url
stringclasses
148 values
commit
stringclasses
148 values
file_path
stringlengths
7
101
full_name
stringlengths
1
100
start
stringlengths
6
10
end
stringlengths
6
11
tactic
stringlengths
1
11.2k
state_before
stringlengths
3
2.09M
state_after
stringlengths
6
2.09M
null
null
Mathlib/Data/Nat/Bitwise.lean
Nat.lt_of_testBit
[116, 1]
[138, 29]
rw [le_zero_iff] at hm
case z n m✝ i✝ : ℕ hn✝ : testBit n i✝ = false hm✝ : testBit m✝ i✝ = true hnm✝ : ∀ (j : ℕ), i✝ < j → testBit n j = testBit m✝ j m i : ℕ hn : testBit 0 i = false hnm : ∀ (j : ℕ), i < j → testBit 0 j = testBit m j hm : m ≤ 0 ⊢ testBit m i ≠ true
case z n m✝ i✝ : ℕ hn✝ : testBit n i✝ = false hm✝ : testBit m✝ i✝ = true hnm✝ : ∀ (j : ℕ), i✝ < j → testBit n j = testBit m✝ j m i : ℕ hn : testBit 0 i = false hnm : ∀ (j : ℕ), i < j → testBit 0 j = testBit m j hm : m = 0 ⊢ testBit m i ≠ true
null
null
Mathlib/Data/Nat/Bitwise.lean
Nat.lt_of_testBit
[116, 1]
[138, 29]
simp [hm]
case z n m✝ i✝ : ℕ hn✝ : testBit n i✝ = false hm✝ : testBit m✝ i✝ = true hnm✝ : ∀ (j : ℕ), i✝ < j → testBit n j = testBit m✝ j m i : ℕ hn : testBit 0 i = false hnm : ∀ (j : ℕ), i < j → testBit 0 j = testBit m j hm : m = 0 ⊢ testBit m i ≠ true
no goals
null
null
Mathlib/Data/Nat/Bitwise.lean
Nat.lt_of_testBit
[116, 1]
[138, 29]
exact False.elim (Bool.ff_ne_tt ((zero_testBit i).symm.trans hm))
case f.z n✝ m✝ i✝¹ : ℕ hn✝¹ : testBit n✝ i✝¹ = false hm✝¹ : testBit m✝ i✝¹ = true hnm✝¹ : ∀ (j : ℕ), i✝¹ < j → testBit n✝ j = testBit m✝ j b : Bool n : ℕ hn' : ∀ {m : ℕ} (i : ℕ), testBit n i = false → testBit m i = true → (∀ (j : ℕ), i < j → testBit n j = testBit m j) → n < m m i✝ : ℕ hn✝ : testBit (bit b n) i✝ = false hm✝ : testBit m i✝ = true hnm✝ : ∀ (j : ℕ), i✝ < j → testBit (bit b n) j = testBit m j i : ℕ hn : testBit (bit b n) i = false hm : testBit 0 i = true hnm : ∀ (j : ℕ), i < j → testBit (bit b n) j = testBit 0 j ⊢ bit b n < 0
no goals
null
null
Mathlib/Data/Nat/Bitwise.lean
Nat.lt_of_testBit
[116, 1]
[138, 29]
subst hi
case pos n✝ m✝¹ i✝¹ : ℕ hn✝¹ : testBit n✝ i✝¹ = false hm✝¹ : testBit m✝¹ i✝¹ = true hnm✝¹ : ∀ (j : ℕ), i✝¹ < j → testBit n✝ j = testBit m✝¹ j b : Bool n : ℕ hn' : ∀ {m : ℕ} (i : ℕ), testBit n i = false → testBit m i = true → (∀ (j : ℕ), i < j → testBit n j = testBit m j) → n < m m✝ i✝ : ℕ hn✝ : testBit (bit b n) i✝ = false hm✝ : testBit m✝ i✝ = true hnm✝ : ∀ (j : ℕ), i✝ < j → testBit (bit b n) j = testBit m✝ j b' : Bool m : ℕ hm' : ∀ (i : ℕ), testBit (bit b n) i = false → testBit m i = true → (∀ (j : ℕ), i < j → testBit (bit b n) j = testBit m j) → bit b n < m i : ℕ hn : testBit (bit b n) i = false hm : testBit (bit b' m) i = true hnm : ∀ (j : ℕ), i < j → testBit (bit b n) j = testBit (bit b' m) j hi : i = 0 ⊢ bit b n < bit b' m
case pos n✝ m✝¹ i✝ : ℕ hn✝¹ : testBit n✝ i✝ = false hm✝¹ : testBit m✝¹ i✝ = true hnm✝¹ : ∀ (j : ℕ), i✝ < j → testBit n✝ j = testBit m✝¹ j b : Bool n : ℕ hn' : ∀ {m : ℕ} (i : ℕ), testBit n i = false → testBit m i = true → (∀ (j : ℕ), i < j → testBit n j = testBit m j) → n < m m✝ i : ℕ hn✝ : testBit (bit b n) i = false hm✝ : testBit m✝ i = true hnm✝ : ∀ (j : ℕ), i < j → testBit (bit b n) j = testBit m✝ j b' : Bool m : ℕ hm' : ∀ (i : ℕ), testBit (bit b n) i = false → testBit m i = true → (∀ (j : ℕ), i < j → testBit (bit b n) j = testBit m j) → bit b n < m hn : testBit (bit b n) 0 = false hm : testBit (bit b' m) 0 = true hnm : ∀ (j : ℕ), 0 < j → testBit (bit b n) j = testBit (bit b' m) j ⊢ bit b n < bit b' m
null
null
Mathlib/Data/Nat/Bitwise.lean
Nat.lt_of_testBit
[116, 1]
[138, 29]
simp only [testBit_zero] at hn hm
case pos n✝ m✝¹ i✝ : ℕ hn✝¹ : testBit n✝ i✝ = false hm✝¹ : testBit m✝¹ i✝ = true hnm✝¹ : ∀ (j : ℕ), i✝ < j → testBit n✝ j = testBit m✝¹ j b : Bool n : ℕ hn' : ∀ {m : ℕ} (i : ℕ), testBit n i = false → testBit m i = true → (∀ (j : ℕ), i < j → testBit n j = testBit m j) → n < m m✝ i : ℕ hn✝ : testBit (bit b n) i = false hm✝ : testBit m✝ i = true hnm✝ : ∀ (j : ℕ), i < j → testBit (bit b n) j = testBit m✝ j b' : Bool m : ℕ hm' : ∀ (i : ℕ), testBit (bit b n) i = false → testBit m i = true → (∀ (j : ℕ), i < j → testBit (bit b n) j = testBit m j) → bit b n < m hn : testBit (bit b n) 0 = false hm : testBit (bit b' m) 0 = true hnm : ∀ (j : ℕ), 0 < j → testBit (bit b n) j = testBit (bit b' m) j ⊢ bit b n < bit b' m
case pos n✝ m✝¹ i✝ : ℕ hn✝¹ : testBit n✝ i✝ = false hm✝¹ : testBit m✝¹ i✝ = true hnm✝¹ : ∀ (j : ℕ), i✝ < j → testBit n✝ j = testBit m✝¹ j b : Bool n : ℕ hn' : ∀ {m : ℕ} (i : ℕ), testBit n i = false → testBit m i = true → (∀ (j : ℕ), i < j → testBit n j = testBit m j) → n < m m✝ i : ℕ hn✝ : testBit (bit b n) i = false hm✝ : testBit m✝ i = true hnm✝ : ∀ (j : ℕ), i < j → testBit (bit b n) j = testBit m✝ j b' : Bool m : ℕ hm' : ∀ (i : ℕ), testBit (bit b n) i = false → testBit m i = true → (∀ (j : ℕ), i < j → testBit (bit b n) j = testBit m j) → bit b n < m hnm : ∀ (j : ℕ), 0 < j → testBit (bit b n) j = testBit (bit b' m) j hn : b = false hm : b' = true ⊢ bit b n < bit b' m
null
null
Mathlib/Data/Nat/Bitwise.lean
Nat.lt_of_testBit
[116, 1]
[138, 29]
have : n = m := eq_of_testBit_eq fun i => by convert hnm (i + 1) (Nat.zero_lt_succ _) using 1 <;> rw [testBit_succ]
case pos n✝ m✝¹ i✝ : ℕ hn✝¹ : testBit n✝ i✝ = false hm✝¹ : testBit m✝¹ i✝ = true hnm✝¹ : ∀ (j : ℕ), i✝ < j → testBit n✝ j = testBit m✝¹ j b : Bool n : ℕ hn' : ∀ {m : ℕ} (i : ℕ), testBit n i = false → testBit m i = true → (∀ (j : ℕ), i < j → testBit n j = testBit m j) → n < m m✝ i : ℕ hn✝ : testBit (bit b n) i = false hm✝ : testBit m✝ i = true hnm✝ : ∀ (j : ℕ), i < j → testBit (bit b n) j = testBit m✝ j b' : Bool m : ℕ hm' : ∀ (i : ℕ), testBit (bit b n) i = false → testBit m i = true → (∀ (j : ℕ), i < j → testBit (bit b n) j = testBit m j) → bit b n < m hnm : ∀ (j : ℕ), 0 < j → testBit (bit b n) j = testBit (bit b' m) j hn : b = false hm : b' = true ⊢ bit b n < bit b' m
case pos n✝ m✝¹ i✝ : ℕ hn✝¹ : testBit n✝ i✝ = false hm✝¹ : testBit m✝¹ i✝ = true hnm✝¹ : ∀ (j : ℕ), i✝ < j → testBit n✝ j = testBit m✝¹ j b : Bool n : ℕ hn' : ∀ {m : ℕ} (i : ℕ), testBit n i = false → testBit m i = true → (∀ (j : ℕ), i < j → testBit n j = testBit m j) → n < m m✝ i : ℕ hn✝ : testBit (bit b n) i = false hm✝ : testBit m✝ i = true hnm✝ : ∀ (j : ℕ), i < j → testBit (bit b n) j = testBit m✝ j b' : Bool m : ℕ hm' : ∀ (i : ℕ), testBit (bit b n) i = false → testBit m i = true → (∀ (j : ℕ), i < j → testBit (bit b n) j = testBit m j) → bit b n < m hnm : ∀ (j : ℕ), 0 < j → testBit (bit b n) j = testBit (bit b' m) j hn : b = false hm : b' = true this : n = m ⊢ bit b n < bit b' m
null
null
Mathlib/Data/Nat/Bitwise.lean
Nat.lt_of_testBit
[116, 1]
[138, 29]
rw [hn, hm, this, bit_false, bit_true, bit0_val, bit1_val]
case pos n✝ m✝¹ i✝ : ℕ hn✝¹ : testBit n✝ i✝ = false hm✝¹ : testBit m✝¹ i✝ = true hnm✝¹ : ∀ (j : ℕ), i✝ < j → testBit n✝ j = testBit m✝¹ j b : Bool n : ℕ hn' : ∀ {m : ℕ} (i : ℕ), testBit n i = false → testBit m i = true → (∀ (j : ℕ), i < j → testBit n j = testBit m j) → n < m m✝ i : ℕ hn✝ : testBit (bit b n) i = false hm✝ : testBit m✝ i = true hnm✝ : ∀ (j : ℕ), i < j → testBit (bit b n) j = testBit m✝ j b' : Bool m : ℕ hm' : ∀ (i : ℕ), testBit (bit b n) i = false → testBit m i = true → (∀ (j : ℕ), i < j → testBit (bit b n) j = testBit m j) → bit b n < m hnm : ∀ (j : ℕ), 0 < j → testBit (bit b n) j = testBit (bit b' m) j hn : b = false hm : b' = true this : n = m ⊢ bit b n < bit b' m
case pos n✝ m✝¹ i✝ : ℕ hn✝¹ : testBit n✝ i✝ = false hm✝¹ : testBit m✝¹ i✝ = true hnm✝¹ : ∀ (j : ℕ), i✝ < j → testBit n✝ j = testBit m✝¹ j b : Bool n : ℕ hn' : ∀ {m : ℕ} (i : ℕ), testBit n i = false → testBit m i = true → (∀ (j : ℕ), i < j → testBit n j = testBit m j) → n < m m✝ i : ℕ hn✝ : testBit (bit b n) i = false hm✝ : testBit m✝ i = true hnm✝ : ∀ (j : ℕ), i < j → testBit (bit b n) j = testBit m✝ j b' : Bool m : ℕ hm' : ∀ (i : ℕ), testBit (bit b n) i = false → testBit m i = true → (∀ (j : ℕ), i < j → testBit (bit b n) j = testBit m j) → bit b n < m hnm : ∀ (j : ℕ), 0 < j → testBit (bit b n) j = testBit (bit b' m) j hn : b = false hm : b' = true this : n = m ⊢ 2 * m < 2 * m + 1
null
null
Mathlib/Data/Nat/Bitwise.lean
Nat.lt_of_testBit
[116, 1]
[138, 29]
exact lt_add_one _
case pos n✝ m✝¹ i✝ : ℕ hn✝¹ : testBit n✝ i✝ = false hm✝¹ : testBit m✝¹ i✝ = true hnm✝¹ : ∀ (j : ℕ), i✝ < j → testBit n✝ j = testBit m✝¹ j b : Bool n : ℕ hn' : ∀ {m : ℕ} (i : ℕ), testBit n i = false → testBit m i = true → (∀ (j : ℕ), i < j → testBit n j = testBit m j) → n < m m✝ i : ℕ hn✝ : testBit (bit b n) i = false hm✝ : testBit m✝ i = true hnm✝ : ∀ (j : ℕ), i < j → testBit (bit b n) j = testBit m✝ j b' : Bool m : ℕ hm' : ∀ (i : ℕ), testBit (bit b n) i = false → testBit m i = true → (∀ (j : ℕ), i < j → testBit (bit b n) j = testBit m j) → bit b n < m hnm : ∀ (j : ℕ), 0 < j → testBit (bit b n) j = testBit (bit b' m) j hn : b = false hm : b' = true this : n = m ⊢ 2 * m < 2 * m + 1
no goals
null
null
Mathlib/Data/Nat/Bitwise.lean
Nat.lt_of_testBit
[116, 1]
[138, 29]
convert hnm (i + 1) (Nat.zero_lt_succ _) using 1 <;> rw [testBit_succ]
n✝ m✝¹ i✝¹ : ℕ hn✝¹ : testBit n✝ i✝¹ = false hm✝¹ : testBit m✝¹ i✝¹ = true hnm✝¹ : ∀ (j : ℕ), i✝¹ < j → testBit n✝ j = testBit m✝¹ j b : Bool n : ℕ hn' : ∀ {m : ℕ} (i : ℕ), testBit n i = false → testBit m i = true → (∀ (j : ℕ), i < j → testBit n j = testBit m j) → n < m m✝ i✝ : ℕ hn✝ : testBit (bit b n) i✝ = false hm✝ : testBit m✝ i✝ = true hnm✝ : ∀ (j : ℕ), i✝ < j → testBit (bit b n) j = testBit m✝ j b' : Bool m : ℕ hm' : ∀ (i : ℕ), testBit (bit b n) i = false → testBit m i = true → (∀ (j : ℕ), i < j → testBit (bit b n) j = testBit m j) → bit b n < m hnm : ∀ (j : ℕ), 0 < j → testBit (bit b n) j = testBit (bit b' m) j hn : b = false hm : b' = true i : ℕ ⊢ testBit n i = testBit m i
