blob_id
stringlengths 40
40
| directory_id
stringlengths 40
40
| path
stringlengths 6
214
| content_id
stringlengths 40
40
| detected_licenses
listlengths 0
50
| license_type
stringclasses 2
values | repo_name
stringlengths 6
87
| snapshot_id
stringlengths 40
40
| revision_id
stringlengths 40
40
| branch_name
stringclasses 15
values | visit_date
timestamp[us]date 2016-08-04 09:00:04
2023-09-05 17:18:33
| revision_date
timestamp[us]date 1998-12-11 00:15:10
2023-09-02 05:42:40
| committer_date
timestamp[us]date 2005-04-26 09:58:02
2023-09-02 05:42:40
| github_id
int64 436k
586M
⌀ | star_events_count
int64 0
12.3k
| fork_events_count
int64 0
6.3k
| gha_license_id
stringclasses 7
values | gha_event_created_at
timestamp[us]date 2012-11-16 11:45:07
2023-09-14 20:45:37
⌀ | gha_created_at
timestamp[us]date 2010-03-22 23:34:58
2023-01-07 03:47:44
⌀ | gha_language
stringclasses 36
values | src_encoding
stringclasses 17
values | language
stringclasses 1
value | is_vendor
bool 1
class | is_generated
bool 1
class | length_bytes
int64 5
10.4M
| extension
stringclasses 15
values | filename
stringlengths 2
96
| content
stringlengths 5
10.4M
|
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
6f007246eec2a2ce8a9677188db268ddf2fb1d86
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3809/CH8/EX8.6/EX8_6.sce
|
a250a99c3a268caf365307186ec17b2619bf40bd
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,073
|
sce
|
EX8_6.sce
|
//Chapter 8, Example 8.6
clc
//Initialisation
f1=1000 //frequency in hertz
f2=10 //frequency in hertz
f3=100 //frequency in hertz
f4=20 //frequency in hertz
f5=10**6 //frequency in hertz
f6=50 //frequency in hertz
//Calculation
f11=f1*2 //an octave above 1 kHz
f22=f2*2*2*2 //three octaves above 10 Hz
f33=f3/2 //an octave below 100 Hz
f44=f4*10 //a decade above 20 Hz
f55=f5/10/10/10 //three decades below 1 MHz
f66=f6*10*10 //two decades above 50 Hz
//Result
printf("(a) an octave above 1 kHz = %d kHz \n",f11/1000)
printf("(b) three octaves above 10 Hz = %d Hz \n",f22)
printf("(c) an octave below 100 Hz = %d Hz \n",f33)
printf("(d) a decade above 20 Hz = %d Hz \n",f44)
printf("(e) three decades below 1 MHz = %d kHz \n",f55/1000)
printf("(f) two decades above 50 Hz = %d kHz \n",f66)
|
a9e4959a7e103af2555f20c8400c8bc87c4a0c8a
|
6fd3f19d2ced950a97cae01eba7080554840efd4
|
/src/F2D.sci
|
3daa4a4326c781c7692556065615038f3d5ca864
|
[] |
no_license
|
marcosamaris/FrFTScilab
|
6563d281792332354330ea2eb5d18334338e0bfd
|
8a5cb67873b881714a051336d472271c184a2083
|
refs/heads/master
| 2020-12-14T07:32:10.208263
| 2017-02-02T13:48:43
| 2017-02-02T13:48:43
| 68,461,393
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 315
|
sci
|
F2D.sci
|
function F2D=fracF2D(f2D,ac,ar)
[M,N] = size(f2D);
F2D = zeros(M,N);
if ac == 0
F2D = f2D;
else
for k = 1:N
F2D(:,k) = fracF(f2D(:,k),ac);
end;
end;
F2D = conj(F2D');
if ar ~= 0
for k = 1:M
F2D(:,k) = fracF(F2D(:,k),ar);
end;
end;
F2D = conj(F2D');
endfunction
|
8635f512c96acbd64ca75d1b4eb04014760de213
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/98/CH4/EX4.2/example4_2.sce
|
09f91ece3bca0fb8068575d78732d39272a37cfc
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 167
|
sce
|
example4_2.sce
|
//Chapter 4
//Example 4_2
//Page 74
clear;clc;
p=200000;
s=10000;
n=20;
r=0.08;
q=(p-s)*r/((1+r)^n-1);
printf("Annual payment for sinking fund = Rs. %.0f \n\n", q);
|
4d47b12e09194ab8c3cfd8304708df530bff41f2
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2438/CH4/EX4.13/Ex4_13.sce
|
5aec0bce325f5b7e7d6d24cab69f775e3bca05e1
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 420
|
sce
|
Ex4_13.sce
|
//==================================================================================
// chapter 4 example 13
clc;
clear;
//input data
Er = 1.000074; //dielectric constant for a gas at 0°C
//calculation
sighe = Er-1;
//result
mprintf('dielectric susceptibility=%3.6f\n',sighe);
//===================================================================================
|
bcab5c843153bcb57740e8078a0b8d42f6363109
|
717ddeb7e700373742c617a95e25a2376565112c
|
/2474/CH4/EX4.1/Ch04Ex01.sce
|
a6bd4c90e2adf8949a478e46ff2c95203ba72d6d
|
[] |
no_license
|
appucrossroads/Scilab-TBC-Uploads
|
b7ce9a8665d6253926fa8cc0989cda3c0db8e63d
|
1d1c6f68fe7afb15ea12fd38492ec171491f8ce7
|
refs/heads/master
| 2021-01-22T04:15:15.512674
| 2017-09-19T11:51:56
| 2017-09-19T11:51:56
| 92,444,732
| 0
| 0
| null | 2017-05-25T21:09:20
| 2017-05-25T21:09:19
| null |
UTF-8
|
Scilab
| false
| false
| 722
|
sce
|
Ch04Ex01.sce
|
// Scilab code Ex4.1: Pg.150 (2008)
clc; clear;
R_H = 1.096776e+07; // Rydberg constant for Hydrogen, per metre
// For Lymann series
m = 1; // Integer value
n = 2; // Integer value
lamda = 1/(R_H*(1/m^2 - 1/n^2)); // Wavelength of Lymann series, m
printf("\nThe wavelength of first line of Lymann series = %5.1f nm", lamda*1e+09);
// For Paschen series
m = 3; // Integer value
n = 4; // Integer value
lamda = 1/(R_H*(1/m^2 - 1/n^2)); // Wavelength of Paschen series, m
printf("\nThe wavelength of first line of Paschen series = %4d nm", lamda*1e+09);
// Result
// The wavelength of first line of Lymann series = 121.6 nm
// The wavelength of first line of Paschen series = 1875 nm
|
7c796485830af9165997e2e8c412fbef41620555
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1970/CH11/EX11.9/CH11Exa9.sce
|
fe9bd515980a4dbf3532115e399d600e6079a836
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 931
|
sce
|
CH11Exa9.sce
|
// Scilab code Exa11.9 : : Page-538 (2011)
clc; clear;
q = 1.6023e-19; // Charge of an electron, C
B_0 = 1.5; // Magnetic field at the centre, tesla
m_d = 2.014102*1.66e-27; // Mass of the deutron, Kg
f_max = B_0*q/(2*%pi*m_d*10^6); // Maximum frequency of the dee voltage, mega cycles per sec
B_prime = 1.4310; // Magnetic field at the periphery of the dee, tesla
f_prime = 10^7; // Frequency, cycles per sec
c = 3e+08; // Velocity of the light, metre per sec
M = B_prime*q/(2*%pi*f_prime*1.66e-27); // Relativistic mass, u
K_E = (M-m_d/1.66e-27)*931.5; // Kinetic energy of the particle, mega electron volts
printf("\nThe maximum frequency of the dee voltage = %5.2f MHz\nThe kinetic energy of the deuteron = %5.1f MeV", f_max, K_E);
// Result
// The maximum frequency of the dee voltage = 11.44 MHz
// The kinetic energy of the deuteron = 171.6 MeV
|
833b683fb15a0178668589015a2aae9058f04777
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1970/CH15/EX15.1/CH15Exa1.sce
|
0a58da35143ec6fdcc9d2d48809eceb5649ee8e5
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,014
|
sce
|
CH15Exa1.sce
|
// Scilab code Exa15.1 : : Page-652 (2011)
clc; clear;
N_0_235 = 1; // Number of uranium atom
N_0_c = 10^5; // Number of graphite atoms per uranium atom
sigma_a_235 = 698; // Absorption cross section for uranium, barns
sigma_a_c = 0.003; // Absorption cross section for graphite, barns
f = N_0_235*sigma_a_235/(N_0_235*sigma_a_235+N_0_c*sigma_a_c ); // Thermal utilization factor
eta = 2.08; // Number of fast fission neutron produced
k_inf = eta*f; // Multiplication factor
L_m = 0.54; // Material length, metre
L_sqr = ((L_m)^2*(1-f)); // diffusion length, metre
tau = 0.0364; // Age of the neutron
B_sqr = 3.27; // Geometrical buckling
k_eff = round (k_inf*exp(-tau*B_sqr)/(1+L_sqr*B_sqr)); // Effective multiplication factor
N_lf = k_eff/k_inf; // Non leakage factor
lf = (1-N_lf)*100; // Leakage factor, percent
printf("\n Total leakage factor = %4.1f percent",lf)
// Result
// Total leakage factor = 31.3 percent
|
b1e49ba90c62008be60d470b0cbe8fe92b118b54
|
99b4e2e61348ee847a78faf6eee6d345fde36028
|
/Toolbox Test/dutycycle/dutycycle16.sce
|
203f9e98fbe77a8e77a176455e34c1b03e882afc
|
[] |
no_license
|
deecube/fosseetesting
|
ce66f691121021fa2f3474497397cded9d57658c
|
e353f1c03b0c0ef43abf44873e5e477b6adb6c7e
|
refs/heads/master
| 2021-01-20T11:34:43.535019
| 2016-09-27T05:12:48
| 2016-09-27T05:12:48
| 59,456,386
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 266
|
sce
|
dutycycle16.sce
|
//check o/p when i/p is a char vector
x=['a'];
[d]=dutycycle(x);
//output
//!--error 10000
//Input arguments must be double.
//at line 56 of function dutycycle called by :
//[d]=dutycycle(x);
//at line 3 of exec file called by :
//cycle16.sce', -1
|
96d750623f4cc7db667f87696d727d3191b25e21
|
1b969fbb81566edd3ef2887c98b61d98b380afd4
|
/Rez/bivariate-lcmsr-post_mi/bfi_c_hrz_col/~BivLCM-SR-bfi_c_hrz_col-PLin-VLin.tst
|
2a97029c5b818e738051df03849fcd8216634bc3
|
[] |
no_license
|
psdlab/life-in-time-values-and-personality
|
35fbf5bbe4edd54b429a934caf289fbb0edfefee
|
7f6f8e9a6c24f29faa02ee9baffbe8ae556e227e
|
refs/heads/master
| 2020-03-24T22:08:27.964205
| 2019-03-04T17:03:26
| 2019-03-04T17:03:26
| 143,070,821
| 1
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 11,974
|
tst
|
~BivLCM-SR-bfi_c_hrz_col-PLin-VLin.tst
|
THE OPTIMIZATION ALGORITHM HAS CHANGED TO THE EM ALGORITHM.
ESTIMATED COVARIANCE MATRIX FOR PARAMETER ESTIMATES
1 2 3 4 5
________ ________ ________ ________ ________
1 0.302521D+00
2 -0.228828D-02 0.231927D-02
3 0.867130D-01 -0.175586D-02 0.280397D+00
4 -0.148161D-02 0.651643D-03 -0.608576D-02 0.210791D-02
5 -0.662112D-03 0.740211D-04 -0.247782D-02 0.388945D-04 0.356133D-02
6 -0.743049D-05 -0.318520D-04 0.189747D-02 -0.108215D-03 -0.311230D-03
7 -0.984568D-03 0.418317D-04 -0.400134D-03 0.123545D-03 0.234155D-03
8 0.152157D-02 -0.136680D-04 0.178716D-02 -0.256793D-04 0.348332D-03
9 -0.348386D+00 0.118064D-01 -0.168859D-01 0.136083D-01 0.330780D-01
10 -0.151732D+00 -0.136197D-01 -0.191238D+00 -0.274948D-02 0.108107D+00
11 -0.117231D+00 0.111124D-01 -0.152896D+00 0.129633D-01 0.334103D-01
12 -0.202735D+00 0.150245D-01 -0.649808D+00 0.375157D-01 -0.318448D-01
13 0.691149D-01 0.343641D-04 0.469460D-01 -0.910741D-02 0.444267D-01
14 -0.176513D+00 0.481189D-02 -0.299686D+00 0.122318D-01 0.159315D-01
15 -0.229209D+01 -0.282069D-01 -0.549729D+00 -0.998617D-02 -0.112944D+00
16 -0.642513D-01 -0.235087D-02 -0.106391D-01 0.117373D-02 -0.117345D-02
17 0.103299D-01 -0.540547D-03 0.398552D-02 -0.277746D-04 -0.374257D-03
18 -0.810927D+00 -0.277153D-02 -0.539128D+00 -0.141252D-01 -0.787851D-02
19 -0.500867D-01 -0.484154D-02 0.297992D-02 0.691717D-03 0.207149D-02
20 -0.344025D+00 0.195464D-02 -0.263700D+01 0.579620D-01 0.145442D-01
21 0.784389D-02 0.781192D-02 -0.341019D-01 -0.143384D-03 -0.125636D-02
22 0.609444D-02 -0.203430D-03 0.349103D-02 -0.559683D-04 -0.268839D-04
23 -0.871517D-02 -0.461119D-03 0.389951D-01 -0.838652D-02 0.837023D-03
24 0.208621D-02 -0.148251D-03 0.204383D-02 0.144891D-03 0.894493D-04
ESTIMATED COVARIANCE MATRIX FOR PARAMETER ESTIMATES
6 7 8 9 10
________ ________ ________ ________ ________
6 0.136018D-02
7 0.847161D-03 0.225812D-02
8 0.506855D-03 0.210277D-03 0.289914D-02
9 0.305218D-02 -0.259326D-01 -0.100357D-01 0.458412D+02
10 0.303807D-01 0.351903D-01 0.149922D-01 0.397557D+01 0.184912D+02
11 -0.116910D-02 -0.170354D-01 -0.573424D-02 0.997419D+01 0.582851D+00
12 -0.298498D-01 -0.282731D-01 -0.256679D-01 0.108665D+02 0.447830D+00
13 0.584415D-01 0.745543D-01 0.263196D-01 -0.153620D+01 0.568939D+01
14 0.364945D-01 0.336638D-01 0.115345D+00 -0.595964D+00 0.436513D+01
15 -0.161038D-01 -0.154088D-01 -0.470419D-01 -0.825212D+01 -0.121058D+02
16 -0.641097D-03 -0.186475D-02 -0.580102D-03 0.802080D+00 -0.166006D+00
17 0.943763D-04 0.174467D-03 0.213410D-03 -0.159992D+00 0.802885D-02
18 -0.661427D-01 -0.772045D-01 -0.725609D-01 -0.125615D+01 -0.299185D+01
19 -0.117593D-01 -0.100406D-02 -0.937919D-02 -0.334167D+00 -0.158681D+00
20 -0.497736D-01 -0.175651D-01 -0.219046D+00 -0.114105D+01 -0.227100D+00
21 0.107960D-01 -0.357377D-02 0.934509D-02 0.866439D+00 -0.263688D+00
22 -0.839399D-05 0.135089D-03 0.206857D-03 -0.662019D-01 0.452480D-01
23 0.106879D-02 -0.256604D-02 -0.503890D-02 0.198074D+00 -0.190072D+00
24 -0.857387D-04 0.239098D-03 0.722373D-03 -0.509105D-01 0.779837D-01
ESTIMATED COVARIANCE MATRIX FOR PARAMETER ESTIMATES
11 12 13 14 15
________ ________ ________ ________ ________
11 0.328184D+02
12 0.174289D+02 0.126487D+03
13 -0.856074D+00 -0.171921D+01 0.111945D+02
14 -0.923275D+00 0.503665D+00 0.610589D+01 0.276478D+02
15 -0.475904D+01 -0.293608D+01 -0.566035D+01 0.322356D+00 0.245949D+03
16 0.300857D+00 0.496136D+00 -0.174333D+00 -0.240387D-01 0.191872D+01
17 -0.457161D-01 -0.865934D-02 0.385639D-01 0.102458D-01 -0.105615D+01
18 -0.205841D+01 -0.285016D+01 -0.780989D+01 -0.412530D+01 0.771741D+02
19 0.762720D+00 0.839080D+00 -0.107388D+01 -0.147281D+01 0.104736D+01
20 0.557944D-01 -0.167448D+02 -0.539595D+01 -0.152211D+02 0.347605D+02
21 -0.305660D-01 0.912246D-01 0.781035D+00 0.121142D+01 -0.787577D+00
22 -0.620622D-01 -0.240665D-01 0.384980D-01 0.227975D-01 -0.342050D+00
23 0.255168D+00 0.992347D+00 -0.345811D-01 -0.368354D+00 0.198581D+00
24 -0.514270D-01 -0.121170D+00 0.360679D-01 0.598753D-01 -0.220837D+00
ESTIMATED COVARIANCE MATRIX FOR PARAMETER ESTIMATES
16 17 18 19 20
________ ________ ________ ________ ________
16 0.441090D+00
17 -0.201382D-01 0.132171D-01
18 0.474039D-01 -0.400780D+00 0.150161D+03
19 0.171147D+00 -0.159445D-01 0.289465D+01 0.381228D+01
20 -0.388449D-01 -0.195097D+00 0.642065D+02 0.427036D+00 0.238756D+03
21 0.478204D-01 0.135765D-02 -0.675176D+00 -0.330456D+01 0.141620D+00
22 -0.544807D-02 0.432170D-02 -0.723340D+00 -0.267246D-01 -0.335658D+00
23 0.147215D-01 -0.925520D-03 0.215953D+00 0.627064D-01 0.897128D+00
24 -0.639291D-03 0.197054D-02 -0.307343D+00 -0.104482D-02 -0.886559D+00
ESTIMATED COVARIANCE MATRIX FOR PARAMETER ESTIMATES
21 22 23 24
________ ________ ________ ________
21 0.366421D+01
22 -0.987802D-02 0.768672D-02
23 0.187268D+00 -0.103848D-01 0.562587D+00
24 -0.194841D-01 0.433608D-02 -0.523832D-01 0.118369D-01
ESTIMATED CORRELATION MATRIX FOR PARAMETER ESTIMATES
1 2 3 4 5
________ ________ ________ ________ ________
1 1.000
2 -0.086 1.000
3 0.298 -0.069 1.000
4 -0.059 0.295 -0.250 1.000
5 -0.020 0.026 -0.078 0.014 1.000
6 0.000 -0.018 0.097 -0.064 -0.141
7 -0.038 0.018 -0.016 0.057 0.083
8 0.051 -0.005 0.063 -0.010 0.108
9 -0.094 0.036 -0.005 0.044 0.082
10 -0.064 -0.066 -0.084 -0.014 0.421
11 -0.037 0.040 -0.050 0.049 0.098
12 -0.033 0.028 -0.109 0.073 -0.047
13 0.038 0.000 0.026 -0.059 0.223
14 -0.061 0.019 -0.108 0.051 0.051
15 -0.266 -0.037 -0.066 -0.014 -0.121
16 -0.176 -0.074 -0.030 0.038 -0.030
17 0.163 -0.098 0.065 -0.005 -0.055
18 -0.120 -0.005 -0.083 -0.025 -0.011
19 -0.047 -0.051 0.003 0.008 0.018
20 -0.040 0.003 -0.322 0.082 0.016
