1=input resistance in ohms in the inverting amplifier circuit
Rf=50*1000//Rf=feedback resistance in ohms
A=-(Rf/R1)//AV=voltage gain of the inverting amplifier circuit
disp(A,"The voltage gain of the given inverting amplifier circuit is =")
//vin=0.5*sin(100*%pi*t)
//vout=A*vin=-50*0.5*sin(100*%pi*t)=-25*sin(100*%pi*t)
disp("If the operation were entirely linear ,the output voltage would have been -25*sin(100*%pi*t)")
disp("But since the voltage supply is +-12V ,the op-amp is saturated when |vout| attains 12V")
//Let at time t=to,vout=-12V
//-12=-25*sin(100*%pi*to)
to=(1/(100*%pi))*asin(12/25)
format("v",8)
disp("s",to,"to=")
disp("Thus over the entire cycle,")
disp("vout=-25*sin(100*%pi*t) V when 0<=t<=to")
disp("vout=-12V when to<=t<=(0.01-to)")
disp("vout=-25*sin(100*%pi*t) V when (0.01-to)<=t<=(0.01+to)")
disp("vout=+12V when (0.01+to)<=t<=(0.02-to)")
disp("vout=-25*sin(100*%pi*t) V when (0.02-to)<=t<=0.02 seconds")
|
16219b52cf4e04ddc6ba85b90e455fc4f59a93d7
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1430/CH13/EX13.6/exa13_6.sce
|
e0456e7c466f8cca8051a4f209503c1f738bce0a
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 628
|
sce
|
exa13_6.sce
|
// Example 13.6
// Inversion with complex Poles
s=%s;
t=0:0.001:10
num=15*s^2-16*s-7;
den=(s+2)*(s^2+6*s+25);
F_s=num/den;
pfe=pfss(F_s); // partial fraction of the transfer function
// from pfe(1) we get
B=10;
C=-66;
alpha=3;// from pfe(1)
beta=sqrt(25-9);//Comparing the denominator of pfe(1) with standard 2nd orderequation
// Now
K=B+(%i*(alpha*B-C))/beta;
// From inverse Laplace Transfrom of pfe(2) we get
f1=5*exp(-2*t)
K_m=abs(K); // Magnitude of K
phase_K=atan(imag(K),real(K));
g=K_m*exp(-alpha*t).*cos(beta*t+phase_K);
f=f1+g;
plot(t,f)
xlabel('t')
ylabel('f(t)')
title('Function Waveform')
|
b1b24c3ff8b010b6347ab18f8f2a8eb4a231c0af
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/215/CH16/EX16.4/ex16_4.sce
|
3f6628e962195d6638b4efdcc479ab005b0a44e8
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 415
|
sce
|
ex16_4.sce
|
clc
//Example 16.4
disp('Given')
disp('R1=2 ohm R2=3 ohm L=1H C=125mF')
R1=2;R2=3 ; L=1;C=125*10^-3;
w0=sqrt(1/(L*C)-(R1/L)^2)
printf("w0=%d rad/s \n",w0)
//Input admittance is 1/R2+i*w*C+1/(R+I*w*L)
Y=1/3+%i/4+1/(2+%i*2)
printf("Y= %3.4f S \n",Y)
//Now input impedance at resonance
Z=1/Y
printf("Z= %3.4f ohm \n",Z)
//Resonant frequency f=1/sqrt(L*C)
f=1/sqrt(L*C)
printf("f=%3.2f rad/s \n",f);
|
333928dfead46f43a576156ff1b69afdfdf1eee2
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1634/CH1/EX1.31/example1_31.sce
|
7d2f076085495278ddb4c2cc20826fa313ea2d8c
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 590
|
sce
|
example1_31.sce
|
//exapple 1.31
clc; funcprot(0);
// Initialization of Variable
longP=112+20/60+15/3600;//longitude of place
GST=8+10/60+28/3600;//GST at GMM
lst=18+28/60+12/3600;//local sidereal time
dot=longP/15;//difference in time
gmm=lst+dot-GST;//SI at GMM