no goals
null
null
Mathlib/Data/Nat/Bitwise.lean
Nat.lt_of_testBit
[116, 1]
[138, 29]
obtain ⟨i', rfl⟩ := exists_eq_succ_of_ne_zero hi
case neg n✝ m✝¹ i✝¹ : ℕ hn✝¹ : testBit n✝ i✝¹ = false hm✝¹ : testBit m✝¹ i✝¹ = true hnm✝¹ : ∀ (j : ℕ), i✝¹ < j → testBit n✝ j = testBit m✝¹ j b : Bool n : ℕ hn' : ∀ {m : ℕ} (i : ℕ), testBit n i = false → testBit m i = true → (∀ (j : ℕ), i < j → testBit n j = testBit m j) → n < m m✝ i✝ : ℕ hn✝ : testBit (bit b n) i✝ = false hm✝ : testBit m✝ i✝ = true hnm✝ : ∀ (j : ℕ), i✝ < j → testBit (bit b n) j = testBit m✝ j b' : Bool m : ℕ hm' : ∀ (i : ℕ), testBit (bit b n) i = false → testBit m i = true → (∀ (j : ℕ), i < j → testBit (bit b n) j = testBit m j) → bit b n < m i : ℕ hn : testBit (bit b n) i = false hm : testBit (bit b' m) i = true hnm : ∀ (j : ℕ), i < j → testBit (bit b n) j = testBit (bit b' m) j hi : ¬i = 0 ⊢ bit b n < bit b' m
case neg.intro n✝ m✝¹ i✝ : ℕ hn✝¹ : testBit n✝ i✝ = false hm✝¹ : testBit m✝¹ i✝ = true hnm✝¹ : ∀ (j : ℕ), i✝ < j → testBit n✝ j = testBit m✝¹ j b : Bool n : ℕ hn' : ∀ {m : ℕ} (i : ℕ), testBit n i = false → testBit m i = true → (∀ (j : ℕ), i < j → testBit n j = testBit m j) → n < m m✝ i : ℕ hn✝ : testBit (bit b n) i = false hm✝ : testBit m✝ i = true hnm✝ : ∀ (j : ℕ), i < j → testBit (bit b n) j = testBit m✝ j b' : Bool m : ℕ hm' : ∀ (i : ℕ), testBit (bit b n) i = false → testBit m i = true → (∀ (j : ℕ), i < j → testBit (bit b n) j = testBit m j) → bit b n < m i' : ℕ hn : testBit (bit b n) (succ i') = false hm : testBit (bit b' m) (succ i') = true hnm : ∀ (j : ℕ), succ i' < j → testBit (bit b n) j = testBit (bit b' m) j hi : ¬succ i' = 0 ⊢ bit b n < bit b' m
null
null
Mathlib/Data/Nat/Bitwise.lean
Nat.lt_of_testBit
[116, 1]
[138, 29]
simp only [testBit_succ] at hn hm
case neg.intro n✝ m✝¹ i✝ : ℕ hn✝¹ : testBit n✝ i✝ = false hm✝¹ : testBit m✝¹ i✝ = true hnm✝¹ : ∀ (j : ℕ), i✝ < j → testBit n✝ j = testBit m✝¹ j b : Bool n : ℕ hn' : ∀ {m : ℕ} (i : ℕ), testBit n i = false → testBit m i = true → (∀ (j : ℕ), i < j → testBit n j = testBit m j) → n < m m✝ i : ℕ hn✝ : testBit (bit b n) i = false hm✝ : testBit m✝ i = true hnm✝ : ∀ (j : ℕ), i < j → testBit (bit b n) j = testBit m✝ j b' : Bool m : ℕ hm' : ∀ (i : ℕ), testBit (bit b n) i = false → testBit m i = true → (∀ (j : ℕ), i < j → testBit (bit b n) j = testBit m j) → bit b n < m i' : ℕ hn : testBit (bit b n) (succ i') = false hm : testBit (bit b' m) (succ i') = true hnm : ∀ (j : ℕ), succ i' < j → testBit (bit b n) j = testBit (bit b' m) j hi : ¬succ i' = 0 ⊢ bit b n < bit b' m
case neg.intro n✝ m✝¹ i✝ : ℕ hn✝¹ : testBit n✝ i✝ = false hm✝¹ : testBit m✝¹ i✝ = true hnm✝¹ : ∀ (j : ℕ), i✝ < j → testBit n✝ j = testBit m✝¹ j b : Bool n : ℕ hn' : ∀ {m : ℕ} (i : ℕ), testBit n i = false → testBit m i = true → (∀ (j : ℕ), i < j → testBit n j = testBit m j) → n < m m✝ i : ℕ hn✝ : testBit (bit b n) i = false hm✝ : testBit m✝ i = true hnm✝ : ∀ (j : ℕ), i < j → testBit (bit b n) j = testBit m✝ j b' : Bool m : ℕ hm' : ∀ (i : ℕ), testBit (bit b n) i = false → testBit m i = true → (∀ (j : ℕ), i < j → testBit (bit b n) j = testBit m j) → bit b n < m i' : ℕ hnm : ∀ (j : ℕ), succ i' < j → testBit (bit b n) j = testBit (bit b' m) j hi : ¬succ i' = 0 hn : testBit n i' = false hm : testBit m i' = true ⊢ bit b n < bit b' m
null
null
Mathlib/Data/Nat/Bitwise.lean
Nat.lt_of_testBit
[116, 1]
[138, 29]
have := hn' _ hn hm fun j hj => by convert hnm j.succ (succ_lt_succ hj) using 1 <;> rw [testBit_succ]
case neg.intro n✝ m✝¹ i✝ : ℕ hn✝¹ : testBit n✝ i✝ = false hm✝¹ : testBit m✝¹ i✝ = true hnm✝¹ : ∀ (j : ℕ), i✝ < j → testBit n✝ j = testBit m✝¹ j b : Bool n : ℕ hn' : ∀ {m : ℕ} (i : ℕ), testBit n i = false → testBit m i = true → (∀ (j : ℕ), i < j → testBit n j = testBit m j) → n < m m✝ i : ℕ hn✝ : testBit (bit b n) i = false hm✝ : testBit m✝ i = true hnm✝ : ∀ (j : ℕ), i < j → testBit (bit b n) j = testBit m✝ j b' : Bool m : ℕ hm' : ∀ (i : ℕ), testBit (bit b n) i = false → testBit m i = true → (∀ (j : ℕ), i < j → testBit (bit b n) j = testBit m j) → bit b n < m i' : ℕ hnm : ∀ (j : ℕ), succ i' < j → testBit (bit b n) j = testBit (bit b' m) j hi : ¬succ i' = 0 hn : testBit n i' = false hm : testBit m i' = true ⊢ bit b n < bit b' m
case neg.intro n✝ m✝¹ i✝ : ℕ hn✝¹ : testBit n✝ i✝ = false hm✝¹ : testBit m✝¹ i✝ = true hnm✝¹ : ∀ (j : ℕ), i✝ < j → testBit n✝ j = testBit m✝¹ j b : Bool n : ℕ hn' : ∀ {m : ℕ} (i : ℕ), testBit n i = false → testBit m i = true → (∀ (j : ℕ), i < j → testBit n j = testBit m j) → n < m m✝ i : ℕ hn✝ : testBit (bit b n) i = false hm✝ : testBit m✝ i = true hnm✝ : ∀ (j : ℕ), i < j → testBit (bit b n) j = testBit m✝ j b' : Bool m : ℕ hm' : ∀ (i : ℕ), testBit (bit b n) i = false → testBit m i = true → (∀ (j : ℕ), i < j → testBit (bit b n) j = testBit m j) → bit b n < m i' : ℕ hnm : ∀ (j : ℕ), succ i' < j → testBit (bit b n) j = testBit (bit b' m) j hi : ¬succ i' = 0 hn : testBit n i' = false hm : testBit m i' = true this : n < m ⊢ bit b n < bit b' m
null
null
Mathlib/Data/Nat/Bitwise.lean
Nat.lt_of_testBit
[116, 1]
[138, 29]
cases b <;> cases b' <;> simp only [bit_false, bit_true, bit0_val n, bit1_val n, bit0_val m, bit1_val m] <;> linarith only [this]
case neg.intro n✝ m✝¹ i✝ : ℕ hn✝¹ : testBit n✝ i✝ = false hm✝¹ : testBit m✝¹ i✝ = true hnm✝¹ : ∀ (j : ℕ), i✝ < j → testBit n✝ j = testBit m✝¹ j b : Bool n : ℕ hn' : ∀ {m : ℕ} (i : ℕ), testBit n i = false → testBit m i = true → (∀ (j : ℕ), i < j → testBit n j = testBit m j) → n < m m✝ i : ℕ hn✝ : testBit (bit b n) i = false hm✝ : testBit m✝ i = true hnm✝ : ∀ (j : ℕ), i < j → testBit (bit b n) j = testBit m✝ j b' : Bool m : ℕ hm' : ∀ (i : ℕ), testBit (bit b n) i = false → testBit m i = true → (∀ (j : ℕ), i < j → testBit (bit b n) j = testBit m j) → bit b n < m i' : ℕ hnm : ∀ (j : ℕ), succ i' < j → testBit (bit b n) j = testBit (bit b' m) j hi : ¬succ i' = 0 hn : testBit n i' = false hm : testBit m i' = true this : n < m ⊢ bit b n < bit b' m
no goals
null
null
Mathlib/Data/Nat/Bitwise.lean
Nat.lt_of_testBit
[116, 1]
[138, 29]
convert hnm j.succ (succ_lt_succ hj) using 1 <;> rw [testBit_succ]
n✝ m✝¹ i✝ : ℕ hn✝¹ : testBit n✝ i✝ = false hm✝¹ : testBit m✝¹ i✝ = true hnm✝¹ : ∀ (j : ℕ), i✝ < j → testBit n✝ j = testBit m✝¹ j b : Bool n : ℕ hn' : ∀ {m : ℕ} (i : ℕ), testBit n i = false → testBit m i = true → (∀ (j : ℕ), i < j → testBit n j = testBit m j) → n < m m✝ i : ℕ hn✝ : testBit (bit b n) i = false hm✝ : testBit m✝ i = true hnm✝ : ∀ (j : ℕ), i < j → testBit (bit b n) j = testBit m✝ j b' : Bool m : ℕ hm' : ∀ (i : ℕ), testBit (bit b n) i = false → testBit m i = true → (∀ (j : ℕ), i < j → testBit (bit b n) j = testBit m j) → bit b n < m i' : ℕ hnm : ∀ (j : ℕ), succ i' < j → testBit (bit b n) j = testBit (bit b' m) j hi : ¬succ i' = 0 hn : testBit n i' = false hm : testBit m i' = true j : ℕ hj : i' < j ⊢ testBit n j = testBit m j
no goals
null
null
Mathlib/GroupTheory/Subsemigroup/Basic.lean
Subsemigroup.mem_iSup
[451, 1]
[454, 43]
rw [← closure_singleton_le_iff_mem, le_iSup_iff]
M : Type u_2 N : Type ?u.21456 A : Type ?u.21459 inst✝¹ : Mul M s : Set M inst✝ : Add A t : Set A S : Subsemigroup M ι : Sort u_1 p : ι → Subsemigroup M m : M ⊢ (m ∈ ⨆ (i : ι), p i) ↔ ∀ (N : Subsemigroup M), (∀ (i : ι), p i ≤ N) → m ∈ N
M : Type u_2 N : Type ?u.21456 A : Type ?u.21459 inst✝¹ : Mul M s : Set M inst✝ : Add A t : Set A S : Subsemigroup M ι : Sort u_1 p : ι → Subsemigroup M m : M ⊢ (∀ (b : Subsemigroup M), (∀ (i : ι), p i ≤ b) → closure {m} ≤ b) ↔ ∀ (N : Subsemigroup M), (∀ (i : ι), p i ≤ N) → m ∈ N
null
null
Mathlib/GroupTheory/Subsemigroup/Basic.lean
Subsemigroup.mem_iSup
[451, 1]
[454, 43]
simp only [closure_singleton_le_iff_mem]
M : Type u_2 N : Type ?u.21456 A : Type ?u.21459 inst✝¹ : Mul M s : Set M inst✝ : Add A t : Set A S : Subsemigroup M ι : Sort u_1 p : ι → Subsemigroup M m : M ⊢ (∀ (b : Subsemigroup M), (∀ (i : ι), p i ≤ b) → closure {m} ≤ b) ↔ ∀ (N : Subsemigroup M), (∀ (i : ι), p i ≤ N) → m ∈ N
no goals
null
null
Mathlib/CategoryTheory/Limits/Shapes/Biproducts.lean
CategoryTheory.Limits.biprod.isoProd_inv
[1446, 1]
[1448, 50]
apply biprod.hom_ext <;> simp [Iso.inv_comp_eq]
J : Type w C : Type u inst✝² : Category C inst✝¹ : HasZeroMorphisms C P Q X Y : C inst✝ : HasBinaryBiproduct X Y ⊢ (isoProd X Y).inv = lift prod.fst prod.snd
no goals
null
null
Mathlib/Data/Set/Prod.lean
Set.image_prod_mk_subset_prod
[332, 1]
[335, 68]
rintro _ ⟨x, hx, rfl⟩
α : Type u_1 β : Type u_3 γ : Type u_2 δ : Type ?u.83491 s✝ s₁ s₂ : Set α t t₁ t₂ : Set β a : α b : β f : α → β g : α → γ s : Set α ⊢ (fun x => (f x, g x)) '' s ⊆ (f '' s) ×ˢ (g '' s)
case intro.intro α : Type u_1 β : Type u_3 γ : Type u_2 δ : Type ?u.83491 s✝ s₁ s₂ : Set α t t₁ t₂ : Set β a : α b : β f : α → β g : α → γ s : Set α x : α hx : x ∈ s ⊢ (fun x => (f x, g x)) x ∈ (f '' s) ×ˢ (g '' s)
null
null
Mathlib/Data/Set/Prod.lean
Set.image_prod_mk_subset_prod
[332, 1]
[335, 68]
exact mk_mem_prod (mem_image_of_mem f hx) (mem_image_of_mem g hx)
case intro.intro α : Type u_1 β : Type u_3 γ : Type u_2 δ : Type ?u.83491 s✝ s₁ s₂ : Set α t t₁ t₂ : Set β a : α b : β f : α → β g : α → γ s : Set α x : α hx : x ∈ s ⊢ (fun x => (f x, g x)) x ∈ (f '' s) ×ˢ (g '' s)
no goals
null
null
Mathlib/Algebra/BigOperators/Multiset/Basic.lean
Multiset.prod_nonneg
[432, 1]
[441, 91]
revert h
ι : Type ?u.134844 α : Type u_1 β : Type ?u.134850 γ : Type ?u.134853 inst✝ : OrderedCommSemiring α m : Multiset α h : ∀ (a : α), a ∈ m → 0 ≤ a ⊢ 0 ≤ prod m