21 0.007 0.085 -0.034 -0.002 -0.011
22 0.126 -0.048 0.075 -0.014 -0.005
23 -0.021 -0.013 0.098 -0.244 0.019
24 0.035 -0.028 0.035 0.029 0.014
ESTIMATED CORRELATION MATRIX FOR PARAMETER ESTIMATES
6 7 8 9 10
________ ________ ________ ________ ________
6 1.000
7 0.483 1.000
8 0.255 0.082 1.000
9 0.012 -0.081 -0.028 1.000
10 0.192 0.172 0.065 0.137 1.000
11 -0.006 -0.063 -0.019 0.257 0.024
12 -0.072 -0.053 -0.042 0.143 0.009
13 0.474 0.469 0.146 -0.068 0.395
14 0.188 0.135 0.407 -0.017 0.193
15 -0.028 -0.021 -0.056 -0.078 -0.180
16 -0.026 -0.059 -0.016 0.178 -0.058
17 0.022 0.032 0.034 -0.206 0.016
18 -0.146 -0.133 -0.110 -0.015 -0.057
19 -0.163 -0.011 -0.089 -0.025 -0.019
20 -0.087 -0.024 -0.263 -0.011 -0.003
21 0.153 -0.039 0.091 0.067 -0.032
22 -0.003 0.032 0.044 -0.112 0.120
23 0.039 -0.072 -0.125 0.039 -0.059
24 -0.021 0.046 0.123 -0.069 0.167
ESTIMATED CORRELATION MATRIX FOR PARAMETER ESTIMATES
11 12 13 14 15
________ ________ ________ ________ ________
11 1.000
12 0.271 1.000
13 -0.045 -0.046 1.000
14 -0.031 0.009 0.347 1.000
15 -0.053 -0.017 -0.108 0.004 1.000
16 0.079 0.066 -0.078 -0.007 0.184
17 -0.069 -0.007 0.100 0.017 -0.586
18 -0.029 -0.021 -0.190 -0.064 0.402
19 0.068 0.038 -0.164 -0.143 0.034
20 0.001 -0.096 -0.104 -0.187 0.143
21 -0.003 0.004 0.122 0.120 -0.026
22 -0.124 -0.024 0.131 0.049 -0.249
23 0.059 0.118 -0.014 -0.093 0.017
24 -0.083 -0.099 0.099 0.105 -0.129
ESTIMATED CORRELATION MATRIX FOR PARAMETER ESTIMATES
16 17 18 19 20
________ ________ ________ ________ ________
16 1.000
17 -0.264 1.000
18 0.006 -0.284 1.000
19 0.132 -0.071 0.121 1.000
20 -0.004 -0.110 0.339 0.014 1.000
21 0.038 0.006 -0.029 -0.884 0.005
22 -0.094 0.429 -0.673 -0.156 -0.248
23 0.030 -0.011 0.023 0.043 0.077
24 -0.009 0.158 -0.231 -0.005 -0.527
ESTIMATED CORRELATION MATRIX FOR PARAMETER ESTIMATES
21 22 23 24
________ ________ ________ ________
21 1.000
22 -0.059 1.000
23 0.130 -0.158 1.000
24 -0.094 0.455 -0.642 1.000
|
8467d0852566f6052fd8fcab8f8b1600a5d27700
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2708/CH1/EX1.30/ex_1_30.sce
|
30f8ad16b4b6bba240653afd41f71cabf0943437
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 325
|
sce
|
ex_1_30.sce
|
//Example 1.30 // velocity of light in medium
clc;
clear;
//given data :
d1=.3;// diameter of ring in cm
d2=.25;//diameter of ring(in cm) after placing in medium
c=3D8;//speed of light in m/s
u=(d2/d1)^2;// refractive index of medium
v=u*c;// velocity of light in fluid
disp(v,"velocity of light in liquid in m/s")
|
428f07ba671131ba8cc81198513ee05fd245dc34
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2021/CH18/EX18.10/EX18_10.sce
|
9cf783063235ab5e771df35d8f0829a09b6566cf
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 401
|
sce
|
EX18_10.sce
|
//Finding of Vane Angle ,Head ,Velocity ,Efficiency
//Given
u=12;
D=0.8;
D1=1;
Vw1=0;
Hout=1;
Vw=12;
Vf=3;
g=9.81;
//To Find
a=atand(Vf/Vw);
V=sqrt(Vw^2+Vf^2);
u1=(D1/D)*u;
V1=u1*tan(%pi/9);
H=((V1^2/(2*g))+1)+((Vw*u)/g);
E=((Vw*u)/(g*H))*100;
disp("Absolute Velocity ="+string(V)+" m/sec");
disp("Vane Angle ="+string(a)+" degrees");
disp("Efficiency ="+string(E)+" Percentage");
|
803f22e65a930e9b9c06c32d4270353cae6306b1
|
5368ca7c8260088162c8f20f486cbe81889bd23d
|
/playground/fir_sofa_ipynb/filters/test/RLS_Algorithm/af_Recursive_least_squares.sci
|
7b79b78790f38bebc38af68f544721f71570bbb9
|
[
"MIT"
] |
permissive
|
tetsuzawa/graduation-research
|
1b71f8d66e3bb0b10b7a16e9662ac7d496ea7fda
|
e76f820b92b58b35825a8cbb28452b7d351c0a67
|
refs/heads/master
| 2020-08-17T11:10:33.716140
| 2020-02-11T03:38:48
| 2020-02-11T03:38:48
| 215,657,014
| 0
| 0
| null | null | null | null |
SHIFT_JIS
|
Scilab
| false
| false
| 1,601
|
sci
|
af_Recursive_least_squares.sci
|
///////////////////////////////////////
// 適応フィルタ(再帰最小二乗法)
// Adaptive Filter
// Recursive least squares
//
// M.Tsutsui
///////////////////////////////////////
clear;
funcprot(0);
function[y_opt_buf]=RLS(arufa,lambda,update);//arufa:α ,lambda:忘却係数 ,update:更新回数
y_opt_buf=[];//ADF出力バッファ
P_ini=1/arufa*eye(size_r2,size_r2);//P初期値
for s_loop=1:1:size_r2;//__サンプル変化
for i=1:1:update;//__係数更新ループ__
gain=(1/lambda*(P_ini*x))/(1+1/lambda*x'*P_ini*x);//ゲインベクトル
e=d(1,s_loop)-w_ini'*x;//誤差 サンプルループ
w_ini=w_ini+gain*e;//係数更新
P_ini=1/lambda*(eye(size_r2,size_r2)-gain*x')*P_ini;//自己相関行列更新
end//_______________係数更新ループ__
y_opt=w_ini'*x;//ADF出力 1Sample
y_opt_buf=[y_opt_buf,y_opt];//ADF出力ベクトル
end//_____________サンプル変化___
endfunction
d_size=80;//データサイズ
d=rand(0:1:d_size);//所望信号
[size_r,size_r2]=size(d);//サイズ更新
w_ini=zeros(size_r2,1);//適応フィルタ初期係数
x=rand(size_r2,1);//フィルタ入力
plot(d);
plot(RLS(0.01,0.4,5),'r--');
xgrid();
title('再帰最小二乗法','fontsize',4);
legend(['Desired Signal';'RLS']);
|
fe672092a6ef7e6523b2a26c2c8cecadb0bd3dd8
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3507/CH22/EX22.7/Ex22_7.sce
|
0d90eb9bda0162edf1c21d2fee7426e7283c748c
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 411
|
sce
|
Ex22_7.sce
|
//chapter22
//example22.7
//page496
I_DSS=5d-3 // A
V_DD=20 // V
V_DS=10 // V
V_P=-2 // V
V_G=0 // V
I_D=1.5d-3 // A
V_GS=V_P*(1-((I_D/I_DSS)^0.5)) // I_D=I_DSS*(1-V_GS/V_P)^2
V_S=V_G-V_GS
R_S=V_S/I_D
// by Kirchoff's law we get V_DD=I_D*R_D+V_DS+I_D*R_S so making R_D as subject we get
R_D=(V_DD-V_DS-I_D*R_S)/I_D
printf("Rs = %.3f kilo ohm and Rd = %.3f kilo ohm \n",R_S/1000,R_D/1000)
|
7950d46a281f116be6754c7e454b6447c8f13635
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1247/CH5/EX5.9/example5_9.sce
|
97c9166cbe9bd914cc551e558cf84c8e4c21465e
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 451
|
sce
|
example5_9.sce
|
clear;
clc;
// Stoichiometry
// Chapter 5
// Energy Balances
// Example 5.9
// Page 220
printf("Example 5.9, Page 220 \n \n");
// solution
// (a)
T = 305.15 //K
Pv1 = 10^(4.0026-(1171.530/(305.15-48.784))) // bar
// (b)
T = 395.15
Pv2 = 10^(3.559-(643.748/(395.15-198.043))) // bar
printf(" (a) \n \n V.P. of n-hexane at 305.15K = "+string(Pv1)+" bar. \n \n \n (b) \n \n V.P. of water at 395.15K = "+string(Pv2)+" bar.")
|
14e1467455947e55f2a377e408cb4326e9f3f11e
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/542/CH16/EX16.2/Example_16_2.sci
|
4f0f1ba41f38dd4badbf904fc1f8118ee511d057
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 919
|
sci
|
Example_16_2.sci
|
clear;
clc;
printf("\n Example 16.2");
E = [1 0.64 0.49 0.38 0.295 0.22 0.14];
J = [0 0.1 0.2 0.3 0.5 0.6 0.7];
plot(J,E,rect=[0,1,0,1]);
xtitle("Plot for drying data","J = kt/L^2","E");
//For the 10 mm strips
mi = (0.28 - 0.07); //Initial free moisture content in kg/kg
mf = (0.13-0.07); //Final free moisture content in kg/kg
//at
t = 25; //time is in ksecs
E = (0.06/0.21);
//at E = 0.286 ,J = 0.52 from the plot of given data and J = kt/L^2
k = poly([0],'k');
k1 = roots(0.52 - (k*t)/(10/2)^2);
printf("\n k = %f",k1);
//for the 60 mm planks
m1i = (0.22 - 0.07); //Initial free moisture content in kg/kg
m1f = (0.13 - 0.07); //Final free moisture content in kg/kg
E = (m1f/m1i);
//at E = 0.20 from yhe plot of the given data J = 0.63 and J = kt/L^2
t1 = 0.63*(60/2)^(2)/k1;
printf("\n t1 = %d ksecs or %.1f days",t1,(t1*1000/(3600*24)));
|
6b434e68d4caf66c1607d40d61ffcf552c210abe
|
6813325b126713766d9778d7665c10b5ba67227b
|
/Chapter7/Ch_7_Eg_7.5.sce
|
14b1f7ffaeca1373aa162952c4fdeeec940acc53
|
[] |
no_license
|
arvindrachna/Introduction_to_Scilab
|
955b2063b3faa33a855d18ac41ed7e0e3ab6bd1f
|
9ca5d6be99e0536ba1c08a7a1bf4ba64620ec140
|
refs/heads/master
| 2020-03-15T19:26:52.964755
| 2018-05-31T04:49:57
| 2018-05-31T04:49:57
| 132,308,878
| 1
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,039
|
sce
|
Ch_7_Eg_7.5.sce
|
// A program to find the form of an interpolating polynomial using the Newton’s forward interpolation.
// Input
// x and y = A set of data points
// Output
// yp = A polynomial of the form a0+a1 x+a2 x^2+ ...+an x^n
function [yp]=ak_Newton_Fwd_Int_poly(x, y)
n=length(x);
// Prepare forward difference table
dt=zeros(n,n);
dt(:,1)=y';
for i=2:n
for j=1:n-i+1
dt(j,i)=dt(j+1,i-1)-dt(j,i-1);
end
end
// Generate Newton's forward interpolation polynomial
X = poly (0, "x");
h = x(2) - x (1) ;
p = (X-x (1) ) / h;
dely0 = dt (1 ,:);
Y = dt(1,1);
for i = 2: length (y)-1
t = 1;
for j = 1:i-1
t = t * (p-j +1) ;
end
Y = Y + t* dt(1,i)/ factorial (i-1);
end
Y = round (Y *10^2) /10^2;
//disp (Y);
yp=Y;
endfunction
//Example
x = 0:3;
y = [1 0 1 10];
[yp] = ak_Newton_Fwd_Int_poly(x,y)
disp(yp, "The form of the interpolated polynomial is:");
|
8da971cc5a8100d2a5071c55e3556f0ab2cab4ba
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2777/CH3/EX3.16/Ex3_16.sce
|
7286b30852ba600e3d93e46ee9a7f914b7aba73b
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 2,422
|
sce
|
Ex3_16.sce
|
// ELECTRICAL MACHINES
// R.K.Srivastava
// First Impression 2011
// CENGAGE LEARNING INDIA PVT. LTD
// CHAPTER : 3 : TRANSFORMERS
// EXAMPLE : 3.16
clear ; clc ; close ; // Clear the work space and console
// GIVEN DATA
S = 20 * 10 ^ 3; // Rating of the Step-down Transformer in VA
f = 50; // Frequency in Hertz
V = 200; // Normally supplied Voltage of Step-down Transformer in Volts
Vsc = 100; // Potential difference when Secondary being Short- Circuited in Volts
Isc = 10; // Primary Current when Secondary being Short- Circuited in Amphere
Cos_theta_sc = 0.28; // Power factor when Secondary being Short- Circuited
// CALCULATIONS
I = S/V; // Rated primary current in Amphere
Wsc = Vsc * Isc * Cos_theta_sc; // Power loss when Secondary being Short- Circuited in Watts
R = Wsc/(Isc ^ 2); // Resistance of Transformer referred to primary side in Ohms
Z = Vsc/Isc; // Referred Impedence in Ohms
X = sqrt((Z^2)-(R^2)); // Leakage Reactance referred to primary side in Ohms
Er = (I*R)/V; // Per unit Resistance in Ohms
Ex = (I*X)/V; // Per unit Reactance in Ohms
Cos_theta1 = 1.0; // Unity Power factor
Cos_theta2 = 0.6; // 0.6 Power factor Lagging
Cos_theta3 = 0.6; // 0.6 Power factor Leading
Sin_theta1 = 0.0; // Unity Power factor
Sin_theta2 = 0.8; // 0.6 Power factor Lagging
Sin_theta3 = 0.8; // 0.6 Power factor Leading
E1 = (Er*Cos_theta1)+(Ex*Sin_theta1); // pu Regulation at Unity Power factor
E2 = (Er*Cos_theta2)+(Ex*Sin_theta2); // pu Regulation at 0.6 Power factor Lagging
E3 = (Er*Cos_theta3)-(Ex*Sin_theta3); // pu Regulation at 0.6 Power factor Leading
// DISPLAY RESULTS
disp("EXAMPLE : 3.16 : SOLUTION :-") ;
printf("\n (a) pu Regulation at Unity Power factor , E = %.1f \n ",E1);
printf("\n (b) pu Regulation at 0.6 Power factor Lagging , E= % .2f \n",E2);
printf("\n (c) pu Regulation at 0.6 Power factor Leading , E= % .2f \n",E3);
|
144b1898819d7ce9b8614c853bcae30990467d1e
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3513/CH2/EX2.2/ch2_2.sce
|
32efc509830e945ca5f6049d77cf0887ee83fad6
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 501
|
sce
|
ch2_2.sce
|
// To determine percentage of specimens
//page no 22
clear
clc;
m=118.5;// volts mean
sd=1.2;// volts psi
p1=0.0188;//The probability from tables
p1=p1*100;
x=116;
z=x-(m/sd);
p2=0.8944;//The probability from tables
p2=p2*100;
p=p2-p1;
mprintf("Therefore the percentage of specimen falling between 116 and 120 volts = %.2f percentage",p);
//(b)
p=1.2; //The probability from tables
x=115;
z=1.404;
m=115+z;
av=m-z
mprintf("\nThe adjustment is 116.404 – 115 = %.2f Voltage",av);
|
def5fcf16297fce4ef53366afa94dd146c9a0bee
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/68/CH4/EX4.3/ex3.sce
|
2eb0f9547fc70837de68f6569cc3c910abe46dd5
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 353
|
sce
|
ex3.sce
|
// Example 4.3: Design of given circuit to obtain I_D=80uA
// FET is operating in saturation region
I_D=80*10^-6; // (A)
V_t=0.6; // (V)
uC_n=200*10^-6; // (A/V^2)
L=0.8*10^-6; // (m)
W=4*10^-6; // (m)
V_DD=3; // (V)
V_OV=sqrt(2*I_D/(uC_n*(W/L)));
V_GS=V_t+V_OV;
V_DS=V_GS;
V_D=V_DS;
disp(V_D,"V_D (V)")
R=(V_DD-V_D)/I_D;
disp(R,"R (ohm)")
|
7da70dfaab049b06bfbd4be86108743c87f52e8c
|
d8cab241a02c8d06f859a4adbf2748d68c08d385
|
/Eliminação de Gauss.sce
|
7a1c64ea54d8608c332a1ac7eb8b543aa6c3fa4c
|
[] |
no_license
|
eluire/CN
|
6327b9619a6e00d2870912830393def2ca82b856
|
e2027e0d20c549bb1a79ce830c6affcf4cbe1149
|
refs/heads/master
| 2021-09-16T07:13:23.367948
| 2018-06-18T10:51:21
| 2018-06-18T10:51:21
| 126,038,180
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 223
|
sce
|
Eliminação de Gauss.sce
|
clc
#defina a matriz
A = [4 3 8 1; 12 10 30 8; 24 25 93 49; 20 19 85 90]
[nl,nc]=size(A)
for i= 1:nl
pivo=A(i,i)
for j= i+1:nc
A(j,:)=A(j,:)-(A(j,i)/pivo).*A(i,:)
end
end
|
028c16d3a644e640e1ceee6d2428bd55b175292b
|
1b7b49fefad8e705213aa8666caa68793a3e6859
|
/scilab_kernel/_make_figures.sci
|
2cac78efac32cbdc3eb04b637d4b85ea60cfed2a
|
[
"MIT"
] |
permissive
|
poznaandras/scilab_kernel
|
c3f72b6549efe4268dc13c39b3c2bc53ef925495
|
b2e90699a1bed3c32497fed9fc4a670a23e50b45
|
refs/heads/master
| 2022-01-06T07:12:48.076096
| 2019-06-02T09:48:59
| 2019-06-02T09:48:59
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 528
|
sci
|
_make_figures.sci
|
function _make_figures(plot_dir, plot_format)
ids_array=winsid();
for i=1:length(ids_array)
id=ids_array(i);
outfile = sprintf('%s/__ipy_sci_fig_%03d', plot_dir, i);
if plot_format == 'jpg' then
xs2jpg(id, outfile + '.jpg');
elseif plot_format == 'jpeg' then
xs2jpg(id, outfile + '.jpeg');
elseif plot_format == 'png' then
xs2png(id, outfile);
else
xs2svg(id, outfile);
end
close(get_figure_handle(id));
end
endfunction
|
142d3414420c521287a292a82c9dd9c4b5d15b3a
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2609/CH10/EX10.2/ex_10_2.sce
|
e260230702b555ea2777d5d12630a11e5cbd9ebb
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 214
|
sce
|
ex_10_2.sce
|
////Ex 10.2
clc;
clear;
close;
format('v',9);
Vsat=7;//V
R1=68;//kohm
R2=82;//kohm
VUTP=R2*Vsat/(R1+R2);//V
VLTP=R2*-Vsat/(R1+R2);//V
disp(VUTP,"Upper trip point(V)");
disp(VLTP,"Lower trip point(V)");
|
1be9874079297de0c78667f0be6a8a5634390ccd
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/599/CH3/EX3.7/example3_7.sce
|
47e62da78190676572022fc7382e8cec066dbf39
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,194
|
sce
|
example3_7.sce
|
clear;
clc;
printf("\t Example 3.7\n");
D=.1;
l=3; // l is length of bubble in cm
a=3.14*D*l; // area in cm^2
Ca_o=0.0001; //pure conc. of gas in g*mol/cc*atm
Ca=0;
NA=.482*10^-5; // molar rate of absorption in g*moles/s
//Pa_o and Ca_o indicates pure pressure and conc.
