file_path
stringlengths
11
79
full_name
stringlengths
2
100
traced_tactics
list
end
list
commit
stringclasses
4 values
url
stringclasses
4 values
start
list
Mathlib/Data/Set/Pointwise/SMul.lean
Set.op_smul_set_subset_mul
[]
[ 420, 27 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 419, 1 ]
Mathlib/Analysis/SpecificLimits/Normed.lean
summable_geometric_iff_norm_lt_1
[ { "state_after": "α : Type ?u.147129\nβ : Type ?u.147132\nι : Type ?u.147135\nK : Type u_1\ninst✝ : NormedField K\nξ : K\nh : Summable fun n => ξ ^ n\n⊢ ‖ξ‖ < 1", "state_before": "α : Type ?u.147129\nβ : Type ?u.147132\nι : Type ?u.147135\nK : Type u_1\ninst✝ : NormedField K\nξ : K\n⊢ (Summable fun n => ξ ^ n) ↔ ‖ξ‖ < 1", "tactic": "refine' ⟨fun h ↦ _, summable_geometric_of_norm_lt_1⟩" }, { "state_after": "case intro\nα : Type ?u.147129\nβ : Type ?u.147132\nι : Type ?u.147135\nK : Type u_1\ninst✝ : NormedField K\nξ : K\nh : Summable fun n => ξ ^ n\nk : ℕ\nhk : dist (ξ ^ k) 0 < 1\n⊢ ‖ξ‖ < 1", "state_before": "α : Type ?u.147129\nβ : Type ?u.147132\nι : Type ?u.147135\nK : Type u_1\ninst✝ : NormedField K\nξ : K\nh : Summable fun n => ξ ^ n\n⊢ ‖ξ‖ < 1", "tactic": "obtain ⟨k : ℕ, hk : dist (ξ ^ k) 0 < 1⟩ :=\n (h.tendsto_cofinite_zero.eventually (ball_mem_nhds _ zero_lt_one)).exists" }, { "state_after": "case intro\nα : Type ?u.147129\nβ : Type ?u.147132\nι : Type ?u.147135\nK : Type u_1\ninst✝ : NormedField K\nξ : K\nh : Summable fun n => ξ ^ n\nk : ℕ\nhk : ‖ξ‖ ^ k < 1\n⊢ ‖ξ‖ < 1", "state_before": "case intro\nα : Type ?u.147129\nβ : Type ?u.147132\nι : Type ?u.147135\nK : Type u_1\ninst✝ : NormedField K\nξ : K\nh : Summable fun n => ξ ^ n\nk : ℕ\nhk : dist (ξ ^ k) 0 < 1\n⊢ ‖ξ‖ < 1", "tactic": "simp only [norm_pow, dist_zero_right] at hk" }, { "state_after": "case intro\nα : Type ?u.147129\nβ : Type ?u.147132\nι : Type ?u.147135\nK : Type u_1\ninst✝ : NormedField K\nξ : K\nh : Summable fun n => ξ ^ n\nk : ℕ\nhk : ‖ξ‖ ^ k < 1 ^ k\n⊢ ‖ξ‖ < 1", "state_before": "case intro\nα : Type ?u.147129\nβ : Type ?u.147132\nι : Type ?u.147135\nK : Type u_1\ninst✝ : NormedField K\nξ : K\nh : Summable fun n => ξ ^ n\nk : ℕ\nhk : ‖ξ‖ ^ k < 1\n⊢ ‖ξ‖ < 1", "tactic": "rw [← one_pow k] at hk" }, { "state_after": "no goals", "state_before": "case intro\nα : Type ?u.147129\nβ : Type ?u.147132\nι : Type ?u.147135\nK : Type u_1\ninst✝ : NormedField K\nξ : K\nh : Summable fun n => ξ ^ n\nk : ℕ\nhk : ‖ξ‖ ^ k < 1 ^ k\n⊢ ‖ξ‖ < 1", "tactic": "exact lt_of_pow_lt_pow _ zero_le_one hk" } ]
[ 326, 42 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 320, 1 ]
Mathlib/MeasureTheory/Measure/MeasureSpace.lean
MeasureTheory.measurable_spanningSets
[]
[ 3473, 97 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 3471, 1 ]
Mathlib/Data/List/Card.lean
List.card_eq_of_equiv
[]
[ 173, 80 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 171, 1 ]
Mathlib/LinearAlgebra/Matrix/Charpoly/Coeff.lean
coeff_charpoly_mem_ideal_pow
[ { "state_after": "R : Type u\ninst✝⁴ : CommRing R\nn G : Type v\ninst✝³ : DecidableEq n\ninst✝² : Fintype n\nα β : Type v\ninst✝¹ : DecidableEq α\nM : Matrix n n R\np : ℕ\ninst✝ : Fact (Nat.Prime p)\nI : Ideal R\nh : ∀ (i j : n), M i j ∈ I\nk : ℕ\n⊢ coeff (det (charmatrix M)) k ∈ I ^ (Fintype.card n - k)", "state_before": "R : Type u\ninst✝⁴ : CommRing R\nn G : Type v\ninst✝³ : DecidableEq n\ninst✝² : Fintype n\nα β : Type v\ninst✝¹ : DecidableEq α\nM : Matrix n n R\np : ℕ\ninst✝ : Fact (Nat.Prime p)\nI : Ideal R\nh : ∀ (i j : n), M i j ∈ I\nk : ℕ\n⊢ coeff (charpoly M) k ∈ I ^ (Fintype.card n - k)", "tactic": "delta charpoly" }, { "state_after": "R : Type u\ninst✝⁴ : CommRing R\nn G : Type v\ninst✝³ : DecidableEq n\ninst✝² : Fintype n\nα β : Type v\ninst✝¹ : DecidableEq α\nM : Matrix n n R\np : ℕ\ninst✝ : Fact (Nat.Prime p)\nI : Ideal R\nh : ∀ (i j : n), M i j ∈ I\nk : ℕ\n⊢ ∑ b : Equiv.Perm n, coeff (↑Equiv.Perm.sign b • ∏ i : n, charmatrix M (↑b i) i) k ∈ I ^ (Fintype.card n - k)", "state_before": "R : Type u\ninst✝⁴ : CommRing R\nn G : Type v\ninst✝³ : DecidableEq n\ninst✝² : Fintype n\nα β : Type v\ninst✝¹ : DecidableEq α\nM : Matrix n n R\np : ℕ\ninst✝ : Fact (Nat.Prime p)\nI : Ideal R\nh : ∀ (i j : n), M i j ∈ I\nk : ℕ\n⊢ coeff (det (charmatrix M)) k ∈ I ^ (Fintype.card n - k)", "tactic": "rw [Matrix.det_apply, finset_sum_coeff]" }, { "state_after": "case h\nR : Type u\ninst✝⁴ : CommRing R\nn G : Type v\ninst✝³ : DecidableEq n\ninst✝² : Fintype n\nα β : Type v\ninst✝¹ : DecidableEq α\nM : Matrix n n R\np : ℕ\ninst✝ : Fact (Nat.Prime p)\nI : Ideal R\nh : ∀ (i j : n), M i j ∈ I\nk : ℕ\n⊢ ∀ (c : Equiv.Perm n),\n c ∈ univ → coeff (↑Equiv.Perm.sign c • ∏ i : n, charmatrix M (↑c i) i) k ∈ I ^ (Fintype.card n - k)", "state_before": "R : Type u\ninst✝⁴ : CommRing R\nn G : Type v\ninst✝³ : DecidableEq n\ninst✝² : Fintype n\nα β : Type v\ninst✝¹ : DecidableEq α\nM : Matrix n n R\np : ℕ\ninst✝ : Fact (Nat.Prime p)\nI : Ideal R\nh : ∀ (i j : n), M i j ∈ I\nk : ℕ\n⊢ ∑ b : Equiv.Perm n, coeff (↑Equiv.Perm.sign b • ∏ i : n, charmatrix M (↑b i) i) k ∈ I ^ (Fintype.card n - k)", "tactic": "apply sum_mem" }, { "state_after": "case h\nR : Type u\ninst✝⁴ : CommRing R\nn G : Type v\ninst✝³ : DecidableEq n\ninst✝² : Fintype n\nα β : Type v\ninst✝¹ : DecidableEq α\nM : Matrix n n R\np : ℕ\ninst✝ : Fact (Nat.Prime p)\nI : Ideal R\nh : ∀ (i j : n), M i j ∈ I\nk : ℕ\nc : Equiv.Perm n\n⊢ coeff (↑Equiv.Perm.sign c • ∏ i : n, charmatrix M (↑c i) i) k ∈ I ^ (Fintype.card n - k)", "state_before": "case h\nR : Type u\ninst✝⁴ : CommRing R\nn G : Type v\ninst✝³ : DecidableEq n\ninst✝² : Fintype n\nα β : Type v\ninst✝¹ : DecidableEq α\nM : Matrix n n R\np : ℕ\ninst✝ : Fact (Nat.Prime p)\nI : Ideal R\nh : ∀ (i j : n), M i j ∈ I\nk : ℕ\n⊢ ∀ (c : Equiv.Perm n),\n c ∈ univ → coeff (↑Equiv.Perm.sign c • ∏ i : n, charmatrix M (↑c i) i) k ∈ I ^ (Fintype.card n - k)", "tactic": "rintro c -" }, { "state_after": "case h\nR : Type u\ninst✝⁴ : CommRing R\nn G : Type v\ninst✝³ : DecidableEq n\ninst✝² : Fintype n\nα β : Type v\ninst✝¹ : DecidableEq α\nM : Matrix n n R\np : ℕ\ninst✝ : Fact (Nat.Prime p)\nI : Ideal R\nh : ∀ (i j : n), M i j ∈ I\nk : ℕ\nc : Equiv.Perm n\n⊢ coeff (∏ i : n, charmatrix M (↑c i) i) k ∈ I ^ (Fintype.card n - k)", "state_before": "case h\nR : Type u\ninst✝⁴ : CommRing R\nn G : Type v\ninst✝³ : DecidableEq n\ninst✝² : Fintype n\nα β : Type v\ninst✝¹ : DecidableEq α\nM : Matrix n n R\np : ℕ\ninst✝ : Fact (Nat.Prime p)\nI : Ideal R\nh : ∀ (i j : n), M i j ∈ I\nk : ℕ\nc : Equiv.Perm n\n⊢ coeff (↑Equiv.Perm.sign c • ∏ i : n, charmatrix M (↑c i) i) k ∈ I ^ (Fintype.card n - k)", "tactic": "rw [coeff_smul, Submodule.smul_mem_iff']" }, { "state_after": "case h\nR : Type u\ninst✝⁴ : CommRing R\nn G : Type v\ninst✝³ : DecidableEq n\ninst✝² : Fintype n\nα β : Type v\ninst✝¹ : DecidableEq α\nM : Matrix n n R\np : ℕ\ninst✝ : Fact (Nat.Prime p)\nI : Ideal R\nh : ∀ (i j : n), M i j ∈ I\nk : ℕ\nc : Equiv.Perm n\nthis : ∑ x : n, 1 = Fintype.card n\n⊢ coeff (∏ i : n, charmatrix M (↑c i) i) k ∈ I ^ (Fintype.card n - k)", "state_before": "case h\nR : Type u\ninst✝⁴ : CommRing R\nn G : Type v\ninst✝³ : DecidableEq n\ninst✝² : Fintype n\nα β : Type v\ninst✝¹ : DecidableEq α\nM : Matrix n n R\np : ℕ\ninst✝ : Fact (Nat.Prime p)\nI : Ideal R\nh : ∀ (i j : n), M i j ∈ I\nk : ℕ\nc : Equiv.Perm n\n⊢ coeff (∏ i : n, charmatrix M (↑c i) i) k ∈ I ^ (Fintype.card n - k)", "tactic": "have : (∑ x : n, 1) = Fintype.card n := by rw [Finset.sum_const, card_univ, smul_eq_mul, mul_one]" }, { "state_after": "case h\nR : Type u\ninst✝⁴ : CommRing R\nn G : Type v\ninst✝³ : DecidableEq n\ninst✝² : Fintype n\nα β : Type v\ninst✝¹ : DecidableEq α\nM : Matrix n n R\np : ℕ\ninst✝ : Fact (Nat.Prime p)\nI : Ideal R\nh : ∀ (i j : n), M i j ∈ I\nk : ℕ\nc : Equiv.Perm n\nthis : ∑ x : n, 1 = Fintype.card n\n⊢ coeff (∏ i : n, charmatrix M (↑c i) i) k ∈ I ^ (∑ x : n, 1 - k)", "state_before": "case h\nR : Type u\ninst✝⁴ : CommRing R\nn G : Type v\ninst✝³ : DecidableEq n\ninst✝² : Fintype n\nα β : Type v\ninst✝¹ : DecidableEq α\nM : Matrix n n R\np : ℕ\ninst✝ : Fact (Nat.Prime p)\nI : Ideal R\nh : ∀ (i j : n), M i j ∈ I\nk : ℕ\nc : Equiv.Perm n\nthis : ∑ x : n, 1 = Fintype.card n\n⊢ coeff (∏ i : n, charmatrix M (↑c i) i) k ∈ I ^ (Fintype.card n - k)", "tactic": "rw [← this]" }, { "state_after": "case h.h\nR : Type u\ninst✝⁴ : CommRing R\nn G : Type v\ninst✝³ : DecidableEq n\ninst✝² : Fintype n\nα β : Type v\ninst✝¹ : DecidableEq α\nM : Matrix n n R\np : ℕ\ninst✝ : Fact (Nat.Prime p)\nI : Ideal R\nh : ∀ (i j : n), M i j ∈ I\nk : ℕ\nc : Equiv.Perm n\nthis : ∑ x : n, 1 = Fintype.card n\n⊢ ∀ (i : n), i ∈ univ → ∀ (k : ℕ), coeff (charmatrix M (↑c i) i) k ∈ I ^ (1 - k)", "state_before": "case h\nR : Type u\ninst✝⁴ : CommRing R\nn G : Type v\ninst✝³ : DecidableEq n\ninst✝² : Fintype n\nα β : Type v\ninst✝¹ : DecidableEq α\nM : Matrix n n R\np : ℕ\ninst✝ : Fact (Nat.Prime p)\nI : Ideal R\nh : ∀ (i j : n), M i j ∈ I\nk : ℕ\nc : Equiv.Perm n\nthis : ∑ x : n, 1 = Fintype.card n\n⊢ coeff (∏ i : n, charmatrix M (↑c i) i) k ∈ I ^ (∑ x : n, 1 - k)", "tactic": "apply coeff_prod_mem_ideal_pow_tsub" }, { "state_after": "case h.h.zero\nR : Type u\ninst✝⁴ : CommRing R\nn G : Type v\ninst✝³ : DecidableEq n\ninst✝² : Fintype n\nα β : Type v\ninst✝¹ : DecidableEq α\nM : Matrix n n R\np : ℕ\ninst✝ : Fact (Nat.Prime p)\nI : Ideal R\nh : ∀ (i j : n), M i j ∈ I\nk : ℕ\nc : Equiv.Perm n\nthis : ∑ x : n, 1 = Fintype.card n\ni : n\n⊢ coeff (charmatrix M (↑c i) i) Nat.zero ∈ I ^ (1 - Nat.zero)\n\ncase h.h.succ\nR : Type u\ninst✝⁴ : CommRing R\nn G : Type v\ninst✝³ : DecidableEq n\ninst✝² : Fintype n\nα β : Type v\ninst✝¹ : DecidableEq α\nM : Matrix n n R\np : ℕ\ninst✝ : Fact (Nat.Prime p)\nI : Ideal R\nh : ∀ (i j : n), M i j ∈ I\nk✝ : ℕ\nc : Equiv.Perm n\nthis : ∑ x : n, 1 = Fintype.card n\ni : n\nk : ℕ\n⊢ coeff (charmatrix M (↑c i) i) (Nat.succ k) ∈ I ^ (1 - Nat.succ k)", "state_before": "case h.h\nR : Type u\ninst✝⁴ : CommRing R\nn G : Type v\ninst✝³ : DecidableEq n\ninst✝² : Fintype n\nα β : Type v\ninst✝¹ : DecidableEq α\nM : Matrix n n R\np : ℕ\ninst✝ : Fact (Nat.Prime p)\nI : Ideal R\nh : ∀ (i j : n), M i j ∈ I\nk : ℕ\nc : Equiv.Perm n\nthis : ∑ x : n, 1 = Fintype.card n\n⊢ ∀ (i : n), i ∈ univ → ∀ (k : ℕ), coeff (charmatrix M (↑c i) i) k ∈ I ^ (1 - k)", "tactic": "rintro i - (_ | k)" }, { "state_after": "no goals", "state_before": "R : Type u\ninst✝⁴ : CommRing R\nn G : Type v\ninst✝³ : DecidableEq n\ninst✝² : Fintype n\nα β : Type v\ninst✝¹ : DecidableEq α\nM : Matrix n n R\np : ℕ\ninst✝ : Fact (Nat.Prime p)\nI : Ideal R\nh : ∀ (i j : n), M i j ∈ I\nk : ℕ\nc : Equiv.Perm n\n⊢ ∑ x : n, 1 = Fintype.card n", "tactic": "rw [Finset.sum_const, card_univ, smul_eq_mul, mul_one]" }, { "state_after": "case h.h.zero\nR : Type u\ninst✝⁴ : CommRing R\nn G : Type v\ninst✝³ : DecidableEq n\ninst✝² : Fintype n\nα β : Type v\ninst✝¹ : DecidableEq α\nM : Matrix n n R\np : ℕ\ninst✝ : Fact (Nat.Prime p)\nI : Ideal R\nh : ∀ (i j : n), M i j ∈ I\nk : ℕ\nc : Equiv.Perm n\nthis : ∑ x : n, 1 = Fintype.card n\ni : n\n⊢ coeff (charmatrix M (↑c i) i) 0 ∈ I ^ (1 - 0)", "state_before": "case h.h.zero\nR : Type u\ninst✝⁴ : CommRing R\nn G : Type v\ninst✝³ : DecidableEq n\ninst✝² : Fintype n\nα β : Type v\ninst✝¹ : DecidableEq α\nM : Matrix n n R\np : ℕ\ninst✝ : Fact (Nat.Prime p)\nI : Ideal R\nh : ∀ (i j : n), M i j ∈ I\nk : ℕ\nc : Equiv.Perm n\nthis : ∑ x : n, 1 = Fintype.card n\ni : n\n⊢ coeff (charmatrix M (↑c i) i) Nat.zero ∈ I ^ (1 - Nat.zero)", "tactic": "rw [Nat.zero_eq]" }, { "state_after": "case h.h.zero\nR : Type u\ninst✝⁴ : CommRing R\nn G : Type v\ninst✝³ : DecidableEq n\ninst✝² : Fintype n\nα β : Type v\ninst✝¹ : DecidableEq α\nM : Matrix n n R\np : ℕ\ninst✝ : Fact (Nat.Prime p)\nI : Ideal R\nh : ∀ (i j : n), M i j ∈ I\nk : ℕ\nc : Equiv.Perm n\nthis : ∑ x : n, 1 = Fintype.card n\ni : n\n⊢ -M (↑c i) i ∈ I", "state_before": "case h.h.zero\nR : Type u\ninst✝⁴ : CommRing R\nn G : Type v\ninst✝³ : DecidableEq n\ninst✝² : Fintype n\nα β : Type v\ninst✝¹ : DecidableEq α\nM : Matrix n n R\np : ℕ\ninst✝ : Fact (Nat.Prime p)\nI : Ideal R\nh : ∀ (i j : n), M i j ∈ I\nk : ℕ\nc : Equiv.Perm n\nthis : ∑ x : n, 1 = Fintype.card n\ni : n\n⊢ coeff (charmatrix M (↑c i) i) 0 ∈ I ^ (1 - 0)", "tactic": "rw [tsub_zero, pow_one, charmatrix_apply, coeff_sub, coeff_X_mul_zero, coeff_C_zero, zero_sub]" }, { "state_after": "case h.h.zero.a\nR : Type u\ninst✝⁴ : CommRing R\nn G : Type v\ninst✝³ : DecidableEq n\ninst✝² : Fintype n\nα β : Type v\ninst✝¹ : DecidableEq α\nM : Matrix n n R\np : ℕ\ninst✝ : Fact (Nat.Prime p)\nI : Ideal R\nh : ∀ (i j : n), M i j ∈ I\nk : ℕ\nc : Equiv.Perm n\nthis : ∑ x : n, 1 = Fintype.card n\ni : n\n⊢ M (↑c i) i ∈ I", "state_before": "case h.h.zero\nR : Type u\ninst✝⁴ : CommRing R\nn G : Type v\ninst✝³ : DecidableEq n\ninst✝² : Fintype n\nα β : Type v\ninst✝¹ : DecidableEq α\nM : Matrix n n R\np : ℕ\ninst✝ : Fact (Nat.Prime p)\nI : Ideal R\nh : ∀ (i j : n), M i j ∈ I\nk : ℕ\nc : Equiv.Perm n\nthis : ∑ x : n, 1 = Fintype.card n\ni : n\n⊢ -M (↑c i) i ∈ I", "tactic": "apply neg_mem" }, { "state_after": "no goals", "state_before": "case h.h.zero.a\nR : Type u\ninst✝⁴ : CommRing R\nn G : Type v\ninst✝³ : DecidableEq n\ninst✝² : Fintype n\nα β : Type v\ninst✝¹ : DecidableEq α\nM : Matrix n n R\np : ℕ\ninst✝ : Fact (Nat.Prime p)\nI : Ideal R\nh : ∀ (i j : n), M i j ∈ I\nk : ℕ\nc : Equiv.Perm n\nthis : ∑ x : n, 1 = Fintype.card n\ni : n\n⊢ M (↑c i) i ∈ I", "tactic": "exact h (c i) i" }, { "state_after": "case h.h.succ\nR : Type u\ninst✝⁴ : CommRing R\nn G : Type v\ninst✝³ : DecidableEq n\ninst✝² : Fintype n\nα β : Type v\ninst✝¹ : DecidableEq α\nM : Matrix n n R\np : ℕ\ninst✝ : Fact (Nat.Prime p)\nI : Ideal R\nh : ∀ (i j : n), M i j ∈ I\nk✝ : ℕ\nc : Equiv.Perm n\nthis : ∑ x : n, 1 = Fintype.card n\ni : n\nk : ℕ\n⊢ coeff (charmatrix M (↑c i) i) (1 + k) ∈ ⊤", "state_before": "case h.h.succ\nR : Type u\ninst✝⁴ : CommRing R\nn G : Type v\ninst✝³ : DecidableEq n\ninst✝² : Fintype n\nα β : Type v\ninst✝¹ : DecidableEq α\nM : Matrix n n R\np : ℕ\ninst✝ : Fact (Nat.Prime p)\nI : Ideal R\nh : ∀ (i j : n), M i j ∈ I\nk✝ : ℕ\nc : Equiv.Perm n\nthis : ∑ x : n, 1 = Fintype.card n\ni : n\nk : ℕ\n⊢ coeff (charmatrix M (↑c i) i) (Nat.succ k) ∈ I ^ (1 - Nat.succ k)", "tactic": "rw [Nat.succ_eq_one_add, tsub_self_add, pow_zero, Ideal.one_eq_top]" }, { "state_after": "no goals", "state_before": "case h.h.succ\nR : Type u\ninst✝⁴ : CommRing R\nn G : Type v\ninst✝³ : DecidableEq n\ninst✝² : Fintype n\nα β : Type v\ninst✝¹ : DecidableEq α\nM : Matrix n n R\np : ℕ\ninst✝ : Fact (Nat.Prime p)\nI : Ideal R\nh : ∀ (i j : n), M i j ∈ I\nk✝ : ℕ\nc : Equiv.Perm n\nthis : ∑ x : n, 1 = Fintype.card n\ni : n\nk : ℕ\n⊢ coeff (charmatrix M (↑c i) i) (1 + k) ∈ ⊤", "tactic": "exact Submodule.mem_top" } ]
[ 261, 28 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 245, 1 ]
Mathlib/MeasureTheory/Function/L1Space.lean
MeasureTheory.L1.dist_def
[ { "state_after": "α : Type u_1\nβ : Type u_2\nγ : Type ?u.1291582\nδ : Type ?u.1291585\nm : MeasurableSpace α\nμ ν : Measure α\ninst✝² : MeasurableSpace δ\ninst✝¹ : NormedAddCommGroup β\ninst✝ : NormedAddCommGroup γ\nf g : { x // x ∈ Lp β 1 }\n⊢ ENNReal.toReal (∫⁻ (a : α), ↑‖↑↑f a - ↑↑g a‖₊ ∂μ) = ENNReal.toReal (∫⁻ (a : α), edist (↑↑f a) (↑↑g a) ∂μ)", "state_before": "α : Type u_1\nβ : Type u_2\nγ : Type ?u.1291582\nδ : Type ?u.1291585\nm : MeasurableSpace α\nμ ν : Measure α\ninst✝² : MeasurableSpace δ\ninst✝¹ : NormedAddCommGroup β\ninst✝ : NormedAddCommGroup γ\nf g : { x // x ∈ Lp β 1 }\n⊢ dist f g = ENNReal.toReal (∫⁻ (a : α), edist (↑↑f a) (↑↑g a) ∂μ)", "tactic": "simp [Lp.dist_def, snorm, snorm']" }, { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type u_2\nγ : Type ?u.1291582\nδ : Type ?u.1291585\nm : MeasurableSpace α\nμ ν : Measure α\ninst✝² : MeasurableSpace δ\ninst✝¹ : NormedAddCommGroup β\ninst✝ : NormedAddCommGroup γ\nf g : { x // x ∈ Lp β 1 }\n⊢ ENNReal.toReal (∫⁻ (a : α), ↑‖↑↑f a - ↑↑g a‖₊ ∂μ) = ENNReal.toReal (∫⁻ (a : α), edist (↑↑f a) (↑↑g a) ∂μ)", "tactic": "simp [edist_eq_coe_nnnorm_sub]" } ]
[ 1305, 33 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1303, 1 ]
Mathlib/LinearAlgebra/BilinearForm.lean
BilinForm.smul_apply
[]
[ 227, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 225, 1 ]
Mathlib/Topology/LocallyConstant/Basic.lean
LocallyConstant.exists_eq_const
[ { "state_after": "case inl.intro\nX : Type u_1\nY : Type u_2\nZ : Type ?u.24519\nα : Type ?u.24522\ninst✝² : TopologicalSpace X\ninst✝¹ : PreconnectedSpace X\ninst✝ : Nonempty Y\nf : LocallyConstant X Y\nx : X\n⊢ ∃ y, f = const X y\n\ncase inr\nX : Type u_1\nY : Type u_2\nZ : Type ?u.24519\nα : Type ?u.24522\ninst✝² : TopologicalSpace X\ninst✝¹ : PreconnectedSpace X\ninst✝ : Nonempty Y\nf : LocallyConstant X Y\nhX : ¬Nonempty X\n⊢ ∃ y, f = const X y", "state_before": "X : Type u_1\nY : Type u_2\nZ : Type ?u.24519\nα : Type ?u.24522\ninst✝² : TopologicalSpace X\ninst✝¹ : PreconnectedSpace X\ninst✝ : Nonempty Y\nf : LocallyConstant X Y\n⊢ ∃ y, f = const X y", "tactic": "rcases Classical.em (Nonempty X) with (⟨⟨x⟩⟩ | hX)" }, { "state_after": "no goals", "state_before": "case inl.intro\nX : Type u_1\nY : Type u_2\nZ : Type ?u.24519\nα : Type ?u.24522\ninst✝² : TopologicalSpace X\ninst✝¹ : PreconnectedSpace X\ninst✝ : Nonempty Y\nf : LocallyConstant X Y\nx : X\n⊢ ∃ y, f = const X y", "tactic": "exact ⟨f x, f.eq_const x⟩" }, { "state_after": "no goals", "state_before": "case inr\nX : Type u_1\nY : Type u_2\nZ : Type ?u.24519\nα : Type ?u.24522\ninst✝² : TopologicalSpace X\ninst✝¹ : PreconnectedSpace X\ninst✝ : Nonempty Y\nf : LocallyConstant X Y\nhX : ¬Nonempty X\n⊢ ∃ y, f = const X y", "tactic": "exact ⟨Classical.arbitrary Y, ext fun x => (hX ⟨x⟩).elim⟩" } ]
[ 400, 62 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 396, 1 ]
Mathlib/Geometry/Manifold/SmoothManifoldWithCorners.lean
isOpen_extChartAt_preimage'
[]
[ 1150, 33 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1148, 1 ]
Mathlib/Logic/Basic.lean
dite_eq_right_iff
[ { "state_after": "no goals", "state_before": "α : Sort u_1\nβ : Sort ?u.34692\nσ : α → Sort ?u.34688\nf : α → β\nP Q : Prop\ninst✝¹ : Decidable P\ninst✝ : Decidable Q\na b c : α\nA : P → α\nB : ¬P → α\n⊢ (dite P A fun x => b) = b ↔ ∀ (h : P), A h = b", "tactic": "by_cases P <;> simp [*, forall_prop_of_true, forall_prop_of_false]" } ]
[ 1151, 69 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1150, 9 ]
Mathlib/LinearAlgebra/Matrix/Determinant.lean
Matrix.det_isEmpty
[ { "state_after": "no goals", "state_before": "m : Type ?u.172043\nn : Type u_1\ninst✝⁵ : DecidableEq n\ninst✝⁴ : Fintype n\ninst✝³ : DecidableEq m\ninst✝² : Fintype m\nR : Type v\ninst✝¹ : CommRing R\ninst✝ : IsEmpty n\nA : Matrix n n R\n⊢ det A = 1", "tactic": "simp [det_apply]" } ]
[ 103, 86 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 103, 1 ]
Mathlib/GroupTheory/Subsemigroup/Centralizer.lean
Set.centralizer_eq_top_iff_subset
[]
[ 136, 95 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 134, 1 ]
Mathlib/Topology/UniformSpace/Basic.lean
symmetrizeRel_subset_self
[]
[ 222, 17 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 221, 1 ]
Mathlib/Data/TypeVec.lean
TypeVec.Arrow.ext
[ { "state_after": "n : ℕ\nα : TypeVec n\nβ : TypeVec n\nf g : α ⟹ β\nh : ∀ (i : Fin2 n), f i = g i\n⊢ f = g", "state_before": "n : ℕ\nα : TypeVec n\nβ : TypeVec n\nf g : α ⟹ β\n⊢ (∀ (i : Fin2 n), f i = g i) → f = g", "tactic": "intro h" }, { "state_after": "case h\nn : ℕ\nα : TypeVec n\nβ : TypeVec n\nf g : α ⟹ β\nh : ∀ (i : Fin2 n), f i = g i\ni : Fin2 n\n⊢ f i = g i", "state_before": "n : ℕ\nα : TypeVec n\nβ : TypeVec n\nf g : α ⟹ β\nh : ∀ (i : Fin2 n), f i = g i\n⊢ f = g", "tactic": "funext i" }, { "state_after": "no goals", "state_before": "case h\nn : ℕ\nα : TypeVec n\nβ : TypeVec n\nf g : α ⟹ β\nh : ∀ (i : Fin2 n), f i = g i\ni : Fin2 n\n⊢ f i = g i", "tactic": "apply h" } ]
[ 65, 30 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 63, 1 ]
Mathlib/Logic/Function/Iterate.lean
Function.Commute.iterate_iterate_self
[]
[ 163, 31 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 162, 1 ]
Mathlib/CategoryTheory/Sites/SheafOfTypes.lean
CategoryTheory.Presieve.FamilyOfElements.IsAmalgamation.compPresheafMap
[ { "state_after": "C : Type u₁\ninst✝ : Category C\nP Q U : Cᵒᵖ ⥤ Type w\nX Y✝ : C\nS : Sieve X\nR : Presieve X\nJ J₂ : GrothendieckTopology C\nx : FamilyOfElements P R\nt : P.obj X.op\nf : P ⟶ Q\nh : IsAmalgamation x t\nY : C\ng : Y ⟶ X\nhg : R g\n⊢ Q.map g.op (f.app X.op t) = FamilyOfElements.compPresheafMap f x g hg", "state_before": "C : Type u₁\ninst✝ : Category C\nP Q U : Cᵒᵖ ⥤ Type w\nX Y : C\nS : Sieve X\nR : Presieve X\nJ J₂ : GrothendieckTopology C\nx : FamilyOfElements P R\nt : P.obj X.op\nf : P ⟶ Q\nh : IsAmalgamation x t\n⊢ IsAmalgamation (FamilyOfElements.compPresheafMap f x) (f.app X.op t)", "tactic": "intro Y g hg" }, { "state_after": "C : Type u₁\ninst✝ : Category C\nP Q U : Cᵒᵖ ⥤ Type w\nX Y✝ : C\nS : Sieve X\nR : Presieve X\nJ J₂ : GrothendieckTopology C\nx : FamilyOfElements P R\nt : P.obj X.op\nf : P ⟶ Q\nh : IsAmalgamation x t\nY : C\ng : Y ⟶ X\nhg : R g\n⊢ Q.map g.op (f.app X.op t) = f.app Y.op (x g hg)", "state_before": "C : Type u₁\ninst✝ : Category C\nP Q U : Cᵒᵖ ⥤ Type w\nX Y✝ : C\nS : Sieve X\nR : Presieve X\nJ J₂ : GrothendieckTopology C\nx : FamilyOfElements P R\nt : P.obj X.op\nf : P ⟶ Q\nh : IsAmalgamation x t\nY : C\ng : Y ⟶ X\nhg : R g\n⊢ Q.map g.op (f.app X.op t) = FamilyOfElements.compPresheafMap f x g hg", "tactic": "dsimp [FamilyOfElements.compPresheafMap]" }, { "state_after": "C : Type u₁\ninst✝ : Category C\nP Q U : Cᵒᵖ ⥤ Type w\nX Y✝ : C\nS : Sieve X\nR : Presieve X\nJ J₂ : GrothendieckTopology C\nx : FamilyOfElements P R\nt : P.obj X.op\nf : P ⟶ Q\nh : IsAmalgamation x t\nY : C\ng : Y ⟶ X\nhg : R g\n⊢ (f.app X.op ≫ Q.map g.op) t = f.app Y.op (x g hg)", "state_before": "C : Type u₁\ninst✝ : Category C\nP Q U : Cᵒᵖ ⥤ Type w\nX Y✝ : C\nS : Sieve X\nR : Presieve X\nJ J₂ : GrothendieckTopology C\nx : FamilyOfElements P R\nt : P.obj X.op\nf : P ⟶ Q\nh : IsAmalgamation x t\nY : C\ng : Y ⟶ X\nhg : R g\n⊢ Q.map g.op (f.app X.op t) = f.app Y.op (x g hg)", "tactic": "change (f.app _ ≫ Q.map _) _ = _" }, { "state_after": "no goals", "state_before": "C : Type u₁\ninst✝ : Category C\nP Q U : Cᵒᵖ ⥤ Type w\nX Y✝ : C\nS : Sieve X\nR : Presieve X\nJ J₂ : GrothendieckTopology C\nx : FamilyOfElements P R\nt : P.obj X.op\nf : P ⟶ Q\nh : IsAmalgamation x t\nY : C\ng : Y ⟶ X\nhg : R g\n⊢ (f.app X.op ≫ Q.map g.op) t = f.app Y.op (x g hg)", "tactic": "rw [← f.naturality, types_comp_apply, h g hg]" } ]
[ 388, 48 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 383, 1 ]
Mathlib/MeasureTheory/Integral/IntervalIntegral.lean
IntervalIntegrable.neg
[]
[ 174, 21 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 173, 1 ]
Mathlib/Analysis/Convex/Between.lean
Sbtw.affineCombination_of_mem_affineSpan_pair
