code
stringlengths
38
801k
repo_path
stringlengths
6
263
# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.14.4 # kernelspec: # display_name: Python 3 (ipykernel) # language: python # name: python3 # --- # # Data Preprocessing and Machine Learning with Scikit-Learn # + import numpy as np import pandas as pd from sklearn.impute import SimpleImputer from sklearn.pipeline import make_pipeline from sklearn.neighbors import KNeighborsClassifier from sklearn.preprocessing import MinMaxScaler, LabelEncoder, StandardScaler from sklearn.model_selection import train_test_split, GridSearchCV, PredefinedSplit # - PATH = '../data/iris.csv' # !ls '../data' # !wc -l {PATH} # !du -h {PATH} # !head -n 5 {PATH} # !tail -n 5 {PATH} # ## A. Loading Tabular Datasets from Text Files data_frame = pd.read_csv(filepath_or_buffer = PATH) data_frame.head() data_frame.info() # data frame information # + memory_series = data_frame.memory_usage(deep = True) / 1024 # show memory usage in KB display(memory_series) print(f'Total memory used: {memory_series.sum():.2f} KB') # - print(f'The data_frame data type is: {type(data_frame)}') print(f'The data_frame has {data_frame.shape[0]} rows and {data_frame.shape[1]} columns') print(f'The data_frame contains {data_frame.size} values (rows x columns)') print(f'The data_frame index is: {data_frame.index}') print(f'The data_frame columns are: {data_frame.columns.values}') # + class_map = { 'Iris-setosa': 0, 'Iris-versicolor': 1, 'Iris-virginica': 2 } data_frame['Classes'] = data_frame['Species'].map(class_map) # apply a dictionary mapping on a column display(data_frame.head(), data_frame.tail(), np.unique(data_frame['Classes'])) # + series = data_frame['Species'] display(series.head(n = 3), (series.index, series.dtype, series.shape, np.unique(series.values)), series.tail(n = 3)) # - data_frame.loc[[2, 1, 0], ['PetalLength[cm]', 'PetalWidth[cm]', 'SepalLength[cm]', 'SepalWidth[cm]', 'Species']] data_frame.iloc[[2, 1, 0], [3, 4, 1, 2, 5]] data_frame[['PetalLength[cm]', 'PetalWidth[cm]', 'Species']].head() data_frame[:5] data_frame = data_frame.drop('Id', axis = 1) # delete `Id` column data_frame.head() # ## B. Splitting a Dataset into Train, Validation, and Test Subsets # + indices = np.arange(data_frame.shape[0]) rng = np.random.RandomState(123) permuted_indices = rng.permutation(indices) permuted_indices # + train_size, validation_size = int(.65*data_frame.shape[0]), int(.15*data_frame.shape[0]) test_size = int(data_frame.shape[0] - (train_size + validation_size)) print(train_size, validation_size, test_size) # - train_indices = permuted_indices[:train_size] validation_indices = permuted_indices[train_size:train_size + validation_size] test_indices = permuted_indices[train_size + validation_size:] # + X, y = data_frame.drop(['Species', 'Classes'], axis = 1).values, data_frame['Classes'].values print(f'Features: {X.shape}') print(f'Classes: {y.shape}') # + X_train, X_valid, X_test = X[train_indices], X[validation_indices], X[test_indices] y_train, y_valid, y_test = y[train_indices], y[validation_indices], y[test_indices] print('Training set size: ', X_train.shape, ' -> Class proportions:', np.bincount(y_train)) print('Validation set size:', X_valid.shape, ' -> Class proportions:', np.bincount(y_valid)) print('Test set size:', X_test.shape, ' -> Class proportions:', np.bincount(y_test)) # - # ### B.1. Stratification # # Previously, we wrote our own code to shuffle and split a data set into training, validation, and test subsets, which had one considerable downside. # If we are working with small datasets and split it randomly into subsets, it will affect the class distribution in the samples - this is problematic since machine learning algorithms/models assume that training, validation, and test samples have been drawn from the same distributions to produce reliable models and estimates of the generalization performance. # # ![stratification](https://github.com/rasbt/stat479-machine-learning-fs19/raw/6d1f0c5f20cac88860b3e1bb4c318e3ee56783ac/05_preprocessing-and-sklearn/code/images/iris-subsampling.png) # The method of ensuring that the class label proportions are the same in each subset after splitting, we use an approach that is usually referred to as **stratification**. # Stratification is supported in `scikit-learn`'s `train_test_split` method if we pass the class label array to the `stratify` parameter as shown below. # + X_temp, X_test, y_temp, y_test = train_test_split(X, y, test_size = .15, shuffle = True, random_state = 123, stratify = y) X_train, X_valid, y_train, y_valid = train_test_split(X_temp, y_temp, test_size = .15, shuffle = True, random_state = 123, stratify = y_temp) print('Training set size: ', X_train.shape, ' -> Class proportions:', np.bincount(y_train)) print('Validation set size:', X_valid.shape, ' -> Class proportions:', np.bincount(y_valid)) print('Test set size:', X_test.shape, ' -> Class proportions:', np.bincount(y_test)) # - # ## C. Data Scaling # # Whether or not to scale features depends on the problem at hand and requires your judgement. # However, there are several algorithms (especially gradient-descent, etc.), which work much better (are more robust, numerically stable, and converge faster) if the data is centered and has a smaller range. # There are many different ways for scaling features; here, we only cover to of the most common "normalization" schemes: *min-max* scaling and *z-score* standardization. # ### C.1. Normalization - Min-Max Scaling # # Min-max scaling squashes the features into a `[0, 1]` range, which can be achieved via the following equation for a single input: # # $$ x^{[i]}_{norm} = \frac{x^{[i]}_{norm} - x_{min}}{x_{max} - x_{min}} $$ # + x = np.arange(6).astype(np.float16) display(f'Unnormalized vector: {x}') display(f'Normalized vector: {(x - x.min()) / (x.max() - x.min())}') # - # ### C.2 Standardization # # After standardizing a feature, it will have the properties of a standard normal distribution, that is, unit variance and zero mean $\mathcal{N}(\mu = 0, \sigma^2 = 1)$; however, this does not transform a feature from not following a normal distribution to a normal distributed one. # The formula for standardizing a feature is shown below, for a single data point $x^{[i]}$: # # $$ x^{[i]}_{standard} = \frac{x^{[i]} - \mu_x}{\sigma_x} $$ # + x = np.arange(6).astype(np.float16) display(f'Unnormalized vector: {x}') display(f'Standardized vector: {(x - x.mean()) / (x.std())}') # - # A concept that is very important though is how we use the estimated normalization parameters (e.g., mean and standard deviation in z-score standardization). # In particular, it is important that we re-use the parameters estimated from the training set to transfrom validation and test sets - re-estimating the parameters is a common "beginner-mistake". # + X_train_example, y_train_example = np.array([10, 20, 30]), np.array([0, 1, 0]) X_valid_example, y_valid_example = np.array([3, 12, 27]), np.array([0, 1, 0]) mu, sigma = X_train_example.mean(), X_train_example.std() minimum, maximum = X_train_example.min(), X_train_example.max() X_valid_example_scaled = (X_valid_example - minimum) / (maximum - minimum) X_valid_example_standardized = (X_valid_example - mu) / sigma # WRONG !!! X_valid = (X_valid - X_valid.mean()) / X_valid.std() print(f'Scaled: {X_valid_example_scaled}, Standardized: {X_valid_example_standardized}') # - # ## D. Scikit-Learn Transformer API # + min_max_scaler = MinMaxScaler() min_max_scaler.fit(X_train_example.reshape(-1, 1)) X_valid_example_scaled = min_max_scaler.transform(X_valid_example.reshape(-1, 1)).reshape(1, -1)[0] print(f'Scaled: {X_valid_example_scaled}') # + standardizer = StandardScaler() standardizer.fit(X_train_example.reshape(-1, 1)) X_valid_example_standardized = standardizer.transform(X_valid_example.reshape(-1, 1)).reshape(1, -1)[0] print(f'Standardized: {X_valid_example_standardized}') # - # ### D.1 Categorical Data # # When we preprocess a dataset as input to a machine learning algorithm, we have to be careful how we treat categorical variables. # There are two broad categories of categorical variables: **nominal** (no order implied) and **ordinal** (order implied). data_frame_1 = pd.DataFrame({'Color': ['green', 'red', 'blue'], 'Size': ['M', 'L', 'XXL'], 'Class': ['Class 1', 'Class 2', 'Class 2']}) data_frame_1.head() # - In the example above, `Size` would be an example of an ordinal variable; i.e., if the letters refer to T-shirt sizes, it would make sense to come up with an ordering like `M < L < XXL`. # # - Hence, we can assign increasing values to a ordinal values; however, the range and difference between categories depends on our domain knowledge and judgement. # + size_mapper = { 'M': 2, 'L': 3, 'XXL': 5 } data_frame_1['Size'] = data_frame_1['Size'].map(size_mapper) data_frame_1.head() # - # - Machine learning algorithms do not assume an ordering in the case of class labels. # # - Here, we can use the `LabelEncoder` from `scikit-learn` to convert class labels to integers as an alternative to using the `map` method. # + label_encoder = LabelEncoder() label_encoder.fit(data_frame_1['Class']) data_frame_1['ClassLabels'] = label_encoder.transform(data_frame_1['Class']) data_frame_1.head() # - # - Representing nominal variables properly is a bit more tricky. # # - We use "one-hot" encoding - we binarize a nominal variable, as shown below for the color variable (again, we do this because some ordering like `orange < red < blue` would not make sense in many applications). data_frame_1 = pd.get_dummies(data_frame_1, columns = ['Color']) data_frame_1.head() # - Note that executing the code above produced `3` new variables for `Color_*` each of which takes on binary values. # ### D.2 Missing Data # # There are many different ways for dealing with missing data. # The simplest approaches are removing entire columns or rows. # Another simple approach is to impute missing values via the feature means, medians, mode, etc. # There is no rule or best practice, and the choice of the approprite missing data imputation method depends on your judgement and domain knowledge. data_frame_2 = pd.DataFrame({'A': [1., 5., 10.], 'B': [2., 6., 11.], 'C': [3., np.nan, 12.], 'D': [4., 8., np.nan]}) data_frame_2.head() display(data_frame_2.isnull(), data_frame_2.isnull().sum()) display(data_frame_2.dropna(axis = 0), data_frame_2.dropna(axis = 1)) # drop rows, columns where there are missing values respectively # + imputer_mean = SimpleImputer(missing_values = np.nan, strategy = 'mean') imputer_median = SimpleImputer(missing_values = np.nan, strategy = 'median') imputer_mean.fit(data_frame_2['C'].values.reshape(-1, 1)) imputer_median.fit(data_frame_2['D'].values.reshape(-1, 1)) data_frame_2['C'] = imputer_mean.transform(data_frame_2['C'].values.reshape(-1, 1)) data_frame_2['D'] = imputer_median.transform(data_frame_2['D'].values.reshape(-1, 1)) data_frame_2.head() # - # ## E. Feature Transformation, Extraction, and Selection # # Scikit-learn pipelines are an extremely convenient and powerful concept. # Pipelines basically let us define a series of perprocessing steps together with fitting an estimator. # Pipelines will automatically take care of pitfalls like estimating feature scaling parameters from the training set and applying those to scale new data. # + pipeline = make_pipeline(StandardScaler(), KNeighborsClassifier(n_neighbors=3)) pipeline # + pipeline.fit(X = X_test, y = y_test) print(f'Predictions: {pipeline.predict(X = X_valid)}'), print(f'Score (accuracy): {pipeline.score(X = X_test, y = y_test)*100:.2f}%') # - # ### E.1 Intro Model Selection - Pipelines and Grid Search # # In machine learning practice, we often need to experiment with an machine learning algorithm's hyperparameters to find a good setting. # The process of tuning hyperparameters and comparing and selecting the resulting models is also called *model selection*. # Here, we are introducing the simplest way of performing model selection: using the *holdout method.* # In the holdout method, we split a dataset into 3 subsets: a training, a validation, and a test datatset. # To avoid biasing the estimate of the generalization performance, we only want to use the test dataset once, which is why we use the validation dataset for hyperparameter tuning (model selection). # Here, the validation dataset serves as an estimate of the generalization performance, too, but it becomes more biased than the final estimate on the test data because of its repeated re-use during model selection (think of "multiple hypothesis testing"). # # ![tuning-model](https://github.com/rasbt/stat479-machine-learning-fs19/raw/6d1f0c5f20cac88860b3e1bb4c318e3ee56783ac/05_preprocessing-and-sklearn/code/images/holdout-tuning.png) pipeline = make_pipeline(StandardScaler(), KNeighborsClassifier()) pipeline # + params = { 'kneighborsclassifier__n_neighbors': [1, 3, 5], 'kneighborsclassifier__p': [1, 2] } ps = PredefinedSplit(np.concatenate((np.full(shape = (X_train.shape[0],), fill_value = -1), np.zeros(shape = (X_valid.shape[0],))))) grid = GridSearchCV(estimator = pipeline, param_grid = params, cv = ps) grid.fit(X = np.vstack((X_train, X_valid)), y = np.hstack((y_train, y_valid))) # - grid.cv_results_ print(f'Best score: {grid.best_score_}') print(f'Best parameters: {grid.best_params_}') classifier = grid.best_estimator_ classifier.fit(X_train, y_train) print(f'Test accuracy: {(classifier.score(X_test, y_test)*100):.2f}%')
notebooks/03-data-preprocessing-and-machine-learning-with-sklearn.ipynb
# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.14.4 # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- # look at tools/set_up_magics.ipynb yandex_metrica_allowed = True ; get_ipython().run_cell('# one_liner_str\n\nget_ipython().run_cell_magic(\'javascript\', \'\', \n \'// setup cpp code highlighting\\n\'\n \'IPython.CodeCell.options_default.highlight_modes["text/x-c++src"] = {\\\'reg\\\':[/^%%cpp/]} ;\'\n \'IPython.CodeCell.options_default.highlight_modes["text/x-cmake"] = {\\\'reg\\\':[/^%%cmake/]} ;\'\n)\n\n# creating magics\nfrom IPython.core.magic import register_cell_magic, register_line_magic\nfrom IPython.display import display, Markdown, HTML\nimport argparse\nfrom subprocess import Popen, PIPE\nimport random\nimport sys\nimport os\nimport re\nimport signal\nimport shutil\nimport shlex\nimport glob\nimport time\n\n@register_cell_magic\ndef save_file(args_str, cell, line_comment_start="#"):\n parser = argparse.ArgumentParser()\n parser.add_argument("fname")\n parser.add_argument("--ejudge-style", action="store_true")\n args = parser.parse_args(args_str.split())\n \n cell = cell if cell[-1] == \'\\n\' or args.no_eof_newline else cell + "\\n"\n cmds = []\n with open(args.fname, "w") as f:\n f.write(line_comment_start + " %%cpp " + args_str + "\\n")\n for line in cell.split("\\n"):\n line_to_write = (line if not args.ejudge_style else line.rstrip()) + "\\n"\n if line.startswith("%"):\n run_prefix = "%run "\n if line.startswith(run_prefix):\n cmds.append(line[len(run_prefix):].strip())\n f.write(line_comment_start + " " + line_to_write)\n continue\n run_prefix = "%# "\n if line.startswith(run_prefix):\n f.write(line_comment_start + " " + line_to_write)\n continue\n raise Exception("Unknown %%save_file subcommand: \'%s\'" % line)\n else:\n f.write(line_to_write)\n f.write("" if not args.ejudge_style else line_comment_start + r" line without \\n")\n for cmd in cmds:\n display(Markdown("Run: `%s`" % cmd))\n get_ipython().system(cmd)\n\n@register_cell_magic\ndef cpp(fname, cell):\n save_file(fname, cell, "//")\n \n@register_cell_magic\ndef cmake(fname, cell):\n save_file(fname, cell, "#")\n\n@register_cell_magic\ndef asm(fname, cell):\n save_file(fname, cell, "//")\n \n@register_cell_magic\ndef makefile(fname, cell):\n assert not fname\n save_file("makefile", cell.replace(" " * 4, "\\t"))\n \n@register_line_magic\ndef p(line):\n line = line.strip() \n if line[0] == \'#\':\n display(Markdown(line[1:].strip()))\n else:\n try:\n expr, comment = line.split(" #")\n display(Markdown("`{} = {}` # {}".format(expr.strip(), eval(expr), comment.strip())))\n except:\n display(Markdown("{} = {}".format(line, eval(line))))\n \n \ndef show_log_file(file, return_html_string=False):\n obj = file.replace(\'.\', \'_\').replace(\'/\', \'_\') + "_obj"\n html_string = \'\'\'\n <!--MD_BEGIN_FILTER-->\n <script type=text/javascript>\n var entrance___OBJ__ = 0;\n var errors___OBJ__ = 0;\n function halt__OBJ__(elem, color)\n {\n elem.setAttribute("style", "font-size: 14px; background: " + color + "; padding: 10px; border: 3px; border-radius: 5px; color: white; "); \n }\n function refresh__OBJ__()\n {\n entrance___OBJ__ -= 1;\n if (entrance___OBJ__ < 0) {\n entrance___OBJ__ = 0;\n }\n var elem = document.getElementById("__OBJ__");\n if (elem) {\n var xmlhttp=new XMLHttpRequest();\n xmlhttp.onreadystatechange=function()\n {\n var elem = document.getElementById("__OBJ__");\n console.log(!!elem, xmlhttp.readyState, xmlhttp.status, entrance___OBJ__);\n if (elem && xmlhttp.readyState==4) {\n if (xmlhttp.status==200)\n {\n errors___OBJ__ = 0;\n if (!entrance___OBJ__) {\n if (elem.innerHTML != xmlhttp.responseText) {\n elem.innerHTML = xmlhttp.responseText;\n }\n if (elem.innerHTML.includes("Process finished.")) {\n halt__OBJ__(elem, "#333333");\n } else {\n entrance___OBJ__ += 1;\n console.log("req");\n window.setTimeout("refresh__OBJ__()", 300); \n }\n }\n return xmlhttp.responseText;\n } else {\n errors___OBJ__ += 1;\n if (!entrance___OBJ__) {\n if (errors___OBJ__ < 6) {\n entrance___OBJ__ += 1;\n console.log("req");\n window.setTimeout("refresh__OBJ__()", 300); \n } else {\n halt__OBJ__(elem, "#994444");\n }\n }\n }\n }\n }\n xmlhttp.open("GET", "__FILE__", true);\n xmlhttp.setRequestHeader("Cache-Control", "no-cache");\n xmlhttp.send(); \n }\n }\n \n if (!entrance___OBJ__) {\n entrance___OBJ__ += 1;\n refresh__OBJ__(); \n }\n </script>\n\n <p id="__OBJ__" style="font-size: 14px; background: #000000; padding: 10px; border: 3px; border-radius: 5px; color: white; ">\n </p>\n \n </font>\n <!--MD_END_FILTER-->\n <!--MD_FROM_FILE __FILE__.md -->\n \'\'\'.replace("__OBJ__", obj).replace("__FILE__", file)\n if return_html_string:\n return html_string\n display(HTML(html_string))\n\n \nclass TInteractiveLauncher:\n tmp_path = "./interactive_launcher_tmp"\n def __init__(self, cmd):\n try:\n os.mkdir(TInteractiveLauncher.tmp_path)\n except:\n pass\n name = str(random.randint(0, 1e18))\n self.inq_path = os.path.join(TInteractiveLauncher.tmp_path, name + ".inq")\n self.log_path = os.path.join(TInteractiveLauncher.tmp_path, name + ".log")\n \n os.mkfifo(self.inq_path)\n open(self.log_path, \'w\').close()\n open(self.log_path + ".md", \'w\').close()\n\n self.pid = os.fork()\n if self.pid == -1:\n print("Error")\n if self.pid == 0:\n exe_cands = glob.glob("../tools/launcher.py") + glob.glob("../../tools/launcher.py")\n assert(len(exe_cands) == 1)\n assert(os.execvp("python3", ["python3", exe_cands[0], "-l", self.log_path, "-i", self.inq_path, "-c", cmd]) == 0)\n self.inq_f = open(self.inq_path, "w")\n interactive_launcher_opened_set.add(self.pid)\n show_log_file(self.log_path)\n\n def write(self, s):\n s = s.encode()\n assert len(s) == os.write(self.inq_f.fileno(), s)\n \n def get_pid(self):\n n = 100\n for i in range(n):\n try:\n return int(re.findall(r"PID = (\\d+)", open(self.log_path).readline())[0])\n except:\n if i + 1 == n:\n raise\n time.sleep(0.1)\n \n def input_queue_path(self):\n return self.inq_path\n \n def wait_stop(self, timeout):\n for i in range(int(timeout * 10)):\n wpid, status = os.waitpid(self.pid, os.WNOHANG)\n if wpid != 0:\n return True\n time.sleep(0.1)\n return False\n \n def close(self, timeout=3):\n self.inq_f.close()\n if not self.wait_stop(timeout):\n os.kill(self.get_pid(), signal.SIGKILL)\n os.waitpid(self.pid, 0)\n os.remove(self.inq_path)\n # os.remove(self.log_path)\n self.inq_path = None\n self.log_path = None \n interactive_launcher_opened_set.remove(self.pid)\n self.pid = None\n \n @staticmethod\n def terminate_all():\n if "interactive_launcher_opened_set" not in globals():\n globals()["interactive_launcher_opened_set"] = set()\n global interactive_launcher_opened_set\n for pid in interactive_launcher_opened_set:\n print("Terminate pid=" + str(pid), file=sys.stderr)\n os.kill(pid, signal.SIGKILL)\n os.waitpid(pid, 0)\n interactive_launcher_opened_set = set()\n if os.path.exists(TInteractiveLauncher.tmp_path):\n shutil.rmtree(TInteractiveLauncher.tmp_path)\n \nTInteractiveLauncher.terminate_all()\n \nyandex_metrica_allowed = bool(globals().get("yandex_metrica_allowed", False))\nif yandex_metrica_allowed:\n display(HTML(\'\'\'<!-- YANDEX_METRICA_BEGIN -->\n <script type="text/javascript" >\n (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)};\n m[i].l=1*new Date();k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)})\n (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym");\n\n ym(59260609, "init", {\n clickmap:true,\n trackLinks:true,\n accurateTrackBounce:true\n });\n </script>\n <noscript><div><img src="https://mc.yandex.ru/watch/59260609" style="position:absolute; left:-9999px;" alt="" /></div></noscript>\n <!-- YANDEX_METRICA_END -->\'\'\'))\n\ndef make_oneliner():\n html_text = \'("В этот ноутбук встроен код Яндекс Метрики для сбора статистики использований. Если вы не хотите, чтобы по вам собиралась статистика, исправьте: yandex_metrica_allowed = False" if yandex_metrica_allowed else "")\'\n html_text += \' + "<""!-- MAGICS_SETUP_PRINTING_END -->"\'\n return \'\'.join([\n \'# look at tools/set_up_magics.ipynb\\n\',\n \'yandex_metrica_allowed = True ; get_ipython().run_cell(%s);\' % repr(one_liner_str),\n \'display(HTML(%s))\' % html_text,\n \' #\'\'MAGICS_SETUP_END\'\n ])\n \n\n');display(HTML(("В этот ноутбук встроен код Яндекс Метрики для сбора статистики использований. Если вы не хотите, чтобы по вам собиралась статистика, исправьте: yandex_metrica_allowed = False" if yandex_metrica_allowed else "") + "<""!-- MAGICS_SETUP_PRINTING_END -->")) #MAGICS_SETUP_END # # FUSE # # <table width=100% > <tr> # <th width=15%> <b>Видео с семинара &rarr; </b> </th> # <th> # <a href="https://www.youtube.com/watch?v=__RuADlaK0k&list=PLjzMm8llUm4CL-_HgDrmoSTZBCdUk5HQL&index=5"><img src="video.jpg" width="320" # height="160" align="left" alt="Видео с семинара"></a> # </th> # <th> </th> # </table> # # Сегодня в программе: # * <a href="#fs_posix" style="color:#856024"> Работа с файловой системой POSIX </a> # * <a href="#opendir" style="color:#856024"> Просмотр содержимого директории c фильтрацией по регулярке </a> # * <a href="#glob" style="color:#856024"> glob или история о том, как вы пишете *.cpp в терминале </a> # * <a href="#ftw" style="color:#856024"> Рекурсивный просмотр. Правда с помощью устаревшей функции. </a> # * <a href="#fs_stat" style="color:#856024"> Информация о файловой системе. </a> # # * <a href="#fusepy" style="color:#856024"> Примонтируем json как read-only файловую систему. Python + fusepy </a> # * <a href="#fuse_с" style="color:#856024"> Файловая система с одним файлом на C </a> # # # https://ru.wikipedia.org/wiki/FUSE_(модуль_ядра) # # ![FUSE](https://upload.wikimedia.org/wikipedia/commons/thumb/0/08/FUSE_structure.svg/490px-FUSE_structure.svg.png) # # # https://habr.com/ru/post/315654/ - на питоне # # https://engineering.facile.it/blog/eng/write-filesystem-fuse/ # # # # # [<NAME>](https://github.com/victor-yacovlev/mipt-diht-caos/tree/master/practice/fuse) # # # <a href="#hw" style="color:#856024">Комментарии к ДЗ</a> # # # ## <a name="fs_posix"></a> Работа с файловой системой в POSIX # # # # # Заголовочные файлы, в которых есть функции для работы с файловой системой ([wiki-источник](https://en.wikipedia.org/wiki/C_POSIX_library)): # # | Header file | Description | # |-------------|-------------| # | `<fcntl.h>` | File opening, locking and other operations | # | `<fnmatch.h>` | Filename matching | # | `<ftw.h>` | File tree traversal | # | `<sys/stat.h>` | File information (stat et al.) | # | `<sys/statvfs.h>` | File System information | # | `<dirent.h>` | Directories opening, traversing | # # # read, write, stat, fstat - это все было раньше # # ## <a name="opendir"></a> Просмотр содержимого директории с фильтрацией по регулярке # + # %%cpp traverse_dir.c # %run gcc -Wall -Werror -fsanitize=address traverse_dir.c -lpthread -o traverse_dir.exe # %run ./traverse_dir.exe .. #include <stdio.h> #include <dirent.h> #include <assert.h> #include <fnmatch.h> int main(int argc, char** argv) { assert(argc == 2); const char* dir_path = argv[1]; DIR *pDir = opendir(dir_path); if (pDir == NULL) { fprintf(stderr, "Cannot open directory '%s'\n", dir_path); return 1; } int limit = 4; for (struct dirent *pDirent; (pDirent = readdir(pDir)) != NULL && limit > 0;) { // + Регулярочки if (fnmatch("sem2*", pDirent->d_name, 0) == 0) { printf("%s\n", pDirent->d_name); --limit; } } closedir(pDir); return 0; } # - # ## <a name="glob"></a> glob или история о том, как вы пишете *.cpp в терминале # # Это не совсем про файловую систему, но тем не менее интересно # # glob хорошо сочетается с exec, пример тут http://man7.org/linux/man-pages/man3/glob.3.html # + # %%cpp traverse_dir.c # %run gcc -Wall -Werror -fsanitize=address traverse_dir.c -lpthread -o traverse_dir.exe # %run ./traverse_dir.exe .. | head -n 5 #include <stdio.h> #include <assert.h> #include <glob.h> int main() { glob_t globbuf = {0}; glob("*.c", GLOB_DOOFFS, NULL, &globbuf); glob("../*/*.c", GLOB_DOOFFS | GLOB_APPEND, NULL, &globbuf); for (char** path = globbuf.gl_pathv; *path; ++path) { printf("%s\n", *path);; } globfree(&globbuf); return 0; } # - import glob glob.glob("../*/*.c")[:4] # ## <a name="ftw"></a> Рекурсивный просмотр. Правда с помощью устаревшей функции. # + # %%cpp traverse_dir_2.c # %run gcc -Wall -Werror -fsanitize=address traverse_dir_2.c -lpthread -o traverse_dir_2.exe # %run ./traverse_dir_2.exe .. #include <stdio.h> #include <ftw.h> #include <assert.h> int limit = 4; int callback(const char* fpath, const struct stat* sb, int typeflag) { printf("%s %ld\n", fpath, sb->st_size); return (--limit == 0); } int main(int argc, char** argv) { assert(argc == 2); const char* dir_path = argv[1]; ftw(dir_path, callback, 0); return 0; } # - # ## <a name="fs_stat"></a> Информация о файловой системе # + # %%cpp fs_stat.c # %run gcc -Wall -Werror -fsanitize=address fs_stat.c -lpthread -o fs_stat.exe # %run ./fs_stat.exe .. # %run ./fs_stat.exe /dev #include <stdio.h> #include <sys/statvfs.h> #include <assert.h> int main(int argc, char** argv) { assert(argc == 2); const char* dir_path = argv[1]; struct statvfs stat; statvfs(dir_path, &stat); printf("Free 1K-blocks %lu/%lu", stat.f_bavail * stat.f_bsize / 1024, stat.f_blocks * stat.f_bsize / 1024); return 0; } # - # !df # # FUSE # # Важные опции # * `-f` - запуск в синхронном режиме (без этой опции будет создан демон, а сама программа почти сразу завершится) # * `-s` - запуск в однопоточном режиме. # # В этом месте что-нибудь про демонизацию стоит расскзать, наверное. # ## <a name="fusepy"></a> Python + fusepy # # Установк: `pip2 install --user fusepy` # + # %%writefile fuse_json.py