file_path
stringlengths
11
79
full_name
stringlengths
2
100
traced_tactics
list
end
list
commit
stringclasses
4 values
url
stringclasses
4 values
start
list
Mathlib/Combinatorics/Additive/SalemSpencer.lean
MulSalemSpencer.mul_right₀
[ { "state_after": "case intro.intro.intro.intro.intro.intro\nF : Type ?u.99156\nα : Type u_1\nβ : Type ?u.99162\n𝕜 : Type ?u.99165\nE : Type ?u.99168\ninst✝¹ : CancelCommMonoidWithZero α\ninst✝ : NoZeroDivisors α\ns : Set α\na : α\nhs : MulSalemSpencer s\nha : a ≠ 0\nb : α\nhb : b ∈ s\nc : α\nhc : c ∈ s\nd : α\nhd : d ∈ s\nh : (fun x => x * a) b * (fun x => x * a) c = (fun x => x * a) d * (fun x => x * a) d\n⊢ (fun x => x * a) b = (fun x => x * a) c", "state_before": "F : Type ?u.99156\nα : Type u_1\nβ : Type ?u.99162\n𝕜 : Type ?u.99165\nE : Type ?u.99168\ninst✝¹ : CancelCommMonoidWithZero α\ninst✝ : NoZeroDivisors α\ns : Set α\na : α\nhs : MulSalemSpencer s\nha : a ≠ 0\n⊢ MulSalemSpencer ((fun x => x * a) '' s)", "tactic": "rintro _ _ _ ⟨b, hb, rfl⟩ ⟨c, hc, rfl⟩ ⟨d, hd, rfl⟩ h" }, { "state_after": "case intro.intro.intro.intro.intro.intro\nF : Type ?u.99156\nα : Type u_1\nβ : Type ?u.99162\n𝕜 : Type ?u.99165\nE : Type ?u.99168\ninst✝¹ : CancelCommMonoidWithZero α\ninst✝ : NoZeroDivisors α\ns : Set α\na : α\nhs : MulSalemSpencer s\nha : a ≠ 0\nb : α\nhb : b ∈ s\nc : α\nhc : c ∈ s\nd : α\nhd : d ∈ s\nh : b * c * (a * a) = d * d * (a * a)\n⊢ (fun x => x * a) b = (fun x => x * a) c", "state_before": "case intro.intro.intro.intro.intro.intro\nF : Type ?u.99156\nα : Type u_1\nβ : Type ?u.99162\n𝕜 : Type ?u.99165\nE : Type ?u.99168\ninst✝¹ : CancelCommMonoidWithZero α\ninst✝ : NoZeroDivisors α\ns : Set α\na : α\nhs : MulSalemSpencer s\nha : a ≠ 0\nb : α\nhb : b ∈ s\nc : α\nhc : c ∈ s\nd : α\nhd : d ∈ s\nh : (fun x => x * a) b * (fun x => x * a) c = (fun x => x * a) d * (fun x => x * a) d\n⊢ (fun x => x * a) b = (fun x => x * a) c", "tactic": "rw [mul_mul_mul_comm, mul_mul_mul_comm d] at h" }, { "state_after": "no goals", "state_before": "case intro.intro.intro.intro.intro.intro\nF : Type ?u.99156\nα : Type u_1\nβ : Type ?u.99162\n𝕜 : Type ?u.99165\nE : Type ?u.99168\ninst✝¹ : CancelCommMonoidWithZero α\ninst✝ : NoZeroDivisors α\ns : Set α\na : α\nhs : MulSalemSpencer s\nha : a ≠ 0\nb : α\nhb : b ∈ s\nc : α\nhc : c ∈ s\nd : α\nhd : d ∈ s\nh : b * c * (a * a) = d * d * (a * a)\n⊢ (fun x => x * a) b = (fun x => x * a) c", "tactic": "rw [hs hb hc hd (mul_right_cancel₀ (mul_ne_zero ha ha) h)]" } ]
[ 248, 61 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 244, 1 ]
Mathlib/Order/Antichain.lean
isAntichain_iff_forall_not_lt
[]
[ 268, 86 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 266, 1 ]
Mathlib/LinearAlgebra/Lagrange.lean
Lagrange.interpolate_eq_sum_interpolate_insert_sdiff
[ { "state_after": "F : Type u_2\ninst✝¹ : Field F\nι : Type u_1\ninst✝ : DecidableEq ι\ns t : Finset ι\ni j : ι\nv r r' : ι → F\nhvt : Set.InjOn v ↑t\nhs : Finset.Nonempty s\nhst : s ⊆ t\n⊢ ∑ i in s, ↑(interpolate (insert i (t \\ s)) v) r * Lagrange.basis s v i = ↑(interpolate t v) r", "state_before": "F : Type u_2\ninst✝¹ : Field F\nι : Type u_1\ninst✝ : DecidableEq ι\ns t : Finset ι\ni j : ι\nv r r' : ι → F\nhvt : Set.InjOn v ↑t\nhs : Finset.Nonempty s\nhst : s ⊆ t\n⊢ ↑(interpolate t v) r = ∑ i in s, ↑(interpolate (insert i (t \\ s)) v) r * Lagrange.basis s v i", "tactic": "symm" }, { "state_after": "case refine'_1\nF : Type u_2\ninst✝¹ : Field F\nι : Type u_1\ninst✝ : DecidableEq ι\ns t : Finset ι\ni j : ι\nv r r' : ι → F\nhvt : Set.InjOn v ↑t\nhs : Finset.Nonempty s\nhst : s ⊆ t\n⊢ (sup s fun b => degree (↑(interpolate (insert b (t \\ s)) v) r * Lagrange.basis s v b)) < ↑(card t)\n\ncase refine'_2\nF : Type u_2\ninst✝¹ : Field F\nι : Type u_1\ninst✝ : DecidableEq ι\ns t : Finset ι\ni✝ j : ι\nv r r' : ι → F\nhvt : Set.InjOn v ↑t\nhs : Finset.Nonempty s\nhst : s ⊆ t\ni : ι\nhi : i ∈ t\n⊢ eval (v i) (∑ i in s, ↑(interpolate (insert i (t \\ s)) v) r * Lagrange.basis s v i) = r i", "state_before": "F : Type u_2\ninst✝¹ : Field F\nι : Type u_1\ninst✝ : DecidableEq ι\ns t : Finset ι\ni j : ι\nv r r' : ι → F\nhvt : Set.InjOn v ↑t\nhs : Finset.Nonempty s\nhst : s ⊆ t\n⊢ ∑ i in s, ↑(interpolate (insert i (t \\ s)) v) r * Lagrange.basis s v i = ↑(interpolate t v) r", "tactic": "refine' eq_interpolate_of_eval_eq _ hvt (lt_of_le_of_lt (degree_sum_le _ _) _) fun i hi => _" }, { "state_after": "case refine'_1\nF : Type u_2\ninst✝¹ : Field F\nι : Type u_1\ninst✝ : DecidableEq ι\ns t : Finset ι\ni j : ι\nv r r' : ι → F\nhvt : Set.InjOn v ↑t\nhs : Finset.Nonempty s\nhst : s ⊆ t\n⊢ ∀ (b : ι), b ∈ s → degree (↑(interpolate (insert b (t \\ s)) v) r) + degree (Lagrange.basis s v b) < ↑(card t)", "state_before": "case refine'_1\nF : Type u_2\ninst✝¹ : Field F\nι : Type u_1\ninst✝ : DecidableEq ι\ns t : Finset ι\ni j : ι\nv r r' : ι → F\nhvt : Set.InjOn v ↑t\nhs : Finset.Nonempty s\nhst : s ⊆ t\n⊢ (sup s fun b => degree (↑(interpolate (insert b (t \\ s)) v) r * Lagrange.basis s v b)) < ↑(card t)", "tactic": "simp_rw [Nat.cast_withBot, Finset.sup_lt_iff (WithBot.bot_lt_coe t.card), degree_mul]" }, { "state_after": "case refine'_1\nF : Type u_2\ninst✝¹ : Field F\nι : Type u_1\ninst✝ : DecidableEq ι\ns t : Finset ι\ni✝ j : ι\nv r r' : ι → F\nhvt : Set.InjOn v ↑t\nhs : Finset.Nonempty s\nhst : s ⊆ t\ni : ι\nhi : i ∈ s\n⊢ degree (↑(interpolate (insert i (t \\ s)) v) r) + degree (Lagrange.basis s v i) < ↑(card t)", "state_before": "case refine'_1\nF : Type u_2\ninst✝¹ : Field F\nι : Type u_1\ninst✝ : DecidableEq ι\ns t : Finset ι\ni j : ι\nv r r' : ι → F\nhvt : Set.InjOn v ↑t\nhs : Finset.Nonempty s\nhst : s ⊆ t\n⊢ ∀ (b : ι), b ∈ s → degree (↑(interpolate (insert b (t \\ s)) v) r) + degree (Lagrange.basis s v b) < ↑(card t)", "tactic": "intro i hi" }, { "state_after": "case refine'_1\nF : Type u_2\ninst✝¹ : Field F\nι : Type u_1\ninst✝ : DecidableEq ι\ns t : Finset ι\ni✝ j : ι\nv r r' : ι → F\nhvt : Set.InjOn v ↑t\nhs✝ : Finset.Nonempty s\nhst : s ⊆ t\ni : ι\nhi : i ∈ s\nhs : 1 ≤ card s\n⊢ degree (↑(interpolate (insert i (t \\ s)) v) r) + degree (Lagrange.basis s v i) < ↑(card t)", "state_before": "case refine'_1\nF : Type u_2\ninst✝¹ : Field F\nι : Type u_1\ninst✝ : DecidableEq ι\ns t : Finset ι\ni✝ j : ι\nv r r' : ι → F\nhvt : Set.InjOn v ↑t\nhs : Finset.Nonempty s\nhst : s ⊆ t\ni : ι\nhi : i ∈ s\n⊢ degree (↑(interpolate (insert i (t \\ s)) v) r) + degree (Lagrange.basis s v i) < ↑(card t)", "tactic": "have hs : 1 ≤ s.card := Nonempty.card_pos ⟨_, hi⟩" }, { "state_after": "case refine'_1\nF : Type u_2\ninst✝¹ : Field F\nι : Type u_1\ninst✝ : DecidableEq ι\ns t : Finset ι\ni✝ j : ι\nv r r' : ι → F\nhvt : Set.InjOn v ↑t\nhs✝ : Finset.Nonempty s\nhst : s ⊆ t\ni : ι\nhi : i ∈ s\nhs : 1 ≤ card s\nhst' : card s ≤ card t\n⊢ degree (↑(interpolate (insert i (t \\ s)) v) r) + degree (Lagrange.basis s v i) < ↑(card t)", "state_before": "case refine'_1\nF : Type u_2\ninst✝¹ : Field F\nι : Type u_1\ninst✝ : DecidableEq ι\ns t : Finset ι\ni✝ j : ι\nv r r' : ι → F\nhvt : Set.InjOn v ↑t\nhs✝ : Finset.Nonempty s\nhst : s ⊆ t\ni : ι\nhi : i ∈ s\nhs : 1 ≤ card s\n⊢ degree (↑(interpolate (insert i (t \\ s)) v) r) + degree (Lagrange.basis s v i) < ↑(card t)", "tactic": "have hst' : s.card ≤ t.card := card_le_of_subset hst" }, { "state_after": "case refine'_1\nF : Type u_2\ninst✝¹ : Field F\nι : Type u_1\ninst✝ : DecidableEq ι\ns t : Finset ι\ni✝ j : ι\nv r r' : ι → F\nhvt : Set.InjOn v ↑t\nhs✝ : Finset.Nonempty s\nhst : s ⊆ t\ni : ι\nhi : i ∈ s\nhs : 1 ≤ card s\nhst' : card s ≤ card t\nH : card t = 1 + (card t - card s) + (card s - 1)\n⊢ degree (↑(interpolate (insert i (t \\ s)) v) r) + degree (Lagrange.basis s v i) < ↑(card t)", "state_before": "case refine'_1\nF : Type u_2\ninst✝¹ : Field F\nι : Type u_1\ninst✝ : DecidableEq ι\ns t : Finset ι\ni✝ j : ι\nv r r' : ι → F\nhvt : Set.InjOn v ↑t\nhs✝ : Finset.Nonempty s\nhst : s ⊆ t\ni : ι\nhi : i ∈ s\nhs : 1 ≤ card s\nhst' : card s ≤ card t\n⊢ degree (↑(interpolate (insert i (t \\ s)) v) r) + degree (Lagrange.basis s v i) < ↑(card t)", "tactic": "have H : t.card = 1 + (t.card - s.card) + (s.card - 1) := by\n rw [add_assoc, tsub_add_tsub_cancel hst' hs, ← add_tsub_assoc_of_le (hs.trans hst'),\n Nat.succ_add_sub_one, zero_add]" }, { "state_after": "case refine'_1\nF : Type u_2\ninst✝¹ : Field F\nι : Type u_1\ninst✝ : DecidableEq ι\ns t : Finset ι\ni✝ j : ι\nv r r' : ι → F\nhvt : Set.InjOn v ↑t\nhs✝ : Finset.Nonempty s\nhst : s ⊆ t\ni : ι\nhi : i ∈ s\nhs : 1 ≤ card s\nhst' : card s ≤ card t\nH : card t = 1 + (card t - card s) + (card s - 1)\n⊢ degree (↑(interpolate (insert i (t \\ s)) v) r) < ↑(1 + (card t - card s))", "state_before": "case refine'_1\nF : Type u_2\ninst✝¹ : Field F\nι : Type u_1\ninst✝ : DecidableEq ι\ns t : Finset ι\ni✝ j : ι\nv r r' : ι → F\nhvt : Set.InjOn v ↑t\nhs✝ : Finset.Nonempty s\nhst : s ⊆ t\ni : ι\nhi : i ∈ s\nhs : 1 ≤ card s\nhst' : card s ≤ card t\nH : card t = 1 + (card t - card s) + (card s - 1)\n⊢ degree (↑(interpolate (insert i (t \\ s)) v) r) + degree (Lagrange.basis s v i) < ↑(card t)", "tactic": "rw [degree_basis (Set.InjOn.mono hst hvt) hi, H, WithBot.coe_add, Nat.cast_withBot,\n WithBot.add_lt_add_iff_right (@WithBot.coe_ne_bot _ (s.card - 1))]" }, { "state_after": "case h.e'_4.h.e'_1\nF : Type u_2\ninst✝¹ : Field F\nι : Type u_1\ninst✝ : DecidableEq ι\ns t : Finset ι\ni✝ j : ι\nv r r' : ι → F\nhvt : Set.InjOn v ↑t\nhs✝ : Finset.Nonempty s\nhst : s ⊆ t\ni : ι\nhi : i ∈ s\nhs : 1 ≤ card s\nhst' : card s ≤ card t\nH : card t = 1 + (card t - card s) + (card s - 1)\n⊢ 1 + (card t - card s) = card (insert i (t \\ s))", "state_before": "case refine'_1\nF : Type u_2\ninst✝¹ : Field F\nι : Type u_1\ninst✝ : DecidableEq ι\ns t : Finset ι\ni✝ j : ι\nv r r' : ι → F\nhvt : Set.InjOn v ↑t\nhs✝ : Finset.Nonempty s\nhst : s ⊆ t\ni : ι\nhi : i ∈ s\nhs : 1 ≤ card s\nhst' : card s ≤ card t\nH : card t = 1 + (card t - card s) + (card s - 1)\n⊢ degree (↑(interpolate (insert i (t \\ s)) v) r) < ↑(1 + (card t - card s))", "tactic": "convert degree_interpolate_lt _\n (hvt.mono (coe_subset.mpr (insert_subset.mpr ⟨hst hi, sdiff_subset _ _⟩)))" }, { "state_after": "no goals", "state_before": "case h.e'_4.h.e'_1\nF : Type u_2\ninst✝¹ : Field F\nι : Type u_1\ninst✝ : DecidableEq ι\ns t : Finset ι\ni✝ j : ι\nv r r' : ι → F\nhvt : Set.InjOn v ↑t\nhs✝ : Finset.Nonempty s\nhst : s ⊆ t\ni : ι\nhi : i ∈ s\nhs : 1 ≤ card s\nhst' : card s ≤ card t\nH : card t = 1 + (card t - card s) + (card s - 1)\n⊢ 1 + (card t - card s) = card (insert i (t \\ s))", "tactic": "rw [card_insert_of_not_mem (not_mem_sdiff_of_mem_right hi), card_sdiff hst, add_comm]" }, { "state_after": "no goals", "state_before": "F : Type u_2\ninst✝¹ : Field F\nι : Type u_1\ninst✝ : DecidableEq ι\ns t : Finset ι\ni✝ j : ι\nv r r' : ι → F\nhvt : Set.InjOn v ↑t\nhs✝ : Finset.Nonempty s\nhst : s ⊆ t\ni : ι\nhi : i ∈ s\nhs : 1 ≤ card s\nhst' : card s ≤ card t\n⊢ card t = 1 + (card t - card s) + (card s - 1)", "tactic": "rw [add_assoc, tsub_add_tsub_cancel hst' hs, ← add_tsub_assoc_of_le (hs.trans hst'),\n Nat.succ_add_sub_one, zero_add]" }, { "state_after": "case refine'_2\nF : Type u_2\ninst✝¹ : Field F\nι : Type u_1\ninst✝ : DecidableEq ι\ns t : Finset ι\ni✝ j : ι\nv r r' : ι → F\nhvt : Set.InjOn v ↑t\nhs : Finset.Nonempty s\nhst : s ⊆ t\ni : ι\nhi : i ∈ t\n⊢ ∑ x in s, eval (v i) (↑(interpolate (insert x (t \\ s)) v) r) * eval (v i) (Lagrange.basis s v x) = r i", "state_before": "case refine'_2\nF : Type u_2\ninst✝¹ : Field F\nι : Type u_1\ninst✝ : DecidableEq ι\ns t : Finset ι\ni✝ j : ι\nv r r' : ι → F\nhvt : Set.InjOn v ↑t\nhs : Finset.Nonempty s\nhst : s ⊆ t\ni : ι\nhi : i ∈ t\n⊢ eval (v i) (∑ i in s, ↑(interpolate (insert i (t \\ s)) v) r * Lagrange.basis s v i) = r i", "tactic": "simp_rw [eval_finset_sum, eval_mul]" }, { "state_after": "case pos\nF : Type u_2\ninst✝¹ : Field F\nι : Type u_1\ninst✝ : DecidableEq ι\ns t : Finset ι\ni✝ j : ι\nv r r' : ι → F\nhvt : Set.InjOn v ↑t\nhs : Finset.Nonempty s\nhst : s ⊆ t\ni : ι\nhi : i ∈ t\nhi' : i ∈ s\n⊢ ∑ x in s, eval (v i) (↑(interpolate (insert x (t \\ s)) v) r) * eval (v i) (Lagrange.basis s v x) = r i\n\ncase neg\nF : Type u_2\ninst✝¹ : Field F\nι : Type u_1\ninst✝ : DecidableEq ι\ns t : Finset ι\ni✝ j : ι\nv r r' : ι → F\nhvt : Set.InjOn v ↑t\nhs : Finset.Nonempty s\nhst : s ⊆ t\ni : ι\nhi : i ∈ t\nhi' : ¬i ∈ s\n⊢ ∑ x in s, eval (v i) (↑(interpolate (insert x (t \\ s)) v) r) * eval (v i) (Lagrange.basis s v x) = r i", "state_before": "case refine'_2\nF : Type u_2\ninst✝¹ : Field F\nι : Type u_1\ninst✝ : DecidableEq ι\ns t : Finset ι\ni✝ j : ι\nv r r' : ι → F\nhvt : Set.InjOn v ↑t\nhs : Finset.Nonempty s\nhst : s ⊆ t\ni : ι\nhi : i ∈ t\n⊢ ∑ x in s, eval (v i) (↑(interpolate (insert x (t \\ s)) v) r) * eval (v i) (Lagrange.basis s v x) = r i", "tactic": "by_cases hi' : i ∈ s" }, { "state_after": "case pos\nF : Type u_2\ninst✝¹ : Field F\nι : Type u_1\ninst✝ : DecidableEq ι\ns t : Finset ι\ni✝ j : ι\nv r r' : ι → F\nhvt : Set.InjOn v ↑t\nhs : Finset.Nonempty s\nhst : s ⊆ t\ni : ι\nhi : i ∈ t\nhi' : i ∈ s\n⊢ ∑ x in Finset.erase s i, eval (v i) (↑(interpolate (insert x (t \\ s)) v) r) * eval (v i) (Lagrange.basis s v x) = 0", "state_before": "case pos\nF : Type u_2\ninst✝¹ : Field F\nι : Type u_1\ninst✝ : DecidableEq ι\ns t : Finset ι\ni✝ j : ι\nv r r' : ι → F\nhvt : Set.InjOn v ↑t\nhs : Finset.Nonempty s\nhst : s ⊆ t\ni : ι\nhi : i ∈ t\nhi' : i ∈ s\n⊢ ∑ x in s, eval (v i) (↑(interpolate (insert x (t \\ s)) v) r) * eval (v i) (Lagrange.basis s v x) = r i", "tactic": "rw [← add_sum_erase _ _ hi', eval_basis_self (hvt.mono hst) hi',\n eval_interpolate_at_node _\n (hvt.mono (coe_subset.mpr (insert_subset.mpr ⟨hi, sdiff_subset _ _⟩)))\n (mem_insert_self _ _),\n mul_one, add_right_eq_self]" }, { "state_after": "case pos\nF : Type u_2\ninst✝¹ : Field F\nι : Type u_1\ninst✝ : DecidableEq ι\ns t : Finset ι\ni✝ j✝ : ι\nv r r' : ι → F\nhvt : Set.InjOn v ↑t\nhs : Finset.Nonempty s\nhst : s ⊆ t\ni : ι\nhi : i ∈ t\nhi' : i ∈ s\nj : ι\nhj : j ∈ Finset.erase s i\n⊢ eval (v i) (↑(interpolate (insert j (t \\ s)) v) r) * eval (v i) (Lagrange.basis s v j) = 0", "state_before": "case pos\nF : Type u_2\ninst✝¹ : Field F\nι : Type u_1\ninst✝ : DecidableEq ι\ns t : Finset ι\ni✝ j : ι\nv r r' : ι → F\nhvt : Set.InjOn v ↑t\nhs : Finset.Nonempty s\nhst : s ⊆ t\ni : ι\nhi : i ∈ t\nhi' : i ∈ s\n⊢ ∑ x in Finset.erase s i, eval (v i) (↑(interpolate (insert x (t \\ s)) v) r) * eval (v i) (Lagrange.basis s v x) = 0", "tactic": "refine' sum_eq_zero fun j hj => _" }, { "state_after": "case pos.intro\nF : Type u_2\ninst✝¹ : Field F\nι : Type u_1\ninst✝ : DecidableEq ι\ns t : Finset ι\ni✝ j✝ : ι\nv r r' : ι → F\nhvt : Set.InjOn v ↑t\nhs : Finset.Nonempty s\nhst : s ⊆ t\ni : ι\nhi : i ∈ t\nhi' : i ∈ s\nj : ι\nhj : j ∈ Finset.erase s i\nhij : j ≠ i\nright✝ : j ∈ s\n⊢ eval (v i) (↑(interpolate (insert j (t \\ s)) v) r) * eval (v i) (Lagrange.basis s v j) = 0", "state_before": "case pos\nF : Type u_2\ninst✝¹ : Field F\nι : Type u_1\ninst✝ : DecidableEq ι\ns t : Finset ι\ni✝ j✝ : ι\nv r r' : ι → F\nhvt : Set.InjOn v ↑t\nhs : Finset.Nonempty s\nhst : s ⊆ t\ni : ι\nhi : i ∈ t\nhi' : i ∈ s\nj : ι\nhj : j ∈ Finset.erase s i\n⊢ eval (v i) (↑(interpolate (insert j (t \\ s)) v) r) * eval (v i) (Lagrange.basis s v j) = 0", "tactic": "rcases mem_erase.mp hj with ⟨hij, _⟩" }, { "state_after": "no goals", "state_before": "case pos.intro\nF : Type u_2\ninst✝¹ : Field F\nι : Type u_1\ninst✝ : DecidableEq ι\ns t : Finset ι\ni✝ j✝ : ι\nv r r' : ι → F\nhvt : Set.InjOn v ↑t\nhs : Finset.Nonempty s\nhst : s ⊆ t\ni : ι\nhi : i ∈ t\nhi' : i ∈ s\nj : ι\nhj : j ∈ Finset.erase s i\nhij : j ≠ i\nright✝ : j ∈ s\n⊢ eval (v i) (↑(interpolate (insert j (t \\ s)) v) r) * eval (v i) (Lagrange.basis s v j) = 0", "tactic": "rw [eval_basis_of_ne hij hi', MulZeroClass.mul_zero]" }, { "state_after": "case neg\nF : Type u_2\ninst✝¹ : Field F\nι : Type u_1\ninst✝ : DecidableEq ι\ns t : Finset ι\ni✝ j : ι\nv r r' : ι → F\nhvt : Set.InjOn v ↑t\nhs : Finset.Nonempty s\nhst : s ⊆ t\ni : ι\nhi : i ∈ t\nhi' : ¬i ∈ s\nH : ∑ j in s, eval (v i) (Lagrange.basis s v j) = 1\n⊢ ∑ x in s, eval (v i) (↑(interpolate (insert x (t \\ s)) v) r) * eval (v i) (Lagrange.basis s v x) = r i", "state_before": "case neg\nF : Type u_2\ninst✝¹ : Field F\nι : Type u_1\ninst✝ : DecidableEq ι\ns t : Finset ι\ni✝ j : ι\nv r r' : ι → F\nhvt : Set.InjOn v ↑t\nhs : Finset.Nonempty s\nhst : s ⊆ t\ni : ι\nhi : i ∈ t\nhi' : ¬i ∈ s\n⊢ ∑ x in s, eval (v i) (↑(interpolate (insert x (t \\ s)) v) r) * eval (v i) (Lagrange.basis s v x) = r i", "tactic": "have H : (∑ j in s, eval (v i) (Lagrange.basis s v j)) = 1 := by\n rw [← eval_finset_sum, sum_basis (hvt.mono hst) hs, eval_one]" }, { "state_after": "case neg\nF : Type u_2\ninst✝¹ : Field F\nι : Type u_1\ninst✝ : DecidableEq ι\ns t : Finset ι\ni✝ j : ι\nv r r' : ι → F\nhvt : Set.InjOn v ↑t\nhs : Finset.Nonempty s\nhst : s ⊆ t\ni : ι\nhi : i ∈ t\nhi' : ¬i ∈ s\nH : ∑ j in s, eval (v i) (Lagrange.basis s v j) = 1\n⊢ ∑ x in s, eval (v i) (↑(interpolate (insert x (t \\ s)) v) r) * eval (v i) (Lagrange.basis s v x) =\n ∑ x in s, r i * eval (v i) (Lagrange.basis s v x)", "state_before": "case neg\nF : Type u_2\ninst✝¹ : Field F\nι : Type u_1\ninst✝ : DecidableEq ι\ns t : Finset ι\ni✝ j : ι\nv r r' : ι → F\nhvt : Set.InjOn v ↑t\nhs : Finset.Nonempty s\nhst : s ⊆ t\ni : ι\nhi : i ∈ t\nhi' : ¬i ∈ s\nH : ∑ j in s, eval (v i) (Lagrange.basis s v j) = 1\n⊢ ∑ x in s, eval (v i) (↑(interpolate (insert x (t \\ s)) v) r) * eval (v i) (Lagrange.basis s v x) = r i", "tactic": "rw [← mul_one (r i), ← H, mul_sum]" }, { "state_after": "case neg\nF : Type u_2\ninst✝¹ : Field F\nι : Type u_1\ninst✝ : DecidableEq ι\ns t : Finset ι\ni✝ j✝ : ι\nv r r' : ι → F\nhvt : Set.InjOn v ↑t\nhs : Finset.Nonempty s\nhst : s ⊆ t\ni : ι\nhi : i ∈ t\nhi' : ¬i ∈ s\nH : ∑ j in s, eval (v i) (Lagrange.basis s v j) = 1\nj : ι\nhj : j ∈ s\n⊢ eval (v i) (↑(interpolate (insert j (t \\ s)) v) r) * eval (v i) (Lagrange.basis s v j) =\n r i * eval (v i) (Lagrange.basis s v j)", "state_before": "case neg\nF : Type u_2\ninst✝¹ : Field F\nι : Type u_1\ninst✝ : DecidableEq ι\ns t : Finset ι\ni✝ j : ι\nv r r' : ι → F\nhvt : Set.InjOn v ↑t\nhs : Finset.Nonempty s\nhst : s ⊆ t\ni : ι\nhi : i ∈ t\nhi' : ¬i ∈ s\nH : ∑ j in s, eval (v i) (Lagrange.basis s v j) = 1\n⊢ ∑ x in s, eval (v i) (↑(interpolate (insert x (t \\ s)) v) r) * eval (v i) (Lagrange.basis s v x) =\n ∑ x in s, r i * eval (v i) (Lagrange.basis s v x)", "tactic": "refine' sum_congr rfl fun j hj => _" }, { "state_after": "case neg.e_a\nF : Type u_2\ninst✝¹ : Field F\nι : Type u_1\ninst✝ : DecidableEq ι\ns t : Finset ι\ni✝ j✝ : ι\nv r r' : ι → F\nhvt : Set.InjOn v ↑t\nhs : Finset.Nonempty s\nhst : s ⊆ t\ni : ι\nhi : i ∈ t\nhi' : ¬i ∈ s\nH : ∑ j in s, eval (v i) (Lagrange.basis s v j) = 1\nj : ι\nhj : j ∈ s\n⊢ eval (v i) (↑(interpolate (insert j (t \\ s)) v) r) = r i", "state_before": "case neg\nF : Type u_2\ninst✝¹ : Field F\nι : Type u_1\ninst✝ : DecidableEq ι\ns t : Finset ι\ni✝ j✝ : ι\nv r r' : ι → F\nhvt : Set.InjOn v ↑t\nhs : Finset.Nonempty s\nhst : s ⊆ t\ni : ι\nhi : i ∈ t\nhi' : ¬i ∈ s\nH : ∑ j in s, eval (v i) (Lagrange.basis s v j) = 1\nj : ι\nhj : j ∈ s\n⊢ eval (v i) (↑(interpolate (insert j (t \\ s)) v) r) * eval (v i) (Lagrange.basis s v j) =\n r i * eval (v i) (Lagrange.basis s v j)", "tactic": "congr" }, { "state_after": "no goals", "state_before": "case neg.e_a\nF : Type u_2\ninst✝¹ : Field F\nι : Type u_1\ninst✝ : DecidableEq ι\ns t : Finset ι\ni✝ j✝ : ι\nv r r' : ι → F\nhvt : Set.InjOn v ↑t\nhs : Finset.Nonempty s\nhst : s ⊆ t\ni : ι\nhi : i ∈ t\nhi' : ¬i ∈ s\nH : ∑ j in s, eval (v i) (Lagrange.basis s v j) = 1\nj : ι\nhj : j ∈ s\n⊢ eval (v i) (↑(interpolate (insert j (t \\ s)) v) r) = r i", "tactic": "exact\n eval_interpolate_at_node _ (hvt.mono (insert_subset.mpr ⟨hst hj, sdiff_subset _ _⟩))\n (mem_insert.mpr (Or.inr (mem_sdiff.mpr ⟨hi, hi'⟩)))" }, { "state_after": "no goals", "state_before": "F : Type u_2\ninst✝¹ : Field F\nι : Type u_1\ninst✝ : DecidableEq ι\ns t : Finset ι\ni✝ j : ι\nv r r' : ι → F\nhvt : Set.InjOn v ↑t\nhs : Finset.Nonempty s\nhst : s ⊆ t\ni : ι\nhi : i ∈ t\nhi' : ¬i ∈ s\n⊢ ∑ j in s, eval (v i) (Lagrange.basis s v j) = 1", "tactic": "rw [← eval_finset_sum, sum_basis (hvt.mono hst) hs, eval_one]" } ]