i=gmm*9.8565/3600;//error
gmm=gmm-i;//LST at L.M.N
LMT=gmm-dot;//local mean time
disp("local mean time in past midnight observed:");
a=modulo(LMT*3600,60);
printf("seconds %.2f",a);
b=modulo(LMT*3600-a,3600)/60;
printf(" minutes %i",b);
c=(LMT*3600-b*60-a)/3600;
if c>24 then
c=c-24;
end
printf(" hours %i",c);
|
e663a390456894643b8db877dab376cba42e61f3
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1271/CH20/EX20.2/example20_2.sce
|
61adf06b8cc957ba605055a4c111cad07d2b3dfd
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 377
|
sce
|
example20_2.sce
|
clc
// Given that
V = 30e3 // voltage in V
lambda_min = 0.414e-10 // shortest wavelength in m
e = 1.6e-19 // charge on an electron in C
c = 3e8 // speed of light in m/sec
// Sample Problem 2 on page no. 20.7
printf("\n # PROBLEM 2 # \n")
printf("Standard formula used \n ")
printf("h*c/lambda = eV \n")
h = (e * V * lambda_min) / c
printf("\n Planck constant is %e J sec.",h)
|
b7b3731f26a6e7bcaed37e07d82e8c8683d5c3a4
|
cb3c54411a4f3432c21524a69262b6655ba46ac1
|
/Algebra/TrabalhoAlgebra-M1.sce
|
46a8c156f51efdd7a8aacc0c3ff32f6f2a7c6cc7
|
[] |
no_license
|
draetus/faculdade_trabalhos
|
ae85c0c89888c2ad956c6aa7147a801d0cdf4f9a
|
e9971b4478112fbe7333ad71d1b4f1620b384eb6
|
refs/heads/master
| 2022-12-30T19:39:42.191109
| 2020-10-16T13:12:03
| 2020-10-16T13:12:03
| 87,357,566
| 4
| 2
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 4,600
|
sce
|
TrabalhoAlgebra-M1.sce
|
loadmatfile("matriz.txt")
//Funcao que calcula a linha com maior numero de zeros
nlin = 0
cont2 = 0
for i = 1:4
cont = 0
for j = 1:4
if matriz(i,j) == 0 then
cont = cont + 1
end
end
if cont > cont2 then
nlin = i
cont2 = cont
for j = 1:4
linha(1,j) = matriz(i,j)
end
end
end
//Caso não houver zero em nenhuma linha é escolhida a primeira linha
if nlin == 0 then
nlin = 1
for j = 1:4
linha(1,j) = matriz(1,j)
end
end
//Funções que calculam as matrizes que se formam pelo uso do método do Laplace
//Caso a linha com maior numero de zeros seja a primeira
if nlin == 1 then
for i = 1:3
for j = 1:3
matriza(i,j) = matriz(i+1,j+1)
if j == 1 then
matrizb(i,j) = matriz(i+1,j)
else
matrizb(i,j) = matriz(i+1,j+1)
end
if j == 3 then
matrizc(i,j) = matriz(i+1,j+1)
else
matrizc(i,j) = matriz(i+1,j)
end
matrizd(i,j) = matriz(i+1,j)
end
end
end
//Caso a linha com maior numero de zeros seja a segunda
if nlin == 2 then
for i = 1:3
for j = 1:3
if i == 1 then
matriza(i,j) = matriz(i,j+1)
if j == 1 then
matrizb(i,j) = matriz(i,j)
else
matrizb(i,j) = matriz(i,j+1)
end
if j == 3 then
matrizc(i,j) = matriz(i,j+1)
else
matrizc(i,j) = matriz(i,j)
end
matrizd(i,j) = matriz(i,j)
else
matriza(i,j) = matriz(i+1,j+1)
if j == 1 then
matrizb(i,j) = matriz(i+1,j)
else
matrizb(i,j) = matriz(i+1,j+1)
end
if j == 3 then
matrizc(i,j) = matriz(i+1,j+1)
else
matrizc(i,j) = matriz(i+1,j)
end
matrizd(i,j) = matriz(i+1,j)
end
end
end
end
//Caso a linha com maior numero de zeros seja a terceira
if nlin == 3 then
for i = 1:3
