blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
6
214
content_id
stringlengths
40
40
detected_licenses
listlengths
0
50
license_type
stringclasses
2 values
repo_name
stringlengths
6
87
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringclasses
15 values
visit_date
timestamp[us]date
2016-08-04 09:00:04
2023-09-05 17:18:33
revision_date
timestamp[us]date
1998-12-11 00:15:10
2023-09-02 05:42:40
committer_date
timestamp[us]date
2005-04-26 09:58:02
2023-09-02 05:42:40
github_id
int64
436k
586M
star_events_count
int64
0
12.3k
fork_events_count
int64
0
6.3k
gha_license_id
stringclasses
7 values
gha_event_created_at
timestamp[us]date
2012-11-16 11:45:07
2023-09-14 20:45:37
gha_created_at
timestamp[us]date
2010-03-22 23:34:58
2023-01-07 03:47:44
gha_language
stringclasses
36 values
src_encoding
stringclasses
17 values
language
stringclasses
1 value
is_vendor
bool
1 class
is_generated
bool
1 class
length_bytes
int64
5
10.4M
extension
stringclasses
15 values
filename
stringlengths
2
96
content
stringlengths
5
10.4M
6f007246eec2a2ce8a9677188db268ddf2fb1d86
449d555969bfd7befe906877abab098c6e63a0e8
/3809/CH8/EX8.6/EX8_6.sce
a250a99c3a268caf365307186ec17b2619bf40bd
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
1,073
sce
EX8_6.sce
//Chapter 8, Example 8.6 clc //Initialisation f1=1000 //frequency in hertz f2=10 //frequency in hertz f3=100 //frequency in hertz f4=20 //frequency in hertz f5=10**6 //frequency in hertz f6=50 //frequency in hertz //Calculation f11=f1*2 //an octave above 1 kHz f22=f2*2*2*2 //three octaves above 10 Hz f33=f3/2 //an octave below 100 Hz f44=f4*10 //a decade above 20 Hz f55=f5/10/10/10 //three decades below 1 MHz f66=f6*10*10 //two decades above 50 Hz //Result printf("(a) an octave above 1 kHz = %d kHz \n",f11/1000) printf("(b) three octaves above 10 Hz = %d Hz \n",f22) printf("(c) an octave below 100 Hz = %d Hz \n",f33) printf("(d) a decade above 20 Hz = %d Hz \n",f44) printf("(e) three decades below 1 MHz = %d kHz \n",f55/1000) printf("(f) two decades above 50 Hz = %d kHz \n",f66)
a9e4959a7e103af2555f20c8400c8bc87c4a0c8a
6fd3f19d2ced950a97cae01eba7080554840efd4
/src/F2D.sci
3daa4a4326c781c7692556065615038f3d5ca864
[]
no_license
marcosamaris/FrFTScilab
6563d281792332354330ea2eb5d18334338e0bfd
8a5cb67873b881714a051336d472271c184a2083
refs/heads/master
2020-12-14T07:32:10.208263
2017-02-02T13:48:43
2017-02-02T13:48:43
68,461,393
0
0
null
null
null
null
UTF-8
Scilab
false
false
315
sci
F2D.sci
function F2D=fracF2D(f2D,ac,ar) [M,N] = size(f2D); F2D = zeros(M,N); if ac == 0 F2D = f2D; else for k = 1:N F2D(:,k) = fracF(f2D(:,k),ac); end; end; F2D = conj(F2D'); if ar ~= 0 for k = 1:M F2D(:,k) = fracF(F2D(:,k),ar); end; end; F2D = conj(F2D'); endfunction
8635f512c96acbd64ca75d1b4eb04014760de213
449d555969bfd7befe906877abab098c6e63a0e8
/98/CH4/EX4.2/example4_2.sce
09f91ece3bca0fb8068575d78732d39272a37cfc
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
167
sce
example4_2.sce
//Chapter 4 //Example 4_2 //Page 74 clear;clc; p=200000; s=10000; n=20; r=0.08; q=(p-s)*r/((1+r)^n-1); printf("Annual payment for sinking fund = Rs. %.0f \n\n", q);
4d47b12e09194ab8c3cfd8304708df530bff41f2
449d555969bfd7befe906877abab098c6e63a0e8
/2438/CH4/EX4.13/Ex4_13.sce
5aec0bce325f5b7e7d6d24cab69f775e3bca05e1
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
420
sce
Ex4_13.sce
//================================================================================== // chapter 4 example 13 clc; clear; //input data Er = 1.000074; //dielectric constant for a gas at 0°C //calculation sighe = Er-1; //result mprintf('dielectric susceptibility=%3.6f\n',sighe); //===================================================================================
bcab5c843153bcb57740e8078a0b8d42f6363109
717ddeb7e700373742c617a95e25a2376565112c
/2474/CH4/EX4.1/Ch04Ex01.sce
a6bd4c90e2adf8949a478e46ff2c95203ba72d6d
[]
no_license
appucrossroads/Scilab-TBC-Uploads
b7ce9a8665d6253926fa8cc0989cda3c0db8e63d
1d1c6f68fe7afb15ea12fd38492ec171491f8ce7
refs/heads/master
2021-01-22T04:15:15.512674
2017-09-19T11:51:56
2017-09-19T11:51:56
92,444,732
0
0
null
2017-05-25T21:09:20
2017-05-25T21:09:19
null
UTF-8
Scilab
false
false
722
sce
Ch04Ex01.sce
// Scilab code Ex4.1: Pg.150 (2008) clc; clear; R_H = 1.096776e+07; // Rydberg constant for Hydrogen, per metre // For Lymann series m = 1; // Integer value n = 2; // Integer value lamda = 1/(R_H*(1/m^2 - 1/n^2)); // Wavelength of Lymann series, m printf("\nThe wavelength of first line of Lymann series = %5.1f nm", lamda*1e+09); // For Paschen series m = 3; // Integer value n = 4; // Integer value lamda = 1/(R_H*(1/m^2 - 1/n^2)); // Wavelength of Paschen series, m printf("\nThe wavelength of first line of Paschen series = %4d nm", lamda*1e+09); // Result // The wavelength of first line of Lymann series = 121.6 nm // The wavelength of first line of Paschen series = 1875 nm
7c796485830af9165997e2e8c412fbef41620555
449d555969bfd7befe906877abab098c6e63a0e8
/1970/CH11/EX11.9/CH11Exa9.sce
fe9bd515980a4dbf3532115e399d600e6079a836
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
931
sce
CH11Exa9.sce
// Scilab code Exa11.9 : : Page-538 (2011) clc; clear; q = 1.6023e-19; // Charge of an electron, C B_0 = 1.5; // Magnetic field at the centre, tesla m_d = 2.014102*1.66e-27; // Mass of the deutron, Kg f_max = B_0*q/(2*%pi*m_d*10^6); // Maximum frequency of the dee voltage, mega cycles per sec B_prime = 1.4310; // Magnetic field at the periphery of the dee, tesla f_prime = 10^7; // Frequency, cycles per sec c = 3e+08; // Velocity of the light, metre per sec M = B_prime*q/(2*%pi*f_prime*1.66e-27); // Relativistic mass, u K_E = (M-m_d/1.66e-27)*931.5; // Kinetic energy of the particle, mega electron volts printf("\nThe maximum frequency of the dee voltage = %5.2f MHz\nThe kinetic energy of the deuteron = %5.1f MeV", f_max, K_E); // Result // The maximum frequency of the dee voltage = 11.44 MHz // The kinetic energy of the deuteron = 171.6 MeV
833b683fb15a0178668589015a2aae9058f04777
449d555969bfd7befe906877abab098c6e63a0e8
/1970/CH15/EX15.1/CH15Exa1.sce
0a58da35143ec6fdcc9d2d48809eceb5649ee8e5
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
1,014
sce
CH15Exa1.sce
// Scilab code Exa15.1 : : Page-652 (2011) clc; clear; N_0_235 = 1; // Number of uranium atom N_0_c = 10^5; // Number of graphite atoms per uranium atom sigma_a_235 = 698; // Absorption cross section for uranium, barns sigma_a_c = 0.003; // Absorption cross section for graphite, barns f = N_0_235*sigma_a_235/(N_0_235*sigma_a_235+N_0_c*sigma_a_c ); // Thermal utilization factor eta = 2.08; // Number of fast fission neutron produced k_inf = eta*f; // Multiplication factor L_m = 0.54; // Material length, metre L_sqr = ((L_m)^2*(1-f)); // diffusion length, metre tau = 0.0364; // Age of the neutron B_sqr = 3.27; // Geometrical buckling k_eff = round (k_inf*exp(-tau*B_sqr)/(1+L_sqr*B_sqr)); // Effective multiplication factor N_lf = k_eff/k_inf; // Non leakage factor lf = (1-N_lf)*100; // Leakage factor, percent printf("\n Total leakage factor = %4.1f percent",lf) // Result // Total leakage factor = 31.3 percent
b1e49ba90c62008be60d470b0cbe8fe92b118b54
99b4e2e61348ee847a78faf6eee6d345fde36028
/Toolbox Test/dutycycle/dutycycle16.sce
203f9e98fbe77a8e77a176455e34c1b03e882afc
[]
no_license
deecube/fosseetesting
ce66f691121021fa2f3474497397cded9d57658c
e353f1c03b0c0ef43abf44873e5e477b6adb6c7e
refs/heads/master
2021-01-20T11:34:43.535019
2016-09-27T05:12:48
2016-09-27T05:12:48
59,456,386
0
0
null
null
null
null
UTF-8
Scilab
false
false
266
sce
dutycycle16.sce
//check o/p when i/p is a char vector x=['a']; [d]=dutycycle(x); //output //!--error 10000 //Input arguments must be double. //at line 56 of function dutycycle called by : //[d]=dutycycle(x); //at line 3 of exec file called by : //cycle16.sce', -1
96d750623f4cc7db667f87696d727d3191b25e21
1b969fbb81566edd3ef2887c98b61d98b380afd4
/Rez/bivariate-lcmsr-post_mi/bfi_c_hrz_col/~BivLCM-SR-bfi_c_hrz_col-PLin-VLin.tst
2a97029c5b818e738051df03849fcd8216634bc3
[]
no_license
psdlab/life-in-time-values-and-personality
35fbf5bbe4edd54b429a934caf289fbb0edfefee
7f6f8e9a6c24f29faa02ee9baffbe8ae556e227e
refs/heads/master
2020-03-24T22:08:27.964205
2019-03-04T17:03:26
2019-03-04T17:03:26
143,070,821
1
0
null
null
null
null
UTF-8
Scilab
false
false
11,974
tst
~BivLCM-SR-bfi_c_hrz_col-PLin-VLin.tst
THE OPTIMIZATION ALGORITHM HAS CHANGED TO THE EM ALGORITHM. ESTIMATED COVARIANCE MATRIX FOR PARAMETER ESTIMATES 1 2 3 4 5 ________ ________ ________ ________ ________ 1 0.302521D+00 2 -0.228828D-02 0.231927D-02 3 0.867130D-01 -0.175586D-02 0.280397D+00 4 -0.148161D-02 0.651643D-03 -0.608576D-02 0.210791D-02 5 -0.662112D-03 0.740211D-04 -0.247782D-02 0.388945D-04 0.356133D-02 6 -0.743049D-05 -0.318520D-04 0.189747D-02 -0.108215D-03 -0.311230D-03 7 -0.984568D-03 0.418317D-04 -0.400134D-03 0.123545D-03 0.234155D-03 8 0.152157D-02 -0.136680D-04 0.178716D-02 -0.256793D-04 0.348332D-03 9 -0.348386D+00 0.118064D-01 -0.168859D-01 0.136083D-01 0.330780D-01 10 -0.151732D+00 -0.136197D-01 -0.191238D+00 -0.274948D-02 0.108107D+00 11 -0.117231D+00 0.111124D-01 -0.152896D+00 0.129633D-01 0.334103D-01 12 -0.202735D+00 0.150245D-01 -0.649808D+00 0.375157D-01 -0.318448D-01 13 0.691149D-01 0.343641D-04 0.469460D-01 -0.910741D-02 0.444267D-01 14 -0.176513D+00 0.481189D-02 -0.299686D+00 0.122318D-01 0.159315D-01 15 -0.229209D+01 -0.282069D-01 -0.549729D+00 -0.998617D-02 -0.112944D+00 16 -0.642513D-01 -0.235087D-02 -0.106391D-01 0.117373D-02 -0.117345D-02 17 0.103299D-01 -0.540547D-03 0.398552D-02 -0.277746D-04 -0.374257D-03 18 -0.810927D+00 -0.277153D-02 -0.539128D+00 -0.141252D-01 -0.787851D-02 19 -0.500867D-01 -0.484154D-02 0.297992D-02 0.691717D-03 0.207149D-02 20 -0.344025D+00 0.195464D-02 -0.263700D+01 0.579620D-01 0.145442D-01 21 0.784389D-02 0.781192D-02 -0.341019D-01 -0.143384D-03 -0.125636D-02 22 0.609444D-02 -0.203430D-03 0.349103D-02 -0.559683D-04 -0.268839D-04 23 -0.871517D-02 -0.461119D-03 0.389951D-01 -0.838652D-02 0.837023D-03 24 0.208621D-02 -0.148251D-03 0.204383D-02 0.144891D-03 0.894493D-04 ESTIMATED COVARIANCE MATRIX FOR PARAMETER ESTIMATES 6 7 8 9 10 ________ ________ ________ ________ ________ 6 0.136018D-02 7 0.847161D-03 0.225812D-02 8 0.506855D-03 0.210277D-03 0.289914D-02 9 0.305218D-02 -0.259326D-01 -0.100357D-01 0.458412D+02 10 0.303807D-01 0.351903D-01 0.149922D-01 0.397557D+01 0.184912D+02 11 -0.116910D-02 -0.170354D-01 -0.573424D-02 0.997419D+01 0.582851D+00 12 -0.298498D-01 -0.282731D-01 -0.256679D-01 0.108665D+02 0.447830D+00 13 0.584415D-01 0.745543D-01 0.263196D-01 -0.153620D+01 0.568939D+01 14 0.364945D-01 0.336638D-01 0.115345D+00 -0.595964D+00 0.436513D+01 15 -0.161038D-01 -0.154088D-01 -0.470419D-01 -0.825212D+01 -0.121058D+02 16 -0.641097D-03 -0.186475D-02 -0.580102D-03 0.802080D+00 -0.166006D+00 17 0.943763D-04 0.174467D-03 0.213410D-03 -0.159992D+00 0.802885D-02 18 -0.661427D-01 -0.772045D-01 -0.725609D-01 -0.125615D+01 -0.299185D+01 19 -0.117593D-01 -0.100406D-02 -0.937919D-02 -0.334167D+00 -0.158681D+00 20 -0.497736D-01 -0.175651D-01 -0.219046D+00 -0.114105D+01 -0.227100D+00 21 0.107960D-01 -0.357377D-02 0.934509D-02 0.866439D+00 -0.263688D+00 22 -0.839399D-05 0.135089D-03 0.206857D-03 -0.662019D-01 0.452480D-01 23 0.106879D-02 -0.256604D-02 -0.503890D-02 0.198074D+00 -0.190072D+00 24 -0.857387D-04 0.239098D-03 0.722373D-03 -0.509105D-01 0.779837D-01 ESTIMATED COVARIANCE MATRIX FOR PARAMETER ESTIMATES 11 12 13 14 15 ________ ________ ________ ________ ________ 11 0.328184D+02 12 0.174289D+02 0.126487D+03 13 -0.856074D+00 -0.171921D+01 0.111945D+02 14 -0.923275D+00 0.503665D+00 0.610589D+01 0.276478D+02 15 -0.475904D+01 -0.293608D+01 -0.566035D+01 0.322356D+00 0.245949D+03 16 0.300857D+00 0.496136D+00 -0.174333D+00 -0.240387D-01 0.191872D+01 17 -0.457161D-01 -0.865934D-02 0.385639D-01 0.102458D-01 -0.105615D+01 18 -0.205841D+01 -0.285016D+01 -0.780989D+01 -0.412530D+01 0.771741D+02 19 0.762720D+00 0.839080D+00 -0.107388D+01 -0.147281D+01 0.104736D+01 20 0.557944D-01 -0.167448D+02 -0.539595D+01 -0.152211D+02 0.347605D+02 21 -0.305660D-01 0.912246D-01 0.781035D+00 0.121142D+01 -0.787577D+00 22 -0.620622D-01 -0.240665D-01 0.384980D-01 0.227975D-01 -0.342050D+00 23 0.255168D+00 0.992347D+00 -0.345811D-01 -0.368354D+00 0.198581D+00 24 -0.514270D-01 -0.121170D+00 0.360679D-01 0.598753D-01 -0.220837D+00 ESTIMATED COVARIANCE MATRIX FOR PARAMETER ESTIMATES 16 17 18 19 20 ________ ________ ________ ________ ________ 16 0.441090D+00 17 -0.201382D-01 0.132171D-01 18 0.474039D-01 -0.400780D+00 0.150161D+03 19 0.171147D+00 -0.159445D-01 0.289465D+01 0.381228D+01 20 -0.388449D-01 -0.195097D+00 0.642065D+02 0.427036D+00 0.238756D+03 21 0.478204D-01 0.135765D-02 -0.675176D+00 -0.330456D+01 0.141620D+00 22 -0.544807D-02 0.432170D-02 -0.723340D+00 -0.267246D-01 -0.335658D+00 23 0.147215D-01 -0.925520D-03 0.215953D+00 0.627064D-01 0.897128D+00 24 -0.639291D-03 0.197054D-02 -0.307343D+00 -0.104482D-02 -0.886559D+00 ESTIMATED COVARIANCE MATRIX FOR PARAMETER ESTIMATES 21 22 23 24 ________ ________ ________ ________ 21 0.366421D+01 22 -0.987802D-02 0.768672D-02 23 0.187268D+00 -0.103848D-01 0.562587D+00 24 -0.194841D-01 0.433608D-02 -0.523832D-01 0.118369D-01 ESTIMATED CORRELATION MATRIX FOR PARAMETER ESTIMATES 1 2 3 4 5 ________ ________ ________ ________ ________ 1 1.000 2 -0.086 1.000 3 0.298 -0.069 1.000 4 -0.059 0.295 -0.250 1.000 5 -0.020 0.026 -0.078 0.014 1.000 6 0.000 -0.018 0.097 -0.064 -0.141 7 -0.038 0.018 -0.016 0.057 0.083 8 0.051 -0.005 0.063 -0.010 0.108 9 -0.094 0.036 -0.005 0.044 0.082 10 -0.064 -0.066 -0.084 -0.014 0.421 11 -0.037 0.040 -0.050 0.049 0.098 12 -0.033 0.028 -0.109 0.073 -0.047 13 0.038 0.000 0.026 -0.059 0.223 14 -0.061 0.019 -0.108 0.051 0.051 15 -0.266 -0.037 -0.066 -0.014 -0.121 16 -0.176 -0.074 -0.030 0.038 -0.030 17 0.163 -0.098 0.065 -0.005 -0.055 18 -0.120 -0.005 -0.083 -0.025 -0.011 19 -0.047 -0.051 0.003 0.008 0.018 20 -0.040 0.003 -0.322 0.082 0.016 21 0.007 0.085 -0.034 -0.002 -0.011 22 0.126 -0.048 0.075 -0.014 -0.005 23 -0.021 -0.013 0.098 -0.244 0.019 24 0.035 -0.028 0.035 0.029 0.014 ESTIMATED CORRELATION MATRIX FOR PARAMETER ESTIMATES 6 7 8 9 10 ________ ________ ________ ________ ________ 6 1.000 7 0.483 1.000 8 0.255 0.082 1.000 9 0.012 -0.081 -0.028 1.000 10 0.192 0.172 0.065 0.137 1.000 11 -0.006 -0.063 -0.019 0.257 0.024 12 -0.072 -0.053 -0.042 0.143 0.009 13 0.474 0.469 0.146 -0.068 0.395 14 0.188 0.135 0.407 -0.017 0.193 15 -0.028 -0.021 -0.056 -0.078 -0.180 16 -0.026 -0.059 -0.016 0.178 -0.058 17 0.022 0.032 0.034 -0.206 0.016 18 -0.146 -0.133 -0.110 -0.015 -0.057 19 -0.163 -0.011 -0.089 -0.025 -0.019 20 -0.087 -0.024 -0.263 -0.011 -0.003 21 0.153 -0.039 0.091 0.067 -0.032 22 -0.003 0.032 0.044 -0.112 0.120 23 0.039 -0.072 -0.125 0.039 -0.059 24 -0.021 0.046 0.123 -0.069 0.167 ESTIMATED CORRELATION MATRIX FOR PARAMETER ESTIMATES 11 12 13 14 15 ________ ________ ________ ________ ________ 11 1.000 12 0.271 1.000 13 -0.045 -0.046 1.000 14 -0.031 0.009 0.347 1.000 15 -0.053 -0.017 -0.108 0.004 1.000 16 0.079 0.066 -0.078 -0.007 0.184 17 -0.069 -0.007 0.100 0.017 -0.586 18 -0.029 -0.021 -0.190 -0.064 0.402 19 0.068 0.038 -0.164 -0.143 0.034 20 0.001 -0.096 -0.104 -0.187 0.143 21 -0.003 0.004 0.122 0.120 -0.026 22 -0.124 -0.024 0.131 0.049 -0.249 23 0.059 0.118 -0.014 -0.093 0.017 24 -0.083 -0.099 0.099 0.105 -0.129 ESTIMATED CORRELATION MATRIX FOR PARAMETER ESTIMATES 16 17 18 19 20 ________ ________ ________ ________ ________ 16 1.000 17 -0.264 1.000 18 0.006 -0.284 1.000 19 0.132 -0.071 0.121 1.000 20 -0.004 -0.110 0.339 0.014 1.000 21 0.038 0.006 -0.029 -0.884 0.005 22 -0.094 0.429 -0.673 -0.156 -0.248 23 0.030 -0.011 0.023 0.043 0.077 24 -0.009 0.158 -0.231 -0.005 -0.527 ESTIMATED CORRELATION MATRIX FOR PARAMETER ESTIMATES 21 22 23 24 ________ ________ ________ ________ 21 1.000 22 -0.059 1.000 23 0.130 -0.158 1.000 24 -0.094 0.455 -0.642 1.000
