url
stringclasses
148 values
commit
stringclasses
148 values
file_path
stringlengths
7
101
full_name
stringlengths
1
100
start
stringlengths
6
10
end
stringlengths
6
11
tactic
stringlengths
1
11.2k
state_before
stringlengths
3
2.09M
state_after
stringlengths
6
2.09M
null
null
Mathlib/MeasureTheory/Measure/AEMeasurable.lean
aemeasurable_Ioi_of_forall_Ioc
[317, 1]
[331, 36]
rw [Ioi_eq_iUnion, aemeasurable_iUnion_iff]
case intro ι : Type ?u.4550285 α : Type u_2 β✝ : Type ?u.4550291 γ : Type ?u.4550294 δ : Type ?u.4550297 R : Type ?u.4550300 m0 : MeasurableSpace α inst✝⁴ : MeasurableSpace β✝ inst✝³ : MeasurableSpace γ inst✝² : MeasurableSpace δ f g✝ : α → β✝ μ ν : MeasureTheory.Measure α β : Type u_1 mβ : MeasurableSpace β inst✝¹ : LinearOrder α inst✝ : IsCountablyGenerated atTop x : α g : α → β g_meas : ∀ (t : α), t > x → AEMeasurable g this : Nonempty α u : ℕ → α hu_tendsto : Tendsto u atTop atTop Ioi_eq_iUnion : Ioi x = ⋃ (n : ℕ), Ioc x (u n) ⊢ AEMeasurable g
case intro ι : Type ?u.4550285 α : Type u_2 β✝ : Type ?u.4550291 γ : Type ?u.4550294 δ : Type ?u.4550297 R : Type ?u.4550300 m0 : MeasurableSpace α inst✝⁴ : MeasurableSpace β✝ inst✝³ : MeasurableSpace γ inst✝² : MeasurableSpace δ f g✝ : α → β✝ μ ν : MeasureTheory.Measure α β : Type u_1 mβ : MeasurableSpace β inst✝¹ : LinearOrder α inst✝ : IsCountablyGenerated atTop x : α g : α → β g_meas : ∀ (t : α), t > x → AEMeasurable g this : Nonempty α u : ℕ → α hu_tendsto : Tendsto u atTop atTop Ioi_eq_iUnion : Ioi x = ⋃ (n : ℕ), Ioc x (u n) ⊢ ∀ (i : ℕ), AEMeasurable g
null
null
Mathlib/MeasureTheory/Measure/AEMeasurable.lean
aemeasurable_Ioi_of_forall_Ioc
[317, 1]
[331, 36]
intro n
case intro ι : Type ?u.4550285 α : Type u_2 β✝ : Type ?u.4550291 γ : Type ?u.4550294 δ : Type ?u.4550297 R : Type ?u.4550300 m0 : MeasurableSpace α inst✝⁴ : MeasurableSpace β✝ inst✝³ : MeasurableSpace γ inst✝² : MeasurableSpace δ f g✝ : α → β✝ μ ν : MeasureTheory.Measure α β : Type u_1 mβ : MeasurableSpace β inst✝¹ : LinearOrder α inst✝ : IsCountablyGenerated atTop x : α g : α → β g_meas : ∀ (t : α), t > x → AEMeasurable g this : Nonempty α u : ℕ → α hu_tendsto : Tendsto u atTop atTop Ioi_eq_iUnion : Ioi x = ⋃ (n : ℕ), Ioc x (u n) ⊢ ∀ (i : ℕ), AEMeasurable g
case intro ι : Type ?u.4550285 α : Type u_2 β✝ : Type ?u.4550291 γ : Type ?u.4550294 δ : Type ?u.4550297 R : Type ?u.4550300 m0 : MeasurableSpace α inst✝⁴ : MeasurableSpace β✝ inst✝³ : MeasurableSpace γ inst✝² : MeasurableSpace δ f g✝ : α → β✝ μ ν : MeasureTheory.Measure α β : Type u_1 mβ : MeasurableSpace β inst✝¹ : LinearOrder α inst✝ : IsCountablyGenerated atTop x : α g : α → β g_meas : ∀ (t : α), t > x → AEMeasurable g this : Nonempty α u : ℕ → α hu_tendsto : Tendsto u atTop atTop Ioi_eq_iUnion : Ioi x = ⋃ (n : ℕ), Ioc x (u n) n : ℕ ⊢ AEMeasurable g
null
null
Mathlib/MeasureTheory/Measure/AEMeasurable.lean
aemeasurable_Ioi_of_forall_Ioc
[317, 1]
[331, 36]
cases' lt_or_le x (u n) with h h
case intro ι : Type ?u.4550285 α : Type u_2 β✝ : Type ?u.4550291 γ : Type ?u.4550294 δ : Type ?u.4550297 R : Type ?u.4550300 m0 : MeasurableSpace α inst✝⁴ : MeasurableSpace β✝ inst✝³ : MeasurableSpace γ inst✝² : MeasurableSpace δ f g✝ : α → β✝ μ ν : MeasureTheory.Measure α β : Type u_1 mβ : MeasurableSpace β inst✝¹ : LinearOrder α inst✝ : IsCountablyGenerated atTop x : α g : α → β g_meas : ∀ (t : α), t > x → AEMeasurable g this : Nonempty α u : ℕ → α hu_tendsto : Tendsto u atTop atTop Ioi_eq_iUnion : Ioi x = ⋃ (n : ℕ), Ioc x (u n) n : ℕ ⊢ AEMeasurable g
case intro.inl ι : Type ?u.4550285 α : Type u_2 β✝ : Type ?u.4550291 γ : Type ?u.4550294 δ : Type ?u.4550297 R : Type ?u.4550300 m0 : MeasurableSpace α inst✝⁴ : MeasurableSpace β✝ inst✝³ : MeasurableSpace γ inst✝² : MeasurableSpace δ f g✝ : α → β✝ μ ν : MeasureTheory.Measure α β : Type u_1 mβ : MeasurableSpace β inst✝¹ : LinearOrder α inst✝ : IsCountablyGenerated atTop x : α g : α → β g_meas : ∀ (t : α), t > x → AEMeasurable g this : Nonempty α u : ℕ → α hu_tendsto : Tendsto u atTop atTop Ioi_eq_iUnion : Ioi x = ⋃ (n : ℕ), Ioc x (u n) n : ℕ h : x < u n ⊢ AEMeasurable g case intro.inr ι : Type ?u.4550285 α : Type u_2 β✝ : Type ?u.4550291 γ : Type ?u.4550294 δ : Type ?u.4550297 R : Type ?u.4550300 m0 : MeasurableSpace α inst✝⁴ : MeasurableSpace β✝ inst✝³ : MeasurableSpace γ inst✝² : MeasurableSpace δ f g✝ : α → β✝ μ ν : MeasureTheory.Measure α β : Type u_1 mβ : MeasurableSpace β inst✝¹ : LinearOrder α inst✝ : IsCountablyGenerated atTop x : α g : α → β g_meas : ∀ (t : α), t > x → AEMeasurable g this : Nonempty α u : ℕ → α hu_tendsto : Tendsto u atTop atTop Ioi_eq_iUnion : Ioi x = ⋃ (n : ℕ), Ioc x (u n) n : ℕ h : u n ≤ x ⊢ AEMeasurable g
null
null
Mathlib/MeasureTheory/Measure/AEMeasurable.lean
aemeasurable_Ioi_of_forall_Ioc
[317, 1]
[331, 36]
rw [iUnion_Ioc_eq_Ioi_self_iff.mpr _]
ι : Type ?u.4550285 α : Type u_2 β✝ : Type ?u.4550291 γ : Type ?u.4550294 δ : Type ?u.4550297 R : Type ?u.4550300 m0 : MeasurableSpace α inst✝⁴ : MeasurableSpace β✝ inst✝³ : MeasurableSpace γ inst✝² : MeasurableSpace δ f g✝ : α → β✝ μ ν : MeasureTheory.Measure α β : Type u_1 mβ : MeasurableSpace β inst✝¹ : LinearOrder α inst✝ : IsCountablyGenerated atTop x : α g : α → β g_meas : ∀ (t : α), t > x → AEMeasurable g this : Nonempty α u : ℕ → α hu_tendsto : Tendsto u atTop atTop ⊢ Ioi x = ⋃ (n : ℕ), Ioc x (u n)
ι : Type ?u.4550285 α : Type u_2 β✝ : Type ?u.4550291 γ : Type ?u.4550294 δ : Type ?u.4550297 R : Type ?u.4550300 m0 : MeasurableSpace α inst✝⁴ : MeasurableSpace β✝ inst✝³ : MeasurableSpace γ inst✝² : MeasurableSpace δ f g✝ : α → β✝ μ ν : MeasureTheory.Measure α β : Type u_1 mβ : MeasurableSpace β inst✝¹ : LinearOrder α inst✝ : IsCountablyGenerated atTop x : α g : α → β g_meas : ∀ (t : α), t > x → AEMeasurable g this : Nonempty α u : ℕ → α hu_tendsto : Tendsto u atTop atTop ⊢ ∀ (x_1 : α), x < x_1 → ∃ i, x_1 ≤ u i
null
null
Mathlib/MeasureTheory/Measure/AEMeasurable.lean
aemeasurable_Ioi_of_forall_Ioc
[317, 1]
[331, 36]
exact fun y _ => (hu_tendsto.eventually (eventually_ge_atTop y)).exists
ι : Type ?u.4550285 α : Type u_2 β✝ : Type ?u.4550291 γ : Type ?u.4550294 δ : Type ?u.4550297 R : Type ?u.4550300 m0 : MeasurableSpace α inst✝⁴ : MeasurableSpace β✝ inst✝³ : MeasurableSpace γ inst✝² : MeasurableSpace δ f g✝ : α → β✝ μ ν : MeasureTheory.Measure α β : Type u_1 mβ : MeasurableSpace β inst✝¹ : LinearOrder α inst✝ : IsCountablyGenerated atTop x : α g : α → β g_meas : ∀ (t : α), t > x → AEMeasurable g this : Nonempty α u : ℕ → α hu_tendsto : Tendsto u atTop atTop ⊢ ∀ (x_1 : α), x < x_1 → ∃ i, x_1 ≤ u i
no goals
null
null
Mathlib/MeasureTheory/Measure/AEMeasurable.lean
aemeasurable_Ioi_of_forall_Ioc
[317, 1]
[331, 36]
exact g_meas (u n) h
case intro.inl ι : Type ?u.4550285 α : Type u_2 β✝ : Type ?u.4550291 γ : Type ?u.4550294 δ : Type ?u.4550297 R : Type ?u.4550300 m0 : MeasurableSpace α inst✝⁴ : MeasurableSpace β✝ inst✝³ : MeasurableSpace γ inst✝² : MeasurableSpace δ f g✝ : α → β✝ μ ν : MeasureTheory.Measure α β : Type u_1 mβ : MeasurableSpace β inst✝¹ : LinearOrder α inst✝ : IsCountablyGenerated atTop x : α g : α → β g_meas : ∀ (t : α), t > x → AEMeasurable g this : Nonempty α u : ℕ → α hu_tendsto : Tendsto u atTop atTop Ioi_eq_iUnion : Ioi x = ⋃ (n : ℕ), Ioc x (u n) n : ℕ h : x < u n ⊢ AEMeasurable g
no goals
null
null
Mathlib/MeasureTheory/Measure/AEMeasurable.lean
aemeasurable_Ioi_of_forall_Ioc
[317, 1]
[331, 36]
rw [Ioc_eq_empty (not_lt.mpr h), Measure.restrict_empty]
case intro.inr ι : Type ?u.4550285 α : Type u_2 β✝ : Type ?u.4550291 γ : Type ?u.4550294 δ : Type ?u.4550297 R : Type ?u.4550300 m0 : MeasurableSpace α inst✝⁴ : MeasurableSpace β✝ inst✝³ : MeasurableSpace γ inst✝² : MeasurableSpace δ f g✝ : α → β✝ μ ν : MeasureTheory.Measure α β : Type u_1 mβ : MeasurableSpace β inst✝¹ : LinearOrder α inst✝ : IsCountablyGenerated atTop x : α g : α → β g_meas : ∀ (t : α), t > x → AEMeasurable g this : Nonempty α u : ℕ → α hu_tendsto : Tendsto u atTop atTop Ioi_eq_iUnion : Ioi x = ⋃ (n : ℕ), Ioc x (u n) n : ℕ h : u n ≤ x ⊢ AEMeasurable g
case intro.inr ι : Type ?u.4550285 α : Type u_2 β✝ : Type ?u.4550291 γ : Type ?u.4550294 δ : Type ?u.4550297 R : Type ?u.4550300 m0 : MeasurableSpace α inst✝⁴ : MeasurableSpace β✝ inst✝³ : MeasurableSpace γ inst✝² : MeasurableSpace δ f g✝ : α → β✝ μ ν : MeasureTheory.Measure α β : Type u_1 mβ : MeasurableSpace β inst✝¹ : LinearOrder α inst✝ : IsCountablyGenerated atTop x : α g : α → β g_meas : ∀ (t : α), t > x → AEMeasurable g this : Nonempty α u : ℕ → α hu_tendsto : Tendsto u atTop atTop Ioi_eq_iUnion : Ioi x = ⋃ (n : ℕ), Ioc x (u n) n : ℕ h : u n ≤ x ⊢ AEMeasurable g
null
null
Mathlib/MeasureTheory/Measure/AEMeasurable.lean
aemeasurable_Ioi_of_forall_Ioc
[317, 1]
[331, 36]
exact aemeasurable_zero_measure
case intro.inr ι : Type ?u.4550285 α : Type u_2 β✝ : Type ?u.4550291 γ : Type ?u.4550294 δ : Type ?u.4550297 R : Type ?u.4550300 m0 : MeasurableSpace α inst✝⁴ : MeasurableSpace β✝ inst✝³ : MeasurableSpace γ inst✝² : MeasurableSpace δ f g✝ : α → β✝ μ ν : MeasureTheory.Measure α β : Type u_1 mβ : MeasurableSpace β inst✝¹ : LinearOrder α inst✝ : IsCountablyGenerated atTop x : α g : α → β g_meas : ∀ (t : α), t > x → AEMeasurable g this : Nonempty α u : ℕ → α hu_tendsto : Tendsto u atTop atTop Ioi_eq_iUnion : Ioi x = ⋃ (n : ℕ), Ioc x (u n) n : ℕ h : u n ≤ x ⊢ AEMeasurable g
no goals
null
null
Mathlib/Data/Dfinsupp/Basic.lean
Dfinsupp.extendWith_single_zero
[1647, 1]
[1654, 83]
ext (_ | j)
ι : Type u γ : Type w β : ι → Type v β₁ : ι → Type v₁ β₂ : ι → Type v₂ dec : DecidableEq ι κ : Type ?u.661354 α : Option ι → Type v inst✝¹ : DecidableEq ι inst✝ : (i : Option ι) → Zero (α i) i : ι x : α (some i) ⊢ extendWith 0 (single i x) = single (some i) x
case h.none ι : Type u γ : Type w β : ι → Type v β₁ : ι → Type v₁ β₂ : ι → Type v₂ dec : DecidableEq ι κ : Type ?u.661354 α : Option ι → Type v inst✝¹ : DecidableEq ι inst✝ : (i : Option ι) → Zero (α i) i : ι x : α (some i) ⊢ ↑(extendWith 0 (single i x)) none = ↑(single (some i) x) none case h.some ι : Type u γ : Type w β : ι → Type v β₁ : ι → Type v₁ β₂ : ι → Type v₂ dec : DecidableEq ι κ : Type ?u.661354 α : Option ι → Type v inst✝¹ : DecidableEq ι inst✝ : (i : Option ι) → Zero (α i) i : ι x : α (some i) j : ι ⊢ ↑(extendWith 0 (single i x)) (some j) = ↑(single (some i) x) (some j)
null
null
Mathlib/Data/Dfinsupp/Basic.lean
Dfinsupp.extendWith_single_zero
[1647, 1]
[1654, 83]
rw [extendWith_none, single_eq_of_ne (Option.some_ne_none _)]
case h.none ι : Type u γ : Type w β : ι → Type v β₁ : ι → Type v₁ β₂ : ι → Type v₂ dec : DecidableEq ι κ : Type ?u.661354 α : Option ι → Type v inst✝¹ : DecidableEq ι inst✝ : (i : Option ι) → Zero (α i) i : ι x : α (some i) ⊢ ↑(extendWith 0 (single i x)) none = ↑(single (some i) x) none
no goals
null
null
Mathlib/Data/Dfinsupp/Basic.lean
Dfinsupp.extendWith_single_zero
[1647, 1]
[1654, 83]
rw [extendWith_some]
case h.some ι : Type u γ : Type w β : ι → Type v β₁ : ι → Type v₁ β₂ : ι → Type v₂ dec : DecidableEq ι κ : Type ?u.661354 α : Option ι → Type v inst✝¹ : DecidableEq ι inst✝ : (i : Option ι) → Zero (α i) i : ι x : α (some i) j : ι ⊢ ↑(extendWith 0 (single i x)) (some j) = ↑(single (some i) x) (some j)
case h.some ι : Type u γ : Type w β : ι → Type v β₁ : ι → Type v₁ β₂ : ι → Type v₂ dec : DecidableEq ι κ : Type ?u.661354 α : Option ι → Type v inst✝¹ : DecidableEq ι inst✝ : (i : Option ι) → Zero (α i) i : ι x : α (some i) j : ι ⊢ ↑(single i x) j = ↑(single (some i) x) (some j)
null
null
Mathlib/Data/Dfinsupp/Basic.lean
Dfinsupp.extendWith_single_zero
[1647, 1]
[1654, 83]
obtain rfl | hij := Decidable.eq_or_ne i j
case h.some ι : Type u γ : Type w β : ι → Type v β₁ : ι → Type v₁ β₂ : ι → Type v₂ dec : DecidableEq ι κ : Type ?u.661354 α : Option ι → Type v inst✝¹ : DecidableEq ι inst✝ : (i : Option ι) → Zero (α i) i : ι x : α (some i) j : ι ⊢ ↑(single i x) j = ↑(single (some i) x) (some j)
case h.some.inl ι : Type u γ : Type w β : ι → Type v β₁ : ι → Type v₁ β₂ : ι → Type v₂ dec : DecidableEq ι κ : Type ?u.661354 α : Option ι → Type v inst✝¹ : DecidableEq ι inst✝ : (i : Option ι) → Zero (α i) i : ι x : α (some i) ⊢ ↑(single i x) i = ↑(single (some i) x) (some i) case h.some.inr ι : Type u γ : Type w β : ι → Type v β₁ : ι → Type v₁ β₂ : ι → Type v₂ dec : DecidableEq ι κ : Type ?u.661354 α : Option ι → Type v inst✝¹ : DecidableEq ι inst✝ : (i : Option ι) → Zero (α i) i : ι x : α (some i) j : ι hij : i ≠ j ⊢ ↑(single i x) j = ↑(single (some i) x) (some j)
null
null
Mathlib/Data/Dfinsupp/Basic.lean
Dfinsupp.extendWith_single_zero
[1647, 1]
[1654, 83]
rw [single_eq_same, single_eq_same]
case h.some.inl ι : Type u γ : Type w β : ι → Type v β₁ : ι → Type v₁ β₂ : ι → Type v₂ dec : DecidableEq ι κ : Type ?u.661354 α : Option ι → Type v inst✝¹ : DecidableEq ι inst✝ : (i : Option ι) → Zero (α i) i : ι x : α (some i) ⊢ ↑(single i x) i = ↑(single (some i) x) (some i)
no goals
null
null
Mathlib/Data/Dfinsupp/Basic.lean
Dfinsupp.extendWith_single_zero
[1647, 1]
[1654, 83]
rw [single_eq_of_ne hij, single_eq_of_ne ((Option.some_injective _).ne hij)]
case h.some.inr ι : Type u γ : Type w β : ι → Type v β₁ : ι → Type v₁ β₂ : ι → Type v₂ dec : DecidableEq ι κ : Type ?u.661354 α : Option ι → Type v inst✝¹ : DecidableEq ι inst✝ : (i : Option ι) → Zero (α i) i : ι x : α (some i) j : ι hij : i ≠ j ⊢ ↑(single i x) j = ↑(single (some i) x) (some j)
no goals
null
null
Mathlib/Data/Rat/Defs.lean
Rat.coe_int_div_eq_divInt
[503, 1]
[505, 54]
repeat' rw [coe_int_eq_divInt]
a b c : ℚ n d : ℤ ⊢ ↑n / ↑d = n /. d
a b c : ℚ n d : ℤ ⊢ n /. 1 / (d /. 1) = n /. d
null
null
Mathlib/Data/Rat/Defs.lean
Rat.coe_int_div_eq_divInt
[503, 1]
[505, 54]
exact divInt_div_divInt_cancel_left one_ne_zero n d
a b c : ℚ n d : ℤ ⊢ n /. 1 / (d /. 1) = n /. d
no goals
null
null
Mathlib/Data/Rat/Defs.lean
Rat.coe_int_div_eq_divInt
[503, 1]
[505, 54]
rw [coe_int_eq_divInt]
a b c : ℚ n d : ℤ ⊢ n /. 1 / (d /. 1) = n /. d
a b c : ℚ n d : ℤ ⊢ n /. 1 / (d /. 1) = n /. d
null
null
Mathlib/Data/Matrix/Basic.lean
Matrix.smul_eq_diagonal_mul
[1048, 1]
[1051, 7]
ext
l : Type ?u.279030 m : Type u_1 n : Type u_2 o : Type ?u.279039 m' : o → Type ?u.279044 n' : o → Type ?u.279049 R : Type ?u.279052 S : Type ?u.279055 α : Type v β : Type w γ : Type ?u.279062 inst✝² : NonUnitalNonAssocSemiring α inst✝¹ : Fintype m inst✝ : DecidableEq m M : Matrix m n α a : α ⊢ a • M = (diagonal fun x => a) ⬝ M