ι : Type ?u.134844 α : Type u_1 β : Type ?u.134850 γ : Type ?u.134853 inst✝ : OrderedCommSemiring α m : Multiset α ⊢ (∀ (a : α), a ∈ m → 0 ≤ a) → 0 ≤ prod m
null
null
Mathlib/Algebra/BigOperators/Multiset/Basic.lean
Multiset.prod_nonneg
[432, 1]
[441, 91]
refine' m.induction_on _ _
ι : Type ?u.134844 α : Type u_1 β : Type ?u.134850 γ : Type ?u.134853 inst✝ : OrderedCommSemiring α m : Multiset α ⊢ (∀ (a : α), a ∈ m → 0 ≤ a) → 0 ≤ prod m
case refine'_1 ι : Type ?u.134844 α : Type u_1 β : Type ?u.134850 γ : Type ?u.134853 inst✝ : OrderedCommSemiring α m : Multiset α ⊢ (∀ (a : α), a ∈ 0 → 0 ≤ a) → 0 ≤ prod 0 case refine'_2 ι : Type ?u.134844 α : Type u_1 β : Type ?u.134850 γ : Type ?u.134853 inst✝ : OrderedCommSemiring α m : Multiset α ⊢ ∀ ⦃a : α⦄ {s : Multiset α}, ((∀ (a : α), a ∈ s → 0 ≤ a) → 0 ≤ prod s) → (∀ (a_2 : α), a_2 ∈ a ::ₘ s → 0 ≤ a_2) → 0 ≤ prod (a ::ₘ s)
null
null
Mathlib/Algebra/BigOperators/Multiset/Basic.lean
Multiset.prod_nonneg
[432, 1]
[441, 91]
intro a s hs ih
case refine'_2 ι : Type ?u.134844 α : Type u_1 β : Type ?u.134850 γ : Type ?u.134853 inst✝ : OrderedCommSemiring α m : Multiset α ⊢ ∀ ⦃a : α⦄ {s : Multiset α}, ((∀ (a : α), a ∈ s → 0 ≤ a) → 0 ≤ prod s) → (∀ (a_2 : α), a_2 ∈ a ::ₘ s → 0 ≤ a_2) → 0 ≤ prod (a ::ₘ s)
case refine'_2 ι : Type ?u.134844 α : Type u_1 β : Type ?u.134850 γ : Type ?u.134853 inst✝ : OrderedCommSemiring α m : Multiset α a : α s : Multiset α hs : (∀ (a : α), a ∈ s → 0 ≤ a) → 0 ≤ prod s ih : ∀ (a_1 : α), a_1 ∈ a ::ₘ s → 0 ≤ a_1 ⊢ 0 ≤ prod (a ::ₘ s)
null
null
Mathlib/Algebra/BigOperators/Multiset/Basic.lean
Multiset.prod_nonneg
[432, 1]
[441, 91]
rw [prod_cons]
case refine'_2 ι : Type ?u.134844 α : Type u_1 β : Type ?u.134850 γ : Type ?u.134853 inst✝ : OrderedCommSemiring α m : Multiset α a : α s : Multiset α hs : (∀ (a : α), a ∈ s → 0 ≤ a) → 0 ≤ prod s ih : ∀ (a_1 : α), a_1 ∈ a ::ₘ s → 0 ≤ a_1 ⊢ 0 ≤ prod (a ::ₘ s)
case refine'_2 ι : Type ?u.134844 α : Type u_1 β : Type ?u.134850 γ : Type ?u.134853 inst✝ : OrderedCommSemiring α m : Multiset α a : α s : Multiset α hs : (∀ (a : α), a ∈ s → 0 ≤ a) → 0 ≤ prod s ih : ∀ (a_1 : α), a_1 ∈ a ::ₘ s → 0 ≤ a_1 ⊢ 0 ≤ a * prod s
null
null
Mathlib/Algebra/BigOperators/Multiset/Basic.lean
Multiset.prod_nonneg
[432, 1]
[441, 91]
exact mul_nonneg (ih _ <| mem_cons_self _ _) (hs fun a ha => ih _ <| mem_cons_of_mem ha)
case refine'_2 ι : Type ?u.134844 α : Type u_1 β : Type ?u.134850 γ : Type ?u.134853 inst✝ : OrderedCommSemiring α m : Multiset α a : α s : Multiset α hs : (∀ (a : α), a ∈ s → 0 ≤ a) → 0 ≤ prod s ih : ∀ (a_1 : α), a_1 ∈ a ::ₘ s → 0 ≤ a_1 ⊢ 0 ≤ a * prod s
no goals
null
null
Mathlib/Algebra/BigOperators/Multiset/Basic.lean
Multiset.prod_nonneg
[432, 1]
[441, 91]
rintro -
case refine'_1 ι : Type ?u.134844 α : Type u_1 β : Type ?u.134850 γ : Type ?u.134853 inst✝ : OrderedCommSemiring α m : Multiset α ⊢ (∀ (a : α), a ∈ 0 → 0 ≤ a) → 0 ≤ prod 0
case refine'_1 ι : Type ?u.134844 α : Type u_1 β : Type ?u.134850 γ : Type ?u.134853 inst✝ : OrderedCommSemiring α m : Multiset α ⊢ 0 ≤ prod 0
null
null
Mathlib/Algebra/BigOperators/Multiset/Basic.lean
Multiset.prod_nonneg
[432, 1]
[441, 91]
rw [prod_zero]
case refine'_1 ι : Type ?u.134844 α : Type u_1 β : Type ?u.134850 γ : Type ?u.134853 inst✝ : OrderedCommSemiring α m : Multiset α ⊢ 0 ≤ prod 0
case refine'_1 ι : Type ?u.134844 α : Type u_1 β : Type ?u.134850 γ : Type ?u.134853 inst✝ : OrderedCommSemiring α m : Multiset α ⊢ 0 ≤ 1
null
null
Mathlib/Algebra/BigOperators/Multiset/Basic.lean
Multiset.prod_nonneg
[432, 1]
[441, 91]
exact zero_le_one
case refine'_1 ι : Type ?u.134844 α : Type u_1 β : Type ?u.134850 γ : Type ?u.134853 inst✝ : OrderedCommSemiring α m : Multiset α ⊢ 0 ≤ 1
no goals
null
null
Mathlib/GroupTheory/PGroup.lean
IsPGroup.to_le
[269, 1]
[273, 34]
change ((Subgroup.inclusion hHK) a : G) = (Subgroup.inclusion hHK) b
p : ℕ G : Type u_1 inst✝ : Group G H K : Subgroup G hK : IsPGroup p { x // x ∈ K } hHK : H ≤ K a b : { x // x ∈ H } h : ↑(Subgroup.inclusion hHK) a = ↑(Subgroup.inclusion hHK) b ⊢ ↑a = ↑b
p : ℕ G : Type u_1 inst✝ : Group G H K : Subgroup G hK : IsPGroup p { x // x ∈ K } hHK : H ≤ K a b : { x // x ∈ H } h : ↑(Subgroup.inclusion hHK) a = ↑(Subgroup.inclusion hHK) b ⊢ ↑(↑(Subgroup.inclusion hHK) a) = ↑(↑(Subgroup.inclusion hHK) b)
null
null
Mathlib/GroupTheory/PGroup.lean
IsPGroup.to_le
[269, 1]
[273, 34]
apply Subtype.ext_iff.mp h
p : ℕ G : Type u_1 inst✝ : Group G H K : Subgroup G hK : IsPGroup p { x // x ∈ K } hHK : H ≤ K a b : { x // x ∈ H } h : ↑(Subgroup.inclusion hHK) a = ↑(Subgroup.inclusion hHK) b ⊢ ↑(↑(Subgroup.inclusion hHK) a) = ↑(↑(Subgroup.inclusion hHK) b)
no goals
null
null
Mathlib/Data/Real/Irrational.lean
irrational_nat_mul_iff
[623, 1]
[624, 64]
rw [← cast_coe_nat, irrational_rat_mul_iff, Nat.cast_ne_zero]
q : ℚ m : ℤ n : ℕ x : ℝ ⊢ Irrational (↑n * x) ↔ n ≠ 0 ∧ Irrational x
no goals
null
null
Mathlib/Topology/Paracompact.lean
normal_of_paracompact_t2
[299, 1]
[323, 66]
have : ∀ s t : Set X, IsClosed s → IsClosed t → (∀ x ∈ s, ∃ u v, IsOpen u ∧ IsOpen v ∧ x ∈ u ∧ t ⊆ v ∧ Disjoint u v) → ∃ u v, IsOpen u ∧ IsOpen v ∧ s ⊆ u ∧ t ⊆ v ∧ Disjoint u v := by intro s t hs _ H choose u v hu hv hxu htv huv using SetCoe.forall'.1 H rcases precise_refinement_set hs u hu fun x hx ↦ mem_iUnion.2 ⟨⟨x, hx⟩, hxu _⟩ with ⟨u', hu'o, hcov', hu'fin, hsub⟩ refine' ⟨⋃ i, u' i, closure (⋃ i, u' i)ᶜ, isOpen_iUnion hu'o, isClosed_closure.isOpen_compl, hcov', _, disjoint_compl_right.mono le_rfl (compl_le_compl subset_closure)⟩ rw [hu'fin.closure_iUnion, compl_iUnion, subset_iInter_iff] refine' fun i x hxt hxu ↦ absurd (htv i hxt) (closure_minimal _ (isClosed_compl_iff.2 <| hv _) hxu) exact fun y hyu hyv ↦ (huv i).le_bot ⟨hsub _ hyu, hyv⟩
ι : Type u X : Type v Y : Type w inst✝³ : TopologicalSpace X inst✝² : TopologicalSpace Y inst✝¹ : T2Space X inst✝ : ParacompactSpace X ⊢ NormalSpace X
ι : Type u X : Type v Y : Type w inst✝³ : TopologicalSpace X inst✝² : TopologicalSpace Y inst✝¹ : T2Space X inst✝ : ParacompactSpace X this : ∀ (s t : Set X), IsClosed s → IsClosed t → (∀ (x : X), x ∈ s → ∃ u v, IsOpen u ∧ IsOpen v ∧ x ∈ u ∧ t ⊆ v ∧ Disjoint u v) → ∃ u v, IsOpen u ∧ IsOpen v ∧ s ⊆ u ∧ t ⊆ v ∧ Disjoint u v ⊢ NormalSpace X
null
null
Mathlib/Topology/Paracompact.lean
normal_of_paracompact_t2
[299, 1]
[323, 66]
refine' ⟨fun s t hs ht hst ↦ this s t hs ht fun x hx ↦ _⟩
ι : Type u X : Type v Y : Type w inst✝³ : TopologicalSpace X inst✝² : TopologicalSpace Y inst✝¹ : T2Space X inst✝ : ParacompactSpace X this : ∀ (s t : Set X), IsClosed s → IsClosed t → (∀ (x : X), x ∈ s → ∃ u v, IsOpen u ∧ IsOpen v ∧ x ∈ u ∧ t ⊆ v ∧ Disjoint u v) → ∃ u v, IsOpen u ∧ IsOpen v ∧ s ⊆ u ∧ t ⊆ v ∧ Disjoint u v ⊢ NormalSpace X
ι : Type u X : Type v Y : Type w inst✝³ : TopologicalSpace X inst✝² : TopologicalSpace Y inst✝¹ : T2Space X inst✝ : ParacompactSpace X this : ∀ (s t : Set X), IsClosed s → IsClosed t → (∀ (x : X), x ∈ s → ∃ u v, IsOpen u ∧ IsOpen v ∧ x ∈ u ∧ t ⊆ v ∧ Disjoint u v) → ∃ u v, IsOpen u ∧ IsOpen v ∧ s ⊆ u ∧ t ⊆ v ∧ Disjoint u v s t : Set X hs : IsClosed s ht : IsClosed t hst : Disjoint s t x : X hx : x ∈ s ⊢ ∃ u v, IsOpen u ∧ IsOpen v ∧ x ∈ u ∧ t ⊆ v ∧ Disjoint u v
null
null
Mathlib/Topology/Paracompact.lean
normal_of_paracompact_t2
[299, 1]
[323, 66]
rcases this t {x} ht isClosed_singleton fun y hy ↦ (by simp_rw [singleton_subset_iff] exact t2_separation (hst.symm.ne_of_mem hy hx)) with ⟨v, u, hv, hu, htv, hxu, huv⟩
ι : Type u X : Type v Y : Type w inst✝³ : TopologicalSpace X inst✝² : TopologicalSpace Y inst✝¹ : T2Space X inst✝ : ParacompactSpace X this : ∀ (s t : Set X), IsClosed s → IsClosed t → (∀ (x : X), x ∈ s → ∃ u v, IsOpen u ∧ IsOpen v ∧ x ∈ u ∧ t ⊆ v ∧ Disjoint u v) → ∃ u v, IsOpen u ∧ IsOpen v ∧ s ⊆ u ∧ t ⊆ v ∧ Disjoint u v s t : Set X hs : IsClosed s ht : IsClosed t hst : Disjoint s t x : X hx : x ∈ s ⊢ ∃ u v, IsOpen u ∧ IsOpen v ∧ x ∈ u ∧ t ⊆ v ∧ Disjoint u v
case intro.intro.intro.intro.intro.intro ι : Type u X : Type v Y : Type w inst✝³ : TopologicalSpace X inst✝² : TopologicalSpace Y inst✝¹ : T2Space X inst✝ : ParacompactSpace X this : ∀ (s t : Set X), IsClosed s → IsClosed t → (∀ (x : X), x ∈ s → ∃ u v, IsOpen u ∧ IsOpen v ∧ x ∈ u ∧ t ⊆ v ∧ Disjoint u v) → ∃ u v, IsOpen u ∧ IsOpen v ∧ s ⊆ u ∧ t ⊆ v ∧ Disjoint u v s t : Set X hs : IsClosed s ht : IsClosed t hst : Disjoint s t x : X hx : x ∈ s v u : Set X hv : IsOpen v hu : IsOpen u htv : t ⊆ v hxu : {x} ⊆ u huv : Disjoint v u ⊢ ∃ u v, IsOpen u ∧ IsOpen v ∧ x ∈ u ∧ t ⊆ v ∧ Disjoint u v
null
null
Mathlib/Topology/Paracompact.lean
normal_of_paracompact_t2
[299, 1]
[323, 66]
exact ⟨u, v, hu, hv, singleton_subset_iff.1 hxu, htv, huv.symm⟩
case intro.intro.intro.intro.intro.intro ι : Type u X : Type v Y : Type w inst✝³ : TopologicalSpace X inst✝² : TopologicalSpace Y inst✝¹ : T2Space X inst✝ : ParacompactSpace X this : ∀ (s t : Set X), IsClosed s → IsClosed t → (∀ (x : X), x ∈ s → ∃ u v, IsOpen u ∧ IsOpen v ∧ x ∈ u ∧ t ⊆ v ∧ Disjoint u v) → ∃ u v, IsOpen u ∧ IsOpen v ∧ s ⊆ u ∧ t ⊆ v ∧ Disjoint u v s t : Set X hs : IsClosed s ht : IsClosed t hst : Disjoint s t x : X hx : x ∈ s v u : Set X hv : IsOpen v hu : IsOpen u htv : t ⊆ v hxu : {x} ⊆ u huv : Disjoint v u ⊢ ∃ u v, IsOpen u ∧ IsOpen v ∧ x ∈ u ∧ t ⊆ v ∧ Disjoint u v
no goals
null
null
Mathlib/Topology/Paracompact.lean
normal_of_paracompact_t2
[299, 1]
[323, 66]
intro s t hs _ H
ι : Type u X : Type v Y : Type w inst✝³ : TopologicalSpace X inst✝² : TopologicalSpace Y inst✝¹ : T2Space X inst✝ : ParacompactSpace X ⊢ ∀ (s t : Set X), IsClosed s → IsClosed t → (∀ (x : X), x ∈ s → ∃ u v, IsOpen u ∧ IsOpen v ∧ x ∈ u ∧ t ⊆ v ∧ Disjoint u v) → ∃ u v, IsOpen u ∧ IsOpen v ∧ s ⊆ u ∧ t ⊆ v ∧ Disjoint u v