kl=NA/(a*(Ca_o-Ca)); //mass transfer coefficient acc. to higbie's penetration theory
Q=4; //volumetric flow rate in cc/s
A=3.14*.1*.1/4; //area of flow
v=Q/A; //velocity of flow in cm/s
//timt t=bubble length/linear velocity;
t=l/v;
DAB=(kl^2)*3.14*t/4; //diffusivity in cm^2/s
D_new=0.09; //revised diameter reduced to.09
a_new=3.14*l*D_new; //revised area
A_new=3.14*0.09*0.09/4; //revised flow area
v_new=Q/A_new; //revised velocity
printf("\nthe value of diffusivity of gas DAB is :%f cm/s",DAB/10^-5);
t_new=l/v_new; //revised time
kl_new=2*(DAB/(3.14*0.0047))^0.5; //revised mass transfer coefficient
NA_new=kl_new*a_new*(Ca_o-Ca); //revised molar rate absorption in g*moles/s
printf("\nthe value of NA_new is :%f*10^-6 kmol/m^3",NA_new/10^-6);
//end
|
cf6f490f499195bd02c35c070379b3669763e308
|
93640402789b9a9d07c82958f433765f1e2a8397
|
/part 2/Mux8.tst
|
0fe886a5681b830774e6adc16bf365ec783d66f2
|
[] |
no_license
|
Slayingripper/Z80-CPU
|
7a6b71f9e59850c3d4492a7f1867f4e81be278ba
|
451873966cf071f8088407300629994a8d33f13c
|
refs/heads/master
| 2020-05-04T02:42:27.419333
| 2019-04-01T19:27:22
| 2019-04-01T19:27:22
| 178,932,396
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 592
|
tst
|
Mux8.tst
|
// This file is adapted from part of www.nand2tetris.org
// and the book "The Elements of Computing Systems"
// by Nisan and Schocken, MIT Press.
load Mux8.hdl,
output-file Mux8.out,
compare-to Mux8.cmp,
output-list a%B1.8.1 b%B1.8.1 sel%D2.1.2 out%B1.8.1;
set a 0,
set b 0,
set sel 0,
eval,
output;
set sel 1,
eval,
output;
set a %B00000000,
set b %B01010110,
set sel 0,
eval,
output;
set sel 1,
eval,
output;
set a %B10100101,
set b %B00000000,
set sel 0,
eval,
output;
set sel 1,
eval,
output;
set a %B10101010,
set b %B01010101,
set sel 0,
eval,
output;
set sel 1,
eval,
output;
|
e962853411c10db6ca9c625dfd454de072dfa117
|
c565d26060d56f516d954d4b378b8699c31a71ef
|
/Scilab/virtual_old/imc_controller/imc_virtual.sci
|
0adb11bea7244e0244b2fbc3301e0b36b0c0b3cc
|
[] |
no_license
|
rupakrokade/sbhs-manual
|
26d6e458c5d6aaba858c3cb2d07ff646d90645ce
|
5aad4829d5ba1cdf9cc62d72f794fab2b56dd786
|
refs/heads/master
| 2021-01-23T06:25:53.904684
| 2015-10-24T11:57:04
| 2015-10-24T11:57:04
| 5,258,478
| 0
| 0
| null | 2012-11-16T11:45:07
| 2012-08-01T11:36:17
|
Scilab
|
UTF-8
|
Scilab
| false
| false
| 524
|
sci
|
imc_virtual.sci
|
mode(0)
function [stop] = imc_virtual(setpoint,fan,alpha)
global temp heat C0 u_old u_new e_old e_new fdfh fdt fncr fncw m err_count stop q heatdisp fandisp tempdisp setpointdisp limits m x sampling_time e_old_old
e_new = setpoint - temp;
b=((1-alpha)/0.01163);
u_new = u_old + b*(e_new - (0.9723*e_old));
heat=u_new;
u_old = u_new;
e_old = e_new;
[stop,temp] = comm(heat,fan);//Never edit this line
plotting([heat fan temp setpoint],[0 0 30 0],[100 100 50 1000])
endfunction
|
850a8b10cafe6c60ab05d2ea69933958da17f5f3
|
fa8b52b9b1d92d2574eb471bb12758f13885b2b1
|
/old.tst
|
ed473e528b98961c00fb822208eab2c756cd2880
|
[
"MIT"
] |
permissive
|
Spontifixus/spontifixus.github.io
|
c56d5d66272589fd634199503abe414b4db4d1f1
|
3bef06e08b881d15c13b938e1b53f9105b7c52c2
|
refs/heads/master
| 2021-01-01T19:22:46.229038
| 2018-05-18T20:44:13
| 2018-05-18T20:44:13
| 98,575,960
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 3,697
|
tst
|
old.tst
|
### Datenschutzerklärung für die Nutzung von Disqus
Die Kommentarfunktion dieser Website wird von [Disqus, Inc., Law Enforcement Requests, 301 Howard St., Suite 300, San Francisco, CA 94105, USA][3] realisiert. Beachten Sie daher auch die [Disqus Privacy Policy][4].
### Datenschutzerklärung für die Nutzung von Google Web Fonts
Diese Seite nutzt zur einheitlichen Darstellung von Schriftarten so genannte Web Fonts, die von [Google Inc., 1600 Amphitheatre Parkway Mountain View, CA 94043, USA][5] bereitgestellt werden. Beim Aufruf einer Seite lädt Ihr Browser die benötigten Web Fonts in ihren Browsercache, um Texte und Schriftarten korrekt anzuzeigen. Wenn Ihr Browser Web Fonts nicht unterstützt, wird eine Standardschrift von Ihrem Computer genutzt.
Weitere Informationen zu Google Web Fonts finden Sie in de [Developer FAQ][6] und in der [Datenschutzerklärung von Google][7].
### Datenschutzerklärung für die Nutzung von Google Analytics
Diese Website nutzt Funktionen des Webanalysedienstes Google Analytics. Anbieter ist die [Google Inc., 1600 Amphitheatre Parkway Mountain View, CA 94043, USA][5].
Google Analytics verwendet so genannte "Cookies". Das sind Textdateien, die auf Ihrem Computer gespeichert werden und die eine Analyse der Benutzung der Website durch Sie ermöglichen. Die durch den Cookie erzeugten Informationen über Ihre Benutzung dieser Website werden in der Regel an einen Server von Google in den USA übertragen und dort gespeichert.
Mehr Informationen zum Umgang mit Nutzerdaten bei Google Analytics finden Sie in der entsprechenden [Datenschutzerklärung von Google][8].
#### Browser Plugin
Sie können die Speicherung der Cookies durch eine entsprechende Einstellung Ihrer Browser-Software verhindern; wir weisen Sie jedoch darauf hin, dass Sie in diesem Fall gegebenenfalls nicht sämtliche Funktionen dieser Website vollumfänglich werden nutzen können. Sie können darüber hinaus die Erfassung der durch den Cookie erzeugten und auf Ihre Nutzung der Website bezogenen Daten (inkl. Ihrer IP-Adresse) an Google sowie die Verarbeitung dieser Daten durch Google verhindern, indem Sie das unter dem folgenden Link verfügbare Browser-Plugin herunterladen und installieren: https://tools.google.com/dlpage/gaoptout?hl=de
#### Widerspruch gegen Datenerfassung
Sie können die Erfassung Ihrer Daten durch Google Analytics verhindern, indem Sie auf folgenden Link klicken. Es wird ein Opt-Out-Cookie gesetzt, der die Erfassung Ihrer Daten bei zukünftigen Besuchen dieser Website verhindert: [Google Analytics deaktivieren][9]
#### Auftragsdatenverarbeitung
Wir haben mit Google einen Vertrag zur Auftragsdatenverarbeitung abgeschlossen und setzen die strengen Vorgaben der deutschen Datenschutzbehörden bei der Nutzung von Google Analytics vollständig um.
#### IP-Anonymisierung
Wir nutzen die Funktion "Aktivierung der IP-Anonymisierung" auf dieser Webseite. Dadurch wird Ihre IP-Adresse von Google jedoch innerhalb von Mitgliedstaaten der Europäischen Union oder in anderen Vertragsstaaten des Abkommens über den Europäischen Wirtschaftsraum zuvor gekürzt. Nur in Ausnahmefällen wird die volle IP-Adresse an einen Server von Google in den USA übertragen und dort gekürzt. Im Auftrag des Betreibers dieser Website wird Google diese Informationen benutzen, um Ihre Nutzung der Website auszuwerten, um Reports über die Websiteaktivitäten zusammenzustellen und um weitere mit der Websitenutzung und der Internetnutzung verbundene Dienstleistungen gegenüber dem Websitebetreiber zu erbringen. Die im Rahmen von Google Analytics von Ihrem Browser übermittelte IP-Adresse wird nicht mit anderen Daten von Google zusammengeführt.
|
974f8cd27b8257e89ab1c06ece641eabbafbaf66
|
5f48beee3dc825617c83ba20a7c82c544061af65
|
/tests/s/85.tst
|
f253fb9f758570fbd66e803ad80319a3a08ec4ea
|
[] |
no_license
|
grenkin/compiler
|
bed06cd6dac49c1ca89d2723174210cd3dc8efea
|
30634ec46fba10333cf284399f577be7fb8e5b61
|
refs/heads/master
| 2020-06-20T12:44:17.903582
| 2016-11-27T03:08:20
| 2016-11-27T03:08:20
| 74,863,612
| 3
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 77
|
tst
|
85.tst
|
void main(void)
{
int x, y;
x=x;
x=x+1;
x++;
--y;
return 0;
}
|
95d0c60be70043df7ce3cab2778c2b417751c00d
|
e223a3388730b3a8ab63f7565156d5bf7a65e44b
|
/scilab/ftdi/loader.sce
|
b268273a6491dc192f3efb9eab46381781aae075
|
[] |
no_license
|
YSBF/flight_control
|
1cfef21947c9497659eea3cf631b4de207a0a851
|
fc74021c2bd62819ea4f637b45936ab2edf9e7af
|
refs/heads/master
| 2020-04-15T21:47:09.796455
| 2018-06-07T21:28:29
| 2018-06-07T21:28:29
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 773
|
sce
|
loader.sce
|
// This file is released under the 3-clause BSD license. See COPYING-BSD.
// Generated by builder.sce : Please, do not edit this file
// ----------------------------------------------------------------------------
//
if ~win64() then
warning(_("This module requires a Windows x64 platform."));
return
end
//
libmex_path = get_absolute_file_path('loader.sce');
//
// ulink previous function with same name
[bOK, ilib] = c_link('libmex');
if bOK then
ulink(ilib);
end
//
list_functions = [ 'ftdi';
];
addinter(libmex_path + filesep() + 'libmex' + getdynlibext(), 'libmex', list_functions);
// remove temp. variables on stack
clear libmex_path;
clear bOK;
clear ilib;
clear list_functions;
// ----------------------------------------------------------------------------
|
367f11c920f478e58b03d48163bfeea51ccfea3c
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1931/CH9/EX9.13/13.sce
|
1036fb9f271f8572be88ec72d8aef26b1027b1d8
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 514
|
sce
|
13.sce
|
clc
clear
//INPUT DATA
AW=63.5//atomic weight of copper in u
M=63.5*1.66*10^-27//mass of one copper atom in Kg
d=8.94*10^3//density of sodium in Kg/m^3
m=9.11*10^-31//mass of electon in Kg
h=6.625*10^-34//plank's constant in m^2 Kg/sec
e=1.6*10^-19//charge of electro in C
//CALCULATION
nc=(d)/M//number of electrons per unit volume in electrons/m^3
Ef=(((h*h)/(8*m)*((3*nc)/3.14)^(2/3))/e)//The fermi energy for the sodium in eV
//OUTPUT
printf('The fermi energy for the sodium is %3.3f eV',Ef)
|
eb644cca4bedb45099810ee7520c07058c75cac1
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/773/CH2/EX2.05.01/2_05_01.sci
|
a03a7ae4daa6b745e60c5b310bc67bf7f362cff0
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 87
|
sci
|
2_05_01.sci
|
//laplace//
syms t s;
y= laplace('%e^(-t)+5*t+6*%e^(-3*t)',t,s);
disp(y,"ans=")
|
1853677720b84108153555ca686318923fee591d
|
5887829f5a0a005033807cf7dc4fb7231eb280ec
|
/Listing/chapter 3/Listing3325.sce
|
6ffd951d19e2d417fb2e42f8249dd7551bee2b78
|
[] |
no_license
|
joaolrneto/learning_scilab
|
78ecc0019f167b57bc35647c4ac785ece01e443e
|
9624c9a6736860a8a836b0f801256b6224756585
|
refs/heads/main
| 2023-03-17T22:17:51.853368
| 2021-03-15T20:58:34
| 2021-03-15T20:58:34
| 344,478,059
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 96
|
sce
|
Listing3325.sce
|
clc
clear
k=0;
while 1,
k=k+1;
if k > 100 then
break //interrupt loop
end;
end
disp(k)
|
a2befc61482c90fc3061fcd407de3aa2582f60f1
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/343/CH1/EX1.51/ex_51.sce
|
23ad49d68c990a119edcd761e55938ac03a10c58
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 302
|
sce
|
ex_51.sce
|
R1=0.2;
R2=0.3;
R3=0.1;
V1=120;
V2=110;
A=[5,-2;1,-4]; //Applying KCL at the two nodes
B=[358.2;-324];
V=inv(A)*B;
I1=(120-V(1,1))/R1;
I2=(V(1,1)-V(2,1))/R2;
I3=(110-V(2,1))/R3;
disp("Amperes",I1,"Current I1")
disp("Amperes",I2,"Current I2")
disp("Amperes",I3,"Current I3")
|
c68606a146a01bbdffc194d130eb6a923708b2c8
|
eb7eeb04a23a477e06f3c0e3d099889caee468b4
|
/src/examples/course/scilab/ga/steepest.sci
|
3bafa17d84614b67244e795cd58bc3bb8338254e
|
[] |
no_license
|
mikeg64/iome
|
55699b7d7b3d5c1b006d9c82efe5136b8c909dfd
|
cc1c94433133e32776dcf16704ec4ec337b1b4a0
|
refs/heads/master
| 2020-03-30T15:57:33.056341
| 2016-04-13T09:24:27
| 2016-04-13T09:24:27
| 151,387,236
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 2,867
|
sci
|
steepest.sci
|
//
//
// steepest descent method with backtracking line search applied to the rastrigin function
//
//
function y=rastrigin(x) // the function to optimize
n=max(size(x));
y=n+sum(x.^2-cos(2*%pi*x));
endfunction
//-----------------------------------------------------
function y=rastrigingrad(x) // the gradient of the function to optimize
y=2*x+2*%pi*sin(2*%pi*x);
endfunction
//--------------------------------------------------------
function z=dotprod(x,y); // computes the dot product of x and y
z=sum(x.*y);
endfunction
//-----------------------------------------------------
function d=descentdirection(f,x,fx,gx); // descent direction: gradient
d=-gx;
endfunction
//----------------------------------------------------
function [xnew,fnew,itback]=backtracking(f,x,fx,gx,d);// line search by backtracking until Armijo condition
tau=0.3;
bet=0.0001;
alphainit=1;
alpha=alphainit;xnew=x+alpha*d;
fnew=f(xnew);
itback=1;
while(fnew>fx+bet*alpha*dotprod(gx,d))
alpha=tau*alpha;
xnew=x+alpha*d;
fnew=f(xnew);
itback=itback+1;
end
endfunction
//-------------------------------------------------
// main program
//
disp('steepest descent method for the rastrigin function:');
//
timer();
n=evstr(x_dialog('number of variables of the rastrigin function to minimize','2'));
epsilon=1E-5;
//
xmin=-5.12*ones(1,n);
xmax=5.12*ones(1,n);
u=rand(1,n);
x0=xmin+(xmax-xmin).*u;
x=x0;fx=rastrigin(x);gx=rastrigingrad(x);
itgrad=1;
itfct=1;
Xbest=x;Fbest=fx;
//
while (norm(gx)>epsilon)
d=descentdirection(rastrigin,x,fx,gx);
[x,fx,itback]=backtracking(rastrigin,x,fx,gx,d);
Xbest=[Xbest;x];
Fbest=[Fbest;fx];
gx=rastrigingrad(x);
itgrad=itgrad+1;
itfct=itfct+itback;
end
//------------------------------------------------------
// results display
//
disp('function evaluation number:');disp(itfct);
disp('gradient evaluation number:');disp(itgrad);
//
disp('minimum obtained:');disp(x);
disp('corresponding value by f:');disp(fx);
disp('corresponding value by g:');disp(gx);
disp('computational time:');disp(timer());
//
// case of the rastrigin function with 2 parameters (trajectory display)------
//
if (n==2)
xmin=-5.12;xmax=5.12;N=300;
xplot=xmin:((xmax-xmin)/(N-1)):xmax;
yplot=xplot;
zplot=zeros(N,N);
for i=1:N
for j=1:N
zplot(i,j)=rastrigin([xplot(i),yplot(j)]);
end
end
xset('window',0)
xbasc()
plot2d(Xbest(:,1),Xbest(:,2),rect=[-5.12,-5.12,5.12,5.12]);
contour2d(xplot,yplot,zplot,[0:0.01:0.1,0.2:1,1:10]);
xtitle('trajectory display');
xset('window',1)
xbasc()
plot2d(Xbest(:,1),Xbest(:,2),rect=[x(1)-0.1,x(2)-0.1,x(1)+0.1,x(2)+0.1]);
contour2d(xplot,yplot,zplot,[fx:0.1:(fx+1)]);
xtitle('trajectory display');
end
|
2e5a2491eb8f50f93262b7234faaef1f0e198cbc
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/377/CH1/EX1.4/1_4.sce
|
f358ba5d187dc7751767467ad4b036e3c77bbbc5
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 407
|
sce
|
1_4.sce
|
a=1*10^-8;
pi=3.14;
disp("∆E*∆t=h*∆v*∆t >= h/(4*pi)");
b=1/(4*pi*a);
printf('\n So, ∆v >= %f Hz',b);
disp("E=p^2/(2*m0)+(-e^2/(4*pi*Є0*r))");
printf('\n');
disp("The minimum value of E occurs at r=5.3*10^-11 m");
m0=9.31;
e=1.6;
h=1.054;
d=8.85; //say d=Є0
c=((-m0)*(e^4)*4*((pi)^2))/(2*(h^2)*(4*pi*d)^2);
d=c*1.6*10^2;
printf('\n The value of minimum energy Emin is %f eV',d);
|
d4ab929244cfc3829a4183ae54d644fafb7bc414
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2045/CH11/EX11.5/Ex11_5.sce
|
aaebc314e3b2b6bb15ba994f001b88669ca501ea