case a.h l : Type ?u.279030 m : Type u_1 n : Type u_2 o : Type ?u.279039 m' : o → Type ?u.279044 n' : o → Type ?u.279049 R : Type ?u.279052 S : Type ?u.279055 α : Type v β : Type w γ : Type ?u.279062 inst✝² : NonUnitalNonAssocSemiring α inst✝¹ : Fintype m inst✝ : DecidableEq m M : Matrix m n α a : α i✝ : m x✝ : n ⊢ (a • M) i✝ x✝ = ((diagonal fun x => a) ⬝ M) i✝ x✝
null
null
Mathlib/Data/Matrix/Basic.lean
Matrix.smul_eq_diagonal_mul
[1048, 1]
[1051, 7]
simp
case a.h l : Type ?u.279030 m : Type u_1 n : Type u_2 o : Type ?u.279039 m' : o → Type ?u.279044 n' : o → Type ?u.279049 R : Type ?u.279052 S : Type ?u.279055 α : Type v β : Type w γ : Type ?u.279062 inst✝² : NonUnitalNonAssocSemiring α inst✝¹ : Fintype m inst✝ : DecidableEq m M : Matrix m n α a : α i✝ : m x✝ : n ⊢ (a • M) i✝ x✝ = ((diagonal fun x => a) ⬝ M) i✝ x✝
no goals
null
null
Mathlib/MeasureTheory/Integral/CircleIntegral.lean
cauchyPowerSeries_apply
[533, 1]
[538, 27]
simp only [cauchyPowerSeries, ContinuousMultilinearMap.mkPiField_apply, Fin.prod_const, div_eq_mul_inv, mul_pow, mul_smul, circleIntegral.integral_smul]
E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℂ E inst✝ : CompleteSpace E f : ℂ → E c : ℂ R : ℝ n : ℕ w : ℂ ⊢ (↑(cauchyPowerSeries f c R n) fun x => w) = (2 * ↑π * I)⁻¹ • ∮ (z : ℂ) in C(c, R), (w / (z - c)) ^ n • (z - c)⁻¹ • f z
E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℂ E inst✝ : CompleteSpace E f : ℂ → E c : ℂ R : ℝ n : ℕ w : ℂ ⊢ (w ^ n • (2 * ↑π * I)⁻¹ • ∮ (z : ℂ) in C(c, R), (z - c)⁻¹ ^ n • (z - c)⁻¹ • f z) = (2 * ↑π * I)⁻¹ • w ^ n • ∮ (z : ℂ) in C(c, R), (z - c)⁻¹ ^ n • (z - c)⁻¹ • f z
null
null
Mathlib/MeasureTheory/Integral/CircleIntegral.lean
cauchyPowerSeries_apply
[533, 1]
[538, 27]
rw [← smul_comm (w ^ n)]
E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℂ E inst✝ : CompleteSpace E f : ℂ → E c : ℂ R : ℝ n : ℕ w : ℂ ⊢ (w ^ n • (2 * ↑π * I)⁻¹ • ∮ (z : ℂ) in C(c, R), (z - c)⁻¹ ^ n • (z - c)⁻¹ • f z) = (2 * ↑π * I)⁻¹ • w ^ n • ∮ (z : ℂ) in C(c, R), (z - c)⁻¹ ^ n • (z - c)⁻¹ • f z
no goals
null
null
Mathlib/Data/Nat/Log.lean
Nat.clog_mono_right
[334, 1]
[339, 37]
cases' le_or_lt b 1 with hb hb
b n m : ℕ h : n ≤ m ⊢ clog b n ≤ clog b m
case inl b n m : ℕ h : n ≤ m hb : b ≤ 1 ⊢ clog b n ≤ clog b m case inr b n m : ℕ h : n ≤ m hb : 1 < b ⊢ clog b n ≤ clog b m
null
null
Mathlib/Data/Nat/Log.lean
Nat.clog_mono_right
[334, 1]
[339, 37]
rw [clog_of_left_le_one hb]
case inl b n m : ℕ h : n ≤ m hb : b ≤ 1 ⊢ clog b n ≤ clog b m
case inl b n m : ℕ h : n ≤ m hb : b ≤ 1 ⊢ 0 ≤ clog b m
null
null
Mathlib/Data/Nat/Log.lean
Nat.clog_mono_right
[334, 1]
[339, 37]
exact zero_le _
case inl b n m : ℕ h : n ≤ m hb : b ≤ 1 ⊢ 0 ≤ clog b m
no goals
null
null
Mathlib/Data/Nat/Log.lean
Nat.clog_mono_right
[334, 1]
[339, 37]
rw [← le_pow_iff_clog_le hb]
case inr b n m : ℕ h : n ≤ m hb : 1 < b ⊢ clog b n ≤ clog b m
case inr b n m : ℕ h : n ≤ m hb : 1 < b ⊢ n ≤ b ^ clog b m
null
null
Mathlib/Data/Nat/Log.lean
Nat.clog_mono_right
[334, 1]
[339, 37]
exact h.trans (le_pow_clog hb _)
case inr b n m : ℕ h : n ≤ m hb : 1 < b ⊢ n ≤ b ^ clog b m
no goals
null
null
Mathlib/ModelTheory/Syntax.lean
FirstOrder.Language.BoundedFormula.not_all_isAtomic
[687, 1]
[688, 12]
cases con
L : Language L' : Language M : Type w N : Type ?u.109819 P : Type ?u.109822 inst✝² : Structure L M inst✝¹ : Structure L N inst✝ : Structure L P α : Type u' β : Type v' γ : Type ?u.109850 n l : ℕ φ✝ ψ : BoundedFormula L α l θ : BoundedFormula L α (Nat.succ l) v : α → M xs : Fin l → M φ : BoundedFormula L α (n + 1) con : IsAtomic (all φ) ⊢ False
no goals
null
null
Std/Data/Int/Lemmas.lean
Int.neg_add_lt_left_of_lt_add
[1091, 11]
[1093, 36]
rw [Int.add_comm]
a b c : Int h : a < b + c ⊢ -b + a < c
a b c : Int h : a < b + c ⊢ a + -b < c
null
null
Std/Data/Int/Lemmas.lean
Int.neg_add_lt_left_of_lt_add
[1091, 11]
[1093, 36]
exact Int.sub_left_lt_of_lt_add h
a b c : Int h : a < b + c ⊢ a + -b < c
no goals
null
null
Std/Data/Option/Lemmas.lean
Option.isSome_iff_exists
[55, 1]
[55, 87]
cases x <;> simp [isSome]
α✝ : Type u_1 x : Option α✝ ⊢ isSome x = true ↔ ∃ a, x = some a
no goals
null
null
Mathlib/AlgebraicTopology/DoldKan/Homotopies.lean
AlgebraicTopology.DoldKan.hσ'_naturality
[161, 1]
[171, 8]
have h : n + 1 = m := hnm
C : Type u_2 inst✝¹ : Category C inst✝ : Preadditive C X✝ : SimplicialObject C q n m : ℕ hnm : ComplexShape.Rel c m n X Y : SimplicialObject C f : X ⟶ Y ⊢ f.app [n].op ≫ hσ' q n m hnm = hσ' q n m hnm ≫ f.app [m].op
C : Type u_2 inst✝¹ : Category C inst✝ : Preadditive C X✝ : SimplicialObject C q n m : ℕ hnm : ComplexShape.Rel c m n X Y : SimplicialObject C f : X ⟶ Y h : n + 1 = m ⊢ f.app [n].op ≫ hσ' q n m hnm = hσ' q n m hnm ≫ f.app [m].op
null
null
Mathlib/AlgebraicTopology/DoldKan/Homotopies.lean
AlgebraicTopology.DoldKan.hσ'_naturality
[161, 1]
[171, 8]
subst h
C : Type u_2 inst✝¹ : Category C inst✝ : Preadditive C X✝ : SimplicialObject C q n m : ℕ hnm : ComplexShape.Rel c m n X Y : SimplicialObject C f : X ⟶ Y h : n + 1 = m ⊢ f.app [n].op ≫ hσ' q n m hnm = hσ' q n m hnm ≫ f.app [m].op
C : Type u_2 inst✝¹ : Category C inst✝ : Preadditive C X✝ : SimplicialObject C q n : ℕ X Y : SimplicialObject C f : X ⟶ Y hnm : ComplexShape.Rel c (n + 1) n ⊢ f.app [n].op ≫ hσ' q n (n + 1) hnm = hσ' q n (n + 1) hnm ≫ f.app [n + 1].op
null
null
Mathlib/AlgebraicTopology/DoldKan/Homotopies.lean
AlgebraicTopology.DoldKan.hσ'_naturality
[161, 1]
[171, 8]
simp only [hσ', eqToHom_refl, comp_id]
C : Type u_2 inst✝¹ : Category C inst✝ : Preadditive C X✝ : SimplicialObject C q n : ℕ X Y : SimplicialObject C f : X ⟶ Y hnm : ComplexShape.Rel c (n + 1) n ⊢ f.app [n].op ≫ hσ' q n (n + 1) hnm = hσ' q n (n + 1) hnm ≫ f.app [n + 1].op
C : Type u_2 inst✝¹ : Category C inst✝ : Preadditive C X✝ : SimplicialObject C q n : ℕ X Y : SimplicialObject C f : X ⟶ Y hnm : ComplexShape.Rel c (n + 1) n ⊢ f.app [n].op ≫ hσ q n = hσ q n ≫ f.app [n + 1].op
null
null
Mathlib/AlgebraicTopology/DoldKan/Homotopies.lean
AlgebraicTopology.DoldKan.hσ'_naturality
[161, 1]
[171, 8]
unfold hσ
C : Type u_2 inst✝¹ : Category C inst✝ : Preadditive C X✝ : SimplicialObject C q n : ℕ X Y : SimplicialObject C f : X ⟶ Y hnm : ComplexShape.Rel c (n + 1) n ⊢ f.app [n].op ≫ hσ q n = hσ q n ≫ f.app [n + 1].op
C : Type u_2 inst✝¹ : Category C inst✝ : Preadditive C X✝ : SimplicialObject C q n : ℕ X Y : SimplicialObject C f : X ⟶ Y hnm : ComplexShape.Rel c (n + 1) n ⊢ (f.app [n].op ≫ if n < q then 0 else (-1) ^ (n - q) • σ Y { val := n - q, isLt := (_ : n - q < Nat.succ n) }) = (if n < q then 0 else (-1) ^ (n - q) • σ X { val := n - q, isLt := (_ : n - q < Nat.succ n) }) ≫ f.app [n + 1].op
null
null
Mathlib/AlgebraicTopology/DoldKan/Homotopies.lean
AlgebraicTopology.DoldKan.hσ'_naturality
[161, 1]
[171, 8]
split_ifs
C : Type u_2 inst✝¹ : Category C inst✝ : Preadditive C X✝ : SimplicialObject C q n : ℕ X Y : SimplicialObject C f : X ⟶ Y hnm : ComplexShape.Rel c (n + 1) n ⊢ (f.app [n].op ≫ if n < q then 0 else (-1) ^ (n - q) • σ Y { val := n - q, isLt := (_ : n - q < Nat.succ n) }) = (if n < q then 0 else (-1) ^ (n - q) • σ X { val := n - q, isLt := (_ : n - q < Nat.succ n) }) ≫ f.app [n + 1].op
case inl C : Type u_2 inst✝¹ : Category C inst✝ : Preadditive C X✝ : SimplicialObject C q n : ℕ X Y : SimplicialObject C f : X ⟶ Y hnm : ComplexShape.Rel c (n + 1) n h✝ : n < q ⊢ f.app [n].op ≫ 0 = 0 ≫ f.app [n + 1].op case inr C : Type u_2 inst✝¹ : Category C inst✝ : Preadditive C X✝ : SimplicialObject C q n : ℕ X Y : SimplicialObject C f : X ⟶ Y hnm : ComplexShape.Rel c (n + 1) n h✝ : ¬n < q ⊢ f.app [n].op ≫ ((-1) ^ (n - q) • σ Y { val := n - q, isLt := (_ : n - q < Nat.succ n) }) = ((-1) ^ (n - q) • σ X { val := n - q, isLt := (_ : n - q < Nat.succ n) }) ≫ f.app [n + 1].op
null
null
Mathlib/AlgebraicTopology/DoldKan/Homotopies.lean
AlgebraicTopology.DoldKan.hσ'_naturality
[161, 1]
[171, 8]
rw [zero_comp, comp_zero]
case inl C : Type u_2 inst✝¹ : Category C inst✝ : Preadditive C X✝ : SimplicialObject C q n : ℕ X Y : SimplicialObject C f : X ⟶ Y hnm : ComplexShape.Rel c (n + 1) n h✝ : n < q ⊢ f.app [n].op ≫ 0 = 0 ≫ f.app [n + 1].op
no goals
null
null
Mathlib/AlgebraicTopology/DoldKan/Homotopies.lean
AlgebraicTopology.DoldKan.hσ'_naturality
[161, 1]
[171, 8]
simp only [zsmul_comp, comp_zsmul]
case inr C : Type u_2 inst✝¹ : Category C inst✝ : Preadditive C X✝ : SimplicialObject C q n : ℕ X Y : SimplicialObject C f : X ⟶ Y hnm : ComplexShape.Rel c (n + 1) n h✝ : ¬n < q ⊢ f.app [n].op ≫ ((-1) ^ (n - q) • σ Y { val := n - q, isLt := (_ : n - q < Nat.succ n) }) = ((-1) ^ (n - q) • σ X { val := n - q, isLt := (_ : n - q < Nat.succ n) }) ≫ f.app [n + 1].op
case inr C : Type u_2 inst✝¹ : Category C inst✝ : Preadditive C X✝ : SimplicialObject C q n : ℕ X Y : SimplicialObject C f : X ⟶ Y hnm : ComplexShape.Rel c (n + 1) n h✝ : ¬n < q ⊢ (-1) ^ (n - q) • f.app [n].op ≫ σ Y { val := n - q, isLt := (_ : n - q < Nat.succ n) } = (-1) ^ (n - q) • σ X { val := n - q, isLt := (_ : n - q < Nat.succ n) } ≫ f.app [n + 1].op
null
null
Mathlib/AlgebraicTopology/DoldKan/Homotopies.lean
AlgebraicTopology.DoldKan.hσ'_naturality
[161, 1]
[171, 8]
erw [f.naturality]
case inr C : Type u_2 inst✝¹ : Category C inst✝ : Preadditive C X✝ : SimplicialObject C q n : ℕ X Y : SimplicialObject C f : X ⟶ Y hnm : ComplexShape.Rel c (n + 1) n h✝ : ¬n < q ⊢ (-1) ^ (n - q) • f.app [n].op ≫ σ Y { val := n - q, isLt := (_ : n - q < Nat.succ n) } = (-1) ^ (n - q) • σ X { val := n - q, isLt := (_ : n - q < Nat.succ n) } ≫ f.app [n + 1].op
case inr C : Type u_2 inst✝¹ : Category C inst✝ : Preadditive C X✝ : SimplicialObject C q n : ℕ X Y : SimplicialObject C f : X ⟶ Y hnm : ComplexShape.Rel c (n + 1) n h✝ : ¬n < q ⊢ (-1) ^ (n - q) • f.app [n].op ≫ σ Y { val := n - q, isLt := (_ : n - q < Nat.succ n) } = (-1) ^ (n - q) • f.app [n].op ≫ Y.map (SimplexCategory.σ { val := n - q, isLt := (_ : n - q < Nat.succ n) }).op
null
null
Mathlib/AlgebraicTopology/DoldKan/Homotopies.lean
AlgebraicTopology.DoldKan.hσ'_naturality
[161, 1]
[171, 8]
rfl
case inr C : Type u_2 inst✝¹ : Category C inst✝ : Preadditive C X✝ : SimplicialObject C q n : ℕ X Y : SimplicialObject C f : X ⟶ Y hnm : ComplexShape.Rel c (n + 1) n h✝ : ¬n < q ⊢ (-1) ^ (n - q) • f.app [n].op ≫ σ Y { val := n - q, isLt := (_ : n - q < Nat.succ n) } = (-1) ^ (n - q) • f.app [n].op ≫ Y.map (SimplexCategory.σ { val := n - q, isLt := (_ : n - q < Nat.succ n) }).op
no goals
null
null
Mathlib/GroupTheory/Perm/Cycle/Basic.lean
Equiv.Perm.isCycleOn_support_cycleOf
[1183, 1]
[1193, 36]
refine fun _ ↦ ⟨fun h ↦ mem_support_cycleOf_iff.2 ?_, fun h ↦ mem_support_cycleOf_iff.2 ?_⟩
ι : Type ?u.2583510 α : Type u_1 β : Type ?u.2583516 inst✝¹ : DecidableEq α inst✝ : Fintype α f✝ g : Perm α x✝ y : α f : Perm α x : α ⊢ ∀ (a : α), ↑f a ∈ ↑(support (cycleOf f x)) ↔ a ∈ ↑(support (cycleOf f x))
case refine_1 ι : Type ?u.2583510 α : Type u_1 β : Type ?u.2583516 inst✝¹ : DecidableEq α inst✝ : Fintype α f✝ g : Perm α x✝¹ y : α f : Perm α x x✝ : α h : ↑f x✝ ∈ ↑(support (cycleOf f x)) ⊢ SameCycle f x x✝ ∧ x ∈ support f case refine_2 ι : Type ?u.2583510 α : Type u_1 β : Type ?u.2583516 inst✝¹ : DecidableEq α inst✝ : Fintype α f✝ g : Perm α x✝¹ y : α f : Perm α x x✝ : α h : x✝ ∈ ↑(support (cycleOf f x)) ⊢ SameCycle f x (↑f x✝) ∧ x ∈ support f
null
null
Mathlib/GroupTheory/Perm/Cycle/Basic.lean
Equiv.Perm.isCycleOn_support_cycleOf
[1183, 1]
[1193, 36]
exact ⟨sameCycle_apply_right.1 (mem_support_cycleOf_iff.1 h).1, (mem_support_cycleOf_iff.1 h).2⟩
case refine_1 ι : Type ?u.2583510 α : Type u_1 β : Type ?u.2583516 inst✝¹ : DecidableEq α inst✝ : Fintype α f✝ g : Perm α x✝¹ y : α f : Perm α x x✝ : α h : ↑f x✝ ∈ ↑(support (cycleOf f x)) ⊢ SameCycle f x x✝ ∧ x ∈ support f
no goals
null
null
Mathlib/GroupTheory/Perm/Cycle/Basic.lean
Equiv.Perm.isCycleOn_support_cycleOf
[1183, 1]
[1193, 36]
exact ⟨sameCycle_apply_right.2 (mem_support_cycleOf_iff.1 h).1, (mem_support_cycleOf_iff.1 h).2⟩
case refine_2 ι : Type ?u.2583510 α : Type u_1 β : Type ?u.2583516 inst✝¹ : DecidableEq α inst✝ : Fintype α f✝ g : Perm α x✝¹ y : α f : Perm α x x✝ : α h : x✝ ∈ ↑(support (cycleOf f x)) ⊢ SameCycle f x (↑f x✝) ∧ x ∈ support f
no goals
null
null
Mathlib/GroupTheory/Perm/Cycle/Basic.lean
Equiv.Perm.isCycleOn_support_cycleOf
[1183, 1]
[1193, 36]
rw [mem_coe, mem_support_cycleOf_iff] at ha hb
ι : Type ?u.2583510 α : Type u_1 β : Type ?u.2583516 inst✝¹ : DecidableEq α inst✝ : Fintype α f✝ g : Perm α x✝ y : α f : Perm α x a : α ha : a ∈ ↑(support (cycleOf f x)) b : α hb : b ∈ ↑(support (cycleOf f x)) ⊢ SameCycle f a b
ι : Type ?u.2583510 α : Type u_1 β : Type ?u.2583516 inst✝¹ : DecidableEq α inst✝ : Fintype α f✝ g : Perm α x✝ y : α f : Perm α x a : α ha : SameCycle f x a ∧ x ∈ support f b : α hb : SameCycle f x b ∧ x ∈ support f ⊢ SameCycle f a b
null
null
Mathlib/GroupTheory/Perm/Cycle/Basic.lean
Equiv.Perm.isCycleOn_support_cycleOf
[1183, 1]
[1193, 36]
exact ha.1.symm.trans hb.1
ι : Type ?u.2583510 α : Type u_1 β : Type ?u.2583516 inst✝¹ : DecidableEq α inst✝ : Fintype α f✝ g : Perm α x✝ y : α f : Perm α x a : α ha : SameCycle f x a ∧ x ∈ support f b : α hb : SameCycle f x b ∧ x ∈ support f ⊢ SameCycle f a b
no goals
null
null
Mathlib/Data/Finset/Lattice.lean
Finset.iInf_singleton
[1935, 1]
[1935, 92]
simp
F : Type ?u.430806 α : Type u_2 β : Type u_1 γ : Type ?u.430815 ι : Type ?u.430818 κ : Type ?u.430821 inst✝ : CompleteLattice β a : α s : α → β ⊢ (⨅ (x : α) (_ : x ∈ {a}), s x) = s a
no goals
null
null
src/lean/Init/SimpLemmas.lean
ite_congr
[56, 1]
[60, 63]
cases Decidable.em c with | inl h => rw [if_pos h]; subst b; rw [if_pos h]; exact h₂ h | inr h => rw [if_neg h]; subst b; rw [if_neg h]; exact h₃ h
α : Sort u_1 b c : Prop x y u v : α s : Decidable b inst✝ : Decidable c h₁ : b = c h₂ : c → x = u h₃ : ¬c → y = v ⊢ ite b x y = ite c u v
no goals
null
null
src/lean/Init/SimpLemmas.lean
ite_congr
[56, 1]
[60, 63]
rw [if_pos h]
case inl α : Sort u_1 b c : Prop x y u v : α s : Decidable b inst✝ : Decidable c h₁ : b = c h₂ : c → x = u h₃ : ¬c → y = v h : c ⊢ ite b x y = ite c u v
