file_path
stringlengths
11
79
full_name
stringlengths
2
100
traced_tactics
list
end
list
commit
stringclasses
4 values
url
stringclasses
4 values
start
list
Mathlib/Data/List/Basic.lean
List.zipRight'_nil_cons
[]
[ 4085, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 4083, 1 ]
Mathlib/Algebra/Group/Units.lean
Units.ext_iff
[]
[ 150, 14 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 149, 1 ]
Mathlib/Data/Finset/Basic.lean
Finset.filter_true_of_mem
[]
[ 2698, 27 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 2697, 1 ]
Mathlib/GroupTheory/GroupAction/Defs.lean
MulAction.surjective_smul
[]
[ 162, 21 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 161, 1 ]
Mathlib/Computability/Primrec.lean
PrimrecPred.of_eq
[]
[ 512, 52 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 510, 1 ]
Mathlib/Order/Max.lean
NoTopOrder.to_noMaxOrder
[ { "state_after": "no goals", "state_before": "α✝ : Type ?u.5028\nβ : Type ?u.5031\nα : Type u_1\ninst✝¹ : LinearOrder α\ninst✝ : NoTopOrder α\na : α\n⊢ ∃ b, a < b", "tactic": "simpa [not_le] using exists_not_le a" } ]
[ 150, 68 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 149, 1 ]
Mathlib/MeasureTheory/Measure/MeasureSpaceDef.lean
aemeasurable_congr
[]
[ 708, 78 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 707, 1 ]
Mathlib/RingTheory/RootsOfUnity/Basic.lean
IsPrimitiveRoot.orderOf
[]
[ 456, 61 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 455, 11 ]
Mathlib/Algebra/QuaternionBasis.lean
QuaternionAlgebra.Basis.k_mul_j
[ { "state_after": "no goals", "state_before": "R : Type u_2\nA : Type u_1\nB : Type ?u.27887\ninst✝⁴ : CommRing R\ninst✝³ : Ring A\ninst✝² : Ring B\ninst✝¹ : Algebra R A\ninst✝ : Algebra R B\nc₁ c₂ : R\nq : Basis A c₁ c₂\n⊢ q.k * q.j = c₂ • q.i", "tactic": "rw [← i_mul_j, mul_assoc, j_mul_j, mul_smul_comm, mul_one]" } ]
[ 99, 61 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 98, 1 ]
Mathlib/Data/Matrix/Block.lean
Matrix.blockDiag'_one
[]
[ 871, 34 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 869, 1 ]
Mathlib/Order/Hom/Lattice.lean
SupHom.coe_comp
[]
[ 407, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 406, 1 ]
Mathlib/Algebra/Order/SMul.lean
BddBelow.smul_of_nonneg
[]
[ 156, 42 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 155, 1 ]
Mathlib/Algebra/GeomSum.lean
geom_sum_eq_zero_iff_neg_one
[ { "state_after": "α : Type u\nβ : Type ?u.252702\nn : ℕ\nx : α\ninst✝ : LinearOrderedRing α\nhn : n ≠ 0\nh : ∑ i in range n, x ^ i = 0\n⊢ x = -1 ∧ Even n", "state_before": "α : Type u\nβ : Type ?u.252702\nn : ℕ\nx : α\ninst✝ : LinearOrderedRing α\nhn : n ≠ 0\n⊢ ∑ i in range n, x ^ i = 0 ↔ x = -1 ∧ Even n", "tactic": "refine' ⟨fun h => _, @fun ⟨h, hn⟩ => by simp only [h, hn, neg_one_geom_sum, if_true]⟩" }, { "state_after": "α : Type u\nβ : Type ?u.252702\nn : ℕ\nx : α\ninst✝ : LinearOrderedRing α\nhn : n ≠ 0\nh : x = -1 → ¬Even n\n⊢ ∑ i in range n, x ^ i ≠ 0", "state_before": "α : Type u\nβ : Type ?u.252702\nn : ℕ\nx : α\ninst✝ : LinearOrderedRing α\nhn : n ≠ 0\nh : ∑ i in range n, x ^ i = 0\n⊢ x = -1 ∧ Even n", "tactic": "contrapose! h" }, { "state_after": "α : Type u\nβ : Type ?u.252702\nn : ℕ\nx : α\ninst✝ : LinearOrderedRing α\nhn : n ≠ 0\nh : x = -1 → ¬Even n\nhx : x = -1 ∨ x ≠ -1\n⊢ ∑ i in range n, x ^ i ≠ 0", "state_before": "α : Type u\nβ : Type ?u.252702\nn : ℕ\nx : α\ninst✝ : LinearOrderedRing α\nhn : n ≠ 0\nh : x = -1 → ¬Even n\n⊢ ∑ i in range n, x ^ i ≠ 0", "tactic": "have hx := eq_or_ne x (-1)" }, { "state_after": "case inl\nα : Type u\nβ : Type ?u.252702\nn : ℕ\nx : α\ninst✝ : LinearOrderedRing α\nhn : n ≠ 0\nh : x = -1 → ¬Even n\nhx : x = -1\n⊢ ∑ i in range n, x ^ i ≠ 0\n\ncase inr\nα : Type u\nβ : Type ?u.252702\nn : ℕ\nx : α\ninst✝ : LinearOrderedRing α\nhn : n ≠ 0\nh : x = -1 → ¬Even n\nhx : x ≠ -1\n⊢ ∑ i in range n, x ^ i ≠ 0", "state_before": "α : Type u\nβ : Type ?u.252702\nn : ℕ\nx : α\ninst✝ : LinearOrderedRing α\nhn : n ≠ 0\nh : x = -1 → ¬Even n\nhx : x = -1 ∨ x ≠ -1\n⊢ ∑ i in range n, x ^ i ≠ 0", "tactic": "cases' hx with hx hx" }, { "state_after": "no goals", "state_before": "α : Type u\nβ : Type ?u.252702\nn : ℕ\nx : α\ninst✝ : LinearOrderedRing α\nhn✝ : n ≠ 0\nx✝ : x = -1 ∧ Even n\nh : x = -1\nhn : Even n\n⊢ ∑ i in range n, x ^ i = 0", "tactic": "simp only [h, hn, neg_one_geom_sum, if_true]" }, { "state_after": "case inl\nα : Type u\nβ : Type ?u.252702\nn : ℕ\nx : α\ninst✝ : LinearOrderedRing α\nhn : n ≠ 0\nh : x = -1 → ¬Even n\nhx : x = -1\n⊢ (if Even n then 0 else 1) ≠ 0", "state_before": "case inl\nα : Type u\nβ : Type ?u.252702\nn : ℕ\nx : α\ninst✝ : LinearOrderedRing α\nhn : n ≠ 0\nh : x = -1 → ¬Even n\nhx : x = -1\n⊢ ∑ i in range n, x ^ i ≠ 0", "tactic": "rw [hx, neg_one_geom_sum]" }, { "state_after": "no goals", "state_before": "case inl\nα : Type u\nβ : Type ?u.252702\nn : ℕ\nx : α\ninst✝ : LinearOrderedRing α\nhn : n ≠ 0\nh : x = -1 → ¬Even n\nhx : x = -1\n⊢ (if Even n then 0 else 1) ≠ 0", "tactic": "simp only [h hx, ne_eq, ite_eq_left_iff, one_ne_zero, not_forall, exists_prop, and_true]" }, { "state_after": "no goals", "state_before": "case inr\nα : Type u\nβ : Type ?u.252702\nn : ℕ\nx : α\ninst✝ : LinearOrderedRing α\nhn : n ≠ 0\nh : x = -1 → ¬Even n\nhx : x ≠ -1\n⊢ ∑ i in range n, x ^ i ≠ 0", "tactic": "exact geom_sum_ne_zero hx hn" } ]
[ 566, 33 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 558, 1 ]
Mathlib/Algebra/Order/Group/Abs.lean
lt_of_abs_lt
[]
[ 208, 18 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 207, 1 ]
Std/Classes/Order.lean
Std.TransCmp.cmp_congr_left
[]
[ 83, 17 ]
e68aa8f5fe47aad78987df45f99094afbcb5e936
https://github.com/leanprover/std4
[ 76, 1 ]
Mathlib/Data/Set/Finite.lean
Set.Finite.pi
[ { "state_after": "case intro\nα : Type u\nβ : Type v\nι : Sort w\nγ : Type x\nδ : Type u_1\ninst✝ : Finite δ\nκ : δ → Type u_2\nt : (d : δ) → Set (κ d)\nht : ∀ (d : δ), Set.Finite (t d)\nval✝ : Fintype δ\n⊢ Set.Finite (Set.pi univ t)", "state_before": "α : Type u\nβ : Type v\nι : Sort w\nγ : Type x\nδ : Type u_1\ninst✝ : Finite δ\nκ : δ → Type u_2\nt : (d : δ) → Set (κ d)\nht : ∀ (d : δ), Set.Finite (t d)\n⊢ Set.Finite (Set.pi univ t)", "tactic": "cases _root_.nonempty_fintype δ" }, { "state_after": "case intro.intro\nα : Type u\nβ : Type v\nι : Sort w\nγ : Type x\nδ : Type u_1\ninst✝ : Finite δ\nκ : δ → Type u_2\nval✝ : Fintype δ\nt : (i : δ) → Finset (κ i)\n⊢ Set.Finite (Set.pi univ fun i => ↑(t i))", "state_before": "case intro\nα : Type u\nβ : Type v\nι : Sort w\nγ : Type x\nδ : Type u_1\ninst✝ : Finite δ\nκ : δ → Type u_2\nt : (d : δ) → Set (κ d)\nht : ∀ (d : δ), Set.Finite (t d)\nval✝ : Fintype δ\n⊢ Set.Finite (Set.pi univ t)", "tactic": "lift t to ∀ d, Finset (κ d) using ht" }, { "state_after": "no goals", "state_before": "case intro.intro\nα : Type u\nβ : Type v\nι : Sort w\nγ : Type x\nδ : Type u_1\ninst✝ : Finite δ\nκ : δ → Type u_2\nval✝ : Fintype δ\nt : (i : δ) → Finset (κ i)\n⊢ Set.Finite (Set.pi univ fun i => ↑(t i))", "tactic": "classical\n rw [← Fintype.coe_piFinset]\n apply Finset.finite_toSet" }, { "state_after": "case intro.intro\nα : Type u\nβ : Type v\nι : Sort w\nγ : Type x\nδ : Type u_1\ninst✝ : Finite δ\nκ : δ → Type u_2\nval✝ : Fintype δ\nt : (i : δ) → Finset (κ i)\n⊢ Set.Finite ↑(Fintype.piFinset fun i => t i)", "state_before": "case intro.intro\nα : Type u\nβ : Type v\nι : Sort w\nγ : Type x\nδ : Type u_1\ninst✝ : Finite δ\nκ : δ → Type u_2\nval✝ : Fintype δ\nt : (i : δ) → Finset (κ i)\n⊢ Set.Finite (Set.pi univ fun i => ↑(t i))", "tactic": "rw [← Fintype.coe_piFinset]" }, { "state_after": "no goals", "state_before": "case intro.intro\nα : Type u\nβ : Type v\nι : Sort w\nγ : Type x\nδ : Type u_1\ninst✝ : Finite δ\nκ : δ → Type u_2\nval✝ : Fintype δ\nt : (i : δ) → Finset (κ i)\n⊢ Set.Finite ↑(Fintype.piFinset fun i => t i)", "tactic": "apply Finset.finite_toSet" } ]
[ 1010, 30 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1004, 1 ]
Std/Data/Int/DivMod.lean
Int.dvd_iff_mod_eq_zero
[]
[ 685, 43 ]
e68aa8f5fe47aad78987df45f99094afbcb5e936
https://github.com/leanprover/std4
[ 684, 1 ]
Mathlib/GroupTheory/MonoidLocalization.lean
Submonoid.LocalizationMap.mulEquivOfLocalizations_right_inv
[]
[ 1440, 45 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1438, 1 ]
Mathlib/Data/Multiset/Basic.lean
Multiset.singleton_inj
[ { "state_after": "α : Type u_1\nβ : Type ?u.25432\nγ : Type ?u.25435\na b : α\n⊢ a ::ₘ 0 = b ::ₘ 0 ↔ a = b", "state_before": "α : Type u_1\nβ : Type ?u.25432\nγ : Type ?u.25435\na b : α\n⊢ {a} = {b} ↔ a = b", "tactic": "simp_rw [← cons_zero]" }, { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type ?u.25432\nγ : Type ?u.25435\na b : α\n⊢ a ::ₘ 0 = b ::ₘ 0 ↔ a = b", "tactic": "exact cons_inj_left _" } ]
[ 350, 24 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 348, 1 ]
Mathlib/Data/Set/Intervals/Basic.lean
Set.mem_Icc_of_Ico
[]
[ 667, 24 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 666, 1 ]
Mathlib/Data/List/Basic.lean
List.length_erase_add_one
[ { "state_after": "no goals", "state_before": "ι : Type ?u.425241\nα : Type u\nβ : Type v\nγ : Type w\nδ : Type x\nl₁ l₂ : List α\ninst✝ : DecidableEq α\na : α\nl : List α\nh : a ∈ l\n⊢ length (List.erase l a) + 1 = length l", "tactic": "rw [erase_eq_eraseP, length_eraseP_add_one h (decide_eq_true rfl)]" } ]
[ 3729, 69 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 3727, 9 ]
Mathlib/Data/Set/Ncard.lean
Set.exists_intermediate_Set
[ { "state_after": "case inl\nα : Type u_1\nβ : Type ?u.130854\ns t : Set α\na b x y : α\nf : α → β\ni : ℕ\nh₁ : i + ncard s ≤ ncard t\nh₂ : s ⊆ t\nht : Set.Finite t\n⊢ ∃ r, s ⊆ r ∧ r ⊆ t ∧ ncard r = i + ncard s\n\ncase inr\nα : Type u_1\nβ : Type ?u.130854\ns t : Set α\na b x y : α\nf : α → β\ni : ℕ\nh₁ : i + ncard s ≤ ncard t\nh₂ : s ⊆ t\nht : Set.Infinite t\n⊢ ∃ r, s ⊆ r ∧ r ⊆ t ∧ ncard r = i + ncard s", "state_before": "α : Type u_1\nβ : Type ?u.130854\ns t : Set α\na b x y : α\nf : α → β\ni : ℕ\nh₁ : i + ncard s ≤ ncard t\nh₂ : s ⊆ t\n⊢ ∃ r, s ⊆ r ∧ r ⊆ t ∧ ncard r = i + ncard s", "tactic": "cases' t.finite_or_infinite with ht ht" }, { "state_after": "case inr\nα : Type u_1\nβ : Type ?u.130854\ns t : Set α\na b x y : α\nf : α → β\ni : ℕ\nh₁ : i + ncard s ≤ 0\nh₂ : s ⊆ t\nht : Set.Infinite t\n⊢ ∃ r, s ⊆ r ∧ r ⊆ t ∧ ncard r = i + ncard s", "state_before": "case inr\nα : Type u_1\nβ : Type ?u.130854\ns t : Set α\na b x y : α\nf : α → β\ni : ℕ\nh₁ : i + ncard s ≤ ncard t\nh₂ : s ⊆ t\nht : Set.Infinite t\n⊢ ∃ r, s ⊆ r ∧ r ⊆ t ∧ ncard r = i + ncard s", "tactic": "rw [ht.ncard] at h₁" }, { "state_after": "case inr\nα : Type u_1\nβ : Type ?u.130854\ns t : Set α\na b x y : α\nf : α → β\ni : ℕ\nh₁ : i + ncard s ≤ 0\nh₂ : s ⊆ t\nht : Set.Infinite t\nh₁' : i + ncard s = 0\n⊢ ∃ r, s ⊆ r ∧ r ⊆ t ∧ ncard r = i + ncard s", "state_before": "case inr\nα : Type u_1\nβ : Type ?u.130854\ns t : Set α\na b x y : α\nf : α → β\ni : ℕ\nh₁ : i + ncard s ≤ 0\nh₂ : s ⊆ t\nht : Set.Infinite t\n⊢ ∃ r, s ⊆ r ∧ r ⊆ t ∧ ncard r = i + ncard s", "tactic": "have h₁' := Nat.eq_zero_of_le_zero h₁" }, { "state_after": "case inr\nα : Type u_1\nβ : Type ?u.130854\ns t : Set α\na b x y : α\nf : α → β\ni : ℕ\nh₁ : i + ncard s ≤ 0\nh₂ : s ⊆ t\nht : Set.Infinite t\nh₁' : i = 0 ∧ ncard s = 0\n⊢ ∃ r, s ⊆ r ∧ r ⊆ t ∧ ncard r = i + ncard s", "state_before": "case inr\nα : Type u_1\nβ : Type ?u.130854\ns t : Set α\na b x y : α\nf : α → β\ni : ℕ\nh₁ : i + ncard s ≤ 0\nh₂ : s ⊆ t\nht : Set.Infinite t\nh₁' : i + ncard s = 0\n⊢ ∃ r, s ⊆ r ∧ r ⊆ t ∧ ncard r = i + ncard s", "tactic": "rw [add_eq_zero_iff] at h₁'" }, { "state_after": "case inr\nα : Type u_1\nβ : Type ?u.130854\ns t : Set α\na b x y : α\nf : α → β\ni : ℕ\nh₁ : i + ncard s ≤ 0\nh₂ : s ⊆ t\nht : Set.Infinite t\nh₁' : i = 0 ∧ ncard s = 0\n⊢ ncard t = i + ncard s", "state_before": "case inr\nα : Type u_1\nβ : Type ?u.130854\ns t : Set α\na b x y : α\nf : α → β\ni : ℕ\nh₁ : i + ncard s ≤ 0\nh₂ : s ⊆ t\nht : Set.Infinite t\nh₁' : i = 0 ∧ ncard s = 0\n⊢ ∃ r, s ⊆ r ∧ r ⊆ t ∧ ncard r = i + ncard s", "tactic": "refine' ⟨t, h₂, rfl.subset, _⟩" }, { "state_after": "no goals", "state_before": "case inr\nα : Type u_1\nβ : Type ?u.130854\ns t : Set α\na b x y : α\nf : α → β\ni : ℕ\nh₁ : i + ncard s ≤ 0\nh₂ : s ⊆ t\nht : Set.Infinite t\nh₁' : i = 0 ∧ ncard s = 0\n⊢ ncard t = i + ncard s", "tactic": "rw [h₁'.2, h₁'.1, ht.ncard, add_zero]" }, { "state_after": "case inl\nα : Type u_1\nβ : Type ?u.130854\ns t : Set α\na b x y : α\nf : α → β\ni : ℕ\nh₂ : s ⊆ t\nht : Set.Finite t\nh₁ : i + Finset.card (Finite.toFinset (_ : Set.Finite s)) ≤ ncard t\n⊢ ∃ r, s ⊆ r ∧ r ⊆ t ∧ ncard r = i + Finset.card (Finite.toFinset (_ : Set.Finite s))", "state_before": "case inl\nα : Type u_1\nβ : Type ?u.130854\ns t : Set α\na b x y : α\nf : α → β\ni : ℕ\nh₁ : i + ncard s ≤ ncard t\nh₂ : s ⊆ t\nht : Set.Finite t\n⊢ ∃ r, s ⊆ r ∧ r ⊆ t ∧ ncard r = i + ncard s", "tactic": "rw [ncard_eq_toFinset_card _ (ht.subset h₂)] at h₁ ⊢" }, { "state_after": "case inl\nα : Type u_1\nβ : Type ?u.130854\ns t : Set α\na b x y : α\nf : α → β\ni : ℕ\nh₂ : s ⊆ t\nht : Set.Finite t\nh₁ : i + Finset.card (Finite.toFinset (_ : Set.Finite s)) ≤ Finset.card (Finite.toFinset ht)\n⊢ ∃ r, s ⊆ r ∧ r ⊆ t ∧ ncard r = i + Finset.card (Finite.toFinset (_ : Set.Finite s))", "state_before": "case inl\nα : Type u_1\nβ : Type ?u.130854\ns t : Set α\na b x y : α\nf : α → β\ni : ℕ\nh₂ : s ⊆ t\nht : Set.Finite t\nh₁ : i + Finset.card (Finite.toFinset (_ : Set.Finite s)) ≤ ncard t\n⊢ ∃ r, s ⊆ r ∧ r ⊆ t ∧ ncard r = i + Finset.card (Finite.toFinset (_ : Set.Finite s))", "tactic": "rw [ncard_eq_toFinset_card t ht] at h₁" }, { "state_after": "case inl.intro.intro.intro\nα : Type u_1\nβ : Type ?u.130854\ns t : Set α\na b x y : α\nf : α → β\ni : ℕ\nh₂ : s ⊆ t\nht : Set.Finite t\nh₁ : i + Finset.card (Finite.toFinset (_ : Set.Finite s)) ≤ Finset.card (Finite.toFinset ht)\nr' : Finset α\nhsr' : Finite.toFinset (_ : Set.Finite s) ⊆ r'\nhr't : r' ⊆ Finite.toFinset ht\nhr' : Finset.card r' = i + Finset.card (Finite.toFinset (_ : Set.Finite s))\n⊢ ∃ r, s ⊆ r ∧ r ⊆ t ∧ ncard r = i + Finset.card (Finite.toFinset (_ : Set.Finite s))", "state_before": "case inl\nα : Type u_1\nβ : Type ?u.130854\ns t : Set α\na b x y : α\nf : α → β\ni : ℕ\nh₂ : s ⊆ t\nht : Set.Finite t\nh₁ : i + Finset.card (Finite.toFinset (_ : Set.Finite s)) ≤ Finset.card (Finite.toFinset ht)\n⊢ ∃ r, s ⊆ r ∧ r ⊆ t ∧ ncard r = i + Finset.card (Finite.toFinset (_ : Set.Finite s))", "tactic": "obtain ⟨r', hsr', hr't, hr'⟩ := Finset.exists_intermediate_set _ h₁ (by simpa)" }, { "state_after": "no goals", "state_before": "case inl.intro.intro.intro\nα : Type u_1\nβ : Type ?u.130854\ns t : Set α\na b x y : α\nf : α → β\ni : ℕ\nh₂ : s ⊆ t\nht : Set.Finite t\nh₁ : i + Finset.card (Finite.toFinset (_ : Set.Finite s)) ≤ Finset.card (Finite.toFinset ht)\nr' : Finset α\nhsr' : Finite.toFinset (_ : Set.Finite s) ⊆ r'\nhr't : r' ⊆ Finite.toFinset ht\nhr' : Finset.card r' = i + Finset.card (Finite.toFinset (_ : Set.Finite s))\n⊢ ∃ r, s ⊆ r ∧ r ⊆ t ∧ ncard r = i + Finset.card (Finite.toFinset (_ : Set.Finite s))", "tactic": "exact ⟨r', by simpa using hsr', by simpa using hr't, by rw [← hr', ncard_coe_Finset]⟩" }, { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type ?u.130854\ns t : Set α\na b x y : α\nf : α → β\ni : ℕ\nh₂ : s ⊆ t\nht : Set.Finite t\nh₁ : i + Finset.card (Finite.toFinset (_ : Set.Finite s)) ≤ Finset.card (Finite.toFinset ht)\n⊢ Finite.toFinset (_ : Set.Finite s) ⊆ Finite.toFinset ht", "tactic": "simpa" }, { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type ?u.130854\ns t : Set α\na b x y : α\nf : α → β\ni : ℕ\nh₂ : s ⊆ t\nht : Set.Finite t\nh₁ : i + Finset.card (Finite.toFinset (_ : Set.Finite s)) ≤ Finset.card (Finite.toFinset ht)\nr' : Finset α\nhsr' : Finite.toFinset (_ : Set.Finite s) ⊆ r'\nhr't : r' ⊆ Finite.toFinset ht\nhr' : Finset.card r' = i + Finset.card (Finite.toFinset (_ : Set.Finite s))\n⊢ s ⊆ ↑r'", "tactic": "simpa using hsr'" }, { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type ?u.130854\ns t : Set α\na b x y : α\nf : α → β\ni : ℕ\nh₂ : s ⊆ t\nht : Set.Finite t\nh₁ : i + Finset.card (Finite.toFinset (_ : Set.Finite s)) ≤ Finset.card (Finite.toFinset ht)\nr' : Finset α\nhsr' : Finite.toFinset (_ : Set.Finite s) ⊆ r'\nhr't : r' ⊆ Finite.toFinset ht\nhr' : Finset.card r' = i + Finset.card (Finite.toFinset (_ : Set.Finite s))\n⊢ ↑r' ⊆ t", "tactic": "simpa using hr't" }, { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type ?u.130854\ns t : Set α\na b x y : α\nf : α → β\ni : ℕ\nh₂ : s ⊆ t\nht : Set.Finite t\nh₁ : i + Finset.card (Finite.toFinset (_ : Set.Finite s)) ≤ Finset.card (Finite.toFinset ht)\nr' : Finset α\nhsr' : Finite.toFinset (_ : Set.Finite s) ⊆ r'\nhr't : r' ⊆ Finite.toFinset ht\nhr' : Finset.card r' = i + Finset.card (Finite.toFinset (_ : Set.Finite s))\n⊢ ncard ↑r' = i + Finset.card (Finite.toFinset (_ : Set.Finite s))", "tactic": "rw [← hr', ncard_coe_Finset]" } ]
[ 588, 40 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 577, 1 ]
Mathlib/RingTheory/Subsemiring/Basic.lean
Subsemiring.coe_inf
[]
[ 656, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 655, 1 ]
src/lean/Init/Control/Lawful.lean
map_eq_pure_bind
[ { "state_after": "no goals", "state_before": "m : Type u_1 → Type u_2\nα β : Type u_1\ninst✝¹ : Monad m\ninst✝ : LawfulMonad m\nf : α → β\nx : m α\n⊢ f <$> x = do\n let a ← x\n pure (f a)", "tactic": "rw [← bind_pure_comp]" } ]
[ 63, 24 ]
d5348dfac847a56a4595fb6230fd0708dcb4e7e9
https://github.com/leanprover/lean4
[ 62, 1 ]
Mathlib/GroupTheory/Perm/Sign.lean
Equiv.Perm.perm_inv_mapsTo_iff_mapsTo
[]
[ 86, 63 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 84, 1 ]
Mathlib/Algebra/GCDMonoid/Basic.lean
dvd_lcm_left
[]
[ 716, 41 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 715, 1 ]
Mathlib/RingTheory/PowerSeries/Basic.lean
MvPolynomial.coe_injective
[ { "state_after": "case a\nσ : Type u_1\nR : Type u_2\ninst✝ : CommSemiring R\nφ ψ x y : MvPolynomial σ R\nh : Coe.coe x = Coe.coe y\nm✝ : σ →₀ ℕ\n⊢ coeff m✝ x = coeff m✝ y", "state_before": "σ : Type u_1\nR : Type u_2\ninst✝ : CommSemiring R\nφ ψ x y : MvPolynomial σ R\nh : Coe.coe x = Coe.coe y\n⊢ x = y", "tactic": "ext" }, { "state_after": "case a\nσ : Type u_1\nR : Type u_2\ninst✝ : CommSemiring R\nφ ψ x y : MvPolynomial σ R\nh : Coe.coe x = Coe.coe y\nm✝ : σ →₀ ℕ\n⊢ ↑(MvPowerSeries.coeff R m✝) ↑x = ↑(MvPowerSeries.coeff R m✝) ↑y", "state_before": "case a\nσ : Type u_1\nR : Type u_2\ninst✝ : CommSemiring R\nφ ψ x y : MvPolynomial σ R\nh : Coe.coe x = Coe.coe y\nm✝ : σ →₀ ℕ\n⊢ coeff m✝ x = coeff m✝ y", "tactic": "simp_rw [← coeff_coe]" }, { "state_after": "no goals", "state_before": "case a\nσ : Type u_1\nR : Type u_2\ninst✝ : CommSemiring R\nφ ψ x y : MvPolynomial σ R\nh : Coe.coe x = Coe.coe y\nm✝ : σ →₀ ℕ\n⊢ ↑(MvPowerSeries.coeff R m✝) ↑x = ↑(MvPowerSeries.coeff R m✝) ↑y", "tactic": "congr" } ]
[ 1139, 8 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1135, 1 ]
Std/Data/List/Basic.lean
List.zipWithLeft_eq_zipWithLeftTR
[ { "state_after": "case h.h.h.h.h.h\nα : Type u_3\nβ : Type u_2\nγ : Type u_1\nf : α → Option β → γ\nas : List α\nbs : List β\n⊢ zipWithLeft f as bs = zipWithLeftTR f as bs", "state_before": "⊢ @zipWithLeft = @zipWithLeftTR", "tactic": "funext α β γ f as bs" }, { "state_after": "case h.h.h.h.h.h\nα : Type u_3\nβ : Type u_2\nγ : Type u_1\nf : α → Option β → γ\nas : List α\nbs : List β\n⊢ zipWithLeft f as bs = zipWithLeftTR.go f as bs #[]", "state_before": "case h.h.h.h.h.h\nα : Type u_3\nβ : Type u_2\nγ : Type u_1\nf : α → Option β → γ\nas : List α\nbs : List β\n⊢ zipWithLeft f as bs = zipWithLeftTR f as bs", "tactic": "simp [zipWithLeftTR]" }, { "state_after": "case h.h.h.h.h.h\nα : Type u_3\nβ : Type u_2\nγ : Type u_1\nf : α → Option β → γ\nas : List α\nbs : List β\n⊢ zipWithLeft f as bs = zipWithLeftTR.go f as bs #[]", "state_before": "case h.h.h.h.h.h\nα : Type u_3\nβ : Type u_2\nγ : Type u_1\nf : α → Option β → γ\nas : List α\nbs : List β\n⊢ zipWithLeft f as bs = zipWithLeftTR.go f as bs #[]", "tactic": "let rec go (acc) : ∀ as bs, zipWithLeftTR.go f as bs acc = acc.toList ++ as.zipWithLeft f bs\n| [], bs => by simp [zipWithLeftTR.go]\n| _::_, [] => by simp [zipWithLeftTR.go, Array.foldl_data_eq_map]\n| a::as, b::bs => by simp [zipWithLeftTR.go, go _ as bs]" }, { "state_after": "no goals", "state_before": "case h.h.h.h.h.h\nα : Type u_3\nβ : Type u_2\nγ : Type u_1\nf : α → Option β → γ\nas : List α\nbs : List β\n⊢ zipWithLeft f as bs = zipWithLeftTR.go f as bs #[]", "tactic": "simp [zipWithLeftTR, go]" }, { "state_after": "no goals", "state_before": "α : Type u_3\nβ : Type u_2\nγ : Type u_1\nf : α → Option β → γ\nas : List α\nbs✝ : List β\nacc : Array γ\nbs : List β\n⊢ zipWithLeftTR.go f [] bs acc = Array.toList acc ++ zipWithLeft f [] bs", "tactic": "simp [zipWithLeftTR.go]" }, { "state_after": "no goals", "state_before": "α : Type u_3\nβ : Type u_2\nγ : Type u_1\nf : α → Option β → γ\nas : List α\nbs : List β\nacc : Array γ\nhead✝ : α\ntail✝ : List α\n⊢ zipWithLeftTR.go f (head✝ :: tail✝) [] acc = Array.toList acc ++ zipWithLeft f (head✝ :: tail✝) []", "tactic": "simp [zipWithLeftTR.go, Array.foldl_data_eq_map]" }, { "state_after": "no goals", "state_before": "α : Type u_3\nβ : Type u_2\nγ : Type u_1\nf : α → Option β → γ\nas✝ : List α\nbs✝ : List β\nacc : Array γ\na : α\nas : List α\nb : β\nbs : List β\n⊢ zipWithLeftTR.go f (a :: as) (b :: bs) acc = Array.toList acc ++ zipWithLeft f (a :: as) (b :: bs)", "tactic": "simp [zipWithLeftTR.go, go _ as bs]" } ]
[ 1374, 27 ]
e68aa8f5fe47aad78987df45f99094afbcb5e936
https://github.com/leanprover/std4
[ 1368, 10 ]
Mathlib/Data/MvPolynomial/Variables.lean
MvPolynomial.degrees_sum