from __future__ import print_function import logging import os import json from errno import EIO, ENOENT, EROFS from stat import S_IFDIR, S_IFREG from sys import argv, exit from time import time from fuse import FUSE, FuseOSError, LoggingMixIn, Operations NOW = time() DIR_ATTRS = dict(st_mode=(S_IFDIR | 0o555), st_nlink=2) FILE_ATTRS = dict(st_mode=(S_IFREG | 0o444), st_nlink=1) def find_json_path(j, path): for part in path.split('/'): if len(part) > 0: if part == '__json__': return json.dumps(j) if part not in j: return None j = j[part] return j class FuseOperations(LoggingMixIn, Operations): def __init__(self, j): self.j = j self.fd = 0 def open(self, path, flags): self.fd += 1 return self.fd def read(self, path, size, offset, fh): logging.debug("Read %r %r %r", path, size, offset) node = find_json_path(self.j, path) if not isinstance(node, str): raise FuseOSError(EIO) return node[offset:offset + size] def readdir(self, path, fh): logging.debug("Readdir %r %r", path, fh) node = find_json_path(self.j, path) if node is None: raise FuseOSError(EROFS) return ['.', '..', '__json__'] + list(node.keys()) def getattr(self, path, fh=None): node = find_json_path(self.j, path) if isinstance(node, dict): return DIR_ATTRS elif isinstance(node, str): attrs = dict(FILE_ATTRS) attrs["st_size"] = len(node) return attrs else: raise FuseOSError(ENOENT) if __name__ == '__main__': logging.basicConfig(level=logging.INFO) j = { 'a': 'b', 'c': { 'c1': '234' } } FUSE(FuseOperations(j), "./fuse_json", foreground=True) # - # !mkdir fuse_json 2>&1 | grep -v "File exists" || true a = TInteractiveLauncher("python2 fuse_json.py example.txt fuse_json 2>&1") # !ls fuse_json # !cat fuse_json/c/__json__ # + language="bash" # echo -n -e "\n" > new_line # exec 2>&1 ; set -o xtrace # # tree fuse_json --noreport # # cat fuse_json/__json__ new_line # cat fuse_json/a new_line # cat fuse_json/c/__json__ new_line # - # !fusermount -u fuse_json a.close() # `sudo apt install tree` # + language="bash" # tree fuse_json --noreport # - # ## <a name="fuse_c"></a> fuse + с # # Надо поставить `libfuse-dev`. Возможно, для этого нужно подаунгрейдить `libfuse2`. # # Да, обращаю внимание, что у Яковлева в ридинге используется fuse3. Но что-то его пока не очень тривиально поставить в Ubuntu 16.04 (за час не справился) и мне не хочется ненароком себе что-нибудь сломать в системе :) # # fuse3 немного отличается по API. В примере я поддержал компилируемость и с fuse2, и с fuse3. # Для установки на Ubuntu может оказаться полезным [Официальный репозиторий Fuse](https://github.com/libfuse/libfuse). # В нём указаны шаги установки. Правда, может понадобиться поставить ещё [*Ninja*](https://ninja-build.org/) и [*Meson*](https://mesonbuild.com/). # + # %%cmake with_fuse_1.cmake cmake_minimum_required(VERSION 3.15) project(hw23 CXX) set(CMAKE_CXX_STANDARD 11) set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -fsanitize=address -fsanitize=leak -g") set(FUSE_PATH "downloads/fuse") add_executable(hw23 task.cpp) target_include_directories(hw23 PUBLIC ${FUSE_PATH}/include) # -I/usr/include/fuse3 target_link_libraries(hw23 ${FUSE_PATH}/build/lib/libfuse3.so) # -lfuse3 -lpthread # - # Либо, если следовать скрипту ниже, то может помочь такой CMake # + # %%cmake with_fuse_2.cmake cmake_minimum_required(VERSION 2.7) find_package(PkgConfig REQUIRED) pkg_check_modules(FUSE REQUIRED fuse3) include_directories(${FUSE_INCLUDE_DIRS}) add_executable(main main.c) target_link_libraries(main ${FUSE_LIBRARIES}) # - # Код во многом взят отсюда: https://github.com/fntlnz/fuse-example # !mkdir fuse_c_example 2>&1 | grep -v "File exists" || true # !mkdir fuse_c_example/CMake 2>&1 | grep -v "File exists" || true # + # %%cmake fuse_c_example/CMake/FindFUSE.cmake # copied from https://github.com/fntlnz/fuse-example/blob/master/CMake/FindFUSE.cmake # Кстати, вот пример модуля CMake который умеет искать библиотеку IF (FUSE_INCLUDE_DIR) SET (FUSE_FIND_QUIETLY TRUE) ENDIF (FUSE_INCLUDE_DIR) FIND_PATH (FUSE_INCLUDE_DIR fuse.h /usr/local/include/osxfuse /usr/local/include /usr/include) if (APPLE) SET(FUSE_NAMES libosxfuse.dylib fuse) else (APPLE) SET(FUSE_NAMES fuse) endif (APPLE) FIND_LIBRARY(FUSE_LIBRARIES NAMES ${FUSE_NAMES} PATHS /lib64 /lib /usr/lib64 /usr/lib /usr/local/lib64 /usr/local/lib /usr/lib/x86_64-linux-gnu) include ("FindPackageHandleStandardArgs") find_package_handle_standard_args ("FUSE" DEFAULT_MSG FUSE_INCLUDE_DIR FUSE_LIBRARIES) mark_as_advanced (FUSE_INCLUDE_DIR FUSE_LIBRARIES) # + # %%cmake fuse_c_example/CMakeLists.txt # copied from https://github.com/fntlnz/fuse-example/blob/master/CMakeLists.txt cmake_minimum_required(VERSION 3.0 FATAL_ERROR) project(fuse_c_example) set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -D_FILE_OFFSET_BITS=64 -DFUSE2 -g -fsanitize=address") set(CMAKE_MODULE_PATH "${CMAKE_CURRENT_SOURCE_DIR}/CMake" ${CMAKE_MODULE_PATH}) # Говорим, где еще можно искать модули find_package(FUSE REQUIRED) include_directories(${FUSE_INCLUDE_DIR}) add_executable(fuse-example main.c) target_link_libraries(fuse-example ${FUSE_LIBRARIES}) # - # --- # Чтобы пользователь мог пользоваться вашим модулем Fuse, нужно добавить основные операции для взаимодействия. Они реализуются в виде колбэков, которые Fuse будет вызывать при выполнении определённого действия пользователем. # В C/C++ это реализуется путём заполнения структурки [fuse_operations](http://libfuse.github.io/doxygen/structfuse__operations.html). # --- # + # %%cpp fuse_c_example/main.c # %run mkdir fuse_c_example/build 2>&1 | grep -v "File exists" # %run cd fuse_c_example/build && cmake .. > /dev/null && make #include <string.h> #include <errno.h> #include <stddef.h> #include <stdlib.h> #include <stdio.h> #include <unistd.h> #ifdef FUSE2 #define FUSE_USE_VERSION 26 #else #define FUSE_USE_VERSION 30 #endif #include <fuse.h> typedef struct { char* filename; char* filecontent; char* log; } my_options_t; my_options_t my_options; void print_cwd() { if (my_options.log) { FILE* f = fopen(my_options.log, "at"); char buffer[1000]; getcwd(buffer, sizeof(buffer)); fprintf(f, "Current working dir: %s\n", buffer); fclose(f); } } // Самый важный колбэк. Вызывается первым при любом другом колбэке. // Заполняет структуру stbuf. int getattr_callback(const char* path, struct stat* stbuf #ifndef FUSE2 , struct fuse_file_info *fi #endif ) { #ifndef FUSE2 (void) fi; #endif if (strcmp(path, "/") == 0) { // st_mode(тип файла, а также права доступа) // st_nlink(количество ссылок на файл) // Интересный факт, что количество ссылок у папки = 2 + n, где n -- количество подпапок. *stbuf = (struct stat) {.st_nlink = 2, .st_mode = S_IFDIR | 0755}; return 0; } if (path[0] == '/' && strcmp(path + 1, my_options.filename) == 0) { *stbuf = (struct stat) {.st_nlink = 2, .st_mode = S_IFREG | 0777, .st_size = (__off_t)strlen(my_options.filecontent)}; return 0; } return -ENOENT; // При ошибке, вместо errno возвращаем (-errno). } // filler(buf, filename, stat, flags) -- заполняет информацию о файле и вставляет её в buf. int readdir_callback(const char* path, void* buf, fuse_fill_dir_t filler, off_t offset, struct fuse_file_info* fi #ifndef FUSE2 , enum fuse_readdir_flags flags #endif ) { #ifdef FUSE2 (void) offset; (void) fi; filler(buf, ".", NULL, 0); filler(buf, "..", NULL, 0); filler(buf, my_options.filename, NULL, 0); #else (void) offset; (void) fi; (void)flags; filler(buf, ".", NULL, 0, (enum fuse_fill_dir_flags)0); filler(buf, "..", NULL, 0, (enum fuse_fill_dir_flags)0); filler(buf, my_options.filename, NULL, 0, (enum fuse_fill_dir_flags)0); #endif return 0; } // Вызывается после успешной обработки open. int read_callback(const char* path, char* buf, size_t size, off_t offset, struct fuse_file_info* fi) { // "/" if (strcmp(path, "/") == 0) { return -EISDIR; } print_cwd(); // "/my_file" if (path[0] == '/' && strcmp(path + 1, my_options.filename) == 0) { size_t len = strlen(my_options.filecontent); if (offset >= len) { return 0; } size = (offset + size <= len) ? size : (len - offset); memcpy(buf, my_options.filecontent + offset, size); return size; } return -EIO; } // Структура с колбэками. struct fuse_operations fuse_example_operations = { .getattr = getattr_callback, .read = read_callback, .readdir = readdir_callback, }; struct fuse_opt opt_specs[] = { { "--file-name %s", offsetof(my_options_t, filename), 0 }, { "--file-content %s", offsetof(my_options_t, filecontent), 0 }, { "--log %s", offsetof(my_options_t, log), 0 }, FUSE_OPT_END // Структурка заполненная нулями. В общем такой типичный zero-terminated массив }; int main(int argc, char** argv) { struct fuse_args args = FUSE_ARGS_INIT(argc, argv); /* * Если не хотите создавать структурку с данными, а нужно только распарсить одну строку, * То можно вторым аргументом передать char*. * Тогда в opt_specs это можно указать как {"--src %s", 0, 0} * * ВАЖНО: заполняемые поля должны быть инициализированы нулями. * (В противном случае fuse3 может делать что-то очень плохое. TODO) */ my_options.filename = "asdfrgt"; fuse_opt_parse(&args, &my_options, opt_specs, NULL); print_cwd(); int ret = fuse_main(args.argc, args.argv, &fuse_example_operations, NULL); fuse_opt_free_args(&args); return ret; } # - # Запустим в синхронном режиме (программа работает, пока `fusermount -u` не будет сделан) # !mkdir fuse_c 2>&1 | grep -v "File exists" || true # !fusermount -u fuse_c # !truncate --size=0 err.txt || true a = TInteractiveLauncher("fuse_c_example/build/fuse-example fuse_c -f " "--file-name my_file --file-content 'My file content\n' --log `pwd`/err.txt") # + language="bash" # exec 2>&1 ; set -o xtrace # # tree fuse_c --noreport # # cat fuse_c/my_file # - # !fusermount -u fuse_c a.close() # + language="bash" # tree fuse_c --noreport # cat err.txt # - # А теперь в асинхронном (в режиме демона, в параметрах запуска нет `-f`): # !mkdir fuse_c 2>&1 | grep -v "File exists" || true # !fusermount -u fuse_c # !truncate --size=0 err.txt || true a = TInteractiveLauncher("fuse_c_example/build/fuse-example fuse_c " "--file-name my_file --file-content 'My file content\n' --log `pwd`/err.txt") # + language="bash" # exec 2>&1 ; set -o xtrace # # tree fuse_c --noreport # # cat fuse_c/my_file # # fusermount -u fuse_c # - a.close() # + language="bash" # tree fuse_c --noreport # cat err.txt # - # Парам-пам-пам, изменилась текущая директория! Учиытвайте это в ДЗ # # <a name="hw"></a> Комментарии к ДЗ # # * Пример входных данных в первой задаче: # # ``` # 2 # a.txt 3 # b.txt 5 # # AaAbBbBb # ``` # # * В ejudge fuse запускается без опции `-f` поэтому текущая директория будет меняться и относительные пути могут становиться невалидными. Рекомендую: `man 3 realpath` # 1) В задачах на fuse основная цель -- реализовать 3 метода(read, readdir, getattr). # Для этого может понадобиться сохранить свои данные в какую-то глобальную переменную и доставать их оттуда в вызовах колбэка. # # 2) В 23-1 Чтобы не усложнять себе жизнь, можно ходить по папкам при каждом вызове. # Тогда задача сводится к поиску конкретного файла в каждой папке из условия и выборе из этих файлов последнего. # Либо, в случае readdir, можно вызвать opendir/readdir/closedir к каждому пути и сформировать словарик из уникальных файлов в папках.
caos_2019-2020/sem26-fs-fuse/fs_fuse.ipynb
# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.14.4 # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- # # L8 - Inheritance # --- # As in any object-oriented programming language, you can inherit from other classes when creating a new one. # For example, imagine you want to create both a `Fish` class and a `Bird` class. Both of these classes will probably have many things in common, since both are animals. # Instead of duplicating methods and/or attributes in both of these classes, it's preferable to create a base class with all the things that they'll share, and then inherit from this class when creating the `Fish` and `Bird` classes. class Animal: def __init__(self, name): self.name = name self.is_sleeping = False def sleep(self): self.is_sleeping = True def wake_up(self): self.is_sleeping = False def talk(self): return # Now we can create the other classes by inheriting from the `Animal` class. # ### 8.1 Syntax class Fish(Animal): def __init__(self, name): super().__init__(name) def swim(self): print(self.name, 'is swimming') class Bird(Animal): def __init__(self, name, max_speed): super().__init__(name) self.max_speed = max_speed def fly(self): print(self.name, 'is flying') def talk(self): print('cheep cheep!') # --- # ### 8.2 Creating and using `Fish` # And now we can create objects from these classes. myTuna = Fish('Darold') # Darold will have the attributes and methods that are common to all `Animal`s. myTuna.name myTuna.is_sleeping myTuna.talk() myTuna.sleep() myTuna.is_sleeping myTuna.wake_up() myTuna.is_sleeping # And also everything that's specific to `Fish`. myTuna.swim() # --- # ### 8.3 Creating and using `Bird`s # Creating a member of the `Bird` class is almost the same, but we also require a second positional argument. myCanary = Bird('Quinn', 100) # Just like before, Quinn has all attributes and methods that `Animal`s have. myCanary.sleep() print(myCanary.is_sleeping) myCanary.wake_up() print(myCanary.is_sleeping) # But one of them behaves differently: myCanary.talk() # And Quinn also has everything from `Bird`s as well. myCanary.fly() # --- # But obviously, `Bird`s don't have access to methods/attributes from `Fish`es. # myCanary.swim() # Neither `Fish`es have access to methods/attributes from `Bird`s. myTuna.fly() myTuna.max_speed # --- # Finally, inheritance can also be used for providing users of your code with a "template" class. # # This is enables users to modify the behavior of your code, but without breaking the rest of it (and without having to know exactly how everything works under the hood). # # One great example of this is how [we create our own Neural Network layers in Keras](https://keras.io/layers/writing-your-own-keras-layers/). We'll talk more about this during the DL course. # ---
Python Crash Course/Module 1 - Core Language/L8 Python.ipynb
# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.14.4 # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- # # Recommendations with IBM # # In this notebook, you will be putting your recommendation skills to use on real data from the IBM Watson Studio platform. # # # You may either submit your notebook through the workspace here, or you may work from your local machine and submit through the next page. Either way assure that your code passes the project [RUBRIC](https://review.udacity.com/#!/rubrics/2322/view). **Please save regularly.** # # By following the table of contents, you will build out a number of different methods for making recommendations that can be used for different situations. # # # ## Table of Contents # # I. [Exploratory Data Analysis](#Exploratory-Data-Analysis)<br> # II. [Rank Based Recommendations](#Rank)<br> # III. [User-User Based Collaborative Filtering](#User-User)<br> # IV. [Content Based Recommendations (EXTRA - NOT REQUIRED)](#Content-Recs)<br> # V. [Matrix Factorization](#Matrix-Fact)<br> # VI. [Extras & Concluding](#conclusions) # # At the end of the notebook, you will find directions for how to submit your work. Let's get started by importing the necessary libraries and reading in the data. # + import pandas as pd import numpy as np import matplotlib.pyplot as plt import project_tests as t import pickle import seaborn as sns # %matplotlib inline # - df = pd.read_csv('data/user-item-interactions.csv') df_content = pd.read_csv('data/articles_community.csv') del df['Unnamed: 0'] del df_content['Unnamed: 0'] # Show df to get an idea of the data df.head() # Show df_content to get an idea of the data df_content.head() # ### <a class="anchor" id="Exploratory-Data-Analysis">Part I : Exploratory Data Analysis</a> # # Use the dictionary and cells below to provide some insight into the descriptive statistics of the data. # # `1.` What is the distribution of how many articles a user interacts with in the dataset? Provide a visual and descriptive statistics to assist with giving a look at the number of times each user interacts with an article. sort_interactions_count_per_user = df.groupby(['email'])['article_id'].count().sort_values(ascending=False) sort_interactions_count_per_user.median(),sort_interactions_count_per_user.max() # + # Fill in the median and maximum number of user_article interactios below median_val = 3 # 50% of individuals interact with ____ number of articles or fewer. max_views_by_user = 364 # The maximum number of user-article interactions by any 1 user is ______. # - # `2.` Explore and remove duplicate articles from the **df_content** dataframe. # Find and explore duplicate articles article_count = df_content.groupby('article_id')['article_id'].count().sort_values(ascending=False) duplicate_articles=article_count[article_count>1] duplicate_articles df_content[df_content['article_id'].isin(duplicate_articles.index.values)].sort_values(by='article_id') print("before removing duplicates {}".format(len(df_content))) # Remove any rows that have the same article_id - only keep the first df_content = df_content.drop_duplicates(subset=['article_id'], keep='first', inplace=False) print("after removing duplicates {}".format(len(df_content))) # `3.` Use the cells below to find: # # **a.** The number of unique articles that have an interaction with a user. # **b.** The number of unique articles in the dataset (whether they have any interactions or not).<br> # **c.** The number of unique users in the dataset. (excluding null values) <br> # **d.** The number of user-article interactions in the dataset. df['article_id'].nunique() df_content['article_id'].nunique() df['email'].nunique() len(df) unique_articles = 714 # The number of unique articles that have at least one interaction total_articles = 1051 # The number of unique articles on the IBM platform unique_users = 5148 # The number of unique users user_article_interactions = 45993# The number of user-article interactions # `4.` Use the cells below to find the most viewed **article_id**, as well as how often it was viewed. After talking to the company leaders, the `email_mapper` function was deemed a reasonable way to map users to ids. There were a small number of null values, and it was found that all of these null values likely belonged to a single user (which is how they are stored using the function below). df.groupby('article_id')['email'].count().sort_values(ascending=False) most_viewed_article_id = '1429.0' # The most viewed article in the dataset as a string with one value following the decimal max_views = 937 # The most viewed article in the dataset was viewed how many times? # + ## No need to change the code here - this will be helpful for later parts of the notebook # Run this cell to map the user email to a user_id column and remove the email column def email_mapper(): coded_dict = dict() cter = 1 email_encoded = [] for val in df['email']: if val not in coded_dict: coded_dict[val] = cter cter+=1 email_encoded.append(coded_dict[val]) return email_encoded email_encoded = email_mapper() del df['email'] df['user_id'] = email_encoded # show header df.head() # + ## If you stored all your results in the variable names above, ## you shouldn't need to change anything in this cell sol_1_dict = { '`50% of individuals have _____ or fewer interactions.`': median_val, '`The total number of user-article interactions in the dataset is ______.`': user_article_interactions, '`The maximum number of user-article interactions by any 1 user is ______.`': max_views_by_user, '`The most viewed article in the dataset was viewed _____ times.`': max_views, '`The article_id of the most viewed article is ______.`': most_viewed_article_id, '`The number of unique articles that have at least 1 rating ______.`': unique_articles, '`The number of unique users in the dataset is ______`': unique_users, '`The number of unique articles on the IBM platform`': total_articles } # Test your dictionary against the solution t.sol_1_test(sol_1_dict) # - # ### <a class="anchor" id="Rank">Part II: Rank-Based Recommendations</a> # # Unlike in the earlier lessons, we don't actually have ratings for whether a user liked an article or not. We only know that a user has interacted with an article. In these cases, the popularity of an article can really only be based on how often an article was interacted with. # # `1.` Fill in the function below to return the **n** top articles ordered with most interactions as the top. Test your function using the tests below. def get_top_articles(n, df=df): ''' INPUT: n - (int) the number of top articles to return df - (pandas dataframe) df as defined at the top of the notebook OUTPUT: top_articles - (list) A list of the top 'n' article titles ''' # Your code here temp = df.groupby('article_id')['user_id'].count().sort_values(ascending=False) temp = temp.iloc[0:n].index.values df_temp = df[df['article_id'].isin(temp)][['article_id','title']] df_temp = df_temp.drop_duplicates(subset=['article_id'],keep="first",inplace=False) top_articles = list(df_temp['title']) return top_articles # Return the top article titles from df (not df_content) def get_top_article_ids(n, df=df): ''' INPUT: n - (int) the number of top articles to return df - (pandas dataframe) df as defined at the top of the notebook OUTPUT: top_articles - (list) A list of the top 'n' article titles ''' # Your code here temp = df.groupby('article_id')['user_id'].count().sort_values(ascending=False) temp = temp.iloc[0:n].index.values top_articles = list(temp) return top_articles # Return the top article ids print(get_top_articles(10)) print(get_top_article_ids(10)) # + # Test your function by returning the top 5, 10, and 20 articles top_5 = get_top_articles(5) top_10 = get_top_articles(10) top_20 = get_top_articles(20) # Test each of your three lists from above t.sol_2_test(get_top_articles) # - # ### <a class="anchor" id="User-User">Part III: User-User Based Collaborative Filtering</a> # # # `1.` Use the function below to reformat the **df** dataframe to be shaped with users as the rows and articles as the columns. # # * Each **user** should only appear in each **row** once. # # # * Each **article** should only show up in one **column**. # # # * **If a user has interacted with an article, then place a 1 where the user-row meets for that article-column**. It does not matter how many times a user has interacted with the article, all entries where a user has interacted with an article should be a 1. # # # * **If a user has not interacted with an item, then place a zero where the user-row meets for that article-column**. # # Use the tests to make sure the basic structure of your matrix matches what is expected by the solution. # + # create the user-article matrix with 1's and 0's def create_user_item_matrix(df): ''' INPUT: df - pandas dataframe with article_id, title, user_id columns OUTPUT: user_item - user item matrix Description: Return a matrix with user ids as rows and article ids on the columns with 1 values where a user interacted with an article and a 0 otherwise ''' # Fill in the function here temp = df.groupby(['user_id','article_id'])['user_id'].count().unstack() temp[temp>1] = 1 temp = temp.fillna(0) user_item = temp return user_item # return the user_item matrix user_item = create_user_item_matrix(df) # - ## Tests: You should just need to run this cell. Don't change the code. assert user_item.shape[0] == 5149, "Oops! The number of users in the user-article matrix doesn't look right." assert user_item.shape[1] == 714, "Oops! The number of articles in the user-article matrix doesn't look right." assert user_item.sum(axis=1)[1] == 36, "Oops! The number of articles seen by user 1 doesn't look right." print("You have passed our quick tests! Please proceed!") # `2.` Complete the function below which should take a user_id and provide an ordered list of the most similar users to that user (from most similar to least similar). The returned result should not contain the provided user_id, as we know that each user is similar to him/herself. Because the results for each user here are binary, it (perhaps) makes sense to compute similarity as the dot product of two users. # # Use the tests to test your function. def get_user_similar_users(user_id, user_item=user_item): # compute similarity of each user to the provided user transposed_users_items = user_item.T given_user_items = user_item.loc[user_id] similarity_matrix = given_user_items.dot(transposed_users_items) # sort by similarity similarity_matrix = similarity_matrix[similarity_matrix.index != user_id] similarity_matrix = similarity_matrix.sort_values(ascending=False) return similarity_matrix def find_similar_users(user_id, user_item=user_item): ''' INPUT: user_id - (int) a user_id user_item - (pandas dataframe) matrix of users by articles: 1's when a user has interacted with an article, 0 otherwise OUTPUT: similar_users - (list) an ordered list where the closest users (largest dot product users) are listed first Description: Computes the similarity of every pair of users based on the dot product Returns an ordered ''' similar_user_similarity = get_user_similar_users(user_id, user_item=user_item) most_similar_users = list(similar_user_similarity.index.values) return most_similar_users # return a list of the users in order from most to least similar # Do a spot check of your function print("The 10 most similar users to user 1 are: {}".format(find_similar_users(1)[:10])) print("The 5 most similar users to user 3933 are: {}".format(find_similar_users(3933)[:5])) print("The 3 most similar users to user 46 are: {}".format(find_similar_users(46)[:3])) # `3.