blob_id
stringlengths 40
40
| directory_id
stringlengths 40
40
| path
stringlengths 6
214
| content_id
stringlengths 40
40
| detected_licenses
listlengths 0
50
| license_type
stringclasses 2
values | repo_name
stringlengths 6
87
| snapshot_id
stringlengths 40
40
| revision_id
stringlengths 40
40
| branch_name
stringclasses 15
values | visit_date
timestamp[us]date 2016-08-04 09:00:04
2023-09-05 17:18:33
| revision_date
timestamp[us]date 1998-12-11 00:15:10
2023-09-02 05:42:40
| committer_date
timestamp[us]date 2005-04-26 09:58:02
2023-09-02 05:42:40
| github_id
int64 436k
586M
⌀ | star_events_count
int64 0
12.3k
| fork_events_count
int64 0
6.3k
| gha_license_id
stringclasses 7
values | gha_event_created_at
timestamp[us]date 2012-11-16 11:45:07
2023-09-14 20:45:37
⌀ | gha_created_at
timestamp[us]date 2010-03-22 23:34:58
2023-01-07 03:47:44
⌀ | gha_language
stringclasses 36
values | src_encoding
stringclasses 17
values | language
stringclasses 1
value | is_vendor
bool 1
class | is_generated
bool 1
class | length_bytes
int64 5
10.4M
| extension
stringclasses 15
values | filename
stringlengths 2
96
| content
stringlengths 5
10.4M
|
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
fccae1e148a818c04c2caca2ad11a6452f8bc588
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/839/CH21/EX21.4/Example_21_4.sce
|
bbc99599b83f798243b7443d28e8364ce73c06c1
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 754
|
sce
|
Example_21_4.sce
|
//clear//
clear;
clc;
//Example 21.4
//Given
Nre = 20000;
T = 40; //[C]
D = 2; //[in.]
Dv1 = 0.288; //[cm^2/s], for water-air
Dv2 = 0.145; //[cm^2/s], for ethanol-air
//Solution
//For air at 40 C
rho = 29/22410*273.16/313.16; //[g/cm^3]
mu = 0.0186; //[cP], from Appendix 8
mubyrho = mu*10^-2/rho; //[cm^2/s]
//(a)
// For the air-water system,
Nsc = mubyrho/Dv1;
//Form Eq.(21.54)
Nsh = 0.023*(Nre/2)^0.81*Nsc^0.44;
//In the film theory kc = D/BT and since Nsh = kc*D/Dv
BT1 = D/Nsh; //[in.]
disp('in.',BT1,'Effective thickness of the gas film is')
//(b)
//For the system air-ethanol,
Nsc = mubyrho/Dv2;
Nsh = 0.023*(Nre/2)^0.81*Nsc^0.44;
BT2 = D/Nsh; //[in.]
disp('in.',BT2,'Effective thickness of the gas film is')
|
9676a8e9be21e7559034cbe2d41a606a9eae4217
|
e6d5f1d801a3fe887b5dc04b8cc0a9eabc1fd432
|
/Proyecto1/floydwarshall.sce
|
2802b2ea35c12a57ee037e1fb2e23f4780c8770d
|
[] |
no_license
|
lordjuacs/MateIII
|
70def332063e56eb10fb47678a7e6130dc0dca63
|
164c53b61c9e35e565121f77ba2c578680a3ab56
|
refs/heads/master
| 2021-05-24T15:56:01.078904
| 2020-07-27T19:57:34
| 2020-07-27T19:57:34
| 253,643,962
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,100
|
sce
|
floydwarshall.sce
|
function [S, P]=FloydSPR(AdjMax)
// *INPUT:*
// AdjMax: Adjacent matrix that represents a weighted, directed graph
//
// *OUTPUT:*
// S: distance to destination node
// P: next hop node
//
// *DESCRIPTION*
// Given a input adjacent matrix (AdjMax) that represents a weighted, directed graph.
// The function finds the shorest path from one vertex 'i' to another 'j'.
// The return values includes a matrix (S) that denotes the shortest distance
// between vertices 'i' and 'j', and a matrix (P) that denotes the next vertex 'k'
// on the path from vertex 'i' to vertex 'j'
N=min(length(AdjMax(:,1)),length(AdjMax(1,:)));
P=-1*ones(N,N);
S=AdjMax;
for k=1:N
for i=1:N
for j=1:N
if S(i,k)==%inf
continue;
end
if S(k,j)==%inf
continue;
end
if S(i,j)>S(i,k)+S(k,j)
if P(i,k)==-1
P(i,j)=k;
else
P(i,j)=P(i,k);
end
S(i,j)=S(i,k)+S(k,j);
end
end
end
end
endfunction
|
dd247623cd45611928069acf0a69b620a9dab174
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2891/CH4/EX4.1/Ex4_1.sce
|
e85112f1dd46598ae34098007c442cbb94e27ded
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 617
|
sce
|
Ex4_1.sce
|
//Exa 4.1
clc;
clear;
close;
L=poly(0,'L') //Defining L as lambda
l=10*L
N=20 // number of elements
d=l/N
// formula : BW=(2*(L/d)*1/N)
BW1=(horner((2*L/(N*d)),1))
disp(BW1,"Null-to-null BW of broadside array in radians when l=10*L,N=20:")
l=50*L
N=100 // number of elements
d=l/N
// formula : BW=(2*(L/d)*1/N)
BW2=(horner((2*L/(N*d)),1))
disp(BW2,"Null-to-null BW of broadside array in radians when l=50*L,N=100:")
l=20*L
N=50 // number of elements
d=l/N
// formula : BW=(2*(L/d)*1/N)
BW3=(horner((2*L/(N*d)),1))
disp(BW3,"Null-to-null BW of broadside array in radians when l=20*L,N=50:")
|
9dcdd60b7fdccd33930e0f3e989993540e8bb346
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3889/CH7/EX7.4/Ex7_4.sce
|
260d603216c6d70035e12ed5ef1a6c5a6dbdc042
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 786
|
sce
|
Ex7_4.sce
|
//Example 7.4
//page 436
//Control Systems: Principles and Design
//M Gopal, Second Edition, Tata McGraw-Hill
//Chapter:Compensator Design Using Root Locus
xdel(winsid())//close all graphics Windows
clear;
clc;
//transfer function
s=%s;
P=1/((s)*(s+3)*(s^2+2*s+2));
//Root locus plot using evans root locus
f=figure()
evans(P)
title("Root locus of 1/((s)*(s+3)*(s^2+2*s+2))",'fontsize',5)
h=legend('');
h.visible="OFF"
zoom_rect([-2 -1.5 2 1.5]*kpure(P)/3)
a=gca();
a.x_location="origin"
a.y_location="origin"
a.parent.background=8;
legends(['root locus';'';'asymptotic directions';'open loop poles'],[2,3,1,-2],with_box=%f,opt="ur",2.8)
sgrid();
K=poly(0,'K')
R= routh_t(P,K);
disp(R,'Routh Array=')
kval= kpure(P)
disp(kval,'Limiting Gain Kmax=')
|
5987988e99ab7b58446f863d0e2b82e0cb13c6f0
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1052/CH17/EX17.2/172.sce
|
29cfca9bcde7d196cefd6b10cef159eb7f477754
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 523
|
sce
|
172.sce
|
clc;
//Example 17.2
//page no 201
printf("Example 17.2 page no 201\n\n");
rpm=1694//speed of fan
q=12200//flow rate of q_a
rpm_n=2100//new speed of fan
q_n=q*(rpm_n/rpm)//new flow rate
printf("\nnew flow rate q_n=%f acfm",q_n);
//applyingeq 17.5
P=5//pressure ,in
P_n=P*(rpm_n^2/rpm^2)//new pressure
printf("\nnew pressureP_n=%f in H20",P_n);
//required power is calculated using eq. 17.6
hp=9.25//power at 1694 speed
hp_n=hp*(rpm_n^3/rpm^3)//new power required
printf("\n new powerhp_n=%f bhp",hp_n);
|
a517911d9e2d2290fa8455bed35c69e4b88dee6a
|
ccd668354774dcc20ed466510e78952e1205ad54
|
/Finute-Impluse-Response-Filter.sce
|
b2ee5cc3f733f1a90d64f8fe05fb8ca09dba0d2e
|
[
"MIT"
] |
permissive
|
nikhita/filter-theory
|
6d9d9bb7375acd1c1f545fd9b7ee7b6dc90a56b5
|
031c8dd652bbe50e0130f83b9884d6a11b2c7339
|
refs/heads/master
| 2023-08-16T13:23:28.993482
| 2017-04-09T16:23:46
| 2017-04-09T16:23:46
| 87,696,376
| 2
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,289
|
sce
|
Finute-Impluse-Response-Filter.sce
|
clear;
clc;
clf;
// enter cut-off frequencies and input length
wc1 = input("Enter the starting cut-off frequency")
wc2 = input("Enter the ending cut-off frequency")
M = input("Enter the input length")
Tuo = (M-1)/2 // center value
// if the cut off frequencies are equal
if wc1 == wc2 then
wc = wc1*%pi
for n = 1:M
if n == Tuo +1 then
hd(n) = wc/%pi;
else
hd(n) = sin(wc*((n-1)-Tuo))/(((n-1)-Tuo)/%pi);
end
end
end
// if cut-off frequencies are not equal
if wc1 ~= wc2 then
for n = 1:M
if n ~= (M+1)/2 then
hd(n) = sin(wc2*(n-(M+1)/2)/((n-(M+1)/2)*%pi) - sin(wc1*(n-(M+1)/2)/((n-(M+1)/2)*%pi)
end
end
hd((M+1)/2) = (wc2-wc1)/%pi
end
// if the value is too small, ignore it
for kk = 1:M
if hd(kk)>-0.000001 & hd(kk)<0.000001 then
hd(kk) = 0;
end
end
// display hd(n)
disp(hd)
// FOR WINDOW FUNCTION
z = input("Do you want to use window? 1. YES 2.NO ")
if z == 1 then
wi = input("Which window? 1.rectangular 2.hamming 3.hanning")
select wi
case 1 then
[hzm,fr] = frmag(hd,200);
subplot(2,1,1);
plot(fr,hzm);
subplot(2,1,2);
plot(2,1,2);
k = 1:M
plot2d3(k-(M+1)/2,hd(k))
end
end
|
aa23b698de07dc5e9612d7dbfba06eaa7a2d9d77
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2072/CH18/EX18.3/EX18_3.sce
|
3844993638a55a874196b192e6dc3e37a73c8f47
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 114
|
sce
|
EX18_3.sce
|
//Example18.3
delta_Vac=42//in volt
R_eq=14//in ohm
I=delta_Vac/R_eq
disp("solution b")
disp(I,"Current in amps=")
|
ab9a91a233546d9626f5cd2316611445e334ca58
|
2707da68619819d8105f9ae472647dc578c75730
|
/PTime.sci
|
c29acd0cb70afbfb026ad9ffe91a6f08d67d351a
|
[
"Apache-2.0"
] |
permissive
|
KrayzeX/ToE
|
1aa62db747841e960fb47fbd59e38c6afa3a0723
|
ad81dd433c0d3b23ebb00f0e65095ab6c1bed34e
|
refs/heads/master
| 2020-05-26T09:19:33.970171
| 2017-06-02T08:50:16
| 2017-06-02T08:50:16
| 82,474,743
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 395
|
sci
|
PTime.sci
|
//Марчук Л.Б. 5307 подгруппа 3
//Данный модуль принимает на вход корни характеристического многочлена;
//возвращает практическую длительность переходного процесса.
function result = PTime(p1, p2)
result = 3/min(abs(real(p1)), abs(real(p2)));
endfunction
|
344f8e38ecd67ae461bca0adc7061da3062541ee
|
53ebf1e1ac047080afe96b265db1bec2fe5d00eb
|
/simulacao1/autocor.sce
|
9aef1c3fb818e3f17cd81daece9b7c1c764fb05e
|
[] |
no_license
|
angelomarcelino/DSP_projects
|
766a22c4a19decb3e4c1dc1e7d48063896edba98
|
f3bff9dc80738b5b13292a2c67ad80a48acac270
|
refs/heads/master
| 2020-04-30T16:43:11.353981
| 2019-07-25T14:20:41
| 2019-07-25T14:20:41
| 176,957,151
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 898
|
sce
|
autocor.sce
|
clc;
clear;
function Rxx = autocor(N,L)
// Generates a random signal
x = rand(1,N*L,"normal");
// Fill a matrix (NxN) with zeros
Rxx = zeros(N,N);
// Main loop
for l = 0 : L-1
/* Creates L different vectors of segmented parts
from the original random signal */
xl = x(1 + l*N : N + l*N);
for t = 0 : N - 1
x_aux = zeros(1, N);
// Creates t shifted signals from the already
// segmented signal xl
x_aux(1 : N-t) = x_aux(1 : N-t) + xl(1+t : N);
// Fills and sums all the resulted matrices
Rxx(t+1, : ) = xl .* x_aux + Rxx(t+1, : );
end
end
Rxx = Rxx/L;
// To analyze the results, run the following:
// Rxx = autocor(50,5000);
// figure;
// mesh((Rxx));
// Or whatever variable you choose
endfunction
|
d0f628ddc8e4c4d569dd51448207865e87fe0923
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2360/CH6/EX6.8/ex6_8.sce
|
3fedd980b21c6ac2d4f0a9464fe8e62cf921d4c5
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 634
|
sce
|
ex6_8.sce
|
// Exa 6.8
format('v',7);clc;clear;close;
// Given data
R1 = 1.2;// in k ohm
R1 = R1 * 10^3;// in ohm
R2 = 4.7;// in k ohm
R2 = R2 * 10^3;// in ohm
C1 = 1;// in µF
C1 = C1 * 10^-6;// in F
C3 = 1;// in µF
C3 = C3 * 10^-6;// in F
Rx = (R2*C1)/C3;// unknown resistance in ohm
Rx = Rx * 10^-3;// in k ohm
Cx = (R1*C3)/R2;// unknown capacitance in F
Cx = Cx * 10^6;// in µF
disp(Rx,"The unknown resistance in kΩ is ")
disp(Cx,"The unknown capacitance in µF is");
f = 0.5;// in kHz
f = f * 10^3;// in Hz
// omega = 2*%pi*f;
D = 2*%pi*f*Cx*10^-6*Rx*10^3;// dissipation factor
disp(D,"The dissipation factor is");
|
b27ce0be4828ec8cf849ab5daf1f665384fc8f85
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1736/CH9/EX9.4/Ch09Ex4.sce
|
e2b76c7cda2ad4b56f879aeedc910d4b0908dae8
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 452
|
sce
|
Ch09Ex4.sce
|
// Scilab Code Ex9.4 Page:280 (2006)
clc;clear;
e = 1.6e-019; // Energy equivalent of 1 eV, J/eV
E_g = 3.4e-04; // Energy gap of aluminium, eV
v_F = 2.02e+08; // Fermi velocity of aluminium, cm/sec
h_bar = 1.05e-034; // Planck's constant
L = h_bar*v_F/(2*E_g*e); // Coherence Length of aluminium, cm
printf("\nThe coherence length of aluminium = %4.2e cm", L);
// Result
// The coherence length of aluminium = 1.95e-04 cm
|
258311d8ad02d21dd4fa1b90401d35a04596ced6
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2093/CH1/EX1.22/exa_1_22.sce
|
ec07d04bf6cc424badb6b3783cab6449a28fb221
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 471
|
sce
|
exa_1_22.sce
|
// Exa 1.22
clc;
clear;
close;
// Given data
vo= -10;// in V
i_f= 1;// in mA
i_f= i_f*10^-3;//in A
// Formula vo= -i_f*Rf
Rf= -vo/i_f;// in Ω
// The output voltage, vo= -(v1+5*v2) (i)
// vo= -Rf/R1*v1 - Rf/R2*v2; (ii)
// Comparing equations (i) and (2)
R1= Rf/1;// in Ω
R2= Rf/5;// in Ω
disp(Rf*10^-3,"The value of Rf in kΩ is : ")
disp(R1*10^-3,"The value of R1 in kΩ is : ")
disp(R2*10^-3,"The value of R2 in kΩ is : ")
|
062368c9e0f873f3d078b347ab8f1b3817be75a7
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3862/CH9/EX9.9/Ex9_9.sce
|
3a650583f9e2e0491a4c488964b322b03b5bac4b
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 533
|
sce
|
Ex9_9.sce
|
clear
//variable declaration
//summation of all horizontal forces is zero & vertical forces is zero.
//Let the left support C be at a distance x metres from A.
P1=(30) //vertical down load at A,KN
Pu=(6) //uniform distributed load over whole span,KN/m,(20m of span)
P2=(50) //vertical down load at B, KN
//Rc=Rd(given) reaction at C & D is equal.
Rc=(P1+P2+Pu*20)/2
Rd=Rc
//taking moment at A
x=(((Pu*20*10+P2*20)/100)-12)/2
printf("\n X= %0.2f m",x)
|
e4970facc3adeb9cf6249aa21dcd5a085e14581e
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2123/CH6/EX6.6/Exa_6_6.sce
|
ddf6a61a5acb9a74695893d029673bb718d8dbe4
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,465
|
sce
|
Exa_6_6.sce
|
//Example No. 6.6
clc;
clear;
close;
format('v',6);
//Given Data :
V=400;//volt
P=8;//pole
f=50;//Hz
r1=1.2;//ohm
r2dash=1.2;//ohm
x1=2.5;//ohm
x2dash=2.5;//ohm
N=720;//rpm
Ns=120*f/P;//rpm
S=(Ns-N)/Ns;//full load slip
S2=2-S;//Slip during plugging
V1=V/sqrt(3);//V
I2dash=V1/sqrt((r1+r2dash/S2)^2+(x1+x2dash)^2);//A(Initial braking current)
disp(I2dash,"Initial Braking current in A : ");
Ifl=V1/sqrt((r1+r2dash/S)^2+(x1+x2dash)^2);//A(Full load current)
RatioCurrent=I2dash/Ifl;//ratio of initial braking current to full load current
disp("Braking curent is "+string(RatioCurrent)+" times of full load current.");
Tfl=3*Ifl^2*r1/(2*%pi*S*Ns/60);//N-m
T2dash=3*I2dash^2*r2dash/(2*%pi*S2*Ns/60);//N-m(initail braking T)
disp(T2dash,"Initial Braking torque in N-m : ");
RatioT=T2dash/Tfl;//ratio of initial braking Torque to full load Torque
disp("Braking Torque is "+string(RatioT)+" times of full load Torque.");
//Let R be the additional resistance
I2dash=2*Ifl;//A
//I2dash=V1/sqrt((r1+r2dash/S2+R/S2)^2+(x1+x2dash)^2);//A(Initial braking current)
R=(sqrt(V1^2/I2dash^2-(x1+x2dash)^2)-r1-r2dash/S2)*S2;//in ohm
Ractual=R/2^2;//ohm
disp(Ractual,"Actual additional rotor resistance per phase in ohm : ");
T_braking=3*I2dash^2*(r2dash+R)/(2*%pi*S2*Ns/60);//N-m(initail braking T)
disp(T_braking,"Braking torque in N-m : ");
TbBYTfl=T_braking/T2dash;//ratio
disp(TbBYTfl,"Ratio o f braking torque to full load torque : ");
|
910b421c4aef4b173222054b8b5c8ed59ef435f3
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/530/CH2/EX2.16/example_2_16.sce
|
efa74023f5adcb1f4bb419e7e8703110087040a0
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 304
|
sce
|
example_2_16.sce
|
clear;
clc;
// A Textbook on HEAT TRANSFER by S P SUKHATME
// Chapter 2
// Heat Conduction in Solids
// Example 2.16
// Page 75
printf("Example 2.16, Page 75 \n\n")
//Theoretical Problem
printf('\n\n This is a Theoretical Problem, does not involve any mathematical computation.');
//END
|
a036483120bdedab46824a2b7260c2e00266721d
|
8217f7986187902617ad1bf89cb789618a90dd0a
|
/browsable_source/2.5/Unix-Windows/scilab-2.5/tests/examples/champ1.man.tst
|
a36efdc12b23187227eadb83b7e6019e91463ccf
|
[
"LicenseRef-scancode-public-domain",
"LicenseRef-scancode-warranty-disclaimer"
] |
permissive
|
clg55/Scilab-Workbench
|
4ebc01d2daea5026ad07fbfc53e16d4b29179502
|
9f8fd29c7f2a98100fa9aed8b58f6768d24a1875
|
refs/heads/master
| 2023-05-31T04:06:22.931111
| 2022-09-13T14:41:51
| 2022-09-13T14:41:51
| 258,270,193
| 0
| 1
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 102
|
tst
|
champ1.man.tst
|
clear;lines(0);
xset("use color",1)
champ1(-5:5,-5:5,rand(11,11),rand(11,11),2,[-10,-10,10,10],"021")
|
ddfb93f48c6cd1dbdc5218263df06b0317905bd9
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/443/DEPENDENCIES/3_23_data.sci
|
49979eedb769063a15909a73981328c25515ed68
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 424
|
sci
|
3_23_data.sci
|
//Compression ratio
r=8;
//Compression and expansion process follow the law pv^1.3=const
n=1.3;
//Pressure at beginning of compression(in bar)
p1=1;
//Temperature at beginning of compression(in K)
T1=300;
//Specific heat at constant pressure(in kJ/kgK)
Cp=1.004;
//Specific heat at constant volume(in kJ/kgK)
Cv=0.717;
//Mass flow of air(in kg)
m=1;
//Gas constant(in J/kgK)
R=287;
//Expansion ratio
re=5.3;
|
afe25723f47d12ba63d8fefb8cedaf1567ffe85c
|
7dbe475cd217e686e9689cb0536a9a73f625a85b
|
/Rez/univariate-lcmsr-post_mi/hrz_ind_d/~LCM-SR-hrz_ind_d-nat.tst
|
d83188ac4f1a1276e8efe5f4612fc3445b12cd5f
|
[] |
no_license
|
jflournoy/lnt_pxvx
|
fac8d6b00b886fa3dc800dcaa288aa186027b9ea
|
3f1ddc64e4bf0aecddfa21d45f889620dbdd442d
|
refs/heads/master
| 2021-10-20T12:52:55.625243
| 2019-02-27T17:06:09
| 2019-02-27T17:06:09
| 64,423,528
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 2,064
|
tst
|
~LCM-SR-hrz_ind_d-nat.tst
|
THE OPTIMIZATION ALGORITHM HAS CHANGED TO THE EM ALGORITHM.