[ { "state_after": "case refine'_1\nR : Type u\nS : Type v\nσ : Type u_2\nτ : Type ?u.34158\nr : R\ne : ℕ\nn m : σ\ns✝ : σ →₀ ℕ\ninst✝¹ : CommSemiring R\np q : MvPolynomial σ R\nι : Type u_1\ninst✝ : DecidableEq σ\ns : Finset ι\nf : ι → MvPolynomial σ R\n⊢ degrees (∑ i in ∅, f i) ≤ Finset.sup ∅ fun i => degrees (f i)\n\ncase refine'_2\nR : Type u\nS : Type v\nσ : Type u_2\nτ : Type ?u.34158\nr : R\ne : ℕ\nn m : σ\ns✝ : σ →₀ ℕ\ninst✝¹ : CommSemiring R\np q : MvPolynomial σ R\nι : Type u_1\ninst✝ : DecidableEq σ\ns : Finset ι\nf : ι → MvPolynomial σ R\n⊢ ∀ ⦃a : ι⦄ {s : Finset ι},\n ¬a ∈ s →\n (degrees (∑ i in s, f i) ≤ Finset.sup s fun i => degrees (f i)) →\n degrees (∑ i in insert a s, f i) ≤ Finset.sup (insert a s) fun i => degrees (f i)", "state_before": "R : Type u\nS : Type v\nσ : Type u_2\nτ : Type ?u.34158\nr : R\ne : ℕ\nn m : σ\ns✝ : σ →₀ ℕ\ninst✝¹ : CommSemiring R\np q : MvPolynomial σ R\nι : Type u_1\ninst✝ : DecidableEq σ\ns : Finset ι\nf : ι → MvPolynomial σ R\n⊢ degrees (∑ i in s, f i) ≤ Finset.sup s fun i => degrees (f i)", "tactic": "refine' s.induction _ _" }, { "state_after": "case refine'_1\nR : Type u\nS : Type v\nσ : Type u_2\nτ : Type ?u.34158\nr : R\ne : ℕ\nn m : σ\ns✝ : σ →₀ ℕ\ninst✝¹ : CommSemiring R\np q : MvPolynomial σ R\nι : Type u_1\ninst✝ : DecidableEq σ\ns : Finset ι\nf : ι → MvPolynomial σ R\n⊢ 0 ≤ ⊥", "state_before": "case refine'_1\nR : Type u\nS : Type v\nσ : Type u_2\nτ : Type ?u.34158\nr : R\ne : ℕ\nn m : σ\ns✝ : σ →₀ ℕ\ninst✝¹ : CommSemiring R\np q : MvPolynomial σ R\nι : Type u_1\ninst✝ : DecidableEq σ\ns : Finset ι\nf : ι → MvPolynomial σ R\n⊢ degrees (∑ i in ∅, f i) ≤ Finset.sup ∅ fun i => degrees (f i)", "tactic": "simp only [Finset.sum_empty, Finset.sup_empty, degrees_zero]" }, { "state_after": "no goals", "state_before": "case refine'_1\nR : Type u\nS : Type v\nσ : Type u_2\nτ : Type ?u.34158\nr : R\ne : ℕ\nn m : σ\ns✝ : σ →₀ ℕ\ninst✝¹ : CommSemiring R\np q : MvPolynomial σ R\nι : Type u_1\ninst✝ : DecidableEq σ\ns : Finset ι\nf : ι → MvPolynomial σ R\n⊢ 0 ≤ ⊥", "tactic": "exact le_rfl" }, { "state_after": "case refine'_2\nR : Type u\nS : Type v\nσ : Type u_2\nτ : Type ?u.34158\nr : R\ne : ℕ\nn m : σ\ns✝¹ : σ →₀ ℕ\ninst✝¹ : CommSemiring R\np q : MvPolynomial σ R\nι : Type u_1\ninst✝ : DecidableEq σ\ns✝ : Finset ι\nf : ι → MvPolynomial σ R\ni : ι\ns : Finset ι\nhis : ¬i ∈ s\nih : degrees (∑ i in s, f i) ≤ Finset.sup s fun i => degrees (f i)\n⊢ degrees (∑ i in insert i s, f i) ≤ Finset.sup (insert i s) fun i => degrees (f i)", "state_before": "case refine'_2\nR : Type u\nS : Type v\nσ : Type u_2\nτ : Type ?u.34158\nr : R\ne : ℕ\nn m : σ\ns✝ : σ →₀ ℕ\ninst✝¹ : CommSemiring R\np q : MvPolynomial σ R\nι : Type u_1\ninst✝ : DecidableEq σ\ns : Finset ι\nf : ι → MvPolynomial σ R\n⊢ ∀ ⦃a : ι⦄ {s : Finset ι},\n ¬a ∈ s →\n (degrees (∑ i in s, f i) ≤ Finset.sup s fun i => degrees (f i)) →\n degrees (∑ i in insert a s, f i) ≤ Finset.sup (insert a s) fun i => degrees (f i)", "tactic": "intro i s his ih" }, { "state_after": "case refine'_2\nR : Type u\nS : Type v\nσ : Type u_2\nτ : Type ?u.34158\nr : R\ne : ℕ\nn m : σ\ns✝¹ : σ →₀ ℕ\ninst✝¹ : CommSemiring R\np q : MvPolynomial σ R\nι : Type u_1\ninst✝ : DecidableEq σ\ns✝ : Finset ι\nf : ι → MvPolynomial σ R\ni : ι\ns : Finset ι\nhis : ¬i ∈ s\nih : degrees (∑ i in s, f i) ≤ Finset.sup s fun i => degrees (f i)\n⊢ degrees (f i + ∑ x in s, f x) ≤ degrees (f i) ⊔ Finset.sup s fun i => degrees (f i)", "state_before": "case refine'_2\nR : Type u\nS : Type v\nσ : Type u_2\nτ : Type ?u.34158\nr : R\ne : ℕ\nn m : σ\ns✝¹ : σ →₀ ℕ\ninst✝¹ : CommSemiring R\np q : MvPolynomial σ R\nι : Type u_1\ninst✝ : DecidableEq σ\ns✝ : Finset ι\nf : ι → MvPolynomial σ R\ni : ι\ns : Finset ι\nhis : ¬i ∈ s\nih : degrees (∑ i in s, f i) ≤ Finset.sup s fun i => degrees (f i)\n⊢ degrees (∑ i in insert i s, f i) ≤ Finset.sup (insert i s) fun i => degrees (f i)", "tactic": "rw [Finset.sup_insert, Finset.sum_insert his]" }, { "state_after": "no goals", "state_before": "case refine'_2\nR : Type u\nS : Type v\nσ : Type u_2\nτ : Type ?u.34158\nr : R\ne : ℕ\nn m : σ\ns✝¹ : σ →₀ ℕ\ninst✝¹ : CommSemiring R\np q : MvPolynomial σ R\nι : Type u_1\ninst✝ : DecidableEq σ\ns✝ : Finset ι\nf : ι → MvPolynomial σ R\ni : ι\ns : Finset ι\nhis : ¬i ∈ s\nih : degrees (∑ i in s, f i) ≤ Finset.sup s fun i => degrees (f i)\n⊢ degrees (f i + ∑ x in s, f x) ≤ degrees (f i) ⊔ Finset.sup s fun i => degrees (f i)", "tactic": "exact le_trans (degrees_add _ _) (sup_le_sup_left ih _)" } ]
[ 159, 60 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 151, 1 ]
Mathlib/MeasureTheory/Function/StronglyMeasurable/Inner.lean
MeasureTheory.StronglyMeasurable.inner
[]
[ 32, 70 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 29, 11 ]
Mathlib/Topology/Homotopy/HomotopyGroup.lean
GenLoop.Homotopic.trans
[]
[ 185, 14 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 184, 8 ]
Mathlib/Data/Set/Lattice.lean
Set.iUnion_range_eq_iUnion
[ { "state_after": "case h\nα : Type u_1\nβ : Type u_2\nγ : Type ?u.180962\nι : Sort u_3\nι' : Sort ?u.180968\nι₂ : Sort ?u.180971\nκ : ι → Sort ?u.180976\nκ₁ : ι → Sort ?u.180981\nκ₂ : ι → Sort ?u.180986\nκ' : ι' → Sort ?u.180991\nC : ι → Set α\nf : (x : ι) → β → ↑(C x)\nhf : ∀ (x : ι), Surjective (f x)\nx : α\n⊢ (x ∈ ⋃ (y : β), range fun x => ↑(f x y)) ↔ x ∈ ⋃ (x : ι), C x", "state_before": "α : Type u_1\nβ : Type u_2\nγ : Type ?u.180962\nι : Sort u_3\nι' : Sort ?u.180968\nι₂ : Sort ?u.180971\nκ : ι → Sort ?u.180976\nκ₁ : ι → Sort ?u.180981\nκ₂ : ι → Sort ?u.180986\nκ' : ι' → Sort ?u.180991\nC : ι → Set α\nf : (x : ι) → β → ↑(C x)\nhf : ∀ (x : ι), Surjective (f x)\n⊢ (⋃ (y : β), range fun x => ↑(f x y)) = ⋃ (x : ι), C x", "tactic": "ext x" }, { "state_after": "case h\nα : Type u_1\nβ : Type u_2\nγ : Type ?u.180962\nι : Sort u_3\nι' : Sort ?u.180968\nι₂ : Sort ?u.180971\nκ : ι → Sort ?u.180976\nκ₁ : ι → Sort ?u.180981\nκ₂ : ι → Sort ?u.180986\nκ' : ι' → Sort ?u.180991\nC : ι → Set α\nf : (x : ι) → β → ↑(C x)\nhf : ∀ (x : ι), Surjective (f x)\nx : α\n⊢ (∃ i, x ∈ range fun x => ↑(f x i)) ↔ ∃ i, x ∈ C i", "state_before": "case h\nα : Type u_1\nβ : Type u_2\nγ : Type ?u.180962\nι : Sort u_3\nι' : Sort ?u.180968\nι₂ : Sort ?u.180971\nκ : ι → Sort ?u.180976\nκ₁ : ι → Sort ?u.180981\nκ₂ : ι → Sort ?u.180986\nκ' : ι' → Sort ?u.180991\nC : ι → Set α\nf : (x : ι) → β → ↑(C x)\nhf : ∀ (x : ι), Surjective (f x)\nx : α\n⊢ (x ∈ ⋃ (y : β), range fun x => ↑(f x y)) ↔ x ∈ ⋃ (x : ι), C x", "tactic": "rw [mem_iUnion, mem_iUnion]" }, { "state_after": "case h.mp\nα : Type u_1\nβ : Type u_2\nγ : Type ?u.180962\nι : Sort u_3\nι' : Sort ?u.180968\nι₂ : Sort ?u.180971\nκ : ι → Sort ?u.180976\nκ₁ : ι → Sort ?u.180981\nκ₂ : ι → Sort ?u.180986\nκ' : ι' → Sort ?u.180991\nC : ι → Set α\nf : (x : ι) → β → ↑(C x)\nhf : ∀ (x : ι), Surjective (f x)\nx : α\n⊢ (∃ i, x ∈ range fun x => ↑(f x i)) → ∃ i, x ∈ C i\n\ncase h.mpr\nα : Type u_1\nβ : Type u_2\nγ : Type ?u.180962\nι : Sort u_3\nι' : Sort ?u.180968\nι₂ : Sort ?u.180971\nκ : ι → Sort ?u.180976\nκ₁ : ι → Sort ?u.180981\nκ₂ : ι → Sort ?u.180986\nκ' : ι' → Sort ?u.180991\nC : ι → Set α\nf : (x : ι) → β → ↑(C x)\nhf : ∀ (x : ι), Surjective (f x)\nx : α\n⊢ (∃ i, x ∈ C i) → ∃ i, x ∈ range fun x => ↑(f x i)", "state_before": "case h\nα : Type u_1\nβ : Type u_2\nγ : Type ?u.180962\nι : Sort u_3\nι' : Sort ?u.180968\nι₂ : Sort ?u.180971\nκ : ι → Sort ?u.180976\nκ₁ : ι → Sort ?u.180981\nκ₂ : ι → Sort ?u.180986\nκ' : ι' → Sort ?u.180991\nC : ι → Set α\nf : (x : ι) → β → ↑(C x)\nhf : ∀ (x : ι), Surjective (f x)\nx : α\n⊢ (∃ i, x ∈ range fun x => ↑(f x i)) ↔ ∃ i, x ∈ C i", "tactic": "constructor" }, { "state_after": "case h.mp.intro.intro\nα : Type u_1\nβ : Type u_2\nγ : Type ?u.180962\nι : Sort u_3\nι' : Sort ?u.180968\nι₂ : Sort ?u.180971\nκ : ι → Sort ?u.180976\nκ₁ : ι → Sort ?u.180981\nκ₂ : ι → Sort ?u.180986\nκ' : ι' → Sort ?u.180991\nC : ι → Set α\nf : (x : ι) → β → ↑(C x)\nhf : ∀ (x : ι), Surjective (f x)\ny : β\ni : ι\n⊢ ∃ i_1, (fun x => ↑(f x y)) i ∈ C i_1", "state_before": "case h.mp\nα : Type u_1\nβ : Type u_2\nγ : Type ?u.180962\nι : Sort u_3\nι' : Sort ?u.180968\nι₂ : Sort ?u.180971\nκ : ι → Sort ?u.180976\nκ₁ : ι → Sort ?u.180981\nκ₂ : ι → Sort ?u.180986\nκ' : ι' → Sort ?u.180991\nC : ι → Set α\nf : (x : ι) → β → ↑(C x)\nhf : ∀ (x : ι), Surjective (f x)\nx : α\n⊢ (∃ i, x ∈ range fun x => ↑(f x i)) → ∃ i, x ∈ C i", "tactic": "rintro ⟨y, i, rfl⟩" }, { "state_after": "no goals", "state_before": "case h.mp.intro.intro\nα : Type u_1\nβ : Type u_2\nγ : Type ?u.180962\nι : Sort u_3\nι' : Sort ?u.180968\nι₂ : Sort ?u.180971\nκ : ι → Sort ?u.180976\nκ₁ : ι → Sort ?u.180981\nκ₂ : ι → Sort ?u.180986\nκ' : ι' → Sort ?u.180991\nC : ι → Set α\nf : (x : ι) → β → ↑(C x)\nhf : ∀ (x : ι), Surjective (f x)\ny : β\ni : ι\n⊢ ∃ i_1, (fun x => ↑(f x y)) i ∈ C i_1", "tactic": "exact ⟨i, (f i y).2⟩" }, { "state_after": "case h.mpr.intro\nα : Type u_1\nβ : Type u_2\nγ : Type ?u.180962\nι : Sort u_3\nι' : Sort ?u.180968\nι₂ : Sort ?u.180971\nκ : ι → Sort ?u.180976\nκ₁ : ι → Sort ?u.180981\nκ₂ : ι → Sort ?u.180986\nκ' : ι' → Sort ?u.180991\nC : ι → Set α\nf : (x : ι) → β → ↑(C x)\nhf : ∀ (x : ι), Surjective (f x)\nx : α\ni : ι\nhx : x ∈ C i\n⊢ ∃ i, x ∈ range fun x => ↑(f x i)", "state_before": "case h.mpr\nα : Type u_1\nβ : Type u_2\nγ : Type ?u.180962\nι : Sort u_3\nι' : Sort ?u.180968\nι₂ : Sort ?u.180971\nκ : ι → Sort ?u.180976\nκ₁ : ι → Sort ?u.180981\nκ₂ : ι → Sort ?u.180986\nκ' : ι' → Sort ?u.180991\nC : ι → Set α\nf : (x : ι) → β → ↑(C x)\nhf : ∀ (x : ι), Surjective (f x)\nx : α\n⊢ (∃ i, x ∈ C i) → ∃ i, x ∈ range fun x => ↑(f x i)", "tactic": "rintro ⟨i, hx⟩" }, { "state_after": "case h.mpr.intro.intro\nα : Type u_1\nβ : Type u_2\nγ : Type ?u.180962\nι : Sort u_3\nι' : Sort ?u.180968\nι₂ : Sort ?u.180971\nκ : ι → Sort ?u.180976\nκ₁ : ι → Sort ?u.180981\nκ₂ : ι → Sort ?u.180986\nκ' : ι' → Sort ?u.180991\nC : ι → Set α\nf : (x : ι) → β → ↑(C x)\nhf : ∀ (x : ι), Surjective (f x)\nx : α\ni : ι\nhx : x ∈ C i\ny : β\nhy : f i y = { val := x, property := hx }\n⊢ ∃ i, x ∈ range fun x => ↑(f x i)", "state_before": "case h.mpr.intro\nα : Type u_1\nβ : Type u_2\nγ : Type ?u.180962\nι : Sort u_3\nι' : Sort ?u.180968\nι₂ : Sort ?u.180971\nκ : ι → Sort ?u.180976\nκ₁ : ι → Sort ?u.180981\nκ₂ : ι → Sort ?u.180986\nκ' : ι' → Sort ?u.180991\nC : ι → Set α\nf : (x : ι) → β → ↑(C x)\nhf : ∀ (x : ι), Surjective (f x)\nx : α\ni : ι\nhx : x ∈ C i\n⊢ ∃ i, x ∈ range fun x => ↑(f x i)", "tactic": "cases' hf i ⟨x, hx⟩ with y hy" }, { "state_after": "no goals", "state_before": "case h.mpr.intro.intro\nα : Type u_1\nβ : Type u_2\nγ : Type ?u.180962\nι : Sort u_3\nι' : Sort ?u.180968\nι₂ : Sort ?u.180971\nκ : ι → Sort ?u.180976\nκ₁ : ι → Sort ?u.180981\nκ₂ : ι → Sort ?u.180986\nκ' : ι' → Sort ?u.180991\nC : ι → Set α\nf : (x : ι) → β → ↑(C x)\nhf : ∀ (x : ι), Surjective (f x)\nx : α\ni : ι\nhx : x ∈ C i\ny : β\nhy : f i y = { val := x, property := hx }\n⊢ ∃ i, x ∈ range fun x => ↑(f x i)", "tactic": "exact ⟨y, i, congr_arg Subtype.val hy⟩" } ]
[ 1394, 43 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1387, 1 ]
Mathlib/Analysis/SpecificLimits/Normed.lean
not_summable_of_ratio_test_tendsto_gt_one
[ { "state_after": "α✝ : Type ?u.1387057\nβ : Type ?u.1387060\nι : Type ?u.1387063\nα : Type u_1\ninst✝ : SeminormedAddCommGroup α\nf : ℕ → α\nl : ℝ\nhl : 1 < l\nh : Tendsto (fun n => ‖f (n + 1)‖ / ‖f n‖) atTop (𝓝 l)\nkey : ∀ᶠ (n : ℕ) in atTop, ‖f n‖ ≠ 0\n⊢ ¬Summable f", "state_before": "α✝ : Type ?u.1387057\nβ : Type ?u.1387060\nι : Type ?u.1387063\nα : Type u_1\ninst✝ : SeminormedAddCommGroup α\nf : ℕ → α\nl : ℝ\nhl : 1 < l\nh : Tendsto (fun n => ‖f (n + 1)‖ / ‖f n‖) atTop (𝓝 l)\n⊢ ¬Summable f", "tactic": "have key : ∀ᶠ n in atTop, ‖f n‖ ≠ 0 := by\n filter_upwards [eventually_ge_of_tendsto_gt hl h]with _ hn hc\n rw [hc, _root_.div_zero] at hn\n linarith" }, { "state_after": "case intro.intro\nα✝ : Type ?u.1387057\nβ : Type ?u.1387060\nι : Type ?u.1387063\nα : Type u_1\ninst✝ : SeminormedAddCommGroup α\nf : ℕ → α\nl : ℝ\nhl : 1 < l\nh : Tendsto (fun n => ‖f (n + 1)‖ / ‖f n‖) atTop (𝓝 l)\nkey : ∀ᶠ (n : ℕ) in atTop, ‖f n‖ ≠ 0\nr : ℝ\nhr₀ : 1 < r\nhr₁ : r < l\n⊢ ¬Summable f", "state_before": "α✝ : Type ?u.1387057\nβ : Type ?u.1387060\nι : Type ?u.1387063\nα : Type u_1\ninst✝ : SeminormedAddCommGroup α\nf : ℕ → α\nl : ℝ\nhl : 1 < l\nh : Tendsto (fun n => ‖f (n + 1)‖ / ‖f n‖) atTop (𝓝 l)\nkey : ∀ᶠ (n : ℕ) in atTop, ‖f n‖ ≠ 0\n⊢ ¬Summable f", "tactic": "rcases exists_between hl with ⟨r, hr₀, hr₁⟩" }, { "state_after": "case intro.intro\nα✝ : Type ?u.1387057\nβ : Type ?u.1387060\nι : Type ?u.1387063\nα : Type u_1\ninst✝ : SeminormedAddCommGroup α\nf : ℕ → α\nl : ℝ\nhl : 1 < l\nh : Tendsto (fun n => ‖f (n + 1)‖ / ‖f n‖) atTop (𝓝 l)\nkey : ∀ᶠ (n : ℕ) in atTop, ‖f n‖ ≠ 0\nr : ℝ\nhr₀ : 1 < r\nhr₁ : r < l\n⊢ ∀ᶠ (n : ℕ) in atTop, r * ‖f n‖ ≤ ‖f (n + 1)‖", "state_before": "case intro.intro\nα✝ : Type ?u.1387057\nβ : Type ?u.1387060\nι : Type ?u.1387063\nα : Type u_1\ninst✝ : SeminormedAddCommGroup α\nf : ℕ → α\nl : ℝ\nhl : 1 < l\nh : Tendsto (fun n => ‖f (n + 1)‖ / ‖f n‖) atTop (𝓝 l)\nkey : ∀ᶠ (n : ℕ) in atTop, ‖f n‖ ≠ 0\nr : ℝ\nhr₀ : 1 < r\nhr₁ : r < l\n⊢ ¬Summable f", "tactic": "refine' not_summable_of_ratio_norm_eventually_ge hr₀ key.frequently _" }, { "state_after": "case h\nα✝ : Type ?u.1387057\nβ : Type ?u.1387060\nι : Type ?u.1387063\nα : Type u_1\ninst✝ : SeminormedAddCommGroup α\nf : ℕ → α\nl : ℝ\nhl : 1 < l\nh : Tendsto (fun n => ‖f (n + 1)‖ / ‖f n‖) atTop (𝓝 l)\nkey : ∀ᶠ (n : ℕ) in atTop, ‖f n‖ ≠ 0\nr : ℝ\nhr₀ : 1 < r\nhr₁ : r < l\na✝¹ : ℕ\na✝ : r ≤ ‖f (a✝¹ + 1)‖ / ‖f a✝¹‖\nh₁ : ‖f a✝¹‖ ≠ 0\n⊢ r * ‖f a✝¹‖ ≤ ‖f (a✝¹ + 1)‖", "state_before": "case intro.intro\nα✝ : Type ?u.1387057\nβ : Type ?u.1387060\nι : Type ?u.1387063\nα : Type u_1\ninst✝ : SeminormedAddCommGroup α\nf : ℕ → α\nl : ℝ\nhl : 1 < l\nh : Tendsto (fun n => ‖f (n + 1)‖ / ‖f n‖) atTop (𝓝 l)\nkey : ∀ᶠ (n : ℕ) in atTop, ‖f n‖ ≠ 0\nr : ℝ\nhr₀ : 1 < r\nhr₁ : r < l\n⊢ ∀ᶠ (n : ℕ) in atTop, r * ‖f n‖ ≤ ‖f (n + 1)‖", "tactic": "filter_upwards [eventually_ge_of_tendsto_gt hr₁ h, key]with _ _ h₁" }, { "state_after": "no goals", "state_before": "case h\nα✝ : Type ?u.1387057\nβ : Type ?u.1387060\nι : Type ?u.1387063\nα : Type u_1\ninst✝ : SeminormedAddCommGroup α\nf : ℕ → α\nl : ℝ\nhl : 1 < l\nh : Tendsto (fun n => ‖f (n + 1)‖ / ‖f n‖) atTop (𝓝 l)\nkey : ∀ᶠ (n : ℕ) in atTop, ‖f n‖ ≠ 0\nr : ℝ\nhr₀ : 1 < r\nhr₁ : r < l\na✝¹ : ℕ\na✝ : r ≤ ‖f (a✝¹ + 1)‖ / ‖f a✝¹‖\nh₁ : ‖f a✝¹‖ ≠ 0\n⊢ r * ‖f a✝¹‖ ≤ ‖f (a✝¹ + 1)‖", "tactic": "rwa [← le_div_iff (lt_of_le_of_ne (norm_nonneg _) h₁.symm)]" }, { "state_after": "case h\nα✝ : Type ?u.1387057\nβ : Type ?u.1387060\nι : Type ?u.1387063\nα : Type u_1\ninst✝ : SeminormedAddCommGroup α\nf : ℕ → α\nl : ℝ\nhl : 1 < l\nh : Tendsto (fun n => ‖f (n + 1)‖ / ‖f n‖) atTop (𝓝 l)\na✝ : ℕ\nhn : 1 ≤ ‖f (a✝ + 1)‖ / ‖f a✝‖\nhc : ‖f a✝‖ = 0\n⊢ False", "state_before": "α✝ : Type ?u.1387057\nβ : Type ?u.1387060\nι : Type ?u.1387063\nα : Type u_1\ninst✝ : SeminormedAddCommGroup α\nf : ℕ → α\nl : ℝ\nhl : 1 < l\nh : Tendsto (fun n => ‖f (n + 1)‖ / ‖f n‖) atTop (𝓝 l)\n⊢ ∀ᶠ (n : ℕ) in atTop, ‖f n‖ ≠ 0", "tactic": "filter_upwards [eventually_ge_of_tendsto_gt hl h]with _ hn hc" }, { "state_after": "case h\nα✝ : Type ?u.1387057\nβ : Type ?u.1387060\nι : Type ?u.1387063\nα : Type u_1\ninst✝ : SeminormedAddCommGroup α\nf : ℕ → α\nl : ℝ\nhl : 1 < l\nh : Tendsto (fun n => ‖f (n + 1)‖ / ‖f n‖) atTop (𝓝 l)\na✝ : ℕ\nhn : 1 ≤ 0\nhc : ‖f a✝‖ = 0\n⊢ False", "state_before": "case h\nα✝ : Type ?u.1387057\nβ : Type ?u.1387060\nι : Type ?u.1387063\nα : Type u_1\ninst✝ : SeminormedAddCommGroup α\nf : ℕ → α\nl : ℝ\nhl : 1 < l\nh : Tendsto (fun n => ‖f (n + 1)‖ / ‖f n‖) atTop (𝓝 l)\na✝ : ℕ\nhn : 1 ≤ ‖f (a✝ + 1)‖ / ‖f a✝‖\nhc : ‖f a✝‖ = 0\n⊢ False", "tactic": "rw [hc, _root_.div_zero] at hn" }, { "state_after": "no goals", "state_before": "case h\nα✝ : Type ?u.1387057\nβ : Type ?u.1387060\nι : Type ?u.1387063\nα : Type u_1\ninst✝ : SeminormedAddCommGroup α\nf : ℕ → α\nl : ℝ\nhl : 1 < l\nh : Tendsto (fun n => ‖f (n + 1)‖ / ‖f n‖) atTop (𝓝 l)\na✝ : ℕ\nhn : 1 ≤ 0\nhc : ‖f a✝‖ = 0\n⊢ False", "tactic": "linarith" } ]
[ 569, 62 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 559, 1 ]
Mathlib/Data/Rat/Cast.lean
RingHom.ext_rat
[]
[ 487, 96 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 484, 1 ]
Mathlib/Combinatorics/SimpleGraph/Ends/Defs.lean
SimpleGraph.ComponentCompl.subset_hom
[ { "state_after": "case intro\nV : Type u\nG : SimpleGraph V\nK L L' M : Set V\nh : K ⊆ L\nc : V\ncL : ¬c ∈ L\n⊢ c ∈ ↑(hom h (componentComplMk G cL))", "state_before": "V : Type u\nG : SimpleGraph V\nK L L' M : Set V\nC : ComponentCompl G L\nh : K ⊆ L\n⊢ ↑C ⊆ ↑(hom h C)", "tactic": "rintro c ⟨cL, rfl⟩" }, { "state_after": "no goals", "state_before": "case intro\nV : Type u\nG : SimpleGraph V\nK L L' M : Set V\nh : K ⊆ L\nc : V\ncL : ¬c ∈ L\n⊢ c ∈ ↑(hom h (componentComplMk G cL))", "tactic": "exact ⟨fun h' => cL (h h'), rfl⟩" } ]
[ 183, 35 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 181, 1 ]
Mathlib/Algebra/Module/Submodule/Pointwise.lean
Submodule.smul_bot'
[]
[ 237, 12 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 236, 1 ]
Mathlib/RingTheory/MvPolynomial/WeightedHomogeneous.lean
MvPolynomial.weightedTotalDegree_coe
[ { "state_after": "R : Type u_2\nM : Type u_3\ninst✝³ : CommSemiring R\nσ : Type u_1\ninst✝² : AddCommMonoid M\ninst✝¹ : SemilatticeSup M\ninst✝ : OrderBot M\nw : σ → M\np : MvPolynomial σ R\nhp : ∃ a, ↑a = weightedTotalDegree' w p\n⊢ weightedTotalDegree' w p = ↑(weightedTotalDegree w p)", "state_before": "R : Type u_2\nM : Type u_3\ninst✝³ : CommSemiring R\nσ : Type u_1\ninst✝² : AddCommMonoid M\ninst✝¹ : SemilatticeSup M\ninst✝ : OrderBot M\nw : σ → M\np : MvPolynomial σ R\nhp : p ≠ 0\n⊢ weightedTotalDegree' w p = ↑(weightedTotalDegree w p)", "tactic": "rw [Ne.def, ← weightedTotalDegree'_eq_bot_iff w p, ← Ne.def, WithBot.ne_bot_iff_exists] at hp" }, { "state_after": "case intro\nR : Type u_2\nM : Type u_3\ninst✝³ : CommSemiring R\nσ : Type u_1\ninst✝² : AddCommMonoid M\ninst✝¹ : SemilatticeSup M\ninst✝ : OrderBot M\nw : σ → M\np : MvPolynomial σ R\nm : M\nhm : ↑m = weightedTotalDegree' w p\n⊢ weightedTotalDegree' w p = ↑(weightedTotalDegree w p)", "state_before": "R : Type u_2\nM : Type u_3\ninst✝³ : CommSemiring R\nσ : Type u_1\ninst✝² : AddCommMonoid M\ninst✝¹ : SemilatticeSup M\ninst✝ : OrderBot M\nw : σ → M\np : MvPolynomial σ R\nhp : ∃ a, ↑a = weightedTotalDegree' w p\n⊢ weightedTotalDegree' w p = ↑(weightedTotalDegree w p)", "tactic": "obtain ⟨m, hm⟩ := hp" }, { "state_after": "case intro.a\nR : Type u_2\nM : Type u_3\ninst✝³ : CommSemiring R\nσ : Type u_1\ninst✝² : AddCommMonoid M\ninst✝¹ : SemilatticeSup M\ninst✝ : OrderBot M\nw : σ → M\np : MvPolynomial σ R\nm : M\nhm : ↑m = weightedTotalDegree' w p\n⊢ weightedTotalDegree' w p ≤ ↑(weightedTotalDegree w p)\n\ncase intro.a\nR : Type u_2\nM : Type u_3\ninst✝³ : CommSemiring R\nσ : Type u_1\ninst✝² : AddCommMonoid M\ninst✝¹ : SemilatticeSup M\ninst✝ : OrderBot M\nw : σ → M\np : MvPolynomial σ R\nm : M\nhm : ↑m = weightedTotalDegree' w p\n⊢ ↑(weightedTotalDegree w p) ≤ weightedTotalDegree' w p", "state_before": "case intro\nR : Type u_2\nM : Type u_3\ninst✝³ : CommSemiring R\nσ : Type u_1\ninst✝² : AddCommMonoid M\ninst✝¹ : SemilatticeSup M\ninst✝ : OrderBot M\nw : σ → M\np : MvPolynomial σ R\nm : M\nhm : ↑m = weightedTotalDegree' w p\n⊢ weightedTotalDegree' w p = ↑(weightedTotalDegree w p)", "tactic": "apply le_antisymm" }, { "state_after": "case intro.a\nR : Type u_2\nM : Type u_3\ninst✝³ : CommSemiring R\nσ : Type u_1\ninst✝² : AddCommMonoid M\ninst✝¹ : SemilatticeSup M\ninst✝ : OrderBot M\nw : σ → M\np : MvPolynomial σ R\nm : M\nhm : ↑m = weightedTotalDegree' w p\n⊢ ∀ (b : σ →₀ ℕ), b ∈ support p → ↑(weightedDegree' w) b ≤ sup (support p) fun s => ↑(weightedDegree' w) s", "state_before": "case intro.a\nR : Type u_2\nM : Type u_3\ninst✝³ : CommSemiring R\nσ : Type u_1\ninst✝² : AddCommMonoid M\ninst✝¹ : SemilatticeSup M\ninst✝ : OrderBot M\nw : σ → M\np : MvPolynomial σ R\nm : M\nhm : ↑m = weightedTotalDegree' w p\n⊢ weightedTotalDegree' w p ≤ ↑(weightedTotalDegree w p)", "tactic": "simp only [weightedTotalDegree, weightedTotalDegree', Finset.sup_le_iff, WithBot.coe_le_coe]" }, { "state_after": "case intro.a\nR : Type u_2\nM : Type u_3\ninst✝³ : CommSemiring R\nσ : Type u_1\ninst✝² : AddCommMonoid M\ninst✝¹ : SemilatticeSup M\ninst✝ : OrderBot M\nw : σ → M\np : MvPolynomial σ R\nm : M\nhm : ↑m = weightedTotalDegree' w p\nb : σ →₀ ℕ\n⊢ b ∈ support p → ↑(weightedDegree' w) b ≤ sup (support p) fun s => ↑(weightedDegree' w) s", "state_before": "case intro.a\nR : Type u_2\nM : Type u_3\ninst✝³ : CommSemiring R\nσ : Type u_1\ninst✝² : AddCommMonoid M\ninst✝¹ : SemilatticeSup M\ninst✝ : OrderBot M\nw : σ → M\np : MvPolynomial σ R\nm : M\nhm : ↑m = weightedTotalDegree' w p\n⊢ ∀ (b : σ →₀ ℕ), b ∈ support p → ↑(weightedDegree' w) b ≤ sup (support p) fun s => ↑(weightedDegree' w) s", "tactic": "intro b" }, { "state_after": "no goals", "state_before": "case intro.a\nR : Type u_2\nM : Type u_3\ninst✝³ : CommSemiring R\nσ : Type u_1\ninst✝² : AddCommMonoid M\ninst✝¹ : SemilatticeSup M\ninst✝ : OrderBot M\nw : σ → M\np : MvPolynomial σ R\nm : M\nhm : ↑m = weightedTotalDegree' w p\nb : σ →₀ ℕ\n⊢ b ∈ support p → ↑(weightedDegree' w) b ≤ sup (support p) fun s => ↑(weightedDegree' w) s", "tactic": "exact Finset.le_sup" }, { "state_after": "case intro.a\nR : Type u_2\nM : Type u_3\ninst✝³ : CommSemiring R\nσ : Type u_1\ninst✝² : AddCommMonoid M\ninst✝¹ : SemilatticeSup M\ninst✝ : OrderBot M\nw : σ → M\np : MvPolynomial σ R\nm : M\nhm : ↑m = weightedTotalDegree' w p\n⊢ ↑(sup (support p) fun s => ↑(weightedDegree' w) s) ≤ weightedTotalDegree' w p", "state_before": "case intro.a\nR : Type u_2\nM : Type u_3\ninst✝³ : CommSemiring R\nσ : Type u_1\ninst✝² : AddCommMonoid M\ninst✝¹ : SemilatticeSup M\ninst✝ : OrderBot M\nw : σ → M\np : MvPolynomial σ R\nm : M\nhm : ↑m = weightedTotalDegree' w p\n⊢ ↑(weightedTotalDegree w p) ≤ weightedTotalDegree' w p", "tactic": "simp only [weightedTotalDegree]" }, { "state_after": "case intro.a\nR : Type u_2\nM : Type u_3\ninst✝³ : CommSemiring R\nσ : Type u_1\ninst✝² : AddCommMonoid M\ninst✝¹ : SemilatticeSup M\ninst✝ : OrderBot M\nw : σ → M\np : MvPolynomial σ R\nm : M\nhm : ↑m = weightedTotalDegree' w p\nhm' : weightedTotalDegree' w p ≤ ↑m\n⊢ ↑(sup (support p) fun s => ↑(weightedDegree' w) s) ≤ weightedTotalDegree' w p", "state_before": "case intro.a\nR : Type u_2\nM : Type u_3\ninst✝³ : CommSemiring R\nσ : Type u_1\ninst✝² : AddCommMonoid M\ninst✝¹ : SemilatticeSup M\ninst✝ : OrderBot M\nw : σ → M\np : MvPolynomial σ R\nm : M\nhm : ↑m = weightedTotalDegree' w p\n⊢ ↑(sup (support p) fun s => ↑(weightedDegree' w) s) ≤ weightedTotalDegree' w p", "tactic": "have hm' : weightedTotalDegree' w p ≤ m := le_of_eq hm.symm" }, { "state_after": "case intro.a\nR : Type u_2\nM : Type u_3\ninst✝³ : CommSemiring R\nσ : Type u_1\ninst✝² : AddCommMonoid M\ninst✝¹ : SemilatticeSup M\ninst✝ : OrderBot M\nw : σ → M\np : MvPolynomial σ R\nm : M\nhm : ↑m = weightedTotalDegree' w p\nhm' : weightedTotalDegree' w p ≤ ↑m\n⊢ ↑(sup (support p) fun s => ↑(weightedDegree' w) s) ≤ ↑m", "state_before": "case intro.a\nR : Type u_2\nM : Type u_3\ninst✝³ : CommSemiring R\nσ : Type u_1\ninst✝² : AddCommMonoid M\ninst✝¹ : SemilatticeSup M\ninst✝ : OrderBot M\nw : σ → M\np : MvPolynomial σ R\nm : M\nhm : ↑m = weightedTotalDegree' w p\nhm' : weightedTotalDegree' w p ≤ ↑m\n⊢ ↑(sup (support p) fun s => ↑(weightedDegree' w) s) ≤ weightedTotalDegree' w p", "tactic": "rw [← hm]" }, { "state_after": "no goals", "state_before": "case intro.a\nR : Type u_2\nM : Type u_3\ninst✝³ : CommSemiring R\nσ : Type u_1\ninst✝² : AddCommMonoid M\ninst✝¹ : SemilatticeSup M\ninst✝ : OrderBot M\nw : σ → M\np : MvPolynomial σ R\nm : M\nhm : ↑m = weightedTotalDegree' w p\nhm' : weightedTotalDegree' w p ≤ ↑m\n⊢ ↑(sup (support p) fun s => ↑(weightedDegree' w) s) ≤ ↑m", "tactic": "simpa [weightedTotalDegree'] using hm'" } ]
[ 116, 43 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 105, 1 ]
Mathlib/Analysis/SpecialFunctions/Log/Basic.lean
Real.tendsto_log_nhdsWithin_zero
[ { "state_after": "x y : ℝ\n⊢ Tendsto (fun x => log (abs x)) (𝓝[{0}ᶜ] 0) atBot", "state_before": "x y : ℝ\n⊢ Tendsto log (𝓝[{0}ᶜ] 0) atBot", "tactic": "rw [← show _ = log from funext log_abs]" }, { "state_after": "x y : ℝ\n⊢ Tendsto log (𝓝[Ioi 0] 0) atBot", "state_before": "x y : ℝ\n⊢ Tendsto (fun x => log (abs x)) (𝓝[{0}ᶜ] 0) atBot", "tactic": "refine' Tendsto.comp (g := log) _ tendsto_abs_nhdsWithin_zero" }, { "state_after": "no goals", "state_before": "x y : ℝ\n⊢ Tendsto log (𝓝[Ioi 0] 0) atBot", "tactic": "simpa [← tendsto_comp_exp_atBot] using tendsto_id" } ]