` Now that you have a function that provides the most similar users to each user, you will want to use these users to find articles you can recommend. Complete the functions below to return the articles you would recommend to each user. def get_article_names(article_ids, df=df): ''' INPUT: article_ids - (list) a list of article ids df - (pandas dataframe) df as defined at the top of the notebook OUTPUT: article_names - (list) a list of article names associated with the list of article ids (this is identified by the title column) ''' # Your code here article_ids = [int(float(i)) for i in article_ids] unique_article_names = df[['article_id','title']].drop_duplicates(subset=['article_id'],keep="first",inplace=False) temp = unique_article_names.set_index('article_id') temp_result = temp.loc[article_ids,'title'].values article_names = temp_result return article_names # Return the article names associated with list of article ids def get_user_articles(user_id, user_item=user_item): ''' INPUT: user_id - (int) a user id user_item - (pandas dataframe) matrix of users by articles: 1's when a user has interacted with an article, 0 otherwise OUTPUT: article_ids - (list) a list of the article ids seen by the user article_names - (list) a list of article names associated with the list of article ids (this is identified by the doc_full_name column in df_content) Description: Provides a list of the article_ids and article titles that have been seen by a user ''' # Your code here user_articles = user_item.loc[user_id] article_ids = user_articles[user_articles>0].index.values.astype('str') article_names = get_article_names(article_ids) return article_ids, article_names # return the ids and names def Diff(list1, list2): return (list(set(list1) - set(list2))) def append_unseen_article_from_similar_user(articles_id_list,user_id,neighbor_id): this_user_articles_ids,_ = get_user_articles(user_id) other_user_articles_ids,_ = get_user_articles(neighbor_id) recommended_articles = Diff(other_user_articles_ids, this_user_articles_ids) articles_id_list.extend(recommended_articles) return articles_id_list def user_user_recs(user_id, m=10): ''' INPUT: user_id - (int) a user id m - (int) the number of recommendations you want for the user OUTPUT: recs - (list) a list of recommendations for the user Description: Loops through the users based on closeness to the input user_id For each user - finds articles the user hasn't seen before and provides them as recs Does this until m recommendations are found Notes: Users who are the same closeness are chosen arbitrarily as the 'next' user For the user where the number of recommended articles starts below m and ends exceeding m, the last items are chosen arbitrarily ''' # Your code here similar_users = find_similar_users(user_id) recommendations = [] for other_user in similar_users: recommendations = append_unseen_article_from_similar_user(recommendations,user_id,other_user) if len(recommendations)>m: break recs = recommendations[0:m] return recs # return your recommendations for this user_id # + active="" # # Your code here # similar_users = find_similar_users(user_id) # this_user_articles_ids,_ = get_user_articles(user_id) # recommendations = [] # for other_user in similar_users: # recommendations = append_unseen_article_from_similar_user(recommendations,user_id,neighbor_id) # other_user_articles_ids,_ = get_user_articles(other_user) # recommended_articles = Diff(other_user_articles_ids, this_user_articles_ids) # recommendations.extend(recommended_articles) # if len(recommendations)>m: break # recs = recommendations[0:m] # # - # Check Results get_article_names(user_user_recs(1, 10)) # Return 10 recommendations for user 1 # Test your functions here - No need to change this code - just run this cell assert set(get_article_names(['1024.0', '1176.0', '1305.0', '1314.0', '1422.0', '1427.0'])) == set(['using deep learning to reconstruct high-resolution audio', 'build a python app on the streaming analytics service', 'gosales transactions for naive bayes model', 'healthcare python streaming application demo', 'use r dataframes & ibm watson natural language understanding', 'use xgboost, scikit-learn & ibm watson machine learning apis']), "Oops! Your the get_article_names function doesn't work quite how we expect." assert set(get_article_names(['1320.0', '232.0', '844.0'])) == set(['housing (2015): united states demographic measures','self-service data preparation with ibm data refinery','use the cloudant-spark connector in python notebook']), "Oops! Your the get_article_names function doesn't work quite how we expect." assert set(get_user_articles(20)[0]) == set(['1320.0', '232.0', '844.0']) assert set(get_user_articles(20)[1]) == set(['housing (2015): united states demographic measures', 'self-service data preparation with ibm data refinery','use the cloudant-spark connector in python notebook']) assert set(get_user_articles(2)[0]) == set(['1024.0', '1176.0', '1305.0', '1314.0', '1422.0', '1427.0']) assert set(get_user_articles(2)[1]) == set(['using deep learning to reconstruct high-resolution audio', 'build a python app on the streaming analytics service', 'gosales transactions for naive bayes model', 'healthcare python streaming application demo', 'use r dataframes & ibm watson natural language understanding', 'use xgboost, scikit-learn & ibm watson machine learning apis']) print("If this is all you see, you passed all of our tests! Nice job!") # `4.` Now we are going to improve the consistency of the **user_user_recs** function from above. # # * Instead of arbitrarily choosing when we obtain users who are all the same closeness to a given user - choose the users that have the most total article interactions before choosing those with fewer article interactions. # # # * Instead of arbitrarily choosing articles from the user where the number of recommended articles starts below m and ends exceeding m, choose articles with the articles with the most total interactions before choosing those with fewer total interactions. This ranking should be what would be obtained from the **top_articles** function you wrote earlier. def get_users_total_interactions(user_ids,df=df): all_user_interaction_count = df.groupby('user_id')['article_id'].count() subset_interaction_count = all_user_interaction_count.loc[user_ids] return subset_interaction_count def get_top_sorted_users(user_id, df=df, user_item=user_item): ''' INPUT: user_id - (int) df - (pandas dataframe) df as defined at the top of the notebook user_item - (pandas dataframe) matrix of users by articles: 1's when a user has interacted with an article, 0 otherwise OUTPUT: neighbors_df - (pandas dataframe) a dataframe with: neighbor_id - is a neighbor user_id similarity - measure of the similarity of each user to the provided user_id num_interactions - the number of articles viewed by the user - if a u Other Details - sort the neighbors_df by the similarity and then by number of interactions where highest of each is higher in the dataframe ''' # Your code here similar_users_similarity = get_user_similar_users(user_id, user_item=user_item) similar_user_interaction_count = get_users_total_interactions(similar_users_similarity.index.values,df=df) neighbors_df = similar_users_similarity.to_frame().join(similar_user_interaction_count) neighbors_df.columns = ['similarity','num_interactions'] neighbors_df = neighbors_df.sort_values(by=['similarity','num_interactions'],ascending=False) neighbors_df.index = neighbors_df.index.rename('neighbor_id') return neighbors_df # Return the dataframe specified in the doc_string def sort_articles_by_interaction_count(articles_ids,df=df): articles_ids = [int(float(i)) for i in articles_ids] article_interactions = df.groupby('article_id')['user_id'].count() article_interactions = article_interactions.loc[articles_ids].sort_values(ascending=False) return article_interactions.index.values.astype(float).astype(str) def user_user_recs_part2(user_id, m=10): ''' INPUT: user_id - (int) a user id m - (int) the number of recommendations you want for the user OUTPUT: recs - (list) a list of recommendations for the user by article id rec_names - (list) a list of recommendations for the user by article title Description: Loops through the users based on closeness to the input user_id For each user - finds articles the user hasn't seen before and provides them as recs Does this until m recommendations are found Notes: * Choose the users that have the most total article interactions before choosing those with fewer article interactions. * Choose articles with the articles with the most total interactions before choosing those with fewer total interactions. ''' # Your code here similar_users = get_top_sorted_users(user_id).index.values recommendations = [] for other_user in similar_users: recommendations = append_unseen_article_from_similar_user(recommendations,user_id,other_user) if len(recommendations)>m:break recommendations = sort_articles_by_interaction_count(recommendations,df=df) recommendations = recommendations[0:m] recs = recommendations rec_names = get_article_names(recommendations) return recs, rec_names # Quick spot check - don't change this code - just use it to test your functions rec_ids, rec_names = user_user_recs_part2(20, 10) print("The top 10 recommendations for user 20 are the following article ids:") print(rec_ids) print() print("The top 10 recommendations for user 20 are the following article names:") print(rec_names) # `5.` Use your functions from above to correctly fill in the solutions to the dictionary below. Then test your dictionary against the solution. Provide the code you need to answer each following the comments below. # + ### Tests with a dictionary of results user1_most_sim = get_top_sorted_users(1).index.values[0] # Find the user that is most similar to user 1 user131_10th_sim = get_top_sorted_users(131).index.values[9]# Find the 10th most similar user to user 131 # + ## Dictionary Test Here sol_5_dict = { 'The user that is most similar to user 1.': user1_most_sim, 'The user that is the 10th most similar to user 131': user131_10th_sim, } t.sol_5_test(sol_5_dict) # - # `6.` If we were given a new user, which of the above functions would you be able to use to make recommendations? Explain. Can you think of a better way we might make recommendations? Use the cell below to explain a better method for new users. # Since the new user will have no recorded interactions in the system, it would not make any sense to find similar users to him; hence, no collaborative filtered recommendations can be made. # # The best way to go about this situation is to recommend the most popular articles for the new user (by total number of interactions with the articles). # `7.` Using your existing functions, provide the top 10 recommended articles you would provide for the a new user below. You can test your function against our thoughts to make sure we are all on the same page with how we might make a recommendation. def get_most_popular_articles(m=10,df=df): article_interactions = df.groupby('article_id')['user_id'].count() article_interactions = article_interactions.sort_values(ascending=False) recommendations = article_interactions.iloc[:10] recommendations = recommendations.index.values.astype(float).astype(str) return recommendations # + new_user = '0.0' # What would your recommendations be for this new user '0.0'? As a new user, they have no observed articles. # Provide a list of the top 10 article ids you would give to new_user_recs = get_most_popular_articles(10) # Your recommendations here # + assert set(new_user_recs) == set(['1314.0','1429.0','1293.0','1427.0','1162.0','1364.0','1304.0','1170.0','1431.0','1330.0']), "Oops! It makes sense that in this case we would want to recommend the most popular articles, because we don't know anything about these users." print("That's right! Nice job!") # - # ### <a class="anchor" id="Matrix-Fact">Part V: Matrix Factorization</a> # # In this part of the notebook, you will build use matrix factorization to make article recommendations to the users on the IBM Watson Studio platform. # # `1.` You should have already created a **user_item** matrix above in **question 1** of **Part III** above. This first question here will just require that you run the cells to get things set up for the rest of **Part V** of the notebook. # Load the matrix here user_item_matrix = pd.read_pickle('user_item_matrix.p') # quick look at the matrix user_item_matrix.head() # `2.` In this situation, you can use Singular Value Decomposition from [numpy](https://docs.scipy.org/doc/numpy-1.14.0/reference/generated/numpy.linalg.svd.html) on the user-item matrix. Use the cell to perform SVD, and explain why this is different than in the lesson. # + # Perform SVD on the User-Item Matrix Here u, s, vt = np.linalg.svd(user_item_matrix)# use the built in to get the three matrices # - print("U.shape =",u.shape) print("S.shape =",s.shape) print("Vt.shape =",vt.shape) # Since our user_item_matrix has no missing values (it shows 1 if at least a single interaction exists or 0 otherwise), we don't have to use FunkSVD (which is needed when the matrix has missing values). We can go ahead and use the standard SVD function with no worries. # `3.` Now for the tricky part, how do we choose the number of latent features to use? Running the below cell, you can see that as the number of latent features increases, we obtain a lower error rate on making predictions for the 1 and 0 values in the user-item matrix. Run the cell below to get an idea of how the accuracy improves as we increase the number of latent features. # + num_latent_feats = np.arange(10,700+10,20) sum_errs = [] for k in num_latent_feats: # restructure with k latent features s_new, u_new, vt_new = np.diag(s[:k]), u[:, :k], vt[:k, :] # take dot product user_item_est = np.around(np.dot(np.dot(u_new, s_new), vt_new)) # compute error for each prediction to actual value diffs = np.subtract(user_item_matrix, user_item_est) # total errors and keep track of them err = np.sum(np.sum(np.abs(diffs))) sum_errs.append(err) plt.plot(num_latent_feats, 1 - np.array(sum_errs)/df.shape[0]); plt.xlabel('Number of Latent Features'); plt.ylabel('Accuracy'); plt.title('Accuracy vs. Number of Latent Features'); # - # `4.` From the above, we can't really be sure how many features to use, because simply having a better way to predict the 1's and 0's of the matrix doesn't exactly give us an indication of if we are able to make good recommendations. Instead, we might split our dataset into a training and test set of data, as shown in the cell below. # # Use the code from question 3 to understand the impact on accuracy of the training and test sets of data with different numbers of latent features. Using the split below: # # * How many users can we make predictions for in the test set? # * How many users are we not able to make predictions for because of the cold start problem? # * How many articles can we make predictions for in the test set? # * How many articles are we not able to make predictions for because of the cold start problem? user_item_test = create_user_item_matrix(df) # + df_train = df.head(40000) df_test = df.tail(5993) def create_test_and_train_user_item(df_train, df_test): ''' INPUT: df_train - training dataframe df_test - test dataframe OUTPUT: user_item_train - a user-item matrix of the training dataframe (unique users for each row and unique articles for each column) user_item_test - a user-item matrix of the testing dataframe (unique users for each row and unique articles for each column) test_idx - all of the test user ids test_arts - all of the test article ids ''' # Your code here user_item_train = create_user_item_matrix(df_train) # this is the user_item matrix for the training dataset #train_idx = user_item_train.index.values # this is the list of users in the training dataset #train_arts = user_item_train.columns.values # this is the list of articles in the training dataset user_item_test = create_user_item_matrix(df_test) # this is the user_item matrix for the testing dataset test_idx = user_item_test.index.values # this is the list of users in the testing dataset test_arts = user_item_test.columns.values # this is the list of articles in the testing dataset return user_item_train, user_item_test, test_idx, test_arts user_item_train, user_item_test, test_idx, test_arts = create_test_and_train_user_item(df_train, df_test) # - # these users are the only users available across both training and testing datasets # these are the only users for which we will be able to make predictions in testing len(np.intersect1d(test_idx,user_item_train.index.values)) # these test users are not in the training dataset;hence, we cannot make predictions for them in the testing process len(test_idx)-len(np.intersect1d(test_idx,user_item_train.index.values)) # these articles are the only articles available across both training and testing datasets # these are the only articles for which we will be able to make predictions in testing len(np.intersect1d(test_arts,user_item_train.columns.values)) # these test articles are not in the training dataset;hence, we cannot make predictions for them in the testing process len(test_arts)-len(np.intersect1d(test_arts,user_item_train.columns.values)) # + # Replace the values in the dictionary below a = 662 b = 574 c = 20 d = 0 sol_4_dict = { 'How many users can we make predictions for in the test set?':c, 'How many users in the test set are we not able to make predictions for because of the cold start problem?':a, 'How many movies can we make predictions for in the test set?':b, 'How many movies in the test set are we not able to make predictions for because of the cold start problem?':d } t.sol_4_test(sol_4_dict) # - # `5.` Now use the **user_item_train** dataset from above to find U, S, and V transpose using SVD. Then find the subset of rows in the **user_item_test** dataset that you can predict using this matrix decomposition with different numbers of latent features to see how many features makes sense to keep based on the accuracy on the test data. This will require combining what was done in questions `2` - `4`. # # Use the cells below to explore how well SVD works towards making predictions for recommendations on the test data. # + # Use these cells to see how well you can use the training # decomposition to predict on test data # - def u_s_vt_dot_product(u,s,vt): return np.around(np.dot(np.dot(u, s),vt)) def slice_by_k_features(u,s,vt,k): u_new = u[:, :k] s_new = np.diag(s[:k]) vt_new = vt[:k, :] return u_new, s_new, vt_new def find_and_track_error(errors,user_item_matrix,user_item_est): diffs = np.subtract(user_item_matrix, user_item_est) err = np.sum(np.sum(np.abs(diffs))) errors.append(err) return errors # fit SVD on the user_item_train matrix u_train, s_train, vt_train = np.linalg.svd(user_item_train)# fit svd similar to above then use the cells below p_test_idx = np.intersect1d(test_idx,user_item_train.index.values) p_test_arts = np.intersect1d(test_arts,user_item_train.columns.values) user_item_test = user_item_test.loc[p_test_idx, p_test_arts] common_user_rows = user_item_train.index.isin(test_idx) common_article_columns = user_item_train.columns.isin(test_arts) u_test = u_train[common_user_rows, :] vt_test = vt_train[:,common_article_columns] # + num_latent_feats = np.arange(10,700+10,20) train_error_sum = [] test_error_sum = [] for k in num_latent_feats: # restructure with k latent features u_train_slice, s_train_slice, vt_train_slice = slice_by_k_features(u_train,s_train,vt_train,k) u_test_slice, s_test_slice, vt_test_slice = slice_by_k_features(u_test,s_train,vt_test,k) # take dot product user_item_train_preds = u_s_vt_dot_product(u_train_slice,s_train_slice,vt_train_slice) user_item_test_preds = u_s_vt_dot_product(u_test_slice,s_test_slice,vt_test_slice) # compute error for each prediction to actual value and add it to error tracker train_error_sum = find_and_track_error(train_error_sum,user_item_train,user_item_train_preds) test_error_sum = find_and_track_error(test_error_sum,user_item_test,user_item_test_preds) # - plt.plot(num_latent_feats, 1 - np.array(train_error_sum)/(user_item_train.shape[0]*user_item_test.shape[1])); plt.plot(num_latent_feats, 1 - np.array(test_error_sum)/(user_item_test.shape[0]*user_item_test.shape[1]), label='Test'); plt.xlabel('Number of Latent Features'); plt.ylabel('Accuracy'); plt.title('Accuracy vs. Number of Latent Features'); # `6.` Use the cell below to comment on the results you found in the previous question. Given the circumstances of your results, discuss what you might do to determine if the recommendations you make with any of the above recommendation systems are an improvement to how users currently find articles? # - As per the scree plot above, we can see that the accuracy of the training set increases as we introduce more latent features. This is expected as more latent features allow for parameters to the predictions; hence, increasing the granularity and accuracy. # - Countrary to intituition, the accuracy of the testing set has been decreasing rapidly as more latent features are introduced. This is most likely due to the fact that our user_item test matrix is based on a seperate subset of the recorded interactions, leading to a completely different interaction set that was not predictable to by the trainin_set decomposition; hence, the higher error and lower accuracy. # - A suggestion to properly test this the prformance of our training decomposition is to rebuild the test user_item test matrix in a way that caters for the interactions we already trained for. This will give us a clearer understanding of the overall accuracy changes when predicting the test set performance. # - Another suggestion is to resort to f1-scores instead of the simple accuracy score as it reflects a more honest picture of precision and recall. # - Last but not least, we should also be concerned about the class representation across our training and testing sets in order not to produce biased results. # <a id='conclusions'></a> # # ## Conclusion # # > Congratulations! You have reached the end of the Recommendations with IBM project! # # > **Tip**: Once you are satisfied with your work here, check over your report to make sure that it is satisfies all the areas of the [rubric](https://review.udacity.com/#!/rubrics/2322/view). You should also probably remove all of the "Tips" like this one so that the presentation is as polished as possible. # # # ## Directions to Submit # # > Before you submit your project, you need to create a .html or .pdf version of this notebook in the workspace here. To do that, run the code cell below. If it worked correctly, you should get a return code of 0, and you should see the generated .html file in the workspace directory (click on the orange Jupyter icon in the upper left). # # > Alternatively, you can download this report as .html via the **File** > **Download as** submenu, and then manually upload it into the workspace directory by clicking on the orange Jupyter icon in the upper left, then using the Upload button. # # > Once you've done this, you can submit your project by clicking on the "Submit Project" button in the lower right here. This will create and submit a zip file with this .ipynb doc and the .html or .pdf version you created. Congratulations! from subprocess import call call(['python', '-m', 'nbconvert', 'Recommendations_with_IBM.ipynb'])
Recommendations_with_IBM.ipynb
# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.14.4 # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- # # Non Linear regression using the diabetes dataset # This example follows on from the previous [linear regression](https://github.com/morganics/bayesianpy/blob/master/examples/notebook/diabetes_linear_regression.ipynb) example, to demonstrate how additional latent states are synonymous with the number of degrees of freedom in traditional non-linear regression (e.g. non-linear least squares). # # I'm not going to spend much time explaining the code. The only difference to the linear regression is the additional 'Cluster' variable specified in the MixtureNaiveBayes template. I can start off with 2 latent states. # + # %matplotlib inline import matplotlib.pyplot as plt import numpy as np from sklearn import datasets from sklearn.metrics import r2_score import sys sys.path.append("../../../bayesianpy") import bayesianpy import pandas as pd import logging from sklearn.model_selection import train_test_split # Load the diabetes dataset diabetes = datasets.load_diabetes() # Use only one feature diabetes_X = diabetes.data[:, np.newaxis, 2] df = pd.DataFrame({'A': [x[0] for x in diabetes_X], 'target': diabetes.target}) train, test = train_test_split(df, test_size=0.4) logger = logging.getLogger() bayesianpy.jni.attach(logger) f = bayesianpy.utils.get_path_to_parent_dir('') with bayesianpy.data.DataSet(df, f, logger) as dataset: tpl = bayesianpy.template.MixtureNaiveBayes(logger, continuous=df, latent_states=2) network = tpl.create(bayesianpy.network.NetworkFactory(logger)) plt.figure() layout = bayesianpy.visual.NetworkLayout(network) graph = layout.build_graph() pos = layout.fruchterman_reingold_layout(graph) layout.visualise(graph, pos) model = bayesianpy.model.NetworkModel(network, logger) model.train(dataset.subset(train.index.tolist())) results = model.batch_query(dataset.subset(test.index.tolist()), [bayesianpy.model.QueryMeanVariance('target',output_dtype=df['target'].dtype)]) results.sort_values(by='A', ascending=True, inplace=True) plt.figure(figsize=(10, 10)) plt.scatter(df['A'].tolist(), df['target'].tolist(), label='Actual') plt.plot(results['A'], results['target_mean'], 'ro-', label='Predicted') plt.fill_between(results.A, results.target_mean-results.target_variance.apply(np.sqrt), results.target_mean+results.target_variance.apply(np.sqrt), color='darkgrey', alpha=0.4, label='Variance' ) plt.xlabel("A") plt.ylabel("Predicted Target") plt.legend() plt.show() print("R2 score: {}".format(r2_score(results.target.tolist(), results.target_mean.tolist()))) # - # With 5 latent states: with bayesianpy.data.DataSet(df, f, logger) as dataset: tpl = bayesianpy.template.MixtureNaiveBayes(logger, continuous=df, latent_states=5) network = tpl.create(bayesianpy.network.NetworkFactory(logger)) model = bayesianpy.model.NetworkModel(network, logger) model.train(dataset.subset(train.index.tolist())) results = model.batch_query(dataset.subset(test.index.tolist()), [bayesianpy.model.QueryMeanVariance('target',output_dtype=df['target'].dtype)]) results.sort_values(by='A', ascending=True, inplace=True) plt.figure(figsize=(10, 10)) plt.scatter(df['A'].tolist(), df['target'].tolist(), label='Actual') plt.plot(results['A'], results['target_mean'], 'ro-', label='Predicted') plt.fill_between(results.A, results.target_mean-results.target_variance.apply(np.sqrt), results.target_mean+results.target_variance.apply(np.sqrt), color='darkgrey', alpha=0.4, label='Variance' ) plt.xlabel("A") plt.ylabel("Predicted Target") plt.legend() plt.show() print("R2 score: {}".format(r2_score(results.target.tolist(), results.target_mean.tolist()))) # Finally 10 latent states: with bayesianpy.data.DataSet(df, f, logger) as dataset: tpl = bayesianpy.template.MixtureNaiveBayes(logger, continuous=df, latent_states=10) network = tpl.create(bayesianpy.network.NetworkFactory(logger)) model = bayesianpy.model.NetworkModel(network, logger) model.train(dataset.subset(train.index.tolist())) results = model.batch_query(dataset.subset(test.index.tolist()), [bayesianpy.model.QueryMeanVariance('target',output_dtype=df['target'].dtype)]) results.sort_values(by='A', ascending=True, inplace=True) plt.figure(figsize=(10, 10)) plt.scatter(df['A'].tolist(), df['target'].tolist(), label='Actual') plt.plot(results['A'], results['target_mean'], 'ro-', label='Predicted') plt.fill_between(results.A, results.target_mean-results.target_variance.apply(np.sqrt), results.target_mean+results.target_variance.apply(np.sqrt), color='darkgrey', alpha=0.4, label='Variance' ) plt.xlabel("A") plt.ylabel("Predicted Target") plt.legend() plt.show() print("R2 score: {}".format(r2_score(results.target.tolist(), results.target_mean.tolist()))) # Obviously, the R2 score doesn't take variance in to account, but it looks like we've reached peak R2 at around 5 latent states (incidentally, a similar iteration can be used to select the optimal number of latent states). # # Our base R2 was around 0.34, so it seems like a linear regression model fits the data better than a non-linear regressor.