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 521
|
sce
|
Ex11_5.sce
|
//pagenumber 517 example 5
clear
induct=500*10^-6;//henry
induc1=5000*10^-6;//henry
mutuin=300*10^-6;//henry
c1=150*10^-12;//farad
//(a) frequency
indcto=induct+induc1+2*mutuin;
freque=1/((2)*3.14*sqrt(indcto*c1));
//(b) condition
r=10*10^3;//ohm
conduc=8*10^-3;//ampere per volt
r1=50*10^3;//ohm
r`=r*r1/(r+r1);
volgai=conduc*r';
disp("frequency = "+string((freque))+"hertz");
ratio1=(induc1+mutuin)/(induct+mutuin);
ratio1=ratio1*volgai;
disp("ratio1 greater than 1 so oscillations possible");
|
b4850059a097c44ac39f957dc4ceae6abdab1456
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2243/CH3/EX3.5/Ex3_5.sce
|
29e748ca8680d037996c881122f33f5a0c6adc6d
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 763
|
sce
|
Ex3_5.sce
|
clc();
clear;
//(a)
//Given:
lambda = 5890;// Wavelength in A
l = 5.89; //thickness of the film in mu m
mu = 1.35; //refractive index
delta = mu*l;// optical path in the medium in m
//(b) (i)Number of waves in the medium
//1 angstrom = 1.0*10^-10 m and 1 mu m = 1*10^-6 m
N= (l*10^-6)/(lambda*10^-10/mu);
//the distance in vaccum for those waves :
delta1 =N*lambda*10^-10; // optical path in m
//(b) (ii)Phase difference in the medium
//1 angstrom = 1.0*10^-10 m and 1 mu m = 1*10^-6 m
phi = ((2*%pi)/(lambda*10^-10/mu))*(l*10^-6) ;
printf("Optical path = %.4f mu m\n",delta);
printf("Number of waves : %.1f\n",N);
printf("The distance in vaccum for those waves is : %.4f mu m \n",delta1*10^6);
printf("Phase difference = %.3f\n",phi);
|
2671aaf4791ba7e0115185fc2f024807c090cf04
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2504/CH12/EX12.2/12_2.sce
|
ba474275c97889817241cec799374490cbf2fa91
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 381
|
sce
|
12_2.sce
|
clc
//initialisation of variables
clear
psif= 10.2 //lbf/in^2
usit= 3.8*10^-7 //lbf sec/ft^2
usif= 3.52*10^-7 //lbf sec/ft^2
Tsit= 530 //R
Tsif= 480 //R
wf= 15000 //rev/min
//CALCULATIONS
Psit= psif*usit*sqrt(Tsit/Tsif)/usif
wt= wf*sqrt(Tsit/Tsif)
//RESULTS
printf ('Pressure in the test cell = %.1f lbf/in^2',Psit)
printf ('\n Compressor speed = %.f rev.min',wt)
|
f94973b978ccdae453ec4ade9e78ff625a86b6e3
|
463377b6374a24bbe111707a34e24949f3bd2543
|
/estpoly.sci
|
f1ea48deca0c98ed7e33401ec01dd3488a866e9e
|
[] |
no_license
|
solothinker/Scilab-Identification
|
3a46c0f3b8b1a7430f8a799be5e1310e2723b535
|
cdad0d7292c31c29d377b640f6966a7c3bb81bb9
|
refs/heads/master
| 2022-01-05T12:39:07.410803
| 2019-06-15T02:18:13
| 2019-06-15T02:18:13
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 4,508
|
sci
|
estpoly.sci
|
// Estimates Discrete time estpoly model
// y(t) = [B(q)/F(q)]u(t) + [C(q)/D(q)]e(t)
// Current version uses random initial guess
// Need to get appropriate guess from OE and noise models
// Authors: Ashutosh,Harpreet,Inderpreet
// Updated(12-6-16)
//function [theta_estpoly,opt_err,resid] = estpoly(varargin)
function sys = estpoly(varargin)
[lhs , rhs] = argn();
if ( rhs < 2 ) then
errmsg = msprintf(gettext("%s: Unexpected number of input arguments : %d provided while should be 2"), "estpoly", rhs);
error(errmsg)
end
z = varargin(1)
if typeof(z) == 'iddata' then
Ts = z.Ts;unit = z.TimeUnit
z = [z.OutputData z.InputData]
elseif typeof(z) == 'constant' then
Ts = 1;unit = 'seconds'
end
if ((~size(z,2)==2) & (~size(z,1)==2)) then
errmsg = msprintf(gettext("%s: input and output data matrix should be of size (number of data)*2"), "estpoly");
error(errmsg);
end
if (~isreal(z)) then
errmsg = msprintf(gettext("%s: input and output data matrix should be a real matrix"), "estpoly");
error(errmsg);
end
n = varargin(2)
if (size(n,"*")<5| size(n,"*")>6) then
errmsg = msprintf(gettext("%s: The order and delay matrix [na nb nc nd nf nk] should be of size [5 6]"), "estpoly");
error(errmsg);
end
if (size(find(n<0),"*") | size(find(((n-floor(n))<%eps)== %f))) then
errmsg = msprintf(gettext("%s: values of order and delay matrix [nb nc nd nf nk] should be nonnegative integer number "), "estpoly");
error(errmsg);
end
na = n(1); nb = n(2); nc = n(3); nd = n(4);nf = n(5);
if (size(n,"*") == 5) then
nk = 1
else
nk = n(6);
end
// storing U(k) , y(k) and n data in UDATA,YDATA and NDATA respectively
YDATA = z(:,1);
UDATA = z(:,2);
NDATA = size(UDATA,"*");
function e = G(p,m)
e = YDATA - _oestpolyfun(UDATA,p,na,nb,nc,nd,nf,nk);//_oestpolyfun(UDATA,p,nd,nc,nf,nb,nk);
endfunction
tempSum = na+nb+nc+nd+nf
p0 = linspace(0.0001,0.001,tempSum)';
[var,errl] = lsqrsolve(p0,G,size(UDATA,"*"));
//disp(errl)
err = (norm(errl)^2);
//disp(err)
opt_err = err;
resid = G(var,[]);
x = var
// b = poly([repmat(0,nk,1);var(1:nb)]',"q","coeff");
// c = poly([1; var(nb+1:nb+nc)]',"q","coeff");
// d = poly([1; var(nb+nc+1:nb+nc+nd)]',"q","coeff");
// f = poly([1; var(nb+nd+nc+1:nd+nc+nf+nb)]',"q","coeff");
a = poly([1; x(1:na)]',"q","coeff");
b = poly([repmat(0,nk,1);x(na+1:na+nb)]',"q","coeff");
c = poly([1; x(na+nb+1:na+nb+nc)]',"q","coeff");
d = poly([1; x(na+nb+nc+1:na+nb+nc+nd)]',"q","coeff");
f = poly([1; x(na+nb+nd+nc+1:na+nd+nc+nf+nb)]',"q","coeff");
t = idpoly(coeff(a),coeff(b),coeff(c),coeff(d),coeff(f),Ts)
//t = sys;//idpoly(1,coeff(b),coeff(c),coeff(d),coeff(f),Ts)
// estimating the other parameters
[temp1,temp2,temp3] = predict(z,t)
[temp11,temp22,temp33] = pe(z,t)
//pause
estData = calModelPara(temp1,temp11,na+nb+nc+nd+nf)
//pause
t.Report.Fit.MSE = estData.MSE
t.Report.Fit.FPE = estData.FPE
t.Report.Fit.FitPer = estData.FitPer
t.Report.Fit.AIC = estData.AIC
t.Report.Fit.AICc = estData.AICc
t.Report.Fit.nAIC = estData.nAIC
t.Report.Fit.BIC = estData.BIC
t.TimeUnit = unit
sys = t
//sys.TimeUnit = unit
endfunction
function yhat = _oestpolyfun(UDATA,x,na,nb,nc,nd,nf,nk)//(UDATA,x,nd,nc,nf,nb,nk)
x=x(:)
q = poly(0,'q')
tempSum = na+nb+nc+nd+nf
// making polynomials
a = poly([1; x(1:na)]',"q","coeff");
b = poly([repmat(0,nk,1);x(na+1:na+nb)]',"q","coeff");
c = poly([1; x(na+nb+1:na+nb+nc)]',"q","coeff");
d = poly([1; x(na+nb+nc+1:na+nb+nc+nd)]',"q","coeff");
f = poly([1; x(na+nb+nd+nc+1:na+nd+nc+nf+nb)]',"q","coeff");
bd = coeff(b*d); cf = coeff(c*f); fc_d = coeff(f*(c-a*d));
if size(bd,"*") == 1 then
bd = repmat(0,nb+nd+1,1)
end
//pause
maxDelay = max([length(bd) length(cf) length(fc_d)])
yhat = [YDATA(1:maxDelay)]
for k=maxDelay+1:size(UDATA,"*")
bdadd = 0
for i = 1:size(bd,"*")
bdadd = bdadd + bd(i)*UDATA(k-i+1)
end
fc_dadd = 0
for i = 1:size(fc_d,"*")
fc_dadd = fc_dadd + fc_d(i)*YDATA(k-i+1)
end
cfadd = 0
for i = 2:size(cf,"*")
cfadd = cfadd + cf(i)*yhat(k-i+1)
end
//pause
yhat = [yhat; [ bdadd + fc_dadd - cfadd ]];
end
endfunction
|
02dfc1b9f8eed359e6819bfc59de2e46dc6256c6
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1247/CH3/EX3.9/example3_9.sce
|
83338a6a9e1cd064a549e4b4fcf61cea82e43871
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,140
|
sce
|
example3_9.sce
|
clear;
clc;
// Stoichiometry
// Chapter 3
// Material Balances Without Chemical Reaction
// Example 3.9
// Page 65
printf("Example 3.9, Page 65 \n \n");
// solution
l = 1 //[litre] water (basis)
Cl = 475.6 //[mg]
m1 = (58.5/35.5)*Cl //[mg] NaCl present in water
SO4 = 102.9 //[mg] // SO4
m3 = (142/96)*SO4 //[mg] Na2SO4 present in water
// carbonates are present due to Na2CO3
// eq mass of CaCO3 = 50
// eq mass of Na2CO3 = 53
m4 = (53/50)*65.9 // [mg] Na2CO3 present in water
// NaHCO3 in water = bicarbonates - temporary hardness
m5 = 390.6-384 // [mg] NaHCO3 present as CaCO3
m6 = (84/50)*m5 // [mg] NaHCO3 present in water
// equivalent mass of Mg(HCO3)2 = 73.15
m7 = (m6/50)*225
m8 = 384-225 //[mg] CaCO3 from Ca(HCO3)2
// equivalent mass of Ca(HCO3)2 is 81
m9 = (m8/50)*159 //[mg] Ca(HCO3)2 present in water
printf("Component analysis of raw water: \n \n \nCompound mg/l \n \nCa(HCO3)2 "+string(m9)+" \nMg(HCO3)2 "+string(m7)+" \nNaHCO3 "+string(m6)+" \nNa2CO3 "+string(m4)+" \nNaCl "+string(m1)+" \nNa2SO4 "+string(m3)+"")
|
f9db8ef066c98c9474ba0d36e329d098d261e124
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1802/CH4/EX4.1/Exa4_1.sce
|
0c28338cf286610529362c69baa43769264c004c
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 313
|
sce
|
Exa4_1.sce
|
//Exa 4.1
clc;
clear;
close;
//Given Data :
format('v',9);
r=1.213/2;//in cm
f=60;//in Hz
ds=0.77888*r;//in cm
spacing=1.25;//in meter
L=4*10^-7*log(spacing*100/ds);//in H/m
disp(L*1000,"Inductance(in H/km) :");
XL=2*%pi*f*L;//in ohm/m
disp(XL*1000*60,"Inductive reactance for 60 km line(in ohm) :");
|
bf0901566daedccbbf0c9a82ac60957a0acc8e1a
|
e086c1a264e49af80443d44ae3a705cb43b7a21f
|
/AppTests/testSave.tst
|
c7c1f6b42021e320e4af5a4e3b6d487397195170
|
[] |
no_license
|
step-batch-7/juice-mildshower
|
60cfbf427cb8bb6d3b7fda894b6e71904b78ac92
|
730148258036da3382cd23579ce7a8cdfa7af722
|
refs/heads/master
| 2023-01-03T06:41:42.322261
| 2019-12-02T19:42:26
| 2019-12-02T19:42:26
| 223,359,891
| 0
| 1
| null | 2022-12-30T19:13:03
| 2019-11-22T08:38:28
|
JavaScript
|
UTF-8
|
Scilab
| false
| false
| 283
|
tst
|
testSave.tst
|
(export JS_STORE_PATH="./AppTests/testStore.json"; export JS_DATE="2019-12-01T14:33:49.427Z"; node beverage.js --save --empId 1234 --beverage Orange --qty 2; rm ./AppTests/testStore.json)
Transaction Recorded:
Employee ID,Beverage,Quantity,Date
1234,Orange,2,2019-12-01T14:33:49.427Z
|
ffe55af0fbffe8999128576ca9ea46f6253c9b04
|
e8dbcf469ba8a31d6926ba791ebc5dcccd50282b
|
/Scripts/DML/Consultas/Test/consulta_por_color_ojos.tst
|
64fb0eb8c7ef3d9bb0d722297e2b48f611b1442f
|
[] |
no_license
|
bryanjimenezchacon/bryanjimenezchacon.github.io
|
5f2a0f1dbfbc584a65dece48f98b1c13d755512f
|
7062d1860934808265c05491007c83f69da1112a
|
refs/heads/master
| 2021-01-23T17:20:11.542585
| 2015-10-10T05:52:52
| 2015-10-10T05:52:52
| 41,244,377
| 2
| 0
| null | 2015-08-26T15:46:04
| 2015-08-23T09:52:06
|
JavaScript
|
UTF-8
|
Scilab
| false
| false
| 234
|
tst
|
consulta_por_color_ojos.tst
|
PL/SQL Developer Test script 3.0
5
begin
-- Call the procedure
personas_por_color_ojos(pcolor_ojos => :pcolor_ojos,
p_recordset => :p_recordset);
end;
2
pcolor_ojos
1
Verde
5
p_recordset
1
<Cursor>
116
0
|
d0e94bceb1ca6faa4e6b61528d7aaeb985ca8053
|
717ddeb7e700373742c617a95e25a2376565112c
|
/3424/CH8/EX8.3/Ex8_3.sce
|
a5b40ea895d03e52b0deeb85aa80f486ecde1e63
|
[] |
no_license
|
appucrossroads/Scilab-TBC-Uploads
|
b7ce9a8665d6253926fa8cc0989cda3c0db8e63d
|
1d1c6f68fe7afb15ea12fd38492ec171491f8ce7
|
refs/heads/master
| 2021-01-22T04:15:15.512674
| 2017-09-19T11:51:56
| 2017-09-19T11:51:56
| 92,444,732
| 0
| 0
| null | 2017-05-25T21:09:20
| 2017-05-25T21:09:19
| null |
UTF-8
|
Scilab
| false
| false
| 555
|
sce
|
Ex8_3.sce
|
clc
// Intialization of variables
d = 1.23 //Kg/m3
V = 50 // m/s
D = 0.004 //m
U = 1.79*(10^-5) // N.s/M^2
f1 = 0.00467
l = 0.1 //m
f2 = 0.028
// Calculations
Re = d*V*D/U
Dp = f1*l*d*(V^2)/(D*2)
Dp1 = 32*U*l*V/(D^2)
Dp2 = f2*l*d*(V^2)/(D*2)
// results
printf("the pressure drop at 0.1 section of the tube (laminar) is %.3f kN/m^2 ",Dp/10^3)
printf("\nthe pressure drop at 0.1 section of the tube (laminar)(aliter) is %.3f kN/m^2 ",Dp1/10^3)
printf("\nthe pressure drop at 0.1 section of the tube (turbulent) is %.3f kN/m^2 ",Dp2/10^3)
|
f68c85234367f7ade9e424cf4e2a7979d6e0a439
|
75e45ac87e34faec83ba178b220061833ca314dc
|
/TP Note/CandassamyAnandou/exo3/script3.sce
|
71ecac5dbbf9008d4c866670fe743eb5a0910b35
|
[] |
no_license
|
GrinninReaper/ET4-TP-MethodeNumerique
|
3d465828afce25b4bfc7a10098e9bc398f7176b1
|
8b7373fcf228fed9fc2cb0f8241c802608414abf
|
refs/heads/master
| 2020-08-02T00:46:59.035354
| 2019-09-26T21:08:35
| 2019-09-26T21:08:35
| 211,181,502
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 493
|
sce
|
script3.sce
|
//19/12/18
//TP note de méthode numérique, exo3
//Anandou Candassamy
A = [-6, -2, 2,; 0, -2, -4; 3, 1, -1];
t1 = 0.1; t2 = 3.0;
rslt1 = matexp2(A, t1);
rslt2 = matexp2(A, t2);
disp(rslt1, "Résultat de la fonction pour t = 0.1");
disp(expm(A*t1), "Résultat donnée par scilab pour t=0.1");
disp(rslt2, "Résultat de la fonction pour t=3.0");
disp(expm(A*t2), "Résultat donnée par scilab pour t=3.0");
//Réponse:
//on voit bien que les résultats sont identiques
|
ee1ba77de5bf83001050ed190defa9dd29625d5b
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2096/CH2/EX2.27/ex_2_27.sce
|
e24e5da0195616edb05c7c1770af35577c84fe7a
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 248
|
sce
|
ex_2_27.sce
|
//Example 2.27 // distributed capacitance
clc;
clear;
close;
//given data :
C1=410; // in pico-farad
C2=50; // inpico-farad
f1=2; // in MHz
f2=5; // in MHz
F=f2/f1;
Cd=(C1-F^2*C2)/5.25;
disp(Cd,"the self capacitance,Cd(pico-farad) = ")
|
78e595edab535ba63d843f7fde75b44144ba9a35
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1301/CH30/EX30.10/ex30_10.sce
|
92596ca66dd3feef9240a3608ac3f8096a0f7a18
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 389
|
sce
|
ex30_10.sce
|
clc;
A=107.87; //atomic mass in gm
F=96500; //in Coloumb
v=1; //valency
z=A/(F*v); //calculating ECE using Faraday's Law
disp(z,"(a)Electrochemical Eqvivalent = "); //displaying result
A1=16; //atomic mass in gm
v1=2; //valency
z1=A1/(F*v1); //Faraday's Law
disp(z1,"(b)Electrochemical Equivalent = "); //displaying result
|
bbf3db151766925e845838e8f2686a629a18c210
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3526/CH13/EX13.3/Ex13_3.sce
|
446df843b4a9d315bec81ca8d1b6b90589c69d29
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 233
|
sce
|
Ex13_3.sce
|
//page 385
clc
primary_alpha=((0.77-.5)/(0.77-0.0218))*100
pearlite=((0.5-0.0218)/(0.77-0.0218))*100
disp(primary_alpha,"primary alpha in percentage =")
disp(pearlite,"pearlite in percentage =")
//Answer difference is due to roundoff
|
24c1ca95737ab76750372007c9463ee07bb998bb
|
9a4f02797ab8eecfe1394e2d276ac86379bb9824
|
/symphony-master/Examples/example5.sce
|
29382318f7d089bdf8152f1e7203f8413fea091f
|
[] |
no_license
|
RVidyadhar/Scilab_FOSSEE_Project
|
b686bfa6127df08ef47bfa430580be7779d9e2c5
|
7656e5089f307d46eacf77be8991d82125643365
|
refs/heads/master
| 2021-01-20T16:34:39.597133
| 2015-12-23T04:34:27
| 2015-12-23T04:34:27
| 48,269,308
| 0
| 0
| null | 2015-12-19T05:10:17
| 2015-12-19T05:10:17
| null |
UTF-8
|
Scilab
| false
| false
| 297
|
sce
|
example5.sce
|
function y=_f(x)
y=0
for i =1:6
y=y+sin(x(i));
end
endfunction
x1 = [-2, -2, -2, -2, -2, -2];
x2 = [2, 2, 2, 2, 2, 2];
//exec builder.sce
//exec loader.sce
options=list("MaxIter",[1500],"CpuTime", [100],"TolX",[1e-6])
[xopt,fopt,exitflag,output,zl,zu] = fminbnd(_f,x1,x2,options)
|
5bd3b1cd45324a8cf483b14bb5e6c29395185d21
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/557/CH22/EX22.3/3.sce
|
1aebd681b611de42376ec2743600837196f4f6d0
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 513
|
sce
|
3.sce
|
clc; funcprot(0); //Example 22.3.