case inl α : Sort u_1 b c : Prop x y u v : α s : Decidable b inst✝ : Decidable c h₁ : b = c h₂ : c → x = u h₃ : ¬c → y = v h : c ⊢ ite b x y = u
null
null
src/lean/Init/SimpLemmas.lean
ite_congr
[56, 1]
[60, 63]
subst b
case inl α : Sort u_1 b c : Prop x y u v : α s : Decidable b inst✝ : Decidable c h₁ : b = c h₂ : c → x = u h₃ : ¬c → y = v h : c ⊢ ite b x y = u
case inl α : Sort u_1 c : Prop x y u v : α inst✝ : Decidable c h₂ : c → x = u h₃ : ¬c → y = v h : c s : Decidable c ⊢ ite c x y = u
null
null
src/lean/Init/SimpLemmas.lean
ite_congr
[56, 1]
[60, 63]
rw [if_pos h]
case inl α : Sort u_1 c : Prop x y u v : α inst✝ : Decidable c h₂ : c → x = u h₃ : ¬c → y = v h : c s : Decidable c ⊢ ite c x y = u
case inl α : Sort u_1 c : Prop x y u v : α inst✝ : Decidable c h₂ : c → x = u h₃ : ¬c → y = v h : c s : Decidable c ⊢ x = u
null
null
src/lean/Init/SimpLemmas.lean
ite_congr
[56, 1]
[60, 63]
exact h₂ h
case inl α : Sort u_1 c : Prop x y u v : α inst✝ : Decidable c h₂ : c → x = u h₃ : ¬c → y = v h : c s : Decidable c ⊢ x = u
no goals
null
null
src/lean/Init/SimpLemmas.lean
ite_congr
[56, 1]
[60, 63]
rw [if_neg h]
case inr α : Sort u_1 b c : Prop x y u v : α s : Decidable b inst✝ : Decidable c h₁ : b = c h₂ : c → x = u h₃ : ¬c → y = v h : ¬c ⊢ ite b x y = ite c u v
case inr α : Sort u_1 b c : Prop x y u v : α s : Decidable b inst✝ : Decidable c h₁ : b = c h₂ : c → x = u h₃ : ¬c → y = v h : ¬c ⊢ ite b x y = v
null
null
src/lean/Init/SimpLemmas.lean
ite_congr
[56, 1]
[60, 63]
subst b
case inr α : Sort u_1 b c : Prop x y u v : α s : Decidable b inst✝ : Decidable c h₁ : b = c h₂ : c → x = u h₃ : ¬c → y = v h : ¬c ⊢ ite b x y = v
case inr α : Sort u_1 c : Prop x y u v : α inst✝ : Decidable c h₂ : c → x = u h₃ : ¬c → y = v h : ¬c s : Decidable c ⊢ ite c x y = v
null
null
src/lean/Init/SimpLemmas.lean
ite_congr
[56, 1]
[60, 63]
rw [if_neg h]
case inr α : Sort u_1 c : Prop x y u v : α inst✝ : Decidable c h₂ : c → x = u h₃ : ¬c → y = v h : ¬c s : Decidable c ⊢ ite c x y = v
case inr α : Sort u_1 c : Prop x y u v : α inst✝ : Decidable c h₂ : c → x = u h₃ : ¬c → y = v h : ¬c s : Decidable c ⊢ y = v
null
null
src/lean/Init/SimpLemmas.lean
ite_congr
[56, 1]
[60, 63]
exact h₃ h
case inr α : Sort u_1 c : Prop x y u v : α inst✝ : Decidable c h₂ : c → x = u h₃ : ¬c → y = v h : ¬c s : Decidable c ⊢ y = v
no goals
null
null
Mathlib/Algebra/Order/Field/Basic.lean
add_halves
[497, 1]
[498, 70]
rw [div_add_div_same, ← two_mul, mul_div_cancel_left a two_ne_zero]
ι : Type ?u.89441 α : Type u_1 β : Type ?u.89447 inst✝ : LinearOrderedSemifield α a✝ b c d e : α m n : ℤ a : α ⊢ a / 2 + a / 2 = a
no goals
null
null
Mathlib/Data/Finset/Basic.lean
Finset.subset_insert_iff_of_not_mem
[2002, 1]
[2003, 48]
rw [subset_insert_iff, erase_eq_of_not_mem h]
α : Type u_1 β : Type ?u.218847 γ : Type ?u.218850 inst✝ : DecidableEq α s t u v : Finset α a b : α h : ¬a ∈ s ⊢ s ⊆ insert a t ↔ s ⊆ t
no goals
null
null
Mathlib/Probability/ConditionalProbability.lean
ProbabilityTheory.cond_pos_of_inter_ne_zero
[120, 1]
[124, 53]
rw [cond_apply _ hms]
Ω : Type u_1 m : MeasurableSpace Ω μ : MeasureTheory.Measure Ω s t : Set Ω inst✝ : IsFiniteMeasure μ hms : MeasurableSet s hci : ↑↑μ (s ∩ t) ≠ 0 ⊢ 0 < ↑↑(μ[|s]) t
Ω : Type u_1 m : MeasurableSpace Ω μ : MeasureTheory.Measure Ω s t : Set Ω inst✝ : IsFiniteMeasure μ hms : MeasurableSet s hci : ↑↑μ (s ∩ t) ≠ 0 ⊢ 0 < (↑↑μ s)⁻¹ * ↑↑μ (s ∩ t)
null
null
Mathlib/Probability/ConditionalProbability.lean
ProbabilityTheory.cond_pos_of_inter_ne_zero
[120, 1]
[124, 53]
refine' ENNReal.mul_pos _ hci
Ω : Type u_1 m : MeasurableSpace Ω μ : MeasureTheory.Measure Ω s t : Set Ω inst✝ : IsFiniteMeasure μ hms : MeasurableSet s hci : ↑↑μ (s ∩ t) ≠ 0 ⊢ 0 < (↑↑μ s)⁻¹ * ↑↑μ (s ∩ t)
Ω : Type u_1 m : MeasurableSpace Ω μ : MeasureTheory.Measure Ω s t : Set Ω inst✝ : IsFiniteMeasure μ hms : MeasurableSet s hci : ↑↑μ (s ∩ t) ≠ 0 ⊢ (↑↑μ s)⁻¹ ≠ 0
null
null
Mathlib/Probability/ConditionalProbability.lean
ProbabilityTheory.cond_pos_of_inter_ne_zero
[120, 1]
[124, 53]
exact ENNReal.inv_ne_zero.mpr (measure_ne_top _ _)
Ω : Type u_1 m : MeasurableSpace Ω μ : MeasureTheory.Measure Ω s t : Set Ω inst✝ : IsFiniteMeasure μ hms : MeasurableSet s hci : ↑↑μ (s ∩ t) ≠ 0 ⊢ (↑↑μ s)⁻¹ ≠ 0
no goals
null
null
Mathlib/Data/Set/Intervals/SurjOn.lean
surjOn_Ici_of_monotone_surjective
[79, 1]
[84, 52]
rw [← Ioi_union_left, ← Ioi_union_left]
α : Type u_1 β : Type u_2 inst✝¹ : LinearOrder α inst✝ : PartialOrder β f : α → β h_mono : Monotone f h_surj : Surjective f a : α ⊢ SurjOn f (Ici a) (Ici (f a))
α : Type u_1 β : Type u_2 inst✝¹ : LinearOrder α inst✝ : PartialOrder β f : α → β h_mono : Monotone f h_surj : Surjective f a : α ⊢ SurjOn f (Ioi a ∪ {a}) (Ioi (f a) ∪ {f a})
null
null
Mathlib/Data/Set/Intervals/SurjOn.lean
surjOn_Ici_of_monotone_surjective
[79, 1]
[84, 52]
exact (surjOn_Ioi_of_monotone_surjective h_mono h_surj a).union_union (@image_singleton _ _ f a ▸ surjOn_image _ _)
α : Type u_1 β : Type u_2 inst✝¹ : LinearOrder α inst✝ : PartialOrder β f : α → β h_mono : Monotone f h_surj : Surjective f a : α ⊢ SurjOn f (Ioi a ∪ {a}) (Ioi (f a) ∪ {f a})
no goals
null
null
Mathlib/Algebra/Order/Ring/Defs.lean
mul_le_mul_of_nonpos_right
[355, 1]
[356, 92]
simpa only [mul_neg, neg_le_neg_iff] using mul_le_mul_of_nonneg_right h (neg_nonneg.2 hc)
α : Type u β : Type ?u.34618 inst✝ : OrderedRing α a b c d : α h : b ≤ a hc : c ≤ 0 ⊢ a * c ≤ b * c
no goals
null
null
Mathlib/Data/Fin/Basic.lean
Fin.castAdd_lt
[1141, 1]
[1142, 7]
simp
n✝ m✝ m n : ℕ i : Fin m ⊢ ↑(↑(castAdd n) i) < m
no goals
null
null
Mathlib/GroupTheory/Perm/Cycle/Basic.lean
Equiv.Perm.Disjoint.isConj_mul
[1771, 1]
[1815, 74]
cases nonempty_fintype α
ι : Type ?u.3042712 α✝ : Type ?u.3042715 β : Type ?u.3042718 inst✝² : DecidableEq α✝ inst✝¹ : Fintype α✝ σ✝ τ✝ : Perm α✝ α : Type u_1 inst✝ : Finite α σ τ π ρ : Perm α hc1 : IsConj σ π hc2 : IsConj τ ρ hd1 : Disjoint σ τ hd2 : Disjoint π ρ ⊢ IsConj (σ * τ) (π * ρ)
case intro ι : Type ?u.3042712 α✝ : Type ?u.3042715 β : Type ?u.3042718 inst✝² : DecidableEq α✝ inst✝¹ : Fintype α✝ σ✝ τ✝ : Perm α✝ α : Type u_1 inst✝ : Finite α σ τ π ρ : Perm α hc1 : IsConj σ π hc2 : IsConj τ ρ hd1 : Disjoint σ τ hd2 : Disjoint π ρ val✝ : Fintype α ⊢ IsConj (σ * τ) (π * ρ)
null
null
Mathlib/GroupTheory/Perm/Cycle/Basic.lean
Equiv.Perm.Disjoint.isConj_mul
[1771, 1]
[1815, 74]
obtain ⟨f, rfl⟩ := isConj_iff.1 hc1
case intro ι : Type ?u.3042712 α✝ : Type ?u.3042715 β : Type ?u.3042718 inst✝² : DecidableEq α✝ inst✝¹ : Fintype α✝ σ✝ τ✝ : Perm α✝ α : Type u_1 inst✝ : Finite α σ τ π ρ : Perm α hc1 : IsConj σ π hc2 : IsConj τ ρ hd1 : Disjoint σ τ hd2 : Disjoint π ρ val✝ : Fintype α ⊢ IsConj (σ * τ) (π * ρ)
case intro.intro ι : Type ?u.3042712 α✝ : Type ?u.3042715 β : Type ?u.3042718 inst✝² : DecidableEq α✝ inst✝¹ : Fintype α✝ σ✝ τ✝ : Perm α✝ α : Type u_1 inst✝ : Finite α σ τ ρ : Perm α hc2 : IsConj τ ρ hd1 : Disjoint σ τ val✝ : Fintype α f : Perm α hc1 : IsConj σ (f * σ * f⁻¹) hd2 : Disjoint (f * σ * f⁻¹) ρ ⊢ IsConj (σ * τ) (f * σ * f⁻¹ * ρ)
null
null
Mathlib/GroupTheory/Perm/Cycle/Basic.lean
Equiv.Perm.Disjoint.isConj_mul
[1771, 1]
[1815, 74]
obtain ⟨g, rfl⟩ := isConj_iff.1 hc2
case intro.intro ι : Type ?u.3042712 α✝ : Type ?u.3042715 β : Type ?u.3042718 inst✝² : DecidableEq α✝ inst✝¹ : Fintype α✝ σ✝ τ✝ : Perm α✝ α : Type u_1 inst✝ : Finite α σ τ ρ : Perm α hc2 : IsConj τ ρ hd1 : Disjoint σ τ val✝ : Fintype α f : Perm α hc1 : IsConj σ (f * σ * f⁻¹) hd2 : Disjoint (f * σ * f⁻¹) ρ ⊢ IsConj (σ * τ) (f * σ * f⁻¹ * ρ)
case intro.intro.intro ι : Type ?u.3042712 α✝ : Type ?u.3042715 β : Type ?u.3042718 inst✝² : DecidableEq α✝ inst✝¹ : Fintype α✝ σ✝ τ✝ : Perm α✝ α : Type u_1 inst✝ : Finite α σ τ : Perm α hd1 : Disjoint σ τ val✝ : Fintype α f : Perm α hc1 : IsConj σ (f * σ * f⁻¹) g : Perm α hc2 : IsConj τ (g * τ * g⁻¹) hd2 : Disjoint (f * σ * f⁻¹) (g * τ * g⁻¹) ⊢ IsConj (σ * τ) (f * σ * f⁻¹ * (g * τ * g⁻¹))
null
null
Mathlib/GroupTheory/Perm/Cycle/Basic.lean
Equiv.Perm.Disjoint.isConj_mul
[1771, 1]
[1815, 74]
have hd1' := coe_inj.2 hd1.support_mul
case intro.intro.intro ι : Type ?u.3042712 α✝ : Type ?u.3042715 β : Type ?u.3042718 inst✝² : DecidableEq α✝ inst✝¹ : Fintype α✝ σ✝ τ✝ : Perm α✝ α : Type u_1 inst✝ : Finite α σ τ : Perm α hd1 : Disjoint σ τ val✝ : Fintype α f : Perm α hc1 : IsConj σ (f * σ * f⁻¹) g : Perm α hc2 : IsConj τ (g * τ * g⁻¹) hd2 : Disjoint (f * σ * f⁻¹) (g * τ * g⁻¹) ⊢ IsConj (σ * τ) (f * σ * f⁻¹ * (g * τ * g⁻¹))
case intro.intro.intro ι : Type ?u.3042712 α✝ : Type ?u.3042715 β : Type ?u.3042718 inst✝² : DecidableEq α✝ inst✝¹ : Fintype α✝ σ✝ τ✝ : Perm α✝ α : Type u_1 inst✝ : Finite α σ τ : Perm α hd1 : Disjoint σ τ val✝ : Fintype α f : Perm α hc1 : IsConj σ (f * σ * f⁻¹) g : Perm α hc2 : IsConj τ (g * τ * g⁻¹) hd2 : Disjoint (f * σ * f⁻¹) (g * τ * g⁻¹) hd1' : ↑(support (σ * τ)) = ↑(support σ ∪ support τ) ⊢ IsConj (σ * τ) (f * σ * f⁻¹ * (g * τ * g⁻¹))
null
null
Mathlib/GroupTheory/Perm/Cycle/Basic.lean
Equiv.Perm.Disjoint.isConj_mul
[1771, 1]
[1815, 74]
have hd2' := coe_inj.2 hd2.support_mul
case intro.intro.intro ι : Type ?u.3042712 α✝ : Type ?u.3042715 β : Type ?u.3042718 inst✝² : DecidableEq α✝ inst✝¹ : Fintype α✝ σ✝ τ✝ : Perm α✝ α : Type u_1 inst✝ : Finite α σ τ : Perm α hd1 : Disjoint σ τ val✝ : Fintype α f : Perm α hc1 : IsConj σ (f * σ * f⁻¹) g : Perm α hc2 : IsConj τ (g * τ * g⁻¹) hd2 : Disjoint (f * σ * f⁻¹) (g * τ * g⁻¹) hd1' : ↑(support (σ * τ)) = ↑(support σ ∪ support τ) ⊢ IsConj (σ * τ) (f * σ * f⁻¹ * (g * τ * g⁻¹))
case intro.intro.intro ι : Type ?u.3042712 α✝ : Type ?u.3042715 β : Type ?u.3042718 inst✝² : DecidableEq α✝ inst✝¹ : Fintype α✝ σ✝ τ✝ : Perm α✝ α : Type u_1 inst✝ : Finite α σ τ : Perm α hd1 : Disjoint σ τ val✝ : Fintype α f : Perm α hc1 : IsConj σ (f * σ * f⁻¹) g : Perm α hc2 : IsConj τ (g * τ * g⁻¹) hd2 : Disjoint (f * σ * f⁻¹) (g * τ * g⁻¹) hd1' : ↑(support (σ * τ)) = ↑(support σ ∪ support τ) hd2' : ↑(support (f * σ * f⁻¹ * (g * τ * g⁻¹))) = ↑(support (f * σ * f⁻¹) ∪ support (g * τ * g⁻¹)) ⊢ IsConj (σ * τ) (f * σ * f⁻¹ * (g * τ * g⁻¹))
null
null
Mathlib/GroupTheory/Perm/Cycle/Basic.lean
Equiv.Perm.Disjoint.isConj_mul
[1771, 1]
[1815, 74]
rw [coe_union] at *
case intro.intro.intro ι : Type ?u.3042712 α✝ : Type ?u.3042715 β : Type ?u.3042718 inst✝² : DecidableEq α✝ inst✝¹ : Fintype α✝ σ✝ τ✝ : Perm α✝ α : Type u_1 inst✝ : Finite α σ τ : Perm α hd1 : Disjoint σ τ val✝ : Fintype α f : Perm α hc1 : IsConj σ (f * σ * f⁻¹) g : Perm α hc2 : IsConj τ (g * τ * g⁻¹) hd2 : Disjoint (f * σ * f⁻¹) (g * τ * g⁻¹) hd1' : ↑(support (σ * τ)) = ↑(support σ ∪ support τ) hd2' : ↑(support (f * σ * f⁻¹ * (g * τ * g⁻¹))) = ↑(support (f * σ * f⁻¹) ∪ support (g * τ * g⁻¹)) ⊢ IsConj (σ * τ) (f * σ * f⁻¹ * (g * τ * g⁻¹))
case intro.intro.intro ι : Type ?u.3042712 α✝ : Type ?u.3042715 β : Type ?u.3042718 inst✝² : DecidableEq α✝ inst✝¹ : Fintype α✝ σ✝ τ✝ : Perm α✝ α : Type u_1 inst✝ : Finite α σ τ : Perm α hd1 : Disjoint σ τ val✝ : Fintype α f : Perm α hc1 : IsConj σ (f * σ * f⁻¹) g : Perm α hc2 : IsConj τ (g * τ * g⁻¹) hd2 : Disjoint (f * σ * f⁻¹) (g * τ * g⁻¹) hd1' : ↑(support (σ * τ)) = ↑(support σ) ∪ ↑(support τ) hd2' : ↑(support (f * σ * f⁻¹ * (g * τ * g⁻¹))) = ↑(support (f * σ * f⁻¹)) ∪ ↑(support (g * τ * g⁻¹)) ⊢ IsConj (σ * τ) (f * σ * f⁻¹ * (g * τ * g⁻¹))
null
null
Mathlib/GroupTheory/Perm/Cycle/Basic.lean
Equiv.Perm.Disjoint.isConj_mul
[1771, 1]
[1815, 74]
have hd1'' := disjoint_coe.2 (disjoint_iff_disjoint_support.1 hd1)
case intro.intro.intro ι : Type ?u.3042712 α✝ : Type ?u.3042715 β : Type ?u.3042718 inst✝² : DecidableEq α✝ inst✝¹ : Fintype α✝ σ✝ τ✝ : Perm α✝ α : Type u_1 inst✝ : Finite α σ τ : Perm α hd1 : Disjoint σ τ val✝ : Fintype α f : Perm α hc1 : IsConj σ (f * σ * f⁻¹) g : Perm α hc2 : IsConj τ (g * τ * g⁻¹) hd2 : Disjoint (f * σ * f⁻¹) (g * τ * g⁻¹) hd1' : ↑(support (σ * τ)) = ↑(support σ) ∪ ↑(support τ) hd2' : ↑(support (f * σ * f⁻¹ * (g * τ * g⁻¹))) = ↑(support (f * σ * f⁻¹)) ∪ ↑(support (g * τ * g⁻¹)) ⊢ IsConj (σ * τ) (f * σ * f⁻¹ * (g * τ * g⁻¹))
case intro.intro.intro ι : Type ?u.3042712 α✝ : Type ?u.3042715 β : Type ?u.3042718 inst✝² : DecidableEq α✝ inst✝¹ : Fintype α✝ σ✝ τ✝ : Perm α✝ α : Type u_1 inst✝ : Finite α σ τ : Perm α hd1 : Disjoint σ τ val✝ : Fintype α f : Perm α hc1 : IsConj σ (f * σ * f⁻¹) g : Perm α hc2 : IsConj τ (g * τ * g⁻¹) hd2 : Disjoint (f * σ * f⁻¹) (g * τ * g⁻¹) hd1' : ↑(support (σ * τ)) = ↑(support σ) ∪ ↑(support τ) hd2' : ↑(support (f * σ * f⁻¹ * (g * τ * g⁻¹))) = ↑(support (f * σ * f⁻¹)) ∪ ↑(support (g * τ * g⁻¹)) hd1'' : _root_.Disjoint ↑(support σ) ↑(support τ) ⊢ IsConj (σ * τ) (f * σ * f⁻¹ * (g * τ * g⁻¹))
null
null
Mathlib/GroupTheory/Perm/Cycle/Basic.lean
Equiv.Perm.Disjoint.isConj_mul
[1771, 1]
[1815, 74]
have hd2'' := disjoint_coe.2 (disjoint_iff_disjoint_support.1 hd2)
case intro.intro.intro ι : Type ?u.3042712 α✝ : Type ?u.3042715 β : Type ?u.3042718 inst✝² : DecidableEq α✝ inst✝¹ : Fintype α✝ σ✝ τ✝ : Perm α✝ α : Type u_1 inst✝ : Finite α σ τ : Perm α hd1 : Disjoint σ τ val✝ : Fintype α f : Perm α hc1 : IsConj σ (f * σ * f⁻¹) g : Perm α hc2 : IsConj τ (g * τ * g⁻¹) hd2 : Disjoint (f * σ * f⁻¹) (g * τ * g⁻¹) hd1' : ↑(support (σ * τ)) = ↑(support σ) ∪ ↑(support τ) hd2' : ↑(support (f * σ * f⁻¹ * (g * τ * g⁻¹))) = ↑(support (f * σ * f⁻¹)) ∪ ↑(support (g * τ * g⁻¹)) hd1'' : _root_.Disjoint ↑(support σ) ↑(support τ) ⊢ IsConj (σ * τ) (f * σ * f⁻¹ * (g * τ * g⁻¹))
case intro.intro.intro ι : Type ?u.3042712 α✝ : Type ?u.3042715 β : Type ?u.3042718 inst✝² : DecidableEq α✝ inst✝¹ : Fintype α✝ σ✝ τ✝ : Perm α✝ α : Type u_1 inst✝ : Finite α σ τ : Perm α hd1 : Disjoint σ τ val✝ : Fintype α f : Perm α hc1 : IsConj σ (f * σ * f⁻¹) g : Perm α hc2 : IsConj τ (g * τ * g⁻¹) hd2 : Disjoint (f * σ * f⁻¹) (g * τ * g⁻¹) hd1' : ↑(support (σ * τ)) = ↑(support σ) ∪ ↑(support τ) hd2' : ↑(support (f * σ * f⁻¹ * (g * τ * g⁻¹))) = ↑(support (f * σ * f⁻¹)) ∪ ↑(support (g * τ * g⁻¹)) hd1'' : _root_.Disjoint ↑(support σ) ↑(support τ) hd2'' : _root_.Disjoint ↑(support (f * σ * f⁻¹)) ↑(support (g * τ * g⁻¹)) ⊢ IsConj (σ * τ) (f * σ * f⁻¹ * (g * τ * g⁻¹))
null
null
Mathlib/GroupTheory/Perm/Cycle/Basic.lean
Equiv.Perm.Disjoint.isConj_mul
[1771, 1]
[1815, 74]
refine' isConj_of_support_equiv _ _