[ 454, 62 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 420, 1 ]
Mathlib/Data/Set/Intervals/Disjoint.lean
iUnion_Iic_eq_Iic_iSup
[]
[ 249, 64 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 247, 1 ]
Mathlib/Analysis/Normed/Field/Basic.lean
Units.nnnorm_pos
[]
[ 447, 13 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 446, 1 ]
Mathlib/RingTheory/TensorProduct.lean
Algebra.TensorProduct.one_def
[]
[ 463, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 462, 1 ]
Mathlib/Analysis/Convex/SpecificFunctions/Deriv.lean
strictConcaveOn_sin_Icc
[ { "state_after": "x : ℝ\nhx : x ∈ interior (Icc 0 π)\n⊢ (deriv^[2]) sin x < 0", "state_before": "⊢ StrictConcaveOn ℝ (Icc 0 π) sin", "tactic": "apply strictConcaveOn_of_deriv2_neg (convex_Icc _ _) continuousOn_sin fun x hx => ?_" }, { "state_after": "x : ℝ\nhx : x ∈ Ioo 0 π\n⊢ (deriv^[2]) sin x < 0", "state_before": "x : ℝ\nhx : x ∈ interior (Icc 0 π)\n⊢ (deriv^[2]) sin x < 0", "tactic": "rw [interior_Icc] at hx" }, { "state_after": "no goals", "state_before": "x : ℝ\nhx : x ∈ Ioo 0 π\n⊢ (deriv^[2]) sin x < 0", "tactic": "simp [sin_pos_of_mem_Ioo hx]" } ]
[ 173, 31 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 170, 1 ]
Mathlib/Combinatorics/Colex.lean
Nat.sum_two_pow_lt
[ { "state_after": "α : Type ?u.638\nk : ℕ\nA : Finset ℕ\nh₁ : ∀ {x : ℕ}, x ∈ A → x < k\n⊢ ∑ x in range k, Nat.pow 2 x < 2 ^ k", "state_before": "α : Type ?u.638\nk : ℕ\nA : Finset ℕ\nh₁ : ∀ {x : ℕ}, x ∈ A → x < k\n⊢ Finset.sum A (Nat.pow 2) < 2 ^ k", "tactic": "apply lt_of_le_of_lt (sum_le_sum_of_subset fun t => mem_range.2 ∘ h₁)" }, { "state_after": "α : Type ?u.638\nk : ℕ\nA : Finset ℕ\nh₁ : ∀ {x : ℕ}, x ∈ A → x < k\nz : (∑ i in range k, (1 + 1) ^ i) * 1 + 1 = (1 + 1) ^ k\n⊢ ∑ x in range k, Nat.pow 2 x < 2 ^ k", "state_before": "α : Type ?u.638\nk : ℕ\nA : Finset ℕ\nh₁ : ∀ {x : ℕ}, x ∈ A → x < k\n⊢ ∑ x in range k, Nat.pow 2 x < 2 ^ k", "tactic": "have z := geom_sum_mul_add 1 k" }, { "state_after": "α : Type ?u.638\nk : ℕ\nA : Finset ℕ\nh₁ : ∀ {x : ℕ}, x ∈ A → x < k\nz : ∑ i in range k, 2 ^ i + 1 = 2 ^ k\n⊢ ∑ x in range k, Nat.pow 2 x < 2 ^ k", "state_before": "α : Type ?u.638\nk : ℕ\nA : Finset ℕ\nh₁ : ∀ {x : ℕ}, x ∈ A → x < k\nz : (∑ i in range k, (1 + 1) ^ i) * 1 + 1 = (1 + 1) ^ k\n⊢ ∑ x in range k, Nat.pow 2 x < 2 ^ k", "tactic": "rw [mul_one, one_add_one_eq_two] at z" }, { "state_after": "α : Type ?u.638\nk : ℕ\nA : Finset ℕ\nh₁ : ∀ {x : ℕ}, x ∈ A → x < k\nz : ∑ i in range k, 2 ^ i + 1 = 2 ^ k\n⊢ ∑ x in range k, Nat.pow 2 x < ∑ i in range k, 2 ^ i + 1", "state_before": "α : Type ?u.638\nk : ℕ\nA : Finset ℕ\nh₁ : ∀ {x : ℕ}, x ∈ A → x < k\nz : ∑ i in range k, 2 ^ i + 1 = 2 ^ k\n⊢ ∑ x in range k, Nat.pow 2 x < 2 ^ k", "tactic": "rw [← z]" }, { "state_after": "no goals", "state_before": "α : Type ?u.638\nk : ℕ\nA : Finset ℕ\nh₁ : ∀ {x : ℕ}, x ∈ A → x < k\nz : ∑ i in range k, 2 ^ i + 1 = 2 ^ k\n⊢ ∑ x in range k, Nat.pow 2 x < ∑ i in range k, 2 ^ i + 1", "tactic": "apply Nat.lt_succ_self" } ]
[ 111, 25 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 105, 1 ]
Mathlib/Algebra/Group/Basic.lean
mul_rotate'
[ { "state_after": "no goals", "state_before": "α : Type ?u.8273\nβ : Type ?u.8276\nG : Type u_1\ninst✝ : CommSemigroup G\na b c : G\n⊢ a * (b * c) = b * (c * a)", "tactic": "simp only [mul_left_comm, mul_comm]" } ]
[ 122, 41 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 121, 1 ]
Mathlib/Topology/LocalHomeomorph.lean
LocalHomeomorph.symm_toLocalEquiv
[]
[ 337, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 336, 1 ]
Mathlib/Topology/ContinuousFunction/Basic.lean
Homeomorph.symm_comp_toContinuousMap
[ { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type u_2\nγ : Type ?u.69498\ninst✝² : TopologicalSpace α\ninst✝¹ : TopologicalSpace β\ninst✝ : TopologicalSpace γ\nf : α ≃ₜ β\ng : β ≃ₜ γ\n⊢ ContinuousMap.comp (toContinuousMap (Homeomorph.symm f)) (toContinuousMap f) = ContinuousMap.id α", "tactic": "rw [← coe_trans, self_trans_symm, coe_refl]" } ]
[ 492, 49 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 491, 1 ]
Mathlib/Topology/MetricSpace/Basic.lean
dist_pi_const
[ { "state_after": "no goals", "state_before": "α : Type u\nβ : Type v\nX : Type ?u.396731\nι : Type ?u.396734\ninst✝³ : PseudoMetricSpace α\nπ : β → Type ?u.396742\ninst✝² : Fintype β\ninst✝¹ : (b : β) → PseudoMetricSpace (π b)\ninst✝ : Nonempty β\na b : α\n⊢ (dist (fun x => a) fun x => b) = dist a b", "tactic": "simpa only [dist_edist] using congr_arg ENNReal.toReal (edist_pi_const a b)" } ]
[ 2029, 78 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 2028, 1 ]
Mathlib/MeasureTheory/Measure/MeasureSpace.lean
MeasureTheory.Measure.map_eq_sum
[ { "state_after": "case h\nα : Type u_2\nβ : Type u_1\nγ : Type ?u.348297\nδ : Type ?u.348300\nι : Type ?u.348303\nR : Type ?u.348306\nR' : Type ?u.348309\nm0 : MeasurableSpace α\ninst✝³ : MeasurableSpace β\ninst✝² : MeasurableSpace γ\nμ✝ μ₁ μ₂ μ₃ ν ν' ν₁ ν₂ : Measure α\ns✝ s' t : Set α\ninst✝¹ : Countable β\ninst✝ : MeasurableSingletonClass β\nμ : Measure α\nf : α → β\nhf : Measurable f\ns : Set β\nhs : MeasurableSet s\n⊢ ↑↑(map f μ) s = ↑↑(sum fun b => ↑↑μ (f ⁻¹' {b}) • dirac b) s", "state_before": "α : Type u_2\nβ : Type u_1\nγ : Type ?u.348297\nδ : Type ?u.348300\nι : Type ?u.348303\nR : Type ?u.348306\nR' : Type ?u.348309\nm0 : MeasurableSpace α\ninst✝³ : MeasurableSpace β\ninst✝² : MeasurableSpace γ\nμ✝ μ₁ μ₂ μ₃ ν ν' ν₁ ν₂ : Measure α\ns s' t : Set α\ninst✝¹ : Countable β\ninst✝ : MeasurableSingletonClass β\nμ : Measure α\nf : α → β\nhf : Measurable f\n⊢ map f μ = sum fun b => ↑↑μ (f ⁻¹' {b}) • dirac b", "tactic": "ext1 s hs" }, { "state_after": "case h\nα : Type u_2\nβ : Type u_1\nγ : Type ?u.348297\nδ : Type ?u.348300\nι : Type ?u.348303\nR : Type ?u.348306\nR' : Type ?u.348309\nm0 : MeasurableSpace α\ninst✝³ : MeasurableSpace β\ninst✝² : MeasurableSpace γ\nμ✝ μ₁ μ₂ μ₃ ν ν' ν₁ ν₂ : Measure α\ns✝ s' t : Set α\ninst✝¹ : Countable β\ninst✝ : MeasurableSingletonClass β\nμ : Measure α\nf : α → β\nhf : Measurable f\ns : Set β\nhs : MeasurableSet s\nthis : ∀ (y : β), y ∈ s → MeasurableSet (f ⁻¹' {y})\n⊢ ↑↑(map f μ) s = ↑↑(sum fun b => ↑↑μ (f ⁻¹' {b}) • dirac b) s", "state_before": "case h\nα : Type u_2\nβ : Type u_1\nγ : Type ?u.348297\nδ : Type ?u.348300\nι : Type ?u.348303\nR : Type ?u.348306\nR' : Type ?u.348309\nm0 : MeasurableSpace α\ninst✝³ : MeasurableSpace β\ninst✝² : MeasurableSpace γ\nμ✝ μ₁ μ₂ μ₃ ν ν' ν₁ ν₂ : Measure α\ns✝ s' t : Set α\ninst✝¹ : Countable β\ninst✝ : MeasurableSingletonClass β\nμ : Measure α\nf : α → β\nhf : Measurable f\ns : Set β\nhs : MeasurableSet s\n⊢ ↑↑(map f μ) s = ↑↑(sum fun b => ↑↑μ (f ⁻¹' {b}) • dirac b) s", "tactic": "have : ∀ y ∈ s, MeasurableSet (f ⁻¹' {y}) := fun y _ => hf (measurableSet_singleton _)" }, { "state_after": "no goals", "state_before": "case h\nα : Type u_2\nβ : Type u_1\nγ : Type ?u.348297\nδ : Type ?u.348300\nι : Type ?u.348303\nR : Type ?u.348306\nR' : Type ?u.348309\nm0 : MeasurableSpace α\ninst✝³ : MeasurableSpace β\ninst✝² : MeasurableSpace γ\nμ✝ μ₁ μ₂ μ₃ ν ν' ν₁ ν₂ : Measure α\ns✝ s' t : Set α\ninst✝¹ : Countable β\ninst✝ : MeasurableSingletonClass β\nμ : Measure α\nf : α → β\nhf : Measurable f\ns : Set β\nhs : MeasurableSet s\nthis : ∀ (y : β), y ∈ s → MeasurableSet (f ⁻¹' {y})\n⊢ ↑↑(map f μ) s = ↑↑(sum fun b => ↑↑μ (f ⁻¹' {b}) • dirac b) s", "tactic": "simp [← tsum_measure_preimage_singleton (to_countable s) this, *,\n tsum_subtype s fun b => μ (f ⁻¹' {b}), ← indicator_mul_right s fun b => μ (f ⁻¹' {b})]" } ]
[ 2138, 91 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 2133, 1 ]
Mathlib/Order/RelIso/Basic.lean
RelEmbedding.map_rel_iff
[]
[ 276, 17 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 275, 1 ]
Mathlib/Analysis/BoxIntegral/Partition/Basic.lean
BoxIntegral.Prepartition.iUnion_filter_not
[ { "state_after": "ι : Type u_1\nI J J₁ J₂ : Box ι\nπ✝ π₁ π₂ : Prepartition I\nx : ι → ℝ\nπi πi₁ πi₂ : (J : Box ι) → Prepartition J\nπ : Prepartition I\np : Box ι → Prop\n⊢ (⋃ (J : Box ι) (_ : J ∈ filter π fun J => ¬p J), ↑J) =\n (⋃ (J : Box ι) (_ : J ∈ π), ↑J) \\ ⋃ (J : Box ι) (_ : J ∈ filter π p), ↑J", "state_before": "ι : Type u_1\nI J J₁ J₂ : Box ι\nπ✝ π₁ π₂ : Prepartition I\nx : ι → ℝ\nπi πi₁ πi₂ : (J : Box ι) → Prepartition J\nπ : Prepartition I\np : Box ι → Prop\n⊢ Prepartition.iUnion (filter π fun J => ¬p J) = Prepartition.iUnion π \\ Prepartition.iUnion (filter π p)", "tactic": "simp only [Prepartition.iUnion]" }, { "state_after": "case h.e'_2.h.e'_3.h.pq.a.a\nι : Type u_1\nI J J₁ J₂ : Box ι\nπ✝ π₁ π₂ : Prepartition I\nx : ι → ℝ\nπi πi₁ πi₂ : (J : Box ι) → Prepartition J\nπ : Prepartition I\np : Box ι → Prop\nx✝ : Box ι\n⊢ (x✝ ∈ filter π fun J => ¬p J) ↔ x✝ ∈ ↑π.boxes \\ ↑(filter π p).boxes\n\nι : Type u_1\nI J J₁ J₂ : Box ι\nπ✝ π₁ π₂ : Prepartition I\nx : ι → ℝ\nπi πi₁ πi₂ : (J : Box ι) → Prepartition J\nπ : Prepartition I\np : Box ι → Prop\n⊢ PairwiseDisjoint (↑π.boxes ∪ ↑(filter π p).boxes) Box.toSet", "state_before": "ι : Type u_1\nI J J₁ J₂ : Box ι\nπ✝ π₁ π₂ : Prepartition I\nx : ι → ℝ\nπi πi₁ πi₂ : (J : Box ι) → Prepartition J\nπ : Prepartition I\np : Box ι → Prop\n⊢ (⋃ (J : Box ι) (_ : J ∈ filter π fun J => ¬p J), ↑J) =\n (⋃ (J : Box ι) (_ : J ∈ π), ↑J) \\ ⋃ (J : Box ι) (_ : J ∈ filter π p), ↑J", "tactic": "convert (@Set.biUnion_diff_biUnion_eq _ (Box ι) π.boxes (π.filter p).boxes (↑) _).symm" }, { "state_after": "no goals", "state_before": "case h.e'_2.h.e'_3.h.pq.a.a\nι : Type u_1\nI J J₁ J₂ : Box ι\nπ✝ π₁ π₂ : Prepartition I\nx : ι → ℝ\nπi πi₁ πi₂ : (J : Box ι) → Prepartition J\nπ : Prepartition I\np : Box ι → Prop\nx✝ : Box ι\n⊢ (x✝ ∈ filter π fun J => ¬p J) ↔ x✝ ∈ ↑π.boxes \\ ↑(filter π p).boxes", "tactic": "simp (config := { contextual := true })" }, { "state_after": "ι : Type u_1\nI J J₁ J₂ : Box ι\nπ✝ π₁ π₂ : Prepartition I\nx : ι → ℝ\nπi πi₁ πi₂ : (J : Box ι) → Prepartition J\nπ : Prepartition I\np : Box ι → Prop\n⊢ Set.Pairwise (↑π.boxes ∪ ↑(filter π p).boxes) (Disjoint on Box.toSet)", "state_before": "ι : Type u_1\nI J J₁ J₂ : Box ι\nπ✝ π₁ π₂ : Prepartition I\nx : ι → ℝ\nπi πi₁ πi₂ : (J : Box ι) → Prepartition J\nπ : Prepartition I\np : Box ι → Prop\n⊢ PairwiseDisjoint (↑π.boxes ∪ ↑(filter π p).boxes) Box.toSet", "tactic": "rw [Set.PairwiseDisjoint]" }, { "state_after": "case h.e'_2\nι : Type u_1\nI J J₁ J₂ : Box ι\nπ✝ π₁ π₂ : Prepartition I\nx : ι → ℝ\nπi πi₁ πi₂ : (J : Box ι) → Prepartition J\nπ : Prepartition I\np : Box ι → Prop\n⊢ ↑π.boxes ∪ ↑(filter π p).boxes = ↑π.boxes", "state_before": "ι : Type u_1\nI J J₁ J₂ : Box ι\nπ✝ π₁ π₂ : Prepartition I\nx : ι → ℝ\nπi πi₁ πi₂ : (J : Box ι) → Prepartition J\nπ : Prepartition I\np : Box ι → Prop\n⊢ Set.Pairwise (↑π.boxes ∪ ↑(filter π p).boxes) (Disjoint on Box.toSet)", "tactic": "convert π.pairwiseDisjoint" }, { "state_after": "case h.e'_2\nι : Type u_1\nI J J₁ J₂ : Box ι\nπ✝ π₁ π₂ : Prepartition I\nx : ι → ℝ\nπi πi₁ πi₂ : (J : Box ι) → Prepartition J\nπ : Prepartition I\np : Box ι → Prop\n⊢ {x | x ∈ π.boxes ∧ p x} ⊆ ↑π.boxes", "state_before": "case h.e'_2\nι : Type u_1\nI J J₁ J₂ : Box ι\nπ✝ π₁ π₂ : Prepartition I\nx : ι → ℝ\nπi πi₁ πi₂ : (J : Box ι) → Prepartition J\nπ : Prepartition I\np : Box ι → Prop\n⊢ ↑π.boxes ∪ ↑(filter π p).boxes = ↑π.boxes", "tactic": "rw [Set.union_eq_left_iff_subset, filter_boxes, coe_filter]" }, { "state_after": "no goals", "state_before": "case h.e'_2\nι : Type u_1\nI J J₁ J₂ : Box ι\nπ✝ π₁ π₂ : Prepartition I\nx : ι → ℝ\nπi πi₁ πi₂ : (J : Box ι) → Prepartition J\nπ : Prepartition I\np : Box ι → Prop\n⊢ {x | x ∈ π.boxes ∧ p x} ⊆ ↑π.boxes", "tactic": "exact fun _ ⟨h, _⟩ => h" } ]
[ 629, 28 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 621, 1 ]
Mathlib/Topology/Constructions.lean
isClosed_set_pi
[ { "state_after": "α : Type u\nβ : Type v\nγ : Type ?u.257106\nδ : Type ?u.257109\nε : Type ?u.257112\nζ : Type ?u.257115\nι : Type u_1\nπ : ι → Type u_2\nκ : Type ?u.257126\ninst✝¹ : TopologicalSpace α\ninst✝ : (i : ι) → TopologicalSpace (π i)\nf : α → (i : ι) → π i\ni : Set ι\ns : (a : ι) → Set (π a)\nhs : ∀ (a : ι), a ∈ i → IsClosed (s a)\n⊢ IsClosed (⋂ (a : ι) (_ : a ∈ i), eval a ⁻¹' s a)", "state_before": "α : Type u\nβ : Type v\nγ : Type ?u.257106\nδ : Type ?u.257109\nε : Type ?u.257112\nζ : Type ?u.257115\nι : Type u_1\nπ : ι → Type u_2\nκ : Type ?u.257126\ninst✝¹ : TopologicalSpace α\ninst✝ : (i : ι) → TopologicalSpace (π i)\nf : α → (i : ι) → π i\ni : Set ι\ns : (a : ι) → Set (π a)\nhs : ∀ (a : ι), a ∈ i → IsClosed (s a)\n⊢ IsClosed (Set.pi i s)", "tactic": "rw [pi_def]" }, { "state_after": "no goals", "state_before": "α : Type u\nβ : Type v\nγ : Type ?u.257106\nδ : Type ?u.257109\nε : Type ?u.257112\nζ : Type ?u.257115\nι : Type u_1\nπ : ι → Type u_2\nκ : Type ?u.257126\ninst✝¹ : TopologicalSpace α\ninst✝ : (i : ι) → TopologicalSpace (π i)\nf : α → (i : ι) → π i\ni : Set ι\ns : (a : ι) → Set (π a)\nhs : ∀ (a : ι), a ∈ i → IsClosed (s a)\n⊢ IsClosed (⋂ (a : ι) (_ : a ∈ i), eval a ⁻¹' s a)", "tactic": "exact isClosed_biInter fun a ha => (hs _ ha).preimage (continuous_apply _)" } ]
[ 1335, 90 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1333, 1 ]
Mathlib/Logic/Equiv/Basic.lean
Equiv.optionEquivSumPUnit_symm_inl
[]
[ 440, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 439, 1 ]
Mathlib/RepresentationTheory/Basic.lean
Representation.ofModule_asAlgebraHom_apply_apply
[ { "state_after": "case hM\nk : Type u_1\nG : Type u_2\nV : Type ?u.309923\ninst✝⁵ : CommSemiring k\ninst✝⁴ : Monoid G\ninst✝³ : AddCommMonoid V\ninst✝² : Module k V\nρ : Representation k G V\nM : Type u_3\ninst✝¹ : AddCommMonoid M\ninst✝ : Module (MonoidAlgebra k G) M\nr : MonoidAlgebra k G\nm : RestrictScalars k (MonoidAlgebra k G) M\n⊢ ∀ (g : G),\n ↑(↑(asAlgebraHom (ofModule M)) (↑(of k G) g)) m =\n ↑(AddEquiv.symm (RestrictScalars.addEquiv k (MonoidAlgebra k G) ((fun x => M) m)))\n (↑(of k G) g • ↑(RestrictScalars.addEquiv k (MonoidAlgebra k G) M) m)\n\ncase hadd\nk : Type u_1\nG : Type u_2\nV : Type ?u.309923\ninst✝⁵ : CommSemiring k\ninst✝⁴ : Monoid G\ninst✝³ : AddCommMonoid V\ninst✝² : Module k V\nρ : Representation k G V\nM : Type u_3\ninst✝¹ : AddCommMonoid M\ninst✝ : Module (MonoidAlgebra k G) M\nr : MonoidAlgebra k G\nm : RestrictScalars k (MonoidAlgebra k G) M\n⊢ ∀ (f g : MonoidAlgebra k G),\n ↑(↑(asAlgebraHom (ofModule M)) f) m =\n ↑(AddEquiv.symm (RestrictScalars.addEquiv k (MonoidAlgebra k G) ((fun x => M) m)))\n (f • ↑(RestrictScalars.addEquiv k (MonoidAlgebra k G) M) m) →\n ↑(↑(asAlgebraHom (ofModule M)) g) m =\n ↑(AddEquiv.symm (RestrictScalars.addEquiv k (MonoidAlgebra k G) ((fun x => M) m)))\n (g • ↑(RestrictScalars.addEquiv k (MonoidAlgebra k G) M) m) →\n ↑(↑(asAlgebraHom (ofModule M)) (f + g)) m =\n ↑(AddEquiv.symm (RestrictScalars.addEquiv k (MonoidAlgebra k G) ((fun x => M) m)))\n ((f + g) • ↑(RestrictScalars.addEquiv k (MonoidAlgebra k G) M) m)\n\ncase hsmul\nk : Type u_1\nG : Type u_2\nV : Type ?u.309923\ninst✝⁵ : CommSemiring k\ninst✝⁴ : Monoid G\ninst✝³ : AddCommMonoid V\ninst✝² : Module k V\nρ : Representation k G V\nM : Type u_3\ninst✝¹ : AddCommMonoid M\ninst✝ : Module (MonoidAlgebra k G) M\nr : MonoidAlgebra k G\nm : RestrictScalars k (MonoidAlgebra k G) M\n⊢ ∀ (r : k) (f : MonoidAlgebra k G),\n ↑(↑(asAlgebraHom (ofModule M)) f) m =\n ↑(AddEquiv.symm (RestrictScalars.addEquiv k (MonoidAlgebra k G) ((fun x => M) m)))\n (f • ↑(RestrictScalars.addEquiv k (MonoidAlgebra k G) M) m) →\n ↑(↑(asAlgebraHom (ofModule M)) (r • f)) m =\n ↑(AddEquiv.symm (RestrictScalars.addEquiv k (MonoidAlgebra k G) ((fun x => M) m)))\n ((r • f) • ↑(RestrictScalars.addEquiv k (MonoidAlgebra k G) M) m)", "state_before": "k : Type u_1\nG : Type u_2\nV : Type ?u.309923\ninst✝⁵ : CommSemiring k\ninst✝⁴ : Monoid G\ninst✝³ : AddCommMonoid V\ninst✝² : Module k V\nρ : Representation k G V\nM : Type u_3\ninst✝¹ : AddCommMonoid M\ninst✝ : Module (MonoidAlgebra k G) M\nr : MonoidAlgebra k G\nm : RestrictScalars k (MonoidAlgebra k G) M\n⊢ ↑(↑(asAlgebraHom (ofModule M)) r) m =\n ↑(AddEquiv.symm (RestrictScalars.addEquiv k (MonoidAlgebra k G) ((fun x => M) m)))\n (r • ↑(RestrictScalars.addEquiv k (MonoidAlgebra k G) M) m)", "tactic": "apply MonoidAlgebra.induction_on r" }, { "state_after": "case hM\nk : Type u_1\nG : Type u_2\nV : Type ?u.309923\ninst✝⁵ : CommSemiring k\ninst✝⁴ : Monoid G\ninst✝³ : AddCommMonoid V\ninst✝² : Module k V\nρ : Representation k G V\nM : Type u_3\ninst✝¹ : AddCommMonoid M\ninst✝ : Module (MonoidAlgebra k G) M\nr : MonoidAlgebra k G\nm : RestrictScalars k (MonoidAlgebra k G) M\ng : G\n⊢ ↑(↑(asAlgebraHom (ofModule M)) (↑(of k G) g)) m =\n ↑(AddEquiv.symm (RestrictScalars.addEquiv k (MonoidAlgebra k G) ((fun x => M) m)))\n (↑(of k G) g • ↑(RestrictScalars.addEquiv k (MonoidAlgebra k G) M) m)", "state_before": "case hM\nk : Type u_1\nG : Type u_2\nV : Type ?u.309923\ninst✝⁵ : CommSemiring k\ninst✝⁴ : Monoid G\ninst✝³ : AddCommMonoid V\ninst✝² : Module k V\nρ : Representation k G V\nM : Type u_3\ninst✝¹ : AddCommMonoid M\ninst✝ : Module (MonoidAlgebra k G) M\nr : MonoidAlgebra k G\nm : RestrictScalars k (MonoidAlgebra k G) M\n⊢ ∀ (g : G),\n ↑(↑(asAlgebraHom (ofModule M)) (↑(of k G) g)) m =\n ↑(AddEquiv.symm (RestrictScalars.addEquiv k (MonoidAlgebra k G) ((fun x => M) m)))\n (↑(of k G) g • ↑(RestrictScalars.addEquiv k (MonoidAlgebra k G) M) m)", "tactic": "intro g" }, { "state_after": "no goals", "state_before": "case hM\nk : Type u_1\nG : Type u_2\nV : Type ?u.309923\ninst✝⁵ : CommSemiring k\ninst✝⁴ : Monoid G\ninst✝³ : AddCommMonoid V\ninst✝² : Module k V\nρ : Representation k G V\nM : Type u_3\ninst✝¹ : AddCommMonoid M\ninst✝ : Module (MonoidAlgebra k G) M\nr : MonoidAlgebra k G\nm : RestrictScalars k (MonoidAlgebra k G) M\ng : G\n⊢ ↑(↑(asAlgebraHom (ofModule M)) (↑(of k G) g)) m =\n ↑(AddEquiv.symm (RestrictScalars.addEquiv k (MonoidAlgebra k G) ((fun x => M) m)))\n (↑(of k G) g • ↑(RestrictScalars.addEquiv k (MonoidAlgebra k G) M) m)", "tactic": "simp only [one_smul, MonoidAlgebra.lift_symm_apply, MonoidAlgebra.of_apply,\n Representation.asAlgebraHom_single, Representation.ofModule, AddEquiv.apply_eq_iff_eq,\n RestrictScalars.lsmul_apply_apply]" }, { "state_after": "case hadd\nk : Type u_1\nG : Type u_2\nV : Type ?u.309923\ninst✝⁵ : CommSemiring k\ninst✝⁴ : Monoid G\ninst✝³ : AddCommMonoid V\ninst✝² : Module k V\nρ : Representation k G V\nM : Type u_3\ninst✝¹ : AddCommMonoid M\ninst✝ : Module (MonoidAlgebra k G) M\nr : MonoidAlgebra k G\nm : RestrictScalars k (MonoidAlgebra k G) M\nf g : MonoidAlgebra k G\nfw :\n ↑(↑(asAlgebraHom (ofModule M)) f) m =\n ↑(AddEquiv.symm (RestrictScalars.addEquiv k (MonoidAlgebra k G) ((fun x => M) m)))\n (f • ↑(RestrictScalars.addEquiv k (MonoidAlgebra k G) M) m)\ngw :\n ↑(↑(asAlgebraHom (ofModule M)) g) m =\n ↑(AddEquiv.symm (RestrictScalars.addEquiv k (MonoidAlgebra k G) ((fun x => M) m)))\n (g • ↑(RestrictScalars.addEquiv k (MonoidAlgebra k G) M) m)\n⊢ ↑(↑(asAlgebraHom (ofModule M)) (f + g)) m =\n ↑(AddEquiv.symm (RestrictScalars.addEquiv k (MonoidAlgebra k G) ((fun x => M) m)))\n ((f + g) • ↑(RestrictScalars.addEquiv k (MonoidAlgebra k G) M) m)", "state_before": "case hadd\nk : Type u_1\nG : Type u_2\nV : Type ?u.309923\ninst✝⁵ : CommSemiring k\ninst✝⁴ : Monoid G\ninst✝³ : AddCommMonoid V\ninst✝² : Module k V\nρ : Representation k G V\nM : Type u_3\ninst✝¹ : AddCommMonoid M\ninst✝ : Module (MonoidAlgebra k G) M\nr : MonoidAlgebra k G\nm : RestrictScalars k (MonoidAlgebra k G) M\n⊢ ∀ (f g : MonoidAlgebra k G),\n ↑(↑(asAlgebraHom (ofModule M)) f) m =\n ↑(AddEquiv.symm (RestrictScalars.addEquiv k (MonoidAlgebra k G) ((fun x => M) m)))\n (f • ↑(RestrictScalars.addEquiv k (MonoidAlgebra k G) M) m) →\n ↑(↑(asAlgebraHom (ofModule M)) g) m =\n ↑(AddEquiv.symm (RestrictScalars.addEquiv k (MonoidAlgebra k G) ((fun x => M) m)))\n (g • ↑(RestrictScalars.addEquiv k (MonoidAlgebra k G) M) m) →\n ↑(↑(asAlgebraHom (ofModule M)) (f + g)) m =\n ↑(AddEquiv.symm (RestrictScalars.addEquiv k (MonoidAlgebra k G) ((fun x => M) m)))\n ((f + g) • ↑(RestrictScalars.addEquiv k (MonoidAlgebra k G) M) m)", "tactic": "intro f g fw gw" }, { "state_after": "no goals", "state_before": "case hadd\nk : Type u_1\nG : Type u_2\nV : Type ?u.309923\ninst✝⁵ : CommSemiring k\ninst✝⁴ : Monoid G\ninst✝³ : AddCommMonoid V\ninst✝² : Module k V\nρ : Representation k G V\nM : Type u_3\ninst✝¹ : AddCommMonoid M\ninst✝ : Module (MonoidAlgebra k G) M\nr : MonoidAlgebra k G\nm : RestrictScalars k (MonoidAlgebra k G) M\nf g : MonoidAlgebra k G\nfw :\n ↑(↑(asAlgebraHom (ofModule M)) f) m =\n ↑(AddEquiv.symm (RestrictScalars.addEquiv k (MonoidAlgebra k G) ((fun x => M) m)))\n (f • ↑(RestrictScalars.addEquiv k (MonoidAlgebra k G) M) m)\ngw :\n ↑(↑(asAlgebraHom (ofModule M)) g) m =\n ↑(AddEquiv.symm (RestrictScalars.addEquiv k (MonoidAlgebra k G) ((fun x => M) m)))\n (g • ↑(RestrictScalars.addEquiv k (MonoidAlgebra k G) M) m)\n⊢ ↑(↑(asAlgebraHom (ofModule M)) (f + g)) m =\n ↑(AddEquiv.symm (RestrictScalars.addEquiv k (MonoidAlgebra k G) ((fun x => M) m)))\n ((f + g) • ↑(RestrictScalars.addEquiv k (MonoidAlgebra k G) M) m)", "tactic": "simp only [fw, gw, map_add, add_smul, LinearMap.add_apply]" }, { "state_after": "case hsmul\nk : Type u_1\nG : Type u_2\nV : Type ?u.309923\ninst✝⁵ : CommSemiring k\ninst✝⁴ : Monoid G\ninst✝³ : AddCommMonoid V\ninst✝² : Module k V\nρ : Representation k G V\nM : Type u_3\ninst✝¹ : AddCommMonoid M\ninst✝ : Module (MonoidAlgebra k G) M\nr✝ : MonoidAlgebra k G\nm : RestrictScalars k (MonoidAlgebra k G) M\nr : k\nf : MonoidAlgebra k G\nw :\n ↑(↑(asAlgebraHom (ofModule M)) f) m =\n ↑(AddEquiv.symm (RestrictScalars.addEquiv k (MonoidAlgebra k G) ((fun x => M) m)))\n (f • ↑(RestrictScalars.addEquiv k (MonoidAlgebra k G) M) m)\n⊢ ↑(↑(asAlgebraHom (ofModule M)) (r • f)) m =\n ↑(AddEquiv.symm (RestrictScalars.addEquiv k (MonoidAlgebra k G) ((fun x => M) m)))\n ((r • f) • ↑(RestrictScalars.addEquiv k (MonoidAlgebra k G) M) m)", "state_before": "case hsmul\nk : Type u_1\nG : Type u_2\nV : Type ?u.309923\ninst✝⁵ : CommSemiring k\ninst✝⁴ : Monoid G\ninst✝³ : AddCommMonoid V\ninst✝² : Module k V\nρ : Representation k G V\nM : Type u_3\ninst✝¹ : AddCommMonoid M\ninst✝ : Module (MonoidAlgebra k G) M\nr : MonoidAlgebra k G\nm : RestrictScalars k (MonoidAlgebra k G) M\n⊢ ∀ (r : k) (f : MonoidAlgebra k G),\n ↑(↑(asAlgebraHom (ofModule M)) f) m =\n ↑(AddEquiv.symm (RestrictScalars.addEquiv k (MonoidAlgebra k G) ((fun x => M) m)))\n (f • ↑(RestrictScalars.addEquiv k (MonoidAlgebra k G) M) m) →\n ↑(↑(asAlgebraHom (ofModule M)) (r • f)) m =\n ↑(AddEquiv.symm (RestrictScalars.addEquiv k (MonoidAlgebra k G) ((fun x => M) m)))\n ((r • f) • ↑(RestrictScalars.addEquiv k (MonoidAlgebra k G) M) m)", "tactic": "intro r f w" }, { "state_after": "no goals", "state_before": "case hsmul\nk : Type u_1\nG : Type u_2\nV : Type ?u.309923\ninst✝⁵ : CommSemiring k\ninst✝⁴ : Monoid G\ninst✝³ : AddCommMonoid V\ninst✝² : Module k V\nρ : Representation k G V\nM : Type u_3\ninst✝¹ : AddCommMonoid M\ninst✝ : Module (MonoidAlgebra k G) M\nr✝ : MonoidAlgebra k G\nm : RestrictScalars k (MonoidAlgebra k G) M\nr : k\nf : MonoidAlgebra k G\nw :\n ↑(↑(asAlgebraHom (ofModule M)) f) m =\n ↑(AddEquiv.symm (RestrictScalars.addEquiv k (MonoidAlgebra k G) ((fun x => M) m)))\n (f • ↑(RestrictScalars.addEquiv k (MonoidAlgebra k G) M) m)\n⊢ ↑(↑(asAlgebraHom (ofModule M)) (r • f)) m =\n ↑(AddEquiv.symm (RestrictScalars.addEquiv k (MonoidAlgebra k G) ((fun x => M) m)))\n ((r • f) • ↑(RestrictScalars.addEquiv k (MonoidAlgebra k G) M) m)", "tactic": "simp only [w, AlgHom.map_smul, LinearMap.smul_apply,\n RestrictScalars.addEquiv_symm_map_smul_smul]" } ]
[ 221, 51 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 208, 1 ]
Mathlib/Analysis/Normed/Group/Hom.lean
NormedAddGroupHom.opNorm_le_bound
[]
[ 283, 37 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 282, 1 ]
Mathlib/Analysis/Convex/Cone/Basic.lean
ConvexCone.coe_strictlyPositive
[]
[ 618, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 617, 1 ]
Mathlib/SetTheory/Ordinal/FixedPoint.lean
Ordinal.derivFamily_succ
[]
[ 173, 26 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 171, 1 ]
Mathlib/AlgebraicTopology/SimplicialObject.lean
CategoryTheory.SimplicialObject.δ_comp_σ_of_gt'
[ { "state_after": "no goals", "state_before": "C : Type u\ninst✝ : Category C\nX : SimplicialObject C\nn : ℕ\ni : Fin (n + 3)\nj : Fin (n + 2)\nH : Fin.succ j < i\nhi : i = 0\n⊢ False", "tactic": "simp only [Fin.not_lt_zero, hi] at H" }, { "state_after": "C : Type u\ninst✝ : Category C\nX : SimplicialObject C\nn : ℕ\ni : Fin (n + 3)\nj : Fin (n + 2)\nH : Fin.succ j < i\n⊢ X.map (SimplexCategory.σ j).op ≫ X.map (SimplexCategory.δ i).op =\n X.map (SimplexCategory.δ (Fin.pred i (_ : i = 0 → False))).op ≫\n X.map (SimplexCategory.σ (Fin.castLT j (_ : ↑j < n + 1))).op", "state_before": "C : Type u\ninst✝ : Category C\nX : SimplicialObject C\nn : ℕ\ni : Fin (n + 3)\nj : Fin (n + 2)\nH : Fin.succ j < i\n⊢ σ X j ≫ δ X i = δ X (Fin.pred i (_ : i = 0 → False)) ≫ σ X (Fin.castLT j (_ : ↑j < n + 1))", "tactic": "dsimp [δ, σ]" }, { "state_after": "no goals", "state_before": "C : Type u\ninst✝ : Category C\nX : SimplicialObject C\nn : ℕ\ni : Fin (n + 3)\nj : Fin (n + 2)\nH : Fin.succ j < i\n⊢ X.map (SimplexCategory.σ j).op ≫ X.map (SimplexCategory.δ i).op =\n X.map (SimplexCategory.δ (Fin.pred i (_ : i = 0 → False))).op ≫\n X.map (SimplexCategory.σ (Fin.castLT j (_ : ↑j < n + 1))).op", "tactic": "simp only [← X.map_comp, ← op_comp, SimplexCategory.δ_comp_σ_of_gt' H]" } ]
[ 197, 73 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 192, 1 ]
Mathlib/LinearAlgebra/Matrix/AbsoluteValue.lean
Matrix.det_sum_smul_le
[ { "state_after": "no goals", "state_before": "R : Type u_3\nS : Type u_4\ninst✝⁴ : CommRing R\ninst✝³ : Nontrivial R\ninst✝² : LinearOrderedCommRing S\nn : Type u_2\ninst✝¹ : Fintype n\ninst✝ : DecidableEq n\nι : Type u_1\ns : Finset ι\nc : ι → R\nA : ι → Matrix n n R\nabv : AbsoluteValue R S\nx : S\nhx : ∀ (k : ι) (i j : n), ↑abv (A k i j) ≤ x\ny : S\nhy : ∀ (k : ι), ↑abv (c k) ≤ y\n⊢ ↑abv (det (∑ k in s, c k • A k)) ≤ Nat.factorial (Fintype.card n) • (card s • y * x) ^ Fintype.card n", "tactic": "simpa only [smul_mul_assoc] using\n det_sum_le s fun k i j =>\n calc\n abv (c k * A k i j) = abv (c k) * abv (A k i j) := abv.map_mul _ _\n _ ≤ y * x := mul_le_mul (hy k) (hx k i j) (abv.nonneg _) ((abv.nonneg _).trans (hy k))" } ]
[ 79, 95 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 70, 1 ]
Mathlib/Order/CompleteLattice.lean
sup_iSup
[ { "state_after": "no goals", "state_before": "α : Type u_2\nβ : Type ?u.102338\nβ₂ : Type ?u.102341\nγ : Type ?u.102344\nι : Sort u_1\nι' : Sort ?u.102350\nκ : ι → Sort ?u.102355\nκ' : ι' → Sort ?u.102360\ninst✝¹ : CompleteLattice α\nf✝ g s t : ι → α\na✝ b : α\ninst✝ : Nonempty ι\nf : ι → α\na : α\n⊢ (a ⊔ ⨆ (x : ι), f x) = ⨆ (x : ι), a ⊔ f x", "tactic": "rw [iSup_sup_eq, iSup_const]" } ]
[ 1258, 31 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1257, 1 ]
Mathlib/Algebra/BigOperators/Order.lean
Finset.le_prod_of_submultiplicative_on_pred
[ { "state_after": "case inl\nι : Type u_3\nα : Type ?u.6427\nβ : Type ?u.6430\nM : Type u_2\nN : Type u_1\nG : Type ?u.6439\nk : Type ?u.6442\nR : Type ?u.6445\ninst✝¹ : CommMonoid M\ninst✝ : OrderedCommMonoid N\nf : M → N\np : M → Prop\nh_one : f 1 = 1\nh_mul : ∀ (x y : M), p x → p y → f (x * y) ≤ f x * f y\nhp_mul : ∀ (x y : M), p x → p y → p (x * y)\ng : ι → M\nhs : ∀ (i : ι), i ∈ ∅ → p (g i)\n⊢ f (∏ i in ∅, g i) ≤ ∏ i in ∅, f (g i)\n\ncase inr\nι : Type u_3\nα : Type ?u.6427\nβ : Type ?u.6430\nM : Type u_2\nN : Type u_1\nG : Type ?u.6439\nk : Type ?u.6442\nR : Type ?u.6445\ninst✝¹ : CommMonoid M\ninst✝ : OrderedCommMonoid N\nf : M → N\np : M → Prop\nh_one : f 1 = 1\nh_mul : ∀ (x y : M), p x → p y → f (x * y) ≤ f x * f y\nhp_mul : ∀ (x y : M), p x → p y → p (x * y)\ng : ι → M\ns : Finset ι\nhs : ∀ (i : ι), i ∈ s → p (g i)\nhs_nonempty : Finset.Nonempty s\n⊢ f (∏ i in s, g i) ≤ ∏ i in s, f (g i)", "state_before": "ι : Type u_3\nα : Type ?u.6427\nβ : Type ?u.6430\nM : Type u_2\nN : Type u_1\nG : Type ?u.6439\nk : Type ?u.6442\nR : Type ?u.6445\ninst✝¹ : CommMonoid M\ninst✝ : OrderedCommMonoid N\nf : M → N\np : M → Prop\nh_one : f 1 = 1\nh_mul : ∀ (x y : M), p x → p y → f (x * y) ≤ f x * f y\nhp_mul : ∀ (x y : M), p x → p y → p (x * y)\ng : ι → M\ns : Finset ι\nhs : ∀ (i : ι), i ∈ s → p (g i)\n⊢ f (∏ i in s, g i) ≤ ∏ i in s, f (g i)", "tactic": "rcases eq_empty_or_nonempty s with (rfl | hs_nonempty)" }, { "state_after": "no goals", "state_before": "case inl\nι : Type u_3\nα : Type ?u.6427\nβ : Type ?u.6430\nM : Type u_2\nN : Type u_1\nG : Type ?u.6439\nk : Type ?u.6442\nR : Type ?u.6445\ninst✝¹ : CommMonoid M\ninst✝ : OrderedCommMonoid N\nf : M → N\np : M → Prop\nh_one : f 1 = 1\nh_mul : ∀ (x y : M), p x → p y → f (x * y) ≤ f x * f y\nhp_mul : ∀ (x y : M), p x → p y → p (x * y)\ng : ι → M\nhs : ∀ (i : ι), i ∈ ∅ → p (g i)\n⊢ f (∏ i in ∅, g i) ≤ ∏ i in ∅, f (g i)", "tactic": "simp [h_one]" }, { "state_after": "no goals", "state_before": "case inr\nι : Type u_3\nα : Type ?u.6427\nβ : Type ?u.6430\nM : Type u_2\nN : Type u_1\nG : Type ?u.6439\nk : Type ?u.6442\nR : Type ?u.6445\ninst✝¹ : CommMonoid M\ninst✝ : OrderedCommMonoid N\nf : M → N\np : M → Prop\nh_one : f 1 = 1\nh_mul : ∀ (x y : M), p x → p y → f (x * y) ≤ f x * f y\nhp_mul : ∀ (x y : M), p x → p y → p (x * y)\ng : ι → M\ns : Finset ι\nhs : ∀ (i : ι), i ∈ s → p (g i)\nhs_nonempty : Finset.Nonempty s\n⊢ f (∏ i in s, g i) ≤ ∏ i in s, f (g i)", "tactic": "exact le_prod_nonempty_of_submultiplicative_on_pred f p h_mul hp_mul g s hs_nonempty hs" } ]
[ 83, 92 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 78, 1 ]
Mathlib/SetTheory/Cardinal/Cofinality.lean
Ordinal.blsub_lt_ord_lift
[ { "state_after": "no goals", "state_before": "α : Type ?u.39723\nr : α → α → Prop\no : Ordinal\nf : (a : Ordinal) → a < o → Ordinal\nc : Ordinal\nho : Cardinal.lift (card o) < cof c\nhf : ∀ (i : Ordinal) (hi : i < o), f i hi < c\nh : blsub o f = c\n⊢ cof c ≤ Cardinal.lift (card o)", "tactic": "simpa [← iSup_ord, hf, h] using cof_blsub_le_lift.{u, v} f" } ]
[ 446, 78 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 443, 1 ]
Mathlib/Data/Matrix/Block.lean
Matrix.fromBlocks_transpose
[ { "state_after": "case a.h\nl : Type u_2\nm : Type u_4\nn : Type u_1\no : Type u_5\np : Type ?u.12383\nq : Type ?u.12386\nm' : o → Type ?u.12391\nn' : o → Type ?u.12396\np' : o → Type ?u.12401\nR : Type ?u.12404\nS : Type ?u.12407\nα : Type u_3\nβ : Type ?u.12413\nA : Matrix n l α\nB : Matrix n m α\nC : Matrix o l α\nD : Matrix o m α\ni : l ⊕ m\nj : n ⊕ o\n⊢ (fromBlocks A B C D)ᵀ i j = fromBlocks Aᵀ Cᵀ Bᵀ Dᵀ i j", "state_before": "l : Type u_2\nm : Type u_4\nn : Type u_1\no : Type u_5\np : Type ?u.12383\nq : Type ?u.12386\nm' : o → Type ?u.12391\nn' : o → Type ?u.12396\np' : o → Type ?u.12401\nR : Type ?u.12404\nS : Type ?u.12407\nα : Type u_3\nβ : Type ?u.12413\nA : Matrix n l α\nB : Matrix n m α\nC : Matrix o l α\nD : Matrix o m α\n⊢ (fromBlocks A B C D)ᵀ = fromBlocks Aᵀ Cᵀ Bᵀ Dᵀ", "tactic": "ext i j" }, { "state_after": "no goals", "state_before": "case a.h\nl : Type u_2\nm : Type u_4\nn : Type u_1\no : Type u_5\np : Type ?u.12383\nq : Type ?u.12386\nm' : o → Type ?u.12391\nn' : o → Type ?u.12396\np' : o → Type ?u.12401\nR : Type ?u.12404\nS : Type ?u.12407\nα : Type u_3\nβ : Type ?u.12413\nA : Matrix n l α\nB : Matrix n m α\nC : Matrix o l α\nD : Matrix o m α\ni : l ⊕ m\nj : n ⊕ o\n⊢ (fromBlocks A B C D)ᵀ i j = fromBlocks Aᵀ Cᵀ Bᵀ Dᵀ i j", "tactic": "rcases i with ⟨⟩ <;> rcases j with ⟨⟩ <;> simp [fromBlocks]" } ]
[ 155, 62 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 152, 1 ]
Mathlib/Analysis/NormedSpace/OperatorNorm.lean
Submodule.norm_subtypeL_le
[]
[ 1299, 44 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1298, 1 ]
Mathlib/MeasureTheory/Measure/FiniteMeasure.lean
BoundedContinuousFunction.NNReal.coe_ennreal_comp_measurable
[]
[ 320, 61 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 317, 1 ]
Mathlib/Data/MvPolynomial/Variables.lean
MvPolynomial.degrees_pow
[ { "state_after": "R : Type u\nS : Type v\nσ : Type u_1\nτ : Type ?u.41650\nr : R\ne : ℕ\nn m : σ\ns : σ →₀ ℕ\ninst✝ : CommSemiring R\np✝ q p : MvPolynomial σ R\n⊢ 0 ≤ 0 • degrees p", "state_before": "R : Type u\nS : Type v\nσ : Type u_1\nτ : Type ?u.41650\nr : R\ne : ℕ\nn m : σ\ns : σ →₀ ℕ\ninst✝ : CommSemiring R\np✝ q p : MvPolynomial σ R\n⊢ degrees (p ^ 0) ≤ 0 • degrees p", "tactic": "rw [pow_zero, degrees_one]" }, { "state_after": "no goals", "state_before": "R : Type u\nS : Type v\nσ : Type u_1\nτ : Type ?u.41650\nr : R\ne : ℕ\nn m : σ\ns : σ →₀ ℕ\ninst✝ : CommSemiring R\np✝ q p : MvPolynomial σ R\n⊢ 0 ≤ 0 • degrees p", "tactic": "exact Multiset.zero_le _" }, { "state_after": "R : Type u\nS : Type v\nσ : Type u_1\nτ : Type ?u.41650\nr : R\ne : ℕ\nn✝ m : σ\ns : σ →₀ ℕ\ninst✝ : CommSemiring R\np✝ q p : MvPolynomial σ R\nn : ℕ\n⊢ degrees (p * p ^ n) ≤ degrees p + n • degrees p", "state_before": "R : Type u\nS : Type v\nσ : Type u_1\nτ : Type ?u.41650\nr : R\ne : ℕ\nn✝ m : σ\ns : σ →₀ ℕ\ninst✝ : CommSemiring R\np✝ q p : MvPolynomial σ R\nn : ℕ\n⊢ degrees (p ^ (n + 1)) ≤ (n + 1) • degrees p", "tactic": "rw [pow_succ, add_smul, add_comm, one_smul]" }, { "state_after": "no goals", "state_before": "R : Type u\nS : Type v\nσ : Type u_1\nτ : Type ?u.41650\nr : R\ne : ℕ\nn✝ m : σ\ns : σ →₀ ℕ\ninst✝ : CommSemiring R\np✝ q p : MvPolynomial σ R\nn : ℕ\n⊢ degrees (p * p ^ n) ≤ degrees p + n • degrees p", "tactic": "exact le_trans (degrees_mul _ _) (add_le_add_left (degrees_pow _ n) _)" } ]
[ 186, 75 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 182, 1 ]
Mathlib/CategoryTheory/MorphismProperty.lean
CategoryTheory.MorphismProperty.monomorphisms.infer_property
[]
[ 420, 5 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 419, 1 ]
Mathlib/RingTheory/RootsOfUnity/Basic.lean
IsPrimitiveRoot.not_iff
[]
[ 477, 66 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 475, 11 ]
Std/Data/List/Lemmas.lean
List.cons_diff_of_mem
[ { "state_after": "no goals", "state_before": "α : Type u_1\ninst✝ : DecidableEq α\na : α\nl₂ : List α\nh : a ∈ l₂\nl₁ : List α\n⊢ List.diff (a :: l₁) l₂ = List.diff l₁ (List.erase l₂ a)", "tactic": "rw [cons_diff, if_pos h]" } ]
[ 1513, 76 ]
e68aa8f5fe47aad78987df45f99094afbcb5e936
https://github.com/leanprover/std4
[ 1512, 1 ]
Mathlib/Order/Basic.lean
Prod.mk_lt_mk
[]
[ 1248, 9 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1247, 1 ]
Mathlib/Algebra/Lie/Nilpotent.lean
LieSubmodule.ucs_zero
[]
[ 364, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 363, 1 ]
Mathlib/Analysis/NormedSpace/PiLp.lean
PiLp.neg_apply
[]
[ 693, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 692, 1 ]
Mathlib/CategoryTheory/Subobject/Limits.lean
CategoryTheory.Limits.imageSubobject_zero
[ { "state_after": "no goals", "state_before": "C : Type u\ninst✝³ : Category C\nX Y Z : C\nf : X ⟶ Y\ninst✝² : HasImage f\ninst✝¹ : HasZeroMorphisms C\ninst✝ : HasZeroObject C\nA B : C\n⊢ (imageSubobjectIso 0 ≪≫ imageZero ≪≫ botCoeIsoZero.symm).hom ≫ arrow ⊥ = arrow (imageSubobject 0)", "tactic": "simp" } ]
[ 379, 100 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 378, 1 ]
Mathlib/Topology/LocalHomeomorph.lean
LocalHomeomorph.image_source_inter_eq
[]
[ 282, 41 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 280, 1 ]
Mathlib/Data/Fin/Basic.lean
Fin.coe_neg_one
[ { "state_after": "case zero\nm : ℕ\n⊢ ↑(-1) = zero\n\ncase succ\nm n✝ : ℕ\n⊢ ↑(-1) = Nat.succ n✝", "state_before": "n m : ℕ\n⊢ ↑(-1) = n", "tactic": "cases n" }, { "state_after": "case succ\nm n✝ : ℕ\n⊢ n✝ + 1 < Nat.succ n✝ + 1", "state_before": "case succ\nm n✝ : ℕ\n⊢ ↑(-1) = Nat.succ n✝", "tactic": "rw [Fin.coe_neg, Fin.val_one, Nat.succ_sub_one, Nat.mod_eq_of_lt]" }, { "state_after": "no goals", "state_before": "case succ\nm n✝ : ℕ\n⊢ n✝ + 1 < Nat.succ n✝ + 1", "tactic": "constructor" }, { "state_after": "no goals", "state_before": "case zero\nm : ℕ\n⊢ ↑(-1) = zero", "tactic": "simp" } ]
[ 1946, 14 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1942, 1 ]
Mathlib/Analysis/SpecialFunctions/Pow/Deriv.lean
DifferentiableWithinAt.cpow
[]
[ 129, 77 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 126, 1 ]
Mathlib/Data/List/Perm.lean
List.Perm.foldl_eq
[]
[ 522, 47 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 520, 1 ]
Mathlib/MeasureTheory/Measure/MeasureSpace.lean
MeasureTheory.Measure.sum_apply_eq_zero
[ { "state_after": "α : Type u_2\nβ : Type ?u.337219\nγ : Type ?u.337222\nδ : Type ?u.337225\nι : Type u_1\nR : Type ?u.337231\nR' : Type ?u.337234\nm0 : MeasurableSpace α\ninst✝² : MeasurableSpace β\ninst✝¹ : MeasurableSpace γ\nμ✝ μ₁ μ₂ μ₃ ν ν' ν₁ ν₂ : Measure α\ns✝ s' t : Set α\ninst✝ : Countable ι\nμ : ι → Measure α\ns : Set α\nh : ∀ (i : ι), ↑↑(μ i) s = 0\n⊢ ↑↑(sum μ) s ≤ 0", "state_before": "α : Type u_2\nβ : Type ?u.337219\nγ : Type ?u.337222\nδ : Type ?u.337225\nι : Type u_1\nR : Type ?u.337231\nR' : Type ?u.337234\nm0 : MeasurableSpace α\ninst✝² : MeasurableSpace β\ninst✝¹ : MeasurableSpace γ\nμ✝ μ₁ μ₂ μ₃ ν ν' ν₁ ν₂ : Measure α\ns✝ s' t : Set α\ninst✝ : Countable ι\nμ : ι → Measure α\ns : Set α\n⊢ ↑↑(sum μ) s = 0 ↔ ∀ (i : ι), ↑↑(μ i) s = 0", "tactic": "refine'\n ⟨fun h i => nonpos_iff_eq_zero.1 <| h ▸ le_iff'.1 (le_sum μ i) _, fun h =>\n nonpos_iff_eq_zero.1 _⟩" }, { "state_after": "case intro.intro.intro\nα : Type u_2\nβ : Type ?u.337219\nγ : Type ?u.337222\nδ : Type ?u.337225\nι : Type u_1\nR : Type ?u.337231\nR' : Type ?u.337234\nm0 : MeasurableSpace α\ninst✝² : MeasurableSpace β\ninst✝¹ : MeasurableSpace γ\nμ✝ μ₁ μ₂ μ₃ ν ν' ν₁ ν₂ : Measure α\ns✝ s' t✝ : Set α\ninst✝ : Countable ι\nμ : ι → Measure α\ns : Set α\nh : ∀ (i : ι), ↑↑(μ i) s = 0\nt : Set α\nhst : s ⊆ t\nhtm : MeasurableSet t\nht : ∀ (i : ι), ↑↑(μ i) t = ↑↑(μ i) s\n⊢ ↑↑(sum μ) s ≤ 0", "state_before": "α : Type u_2\nβ : Type ?u.337219\nγ : Type ?u.337222\nδ : Type ?u.337225\nι : Type u_1\nR : Type ?u.337231\nR' : Type ?u.337234\nm0 : MeasurableSpace α\ninst✝² : MeasurableSpace β\ninst✝¹ : MeasurableSpace γ\nμ✝ μ₁ μ₂ μ₃ ν ν' ν₁ ν₂ : Measure α\ns✝ s' t : Set α\ninst✝ : Countable ι\nμ : ι → Measure α\ns : Set α\nh : ∀ (i : ι), ↑↑(μ i) s = 0\n⊢ ↑↑(sum μ) s ≤ 0", "tactic": "rcases exists_measurable_superset_forall_eq μ s with ⟨t, hst, htm, ht⟩" }, { "state_after": "no goals", "state_before": "case intro.intro.intro\nα : Type u_2\nβ : Type ?u.337219\nγ : Type ?u.337222\nδ : Type ?u.337225\nι : Type u_1\nR : Type ?u.337231\nR' : Type ?u.337234\nm0 : MeasurableSpace α\ninst✝² : MeasurableSpace β\ninst✝¹ : MeasurableSpace γ\nμ✝ μ₁ μ₂ μ₃ ν ν' ν₁ ν₂ : Measure α\ns✝ s' t✝ : Set α\ninst✝ : Countable ι\nμ : ι → Measure α\ns : Set α\nh : ∀ (i : ι), ↑↑(μ i) s = 0\nt : Set α\nhst : s ⊆ t\nhtm : MeasurableSet t\nht : ∀ (i : ι), ↑↑(μ i) t = ↑↑(μ i) s\n⊢ ↑↑(sum μ) s ≤ 0", "tactic": "calc\n sum μ s ≤ sum μ t := measure_mono hst\n _ = 0 := by simp [*]" }, { "state_after": "no goals", "state_before": "α : Type u_2\nβ : Type ?u.337219\nγ : Type ?u.337222\nδ : Type ?u.337225\nι : Type u_1\nR : Type ?u.337231\nR' : Type ?u.337234\nm0 : MeasurableSpace α\ninst✝² : MeasurableSpace β\ninst✝¹ : MeasurableSpace γ\nμ✝ μ₁ μ₂ μ₃ ν ν' ν₁ ν₂ : Measure α\ns✝ s' t✝ : Set α\ninst✝ : Countable ι\nμ : ι → Measure α\ns : Set α\nh : ∀ (i : ι), ↑↑(μ i) s = 0\nt : Set α\nhst : s ⊆ t\nhtm : MeasurableSet t\nht : ∀ (i : ι), ↑↑(μ i) t = ↑↑(μ i) s\n⊢ ↑↑(sum μ) t = 0", "tactic": "simp [*]" } ]
[ 2051, 25 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 2043, 1 ]