ι : Type u X : Type v Y : Type w inst✝³ : TopologicalSpace X inst✝² : TopologicalSpace Y inst✝¹ : T2Space X inst✝ : ParacompactSpace X s t : Set X hs : IsClosed s a✝ : IsClosed t H : ∀ (x : X), x ∈ s → ∃ u v, IsOpen u ∧ IsOpen v ∧ x ∈ u ∧ t ⊆ v ∧ Disjoint u v ⊢ ∃ u v, IsOpen u ∧ IsOpen v ∧ s ⊆ u ∧ t ⊆ v ∧ Disjoint u v
null
null
Mathlib/Topology/Paracompact.lean
normal_of_paracompact_t2
[299, 1]
[323, 66]
choose u v hu hv hxu htv huv using SetCoe.forall'.1 H
ι : Type u X : Type v Y : Type w inst✝³ : TopologicalSpace X inst✝² : TopologicalSpace Y inst✝¹ : T2Space X inst✝ : ParacompactSpace X s t : Set X hs : IsClosed s a✝ : IsClosed t H : ∀ (x : X), x ∈ s → ∃ u v, IsOpen u ∧ IsOpen v ∧ x ∈ u ∧ t ⊆ v ∧ Disjoint u v ⊢ ∃ u v, IsOpen u ∧ IsOpen v ∧ s ⊆ u ∧ t ⊆ v ∧ Disjoint u v
ι : Type u X : Type v Y : Type w inst✝³ : TopologicalSpace X inst✝² : TopologicalSpace Y inst✝¹ : T2Space X inst✝ : ParacompactSpace X s t : Set X hs : IsClosed s a✝ : IsClosed t H : ∀ (x : X), x ∈ s → ∃ u v, IsOpen u ∧ IsOpen v ∧ x ∈ u ∧ t ⊆ v ∧ Disjoint u v u v : ↑s → Set X hu : ∀ (x : ↑s), IsOpen (u x) hv : ∀ (x : ↑s), IsOpen (v x) hxu : ∀ (x : ↑s), ↑x ∈ u x htv : ∀ (x : ↑s), t ⊆ v x huv : ∀ (x : ↑s), Disjoint (u x) (v x) ⊢ ∃ u v, IsOpen u ∧ IsOpen v ∧ s ⊆ u ∧ t ⊆ v ∧ Disjoint u v
null
null
Mathlib/Topology/Paracompact.lean
normal_of_paracompact_t2
[299, 1]
[323, 66]
rcases precise_refinement_set hs u hu fun x hx ↦ mem_iUnion.2 ⟨⟨x, hx⟩, hxu _⟩ with ⟨u', hu'o, hcov', hu'fin, hsub⟩
ι : Type u X : Type v Y : Type w inst✝³ : TopologicalSpace X inst✝² : TopologicalSpace Y inst✝¹ : T2Space X inst✝ : ParacompactSpace X s t : Set X hs : IsClosed s a✝ : IsClosed t H : ∀ (x : X), x ∈ s → ∃ u v, IsOpen u ∧ IsOpen v ∧ x ∈ u ∧ t ⊆ v ∧ Disjoint u v u v : ↑s → Set X hu : ∀ (x : ↑s), IsOpen (u x) hv : ∀ (x : ↑s), IsOpen (v x) hxu : ∀ (x : ↑s), ↑x ∈ u x htv : ∀ (x : ↑s), t ⊆ v x huv : ∀ (x : ↑s), Disjoint (u x) (v x) ⊢ ∃ u v, IsOpen u ∧ IsOpen v ∧ s ⊆ u ∧ t ⊆ v ∧ Disjoint u v
case intro.intro.intro.intro ι : Type u X : Type v Y : Type w inst✝³ : TopologicalSpace X inst✝² : TopologicalSpace Y inst✝¹ : T2Space X inst✝ : ParacompactSpace X s t : Set X hs : IsClosed s a✝ : IsClosed t H : ∀ (x : X), x ∈ s → ∃ u v, IsOpen u ∧ IsOpen v ∧ x ∈ u ∧ t ⊆ v ∧ Disjoint u v u v : ↑s → Set X hu : ∀ (x : ↑s), IsOpen (u x) hv : ∀ (x : ↑s), IsOpen (v x) hxu : ∀ (x : ↑s), ↑x ∈ u x htv : ∀ (x : ↑s), t ⊆ v x huv : ∀ (x : ↑s), Disjoint (u x) (v x) u' : ↑s → Set X hu'o : ∀ (i : ↑s), IsOpen (u' i) hcov' : s ⊆ ⋃ (i : ↑s), u' i hu'fin : LocallyFinite u' hsub : ∀ (i : ↑s), u' i ⊆ u i ⊢ ∃ u v, IsOpen u ∧ IsOpen v ∧ s ⊆ u ∧ t ⊆ v ∧ Disjoint u v
null
null
Mathlib/Topology/Paracompact.lean
normal_of_paracompact_t2
[299, 1]
[323, 66]
refine' ⟨⋃ i, u' i, closure (⋃ i, u' i)ᶜ, isOpen_iUnion hu'o, isClosed_closure.isOpen_compl, hcov', _, disjoint_compl_right.mono le_rfl (compl_le_compl subset_closure)⟩
case intro.intro.intro.intro ι : Type u X : Type v Y : Type w inst✝³ : TopologicalSpace X inst✝² : TopologicalSpace Y inst✝¹ : T2Space X inst✝ : ParacompactSpace X s t : Set X hs : IsClosed s a✝ : IsClosed t H : ∀ (x : X), x ∈ s → ∃ u v, IsOpen u ∧ IsOpen v ∧ x ∈ u ∧ t ⊆ v ∧ Disjoint u v u v : ↑s → Set X hu : ∀ (x : ↑s), IsOpen (u x) hv : ∀ (x : ↑s), IsOpen (v x) hxu : ∀ (x : ↑s), ↑x ∈ u x htv : ∀ (x : ↑s), t ⊆ v x huv : ∀ (x : ↑s), Disjoint (u x) (v x) u' : ↑s → Set X hu'o : ∀ (i : ↑s), IsOpen (u' i) hcov' : s ⊆ ⋃ (i : ↑s), u' i hu'fin : LocallyFinite u' hsub : ∀ (i : ↑s), u' i ⊆ u i ⊢ ∃ u v, IsOpen u ∧ IsOpen v ∧ s ⊆ u ∧ t ⊆ v ∧ Disjoint u v
case intro.intro.intro.intro ι : Type u X : Type v Y : Type w inst✝³ : TopologicalSpace X inst✝² : TopologicalSpace Y inst✝¹ : T2Space X inst✝ : ParacompactSpace X s t : Set X hs : IsClosed s a✝ : IsClosed t H : ∀ (x : X), x ∈ s → ∃ u v, IsOpen u ∧ IsOpen v ∧ x ∈ u ∧ t ⊆ v ∧ Disjoint u v u v : ↑s → Set X hu : ∀ (x : ↑s), IsOpen (u x) hv : ∀ (x : ↑s), IsOpen (v x) hxu : ∀ (x : ↑s), ↑x ∈ u x htv : ∀ (x : ↑s), t ⊆ v x huv : ∀ (x : ↑s), Disjoint (u x) (v x) u' : ↑s → Set X hu'o : ∀ (i : ↑s), IsOpen (u' i) hcov' : s ⊆ ⋃ (i : ↑s), u' i hu'fin : LocallyFinite u' hsub : ∀ (i : ↑s), u' i ⊆ u i ⊢ t ⊆ closure (⋃ (i : ↑s), u' i)ᶜ
null
null
Mathlib/Topology/Paracompact.lean
normal_of_paracompact_t2
[299, 1]
[323, 66]
rw [hu'fin.closure_iUnion, compl_iUnion, subset_iInter_iff]
case intro.intro.intro.intro ι : Type u X : Type v Y : Type w inst✝³ : TopologicalSpace X inst✝² : TopologicalSpace Y inst✝¹ : T2Space X inst✝ : ParacompactSpace X s t : Set X hs : IsClosed s a✝ : IsClosed t H : ∀ (x : X), x ∈ s → ∃ u v, IsOpen u ∧ IsOpen v ∧ x ∈ u ∧ t ⊆ v ∧ Disjoint u v u v : ↑s → Set X hu : ∀ (x : ↑s), IsOpen (u x) hv : ∀ (x : ↑s), IsOpen (v x) hxu : ∀ (x : ↑s), ↑x ∈ u x htv : ∀ (x : ↑s), t ⊆ v x huv : ∀ (x : ↑s), Disjoint (u x) (v x) u' : ↑s → Set X hu'o : ∀ (i : ↑s), IsOpen (u' i) hcov' : s ⊆ ⋃ (i : ↑s), u' i hu'fin : LocallyFinite u' hsub : ∀ (i : ↑s), u' i ⊆ u i ⊢ t ⊆ closure (⋃ (i : ↑s), u' i)ᶜ
case intro.intro.intro.intro ι : Type u X : Type v Y : Type w inst✝³ : TopologicalSpace X inst✝² : TopologicalSpace Y inst✝¹ : T2Space X inst✝ : ParacompactSpace X s t : Set X hs : IsClosed s a✝ : IsClosed t H : ∀ (x : X), x ∈ s → ∃ u v, IsOpen u ∧ IsOpen v ∧ x ∈ u ∧ t ⊆ v ∧ Disjoint u v u v : ↑s → Set X hu : ∀ (x : ↑s), IsOpen (u x) hv : ∀ (x : ↑s), IsOpen (v x) hxu : ∀ (x : ↑s), ↑x ∈ u x htv : ∀ (x : ↑s), t ⊆ v x huv : ∀ (x : ↑s), Disjoint (u x) (v x) u' : ↑s → Set X hu'o : ∀ (i : ↑s), IsOpen (u' i) hcov' : s ⊆ ⋃ (i : ↑s), u' i hu'fin : LocallyFinite u' hsub : ∀ (i : ↑s), u' i ⊆ u i ⊢ ∀ (i : ↑s), t ⊆ closure (u' i)ᶜ
null
null
Mathlib/Topology/Paracompact.lean
normal_of_paracompact_t2
[299, 1]
[323, 66]
refine' fun i x hxt hxu ↦ absurd (htv i hxt) (closure_minimal _ (isClosed_compl_iff.2 <| hv _) hxu)
case intro.intro.intro.intro ι : Type u X : Type v Y : Type w inst✝³ : TopologicalSpace X inst✝² : TopologicalSpace Y inst✝¹ : T2Space X inst✝ : ParacompactSpace X s t : Set X hs : IsClosed s a✝ : IsClosed t H : ∀ (x : X), x ∈ s → ∃ u v, IsOpen u ∧ IsOpen v ∧ x ∈ u ∧ t ⊆ v ∧ Disjoint u v u v : ↑s → Set X hu : ∀ (x : ↑s), IsOpen (u x) hv : ∀ (x : ↑s), IsOpen (v x) hxu : ∀ (x : ↑s), ↑x ∈ u x htv : ∀ (x : ↑s), t ⊆ v x huv : ∀ (x : ↑s), Disjoint (u x) (v x) u' : ↑s → Set X hu'o : ∀ (i : ↑s), IsOpen (u' i) hcov' : s ⊆ ⋃ (i : ↑s), u' i hu'fin : LocallyFinite u' hsub : ∀ (i : ↑s), u' i ⊆ u i ⊢ ∀ (i : ↑s), t ⊆ closure (u' i)ᶜ
case intro.intro.intro.intro ι : Type u X : Type v Y : Type w inst✝³ : TopologicalSpace X inst✝² : TopologicalSpace Y inst✝¹ : T2Space X inst✝ : ParacompactSpace X s t : Set X hs : IsClosed s a✝ : IsClosed t H : ∀ (x : X), x ∈ s → ∃ u v, IsOpen u ∧ IsOpen v ∧ x ∈ u ∧ t ⊆ v ∧ Disjoint u v u v : ↑s → Set X hu : ∀ (x : ↑s), IsOpen (u x) hv : ∀ (x : ↑s), IsOpen (v x) hxu✝ : ∀ (x : ↑s), ↑x ∈ u x htv : ∀ (x : ↑s), t ⊆ v x huv : ∀ (x : ↑s), Disjoint (u x) (v x) u' : ↑s → Set X hu'o : ∀ (i : ↑s), IsOpen (u' i) hcov' : s ⊆ ⋃ (i : ↑s), u' i hu'fin : LocallyFinite u' hsub : ∀ (i : ↑s), u' i ⊆ u i i : ↑s x : X hxt : x ∈ t hxu : x ∈ closure (u' i) ⊢ u' i ⊆ v iᶜ
null
null
Mathlib/Topology/Paracompact.lean
normal_of_paracompact_t2
[299, 1]
[323, 66]
exact fun y hyu hyv ↦ (huv i).le_bot ⟨hsub _ hyu, hyv⟩
case intro.intro.intro.intro ι : Type u X : Type v Y : Type w inst✝³ : TopologicalSpace X inst✝² : TopologicalSpace Y inst✝¹ : T2Space X inst✝ : ParacompactSpace X s t : Set X hs : IsClosed s a✝ : IsClosed t H : ∀ (x : X), x ∈ s → ∃ u v, IsOpen u ∧ IsOpen v ∧ x ∈ u ∧ t ⊆ v ∧ Disjoint u v u v : ↑s → Set X hu : ∀ (x : ↑s), IsOpen (u x) hv : ∀ (x : ↑s), IsOpen (v x) hxu✝ : ∀ (x : ↑s), ↑x ∈ u x htv : ∀ (x : ↑s), t ⊆ v x huv : ∀ (x : ↑s), Disjoint (u x) (v x) u' : ↑s → Set X hu'o : ∀ (i : ↑s), IsOpen (u' i) hcov' : s ⊆ ⋃ (i : ↑s), u' i hu'fin : LocallyFinite u' hsub : ∀ (i : ↑s), u' i ⊆ u i i : ↑s x : X hxt : x ∈ t hxu : x ∈ closure (u' i) ⊢ u' i ⊆ v iᶜ
no goals
null
null
Mathlib/Topology/Paracompact.lean
normal_of_paracompact_t2
[299, 1]
[323, 66]
simp_rw [singleton_subset_iff]
ι : Type u X : Type v Y : Type w inst✝³ : TopologicalSpace X inst✝² : TopologicalSpace Y inst✝¹ : T2Space X inst✝ : ParacompactSpace X this : ∀ (s t : Set X), IsClosed s → IsClosed t → (∀ (x : X), x ∈ s → ∃ u v, IsOpen u ∧ IsOpen v ∧ x ∈ u ∧ t ⊆ v ∧ Disjoint u v) → ∃ u v, IsOpen u ∧ IsOpen v ∧ s ⊆ u ∧ t ⊆ v ∧ Disjoint u v s t : Set X hs : IsClosed s ht : IsClosed t hst : Disjoint s t x : X hx : x ∈ s y : X hy : y ∈ t ⊢ ∃ u v, IsOpen u ∧ IsOpen v ∧ y ∈ u ∧ {x} ⊆ v ∧ Disjoint u v
ι : Type u X : Type v Y : Type w inst✝³ : TopologicalSpace X inst✝² : TopologicalSpace Y inst✝¹ : T2Space X inst✝ : ParacompactSpace X this : ∀ (s t : Set X), IsClosed s → IsClosed t → (∀ (x : X), x ∈ s → ∃ u v, IsOpen u ∧ IsOpen v ∧ x ∈ u ∧ t ⊆ v ∧ Disjoint u v) → ∃ u v, IsOpen u ∧ IsOpen v ∧ s ⊆ u ∧ t ⊆ v ∧ Disjoint u v s t : Set X hs : IsClosed s ht : IsClosed t hst : Disjoint s t x : X hx : x ∈ s y : X hy : y ∈ t ⊢ ∃ u v, IsOpen u ∧ IsOpen v ∧ y ∈ u ∧ x ∈ v ∧ Disjoint u v
null
null
Mathlib/Topology/Paracompact.lean
normal_of_paracompact_t2
[299, 1]
[323, 66]
exact t2_separation (hst.symm.ne_of_mem hy hx)
ι : Type u X : Type v Y : Type w inst✝³ : TopologicalSpace X inst✝² : TopologicalSpace Y inst✝¹ : T2Space X inst✝ : ParacompactSpace X this : ∀ (s t : Set X), IsClosed s → IsClosed t → (∀ (x : X), x ∈ s → ∃ u v, IsOpen u ∧ IsOpen v ∧ x ∈ u ∧ t ⊆ v ∧ Disjoint u v) → ∃ u v, IsOpen u ∧ IsOpen v ∧ s ⊆ u ∧ t ⊆ v ∧ Disjoint u v s t : Set X hs : IsClosed s ht : IsClosed t hst : Disjoint s t x : X hx : x ∈ s y : X hy : y ∈ t ⊢ ∃ u v, IsOpen u ∧ IsOpen v ∧ y ∈ u ∧ x ∈ v ∧ Disjoint u v