[ { "state_after": "R : Type u_1\nV : Type u_2\nV' : Type ?u.333838\nP : Type u_4\nP' : Type ?u.333844\ninst✝⁸ : OrderedRing R\ninst✝⁷ : AddCommGroup V\ninst✝⁶ : Module R V\ninst✝⁵ : AddTorsor V P\ninst✝⁴ : AddCommGroup V'\ninst✝³ : Module R V'\ninst✝² : AddTorsor V' P'\ninst✝¹ : NoZeroDivisors R\ninst✝ : NoZeroSMulDivisors R V\nι : Type u_3\np : ι → P\nha : AffineIndependent R p\nw w₁ w₂ : ι → R\ns : Finset ι\nhw : ∑ i in s, w i = 1\nhw₁ : ∑ i in s, w₁ i = 1\nhw₂ : ∑ i in s, w₂ i = 1\nh : ∃ r, ∀ (i : ι), i ∈ s → w i = r * (w₂ i - w₁ i) + w₁ i\ni : ι\nhis : i ∈ s\nhs : Sbtw R (w₁ i) (w i) (w₂ i)\n⊢ Sbtw R (↑(Finset.affineCombination R s p) w₁) (↑(Finset.affineCombination R s p) w)\n (↑(Finset.affineCombination R s p) w₂)", "state_before": "R : Type u_1\nV : Type u_2\nV' : Type ?u.333838\nP : Type u_4\nP' : Type ?u.333844\ninst✝⁸ : OrderedRing R\ninst✝⁷ : AddCommGroup V\ninst✝⁶ : Module R V\ninst✝⁵ : AddTorsor V P\ninst✝⁴ : AddCommGroup V'\ninst✝³ : Module R V'\ninst✝² : AddTorsor V' P'\ninst✝¹ : NoZeroDivisors R\ninst✝ : NoZeroSMulDivisors R V\nι : Type u_3\np : ι → P\nha : AffineIndependent R p\nw w₁ w₂ : ι → R\ns : Finset ι\nhw : ∑ i in s, w i = 1\nhw₁ : ∑ i in s, w₁ i = 1\nhw₂ : ∑ i in s, w₂ i = 1\nh :\n ↑(Finset.affineCombination R s p) w ∈\n affineSpan R {↑(Finset.affineCombination R s p) w₁, ↑(Finset.affineCombination R s p) w₂}\ni : ι\nhis : i ∈ s\nhs : Sbtw R (w₁ i) (w i) (w₂ i)\n⊢ Sbtw R (↑(Finset.affineCombination R s p) w₁) (↑(Finset.affineCombination R s p) w)\n (↑(Finset.affineCombination R s p) w₂)", "tactic": "rw [affineCombination_mem_affineSpan_pair ha hw hw₁ hw₂] at h" }, { "state_after": "case intro\nR : Type u_1\nV : Type u_2\nV' : Type ?u.333838\nP : Type u_4\nP' : Type ?u.333844\ninst✝⁸ : OrderedRing R\ninst✝⁷ : AddCommGroup V\ninst✝⁶ : Module R V\ninst✝⁵ : AddTorsor V P\ninst✝⁴ : AddCommGroup V'\ninst✝³ : Module R V'\ninst✝² : AddTorsor V' P'\ninst✝¹ : NoZeroDivisors R\ninst✝ : NoZeroSMulDivisors R V\nι : Type u_3\np : ι → P\nha : AffineIndependent R p\nw w₁ w₂ : ι → R\ns : Finset ι\nhw : ∑ i in s, w i = 1\nhw₁ : ∑ i in s, w₁ i = 1\nhw₂ : ∑ i in s, w₂ i = 1\ni : ι\nhis : i ∈ s\nhs : Sbtw R (w₁ i) (w i) (w₂ i)\nr : R\nhr : ∀ (i : ι), i ∈ s → w i = r * (w₂ i - w₁ i) + w₁ i\n⊢ Sbtw R (↑(Finset.affineCombination R s p) w₁) (↑(Finset.affineCombination R s p) w)\n (↑(Finset.affineCombination R s p) w₂)", "state_before": "R : Type u_1\nV : Type u_2\nV' : Type ?u.333838\nP : Type u_4\nP' : Type ?u.333844\ninst✝⁸ : OrderedRing R\ninst✝⁷ : AddCommGroup V\ninst✝⁶ : Module R V\ninst✝⁵ : AddTorsor V P\ninst✝⁴ : AddCommGroup V'\ninst✝³ : Module R V'\ninst✝² : AddTorsor V' P'\ninst✝¹ : NoZeroDivisors R\ninst✝ : NoZeroSMulDivisors R V\nι : Type u_3\np : ι → P\nha : AffineIndependent R p\nw w₁ w₂ : ι → R\ns : Finset ι\nhw : ∑ i in s, w i = 1\nhw₁ : ∑ i in s, w₁ i = 1\nhw₂ : ∑ i in s, w₂ i = 1\nh : ∃ r, ∀ (i : ι), i ∈ s → w i = r * (w₂ i - w₁ i) + w₁ i\ni : ι\nhis : i ∈ s\nhs : Sbtw R (w₁ i) (w i) (w₂ i)\n⊢ Sbtw R (↑(Finset.affineCombination R s p) w₁) (↑(Finset.affineCombination R s p) w)\n (↑(Finset.affineCombination R s p) w₂)", "tactic": "rcases h with ⟨r, hr⟩" }, { "state_after": "case intro\nR : Type u_1\nV : Type u_2\nV' : Type ?u.333838\nP : Type u_4\nP' : Type ?u.333844\ninst✝⁸ : OrderedRing R\ninst✝⁷ : AddCommGroup V\ninst✝⁶ : Module R V\ninst✝⁵ : AddTorsor V P\ninst✝⁴ : AddCommGroup V'\ninst✝³ : Module R V'\ninst✝² : AddTorsor V' P'\ninst✝¹ : NoZeroDivisors R\ninst✝ : NoZeroSMulDivisors R V\nι : Type u_3\np : ι → P\nha : AffineIndependent R p\nw w₁ w₂ : ι → R\ns : Finset ι\nhw : ∑ i in s, w i = 1\nhw₁ : ∑ i in s, w₁ i = 1\nhw₂ : ∑ i in s, w₂ i = 1\ni : ι\nhis : i ∈ s\nhs : Sbtw R (w₁ i) (w i) (w₂ i)\nr : R\nhr : ∀ (i : ι), i ∈ s → w i = r * (w₂ i - w₁ i) + w₁ i\n⊢ Sbtw R (↑(Finset.affineCombination R s p) w₁) (↑(Finset.affineCombination R s p) w)\n (↑(Finset.affineCombination R s p) w₂)", "state_before": "case intro\nR : Type u_1\nV : Type u_2\nV' : Type ?u.333838\nP : Type u_4\nP' : Type ?u.333844\ninst✝⁸ : OrderedRing R\ninst✝⁷ : AddCommGroup V\ninst✝⁶ : Module R V\ninst✝⁵ : AddTorsor V P\ninst✝⁴ : AddCommGroup V'\ninst✝³ : Module R V'\ninst✝² : AddTorsor V' P'\ninst✝¹ : NoZeroDivisors R\ninst✝ : NoZeroSMulDivisors R V\nι : Type u_3\np : ι → P\nha : AffineIndependent R p\nw w₁ w₂ : ι → R\ns : Finset ι\nhw : ∑ i in s, w i = 1\nhw₁ : ∑ i in s, w₁ i = 1\nhw₂ : ∑ i in s, w₂ i = 1\ni : ι\nhis : i ∈ s\nhs : Sbtw R (w₁ i) (w i) (w₂ i)\nr : R\nhr : ∀ (i : ι), i ∈ s → w i = r * (w₂ i - w₁ i) + w₁ i\n⊢ Sbtw R (↑(Finset.affineCombination R s p) w₁) (↑(Finset.affineCombination R s p) w)\n (↑(Finset.affineCombination R s p) w₂)", "tactic": "dsimp only at hr" }, { "state_after": "case intro\nR : Type u_1\nV : Type u_2\nV' : Type ?u.333838\nP : Type u_4\nP' : Type ?u.333844\ninst✝⁸ : OrderedRing R\ninst✝⁷ : AddCommGroup V\ninst✝⁶ : Module R V\ninst✝⁵ : AddTorsor V P\ninst✝⁴ : AddCommGroup V'\ninst✝³ : Module R V'\ninst✝² : AddTorsor V' P'\ninst✝¹ : NoZeroDivisors R\ninst✝ : NoZeroSMulDivisors R V\nι : Type u_3\np : ι → P\nha : AffineIndependent R p\nw w₁ w₂ : ι → R\ns : Finset ι\nhw : ∑ i in s, w i = 1\nhw₁ : ∑ i in s, w₁ i = 1\nhw₂ : ∑ i in s, w₂ i = 1\ni : ι\nhis : i ∈ s\nr : R\nhs : w₁ i ≠ w₂ i ∧ r ∈ Set.Ioo 0 1\nhr : ∀ (i : ι), i ∈ s → w i = r * (w₂ i - w₁ i) + w₁ i\n⊢ Sbtw R (↑(Finset.affineCombination R s p) w₁) (↑(Finset.affineCombination R s p) w)\n (↑(Finset.affineCombination R s p) w₂)", "state_before": "case intro\nR : Type u_1\nV : Type u_2\nV' : Type ?u.333838\nP : Type u_4\nP' : Type ?u.333844\ninst✝⁸ : OrderedRing R\ninst✝⁷ : AddCommGroup V\ninst✝⁶ : Module R V\ninst✝⁵ : AddTorsor V P\ninst✝⁴ : AddCommGroup V'\ninst✝³ : Module R V'\ninst✝² : AddTorsor V' P'\ninst✝¹ : NoZeroDivisors R\ninst✝ : NoZeroSMulDivisors R V\nι : Type u_3\np : ι → P\nha : AffineIndependent R p\nw w₁ w₂ : ι → R\ns : Finset ι\nhw : ∑ i in s, w i = 1\nhw₁ : ∑ i in s, w₁ i = 1\nhw₂ : ∑ i in s, w₂ i = 1\ni : ι\nhis : i ∈ s\nhs : Sbtw R (w₁ i) (w i) (w₂ i)\nr : R\nhr : ∀ (i : ι), i ∈ s → w i = r * (w₂ i - w₁ i) + w₁ i\n⊢ Sbtw R (↑(Finset.affineCombination R s p) w₁) (↑(Finset.affineCombination R s p) w)\n (↑(Finset.affineCombination R s p) w₂)", "tactic": "rw [hr i his, sbtw_mul_sub_add_iff] at hs" }, { "state_after": "case intro\nR : Type u_1\nV : Type u_2\nV' : Type ?u.333838\nP : Type u_4\nP' : Type ?u.333844\ninst✝⁸ : OrderedRing R\ninst✝⁷ : AddCommGroup V\ninst✝⁶ : Module R V\ninst✝⁵ : AddTorsor V P\ninst✝⁴ : AddCommGroup V'\ninst✝³ : Module R V'\ninst✝² : AddTorsor V' P'\ninst✝¹ : NoZeroDivisors R\ninst✝ : NoZeroSMulDivisors R V\nι : Type u_3\np : ι → P\nha : AffineIndependent R p\nw w₁ w₂ : ι → R\ns : Finset ι\nhw : ∑ i in s, w i = 1\nhw₁ : ∑ i in s, w₁ i = 1\nhw₂ : ∑ i in s, w₂ i = 1\ni : ι\nhis : i ∈ s\nr : R\nhs : w₁ i ≠ w₂ i ∧ r ∈ Set.Ioo 0 1\nhr : ∀ (i : ι), i ∈ s → w i = (r • (w₂ - w₁) + w₁) i\n⊢ Sbtw R (↑(Finset.affineCombination R s p) w₁) (↑(Finset.affineCombination R s p) w)\n (↑(Finset.affineCombination R s p) w₂)", "state_before": "case intro\nR : Type u_1\nV : Type u_2\nV' : Type ?u.333838\nP : Type u_4\nP' : Type ?u.333844\ninst✝⁸ : OrderedRing R\ninst✝⁷ : AddCommGroup V\ninst✝⁶ : Module R V\ninst✝⁵ : AddTorsor V P\ninst✝⁴ : AddCommGroup V'\ninst✝³ : Module R V'\ninst✝² : AddTorsor V' P'\ninst✝¹ : NoZeroDivisors R\ninst✝ : NoZeroSMulDivisors R V\nι : Type u_3\np : ι → P\nha : AffineIndependent R p\nw w₁ w₂ : ι → R\ns : Finset ι\nhw : ∑ i in s, w i = 1\nhw₁ : ∑ i in s, w₁ i = 1\nhw₂ : ∑ i in s, w₂ i = 1\ni : ι\nhis : i ∈ s\nr : R\nhs : w₁ i ≠ w₂ i ∧ r ∈ Set.Ioo 0 1\nhr : ∀ (i : ι), i ∈ s → w i = r * (w₂ i - w₁ i) + w₁ i\n⊢ Sbtw R (↑(Finset.affineCombination R s p) w₁) (↑(Finset.affineCombination R s p) w)\n (↑(Finset.affineCombination R s p) w₂)", "tactic": "change ∀ i ∈ s, w i = (r • (w₂ - w₁) + w₁) i at hr" }, { "state_after": "case intro\nR : Type u_1\nV : Type u_2\nV' : Type ?u.333838\nP : Type u_4\nP' : Type ?u.333844\ninst✝⁸ : OrderedRing R\ninst✝⁷ : AddCommGroup V\ninst✝⁶ : Module R V\ninst✝⁵ : AddTorsor V P\ninst✝⁴ : AddCommGroup V'\ninst✝³ : Module R V'\ninst✝² : AddTorsor V' P'\ninst✝¹ : NoZeroDivisors R\ninst✝ : NoZeroSMulDivisors R V\nι : Type u_3\np : ι → P\nha : AffineIndependent R p\nw w₁ w₂ : ι → R\ns : Finset ι\nhw : ∑ i in s, w i = 1\nhw₁ : ∑ i in s, w₁ i = 1\nhw₂ : ∑ i in s, w₂ i = 1\ni : ι\nhis : i ∈ s\nr : R\nhs : w₁ i ≠ w₂ i ∧ r ∈ Set.Ioo 0 1\nhr : ∀ (i : ι), i ∈ s → w i = (r • (w₂ - w₁) + w₁) i\n⊢ Sbtw R (↑(Finset.affineCombination R s p) w₁)\n (↑(Finset.affineCombination R s fun x => p x) fun i => (r • (w₂ - w₁) + w₁) i)\n (↑(Finset.affineCombination R s p) w₂)", "state_before": "case intro\nR : Type u_1\nV : Type u_2\nV' : Type ?u.333838\nP : Type u_4\nP' : Type ?u.333844\ninst✝⁸ : OrderedRing R\ninst✝⁷ : AddCommGroup V\ninst✝⁶ : Module R V\ninst✝⁵ : AddTorsor V P\ninst✝⁴ : AddCommGroup V'\ninst✝³ : Module R V'\ninst✝² : AddTorsor V' P'\ninst✝¹ : NoZeroDivisors R\ninst✝ : NoZeroSMulDivisors R V\nι : Type u_3\np : ι → P\nha : AffineIndependent R p\nw w₁ w₂ : ι → R\ns : Finset ι\nhw : ∑ i in s, w i = 1\nhw₁ : ∑ i in s, w₁ i = 1\nhw₂ : ∑ i in s, w₂ i = 1\ni : ι\nhis : i ∈ s\nr : R\nhs : w₁ i ≠ w₂ i ∧ r ∈ Set.Ioo 0 1\nhr : ∀ (i : ι), i ∈ s → w i = (r • (w₂ - w₁) + w₁) i\n⊢ Sbtw R (↑(Finset.affineCombination R s p) w₁) (↑(Finset.affineCombination R s p) w)\n (↑(Finset.affineCombination R s p) w₂)", "tactic": "rw [s.affineCombination_congr hr fun _ _ => rfl]" }, { "state_after": "case intro\nR : Type u_1\nV : Type u_2\nV' : Type ?u.333838\nP : Type u_4\nP' : Type ?u.333844\ninst✝⁸ : OrderedRing R\ninst✝⁷ : AddCommGroup V\ninst✝⁶ : Module R V\ninst✝⁵ : AddTorsor V P\ninst✝⁴ : AddCommGroup V'\ninst✝³ : Module R V'\ninst✝² : AddTorsor V' P'\ninst✝¹ : NoZeroDivisors R\ninst✝ : NoZeroSMulDivisors R V\nι : Type u_3\np : ι → P\nha : AffineIndependent R p\nw w₁ w₂ : ι → R\ns : Finset ι\nhw : ∑ i in s, w i = 1\nhw₁ : ∑ i in s, w₁ i = 1\nhw₂ : ∑ i in s, w₂ i = 1\ni : ι\nhis : i ∈ s\nr : R\nhs : w₁ i ≠ w₂ i ∧ r ∈ Set.Ioo 0 1\nhr : ∀ (i : ι), i ∈ s → w i = (r • (w₂ - w₁) + w₁) i\n⊢ Sbtw R (↑(Finset.affineCombination R s p) w₁)\n (↑(Finset.affineCombination R s fun x => p x) fun i => (r • (w₂ - w₁) + w₁) i)\n (↑(Finset.affineCombination R s p) w₂)", "state_before": "case intro\nR : Type u_1\nV : Type u_2\nV' : Type ?u.333838\nP : Type u_4\nP' : Type ?u.333844\ninst✝⁸ : OrderedRing R\ninst✝⁷ : AddCommGroup V\ninst✝⁶ : Module R V\ninst✝⁵ : AddTorsor V P\ninst✝⁴ : AddCommGroup V'\ninst✝³ : Module R V'\ninst✝² : AddTorsor V' P'\ninst✝¹ : NoZeroDivisors R\ninst✝ : NoZeroSMulDivisors R V\nι : Type u_3\np : ι → P\nha : AffineIndependent R p\nw w₁ w₂ : ι → R\ns : Finset ι\nhw : ∑ i in s, w i = 1\nhw₁ : ∑ i in s, w₁ i = 1\nhw₂ : ∑ i in s, w₂ i = 1\ni : ι\nhis : i ∈ s\nr : R\nhs : w₁ i ≠ w₂ i ∧ r ∈ Set.Ioo 0 1\nhr : ∀ (i : ι), i ∈ s → w i = (r • (w₂ - w₁) + w₁) i\n⊢ Sbtw R (↑(Finset.affineCombination R s p) w₁)\n (↑(Finset.affineCombination R s fun x => p x) fun i => (r • (w₂ - w₁) + w₁) i)\n (↑(Finset.affineCombination R s p) w₂)", "tactic": "dsimp only" }, { "state_after": "case intro\nR : Type u_1\nV : Type u_2\nV' : Type ?u.333838\nP : Type u_4\nP' : Type ?u.333844\ninst✝⁸ : OrderedRing R\ninst✝⁷ : AddCommGroup V\ninst✝⁶ : Module R V\ninst✝⁵ : AddTorsor V P\ninst✝⁴ : AddCommGroup V'\ninst✝³ : Module R V'\ninst✝² : AddTorsor V' P'\ninst✝¹ : NoZeroDivisors R\ninst✝ : NoZeroSMulDivisors R V\nι : Type u_3\np : ι → P\nha : AffineIndependent R p\nw w₁ w₂ : ι → R\ns : Finset ι\nhw : ∑ i in s, w i = 1\nhw₁ : ∑ i in s, w₁ i = 1\nhw₂ : ∑ i in s, w₂ i = 1\ni : ι\nhis : i ∈ s\nr : R\nhs : w₁ i ≠ w₂ i ∧ r ∈ Set.Ioo 0 1\nhr : ∀ (i : ι), i ∈ s → w i = (r • (w₂ - w₁) + w₁) i\n⊢ ↑(Finset.weightedVSub s p) (w₁ - w₂) ≠ 0", "state_before": "case intro\nR : Type u_1\nV : Type u_2\nV' : Type ?u.333838\nP : Type u_4\nP' : Type ?u.333844\ninst✝⁸ : OrderedRing R\ninst✝⁷ : AddCommGroup V\ninst✝⁶ : Module R V\ninst✝⁵ : AddTorsor V P\ninst✝⁴ : AddCommGroup V'\ninst✝³ : Module R V'\ninst✝² : AddTorsor V' P'\ninst✝¹ : NoZeroDivisors R\ninst✝ : NoZeroSMulDivisors R V\nι : Type u_3\np : ι → P\nha : AffineIndependent R p\nw w₁ w₂ : ι → R\ns : Finset ι\nhw : ∑ i in s, w i = 1\nhw₁ : ∑ i in s, w₁ i = 1\nhw₂ : ∑ i in s, w₂ i = 1\ni : ι\nhis : i ∈ s\nr : R\nhs : w₁ i ≠ w₂ i ∧ r ∈ Set.Ioo 0 1\nhr : ∀ (i : ι), i ∈ s → w i = (r • (w₂ - w₁) + w₁) i\n⊢ Sbtw R (↑(Finset.affineCombination R s p) w₁)\n (↑(Finset.affineCombination R s fun x => p x) fun i => (r • (w₂ - w₁) + w₁) i)\n (↑(Finset.affineCombination R s p) w₂)", "tactic": "rw [← s.weightedVSub_vadd_affineCombination, s.weightedVSub_const_smul,\n ← s.affineCombination_vsub, ← lineMap_apply, sbtw_lineMap_iff, and_iff_left hs.2,\n ← @vsub_ne_zero V, s.affineCombination_vsub]" }, { "state_after": "case intro\nR : Type u_1\nV : Type u_2\nV' : Type ?u.333838\nP : Type u_4\nP' : Type ?u.333844\ninst✝⁸ : OrderedRing R\ninst✝⁷ : AddCommGroup V\ninst✝⁶ : Module R V\ninst✝⁵ : AddTorsor V P\ninst✝⁴ : AddCommGroup V'\ninst✝³ : Module R V'\ninst✝² : AddTorsor V' P'\ninst✝¹ : NoZeroDivisors R\ninst✝ : NoZeroSMulDivisors R V\nι : Type u_3\np : ι → P\nha : AffineIndependent R p\nw w₁ w₂ : ι → R\ns : Finset ι\nhw : ∑ i in s, w i = 1\nhw₁ : ∑ i in s, w₁ i = 1\nhw₂ : ∑ i in s, w₂ i = 1\ni : ι\nhis : i ∈ s\nr : R\nhs : w₁ i ≠ w₂ i ∧ r ∈ Set.Ioo 0 1\nhr : ∀ (i : ι), i ∈ s → w i = (r • (w₂ - w₁) + w₁) i\nhz : ↑(Finset.weightedVSub s p) (w₁ - w₂) = 0\n⊢ False", "state_before": "case intro\nR : Type u_1\nV : Type u_2\nV' : Type ?u.333838\nP : Type u_4\nP' : Type ?u.333844\ninst✝⁸ : OrderedRing R\ninst✝⁷ : AddCommGroup V\ninst✝⁶ : Module R V\ninst✝⁵ : AddTorsor V P\ninst✝⁴ : AddCommGroup V'\ninst✝³ : Module R V'\ninst✝² : AddTorsor V' P'\ninst✝¹ : NoZeroDivisors R\ninst✝ : NoZeroSMulDivisors R V\nι : Type u_3\np : ι → P\nha : AffineIndependent R p\nw w₁ w₂ : ι → R\ns : Finset ι\nhw : ∑ i in s, w i = 1\nhw₁ : ∑ i in s, w₁ i = 1\nhw₂ : ∑ i in s, w₂ i = 1\ni : ι\nhis : i ∈ s\nr : R\nhs : w₁ i ≠ w₂ i ∧ r ∈ Set.Ioo 0 1\nhr : ∀ (i : ι), i ∈ s → w i = (r • (w₂ - w₁) + w₁) i\n⊢ ↑(Finset.weightedVSub s p) (w₁ - w₂) ≠ 0", "tactic": "intro hz" }, { "state_after": "case intro\nR : Type u_1\nV : Type u_2\nV' : Type ?u.333838\nP : Type u_4\nP' : Type ?u.333844\ninst✝⁸ : OrderedRing R\ninst✝⁷ : AddCommGroup V\ninst✝⁶ : Module R V\ninst✝⁵ : AddTorsor V P\ninst✝⁴ : AddCommGroup V'\ninst✝³ : Module R V'\ninst✝² : AddTorsor V' P'\ninst✝¹ : NoZeroDivisors R\ninst✝ : NoZeroSMulDivisors R V\nι : Type u_3\np : ι → P\nha : AffineIndependent R p\nw w₁ w₂ : ι → R\ns : Finset ι\nhw : ∑ i in s, w i = 1\nhw₁ : ∑ i in s, w₁ i = 1\nhw₂ : ∑ i in s, w₂ i = 1\ni : ι\nhis : i ∈ s\nr : R\nhs : w₁ i ≠ w₂ i ∧ r ∈ Set.Ioo 0 1\nhr : ∀ (i : ι), i ∈ s → w i = (r • (w₂ - w₁) + w₁) i\nhz : ↑(Finset.weightedVSub s p) (w₁ - w₂) = 0\nhw₁w₂ : ∑ i in s, (w₁ - w₂) i = 0\n⊢ False", "state_before": "case intro\nR : Type u_1\nV : Type u_2\nV' : Type ?u.333838\nP : Type u_4\nP' : Type ?u.333844\ninst✝⁸ : OrderedRing R\ninst✝⁷ : AddCommGroup V\ninst✝⁶ : Module R V\ninst✝⁵ : AddTorsor V P\ninst✝⁴ : AddCommGroup V'\ninst✝³ : Module R V'\ninst✝² : AddTorsor V' P'\ninst✝¹ : NoZeroDivisors R\ninst✝ : NoZeroSMulDivisors R V\nι : Type u_3\np : ι → P\nha : AffineIndependent R p\nw w₁ w₂ : ι → R\ns : Finset ι\nhw : ∑ i in s, w i = 1\nhw₁ : ∑ i in s, w₁ i = 1\nhw₂ : ∑ i in s, w₂ i = 1\ni : ι\nhis : i ∈ s\nr : R\nhs : w₁ i ≠ w₂ i ∧ r ∈ Set.Ioo 0 1\nhr : ∀ (i : ι), i ∈ s → w i = (r • (w₂ - w₁) + w₁) i\nhz : ↑(Finset.weightedVSub s p) (w₁ - w₂) = 0\n⊢ False", "tactic": "have hw₁w₂ : (∑ i in s, (w₁ - w₂) i) = 0 := by\n simp_rw [Pi.sub_apply, Finset.sum_sub_distrib, hw₁, hw₂, sub_self]" }, { "state_after": "case intro\nR : Type u_1\nV : Type u_2\nV' : Type ?u.333838\nP : Type u_4\nP' : Type ?u.333844\ninst✝⁸ : OrderedRing R\ninst✝⁷ : AddCommGroup V\ninst✝⁶ : Module R V\ninst✝⁵ : AddTorsor V P\ninst✝⁴ : AddCommGroup V'\ninst✝³ : Module R V'\ninst✝² : AddTorsor V' P'\ninst✝¹ : NoZeroDivisors R\ninst✝ : NoZeroSMulDivisors R V\nι : Type u_3\np : ι → P\nha : AffineIndependent R p\nw w₁ w₂ : ι → R\ns : Finset ι\nhw : ∑ i in s, w i = 1\nhw₁ : ∑ i in s, w₁ i = 1\nhw₂ : ∑ i in s, w₂ i = 1\ni : ι\nhis : i ∈ s\nr : R\nhs : w₁ i ≠ w₂ i ∧ r ∈ Set.Ioo 0 1\nhr : ∀ (i : ι), i ∈ s → w i = (r • (w₂ - w₁) + w₁) i\nhz : ↑(Finset.weightedVSub s p) (w₁ - w₂) = 0\nhw₁w₂ : ∑ i in s, (w₁ - w₂) i = 0\n⊢ w₁ i = w₂ i", "state_before": "case intro\nR : Type u_1\nV : Type u_2\nV' : Type ?u.333838\nP : Type u_4\nP' : Type ?u.333844\ninst✝⁸ : OrderedRing R\ninst✝⁷ : AddCommGroup V\ninst✝⁶ : Module R V\ninst✝⁵ : AddTorsor V P\ninst✝⁴ : AddCommGroup V'\ninst✝³ : Module R V'\ninst✝² : AddTorsor V' P'\ninst✝¹ : NoZeroDivisors R\ninst✝ : NoZeroSMulDivisors R V\nι : Type u_3\np : ι → P\nha : AffineIndependent R p\nw w₁ w₂ : ι → R\ns : Finset ι\nhw : ∑ i in s, w i = 1\nhw₁ : ∑ i in s, w₁ i = 1\nhw₂ : ∑ i in s, w₂ i = 1\ni : ι\nhis : i ∈ s\nr : R\nhs : w₁ i ≠ w₂ i ∧ r ∈ Set.Ioo 0 1\nhr : ∀ (i : ι), i ∈ s → w i = (r • (w₂ - w₁) + w₁) i\nhz : ↑(Finset.weightedVSub s p) (w₁ - w₂) = 0\nhw₁w₂ : ∑ i in s, (w₁ - w₂) i = 0\n⊢ False", "tactic": "refine' hs.1 _" }, { "state_after": "case intro\nR : Type u_1\nV : Type u_2\nV' : Type ?u.333838\nP : Type u_4\nP' : Type ?u.333844\ninst✝⁸ : OrderedRing R\ninst✝⁷ : AddCommGroup V\ninst✝⁶ : Module R V\ninst✝⁵ : AddTorsor V P\ninst✝⁴ : AddCommGroup V'\ninst✝³ : Module R V'\ninst✝² : AddTorsor V' P'\ninst✝¹ : NoZeroDivisors R\ninst✝ : NoZeroSMulDivisors R V\nι : Type u_3\np : ι → P\nha : AffineIndependent R p\nw w₁ w₂ : ι → R\ns : Finset ι\nhw : ∑ i in s, w i = 1\nhw₁ : ∑ i in s, w₁ i = 1\nhw₂ : ∑ i in s, w₂ i = 1\ni : ι\nhis : i ∈ s\nr : R\nhs : w₁ i ≠ w₂ i ∧ r ∈ Set.Ioo 0 1\nhr : ∀ (i : ι), i ∈ s → w i = (r • (w₂ - w₁) + w₁) i\nhz : ↑(Finset.weightedVSub s p) (w₁ - w₂) = 0\nhw₁w₂ : ∑ i in s, (w₁ - w₂) i = 0\nha' : (w₁ - w₂) i = 0\n⊢ w₁ i = w₂ i", "state_before": "case intro\nR : Type u_1\nV : Type u_2\nV' : Type ?u.333838\nP : Type u_4\nP' : Type ?u.333844\ninst✝⁸ : OrderedRing R\ninst✝⁷ : AddCommGroup V\ninst✝⁶ : Module R V\ninst✝⁵ : AddTorsor V P\ninst✝⁴ : AddCommGroup V'\ninst✝³ : Module R V'\ninst✝² : AddTorsor V' P'\ninst✝¹ : NoZeroDivisors R\ninst✝ : NoZeroSMulDivisors R V\nι : Type u_3\np : ι → P\nha : AffineIndependent R p\nw w₁ w₂ : ι → R\ns : Finset ι\nhw : ∑ i in s, w i = 1\nhw₁ : ∑ i in s, w₁ i = 1\nhw₂ : ∑ i in s, w₂ i = 1\ni : ι\nhis : i ∈ s\nr : R\nhs : w₁ i ≠ w₂ i ∧ r ∈ Set.Ioo 0 1\nhr : ∀ (i : ι), i ∈ s → w i = (r • (w₂ - w₁) + w₁) i\nhz : ↑(Finset.weightedVSub s p) (w₁ - w₂) = 0\nhw₁w₂ : ∑ i in s, (w₁ - w₂) i = 0\n⊢ w₁ i = w₂ i", "tactic": "have ha' := ha s (w₁ - w₂) hw₁w₂ hz i his" }, { "state_after": "no goals", "state_before": "case intro\nR : Type u_1\nV : Type u_2\nV' : Type ?u.333838\nP : Type u_4\nP' : Type ?u.333844\ninst✝⁸ : OrderedRing R\ninst✝⁷ : AddCommGroup V\ninst✝⁶ : Module R V\ninst✝⁵ : AddTorsor V P\ninst✝⁴ : AddCommGroup V'\ninst✝³ : Module R V'\ninst✝² : AddTorsor V' P'\ninst✝¹ : NoZeroDivisors R\ninst✝ : NoZeroSMulDivisors R V\nι : Type u_3\np : ι → P\nha : AffineIndependent R p\nw w₁ w₂ : ι → R\ns : Finset ι\nhw : ∑ i in s, w i = 1\nhw₁ : ∑ i in s, w₁ i = 1\nhw₂ : ∑ i in s, w₂ i = 1\ni : ι\nhis : i ∈ s\nr : R\nhs : w₁ i ≠ w₂ i ∧ r ∈ Set.Ioo 0 1\nhr : ∀ (i : ι), i ∈ s → w i = (r • (w₂ - w₁) + w₁) i\nhz : ↑(Finset.weightedVSub s p) (w₁ - w₂) = 0\nhw₁w₂ : ∑ i in s, (w₁ - w₂) i = 0\nha' : (w₁ - w₂) i = 0\n⊢ w₁ i = w₂ i", "tactic": "rwa [Pi.sub_apply, sub_eq_zero] at ha'" }, { "state_after": "no goals", "state_before": "R : Type u_1\nV : Type u_2\nV' : Type ?u.333838\nP : Type u_4\nP' : Type ?u.333844\ninst✝⁸ : OrderedRing R\ninst✝⁷ : AddCommGroup V\ninst✝⁶ : Module R V\ninst✝⁵ : AddTorsor V P\ninst✝⁴ : AddCommGroup V'\ninst✝³ : Module R V'\ninst✝² : AddTorsor V' P'\ninst✝¹ : NoZeroDivisors R\ninst✝ : NoZeroSMulDivisors R V\nι : Type u_3\np : ι → P\nha : AffineIndependent R p\nw w₁ w₂ : ι → R\ns : Finset ι\nhw : ∑ i in s, w i = 1\nhw₁ : ∑ i in s, w₁ i = 1\nhw₂ : ∑ i in s, w₂ i = 1\ni : ι\nhis : i ∈ s\nr : R\nhs : w₁ i ≠ w₂ i ∧ r ∈ Set.Ioo 0 1\nhr : ∀ (i : ι), i ∈ s → w i = (r • (w₂ - w₁) + w₁) i\nhz : ↑(Finset.weightedVSub s p) (w₁ - w₂) = 0\n⊢ ∑ i in s, (w₁ - w₂) i = 0", "tactic": "simp_rw [Pi.sub_apply, Finset.sum_sub_distrib, hw₁, hw₂, sub_self]" } ]
[ 550, 41 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 527, 1 ]
Mathlib/Topology/ContinuousFunction/Bounded.lean
BoundedContinuousFunction.sum_apply
[ { "state_after": "no goals", "state_before": "F : Type ?u.976970\nα : Type u\nβ : Type v\nγ : Type w\ninst✝³ : TopologicalSpace α\ninst✝² : PseudoMetricSpace β\ninst✝¹ : AddCommMonoid β\ninst✝ : LipschitzAdd β\nι : Type u_1\ns : Finset ι\nf : ι → α →ᵇ β\na : α\n⊢ ↑(∑ i in s, f i) a = ∑ i in s, ↑(f i) a", "tactic": "simp" } ]
[ 777, 51 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 776, 1 ]
Mathlib/Topology/UniformSpace/Equicontinuity.lean
equicontinuous_iff_range
[]
[ 229, 52 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 227, 1 ]
Mathlib/Data/Polynomial/Degree/Definitions.lean
Polynomial.eq_X_add_C_of_degree_eq_one
[ { "state_after": "R : Type u\nS : Type v\na b c d : R\nn m : ℕ\ninst✝ : Semiring R\np q r : R[X]\nh : degree p = 1\n⊢ ↑C (coeff p 1) * X + ↑C (coeff p 0) = ↑C (coeff p One.one) * X + ↑C (coeff p 0)", "state_before": "R : Type u\nS : Type v\na b c d : R\nn m : ℕ\ninst✝ : Semiring R\np q r : R[X]\nh : degree p = 1\n⊢ ↑C (coeff p 1) * X + ↑C (coeff p 0) = ↑C (leadingCoeff p) * X + ↑C (coeff p 0)", "tactic": "simp only [leadingCoeff, natDegree_eq_of_degree_eq_some h]" }, { "state_after": "no goals", "state_before": "R : Type u\nS : Type v\na b c d : R\nn m : ℕ\ninst✝ : Semiring R\np q r : R[X]\nh : degree p = 1\n⊢ ↑C (coeff p 1) * X + ↑C (coeff p 0) = ↑C (coeff p One.one) * X + ↑C (coeff p 0)", "tactic": "rfl" } ]
[ 455, 73 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 452, 1 ]
Mathlib/MeasureTheory/Measure/MeasureSpace.lean
MeasureTheory.Measure.restrict_iUnion
[]
[ 2169, 69 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 2167, 1 ]
Mathlib/Algebra/Ring/Prod.lean
NonUnitalRingHom.prod_unique
[ { "state_after": "no goals", "state_before": "α : Type ?u.22238\nβ : Type ?u.22241\nR : Type u_1\nR' : Type ?u.22247\nS : Type u_3\nS' : Type ?u.22253\nT : Type u_2\nT' : Type ?u.22259\ninst✝² : NonUnitalNonAssocSemiring R\ninst✝¹ : NonUnitalNonAssocSemiring S\ninst✝ : NonUnitalNonAssocSemiring T\nf✝ : R →ₙ+* S\ng : R →ₙ+* T\nf : R →ₙ+* S × T\nx : R\n⊢ ↑(NonUnitalRingHom.prod (comp (fst S T) f) (comp (snd S T) f)) x = ↑f x", "tactic": "simp only [prod_apply, coe_fst, coe_snd, comp_apply, Prod.mk.eta]" } ]
[ 154, 84 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 153, 1 ]
Mathlib/GroupTheory/Subgroup/Finite.lean
Subgroup.val_list_prod
[]
[ 94, 33 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 93, 1 ]
Mathlib/Data/SetLike/Basic.lean
SetLike.coe_set_eq
[]
[ 142, 23 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 141, 1 ]
Mathlib/Data/Num/Lemmas.lean
PosNum.cast_bit1
[]
[ 55, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 54, 1 ]
Mathlib/Data/Fin/VecNotation.lean
Matrix.range_cons
[ { "state_after": "no goals", "state_before": "α : Type u\nm n o : ℕ\nm' : Type ?u.15284\nn' : Type ?u.15287\no' : Type ?u.15290\nx : α\nu : Fin n → α\ny : α\n⊢ y ∈ Set.range (vecCons x u) ↔ y ∈ {x} ∪ Set.range u", "tactic": "simp [Fin.exists_fin_succ, eq_comm]" } ]
[ 170, 58 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 169, 1 ]
Mathlib/Data/Multiset/Dedup.lean