examples/notebook/diabetes_non_linear_regression.ipynb
# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.14.4 # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- import torch as t from torch import nn from torch.autograd import Variable from torch.optim import RMSprop from torchvision import transforms from torchvision.utils import make_grid from torchvision.datasets import CIFAR10 from pylab import plt # %matplotlib inline import os os.environ['CUDA_VISIBLE_DEVICES']='1' # + ''' https://zhuanlan.zhihu.com/p/25071913 WGAN modified of DCGAN in: 1. remove sigmoid in the last layer of discriminator(classification -> regression) # 回归问题,而不是二分类概率 2. no log Loss (Wasserstein distance) 3. clip param norm to c (Wasserstein distance and Lipschitz continuity) 4. No momentum-based optimizer, use RMSProp,SGD instead explanation of GAN: collapse mode ->KL diverse digit unstability-> comflict between KL Divergence and JS Divergence ''' class Config: lr = 0.00005 nz = 100 # noise dimension image_size = 64 image_size2 = 64 nc = 3 # chanel of img ngf = 64 # generate channel ndf = 64 # discriminative channel beta1 = 0.5 batch_size = 32 max_epoch = 50 # =1 when debug workers = 2 gpu = True # use gpu or not clamp_num=0.01# WGAN clip gradient opt=Config() # + # data preprocess transform=transforms.Compose([ transforms.Resize(opt.image_size) , transforms.ToTensor(), transforms.Normalize([0.5]*3,[0.5]*3) ]) dataset=CIFAR10(root='cifar10/',transform=transform,download=True) # dataloader with multiprocessing dataloader=t.utils.data.DataLoader(dataset, opt.batch_size, shuffle = True, num_workers=opt.workers) # + netg = nn.Sequential( nn.ConvTranspose2d(opt.nz,opt.ngf*8,4,1,0,bias=False), nn.BatchNorm2d(opt.ngf*8), nn.ReLU(True), nn.ConvTranspose2d(opt.ngf*8,opt.ngf*4,4,2,1,bias=False), nn.BatchNorm2d(opt.ngf*4), nn.ReLU(True), nn.ConvTranspose2d(opt.ngf*4,opt.ngf*2,4,2,1,bias=False), nn.BatchNorm2d(opt.ngf*2), nn.ReLU(True), nn.ConvTranspose2d(opt.ngf*2,opt.ngf,4,2,1,bias=False), nn.BatchNorm2d(opt.ngf), nn.ReLU(True), nn.ConvTranspose2d(opt.ngf,opt.nc,4,2,1,bias=False), nn.Tanh() ) netd = nn.Sequential( nn.Conv2d(opt.nc,opt.ndf,4,2,1,bias=False), nn.LeakyReLU(0.2,inplace=True), nn.Conv2d(opt.ndf,opt.ndf*2,4,2,1,bias=False), nn.BatchNorm2d(opt.ndf*2), nn.LeakyReLU(0.2,inplace=True), nn.Conv2d(opt.ndf*2,opt.ndf*4,4,2,1,bias=False), nn.BatchNorm2d(opt.ndf*4), nn.LeakyReLU(0.2,inplace=True), nn.Conv2d(opt.ndf*4,opt.ndf*8,4,2,1,bias=False), nn.BatchNorm2d(opt.ndf*8), nn.LeakyReLU(0.2,inplace=True), nn.Conv2d(opt.ndf*8,1,4,1,0,bias=False), # Modification 1: remove sigmoid # nn.Sigmoid() ) def weight_init(m): # weight_initialization: important for wgan class_name=m.__class__.__name__ if class_name.find('Conv')!=-1: m.weight.data.normal_(0,0.02) elif class_name.find('Norm')!=-1: m.weight.data.normal_(1.0,0.02) # else:print(class_name) netd.apply(weight_init) netg.apply(weight_init) # + # modification 2: Use RMSprop instead of Adam # optimizer optimizerD = RMSprop(netd.parameters(),lr=opt.lr ) optimizerG = RMSprop(netg.parameters(),lr=opt.lr ) # modification3: No Log in loss # criterion # criterion = nn.BCELoss() fix_noise = Variable(t.FloatTensor(opt.batch_size,opt.nz,1,1).normal_(0,1)) if opt.gpu: fix_noise = fix_noise.cuda() netd.cuda() netg.cuda() # + # begin training print('begin training, be patient...') one=t.FloatTensor([1]) mone=-1*one for epoch in range(opt.max_epoch): for ii, data in enumerate(dataloader,0): real,_=data input = Variable(real) noise = t.randn(input.size(0),opt.nz,1,1) noise = Variable(noise) if opt.gpu: one = one.cuda() mone = mone.cuda() noise = noise.cuda() input = input.cuda() # modification: clip param for discriminator for parm in netd.parameters(): parm.data.clamp_(-opt.clamp_num,opt.clamp_num) # ----- train netd ----- netd.zero_grad() ## train netd with real img output=netd(input) output.backward(one) ## train netd with fake img fake_pic=netg(noise).detach() output2=netd(fake_pic) output2.backward(mone) optimizerD.step() # ------ train netg ------- # train netd more: because the better netd is, # the better netg will be if (ii+1)%5 ==0: netg.zero_grad() noise.data.normal_(0,1) fake_pic=netg(noise) output=netd(fake_pic) output.backward(one) optimizerG.step() if ii%100==0:pass fake_u=netg(fix_noise) imgs = make_grid(fake_u.data*0.5+0.5).cpu() # CHW plt.imshow(imgs.permute(1,2,0).numpy()) # HWC plt.show() # - t.save(netd.state_dict(),'epoch_wnetd.pth') t.save(netg.state_dict(),'epoch_wnetg.pth') netd.load_state_dict(t.load('epoch_wnetd.pth')) netg.load_state_dict(t.load('epoch_wnetg.pth')) noise = t.randn(64,opt.nz,1,1).cuda() noise = Variable(noise) fake_u=netg(noise) imgs = make_grid(fake_u.data*0.5+0.5).cpu() # CHW plt.figure(figsize=(5,5)) plt.imshow(imgs.permute(1,2,0).numpy()) # HWC plt.show()
WGAN.ipynb
# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.14.4 # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- # # Instructions # * **<font color="red">When you load this page, go to "Cell->Run All" to start the program running. After that point, you should be able to use the sliders and buttons to manipulate the output.</font>** # * If things go totally awry, you can go to "Kernel->Restart" and then "Cell->Run All". A more drastic solution would be to close and reload the page, which will reset the code to its initial state. # * If you're interested in programming, click the "Toggle raw code" button. This will expose the underlying program, written in the Python3 programming language. You can edit the code to your heart's content: just go to "Cell->Run All" after you modify things so the changes will be incorporated. Text in the code blocks preceded by `#` are comments to guide you through the excercise and/or explain the code # # + # ----------------------------------------------------------------------------------- # Javascript that gives us a cool hide-the-code button from IPython.display import HTML HTML(''' <script> code_show=true; function code_toggle() { if (code_show){ $('div.input').hide(); } else { $('div.input').show(); } code_show = !code_show } $( document ).ready(code_toggle); </script> <form action="javascript:code_toggle()"> <input type="submit" value="Toggle raw code"> </form> ''') # ------------------------------------------------------------------------------------ # - # # # Amino acid titration explorer # + #Import libraries that do things like plot data and handle arrays # %matplotlib inline from matplotlib import pyplot as plt import numpy as np # libraries for making pretty sliders and interactive graphs import ipywidgets as widgets from ipywidgets import interactive from IPython.display import display def fractional_protonation(pKa,pH): """ Calculate the protonation state of a titratable group versus pH given its pKa. """ theta_protonated = 1/(1 + 10**(pH-pKa)) return theta_protonated def fractional_charge(pKa,charge_when_protonated,pH): """ Cacluate the fractional charge on a molecule given its pKa value, charge when ionized, and pH """ theta_protonated = 1/(1 + 10**(pH-pKa)) if charge_when_protonated == 0: theta_charge = -1*(1-theta_protonated) else: theta_charge = theta_protonated return theta_charge def titrate_amino_acid(sidechain_pKa=4,charge_when_protonated=0,titratable_sidechain=True): """ Calculate the total charge on a free amino acid as a function of pH. """ # N- and C-terminal groups pKas = [9.0,2.0] charges = [1,0] # Are we adding a titratable sidec chain? if titratable_sidechain == True: pKas.append(sidechain_pKa) charges.append(charge_when_protonated) # Create a vector of pH values and a vector of zeros to hold total charge state vs. pH pH_list = np.arange(0,14,0.25) total_charge = np.zeros(len(pH_list)) total_protonation = np.zeros(len(pH_list)) # For every titratable group, calculate charge vs. pH and append to the total charge for i in range(len(pKas)): total_charge = total_charge + fractional_charge(pKas[i],charges[i],pH_list) total_protonation = total_protonation + fractional_protonation(pKas[i],pH_list) fig, ax = plt.subplots(1,2) ax[0].plot(pH_list,total_protonation,color="black") ax[0].axhline(y=0,color="gray",linestyle="dashed") ax[0].set_xlabel("pH") ax[0].set_ylabel("total protonation") ax[0].set_title("protonation state") ax[1].plot(pH_list,total_charge,color="green") ax[1].axhline(y=0,color="gray",linestyle="dashed") ax[1].set_xlabel("pH") ax[1].set_ylabel("total charge") ax[1].set_title("charge state") fig.set_figwidth(10) fig.tight_layout() plt.show() titratable_sc_widget = widgets.Checkbox(description="amino acid sidechain titrable?",value=True) pKa_widget = widgets.FloatText(description="pKa of sidechain",value=4.5) charge_widget = widgets.IntSlider(description="charge of protonated sidechain",min=0,max=1,step=1,value=0) container = widgets.interactive(titrate_amino_acid, titratable_sidechain=titratable_sc_widget, sidechain_pKa=pKa_widget, charge_when_protonated=charge_widget) display(container) # - # # Appendix: the Henderson-Hasselbalch Equation and Fractional Charge # # # ## Derive HH: # Start with the definition of an acid dissocation constant: # # $$\frac{[H^{+}][A]}{[HA]}=K_{acid}$$ # # Rearrange and take the $-log_{10}$ of both sides: # # $$[H^{+}]=\frac{K_{acid}[HA]}{[A]}$$ # # $$-log_{10}([H^{+}]) = -log_{10}\Big(\frac{K_{acid}[HA]}{[A]}\Big)$$ # # Apply the log rule that $log(XY) = log(X) + log(Y)$: # # $$-log_{10}([H^{+}]) = -log_{10}(K_{acid}) -log_{10}\Big(\frac{[HA]}{[A]}\Big)$$ # # Recalling that $pX \equiv -log_{10}(X)$ we can write: # # $$pH = pK_{a} - log_{10} \Big (\frac{[HA]}{[A]} \Big)$$ # # Then apply the log rule that $ -log(X) = log(1/X)$ to get: # # $$pH = pK_{a} + log_{10} \Big (\frac{[A]}{[HA]} \Big)$$ # # This is the Henderson-Hasselbalch equation. # # ## Derive fractional protonation # # Now let's think about $\theta$, the fraction of some molecule $A$ that is protonated as a function of $pH$. This is simply the concentration of protonated molecules ($[HA]$) over all possible molecules: # # $$\theta \equiv \frac{[HA]}{[HA] + [A]}$$ # # We can rearrange Henderson-Hasselbalch to solve for $[A]$: # # $$pH - pK_{a} = log_{10} \Big (\frac{[A]}{[HA]} \Big)$$ # # $$10^{(pH-pK_{a})} = \frac{[A]}{[HA]}$$ # # $$[HA] 10^{(pH-pK_{a})} = [A]$$ # # And then substitute into the equation for $\theta$: # # $$\theta = \frac{[HA]}{[HA] + [HA] 10^{(pH-pK_{a})}}$$ # # $$\theta = \frac{1}{1 + 10^{(pH-pK_{a})}}$$ # # We now have an equation that relates the $pK_{a}$ and $pH$ to the saturation of a molecule. # # ## Relate fractional protonation to fractional charge # # To relate fractional protonation to the fractional charge, we need to know some chemistry. # For example, a protonated carboxylic acid ($R-COOH$) is neutral, while a protonated amine ($NH^{+}_{4}$) is charged. If you know the chemical structures of your amino acids, you should be able to reason about charge vs. pH given information about _protonation_ vs. pH. The titration behaviors of the groups that titrate at reasonable pH values are shown below: # # **Charge on protonated state = 0** # # Aspartic acid/glutamic acid/C-terminus ($pK_{a} \approx 2-4$): $R-COOH \rightleftharpoons \color{red}{R-COO^{-}} + \color{blue}{H^{+}}$ # # Tyrosine ($pK_{a} = 10.5 $): $R-OH \rightleftharpoons \color{red}{R-O^{-}} + \color{blue}{H^{+}}$ # # Cysteine ($pK_{a} = 8.4 $): $R-SH \rightleftharpoons \color{red}{R-S^{-}} + \color{blue}{H^{+}}$ # # # # **Charge on protonated state = 1** # # Lysine/N-terminus ($pK_{a} \approx 10 $): $\color{blue}{R-NH^{+}_{3}} \rightleftharpoons R-NH_{2} + \color{blue}{H^{+}}$ # # Histidine ($pK_{a} = 6.0 $): $\color{blue}{R-C_{3}H_{4}N_{2}^{+}} \rightleftharpoons R-C_{3}H_{3}N_{2} + \color{blue}{H^{+}}$ # # Arginine ($pK_{a} = 12.5 $): $\color{blue}{R-C_{1}H_{5}N_{3}^{+}} \rightleftharpoons R-C_{1}H_{4}N_{3} + \color{blue}{H^{+}}$ #
pH-Titration.ipynb
# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.14.4 # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- # + # default_exp l10_anneal # + #export from pathlib import Path from IPython.core.debugger import set_trace import pickle, gzip, math, torch, matplotlib as mpl import matplotlib.pyplot as plt from torch import tensor from torch import nn from torch.utils.data import DataLoader, SequentialSampler, RandomSampler from tensorflow.keras.datasets import mnist import torch.nn.functional as F from torch.utils.data import DataLoader, SequentialSampler, RandomSampler def get_data(): (x_train,y_train),(x_valid,y_valid)= mnist.load_data() x_train,y_train, x_valid, y_valid = map(torch.from_numpy,(x_train,y_train,x_valid,y_valid)) l=[x_train, y_train,x_valid, y_valid] for i in range(len(l)): sh=l[i].shape l[i]=l[i].reshape(sh[0],-1) return l[0].float()/255,l[1].squeeze(-1).long(), l[2].float()/255,l[3].squeeze(-1).long() class Dataset(): def __init__(self, x,y): self.x, self.y= x,y def __len__(self): return len(self.x) def __getitem__(self, n): return self.x[n], self.y[n] class DataBunch(): def __init__(self, train_dl, valid_dl, c=None): self.train_dl, self.valid_dl, self.c = train_dl, valid_dl, c @property def train_ds(self): return self.train_dl.dataset @property def valid_ds(self): return self.valid_dl.dataset class Learner(): def __init__(self, model, opt, loss_func, data): self.model, self.opt, self.loss_func,self.data = model, opt, loss_func, data def get_dls(train_ds, valid_ds, bs, **kwargs): return (DataLoader(train_ds, batch_size=bs, shuffle=True, **kwargs), DataLoader(valid_ds, batch_size=bs*2, **kwargs)) # + #export from torch import optim def get_model(data, lr=0.5,nh=50): m=data.train_ds.x.shape[1] model=nn.Sequential(nn.Linear(m,nh),nn.ReLU(), nn.Linear(nh, data.c)) return model, optim.SGD(model.parameters(), lr=lr) def get_learner(model_func, loss_func, data): return Learner(*model_func(data), loss_func, data) # - #export def accuracy(out, yb): return (torch.argmax(out, dim=1)==yb).float().mean() x_train, y_train, x_valid, y_valid=get_data() bs=32 # + cat=y_train.max().item()+1 train_ds=Dataset(x_train, y_train) valid_ds=Dataset(x_valid, y_valid) data = DataBunch(*get_dls(train_ds, valid_ds, bs), cat) loss_func = F.cross_entropy # + #export import re _camel_re1 = re.compile('(.)([A-Z][a-z]+)') _camel_re2 = re.compile('([a-z0-9])([A-Z])') def camel2snake(name): s1 = re.sub(_camel_re1, r'\1_\2', name) return re.sub(_camel_re2, r'\1_\2', s1).lower() class Callback(): _order=0 def set_runner(self, run): self.run=run def __getattr__(self, k): return getattr(self.run, k) @property def name(self): name = re.sub(r'Callback$', '', self.__class__.__name__) return camel2snake(name or 'callback') # + #export class TrainEvalCallback(Callback): def begin_fit(self): self.run.n_epochs=0. self.run.n_iter=0 def after_batch(self): if not self.in_train: return self.run.n_epochs += 1./self.iters self.run.n_iter += 1 def begin_epoch(self): self.run.n_epochs=self.epoch self.model.train() self.run.in_train=True def begin_validate(self): self.model.eval() self.run.in_train=False from typing import * def listify(o): if o is None: return [] if isinstance(o, list): return o if isinstance(o, str): return [o] if isinstance(o, Iterable): return list(o) return [o] # + #export class Runner(): def __init__(self, cbs=None, cb_funcs=None): cbs = listify(cbs) for cbf in listify(cb_funcs): cb = cbf() setattr(self, cb.name, cb) cbs.append(cb) self.stop,self.cbs = False,[TrainEvalCallback()]+cbs @property def opt(self): return self.learn.opt @property def model(self): return self.learn.model @property def loss_func(self): return self.learn.loss_func @property def data(self): return self.learn.data def one_batch(self, xb, yb): self.xb,self.yb = xb,yb if self('begin_batch'): return self.pred = self.model(self.xb) if self('after_pred'): return self.loss = self.loss_func(self.pred, self.yb) if self('after_loss') or not self.in_train: return self.loss.backward() if self('after_backward'): return self.opt.step() if self('after_step'): return self.opt.zero_grad() def all_batches(self, dl): self.iters = len(dl) for xb,yb in dl: if self.stop: break self.one_batch(xb, yb) self('after_batch') self.stop=False def fit(self, epochs, learn): self.epochs,self.learn = epochs,learn try: for cb in self.cbs: cb.set_runner(self) if self('begin_fit'): return for epoch in range(epochs): self.epoch = epoch if not self('begin_epoch'): self.all_batches(self.data.train_dl) with torch.no_grad(): if not self('begin_validate'): self.all_batches(self.data.valid_dl) if self('after_epoch'): break finally: self('after_fit') self.learn = None def __call__(self, cb_name): for cb in sorted(self.cbs, key=lambda x: x._order): f = getattr(cb, cb_name, None) if f and f(): return True return False # + #export class AvgStats(): def __init__(self, metrics, in_train): self.metrics,self.in_train = listify(metrics),in_train def reset(self): self.tot_loss,self.count = 0.,0 self.tot_mets = [0.] * len(self.metrics) @property def all_stats(self): return [self.tot_loss.item()] + self.tot_mets @property def avg_stats(self): return [o/self.count for o in self.all_stats] def __repr__(self): if not self.count: return "" return f"{'train' if self.in_train else 'valid'}: {self.avg_stats}" def accumulate(self, run): bn = run.xb.shape[0] self.tot_loss += run.loss * bn self.count += bn for i,m in enumerate(self.metrics): self.tot_mets[i] += m(run.pred, run.yb) * bn class AvgStatsCallback(Callback): def __init__(self, metrics): self.train_stats,self.valid_stats = AvgStats(metrics,True),AvgStats(metrics,False) def begin_epoch(self): self.train_stats.reset() self.valid_stats.reset() def after_loss(self): stats = self.train_stats if self.in_train else self.valid_stats with torch.no_grad(): stats.accumulate(self.run) def after_epoch(self): print(self.train_stats) print(self.valid_stats) # - learn=get_learner(get_model,loss_func, data) run= Runner(AvgStatsCallback([accuracy])) run.fit(2,learn) #export from functools import partial # + #export class Recorder(Callback): def begin_fit(self): self.lrs, self.losses=[],[] def after_batch(self): if not self.in_train: return self.lrs.append(self.opt.param_groups[-1]['lr']) self.losses.append(self.loss.detach().cpu()) def plot_lr(self): plt.plot(self.lrs) def plot_loss(self): plt.plot(self.losses) class ParamScheduler(Callback): _order=1 def __init__(self,pname, sched_func): self.pname, self.sched_func = pname, sched_func def set_param(self): for pg in self.opt.param_groups: pg[self.pname]=self.sched_func(self.n_epochs/self.epochs) def begin_batch(self): if self.in_train: self.set_param() # - def sched_lin(start,end): def _inner(start, end, pos): return start+ pos*(end-start) return partial(_inner, start,end) #export def annealer(f): def _inner(start, end): return partial(f, start, end) return _inner @annealer def sched_lin(start,end,pos): return start+ pos*(end-start) f=sched_lin(1,2) f(0.5) # + #export @annealer def sched_cos(start,end,pos):return start+(1+math.cos(math.pi*(1-pos)))*(end-start)/2 @annealer def sched_no(start, end, pos): return start @annealer def sched_expo(start,end, pos): return (end/start)**pos def cos_1cycle_anneal(start, high,end): return [sched_cos(start, high),sched_cos(high, end)] torch.Tensor.ndim=property(lambda x: len(x.shape)) # + annealings='LINEAR COS NO EXPO'.split() a = torch.arange(0,100) p = torch.linspace(0.01,1,100) fns = [sched_lin, sched_cos, sched_no, sched_expo] for fn, t in zip(fns, annealings): f=fn(2,1e-2) plt.plot(a, [f(o) for o in p], label=t) plt.legend() # + #export def combine_scheds(pcts, scheds): assert sum(pcts)==1. pcts=tensor([0]+listify(pcts)) assert torch.all(pcts>=0) pcts= torch.cumsum(pcts,0) def _inner(pos): idx = (pos>=pcts).nonzero().max() actual_pos=(pos-pcts[idx])/(pcts[idx+1]-pcts[idx]) return scheds[idx](actual_pos) return _inner # - sched = combine_scheds([0.3, 0.7], [sched_cos(0.3, 0.6), sched_cos(0.6, 0.2)]) plt.plot(a, [sched(o) for o in p]) cbfs=[Recorder, partial(AvgStatsCallback,accuracy), partial(ParamScheduler, 'lr', sched)] learn=get_learner(get_model,loss_func, data) run=Runner(cb_funcs=cbfs) run.fit(3,learn) run.recorder.plot_lr() run.recorder.plot_loss()
01_core.ipynb
# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.14.4 # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- # soc.030 http://sedac.ciesin.columbia.edu/data/set/spatialecon-gecon-v4 # Downloaded to RW_Data/Rasters/spatialecon-gecon-v4-gis-ascii # File type: asc # + # Libraries for downloading data from remote server (may be ftp) import requests from urllib.request import urlopen from contextlib import closing import shutil # Library for uploading/downloading data to/from S3 import boto3 # Libraries for handling data import rasterio as rio import numpy as np # from netCDF4 import Dataset # import pandas as pd # import scipy # Libraries for various helper functions # from datetime import datetime import os import threading import sys from glob import glob # - # s3 # + s3_upload = boto3.client("s3") s3_download = boto3.resource("s3") s3_bucket = "wri-public-data" s3_folder = "resourcewatch/raster/soc_030_gross_domestic_product/" s3_file1 = "soc_030_mer_1990_sum.asc" s3_file2 = "soc_030_mer_1995_sum.asc" s3_file3 = "soc_030_mer_2000_sum.asc" s3_file4 = "soc_030_mer_2005_sum.asc" s3_file5 = "soc_030_ppp_1990_sum.asc" s3_file6 = "soc_030_ppp_1995_sum.asc" s3_file7 = "soc_030_ppp_2000_sum.asc" s3_file8 = "soc_030_ppp_2005_sum.asc" s3_key_orig1 = s3_folder + s3_file1 s3_key_edit1 = s3_key_orig1[0:-4] + "_edit.tif" s3_key_orig2 = s3_folder + s3_file2 s3_key_edit2 = s3_key_orig2[0:-4] + "_edit.tif" s3_key_orig3 = s3_folder + s3_file3 s3_key_edit3 = s3_key_orig3[0:-4] + "_edit.tif" s3_key_orig4 = s3_folder + s3_file4 s3_key_edit4 = s3_key_orig4[0:-4] + "_edit.tif" s3_key_orig5 = s3_folder + s3_file5 s3_key_edit5 = s3_key_orig5[0:-4] + "_edit.tif" s3_key_orig6= s3_folder + s3_file6 s3_key_edit6 = s3_key_orig6[0:-4] + "_edit.tif" s3_key_orig7 = s3_folder + s3_file7 s3_key_edit7 = s3_key_orig7[0:-4] + "_edit.tif" s3_key_orig8 = s3_folder + s3_file8 s3_key_edit8 = s3_key_orig8[0:-4] + "_edit.tif" class ProgressPercentage(object): def __init__(self, filename): self._filename = filename self._size = float(os.path.getsize(filename)) self._seen_so_far = 0 self._lock = threading.Lock() def __call__(self, bytes_amount): # To simplify we'll assume this is hooked up # to a single filename. with self._lock: self._seen_so_far += bytes_amount percentage = (self._seen_so_far / self._size) * 100 sys.stdout.write("\r%s %s / %s (%.2f%%)"%( self._filename, self._seen_so_far, self._size, percentage)) sys.stdout.flush() # - # Define local file locations # + local_folder = "/Users/Max81007/Desktop/Python/Resource_Watch/Raster/soc_030/" file_name1 = "mer1990sum.asc" file_name2 = "mer1995sum.asc" file_name3 = "mer2000sum.asc" file_name4 = "mer2005sum.asc" file_name5 = "ppp1990sum.asc" file_name6 = "ppp1995sum.asc" file_name7 = "ppp2000sum.asc" file_name8 = "ppp2005sum.asc" local_orig1 = local_folder + file_name1 local_orig2 = local_folder + file_name2 local_orig3 = local_folder + file_name3 local_orig4 = local_folder + file_name4 local_orig5 = local_folder + file_name5 local_orig6 = local_folder + file_name6 local_orig7 = local_folder + file_name7 local_orig8 = local_folder + file_name8 orig_extension_length = 4 #4 for each char in .tif local_edit1 = local_orig1[:-orig_extension_length] + "edit.tif" local_edit2 = local_orig2[:-orig_extension_length] + "edit.tif" local_edit3 = local_orig3[:-orig_extension_length] + "edit.tif" local_edit4 = local_orig4[:-orig_extension_length] + "edit.tif" local_edit5 = local_orig5[:-orig_extension_length] + "edit.tif" local_edit6 = local_orig6[:-orig_extension_length] + "edit.tif" local_edit7 = local_orig7[:-orig_extension_length] + "edit.tif" local_edit8 = local_orig8[:-orig_extension_length] + "edit.tif" # - # Use rasterio to reproject and compress files = [local_orig1, local_orig2] for file in files: with rio.open(file, 'r') as src: profile = src.profile print(profile) # + os.getcwd() os.chdir(local_folder) os.environ["local_orig1"] =local_orig1 os.environ["local_orig2"] =local_orig2 os.environ["local_orig3"] =local_orig3 os.environ["local_orig4"] =local_orig4 os.environ["local_orig5"] =local_orig5 os.environ["local_orig6"] =local_orig6 os.environ["local_orig7"] =local_orig7 os.environ["local_orig8"] =local_orig8 os.environ["local_edit1"] =local_edit1 os.environ["local_edit2"] =local_edit2 os.environ["local_edit3"] =local_edit3 os.environ["local_edit4"] =local_edit4 os.environ["local_edit5"] =local_edit5 os.environ["local_edit6"] =local_edit6 os.environ["local_edit7"] =local_edit7 os.environ["local_edit8"] =local_edit8 # - # !gdalwarp -overwrite -t_srs epsg:4326 -co compress=lzw %local_orig1% %local_edit1% # !gdalwarp -overwrite -t_srs epsg:4326 -co compress=lzw %local_orig2% %local_edit2% # !gdalwarp -overwrite -t_srs epsg:4326 -co compress=lzw %local_orig3% %local_edit3% # !gdalwarp -overwrite -t_srs epsg:4326 -co compress=lzw %local_orig4% %local_edit4% # !gdalwarp -overwrite -t_srs epsg:4326 -co compress=lzw %local_orig5% %local_edit5% # !gdalwarp -overwrite -t_srs epsg:4326 -co compress=lzw %local_orig6% %local_edit6% # !gdalwarp -overwrite -t_srs epsg:4326 -co compress=lzw %local_orig7% %local_edit7% # !gdalwarp -overwrite -t_srs epsg:4326 -co compress=lzw %local_orig8% %local_edit8% # Upload orig and edit files to s3 # + # Original s3_upload.upload_file(local_orig1, s3_bucket, s3_key_orig1, Callback=ProgressPercentage(local_orig1)) s3_upload.upload_file(local_orig2, s3_bucket, s3_key_orig2, Callback=ProgressPercentage(local_orig2)) s3_upload.upload_file(local_orig3, s3_bucket, s3_key_orig3, Callback=ProgressPercentage(local_orig3)) s3_upload.upload_file(local_orig4, s3_bucket, s3_key_orig4, Callback=ProgressPercentage(local_orig4)) s3_upload.upload_file(local_orig5, s3_bucket, s3_key_orig5, Callback=ProgressPercentage(local_orig5)) s3_upload.upload_file(local_orig6, s3_bucket, s3_key_orig6, Callback=ProgressPercentage(local_orig6)) s3_upload.upload_file(local_orig7, s3_bucket, s3_key_orig7, Callback=ProgressPercentage(local_orig7)) s3_upload.upload_file(local_orig8, s3_bucket, s3_key_orig8, Callback=ProgressPercentage(local_orig8)) # Edit s3_upload.upload_file(local_edit1, s3_bucket, s3_key_edit1, Callback=ProgressPercentage(local_edit1)) s3_upload.upload_file(local_edit2, s3_bucket, s3_key_edit2, Callback=ProgressPercentage(local_edit2)) s3_upload.upload_file(local_edit3, s3_bucket, s3_key_edit3, Callback=ProgressPercentage(local_edit3)) s3_upload.upload_file(local_edit4, s3_bucket, s3_key_edit4, Callback=ProgressPercentage(local_edit4)) s3_upload.upload_file(local_edit5, s3_bucket, s3_key_edit5, Callback=ProgressPercentage(local_edit5)) s3_upload.upload_file(local_edit6, s3_bucket, s3_key_edit6, Callback=ProgressPercentage(local_edit6)) s3_upload.upload_file(local_edit7, s3_bucket, s3_key_edit7, Callback=ProgressPercentage(local_edit7)) s3_upload.upload_file(local_edit8, s3_bucket, s3_key_edit8, Callback=ProgressPercentage(local_edit8)) # - band_ids = ["mer_1990","mer_1995","mer_2000", "mer_2005","ppp_1990","ppp_1995","ppp_2000", "ppp_2005" ] merge_name = "soc_030_gross_domestic_product.tif" s3_key_merge = s3_folder + merge_name # + merge_files = [local_edit1, local_edit2, local_edit3, local_edit4, local_edit5, local_edit6, local_edit7, local_edit8] tmp_merge = local_folder + merge_name # - # + with rio.open(merge_files[0]) as src: kwargs = src.profile kwargs.update( count=len(merge_files) ) with rio.open(tmp_merge, 'w', **kwargs) as dst: for idx, file in enumerate(merge_files): print(idx) with rio.open(file) as src: band = idx+1 windows = src.block_windows() for win_id, window in windows: src_data = src.read(1, window=window) dst.write_band(band, src_data, window=window) # - s3_upload.upload_file(tmp_merge, s3_bucket, s3_key_merge, Callback=ProgressPercentage(tmp_merge)) os.environ["Zs3_key"] = "s3://wri-public-data/" + s3_key_merge os.environ["Zgs_key"] = "gs://resource-watch-public/" + s3_key_merge # !gsutil cp %Zs3_key% %Zgs_key% os.environ["asset_id"] = "users/resourcewatch/soc_030_gross_domestic_product" # !earthengine upload image --asset_id=%asset_id% %Zgs_key% os.environ["band_names"] = str(band_ids) # !earthengine asset set -p band_names="%band_names%" %asset_id% files = [local_edit1, local_edit2, local_edit3, local_edit4, local_edit5, local_edit6, local_edit7, local_edit8] for file in files: with rio.open(file, 'r') as src: profile = src.profile print(profile)
.ipynb_checkpoints/ene.023-checkpoint.ipynb
# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.14.4 # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- # # Pore Scale Imaging and Modeling Section I # In this project, we have selected a comprehensive paper related to [pore scale imaging and modeling](https://www.sciencedirect.com/science/article/pii/S0309170812000528). The goal of this example is to investigate the permeability of different rock samples. As there are different samples, we just put the general code here which can be applicable for other samples as well. Therefore, the results will be given in figures. # # The structure of this report goes as follows: # # - Pore Newtork Extraction Method # - Applying Stokes flow for permeability estimation # + language="html" # <style> # table {float:left} # </style> # - # ## Pore Newtork Extraction Method # In this project, we have used [SNOW algorithm](https://journals.aps.org/pre/abstract/10.1103/PhysRevE.96.023307) in [Porespy](http://porespy.org/) which is a network extraction method based on marker-based watershed segmentation. The SNOW algorithm concludes four main steps: # # - Prefiltering the distance map # - Eliminating peaks on saddles and plateaus # - Merging peaks that are too near each other # - Assigning void voxels to the appropriate pore using a marker-based watershed. # ### Effect of prefiltering parameters # In the first step, use of right parameters for filtering may enhance the reliablity of the results. We use a gaussian filter with a spherical # structuring element of radius R. The sigma or # standard deviation of the convolution kernel is an adjustable # parameter, the effect of which can be studied with the following code. Another parameter to be considered is the radius R, which is also investigated for the same sample. Choosing the right value affects the smoothness of the resulting partitioned regions. In other words, this will prevent oversmoothing and loss of a great amount of data from the original image. There is a trade off between preserving the data and filtering. We should find an optimum point for this parameters. The idea have been shown in Fig.4 of the paper. We have used the same idea to change the snowpartitioning algorithm so that we can have our desired output for this part. As long as Network extraction will take more time, we first investigate the effect of choosing different R and sigma as a preprocess, then use the righ parameters for network extraction and call SNOW algorithm. # The following piece of code is related to this prefiltering step (this is a part of the whole code which is related to prefiltering)Changes in the filtering functions so that we can have the initial and final number of local maxima in a dictionarry array resultsB: def snow_partitioning_test(im, r_max=4, sigma=0.4, return_all=False): tup = namedtuple('results', field_names=['im', 'dt', 'peaks', 'regions']) results = { 'r_max': r_max, 'sigma': sigma, 'Initial number of peaks:': [], 'Peaks after trimming saddle points:': [], 'Peaks after trimming nearby peaks:':[] } print('-' * 80) print("Beginning SNOW Algorithm") im_shape = np.array(im.shape) if im.dtype == 'bool': print('Peforming Distance Transform') if np.any(im_shape == 1): ax = np.where(im_shape == 1)[0][0] dt = spim.distance_transform_edt(input=im.squeeze()) dt = np.expand_dims(dt, ax) else: dt = spim.distance_transform_edt(input=im) else: dt = im im = dt > 0 tup.im = im tup.dt = dt if sigma > 0: print('Applying Gaussian blur with sigma =', str(sigma)) dt = spim.gaussian_filter(input=dt, sigma=sigma) peaks = find_peaks(dt=dt, r_max=r_max) print('Initial number of peaks: ', spim.label(peaks)[1]) resultsB['Initial number of peaks:']=spim.label(peaks)[1] peaks = trim_saddle_points(peaks=peaks, dt=dt, max_iters=500) print('Peaks after trimming saddle points: ', spim.label(peaks)[1]) resultsB['Peaks after trimming saddle points:']=spim.label(peaks)[1] peaks = trim_nearby_peaks(peaks=peaks, dt=dt) peaks, N = spim.label(peaks) print('Peaks after trimming nearby peaks: ', N) resultsB['Peaks after trimming nearby peaks:']=N tup.peaks = peaks regions = watershed(image=-dt, markers=peaks, mask=dt > 0) regions = randomize_colors(regions) if return_all: tup.regions = regions return tup else: return results imageinit = im Resultslast = {} R_max = [2,4,6,8,12,15,20] Sigmax = [0.25,0.35,0.5,0.65] c = -1 for j in range(len(Sigmax)): for i in range(len(R_max)): c = c+1 r_max = R_max[i] sigma = Sigmax[j] results = snow_partitioning(im=imageinit,r_max=r_max, sigma=sigma, return_all=False) Resultslast[c] = results # ### Marching Cube Algorithm # Based on new porespy package, there is also some changes in SNOW algorithm previous version. In the previous version the area was estimated as the number of voxels on the surface multiplied by the area of # one voxel face. Now the user can have the chance to use [Marching Cube](https://en.wikipedia.org/wiki/Marching_cubes) algorithm. The idea ofd the algorithm is to find what portion of the cube is inside the image by using a triangular mesh marching through the cube to fine the best interface between inner and outer part of the image. Generally speaking this will decrease the voxelated representation of the image which itself increase the accuracy of the calculations. In the voxel based surface area calculation, we assign the whole voxel to the surface even though only half of that voxel might be within the surface. So it may lead to overestimation. It may make the process slower, but provides better results. To understand the algorithm, we have shown here a [2D example](http://www.cs.carleton.edu/cs_comps/0405/shape/marching_cubes.html). Imagine an aritrary shaped image. If we mesh the area with a square mesh (representative as pixels which will be cubes in 3D as voxels), we have the follwing image: # ![](https://i.imgur.com/1L1ix7A.png) # The red corners are within the image, the blue ones are outside. Each square which has not 4 same color corner will be marched until get the most precise triangular mesh as the boundary. First the purple dots locate the center of each edge, which we know this is a rough estimation. Then the connecting line (surface in 3D) will march through the square area so that finds its way through the boundary at an optimum location. Implementation of the algorithm in the 3D follows the same idea. The following picture is a sketch of [3D implementation](http://www.cs.carleton.edu/cs_comps/0405/shape/marching_cubes.html). # ![](https://i.imgur.com/xNekZog.png) # Although this option will give better results, we can still turn it off in SNOW algorithm for the sake of time efficiency and still have good results. # ### Validation of the code # To ensure that our scriopt for the network extraction is correcrt, we first implemented the same code on Berea Sandstone, the validity of which can be prooved by comparing the results given in the paper. We have additional boundary face pores, but internal pores are approximately the sam as that of SNOW paper. # permeabilities are: 1.20607725e-12, 1.0525892e-12, 1.18140011e-12 # # average permeability is: 1.1466888534117068e-12 # # The results are very close to the SNOW paper (which was 1.29e-12 from Image Analysis) . This will ensure us about our script written for the network extraction and permeability calculation. # ### Extracted Networks # The following figures illustrate one segment of CT images of rock samples (MG and Bentheimer) in binarized version: # <img src="https://i.imgur.com/sZoo5xO.jpg" style="width: 30%" align="left"/> # <img src="https://i.imgur.com/TwAvbcu.jpg" style="width: 30%" align="left"/> # <img src="https://i.imgur.com/ls3ar6c.jpg" style="width: 30%" align="left"/> # | Sample | Size | Resolution | Porosity | # | :--- | :--- |:--- |:--- | # | Mount Gambier (our model) | 512 512 512 | 3.024 μm | 0.436 | # | Mount Gambier (paper) | 350 350 350 | 9 μm | 0.556 | # | Bentheimer Sandstone (our model) | 300 300 300 | 3 μm | 0.2 | # | Bentheimer Sandstone (paper) | 1000 1000 1000 | 3.0035 μm | 0.217 | # The following code is the script we have written for MG sample. The same code have been applied on other samples. import porespy as ps import matplotlib.pyplot as plt import openpnm as op import numpy as np import scipy as sp ws = op.Workspace() ws.clear() ws.keys() proj = ws.new_project() from skimage import io im = io.imread('MG.tif') imtype=im.view() print(imtype) digits = np.prod(np.array(im.shape)) logi = (np.sum(im==0)+np.sum(im==1))==digits if logi == True: print('There is no noise') else: print('Please check your input image for noise') print(im.shape) imtype = im.view() print(imtype) im = np.array(im, dtype=bool) # Inversion of 0s and 1s in binarized image to represent 1 for pores and 0 for solids im = ~im print(ps.metrics.porosity(im)) plt.imshow(ps.visualization.sem(im), cmap=plt.cm.bone) net = ps.network_extraction.snow(im, voxel_size=3.024e-6, boundary_faces=['top', 'bottom', 'left', 'right', 'front', 'back'], marching_cubes_area=False) # voxel size and marching cube can be changed for each specific sample pn = op.network.GenericNetwork() pn.update(net) print(pn) a = pn.check_network_health() op.topotools.trim(network=pn,pores=a['trim_pores']) print(pn) ps.io.to_vtk(path='MGvt',im=im.astype(sp.int8)) mgr = op.Workspace() # The generated .pnm file will be used as input for simulations (permeability calculation, etc.) mgr.save_workspace('MountGampn.pnm') # Now that we ensure the validity of our script, we implement the network extraction on the samples of the study. Their network properties are given in the following table: # | Model | Number of pores | Number of throats | Volume (mm3) | Coordination number | # | --- | --- | --- | --- | --- | # | Mount Gambier Carbonate (512) | 5780 (4679 internal) | 10128 (9027 internal) | 27.65 | 3.504 | # | MG Paper (350) | 22665 (257 elements isolated) | 84593 | 31.3 | 7.41 | # | Bentheimer Sandstone (1000) | 26588 (23329 internal) | 48911 (45652 internal) | 27.1 | 3.68 | # | Bentheimer Paper (300) | Not given | Not given | 19.68 | Not given | # # #### Some Comments: # # As shown in the table, we have a good match on the average coordination numbers, but the number of pores and throats are different. This is related to the difference between SNOW and maximall method which have been done in the ICL. The snow algorithm will have larger pores which decreases the number of pores and throats. # # The porosity is being calculated from the voxelated image in a similar manner of the paper. The permeabilities have been calculated using stokes flow algorithm. The difference might be related to the error which lays behind the parameters in filtering process (sigma, R). We have used default values of sigma=0.4 and R=5 in all samples, which may lead to misrepresentation of the network. # # The difference in permeability may also be related to the different conduit lengths. In the Blunt's paper they have defined a shape factor to account for the non-cylindrical deviation of the throats. This shape factor is whithin the maximal extraction method. In the SNOW algorithm, using the equivalent diameter rather than inscribed diameter for the hydraulic conductance (assumming no P loss in the pores) will provide better results in the permeability calculation. # # From the Berea sandstone results, we can also comment on the effect of the structures of the rock sample. For sandstones, the morphology is more ideal than carbonates for network extractions. We also get a good result for Bentheimer Sandstone permeability. But for the carbonate cases, it is different. As we see in their CT images, there are Fossil grains (Pebbles in ketton, other fossil shells in two other sample) which provide different length scales of micro to macro pores. For example it is recommended to use multiscale pore network extraction. # # As long as not any of our sample is the same sample in the Blunt's paper (they are from the same rock but different resolution and size), the slight difference in results is acceptable. # # Isolated pores and throats will be trimmed using "topotools" trimming method after the network extraction. # # -For the permeability calculation, we need to set inlets and outlets of the media, both of which can be defined by introducing some pores as boundary surface pores. # # ## Static parameters assignment # We redefine some parameters of the network by deleting them from the pn dictionary and adding models for them in the geomety: import openpnm as op import numpy as np import matplotlib.pyplot as plt import math import random from pathlib import Path mgr = op.Workspace() mgr.clear() mgr.keys() path = Path('../fixtures/PoreScale Imaging/MountGampn.pnm') mgr.load_workspace(path) pn = mgr['proj_03']['net_01'] a = pn.check_network_health() op.topotools.trim(network=pn,pores=a['trim_pores']) proj = pn.project print(pn) coord_num_avg=np.mean(pn.num_neighbors(pores=pn.Ps)) del pn['pore.area'] del pn['throat.conduit_lengths.pore1'] del pn['throat.conduit_lengths.pore2'] del pn['throat.conduit_lengths.throat'] del pn['throat.endpoints.tail'] del pn['throat.endpoints.head'] del pn['throat.volume'] # In this section we implement the assignment of Geometry, Phase, and Physics to the Network. # + geom = op.geometry.GenericGeometry(network=pn, pores=pn['pore.all'], throats=pn['throat.all'],project=proj) geom.add_model(propname='throat.endpoints', model=op.models.geometry.throat_endpoints.spherical_pores) geom.add_model(propname='pore.area', model=op.models.geometry.pore_area.sphere) geom.add_model(propname='throat.volume', model=op.models.geometry.throat_volume.cylinder) geom.add_model(propname='throat.conduit_lengths', model=op.models.geometry.throat_length.conduit_lengths) oil = op.phases.GenericPhase(network=pn,project=proj) water = op.phases.GenericPhase(network=pn,project=proj) oil['pore.viscosity']=0.547e-3 oil['throat.contact_angle'] =180 oil['throat.surface_tension'] = 0.072 oil['pore.surface_tension']=0.072 oil['pore.contact_angle']=180 water['throat.contact_angle'] = 0 # first assumming highly water-wet water['pore.contact_angle'] = 0 water['throat.surface_tension'] = 0.0483 water['pore.surface_tension'] = 0.0483 water['pore.viscosity']=0.4554e-3 phys_water= op.physics.GenericPhysics(network=pn, phase=water, geometry=geom,project=proj) phys_oil = op.physics.GenericPhysics(network=pn, phase=oil, geometry=geom,project=proj) mod = op.models.physics.hydraulic_conductance.hagen_poiseuille phys_oil.add_model(propname='throat.hydraulic_conductance', model=mod) phys_oil.add_model(propname='throat.entry_pressure', model=op.models.physics.capillary_pressure.washburn) phys_water.add_model(propname='throat.hydraulic_conductance', model=mod) phys_water.add_model(propname='throat.entry_pressure', model=op.models.physics.capillary_pressure.washburn) # - # ## Permeability Calculation Algorithm # The StokesFlow class is for simulation of viscous flow. In this class default property names will be set. The main role of this class would be calculation of the hydraulic permeability. Having its effective permeability calculation method, it can deal with nonuniform medias. # # We first find single phase permeability where the stokes flow is implemented for each phase as if it is the only phase flowing through the porous media. Theis is done as the conductance is the hydraulic conductance. Otherwise, it will change to multiphase conduit conductance. Note that we have defined perm_water and perm_oil in a dictionary so that we have a permeability tensor (directional permeability). # As we have mentioned the permeability will be a tensor, which represents $K_x,K_y,K_z$. Permeability tensor plays an important role in anisotropic medias charactarization. We have also defined relative permeabilities in three directions. We only show the relative permeabilities for one direction in the report, but the code gives us the results for all three directions in the oil and water perm dictionary. # # We also define methods in which the domain length and area will be calculated. These methods are called within the permeability calculation loop. # + K_water_single_phase = [None,None,None] K_oil_single_phase = [None,None,None] bounds = [ ['top', 'bottom'], ['left', 'right'],['front', 'back']] [amax, bmax, cmax] = np.max(pn['pore.coords'], axis=0) [amin, bmin, cmin] = np.min(pn['pore.coords'], axis=0) lx = amax-amin ly = bmax-bmin lz = cmax-cmin da = lx*ly dl = lz def top_b(lx,ly,lz): da = lx*ly dl = lz res_2=[da,dl] return res_2 def left_r(lx,ly,lz): da = lx*lz dl = ly res_2=[da,dl] return res_2 def front_b(lx,ly,lz): da = ly*lz dl = lx res_2=[da,dl] return res_2 options = {0 : top_b(lx,ly,lz),1 : left_r(lx,ly,lz),2 : front_b(lx,ly,lz)} for bound_increment in range(len(bounds)): BC1_pores = pn.pores(labels=bounds[bound_increment][0]) BC2_pores = pn.pores(labels=bounds[bound_increment][1]) [da,dl]=options[bound_increment] # Permeability - water sf_water = op.algorithms.StokesFlow(network=pn, phase=water) sf_water.setup(conductance='throat.hydraulic_conductance') sf_water._set_BC(pores=BC1_pores, bctype='value', bcvalues=100000) sf_water._set_BC(pores=BC2_pores, bctype='value', bcvalues=1000) sf_water.run() K_water_single_phase[bound_increment] = sf_water.calc_effective_permeability(domain_area=da, domain_length=dl, inlets=BC1_pores, outlets=BC2_pores) proj.purge_object(obj=Stokes_alg_single_phase_water) # Permeability - oil sf_oil = op.algorithms.StokesFlow(network=pn, phase=oil) sf_oil.setup(conductance='throat.hydraulic_conductance') sf_oil._set_BC(pores=BC1_pores, bctype='value', bcvalues=1000) sf_oil._set_BC(pores=BC2_pores, bctype='value', bcvalues=0) sf_oil.run() K_oil_single_phase[bound_increment] = sf_oil.calc_effective_permeability(domain_area=da, domain_length=dl, inlets=BC1_pores, outlets=BC2_pores) proj.purge_object(obj=Stokes_alg_single_phase_oil) # - # Results for permeability calculation of four samples are given in the following. As we see the results for Bentheimer which is a sand stone rock is very close to the value given in the paper. We have also adjusted the permeabilities of the MGambier by using equivalent diameter instead of pore and throat diameter for the conductance calculation. # | Sample | Mount Gambier 512 | Bentheimer 1000 | # | --- | --- | --- | # |K1 (e-12) |18.93 | 1.57| # |K2 (e-12) |23.96 | 1.4| # |K3 (e-12) | 12.25| 1.64| # | Kavg | 18.38| 1.53 | # |Sample paper | Mount Gambier 350 | Bentheimer 300 | # |Kavg (from image)| 19.2 | 1.4 | # # #