8467d0852566f6052fd8fcab8f8b1600a5d27700
449d555969bfd7befe906877abab098c6e63a0e8
/2708/CH1/EX1.30/ex_1_30.sce
30f8ad16b4b6bba240653afd41f71cabf0943437
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
325
sce
ex_1_30.sce
//Example 1.30 // velocity of light in medium clc; clear; //given data : d1=.3;// diameter of ring in cm d2=.25;//diameter of ring(in cm) after placing in medium c=3D8;//speed of light in m/s u=(d2/d1)^2;// refractive index of medium v=u*c;// velocity of light in fluid disp(v,"velocity of light in liquid in m/s")
428f07ba671131ba8cc81198513ee05fd245dc34
449d555969bfd7befe906877abab098c6e63a0e8
/2021/CH18/EX18.10/EX18_10.sce
9cf783063235ab5e771df35d8f0829a09b6566cf
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
401
sce
EX18_10.sce
//Finding of Vane Angle ,Head ,Velocity ,Efficiency //Given u=12; D=0.8; D1=1; Vw1=0; Hout=1; Vw=12; Vf=3; g=9.81; //To Find a=atand(Vf/Vw); V=sqrt(Vw^2+Vf^2); u1=(D1/D)*u; V1=u1*tan(%pi/9); H=((V1^2/(2*g))+1)+((Vw*u)/g); E=((Vw*u)/(g*H))*100; disp("Absolute Velocity ="+string(V)+" m/sec"); disp("Vane Angle ="+string(a)+" degrees"); disp("Efficiency ="+string(E)+" Percentage");
803f22e65a930e9b9c06c32d4270353cae6306b1
5368ca7c8260088162c8f20f486cbe81889bd23d
/playground/fir_sofa_ipynb/filters/test/RLS_Algorithm/af_Recursive_least_squares.sci
7b79b78790f38bebc38af68f544721f71570bbb9
[ "MIT" ]
permissive
tetsuzawa/graduation-research
1b71f8d66e3bb0b10b7a16e9662ac7d496ea7fda
e76f820b92b58b35825a8cbb28452b7d351c0a67
refs/heads/master
2020-08-17T11:10:33.716140
2020-02-11T03:38:48
2020-02-11T03:38:48
215,657,014
0
0
null
null
null
null
SHIFT_JIS
Scilab
false
false
1,601
sci
af_Recursive_least_squares.sci
/////////////////////////////////////// //   適応フィルタ(再帰最小二乗法)       //   Adaptive Filter //   Recursive least squares //             //            M.Tsutsui /////////////////////////////////////// clear; funcprot(0); function[y_opt_buf]=RLS(arufa,lambda,update);//arufa:α ,lambda:忘却係数 ,update:更新回数 y_opt_buf=[];//ADF出力バッファ P_ini=1/arufa*eye(size_r2,size_r2);//P初期値 for s_loop=1:1:size_r2;//__サンプル変化 for i=1:1:update;//__係数更新ループ__ gain=(1/lambda*(P_ini*x))/(1+1/lambda*x'*P_ini*x);//ゲインベクトル e=d(1,s_loop)-w_ini'*x;//誤差 サンプルループ w_ini=w_ini+gain*e;//係数更新  P_ini=1/lambda*(eye(size_r2,size_r2)-gain*x')*P_ini;//自己相関行列更新 end//_______________係数更新ループ__ y_opt=w_ini'*x;//ADF出力 1Sample y_opt_buf=[y_opt_buf,y_opt];//ADF出力ベクトル end//_____________サンプル変化___ endfunction d_size=80;//データサイズ d=rand(0:1:d_size);//所望信号 [size_r,size_r2]=size(d);//サイズ更新 w_ini=zeros(size_r2,1);//適応フィルタ初期係数 x=rand(size_r2,1);//フィルタ入力 plot(d); plot(RLS(0.01,0.4,5),'r--'); xgrid(); title('再帰最小二乗法','fontsize',4); legend(['Desired Signal';'RLS']);
fe672092a6ef7e6523b2a26c2c8cecadb0bd3dd8
449d555969bfd7befe906877abab098c6e63a0e8
/3507/CH22/EX22.7/Ex22_7.sce
0d90eb9bda0162edf1c21d2fee7426e7283c748c
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
411
sce
Ex22_7.sce
//chapter22 //example22.7 //page496 I_DSS=5d-3 // A V_DD=20 // V V_DS=10 // V V_P=-2 // V V_G=0 // V I_D=1.5d-3 // A V_GS=V_P*(1-((I_D/I_DSS)^0.5)) // I_D=I_DSS*(1-V_GS/V_P)^2 V_S=V_G-V_GS R_S=V_S/I_D // by Kirchoff's law we get V_DD=I_D*R_D+V_DS+I_D*R_S so making R_D as subject we get R_D=(V_DD-V_DS-I_D*R_S)/I_D printf("Rs = %.3f kilo ohm and Rd = %.3f kilo ohm \n",R_S/1000,R_D/1000)
7950d46a281f116be6754c7e454b6447c8f13635
449d555969bfd7befe906877abab098c6e63a0e8
/1247/CH5/EX5.9/example5_9.sce
97c9166cbe9bd914cc551e558cf84c8e4c21465e
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
451
sce
example5_9.sce
clear; clc; // Stoichiometry // Chapter 5 // Energy Balances // Example 5.9 // Page 220 printf("Example 5.9, Page 220 \n \n"); // solution // (a) T = 305.15 //K Pv1 = 10^(4.0026-(1171.530/(305.15-48.784))) // bar // (b) T = 395.15 Pv2 = 10^(3.559-(643.748/(395.15-198.043))) // bar printf(" (a) \n \n V.P. of n-hexane at 305.15K = "+string(Pv1)+" bar. \n \n \n (b) \n \n V.P. of water at 395.15K = "+string(Pv2)+" bar.")
14e1467455947e55f2a377e408cb4326e9f3f11e
449d555969bfd7befe906877abab098c6e63a0e8
/542/CH16/EX16.2/Example_16_2.sci
4f0f1ba41f38dd4badbf904fc1f8118ee511d057
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
919
sci
Example_16_2.sci
clear; clc; printf("\n Example 16.2"); E = [1 0.64 0.49 0.38 0.295 0.22 0.14]; J = [0 0.1 0.2 0.3 0.5 0.6 0.7]; plot(J,E,rect=[0,1,0,1]); xtitle("Plot for drying data","J = kt/L^2","E"); //For the 10 mm strips mi = (0.28 - 0.07); //Initial free moisture content in kg/kg mf = (0.13-0.07); //Final free moisture content in kg/kg //at t = 25; //time is in ksecs E = (0.06/0.21); //at E = 0.286 ,J = 0.52 from the plot of given data and J = kt/L^2 k = poly([0],'k'); k1 = roots(0.52 - (k*t)/(10/2)^2); printf("\n k = %f",k1); //for the 60 mm planks m1i = (0.22 - 0.07); //Initial free moisture content in kg/kg m1f = (0.13 - 0.07); //Final free moisture content in kg/kg E = (m1f/m1i); //at E = 0.20 from yhe plot of the given data J = 0.63 and J = kt/L^2 t1 = 0.63*(60/2)^(2)/k1; printf("\n t1 = %d ksecs or %.1f days",t1,(t1*1000/(3600*24)));
6b434e68d4caf66c1607d40d61ffcf552c210abe
6813325b126713766d9778d7665c10b5ba67227b
/Chapter7/Ch_7_Eg_7.5.sce
14b1f7ffaeca1373aa162952c4fdeeec940acc53
[]
no_license
arvindrachna/Introduction_to_Scilab
955b2063b3faa33a855d18ac41ed7e0e3ab6bd1f
9ca5d6be99e0536ba1c08a7a1bf4ba64620ec140
refs/heads/master
2020-03-15T19:26:52.964755
2018-05-31T04:49:57
2018-05-31T04:49:57
132,308,878
1
0
null
null
null
null
UTF-8
Scilab
false
false
1,039
sce
Ch_7_Eg_7.5.sce
// A program to find the form of an interpolating polynomial using the Newton’s forward interpolation. // Input // x and y = A set of data points // Output // yp = A polynomial of the form a0+a1 x+a2 x^2+ ...+an x^n function [yp]=ak_Newton_Fwd_Int_poly(x, y) n=length(x); // Prepare forward difference table dt=zeros(n,n); dt(:,1)=y'; for i=2:n for j=1:n-i+1 dt(j,i)=dt(j+1,i-1)-dt(j,i-1); end end // Generate Newton's forward interpolation polynomial X = poly (0, "x"); h = x(2) - x (1) ; p = (X-x (1) ) / h; dely0 = dt (1 ,:); Y = dt(1,1); for i = 2: length (y)-1 t = 1; for j = 1:i-1 t = t * (p-j +1) ; end Y = Y + t* dt(1,i)/ factorial (i-1); end Y = round (Y *10^2) /10^2; //disp (Y); yp=Y; endfunction //Example x = 0:3; y = [1 0 1 10]; [yp] = ak_Newton_Fwd_Int_poly(x,y) disp(yp, "The form of the interpolated polynomial is:");
8da971cc5a8100d2a5071c55e3556f0ab2cab4ba
449d555969bfd7befe906877abab098c6e63a0e8
/2777/CH3/EX3.16/Ex3_16.sce
7286b30852ba600e3d93e46ee9a7f914b7aba73b
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
2,422
sce
Ex3_16.sce
// ELECTRICAL MACHINES // R.K.Srivastava // First Impression 2011 // CENGAGE LEARNING INDIA PVT. LTD // CHAPTER : 3 : TRANSFORMERS // EXAMPLE : 3.16 clear ; clc ; close ; // Clear the work space and console // GIVEN DATA S = 20 * 10 ^ 3; // Rating of the Step-down Transformer in VA f = 50; // Frequency in Hertz V = 200; // Normally supplied Voltage of Step-down Transformer in Volts Vsc = 100; // Potential difference when Secondary being Short- Circuited in Volts Isc = 10; // Primary Current when Secondary being Short- Circuited in Amphere Cos_theta_sc = 0.28; // Power factor when Secondary being Short- Circuited // CALCULATIONS I = S/V; // Rated primary current in Amphere Wsc = Vsc * Isc * Cos_theta_sc; // Power loss when Secondary being Short- Circuited in Watts R = Wsc/(Isc ^ 2); // Resistance of Transformer referred to primary side in Ohms Z = Vsc/Isc; // Referred Impedence in Ohms X = sqrt((Z^2)-(R^2)); // Leakage Reactance referred to primary side in Ohms Er = (I*R)/V; // Per unit Resistance in Ohms Ex = (I*X)/V; // Per unit Reactance in Ohms Cos_theta1 = 1.0; // Unity Power factor Cos_theta2 = 0.6; // 0.6 Power factor Lagging Cos_theta3 = 0.6; // 0.6 Power factor Leading Sin_theta1 = 0.0; // Unity Power factor Sin_theta2 = 0.8; // 0.6 Power factor Lagging Sin_theta3 = 0.8; // 0.6 Power factor Leading E1 = (Er*Cos_theta1)+(Ex*Sin_theta1); // pu Regulation at Unity Power factor E2 = (Er*Cos_theta2)+(Ex*Sin_theta2); // pu Regulation at 0.6 Power factor Lagging E3 = (Er*Cos_theta3)-(Ex*Sin_theta3); // pu Regulation at 0.6 Power factor Leading // DISPLAY RESULTS disp("EXAMPLE : 3.16 : SOLUTION :-") ; printf("\n (a) pu Regulation at Unity Power factor , E = %.1f \n ",E1); printf("\n (b) pu Regulation at 0.6 Power factor Lagging , E= % .2f \n",E2); printf("\n (c) pu Regulation at 0.6 Power factor Leading , E= % .2f \n",E3);
144b1898819d7ce9b8614c853bcae30990467d1e
449d555969bfd7befe906877abab098c6e63a0e8
/3513/CH2/EX2.2/ch2_2.sce
32efc509830e945ca5f6049d77cf0887ee83fad6
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
501
sce
ch2_2.sce
// To determine percentage of specimens //page no 22 clear clc; m=118.5;// volts mean sd=1.2;// volts psi p1=0.0188;//The probability from tables p1=p1*100; x=116; z=x-(m/sd); p2=0.8944;//The probability from tables p2=p2*100; p=p2-p1; mprintf("Therefore the percentage of specimen falling between 116 and 120 volts = %.2f percentage",p); //(b) p=1.2; //The probability from tables x=115; z=1.404; m=115+z; av=m-z mprintf("\nThe adjustment is 116.404 – 115 = %.2f Voltage",av);
def5fcf16297fce4ef53366afa94dd146c9a0bee
449d555969bfd7befe906877abab098c6e63a0e8
/68/CH4/EX4.3/ex3.sce
2eb0f9547fc70837de68f6569cc3c910abe46dd5
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
353
sce
ex3.sce
// Example 4.3: Design of given circuit to obtain I_D=80uA // FET is operating in saturation region I_D=80*10^-6; // (A) V_t=0.6; // (V) uC_n=200*10^-6; // (A/V^2) L=0.8*10^-6; // (m) W=4*10^-6; // (m) V_DD=3; // (V) V_OV=sqrt(2*I_D/(uC_n*(W/L))); V_GS=V_t+V_OV; V_DS=V_GS; V_D=V_DS; disp(V_D,"V_D (V)") R=(V_DD-V_D)/I_D; disp(R,"R (ohm)")
7da70dfaab049b06bfbd4be86108743c87f52e8c
d8cab241a02c8d06f859a4adbf2748d68c08d385
/Eliminação de Gauss.sce
7a1c64ea54d8608c332a1ac7eb8b543aa6c3fa4c
[]
no_license
eluire/CN
6327b9619a6e00d2870912830393def2ca82b856
e2027e0d20c549bb1a79ce830c6affcf4cbe1149
refs/heads/master
2021-09-16T07:13:23.367948
2018-06-18T10:51:21
2018-06-18T10:51:21
126,038,180
0
0
null
null
null
null
UTF-8
Scilab
false
false
223
sce
Eliminação de Gauss.sce
clc #defina a matriz A = [4 3 8 1; 12 10 30 8; 24 25 93 49; 20 19 85 90] [nl,nc]=size(A) for i= 1:nl pivo=A(i,i) for j= i+1:nc A(j,:)=A(j,:)-(A(j,i)/pivo).*A(i,:) end end
028c16d3a644e640e1ceee6d2428bd55b175292b
1b7b49fefad8e705213aa8666caa68793a3e6859
/scilab_kernel/_make_figures.sci
2cac78efac32cbdc3eb04b637d4b85ea60cfed2a
[ "MIT" ]
permissive
poznaandras/scilab_kernel
c3f72b6549efe4268dc13c39b3c2bc53ef925495
b2e90699a1bed3c32497fed9fc4a670a23e50b45
refs/heads/master
2022-01-06T07:12:48.076096
2019-06-02T09:48:59
2019-06-02T09:48:59
null
0
0
null
null
null
null
UTF-8
Scilab
false
false
528
sci
_make_figures.sci
function _make_figures(plot_dir, plot_format) ids_array=winsid(); for i=1:length(ids_array) id=ids_array(i); outfile = sprintf('%s/__ipy_sci_fig_%03d', plot_dir, i); if plot_format == 'jpg' then xs2jpg(id, outfile + '.jpg'); elseif plot_format == 'jpeg' then xs2jpg(id, outfile + '.jpeg'); elseif plot_format == 'png' then xs2png(id, outfile); else xs2svg(id, outfile); end close(get_figure_handle(id)); end endfunction
142d3414420c521287a292a82c9dd9c4b5d15b3a
449d555969bfd7befe906877abab098c6e63a0e8
/2609/CH10/EX10.2/ex_10_2.sce
e260230702b555ea2777d5d12630a11e5cbd9ebb
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
214
sce
ex_10_2.sce
////Ex 10.2 clc; clear; close; format('v',9); Vsat=7;//V R1=68;//kohm R2=82;//kohm VUTP=R2*Vsat/(R1+R2);//V VLTP=R2*-Vsat/(R1+R2);//V disp(VUTP,"Upper trip point(V)"); disp(VLTP,"Lower trip point(V)");
1be9874079297de0c78667f0be6a8a5634390ccd
449d555969bfd7befe906877abab098c6e63a0e8
/599/CH3/EX3.7/example3_7.sce
47e62da78190676572022fc7382e8cec066dbf39
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
1,194
sce
example3_7.sce