//Initializing the variables
Ma = 0.6;
Cl = 0.6;
tByC = 0.035; // Thickness to chord ratio
cByC = 0.015; // Camber to chord ratio
x = 3; // Angle of incidence
//Calculations
lamda = 1/sqrt(1-Ma^2);
Cl# = lamda*Cl;
tByC1 = tByC*lamda;
cByC1 = cByC*lamda;
Cl1 = Cl*lamda^2;
Ae = x*lamda;
disp(Ae,"angle of incidence (Degree) :", Cl1, "Lift Coefficient :",cByC1, "Camber to chord ratio :",tByC1,"Thickness to chord ratio :","____Geometric Characterstics____" );
|
77e6410ad084ba245388b3936cb3765c540344f2
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3637/CH2/EX2.22/Ex2_22.sce
|
278728cc4425aa9cc2a0dc3f112a7b339c60ce98
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 493
|
sce
|
Ex2_22.sce
|
//problem 22 pagenumber 2.105
//given
rc1=1;format(3);clf();
vi=5;//volt
c=1e-6;//farad
r=1e6;//ohm
x0=0;x1=1:1:5;
//determine output voltage
v0=integrate('5','t',x0,x1);
disp('Output voltage = -'+string(v0(5))+" V");
subplot(1,2,1);
x=linspace(1,5,5);
y=5* ones(length(x),1);
plot(x,y);
xtitle('input waveform problem Ex2_22','time in sec','Vi in volts');
subplot(1,2,2);
x=linspace(1,5,5);
y=linspace(0,-25,5);
plot(x,y);
xtitle('output waveform problem Ex2_22','time in sec','V0 in volts');
|
b7f82ca3310c286f028a1340559305ded874ca4e
|
8217f7986187902617ad1bf89cb789618a90dd0a
|
/browsable_source/2.4/Unix-Windows/scilab-2.4/util/Gload.sce
|
adeeb999da8120c2992a6806051642ab1f01be39
|
[
"LicenseRef-scancode-public-domain",
"LicenseRef-scancode-warranty-disclaimer"
] |
permissive
|
clg55/Scilab-Workbench
|
4ebc01d2daea5026ad07fbfc53e16d4b29179502
|
9f8fd29c7f2a98100fa9aed8b58f6768d24a1875
|
refs/heads/master
| 2023-05-31T04:06:22.931111
| 2022-09-13T14:41:51
| 2022-09-13T14:41:51
| 258,270,193
| 0
| 1
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 458
|
sce
|
Gload.sce
|
// for the GLoad feature
// Copyright INRIA
if strindex(gl_name,'.')<>[] then
select part(gl_name,k($)+1:length(gl_name));
case "sci" then getf(gl_name),
case "sce" then exec(gl_name),
case "scg" then xload(gl_name),
case "bin" then load(gl_name),
case "cos" then scicos(gl_name)
case "cosf" then scicos(gl_name)
else error("Gload : unknown suffix in file name "+gl_name);
end
else
error("Gload : unknown file type "+gl_name);
end
|
3423ddbe862d9ec41bf75c78089ac68dbb9096f1
|
e770dc26235168913bdcd5b2332f3a38a95a8bc7
|
/Toolbox Test/poly2ac/poly2ac1.sce
|
20bb488fb75624a60658473ccd549a4bff7adc14
|
[] |
no_license
|
deecube/majorTom
|
f00eca4e2effff2c5eba746878f2c0842fe14680
|
84365fc032fc0ca44abac8330ec4ac6d85a85b3f
|
refs/heads/master
| 2021-01-21T14:04:23.323717
| 2016-05-23T06:05:31
| 2016-05-23T06:05:31
| 51,731,222
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 428
|
sce
|
poly2ac1.sce
|
//poly2ac
a = [1.0000 0.4288 0.76 0.0404 -0.02];
efinal = 0.2; // Step prediction error
r = poly2ac(a,efinal); // Autocorrelation sequence
disp(r);
//Output
// !--error 10000
//Input polynomial has to be a 1-dimensional array
//at line 35 of function poly2ac called by :
//r = poly2ac(a,efinal) // Autocorrelation sequen
//at line 4 of exec file called by :
//ly2ac\poly2ac1.sce', -1
|
89fdbabe47193784ba021f5b1683bf48c842af02
|
8ec32fef269217bba00d07764a356c37f359dbfc
|
/demos/simple.sce
|
a0730c197c724bf2daa40f0b97f3e837f653526d
|
[] |
no_license
|
manasdas17/ternary_plots
|
17b754f8b75565d40edc51a1b8b0507a7d1b53c3
|
5f605ec202612e7bc80037dcad9cc44794054f3b
|
refs/heads/master
| 2021-01-15T09:56:41.775143
| 2009-05-13T21:56:21
| 2009-05-13T21:56:21
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 364
|
sce
|
simple.sce
|
clf();
a=gca();a.isoview='on';
drawTriangle();
drawAxis(1,0.2:0.2:0.9,"%4.2f",fontSty=2,fontSiz=4.0);
drawAxis(2,0.2:0.2:0.9,"%4.2f",fontSty=2,fontSiz=4.0);
drawAxis(3,0.2:0.2:0.9,"%4.2f",fontSty=2,fontSiz=4.0);
vertexLabel(1,"A",fontSty=8,fontSiz=4.0);
vertexLabel(2,"B",fontSty=8,fontSiz=4.0);
vertexLabel(3,"C",fontSty=8,fontSiz=4.0);
//xs2eps(0,"simple");
|
5eabb15a9a64664c0ec70e0341e6679fbdbfd223
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1583/CH5/EX5.6/HFAAGC_Ex_5_6.sce
|
44a5140e9109d675a965054a65d0636241763b54
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 542
|
sce
|
HFAAGC_Ex_5_6.sce
|
clc
//Chapter 5:High Frequency Amplifiers and Automatic Gain Control
//example 5.5 page no 159
//given
s=poly(0,"s")
Vo=-(0.4-s*4*10^-12)*(966*10^3)
Vth=s^2*(79.6*10^-18)+s*(190.2*10^-9)+1
disp(Vo/Vth,'the transfer function is ')
wz=10^11//transfer function zero
w1=-5.5*10^6//pole due to input circuit
w2=-2.41*10^9//pole due to output circuit
mprintf('the transfer function zero is found to be located at %3.2e rad/s \n the pole due to input circuit is %3.2e rad/s \n the pole due to output circuit is %3.2e rad/s ',wz,w1,w2)
|
abb21dbf90430d2622d976ca3352da1d094d909f
|
717ddeb7e700373742c617a95e25a2376565112c
|
/72/CH11/EX11.3.1/11_3_1.sce
|
953214fedeabf7bd674bc0a58408b2990f4f6d54
|
[] |
no_license
|
appucrossroads/Scilab-TBC-Uploads
|
b7ce9a8665d6253926fa8cc0989cda3c0db8e63d
|
1d1c6f68fe7afb15ea12fd38492ec171491f8ce7
|
refs/heads/master
| 2021-01-22T04:15:15.512674
| 2017-09-19T11:51:56
| 2017-09-19T11:51:56
| 92,444,732
| 0
| 0
| null | 2017-05-25T21:09:20
| 2017-05-25T21:09:19
| null |
UTF-8
|
Scilab
| false
| false
| 354
|
sce
|
11_3_1.sce
|
//CAPTION:Characteristic_Impedance_of_a_Coplanar_Stripline
//chapter_no.-11, page_no.-507
//Example_no.11-3-1
clc;
Pavg=250*(10^-3);//average_power_flowing_in_the_positive_z_direction
Io=100*(10^-3);//total_peak_current
Z0=(2*Pavg)/(Io^2);
disp(Z0,'the_characteristic_impedance_of_the_coplanar_strip_line(in ohms)is =');
|
e49bbe18ba6fc80c63343cc57472093b60eab2b7
|
eed1c6205cce4d1e6f4d2aff6ee526581b6d55fb
|
/Le-rencana-TA.tst
|
b5f8a0fb134e508e8fde88c8c004e518262375e9
|
[] |
no_license
|
Azizyeea/Le-resolusi
|
a3ca2faf4d56d1cecf4e69876bbfb17f77ace501
|
74b461e5e2752867c83e07eb472beb4d7c8be40d
|
refs/heads/master
| 2021-01-26T02:47:53.191092
| 2020-02-26T15:42:25
| 2020-02-26T15:42:25
| 243,279,382
| 0
| 0
| null | 2020-02-26T15:42:27
| 2020-02-26T14:14:23
|
Scilab
|
UTF-8
|
Scilab
| false
| false
| 104
|
tst
|
Le-rencana-TA.tst
|
Rencana TA
-Algoritma
*SPK
*Pencarian
^PDF
-IOT
-Studi Kasus
^Disdukcapil
^Mitsubishi
-Big Data
|
53d99b084355e7fea63074180a1df65da27d5474
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2510/CH14/EX14.8/Ex14_8.sce
|
fe3fcd8ab3b84ca93cf4aa39b6c959ffea8b3a69
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,095
|
sce
|
Ex14_8.sce
|
//Variable declaration:
T1 = 138.0 //Temperature of oil entering the cooler (°F)
T2 = 103.0 //Temperature of oil leaving the cooler (°F)
t1 = 88.0 //Temperature of coolant entering the cooler (°F)
t2 = 98.0 //Temperature of coolant leaving the cooler (°F)
//Calculation:
//For counter flow unit:
DT1 = T1 - t2 //Temperature difference driving force at the cooler entrance (°F)
DT2 = T2 - t1 //Temperature difference driving force at the cooler exit (°F)
DTlm1 = (DT1 - DT2)/(log(DT1/DT2)) //LMTD (driving force) for the heat exchanger (°F)
//For parallel flow unit:
DT3 = T1 - t1 //Temperature difference driving force at the cooler entrance (°F)
DT4 = T2 - t2 //Temperature difference driving force at the cooler exit (°F)
DTlm2 = (DT3 - DT4)/(log(DT3/DT4)) //LMTD (driving force) for the heat exchanger (°F)
//Result:
printf("The LMTD for counter-current flow unit is : %.1f °F.",DTlm1)
printf("The LMTD for parallel flow unit is : %.1f °F.",DTlm2)
|
ce8d71543afa41a9fe0997c7b6e2d6328df52dc3
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1514/CH4/EX4.8/4_8.sce
|
5d9bac9747989b0e5356d76c233cfb67522836fe
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 696
|
sce
|
4_8.sce
|
//chapter 4
//example 4.8
//page 113
clear all;
clc ;
//given
hfe1=50;//minimum value
hfe2=150;//maximum value
Vbe=0.7;
Vcc=15;//supply voltage V
R1=18.6;R2=11.4;//kohm
VT=(Vcc*R2)/(R1+R2);
RT=(R1*R2)/(R1+R2);
Rc=1;//kohm
Re=1.0;
//for hfe=50
Ic1=(VT-Vbe)/(RT/hfe1+Re*(1/hfe1+1));Ic1=4.31;
Vce1=Vcc-(Ic1*Rc)-Re*(Ic1/hfe1+Ic1);
printf("\nfor hfe=50,Vce=%.2f V,Ic=%.2f mA",Vce1,Ic1);
//for hfe=150
Ic2=(VT-Vbe)/(RT/hfe2+Re*(1/hfe2+1));Ic2=4.74;
Vce2=Vcc-(Ic2*Rc)-Re*(Ic2/hfe2+Ic2);
printf("\nfor hfe=150,Vce=%.2f V,Ic=%.2f mA",(Vce2),Ic2);
Vb= Vcc*(R2/(R1+R2));
Ve=Vb-Vbe;
Ie=Vb/Re;
Vc=ceil(Vcc-(Ie*Rc));
printf('\nCollector voltage is approximately %d V',Vc)
|
07ac7f16ee3fe1e9f5f14eb0ff380b7045a84ffe
|
a1e081ceabd043cf1506b917c7f2fb243be290d8
|
/P2/loadFunctions.sci
|
480352125723968885d418f499866fde10075c5f
|
[] |
no_license
|
pablospe/ssc
|
2cd8e21e1843f246e2d7f565557f4f73368aa4b8
|
353fc62f18202e73b84bea4f2d83f64cdeb15723
|
refs/heads/master
| 2021-01-10T21:35:46.798450
| 2014-04-24T05:11:51
| 2014-04-24T05:11:51
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 233
|
sci
|
loadFunctions.sci
|
exec ex1.sci
exec ex3.sci
exec ltisol.sci
exec step_feuler.sci
exec feuler.sci
exec jacobiant.sci
exec step_beuler.sci
exec beuler.sci
exec mixed_euler.sci
exec cicled_euler.sci
exec alpha_mixed_euler.sci
exec global_error.sci
|
98fe0688607a132ce161417d59a61a9e46394a40
|
3ab7c3ba0b53c896747be95b21d2a39dc0ba021a
|
/Simpson.sce
|
1a5100ac2acf8f893651b66fa68c4c25ed7477d9
|
[] |
no_license
|
Farber98/MetodosNumericos
|
0752f090eb596926f05bff0730a088eb70e77033
|
5c1be0d0e8274d204b41d0b91778847e6469e6bb
|
refs/heads/master
| 2021-04-23T12:58:07.339435
| 2020-03-25T08:41:32
| 2020-03-25T08:41:32
| 249,926,955
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 141
|
sce
|
Simpson.sce
|
exec('C:/home/juan/Escritorio/Scilab/Simpson.sci',-1);
deff('[y]= f(x)', 'y= (3*(x^3)+(%e^x))');
x=[0:0.1:0.8];
[s] = Simpson(x,f);
disp(s);
|
28e835638368b92177f6427d1078e7f33964f4a9
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2741/CH5/EX5.12/Chapter5_Example12.sce
|
44c6411b34db58b4c21c6afcf134da9778f412dd
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 355
|
sce
|
Chapter5_Example12.sce
|
clc
clear
//Input data
T=300;//The given temperature in K
R=8.3*10^7;//The Universal gas constant in ergs/g mol-K
//Calculations
E=((3/2)*(R*T))/10^7;//The total random kinetic energy per gram -molecule of oxygen in joules
//Output
printf('The total random kinetic energy of one gm-molecule of oxygen at 300 K is K.E = %3.0f joules',E)
|
7bfe23cb71f7c713e5d1e96100064531bbc092d4
|
6e257f133dd8984b578f3c9fd3f269eabc0750be
|
/ScilabFromTheoryToPractice/Programming/testvarlocale.sce
|
916f6148c85b933ac2742d0cbbd2f1853cf83753
|
[] |
no_license
|
markusmorawitz77/Scilab
|
902ef1b9f356dd38ea2dbadc892fe50d32b44bd0
|
7c98963a7d80915f66a3231a2235010e879049aa
|
refs/heads/master
| 2021-01-19T23:53:52.068010
| 2017-04-22T12:39:21
| 2017-04-22T12:39:21
| 89,051,705
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 245
|
sce
|
testvarlocale.sce
|
clear y //to delete
function y=foo(x)
disp('dans ''foo'' x='+string(x))
y=1+x^2
disp('dans ''foo'' y='+string(y))
endfunction
x=2
z=foo(1) // inside "foo" x is 1
x // x is still equal to 2
y // y doesn't exist here
|
4de47115f3cc1b68ddc63c482593eebadee17edc
|
9eee9f16f22ece682f8592130aa351a0d050f197
|
/compiler.tst
|
db52388e5cb19f97ceeafabdf406983b9c2217c5
|
[] |
no_license
|
ansjob/wacc
|
e388482b79af937a092f24011dd7c96a271101ce
|
aae607757954ad77614ba300ac3615dcb443ca4d
|
refs/heads/master
| 2021-01-23T18:49:28.013827
| 2014-01-10T16:15:57
| 2014-01-10T16:15:57
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,346
|
tst
|
compiler.tst
|
compile(skip:1 ; skip:2, C)
:: C = [noop:1, noop:2].
phrase(stmt(S), [var(x), =, 5, +, 7]), add_control_points(S, Sp), compile(Sp, C)
:: C = [push(7), push(5), add, store(x):_, eop:_].
phrase(stmt(S), [var(x), =, 5, *, 3, -, 2]), add_control_points(S, Sp), compile(Sp, C)
:: C = [push(2), push(3), push(5), mult, sub | _].
phrase(stmt(S), [var(_), =, var(X)]), add_control_points(S, Sp), compile(Sp, C)
:: C = [fetch(X), store(_):_, eop:_].
phrase(stmt(S), [while, l_paren, 5, '<=', 3, r_paren, ^, !, l_paren, false, r_paren, do, skip]),
add_control_points(S, Sp),
compile(Sp, C)
:: C = [loop([false, neg, push(3), push(5), le, and], [noop:_]):_ , eop:_].
phrase(stmt(S), [while, true, ^, var(x), eq, 3, do, skip]),
add_control_points(S, Sp),
compile(Sp, C)
:: C = [loop([push(3), fetch(x), eq, true, and], [noop:_]):_, eop:_].
compile(ass(var(y), 2 + 4):_, C)
:: C = [push(4), push(2), add, store(y):_].
compile(cond(true, skip:_, skip:_):_, C)
:: C = [true, branch([noop:_], [noop:_]):_].
compile(while(true, skip:_):_, C)
:: C = [loop([true], [noop:_]):_].
compile((((5) / (0))), C)
:: C = [push(0), push(5), div].
phrase(stmt(S), [try, var(z), =, 7, catch, l_paren, skip, semicolon, skip, r_paren]),
add_control_points(S, Sp),
compile(Sp, C)
:: C = [try([push(7), store(z):_]):_, catch([noop:_, noop:_]):_, eop:_].
|
f870e78c0ad382056046feba2ec32a66f53d2ac6
|
b3c9357cd1290921e67444ae057761959fdf24f1
|
/Curso de programação com Scilab/códigos/ex012610.sce
|
b065524537c521a419d1ce748512dae9de725633
|
[] |
no_license
|
joaolrneto/Scilab
|
91742520422426dc8a772997ef4a5d6376008b6e
|
f383f87e4585955cf19d0dae1b5c29f93c3f70b4
|
refs/heads/master
| 2023-02-05T20:13:03.677069
| 2020-12-30T14:53:09
| 2020-12-30T14:53:09
| 264,671,730
| 1
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 507
|
sce
|
ex012610.sce
|
//Desenvolver um programa em Matlab que leia 20
//valores correspondentes as notas de
//PCI. As notas variam de 0 a 10, somente valores
//inteiros. Calcular e escrever a
//Frequência Absoluta e a Frequência Relativa
//das notas lidas.
//Obs:
//a)Frequência Absoluta é a quantidade de vezes que uma nota ocorreu no conjunto.
//b)Frequência Relativa é a Frequência Absoluta
//dividida pela quantidade de notas lidas.