case intro.intro.intro ι : Type ?u.3042712 α✝ : Type ?u.3042715 β : Type ?u.3042718 inst✝² : DecidableEq α✝ inst✝¹ : Fintype α✝ σ✝ τ✝ : Perm α✝ α : Type u_1 inst✝ : Finite α σ τ : Perm α hd1 : Disjoint σ τ val✝ : Fintype α f : Perm α hc1 : IsConj σ (f * σ * f⁻¹) g : Perm α hc2 : IsConj τ (g * τ * g⁻¹) hd2 : Disjoint (f * σ * f⁻¹) (g * τ * g⁻¹) hd1' : ↑(support (σ * τ)) = ↑(support σ) ∪ ↑(support τ) hd2' : ↑(support (f * σ * f⁻¹ * (g * τ * g⁻¹))) = ↑(support (f * σ * f⁻¹)) ∪ ↑(support (g * τ * g⁻¹)) hd1'' : _root_.Disjoint ↑(support σ) ↑(support τ) hd2'' : _root_.Disjoint ↑(support (f * σ * f⁻¹)) ↑(support (g * τ * g⁻¹)) ⊢ IsConj (σ * τ) (f * σ * f⁻¹ * (g * τ * g⁻¹))
case intro.intro.intro.refine'_1 ι : Type ?u.3042712 α✝ : Type ?u.3042715 β : Type ?u.3042718 inst✝² : DecidableEq α✝ inst✝¹ : Fintype α✝ σ✝ τ✝ : Perm α✝ α : Type u_1 inst✝ : Finite α σ τ : Perm α hd1 : Disjoint σ τ val✝ : Fintype α f : Perm α hc1 : IsConj σ (f * σ * f⁻¹) g : Perm α hc2 : IsConj τ (g * τ * g⁻¹) hd2 : Disjoint (f * σ * f⁻¹) (g * τ * g⁻¹) hd1' : ↑(support (σ * τ)) = ↑(support σ) ∪ ↑(support τ) hd2' : ↑(support (f * σ * f⁻¹ * (g * τ * g⁻¹))) = ↑(support (f * σ * f⁻¹)) ∪ ↑(support (g * τ * g⁻¹)) hd1'' : _root_.Disjoint ↑(support σ) ↑(support τ) hd2'' : _root_.Disjoint ↑(support (f * σ * f⁻¹)) ↑(support (g * τ * g⁻¹)) ⊢ { x // x ∈ ↑(support (σ * τ)) } ≃ { x // x ∈ ↑(support (f * σ * f⁻¹ * (g * τ * g⁻¹))) } case intro.intro.intro.refine'_2 ι : Type ?u.3042712 α✝ : Type ?u.3042715 β : Type ?u.3042718 inst✝² : DecidableEq α✝ inst✝¹ : Fintype α✝ σ✝ τ✝ : Perm α✝ α : Type u_1 inst✝ : Finite α σ τ : Perm α hd1 : Disjoint σ τ val✝ : Fintype α f : Perm α hc1 : IsConj σ (f * σ * f⁻¹) g : Perm α hc2 : IsConj τ (g * τ * g⁻¹) hd2 : Disjoint (f * σ * f⁻¹) (g * τ * g⁻¹) hd1' : ↑(support (σ * τ)) = ↑(support σ) ∪ ↑(support τ) hd2' : ↑(support (f * σ * f⁻¹ * (g * τ * g⁻¹))) = ↑(support (f * σ * f⁻¹)) ∪ ↑(support (g * τ * g⁻¹)) hd1'' : _root_.Disjoint ↑(support σ) ↑(support τ) hd2'' : _root_.Disjoint ↑(support (f * σ * f⁻¹)) ↑(support (g * τ * g⁻¹)) ⊢ ∀ (x : α) (hx : x ∈ ↑(support (σ * τ))), ↑(↑?intro.intro.intro.refine'_1 { val := ↑(σ * τ) x, property := (_ : ↑(σ * τ) x ∈ support (σ * τ)) }) = ↑(f * σ * f⁻¹ * (g * τ * g⁻¹)) ↑(↑?intro.intro.intro.refine'_1 { val := x, property := hx })
null
null
Mathlib/GroupTheory/Perm/Cycle/Basic.lean
Equiv.Perm.Disjoint.isConj_mul
[1771, 1]
[1815, 74]
simp only [Set.mem_image, toEmbedding_apply, exists_eq_right, support_conj, coe_map, apply_eq_iff_eq]
case intro.intro.intro.refine'_1.refine'_2 ι : Type ?u.3042712 α✝ : Type ?u.3042715 β : Type ?u.3042718 inst✝² : DecidableEq α✝ inst✝¹ : Fintype α✝ σ✝ τ✝ : Perm α✝ α : Type u_1 inst✝ : Finite α σ τ : Perm α hd1 : Disjoint σ τ val✝ : Fintype α f : Perm α hc1 : IsConj σ (f * σ * f⁻¹) g : Perm α hc2 : IsConj τ (g * τ * g⁻¹) hd2 : Disjoint (f * σ * f⁻¹) (g * τ * g⁻¹) hd1' : ↑(support (σ * τ)) = ↑(support σ) ∪ ↑(support τ) hd2' : ↑(support (f * σ * f⁻¹ * (g * τ * g⁻¹))) = ↑(support (f * σ * f⁻¹)) ∪ ↑(support (g * τ * g⁻¹)) hd1'' : _root_.Disjoint ↑(support σ) ↑(support τ) hd2'' : _root_.Disjoint ↑(support (f * σ * f⁻¹)) ↑(support (g * τ * g⁻¹)) a : α ⊢ a ∈ ↑(support τ) ↔ ↑g a ∈ ↑(support (g * τ * g⁻¹))
no goals
null
null
Mathlib/GroupTheory/Perm/Cycle/Basic.lean
Equiv.Perm.Disjoint.isConj_mul
[1771, 1]
[1815, 74]
intro x hx
case intro.intro.intro.refine'_2 ι : Type ?u.3042712 α✝ : Type ?u.3042715 β : Type ?u.3042718 inst✝² : DecidableEq α✝ inst✝¹ : Fintype α✝ σ✝ τ✝ : Perm α✝ α : Type u_1 inst✝ : Finite α σ τ : Perm α hd1 : Disjoint σ τ val✝ : Fintype α f : Perm α hc1 : IsConj σ (f * σ * f⁻¹) g : Perm α hc2 : IsConj τ (g * τ * g⁻¹) hd2 : Disjoint (f * σ * f⁻¹) (g * τ * g⁻¹) hd1' : ↑(support (σ * τ)) = ↑(support σ) ∪ ↑(support τ) hd2' : ↑(support (f * σ * f⁻¹ * (g * τ * g⁻¹))) = ↑(support (f * σ * f⁻¹)) ∪ ↑(support (g * τ * g⁻¹)) hd1'' : _root_.Disjoint ↑(support σ) ↑(support τ) hd2'' : _root_.Disjoint ↑(support (f * σ * f⁻¹)) ↑(support (g * τ * g⁻¹)) ⊢ ∀ (x : α) (hx : x ∈ ↑(support (σ * τ))), ↑(↑(((Set.ofEq hd1').trans (Set.union (_ : ↑(support σ) ⊓ ↑(support τ) ≤ ⊥))).trans ((Equiv.sumCongr (subtypeEquiv f (_ : ∀ (a : α), a ∈ ↑(support σ) ↔ ↑f a ∈ ↑(support (f * σ * f⁻¹)))) (subtypeEquiv g (_ : ∀ (a : α), a ∈ ↑(support τ) ↔ ↑g a ∈ ↑(support (g * τ * g⁻¹))))).trans ((Set.ofEq hd2').trans (Set.union (_ : ↑(support (f * σ * f⁻¹)) ⊓ ↑(support (g * τ * g⁻¹)) ≤ ⊥))).symm)) { val := ↑(σ * τ) x, property := (_ : ↑(σ * τ) x ∈ support (σ * τ)) }) = ↑(f * σ * f⁻¹ * (g * τ * g⁻¹)) ↑(↑(((Set.ofEq hd1').trans (Set.union (_ : ↑(support σ) ⊓ ↑(support τ) ≤ ⊥))).trans ((Equiv.sumCongr (subtypeEquiv f (_ : ∀ (a : α), a ∈ ↑(support σ) ↔ ↑f a ∈ ↑(support (f * σ * f⁻¹)))) (subtypeEquiv g (_ : ∀ (a : α), a ∈ ↑(support τ) ↔ ↑g a ∈ ↑(support (g * τ * g⁻¹))))).trans ((Set.ofEq hd2').trans (Set.union (_ : ↑(support (f * σ * f⁻¹)) ⊓ ↑(support (g * τ * g⁻¹)) ≤ ⊥))).symm)) { val := x, property := hx })
case intro.intro.intro.refine'_2 ι : Type ?u.3042712 α✝ : Type ?u.3042715 β : Type ?u.3042718 inst✝² : DecidableEq α✝ inst✝¹ : Fintype α✝ σ✝ τ✝ : Perm α✝ α : Type u_1 inst✝ : Finite α σ τ : Perm α hd1 : Disjoint σ τ val✝ : Fintype α f : Perm α hc1 : IsConj σ (f * σ * f⁻¹) g : Perm α hc2 : IsConj τ (g * τ * g⁻¹) hd2 : Disjoint (f * σ * f⁻¹) (g * τ * g⁻¹) hd1' : ↑(support (σ * τ)) = ↑(support σ) ∪ ↑(support τ) hd2' : ↑(support (f * σ * f⁻¹ * (g * τ * g⁻¹))) = ↑(support (f * σ * f⁻¹)) ∪ ↑(support (g * τ * g⁻¹)) hd1'' : _root_.Disjoint ↑(support σ) ↑(support τ) hd2'' : _root_.Disjoint ↑(support (f * σ * f⁻¹)) ↑(support (g * τ * g⁻¹)) x : α hx : x ∈ ↑(support (σ * τ)) ⊢ ↑(↑(((Set.ofEq hd1').trans (Set.union (_ : ↑(support σ) ⊓ ↑(support τ) ≤ ⊥))).trans ((Equiv.sumCongr (subtypeEquiv f (_ : ∀ (a : α), a ∈ ↑(support σ) ↔ ↑f a ∈ ↑(support (f * σ * f⁻¹)))) (subtypeEquiv g (_ : ∀ (a : α), a ∈ ↑(support τ) ↔ ↑g a ∈ ↑(support (g * τ * g⁻¹))))).trans ((Set.ofEq hd2').trans (Set.union (_ : ↑(support (f * σ * f⁻¹)) ⊓ ↑(support (g * τ * g⁻¹)) ≤ ⊥))).symm)) { val := ↑(σ * τ) x, property := (_ : ↑(σ * τ) x ∈ support (σ * τ)) }) = ↑(f * σ * f⁻¹ * (g * τ * g⁻¹)) ↑(↑(((Set.ofEq hd1').trans (Set.union (_ : ↑(support σ) ⊓ ↑(support τ) ≤ ⊥))).trans ((Equiv.sumCongr (subtypeEquiv f (_ : ∀ (a : α), a ∈ ↑(support σ) ↔ ↑f a ∈ ↑(support (f * σ * f⁻¹)))) (subtypeEquiv g (_ : ∀ (a : α), a ∈ ↑(support τ) ↔ ↑g a ∈ ↑(support (g * τ * g⁻¹))))).trans ((Set.ofEq hd2').trans (Set.union (_ : ↑(support (f * σ * f⁻¹)) ⊓ ↑(support (g * τ * g⁻¹)) ≤ ⊥))).symm)) { val := x, property := hx })
null
null
Mathlib/GroupTheory/Perm/Cycle/Basic.lean
Equiv.Perm.Disjoint.isConj_mul
[1771, 1]
[1815, 74]
simp only [trans_apply, symm_trans_apply, Equiv.Set.ofEq_apply, Equiv.Set.ofEq_symm_apply, Equiv.sumCongr_apply]
case intro.intro.intro.refine'_2 ι : Type ?u.3042712 α✝ : Type ?u.3042715 β : Type ?u.3042718 inst✝² : DecidableEq α✝ inst✝¹ : Fintype α✝ σ✝ τ✝ : Perm α✝ α : Type u_1 inst✝ : Finite α σ τ : Perm α hd1 : Disjoint σ τ val✝ : Fintype α f : Perm α hc1 : IsConj σ (f * σ * f⁻¹) g : Perm α hc2 : IsConj τ (g * τ * g⁻¹) hd2 : Disjoint (f * σ * f⁻¹) (g * τ * g⁻¹) hd1' : ↑(support (σ * τ)) = ↑(support σ) ∪ ↑(support τ) hd2' : ↑(support (f * σ * f⁻¹ * (g * τ * g⁻¹))) = ↑(support (f * σ * f⁻¹)) ∪ ↑(support (g * τ * g⁻¹)) hd1'' : _root_.Disjoint ↑(support σ) ↑(support τ) hd2'' : _root_.Disjoint ↑(support (f * σ * f⁻¹)) ↑(support (g * τ * g⁻¹)) x : α hx : x ∈ ↑(support (σ * τ)) ⊢ ↑(↑(((Set.ofEq hd1').trans (Set.union (_ : ↑(support σ) ⊓ ↑(support τ) ≤ ⊥))).trans ((Equiv.sumCongr (subtypeEquiv f (_ : ∀ (a : α), a ∈ ↑(support σ) ↔ ↑f a ∈ ↑(support (f * σ * f⁻¹)))) (subtypeEquiv g (_ : ∀ (a : α), a ∈ ↑(support τ) ↔ ↑g a ∈ ↑(support (g * τ * g⁻¹))))).trans ((Set.ofEq hd2').trans (Set.union (_ : ↑(support (f * σ * f⁻¹)) ⊓ ↑(support (g * τ * g⁻¹)) ≤ ⊥))).symm)) { val := ↑(σ * τ) x, property := (_ : ↑(σ * τ) x ∈ support (σ * τ)) }) = ↑(f * σ * f⁻¹ * (g * τ * g⁻¹)) ↑(↑(((Set.ofEq hd1').trans (Set.union (_ : ↑(support σ) ⊓ ↑(support τ) ≤ ⊥))).trans ((Equiv.sumCongr (subtypeEquiv f (_ : ∀ (a : α), a ∈ ↑(support σ) ↔ ↑f a ∈ ↑(support (f * σ * f⁻¹)))) (subtypeEquiv g (_ : ∀ (a : α), a ∈ ↑(support τ) ↔ ↑g a ∈ ↑(support (g * τ * g⁻¹))))).trans ((Set.ofEq hd2').trans (Set.union (_ : ↑(support (f * σ * f⁻¹)) ⊓ ↑(support (g * τ * g⁻¹)) ≤ ⊥))).symm)) { val := x, property := hx })
case intro.intro.intro.refine'_2 ι : Type ?u.3042712 α✝ : Type ?u.3042715 β : Type ?u.3042718 inst✝² : DecidableEq α✝ inst✝¹ : Fintype α✝ σ✝ τ✝ : Perm α✝ α : Type u_1 inst✝ : Finite α σ τ : Perm α hd1 : Disjoint σ τ val✝ : Fintype α f : Perm α hc1 : IsConj σ (f * σ * f⁻¹) g : Perm α hc2 : IsConj τ (g * τ * g⁻¹) hd2 : Disjoint (f * σ * f⁻¹) (g * τ * g⁻¹) hd1' : ↑(support (σ * τ)) = ↑(support σ) ∪ ↑(support τ) hd2' : ↑(support (f * σ * f⁻¹ * (g * τ * g⁻¹))) = ↑(support (f * σ * f⁻¹)) ∪ ↑(support (g * τ * g⁻¹)) hd1'' : _root_.Disjoint ↑(support σ) ↑(support τ) hd2'' : _root_.Disjoint ↑(support (f * σ * f⁻¹)) ↑(support (g * τ * g⁻¹)) x : α hx : x ∈ ↑(support (σ * τ)) ⊢ ↑(↑(Set.union (_ : ↑(support (f * σ * f⁻¹)) ⊓ ↑(support (g * τ * g⁻¹)) ≤ ⊥)).symm (Sum.map (↑(subtypeEquiv f (_ : ∀ (a : α), a ∈ ↑(support σ) ↔ ↑f a ∈ ↑(support (f * σ * f⁻¹))))) (↑(subtypeEquiv g (_ : ∀ (a : α), a ∈ ↑(support τ) ↔ ↑g a ∈ ↑(support (g * τ * g⁻¹))))) (↑(Set.union (_ : ↑(support σ) ⊓ ↑(support τ) ≤ ⊥)) { val := ↑(σ * τ) x, property := (_ : ↑(Equiv.refl α) ↑{ val := ↑(σ * τ) x, property := (_ : ↑(σ * τ) x ∈ support (σ * τ)) } ∈ ↑(support σ) ∪ ↑(support τ)) }))) = ↑(f * σ * f⁻¹ * (g * τ * g⁻¹)) ↑(↑(Set.union (_ : ↑(support (f * σ * f⁻¹)) ⊓ ↑(support (g * τ * g⁻¹)) ≤ ⊥)).symm (Sum.map (↑(subtypeEquiv f (_ : ∀ (a : α), a ∈ ↑(support σ) ↔ ↑f a ∈ ↑(support (f * σ * f⁻¹))))) (↑(subtypeEquiv g (_ : ∀ (a : α), a ∈ ↑(support τ) ↔ ↑g a ∈ ↑(support (g * τ * g⁻¹))))) (↑(Set.union (_ : ↑(support σ) ⊓ ↑(support τ) ≤ ⊥)) { val := x, property := (_ : ↑(Equiv.refl α) ↑{ val := x, property := hx } ∈ ↑(support σ) ∪ ↑(support τ)) })))
null
null
Mathlib/GroupTheory/Perm/Cycle/Basic.lean
Equiv.Perm.Disjoint.isConj_mul
[1771, 1]
[1815, 74]
rw [hd1', Set.mem_union] at hx
case intro.intro.intro.refine'_2 ι : Type ?u.3042712 α✝ : Type ?u.3042715 β : Type ?u.3042718 inst✝² : DecidableEq α✝ inst✝¹ : Fintype α✝ σ✝ τ✝ : Perm α✝ α : Type u_1 inst✝ : Finite α σ τ : Perm α hd1 : Disjoint σ τ val✝ : Fintype α f : Perm α hc1 : IsConj σ (f * σ * f⁻¹) g : Perm α hc2 : IsConj τ (g * τ * g⁻¹) hd2 : Disjoint (f * σ * f⁻¹) (g * τ * g⁻¹) hd1' : ↑(support (σ * τ)) = ↑(support σ) ∪ ↑(support τ) hd2' : ↑(support (f * σ * f⁻¹ * (g * τ * g⁻¹))) = ↑(support (f * σ * f⁻¹)) ∪ ↑(support (g * τ * g⁻¹)) hd1'' : _root_.Disjoint ↑(support σ) ↑(support τ) hd2'' : _root_.Disjoint ↑(support (f * σ * f⁻¹)) ↑(support (g * τ * g⁻¹)) x : α hx : x ∈ ↑(support (σ * τ)) ⊢ ↑(↑(Set.union (_ : ↑(support (f * σ * f⁻¹)) ⊓ ↑(support (g * τ * g⁻¹)) ≤ ⊥)).symm (Sum.map (↑(subtypeEquiv f (_ : ∀ (a : α), a ∈ ↑(support σ) ↔ ↑f a ∈ ↑(support (f * σ * f⁻¹))))) (↑(subtypeEquiv g (_ : ∀ (a : α), a ∈ ↑(support τ) ↔ ↑g a ∈ ↑(support (g * τ * g⁻¹))))) (↑(Set.union (_ : ↑(support σ) ⊓ ↑(support τ) ≤ ⊥)) { val := ↑(σ * τ) x, property := (_ : ↑(Equiv.refl α) ↑{ val := ↑(σ * τ) x, property := (_ : ↑(σ * τ) x ∈ support (σ * τ)) } ∈ ↑(support σ) ∪ ↑(support τ)) }))) = ↑(f * σ * f⁻¹ * (g * τ * g⁻¹)) ↑(↑(Set.union (_ : ↑(support (f * σ * f⁻¹)) ⊓ ↑(support (g * τ * g⁻¹)) ≤ ⊥)).symm (Sum.map (↑(subtypeEquiv f (_ : ∀ (a : α), a ∈ ↑(support σ) ↔ ↑f a ∈ ↑(support (f * σ * f⁻¹))))) (↑(subtypeEquiv g (_ : ∀ (a : α), a ∈ ↑(support τ) ↔ ↑g a ∈ ↑(support (g * τ * g⁻¹))))) (↑(Set.union (_ : ↑(support σ) ⊓ ↑(support τ) ≤ ⊥)) { val := x, property := (_ : ↑(Equiv.refl α) ↑{ val := x, property := hx } ∈ ↑(support σ) ∪ ↑(support τ)) })))
case intro.intro.intro.refine'_2 ι : Type ?u.3042712 α✝ : Type ?u.3042715 β : Type ?u.3042718 inst✝² : DecidableEq α✝ inst✝¹ : Fintype α✝ σ✝ τ✝ : Perm α✝ α : Type u_1 inst✝ : Finite α σ τ : Perm α hd1 : Disjoint σ τ val✝ : Fintype α f : Perm α hc1 : IsConj σ (f * σ * f⁻¹) g : Perm α hc2 : IsConj τ (g * τ * g⁻¹) hd2 : Disjoint (f * σ * f⁻¹) (g * τ * g⁻¹) hd1' : ↑(support (σ * τ)) = ↑(support σ) ∪ ↑(support τ) hd2' : ↑(support (f * σ * f⁻¹ * (g * τ * g⁻¹))) = ↑(support (f * σ * f⁻¹)) ∪ ↑(support (g * τ * g⁻¹)) hd1'' : _root_.Disjoint ↑(support σ) ↑(support τ) hd2'' : _root_.Disjoint ↑(support (f * σ * f⁻¹)) ↑(support (g * τ * g⁻¹)) x : α hx✝ : x ∈ ↑(support (σ * τ)) hx : x ∈ ↑(support σ) ∨ x ∈ ↑(support τ) ⊢ ↑(↑(Set.union (_ : ↑(support (f * σ * f⁻¹)) ⊓ ↑(support (g * τ * g⁻¹)) ≤ ⊥)).symm (Sum.map (↑(subtypeEquiv f (_ : ∀ (a : α), a ∈ ↑(support σ) ↔ ↑f a ∈ ↑(support (f * σ * f⁻¹))))) (↑(subtypeEquiv g (_ : ∀ (a : α), a ∈ ↑(support τ) ↔ ↑g a ∈ ↑(support (g * τ * g⁻¹))))) (↑(Set.union (_ : ↑(support σ) ⊓ ↑(support τ) ≤ ⊥)) { val := ↑(σ * τ) x, property := (_ : ↑(Equiv.refl α) ↑{ val := ↑(σ * τ) x, property := (_ : ↑(σ * τ) x ∈ support (σ * τ)) } ∈ ↑(support σ) ∪ ↑(support τ)) }))) = ↑(f * σ * f⁻¹ * (g * τ * g⁻¹)) ↑(↑(Set.union (_ : ↑(support (f * σ * f⁻¹)) ⊓ ↑(support (g * τ * g⁻¹)) ≤ ⊥)).symm (Sum.map (↑(subtypeEquiv f (_ : ∀ (a : α), a ∈ ↑(support σ) ↔ ↑f a ∈ ↑(support (f * σ * f⁻¹))))) (↑(subtypeEquiv g (_ : ∀ (a : α), a ∈ ↑(support τ) ↔ ↑g a ∈ ↑(support (g * τ * g⁻¹))))) (↑(Set.union (_ : ↑(support σ) ⊓ ↑(support τ) ≤ ⊥)) { val := x, property := (_ : ↑(Equiv.refl α) ↑{ val := x, property := hx✝ } ∈ ↑(support σ) ∪ ↑(support τ)) })))
null
null
Mathlib/GroupTheory/Perm/Cycle/Basic.lean
Equiv.Perm.Disjoint.isConj_mul
[1771, 1]
[1815, 74]
cases' hx with hxσ hxτ
case intro.intro.intro.refine'_2 ι : Type ?u.3042712 α✝ : Type ?u.3042715 β : Type ?u.3042718 inst✝² : DecidableEq α✝ inst✝¹ : Fintype α✝ σ✝ τ✝ : Perm α✝ α : Type u_1 inst✝ : Finite α σ τ : Perm α hd1 : Disjoint σ τ val✝ : Fintype α f : Perm α hc1 : IsConj σ (f * σ * f⁻¹) g : Perm α hc2 : IsConj τ (g * τ * g⁻¹) hd2 : Disjoint (f * σ * f⁻¹) (g * τ * g⁻¹) hd1' : ↑(support (σ * τ)) = ↑(support σ) ∪ ↑(support τ) hd2' : ↑(support (f * σ * f⁻¹ * (g * τ * g⁻¹))) = ↑(support (f * σ * f⁻¹)) ∪ ↑(support (g * τ * g⁻¹)) hd1'' : _root_.Disjoint ↑(support σ) ↑(support τ) hd2'' : _root_.Disjoint ↑(support (f * σ * f⁻¹)) ↑(support (g * τ * g⁻¹)) x : α hx✝ : x ∈ ↑(support (σ * τ)) hx : x ∈ ↑(support σ) ∨ x ∈ ↑(support τ) ⊢ ↑(↑(Set.union (_ : ↑(support (f * σ * f⁻¹)) ⊓ ↑(support (g * τ * g⁻¹)) ≤ ⊥)).symm (Sum.map (↑(subtypeEquiv f (_ : ∀ (a : α), a ∈ ↑(support σ) ↔ ↑f a ∈ ↑(support (f * σ * f⁻¹))))) (↑(subtypeEquiv g (_ : ∀ (a : α), a ∈ ↑(support τ) ↔ ↑g a ∈ ↑(support (g * τ * g⁻¹))))) (↑(Set.union (_ : ↑(support σ) ⊓ ↑(support τ) ≤ ⊥)) { val := ↑(σ * τ) x, property := (_ : ↑(Equiv.refl α) ↑{ val := ↑(σ * τ) x, property := (_ : ↑(σ * τ) x ∈ support (σ * τ)) } ∈ ↑(support σ) ∪ ↑(support τ)) }))) = ↑(f * σ * f⁻¹ * (g * τ * g⁻¹)) ↑(↑(Set.union (_ : ↑(support (f * σ * f⁻¹)) ⊓ ↑(support (g * τ * g⁻¹)) ≤ ⊥)).symm (Sum.map (↑(subtypeEquiv f (_ : ∀ (a : α), a ∈ ↑(support σ) ↔ ↑f a ∈ ↑(support (f * σ * f⁻¹))))) (↑(subtypeEquiv g (_ : ∀ (a : α), a ∈ ↑(support τ) ↔ ↑g a ∈ ↑(support (g * τ * g⁻¹))))) (↑(Set.union (_ : ↑(support σ) ⊓ ↑(support τ) ≤ ⊥)) { val := x, property := (_ : ↑(Equiv.refl α) ↑{ val := x, property := hx✝ } ∈ ↑(support σ) ∪ ↑(support τ)) })))