[ 301, 52 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 298, 1 ]
Mathlib/RingTheory/Localization/Basic.lean
IsLocalization.mk'_spec_mk
[]
[ 273, 23 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 271, 1 ]
Mathlib/Analysis/Calculus/Deriv/Inv.lean
derivWithin_inv'
[]
[ 170, 47 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 167, 1 ]
Mathlib/Data/Real/EReal.lean
EReal.coe_ennreal_injective
[]
[ 485, 35 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 484, 1 ]
Mathlib/Algebra/Algebra/Hom.lean
AlgHom.coe_addMonoidHom_injective
[]
[ 211, 64 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 210, 1 ]
Mathlib/Data/Seq/Computation.lean
Computation.LiftRelAux.ret_right
[ { "state_after": "no goals", "state_before": "α : Type u\nβ : Type v\nγ : Type w\nR : α → β → Prop\nC : Computation α → Computation β → Prop\nb : β\nca : Computation α\n⊢ LiftRelAux R C (destruct ca) (Sum.inl b) ↔ ∃ a, a ∈ ca ∧ R a b", "tactic": "rw [← LiftRelAux.swap, LiftRelAux.ret_left]" } ]
[ 1282, 46 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1280, 1 ]
Mathlib/Order/Filter/AtTopBot.lean
Filter.tendsto_atTop_atBot
[]
[ 1281, 37 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1279, 1 ]
Mathlib/Data/Polynomial/Splits.lean
Polynomial.splits_of_map_degree_eq_one
[ { "state_after": "F : Type u\nK : Type v\nL : Type w\ninst✝² : CommRing K\ninst✝¹ : Field L\ninst✝ : Field F\ni : K →+* L\nf : K[X]\nhf : degree (map i f) = 1\ng✝ : L[X]\nhg : Irreducible g✝\nx✝ : g✝ ∣ map i f\np : L[X]\nhp : map i f = g✝ * p\nthis : degree (map i f) = degree (g✝ * p)\n⊢ degree g✝ = 1", "state_before": "F : Type u\nK : Type v\nL : Type w\ninst✝² : CommRing K\ninst✝¹ : Field L\ninst✝ : Field F\ni : K →+* L\nf : K[X]\nhf : degree (map i f) = 1\ng✝ : L[X]\nhg : Irreducible g✝\nx✝ : g✝ ∣ map i f\np : L[X]\nhp : map i f = g✝ * p\n⊢ degree g✝ = 1", "tactic": "have := congr_arg degree hp" }, { "state_after": "F : Type u\nK : Type v\nL : Type w\ninst✝² : CommRing K\ninst✝¹ : Field L\ninst✝ : Field F\ni : K →+* L\nf : K[X]\nhf : degree (map i f) = 1\ng✝ : L[X]\nhg : Irreducible g✝\nx✝ : g✝ ∣ map i f\np : L[X]\nhp : map i f = g✝ * p\nthis : degree g✝ = 1 ∧ degree p = 0\n⊢ degree g✝ = 1", "state_before": "F : Type u\nK : Type v\nL : Type w\ninst✝² : CommRing K\ninst✝¹ : Field L\ninst✝ : Field F\ni : K →+* L\nf : K[X]\nhf : degree (map i f) = 1\ng✝ : L[X]\nhg : Irreducible g✝\nx✝ : g✝ ∣ map i f\np : L[X]\nhp : map i f = g✝ * p\nthis : degree (map i f) = degree (g✝ * p)\n⊢ degree g✝ = 1", "tactic": "simp [Nat.WithBot.add_eq_one_iff, hf, @eq_comm (WithBot ℕ) 1,\n mt isUnit_iff_degree_eq_zero.2 hg.1] at this" }, { "state_after": "no goals", "state_before": "F : Type u\nK : Type v\nL : Type w\ninst✝² : CommRing K\ninst✝¹ : Field L\ninst✝ : Field F\ni : K →+* L\nf : K[X]\nhf : degree (map i f) = 1\ng✝ : L[X]\nhg : Irreducible g✝\nx✝ : g✝ ∣ map i f\np : L[X]\nhp : map i f = g✝ * p\nthis : degree g✝ = 1 ∧ degree p = 0\n⊢ degree g✝ = 1", "tactic": "tauto" } ]
[ 91, 10 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 86, 1 ]
Mathlib/NumberTheory/Padics/PadicVal.lean
padicValNat_self
[ { "state_after": "p : ℕ\ninst✝ : Fact (Nat.Prime p)\n⊢ Part.get (multiplicity p p) (_ : multiplicity.Finite p p) = 1", "state_before": "p : ℕ\ninst✝ : Fact (Nat.Prime p)\n⊢ padicValNat p p = 1", "tactic": "rw [padicValNat_def (@Fact.out p.Prime).pos]" }, { "state_after": "no goals", "state_before": "p : ℕ\ninst✝ : Fact (Nat.Prime p)\n⊢ Part.get (multiplicity p p) (_ : multiplicity.Finite p p) = 1", "tactic": "simp" } ]
[ 236, 7 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 234, 1 ]
Mathlib/Data/Set/Function.lean
Set.EqOn.congr_strictAntiOn
[]
[ 287, 52 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 286, 1 ]
Mathlib/Dynamics/PeriodicPts.lean
Function.periodicOrbit_eq_nil_of_not_periodic_pt
[]
[ 514, 47 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 512, 1 ]
Mathlib/Analysis/SpecialFunctions/Trigonometric/Arctan.lean
Real.tan_add'
[]
[ 43, 21 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 40, 1 ]
Mathlib/Data/Polynomial/Eval.lean
Polynomial.eval₂_comp
[ { "state_after": "R : Type u\nS : Type v\nT : Type w\nι : Type y\na b : R\nm n : ℕ\ninst✝¹ : Semiring R\np q : R[X]\nx✝ : R\ninst✝ : CommSemiring S\nf : R →+* S\nx : S\n⊢ eval₂ f x (eval₂ C q (∑ i in range (natDegree p + 1), ↑(monomial i) (coeff p i))) =\n eval₂ f (eval₂ f x q) (∑ i in range (natDegree p + 1), ↑(monomial i) (coeff p i))", "state_before": "R : Type u\nS : Type v\nT : Type w\nι : Type y\na b : R\nm n : ℕ\ninst✝¹ : Semiring R\np q : R[X]\nx✝ : R\ninst✝ : CommSemiring S\nf : R →+* S\nx : S\n⊢ eval₂ f x (comp p q) = eval₂ f (eval₂ f x q) p", "tactic": "rw [comp, p.as_sum_range]" }, { "state_after": "no goals", "state_before": "R : Type u\nS : Type v\nT : Type w\nι : Type y\na b : R\nm n : ℕ\ninst✝¹ : Semiring R\np q : R[X]\nx✝ : R\ninst✝ : CommSemiring S\nf : R →+* S\nx : S\n⊢ eval₂ f x (eval₂ C q (∑ i in range (natDegree p + 1), ↑(monomial i) (coeff p i))) =\n eval₂ f (eval₂ f x q) (∑ i in range (natDegree p + 1), ↑(monomial i) (coeff p i))", "tactic": "simp [eval₂_finset_sum, eval₂_pow]" } ]
[ 1034, 64 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1033, 1 ]
Mathlib/Data/Set/Intervals/Disjoint.lean
IsLUB.biUnion_Iic_eq_Iio
[]
[ 223, 42 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 221, 1 ]
Mathlib/RingTheory/NonUnitalSubsemiring/Basic.lean
NonUnitalRingHom.srangeRestrict_surjective
[]
[ 885, 22 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 881, 1 ]
Mathlib/LinearAlgebra/TensorProduct.lean
TensorProduct.add_tmul
[]
[ 143, 78 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 142, 1 ]
Mathlib/Data/Setoid/Partition.lean
Setoid.eqv_classes_of_disjoint_union
[ { "state_after": "α : Type u_1\nc : Set (Set α)\nhu : ⋃₀ c = Set.univ\nH : Set.PairwiseDisjoint c id\na : α\n⊢ a ∈ Set.univ", "state_before": "α : Type u_1\nc : Set (Set α)\nhu : ⋃₀ c = Set.univ\nH : Set.PairwiseDisjoint c id\na : α\n⊢ a ∈ ⋃₀ c", "tactic": "rw [hu]" }, { "state_after": "no goals", "state_before": "α : Type u_1\nc : Set (Set α)\nhu : ⋃₀ c = Set.univ\nH : Set.PairwiseDisjoint c id\na : α\n⊢ a ∈ Set.univ", "tactic": "exact Set.mem_univ a" } ]
[ 181, 75 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 178, 1 ]
Mathlib/Algebra/AddTorsor.lean
Prod.fst_vadd
[]
[ 306, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 305, 1 ]
Mathlib/RingTheory/Subsemiring/Basic.lean
natCast_mem
[ { "state_after": "no goals", "state_before": "S : Type u_1\nR : Type u_2\ninst✝² : AddMonoidWithOne R\ninst✝¹ : SetLike S R\ns : S\ninst✝ : AddSubmonoidWithOneClass S R\nn : ℕ\n⊢ ↑n ∈ s", "tactic": "induction n <;> simp [zero_mem, add_mem, one_mem, *]" } ]
[ 44, 55 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 43, 1 ]
Mathlib/Data/Finsupp/Basic.lean
Finsupp.mapDomain_support
[ { "state_after": "no goals", "state_before": "α : Type u_2\nβ : Type u_1\nγ : Type ?u.187796\nι : Type ?u.187799\nM : Type u_3\nM' : Type ?u.187805\nN : Type ?u.187808\nP : Type ?u.187811\nG : Type ?u.187814\nH : Type ?u.187817\nR : Type ?u.187820\nS : Type ?u.187823\ninst✝¹ : AddCommMonoid M\nv v₁ v₂ : α →₀ M\ninst✝ : DecidableEq β\nf : α → β\ns : α →₀ M\n⊢ (Finset.biUnion s.support fun a => {f a}) ⊆ image f s.support", "tactic": "rw [Finset.biUnion_singleton]" } ]
[ 543, 36 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 539, 1 ]
Mathlib/LinearAlgebra/BilinearMap.lean
LinearMap.map_zero₂
[]
[ 159, 22 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 158, 1 ]
Mathlib/Data/Multiset/Antidiagonal.lean
Multiset.antidiagonal_coe'
[]
[ 41, 42 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 40, 1 ]
Mathlib/GroupTheory/Perm/Cycle/Type.lean
Equiv.Perm.cycleType_eq'
[ { "state_after": "α : Type u_1\ninst✝¹ : Fintype α\ninst✝ : DecidableEq α\nσ : Perm α\ns : Finset (Perm α)\nh1 : ∀ (f : Perm α), f ∈ s → IsCycle f\nh2 : Set.Pairwise (↑s) Disjoint\nh0 : Finset.noncommProd s id (_ : Set.Pairwise ↑s fun a b => Commute (id a) (id b)) = σ\n⊢ map (Finset.card ∘ support) (cycleFactorsFinset σ).val = map (Finset.card ∘ support) s.val", "state_before": "α : Type u_1\ninst✝¹ : Fintype α\ninst✝ : DecidableEq α\nσ : Perm α\ns : Finset (Perm α)\nh1 : ∀ (f : Perm α), f ∈ s → IsCycle f\nh2 : Set.Pairwise (↑s) Disjoint\nh0 : Finset.noncommProd s id (_ : Set.Pairwise ↑s fun a b => Commute (id a) (id b)) = σ\n⊢ cycleType σ = map (Finset.card ∘ support) s.val", "tactic": "rw [cycleType_def]" }, { "state_after": "case e_s.e_self\nα : Type u_1\ninst✝¹ : Fintype α\ninst✝ : DecidableEq α\nσ : Perm α\ns : Finset (Perm α)\nh1 : ∀ (f : Perm α), f ∈ s → IsCycle f\nh2 : Set.Pairwise (↑s) Disjoint\nh0 : Finset.noncommProd s id (_ : Set.Pairwise ↑s fun a b => Commute (id a) (id b)) = σ\n⊢ cycleFactorsFinset σ = s", "state_before": "α : Type u_1\ninst✝¹ : Fintype α\ninst✝ : DecidableEq α\nσ : Perm α\ns : Finset (Perm α)\nh1 : ∀ (f : Perm α), f ∈ s → IsCycle f\nh2 : Set.Pairwise (↑s) Disjoint\nh0 : Finset.noncommProd s id (_ : Set.Pairwise ↑s fun a b => Commute (id a) (id b)) = σ\n⊢ map (Finset.card ∘ support) (cycleFactorsFinset σ).val = map (Finset.card ∘ support) s.val", "tactic": "congr" }, { "state_after": "case e_s.e_self\nα : Type u_1\ninst✝¹ : Fintype α\ninst✝ : DecidableEq α\nσ : Perm α\ns : Finset (Perm α)\nh1 : ∀ (f : Perm α), f ∈ s → IsCycle f\nh2 : Set.Pairwise (↑s) Disjoint\nh0 : Finset.noncommProd s id (_ : Set.Pairwise ↑s fun a b => Commute (id a) (id b)) = σ\n⊢ (∀ (f : Perm α), f ∈ s → IsCycle f) ∧\n ∃ h, Finset.noncommProd s id (_ : Set.Pairwise ↑s fun a b => Commute (id a) (id b)) = σ", "state_before": "case e_s.e_self\nα : Type u_1\ninst✝¹ : Fintype α\ninst✝ : DecidableEq α\nσ : Perm α\ns : Finset (Perm α)\nh1 : ∀ (f : Perm α), f ∈ s → IsCycle f\nh2 : Set.Pairwise (↑s) Disjoint\nh0 : Finset.noncommProd s id (_ : Set.Pairwise ↑s fun a b => Commute (id a) (id b)) = σ\n⊢ cycleFactorsFinset σ = s", "tactic": "rw [cycleFactorsFinset_eq_finset]" }, { "state_after": "no goals", "state_before": "case e_s.e_self\nα : Type u_1\ninst✝¹ : Fintype α\ninst✝ : DecidableEq α\nσ : Perm α\ns : Finset (Perm α)\nh1 : ∀ (f : Perm α), f ∈ s → IsCycle f\nh2 : Set.Pairwise (↑s) Disjoint\nh0 : Finset.noncommProd s id (_ : Set.Pairwise ↑s fun a b => Commute (id a) (id b)) = σ\n⊢ (∀ (f : Perm α), f ∈ s → IsCycle f) ∧\n ∃ h, Finset.noncommProd s id (_ : Set.Pairwise ↑s fun a b => Commute (id a) (id b)) = σ", "tactic": "exact ⟨h1, h2, h0⟩" } ]
[ 66, 21 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 59, 1 ]
Mathlib/Order/Cover.lean
Wcovby.trans_antisymm_rel
[]
[ 92, 73 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 91, 1 ]
Mathlib/Data/List/Basic.lean
List.get?_injective