//c)Escrever a nota, a sua Frequência Absoluta e a sua Frequência Relativa.
|
69d629b3bcf94f7a32a978aeb8a73021ac955d96
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2681/CH5/EX5.6/Ex5_6.sce
|
b0f058a7e030429acf720515679abc76f64081b2
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 304
|
sce
|
Ex5_6.sce
|
//output power of cable
//given
clc
alpha=0.28//db/m//attenuation
alpha_50m=0.28*50//db//attenutaion of 50 m cable
pi=0.4//watt//input power//ERROR
po=pi/(10^((alpha_50m)/10))//watt//output power
disp(po*1000,'the output power of 50m in mW ')//mW
//ERROR in calculation of the book as pi=0.04
|
93a84bef8a541bc15c4952c2e98f367145a307d4
|
8217f7986187902617ad1bf89cb789618a90dd0a
|
/source/2.5/tests/examples/pwd.man.tst
|
73a15658ca47eb1e4246390f31975a8131b7e7c0
|
[
"LicenseRef-scancode-public-domain",
"LicenseRef-scancode-warranty-disclaimer"
] |
permissive
|
clg55/Scilab-Workbench
|
4ebc01d2daea5026ad07fbfc53e16d4b29179502
|
9f8fd29c7f2a98100fa9aed8b58f6768d24a1875
|
refs/heads/master
| 2023-05-31T04:06:22.931111
| 2022-09-13T14:41:51
| 2022-09-13T14:41:51
| 258,270,193
| 0
| 1
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 20
|
tst
|
pwd.man.tst
|
clear;lines(0);
pwd
|
7a2827e856828e2e7bff06e493c52f0f0a79c449
|
717ddeb7e700373742c617a95e25a2376565112c
|
/284/CH6/EX6.5/ex_5.sce
|
474bb22d1dc8f6753592aed6be500c544db0800b
|
[] |
no_license
|
appucrossroads/Scilab-TBC-Uploads
|
b7ce9a8665d6253926fa8cc0989cda3c0db8e63d
|
1d1c6f68fe7afb15ea12fd38492ec171491f8ce7
|
refs/heads/master
| 2021-01-22T04:15:15.512674
| 2017-09-19T11:51:56
| 2017-09-19T11:51:56
| 92,444,732
| 0
| 0
| null | 2017-05-25T21:09:20
| 2017-05-25T21:09:19
| null |
UTF-8
|
Scilab
| false
| false
| 433
|
sce
|
ex_5.sce
|
// Chapter 6_The pn junction
//Caption_Junction capacitance
//Ex_5//page 230
Na=10^16 //acceptor ion concentration
T=300 //temperature in kelvin
Nd=10^15
ni=1.5*(10^10) //intrinsic ion concentration
Vr=5 //Reverse applied voltage
Vbi=0.635
V=Vr+Vbi
C=(e*eps*Na*Nd/(2*(V)*(Na+Nd)))^0.5
A=10^-4 //Area of the pn junction
Ca=A*C*10^12
printf('The junction capacitance for the given semiconductor is %1.3f pF',Ca)
|
5edc2b77dd6c5fdc841ea151844e1f234cc16677
|
84ea66af72ab1c482a1a03fd2d8bdc74e9ad1668
|
/Tutorial04-ODE/Scilab_code/Tutorial4_ode_simple_plot.sce
|
f2df913ff8e2dc3492db17992b7b10512abe64d1
|
[] |
no_license
|
FOSSEE/scilab-tutorials
|
c4a9464a5b163074566234e42659f99e2012ecc0
|
301609f6ef1653dee4fa2ed74bca3e6f7abc1308
|
refs/heads/master
| 2020-03-26T23:48:04.178016
| 2018-10-08T00:44:39
| 2018-10-08T00:44:39
| 145,567,949
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 533
|
sce
|
Tutorial4_ode_simple_plot.sce
|
//This script demonstrates the use of ODE solver and computing the
//solution at different times. The output is in the form of a plot
//of time versus computed solution
clear
clc
//Definition the function.
function ydot = func(t,y)
ydot = t^2*exp(-2*t) + y
endfunction
//Initial condition
y0 = -1;
//Start time
t0= 0;
//The array of time where the solution is computed
tf = 4:0.01:10;
//Calling the ODE solver
sol=ode(y0,t0,tf,func);
//Plotting the result
plot(tf,sol,'Linewidth',3)
xtitle('Dynamics of y','Time','y(t)')
|
e379c387452529bd77fdcf8dbd2adc071e1f2fb8
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3862/CH5/EX5.3/Ex5_3.sce
|
284963ee91dc46f992580ccc5379562a35ea309f
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 735
|
sce
|
Ex5_3.sce
|
clear
//
W=500.0 //weight of block
F1=200.0 //force up the inclined plane when block is moving down
F2=300.0 //force up the inclined plane when block is at rest
//When block starts moving down the plane
//sum of all forces perpendicular to the plane = 0
//N =Wcoso
//sum of all forces parallel to the plane = 0
//Fr+F1=Wsino
//sino-ucoso=F1/w 1
//When block starts moving up the plane
//sum of all forces perpendicular to the plane = 0
//N =Wcoso
//sum of all forces parallel to the plane = 0
//Wsino+Wucoso=F2
//using these equations
o=asin((F1*0.5/W)+(F2*0.5/W)) //angle of inclination
printf("\n Angle of inclination is %0.3f ",o*180/3.14)
//using 1
u=sin(o)-F1/W
printf("\n coefficient of friction is %0.3f ",u)
|
8dbe86eda8fba00f7830bbf6d62aaeb7f46e03d3
|
5f838df28ada5a3bbd5be4c69902b9df4dbffacb
|
/fir_lpf_impulse_response.sci
|
afa10e69ca2387d6d3d3ee201e0682ea434bf276
|
[] |
no_license
|
Sai-Sumedh/filter_design_180070024
|
dca29c7b95cb43421e1577af3673f29df3a83251
|
c8348c85b515e9d987404c335f52150933512405
|
refs/heads/main
| 2023-01-14T05:11:25.601573
| 2020-11-12T18:44:36
| 2020-11-12T18:44:36
| 312,361,627
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 2,219
|
sci
|
fir_lpf_impulse_response.sci
|
// this file gives the impulse response of an ideal LPF
function [h_n]=impulse_response_ideal_lpf(w_p, n_max) // passpand till w_p
n = -n_max:n_max;
h_n = (w_p/%pi)*sinc(w_p*n);
endfunction
//n_max = 500;
//wp2 = 1.767;
//wp1 = 1.386;
//h1 = impulse_response_ideal_lpf(wp2,n_max);
//n_axis = -n_max:n_max;
//h2 = impulse_response_ideal_lpf(wp1, n_max);
//del = zeros(-n_max:n_max);
//del(n_max+1)=1;
//h_new = del-h2+h1;
//plot(n_axis,h_new)
// this verifies that the linear combination of ideal impulse responses is max at 0
//plot(n_axis,h);
//xlabel("n");
//ylabel("h[n]]");
//title("Ideal LPF impulse response with wp=1.767");
function [w_n]=generate_rect_window(l_win_side, centre, n_max) // length=odd
// centre is the value (like real n in h[n] (can be -ve too), not the array index])
temp = zeros(-n_max:n_max);
temp(n_max-l_win_side+1+centre:n_max+l_win_side+1+centre)=1;
w_n = temp;
endfunction
//
//w = generate_rect_window(5, 10);
//disp(w)
//plot(-10:10, w)
function [h_finite]=apply_window_h_ideal(h_ideal_n, window_len) // window the function , centered at the max position of h_ideal OR should it be zero? // window_len = N (one side length)
[max_val, centre_index] = max(h_ideal_n);
n_max= floor((length(h_ideal_n)-1)/2);
centre = centre_index-n_max-1;
w_n = generate_rect_window(window_len, centre, n_max);
disp(length(h_ideal_n))
disp(length(w_n))
h_finite = h_ideal_n.*w_n;
endfunction
//n_max = 10000;
//wp2 = 1.767;
//wp1 = 1.386;
//n_axis = -n_max:n_max;
//h2 = impulse_response_ideal_lpf(wp2,n_max);
//h_wind = apply_window_h_ideal(h2, 10);
////plot(n_axis, h_wind, n_axis, h2)
////plot(n_axis, h1)
////H2 = fft(h2);
////plot(abs(H2));
//w_axis = -3.14:0.01:3.14
function [H_w_val]=freq_transform(n_axis, w_axis, h_n) // n_axis, w_axis and h_n are row arrays
product = w_axis'*n_axis;
exp_term = exp(-%i*product);
H_w_val = exp_term*h_n';
H_w_val = H_w_val'; // now a row vector with size = size of w_axis
endfunction
//H = freq_transform(n_axis, w_axis, h2)
//plot(w_axis, abs(H))
//plot(n_axis, h2)
// its working beautifully!
|
a69667e9d58014b7fd4ac660bca902caf01ba00c
|
592b1b7dfaefd62d755737ac7b6e81f44f7786ba
|
/2d Program to solve algebraic and transcendental equation by Newton Raphson.sce
|
a5563af70fe565e70786d8c4b12ba632f4036f2b
|
[] |
no_license
|
muitnet/Numerical-and-Statistical-Methods-sem2-fybscit-mumbai-university
|
841143b72d52229c68bcd0666ed10c844c02f507
|
2d1c638b881f3e418a982baa02632effd03ae5fe
|
refs/heads/master
| 2021-01-19T07:23:05.463429
| 2017-04-07T11:54:24
| 2017-04-07T11:54:24
| 87,540,712
| 6
| 5
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 369
|
sce
|
2d Program to solve algebraic and transcendental equation by Newton Raphson.sce
|
deff('y=f(x)','y=sin(x)-x/2');
deff('y1=f1(x)','y1=cos(x)-1/2');
x0=2,
d=0.0001;
c=0;n=1;
printf('successive iterations \tx0 \tf(x0) \tf1(x0) \n');
while n==1
x2=x0;
x1=x0-(f(x0)/f1(x0));
x0=x1;
printf('\t%f \t%f \t%f \n',x2,f(x1),f(x1));
c=c+1;
if abs (f(x0))<d
break;
end
end
printf(' the root of %i iteration is : %f',c,x0);
|
ff7869a836baadc9fb936cb87fb9c91b44c22a97
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/226/CH20/EX20.2/example2_sce.sce
|
cac6041d41a9d209eb397c89504e2121fc1e9703
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 463
|
sce
|
example2_sce.sce
|
//chapter 20
//example 20.2
//page 905
printf("\n")
printf("given")
Vs=30;Vd1=.7;Vg=.8;Ig=200*10^-6;
Vspk=1.414*Vs
disp(" at 5 degree")
es=Vspk*.087// sin5=.087
disp(" at 90 degree")
es=Vspk
Vt=Vd1+Vg
disp(" to trigger at es=3.7V the R2 moving contact is at the top")
es=3.7;
Vr1=es-Vt
I1=1*10^-3;
R1=Vr1/I1
R=Vt/I1//R=R2+R3
disp(" to trigger at es =42.4 the R2 moving contact at the bottom")
es=42.4;
Vr3=Vt;
I1=es/(R+R1)
R3=Vt/I1
R2=R-R3
|
7c8185858bc819afe3b50d77abdde4783c471899
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3012/CH13/EX13.5/Ex13_5.sce
|
7aee332ddce95c6189860369d1ad0076df2f4b3a
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,125
|
sce
|
Ex13_5.sce
|
// Given:-
// When expressed on a per mole of fuel basis, the balanced chemical equation obtained in the solution to Example 13.2 takes the form
// CH4 + 2.265O2 + 8.515N2 ----- .951CO2 + .049CO + .289O2 + 8.515N2 + 2H2O
cpbar = 38.00 // specific heat in KJ/kmol.K
// From table A-25
hfnotbar = -74850.00 // enthalpy of formation for methane
// From table A-23
deltahbarO2 = 14770-8682
deltahbarN2 = 14581-8669
// Calculations
hRbar = hfnotbar + cpbar*(400-298) + 2.265*deltahbarO2 + 8.515*deltahbarN2 // in kj/kmol
// With enthalpy of formation values for CO2, CO, and H2O(g) from Table A-25 and enthalpy values from Table A-23
hpbar = .951*(-393520 + (88806 - 9364)) + .049*(-110530 + (58191 - 8669)) + .289*(60371 - 8682) + 8.515*(57651 - 8669) + 2*(-241820 + (72513 - 9904))
Qcvdot = hpbar - hRbar // in kj/kmol
// Result
printf( ' The rate of heat transfer from the combustion chamber in kJ per kmol of fuel is: %.2f',Qcvdot)
|
96a1a475953571c3bf9383d0b0efc5410bda3fa9
|
54f91b13c34106536031bc17626e1546404154b2
|
/data/odml_nix_data/numbers.sce
|
20c152ce6d5f7d0eac5f0fd4535c0064b71fa78e
|
[] |
no_license
|
JiriVanek/guess_the_number_py
|
d19150258c990a3306265ef1ee595bc0fb9ece88
|
713899ff66ff4369658956325bc1e7a0e62a1014
|
refs/heads/master
| 2021-04-06T08:16:18.286522
| 2018-09-23T08:06:59
| 2018-09-23T08:06:59
| 124,891,307
| 0
| 1
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 2,178
|
sce
|
numbers.sce
|
randomize_trials=true;
write_codes = true;
pulse_width = 100;
begin;
text { caption="0"; font_color = 255,255,255; font_size = 400; } tx0;
text { caption="1"; font_color = 255,255,255; font_size = 400; } tx1;
text { caption="2"; font_color = 255,255,255; font_size = 400; } tx2;
text { caption="3"; font_color = 255,255,255; font_size = 400; } tx3;
text { caption="4"; font_color = 255,255,255; font_size = 400; } tx4;
text { caption="5"; font_color = 255,255,255; font_size = 400; } tx5;
text { caption="6"; font_color = 255,255,255; font_size = 400; } tx6;
text { caption="7"; font_color = 255,255,255; font_size = 400; } tx7;
text { caption="8"; font_color = 255,255,255; font_size = 400; } tx8;
text { caption="9"; font_color = 255,255,255; font_size = 400; } tx9;
trial {
trial_duration=1000;
start_delay=500;
picture { text tx1; x=0; y=0;};
port_code=1;
} t1;
trial {
start_delay=500;
trial_duration=1000;
picture { text tx2; x=0; y=0; };
port_code=2;
} t2;
trial {
trial_duration=1000;
start_delay=500;
picture { text tx3; x=0; y=0; };
port_code=3;
} t3;
trial {
trial_duration=1000;
start_delay=500;
picture { text tx4; x=0; y=0;};
port_code=4;
} t4;
trial {
start_delay=500;
trial_duration=1000;
picture { text tx5; x=0; y=0; };
port_code=5;
} t5;
trial {
trial_duration=1000;
start_delay=500;
picture { text tx6; x=0; y=0; };
port_code=6;
} t6;
trial {
trial_duration=1000;
start_delay=500;
picture { text tx7; x=0; y=0;};
port_code=7;
} t7;
trial {
start_delay=500;
trial_duration=1000;
picture { text tx8; x=0; y=0; };
port_code=8;
} t8;
trial {
trial_duration=1000;
start_delay=500;
picture { text tx9; x=0; y=0; };
port_code=9;
} t9;
trial {
trial_duration=1000;
start_delay=500;
picture { text tx0; x=0; y=0;};
port_code=10;
} t0;
LOOP $i 50;
trial t1;
trial t2;
trial t3;
trial t4;
trial t5;
trial t6;
trial t7;
trial t8;
trial t9;
trial t0;
ENDLOOP;
|
2cd474e9fdae51c4166a4f96e0f5e6940cf5c795
|
ebfed86dee276110294a4e93fa80377908bbd317
|
/macros/pyrMeanShiftFiltering.sci
|
ae90a8f8d1510f73638fdb1ac5b347929265536d
|
[] |
no_license
|
gursimarsingh/FOSSEE-Image-Processing-Toolbox
|
a9d46b698c98566fec867eb2ce3cfeb427058d5c
|
165f6d7d1f20262a1637a923c6aad6e663ad1538
|
refs/heads/master
| 2021-08-16T19:18:59.591175
| 2017-11-08T17:55:04
| 2017-11-08T17:55:04
| 96,531,802
| 0
| 0
| null | 2017-07-07T11:21:10
| 2017-07-07T11:21:10
| null |
UTF-8
|
Scilab
| false
| false
| 2,782
|
sci
|
pyrMeanShiftFiltering.sci
|
// Copyright (C) 2015 - IIT Bombay - FOSSEE
//
// This file must be used under the terms of the CeCILL.
// This source file is licensed as described in the file COPYING, which
// you should have received as part of this distribution. The terms
// are also available at
// http://www.cecill.info/licences/Licence_CeCILL_V2-en.txt
// Author: Priyanka Hiranandani,Gursimar Singh
// Organization: FOSSEE, IIT Bombay
// Email: toolbox@scilab.in
function [outputImg]=pyrMeanShiftFiltering(inputImage,sp,sr,varargin)
//Performs initial step of meanshift segmentation of an image
//
//Calling Sequence
//[outputImg]=pyrMeanShiftFiltering(inputImage,sp,sr)
//[outputImg]=pyrMeanShiftFiltering(inputImage,sp,sr,maxLevel)
//
//Parameters
//outputImg:The destination image of the same format and the same size as the source inputImage.
//inputImage:The source image.
//SP:The spatial window radius.
//SR:The color window radius.
//maxLevel:Maximum level of the pyramid for the segmentation. default 1
//
//Description
//The function implements the filtering stage of meanshift segmentation, that is, the output of the function is the filtered "posterized" image with color gradients and fine-grain texture flattened. At every pixel (X,Y) of the input image (or down-sized input image, see below) the function executes meanshift iterations, that is, the pixel (X,Y) neighborhood in the joint space-color hyperspace is considered.
//When MaxLevel > 0, the gaussian pyramid of MaxLevel+1 levels is built, and the above procedure is run on the smallest layer first. After that, the results are propagated to the larger layer and the iterations are run again only on those pixels where the layer colors differ by more than SR from the lower-resolution layer of the pyramid. That makes boundaries of color regions sharper. Note that the results will be actually different from the ones obtained by running the meanshift procedure on the whole original image (i.e. when MaxLevel = 0).