case intro.intro.intro.refine'_2.inl ι : Type ?u.3042712 α✝ : Type ?u.3042715 β : Type ?u.3042718 inst✝² : DecidableEq α✝ inst✝¹ : Fintype α✝ σ✝ τ✝ : Perm α✝ α : Type u_1 inst✝ : Finite α σ τ : Perm α hd1 : Disjoint σ τ val✝ : Fintype α f : Perm α hc1 : IsConj σ (f * σ * f⁻¹) g : Perm α hc2 : IsConj τ (g * τ * g⁻¹) hd2 : Disjoint (f * σ * f⁻¹) (g * τ * g⁻¹) hd1' : ↑(support (σ * τ)) = ↑(support σ) ∪ ↑(support τ) hd2' : ↑(support (f * σ * f⁻¹ * (g * τ * g⁻¹))) = ↑(support (f * σ * f⁻¹)) ∪ ↑(support (g * τ * g⁻¹)) hd1'' : _root_.Disjoint ↑(support σ) ↑(support τ) hd2'' : _root_.Disjoint ↑(support (f * σ * f⁻¹)) ↑(support (g * τ * g⁻¹)) x : α hx : x ∈ ↑(support (σ * τ)) hxσ : x ∈ ↑(support σ) ⊢ ↑(↑(Set.union (_ : ↑(support (f * σ * f⁻¹)) ⊓ ↑(support (g * τ * g⁻¹)) ≤ ⊥)).symm (Sum.map (↑(subtypeEquiv f (_ : ∀ (a : α), a ∈ ↑(support σ) ↔ ↑f a ∈ ↑(support (f * σ * f⁻¹))))) (↑(subtypeEquiv g (_ : ∀ (a : α), a ∈ ↑(support τ) ↔ ↑g a ∈ ↑(support (g * τ * g⁻¹))))) (↑(Set.union (_ : ↑(support σ) ⊓ ↑(support τ) ≤ ⊥)) { val := ↑(σ * τ) x, property := (_ : ↑(Equiv.refl α) ↑{ val := ↑(σ * τ) x, property := (_ : ↑(σ * τ) x ∈ support (σ * τ)) } ∈ ↑(support σ) ∪ ↑(support τ)) }))) = ↑(f * σ * f⁻¹ * (g * τ * g⁻¹)) ↑(↑(Set.union (_ : ↑(support (f * σ * f⁻¹)) ⊓ ↑(support (g * τ * g⁻¹)) ≤ ⊥)).symm (Sum.map (↑(subtypeEquiv f (_ : ∀ (a : α), a ∈ ↑(support σ) ↔ ↑f a ∈ ↑(support (f * σ * f⁻¹))))) (↑(subtypeEquiv g (_ : ∀ (a : α), a ∈ ↑(support τ) ↔ ↑g a ∈ ↑(support (g * τ * g⁻¹))))) (↑(Set.union (_ : ↑(support σ) ⊓ ↑(support τ) ≤ ⊥)) { val := x, property := (_ : ↑(Equiv.refl α) ↑{ val := x, property := hx } ∈ ↑(support σ) ∪ ↑(support τ)) }))) case intro.intro.intro.refine'_2.inr ι : Type ?u.3042712 α✝ : Type ?u.3042715 β : Type ?u.3042718 inst✝² : DecidableEq α✝ inst✝¹ : Fintype α✝ σ✝ τ✝ : Perm α✝ α : Type u_1 inst✝ : Finite α σ τ : Perm α hd1 : Disjoint σ τ val✝ : Fintype α f : Perm α hc1 : IsConj σ (f * σ * f⁻¹) g : Perm α hc2 : IsConj τ (g * τ * g⁻¹) hd2 : Disjoint (f * σ * f⁻¹) (g * τ * g⁻¹) hd1' : ↑(support (σ * τ)) = ↑(support σ) ∪ ↑(support τ) hd2' : ↑(support (f * σ * f⁻¹ * (g * τ * g⁻¹))) = ↑(support (f * σ * f⁻¹)) ∪ ↑(support (g * τ * g⁻¹)) hd1'' : _root_.Disjoint ↑(support σ) ↑(support τ) hd2'' : _root_.Disjoint ↑(support (f * σ * f⁻¹)) ↑(support (g * τ * g⁻¹)) x : α hx : x ∈ ↑(support (σ * τ)) hxτ : x ∈ ↑(support τ) ⊢ ↑(↑(Set.union (_ : ↑(support (f * σ * f⁻¹)) ⊓ ↑(support (g * τ * g⁻¹)) ≤ ⊥)).symm (Sum.map (↑(subtypeEquiv f (_ : ∀ (a : α), a ∈ ↑(support σ) ↔ ↑f a ∈ ↑(support (f * σ * f⁻¹))))) (↑(subtypeEquiv g (_ : ∀ (a : α), a ∈ ↑(support τ) ↔ ↑g a ∈ ↑(support (g * τ * g⁻¹))))) (↑(Set.union (_ : ↑(support σ) ⊓ ↑(support τ) ≤ ⊥)) { val := ↑(σ * τ) x, property := (_ : ↑(Equiv.refl α) ↑{ val := ↑(σ * τ) x, property := (_ : ↑(σ * τ) x ∈ support (σ * τ)) } ∈ ↑(support σ) ∪ ↑(support τ)) }))) = ↑(f * σ * f⁻¹ * (g * τ * g⁻¹)) ↑(↑(Set.union (_ : ↑(support (f * σ * f⁻¹)) ⊓ ↑(support (g * τ * g⁻¹)) ≤ ⊥)).symm (Sum.map (↑(subtypeEquiv f (_ : ∀ (a : α), a ∈ ↑(support σ) ↔ ↑f a ∈ ↑(support (f * σ * f⁻¹))))) (↑(subtypeEquiv g (_ : ∀ (a : α), a ∈ ↑(support τ) ↔ ↑g a ∈ ↑(support (g * τ * g⁻¹))))) (↑(Set.union (_ : ↑(support σ) ⊓ ↑(support τ) ≤ ⊥)) { val := x, property := (_ : ↑(Equiv.refl α) ↑{ val := x, property := hx } ∈ ↑(support σ) ∪ ↑(support τ)) })))
null
null
Mathlib/GroupTheory/Perm/Cycle/Basic.lean
Equiv.Perm.Disjoint.isConj_mul
[1771, 1]
[1815, 74]
rw [mem_coe, mem_support] at hxσ
case intro.intro.intro.refine'_2.inl ι : Type ?u.3042712 α✝ : Type ?u.3042715 β : Type ?u.3042718 inst✝² : DecidableEq α✝ inst✝¹ : Fintype α✝ σ✝ τ✝ : Perm α✝ α : Type u_1 inst✝ : Finite α σ τ : Perm α hd1 : Disjoint σ τ val✝ : Fintype α f : Perm α hc1 : IsConj σ (f * σ * f⁻¹) g : Perm α hc2 : IsConj τ (g * τ * g⁻¹) hd2 : Disjoint (f * σ * f⁻¹) (g * τ * g⁻¹) hd1' : ↑(support (σ * τ)) = ↑(support σ) ∪ ↑(support τ) hd2' : ↑(support (f * σ * f⁻¹ * (g * τ * g⁻¹))) = ↑(support (f * σ * f⁻¹)) ∪ ↑(support (g * τ * g⁻¹)) hd1'' : _root_.Disjoint ↑(support σ) ↑(support τ) hd2'' : _root_.Disjoint ↑(support (f * σ * f⁻¹)) ↑(support (g * τ * g⁻¹)) x : α hx : x ∈ ↑(support (σ * τ)) hxσ : x ∈ ↑(support σ) ⊢ ↑(↑(Set.union (_ : ↑(support (f * σ * f⁻¹)) ⊓ ↑(support (g * τ * g⁻¹)) ≤ ⊥)).symm (Sum.map (↑(subtypeEquiv f (_ : ∀ (a : α), a ∈ ↑(support σ) ↔ ↑f a ∈ ↑(support (f * σ * f⁻¹))))) (↑(subtypeEquiv g (_ : ∀ (a : α), a ∈ ↑(support τ) ↔ ↑g a ∈ ↑(support (g * τ * g⁻¹))))) (↑(Set.union (_ : ↑(support σ) ⊓ ↑(support τ) ≤ ⊥)) { val := ↑(σ * τ) x, property := (_ : ↑(Equiv.refl α) ↑{ val := ↑(σ * τ) x, property := (_ : ↑(σ * τ) x ∈ support (σ * τ)) } ∈ ↑(support σ) ∪ ↑(support τ)) }))) = ↑(f * σ * f⁻¹ * (g * τ * g⁻¹)) ↑(↑(Set.union (_ : ↑(support (f * σ * f⁻¹)) ⊓ ↑(support (g * τ * g⁻¹)) ≤ ⊥)).symm (Sum.map (↑(subtypeEquiv f (_ : ∀ (a : α), a ∈ ↑(support σ) ↔ ↑f a ∈ ↑(support (f * σ * f⁻¹))))) (↑(subtypeEquiv g (_ : ∀ (a : α), a ∈ ↑(support τ) ↔ ↑g a ∈ ↑(support (g * τ * g⁻¹))))) (↑(Set.union (_ : ↑(support σ) ⊓ ↑(support τ) ≤ ⊥)) { val := x, property := (_ : ↑(Equiv.refl α) ↑{ val := x, property := hx } ∈ ↑(support σ) ∪ ↑(support τ)) })))
case intro.intro.intro.refine'_2.inl ι : Type ?u.3042712 α✝ : Type ?u.3042715 β : Type ?u.3042718 inst✝² : DecidableEq α✝ inst✝¹ : Fintype α✝ σ✝ τ✝ : Perm α✝ α : Type u_1 inst✝ : Finite α σ τ : Perm α hd1 : Disjoint σ τ val✝ : Fintype α f : Perm α hc1 : IsConj σ (f * σ * f⁻¹) g : Perm α hc2 : IsConj τ (g * τ * g⁻¹) hd2 : Disjoint (f * σ * f⁻¹) (g * τ * g⁻¹) hd1' : ↑(support (σ * τ)) = ↑(support σ) ∪ ↑(support τ) hd2' : ↑(support (f * σ * f⁻¹ * (g * τ * g⁻¹))) = ↑(support (f * σ * f⁻¹)) ∪ ↑(support (g * τ * g⁻¹)) hd1'' : _root_.Disjoint ↑(support σ) ↑(support τ) hd2'' : _root_.Disjoint ↑(support (f * σ * f⁻¹)) ↑(support (g * τ * g⁻¹)) x : α hx : x ∈ ↑(support (σ * τ)) hxσ : ↑σ x ≠ x ⊢ ↑(↑(Set.union (_ : ↑(support (f * σ * f⁻¹)) ⊓ ↑(support (g * τ * g⁻¹)) ≤ ⊥)).symm (Sum.map (↑(subtypeEquiv f (_ : ∀ (a : α), a ∈ ↑(support σ) ↔ ↑f a ∈ ↑(support (f * σ * f⁻¹))))) (↑(subtypeEquiv g (_ : ∀ (a : α), a ∈ ↑(support τ) ↔ ↑g a ∈ ↑(support (g * τ * g⁻¹))))) (↑(Set.union (_ : ↑(support σ) ⊓ ↑(support τ) ≤ ⊥)) { val := ↑(σ * τ) x, property := (_ : ↑(Equiv.refl α) ↑{ val := ↑(σ * τ) x, property := (_ : ↑(σ * τ) x ∈ support (σ * τ)) } ∈ ↑(support σ) ∪ ↑(support τ)) }))) = ↑(f * σ * f⁻¹ * (g * τ * g⁻¹)) ↑(↑(Set.union (_ : ↑(support (f * σ * f⁻¹)) ⊓ ↑(support (g * τ * g⁻¹)) ≤ ⊥)).symm (Sum.map (↑(subtypeEquiv f (_ : ∀ (a : α), a ∈ ↑(support σ) ↔ ↑f a ∈ ↑(support (f * σ * f⁻¹))))) (↑(subtypeEquiv g (_ : ∀ (a : α), a ∈ ↑(support τ) ↔ ↑g a ∈ ↑(support (g * τ * g⁻¹))))) (↑(Set.union (_ : ↑(support σ) ⊓ ↑(support τ) ≤ ⊥)) { val := x, property := (_ : ↑(Equiv.refl α) ↑{ val := x, property := hx } ∈ ↑(support σ) ∪ ↑(support τ)) })))
null
null
Mathlib/GroupTheory/Perm/Cycle/Basic.lean
Equiv.Perm.Disjoint.isConj_mul
[1771, 1]
[1815, 74]
rw [Set.union_apply_left hd1''.le_bot _, Set.union_apply_left hd1''.le_bot _]
case intro.intro.intro.refine'_2.inl ι : Type ?u.3042712 α✝ : Type ?u.3042715 β : Type ?u.3042718 inst✝² : DecidableEq α✝ inst✝¹ : Fintype α✝ σ✝ τ✝ : Perm α✝ α : Type u_1 inst✝ : Finite α σ τ : Perm α hd1 : Disjoint σ τ val✝ : Fintype α f : Perm α hc1 : IsConj σ (f * σ * f⁻¹) g : Perm α hc2 : IsConj τ (g * τ * g⁻¹) hd2 : Disjoint (f * σ * f⁻¹) (g * τ * g⁻¹) hd1' : ↑(support (σ * τ)) = ↑(support σ) ∪ ↑(support τ) hd2' : ↑(support (f * σ * f⁻¹ * (g * τ * g⁻¹))) = ↑(support (f * σ * f⁻¹)) ∪ ↑(support (g * τ * g⁻¹)) hd1'' : _root_.Disjoint ↑(support σ) ↑(support τ) hd2'' : _root_.Disjoint ↑(support (f * σ * f⁻¹)) ↑(support (g * τ * g⁻¹)) x : α hx : x ∈ ↑(support (σ * τ)) hxσ : ↑σ x ≠ x ⊢ ↑(↑(Set.union (_ : ↑(support (f * σ * f⁻¹)) ⊓ ↑(support (g * τ * g⁻¹)) ≤ ⊥)).symm (Sum.map (↑(subtypeEquiv f (_ : ∀ (a : α), a ∈ ↑(support σ) ↔ ↑f a ∈ ↑(support (f * σ * f⁻¹))))) (↑(subtypeEquiv g (_ : ∀ (a : α), a ∈ ↑(support τ) ↔ ↑g a ∈ ↑(support (g * τ * g⁻¹))))) (↑(Set.union (_ : ↑(support σ) ⊓ ↑(support τ) ≤ ⊥)) { val := ↑(σ * τ) x, property := (_ : ↑(Equiv.refl α) ↑{ val := ↑(σ * τ) x, property := (_ : ↑(σ * τ) x ∈ support (σ * τ)) } ∈ ↑(support σ) ∪ ↑(support τ)) }))) = ↑(f * σ * f⁻¹ * (g * τ * g⁻¹)) ↑(↑(Set.union (_ : ↑(support (f * σ * f⁻¹)) ⊓ ↑(support (g * τ * g⁻¹)) ≤ ⊥)).symm (Sum.map (↑(subtypeEquiv f (_ : ∀ (a : α), a ∈ ↑(support σ) ↔ ↑f a ∈ ↑(support (f * σ * f⁻¹))))) (↑(subtypeEquiv g (_ : ∀ (a : α), a ∈ ↑(support τ) ↔ ↑g a ∈ ↑(support (g * τ * g⁻¹))))) (↑(Set.union (_ : ↑(support σ) ⊓ ↑(support τ) ≤ ⊥)) { val := x, property := (_ : ↑(Equiv.refl α) ↑{ val := x, property := hx } ∈ ↑(support σ) ∪ ↑(support τ)) })))
case intro.intro.intro.refine'_2.inl ι : Type ?u.3042712 α✝ : Type ?u.3042715 β : Type ?u.3042718 inst✝² : DecidableEq α✝ inst✝¹ : Fintype α✝ σ✝ τ✝ : Perm α✝ α : Type u_1 inst✝ : Finite α σ τ : Perm α hd1 : Disjoint σ τ val✝ : Fintype α f : Perm α hc1 : IsConj σ (f * σ * f⁻¹) g : Perm α hc2 : IsConj τ (g * τ * g⁻¹) hd2 : Disjoint (f * σ * f⁻¹) (g * τ * g⁻¹) hd1' : ↑(support (σ * τ)) = ↑(support σ) ∪ ↑(support τ) hd2' : ↑(support (f * σ * f⁻¹ * (g * τ * g⁻¹))) = ↑(support (f * σ * f⁻¹)) ∪ ↑(support (g * τ * g⁻¹)) hd1'' : _root_.Disjoint ↑(support σ) ↑(support τ) hd2'' : _root_.Disjoint ↑(support (f * σ * f⁻¹)) ↑(support (g * τ * g⁻¹)) x : α hx : x ∈ ↑(support (σ * τ)) hxσ : ↑σ x ≠ x ⊢ ↑(↑(Set.union (_ : ↑(support (f * σ * f⁻¹)) ⊓ ↑(support (g * τ * g⁻¹)) ≤ ⊥)).symm (Sum.map (↑(subtypeEquiv f (_ : ∀ (a : α), a ∈ ↑(support σ) ↔ ↑f a ∈ ↑(support (f * σ * f⁻¹))))) (↑(subtypeEquiv g (_ : ∀ (a : α), a ∈ ↑(support τ) ↔ ↑g a ∈ ↑(support (g * τ * g⁻¹))))) (Sum.inl { val := ↑{ val := ↑(σ * τ) x, property := (_ : ↑(Equiv.refl α) ↑{ val := ↑(σ * τ) x, property := (_ : ↑(σ * τ) x ∈ support (σ * τ)) } ∈ ↑(support σ) ∪ ↑(support τ)) }, property := ?m.3053395 }))) = ↑(f * σ * f⁻¹ * (g * τ * g⁻¹)) ↑(↑(Set.union (_ : ↑(support (f * σ * f⁻¹)) ⊓ ↑(support (g * τ * g⁻¹)) ≤ ⊥)).symm (Sum.map (↑(subtypeEquiv f (_ : ∀ (a : α), a ∈ ↑(support σ) ↔ ↑f a ∈ ↑(support (f * σ * f⁻¹))))) (↑(subtypeEquiv g (_ : ∀ (a : α), a ∈ ↑(support τ) ↔ ↑g a ∈ ↑(support (g * τ * g⁻¹))))) (Sum.inl { val := ↑{ val := x, property := (_ : ↑(Equiv.refl α) ↑{ val := x, property := hx } ∈ ↑(support σ) ∪ ↑(support τ)) }, property := ?m.3053769 }))) ι : Type ?u.3042712 α✝ : Type ?u.3042715 β : Type ?u.3042718 inst✝² : DecidableEq α✝ inst✝¹ : Fintype α✝ σ✝ τ✝ : Perm α✝ α : Type u_1 inst✝ : Finite α σ τ : Perm α hd1 : Disjoint σ τ val✝ : Fintype α f : Perm α hc1 : IsConj σ (f * σ * f⁻¹) g : Perm α hc2 : IsConj τ (g * τ * g⁻¹) hd2 : Disjoint (f * σ * f⁻¹) (g * τ * g⁻¹) hd1' : ↑(support (σ * τ)) = ↑(support σ) ∪ ↑(support τ) hd2' : ↑(support (f * σ * f⁻¹ * (g * τ * g⁻¹))) = ↑(support (f * σ * f⁻¹)) ∪ ↑(support (g * τ * g⁻¹)) hd1'' : _root_.Disjoint ↑(support σ) ↑(support τ) hd2'' : _root_.Disjoint ↑(support (f * σ * f⁻¹)) ↑(support (g * τ * g⁻¹)) x : α hx : x ∈ ↑(support (σ * τ)) hxσ : ↑σ x ≠ x ⊢ ↑{ val := ↑(σ * τ) x, property := (_ : ↑(Equiv.refl α) ↑{ val := ↑(σ * τ) x, property := (_ : ↑(σ * τ) x ∈ support (σ * τ)) } ∈ ↑(support σ) ∪ ↑(support τ)) } ∈ ↑(support σ) ι : Type ?u.3042712 α✝ : Type ?u.3042715 β : Type ?u.3042718 inst✝² : DecidableEq α✝ inst✝¹ : Fintype α✝ σ✝ τ✝ : Perm α✝ α : Type u_1 inst✝ : Finite α σ τ : Perm α hd1 : Disjoint σ τ val✝ : Fintype α f : Perm α hc1 : IsConj σ (f * σ * f⁻¹) g : Perm α hc2 : IsConj τ (g * τ * g⁻¹) hd2 : Disjoint (f * σ * f⁻¹) (g * τ * g⁻¹) hd1' : ↑(support (σ * τ)) = ↑(support σ) ∪ ↑(support τ) hd2' : ↑(support (f * σ * f⁻¹ * (g * τ * g⁻¹))) = ↑(support (f * σ * f⁻¹)) ∪ ↑(support (g * τ * g⁻¹)) hd1'' : _root_.Disjoint ↑(support σ) ↑(support τ) hd2'' : _root_.Disjoint ↑(support (f * σ * f⁻¹)) ↑(support (g * τ * g⁻¹)) x : α hx : x ∈ ↑(support (σ * τ)) hxσ : ↑σ x ≠ x ⊢ ↑{ val := x, property := (_ : ↑(Equiv.refl α) ↑{ val := x, property := hx } ∈ ↑(support σ) ∪ ↑(support τ)) } ∈ ↑(support σ) ι : Type ?u.3042712 α✝ : Type ?u.3042715 β : Type ?u.3042718 inst✝² : DecidableEq α✝ inst✝¹ : Fintype α✝ σ✝ τ✝ : Perm α✝ α : Type u_1 inst✝ : Finite α σ τ : Perm α hd1 : Disjoint σ τ val✝ : Fintype α f : Perm α hc1 : IsConj σ (f * σ * f⁻¹) g : Perm α hc2 : IsConj τ (g * τ * g⁻¹) hd2 : Disjoint (f * σ * f⁻¹) (g * τ * g⁻¹) hd1' : ↑(support (σ * τ)) = ↑(support σ) ∪ ↑(support τ) hd2' : ↑(support (f * σ * f⁻¹ * (g * τ * g⁻¹))) = ↑(support (f * σ * f⁻¹)) ∪ ↑(support (g * τ * g⁻¹)) hd1'' : _root_.Disjoint ↑(support σ) ↑(support τ) hd2'' : _root_.Disjoint ↑(support (f * σ * f⁻¹)) ↑(support (g * τ * g⁻¹)) x : α hx : x ∈ ↑(support (σ * τ)) hxσ : ↑σ x ≠ x ⊢ ↑{ val := ↑(σ * τ) x, property := (_ : ↑(Equiv.refl α) ↑{ val := ↑(σ * τ) x, property := (_ : ↑(σ * τ) x ∈ support (σ * τ)) } ∈ ↑(support σ) ∪ ↑(support τ)) } ∈ ↑(support σ)
null
null
Mathlib/GroupTheory/Perm/Cycle/Basic.lean
Equiv.Perm.Disjoint.isConj_mul
[1771, 1]
[1815, 74]
simp only [subtypeEquiv_apply, Perm.coe_mul, Sum.map_inl, comp_apply, Set.union_symm_apply_left, Subtype.coe_mk, apply_eq_iff_eq]