ESTIMATED COVARIANCE MATRIX FOR PARAMETER ESTIMATES
1 2 3 4 5
________ ________ ________ ________ ________
1 0.270712D+00
2 -0.249379D-02 0.225554D-02
3 -0.255893D-03 -0.582871D-04 0.220494D-02
4 -0.776758D+00 0.683690D-01 0.771471D-01 0.222257D+03
5 -0.688155D+00 -0.211314D-02 0.205857D+00 0.178933D+02 0.670409D+02
6 -0.116658D+01 -0.977806D-02 -0.130524D+00 -0.419292D+02 -0.275696D+02
7 0.125205D-01 -0.793932D-02 0.197958D-02 0.238491D+00 0.284489D+00
8 -0.156146D-02 0.226116D-03 -0.505761D-03 -0.385037D-01 -0.746649D-01
ESTIMATED COVARIANCE MATRIX FOR PARAMETER ESTIMATES
6 7 8
________ ________ ________
6 0.240579D+03
7 0.262448D+01 0.421441D+00
8 -0.117867D+01 -0.376437D-01 0.143095D-01
ESTIMATED CORRELATION MATRIX FOR PARAMETER ESTIMATES
1 2 3 4 5
________ ________ ________ ________ ________
1 1.000
2 -0.101 1.000
3 -0.010 -0.026 1.000
4 -0.100 0.097 0.110 1.000
5 -0.162 -0.005 0.535 0.147 1.000
6 -0.145 -0.013 -0.179 -0.181 -0.217
7 0.037 -0.258 0.065 0.025 0.054
8 -0.025 0.040 -0.090 -0.022 -0.076
ESTIMATED CORRELATION MATRIX FOR PARAMETER ESTIMATES
6 7 8
________ ________ ________
6 1.000
7 0.261 1.000
8 -0.635 -0.485 1.000
|
9e79103cf13050f2588dff390d3d325ee29d213f
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1631/CH9/EX9.44/Ex9_44.sce
|
572c605116a13e6eaf5ab215be1e991fa075cce2
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 464
|
sce
|
Ex9_44.sce
|
//Caption: efficiency
//Example 9.44
//page no 436
//Find efficiency of the code
clear;
clc;
px1=1/2;
px2=1/4;
px3=1/8;
px4=1/8;
n1=1
n2=2;
n3=3;
n4=3;
//information content of each symbol
Ix1=-log2(px1);
Ix2=-log2(px2);
Ix3=-log2(px3);
Ix4=-log2(px4);
HX=px1*log2(1/px1)+px2*log2(1/px2)+px3*log2(1/px3)+px4*log2(1/px4);
L=px1*n1+px2*n2+px3*n3+px4*n4;
n=HX/L;
printf("\n\tcode efficiency = %.2f ",n*100);
disp(" %");
|
b3d22d02499ace8d1ac4e5e807c72ddada126cb0
|
33f77c32fb16283501d950b6fc6b43a07914f32e
|
/scilab_autopilot/lib/math/quat/quat_definePositive.sce
|
69f6049e38b2c616b2d5f49109e3f3b89186b10d
|
[] |
no_license
|
CLUBMODELISMECEADSTOULOUSE/autopilot
|
26b79d6a2a632f08989a5528e82f553616617646
|
a6ffae2f8a86fbc79e636ddd5173af104e1af9cd
|
refs/heads/master
| 2021-01-21T00:59:06.271128
| 2015-10-25T09:31:54
| 2015-10-25T09:31:54
| 34,409,237
| 1
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 628
|
sce
|
quat_definePositive.sce
|
// Define positive a quaternion
//
// This function ensures that the scalar part is positive.
// This function is typically used to ensure sign of vectorial part
// when considering the product of two quaternions with a small angles
// approximation.
//
// INTPUT
// - qIn: input quaternion
//
// OUTPUT
// - qOut: quaternion with positive scalar part
//
// USAGE
// qOut = quat_definePositive(qIn);
//
// HISTORY
// 28/03/2014: T. Pareaud - Creation
function [qOut] = quat_definePositive(qIn)
qOut = [sign(qIn(1,:)).*qIn(1,:) ; sign(qIn(1,:)).*qIn(2,:) ; sign(qIn(1,:)).*qIn(3,:) ; sign(qIn(1,:)).*qIn(4,:)];
endfunction
|
c93d413479a85a9486fa1c7bf1ddba72291a4b06
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/323/CH2/EX2.6/ex2_6.sce
|
0509ad16f4afef7fd60518723c7931072b7aa534
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 598
|
sce
|
ex2_6.sce
|
//Chapter2, Ex2.6,Pg 2.11
function [R] = deltatostar(R1,R2,R3,n)
Rtotal=R1+R2+R3
if(n==1)
R=R1*R2/Rtotal
elseif(n==2)
R=R2*R3/Rtotal
else
R=R1*R3/Rtotal
end
endfunction
clc;
disp("Refer to the diagram shown in the figure")
r1=deltatostar(20,5,15,1) //Converting delta network to star network
r3=deltatostar(20,5,15,2)
r2=deltatostar(20,5,15,3)
r1'=r1
R1=r3+2
R2=r2+30
r1=deltatostar(R1,R2,30,1)
r2=deltatostar(R1,R2,30,2)
r3=deltatostar(R1,R2,30,3)
Req=1/(1/(r1'+r1+10) + 1/(15+r3)) + r2
printf("\n The equivalent resistance R= %.2f ohms\n",Req)
|
f763f8a49c49224ea179846281cd8d22abb8d904
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3812/CH8/EX8.2.b/8_2_b.sce
|
33519177cfb2c86e81135bacd023c01608a7fbe5
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 186
|
sce
|
8_2_b.sce
|
//Example 8_2<b>
//determine the nyquist rate of x(t)=sinc2(200*pi*t)
//sinc(400t)=0.5cos(400t)/400t
clc;
clear all;
wp=400;
F1=wp/2;
Fs=2*F1;
disp('Nyquist Rate=');
disp(Fs);
|
8417adae86f6e88c0801092ee09a91c9f92bdfe7
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/611/CH5/EX5.19/Chap5_Ex19_R1.sce
|
2c72ed36f2931ec9d13b10f8673e2a53ea56c652
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,515
|
sce
|
Chap5_Ex19_R1.sce
|
// Y.V.C.Rao ,1997.Chemical Engineering Thermodynamics.Universities Press,Hyderabad,India.
//Chapter-5,Example 19,Page 186
//Title: Power consumed by the compressor
//================================================================================================================
clear
clc
//INPUT
Ti=25;//temperature of air taken in by the adiabatic air compressor in degree celsius
Pi=0.1;//pressure of air taken in by the adiabatic air compressor in MPa
Pe=1;//discharge pressure of air in MPa
n_c=0.8;//isentropic efficiency of the compressor (no unit)
gaamma=1.4;//ratio of molar specific heat capacities (no unit)
R=8.314;//universal gas constant in J/molK
//CALCULATION
Ti=Ti+273.15;//conversion of temperature in K
Te=Ti*(((Pe*10^6)/(Pi*10^6))^((gaamma-1)/gaamma));//calculation of the discharge temperature of air using Eq.(4.35) in K (for reversible and adiabatic compression)
W_s=(((R*gaamma)/(gaamma-1))*(Te-Ti))*10^-3;//calculation of the power consumed by the isentropic compressor using Eq.(5.69) in kW
Ws=W_s/n_c;//calculation of the power consumed by an actual compressor per mole of air using Eq.(5.68)in kW
Te_actual=((Ws*10^3*(gaamma-1))/(R*gaamma))+Ti;//calculation of the exit temperature of air in K
//OUTPUT
mprintf("\n The exit temperature of air=%0.2f K\n",Te_actual);
mprintf("\n The power consumed by the compressor =%f kW/mol\n",Ws);
//===============================================END OF PROGRAM===================================================
|
1e4b5d9b42e32009c767fa6355e945db49d7e0b5
|
7ece83a3894d7610e8367eb0a19f9d50ba5e3ce5
|
/mex/outer_hull.m
|
a320bcf0ac2366fd821403cb3809106002b2b3f0
|
[
"Apache-2.0",
"MIT"
] |
permissive
|
alecjacobson/gptoolbox
|
b4d1a3cb6cd604f8dcf2527d08c9a63efc110b72
|
dda5c0d3ae7773837945631463134e577990263a
|
refs/heads/master
| 2023-08-20T05:50:46.191141
| 2023-08-08T17:38:45
| 2023-08-08T17:38:45
| 17,057,368
| 598
| 189
|
MIT
| 2023-05-22T23:41:52
| 2014-02-21T13:46:13
|
MATLAB
|
UTF-8
|
Scilab
| false
| false
| 907
|
m
|
outer_hull.m
|
% OUTER_HULL Compute the "outer hull" of a potentially non-manifold mesh (V,F)
% whose intersections have been "resolved" (e.g. using `cork` or
% `igl::selfintersect`). The outer hull is defined to be all facets (regardless
% of orientation) for which there exists some path from infinity to the face
% without intersecting any other facets. For solids, this is the surface of the
% solid. In general this includes any thin "wings" or "flaps". This
% implementation largely follows Section 3.6 of "Direct repair of
% self-intersecting meshes" [Attene 2014].
%
% [G,J,flip] = outer_hull(V,F);
%
% Inputs:
% V #V by 3 list of vertex positions
% F #F by 3 list of triangle indices into V
% Outputs:
% G #G by 3 list of output triangle indices into V
% J #G list of indices into F
% flip #F list of whether facet was added to G **and** flipped orientation
% (false for faces not added to G)
|
92ae920b68a0d3b819374f5bd30ff69d01840e90
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/821/CH1/EX1.10/1_10.sce
|
1caaac830f81401c90d636d8d038aa796a57af3a
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 606
|
sce
|
1_10.sce
|
h=6.625*10^-27;//plank's constant//
g=10^3;//particle mass in grams//
l1=1;//length of one dimensional box in cm//
n1=1;
n2=2;
dE1=((n2^2-n1^2)*h^2)/(8*g*l1^2);//Energy difference between two energy levels of particle in eV//
printf('Energy difference between two energy levels of particle=dE1=1*10^-44eV');
l2=2*10^-8;//length of one dimensional box in cm//
m=9.11*10^-28;//electron mass in grams//
dE2=((n2^2-n1^2)*h^2)/(8*m*l2^2*1.6*10^-11);//Energy difference between two energy levels of electron in eV//
printf('\nEnergy difference between two energy levels of electron=dE2=%feV',dE2);
|
5db3ba85f4225dc8e46ce80eeac7a1b23763fbe2
|
1bb72df9a084fe4f8c0ec39f778282eb52750801
|
/test/HR4.prev.tst
|
853f89f7df70f2999c1b69e33b651e074360634e
|
[
"Apache-2.0",
"LicenseRef-scancode-unknown-license-reference"
] |
permissive
|
gfis/ramath
|
498adfc7a6d353d4775b33020fdf992628e3fbff
|
b09b48639ddd4709ffb1c729e33f6a4b9ef676b5
|
refs/heads/master
| 2023-08-17T00:10:37.092379
| 2023-08-04T07:48:00
| 2023-08-04T07:48:00
| 30,116,803
| 2
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 4,503
|
tst
|
HR4.prev.tst
|
polys[0]=0
polys[1]=-4
polys[2]=-4
polys[3]=2,1
order=2
initialize: mN=-1, mRElen=3, mNPlen=1, mOrder=2, mLinit=2
exp: multiply ring=[0,0,*0] by mN=0
exp: multiply ring=[0,0,*0] by mN=0
exp: multiply ring=[0,0,*0] by mN=0
setRE(0,1): [*0,0,0] -> [*1,0,0]
result=1, RE=[*1,0,0]
0 1
exp: multiply ring=[*1,0,0] by mN=1
exp: multiply ring=[*1,0,0] by mN=1
exp: multiply ring=[*1,0,0] by mN=1
setRE(1,4): [1,*0,0] -> [1,*4,0]
result=4, RE=[1,*4,0]
1 4
pvals[3]=2
pvals[2]=-4
pvals[1]=-4
pvals[0]=0
sum: 0 (pvals[1]=-4, RE=[1,4,*0]) -> -4 (pvals[1]=-4, RE=[*1,4,0])
sum: -4 (pvals[2]=-4, RE=[*1,4,0]) -> -20 (pvals[2]=-4, RE=[1,*4,0])
exp: multiply ring=[1,*4,0] by mN=2
exp: multiply ring=[2,*4,0] by mN=2
exp: multiply ring=[2,*8,0] by mN=2
setRE(2,20): [2,8,*0] -> [2,8,*20]
result=20, RE=[2,8,*20]
2 20
pvals[3]=3
pvals[2]=-4
pvals[1]=-4
pvals[0]=0
sum: 0 (pvals[1]=-4, RE=[*2,8,20]) -> -32 (pvals[1]=-4, RE=[2,*8,20])
sum: -32 (pvals[2]=-4, RE=[2,*8,20]) -> -112 (pvals[2]=-4, RE=[2,8,*20])
exp: multiply ring=[2,8,*20] by mN=3
exp: multiply ring=[6,8,*20] by mN=3
exp: multiply ring=[6,24,*20] by mN=3
setRE(0,112): [*6,24,60] -> [*112,24,60]
result=112, RE=[*112,24,60]
3 112
pvals[3]=4
pvals[2]=-4
pvals[1]=-4
pvals[0]=0
sum: 0 (pvals[1]=-4, RE=[112,*24,60]) -> -240 (pvals[1]=-4, RE=[112,24,*60])
sum: -240 (pvals[2]=-4, RE=[112,24,*60]) -> -688 (pvals[2]=-4, RE=[*112,24,60])
exp: multiply ring=[*112,24,60] by mN=4
exp: multiply ring=[*448,24,60] by mN=4
exp: multiply ring=[*448,96,60] by mN=4
setRE(1,688): [448,*96,240] -> [448,*688,240]
result=688, RE=[448,*688,240]
4 688
pvals[3]=5
pvals[2]=-4
pvals[1]=-4
pvals[0]=0
sum: 0 (pvals[1]=-4, RE=[448,688,*240]) -> -1792 (pvals[1]=-4, RE=[*448,688,240])
sum: -1792 (pvals[2]=-4, RE=[*448,688,240]) -> -4544 (pvals[2]=-4, RE=[448,*688,240])
exp: multiply ring=[448,*688,240] by mN=5
exp: multiply ring=[2240,*688,240] by mN=5
exp: multiply ring=[2240,*3440,240] by mN=5
setRE(2,4544): [2240,3440,*1200] -> [2240,3440,*4544]
result=4544, RE=[2240,3440,*4544]
5 4544
pvals[3]=6
pvals[2]=-4
pvals[1]=-4
pvals[0]=0
sum: 0 (pvals[1]=-4, RE=[*2240,3440,4544]) -> -13760 (pvals[1]=-4, RE=[2240,*3440,4544])
sum: -13760 (pvals[2]=-4, RE=[2240,*3440,4544]) -> -31936 (pvals[2]=-4, RE=[2240,3440,*4544])
exp: multiply ring=[2240,3440,*4544] by mN=6
exp: multiply ring=[13440,3440,*4544] by mN=6
exp: multiply ring=[13440,20640,*4544] by mN=6
setRE(0,31936): [*13440,20640,27264] -> [*31936,20640,27264]
result=31936, RE=[*31936,20640,27264]
6 31936
pvals[3]=7
pvals[2]=-4
pvals[1]=-4
pvals[0]=0
sum: 0 (pvals[1]=-4, RE=[31936,*20640,27264]) -> -109056 (pvals[1]=-4, RE=[31936,20640,*27264])
sum: -109056 (pvals[2]=-4, RE=[31936,20640,*27264]) -> -236800 (pvals[2]=-4, RE=[*31936,20640,27264])
exp: multiply ring=[*31936,20640,27264] by mN=7
exp: multiply ring=[*223552,20640,27264] by mN=7
exp: multiply ring=[*223552,144480,27264] by mN=7
setRE(1,236800): [223552,*144480,190848] -> [223552,*236800,190848]
result=236800, RE=[223552,*236800,190848]
7 236800
pvals[3]=8
pvals[2]=-4
pvals[1]=-4
pvals[0]=0
sum: 0 (pvals[1]=-4, RE=[223552,236800,*190848]) -> -894208 (pvals[1]=-4, RE=[*223552,236800,190848])
sum: -894208 (pvals[2]=-4, RE=[*223552,236800,190848]) -> -1841408 (pvals[2]=-4, RE=[223552,*236800,190848])
exp: multiply ring=[223552,*236800,190848] by mN=8
exp: multiply ring=[1788416,*236800,190848] by mN=8
exp: multiply ring=[1788416,*1894400,190848] by mN=8
setRE(2,1841408): [1788416,1894400,*1526784] -> [1788416,1894400,*1841408]
result=1841408, RE=[1788416,1894400,*1841408]
8 1841408
pvals[3]=9
pvals[2]=-4
pvals[1]=-4
pvals[0]=0
sum: 0 (pvals[1]=-4, RE=[*1788416,1894400,1841408]) -> -7577600 (pvals[1]=-4, RE=[1788416,*1894400,1841408])
sum: -7577600 (pvals[2]=-4, RE=[1788416,*1894400,1841408]) -> -14943232 (pvals[2]=-4, RE=[1788416,1894400,*1841408])
exp: multiply ring=[1788416,1894400,*1841408] by mN=9
exp: multiply ring=[16095744,1894400,*1841408] by mN=9
exp: multiply ring=[16095744,17049600,*1841408] by mN=9
setRE(0,14943232): [*16095744,17049600,16572672] -> [*14943232,17049600,16572672]
result=14943232, RE=[*14943232,17049600,16572672]
9 14943232
|
42360ef7756a70acdb1a91c5956cf4b42d772078
|
8bc8cad4ff08d4d9e353e7a5a1baa8b188b994f3
|
/LinearConvolution/LinearConvolution.sce
|
545f3a6ebda088b8f605c4f579ad6b2604fdb9c5
|
[] |
no_license
|
ROHITDH/scilabBasics
|
259c74030901258dbe8d77c61eacd467fc58b9de
|
f29b20b645d0f8181a3abc14c0d03ff59b69bd40
|
refs/heads/main
| 2023-02-22T12:21:31.459103
| 2021-01-27T01:24:22
| 2021-01-27T01:24:22
| 333,165,290
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 734
|
sce
|
LinearConvolution.sce
|
//Linear convolution
clc
clear
close
x = input("sequence x(n): ")
h = input("sequence h(n): ")
y = conv(x,h)
disp("Linear Convolution: ",y)
//plots
x_n = 0:length(x)-1;
h_n = 0:length(h)-1;
y_n = 0:length(y)-1;
figure(0)
subplot(311)
plot2d3(x_n,x)
plot(x_n,x,"red.")
title("x(n)")
xlabel("---> samples (n)")
ylabel("Amplitude")
a1 = gca()
a1.x_location = 'origin'
a1.y_location = 'origin'
subplot(312)
plot2d3(h_n,h)
plot(h_n,h,"red.")
title("h(n)")
xlabel("---> samples (n)")
ylabel("Amplitude")
a2 = gca()
a2.x_location = 'origin'
a2.y_location = 'origin'
subplot(313)
plot2d3(y_n,y)
plot(y_n,y,"red.")