[ { "state_after": "no goals", "state_before": "case nil\nι : Type ?u.83779\nα✝ : Type u\nβ : Type v\nγ : Type w\nδ : Type x\nl₁ l₂ : List α✝\nα : Type u\ni j : ℕ\nh₀ : i < length []\nh₁ : Nodup []\nh₂ : get? [] i = get? [] j\n⊢ i = j", "tactic": "cases h₀" }, { "state_after": "case cons.zero.zero\nι : Type ?u.83779\nα✝ : Type u\nβ : Type v\nγ : Type w\nδ : Type x\nl₁ l₂ : List α✝\nα : Type u\nx : α\nxs : List α\ntail_ih : ∀ {i j : ℕ}, i < length xs → Nodup xs → get? xs i = get? xs j → i = j\nh₁ : Nodup (x :: xs)\nh₀ : zero < length (x :: xs)\nh₂ : get? (x :: xs) zero = get? (x :: xs) zero\n⊢ zero = zero\n\ncase cons.zero.succ\nι : Type ?u.83779\nα✝ : Type u\nβ : Type v\nγ : Type w\nδ : Type x\nl₁ l₂ : List α✝\nα : Type u\nx : α\nxs : List α\ntail_ih : ∀ {i j : ℕ}, i < length xs → Nodup xs → get? xs i = get? xs j → i = j\nh₁ : Nodup (x :: xs)\nh₀ : zero < length (x :: xs)\nn✝ : ℕ\nh₂ : get? (x :: xs) zero = get? (x :: xs) (succ n✝)\n⊢ zero = succ n✝\n\ncase cons.succ.zero\nι : Type ?u.83779\nα✝ : Type u\nβ : Type v\nγ : Type w\nδ : Type x\nl₁ l₂ : List α✝\nα : Type u\nx : α\nxs : List α\ntail_ih : ∀ {i j : ℕ}, i < length xs → Nodup xs → get? xs i = get? xs j → i = j\nh₁ : Nodup (x :: xs)\nn✝ : ℕ\nh₀ : succ n✝ < length (x :: xs)\nh₂ : get? (x :: xs) (succ n✝) = get? (x :: xs) zero\n⊢ succ n✝ = zero\n\ncase cons.succ.succ\nι : Type ?u.83779\nα✝ : Type u\nβ : Type v\nγ : Type w\nδ : Type x\nl₁ l₂ : List α✝\nα : Type u\nx : α\nxs : List α\ntail_ih : ∀ {i j : ℕ}, i < length xs → Nodup xs → get? xs i = get? xs j → i = j\nh₁ : Nodup (x :: xs)\nn✝¹ : ℕ\nh₀ : succ n✝¹ < length (x :: xs)\nn✝ : ℕ\nh₂ : get? (x :: xs) (succ n✝¹) = get? (x :: xs) (succ n✝)\n⊢ succ n✝¹ = succ n✝", "state_before": "case cons\nι : Type ?u.83779\nα✝ : Type u\nβ : Type v\nγ : Type w\nδ : Type x\nl₁ l₂ : List α✝\nα : Type u\nx : α\nxs : List α\ntail_ih : ∀ {i j : ℕ}, i < length xs → Nodup xs → get? xs i = get? xs j → i = j\ni j : ℕ\nh₀ : i < length (x :: xs)\nh₁ : Nodup (x :: xs)\nh₂ : get? (x :: xs) i = get? (x :: xs) j\n⊢ i = j", "tactic": "cases i <;> cases j" }, { "state_after": "case cons.zero.succ\nι : Type ?u.83779\nα✝ : Type u\nβ : Type v\nγ : Type w\nδ : Type x\nl₁ l₂ : List α✝\nα : Type u\nx : α\nxs : List α\ntail_ih : ∀ {i j : ℕ}, i < length xs → Nodup xs → get? xs i = get? xs j → i = j\nh₁ : Nodup (x :: xs)\nh₀ : zero < length (x :: xs)\nn✝ : ℕ\nh₂ : get? (x :: xs) zero = get? (x :: xs) (succ n✝)\n⊢ zero = succ n✝\n\ncase cons.succ.zero\nι : Type ?u.83779\nα✝ : Type u\nβ : Type v\nγ : Type w\nδ : Type x\nl₁ l₂ : List α✝\nα : Type u\nx : α\nxs : List α\ntail_ih : ∀ {i j : ℕ}, i < length xs → Nodup xs → get? xs i = get? xs j → i = j\nh₁ : Nodup (x :: xs)\nn✝ : ℕ\nh₀ : succ n✝ < length (x :: xs)\nh₂ : get? (x :: xs) (succ n✝) = get? (x :: xs) zero\n⊢ succ n✝ = zero\n\ncase cons.succ.succ\nι : Type ?u.83779\nα✝ : Type u\nβ : Type v\nγ : Type w\nδ : Type x\nl₁ l₂ : List α✝\nα : Type u\nx : α\nxs : List α\ntail_ih : ∀ {i j : ℕ}, i < length xs → Nodup xs → get? xs i = get? xs j → i = j\nh₁ : Nodup (x :: xs)\nn✝¹ : ℕ\nh₀ : succ n✝¹ < length (x :: xs)\nn✝ : ℕ\nh₂ : get? (x :: xs) (succ n✝¹) = get? (x :: xs) (succ n✝)\n⊢ succ n✝¹ = succ n✝", "state_before": "case cons.zero.zero\nι : Type ?u.83779\nα✝ : Type u\nβ : Type v\nγ : Type w\nδ : Type x\nl₁ l₂ : List α✝\nα : Type u\nx : α\nxs : List α\ntail_ih : ∀ {i j : ℕ}, i < length xs → Nodup xs → get? xs i = get? xs j → i = j\nh₁ : Nodup (x :: xs)\nh₀ : zero < length (x :: xs)\nh₂ : get? (x :: xs) zero = get? (x :: xs) zero\n⊢ zero = zero\n\ncase cons.zero.succ\nι : Type ?u.83779\nα✝ : Type u\nβ : Type v\nγ : Type w\nδ : Type x\nl₁ l₂ : List α✝\nα : Type u\nx : α\nxs : List α\ntail_ih : ∀ {i j : ℕ}, i < length xs → Nodup xs → get? xs i = get? xs j → i = j\nh₁ : Nodup (x :: xs)\nh₀ : zero < length (x :: xs)\nn✝ : ℕ\nh₂ : get? (x :: xs) zero = get? (x :: xs) (succ n✝)\n⊢ zero = succ n✝\n\ncase cons.succ.zero\nι : Type ?u.83779\nα✝ : Type u\nβ : Type v\nγ : Type w\nδ : Type x\nl₁ l₂ : List α✝\nα : Type u\nx : α\nxs : List α\ntail_ih : ∀ {i j : ℕ}, i < length xs → Nodup xs → get? xs i = get? xs j → i = j\nh₁ : Nodup (x :: xs)\nn✝ : ℕ\nh₀ : succ n✝ < length (x :: xs)\nh₂ : get? (x :: xs) (succ n✝) = get? (x :: xs) zero\n⊢ succ n✝ = zero\n\ncase cons.succ.succ\nι : Type ?u.83779\nα✝ : Type u\nβ : Type v\nγ : Type w\nδ : Type x\nl₁ l₂ : List α✝\nα : Type u\nx : α\nxs : List α\ntail_ih : ∀ {i j : ℕ}, i < length xs → Nodup xs → get? xs i = get? xs j → i = j\nh₁ : Nodup (x :: xs)\nn✝¹ : ℕ\nh₀ : succ n✝¹ < length (x :: xs)\nn✝ : ℕ\nh₂ : get? (x :: xs) (succ n✝¹) = get? (x :: xs) (succ n✝)\n⊢ succ n✝¹ = succ n✝", "tactic": "case zero.zero => rfl" }, { "state_after": "case cons.zero.succ\nι : Type ?u.83779\nα✝ : Type u\nβ : Type v\nγ : Type w\nδ : Type x\nl₁ l₂ : List α✝\nα : Type u\nx : α\nxs : List α\ntail_ih : ∀ {i j : ℕ}, i < length xs → Nodup xs → get? xs i = get? xs j → i = j\nh₁ : Nodup (x :: xs)\nh₀ : zero < length (x :: xs)\nn✝ : ℕ\nh₂ : get? (x :: xs) zero = get? (x :: xs) (succ n✝)\n⊢ zero = succ n✝\n\ncase cons.succ.zero\nι : Type ?u.83779\nα✝ : Type u\nβ : Type v\nγ : Type w\nδ : Type x\nl₁ l₂ : List α✝\nα : Type u\nx : α\nxs : List α\ntail_ih : ∀ {i j : ℕ}, i < length xs → Nodup xs → get? xs i = get? xs j → i = j\nh₁ : Nodup (x :: xs)\nn✝ : ℕ\nh₀ : succ n✝ < length (x :: xs)\nh₂ : get? (x :: xs) (succ n✝) = get? (x :: xs) zero\n⊢ succ n✝ = zero", "state_before": "case cons.zero.succ\nι : Type ?u.83779\nα✝ : Type u\nβ : Type v\nγ : Type w\nδ : Type x\nl₁ l₂ : List α✝\nα : Type u\nx : α\nxs : List α\ntail_ih : ∀ {i j : ℕ}, i < length xs → Nodup xs → get? xs i = get? xs j → i = j\nh₁ : Nodup (x :: xs)\nh₀ : zero < length (x :: xs)\nn✝ : ℕ\nh₂ : get? (x :: xs) zero = get? (x :: xs) (succ n✝)\n⊢ zero = succ n✝\n\ncase cons.succ.zero\nι : Type ?u.83779\nα✝ : Type u\nβ : Type v\nγ : Type w\nδ : Type x\nl₁ l₂ : List α✝\nα : Type u\nx : α\nxs : List α\ntail_ih : ∀ {i j : ℕ}, i < length xs → Nodup xs → get? xs i = get? xs j → i = j\nh₁ : Nodup (x :: xs)\nn✝ : ℕ\nh₀ : succ n✝ < length (x :: xs)\nh₂ : get? (x :: xs) (succ n✝) = get? (x :: xs) zero\n⊢ succ n✝ = zero\n\ncase cons.succ.succ\nι : Type ?u.83779\nα✝ : Type u\nβ : Type v\nγ : Type w\nδ : Type x\nl₁ l₂ : List α✝\nα : Type u\nx : α\nxs : List α\ntail_ih : ∀ {i j : ℕ}, i < length xs → Nodup xs → get? xs i = get? xs j → i = j\nh₁ : Nodup (x :: xs)\nn✝¹ : ℕ\nh₀ : succ n✝¹ < length (x :: xs)\nn✝ : ℕ\nh₂ : get? (x :: xs) (succ n✝¹) = get? (x :: xs) (succ n✝)\n⊢ succ n✝¹ = succ n✝", "tactic": "case succ.succ =>\n congr; cases h₁\n apply tail_ih <;> solve_by_elim [lt_of_succ_lt_succ]" }, { "state_after": "case cons.zero.succ.cons\nι : Type ?u.83779\nα✝ : Type u\nβ : Type v\nγ : Type w\nδ : Type x\nl₁ l₂ : List α✝\nα : Type u\nx : α\nxs : List α\ntail_ih : ∀ {i j : ℕ}, i < length xs → Nodup xs → get? xs i = get? xs j → i = j\nh₀ : zero < length (x :: xs)\nn✝ : ℕ\nh₂ : some x = get? xs n✝\nh' : Pairwise (fun x x_1 => x ≠ x_1) xs\nh : ∀ (a' : α), a' ∈ xs → x ≠ a'\n⊢ zero = succ n✝\n\ncase cons.succ.zero.cons\nι : Type ?u.83779\nα✝ : Type u\nβ : Type v\nγ : Type w\nδ : Type x\nl₁ l₂ : List α✝\nα : Type u\nx : α\nxs : List α\ntail_ih : ∀ {i j : ℕ}, i < length xs → Nodup xs → get? xs i = get? xs j → i = j\nn✝ : ℕ\nh₀ : succ n✝ < length (x :: xs)\nh₂ : get? xs n✝ = some x\nh' : Pairwise (fun x x_1 => x ≠ x_1) xs\nh : ∀ (a' : α), a' ∈ xs → x ≠ a'\n⊢ succ n✝ = zero", "state_before": "case cons.zero.succ\nι : Type ?u.83779\nα✝ : Type u\nβ : Type v\nγ : Type w\nδ : Type x\nl₁ l₂ : List α✝\nα : Type u\nx : α\nxs : List α\ntail_ih : ∀ {i j : ℕ}, i < length xs → Nodup xs → get? xs i = get? xs j → i = j\nh₁ : Nodup (x :: xs)\nh₀ : zero < length (x :: xs)\nn✝ : ℕ\nh₂ : get? (x :: xs) zero = get? (x :: xs) (succ n✝)\n⊢ zero = succ n✝\n\ncase cons.succ.zero\nι : Type ?u.83779\nα✝ : Type u\nβ : Type v\nγ : Type w\nδ : Type x\nl₁ l₂ : List α✝\nα : Type u\nx : α\nxs : List α\ntail_ih : ∀ {i j : ℕ}, i < length xs → Nodup xs → get? xs i = get? xs j → i = j\nh₁ : Nodup (x :: xs)\nn✝ : ℕ\nh₀ : succ n✝ < length (x :: xs)\nh₂ : get? (x :: xs) (succ n✝) = get? (x :: xs) zero\n⊢ succ n✝ = zero", "tactic": "all_goals ( dsimp at h₂; cases' h₁ with _ _ h h')" }, { "state_after": "no goals", "state_before": "ι : Type ?u.83779\nα✝ : Type u\nβ : Type v\nγ : Type w\nδ : Type x\nl₁ l₂ : List α✝\nα : Type u\nx : α\nxs : List α\ntail_ih : ∀ {i j : ℕ}, i < length xs → Nodup xs → get? xs i = get? xs j → i = j\nh₁ : Nodup (x :: xs)\nh₀ : zero < length (x :: xs)\nh₂ : get? (x :: xs) zero = get? (x :: xs) zero\n⊢ zero = zero", "tactic": "rfl" }, { "state_after": "case e_n\nι : Type ?u.83779\nα✝ : Type u\nβ : Type v\nγ : Type w\nδ : Type x\nl₁ l₂ : List α✝\nα : Type u\nx : α\nxs : List α\ntail_ih : ∀ {i j : ℕ}, i < length xs → Nodup xs → get? xs i = get? xs j → i = j\nh₁ : Nodup (x :: xs)\nn✝¹ : ℕ\nh₀ : succ n✝¹ < length (x :: xs)\nn✝ : ℕ\nh₂ : get? (x :: xs) (succ n✝¹) = get? (x :: xs) (succ n✝)\n⊢ n✝¹ = n✝", "state_before": "ι : Type ?u.83779\nα✝ : Type u\nβ : Type v\nγ : Type w\nδ : Type x\nl₁ l₂ : List α✝\nα : Type u\nx : α\nxs : List α\ntail_ih : ∀ {i j : ℕ}, i < length xs → Nodup xs → get? xs i = get? xs j → i = j\nh₁ : Nodup (x :: xs)\nn✝¹ : ℕ\nh₀ : succ n✝¹ < length (x :: xs)\nn✝ : ℕ\nh₂ : get? (x :: xs) (succ n✝¹) = get? (x :: xs) (succ n✝)\n⊢ succ n✝¹ = succ n✝", "tactic": "congr" }, { "state_after": "case e_n.cons\nι : Type ?u.83779\nα✝ : Type u\nβ : Type v\nγ : Type w\nδ : Type x\nl₁ l₂ : List α✝\nα : Type u\nx : α\nxs : List α\ntail_ih : ∀ {i j : ℕ}, i < length xs → Nodup xs → get? xs i = get? xs j → i = j\nn✝¹ : ℕ\nh₀ : succ n✝¹ < length (x :: xs)\nn✝ : ℕ\nh₂ : get? (x :: xs) (succ n✝¹) = get? (x :: xs) (succ n✝)\na✝¹ : Pairwise (fun x x_1 => x ≠ x_1) xs\na✝ : ∀ (a' : α), a' ∈ xs → x ≠ a'\n⊢ n✝¹ = n✝", "state_before": "case e_n\nι : Type ?u.83779\nα✝ : Type u\nβ : Type v\nγ : Type w\nδ : Type x\nl₁ l₂ : List α✝\nα : Type u\nx : α\nxs : List α\ntail_ih : ∀ {i j : ℕ}, i < length xs → Nodup xs → get? xs i = get? xs j → i = j\nh₁ : Nodup (x :: xs)\nn✝¹ : ℕ\nh₀ : succ n✝¹ < length (x :: xs)\nn✝ : ℕ\nh₂ : get? (x :: xs) (succ n✝¹) = get? (x :: xs) (succ n✝)\n⊢ n✝¹ = n✝", "tactic": "cases h₁" }, { "state_after": "no goals", "state_before": "case e_n.cons\nι : Type ?u.83779\nα✝ : Type u\nβ : Type v\nγ : Type w\nδ : Type x\nl₁ l₂ : List α✝\nα : Type u\nx : α\nxs : List α\ntail_ih : ∀ {i j : ℕ}, i < length xs → Nodup xs → get? xs i = get? xs j → i = j\nn✝¹ : ℕ\nh₀ : succ n✝¹ < length (x :: xs)\nn✝ : ℕ\nh₂ : get? (x :: xs) (succ n✝¹) = get? (x :: xs) (succ n✝)\na✝¹ : Pairwise (fun x x_1 => x ≠ x_1) xs\na✝ : ∀ (a' : α), a' ∈ xs → x ≠ a'\n⊢ n✝¹ = n✝", "tactic": "apply tail_ih <;> solve_by_elim [lt_of_succ_lt_succ]" }, { "state_after": "case cons.succ.zero.cons\nι : Type ?u.83779\nα✝ : Type u\nβ : Type v\nγ : Type w\nδ : Type x\nl₁ l₂ : List α✝\nα : Type u\nx : α\nxs : List α\ntail_ih : ∀ {i j : ℕ}, i < length xs → Nodup xs → get? xs i = get? xs j → i = j\nn✝ : ℕ\nh₀ : succ n✝ < length (x :: xs)\nh₂ : get? xs n✝ = some x\nh' : Pairwise (fun x x_1 => x ≠ x_1) xs\nh : ∀ (a' : α), a' ∈ xs → x ≠ a'\n⊢ succ n✝ = zero", "state_before": "case cons.succ.zero\nι : Type ?u.83779\nα✝ : Type u\nβ : Type v\nγ : Type w\nδ : Type x\nl₁ l₂ : List α✝\nα : Type u\nx : α\nxs : List α\ntail_ih : ∀ {i j : ℕ}, i < length xs → Nodup xs → get? xs i = get? xs j → i = j\nh₁ : Nodup (x :: xs)\nn✝ : ℕ\nh₀ : succ n✝ < length (x :: xs)\nh₂ : get? (x :: xs) (succ n✝) = get? (x :: xs) zero\n⊢ succ n✝ = zero", "tactic": "( dsimp at h₂; cases' h₁ with _ _ h h')" }, { "state_after": "case cons.succ.zero\nι : Type ?u.83779\nα✝ : Type u\nβ : Type v\nγ : Type w\nδ : Type x\nl₁ l₂ : List α✝\nα : Type u\nx : α\nxs : List α\ntail_ih : ∀ {i j : ℕ}, i < length xs → Nodup xs → get? xs i = get? xs j → i = j\nh₁ : Nodup (x :: xs)\nn✝ : ℕ\nh₀ : succ n✝ < length (x :: xs)\nh₂ : get? xs n✝ = some x\n⊢ succ n✝ = zero", "state_before": "case cons.succ.zero\nι : Type ?u.83779\nα✝ : Type u\nβ : Type v\nγ : Type w\nδ : Type x\nl₁ l₂ : List α✝\nα : Type u\nx : α\nxs : List α\ntail_ih : ∀ {i j : ℕ}, i < length xs → Nodup xs → get? xs i = get? xs j → i = j\nh₁ : Nodup (x :: xs)\nn✝ : ℕ\nh₀ : succ n✝ < length (x :: xs)\nh₂ : get? (x :: xs) (succ n✝) = get? (x :: xs) zero\n⊢ succ n✝ = zero", "tactic": "dsimp at h₂" }, { "state_after": "case cons.succ.zero.cons\nι : Type ?u.83779\nα✝ : Type u\nβ : Type v\nγ : Type w\nδ : Type x\nl₁ l₂ : List α✝\nα : Type u\nx : α\nxs : List α\ntail_ih : ∀ {i j : ℕ}, i < length xs → Nodup xs → get? xs i = get? xs j → i = j\nn✝ : ℕ\nh₀ : succ n✝ < length (x :: xs)\nh₂ : get? xs n✝ = some x\nh' : Pairwise (fun x x_1 => x ≠ x_1) xs\nh : ∀ (a' : α), a' ∈ xs → x ≠ a'\n⊢ succ n✝ = zero", "state_before": "case cons.succ.zero\nι : Type ?u.83779\nα✝ : Type u\nβ : Type v\nγ : Type w\nδ : Type x\nl₁ l₂ : List α✝\nα : Type u\nx : α\nxs : List α\ntail_ih : ∀ {i j : ℕ}, i < length xs → Nodup xs → get? xs i = get? xs j → i = j\nh₁ : Nodup (x :: xs)\nn✝ : ℕ\nh₀ : succ n✝ < length (x :: xs)\nh₂ : get? xs n✝ = some x\n⊢ succ n✝ = zero", "tactic": "cases' h₁ with _ _ h h'" }, { "state_after": "no goals", "state_before": "case cons.zero.succ.cons\nι : Type ?u.83779\nα✝ : Type u\nβ : Type v\nγ : Type w\nδ : Type x\nl₁ l₂ : List α✝\nα : Type u\nx : α\nxs : List α\ntail_ih : ∀ {i j : ℕ}, i < length xs → Nodup xs → get? xs i = get? xs j → i = j\nh₀ : zero < length (x :: xs)\nn✝ : ℕ\nh₂ : some x = get? xs n✝\nh' : Pairwise (fun x x_1 => x ≠ x_1) xs\nh : ∀ (a' : α), a' ∈ xs → x ≠ a'\n⊢ zero = succ n✝", "tactic": "cases (h x (mem_iff_get?.mpr ⟨_, h₂.symm⟩) rfl)" }, { "state_after": "no goals", "state_before": "case cons.succ.zero.cons\nι : Type ?u.83779\nα✝ : Type u\nβ : Type v\nγ : Type w\nδ : Type x\nl₁ l₂ : List α✝\nα : Type u\nx : α\nxs : List α\ntail_ih : ∀ {i j : ℕ}, i < length xs → Nodup xs → get? xs i = get? xs j → i = j\nn✝ : ℕ\nh₀ : succ n✝ < length (x :: xs)\nh₂ : get? xs n✝ = some x\nh' : Pairwise (fun x x_1 => x ≠ x_1) xs\nh : ∀ (a' : α), a' ∈ xs → x ≠ a'\n⊢ succ n✝ = zero", "tactic": "cases (h x (mem_iff_get?.mpr ⟨_, h₂⟩) rfl)" } ]