case intro.intro.intro.refine'_2.inl ι : Type ?u.3042712 α✝ : Type ?u.3042715 β : Type ?u.3042718 inst✝² : DecidableEq α✝ inst✝¹ : Fintype α✝ σ✝ τ✝ : Perm α✝ α : Type u_1 inst✝ : Finite α σ τ : Perm α hd1 : Disjoint σ τ val✝ : Fintype α f : Perm α hc1 : IsConj σ (f * σ * f⁻¹) g : Perm α hc2 : IsConj τ (g * τ * g⁻¹) hd2 : Disjoint (f * σ * f⁻¹) (g * τ * g⁻¹) hd1' : ↑(support (σ * τ)) = ↑(support σ) ∪ ↑(support τ) hd2' : ↑(support (f * σ * f⁻¹ * (g * τ * g⁻¹))) = ↑(support (f * σ * f⁻¹)) ∪ ↑(support (g * τ * g⁻¹)) hd1'' : _root_.Disjoint ↑(support σ) ↑(support τ) hd2'' : _root_.Disjoint ↑(support (f * σ * f⁻¹)) ↑(support (g * τ * g⁻¹)) x : α hx : x ∈ ↑(support (σ * τ)) hxσ : ↑σ x ≠ x ⊢ ↑(↑(Set.union (_ : ↑(support (f * σ * f⁻¹)) ⊓ ↑(support (g * τ * g⁻¹)) ≤ ⊥)).symm (Sum.map (↑(subtypeEquiv f (_ : ∀ (a : α), a ∈ ↑(support σ) ↔ ↑f a ∈ ↑(support (f * σ * f⁻¹))))) (↑(subtypeEquiv g (_ : ∀ (a : α), a ∈ ↑(support τ) ↔ ↑g a ∈ ↑(support (g * τ * g⁻¹))))) (Sum.inl { val := ↑{ val := ↑(σ * τ) x, property := (_ : ↑(Equiv.refl α) ↑{ val := ↑(σ * τ) x, property := (_ : ↑(σ * τ) x ∈ support (σ * τ)) } ∈ ↑(support σ) ∪ ↑(support τ)) }, property := ?m.3053395 }))) = ↑(f * σ * f⁻¹ * (g * τ * g⁻¹)) ↑(↑(Set.union (_ : ↑(support (f * σ * f⁻¹)) ⊓ ↑(support (g * τ * g⁻¹)) ≤ ⊥)).symm (Sum.map (↑(subtypeEquiv f (_ : ∀ (a : α), a ∈ ↑(support σ) ↔ ↑f a ∈ ↑(support (f * σ * f⁻¹))))) (↑(subtypeEquiv g (_ : ∀ (a : α), a ∈ ↑(support τ) ↔ ↑g a ∈ ↑(support (g * τ * g⁻¹))))) (Sum.inl { val := ↑{ val := x, property := (_ : ↑(Equiv.refl α) ↑{ val := x, property := hx } ∈ ↑(support σ) ∪ ↑(support τ)) }, property := ?m.3053769 }))) ι : Type ?u.3042712 α✝ : Type ?u.3042715 β : Type ?u.3042718 inst✝² : DecidableEq α✝ inst✝¹ : Fintype α✝ σ✝ τ✝ : Perm α✝ α : Type u_1 inst✝ : Finite α σ τ : Perm α hd1 : Disjoint σ τ val✝ : Fintype α f : Perm α hc1 : IsConj σ (f * σ * f⁻¹) g : Perm α hc2 : IsConj τ (g * τ * g⁻¹) hd2 : Disjoint (f * σ * f⁻¹) (g * τ * g⁻¹) hd1' : ↑(support (σ * τ)) = ↑(support σ) ∪ ↑(support τ) hd2' : ↑(support (f * σ * f⁻¹ * (g * τ * g⁻¹))) = ↑(support (f * σ * f⁻¹)) ∪ ↑(support (g * τ * g⁻¹)) hd1'' : _root_.Disjoint ↑(support σ) ↑(support τ) hd2'' : _root_.Disjoint ↑(support (f * σ * f⁻¹)) ↑(support (g * τ * g⁻¹)) x : α hx : x ∈ ↑(support (σ * τ)) hxσ : ↑σ x ≠ x ⊢ ↑{ val := ↑(σ * τ) x, property := (_ : ↑(Equiv.refl α) ↑{ val := ↑(σ * τ) x, property := (_ : ↑(σ * τ) x ∈ support (σ * τ)) } ∈ ↑(support σ) ∪ ↑(support τ)) } ∈ ↑(support σ) ι : Type ?u.3042712 α✝ : Type ?u.3042715 β : Type ?u.3042718 inst✝² : DecidableEq α✝ inst✝¹ : Fintype α✝ σ✝ τ✝ : Perm α✝ α : Type u_1 inst✝ : Finite α σ τ : Perm α hd1 : Disjoint σ τ val✝ : Fintype α f : Perm α hc1 : IsConj σ (f * σ * f⁻¹) g : Perm α hc2 : IsConj τ (g * τ * g⁻¹) hd2 : Disjoint (f * σ * f⁻¹) (g * τ * g⁻¹) hd1' : ↑(support (σ * τ)) = ↑(support σ) ∪ ↑(support τ) hd2' : ↑(support (f * σ * f⁻¹ * (g * τ * g⁻¹))) = ↑(support (f * σ * f⁻¹)) ∪ ↑(support (g * τ * g⁻¹)) hd1'' : _root_.Disjoint ↑(support σ) ↑(support τ) hd2'' : _root_.Disjoint ↑(support (f * σ * f⁻¹)) ↑(support (g * τ * g⁻¹)) x : α hx : x ∈ ↑(support (σ * τ)) hxσ : ↑σ x ≠ x ⊢ ↑{ val := x, property := (_ : ↑(Equiv.refl α) ↑{ val := x, property := hx } ∈ ↑(support σ) ∪ ↑(support τ)) } ∈ ↑(support σ) ι : Type ?u.3042712 α✝ : Type ?u.3042715 β : Type ?u.3042718 inst✝² : DecidableEq α✝ inst✝¹ : Fintype α✝ σ✝ τ✝ : Perm α✝ α : Type u_1 inst✝ : Finite α σ τ : Perm α hd1 : Disjoint σ τ val✝ : Fintype α f : Perm α hc1 : IsConj σ (f * σ * f⁻¹) g : Perm α hc2 : IsConj τ (g * τ * g⁻¹) hd2 : Disjoint (f * σ * f⁻¹) (g * τ * g⁻¹) hd1' : ↑(support (σ * τ)) = ↑(support σ) ∪ ↑(support τ) hd2' : ↑(support (f * σ * f⁻¹ * (g * τ * g⁻¹))) = ↑(support (f * σ * f⁻¹)) ∪ ↑(support (g * τ * g⁻¹)) hd1'' : _root_.Disjoint ↑(support σ) ↑(support τ) hd2'' : _root_.Disjoint ↑(support (f * σ * f⁻¹)) ↑(support (g * τ * g⁻¹)) x : α hx : x ∈ ↑(support (σ * τ)) hxσ : ↑σ x ≠ x ⊢ ↑{ val := ↑(σ * τ) x, property := (_ : ↑(Equiv.refl α) ↑{ val := ↑(σ * τ) x, property := (_ : ↑(σ * τ) x ∈ support (σ * τ)) } ∈ ↑(support σ) ∪ ↑(support τ)) } ∈ ↑(support σ)
case intro.intro.intro.refine'_2.inl ι : Type ?u.3042712 α✝ : Type ?u.3042715 β : Type ?u.3042718 inst✝² : DecidableEq α✝ inst✝¹ : Fintype α✝ σ✝ τ✝ : Perm α✝ α : Type u_1 inst✝ : Finite α σ τ : Perm α hd1 : Disjoint σ τ val✝ : Fintype α f : Perm α hc1 : IsConj σ (f * σ * f⁻¹) g : Perm α hc2 : IsConj τ (g * τ * g⁻¹) hd2 : Disjoint (f * σ * f⁻¹) (g * τ * g⁻¹) hd1' : ↑(support (σ * τ)) = ↑(support σ) ∪ ↑(support τ) hd2' : ↑(support (f * σ * f⁻¹ * (g * τ * g⁻¹))) = ↑(support (f * σ * f⁻¹)) ∪ ↑(support (g * τ * g⁻¹)) hd1'' : _root_.Disjoint ↑(support σ) ↑(support τ) hd2'' : _root_.Disjoint ↑(support (f * σ * f⁻¹)) ↑(support (g * τ * g⁻¹)) x : α hx : x ∈ ↑(support (σ * τ)) hxσ : ↑σ x ≠ x ⊢ ↑τ x = ↑f⁻¹ (↑g (↑τ (↑g⁻¹ (↑f x)))) ι : Type ?u.3042712 α✝ : Type ?u.3042715 β : Type ?u.3042718 inst✝² : DecidableEq α✝ inst✝¹ : Fintype α✝ σ✝ τ✝ : Perm α✝ α : Type u_1 inst✝ : Finite α σ τ : Perm α hd1 : Disjoint σ τ val✝ : Fintype α f : Perm α hc1 : IsConj σ (f * σ * f⁻¹) g : Perm α hc2 : IsConj τ (g * τ * g⁻¹) hd2 : Disjoint (f * σ * f⁻¹) (g * τ * g⁻¹) hd1' : ↑(support (σ * τ)) = ↑(support σ) ∪ ↑(support τ) hd2' : ↑(support (f * σ * f⁻¹ * (g * τ * g⁻¹))) = ↑(support (f * σ * f⁻¹)) ∪ ↑(support (g * τ * g⁻¹)) hd1'' : _root_.Disjoint ↑(support σ) ↑(support τ) hd2'' : _root_.Disjoint ↑(support (f * σ * f⁻¹)) ↑(support (g * τ * g⁻¹)) x : α hx : x ∈ ↑(support (σ * τ)) hxσ : ↑σ x ≠ x ⊢ ↑{ val := ↑(σ * τ) x, property := (_ : ↑(Equiv.refl α) ↑{ val := ↑(σ * τ) x, property := (_ : ↑(σ * τ) x ∈ support (σ * τ)) } ∈ ↑(support σ) ∪ ↑(support τ)) } ∈ ↑(support σ) ι : Type ?u.3042712 α✝ : Type ?u.3042715 β : Type ?u.3042718 inst✝² : DecidableEq α✝ inst✝¹ : Fintype α✝ σ✝ τ✝ : Perm α✝ α : Type u_1 inst✝ : Finite α σ τ : Perm α hd1 : Disjoint σ τ val✝ : Fintype α f : Perm α hc1 : IsConj σ (f * σ * f⁻¹) g : Perm α hc2 : IsConj τ (g * τ * g⁻¹) hd2 : Disjoint (f * σ * f⁻¹) (g * τ * g⁻¹) hd1' : ↑(support (σ * τ)) = ↑(support σ) ∪ ↑(support τ) hd2' : ↑(support (f * σ * f⁻¹ * (g * τ * g⁻¹))) = ↑(support (f * σ * f⁻¹)) ∪ ↑(support (g * τ * g⁻¹)) hd1'' : _root_.Disjoint ↑(support σ) ↑(support τ) hd2'' : _root_.Disjoint ↑(support (f * σ * f⁻¹)) ↑(support (g * τ * g⁻¹)) x : α hx : x ∈ ↑(support (σ * τ)) hxσ : ↑σ x ≠ x ⊢ ↑{ val := x, property := (_ : ↑(Equiv.refl α) ↑{ val := x, property := hx } ∈ ↑(support σ) ∪ ↑(support τ)) } ∈ ↑(support σ) ι : Type ?u.3042712 α✝ : Type ?u.3042715 β : Type ?u.3042718 inst✝² : DecidableEq α✝ inst✝¹ : Fintype α✝ σ✝ τ✝ : Perm α✝ α : Type u_1 inst✝ : Finite α σ τ : Perm α hd1 : Disjoint σ τ val✝ : Fintype α f : Perm α hc1 : IsConj σ (f * σ * f⁻¹) g : Perm α hc2 : IsConj τ (g * τ * g⁻¹) hd2 : Disjoint (f * σ * f⁻¹) (g * τ * g⁻¹) hd1' : ↑(support (σ * τ)) = ↑(support σ) ∪ ↑(support τ) hd2' : ↑(support (f * σ * f⁻¹ * (g * τ * g⁻¹))) = ↑(support (f * σ * f⁻¹)) ∪ ↑(support (g * τ * g⁻¹)) hd1'' : _root_.Disjoint ↑(support σ) ↑(support τ) hd2'' : _root_.Disjoint ↑(support (f * σ * f⁻¹)) ↑(support (g * τ * g⁻¹)) x : α hx : x ∈ ↑(support (σ * τ)) hxσ : ↑σ x ≠ x ⊢ ↑{ val := ↑(σ * τ) x, property := (_ : ↑(Equiv.refl α) ↑{ val := ↑(σ * τ) x, property := (_ : ↑(σ * τ) x ∈ support (σ * τ)) } ∈ ↑(support σ) ∪ ↑(support τ)) } ∈ ↑(support σ)
null
null
Mathlib/GroupTheory/Perm/Cycle/Basic.lean
Equiv.Perm.Disjoint.isConj_mul
[1771, 1]
[1815, 74]
have h := (hd2 (f x)).resolve_left ?_
case intro.intro.intro.refine'_2.inl ι : Type ?u.3042712 α✝ : Type ?u.3042715 β : Type ?u.3042718 inst✝² : DecidableEq α✝ inst✝¹ : Fintype α✝ σ✝ τ✝ : Perm α✝ α : Type u_1 inst✝ : Finite α σ τ : Perm α hd1 : Disjoint σ τ val✝ : Fintype α f : Perm α hc1 : IsConj σ (f * σ * f⁻¹) g : Perm α hc2 : IsConj τ (g * τ * g⁻¹) hd2 : Disjoint (f * σ * f⁻¹) (g * τ * g⁻¹) hd1' : ↑(support (σ * τ)) = ↑(support σ) ∪ ↑(support τ) hd2' : ↑(support (f * σ * f⁻¹ * (g * τ * g⁻¹))) = ↑(support (f * σ * f⁻¹)) ∪ ↑(support (g * τ * g⁻¹)) hd1'' : _root_.Disjoint ↑(support σ) ↑(support τ) hd2'' : _root_.Disjoint ↑(support (f * σ * f⁻¹)) ↑(support (g * τ * g⁻¹)) x : α hx : x ∈ ↑(support (σ * τ)) hxσ : ↑σ x ≠ x ⊢ ↑τ x = ↑f⁻¹ (↑g (↑τ (↑g⁻¹ (↑f x))))
case intro.intro.intro.refine'_2.inl.refine_2 ι : Type ?u.3042712 α✝ : Type ?u.3042715 β : Type ?u.3042718 inst✝² : DecidableEq α✝ inst✝¹ : Fintype α✝ σ✝ τ✝ : Perm α✝ α : Type u_1 inst✝ : Finite α σ τ : Perm α hd1 : Disjoint σ τ val✝ : Fintype α f : Perm α hc1 : IsConj σ (f * σ * f⁻¹) g : Perm α hc2 : IsConj τ (g * τ * g⁻¹) hd2 : Disjoint (f * σ * f⁻¹) (g * τ * g⁻¹) hd1' : ↑(support (σ * τ)) = ↑(support σ) ∪ ↑(support τ) hd2' : ↑(support (f * σ * f⁻¹ * (g * τ * g⁻¹))) = ↑(support (f * σ * f⁻¹)) ∪ ↑(support (g * τ * g⁻¹)) hd1'' : _root_.Disjoint ↑(support σ) ↑(support τ) hd2'' : _root_.Disjoint ↑(support (f * σ * f⁻¹)) ↑(support (g * τ * g⁻¹)) x : α hx : x ∈ ↑(support (σ * τ)) hxσ : ↑σ x ≠ x h : ↑(g * τ * g⁻¹) (↑f x) = ↑f x ⊢ ↑τ x = ↑f⁻¹ (↑g (↑τ (↑g⁻¹ (↑f x)))) case intro.intro.intro.refine'_2.inl.refine_1 ι : Type ?u.3042712 α✝ : Type ?u.3042715 β : Type ?u.3042718 inst✝² : DecidableEq α✝ inst✝¹ : Fintype α✝ σ✝ τ✝ : Perm α✝ α : Type u_1 inst✝ : Finite α σ τ : Perm α hd1 : Disjoint σ τ val✝ : Fintype α f : Perm α hc1 : IsConj σ (f * σ * f⁻¹) g : Perm α hc2 : IsConj τ (g * τ * g⁻¹) hd2 : Disjoint (f * σ * f⁻¹) (g * τ * g⁻¹) hd1' : ↑(support (σ * τ)) = ↑(support σ) ∪ ↑(support τ) hd2' : ↑(support (f * σ * f⁻¹ * (g * τ * g⁻¹))) = ↑(support (f * σ * f⁻¹)) ∪ ↑(support (g * τ * g⁻¹)) hd1'' : _root_.Disjoint ↑(support σ) ↑(support τ) hd2'' : _root_.Disjoint ↑(support (f * σ * f⁻¹)) ↑(support (g * τ * g⁻¹)) x : α hx : x ∈ ↑(support (σ * τ)) hxσ : ↑σ x ≠ x ⊢ ¬↑(f * σ * f⁻¹) (↑f x) = ↑f x
null
null
Mathlib/GroupTheory/Perm/Cycle/Basic.lean
Equiv.Perm.Disjoint.isConj_mul
[1771, 1]
[1815, 74]
rw [mul_apply, mul_apply] at h
case intro.intro.intro.refine'_2.inl.refine_2 ι : Type ?u.3042712 α✝ : Type ?u.3042715 β : Type ?u.3042718 inst✝² : DecidableEq α✝ inst✝¹ : Fintype α✝ σ✝ τ✝ : Perm α✝ α : Type u_1 inst✝ : Finite α σ τ : Perm α hd1 : Disjoint σ τ val✝ : Fintype α f : Perm α hc1 : IsConj σ (f * σ * f⁻¹) g : Perm α hc2 : IsConj τ (g * τ * g⁻¹) hd2 : Disjoint (f * σ * f⁻¹) (g * τ * g⁻¹) hd1' : ↑(support (σ * τ)) = ↑(support σ) ∪ ↑(support τ) hd2' : ↑(support (f * σ * f⁻¹ * (g * τ * g⁻¹))) = ↑(support (f * σ * f⁻¹)) ∪ ↑(support (g * τ * g⁻¹)) hd1'' : _root_.Disjoint ↑(support σ) ↑(support τ) hd2'' : _root_.Disjoint ↑(support (f * σ * f⁻¹)) ↑(support (g * τ * g⁻¹)) x : α hx : x ∈ ↑(support (σ * τ)) hxσ : ↑σ x ≠ x h : ↑(g * τ * g⁻¹) (↑f x) = ↑f x ⊢ ↑τ x = ↑f⁻¹ (↑g (↑τ (↑g⁻¹ (↑f x))))
case intro.intro.intro.refine'_2.inl.refine_2 ι : Type ?u.3042712 α✝ : Type ?u.3042715 β : Type ?u.3042718 inst✝² : DecidableEq α✝ inst✝¹ : Fintype α✝ σ✝ τ✝ : Perm α✝ α : Type u_1 inst✝ : Finite α σ τ : Perm α hd1 : Disjoint σ τ val✝ : Fintype α f : Perm α hc1 : IsConj σ (f * σ * f⁻¹) g : Perm α hc2 : IsConj τ (g * τ * g⁻¹) hd2 : Disjoint (f * σ * f⁻¹) (g * τ * g⁻¹) hd1' : ↑(support (σ * τ)) = ↑(support σ) ∪ ↑(support τ) hd2' : ↑(support (f * σ * f⁻¹ * (g * τ * g⁻¹))) = ↑(support (f * σ * f⁻¹)) ∪ ↑(support (g * τ * g⁻¹)) hd1'' : _root_.Disjoint ↑(support σ) ↑(support τ) hd2'' : _root_.Disjoint ↑(support (f * σ * f⁻¹)) ↑(support (g * τ * g⁻¹)) x : α hx : x ∈ ↑(support (σ * τ)) hxσ : ↑σ x ≠ x h : ↑g (↑τ (↑g⁻¹ (↑f x))) = ↑f x ⊢ ↑τ x = ↑f⁻¹ (↑g (↑τ (↑g⁻¹ (↑f x))))
null
null
Mathlib/GroupTheory/Perm/Cycle/Basic.lean
Equiv.Perm.Disjoint.isConj_mul
[1771, 1]
[1815, 74]
rw [h, inv_apply_self, (hd1 x).resolve_left hxσ]
case intro.intro.intro.refine'_2.inl.refine_2 ι : Type ?u.3042712 α✝ : Type ?u.3042715 β : Type ?u.3042718 inst✝² : DecidableEq α✝ inst✝¹ : Fintype α✝ σ✝ τ✝ : Perm α✝ α : Type u_1 inst✝ : Finite α σ τ : Perm α hd1 : Disjoint σ τ val✝ : Fintype α f : Perm α hc1 : IsConj σ (f * σ * f⁻¹) g : Perm α hc2 : IsConj τ (g * τ * g⁻¹) hd2 : Disjoint (f * σ * f⁻¹) (g * τ * g⁻¹) hd1' : ↑(support (σ * τ)) = ↑(support σ) ∪ ↑(support τ) hd2' : ↑(support (f * σ * f⁻¹ * (g * τ * g⁻¹))) = ↑(support (f * σ * f⁻¹)) ∪ ↑(support (g * τ * g⁻¹)) hd1'' : _root_.Disjoint ↑(support σ) ↑(support τ) hd2'' : _root_.Disjoint ↑(support (f * σ * f⁻¹)) ↑(support (g * τ * g⁻¹)) x : α hx : x ∈ ↑(support (σ * τ)) hxσ : ↑σ x ≠ x h : ↑g (↑τ (↑g⁻¹ (↑f x))) = ↑f x ⊢ ↑τ x = ↑f⁻¹ (↑g (↑τ (↑g⁻¹ (↑f x))))
no goals
null
null
Mathlib/GroupTheory/Perm/Cycle/Basic.lean
Equiv.Perm.Disjoint.isConj_mul
[1771, 1]
[1815, 74]
rwa [mul_apply, mul_apply, inv_apply_self, apply_eq_iff_eq]
case intro.intro.intro.refine'_2.inl.refine_1 ι : Type ?u.3042712 α✝ : Type ?u.3042715 β : Type ?u.3042718 inst✝² : DecidableEq α✝ inst✝¹ : Fintype α✝ σ✝ τ✝ : Perm α✝ α : Type u_1 inst✝ : Finite α σ τ : Perm α hd1 : Disjoint σ τ val✝ : Fintype α f : Perm α hc1 : IsConj σ (f * σ * f⁻¹) g : Perm α hc2 : IsConj τ (g * τ * g⁻¹) hd2 : Disjoint (f * σ * f⁻¹) (g * τ * g⁻¹) hd1' : ↑(support (σ * τ)) = ↑(support σ) ∪ ↑(support τ) hd2' : ↑(support (f * σ * f⁻¹ * (g * τ * g⁻¹))) = ↑(support (f * σ * f⁻¹)) ∪ ↑(support (g * τ * g⁻¹)) hd1'' : _root_.Disjoint ↑(support σ) ↑(support τ) hd2'' : _root_.Disjoint ↑(support (f * σ * f⁻¹)) ↑(support (g * τ * g⁻¹)) x : α hx : x ∈ ↑(support (σ * τ)) hxσ : ↑σ x ≠ x ⊢ ¬↑(f * σ * f⁻¹) (↑f x) = ↑f x
no goals
null
null
Mathlib/GroupTheory/Perm/Cycle/Basic.lean
Equiv.Perm.Disjoint.isConj_mul
[1771, 1]
[1815, 74]
rwa [Subtype.coe_mk, Perm.mul_apply, (hd1 x).resolve_left hxσ, mem_coe, apply_mem_support, mem_support]
ι : Type ?u.3042712 α✝ : Type ?u.3042715 β : Type ?u.3042718 inst✝² : DecidableEq α✝ inst✝¹ : Fintype α✝ σ✝ τ✝ : Perm α✝ α : Type u_1 inst✝ : Finite α σ τ : Perm α hd1 : Disjoint σ τ val✝ : Fintype α f : Perm α hc1 : IsConj σ (f * σ * f⁻¹) g : Perm α hc2 : IsConj τ (g * τ * g⁻¹) hd2 : Disjoint (f * σ * f⁻¹) (g * τ * g⁻¹) hd1' : ↑(support (σ * τ)) = ↑(support σ) ∪ ↑(support τ) hd2' : ↑(support (f * σ * f⁻¹ * (g * τ * g⁻¹))) = ↑(support (f * σ * f⁻¹)) ∪ ↑(support (g * τ * g⁻¹)) hd1'' : _root_.Disjoint ↑(support σ) ↑(support τ) hd2'' : _root_.Disjoint ↑(support (f * σ * f⁻¹)) ↑(support (g * τ * g⁻¹)) x : α hx : x ∈ ↑(support (σ * τ)) hxσ : ↑σ x ≠ x ⊢ ↑{ val := ↑(σ * τ) x, property := (_ : ↑(Equiv.refl α) ↑{ val := ↑(σ * τ) x, property := (_ : ↑(σ * τ) x ∈ support (σ * τ)) } ∈ ↑(support σ) ∪ ↑(support τ)) } ∈ ↑(support σ)
no goals
null
null
Mathlib/GroupTheory/Perm/Cycle/Basic.lean
Equiv.Perm.Disjoint.isConj_mul
[1771, 1]
[1815, 74]
rwa [Subtype.coe_mk, mem_coe, mem_support]