Mathlib/Logic/Equiv/Fin.lean
finSumFinEquiv_symm_apply_castAdd
[]
[ 344, 46 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 342, 1 ]
Mathlib/Order/Filter/FilterProduct.lean
Filter.Germ.const_inf
[]
[ 99, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 98, 1 ]
Mathlib/MeasureTheory/Measure/Lebesgue/Basic.lean
Real.volume_preimage_mul_right
[ { "state_after": "ι : Type ?u.2210287\ninst✝ : Fintype ι\na : ℝ\nh : a ≠ 0\ns : Set ℝ\n⊢ ↑↑(ofReal (abs a⁻¹) • volume) s = ofReal (abs a⁻¹) * ↑↑volume s", "state_before": "ι : Type ?u.2210287\ninst✝ : Fintype ι\na : ℝ\nh : a ≠ 0\ns : Set ℝ\n⊢ ↑↑(Measure.map (fun x => x * a) volume) s = ofReal (abs a⁻¹) * ↑↑volume s", "tactic": "rw [map_volume_mul_right h]" }, { "state_after": "no goals", "state_before": "ι : Type ?u.2210287\ninst✝ : Fintype ι\na : ℝ\nh : a ≠ 0\ns : Set ℝ\n⊢ ↑↑(ofReal (abs a⁻¹) • volume) s = ofReal (abs a⁻¹) * ↑↑volume s", "tactic": "rfl" } ]
[ 343, 83 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 338, 1 ]
Mathlib/Geometry/Manifold/LocalInvariantProperties.lean
StructureGroupoid.liftPropWithinAt_self_target
[]
[ 236, 10 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 233, 1 ]
Mathlib/Topology/Algebra/UniformGroup.lean
CauchySeq.mul
[]
[ 442, 52 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 440, 1 ]
Mathlib/Data/Part.lean
Part.inv_some
[]
[ 752, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 751, 1 ]
Mathlib/Analysis/Calculus/TangentCone.lean
uniqueDiffWithinAt_congr
[]
[ 295, 82 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 293, 1 ]
Mathlib/GroupTheory/NielsenSchreier.lean
IsFreeGroupoid.path_nonempty_of_hom
[ { "state_after": "case intro\nG : Type u\ninst✝¹ : Groupoid G\ninst✝ : IsFreeGroupoid G\na b : G\np : a ⟶ b\n⊢ Nonempty (Path (IsFreeGroupoid.symgen a) (IsFreeGroupoid.symgen b))", "state_before": "G : Type u\ninst✝¹ : Groupoid G\ninst✝ : IsFreeGroupoid G\na b : G\n⊢ Nonempty (a ⟶ b) → Nonempty (Path (IsFreeGroupoid.symgen a) (IsFreeGroupoid.symgen b))", "tactic": "rintro ⟨p⟩" }, { "state_after": "case intro\nG : Type u\ninst✝¹ : Groupoid G\ninst✝ : IsFreeGroupoid G\na b : G\np : a ⟶ b\n⊢ FreeGroup.of (WeaklyConnectedComponent.mk (IsFreeGroupoid.symgen b)) *\n (FreeGroup.of (WeaklyConnectedComponent.mk (IsFreeGroupoid.symgen a)))⁻¹ =\n 1", "state_before": "case intro\nG : Type u\ninst✝¹ : Groupoid G\ninst✝ : IsFreeGroupoid G\na b : G\np : a ⟶ b\n⊢ Nonempty (Path (IsFreeGroupoid.symgen a) (IsFreeGroupoid.symgen b))", "tactic": "rw [← @WeaklyConnectedComponent.eq (Generators G), eq_comm, ← FreeGroup.of_injective.eq_iff, ←\n mul_inv_eq_one]" }, { "state_after": "case intro\nG : Type u\ninst✝¹ : Groupoid G\ninst✝ : IsFreeGroupoid G\na b : G\np : a ⟶ b\nX : Type u := FreeGroup (WeaklyConnectedComponent (Generators G))\n⊢ FreeGroup.of (WeaklyConnectedComponent.mk (IsFreeGroupoid.symgen b)) *\n (FreeGroup.of (WeaklyConnectedComponent.mk (IsFreeGroupoid.symgen a)))⁻¹ =\n 1", "state_before": "case intro\nG : Type u\ninst✝¹ : Groupoid G\ninst✝ : IsFreeGroupoid G\na b : G\np : a ⟶ b\n⊢ FreeGroup.of (WeaklyConnectedComponent.mk (IsFreeGroupoid.symgen b)) *\n (FreeGroup.of (WeaklyConnectedComponent.mk (IsFreeGroupoid.symgen a)))⁻¹ =\n 1", "tactic": "let X := FreeGroup (WeaklyConnectedComponent <| Generators G)" }, { "state_after": "case intro\nG : Type u\ninst✝¹ : Groupoid G\ninst✝ : IsFreeGroupoid G\na b : G\np : a ⟶ b\nX : Type u := FreeGroup (WeaklyConnectedComponent (Generators G))\nf : G → X := fun g => FreeGroup.of (WeaklyConnectedComponent.mk g)\n⊢ FreeGroup.of (WeaklyConnectedComponent.mk (IsFreeGroupoid.symgen b)) *\n (FreeGroup.of (WeaklyConnectedComponent.mk (IsFreeGroupoid.symgen a)))⁻¹ =\n 1", "state_before": "case intro\nG : Type u\ninst✝¹ : Groupoid G\ninst✝ : IsFreeGroupoid G\na b : G\np : a ⟶ b\nX : Type u := FreeGroup (WeaklyConnectedComponent (Generators G))\n⊢ FreeGroup.of (WeaklyConnectedComponent.mk (IsFreeGroupoid.symgen b)) *\n (FreeGroup.of (WeaklyConnectedComponent.mk (IsFreeGroupoid.symgen a)))⁻¹ =\n 1", "tactic": "let f : G → X := fun g => FreeGroup.of (WeaklyConnectedComponent.mk g)" }, { "state_after": "case intro\nG : Type u\ninst✝¹ : Groupoid G\ninst✝ : IsFreeGroupoid G\na b : G\np : a ⟶ b\nX : Type u := FreeGroup (WeaklyConnectedComponent (Generators G))\nf : G → X := fun g => FreeGroup.of (WeaklyConnectedComponent.mk g)\nF : G ⥤ CategoryTheory.SingleObj X := differenceFunctor f\n⊢ FreeGroup.of (WeaklyConnectedComponent.mk (IsFreeGroupoid.symgen b)) *\n (FreeGroup.of (WeaklyConnectedComponent.mk (IsFreeGroupoid.symgen a)))⁻¹ =\n 1", "state_before": "case intro\nG : Type u\ninst✝¹ : Groupoid G\ninst✝ : IsFreeGroupoid G\na b : G\np : a ⟶ b\nX : Type u := FreeGroup (WeaklyConnectedComponent (Generators G))\nf : G → X := fun g => FreeGroup.of (WeaklyConnectedComponent.mk g)\n⊢ FreeGroup.of (WeaklyConnectedComponent.mk (IsFreeGroupoid.symgen b)) *\n (FreeGroup.of (WeaklyConnectedComponent.mk (IsFreeGroupoid.symgen a)))⁻¹ =\n 1", "tactic": "let F : G ⥤ CategoryTheory.SingleObj.{u} (X : Type u) := SingleObj.differenceFunctor f" }, { "state_after": "case intro\nG : Type u\ninst✝¹ : Groupoid G\ninst✝ : IsFreeGroupoid G\na b : G\np : a ⟶ b\nX : Type u := FreeGroup (WeaklyConnectedComponent (Generators G))\nf : G → X := fun g => FreeGroup.of (WeaklyConnectedComponent.mk g)\nF : G ⥤ CategoryTheory.SingleObj X := differenceFunctor f\n⊢ F.map p = ((Functor.const G).obj ()).map p", "state_before": "case intro\nG : Type u\ninst✝¹ : Groupoid G\ninst✝ : IsFreeGroupoid G\na b : G\np : a ⟶ b\nX : Type u := FreeGroup (WeaklyConnectedComponent (Generators G))\nf : G → X := fun g => FreeGroup.of (WeaklyConnectedComponent.mk g)\nF : G ⥤ CategoryTheory.SingleObj X := differenceFunctor f\n⊢ FreeGroup.of (WeaklyConnectedComponent.mk (IsFreeGroupoid.symgen b)) *\n (FreeGroup.of (WeaklyConnectedComponent.mk (IsFreeGroupoid.symgen a)))⁻¹ =\n 1", "tactic": "change (F.map p) = ((@CategoryTheory.Functor.const G _ _ (SingleObj.category X)).obj ()).map p" }, { "state_after": "case intro.h.e_5.h.e_self\nG : Type u\ninst✝¹ : Groupoid G\ninst✝ : IsFreeGroupoid G\na b : G\np : a ⟶ b\nX : Type u := FreeGroup (WeaklyConnectedComponent (Generators G))\nf : G → X := fun g => FreeGroup.of (WeaklyConnectedComponent.mk g)\nF : G ⥤ CategoryTheory.SingleObj X := differenceFunctor f\n⊢ F = (Functor.const G).obj ()", "state_before": "case intro\nG : Type u\ninst✝¹ : Groupoid G\ninst✝ : IsFreeGroupoid G\na b : G\np : a ⟶ b\nX : Type u := FreeGroup (WeaklyConnectedComponent (Generators G))\nf : G → X := fun g => FreeGroup.of (WeaklyConnectedComponent.mk g)\nF : G ⥤ CategoryTheory.SingleObj X := differenceFunctor f\n⊢ F.map p = ((Functor.const G).obj ()).map p", "tactic": "congr" }, { "state_after": "case intro.h.e_5.h.e_self.h\nG : Type u\ninst✝¹ : Groupoid G\ninst✝ : IsFreeGroupoid G\na b : G\np : a ⟶ b\nX : Type u := FreeGroup (WeaklyConnectedComponent (Generators G))\nf : G → X := fun g => FreeGroup.of (WeaklyConnectedComponent.mk g)\nF : G ⥤ CategoryTheory.SingleObj X := differenceFunctor f\na✝ b✝ : Generators G\ne✝ : a✝ ⟶ b✝\n⊢ F.map (of e✝) = ((Functor.const G).obj ()).map (of e✝)", "state_before": "case intro.h.e_5.h.e_self\nG : Type u\ninst✝¹ : Groupoid G\ninst✝ : IsFreeGroupoid G\na b : G\np : a ⟶ b\nX : Type u := FreeGroup (WeaklyConnectedComponent (Generators G))\nf : G → X := fun g => FreeGroup.of (WeaklyConnectedComponent.mk g)\nF : G ⥤ CategoryTheory.SingleObj X := differenceFunctor f\n⊢ F = (Functor.const G).obj ()", "tactic": "ext" }, { "state_after": "case intro.h.e_5.h.e_self.h\nG : Type u\ninst✝¹ : Groupoid G\ninst✝ : IsFreeGroupoid G\na b : G\np : a ⟶ b\nX : Type u := FreeGroup (WeaklyConnectedComponent (Generators G))\nf : G → X := fun g => FreeGroup.of (WeaklyConnectedComponent.mk g)\nF : G ⥤ CategoryTheory.SingleObj X := differenceFunctor f\na✝ b✝ : Generators G\ne✝ : a✝ ⟶ b✝\n⊢ f b✝ =\n f\n (let_fun this := a✝;\n this)", "state_before": "case intro.h.e_5.h.e_self.h\nG : Type u\ninst✝¹ : Groupoid G\ninst✝ : IsFreeGroupoid G\na b : G\np : a ⟶ b\nX : Type u := FreeGroup (WeaklyConnectedComponent (Generators G))\nf : G → X := fun g => FreeGroup.of (WeaklyConnectedComponent.mk g)\nF : G ⥤ CategoryTheory.SingleObj X := differenceFunctor f\na✝ b✝ : Generators G\ne✝ : a✝ ⟶ b✝\n⊢ F.map (of e✝) = ((Functor.const G).obj ()).map (of e✝)", "tactic": "rw [Functor.const_obj_map, id_as_one, differenceFunctor_map, @mul_inv_eq_one _ _ (f _)]" }, { "state_after": "case intro.h.e_5.h.e_self.h\nG : Type u\ninst✝¹ : Groupoid G\ninst✝ : IsFreeGroupoid G\na b : G\np : a ⟶ b\nX : Type u := FreeGroup (WeaklyConnectedComponent (Generators G))\nf : G → X := fun g => FreeGroup.of (WeaklyConnectedComponent.mk g)\nF : G ⥤ CategoryTheory.SingleObj X := differenceFunctor f\na✝ b✝ : Generators G\ne✝ : a✝ ⟶ b✝\n⊢ WeaklyConnectedComponent.mk b✝ =\n WeaklyConnectedComponent.mk\n (let_fun this := a✝;\n this)", "state_before": "case intro.h.e_5.h.e_self.h\nG : Type u\ninst✝¹ : Groupoid G\ninst✝ : IsFreeGroupoid G\na b : G\np : a ⟶ b\nX : Type u := FreeGroup (WeaklyConnectedComponent (Generators G))\nf : G → X := fun g => FreeGroup.of (WeaklyConnectedComponent.mk g)\nF : G ⥤ CategoryTheory.SingleObj X := differenceFunctor f\na✝ b✝ : Generators G\ne✝ : a✝ ⟶ b✝\n⊢ f b✝ =\n f\n (let_fun this := a✝;\n this)", "tactic": "apply congr_arg FreeGroup.of" }, { "state_after": "case intro.h.e_5.h.e_self.h\nG : Type u\ninst✝¹ : Groupoid G\ninst✝ : IsFreeGroupoid G\na b : G\np : a ⟶ b\nX : Type u := FreeGroup (WeaklyConnectedComponent (Generators G))\nf : G → X := fun g => FreeGroup.of (WeaklyConnectedComponent.mk g)\nF : G ⥤ CategoryTheory.SingleObj X := differenceFunctor f\na✝ b✝ : Generators G\ne✝ : a✝ ⟶ b✝\n⊢ Nonempty\n (Path b✝\n (let_fun this := a✝;\n this))", "state_before": "case intro.h.e_5.h.e_self.h\nG : Type u\ninst✝¹ : Groupoid G\ninst✝ : IsFreeGroupoid G\na b : G\np : a ⟶ b\nX : Type u := FreeGroup (WeaklyConnectedComponent (Generators G))\nf : G → X := fun g => FreeGroup.of (WeaklyConnectedComponent.mk g)\nF : G ⥤ CategoryTheory.SingleObj X := differenceFunctor f\na✝ b✝ : Generators G\ne✝ : a✝ ⟶ b✝\n⊢ WeaklyConnectedComponent.mk b✝ =\n WeaklyConnectedComponent.mk\n (let_fun this := a✝;\n this)", "tactic": "apply (WeaklyConnectedComponent.eq _ _).mpr" }, { "state_after": "no goals", "state_before": "case intro.h.e_5.h.e_self.h\nG : Type u\ninst✝¹ : Groupoid G\ninst✝ : IsFreeGroupoid G\na b : G\np : a ⟶ b\nX : Type u := FreeGroup (WeaklyConnectedComponent (Generators G))\nf : G → X := fun g => FreeGroup.of (WeaklyConnectedComponent.mk g)\nF : G ⥤ CategoryTheory.SingleObj X := differenceFunctor f\na✝ b✝ : Generators G\ne✝ : a✝ ⟶ b✝\n⊢ Nonempty\n (Path b✝\n (let_fun this := a✝;\n this))", "tactic": "exact ⟨Hom.toPath (Sum.inr (by assumption))⟩" }, { "state_after": "no goals", "state_before": "G : Type u\ninst✝¹ : Groupoid G\ninst✝ : IsFreeGroupoid G\na b : G\np : a ⟶ b\nX : Type u := FreeGroup (WeaklyConnectedComponent (Generators G))\nf : G → X := fun g => FreeGroup.of (WeaklyConnectedComponent.mk g)\nF : G ⥤ CategoryTheory.SingleObj X := differenceFunctor f\na✝ b✝ : Generators G\ne✝ : a✝ ⟶ b✝\n⊢ (let_fun this := a✝;\n this) ⟶\n b✝", "tactic": "assumption" } ]
[ 291, 47 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 278, 1 ]
Mathlib/Data/Fintype/Basic.lean
Finset.ssubset_univ_iff
[]
[ 142, 29 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 141, 1 ]
Mathlib/Data/Nat/Prime.lean
Nat.minFac_le
[]
[ 348, 29 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 347, 1 ]
Mathlib/Order/Max.lean
isMin_toDual_iff
[]
[ 243, 10 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 242, 1 ]
Mathlib/Data/Finset/Basic.lean
Finset.inter_eq_left_iff_subset
[]
[ 1794, 14 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1793, 1 ]
Mathlib/RingTheory/Int/Basic.lean
Int.normUnit_eq
[]
[ 102, 74 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 102, 1 ]
Mathlib/Data/Set/Intervals/Basic.lean
Set.Icc_union_Ioc_eq_Icc
[]
[ 1587, 29 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1584, 1 ]
Mathlib/Data/Fin/Basic.lean
Fin.succ_succAbove_zero
[ { "state_after": "no goals", "state_before": "n✝ m n : ℕ\ninst✝ : NeZero n\ni : Fin n\n⊢ ↑castSucc 0 < succ i", "tactic": "simp only [castSucc_zero, succ_pos]" } ]
[ 2212, 68 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 2211, 1 ]
Mathlib/Data/Set/Intervals/WithBotTop.lean
WithBot.image_coe_Ioo
[ { "state_after": "no goals", "state_before": "α : Type u_1\ninst✝ : PartialOrder α\na b : α\n⊢ some '' Ioo a b = Ioo ↑a ↑b", "tactic": "rw [← preimage_coe_Ioo, image_preimage_eq_inter_range, range_coe,\n inter_eq_self_of_subset_left (Subset.trans Ioo_subset_Ioi_self <| Ioi_subset_Ioi bot_le)]" } ]
[ 235, 94 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 233, 1 ]
Mathlib/Analysis/Convex/Function.lean
concaveOn_id
[ { "state_after": "𝕜 : Type u_2\nE : Type ?u.14565\nF : Type ?u.14568\nα : Type ?u.14571\nβ : Type u_1\nι : Type ?u.14577\ninst✝⁷ : OrderedSemiring 𝕜\ninst✝⁶ : AddCommMonoid E\ninst✝⁵ : AddCommMonoid F\ninst✝⁴ : OrderedAddCommMonoid α\ninst✝³ : OrderedAddCommMonoid β\ninst✝² : SMul 𝕜 E\ninst✝¹ : SMul 𝕜 α\ninst✝ : SMul 𝕜 β\ns✝ : Set E\nf : E → β\ng : β → α\ns : Set β\nhs : Convex 𝕜 s\nx✝ : β\na✝⁵ : x✝ ∈ s\ny✝ : β\na✝⁴ : y✝ ∈ s\na✝³ b✝ : 𝕜\na✝² : 0 ≤ a✝³\na✝¹ : 0 ≤ b✝\na✝ : a✝³ + b✝ = 1\n⊢ a✝³ • _root_.id x✝ + b✝ • _root_.id y✝ ≤ _root_.id (a✝³ • x✝ + b✝ • y✝)", "state_before": "𝕜 : Type u_2\nE : Type ?u.14565\nF : Type ?u.14568\nα : Type ?u.14571\nβ : Type u_1\nι : Type ?u.14577\ninst✝⁷ : OrderedSemiring 𝕜\ninst✝⁶ : AddCommMonoid E\ninst✝⁵ : AddCommMonoid F\ninst✝⁴ : OrderedAddCommMonoid α\ninst✝³ : OrderedAddCommMonoid β\ninst✝² : SMul 𝕜 E\ninst✝¹ : SMul 𝕜 α\ninst✝ : SMul 𝕜 β\ns✝ : Set E\nf : E → β\ng : β → α\ns : Set β\nhs : Convex 𝕜 s\n⊢ ∀ ⦃x : β⦄,\n x ∈ s →\n ∀ ⦃y : β⦄,\n y ∈ s → ∀ ⦃a b : 𝕜⦄, 0 ≤ a → 0 ≤ b → a + b = 1 → a • _root_.id x + b • _root_.id y ≤ _root_.id (a • x + b • y)", "tactic": "intros" }, { "state_after": "no goals", "state_before": "𝕜 : Type u_2\nE : Type ?u.14565\nF : Type ?u.14568\nα : Type ?u.14571\nβ : Type u_1\nι : Type ?u.14577\ninst✝⁷ : OrderedSemiring 𝕜\ninst✝⁶ : AddCommMonoid E\ninst✝⁵ : AddCommMonoid F\ninst✝⁴ : OrderedAddCommMonoid α\ninst✝³ : OrderedAddCommMonoid β\ninst✝² : SMul 𝕜 E\ninst✝¹ : SMul 𝕜 α\ninst✝ : SMul 𝕜 β\ns✝ : Set E\nf : E → β\ng : β → α\ns : Set β\nhs : Convex 𝕜 s\nx✝ : β\na✝⁵ : x✝ ∈ s\ny✝ : β\na✝⁴ : y✝ ∈ s\na✝³ b✝ : 𝕜\na✝² : 0 ≤ a✝³\na✝¹ : 0 ≤ b✝\na✝ : a✝³ + b✝ = 1\n⊢ a✝³ • _root_.id x✝ + b✝ • _root_.id y✝ ≤ _root_.id (a✝³ • x✝ + b✝ • y✝)", "tactic": "rfl" } ]
[ 103, 9 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 100, 1 ]
Mathlib/CategoryTheory/MorphismProperty.lean
CategoryTheory.MorphismProperty.StableUnderBaseChange.snd
[]
[ 211, 39 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 208, 1 ]
Mathlib/Topology/Algebra/Module/Basic.lean
ContinuousLinearMap.pi_apply
[]
[ 1223, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1222, 1 ]
Mathlib/Analysis/Normed/Group/Basic.lean
nnnorm_pow_le_mul_norm
[ { "state_after": "no goals", "state_before": "𝓕 : Type ?u.791224\n𝕜 : Type ?u.791227\nα : Type ?u.791230\nι : Type ?u.791233\nκ : Type ?u.791236\nE : Type u_1\nF : Type ?u.791242\nG : Type ?u.791245\ninst✝¹ : SeminormedCommGroup E\ninst✝ : SeminormedCommGroup F\na✝ a₁ a₂ b b₁ b₂ : E\nr r₁ r₂ : ℝ\nn : ℕ\na : E\n⊢ ‖a ^ n‖₊ ≤ ↑n * ‖a‖₊", "tactic": "simpa only [← NNReal.coe_le_coe, NNReal.coe_mul, NNReal.coe_nat_cast] using\n norm_pow_le_mul_norm n a" } ]
[ 1558, 29 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1556, 1 ]
Mathlib/Algebra/Quaternion.lean
QuaternionAlgebra.coe_im
[]
[ 293, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 292, 1 ]
Mathlib/CategoryTheory/LiftingProperties/Basic.lean
CategoryTheory.HasLiftingProperty.op
[ { "state_after": "C : Type u_1\ninst✝ : Category C\nA B B' X Y Y' : C\ni : A ⟶ B\ni' : B ⟶ B'\np : X ⟶ Y\np' : Y ⟶ Y'\nh : HasLiftingProperty i p\nf : Y.op ⟶ B.op\ng : X.op ⟶ A.op\nsq : CommSq f p.op i.op g\n⊢ CommSq.HasLift (_ : CommSq g.unop i p f.unop)", "state_before": "C : Type u_1\ninst✝ : Category C\nA B B' X Y Y' : C\ni : A ⟶ B\ni' : B ⟶ B'\np : X ⟶ Y\np' : Y ⟶ Y'\nh : HasLiftingProperty i p\nf : Y.op ⟶ B.op\ng : X.op ⟶ A.op\nsq : CommSq f p.op i.op g\n⊢ CommSq.HasLift sq", "tactic": "simp only [CommSq.HasLift.iff_unop, Quiver.Hom.unop_op]" }, { "state_after": "no goals", "state_before": "C : Type u_1\ninst✝ : Category C\nA B B' X Y Y' : C\ni : A ⟶ B\ni' : B ⟶ B'\np : X ⟶ Y\np' : Y ⟶ Y'\nh : HasLiftingProperty i p\nf : Y.op ⟶ B.op\ng : X.op ⟶ A.op\nsq : CommSq f p.op i.op g\n⊢ CommSq.HasLift (_ : CommSq g.unop i p f.unop)", "tactic": "infer_instance" } ]
[ 61, 20 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 58, 1 ]
Mathlib/Topology/UniformSpace/Compact.lean
Continuous.tendstoUniformly
[]
[ 262, 43 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 260, 1 ]
Mathlib/Computability/Encoding.lean
Computability.FinEncoding.card_le_aleph0
[]
[ 261, 30 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 259, 1 ]
Mathlib/Algebra/Lie/Submodule.lean
LieHom.mem_idealRange
[ { "state_after": "R : Type u\nL : Type v\nL' : Type w₂\nM : Type w\nM' : Type w₁\ninst✝¹² : CommRing R\ninst✝¹¹ : LieRing L\ninst✝¹⁰ : LieAlgebra R L\ninst✝⁹ : LieRing L'\ninst✝⁸ : LieAlgebra R L'\ninst✝⁷ : AddCommGroup M\ninst✝⁶ : Module R M\ninst✝⁵ : LieRingModule L M\ninst✝⁴ : LieModule R L M\ninst✝³ : AddCommGroup M'\ninst✝² : Module R M'\ninst✝¹ : LieRingModule L M'\ninst✝ : LieModule R L M'\nf : L →ₗ⁅R⁆ L'\nI : LieIdeal R L\nJ : LieIdeal R L'\nx : L\n⊢ ↑f x ∈ LieIdeal.map f ⊤", "state_before": "R : Type u\nL : Type v\nL' : Type w₂\nM : Type w\nM' : Type w₁\ninst✝¹² : CommRing R\ninst✝¹¹ : LieRing L\ninst✝¹⁰ : LieAlgebra R L\ninst✝⁹ : LieRing L'\ninst✝⁸ : LieAlgebra R L'\ninst✝⁷ : AddCommGroup M\ninst✝⁶ : Module R M\ninst✝⁵ : LieRingModule L M\ninst✝⁴ : LieModule R L M\ninst✝³ : AddCommGroup M'\ninst✝² : Module R M'\ninst✝¹ : LieRingModule L M'\ninst✝ : LieModule R L M'\nf : L →ₗ⁅R⁆ L'\nI : LieIdeal R L\nJ : LieIdeal R L'\nx : L\n⊢ ↑f x ∈ idealRange f", "tactic": "rw [idealRange_eq_map]" }, { "state_after": "no goals", "state_before": "R : Type u\nL : Type v\nL' : Type w₂\nM : Type w\nM' : Type w₁\ninst✝¹² : CommRing R\ninst✝¹¹ : LieRing L\ninst✝¹⁰ : LieAlgebra R L\ninst✝⁹ : LieRing L'\ninst✝⁸ : LieAlgebra R L'\ninst✝⁷ : AddCommGroup M\ninst✝⁶ : Module R M\ninst✝⁵ : LieRingModule L M\ninst✝⁴ : LieModule R L M\ninst✝³ : AddCommGroup M'\ninst✝² : Module R M'\ninst✝¹ : LieRingModule L M'\ninst✝ : LieModule R L M'\nf : L →ₗ⁅R⁆ L'\nI : LieIdeal R L\nJ : LieIdeal R L'\nx : L\n⊢ ↑f x ∈ LieIdeal.map f ⊤", "tactic": "exact LieIdeal.mem_map (LieSubmodule.mem_top x)" } ]
[ 963, 50 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 961, 1 ]
Mathlib/CategoryTheory/Limits/Shapes/Diagonal.lean
CategoryTheory.Limits.pullbackDiagonalMapIdIso_inv_snd_snd
[ { "state_after": "C : Type u_2\ninst✝⁵ : Category C\nX Y Z : C\ninst✝⁴ : HasPullbacks C\nS T : C\nf : X ⟶ T\ng : Y ⟶ T\ni : T ⟶ S\ninst✝³ : HasPullback i i\ninst✝² : HasPullback f g\ninst✝¹ : HasPullback (f ≫ i) (g ≫ i)\ninst✝ :\n HasPullback (diagonal i) (map (f ≫ i) (g ≫ i) i i f g (𝟙 S) (_ : (f ≫ i) ≫ 𝟙 S = f ≫ i) (_ : (g ≫ i) ≫ 𝟙 S = g ≫ i))\n⊢ snd ≫ snd = (pullbackDiagonalMapIdIso f g i).hom ≫ snd", "state_before": "C : Type u_2\ninst✝⁵ : Category C\nX Y Z : C\ninst✝⁴ : HasPullbacks C\nS T : C\nf : X ⟶ T\ng : Y ⟶ T\ni : T ⟶ S\ninst✝³ : HasPullback i i\ninst✝² : HasPullback f g\ninst✝¹ : HasPullback (f ≫ i) (g ≫ i)\ninst✝ :\n HasPullback (diagonal i) (map (f ≫ i) (g ≫ i) i i f g (𝟙 S) (_ : (f ≫ i) ≫ 𝟙 S = f ≫ i) (_ : (g ≫ i) ≫ 𝟙 S = g ≫ i))\n⊢ (pullbackDiagonalMapIdIso f g i).inv ≫ snd ≫ snd = snd", "tactic": "rw [Iso.inv_comp_eq]" }, { "state_after": "no goals", "state_before": "C : Type u_2\ninst✝⁵ : Category C\nX Y Z : C\ninst✝⁴ : HasPullbacks C\nS T : C\nf : X ⟶ T\ng : Y ⟶ T\ni : T ⟶ S\ninst✝³ : HasPullback i i\ninst✝² : HasPullback f g\ninst✝¹ : HasPullback (f ≫ i) (g ≫ i)\ninst✝ :\n HasPullback (diagonal i) (map (f ≫ i) (g ≫ i) i i f g (𝟙 S) (_ : (f ≫ i) ≫ 𝟙 S = f ≫ i) (_ : (g ≫ i) ≫ 𝟙 S = g ≫ i))\n⊢ snd ≫ snd = (pullbackDiagonalMapIdIso f g i).hom ≫ snd", "tactic": "simp" } ]