clear; clc; printf("\t Example 3.7\n"); D=.1; l=3; // l is length of bubble in cm a=3.14*D*l; // area in cm^2 Ca_o=0.0001; //pure conc. of gas in g*mol/cc*atm Ca=0; NA=.482*10^-5; // molar rate of absorption in g*moles/s //Pa_o and Ca_o indicates pure pressure and conc. kl=NA/(a*(Ca_o-Ca)); //mass transfer coefficient acc. to higbie's penetration theory Q=4; //volumetric flow rate in cc/s A=3.14*.1*.1/4; //area of flow v=Q/A; //velocity of flow in cm/s //timt t=bubble length/linear velocity; t=l/v; DAB=(kl^2)*3.14*t/4; //diffusivity in cm^2/s D_new=0.09; //revised diameter reduced to.09 a_new=3.14*l*D_new; //revised area A_new=3.14*0.09*0.09/4; //revised flow area v_new=Q/A_new; //revised velocity printf("\nthe value of diffusivity of gas DAB is :%f cm/s",DAB/10^-5); t_new=l/v_new; //revised time kl_new=2*(DAB/(3.14*0.0047))^0.5; //revised mass transfer coefficient NA_new=kl_new*a_new*(Ca_o-Ca); //revised molar rate absorption in g*moles/s printf("\nthe value of NA_new is :%f*10^-6 kmol/m^3",NA_new/10^-6); //end
cf6f490f499195bd02c35c070379b3669763e308
93640402789b9a9d07c82958f433765f1e2a8397
/part 2/Mux8.tst
0fe886a5681b830774e6adc16bf365ec783d66f2
[]
no_license
Slayingripper/Z80-CPU
7a6b71f9e59850c3d4492a7f1867f4e81be278ba
451873966cf071f8088407300629994a8d33f13c
refs/heads/master
2020-05-04T02:42:27.419333
2019-04-01T19:27:22
2019-04-01T19:27:22
178,932,396
0
0
null
null
null
null
UTF-8
Scilab
false
false
592
tst
Mux8.tst
// This file is adapted from part of www.nand2tetris.org // and the book "The Elements of Computing Systems" // by Nisan and Schocken, MIT Press. load Mux8.hdl, output-file Mux8.out, compare-to Mux8.cmp, output-list a%B1.8.1 b%B1.8.1 sel%D2.1.2 out%B1.8.1; set a 0, set b 0, set sel 0, eval, output; set sel 1, eval, output; set a %B00000000, set b %B01010110, set sel 0, eval, output; set sel 1, eval, output; set a %B10100101, set b %B00000000, set sel 0, eval, output; set sel 1, eval, output; set a %B10101010, set b %B01010101, set sel 0, eval, output; set sel 1, eval, output;
e962853411c10db6ca9c625dfd454de072dfa117
c565d26060d56f516d954d4b378b8699c31a71ef
/Scilab/virtual_old/imc_controller/imc_virtual.sci
0adb11bea7244e0244b2fbc3301e0b36b0c0b3cc
[]
no_license
rupakrokade/sbhs-manual
26d6e458c5d6aaba858c3cb2d07ff646d90645ce
5aad4829d5ba1cdf9cc62d72f794fab2b56dd786
refs/heads/master
2021-01-23T06:25:53.904684
2015-10-24T11:57:04
2015-10-24T11:57:04
5,258,478
0
0
null
2012-11-16T11:45:07
2012-08-01T11:36:17
Scilab
UTF-8
Scilab
false
false
524
sci
imc_virtual.sci
mode(0) function [stop] = imc_virtual(setpoint,fan,alpha) global temp heat C0 u_old u_new e_old e_new fdfh fdt fncr fncw m err_count stop q heatdisp fandisp tempdisp setpointdisp limits m x sampling_time e_old_old e_new = setpoint - temp; b=((1-alpha)/0.01163); u_new = u_old + b*(e_new - (0.9723*e_old)); heat=u_new; u_old = u_new; e_old = e_new; [stop,temp] = comm(heat,fan);//Never edit this line plotting([heat fan temp setpoint],[0 0 30 0],[100 100 50 1000]) endfunction
850a8b10cafe6c60ab05d2ea69933958da17f5f3
fa8b52b9b1d92d2574eb471bb12758f13885b2b1
/old.tst
ed473e528b98961c00fb822208eab2c756cd2880
[ "MIT" ]
permissive
Spontifixus/spontifixus.github.io
c56d5d66272589fd634199503abe414b4db4d1f1
3bef06e08b881d15c13b938e1b53f9105b7c52c2
refs/heads/master
2021-01-01T19:22:46.229038
2018-05-18T20:44:13
2018-05-18T20:44:13
98,575,960
0
0
null
null
null
null
UTF-8
Scilab
false
false
3,697
tst
old.tst
### Datenschutzerklärung für die Nutzung von Disqus Die Kommentarfunktion dieser Website wird von [Disqus, Inc., Law Enforcement Requests, 301 Howard St., Suite 300, San Francisco, CA 94105, USA][3] realisiert. Beachten Sie daher auch die [Disqus Privacy Policy][4]. ### Datenschutzerklärung für die Nutzung von Google Web Fonts Diese Seite nutzt zur einheitlichen Darstellung von Schriftarten so genannte Web Fonts, die von [Google Inc., 1600 Amphitheatre Parkway Mountain View, CA 94043, USA][5] bereitgestellt werden. Beim Aufruf einer Seite lädt Ihr Browser die benötigten Web Fonts in ihren Browsercache, um Texte und Schriftarten korrekt anzuzeigen. Wenn Ihr Browser Web Fonts nicht unterstützt, wird eine Standardschrift von Ihrem Computer genutzt. Weitere Informationen zu Google Web Fonts finden Sie in de [Developer FAQ][6] und in der [Datenschutzerklärung von Google][7]. ### Datenschutzerklärung für die Nutzung von Google Analytics Diese Website nutzt Funktionen des Webanalysedienstes Google Analytics. Anbieter ist die [Google Inc., 1600 Amphitheatre Parkway Mountain View, CA 94043, USA][5]. Google Analytics verwendet so genannte "Cookies". Das sind Textdateien, die auf Ihrem Computer gespeichert werden und die eine Analyse der Benutzung der Website durch Sie ermöglichen. Die durch den Cookie erzeugten Informationen über Ihre Benutzung dieser Website werden in der Regel an einen Server von Google in den USA übertragen und dort gespeichert. Mehr Informationen zum Umgang mit Nutzerdaten bei Google Analytics finden Sie in der entsprechenden [Datenschutzerklärung von Google][8]. #### Browser Plugin Sie können die Speicherung der Cookies durch eine entsprechende Einstellung Ihrer Browser-Software verhindern; wir weisen Sie jedoch darauf hin, dass Sie in diesem Fall gegebenenfalls nicht sämtliche Funktionen dieser Website vollumfänglich werden nutzen können. Sie können darüber hinaus die Erfassung der durch den Cookie erzeugten und auf Ihre Nutzung der Website bezogenen Daten (inkl. Ihrer IP-Adresse) an Google sowie die Verarbeitung dieser Daten durch Google verhindern, indem Sie das unter dem folgenden Link verfügbare Browser-Plugin herunterladen und installieren: https://tools.google.com/dlpage/gaoptout?hl=de #### Widerspruch gegen Datenerfassung Sie können die Erfassung Ihrer Daten durch Google Analytics verhindern, indem Sie auf folgenden Link klicken. Es wird ein Opt-Out-Cookie gesetzt, der die Erfassung Ihrer Daten bei zukünftigen Besuchen dieser Website verhindert: [Google Analytics deaktivieren][9] #### Auftragsdatenverarbeitung Wir haben mit Google einen Vertrag zur Auftragsdatenverarbeitung abgeschlossen und setzen die strengen Vorgaben der deutschen Datenschutzbehörden bei der Nutzung von Google Analytics vollständig um. #### IP-Anonymisierung Wir nutzen die Funktion "Aktivierung der IP-Anonymisierung" auf dieser Webseite. Dadurch wird Ihre IP-Adresse von Google jedoch innerhalb von Mitgliedstaaten der Europäischen Union oder in anderen Vertragsstaaten des Abkommens über den Europäischen Wirtschaftsraum zuvor gekürzt. Nur in Ausnahmefällen wird die volle IP-Adresse an einen Server von Google in den USA übertragen und dort gekürzt. Im Auftrag des Betreibers dieser Website wird Google diese Informationen benutzen, um Ihre Nutzung der Website auszuwerten, um Reports über die Websiteaktivitäten zusammenzustellen und um weitere mit der Websitenutzung und der Internetnutzung verbundene Dienstleistungen gegenüber dem Websitebetreiber zu erbringen. Die im Rahmen von Google Analytics von Ihrem Browser übermittelte IP-Adresse wird nicht mit anderen Daten von Google zusammengeführt.
974f8cd27b8257e89ab1c06ece641eabbafbaf66
5f48beee3dc825617c83ba20a7c82c544061af65
/tests/s/85.tst
f253fb9f758570fbd66e803ad80319a3a08ec4ea
[]
no_license
grenkin/compiler
bed06cd6dac49c1ca89d2723174210cd3dc8efea
30634ec46fba10333cf284399f577be7fb8e5b61
refs/heads/master
2020-06-20T12:44:17.903582
2016-11-27T03:08:20
2016-11-27T03:08:20
74,863,612
3
0
null
null
null
null
UTF-8
Scilab
false
false
77
tst
85.tst
void main(void) { int x, y; x=x; x=x+1; x++; --y; return 0; }
95d0c60be70043df7ce3cab2778c2b417751c00d
e223a3388730b3a8ab63f7565156d5bf7a65e44b
/scilab/ftdi/loader.sce
b268273a6491dc192f3efb9eab46381781aae075
[]
no_license
YSBF/flight_control
1cfef21947c9497659eea3cf631b4de207a0a851
fc74021c2bd62819ea4f637b45936ab2edf9e7af
refs/heads/master
2020-04-15T21:47:09.796455
2018-06-07T21:28:29
2018-06-07T21:28:29
null
0
0
null
null
null
null
UTF-8
Scilab
false
false
773
sce
loader.sce
// This file is released under the 3-clause BSD license. See COPYING-BSD. // Generated by builder.sce : Please, do not edit this file // ---------------------------------------------------------------------------- // if ~win64() then warning(_("This module requires a Windows x64 platform.")); return end // libmex_path = get_absolute_file_path('loader.sce'); // // ulink previous function with same name [bOK, ilib] = c_link('libmex'); if bOK then ulink(ilib); end // list_functions = [ 'ftdi'; ]; addinter(libmex_path + filesep() + 'libmex' + getdynlibext(), 'libmex', list_functions); // remove temp. variables on stack clear libmex_path; clear bOK; clear ilib; clear list_functions; // ----------------------------------------------------------------------------
367f11c920f478e58b03d48163bfeea51ccfea3c
449d555969bfd7befe906877abab098c6e63a0e8
/1931/CH9/EX9.13/13.sce
1036fb9f271f8572be88ec72d8aef26b1027b1d8
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
514
sce
13.sce
clc clear //INPUT DATA AW=63.5//atomic weight of copper in u M=63.5*1.66*10^-27//mass of one copper atom in Kg d=8.94*10^3//density of sodium in Kg/m^3 m=9.11*10^-31//mass of electon in Kg h=6.625*10^-34//plank's constant in m^2 Kg/sec e=1.6*10^-19//charge of electro in C //CALCULATION nc=(d)/M//number of electrons per unit volume in electrons/m^3 Ef=(((h*h)/(8*m)*((3*nc)/3.14)^(2/3))/e)//The fermi energy for the sodium in eV //OUTPUT printf('The fermi energy for the sodium is %3.3f eV',Ef)
eb644cca4bedb45099810ee7520c07058c75cac1
449d555969bfd7befe906877abab098c6e63a0e8
/773/CH2/EX2.05.01/2_05_01.sci
a03a7ae4daa6b745e60c5b310bc67bf7f362cff0
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
87
sci
2_05_01.sci
//laplace// syms t s; y= laplace('%e^(-t)+5*t+6*%e^(-3*t)',t,s); disp(y,"ans=")
1853677720b84108153555ca686318923fee591d
5887829f5a0a005033807cf7dc4fb7231eb280ec
/Listing/chapter 3/Listing3325.sce
6ffd951d19e2d417fb2e42f8249dd7551bee2b78
[]
no_license
joaolrneto/learning_scilab
78ecc0019f167b57bc35647c4ac785ece01e443e
9624c9a6736860a8a836b0f801256b6224756585
refs/heads/main
2023-03-17T22:17:51.853368
2021-03-15T20:58:34
2021-03-15T20:58:34
344,478,059
0
0
null
null
null
null
UTF-8
Scilab
false
false
96
sce
Listing3325.sce
clc clear k=0; while 1, k=k+1; if k > 100 then break //interrupt loop end; end disp(k)
a2befc61482c90fc3061fcd407de3aa2582f60f1
449d555969bfd7befe906877abab098c6e63a0e8
/343/CH1/EX1.51/ex_51.sce
23ad49d68c990a119edcd761e55938ac03a10c58
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
302
sce
ex_51.sce
R1=0.2; R2=0.3; R3=0.1; V1=120; V2=110; A=[5,-2;1,-4]; //Applying KCL at the two nodes B=[358.2;-324]; V=inv(A)*B; I1=(120-V(1,1))/R1; I2=(V(1,1)-V(2,1))/R2; I3=(110-V(2,1))/R3; disp("Amperes",I1,"Current I1") disp("Amperes",I2,"Current I2") disp("Amperes",I3,"Current I3")
c68606a146a01bbdffc194d130eb6a923708b2c8
eb7eeb04a23a477e06f3c0e3d099889caee468b4
/src/examples/course/scilab/ga/steepest.sci
3bafa17d84614b67244e795cd58bc3bb8338254e
[]
no_license
mikeg64/iome
55699b7d7b3d5c1b006d9c82efe5136b8c909dfd
cc1c94433133e32776dcf16704ec4ec337b1b4a0
refs/heads/master
2020-03-30T15:57:33.056341
2016-04-13T09:24:27
2016-04-13T09:24:27
151,387,236
0
0
null
null
null
null
UTF-8
Scilab
false
false
2,867
sci
steepest.sci
// // // steepest descent method with backtracking line search applied to the rastrigin function // // function y=rastrigin(x) // the function to optimize n=max(size(x)); y=n+sum(x.^2-cos(2*%pi*x)); endfunction //----------------------------------------------------- function y=rastrigingrad(x) // the gradient of the function to optimize y=2*x+2*%pi*sin(2*%pi*x); endfunction //-------------------------------------------------------- function z=dotprod(x,y); // computes the dot product of x and y z=sum(x.*y); endfunction //----------------------------------------------------- function d=descentdirection(f,x,fx,gx); // descent direction: gradient d=-gx; endfunction //---------------------------------------------------- function [xnew,fnew,itback]=backtracking(f,x,fx,gx,d);// line search by backtracking until Armijo condition tau=0.3; bet=0.0001; alphainit=1; alpha=alphainit;xnew=x+alpha*d; fnew=f(xnew); itback=1; while(fnew>fx+bet*alpha*dotprod(gx,d)) alpha=tau*alpha; xnew=x+alpha*d; fnew=f(xnew); itback=itback+1; end endfunction //------------------------------------------------- // main program // disp('steepest descent method for the rastrigin function:'); // timer(); n=evstr(x_dialog('number of variables of the rastrigin function to minimize','2')); epsilon=1E-5; // xmin=-5.12*ones(1,n); xmax=5.12*ones(1,n); u=rand(1,n); x0=xmin+(xmax-xmin).*u; x=x0;fx=rastrigin(x);gx=rastrigingrad(x); itgrad=1; itfct=1; Xbest=x;Fbest=fx; // while (norm(gx)>epsilon) d=descentdirection(rastrigin,x,fx,gx); [x,fx,itback]=backtracking(rastrigin,x,fx,gx,d); Xbest=[Xbest;x]; Fbest=[Fbest;fx]; gx=rastrigingrad(x); itgrad=itgrad+1; itfct=itfct+itback; end //------------------------------------------------------ // results display // disp('function evaluation number:');disp(itfct); disp('gradient evaluation number:');disp(itgrad); // disp('minimum obtained:');disp(x); disp('corresponding value by f:');disp(fx); disp('corresponding value by g:');disp(gx); disp('computational time:');disp(timer()); // // case of the rastrigin function with 2 parameters (trajectory display)------ // if (n==2) xmin=-5.12;xmax=5.12;N=300; xplot=xmin:((xmax-xmin)/(N-1)):xmax; yplot=xplot; zplot=zeros(N,N); for i=1:N for j=1:N zplot(i,j)=rastrigin([xplot(i),yplot(j)]); end end xset('window',0) xbasc() plot2d(Xbest(:,1),Xbest(:,2),rect=[-5.12,-5.12,5.12,5.12]); contour2d(xplot,yplot,zplot,[0:0.01:0.1,0.2:1,1:10]); xtitle('trajectory display'); xset('window',1) xbasc() plot2d(Xbest(:,1),Xbest(:,2),rect=[x(1)-0.1,x(2)-0.1,x(1)+0.1,x(2)+0.1]); contour2d(xplot,yplot,zplot,[fx:0.1:(fx+1)]); xtitle('trajectory display'); end
2e5a2491eb8f50f93262b7234faaef1f0e198cbc
449d555969bfd7befe906877abab098c6e63a0e8
/377/CH1/EX1.4/1_4.sce
f358ba5d187dc7751767467ad4b036e3c77bbbc5
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
407
sce
1_4.sce