no goals
null
null
Mathlib/Data/Nat/Factorization/PrimePow.lean
isPrimePow_of_minFac_pow_factorization_eq
[30, 1]
[37, 23]
rcases eq_or_ne n 0 with (rfl | hn')
R : Type ?u.706 inst✝ : CommMonoidWithZero R n✝ p : R k n : ℕ h : Nat.minFac n ^ ↑(Nat.factorization n) (Nat.minFac n) = n hn : n ≠ 1 ⊢ IsPrimePow n
case inl R : Type ?u.706 inst✝ : CommMonoidWithZero R n p : R k : ℕ h : Nat.minFac 0 ^ ↑(Nat.factorization 0) (Nat.minFac 0) = 0 hn : 0 ≠ 1 ⊢ IsPrimePow 0 case inr R : Type ?u.706 inst✝ : CommMonoidWithZero R n✝ p : R k n : ℕ h : Nat.minFac n ^ ↑(Nat.factorization n) (Nat.minFac n) = n hn : n ≠ 1 hn' : n ≠ 0 ⊢ IsPrimePow n
null
null
Mathlib/Data/Nat/Factorization/PrimePow.lean
isPrimePow_of_minFac_pow_factorization_eq
[30, 1]
[37, 23]
refine' ⟨_, _, (Nat.minFac_prime hn).prime, _, h⟩
case inr R : Type ?u.706 inst✝ : CommMonoidWithZero R n✝ p : R k n : ℕ h : Nat.minFac n ^ ↑(Nat.factorization n) (Nat.minFac n) = n hn : n ≠ 1 hn' : n ≠ 0 ⊢ IsPrimePow n
case inr R : Type ?u.706 inst✝ : CommMonoidWithZero R n✝ p : R k n : ℕ h : Nat.minFac n ^ ↑(Nat.factorization n) (Nat.minFac n) = n hn : n ≠ 1 hn' : n ≠ 0 ⊢ 0 < ↑(Nat.factorization n) (Nat.minFac n)
null
null
Mathlib/Data/Nat/Factorization/PrimePow.lean
isPrimePow_of_minFac_pow_factorization_eq
[30, 1]
[37, 23]
rw [pos_iff_ne_zero, ← Finsupp.mem_support_iff, Nat.factor_iff_mem_factorization, Nat.mem_factors_iff_dvd hn' (Nat.minFac_prime hn)]
case inr R : Type ?u.706 inst✝ : CommMonoidWithZero R n✝ p : R k n : ℕ h : Nat.minFac n ^ ↑(Nat.factorization n) (Nat.minFac n) = n hn : n ≠ 1 hn' : n ≠ 0 ⊢ 0 < ↑(Nat.factorization n) (Nat.minFac n)
case inr R : Type ?u.706 inst✝ : CommMonoidWithZero R n✝ p : R k n : ℕ h : Nat.minFac n ^ ↑(Nat.factorization n) (Nat.minFac n) = n hn : n ≠ 1 hn' : n ≠ 0 ⊢ Nat.minFac n ∣ n
null
null
Mathlib/Data/Nat/Factorization/PrimePow.lean
isPrimePow_of_minFac_pow_factorization_eq
[30, 1]
[37, 23]
apply Nat.minFac_dvd
case inr R : Type ?u.706 inst✝ : CommMonoidWithZero R n✝ p : R k n : ℕ h : Nat.minFac n ^ ↑(Nat.factorization n) (Nat.minFac n) = n hn : n ≠ 1 hn' : n ≠ 0 ⊢ Nat.minFac n ∣ n
no goals
null
null
Mathlib/Data/Nat/Factorization/PrimePow.lean
isPrimePow_of_minFac_pow_factorization_eq
[30, 1]
[37, 23]
simp_all
case inl R : Type ?u.706 inst✝ : CommMonoidWithZero R n p : R k : ℕ h : Nat.minFac 0 ^ ↑(Nat.factorization 0) (Nat.minFac 0) = 0 hn : 0 ≠ 1 ⊢ IsPrimePow 0
no goals
null
null
Mathlib/Topology/Algebra/Module/Basic.lean
ContinuousLinearMap.smulRight_one_pow
[1432, 1]
[1437, 72]
induction' n with n ihn
R : Type u_1 inst✝¹⁵ : Ring R R₂ : Type ?u.888280 inst✝¹⁴ : Ring R₂ R₃ : Type ?u.888286 inst✝¹³ : Ring R₃ M : Type ?u.888292 inst✝¹² : TopologicalSpace M inst✝¹¹ : AddCommGroup M M₂ : Type ?u.888301 inst✝¹⁰ : TopologicalSpace M₂ inst✝⁹ : AddCommGroup M₂ M₃ : Type ?u.888310 inst✝⁸ : TopologicalSpace M₃ inst✝⁷ : AddCommGroup M₃ M₄ : Type ?u.888319 inst✝⁶ : TopologicalSpace M₄ inst✝⁵ : AddCommGroup M₄ inst✝⁴ : Module R M inst✝³ : Module R₂ M₂ inst✝² : Module R₃ M₃ σ₁₂ : R →+* R₂ σ₂₃ : R₂ →+* R₃ σ₁₃ : R →+* R₃ inst✝¹ : TopologicalSpace R inst✝ : TopologicalRing R c : R n : ℕ ⊢ smulRight 1 c ^ n = smulRight 1 (c ^ n)
case zero R : Type u_1 inst✝¹⁵ : Ring R R₂ : Type ?u.888280 inst✝¹⁴ : Ring R₂ R₃ : Type ?u.888286 inst✝¹³ : Ring R₃ M : Type ?u.888292 inst✝¹² : TopologicalSpace M inst✝¹¹ : AddCommGroup M M₂ : Type ?u.888301 inst✝¹⁰ : TopologicalSpace M₂ inst✝⁹ : AddCommGroup M₂ M₃ : Type ?u.888310 inst✝⁸ : TopologicalSpace M₃ inst✝⁷ : AddCommGroup M₃ M₄ : Type ?u.888319 inst✝⁶ : TopologicalSpace M₄ inst✝⁵ : AddCommGroup M₄ inst✝⁴ : Module R M inst✝³ : Module R₂ M₂ inst✝² : Module R₃ M₃ σ₁₂ : R →+* R₂ σ₂₃ : R₂ →+* R₃ σ₁₃ : R →+* R₃ inst✝¹ : TopologicalSpace R inst✝ : TopologicalRing R c : R ⊢ smulRight 1 c ^ Nat.zero = smulRight 1 (c ^ Nat.zero) case succ R : Type u_1 inst✝¹⁵ : Ring R R₂ : Type ?u.888280 inst✝¹⁴ : Ring R₂ R₃ : Type ?u.888286 inst✝¹³ : Ring R₃ M : Type ?u.888292 inst✝¹² : TopologicalSpace M inst✝¹¹ : AddCommGroup M M₂ : Type ?u.888301 inst✝¹⁰ : TopologicalSpace M₂ inst✝⁹ : AddCommGroup M₂ M₃ : Type ?u.888310 inst✝⁸ : TopologicalSpace M₃ inst✝⁷ : AddCommGroup M₃ M₄ : Type ?u.888319 inst✝⁶ : TopologicalSpace M₄ inst✝⁵ : AddCommGroup M₄ inst✝⁴ : Module R M inst✝³ : Module R₂ M₂ inst✝² : Module R₃ M₃ σ₁₂ : R →+* R₂ σ₂₃ : R₂ →+* R₃ σ₁₃ : R →+* R₃ inst✝¹ : TopologicalSpace R inst✝ : TopologicalRing R c : R n : ℕ ihn : smulRight 1 c ^ n = smulRight 1 (c ^ n) ⊢ smulRight 1 c ^ Nat.succ n = smulRight 1 (c ^ Nat.succ n)
null
null
Mathlib/Topology/Algebra/Module/Basic.lean
ContinuousLinearMap.smulRight_one_pow
[1432, 1]
[1437, 72]
ext
case zero R : Type u_1 inst✝¹⁵ : Ring R R₂ : Type ?u.888280 inst✝¹⁴ : Ring R₂ R₃ : Type ?u.888286 inst✝¹³ : Ring R₃ M : Type ?u.888292 inst✝¹² : TopologicalSpace M inst✝¹¹ : AddCommGroup M M₂ : Type ?u.888301 inst✝¹⁰ : TopologicalSpace M₂ inst✝⁹ : AddCommGroup M₂ M₃ : Type ?u.888310 inst✝⁸ : TopologicalSpace M₃ inst✝⁷ : AddCommGroup M₃ M₄ : Type ?u.888319 inst✝⁶ : TopologicalSpace M₄ inst✝⁵ : AddCommGroup M₄ inst✝⁴ : Module R M inst✝³ : Module R₂ M₂ inst✝² : Module R₃ M₃ σ₁₂ : R →+* R₂ σ₂₃ : R₂ →+* R₃ σ₁₃ : R →+* R₃ inst✝¹ : TopologicalSpace R inst✝ : TopologicalRing R c : R ⊢ smulRight 1 c ^ Nat.zero = smulRight 1 (c ^ Nat.zero)
case zero.h R : Type u_1 inst✝¹⁵ : Ring R R₂ : Type ?u.888280 inst✝¹⁴ : Ring R₂ R₃ : Type ?u.888286 inst✝¹³ : Ring R₃ M : Type ?u.888292 inst✝¹² : TopologicalSpace M inst✝¹¹ : AddCommGroup M M₂ : Type ?u.888301 inst✝¹⁰ : TopologicalSpace M₂ inst✝⁹ : AddCommGroup M₂ M₃ : Type ?u.888310 inst✝⁸ : TopologicalSpace M₃ inst✝⁷ : AddCommGroup M₃ M₄ : Type ?u.888319 inst✝⁶ : TopologicalSpace M₄ inst✝⁵ : AddCommGroup M₄ inst✝⁴ : Module R M inst✝³ : Module R₂ M₂ inst✝² : Module R₃ M₃ σ₁₂ : R →+* R₂ σ₂₃ : R₂ →+* R₃ σ₁₃ : R →+* R₃ inst✝¹ : TopologicalSpace R inst✝ : TopologicalRing R c : R ⊢ ↑(smulRight 1 c ^ Nat.zero) 1 = ↑(smulRight 1 (c ^ Nat.zero)) 1
null
null
Mathlib/Topology/Algebra/Module/Basic.lean
ContinuousLinearMap.smulRight_one_pow
[1432, 1]
[1437, 72]
simp
case zero.h R : Type u_1 inst✝¹⁵ : Ring R R₂ : Type ?u.888280 inst✝¹⁴ : Ring R₂ R₃ : Type ?u.888286 inst✝¹³ : Ring R₃ M : Type ?u.888292 inst✝¹² : TopologicalSpace M inst✝¹¹ : AddCommGroup M M₂ : Type ?u.888301 inst✝¹⁰ : TopologicalSpace M₂ inst✝⁹ : AddCommGroup M₂ M₃ : Type ?u.888310 inst✝⁸ : TopologicalSpace M₃ inst✝⁷ : AddCommGroup M₃ M₄ : Type ?u.888319 inst✝⁶ : TopologicalSpace M₄ inst✝⁵ : AddCommGroup M₄ inst✝⁴ : Module R M inst✝³ : Module R₂ M₂ inst✝² : Module R₃ M₃ σ₁₂ : R →+* R₂ σ₂₃ : R₂ →+* R₃ σ₁₃ : R →+* R₃ inst✝¹ : TopologicalSpace R inst✝ : TopologicalRing R c : R ⊢ ↑(smulRight 1 c ^ Nat.zero) 1 = ↑(smulRight 1 (c ^ Nat.zero)) 1
no goals
null
null
Mathlib/Topology/Algebra/Module/Basic.lean
ContinuousLinearMap.smulRight_one_pow
[1432, 1]
[1437, 72]
rw [pow_succ, ihn, mul_def, smulRight_comp, smul_eq_mul, pow_succ']
case succ R : Type u_1 inst✝¹⁵ : Ring R R₂ : Type ?u.888280 inst✝¹⁴ : Ring R₂ R₃ : Type ?u.888286 inst✝¹³ : Ring R₃ M : Type ?u.888292 inst✝¹² : TopologicalSpace M inst✝¹¹ : AddCommGroup M M₂ : Type ?u.888301 inst✝¹⁰ : TopologicalSpace M₂ inst✝⁹ : AddCommGroup M₂ M₃ : Type ?u.888310 inst✝⁸ : TopologicalSpace M₃ inst✝⁷ : AddCommGroup M₃ M₄ : Type ?u.888319 inst✝⁶ : TopologicalSpace M₄ inst✝⁵ : AddCommGroup M₄ inst✝⁴ : Module R M inst✝³ : Module R₂ M₂ inst✝² : Module R₃ M₃ σ₁₂ : R →+* R₂ σ₂₃ : R₂ →+* R₃ σ₁₃ : R →+* R₃ inst✝¹ : TopologicalSpace R inst✝ : TopologicalRing R c : R n : ℕ ihn : smulRight 1 c ^ n = smulRight 1 (c ^ n) ⊢ smulRight 1 c ^ Nat.succ n = smulRight 1 (c ^ Nat.succ n)
no goals
null
null
Mathlib/Probability/ConditionalProbability.lean
ProbabilityTheory.cond_univ
[100, 1]
[101, 51]
simp [cond, measure_univ, Measure.restrict_univ]
Ω : Type u_1 m : MeasurableSpace Ω μ : MeasureTheory.Measure Ω s t : Set Ω inst✝ : IsProbabilityMeasure μ ⊢ μ[|Set.univ] = μ
no goals
null
null
Mathlib/NumberTheory/Padics/PadicVal.lean
padicValNat.div'
[439, 11]
[442, 18]
rw [padicValNat.div_of_dvd dvd, eq_zero_of_not_dvd (hp.out.coprime_iff_not_dvd.mp cpm), Nat.sub_zero]
p a b✝ : ℕ hp : Fact (Nat.Prime p) m : ℕ cpm : coprime p m b : ℕ dvd : m ∣ b ⊢ padicValNat p (b / m) = padicValNat p b
no goals
null
null
Mathlib/Data/Set/Intervals/Basic.lean
Set.Ico_diff_Iio
[1815, 1]
[1816, 53]
rw [diff_eq, compl_Iio, Ico_inter_Ici, sup_eq_max]
α : Type u_1 β : Type ?u.197269 inst✝¹ : LinearOrder α inst✝ : LinearOrder β f : α → β a a₁ a₂ b b₁ b₂ c d : α ⊢ Ico a b \ Iio c = Ico (max a c) b
no goals
null
null
Mathlib/MeasureTheory/Integral/Lebesgue.lean
MeasureTheory.lintegral_zero
[171, 1]
[171, 57]
simp
α : Type u_1 β : Type ?u.74361 γ : Type ?u.74364 δ : Type ?u.74367 m : MeasurableSpace α μ ν : Measure α ⊢ (∫⁻ (x : α), 0 ∂μ) = 0
no goals
null
null
Mathlib/LinearAlgebra/Matrix/Adjugate.lean
Matrix.adjugate_pow
[511, 1]
[514, 81]
induction' k with k IH
m : Type u n : Type v α : Type w inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m inst✝ : CommRing α A : Matrix n n α k : ℕ ⊢ adjugate (A ^ k) = adjugate A ^ k
case zero m : Type u n : Type v α : Type w inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m inst✝ : CommRing α A : Matrix n n α ⊢ adjugate (A ^ Nat.zero) = adjugate A ^ Nat.zero case succ m : Type u n : Type v α : Type w inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m inst✝ : CommRing α A : Matrix n n α k : ℕ IH : adjugate (A ^ k) = adjugate A ^ k ⊢ adjugate (A ^ Nat.succ k) = adjugate A ^ Nat.succ k
null
null
Mathlib/LinearAlgebra/Matrix/Adjugate.lean