title("y(n)")
xlabel("---> samples (n)")
ylabel("Amplitude")
a3 = gca()
a3.x_location = 'origin'
a3.y_location = 'origin'
|
6b97a0133980f694b8f0a374246f31231b304957
|
3fe56b0e8930ef0b9dfb33d9cc5b1afb7c410f1a
|
/Act7/non-parametric.sce
|
29bb9cf59aaf3961a0b91440e4887194f5b162fb
|
[] |
no_license
|
loujoseftan/AP186
|
3ce3ef0bb16030928900c49fbeb912ac61e3b13f
|
0686a1087f8a24b064d6eeb0ec3e98ef10269855
|
refs/heads/master
| 2020-06-30T23:22:36.014422
| 2019-11-19T10:38:17
| 2019-11-19T10:38:17
| 200,981,424
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,191
|
sce
|
non-parametric.sce
|
I = imread('C:\Users\loujoseftan\Dropbox\SciNotes\Act 7\ROI.jpg');
I = double(I); //I is the image of the region of interest
imshow(I);
R = I(:,:,1); G = I(:,:,2); B = I(:,:,3);
Int = R+G+B;
Int(find(Int==0))=100000;
r = R./ Int; g = G./Int;
BINS = 32;
rint = round(r*(BINS-1) + 1);
gint = round(g*(BINS-1) + 1);
colors = gint(:) + (rint(:)-1)*BINS;
hist = zeros(BINS,BINS);
for row = 1:BINS
for col = 1:(BINS-row+1)
hist(row,col) = length(find(colors==(((col + (row-1)*BINS)))));
end;
end;
imshow(hist)
imwrite(hist,'C:\Users\loujoseftan\Dropbox\SciNotes\Act 7\Histogram.jpg' )
SB = imread('C:\Users\loujoseftan\Dropbox\SciNotes\Act 7\SB.jpg');
SB = double(SB);
R2 = SB(:,:,1);
G2 = SB(:,:,2);
B2 = SB(:,:,3);
I2 = R2 + G2 + B2;
I2(find(I2==0))=100000;
r2 = R2./I2;
g2 = G2./I2;
backproj = zeros(size(r2,1),size(r2,2))
for i = 1:size(r2,1)
for j = 1:size(r2,2)
rproj = round(r2(i,j)*(BINS-1)+1);
gproj = round(g2(i,j)*(BINS-1)+1);
backproj(i,j) = hist(rproj, gproj);
end;
end
imshow(backproj)
imwrite(backproj,'C:\Users\loujoseftan\Dropbox\SciNotes\Act 7\Non-Parametric Segmentation.jpg' )
|
89cc5b1b167edf87eb52bb7145d23c491a8a161b
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/154/CH2/EX2.4/ch2_4.sce
|
623b4b90d5ddc6c410ec093d115d1deda4598ddb
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 392
|
sce
|
ch2_4.sce
|
clc
disp("Example 2.4")
printf("\n")
printf("Given")
disp("Current through diode is 30mA")
//From the table the nearest value is at v=0.74V
V=0.74;I=28.7*10^-3;
R=V/I;
delV=0.75-0.73
delI=42.7*10^-3-19.2*10^-3
r=delV/delI
p=(V*I)*10^3
printf("\n \n Static resistance is %3.2fohm\n",R)
printf("Dynamic resistance is %3.2fohm\n",r)
printf("Power consumption is %3.2fmW\n",p)
|
11579c4984279195aa70e4d024a28daaab908751
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1775/CH2/EX2.1/Chapter2_Example1.sce
|
75371c726525cb2aed58c80674b712de3879ba72
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,261
|
sce
|
Chapter2_Example1.sce
|
//Chapter-2, Illustration 1, Page 55
//Title: Gas Power Cycles
//=============================================================================
clc
clear
//INPUT DATA
P1=0.1;//Pressure of air supplied in MPa
T1=308;//Temperature of air supplied in K
rv=8;//Compression ratio
q1=2100;//Heat supplied in kJ/kg
Cp=1.005;//Specific heat at constant pressure in kJ/kg-K
Cv=0.718;//Specific heat at constant volume in kJ/kg-K
R=0.287;//Universal gas constant in kJ/kg-K
//CALCULATIONS
y=Cp/Cv;//Ratio of specific heats
n=(1-(1/(rv^(y-1))))*100;//Cycle efficiency
v1=(R*T1)/(P1*1000);//Specific volume at point 1 in (m^3)/kg
v2=v1/rv;//Specific volume at point 2 in (m^3)/kg
T2=T1*(rv^(y-1));//Temperature at point 2 in K
T3=(q1/Cv)+T2;//Temperature at point 3 in K
P2=P1*(rv^y);//Pressure at point 2 in MPa
P3=P2*(T3/T2);//Pressure at point 3 in MPa
wnet=(q1*n)/100;//Net workdone in J/kg
MEP=(wnet/(v1-v2))/1000;//Mean effective pressure in MPa
//OUTPUT
mprintf('Maximum pressure of the cycle is %3.3f MPa \n Maximum temperature of the cycle is %3.0f K \n Cycle efficiency is %3.1f percent \n Mean effective pressure is %3.3f MPa',P3,T3,n,MEP)
//==============================END OF PROGRAM=================================
|
874e0e5140434a5abf6440a39805c05b27a5d788
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1163/CH4/EX4.5/example_4_5.sce
|
57764412b5bfcbe7ba23438e85c074d924b89df0
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 735
|
sce
|
example_4_5.sce
|
clear;
clc;
disp("--------------Example 4.5---------------")
data_rate=1; // 1 Mbps
frac= 0.25 // 4B/5B coding adds 25% to the baud rate
add=data_rate*frac;
N = (data_rate+add)*10^6; // Hz
NRZI_B= N/2; // minimum bandwidth using NRZ-I
Manchester_B = data_rate; // minimum bandwidth using Manchester scheme
// display result
printf("\n 4B/5B block coding increases the bit rate to %3.2f Mbps\n The minimum bandwidth using NRZ-I scheme is %d kHz.\n\n The minimum bandwidth using Manchester scheme is %d MHz.",N*10^-6,NRZI_B*10^-3,Manchester_B);
printf("\n\nThe NRZ-I scheme needs a lower bandwidth, but has a DC component problem; the Manchester scheme needs a higher bandwidth,\nbut does not have a DC component problem.")
|
974f10e322f4e0f3bb60ba2cc13d0de3c4eaa12e
|
bae098aa91588d492ec8bb4c76c274001c27cfe7
|
/simple6.tst
|
4e56e39741c0a6bd3c92c0d1f0b458f6dbaa5555
|
[] |
no_license
|
i5-2/pentium-dual-core
|
1e7abb217972ec468b54eee6fa077dc6eec1875d
|
e56c0a450666ddd15e99a351d9335952b29431e6
|
refs/heads/master
| 2020-04-20T21:55:34.594056
| 2019-02-26T16:52:19
| 2019-02-26T16:52:19
| 169,122,993
| 0
| 0
| null | 2019-02-25T18:36:58
| 2019-02-04T18:01:59
|
Python
|
UTF-8
|
Scilab
| false
| false
| 395
|
tst
|
simple6.tst
|
timelimit 5
boardsize 10
play w C3
play w D3
play w F3
play b A2
play w B2
play w C2
play w D2
play w E2
gogui-rules_board
genmove b
# b's move can be any (random because loss)
gogui-rules_board
genmove w
#?[F2|E3]
gogui-rules_board
genmove b
# b's move can be any (random because loss)
gogui-rules_board
# Should complete their 2-move threat or win
genmove w
#?[F2|E3|B3|G3]
gogui-rules_board
|
df2658db86f3cb0dd97de8c71fdad51e9146c5e0
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3754/CH4/EX4.9/4_9.sce
|
3a0b7e829bcb9f4309142de95c704e0f94e6fe70
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 602
|
sce
|
4_9.sce
|
clear//
//Variables
V = 10.0 //Voltage (in volts)
R1 = 10**6 //Resistance (in ohm)
R2 = 10 * 10**3 //Resistance (in ohm)
//Case (a):
//Calculation
RT = R1 + R2 //Total Resistance (in ohm)
I = V / RT //Current (in Ampere)
//Result
printf("\n Current through the circuit is %0.3f A.",I)
//Case (b):
//Calculation
RT = R1 //Total Resistance (in ohm)
I = V / RT //Current (in Ampere)
//Result
printf("\n Current through circuit when R2 is shortened is %0.3f A.",I)
|
895265beb2629f851ec4318ed03725f6ab2001e7
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1943/CH7/EX7.28/Ex7_28.sce
|
ade35ba92d2a9a8bf230a6c2524983666415b8c7
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,353
|
sce
|
Ex7_28.sce
|
clc
clear
//Input data
P=100//Power in MW
T=550//temperature in degree C
p=0.1//Pressure in bar
m=500000//Mass flow rate in kg/h at rated load
mo=25000//Mass flow rate in kg/h at zero load
x=[1/4,1/2,3/4,1]//Fraction of load
//Calculations
b=(m-mo)/(P*10^3)//Steam rate in kg/kWh
y1=(x(1)*(P*10^3))//For one-fourth load
s1=(mo/y1)+b//Steam rate in kg/kWh
y2=(x(2)*(P*10^3))//For one-fourth load
s2=(mo/y2)+b//Steam rate in kg/kWh
y3=(x(3)*(P*10^3))//For one-fourth load
s3=(mo/y3)+b//Steam rate in kg/kWh
y4=(x(4)*(P*10^3))//For one-fourth load
s4=(mo/y4)+b//Steam rate in kg/kWh
h1=3511//Enthalpy in kJ/kg
xs1=6.8142//Entropy in kJ/kg.K
xs2=xs1//Entropy in kJ/kg.K
x2s=(xs2-0.6493)/7.5009//Dryness fraction
h2s=191.83+x2s*2392.8//Enthalpy in kJ/kg
nR=((h1-h2s)/(h1-191.83))*100//Rankine efficiency in percent
nac=((P*10^3*3600)/(m*(h1-191.83)))*100//Actual efficiency in percent
nTG=((P*10^3*3600)/(m*(h1-h2s)))*100//Turbogenerator efficiency in percent
//Output
printf('(a) Steam rate at: \n One-fourth load is %3.2f kg/kWh \n Half load is %3.2f kg/kWh \n Three-fourth load is %3.2f kg/kWh \n Full load is %3.1f kg/kWh \n\n (b) Rankine cycle efficiency is %3.1f percent \n (c) Actual efficiency at full load is %3.1f percent \n (d) The turbogenerator efficiency at full load is %3.1f percent',s1,s2,s3,s4,nR,nac,nTG)
|
76292fd6da25d82a904fb37f4077c689ed4a2a32
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/991/CH15/EX15.10/Example15_10.sce
|
485863971561c8e7962044c8f4912a264e191cb7
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 478
|
sce
|
Example15_10.sce
|
//Example 15.10.
clc
format(6)
disp("(i) To find capacitance, C:")
disp(" Frequency of oscillation is")
disp(" fo = 1 / 2*pi*fo*R*C*sqrt(6+4K)")
disp(" C = 1 / 2*pi*fo*R*C*sqrt(6+4(Rc/R))")
fo=1/(2*%pi*(10*10^3)*(7.1*10^3)*sqrt(6+((4*40*10^3)/(7.1*10^3)))) // in Farady
x1=fo*10^9 // in nF
disp(x1," C(nF) =")
disp("(ii) To find hfe:")
disp(" We know that hfe >= 23 + 29(R/Rc) + 4(Rc/R)")
h=23+(29*(7.1/40))+(4*(40/7.1))
disp(h," hfe >=")
|
0a25cebee285980fb8aa7f541d1f0675c6eb3e66
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2129/CH5/EX5.13.9/ex5_13_9.sce
|
37ef9427ff5f5ccb68aad2b15de6dab7f54d37a0
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 631
|
sce
|
ex5_13_9.sce
|
//Exa 5.13.9
clc;
clear;
close;
//Given data
bita = 100;
V_CE = 0.2;//in V
V_BE = 0.8;// in V
R_C= 500;// in Ω
R_B= 44*10^3;// in Ω
R_E= 1*10^3;// in Ω
V_CC= 15;// in V
V_GE= -15;// in V
// Applying KVL to collector circuit
// V_CC-V_GE - I_Csat*R_C-V_CE-I_E*R_E=0, but I_Csat= bita*I_Bmin and I_E= 1+bita
I_Bmin= (V_CC-V_GE-V_CE)/(R_C*bita+(1+bita)*R_E);// in A
// Applying KVL to the base emitter circuit
// V_BB-I_Bmin*R_B-V_BE-I_E*R_E + V_CC=0
V_BB= I_Bmin*R_B + V_BE + (1+bita)*I_Bmin*R_E-V_CC;// in V
disp(I_Bmin*10^3,"The value of I_B(min) in mA is : ")
disp(V_BB,"The value of V_BB in volts is : ")
|
6598a1a69360edef10a138fac046383636b23432
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/978/CH6/EX6.4/Example6_4.sce
|
cde78d6d830faaed60be0aee78e48fcf77e4e6e2
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 314
|
sce
|
Example6_4.sce
|
//chapter-6,Example6_4,pg 493
d=1*10^-3//separation between plates
fe=300//acceleration of electron
e=1.6*10^-19//charge of 1 electron
me=9.1*10^-31//mass of 1 electron
Vp=((me*fe*d)/e)//voltage apllied between plates
printf("voltage applied between plates\n")
printf("Vp=%.14f Kgm^2/s^2C",Vp)
|
810dc6c49627fbeddba05561193ce0ae1d1167f8
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3872/CH9/EX9.6/Ex9_6.sce
|
4b0ca7e58f68f30db8328711e4287654c811a5b8
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 3,420
|
sce
|
Ex9_6.sce
|
//Book - Power system: Analysisi & Design 5th Edition
//Authors - J. Duncan Glover, Mulukutla S. Sarma, and Thomas J.Overbye
//Chapter-9 ;Example 9.6
//Scilab Version - 6.0.0; OS - Windows
clc;
clear;
Vf=1.05 //Prefault voltage in per unit
Z0=%i*0.250 //Zero sequence impedance in per unit
Z1=%i*0.13893 //Positive sequence impedance in per unit
Z2=%i*0.14562 //Negative sequence impedance in per unit
Zf=0 //Fault through impedance in per unit
Zpr=0.20 //The positive sequence thevenin motor impedance at bus 2
Zpl=0.455 //The positive sequence thevenin line impedance at bus 2
Znr=0.21 //The negative sequence thevenin motor impedance at bus 2
Znl=0.475 //The negative sequence thevenin line impedance at bus 2
I1=Vf/(Z1+((Z0*Z2)/(Z0+Z2))) //Positive sequence fault current in per unit
I2=-I1*(Z0/(Z0+Z2)) //Negative sequence fault current in per unit
I0=-I1*(Z2/(Z0+Z2)) //Zero sequence fault current in per unit
Iline0=0 //Zero sequence fault current from the line in per unit
Imotor0=I0 //Zero sequence motor current from the motor in per unit
Iline1=(Zpr/(Zpr+Zpl))*I1 //Positive sequence fault current from the line in per unit
Ilead1=Iline1*exp(%i*(30)*(%pi/180)) //Positive sequence fault current from the line leads by 30 degree in per unit
Imotor1=(Zpl/(Zpr+Zpl))*I1 //Positive sequence motor current from the motor in per unit
Iline2=(Znr/(Znr+Znl))*I2 //Negative sequence fault current from the line in per unit
Ilag2=Iline2*exp(%i*(-30)*(%pi/180)) //Negative sequence fault current from the line lags by 30 degree in per unit
Imotor2=(Znl/(Znr+Znl))*I2 //Negative sequence motor current from the motor in per unit
a=exp(%i*(120)*(%pi/180)) //operator a
Iline=[1 1 1;1 (a^2) a;1 a (a^2)]*[0;Ilead1;Ilag2] //transforming the line currents to the phase domain
Ilineb=Iline*0.41837 //transforming the line currents to the phase domain with base currents of 0.41837 kA
disp(abs(clean(Iline,1e-10)),'The magnitude of transforming the line currents to the phase domain in per unit for each phase is given by:');
disp(atand(imag(Iline),real(Iline)),'The angle of transforming the line currents to the phase domain in degreess for each phase is given by:');
disp(abs(clean(Ilineb,1e-10)),'The magnitude of transforming the line currents to the phase domain in kA for each phase is given by:');
disp(atand(imag(Ilineb),real(Ilineb)),'The angle of transforming the line currents to the phase domain in degreess for each phase is given by:');
|
d895fb48fa095cad01982d5e50ff36c76ea1b478
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/854/CH1/EX1.4/Example1_4.sce
|
075ea584970b0c4c8fa0be17eda6f7c976228893
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 862
|
sce
|
Example1_4.sce
|
//clear//
//Caption:Transform the vector of Rectangular coordinates into spherical coordinates
//Example1.4
//page 22
clc;
y = sym('y');
x = sym('x');
z = sym('z');
ax = sym('ax');
ay = sym('ay');
az = sym('az');
ar = sym('ar');
aTh = sym('aTh');
aphi = sym('aphi');
G = (x*z/y)*ax;
disp(G,'Given vector in cartesian co-ordiante system B=')
r = sym('r');
teta = sym('teta')
phi = sym('phi')
x1 = r*sin(teta)*cos(phi);
y1 = r*sin(teta)*sin(phi);
z1 = r*cos(teta);
G1 = (x1*z1/y1)*ax;
Gr = G1*ar;
GTh = G1*aTh;
Gphi = G1*aphi;
Gsph = [Gr,GTh,Gphi];
disp(Gr,'Gr=')
disp(GTh,'GTh=')
disp(Gphi,'Gphi=')
//Result
//Given vector in cartesian co-ordiante system B = ax*x*z/y
//Gr = ar*ax*cos(phi)*r*cos(teta)/sin(phi)
//GTh = ax*cos(phi)*r*cos(teta)*aTh/sin(phi)
//Gphi = aphi*ax*cos(phi)*r*cos(teta)/sin(phi)
//
|
b4851d1e27179e099c64cc08cd035b73387fbb92
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2789/CH6/EX6.6/Ex6_6.sce
|
a46a269039ba97303e8e0c9b9e21d4c64f444f4b
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 760
|
sce
|
Ex6_6.sce
|
clear;
clc;
funcprot(0);
//page no. 188
p1 = 14.7;// psia
v1 = 1732;// fps
a1 = 862;// fps
beta = 40;// degrees
M1 = v1/a1;
T1 = a1^2 /(1.4*32.2*53.3);
p2 = p1*(1 + 2*(1.4/2.4)*(M1^2 *(sin(beta*%pi/180))^2 -1));
theta = beta - (180/%pi)*atan(tan(beta*%pi/180) * (0.4*(M1*sin(beta*%pi/180))^2 +2)/(2.4*(M1*sin(beta*%pi/180))^2));
M2 = sqrt((1/sin((beta-theta)*%pi/180))^2 *(1 + (0.4/2)*((M1*sin(beta*%pi/180))^2) )/(1.4*(M1*sin(beta*%pi/180))^2) -(0.4/2));
v2 = v1*cos(beta*%pi/180)/cos((beta-theta)*%pi/180);
a2 = v2/M2;
T2 = a2^2 /(1.4*32.2*53.3);
printf('Angle required = %.1f degrees,\n p2 = %.1f psia,\n v2 = %d fps,\n a2 = %d fps,\n T2 = %.1f degreeR',theta,p2,v2,a2,T2);
//there are errors in the answer given in textbook
|
3cb4ac3cb6fe559cd04392c51b85c686f9a65d42
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/851/CH6/EX6.4/Figure6_4.sce
|
8ce6fb9bd0f0326c594085f6e070c5a12c527ee1
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,576
|
sce
|
Figure6_4.sce
|
//clear//
//Caption:Power Spectra of different binary data formats
//Figure 6.4: Power Spectal Densities of
//Different Line Coding Techniques
//[1].NRZ Polar Format [2].NRZ Bipolar format
//[3].NRZ Unipolar format [4]. Manchester format
//Page 241
close;
clc;
//[1]. NRZ Polar format
a = input('Enter the Amplitude value:');
fb = input('Enter the bit rate:');
Tb = 1/fb; //bit duration
f = 0:1/(100*Tb):2/Tb;
for i = 1:length(f)
Sxxf_NRZ_P(i) = (a^2)*Tb*(sinc_new(f(i)*Tb)^2);
Sxxf_NRZ_BP(i) = (a^2)*Tb*((sinc_new(f(i)*Tb))^2)*((sin(%pi*f(i)*Tb))^2);
if (i==1)
Sxxf_NRZ_UP(i) = (a^2)*(Tb/4)*((sinc_new(f(i)*Tb))^2)+(a^2)/4;
else
Sxxf_NRZ_UP(i) = (a^2)*(Tb/4)*((sinc_new(f(i)*Tb))^2);
end
Sxxf_Manch(i) = (a^2)*Tb*(sinc_new(f(i)*Tb/2)^2)*(sin(%pi*f(i)*Tb/2)^2);
end
//Plotting
a = gca();
plot2d(f,Sxxf_NRZ_P)
poly1= a.children(1).children(1);
poly1.thickness = 2; // the tickness of a curve.
plot2d(f,Sxxf_NRZ_BP,2)
poly1= a.children(1).children(1);
poly1.thickness = 2; // the tickness of a curve.
plot2d(f,Sxxf_NRZ_UP,5)
poly1= a.children(1).children(1);
poly1.thickness = 2; // the tickness of a curve.
plot2d(f,Sxxf_Manch,9)
poly1= a.children(1).children(1);
poly1.thickness = 2; // the tickness of a curve.
xlabel('f*Tb------->')
ylabel('Sxx(f)------->')
title('Power Spectral Densities of Different Line Codinig Techniques')
xgrid(1)
legend(['NRZ Polar Format','NRZ Bipolar format','NRZ Unipolar format','Manchester format']);
//Result
//Enter the Amplitude value:1
//Enter the bit rate:1
|
e3f25a7c00c748e6c39e1b12113a798960884190
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1067/CH19/EX19.6/19_6.sce
|
65d4125487e1bf3fbb777d8c168a3008fb9fecc3
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 580
|
sce
|
19_6.sce
|
clc;
clear;
r=30000e3;
v1=11e3;
v2=110e3;
zb1=v1^2/r;
zb2=v2^2/r;
zp1=80/zb2;
zp2=.1*%i*30000/35000;
zp3=.2*%i*30000/10000;
zp3r=real(zp3);
zp2r=real(zp2);
zp3i=imag(zp3);
zp2i=imag(zp2);
zb2=round(zb2*10)/10;
zp1=round(zp1*1000)/1000;
zp2i=round(zp2i*10000)/10000;
zp3i=round(zp3i*10)/10;
mprintf("the base impedence of transmission line circuti=%fohm\nper unit reactance of transmission line=%fp.u.\n ",zb2,zp1);
mprintf("per unit reactance of transformer to new base=%f+(%fj)p.u.\nPer unit reactance of motor to new base=%f+(%fj)p.u.",zp2r,zp2i,zp3r,zp3i);
|
25fb6e566f3e91853f2c82d90087b43e4788f114
|
06a62d768e69fd9dda11b30011c252807e301813
|
/newRKAlgorithm.sce
|
8325bfdc197fc585015c900ae53fbba9d68826be
|
[] |
no_license
|
vikram-niit/matlab
|
36ce3d9539629128251eab060164ce81c03aa690
|
da8aeb4d727c47474d37676650664bd028d7e41d
|
refs/heads/master
| 2020-03-18T13:40:37.068765
| 2018-05-25T03:51:55
| 2018-05-25T03:51:55
| 134,800,217
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 568
|
sce
|
newRKAlgorithm.sce
|
function ydot = f(t, y)
ydot = 6 * t^4 + 5 * t^3 + 4 * exp(t);
endfunction
h = 0.01;
y(1) = 0;
t(1) = 0;
for i=1:50
k1 = f(t(i), y(i));
k2 = f(t(i) + h/2, y(i) + h * k1 / 2);
k3 = f(t(i) + 3*h/4, y(i) + 3*h*k2/4);
k4 = f(t(i) + h, y(i) + 2*h*k1/9 + h*k2/3 + 4*h*k3/9);
y(i+1) = y(i) + (7/24) * h * k1 + (1/4) * h * k2 + (1/3) * h * k3 + (1/8) * h * k4;
t(i+1) = t(i) + h;
end
euler = y(51);
// find exact value
exact = 6 * t.^5/5 + 5 * t.^4/4 + 4 * exp(t) - 4;
error = abs(exact - y);
|
8d943c5b0fcabfaa34355b7cec3ffca60f9cd322
|
9733f939913e963ec556f5f89248dacb75801a8d
|
/pmode/sphere_harmonics1.sce
|
66947cc3e92fc112779c82a7d31bc22a79052bf8
|
[] |
no_license
|
mikeg64/solar
|
4546c0182bb7f7cde21bc7f102e659ff7a488ad8
|
46ab043441a4f2523daa7cfaf5008c959f61d7d6
|
refs/heads/master
| 2023-08-22T04:29:33.974673
| 2023-08-19T09:19:40
| 2023-08-19T09:19:40
| 17,345,330
| 1
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 3,394
|
sce
|
sphere_harmonics1.sce
|
//Spherical harmonics
//solution for perturbed pressure for a spherical hydrodynamical system
//Using scilab
//http://www.scilab.org/
//Scilab is free and open source software for numerical computation providing a powerful computing environment
//for engineering and scientific applications.