a=1*10^-8; pi=3.14; disp("∆E*∆t=h*∆v*∆t >= h/(4*pi)"); b=1/(4*pi*a); printf('\n So, ∆v >= %f Hz',b); disp("E=p^2/(2*m0)+(-e^2/(4*pi*Є0*r))"); printf('\n'); disp("The minimum value of E occurs at r=5.3*10^-11 m"); m0=9.31; e=1.6; h=1.054; d=8.85; //say d=Є0 c=((-m0)*(e^4)*4*((pi)^2))/(2*(h^2)*(4*pi*d)^2); d=c*1.6*10^2; printf('\n The value of minimum energy Emin is %f eV',d);
d4ab929244cfc3829a4183ae54d644fafb7bc414
449d555969bfd7befe906877abab098c6e63a0e8
/2045/CH11/EX11.5/Ex11_5.sce
aaebc314e3b2b6bb15ba994f001b88669ca501ea
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
521
sce
Ex11_5.sce
//pagenumber 517 example 5 clear induct=500*10^-6;//henry induc1=5000*10^-6;//henry mutuin=300*10^-6;//henry c1=150*10^-12;//farad //(a) frequency indcto=induct+induc1+2*mutuin; freque=1/((2)*3.14*sqrt(indcto*c1)); //(b) condition r=10*10^3;//ohm conduc=8*10^-3;//ampere per volt r1=50*10^3;//ohm r`=r*r1/(r+r1); volgai=conduc*r'; disp("frequency = "+string((freque))+"hertz"); ratio1=(induc1+mutuin)/(induct+mutuin); ratio1=ratio1*volgai; disp("ratio1 greater than 1 so oscillations possible");
b4850059a097c44ac39f957dc4ceae6abdab1456
449d555969bfd7befe906877abab098c6e63a0e8
/2243/CH3/EX3.5/Ex3_5.sce
29e748ca8680d037996c881122f33f5a0c6adc6d
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
763
sce
Ex3_5.sce
clc(); clear; //(a) //Given: lambda = 5890;// Wavelength in A l = 5.89; //thickness of the film in mu m mu = 1.35; //refractive index delta = mu*l;// optical path in the medium in m //(b) (i)Number of waves in the medium //1 angstrom = 1.0*10^-10 m and 1 mu m = 1*10^-6 m N= (l*10^-6)/(lambda*10^-10/mu); //the distance in vaccum for those waves : delta1 =N*lambda*10^-10; // optical path in m //(b) (ii)Phase difference in the medium //1 angstrom = 1.0*10^-10 m and 1 mu m = 1*10^-6 m phi = ((2*%pi)/(lambda*10^-10/mu))*(l*10^-6) ; printf("Optical path = %.4f mu m\n",delta); printf("Number of waves : %.1f\n",N); printf("The distance in vaccum for those waves is : %.4f mu m \n",delta1*10^6); printf("Phase difference = %.3f\n",phi);
2671aaf4791ba7e0115185fc2f024807c090cf04
449d555969bfd7befe906877abab098c6e63a0e8
/2504/CH12/EX12.2/12_2.sce
ba474275c97889817241cec799374490cbf2fa91
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
381
sce
12_2.sce
clc //initialisation of variables clear psif= 10.2 //lbf/in^2 usit= 3.8*10^-7 //lbf sec/ft^2 usif= 3.52*10^-7 //lbf sec/ft^2 Tsit= 530 //R Tsif= 480 //R wf= 15000 //rev/min //CALCULATIONS Psit= psif*usit*sqrt(Tsit/Tsif)/usif wt= wf*sqrt(Tsit/Tsif) //RESULTS printf ('Pressure in the test cell = %.1f lbf/in^2',Psit) printf ('\n Compressor speed = %.f rev.min',wt)
f94973b978ccdae453ec4ade9e78ff625a86b6e3
463377b6374a24bbe111707a34e24949f3bd2543
/estpoly.sci
f1ea48deca0c98ed7e33401ec01dd3488a866e9e
[]
no_license
solothinker/Scilab-Identification
3a46c0f3b8b1a7430f8a799be5e1310e2723b535
cdad0d7292c31c29d377b640f6966a7c3bb81bb9
refs/heads/master
2022-01-05T12:39:07.410803
2019-06-15T02:18:13
2019-06-15T02:18:13
null
0
0
null
null
null
null
UTF-8
Scilab
false
false
4,508
sci
estpoly.sci
// Estimates Discrete time estpoly model // y(t) = [B(q)/F(q)]u(t) + [C(q)/D(q)]e(t) // Current version uses random initial guess // Need to get appropriate guess from OE and noise models // Authors: Ashutosh,Harpreet,Inderpreet // Updated(12-6-16) //function [theta_estpoly,opt_err,resid] = estpoly(varargin) function sys = estpoly(varargin) [lhs , rhs] = argn(); if ( rhs < 2 ) then errmsg = msprintf(gettext("%s: Unexpected number of input arguments : %d provided while should be 2"), "estpoly", rhs); error(errmsg) end z = varargin(1) if typeof(z) == 'iddata' then Ts = z.Ts;unit = z.TimeUnit z = [z.OutputData z.InputData] elseif typeof(z) == 'constant' then Ts = 1;unit = 'seconds' end if ((~size(z,2)==2) & (~size(z,1)==2)) then errmsg = msprintf(gettext("%s: input and output data matrix should be of size (number of data)*2"), "estpoly"); error(errmsg); end if (~isreal(z)) then errmsg = msprintf(gettext("%s: input and output data matrix should be a real matrix"), "estpoly"); error(errmsg); end n = varargin(2) if (size(n,"*")<5| size(n,"*")>6) then errmsg = msprintf(gettext("%s: The order and delay matrix [na nb nc nd nf nk] should be of size [5 6]"), "estpoly"); error(errmsg); end if (size(find(n<0),"*") | size(find(((n-floor(n))<%eps)== %f))) then errmsg = msprintf(gettext("%s: values of order and delay matrix [nb nc nd nf nk] should be nonnegative integer number "), "estpoly"); error(errmsg); end na = n(1); nb = n(2); nc = n(3); nd = n(4);nf = n(5); if (size(n,"*") == 5) then nk = 1 else nk = n(6); end // storing U(k) , y(k) and n data in UDATA,YDATA and NDATA respectively YDATA = z(:,1); UDATA = z(:,2); NDATA = size(UDATA,"*"); function e = G(p,m) e = YDATA - _oestpolyfun(UDATA,p,na,nb,nc,nd,nf,nk);//_oestpolyfun(UDATA,p,nd,nc,nf,nb,nk); endfunction tempSum = na+nb+nc+nd+nf p0 = linspace(0.0001,0.001,tempSum)'; [var,errl] = lsqrsolve(p0,G,size(UDATA,"*")); //disp(errl) err = (norm(errl)^2); //disp(err) opt_err = err; resid = G(var,[]); x = var // b = poly([repmat(0,nk,1);var(1:nb)]',"q","coeff"); // c = poly([1; var(nb+1:nb+nc)]',"q","coeff"); // d = poly([1; var(nb+nc+1:nb+nc+nd)]',"q","coeff"); // f = poly([1; var(nb+nd+nc+1:nd+nc+nf+nb)]',"q","coeff"); a = poly([1; x(1:na)]',"q","coeff"); b = poly([repmat(0,nk,1);x(na+1:na+nb)]',"q","coeff"); c = poly([1; x(na+nb+1:na+nb+nc)]',"q","coeff"); d = poly([1; x(na+nb+nc+1:na+nb+nc+nd)]',"q","coeff"); f = poly([1; x(na+nb+nd+nc+1:na+nd+nc+nf+nb)]',"q","coeff"); t = idpoly(coeff(a),coeff(b),coeff(c),coeff(d),coeff(f),Ts) //t = sys;//idpoly(1,coeff(b),coeff(c),coeff(d),coeff(f),Ts) // estimating the other parameters [temp1,temp2,temp3] = predict(z,t) [temp11,temp22,temp33] = pe(z,t) //pause estData = calModelPara(temp1,temp11,na+nb+nc+nd+nf) //pause t.Report.Fit.MSE = estData.MSE t.Report.Fit.FPE = estData.FPE t.Report.Fit.FitPer = estData.FitPer t.Report.Fit.AIC = estData.AIC t.Report.Fit.AICc = estData.AICc t.Report.Fit.nAIC = estData.nAIC t.Report.Fit.BIC = estData.BIC t.TimeUnit = unit sys = t //sys.TimeUnit = unit endfunction function yhat = _oestpolyfun(UDATA,x,na,nb,nc,nd,nf,nk)//(UDATA,x,nd,nc,nf,nb,nk) x=x(:) q = poly(0,'q') tempSum = na+nb+nc+nd+nf // making polynomials a = poly([1; x(1:na)]',"q","coeff"); b = poly([repmat(0,nk,1);x(na+1:na+nb)]',"q","coeff"); c = poly([1; x(na+nb+1:na+nb+nc)]',"q","coeff"); d = poly([1; x(na+nb+nc+1:na+nb+nc+nd)]',"q","coeff"); f = poly([1; x(na+nb+nd+nc+1:na+nd+nc+nf+nb)]',"q","coeff"); bd = coeff(b*d); cf = coeff(c*f); fc_d = coeff(f*(c-a*d)); if size(bd,"*") == 1 then bd = repmat(0,nb+nd+1,1) end //pause maxDelay = max([length(bd) length(cf) length(fc_d)]) yhat = [YDATA(1:maxDelay)] for k=maxDelay+1:size(UDATA,"*") bdadd = 0 for i = 1:size(bd,"*") bdadd = bdadd + bd(i)*UDATA(k-i+1) end fc_dadd = 0 for i = 1:size(fc_d,"*") fc_dadd = fc_dadd + fc_d(i)*YDATA(k-i+1) end cfadd = 0 for i = 2:size(cf,"*") cfadd = cfadd + cf(i)*yhat(k-i+1) end //pause yhat = [yhat; [ bdadd + fc_dadd - cfadd ]]; end endfunction
02dfc1b9f8eed359e6819bfc59de2e46dc6256c6
449d555969bfd7befe906877abab098c6e63a0e8
/1247/CH3/EX3.9/example3_9.sce
83338a6a9e1cd064a549e4b4fcf61cea82e43871
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
1,140
sce
example3_9.sce
clear; clc; // Stoichiometry // Chapter 3 // Material Balances Without Chemical Reaction // Example 3.9 // Page 65 printf("Example 3.9, Page 65 \n \n"); // solution l = 1 //[litre] water (basis) Cl = 475.6 //[mg] m1 = (58.5/35.5)*Cl //[mg] NaCl present in water SO4 = 102.9 //[mg] // SO4 m3 = (142/96)*SO4 //[mg] Na2SO4 present in water // carbonates are present due to Na2CO3 // eq mass of CaCO3 = 50 // eq mass of Na2CO3 = 53 m4 = (53/50)*65.9 // [mg] Na2CO3 present in water // NaHCO3 in water = bicarbonates - temporary hardness m5 = 390.6-384 // [mg] NaHCO3 present as CaCO3 m6 = (84/50)*m5 // [mg] NaHCO3 present in water // equivalent mass of Mg(HCO3)2 = 73.15 m7 = (m6/50)*225 m8 = 384-225 //[mg] CaCO3 from Ca(HCO3)2 // equivalent mass of Ca(HCO3)2 is 81 m9 = (m8/50)*159 //[mg] Ca(HCO3)2 present in water printf("Component analysis of raw water: \n \n \nCompound mg/l \n \nCa(HCO3)2 "+string(m9)+" \nMg(HCO3)2 "+string(m7)+" \nNaHCO3 "+string(m6)+" \nNa2CO3 "+string(m4)+" \nNaCl "+string(m1)+" \nNa2SO4 "+string(m3)+"")
f9db8ef066c98c9474ba0d36e329d098d261e124
449d555969bfd7befe906877abab098c6e63a0e8
/1802/CH4/EX4.1/Exa4_1.sce
0c28338cf286610529362c69baa43769264c004c
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
313
sce
Exa4_1.sce
//Exa 4.1 clc; clear; close; //Given Data : format('v',9); r=1.213/2;//in cm f=60;//in Hz ds=0.77888*r;//in cm spacing=1.25;//in meter L=4*10^-7*log(spacing*100/ds);//in H/m disp(L*1000,"Inductance(in H/km) :"); XL=2*%pi*f*L;//in ohm/m disp(XL*1000*60,"Inductive reactance for 60 km line(in ohm) :");
bf0901566daedccbbf0c9a82ac60957a0acc8e1a
e086c1a264e49af80443d44ae3a705cb43b7a21f
/AppTests/testSave.tst
c7c1f6b42021e320e4af5a4e3b6d487397195170
[]
no_license
step-batch-7/juice-mildshower
60cfbf427cb8bb6d3b7fda894b6e71904b78ac92
730148258036da3382cd23579ce7a8cdfa7af722
refs/heads/master
2023-01-03T06:41:42.322261
2019-12-02T19:42:26
2019-12-02T19:42:26
223,359,891
0
1
null
2022-12-30T19:13:03
2019-11-22T08:38:28
JavaScript
UTF-8
Scilab
false
false
283
tst
testSave.tst
(export JS_STORE_PATH="./AppTests/testStore.json"; export JS_DATE="2019-12-01T14:33:49.427Z"; node beverage.js --save --empId 1234 --beverage Orange --qty 2; rm ./AppTests/testStore.json) Transaction Recorded: Employee ID,Beverage,Quantity,Date 1234,Orange,2,2019-12-01T14:33:49.427Z
ffe55af0fbffe8999128576ca9ea46f6253c9b04
e8dbcf469ba8a31d6926ba791ebc5dcccd50282b
/Scripts/DML/Consultas/Test/consulta_por_color_ojos.tst
64fb0eb8c7ef3d9bb0d722297e2b48f611b1442f
[]
no_license
bryanjimenezchacon/bryanjimenezchacon.github.io
5f2a0f1dbfbc584a65dece48f98b1c13d755512f
7062d1860934808265c05491007c83f69da1112a
refs/heads/master
2021-01-23T17:20:11.542585
2015-10-10T05:52:52
2015-10-10T05:52:52
41,244,377
2
0
null
2015-08-26T15:46:04
2015-08-23T09:52:06
JavaScript
UTF-8
Scilab
false
false
234
tst
consulta_por_color_ojos.tst
PL/SQL Developer Test script 3.0 5 begin -- Call the procedure personas_por_color_ojos(pcolor_ojos => :pcolor_ojos, p_recordset => :p_recordset); end; 2 pcolor_ojos 1 Verde 5 p_recordset 1 <Cursor> 116 0
d0e94bceb1ca6faa4e6b61528d7aaeb985ca8053
717ddeb7e700373742c617a95e25a2376565112c
/3424/CH8/EX8.3/Ex8_3.sce
a5b40ea895d03e52b0deeb85aa80f486ecde1e63
[]
no_license
appucrossroads/Scilab-TBC-Uploads
b7ce9a8665d6253926fa8cc0989cda3c0db8e63d
1d1c6f68fe7afb15ea12fd38492ec171491f8ce7
refs/heads/master
2021-01-22T04:15:15.512674
2017-09-19T11:51:56
2017-09-19T11:51:56
92,444,732
0
0
null
2017-05-25T21:09:20
2017-05-25T21:09:19
null
UTF-8
Scilab
false
false
555
sce
Ex8_3.sce
clc // Intialization of variables d = 1.23 //Kg/m3 V = 50 // m/s D = 0.004 //m U = 1.79*(10^-5) // N.s/M^2 f1 = 0.00467 l = 0.1 //m f2 = 0.028 // Calculations Re = d*V*D/U Dp = f1*l*d*(V^2)/(D*2) Dp1 = 32*U*l*V/(D^2) Dp2 = f2*l*d*(V^2)/(D*2) // results printf("the pressure drop at 0.1 section of the tube (laminar) is %.3f kN/m^2 ",Dp/10^3) printf("\nthe pressure drop at 0.1 section of the tube (laminar)(aliter) is %.3f kN/m^2 ",Dp1/10^3) printf("\nthe pressure drop at 0.1 section of the tube (turbulent) is %.3f kN/m^2 ",Dp2/10^3)
f68c85234367f7ade9e424cf4e2a7979d6e0a439
75e45ac87e34faec83ba178b220061833ca314dc
/TP Note/CandassamyAnandou/exo3/script3.sce
71ecac5dbbf9008d4c866670fe743eb5a0910b35
[]
no_license
GrinninReaper/ET4-TP-MethodeNumerique
3d465828afce25b4bfc7a10098e9bc398f7176b1
8b7373fcf228fed9fc2cb0f8241c802608414abf
refs/heads/master
2020-08-02T00:46:59.035354
2019-09-26T21:08:35
2019-09-26T21:08:35
211,181,502
0
0
null
null
null
null
UTF-8
Scilab
false
false
493
sce
script3.sce
//19/12/18 //TP note de méthode numérique, exo3 //Anandou Candassamy A = [-6, -2, 2,; 0, -2, -4; 3, 1, -1]; t1 = 0.1; t2 = 3.0; rslt1 = matexp2(A, t1); rslt2 = matexp2(A, t2); disp(rslt1, "Résultat de la fonction pour t = 0.1"); disp(expm(A*t1), "Résultat donnée par scilab pour t=0.1"); disp(rslt2, "Résultat de la fonction pour t=3.0"); disp(expm(A*t2), "Résultat donnée par scilab pour t=3.0"); //Réponse: //on voit bien que les résultats sont identiques
ee1ba77de5bf83001050ed190defa9dd29625d5b
449d555969bfd7befe906877abab098c6e63a0e8
/2096/CH2/EX2.27/ex_2_27.sce
e24e5da0195616edb05c7c1770af35577c84fe7a
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
248
sce
ex_2_27.sce
//Example 2.27 // distributed capacitance clc; clear; close; //given data : C1=410; // in pico-farad C2=50; // inpico-farad f1=2; // in MHz f2=5; // in MHz F=f2/f1; Cd=(C1-F^2*C2)/5.25; disp(Cd,"the self capacitance,Cd(pico-farad) = ")
78e595edab535ba63d843f7fde75b44144ba9a35
449d555969bfd7befe906877abab098c6e63a0e8
/1301/CH30/EX30.10/ex30_10.sce
92596ca66dd3feef9240a3608ac3f8096a0f7a18
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
389
sce
ex30_10.sce
clc; A=107.87; //atomic mass in gm F=96500; //in Coloumb v=1; //valency z=A/(F*v); //calculating ECE using Faraday's Law disp(z,"(a)Electrochemical Eqvivalent = "); //displaying result A1=16; //atomic mass in gm v1=2; //valency z1=A1/(F*v1); //Faraday's Law disp(z1,"(b)Electrochemical Equivalent = "); //displaying result
bbf3db151766925e845838e8f2686a629a18c210
449d555969bfd7befe906877abab098c6e63a0e8
/3526/CH13/EX13.3/Ex13_3.sce
446df843b4a9d315bec81ca8d1b6b90589c69d29
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
233
sce
Ex13_3.sce
//page 385 clc primary_alpha=((0.77-.5)/(0.77-0.0218))*100 pearlite=((0.5-0.0218)/(0.77-0.0218))*100 disp(primary_alpha,"primary alpha in percentage =") disp(pearlite,"pearlite in percentage =") //Answer difference is due to roundoff
24c1ca95737ab76750372007c9463ee07bb998bb
9a4f02797ab8eecfe1394e2d276ac86379bb9824
/symphony-master/Examples/example5.sce
29382318f7d089bdf8152f1e7203f8413fea091f
[]
no_license