ι : Type ?u.3042712 α✝ : Type ?u.3042715 β : Type ?u.3042718 inst✝² : DecidableEq α✝ inst✝¹ : Fintype α✝ σ✝ τ✝ : Perm α✝ α : Type u_1 inst✝ : Finite α σ τ : Perm α hd1 : Disjoint σ τ val✝ : Fintype α f : Perm α hc1 : IsConj σ (f * σ * f⁻¹) g : Perm α hc2 : IsConj τ (g * τ * g⁻¹) hd2 : Disjoint (f * σ * f⁻¹) (g * τ * g⁻¹) hd1' : ↑(support (σ * τ)) = ↑(support σ) ∪ ↑(support τ) hd2' : ↑(support (f * σ * f⁻¹ * (g * τ * g⁻¹))) = ↑(support (f * σ * f⁻¹)) ∪ ↑(support (g * τ * g⁻¹)) hd1'' : _root_.Disjoint ↑(support σ) ↑(support τ) hd2'' : _root_.Disjoint ↑(support (f * σ * f⁻¹)) ↑(support (g * τ * g⁻¹)) x : α hx : x ∈ ↑(support (σ * τ)) hxσ : ↑σ x ≠ x ⊢ ↑{ val := x, property := (_ : ↑(Equiv.refl α) ↑{ val := x, property := hx } ∈ ↑(support σ) ∪ ↑(support τ)) } ∈ ↑(support σ)
no goals
null
null
Mathlib/GroupTheory/Perm/Cycle/Basic.lean
Equiv.Perm.Disjoint.isConj_mul
[1771, 1]
[1815, 74]
rw [mem_coe, ← apply_mem_support, mem_support] at hxτ
case intro.intro.intro.refine'_2.inr ι : Type ?u.3042712 α✝ : Type ?u.3042715 β : Type ?u.3042718 inst✝² : DecidableEq α✝ inst✝¹ : Fintype α✝ σ✝ τ✝ : Perm α✝ α : Type u_1 inst✝ : Finite α σ τ : Perm α hd1 : Disjoint σ τ val✝ : Fintype α f : Perm α hc1 : IsConj σ (f * σ * f⁻¹) g : Perm α hc2 : IsConj τ (g * τ * g⁻¹) hd2 : Disjoint (f * σ * f⁻¹) (g * τ * g⁻¹) hd1' : ↑(support (σ * τ)) = ↑(support σ) ∪ ↑(support τ) hd2' : ↑(support (f * σ * f⁻¹ * (g * τ * g⁻¹))) = ↑(support (f * σ * f⁻¹)) ∪ ↑(support (g * τ * g⁻¹)) hd1'' : _root_.Disjoint ↑(support σ) ↑(support τ) hd2'' : _root_.Disjoint ↑(support (f * σ * f⁻¹)) ↑(support (g * τ * g⁻¹)) x : α hx : x ∈ ↑(support (σ * τ)) hxτ : x ∈ ↑(support τ) ⊢ ↑(↑(Set.union (_ : ↑(support (f * σ * f⁻¹)) ⊓ ↑(support (g * τ * g⁻¹)) ≤ ⊥)).symm (Sum.map (↑(subtypeEquiv f (_ : ∀ (a : α), a ∈ ↑(support σ) ↔ ↑f a ∈ ↑(support (f * σ * f⁻¹))))) (↑(subtypeEquiv g (_ : ∀ (a : α), a ∈ ↑(support τ) ↔ ↑g a ∈ ↑(support (g * τ * g⁻¹))))) (↑(Set.union (_ : ↑(support σ) ⊓ ↑(support τ) ≤ ⊥)) { val := ↑(σ * τ) x, property := (_ : ↑(Equiv.refl α) ↑{ val := ↑(σ * τ) x, property := (_ : ↑(σ * τ) x ∈ support (σ * τ)) } ∈ ↑(support σ) ∪ ↑(support τ)) }))) = ↑(f * σ * f⁻¹ * (g * τ * g⁻¹)) ↑(↑(Set.union (_ : ↑(support (f * σ * f⁻¹)) ⊓ ↑(support (g * τ * g⁻¹)) ≤ ⊥)).symm (Sum.map (↑(subtypeEquiv f (_ : ∀ (a : α), a ∈ ↑(support σ) ↔ ↑f a ∈ ↑(support (f * σ * f⁻¹))))) (↑(subtypeEquiv g (_ : ∀ (a : α), a ∈ ↑(support τ) ↔ ↑g a ∈ ↑(support (g * τ * g⁻¹))))) (↑(Set.union (_ : ↑(support σ) ⊓ ↑(support τ) ≤ ⊥)) { val := x, property := (_ : ↑(Equiv.refl α) ↑{ val := x, property := hx } ∈ ↑(support σ) ∪ ↑(support τ)) })))
case intro.intro.intro.refine'_2.inr ι : Type ?u.3042712 α✝ : Type ?u.3042715 β : Type ?u.3042718 inst✝² : DecidableEq α✝ inst✝¹ : Fintype α✝ σ✝ τ✝ : Perm α✝ α : Type u_1 inst✝ : Finite α σ τ : Perm α hd1 : Disjoint σ τ val✝ : Fintype α f : Perm α hc1 : IsConj σ (f * σ * f⁻¹) g : Perm α hc2 : IsConj τ (g * τ * g⁻¹) hd2 : Disjoint (f * σ * f⁻¹) (g * τ * g⁻¹) hd1' : ↑(support (σ * τ)) = ↑(support σ) ∪ ↑(support τ) hd2' : ↑(support (f * σ * f⁻¹ * (g * τ * g⁻¹))) = ↑(support (f * σ * f⁻¹)) ∪ ↑(support (g * τ * g⁻¹)) hd1'' : _root_.Disjoint ↑(support σ) ↑(support τ) hd2'' : _root_.Disjoint ↑(support (f * σ * f⁻¹)) ↑(support (g * τ * g⁻¹)) x : α hx : x ∈ ↑(support (σ * τ)) hxτ : ↑τ (↑τ x) ≠ ↑τ x ⊢ ↑(↑(Set.union (_ : ↑(support (f * σ * f⁻¹)) ⊓ ↑(support (g * τ * g⁻¹)) ≤ ⊥)).symm (Sum.map (↑(subtypeEquiv f (_ : ∀ (a : α), a ∈ ↑(support σ) ↔ ↑f a ∈ ↑(support (f * σ * f⁻¹))))) (↑(subtypeEquiv g (_ : ∀ (a : α), a ∈ ↑(support τ) ↔ ↑g a ∈ ↑(support (g * τ * g⁻¹))))) (↑(Set.union (_ : ↑(support σ) ⊓ ↑(support τ) ≤ ⊥)) { val := ↑(σ * τ) x, property := (_ : ↑(Equiv.refl α) ↑{ val := ↑(σ * τ) x, property := (_ : ↑(σ * τ) x ∈ support (σ * τ)) } ∈ ↑(support σ) ∪ ↑(support τ)) }))) = ↑(f * σ * f⁻¹ * (g * τ * g⁻¹)) ↑(↑(Set.union (_ : ↑(support (f * σ * f⁻¹)) ⊓ ↑(support (g * τ * g⁻¹)) ≤ ⊥)).symm (Sum.map (↑(subtypeEquiv f (_ : ∀ (a : α), a ∈ ↑(support σ) ↔ ↑f a ∈ ↑(support (f * σ * f⁻¹))))) (↑(subtypeEquiv g (_ : ∀ (a : α), a ∈ ↑(support τ) ↔ ↑g a ∈ ↑(support (g * τ * g⁻¹))))) (↑(Set.union (_ : ↑(support σ) ⊓ ↑(support τ) ≤ ⊥)) { val := x, property := (_ : ↑(Equiv.refl α) ↑{ val := x, property := hx } ∈ ↑(support σ) ∪ ↑(support τ)) })))
null
null
Mathlib/GroupTheory/Perm/Cycle/Basic.lean
Equiv.Perm.Disjoint.isConj_mul
[1771, 1]
[1815, 74]
rw [Set.union_apply_right hd1''.le_bot _, Set.union_apply_right hd1''.le_bot _]
case intro.intro.intro.refine'_2.inr ι : Type ?u.3042712 α✝ : Type ?u.3042715 β : Type ?u.3042718 inst✝² : DecidableEq α✝ inst✝¹ : Fintype α✝ σ✝ τ✝ : Perm α✝ α : Type u_1 inst✝ : Finite α σ τ : Perm α hd1 : Disjoint σ τ val✝ : Fintype α f : Perm α hc1 : IsConj σ (f * σ * f⁻¹) g : Perm α hc2 : IsConj τ (g * τ * g⁻¹) hd2 : Disjoint (f * σ * f⁻¹) (g * τ * g⁻¹) hd1' : ↑(support (σ * τ)) = ↑(support σ) ∪ ↑(support τ) hd2' : ↑(support (f * σ * f⁻¹ * (g * τ * g⁻¹))) = ↑(support (f * σ * f⁻¹)) ∪ ↑(support (g * τ * g⁻¹)) hd1'' : _root_.Disjoint ↑(support σ) ↑(support τ) hd2'' : _root_.Disjoint ↑(support (f * σ * f⁻¹)) ↑(support (g * τ * g⁻¹)) x : α hx : x ∈ ↑(support (σ * τ)) hxτ : ↑τ (↑τ x) ≠ ↑τ x ⊢ ↑(↑(Set.union (_ : ↑(support (f * σ * f⁻¹)) ⊓ ↑(support (g * τ * g⁻¹)) ≤ ⊥)).symm (Sum.map (↑(subtypeEquiv f (_ : ∀ (a : α), a ∈ ↑(support σ) ↔ ↑f a ∈ ↑(support (f * σ * f⁻¹))))) (↑(subtypeEquiv g (_ : ∀ (a : α), a ∈ ↑(support τ) ↔ ↑g a ∈ ↑(support (g * τ * g⁻¹))))) (↑(Set.union (_ : ↑(support σ) ⊓ ↑(support τ) ≤ ⊥)) { val := ↑(σ * τ) x, property := (_ : ↑(Equiv.refl α) ↑{ val := ↑(σ * τ) x, property := (_ : ↑(σ * τ) x ∈ support (σ * τ)) } ∈ ↑(support σ) ∪ ↑(support τ)) }))) = ↑(f * σ * f⁻¹ * (g * τ * g⁻¹)) ↑(↑(Set.union (_ : ↑(support (f * σ * f⁻¹)) ⊓ ↑(support (g * τ * g⁻¹)) ≤ ⊥)).symm (Sum.map (↑(subtypeEquiv f (_ : ∀ (a : α), a ∈ ↑(support σ) ↔ ↑f a ∈ ↑(support (f * σ * f⁻¹))))) (↑(subtypeEquiv g (_ : ∀ (a : α), a ∈ ↑(support τ) ↔ ↑g a ∈ ↑(support (g * τ * g⁻¹))))) (↑(Set.union (_ : ↑(support σ) ⊓ ↑(support τ) ≤ ⊥)) { val := x, property := (_ : ↑(Equiv.refl α) ↑{ val := x, property := hx } ∈ ↑(support σ) ∪ ↑(support τ)) })))
case intro.intro.intro.refine'_2.inr ι : Type ?u.3042712 α✝ : Type ?u.3042715 β : Type ?u.3042718 inst✝² : DecidableEq α✝ inst✝¹ : Fintype α✝ σ✝ τ✝ : Perm α✝ α : Type u_1 inst✝ : Finite α σ τ : Perm α hd1 : Disjoint σ τ val✝ : Fintype α f : Perm α hc1 : IsConj σ (f * σ * f⁻¹) g : Perm α hc2 : IsConj τ (g * τ * g⁻¹) hd2 : Disjoint (f * σ * f⁻¹) (g * τ * g⁻¹) hd1' : ↑(support (σ * τ)) = ↑(support σ) ∪ ↑(support τ) hd2' : ↑(support (f * σ * f⁻¹ * (g * τ * g⁻¹))) = ↑(support (f * σ * f⁻¹)) ∪ ↑(support (g * τ * g⁻¹)) hd1'' : _root_.Disjoint ↑(support σ) ↑(support τ) hd2'' : _root_.Disjoint ↑(support (f * σ * f⁻¹)) ↑(support (g * τ * g⁻¹)) x : α hx : x ∈ ↑(support (σ * τ)) hxτ : ↑τ (↑τ x) ≠ ↑τ x ⊢ ↑(↑(Set.union (_ : ↑(support (f * σ * f⁻¹)) ⊓ ↑(support (g * τ * g⁻¹)) ≤ ⊥)).symm (Sum.map (↑(subtypeEquiv f (_ : ∀ (a : α), a ∈ ↑(support σ) ↔ ↑f a ∈ ↑(support (f * σ * f⁻¹))))) (↑(subtypeEquiv g (_ : ∀ (a : α), a ∈ ↑(support τ) ↔ ↑g a ∈ ↑(support (g * τ * g⁻¹))))) (Sum.inr { val := ↑{ val := ↑(σ * τ) x, property := (_ : ↑(Equiv.refl α) ↑{ val := ↑(σ * τ) x, property := (_ : ↑(σ * τ) x ∈ support (σ * τ)) } ∈ ↑(support σ) ∪ ↑(support τ)) }, property := ?m.3057896 }))) = ↑(f * σ * f⁻¹ * (g * τ * g⁻¹)) ↑(↑(Set.union (_ : ↑(support (f * σ * f⁻¹)) ⊓ ↑(support (g * τ * g⁻¹)) ≤ ⊥)).symm (Sum.map (↑(subtypeEquiv f (_ : ∀ (a : α), a ∈ ↑(support σ) ↔ ↑f a ∈ ↑(support (f * σ * f⁻¹))))) (↑(subtypeEquiv g (_ : ∀ (a : α), a ∈ ↑(support τ) ↔ ↑g a ∈ ↑(support (g * τ * g⁻¹))))) (Sum.inr { val := ↑{ val := x, property := (_ : ↑(Equiv.refl α) ↑{ val := x, property := hx } ∈ ↑(support σ) ∪ ↑(support τ)) }, property := ?m.3058005 }))) ι : Type ?u.3042712 α✝ : Type ?u.3042715 β : Type ?u.3042718 inst✝² : DecidableEq α✝ inst✝¹ : Fintype α✝ σ✝ τ✝ : Perm α✝ α : Type u_1 inst✝ : Finite α σ τ : Perm α hd1 : Disjoint σ τ val✝ : Fintype α f : Perm α hc1 : IsConj σ (f * σ * f⁻¹) g : Perm α hc2 : IsConj τ (g * τ * g⁻¹) hd2 : Disjoint (f * σ * f⁻¹) (g * τ * g⁻¹) hd1' : ↑(support (σ * τ)) = ↑(support σ) ∪ ↑(support τ) hd2' : ↑(support (f * σ * f⁻¹ * (g * τ * g⁻¹))) = ↑(support (f * σ * f⁻¹)) ∪ ↑(support (g * τ * g⁻¹)) hd1'' : _root_.Disjoint ↑(support σ) ↑(support τ) hd2'' : _root_.Disjoint ↑(support (f * σ * f⁻¹)) ↑(support (g * τ * g⁻¹)) x : α hx : x ∈ ↑(support (σ * τ)) hxτ : ↑τ (↑τ x) ≠ ↑τ x ⊢ ↑{ val := ↑(σ * τ) x, property := (_ : ↑(Equiv.refl α) ↑{ val := ↑(σ * τ) x, property := (_ : ↑(σ * τ) x ∈ support (σ * τ)) } ∈ ↑(support σ) ∪ ↑(support τ)) } ∈ ↑(support τ) ι : Type ?u.3042712 α✝ : Type ?u.3042715 β : Type ?u.3042718 inst✝² : DecidableEq α✝ inst✝¹ : Fintype α✝ σ✝ τ✝ : Perm α✝ α : Type u_1 inst✝ : Finite α σ τ : Perm α hd1 : Disjoint σ τ val✝ : Fintype α f : Perm α hc1 : IsConj σ (f * σ * f⁻¹) g : Perm α hc2 : IsConj τ (g * τ * g⁻¹) hd2 : Disjoint (f * σ * f⁻¹) (g * τ * g⁻¹) hd1' : ↑(support (σ * τ)) = ↑(support σ) ∪ ↑(support τ) hd2' : ↑(support (f * σ * f⁻¹ * (g * τ * g⁻¹))) = ↑(support (f * σ * f⁻¹)) ∪ ↑(support (g * τ * g⁻¹)) hd1'' : _root_.Disjoint ↑(support σ) ↑(support τ) hd2'' : _root_.Disjoint ↑(support (f * σ * f⁻¹)) ↑(support (g * τ * g⁻¹)) x : α hx : x ∈ ↑(support (σ * τ)) hxτ : ↑τ (↑τ x) ≠ ↑τ x ⊢ ↑{ val := x, property := (_ : ↑(Equiv.refl α) ↑{ val := x, property := hx } ∈ ↑(support σ) ∪ ↑(support τ)) } ∈ ↑(support τ) ι : Type ?u.3042712 α✝ : Type ?u.3042715 β : Type ?u.3042718 inst✝² : DecidableEq α✝ inst✝¹ : Fintype α✝ σ✝ τ✝ : Perm α✝ α : Type u_1 inst✝ : Finite α σ τ : Perm α hd1 : Disjoint σ τ val✝ : Fintype α f : Perm α hc1 : IsConj σ (f * σ * f⁻¹) g : Perm α hc2 : IsConj τ (g * τ * g⁻¹) hd2 : Disjoint (f * σ * f⁻¹) (g * τ * g⁻¹) hd1' : ↑(support (σ * τ)) = ↑(support σ) ∪ ↑(support τ) hd2' : ↑(support (f * σ * f⁻¹ * (g * τ * g⁻¹))) = ↑(support (f * σ * f⁻¹)) ∪ ↑(support (g * τ * g⁻¹)) hd1'' : _root_.Disjoint ↑(support σ) ↑(support τ) hd2'' : _root_.Disjoint ↑(support (f * σ * f⁻¹)) ↑(support (g * τ * g⁻¹)) x : α hx : x ∈ ↑(support (σ * τ)) hxτ : ↑τ (↑τ x) ≠ ↑τ x ⊢ ↑{ val := ↑(σ * τ) x, property := (_ : ↑(Equiv.refl α) ↑{ val := ↑(σ * τ) x, property := (_ : ↑(σ * τ) x ∈ support (σ * τ)) } ∈ ↑(support σ) ∪ ↑(support τ)) } ∈ ↑(support τ)
null
null
Mathlib/GroupTheory/Perm/Cycle/Basic.lean
Equiv.Perm.Disjoint.isConj_mul
[1771, 1]
[1815, 74]
simp only [subtypeEquiv_apply, Perm.coe_mul, Sum.map_inr, comp_apply, Set.union_symm_apply_right, Subtype.coe_mk, apply_eq_iff_eq]
case intro.intro.intro.refine'_2.inr ι : Type ?u.3042712 α✝ : Type ?u.3042715 β : Type ?u.3042718 inst✝² : DecidableEq α✝ inst✝¹ : Fintype α✝ σ✝ τ✝ : Perm α✝ α : Type u_1 inst✝ : Finite α σ τ : Perm α hd1 : Disjoint σ τ val✝ : Fintype α f : Perm α hc1 : IsConj σ (f * σ * f⁻¹) g : Perm α hc2 : IsConj τ (g * τ * g⁻¹) hd2 : Disjoint (f * σ * f⁻¹) (g * τ * g⁻¹) hd1' : ↑(support (σ * τ)) = ↑(support σ) ∪ ↑(support τ) hd2' : ↑(support (f * σ * f⁻¹ * (g * τ * g⁻¹))) = ↑(support (f * σ * f⁻¹)) ∪ ↑(support (g * τ * g⁻¹)) hd1'' : _root_.Disjoint ↑(support σ) ↑(support τ) hd2'' : _root_.Disjoint ↑(support (f * σ * f⁻¹)) ↑(support (g * τ * g⁻¹)) x : α hx : x ∈ ↑(support (σ * τ)) hxτ : ↑τ (↑τ x) ≠ ↑τ x ⊢ ↑(↑(Set.union (_ : ↑(support (f * σ * f⁻¹)) ⊓ ↑(support (g * τ * g⁻¹)) ≤ ⊥)).symm (Sum.map (↑(subtypeEquiv f (_ : ∀ (a : α), a ∈ ↑(support σ) ↔ ↑f a ∈ ↑(support (f * σ * f⁻¹))))) (↑(subtypeEquiv g (_ : ∀ (a : α), a ∈ ↑(support τ) ↔ ↑g a ∈ ↑(support (g * τ * g⁻¹))))) (Sum.inr { val := ↑{ val := ↑(σ * τ) x, property := (_ : ↑(Equiv.refl α) ↑{ val := ↑(σ * τ) x, property := (_ : ↑(σ * τ) x ∈ support (σ * τ)) } ∈ ↑(support σ) ∪ ↑(support τ)) }, property := ?m.3057896 }))) = ↑(f * σ * f⁻¹ * (g * τ * g⁻¹)) ↑(↑(Set.union (_ : ↑(support (f * σ * f⁻¹)) ⊓ ↑(support (g * τ * g⁻¹)) ≤ ⊥)).symm (Sum.map (↑(subtypeEquiv f (_ : ∀ (a : α), a ∈ ↑(support σ) ↔ ↑f a ∈ ↑(support (f * σ * f⁻¹))))) (↑(subtypeEquiv g (_ : ∀ (a : α), a ∈ ↑(support τ) ↔ ↑g a ∈ ↑(support (g * τ * g⁻¹))))) (Sum.inr { val := ↑{ val := x, property := (_ : ↑(Equiv.refl α) ↑{ val := x, property := hx } ∈ ↑(support σ) ∪ ↑(support τ)) }, property := ?m.3058005 }))) ι : Type ?u.3042712 α✝ : Type ?u.3042715 β : Type ?u.3042718 inst✝² : DecidableEq α✝ inst✝¹ : Fintype α✝ σ✝ τ✝ : Perm α✝ α : Type u_1 inst✝ : Finite α σ τ : Perm α hd1 : Disjoint σ τ val✝ : Fintype α f : Perm α hc1 : IsConj σ (f * σ * f⁻¹) g : Perm α hc2 : IsConj τ (g * τ * g⁻¹) hd2 : Disjoint (f * σ * f⁻¹) (g * τ * g⁻¹) hd1' : ↑(support (σ * τ)) = ↑(support σ) ∪ ↑(support τ) hd2' : ↑(support (f * σ * f⁻¹ * (g * τ * g⁻¹))) = ↑(support (f * σ * f⁻¹)) ∪ ↑(support (g * τ * g⁻¹)) hd1'' : _root_.Disjoint ↑(support σ) ↑(support τ) hd2'' : _root_.Disjoint ↑(support (f * σ * f⁻¹)) ↑(support (g * τ * g⁻¹)) x : α hx : x ∈ ↑(support (σ * τ)) hxτ : ↑τ (↑τ x) ≠ ↑τ x ⊢ ↑{ val := ↑(σ * τ) x, property := (_ : ↑(Equiv.refl α) ↑{ val := ↑(σ * τ) x, property := (_ : ↑(σ * τ) x ∈ support (σ * τ)) } ∈ ↑(support σ) ∪ ↑(support τ)) } ∈ ↑(support τ) ι : Type ?u.3042712 α✝ : Type ?u.3042715 β : Type ?u.3042718 inst✝² : DecidableEq α✝ inst✝¹ : Fintype α✝ σ✝ τ✝ : Perm α✝ α : Type u_1 inst✝ : Finite α σ τ : Perm α hd1 : Disjoint σ τ val✝ : Fintype α f : Perm α hc1 : IsConj σ (f * σ * f⁻¹) g : Perm α hc2 : IsConj τ (g * τ * g⁻¹) hd2 : Disjoint (f * σ * f⁻¹) (g * τ * g⁻¹) hd1' : ↑(support (σ * τ)) = ↑(support σ) ∪ ↑(support τ) hd2' : ↑(support (f * σ * f⁻¹ * (g * τ * g⁻¹))) = ↑(support (f * σ * f⁻¹)) ∪ ↑(support (g * τ * g⁻¹)) hd1'' : _root_.Disjoint ↑(support σ) ↑(support τ) hd2'' : _root_.Disjoint ↑(support (f * σ * f⁻¹)) ↑(support (g * τ * g⁻¹)) x : α hx : x ∈ ↑(support (σ * τ)) hxτ : ↑τ (↑τ x) ≠ ↑τ x ⊢ ↑{ val := x, property := (_ : ↑(Equiv.refl α) ↑{ val := x, property := hx } ∈ ↑(support σ) ∪ ↑(support τ)) } ∈ ↑(support τ) ι : Type ?u.3042712 α✝ : Type ?u.3042715 β : Type ?u.3042718 inst✝² : DecidableEq α✝ inst✝¹ : Fintype α✝ σ✝ τ✝ : Perm α✝ α : Type u_1 inst✝ : Finite α σ τ : Perm α hd1 : Disjoint σ τ val✝ : Fintype α f : Perm α hc1 : IsConj σ (f * σ * f⁻¹) g : Perm α hc2 : IsConj τ (g * τ * g⁻¹) hd2 : Disjoint (f * σ * f⁻¹) (g * τ * g⁻¹) hd1' : ↑(support (σ * τ)) = ↑(support σ) ∪ ↑(support τ) hd2' : ↑(support (f * σ * f⁻¹ * (g * τ * g⁻¹))) = ↑(support (f * σ * f⁻¹)) ∪ ↑(support (g * τ * g⁻¹)) hd1'' : _root_.Disjoint ↑(support σ) ↑(support τ) hd2'' : _root_.Disjoint ↑(support (f * σ * f⁻¹)) ↑(support (g * τ * g⁻¹)) x : α hx : x ∈ ↑(support (σ * τ)) hxτ : ↑τ (↑τ x) ≠ ↑τ x ⊢ ↑{ val := ↑(σ * τ) x, property := (_ : ↑(Equiv.refl α) ↑{ val := ↑(σ * τ) x, property := (_ : ↑(σ * τ) x ∈ support (σ * τ)) } ∈ ↑(support σ) ∪ ↑(support τ)) } ∈ ↑(support τ)