//http://solarwavetheory.blogspot.co.uk/2014/03/our-wobbling-star.html
//The initial surface definition
//----------------------
nsize=100;
phi=linspace(-%pi,%pi,nsize);
the=linspace(0,2*%pi,nsize);
x=zeros(1,nsize);
y=x;
myones=ones(nsize,nsize);
//Z=2*max(modeamps)*sin(x)'*cos(y);
//Z=sqrt(()^2-x^2-y^2)
myselec=1;
//global freq;
//global fchange;
global imxsel;
global imysel;
nmx=1;
nmy=1;
mfreq=0*ones(nmx,nmy);
fchange=500;
imxsel=1;
imysel=1;
// set a new colormap
//-------------------
//cmap= curFig.color_map; //preserve old setting
// plot of a sphere using facets computed by eval3dp
deff("[x,y,z]=sph(alp,tet)",["x=r*cos(alp).*cos(tet)+orig(1)*ones(tet)";..
"y=r*cos(alp).*sin(tet)+orig(2)*ones(tet)";..
"z=r*sin(alp)+orig(3)*ones(tet)"]);
deff("[x,y,amp]=harmonic(alp,tet)",["x=r*cos(alp).*cos(tet)+orig(1)*ones(tet)";..
"y=r*cos(alp).*sin(tet)+orig(2)*ones(tet)";..
"amp=(-1)^m.*cos(m.*tet).*legendre(l,m,cos(alp))"]);
//different options for frequecy and spherical hormonic
//l increase number of modes from pole to pole
//m increases number of mdes observed arounfd the axis
//mfreq(1,1)=200;
//l=10;
//m=4;
//shift=10; //adjust zero of the colour scale
//scale=1.5*10^(-2); //adjust the range of the scale
//mfreq(1,1)=200;
//l=1;
//m=0;
//shift=45; //adjust zero of the colour scale
//scale=20; //adjust the range of the scale
//mfreq(1,1)=200;
l=2;
m=0;
shift=45; //adjust zero of the colour scale
scale=20; //adjust the range of the scale
//mfreq(1,1)=200;
//l=2;
//m=2;
//shift=45; //adjust zero of the colour scale
//scale=20; //adjust the range of the scale
//mfreq(1,1)=200;
//l=4;
//m=2;
//shift=45; //adjust zero of the colour scale
//scale=20; //adjust the range of the scale
//mfreq(1,1)=200;
//l=4;
//m=4;
//shift=45; //adjust zero of the colour scale
//scale=1; //adjust the range of the scale
//mfreq(1,1)=200;
//l=10;
//m=4;
//shift=45; //adjust zero of the colour scale
//scale=1*10^(-2); //adjust the range of the scale
//mfreq(1,1)=200;
//l=20;
//m=0;
//shift=40; //adjust zero of the colour scale
//scale=1*10^(2); //adjust the range of the scale
mfreq(1,1)=400;
//l=20;
//m=2;
//shift=5; //adjust zero of the colour scale
//scale=0.015*10^(2); //adjust the range of the scale
ampones=ones(4,6241);
r=1; orig=[0 0 0];
curFig = scf(100001);
clf(curFig,"reset");
//curFig.color_map = hotcolormap(64);
//curFig.color_map = autumncolormap(64);
curFig.color_map = jetcolormap(64);
[xx,yy,zz]=eval3dp(sph,linspace(-%pi/2,%pi/2,80),linspace(0,%pi*2,80));
[xn,yn,amp]=eval3dp(harmonic,linspace(-%pi/2,%pi/2,80),linspace(0,%pi*2,80));
plot3d1(xx,yy,list(zz,shift*ampones+scale*amp),35,45,"X@Y@Z",[-2,2,3]);
//colorbar(42*min(amp),42*max(amp));
s=gce();
sf=gcf();
sf.figure_size=[493,576];
//for i=1:2000000
for i=1:200
pamp=shift*ampones+scale*amp.*sin(mfreq(1,1)*%pi*i/50000);
s.data.color=pamp;
//uncomment lines below to save images to jpg
//imfile=msprintf('images/im_%d.jpg',i);
//xs2jpg(sf,imfile,1);
end
|
1e2791cc1157837404ccf477447e7c3a8d8a73e4
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3754/CH31/EX31.18/31_18.sce
|
5c18c0490f47271fb136d68c4158649b6a9fc885
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 957
|
sce
|
31_18.sce
|
clear//
//Variables
fo = 2.0 * 10**3 //Frequency (in Hertz)
hie = 2.0 * 10**3 //hie (in ohm)
R1 = 20.0 * 10**3 //Resistance (in ohm)
R2 = 80.0 * 10**3 //Resistance (in ohm)
RC = 10.0 * 10**3 //Collector Resistance (in ohm)
R = 8.0 * 10**3 //Resistance (in ohm)
//Calculation
C = 1/(2*%pi*R)*(1/(6 + 4*RC/R)**0.5)/fo //Capacitance (in Farad)
hfe = 23 + 29 * R/RC + 4* RC /R //Current gain
Ri = (1/R1 + 1/R2 + 1/hie)**-1 //Input resistance (in ohm)
R3 = R - Ri //Feedback resitor (in ohm)
//Result
printf("\n Value of capacaitor C is %0.3f micro-Farad.\nValue of transistor gain is hfe >= %0.3f .\nValue of feedback resistor R3 is %0.1f kilo-ohm.",C*10**6,hfe,R3*10**-3)
|
08e25af5f41b588cd850b69f0a6534450fb6329b
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/52/CH3/EX3.25/Example3_25.sce
|
ca3cdfda40e61b60ffc759642b84228bbb7f59c3
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 417
|
sce
|
Example3_25.sce
|
//Example 3.25
//Program to Compute the 8-point Circular Convolution of the Sequences
//x1[n]=[1,1,1,1,0,0,0,0]
//x2[n]=sin(3*pi*n/8)
clear;
clc ;
close ;
x1=[1,1,1,1,0,0,0,0];
n=0:1:7;
pi=22/7;
x2=sin(3*pi*n/8);
//DFT Computation
X1=fft (x1,-1);
X2=fft (x2,-1);
//Circular Convolution using DFT
Y=X1.*X2;
//IDFT Computation
y= fft (Y,1);
//Display sequence y[n] in command window
disp(y,"y[n]=");
|
d093ae482da6de6cf2caa39d112b4fb6d68d276b
|
d7a288ffaf218a0b0389c4ed30c17cb584a6b75d
|
/files/humor/COMPUTER/hacker.tst
|
2fe815765dc378838bb1b42f49435562b03f831d
|
[] |
no_license
|
AbbeBlubb/lunr-backend
|
abce156d8d88a5d67714a6cb88d51ecc5a1364be
|
6f322fa5b80632b8f99bf3e3e8ca2df6d13bf595
|
refs/heads/master
| 2022-09-03T21:33:51.159519
| 2020-06-01T19:43:12
| 2020-06-01T19:43:12
| 208,758,789
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 20,484
|
tst
|
hacker.tst
|
TITLE: THE HACKER TEST - Version 1.0 (LONG)
Preface: 06.16.89
This test was conceived and written by Felix Lee, John Hayes and Angela
Thomas at the end of the spring semester, 1989. It has gone through
many revisions prior to this initial release, and will undoubtedly go
through many more.
(Herewith a compendium of fact and folklore about computer hackerdom,
cunningly disguised as a test.)
Scoring - Count 1 for each item that you have done, or each
question that you can answer correctly.
If you score is between: You are
0x000 and 0x010 -> Computer Illiterate
0x011 and 0x040 -> a User
0x041 and 0x080 -> an Operator
0x081 and 0x0C0 -> a Nerd
0x0C1 and 0x100 -> a Hacker
0x101 and 0x180 -> a Guru
0x181 and 0x200 -> a Wizard
Note: If you don't understand the scoring, stop here.
And now for the questions...
0001 Have you ever used a computer?
0002 ... for more than 4 hours continuously?
0003 ... more than 8 hours?
0004 ... more than 16 hours?
0005 ... more than 32 hours?
0006 Have you ever patched paper tape?
0007 Have you ever missed a class while programming?
0008 ... Missed an examination?
0009 ... Missed a wedding?
0010 ... Missed your own wedding?
0011 Have you ever programmed while intoxicated?
0012 ... Did it make sense the next day?
0013 Have you ever written a flight simulator?
0014 Have you ever voided the warranty on your equipment?
0015 Ever change the value of 4?
0016 ... Unintentionally?
0017 ... In a language other than Fortran?
0018 Do you use DWIM to make life interesting?
0019 Have you named a computer?
0020 Do you complain when a "feature" you use gets fixed?
0021 Do you eat slime-molds?
0022 Do you know how many days old you are?
0023 Have you ever wanted to download pizza?
0024 Have you ever invented a computer joke?
0025 ... Did someone not 'get' it?
0026 Can you recite Jabberwocky?
0027 ... Backwards?
0028 Have you seen "Donald Duck in Mathemagic Land"?
0029 Have you seen "Tron"?
0030 Have you seen "Wargames"?
0031 Do you know what ASCII stands for?
0032 ... EBCDIC?
0033 Can you read and write ASCII in hex or octal?
0034 Do you know the names of all the ASCII control codes?
0035 Can you read and write EBCDIC in hex?
0036 Can you convert from EBCDIC to ASCII and vice versa?
0037 Do you know what characters are the same in both ASCII and EBCDIC?
0038 Do you know maxint on your system?
0039 Ever define your own numerical type to get better precision?
0040 Can you name powers of two up to 2**16 in arbitrary order?
0041 ... up to 2**32?
0042 ... up to 2**64?
0043 Can you read a punched card, looking at the holes?
0044 ... feeling the holes?
0045 Have you ever patched binary code?
0046 ... While the program was running?
0047 Have you ever used program overlays?
0048 Have you met any IBM vice-president?
0049 Do you know Dennis, Bill, or Ken?
0050 Have you ever taken a picture of a CRT?
0051 Have you ever played a videotape on your CRT?
0052 Have you ever digitized a picture?
0053 Did you ever forget to mount a scratch monkey?
0054 Have you ever optimized an idle loop?
0055 Did you ever optimize a bubble sort?
0056 Does your terminal/computer talk to you?
0057 Have you ever talked into an acoustic modem?
0058 ... Did it answer?
0059 Can you whistle 300 baud?
0060 ... 1200 baud?
0061 Can you whistle a telephone number?
0062 Have you witnessed a disk crash?
0063 Have you made a disk drive "walk"?
0064 Can you build a puffer train?
0065 ... Do you know what it is?
0066 Can you play music on your line printer?
0067 ... Your disk drive?
0068 ... Your tape drive?
0069 Do you have a Snoopy calendar?
0070 ... Is it out-of-date?
0071 Do you have a line printer picture of...
0072 ... the Mona Lisa?
0073 ... the Enterprise?
0074 ... Einstein?
0075 ... Oliver?
0076 Have you ever made a line printer picture?
0077 Do you know what the following stand for?
0078 ... DASD
0079 ... Emacs
0080 ... ITS
0081 ... RSTS/E
0082 ... SNA
0083 ... Spool
0084 ... TCP/IP
Have you ever used
0085 ... TPU?
0086 ... TECO?
0087 ... Emacs?
0088 ... ed?
0089 ... vi?
0090 ... Xedit (in VM/CMS)?
0091 ... SOS?
0092 ... EDT?
0093 ... Wordstar?
0094 Have you ever written a CLIST?
Have you ever programmed in
0095 ... the X windowing system?
0096 ... CICS?
0097 Have you ever received a Fax or a photocopy of a floppy?
0098 Have you ever shown a novice the "any" key?
0099 ... Was it the power switch?
Have you ever attended
0100 ... Usenix?
0101 ... DECUS?
0102 ... SHARE?
0103 ... SIGGRAPH?
0104 ... NetCon?
0105 Have you ever participated in a standards group?
0106 Have you ever debugged machine code over the telephone?
0107 Have you ever seen voice mail?
0108 ... Can you read it?
0109 Do you solve word puzzles with an on-line dictionary?
0110 Have you ever taken a Turing test?
0111 ... Did you fail?
0112 Ever drop a card deck?
0113 ... Did you successfully put it back together?
0114 ... Without looking?
0115 Have you ever used IPCS?
0116 Have you ever received a case of beer with your computer?
0117 Does your computer come in 'designer' colors?
0118 Ever interrupted a UPS?
0119 Ever mask an NMI?
0120 Have you ever set off a Halon system?
0121 ... Intentionally?
0122 ... Do you still work there?
0123 Have you ever hit the emergency power switch?
0124 ... Intentionally?
0125 Do you have any defunct documentation?
0126 ... Do you still read it?
0127 Ever reverse-engineer or decompile a program?
0128 ... Did you find bugs in it?
0129 Ever help the person behind the counter with their terminal/computer?
0130 Ever tried rack mounting your telephone?
0131 Ever thrown a computer from more than two stories high?
0132 Ever patched a bug the vendor does not acknowledge?
0133 Ever fix a hardware problem in software?
0134 ... Vice versa?
0135 Ever belong to a user/support group?
0136 Ever been mentioned in Computer Recreations?
0137 Ever had your activities mentioned in the newspaper?
0138 ... Did you get away with it?
0139 Ever engage a drum brake while the drum was spinning?
0140 Ever write comments in a non-native language?
0141 Ever physically destroy equipment from software?
0142 Ever tried to improve your score on the Hacker Test?
0143 Do you take listings with you to lunch?
0144 ... To bed?
0145 Ever patch a microcode bug?
0146 ... around a microcode bug?
0147 Can you program a Turing machine?
0148 Can you convert postfix to prefix in your head?
0149 Can you convert hex to octal in your head?
0150 Do you know how to use a Kleene star?
0151 Have you ever starved while dining with philosophers?
0152 Have you solved the halting problem?
0153 ... Correctly?
0154 Ever deadlock trying eating spaghetti?
0155 Ever written a self-reproducing program?
0156 Ever swapped out the swapper?
0157 Can you read a state diagram?
0158 ... Do you need one?
0159 Ever create an unkillable program?
0160 ... Intentionally?
0161 Ever been asked for a cookie?
0162 Ever speed up a system by removing a jumper?
* Do you know...
0163 Do you know who wrote Rogue?
0164 ... Rogomatic?
0165 Do you know Gray code?
0166 Do you know what HCF means?
0167 ... Ever use it?
0168 ... Intentionally?
0169 Do you know what a lace card is?
0170 ... Ever make one?
0171 Do you know the end of the epoch?
0172 ... Have you celebrated the end of an epoch?
0173 ... Did you have to rewrite code?
0174 Do you know the difference between DTE and DCE?
0175 Do you know the RS-232C pinout?
0176 ... Can you wire a connector without looking?
* Do you have...
0177 Do you have a copy of Dec Wars?
0178 Do you have the Canonical Collection of Lightbulb Jokes?
0179 Do you have a copy of the Hacker's dictionary?
0180 ... Did you contribute to it?
0181 Do you have a flowchart template?
0182 ... Is it unused?
0183 Do you have your own fortune-cookie file?
0184 Do you have the Anarchist's Cookbook?
0185 ... Ever make anything from it?
0186 Do you own a modem?
0187 ... a terminal?
0188 ... a toy computer?
0189 ... a personal computer?
0190 ... a minicomputer?
0191 ... a mainframe?
0192 ... a supercomputer?
0193 ... a hypercube?
0194 ... a printer?
0195 ... a laser printer?
0196 ... a tape drive?
0197 ... an outmoded peripheral device?
0198 Do you have a programmable calculator?
0199 ... Is it RPN?
0200 Have you ever owned more than 1 computer?
0201 ... 4 computers?
0202 ... 16 computers?
0203 Do you have a SLIP line?
0204 ... a T1 line?
0205 Do you have a separate phone line for your terminal/computer?
0206 ... Is it legal?
0207 Do you have core memory?
0208 ... drum storage?
0209 ... bubble memory?
0210 Do you use more than 16 megabytes of disk space?
0211 ... 256 megabytes?
0212 ... 1 gigabyte?
0213 ... 16 gigabytes?
0214 ... 256 gigabytes?
0215 ... 1 terabyte?
0216 Do you have an optical disk/disk drive?
0217 Do you have a personal magnetic tape library?
0218 ... Is it unlabelled?
0219 Do you own more than 16 floppy disks?
0220 ... 64 floppy disks?
0221 ... 256 floppy disks?
0222 ... 1024 floppy disks?
0223 Do you have any 8-inch disks?
0224 Do you have an internal stack?
0225 Do you have a clock interrupt?
0226 Do you own volumes 1 to 3 of _The Art of Computer Programming_?
0227 ... Have you done all the exercises?
0228 ... Do you have a MIX simulator?
0229 ... Can you name the unwritten volumes?
0230 Can you quote from _The Mythical Man-month_?
0231 ... Did you participate in the OS/360 project?
0232 Do you have a TTL handbook?
0233 Do you have printouts more than three years old?
* Career
0234 Do you have a job?
0235 ... Have you ever had a job?
0236 ... Was it computer-related?
0237 Do you work irregular hours?
0238 Have you ever been a system administrator?
0239 Do you have more megabytes than megabucks?
0240 Have you ever downgraded your job to upgrade your processing power?
0241 Is your job secure?
0242 ... Do you have code to prove it?
0243 Have you ever had a security clearance?
* Games
0244 Have you ever played Pong?
Have you ever played
0246 ... Spacewar?
0247 ... Star Trek?
0248 ... Wumpus?
0249 ... Lunar Lander?
0250 ... Empire?
Have you ever beaten
0251 ... Moria 4.8?
0252 ... Rogue 3.6?
0253 ... Rogue 5.3?
0254 ... Larn?
0255 ... Hack 1.0.3?
0256 ... Nethack 2.4?
0257 Can you get a better score on Rogue than Rogomatic?
0258 Have you ever solved Adventure?
0259 ... Zork?
0260 Have you ever written any redcode?
0261 Have you ever written an adventure program?
0262 ... a real-time game?
0263 ... a multi-player game?
0264 ... a networked game?
0265 Can you out-doctor Eliza?
* Hardware
0266 Have you ever used a light pen?
0267 ... did you build it?
Have you ever used
0268 ... a teletype?
0269 ... a paper tape?
0270 ... a decwriter?
0271 ... a card reader/punch?
0272 ... a SOL?
Have you ever built
0273 ... an Altair?
0274 ... a Heath/Zenith computer?
Do you know how to use
0275 ... an oscilliscope?
0276 ... a voltmeter?
0277 ... a frequency counter?
0278 ... a logic probe?
0279 ... a wirewrap tool?
0280 ... a soldering iron?
0281 ... a logic analyzer?
0282 Have you ever designed an LSI chip?
0283 ... has it been fabricated?
0284 Have you ever etched a printed circuit board?
* Historical
0285 Have you ever toggled in boot code on the front panel?
0286 ... from memory?
0287 Can you program an Eniac?
0288 Ever seen a 90 column card?
* IBM
0289 Do you recite IBM part numbers in your sleep?
0290 Do you know what IBM part number 7320154 is?
0291 Do you understand 3270 data streams?
0292 Do you know what the VM privilege classes are?
0293 Have you IPLed an IBM off the tape drive?
0294 ... off a card reader?
0295 Can you sing something from the IBM Songbook?
* Languages
0296 Do you know more than 4 programming languages?
0297 ... 8 languages?
0298 ... 16 languages?
0299 ... 32 languages?
0300 Have you ever designed a programming language?
0301 Do you know what Basic stands for?
0302 ... Pascal?
0303 Can you program in Basic?
0304 ... Do you admit it?
0305 Can you program in Cobol?
0306 ... Do you deny it?
0307 Do you know Pascal?
0308 ... Modula-2?
0309 ... Oberon?
0310 ... More that two Wirth languages?
0311 ... Can you recite a Nicklaus Wirth joke?
0312 Do you know Algol-60?
0313 ... Algol-W?
0314 ... Algol-68?
0315 ... Do you understand the Algol-68 report?
0316 ... Do you like two-level grammars?
0317 Can you program in assembler on 2 different machines?
0318 ... on 4 different machines?
0319 ... on 8 different machines?
Do you know
0320 ... APL?
0321 ... Ada?
0322 ... BCPL?
0323 ... C++?
0324 ... C?
0325 ... Comal?
0326 ... Eiffel?
0327 ... Forth?
0328 ... Fortran?
0329 ... Hypertalk?
0330 ... Icon?
0331 ... Lisp?
0332 ... Logo?
0333 ... MIIS?
0334 ... MUMPS?
0335 ... PL/I?
0336 ... Pilot?
0337 ... Plato?
0338 ... Prolog?
0339 ... RPG?
0340 ... Rexx (or ARexx)?
0341 ... SETL?
0342 ... Smalltalk?
0343 ... Snobol?
0344 ... VHDL?
0345 ... any assembly language?
0346 Can you talk VT-100?
0347 ... Postscript?
0348 ... SMTP?
0349 ... UUCP?
0350 ... English?
* Micros
0351 Ever copy a copy-protected disk?
0352 Ever create a copy-protection scheme?
0353 Have you ever made a "flippy" disk?
0354 Have you ever recovered data from a damaged disk?
0355 Ever boot a naked floppy?
* Networking
0356 Have you ever been logged in to two different timezones at once?
0357 Have you memorized the UUCP map for your country?
0358 ... For any country?
0359 Have you ever found a sendmail bug?
0360 ... Was it a security hole?
0361 Have you memorized the HOSTS.TXT table?
0362 ... Are you up to date?
0363 Can you name all the top-level nameservers and their addresses?
0364 Do you know RFC-822 by heart?
0365 ... Can you recite all the errors in it?
0366 Have you written a Sendmail configuration file?
0367 ... Does it work?
0368 ... Do you mumble "defocus" in your sleep?
0369 Do you know the max packet lifetime?
* Operating systems
Can you use
0370 ... BSD Unix?
0371 ... non-BSD Unix?
0372 ... AIX
0373 ... VM/CMS?
0374 ... VMS?
0375 ... MVS?
0376 ... VSE?
0377 ... RSTS/E?
0378 ... CP/M?
0379 ... COS?
0380 ... NOS?
0381 ... CP-67?
0382 ... RT-11?
0383 ... MS-DOS?
0384 ... Finder?
0385 ... PRODOS?
0386 ... more than one OS for the TRS-80?
0387 ... Tops-10?
0388 ... Tops-20?
0389 ... OS-9?
0390 ... OS/2?
0391 ... AOS/VS?
0392 ... Multics?
0393 ... ITS?
0394 ... Vulcan?
0395 Have you ever paged or swapped off a tape drive?
0396 ... Off a card reader/punch?
0397 ... Off a teletype?
0398 ... Off a networked (non-local) disk?
0399 Have you ever found an operating system bug?
0400 ... Did you exploit it?
0401 ... Did you report it?
0402 ... Was your report ignored?
0403 Have you ever crashed a machine?
0404 ... Intentionally?
* People
0405 Do you know any people?
0406 ... more than one?
0407 ... more than two?
* Personal
0408 Are your shoelaces untied?
0409 Do you interface well with strangers?
0410 Are you able to recite phone numbers for half-a-dozen computer systems
but unable to recite your own?
0411 Do you log in before breakfast?
0412 Do you consume more than LD-50 caffeine a day?
0413 Do you answer either-or questions with "yes"?
0414 Do you own an up-to-date copy of any operating system manual?
0415 ... *every* operating system manual?
0416 Do other people have difficulty using your customized environment?
0417 Do you dream in any programming languages?
0418 Do you have difficulty focusing on three-dimensional objects?
0419 Do you ignore mice?
0420 Do you despise the CAPS LOCK key?
0421 Do you believe menus belong in restaurants?
0422 Do you have a Mandelbrot hanging on your wall?
0423 Have you ever decorated with magnetic tape or punched cards?
0424 Do you have a disk platter or a naked floppy hanging in your home?
0425 Have you ever seen the dawn?
0426 ... Twice in a row?
0427 Do you use "foobar" in daily conversation?
0428 ... "bletch"?
0429 Do you use the "P convention"?
0430 Do you automatically respond to any user question with RTFM?
0431 ... Do you know what it means?
0432 Do you think garbage collection means memory management?
0433 Do you have problems allocating horizontal space in your room/office?
0434 Do you read Scientific American in bars to pick up women?
0435 Is your license plate computer-related?
0436 Have you ever taken the Purity test?
0437 Ever have an out-of-CPU experience?
0438 Have you ever set up a blind date over the computer?
0439 Do you talk to the person next to you via computer?
* Programming
0440 Can you write a Fortran compiler?
0441 ... In TECO?
0442 Can you read a machine dump?
0443 Can you disassemble code in your head?
Have you ever written
0444 ... a compiler?
0445 ... an operating system?
0446 ... a device driver?
0447 ... a text processor?
0448 ... a display hack?
0449 ... a database system?
0450 ... an expert system?
0451 ... an edge detector?
0452 ... a real-time control system?
0453 ... an accounting package?
0454 ... a virus?
0455 ... a prophylactic?
0456 Have you ever written a biorhythm program?
0457 ... Did you sell the output?
0458 ... Was the output arbitrarily invented?
0459 Have you ever computed pi to more than a thousand decimal places?
0460 ... the number e?
0461 Ever find a prime number of more than a hundred digits?
0462 Have you ever written self-modifying code?
0463 ... Are you proud of it?
0464 Did you ever write a program that ran correctly the first time?
0465 ... Was it longer than 20 lines?
0466 ... 100 lines?
0467 ... Was it in assembly language?
0468 ... Did it work the second time?
0469 Can you solve the Towers of Hanoi recursively?
0470 ... Non-recursively?
0471 ... Using the Troff text formatter?
0472 Ever submit an entry to the Obfuscated C code contest?
0473 ... Did it win?
0474 ... Did your entry inspire a new rule?
0475 Do you know Duff's device?
0476 Do you know Jensen's device?
0477 Ever spend ten minutes trying to find a single-character error?
0478 ... More than an hour?
0479 ... More than a day?
0480 ... More than a week?
0481 ... Did the first person you show it to find it immediately?
* Unix
0482 Can you use Berkeley Unix?
0483 .. Non-Berkeley Unix?
0484 Can you distinguish between sections 4 and 5 of the Unix manual?
0485 Can you find TERMIO in the System V release 2 documentation?
0486 Have you ever mounted a tape as a Unix file system?
0487 Have you ever built Minix?
0488 Can you answer "quiz function ed-command" correctly?
0489 ... How about "quiz ed-command function"?
* Usenet
0490 Do you read news?
0491 ... More than 32 newsgroups?
0492 ... More than 256 newsgroups?
0493 ... All the newsgroups?
0494 Have you ever posted an article?
0495 ... Do you post regularly?
0496 Have you ever posted a flame?
0497 ... Ever flame a cross-posting?
0498 ... Ever flame a flame?
0499 ... Do you flame regularly?
0500 Ever have your program posted to a source newsgroup?
0501 Ever forge a posting?
0502 Ever form a new newsgroup?
0503 ... Does it still exist?
0504 Do you remember
0505 ... mod.ber?
0506 ... the Stupid People's Court?
0507 ... Bandy-grams?
* Phreaking
0508 Have you ever built a black box?
0509 Can you name all of the 'colors' of boxes?
0510 ... and their associated functions?
0511 Does your touch tone phone have 16 DTMF buttons on it?
0512 Did the breakup of MaBell create more opportunities for you?
If you have any comments of suggestions regarding the HACKER TEST,
Please send then to: hayes@psunuce.bitnet
or jwh100@psuvm.bitnet / jwh100@psuvmxa.bitnet
or jwh100@psuvm.psu.edu / jwh100@psuvmxa.psu.edu
or ...!psuvax1!psuvm.bitnet!jwh100
|
19d2eddd6d5065d9e7ff2b0503450e93ce497f88
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3856/CH8/EX8.1/Ex8_1.sce
|
d7729826a6d3e2e578d3aada02fff06189df5c7f
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 276
|
sce
|
Ex8_1.sce
|
//Calculate the Specific conductance
//Example 8.1
clc;
clear;
C=0.689; //Cunductance of the cell in ohm^-1
c=0.255; //Cell constant in cm^-1 (c=l/A)
k=C*c; //Specific conductance in ohm^-1 cm^-1
printf("Specific conductance = %.3f ohm^-1 cm^-1",k);
|
a02fcaaad8ed496c0e9c1a13c0e19b7220beb17d
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/149/CH21/EX21.10.1/ques10_1.sce
|
49fc4ccb065241cbc6981c27aff377fba09a7055
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 168
|
sce
|
ques10_1.sce
|
//ques10(i)
clc
disp('To find the the given integral find the laplace of tsin(t) and put s=2 ');
syms t s m
f=sin(t)*t;
l=laplace(f,t,s)
s=2
disp(eval(l));
|
bc53472c04dfc050bb1d8308dbccc5323e2b2756
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3775/CH5/EX5.2/Ex5_2.sce
|
3d3056997f1b89a1094dcbc21d6594eb14114fc8
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 367
|
sce
|
Ex5_2.sce
|
//Ex 5.2 page 185
clc;
clear;
close;
R=5;// ohm
Vs=300;// V
f=1*1000;// Hz
Ton=20;// ms
Toff=10;// ms
k= Ton/(Ton+Toff);// duty ratio
f=1000/(Ton+Toff);//Hz
Voav=Vs*k;// V
Ioav=Voav/R;// A
printf('\n duty ratio = %.3f',k)
printf('\n chopping frequency = %.2f Hz',f)
printf('\n Average load voltage = %.2f V', Voav)
printf('\n Average load current = %.2f A', Ioav)
|
050bf21ec88cf110d72c605bef583b4a28ea6dc8
|
63c8bbe209f7a437f8bcc25dc1b7b1e9a100defa
|
/test/0014.tst
|
4e50629a133e32b861b3f9d60189c87b8ee78f0f
|
[] |
no_license
|
fmeci/nfql-testing
|
e9e7edb03a7222cd4c5f17b9b4d2a8dd58ea547c
|
6b7d465b32fa50468e3694f63c803e3630c5187d
|
refs/heads/master
| 2021-01-11T04:09:48.579127
| 2013-05-02T13:30:17
| 2013-05-02T13:30:17
| 71,239,280
| 0
| 0
| null | 2016-10-18T11:01:57
| 2016-10-18T11:01:55
|
Python
|
UTF-8
|
Scilab
| false
| false
| 353
|
tst
|
0014.tst
|
spLitteR S {}
FiLtEr CiVR { }
fIltER l {B or noT S OR VI or Mkb }
Y -> Okt -> F -> rr -> Ec
groUpEr q {moDUle e{ f > VkU dElta 5720 } aggrEgate yjE }
UNGrOUper d { }
gRouPFiLTEr wFN {biTOR () oR 3.228.153.228 NOT in izVPV or bf:3D:cD:FE:Ab:6D
IN 6 }
merGER aK { modUle S { bRanchEs U, uv not zK ( ) } moDuLE M { BRANChEs j } eXPoRt C }
|
ba4e3dc54525e835c1bd6b26413c56601cf76e3c
|
7b040f1a7bbc570e36aab9b2ccf77a9e59d3e5c2
|
/Scilab/virtual/2dof_controller/dc/Z-trans/scilab/disc2.sce
|
a288da6d6180ce9238e1f0b9decdd1dfb53bd5ab
|
[] |
no_license
|
advait23/sbhs-manual
|
e2c380051117e3a36398bb5ad046781f7b379cb9
|
d65043acd98334c44a0f0dbf480473c4c4451834
|
refs/heads/master
| 2021-01-16T19:50:40.218314
| 2012-11-16T04:11:12
| 2012-11-16T04:11:12
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 77
|
sce
|
disc2.sce
|
// Updated(18-7-07)
// 8.1
sys = tf(10,[5 1]);
sysd = ss2tf(dscr(sys,0.5));
|
be28520ba61783a49c651ef8c7c8817a80b79b23
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1658/CH19/EX19.12/Ex19_12.sce
|
fe4395ad01a53af43534171e23cf9a96bce2bace
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 259
|
sce
|
Ex19_12.sce
|
clc;
VEE=10;
RE=10*10**3;
RB=100*10**3;
B=50;
VBE=0.7;
IE=(VEE-VBE)/(RE+(RB/B));
re=25/IE*10**-3;
Ri=B*(RE+re);
disp('Kohm',Ri*10**-3,"Ri=");
Ris=(RB*Ri)/(RB+Ri);
Rs=0;
Ro=re+((RB*Rs)/(RB+Rs))/B;
disp('ohm',Ro,"Ro=");
Av=RE/(re+RE);
disp(Av);
|
d0a2ee2045b653da62eea21649ebbfbba099799b
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1709/CH6/EX6.6/6_6.sce
|
7f332736d0e5f4bced9ef7aaa558e3022c710a61
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 228
|
sce
|
6_6.sce
|
clc
//Initialization of variables
disp("from steam tables,")
h1=1416.4 //B/lbm
s1=1.6842 //B/lbm R
//calculations
s2=s1
P2=50 //psia
T2=317.5 //F
h2=1193.7
W=h2-h1
//results
printf("Work calculated = %.1f B/lbm",W)
|
52ed0ecc8c6dfe18080de415539a58956b14e2a3
|
b29e9715ab76b6f89609c32edd36f81a0dcf6a39
|
/ketpicscifiles6/Arrowdata.sci
|
f6ac6ef2e9e82b02839412058b0548a8724c4f61
|
[] |
no_license
|
ketpic/ketcindy-scilab-support
|
e1646488aa840f86c198818ea518c24a66b71f81
|
3df21192d25809ce980cd036a5ef9f97b53aa918
|
refs/heads/master
| 2021-05-11T11:40:49.725978
| 2018-01-16T14:02:21
| 2018-01-16T14:02:21
| 117,643,554
| 1
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,084
|
sci
|
Arrowdata.sci
|
// 08.05.08
function Out=Arrowdata(varargin)
global YaSize YaAngle YaPosition YaThick YaStyle;
Nargs=length(varargin);
P=varargin(1);
Q=varargin(2);
R=Q;
Futosa=YaThick;
Ookisa=YaSize;
Thickness=1;
Hiraki=YaAngle;
Yapos=YaPosition;
Position=1;
Str=YaStyle;
Flg=0;
for I=3:Nargs
Tmp=varargin(I);
if type(Tmp)==1
if length(Tmp)>1
R=Tmp
else
if Flg==0
Ookisa=Ookisa*Tmp;
end
if Flg==1
if Tmp<5
Hiraki=Tmp*Hiraki;
else
Hiraki=Tmp;
end
end
if Flg==2
R=P+Tmp*(Q-P);
else
R=P+Yapos*(Q-P);
end
if Flg==3
Futosa=Tmp
end
Flg=Flg+1;
end
end
if type(Tmp)==10
if mtlb_findstr(Tmp,'=')~=[]
execstr(Tmp);
Futosa=Futosa*Thickness;
R=P+Position*(Q-P);
else
Str=Tmp
end
end
end
Tmp1=Listplot([P,Q]);
Tmp2=Arrowheaddata(R,Q-P,Ookisa,Hiraki,Futosa,Str);
Out=Joingraphics(Tmp1,Tmp2);
endfunction
|
747588c07d7883abd31ed1d28a2a9dde21f792b5
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1682/CH13/EX13.3/Exa13_3.sce
|
d10286616c5656cd26acd74a05a0a7f9b1e17db0
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 293
|
sce
|
Exa13_3.sce
|
//Exa 13.3
clc;
clear;
close;
//given data :
SP=500;//in Rs.
VC=300;//in Rs.
FC=400000;//in RS.
BEP=FC/(SP-VC);//in units
disp(BEP,"BEP in units : ");
disp("Since the demand(1500units) is less than the break even quantity, the company should buy the cabinets for its TV production.")
|
8e2e48e2c2adbcaf93fbb63cfc7afad87cbaf3ca
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1760/CH4/EX4.58/Ex4_58.sce
|
e7f942f5c0a6d559ad4a63c63bc16eb075dc9eda
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 325
|
sce
|
Ex4_58.sce
|
// Example : 4.58
v1=233.73-%i*8.934;
vs=240+%i*0;
r1=0.6+%i*0.8;
i1=(vs-v1)/r1;
disp('the value of I1 is = '+string(i1)+' Amp');
r2=0.5+%i*0.866;
vs1=239.5-%i*14.359;
i2=(vs1-v1)/r2;
disp('the value of I1 is = '+string(i2)+' Amp');
r3=16+%i*12;
il=i1/r3;
disp('the value of I1 is = '+string(il)+' Amp');
|
860703658d90e8fb51f46973f3fa4c81f007744b
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2672/CH1/EX1.24/Ex1_24.sce
|
1d831b5ab618bbb1583e903fe4c4535825c1dc7e
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 461
|
sce
|
Ex1_24.sce
|
//Example 1_24
clc;
clear;
close;
format('v',6);
//given data :
V1=6;//V
V2=15;//V
R1=6;//ohm
R2=3;//ohm
R3=4;//ohm
R4=6;//ohm
//writing KVL equation for the loop
I=poly(0,'I');
eqn=V2-R2*I-R1*I-V1;//KVL equation
I=roots(eqn);//A
VCD=V2-R2*I;//V
//Potential of point A with respect to B
VAB=VCD;//V
VOC=VAB;//V
Req=R1*R2/(R1+R2)+R3;//ohm
//Thevenin equivalent current
I=VOC/(Req+R4);//A
disp(I,"Current flowing through terminal AB(A)");
|
b47732e20d212c6466950059d8ff939bda8d34cf
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1271/CH14/EX14.19/example14_19.sce
|
304d71a0d4022fd71204002fddc61a755bcfed93
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 496
|
sce
|
example14_19.sce
|
clc
// Given that
w = 2 // work function of sodium in eV
h = 6.62e-34 // Planck constant in J-sec
c = 3e8 // speed of light in m/sec
e = 1.6e-19 // charge on an electron in C
// Sample Problem 19 on page no. 14.27
printf("\n # PROBLEM 19 # \n")
printf("Standard formula used \n ")
printf(" E = (h * c)/ lambda \n")
lambda = ((h * c) / w) * (1 / e)
printf("\n Threshold wavelength for photo emission is %d Angstrom.",lambda * 1e10)
|
7192e8f9dafd8f167588d4a6d4eea8c61dde00e4
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1299/CH15/EX15.43/example15_43.sce
|
a4ca3ebb612f468cdebbd35d6260cd20a8c8af41
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 110
|
sce
|
example15_43.sce
|
//Example:15.43
//eigen values of matrix A
clear;clc;
xdel(winsid());
A=[0 6 -5;1 0 2;3 2 4];
spec(A)
|
cea98989634e0fdd44cb9e9d05042190b4e0f21c
|
8217f7986187902617ad1bf89cb789618a90dd0a
|
/browsable_source/2.5/Unix-Windows/scilab-2.5/tests/examples/timer.man.tst
|
ee4d79b6cf935e163b5ebeb4ee45c917542c065d
|
[
"LicenseRef-scancode-public-domain",
"LicenseRef-scancode-warranty-disclaimer"
] |
permissive
|
clg55/Scilab-Workbench
|
4ebc01d2daea5026ad07fbfc53e16d4b29179502
|
9f8fd29c7f2a98100fa9aed8b58f6768d24a1875
|
refs/heads/master
| 2023-05-31T04:06:22.931111
| 2022-09-13T14:41:51
| 2022-09-13T14:41:51
| 258,270,193
| 0
| 1
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 48
|
tst
|
timer.man.tst
|
clear;lines(0);
timer();A=rand(100,100);timer()
|
25c6ebd4b9ec8833177ce87defd9604706453302
|
3aecc0a856e5ab896077f26d338574613e42a223
|
/src/05.MiddleSquare.sci
|
f2eade309aa38b9ece62a65085b4ac629b1873ff
|
[] |
no_license
|
wmotti/simulation
|
9ebed2818f83a1ba864399ee3dc664e5303e3983
|
ec4cce2ce180f947edf0ed9f501799d06b8a0416
|
refs/heads/master
| 2020-03-28T08:10:23.668854
| 2018-09-08T16:14:42
| 2018-09-08T16:14:42
| 147,949,219
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 336
|
sci
|
05.MiddleSquare.sci
|
function [n]=vonNeumannNextRand(n)
l=ceil(log10(n));
sn="";
for i=floor(l/2)+1:floor(3*l/2),
j=part(string(n^2),i);
sn=sn+j;
end;
n=evstr(sn);
endfunction
function [result]=MS_gen(N,seed)
result=[];
n=seed;
for i=[1:N],
n=vonNeumannNextRand(n);
result($+1,1)=n/9999;
end
endfunction
MS_gen(50,5132)
|
5441bb3dee86ed0a9557ed3a65ef7b22b774a048
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/842/CH10/EX10.36/Example10_36.sce
|
70f104d2f1a1fb43230848268bb6eecbb7a661af
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 338
|
sce
|
Example10_36.sce
|
//clear//
//Example 10.36:To find output response of an LTI System
syms n z;
H = z/(z+3)
X = z/(z-1)
Y = X*H
F1 = Y*(z^(n-1))*(z-1);
y1 = limit(F1,z,1);
F2 = Y*(z^(n-1))*(z+3);
y2 = limit(F2,z,-3);
disp(y1*"u(n)"+y2*"u(n)",'y[n]=')
//Result
//y[n] = u(n)/4-(-3)^(n+1)*u(n)/4
//Equivalent to = (1/4).u[n]-(3/4)(-3)^n.u[n]
|
e2bd47ffef94b201efe76e57686190bf56c248ac
|
63c8bbe209f7a437f8bcc25dc1b7b1e9a100defa
|
/test/0045.tst
|
de1ea3e8cf90a467822e90886968e6cea6b56cc3
|
[] |
no_license
|
fmeci/nfql-testing
|
e9e7edb03a7222cd4c5f17b9b4d2a8dd58ea547c
|
6b7d465b32fa50468e3694f63c803e3630c5187d
|
refs/heads/master
| 2021-01-11T04:09:48.579127
| 2013-05-02T13:30:17
| 2013-05-02T13:30:17
| 71,239,280
| 0
| 0
| null | 2016-10-18T11:01:57
| 2016-10-18T11:01:55
|
Python
|
UTF-8
|
Scilab
| false
| false
| 316
|
tst
|
0045.tst
|
SPLItter N {}
fiLter cq { }
fILtER y {YsK rC or nOt D oR nOt Q E Not i Or E or M }
r brAnCh f
grOUPEr Tj {moduLe g{ } mOduLe k{ } aGGReGate kWQ ,tbTXt ,suM(Q.D) aS u }
uNGrOuPEr AHds { }
gROUPFIlteR dMM {noT O ( 157.58.123.161, ::C2Ee:c:EDb:cE2:bB4:cEd:6, ) BITANd ( D, ) }
MergEr l { export Rw }
|
0633561835495737e69675ac324782cea056263a
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3415/CH3/EX3.2/Ex3_2.sce
|
b79a8a1917a56a4b4c79f2b76fd9152dca838b6a
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 706
|
sce
|
Ex3_2.sce
|
//fiber optic communications by joseph c. palais
//example 3.2
//OS=Windows XP sp3
//Scilab version 5.4.1
clc
clear all
//given
SW=1//spectral width of laser in nm
lambda1=0.82e-6//wave length in m
d=10//path length in km
lambda2=1.5e-6//wave length in m
M1=110//Material dispersion ps/(nmxKm) for lambda1
M2=15//Material dispersion ps/(nmxKm) for lambda2
//to find
delta_taubyL1=M1*SW*d// pulse spreading per unit length in ps for lambda1
delta_taubyL2=M2*SW*d// pulse spreading per unit length in ps for lambda2
//multiplication by 1e-3 converts unit from ps to ns
mprintf("Pulse spreading case 1=%fns",delta_taubyL1*1e-3)
mprintf("\nPulse spreading case 2=%fns",delta_taubyL2*1e-3)
|
90ae633e14f87757d17b5c29b6edaa7f21b7e513
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1997/CH2/EX2.9/example9.sce
|
23279db50d2728014d264ecb0676b16ed8206ccb
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 512
|
sce
|
example9.sce
|
//Chapter-2 example 2.9
//=============================================================================
clc;
clear;
Pt=500000;//peal power in watts
F=10*10^9;//operating frequency in hz
MRP=0.1*10^-12;//minimum receivable power in pico watts
Ac=5;//capture area of antenna in m^2;
RCS=20;//radar cross sectional area in m^2;
Vo=3*10^8//velocity in m/s
// calculations
lamda =Vo/F
Rmax=((Pt*Ac*Ac*RCS)/(4*%pi*lamda*lamda*MRP))^0.25
//output
mprintf('Maximum Radar Range is %3.1f kms',Rmax/1000);
|
51c03c6110d08fd50e48d01dc44479ca28c4bad9
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3472/CH9/EX9.11/Example9_11.sce
|
67f4a53e61cffdb58df58cb502ad3b00d4622119
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,142
|
sce
|
Example9_11.sce
|
// A Texbook on POWER SYSTEM ENGINEERING
// A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar
// DHANPAT RAI & Co.