RVidyadhar/Scilab_FOSSEE_Project
b686bfa6127df08ef47bfa430580be7779d9e2c5
7656e5089f307d46eacf77be8991d82125643365
refs/heads/master
2021-01-20T16:34:39.597133
2015-12-23T04:34:27
2015-12-23T04:34:27
48,269,308
0
0
null
2015-12-19T05:10:17
2015-12-19T05:10:17
null
UTF-8
Scilab
false
false
297
sce
example5.sce
function y=_f(x) y=0 for i =1:6 y=y+sin(x(i)); end endfunction x1 = [-2, -2, -2, -2, -2, -2]; x2 = [2, 2, 2, 2, 2, 2]; //exec builder.sce //exec loader.sce options=list("MaxIter",[1500],"CpuTime", [100],"TolX",[1e-6]) [xopt,fopt,exitflag,output,zl,zu] = fminbnd(_f,x1,x2,options)
5bd3b1cd45324a8cf483b14bb5e6c29395185d21
449d555969bfd7befe906877abab098c6e63a0e8
/557/CH22/EX22.3/3.sce
1aebd681b611de42376ec2743600837196f4f6d0
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
513
sce
3.sce
clc; funcprot(0); //Example 22.3. //Initializing the variables Ma = 0.6; Cl = 0.6; tByC = 0.035; // Thickness to chord ratio cByC = 0.015; // Camber to chord ratio x = 3; // Angle of incidence //Calculations lamda = 1/sqrt(1-Ma^2); Cl# = lamda*Cl; tByC1 = tByC*lamda; cByC1 = cByC*lamda; Cl1 = Cl*lamda^2; Ae = x*lamda; disp(Ae,"angle of incidence (Degree) :", Cl1, "Lift Coefficient :",cByC1, "Camber to chord ratio :",tByC1,"Thickness to chord ratio :","____Geometric Characterstics____" );
77e6410ad084ba245388b3936cb3765c540344f2
449d555969bfd7befe906877abab098c6e63a0e8
/3637/CH2/EX2.22/Ex2_22.sce
278728cc4425aa9cc2a0dc3f112a7b339c60ce98
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
493
sce
Ex2_22.sce
//problem 22 pagenumber 2.105 //given rc1=1;format(3);clf(); vi=5;//volt c=1e-6;//farad r=1e6;//ohm x0=0;x1=1:1:5; //determine output voltage v0=integrate('5','t',x0,x1); disp('Output voltage = -'+string(v0(5))+" V"); subplot(1,2,1); x=linspace(1,5,5); y=5* ones(length(x),1); plot(x,y); xtitle('input waveform problem Ex2_22','time in sec','Vi in volts'); subplot(1,2,2); x=linspace(1,5,5); y=linspace(0,-25,5); plot(x,y); xtitle('output waveform problem Ex2_22','time in sec','V0 in volts');
b7f82ca3310c286f028a1340559305ded874ca4e
8217f7986187902617ad1bf89cb789618a90dd0a
/browsable_source/2.4/Unix-Windows/scilab-2.4/util/Gload.sce
adeeb999da8120c2992a6806051642ab1f01be39
[ "LicenseRef-scancode-public-domain", "LicenseRef-scancode-warranty-disclaimer" ]
permissive
clg55/Scilab-Workbench
4ebc01d2daea5026ad07fbfc53e16d4b29179502
9f8fd29c7f2a98100fa9aed8b58f6768d24a1875
refs/heads/master
2023-05-31T04:06:22.931111
2022-09-13T14:41:51
2022-09-13T14:41:51
258,270,193
0
1
null
null
null
null
UTF-8
Scilab
false
false
458
sce
Gload.sce
// for the GLoad feature // Copyright INRIA if strindex(gl_name,'.')<>[] then select part(gl_name,k($)+1:length(gl_name)); case "sci" then getf(gl_name), case "sce" then exec(gl_name), case "scg" then xload(gl_name), case "bin" then load(gl_name), case "cos" then scicos(gl_name) case "cosf" then scicos(gl_name) else error("Gload : unknown suffix in file name "+gl_name); end else error("Gload : unknown file type "+gl_name); end
3423ddbe862d9ec41bf75c78089ac68dbb9096f1
e770dc26235168913bdcd5b2332f3a38a95a8bc7
/Toolbox Test/poly2ac/poly2ac1.sce
20bb488fb75624a60658473ccd549a4bff7adc14
[]
no_license
deecube/majorTom
f00eca4e2effff2c5eba746878f2c0842fe14680
84365fc032fc0ca44abac8330ec4ac6d85a85b3f
refs/heads/master
2021-01-21T14:04:23.323717
2016-05-23T06:05:31
2016-05-23T06:05:31
51,731,222
0
0
null
null
null
null
UTF-8
Scilab
false
false
428
sce
poly2ac1.sce
//poly2ac a = [1.0000 0.4288 0.76 0.0404 -0.02]; efinal = 0.2; // Step prediction error r = poly2ac(a,efinal); // Autocorrelation sequence disp(r); //Output // !--error 10000 //Input polynomial has to be a 1-dimensional array //at line 35 of function poly2ac called by : //r = poly2ac(a,efinal) // Autocorrelation sequen //at line 4 of exec file called by : //ly2ac\poly2ac1.sce', -1
89fdbabe47193784ba021f5b1683bf48c842af02
8ec32fef269217bba00d07764a356c37f359dbfc
/demos/simple.sce
a0730c197c724bf2daa40f0b97f3e837f653526d
[]
no_license
manasdas17/ternary_plots
17b754f8b75565d40edc51a1b8b0507a7d1b53c3
5f605ec202612e7bc80037dcad9cc44794054f3b
refs/heads/master
2021-01-15T09:56:41.775143
2009-05-13T21:56:21
2009-05-13T21:56:21
null
0
0
null
null
null
null
UTF-8
Scilab
false
false
364
sce
simple.sce
clf(); a=gca();a.isoview='on'; drawTriangle(); drawAxis(1,0.2:0.2:0.9,"%4.2f",fontSty=2,fontSiz=4.0); drawAxis(2,0.2:0.2:0.9,"%4.2f",fontSty=2,fontSiz=4.0); drawAxis(3,0.2:0.2:0.9,"%4.2f",fontSty=2,fontSiz=4.0); vertexLabel(1,"A",fontSty=8,fontSiz=4.0); vertexLabel(2,"B",fontSty=8,fontSiz=4.0); vertexLabel(3,"C",fontSty=8,fontSiz=4.0); //xs2eps(0,"simple");
5eabb15a9a64664c0ec70e0341e6679fbdbfd223
449d555969bfd7befe906877abab098c6e63a0e8
/1583/CH5/EX5.6/HFAAGC_Ex_5_6.sce
44a5140e9109d675a965054a65d0636241763b54
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
542
sce
HFAAGC_Ex_5_6.sce
clc //Chapter 5:High Frequency Amplifiers and Automatic Gain Control //example 5.5 page no 159 //given s=poly(0,"s") Vo=-(0.4-s*4*10^-12)*(966*10^3) Vth=s^2*(79.6*10^-18)+s*(190.2*10^-9)+1 disp(Vo/Vth,'the transfer function is ') wz=10^11//transfer function zero w1=-5.5*10^6//pole due to input circuit w2=-2.41*10^9//pole due to output circuit mprintf('the transfer function zero is found to be located at %3.2e rad/s \n the pole due to input circuit is %3.2e rad/s \n the pole due to output circuit is %3.2e rad/s ',wz,w1,w2)
abb21dbf90430d2622d976ca3352da1d094d909f
717ddeb7e700373742c617a95e25a2376565112c
/72/CH11/EX11.3.1/11_3_1.sce
953214fedeabf7bd674bc0a58408b2990f4f6d54
[]
no_license
appucrossroads/Scilab-TBC-Uploads
b7ce9a8665d6253926fa8cc0989cda3c0db8e63d
1d1c6f68fe7afb15ea12fd38492ec171491f8ce7
refs/heads/master
2021-01-22T04:15:15.512674
2017-09-19T11:51:56
2017-09-19T11:51:56
92,444,732
0
0
null
2017-05-25T21:09:20
2017-05-25T21:09:19
null
UTF-8
Scilab
false
false
354
sce
11_3_1.sce
//CAPTION:Characteristic_Impedance_of_a_Coplanar_Stripline //chapter_no.-11, page_no.-507 //Example_no.11-3-1 clc; Pavg=250*(10^-3);//average_power_flowing_in_the_positive_z_direction Io=100*(10^-3);//total_peak_current Z0=(2*Pavg)/(Io^2); disp(Z0,'the_characteristic_impedance_of_the_coplanar_strip_line(in ohms)is =');
e49bbe18ba6fc80c63343cc57472093b60eab2b7
eed1c6205cce4d1e6f4d2aff6ee526581b6d55fb
/Le-rencana-TA.tst
b5f8a0fb134e508e8fde88c8c004e518262375e9
[]
no_license
Azizyeea/Le-resolusi
a3ca2faf4d56d1cecf4e69876bbfb17f77ace501
74b461e5e2752867c83e07eb472beb4d7c8be40d
refs/heads/master
2021-01-26T02:47:53.191092
2020-02-26T15:42:25
2020-02-26T15:42:25
243,279,382
0
0
null
2020-02-26T15:42:27
2020-02-26T14:14:23
Scilab
UTF-8
Scilab
false
false
104
tst
Le-rencana-TA.tst
Rencana TA -Algoritma *SPK *Pencarian ^PDF -IOT -Studi Kasus ^Disdukcapil ^Mitsubishi -Big Data
53d99b084355e7fea63074180a1df65da27d5474
449d555969bfd7befe906877abab098c6e63a0e8
/2510/CH14/EX14.8/Ex14_8.sce
fe3fcd8ab3b84ca93cf4aa39b6c959ffea8b3a69
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
1,095
sce
Ex14_8.sce
//Variable declaration: T1 = 138.0 //Temperature of oil entering the cooler (°F) T2 = 103.0 //Temperature of oil leaving the cooler (°F) t1 = 88.0 //Temperature of coolant entering the cooler (°F) t2 = 98.0 //Temperature of coolant leaving the cooler (°F) //Calculation: //For counter flow unit: DT1 = T1 - t2 //Temperature difference driving force at the cooler entrance (°F) DT2 = T2 - t1 //Temperature difference driving force at the cooler exit (°F) DTlm1 = (DT1 - DT2)/(log(DT1/DT2)) //LMTD (driving force) for the heat exchanger (°F) //For parallel flow unit: DT3 = T1 - t1 //Temperature difference driving force at the cooler entrance (°F) DT4 = T2 - t2 //Temperature difference driving force at the cooler exit (°F) DTlm2 = (DT3 - DT4)/(log(DT3/DT4)) //LMTD (driving force) for the heat exchanger (°F) //Result: printf("The LMTD for counter-current flow unit is : %.1f °F.",DTlm1) printf("The LMTD for parallel flow unit is : %.1f °F.",DTlm2)
ce8d71543afa41a9fe0997c7b6e2d6328df52dc3
449d555969bfd7befe906877abab098c6e63a0e8
/1514/CH4/EX4.8/4_8.sce
5d9bac9747989b0e5356d76c233cfb67522836fe
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
696
sce
4_8.sce
//chapter 4 //example 4.8 //page 113 clear all; clc ; //given hfe1=50;//minimum value hfe2=150;//maximum value Vbe=0.7; Vcc=15;//supply voltage V R1=18.6;R2=11.4;//kohm VT=(Vcc*R2)/(R1+R2); RT=(R1*R2)/(R1+R2); Rc=1;//kohm Re=1.0; //for hfe=50 Ic1=(VT-Vbe)/(RT/hfe1+Re*(1/hfe1+1));Ic1=4.31; Vce1=Vcc-(Ic1*Rc)-Re*(Ic1/hfe1+Ic1); printf("\nfor hfe=50,Vce=%.2f V,Ic=%.2f mA",Vce1,Ic1); //for hfe=150 Ic2=(VT-Vbe)/(RT/hfe2+Re*(1/hfe2+1));Ic2=4.74; Vce2=Vcc-(Ic2*Rc)-Re*(Ic2/hfe2+Ic2); printf("\nfor hfe=150,Vce=%.2f V,Ic=%.2f mA",(Vce2),Ic2); Vb= Vcc*(R2/(R1+R2)); Ve=Vb-Vbe; Ie=Vb/Re; Vc=ceil(Vcc-(Ie*Rc)); printf('\nCollector voltage is approximately %d V',Vc)
07ac7f16ee3fe1e9f5f14eb0ff380b7045a84ffe
a1e081ceabd043cf1506b917c7f2fb243be290d8
/P2/loadFunctions.sci
480352125723968885d418f499866fde10075c5f
[]
no_license
pablospe/ssc
2cd8e21e1843f246e2d7f565557f4f73368aa4b8
353fc62f18202e73b84bea4f2d83f64cdeb15723
refs/heads/master
2021-01-10T21:35:46.798450
2014-04-24T05:11:51
2014-04-24T05:11:51
null
0
0
null
null
null
null
UTF-8
Scilab
false
false
233
sci
loadFunctions.sci
exec ex1.sci exec ex3.sci exec ltisol.sci exec step_feuler.sci exec feuler.sci exec jacobiant.sci exec step_beuler.sci exec beuler.sci exec mixed_euler.sci exec cicled_euler.sci exec alpha_mixed_euler.sci exec global_error.sci
98fe0688607a132ce161417d59a61a9e46394a40
3ab7c3ba0b53c896747be95b21d2a39dc0ba021a
/Simpson.sce
1a5100ac2acf8f893651b66fa68c4c25ed7477d9
[]
no_license
Farber98/MetodosNumericos
0752f090eb596926f05bff0730a088eb70e77033
5c1be0d0e8274d204b41d0b91778847e6469e6bb
refs/heads/master
2021-04-23T12:58:07.339435
2020-03-25T08:41:32
2020-03-25T08:41:32
249,926,955
0
0
null
null
null
null
UTF-8
Scilab
false
false
141
sce
Simpson.sce
exec('C:/home/juan/Escritorio/Scilab/Simpson.sci',-1); deff('[y]= f(x)', 'y= (3*(x^3)+(%e^x))'); x=[0:0.1:0.8]; [s] = Simpson(x,f); disp(s);
28e835638368b92177f6427d1078e7f33964f4a9
449d555969bfd7befe906877abab098c6e63a0e8
/2741/CH5/EX5.12/Chapter5_Example12.sce
44c6411b34db58b4c21c6afcf134da9778f412dd
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
355
sce
Chapter5_Example12.sce
clc clear //Input data T=300;//The given temperature in K R=8.3*10^7;//The Universal gas constant in ergs/g mol-K //Calculations E=((3/2)*(R*T))/10^7;//The total random kinetic energy per gram -molecule of oxygen in joules //Output printf('The total random kinetic energy of one gm-molecule of oxygen at 300 K is K.E = %3.0f joules',E)
7bfe23cb71f7c713e5d1e96100064531bbc092d4
6e257f133dd8984b578f3c9fd3f269eabc0750be
/ScilabFromTheoryToPractice/Programming/testvarlocale.sce
916f6148c85b933ac2742d0cbbd2f1853cf83753
[]
no_license
markusmorawitz77/Scilab
902ef1b9f356dd38ea2dbadc892fe50d32b44bd0
7c98963a7d80915f66a3231a2235010e879049aa
refs/heads/master
2021-01-19T23:53:52.068010
2017-04-22T12:39:21
2017-04-22T12:39:21
89,051,705
0
0
null
null
null
null
UTF-8
Scilab
false
false
245
sce
testvarlocale.sce
clear y //to delete function y=foo(x) disp('dans ''foo'' x='+string(x)) y=1+x^2 disp('dans ''foo'' y='+string(y)) endfunction x=2 z=foo(1) // inside "foo" x is 1 x // x is still equal to 2 y // y doesn't exist here
4de47115f3cc1b68ddc63c482593eebadee17edc
9eee9f16f22ece682f8592130aa351a0d050f197
/compiler.tst
db52388e5cb19f97ceeafabdf406983b9c2217c5
[]
no_license
ansjob/wacc
e388482b79af937a092f24011dd7c96a271101ce
aae607757954ad77614ba300ac3615dcb443ca4d
refs/heads/master
2021-01-23T18:49:28.013827
2014-01-10T16:15:57
2014-01-10T16:15:57
null
0
0
null
null
null
null
UTF-8
Scilab
false
false
1,346
tst
compiler.tst
compile(skip:1 ; skip:2, C) :: C = [noop:1, noop:2]. phrase(stmt(S), [var(x), =, 5, +, 7]), add_control_points(S, Sp), compile(Sp, C) :: C = [push(7), push(5), add, store(x):_, eop:_]. phrase(stmt(S), [var(x), =, 5, *, 3, -, 2]), add_control_points(S, Sp), compile(Sp, C) :: C = [push(2), push(3), push(5), mult, sub | _]. phrase(stmt(S), [var(_), =, var(X)]), add_control_points(S, Sp), compile(Sp, C) :: C = [fetch(X), store(_):_, eop:_]. phrase(stmt(S), [while, l_paren, 5, '<=', 3, r_paren, ^, !, l_paren, false, r_paren, do, skip]), add_control_points(S, Sp), compile(Sp, C) :: C = [loop([false, neg, push(3), push(5), le, and], [noop:_]):_ , eop:_]. phrase(stmt(S), [while, true, ^, var(x), eq, 3, do, skip]), add_control_points(S, Sp), compile(Sp, C) :: C = [loop([push(3), fetch(x), eq, true, and], [noop:_]):_, eop:_]. compile(ass(var(y), 2 + 4):_, C) :: C = [push(4), push(2), add, store(y):_]. compile(cond(true, skip:_, skip:_):_, C) :: C = [true, branch([noop:_], [noop:_]):_]. compile(while(true, skip:_):_, C) :: C = [loop([true], [noop:_]):_]. compile((((5) / (0))), C) :: C = [push(0), push(5), div]. phrase(stmt(S), [try, var(z), =, 7, catch, l_paren, skip, semicolon, skip, r_paren]), add_control_points(S, Sp), compile(Sp, C) :: C = [try([push(7), store(z):_]):_, catch([noop:_, noop:_]):_, eop:_].
f870e78c0ad382056046feba2ec32a66f53d2ac6
b3c9357cd1290921e67444ae057761959fdf24f1
/Curso de programação com Scilab/códigos/ex012610.sce
b065524537c521a419d1ce748512dae9de725633
[]
no_license
joaolrneto/Scilab
91742520422426dc8a772997ef4a5d6376008b6e
f383f87e4585955cf19d0dae1b5c29f93c3f70b4
refs/heads/master
2023-02-05T20:13:03.677069
2020-12-30T14:53:09
2020-12-30T14:53:09
264,671,730
1
0
null
null
null
null
UTF-8
Scilab
false
false
507
sce
ex012610.sce
//Desenvolver um programa em Matlab que leia 20 //valores correspondentes as notas de //PCI. As notas variam de 0 a 10, somente valores //inteiros. Calcular e escrever a //Frequência Absoluta e a Frequência Relativa //das notas lidas. //Obs: //a)Frequência Absoluta é a quantidade de vezes que uma nota ocorreu no conjunto. //b)Frequência Relativa é a Frequência Absoluta //dividida pela quantidade de notas lidas. //c)Escrever a nota, a sua Frequência Absoluta e a sua Frequência Relativa.