[ 1286, 49 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1274, 1 ]
Mathlib/Algebra/Order/ToIntervalMod.lean
iUnion_Icc_add_int_cast
[ { "state_after": "no goals", "state_before": "α : Type u_1\ninst✝¹ : LinearOrderedRing α\ninst✝ : Archimedean α\na : α\n⊢ (⋃ (n : ℤ), Icc (a + ↑n) (a + ↑n + 1)) = univ", "tactic": "simpa only [zsmul_one, Int.cast_add, Int.cast_one, ← add_assoc] using\n iUnion_Icc_add_zsmul zero_lt_one a" } ]
[ 1104, 39 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1102, 1 ]
Mathlib/Topology/MetricSpace/Basic.lean
Metric.closedBall_disjoint_ball
[]
[ 532, 83 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 530, 1 ]
Mathlib/RingTheory/HahnSeries.lean
HahnSeries.single_mul_single
[ { "state_after": "case coeff.h\nΓ : Type u_1\nR : Type u_2\ninst✝¹ : OrderedCancelAddCommMonoid Γ\ninst✝ : NonUnitalNonAssocSemiring R\na b : Γ\nr s : R\nx : Γ\n⊢ coeff (↑(single a) r * ↑(single b) s) x = coeff (↑(single (a + b)) (r * s)) x", "state_before": "Γ : Type u_1\nR : Type u_2\ninst✝¹ : OrderedCancelAddCommMonoid Γ\ninst✝ : NonUnitalNonAssocSemiring R\na b : Γ\nr s : R\n⊢ ↑(single a) r * ↑(single b) s = ↑(single (a + b)) (r * s)", "tactic": "ext x" }, { "state_after": "case pos\nΓ : Type u_1\nR : Type u_2\ninst✝¹ : OrderedCancelAddCommMonoid Γ\ninst✝ : NonUnitalNonAssocSemiring R\na b : Γ\nr s : R\nx : Γ\nh : x = a + b\n⊢ coeff (↑(single a) r * ↑(single b) s) x = coeff (↑(single (a + b)) (r * s)) x\n\ncase neg\nΓ : Type u_1\nR : Type u_2\ninst✝¹ : OrderedCancelAddCommMonoid Γ\ninst✝ : NonUnitalNonAssocSemiring R\na b : Γ\nr s : R\nx : Γ\nh : ¬x = a + b\n⊢ coeff (↑(single a) r * ↑(single b) s) x = coeff (↑(single (a + b)) (r * s)) x", "state_before": "case coeff.h\nΓ : Type u_1\nR : Type u_2\ninst✝¹ : OrderedCancelAddCommMonoid Γ\ninst✝ : NonUnitalNonAssocSemiring R\na b : Γ\nr s : R\nx : Γ\n⊢ coeff (↑(single a) r * ↑(single b) s) x = coeff (↑(single (a + b)) (r * s)) x", "tactic": "by_cases h : x = a + b" }, { "state_after": "case pos\nΓ : Type u_1\nR : Type u_2\ninst✝¹ : OrderedCancelAddCommMonoid Γ\ninst✝ : NonUnitalNonAssocSemiring R\na b : Γ\nr s : R\nx : Γ\nh : x = a + b\n⊢ coeff (↑(single a) r) a * s = coeff (↑(single (a + b)) (r * s)) (a + b)", "state_before": "case pos\nΓ : Type u_1\nR : Type u_2\ninst✝¹ : OrderedCancelAddCommMonoid Γ\ninst✝ : NonUnitalNonAssocSemiring R\na b : Γ\nr s : R\nx : Γ\nh : x = a + b\n⊢ coeff (↑(single a) r * ↑(single b) s) x = coeff (↑(single (a + b)) (r * s)) x", "tactic": "rw [h, mul_single_coeff_add]" }, { "state_after": "no goals", "state_before": "case pos\nΓ : Type u_1\nR : Type u_2\ninst✝¹ : OrderedCancelAddCommMonoid Γ\ninst✝ : NonUnitalNonAssocSemiring R\na b : Γ\nr s : R\nx : Γ\nh : x = a + b\n⊢ coeff (↑(single a) r) a * s = coeff (↑(single (a + b)) (r * s)) (a + b)", "tactic": "simp" }, { "state_after": "case neg\nΓ : Type u_1\nR : Type u_2\ninst✝¹ : OrderedCancelAddCommMonoid Γ\ninst✝ : NonUnitalNonAssocSemiring R\na b : Γ\nr s : R\nx : Γ\nh : ¬x = a + b\n⊢ ∀ (x_1 : Γ × Γ),\n x_1 ∈ addAntidiagonal (_ : Set.IsPwo (support (↑(single a) r))) (_ : Set.IsPwo (support (↑(single b) s))) x →\n coeff (↑(single a) r) x_1.fst * coeff (↑(single b) s) x_1.snd = 0", "state_before": "case neg\nΓ : Type u_1\nR : Type u_2\ninst✝¹ : OrderedCancelAddCommMonoid Γ\ninst✝ : NonUnitalNonAssocSemiring R\na b : Γ\nr s : R\nx : Γ\nh : ¬x = a + b\n⊢ coeff (↑(single a) r * ↑(single b) s) x = coeff (↑(single (a + b)) (r * s)) x", "tactic": "rw [single_coeff_of_ne h, mul_coeff, sum_eq_zero]" }, { "state_after": "case neg\nΓ : Type u_1\nR : Type u_2\ninst✝¹ : OrderedCancelAddCommMonoid Γ\ninst✝ : NonUnitalNonAssocSemiring R\na b : Γ\nr s : R\nx : Γ\nh : ¬x = a + b\n⊢ ∀ (x_1 : Γ × Γ),\n x_1.fst ∈ support (↑(single a) r) ∧ x_1.snd ∈ support (↑(single b) s) ∧ x_1.fst + x_1.snd = x →\n coeff (↑(single a) r) x_1.fst * coeff (↑(single b) s) x_1.snd = 0", "state_before": "case neg\nΓ : Type u_1\nR : Type u_2\ninst✝¹ : OrderedCancelAddCommMonoid Γ\ninst✝ : NonUnitalNonAssocSemiring R\na b : Γ\nr s : R\nx : Γ\nh : ¬x = a + b\n⊢ ∀ (x_1 : Γ × Γ),\n x_1 ∈ addAntidiagonal (_ : Set.IsPwo (support (↑(single a) r))) (_ : Set.IsPwo (support (↑(single b) s))) x →\n coeff (↑(single a) r) x_1.fst * coeff (↑(single b) s) x_1.snd = 0", "tactic": "simp_rw [mem_addAntidiagonal]" }, { "state_after": "case neg.mk.intro.intro\nΓ : Type u_1\nR : Type u_2\ninst✝¹ : OrderedCancelAddCommMonoid Γ\ninst✝ : NonUnitalNonAssocSemiring R\na b : Γ\nr s : R\ny z : Γ\nhy : (y, z).fst ∈ support (↑(single a) r)\nhz : (y, z).snd ∈ support (↑(single b) s)\nh : ¬(y, z).fst + (y, z).snd = a + b\n⊢ coeff (↑(single a) r) (y, z).fst * coeff (↑(single b) s) (y, z).snd = 0", "state_before": "case neg\nΓ : Type u_1\nR : Type u_2\ninst✝¹ : OrderedCancelAddCommMonoid Γ\ninst✝ : NonUnitalNonAssocSemiring R\na b : Γ\nr s : R\nx : Γ\nh : ¬x = a + b\n⊢ ∀ (x_1 : Γ × Γ),\n x_1.fst ∈ support (↑(single a) r) ∧ x_1.snd ∈ support (↑(single b) s) ∧ x_1.fst + x_1.snd = x →\n coeff (↑(single a) r) x_1.fst * coeff (↑(single b) s) x_1.snd = 0", "tactic": "rintro ⟨y, z⟩ ⟨hy, hz, rfl⟩" }, { "state_after": "case neg.mk.intro.intro\nΓ : Type u_1\nR : Type u_2\ninst✝¹ : OrderedCancelAddCommMonoid Γ\ninst✝ : NonUnitalNonAssocSemiring R\na b : Γ\nr s : R\ny z : Γ\nhy : (y, z).fst ∈ support (↑(single a) r)\nhz : (y, z).snd ∈ support (↑(single b) s)\nh : ¬a + b = a + b\n⊢ coeff (↑(single a) r) (y, z).fst * coeff (↑(single b) s) (y, z).snd = 0", "state_before": "case neg.mk.intro.intro\nΓ : Type u_1\nR : Type u_2\ninst✝¹ : OrderedCancelAddCommMonoid Γ\ninst✝ : NonUnitalNonAssocSemiring R\na b : Γ\nr s : R\ny z : Γ\nhy : (y, z).fst ∈ support (↑(single a) r)\nhz : (y, z).snd ∈ support (↑(single b) s)\nh : ¬(y, z).fst + (y, z).snd = a + b\n⊢ coeff (↑(single a) r) (y, z).fst * coeff (↑(single b) s) (y, z).snd = 0", "tactic": "rw [eq_of_mem_support_single hy, eq_of_mem_support_single hz] at h" }, { "state_after": "no goals", "state_before": "case neg.mk.intro.intro\nΓ : Type u_1\nR : Type u_2\ninst✝¹ : OrderedCancelAddCommMonoid Γ\ninst✝ : NonUnitalNonAssocSemiring R\na b : Γ\nr s : R\ny z : Γ\nhy : (y, z).fst ∈ support (↑(single a) r)\nhz : (y, z).snd ∈ support (↑(single b) s)\nh : ¬a + b = a + b\n⊢ coeff (↑(single a) r) (y, z).fst * coeff (↑(single b) s) (y, z).snd = 0", "tactic": "exact (h rfl).elim" } ]
[ 945, 23 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 935, 1 ]
Mathlib/Algebra/Module/Equiv.lean
LinearEquiv.symm_apply_apply
[]
[ 383, 15 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 382, 1 ]
Mathlib/Analysis/Calculus/ContDiff.lean
ContDiffAt.prod
[]
[ 540, 84 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 537, 1 ]
Mathlib/Data/List/Cycle.lean
Cycle.chain_map
[ { "state_after": "case nil\nα : Type u_2\nβ : Type u_1\nr : α → α → Prop\nf : β → α\ns : Cycle β\n⊢ Chain r (map f (Quotient.mk'' [])) ↔ Chain (fun a b => r (f a) (f b)) (Quotient.mk'' [])\n\ncase cons\nα : Type u_2\nβ : Type u_1\nr : α → α → Prop\nf : β → α\ns : Cycle β\na : β\nl : List β\n⊢ Chain r (map f (Quotient.mk'' (a :: l))) ↔ Chain (fun a b => r (f a) (f b)) (Quotient.mk'' (a :: l))", "state_before": "α : Type u_2\nβ : Type u_1\nr : α → α → Prop\nf : β → α\ns : Cycle β\nl : List β\n⊢ Chain r (map f (Quotient.mk'' l)) ↔ Chain (fun a b => r (f a) (f b)) (Quotient.mk'' l)", "tactic": "cases' l with a l" }, { "state_after": "case cons\nα : Type u_2\nβ : Type u_1\nr : α → α → Prop\nf : β → α\ns : Cycle β\na : β\nl : List β\n⊢ Chain r (map f (Quotient.mk'' (a :: l))) ↔ Chain (fun a b => r (f a) (f b)) (Quotient.mk'' (a :: l))", "state_before": "case nil\nα : Type u_2\nβ : Type u_1\nr : α → α → Prop\nf : β → α\ns : Cycle β\n⊢ Chain r (map f (Quotient.mk'' [])) ↔ Chain (fun a b => r (f a) (f b)) (Quotient.mk'' [])\n\ncase cons\nα : Type u_2\nβ : Type u_1\nr : α → α → Prop\nf : β → α\ns : Cycle β\na : β\nl : List β\n⊢ Chain r (map f (Quotient.mk'' (a :: l))) ↔ Chain (fun a b => r (f a) (f b)) (Quotient.mk'' (a :: l))", "tactic": "rfl" }, { "state_after": "case cons\nα : Type u_2\nβ : Type u_1\nr : α → α → Prop\nf : β → α\ns : Cycle β\na : β\nl : List β\n⊢ List.Chain r (f a) (List.map f l ++ [f a]) ↔ List.Chain (fun a b => r (f a) (f b)) a (l ++ [a])", "state_before": "case cons\nα : Type u_2\nβ : Type u_1\nr : α → α → Prop\nf : β → α\ns : Cycle β\na : β\nl : List β\n⊢ Chain r (map f (Quotient.mk'' (a :: l))) ↔ Chain (fun a b => r (f a) (f b)) (Quotient.mk'' (a :: l))", "tactic": "dsimp only [Chain, ← mk''_eq_coe, Quotient.liftOn'_mk'', Cycle.map, Quotient.map', Quot.map,\n Quotient.mk'', Quotient.liftOn', Quotient.liftOn, Quot.liftOn_mk, List.map]" }, { "state_after": "case cons\nα : Type u_2\nβ : Type u_1\nr : α → α → Prop\nf : β → α\ns : Cycle β\na : β\nl : List β\n⊢ List.Chain (fun a b => r (f a) (f b)) a (concat l a) ↔ List.Chain (fun a b => r (f a) (f b)) a (l ++ [a])", "state_before": "case cons\nα : Type u_2\nβ : Type u_1\nr : α → α → Prop\nf : β → α\ns : Cycle β\na : β\nl : List β\n⊢ List.Chain r (f a) (List.map f l ++ [f a]) ↔ List.Chain (fun a b => r (f a) (f b)) a (l ++ [a])", "tactic": "rw [← concat_eq_append, ← List.map_concat, List.chain_map f]" }, { "state_after": "no goals", "state_before": "case cons\nα : Type u_2\nβ : Type u_1\nr : α → α → Prop\nf : β → α\ns : Cycle β\na : β\nl : List β\n⊢ List.Chain (fun a b => r (f a) (f b)) a (concat l a) ↔ List.Chain (fun a b => r (f a) (f b)) a (l ++ [a])", "tactic": "simp" } ]
[ 964, 9 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 956, 1 ]
Mathlib/Data/Finset/NAry.lean
Finset.card_image₂_singleton_right
[ { "state_after": "no goals", "state_before": "α : Type u_1\nα' : Type ?u.51463\nβ : Type u_3\nβ' : Type ?u.51469\nγ : Type u_2\nγ' : Type ?u.51475\nδ : Type ?u.51478\nδ' : Type ?u.51481\nε : Type ?u.51484\nε' : Type ?u.51487\nζ : Type ?u.51490\nζ' : Type ?u.51493\nν : Type ?u.51496\ninst✝⁷ : DecidableEq α'\ninst✝⁶ : DecidableEq β'\ninst✝⁵ : DecidableEq γ\ninst✝⁴ : DecidableEq γ'\ninst✝³ : DecidableEq δ\ninst✝² : DecidableEq δ'\ninst✝¹ : DecidableEq ε\ninst✝ : DecidableEq ε'\nf f' : α → β → γ\ng g' : α → β → γ → δ\ns s' : Finset α\nt t' : Finset β\nu u' : Finset γ\na a' : α\nb b' : β\nc : γ\nhf : Injective fun a => f a b\n⊢ card (image₂ f s {b}) = card s", "tactic": "rw [image₂_singleton_right, card_image_of_injective _ hf]" } ]