examples/paper_recreations/Blunt et al. (2013)/Pore-scale Imaging and Modeling - Part A.ipynb
# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.14.4 # kernelspec: # display_name: Python 3 # name: python3 # --- # + [markdown] id="_as3tyDPAvzM" # ##### Copyright 2021 The TensorFlow Authors. # + cellView="form" id="-CoWjX1EBXJX" #@title Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # + [markdown] id="7hQmWrtkBBQB" # # Converting TensorFlow Text operators to TensorFlow Lite # + [markdown] id="qmGnheU8BPKN" # <table class="tfo-notebook-buttons" align="left"> # <td> # <a target="_blank" href="https://www.tensorflow.org/text/guide/text_tf_lite"><img src="https://www.tensorflow.org/images/tf_logo_32px.png" />View on TensorFlow.org</a> # </td> # <td> # <a target="_blank" href="https://colab.research.google.com/github/tensorflow/text/blob/master/docs/guide/text_tf_lite.ipynb"><img src="https://www.tensorflow.org/images/colab_logo_32px.png" />Run in Google Colab</a> # </td> # <td> # <a target="_blank" href="https://github.com/tensorflow/text/blob/master/docs/guide/text_tf_lite.ipynb"><img src="https://www.tensorflow.org/images/GitHub-Mark-32px.png" />View on GitHub</a> # </td> # <td> # <a href="https://storage.googleapis.com/tensorflow_docs/text/docs/guide/text_tf_lite.ipynb"><img src="https://www.tensorflow.org/images/download_logo_32px.png" />Download notebook</a> # </td> # </table> # + [markdown] id="hz1hOEHPTF2n" # ## Overview # # Machine learning models are frequently deployed using TensorFlow Lite to mobile, embedded, and IoT devices to improve data privacy and lower response times. These models often require support for text processing operations. TensorFlow Text version 2.7 and higher provides improved performance, reduced binary sizes, and operations specifically optimized for use in these environments. # # + [markdown] id="_mdIyFfqTMjc" # ## Text operators # # The following TensorFlow Text classes can be used from within a TensorFlow Lite model. # # * `FastWordpieceTokenizer` # * `WhitespaceTokenizer` # # + [markdown] id="x6NAs1fcUwUn" # ## Model Example # + id="8ZalFZQvTJf5" # !pip install -U tensorflow-text==2.7.3 # + id="uL-I0CyPTXnN" from absl import app import numpy as np import tensorflow as tf import tensorflow_text as tf_text from tensorflow.lite.python import interpreter # + [markdown] id="qj_bJ-xVTfU1" # The following code example shows the conversion process and interpretation in Python using a simple test model. Note that the output of a model cannot be a `tf.RaggedTensor` object when you are using TensorFlow Lite. However, you can return the components of a `tf.RaggedTensor` object or convert it using its `to_tensor` function. See [the RaggedTensor guide](https://www.tensorflow.org/guide/ragged_tensor) for more details. # + id="nqQjBcXqTf_0" class TokenizerModel(tf.keras.Model): def __init__(self, **kwargs): super().__init__(**kwargs) self.tokenizer = tf_text.WhitespaceTokenizer() @tf.function(input_signature=[ tf.TensorSpec(shape=[None], dtype=tf.string, name='input') ]) def call(self, input_tensor): return { 'tokens': self.tokenizer.tokenize(input_tensor).flat_values } # + id="jsPFI-55TiF_" # Test input data. input_data = np.array(['Some minds are better kept apart']) # Define a Keras model. model = TokenizerModel() # Perform TensorFlow Text inference. tf_result = model(tf.constant(input_data)) print('TensorFlow result = ', tf_result['tokens']) # + [markdown] id="YKpFsvJGTlPq" # ## Convert the TensorFlow model to TensorFlow Lite # # When converting a TensorFlow model with TensorFlow Text operators to TensorFlow Lite, you need to # indicate to the `TFLiteConverter` that there are custom operators using the # `allow_custom_ops` attribute as in the example below. You can then run the model conversion as you normally would. Review the [TensorFlow Lite converter](https://www.tensorflow.org/lite/convert) documentation for a detailed guide on the basics of model conversion. # + id="6hYWezs1Tndo" # Convert to TensorFlow Lite. converter = tf.lite.TFLiteConverter.from_keras_model(model) converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS] converter.allow_custom_ops = True tflite_model = converter.convert() # + [markdown] id="cxCdhrHATpSR" # ## Inference # # For the TensorFlow Lite interpreter to properly read your model containing TensorFlow Text operators, you must configure it to use these custom operators, and provide registration methods for them. Use `tf_text.tflite_registrar.SELECT_TFTEXT_OPS` to provide the full suite of registration functions for the supported TensorFlow Text operators to `InterpreterWithCustomOps`. # # Note, that while the example below shows inference in Python, the steps are similar in other languages with some minor API translations, and the necessity to build the `tflite_registrar` into your binary. See [TensorFlow Lite Inference](https://www.tensorflow.org/lite/guide/inference) for more details. # + id="kykFg2pXTriw" # Perform TensorFlow Lite inference. interp = interpreter.InterpreterWithCustomOps( model_content=tflite_model, custom_op_registerers=tf_text.tflite_registrar.SELECT_TFTEXT_OPS) interp.get_signature_list() # + [markdown] id="rNGPpHCCTxVX" # Next, the TensorFlow Lite interpreter is invoked with the input, providing a result which matches the TensorFlow result from above. # + id="vmSbfbgJTyKY" tokenize = interp.get_signature_runner('serving_default') output = tokenize(input=input_data) print('TensorFlow Lite result = ', output['tokens'])
docs/guide/text_tf_lite.ipynb
# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.14.4 # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- # # Background # # This notebook walks through the creation of a fastai [DataBunch](https://docs.fast.ai/basic_data.html#DataBunch) object. This object contains a pytorch dataloader for the train, valid and test sets. From the documentation: # # ``` # Bind train_dl,valid_dl and test_dl in a data object. # # It also ensures all the dataloaders are on device and applies to them dl_tfms as batch are drawn (like normalization). path is used internally to store temporary files, collate_fn is passed to the pytorch Dataloader (replacing the one there) to explain how to collate the samples picked for a batch. # ``` # # Because we are training the language model, we want our dataloader to construct the target variable from the input data. The target variable for language models are the next word in a sentence. Furthermore, there are other optimizations with regard to the sequence length and concatenating texts together that avoids wasteful padding. Luckily the [TextLMDataBunch](https://docs.fast.ai/text.data.html#TextLMDataBunch) does all this work for us (and more) automatically. from fastai.text import TextLMDataBunch as lmdb from fastai.text.transform import Tokenizer import pandas as pd from pathlib import Path # ### Read in Data # You can download the above saved dataframes (in pickle format) from Google Cloud Storage: # # **train_df.pkl (9GB)**: # # `https://storage.googleapis.com/issue_label_bot/pre_processed_data/2_partitioned_df/train_df.pkl` # # **valid_df.pkl (1GB)** # # `https://storage.googleapis.com/issue_label_bot/pre_processed_data/2_partitioned_df/valid_df.pkl` # + # note: download the data and place in right directory before running this code! valid_df = pd.read_pickle(Path('../data/2_partitioned_df/valid_df.pkl')) train_df = pd.read_pickle(Path('../data/2_partitioned_df/train_df.pkl')) # - print(f'rows in train_df:, {train_df.shape[0]:,}') print(f'rows in valid_df:, {valid_df.shape[0]:,}') train_df.head(3) # ## Create The [DataBunch](https://docs.fast.ai/basic_data.html#DataBunch) # #### Instantiate The Tokenizer # def pass_through(x): return x # only thing is we are changing pre_rules to be pass through since we have already done all of the pre-rules. # you don't want to accidentally apply pre-rules again otherwhise it will corrupt the data. tokenizer = Tokenizer(pre_rules=[pass_through], n_cpus=31) # Specify path for saving language model artifacts path = Path('../model/lang_model/') # #### Create The Language Model Data Bunch # # **Warning**: this steps builds the vocabulary and tokenizes the data. This procedure consumes an incredible amount of memory. This took 1 hour on a machine with 72 cores and 400GB of Memory. # Note you want your own tokenizer, without pre-rules data_lm = lmdb.from_df(path=path, train_df=train_df, valid_df=valid_df, text_cols='text', tokenizer=tokenizer, chunksize=6000000) data_lm.save() # saves to self.path/data_save.pkl # ### Location of Saved DataBunch # # The databunch object is available here: # # `https://storage.googleapis.com/issue_label_bot/model/lang_model/data_save.pkl` # # It is a massive file of 27GB so proceed with caution when downlaoding this file.
Issue_Embeddings/notebooks/02_fastai_DataBunch.ipynb
# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.14.4 # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- # # Think Bayes # # This notebook presents example code and exercise solutions for Think Bayes. # # Copyright 2016 <NAME> # # MIT License: https://opensource.org/licenses/MIT # + # Configure Jupyter so figures appear in the notebook # %matplotlib inline # Configure Jupyter to display the assigned value after an assignment # %config InteractiveShell.ast_node_interactivity='last_expr_or_assign' # import classes from thinkbayes2 from thinkbayes2 import Pmf, Beta, MakeBinomialPmf import thinkplot import numpy as np # - beta = Beta(5, 5) prior = beta.MakePmf() thinkplot.Pdf(prior) thinkplot.decorate(xlabel='Prob Red Sox win (x)', ylabel='PDF') # %psource beta.Update # + beta.Update((15, 0)) posterior = beta.MakePmf() thinkplot.Pdf(prior, color='gray', label='prior') thinkplot.Pdf(posterior, label='posterior') thinkplot.decorate(xlabel='Prob Red Sox win (x)', ylabel='PDF') # - posterior.Mean() posterior.MAP() posterior.CredibleInterval() x = posterior.Random() np.sum(np.random.random(7) < x) # + def simulate(k, dist): x = dist.Random() return np.sum(np.random.random(k) <= x) simulate(7, posterior) # - sample = [simulate(7, posterior) for i in range(100000)]; thinkplot.Hist(Pmf(sample)) np.mean(np.array(sample) >= 4)
examples/red_sox.ipynb
# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.14.4 # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- # + import matplotlib as mpl from matplotlib import pyplot as plt import matplotlib.patheffects as path_effects from matplotlib.patches import Rectangle,Polygon from matplotlib.gridspec import GridSpec typeface='Helvetica Neue' mpl.rcParams['font.weight']=300 mpl.rcParams['axes.labelweight']=300 mpl.rcParams['font.family']=typeface mpl.rcParams['font.size']=22 mpl.rcParams['pdf.fonttype']=42 import os,glob,re import numpy as np from Bio import SeqIO from collections import Counter import baltic as bt travel={} for line in open('/Users/evogytis/Documents/manuscripts/SARS-CoV-2_kitenis/data/travel_qc_info.csv','r'): l=line.strip('\n').split('\t') # print(l[3]) if l[0]!='Virus name' and l[4]!='': travel[l[0]]=l[4] base_path='/Users/evogytis/Documents/manuscripts/SARS-CoV-2_kitenis/data/alignments/B.1.620_repr_Cameroon_wRef.fasta' seqs={} seq_order=[] for seq in SeqIO.parse(base_path,format='fasta'): seqs[seq.id]=str(seq.seq).replace('U','T') seq_order.append(seq.id) # print(seq.id,len(seq.seq)) ref='NC_045512' ll=bt.loadNexus('/Users/evogytis/Documents/manuscripts/SARS-CoV-2_kitenis/data/trees/B.1.620_repr_Cameroon_wRef_renamed.tre',absoluteTime=False,tip_regex='[A-Za-z0-9]+',treestring_regex='tree con_50_majrule =') rename={} for line in open('/Users/evogytis/Documents/manuscripts/SARS-CoV-2_kitenis/data/trees/B.1.620_repr_Cameroon_wRef.fasta_names_keyfile.txt','r'): key,val=line.strip('\n').split('@') rename[key[1:]]=val[1:] for k in ll.getExternal(): k.name=rename[k.name] for k in ll.Objects: k.length=k.length*len(seq.seq) ll=ll.collapseBranches(lambda k: k.length==0) ll.sortBranches(descending=False) # ll.treeStats() alnL=max(list(map(len,seqs.values()))) variable=[] # focus_sequences=[f for f in seqs if f.split('|')[0] in travel] travel_cases=[s for s in seqs if s.split('|')[0] in travel] ca=ll.commonAncestor(ll.getExternal(lambda k: k.name in travel_cases)) focus_sequences=list(ca.leaves) for i in range(alnL): ## iterate over alignment columns if len(set([s[i] for s in seqs.values() if s[i] in ['A','C','T','G','-']]))>1: ## polymorphic site column=[s[i] for s in seqs.values() if s[i] in ['A','C','T','G','-']] ## get column states VOI_column=[seqs[s][i] for s in focus_sequences if seqs[s][i] in ['A','C','T','G','-']] # print(i,VOI_column) if min(Counter(column).values())>1 and min(Counter(VOI_column).values())>1: ## column polymorphic and shared by at least two sequences variable.append(i) variable=list(filter(lambda i: i>100,variable)) variable=list(filter(lambda i: i<29903-50,variable)) # SNPs={s: {i: seqs[s][i] for i in variable} for s in seqs} ## get all variable sites SNPs={s: {i: seqs[s][i] for i in variable if any([seqs[f][i]!=seqs[ref][i] and seqs[f][i] in ['A','C','T','G','-'] for f in focus_sequences])} for s in seqs} variable=sorted(list(SNPs[ref].keys())) print(variable) # + def convert_deletions(deletions): formatted=[] if len(dels)>0: for d in dels: ds=d.split('-') if len(ds)>1: # print('span',ds) b,e=map(int,ds) for i in range(b,e): formatted.append('X%s-'%(i)) return formatted ORFs={"E": (26244,26472), "M": (26522,27191), "N": (28273,29533), "ORF10": (29557,29674), # "ORF14": (28733,28955), "ORF1a": (265,13468), "ORF1b": (13467,21555), "ORF3a": (25392,26220), "ORF6": (27201,27387), "ORF7a": (27393,27759), "ORF7b": (27755,27887), "ORF8": (27893,28259), "ORF9b": (28283,28577), "S": (21562,25384)} def id_orf(site): orf={} for gene in ORFs: m,M=ORFs[gene] if m<=site<=M: orf[gene]=[m,M] return orf def match_aa(nt,aa): matched={} for mut in nt: site=int(mut[1:-1]) orfs=id_orf(site) if len(orfs)==0: ## no orf, nucleotide matched[site]='%s'%(site) ## just site, no aa change for gene in orfs: ## iterate over ORFs m,M=orfs[gene] ## beginning and end of ORF codon=(((site-m-1))//3)+1 ## get codon in ORF mut_search=re.compile('%s:[A-Z*-]%d[A-Z*-]'%(gene,codon)) ## form regex search for match search=[mut_search.match(aa_mut) for aa_mut in aa] ## search amongst aa mutations for match candidates=[] for candidate in search: ## iterate over searches if candidate: ## match is not None candidates.append(candidate.group()) ## remember candidate if len(candidates)==1: ## one candidate found - great # print(mut,gene,codon,candidates[0]) # if site in nt2aa and site-1 in variable: # if '%s (%s)'%(site,candidates[0])!=nt2aa[site]: # print('different mutation: %s %s'%('%s (%s)'%(site,candidates[0]),nt2aa[site])) # print(nt2aa[site],) matched[site]='%s (%s)'%(site,candidates[0]) elif len(candidates)==0: ## no good candidates found - synonymous matched[site]='%s'%(site) else: print('problematic mutation %s with multiple candidates %s'%(mut,candidates)) return matched nt2aa={} for line in open('/Users/evogytis/Documents/manuscripts/SARS-CoV-2_kitenis/data/alignments/B.1.620_repr_Cameroon_wRef.nextclade.tsv','r'): l=line.strip('\n').split('\t') # print(l) # print(l) if l[0]=='seqName': header={x: i for i,x in enumerate(l)} elif l[0]!=ref: # print(l[0]) AAs=l[header['aaSubstitutions']].split(',')+l[header['aaDeletions']].split(',') NTs=l[header['substitutions']].split(',') dels=l[header['deletions']].split(',') # print(convert_deletions(dels)) NTs+=convert_deletions(dels) keep_nt=[] for nt in NTs: site=int(nt[1:-1]) if site-1 not in variable: ## not interested in converting, not in plot # print('%s not in variable'%(nt)) pass else: ## site is in plot, need to convert pass keep_nt.append(nt) # print('%s in plot'%(nt)) matched_up=match_aa(keep_nt,AAs) # print(l[0]) for i in matched_up: if i not in nt2aa: nt2aa[i]=matched_up[i] elif nt2aa[i]!=matched_up[i]: print('different',nt2aa[i],matched_up[i]) else: pass print(nt2aa) nt2aa[21765]='21765' ## beginning of H69 deletion nt2aa[21991]='21991 (S:Y144-)' ## Y144 deletion missed entirely nt2aa[21992]='21992 (S:Y144-)' nt2aa[21993]='21993 (S:Y144-)' nt2aa[22295]='22295 (S:H245Y)' nt2aa[22281]='22281' ## beginning of L241 deletion nt2aa[22282]='22282' nt2aa[22283]='22283 (S:L241-)' nt2aa[22284]='22284 (S:L241-)' nt2aa[22285]='22285 (S:L241-)' nt2aa[22287]='22287 (S:L242-)' nt2aa[22288]='22288 (S:L242-)' nt2aa[25432]='25432 (ORF3a:T14-)' nt2aa[25433]='25433 (ORF3a:T14-)' nt2aa[25434]='25434 (ORF3a:T14-)' inter_orf_breaks=[] store=None for i in variable: Os=id_orf(i) orf=list(Os.keys())[0] if len(Os)>0 else None if store and store!=orf: inter_orf_breaks.append(i) store=orf print(inter_orf_breaks) # + fig = plt.subplots(figsize=(20,20),facecolor='w') gs = GridSpec(1,2,width_ratios=[8,2],hspace=0.01,wspace=0.01) ax=plt.subplot(gs[0]) colours={'A': '#D0694A', 'C': '#77BEDB', 'T': '#48A365', 'G': '#E1C72F', '-':'w','N':'dimgrey', 'K': 'dimgrey', 'Y': 'dimgrey', 'M': 'dimgrey', 'W': 'dimgrey', 'R': 'dimgrey'} # seq_order=list(SNPs.keys()) # seq_order=sorted(list(SNPs.keys()),key=lambda w: w.split('|')[0]) window=3 ll.sortBranches() seq_order=[k.name for k in sorted(ll.getExternal(),key=lambda w: w.y)] for s,S in enumerate(seq_order): cumulative_x=-1 store_site=0 xticks=[] h=0.95 w=1.0 for i,nt in enumerate(SNPs[S]): fc=colours[seqs[S][nt]] if store_site+window<nt: ## next site is beyond window cumulative_x+=1+(nt-store_site)*0.0002 else: cumulative_x+=1 if S==ref or SNPs[S][nt]==SNPs[ref][nt]: fc='lightgrey' rect=Rectangle((cumulative_x,s),w,h,facecolor=fc,edgecolor='none') ax.add_patch(rect) if S==ref or SNPs[S][nt]!=SNPs[ref][nt]: ## nucleotide different from reference or at reference ax.text(cumulative_x+0.5,s+0.5,seqs[S][nt],size=10,ha='center',va='center') xticks.append(cumulative_x) store_site=nt if S=='MN908947.3' or S==ref: ax.add_patch(Rectangle((0,s),cumulative_x+1.1,h,facecolor='none',edgecolor='k',lw=2)) ax.add_patch(Rectangle((0,0),cumulative_x+1.1,len([k for k in ll.getExternal() if k.name in focus_sequences]),facecolor='none',edgecolor='k',lw=2,ls='--',zorder=1000)) norm=mpl.colors.Normalize(1,alnL) for site,nt in zip(xticks,variable): y=-1 skip=1 tick_size=0.4 low_y=y-skip f=0.02 point=(nt/alnL)*(cumulative_x+1) A=(site+f,0) B=(site+f,y) C=(point-0.05,low_y) D=(point+0.05,low_y) E=(site+1-f,y) F=(site+1-f,0) ax.add_patch(Polygon([A,B,C,D,E,F],facecolor='lightgrey',edgecolor='none',clip_on=False)) ax.plot([point,point],[low_y,low_y-tick_size],color='k',clip_on=False) ax.plot([0,cumulative_x+1],[low_y-tick_size/2,low_y-tick_size/2],color='k',clip_on=False) for o in sorted(ORFs,key=lambda s: s[0]): b,e=ORFs[o] begin=(b/alnL)*(cumulative_x+1) end=(e/alnL)*(cumulative_x+1) offset=2.4 w=1.5 kwargs={'width': w, 'length_includes_head': True, 'head_width': w, 'head_length': 0.3, 'clip_on': False} if (e-b)<200: offset=3.4 elif '7' in o or '8' in o or '9' in o: pass # ax.text(np.mean([begin,end]),y-offset-w,o,size=20,color='k',ha='center',va='top',zorder=1000,clip_on=False) elif '3' in o: ax.text(np.mean([begin,end]),y-offset-w,o,size=16,color='k',ha='center',va='center',zorder=1000,clip_on=False) else: ax.text(np.mean([begin,end]),y-offset,o,size=16,color='k',ha='center',va='center',zorder=1000,clip_on=False) ax.arrow(begin,y-offset,end-begin,0,facecolor='lightgrey',edgecolor='none',**kwargs) ax.xaxis.tick_top() ax.set_xticks([x+0.55 for x in xticks]) ### ax.set_xticklabels([site+1 for site in variable],size=14,rotation=90) ax.set_xticklabels([nt2aa[site+1] if site+1 in nt2aa else 'XXXXXXX absent %s'%(site+1) for site in variable],size=12,rotation=90) ax.set_yticks([y+0.5 for y in range(len(seqs))]) yticklabels=[] for y in seq_order: lin=None if y!=ref: if len(y.split('|'))==4: strain=y.split('|')[1] acc=y.split('|')[2] lin=y.split('|')[0] elif len(y.split('|'))==3: strain=y.split('|')[0] acc=y.split('|')[1] lin='B.1.620' if y in focus_sequences else '' country=strain.split('/')[1] country=country.replace('_',' ') y='%s\t\t%s\t\t%s'%(country,acc,lin) elif len(y.split('|'))==3: acc=y.split('|')[1] y=y.split('|')[0] ## strain name country=y.split('/')[1] ## country y='%s\t\t%s\t\t%s'%(country,acc,' ') yticklabels.append(y) ax.set_yticklabels(yticklabels,size=14) ax.tick_params(size=0) ax.set_xlim(min(xticks)-0.2,cumulative_x+1.2) ax.set_ylim(-0.1,len(seqs)+0.1) [ax.spines[loc].set_visible(False) for loc in ax.spines] ax2=plt.subplot(gs[1]) ll.plotTree(ax2,width=4) colours={} for line in open('/Users/evogytis/Documents/manuscripts/SARS-CoV-2_kitenis/colours.csv','r'): loc,colour=line.strip('\n').split('\t') colours[loc]=colour for k in ll.getExternal(): ax2.plot([k.height,50],[k.y,k.y],ls='--',color='grey',zorder=90) s=80 ec='none' country=None if len(k.name.split('|'))==4: strain=k.name.split('|')[1] country=strain.split('/')[1] lin=k.name.split('|')[0] elif len(k.name.split('|'))==3: strain=k.name.split('|')[0] lin='B.1.620' if strain in travel else '' country=strain.split('/')[1] if country: country=country.replace('_',' ') fc=colours[country] if country in colours else 'lightgrey' ax2.scatter(k.height,k.y,s=s,facecolor=fc,edgecolor=ec,zorder=100) ax2.scatter(k.height,k.y,s=s*2,facecolor='k',edgecolor=ec,zorder=99) for k in ll.getInternal(): if len(k.leaves.intersection(set(focus_sequences)))>0 and len(k.leaves)>=len(focus_sequences) and len(k.traits)>0: effects=[path_effects.Stroke(linewidth=4, foreground='white'), path_effects.Stroke(linewidth=0, foreground='k')] ## black text, white outline prob='%.2f'%(k.traits['prob']) if k.traits['prob']<1.0 else '1' ax2.text(k.height-0.8,k.y-0.4,prob,size=22,path_effects=effects,ha='left',va='top') if len(k.leaves.intersection(set(focus_sequences)))==len(focus_sequences)==len(k.leaves): ax2.text(k.height-0.8,k.y+0.2,'B.1.620',ha='left',va='bottom',size=20) ax2.invert_xaxis() ax2.plot() ax2.xaxis.set_major_locator(mpl.ticker.MultipleLocator(10)) ax2.xaxis.set_minor_locator(mpl.ticker.MultipleLocator(2)) [ax2.spines[loc].set_visible(False) for loc in ax2.spines if loc not in ['bottom']] ax2.tick_params(axis='y',size=0,labelsize=0) ax2.set_ylim(-0.1,len(seqs)+0.1) ax2.set_xlim(37.5,-1) ax2.grid(axis='x',ls='--') ax2.set_xlabel('mutations',size=26) # plt.savefig('/Users/evogytis/Documents/manuscripts/SARS-CoV-2_kitenis/figures/Fig1_mutations.png',dpi=100,bbox_inches='tight') plt.savefig('/Users/evogytis/Documents/manuscripts/SARS-CoV-2_kitenis/figures/Fig1_mutations.pdf',dpi=100,bbox_inches='tight') plt.show() # -
scripts/B.1.620-lineage-SNPs-main.ipynb
# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.14.4 # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- # ## NumPy Indexing and Selection import numpy as np arr = np.arange(0,17) arr # #### Bracket Indexing and Selection arr[5] arr[9:] # ### Indexing a 2D array (matrices) # # using one subscript comma approach i.e. **arr_2d[row,col]**. arr_2d = np.array(([3,6,9],[10,15,20],[20,25,30],[90,67,56])) arr_2d arr_2d[2] #Indexing multiple rows arr_2d[2:4] # Format is arr_2d[row][col] or arr_2d[row,col] # Getting individual element value arr_2d[2,0] # 2D array slicing #Shape (2,2) from top right corner arr_2d[:2,1:] #Shape bottom row arr_2d[2:5,4:7] # ## Quiz 5 # # What will the output of follwoing lines of code? # # arr_2d = np.arange(16).reshape(4,4) # arr_2d[2:4][1:2] # # * array( [[ 8, 9, 10, 11], # [12, 13, 14, 15]] ) # * array( [[12, 13, 14, 15]] ) # * array([], shape=(0, 4), dtype=int64) # * None of these # ### Selection # # Selecting/Filtering data based on some conditions. arr1 = np.arange(1,21) arr1 arr1 > 7 bool1 = arr>7 bool1 arr1[arr1>7] arr1[arr1==12] arr1 # ### np.where() function # # syntax - **numpy.where(condition[, x, y])** # # * It returns the indices of elements in an input array where the given condition is satisfied. # # * If both x and y are specified, the output array contains elements of x where condition is True, and elements from y elsewhere. np.where(arr1>7) #indices arr1[np.where(arr1>7)] #values # case 2 np.where(arr1>7, arr1, 1)