69d629b3bcf94f7a32a978aeb8a73021ac955d96
449d555969bfd7befe906877abab098c6e63a0e8
/2681/CH5/EX5.6/Ex5_6.sce
b0f058a7e030429acf720515679abc76f64081b2
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
304
sce
Ex5_6.sce
//output power of cable //given clc alpha=0.28//db/m//attenuation alpha_50m=0.28*50//db//attenutaion of 50 m cable pi=0.4//watt//input power//ERROR po=pi/(10^((alpha_50m)/10))//watt//output power disp(po*1000,'the output power of 50m in mW ')//mW //ERROR in calculation of the book as pi=0.04
93a84bef8a541bc15c4952c2e98f367145a307d4
8217f7986187902617ad1bf89cb789618a90dd0a
/source/2.5/tests/examples/pwd.man.tst
73a15658ca47eb1e4246390f31975a8131b7e7c0
[ "LicenseRef-scancode-public-domain", "LicenseRef-scancode-warranty-disclaimer" ]
permissive
clg55/Scilab-Workbench
4ebc01d2daea5026ad07fbfc53e16d4b29179502
9f8fd29c7f2a98100fa9aed8b58f6768d24a1875
refs/heads/master
2023-05-31T04:06:22.931111
2022-09-13T14:41:51
2022-09-13T14:41:51
258,270,193
0
1
null
null
null
null
UTF-8
Scilab
false
false
20
tst
pwd.man.tst
clear;lines(0); pwd
7a2827e856828e2e7bff06e493c52f0f0a79c449
717ddeb7e700373742c617a95e25a2376565112c
/284/CH6/EX6.5/ex_5.sce
474bb22d1dc8f6753592aed6be500c544db0800b
[]
no_license
appucrossroads/Scilab-TBC-Uploads
b7ce9a8665d6253926fa8cc0989cda3c0db8e63d
1d1c6f68fe7afb15ea12fd38492ec171491f8ce7
refs/heads/master
2021-01-22T04:15:15.512674
2017-09-19T11:51:56
2017-09-19T11:51:56
92,444,732
0
0
null
2017-05-25T21:09:20
2017-05-25T21:09:19
null
UTF-8
Scilab
false
false
433
sce
ex_5.sce
// Chapter 6_The pn junction //Caption_Junction capacitance //Ex_5//page 230 Na=10^16 //acceptor ion concentration T=300 //temperature in kelvin Nd=10^15 ni=1.5*(10^10) //intrinsic ion concentration Vr=5 //Reverse applied voltage Vbi=0.635 V=Vr+Vbi C=(e*eps*Na*Nd/(2*(V)*(Na+Nd)))^0.5 A=10^-4 //Area of the pn junction Ca=A*C*10^12 printf('The junction capacitance for the given semiconductor is %1.3f pF',Ca)
5edc2b77dd6c5fdc841ea151844e1f234cc16677
84ea66af72ab1c482a1a03fd2d8bdc74e9ad1668
/Tutorial04-ODE/Scilab_code/Tutorial4_ode_simple_plot.sce
f2df913ff8e2dc3492db17992b7b10512abe64d1
[]
no_license
FOSSEE/scilab-tutorials
c4a9464a5b163074566234e42659f99e2012ecc0
301609f6ef1653dee4fa2ed74bca3e6f7abc1308
refs/heads/master
2020-03-26T23:48:04.178016
2018-10-08T00:44:39
2018-10-08T00:44:39
145,567,949
0
0
null
null
null
null
UTF-8
Scilab
false
false
533
sce
Tutorial4_ode_simple_plot.sce
//This script demonstrates the use of ODE solver and computing the //solution at different times. The output is in the form of a plot //of time versus computed solution clear clc //Definition the function. function ydot = func(t,y) ydot = t^2*exp(-2*t) + y endfunction //Initial condition y0 = -1; //Start time t0= 0; //The array of time where the solution is computed tf = 4:0.01:10; //Calling the ODE solver sol=ode(y0,t0,tf,func); //Plotting the result plot(tf,sol,'Linewidth',3) xtitle('Dynamics of y','Time','y(t)')
e379c387452529bd77fdcf8dbd2adc071e1f2fb8
449d555969bfd7befe906877abab098c6e63a0e8
/3862/CH5/EX5.3/Ex5_3.sce
284963ee91dc46f992580ccc5379562a35ea309f
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
735
sce
Ex5_3.sce
clear // W=500.0 //weight of block F1=200.0 //force up the inclined plane when block is moving down F2=300.0 //force up the inclined plane when block is at rest //When block starts moving down the plane //sum of all forces perpendicular to the plane = 0 //N =Wcoso //sum of all forces parallel to the plane = 0 //Fr+F1=Wsino //sino-ucoso=F1/w 1 //When block starts moving up the plane //sum of all forces perpendicular to the plane = 0 //N =Wcoso //sum of all forces parallel to the plane = 0 //Wsino+Wucoso=F2 //using these equations o=asin((F1*0.5/W)+(F2*0.5/W)) //angle of inclination printf("\n Angle of inclination is %0.3f ",o*180/3.14) //using 1 u=sin(o)-F1/W printf("\n coefficient of friction is %0.3f ",u)
8dbe86eda8fba00f7830bbf6d62aaeb7f46e03d3
5f838df28ada5a3bbd5be4c69902b9df4dbffacb
/fir_lpf_impulse_response.sci
afa10e69ca2387d6d3d3ee201e0682ea434bf276
[]
no_license
Sai-Sumedh/filter_design_180070024
dca29c7b95cb43421e1577af3673f29df3a83251
c8348c85b515e9d987404c335f52150933512405
refs/heads/main
2023-01-14T05:11:25.601573
2020-11-12T18:44:36
2020-11-12T18:44:36
312,361,627
0
0
null
null
null
null
UTF-8
Scilab
false
false
2,219
sci
fir_lpf_impulse_response.sci
// this file gives the impulse response of an ideal LPF function [h_n]=impulse_response_ideal_lpf(w_p, n_max) // passpand till w_p n = -n_max:n_max; h_n = (w_p/%pi)*sinc(w_p*n); endfunction //n_max = 500; //wp2 = 1.767; //wp1 = 1.386; //h1 = impulse_response_ideal_lpf(wp2,n_max); //n_axis = -n_max:n_max; //h2 = impulse_response_ideal_lpf(wp1, n_max); //del = zeros(-n_max:n_max); //del(n_max+1)=1; //h_new = del-h2+h1; //plot(n_axis,h_new) // this verifies that the linear combination of ideal impulse responses is max at 0 //plot(n_axis,h); //xlabel("n"); //ylabel("h[n]]"); //title("Ideal LPF impulse response with wp=1.767"); function [w_n]=generate_rect_window(l_win_side, centre, n_max) // length=odd // centre is the value (like real n in h[n] (can be -ve too), not the array index]) temp = zeros(-n_max:n_max); temp(n_max-l_win_side+1+centre:n_max+l_win_side+1+centre)=1; w_n = temp; endfunction // //w = generate_rect_window(5, 10); //disp(w) //plot(-10:10, w) function [h_finite]=apply_window_h_ideal(h_ideal_n, window_len) // window the function , centered at the max position of h_ideal OR should it be zero? // window_len = N (one side length) [max_val, centre_index] = max(h_ideal_n); n_max= floor((length(h_ideal_n)-1)/2); centre = centre_index-n_max-1; w_n = generate_rect_window(window_len, centre, n_max); disp(length(h_ideal_n)) disp(length(w_n)) h_finite = h_ideal_n.*w_n; endfunction //n_max = 10000; //wp2 = 1.767; //wp1 = 1.386; //n_axis = -n_max:n_max; //h2 = impulse_response_ideal_lpf(wp2,n_max); //h_wind = apply_window_h_ideal(h2, 10); ////plot(n_axis, h_wind, n_axis, h2) ////plot(n_axis, h1) ////H2 = fft(h2); ////plot(abs(H2)); //w_axis = -3.14:0.01:3.14 function [H_w_val]=freq_transform(n_axis, w_axis, h_n) // n_axis, w_axis and h_n are row arrays product = w_axis'*n_axis; exp_term = exp(-%i*product); H_w_val = exp_term*h_n'; H_w_val = H_w_val'; // now a row vector with size = size of w_axis endfunction //H = freq_transform(n_axis, w_axis, h2) //plot(w_axis, abs(H)) //plot(n_axis, h2) // its working beautifully!
a69667e9d58014b7fd4ac660bca902caf01ba00c
592b1b7dfaefd62d755737ac7b6e81f44f7786ba
/2d Program to solve algebraic and transcendental equation by Newton Raphson.sce
a5563af70fe565e70786d8c4b12ba632f4036f2b
[]
no_license
muitnet/Numerical-and-Statistical-Methods-sem2-fybscit-mumbai-university
841143b72d52229c68bcd0666ed10c844c02f507
2d1c638b881f3e418a982baa02632effd03ae5fe
refs/heads/master
2021-01-19T07:23:05.463429
2017-04-07T11:54:24
2017-04-07T11:54:24
87,540,712
6
5
null
null
null
null
UTF-8
Scilab
false
false
369
sce
2d Program to solve algebraic and transcendental equation by Newton Raphson.sce
deff('y=f(x)','y=sin(x)-x/2'); deff('y1=f1(x)','y1=cos(x)-1/2'); x0=2, d=0.0001; c=0;n=1; printf('successive iterations \tx0 \tf(x0) \tf1(x0) \n'); while n==1 x2=x0; x1=x0-(f(x0)/f1(x0)); x0=x1; printf('\t%f \t%f \t%f \n',x2,f(x1),f(x1)); c=c+1; if abs (f(x0))<d break; end end printf(' the root of %i iteration is : %f',c,x0);
ff7869a836baadc9fb936cb87fb9c91b44c22a97
449d555969bfd7befe906877abab098c6e63a0e8
/226/CH20/EX20.2/example2_sce.sce
cac6041d41a9d209eb397c89504e2121fc1e9703
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
463
sce
example2_sce.sce
//chapter 20 //example 20.2 //page 905 printf("\n") printf("given") Vs=30;Vd1=.7;Vg=.8;Ig=200*10^-6; Vspk=1.414*Vs disp(" at 5 degree") es=Vspk*.087// sin5=.087 disp(" at 90 degree") es=Vspk Vt=Vd1+Vg disp(" to trigger at es=3.7V the R2 moving contact is at the top") es=3.7; Vr1=es-Vt I1=1*10^-3; R1=Vr1/I1 R=Vt/I1//R=R2+R3 disp(" to trigger at es =42.4 the R2 moving contact at the bottom") es=42.4; Vr3=Vt; I1=es/(R+R1) R3=Vt/I1 R2=R-R3
7c8185858bc819afe3b50d77abdde4783c471899
449d555969bfd7befe906877abab098c6e63a0e8
/3012/CH13/EX13.5/Ex13_5.sce
7aee332ddce95c6189860369d1ad0076df2f4b3a
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
1,125
sce
Ex13_5.sce
// Given:- // When expressed on a per mole of fuel basis, the balanced chemical equation obtained in the solution to Example 13.2 takes the form // CH4 + 2.265O2 + 8.515N2 ----- .951CO2 + .049CO + .289O2 + 8.515N2 + 2H2O cpbar = 38.00 // specific heat in KJ/kmol.K // From table A-25 hfnotbar = -74850.00 // enthalpy of formation for methane // From table A-23 deltahbarO2 = 14770-8682 deltahbarN2 = 14581-8669 // Calculations hRbar = hfnotbar + cpbar*(400-298) + 2.265*deltahbarO2 + 8.515*deltahbarN2 // in kj/kmol // With enthalpy of formation values for CO2, CO, and H2O(g) from Table A-25 and enthalpy values from Table A-23 hpbar = .951*(-393520 + (88806 - 9364)) + .049*(-110530 + (58191 - 8669)) + .289*(60371 - 8682) + 8.515*(57651 - 8669) + 2*(-241820 + (72513 - 9904)) Qcvdot = hpbar - hRbar // in kj/kmol // Result printf( ' The rate of heat transfer from the combustion chamber in kJ per kmol of fuel is: %.2f',Qcvdot)
96a1a475953571c3bf9383d0b0efc5410bda3fa9
54f91b13c34106536031bc17626e1546404154b2
/data/odml_nix_data/numbers.sce
20c152ce6d5f7d0eac5f0fd4535c0064b71fa78e
[]
no_license
JiriVanek/guess_the_number_py
d19150258c990a3306265ef1ee595bc0fb9ece88
713899ff66ff4369658956325bc1e7a0e62a1014
refs/heads/master
2021-04-06T08:16:18.286522
2018-09-23T08:06:59
2018-09-23T08:06:59
124,891,307
0
1
null
null
null
null
UTF-8
Scilab
false
false
2,178
sce
numbers.sce
randomize_trials=true; write_codes = true; pulse_width = 100; begin; text { caption="0"; font_color = 255,255,255; font_size = 400; } tx0; text { caption="1"; font_color = 255,255,255; font_size = 400; } tx1; text { caption="2"; font_color = 255,255,255; font_size = 400; } tx2; text { caption="3"; font_color = 255,255,255; font_size = 400; } tx3; text { caption="4"; font_color = 255,255,255; font_size = 400; } tx4; text { caption="5"; font_color = 255,255,255; font_size = 400; } tx5; text { caption="6"; font_color = 255,255,255; font_size = 400; } tx6; text { caption="7"; font_color = 255,255,255; font_size = 400; } tx7; text { caption="8"; font_color = 255,255,255; font_size = 400; } tx8; text { caption="9"; font_color = 255,255,255; font_size = 400; } tx9; trial { trial_duration=1000; start_delay=500; picture { text tx1; x=0; y=0;}; port_code=1; } t1; trial { start_delay=500; trial_duration=1000; picture { text tx2; x=0; y=0; }; port_code=2; } t2; trial { trial_duration=1000; start_delay=500; picture { text tx3; x=0; y=0; }; port_code=3; } t3; trial { trial_duration=1000; start_delay=500; picture { text tx4; x=0; y=0;}; port_code=4; } t4; trial { start_delay=500; trial_duration=1000; picture { text tx5; x=0; y=0; }; port_code=5; } t5; trial { trial_duration=1000; start_delay=500; picture { text tx6; x=0; y=0; }; port_code=6; } t6; trial { trial_duration=1000; start_delay=500; picture { text tx7; x=0; y=0;}; port_code=7; } t7; trial { start_delay=500; trial_duration=1000; picture { text tx8; x=0; y=0; }; port_code=8; } t8; trial { trial_duration=1000; start_delay=500; picture { text tx9; x=0; y=0; }; port_code=9; } t9; trial { trial_duration=1000; start_delay=500; picture { text tx0; x=0; y=0;}; port_code=10; } t0; LOOP $i 50; trial t1; trial t2; trial t3; trial t4; trial t5; trial t6; trial t7; trial t8; trial t9; trial t0; ENDLOOP;
2cd474e9fdae51c4166a4f96e0f5e6940cf5c795
ebfed86dee276110294a4e93fa80377908bbd317
/macros/pyrMeanShiftFiltering.sci
ae90a8f8d1510f73638fdb1ac5b347929265536d
[]
no_license
gursimarsingh/FOSSEE-Image-Processing-Toolbox
a9d46b698c98566fec867eb2ce3cfeb427058d5c
165f6d7d1f20262a1637a923c6aad6e663ad1538
refs/heads/master
2021-08-16T19:18:59.591175
2017-11-08T17:55:04
2017-11-08T17:55:04
96,531,802
0
0
null
2017-07-07T11:21:10
2017-07-07T11:21:10
null
UTF-8
Scilab
false
false
2,782
sci
pyrMeanShiftFiltering.sci
// Copyright (C) 2015 - IIT Bombay - FOSSEE // // This file must be used under the terms of the CeCILL. // This source file is licensed as described in the file COPYING, which // you should have received as part of this distribution. The terms // are also available at // http://www.cecill.info/licences/Licence_CeCILL_V2-en.txt // Author: Priyanka Hiranandani,Gursimar Singh // Organization: FOSSEE, IIT Bombay // Email: toolbox@scilab.in function [outputImg]=pyrMeanShiftFiltering(inputImage,sp,sr,varargin) //Performs initial step of meanshift segmentation of an image // //Calling Sequence //[outputImg]=pyrMeanShiftFiltering(inputImage,sp,sr) //[outputImg]=pyrMeanShiftFiltering(inputImage,sp,sr,maxLevel) // //Parameters //outputImg:The destination image of the same format and the same size as the source inputImage. //inputImage:The source image. //SP:The spatial window radius. //SR:The color window radius. //maxLevel:Maximum level of the pyramid for the segmentation. default 1 // //Description //The function implements the filtering stage of meanshift segmentation, that is, the output of the function is the filtered "posterized" image with color gradients and fine-grain texture flattened. At every pixel (X,Y) of the input image (or down-sized input image, see below) the function executes meanshift iterations, that is, the pixel (X,Y) neighborhood in the joint space-color hyperspace is considered. //When MaxLevel > 0, the gaussian pyramid of MaxLevel+1 levels is built, and the above procedure is run on the smallest layer first. After that, the results are propagated to the larger layer and the iterations are run again only on those pixels where the layer colors differ by more than SR from the lower-resolution layer of the pyramid. That makes boundaries of color regions sharper. Note that the results will be actually different from the ones obtained by running the meanshift procedure on the whole original image (i.e. when MaxLevel = 0). // //Examples //im=imread("images/lena.jpg"); //img=pyrMeanShiftFiltering(im,100,200); //figure("Figure_name","originalImage"); //imshow(im); //figure("Figure_name","ProcessedImage"); //imshow(img); // //Authors //Priyanka Hiranandani //Gursimar Singh [lhs,rhs]=argn(0); if rhs>4 then error(msprintf("Too many input arguments")); end if rhs<3 then error(msprintf("Not enough input arguments")); end if lhs >1 then error(msprintf("Too many output arguments")); end inputList=mattolist(inputImage); if rhs==3 then outputList=raw_pyrMeanShiftFiltering(inputList,sp,sr); elseif rhs==4 then outputList=raw_pyrMeanShiftFiltering(inputList,sp,sr,varargin(1)); end for i=1:size(outputList) outputImg(:,:,i)=outputList(i) end endfunction
f81a6d34de14060476faa383a865b763d769e8c4
449d555969bfd7befe906877abab098c6e63a0e8
/273/CH25/EX25.7/ex25_7.sce
72e35ec9ccf5b8c98143bf33228e66f9aa3c82c3
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
400
sce
ex25_7.sce
clc;clear; //Example 25.7 //calculation of product of two binary numbers //given values X='10101';//first binary number with last two digits in fractional part Y='101';//second binary number with last two digits in fractional part //calculation x=bin2dec(X);//decimal equivalent y=bin2dec(Y);//decimal equivalent z=x*y; Z=dec2bin(z); disp(Z,'product of the given binary numbers is ')