//
//Examples
//im=imread("images/lena.jpg");
//img=pyrMeanShiftFiltering(im,100,200);
//figure("Figure_name","originalImage");
//imshow(im);
//figure("Figure_name","ProcessedImage");
//imshow(img);
//
//Authors
//Priyanka Hiranandani
//Gursimar Singh
[lhs,rhs]=argn(0);
if rhs>4 then
error(msprintf("Too many input arguments"));
end
if rhs<3 then
error(msprintf("Not enough input arguments"));
end
if lhs >1 then
error(msprintf("Too many output arguments"));
end
inputList=mattolist(inputImage);
if rhs==3 then
outputList=raw_pyrMeanShiftFiltering(inputList,sp,sr);
elseif rhs==4 then
outputList=raw_pyrMeanShiftFiltering(inputList,sp,sr,varargin(1));
end
for i=1:size(outputList)
outputImg(:,:,i)=outputList(i)
end
endfunction
|
f81a6d34de14060476faa383a865b763d769e8c4
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/273/CH25/EX25.7/ex25_7.sce
|
72e35ec9ccf5b8c98143bf33228e66f9aa3c82c3
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 400
|
sce
|
ex25_7.sce
|
clc;clear;
//Example 25.7
//calculation of product of two binary numbers
//given values
X='10101';//first binary number with last two digits in fractional part
Y='101';//second binary number with last two digits in fractional part
//calculation
x=bin2dec(X);//decimal equivalent
y=bin2dec(Y);//decimal equivalent
z=x*y;
Z=dec2bin(z);
disp(Z,'product of the given binary numbers is ')
|
fbc36c1dc73557708020b514f1289c8c8e7e5470
|
417f69e36190edf7e19a030d2bb6aa4f15bb390c
|
/SMTTests/tests/ok_LRA.tst
|
bdbb3c09a2a8806beb264e46425c10e4694021a7
|
[] |
no_license
|
IETS3/jSMTLIB
|
aeaa7ad19be88117c7454d807a944e8581184a66
|
c724ac63056101bfeeb39cc3f366c8719aa23f7b
|
refs/heads/master
| 2020-12-24T12:41:17.664907
| 2019-01-04T10:47:43
| 2019-01-04T10:47:43
| 76,446,229
| 1
| 0
| null | 2016-12-14T09:46:41
| 2016-12-14T09:46:41
| null |
UTF-8
|
Scilab
| false
| false
| 1,447
|
tst
|
ok_LRA.tst
|
; checks that all symbols in LRA are defined and that various
; expressions in the language are permitted
(set-logic LRA)
(declare-fun a () Real)
(declare-fun b () Real)
(assert (= a (+ a b)))
(assert (= a (+ b 1)))
(assert (= a (+ b 1.0)))
(assert (= a (+ 1 b)))
(assert (= a (+ 1.0 b)))
(assert (= a (- a b)))
(assert (= a (- b 1)))
(assert (= a (- b 1.0)))
(assert (= a (- 1 b)))
(assert (= a (- 1.0 b)))
(assert (= a (- b)))
(assert (= a (- 1)))
(assert (= a (- 1.0)))
(assert (>= a b))
(assert (>= a 1))
(assert (>= a 1.0))
(assert (>= 1 a))
(assert (>= 1.0 a))
(assert (<= a b))
(assert (<= a 1))
(assert (<= a 1.0))
(assert (<= 1 a))
(assert (<= 1.0 a))
(assert (> a b))
(assert (> a 1))
(assert (> a 1.0))
(assert (> 1 a))
(assert (> 1.0 a))
(assert (< a b))
(assert (< a 1))
(assert (< a 1.0))
(assert (< 1 a))
(assert (< 1.0 a))
(assert (distinct a b 1 1.0))
(assert (= a (* b (/ 3 20))))
(assert (= a (* (/ 3 20) b)))
(assert (= a (* (/ (- 3) 20) b)))
(assert (= a (* (- 20) b)))
(assert (= a (* 20 b)))
(assert (= a (* 20.0 b)))
(assert (= a (* (- 20.0) b)))
(assert (= (* b (/ 3 20)) a))
(assert (= (* (/ 3 20) b) a))
(assert (= (* (/ (- 3) 20) b) a))
(assert (= (* (- 20) b) a))
(assert (= (* 20 b) a))
(assert (= (* 20.0 b) a))
(assert (= (* (- 20.0) b) a))
(assert (= a (ite true b b)))
(assert (= a (ite true 1.0 1)))
(assert (forall ((a Real)(c Real)) (=> (> a c) (> (+ a 1) c))))
(assert (exists ((c Real)) (= a c )))
|
ea1b3397738c0e879034a4fa91a88b65ed6f26e1
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2345/CH15/EX15.35/Ex15_35.sce
|
ee2dd5bc5ac935a57a5df23d74493e593fd7676b
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 496
|
sce
|
Ex15_35.sce
|
//Finding efficiency
//Example 15.35(pg. 416)
clc
clear
m=2//quantity of aluminium to be melted in kg
t1=15,t2=660//temp in degreeC
S=0.212//specific heat of aluminium
L=78.8//latent heat of aluminium in kcal/kg
H=(m*S*(t2-t1))+(m*L)//total heat required to melt Al in kcal
i=5//input to furnace in kW
E=i*(1000*10*60)//Energy input to furnace in watt-sec
E1=E/4180//energy input in kcal
e=H*100/E1//efficiency of furnace
printf('Thus the efficiency of furnace is %2.3f percent',e)
|
fee1ee768a0b8ac628841e438b90ec2825e85665
|
c87a44be475d3008f7d0fcb8dd2eac3b2fa78e94
|
/Examples/Chapter_7/Example_7_10.sce
|
97ab0adb46cb7b0c5b013488aef7a9f31e42abab
|
[] |
no_license
|
Echeban/icmd3e
|
6c766ffafab0137a64de46448879d8a9eed2903c
|
6ca0273e322fa390fcabc66669f3f56c9af5a563
|
refs/heads/master
| 2020-03-27T09:08:47.798549
| 2018-08-27T15:45:44
| 2018-08-27T15:45:44
| 146,316,991
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 847
|
sce
|
Example_7_10.sce
|
// Example 7.10: [45/0/90/-45]_S, truncated max. strain
mode(0); funcprot(0); clc; clear;
exec('C:\Users\EJB\OneDrive\Scilab\CLT.sci');// see Appendix CLT.sci
E1 = 126E3; E2 = 11E3; G12 = 6.6E3; //MPa, AS4/3501-6
v12 = 0.28; tt = 0.8; tk = 0.125; //mm
F1t = 1950; F1c = 1480; F2t = 48; F2c = 200; F6 = 79;//MPa
orientation=[45,0,90,-45,-45,90,0,45];
thickness=[1,1,1,1,1,1,1,1]*tk;
N = [0;0;1] //change sign here to reverse the load
Q = buildQ(E1,E2,G12,v12);
A = buildABD(Q,thickness,orientation);
eps_ = A\N
n=length(orientation);
for k=1:n/2
eps(:,k) = rotateEps_(eps_,orientation(k)); // laminate -> lamina
end
eps*1E6
eps1 = eps(1,1), eps2 = eps(2,1), //largest values of normal strain
e1t = F1t/E1, e1c=F1c/E1, // calculated failure strains
R1 = e1c/eps1
R6 = (1+v12)*max(e1t,e1c)/abs(eps1-eps2)
R = min(R1,R6)
|
7f565a5d8c6e64795c03b8fad32605f74b2ffa0e
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2858/CH11/EX11.12/Ex11_12.sce
|
5df566ad197db4451d0a1526c61d480dc31dff2a
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 608
|
sce
|
Ex11_12.sce
|
//example 11.12
clc; funcprot(0);
z1=21/2;
Lg=9;
Bg=6;
Qg=500*1000;
Cc1=0.3;
Cc2=0.2;
Cc3=0.25;
H2=12;
H3=6;
H1=21;
e1=0.82;
e2=0.7;
e3=0.75;
s1=Qg/(Lg+z1)/(Bg+z1); //sigma1
s2=500*1000/(9+27)/(6+27);//sigma2
s3=500*1000/(9+36)/(6+36);//sigma3
ss1=6*105+(27+21/2)*(115-62.4);//sigmadash1
ss2=6*105+(27+21)*(115-62.4)+(120-62.4)*6;//sigmadash2
ss3=6*105+48*(115-62.4)+12*(120-62.4)+3*(122-62.4);//sigmadash3
sc1=Cc1*H1/(1+e1)*log10((ss1+s1)/ss1);
sc2=Cc2*H2/(1+e2)*log10((ss2+s2)/ss2);
sc3=Cc3*H3/(1+e3)*log10((ss3+s3)/ss3);
sc=sc1+sc2+sc3;
disp(sc*12,"total settlement in inch");
|
f9cbef8b3d1554fbd17c5c166255263d4e99d7e3
|
04ebc1029c20752e734a1d83b49a31329d5283fd
|
/trust_game_2/frame5.sce
|
bd9b3c750c3c427f9cf482a84c43f739234c02d7
|
[] |
no_license
|
jangwoopark/presentation-trust
|
a1293e481da417c914534a30b1969f092f08e115
|
31621ef8b534bca19d4b9d4a5d57792ff8bb058d
|
refs/heads/master
| 2020-06-27T14:50:42.294466
| 2017-09-12T01:51:08
| 2017-09-12T01:51:08
| 97,063,115
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 3,008
|
sce
|
frame5.sce
|
scenario = "frame";
scenario_type = fMRI_emulation;
#scenario_type = fMRI;
scan_period = 3000;
response_matching = simple_matching;
no_logfile = false;
sequence_interrupt=false; #default
active_buttons = 2;
button_codes=0,1;
default_font="arial";
default_font_size=30;
default_text_color=255,255,255;
default_background_color=0,0,0;
begin;
text { caption = "+"; font_size = 12; } cross;
text { caption = "SELECT
AMOUNT
FROM"; } select;
text { caption = "10"; } dollar;
text { caption = "SENDING:"; } sending;
text { caption = "KEEPING:"; } keeping;
text { caption = "_"; } dollar_2;
text { caption = "_"; } dollar_3;
box { height = 486; width = 2; color = 255,255,255; } vert;
box { height = 2; width = 142; color = 255,255,255; } horiz;
box { height = 2; width = 4; color = 255,255,255; } divide;
box { height = 42; width = 140; color = 0,0,0; } zero;
array { LOOP $i 10; $k = '$i+1'; box {height = 42; width = 140; color = 0,0,0;} "red10_$k"; ENDLOOP; } rex;
picture { text cross; x = 0; y = 0;
LOOP $i 10; $k = '$i+1';
box "red10_$k" ; x=0; y='-198+$i*44';
ENDLOOP;
text select; x = -250; y = 0;
text dollar; x = -250; y = -100;
text sending; x = 250; y = 23;
text dollar_2; x = 400; y = 23;
text keeping; x = 250; y = -23;
text dollar_3; x = 400; y = -23;
box zero; x=0; y=-242;
box vert; x=70; y=-22;
box vert; x=-70; y=-22;
box horiz; x=0; y=220;
box horiz; x=0; y=-264;
LOOP $i 11;
box divide; x=68; y='220-$i*44';
box divide; x=-68; y='220-$i*44';
ENDLOOP;
} cursor10;
begin_pcl;
mouse stick = response_manager.get_mouse( 1 );
#joystick stick = response_manager.get_joystick( 1 );
stick.set_min_max( 1, -1, 1 );
stick.set_min_max( 2, -264, 220 );
#stick.set_saturation( 1, 0.999 );
#stick.set_saturation( 2, 0.999 );
#stick.set_dead_zone( 1, 0.001 );
#stick.set_dead_zone( 2, 0.001 );
loop int count = response_manager.total_response_count( 1 )
until response_manager.total_response_count( 1 ) > count
begin
array <int> seq10[10] = {-220, -176, -132, -88, -44, 0, 44, 88, 132, 176};
array <string> num[10] = {"$1", "$2", "$3","$4","$5","$6","$7","$8","$9","$10"};
array <string> mun[10] = {"$9", "$8", "$7","$6","$5","$4","$3","$2","$1","$0"};
stick.poll();
cursor10.set_part_x( 1, stick.x() );
cursor10.set_part_y( 1, stick.y() );
if (stick.y()==-264) then zero.set_color(0,0,0); dollar_2.set_caption("_"); dollar_2.redraw();
dollar_3.set_caption("_"); dollar_3.redraw();
end;
if (stick.y()>-264)
then zero.set_color(0,255,0);
dollar_2.set_caption("$0"); dollar_2.redraw();
dollar_3.set_caption("$10"); dollar_3.redraw();
elseif (stick.y()<-264) then zero.set_color(0,0,0);
end;
loop int t=1 until t>10 begin
if (stick.y()>seq10[t])
then rex[t].set_color(255,0,0);
dollar_2.set_caption(num[t]); dollar_2.redraw();
dollar_3.set_caption(mun[t]); dollar_3.redraw();
elseif (stick.y()<seq10[t])
then rex[t].set_color(0,0,0);
end;
t = t + 1;
end;
cursor10.present();
end;
|
2f32577636b647b9cee37d44d6370b25341f42db
|
08ee8059476493a308f8e13adcbace48d7bcfc92
|
/Scilab_packetTracer_codes/FSK_rkb.sce
|
fa8a7e303db9eb9691bc4aa43c58ac4b8889afa8
|
[] |
no_license
|
Rushi-Bhatt/Self-Study
|
7ed44b7821154b7906c7d532255ea648ec9d6299
|
90cc75440328ba21769ffac878f46feadeb2f06f
|
refs/heads/master
| 2021-01-11T15:29:31.739065
| 2017-02-08T22:17:57
| 2017-02-08T22:17:57
| 80,360,471
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 201
|
sce
|
FSK_rkb.sce
|
m=[0 1 0 1 0 0 1 0 0]
e1=1
e2=3
fsk=[]
n=0:0.001:1
for i=1:length(m)
if m(i)==0 then
fsk=[fsk 1*sin(2*%pi*e1*n)]
else
fsk=[fsk 1*sin(2*%pi*e2*n)]
end
end
plot(fsk);
xgrid(4)
|
6207415da4cbe2e37f440222e7ead6d9eabe8a41
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2858/CH11/EX11.11/Ex11_11.sce
|
27f2ba4cabe3366470039cceb4d79348c1a258b8
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 373
|
sce
|
Ex11_11.sce
|
//example 11.11
clc; funcprot(0);
Lg=9.92;
Bg=7;
n1=3;
Nc=8.75;
n2=4/1000;
Ap=14^2/12^2;
cup=1775;
a1=0.4;//alpha1
p=4*14/12;
cu1=1050;
L1=15;
a2=0.54;//alpha2
cu2=1775;
L2=45;
FS=4;
Qu=n1*n2*(9*Ap*cup+a1*p*cu1*L1+a2*p*cu2*L2);
Qu2=Lg*Bg*cup*Nc+2*(Lg+Bg)*(cu1*L1+cu2*L2);
disp(Qu2/1000,"load in kip")
Qall=Qu/FS;
disp(Qall,"allowed load in kip");
|
bc49d7df43e290915419a480185e305c0ce4e4c7
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1427/CH18/EX18.25/18_25.sce
|
9c74e2157d048b984ee8d2ce4b4077c566fd2908
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 360
|
sce
|
18_25.sce
|
//ques-18.25
//Calculating pressure at which water must be heated to produce superheated steam
clc
Hv=540;//latent heat of vapourization (in cal/g)
T1=273+100; T2=273+150;//temperature (in K)
P1=1;//in atm
R=1.987;//cal/mol/K
//On solving, log(P2/P1) = (Hv*(T2-T1))/(2.303*R*T1*T2)
P2=P1*4.709
printf("The required vapour pressure is %.3f atm.",P2);
|
eec52c30e98e228b35188d52e29e8d42f56f7dc7
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2294/CH1/EX1.17/EX1_17.sce
|
806bf7ff61bca0917e05beb65dd4825c7b17e287
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,006
|
sce
|
EX1_17.sce
|
//Example 1.17<i>
//Determine the power and the rms value of the signal
clc;
t=0:0.001:10;
y=5*cos(50*t+%pi/3);
P=(integrate('5^2*(cos(50*t))^2','t',0,2*%pi))/(2*%pi);
rmsvalue=sqrt(P);
disp(P,'The power of the given signal is:');
disp(rmsvalue,'the rms value is:');
//Example 1.17<ii>
//Determine the power amd rms value of the signal
clc;
t=0:0.001:10;
x1=10*sin(50*t+%pi/4);
x2=16*cos(100*t+%pi/3);
P1=(integrate('10^2*(sin(50*t))^2','t',0,2*%pi))/(2*%pi);
P2=(integrate('16^2*(cos(100*t))^2','t',0,2*%pi))/(2*%pi);
P=P1+P2;
rmsvalue=sqrt(P);
disp(P,'The power of the given signal is:');
disp(rmsvalue,'the rms value is:');
//Example 1.17 <iii>
//Determine the power and rms value of the signal
clc;
t=0:0.001:10;
x1=5*cos(15*t);
x2=5*cos(5*t);
P1=(integrate('5^2*(cos(15*t))^2','t',0,2*%pi))/(2*%pi);
P2=(integrate('5^2*(cos(5*t))^2','t',0,2*%pi))/(2*%pi);
P=P1+P2;
rmsvalue=sqrt(P);
disp(P,'The power of the given signal is:');
disp(rmsvalue,'the rms value is:');
|
cbf2f6e44bacc0869c556a3cbe493275e753af06
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/479/CH15/EX15.1/Example_15_1.sce
|
d0704423f76a5cf83bcf61fd68a9a823446ae00a
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 754
|
sce
|
Example_15_1.sce
|
//Chemical Engineering Thermodynamics
//Chapter 15
//Fuel Cells
//Example 15.1
clear;
clc;
//Given
del_F = -56.29;//Standard free energy change in Kcal/Kgmole
del_H = -68.317;//Standard heat of reaction in Kcal/kgmole
F = 23.06;//Electro-chemical equivalent in Kcal/volt
J = 2;//Valance for H2
//To Calculate the emf of the cell, cell efficiency and heat to be removed to maintain isothermal conditions
//Basis: 1 Kgmole of H2
//From equation 15.4 (page no 355)
E = -del_F/(F*J);
mprintf('1.The emf of the cell is %f volt.',E);
n = del_F/del_H*100;
mprintf('\n 2.The cell efficiency is %f percent.',n);
Q = del_H-del_F;
mprintf('\n 3.The heat to be removed is %f Kcal to maintain the temperature at 25 degree celsius.',Q);
//end
|
6e2291fdf8d5e3cfcf7be3ce2ddbbb4a4d6e2fe7
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2159/CH1/EX1.9/9.sce
|
b4dac5b031c905095def0843f07f98247dc3c7a9
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 169
|
sce
|
9.sce
|
//problem 1.9
s1=1.6
s2=0.8
s3=13.6
p1=98100
p2=176580
w=9810
h1=p1/w
h2=p2/w
h=(h2-h1+1.6*s2-4.1*s1)/(s3-s2)
disp(h.*100 ,"difference in mercury level(cm)")
|
473926e72cf62aa914d703a9cd5c5d31038b3671
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/978/CH4/EX4.12/Example4_12.sce
|
54a02bd3141c0b28672ca2e9bc68f101d7cea0a8
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 154
|
sce
|
Example4_12.sce
|
//chapter-4,Example4_12,pg 491
printf("normal count would be 2^3=8, while 5-modulo counter would limit it to 5, so that illegitimate states are 8-5=3")
|
f960c7354d2c5c162f0cca6c2bc03f8cace40281
|
b2675f983fedb79e5e6f1940962373bda0570ec4
|
/testing/Tests/testing1.tst
|
67195c6bbe30225d3f9dd9489403f9913cbcaf49
|
[] |
no_license
|
Meena92/Projects
|
b854c40b91515bb429c9e13fb0cbc95c03e0a9d6
|
06361e24bf51883ff4140db5c37c3f40836a5752
|
refs/heads/master
| 2020-03-29T01:45:03.726432
| 2019-06-11T05:26:08
| 2019-06-11T05:26:08
| 149,404,524
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 2,917
|
tst
|
testing1.tst
|
<?xml version="1.0" ?>
<TestCase name="testing1" version="5">
<meta>
<create version="10.0.0" buildNumber="10.0.0.431" author="admin" date="03/22/2018" host="inbasdpc10722" />
<lastEdited version="10.0.0" buildNumber="10.0.0.431" author="admin" date="03/22/2018" host="inbasdpc10722" />
</meta>
<id>A7E1B70E2C0B11E8BD16D8CB8A8AB1DA</id>
<Documentation>Put documentation of the Test Case here.</Documentation>
<IsInProject>true</IsInProject>
<sig>ZWQ9NSZ0Y3Y9LTEmbGlzYXY9MTAuMC4wICgxMC4wLjAuNDMxKSZub2Rlcz0tNzIzOTUzOTU5</sig>
<subprocess>false</subprocess>
<initState>
</initState>
<resultState>
</resultState>
<Node name="http POST /api/Accounts/Dna/" log=""
type="com.itko.lisa.ws.rest.RESTNode"
version="3"
uid="AB11E8F52C0B11E8BD16D8CB8A8AB1DA"
think="500-1S"
useFilters="true"
quiet="false"
next="end" >
<!-- Filters -->
<Filter type="com.itko.lisa.test.FilterGetHTTPHeader">
<valueToFilterKey>lisa.http POST /api/Accounts/Dna/.rsp</valueToFilterKey>
<headerKey>authorization</headerKey>
<prop>Auth</prop>
</Filter>
<url>http://localhost:9209/api/Accounts/Dna/</url>
<content>{"ClientPlatform":{"Identifier":"iOS","ConnectionType":"LAN","FormFactor":"Phone","Version":"9.3.2","Channel":"CustomerMobile10","ClientSWVersion":"0.1.53.0006","Model":"iPhone7,2","IpAddress":"0.0.0.0","UUID":"7CFF33F8-BA01-4767-8978-390540CFEA77"},"Uri":"/api/Accounts/Dna"}</content>
<content-type></content-type>
<data-type>text</data-type>
<header field="HTTP-Version" value="HTTP/1.1" />
<header field="content-type" value="application/json" />
<header field="authorization" value="Basic MC4wLjAuMDptb2JpbGVfZGVtbzFAbDMuY29tOkFiYzEyMzQ1Njc4" />
<httpMethod>POST</httpMethod>
<onError>abort</onError>
<encode-test-props-in-url>true</encode-test-props-in-url>
</Node>
<Node name="end" log=""
type="com.itko.lisa.test.NormalEnd"
version="1"
uid="A7E1B7142C0B11E8BD16D8CB8A8AB1DA"
think="0h"
useFilters="true"
quiet="true"
next="fail" >
</Node>
<Node name="fail" log=""
type="com.itko.lisa.test.Abend"
version="1"
uid="A7E1B7122C0B11E8BD16D8CB8A8AB1DA"
think="0h"
useFilters="true"
quiet="true"
next="abort" >
</Node>
<Node name="abort" log=""
type="com.itko.lisa.test.AbortStep"
version="1"
uid="A7E1B7102C0B11E8BD16D8CB8A8AB1DA"
think="0h"
useFilters="true"
quiet="true"
next="" >
</Node>
</TestCase>
|
96f71da39b85b070961877895613fe56fb389f75
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1673/CH3/EX3.14/3_14.sce
|
abc816f29ed171682fd3d1c870a35a061ab6a8bc
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 310
|
sce
|
3_14.sce
|
//example 3.14
//lagrange's interpolation formula
//page 105
clc;clear;close;
y=[4 12 19];
x=[1 3 4];
y_x=7;
Y_X=0;
poly(0,'y');
for i=1:3
p=x(i);
for j=1:3
if i~=j then
p=p*((y_x-y(j) )/( y(i)-y(j)))
end
end
Y_X=Y_X+p;
end
disp(Y_X,'Y_X=');
|
414f12844395a694d84bd213c60cf59b8b31c209
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2774/CH9/EX9.10/Ex9_10.sce
|
ae1cc57c04ae1f2240c938dae8955547439c8f78
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 2,495
|
sce
|
Ex9_10.sce
|
clc
// initialization of variables
// The reaction equation for theoritical air is
//C3H8 + 5(O2 + 3.76N2) ---> 3CO2 + 4H2O + 18.8N2
// for 250% theoritical air reaction becomes
//C3H8 + 12.5(O2 + 3.76N2) ---> 3CO2 + 4H2O + 47N2 + 7.5O2
// All the enthalpy of formation values are taken from Table B.5 with units in kJ/mol
Np=47+7.5+4+3 // number of moles of product
hfCO2=-393520 // enthalpy of formation associated with CO2
hbarCO2=(62963+65271)/2 //enthalpy associated with CO2 at 1380 K from table E.4
hbarCO2dash=(58381+60666)/2 //enthalpy associated with CO2 at 1300 K by average from table E.4
hdotbarCO2=9364//enthalpy associated with CO2 at 298K from table E.4
hfC3H8=-103850// ehthalpy of formation associated with C3H8
hfH2O=-241820 // enthalpy of formation associated with gaseous H2O
hbarH2O=(51521+53351)/2 //enthalpy associated with H20 at 1380 K by taking average from table E.6
hbarH2Odash=48807 //enthalpy associated with H20 at 1300 K from table E.6
hdotbarH2O=9904//enthalpy associated with H20 at 298K from table E.6
hbarN2=42920 //enthalpy associated with N2 at 1380K from table E.2 by interpolating enthalpy between 1020K and 980K
hbarN2dash=40170 //enthalpy associated with N2 at 1300 K from table E.2
hdotbarN2=8669//enthalpy associated with N2 at 298K from table E.2
hfO2=(44198+45648)/2 // enthalpy associated with O2 at 1380 Kby taking average from table E.3
hfO2dash=48807 // enthalpy associated with O2 at 1380 Kby taking average from table E.3
hdotbarO2=8682//enthalpy associated with O2 at 298K table E.3
// for adiabatic flame temperature first assume products composed only of nitrogen and Q=0 as adiabatic
hp=(hfC3H8-3*(hfCO2)-4*(hfH2O))/Np +hdotbarN2
// using hp we assume temp=1380 K
// then energy for 1380 k is
H1=3*(hfCO2+hbarCO2-hdotbarCO2)+4*(hfH2O+hbarH2O-hdotbarH2O)+7.5*(hfO2-hdotbarO2)+47*(hbarN2-hdotbarN2) // energy assuming temperature to be 1380 K
//this is very large
// now at 1300 K adiabatic temperature
H2=3*(hfCO2+hbarCO2dash-hdotbarCO2)+4*(hfH2O+hbarH2Odash-hdotbarH2O)+7.5*(hfO2dash-hdotbarO2)+47*(hbarN2dash-hdotbarN2) // energy assuming temperature to be 1300 K
// now interpolation between these two temperatures
Tp=1300-((hp+H2)/(H1-H2))*(1380-1300) // adiabatic temperature by interpolation
printf("The adiabatic flame temperature is %i K",Tp)
//The answers is different in textbook as they hav printed the value of hfCO2 with positive sign while calculating H2
|
8873dc343a8382168ca6d988ba37f63194c63112
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3802/CH8/EX8.7/Ex8_7.sce
|
755ee06095c70897821948c4edbef8187ca270ee
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 837
|
sce
|
Ex8_7.sce
|
//Book Name:Fundamentals of Electrical Engineering
//Author:Rajendra Prasad
//Publisher: PHI Learning Private Limited
//Edition:Third ,2014
//Ex8_7.sce.