04 Numpy and Pandas/NumPy/Numpy Indexing and Selection.ipynb
# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.14.4 # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- import pandas as pd import numpy as np import plotly.express as px df=pd.read_csv('WA_Fn-UseC_-HR-Employee-Attrition.csv') df.head(5) df.dtypes df.isnull().sum() df_DistanceFromHome=df.groupby(['JobRole','Attrition'])['DistanceFromHome'].sum().reset_index() df_DistanceFromHome fig=px.bar(df_DistanceFromHome,x='JobRole',y='DistanceFromHome',hover_data=['Attrition'],color='Attrition',title='Breakdown of distance from home by job role and attrition',height=700) fig.show() df_MonthlyIncome_avg=df.groupby(['Education','Attrition'])['MonthlyIncome'].mean().reset_index() df_MonthlyIncome_avg fig=px.bar(df_MonthlyIncome_avg,x='Education',y='MonthlyIncome',hover_data=['Attrition'],color='Attrition',title='Comparision of average monthly income by education and attrition',height=500) fig.show()
ADS-Assignment-2-3.ipynb
# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.14.4 # kernelspec: # display_name: Python [default] # language: python # name: python3 # --- # # Introduction to MOOG # # > MOOG is a code that performs a variety of LTE line analysis and spectrum synthesis tasks. The typical use of MOOG is to assist in the determination of the chemical composition of a star. # > -- from [MOOG website](http://www.as.utexas.edu/~chris/moog.html) by <NAME> # # # Simply speaking, MOOG is a old fashion (Fortran) but effective code to ceate normalized stellar synthetic spectra. # By comparing the synthetic spectra with observed one, we can determine the stellar parameters (effective temperature, surface gravity and metallicity) and abundance ratios (e.g., \[Mg/Fe\], \[Al/Fe\] and \[Si/Fe\]) of a star because we know these parameters of synthetic spectra. # # ![](demo_sun/spectra.png) # ** Figure of solar synthetic spectra and observed spectra from [BASS2000](http://bass2000.obspm.fr/solar_spect.php).** # # However, it is not so easy to use MOOG with the following reasons: # - It is written in Fortran, an old programm lagnuage with strict format, which means it is not as flexiable as python; # - It requires a commerical plotting module, SuperMongo to be installed in the machine, which is not open source; # - The calculation requires external information, i.e., **a stellar atmosphere model and a line list **. # # As a result, it is necessary to construct a python wrapper for MOOG to make it more simple to use. # Actually some large scale stellar survey (such as SDSS/APOGEE) also use MOOG to determine stellar parameters and they have their own version of MOOG, but there is only [one attempt](https://github.com/andycasey/moog) for simplify the install process of MOOG by <NAME>. # # ## Package goal # # Our pymoog package is aiming to make the use of MOOG more easily. # With a time of a week we will only go for the `SYNTH` driver - the most fundamental driver for creating the synthetic sectra. # # Example (only for reference): # ```py # spec = pymoog.synth(Teff=5000, logg=4.0, m_h=-0.5, wavelength_range=[9500, 9550]) # spec.create_synth_spectra() # # print(spec.synth_spec_wav, spec.synth_spec_flux) # >>> np.array([9500, 9501, 9502, ... , 9550]), np.array([1.0, 1.0, 0.9, ... , 1.0]) # # ``` # # ## To dos # # 1. Install MOOG automatically. # 1. Prepare a model file accoring to the specified stellar parameters (Teff, logg and m_h) # - This can be done with the help of other packages; there is a package provide the download of some models. # - The whole set of atmosphere model is in GB level, so it may not be precticle to store all the models in the package. # 2. Prepare a line list according to the specified wavelength_range. # 3. Construct the control file (`batch.par`) # 4. Feed MOOG with the files mentioned above # 5. Extract the output of moog and plot the synthetic spectra in python. # # The standard format of atmosphere model, line list and `batch.par` is described in the [documetation of MOOG](http://www.as.utexas.edu/~chris/codes/WRITEnov2019.pdf), and we will constrict these files based on this documation. # # # # ## Things done # # We are not starting from nothing when creating synthetic spectra. # There are lots of stellar atmosphere model atlas available, such as those from [Kurucz](http://kurucz.harvard.edu/grids.html) and [MARCS](https://marcs.astro.uu.se/). # These are pre-calculated models, so we only need to dwonload the right one and that's all. # For simplicity I suggest we only focus on one type of model (maybe Kurucz) # The situation for line list is similar, with many choices available. # The one I am most familiar with is the [Vienna Atomic Line Database](http://vald.astro.uu.se/~vald/php/vald.php) (VALD). # It can be used after some simple format or unit convertion. # For the code of MOOG itself, MJ have done some modification to remove its dependence on SuperMongo (see [this repo](https://github.com/MingjieJian/moog_nosm)). # Also see the codes for using MOOG in `moog.py`; they works **but only work in MJ's working environment**, so large amount of modification needed to perform. # # # ## How to use # # ```python # pymoog.line_data.vald2moog_format('../vald_init', 'files/linelist/vald_') # ``` # # ```python # synth_spec = synth.synth(5750,4.0,0, 3800,3805, 2800000) # synth_spec.prepare_file(loggf_cut=-1) # synth_spec.run_moog(output=True) # synth_spec.read_spectra() # plt.plot(synth_spec.wav, synth_spec.flux) # ```
docs/Introduction to MOOG.ipynb
# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.14.4 # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- import tensorflow as tf from tensorflow import keras import numpy as np import matplotlib.pyplot as pyplot import image import cv2 import os scale=4 (x_train,y_train),(x_test,y_test)=keras.datasets.mnist.load_data() datagen=keras.preprocessing.image.ImageDataGenerator(rescale=1/255.,horizontal_flip=True,vertical_flip=True) x_train=x_train.reshape((x_train.shape[0],28,28,1)) y_train.shape wres=scale*x_train.shape[2] hres=scale*x_train.shape[1] npic=x_train.shape[0] nchan=x_train.shape[3] x_train_aug=np.full((npic,wres,hres,nchan),0) for i in range(0,(x_train.shape[0])): pic=x_train[i] pic=cv2.resize(pic,(wres,hres),interpolation=cv2.INTER_AREA) pic=np.expand_dims(pic,axis=2) x_train_aug[i]=pic datagen.fit(x_train_aug) os.makedirs('images') for x_batch, y_batch in datagen.flow(x_train_aug,y_train,batch_size=9,save_to_dir='images',save_prefix='aug',save_format='png'): for i in range(0,9): pyplot.subplot(3,3,i+1) pyplot.imshow(x_batch[i].reshape(wres,hres), cmap=pyplot.get_cmap('gray')) pyplot.show() if i == 9: print(i) break break
augtest.ipynb
# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.14.4 # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- # # INTRODUÇÃO # ------------ # # O Python é uma linguagem de programação conhecida como **OOP (_Object Oriented Programming_)**, de **alto nível** e **interpretada**. # ## COMPILADA x INTERPRETADA # ------------------------------ # # Em qualquer linguagem de programação estamos escrevendo um código que será convertido para linguagem de máquina, sendo possível então a utilização desse programa pelo computador ou outros dispositivos eletrônicos. # # <br> # # ### COMPILADA # # Em uma linguagem compilada, após concluir um programa, precisamos passar por um programa chamado "compilador" que irá ler o programa, verificar algum erro estrutural e criar um arquivo executável para a plataforma desejada. Dessa forma, com esse novo arquivo, não conseguimos mais editar o código (partindo apenas desse material) e não precisamos de mais nenhum outro programa para rodar o script. # # **Vantagem:** Depois de compilado, o programa pode rodar em outros dispositivos (sem a interface de desenvolvedor). # **Desvantagem:** Não é possível verificar ou editá-lo possuindo apenas o arquivo compilado. # **Exemplos:** C, C++, Fortran, Visual Basic # # <br> # # ### INTERPRETADA # # Em uma linguagem interpretada, o código não precisa passar por esse compilador, mas para o programa funcionar é necessário executar o programa utilizando um "interpretador" que irá ler o programa enquanto está rodando o código. # # **Vantagem:** O programa pode ser executado linha a linha, sendo para o processo de *debugging* ou ainda utilizar os *notebooks*. # **Desvantagem:** O programa só poderá rodar possuindo um interpretador compatível com a versão utilizada e costuma ser bem mais lento (em ordens de magnitude). # **Exemplos:** Python, R, JavaScript # ## BAIXO NÍVEL x ALTO NÍVEL # --------------------------- # # No tópico anterior foi comentado que qualquer código deve passar por um procedimento para a máquina conseguir ler o programa (deixar em linguagem de máquina). Da mesma forma, podemos programar, conforme a linguagem, de uma maneira mais "próxima" dessa conversão ou mais parecido com uma linguagem humana, criando assim um espectro conhecido como "nível" da linguagem dentro da programação. # # <br> # # ### BAIXO NÍVEL # # Uma linguagem de baixo nível significa que está muito próxima do comportamento tomado pela máquina. Dessa forma, a linguagem costuma apresentar uma interpretação mais diícil, mas permite mais controle do sistema. Além disso, funções mais complexas podem ser difícil de implementar sem cair em várias de linhas de código. # # **Vantagem:** Os programadores costumam ter mais controle do funcionamento da máquina e o código de execução, o que também compromete a performance durante a execução do *script*. # **Desvantagem:** Possui uma sintaxe mais complicada e pouco ágil para os programadores. # **Exemplos:** Assembly e binário # # <br> # # ### ALTO NÍVEL # # Uma linguagem de alto nível significar que está mais próxima da fala/escrita humana. Assim, essas linguagens são mais fáceis de aprender e trabalhar. Fora isso, possuem uma sintaxe mais variada e abertura para diversas outras funcionalidades. # # **Vantagem:** Costumam-se ser mais fáceis de aprender e ágeis de programar, pela simplicidade da sintaxe. # **Desvantagem:** Precisam passar pelo procedimento de compilação ou interpretação, se tornando programas mais lentos. # **Exemplos:** Python e Java # ## PROGRAMAÇÃO ORIENTADA A OBJETOS # ---------------------------------- # # Esse já é um tópico mais avançado, mas certamente é uma das funcionalidades mais fascinantes e poderosas em algumas linguagens. Basicamente, um programa pode ser escrito em torno de objetos, que representam o mundo real, que podem carregar atributos (informações) e métodos (funções). Embora isso provavelmente não esteja claro, você verá que em programas mais complexos, esse mecanismo se torna mais comum pelas suas capacidades e diversidades de uso. # # Mais informações no vídeo: https://youtu.be/QY0Kdg83orY # ## OBSERVAÇÕES # -------------- # # O que acha de já comentarmos de tópicos comuns na linguagem Python? # Vamos para a lista: # ### 1. VERSÕES # # O Python possui duas versões principais: Python 2 e Python 3. Contudo, o Python 2 não possui mais suporte e deve ser evitado sempre que possível (até porque o "3" possui mais funcionalidades). Além disso, dentro do Python 3.x, por exemplo, ainda temos outras "sub-versões" do interpretador. Dessa forma, preste atenção ao utilizar a versão recomendada ou exigida, principalmente quando estiver utilizando bibliotecas externas (veremos isso em breve). # ### 2. EXPERIENTES # # Aos que já mexeram em outras linguagens de programação, podem acabar percebendo duas principais diferenças na sintaxe em relação ao Python. A primeira e mais óbvia é a exclusão da utilização do famoso `;`. A segunda, relacionada com a primeira, é a importância da indentação na nova linguagem que você está aprendendo. Isto pois, em outras linguagens, é muito comum a utilização de parênteses e chaves para agrupar um "bloco" de conteúdo, não sendo (sempre) exigida alguma formatação específica. Já no Python, esses "blocos" são inexistentes, de forma que precisamos respeitar uma tabulação do conteúdo para o interpretador compreender corretamente o programa. # ### 3. COMENTÁRIOS # # Os comentários durante o código possuem duas funcionalidades principais: acrescentar explicações ao longo do programa ou colocar uma parte do programa para ser "pulada" (ao invés de deletar e perder uma parte do código). As duas opções são boas práticas de programação em qualquer linguagem e podem ser feitas de várias formas no Python. # + # Podemos usar o símbolo de "#" antes do texto e tudo que vier em seguida será desconsiderada pelo interpretador 'Podemos também usar aspas simples' "Aspas duplas também podem ser utilizadas" ''' Para comentários com mais de uma linha, devemos repetir o par de aspas 3 vezes. ''' """ O mesmo vale para aspas duplas. """ # - # ### 4. FORMATAÇÃO # # Como boa prática de programação é recomendado seguir uma formação para o código, de forma a deixá-lo "legível" para todos os usuários. Existe uma "norma" chamada **PEP 8** que traz um guia de dicas úteis para esse procedimento, mas isso se pega com a experiência também. # ### 5. DÚVIDAS # # O Python é uma linguagem em alta no momento e possui muita documentação por aí: fóruns, wikis, canais no YouTube, cursos, etc. Então, se tiver alguma dúvida ou problema, generealize-o (ou seja, não deixe ele específico para o seu projeto) e procure na internet. Você provavelmente vai encontrar algum material a respeito. # Você provavelmente conhecerá o StackOverFlow muito em breve 😂 # ## TRADIÇÃO # ----------- # # Existe uma tradição ao aprender uma nova linguagem de programação em fazer um programa simples: mostrar ao usuário a frase "Hello, World!" ("Olá, Mundo!"). Rés a lenda que dá azar não fazer esse procedimento, então, vamos lá né 😅 # + # O "print" é um método que retorna no terminal o valor dentro dos "parênteses". # Para retornar um texto, precisamos adioná-lo entre aspas simples ou duplas. print('Hello, World!') print("Olá, Mundo!") # - # # TIPOS DE DADOS # ---------------- # # Dados servem para guardar informações, mas nem toda informação pertence a uma mesma categoria. Um exemplo simples são os números e palavras, quando eu digo "quatro" e "4", mesmo você lendo isso da mesma forma, você possivelmente interpretaria isso de maneira diferente dependendo do contexto. E sobre isso que veremos nesta seção: principais tipos de dados, sua estrutura e suas principais utilizações. # # **Observação:** para verificar a tipagem de uma variável, você pode usar o comando abaixo: # # `print(type(<variável>))` # # onde: # `<variável>` deve ser a variável em questão; # `type` retorna o tipo da `<variável>`; # `print` retorna no terminal o valor encontrado. # ## TEXTO # -------- # # Qualquer tipo de texto: caracteres, palavras, frases, etc. # ### str # # Qualquer tipo de texto: caracteres, palavras, frases, etc. # # **Representação** # Sempre por aspas, sejam simples ou duplas (mesma lógica dos comentários que utilizam esse símbolo). # + # A variável 'texto' receberá o valor "Olá, mundo!" texto = "Olá, Mundo!" # texto = str("Olá, Mundo!") # Retorna o valor da variável print(texto) # Olá, Mundo! # Retorna o tipo print(type(texto)) # <class 'str'> # - # ## NUMÉRICO # ----------- # # Registram diferentes tipos de números, conforme a necessidade: apenas inteiros, reais ou complexos. # ### int # # Número inteiro. # # **Representação** # Valor inteiro, sem pontuação, relacionado com a variável (depois do `=`). # + # A variável 'x' recebe o valor 10 x = 10 # x = int(10) # Retorna o valor da variável print(x) # 10 # Retorna o tipo print(type(x)) # <class 'int'> # - # ### float # # Ponto flutuante, números reais que aceitam a parte decimal. # # **Representação** # Valor numérico com a parte decimal, indicado pelo sistema americano como `.` (separador decimal). # + # A variável 'y' recebe o valor 7.0 (note que não é necessário adionar o 0 depois do ponto) y = 7. # y = float(7) # Retorna o valor da variável print(y) # 7.0 # Retorna o tipo print(type(y)) # <class 'float'> # - # ### complex # # Números complexos: parte real e parte imaginária (utilizando o `j` ou `J`). O motivo para ser `j` é não `i` vem da engenharia elétrica que utiliza a primeira letra para representar o número imaginário. Além disso, é muito comum a letra `i` ser usada nos *loops*. Por último, dependendo da fonte, a letra maiúscula, `I`, com o `l`. # # **Representação** # Valor numérico com a parte real e a parte imaginária, esta última com a letra J (minúsculo ou maiúscula). # + # A variável 'z' recebe o valor 2 + 3i z = 2 + 3j # z = complex(2, 3) # Retorna o valor da variável print(z) # (2+3j) # Retorna o tipo print(type(z)) # <class 'complex'> # - # ## SEQUENCIAL # ------------- # # Possuem várias dados que podem ser acessados através de uma sequência. # ### list # # Listas são conjuntos de dados indexados, iniciando pelo índice 0. Além disso, as listas são modeláveis, podendo ser editadas após a sua criação (acrescentando ou removendo itens, por exemplo). # # **Representação** # Itens separados por vírgula dentro de `[]`. # + # A variável 'primos' recebe os valores 2, 3, 5, 7, 11 primos = [2, 3, 5, 7, 11] # primos = list((2, 3, 5, 7, 11)) # Retorna o valor da variável print(primos) # [2, 3, 5, 7, 11] # Podemos retornar um(alguns) valor(es) da lista a partir dos seus índices print(primos[2]) # Apenas o valor de índice 2 --> 5 print(primos[0:3]) # Valores entre o índice 0 até 2 --> [2, 3, 5] # Retorna o tipo print(type(primos)) # <class 'list'> # - # As sequências também podem conter diferentes tipos de valores. ficha = ['Fulano', 22, 'Masculino'] # Poderia ser: [nome, ano, sexo] print(ficha) # ['Fulano', 22, 'Masculino'] # Também é possível ter listas dentro de listas. Essa prática é conhecida como _nested lists_ ou _nD-lists_ (_n_ sendo o valor da dimensão da lista). # + # Matriz identidade 3x3 matriz_I = [ [1, 0, 0], [0, 1, 0], [0, 0, 1] ] print(matriz_I) # [[1, 0, 0], [0, 1, 0], [0, 0, 1]] # Podemos retornar uma célula específica especiicando a linha e depois a coluna print(matriz_I[1][1]) # 1 # - # ### tuple # # Tuplas são muito semelhantes as `list`, porém imutáveis, isto é, não podem ser modificadas após a sua criação. # # **Representação** # Itens separados por vírgula dentro de `()`. # + # Tuplas devem ser uma sequência de itens separados por vírgula e dentro de (). # A variável 'CONSTANTES' recebe os valores 3.1415, 9.81, 1.6 CONSTANTES = (3.1415, 9.81, 1.6) # CONSTANTES = tuple((3.1415, 9.81, 1.6)) 'Quando escrevemos uma variável em toda em maiúscula, ela é considerada uma constante.' # Retorna o valor da variável print(CONSTANTES) # (3.1415, 9.81, 1.6) # Todas as aplicações apresentadas anteriormente para listas se aplicam nas tuplas. # Retorna o tipo print(type(CONSTANTES)) # <class 'tuple'> # - # ### range # # Arranjo de valores, podendo configurar o valor de início, final ($*n-1*$) e o passo. Em outras palavras, é possível fazer uma progressão aritmética, muito útil para *loops*. # # **Representação** # Método `range()` com até 3 parâmetros: # - 1 parâmetro - `range(n)` - valor final, $n-1$. # - 2 parâmetros - `range(start, end)` - valor inicial (`start`) e final (`end`), $n-1$. # - 3 parâmetros - `range(start, end, step)` - valor inicial (`start`) e final (`end`), $n-1$, e o passo (`step`). # + # range pode receber até 3 parâmetros # Apenas 1 parâmetro diz que a variável vai de 0 até o valor estipulado (-1) arr1 = range(5) # 0, 1, 2, 3, 4 # Se utilizar dois argumentos, o primeiro será o início e o segundo o fim do arranjo arr2 = range(2, 6) # 2, 3, 4, 5 # O terceiro argumento é o espaçamento do arranjo arr3 = range(1, 8, 2) # 1, 3, 5, 7 arr4 = range(5, 0, -1) # 5, 4, 3, 2, 1 # Retorna o valor da variável print(arr1, arr2, arr3, arr4) # range(0, 5) range(2, 6) range(1, 8, 2) range(5, 0, -1) # Retorna o tipo print(type(arr1)) # <class 'range'> # - # ## MAPEÁVEL # ----------- # # Possuem vários dados que podem ser acessados através de um "endereço" (chave). # ### dict # # Dicionários são estruturas de dados que possuem uma lista pareada de chaves e valores. Da mesma forma que podemos chamar um valor de uma lista pelo seu índice, nos dicionários podemos retornar um valor baseado em sua chave associada. # # **Representação** # Valores pareados, chave e valor, com a dupla separada por `:` e novos itens separados por `,` dentro de `{}`. # + # A variável 'telefones' guarda uma lista de nomes com os seus valores de número de telefone telefones = { 'Fulano' : '(XX) XXXX-XXXX', 'Ciclano' : '(YY) YYYY-YYYY', 'Beltrano' : '(ZZ) ZZZZ-ZZZZ' } # telefones = dict(Fulano = '(XX) XXXX-XXXX', Ciclano = '(YY) YYYY-YYYY', Beltrano = '(ZZ) ZZZZ-ZZZZ') # Retorna o valor da variável print(telefones) # {'Fulano': '(XX) XXXX-XXXX', 'Ciclano': '(YY) YYYY-YYYY', 'Beltrano': '(ZZ) ZZZZ-ZZZZ'} # Podemos retornar um valor do dicionário a partir dos seus índices print(telefones['Beltrano']) # (ZZ) ZZZZ-ZZZZ # Retorna o tipo print(type(telefones)) # <class 'dict'> # - # ## CONJUNTO # ----------- # # Conjunto de valores que não possuem sequência definida. # ### set # # Esse conjunto também é capaz de armazenar diversos valores em uma única variável (como as listas), mas não é ordenável, nem indexado. Isso quer dizer que os valores não podem ser "chamados" utilizando algum índice e toda vez estes são mostrados podem estar "misturados". Além disso, esse tipo de dado não pode remover algum item e não aceita valores duplicados. # # **Representação** # Os valores são separados por `,` dentro de `{}`. Contudo, não deve ser vazio, por esse método, caso contrário, vai criar um dicionário). # + # A variável 'frutas' recebe os valores 'maçã', 'melancia', 'pêra', 'uva' frutas = {'maçã', 'melancia', 'pêra', 'uva'} # frutas = set(('maçã', 'melancia', 'pêra', 'uva')) # Retorna o valor da variável print(frutas) # Possível retorno --> {'pêra', 'uva', 'maçã', 'melancia'} # Retorna o tipo print(type(frutas)) # <class 'set'> # - # ### frozenset # # Muito parecido com o `set`, mas não pode ser modificado (acrescentar itens). # # **Representação** # Método `frozenset()` com uma lista de valores dentro dos `()`. # + # A variável 'materias' recebe os valores 'matemática', 'física', 'química', 'biologia' matérias = frozenset({'matemática', 'física', 'química', 'biologia'}) # Retorna o valor da variável print(matérias) # Possível retorno --> frozenset({'química', 'biologia', 'física', 'matemática'}) # Retorna o tipo print(type(matérias)) # <class 'frozenset'> # - # ## BOOLEANO # ----------- # # Valores booleanos: verdadeiro/falso, 0/1, sim/não, etc. # ### bool # # Valores booleanos ( `True` | `False` ). # # **Representação** # Valor `True` (verdadeiro) e `False` (falso). # + # A variável 'passei' recebe True (verdadeiro) passei = True # passei = bool(1) # Qualquer coisa diferente de 0 # não_passei = False # não_passei = bool(0) # Retorna o valor da variável print(passei) # True # Retorna o tipo print(type(passei)) # <class 'bool'> # - # ## BINÁRIO # ---------- # # Valores ligados a memória do dispositivo. # ### bytes # # Retorna um objeto feito de bytes imutável com um dado tamanho e informação. # # **Representação** # Valor antecedido por um `b` e entre aspas. # + # A variável "oi" recebe o valor "Hi" em bytes oi = b'Hi' # Retorna o valor da variável print(oi) # b'Hi' # Retorna o tipo print(type(oi)) # <class 'bytes'> # - # ### bytearray # # Semelhante ao `bytes`, mas é um array mutável. # # **Representação** # Método `bytearray()` com o tamanho do array dentro dos `()`. # + # A variável array recebe um array de bytes de tamanho 5 array = bytearray(5) # Retorna o valor da variável print(array) # bytearray(b'\x00\x00\x00\x00\x00') # Retorna o tipo print(type(array)) # <class 'bytearray'> # - # ### memoryview # # Retorna o local de memória de um objeto. # # **Representação** # Objeto do tipo `byte` dentro do método `memoryview()`. # + # A variável "vis" recebe a posição na memória do bytes(5) vis = memoryview(bytes(5)) # Retorna o valor da variável print(vis) # Possível retorno --> <memory at 0x0000024B2DBA4D00> # Retorna o tipo print(type(vis)) # <class 'memoryview'> # - # # PRINCIPAIS MÉTODOS # -------------------- # # Métodos são funções que podem receber algum tipo de dado e argumentos a fim de retornar algum novo valor ou dado. # Nesta seção, vamos conferir os métodos mais comuns utilizados no dia-a-dia da programação. # # Os métodos costumam aparecer de duas formas principais: `método(argumentos)` ou `dado.método(argumentos)`. Isso ficará mais claro com o passar do tempo. # ## Print # -------- # # Sim, você já viu esse método antes. Como você deve saber, ele retorna o valor passado para o terminal. # # Além disso, vamos ver outras opções interessantes para o `print`. # ### f-strings # # Essa na verdade não é uma propriedade do método `print`, mas da própria `str`. Basicamente, podemos mesclar um texto com valores de outras variáveis, de forma que um mesmo texto pode ter valores diferentes conforme os valores de entrada. # # Para isso, iniciamos uma `str` com um `f` na frente e o espaço que vai receber a variável deve possuir um `{}`. # + nome = 'João' idade = 27 print(f'Olá, meu nome é {nome} e tenho {idade} anos.') # Olá, meu nome é João e tenho 27 anos. # Alternativamente... print('Olá, meu nome é {} e tenho {} anos.'