Matrix.adjugate_pow
[511, 1]
[514, 81]
simp
case zero m : Type u n : Type v α : Type w inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m inst✝ : CommRing α A : Matrix n n α ⊢ adjugate (A ^ Nat.zero) = adjugate A ^ Nat.zero
no goals
null
null
Mathlib/LinearAlgebra/Matrix/Adjugate.lean
Matrix.adjugate_pow
[511, 1]
[514, 81]
rw [pow_succ', mul_eq_mul, adjugate_mul_distrib, IH, ← mul_eq_mul, pow_succ]
case succ m : Type u n : Type v α : Type w inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m inst✝ : CommRing α A : Matrix n n α k : ℕ IH : adjugate (A ^ k) = adjugate A ^ k ⊢ adjugate (A ^ Nat.succ k) = adjugate A ^ Nat.succ k
no goals
null
null
Mathlib/LinearAlgebra/SesquilinearForm.lean
LinearMap.flip_separatingLeft
[691, 1]
[692, 91]
rw [← flip_separatingRight, flip_flip]
R : Type u_2 R₁ : Type u_1 R₂ : Type u_5 R₃ : Type ?u.540765 M : Type ?u.540768 M₁ : Type u_3 M₂ : Type u_4 Mₗ₁ : Type ?u.540777 Mₗ₁' : Type ?u.540780 Mₗ₂ : Type ?u.540783 Mₗ₂' : Type ?u.540786 K : Type ?u.540789 K₁ : Type ?u.540792 K₂ : Type ?u.540795 V : Type ?u.540798 V₁ : Type ?u.540801 V₂ : Type ?u.540804 n : Type ?u.540807 inst✝⁶ : CommSemiring R inst✝⁵ : CommSemiring R₁ inst✝⁴ : AddCommMonoid M₁ inst✝³ : Module R₁ M₁ inst✝² : CommSemiring R₂ inst✝¹ : AddCommMonoid M₂ inst✝ : Module R₂ M₂ I₁ : R₁ →+* R I₂ : R₂ →+* R I₁' : R₁ →+* R B : M₁ →ₛₗ[I₁] M₂ →ₛₗ[I₂] R ⊢ SeparatingLeft (flip B) ↔ SeparatingRight B
no goals
null
null
Mathlib/MeasureTheory/Measure/Haar/Basic.lean
MeasureTheory.Measure.haar.haarContent_outerMeasure_self_pos
[581, 1]
[586, 28]
refine' zero_lt_one.trans_le _
G : Type u_1 inst✝³ : Group G inst✝² : TopologicalSpace G inst✝¹ : TopologicalGroup G inst✝ : T2Space G K₀ : PositiveCompacts G ⊢ 0 < ↑(Content.outerMeasure (haarContent K₀)) ↑K₀
G : Type u_1 inst✝³ : Group G inst✝² : TopologicalSpace G inst✝¹ : TopologicalGroup G inst✝ : T2Space G K₀ : PositiveCompacts G ⊢ 1 ≤ ↑(Content.outerMeasure (haarContent K₀)) ↑K₀
null
null
Mathlib/MeasureTheory/Measure/Haar/Basic.lean
MeasureTheory.Measure.haar.haarContent_outerMeasure_self_pos
[581, 1]
[586, 28]
rw [Content.outerMeasure_eq_iInf]
G : Type u_1 inst✝³ : Group G inst✝² : TopologicalSpace G inst✝¹ : TopologicalGroup G inst✝ : T2Space G K₀ : PositiveCompacts G ⊢ 1 ≤ ↑(Content.outerMeasure (haarContent K₀)) ↑K₀
G : Type u_1 inst✝³ : Group G inst✝² : TopologicalSpace G inst✝¹ : TopologicalGroup G inst✝ : T2Space G K₀ : PositiveCompacts G ⊢ 1 ≤ ⨅ (U : Set G) (hU : IsOpen U) (_ : ↑K₀ ⊆ U), Content.innerContent (haarContent K₀) { carrier := U, is_open' := hU }
null
null
Mathlib/MeasureTheory/Measure/Haar/Basic.lean
MeasureTheory.Measure.haar.haarContent_outerMeasure_self_pos
[581, 1]
[586, 28]
refine' le_iInf₂ fun U hU => le_iInf fun hK₀ => le_trans _ <| le_iSup₂ K₀.toCompacts hK₀
G : Type u_1 inst✝³ : Group G inst✝² : TopologicalSpace G inst✝¹ : TopologicalGroup G inst✝ : T2Space G K₀ : PositiveCompacts G ⊢ 1 ≤ ⨅ (U : Set G) (hU : IsOpen U) (_ : ↑K₀ ⊆ U), Content.innerContent (haarContent K₀) { carrier := U, is_open' := hU }
G : Type u_1 inst✝³ : Group G inst✝² : TopologicalSpace G inst✝¹ : TopologicalGroup G inst✝ : T2Space G K₀ : PositiveCompacts G U : Set G hU : IsOpen U hK₀ : ↑K₀ ⊆ U ⊢ 1 ≤ (fun s => ↑(Content.toFun (haarContent K₀) s)) K₀.toCompacts
null
null
Mathlib/MeasureTheory/Measure/Haar/Basic.lean
MeasureTheory.Measure.haar.haarContent_outerMeasure_self_pos
[581, 1]
[586, 28]
exact haarContent_self.ge
G : Type u_1 inst✝³ : Group G inst✝² : TopologicalSpace G inst✝¹ : TopologicalGroup G inst✝ : T2Space G K₀ : PositiveCompacts G U : Set G hU : IsOpen U hK₀ : ↑K₀ ⊆ U ⊢ 1 ≤ (fun s => ↑(Content.toFun (haarContent K₀) s)) K₀.toCompacts
no goals
null
null
Mathlib/SetTheory/Cardinal/Ordinal.lean
Cardinal.aleph'_omega
[231, 1]
[234, 90]
simp only [aleph'_le_of_limit omega_isLimit, lt_omega, exists_imp, aleph0_le]
c : Cardinal ⊢ aleph' ω ≤ c ↔ ℵ₀ ≤ c
c : Cardinal ⊢ (∀ (o' : Ordinal) (x : ℕ), o' = ↑x → aleph' o' ≤ c) ↔ ∀ (n : ℕ), ↑n ≤ c
null
null
Mathlib/SetTheory/Cardinal/Ordinal.lean
Cardinal.aleph'_omega
[231, 1]
[234, 90]
exact forall_swap.trans (forall_congr' fun n => by simp only [forall_eq, aleph'_nat])
c : Cardinal ⊢ (∀ (o' : Ordinal) (x : ℕ), o' = ↑x → aleph' o' ≤ c) ↔ ∀ (n : ℕ), ↑n ≤ c
no goals
null
null
Mathlib/SetTheory/Cardinal/Ordinal.lean
Cardinal.aleph'_omega
[231, 1]
[234, 90]
simp only [forall_eq, aleph'_nat]
c : Cardinal n : ℕ ⊢ (∀ (x : Ordinal), x = ↑n → aleph' x ≤ c) ↔ ↑n ≤ c
no goals
null
null
Mathlib/Algebra/CharP/Basic.lean
CharP.addOrderOf_one
[129, 1]
[130, 77]
rw [← Nat.smul_one_eq_coe, addOrderOf_dvd_iff_nsmul_eq_zero]
R✝ : Type ?u.43695 R : Type u_1 inst✝ : Semiring R n : ℕ ⊢ ↑n = 0 ↔ addOrderOf 1 ∣ n
no goals
null
null
Mathlib/SetTheory/Ordinal/Arithmetic.lean
Ordinal.blsub_le_iff
[1805, 1]
[1808, 24]
convert bsup_le_iff.{_, v} (f := fun a ha => succ (f a ha)) (a := a) using 2
α : Type ?u.349869 β : Type ?u.349872 γ : Type ?u.349875 r : α → α → Prop s : β → β → Prop t : γ → γ → Prop o : Ordinal f : (a : Ordinal) → a < o → Ordinal a : Ordinal ⊢ blsub o f ≤ a ↔ ∀ (i : Ordinal) (h : i < o), f i h < a
case h.e'_2.h.a α : Type ?u.349869 β : Type ?u.349872 γ : Type ?u.349875 r : α → α → Prop s : β → β → Prop t : γ → γ → Prop o : Ordinal f : (a : Ordinal) → a < o → Ordinal a : Ordinal a✝ : Ordinal ⊢ (∀ (h : a✝ < o), f a✝ h < a) ↔ ∀ (h : a✝ < o), succ (f a✝ h) ≤ a
null
null
Mathlib/SetTheory/Ordinal/Arithmetic.lean
Ordinal.blsub_le_iff
[1805, 1]
[1808, 24]
simp_rw [succ_le_iff]
case h.e'_2.h.a α : Type ?u.349869 β : Type ?u.349872 γ : Type ?u.349875 r : α → α → Prop s : β → β → Prop t : γ → γ → Prop o : Ordinal f : (a : Ordinal) → a < o → Ordinal a : Ordinal a✝ : Ordinal ⊢ (∀ (h : a✝ < o), f a✝ h < a) ↔ ∀ (h : a✝ < o), succ (f a✝ h) ≤ a
no goals
null
null
Mathlib/MeasureTheory/Measure/MeasureSpace.lean
MeasureTheory.Measure.map_dirac
[2004, 1]
[2005, 72]
simp [hs, map_apply hf hs, hf hs, indicator_apply]
α : Type u_1 β : Type u_2 γ : Type ?u.329647 δ : Type ?u.329650 ι : Type ?u.329653 R : Type ?u.329656 R' : Type ?u.329659 m0 : MeasurableSpace α inst✝² : MeasurableSpace β inst✝¹ : MeasurableSpace γ μ μ₁ μ₂ μ₃ ν ν' ν₁ ν₂ : Measure α s✝ s' t : Set α inst✝ : MeasurableSpace α f : α → β hf : Measurable f a : α s : Set β hs : MeasurableSet s ⊢ ↑↑(map f (dirac a)) s = ↑↑(dirac (f a)) s
no goals
null
null
Mathlib/GroupTheory/Perm/List.lean
List.formPerm_apply_mem_eq_self_iff
[383, 1]
[394, 31]
obtain ⟨k, hk, rfl⟩ := nthLe_of_mem hx
α : Type u_1 β : Type ?u.813892 inst✝ : DecidableEq α l : List α x✝ : α hl : Nodup l x : α hx : x ∈ l ⊢ ↑(formPerm l) x = x ↔ length l ≤ 1
case intro.intro α : Type u_1 β : Type ?u.813892 inst✝ : DecidableEq α l : List α x : α hl : Nodup l k : ℕ hk : k < length l hx : nthLe l k hk ∈ l ⊢ ↑(formPerm l) (nthLe l k hk) = nthLe l k hk ↔ length l ≤ 1
null
null
Mathlib/GroupTheory/Perm/List.lean
List.formPerm_apply_mem_eq_self_iff
[383, 1]
[394, 31]
rw [formPerm_apply_nthLe _ hl, hl.nthLe_inj_iff]
case intro.intro α : Type u_1 β : Type ?u.813892 inst✝ : DecidableEq α l : List α x : α hl : Nodup l k : ℕ hk : k < length l hx : nthLe l k hk ∈ l ⊢ ↑(formPerm l) (nthLe l k hk) = nthLe l k hk ↔ length l ≤ 1
case intro.intro α : Type u_1 β : Type ?u.813892 inst✝ : DecidableEq α l : List α x : α hl : Nodup l k : ℕ hk : k < length l hx : nthLe l k hk ∈ l ⊢ (k + 1) % length l = k ↔ length l ≤ 1
null
null
Mathlib/GroupTheory/Perm/List.lean
List.formPerm_apply_mem_eq_self_iff
[383, 1]
[394, 31]
cases hn : l.length
case intro.intro α : Type u_1 β : Type ?u.813892 inst✝ : DecidableEq α l : List α x : α hl : Nodup l k : ℕ hk : k < length l hx : nthLe l k hk ∈ l ⊢ (k + 1) % length l = k ↔ length l ≤ 1
case intro.intro.zero α : Type u_1 β : Type ?u.813892 inst✝ : DecidableEq α l : List α x : α hl : Nodup l k : ℕ hk : k < length l hx : nthLe l k hk ∈ l hn : length l = Nat.zero ⊢ (k + 1) % Nat.zero = k ↔ Nat.zero ≤ 1 case intro.intro.succ α : Type u_1 β : Type ?u.813892 inst✝ : DecidableEq α l : List α x : α hl : Nodup l k : ℕ hk : k < length l hx : nthLe l k hk ∈ l n✝ : ℕ hn : length l = Nat.succ n✝ ⊢ (k + 1) % Nat.succ n✝ = k ↔ Nat.succ n✝ ≤ 1
null
null
Mathlib/GroupTheory/Perm/List.lean
List.formPerm_apply_mem_eq_self_iff
[383, 1]
[394, 31]
exact absurd k.zero_le (hk.trans_le hn.le).not_le
case intro.intro.zero α : Type u_1 β : Type ?u.813892 inst✝ : DecidableEq α l : List α x : α hl : Nodup l k : ℕ hk : k < length l hx : nthLe l k hk ∈ l hn : length l = Nat.zero ⊢ (k + 1) % Nat.zero = k ↔ Nat.zero ≤ 1
no goals
null
null
Mathlib/GroupTheory/Perm/List.lean
List.formPerm_apply_mem_eq_self_iff
[383, 1]
[394, 31]
rw [hn] at hk
case intro.intro.succ α : Type u_1 β : Type ?u.813892 inst✝ : DecidableEq α l : List α x : α hl : Nodup l k : ℕ hk : k < length l hx : nthLe l k hk ∈ l n✝ : ℕ hn : length l = Nat.succ n✝ ⊢ (k + 1) % Nat.succ n✝ = k ↔ Nat.succ n✝ ≤ 1
case intro.intro.succ α : Type u_1 β : Type ?u.813892 inst✝ : DecidableEq α l : List α x : α hl : Nodup l k : ℕ hk✝ : k < length l hx : nthLe l k hk✝ ∈ l n✝ : ℕ hk : k < Nat.succ n✝ hn : length l = Nat.succ n✝ ⊢ (k + 1) % Nat.succ n✝ = k ↔ Nat.succ n✝ ≤ 1
null
null
Mathlib/GroupTheory/Perm/List.lean
List.formPerm_apply_mem_eq_self_iff
[383, 1]
[394, 31]
cases' (Nat.le_of_lt_succ hk).eq_or_lt with hk' hk'
case intro.intro.succ α : Type u_1 β : Type ?u.813892 inst✝ : DecidableEq α l : List α x : α hl : Nodup l k : ℕ hk✝ : k < length l hx : nthLe l k hk✝ ∈ l n✝ : ℕ hk : k < Nat.succ n✝ hn : length l = Nat.succ n✝ ⊢ (k + 1) % Nat.succ n✝ = k ↔ Nat.succ n✝ ≤ 1