case intro.intro.intro.refine'_2.inr ι : Type ?u.3042712 α✝ : Type ?u.3042715 β : Type ?u.3042718 inst✝² : DecidableEq α✝ inst✝¹ : Fintype α✝ σ✝ τ✝ : Perm α✝ α : Type u_1 inst✝ : Finite α σ τ : Perm α hd1 : Disjoint σ τ val✝ : Fintype α f : Perm α hc1 : IsConj σ (f * σ * f⁻¹) g : Perm α hc2 : IsConj τ (g * τ * g⁻¹) hd2 : Disjoint (f * σ * f⁻¹) (g * τ * g⁻¹) hd1' : ↑(support (σ * τ)) = ↑(support σ) ∪ ↑(support τ) hd2' : ↑(support (f * σ * f⁻¹ * (g * τ * g⁻¹))) = ↑(support (f * σ * f⁻¹)) ∪ ↑(support (g * τ * g⁻¹)) hd1'' : _root_.Disjoint ↑(support σ) ↑(support τ) hd2'' : _root_.Disjoint ↑(support (f * σ * f⁻¹)) ↑(support (g * τ * g⁻¹)) x : α hx : x ∈ ↑(support (σ * τ)) hxτ : ↑τ (↑τ x) ≠ ↑τ x ⊢ ↑g (↑σ (↑τ x)) = ↑f (↑σ (↑f⁻¹ (↑g (↑τ (↑g⁻¹ (↑g x)))))) ι : Type ?u.3042712 α✝ : Type ?u.3042715 β : Type ?u.3042718 inst✝² : DecidableEq α✝ inst✝¹ : Fintype α✝ σ✝ τ✝ : Perm α✝ α : Type u_1 inst✝ : Finite α σ τ : Perm α hd1 : Disjoint σ τ val✝ : Fintype α f : Perm α hc1 : IsConj σ (f * σ * f⁻¹) g : Perm α hc2 : IsConj τ (g * τ * g⁻¹) hd2 : Disjoint (f * σ * f⁻¹) (g * τ * g⁻¹) hd1' : ↑(support (σ * τ)) = ↑(support σ) ∪ ↑(support τ) hd2' : ↑(support (f * σ * f⁻¹ * (g * τ * g⁻¹))) = ↑(support (f * σ * f⁻¹)) ∪ ↑(support (g * τ * g⁻¹)) hd1'' : _root_.Disjoint ↑(support σ) ↑(support τ) hd2'' : _root_.Disjoint ↑(support (f * σ * f⁻¹)) ↑(support (g * τ * g⁻¹)) x : α hx : x ∈ ↑(support (σ * τ)) hxτ : ↑τ (↑τ x) ≠ ↑τ x ⊢ ↑{ val := ↑(σ * τ) x, property := (_ : ↑(Equiv.refl α) ↑{ val := ↑(σ * τ) x, property := (_ : ↑(σ * τ) x ∈ support (σ * τ)) } ∈ ↑(support σ) ∪ ↑(support τ)) } ∈ ↑(support τ) ι : Type ?u.3042712 α✝ : Type ?u.3042715 β : Type ?u.3042718 inst✝² : DecidableEq α✝ inst✝¹ : Fintype α✝ σ✝ τ✝ : Perm α✝ α : Type u_1 inst✝ : Finite α σ τ : Perm α hd1 : Disjoint σ τ val✝ : Fintype α f : Perm α hc1 : IsConj σ (f * σ * f⁻¹) g : Perm α hc2 : IsConj τ (g * τ * g⁻¹) hd2 : Disjoint (f * σ * f⁻¹) (g * τ * g⁻¹) hd1' : ↑(support (σ * τ)) = ↑(support σ) ∪ ↑(support τ) hd2' : ↑(support (f * σ * f⁻¹ * (g * τ * g⁻¹))) = ↑(support (f * σ * f⁻¹)) ∪ ↑(support (g * τ * g⁻¹)) hd1'' : _root_.Disjoint ↑(support σ) ↑(support τ) hd2'' : _root_.Disjoint ↑(support (f * σ * f⁻¹)) ↑(support (g * τ * g⁻¹)) x : α hx : x ∈ ↑(support (σ * τ)) hxτ : ↑τ (↑τ x) ≠ ↑τ x ⊢ ↑{ val := x, property := (_ : ↑(Equiv.refl α) ↑{ val := x, property := hx } ∈ ↑(support σ) ∪ ↑(support τ)) } ∈ ↑(support τ) ι : Type ?u.3042712 α✝ : Type ?u.3042715 β : Type ?u.3042718 inst✝² : DecidableEq α✝ inst✝¹ : Fintype α✝ σ✝ τ✝ : Perm α✝ α : Type u_1 inst✝ : Finite α σ τ : Perm α hd1 : Disjoint σ τ val✝ : Fintype α f : Perm α hc1 : IsConj σ (f * σ * f⁻¹) g : Perm α hc2 : IsConj τ (g * τ * g⁻¹) hd2 : Disjoint (f * σ * f⁻¹) (g * τ * g⁻¹) hd1' : ↑(support (σ * τ)) = ↑(support σ) ∪ ↑(support τ) hd2' : ↑(support (f * σ * f⁻¹ * (g * τ * g⁻¹))) = ↑(support (f * σ * f⁻¹)) ∪ ↑(support (g * τ * g⁻¹)) hd1'' : _root_.Disjoint ↑(support σ) ↑(support τ) hd2'' : _root_.Disjoint ↑(support (f * σ * f⁻¹)) ↑(support (g * τ * g⁻¹)) x : α hx : x ∈ ↑(support (σ * τ)) hxτ : ↑τ (↑τ x) ≠ ↑τ x ⊢ ↑{ val := ↑(σ * τ) x, property := (_ : ↑(Equiv.refl α) ↑{ val := ↑(σ * τ) x, property := (_ : ↑(σ * τ) x ∈ support (σ * τ)) } ∈ ↑(support σ) ∪ ↑(support τ)) } ∈ ↑(support τ)
null
null
Mathlib/GroupTheory/Perm/Cycle/Basic.lean
Equiv.Perm.Disjoint.isConj_mul
[1771, 1]
[1815, 74]
have h := (hd2 (g (τ x))).resolve_right ?_
case intro.intro.intro.refine'_2.inr ι : Type ?u.3042712 α✝ : Type ?u.3042715 β : Type ?u.3042718 inst✝² : DecidableEq α✝ inst✝¹ : Fintype α✝ σ✝ τ✝ : Perm α✝ α : Type u_1 inst✝ : Finite α σ τ : Perm α hd1 : Disjoint σ τ val✝ : Fintype α f : Perm α hc1 : IsConj σ (f * σ * f⁻¹) g : Perm α hc2 : IsConj τ (g * τ * g⁻¹) hd2 : Disjoint (f * σ * f⁻¹) (g * τ * g⁻¹) hd1' : ↑(support (σ * τ)) = ↑(support σ) ∪ ↑(support τ) hd2' : ↑(support (f * σ * f⁻¹ * (g * τ * g⁻¹))) = ↑(support (f * σ * f⁻¹)) ∪ ↑(support (g * τ * g⁻¹)) hd1'' : _root_.Disjoint ↑(support σ) ↑(support τ) hd2'' : _root_.Disjoint ↑(support (f * σ * f⁻¹)) ↑(support (g * τ * g⁻¹)) x : α hx : x ∈ ↑(support (σ * τ)) hxτ : ↑τ (↑τ x) ≠ ↑τ x ⊢ ↑g (↑σ (↑τ x)) = ↑f (↑σ (↑f⁻¹ (↑g (↑τ (↑g⁻¹ (↑g x))))))
case intro.intro.intro.refine'_2.inr.refine_2 ι : Type ?u.3042712 α✝ : Type ?u.3042715 β : Type ?u.3042718 inst✝² : DecidableEq α✝ inst✝¹ : Fintype α✝ σ✝ τ✝ : Perm α✝ α : Type u_1 inst✝ : Finite α σ τ : Perm α hd1 : Disjoint σ τ val✝ : Fintype α f : Perm α hc1 : IsConj σ (f * σ * f⁻¹) g : Perm α hc2 : IsConj τ (g * τ * g⁻¹) hd2 : Disjoint (f * σ * f⁻¹) (g * τ * g⁻¹) hd1' : ↑(support (σ * τ)) = ↑(support σ) ∪ ↑(support τ) hd2' : ↑(support (f * σ * f⁻¹ * (g * τ * g⁻¹))) = ↑(support (f * σ * f⁻¹)) ∪ ↑(support (g * τ * g⁻¹)) hd1'' : _root_.Disjoint ↑(support σ) ↑(support τ) hd2'' : _root_.Disjoint ↑(support (f * σ * f⁻¹)) ↑(support (g * τ * g⁻¹)) x : α hx : x ∈ ↑(support (σ * τ)) hxτ : ↑τ (↑τ x) ≠ ↑τ x h : ↑(f * σ * f⁻¹) (↑g (↑τ x)) = ↑g (↑τ x) ⊢ ↑g (↑σ (↑τ x)) = ↑f (↑σ (↑f⁻¹ (↑g (↑τ (↑g⁻¹ (↑g x)))))) case intro.intro.intro.refine'_2.inr.refine_1 ι : Type ?u.3042712 α✝ : Type ?u.3042715 β : Type ?u.3042718 inst✝² : DecidableEq α✝ inst✝¹ : Fintype α✝ σ✝ τ✝ : Perm α✝ α : Type u_1 inst✝ : Finite α σ τ : Perm α hd1 : Disjoint σ τ val✝ : Fintype α f : Perm α hc1 : IsConj σ (f * σ * f⁻¹) g : Perm α hc2 : IsConj τ (g * τ * g⁻¹) hd2 : Disjoint (f * σ * f⁻¹) (g * τ * g⁻¹) hd1' : ↑(support (σ * τ)) = ↑(support σ) ∪ ↑(support τ) hd2' : ↑(support (f * σ * f⁻¹ * (g * τ * g⁻¹))) = ↑(support (f * σ * f⁻¹)) ∪ ↑(support (g * τ * g⁻¹)) hd1'' : _root_.Disjoint ↑(support σ) ↑(support τ) hd2'' : _root_.Disjoint ↑(support (f * σ * f⁻¹)) ↑(support (g * τ * g⁻¹)) x : α hx : x ∈ ↑(support (σ * τ)) hxτ : ↑τ (↑τ x) ≠ ↑τ x ⊢ ¬↑(g * τ * g⁻¹) (↑g (↑τ x)) = ↑g (↑τ x)
null
null
Mathlib/GroupTheory/Perm/Cycle/Basic.lean
Equiv.Perm.Disjoint.isConj_mul
[1771, 1]
[1815, 74]
rw [mul_apply, mul_apply] at h
case intro.intro.intro.refine'_2.inr.refine_2 ι : Type ?u.3042712 α✝ : Type ?u.3042715 β : Type ?u.3042718 inst✝² : DecidableEq α✝ inst✝¹ : Fintype α✝ σ✝ τ✝ : Perm α✝ α : Type u_1 inst✝ : Finite α σ τ : Perm α hd1 : Disjoint σ τ val✝ : Fintype α f : Perm α hc1 : IsConj σ (f * σ * f⁻¹) g : Perm α hc2 : IsConj τ (g * τ * g⁻¹) hd2 : Disjoint (f * σ * f⁻¹) (g * τ * g⁻¹) hd1' : ↑(support (σ * τ)) = ↑(support σ) ∪ ↑(support τ) hd2' : ↑(support (f * σ * f⁻¹ * (g * τ * g⁻¹))) = ↑(support (f * σ * f⁻¹)) ∪ ↑(support (g * τ * g⁻¹)) hd1'' : _root_.Disjoint ↑(support σ) ↑(support τ) hd2'' : _root_.Disjoint ↑(support (f * σ * f⁻¹)) ↑(support (g * τ * g⁻¹)) x : α hx : x ∈ ↑(support (σ * τ)) hxτ : ↑τ (↑τ x) ≠ ↑τ x h : ↑(f * σ * f⁻¹) (↑g (↑τ x)) = ↑g (↑τ x) ⊢ ↑g (↑σ (↑τ x)) = ↑f (↑σ (↑f⁻¹ (↑g (↑τ (↑g⁻¹ (↑g x))))))
case intro.intro.intro.refine'_2.inr.refine_2 ι : Type ?u.3042712 α✝ : Type ?u.3042715 β : Type ?u.3042718 inst✝² : DecidableEq α✝ inst✝¹ : Fintype α✝ σ✝ τ✝ : Perm α✝ α : Type u_1 inst✝ : Finite α σ τ : Perm α hd1 : Disjoint σ τ val✝ : Fintype α f : Perm α hc1 : IsConj σ (f * σ * f⁻¹) g : Perm α hc2 : IsConj τ (g * τ * g⁻¹) hd2 : Disjoint (f * σ * f⁻¹) (g * τ * g⁻¹) hd1' : ↑(support (σ * τ)) = ↑(support σ) ∪ ↑(support τ) hd2' : ↑(support (f * σ * f⁻¹ * (g * τ * g⁻¹))) = ↑(support (f * σ * f⁻¹)) ∪ ↑(support (g * τ * g⁻¹)) hd1'' : _root_.Disjoint ↑(support σ) ↑(support τ) hd2'' : _root_.Disjoint ↑(support (f * σ * f⁻¹)) ↑(support (g * τ * g⁻¹)) x : α hx : x ∈ ↑(support (σ * τ)) hxτ : ↑τ (↑τ x) ≠ ↑τ x h : ↑f (↑σ (↑f⁻¹ (↑g (↑τ x)))) = ↑g (↑τ x) ⊢ ↑g (↑σ (↑τ x)) = ↑f (↑σ (↑f⁻¹ (↑g (↑τ (↑g⁻¹ (↑g x))))))
null
null
Mathlib/GroupTheory/Perm/Cycle/Basic.lean
Equiv.Perm.Disjoint.isConj_mul
[1771, 1]
[1815, 74]
rw [inv_apply_self, h, (hd1 (τ x)).resolve_right hxτ]
case intro.intro.intro.refine'_2.inr.refine_2 ι : Type ?u.3042712 α✝ : Type ?u.3042715 β : Type ?u.3042718 inst✝² : DecidableEq α✝ inst✝¹ : Fintype α✝ σ✝ τ✝ : Perm α✝ α : Type u_1 inst✝ : Finite α σ τ : Perm α hd1 : Disjoint σ τ val✝ : Fintype α f : Perm α hc1 : IsConj σ (f * σ * f⁻¹) g : Perm α hc2 : IsConj τ (g * τ * g⁻¹) hd2 : Disjoint (f * σ * f⁻¹) (g * τ * g⁻¹) hd1' : ↑(support (σ * τ)) = ↑(support σ) ∪ ↑(support τ) hd2' : ↑(support (f * σ * f⁻¹ * (g * τ * g⁻¹))) = ↑(support (f * σ * f⁻¹)) ∪ ↑(support (g * τ * g⁻¹)) hd1'' : _root_.Disjoint ↑(support σ) ↑(support τ) hd2'' : _root_.Disjoint ↑(support (f * σ * f⁻¹)) ↑(support (g * τ * g⁻¹)) x : α hx : x ∈ ↑(support (σ * τ)) hxτ : ↑τ (↑τ x) ≠ ↑τ x h : ↑f (↑σ (↑f⁻¹ (↑g (↑τ x)))) = ↑g (↑τ x) ⊢ ↑g (↑σ (↑τ x)) = ↑f (↑σ (↑f⁻¹ (↑g (↑τ (↑g⁻¹ (↑g x))))))
no goals
null
null
Mathlib/GroupTheory/Perm/Cycle/Basic.lean
Equiv.Perm.Disjoint.isConj_mul
[1771, 1]
[1815, 74]
rwa [mul_apply, mul_apply, inv_apply_self, apply_eq_iff_eq]
case intro.intro.intro.refine'_2.inr.refine_1 ι : Type ?u.3042712 α✝ : Type ?u.3042715 β : Type ?u.3042718 inst✝² : DecidableEq α✝ inst✝¹ : Fintype α✝ σ✝ τ✝ : Perm α✝ α : Type u_1 inst✝ : Finite α σ τ : Perm α hd1 : Disjoint σ τ val✝ : Fintype α f : Perm α hc1 : IsConj σ (f * σ * f⁻¹) g : Perm α hc2 : IsConj τ (g * τ * g⁻¹) hd2 : Disjoint (f * σ * f⁻¹) (g * τ * g⁻¹) hd1' : ↑(support (σ * τ)) = ↑(support σ) ∪ ↑(support τ) hd2' : ↑(support (f * σ * f⁻¹ * (g * τ * g⁻¹))) = ↑(support (f * σ * f⁻¹)) ∪ ↑(support (g * τ * g⁻¹)) hd1'' : _root_.Disjoint ↑(support σ) ↑(support τ) hd2'' : _root_.Disjoint ↑(support (f * σ * f⁻¹)) ↑(support (g * τ * g⁻¹)) x : α hx : x ∈ ↑(support (σ * τ)) hxτ : ↑τ (↑τ x) ≠ ↑τ x ⊢ ¬↑(g * τ * g⁻¹) (↑g (↑τ x)) = ↑g (↑τ x)
no goals
null
null
Mathlib/GroupTheory/Perm/Cycle/Basic.lean
Equiv.Perm.Disjoint.isConj_mul
[1771, 1]
[1815, 74]
rwa [Subtype.coe_mk, Perm.mul_apply, (hd1 (τ x)).resolve_right hxτ, mem_coe, mem_support]
ι : Type ?u.3042712 α✝ : Type ?u.3042715 β : Type ?u.3042718 inst✝² : DecidableEq α✝ inst✝¹ : Fintype α✝ σ✝ τ✝ : Perm α✝ α : Type u_1 inst✝ : Finite α σ τ : Perm α hd1 : Disjoint σ τ val✝ : Fintype α f : Perm α hc1 : IsConj σ (f * σ * f⁻¹) g : Perm α hc2 : IsConj τ (g * τ * g⁻¹) hd2 : Disjoint (f * σ * f⁻¹) (g * τ * g⁻¹) hd1' : ↑(support (σ * τ)) = ↑(support σ) ∪ ↑(support τ) hd2' : ↑(support (f * σ * f⁻¹ * (g * τ * g⁻¹))) = ↑(support (f * σ * f⁻¹)) ∪ ↑(support (g * τ * g⁻¹)) hd1'' : _root_.Disjoint ↑(support σ) ↑(support τ) hd2'' : _root_.Disjoint ↑(support (f * σ * f⁻¹)) ↑(support (g * τ * g⁻¹)) x : α hx : x ∈ ↑(support (σ * τ)) hxτ : ↑τ (↑τ x) ≠ ↑τ x ⊢ ↑{ val := ↑(σ * τ) x, property := (_ : ↑(Equiv.refl α) ↑{ val := ↑(σ * τ) x, property := (_ : ↑(σ * τ) x ∈ support (σ * τ)) } ∈ ↑(support σ) ∪ ↑(support τ)) } ∈ ↑(support τ)
no goals
null
null
Mathlib/GroupTheory/Perm/Cycle/Basic.lean
Equiv.Perm.Disjoint.isConj_mul
[1771, 1]
[1815, 74]
rwa [Subtype.coe_mk, mem_coe, ← apply_mem_support, mem_support]
ι : Type ?u.3042712 α✝ : Type ?u.3042715 β : Type ?u.3042718 inst✝² : DecidableEq α✝ inst✝¹ : Fintype α✝ σ✝ τ✝ : Perm α✝ α : Type u_1 inst✝ : Finite α σ τ : Perm α hd1 : Disjoint σ τ val✝ : Fintype α f : Perm α hc1 : IsConj σ (f * σ * f⁻¹) g : Perm α hc2 : IsConj τ (g * τ * g⁻¹) hd2 : Disjoint (f * σ * f⁻¹) (g * τ * g⁻¹) hd1' : ↑(support (σ * τ)) = ↑(support σ) ∪ ↑(support τ) hd2' : ↑(support (f * σ * f⁻¹ * (g * τ * g⁻¹))) = ↑(support (f * σ * f⁻¹)) ∪ ↑(support (g * τ * g⁻¹)) hd1'' : _root_.Disjoint ↑(support σ) ↑(support τ) hd2'' : _root_.Disjoint ↑(support (f * σ * f⁻¹)) ↑(support (g * τ * g⁻¹)) x : α hx : x ∈ ↑(support (σ * τ)) hxτ : ↑τ (↑τ x) ≠ ↑τ x ⊢ ↑{ val := x, property := (_ : ↑(Equiv.refl α) ↑{ val := x, property := hx } ∈ ↑(support σ) ∪ ↑(support τ)) } ∈ ↑(support τ)
no goals
null
null
Mathlib/MeasureTheory/Group/Pointwise.lean
MeasurableSet.const_smul₀
[42, 1]
[47, 85]
rcases eq_or_ne a 0 with (rfl | ha)
G₀ : Type u_1 α : Type u_2 inst✝⁶ : GroupWithZero G₀ inst✝⁵ : Zero α inst✝⁴ : MulActionWithZero G₀ α inst✝³ : MeasurableSpace G₀ inst✝² : MeasurableSpace α inst✝¹ : MeasurableSMul G₀ α inst✝ : MeasurableSingletonClass α s : Set α hs : MeasurableSet s a : G₀ ⊢ MeasurableSet (a • s)
case inl G₀ : Type u_1 α : Type u_2 inst✝⁶ : GroupWithZero G₀ inst✝⁵ : Zero α inst✝⁴ : MulActionWithZero G₀ α inst✝³ : MeasurableSpace G₀ inst✝² : MeasurableSpace α inst✝¹ : MeasurableSMul G₀ α inst✝ : MeasurableSingletonClass α s : Set α hs : MeasurableSet s ⊢ MeasurableSet (0 • s) case inr G₀ : Type u_1 α : Type u_2 inst✝⁶ : GroupWithZero G₀ inst✝⁵ : Zero α inst✝⁴ : MulActionWithZero G₀ α inst✝³ : MeasurableSpace G₀ inst✝² : MeasurableSpace α inst✝¹ : MeasurableSMul G₀ α inst✝ : MeasurableSingletonClass α s : Set α hs : MeasurableSet s a : G₀ ha : a ≠ 0 ⊢ MeasurableSet (a • s)
null
null
Mathlib/MeasureTheory/Group/Pointwise.lean
MeasurableSet.const_smul₀
[42, 1]
[47, 85]
exacts [(subsingleton_zero_smul_set s).measurableSet, hs.const_smul_of_ne_zero ha]
case inl G₀ : Type u_1 α : Type u_2 inst✝⁶ : GroupWithZero G₀ inst✝⁵ : Zero α inst✝⁴ : MulActionWithZero G₀ α inst✝³ : MeasurableSpace G₀ inst✝² : MeasurableSpace α inst✝¹ : MeasurableSMul G₀ α inst✝ : MeasurableSingletonClass α s : Set α hs : MeasurableSet s ⊢ MeasurableSet (0 • s) case inr G₀ : Type u_1 α : Type u_2 inst✝⁶ : GroupWithZero G₀ inst✝⁵ : Zero α inst✝⁴ : MulActionWithZero G₀ α inst✝³ : MeasurableSpace G₀ inst✝² : MeasurableSpace α inst✝¹ : MeasurableSMul G₀ α inst✝ : MeasurableSingletonClass α s : Set α hs : MeasurableSet s a : G₀ ha : a ≠ 0 ⊢ MeasurableSet (a • s)
no goals
null
null
Mathlib/Analysis/SpecialFunctions/Trigonometric/Inverse.lean
Real.range_arcsin
[46, 1]
[48, 13]
rw [arcsin, range_comp Subtype.val]
⊢ range arcsin = Icc (-(π / 2)) (π / 2)
⊢ Subtype.val '' range (IccExtend arcsin.proof_2 ↑(OrderIso.symm sinOrderIso)) = Icc (-(π / 2)) (π / 2)
null
null
Mathlib/Analysis/SpecialFunctions/Trigonometric/Inverse.lean
Real.range_arcsin
[46, 1]
[48, 13]
simp [Icc]
⊢ Subtype.val '' range (IccExtend arcsin.proof_2 ↑(OrderIso.symm sinOrderIso)) = Icc (-(π / 2)) (π / 2)
no goals
null
null
Mathlib/Order/Filter/AtTopBot.lean
Filter.tendsto_Iio_atBot
[1600, 1]
[1602, 44]
rw [atBot_Iio_eq, tendsto_comap_iff]
ι : Type ?u.334826 ι' : Type ?u.334829 α : Type u_1 β : Type u_2 γ : Type ?u.334838 inst✝ : SemilatticeInf α a : α f : β → ↑(Iio a) l : Filter β ⊢ Tendsto f l atBot ↔ Tendsto (fun x => ↑(f x)) l atBot
ι : Type ?u.334826 ι' : Type ?u.334829 α : Type u_1 β : Type u_2 γ : Type ?u.334838 inst✝ : SemilatticeInf α a : α f : β → ↑(Iio a) l : Filter β ⊢ Tendsto (Subtype.val ∘ f) l atBot ↔ Tendsto (fun x => ↑(f x)) l atBot