[ 262, 99 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 261, 1 ]
Mathlib/Topology/Algebra/Group/Basic.lean
discreteTopology_iff_open_singleton_one
[]
[ 164, 88 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 163, 1 ]
Mathlib/Algebra/Associated.lean
Associates.mk_surjective
[]
[ 767, 40 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 766, 1 ]
Mathlib/CategoryTheory/Limits/FullSubcategory.lean
CategoryTheory.Limits.ClosedUnderLimitsOfShape.limit
[]
[ 51, 22 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 49, 1 ]
Mathlib/Data/Int/SuccPred.lean
Int.covby_iff_succ_eq
[]
[ 80, 25 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 79, 11 ]
Mathlib/Topology/Algebra/Module/Basic.lean
ContinuousLinearMap.copy_eq
[]
[ 486, 17 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 485, 1 ]
Mathlib/Order/Concept.lean
Concept.swap_swap
[]
[ 384, 10 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 383, 1 ]
Mathlib/Algebra/Hom/Equiv/Units/Basic.lean
Equiv.divLeft_eq_inv_trans_mulLeft
[]
[ 204, 34 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 202, 1 ]
Mathlib/MeasureTheory/Function/SimpleFunc.lean
MeasureTheory.SimpleFunc.extend_apply
[]
[ 377, 34 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 375, 1 ]
Mathlib/Data/List/Basic.lean
List.map₂Right'_cons_cons
[]
[ 4027, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 4023, 1 ]
Mathlib/Topology/ContinuousOn.lean
continuousWithinAt_inter
[ { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type u_2\nγ : Type ?u.321718\nδ : Type ?u.321721\ninst✝³ : TopologicalSpace α\ninst✝² : TopologicalSpace β\ninst✝¹ : TopologicalSpace γ\ninst✝ : TopologicalSpace δ\nf : α → β\ns t : Set α\nx : α\nh : t ∈ 𝓝 x\n⊢ ContinuousWithinAt f (s ∩ t) x ↔ ContinuousWithinAt f s x", "tactic": "simp [ContinuousWithinAt, nhdsWithin_restrict' s h]" } ]
[ 713, 54 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 711, 1 ]
Mathlib/Algebra/Order/SMul.lean
smul_lt_smul_of_pos
[]
[ 93, 34 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 92, 11 ]
Mathlib/Combinatorics/SimpleGraph/Clique.lean
SimpleGraph.CliqueFree.mono
[ { "state_after": "α : Type u_1\nG H : SimpleGraph α\nm n : ℕ\ns✝ : Finset α\nh : m ≤ n\nhG : CliqueFree G m\ns : Finset α\nhs : IsNClique G n s\n⊢ False", "state_before": "α : Type u_1\nG H : SimpleGraph α\nm n : ℕ\ns : Finset α\nh : m ≤ n\n⊢ CliqueFree G m → CliqueFree G n", "tactic": "intro hG s hs" }, { "state_after": "case intro.intro\nα : Type u_1\nG H : SimpleGraph α\nm n : ℕ\ns✝ : Finset α\nh : m ≤ n\nhG : CliqueFree G m\ns : Finset α\nhs : IsNClique G n s\nt : Finset α\nhts : t ⊆ s\nht : Finset.card t = m\n⊢ False", "state_before": "α : Type u_1\nG H : SimpleGraph α\nm n : ℕ\ns✝ : Finset α\nh : m ≤ n\nhG : CliqueFree G m\ns : Finset α\nhs : IsNClique G n s\n⊢ False", "tactic": "obtain ⟨t, hts, ht⟩ := s.exists_smaller_set _ (h.trans hs.card_eq.ge)" }, { "state_after": "no goals", "state_before": "case intro.intro\nα : Type u_1\nG H : SimpleGraph α\nm n : ℕ\ns✝ : Finset α\nh : m ≤ n\nhG : CliqueFree G m\ns : Finset α\nhs : IsNClique G n s\nt : Finset α\nhts : t ⊆ s\nht : Finset.card t = m\n⊢ False", "tactic": "exact hG _ ⟨hs.clique.subset hts, ht⟩" } ]
[ 219, 40 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 216, 1 ]
Mathlib/Algebra/DirectLimit.lean
Ring.DirectLimit.of_f
[]
[ 410, 67 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 409, 1 ]
Mathlib/Algebra/Algebra/Subalgebra/Basic.lean
Subalgebra.rangeS_le
[]
[ 112, 26 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 111, 1 ]
Mathlib/LinearAlgebra/AffineSpace/Combination.lean
Finset.weightedVSub_const_smul
[]
[ 364, 43 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 362, 1 ]
Mathlib/Logic/Basic.lean
or_congr_left'
[]
[ 390, 88 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 390, 1 ]
Mathlib/Topology/UniformSpace/UniformEmbedding.lean
closedEmbedding_of_spaced_out
[ { "state_after": "α✝ : Type u\nβ : Type v\nγ : Type w\ninst✝⁴ : UniformSpace α✝\ninst✝³ : UniformSpace β\ninst✝² : UniformSpace γ\nα : Type u_1\ninst✝¹ : SeparatedSpace β\nf : α → β\ns : Set (β × β)\nhs : s ∈ 𝓤 β\nhf : Pairwise fun x y => ¬(f x, f y) ∈ s\ninst✝ : DiscreteTopology α\n⊢ ClosedEmbedding f", "state_before": "α✝ : Type u\nβ : Type v\nγ : Type w\ninst✝⁵ : UniformSpace α✝\ninst✝⁴ : UniformSpace β\ninst✝³ : UniformSpace γ\nα : Type u_1\ninst✝² : TopologicalSpace α\ninst✝¹ : DiscreteTopology α\ninst✝ : SeparatedSpace β\nf : α → β\ns : Set (β × β)\nhs : s ∈ 𝓤 β\nhf : Pairwise fun x y => ¬(f x, f y) ∈ s\n⊢ ClosedEmbedding f", "tactic": "rcases @DiscreteTopology.eq_bot α _ _ with rfl" }, { "state_after": "α✝ : Type u\nβ : Type v\nγ : Type w\ninst✝⁴ : UniformSpace α✝\ninst✝³ : UniformSpace β\ninst✝² : UniformSpace γ\nα : Type u_1\ninst✝¹ : SeparatedSpace β\nf : α → β\ns : Set (β × β)\nhs : s ∈ 𝓤 β\nhf : Pairwise fun x y => ¬(f x, f y) ∈ s\ninst✝ : DiscreteTopology α\nx✝ : UniformSpace α := ⊥\n⊢ ClosedEmbedding f", "state_before": "α✝ : Type u\nβ : Type v\nγ : Type w\ninst✝⁴ : UniformSpace α✝\ninst✝³ : UniformSpace β\ninst✝² : UniformSpace γ\nα : Type u_1\ninst✝¹ : SeparatedSpace β\nf : α → β\ns : Set (β × β)\nhs : s ∈ 𝓤 β\nhf : Pairwise fun x y => ¬(f x, f y) ∈ s\ninst✝ : DiscreteTopology α\n⊢ ClosedEmbedding f", "tactic": "let _ : UniformSpace α := ⊥" }, { "state_after": "no goals", "state_before": "α✝ : Type u\nβ : Type v\nγ : Type w\ninst✝⁴ : UniformSpace α✝\ninst✝³ : UniformSpace β\ninst✝² : UniformSpace γ\nα : Type u_1\ninst✝¹ : SeparatedSpace β\nf : α → β\ns : Set (β × β)\nhs : s ∈ 𝓤 β\nhf : Pairwise fun x y => ¬(f x, f y) ∈ s\ninst✝ : DiscreteTopology α\nx✝ : UniformSpace α := ⊥\n⊢ ClosedEmbedding f", "tactic": "exact\n { (uniformEmbedding_of_spaced_out hs hf).embedding with\n closed_range := isClosed_range_of_spaced_out hs hf }" } ]
[ 243, 59 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 237, 1 ]
Mathlib/Data/Nat/PartENat.lean
PartENat.toWithTop_zero'
[ { "state_after": "no goals", "state_before": "h : Decidable 0.Dom\n⊢ toWithTop 0 = 0", "tactic": "convert toWithTop_zero" } ]
[ 570, 25 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 569, 1 ]
Mathlib/Combinatorics/SimpleGraph/Basic.lean
SimpleGraph.dart_edge_eq_iff
[ { "state_after": "case mk.mk\nι : Sort ?u.97949\n𝕜 : Type ?u.97952\nV : Type u\nW : Type v\nX : Type w\nG : SimpleGraph V\nG' : SimpleGraph W\na b c u v w : V\ne : Sym2 V\np : V × V\nhp : Adj G p.fst p.snd\nq : V × V\nhq : Adj G q.fst q.snd\n⊢ Dart.edge { toProd := p, is_adj := hp } = Dart.edge { toProd := q, is_adj := hq } ↔\n { toProd := p, is_adj := hp } = { toProd := q, is_adj := hq } ∨\n { toProd := p, is_adj := hp } = Dart.symm { toProd := q, is_adj := hq }", "state_before": "ι : Sort ?u.97949\n𝕜 : Type ?u.97952\nV : Type u\nW : Type v\nX : Type w\nG : SimpleGraph V\nG' : SimpleGraph W\na b c u v w : V\ne : Sym2 V\n⊢ ∀ (d₁ d₂ : Dart G), Dart.edge d₁ = Dart.edge d₂ ↔ d₁ = d₂ ∨ d₁ = Dart.symm d₂", "tactic": "rintro ⟨p, hp⟩ ⟨q, hq⟩" }, { "state_after": "no goals", "state_before": "case mk.mk\nι : Sort ?u.97949\n𝕜 : Type ?u.97952\nV : Type u\nW : Type v\nX : Type w\nG : SimpleGraph V\nG' : SimpleGraph W\na b c u v w : V\ne : Sym2 V\np : V × V\nhp : Adj G p.fst p.snd\nq : V × V\nhq : Adj G q.fst q.snd\n⊢ Dart.edge { toProd := p, is_adj := hp } = Dart.edge { toProd := q, is_adj := hq } ↔\n { toProd := p, is_adj := hp } = { toProd := q, is_adj := hq } ∨\n { toProd := p, is_adj := hp } = Dart.symm { toProd := q, is_adj := hq }", "tactic": "simp [Sym2.mk''_eq_mk''_iff, -Quotient.eq]" } ]
[ 776, 45 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 774, 1 ]
Mathlib/Algebra/Order/Field/Basic.lean
le_one_div
[ { "state_after": "no goals", "state_before": "ι : Type ?u.79768\nα : Type u_1\nβ : Type ?u.79774\ninst✝ : LinearOrderedSemifield α\na b c d e : α\nm n : ℤ\nha : 0 < a\nhb : 0 < b\n⊢ a ≤ 1 / b ↔ b ≤ 1 / a", "tactic": "simpa using le_inv ha hb" } ]
[ 442, 100 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 442, 1 ]
Mathlib/Analysis/NormedSpace/LinearIsometry.lean
Basis.ext_linearIsometry
[]
[ 1196, 50 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1194, 1 ]
Mathlib/RingTheory/OreLocalization/OreSet.lean
OreLocalization.ore_left_cancel
[]
[ 51, 35 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 50, 1 ]
Mathlib/Data/Polynomial/Basic.lean
Polynomial.monomial_zero_left
[]
[ 491, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 490, 1 ]
Mathlib/Analysis/Calculus/Deriv/Linear.lean
ContinuousLinearMap.hasDerivAt
[]
[ 61, 21 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 60, 11 ]
Mathlib/Data/Real/EReal.lean
EReal.abs_def
[]
[ 1062, 72 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1062, 1 ]
Mathlib/Topology/FiberBundle/Trivialization.lean
Pretrivialization.eqOn
[]
[ 128, 87 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 128, 11 ]
Mathlib/Combinatorics/Pigeonhole.lean
Finset.exists_card_fiber_le_of_card_le_mul
[]
[ 310, 46 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 308, 1 ]
Mathlib/LinearAlgebra/BilinearForm.lean
BilinForm.ext_iff
[]
[ 165, 19 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 164, 1 ]
Mathlib/Data/PNat/Factors.lean
PrimeMultiset.prod_ofPNatMultiset
[ { "state_after": "v : Multiset ℕ+\nh : ∀ (p : ℕ+), p ∈ v → PNat.Prime p\n⊢ Multiset.prod (toPNatMultiset (ofPNatMultiset v h)) = Multiset.prod v", "state_before": "v : Multiset ℕ+\nh : ∀ (p : ℕ+), p ∈ v → PNat.Prime p\n⊢ prod (ofPNatMultiset v h) = Multiset.prod v", "tactic": "dsimp [prod]" }, { "state_after": "no goals", "state_before": "v : Multiset ℕ+\nh : ∀ (p : ℕ+), p ∈ v → PNat.Prime p\n⊢ Multiset.prod (toPNatMultiset (ofPNatMultiset v h)) = Multiset.prod v", "tactic": "rw [to_ofPNatMultiset]" } ]
[ 189, 25 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 187, 1 ]
Mathlib/MeasureTheory/Function/EssSup.lean
ENNReal.coe_essSup
[ { "state_after": "α : Type u_1\nβ : Type ?u.5738175\nm : MeasurableSpace α\nμ ν : MeasureTheory.Measure α\nf✝ : α → ℝ≥0∞\nf : α → ℝ≥0\nhf : IsBoundedUnder (fun x x_1 => x ≤ x_1) (Measure.ae μ) f\nr : ℝ≥0∞\n⊢ (∀ (i : ℝ≥0), (i ∈ fun x => sets (map f (Measure.ae μ)) {x_1 | x_1 ≤ x}) → r ≤ ↑i) ↔\n ∀ (r_1 : ℝ≥0), (∀ᵐ (a : α) ∂μ, f a ≤ r_1) → r ≤ ↑r_1", "state_before": "α : Type u_1\nβ : Type ?u.5738175\nm : MeasurableSpace α\nμ ν : MeasureTheory.Measure α\nf✝ : α → ℝ≥0∞\nf : α → ℝ≥0\nhf : IsBoundedUnder (fun x x_1 => x ≤ x_1) (Measure.ae μ) f\nr : ℝ≥0∞\n⊢ (r ≤\n ⨅ (a : ℝ≥0) (_ : a ∈ fun x => sets (map f (Measure.ae μ)) {x_1 | (fun x_2 => (fun x x_3 => x ≤ x_3) x_2 x) x_1}),\n ↑a) ↔\n r ≤ essSup (fun x => ↑(f x)) μ", "tactic": "simp [essSup, limsup, limsSup, eventually_map, ENNReal.forall_ennreal]" }, { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type ?u.5738175\nm : MeasurableSpace α\nμ ν : MeasureTheory.Measure α\nf✝ : α → ℝ≥0∞\nf : α → ℝ≥0\nhf : IsBoundedUnder (fun x x_1 => x ≤ x_1) (Measure.ae μ) f\nr : ℝ≥0∞\n⊢ (∀ (i : ℝ≥0), (i ∈ fun x => sets (map f (Measure.ae μ)) {x_1 | x_1 ≤ x}) → r ≤ ↑i) ↔\n ∀ (r_1 : ℝ≥0), (∀ᵐ (a : α) ∂μ, f a ≤ r_1) → r ≤ ↑r_1", "tactic": "rfl" } ]
[ 341, 82 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 337, 1 ]
Mathlib/CategoryTheory/Limits/ExactFunctor.lean
CategoryTheory.RightExactFunctor.forget_obj
[]
[ 175, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 174, 1 ]