case intro.intro.succ.inl α : Type u_1 β : Type ?u.813892 inst✝ : DecidableEq α l : List α x : α hl : Nodup l k : ℕ hk✝ : k < length l hx : nthLe l k hk✝ ∈ l n✝ : ℕ hk : k < Nat.succ n✝ hn : length l = Nat.succ n✝ hk' : k = n✝ ⊢ (k + 1) % Nat.succ n✝ = k ↔ Nat.succ n✝ ≤ 1 case intro.intro.succ.inr α : Type u_1 β : Type ?u.813892 inst✝ : DecidableEq α l : List α x : α hl : Nodup l k : ℕ hk✝ : k < length l hx : nthLe l k hk✝ ∈ l n✝ : ℕ hk : k < Nat.succ n✝ hn : length l = Nat.succ n✝ hk' : k < n✝ ⊢ (k + 1) % Nat.succ n✝ = k ↔ Nat.succ n✝ ≤ 1
null
null
Mathlib/GroupTheory/Perm/List.lean
List.formPerm_apply_mem_eq_self_iff
[383, 1]
[394, 31]
simp [← hk', Nat.succ_le_succ_iff, eq_comm]
case intro.intro.succ.inl α : Type u_1 β : Type ?u.813892 inst✝ : DecidableEq α l : List α x : α hl : Nodup l k : ℕ hk✝ : k < length l hx : nthLe l k hk✝ ∈ l n✝ : ℕ hk : k < Nat.succ n✝ hn : length l = Nat.succ n✝ hk' : k = n✝ ⊢ (k + 1) % Nat.succ n✝ = k ↔ Nat.succ n✝ ≤ 1
no goals
null
null
Mathlib/GroupTheory/Perm/List.lean
List.formPerm_apply_mem_eq_self_iff
[383, 1]
[394, 31]
simpa [Nat.mod_eq_of_lt (Nat.succ_lt_succ hk'), Nat.succ_lt_succ_iff] using k.zero_le.trans_lt hk'
case intro.intro.succ.inr α : Type u_1 β : Type ?u.813892 inst✝ : DecidableEq α l : List α x : α hl : Nodup l k : ℕ hk✝ : k < length l hx : nthLe l k hk✝ ∈ l n✝ : ℕ hk : k < Nat.succ n✝ hn : length l = Nat.succ n✝ hk' : k < n✝ ⊢ (k + 1) % Nat.succ n✝ = k ↔ Nat.succ n✝ ≤ 1
no goals
null
null
Mathlib/Analysis/SpecialFunctions/Exp.lean
Real.isLittleO_exp_comp_exp_comp
[383, 1]
[386, 55]
simp only [isLittleO_iff_tendsto, exp_ne_zero, ← exp_sub, ← tendsto_neg_atTop_iff, false_imp_iff, imp_true_iff, tendsto_exp_comp_nhds_zero, neg_sub]
α : Type u_1 x y z : ℝ l : Filter α f g : α → ℝ ⊢ ((fun x => exp (f x)) =o[l] fun x => exp (g x)) ↔ Tendsto (fun x => g x - f x) l atTop
no goals
null
null
Mathlib/MeasureTheory/Function/Jacobian.lean
MeasureTheory.integral_image_eq_integral_abs_deriv_smul
[1251, 1]
[1256, 54]
simpa only [det_one_smulRight] using integral_image_eq_integral_abs_det_fderiv_smul volume hs (fun x hx => (hf' x hx).hasFDerivWithinAt) hf g
E : Type ?u.1055778 F : Type u_1 inst✝⁸ : NormedAddCommGroup E inst✝⁷ : NormedSpace ℝ E inst✝⁶ : FiniteDimensional ℝ E inst✝⁵ : NormedAddCommGroup F inst✝⁴ : NormedSpace ℝ F s✝ : Set E f✝ : E → E f'✝ : E → E →L[ℝ] E inst✝³ : MeasurableSpace E inst✝² : BorelSpace E μ : Measure E inst✝¹ : IsAddHaarMeasure μ s : Set ℝ f f' : ℝ → ℝ inst✝ : CompleteSpace F hs : MeasurableSet s hf' : ∀ (x : ℝ), x ∈ s → HasDerivWithinAt f (f' x) s x hf : InjOn f s g : ℝ → F ⊢ (∫ (x : ℝ) in f '' s, g x) = ∫ (x : ℝ) in s, abs (f' x) • g (f x)
no goals
null
null
Mathlib/Data/Num/Lemmas.lean
ZNum.add_one
[1170, 1]
[1173, 32]
cases p <;> rfl
α : Type ?u.723974 p : PosNum ⊢ neg p + 1 = succ (neg p)
no goals
null
null
Mathlib/MeasureTheory/Measure/MeasureSpace.lean
MeasureTheory.Measure.map_toOuterMeasure
[1234, 1]
[1238, 63]
rw [← trimmed, OuterMeasure.trim_eq_trim_iff]
α : Type u_1 β : Type u_2 γ : Type ?u.213751 δ : Type ?u.213754 ι : Type ?u.213757 R : Type ?u.213760 R' : Type ?u.213763 m0 : MeasurableSpace α inst✝¹ : MeasurableSpace β inst✝ : MeasurableSpace γ μ μ₁ μ₂ μ₃ ν ν' ν₁ ν₂ : Measure α s s' t : Set α f : α → β hf : AEMeasurable f ⊢ ↑(map f μ) = OuterMeasure.trim (↑(OuterMeasure.map f) ↑μ)
α : Type u_1 β : Type u_2 γ : Type ?u.213751 δ : Type ?u.213754 ι : Type ?u.213757 R : Type ?u.213760 R' : Type ?u.213763 m0 : MeasurableSpace α inst✝¹ : MeasurableSpace β inst✝ : MeasurableSpace γ μ μ₁ μ₂ μ₃ ν ν' ν₁ ν₂ : Measure α s s' t : Set α f : α → β hf : AEMeasurable f ⊢ ∀ (s : Set β), MeasurableSet s → ↑↑(map f μ) s = ↑(↑(OuterMeasure.map f) ↑μ) s
null
null
Mathlib/MeasureTheory/Measure/MeasureSpace.lean
MeasureTheory.Measure.map_toOuterMeasure
[1234, 1]
[1238, 63]
intro s hs
α : Type u_1 β : Type u_2 γ : Type ?u.213751 δ : Type ?u.213754 ι : Type ?u.213757 R : Type ?u.213760 R' : Type ?u.213763 m0 : MeasurableSpace α inst✝¹ : MeasurableSpace β inst✝ : MeasurableSpace γ μ μ₁ μ₂ μ₃ ν ν' ν₁ ν₂ : Measure α s s' t : Set α f : α → β hf : AEMeasurable f ⊢ ∀ (s : Set β), MeasurableSet s → ↑↑(map f μ) s = ↑(↑(OuterMeasure.map f) ↑μ) s
α : Type u_1 β : Type u_2 γ : Type ?u.213751 δ : Type ?u.213754 ι : Type ?u.213757 R : Type ?u.213760 R' : Type ?u.213763 m0 : MeasurableSpace α inst✝¹ : MeasurableSpace β inst✝ : MeasurableSpace γ μ μ₁ μ₂ μ₃ ν ν' ν₁ ν₂ : Measure α s✝ s' t : Set α f : α → β hf : AEMeasurable f s : Set β hs : MeasurableSet s ⊢ ↑↑(map f μ) s = ↑(↑(OuterMeasure.map f) ↑μ) s
null
null
Mathlib/MeasureTheory/Measure/MeasureSpace.lean
MeasureTheory.Measure.map_toOuterMeasure
[1234, 1]
[1238, 63]
rw [map_apply_of_aemeasurable hf hs, OuterMeasure.map_apply]
α : Type u_1 β : Type u_2 γ : Type ?u.213751 δ : Type ?u.213754 ι : Type ?u.213757 R : Type ?u.213760 R' : Type ?u.213763 m0 : MeasurableSpace α inst✝¹ : MeasurableSpace β inst✝ : MeasurableSpace γ μ μ₁ μ₂ μ₃ ν ν' ν₁ ν₂ : Measure α s✝ s' t : Set α f : α → β hf : AEMeasurable f s : Set β hs : MeasurableSet s ⊢ ↑↑(map f μ) s = ↑(↑(OuterMeasure.map f) ↑μ) s
no goals
null
null
Mathlib/RingTheory/Valuation/Basic.lean
Valuation.isEquiv_iff_val_eq_one
[450, 1]
[483, 27]
constructor
K : Type u_3 F : Type ?u.3253919 R : Type ?u.3253922 inst✝³ : DivisionRing K Γ₀ : Type u_1 Γ'₀ : Type u_2 Γ''₀ : Type ?u.3253934 inst✝² : LinearOrderedCommMonoidWithZero Γ''₀ inst✝¹ : LinearOrderedCommGroupWithZero Γ₀ inst✝ : LinearOrderedCommGroupWithZero Γ'₀ v : Valuation K Γ₀ v' : Valuation K Γ'₀ ⊢ IsEquiv v v' ↔ ∀ {x : K}, ↑v x = 1 ↔ ↑v' x = 1
case mp K : Type u_3 F : Type ?u.3253919 R : Type ?u.3253922 inst✝³ : DivisionRing K Γ₀ : Type u_1 Γ'₀ : Type u_2 Γ''₀ : Type ?u.3253934 inst✝² : LinearOrderedCommMonoidWithZero Γ''₀ inst✝¹ : LinearOrderedCommGroupWithZero Γ₀ inst✝ : LinearOrderedCommGroupWithZero Γ'₀ v : Valuation K Γ₀ v' : Valuation K Γ'₀ ⊢ IsEquiv v v' → ∀ {x : K}, ↑v x = 1 ↔ ↑v' x = 1 case mpr K : Type u_3 F : Type ?u.3253919 R : Type ?u.3253922 inst✝³ : DivisionRing K Γ₀ : Type u_1 Γ'₀ : Type u_2 Γ''₀ : Type ?u.3253934 inst✝² : LinearOrderedCommMonoidWithZero Γ''₀ inst✝¹ : LinearOrderedCommGroupWithZero Γ₀ inst✝ : LinearOrderedCommGroupWithZero Γ'₀ v : Valuation K Γ₀ v' : Valuation K Γ'₀ ⊢ (∀ {x : K}, ↑v x = 1 ↔ ↑v' x = 1) → IsEquiv v v'
null
null
Mathlib/RingTheory/Valuation/Basic.lean
Valuation.isEquiv_iff_val_eq_one
[450, 1]
[483, 27]
intro h x
case mp K : Type u_3 F : Type ?u.3253919 R : Type ?u.3253922 inst✝³ : DivisionRing K Γ₀ : Type u_1 Γ'₀ : Type u_2 Γ''₀ : Type ?u.3253934 inst✝² : LinearOrderedCommMonoidWithZero Γ''₀ inst✝¹ : LinearOrderedCommGroupWithZero Γ₀ inst✝ : LinearOrderedCommGroupWithZero Γ'₀ v : Valuation K Γ₀ v' : Valuation K Γ'₀ ⊢ IsEquiv v v' → ∀ {x : K}, ↑v x = 1 ↔ ↑v' x = 1
case mp K : Type u_3 F : Type ?u.3253919 R : Type ?u.3253922 inst✝³ : DivisionRing K Γ₀ : Type u_1 Γ'₀ : Type u_2 Γ''₀ : Type ?u.3253934 inst✝² : LinearOrderedCommMonoidWithZero Γ''₀ inst✝¹ : LinearOrderedCommGroupWithZero Γ₀ inst✝ : LinearOrderedCommGroupWithZero Γ'₀ v : Valuation K Γ₀ v' : Valuation K Γ'₀ h : IsEquiv v v' x : K ⊢ ↑v x = 1 ↔ ↑v' x = 1
null
null
Mathlib/RingTheory/Valuation/Basic.lean
Valuation.isEquiv_iff_val_eq_one
[450, 1]
[483, 27]
simpa using @IsEquiv.val_eq _ _ _ _ _ _ v v' h x 1
case mp K : Type u_3 F : Type ?u.3253919 R : Type ?u.3253922 inst✝³ : DivisionRing K Γ₀ : Type u_1 Γ'₀ : Type u_2 Γ''₀ : Type ?u.3253934 inst✝² : LinearOrderedCommMonoidWithZero Γ''₀ inst✝¹ : LinearOrderedCommGroupWithZero Γ₀ inst✝ : LinearOrderedCommGroupWithZero Γ'₀ v : Valuation K Γ₀ v' : Valuation K Γ'₀ h : IsEquiv v v' x : K ⊢ ↑v x = 1 ↔ ↑v' x = 1
no goals
null
null
Mathlib/RingTheory/Valuation/Basic.lean
Valuation.isEquiv_iff_val_eq_one
[450, 1]
[483, 27]
intro h
case mpr K : Type u_3 F : Type ?u.3253919 R : Type ?u.3253922 inst✝³ : DivisionRing K Γ₀ : Type u_1 Γ'₀ : Type u_2 Γ''₀ : Type ?u.3253934 inst✝² : LinearOrderedCommMonoidWithZero Γ''₀ inst✝¹ : LinearOrderedCommGroupWithZero Γ₀ inst✝ : LinearOrderedCommGroupWithZero Γ'₀ v : Valuation K Γ₀ v' : Valuation K Γ'₀ ⊢ (∀ {x : K}, ↑v x = 1 ↔ ↑v' x = 1) → IsEquiv v v'
case mpr K : Type u_3 F : Type ?u.3253919 R : Type ?u.3253922 inst✝³ : DivisionRing K Γ₀ : Type u_1 Γ'₀ : Type u_2 Γ''₀ : Type ?u.3253934 inst✝² : LinearOrderedCommMonoidWithZero Γ''₀ inst✝¹ : LinearOrderedCommGroupWithZero Γ₀ inst✝ : LinearOrderedCommGroupWithZero Γ'₀ v : Valuation K Γ₀ v' : Valuation K Γ'₀ h : ∀ {x : K}, ↑v x = 1 ↔ ↑v' x = 1 ⊢ IsEquiv v v'
null
null
Mathlib/RingTheory/Valuation/Basic.lean
Valuation.isEquiv_iff_val_eq_one
[450, 1]
[483, 27]
apply isEquiv_of_val_le_one
case mpr K : Type u_3 F : Type ?u.3253919 R : Type ?u.3253922 inst✝³ : DivisionRing K Γ₀ : Type u_1 Γ'₀ : Type u_2 Γ''₀ : Type ?u.3253934 inst✝² : LinearOrderedCommMonoidWithZero Γ''₀ inst✝¹ : LinearOrderedCommGroupWithZero Γ₀ inst✝ : LinearOrderedCommGroupWithZero Γ'₀ v : Valuation K Γ₀ v' : Valuation K Γ'₀ h : ∀ {x : K}, ↑v x = 1 ↔ ↑v' x = 1 ⊢ IsEquiv v v'
case mpr.h K : Type u_3 F : Type ?u.3253919 R : Type ?u.3253922 inst✝³ : DivisionRing K Γ₀ : Type u_1 Γ'₀ : Type u_2 Γ''₀ : Type ?u.3253934 inst✝² : LinearOrderedCommMonoidWithZero Γ''₀ inst✝¹ : LinearOrderedCommGroupWithZero Γ₀ inst✝ : LinearOrderedCommGroupWithZero Γ'₀ v : Valuation K Γ₀ v' : Valuation K Γ'₀ h : ∀ {x : K}, ↑v x = 1 ↔ ↑v' x = 1 ⊢ ∀ {x : K}, ↑v x ≤ 1 ↔ ↑v' x ≤ 1
null
null
Mathlib/RingTheory/Valuation/Basic.lean
Valuation.isEquiv_iff_val_eq_one
[450, 1]
[483, 27]
intro x