Multiset.mem_dedup
[]
[ 44, 46 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 43, 1 ]
Mathlib/Data/Multiset/Sum.lean
Multiset.card_disjSum
[ { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type u_2\ns : Multiset α\nt : Multiset β\n⊢ ↑card (disjSum s t) = ↑card s + ↑card t", "tactic": "rw [disjSum, card_add, card_map, card_map]" } ]
[ 48, 45 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 47, 1 ]
Mathlib/Topology/Homotopy/Basic.lean
ContinuousMap.HomotopyWith.coe_toContinuousMap
[]
[ 465, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 464, 1 ]
Mathlib/Algebra/Group/Units.lean
divp_inv
[]
[ 463, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 462, 1 ]
Mathlib/Topology/Bornology/Basic.lean
Bornology.isBounded_sUnion
[ { "state_after": "no goals", "state_before": "ι : Type ?u.8797\nα : Type u_1\nβ : Type ?u.8803\ns : Set α\ninst✝ : Bornology α\nS : Set (Set α)\nhs : Set.Finite S\n⊢ IsBounded (⋃₀ S) ↔ ∀ (s : Set α), s ∈ S → IsBounded s", "tactic": "rw [sUnion_eq_biUnion, isBounded_biUnion hs]" } ]
[ 295, 95 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 294, 1 ]
Mathlib/Analysis/Convex/Cone/Basic.lean
ConvexCone.Flat.mono
[]
[ 392, 49 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 391, 1 ]
Mathlib/Analysis/Calculus/BumpFunctionInner.lean
expNegInvGlue.contDiff
[ { "state_after": "no goals", "state_before": "n : ℕ∞\n⊢ ContDiff ℝ n expNegInvGlue", "tactic": "simpa using contDiff_polynomial_eval_inv_mul 1" } ]
[ 160, 49 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 159, 11 ]
Mathlib/GroupTheory/FreeAbelianGroup.lean
FreeAbelianGroup.add_seq
[]
[ 278, 17 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 276, 1 ]
Mathlib/Data/Multiset/Basic.lean
Multiset.eq_zero_of_forall_not_mem
[ { "state_after": "α : Type u_1\nβ : Type ?u.16742\nγ : Type ?u.16745\ns : Multiset α\nl : List α\nH : ∀ (x : α), ¬x ∈ Quot.mk Setoid.r l\n⊢ Quot.mk Setoid.r [] = 0", "state_before": "α : Type u_1\nβ : Type ?u.16742\nγ : Type ?u.16745\ns : Multiset α\nl : List α\nH : ∀ (x : α), ¬x ∈ Quot.mk Setoid.r l\n⊢ Quot.mk Setoid.r l = 0", "tactic": "rw [eq_nil_iff_forall_not_mem.mpr H]" }, { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type ?u.16742\nγ : Type ?u.16745\ns : Multiset α\nl : List α\nH : ∀ (x : α), ¬x ∈ Quot.mk Setoid.r l\n⊢ Quot.mk Setoid.r [] = 0", "tactic": "rfl" } ]
[ 266, 77 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 265, 1 ]
Mathlib/NumberTheory/ArithmeticFunction.lean
Nat.ArithmeticFunction.prod_eq_iff_prod_pow_moebius_eq_of_nonzero
[ { "state_after": "case refine'_1\nR : Type u_1\ninst✝ : CommGroupWithZero R\nf g : ℕ → R\nhf : ∀ (n : ℕ), 0 < n → f n ≠ 0\nhg : ∀ (n : ℕ), 0 < n → g n ≠ 0\nn : ℕ\nhn : 0 < n\n⊢ ∏ i in divisors n, f i = g n ↔\n (∏ i in divisors n, if h : 0 < i then Units.mk0 (f i) (_ : f i ≠ 0) else 1) =\n if h : 0 < n then Units.mk0 (g n) (_ : g n ≠ 0) else 1\n\ncase refine'_2\nR : Type u_1\ninst✝ : CommGroupWithZero R\nf g : ℕ → R\nhf : ∀ (n : ℕ), 0 < n → f n ≠ 0\nhg : ∀ (n : ℕ), 0 < n → g n ≠ 0\nn : ℕ\nhn : 0 < n\n⊢ (∏ x in divisorsAntidiagonal n, (if h : 0 < x.snd then Units.mk0 (g x.snd) (_ : g x.snd ≠ 0) else 1) ^ ↑μ x.fst =\n if h : 0 < n then Units.mk0 (f n) (_ : f n ≠ 0) else 1) ↔\n ∏ x in divisorsAntidiagonal n, g x.snd ^ ↑μ x.fst = f n", "state_before": "R : Type u_1\ninst✝ : CommGroupWithZero R\nf g : ℕ → R\nhf : ∀ (n : ℕ), 0 < n → f n ≠ 0\nhg : ∀ (n : ℕ), 0 < n → g n ≠ 0\n⊢ (∀ (n : ℕ), 0 < n → ∏ i in divisors n, f i = g n) ↔\n ∀ (n : ℕ), 0 < n → ∏ x in divisorsAntidiagonal n, g x.snd ^ ↑μ x.fst = f n", "tactic": "refine'\n Iff.trans\n (Iff.trans (forall_congr' fun n => _)\n (@prod_eq_iff_prod_pow_moebius_eq Rˣ _\n (fun n => if h : 0 < n then Units.mk0 (f n) (hf n h) else 1) fun n =>\n if h : 0 < n then Units.mk0 (g n) (hg n h) else 1))\n (forall_congr' fun n => _) <;>\n refine' imp_congr_right fun hn => _" }, { "state_after": "case refine'_1\nR : Type u_1\ninst✝ : CommGroupWithZero R\nf g : ℕ → R\nhf : ∀ (n : ℕ), 0 < n → f n ≠ 0\nhg : ∀ (n : ℕ), 0 < n → g n ≠ 0\nn : ℕ\nhn : 0 < n\n⊢ ∏ i in divisors n, f i = g n ↔\n (∏ i in divisors n, if h : 0 < i then Units.mk0 (f i) (_ : f i ≠ 0) else 1) =\n if h : 0 < n then Units.mk0 (g n) (_ : g n ≠ 0) else 1", "state_before": "case refine'_1\nR : Type u_1\ninst✝ : CommGroupWithZero R\nf g : ℕ → R\nhf : ∀ (n : ℕ), 0 < n → f n ≠ 0\nhg : ∀ (n : ℕ), 0 < n → g n ≠ 0\nn : ℕ\nhn : 0 < n\n⊢ ∏ i in divisors n, f i = g n ↔\n (∏ i in divisors n, if h : 0 < i then Units.mk0 (f i) (_ : f i ≠ 0) else 1) =\n if h : 0 < n then Units.mk0 (g n) (_ : g n ≠ 0) else 1", "tactic": "dsimp" }, { "state_after": "R : Type u_1\ninst✝ : CommGroupWithZero R\nf g : ℕ → R\nhf : ∀ (n : ℕ), 0 < n → f n ≠ 0\nhg : ∀ (n : ℕ), 0 < n → g n ≠ 0\nn : ℕ\nhn : 0 < n\n⊢ ∀ (x : ℕ), x ∈ divisors n → f x = ↑(Units.coeHom R) (if h : 0 < x then Units.mk0 (f x) (_ : f x ≠ 0) else 1)", "state_before": "case refine'_1\nR : Type u_1\ninst✝ : CommGroupWithZero R\nf g : ℕ → R\nhf : ∀ (n : ℕ), 0 < n → f n ≠ 0\nhg : ∀ (n : ℕ), 0 < n → g n ≠ 0\nn : ℕ\nhn : 0 < n\n⊢ ∏ i in divisors n, f i = g n ↔\n (∏ i in divisors n, if h : 0 < i then Units.mk0 (f i) (_ : f i ≠ 0) else 1) =\n if h : 0 < n then Units.mk0 (g n) (_ : g n ≠ 0) else 1", "tactic": "rw [dif_pos hn, ← Units.eq_iff, ← Units.coeHom_apply, map_prod, Units.val_mk0,\n prod_congr rfl _]" }, { "state_after": "R : Type u_1\ninst✝ : CommGroupWithZero R\nf g : ℕ → R\nhf : ∀ (n : ℕ), 0 < n → f n ≠ 0\nhg : ∀ (n : ℕ), 0 < n → g n ≠ 0\nn : ℕ\nhn : 0 < n\nx : ℕ\nhx : x ∈ divisors n\n⊢ f x = ↑(Units.coeHom R) (if h : 0 < x then Units.mk0 (f x) (_ : f x ≠ 0) else 1)", "state_before": "R : Type u_1\ninst✝ : CommGroupWithZero R\nf g : ℕ → R\nhf : ∀ (n : ℕ), 0 < n → f n ≠ 0\nhg : ∀ (n : ℕ), 0 < n → g n ≠ 0\nn : ℕ\nhn : 0 < n\n⊢ ∀ (x : ℕ), x ∈ divisors n → f x = ↑(Units.coeHom R) (if h : 0 < x then Units.mk0 (f x) (_ : f x ≠ 0) else 1)", "tactic": "intro x hx" }, { "state_after": "no goals", "state_before": "R : Type u_1\ninst✝ : CommGroupWithZero R\nf g : ℕ → R\nhf : ∀ (n : ℕ), 0 < n → f n ≠ 0\nhg : ∀ (n : ℕ), 0 < n → g n ≠ 0\nn : ℕ\nhn : 0 < n\nx : ℕ\nhx : x ∈ divisors n\n⊢ f x = ↑(Units.coeHom R) (if h : 0 < x then Units.mk0 (f x) (_ : f x ≠ 0) else 1)", "tactic": "rw [dif_pos (Nat.pos_of_mem_divisors hx), Units.coeHom_apply, Units.val_mk0]" }, { "state_after": "case refine'_2\nR : Type u_1\ninst✝ : CommGroupWithZero R\nf g : ℕ → R\nhf : ∀ (n : ℕ), 0 < n → f n ≠ 0\nhg : ∀ (n : ℕ), 0 < n → g n ≠ 0\nn : ℕ\nhn : 0 < n\n⊢ (∏ x in divisorsAntidiagonal n, (if h : 0 < x.snd then Units.mk0 (g x.snd) (_ : g x.snd ≠ 0) else 1) ^ ↑μ x.fst =\n if h : 0 < n then Units.mk0 (f n) (_ : f n ≠ 0) else 1) ↔\n ∏ x in divisorsAntidiagonal n, g x.snd ^ ↑μ x.fst = f n", "state_before": "case refine'_2\nR : Type u_1\ninst✝ : CommGroupWithZero R\nf g : ℕ → R\nhf : ∀ (n : ℕ), 0 < n → f n ≠ 0\nhg : ∀ (n : ℕ), 0 < n → g n ≠ 0\nn : ℕ\nhn : 0 < n\n⊢ (∏ x in divisorsAntidiagonal n, (if h : 0 < x.snd then Units.mk0 (g x.snd) (_ : g x.snd ≠ 0) else 1) ^ ↑μ x.fst =\n if h : 0 < n then Units.mk0 (f n) (_ : f n ≠ 0) else 1) ↔\n ∏ x in divisorsAntidiagonal n, g x.snd ^ ↑μ x.fst = f n", "tactic": "dsimp" }, { "state_after": "R : Type u_1\ninst✝ : CommGroupWithZero R\nf g : ℕ → R\nhf : ∀ (n : ℕ), 0 < n → f n ≠ 0\nhg : ∀ (n : ℕ), 0 < n → g n ≠ 0\nn : ℕ\nhn : 0 < n\n⊢ ∀ (x : ℕ × ℕ),\n x ∈ divisorsAntidiagonal n →\n ↑(Units.coeHom R) ((if h : 0 < x.snd then Units.mk0 (g x.snd) (_ : g x.snd ≠ 0) else 1) ^ ↑μ x.fst) =\n g x.snd ^ ↑μ x.fst", "state_before": "case refine'_2\nR : Type u_1\ninst✝ : CommGroupWithZero R\nf g : ℕ → R\nhf : ∀ (n : ℕ), 0 < n → f n ≠ 0\nhg : ∀ (n : ℕ), 0 < n → g n ≠ 0\nn : ℕ\nhn : 0 < n\n⊢ (∏ x in divisorsAntidiagonal n, (if h : 0 < x.snd then Units.mk0 (g x.snd) (_ : g x.snd ≠ 0) else 1) ^ ↑μ x.fst =\n if h : 0 < n then Units.mk0 (f n) (_ : f n ≠ 0) else 1) ↔\n ∏ x in divisorsAntidiagonal n, g x.snd ^ ↑μ x.fst = f n", "tactic": "rw [dif_pos hn, ← Units.eq_iff, ← Units.coeHom_apply, map_prod, Units.val_mk0,\n prod_congr rfl _]" }, { "state_after": "R : Type u_1\ninst✝ : CommGroupWithZero R\nf g : ℕ → R\nhf : ∀ (n : ℕ), 0 < n → f n ≠ 0\nhg : ∀ (n : ℕ), 0 < n → g n ≠ 0\nn : ℕ\nhn : 0 < n\nx : ℕ × ℕ\nhx : x ∈ divisorsAntidiagonal n\n⊢ ↑(Units.coeHom R) ((if h : 0 < x.snd then Units.mk0 (g x.snd) (_ : g x.snd ≠ 0) else 1) ^ ↑μ x.fst) =\n g x.snd ^ ↑μ x.fst", "state_before": "R : Type u_1\ninst✝ : CommGroupWithZero R\nf g : ℕ → R\nhf : ∀ (n : ℕ), 0 < n → f n ≠ 0\nhg : ∀ (n : ℕ), 0 < n → g n ≠ 0\nn : ℕ\nhn : 0 < n\n⊢ ∀ (x : ℕ × ℕ),\n x ∈ divisorsAntidiagonal n →\n ↑(Units.coeHom R) ((if h : 0 < x.snd then Units.mk0 (g x.snd) (_ : g x.snd ≠ 0) else 1) ^ ↑μ x.fst) =\n g x.snd ^ ↑μ x.fst", "tactic": "intro x hx" }, { "state_after": "no goals", "state_before": "R : Type u_1\ninst✝ : CommGroupWithZero R\nf g : ℕ → R\nhf : ∀ (n : ℕ), 0 < n → f n ≠ 0\nhg : ∀ (n : ℕ), 0 < n → g n ≠ 0\nn : ℕ\nhn : 0 < n\nx : ℕ × ℕ\nhx : x ∈ divisorsAntidiagonal n\n⊢ ↑(Units.coeHom R) ((if h : 0 < x.snd then Units.mk0 (g x.snd) (_ : g x.snd ≠ 0) else 1) ^ ↑μ x.fst) =\n g x.snd ^ ↑μ x.fst", "tactic": "rw [dif_pos (Nat.pos_of_mem_divisors (Nat.snd_mem_divisors_of_mem_antidiagonal hx)),\n Units.coeHom_apply, Units.val_zpow_eq_zpow_val, Units.val_mk0]" } ]
[ 1164, 69 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1142, 1 ]
Mathlib/Topology/Separation.lean
disjoint_nhds_pure
[]
[ 528, 42 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 527, 1 ]
Mathlib/Data/IsROrC/Basic.lean
IsROrC.ofReal_ne_zero
[]
[ 204, 21 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 203, 1 ]
Mathlib/Probability/Independence/Basic.lean
ProbabilityTheory.indep_iff_forall_indepSet
[]
[ 642, 58 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 637, 1 ]
Mathlib/Data/Real/ConjugateExponents.lean
Real.IsConjugateExponent.sub_one_mul_conj
[]
[ 84, 66 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 83, 1 ]
Mathlib/Algebra/Hom/Centroid.lean
CentroidHom.sub_apply
[]
[ 493, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 492, 1 ]
Mathlib/Analysis/Normed/Group/InfiniteSum.lean
summable_iff_vanishing_norm
[ { "state_after": "no goals", "state_before": "ι : Type u_2\nα : Type ?u.2223\nE : Type u_1\nF : Type ?u.2229\ninst✝² : SeminormedAddCommGroup E\ninst✝¹ : SeminormedAddCommGroup F\ninst✝ : CompleteSpace E\nf : ι → E\n⊢ Summable f ↔ ∀ (ε : ℝ), ε > 0 → ∃ s, ∀ (t : Finset ι), Disjoint t s → ‖∑ i in t, f i‖ < ε", "tactic": "rw [summable_iff_cauchySeq_finset, cauchySeq_finset_iff_vanishing_norm]" } ]
[ 54, 74 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 52, 1 ]
Mathlib/Topology/UniformSpace/UniformConvergenceTopology.lean
UniformFun.hasBasis_nhds
[]
[ 340, 64 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 338, 11 ]
Mathlib/Data/Set/NAry.lean
Set.image2_image_right
[ { "state_after": "case h\nα : Type u_2\nα' : Type ?u.34558\nβ : Type u_4\nβ' : Type ?u.34564\nγ : Type u_3\nγ' : Type ?u.34570\nδ : Type u_1\nδ' : Type ?u.34576\nε : Type ?u.34579\nε' : Type ?u.34582\nζ : Type ?u.34585\nζ' : Type ?u.34588\nν : Type ?u.34591\nf✝ f' : α → β → γ\ng✝ g' : α → β → γ → δ\ns s' : Set α\nt t' : Set β\nu u' : Set γ\nv : Set δ\na a' : α\nb b' : β\nc c' : γ\nd d' : δ\nf : α → γ → δ\ng : β → γ\nx✝ : δ\n⊢ x✝ ∈ image2 f s (g '' t) ↔ x✝ ∈ image2 (fun a b => f a (g b)) s t", "state_before": "α : Type u_2\nα' : Type ?u.34558\nβ : Type u_4\nβ' : Type ?u.34564\nγ : Type u_3\nγ' : Type ?u.34570\nδ : Type u_1\nδ' : Type ?u.34576\nε : Type ?u.34579\nε' : Type ?u.34582\nζ : Type ?u.34585\nζ' : Type ?u.34588\nν : Type ?u.34591\nf✝ f' : α → β → γ\ng✝ g' : α → β → γ → δ\ns s' : Set α\nt t' : Set β\nu u' : Set γ\nv : Set δ\na a' : α\nb b' : β\nc c' : γ\nd d' : δ\nf : α → γ → δ\ng : β → γ\n⊢ image2 f s (g '' t) = image2 (fun a b => f a (g b)) s t", "tactic": "ext" }, { "state_after": "case h.mp\nα : Type u_2\nα' : Type ?u.34558\nβ : Type u_4\nβ' : Type ?u.34564\nγ : Type u_3\nγ' : Type ?u.34570\nδ : Type u_1\nδ' : Type ?u.34576\nε : Type ?u.34579\nε' : Type ?u.34582\nζ : Type ?u.34585\nζ' : Type ?u.34588\nν : Type ?u.34591\nf✝ f' : α → β → γ\ng✝ g' : α → β → γ → δ\ns s' : Set α\nt t' : Set β\nu u' : Set γ\nv : Set δ\na a' : α\nb b' : β\nc c' : γ\nd d' : δ\nf : α → γ → δ\ng : β → γ\nx✝ : δ\n⊢ x✝ ∈ image2 f s (g '' t) → x✝ ∈ image2 (fun a b => f a (g b)) s t\n\ncase h.mpr\nα : Type u_2\nα' : Type ?u.34558\nβ : Type u_4\nβ' : Type ?u.34564\nγ : Type u_3\nγ' : Type ?u.34570\nδ : Type u_1\nδ' : Type ?u.34576\nε : Type ?u.34579\nε' : Type ?u.34582\nζ : Type ?u.34585\nζ' : Type ?u.34588\nν : Type ?u.34591\nf✝ f' : α → β → γ\ng✝ g' : α → β → γ → δ\ns s' : Set α\nt t' : Set β\nu u' : Set γ\nv : Set δ\na a' : α\nb b' : β\nc c' : γ\nd d' : δ\nf : α → γ → δ\ng : β → γ\nx✝ : δ\n⊢ x✝ ∈ image2 (fun a b => f a (g b)) s t → x✝ ∈ image2 f s (g '' t)", "state_before": "case h\nα : Type u_2\nα' : Type ?u.34558\nβ : Type u_4\nβ' : Type ?u.34564\nγ : Type u_3\nγ' : Type ?u.34570\nδ : Type u_1\nδ' : Type ?u.34576\nε : Type ?u.34579\nε' : Type ?u.34582\nζ : Type ?u.34585\nζ' : Type ?u.34588\nν : Type ?u.34591\nf✝ f' : α → β → γ\ng✝ g' : α → β → γ → δ\ns s' : Set α\nt t' : Set β\nu u' : Set γ\nv : Set δ\na a' : α\nb b' : β\nc c' : γ\nd d' : δ\nf : α → γ → δ\ng : β → γ\nx✝ : δ\n⊢ x✝ ∈ image2 f s (g '' t) ↔ x✝ ∈ image2 (fun a b => f a (g b)) s t", "tactic": "constructor" }, { "state_after": "case h.mp.intro.intro.intro.intro.intro.intro\nα : Type u_2\nα' : Type ?u.34558\nβ : Type u_4\nβ' : Type ?u.34564\nγ : Type u_3\nγ' : Type ?u.34570\nδ : Type u_1\nδ' : Type ?u.34576\nε : Type ?u.34579\nε' : Type ?u.34582\nζ : Type ?u.34585\nζ' : Type ?u.34588\nν : Type ?u.34591\nf✝ f' : α → β → γ\ng✝ g' : α → β → γ → δ\ns s' : Set α\nt t' : Set β\nu u' : Set γ\nv : Set δ\na✝ a' : α\nb✝ b' : β\nc c' : γ\nd d' : δ\nf : α → γ → δ\ng : β → γ\na : α\nha : a ∈ s\nb : β\nhb : b ∈ t\n⊢ f a (g b) ∈ image2 (fun a b => f a (g b)) s t", "state_before": "case h.mp\nα : Type u_2\nα' : Type ?u.34558\nβ : Type u_4\nβ' : Type ?u.34564\nγ : Type u_3\nγ' : Type ?u.34570\nδ : Type u_1\nδ' : Type ?u.34576\nε : Type ?u.34579\nε' : Type ?u.34582\nζ : Type ?u.34585\nζ' : Type ?u.34588\nν : Type ?u.34591\nf✝ f' : α → β → γ\ng✝ g' : α → β → γ → δ\ns s' : Set α\nt t' : Set β\nu u' : Set γ\nv : Set δ\na a' : α\nb b' : β\nc c' : γ\nd d' : δ\nf : α → γ → δ\ng : β → γ\nx✝ : δ\n⊢ x✝ ∈ image2 f s (g '' t) → x✝ ∈ image2 (fun a b => f a (g b)) s t", "tactic": "rintro ⟨a, _, ha, ⟨b, hb, rfl⟩, rfl⟩" }, { "state_after": "no goals", "state_before": "case h.mp.intro.intro.intro.intro.intro.intro\nα : Type u_2\nα' : Type ?u.34558\nβ : Type u_4\nβ' : Type ?u.34564\nγ : Type u_3\nγ' : Type ?u.34570\nδ : Type u_1\nδ' : Type ?u.34576\nε : Type ?u.34579\nε' : Type ?u.34582\nζ : Type ?u.34585\nζ' : Type ?u.34588\nν : Type ?u.34591\nf✝ f' : α → β → γ\ng✝ g' : α → β → γ → δ\ns s' : Set α\nt t' : Set β\nu u' : Set γ\nv : Set δ\na✝ a' : α\nb✝ b' : β\nc c' : γ\nd d' : δ\nf : α → γ → δ\ng : β → γ\na : α\nha : a ∈ s\nb : β\nhb : b ∈ t\n⊢ f a (g b) ∈ image2 (fun a b => f a (g b)) s t", "tactic": "refine' ⟨a, b, ha, hb, rfl⟩" }, { "state_after": "case h.mpr.intro.intro.intro.intro\nα : Type u_2\nα' : Type ?u.34558\nβ : Type u_4\nβ' : Type ?u.34564\nγ : Type u_3\nγ' : Type ?u.34570\nδ : Type u_1\nδ' : Type ?u.34576\nε : Type ?u.34579\nε' : Type ?u.34582\nζ : Type ?u.34585\nζ' : Type ?u.34588\nν : Type ?u.34591\nf✝ f' : α → β → γ\ng✝ g' : α → β → γ → δ\ns s' : Set α\nt t' : Set β\nu u' : Set γ\nv : Set δ\na✝ a' : α\nb✝ b' : β\nc c' : γ\nd d' : δ\nf : α → γ → δ\ng : β → γ\na : α\nb : β\nha : a ∈ s\nhb : b ∈ t\n⊢ (fun a b => f a (g b)) a b ∈ image2 f s (g '' t)", "state_before": "case h.mpr\nα : Type u_2\nα' : Type ?u.34558\nβ : Type u_4\nβ' : Type ?u.34564\nγ : Type u_3\nγ' : Type ?u.34570\nδ : Type u_1\nδ' : Type ?u.34576\nε : Type ?u.34579\nε' : Type ?u.34582\nζ : Type ?u.34585\nζ' : Type ?u.34588\nν : Type ?u.34591\nf✝ f' : α → β → γ\ng✝ g' : α → β → γ → δ\ns s' : Set α\nt t' : Set β\nu u' : Set γ\nv : Set δ\na a' : α\nb b' : β\nc c' : γ\nd d' : δ\nf : α → γ → δ\ng : β → γ\nx✝ : δ\n⊢ x✝ ∈ image2 (fun a b => f a (g b)) s t → x✝ ∈ image2 f s (g '' t)", "tactic": "rintro ⟨a, b, ha, hb, rfl⟩" }, { "state_after": "no goals", "state_before": "case h.mpr.intro.intro.intro.intro\nα : Type u_2\nα' : Type ?u.34558\nβ : Type u_4\nβ' : Type ?u.34564\nγ : Type u_3\nγ' : Type ?u.34570\nδ : Type u_1\nδ' : Type ?u.34576\nε : Type ?u.34579\nε' : Type ?u.34582\nζ : Type ?u.34585\nζ' : Type ?u.34588\nν : Type ?u.34591\nf✝ f' : α → β → γ\ng✝ g' : α → β → γ → δ\ns s' : Set α\nt t' : Set β\nu u' : Set γ\nv : Set δ\na✝ a' : α\nb✝ b' : β\nc c' : γ\nd d' : δ\nf : α → γ → δ\ng : β → γ\na : α\nb : β\nha : a ∈ s\nhb : b ∈ t\n⊢ (fun a b => f a (g b)) a b ∈ image2 f s (g '' t)", "tactic": "refine' ⟨a, _, ha, ⟨b, hb, rfl⟩, rfl⟩" } ]
[ 297, 42 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 291, 1 ]
Mathlib/Data/List/Rdrop.lean
List.rdropWhile_concat_neg
[ { "state_after": "no goals", "state_before": "α : Type u_1\np : α → Bool\nl : List α\nn : ℕ\nx : α\nh : ¬p x = true\n⊢ rdropWhile p (l ++ [x]) = l ++ [x]", "tactic": "rw [rdropWhile_concat, if_neg h]" } ]
[ 120, 35 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 119, 1 ]
Mathlib/Data/Seq/Computation.lean
Computation.liftRel_think_left
[]
[ 1205, 94 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1201, 1 ]
Std/Data/Int/DivMod.lean
Int.natAbs_dvd_natAbs
[ { "state_after": "a b : Int\nx✝ : natAbs a ∣ natAbs b\nk : Nat\nhk : natAbs b = natAbs a * k\n⊢ a ∣ b", "state_before": "a b : Int\n⊢ natAbs a ∣ natAbs b ↔ a ∣ b", "tactic": "refine ⟨fun ⟨k, hk⟩ => ?_, fun ⟨k, hk⟩ => ⟨natAbs k, hk.symm ▸ natAbs_mul a k⟩⟩" }, { "state_after": "a b : Int\nx✝ : natAbs a ∣ natAbs b\nk : Nat\nhk : b = a * ↑k ∨ b = -(a * ↑k)\n⊢ a ∣ b", "state_before": "a b : Int\nx✝ : natAbs a ∣ natAbs b\nk : Nat\nhk : natAbs b = natAbs a * k\n⊢ a ∣ b", "tactic": "rw [← natAbs_ofNat k, ← natAbs_mul, natAbs_eq_natAbs_iff] at hk" }, { "state_after": "case inl\na : Int\nk : Nat\nx✝ : natAbs a ∣ natAbs (a * ↑k)\n⊢ a ∣ a * ↑k\n\ncase inr\na : Int\nk : Nat\nx✝ : natAbs a ∣ natAbs (-(a * ↑k))\n⊢ a ∣ -(a * ↑k)", "state_before": "a b : Int\nx✝ : natAbs a ∣ natAbs b\nk : Nat\nhk : b = a * ↑k ∨ b = -(a * ↑k)\n⊢ a ∣ b", "tactic": "cases hk <;> subst b" }, { "state_after": "no goals", "state_before": "case inl\na : Int\nk : Nat\nx✝ : natAbs a ∣ natAbs (a * ↑k)\n⊢ a ∣ a * ↑k", "tactic": "apply Int.dvd_mul_right" }, { "state_after": "case inr\na : Int\nk : Nat\nx✝ : natAbs a ∣ natAbs (-(a * ↑k))\n⊢ a ∣ a * -↑k", "state_before": "case inr\na : Int\nk : Nat\nx✝ : natAbs a ∣ natAbs (-(a * ↑k))\n⊢ a ∣ -(a * ↑k)", "tactic": "rw [← Int.mul_neg]" }, { "state_after": "no goals", "state_before": "case inr\na : Int\nk : Nat\nx✝ : natAbs a ∣ natAbs (-(a * ↑k))\n⊢ a ∣ a * -↑k", "tactic": "apply Int.dvd_mul_right" } ]
[ 649, 48 ]
e68aa8f5fe47aad78987df45f99094afbcb5e936
https://github.com/leanprover/std4
[ 644, 9 ]
Mathlib/Data/Real/NNReal.lean
NNReal.inv_le_of_le_mul
[ { "state_after": "no goals", "state_before": "r p : ℝ≥0\nh : 1 ≤ r * p\n⊢ r⁻¹ ≤ p", "tactic": "by_cases r = 0 <;> simp [*, inv_le]" } ]
[ 786, 38 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 785, 1 ]
Mathlib/Analysis/Convex/Combination.lean
Finset.centerMass_ite_eq
[ { "state_after": "R : Type u_3\nE : Type u_2\nF : Type ?u.57939\nι : Type u_1\nι' : Type ?u.57945\nα : Type ?u.57948\ninst✝⁷ : LinearOrderedField R\ninst✝⁶ : AddCommGroup E\ninst✝⁵ : AddCommGroup F\ninst✝⁴ : LinearOrderedAddCommGroup α\ninst✝³ : Module R E\ninst✝² : Module R F\ninst✝¹ : Module R α\ninst✝ : OrderedSMul R α\ns : Set E\ni j : ι\nc : R\nt : Finset ι\nw : ι → R\nz : ι → E\nhi : i ∈ t\n⊢ ∑ i_1 in t, (if i = i_1 then 1 else 0) • z i_1 = z i\n\ncase hw\nR : Type u_3\nE : Type u_2\nF : Type ?u.57939\nι : Type u_1\nι' : Type ?u.57945\nα : Type ?u.57948\ninst✝⁷ : LinearOrderedField R\ninst✝⁶ : AddCommGroup E\ninst✝⁵ : AddCommGroup F\ninst✝⁴ : LinearOrderedAddCommGroup α\ninst✝³ : Module R E\ninst✝² : Module R F\ninst✝¹ : Module R α\ninst✝ : OrderedSMul R α\ns : Set E\ni j : ι\nc : R\nt : Finset ι\nw : ι → R\nz : ι → E\nhi : i ∈ t\n⊢ (∑ i_1 in t, if i = i_1 then 1 else 0) = 1", "state_before": "R : Type u_3\nE : Type u_2\nF : Type ?u.57939\nι : Type u_1\nι' : Type ?u.57945\nα : Type ?u.57948\ninst✝⁷ : LinearOrderedField R\ninst✝⁶ : AddCommGroup E\ninst✝⁵ : AddCommGroup F\ninst✝⁴ : LinearOrderedAddCommGroup α\ninst✝³ : Module R E\ninst✝² : Module R F\ninst✝¹ : Module R α\ninst✝ : OrderedSMul R α\ns : Set E\ni j : ι\nc : R\nt : Finset ι\nw : ι → R\nz : ι → E\nhi : i ∈ t\n⊢ centerMass t (fun j => if i = j then 1 else 0) z = z i", "tactic": "rw [Finset.centerMass_eq_of_sum_1]" }, { "state_after": "R : Type u_3\nE : Type u_2\nF : Type ?u.57939\nι : Type u_1\nι' : Type ?u.57945\nα : Type ?u.57948\ninst✝⁷ : LinearOrderedField R\ninst✝⁶ : AddCommGroup E\ninst✝⁵ : AddCommGroup F\ninst✝⁴ : LinearOrderedAddCommGroup α\ninst✝³ : Module R E\ninst✝² : Module R F\ninst✝¹ : Module R α\ninst✝ : OrderedSMul R α\ns : Set E\ni j : ι\nc : R\nt : Finset ι\nw : ι → R\nz : ι → E\nhi : i ∈ t\n⊢ ∑ i_1 in t, (if i = i_1 then 1 else 0) • z i_1 = ∑ j in t, if i = j then z i else 0\n\nR : Type u_3\nE : Type u_2\nF : Type ?u.57939\nι : Type u_1\nι' : Type ?u.57945\nα : Type ?u.57948\ninst✝⁷ : LinearOrderedField R\ninst✝⁶ : AddCommGroup E\ninst✝⁵ : AddCommGroup F\ninst✝⁴ : LinearOrderedAddCommGroup α\ninst✝³ : Module R E\ninst✝² : Module R F\ninst✝¹ : Module R α\ninst✝ : OrderedSMul R α\ns : Set E\ni j : ι\nc : R\nt : Finset ι\nw : ι → R\nz : ι → E\nhi : i ∈ t\n⊢ (∑ j in t, if i = j then z i else 0) = z i\n\ncase hw\nR : Type u_3\nE : Type u_2\nF : Type ?u.57939\nι : Type u_1\nι' : Type ?u.57945\nα : Type ?u.57948\ninst✝⁷ : LinearOrderedField R\ninst✝⁶ : AddCommGroup E\ninst✝⁵ : AddCommGroup F\ninst✝⁴ : LinearOrderedAddCommGroup α\ninst✝³ : Module R E\ninst✝² : Module R F\ninst✝¹ : Module R α\ninst✝ : OrderedSMul R α\ns : Set E\ni j : ι\nc : R\nt : Finset ι\nw : ι → R\nz : ι → E\nhi : i ∈ t\n⊢ (∑ i_1 in t, if i = i_1 then 1 else 0) = 1", "state_before": "R : Type u_3\nE : Type u_2\nF : Type ?u.57939\nι : Type u_1\nι' : Type ?u.57945\nα : Type ?u.57948\ninst✝⁷ : LinearOrderedField R\ninst✝⁶ : AddCommGroup E\ninst✝⁵ : AddCommGroup F\ninst✝⁴ : LinearOrderedAddCommGroup α\ninst✝³ : Module R E\ninst✝² : Module R F\ninst✝¹ : Module R α\ninst✝ : OrderedSMul R α\ns : Set E\ni j : ι\nc : R\nt : Finset ι\nw : ι → R\nz : ι → E\nhi : i ∈ t\n⊢ ∑ i_1 in t, (if i = i_1 then 1 else 0) • z i_1 = z i\n\ncase hw\nR : Type u_3\nE : Type u_2\nF : Type ?u.57939\nι : Type u_1\nι' : Type ?u.57945\nα : Type ?u.57948\ninst✝⁷ : LinearOrderedField R\ninst✝⁶ : AddCommGroup E\ninst✝⁵ : AddCommGroup F\ninst✝⁴ : LinearOrderedAddCommGroup α\ninst✝³ : Module R E\ninst✝² : Module R F\ninst✝¹ : Module R α\ninst✝ : OrderedSMul R α\ns : Set E\ni j : ι\nc : R\nt : Finset ι\nw : ι → R\nz : ι → E\nhi : i ∈ t\n⊢ (∑ i_1 in t, if i = i_1 then 1 else 0) = 1", "tactic": "trans ∑ j in t, if i = j then z i else 0" }, { "state_after": "case e_f.h\nR : Type u_3\nE : Type u_2\nF : Type ?u.57939\nι : Type u_1\nι' : Type ?u.57945\nα : Type ?u.57948\ninst✝⁷ : LinearOrderedField R\ninst✝⁶ : AddCommGroup E\ninst✝⁵ : AddCommGroup F\ninst✝⁴ : LinearOrderedAddCommGroup α\ninst✝³ : Module R E\ninst✝² : Module R F\ninst✝¹ : Module R α\ninst✝ : OrderedSMul R α\ns : Set E\ni✝ j : ι\nc : R\nt : Finset ι\nw : ι → R\nz : ι → E\nhi : i✝ ∈ t\ni : ι\n⊢ (if i✝ = i then 1 else 0) • z i = if i✝ = i then z i✝ else 0", "state_before": "R : Type u_3\nE : Type u_2\nF : Type ?u.57939\nι : Type u_1\nι' : Type ?u.57945\nα : Type ?u.57948\ninst✝⁷ : LinearOrderedField R\ninst✝⁶ : AddCommGroup E\ninst✝⁵ : AddCommGroup F\ninst✝⁴ : LinearOrderedAddCommGroup α\ninst✝³ : Module R E\ninst✝² : Module R F\ninst✝¹ : Module R α\ninst✝ : OrderedSMul R α\ns : Set E\ni j : ι\nc : R\nt : Finset ι\nw : ι → R\nz : ι → E\nhi : i ∈ t\n⊢ ∑ i_1 in t, (if i = i_1 then 1 else 0) • z i_1 = ∑ j in t, if i = j then z i else 0", "tactic": "congr with i" }, { "state_after": "case e_f.h.inl\nR : Type u_3\nE : Type u_2\nF : Type ?u.57939\nι : Type u_1\nι' : Type ?u.57945\nα : Type ?u.57948\ninst✝⁷ : LinearOrderedField R\ninst✝⁶ : AddCommGroup E\ninst✝⁵ : AddCommGroup F\ninst✝⁴ : LinearOrderedAddCommGroup α\ninst✝³ : Module R E\ninst✝² : Module R F\ninst✝¹ : Module R α\ninst✝ : OrderedSMul R α\ns : Set E\ni✝ j : ι\nc : R\nt : Finset ι\nw : ι → R\nz : ι → E\nhi : i✝ ∈ t\ni : ι\nh : i✝ = i\n⊢ 1 • z i = z i✝\n\ncase e_f.h.inr\nR : Type u_3\nE : Type u_2\nF : Type ?u.57939\nι : Type u_1\nι' : Type ?u.57945\nα : Type ?u.57948\ninst✝⁷ : LinearOrderedField R\ninst✝⁶ : AddCommGroup E\ninst✝⁵ : AddCommGroup F\ninst✝⁴ : LinearOrderedAddCommGroup α\ninst✝³ : Module R E\ninst✝² : Module R F\ninst✝¹ : Module R α\ninst✝ : OrderedSMul R α\ns : Set E\ni✝ j : ι\nc : R\nt : Finset ι\nw : ι → R\nz : ι → E\nhi : i✝ ∈ t\ni : ι\nh : ¬i✝ = i\n⊢ 0 • z i = 0", "state_before": "case e_f.h\nR : Type u_3\nE : Type u_2\nF : Type ?u.57939\nι : Type u_1\nι' : Type ?u.57945\nα : Type ?u.57948\ninst✝⁷ : LinearOrderedField R\ninst✝⁶ : AddCommGroup E\ninst✝⁵ : AddCommGroup F\ninst✝⁴ : LinearOrderedAddCommGroup α\ninst✝³ : Module R E\ninst✝² : Module R F\ninst✝¹ : Module R α\ninst✝ : OrderedSMul R α\ns : Set E\ni✝ j : ι\nc : R\nt : Finset ι\nw : ι → R\nz : ι → E\nhi : i✝ ∈ t\ni : ι\n⊢ (if i✝ = i then 1 else 0) • z i = if i✝ = i then z i✝ else 0", "tactic": "split_ifs with h" }, { "state_after": "no goals", "state_before": "case e_f.h.inl\nR : Type u_3\nE : Type u_2\nF : Type ?u.57939\nι : Type u_1\nι' : Type ?u.57945\nα : Type ?u.57948\ninst✝⁷ : LinearOrderedField R\ninst✝⁶ : AddCommGroup E\ninst✝⁵ : AddCommGroup F\ninst✝⁴ : LinearOrderedAddCommGroup α\ninst✝³ : Module R E\ninst✝² : Module R F\ninst✝¹ : Module R α\ninst✝ : OrderedSMul R α\ns : Set E\ni✝ j : ι\nc : R\nt : Finset ι\nw : ι → R\nz : ι → E\nhi : i✝ ∈ t\ni : ι\nh : i✝ = i\n⊢ 1 • z i = z i✝\n\ncase e_f.h.inr\nR : Type u_3\nE : Type u_2\nF : Type ?u.57939\nι : Type u_1\nι' : Type ?u.57945\nα : Type ?u.57948\ninst✝⁷ : LinearOrderedField R\ninst✝⁶ : AddCommGroup E\ninst✝⁵ : AddCommGroup F\ninst✝⁴ : LinearOrderedAddCommGroup α\ninst✝³ : Module R E\ninst✝² : Module R F\ninst✝¹ : Module R α\ninst✝ : OrderedSMul R α\ns : Set E\ni✝ j : ι\nc : R\nt : Finset ι\nw : ι → R\nz : ι → E\nhi : i✝ ∈ t\ni : ι\nh : ¬i✝ = i\n⊢ 0 • z i = 0", "tactic": "exacts [h ▸ one_smul _ _, zero_smul _ _]" }, { "state_after": "no goals", "state_before": "R : Type u_3\nE : Type u_2\nF : Type ?u.57939\nι : Type u_1\nι' : Type ?u.57945\nα : Type ?u.57948\ninst✝⁷ : LinearOrderedField R\ninst✝⁶ : AddCommGroup E\ninst✝⁵ : AddCommGroup F\ninst✝⁴ : LinearOrderedAddCommGroup α\ninst✝³ : Module R E\ninst✝² : Module R F\ninst✝¹ : Module R α\ninst✝ : OrderedSMul R α\ns : Set E\ni j : ι\nc : R\nt : Finset ι\nw : ι → R\nz : ι → E\nhi : i ∈ t\n⊢ (∑ j in t, if i = j then z i else 0) = z i", "tactic": "rw [sum_ite_eq, if_pos hi]" }, { "state_after": "no goals", "state_before": "case hw\nR : Type u_3\nE : Type u_2\nF : Type ?u.57939\nι : Type u_1\nι' : Type ?u.57945\nα : Type ?u.57948\ninst✝⁷ : LinearOrderedField R\ninst✝⁶ : AddCommGroup E\ninst✝⁵ : AddCommGroup F\ninst✝⁴ : LinearOrderedAddCommGroup α\ninst✝³ : Module R E\ninst✝² : Module R F\ninst✝¹ : Module R α\ninst✝ : OrderedSMul R α\ns : Set E\ni j : ι\nc : R\nt : Finset ι\nw : ι → R\nz : ι → E\nhi : i ∈ t\n⊢ (∑ i_1 in t, if i = i_1 then 1 else 0) = 1", "tactic": "rw [sum_ite_eq, if_pos hi]" } ]
[ 116, 31 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 108, 1 ]
Mathlib/CategoryTheory/Sites/SheafOfTypes.lean
CategoryTheory.Presieve.extend_agrees
[ { "state_after": "C : Type u₁\ninst✝ : Category C\nP Q U : Cᵒᵖ ⥤ Type w\nX Y : C\nS : Sieve X\nR : Presieve X\nJ J₂ : GrothendieckTopology C\nx : FamilyOfElements P R\nt : FamilyOfElements.Compatible x\nf : Y ⟶ X\nhf : R f\nh : ∃ h g, R g ∧ h ≫ g = f\n⊢ FamilyOfElements.sieveExtend x f (_ : f ∈ (generate R).arrows) = x f hf", "state_before": "C : Type u₁\ninst✝ : Category C\nP Q U : Cᵒᵖ ⥤ Type w\nX Y : C\nS : Sieve X\nR : Presieve X\nJ J₂ : GrothendieckTopology C\nx : FamilyOfElements P R\nt : FamilyOfElements.Compatible x\nf : Y ⟶ X\nhf : R f\n⊢ FamilyOfElements.sieveExtend x f (_ : f ∈ (generate R).arrows) = x f hf", "tactic": "have h := (le_generate R Y hf).choose_spec" }, { "state_after": "C : Type u₁\ninst✝ : Category C\nP Q U : Cᵒᵖ ⥤ Type w\nX Y : C\nS : Sieve X\nR : Presieve X\nJ J₂ : GrothendieckTopology C\nx : FamilyOfElements P R\nt : FamilyOfElements.Compatible x\nf : Y ⟶ X\nhf : R f\nh : ∃ h g, R g ∧ h ≫ g = f\n⊢ P.map (Exists.choose (_ : ∃ h g, R g ∧ h ≫ g = f)).op\n (x (Exists.choose (_ : ∃ g, R g ∧ Exists.choose (_ : ∃ h g, R g ∧ h ≫ g = f) ≫ g = f))\n (_ : R (Exists.choose (_ : ∃ g, R g ∧ Exists.choose (_ : ∃ h g, R g ∧ h ≫ g = f) ≫ g = f)))) =\n x f hf", "state_before": "C : Type u₁\ninst✝ : Category C\nP Q U : Cᵒᵖ ⥤ Type w\nX Y : C\nS : Sieve X\nR : Presieve X\nJ J₂ : GrothendieckTopology C\nx : FamilyOfElements P R\nt : FamilyOfElements.Compatible x\nf : Y ⟶ X\nhf : R f\nh : ∃ h g, R g ∧ h ≫ g = f\n⊢ FamilyOfElements.sieveExtend x f (_ : f ∈ (generate R).arrows) = x f hf", "tactic": "unfold FamilyOfElements.sieveExtend" }, { "state_after": "C : Type u₁\ninst✝ : Category C\nP Q U : Cᵒᵖ ⥤ Type w\nX Y : C\nS : Sieve X\nR : Presieve X\nJ J₂ : GrothendieckTopology C\nx : FamilyOfElements P R\nt : FamilyOfElements.Compatible x\nf : Y ⟶ X\nhf : R f\nh : ∃ h g, R g ∧ h ≫ g = f\n⊢ P.map (𝟙 Y).op (x f hf) = x f hf\n\nC : Type u₁\ninst✝ : Category C\nP Q U : Cᵒᵖ ⥤ Type w\nX Y : C\nS : Sieve X\nR : Presieve X\nJ J₂ : GrothendieckTopology C\nx : FamilyOfElements P R\nt : FamilyOfElements.Compatible x\nf : Y ⟶ X\nhf : R f\nh : ∃ h g, R g ∧ h ≫ g = f\n⊢ Exists.choose h ≫ Exists.choose (_ : ∃ g, R g ∧ Exists.choose (_ : ∃ h g, R g ∧ h ≫ g = f) ≫ g = f) = 𝟙 Y ≫ f", "state_before": "C : Type u₁\ninst✝ : Category C\nP Q U : Cᵒᵖ ⥤ Type w\nX Y : C\nS : Sieve X\nR : Presieve X\nJ J₂ : GrothendieckTopology C\nx : FamilyOfElements P R\nt : FamilyOfElements.Compatible x\nf : Y ⟶ X\nhf : R f\nh : ∃ h g, R g ∧ h ≫ g = f\n⊢ P.map (Exists.choose (_ : ∃ h g, R g ∧ h ≫ g = f)).op\n (x (Exists.choose (_ : ∃ g, R g ∧ Exists.choose (_ : ∃ h g, R g ∧ h ≫ g = f) ≫ g = f))\n (_ : R (Exists.choose (_ : ∃ g, R g ∧ Exists.choose (_ : ∃ h g, R g ∧ h ≫ g = f) ≫ g = f)))) =\n x f hf", "tactic": "rw [t h.choose (𝟙 _) _ hf _]" }, { "state_after": "no goals", "state_before": "C : Type u₁\ninst✝ : Category C\nP Q U : Cᵒᵖ ⥤ Type w\nX Y : C\nS : Sieve X\nR : Presieve X\nJ J₂ : GrothendieckTopology C\nx : FamilyOfElements P R\nt : FamilyOfElements.Compatible x\nf : Y ⟶ X\nhf : R f\nh : ∃ h g, R g ∧ h ≫ g = f\n⊢ P.map (𝟙 Y).op (x f hf) = x f hf", "tactic": "simp" }, { "state_after": "C : Type u₁\ninst✝ : Category C\nP Q U : Cᵒᵖ ⥤ Type w\nX Y : C\nS : Sieve X\nR : Presieve X\nJ J₂ : GrothendieckTopology C\nx : FamilyOfElements P R\nt : FamilyOfElements.Compatible x\nf : Y ⟶ X\nhf : R f\nh : ∃ h g, R g ∧ h ≫ g = f\n⊢ Exists.choose h ≫ Exists.choose (_ : ∃ g, R g ∧ Exists.choose (_ : ∃ h g, R g ∧ h ≫ g = f) ≫ g = f) = f", "state_before": "C : Type u₁\ninst✝ : Category C\nP Q U : Cᵒᵖ ⥤ Type w\nX Y : C\nS : Sieve X\nR : Presieve X\nJ J₂ : GrothendieckTopology C\nx : FamilyOfElements P R\nt : FamilyOfElements.Compatible x\nf : Y ⟶ X\nhf : R f\nh : ∃ h g, R g ∧ h ≫ g = f\n⊢ Exists.choose h ≫ Exists.choose (_ : ∃ g, R g ∧ Exists.choose (_ : ∃ h g, R g ∧ h ≫ g = f) ≫ g = f) = 𝟙 Y ≫ f", "tactic": "rw [id_comp]" }, { "state_after": "no goals", "state_before": "C : Type u₁\ninst✝ : Category C\nP Q U : Cᵒᵖ ⥤ Type w\nX Y : C\nS : Sieve X\nR : Presieve X\nJ J₂ : GrothendieckTopology C\nx : FamilyOfElements P R\nt : FamilyOfElements.Compatible x\nf : Y ⟶ X\nhf : R f\nh : ∃ h g, R g ∧ h ≫ g = f\n⊢ Exists.choose h ≫ Exists.choose (_ : ∃ g, R g ∧ Exists.choose (_ : ∃ h g, R g ∧ h ≫ g = f) ≫ g = f) = f", "tactic": "exact h.choose_spec.choose_spec.2" } ]
[ 206, 38 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 199, 1 ]
Mathlib/Analysis/Calculus/FormalMultilinearSeries.lean
FormalMultilinearSeries.order_eq_find
[ { "state_after": "no goals", "state_before": "𝕜 : Type u\n𝕜' : Type u'\nE : Type v\nF : Type w\nG : Type x\ninst✝¹¹ : CommRing 𝕜\nn : ℕ\ninst✝¹⁰ : AddCommGroup E\ninst✝⁹ : Module 𝕜 E\ninst✝⁸ : TopologicalSpace E\ninst✝⁷ : TopologicalAddGroup E\ninst✝⁶ : ContinuousConstSMul 𝕜 E\ninst✝⁵ : AddCommGroup F\ninst✝⁴ : Module 𝕜 F\ninst✝³ : TopologicalSpace F\ninst✝² : TopologicalAddGroup F\ninst✝¹ : ContinuousConstSMul 𝕜 F\np : FormalMultilinearSeries 𝕜 E F\ninst✝ : DecidablePred fun n => p n ≠ 0\nhp : ∃ n, p n ≠ 0\n⊢ order p = Nat.find hp", "tactic": "convert Nat.sInf_def hp" } ]
[ 230, 56 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 229, 1 ]
Mathlib/Order/SuccPred/Basic.lean
WithTop.succ_coe_top
[]
[ 1059, 14 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1058, 1 ]
Mathlib/Order/Filter/Basic.lean
Filter.EventuallyEq.eventually
[]
[ 1437, 4 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1435, 1 ]
Mathlib/LinearAlgebra/AffineSpace/FiniteDimensional.lean
AffineIndependent.vectorSpan_eq_of_le_of_card_eq_finrank_add_one
[]
[ 229, 57 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 225, 1 ]
Mathlib/Algebra/Periodic.lean
Function.Periodic.smul
[ { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type u_3\nγ : Type u_2\nf g : α → β\nc c₁ c₂ x : α\ninst✝¹ : Add α\ninst✝ : SMul γ β\nh : Periodic f c\na : γ\n⊢ Periodic (a • f) c", "tactic": "simp_all" } ]
[ 107, 38 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 106, 11 ]
Mathlib/Data/Dfinsupp/Basic.lean
Dfinsupp.nsmul_apply
[]
[ 260, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 259, 1 ]
Mathlib/Algebra/Order/Group/Defs.lean
mul_inv_lt_iff_le_mul'
[ { "state_after": "no goals", "state_before": "α : Type u\ninst✝² : CommGroup α\ninst✝¹ : LT α\ninst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x < x_1\na b c d : α\n⊢ a * b⁻¹ < c ↔ a < b * c", "tactic": "rw [← inv_mul_lt_iff_lt_mul, mul_comm]" } ]
[ 560, 41 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 559, 1 ]
Mathlib/GroupTheory/Perm/Cycle/Type.lean
Equiv.Perm.cycleType_prime_order
[ { "state_after": "case refine_1\nα : Type u_1\ninst✝¹ : Fintype α\ninst✝ : DecidableEq α\nσ : Perm α\nhσ : Nat.Prime (orderOf σ)\n⊢ ↑card (cycleType σ) = ↑card (cycleType σ) - 1 + 1\n\ncase refine_2\nα : Type u_1\ninst✝¹ : Fintype α\ninst✝ : DecidableEq α\nσ : Perm α\nhσ : Nat.Prime (orderOf σ)\nn : ℕ\nhn : n ∈ cycleType σ\n⊢ n = orderOf σ", "state_before": "α : Type u_1\ninst✝¹ : Fintype α\ninst✝ : DecidableEq α\nσ : Perm α\nhσ : Nat.Prime (orderOf σ)\n⊢ ∃ n, cycleType σ = replicate (n + 1) (orderOf σ)", "tactic": "refine ⟨Multiset.card σ.cycleType - 1, eq_replicate.2 ⟨?_, fun n hn ↦ ?_⟩⟩" }, { "state_after": "case refine_1\nα : Type u_1\ninst✝¹ : Fintype α\ninst✝ : DecidableEq α\nσ : Perm α\nhσ : Nat.Prime (orderOf σ)\n⊢ 1 ≤ ↑card (cycleType σ)", "state_before": "case refine_1\nα : Type u_1\ninst✝¹ : Fintype α\ninst✝ : DecidableEq α\nσ : Perm α\nhσ : Nat.Prime (orderOf σ)\n⊢ ↑card (cycleType σ) = ↑card (cycleType σ) - 1 + 1", "tactic": "rw [tsub_add_cancel_of_le]" }, { "state_after": "case refine_1\nα : Type u_1\ninst✝¹ : Fintype α\ninst✝ : DecidableEq α\nσ : Perm α\nhσ : Nat.Prime (orderOf σ)\n⊢ ¬orderOf σ = 1", "state_before": "case refine_1\nα : Type u_1\ninst✝¹ : Fintype α\ninst✝ : DecidableEq α\nσ : Perm α\nhσ : Nat.Prime (orderOf σ)\n⊢ 1 ≤ ↑card (cycleType σ)", "tactic": "rw [Nat.succ_le_iff, card_cycleType_pos, Ne.def, ← orderOf_eq_one_iff]" }, { "state_after": "no goals", "state_before": "case refine_1\nα : Type u_1\ninst✝¹ : Fintype α\ninst✝ : DecidableEq α\nσ : Perm α\nhσ : Nat.Prime (orderOf σ)\n⊢ ¬orderOf σ = 1", "tactic": "exact hσ.ne_one" }, { "state_after": "no goals", "state_before": "case refine_2\nα : Type u_1\ninst✝¹ : Fintype α\ninst✝ : DecidableEq α\nσ : Perm α\nhσ : Nat.Prime (orderOf σ)\nn : ℕ\nhn : n ∈ cycleType σ\n⊢ n = orderOf σ", "tactic": "exact (hσ.eq_one_or_self_of_dvd n (dvd_of_mem_cycleType hn)).resolve_left\n (one_lt_of_mem_cycleType hn).ne'" } ]
[ 213, 39 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 206, 1 ]
Mathlib/RingTheory/Ideal/Operations.lean
Ideal.radical_pow
[ { "state_after": "no goals", "state_before": "R : Type u\nι : Type ?u.339982\ninst✝ : CommSemiring R\nI J K L : Ideal R\nn : ℕ\nH : n > 0\n⊢ ¬Nat.zero > 0", "tactic": "decide" }, { "state_after": "R : Type u\nι : Type ?u.339982\ninst✝ : CommSemiring R\nI J K L : Ideal R\nn✝ : ℕ\nH✝¹ : n✝ > 0\nn : ℕ\nih : n > 0 → radical (I ^ n) = radical I\nH✝ : Nat.succ n > 0\nH : 0 < n\n⊢ radical (I * I ^ n) = radical I ⊓ radical (I ^ n)", "state_before": "R : Type u\nι : Type ?u.339982\ninst✝ : CommSemiring R\nI J K L : Ideal R\nn✝ : ℕ\nH✝¹ : n✝ > 0\nn : ℕ\nih : n > 0 → radical (I ^ n) = radical I\nH✝ : Nat.succ n > 0\nH : 0 < n\n⊢ radical (I ^ (n + 1)) = radical I ⊓ radical (I ^ n)", "tactic": "rw [pow_succ]" }, { "state_after": "no goals", "state_before": "R : Type u\nι : Type ?u.339982\ninst✝ : CommSemiring R\nI J K L : Ideal R\nn✝ : ℕ\nH✝¹ : n✝ > 0\nn : ℕ\nih : n > 0 → radical (I ^ n) = radical I\nH✝ : Nat.succ n > 0\nH : 0 < n\n⊢ radical (I * I ^ n) = radical I ⊓ radical (I ^ n)", "tactic": "exact radical_mul _ _" }, { "state_after": "no goals", "state_before": "R : Type u\nι : Type ?u.339982\ninst✝ : CommSemiring R\nI J K L : Ideal R\nn✝ : ℕ\nH✝¹ : n✝ > 0\nn : ℕ\nih : n > 0 → radical (I ^ n) = radical I\nH✝ : Nat.succ n > 0\nH : 0 < n\n⊢ radical I ⊓ radical (I ^ n) = radical I ⊓ radical I", "tactic": "rw [ih H]" } ]
[ 1020, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1007, 1 ]
Mathlib/Data/Nat/Factorization/Basic.lean
Nat.prod_factorization_eq_prod_factors
[ { "state_after": "n : ℕ\nβ : Type u_1\ninst✝ : CommMonoid β\nf : ℕ → β\n⊢ ∀ (x : ℕ), x ∈ toFinset (factors n) → (fun p x => f p) x (↑(factorization n) x) = f x", "state_before": "n : ℕ\nβ : Type u_1\ninst✝ : CommMonoid β\nf : ℕ → β\n⊢ (Finsupp.prod (factorization n) fun p x => f p) = ∏ p in toFinset (factors n), f p", "tactic": "apply prod_congr support_factorization" }, { "state_after": "no goals", "state_before": "n : ℕ\nβ : Type u_1\ninst✝ : CommMonoid β\nf : ℕ → β\n⊢ ∀ (x : ℕ), x ∈ toFinset (factors n) → (fun p x => f p) x (↑(factorization n) x) = f x", "tactic": "simp" } ]
[ 241, 7 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 238, 1 ]
Mathlib/NumberTheory/ArithmeticFunction.lean
Nat.ArithmeticFunction.cardFactors_multiset_prod
[ { "state_after": "R : Type ?u.554754\ns : Multiset ℕ\n⊢ Multiset.prod s ≠ 0 → ↑Ω (Multiset.prod s) = Multiset.sum (Multiset.map (↑Ω) s)", "state_before": "R : Type ?u.554754\ns : Multiset ℕ\nh0 : Multiset.prod s ≠ 0\n⊢ ↑Ω (Multiset.prod s) = Multiset.sum (Multiset.map (↑Ω) s)", "tactic": "revert h0" }, { "state_after": "case refine_1\nR : Type ?u.554754\ns : Multiset ℕ\n⊢ Multiset.prod 0 ≠ 0 → ↑Ω (Multiset.prod 0) = Multiset.sum (Multiset.map (↑Ω) 0)\n\ncase refine_2\nR : Type ?u.554754\ns : Multiset ℕ\n⊢ ∀ ⦃a : ℕ⦄ {s : Multiset ℕ},\n (Multiset.prod s ≠ 0 → ↑Ω (Multiset.prod s) = Multiset.sum (Multiset.map (↑Ω) s)) →\n Multiset.prod (a ::ₘ s) ≠ 0 → ↑Ω (Multiset.prod (a ::ₘ s)) = Multiset.sum (Multiset.map (↑Ω) (a ::ₘ s))", "state_before": "R : Type ?u.554754\ns : Multiset ℕ\n⊢ Multiset.prod s ≠ 0 → ↑Ω (Multiset.prod s) = Multiset.sum (Multiset.map (↑Ω) s)", "tactic": "refine s.induction_on ?_ ?_" }, { "state_after": "case refine_2\nR : Type ?u.554754\ns : Multiset ℕ\na : ℕ\nt : Multiset ℕ\nh : Multiset.prod t ≠ 0 → ↑Ω (Multiset.prod t) = Multiset.sum (Multiset.map (↑Ω) t)\nh0 : Multiset.prod (a ::ₘ t) ≠ 0\n⊢ ↑Ω (Multiset.prod (a ::ₘ t)) = Multiset.sum (Multiset.map (↑Ω) (a ::ₘ t))", "state_before": "case refine_2\nR : Type ?u.554754\ns : Multiset ℕ\n⊢ ∀ ⦃a : ℕ⦄ {s : Multiset ℕ},\n (Multiset.prod s ≠ 0 → ↑Ω (Multiset.prod s) = Multiset.sum (Multiset.map (↑Ω) s)) →\n Multiset.prod (a ::ₘ s) ≠ 0 → ↑Ω (Multiset.prod (a ::ₘ s)) = Multiset.sum (Multiset.map (↑Ω) (a ::ₘ s))", "tactic": "intro a t h h0" }, { "state_after": "case refine_2\nR : Type ?u.554754\ns : Multiset ℕ\na : ℕ\nt : Multiset ℕ\nh : Multiset.prod t ≠ 0 → ↑Ω (Multiset.prod t) = Multiset.sum (Multiset.map (↑Ω) t)\nh0 : a ≠ 0 ∧ Multiset.prod t ≠ 0\n⊢ ↑Ω (Multiset.prod (a ::ₘ t)) = Multiset.sum (Multiset.map (↑Ω) (a ::ₘ t))", "state_before": "case refine_2\nR : Type ?u.554754\ns : Multiset ℕ\na : ℕ\nt : Multiset ℕ\nh : Multiset.prod t ≠ 0 → ↑Ω (Multiset.prod t) = Multiset.sum (Multiset.map (↑Ω) t)\nh0 : Multiset.prod (a ::ₘ t) ≠ 0\n⊢ ↑Ω (Multiset.prod (a ::ₘ t)) = Multiset.sum (Multiset.map (↑Ω) (a ::ₘ t))", "tactic": "rw [Multiset.prod_cons, mul_ne_zero_iff] at h0" }, { "state_after": "no goals", "state_before": "case refine_2\nR : Type ?u.554754\ns : Multiset ℕ\na : ℕ\nt : Multiset ℕ\nh : Multiset.prod t ≠ 0 → ↑Ω (Multiset.prod t) = Multiset.sum (Multiset.map (↑Ω) t)\nh0 : a ≠ 0 ∧ Multiset.prod t ≠ 0\n⊢ ↑Ω (Multiset.prod (a ::ₘ t)) = Multiset.sum (Multiset.map (↑Ω) (a ::ₘ t))", "tactic": "simp [h0, cardFactors_mul, h]" }, { "state_after": "no goals", "state_before": "case refine_1\nR : Type ?u.554754\ns : Multiset ℕ\n⊢ Multiset.prod 0 ≠ 0 → ↑Ω (Multiset.prod 0) = Multiset.sum (Multiset.map (↑Ω) 0)", "tactic": "simp" } ]
[ 887, 32 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 880, 1 ]
Mathlib/Data/Finite/Basic.lean
Finite.prod_right
[]
[ 81, 59 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 80, 1 ]
Mathlib/Algebra/GCDMonoid/Multiset.lean
Multiset.lcm_singleton
[]
[ 58, 50 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 57, 1 ]
Mathlib/MeasureTheory/Integral/CircleIntegral.lean
circleIntegrable_iff
[ { "state_after": "case pos\nE : Type u_1\ninst✝¹ : NormedAddCommGroup E\ninst✝ : NormedSpace ℂ E\nf : ℂ → E\nc : ℂ\nR : ℝ\nh₀ : R = 0\n⊢ CircleIntegrable f c R ↔ IntervalIntegrable (fun θ => deriv (circleMap c R) θ • f (circleMap c R θ)) volume 0 (2 * π)\n\ncase neg\nE : Type u_1\ninst✝¹ : NormedAddCommGroup E\ninst✝ : NormedSpace ℂ E\nf : ℂ → E\nc : ℂ\nR : ℝ\nh₀ : ¬R = 0\n⊢ CircleIntegrable f c R ↔ IntervalIntegrable (fun θ => deriv (circleMap c R) θ • f (circleMap c R θ)) volume 0 (2 * π)", "state_before": "E : Type u_1\ninst✝¹ : NormedAddCommGroup E\ninst✝ : NormedSpace ℂ E\nf : ℂ → E\nc : ℂ\nR : ℝ\n⊢ CircleIntegrable f c R ↔ IntervalIntegrable (fun θ => deriv (circleMap c R) θ • f (circleMap c R θ)) volume 0 (2 * π)", "tactic": "by_cases h₀ : R = 0" }, { "state_after": "case neg\nE : Type u_1\ninst✝¹ : NormedAddCommGroup E\ninst✝ : NormedSpace ℂ E\nf : ℂ → E\nc : ℂ\nR : ℝ\nh₀ : ¬R = 0\nh : IntervalIntegrable (fun θ => deriv (circleMap c R) θ • f (circleMap c R θ)) volume 0 (2 * π)\n⊢ CircleIntegrable f c R", "state_before": "case neg\nE : Type u_1\ninst✝¹ : NormedAddCommGroup E\ninst✝ : NormedSpace ℂ E\nf : ℂ → E\nc : ℂ\nR : ℝ\nh₀ : ¬R = 0\n⊢ CircleIntegrable f c R ↔ IntervalIntegrable (fun θ => deriv (circleMap c R) θ • f (circleMap c R θ)) volume 0 (2 * π)", "tactic": "refine' ⟨fun h => h.out, fun h => _⟩" }, { "state_after": "case neg\nE : Type u_1\ninst✝¹ : NormedAddCommGroup E\ninst✝ : NormedSpace ℂ E\nf : ℂ → E\nc : ℂ\nR : ℝ\nh₀ : ¬R = 0\nh : IntegrableOn (fun θ => (circleMap 0 R θ * I) • f (circleMap c R θ)) (Ι 0 (2 * π))\n⊢ IntegrableOn (fun θ => f (circleMap c R θ)) (Ι 0 (2 * π))", "state_before": "case neg\nE : Type u_1\ninst✝¹ : NormedAddCommGroup E\ninst✝ : NormedSpace ℂ E\nf : ℂ → E\nc : ℂ\nR : ℝ\nh₀ : ¬R = 0\nh : IntervalIntegrable (fun θ => deriv (circleMap c R) θ • f (circleMap c R θ)) volume 0 (2 * π)\n⊢ CircleIntegrable f c R", "tactic": "simp only [CircleIntegrable, intervalIntegrable_iff, deriv_circleMap] at h ⊢" }, { "state_after": "case neg.refine'_1\nE : Type u_1\ninst✝¹ : NormedAddCommGroup E\ninst✝ : NormedSpace ℂ E\nf : ℂ → E\nc : ℂ\nR : ℝ\nh₀ : ¬R = 0\nh : IntegrableOn (fun θ => (circleMap 0 R θ * I) • f (circleMap c R θ)) (Ι 0 (2 * π))\n⊢ AEStronglyMeasurable (fun θ => f (circleMap c R θ)) (Measure.restrict volume (Ι 0 (2 * π)))\n\ncase neg.refine'_2\nE : Type u_1\ninst✝¹ : NormedAddCommGroup E\ninst✝ : NormedSpace ℂ E\nf : ℂ → E\nc : ℂ\nR : ℝ\nh₀ : ¬R = 0\nh : IntegrableOn (fun θ => (circleMap 0 R θ * I) • f (circleMap c R θ)) (Ι 0 (2 * π))\n⊢ ∀ᵐ (a : ℝ) ∂Measure.restrict volume (Ι 0 (2 * π)),\n ‖f (circleMap c R a)‖ ≤ (Abs.abs R)⁻¹ * ‖(circleMap 0 R a * I) • f (circleMap c R a)‖", "state_before": "case neg\nE : Type u_1\ninst✝¹ : NormedAddCommGroup E\ninst✝ : NormedSpace ℂ E\nf : ℂ → E\nc : ℂ\nR : ℝ\nh₀ : ¬R = 0\nh : IntegrableOn (fun θ => (circleMap 0 R θ * I) • f (circleMap c R θ)) (Ι 0 (2 * π))\n⊢ IntegrableOn (fun θ => f (circleMap c R θ)) (Ι 0 (2 * π))", "tactic": "refine' (h.norm.const_mul (|R|)⁻¹).mono' _ _" }, { "state_after": "no goals", "state_before": "case pos\nE : Type u_1\ninst✝¹ : NormedAddCommGroup E\ninst✝ : NormedSpace ℂ E\nf : ℂ → E\nc : ℂ\nR : ℝ\nh₀ : R = 0\n⊢ CircleIntegrable f c R ↔ IntervalIntegrable (fun θ => deriv (circleMap c R) θ • f (circleMap c R θ)) volume 0 (2 * π)", "tactic": "simp [h₀, const]" }, { "state_after": "case neg.refine'_1\nE : Type u_1\ninst✝¹ : NormedAddCommGroup E\ninst✝ : NormedSpace ℂ E\nf : ℂ → E\nc : ℂ\nR : ℝ\nh₀ : ¬R = 0\nh : IntegrableOn (fun θ => (circleMap 0 R θ * I) • f (circleMap c R θ)) (Ι 0 (2 * π))\nH : ∀ {θ : ℝ}, circleMap 0 R θ * I ≠ 0\n⊢ AEStronglyMeasurable (fun θ => f (circleMap c R θ)) (Measure.restrict volume (Ι 0 (2 * π)))", "state_before": "case neg.refine'_1\nE : Type u_1\ninst✝¹ : NormedAddCommGroup E\ninst✝ : NormedSpace ℂ E\nf : ℂ → E\nc : ℂ\nR : ℝ\nh₀ : ¬R = 0\nh : IntegrableOn (fun θ => (circleMap 0 R θ * I) • f (circleMap c R θ)) (Ι 0 (2 * π))\n⊢ AEStronglyMeasurable (fun θ => f (circleMap c R θ)) (Measure.restrict volume (Ι 0 (2 * π)))", "tactic": "have H : ∀ {θ}, circleMap 0 R θ * I ≠ 0 := fun {θ} => by simp [h₀, I_ne_zero]" }, { "state_after": "no goals", "state_before": "case neg.refine'_1\nE : Type u_1\ninst✝¹ : NormedAddCommGroup E\ninst✝ : NormedSpace ℂ E\nf : ℂ → E\nc : ℂ\nR : ℝ\nh₀ : ¬R = 0\nh : IntegrableOn (fun θ => (circleMap 0 R θ * I) • f (circleMap c R θ)) (Ι 0 (2 * π))\nH : ∀ {θ : ℝ}, circleMap 0 R θ * I ≠ 0\n⊢ AEStronglyMeasurable (fun θ => f (circleMap c R θ)) (Measure.restrict volume (Ι 0 (2 * π)))", "tactic": "simpa only [inv_smul_smul₀ H]\n using ((continuous_circleMap 0 R).aestronglyMeasurable.mul_const\n I).aemeasurable.inv.aestronglyMeasurable.smul h.aestronglyMeasurable" }, { "state_after": "no goals", "state_before": "E : Type u_1\ninst✝¹ : NormedAddCommGroup E\ninst✝ : NormedSpace ℂ E\nf : ℂ → E\nc : ℂ\nR : ℝ\nh₀ : ¬R = 0\nh : IntegrableOn (fun θ => (circleMap 0 R θ * I) • f (circleMap c R θ)) (Ι 0 (2 * π))\nθ : ℝ\n⊢ circleMap 0 R θ * I ≠ 0", "tactic": "simp [h₀, I_ne_zero]" }, { "state_after": "no goals", "state_before": "case neg.refine'_2\nE : Type u_1\ninst✝¹ : NormedAddCommGroup E\ninst✝ : NormedSpace ℂ E\nf : ℂ → E\nc : ℂ\nR : ℝ\nh₀ : ¬R = 0\nh : IntegrableOn (fun θ => (circleMap 0 R θ * I) • f (circleMap c R θ)) (Ι 0 (2 * π))\n⊢ ∀ᵐ (a : ℝ) ∂Measure.restrict volume (Ι 0 (2 * π)),\n ‖f (circleMap c R a)‖ ≤ (Abs.abs R)⁻¹ * ‖(circleMap 0 R a * I) • f (circleMap c R a)‖", "tactic": "simp [norm_smul, h₀]" } ]