fbc36c1dc73557708020b514f1289c8c8e7e5470
417f69e36190edf7e19a030d2bb6aa4f15bb390c
/SMTTests/tests/ok_LRA.tst
bdbb3c09a2a8806beb264e46425c10e4694021a7
[]
no_license
IETS3/jSMTLIB
aeaa7ad19be88117c7454d807a944e8581184a66
c724ac63056101bfeeb39cc3f366c8719aa23f7b
refs/heads/master
2020-12-24T12:41:17.664907
2019-01-04T10:47:43
2019-01-04T10:47:43
76,446,229
1
0
null
2016-12-14T09:46:41
2016-12-14T09:46:41
null
UTF-8
Scilab
false
false
1,447
tst
ok_LRA.tst
; checks that all symbols in LRA are defined and that various ; expressions in the language are permitted (set-logic LRA) (declare-fun a () Real) (declare-fun b () Real) (assert (= a (+ a b))) (assert (= a (+ b 1))) (assert (= a (+ b 1.0))) (assert (= a (+ 1 b))) (assert (= a (+ 1.0 b))) (assert (= a (- a b))) (assert (= a (- b 1))) (assert (= a (- b 1.0))) (assert (= a (- 1 b))) (assert (= a (- 1.0 b))) (assert (= a (- b))) (assert (= a (- 1))) (assert (= a (- 1.0))) (assert (>= a b)) (assert (>= a 1)) (assert (>= a 1.0)) (assert (>= 1 a)) (assert (>= 1.0 a)) (assert (<= a b)) (assert (<= a 1)) (assert (<= a 1.0)) (assert (<= 1 a)) (assert (<= 1.0 a)) (assert (> a b)) (assert (> a 1)) (assert (> a 1.0)) (assert (> 1 a)) (assert (> 1.0 a)) (assert (< a b)) (assert (< a 1)) (assert (< a 1.0)) (assert (< 1 a)) (assert (< 1.0 a)) (assert (distinct a b 1 1.0)) (assert (= a (* b (/ 3 20)))) (assert (= a (* (/ 3 20) b))) (assert (= a (* (/ (- 3) 20) b))) (assert (= a (* (- 20) b))) (assert (= a (* 20 b))) (assert (= a (* 20.0 b))) (assert (= a (* (- 20.0) b))) (assert (= (* b (/ 3 20)) a)) (assert (= (* (/ 3 20) b) a)) (assert (= (* (/ (- 3) 20) b) a)) (assert (= (* (- 20) b) a)) (assert (= (* 20 b) a)) (assert (= (* 20.0 b) a)) (assert (= (* (- 20.0) b) a)) (assert (= a (ite true b b))) (assert (= a (ite true 1.0 1))) (assert (forall ((a Real)(c Real)) (=> (> a c) (> (+ a 1) c)))) (assert (exists ((c Real)) (= a c )))
ea1b3397738c0e879034a4fa91a88b65ed6f26e1
449d555969bfd7befe906877abab098c6e63a0e8
/2345/CH15/EX15.35/Ex15_35.sce
ee2dd5bc5ac935a57a5df23d74493e593fd7676b
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
496
sce
Ex15_35.sce
//Finding efficiency //Example 15.35(pg. 416) clc clear m=2//quantity of aluminium to be melted in kg t1=15,t2=660//temp in degreeC S=0.212//specific heat of aluminium L=78.8//latent heat of aluminium in kcal/kg H=(m*S*(t2-t1))+(m*L)//total heat required to melt Al in kcal i=5//input to furnace in kW E=i*(1000*10*60)//Energy input to furnace in watt-sec E1=E/4180//energy input in kcal e=H*100/E1//efficiency of furnace printf('Thus the efficiency of furnace is %2.3f percent',e)
fee1ee768a0b8ac628841e438b90ec2825e85665
c87a44be475d3008f7d0fcb8dd2eac3b2fa78e94
/Examples/Chapter_7/Example_7_10.sce
97ab0adb46cb7b0c5b013488aef7a9f31e42abab
[]
no_license
Echeban/icmd3e
6c766ffafab0137a64de46448879d8a9eed2903c
6ca0273e322fa390fcabc66669f3f56c9af5a563
refs/heads/master
2020-03-27T09:08:47.798549
2018-08-27T15:45:44
2018-08-27T15:45:44
146,316,991
0
0
null
null
null
null
UTF-8
Scilab
false
false
847
sce
Example_7_10.sce
// Example 7.10: [45/0/90/-45]_S, truncated max. strain mode(0); funcprot(0); clc; clear; exec('C:\Users\EJB\OneDrive\Scilab\CLT.sci');// see Appendix CLT.sci E1 = 126E3; E2 = 11E3; G12 = 6.6E3; //MPa, AS4/3501-6 v12 = 0.28; tt = 0.8; tk = 0.125; //mm F1t = 1950; F1c = 1480; F2t = 48; F2c = 200; F6 = 79;//MPa orientation=[45,0,90,-45,-45,90,0,45]; thickness=[1,1,1,1,1,1,1,1]*tk; N = [0;0;1] //change sign here to reverse the load Q = buildQ(E1,E2,G12,v12); A = buildABD(Q,thickness,orientation); eps_ = A\N n=length(orientation); for k=1:n/2 eps(:,k) = rotateEps_(eps_,orientation(k)); // laminate -> lamina end eps*1E6 eps1 = eps(1,1), eps2 = eps(2,1), //largest values of normal strain e1t = F1t/E1, e1c=F1c/E1, // calculated failure strains R1 = e1c/eps1 R6 = (1+v12)*max(e1t,e1c)/abs(eps1-eps2) R = min(R1,R6)
7f565a5d8c6e64795c03b8fad32605f74b2ffa0e
449d555969bfd7befe906877abab098c6e63a0e8
/2858/CH11/EX11.12/Ex11_12.sce
5df566ad197db4451d0a1526c61d480dc31dff2a
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
608
sce
Ex11_12.sce
//example 11.12 clc; funcprot(0); z1=21/2; Lg=9; Bg=6; Qg=500*1000; Cc1=0.3; Cc2=0.2; Cc3=0.25; H2=12; H3=6; H1=21; e1=0.82; e2=0.7; e3=0.75; s1=Qg/(Lg+z1)/(Bg+z1); //sigma1 s2=500*1000/(9+27)/(6+27);//sigma2 s3=500*1000/(9+36)/(6+36);//sigma3 ss1=6*105+(27+21/2)*(115-62.4);//sigmadash1 ss2=6*105+(27+21)*(115-62.4)+(120-62.4)*6;//sigmadash2 ss3=6*105+48*(115-62.4)+12*(120-62.4)+3*(122-62.4);//sigmadash3 sc1=Cc1*H1/(1+e1)*log10((ss1+s1)/ss1); sc2=Cc2*H2/(1+e2)*log10((ss2+s2)/ss2); sc3=Cc3*H3/(1+e3)*log10((ss3+s3)/ss3); sc=sc1+sc2+sc3; disp(sc*12,"total settlement in inch");
f9cbef8b3d1554fbd17c5c166255263d4e99d7e3
04ebc1029c20752e734a1d83b49a31329d5283fd
/trust_game_2/frame5.sce
bd9b3c750c3c427f9cf482a84c43f739234c02d7
[]
no_license
jangwoopark/presentation-trust
a1293e481da417c914534a30b1969f092f08e115
31621ef8b534bca19d4b9d4a5d57792ff8bb058d
refs/heads/master
2020-06-27T14:50:42.294466
2017-09-12T01:51:08
2017-09-12T01:51:08
97,063,115
0
0
null
null
null
null
UTF-8
Scilab
false
false
3,008
sce
frame5.sce
scenario = "frame"; scenario_type = fMRI_emulation; #scenario_type = fMRI; scan_period = 3000; response_matching = simple_matching; no_logfile = false; sequence_interrupt=false; #default active_buttons = 2; button_codes=0,1; default_font="arial"; default_font_size=30; default_text_color=255,255,255; default_background_color=0,0,0; begin; text { caption = "+"; font_size = 12; } cross; text { caption = "SELECT AMOUNT FROM"; } select; text { caption = "10"; } dollar; text { caption = "SENDING:"; } sending; text { caption = "KEEPING:"; } keeping; text { caption = "_"; } dollar_2; text { caption = "_"; } dollar_3; box { height = 486; width = 2; color = 255,255,255; } vert; box { height = 2; width = 142; color = 255,255,255; } horiz; box { height = 2; width = 4; color = 255,255,255; } divide; box { height = 42; width = 140; color = 0,0,0; } zero; array { LOOP $i 10; $k = '$i+1'; box {height = 42; width = 140; color = 0,0,0;} "red10_$k"; ENDLOOP; } rex; picture { text cross; x = 0; y = 0; LOOP $i 10; $k = '$i+1'; box "red10_$k" ; x=0; y='-198+$i*44'; ENDLOOP; text select; x = -250; y = 0; text dollar; x = -250; y = -100; text sending; x = 250; y = 23; text dollar_2; x = 400; y = 23; text keeping; x = 250; y = -23; text dollar_3; x = 400; y = -23; box zero; x=0; y=-242; box vert; x=70; y=-22; box vert; x=-70; y=-22; box horiz; x=0; y=220; box horiz; x=0; y=-264; LOOP $i 11; box divide; x=68; y='220-$i*44'; box divide; x=-68; y='220-$i*44'; ENDLOOP; } cursor10; begin_pcl; mouse stick = response_manager.get_mouse( 1 ); #joystick stick = response_manager.get_joystick( 1 ); stick.set_min_max( 1, -1, 1 ); stick.set_min_max( 2, -264, 220 ); #stick.set_saturation( 1, 0.999 ); #stick.set_saturation( 2, 0.999 ); #stick.set_dead_zone( 1, 0.001 ); #stick.set_dead_zone( 2, 0.001 ); loop int count = response_manager.total_response_count( 1 ) until response_manager.total_response_count( 1 ) > count begin array <int> seq10[10] = {-220, -176, -132, -88, -44, 0, 44, 88, 132, 176}; array <string> num[10] = {"$1", "$2", "$3","$4","$5","$6","$7","$8","$9","$10"}; array <string> mun[10] = {"$9", "$8", "$7","$6","$5","$4","$3","$2","$1","$0"}; stick.poll(); cursor10.set_part_x( 1, stick.x() ); cursor10.set_part_y( 1, stick.y() ); if (stick.y()==-264) then zero.set_color(0,0,0); dollar_2.set_caption("_"); dollar_2.redraw(); dollar_3.set_caption("_"); dollar_3.redraw(); end; if (stick.y()>-264) then zero.set_color(0,255,0); dollar_2.set_caption("$0"); dollar_2.redraw(); dollar_3.set_caption("$10"); dollar_3.redraw(); elseif (stick.y()<-264) then zero.set_color(0,0,0); end; loop int t=1 until t>10 begin if (stick.y()>seq10[t]) then rex[t].set_color(255,0,0); dollar_2.set_caption(num[t]); dollar_2.redraw(); dollar_3.set_caption(mun[t]); dollar_3.redraw(); elseif (stick.y()<seq10[t]) then rex[t].set_color(0,0,0); end; t = t + 1; end; cursor10.present(); end;
2f32577636b647b9cee37d44d6370b25341f42db
08ee8059476493a308f8e13adcbace48d7bcfc92
/Scilab_packetTracer_codes/FSK_rkb.sce
fa8a7e303db9eb9691bc4aa43c58ac4b8889afa8
[]
no_license
Rushi-Bhatt/Self-Study
7ed44b7821154b7906c7d532255ea648ec9d6299
90cc75440328ba21769ffac878f46feadeb2f06f
refs/heads/master
2021-01-11T15:29:31.739065
2017-02-08T22:17:57
2017-02-08T22:17:57
80,360,471
0
0
null
null
null
null
UTF-8
Scilab
false
false
201
sce
FSK_rkb.sce
m=[0 1 0 1 0 0 1 0 0] e1=1 e2=3 fsk=[] n=0:0.001:1 for i=1:length(m) if m(i)==0 then fsk=[fsk 1*sin(2*%pi*e1*n)] else fsk=[fsk 1*sin(2*%pi*e2*n)] end end plot(fsk); xgrid(4)
6207415da4cbe2e37f440222e7ead6d9eabe8a41
449d555969bfd7befe906877abab098c6e63a0e8
/2858/CH11/EX11.11/Ex11_11.sce
27f2ba4cabe3366470039cceb4d79348c1a258b8
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
373
sce
Ex11_11.sce
//example 11.11 clc; funcprot(0); Lg=9.92; Bg=7; n1=3; Nc=8.75; n2=4/1000; Ap=14^2/12^2; cup=1775; a1=0.4;//alpha1 p=4*14/12; cu1=1050; L1=15; a2=0.54;//alpha2 cu2=1775; L2=45; FS=4; Qu=n1*n2*(9*Ap*cup+a1*p*cu1*L1+a2*p*cu2*L2); Qu2=Lg*Bg*cup*Nc+2*(Lg+Bg)*(cu1*L1+cu2*L2); disp(Qu2/1000,"load in kip") Qall=Qu/FS; disp(Qall,"allowed load in kip");
bc49d7df43e290915419a480185e305c0ce4e4c7
449d555969bfd7befe906877abab098c6e63a0e8
/1427/CH18/EX18.25/18_25.sce
9c74e2157d048b984ee8d2ce4b4077c566fd2908
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
360
sce
18_25.sce
//ques-18.25 //Calculating pressure at which water must be heated to produce superheated steam clc Hv=540;//latent heat of vapourization (in cal/g) T1=273+100; T2=273+150;//temperature (in K) P1=1;//in atm R=1.987;//cal/mol/K //On solving, log(P2/P1) = (Hv*(T2-T1))/(2.303*R*T1*T2) P2=P1*4.709 printf("The required vapour pressure is %.3f atm.",P2);
eec52c30e98e228b35188d52e29e8d42f56f7dc7
449d555969bfd7befe906877abab098c6e63a0e8
/2294/CH1/EX1.17/EX1_17.sce
806bf7ff61bca0917e05beb65dd4825c7b17e287
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
1,006
sce
EX1_17.sce
//Example 1.17<i> //Determine the power and the rms value of the signal clc; t=0:0.001:10; y=5*cos(50*t+%pi/3); P=(integrate('5^2*(cos(50*t))^2','t',0,2*%pi))/(2*%pi); rmsvalue=sqrt(P); disp(P,'The power of the given signal is:'); disp(rmsvalue,'the rms value is:'); //Example 1.17<ii> //Determine the power amd rms value of the signal clc; t=0:0.001:10; x1=10*sin(50*t+%pi/4); x2=16*cos(100*t+%pi/3); P1=(integrate('10^2*(sin(50*t))^2','t',0,2*%pi))/(2*%pi); P2=(integrate('16^2*(cos(100*t))^2','t',0,2*%pi))/(2*%pi); P=P1+P2; rmsvalue=sqrt(P); disp(P,'The power of the given signal is:'); disp(rmsvalue,'the rms value is:'); //Example 1.17 <iii> //Determine the power and rms value of the signal clc; t=0:0.001:10; x1=5*cos(15*t); x2=5*cos(5*t); P1=(integrate('5^2*(cos(15*t))^2','t',0,2*%pi))/(2*%pi); P2=(integrate('5^2*(cos(5*t))^2','t',0,2*%pi))/(2*%pi); P=P1+P2; rmsvalue=sqrt(P); disp(P,'The power of the given signal is:'); disp(rmsvalue,'the rms value is:');
cbf2f6e44bacc0869c556a3cbe493275e753af06
449d555969bfd7befe906877abab098c6e63a0e8
/479/CH15/EX15.1/Example_15_1.sce
d0704423f76a5cf83bcf61fd68a9a823446ae00a
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
754
sce
Example_15_1.sce
//Chemical Engineering Thermodynamics //Chapter 15 //Fuel Cells //Example 15.1 clear; clc; //Given del_F = -56.29;//Standard free energy change in Kcal/Kgmole del_H = -68.317;//Standard heat of reaction in Kcal/kgmole F = 23.06;//Electro-chemical equivalent in Kcal/volt J = 2;//Valance for H2 //To Calculate the emf of the cell, cell efficiency and heat to be removed to maintain isothermal conditions //Basis: 1 Kgmole of H2 //From equation 15.4 (page no 355) E = -del_F/(F*J); mprintf('1.The emf of the cell is %f volt.',E); n = del_F/del_H*100; mprintf('\n 2.The cell efficiency is %f percent.',n); Q = del_H-del_F; mprintf('\n 3.The heat to be removed is %f Kcal to maintain the temperature at 25 degree celsius.',Q); //end
6e2291fdf8d5e3cfcf7be3ce2ddbbb4a4d6e2fe7
449d555969bfd7befe906877abab098c6e63a0e8
/2159/CH1/EX1.9/9.sce
b4dac5b031c905095def0843f07f98247dc3c7a9
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
169
sce
9.sce
//problem 1.9 s1=1.6 s2=0.8 s3=13.6 p1=98100 p2=176580 w=9810 h1=p1/w h2=p2/w h=(h2-h1+1.6*s2-4.1*s1)/(s3-s2) disp(h.*100 ,"difference in mercury level(cm)")
473926e72cf62aa914d703a9cd5c5d31038b3671
449d555969bfd7befe906877abab098c6e63a0e8
/978/CH4/EX4.12/Example4_12.sce
54a02bd3141c0b28672ca2e9bc68f101d7cea0a8
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
154
sce
Example4_12.sce
//chapter-4,Example4_12,pg 491 printf("normal count would be 2^3=8, while 5-modulo counter would limit it to 5, so that illegitimate states are 8-5=3")
f960c7354d2c5c162f0cca6c2bc03f8cace40281
b2675f983fedb79e5e6f1940962373bda0570ec4
/testing/Tests/testing1.tst
67195c6bbe30225d3f9dd9489403f9913cbcaf49
[]
no_license
Meena92/Projects
b854c40b91515bb429c9e13fb0cbc95c03e0a9d6
06361e24bf51883ff4140db5c37c3f40836a5752
refs/heads/master
2020-03-29T01:45:03.726432
2019-06-11T05:26:08
2019-06-11T05:26:08
149,404,524
0
0
null
null
null
null
UTF-8
Scilab
false
false
2,917
tst
testing1.tst
<?xml version="1.0" ?> <TestCase name="testing1" version="5"> <meta> <create version="10.0.0" buildNumber="10.0.0.431" author="admin" date="03/22/2018" host="inbasdpc10722" /> <lastEdited version="10.0.0" buildNumber="10.0.0.431" author="admin" date="03/22/2018" host="inbasdpc10722" /> </meta> <id>A7E1B70E2C0B11E8BD16D8CB8A8AB1DA</id> <Documentation>Put documentation of the Test Case here.</Documentation> <IsInProject>true</IsInProject> <sig>ZWQ9NSZ0Y3Y9LTEmbGlzYXY9MTAuMC4wICgxMC4wLjAuNDMxKSZub2Rlcz0tNzIzOTUzOTU5</sig> <subprocess>false</subprocess> <initState> </initState> <resultState> </resultState> <Node name="http POST /api/Accounts/Dna/" log="" type="com.itko.lisa.ws.rest.RESTNode" version="3" uid="AB11E8F52C0B11E8BD16D8CB8A8AB1DA" think="500-1S" useFilters="true" quiet="false" next="end" > <!-- Filters --> <Filter type="com.itko.lisa.test.FilterGetHTTPHeader"> <valueToFilterKey>lisa.http POST /api/Accounts/Dna/.rsp</valueToFilterKey> <headerKey>authorization</headerKey> <prop>Auth</prop> </Filter> <url>http://localhost:9209/api/Accounts/Dna/</url> <content>{&quot;ClientPlatform&quot;:{&quot;Identifier&quot;:&quot;iOS&quot;,&quot;ConnectionType&quot;:&quot;LAN&quot;,&quot;FormFactor&quot;:&quot;Phone&quot;,&quot;Version&quot;:&quot;9.3.2&quot;,&quot;Channel&quot;:&quot;CustomerMobile10&quot;,&quot;ClientSWVersion&quot;:&quot;0.1.53.0006&quot;,&quot;Model&quot;:&quot;iPhone7,2&quot;,&quot;IpAddress&quot;:&quot;0.0.0.0&quot;,&quot;UUID&quot;:&quot;7CFF33F8-BA01-4767-8978-390540CFEA77&quot;},&quot;Uri&quot;:&quot;/api/Accounts/Dna&quot;}</content> <content-type></content-type> <data-type>text</data-type> <header field="HTTP-Version" value="HTTP/1.1" /> <header field="content-type" value="application/json" /> <header field="authorization" value="Basic MC4wLjAuMDptb2JpbGVfZGVtbzFAbDMuY29tOkFiYzEyMzQ1Njc4" /> <httpMethod>POST</httpMethod> <onError>abort</onError> <encode-test-props-in-url>true</encode-test-props-in-url> </Node> <Node name="end" log="" type="com.itko.lisa.test.NormalEnd" version="1" uid="A7E1B7142C0B11E8BD16D8CB8A8AB1DA" think="0h" useFilters="true" quiet="true" next="fail" > </Node> <Node name="fail" log="" type="com.itko.lisa.test.Abend" version="1" uid="A7E1B7122C0B11E8BD16D8CB8A8AB1DA" think="0h" useFilters="true" quiet="true" next="abort" > </Node> <Node name="abort" log="" type="com.itko.lisa.test.AbortStep" version="1" uid="A7E1B7102C0B11E8BD16D8CB8A8AB1DA" think="0h" useFilters="true" quiet="true" next="" > </Node> </TestCase>