for j = 1:3
if i == 3 then
matriza(i,j) = matriz(i+1,j+1)
if j == 1 then
matrizb(i,j) = matriz(i+1,j)
else
matrizb(i,j) = matriz(i+1,j+1)
end
if j == 3 then
matrizc(i,j) = matriz(i+1,j+1)
else
matrizc(i,j) = matriz(i+1,j)
end
matrizd(i,j) = matriz(i+1,j)
else
matriza(i,j) = matriz(i,j+1)
if j == 1 then
matrizb(i,j) = matriz(i,j)
else
matrizb(i,j) = matriz(i,j+1)
end
if j == 3 then
matrizc(i,j) = matriz(i,j+1)
else
matrizc(i,j) = matriz(i,j)
end
matrizd(i,j) = matriz(i,j)
end
end
end
end
//Caso a linha com maior numeros de zeros seja a quarta
if nlin == 4 then
for i = 1:3
for j = 1:3
matriza(i,j) = matriz(i,j+1)
if j == 1 then
matrizb(i,j) = matriz(i,j)
else
matrizb(i,j) = matriz(i,j+1)
end
if j == 3 then
matrizc(i,j) = matriz(i,j+1)
else
matrizc(i,j) = matriz(i,j)
end
matrizd(i,j) = matriz(i,j)
end
end
end
soma = 0
//Atribuindo determinantes a um vetor
determinantes(1,1) = det(matriza)
determinantes(1,2) = det(matrizb)
determinantes(1,3) = det(matrizc)
determinantes(1,4) = det(matrizd)
//Calculo do Determinante pelo metodo Laplace
for j = 1:4
if modulo(nlin+j,2) <> 0 then
determinantes(1,j) = determinantes(1,j) * -1
end
soma = soma + determinantes(1,j)*matriz(nlin,j)
end
//Calculo do determinantes por comando Scilab
scilab = det(matriz)
//Apresentação de dados
disp(linha,"Linha escolhida: ")
disp(nlin,"Numero da linha: ")
disp(soma,"Determinantes da matriz pelo metodo do Laplace: ")
disp(scilab,"Determinante calculado por comando scilab: ")
|
2b0650ef495ad8c028d06e5cce20003ae8de5a29
|
717ddeb7e700373742c617a95e25a2376565112c
|
/2474/CH7/EX7.3/Ch07Ex03.sce
|
f10b939c560bdb83235b91d69038ce29bad16208
|
[] |
no_license
|
appucrossroads/Scilab-TBC-Uploads
|
b7ce9a8665d6253926fa8cc0989cda3c0db8e63d
|
1d1c6f68fe7afb15ea12fd38492ec171491f8ce7
|
refs/heads/master
| 2021-01-22T04:15:15.512674
| 2017-09-19T11:51:56
| 2017-09-19T11:51:56
| 92,444,732
| 0
| 0
| null | 2017-05-25T21:09:20
| 2017-05-25T21:09:19
| null |
UTF-8
|
Scilab
| false
| false
| 295
|
sce
|
Ch07Ex03.sce
|
// Scilab code Ex7.3: Pg.292 (2008)
clc; clear;
l_1 = 2; // Orbital quantum number
l_2 = 3; // Orbital quantum number
printf("\nThe possible values of l are:");
for l = (l_2-l_1):1:(l_1 + l_2)
printf(" %d ", l);
end;
// Result
// The possible values of l are: 1 2 3 4 5
|
1424ce4ab9219ec0b056bc1e35569b4829f83114
|
717ddeb7e700373742c617a95e25a2376565112c
|
/3428/CH21/EX14.21.1/Ex14_21_1.sce
|
5147f322faf5a1b43b15e36a4d25ce8d9fc51fc7
|
[] |
no_license
|
appucrossroads/Scilab-TBC-Uploads
|
b7ce9a8665d6253926fa8cc0989cda3c0db8e63d
|
1d1c6f68fe7afb15ea12fd38492ec171491f8ce7
|
refs/heads/master
| 2021-01-22T04:15:15.512674
| 2017-09-19T11:51:56
| 2017-09-19T11:51:56
| 92,444,732
| 0
| 0
| null | 2017-05-25T21:09:20
| 2017-05-25T21:09:19
| null |
UTF-8
|
Scilab
| false
| false
| 249
|
sce
|
Ex14_21_1.sce
|
//Section-14,Example-1,Page no.-PC.7
//To find the temperature at which pressure of gas will reach the bursting value.