// SECOND EDITION
// PART II : TRANSMISSION AND DISTRIBUTION
// CHAPTER 2: CONSTANTS OF OVERHEAD TRANSMISSION LINES
// EXAMPLE : 2.11 :
// Page number 109
clear ; clc ; close ; // Clear the work space and console
// Given data
d = 3.0 // Diameter of conductor(cm)
D_12 = 200.0 // Distance between conductor 1 & 2(cm)
D_23 = 200.0 // Distance between conductor 2 & 3(cm)
D_31 = 400.0 // Distance between conductor 1 & 3(cm)
// Calculations
D_eq = (D_12*D_23*D_31)**(1.0/3) // Equivalent distance(cm)
r = d/2.0 // Radius of conductor(cm)
L = (0.5+2*log(D_eq/r))*10**-7 // Inductance/phase/m(H)
L_mH = L*1000.0*1000.0 // Inductance per phase per km(mH)
// Results
disp("PART II - EXAMPLE : 2.11 : SOLUTION :-")
printf("\nInductance of each conductor per phase per km, L = %.3f mH \n", L_mH)
printf("\nNOTE: ERROR: Calculation mistake in the textbook")
|
0913be8a75a045c2ed42adb383e8b2be9a4c227a
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2354/CH6/EX6.2/6_2.sce
|
91799c868101a89aae8c09f43a99e81ac4cebc1f
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 257
|
sce
|
6_2.sce
|
//example 6.2
clc; funcprot(0);
// Initialization of Variable
Qcdot=8000;
Wcycledot=3200.0;
Tc=268.0;
Th=295.0;
Beta=Qcdot/Wcycledot;
disp(Beta,"coeff. of performance");
Betamax=Tc/(Th-Tc);
disp(Betamax,"maximum coeff. of performance");
clear()
|
d2dadcc7855306e64f215a773a31219c7049bc96
|
46ffb5fda9448453eba4d6787a1568028b241d88
|
/ABMLangangen/calibration/cal_7561.337.sci
|
025381ae6220ac2e90cda3bc365923a8a5b6b287
|
[] |
no_license
|
JusteRaimbault/Models
|
f81f886dc050445dae68e933e0c052c7f9c0b59c
|
52f9c28fe20c8e491fb83e22ef162256eb966d32
|
refs/heads/master
| 2016-09-10T23:23:05.419418
| 2013-07-30T22:02:34
| 2013-07-30T22:02:34
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 17,796
|
sci
|
cal_7561.337.sci
|
bref=[];bnorm=[];income-mean=[];rents=[];
bref(1)=5000;
bnorm(1)=10000;
income-mean(1)=10000;
rents(1,1)=36.529802855125276;
rents(1,2)=36.52980285512526;
rents(1,3)=36.529802855125254;
rents(1,4)=36.52980285512521;
rents(1,5)=36.529802855125226;
rents(1,6)=36.52980285512523;
rents(1,7)=36.52980285512532;
rents(1,8)=36.52980285512528;
rents(1,9)=36.52980285512525;
rents(1,10)=36.52980285512522;
rents(1,11)=60.50594403125211;
rents(1,12)=60.50594403125203;
rents(1,13)=60.50594403125205;
rents(1,14)=60.50594403125213;
rents(1,15)=60.50594403125199;
rents(1,16)=60.50594403125197;
rents(1,17)=60.50594403125208;
rents(1,18)=60.50594403125203;
rents(1,19)=60.50594403125208;
rents(1,20)=60.50594403125208;
rents(1,21)=90.87301901798499;
rents(1,22)=90.87301901798497;
rents(1,23)=90.87301901798482;
rents(1,24)=90.87301901798486;
rents(1,25)=90.87301901798509;
rents(1,26)=90.87301901798494;
rents(1,27)=90.8730190179851;
rents(1,28)=90.87301901798493;
rents(1,29)=90.87301901798492;
rents(1,30)=90.87301901798497;
rents(1,31)=122.70763120213991;
rents(1,32)=122.70763120213988;
rents(1,33)=122.70763120213985;
rents(1,34)=122.70763120213986;
rents(1,35)=122.70763120214;
rents(1,36)=122.70763120213999;
rents(1,37)=122.70763120213992;
rents(1,38)=122.70763120213978;
rents(1,39)=122.70763120213992;
rents(1,40)=122.70763120213986;
rents(1,41)=156.37891096533795;
rents(1,42)=156.37891096533792;
rents(1,43)=156.37891096533787;
rents(1,44)=156.378910965338;
rents(1,45)=156.37891096533806;
rents(1,46)=156.37891096533775;
rents(1,47)=156.37891096533792;
rents(1,48)=156.37891096533775;
rents(1,49)=156.37891096533812;
rents(1,50)=156.37891096533758;
rents(1,51)=167.97487569893312;
rents(1,52)=167.97487569893298;
rents(1,53)=167.974875698933;
rents(1,54)=167.97487569893312;
rents(1,55)=167.97487569893298;
rents(1,56)=167.97487569893298;
rents(1,57)=167.974875698933;
rents(1,58)=167.97487569893298;
rents(1,59)=167.974875698933;
rents(1,60)=167.97487569893306;
rents(1,61)=166.0978518713789;
rents(1,62)=166.09785187137905;
rents(1,63)=166.0978518713791;
rents(1,64)=166.0978518713789;
rents(1,65)=166.0978518713792;
rents(1,66)=166.09785187137925;
rents(1,67)=166.09785187137916;
rents(1,68)=166.09785187137894;
rents(1,69)=166.09785187137885;
rents(1,70)=166.09785187137925;
rents(1,71)=162.9743496316774;
rents(1,72)=162.97434963167723;
rents(1,73)=162.9743496316774;
rents(1,74)=162.97434963167748;
rents(1,75)=162.97434963167743;
rents(1,76)=162.97434963167717;
rents(1,77)=162.97434963167734;
rents(1,78)=162.9743496316773;
rents(1,79)=162.97434963167714;
rents(1,80)=162.97434963167746;
rents(1,81)=165.5704100838765;
rents(1,82)=165.57041008387634;
bref(2)=5000;
bnorm(2)=10000;
income-mean(2)=11000;
rents(2,1)=36.781055268029306;
rents(2,2)=36.78105526802929;
rents(2,3)=36.781055268029284;
rents(2,4)=36.78105526802927;
rents(2,5)=36.78105526802927;
rents(2,6)=36.78105526802926;
rents(2,7)=36.78105526802925;
rents(2,8)=36.78105526802926;
rents(2,9)=36.781055268029284;
rents(2,10)=36.78105526802923;
rents(2,11)=63.16800042464655;
rents(2,12)=63.16800042464654;
rents(2,13)=63.168000424646486;
rents(2,14)=63.168000424646486;
rents(2,15)=63.1680004246465;
rents(2,16)=63.16800042464647;
rents(2,17)=63.16800042464654;
rents(2,18)=63.16800042464654;
rents(2,19)=63.16800042464648;
rents(2,20)=63.1680004246465;
rents(2,21)=98.88789760804448;
rents(2,22)=98.88789760804448;
rents(2,23)=98.88789760804444;
rents(2,24)=98.88789760804465;
rents(2,25)=98.88789760804441;
rents(2,26)=98.88789760804443;
rents(2,27)=98.88789760804443;
rents(2,28)=98.88789760804444;
rents(2,29)=98.88789760804454;
rents(2,30)=98.88789760804447;
rents(2,31)=138.87077214479314;
rents(2,32)=138.87077214479316;
rents(2,33)=138.87077214479325;
rents(2,34)=138.87077214479305;
rents(2,35)=138.87077214479308;
rents(2,36)=138.87077214479336;
rents(2,37)=138.870772144793;
rents(2,38)=138.87077214479305;
rents(2,39)=138.8707721447931;
rents(2,40)=138.8707721447932;
rents(2,41)=173.12208478519204;
rents(2,42)=173.12208478519193;
rents(2,43)=173.1220847851918;
rents(2,44)=173.12208478519204;
rents(2,45)=173.12208478519233;
rents(2,46)=173.12208478519202;
rents(2,47)=173.122084785192;
rents(2,48)=173.1220847851921;
rents(2,49)=173.12208478519224;
rents(2,50)=173.12208478519227;
rents(2,51)=187.52337210733734;
rents(2,52)=187.52337210733737;
rents(2,53)=187.52337210733725;
rents(2,54)=187.52337210733728;
rents(2,55)=187.52337210733762;
rents(2,56)=187.5233721073375;
rents(2,57)=187.5233721073372;
rents(2,58)=187.52337210733728;
rents(2,59)=187.52337210733742;
rents(2,60)=187.52337210733734;
rents(2,61)=185.62463634960756;
rents(2,62)=185.6246363496076;
rents(2,63)=185.6246363496074;
rents(2,64)=185.6246363496076;
rents(2,65)=185.62463634960764;
rents(2,66)=185.6246363496076;
rents(2,67)=185.6246363496074;
rents(2,68)=185.62463634960753;
rents(2,69)=185.62463634960756;
rents(2,70)=185.62463634960736;
rents(2,71)=183.82515696735817;
rents(2,72)=183.82515696735842;
rents(2,73)=183.82515696735825;
rents(2,74)=183.82515696735814;
rents(2,75)=183.8251569673584;
rents(2,76)=183.82515696735828;
rents(2,77)=183.82515696735823;
rents(2,78)=183.8251569673584;
rents(2,79)=183.8251569673583;
rents(2,80)=183.82515696735834;
rents(2,81)=181.94845823502442;
rents(2,82)=181.94845823502465;
bref(3)=5000;
bnorm(3)=10000;
income-mean(3)=12000;
rents(3,1)=37.88473481550254;
rents(3,2)=37.88473481550257;
rents(3,3)=37.88473481550249;
rents(3,4)=37.88473481550259;
rents(3,5)=37.88473481550262;
rents(3,6)=37.88473481550254;
rents(3,7)=37.88473481550254;
rents(3,8)=37.884734815502554;
rents(3,9)=37.88473481550256;
rents(3,10)=37.884734815502604;
rents(3,11)=67.38423290132876;
rents(3,12)=67.3842329013287;
rents(3,13)=67.38423290132874;
rents(3,14)=67.38423290132876;
rents(3,15)=67.38423290132874;
rents(3,16)=67.38423290132872;
rents(3,17)=67.38423290132874;
rents(3,18)=67.38423290132877;
rents(3,19)=67.38423290132872;
rents(3,20)=67.38423290132874;
rents(3,21)=108.69202490442507;
rents(3,22)=108.69202490442498;
rents(3,23)=108.69202490442493;
rents(3,24)=108.69202490442493;
rents(3,25)=108.69202490442505;
rents(3,26)=108.69202490442514;
rents(3,27)=108.69202490442488;
rents(3,28)=108.69202490442493;
rents(3,29)=108.69202490442495;
rents(3,30)=108.69202490442488;
rents(3,31)=153.24285701779186;
rents(3,32)=153.2428570177916;
rents(3,33)=153.24285701779158;
rents(3,34)=153.2428570177916;
rents(3,35)=153.2428570177919;
rents(3,36)=153.2428570177916;
rents(3,37)=153.2428570177918;
rents(3,38)=153.2428570177918;
rents(3,39)=153.24285701779144;
rents(3,40)=153.2428570177917;
rents(3,41)=189.25460048801742;
rents(3,42)=189.25460048801733;
rents(3,43)=189.25460048801747;
rents(3,44)=189.25460048801722;
rents(3,45)=189.2546004880174;
rents(3,46)=189.2546004880173;
rents(3,47)=189.25460048801736;
rents(3,48)=189.25460048801742;
rents(3,49)=189.25460048801742;
rents(3,50)=189.25460048801716;
rents(3,51)=197.6983800582098;
rents(3,52)=197.6983800582097;
rents(3,53)=197.69838005820972;
rents(3,54)=197.69838005820978;
rents(3,55)=197.69838005820966;
rents(3,56)=197.6983800582098;
rents(3,57)=197.6983800582098;
rents(3,58)=197.69838005820978;
rents(3,59)=197.6983800582098;
rents(3,60)=197.69838005820978;
rents(3,61)=199.30428857445585;
rents(3,62)=199.30428857445597;
rents(3,63)=199.30428857445588;
rents(3,64)=199.3042885744558;
rents(3,65)=199.30428857445582;
rents(3,66)=199.30428857445602;
rents(3,67)=199.30428857445594;
rents(3,68)=199.30428857445582;
rents(3,69)=199.3042885744558;
rents(3,70)=199.30428857445585;
rents(3,71)=199.82097627629804;
rents(3,72)=199.82097627629804;
rents(3,73)=199.82097627629804;
rents(3,74)=199.82097627629804;
rents(3,75)=199.82097627629804;
rents(3,76)=199.82097627629807;
rents(3,77)=199.82097627629807;
rents(3,78)=199.82097627629807;
rents(3,79)=199.82097627629807;
rents(3,80)=199.82097627629804;
rents(3,81)=200;
rents(3,82)=200;
bref(4)=5000;
bnorm(4)=10000;
income-mean(4)=13000;
rents(4,1)=36.309218796469274;
rents(4,2)=36.309218796469246;
rents(4,3)=36.30921879646931;
rents(4,4)=36.30921879646928;
rents(4,5)=36.30921879646927;
rents(4,6)=36.30921879646926;
rents(4,7)=36.30921879646927;
rents(4,8)=36.309218796469295;
rents(4,9)=36.30921879646929;
rents(4,10)=36.30921879646929;
rents(4,11)=69.87397382168626;
rents(4,12)=69.87397382168633;
rents(4,13)=69.87397382168635;
rents(4,14)=69.87397382168642;
rents(4,15)=69.8739738216863;
rents(4,16)=69.87397382168638;
rents(4,17)=69.87397382168619;
rents(4,18)=69.87397382168636;
rents(4,19)=69.87397382168636;
rents(4,20)=69.87397382168633;
rents(4,21)=119.96886113683206;
rents(4,22)=119.96886113683206;
rents(4,23)=119.96886113683205;
rents(4,24)=119.9688611368322;
rents(4,25)=119.96886113683206;
rents(4,26)=119.96886113683206;
rents(4,27)=119.96886113683195;
rents(4,28)=119.96886113683206;
rents(4,29)=119.96886113683196;
rents(4,30)=119.96886113683206;
rents(4,31)=179.53711989501468;
rents(4,32)=179.5371198950148;
rents(4,33)=179.53711989501494;
rents(4,34)=179.53711989501494;
rents(4,35)=179.5371198950149;
rents(4,36)=179.53711989501485;
rents(4,37)=179.53711989501525;
rents(4,38)=179.53711989501494;
rents(4,39)=179.5371198950149;
rents(4,40)=179.53711989501497;
rents(4,41)=199.2123831890043;
rents(4,42)=199.21238318900424;
rents(4,43)=199.21238318900419;
rents(4,44)=199.21238318900424;
rents(4,45)=199.21238318900416;
rents(4,46)=199.21238318900424;
rents(4,47)=199.21238318900424;
rents(4,48)=199.2123831890042;
rents(4,49)=199.2123831890042;
rents(4,50)=199.2123831890042;
rents(4,51)=200;
rents(4,52)=200;
rents(4,53)=200;
rents(4,54)=200;
rents(4,55)=200;
rents(4,56)=200;
rents(4,57)=200;
rents(4,58)=200;
rents(4,59)=200;
rents(4,60)=200;
rents(4,61)=200;
rents(4,62)=200;
rents(4,63)=200;
rents(4,64)=200;
rents(4,65)=200;
rents(4,66)=200;
rents(4,67)=200;
rents(4,68)=200;
rents(4,69)=200;
rents(4,70)=200;
rents(4,71)=200;
rents(4,72)=200;
rents(4,73)=200;
rents(4,74)=200;
rents(4,75)=200;
rents(4,76)=200;
rents(4,77)=200;
rents(4,78)=200;
rents(4,79)=200;
rents(4,80)=200;
rents(4,81)=200;
rents(4,82)=200;
bref(5)=5000;
bnorm(5)=10000;
income-mean(5)=14000;
rents(5,1)=36.011016526685225;
rents(5,2)=36.011016526685225;
rents(5,3)=36.01101652668529;
rents(5,4)=36.01101652668524;
rents(5,5)=36.01101652668522;
rents(5,6)=36.01101652668525;
rents(5,7)=36.01101652668517;
rents(5,8)=36.01101652668522;
rents(5,9)=36.011016526685225;
rents(5,10)=36.01101652668523;
rents(5,11)=74.16330960138957;
rents(5,12)=74.16330960138961;
rents(5,13)=74.16330960138967;
rents(5,14)=74.16330960138966;
rents(5,15)=74.16330960138957;
rents(5,16)=74.1633096013896;
rents(5,17)=74.16330960138954;
rents(5,18)=74.16330960138956;
rents(5,19)=74.16330960138953;
rents(5,20)=74.16330960138956;
rents(5,21)=134.85972966042817;
rents(5,22)=134.85972966042814;
rents(5,23)=134.85972966042817;
rents(5,24)=134.85972966042812;
rents(5,25)=134.8597296604282;
rents(5,26)=134.8597296604283;
rents(5,27)=134.85972966042823;
rents(5,28)=134.85972966042812;
rents(5,29)=134.85972966042817;
rents(5,30)=134.85972966042814;
rents(5,31)=194.97887958749698;
rents(5,32)=194.97887958749706;
rents(5,33)=194.97887958749703;
rents(5,34)=194.9788795874971;
rents(5,35)=194.97887958749706;
rents(5,36)=194.9788795874969;
rents(5,37)=194.97887958749695;
rents(5,38)=194.97887958749703;
rents(5,39)=194.97887958749698;
rents(5,40)=194.9788795874972;
rents(5,41)=200;
rents(5,42)=200;
rents(5,43)=200;
rents(5,44)=200;
rents(5,45)=200;
rents(5,46)=200;
rents(5,47)=200;
rents(5,48)=200;
rents(5,49)=200;
rents(5,50)=200;
rents(5,51)=200;
rents(5,52)=200;
rents(5,53)=200;
rents(5,54)=200;
rents(5,55)=200;
rents(5,56)=200;
rents(5,57)=200;
rents(5,58)=200;
rents(5,59)=200;
rents(5,60)=200;
rents(5,61)=200;
rents(5,62)=200;
rents(5,63)=200;
rents(5,64)=200;
rents(5,65)=200;
rents(5,66)=200;
rents(5,67)=200;
rents(5,68)=200;
rents(5,69)=200;
rents(5,70)=200;
rents(5,71)=200;
rents(5,72)=200;
rents(5,73)=200;
rents(5,74)=200;
rents(5,75)=200;
rents(5,76)=200;
rents(5,77)=200;
rents(5,78)=200;
rents(5,79)=200;
rents(5,80)=200;
rents(5,81)=200;
rents(5,82)=200;
bref(6)=5000;
bnorm(6)=10000;
income-mean(6)=15000;
rents(6,1)=37.11344039401293;
rents(6,2)=37.11344039401288;
rents(6,3)=37.11344039401295;
rents(6,4)=37.11344039401296;
rents(6,5)=37.11344039401296;
rents(6,6)=37.11344039401293;
rents(6,7)=37.113440394012954;
rents(6,8)=37.11344039401293;
rents(6,9)=37.11344039401295;
rents(6,10)=37.11344039401294;
rents(6,11)=78.34680190735817;
rents(6,12)=78.3468019073582;
rents(6,13)=78.34680190735821;
rents(6,14)=78.34680190735828;
rents(6,15)=78.34680190735823;
rents(6,16)=78.3468019073582;
rents(6,17)=78.34680190735817;
rents(6,18)=78.34680190735823;
rents(6,19)=78.34680190735818;
rents(6,20)=78.34680190735813;
rents(6,21)=147.16452029801064;
rents(6,22)=147.164520298011;
rents(6,23)=147.16452029801064;
rents(6,24)=147.16452029801079;
rents(6,25)=147.1645202980108;
rents(6,26)=147.16452029801098;
rents(6,27)=147.1645202980108;
rents(6,28)=147.1645202980109;
rents(6,29)=147.16452029801076;
rents(6,30)=147.16452029801079;
rents(6,31)=199.74053939287217;
rents(6,32)=199.74053939287214;
rents(6,33)=199.74053939287217;
rents(6,34)=199.74053939287214;
rents(6,35)=199.74053939287214;
rents(6,36)=199.74053939287217;
rents(6,37)=199.74053939287214;
rents(6,38)=199.74053939287214;
rents(6,39)=199.74053939287217;
rents(6,40)=199.7405393928722;
rents(6,41)=200;
rents(6,42)=200;
rents(6,43)=200;
rents(6,44)=200;
rents(6,45)=200;
rents(6,46)=200;
rents(6,47)=200;
rents(6,48)=200;
rents(6,49)=200;
rents(6,50)=200;
rents(6,51)=200;
rents(6,52)=200;
rents(6,53)=200;
rents(6,54)=200;
rents(6,55)=200;
rents(6,56)=200;
rents(6,57)=200;
rents(6,58)=200;
rents(6,59)=200;
rents(6,60)=200;
rents(6,61)=200;