[ 274, 7 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 271, 1 ]
Mathlib/CategoryTheory/Iso.lean
CategoryTheory.Functor.map_hom_inv
[ { "state_after": "no goals", "state_before": "C : Type u\ninst✝² : Category C\nX✝ Y✝ Z : C\nD : Type u₂\ninst✝¹ : Category D\nF : C ⥤ D\nX Y : C\nf : X ⟶ Y\ninst✝ : IsIso f\n⊢ F.map f ≫ F.map (inv f) = 𝟙 (F.obj X)", "tactic": "simp" } ]
[ 628, 53 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 627, 1 ]
Mathlib/Data/Finset/LocallyFinite.lean
Finset.Ioc_filter_lt_of_lt_right
[]
[ 356, 76 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 354, 1 ]
Mathlib/Data/List/Duplicate.lean
List.duplicate_cons_iff_of_ne
[ { "state_after": "no goals", "state_before": "α : Type u_1\nl : List α\nx y : α\nhne : x ≠ y\n⊢ x ∈+ y :: l ↔ x ∈+ l", "tactic": "simp [duplicate_cons_iff, hne.symm]" } ]
[ 107, 38 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 106, 1 ]
Mathlib/Topology/FiberBundle/Basic.lean
FiberBundleCore.mem_localTrivAt_target
[]
[ 728, 30 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 726, 1 ]
Mathlib/Data/Multiset/FinsetOps.lean
Multiset.ndinter_eq_zero_iff_disjoint
[ { "state_after": "α : Type u_1\ninst✝ : DecidableEq α\ns✝ s t : Multiset α\n⊢ ndinter s t ⊆ 0 ↔ Disjoint s t", "state_before": "α : Type u_1\ninst✝ : DecidableEq α\ns✝ s t : Multiset α\n⊢ ndinter s t = 0 ↔ Disjoint s t", "tactic": "rw [← subset_zero]" }, { "state_after": "no goals", "state_before": "α : Type u_1\ninst✝ : DecidableEq α\ns✝ s t : Multiset α\n⊢ ndinter s t ⊆ 0 ↔ Disjoint s t", "tactic": "simp [subset_iff, Disjoint]" } ]
[ 282, 50 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 281, 1 ]
Mathlib/Analysis/NormedSpace/FiniteDimension.lean
LinearIsometry.toLinearIsometryEquiv_apply
[]
[ 86, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 84, 1 ]
Mathlib/Data/Ordmap/Ordset.lean
Ordnode.insert.valid
[ { "state_after": "α : Type u_1\ninst✝² : Preorder α\ninst✝¹ : IsTotal α fun x x_1 => x ≤ x_1\ninst✝ : DecidableRel fun x x_1 => x ≤ x_1\nx : α\nt : Ordnode α\nh : Valid t\n⊢ Valid (insertWith (fun x_1 => x) x t)", "state_before": "α : Type u_1\ninst✝² : Preorder α\ninst✝¹ : IsTotal α fun x x_1 => x ≤ x_1\ninst✝ : DecidableRel fun x x_1 => x ≤ x_1\nx : α\nt : Ordnode α\nh : Valid t\n⊢ Valid (Ordnode.insert x t)", "tactic": "rw [insert_eq_insertWith]" }, { "state_after": "no goals", "state_before": "α : Type u_1\ninst✝² : Preorder α\ninst✝¹ : IsTotal α fun x x_1 => x ≤ x_1\ninst✝ : DecidableRel fun x x_1 => x ≤ x_1\nx : α\nt : Ordnode α\nh : Valid t\n⊢ Valid (insertWith (fun x_1 => x) x t)", "tactic": "exact insertWith.valid _ _ (fun _ _ => ⟨le_rfl, le_rfl⟩) h" } ]
[ 1549, 88 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1547, 1 ]
Mathlib/Dynamics/Circle/RotationNumber/TranslationNumber.lean
CircleDeg1Lift.translationNumber_lt_of_forall_lt_add
[ { "state_after": "case intro.intro\nf g : CircleDeg1Lift\nhf : Continuous ↑f\nz : ℝ\nhz : ∀ (x : ℝ), ↑f x < x + z\nx : ℝ\nhx : ∀ (y : ℝ), y ∈ Icc 0 1 → ↑f y - y ≤ ↑f x - x\n⊢ τ f < z", "state_before": "f g : CircleDeg1Lift\nhf : Continuous ↑f\nz : ℝ\nhz : ∀ (x : ℝ), ↑f x < x + z\n⊢ τ f < z", "tactic": "obtain ⟨x, -, hx⟩ : ∃ x ∈ Icc (0 : ℝ) 1, ∀ y ∈ Icc (0 : ℝ) 1, f y - y ≤ f x - x :=\n isCompact_Icc.exists_forall_ge (nonempty_Icc.2 zero_le_one)\n (hf.sub continuous_id).continuousOn" }, { "state_after": "case intro.intro\nf g : CircleDeg1Lift\nhf : Continuous ↑f\nz : ℝ\nhz : ∀ (x : ℝ), ↑f x < x + z\nx : ℝ\nhx : ∀ (y : ℝ), y ∈ Icc 0 1 → ↑f y - y ≤ ↑f x - x\n⊢ τ f ≤ ↑f x - x", "state_before": "case intro.intro\nf g : CircleDeg1Lift\nhf : Continuous ↑f\nz : ℝ\nhz : ∀ (x : ℝ), ↑f x < x + z\nx : ℝ\nhx : ∀ (y : ℝ), y ∈ Icc 0 1 → ↑f y - y ≤ ↑f x - x\n⊢ τ f < z", "tactic": "refine' lt_of_le_of_lt _ (sub_lt_iff_lt_add'.2 <| hz x)" }, { "state_after": "case intro.intro.hz\nf g : CircleDeg1Lift\nhf : Continuous ↑f\nz : ℝ\nhz : ∀ (x : ℝ), ↑f x < x + z\nx : ℝ\nhx : ∀ (y : ℝ), y ∈ Icc 0 1 → ↑f y - y ≤ ↑f x - x\n⊢ ∀ (x_1 : ℝ), ↑f x_1 ≤ x_1 + (↑f x - x)", "state_before": "case intro.intro\nf g : CircleDeg1Lift\nhf : Continuous ↑f\nz : ℝ\nhz : ∀ (x : ℝ), ↑f x < x + z\nx : ℝ\nhx : ∀ (y : ℝ), y ∈ Icc 0 1 → ↑f y - y ≤ ↑f x - x\n⊢ τ f ≤ ↑f x - x", "tactic": "apply translationNumber_le_of_le_add" }, { "state_after": "case intro.intro.hz\nf g : CircleDeg1Lift\nhf : Continuous ↑f\nz : ℝ\nhz : ∀ (x : ℝ), ↑f x < x + z\nx : ℝ\nhx : ∀ (y : ℝ), y ∈ Icc 0 1 → ↑f y - y ≤ ↑f x - x\n⊢ ∀ (x_1 : ℝ), ↑f x_1 - x_1 ≤ ↑f x - x", "state_before": "case intro.intro.hz\nf g : CircleDeg1Lift\nhf : Continuous ↑f\nz : ℝ\nhz : ∀ (x : ℝ), ↑f x < x + z\nx : ℝ\nhx : ∀ (y : ℝ), y ∈ Icc 0 1 → ↑f y - y ≤ ↑f x - x\n⊢ ∀ (x_1 : ℝ), ↑f x_1 ≤ x_1 + (↑f x - x)", "tactic": "simp only [← sub_le_iff_le_add']" }, { "state_after": "no goals", "state_before": "case intro.intro.hz\nf g : CircleDeg1Lift\nhf : Continuous ↑f\nz : ℝ\nhz : ∀ (x : ℝ), ↑f x < x + z\nx : ℝ\nhx : ∀ (y : ℝ), y ∈ Icc 0 1 → ↑f y - y ≤ ↑f x - x\n⊢ ∀ (x_1 : ℝ), ↑f x_1 - x_1 ≤ ↑f x - x", "tactic": "exact f.forall_map_sub_of_Icc (fun a => a ≤ f x - x) hx" } ]
[ 915, 58 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 907, 1 ]
Mathlib/MeasureTheory/Function/SimpleFunc.lean
MeasureTheory.SimpleFunc.restrict_mono
[ { "state_after": "no goals", "state_before": "α : Type u_2\nβ : Type u_1\nγ : Type ?u.817681\nδ : Type ?u.817684\ninst✝² : MeasurableSpace α\nK : Type ?u.817690\ninst✝¹ : Zero β\ninst✝ : Preorder β\ns : Set α\nf g : α →ₛ β\nH : f ≤ g\nhs : MeasurableSet s\nx : α\n⊢ ↑(restrict f s) x ≤ ↑(restrict g s) x", "tactic": "simp only [coe_restrict _ hs, indicator_le_indicator (H x)]" }, { "state_after": "no goals", "state_before": "α : Type u_2\nβ : Type u_1\nγ : Type ?u.817681\nδ : Type ?u.817684\ninst✝² : MeasurableSpace α\nK : Type ?u.817690\ninst✝¹ : Zero β\ninst✝ : Preorder β\ns : Set α\nf g : α →ₛ β\nH : f ≤ g\nhs : ¬MeasurableSet s\n⊢ restrict f s ≤ restrict g s", "tactic": "simp only [restrict_of_not_measurable hs, le_refl]" } ]
[ 815, 61 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 811, 1 ]
Mathlib/LinearAlgebra/AffineSpace/Independent.lean
affineIndependent_of_ne_of_mem_of_mem_of_not_mem
[ { "state_after": "k : Type u_1\nV : Type u_2\nP : Type u_3\ninst✝³ : DivisionRing k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\nι : Type ?u.444767\ns : AffineSubspace k P\np₁ p₂ p₃ : P\nhp₁p₂ : p₁ ≠ p₂\nhp₁ : p₁ ∈ s\nhp₂ : p₂ ∈ s\nhp₃ : ¬p₃ ∈ s\nha : AffineIndependent k fun x => Matrix.vecCons p₁ ![p₂, p₃] ↑x\n⊢ AffineIndependent k ![p₁, p₂, p₃]", "state_before": "k : Type u_1\nV : Type u_2\nP : Type u_3\ninst✝³ : DivisionRing k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\nι : Type ?u.444767\ns : AffineSubspace k P\np₁ p₂ p₃ : P\nhp₁p₂ : p₁ ≠ p₂\nhp₁ : p₁ ∈ s\nhp₂ : p₂ ∈ s\nhp₃ : ¬p₃ ∈ s\n⊢ AffineIndependent k ![p₁, p₂, p₃]", "tactic": "have ha : AffineIndependent k fun x : { x : Fin 3 // x ≠ 2 } => ![p₁, p₂, p₃] x := by\n rw [← affineIndependent_equiv (finSuccAboveEquiv (2 : Fin 3)).toEquiv]\n convert affineIndependent_of_ne k hp₁p₂\n ext x\n fin_cases x <;> rfl" }, { "state_after": "k : Type u_1\nV : Type u_2\nP : Type u_3\ninst✝³ : DivisionRing k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\nι : Type ?u.444767\ns : AffineSubspace k P\np₁ p₂ p₃ : P\nhp₁p₂ : p₁ ≠ p₂\nhp₁ : p₁ ∈ s\nhp₂ : p₂ ∈ s\nhp₃ : ¬p₃ ∈ s\nha : AffineIndependent k fun x => Matrix.vecCons p₁ ![p₂, p₃] ↑x\n⊢ ¬Matrix.vecCons p₁ ![p₂, p₃] 2 ∈ affineSpan k (![p₁, p₂, p₃] '' {x | x ≠ 2})", "state_before": "k : Type u_1\nV : Type u_2\nP : Type u_3\ninst✝³ : DivisionRing k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\nι : Type ?u.444767\ns : AffineSubspace k P\np₁ p₂ p₃ : P\nhp₁p₂ : p₁ ≠ p₂\nhp₁ : p₁ ∈ s\nhp₂ : p₂ ∈ s\nhp₃ : ¬p₃ ∈ s\nha : AffineIndependent k fun x => Matrix.vecCons p₁ ![p₂, p₃] ↑x\n⊢ AffineIndependent k ![p₁, p₂, p₃]", "tactic": "refine' ha.affineIndependent_of_not_mem_span _" }, { "state_after": "k : Type u_1\nV : Type u_2\nP : Type u_3\ninst✝³ : DivisionRing k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\nι : Type ?u.444767\ns : AffineSubspace k P\np₁ p₂ p₃ : P\nhp₁p₂ : p₁ ≠ p₂\nhp₁ : p₁ ∈ s\nhp₂ : p₂ ∈ s\nhp₃ : ¬p₃ ∈ s\nha : AffineIndependent k fun x => Matrix.vecCons p₁ ![p₂, p₃] ↑x\nh : Matrix.vecCons p₁ ![p₂, p₃] 2 ∈ affineSpan k (![p₁, p₂, p₃] '' {x | x ≠ 2})\n⊢ False", "state_before": "k : Type u_1\nV : Type u_2\nP : Type u_3\ninst✝³ : DivisionRing k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\nι : Type ?u.444767\ns : AffineSubspace k P\np₁ p₂ p₃ : P\nhp₁p₂ : p₁ ≠ p₂\nhp₁ : p₁ ∈ s\nhp₂ : p₂ ∈ s\nhp₃ : ¬p₃ ∈ s\nha : AffineIndependent k fun x => Matrix.vecCons p₁ ![p₂, p₃] ↑x\n⊢ ¬Matrix.vecCons p₁ ![p₂, p₃] 2 ∈ affineSpan k (![p₁, p₂, p₃] '' {x | x ≠ 2})", "tactic": "intro h" }, { "state_after": "k : Type u_1\nV : Type u_2\nP : Type u_3\ninst✝³ : DivisionRing k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\nι : Type ?u.444767\ns : AffineSubspace k P\np₁ p₂ p₃ : P\nhp₁p₂ : p₁ ≠ p₂\nhp₁ : p₁ ∈ s\nhp₂ : p₂ ∈ s\nhp₃ : ¬p₃ ∈ s\nha : AffineIndependent k fun x => Matrix.vecCons p₁ ![p₂, p₃] ↑x\nh : Matrix.vecCons p₁ ![p₂, p₃] 2 ∈ affineSpan k (![p₁, p₂, p₃] '' {x | x ≠ 2})\n⊢ affineSpan k (![p₁, p₂, p₃] '' {x | x ≠ 2}) ≤ s", "state_before": "k : Type u_1\nV : Type u_2\nP : Type u_3\ninst✝³ : DivisionRing k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\nι : Type ?u.444767\ns : AffineSubspace k P\np₁ p₂ p₃ : P\nhp₁p₂ : p₁ ≠ p₂\nhp₁ : p₁ ∈ s\nhp₂ : p₂ ∈ s\nhp₃ : ¬p₃ ∈ s\nha : AffineIndependent k fun x => Matrix.vecCons p₁ ![p₂, p₃] ↑x\nh : Matrix.vecCons p₁ ![p₂, p₃] 2 ∈ affineSpan k (![p₁, p₂, p₃] '' {x | x ≠ 2})\n⊢ False", "tactic": "refine' hp₃ ((AffineSubspace.le_def' _ s).1 _ p₃ h)" }, { "state_after": "k : Type u_1\nV : Type u_2\nP : Type u_3\ninst✝³ : DivisionRing k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\nι : Type ?u.444767\ns : AffineSubspace k P\np₁ p₂ p₃ : P\nhp₁p₂ : p₁ ≠ p₂\nhp₁ : p₁ ∈ s\nhp₂ : p₂ ∈ s\nhp₃ : ¬p₃ ∈ s\nha : AffineIndependent k fun x => Matrix.vecCons p₁ ![p₂, p₃] ↑x\nh : Matrix.vecCons p₁ ![p₂, p₃] 2 ∈ affineSpan k (![p₁, p₂, p₃] '' {x | x ≠ 2})\n⊢ ∀ (x : Fin 3), x ∈ {x | x ≠ 2} → Matrix.vecCons p₁ ![p₂, p₃] x ∈ ↑s", "state_before": "k : Type u_1\nV : Type u_2\nP : Type u_3\ninst✝³ : DivisionRing k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\nι : Type ?u.444767\ns : AffineSubspace k P\np₁ p₂ p₃ : P\nhp₁p₂ : p₁ ≠ p₂\nhp₁ : p₁ ∈ s\nhp₂ : p₂ ∈ s\nhp₃ : ¬p₃ ∈ s\nha : AffineIndependent k fun x => Matrix.vecCons p₁ ![p₂, p₃] ↑x\nh : Matrix.vecCons p₁ ![p₂, p₃] 2 ∈ affineSpan k (![p₁, p₂, p₃] '' {x | x ≠ 2})\n⊢ affineSpan k (![p₁, p₂, p₃] '' {x | x ≠ 2}) ≤ s", "tactic": "simp_rw [affineSpan_le, Set.image_subset_iff, Set.subset_def, Set.mem_preimage]" }, { "state_after": "k : Type u_1\nV : Type u_2\nP : Type u_3\ninst✝³ : DivisionRing k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\nι : Type ?u.444767\ns : AffineSubspace k P\np₁ p₂ p₃ : P\nhp₁p₂ : p₁ ≠ p₂\nhp₁ : p₁ ∈ s\nhp₂ : p₂ ∈ s\nhp₃ : ¬p₃ ∈ s\nha : AffineIndependent k fun x => Matrix.vecCons p₁ ![p₂, p₃] ↑x\nh : Matrix.vecCons p₁ ![p₂, p₃] 2 ∈ affineSpan k (![p₁, p₂, p₃] '' {x | x ≠ 2})\nx : Fin 3\n⊢ x ∈ {x | x ≠ 2} → Matrix.vecCons p₁ ![p₂, p₃] x ∈ ↑s", "state_before": "k : Type u_1\nV : Type u_2\nP : Type u_3\ninst✝³ : DivisionRing k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\nι : Type ?u.444767\ns : AffineSubspace k P\np₁ p₂ p₃ : P\nhp₁p₂ : p₁ ≠ p₂\nhp₁ : p₁ ∈ s\nhp₂ : p₂ ∈ s\nhp₃ : ¬p₃ ∈ s\nha : AffineIndependent k fun x => Matrix.vecCons p₁ ![p₂, p₃] ↑x\nh : Matrix.vecCons p₁ ![p₂, p₃] 2 ∈ affineSpan k (![p₁, p₂, p₃] '' {x | x ≠ 2})\n⊢ ∀ (x : Fin 3), x ∈ {x | x ≠ 2} → Matrix.vecCons p₁ ![p₂, p₃] x ∈ ↑s", "tactic": "intro x" }, { "state_after": "no goals", "state_before": "k : Type u_1\nV : Type u_2\nP : Type u_3\ninst✝³ : DivisionRing k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\nι : Type ?u.444767\ns : AffineSubspace k P\np₁ p₂ p₃ : P\nhp₁p₂ : p₁ ≠ p₂\nhp₁ : p₁ ∈ s\nhp₂ : p₂ ∈ s\nhp₃ : ¬p₃ ∈ s\nha : AffineIndependent k fun x => Matrix.vecCons p₁ ![p₂, p₃] ↑x\nh : Matrix.vecCons p₁ ![p₂, p₃] 2 ∈ affineSpan k (![p₁, p₂, p₃] '' {x | x ≠ 2})\nx : Fin 3\n⊢ x ∈ {x | x ≠ 2} → Matrix.vecCons p₁ ![p₂, p₃] x ∈ ↑s", "tactic": "fin_cases x <;> simp [hp₁, hp₂]" }, { "state_after": "k : Type u_1\nV : Type u_2\nP : Type u_3\ninst✝³ : DivisionRing k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\nι : Type ?u.444767\ns : AffineSubspace k P\np₁ p₂ p₃ : P\nhp₁p₂ : p₁ ≠ p₂\nhp₁ : p₁ ∈ s\nhp₂ : p₂ ∈ s\nhp₃ : ¬p₃ ∈ s\n⊢ AffineIndependent k ((fun x => Matrix.vecCons p₁ ![p₂, p₃] ↑x) ∘ ↑(finSuccAboveEquiv 2).toEquiv)", "state_before": "k : Type u_1\nV : Type u_2\nP : Type u_3\ninst✝³ : DivisionRing k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\nι : Type ?u.444767\ns : AffineSubspace k P\np₁ p₂ p₃ : P\nhp₁p₂ : p₁ ≠ p₂\nhp₁ : p₁ ∈ s\nhp₂ : p₂ ∈ s\nhp₃ : ¬p₃ ∈ s\n⊢ AffineIndependent k fun x => Matrix.vecCons p₁ ![p₂, p₃] ↑x", "tactic": "rw [← affineIndependent_equiv (finSuccAboveEquiv (2 : Fin 3)).toEquiv]" }, { "state_after": "case h.e'_9\nk : Type u_1\nV : Type u_2\nP : Type u_3\ninst✝³ : DivisionRing k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\nι : Type ?u.444767\ns : AffineSubspace k P\np₁ p₂ p₃ : P\nhp₁p₂ : p₁ ≠ p₂\nhp₁ : p₁ ∈ s\nhp₂ : p₂ ∈ s\nhp₃ : ¬p₃ ∈ s\n⊢ (fun x => Matrix.vecCons p₁ ![p₂, p₃] ↑x) ∘ ↑(finSuccAboveEquiv 2).toEquiv = ![p₁, p₂]", "state_before": "k : Type u_1\nV : Type u_2\nP : Type u_3\ninst✝³ : DivisionRing k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\nι : Type ?u.444767\ns : AffineSubspace k P\np₁ p₂ p₃ : P\nhp₁p₂ : p₁ ≠ p₂\nhp₁ : p₁ ∈ s\nhp₂ : p₂ ∈ s\nhp₃ : ¬p₃ ∈ s\n⊢ AffineIndependent k ((fun x => Matrix.vecCons p₁ ![p₂, p₃] ↑x) ∘ ↑(finSuccAboveEquiv 2).toEquiv)", "tactic": "convert affineIndependent_of_ne k hp₁p₂" }, { "state_after": "case h.e'_9.h\nk : Type u_1\nV : Type u_2\nP : Type u_3\ninst✝³ : DivisionRing k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\nι : Type ?u.444767\ns : AffineSubspace k P\np₁ p₂ p₃ : P\nhp₁p₂ : p₁ ≠ p₂\nhp₁ : p₁ ∈ s\nhp₂ : p₂ ∈ s\nhp₃ : ¬p₃ ∈ s\nx : Fin 2\n⊢ ((fun x => Matrix.vecCons p₁ ![p₂, p₃] ↑x) ∘ ↑(finSuccAboveEquiv 2).toEquiv) x = Matrix.vecCons p₁ ![p₂] x", "state_before": "case h.e'_9\nk : Type u_1\nV : Type u_2\nP : Type u_3\ninst✝³ : DivisionRing k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\nι : Type ?u.444767\ns : AffineSubspace k P\np₁ p₂ p₃ : P\nhp₁p₂ : p₁ ≠ p₂\nhp₁ : p₁ ∈ s\nhp₂ : p₂ ∈ s\nhp₃ : ¬p₃ ∈ s\n⊢ (fun x => Matrix.vecCons p₁ ![p₂, p₃] ↑x) ∘ ↑(finSuccAboveEquiv 2).toEquiv = ![p₁, p₂]", "tactic": "ext x" }, { "state_after": "no goals", "state_before": "case h.e'_9.h\nk : Type u_1\nV : Type u_2\nP : Type u_3\ninst✝³ : DivisionRing k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\nι : Type ?u.444767\ns : AffineSubspace k P\np₁ p₂ p₃ : P\nhp₁p₂ : p₁ ≠ p₂\nhp₁ : p₁ ∈ s\nhp₂ : p₂ ∈ s\nhp₃ : ¬p₃ ∈ s\nx : Fin 2\n⊢ ((fun x => Matrix.vecCons p₁ ![p₂, p₃] ↑x) ∘ ↑(finSuccAboveEquiv 2).toEquiv) x = Matrix.vecCons p₁ ![p₂] x", "tactic": "fin_cases x <;> rfl" } ]
[ 693, 34 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 680, 1 ]
Mathlib/GroupTheory/Subgroup/Pointwise.lean
AddSubgroup.le_pointwise_smul_iff₀
[]
[ 557, 26 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 555, 1 ]
Mathlib/Order/LiminfLimsup.lean
Filter.liminf_le_of_le
[]
[ 475, 16 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 472, 1 ]
Mathlib/Algebra/Module/Submodule/Pointwise.lean
Submodule.neg_sup
[]
[ 123, 61 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 122, 1 ]
Mathlib/Topology/Algebra/Order/LeftRightLim.lean
Monotone.rightLim
[]
[ 144, 85 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 144, 11 ]
Mathlib/NumberTheory/LSeries.lean
Nat.ArithmeticFunction.LSeriesSummable_zero
[ { "state_after": "no goals", "state_before": "z : ℂ\n⊢ LSeriesSummable 0 z", "tactic": "simp [LSeriesSummable, summable_zero]" } ]
[ 61, 40 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 60, 1 ]
Mathlib/Analysis/SpecialFunctions/Log/Base.lean
Real.floor_logb_nat_cast
[ { "state_after": "case inl\nb✝ x y : ℝ\nb : ℕ\nhb : 1 < b\nhr : 0 ≤ 0\n⊢ ⌊logb (↑b) 0⌋ = Int.log b 0\n\ncase inr\nb✝ x y : ℝ\nb : ℕ\nr : ℝ\nhb : 1 < b\nhr✝ : 0 ≤ r\nhr : 0 < r\n⊢ ⌊logb (↑b) r⌋ = Int.log b r", "state_before": "b✝ x y : ℝ\nb : ℕ\nr : ℝ\nhb : 1 < b\nhr : 0 ≤ r\n⊢ ⌊logb (↑b) r⌋ = Int.log b r", "tactic": "obtain rfl | hr := hr.eq_or_lt" }, { "state_after": "case inr\nb✝ x y : ℝ\nb : ℕ\nr : ℝ\nhb : 1 < b\nhr✝ : 0 ≤ r\nhr : 0 < r\nhb1' : 1 < ↑b\n⊢ ⌊logb (↑b) r⌋ = Int.log b r", "state_before": "case inr\nb✝ x y : ℝ\nb : ℕ\nr : ℝ\nhb : 1 < b\nhr✝ : 0 ≤ r\nhr : 0 < r\n⊢ ⌊logb (↑b) r⌋ = Int.log b r", "tactic": "have hb1' : 1 < (b : ℝ) := Nat.one_lt_cast.mpr hb" }, { "state_after": "case inr.a\nb✝ x y : ℝ\nb : ℕ\nr : ℝ\nhb : 1 < b\nhr✝ : 0 ≤ r\nhr : 0 < r\nhb1' : 1 < ↑b\n⊢ ⌊logb (↑b) r⌋ ≤ Int.log b r\n\ncase inr.a\nb✝ x y : ℝ\nb : ℕ\nr : ℝ\nhb : 1 < b\nhr✝ : 0 ≤ r\nhr : 0 < r\nhb1' : 1 < ↑b\n⊢ Int.log b r ≤ ⌊logb (↑b) r⌋", "state_before": "case inr\nb✝ x y : ℝ\nb : ℕ\nr : ℝ\nhb : 1 < b\nhr✝ : 0 ≤ r\nhr : 0 < r\nhb1' : 1 < ↑b\n⊢ ⌊logb (↑b) r⌋ = Int.log b r", "tactic": "apply le_antisymm" }, { "state_after": "no goals", "state_before": "case inl\nb✝ x y : ℝ\nb : ℕ\nhb : 1 < b\nhr : 0 ≤ 0\n⊢ ⌊logb (↑b) 0⌋ = Int.log b 0", "tactic": "rw [logb_zero, Int.log_zero_right, Int.floor_zero]" }, { "state_after": "case inr.a\nb✝ x y : ℝ\nb : ℕ\nr : ℝ\nhb : 1 < b\nhr✝ : 0 ≤ r\nhr : 0 < r\nhb1' : 1 < ↑b\n⊢ ↑b ^ ↑⌊logb (↑b) r⌋ ≤ r", "state_before": "case inr.a\nb✝ x y : ℝ\nb : ℕ\nr : ℝ\nhb : 1 < b\nhr✝ : 0 ≤ r\nhr : 0 < r\nhb1' : 1 < ↑b\n⊢ ⌊logb (↑b) r⌋ ≤ Int.log b r", "tactic": "rw [← Int.zpow_le_iff_le_log hb hr, ← rpow_int_cast b]" }, { "state_after": "case inr.a\nb✝ x y : ℝ\nb : ℕ\nr : ℝ\nhb : 1 < b\nhr✝ : 0 ≤ r\nhr : 0 < r\nhb1' : 1 < ↑b\n⊢ ↑b ^ ↑⌊logb (↑b) r⌋ ≤ ↑b ^ logb (↑b) r", "state_before": "case inr.a\nb✝ x y : ℝ\nb : ℕ\nr : ℝ\nhb : 1 < b\nhr✝ : 0 ≤ r\nhr : 0 < r\nhb1' : 1 < ↑b\n⊢ ↑b ^ ↑⌊logb (↑b) r⌋ ≤ r", "tactic": "refine' le_of_le_of_eq _ (rpow_logb (zero_lt_one.trans hb1') hb1'.ne' hr)" }, { "state_after": "no goals", "state_before": "case inr.a\nb✝ x y : ℝ\nb : ℕ\nr : ℝ\nhb : 1 < b\nhr✝ : 0 ≤ r\nhr : 0 < r\nhb1' : 1 < ↑b\n⊢ ↑b ^ ↑⌊logb (↑b) r⌋ ≤ ↑b ^ logb (↑b) r", "tactic": "exact rpow_le_rpow_of_exponent_le hb1'.le (Int.floor_le _)" }, { "state_after": "case inr.a\nb✝ x y : ℝ\nb : ℕ\nr : ℝ\nhb : 1 < b\nhr✝ : 0 ≤ r\nhr : 0 < r\nhb1' : 1 < ↑b\n⊢ ↑b ^ Int.log b r ≤ r", "state_before": "case inr.a\nb✝ x y : ℝ\nb : ℕ\nr : ℝ\nhb : 1 < b\nhr✝ : 0 ≤ r\nhr : 0 < r\nhb1' : 1 < ↑b\n⊢ Int.log b r ≤ ⌊logb (↑b) r⌋", "tactic": "rw [Int.le_floor, le_logb_iff_rpow_le hb1' hr, rpow_int_cast]" }, { "state_after": "no goals", "state_before": "case inr.a\nb✝ x y : ℝ\nb : ℕ\nr : ℝ\nhb : 1 < b\nhr✝ : 0 ≤ r\nhr : 0 < r\nhb1' : 1 < ↑b\n⊢ ↑b ^ Int.log b r ≤ r", "tactic": "exact Int.zpow_log_le_self hb hr" } ]
[ 366, 37 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 356, 1 ]
Mathlib/MeasureTheory/Constructions/BorelSpace/Basic.lean
Measurable.real_toNNReal
[]
[ 1753, 35 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1751, 1 ]
Std/Data/Int/DivMod.lean
Int.natAbs_div_le_natAbs
[ { "state_after": "a b : Int\nn : Nat\n⊢ natAbs (a / ↑n) ≤ natAbs a", "state_before": "a b : Int\nn : Nat\n⊢ natAbs (a / -↑n) ≤ natAbs a", "tactic": "rw [Int.ediv_neg, natAbs_neg]" }, { "state_after": "no goals", "state_before": "a b : Int\nn : Nat\n⊢ natAbs (a / ↑n) ≤ natAbs a", "tactic": "apply aux" } ]
[ 573, 61 ]
e68aa8f5fe47aad78987df45f99094afbcb5e936
https://github.com/leanprover/std4
[ 565, 1 ]
Mathlib/LinearAlgebra/Multilinear/Basic.lean
MultilinearMap.map_smul
[]
[ 178, 22 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 176, 11 ]