clc;
//PV=nRT
P=10
V=(10^-3)*(1/10^-3)
n=((5*10^-3)/30)
R=0.0821
T=((P*V)/(n*R))
disp(T,'Required temperature(K)')
|
c5d9bac544d5504004ec9745bee25dfaff3aa2ff
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/965/CH7/EX7.62/62.sci
|
27fe986ee1488fde007ea5155cc79a04104ef523
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 373
|
sci
|
62.sci
|
clc;
clear all;
disp("heat lost by man")
d=0.35;// m
h=1.65;//m
ts=28;// degree C
ta=12;// degree C
U=30*1000/3600;// m/s
tf=(ts+ta)/2; // film temperature
k=2.59*10^(-2);// W/m.C
v=15*10^(-6);// m^2/s
Pr=0.707;
Re=U*d/v;
disp("Nu=C*Re^n*Pr^(1/3)")
C=0.027;
n=0.805;
Nu=C*Re^n*Pr^(1/3);
hs=Nu*k/d
Q=hs*%pi*d*h*(ts-ta);
disp("w",Q,"heat lost by man =")
|
ddcfce04c23ccc92531de54adfc12580f6c80228
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2175/CH2/EX2.1/2_1.sce
|
9a128ac7a331e0d34299e012b3389b32c718266b
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 268
|
sce
|
2_1.sce
|
clc;
x=0.9;
vg=0.1104;
v=x*vg;
disp("specific volume is:");
disp("m^3/kg",v)
hf=885;
h_fg=1912;
h=hf+x*h_fg;
disp("specific enthalpy is:");
disp("kJ/kg",h);
uf=883;
ug=2598;
u=(1-x)*uf+x*ug;
disp("specific internal energy is:");
disp("kJ/kg",u);
|
671ea839e7dbbc4486fa7525b34bc110abe223c1
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1475/CH7/EX7.14/Example_7_14.sce
|
606fd93837bd68a4491e25a3427b4599f51dd0f8
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 240
|
sce
|
Example_7_14.sce
|
// Example 7.14 Apply the geometric mean to find general index from the following
clc;
clear;
I=[118 120 97 107 111 93];
W=[4 1 2 6 5 2];
IN=sum(log(I).*W)/sum(W);
GI=exp(IN)
disp(GI,"General Index",IN,"Log General Index number =")
|
91276237f280ba1ed3e9c7a896474dc8f6eb05e7
|
3b9a879e67cbab4a5a4a5081e2e9c38b3e27a8cc
|
/Pack/Área 2/M12/códigos_respostas/derivadas_primeira_ordem_q9.sci
|
5eb7c48c4f9de875b61e55dcdc29982eac5cbf8d
|
[
"MIT"
] |
permissive
|
JPedroSilveira/numerical-calculus-with-scilab
|
32e04e9b1234a0a82275f86aa2d6416198fa6c81
|
190bc816dfaa73ec2efe289c34baf21191944a53
|
refs/heads/master
| 2023-05-10T22:39:02.550321
| 2021-05-11T17:17:09
| 2021-05-11T17:17:09
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 371
|
sci
|
derivadas_primeira_ordem_q9.sci
|
//Fx(xn+0.8h) = [C1Fn-1 + C2Fn + C3Fn+1] / H
// ESSE AQUI A GENTE USA PRA DERIVADA PRIMEIRA HEEEIN
x =[0 1/9 2] // corresponde a n+0,n + 1/9 e n + 2
xc= 0 // onde é calculada a derivada. (xn+0), ficaria = 0
b(1)=0
b(2)=1
b(3)=2*xc //tem que usar aqui xc
for i=1:3
M(1,i)=1
M(2,i)=x(i)
M(3,i)=x(i)^2
end
c=inv(M)*b
disp('Coeficientes: ')
disp(c)
|
2ff6388a907c90f671e1bb239ebf2c4503f5ea76
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/83/CH14/EX14.3/example_14_3.sce
|
7b53d0abe555432521c9f415f9ec037fa4c6aad8
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 472
|
sce
|
example_14_3.sce
|
//Chapter 14
//Example 14.3
//page 538
//To estimate the values of the random variables x1 and x2 using WLSE
clear;clc;
i=0; x=1;y=8.5
printf('---------------------------------------\n');
printf('iteration\t\tx(l)\n');
printf('---------------------------------------\n');
printf('\t%d\t\t%0.3f\n',i,x);
for i=1:1:10
k=(1/3)*x^-2 //expression for the value of k has been printed wrongly in the textbook
x=x+(k)*(y-x^3);
printf('\t%d\t\t%0.3f\n',i,x);
end
|
e2e9420fd777d7d7e4499537fd9fe0b2ecccf108
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3136/CH2/EX2.6/Ex2_6.sce
|
59ba4d5c2fadb8f7ea682714ea87e0848a71ad5d
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 491
|
sce
|
Ex2_6.sce
|
clear all; clc;
//This numerical is Ex 2_1S,page 29.