rents(6,62)=200;
rents(6,63)=200;
rents(6,64)=200;
rents(6,65)=200;
rents(6,66)=200;
rents(6,67)=200;
rents(6,68)=200;
rents(6,69)=200;
rents(6,70)=200;
rents(6,71)=200;
rents(6,72)=200;
rents(6,73)=200;
rents(6,74)=200;
rents(6,75)=200;
rents(6,76)=200;
rents(6,77)=200;
rents(6,78)=200;
rents(6,79)=200;
rents(6,80)=200;
rents(6,81)=200;
rents(6,82)=200;
bref(7)=5000;
bnorm(7)=10000;
income-mean(7)=16000;
rents(7,1)=35.280819046128784;
rents(7,2)=35.28081904612882;
rents(7,3)=35.28081904612879;
rents(7,4)=35.2808190461288;
rents(7,5)=35.28081904612881;
rents(7,6)=35.280819046128784;
rents(7,7)=35.28081904612882;
rents(7,8)=35.280819046128784;
rents(7,9)=35.28081904612879;
rents(7,10)=35.28081904612882;
rents(7,11)=80.96459482344935;
rents(7,12)=80.96459482344936;
rents(7,13)=80.96459482344945;
rents(7,14)=80.96459482344943;
rents(7,15)=80.96459482344943;
rents(7,16)=80.96459482344949;
rents(7,17)=80.96459482344945;
rents(7,18)=80.96459482344933;
rents(7,19)=80.96459482344939;
rents(7,20)=80.96459482344949;
rents(7,21)=163.6684414471988;
rents(7,22)=163.66844144719855;
rents(7,23)=163.66844144719886;
rents(7,24)=163.668441447199;
rents(7,25)=163.66844144719892;
rents(7,26)=163.66844144719886;
rents(7,27)=163.66844144719892;
rents(7,28)=163.668441447199;
rents(7,29)=163.6684414471989;
rents(7,30)=163.66844144719877;
rents(7,31)=200;
rents(7,32)=200;
rents(7,33)=200;
rents(7,34)=200;
rents(7,35)=200;
rents(7,36)=200;
rents(7,37)=200;
rents(7,38)=200;
rents(7,39)=200;
rents(7,40)=200;
rents(7,41)=200;
rents(7,42)=200;
rents(7,43)=200;
rents(7,44)=200;
rents(7,45)=200;
rents(7,46)=200;
rents(7,47)=200;
rents(7,48)=200;
rents(7,49)=200;
rents(7,50)=200;
rents(7,51)=200;
rents(7,52)=200;
rents(7,53)=200;
rents(7,54)=200;
rents(7,55)=200;
rents(7,56)=200;
rents(7,57)=200;
rents(7,58)=200;
rents(7,59)=200;
rents(7,60)=200;
rents(7,61)=200;
rents(7,62)=200;
rents(7,63)=200;
rents(7,64)=200;
rents(7,65)=200;
rents(7,66)=200;
rents(7,67)=200;
rents(7,68)=200;
rents(7,69)=200;
rents(7,70)=200;
rents(7,71)=200;
rents(7,72)=200;
rents(7,73)=200;
rents(7,74)=200;
rents(7,75)=200;
rents(7,76)=200;
rents(7,77)=200;
rents(7,78)=200;
rents(7,79)=200;
rents(7,80)=200;
rents(7,81)=200;
rents(7,82)=200;
bref(8)=5000;
bnorm(8)=10000;
income-mean(8)=17000;
rents(8,1)=36.7038479737466;
rents(8,2)=36.7038479737466;
rents(8,3)=36.703847973746626;
rents(8,4)=36.70384797374656;
rents(8,5)=36.70384797374662;
rents(8,6)=36.70384797374657;
rents(8,7)=36.70384797374659;
rents(8,8)=36.7038479737466;
rents(8,9)=36.703847973746576;
rents(8,10)=36.70384797374664;
rents(8,11)=88.53899683827044;
rents(8,12)=88.53899683827046;
rents(8,13)=88.5389968382705;
rents(8,14)=88.53899683827045;
rents(8,15)=88.53899683827039;
rents(8,16)=88.53899683827056;
rents(8,17)=88.53899683827058;
rents(8,18)=88.53899683827055;
rents(8,19)=88.53899683827045;
rents(8,20)=88.53899683827052;
rents(8,21)=187.12747687234815;
rents(8,22)=187.1274768723483;
rents(8,23)=187.12747687234844;
rents(8,24)=187.12747687234807;
rents(8,25)=187.1274768723479;
rents(8,26)=187.12747687234824;
rents(8,27)=187.12747687234818;
rents(8,28)=187.12747687234798;
rents(8,29)=187.12747687234832;
rents(8,30)=187.1274768723482;
rents(8,31)=200;
rents(8,32)=200;
rents(8,33)=200;
rents(8,34)=200;
rents(8,35)=200;
rents(8,36)=200;
rents(8,37)=200;
rents(8,38)=200;
rents(8,39)=200;
rents(8,40)=200;
rents(8,41)=200;
rents(8,42)=200;
rents(8,43)=200;
rents(8,44)=200;
rents(8,45)=200;
rents(8,46)=200;
rents(8,47)=200;
rents(8,48)=200;
rents(8,49)=200;
rents(8,50)=200;
rents(8,51)=200;
rents(8,52)=200;
rents(8,53)=200;
rents(8,54)=200;
rents(8,55)=200;
rents(8,56)=200;
rents(8,57)=200;
rents(8,58)=200;
rents(8,59)=200;
rents(8,60)=200;
rents(8,61)=200;
rents(8,62)=200;
rents(8,63)=200;
rents(8,64)=200;
rents(8,65)=200;
rents(8,66)=200;
rents(8,67)=200;
rents(8,68)=200;
rents(8,69)=200;
rents(8,70)=200;
rents(8,71)=200;
rents(8,72)=200;
rents(8,73)=200;
rents(8,74)=200;
rents(8,75)=200;
rents(8,76)=200;
rents(8,77)=200;
rents(8,78)=200;
rents(8,79)=200;
rents(8,80)=200;
rents(8,81)=200;
rents(8,82)=200;
|
f4ad068c844685d7d5b4e36e4eb51f12773fa040
|
5309e64e28c21b706c3a9557d62f7d67bbe5047a
|
/tests/callf5/kat10.tst
|
7445ad85453e045b1a7ae88ebd389cf8b25036f6
|
[] |
no_license
|
ederc/scripts
|
8387c51009bcf05028b4772623b29d4c09a14bc4
|
185784086ea9bd33ad12d44609d4c50d3bbed38a
|
refs/heads/master
| 2021-01-10T21:13:42.721908
| 2013-05-23T15:21:30
| 2013-05-23T15:21:30
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 281
|
tst
|
kat10.tst
|
system("--allow-net", 1);
system("--min-time", "0.001");
system("--ticks-per-sec", 1000);
LIB"../LIB/f5ex2.lib";
sprintf("Example: Katsura-10");
katsuran(10);
bigint mem2 = memory(2);
int tr = timer;
ideal g = f5e(i);
timer-tr;
memory(2)-mem2;
nvars(basering);
size(i);
size(g);
$
|
431ff30821541aa01d1eca61eff0fb7b8cb5d87d
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/213/CH12/EX12.1/12_1.sce
|
3df604daebd504c7d6c9eb3f6cd7049c0f41c113
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 472
|
sce
|
12_1.sce
|
//To find total load
clc
//Given:
P=120*1000 //W
d=250/1000, r=d/2 //m
N=650 //rpm
phi=20 //degrees
//Solution:
//Calculating the angular speed of the gear
omega=2*%pi*N/60 //rad/s
//Calculating the torque transmitted
T=P/omega //N-m
//Calculating the tangential load on the pinion
FT=T/r //N
//Calculating the total load due to power transmitted
F=FT/(cosd(phi)*1000) //kN
//Results:
printf("\n\n Total load due to power transmitted, F = %.3f kN.\n\n",F)
|
a224439371dedbc0e2c94236f6e393989aeab875
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3446/CH6/EX6.10/Ex6_10.sce
|
6b504fa37dc3f0cce6ed8f030e45c4abb916f58d
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,023
|
sce
|
Ex6_10.sce
|
// Exa 6.10
// To calculate the data link protocol efficiency with
//(1) Stop and Wait protocol — full duplex,
//(2) SRP with window size W=8, and
//(3) Go-Back-N protocol with window size W=8.
clc;
clear all;
Tprop=4; //maximum propogation delay in sec
R=10; // data rate in Mbps
PackLen=400; //data packet length in bits
ACK=20; //length of ACK packet in bits
Tproc=1; //processing time(sec)
p=0.01;//probability that a data packet or its ACK can be corrupted during transmission
//solution
Tp=PackLen/R; //packet transmission time in microsec
Ta=ACK/R; // transmission time for an ACK in microsec
T=Tp+2*Tprop+2*Tproc+Ta;// total time for transmission time
// Stop and wait ARQ
Eff0=(1-p)*Tp/((1-p)*T+p*Tp);
//SRP with window size W=8
W=8;
Eff1=(2+p*(W-1))/(2+p*(3*W-1));
//Go-Back-N protocol with window size W=8
Eff2=1/(1+W*(p/(1-p)));
printf('The data link protocol efficiency with Stop and Wait protocol, SRP and GBN are \n %.3f, %.3f abd %.3f respectively\n',Eff0,Eff1,Eff2);
|
372e0e70ffae57844afcaad2238d228f55daa049
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2417/CH5/EX5.36/Ex5_36.sce
|
38f0ba3e6395cb4ca9840cb5994db0fcd9d7a371
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 599
|
sce
|
Ex5_36.sce
|
//scilab 5.4.1
clear;
clc;
printf("\t\t\tProblem Number 5.36\n\n\n");
// Chapter 5 : Properties Of Liquids And Gases
// Problem 5.36 (page no. 219)
// Solution
//Because the tank volume is 10 ft^3,the final specific volume of the steam is 10 ft^3/lbm.Interpolations in Table A.2 yield a final pressure of 42 psia.The heat added is simply difference in internal energy between the two states.
u2=1093.0; //internal energy //Btu/lbm
u1=117.95; //internal energy //Btu/lbm
q=u2-u1; //heat added //Btu/lbm
printf("The final pressure is 42 psia and the heat added is %f Btu/lbm\n",q);
|
92e7202598bc56eeab334083b047ca70980ccc35
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1268/CH3/EX3.13/3_13.sce
|
91d3b5d8565c089a7735d999708133a5cce25f5b
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 291
|
sce
|
3_13.sce
|
clc;
disp("Example 3.13")
density=1000 // in kg/m^3
b= 0.005 // gap between plates in m
mew=0.1 // viscosity in kg/ms
q=1/60 // in m^3/s/m
U= q/b
// here the pressure gradient is delP= 12*mew*U/b*b
delP= (12*mew*U)/(b*b)
Re= b*U*density/mew
disp(" Reynolds number is ")
disp(Re)
|
5b7c993ef068842460908d4313a7f8eebd616379
|
a62e0da056102916ac0fe63d8475e3c4114f86b1
|
/set12/s_Industrial_Instrumentation_K._Krishnaswamy_And_S._Vijayachitra_1436.zip/Industrial_Instrumentation_K._Krishnaswamy_And_S._Vijayachitra_1436/CH4/EX4.11/ex4_11.sce
|
18d298c29fe42ab39e4e658e2da6c18c8aa10d5a
|
[] |
no_license
|
hohiroki/Scilab_TBC
|
cb11e171e47a6cf15dad6594726c14443b23d512
|
98e421ab71b2e8be0c70d67cca3ecb53eeef1df6
|
refs/heads/master
| 2021-01-18T02:07:29.200029
| 2016-04-29T07:01:39
| 2016-04-29T07:01:39
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 333
|
sce
|
ex4_11.sce
|
errcatch(-1,"stop");mode(2);// Example 4.11, page no-213
//(a)
v_obj=2/1000
wt=1.5
dx=wt/v_obj
sg=dx/1000
printf("(a)\nSpecific Gravity = %.2f",sg)
//(b)
sgl=0.8
dens=800
W1=dens*v_obj-wt
printf("\n(b)\nW1 = %.1f kg",W1)
//(c)
sg2=1.2
dens2=1200
W2=dens2*v_obj-wt
printf("\n(c)\nW2 = %.1f kg",W2)
exit();
|
21d8f37b7676daf20cc82807e43a9ef2ed90e972
|
71f4155ea1a152a751be99f2e99151209cc1fbee
|
/virtualHartSci/macros/hrtSerialRead.sci
|
b736974bd455eb023d2c5fcb4fc883f0383a8517
|
[] |
no_license
|
rai-rodrigues/virtualHartSci
|
11d28d72766d7d904a7d45c1a72d0c857b0e1b15
|
1cd142e7e0051fbf9a53552f55ae474216ccfcf8
|
refs/heads/main
| 2023-06-23T14:22:21.901083
| 2021-07-28T09:49:02
| 2021-07-28T09:49:02
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 264
|
sci
|
hrtSerialRead.sci
|
function buf=hrtSerialRead(h,n)
if ~exists("n","local") then
N=serialstatus(h);
n=N(1);
end
TCL_EvalStr("binary scan [read "+h+" "+string(n)+"] cu* ttybuf")
buf=part(msprintf(" %02s",dec2hex(evstr(TCL_GetVar("ttybuf")))'),2:$);
endfunction
|
ffe26822f02efc1429c8e7764bd407d526793df4
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2411/CH5/EX5.30/Ex5_30.sce
|
c94b11189d0f5276d12dc223b5596046bd90e168
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 537
|
sce
|
Ex5_30.sce
|
// Scilab Code Ex5.30: Page-300 (2008)
clc; clear;
e = 1.602e-019; // Energy equivalent of 1 eV, J
E1 = 3.2e-018/e; // Minimum energy possible for a particle entrapped in a one dimensional box, eV
n = [1 2 3 4]; // Principal quantum number for K, L, M and N states
printf("\nThe next three energies which the particle can have are:");
for i = 2:1:4
printf("\nE%d = %d eV", i, ceil(i^2*E1));
end
// Result
// The next three energies which the particle can have are:
// E2 = 80 eV
// E3 = 180 eV
// E4 = 320 eV
|
7e1c4589b5cac14f7995d29dd566830c3ba674ee
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1199/CH2/EX2.52/2_52.sci
|
27ee1b2fef8621764fac7dc43e715cbce47e7e03
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 578
|
sci
|
2_52.sci
|
//2.52
clc;
Kq=40*10^-3;
Cp=1000*10^-12;
K=Kq/Cp;
printf(" Sensitivity of the transducer=%.2f V/m",K)
Cc=300*10^-12;
Ca=50*10^-12;
C=Cp+Cc+Ca;
Hf=Kq/C;
printf("\n High frequency sensitivity =%.2f V/m",Hf)
R=1*10^6;
tc=R*C;
M=0.95;
w=(1/tc)*[(M^2)/(1-M^2)]^0.5;
f=w/(2*%pi);
printf("\n Minimum frequency=%.2f sec",f)
disp('now f=10Hz')
f=10;
w=2*%pi*f;
tc=(1/w)*[(M^2)/(1-M^2)]^0.5;
C_new=tc/R;
Ce=(C_new-C)*10^6;
printf("\n External shunt capacitance=%.2f pF",Ce)
Hf_new=Kq/C_new;
printf("\n new value of high frequency sensitivity=%.2f V/m",Hf_new)
|
25333b9b86786209e0a62ff707f4a44ec0fdc5c3
|
a62e0da056102916ac0fe63d8475e3c4114f86b1
|
/set14/s_Material_Science_V._Rajendran_1826.zip/Material_Science_V._Rajendran_1826/CH19/EX19.3/ex19_3.sce
|
32e84cd2aa23cd394046ce70c01d796e59c3a25a
|
[] |
no_license
|
hohiroki/Scilab_TBC
|
cb11e171e47a6cf15dad6594726c14443b23d512
|
98e421ab71b2e8be0c70d67cca3ecb53eeef1df6
|
refs/heads/master
| 2021-01-18T02:07:29.200029
| 2016-04-29T07:01:39
| 2016-04-29T07:01:39
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 213
|
sce
|
ex19_3.sce
|
errcatch(-1,"stop");mode(2);// Example 19.3, page no-542
H=10^4 //A/m
sus=-0.8*10^-5
mu=4*%pi*10^-7
M=sus*H
B=mu*(M+H)
printf("The flux density in the material is %.2f * 10^-2 Wb.m^-2",B*10^2)
exit();
|
f6f966b46d28b0da413687c1ea0fa648d3764cba
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1319/CH1/EX1.10/1_10.sce
|
f57c46c9e16cbef091111b7bbbbd694c0cd9c7a4
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 726
|
sce
|
1_10.sce
|
// RLC circuit problems on resonace
clc;
clear;
R=6.28;
L=20*(10^-3);
f=5*(10^3);
w=2*%pi*f;
C=1/(L*(w^2));
Xc=1/(w*C);
Xl=L*w;
Vc=5;
Z=Xc+R+Xl;
I=Vc/Xc // Total current
V=I*R;
// frequency is inversely proportional to square root of capacitance
// So if C is halved; f will increase square root of 2 times more.
fn=sqrt(2)*f;
Xln=2*%pi*fn*L;
Q=Xln/R;
//Note under resonance conditions Vl and Vc are much greater than the supply voltage.
mprintf('i) The value of capacitor = %f micro F \n',(10^6)*C)
mprintf('ii) The supply voltage = %f V \n',V)
mprintf('iii) The frequency of resonance when C is halved = %f Hz \n',fn)
mprintf(' The Q of the new circuit = %f \n',Q)
|
92cb0df32bb25065952b18fb7d07485638179988
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2175/CH7/EX7.12/7_12.sce
|
85ff0a262379399b5505e3ded5b3ba4918e9a1c4
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 97
|
sce
|
7_12.sce
|
clc;
mH2O=3*18;
q=2441.8;
h0=-3301397+(mH2O*q)
disp(h0,"Δh0 for H2O in the vapour phase:")
|
9b02b9c08c75e7ec280ff36024d5948d9090cbc1
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/761/CH22/EX22.1/22_1.sce
|
621c936a0f306b036f892ab1dfe52b9de3770a60
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 270
|
sce
|
22_1.sce
|
clc;
// page no 842
// prob no 22.1
PR = -100;//In dBm
// The mobile transmitted power is
PT_dBm =-76-PR;//this is in dBm
disp('or','dBm',PT_dBm,'The mobile transmitted power in dBm is');
PT_mW =10^(PT_dBm/10);
disp('mW',PT_mW,'The mobile transmitted power is');
|
220c3b3e7a491b5ff2b39cd56878213712e20bdd
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/196/CH2/EX2.2/example_2_2.sce
|
6608ff270231fd5bdddd33519efaf90ab84143ab
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 393
|
sce
|
example_2_2.sce
|
//Chapter 2
//Example 2-2
//ProbOnPWM
//Page 34
clear;clc;
//Given
f=50;//in Hz
Vtemp=4; //input signal in volts
Ecm=10; //maximum peak voltage of sawtooth carrier wave in volts
//Example 2-2(a)
T=1/f;
Th=(Vtemp*T)/Ecm;//High time in seconds
printf("\n\n High Time = %.4f s \n\n",Th)
//Example 2-2(b)
d=(Th/T)*100;//duty cycle in percentage
printf("\n\n Duty cycle = %.4f percent \n\n",d)
|
f32ef98f204b878da5d797b6a9b17beccedd48db
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1370/CH6/EX6.11/exmaple6_11.sce
|
5b8cccc012f4609295ff1e366b225a3d1c6baf24
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,632
|
sce
|
exmaple6_11.sce
|
//example6.11
clc
disp("I_m=15 mA, R_m=1.5 ohm at 15 degree celcius, R=3.5 ohm")
r=1.5+3.5
disp(r,"Therefore, R_mT(in ohm)= Total meter resistance = 1.5+3.5 = ")
disp("i) I=20A")
r=(15*5*10^-3)/(20-(15*10^-3))
format(10)
disp(r,"Therefore, R_sh(in ohm)=[(I_m)*(R_mT)]/[I-(I_m)]=")
disp("ii) V=250 V")
r=(100/(15*10^-3))-5
disp(r,"R_s(in ohm)=V/I_m - R_mT =")
disp("Now at 25 degree celcius, (R_m)'' is the new meter resistance.")
disp("R_m'' = R_m[1+(alpha_1)*(t2-t1)] where t1=15 degree celcius, t2=25 degree celcius")
a=(1/234.5)/(1+(15/234.5))
format(6)
disp(a,"(alpha_1)[in per degree celcius]=(alpha_0)/(1+[(alpha_0)*t1])=(1/234.5)/(1+(15/234.5))=")
r=1.5*(1+(0.004*(25-15)))
format(8)
disp(r,"Therefore, R_m''(in ohm)=1.5*(1+(0.004*(25-15)))= ")
r=1.56012+3.5
format(8)
disp(r,"Therefore, R_mT''(in ohm)=1.56012+3.5=")
disp("Error in part(i) : The Fig. 6.19 shows two cases.")