clc;
clear;
P=300e3;
V=500;
a=8;
p=4;
Z=786;
theta=5;
I=P/V;
armature_AT=(1/2)*(I/a)*(Z/(2*p)); //Total AT per pole
demagnetizing_AT=armature_AT*(4*theta/360); //demagnetizing AT per pole
distorting_AT=armature_AT-demagnetizing_AT; //distorting AT per pole
printf("\n Demagnetizing AT per pole=%d AT/pole \n",demagnetizing_AT)
printf("\n Cross AT per pole=%4.0f AT/pole \n",distorting_AT)
//There is a error in the substitution of number of conductors (Z) in the book
//In the question Z=786 but problem is solved by substituting Z=768
//But I make the codes with the given data that is Z=786
//So the book answer vary
|
dc3dbd78183c61dd209a83e350c0b7e109045a8f
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/876/CH2/EX2.5/Ex2_5t.txt
|
7b15877e5ae6580e51e84ddd8a8ef1a9fede7f38
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 308
|
txt
|
Ex2_5t.txt
|
//caption:Find magnitude of limiting error fot R1 and R2
//Ex2.5
clc
clear
close
R1=36//resistance(in ohm)
R2=75//resistance(in ohm)
er=0.005//limiting error(in ohm)
dR1=R1*er
disp(dR1,'magnitude of limiting error for R1(in ohm)=')
dR2=R2*er
disp(dR2,'magnitude of limiting error for R2(in ohm)=')
|
0bad52df1100bc4031cdc27d80900c46b4bf80b4
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1118/CH16/EX16.2/eg16_2.sce
|
6002dcc048d4e4b9c15a78d294fadd26cd7e759a
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,306
|
sce
|
eg16_2.sce
|
clear;
//clc();
x2d=(%i)*0.3;
xl1=(%i)*0.08;
xline=(%i)*0.55;
xl2=(%i)*0.08;
ig=0.75;
z2t=x2d +xl1 +xline + xl2;
er=1;
eint=er+ig*z2t;
e2int=sqrt(real(eint)^2 + imag(eint)^2);
x2gf=imag(x2d + xl1);
i2d=e2int/x2gf;
x2bf=imag(xl1 +xline);
i2df=er/x2bf;
tot_i2d=i2d +i2df;
printf("The total subtransient short circuit current is:%.3f pu\n",tot_i2d);
//calculation of effect of maximum dc component offset
i2g=sqrt(2)*i2d;
i2f=sqrt(2)*i2df;
tot_i=i2g+i2f;
max_sc=sqrt(tot_i2d^2+tot_i^2);
sb=50;
vlb=138*10^(3);
ilb=sb/(sqrt(3)*vlb*(10^(-6)));
isc=ilb*max_sc;
//caculation of prefault voltage behind transient reactance
x1d=(%i)*0.35;
z1t=x1d+xl1+xline+xl2;
eint1=er+ig*z1t;
e1int=sqrt(real(eint1)^2 + imag(eint1)^2);
x1gf=imag(x1d + xl1);
i1d=e1int/x1gf;
x1bf=imag(xl1 +xline);
i1df=er/x1bf;
tot_i1d=i1d +i1df;
printf("The total transient short circuit current is:%.3f pu\n",tot_i1d);
isc1=ilb*tot_i1d;
//calculation of prefault voltage behind synchronous reactance
xd=(%i)*1.25;
zt=xd+xl1+xline+xl2;
eint3=er+ig*zt;
e3int=sqrt(real(eint3)^2 + imag(eint3)^2);
x3gf=imag(xd + xl1);
i3d=e3int/x3gf;
x3bf=imag(xl1 +xline);
i3df=er/x3bf;
tot_i3d=i3d +i3df;
printf("The total synchronous short circuit current is:%.3f pu\n",tot_i3d);
|
eb5349b59938cb84c81cf35a278eb829d4397a8e
|
9224090b07cb3f466fe72819cf90ca0c4dedc901
|
/Exercise 21/Exercise 21.sce
|
19663331434c00ef6c325a8e75744c8c9bf335fc
|
[] |
no_license
|
MGYBY/advanced_ocean_modelling
|
8c383b09f4077174559bd7964062625012026fa0
|
848f0f4d616d472021c31582b64557f04067ce74
|
refs/heads/main
| 2023-07-14T14:37:57.714203
| 2021-08-20T20:13:49
| 2021-08-20T20:13:49
| 398,386,684
| 4
| 1
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 2,799
|
sce
|
Exercise 21.sce
|
//===========================================
// Exercise 21: Eddy formation in a Strait
//===========================================
// Animation of Eulerian concentration & surface flow fields
// Author: Jochen Kaempf, March 2015 (update)
f = gcf(); f.color_map = jetcolormap(64); f.figure_size = [1000,500]; scf(0);
// manipulate color map to make the dark red a bit lighter
map = jetcolormap(64);
ic = 57; for i = ic+1:64; map(i,1:3) = map(ic,1:3); end;
f.color_map = map;
// read input data
c1=read("cS.dat",-1,100); u1=read("uS.dat",-1,100); v1=read("vS.dat",-1,100);
[ntot nx] = size(c1); x = (1.8:3.6:100*3.6-1.8)'; y = (1.8:3.6:50*3.6-1.8)';
ntot = int(ntot/50)
for n = 1:ntot // animation loop
time = (n-1)*3; // time in hours
nn = n-1;
// grab data blocks
itop = (n-1)*50+1; ibot = itop+49;
cS = c1(itop:ibot,1:100)'; uS = u1(itop:ibot,1:100); vS = v1(itop:ibot,1:100);
// interpolation of velocity components onto scalar grid points
um = uS; vm = vS;
for j = 1:50; for k = 2:100; um(j,k) = 0.5*(uS(j,k)+uS(j,k-1)); end; end;
for j = 1:50; um(j,1) = um(j,2); end;
for j = 2:50; for k = 1:100; vm(j,k) = 0.5*(vS(j,k)+vS(j-1,k)); end; end;
for k = 1:100; vm(1,k) = vm(2,k);end;
// elimination of grid points of small speeds
for j = 1:50; for k = 1:100;
speed(j,k) = sqrt(um(j,k)*um(j,k)+vm(j,k)*vm(j,k));
if speed(j,k) < 0.01; um(j,k) = 0.0; vm(j,k) = 0.0; end;
end; end;
drawlater; clf;
// 2d colour plot of concentration field
Sgrayplot(x,y,cS,zminmax=[0,0.5]);
// overlay concentration contours
xset("fpf"," "); col(1:11) = 80;
contour2d(x,y,cS,11,col);
ua = um(1:2:50,1:2:100); va = um(1:2:50,1:2:100);
// overlay flow arrows
champ(x(1:2:100),y(1:2:50),ua',va',1);
// specify graph & axis properties
a = gca(); a.font_size = 3; a.data_bounds = [0,0;360,180];
a.auto_ticks = ["off","off","on"]; a.sub_ticks = [1,1];
a.x_ticks = tlist(["ticks", "locations","labels"],..
[0 60 120 180 240 300 360], ["0" "60" "120" "180" "240" "300" "360"]);
a.y_ticks = tlist(["ticks", "locations","labels"],..
[0 60 120 180], ["0" "60" "120" "180"]);
xset("color",-1)
xfrect(72,28,288,27);
xfrect(0,180,33,108);
title("Time = "+string(0.01*int(100*time/24))+" days","fontsize",4,'position',[180 180]); // add title
xstring(135,2,"x (m)"); // add x label
txt=gce(); txt.font_size = 4; txt.font_foreground = -1;
xstring(1,100,"y (cm)"); // add z label
txt=gce(); txt.font_size = 4; txt.font_foreground = -1;
drawnow;
// save frames as sequential GIF files (optional)
//if nn < 10 then
// xs2gif(0,'ex100'+string(nn)+'.gif')
//else
// if nn < 100 then
// xs2gif(0,'ex10'+string(nn)+'.gif')
//else
// xs2gif(0,'ex1'+string(nn)+'.gif')
// end
//end
end // end reference for animation loop
|
805a2c90381ee75d9bcef854e20dff7d2fcbb434
|
99b4e2e61348ee847a78faf6eee6d345fde36028
|
/Toolbox Test/rcosdesign/rcosdesign11.sce
|
07ec422b8f83be592e65e936d5a7a6ec582af8eb
|
[] |
no_license
|
deecube/fosseetesting
|
ce66f691121021fa2f3474497397cded9d57658c
|
e353f1c03b0c0ef43abf44873e5e477b6adb6c7e
|
refs/heads/master
| 2021-01-20T11:34:43.535019
| 2016-09-27T05:12:48
| 2016-09-27T05:12:48
| 59,456,386
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 321
|
sce
|
rcosdesign11.sce
|
//check o/p when i/p arg sps is of type char
beta=0.3;
span=3;
sps='a';
h=rcosdesign(beta,span,sps);
//output
// !--error 10000
//input variable should be of type double
//at line 10 of function checkIpValidity called by :
//at line 34 of function rcosdesign called by :
//h=rcosdesign(beta,span,sps);
//
|
44913326e961e5aaddb7fd5d6cfd888bd4cac833
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/149/CH34/EX34.23/ex23.sce
|
b51bc59fd51fdc73e9db7e6cb1aba041af0b3612
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 168
|
sce
|
ex23.sce
|
clear
clc
disp('probability of problem not getting solved=1/2*2/3*3/4=')
1/2*2/3*3/4
disp('probability of problem getting solved=1-(1/2*2/3*3/4)=')
1-(1/2*2/3*3/4)
|
5d356d19c438b4164c1f7ce2e63a05d6b90f6d3e
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1862/CH2/EX2.6/C2P6.sce
|
7b71a8241704cb0001cd1fd0e492f25c9b18c2b5
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 2,717
|
sce
|
C2P6.sce
|
clear
clc
//to find average velocity for interval AD and DF
//to find slope of position curve at the points B and F and compare it with the value in velocity curve
//to find average acceleration in the interval AD and AF
//to find slope of velocity curve at the points D and compare it with the value in acceleration curve
// GIVEN::
//distance travelling by the point D has come
xD = 5.0//in m
//distance travelling by the point A has come
xA = 1.0//in m
//distance travelling by the point F has come
xF = 1.4//in m
//time elapsed by the point D has come
tD = 2.5//in seconds
//time elapsed by the point A has come
tA = 0.0//in seconds
//time elapsed by the point F has come
tF = 4.0//in seconds
//velocity at point D
vD = 0.0//in m/s
//velocity at point A
vA = 4.0//in m/s
//velocity at point F
vF = -6.2//in m/s
// SOLUTION:
//average velocity for the interval AD
//applying kinematic equations
Vav_x = (xD-xA)/(tD-tA)
//average velocity for the interval DF
//applying kinematic equations
Vavx = (xF-xD)/(tF-tD)
//slope of position curve at the point B
slope_B = (4.5-2.8)/(1.5-0.5)//refer to the graph 2.6(b) given in the book on page no. 25
//slope of position curve at the point F
slope_F = (1.4-4.5)/(4.0-3.5)//refer to the graph 2.6(b) given in the book on page no. 25
//average acceleration in the interval AD
//applying kinematic equations
Aav_x = (vD-vA)/(tD-tA)//in m/s^2
//average acceleration in the interval AF
//applying kinematic equations
Aavx = ((vF-vA)/(tF-tA))//in m/s^2
Aavx = nearfloat("pred",-2.6)
//slope of velocity curve at the point D
slope_D = (-0.9-0.9)/(3.0-2.0)//refer to the graph 2.6(c) given in the book on page no. 25
printf ("\n\n Average velocity for the interval AD Vav_x=\n\n %.1f m/s",Vav_x);
printf ("\n\n Average velocity for the interval DF V_avx =\n\n %.1f m/s",Vavx);
printf ("\n\n Slope of position curve at the point B slpoe_B=\n\n %.1f m/s",slope_B);
printf ("\n\n Slope of position curve at the point F =\n\n %.1f m/s",slope_F);
//refer velocity time graph 2.6(c) given in the book on the page no.25
printf ("\n\n From velocity curve value of velocity at point B is \n\n 1.7m/s");
printf ("\n\n From velocity curve value of velocity at point Bis \n\n -6.2m/s");
printf ("\n\n Average acceleration for the interval AD Aav_x =\n\n %.1f m/s^2",Aav_x);
printf ("\n\n Average acceleration for the interval AF Aavx =\n\n %.1f m/s^2",Aavx);
printf ("\n\n Slope of velocity curve at the point D slope_D =\n\n %.1f m/s^2",slope_D);
//refer velocity time graph 2.6(d) given in the book on the page no.25
printf ("\n\n From acceleration curve value of acceleration at point D is \n\n -1.8m/s^2");
|
e41245af3be0e64370a49d7c32bbe1c8ab85ce78
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3204/CH9/EX9.2/Ex9_2.sce
|
dac26bcfac1c7ce485ca62aa386c5fcb5086c202
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 919
|
sce
|
Ex9_2.sce
|
// Initilization of variables
W1=2000 //N (or 2 kN)// load at joint D of the truss
W2=4000 //N (or 4 kN)// load at joint E of the truss
Lac=6 //m // length of the tie
Lab=3 //m
Lbc=3 //m
theta=60 //degree // interior angles of the truss
// Calculations
// Here A is simply supported & B is roller support. Now the SUPPORT REACTIONS are given as,
Rc=((W1*(Lab/2))+(W2*(Lab+(Lbc/2))))/Lac //N // Taking moment at A
Ra=W1+W2-Rc //N // Take sum Fy=0
// Calculations
// Calculating the axial forces in the respective members by METHOD OF SECTION
// A section is drawn passing through member DE such that it cuts the respective member. Now consider the equilibrium of the left hand portion of the truss. The three unknown forces are Fde, Fdb, & Fab
// Take moment about B
Fde=((3*Ra)-(W1*Lab*sind(30)))/(3*cosd(30)) //N // (T)
// Results
clc
printf('The axial force in the member DE (Fde)is %f N \n',Fde)
|
fbaed66d771ea58d51f90e2bfe61c114991b3a57
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1019/CH4/EX4.10/Example_4_10.sce
|
978b688a164e4fcb774242e0d5c416ccd3eee8da
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 469
|
sce
|
Example_4_10.sce
|
//Example 4.10
clear;
clc;
//Given
R=8.314;// gas constant in J K^-1 mol^-1
Cp=2.5*R; //specific heat capacity at constant pressure of the gas in J K^-1 mol^-1
V1=10;//volume of gas in m^3
T1=300; //initial temperature in K
T2=400;//final temperature in K
P=101000;//pressure in N m^-2
//to calculate the entropy change
n=(P*V1*0.001)/(R*T);//moles
delS=n*(Cp*log(T2/T1));//entropy change in J K^-1
mprintf('Change in entropy = %f J K^-1',delS);
//end
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.