Mathlib/Data/Nat/Interval.lean
Nat.card_fintypeIoo
[ { "state_after": "no goals", "state_before": "a b c : ℕ\n⊢ Fintype.card ↑(Set.Ioo a b) = b - a - 1", "tactic": "rw [Fintype.card_ofFinset, card_Ioo]" } ]
[ 145, 39 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 144, 1 ]
Mathlib/Topology/UnitInterval.lean
unitInterval.coe_ne_zero
[]
[ 80, 30 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 79, 1 ]
Mathlib/MeasureTheory/Function/StronglyMeasurable/Basic.lean
stronglyMeasurable_of_stronglyMeasurable_union_cover
[ { "state_after": "α : Type u_1\nβ : Type u_2\nγ : Type ?u.197809\nι : Type ?u.197812\ninst✝¹ : Countable ι\nf✝¹ g : α → β\nm : MeasurableSpace α\ninst✝ : TopologicalSpace β\nf✝ : α → β\ns t : Set α\nhs : MeasurableSet s\nht : MeasurableSet t\nh : univ ⊆ s ∪ t\nhc : StronglyMeasurable fun a => f✝ ↑a\nhd : StronglyMeasurable fun a => f✝ ↑a\nf : ℕ → α →ₛ β :=\n fun n =>\n {\n toFun := fun x =>\n if hx : x ∈ s then ↑(StronglyMeasurable.approx hc n) { val := x, property := hx }\n else ↑(StronglyMeasurable.approx hd n) { val := x, property := (_ : x ∈ t) },\n measurableSet_fiber' :=\n (_ :\n ∀ (x : β),\n MeasurableSet\n ((fun x =>\n if hx : x ∈ s then ↑(StronglyMeasurable.approx hc n) { val := x, property := hx }\n else ↑(StronglyMeasurable.approx hd n) { val := x, property := (_ : x ∈ t) }) ⁻¹'\n {x})),\n finite_range' :=\n (_ :\n Set.Finite\n (range fun x =>\n if hx : x ∈ s then ↑(StronglyMeasurable.approx hc n) { val := x, property := hx }\n else ↑(StronglyMeasurable.approx hd n) { val := x, property := (_ : x ∈ t) })) }\ny : α\n⊢ Tendsto (fun n => ↑(f n) y) atTop (𝓝 (f✝ y))", "state_before": "α : Type u_1\nβ : Type u_2\nγ : Type ?u.197809\nι : Type ?u.197812\ninst✝¹ : Countable ι\nf✝¹ g : α → β\nm : MeasurableSpace α\ninst✝ : TopologicalSpace β\nf✝ : α → β\ns t : Set α\nhs : MeasurableSet s\nht : MeasurableSet t\nh : univ ⊆ s ∪ t\nhc : StronglyMeasurable fun a => f✝ ↑a\nhd : StronglyMeasurable fun a => f✝ ↑a\nf : ℕ → α →ₛ β :=\n fun n =>\n {\n toFun := fun x =>\n if hx : x ∈ s then ↑(StronglyMeasurable.approx hc n) { val := x, property := hx }\n else ↑(StronglyMeasurable.approx hd n) { val := x, property := (_ : x ∈ t) },\n measurableSet_fiber' :=\n (_ :\n ∀ (x : β),\n MeasurableSet\n ((fun x =>\n if hx : x ∈ s then ↑(StronglyMeasurable.approx hc n) { val := x, property := hx }\n else ↑(StronglyMeasurable.approx hd n) { val := x, property := (_ : x ∈ t) }) ⁻¹'\n {x})),\n finite_range' :=\n (_ :\n Set.Finite\n (range fun x =>\n if hx : x ∈ s then ↑(StronglyMeasurable.approx hc n) { val := x, property := hx }\n else ↑(StronglyMeasurable.approx hd n) { val := x, property := (_ : x ∈ t) })) }\n⊢ StronglyMeasurable f✝", "tactic": "refine' ⟨f, fun y => _⟩" }, { "state_after": "case pos\nα : Type u_1\nβ : Type u_2\nγ : Type ?u.197809\nι : Type ?u.197812\ninst✝¹ : Countable ι\nf✝¹ g : α → β\nm : MeasurableSpace α\ninst✝ : TopologicalSpace β\nf✝ : α → β\ns t : Set α\nhs : MeasurableSet s\nht : MeasurableSet t\nh : univ ⊆ s ∪ t\nhc : StronglyMeasurable fun a => f✝ ↑a\nhd : StronglyMeasurable fun a => f✝ ↑a\nf : ℕ → α →ₛ β :=\n fun n =>\n {\n toFun := fun x =>\n if hx : x ∈ s then ↑(StronglyMeasurable.approx hc n) { val := x, property := hx }\n else ↑(StronglyMeasurable.approx hd n) { val := x, property := (_ : x ∈ t) },\n measurableSet_fiber' :=\n (_ :\n ∀ (x : β),\n MeasurableSet\n ((fun x =>\n if hx : x ∈ s then ↑(StronglyMeasurable.approx hc n) { val := x, property := hx }\n else ↑(StronglyMeasurable.approx hd n) { val := x, property := (_ : x ∈ t) }) ⁻¹'\n {x})),\n finite_range' :=\n (_ :\n Set.Finite\n (range fun x =>\n if hx : x ∈ s then ↑(StronglyMeasurable.approx hc n) { val := x, property := hx }\n else ↑(StronglyMeasurable.approx hd n) { val := x, property := (_ : x ∈ t) })) }\ny : α\nhy : y ∈ s\n⊢ Tendsto (fun n => ↑(f n) y) atTop (𝓝 (f✝ y))\n\ncase neg\nα : Type u_1\nβ : Type u_2\nγ : Type ?u.197809\nι : Type ?u.197812\ninst✝¹ : Countable ι\nf✝¹ g : α → β\nm : MeasurableSpace α\ninst✝ : TopologicalSpace β\nf✝ : α → β\ns t : Set α\nhs : MeasurableSet s\nht : MeasurableSet t\nh : univ ⊆ s ∪ t\nhc : StronglyMeasurable fun a => f✝ ↑a\nhd : StronglyMeasurable fun a => f✝ ↑a\nf : ℕ → α →ₛ β :=\n fun n =>\n {\n toFun := fun x =>\n if hx : x ∈ s then ↑(StronglyMeasurable.approx hc n) { val := x, property := hx }\n else ↑(StronglyMeasurable.approx hd n) { val := x, property := (_ : x ∈ t) },\n measurableSet_fiber' :=\n (_ :\n ∀ (x : β),\n MeasurableSet\n ((fun x =>\n if hx : x ∈ s then ↑(StronglyMeasurable.approx hc n) { val := x, property := hx }\n else ↑(StronglyMeasurable.approx hd n) { val := x, property := (_ : x ∈ t) }) ⁻¹'\n {x})),\n finite_range' :=\n (_ :\n Set.Finite\n (range fun x =>\n if hx : x ∈ s then ↑(StronglyMeasurable.approx hc n) { val := x, property := hx }\n else ↑(StronglyMeasurable.approx hd n) { val := x, property := (_ : x ∈ t) })) }\ny : α\nhy : ¬y ∈ s\n⊢ Tendsto (fun n => ↑(f n) y) atTop (𝓝 (f✝ y))", "state_before": "α : Type u_1\nβ : Type u_2\nγ : Type ?u.197809\nι : Type ?u.197812\ninst✝¹ : Countable ι\nf✝¹ g : α → β\nm : MeasurableSpace α\ninst✝ : TopologicalSpace β\nf✝ : α → β\ns t : Set α\nhs : MeasurableSet s\nht : MeasurableSet t\nh : univ ⊆ s ∪ t\nhc : StronglyMeasurable fun a => f✝ ↑a\nhd : StronglyMeasurable fun a => f✝ ↑a\nf : ℕ → α →ₛ β :=\n fun n =>\n {\n toFun := fun x =>\n if hx : x ∈ s then ↑(StronglyMeasurable.approx hc n) { val := x, property := hx }\n else ↑(StronglyMeasurable.approx hd n) { val := x, property := (_ : x ∈ t) },\n measurableSet_fiber' :=\n (_ :\n ∀ (x : β),\n MeasurableSet\n ((fun x =>\n if hx : x ∈ s then ↑(StronglyMeasurable.approx hc n) { val := x, property := hx }\n else ↑(StronglyMeasurable.approx hd n) { val := x, property := (_ : x ∈ t) }) ⁻¹'\n {x})),\n finite_range' :=\n (_ :\n Set.Finite\n (range fun x =>\n if hx : x ∈ s then ↑(StronglyMeasurable.approx hc n) { val := x, property := hx }\n else ↑(StronglyMeasurable.approx hd n) { val := x, property := (_ : x ∈ t) })) }\ny : α\n⊢ Tendsto (fun n => ↑(f n) y) atTop (𝓝 (f✝ y))", "tactic": "by_cases hy : y ∈ s" }, { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type u_2\nγ : Type ?u.197809\nι : Type ?u.197812\ninst✝¹ : Countable ι\nf✝ g : α → β\nm : MeasurableSpace α\ninst✝ : TopologicalSpace β\nf : α → β\ns t : Set α\nhs : MeasurableSet s\nht : MeasurableSet t\nh : univ ⊆ s ∪ t\nhc : StronglyMeasurable fun a => f ↑a\nhd : StronglyMeasurable fun a => f ↑a\nn : ℕ\nx : α\nhx : ¬x ∈ s\n⊢ x ∈ t", "tactic": "simpa [hx] using h (mem_univ x)" }, { "state_after": "α : Type u_1\nβ : Type u_2\nγ : Type ?u.197809\nι : Type ?u.197812\ninst✝¹ : Countable ι\nf✝ g : α → β\nm : MeasurableSpace α\ninst✝ : TopologicalSpace β\nf : α → β\ns t : Set α\nhs : MeasurableSet s\nht : MeasurableSet t\nh : univ ⊆ s ∪ t\nhc : StronglyMeasurable fun a => f ↑a\nhd : StronglyMeasurable fun a => f ↑a\nn : ℕ\nx : β\n⊢ MeasurableSet\n ((fun x =>\n if hx : x ∈ s then ↑(StronglyMeasurable.approx hc n) { val := x, property := hx }\n else ↑(StronglyMeasurable.approx hd n) { val := x, property := (_ : x ∈ t) }) ⁻¹'\n {x})", "state_before": "α : Type u_1\nβ : Type u_2\nγ : Type ?u.197809\nι : Type ?u.197812\ninst✝¹ : Countable ι\nf✝ g : α → β\nm : MeasurableSpace α\ninst✝ : TopologicalSpace β\nf : α → β\ns t : Set α\nhs : MeasurableSet s\nht : MeasurableSet t\nh : univ ⊆ s ∪ t\nhc : StronglyMeasurable fun a => f ↑a\nhd : StronglyMeasurable fun a => f ↑a\nn : ℕ\n⊢ ∀ (x : β),\n MeasurableSet\n ((fun x =>\n if hx : x ∈ s then ↑(StronglyMeasurable.approx hc n) { val := x, property := hx }\n else ↑(StronglyMeasurable.approx hd n) { val := x, property := (_ : x ∈ t) }) ⁻¹'\n {x})", "tactic": "intro x" }, { "state_after": "case h.e'_3\nα : Type u_1\nβ : Type u_2\nγ : Type ?u.197809\nι : Type ?u.197812\ninst✝¹ : Countable ι\nf✝ g : α → β\nm : MeasurableSpace α\ninst✝ : TopologicalSpace β\nf : α → β\ns t : Set α\nhs : MeasurableSet s\nht : MeasurableSet t\nh : univ ⊆ s ∪ t\nhc : StronglyMeasurable fun a => f ↑a\nhd : StronglyMeasurable fun a => f ↑a\nn : ℕ\nx : β\n⊢ (fun x =>\n if hx : x ∈ s then ↑(StronglyMeasurable.approx hc n) { val := x, property := hx }\n else ↑(StronglyMeasurable.approx hd n) { val := x, property := (_ : x ∈ t) }) ⁻¹'\n {x} =\n Subtype.val '' (↑(StronglyMeasurable.approx hc n) ⁻¹' {x}) ∪\n Subtype.val '' (↑(StronglyMeasurable.approx hd n) ⁻¹' {x}) \\ s", "state_before": "α : Type u_1\nβ : Type u_2\nγ : Type ?u.197809\nι : Type ?u.197812\ninst✝¹ : Countable ι\nf✝ g : α → β\nm : MeasurableSpace α\ninst✝ : TopologicalSpace β\nf : α → β\ns t : Set α\nhs : MeasurableSet s\nht : MeasurableSet t\nh : univ ⊆ s ∪ t\nhc : StronglyMeasurable fun a => f ↑a\nhd : StronglyMeasurable fun a => f ↑a\nn : ℕ\nx : β\n⊢ MeasurableSet\n ((fun x =>\n if hx : x ∈ s then ↑(StronglyMeasurable.approx hc n) { val := x, property := hx }\n else ↑(StronglyMeasurable.approx hd n) { val := x, property := (_ : x ∈ t) }) ⁻¹'\n {x})", "tactic": "convert(hs.subtype_image ((hc.approx n).measurableSet_fiber x)).union\n ((ht.subtype_image ((hd.approx n).measurableSet_fiber x)).diff hs)" }, { "state_after": "case h.e'_3.h\nα : Type u_1\nβ : Type u_2\nγ : Type ?u.197809\nι : Type ?u.197812\ninst✝¹ : Countable ι\nf✝ g : α → β\nm : MeasurableSpace α\ninst✝ : TopologicalSpace β\nf : α → β\ns t : Set α\nhs : MeasurableSet s\nht : MeasurableSet t\nh : univ ⊆ s ∪ t\nhc : StronglyMeasurable fun a => f ↑a\nhd : StronglyMeasurable fun a => f ↑a\nn : ℕ\nx : β\ny : α\n⊢ y ∈\n (fun x =>\n if hx : x ∈ s then ↑(StronglyMeasurable.approx hc n) { val := x, property := hx }\n else ↑(StronglyMeasurable.approx hd n) { val := x, property := (_ : x ∈ t) }) ⁻¹'\n {x} ↔\n y ∈\n Subtype.val '' (↑(StronglyMeasurable.approx hc n) ⁻¹' {x}) ∪\n Subtype.val '' (↑(StronglyMeasurable.approx hd n) ⁻¹' {x}) \\ s", "state_before": "case h.e'_3\nα : Type u_1\nβ : Type u_2\nγ : Type ?u.197809\nι : Type ?u.197812\ninst✝¹ : Countable ι\nf✝ g : α → β\nm : MeasurableSpace α\ninst✝ : TopologicalSpace β\nf : α → β\ns t : Set α\nhs : MeasurableSet s\nht : MeasurableSet t\nh : univ ⊆ s ∪ t\nhc : StronglyMeasurable fun a => f ↑a\nhd : StronglyMeasurable fun a => f ↑a\nn : ℕ\nx : β\n⊢ (fun x =>\n if hx : x ∈ s then ↑(StronglyMeasurable.approx hc n) { val := x, property := hx }\n else ↑(StronglyMeasurable.approx hd n) { val := x, property := (_ : x ∈ t) }) ⁻¹'\n {x} =\n Subtype.val '' (↑(StronglyMeasurable.approx hc n) ⁻¹' {x}) ∪\n Subtype.val '' (↑(StronglyMeasurable.approx hd n) ⁻¹' {x}) \\ s", "tactic": "ext1 y" }, { "state_after": "case h.e'_3.h\nα : Type u_1\nβ : Type u_2\nγ : Type ?u.197809\nι : Type ?u.197812\ninst✝¹ : Countable ι\nf✝ g : α → β\nm : MeasurableSpace α\ninst✝ : TopologicalSpace β\nf : α → β\ns t : Set α\nhs : MeasurableSet s\nht : MeasurableSet t\nh : univ ⊆ s ∪ t\nhc : StronglyMeasurable fun a => f ↑a\nhd : StronglyMeasurable fun a => f ↑a\nn : ℕ\nx : β\ny : α\n⊢ (if hx : y ∈ s then ↑(StronglyMeasurable.approx hc n) { val := y, property := hx }\n else ↑(StronglyMeasurable.approx hd n) { val := y, property := (_ : y ∈ t) }) =\n x ↔\n (∃ x_1, ↑(StronglyMeasurable.approx hc n) { val := y, property := (_ : y ∈ s) } = x) ∨\n (∃ x_1, ↑(StronglyMeasurable.approx hd n) { val := y, property := (_ : y ∈ t) } = x) ∧ ¬y ∈ s", "state_before": "case h.e'_3.h\nα : Type u_1\nβ : Type u_2\nγ : Type ?u.197809\nι : Type ?u.197812\ninst✝¹ : Countable ι\nf✝ g : α → β\nm : MeasurableSpace α\ninst✝ : TopologicalSpace β\nf : α → β\ns t : Set α\nhs : MeasurableSet s\nht : MeasurableSet t\nh : univ ⊆ s ∪ t\nhc : StronglyMeasurable fun a => f ↑a\nhd : StronglyMeasurable fun a => f ↑a\nn : ℕ\nx : β\ny : α\n⊢ y ∈\n (fun x =>\n if hx : x ∈ s then ↑(StronglyMeasurable.approx hc n) { val := x, property := hx }\n else ↑(StronglyMeasurable.approx hd n) { val := x, property := (_ : x ∈ t) }) ⁻¹'\n {x} ↔\n y ∈\n Subtype.val '' (↑(StronglyMeasurable.approx hc n) ⁻¹' {x}) ∪\n Subtype.val '' (↑(StronglyMeasurable.approx hd n) ⁻¹' {x}) \\ s", "tactic": "simp only [mem_union, mem_preimage, mem_singleton_iff, mem_image, SetCoe.exists,\n Subtype.coe_mk, exists_and_right, exists_eq_right, mem_diff]" }, { "state_after": "case pos\nα : Type u_1\nβ : Type u_2\nγ : Type ?u.197809\nι : Type ?u.197812\ninst✝¹ : Countable ι\nf✝ g : α → β\nm : MeasurableSpace α\ninst✝ : TopologicalSpace β\nf : α → β\ns t : Set α\nhs : MeasurableSet s\nht : MeasurableSet t\nh : univ ⊆ s ∪ t\nhc : StronglyMeasurable fun a => f ↑a\nhd : StronglyMeasurable fun a => f ↑a\nn : ℕ\nx : β\ny : α\nhy : y ∈ s\n⊢ (if hx : y ∈ s then ↑(StronglyMeasurable.approx hc n) { val := y, property := hx }\n else ↑(StronglyMeasurable.approx hd n) { val := y, property := (_ : y ∈ t) }) =\n x ↔\n (∃ x_1, ↑(StronglyMeasurable.approx hc n) { val := y, property := (_ : y ∈ s) } = x) ∨\n (∃ x_1, ↑(StronglyMeasurable.approx hd n) { val := y, property := (_ : y ∈ t) } = x) ∧ ¬y ∈ s\n\ncase neg\nα : Type u_1\nβ : Type u_2\nγ : Type ?u.197809\nι : Type ?u.197812\ninst✝¹ : Countable ι\nf✝ g : α → β\nm : MeasurableSpace α\ninst✝ : TopologicalSpace β\nf : α → β\ns t : Set α\nhs : MeasurableSet s\nht : MeasurableSet t\nh : univ ⊆ s ∪ t\nhc : StronglyMeasurable fun a => f ↑a\nhd : StronglyMeasurable fun a => f ↑a\nn : ℕ\nx : β\ny : α\nhy : ¬y ∈ s\n⊢ (if hx : y ∈ s then ↑(StronglyMeasurable.approx hc n) { val := y, property := hx }\n else ↑(StronglyMeasurable.approx hd n) { val := y, property := (_ : y ∈ t) }) =\n x ↔\n (∃ x_1, ↑(StronglyMeasurable.approx hc n) { val := y, property := (_ : y ∈ s) } = x) ∨\n (∃ x_1, ↑(StronglyMeasurable.approx hd n) { val := y, property := (_ : y ∈ t) } = x) ∧ ¬y ∈ s", "state_before": "case h.e'_3.h\nα : Type u_1\nβ : Type u_2\nγ : Type ?u.197809\nι : Type ?u.197812\ninst✝¹ : Countable ι\nf✝ g : α → β\nm : MeasurableSpace α\ninst✝ : TopologicalSpace β\nf : α → β\ns t : Set α\nhs : MeasurableSet s\nht : MeasurableSet t\nh : univ ⊆ s ∪ t\nhc : StronglyMeasurable fun a => f ↑a\nhd : StronglyMeasurable fun a => f ↑a\nn : ℕ\nx : β\ny : α\n⊢ (if hx : y ∈ s then ↑(StronglyMeasurable.approx hc n) { val := y, property := hx }\n else ↑(StronglyMeasurable.approx hd n) { val := y, property := (_ : y ∈ t) }) =\n x ↔\n (∃ x_1, ↑(StronglyMeasurable.approx hc n) { val := y, property := (_ : y ∈ s) } = x) ∨\n (∃ x_1, ↑(StronglyMeasurable.approx hd n) { val := y, property := (_ : y ∈ t) } = x) ∧ ¬y ∈ s", "tactic": "by_cases hy : y ∈ s" }, { "state_after": "case pos\nα : Type u_1\nβ : Type u_2\nγ : Type ?u.197809\nι : Type ?u.197812\ninst✝¹ : Countable ι\nf✝ g : α → β\nm : MeasurableSpace α\ninst✝ : TopologicalSpace β\nf : α → β\ns t : Set α\nhs : MeasurableSet s\nht : MeasurableSet t\nh : univ ⊆ s ∪ t\nhc : StronglyMeasurable fun a => f ↑a\nhd : StronglyMeasurable fun a => f ↑a\nn : ℕ\nx : β\ny : α\nhy : y ∈ s\n⊢ ↑(StronglyMeasurable.approx hc n) { val := y, property := hy } = x ↔\n (∃ x_1, ↑(StronglyMeasurable.approx hc n) { val := y, property := (_ : y ∈ s) } = x) ∨\n (∃ x_1, ↑(StronglyMeasurable.approx hd n) { val := y, property := (_ : y ∈ t) } = x) ∧ ¬y ∈ s", "state_before": "case pos\nα : Type u_1\nβ : Type u_2\nγ : Type ?u.197809\nι : Type ?u.197812\ninst✝¹ : Countable ι\nf✝ g : α → β\nm : MeasurableSpace α\ninst✝ : TopologicalSpace β\nf : α → β\ns t : Set α\nhs : MeasurableSet s\nht : MeasurableSet t\nh : univ ⊆ s ∪ t\nhc : StronglyMeasurable fun a => f ↑a\nhd : StronglyMeasurable fun a => f ↑a\nn : ℕ\nx : β\ny : α\nhy : y ∈ s\n⊢ (if hx : y ∈ s then ↑(StronglyMeasurable.approx hc n) { val := y, property := hx }\n else ↑(StronglyMeasurable.approx hd n) { val := y, property := (_ : y ∈ t) }) =\n x ↔\n (∃ x_1, ↑(StronglyMeasurable.approx hc n) { val := y, property := (_ : y ∈ s) } = x) ∨\n (∃ x_1, ↑(StronglyMeasurable.approx hd n) { val := y, property := (_ : y ∈ t) } = x) ∧ ¬y ∈ s", "tactic": "rw [dif_pos hy]" }, { "state_after": "no goals", "state_before": "case pos\nα : Type u_1\nβ : Type u_2\nγ : Type ?u.197809\nι : Type ?u.197812\ninst✝¹ : Countable ι\nf✝ g : α → β\nm : MeasurableSpace α\ninst✝ : TopologicalSpace β\nf : α → β\ns t : Set α\nhs : MeasurableSet s\nht : MeasurableSet t\nh : univ ⊆ s ∪ t\nhc : StronglyMeasurable fun a => f ↑a\nhd : StronglyMeasurable fun a => f ↑a\nn : ℕ\nx : β\ny : α\nhy : y ∈ s\n⊢ ↑(StronglyMeasurable.approx hc n) { val := y, property := hy } = x ↔\n (∃ x_1, ↑(StronglyMeasurable.approx hc n) { val := y, property := (_ : y ∈ s) } = x) ∨\n (∃ x_1, ↑(StronglyMeasurable.approx hd n) { val := y, property := (_ : y ∈ t) } = x) ∧ ¬y ∈ s", "tactic": "simp only [hy, exists_true_left, not_true, and_false_iff, or_false_iff]" }, { "state_after": "case neg\nα : Type u_1\nβ : Type u_2\nγ : Type ?u.197809\nι : Type ?u.197812\ninst✝¹ : Countable ι\nf✝ g : α → β\nm : MeasurableSpace α\ninst✝ : TopologicalSpace β\nf : α → β\ns t : Set α\nhs : MeasurableSet s\nht : MeasurableSet t\nh : univ ⊆ s ∪ t\nhc : StronglyMeasurable fun a => f ↑a\nhd : StronglyMeasurable fun a => f ↑a\nn : ℕ\nx : β\ny : α\nhy : ¬y ∈ s\n⊢ ↑(StronglyMeasurable.approx hd n) { val := y, property := (_ : y ∈ t) } = x ↔\n (∃ x_1, ↑(StronglyMeasurable.approx hc n) { val := y, property := (_ : y ∈ s) } = x) ∨\n (∃ x_1, ↑(StronglyMeasurable.approx hd n) { val := y, property := (_ : y ∈ t) } = x) ∧ ¬y ∈ s", "state_before": "case neg\nα : Type u_1\nβ : Type u_2\nγ : Type ?u.197809\nι : Type ?u.197812\ninst✝¹ : Countable ι\nf✝ g : α → β\nm : MeasurableSpace α\ninst✝ : TopologicalSpace β\nf : α → β\ns t : Set α\nhs : MeasurableSet s\nht : MeasurableSet t\nh : univ ⊆ s ∪ t\nhc : StronglyMeasurable fun a => f ↑a\nhd : StronglyMeasurable fun a => f ↑a\nn : ℕ\nx : β\ny : α\nhy : ¬y ∈ s\n⊢ (if hx : y ∈ s then ↑(StronglyMeasurable.approx hc n) { val := y, property := hx }\n else ↑(StronglyMeasurable.approx hd n) { val := y, property := (_ : y ∈ t) }) =\n x ↔\n (∃ x_1, ↑(StronglyMeasurable.approx hc n) { val := y, property := (_ : y ∈ s) } = x) ∨\n (∃ x_1, ↑(StronglyMeasurable.approx hd n) { val := y, property := (_ : y ∈ t) } = x) ∧ ¬y ∈ s", "tactic": "rw [dif_neg hy]" }, { "state_after": "case neg\nα : Type u_1\nβ : Type u_2\nγ : Type ?u.197809\nι : Type ?u.197812\ninst✝¹ : Countable ι\nf✝ g : α → β\nm : MeasurableSpace α\ninst✝ : TopologicalSpace β\nf : α → β\ns t : Set α\nhs : MeasurableSet s\nht : MeasurableSet t\nh : univ ⊆ s ∪ t\nhc : StronglyMeasurable fun a => f ↑a\nhd : StronglyMeasurable fun a => f ↑a\nn : ℕ\nx : β\ny : α\nhy : ¬y ∈ s\nA : y ∈ t\n⊢ ↑(StronglyMeasurable.approx hd n) { val := y, property := (_ : y ∈ t) } = x ↔\n (∃ x_1, ↑(StronglyMeasurable.approx hc n) { val := y, property := (_ : y ∈ s) } = x) ∨\n (∃ x_1, ↑(StronglyMeasurable.approx hd n) { val := y, property := (_ : y ∈ t) } = x) ∧ ¬y ∈ s", "state_before": "case neg\nα : Type u_1\nβ : Type u_2\nγ : Type ?u.197809\nι : Type ?u.197812\ninst✝¹ : Countable ι\nf✝ g : α → β\nm : MeasurableSpace α\ninst✝ : TopologicalSpace β\nf : α → β\ns t : Set α\nhs : MeasurableSet s\nht : MeasurableSet t\nh : univ ⊆ s ∪ t\nhc : StronglyMeasurable fun a => f ↑a\nhd : StronglyMeasurable fun a => f ↑a\nn : ℕ\nx : β\ny : α\nhy : ¬y ∈ s\n⊢ ↑(StronglyMeasurable.approx hd n) { val := y, property := (_ : y ∈ t) } = x ↔\n (∃ x_1, ↑(StronglyMeasurable.approx hc n) { val := y, property := (_ : y ∈ s) } = x) ∨\n (∃ x_1, ↑(StronglyMeasurable.approx hd n) { val := y, property := (_ : y ∈ t) } = x) ∧ ¬y ∈ s", "tactic": "have A : y ∈ t := by simpa [hy] using h (mem_univ y)" }, { "state_after": "no goals", "state_before": "case neg\nα : Type u_1\nβ : Type u_2\nγ : Type ?u.197809\nι : Type ?u.197812\ninst✝¹ : Countable ι\nf✝ g : α → β\nm : MeasurableSpace α\ninst✝ : TopologicalSpace β\nf : α → β\ns t : Set α\nhs : MeasurableSet s\nht : MeasurableSet t\nh : univ ⊆ s ∪ t\nhc : StronglyMeasurable fun a => f ↑a\nhd : StronglyMeasurable fun a => f ↑a\nn : ℕ\nx : β\ny : α\nhy : ¬y ∈ s\nA : y ∈ t\n⊢ ↑(StronglyMeasurable.approx hd n) { val := y, property := (_ : y ∈ t) } = x ↔\n (∃ x_1, ↑(StronglyMeasurable.approx hc n) { val := y, property := (_ : y ∈ s) } = x) ∨\n (∃ x_1, ↑(StronglyMeasurable.approx hd n) { val := y, property := (_ : y ∈ t) } = x) ∧ ¬y ∈ s", "tactic": "simp only [A, hy, false_or_iff, IsEmpty.exists_iff, not_false_iff, and_true_iff,\n exists_true_left]" }, { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type u_2\nγ : Type ?u.197809\nι : Type ?u.197812\ninst✝¹ : Countable ι\nf✝ g : α → β\nm : MeasurableSpace α\ninst✝ : TopologicalSpace β\nf : α → β\ns t : Set α\nhs : MeasurableSet s\nht : MeasurableSet t\nh : univ ⊆ s ∪ t\nhc : StronglyMeasurable fun a => f ↑a\nhd : StronglyMeasurable fun a => f ↑a\nn : ℕ\nx : β\ny : α\nhy : ¬y ∈ s\n⊢ y ∈ t", "tactic": "simpa [hy] using h (mem_univ y)" }, { "state_after": "α : Type u_1\nβ : Type u_2\nγ : Type ?u.197809\nι : Type ?u.197812\ninst✝¹ : Countable ι\nf✝ g : α → β\nm : MeasurableSpace α\ninst✝ : TopologicalSpace β\nf : α → β\ns t : Set α\nhs : MeasurableSet s\nht : MeasurableSet t\nh : univ ⊆ s ∪ t\nhc : StronglyMeasurable fun a => f ↑a\nhd : StronglyMeasurable fun a => f ↑a\nn : ℕ\n⊢ (range fun x =>\n if hx : x ∈ s then ↑(StronglyMeasurable.approx hc n) { val := x, property := hx }\n else ↑(StronglyMeasurable.approx hd n) { val := x, property := (_ : x ∈ t) }) ⊆\n range ↑(StronglyMeasurable.approx hc n) ∪ range ↑(StronglyMeasurable.approx hd n)", "state_before": "α : Type u_1\nβ : Type u_2\nγ : Type ?u.197809\nι : Type ?u.197812\ninst✝¹ : Countable ι\nf✝ g : α → β\nm : MeasurableSpace α\ninst✝ : TopologicalSpace β\nf : α → β\ns t : Set α\nhs : MeasurableSet s\nht : MeasurableSet t\nh : univ ⊆ s ∪ t\nhc : StronglyMeasurable fun a => f ↑a\nhd : StronglyMeasurable fun a => f ↑a\nn : ℕ\n⊢ Set.Finite\n (range fun x =>\n if hx : x ∈ s then ↑(StronglyMeasurable.approx hc n) { val := x, property := hx }\n else ↑(StronglyMeasurable.approx hd n) { val := x, property := (_ : x ∈ t) })", "tactic": "apply ((hc.approx n).finite_range.union (hd.approx n).finite_range).subset" }, { "state_after": "case intro\nα : Type u_1\nβ : Type u_2\nγ : Type ?u.197809\nι : Type ?u.197812\ninst✝¹ : Countable ι\nf✝ g : α → β\nm : MeasurableSpace α\ninst✝ : TopologicalSpace β\nf : α → β\ns t : Set α\nhs : MeasurableSet s\nht : MeasurableSet t\nh : univ ⊆ s ∪ t\nhc : StronglyMeasurable fun a => f ↑a\nhd : StronglyMeasurable fun a => f ↑a\nn : ℕ\ny : α\n⊢ (fun x =>\n if hx : x ∈ s then ↑(StronglyMeasurable.approx hc n) { val := x, property := hx }\n else ↑(StronglyMeasurable.approx hd n) { val := x, property := (_ : x ∈ t) })\n y ∈\n range ↑(StronglyMeasurable.approx hc n) ∪ range ↑(StronglyMeasurable.approx hd n)", "state_before": "α : Type u_1\nβ : Type u_2\nγ : Type ?u.197809\nι : Type ?u.197812\ninst✝¹ : Countable ι\nf✝ g : α → β\nm : MeasurableSpace α\ninst✝ : TopologicalSpace β\nf : α → β\ns t : Set α\nhs : MeasurableSet s\nht : MeasurableSet t\nh : univ ⊆ s ∪ t\nhc : StronglyMeasurable fun a => f ↑a\nhd : StronglyMeasurable fun a => f ↑a\nn : ℕ\n⊢ (range fun x =>\n if hx : x ∈ s then ↑(StronglyMeasurable.approx hc n) { val := x, property := hx }\n else ↑(StronglyMeasurable.approx hd n) { val := x, property := (_ : x ∈ t) }) ⊆\n range ↑(StronglyMeasurable.approx hc n) ∪ range ↑(StronglyMeasurable.approx hd n)", "tactic": "rintro - ⟨y, rfl⟩" }, { "state_after": "case intro\nα : Type u_1\nβ : Type u_2\nγ : Type ?u.197809\nι : Type ?u.197812\ninst✝¹ : Countable ι\nf✝ g : α → β\nm : MeasurableSpace α\ninst✝ : TopologicalSpace β\nf : α → β\ns t : Set α\nhs : MeasurableSet s\nht : MeasurableSet t\nh : univ ⊆ s ∪ t\nhc : StronglyMeasurable fun a => f ↑a\nhd : StronglyMeasurable fun a => f ↑a\nn : ℕ\ny : α\n⊢ (if hx : y ∈ s then ↑(StronglyMeasurable.approx hc n) { val := y, property := hx }\n else ↑(StronglyMeasurable.approx hd n) { val := y, property := (_ : y ∈ t) }) ∈\n range ↑(StronglyMeasurable.approx hc n) ∪ range ↑(StronglyMeasurable.approx hd n)", "state_before": "case intro\nα : Type u_1\nβ : Type u_2\nγ : Type ?u.197809\nι : Type ?u.197812\ninst✝¹ : Countable ι\nf✝ g : α → β\nm : MeasurableSpace α\ninst✝ : TopologicalSpace β\nf : α → β\ns t : Set α\nhs : MeasurableSet s\nht : MeasurableSet t\nh : univ ⊆ s ∪ t\nhc : StronglyMeasurable fun a => f ↑a\nhd : StronglyMeasurable fun a => f ↑a\nn : ℕ\ny : α\n⊢ (fun x =>\n if hx : x ∈ s then ↑(StronglyMeasurable.approx hc n) { val := x, property := hx }\n else ↑(StronglyMeasurable.approx hd n) { val := x, property := (_ : x ∈ t) })\n y ∈\n range ↑(StronglyMeasurable.approx hc n) ∪ range ↑(StronglyMeasurable.approx hd n)", "tactic": "dsimp" }, { "state_after": "case pos\nα : Type u_1\nβ : Type u_2\nγ : Type ?u.197809\nι : Type ?u.197812\ninst✝¹ : Countable ι\nf✝ g : α → β\nm : MeasurableSpace α\ninst✝ : TopologicalSpace β\nf : α → β\ns t : Set α\nhs : MeasurableSet s\nht : MeasurableSet t\nh : univ ⊆ s ∪ t\nhc : StronglyMeasurable fun a => f ↑a\nhd : StronglyMeasurable fun a => f ↑a\nn : ℕ\ny : α\nhy : y ∈ s\n⊢ (if hx : y ∈ s then ↑(StronglyMeasurable.approx hc n) { val := y, property := hx }\n else ↑(StronglyMeasurable.approx hd n) { val := y, property := (_ : y ∈ t) }) ∈\n range ↑(StronglyMeasurable.approx hc n) ∪ range ↑(StronglyMeasurable.approx hd n)\n\ncase neg\nα : Type u_1\nβ : Type u_2\nγ : Type ?u.197809\nι : Type ?u.197812\ninst✝¹ : Countable ι\nf✝ g : α → β\nm : MeasurableSpace α\ninst✝ : TopologicalSpace β\nf : α → β\ns t : Set α\nhs : MeasurableSet s\nht : MeasurableSet t\nh : univ ⊆ s ∪ t\nhc : StronglyMeasurable fun a => f ↑a\nhd : StronglyMeasurable fun a => f ↑a\nn : ℕ\ny : α\nhy : ¬y ∈ s\n⊢ (if hx : y ∈ s then ↑(StronglyMeasurable.approx hc n) { val := y, property := hx }\n else ↑(StronglyMeasurable.approx hd n) { val := y, property := (_ : y ∈ t) }) ∈\n range ↑(StronglyMeasurable.approx hc n) ∪ range ↑(StronglyMeasurable.approx hd n)", "state_before": "case intro\nα : Type u_1\nβ : Type u_2\nγ : Type ?u.197809\nι : Type ?u.197812\ninst✝¹ : Countable ι\nf✝ g : α → β\nm : MeasurableSpace α\ninst✝ : TopologicalSpace β\nf : α → β\ns t : Set α\nhs : MeasurableSet s\nht : MeasurableSet t\nh : univ ⊆ s ∪ t\nhc : StronglyMeasurable fun a => f ↑a\nhd : StronglyMeasurable fun a => f ↑a\nn : ℕ\ny : α\n⊢ (if hx : y ∈ s then ↑(StronglyMeasurable.approx hc n) { val := y, property := hx }\n else ↑(StronglyMeasurable.approx hd n) { val := y, property := (_ : y ∈ t) }) ∈\n range ↑(StronglyMeasurable.approx hc n) ∪ range ↑(StronglyMeasurable.approx hd n)", "tactic": "by_cases hy : y ∈ s" }, { "state_after": "case pos.h\nα : Type u_1\nβ : Type u_2\nγ : Type ?u.197809\nι : Type ?u.197812\ninst✝¹ : Countable ι\nf✝ g : α → β\nm : MeasurableSpace α\ninst✝ : TopologicalSpace β\nf : α → β\ns t : Set α\nhs : MeasurableSet s\nht : MeasurableSet t\nh : univ ⊆ s ∪ t\nhc : StronglyMeasurable fun a => f ↑a\nhd : StronglyMeasurable fun a => f ↑a\nn : ℕ\ny : α\nhy : y ∈ s\n⊢ (if hx : y ∈ s then ↑(StronglyMeasurable.approx hc n) { val := y, property := hx }\n else ↑(StronglyMeasurable.approx hd n) { val := y, property := (_ : y ∈ t) }) ∈\n range ↑(StronglyMeasurable.approx hc n)", "state_before": "case pos\nα : Type u_1\nβ : Type u_2\nγ : Type ?u.197809\nι : Type ?u.197812\ninst✝¹ : Countable ι\nf✝ g : α → β\nm : MeasurableSpace α\ninst✝ : TopologicalSpace β\nf : α → β\ns t : Set α\nhs : MeasurableSet s\nht : MeasurableSet t\nh : univ ⊆ s ∪ t\nhc : StronglyMeasurable fun a => f ↑a\nhd : StronglyMeasurable fun a => f ↑a\nn : ℕ\ny : α\nhy : y ∈ s\n⊢ (if hx : y ∈ s then ↑(StronglyMeasurable.approx hc n) { val := y, property := hx }\n else ↑(StronglyMeasurable.approx hd n) { val := y, property := (_ : y ∈ t) }) ∈\n range ↑(StronglyMeasurable.approx hc n) ∪ range ↑(StronglyMeasurable.approx hd n)", "tactic": "left" }, { "state_after": "case pos.h\nα : Type u_1\nβ : Type u_2\nγ : Type ?u.197809\nι : Type ?u.197812\ninst✝¹ : Countable ι\nf✝ g : α → β\nm : MeasurableSpace α\ninst✝ : TopologicalSpace β\nf : α → β\ns t : Set α\nhs : MeasurableSet s\nht : MeasurableSet t\nh : univ ⊆ s ∪ t\nhc : StronglyMeasurable fun a => f ↑a\nhd : StronglyMeasurable fun a => f ↑a\nn : ℕ\ny : α\nhy : y ∈ s\n⊢ ↑(StronglyMeasurable.approx hc n) { val := y, property := hy } ∈ range ↑(StronglyMeasurable.approx hc n)", "state_before": "case pos.h\nα : Type u_1\nβ : Type u_2\nγ : Type ?u.197809\nι : Type ?u.197812\ninst✝¹ : Countable ι\nf✝ g : α → β\nm : MeasurableSpace α\ninst✝ : TopologicalSpace β\nf : α → β\ns t : Set α\nhs : MeasurableSet s\nht : MeasurableSet t\nh : univ ⊆ s ∪ t\nhc : StronglyMeasurable fun a => f ↑a\nhd : StronglyMeasurable fun a => f ↑a\nn : ℕ\ny : α\nhy : y ∈ s\n⊢ (if hx : y ∈ s then ↑(StronglyMeasurable.approx hc n) { val := y, property := hx }\n else ↑(StronglyMeasurable.approx hd n) { val := y, property := (_ : y ∈ t) }) ∈\n range ↑(StronglyMeasurable.approx hc n)", "tactic": "rw [dif_pos hy]" }, { "state_after": "no goals", "state_before": "case pos.h\nα : Type u_1\nβ : Type u_2\nγ : Type ?u.197809\nι : Type ?u.197812\ninst✝¹ : Countable ι\nf✝ g : α → β\nm : MeasurableSpace α\ninst✝ : TopologicalSpace β\nf : α → β\ns t : Set α\nhs : MeasurableSet s\nht : MeasurableSet t\nh : univ ⊆ s ∪ t\nhc : StronglyMeasurable fun a => f ↑a\nhd : StronglyMeasurable fun a => f ↑a\nn : ℕ\ny : α\nhy : y ∈ s\n⊢ ↑(StronglyMeasurable.approx hc n) { val := y, property := hy } ∈ range ↑(StronglyMeasurable.approx hc n)", "tactic": "exact mem_range_self _" }, { "state_after": "case neg.h\nα : Type u_1\nβ : Type u_2\nγ : Type ?u.197809\nι : Type ?u.197812\ninst✝¹ : Countable ι\nf✝ g : α → β\nm : MeasurableSpace α\ninst✝ : TopologicalSpace β\nf : α → β\ns t : Set α\nhs : MeasurableSet s\nht : MeasurableSet t\nh : univ ⊆ s ∪ t\nhc : StronglyMeasurable fun a => f ↑a\nhd : StronglyMeasurable fun a => f ↑a\nn : ℕ\ny : α\nhy : ¬y ∈ s\n⊢ (if hx : y ∈ s then ↑(StronglyMeasurable.approx hc n) { val := y, property := hx }\n else ↑(StronglyMeasurable.approx hd n) { val := y, property := (_ : y ∈ t) }) ∈\n range ↑(StronglyMeasurable.approx hd n)", "state_before": "case neg\nα : Type u_1\nβ : Type u_2\nγ : Type ?u.197809\nι : Type ?u.197812\ninst✝¹ : Countable ι\nf✝ g : α → β\nm : MeasurableSpace α\ninst✝ : TopologicalSpace β\nf : α → β\ns t : Set α\nhs : MeasurableSet s\nht : MeasurableSet t\nh : univ ⊆ s ∪ t\nhc : StronglyMeasurable fun a => f ↑a\nhd : StronglyMeasurable fun a => f ↑a\nn : ℕ\ny : α\nhy : ¬y ∈ s\n⊢ (if hx : y ∈ s then ↑(StronglyMeasurable.approx hc n) { val := y, property := hx }\n else ↑(StronglyMeasurable.approx hd n) { val := y, property := (_ : y ∈ t) }) ∈\n range ↑(StronglyMeasurable.approx hc n) ∪ range ↑(StronglyMeasurable.approx hd n)", "tactic": "right" }, { "state_after": "case neg.h\nα : Type u_1\nβ : Type u_2\nγ : Type ?u.197809\nι : Type ?u.197812\ninst✝¹ : Countable ι\nf✝ g : α → β\nm : MeasurableSpace α\ninst✝ : TopologicalSpace β\nf : α → β\ns t : Set α\nhs : MeasurableSet s\nht : MeasurableSet t\nh : univ ⊆ s ∪ t\nhc : StronglyMeasurable fun a => f ↑a\nhd : StronglyMeasurable fun a => f ↑a\nn : ℕ\ny : α\nhy : ¬y ∈ s\n⊢ ↑(StronglyMeasurable.approx hd n) { val := y, property := (_ : y ∈ t) } ∈ range ↑(StronglyMeasurable.approx hd n)", "state_before": "case neg.h\nα : Type u_1\nβ : Type u_2\nγ : Type ?u.197809\nι : Type ?u.197812\ninst✝¹ : Countable ι\nf✝ g : α → β\nm : MeasurableSpace α\ninst✝ : TopologicalSpace β\nf : α → β\ns t : Set α\nhs : MeasurableSet s\nht : MeasurableSet t\nh : univ ⊆ s ∪ t\nhc : StronglyMeasurable fun a => f ↑a\nhd : StronglyMeasurable fun a => f ↑a\nn : ℕ\ny : α\nhy : ¬y ∈ s\n⊢ (if hx : y ∈ s then ↑(StronglyMeasurable.approx hc n) { val := y, property := hx }\n else ↑(StronglyMeasurable.approx hd n) { val := y, property := (_ : y ∈ t) }) ∈\n range ↑(StronglyMeasurable.approx hd n)", "tactic": "rw [dif_neg hy]" }, { "state_after": "no goals", "state_before": "case neg.h\nα : Type u_1\nβ : Type u_2\nγ : Type ?u.197809\nι : Type ?u.197812\ninst✝¹ : Countable ι\nf✝ g : α → β\nm : MeasurableSpace α\ninst✝ : TopologicalSpace β\nf : α → β\ns t : Set α\nhs : MeasurableSet s\nht : MeasurableSet t\nh : univ ⊆ s ∪ t\nhc : StronglyMeasurable fun a => f ↑a\nhd : StronglyMeasurable fun a => f ↑a\nn : ℕ\ny : α\nhy : ¬y ∈ s\n⊢ ↑(StronglyMeasurable.approx hd n) { val := y, property := (_ : y ∈ t) } ∈ range ↑(StronglyMeasurable.approx hd n)", "tactic": "exact mem_range_self _" }, { "state_after": "case h.e'_3\nα : Type u_1\nβ : Type u_2\nγ : Type ?u.197809\nι : Type ?u.197812\ninst✝¹ : Countable ι\nf✝¹ g : α → β\nm : MeasurableSpace α\ninst✝ : TopologicalSpace β\nf✝ : α → β\ns t : Set α\nhs : MeasurableSet s\nht : MeasurableSet t\nh : univ ⊆ s ∪ t\nhc : StronglyMeasurable fun a => f✝ ↑a\nhd : StronglyMeasurable fun a => f✝ ↑a\nf : ℕ → α →ₛ β :=\n fun n =>\n {\n toFun := fun x =>\n if hx : x ∈ s then ↑(StronglyMeasurable.approx hc n) { val := x, property := hx }\n else ↑(StronglyMeasurable.approx hd n) { val := x, property := (_ : x ∈ t) },\n measurableSet_fiber' :=\n (_ :\n ∀ (x : β),\n MeasurableSet\n ((fun x =>\n if hx : x ∈ s then ↑(StronglyMeasurable.approx hc n) { val := x, property := hx }\n else ↑(StronglyMeasurable.approx hd n) { val := x, property := (_ : x ∈ t) }) ⁻¹'\n {x})),\n finite_range' :=\n (_ :\n Set.Finite\n (range fun x =>\n if hx : x ∈ s then ↑(StronglyMeasurable.approx hc n) { val := x, property := hx }\n else ↑(StronglyMeasurable.approx hd n) { val := x, property := (_ : x ∈ t) })) }\ny : α\nhy : y ∈ s\n⊢ (fun n => ↑(f n) y) = fun n => ↑(StronglyMeasurable.approx hc n) { val := y, property := hy }", "state_before": "case pos\nα : Type u_1\nβ : Type u_2\nγ : Type ?u.197809\nι : Type ?u.197812\ninst✝¹ : Countable ι\nf✝¹ g : α → β\nm : MeasurableSpace α\ninst✝ : TopologicalSpace β\nf✝ : α → β\ns t : Set α\nhs : MeasurableSet s\nht : MeasurableSet t\nh : univ ⊆ s ∪ t\nhc : StronglyMeasurable fun a => f✝ ↑a\nhd : StronglyMeasurable fun a => f✝ ↑a\nf : ℕ → α →ₛ β :=\n fun n =>\n {\n toFun := fun x =>\n if hx : x ∈ s then ↑(StronglyMeasurable.approx hc n) { val := x, property := hx }\n else ↑(StronglyMeasurable.approx hd n) { val := x, property := (_ : x ∈ t) },\n measurableSet_fiber' :=\n (_ :\n ∀ (x : β),\n MeasurableSet\n ((fun x =>\n if hx : x ∈ s then ↑(StronglyMeasurable.approx hc n) { val := x, property := hx }\n else ↑(StronglyMeasurable.approx hd n) { val := x, property := (_ : x ∈ t) }) ⁻¹'\n {x})),\n finite_range' :=\n (_ :\n Set.Finite\n (range fun x =>\n if hx : x ∈ s then ↑(StronglyMeasurable.approx hc n) { val := x, property := hx }\n else ↑(StronglyMeasurable.approx hd n) { val := x, property := (_ : x ∈ t) })) }\ny : α\nhy : y ∈ s\n⊢ Tendsto (fun n => ↑(f n) y) atTop (𝓝 (f✝ y))", "tactic": "convert hc.tendsto_approx ⟨y, hy⟩ using 1" }, { "state_after": "case h.e'_3.h\nα : Type u_1\nβ : Type u_2\nγ : Type ?u.197809\nι : Type ?u.197812\ninst✝¹ : Countable ι\nf✝¹ g : α → β\nm : MeasurableSpace α\ninst✝ : TopologicalSpace β\nf✝ : α → β\ns t : Set α\nhs : MeasurableSet s\nht : MeasurableSet t\nh : univ ⊆ s ∪ t\nhc : StronglyMeasurable fun a => f✝ ↑a\nhd : StronglyMeasurable fun a => f✝ ↑a\nf : ℕ → α →ₛ β :=\n fun n =>\n {\n toFun := fun x =>\n if hx : x ∈ s then ↑(StronglyMeasurable.approx hc n) { val := x, property := hx }\n else ↑(StronglyMeasurable.approx hd n) { val := x, property := (_ : x ∈ t) },\n measurableSet_fiber' :=\n (_ :\n ∀ (x : β),\n MeasurableSet\n ((fun x =>\n if hx : x ∈ s then ↑(StronglyMeasurable.approx hc n) { val := x, property := hx }\n else ↑(StronglyMeasurable.approx hd n) { val := x, property := (_ : x ∈ t) }) ⁻¹'\n {x})),\n finite_range' :=\n (_ :\n Set.Finite\n (range fun x =>\n if hx : x ∈ s then ↑(StronglyMeasurable.approx hc n) { val := x, property := hx }\n else ↑(StronglyMeasurable.approx hd n) { val := x, property := (_ : x ∈ t) })) }\ny : α\nhy : y ∈ s\nn : ℕ\n⊢ ↑(f n) y = ↑(StronglyMeasurable.approx hc n) { val := y, property := hy }", "state_before": "case h.e'_3\nα : Type u_1\nβ : Type u_2\nγ : Type ?u.197809\nι : Type ?u.197812\ninst✝¹ : Countable ι\nf✝¹ g : α → β\nm : MeasurableSpace α\ninst✝ : TopologicalSpace β\nf✝ : α → β\ns t : Set α\nhs : MeasurableSet s\nht : MeasurableSet t\nh : univ ⊆ s ∪ t\nhc : StronglyMeasurable fun a => f✝ ↑a\nhd : StronglyMeasurable fun a => f✝ ↑a\nf : ℕ → α →ₛ β :=\n fun n =>\n {\n toFun := fun x =>\n if hx : x ∈ s then ↑(StronglyMeasurable.approx hc n) { val := x, property := hx }\n else ↑(StronglyMeasurable.approx hd n) { val := x, property := (_ : x ∈ t) },\n measurableSet_fiber' :=\n (_ :\n ∀ (x : β),\n MeasurableSet\n ((fun x =>\n if hx : x ∈ s then ↑(StronglyMeasurable.approx hc n) { val := x, property := hx }\n else ↑(StronglyMeasurable.approx hd n) { val := x, property := (_ : x ∈ t) }) ⁻¹'\n {x})),\n finite_range' :=\n (_ :\n Set.Finite\n (range fun x =>\n if hx : x ∈ s then ↑(StronglyMeasurable.approx hc n) { val := x, property := hx }\n else ↑(StronglyMeasurable.approx hd n) { val := x, property := (_ : x ∈ t) })) }\ny : α\nhy : y ∈ s\n⊢ (fun n => ↑(f n) y) = fun n => ↑(StronglyMeasurable.approx hc n) { val := y, property := hy }", "tactic": "ext1 n" }, { "state_after": "no goals", "state_before": "case h.e'_3.h\nα : Type u_1\nβ : Type u_2\nγ : Type ?u.197809\nι : Type ?u.197812\ninst✝¹ : Countable ι\nf✝¹ g : α → β\nm : MeasurableSpace α\ninst✝ : TopologicalSpace β\nf✝ : α → β\ns t : Set α\nhs : MeasurableSet s\nht : MeasurableSet t\nh : univ ⊆ s ∪ t\nhc : StronglyMeasurable fun a => f✝ ↑a\nhd : StronglyMeasurable fun a => f✝ ↑a\nf : ℕ → α →ₛ β :=\n fun n =>\n {\n toFun := fun x =>\n if hx : x ∈ s then ↑(StronglyMeasurable.approx hc n) { val := x, property := hx }\n else ↑(StronglyMeasurable.approx hd n) { val := x, property := (_ : x ∈ t) },\n measurableSet_fiber' :=\n (_ :\n ∀ (x : β),\n MeasurableSet\n ((fun x =>\n if hx : x ∈ s then ↑(StronglyMeasurable.approx hc n) { val := x, property := hx }\n else ↑(StronglyMeasurable.approx hd n) { val := x, property := (_ : x ∈ t) }) ⁻¹'\n {x})),\n finite_range' :=\n (_ :\n Set.Finite\n (range fun x =>\n if hx : x ∈ s then ↑(StronglyMeasurable.approx hc n) { val := x, property := hx }\n else ↑(StronglyMeasurable.approx hd n) { val := x, property := (_ : x ∈ t) })) }\ny : α\nhy : y ∈ s\nn : ℕ\n⊢ ↑(f n) y = ↑(StronglyMeasurable.approx hc n) { val := y, property := hy }", "tactic": "simp only [dif_pos hy, SimpleFunc.apply_mk]" }, { "state_after": "case neg\nα : Type u_1\nβ : Type u_2\nγ : Type ?u.197809\nι : Type ?u.197812\ninst✝¹ : Countable ι\nf✝¹ g : α → β\nm : MeasurableSpace α\ninst✝ : TopologicalSpace β\nf✝ : α → β\ns t : Set α\nhs : MeasurableSet s\nht : MeasurableSet t\nh : univ ⊆ s ∪ t\nhc : StronglyMeasurable fun a => f✝ ↑a\nhd : StronglyMeasurable fun a => f✝ ↑a\nf : ℕ → α →ₛ β :=\n fun n =>\n {\n toFun := fun x =>\n if hx : x ∈ s then ↑(StronglyMeasurable.approx hc n) { val := x, property := hx }\n else ↑(StronglyMeasurable.approx hd n) { val := x, property := (_ : x ∈ t) },\n measurableSet_fiber' :=\n (_ :\n ∀ (x : β),\n MeasurableSet\n ((fun x =>\n if hx : x ∈ s then ↑(StronglyMeasurable.approx hc n) { val := x, property := hx }\n else ↑(StronglyMeasurable.approx hd n) { val := x, property := (_ : x ∈ t) }) ⁻¹'\n {x})),\n finite_range' :=\n (_ :\n Set.Finite\n (range fun x =>\n if hx : x ∈ s then ↑(StronglyMeasurable.approx hc n) { val := x, property := hx }\n else ↑(StronglyMeasurable.approx hd n) { val := x, property := (_ : x ∈ t) })) }\ny : α\nhy : ¬y ∈ s\nA : y ∈ t\n⊢ Tendsto (fun n => ↑(f n) y) atTop (𝓝 (f✝ y))", "state_before": "case neg\nα : Type u_1\nβ : Type u_2\nγ : Type ?u.197809\nι : Type ?u.197812\ninst✝¹ : Countable ι\nf✝¹ g : α → β\nm : MeasurableSpace α\ninst✝ : TopologicalSpace β\nf✝ : α → β\ns t : Set α\nhs : MeasurableSet s\nht : MeasurableSet t\nh : univ ⊆ s ∪ t\nhc : StronglyMeasurable fun a => f✝ ↑a\nhd : StronglyMeasurable fun a => f✝ ↑a\nf : ℕ → α →ₛ β :=\n fun n =>\n {\n toFun := fun x =>\n if hx : x ∈ s then ↑(StronglyMeasurable.approx hc n) { val := x, property := hx }\n else ↑(StronglyMeasurable.approx hd n) { val := x, property := (_ : x ∈ t) },\n measurableSet_fiber' :=\n (_ :\n ∀ (x : β),\n MeasurableSet\n ((fun x =>\n if hx : x ∈ s then ↑(StronglyMeasurable.approx hc n) { val := x, property := hx }\n else ↑(StronglyMeasurable.approx hd n) { val := x, property := (_ : x ∈ t) }) ⁻¹'\n {x})),\n finite_range' :=\n (_ :\n Set.Finite\n (range fun x =>\n if hx : x ∈ s then ↑(StronglyMeasurable.approx hc n) { val := x, property := hx }\n else ↑(StronglyMeasurable.approx hd n) { val := x, property := (_ : x ∈ t) })) }\ny : α\nhy : ¬y ∈ s\n⊢ Tendsto (fun n => ↑(f n) y) atTop (𝓝 (f✝ y))", "tactic": "have A : y ∈ t := by simpa [hy] using h (mem_univ y)" }, { "state_after": "case h.e'_3\nα : Type u_1\nβ : Type u_2\nγ : Type ?u.197809\nι : Type ?u.197812\ninst✝¹ : Countable ι\nf✝¹ g : α → β\nm : MeasurableSpace α\ninst✝ : TopologicalSpace β\nf✝ : α → β\ns t : Set α\nhs : MeasurableSet s\nht : MeasurableSet t\nh : univ ⊆ s ∪ t\nhc : StronglyMeasurable fun a => f✝ ↑a\nhd : StronglyMeasurable fun a => f✝ ↑a\nf : ℕ → α →ₛ β :=\n fun n =>\n {\n toFun := fun x =>\n if hx : x ∈ s then ↑(StronglyMeasurable.approx hc n) { val := x, property := hx }\n else ↑(StronglyMeasurable.approx hd n) { val := x, property := (_ : x ∈ t) },\n measurableSet_fiber' :=\n (_ :\n ∀ (x : β),\n MeasurableSet\n ((fun x =>\n if hx : x ∈ s then ↑(StronglyMeasurable.approx hc n) { val := x, property := hx }\n else ↑(StronglyMeasurable.approx hd n) { val := x, property := (_ : x ∈ t) }) ⁻¹'\n {x})),\n finite_range' :=\n (_ :\n Set.Finite\n (range fun x =>\n if hx : x ∈ s then ↑(StronglyMeasurable.approx hc n) { val := x, property := hx }\n else ↑(StronglyMeasurable.approx hd n) { val := x, property := (_ : x ∈ t) })) }\ny : α\nhy : ¬y ∈ s\nA : y ∈ t\n⊢ (fun n => ↑(f n) y) = fun n => ↑(StronglyMeasurable.approx hd n) { val := y, property := A }", "state_before": "case neg\nα : Type u_1\nβ : Type u_2\nγ : Type ?u.197809\nι : Type ?u.197812\ninst✝¹ : Countable ι\nf✝¹ g : α → β\nm : MeasurableSpace α\ninst✝ : TopologicalSpace β\nf✝ : α → β\ns t : Set α\nhs : MeasurableSet s\nht : MeasurableSet t\nh : univ ⊆ s ∪ t\nhc : StronglyMeasurable fun a => f✝ ↑a\nhd : StronglyMeasurable fun a => f✝ ↑a\nf : ℕ → α →ₛ β :=\n fun n =>\n {\n toFun := fun x =>\n if hx : x ∈ s then ↑(StronglyMeasurable.approx hc n) { val := x, property := hx }\n else ↑(StronglyMeasurable.approx hd n) { val := x, property := (_ : x ∈ t) },\n measurableSet_fiber' :=\n (_ :\n ∀ (x : β),\n MeasurableSet\n ((fun x =>\n if hx : x ∈ s then ↑(StronglyMeasurable.approx hc n) { val := x, property := hx }\n else ↑(StronglyMeasurable.approx hd n) { val := x, property := (_ : x ∈ t) }) ⁻¹'\n {x})),\n finite_range' :=\n (_ :\n Set.Finite\n (range fun x =>\n if hx : x ∈ s then ↑(StronglyMeasurable.approx hc n) { val := x, property := hx }\n else ↑(StronglyMeasurable.approx hd n) { val := x, property := (_ : x ∈ t) })) }\ny : α\nhy : ¬y ∈ s\nA : y ∈ t\n⊢ Tendsto (fun n => ↑(f n) y) atTop (𝓝 (f✝ y))", "tactic": "convert hd.tendsto_approx ⟨y, A⟩ using 1" }, { "state_after": "case h.e'_3.h\nα : Type u_1\nβ : Type u_2\nγ : Type ?u.197809\nι : Type ?u.197812\ninst✝¹ : Countable ι\nf✝¹ g : α → β\nm : MeasurableSpace α\ninst✝ : TopologicalSpace β\nf✝ : α → β\ns t : Set α\nhs : MeasurableSet s\nht : MeasurableSet t\nh : univ ⊆ s ∪ t\nhc : StronglyMeasurable fun a => f✝ ↑a\nhd : StronglyMeasurable fun a => f✝ ↑a\nf : ℕ → α →ₛ β :=\n fun n =>\n {\n toFun := fun x =>\n if hx : x ∈ s then ↑(StronglyMeasurable.approx hc n) { val := x, property := hx }\n else ↑(StronglyMeasurable.approx hd n) { val := x, property := (_ : x ∈ t) },\n measurableSet_fiber' :=\n (_ :\n ∀ (x : β),\n MeasurableSet\n ((fun x =>\n if hx : x ∈ s then ↑(StronglyMeasurable.approx hc n) { val := x, property := hx }\n else ↑(StronglyMeasurable.approx hd n) { val := x, property := (_ : x ∈ t) }) ⁻¹'\n {x})),\n finite_range' :=\n (_ :\n Set.Finite\n (range fun x =>\n if hx : x ∈ s then ↑(StronglyMeasurable.approx hc n) { val := x, property := hx }\n else ↑(StronglyMeasurable.approx hd n) { val := x, property := (_ : x ∈ t) })) }\ny : α\nhy : ¬y ∈ s\nA : y ∈ t\nn : ℕ\n⊢ ↑(f n) y = ↑(StronglyMeasurable.approx hd n) { val := y, property := A }", "state_before": "case h.e'_3\nα : Type u_1\nβ : Type u_2\nγ : Type ?u.197809\nι : Type ?u.197812\ninst✝¹ : Countable ι\nf✝¹ g : α → β\nm : MeasurableSpace α\ninst✝ : TopologicalSpace β\nf✝ : α → β\ns t : Set α\nhs : MeasurableSet s\nht : MeasurableSet t\nh : univ ⊆ s ∪ t\nhc : StronglyMeasurable fun a => f✝ ↑a\nhd : StronglyMeasurable fun a => f✝ ↑a\nf : ℕ → α →ₛ β :=\n fun n =>\n {\n toFun := fun x =>\n if hx : x ∈ s then ↑(StronglyMeasurable.approx hc n) { val := x, property := hx }\n else ↑(StronglyMeasurable.approx hd n) { val := x, property := (_ : x ∈ t) },\n measurableSet_fiber' :=\n (_ :\n ∀ (x : β),\n MeasurableSet\n ((fun x =>\n if hx : x ∈ s then ↑(StronglyMeasurable.approx hc n) { val := x, property := hx }\n else ↑(StronglyMeasurable.approx hd n) { val := x, property := (_ : x ∈ t) }) ⁻¹'\n {x})),\n finite_range' :=\n (_ :\n Set.Finite\n (range fun x =>\n if hx : x ∈ s then ↑(StronglyMeasurable.approx hc n) { val := x, property := hx }\n else ↑(StronglyMeasurable.approx hd n) { val := x, property := (_ : x ∈ t) })) }\ny : α\nhy : ¬y ∈ s\nA : y ∈ t\n⊢ (fun n => ↑(f n) y) = fun n => ↑(StronglyMeasurable.approx hd n) { val := y, property := A }", "tactic": "ext1 n" }, { "state_after": "no goals", "state_before": "case h.e'_3.h\nα : Type u_1\nβ : Type u_2\nγ : Type ?u.197809\nι : Type ?u.197812\ninst✝¹ : Countable ι\nf✝¹ g : α → β\nm : MeasurableSpace α\ninst✝ : TopologicalSpace β\nf✝ : α → β\ns t : Set α\nhs : MeasurableSet s\nht : MeasurableSet t\nh : univ ⊆ s ∪ t\nhc : StronglyMeasurable fun a => f✝ ↑a\nhd : StronglyMeasurable fun a => f✝ ↑a\nf : ℕ → α →ₛ β :=\n fun n =>\n {\n toFun := fun x =>\n if hx : x ∈ s then ↑(StronglyMeasurable.approx hc n) { val := x, property := hx }\n else ↑(StronglyMeasurable.approx hd n) { val := x, property := (_ : x ∈ t) },\n measurableSet_fiber' :=\n (_ :\n ∀ (x : β),\n MeasurableSet\n ((fun x =>\n if hx : x ∈ s then ↑(StronglyMeasurable.approx hc n) { val := x, property := hx }\n else ↑(StronglyMeasurable.approx hd n) { val := x, property := (_ : x ∈ t) }) ⁻¹'\n {x})),\n finite_range' :=\n (_ :\n Set.Finite\n (range fun x =>\n if hx : x ∈ s then ↑(StronglyMeasurable.approx hc n) { val := x, property := hx }\n else ↑(StronglyMeasurable.approx hd n) { val := x, property := (_ : x ∈ t) })) }\ny : α\nhy : ¬y ∈ s\nA : y ∈ t\nn : ℕ\n⊢ ↑(f n) y = ↑(StronglyMeasurable.approx hd n) { val := y, property := A }", "tactic": "simp only [dif_neg hy, SimpleFunc.apply_mk]" }, { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type u_2\nγ : Type ?u.197809\nι : Type ?u.197812\ninst✝¹ : Countable ι\nf✝¹ g : α → β\nm : MeasurableSpace α\ninst✝ : TopologicalSpace β\nf✝ : α → β\ns t : Set α\nhs : MeasurableSet s\nht : MeasurableSet t\nh : univ ⊆ s ∪ t\nhc : StronglyMeasurable fun a => f✝ ↑a\nhd : StronglyMeasurable fun a => f✝ ↑a\nf : ℕ → α →ₛ β :=\n fun n =>\n {\n toFun := fun x =>\n if hx : x ∈ s then ↑(StronglyMeasurable.approx hc n) { val := x, property := hx }\n else ↑(StronglyMeasurable.approx hd n) { val := x, property := (_ : x ∈ t) },\n measurableSet_fiber' :=\n (_ :\n ∀ (x : β),\n MeasurableSet\n ((fun x =>\n if hx : x ∈ s then ↑(StronglyMeasurable.approx hc n) { val := x, property := hx }\n else ↑(StronglyMeasurable.approx hd n) { val := x, property := (_ : x ∈ t) }) ⁻¹'\n {x})),\n finite_range' :=\n (_ :\n Set.Finite\n (range fun x =>\n if hx : x ∈ s then ↑(StronglyMeasurable.approx hc n) { val := x, property := hx }\n else ↑(StronglyMeasurable.approx hd n) { val := x, property := (_ : x ∈ t) })) }\ny : α\nhy : ¬y ∈ s\n⊢ y ∈ t", "tactic": "simpa [hy] using h (mem_univ y)" } ]
[ 799, 50 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 757, 1 ]
Mathlib/Topology/ContinuousOn.lean
tendsto_nhds_of_tendsto_nhdsWithin
[]
[ 390, 34 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 388, 1 ]
Mathlib/Order/Filter/Ultrafilter.lean
Filter.tendsto_iff_ultrafilter
[ { "state_after": "no goals", "state_before": "α : Type u\nβ : Type v\nγ : Type ?u.52285\nf✝ : Filter α\ns : Set α\na : α\nf : α → β\nl₁ : Filter α\nl₂ : Filter β\n⊢ Tendsto f l₁ l₂ ↔ ∀ (g : Ultrafilter α), ↑g ≤ l₁ → Tendsto f (↑g) l₂", "tactic": "simpa only [tendsto_iff_comap] using le_iff_ultrafilter" } ]
[ 454, 58 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 452, 1 ]
Mathlib/Combinatorics/Quiver/SingleObj.lean
Quiver.SingleObj.toPrefunctor_symm_comp
[ { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type u_2\nγ : Type u_3\nf : SingleObj α ⥤q SingleObj β\ng : SingleObj β ⥤q SingleObj γ\n⊢ ↑toPrefunctor.symm (f ⋙q g) = ↑toPrefunctor.symm g ∘ ↑toPrefunctor.symm f", "tactic": "simp only [Equiv.symm_apply_eq, toPrefunctor_comp, Equiv.apply_symm_apply]" } ]
[ 118, 77 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 116, 1 ]
Mathlib/Combinatorics/Composition.lean
Composition.mem_range_embedding_iff'
[ { "state_after": "case mp\nn : ℕ\nc : Composition n\nj : Fin n\ni : Fin (length c)\n⊢ j ∈ Set.range ↑(embedding c i) → i = index c j\n\ncase mpr\nn : ℕ\nc : Composition n\nj : Fin n\ni : Fin (length c)\n⊢ i = index c j → j ∈ Set.range ↑(embedding c i)", "state_before": "n : ℕ\nc : Composition n\nj : Fin n\ni : Fin (length c)\n⊢ j ∈ Set.range ↑(embedding c i) ↔ i = index c j", "tactic": "constructor" }, { "state_after": "case mp\nn : ℕ\nc : Composition n\nj : Fin n\ni : Fin (length c)\n⊢ ¬i = index c j → ¬j ∈ Set.range ↑(embedding c i)", "state_before": "case mp\nn : ℕ\nc : Composition n\nj : Fin n\ni : Fin (length c)\n⊢ j ∈ Set.range ↑(embedding c i) → i = index c j", "tactic": "rw [← not_imp_not]" }, { "state_after": "case mp\nn : ℕ\nc : Composition n\nj : Fin n\ni : Fin (length c)\nh : ¬i = index c j\n⊢ ¬j ∈ Set.range ↑(embedding c i)", "state_before": "case mp\nn : ℕ\nc : Composition n\nj : Fin n\ni : Fin (length c)\n⊢ ¬i = index c j → ¬j ∈ Set.range ↑(embedding c i)", "tactic": "intro h" }, { "state_after": "no goals", "state_before": "case mp\nn : ℕ\nc : Composition n\nj : Fin n\ni : Fin (length c)\nh : ¬i = index c j\n⊢ ¬j ∈ Set.range ↑(embedding c i)", "tactic": "exact Set.disjoint_right.1 (c.disjoint_range h) (c.mem_range_embedding j)" }, { "state_after": "case mpr\nn : ℕ\nc : Composition n\nj : Fin n\ni : Fin (length c)\nh : i = index c j\n⊢ j ∈ Set.range ↑(embedding c i)", "state_before": "case mpr\nn : ℕ\nc : Composition n\nj : Fin n\ni : Fin (length c)\n⊢ i = index c j → j ∈ Set.range ↑(embedding c i)", "tactic": "intro h" }, { "state_after": "case mpr\nn : ℕ\nc : Composition n\nj : Fin n\ni : Fin (length c)\nh : i = index c j\n⊢ j ∈ Set.range ↑(embedding c (index c j))", "state_before": "case mpr\nn : ℕ\nc : Composition n\nj : Fin n\ni : Fin (length c)\nh : i = index c j\n⊢ j ∈ Set.range ↑(embedding c i)", "tactic": "rw [h]" }, { "state_after": "no goals", "state_before": "case mpr\nn : ℕ\nc : Composition n\nj : Fin n\ni : Fin (length c)\nh : i = index c j\n⊢ j ∈ Set.range ↑(embedding c (index c j))", "tactic": "exact c.mem_range_embedding j" } ]
[ 431, 34 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 423, 1 ]
Mathlib/Algebra/GroupPower/Basic.lean
Commute.zpow_zpow_self
[]
[ 514, 33 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 513, 1 ]
Mathlib/LinearAlgebra/ProjectiveSpace/Subspace.lean
Projectivization.Subspace.mem_add
[]
[ 73, 27 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 70, 1 ]
Mathlib/Algebra/CubicDiscriminant.lean
Cubic.map_toPoly
[ { "state_after": "no goals", "state_before": "R : Type u_2\nS : Type u_1\nF : Type ?u.679043\nK : Type ?u.679046\nP Q : Cubic R\na b c d a' b' c' d' : R\ninst✝¹ : Semiring R\ninst✝ : Semiring S\nφ : R →+* S\n⊢ toPoly (map φ P) = Polynomial.map φ (toPoly P)", "tactic": "simp only [map, toPoly, map_C, map_X, Polynomial.map_add, Polynomial.map_mul, Polynomial.map_pow]" } ]
[ 462, 100 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 461, 1 ]
Mathlib/Data/Sym/Sym2.lean
Sym2.eq_of_ne_mem
[]
[ 385, 81 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 383, 1 ]
Mathlib/Analysis/SpecialFunctions/Log/Basic.lean
Real.log_pos_iff
[ { "state_after": "x y : ℝ\nhx : 0 < x\n⊢ log 1 < log x ↔ 1 < x", "state_before": "x y : ℝ\nhx : 0 < x\n⊢ 0 < log x ↔ 1 < x", "tactic": "rw [← log_one]" }, { "state_after": "no goals", "state_before": "x y : ℝ\nhx : 0 < x\n⊢ log 1 < log x ↔ 1 < x", "tactic": "exact log_lt_log_iff zero_lt_one hx" } ]
[ 172, 38 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 170, 1 ]
Mathlib/MeasureTheory/Function/L2Space.lean
MeasureTheory.L2.snorm_inner_lt_top
[ { "state_after": "α : Type u_1\nE : Type u_2\nF : Type ?u.44217\n𝕜 : Type u_3\ninst✝⁴ : IsROrC 𝕜\ninst✝³ : MeasurableSpace α\nμ : Measure α\ninst✝² : NormedAddCommGroup E\ninst✝¹ : InnerProductSpace 𝕜 E\ninst✝ : NormedAddCommGroup F\nf g : { x // x ∈ Lp E 2 }\nh : ∀ (x : α), ‖inner (↑↑f x) (↑↑g x)‖ ≤ ‖‖↑↑f x‖ ^ 2 + ‖↑↑g x‖ ^ 2‖\n⊢ snorm (fun x => inner (↑↑f x) (↑↑g x)) 1 μ < ⊤", "state_before": "α : Type u_1\nE : Type u_2\nF : Type ?u.44217\n𝕜 : Type u_3\ninst✝⁴ : IsROrC 𝕜\ninst✝³ : MeasurableSpace α\nμ : Measure α\ninst✝² : NormedAddCommGroup E\ninst✝¹ : InnerProductSpace 𝕜 E\ninst✝ : NormedAddCommGroup F\nf g : { x // x ∈ Lp E 2 }\n⊢ snorm (fun x => inner (↑↑f x) (↑↑g x)) 1 μ < ⊤", "tactic": "have h : ∀ x, ‖⟪f x, g x⟫‖ ≤ ‖‖f x‖ ^ (2 : ℝ) + ‖g x‖ ^ (2 : ℝ)‖ := by\n intro x\n rw [← @Nat.cast_two ℝ, Real.rpow_nat_cast, Real.rpow_nat_cast]\n calc\n ‖⟪f x, g x⟫‖ ≤ ‖f x‖ * ‖g x‖ := norm_inner_le_norm _ _\n _ ≤ 2 * ‖f x‖ * ‖g x‖ :=\n (mul_le_mul_of_nonneg_right (le_mul_of_one_le_left (norm_nonneg _) one_le_two)\n (norm_nonneg _))\n _ ≤ ‖‖f x‖ ^ 2 + ‖g x‖ ^ 2‖ := (two_mul_le_add_sq _ _).trans (le_abs_self _)" }, { "state_after": "case refine'_1\nα : Type u_1\nE : Type u_2\nF : Type ?u.44217\n𝕜 : Type u_3\ninst✝⁴ : IsROrC 𝕜\ninst✝³ : MeasurableSpace α\nμ : Measure α\ninst✝² : NormedAddCommGroup E\ninst✝¹ : InnerProductSpace 𝕜 E\ninst✝ : NormedAddCommGroup F\nf g : { x // x ∈ Lp E 2 }\nh : ∀ (x : α), ‖inner (↑↑f x) (↑↑g x)‖ ≤ ‖‖↑↑f x‖ ^ 2 + ‖↑↑g x‖ ^ 2‖\n⊢ AEStronglyMeasurable (fun a => ‖↑↑f a‖ ^ 2) μ\n\ncase refine'_2\nα : Type u_1\nE : Type u_2\nF : Type ?u.44217\n𝕜 : Type u_3\ninst✝⁴ : IsROrC 𝕜\ninst✝³ : MeasurableSpace α\nμ : Measure α\ninst✝² : NormedAddCommGroup E\ninst✝¹ : InnerProductSpace 𝕜 E\ninst✝ : NormedAddCommGroup F\nf g : { x // x ∈ Lp E 2 }\nh : ∀ (x : α), ‖inner (↑↑f x) (↑↑g x)‖ ≤ ‖‖↑↑f x‖ ^ 2 + ‖↑↑g x‖ ^ 2‖\n⊢ AEStronglyMeasurable (fun a => ‖↑↑g a‖ ^ 2) μ\n\ncase refine'_3\nα : Type u_1\nE : Type u_2\nF : Type ?u.44217\n𝕜 : Type u_3\ninst✝⁴ : IsROrC 𝕜\ninst✝³ : MeasurableSpace α\nμ : Measure α\ninst✝² : NormedAddCommGroup E\ninst✝¹ : InnerProductSpace 𝕜 E\ninst✝ : NormedAddCommGroup F\nf g : { x // x ∈ Lp E 2 }\nh : ∀ (x : α), ‖inner (↑↑f x) (↑↑g x)‖ ≤ ‖‖↑↑f x‖ ^ 2 + ‖↑↑g x‖ ^ 2‖\n⊢ snorm (fun a => ‖↑↑f a‖ ^ 2) 1 μ + snorm (fun a => ‖↑↑g a‖ ^ 2) 1 μ < ⊤", "state_before": "α : Type u_1\nE : Type u_2\nF : Type ?u.44217\n𝕜 : Type u_3\ninst✝⁴ : IsROrC 𝕜\ninst✝³ : MeasurableSpace α\nμ : Measure α\ninst✝² : NormedAddCommGroup E\ninst✝¹ : InnerProductSpace 𝕜 E\ninst✝ : NormedAddCommGroup F\nf g : { x // x ∈ Lp E 2 }\nh : ∀ (x : α), ‖inner (↑↑f x) (↑↑g x)‖ ≤ ‖‖↑↑f x‖ ^ 2 + ‖↑↑g x‖ ^ 2‖\n⊢ snorm (fun x => inner (↑↑f x) (↑↑g x)) 1 μ < ⊤", "tactic": "refine' (snorm_mono_ae (ae_of_all _ h)).trans_lt ((snorm_add_le _ _ le_rfl).trans_lt _)" }, { "state_after": "case refine'_3\nα : Type u_1\nE : Type u_2\nF : Type ?u.44217\n𝕜 : Type u_3\ninst✝⁴ : IsROrC 𝕜\ninst✝³ : MeasurableSpace α\nμ : Measure α\ninst✝² : NormedAddCommGroup E\ninst✝¹ : InnerProductSpace 𝕜 E\ninst✝ : NormedAddCommGroup F\nf g : { x // x ∈ Lp E 2 }\nh : ∀ (x : α), ‖inner (↑↑f x) (↑↑g x)‖ ≤ ‖‖↑↑f x‖ ^ 2 + ‖↑↑g x‖ ^ 2‖\n⊢ snorm (fun a => ‖↑↑f a‖ ^ 2) 1 μ < ⊤ ∧ snorm (fun a => ‖↑↑g a‖ ^ 2) 1 μ < ⊤", "state_before": "case refine'_3\nα : Type u_1\nE : Type u_2\nF : Type ?u.44217\n𝕜 : Type u_3\ninst✝⁴ : IsROrC 𝕜\ninst✝³ : MeasurableSpace α\nμ : Measure α\ninst✝² : NormedAddCommGroup E\ninst✝¹ : InnerProductSpace 𝕜 E\ninst✝ : NormedAddCommGroup F\nf g : { x // x ∈ Lp E 2 }\nh : ∀ (x : α), ‖inner (↑↑f x) (↑↑g x)‖ ≤ ‖‖↑↑f x‖ ^ 2 + ‖↑↑g x‖ ^ 2‖\n⊢ snorm (fun a => ‖↑↑f a‖ ^ 2) 1 μ + snorm (fun a => ‖↑↑g a‖ ^ 2) 1 μ < ⊤", "tactic": "rw [ENNReal.add_lt_top]" }, { "state_after": "no goals", "state_before": "case refine'_3\nα : Type u_1\nE : Type u_2\nF : Type ?u.44217\n𝕜 : Type u_3\ninst✝⁴ : IsROrC 𝕜\ninst✝³ : MeasurableSpace α\nμ : Measure α\ninst✝² : NormedAddCommGroup E\ninst✝¹ : InnerProductSpace 𝕜 E\ninst✝ : NormedAddCommGroup F\nf g : { x // x ∈ Lp E 2 }\nh : ∀ (x : α), ‖inner (↑↑f x) (↑↑g x)‖ ≤ ‖‖↑↑f x‖ ^ 2 + ‖↑↑g x‖ ^ 2‖\n⊢ snorm (fun a => ‖↑↑f a‖ ^ 2) 1 μ < ⊤ ∧ snorm (fun a => ‖↑↑g a‖ ^ 2) 1 μ < ⊤", "tactic": "exact ⟨snorm_rpow_two_norm_lt_top f, snorm_rpow_two_norm_lt_top g⟩" }, { "state_after": "α : Type u_1\nE : Type u_2\nF : Type ?u.44217\n𝕜 : Type u_3\ninst✝⁴ : IsROrC 𝕜\ninst✝³ : MeasurableSpace α\nμ : Measure α\ninst✝² : NormedAddCommGroup E\ninst✝¹ : InnerProductSpace 𝕜 E\ninst✝ : NormedAddCommGroup F\nf g : { x // x ∈ Lp E 2 }\nx : α\n⊢ ‖inner (↑↑f x) (↑↑g x)‖ ≤ ‖‖↑↑f x‖ ^ 2 + ‖↑↑g x‖ ^ 2‖", "state_before": "α : Type u_1\nE : Type u_2\nF : Type ?u.44217\n𝕜 : Type u_3\ninst✝⁴ : IsROrC 𝕜\ninst✝³ : MeasurableSpace α\nμ : Measure α\ninst✝² : NormedAddCommGroup E\ninst✝¹ : InnerProductSpace 𝕜 E\ninst✝ : NormedAddCommGroup F\nf g : { x // x ∈ Lp E 2 }\n⊢ ∀ (x : α), ‖inner (↑↑f x) (↑↑g x)‖ ≤ ‖‖↑↑f x‖ ^ 2 + ‖↑↑g x‖ ^ 2‖", "tactic": "intro x" }, { "state_after": "α : Type u_1\nE : Type u_2\nF : Type ?u.44217\n𝕜 : Type u_3\ninst✝⁴ : IsROrC 𝕜\ninst✝³ : MeasurableSpace α\nμ : Measure α\ninst✝² : NormedAddCommGroup E\ninst✝¹ : InnerProductSpace 𝕜 E\ninst✝ : NormedAddCommGroup F\nf g : { x // x ∈ Lp E 2 }\nx : α\n⊢ ‖inner (↑↑f x) (↑↑g x)‖ ≤ ‖‖↑↑f x‖ ^ 2 + ‖↑↑g x‖ ^ 2‖", "state_before": "α : Type u_1\nE : Type u_2\nF : Type ?u.44217\n𝕜 : Type u_3\ninst✝⁴ : IsROrC 𝕜\ninst✝³ : MeasurableSpace α\nμ : Measure α\ninst✝² : NormedAddCommGroup E\ninst✝¹ : InnerProductSpace 𝕜 E\ninst✝ : NormedAddCommGroup F\nf g : { x // x ∈ Lp E 2 }\nx : α\n⊢ ‖inner (↑↑f x) (↑↑g x)‖ ≤ ‖‖↑↑f x‖ ^ 2 + ‖↑↑g x‖ ^ 2‖", "tactic": "rw [← @Nat.cast_two ℝ, Real.rpow_nat_cast, Real.rpow_nat_cast]" }, { "state_after": "no goals", "state_before": "α : Type u_1\nE : Type u_2\nF : Type ?u.44217\n𝕜 : Type u_3\ninst✝⁴ : IsROrC 𝕜\ninst✝³ : MeasurableSpace α\nμ : Measure α\ninst✝² : NormedAddCommGroup E\ninst✝¹ : InnerProductSpace 𝕜 E\ninst✝ : NormedAddCommGroup F\nf g : { x // x ∈ Lp E 2 }\nx : α\n⊢ ‖inner (↑↑f x) (↑↑g x)‖ ≤ ‖‖↑↑f x‖ ^ 2 + ‖↑↑g x‖ ^ 2‖", "tactic": "calc\n ‖⟪f x, g x⟫‖ ≤ ‖f x‖ * ‖g x‖ := norm_inner_le_norm _ _\n _ ≤ 2 * ‖f x‖ * ‖g x‖ :=\n (mul_le_mul_of_nonneg_right (le_mul_of_one_le_left (norm_nonneg _) one_le_two)\n (norm_nonneg _))\n _ ≤ ‖‖f x‖ ^ 2 + ‖g x‖ ^ 2‖ := (two_mul_le_add_sq _ _).trans (le_abs_self _)" }, { "state_after": "no goals", "state_before": "case refine'_1\nα : Type u_1\nE : Type u_2\nF : Type ?u.44217\n𝕜 : Type u_3\ninst✝⁴ : IsROrC 𝕜\ninst✝³ : MeasurableSpace α\nμ : Measure α\ninst✝² : NormedAddCommGroup E\ninst✝¹ : InnerProductSpace 𝕜 E\ninst✝ : NormedAddCommGroup F\nf g : { x // x ∈ Lp E 2 }\nh : ∀ (x : α), ‖inner (↑↑f x) (↑↑g x)‖ ≤ ‖‖↑↑f x‖ ^ 2 + ‖↑↑g x‖ ^ 2‖\n⊢ AEStronglyMeasurable (fun a => ‖↑↑f a‖ ^ 2) μ", "tactic": "exact ((Lp.aestronglyMeasurable f).norm.aemeasurable.pow_const _).aestronglyMeasurable" }, { "state_after": "no goals", "state_before": "case refine'_2\nα : Type u_1\nE : Type u_2\nF : Type ?u.44217\n𝕜 : Type u_3\ninst✝⁴ : IsROrC 𝕜\ninst✝³ : MeasurableSpace α\nμ : Measure α\ninst✝² : NormedAddCommGroup E\ninst✝¹ : InnerProductSpace 𝕜 E\ninst✝ : NormedAddCommGroup F\nf g : { x // x ∈ Lp E 2 }\nh : ∀ (x : α), ‖inner (↑↑f x) (↑↑g x)‖ ≤ ‖‖↑↑f x‖ ^ 2 + ‖↑↑g x‖ ^ 2‖\n⊢ AEStronglyMeasurable (fun a => ‖↑↑g a‖ ^ 2) μ", "tactic": "exact ((Lp.aestronglyMeasurable g).norm.aemeasurable.pow_const _).aestronglyMeasurable" } ]
[ 146, 69 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 131, 1 ]