96f71da39b85b070961877895613fe56fb389f75
449d555969bfd7befe906877abab098c6e63a0e8
/1673/CH3/EX3.14/3_14.sce
abc816f29ed171682fd3d1c870a35a061ab6a8bc
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
310
sce
3_14.sce
//example 3.14 //lagrange's interpolation formula //page 105 clc;clear;close; y=[4 12 19]; x=[1 3 4]; y_x=7; Y_X=0; poly(0,'y'); for i=1:3 p=x(i); for j=1:3 if i~=j then p=p*((y_x-y(j) )/( y(i)-y(j))) end end Y_X=Y_X+p; end disp(Y_X,'Y_X=');
414f12844395a694d84bd213c60cf59b8b31c209
449d555969bfd7befe906877abab098c6e63a0e8
/2774/CH9/EX9.10/Ex9_10.sce
ae1cc57c04ae1f2240c938dae8955547439c8f78
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
2,495
sce
Ex9_10.sce
clc // initialization of variables // The reaction equation for theoritical air is //C3H8 + 5(O2 + 3.76N2) ---> 3CO2 + 4H2O + 18.8N2 // for 250% theoritical air reaction becomes //C3H8 + 12.5(O2 + 3.76N2) ---> 3CO2 + 4H2O + 47N2 + 7.5O2 // All the enthalpy of formation values are taken from Table B.5 with units in kJ/mol Np=47+7.5+4+3 // number of moles of product hfCO2=-393520 // enthalpy of formation associated with CO2 hbarCO2=(62963+65271)/2 //enthalpy associated with CO2 at 1380 K from table E.4 hbarCO2dash=(58381+60666)/2 //enthalpy associated with CO2 at 1300 K by average from table E.4 hdotbarCO2=9364//enthalpy associated with CO2 at 298K from table E.4 hfC3H8=-103850// ehthalpy of formation associated with C3H8 hfH2O=-241820 // enthalpy of formation associated with gaseous H2O hbarH2O=(51521+53351)/2 //enthalpy associated with H20 at 1380 K by taking average from table E.6 hbarH2Odash=48807 //enthalpy associated with H20 at 1300 K from table E.6 hdotbarH2O=9904//enthalpy associated with H20 at 298K from table E.6 hbarN2=42920 //enthalpy associated with N2 at 1380K from table E.2 by interpolating enthalpy between 1020K and 980K hbarN2dash=40170 //enthalpy associated with N2 at 1300 K from table E.2 hdotbarN2=8669//enthalpy associated with N2 at 298K from table E.2 hfO2=(44198+45648)/2 // enthalpy associated with O2 at 1380 Kby taking average from table E.3 hfO2dash=48807 // enthalpy associated with O2 at 1380 Kby taking average from table E.3 hdotbarO2=8682//enthalpy associated with O2 at 298K table E.3 // for adiabatic flame temperature first assume products composed only of nitrogen and Q=0 as adiabatic hp=(hfC3H8-3*(hfCO2)-4*(hfH2O))/Np +hdotbarN2 // using hp we assume temp=1380 K // then energy for 1380 k is H1=3*(hfCO2+hbarCO2-hdotbarCO2)+4*(hfH2O+hbarH2O-hdotbarH2O)+7.5*(hfO2-hdotbarO2)+47*(hbarN2-hdotbarN2) // energy assuming temperature to be 1380 K //this is very large // now at 1300 K adiabatic temperature H2=3*(hfCO2+hbarCO2dash-hdotbarCO2)+4*(hfH2O+hbarH2Odash-hdotbarH2O)+7.5*(hfO2dash-hdotbarO2)+47*(hbarN2dash-hdotbarN2) // energy assuming temperature to be 1300 K // now interpolation between these two temperatures Tp=1300-((hp+H2)/(H1-H2))*(1380-1300) // adiabatic temperature by interpolation printf("The adiabatic flame temperature is %i K",Tp) //The answers is different in textbook as they hav printed the value of hfCO2 with positive sign while calculating H2
8873dc343a8382168ca6d988ba37f63194c63112
449d555969bfd7befe906877abab098c6e63a0e8
/3802/CH8/EX8.7/Ex8_7.sce
755ee06095c70897821948c4edbef8187ca270ee
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
837
sce
Ex8_7.sce
//Book Name:Fundamentals of Electrical Engineering //Author:Rajendra Prasad //Publisher: PHI Learning Private Limited //Edition:Third ,2014 //Ex8_7.sce. clc; clear; P=300e3; V=500; a=8; p=4; Z=786; theta=5; I=P/V; armature_AT=(1/2)*(I/a)*(Z/(2*p)); //Total AT per pole demagnetizing_AT=armature_AT*(4*theta/360); //demagnetizing AT per pole distorting_AT=armature_AT-demagnetizing_AT; //distorting AT per pole printf("\n Demagnetizing AT per pole=%d AT/pole \n",demagnetizing_AT) printf("\n Cross AT per pole=%4.0f AT/pole \n",distorting_AT) //There is a error in the substitution of number of conductors (Z) in the book //In the question Z=786 but problem is solved by substituting Z=768 //But I make the codes with the given data that is Z=786 //So the book answer vary
dc3dbd78183c61dd209a83e350c0b7e109045a8f
449d555969bfd7befe906877abab098c6e63a0e8
/876/CH2/EX2.5/Ex2_5t.txt
7b15877e5ae6580e51e84ddd8a8ef1a9fede7f38
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
308
txt
Ex2_5t.txt
//caption:Find magnitude of limiting error fot R1 and R2 //Ex2.5 clc clear close R1=36//resistance(in ohm) R2=75//resistance(in ohm) er=0.005//limiting error(in ohm) dR1=R1*er disp(dR1,'magnitude of limiting error for R1(in ohm)=') dR2=R2*er disp(dR2,'magnitude of limiting error for R2(in ohm)=')
0bad52df1100bc4031cdc27d80900c46b4bf80b4
449d555969bfd7befe906877abab098c6e63a0e8
/1118/CH16/EX16.2/eg16_2.sce
6002dcc048d4e4b9c15a78d294fadd26cd7e759a
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
1,306
sce
eg16_2.sce
clear; //clc(); x2d=(%i)*0.3; xl1=(%i)*0.08; xline=(%i)*0.55; xl2=(%i)*0.08; ig=0.75; z2t=x2d +xl1 +xline + xl2; er=1; eint=er+ig*z2t; e2int=sqrt(real(eint)^2 + imag(eint)^2); x2gf=imag(x2d + xl1); i2d=e2int/x2gf; x2bf=imag(xl1 +xline); i2df=er/x2bf; tot_i2d=i2d +i2df; printf("The total subtransient short circuit current is:%.3f pu\n",tot_i2d); //calculation of effect of maximum dc component offset i2g=sqrt(2)*i2d; i2f=sqrt(2)*i2df; tot_i=i2g+i2f; max_sc=sqrt(tot_i2d^2+tot_i^2); sb=50; vlb=138*10^(3); ilb=sb/(sqrt(3)*vlb*(10^(-6))); isc=ilb*max_sc; //caculation of prefault voltage behind transient reactance x1d=(%i)*0.35; z1t=x1d+xl1+xline+xl2; eint1=er+ig*z1t; e1int=sqrt(real(eint1)^2 + imag(eint1)^2); x1gf=imag(x1d + xl1); i1d=e1int/x1gf; x1bf=imag(xl1 +xline); i1df=er/x1bf; tot_i1d=i1d +i1df; printf("The total transient short circuit current is:%.3f pu\n",tot_i1d); isc1=ilb*tot_i1d; //calculation of prefault voltage behind synchronous reactance xd=(%i)*1.25; zt=xd+xl1+xline+xl2; eint3=er+ig*zt; e3int=sqrt(real(eint3)^2 + imag(eint3)^2); x3gf=imag(xd + xl1); i3d=e3int/x3gf; x3bf=imag(xl1 +xline); i3df=er/x3bf; tot_i3d=i3d +i3df; printf("The total synchronous short circuit current is:%.3f pu\n",tot_i3d);
eb5349b59938cb84c81cf35a278eb829d4397a8e
9224090b07cb3f466fe72819cf90ca0c4dedc901
/Exercise 21/Exercise 21.sce
19663331434c00ef6c325a8e75744c8c9bf335fc
[]
no_license
MGYBY/advanced_ocean_modelling
8c383b09f4077174559bd7964062625012026fa0
848f0f4d616d472021c31582b64557f04067ce74
refs/heads/main
2023-07-14T14:37:57.714203
2021-08-20T20:13:49
2021-08-20T20:13:49
398,386,684
4
1
null
null
null
null
UTF-8
Scilab
false
false
2,799
sce
Exercise 21.sce
//=========================================== // Exercise 21: Eddy formation in a Strait //=========================================== // Animation of Eulerian concentration & surface flow fields // Author: Jochen Kaempf, March 2015 (update) f = gcf(); f.color_map = jetcolormap(64); f.figure_size = [1000,500]; scf(0); // manipulate color map to make the dark red a bit lighter map = jetcolormap(64); ic = 57; for i = ic+1:64; map(i,1:3) = map(ic,1:3); end; f.color_map = map; // read input data c1=read("cS.dat",-1,100); u1=read("uS.dat",-1,100); v1=read("vS.dat",-1,100); [ntot nx] = size(c1); x = (1.8:3.6:100*3.6-1.8)'; y = (1.8:3.6:50*3.6-1.8)'; ntot = int(ntot/50) for n = 1:ntot // animation loop time = (n-1)*3; // time in hours nn = n-1; // grab data blocks itop = (n-1)*50+1; ibot = itop+49; cS = c1(itop:ibot,1:100)'; uS = u1(itop:ibot,1:100); vS = v1(itop:ibot,1:100); // interpolation of velocity components onto scalar grid points um = uS; vm = vS; for j = 1:50; for k = 2:100; um(j,k) = 0.5*(uS(j,k)+uS(j,k-1)); end; end; for j = 1:50; um(j,1) = um(j,2); end; for j = 2:50; for k = 1:100; vm(j,k) = 0.5*(vS(j,k)+vS(j-1,k)); end; end; for k = 1:100; vm(1,k) = vm(2,k);end; // elimination of grid points of small speeds for j = 1:50; for k = 1:100; speed(j,k) = sqrt(um(j,k)*um(j,k)+vm(j,k)*vm(j,k)); if speed(j,k) < 0.01; um(j,k) = 0.0; vm(j,k) = 0.0; end; end; end; drawlater; clf; // 2d colour plot of concentration field Sgrayplot(x,y,cS,zminmax=[0,0.5]); // overlay concentration contours xset("fpf"," "); col(1:11) = 80; contour2d(x,y,cS,11,col); ua = um(1:2:50,1:2:100); va = um(1:2:50,1:2:100); // overlay flow arrows champ(x(1:2:100),y(1:2:50),ua',va',1); // specify graph & axis properties a = gca(); a.font_size = 3; a.data_bounds = [0,0;360,180]; a.auto_ticks = ["off","off","on"]; a.sub_ticks = [1,1]; a.x_ticks = tlist(["ticks", "locations","labels"],.. [0 60 120 180 240 300 360], ["0" "60" "120" "180" "240" "300" "360"]); a.y_ticks = tlist(["ticks", "locations","labels"],.. [0 60 120 180], ["0" "60" "120" "180"]); xset("color",-1) xfrect(72,28,288,27); xfrect(0,180,33,108); title("Time = "+string(0.01*int(100*time/24))+" days","fontsize",4,'position',[180 180]); // add title xstring(135,2,"x (m)"); // add x label txt=gce(); txt.font_size = 4; txt.font_foreground = -1; xstring(1,100,"y (cm)"); // add z label txt=gce(); txt.font_size = 4; txt.font_foreground = -1; drawnow; // save frames as sequential GIF files (optional) //if nn < 10 then // xs2gif(0,'ex100'+string(nn)+'.gif') //else // if nn < 100 then // xs2gif(0,'ex10'+string(nn)+'.gif') //else // xs2gif(0,'ex1'+string(nn)+'.gif') // end //end end // end reference for animation loop
805a2c90381ee75d9bcef854e20dff7d2fcbb434
99b4e2e61348ee847a78faf6eee6d345fde36028
/Toolbox Test/rcosdesign/rcosdesign11.sce
07ec422b8f83be592e65e936d5a7a6ec582af8eb
[]
no_license
deecube/fosseetesting
ce66f691121021fa2f3474497397cded9d57658c
e353f1c03b0c0ef43abf44873e5e477b6adb6c7e
refs/heads/master
2021-01-20T11:34:43.535019
2016-09-27T05:12:48
2016-09-27T05:12:48
59,456,386
0
0
null
null
null
null
UTF-8
Scilab
false
false
321
sce
rcosdesign11.sce
//check o/p when i/p arg sps is of type char beta=0.3; span=3; sps='a'; h=rcosdesign(beta,span,sps); //output // !--error 10000 //input variable should be of type double //at line 10 of function checkIpValidity called by : //at line 34 of function rcosdesign called by : //h=rcosdesign(beta,span,sps); //
44913326e961e5aaddb7fd5d6cfd888bd4cac833
449d555969bfd7befe906877abab098c6e63a0e8
/149/CH34/EX34.23/ex23.sce
b51bc59fd51fdc73e9db7e6cb1aba041af0b3612
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
168
sce
ex23.sce
clear clc disp('probability of problem not getting solved=1/2*2/3*3/4=') 1/2*2/3*3/4 disp('probability of problem getting solved=1-(1/2*2/3*3/4)=') 1-(1/2*2/3*3/4)
5d356d19c438b4164c1f7ce2e63a05d6b90f6d3e
449d555969bfd7befe906877abab098c6e63a0e8
/1862/CH2/EX2.6/C2P6.sce
7b71a8241704cb0001cd1fd0e492f25c9b18c2b5
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
2,717
sce
C2P6.sce
clear clc //to find average velocity for interval AD and DF //to find slope of position curve at the points B and F and compare it with the value in velocity curve //to find average acceleration in the interval AD and AF //to find slope of velocity curve at the points D and compare it with the value in acceleration curve // GIVEN:: //distance travelling by the point D has come xD = 5.0//in m //distance travelling by the point A has come xA = 1.0//in m //distance travelling by the point F has come xF = 1.4//in m //time elapsed by the point D has come tD = 2.5//in seconds //time elapsed by the point A has come tA = 0.0//in seconds //time elapsed by the point F has come tF = 4.0//in seconds //velocity at point D vD = 0.0//in m/s //velocity at point A vA = 4.0//in m/s //velocity at point F vF = -6.2//in m/s // SOLUTION: //average velocity for the interval AD //applying kinematic equations Vav_x = (xD-xA)/(tD-tA) //average velocity for the interval DF //applying kinematic equations Vavx = (xF-xD)/(tF-tD) //slope of position curve at the point B slope_B = (4.5-2.8)/(1.5-0.5)//refer to the graph 2.6(b) given in the book on page no. 25 //slope of position curve at the point F slope_F = (1.4-4.5)/(4.0-3.5)//refer to the graph 2.6(b) given in the book on page no. 25 //average acceleration in the interval AD //applying kinematic equations Aav_x = (vD-vA)/(tD-tA)//in m/s^2 //average acceleration in the interval AF //applying kinematic equations Aavx = ((vF-vA)/(tF-tA))//in m/s^2 Aavx = nearfloat("pred",-2.6) //slope of velocity curve at the point D slope_D = (-0.9-0.9)/(3.0-2.0)//refer to the graph 2.6(c) given in the book on page no. 25 printf ("\n\n Average velocity for the interval AD Vav_x=\n\n %.1f m/s",Vav_x); printf ("\n\n Average velocity for the interval DF V_avx =\n\n %.1f m/s",Vavx); printf ("\n\n Slope of position curve at the point B slpoe_B=\n\n %.1f m/s",slope_B); printf ("\n\n Slope of position curve at the point F =\n\n %.1f m/s",slope_F); //refer velocity time graph 2.6(c) given in the book on the page no.25 printf ("\n\n From velocity curve value of velocity at point B is \n\n 1.7m/s"); printf ("\n\n From velocity curve value of velocity at point Bis \n\n -6.2m/s"); printf ("\n\n Average acceleration for the interval AD Aav_x =\n\n %.1f m/s^2",Aav_x); printf ("\n\n Average acceleration for the interval AF Aavx =\n\n %.1f m/s^2",Aavx); printf ("\n\n Slope of velocity curve at the point D slope_D =\n\n %.1f m/s^2",slope_D); //refer velocity time graph 2.6(d) given in the book on the page no.25 printf ("\n\n From acceleration curve value of acceleration at point D is \n\n -1.8m/s^2");
e41245af3be0e64370a49d7c32bbe1c8ab85ce78
449d555969bfd7befe906877abab098c6e63a0e8
/3204/CH9/EX9.2/Ex9_2.sce
dac26bcfac1c7ce485ca62aa386c5fcb5086c202
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
919
sce
Ex9_2.sce
// Initilization of variables W1=2000 //N (or 2 kN)// load at joint D of the truss W2=4000 //N (or 4 kN)// load at joint E of the truss Lac=6 //m // length of the tie Lab=3 //m Lbc=3 //m theta=60 //degree // interior angles of the truss // Calculations // Here A is simply supported & B is roller support. Now the SUPPORT REACTIONS are given as, Rc=((W1*(Lab/2))+(W2*(Lab+(Lbc/2))))/Lac //N // Taking moment at A Ra=W1+W2-Rc //N // Take sum Fy=0 // Calculations // Calculating the axial forces in the respective members by METHOD OF SECTION // A section is drawn passing through member DE such that it cuts the respective member. Now consider the equilibrium of the left hand portion of the truss. The three unknown forces are Fde, Fdb, & Fab // Take moment about B Fde=((3*Ra)-(W1*Lab*sind(30)))/(3*cosd(30)) //N // (T) // Results clc printf('The axial force in the member DE (Fde)is %f N \n',Fde)
fbaed66d771ea58d51f90e2bfe61c114991b3a57
449d555969bfd7befe906877abab098c6e63a0e8
/1019/CH4/EX4.10/Example_4_10.sce
978b688a164e4fcb774242e0d5c416ccd3eee8da
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
469
sce
Example_4_10.sce
//Example 4.10 clear; clc; //Given R=8.314;// gas constant in J K^-1 mol^-1 Cp=2.5*R; //specific heat capacity at constant pressure of the gas in J K^-1 mol^-1 V1=10;//volume of gas in m^3 T1=300; //initial temperature in K T2=400;//final temperature in K P=101000;//pressure in N m^-2 //to calculate the entropy change n=(P*V1*0.001)/(R*T);//moles delS=n*(Cp*log(T2/T1));//entropy change in J K^-1 mprintf('Change in entropy = %f J K^-1',delS); //end