[ 288, 25 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 276, 1 ]
Mathlib/Algebra/Hom/Ring.lean
RingHom.one_def
[]
[ 730, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 729, 1 ]
Mathlib/Topology/Algebra/GroupWithZero.lean
Filter.Tendsto.inv₀
[]
[ 119, 28 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 117, 1 ]
Mathlib/Geometry/Euclidean/Angle/Unoriented/RightAngle.lean
InnerProductGeometry.angle_add_le_pi_div_two_of_inner_eq_zero
[ { "state_after": "V : Type u_1\ninst✝¹ : NormedAddCommGroup V\ninst✝ : InnerProductSpace ℝ V\nx y : V\nh : inner x y = 0\n⊢ 0 ≤ ‖x‖ / ‖x + y‖", "state_before": "V : Type u_1\ninst✝¹ : NormedAddCommGroup V\ninst✝ : InnerProductSpace ℝ V\nx y : V\nh : inner x y = 0\n⊢ angle x (x + y) ≤ π / 2", "tactic": "rw [angle_add_eq_arccos_of_inner_eq_zero h, Real.arccos_le_pi_div_two]" }, { "state_after": "no goals", "state_before": "V : Type u_1\ninst✝¹ : NormedAddCommGroup V\ninst✝ : InnerProductSpace ℝ V\nx y : V\nh : inner x y = 0\n⊢ 0 ≤ ‖x‖ / ‖x + y‖", "tactic": "exact div_nonneg (norm_nonneg _) (norm_nonneg _)" } ]
[ 126, 51 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 123, 1 ]
Mathlib/Topology/ContinuousFunction/Basic.lean
ContinuousMap.toFun_eq_coe
[]
[ 100, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 99, 1 ]
Mathlib/Data/Int/Parity.lean
Int.odd_sub'
[ { "state_after": "no goals", "state_before": "m n : ℤ\n⊢ Odd (m - n) ↔ (Odd n ↔ Even m)", "tactic": "rw [odd_iff_not_even, even_sub, not_iff, not_iff_comm, odd_iff_not_even]" } ]
[ 193, 75 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 192, 1 ]
Mathlib/Data/Set/Basic.lean
Set.subset_insert_iff_of_not_mem
[]
[ 1169, 74 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1168, 1 ]
Mathlib/CategoryTheory/Abelian/Homology.lean
homology.π'_ι
[ { "state_after": "A : Type u\ninst✝¹ : Category A\ninst✝ : Abelian A\nX Y Z : A\nf : X ⟶ Y\ng : Y ⟶ Z\nw : f ≫ g = 0\n⊢ (cokernel.π (kernel.lift g f w) ≫ (homologyIsoCokernelLift f g w).inv) ≫\n ((homologyIsoCokernelLift f g w).hom ≫ Abelian.homologyCToK f g w) ≫ kernel.ι (cokernel.desc f g w) =\n kernel.ι g ≫ cokernel.π f", "state_before": "A : Type u\ninst✝¹ : Category A\ninst✝ : Abelian A\nX Y Z : A\nf : X ⟶ Y\ng : Y ⟶ Z\nw : f ≫ g = 0\n⊢ π' f g w ≫ ι f g w = kernel.ι g ≫ cokernel.π f", "tactic": "dsimp [π', ι, homologyIsoKernelDesc]" }, { "state_after": "no goals", "state_before": "A : Type u\ninst✝¹ : Category A\ninst✝ : Abelian A\nX Y Z : A\nf : X ⟶ Y\ng : Y ⟶ Z\nw : f ≫ g = 0\n⊢ (cokernel.π (kernel.lift g f w) ≫ (homologyIsoCokernelLift f g w).inv) ≫\n ((homologyIsoCokernelLift f g w).hom ≫ Abelian.homologyCToK f g w) ≫ kernel.ι (cokernel.desc f g w) =\n kernel.ι g ≫ cokernel.π f", "tactic": "simp" } ]
[ 193, 7 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 191, 1 ]
Mathlib/Data/Nat/Factorization/Basic.lean
Nat.factorization_one
[ { "state_after": "no goals", "state_before": "⊢ factorization 1 = 0", "tactic": "simp [factorization]" } ]
[ 127, 75 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 127, 1 ]
Mathlib/Analysis/Calculus/ContDiffDef.lean
contDiffWithinAt_nat
[]
[ 427, 77 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 424, 1 ]
Mathlib/Analysis/Convex/Function.lean
StrictConvexOn.lt_on_open_segment'
[ { "state_after": "case h₁.h₁\n𝕜 : Type u_1\nE : Type u_2\nF : Type ?u.484521\nα : Type ?u.484524\nβ : Type u_3\nι : Type ?u.484530\ninst✝⁶ : OrderedSemiring 𝕜\ninst✝⁵ : AddCommMonoid E\ninst✝⁴ : AddCommMonoid F\ninst✝³ : LinearOrderedAddCommMonoid β\ninst✝² : SMul 𝕜 E\ninst✝¹ : Module 𝕜 β\ninst✝ : OrderedSMul 𝕜 β\ns : Set E\nf g : E → β\nhf : StrictConvexOn 𝕜 s f\nx y : E\nhx : x ∈ s\nhy : y ∈ s\nhxy : x ≠ y\na b : 𝕜\nha : 0 < a\nhb : 0 < b\nhab : a + b = 1\n⊢ f x ≤ max (f x) (f y)\n\ncase h₂.h₁\n𝕜 : Type u_1\nE : Type u_2\nF : Type ?u.484521\nα : Type ?u.484524\nβ : Type u_3\nι : Type ?u.484530\ninst✝⁶ : OrderedSemiring 𝕜\ninst✝⁵ : AddCommMonoid E\ninst✝⁴ : AddCommMonoid F\ninst✝³ : LinearOrderedAddCommMonoid β\ninst✝² : SMul 𝕜 E\ninst✝¹ : Module 𝕜 β\ninst✝ : OrderedSMul 𝕜 β\ns : Set E\nf g : E → β\nhf : StrictConvexOn 𝕜 s f\nx y : E\nhx : x ∈ s\nhy : y ∈ s\nhxy : x ≠ y\na b : 𝕜\nha : 0 < a\nhb : 0 < b\nhab : a + b = 1\n⊢ f y ≤ max (f x) (f y)", "state_before": "𝕜 : Type u_1\nE : Type u_2\nF : Type ?u.484521\nα : Type ?u.484524\nβ : Type u_3\nι : Type ?u.484530\ninst✝⁶ : OrderedSemiring 𝕜\ninst✝⁵ : AddCommMonoid E\ninst✝⁴ : AddCommMonoid F\ninst✝³ : LinearOrderedAddCommMonoid β\ninst✝² : SMul 𝕜 E\ninst✝¹ : Module 𝕜 β\ninst✝ : OrderedSMul 𝕜 β\ns : Set E\nf g : E → β\nhf : StrictConvexOn 𝕜 s f\nx y : E\nhx : x ∈ s\nhy : y ∈ s\nhxy : x ≠ y\na b : 𝕜\nha : 0 < a\nhb : 0 < b\nhab : a + b = 1\n⊢ a • f x + b • f y ≤ a • max (f x) (f y) + b • max (f x) (f y)", "tactic": "gcongr" }, { "state_after": "no goals", "state_before": "case h₁.h₁\n𝕜 : Type u_1\nE : Type u_2\nF : Type ?u.484521\nα : Type ?u.484524\nβ : Type u_3\nι : Type ?u.484530\ninst✝⁶ : OrderedSemiring 𝕜\ninst✝⁵ : AddCommMonoid E\ninst✝⁴ : AddCommMonoid F\ninst✝³ : LinearOrderedAddCommMonoid β\ninst✝² : SMul 𝕜 E\ninst✝¹ : Module 𝕜 β\ninst✝ : OrderedSMul 𝕜 β\ns : Set E\nf g : E → β\nhf : StrictConvexOn 𝕜 s f\nx y : E\nhx : x ∈ s\nhy : y ∈ s\nhxy : x ≠ y\na b : 𝕜\nha : 0 < a\nhb : 0 < b\nhab : a + b = 1\n⊢ f x ≤ max (f x) (f y)", "tactic": "apply le_max_left" }, { "state_after": "no goals", "state_before": "case h₂.h₁\n𝕜 : Type u_1\nE : Type u_2\nF : Type ?u.484521\nα : Type ?u.484524\nβ : Type u_3\nι : Type ?u.484530\ninst✝⁶ : OrderedSemiring 𝕜\ninst✝⁵ : AddCommMonoid E\ninst✝⁴ : AddCommMonoid F\ninst✝³ : LinearOrderedAddCommMonoid β\ninst✝² : SMul 𝕜 E\ninst✝¹ : Module 𝕜 β\ninst✝ : OrderedSMul 𝕜 β\ns : Set E\nf g : E → β\nhf : StrictConvexOn 𝕜 s f\nx y : E\nhx : x ∈ s\nhy : y ∈ s\nhxy : x ≠ y\na b : 𝕜\nha : 0 < a\nhb : 0 < b\nhab : a + b = 1\n⊢ f y ≤ max (f x) (f y)", "tactic": "apply le_max_right" } ]
[ 675, 51 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 666, 1 ]
Mathlib/MeasureTheory/Decomposition/Jordan.lean
MeasureTheory.SignedMeasure.of_diff_eq_zero_of_symmDiff_eq_zero_positive
[ { "state_after": "α : Type u_1\nβ : Type ?u.53280\ninst✝² : MeasurableSpace α\ns : SignedMeasure α\nμ ν : Measure α\ninst✝¹ : IsFiniteMeasure μ\ninst✝ : IsFiniteMeasure ν\nu v w : Set α\nhu : MeasurableSet u\nhv : MeasurableSet v\nhsu : ∀ ⦃j : Set α⦄, MeasurableSet j → j ⊆ u → ↑0 j ≤ ↑s j\nhsv : ∀ ⦃j : Set α⦄, MeasurableSet j → j ⊆ v → ↑0 j ≤ ↑s j\nhs : ↑s (u ∆ v) = 0\n⊢ ↑s (u \\ v) = 0 ∧ ↑s (v \\ u) = 0\n\ncase hi\nα : Type u_1\nβ : Type ?u.53280\ninst✝² : MeasurableSpace α\ns : SignedMeasure α\nμ ν : Measure α\ninst✝¹ : IsFiniteMeasure μ\ninst✝ : IsFiniteMeasure ν\nu v w : Set α\nhu : MeasurableSet u\nhv : MeasurableSet v\nhsu : ∀ ⦃j : Set α⦄, MeasurableSet j → j ⊆ u → ↑0 j ≤ ↑s j\nhsv : VectorMeasure.restrict 0 v ≤ VectorMeasure.restrict s v\nhs : ↑s (u ∆ v) = 0\n⊢ MeasurableSet v\n\ncase hi\nα : Type u_1\nβ : Type ?u.53280\ninst✝² : MeasurableSpace α\ns : SignedMeasure α\nμ ν : Measure α\ninst✝¹ : IsFiniteMeasure μ\ninst✝ : IsFiniteMeasure ν\nu v w : Set α\nhu : MeasurableSet u\nhv : MeasurableSet v\nhsu : VectorMeasure.restrict 0 u ≤ VectorMeasure.restrict s u\nhsv : VectorMeasure.restrict 0 v ≤ VectorMeasure.restrict s v\nhs : ↑s (u ∆ v) = 0\n⊢ MeasurableSet u", "state_before": "α : Type u_1\nβ : Type ?u.53280\ninst✝² : MeasurableSpace α\ns : SignedMeasure α\nμ ν : Measure α\ninst✝¹ : IsFiniteMeasure μ\ninst✝ : IsFiniteMeasure ν\nu v w : Set α\nhu : MeasurableSet u\nhv : MeasurableSet v\nhsu : VectorMeasure.restrict 0 u ≤ VectorMeasure.restrict s u\nhsv : VectorMeasure.restrict 0 v ≤ VectorMeasure.restrict s v\nhs : ↑s (u ∆ v) = 0\n⊢ ↑s (u \\ v) = 0 ∧ ↑s (v \\ u) = 0", "tactic": "rw [restrict_le_restrict_iff] at hsu hsv" }, { "state_after": "α : Type u_1\nβ : Type ?u.53280\ninst✝² : MeasurableSpace α\ns : SignedMeasure α\nμ ν : Measure α\ninst✝¹ : IsFiniteMeasure μ\ninst✝ : IsFiniteMeasure ν\nu v w : Set α\nhu : MeasurableSet u\nhv : MeasurableSet v\nhsu : ∀ ⦃j : Set α⦄, MeasurableSet j → j ⊆ u → ↑0 j ≤ ↑s j\nhsv : ∀ ⦃j : Set α⦄, MeasurableSet j → j ⊆ v → ↑0 j ≤ ↑s j\nhs : ↑s (u ∆ v) = 0\na : ↑0 (u \\ v) ≤ ↑s (u \\ v)\n⊢ ↑s (u \\ v) = 0 ∧ ↑s (v \\ u) = 0\n\ncase hi\nα : Type u_1\nβ : Type ?u.53280\ninst✝² : MeasurableSpace α\ns : SignedMeasure α\nμ ν : Measure α\ninst✝¹ : IsFiniteMeasure μ\ninst✝ : IsFiniteMeasure ν\nu v w : Set α\nhu : MeasurableSet u\nhv : MeasurableSet v\nhsu : ∀ ⦃j : Set α⦄, MeasurableSet j → j ⊆ u → ↑0 j ≤ ↑s j\nhsv : VectorMeasure.restrict 0 v ≤ VectorMeasure.restrict s v\nhs : ↑s (u ∆ v) = 0\n⊢ MeasurableSet v\n\ncase hi\nα : Type u_1\nβ : Type ?u.53280\ninst✝² : MeasurableSpace α\ns : SignedMeasure α\nμ ν : Measure α\ninst✝¹ : IsFiniteMeasure μ\ninst✝ : IsFiniteMeasure ν\nu v w : Set α\nhu : MeasurableSet u\nhv : MeasurableSet v\nhsu : VectorMeasure.restrict 0 u ≤ VectorMeasure.restrict s u\nhsv : VectorMeasure.restrict 0 v ≤ VectorMeasure.restrict s v\nhs : ↑s (u ∆ v) = 0\n⊢ MeasurableSet u", "state_before": "α : Type u_1\nβ : Type ?u.53280\ninst✝² : MeasurableSpace α\ns : SignedMeasure α\nμ ν : Measure α\ninst✝¹ : IsFiniteMeasure μ\ninst✝ : IsFiniteMeasure ν\nu v w : Set α\nhu : MeasurableSet u\nhv : MeasurableSet v\nhsu : ∀ ⦃j : Set α⦄, MeasurableSet j → j ⊆ u → ↑0 j ≤ ↑s j\nhsv : ∀ ⦃j : Set α⦄, MeasurableSet j → j ⊆ v → ↑0 j ≤ ↑s j\nhs : ↑s (u ∆ v) = 0\n⊢ ↑s (u \\ v) = 0 ∧ ↑s (v \\ u) = 0\n\ncase hi\nα : Type u_1\nβ : Type ?u.53280\ninst✝² : MeasurableSpace α\ns : SignedMeasure α\nμ ν : Measure α\ninst✝¹ : IsFiniteMeasure μ\ninst✝ : IsFiniteMeasure ν\nu v w : Set α\nhu : MeasurableSet u\nhv : MeasurableSet v\nhsu : ∀ ⦃j : Set α⦄, MeasurableSet j → j ⊆ u → ↑0 j ≤ ↑s j\nhsv : VectorMeasure.restrict 0 v ≤ VectorMeasure.restrict s v\nhs : ↑s (u ∆ v) = 0\n⊢ MeasurableSet v\n\ncase hi\nα : Type u_1\nβ : Type ?u.53280\ninst✝² : MeasurableSpace α\ns : SignedMeasure α\nμ ν : Measure α\ninst✝¹ : IsFiniteMeasure μ\ninst✝ : IsFiniteMeasure ν\nu v w : Set α\nhu : MeasurableSet u\nhv : MeasurableSet v\nhsu : VectorMeasure.restrict 0 u ≤ VectorMeasure.restrict s u\nhsv : VectorMeasure.restrict 0 v ≤ VectorMeasure.restrict s v\nhs : ↑s (u ∆ v) = 0\n⊢ MeasurableSet u", "tactic": "have a := hsu (hu.diff hv) (u.diff_subset v)" }, { "state_after": "α : Type u_1\nβ : Type ?u.53280\ninst✝² : MeasurableSpace α\ns : SignedMeasure α\nμ ν : Measure α\ninst✝¹ : IsFiniteMeasure μ\ninst✝ : IsFiniteMeasure ν\nu v w : Set α\nhu : MeasurableSet u\nhv : MeasurableSet v\nhsu : ∀ ⦃j : Set α⦄, MeasurableSet j → j ⊆ u → ↑0 j ≤ ↑s j\nhsv : ∀ ⦃j : Set α⦄, MeasurableSet j → j ⊆ v → ↑0 j ≤ ↑s j\nhs : ↑s (u ∆ v) = 0\na : ↑0 (u \\ v) ≤ ↑s (u \\ v)\nb : ↑0 (v \\ u) ≤ ↑s (v \\ u)\n⊢ ↑s (u \\ v) = 0 ∧ ↑s (v \\ u) = 0\n\ncase hi\nα : Type u_1\nβ : Type ?u.53280\ninst✝² : MeasurableSpace α\ns : SignedMeasure α\nμ ν : Measure α\ninst✝¹ : IsFiniteMeasure μ\ninst✝ : IsFiniteMeasure ν\nu v w : Set α\nhu : MeasurableSet u\nhv : MeasurableSet v\nhsu : ∀ ⦃j : Set α⦄, MeasurableSet j → j ⊆ u → ↑0 j ≤ ↑s j\nhsv : VectorMeasure.restrict 0 v ≤ VectorMeasure.restrict s v\nhs : ↑s (u ∆ v) = 0\n⊢ MeasurableSet v\n\ncase hi\nα : Type u_1\nβ : Type ?u.53280\ninst✝² : MeasurableSpace α\ns : SignedMeasure α\nμ ν : Measure α\ninst✝¹ : IsFiniteMeasure μ\ninst✝ : IsFiniteMeasure ν\nu v w : Set α\nhu : MeasurableSet u\nhv : MeasurableSet v\nhsu : VectorMeasure.restrict 0 u ≤ VectorMeasure.restrict s u\nhsv : VectorMeasure.restrict 0 v ≤ VectorMeasure.restrict s v\nhs : ↑s (u ∆ v) = 0\n⊢ MeasurableSet u", "state_before": "α : Type u_1\nβ : Type ?u.53280\ninst✝² : MeasurableSpace α\ns : SignedMeasure α\nμ ν : Measure α\ninst✝¹ : IsFiniteMeasure μ\ninst✝ : IsFiniteMeasure ν\nu v w : Set α\nhu : MeasurableSet u\nhv : MeasurableSet v\nhsu : ∀ ⦃j : Set α⦄, MeasurableSet j → j ⊆ u → ↑0 j ≤ ↑s j\nhsv : ∀ ⦃j : Set α⦄, MeasurableSet j → j ⊆ v → ↑0 j ≤ ↑s j\nhs : ↑s (u ∆ v) = 0\na : ↑0 (u \\ v) ≤ ↑s (u \\ v)\n⊢ ↑s (u \\ v) = 0 ∧ ↑s (v \\ u) = 0\n\ncase hi\nα : Type u_1\nβ : Type ?u.53280\ninst✝² : MeasurableSpace α\ns : SignedMeasure α\nμ ν : Measure α\ninst✝¹ : IsFiniteMeasure μ\ninst✝ : IsFiniteMeasure ν\nu v w : Set α\nhu : MeasurableSet u\nhv : MeasurableSet v\nhsu : ∀ ⦃j : Set α⦄, MeasurableSet j → j ⊆ u → ↑0 j ≤ ↑s j\nhsv : VectorMeasure.restrict 0 v ≤ VectorMeasure.restrict s v\nhs : ↑s (u ∆ v) = 0\n⊢ MeasurableSet v\n\ncase hi\nα : Type u_1\nβ : Type ?u.53280\ninst✝² : MeasurableSpace α\ns : SignedMeasure α\nμ ν : Measure α\ninst✝¹ : IsFiniteMeasure μ\ninst✝ : IsFiniteMeasure ν\nu v w : Set α\nhu : MeasurableSet u\nhv : MeasurableSet v\nhsu : VectorMeasure.restrict 0 u ≤ VectorMeasure.restrict s u\nhsv : VectorMeasure.restrict 0 v ≤ VectorMeasure.restrict s v\nhs : ↑s (u ∆ v) = 0\n⊢ MeasurableSet u", "tactic": "have b := hsv (hv.diff hu) (v.diff_subset u)" }, { "state_after": "α : Type u_1\nβ : Type ?u.53280\ninst✝² : MeasurableSpace α\ns : SignedMeasure α\nμ ν : Measure α\ninst✝¹ : IsFiniteMeasure μ\ninst✝ : IsFiniteMeasure ν\nu v w : Set α\nhu : MeasurableSet u\nhv : MeasurableSet v\nhsu : ∀ ⦃j : Set α⦄, MeasurableSet j → j ⊆ u → ↑0 j ≤ ↑s j\nhsv : ∀ ⦃j : Set α⦄, MeasurableSet j → j ⊆ v → ↑0 j ≤ ↑s j\nhs : ↑s (u \\ v) + ↑s (v \\ u) = 0\na : ↑0 (u \\ v) ≤ ↑s (u \\ v)\nb : ↑0 (v \\ u) ≤ ↑s (v \\ u)\n⊢ ↑s (u \\ v) = 0 ∧ ↑s (v \\ u) = 0\n\ncase hi\nα : Type u_1\nβ : Type ?u.53280\ninst✝² : MeasurableSpace α\ns : SignedMeasure α\nμ ν : Measure α\ninst✝¹ : IsFiniteMeasure μ\ninst✝ : IsFiniteMeasure ν\nu v w : Set α\nhu : MeasurableSet u\nhv : MeasurableSet v\nhsu : ∀ ⦃j : Set α⦄, MeasurableSet j → j ⊆ u → ↑0 j ≤ ↑s j\nhsv : VectorMeasure.restrict 0 v ≤ VectorMeasure.restrict s v\nhs : ↑s (u ∆ v) = 0\n⊢ MeasurableSet v\n\ncase hi\nα : Type u_1\nβ : Type ?u.53280\ninst✝² : MeasurableSpace α\ns : SignedMeasure α\nμ ν : Measure α\ninst✝¹ : IsFiniteMeasure μ\ninst✝ : IsFiniteMeasure ν\nu v w : Set α\nhu : MeasurableSet u\nhv : MeasurableSet v\nhsu : VectorMeasure.restrict 0 u ≤ VectorMeasure.restrict s u\nhsv : VectorMeasure.restrict 0 v ≤ VectorMeasure.restrict s v\nhs : ↑s (u ∆ v) = 0\n⊢ MeasurableSet u", "state_before": "α : Type u_1\nβ : Type ?u.53280\ninst✝² : MeasurableSpace α\ns : SignedMeasure α\nμ ν : Measure α\ninst✝¹ : IsFiniteMeasure μ\ninst✝ : IsFiniteMeasure ν\nu v w : Set α\nhu : MeasurableSet u\nhv : MeasurableSet v\nhsu : ∀ ⦃j : Set α⦄, MeasurableSet j → j ⊆ u → ↑0 j ≤ ↑s j\nhsv : ∀ ⦃j : Set α⦄, MeasurableSet j → j ⊆ v → ↑0 j ≤ ↑s j\nhs : ↑s (u ∆ v) = 0\na : ↑0 (u \\ v) ≤ ↑s (u \\ v)\nb : ↑0 (v \\ u) ≤ ↑s (v \\ u)\n⊢ ↑s (u \\ v) = 0 ∧ ↑s (v \\ u) = 0\n\ncase hi\nα : Type u_1\nβ : Type ?u.53280\ninst✝² : MeasurableSpace α\ns : SignedMeasure α\nμ ν : Measure α\ninst✝¹ : IsFiniteMeasure μ\ninst✝ : IsFiniteMeasure ν\nu v w : Set α\nhu : MeasurableSet u\nhv : MeasurableSet v\nhsu : ∀ ⦃j : Set α⦄, MeasurableSet j → j ⊆ u → ↑0 j ≤ ↑s j\nhsv : VectorMeasure.restrict 0 v ≤ VectorMeasure.restrict s v\nhs : ↑s (u ∆ v) = 0\n⊢ MeasurableSet v\n\ncase hi\nα : Type u_1\nβ : Type ?u.53280\ninst✝² : MeasurableSpace α\ns : SignedMeasure α\nμ ν : Measure α\ninst✝¹ : IsFiniteMeasure μ\ninst✝ : IsFiniteMeasure ν\nu v w : Set α\nhu : MeasurableSet u\nhv : MeasurableSet v\nhsu : VectorMeasure.restrict 0 u ≤ VectorMeasure.restrict s u\nhsv : VectorMeasure.restrict 0 v ≤ VectorMeasure.restrict s v\nhs : ↑s (u ∆ v) = 0\n⊢ MeasurableSet u", "tactic": "erw [of_union (Set.disjoint_of_subset_left (u.diff_subset v) disjoint_sdiff_self_right)\n (hu.diff hv) (hv.diff hu)] at hs" }, { "state_after": "α : Type u_1\nβ : Type ?u.53280\ninst✝² : MeasurableSpace α\ns : SignedMeasure α\nμ ν : Measure α\ninst✝¹ : IsFiniteMeasure μ\ninst✝ : IsFiniteMeasure ν\nu v w : Set α\nhu : MeasurableSet u\nhv : MeasurableSet v\nhsu : ∀ ⦃j : Set α⦄, MeasurableSet j → j ⊆ u → ↑0 j ≤ ↑s j\nhsv : ∀ ⦃j : Set α⦄, MeasurableSet j → j ⊆ v → ↑0 j ≤ ↑s j\nhs : ↑s (u \\ v) + ↑s (v \\ u) = 0\na : 0 ≤ ↑s (u \\ v)\nb : 0 ≤ ↑s (v \\ u)\n⊢ ↑s (u \\ v) = 0 ∧ ↑s (v \\ u) = 0\n\ncase hi\nα : Type u_1\nβ : Type ?u.53280\ninst✝² : MeasurableSpace α\ns : SignedMeasure α\nμ ν : Measure α\ninst✝¹ : IsFiniteMeasure μ\ninst✝ : IsFiniteMeasure ν\nu v w : Set α\nhu : MeasurableSet u\nhv : MeasurableSet v\nhsu : ∀ ⦃j : Set α⦄, MeasurableSet j → j ⊆ u → ↑0 j ≤ ↑s j\nhsv : VectorMeasure.restrict 0 v ≤ VectorMeasure.restrict s v\nhs : ↑s (u ∆ v) = 0\n⊢ MeasurableSet v\n\ncase hi\nα : Type u_1\nβ : Type ?u.53280\ninst✝² : MeasurableSpace α\ns : SignedMeasure α\nμ ν : Measure α\ninst✝¹ : IsFiniteMeasure μ\ninst✝ : IsFiniteMeasure ν\nu v w : Set α\nhu : MeasurableSet u\nhv : MeasurableSet v\nhsu : VectorMeasure.restrict 0 u ≤ VectorMeasure.restrict s u\nhsv : VectorMeasure.restrict 0 v ≤ VectorMeasure.restrict s v\nhs : ↑s (u ∆ v) = 0\n⊢ MeasurableSet u", "state_before": "α : Type u_1\nβ : Type ?u.53280\ninst✝² : MeasurableSpace α\ns : SignedMeasure α\nμ ν : Measure α\ninst✝¹ : IsFiniteMeasure μ\ninst✝ : IsFiniteMeasure ν\nu v w : Set α\nhu : MeasurableSet u\nhv : MeasurableSet v\nhsu : ∀ ⦃j : Set α⦄, MeasurableSet j → j ⊆ u → ↑0 j ≤ ↑s j\nhsv : ∀ ⦃j : Set α⦄, MeasurableSet j → j ⊆ v → ↑0 j ≤ ↑s j\nhs : ↑s (u \\ v) + ↑s (v \\ u) = 0\na : ↑0 (u \\ v) ≤ ↑s (u \\ v)\nb : ↑0 (v \\ u) ≤ ↑s (v \\ u)\n⊢ ↑s (u \\ v) = 0 ∧ ↑s (v \\ u) = 0\n\ncase hi\nα : Type u_1\nβ : Type ?u.53280\ninst✝² : MeasurableSpace α\ns : SignedMeasure α\nμ ν : Measure α\ninst✝¹ : IsFiniteMeasure μ\ninst✝ : IsFiniteMeasure ν\nu v w : Set α\nhu : MeasurableSet u\nhv : MeasurableSet v\nhsu : ∀ ⦃j : Set α⦄, MeasurableSet j → j ⊆ u → ↑0 j ≤ ↑s j\nhsv : VectorMeasure.restrict 0 v ≤ VectorMeasure.restrict s v\nhs : ↑s (u ∆ v) = 0\n⊢ MeasurableSet v\n\ncase hi\nα : Type u_1\nβ : Type ?u.53280\ninst✝² : MeasurableSpace α\ns : SignedMeasure α\nμ ν : Measure α\ninst✝¹ : IsFiniteMeasure μ\ninst✝ : IsFiniteMeasure ν\nu v w : Set α\nhu : MeasurableSet u\nhv : MeasurableSet v\nhsu : VectorMeasure.restrict 0 u ≤ VectorMeasure.restrict s u\nhsv : VectorMeasure.restrict 0 v ≤ VectorMeasure.restrict s v\nhs : ↑s (u ∆ v) = 0\n⊢ MeasurableSet u", "tactic": "rw [zero_apply] at a b" }, { "state_after": "case left\nα : Type u_1\nβ : Type ?u.53280\ninst✝² : MeasurableSpace α\ns : SignedMeasure α\nμ ν : Measure α\ninst✝¹ : IsFiniteMeasure μ\ninst✝ : IsFiniteMeasure ν\nu v w : Set α\nhu : MeasurableSet u\nhv : MeasurableSet v\nhsu : ∀ ⦃j : Set α⦄, MeasurableSet j → j ⊆ u → ↑0 j ≤ ↑s j\nhsv : ∀ ⦃j : Set α⦄, MeasurableSet j → j ⊆ v → ↑0 j ≤ ↑s j\nhs : ↑s (u \\ v) + ↑s (v \\ u) = 0\na : 0 ≤ ↑s (u \\ v)\nb : 0 ≤ ↑s (v \\ u)\n⊢ ↑s (u \\ v) = 0\n\ncase right\nα : Type u_1\nβ : Type ?u.53280\ninst✝² : MeasurableSpace α\ns : SignedMeasure α\nμ ν : Measure α\ninst✝¹ : IsFiniteMeasure μ\ninst✝ : IsFiniteMeasure ν\nu v w : Set α\nhu : MeasurableSet u\nhv : MeasurableSet v\nhsu : ∀ ⦃j : Set α⦄, MeasurableSet j → j ⊆ u → ↑0 j ≤ ↑s j\nhsv : ∀ ⦃j : Set α⦄, MeasurableSet j → j ⊆ v → ↑0 j ≤ ↑s j\nhs : ↑s (u \\ v) + ↑s (v \\ u) = 0\na : 0 ≤ ↑s (u \\ v)\nb : 0 ≤ ↑s (v \\ u)\n⊢ ↑s (v \\ u) = 0\n\ncase hi\nα : Type u_1\nβ : Type ?u.53280\ninst✝² : MeasurableSpace α\ns : SignedMeasure α\nμ ν : Measure α\ninst✝¹ : IsFiniteMeasure μ\ninst✝ : IsFiniteMeasure ν\nu v w : Set α\nhu : MeasurableSet u\nhv : MeasurableSet v\nhsu : ∀ ⦃j : Set α⦄, MeasurableSet j → j ⊆ u → ↑0 j ≤ ↑s j\nhsv : VectorMeasure.restrict 0 v ≤ VectorMeasure.restrict s v\nhs : ↑s (u ∆ v) = 0\n⊢ MeasurableSet v\n\ncase hi\nα : Type u_1\nβ : Type ?u.53280\ninst✝² : MeasurableSpace α\ns : SignedMeasure α\nμ ν : Measure α\ninst✝¹ : IsFiniteMeasure μ\ninst✝ : IsFiniteMeasure ν\nu v w : Set α\nhu : MeasurableSet u\nhv : MeasurableSet v\nhsu : VectorMeasure.restrict 0 u ≤ VectorMeasure.restrict s u\nhsv : VectorMeasure.restrict 0 v ≤ VectorMeasure.restrict s v\nhs : ↑s (u ∆ v) = 0\n⊢ MeasurableSet u", "state_before": "α : Type u_1\nβ : Type ?u.53280\ninst✝² : MeasurableSpace α\ns : SignedMeasure α\nμ ν : Measure α\ninst✝¹ : IsFiniteMeasure μ\ninst✝ : IsFiniteMeasure ν\nu v w : Set α\nhu : MeasurableSet u\nhv : MeasurableSet v\nhsu : ∀ ⦃j : Set α⦄, MeasurableSet j → j ⊆ u → ↑0 j ≤ ↑s j\nhsv : ∀ ⦃j : Set α⦄, MeasurableSet j → j ⊆ v → ↑0 j ≤ ↑s j\nhs : ↑s (u \\ v) + ↑s (v \\ u) = 0\na : 0 ≤ ↑s (u \\ v)\nb : 0 ≤ ↑s (v \\ u)\n⊢ ↑s (u \\ v) = 0 ∧ ↑s (v \\ u) = 0\n\ncase hi\nα : Type u_1\nβ : Type ?u.53280\ninst✝² : MeasurableSpace α\ns : SignedMeasure α\nμ ν : Measure α\ninst✝¹ : IsFiniteMeasure μ\ninst✝ : IsFiniteMeasure ν\nu v w : Set α\nhu : MeasurableSet u\nhv : MeasurableSet v\nhsu : ∀ ⦃j : Set α⦄, MeasurableSet j → j ⊆ u → ↑0 j ≤ ↑s j\nhsv : VectorMeasure.restrict 0 v ≤ VectorMeasure.restrict s v\nhs : ↑s (u ∆ v) = 0\n⊢ MeasurableSet v\n\ncase hi\nα : Type u_1\nβ : Type ?u.53280\ninst✝² : MeasurableSpace α\ns : SignedMeasure α\nμ ν : Measure α\ninst✝¹ : IsFiniteMeasure μ\ninst✝ : IsFiniteMeasure ν\nu v w : Set α\nhu : MeasurableSet u\nhv : MeasurableSet v\nhsu : VectorMeasure.restrict 0 u ≤ VectorMeasure.restrict s u\nhsv : VectorMeasure.restrict 0 v ≤ VectorMeasure.restrict s v\nhs : ↑s (u ∆ v) = 0\n⊢ MeasurableSet u", "tactic": "constructor" }, { "state_after": "no goals", "state_before": "case left\nα : Type u_1\nβ : Type ?u.53280\ninst✝² : MeasurableSpace α\ns : SignedMeasure α\nμ ν : Measure α\ninst✝¹ : IsFiniteMeasure μ\ninst✝ : IsFiniteMeasure ν\nu v w : Set α\nhu : MeasurableSet u\nhv : MeasurableSet v\nhsu : ∀ ⦃j : Set α⦄, MeasurableSet j → j ⊆ u → ↑0 j ≤ ↑s j\nhsv : ∀ ⦃j : Set α⦄, MeasurableSet j → j ⊆ v → ↑0 j ≤ ↑s j\nhs : ↑s (u \\ v) + ↑s (v \\ u) = 0\na : 0 ≤ ↑s (u \\ v)\nb : 0 ≤ ↑s (v \\ u)\n⊢ ↑s (u \\ v) = 0\n\ncase right\nα : Type u_1\nβ : Type ?u.53280\ninst✝² : MeasurableSpace α\ns : SignedMeasure α\nμ ν : Measure α\ninst✝¹ : IsFiniteMeasure μ\ninst✝ : IsFiniteMeasure ν\nu v w : Set α\nhu : MeasurableSet u\nhv : MeasurableSet v\nhsu : ∀ ⦃j : Set α⦄, MeasurableSet j → j ⊆ u → ↑0 j ≤ ↑s j\nhsv : ∀ ⦃j : Set α⦄, MeasurableSet j → j ⊆ v → ↑0 j ≤ ↑s j\nhs : ↑s (u \\ v) + ↑s (v \\ u) = 0\na : 0 ≤ ↑s (u \\ v)\nb : 0 ≤ ↑s (v \\ u)\n⊢ ↑s (v \\ u) = 0\n\ncase hi\nα : Type u_1\nβ : Type ?u.53280\ninst✝² : MeasurableSpace α\ns : SignedMeasure α\nμ ν : Measure α\ninst✝¹ : IsFiniteMeasure μ\ninst✝ : IsFiniteMeasure ν\nu v w : Set α\nhu : MeasurableSet u\nhv : MeasurableSet v\nhsu : ∀ ⦃j : Set α⦄, MeasurableSet j → j ⊆ u → ↑0 j ≤ ↑s j\nhsv : VectorMeasure.restrict 0 v ≤ VectorMeasure.restrict s v\nhs : ↑s (u ∆ v) = 0\n⊢ MeasurableSet v\n\ncase hi\nα : Type u_1\nβ : Type ?u.53280\ninst✝² : MeasurableSpace α\ns : SignedMeasure α\nμ ν : Measure α\ninst✝¹ : IsFiniteMeasure μ\ninst✝ : IsFiniteMeasure ν\nu v w : Set α\nhu : MeasurableSet u\nhv : MeasurableSet v\nhsu : VectorMeasure.restrict 0 u ≤ VectorMeasure.restrict s u\nhsv : VectorMeasure.restrict 0 v ≤ VectorMeasure.restrict s v\nhs : ↑s (u ∆ v) = 0\n⊢ MeasurableSet u", "tactic": "all_goals first | linarith | infer_instance | assumption" }, { "state_after": "no goals", "state_before": "case hi\nα : Type u_1\nβ : Type ?u.53280\ninst✝² : MeasurableSpace α\ns : SignedMeasure α\nμ ν : Measure α\ninst✝¹ : IsFiniteMeasure μ\ninst✝ : IsFiniteMeasure ν\nu v w : Set α\nhu : MeasurableSet u\nhv : MeasurableSet v\nhsu : VectorMeasure.restrict 0 u ≤ VectorMeasure.restrict s u\nhsv : VectorMeasure.restrict 0 v ≤ VectorMeasure.restrict s v\nhs : ↑s (u ∆ v) = 0\n⊢ MeasurableSet u", "tactic": "first | linarith | infer_instance | assumption" }, { "state_after": "no goals", "state_before": "case hi\nα : Type u_1\nβ : Type ?u.53280\ninst✝² : MeasurableSpace α\ns : SignedMeasure α\nμ ν : Measure α\ninst✝¹ : IsFiniteMeasure μ\ninst✝ : IsFiniteMeasure ν\nu v w : Set α\nhu : MeasurableSet u\nhv : MeasurableSet v\nhsu : VectorMeasure.restrict 0 u ≤ VectorMeasure.restrict s u\nhsv : VectorMeasure.restrict 0 v ≤ VectorMeasure.restrict s v\nhs : ↑s (u ∆ v) = 0\n⊢ MeasurableSet u", "tactic": "linarith" }, { "state_after": "case hi\nα : Type u_1\nβ : Type ?u.53280\ninst✝² : MeasurableSpace α\ns : SignedMeasure α\nμ ν : Measure α\ninst✝¹ : IsFiniteMeasure μ\ninst✝ : IsFiniteMeasure ν\nu v w : Set α\nhu : MeasurableSet u\nhv : MeasurableSet v\nhsu : VectorMeasure.restrict 0 u ≤ VectorMeasure.restrict s u\nhsv : VectorMeasure.restrict 0 v ≤ VectorMeasure.restrict s v\nhs : ↑s (u ∆ v) = 0\n⊢ MeasurableSet u", "state_before": "case hi\nα : Type u_1\nβ : Type ?u.53280\ninst✝² : MeasurableSpace α\ns : SignedMeasure α\nμ ν : Measure α\ninst✝¹ : IsFiniteMeasure μ\ninst✝ : IsFiniteMeasure ν\nu v w : Set α\nhu : MeasurableSet u\nhv : MeasurableSet v\nhsu : VectorMeasure.restrict 0 u ≤ VectorMeasure.restrict s u\nhsv : VectorMeasure.restrict 0 v ≤ VectorMeasure.restrict s v\nhs : ↑s (u ∆ v) = 0\n⊢ MeasurableSet u", "tactic": "infer_instance" }, { "state_after": "no goals", "state_before": "case hi\nα : Type u_1\nβ : Type ?u.53280\ninst✝² : MeasurableSpace α\ns : SignedMeasure α\nμ ν : Measure α\ninst✝¹ : IsFiniteMeasure μ\ninst✝ : IsFiniteMeasure ν\nu v w : Set α\nhu : MeasurableSet u\nhv : MeasurableSet v\nhsu : VectorMeasure.restrict 0 u ≤ VectorMeasure.restrict s u\nhsv : VectorMeasure.restrict 0 v ≤ VectorMeasure.restrict s v\nhs : ↑s (u ∆ v) = 0\n⊢ MeasurableSet u", "tactic": "assumption" } ]