disp("Therefore, I_m1 at 15 degree celcius = (I*R_sh)/[(R_sh+(R_mT))]=7.4999*10^-4 I")
disp("Therefore, I_m2 at 25 degree celcius = (I*R_sh)/[(R_sh+(R_mT''))]=7.41092*10^-4 I")
i=((7.41092*10^-2)-(7.4999*10^-2))/(7.4999*10^-4)
format(7)
disp(i,"% error = [(I_m2)-(I_m1)*100]/(I_m1)= ")
disp("Negative sign indicates that the reading is less than the actual reading.")
disp("Error in part(ii) : The Fig. 6.19 shows two cases.")
disp("Therefore, V_m1 = (V*R_mT)/(R_mT+R_s)=(5*V)/(5+16661.67)=2.9999*10^-4 V")
disp("Therefore, V_m2 = (V*R_mT'')/(R_mT''+R_s)=(5.06012*V)/(5.06012+16661.67)=3.03606*10^-4 V")
v=((3.03606*10^-2)-(2.9999*10^-2))/(2.9999*10^-4)
format(7)
disp(v,"% error = [(V_m2)-(V_m1)*100]/(V_m1)= ")
|
057014db94c93bdb7b4f9e842bffeb1ba3ecf1b9
|
92ee0d6597bbad55ede3ff57b6d98b044527cfb8
|
/Sztuczna/2/perceptrondzialajacy.sce
|
46bbd292ba8ed904ab8fa45250e334445109f0f0
|
[] |
no_license
|
Dearn/Sprawozdania
|
32888683a098080434aa407b2055bc2a84f36446
|
53efa5dfb20e4d86c33b18f913a62c8a16478612
|
refs/heads/master
| 2020-04-13T00:52:24.978071
| 2014-10-24T14:49:07
| 2014-10-24T14:49:07
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 917
|
sce
|
perceptrondzialajacy.sce
|
// generujemy punkty
X1 = 2 * rand(1, 20);
X2 = 2 + 2 * rand(1, 20);
Y1 = 2 * rand(1, 20);
Y2 = 2 + 2 * rand(1, 20);
X = [X1 X2];
Y = [Y1 Y2];
Z = (-1) * ones(1, 40);
// macierz punktow
P = [X; Y; Z];
D = [ones(1,20) zeros(1,20)];
plot(X1, Y1, 'go');
plot(X2, Y2, 'rx');
function y=perceptron(x, w)
net = x * w';
if net > 0 then
y = 1;
else
y = 0;
end
endfunction
// perceptron
w = rand(1, 3);
alfa = 0.5;
d = D;
for k=1:100 // obliczamy blad
y = zeros(1, 40);
for i=1:40
net = w * P(:, i);
if(net > 0)
y(i) = 1;
end
y(i) = perceptron(P(:, i)', w);
end
e = d - y;
if sum(abs(e)) == 0 then
break;
end
for i=1:40
for j=1:3
w(j) = w(j) + alfa * e(i) * P(j, i);
end
end
end
x1 = min(X) - 1;
x2 = max(X) + 1;
y1 = w(3) / w(2) - x1 * w(1) / w(2);
y2 = w(3) / w(2) - x2 * w(1) / w(2);
disp(k) -
plot([x1, x2], [y1, y2]);
|
ff0b76ee795d042136d12ca951f9cee7cb9d0cf8
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/689/CH9/EX9.1/1.sce
|
3f764a5decb5fadf7803eaeeaca7c3c8abc6a485
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 341
|
sce
|
1.sce
|
clc; funcprot(0);
//Example 9.1 Lift due to Circulation
// Initialisation of variables
D = 4;
L = 12;
V = 40*1.467;
rho = 0.002378;
W = 100/60; // Revolution per second
// Calculations
R =D/2;
Vt = 2*%pi*R*W;
T = 2*%pi*R*Vt;
Lift = rho*T*V;
L_total = Lift*L
//Results
disp(L_total,"Total lifting force (lb):");
|
e8a8e9776dde5f837b47d662966770487ffc8879
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3760/CH4/EX4.66/Ex4_66.sce
|
c54ec073ac9ee7372c45d2e706b5db24e57b92f4
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 649
|
sce
|
Ex4_66.sce
|
clc;
// answer is calculated for torque=30 but it is asked for torque=40 i.e why answer varies
p=4; // number of dc series motor
f=4*10^-3; // ratio of flux per pole to armature current
T=40; // torque of fan
n=1000; // speed of motor
a=2; // number of parallel path for waave winding
z=480; // number of conductors
ra=1; // armature resistance
v=230; // supply voltage
re=sqrt((T*2*%pi*a)/(p*z*f*n^2)); // ratio of armature current and new speed
// Ea=vt-ia*ra writing ia in terms of n solving for n (n is new speed)
n2=v/(re+((p*f*z)/(60*a)));
printf('Motor speed is %f rpm\n',n2);
ia=re*n2;
printf('Armature current is %f A',ia);
|
b550e6dfb2d71b54e58439204347daf88c8f9976
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2213/CH11/EX11.1/ex_11_1.sce
|
1411cd27bdc80a5403efb65b5b7416c7fb240b28
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 220
|
sce
|
ex_11_1.sce
|
//Example 11.1: Total Length
clc;
clear;
close;
//given data :
l=20;// in m
w=0.5;// weight per meter in kg
T=500;// Tension applied in kg
del=(w*l^2)/(2*T);
two_S=2*(l+(2/3)*(del^2/l));
disp(two_S,"Total Length(m) = ")
|
7c1682659db0156afaa562332bdf3bcf72aaf897
|
1573c4954e822b3538692bce853eb35e55f1bb3b
|
/DSP Functions/allpasslp2bp/test_8.sce
|
2ebf3e20c79fd3f447dfe3cd49e8074227e67dc5
|
[] |
no_license
|
shreniknambiar/FOSSEE-DSP-Toolbox
|
1f498499c1bb18b626b77ff037905e51eee9b601
|
aec8e1cea8d49e75686743bb5b7d814d3ca38801
|
refs/heads/master
| 2020-12-10T03:28:37.484363
| 2017-06-27T17:47:15
| 2017-06-27T17:47:15
| 95,582,974
| 1
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 277
|
sce
|
test_8.sce
|
// Test # 8 : Input Argument #1 or #2 length test
exec('./allpasslp2bp.sci',-1);
[n,d]=allpasslp2bp([0.3,0.2],[0.6,0.8]);
//!--error 10000
//Wo must be real ,numeric and scalar
//at line 36 of function allpasslp2bp called by :
//[n,d]=allpasslp2bp([0.3,0.2],[0.6,0.8]);
|
6bea9a3c9c5c3909711ce17c40128cec8a59e9e5
|
897ce6a3fd5b682122c396af7e24fa53014c7cb3
|
/src_script/scilab/_import/rtsx_10/models/mdl_cylindrical.sce
|
2c063e4a60f8a7633c61a61d0e08f484e219648a
|
[] |
no_license
|
stub22/glue-ai-v1_friendularity
|
e66f5ab357eba45de2def6f7900f414e358a4125
|
74949dc3e9b0d08b39857735aad901915e61322d
|
refs/heads/master
| 2022-12-19T18:57:01.336831
| 2017-08-04T12:55:12
| 2017-08-04T12:55:12
| 284,544,364
| 0
| 0
| null | 2020-10-14T00:08:14
| 2020-08-02T21:24:34
|
Java
|
UTF-8
|
Scilab
| false
| false
| 494
|
sce
|
mdl_cylindrical.sce
|
//mdl_cylindrical.sce cylindrical robot
// This file creates a cylindrical (RPP) robot
// www.controlsystemslab.com October 2012
clear L;
// length and offset parameters
d1 = 1;
d2 = 2; // maximum stretch for variable d2, d3
d3 = 1;
L(1)=Link([0 d1 0 0]);
L(2)=Link([0 d2 0 -pi/2],'P'); // prismatic joint
L(3)=Link([0 1 0 0],'P');
cylind_robot=SerialLink(L);
cylind_robot.name = 'Cylindrical Robot (RPP)';
cylind_robot.viewangle = [58.5 46.5];
q0 = [0 1 1];
clear L;
|
d338254e70cb92ba3d380807b5c75f283d10080b
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3775/CH3/EX3.11/Ex3_11.sce
|
84a4ec0d9e25e6055a58ebe412982b2cb7f5387c
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 790
|
sce
|
Ex3_11.sce
|
//Ex 3.11 page 125
clc;
clear;
close;
Vs=230;// V
Io=5;// A
alpha = 45;// degree
printf('part(i)')
Vo=2*sqrt(2)*Vs/%pi*cos(alpha*%pi/180);// V
printf('\n dc output voltage = %.1f V',Vo)
Pi=Vo*Io;// W
printf('\n Active power = %.1f W',Pi)
Qi=2*sqrt(2)*Vs/%pi*sin(alpha*%pi/180)*Io;// VAR
printf('\n Reactive power = %.1f VAR',Qi)
printf('\n\n part(ii)')
R=Vo/Io;// ohm
Vo=sqrt(2)*Vs/%pi*(1+cos(alpha*%pi/180));// V
printf('\n dc output voltage = %.1f V',Vo)
Io=Vo/R;// A
Pi=Vo*Io;// W
printf('\n Active power = %.1f W',Pi)
Qi=sqrt(2)*Vs/%pi*sin(alpha*%pi/180)*Io;// VAR
printf('\n Reactive power = %.0f VAR',Qi)
printf('\n\n part(iii)')
Vo=sqrt(2)*Vs/%pi/2*(1+cos(alpha*%pi/180));//
printf('\n Average load voltage = %.0f V',Vo)
Io=Vo/R;// A
printf('\n Average load current = %.2f A',Io)
|
1e55156f4f3a523f206b4455b5b3735b16b1802a
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/662/CH2/EX2.5/ex2_5.sce
|
854914872b7df2167d9c161108db8a6f9ac26f47
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 129
|
sce
|
ex2_5.sce
|
//Example 2.5
clc
funcprot(0);
sum = 10+ 20;
printf("%d\n", sum);
|
28f0e464fbed5baebf5e6a86c253175644507e11
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2951/CH9/EX9.4.A/additional_ex_4.sce
|
4a0b3bb232736d1eba929b91cbcaf38757e433b4
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 272
|
sce
|
additional_ex_4.sce
|
clc;
clear;
//Y is a Gaussian Random Variable
syms y;
x=5;
m=-3*(x)+5; //mean
disp(m,"mean");
var=4*7; //variance
disp(var,"variance");
Y=exp(-{(y+10)^2}/56)/sqrt(56*%pi);
disp("Y is an N{-10,28} random variable");
disp(Y,"density function f(y)= ");
|
4f2fee7701324ed68c472abda721aad77c7bde4b
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3831/CH11/EX11.3/Ex11_3.sce
|
a1fb3406013d4adf5fcea88e0cca8c0a568a47df
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 285
|
sce
|
Ex11_3.sce
|
// Example 11_3
clc;funcprot(0);
// Given data
p=1.00;// MPa
// Solution
// From Table C.2b at p = 1.00 MPa, we find that,
h_fg=2015.3;// kJ/kg
T_sat=179.90;// °C
s_fg=h_fg/(T_sat+273.15);// kJ/kg .K
printf("\nThe phase change entropy for water,s_fg=%1.4f kJ/kg.K",s_fg);
|
db4935b479485e81a6addae2945714ebc7030a40
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2840/CH9/EX9.5/ex9_5.sce
|
4b0419ce7b7b21dda0439115b4929bb0b05ccc15
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 400
|
sce
|
ex9_5.sce
|
clc;
clear all;
m = 9.1e-31; // Mass of electron in kg
h = 6.62e-34; // Planck's constant in J.s
c = 3e8; // Velocity of light in vaccum
lambda = 1.8e18; // Frequency of the incident rays
theta = 180;//angle in degree
lambda = c/lambda;
delta = (h*(1-cosd(theta)))/(m*c);
Nlambda = lambda+delta;//'Wavelength of scattered X-rays
disp('meter',Nlambda,'Wavelength of scattered X-rays is ');
|
fb2aa00fbe6f54683af5a6d98334055f0d10fdec
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2885/CH6/EX6.9/ex6_9.sce
|
0a81225a7e66a849b9b85e46bfec2e766a821023
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 469
|
sce
|
ex6_9.sce
|
//Determine the value of base resistance
clear;
clc;
//soltion
//given
B=100; //dc beta
Rc=200;//ohm //resistor connected to collector
Re=500;//ohm //resistor connected to emitter
Vcc=9;//V //Voltage supply across the collector as it is PNP so taking positive
Vce=4.5;//V //Collector to emitter voltage
Ic=(Vcc-Vce)/(Rc+Re);
Ib=Ic/B;
Rb=(Vcc-B*Re*Ib)/Ib;
printf("The value of base resistance is %.0f kΩ",Rb/1000);
|
184b71f30203263d46e8c2807a84f93114092d77
|
036a77bd5f07b7b2b808ef3d90e92d20bd7b6c33
|
/hard/tests/tooManyParameters.tst
|
f174e394bdaafaf5d7d17b77a81e5ca60f6947db
|
[] |
no_license
|
Jaymee-Ericca-7/simple-compiler
|
186b11486e5af8debdde301acba84851c4545b02
|
209a8ed43c579a9ce34c63a10083cdbde5546313
|
refs/heads/master
| 2020-09-18T06:19:53.304100
| 2015-08-11T13:44:06
| 2015-08-11T13:44:06
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 160
|
tst
|
tooManyParameters.tst
|
int sum(int x, int y) begin
return x + y;
end
main begin
int s;
int x;
int y;
int z;
x = 1;
y = 2;
z = 3;
s = sum(x, y, z);
return s;
end
|
885c0991e5c66d846a31dda0c751fc2eb36b9b01
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3311/CH14/EX14.9/Ex14_9.sce
|
e322eacff123e40c84edb9bd2b2fa7820b2c755e
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,777
|
sce
|
Ex14_9.sce
|
// chapter 14
// example 14.9
// Determine motor torque, motor current and supply power factor
// page-878-879
clear;
clc;
// given
P=20; // in HP (power rating of motor)
E0=650; // in V (voltgae rating of motor)
N=1000; // in rpm
Ra=0.25; // in ohm (armature resistance)
K_af=0.03; // in NmA^2
K_res=0.075; // in Vs/rad
Es=230; // in V (supply voltage)
alpha=30; // in degree (firing angle)
// calculate
Em=sqrt(2)*Es; // calculation of peak value of supply voltage
// part- (a) // semiconvertor controlled dc drive
w=N*(2*%pi/60); // calculation of angular speed
T=K_af*((((Em/%pi)*(1+cosd(alpha)))-K_res*w)/(Ra+K_af*w))^2; // calculation of motor torque
Ia=sqrt(T/K_af); // calculation of motor current
Ea=(sqrt(2)*Es/%pi)*(1+cosd(alpha)); // calculation of motor terminal voltage
Ps=Ea*Ia; // calculation of input power
VA=Es*Ia*sqrt(5/6); // calculation of input volt-ampere
PF=Ps/VA; // calculation of supply power factor
printf("\nFor semiconvertor controlled DC drives");
printf("\nThe motor torque is \t\t T= %.2f Nm",T);
printf("\nThe motor current is \t\t Ia= %.2f A",Ia);
printf("\nThe supply power factor is \t PF= %.2f",PF);
// part (b)
T=K_af*((((2*Em/%pi)*cosd(alpha))-K_res*w)/(Ra+K_af*w))^2; // calculation of motor torque
Ia=sqrt(T/K_af); // calculation of motor current
Ea=(2*sqrt(2)*Es/%pi)*cosd(alpha); // calculation of motor terminal voltage
Ps=Ea*Ia; // calculation of input power
VA=Es*Ia; // calculation of input volt-ampere
PF=Ps/VA; // calculation of supply power factor
printf("\n\nFor fullconvertor controlled DC drives");
printf("\nThe motor torque is \t\t T= %.2f Nm",T);
printf("\nThe motor current is \t\t Ia= %.2f A",Ia);
printf("\nThe supply power factor is \t PF= %.2f",PF);
// Note: The answer varies slightly due to precise calculations
|
f70324b13673a965abcf45c4d1132fdde408e96e
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/405/CH3/EX3.12/3_12.sce
|
eafbfb1cb5cb25377934ac527c58191b247beaed
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 2,954
|
sce
|
3_12.sce
|
clear;
clc;
printf("\t\t\tExample Number 3.12\n\n\n");
// Three-dimensional numerical formulation
// Example 3.12 (page no.-110-113)
// solution
Tinf = 10;// [degree celsius] environment temperature
h = 500;// [W/square meter degree celsius]
Ts = 100;// [degree celsius] four side temperature
k = 2;// [W/m degree celsius]
dx = 0.01;// [m]
dy = 0.01;// [m]
dz = 0.01;// [m]
// all of the interior nodes for Z-planes 2,3,4 have resistances of
A = dy*dz;// [square meter]
one_by_R = k*A/dx;
one_by_R_11_21 = one_by_R;
one_by_R_21_22 = one_by_R;
// the surface conduction resistances for surface Z-plane are
one_by_R_11_12 = k*A/dx;
one_by_R_11_14 = one_by_R_11_12;
// the surface convection resistances are
one_by_R_11_inf = h*A;
// for surfaces nodes like 11 the sum_one_by_R_ij term in equation (3-32) becomes
sum_one_by_R_11_j = 4*one_by_R_11_12+one_by_R+one_by_R_11_inf;
// while, for interior nodes, we have
sum_one_by_R_21_j = 6*one_by_R;
// for the insulated black surface nodes
sum_one_by_R_51_j = 4*one_by_R_11_12+one_by_R;
// there are 30 nodes in total; 6 in each z-plane. we could write the equations for all of them but prefer to take advantage of the symmetry of the problem as indicated in figure. thus,
// T11 = T13 = T14 = T16 And T12 = T15, etc
// we may then write the surface nodal equations as
// T11 = [0.05*Tinf+0.02*T21+(0.01)*(100+100+T14+T12)]/0.11
// T12 = [0.05*Tinf+0.02*T22+(0.01)*(100+T11+T15+T13)]/0.11
// inserting
Tinf = 10;// [degree celsius]
// following the same procedure for the other z-planes we obtain
// T21 = (200+T11+T31+T22)/5
// T22 = (100+T12+T32+2*T21)/5
// T31 = (200+T21+T41+T32)/5
// T32 = (100+T22+T42+2*T31)/5
// T41 = (200+T31+T51+T42)/5
// T42 = (100+T32+T52+2*T41)/5
// T51 = (2+0.02*T41+0.01*T52)/0.05
// T52 = (1+0.02*T42+0.02*T51)/0.05
// Solving the 10 equations
Z = [-0.1 0.01 0.02 0 0 0 0 0 0 0;
0.02 -0.1 0 0.02 0 0 0 0 0 0;
1 0 -5 1 1 0 0 0 0 0;
0 1 2 -5 0 1 0 0 0 0;
0 0 1 0 -5 1 1 0 0 0;
0 0 0 1 2 -5 0 1 0 0;
0 0 0 0 1 0 -5 1 1 0;
0 0 0 0 0 1 2 -5 0 1;
0 0 0 0 0 0 0.02 0 -0.05 0.01;
0 0 0 0 0 0 0 0.02 0.02 -0.05];
C = [-2.5;-1.5;-200;-100;-200;-100;-200;-100;-2;-1];
T = Z^(-1)*C;
T11 = T(1);
T12 = T(2);
T21 = T(3);
T22 = T(4);
T31 = T(5);
T32 = T(6);
T41 = T(7);
T42 = T(8);
T51 = T(9);
T52 = T(10);
printf("the following results for the temperature in each z-plane is ;");
printf("\n\t\t z-plane\t\tNode 1\t\t\tNode 2");
printf("\n\t\t%f\t\t%f\t\t%f",1,T11,T12);
printf("\n\t\t%f\t\t%f\t\t%f",2,T21,T22);
printf("\n\t\t%f\t\t%f\t\t%f",3,T31,T32);
printf("\n\t\t%f\t\t%f\t\t%f",4,T41,T42);
printf("\n\t\t%f\t\t%f\t\t%f",5,T51,T52);
val = [1 2 3 4 5];
val1 = [T11 T21 T31 T41 T51];
val2 = [T12 T22 T32 T42 T52];
plot(val,val1,val,val2);
legend("T11","T22");
xgrid();
xlabel("z-plane");
ylabel("Temperature (degree celsius)");
|
c930f8a9364a1fab4804ae4f2877d0cd888c5dd6
|
a2845a06ebac1138c6854d691780b120cdd556ab
|
/runge-kutta.sce
|
d00c831b10dbad1c7d2f60716c1aa87d323dec40
|
[] |
no_license
|
asp2809/Scilab-Programs
|
d734202084dc70e2b4e3281410833d315ce1558c
|
6a49e9401ee81dd3ffc909fe6a3954b5e184c70c
|
refs/heads/master
| 2020-03-10T15:11:33.831289
| 2018-10-05T09:50:06
| 2018-10-05T09:50:06
| 129,443,439
| 1
| 0
| null | 2018-10-05T09:50:07
| 2018-04-13T19:10:50
|
Scilab
|
UTF-8
|
Scilab
| false
| false
| 388
|
sce
|
runge-kutta.sce
|
//program to solve differential equation using runge-kutta method
function []=rungekutta(x0,y0,xn,h)
deff('y1=f(x,y)','y1=x+y')
while x0<xn
k1=h*f(x0,y0)
k2=h*f(x0+h/2, y0+k1/2)
k3=h*f(x0+h/2, y0+k2/2)
k4=h*f(x0+h,y0+k3)
k=(k1+2*k2+2*k3+k4)/6
x0=x0+h
y1=y0+k
y0=y1
end
disp(y1,xn)
endfunction
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.