case mpr.h K : Type u_3 F : Type ?u.3253919 R : Type ?u.3253922 inst✝³ : DivisionRing K Γ₀ : Type u_1 Γ'₀ : Type u_2 Γ''₀ : Type ?u.3253934 inst✝² : LinearOrderedCommMonoidWithZero Γ''₀ inst✝¹ : LinearOrderedCommGroupWithZero Γ₀ inst✝ : LinearOrderedCommGroupWithZero Γ'₀ v : Valuation K Γ₀ v' : Valuation K Γ'₀ h : ∀ {x : K}, ↑v x = 1 ↔ ↑v' x = 1 ⊢ ∀ {x : K}, ↑v x ≤ 1 ↔ ↑v' x ≤ 1
case mpr.h K : Type u_3 F : Type ?u.3253919 R : Type ?u.3253922 inst✝³ : DivisionRing K Γ₀ : Type u_1 Γ'₀ : Type u_2 Γ''₀ : Type ?u.3253934 inst✝² : LinearOrderedCommMonoidWithZero Γ''₀ inst✝¹ : LinearOrderedCommGroupWithZero Γ₀ inst✝ : LinearOrderedCommGroupWithZero Γ'₀ v : Valuation K Γ₀ v' : Valuation K Γ'₀ h : ∀ {x : K}, ↑v x = 1 ↔ ↑v' x = 1 x : K ⊢ ↑v x ≤ 1 ↔ ↑v' x ≤ 1
null
null
Mathlib/RingTheory/Valuation/Basic.lean
Valuation.isEquiv_iff_val_eq_one
[450, 1]
[483, 27]
constructor
case mpr.h K : Type u_3 F : Type ?u.3253919 R : Type ?u.3253922 inst✝³ : DivisionRing K Γ₀ : Type u_1 Γ'₀ : Type u_2 Γ''₀ : Type ?u.3253934 inst✝² : LinearOrderedCommMonoidWithZero Γ''₀ inst✝¹ : LinearOrderedCommGroupWithZero Γ₀ inst✝ : LinearOrderedCommGroupWithZero Γ'₀ v : Valuation K Γ₀ v' : Valuation K Γ'₀ h : ∀ {x : K}, ↑v x = 1 ↔ ↑v' x = 1 x : K ⊢ ↑v x ≤ 1 ↔ ↑v' x ≤ 1
case mpr.h.mp K : Type u_3 F : Type ?u.3253919 R : Type ?u.3253922 inst✝³ : DivisionRing K Γ₀ : Type u_1 Γ'₀ : Type u_2 Γ''₀ : Type ?u.3253934 inst✝² : LinearOrderedCommMonoidWithZero Γ''₀ inst✝¹ : LinearOrderedCommGroupWithZero Γ₀ inst✝ : LinearOrderedCommGroupWithZero Γ'₀ v : Valuation K Γ₀ v' : Valuation K Γ'₀ h : ∀ {x : K}, ↑v x = 1 ↔ ↑v' x = 1 x : K ⊢ ↑v x ≤ 1 → ↑v' x ≤ 1 case mpr.h.mpr K : Type u_3 F : Type ?u.3253919 R : Type ?u.3253922 inst✝³ : DivisionRing K Γ₀ : Type u_1 Γ'₀ : Type u_2 Γ''₀ : Type ?u.3253934 inst✝² : LinearOrderedCommMonoidWithZero Γ''₀ inst✝¹ : LinearOrderedCommGroupWithZero Γ₀ inst✝ : LinearOrderedCommGroupWithZero Γ'₀ v : Valuation K Γ₀ v' : Valuation K Γ'₀ h : ∀ {x : K}, ↑v x = 1 ↔ ↑v' x = 1 x : K ⊢ ↑v' x ≤ 1 → ↑v x ≤ 1
null
null
Mathlib/RingTheory/Valuation/Basic.lean
Valuation.isEquiv_iff_val_eq_one
[450, 1]
[483, 27]
intro hx
case mpr.h.mp K : Type u_3 F : Type ?u.3253919 R : Type ?u.3253922 inst✝³ : DivisionRing K Γ₀ : Type u_1 Γ'₀ : Type u_2 Γ''₀ : Type ?u.3253934 inst✝² : LinearOrderedCommMonoidWithZero Γ''₀ inst✝¹ : LinearOrderedCommGroupWithZero Γ₀ inst✝ : LinearOrderedCommGroupWithZero Γ'₀ v : Valuation K Γ₀ v' : Valuation K Γ'₀ h : ∀ {x : K}, ↑v x = 1 ↔ ↑v' x = 1 x : K ⊢ ↑v x ≤ 1 → ↑v' x ≤ 1
case mpr.h.mp K : Type u_3 F : Type ?u.3253919 R : Type ?u.3253922 inst✝³ : DivisionRing K Γ₀ : Type u_1 Γ'₀ : Type u_2 Γ''₀ : Type ?u.3253934 inst✝² : LinearOrderedCommMonoidWithZero Γ''₀ inst✝¹ : LinearOrderedCommGroupWithZero Γ₀ inst✝ : LinearOrderedCommGroupWithZero Γ'₀ v : Valuation K Γ₀ v' : Valuation K Γ'₀ h : ∀ {x : K}, ↑v x = 1 ↔ ↑v' x = 1 x : K hx : ↑v x ≤ 1 ⊢ ↑v' x ≤ 1
null
null
Mathlib/RingTheory/Valuation/Basic.lean
Valuation.isEquiv_iff_val_eq_one
[450, 1]
[483, 27]
cases' lt_or_eq_of_le hx with hx' hx'
case mpr.h.mp K : Type u_3 F : Type ?u.3253919 R : Type ?u.3253922 inst✝³ : DivisionRing K Γ₀ : Type u_1 Γ'₀ : Type u_2 Γ''₀ : Type ?u.3253934 inst✝² : LinearOrderedCommMonoidWithZero Γ''₀ inst✝¹ : LinearOrderedCommGroupWithZero Γ₀ inst✝ : LinearOrderedCommGroupWithZero Γ'₀ v : Valuation K Γ₀ v' : Valuation K Γ'₀ h : ∀ {x : K}, ↑v x = 1 ↔ ↑v' x = 1 x : K hx : ↑v x ≤ 1 ⊢ ↑v' x ≤ 1
case mpr.h.mp.inl K : Type u_3 F : Type ?u.3253919 R : Type ?u.3253922 inst✝³ : DivisionRing K Γ₀ : Type u_1 Γ'₀ : Type u_2 Γ''₀ : Type ?u.3253934 inst✝² : LinearOrderedCommMonoidWithZero Γ''₀ inst✝¹ : LinearOrderedCommGroupWithZero Γ₀ inst✝ : LinearOrderedCommGroupWithZero Γ'₀ v : Valuation K Γ₀ v' : Valuation K Γ'₀ h : ∀ {x : K}, ↑v x = 1 ↔ ↑v' x = 1 x : K hx : ↑v x ≤ 1 hx' : ↑v x < 1 ⊢ ↑v' x ≤ 1 case mpr.h.mp.inr K : Type u_3 F : Type ?u.3253919 R : Type ?u.3253922 inst✝³ : DivisionRing K Γ₀ : Type u_1 Γ'₀ : Type u_2 Γ''₀ : Type ?u.3253934 inst✝² : LinearOrderedCommMonoidWithZero Γ''₀ inst✝¹ : LinearOrderedCommGroupWithZero Γ₀ inst✝ : LinearOrderedCommGroupWithZero Γ'₀ v : Valuation K Γ₀ v' : Valuation K Γ'₀ h : ∀ {x : K}, ↑v x = 1 ↔ ↑v' x = 1 x : K hx : ↑v x ≤ 1 hx' : ↑v x = 1 ⊢ ↑v' x ≤ 1
null
null
Mathlib/RingTheory/Valuation/Basic.lean
Valuation.isEquiv_iff_val_eq_one
[450, 1]
[483, 27]
have : v (1 + x) = 1 := by rw [← v.map_one] apply map_add_eq_of_lt_left simpa
case mpr.h.mp.inl K : Type u_3 F : Type ?u.3253919 R : Type ?u.3253922 inst✝³ : DivisionRing K Γ₀ : Type u_1 Γ'₀ : Type u_2 Γ''₀ : Type ?u.3253934 inst✝² : LinearOrderedCommMonoidWithZero Γ''₀ inst✝¹ : LinearOrderedCommGroupWithZero Γ₀ inst✝ : LinearOrderedCommGroupWithZero Γ'₀ v : Valuation K Γ₀ v' : Valuation K Γ'₀ h : ∀ {x : K}, ↑v x = 1 ↔ ↑v' x = 1 x : K hx : ↑v x ≤ 1 hx' : ↑v x < 1 ⊢ ↑v' x ≤ 1
case mpr.h.mp.inl K : Type u_3 F : Type ?u.3253919 R : Type ?u.3253922 inst✝³ : DivisionRing K Γ₀ : Type u_1 Γ'₀ : Type u_2 Γ''₀ : Type ?u.3253934 inst✝² : LinearOrderedCommMonoidWithZero Γ''₀ inst✝¹ : LinearOrderedCommGroupWithZero Γ₀ inst✝ : LinearOrderedCommGroupWithZero Γ'₀ v : Valuation K Γ₀ v' : Valuation K Γ'₀ h : ∀ {x : K}, ↑v x = 1 ↔ ↑v' x = 1 x : K hx : ↑v x ≤ 1 hx' : ↑v x < 1 this : ↑v (1 + x) = 1 ⊢ ↑v' x ≤ 1
null
null
Mathlib/RingTheory/Valuation/Basic.lean
Valuation.isEquiv_iff_val_eq_one
[450, 1]
[483, 27]
rw [h] at this
case mpr.h.mp.inl K : Type u_3 F : Type ?u.3253919 R : Type ?u.3253922 inst✝³ : DivisionRing K Γ₀ : Type u_1 Γ'₀ : Type u_2 Γ''₀ : Type ?u.3253934 inst✝² : LinearOrderedCommMonoidWithZero Γ''₀ inst✝¹ : LinearOrderedCommGroupWithZero Γ₀ inst✝ : LinearOrderedCommGroupWithZero Γ'₀ v : Valuation K Γ₀ v' : Valuation K Γ'₀ h : ∀ {x : K}, ↑v x = 1 ↔ ↑v' x = 1 x : K hx : ↑v x ≤ 1 hx' : ↑v x < 1 this : ↑v (1 + x) = 1 ⊢ ↑v' x ≤ 1
case mpr.h.mp.inl K : Type u_3 F : Type ?u.3253919 R : Type ?u.3253922 inst✝³ : DivisionRing K Γ₀ : Type u_1 Γ'₀ : Type u_2 Γ''₀ : Type ?u.3253934 inst✝² : LinearOrderedCommMonoidWithZero Γ''₀ inst✝¹ : LinearOrderedCommGroupWithZero Γ₀ inst✝ : LinearOrderedCommGroupWithZero Γ'₀ v : Valuation K Γ₀ v' : Valuation K Γ'₀ h : ∀ {x : K}, ↑v x = 1 ↔ ↑v' x = 1 x : K hx : ↑v x ≤ 1 hx' : ↑v x < 1 this : ↑v' (1 + x) = 1 ⊢ ↑v' x ≤ 1
null
null
Mathlib/RingTheory/Valuation/Basic.lean
Valuation.isEquiv_iff_val_eq_one
[450, 1]
[483, 27]
rw [show x = -1 + (1 + x) by simp]
case mpr.h.mp.inl K : Type u_3 F : Type ?u.3253919 R : Type ?u.3253922 inst✝³ : DivisionRing K Γ₀ : Type u_1 Γ'₀ : Type u_2 Γ''₀ : Type ?u.3253934 inst✝² : LinearOrderedCommMonoidWithZero Γ''₀ inst✝¹ : LinearOrderedCommGroupWithZero Γ₀ inst✝ : LinearOrderedCommGroupWithZero Γ'₀ v : Valuation K Γ₀ v' : Valuation K Γ'₀ h : ∀ {x : K}, ↑v x = 1 ↔ ↑v' x = 1 x : K hx : ↑v x ≤ 1 hx' : ↑v x < 1 this : ↑v' (1 + x) = 1 ⊢ ↑v' x ≤ 1
case mpr.h.mp.inl K : Type u_3 F : Type ?u.3253919 R : Type ?u.3253922 inst✝³ : DivisionRing K Γ₀ : Type u_1 Γ'₀ : Type u_2 Γ''₀ : Type ?u.3253934 inst✝² : LinearOrderedCommMonoidWithZero Γ''₀ inst✝¹ : LinearOrderedCommGroupWithZero Γ₀ inst✝ : LinearOrderedCommGroupWithZero Γ'₀ v : Valuation K Γ₀ v' : Valuation K Γ'₀ h : ∀ {x : K}, ↑v x = 1 ↔ ↑v' x = 1 x : K hx : ↑v x ≤ 1 hx' : ↑v x < 1 this : ↑v' (1 + x) = 1 ⊢ ↑v' (-1 + (1 + x)) ≤ 1
null
null
Mathlib/RingTheory/Valuation/Basic.lean
Valuation.isEquiv_iff_val_eq_one
[450, 1]
[483, 27]
refine' le_trans (v'.map_add _ _) _
case mpr.h.mp.inl K : Type u_3 F : Type ?u.3253919 R : Type ?u.3253922 inst✝³ : DivisionRing K Γ₀ : Type u_1 Γ'₀ : Type u_2 Γ''₀ : Type ?u.3253934 inst✝² : LinearOrderedCommMonoidWithZero Γ''₀ inst✝¹ : LinearOrderedCommGroupWithZero Γ₀ inst✝ : LinearOrderedCommGroupWithZero Γ'₀ v : Valuation K Γ₀ v' : Valuation K Γ'₀ h : ∀ {x : K}, ↑v x = 1 ↔ ↑v' x = 1 x : K hx : ↑v x ≤ 1 hx' : ↑v x < 1 this : ↑v' (1 + x) = 1 ⊢ ↑v' (-1 + (1 + x)) ≤ 1
case mpr.h.mp.inl K : Type u_3 F : Type ?u.3253919 R : Type ?u.3253922 inst✝³ : DivisionRing K Γ₀ : Type u_1 Γ'₀ : Type u_2 Γ''₀ : Type ?u.3253934 inst✝² : LinearOrderedCommMonoidWithZero Γ''₀ inst✝¹ : LinearOrderedCommGroupWithZero Γ₀ inst✝ : LinearOrderedCommGroupWithZero Γ'₀ v : Valuation K Γ₀ v' : Valuation K Γ'₀ h : ∀ {x : K}, ↑v x = 1 ↔ ↑v' x = 1 x : K hx : ↑v x ≤ 1 hx' : ↑v x < 1 this : ↑v' (1 + x) = 1 ⊢ max (↑v' (-1)) (↑v' (1 + x)) ≤ 1
null
null
Mathlib/RingTheory/Valuation/Basic.lean
Valuation.isEquiv_iff_val_eq_one
[450, 1]
[483, 27]
simp [this]
case mpr.h.mp.inl K : Type u_3 F : Type ?u.3253919 R : Type ?u.3253922 inst✝³ : DivisionRing K Γ₀ : Type u_1 Γ'₀ : Type u_2 Γ''₀ : Type ?u.3253934 inst✝² : LinearOrderedCommMonoidWithZero Γ''₀ inst✝¹ : LinearOrderedCommGroupWithZero Γ₀ inst✝ : LinearOrderedCommGroupWithZero Γ'₀ v : Valuation K Γ₀ v' : Valuation K Γ'₀ h : ∀ {x : K}, ↑v x = 1 ↔ ↑v' x = 1 x : K hx : ↑v x ≤ 1 hx' : ↑v x < 1 this : ↑v' (1 + x) = 1 ⊢ max (↑v' (-1)) (↑v' (1 + x)) ≤ 1
no goals
null
null
Mathlib/RingTheory/Valuation/Basic.lean
Valuation.isEquiv_iff_val_eq_one
[450, 1]
[483, 27]
rw [← v.map_one]
K : Type u_3 F : Type ?u.3253919 R : Type ?u.3253922 inst✝³ : DivisionRing K Γ₀ : Type u_1 Γ'₀ : Type u_2 Γ''₀ : Type ?u.3253934 inst✝² : LinearOrderedCommMonoidWithZero Γ''₀ inst✝¹ : LinearOrderedCommGroupWithZero Γ₀ inst✝ : LinearOrderedCommGroupWithZero Γ'₀ v : Valuation K Γ₀ v' : Valuation K Γ'₀ h : ∀ {x : K}, ↑v x = 1 ↔ ↑v' x = 1 x : K hx : ↑v x ≤ 1 hx' : ↑v x < 1 ⊢ ↑v (1 + x) = 1
K : Type u_3 F : Type ?u.3253919 R : Type ?u.3253922 inst✝³ : DivisionRing K Γ₀ : Type u_1 Γ'₀ : Type u_2 Γ''₀ : Type ?u.3253934 inst✝² : LinearOrderedCommMonoidWithZero Γ''₀ inst✝¹ : LinearOrderedCommGroupWithZero Γ₀ inst✝ : LinearOrderedCommGroupWithZero Γ'₀ v : Valuation K Γ₀ v' : Valuation K Γ'₀ h : ∀ {x : K}, ↑v x = 1 ↔ ↑v' x = 1 x : K hx : ↑v x ≤ 1 hx' : ↑v x < 1 ⊢ ↑v (1 + x) = ↑v 1