[ 317, 59 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 308, 1 ]
Mathlib/Data/Set/Image.lean
Set.image_preimage_inter
[ { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type u_2\nγ : Type ?u.52437\nι : Sort ?u.52440\nι' : Sort ?u.52443\nf✝ : α → β\ns✝ t✝ : Set α\nf : α → β\ns : Set α\nt : Set β\n⊢ f '' (f ⁻¹' t ∩ s) = t ∩ f '' s", "tactic": "simp only [inter_comm, image_inter_preimage]" } ]
[ 516, 87 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 515, 1 ]
Mathlib/Algebra/ContinuedFractions/Translations.lean
GeneralizedContinuedFraction.terminatedAt_iff_part_denom_none
[ { "state_after": "no goals", "state_before": "α : Type u_1\ng : GeneralizedContinuedFraction α\nn : ℕ\n⊢ TerminatedAt g n ↔ Stream'.Seq.get? (partialDenominators g) n = none", "tactic": "rw [terminatedAt_iff_s_none, part_denom_none_iff_s_none]" } ]
[ 56, 62 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 55, 1 ]
Mathlib/CategoryTheory/Limits/Types.lean
CategoryTheory.Limits.Types.Limit.lift_π_apply
[]
[ 197, 33 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 195, 1 ]
Mathlib/CategoryTheory/Sites/Closed.lean
CategoryTheory.classifier_isSheaf
[ { "state_after": "C : Type u\ninst✝ : Category C\nJ₁ J₂ : GrothendieckTopology C\nX : C\nS : Sieve X\nhS : S ∈ GrothendieckTopology.sieves J₁ X\n⊢ Presieve.IsSheafFor (Functor.closedSieves J₁) S.arrows", "state_before": "C : Type u\ninst✝ : Category C\nJ₁ J₂ : GrothendieckTopology C\n⊢ Presieve.IsSheaf J₁ (Functor.closedSieves J₁)", "tactic": "intro X S hS" }, { "state_after": "C : Type u\ninst✝ : Category C\nJ₁ J₂ : GrothendieckTopology C\nX : C\nS : Sieve X\nhS : S ∈ GrothendieckTopology.sieves J₁ X\n⊢ Presieve.IsSeparatedFor (Functor.closedSieves J₁) S.arrows ∧\n ∀ (x : Presieve.FamilyOfElements (Functor.closedSieves J₁) S.arrows),\n Presieve.FamilyOfElements.Compatible x → ∃ t, Presieve.FamilyOfElements.IsAmalgamation x t", "state_before": "C : Type u\ninst✝ : Category C\nJ₁ J₂ : GrothendieckTopology C\nX : C\nS : Sieve X\nhS : S ∈ GrothendieckTopology.sieves J₁ X\n⊢ Presieve.IsSheafFor (Functor.closedSieves J₁) S.arrows", "tactic": "rw [← Presieve.isSeparatedFor_and_exists_isAmalgamation_iff_isSheafFor]" }, { "state_after": "case refine'_1\nC : Type u\ninst✝ : Category C\nJ₁ J₂ : GrothendieckTopology C\nX : C\nS : Sieve X\nhS : S ∈ GrothendieckTopology.sieves J₁ X\n⊢ Presieve.IsSeparatedFor (Functor.closedSieves J₁) S.arrows\n\ncase refine'_2\nC : Type u\ninst✝ : Category C\nJ₁ J₂ : GrothendieckTopology C\nX : C\nS : Sieve X\nhS : S ∈ GrothendieckTopology.sieves J₁ X\n⊢ ∀ (x : Presieve.FamilyOfElements (Functor.closedSieves J₁) S.arrows),\n Presieve.FamilyOfElements.Compatible x → ∃ t, Presieve.FamilyOfElements.IsAmalgamation x t", "state_before": "C : Type u\ninst✝ : Category C\nJ₁ J₂ : GrothendieckTopology C\nX : C\nS : Sieve X\nhS : S ∈ GrothendieckTopology.sieves J₁ X\n⊢ Presieve.IsSeparatedFor (Functor.closedSieves J₁) S.arrows ∧\n ∀ (x : Presieve.FamilyOfElements (Functor.closedSieves J₁) S.arrows),\n Presieve.FamilyOfElements.Compatible x → ∃ t, Presieve.FamilyOfElements.IsAmalgamation x t", "tactic": "refine' ⟨_, _⟩" }, { "state_after": "case refine'_1.mk.mk\nC : Type u\ninst✝ : Category C\nJ₁ J₂ : GrothendieckTopology C\nX : C\nS : Sieve X\nhS : S ∈ GrothendieckTopology.sieves J₁ X\nx : Presieve.FamilyOfElements (Functor.closedSieves J₁) S.arrows\nM : Sieve X.op.unop\nhM : GrothendieckTopology.IsClosed J₁ M\nN : Sieve X.op.unop\nhN : GrothendieckTopology.IsClosed J₁ N\nhM₂ : Presieve.FamilyOfElements.IsAmalgamation x { val := M, property := hM }\nhN₂ : Presieve.FamilyOfElements.IsAmalgamation x { val := N, property := hN }\n⊢ { val := M, property := hM } = { val := N, property := hN }", "state_before": "case refine'_1\nC : Type u\ninst✝ : Category C\nJ₁ J₂ : GrothendieckTopology C\nX : C\nS : Sieve X\nhS : S ∈ GrothendieckTopology.sieves J₁ X\n⊢ Presieve.IsSeparatedFor (Functor.closedSieves J₁) S.arrows", "tactic": "rintro x ⟨M, hM⟩ ⟨N, hN⟩ hM₂ hN₂" }, { "state_after": "case refine'_1.mk.mk\nC : Type u\ninst✝ : Category C\nJ₁ J₂ : GrothendieckTopology C\nX : C\nS : Sieve X\nhS : S ∈ GrothendieckTopology.sieves J₁ X\nx : Presieve.FamilyOfElements (Functor.closedSieves J₁) S.arrows\nM : Sieve X.op.unop\nhM : GrothendieckTopology.IsClosed J₁ M\nN : Sieve X.op.unop\nhN : GrothendieckTopology.IsClosed J₁ N\nhM₂ : Presieve.FamilyOfElements.IsAmalgamation x { val := M, property := hM }\nhN₂ : Presieve.FamilyOfElements.IsAmalgamation x { val := N, property := hN }\n⊢ { val := M, property := hM } = { val := N, property := hN }", "state_before": "case refine'_1.mk.mk\nC : Type u\ninst✝ : Category C\nJ₁ J₂ : GrothendieckTopology C\nX : C\nS : Sieve X\nhS : S ∈ GrothendieckTopology.sieves J₁ X\nx : Presieve.FamilyOfElements (Functor.closedSieves J₁) S.arrows\nM : Sieve X.op.unop\nhM : GrothendieckTopology.IsClosed J₁ M\nN : Sieve X.op.unop\nhN : GrothendieckTopology.IsClosed J₁ N\nhM₂ : Presieve.FamilyOfElements.IsAmalgamation x { val := M, property := hM }\nhN₂ : Presieve.FamilyOfElements.IsAmalgamation x { val := N, property := hN }\n⊢ { val := M, property := hM } = { val := N, property := hN }", "tactic": "simp only [Functor.closedSieves_obj]" }, { "state_after": "case refine'_1.mk.mk.a.h\nC : Type u\ninst✝ : Category C\nJ₁ J₂ : GrothendieckTopology C\nX : C\nS : Sieve X\nhS : S ∈ GrothendieckTopology.sieves J₁ X\nx : Presieve.FamilyOfElements (Functor.closedSieves J₁) S.arrows\nM : Sieve X.op.unop\nhM : GrothendieckTopology.IsClosed J₁ M\nN : Sieve X.op.unop\nhN : GrothendieckTopology.IsClosed J₁ N\nhM₂ : Presieve.FamilyOfElements.IsAmalgamation x { val := M, property := hM }\nhN₂ : Presieve.FamilyOfElements.IsAmalgamation x { val := N, property := hN }\nY : C\n⊢ ∀ (f : Y ⟶ X.op.unop), (↑{ val := M, property := hM }).arrows f ↔ (↑{ val := N, property := hN }).arrows f", "state_before": "case refine'_1.mk.mk\nC : Type u\ninst✝ : Category C\nJ₁ J₂ : GrothendieckTopology C\nX : C\nS : Sieve X\nhS : S ∈ GrothendieckTopology.sieves J₁ X\nx : Presieve.FamilyOfElements (Functor.closedSieves J₁) S.arrows\nM : Sieve X.op.unop\nhM : GrothendieckTopology.IsClosed J₁ M\nN : Sieve X.op.unop\nhN : GrothendieckTopology.IsClosed J₁ N\nhM₂ : Presieve.FamilyOfElements.IsAmalgamation x { val := M, property := hM }\nhN₂ : Presieve.FamilyOfElements.IsAmalgamation x { val := N, property := hN }\n⊢ { val := M, property := hM } = { val := N, property := hN }", "tactic": "ext Y" }, { "state_after": "case refine'_1.mk.mk.a.h\nC : Type u\ninst✝ : Category C\nJ₁ J₂ : GrothendieckTopology C\nX : C\nS : Sieve X\nhS : S ∈ GrothendieckTopology.sieves J₁ X\nx : Presieve.FamilyOfElements (Functor.closedSieves J₁) S.arrows\nM : Sieve X.op.unop\nhM : GrothendieckTopology.IsClosed J₁ M\nN : Sieve X.op.unop\nhN : GrothendieckTopology.IsClosed J₁ N\nhM₂ : Presieve.FamilyOfElements.IsAmalgamation x { val := M, property := hM }\nhN₂ : Presieve.FamilyOfElements.IsAmalgamation x { val := N, property := hN }\nY : C\nf : Y ⟶ X.op.unop\n⊢ (↑{ val := M, property := hM }).arrows f ↔ (↑{ val := N, property := hN }).arrows f", "state_before": "case refine'_1.mk.mk.a.h\nC : Type u\ninst✝ : Category C\nJ₁ J₂ : GrothendieckTopology C\nX : C\nS : Sieve X\nhS : S ∈ GrothendieckTopology.sieves J₁ X\nx : Presieve.FamilyOfElements (Functor.closedSieves J₁) S.arrows\nM : Sieve X.op.unop\nhM : GrothendieckTopology.IsClosed J₁ M\nN : Sieve X.op.unop\nhN : GrothendieckTopology.IsClosed J₁ N\nhM₂ : Presieve.FamilyOfElements.IsAmalgamation x { val := M, property := hM }\nhN₂ : Presieve.FamilyOfElements.IsAmalgamation x { val := N, property := hN }\nY : C\n⊢ ∀ (f : Y ⟶ X.op.unop), (↑{ val := M, property := hM }).arrows f ↔ (↑{ val := N, property := hN }).arrows f", "tactic": "intro f" }, { "state_after": "case refine'_1.mk.mk.a.h\nC : Type u\ninst✝ : Category C\nJ₁ J₂ : GrothendieckTopology C\nX : C\nS : Sieve X\nhS : S ∈ GrothendieckTopology.sieves J₁ X\nx : Presieve.FamilyOfElements (Functor.closedSieves J₁) S.arrows\nM : Sieve X.op.unop\nhM : GrothendieckTopology.IsClosed J₁ M\nN : Sieve X.op.unop\nhN : GrothendieckTopology.IsClosed J₁ N\nhM₂ : Presieve.FamilyOfElements.IsAmalgamation x { val := M, property := hM }\nhN₂ : Presieve.FamilyOfElements.IsAmalgamation x { val := N, property := hN }\nY : C\nf : Y ⟶ X.op.unop\n⊢ M.arrows f ↔ N.arrows f", "state_before": "case refine'_1.mk.mk.a.h\nC : Type u\ninst✝ : Category C\nJ₁ J₂ : GrothendieckTopology C\nX : C\nS : Sieve X\nhS : S ∈ GrothendieckTopology.sieves J₁ X\nx : Presieve.FamilyOfElements (Functor.closedSieves J₁) S.arrows\nM : Sieve X.op.unop\nhM : GrothendieckTopology.IsClosed J₁ M\nN : Sieve X.op.unop\nhN : GrothendieckTopology.IsClosed J₁ N\nhM₂ : Presieve.FamilyOfElements.IsAmalgamation x { val := M, property := hM }\nhN₂ : Presieve.FamilyOfElements.IsAmalgamation x { val := N, property := hN }\nY : C\nf : Y ⟶ X.op.unop\n⊢ (↑{ val := M, property := hM }).arrows f ↔ (↑{ val := N, property := hN }).arrows f", "tactic": "dsimp only [Subtype.coe_mk]" }, { "state_after": "case refine'_1.mk.mk.a.h\nC : Type u\ninst✝ : Category C\nJ₁ J₂ : GrothendieckTopology C\nX : C\nS : Sieve X\nhS : S ∈ GrothendieckTopology.sieves J₁ X\nx : Presieve.FamilyOfElements (Functor.closedSieves J₁) S.arrows\nM : Sieve X.op.unop\nhM : GrothendieckTopology.IsClosed J₁ M\nN : Sieve X.op.unop\nhN : GrothendieckTopology.IsClosed J₁ N\nhM₂ : Presieve.FamilyOfElements.IsAmalgamation x { val := M, property := hM }\nhN₂ : Presieve.FamilyOfElements.IsAmalgamation x { val := N, property := hN }\nY : C\nf : Y ⟶ X.op.unop\n⊢ GrothendieckTopology.Covers J₁ M f ↔ GrothendieckTopology.Covers J₁ N f", "state_before": "case refine'_1.mk.mk.a.h\nC : Type u\ninst✝ : Category C\nJ₁ J₂ : GrothendieckTopology C\nX : C\nS : Sieve X\nhS : S ∈ GrothendieckTopology.sieves J₁ X\nx : Presieve.FamilyOfElements (Functor.closedSieves J₁) S.arrows\nM : Sieve X.op.unop\nhM : GrothendieckTopology.IsClosed J₁ M\nN : Sieve X.op.unop\nhN : GrothendieckTopology.IsClosed J₁ N\nhM₂ : Presieve.FamilyOfElements.IsAmalgamation x { val := M, property := hM }\nhN₂ : Presieve.FamilyOfElements.IsAmalgamation x { val := N, property := hN }\nY : C\nf : Y ⟶ X.op.unop\n⊢ M.arrows f ↔ N.arrows f", "tactic": "rw [← J₁.covers_iff_mem_of_isClosed hM, ← J₁.covers_iff_mem_of_isClosed hN]" }, { "state_after": "case refine'_1.mk.mk.a.h\nC : Type u\ninst✝ : Category C\nJ₁ J₂ : GrothendieckTopology C\nX : C\nS : Sieve X\nhS : S ∈ GrothendieckTopology.sieves J₁ X\nx : Presieve.FamilyOfElements (Functor.closedSieves J₁) S.arrows\nM : Sieve X.op.unop\nhM : GrothendieckTopology.IsClosed J₁ M\nN : Sieve X.op.unop\nhN : GrothendieckTopology.IsClosed J₁ N\nhM₂ : Presieve.FamilyOfElements.IsAmalgamation x { val := M, property := hM }\nhN₂ : Presieve.FamilyOfElements.IsAmalgamation x { val := N, property := hN }\nY : C\nf : Y ⟶ X.op.unop\nq : ∀ ⦃Z : C⦄ (g : Z ⟶ X), S.arrows g → Sieve.pullback g M = Sieve.pullback g N\n⊢ GrothendieckTopology.Covers J₁ M f ↔ GrothendieckTopology.Covers J₁ N f", "state_before": "case refine'_1.mk.mk.a.h\nC : Type u\ninst✝ : Category C\nJ₁ J₂ : GrothendieckTopology C\nX : C\nS : Sieve X\nhS : S ∈ GrothendieckTopology.sieves J₁ X\nx : Presieve.FamilyOfElements (Functor.closedSieves J₁) S.arrows\nM : Sieve X.op.unop\nhM : GrothendieckTopology.IsClosed J₁ M\nN : Sieve X.op.unop\nhN : GrothendieckTopology.IsClosed J₁ N\nhM₂ : Presieve.FamilyOfElements.IsAmalgamation x { val := M, property := hM }\nhN₂ : Presieve.FamilyOfElements.IsAmalgamation x { val := N, property := hN }\nY : C\nf : Y ⟶ X.op.unop\n⊢ GrothendieckTopology.Covers J₁ M f ↔ GrothendieckTopology.Covers J₁ N f", "tactic": "have q : ∀ ⦃Z : C⦄ (g : Z ⟶ X) (_ : S g), M.pullback g = N.pullback g :=\n fun Z g hg => congr_arg Subtype.val ((hM₂ g hg).trans (hN₂ g hg).symm)" }, { "state_after": "case refine'_1.mk.mk.a.h\nC : Type u\ninst✝ : Category C\nJ₁ J₂ : GrothendieckTopology C\nX : C\nS : Sieve X\nhS : S ∈ GrothendieckTopology.sieves J₁ X\nx : Presieve.FamilyOfElements (Functor.closedSieves J₁) S.arrows\nM : Sieve X.op.unop\nhM : GrothendieckTopology.IsClosed J₁ M\nN : Sieve X.op.unop\nhN : GrothendieckTopology.IsClosed J₁ N\nhM₂ : Presieve.FamilyOfElements.IsAmalgamation x { val := M, property := hM }\nhN₂ : Presieve.FamilyOfElements.IsAmalgamation x { val := N, property := hN }\nY : C\nf : Y ⟶ X.op.unop\nq : ∀ ⦃Z : C⦄ (g : Z ⟶ X), S.arrows g → Sieve.pullback g M = Sieve.pullback g N\nMSNS : M ⊓ S = N ⊓ S\n⊢ GrothendieckTopology.Covers J₁ M f ↔ GrothendieckTopology.Covers J₁ N f", "state_before": "case refine'_1.mk.mk.a.h\nC : Type u\ninst✝ : Category C\nJ₁ J₂ : GrothendieckTopology C\nX : C\nS : Sieve X\nhS : S ∈ GrothendieckTopology.sieves J₁ X\nx : Presieve.FamilyOfElements (Functor.closedSieves J₁) S.arrows\nM : Sieve X.op.unop\nhM : GrothendieckTopology.IsClosed J₁ M\nN : Sieve X.op.unop\nhN : GrothendieckTopology.IsClosed J₁ N\nhM₂ : Presieve.FamilyOfElements.IsAmalgamation x { val := M, property := hM }\nhN₂ : Presieve.FamilyOfElements.IsAmalgamation x { val := N, property := hN }\nY : C\nf : Y ⟶ X.op.unop\nq : ∀ ⦃Z : C⦄ (g : Z ⟶ X), S.arrows g → Sieve.pullback g M = Sieve.pullback g N\n⊢ GrothendieckTopology.Covers J₁ M f ↔ GrothendieckTopology.Covers J₁ N f", "tactic": "have MSNS : M ⊓ S = N ⊓ S := by\n ext Z\n intro g\n rw [Sieve.inter_apply, Sieve.inter_apply]\n simp only [and_comm]\n apply and_congr_right\n intro hg\n rw [Sieve.pullback_eq_top_iff_mem, Sieve.pullback_eq_top_iff_mem, q g hg]" }, { "state_after": "case refine'_1.mk.mk.a.h.mp\nC : Type u\ninst✝ : Category C\nJ₁ J₂ : GrothendieckTopology C\nX : C\nS : Sieve X\nhS : S ∈ GrothendieckTopology.sieves J₁ X\nx : Presieve.FamilyOfElements (Functor.closedSieves J₁) S.arrows\nM : Sieve X.op.unop\nhM : GrothendieckTopology.IsClosed J₁ M\nN : Sieve X.op.unop\nhN : GrothendieckTopology.IsClosed J₁ N\nhM₂ : Presieve.FamilyOfElements.IsAmalgamation x { val := M, property := hM }\nhN₂ : Presieve.FamilyOfElements.IsAmalgamation x { val := N, property := hN }\nY : C\nf : Y ⟶ X.op.unop\nq : ∀ ⦃Z : C⦄ (g : Z ⟶ X), S.arrows g → Sieve.pullback g M = Sieve.pullback g N\nMSNS : M ⊓ S = N ⊓ S\n⊢ GrothendieckTopology.Covers J₁ M f → GrothendieckTopology.Covers J₁ N f\n\ncase refine'_1.mk.mk.a.h.mpr\nC : Type u\ninst✝ : Category C\nJ₁ J₂ : GrothendieckTopology C\nX : C\nS : Sieve X\nhS : S ∈ GrothendieckTopology.sieves J₁ X\nx : Presieve.FamilyOfElements (Functor.closedSieves J₁) S.arrows\nM : Sieve X.op.unop\nhM : GrothendieckTopology.IsClosed J₁ M\nN : Sieve X.op.unop\nhN : GrothendieckTopology.IsClosed J₁ N\nhM₂ : Presieve.FamilyOfElements.IsAmalgamation x { val := M, property := hM }\nhN₂ : Presieve.FamilyOfElements.IsAmalgamation x { val := N, property := hN }\nY : C\nf : Y ⟶ X.op.unop\nq : ∀ ⦃Z : C⦄ (g : Z ⟶ X), S.arrows g → Sieve.pullback g M = Sieve.pullback g N\nMSNS : M ⊓ S = N ⊓ S\n⊢ GrothendieckTopology.Covers J₁ N f → GrothendieckTopology.Covers J₁ M f", "state_before": "case refine'_1.mk.mk.a.h\nC : Type u\ninst✝ : Category C\nJ₁ J₂ : GrothendieckTopology C\nX : C\nS : Sieve X\nhS : S ∈ GrothendieckTopology.sieves J₁ X\nx : Presieve.FamilyOfElements (Functor.closedSieves J₁) S.arrows\nM : Sieve X.op.unop\nhM : GrothendieckTopology.IsClosed J₁ M\nN : Sieve X.op.unop\nhN : GrothendieckTopology.IsClosed J₁ N\nhM₂ : Presieve.FamilyOfElements.IsAmalgamation x { val := M, property := hM }\nhN₂ : Presieve.FamilyOfElements.IsAmalgamation x { val := N, property := hN }\nY : C\nf : Y ⟶ X.op.unop\nq : ∀ ⦃Z : C⦄ (g : Z ⟶ X), S.arrows g → Sieve.pullback g M = Sieve.pullback g N\nMSNS : M ⊓ S = N ⊓ S\n⊢ GrothendieckTopology.Covers J₁ M f ↔ GrothendieckTopology.Covers J₁ N f", "tactic": "constructor" }, { "state_after": "case h\nC : Type u\ninst✝ : Category C\nJ₁ J₂ : GrothendieckTopology C\nX : C\nS : Sieve X\nhS : S ∈ GrothendieckTopology.sieves J₁ X\nx : Presieve.FamilyOfElements (Functor.closedSieves J₁) S.arrows\nM : Sieve X.op.unop\nhM : GrothendieckTopology.IsClosed J₁ M\nN : Sieve X.op.unop\nhN : GrothendieckTopology.IsClosed J₁ N\nhM₂ : Presieve.FamilyOfElements.IsAmalgamation x { val := M, property := hM }\nhN₂ : Presieve.FamilyOfElements.IsAmalgamation x { val := N, property := hN }\nY : C\nf : Y ⟶ X.op.unop\nq : ∀ ⦃Z : C⦄ (g : Z ⟶ X), S.arrows g → Sieve.pullback g M = Sieve.pullback g N\nZ : C\n⊢ ∀ (f : Z ⟶ X.op.unop), (M ⊓ S).arrows f ↔ (N ⊓ S).arrows f", "state_before": "C : Type u\ninst✝ : Category C\nJ₁ J₂ : GrothendieckTopology C\nX : C\nS : Sieve X\nhS : S ∈ GrothendieckTopology.sieves J₁ X\nx : Presieve.FamilyOfElements (Functor.closedSieves J₁) S.arrows\nM : Sieve X.op.unop\nhM : GrothendieckTopology.IsClosed J₁ M\nN : Sieve X.op.unop\nhN : GrothendieckTopology.IsClosed J₁ N\nhM₂ : Presieve.FamilyOfElements.IsAmalgamation x { val := M, property := hM }\nhN₂ : Presieve.FamilyOfElements.IsAmalgamation x { val := N, property := hN }\nY : C\nf : Y ⟶ X.op.unop\nq : ∀ ⦃Z : C⦄ (g : Z ⟶ X), S.arrows g → Sieve.pullback g M = Sieve.pullback g N\n⊢ M ⊓ S = N ⊓ S", "tactic": "ext Z" }, { "state_after": "case h\nC : Type u\ninst✝ : Category C\nJ₁ J₂ : GrothendieckTopology C\nX : C\nS : Sieve X\nhS : S ∈ GrothendieckTopology.sieves J₁ X\nx : Presieve.FamilyOfElements (Functor.closedSieves J₁) S.arrows\nM : Sieve X.op.unop\nhM : GrothendieckTopology.IsClosed J₁ M\nN : Sieve X.op.unop\nhN : GrothendieckTopology.IsClosed J₁ N\nhM₂ : Presieve.FamilyOfElements.IsAmalgamation x { val := M, property := hM }\nhN₂ : Presieve.FamilyOfElements.IsAmalgamation x { val := N, property := hN }\nY : C\nf : Y ⟶ X.op.unop\nq : ∀ ⦃Z : C⦄ (g : Z ⟶ X), S.arrows g → Sieve.pullback g M = Sieve.pullback g N\nZ : C\ng : Z ⟶ X.op.unop\n⊢ (M ⊓ S).arrows g ↔ (N ⊓ S).arrows g", "state_before": "case h\nC : Type u\ninst✝ : Category C\nJ₁ J₂ : GrothendieckTopology C\nX : C\nS : Sieve X\nhS : S ∈ GrothendieckTopology.sieves J₁ X\nx : Presieve.FamilyOfElements (Functor.closedSieves J₁) S.arrows\nM : Sieve X.op.unop\nhM : GrothendieckTopology.IsClosed J₁ M\nN : Sieve X.op.unop\nhN : GrothendieckTopology.IsClosed J₁ N\nhM₂ : Presieve.FamilyOfElements.IsAmalgamation x { val := M, property := hM }\nhN₂ : Presieve.FamilyOfElements.IsAmalgamation x { val := N, property := hN }\nY : C\nf : Y ⟶ X.op.unop\nq : ∀ ⦃Z : C⦄ (g : Z ⟶ X), S.arrows g → Sieve.pullback g M = Sieve.pullback g N\nZ : C\n⊢ ∀ (f : Z ⟶ X.op.unop), (M ⊓ S).arrows f ↔ (N ⊓ S).arrows f", "tactic": "intro g" }, { "state_after": "case h\nC : Type u\ninst✝ : Category C\nJ₁ J₂ : GrothendieckTopology C\nX : C\nS : Sieve X\nhS : S ∈ GrothendieckTopology.sieves J₁ X\nx : Presieve.FamilyOfElements (Functor.closedSieves J₁) S.arrows\nM : Sieve X.op.unop\nhM : GrothendieckTopology.IsClosed J₁ M\nN : Sieve X.op.unop\nhN : GrothendieckTopology.IsClosed J₁ N\nhM₂ : Presieve.FamilyOfElements.IsAmalgamation x { val := M, property := hM }\nhN₂ : Presieve.FamilyOfElements.IsAmalgamation x { val := N, property := hN }\nY : C\nf : Y ⟶ X.op.unop\nq : ∀ ⦃Z : C⦄ (g : Z ⟶ X), S.arrows g → Sieve.pullback g M = Sieve.pullback g N\nZ : C\ng : Z ⟶ X.op.unop\n⊢ M.arrows g ∧ S.arrows g ↔ N.arrows g ∧ S.arrows g", "state_before": "case h\nC : Type u\ninst✝ : Category C\nJ₁ J₂ : GrothendieckTopology C\nX : C\nS : Sieve X\nhS : S ∈ GrothendieckTopology.sieves J₁ X\nx : Presieve.FamilyOfElements (Functor.closedSieves J₁) S.arrows\nM : Sieve X.op.unop\nhM : GrothendieckTopology.IsClosed J₁ M\nN : Sieve X.op.unop\nhN : GrothendieckTopology.IsClosed J₁ N\nhM₂ : Presieve.FamilyOfElements.IsAmalgamation x { val := M, property := hM }\nhN₂ : Presieve.FamilyOfElements.IsAmalgamation x { val := N, property := hN }\nY : C\nf : Y ⟶ X.op.unop\nq : ∀ ⦃Z : C⦄ (g : Z ⟶ X), S.arrows g → Sieve.pullback g M = Sieve.pullback g N\nZ : C\ng : Z ⟶ X.op.unop\n⊢ (M ⊓ S).arrows g ↔ (N ⊓ S).arrows g", "tactic": "rw [Sieve.inter_apply, Sieve.inter_apply]" }, { "state_after": "case h\nC : Type u\ninst✝ : Category C\nJ₁ J₂ : GrothendieckTopology C\nX : C\nS : Sieve X\nhS : S ∈ GrothendieckTopology.sieves J₁ X\nx : Presieve.FamilyOfElements (Functor.closedSieves J₁) S.arrows\nM : Sieve X.op.unop\nhM : GrothendieckTopology.IsClosed J₁ M\nN : Sieve X.op.unop\nhN : GrothendieckTopology.IsClosed J₁ N\nhM₂ : Presieve.FamilyOfElements.IsAmalgamation x { val := M, property := hM }\nhN₂ : Presieve.FamilyOfElements.IsAmalgamation x { val := N, property := hN }\nY : C\nf : Y ⟶ X.op.unop\nq : ∀ ⦃Z : C⦄ (g : Z ⟶ X), S.arrows g → Sieve.pullback g M = Sieve.pullback g N\nZ : C\ng : Z ⟶ X.op.unop\n⊢ S.arrows g ∧ M.arrows g ↔ S.arrows g ∧ N.arrows g", "state_before": "case h\nC : Type u\ninst✝ : Category C\nJ₁ J₂ : GrothendieckTopology C\nX : C\nS : Sieve X\nhS : S ∈ GrothendieckTopology.sieves J₁ X\nx : Presieve.FamilyOfElements (Functor.closedSieves J₁) S.arrows\nM : Sieve X.op.unop\nhM : GrothendieckTopology.IsClosed J₁ M\nN : Sieve X.op.unop\nhN : GrothendieckTopology.IsClosed J₁ N\nhM₂ : Presieve.FamilyOfElements.IsAmalgamation x { val := M, property := hM }\nhN₂ : Presieve.FamilyOfElements.IsAmalgamation x { val := N, property := hN }\nY : C\nf : Y ⟶ X.op.unop\nq : ∀ ⦃Z : C⦄ (g : Z ⟶ X), S.arrows g → Sieve.pullback g M = Sieve.pullback g N\nZ : C\ng : Z ⟶ X.op.unop\n⊢ M.arrows g ∧ S.arrows g ↔ N.arrows g ∧ S.arrows g", "tactic": "simp only [and_comm]" }, { "state_after": "case h.h\nC : Type u\ninst✝ : Category C\nJ₁ J₂ : GrothendieckTopology C\nX : C\nS : Sieve X\nhS : S ∈ GrothendieckTopology.sieves J₁ X\nx : Presieve.FamilyOfElements (Functor.closedSieves J₁) S.arrows\nM : Sieve X.op.unop\nhM : GrothendieckTopology.IsClosed J₁ M\nN : Sieve X.op.unop\nhN : GrothendieckTopology.IsClosed J₁ N\nhM₂ : Presieve.FamilyOfElements.IsAmalgamation x { val := M, property := hM }\nhN₂ : Presieve.FamilyOfElements.IsAmalgamation x { val := N, property := hN }\nY : C\nf : Y ⟶ X.op.unop\nq : ∀ ⦃Z : C⦄ (g : Z ⟶ X), S.arrows g → Sieve.pullback g M = Sieve.pullback g N\nZ : C\ng : Z ⟶ X.op.unop\n⊢ S.arrows g → (M.arrows g ↔ N.arrows g)", "state_before": "case h\nC : Type u\ninst✝ : Category C\nJ₁ J₂ : GrothendieckTopology C\nX : C\nS : Sieve X\nhS : S ∈ GrothendieckTopology.sieves J₁ X\nx : Presieve.FamilyOfElements (Functor.closedSieves J₁) S.arrows\nM : Sieve X.op.unop\nhM : GrothendieckTopology.IsClosed J₁ M\nN : Sieve X.op.unop\nhN : GrothendieckTopology.IsClosed J₁ N\nhM₂ : Presieve.FamilyOfElements.IsAmalgamation x { val := M, property := hM }\nhN₂ : Presieve.FamilyOfElements.IsAmalgamation x { val := N, property := hN }\nY : C\nf : Y ⟶ X.op.unop\nq : ∀ ⦃Z : C⦄ (g : Z ⟶ X), S.arrows g → Sieve.pullback g M = Sieve.pullback g N\nZ : C\ng : Z ⟶ X.op.unop\n⊢ S.arrows g ∧ M.arrows g ↔ S.arrows g ∧ N.arrows g", "tactic": "apply and_congr_right" }, { "state_after": "case h.h\nC : Type u\ninst✝ : Category C\nJ₁ J₂ : GrothendieckTopology C\nX : C\nS : Sieve X\nhS : S ∈ GrothendieckTopology.sieves J₁ X\nx : Presieve.FamilyOfElements (Functor.closedSieves J₁) S.arrows\nM : Sieve X.op.unop\nhM : GrothendieckTopology.IsClosed J₁ M\nN : Sieve X.op.unop\nhN : GrothendieckTopology.IsClosed J₁ N\nhM₂ : Presieve.FamilyOfElements.IsAmalgamation x { val := M, property := hM }\nhN₂ : Presieve.FamilyOfElements.IsAmalgamation x { val := N, property := hN }\nY : C\nf : Y ⟶ X.op.unop\nq : ∀ ⦃Z : C⦄ (g : Z ⟶ X), S.arrows g → Sieve.pullback g M = Sieve.pullback g N\nZ : C\ng : Z ⟶ X.op.unop\nhg : S.arrows g\n⊢ M.arrows g ↔ N.arrows g", "state_before": "case h.h\nC : Type u\ninst✝ : Category C\nJ₁ J₂ : GrothendieckTopology C\nX : C\nS : Sieve X\nhS : S ∈ GrothendieckTopology.sieves J₁ X\nx : Presieve.FamilyOfElements (Functor.closedSieves J₁) S.arrows\nM : Sieve X.op.unop\nhM : GrothendieckTopology.IsClosed J₁ M\nN : Sieve X.op.unop\nhN : GrothendieckTopology.IsClosed J₁ N\nhM₂ : Presieve.FamilyOfElements.IsAmalgamation x { val := M, property := hM }\nhN₂ : Presieve.FamilyOfElements.IsAmalgamation x { val := N, property := hN }\nY : C\nf : Y ⟶ X.op.unop\nq : ∀ ⦃Z : C⦄ (g : Z ⟶ X), S.arrows g → Sieve.pullback g M = Sieve.pullback g N\nZ : C\ng : Z ⟶ X.op.unop\n⊢ S.arrows g → (M.arrows g ↔ N.arrows g)", "tactic": "intro hg" }, { "state_after": "no goals", "state_before": "case h.h\nC : Type u\ninst✝ : Category C\nJ₁ J₂ : GrothendieckTopology C\nX : C\nS : Sieve X\nhS : S ∈ GrothendieckTopology.sieves J₁ X\nx : Presieve.FamilyOfElements (Functor.closedSieves J₁) S.arrows\nM : Sieve X.op.unop\nhM : GrothendieckTopology.IsClosed J₁ M\nN : Sieve X.op.unop\nhN : GrothendieckTopology.IsClosed J₁ N\nhM₂ : Presieve.FamilyOfElements.IsAmalgamation x { val := M, property := hM }\nhN₂ : Presieve.FamilyOfElements.IsAmalgamation x { val := N, property := hN }\nY : C\nf : Y ⟶ X.op.unop\nq : ∀ ⦃Z : C⦄ (g : Z ⟶ X), S.arrows g → Sieve.pullback g M = Sieve.pullback g N\nZ : C\ng : Z ⟶ X.op.unop\nhg : S.arrows g\n⊢ M.arrows g ↔ N.arrows g", "tactic": "rw [Sieve.pullback_eq_top_iff_mem, Sieve.pullback_eq_top_iff_mem, q g hg]" }, { "state_after": "case refine'_1.mk.mk.a.h.mp\nC : Type u\ninst✝ : Category C\nJ₁ J₂ : GrothendieckTopology C\nX : C\nS : Sieve X\nhS : S ∈ GrothendieckTopology.sieves J₁ X\nx : Presieve.FamilyOfElements (Functor.closedSieves J₁) S.arrows\nM : Sieve X.op.unop\nhM : GrothendieckTopology.IsClosed J₁ M\nN : Sieve X.op.unop\nhN : GrothendieckTopology.IsClosed J₁ N\nhM₂ : Presieve.FamilyOfElements.IsAmalgamation x { val := M, property := hM }\nhN₂ : Presieve.FamilyOfElements.IsAmalgamation x { val := N, property := hN }\nY : C\nf : Y ⟶ X.op.unop\nq : ∀ ⦃Z : C⦄ (g : Z ⟶ X), S.arrows g → Sieve.pullback g M = Sieve.pullback g N\nMSNS : M ⊓ S = N ⊓ S\nhf : GrothendieckTopology.Covers J₁ M f\n⊢ GrothendieckTopology.Covers J₁ N f", "state_before": "case refine'_1.mk.mk.a.h.mp\nC : Type u\ninst✝ : Category C\nJ₁ J₂ : GrothendieckTopology C\nX : C\nS : Sieve X\nhS : S ∈ GrothendieckTopology.sieves J₁ X\nx : Presieve.FamilyOfElements (Functor.closedSieves J₁) S.arrows\nM : Sieve X.op.unop\nhM : GrothendieckTopology.IsClosed J₁ M\nN : Sieve X.op.unop\nhN : GrothendieckTopology.IsClosed J₁ N\nhM₂ : Presieve.FamilyOfElements.IsAmalgamation x { val := M, property := hM }\nhN₂ : Presieve.FamilyOfElements.IsAmalgamation x { val := N, property := hN }\nY : C\nf : Y ⟶ X.op.unop\nq : ∀ ⦃Z : C⦄ (g : Z ⟶ X), S.arrows g → Sieve.pullback g M = Sieve.pullback g N\nMSNS : M ⊓ S = N ⊓ S\n⊢ GrothendieckTopology.Covers J₁ M f → GrothendieckTopology.Covers J₁ N f", "tactic": "intro hf" }, { "state_after": "case refine'_1.mk.mk.a.h.mp\nC : Type u\ninst✝ : Category C\nJ₁ J₂ : GrothendieckTopology C\nX : C\nS : Sieve X\nhS : S ∈ GrothendieckTopology.sieves J₁ X\nx : Presieve.FamilyOfElements (Functor.closedSieves J₁) S.arrows\nM : Sieve X.op.unop\nhM : GrothendieckTopology.IsClosed J₁ M\nN : Sieve X.op.unop\nhN : GrothendieckTopology.IsClosed J₁ N\nhM₂ : Presieve.FamilyOfElements.IsAmalgamation x { val := M, property := hM }\nhN₂ : Presieve.FamilyOfElements.IsAmalgamation x { val := N, property := hN }\nY : C\nf : Y ⟶ X.op.unop\nq : ∀ ⦃Z : C⦄ (g : Z ⟶ X), S.arrows g → Sieve.pullback g M = Sieve.pullback g N\nMSNS : M ⊓ S = N ⊓ S\nhf : GrothendieckTopology.Covers J₁ M f\n⊢ Sieve.pullback f N ∈ GrothendieckTopology.sieves J₁ Y", "state_before": "case refine'_1.mk.mk.a.h.mp\nC : Type u\ninst✝ : Category C\nJ₁ J₂ : GrothendieckTopology C\nX : C\nS : Sieve X\nhS : S ∈ GrothendieckTopology.sieves J₁ X\nx : Presieve.FamilyOfElements (Functor.closedSieves J₁) S.arrows\nM : Sieve X.op.unop\nhM : GrothendieckTopology.IsClosed J₁ M\nN : Sieve X.op.unop\nhN : GrothendieckTopology.IsClosed J₁ N\nhM₂ : Presieve.FamilyOfElements.IsAmalgamation x { val := M, property := hM }\nhN₂ : Presieve.FamilyOfElements.IsAmalgamation x { val := N, property := hN }\nY : C\nf : Y ⟶ X.op.unop\nq : ∀ ⦃Z : C⦄ (g : Z ⟶ X), S.arrows g → Sieve.pullback g M = Sieve.pullback g N\nMSNS : M ⊓ S = N ⊓ S\nhf : GrothendieckTopology.Covers J₁ M f\n⊢ GrothendieckTopology.Covers J₁ N f", "tactic": "rw [J₁.covers_iff]" }, { "state_after": "case refine'_1.mk.mk.a.h.mp\nC : Type u\ninst✝ : Category C\nJ₁ J₂ : GrothendieckTopology C\nX : C\nS : Sieve X\nhS : S ∈ GrothendieckTopology.sieves J₁ X\nx : Presieve.FamilyOfElements (Functor.closedSieves J₁) S.arrows\nM : Sieve X.op.unop\nhM : GrothendieckTopology.IsClosed J₁ M\nN : Sieve X.op.unop\nhN : GrothendieckTopology.IsClosed J₁ N\nhM₂ : Presieve.FamilyOfElements.IsAmalgamation x { val := M, property := hM }\nhN₂ : Presieve.FamilyOfElements.IsAmalgamation x { val := N, property := hN }\nY : C\nf : Y ⟶ X.op.unop\nq : ∀ ⦃Z : C⦄ (g : Z ⟶ X), S.arrows g → Sieve.pullback g M = Sieve.pullback g N\nMSNS : M ⊓ S = N ⊓ S\nhf : GrothendieckTopology.Covers J₁ M f\n⊢ Sieve.pullback f (N ⊓ ?m.20451) ∈ GrothendieckTopology.sieves J₁ Y\n\nC : Type u\ninst✝ : Category C\nJ₁ J₂ : GrothendieckTopology C\nX : C\nS : Sieve X\nhS : S ∈ GrothendieckTopology.sieves J₁ X\nx : Presieve.FamilyOfElements (Functor.closedSieves J₁) S.arrows\nM : Sieve X.op.unop\nhM : GrothendieckTopology.IsClosed J₁ M\nN : Sieve X.op.unop\nhN : GrothendieckTopology.IsClosed J₁ N\nhM₂ : Presieve.FamilyOfElements.IsAmalgamation x { val := M, property := hM }\nhN₂ : Presieve.FamilyOfElements.IsAmalgamation x { val := N, property := hN }\nY : C\nf : Y ⟶ X.op.unop\nq : ∀ ⦃Z : C⦄ (g : Z ⟶ X), S.arrows g → Sieve.pullback g M = Sieve.pullback g N\nMSNS : M ⊓ S = N ⊓ S\nhf : GrothendieckTopology.Covers J₁ M f\n⊢ Sieve X.op.unop", "state_before": "case refine'_1.mk.mk.a.h.mp\nC : Type u\ninst✝ : Category C\nJ₁ J₂ : GrothendieckTopology C\nX : C\nS : Sieve X\nhS : S ∈ GrothendieckTopology.sieves J₁ X\nx : Presieve.FamilyOfElements (Functor.closedSieves J₁) S.arrows\nM : Sieve X.op.unop\nhM : GrothendieckTopology.IsClosed J₁ M\nN : Sieve X.op.unop\nhN : GrothendieckTopology.IsClosed J₁ N\nhM₂ : Presieve.FamilyOfElements.IsAmalgamation x { val := M, property := hM }\nhN₂ : Presieve.FamilyOfElements.IsAmalgamation x { val := N, property := hN }\nY : C\nf : Y ⟶ X.op.unop\nq : ∀ ⦃Z : C⦄ (g : Z ⟶ X), S.arrows g → Sieve.pullback g M = Sieve.pullback g N\nMSNS : M ⊓ S = N ⊓ S\nhf : GrothendieckTopology.Covers J₁ M f\n⊢ Sieve.pullback f N ∈ GrothendieckTopology.sieves J₁ Y", "tactic": "apply J₁.superset_covering (Sieve.pullback_monotone f inf_le_left)" }, { "state_after": "case refine'_1.mk.mk.a.h.mp\nC : Type u\ninst✝ : Category C\nJ₁ J₂ : GrothendieckTopology C\nX : C\nS : Sieve X\nhS : S ∈ GrothendieckTopology.sieves J₁ X\nx : Presieve.FamilyOfElements (Functor.closedSieves J₁) S.arrows\nM : Sieve X.op.unop\nhM : GrothendieckTopology.IsClosed J₁ M\nN : Sieve X.op.unop\nhN : GrothendieckTopology.IsClosed J₁ N\nhM₂ : Presieve.FamilyOfElements.IsAmalgamation x { val := M, property := hM }\nhN₂ : Presieve.FamilyOfElements.IsAmalgamation x { val := N, property := hN }\nY : C\nf : Y ⟶ X.op.unop\nq : ∀ ⦃Z : C⦄ (g : Z ⟶ X), S.arrows g → Sieve.pullback g M = Sieve.pullback g N\nMSNS : M ⊓ S = N ⊓ S\nhf : GrothendieckTopology.Covers J₁ M f\n⊢ Sieve.pullback f (M ⊓ S) ∈ GrothendieckTopology.sieves J₁ Y", "state_before": "case refine'_1.mk.mk.a.h.mp\nC : Type u\ninst✝ : Category C\nJ₁ J₂ : GrothendieckTopology C\nX : C\nS : Sieve X\nhS : S ∈ GrothendieckTopology.sieves J₁ X\nx : Presieve.FamilyOfElements (Functor.closedSieves J₁) S.arrows\nM : Sieve X.op.unop\nhM : GrothendieckTopology.IsClosed J₁ M\nN : Sieve X.op.unop\nhN : GrothendieckTopology.IsClosed J₁ N\nhM₂ : Presieve.FamilyOfElements.IsAmalgamation x { val := M, property := hM }\nhN₂ : Presieve.FamilyOfElements.IsAmalgamation x { val := N, property := hN }\nY : C\nf : Y ⟶ X.op.unop\nq : ∀ ⦃Z : C⦄ (g : Z ⟶ X), S.arrows g → Sieve.pullback g M = Sieve.pullback g N\nMSNS : M ⊓ S = N ⊓ S\nhf : GrothendieckTopology.Covers J₁ M f\n⊢ Sieve.pullback f (N ⊓ ?m.20451) ∈ GrothendieckTopology.sieves J₁ Y\n\nC : Type u\ninst✝ : Category C\nJ₁ J₂ : GrothendieckTopology C\nX : C\nS : Sieve X\nhS : S ∈ GrothendieckTopology.sieves J₁ X\nx : Presieve.FamilyOfElements (Functor.closedSieves J₁) S.arrows\nM : Sieve X.op.unop\nhM : GrothendieckTopology.IsClosed J₁ M\nN : Sieve X.op.unop\nhN : GrothendieckTopology.IsClosed J₁ N\nhM₂ : Presieve.FamilyOfElements.IsAmalgamation x { val := M, property := hM }\nhN₂ : Presieve.FamilyOfElements.IsAmalgamation x { val := N, property := hN }\nY : C\nf : Y ⟶ X.op.unop\nq : ∀ ⦃Z : C⦄ (g : Z ⟶ X), S.arrows g → Sieve.pullback g M = Sieve.pullback g N\nMSNS : M ⊓ S = N ⊓ S\nhf : GrothendieckTopology.Covers J₁ M f\n⊢ Sieve X.op.unop", "tactic": "rw [← MSNS]" }, { "state_after": "no goals", "state_before": "case refine'_1.mk.mk.a.h.mp\nC : Type u\ninst✝ : Category C\nJ₁ J₂ : GrothendieckTopology C\nX : C\nS : Sieve X\nhS : S ∈ GrothendieckTopology.sieves J₁ X\nx : Presieve.FamilyOfElements (Functor.closedSieves J₁) S.arrows\nM : Sieve X.op.unop\nhM : GrothendieckTopology.IsClosed J₁ M\nN : Sieve X.op.unop\nhN : GrothendieckTopology.IsClosed J₁ N\nhM₂ : Presieve.FamilyOfElements.IsAmalgamation x { val := M, property := hM }\nhN₂ : Presieve.FamilyOfElements.IsAmalgamation x { val := N, property := hN }\nY : C\nf : Y ⟶ X.op.unop\nq : ∀ ⦃Z : C⦄ (g : Z ⟶ X), S.arrows g → Sieve.pullback g M = Sieve.pullback g N\nMSNS : M ⊓ S = N ⊓ S\nhf : GrothendieckTopology.Covers J₁ M f\n⊢ Sieve.pullback f (M ⊓ S) ∈ GrothendieckTopology.sieves J₁ Y", "tactic": "apply J₁.arrow_intersect f M S hf (J₁.pullback_stable _ hS)" }, { "state_after": "case refine'_1.mk.mk.a.h.mpr\nC : Type u\ninst✝ : Category C\nJ₁ J₂ : GrothendieckTopology C\nX : C\nS : Sieve X\nhS : S ∈ GrothendieckTopology.sieves J₁ X\nx : Presieve.FamilyOfElements (Functor.closedSieves J₁) S.arrows\nM : Sieve X.op.unop\nhM : GrothendieckTopology.IsClosed J₁ M\nN : Sieve X.op.unop\nhN : GrothendieckTopology.IsClosed J₁ N\nhM₂ : Presieve.FamilyOfElements.IsAmalgamation x { val := M, property := hM }\nhN₂ : Presieve.FamilyOfElements.IsAmalgamation x { val := N, property := hN }\nY : C\nf : Y ⟶ X.op.unop\nq : ∀ ⦃Z : C⦄ (g : Z ⟶ X), S.arrows g → Sieve.pullback g M = Sieve.pullback g N\nMSNS : M ⊓ S = N ⊓ S\nhf : GrothendieckTopology.Covers J₁ N f\n⊢ GrothendieckTopology.Covers J₁ M f", "state_before": "case refine'_1.mk.mk.a.h.mpr\nC : Type u\ninst✝ : Category C\nJ₁ J₂ : GrothendieckTopology C\nX : C\nS : Sieve X\nhS : S ∈ GrothendieckTopology.sieves J₁ X\nx : Presieve.FamilyOfElements (Functor.closedSieves J₁) S.arrows\nM : Sieve X.op.unop\nhM : GrothendieckTopology.IsClosed J₁ M\nN : Sieve X.op.unop\nhN : GrothendieckTopology.IsClosed J₁ N\nhM₂ : Presieve.FamilyOfElements.IsAmalgamation x { val := M, property := hM }\nhN₂ : Presieve.FamilyOfElements.IsAmalgamation x { val := N, property := hN }\nY : C\nf : Y ⟶ X.op.unop\nq : ∀ ⦃Z : C⦄ (g : Z ⟶ X), S.arrows g → Sieve.pullback g M = Sieve.pullback g N\nMSNS : M ⊓ S = N ⊓ S\n⊢ GrothendieckTopology.Covers J₁ N f → GrothendieckTopology.Covers J₁ M f", "tactic": "intro hf" }, { "state_after": "case refine'_1.mk.mk.a.h.mpr\nC : Type u\ninst✝ : Category C\nJ₁ J₂ : GrothendieckTopology C\nX : C\nS : Sieve X\nhS : S ∈ GrothendieckTopology.sieves J₁ X\nx : Presieve.FamilyOfElements (Functor.closedSieves J₁) S.arrows\nM : Sieve X.op.unop\nhM : GrothendieckTopology.IsClosed J₁ M\nN : Sieve X.op.unop\nhN : GrothendieckTopology.IsClosed J₁ N\nhM₂ : Presieve.FamilyOfElements.IsAmalgamation x { val := M, property := hM }\nhN₂ : Presieve.FamilyOfElements.IsAmalgamation x { val := N, property := hN }\nY : C\nf : Y ⟶ X.op.unop\nq : ∀ ⦃Z : C⦄ (g : Z ⟶ X), S.arrows g → Sieve.pullback g M = Sieve.pullback g N\nMSNS : M ⊓ S = N ⊓ S\nhf : GrothendieckTopology.Covers J₁ N f\n⊢ Sieve.pullback f M ∈ GrothendieckTopology.sieves J₁ Y", "state_before": "case refine'_1.mk.mk.a.h.mpr\nC : Type u\ninst✝ : Category C\nJ₁ J₂ : GrothendieckTopology C\nX : C\nS : Sieve X\nhS : S ∈ GrothendieckTopology.sieves J₁ X\nx : Presieve.FamilyOfElements (Functor.closedSieves J₁) S.arrows\nM : Sieve X.op.unop\nhM : GrothendieckTopology.IsClosed J₁ M\nN : Sieve X.op.unop\nhN : GrothendieckTopology.IsClosed J₁ N\nhM₂ : Presieve.FamilyOfElements.IsAmalgamation x { val := M, property := hM }\nhN₂ : Presieve.FamilyOfElements.IsAmalgamation x { val := N, property := hN }\nY : C\nf : Y ⟶ X.op.unop\nq : ∀ ⦃Z : C⦄ (g : Z ⟶ X), S.arrows g → Sieve.pullback g M = Sieve.pullback g N\nMSNS : M ⊓ S = N ⊓ S\nhf : GrothendieckTopology.Covers J₁ N f\n⊢ GrothendieckTopology.Covers J₁ M f", "tactic": "rw [J₁.covers_iff]" }, { "state_after": "case refine'_1.mk.mk.a.h.mpr\nC : Type u\ninst✝ : Category C\nJ₁ J₂ : GrothendieckTopology C\nX : C\nS : Sieve X\nhS : S ∈ GrothendieckTopology.sieves J₁ X\nx : Presieve.FamilyOfElements (Functor.closedSieves J₁) S.arrows\nM : Sieve X.op.unop\nhM : GrothendieckTopology.IsClosed J₁ M\nN : Sieve X.op.unop\nhN : GrothendieckTopology.IsClosed J₁ N\nhM₂ : Presieve.FamilyOfElements.IsAmalgamation x { val := M, property := hM }\nhN₂ : Presieve.FamilyOfElements.IsAmalgamation x { val := N, property := hN }\nY : C\nf : Y ⟶ X.op.unop\nq : ∀ ⦃Z : C⦄ (g : Z ⟶ X), S.arrows g → Sieve.pullback g M = Sieve.pullback g N\nMSNS : M ⊓ S = N ⊓ S\nhf : GrothendieckTopology.Covers J₁ N f\n⊢ Sieve.pullback f (M ⊓ ?m.20658) ∈ GrothendieckTopology.sieves J₁ Y\n\nC : Type u\ninst✝ : Category C\nJ₁ J₂ : GrothendieckTopology C\nX : C\nS : Sieve X\nhS : S ∈ GrothendieckTopology.sieves J₁ X\nx : Presieve.FamilyOfElements (Functor.closedSieves J₁) S.arrows\nM : Sieve X.op.unop\nhM : GrothendieckTopology.IsClosed J₁ M\nN : Sieve X.op.unop\nhN : GrothendieckTopology.IsClosed J₁ N\nhM₂ : Presieve.FamilyOfElements.IsAmalgamation x { val := M, property := hM }\nhN₂ : Presieve.FamilyOfElements.IsAmalgamation x { val := N, property := hN }\nY : C\nf : Y ⟶ X.op.unop\nq : ∀ ⦃Z : C⦄ (g : Z ⟶ X), S.arrows g → Sieve.pullback g M = Sieve.pullback g N\nMSNS : M ⊓ S = N ⊓ S\nhf : GrothendieckTopology.Covers J₁ N f\n⊢ Sieve X.op.unop", "state_before": "case refine'_1.mk.mk.a.h.mpr\nC : Type u\ninst✝ : Category C\nJ₁ J₂ : GrothendieckTopology C\nX : C\nS : Sieve X\nhS : S ∈ GrothendieckTopology.sieves J₁ X\nx : Presieve.FamilyOfElements (Functor.closedSieves J₁) S.arrows\nM : Sieve X.op.unop\nhM : GrothendieckTopology.IsClosed J₁ M\nN : Sieve X.op.unop\nhN : GrothendieckTopology.IsClosed J₁ N\nhM₂ : Presieve.FamilyOfElements.IsAmalgamation x { val := M, property := hM }\nhN₂ : Presieve.FamilyOfElements.IsAmalgamation x { val := N, property := hN }\nY : C\nf : Y ⟶ X.op.unop\nq : ∀ ⦃Z : C⦄ (g : Z ⟶ X), S.arrows g → Sieve.pullback g M = Sieve.pullback g N\nMSNS : M ⊓ S = N ⊓ S\nhf : GrothendieckTopology.Covers J₁ N f\n⊢ Sieve.pullback f M ∈ GrothendieckTopology.sieves J₁ Y", "tactic": "apply J₁.superset_covering (Sieve.pullback_monotone f inf_le_left)" }, { "state_after": "case refine'_1.mk.mk.a.h.mpr\nC : Type u\ninst✝ : Category C\nJ₁ J₂ : GrothendieckTopology C\nX : C\nS : Sieve X\nhS : S ∈ GrothendieckTopology.sieves J₁ X\nx : Presieve.FamilyOfElements (Functor.closedSieves J₁) S.arrows\nM : Sieve X.op.unop\nhM : GrothendieckTopology.IsClosed J₁ M\nN : Sieve X.op.unop\nhN : GrothendieckTopology.IsClosed J₁ N\nhM₂ : Presieve.FamilyOfElements.IsAmalgamation x { val := M, property := hM }\nhN₂ : Presieve.FamilyOfElements.IsAmalgamation x { val := N, property := hN }\nY : C\nf : Y ⟶ X.op.unop\nq : ∀ ⦃Z : C⦄ (g : Z ⟶ X), S.arrows g → Sieve.pullback g M = Sieve.pullback g N\nMSNS : M ⊓ S = N ⊓ S\nhf : GrothendieckTopology.Covers J₁ N f\n⊢ Sieve.pullback f (N ⊓ S) ∈ GrothendieckTopology.sieves J₁ Y", "state_before": "case refine'_1.mk.mk.a.h.mpr\nC : Type u\ninst✝ : Category C\nJ₁ J₂ : GrothendieckTopology C\nX : C\nS : Sieve X\nhS : S ∈ GrothendieckTopology.sieves J₁ X\nx : Presieve.FamilyOfElements (Functor.closedSieves J₁) S.arrows\nM : Sieve X.op.unop\nhM : GrothendieckTopology.IsClosed J₁ M\nN : Sieve X.op.unop\nhN : GrothendieckTopology.IsClosed J₁ N\nhM₂ : Presieve.FamilyOfElements.IsAmalgamation x { val := M, property := hM }\nhN₂ : Presieve.FamilyOfElements.IsAmalgamation x { val := N, property := hN }\nY : C\nf : Y ⟶ X.op.unop\nq : ∀ ⦃Z : C⦄ (g : Z ⟶ X), S.arrows g → Sieve.pullback g M = Sieve.pullback g N\nMSNS : M ⊓ S = N ⊓ S\nhf : GrothendieckTopology.Covers J₁ N f\n⊢ Sieve.pullback f (M ⊓ ?m.20658) ∈ GrothendieckTopology.sieves J₁ Y\n\nC : Type u\ninst✝ : Category C\nJ₁ J₂ : GrothendieckTopology C\nX : C\nS : Sieve X\nhS : S ∈ GrothendieckTopology.sieves J₁ X\nx : Presieve.FamilyOfElements (Functor.closedSieves J₁) S.arrows\nM : Sieve X.op.unop\nhM : GrothendieckTopology.IsClosed J₁ M\nN : Sieve X.op.unop\nhN : GrothendieckTopology.IsClosed J₁ N\nhM₂ : Presieve.FamilyOfElements.IsAmalgamation x { val := M, property := hM }\nhN₂ : Presieve.FamilyOfElements.IsAmalgamation x { val := N, property := hN }\nY : C\nf : Y ⟶ X.op.unop\nq : ∀ ⦃Z : C⦄ (g : Z ⟶ X), S.arrows g → Sieve.pullback g M = Sieve.pullback g N\nMSNS : M ⊓ S = N ⊓ S\nhf : GrothendieckTopology.Covers J₁ N f\n⊢ Sieve X.op.unop", "tactic": "rw [MSNS]" }, { "state_after": "no goals", "state_before": "case refine'_1.mk.mk.a.h.mpr\nC : Type u\ninst✝ : Category C\nJ₁ J₂ : GrothendieckTopology C\nX : C\nS : Sieve X\nhS : S ∈ GrothendieckTopology.sieves J₁ X\nx : Presieve.FamilyOfElements (Functor.closedSieves J₁) S.arrows\nM : Sieve X.op.unop\nhM : GrothendieckTopology.IsClosed J₁ M\nN : Sieve X.op.unop\nhN : GrothendieckTopology.IsClosed J₁ N\nhM₂ : Presieve.FamilyOfElements.IsAmalgamation x { val := M, property := hM }\nhN₂ : Presieve.FamilyOfElements.IsAmalgamation x { val := N, property := hN }\nY : C\nf : Y ⟶ X.op.unop\nq : ∀ ⦃Z : C⦄ (g : Z ⟶ X), S.arrows g → Sieve.pullback g M = Sieve.pullback g N\nMSNS : M ⊓ S = N ⊓ S\nhf : GrothendieckTopology.Covers J₁ N f\n⊢ Sieve.pullback f (N ⊓ S) ∈ GrothendieckTopology.sieves J₁ Y", "tactic": "apply J₁.arrow_intersect f N S hf (J₁.pullback_stable _ hS)" }, { "state_after": "case refine'_2\nC : Type u\ninst✝ : Category C\nJ₁ J₂ : GrothendieckTopology C\nX : C\nS : Sieve X\nhS : S ∈ GrothendieckTopology.sieves J₁ X\nx : Presieve.FamilyOfElements (Functor.closedSieves J₁) S.arrows\nhx : Presieve.FamilyOfElements.Compatible x\n⊢ ∃ t, Presieve.FamilyOfElements.IsAmalgamation x t", "state_before": "case refine'_2\nC : Type u\ninst✝ : Category C\nJ₁ J₂ : GrothendieckTopology C\nX : C\nS : Sieve X\nhS : S ∈ GrothendieckTopology.sieves J₁ X\n⊢ ∀ (x : Presieve.FamilyOfElements (Functor.closedSieves J₁) S.arrows),\n Presieve.FamilyOfElements.Compatible x → ∃ t, Presieve.FamilyOfElements.IsAmalgamation x t", "tactic": "intro x hx" }, { "state_after": "case refine'_2\nC : Type u\ninst✝ : Category C\nJ₁ J₂ : GrothendieckTopology C\nX : C\nS : Sieve X\nhS : S ∈ GrothendieckTopology.sieves J₁ X\nx : Presieve.FamilyOfElements (Functor.closedSieves J₁) S.arrows\nhx : Presieve.FamilyOfElements.SieveCompatible x\n⊢ ∃ t, Presieve.FamilyOfElements.IsAmalgamation x t", "state_before": "case refine'_2\nC : Type u\ninst✝ : Category C\nJ₁ J₂ : GrothendieckTopology C\nX : C\nS : Sieve X\nhS : S ∈ GrothendieckTopology.sieves J₁ X\nx : Presieve.FamilyOfElements (Functor.closedSieves J₁) S.arrows\nhx : Presieve.FamilyOfElements.Compatible x\n⊢ ∃ t, Presieve.FamilyOfElements.IsAmalgamation x t", "tactic": "rw [Presieve.compatible_iff_sieveCompatible] at hx" }, { "state_after": "case refine'_2\nC : Type u\ninst✝ : Category C\nJ₁ J₂ : GrothendieckTopology C\nX : C\nS : Sieve X\nhS : S ∈ GrothendieckTopology.sieves J₁ X\nx : Presieve.FamilyOfElements (Functor.closedSieves J₁) S.arrows\nhx : Presieve.FamilyOfElements.SieveCompatible x\nM : Sieve X := Sieve.bind S.arrows fun Y f hf => ↑(x f hf)\n⊢ ∃ t, Presieve.FamilyOfElements.IsAmalgamation x t", "state_before": "case refine'_2\nC : Type u\ninst✝ : Category C\nJ₁ J₂ : GrothendieckTopology C\nX : C\nS : Sieve X\nhS : S ∈ GrothendieckTopology.sieves J₁ X\nx : Presieve.FamilyOfElements (Functor.closedSieves J₁) S.arrows\nhx : Presieve.FamilyOfElements.SieveCompatible x\n⊢ ∃ t, Presieve.FamilyOfElements.IsAmalgamation x t", "tactic": "let M := Sieve.bind S fun Y f hf => (x f hf).1" }, { "state_after": "case