Q1=18.2
N1=1000
N2=1500
delta_p1=10.3
P_s1=6
Q2=Q1*N2/N1
printf("\n The value of Q2 is equal to %g m^3/h",Q2)
delta_p2=delta_p1*((N2/N1)^2)
printf("\n The value of delta_p2 is equal to %0.1f bars",delta_p2)
P_s2=P_s1*(N2/N1)^3
printf("\n The value of P_s2 is equal to %g kW",P_s2)
E1=((Q1/3600)*delta_p1*10^2)/(P_s1)
printf("\n The value of E1=E2 is equal to %g ",E1)
disp("Thus the efficiency is equal to 86.8%")
|
5d44f73ce482b22dc43f6b6b651d720739f50fbd
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1691/CH2/EX2.34/exmp2_34.sce
|
c6469849e429f59c68f62fe574c2335f5c0cb388
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 625
|
sce
|
exmp2_34.sce
|
//Example 2.34
clc
disp("The name of the oscillator is Pierce oscillator")
disp("C1 = 1000 pF, C2 = 100 pF, f_s = 1 MHz")
ceq=(1000*100*10^-12)/1100
format(11)
disp(ceq,"C_eq(in F) = C1*C2 / C1+C2 =")
disp("At resonance, X_L = X_Ceq i.e. 2*pi*f*L = 1 / 2*pi*f*C_eq")
l=(1/(((2*%pi*10^6)^2)*(90.909*10^-12)))*10^6
format(4)
disp(l,"Therefore, L(in uH) = 1/(2*pi*f)^2*C_eq =")
disp("The fig 2.61(a) shows the electrical equivalent of the crystal")
disp("At series resonance,")
disp("X_L = X_C for crystal")
disp("Therefore, C = 90.909 pF for crystal")
disp("The mounting capacitance is about 1 to 2 pF")
|
dd14490b5de4262be524101d70b5635473b5f654
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1592/CH2/EX2.10/example_2_10.sce
|
c947cc9a95970b19018cf3d68b704e68b02d5df1
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 328
|
sce
|
example_2_10.sce
|
//Scilab Code for Example 2.10 of Signals and systems by
//P.Ramakrishna Rao
//The value of X(s) is found by solving the differential equation
clear;
clc;
syms t s;
s= %s;
X=pfss((s^2+8*s+6)/((s+2)*(s+3)*s));
X(1)=1/s;
f1=ilaplace(X(1))
f2=ilaplace(X(2))
f3=ilaplace(X(3))
fz=f1+f2+f3;
disp(fz*'u(t)',"c) x(t)=");
|
5bfff9bbad669a9aac1586c5df4d4f46f71a7798
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2201/CH3/EX3.22/ex3_22.sce
|
879a52796864b8d8063554330bfb8e608e1d833d
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 232
|
sce
|
ex3_22.sce
|
// Exa 3.22
clc;
clear;
close;
// Given data
h = 6.64*10^-34;// in J-s
q=1.6*10^-19;// in C
h= h/q;// in eV
c = 3*10^8;// in m/s
lembda = 0.87*10^-6;// in m
E_g = (h*c)/lembda;// in eV
disp(E_g,"The band gap in eV is");
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.