refine'_2\nC : Type u\ninst✝ : Category C\nJ₁ J₂ : GrothendieckTopology C\nX : C\nS : Sieve X\nhS : S ∈ GrothendieckTopology.sieves J₁ X\nx : Presieve.FamilyOfElements (Functor.closedSieves J₁) S.arrows\nhx : Presieve.FamilyOfElements.SieveCompatible x\nM : Sieve X := Sieve.bind S.arrows fun Y f hf => ↑(x f hf)\nthis : ∀ ⦃Y : C⦄ (f : Y ⟶ X) (hf : S.arrows f), Sieve.pullback f M = ↑(x f hf)\n⊢ Presieve.FamilyOfElements.IsAmalgamation x\n { val := GrothendieckTopology.close J₁ M,\n property := (_ : GrothendieckTopology.IsClosed J₁ (GrothendieckTopology.close J₁ M)) }", "state_before": "case refine'_2\nC : Type u\ninst✝ : Category C\nJ₁ J₂ : GrothendieckTopology C\nX : C\nS : Sieve X\nhS : S ∈ GrothendieckTopology.sieves J₁ X\nx : Presieve.FamilyOfElements (Functor.closedSieves J₁) S.arrows\nhx : Presieve.FamilyOfElements.SieveCompatible x\nM : Sieve X := Sieve.bind S.arrows fun Y f hf => ↑(x f hf)\nthis : ∀ ⦃Y : C⦄ (f : Y ⟶ X) (hf : S.arrows f), Sieve.pullback f M = ↑(x f hf)\n⊢ ∃ t, Presieve.FamilyOfElements.IsAmalgamation x t", "tactic": "refine' ⟨⟨_, J₁.close_isClosed M⟩, _⟩" }, { "state_after": "C : Type u\ninst✝ : Category C\nJ₁ J₂ : GrothendieckTopology C\nX : C\nS : Sieve X\nhS : S ∈ GrothendieckTopology.sieves J₁ X\nx : Presieve.FamilyOfElements (Functor.closedSieves J₁) S.arrows\nhx : Presieve.FamilyOfElements.SieveCompatible x\nM : Sieve X := Sieve.bind S.arrows fun Y f hf => ↑(x f hf)\nY : C\nf : Y ⟶ X\nhf : S.arrows f\n⊢ Sieve.pullback f M = ↑(x f hf)", "state_before": "C : Type u\ninst✝ : Category C\nJ₁ J₂ : GrothendieckTopology C\nX : C\nS : Sieve X\nhS : S ∈ GrothendieckTopology.sieves J₁ X\nx : Presieve.FamilyOfElements (Functor.closedSieves J₁) S.arrows\nhx : Presieve.FamilyOfElements.SieveCompatible x\nM : Sieve X := Sieve.bind S.arrows fun Y f hf => ↑(x f hf)\n⊢ ∀ ⦃Y : C⦄ (f : Y ⟶ X) (hf : S.arrows f), Sieve.pullback f M = ↑(x f hf)", "tactic": "intro Y f hf" }, { "state_after": "case a\nC : Type u\ninst✝ : Category C\nJ₁ J₂ : GrothendieckTopology C\nX : C\nS : Sieve X\nhS : S ∈ GrothendieckTopology.sieves J₁ X\nx : Presieve.FamilyOfElements (Functor.closedSieves J₁) S.arrows\nhx : Presieve.FamilyOfElements.SieveCompatible x\nM : Sieve X := Sieve.bind S.arrows fun Y f hf => ↑(x f hf)\nY : C\nf : Y ⟶ X\nhf : S.arrows f\n⊢ Sieve.pullback f M ≤ ↑(x f hf)\n\ncase a\nC : Type u\ninst✝ : Category C\nJ₁ J₂ : GrothendieckTopology C\nX : C\nS : Sieve X\nhS : S ∈ GrothendieckTopology.sieves J₁ X\nx : Presieve.FamilyOfElements (Functor.closedSieves J₁) S.arrows\nhx : Presieve.FamilyOfElements.SieveCompatible x\nM : Sieve X := Sieve.bind S.arrows fun Y f hf => ↑(x f hf)\nY : C\nf : Y ⟶ X\nhf : S.arrows f\n⊢ ↑(x f hf) ≤ Sieve.pullback f M", "state_before": "C : Type u\ninst✝ : Category C\nJ₁ J₂ : GrothendieckTopology C\nX : C\nS : Sieve X\nhS : S ∈ GrothendieckTopology.sieves J₁ X\nx : Presieve.FamilyOfElements (Functor.closedSieves J₁) S.arrows\nhx : Presieve.FamilyOfElements.SieveCompatible x\nM : Sieve X := Sieve.bind S.arrows fun Y f hf => ↑(x f hf)\nY : C\nf : Y ⟶ X\nhf : S.arrows f\n⊢ Sieve.pullback f M = ↑(x f hf)", "tactic": "apply le_antisymm" }, { "state_after": "case a.intro.intro.intro.intro.intro\nC : Type u\ninst✝ : Category C\nJ₁ J₂ : GrothendieckTopology C\nX : C\nS : Sieve X\nhS : S ∈ GrothendieckTopology.sieves J₁ X\nx : Presieve.FamilyOfElements (Functor.closedSieves J₁) S.arrows\nhx : Presieve.FamilyOfElements.SieveCompatible x\nM : Sieve X := Sieve.bind S.arrows fun Y f hf => ↑(x f hf)\nY : C\nf : Y ⟶ X\nhf : S.arrows f\nZ : C\nu : Z ⟶ Y\nW : C\ng : Z ⟶ W\nf' : W ⟶ X\nhf' : S.arrows f'\nhg : (↑(x f' hf')).arrows g\nc : g ≫ f' = u ≫ f\n⊢ (↑(x f hf)).arrows u", "state_before": "case a\nC : Type u\ninst✝ : Category C\nJ₁ J₂ : GrothendieckTopology C\nX : C\nS : Sieve X\nhS : S ∈ GrothendieckTopology.sieves J₁ X\nx : Presieve.FamilyOfElements (Functor.closedSieves J₁) S.arrows\nhx : Presieve.FamilyOfElements.SieveCompatible x\nM : Sieve X := Sieve.bind S.arrows fun Y f hf => ↑(x f hf)\nY : C\nf : Y ⟶ X\nhf : S.arrows f\n⊢ Sieve.pullback f M ≤ ↑(x f hf)", "tactic": "rintro Z u ⟨W, g, f', hf', hg : (x f' hf').1 _, c⟩" }, { "state_after": "case a.intro.intro.intro.intro.intro\nC : Type u\ninst✝ : Category C\nJ₁ J₂ : GrothendieckTopology C\nX : C\nS : Sieve X\nhS : S ∈ GrothendieckTopology.sieves J₁ X\nx : Presieve.FamilyOfElements (Functor.closedSieves J₁) S.arrows\nhx : Presieve.FamilyOfElements.SieveCompatible x\nM : Sieve X := Sieve.bind S.arrows fun Y f hf => ↑(x f hf)\nY : C\nf : Y ⟶ X\nhf : S.arrows f\nZ : C\nu : Z ⟶ Y\nW : C\ng : Z ⟶ W\nf' : W ⟶ X\nhf' : S.arrows f'\nhg : (↑(x f' hf')).arrows g\nc : g ≫ f' = u ≫ f\n⊢ ↑(x (u ≫ f) (_ : S.arrows (u ≫ f))) = ⊤", "state_before": "case a.intro.intro.intro.intro.intro\nC : Type u\ninst✝ : Category C\nJ₁ J₂ : GrothendieckTopology C\nX : C\nS : Sieve X\nhS : S ∈ GrothendieckTopology.sieves J₁ X\nx : Presieve.FamilyOfElements (Functor.closedSieves J₁) S.arrows\nhx : Presieve.FamilyOfElements.SieveCompatible x\nM : Sieve X := Sieve.bind S.arrows fun Y f hf => ↑(x f hf)\nY : C\nf : Y ⟶ X\nhf : S.arrows f\nZ : C\nu : Z ⟶ Y\nW : C\ng : Z ⟶ W\nf' : W ⟶ X\nhf' : S.arrows f'\nhg : (↑(x f' hf')).arrows g\nc : g ≫ f' = u ≫ f\n⊢ (↑(x f hf)).arrows u", "tactic": "rw [Sieve.pullback_eq_top_iff_mem,\n ← show (x (u ≫ f) _).1 = (x f hf).1.pullback u from congr_arg Subtype.val (hx f u hf)]" }, { "state_after": "case a.intro.intro.intro.intro.intro\nC : Type u\ninst✝ : Category C\nJ₁ J₂ : GrothendieckTopology C\nX : C\nS : Sieve X\nhS : S ∈ GrothendieckTopology.sieves J₁ X\nx : Presieve.FamilyOfElements (Functor.closedSieves J₁) S.arrows\nhx : Presieve.FamilyOfElements.SieveCompatible x\nM : Sieve X := Sieve.bind S.arrows fun Y f hf => ↑(x f hf)\nY : C\nf : Y ⟶ X\nhf : S.arrows f\nZ : C\nu : Z ⟶ Y\nW : C\ng : Z ⟶ W\nf' : W ⟶ X\nhf' : S.arrows f'\nhg : (↑(x f' hf')).arrows g\nc : g ≫ f' = u ≫ f\n⊢ ↑(x (g ≫ f') (_ : S.arrows (g ≫ f'))) = ⊤", "state_before": "case a.intro.intro.intro.intro.intro\nC : Type u\ninst✝ : Category C\nJ₁ J₂ : GrothendieckTopology C\nX : C\nS : Sieve X\nhS : S ∈ GrothendieckTopology.sieves J₁ X\nx : Presieve.FamilyOfElements (Functor.closedSieves J₁) S.arrows\nhx : Presieve.FamilyOfElements.SieveCompatible x\nM : Sieve X := Sieve.bind S.arrows fun Y f hf => ↑(x f hf)\nY : C\nf : Y ⟶ X\nhf : S.arrows f\nZ : C\nu : Z ⟶ Y\nW : C\ng : Z ⟶ W\nf' : W ⟶ X\nhf' : S.arrows f'\nhg : (↑(x f' hf')).arrows g\nc : g ≫ f' = u ≫ f\n⊢ ↑(x (u ≫ f) (_ : S.arrows (u ≫ f))) = ⊤", "tactic": "conv_lhs => congr; congr; rw [← c]" }, { "state_after": "case a.intro.intro.intro.intro.intro\nC : Type u\ninst✝ : Category C\nJ₁ J₂ : GrothendieckTopology C\nX : C\nS : Sieve X\nhS : S ∈ GrothendieckTopology.sieves J₁ X\nx : Presieve.FamilyOfElements (Functor.closedSieves J₁) S.arrows\nhx : Presieve.FamilyOfElements.SieveCompatible x\nM : Sieve X := Sieve.bind S.arrows fun Y f hf => ↑(x f hf)\nY : C\nf : Y ⟶ X\nhf : S.arrows f\nZ : C\nu : Z ⟶ Y\nW : C\ng : Z ⟶ W\nf' : W ⟶ X\nhf' : S.arrows f'\nhg : (↑(x f' hf')).arrows g\nc : g ≫ f' = u ≫ f\n⊢ ↑((Functor.closedSieves J₁).map g.op (x f' hf')) = ⊤", "state_before": "case a.intro.intro.intro.intro.intro\nC : Type u\ninst✝ : Category C\nJ₁ J₂ : GrothendieckTopology C\nX : C\nS : Sieve X\nhS : S ∈ GrothendieckTopology.sieves J₁ X\nx : Presieve.FamilyOfElements (Functor.closedSieves J₁) S.arrows\nhx : Presieve.FamilyOfElements.SieveCompatible x\nM : Sieve X := Sieve.bind S.arrows fun Y f hf => ↑(x f hf)\nY : C\nf : Y ⟶ X\nhf : S.arrows f\nZ : C\nu : Z ⟶ Y\nW : C\ng : Z ⟶ W\nf' : W ⟶ X\nhf' : S.arrows f'\nhg : (↑(x f' hf')).arrows g\nc : g ≫ f' = u ≫ f\n⊢ ↑(x (g ≫ f') (_ : S.arrows (g ≫ f'))) = ⊤", "tactic": "rw [show (x (g ≫ f') _).1 = _ from congr_arg Subtype.val (hx f' g hf')]" }, { "state_after": "no goals", "state_before": "case a.intro.intro.intro.intro.intro\nC : Type u\ninst✝ : Category C\nJ₁ J₂ : GrothendieckTopology C\nX : C\nS : Sieve X\nhS : S ∈ GrothendieckTopology.sieves J₁ X\nx : Presieve.FamilyOfElements (Functor.closedSieves J₁) S.arrows\nhx : Presieve.FamilyOfElements.SieveCompatible x\nM : Sieve X := Sieve.bind S.arrows fun Y f hf => ↑(x f hf)\nY : C\nf : Y ⟶ X\nhf : S.arrows f\nZ : C\nu : Z ⟶ Y\nW : C\ng : Z ⟶ W\nf' : W ⟶ X\nhf' : S.arrows f'\nhg : (↑(x f' hf')).arrows g\nc : g ≫ f' = u ≫ f\n⊢ ↑((Functor.closedSieves J₁).map g.op (x f' hf')) = ⊤", "tactic": "apply Sieve.pullback_eq_top_of_mem _ hg" }, { "state_after": "no goals", "state_before": "case a\nC : Type u\ninst✝ : Category C\nJ₁ J₂ : GrothendieckTopology C\nX : C\nS : Sieve X\nhS : S ∈ GrothendieckTopology.sieves J₁ X\nx : Presieve.FamilyOfElements (Functor.closedSieves J₁) S.arrows\nhx : Presieve.FamilyOfElements.SieveCompatible x\nM : Sieve X := Sieve.bind S.arrows fun Y f hf => ↑(x f hf)\nY : C\nf : Y ⟶ X\nhf : S.arrows f\n⊢ ↑(x f hf) ≤ Sieve.pullback f M", "tactic": "apply Sieve.le_pullback_bind S fun Y f hf => (x f hf).1" }, { "state_after": "case refine'_2\nC : Type u\ninst✝ : Category C\nJ₁ J₂ : GrothendieckTopology C\nX : C\nS : Sieve X\nhS : S ∈ GrothendieckTopology.sieves J₁ X\nx : Presieve.FamilyOfElements (Functor.closedSieves J₁) S.arrows\nhx : Presieve.FamilyOfElements.SieveCompatible x\nM : Sieve X := Sieve.bind S.arrows fun Y f hf => ↑(x f hf)\nthis : ∀ ⦃Y : C⦄ (f : Y ⟶ X) (hf : S.arrows f), Sieve.pullback f M = ↑(x f hf)\nY : C\nf : Y ⟶ X\nhf : S.arrows f\n⊢ (Functor.closedSieves J₁).map f.op\n { val := GrothendieckTopology.close J₁ M,\n property := (_ : GrothendieckTopology.IsClosed J₁ (GrothendieckTopology.close J₁ M)) } =\n x f hf", "state_before": "case refine'_2\nC : Type u\ninst✝ : Category C\nJ₁ J₂ : GrothendieckTopology C\nX : C\nS : Sieve X\nhS : S ∈ GrothendieckTopology.sieves J₁ X\nx : Presieve.FamilyOfElements (Functor.closedSieves J₁) S.arrows\nhx : Presieve.FamilyOfElements.SieveCompatible x\nM : Sieve X := Sieve.bind S.arrows fun Y f hf => ↑(x f hf)\nthis : ∀ ⦃Y : C⦄ (f : Y ⟶ X) (hf : S.arrows f), Sieve.pullback f M = ↑(x f hf)\n⊢ Presieve.FamilyOfElements.IsAmalgamation x\n { val := GrothendieckTopology.close J₁ M,\n property := (_ : GrothendieckTopology.IsClosed J₁ (GrothendieckTopology.close J₁ M)) }", "tactic": "intro Y f hf" }, { "state_after": "case refine'_2\nC : Type u\ninst✝ : Category C\nJ₁ J₂ : GrothendieckTopology C\nX : C\nS : Sieve X\nhS : S ∈ GrothendieckTopology.sieves J₁ X\nx : Presieve.FamilyOfElements (Functor.closedSieves J₁) S.arrows\nhx : Presieve.FamilyOfElements.SieveCompatible x\nM : Sieve X := Sieve.bind S.arrows fun Y f hf => ↑(x f hf)\nthis : ∀ ⦃Y : C⦄ (f : Y ⟶ X) (hf : S.arrows f), Sieve.pullback f M = ↑(x f hf)\nY : C\nf : Y ⟶ X\nhf : S.arrows f\n⊢ (Functor.closedSieves J₁).map f.op\n { val := GrothendieckTopology.close J₁ (Sieve.bind S.arrows fun Y f hf => ↑(x f hf)),\n property := (_ : GrothendieckTopology.IsClosed J₁ (GrothendieckTopology.close J₁ M)) } =\n x f hf", "state_before": "case refine'_2\nC : Type u\ninst✝ : Category C\nJ₁ J₂ : GrothendieckTopology C\nX : C\nS : Sieve X\nhS : S ∈ GrothendieckTopology.sieves J₁ X\nx : Presieve.FamilyOfElements (Functor.closedSieves J₁) S.arrows\nhx : Presieve.FamilyOfElements.SieveCompatible x\nM : Sieve X := Sieve.bind S.arrows fun Y f hf => ↑(x f hf)\nthis : ∀ ⦃Y : C⦄ (f : Y ⟶ X) (hf : S.arrows f), Sieve.pullback f M = ↑(x f hf)\nY : C\nf : Y ⟶ X\nhf : S.arrows f\n⊢ (Functor.closedSieves J₁).map f.op\n { val := GrothendieckTopology.close J₁ M,\n property := (_ : GrothendieckTopology.IsClosed J₁ (GrothendieckTopology.close J₁ M)) } =\n x f hf", "tactic": "simp only [Functor.closedSieves_obj]" }, { "state_after": "case refine'_2.a\nC : Type u\ninst✝ : Category C\nJ₁ J₂ : GrothendieckTopology C\nX : C\nS : Sieve X\nhS : S ∈ GrothendieckTopology.sieves J₁ X\nx : Presieve.FamilyOfElements (Functor.closedSieves J₁) S.arrows\nhx : Presieve.FamilyOfElements.SieveCompatible x\nM : Sieve X := Sieve.bind S.arrows fun Y f hf => ↑(x f hf)\nthis : ∀ ⦃Y : C⦄ (f : Y ⟶ X) (hf : S.arrows f), Sieve.pullback f M = ↑(x f hf)\nY : C\nf : Y ⟶ X\nhf : S.arrows f\n⊢ ↑((Functor.closedSieves J₁).map f.op\n { val := GrothendieckTopology.close J₁ (Sieve.bind S.arrows fun Y f hf => ↑(x f hf)),\n property := (_ : GrothendieckTopology.IsClosed J₁ (GrothendieckTopology.close J₁ M)) }) =\n ↑(x f hf)", "state_before": "case refine'_2\nC : Type u\ninst✝ : Category C\nJ₁ J₂ : GrothendieckTopology C\nX : C\nS : Sieve X\nhS : S ∈ GrothendieckTopology.sieves J₁ X\nx : Presieve.FamilyOfElements (Functor.closedSieves J₁) S.arrows\nhx : Presieve.FamilyOfElements.SieveCompatible x\nM : Sieve X := Sieve.bind S.arrows fun Y f hf => ↑(x f hf)\nthis : ∀ ⦃Y : C⦄ (f : Y ⟶ X) (hf : S.arrows f), Sieve.pullback f M = ↑(x f hf)\nY : C\nf : Y ⟶ X\nhf : S.arrows f\n⊢ (Functor.closedSieves J₁).map f.op\n { val := GrothendieckTopology.close J₁ (Sieve.bind S.arrows fun Y f hf => ↑(x f hf)),\n property := (_ : GrothendieckTopology.IsClosed J₁ (GrothendieckTopology.close J₁ M)) } =\n x f hf", "tactic": "ext1" }, { "state_after": "case refine'_2.a\nC : Type u\ninst✝ : Category C\nJ₁ J₂ : GrothendieckTopology C\nX : C\nS : Sieve X\nhS : S ∈ GrothendieckTopology.sieves J₁ X\nx : Presieve.FamilyOfElements (Functor.closedSieves J₁) S.arrows\nhx : Presieve.FamilyOfElements.SieveCompatible x\nM : Sieve X := Sieve.bind S.arrows fun Y f hf => ↑(x f hf)\nthis : ∀ ⦃Y : C⦄ (f : Y ⟶ X) (hf : S.arrows f), Sieve.pullback f M = ↑(x f hf)\nY : C\nf : Y ⟶ X\nhf : S.arrows f\n⊢ Sieve.pullback f (GrothendieckTopology.close J₁ (Sieve.bind S.arrows fun Y f hf => ↑(x f hf))) = ↑(x f hf)", "state_before": "case refine'_2.a\nC : Type u\ninst✝ : Category C\nJ₁ J₂ : GrothendieckTopology C\nX : C\nS : Sieve X\nhS : S ∈ GrothendieckTopology.sieves J₁ X\nx : Presieve.FamilyOfElements (Functor.closedSieves J₁) S.arrows\nhx : Presieve.FamilyOfElements.SieveCompatible x\nM : Sieve X := Sieve.bind S.arrows fun Y f hf => ↑(x f hf)\nthis : ∀ ⦃Y : C⦄ (f : Y ⟶ X) (hf : S.arrows f), Sieve.pullback f M = ↑(x f hf)\nY : C\nf : Y ⟶ X\nhf : S.arrows f\n⊢ ↑((Functor.closedSieves J₁).map f.op\n { val := GrothendieckTopology.close J₁ (Sieve.bind S.arrows fun Y f hf => ↑(x f hf)),\n property := (_ : GrothendieckTopology.IsClosed J₁ (GrothendieckTopology.close J₁ M)) }) =\n ↑(x f hf)", "tactic": "dsimp" }, { "state_after": "case refine'_2.a\nC : Type u\ninst✝ : Category C\nJ₁ J₂ : GrothendieckTopology C\nX : C\nS : Sieve X\nhS : S ∈ GrothendieckTopology.sieves J₁ X\nx : Presieve.FamilyOfElements (Functor.closedSieves J₁) S.arrows\nhx : Presieve.FamilyOfElements.SieveCompatible x\nM : Sieve X := Sieve.bind S.arrows fun Y f hf => ↑(x f hf)\nthis : ∀ ⦃Y : C⦄ (f : Y ⟶ X) (hf : S.arrows f), Sieve.pullback f M = ↑(x f hf)\nY : C\nf : Y ⟶ X\nhf : S.arrows f\n⊢ GrothendieckTopology.close J₁ ↑(x f hf) = ↑(x f hf)", "state_before": "case refine'_2.a\nC : Type u\ninst✝ : Category C\nJ₁ J₂ : GrothendieckTopology C\nX : C\nS : Sieve X\nhS : S ∈ GrothendieckTopology.sieves J₁ X\nx : Presieve.FamilyOfElements (Functor.closedSieves J₁) S.arrows\nhx : Presieve.FamilyOfElements.SieveCompatible x\nM : Sieve X := Sieve.bind S.arrows fun Y f hf => ↑(x f hf)\nthis : ∀ ⦃Y : C⦄ (f : Y ⟶ X) (hf : S.arrows f), Sieve.pullback f M = ↑(x f hf)\nY : C\nf : Y ⟶ X\nhf : S.arrows f\n⊢ Sieve.pullback f (GrothendieckTopology.close J₁ (Sieve.bind S.arrows fun Y f hf => ↑(x f hf))) = ↑(x f hf)", "tactic": "rw [← J₁.pullback_close, this _ hf]" }, { "state_after": "no goals", "state_before": "case refine'_2.a\nC : Type u\ninst✝ : Category C\nJ₁ J₂ : GrothendieckTopology C\nX : C\nS : Sieve X\nhS : S ∈ GrothendieckTopology.sieves J₁ X\nx : Presieve.FamilyOfElements (Functor.closedSieves J₁) S.arrows\nhx : Presieve.FamilyOfElements.SieveCompatible x\nM : Sieve X := Sieve.bind S.arrows fun Y f hf => ↑(x f hf)\nthis : ∀ ⦃Y : C⦄ (f : Y ⟶ X) (hf : S.arrows f), Sieve.pullback f M = ↑(x f hf)\nY : C\nf : Y ⟶ X\nhf : S.arrows f\n⊢ GrothendieckTopology.close J₁ ↑(x f hf) = ↑(x f hf)", "tactic": "apply le_antisymm (J₁.le_close_of_isClosed le_rfl (x f hf).2) (J₁.le_close _)" } ]
[ 247, 84 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 197, 1 ]
Mathlib/GroupTheory/Congruence.lean
Con.conGen_mono
[]
[ 539, 56 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 538, 1 ]
Std/Data/Rat/Lemmas.lean
Rat.maybeNormalize_eq_normalize
[ { "state_after": "num : Int\nden g : Nat\nden_nz : den / g ≠ 0\nreduced : Nat.coprime (Int.natAbs (Int.div num ↑g)) (den / g)\nhn : ↑g ∣ num\nhd : g ∣ den\n⊢ normalize (num / ↑g) (den / g) = normalize num den", "state_before": "num : Int\nden g : Nat\nden_nz : den / g ≠ 0\nreduced : Nat.coprime (Int.natAbs (Int.div num ↑g)) (den / g)\nhn : ↑g ∣ num\nhd : g ∣ den\n⊢ maybeNormalize num den g den_nz reduced = normalize num den", "tactic": "simp only [maybeNormalize_eq, mk_eq_normalize, Int.div_eq_ediv_of_dvd hn]" }, { "state_after": "num : Int\nden g : Nat\nden_nz : den / g ≠ 0\nreduced : Nat.coprime (Int.natAbs (Int.div num ↑g)) (den / g)\nhn : ↑g ∣ num\nhd : g ∣ den\nthis : g ≠ 0\n⊢ normalize num (den / g * g) = normalize num den", "state_before": "num : Int\nden g : Nat\nden_nz : den / g ≠ 0\nreduced : Nat.coprime (Int.natAbs (Int.div num ↑g)) (den / g)\nhn : ↑g ∣ num\nhd : g ∣ den\nthis : g ≠ 0\n⊢ normalize (num / ↑g) (den / g) = normalize num den", "tactic": "rw [← normalize_mul_right _ this, Int.ediv_mul_cancel hn]" }, { "state_after": "case e_den\nnum : Int\nden g : Nat\nden_nz : den / g ≠ 0\nreduced : Nat.coprime (Int.natAbs (Int.div num ↑g)) (den / g)\nhn : ↑g ∣ num\nhd : g ∣ den\nthis : g ≠ 0\n⊢ den / g * g = den", "state_before": "num : Int\nden g : Nat\nden_nz : den / g ≠ 0\nreduced : Nat.coprime (Int.natAbs (Int.div num ↑g)) (den / g)\nhn : ↑g ∣ num\nhd : g ∣ den\nthis : g ≠ 0\n⊢ normalize num (den / g * g) = normalize num den", "tactic": "congr 1" }, { "state_after": "no goals", "state_before": "case e_den\nnum : Int\nden g : Nat\nden_nz : den / g ≠ 0\nreduced : Nat.coprime (Int.natAbs (Int.div num ↑g)) (den / g)\nhn : ↑g ∣ num\nhd : g ∣ den\nthis : g ≠ 0\n⊢ den / g * g = den", "tactic": "exact Nat.div_mul_cancel hd" } ]
[ 66, 39 ]
e68aa8f5fe47aad78987df45f99094afbcb5e936
https://github.com/leanprover/std4
[ 60, 1 ]
Mathlib/Order/Hom/Bounded.lean
BotHom.coe_inf
[]
[ 527, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 526, 1 ]
Mathlib/CategoryTheory/Limits/Shapes/Equalizers.lean
CategoryTheory.Limits.Cofork.IsColimit.π_desc
[]
[ 437, 13 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 436, 1 ]
Mathlib/Topology/Basic.lean
mem_closure_iff_nhds_basis'
[ { "state_after": "no goals", "state_before": "α : Type u\nβ : Type v\nι : Sort w\na✝ : α\ns✝ s₁ s₂ t✝ : Set α\np✝ p₁ p₂ : α → Prop\ninst✝ : TopologicalSpace α\na : α\np : ι → Prop\ns : ι → Set α\nh : HasBasis (𝓝 a) p s\nt : Set α\n⊢ (∀ ⦃i : ι⦄, p i → ∀ ⦃j : Unit⦄, True → Set.Nonempty (s i ∩ t)) ↔ ∀ (i : ι), p i → Set.Nonempty (s i ∩ t)", "tactic": "simp only [exists_prop, forall_const]" } ]
[ 1349, 95 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1346, 1 ]
src/lean/Init/Data/Nat/Basic.lean
Nat.sub_lt
[]
[ 242, 33 ]
d5348dfac847a56a4595fb6230fd0708dcb4e7e9
https://github.com/leanprover/lean4
[ 236, 1 ]
Mathlib/Data/Complex/Module.lean
finrank_real_of_complex
[ { "state_after": "no goals", "state_before": "E : Type u_1\ninst✝¹ : AddCommGroup E\ninst✝ : Module ℂ E\n⊢ FiniteDimensional.finrank ℝ E = 2 * FiniteDimensional.finrank ℂ E", "tactic": "rw [← FiniteDimensional.finrank_mul_finrank ℝ ℂ E, Complex.finrank_real_complex]" } ]
[ 245, 83 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 243, 1 ]
Std/Data/List/Lemmas.lean
List.diff_erase
[ { "state_after": "no goals", "state_before": "α : Type u_1\ninst✝ : DecidableEq α\nl₁ l₂ : List α\na : α\n⊢ List.erase (List.diff l₁ l₂) a = List.diff (List.erase l₁ a) l₂", "tactic": "rw [← diff_cons_right, diff_cons]" } ]
[ 1501, 36 ]
e68aa8f5fe47aad78987df45f99094afbcb5e936
https://github.com/leanprover/std4
[ 1500, 1 ]
Mathlib/Data/Set/Pointwise/Basic.lean
Set.inv_insert
[ { "state_after": "no goals", "state_before": "F : Type ?u.7176\nα : Type u_1\nβ : Type ?u.7182\nγ : Type ?u.7185\ninst✝ : InvolutiveInv α\ns✝ t : Set α\na✝ a : α\ns : Set α\n⊢ (insert a s)⁻¹ = insert a⁻¹ s⁻¹", "tactic": "rw [insert_eq, union_inv, inv_singleton, insert_eq]" } ]
[ 286, 54 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 285, 1 ]
Mathlib/Data/Polynomial/Eval.lean
Polynomial.map_X
[]
[ 703, 14 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 702, 1 ]
Mathlib/LinearAlgebra/AffineSpace/MidpointZero.lean
homothety_one_half
[ { "state_after": "no goals", "state_before": "k : Type u_1\nV : Type u_2\nP : Type u_3\ninst✝⁴ : Field k\ninst✝³ : CharZero k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AddTorsor V P\na b : P\n⊢ ↑(homothety a (1 / 2)) b = midpoint k a b", "tactic": "rw [one_div, homothety_inv_two]" } ]
[ 50, 34 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 48, 1 ]
Mathlib/Algebra/Algebra/Spectrum.lean
spectrum.zero_not_mem_iff
[ { "state_after": "no goals", "state_before": "R : Type u\nA : Type v\ninst✝² : CommSemiring R\ninst✝¹ : Ring A\ninst✝ : Algebra R A\na : A\n⊢ ¬0 ∈ σ a ↔ IsUnit a", "tactic": "rw [zero_mem_iff, Classical.not_not]" } ]
[ 124, 39 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 123, 1 ]
Mathlib/Topology/Order/Basic.lean
csInf_mem_closure
[]
[ 2780, 36 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 2779, 1 ]
Mathlib/Data/Real/ENatENNReal.lean
ENat.toENNReal_lt
[]
[ 73, 36 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 72, 1 ]
Mathlib/Algebra/GroupWithZero/Basic.lean
left_eq_mul₀
[ { "state_after": "no goals", "state_before": "α : Type ?u.12127\nM₀ : Type u_1\nG₀ : Type ?u.12133\nM₀' : Type ?u.12136\nG₀' : Type ?u.12139\nF : Type ?u.12142\nF' : Type ?u.12145\ninst✝ : CancelMonoidWithZero M₀\na b c : M₀\nha : a ≠ 0\n⊢ a = a * b ↔ b = 1", "tactic": "rw [eq_comm, mul_eq_left₀ ha]" } ]
[ 212, 90 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 212, 1 ]
Mathlib/Tactic/Ring/RingNF.lean
Mathlib.Tactic.RingNF.mul_neg
[ { "state_after": "no goals", "state_before": "R✝ : Type ?u.74049\ninst✝¹ : CommSemiring R✝\nR : Type u_1\ninst✝ : Ring R\na b : R\n⊢ a * -b = -(a * b)", "tactic": "simp" } ]
[ 112, 70 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 112, 1 ]
Mathlib/Algebra/DirectSum/Ring.lean
DirectSum.of_mul_of
[]
[ 218, 19 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 216, 1 ]
Mathlib/Analysis/SpecialFunctions/Complex/Arg.lean
Complex.arg_of_re_nonneg
[]
[ 277, 12 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 276, 1 ]
Mathlib/Data/Set/Intervals/WithBotTop.lean
WithTop.preimage_coe_Ico_top
[ { "state_after": "no goals", "state_before": "α : Type u_1\ninst✝ : PartialOrder α\na b : α\n⊢ some ⁻¹' Ico ↑a ⊤ = Ici a", "tactic": "simp [← Ici_inter_Iio]" } ]
[ 82, 25 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 81, 1 ]
Mathlib/Data/Finset/Card.lean
Finset.length_toList
[ { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type ?u.12605\ns✝ t : Finset α\nf : α → β\nn : ℕ\ns : Finset α\n⊢ List.length (toList s) = card s", "tactic": "rw [toList, ← Multiset.coe_card, Multiset.coe_toList, card_def]" } ]
[ 216, 66 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 215, 1 ]