.format(nome, idade)) # Olá, meu nome é João e tenho 27 anos. # - # ## Input # -------- # # Muitas vezes queremos que o usuário nos forneça algum tipo de informação ou dado. Para isso, podemos usar o método `input` que registrar o que for digitado no terminal. # # Cuidado: esse método registra por padrão uma `str`, então se você está esperando um número, por exemplo, acrescente o `int()`, `float()` e assim por diante. # + # Registra o que o usuário digitar na variável 'mensagem' mensagem = input('Digite alguma coisa (depois dê enter): ') # Printa o que foi registrado print(f'Você digitou a seguinte mensagem: {mensagem}') # - # ## Split # -------- # # Também é utilizado para `str`, caso se deseja separar um conjunto de palavras em uma lista de palavras. # + frase = "Rosas são vermelhas. Violetas são azuis." separado = frase.split() # Veja que estamos passando o método tendo primeiro definido a variável print(separado) # ['Rosas', 'são', 'vermelhas.', 'Violetas', 'são', 'azuis.'] # - # O método `split` pode receber também um parâmetro para indicar qual será o separador da `str`. Um exemplo prático é usar o ponto final para separar frases de um parágrafo. # + poema_autopsicografia = """ O poeta é um fingidor. Finge tão completamente Que chega a fingir que é dor A dor que deveras sente. E os que lêem o que escreve, Na dor lida sentem bem, Não as duas que ele teve, Mas só a que eles não têm. E assim nas calhas da roda Gira, a entreter a razão, Esse comboio de corda Que se chama o coração.""" print(poema_autopsicografia.split('.')) # ['\nO poeta é um fingidor', '\nFinge tão completamente\nQue chega a fingir que é dor\nA dor que deveras sente', '\n\nE os que lêem o que escreve,\nNa dor lida sentem bem,\nNão as duas que ele teve,\nMas só a que eles não têm', '\n\nE assim nas calhas da roda\nGira, a entreter a razão,\nEsse comboio de corda\nQue se chama o coração', ''] # - # Note que a saída produziu vários `\n` que, nas `str`, são interpretados como nova linha (parágrafo). # ## Len # ------ # # Utilizado em qualquer tipo de estrutura de dados (`list`, `tuple`, `set`, `str`) para retornar o seu tamanho. # + pontos = [1, 4, 7, 3, 10] print(len(pontos)) # 5 # - # ## Append # --------- # # Adiciona um valor ao final de uma lista. # + pontos = [1, 4, 7, 3, 10] pontos.append(55) print(pontos) # [1, 4, 7, 3, 10, 55] # - # Lembra que as tuplas são imutáveis? # + países = ('Brasil', 'EUA', 'Alemanha', 'Canadá', 'Itália') países.append('Japão') # AttributeError: 'tuple' object has no attribute 'append' # - # ## Remove # --------- # # Remove um item de uma lista dado o seu valor. # + pontos = [1, 4, 7, 3, 10, 55] pontos.remove(7) print(pontos) # [1, 4, 3, 10, 55] # - # Lembra que as tuplas são imutáveis? # + países = ('Brasil', 'EUA', 'Alemanha', 'Canadá', 'Itália') países.remove('EUA') # AttributeError: 'tuple' object has no attribute 'remove' # - # ## Sum # ------ # # Soma o valor de todos os itens em um conjunto numérico. # + pontos = [1, 4, 3, 10, 55] soma = sum(pontos) print(soma) # 73 # - # ## Operações básicas # -------------------- # # Esse não se trata de um método, mas acredito que seja importante mostrar as principais operações numéricas. # + x = 6 y = 2 # Soma print(f'{x}+{y} = {x + y}') # 6+2 = 8 # Subtração print(f'{x}-{y} = {x - y}') # 6-2 = 4 # Multiplicação print(f'{x}x{y} = {x * y}') # 6x2 = 12 # Divisão print(f'{x}/{y} = {x / y}') # 6/2 = 3.0 # Note que o resuldo será um float, mesmo o resultando sendo inteiro. # Potência print(f'{x}^{y} = {x ** y}') # Alternativamente: pow(x,y) # 6^2 = 36 # Divisão inteira print(f'Parte inteira de {x}/{y} é {x // y}') # Parte inteira de 6/2 é 3 # Resto da divisão print(f'Resto de {x}/{y} é {x % y}') # Resto de 6/2 é 0 # - # ## Map # ------ # # Permite processar e transformar todos os itens de um iterável sem a necessidade de um *loop*. # + # map(função, iterável) quadrados = tuple(map(lambda x: x**2, range(10))) print(quadrados) # (0, 1, 4, 9, 16, 25, 36, 49, 64, 81) # - # --- # Existem diversos métodos para cada um dos tipos de dados já apresentados e muito disso você pode facilmente encontrar pela internet, conforme a sua necessidade. # # BIBLIOTECAS # ------------- # # As bibliotecas servem para poder adicionar funcionalidades diversas no programa, sendo utilizando códigos produzidos por você ou pela comunidade. Vejamos como podemos estar "chamando" essas bibliotecas e quais são as mais utilizadas. # # **Observações:** Sempre importe as bibliotecas que serão utilizadas na parte superior do código. # # Tendo a biblioteca instalada em seu ambiente de trabalho, podemos importar as bibliotecas ou funções de duas formas: # # 1. Importar todas as funções disponíveis no pacote. # # `import <biblioteca>` # # Desse jeito, teremos que chamar uma função desta biblioteca pelo seguinte formato: `biblioteca.função()`. # # 2. Importar apenas algumas funções específicas. # # `from <biblioteca> import <função>` # # Desta forma, basta chamar a função importada no formato: `função()`. # # Uma prática comum é renomear as bibliotecas ou funções, geralmente para deixar em uma forma mais enxuta. Assim, ao invés de chamarmos uma função por `biblioteca.função()`, por exemplo, chamamos por `<novo nome>.função()`. Para isso, usamos a expressão as `<novo nome>`: # # `import <biblioteca> as <novo nome>` # `from <biblioteca> import <função> as <novo nome>` # ## Bibliotecas comuns # --------------------- # # - **math**: Funções matemáticas complexas; # - **random**: Números aleatórios; # - **os**: Controle de arquivos do sistema; # - **sys**: Controle de sistema do computador; # - **time**: Medir o tempo, hora, etc; # - **timeit**: Tempo de execução; # - **tkinter**: Criação de GUI; # - **pygame**: Craiçao de jogos; # - **numpy**: Manipulação de *arrays*, vetores e matrizes; # - **pandas**: Manipulação e visualização de tabelas de dados; # - **scipy**: Operações da área científica; # - **matplotlib**: Criação e visualização de gráficos; # - **seaborn**: Criação e visualização de gráficos; # - **scikit-learn**: Modelos para *data science*; # - **tensorflow**: *Framework* para *deep learning*; # ## Instalação de bibliotecas # ---------------------------- # # Existem dois métodos principais para a instalação de bibliotecas a partir de comandos no terminal. Não se preocupem, pois não é nada demais. # ### pip # # O mais comum é utilizando o **PyPI** que é um repositório de diversas bibliotecas para Python. Se você fez uma instalação comum do Python em seu computador, você deve ter instalado junto o `pip`. A partir desse comando, iremos instalar uma biblioteca, basta digitar (o '$' quer dizer que é um comando para terminal, ignore-o na digitação): # # `$ pip install <biblioteca>` # # Caso você esteja utilizando um sistema Linux, o comando é alterado para: # # `$ pip3 install <biblioteca>` # # O motivo do acréscimo desse "3" é pelo fato de o Linux já vir com o Python2 que é chamado de `python` e `pip` por padrão. Você pode modificar isso utilizando um `alias`. # # Caso esse procedimento não funcione, tente as seguintes opções: # # `$ python -m pip install <biblioteca>` # `$ python3 -m pip install <biblioteca>` # ### conda # # Caso você esteja utilizando o software **Anaconda**, que contem diversos recursos para *data science* no geral (Python e R), você pode utilizar o próprio repositório deles para fazer a instalação de bibliotecas. Existem duas opções nesse caso: utilizar a interface gráfica do Anaconda para instalar novas bibliotecas em *packages* ou digitar o comando no terminal: # # ```bash # $ conda activate <ambiente> # $ conda install <biblioteca> # ``` # # O primeiro comando é para certificar que o ambiente esteja ativo, caso você esteja utilizando o padrão, basta substituir por *base*. O segundo faz a instalação da biblioteca no ambiente ativo. Lembrando que o Anaconda já instala por padrão diversas bibliotecas comuns no *base*, dessa forma, raramente será necessário instalar um novo pacote. # # Caso encontre dificuldade nesses processos, existem diversos tutoriais na internet dedicados a explicar esses procedimentos. # **Gráfico da função seno** # + # Bibliotecas import numpy as np import matplotlib.pyplot as plt # Valores de x e y para o gráfico x = np.linspace(-5, 5, 100) # Array com 100 valores indo de -5 até 5 y = np.sin(x) # Array com os valores da função seno em 'x' plt.plot(x, y) # Gera o gráfico de linha plt.show() # Mostra o gráfico produzido # - # # CONDIÇÕES # ----------- # # As condições são verificações lógicas, dessa forma, baseado na resposta de uma pergunta no estilo "sim ou não" (verdadeiro ou falso), executamos determinadas partes do código. # No Python, utilizamos o `if` ("se") para criar uma estrutura condicional e os operadores condicionais para fazer a verificação lógica, como veremos a seguir. Caso o retorno seja verdadeiro, aquilo que estiver abaixo e deslocado à direita (indentação) será executado. Em caso contrário, essa parte do código será desconsiderada. Contudo, podemos fazer condições mais complexas com mais de uma verificação. # ## Operadores lógicos # --------------------- # # **SE:** `if` # **SE-SENÃO:** `elif` # **SENÃO:** `else` # # **Igual a:** `a == b` # **Diferente de:** `a != b` # **Menor que:** `a < b` # **Menor ou igual a:** `a <= b` # **Maior que:** `a > b` # **Maior ou igual a:** `a >= b` # # **E:** `and` # **OU:** `or` # **NÂO:** `not` # **EM:** `in` # **MESMO:** `is` # **Qual número é maior?** # + # Entrada do usuário a = float(input('Digite o primeiro número: ')) b = float(input('Digite o segundo número: ')) # if <arg> <operador> <arg>: if a > b: print(f'{a} é maior que {b}') # Só será testado se a condição anterior for falsa # elif <arg> <operador> <arg>: elif a == b: print(f'{a} é igual a {b}') # 'else' não leva nenhum argumento e só será executado # se nenhuma condição for atendida else: print(f'{a} é menor que {b}') # - # **Estados brasileiros** # + # Siglas dos estados brasileiros em um 'frozenset' estados = frozenset({ 'AC', 'AL', 'AP', 'AM', 'BA', 'CE', 'DF', 'ES', 'GO', 'MA', 'MT', 'MS', 'MG', 'PA', 'PB', 'PR', 'PE', 'PI', 'RJ', 'RN', 'RS', 'RO', 'RR', 'SC', 'SP', 'SE', 'TO' }) # Entrada do usuário resposta = str(input('Digite a sigla de um estado brasileiro: ')) resposta = resposta.upper() # Coloca o texto em maísculo resposta = resposta.replace(" ","") # Tira os espaços em branco # Verifica se a entrada do usuário está no conjunto if resposta in estados: print('Muito bem! 😃') else: print(f"'{resposta}' não é um estado brasileiro válido.") # - # ## Tentativa e erro # ------------------- # # Dependendo do procedimento do código, receber uma variável errada, algum erro de utilização do usuário, pode quebrar o programa. Para evitar (ou minimizar) isso e deixar o programa mais "inteligente", podemos preparar o código para tais situações a partir dos comandos `try` e `except`. # # **TENTE:** `try` # **EXCEÇÃO:** `except <erro>` # **Digite um número inteiro** # + # Tenta executar as seguintes linhas try: # Entrada do usuário num = int(input('Digite um número inteiro: ')) print(f'O número digitado foi: {num}') # Se a qualquer momento dentro de 'try' der um erro do tipo explícito, # as seguintes linhas são executadas except ValueError: print('Erro de entrada') # - # ### Múltiplos erros # # A estrutura `try` e `except` aceita um retorno dierente para cada tipo de erro e também uma mesma exceção para diferentes tipos de erros, como veremos no exemplo. # **Dividir números** # + try: # Entrada do usuário num1 = float(input('Digite o numerador: ')) num2 = float(input('Digite o denominador: ')) print(f'O resultado da divisão é: {num1 / num2}') # Caso dê um erro de valor ou de interrupção via teclado # except (<erro1>, <erro2>, ...) as <alguma coisa>: # Assim, ele salva essa tupla de erros em uma variável except (ValueError, KeyboardInterrupt) as erro: print('Erro de entrada') # Caso o denominador seja igual a zero except ZeroDivisionError: print('Não é possível dividir por zero') # - # # ESTRUTURA DE REPETIÇÃO # ------------------------ # # As estruturas de repetição são expressões capazes de repetir por um número determinado ou indeterminado de vezes uma parte do código. Dessa forma, somos capazes de evitar repetições desnecessárias na escrita do código ou até mesmo apenas prosseguir um procedimento a partir de uma condição, como veremos a seguir. # ## while # -------- # # A *keyword* `while` é equivalente a uma expressão de "ENQUANTO". Ou seja, enquanto um condição for satisfeita (verdadeira), o *loop* será mantido. # # ``` # while <condição>: # ... # ... # ``` # # ⚠️ ATENÇÃO: Cuidado para não criar um loop infinito! # **Decolagem** # + # Biblioteca import time # Varíavel i = 10 # Mensagem inicial print('Decolagem em:') # Enquanto 'i' for maior que 0... while i > 0: # Espera 1 segundo time.sleep(1) print(f'{i}...') # A cada passagem no loop, i perde uma unidade i -= 1 # i = i - 1 # Só será acionado depois que o loop acabar print('DECOLAR!!! 🚀') # - # **Descubra o número** # + # Biblioteca from random import randint # Número escolhido num = randint(1, 10) # Número aleatório entre 1 e 10 # Escolha do usuário chute = 0 # Enquanto a escolha for diferente do número escolhido... while chute != num: # Recebe uma nova tentativa do usuário chute = int(input('Tente adivinhar o número (entre 1 e 10):')) print(f'Você apostou no número {chute}') # Parabeniza o jogador print('Parabéns, você acertou!') # - # ## for # ------ # # A *keyword* `for` é equivalente a expressão "PARA". Ou seja, para "alguma coisa" em determinada sequência, faça algo. # # ``` # for <variável> in <sequência>: # ... # ... # ``` # ### Operadores comuns # # `in range()` - Sequência usando o `range` visto em *tipos de dados*`in len()` - Sequência utilizando o tamanho do conteúdo dentro de `lenin enumerate()` - Retorna tanto o índice quanto o valor da sequência, respectivamente # **Decolagem - versão `for` _loop_** # + # Biblioteca import time # Mensagem inicial print('Decolagem em:') # Para 'i' entre 10 até 1... for i in range(10, 0, -1): # Espera 1 segundo time.sleep(1) print(f'{i}...') # Só será acionado depois que o loop acabar print('DECOLAR!!! 🚀') # - # **Lista de chamada** # + # Lista de nomes chamada = ( 'Ana', 'Bianca', 'Gabriel', 'Helen', 'Kevin' ) # Enumarate retorna, respectivamente, o índice e o valor da lista 'chamada' for índice, valor in enumerate(chamada): print(f'{índice + 1} - {valor}') # - # ### *List comprehensions* # # "Compreensões de lista" proporciona a criação de listas a partir de uma operação dentro de uma própria lista. Esse método não adiciona de fato algo novo, mas pode deixar o código mais *clean* e enxuto. # **Quadrados** # Vamos usar o mesmo exemplo dos quadrados, $x^2$. # **Usando `for loop`** # + # Cria uma lista vazia quadrados = [] # Loop de 0 até 9 for x in range(10): quadrados.append(x**2) # Adiciona o quadrado desse número para a lista print(quadrados) # [0, 1, 4, 9, 16, 25, 36, 49, 64, 81] # - # **Usando `map`** # + quadrados = list(map(lambda x: x**2, range(10))) print(quadrados) # [0, 1, 4, 9, 16, 25, 36, 49, 64, 81] # - # **Usando _list comprehension_** # + quadrados = [i**2 for i in range(10)] print(quadrados) # [0, 1, 4, 9, 16, 25, 36, 49, 64, 81] # - # ## Alterar o *loop* # ------------------- # # Dependendo da necessidade do nosso código, um fator externo pode influenciar o funcionamento do programa. Para isso, podemos adicionar algumas expressões que realizam diferentes ações dentro de estruturas de repetição. # # **QUEBRAR:** `break` # Ao adicionar essa expressão, toda vez que uma condição acionar essa ação, todo a estrutura de repetição é interrompida. # # **CONTINUAR:** `continue` # Utilizando essa ação, o pedaço posterior do código será interrompido, mas o *loop* ainda será preservado. # # **IGNORAR:** `pass` # Essa expressão permite que o programa continue a rodar, mesmo que uma condição foi atendida. # ### `break` # + # Para 'i' de 0 até 9 for i in range(10): # Se i for igual a 5... if i == 5: break # Quebra o loop print('Número é ' + str(i)) print('Fim do loop!') # Número é 0 # Número é 1 # Número é 2 # Número é 3 # Número é 4 # Fim do loop! # - # ### `continue` # + # Para 'i' de 0 até 9 for i in range(10): # Se i for igual a 5... if i == 5: continue # Pula apenas essa "rodada" print('Número é ' + str(i)) print('Fim do loop!') # Número é 0 # Número é 1 # Número é 2 # Número é 3 # Número é 4 # Número é 6 # Número é 7 # Número é 8 # Número é 9 # Fim do loop! # - # ### `pass` # + # Para 'i' de 0 até 9 for i in range(10): # Se i for igual a 5... if i == 5: pass # Só ignora print('Número é ' + str(i)) print('Fim do loop!') # Número é 0 # Número é 1 # Número é 2 # Número é 3 # Número é 4 # Número é 5 # Número é 6 # Número é 7 # Número é 8 # Número é 9 # Fim do loop! # - # # FUNÇÕES # --------- # # Seguindo essa *playlist* de Python, você já utilizou diversas funções *build-in* (ou seja, da própria ferramenta) e externas usando as bibliotecas. Contudo, não acha que seria muito útil você criar as suas próprias funções? Existem alguns motivos principais para criar uma função personalizada: # # - Executar algum procedimento muito específico para o seu projeto; # - Possuir alguma etapa ou processo repetitivo; # - Conseguir chamar essa função para outros projetos (criar um biblioteca própria); # # Além disso, vale reforçar que as funções são muito poderosas pela forma que podemos trabalhar com os dados de entrada e saída. # # A estrutura básica de uma função é dada pelo exemplo abaixo: # # ``` # def <função>(<parâmetros>): # # """ # <docstring> # """ # # ... # ... # # return <valor> # ``` # # **`def`**: Define a estrutura de uma função; # # **`<função>`**: Este será o nome da função e como ela será chamada ao longo do código (não pode conter espaços em branco); # # **`<parâmetros>`**: (Opcional) Responsável pela entrada de informação utilizada dentro da função, como veremos em breve; # # **`<docstring>`**: (Opcional) Todo texto comentado por parênteses no topo da função se torna a documentação dessa função, essa é uma prática altamente recomendada (comente o que a função faz, brevemente, o que ela recebe e o que retorna); # # **`return`**: (Opcional) Toda função retorna algum valor (saída), caso nada seja declarado ela retornará `None`; # # **`<valor>`** O que será retornado. # **Função mínima** # Definimos que a função chama `olá_mundo` e recebe nenhum argumento. # + def olá_mundo(): print('Olá, Mundo!') # Como não existe o return, vai retornar None print(olá_mundo()) # Olá, Mundo! # None # - # É um péssimo hábito "retornar" um print! # **Função mínima 2** # Definimos que a função chama `olá_mundo` e recebe nenhum parâmetro. # + def olá_mundo(): return 'Olá, Mundo!' print(olá_mundo()) # Olá, Mundo! # - # ## Parâmetros # ------------- # # Primeiro, vamos desmistificar uma confusão comum quando estamos trabalhando com funções: a diferença entre **argumentos** e **parâmetros**. Quando estamos construindo uma função, as variáveis que definimos para serem as entradas são definidas como "parâmetros". Contudo, quando chamamos esse método estamos passando "argumentos" para rodar essa função. Ou seja, parâmetro é a variável declarada na função e o argumento e o valor de fato da variável que será utilizado na função. # # Vejamos um exemplo básico para entender o funcionamento dos parâmetros/argumentos. # **Bom dia** # + # Criamos a função # Ela recebe um parâmetro obrigatório chamado 'nome' # Dessa forma, a partir dessa variável, podemos utilizá-la ao longo da função (sabendo que ela será um str) def bom_dia(nome): "Dado um nome, retorna uma mensagem de bom dia para esse nome." return f'Bom dia, {nome}!' # Passamos o argumento "Fulano" para a função (parâmetro posicional) print(bom_dia('Fulano')) # Podemos também definir que "nome" deve ser igual a "Ciclano" print(bom_dia(nome='Ciclano')) # - # ### `args` # # Parâmetros obrigatórios, mas podem ter valores padrão. # **Calculadora básica** # + # Definimos que a função 'calculadora' possui dois parâmetros, 'x' e 'y' # Por padrão, x = 1 e y = 1, dessa forma, se nenhum argumento for passado, estes srão os seus valores def calculadora(x = 1, y = 1): # Docstring """ Calculadora ----------- Cria um dicionário com as principais operações matemáticas, dado dois números. args ---- x : int ou float Primeiro número de entrada y : int ou float Segundo número de entrada return ------ dict {'operação' : valor} """ # Retornamos um dicionário com as operações básicas return { 'soma' : x + y, 'subtração' : x - y, 'divisão' : x / y, 'multiplicação' : x * y, 'potência' : x ** y } a = 3 b = 5 # 'resultado' recebe o 'return' da função 'calculadora' resultado = calculadora(a, b) # resultado = calculadora(x = a, y = b) print(resultado) # {'soma': 8, 'subtração': -2, 'divisão': 0.6, 'multiplicação': 15, 'potência': 243} # Caso nenhum argumento seja passado, x = 1 e y = 1 print(calculadora()) # {'soma': 2, 'subtração': 0, 'divisão': 1.0, 'multiplicação': 1, 'potência': 1} # - # ### `*argv` # # Lista de valores com tamanho indeterminado. `*argv` é apenas um nome comum para esse tipo de parâmetro, o necessário é utilizar o `*`. # **Mensagem para todos** # + # 'mensagem' é um argumento posicional # Tudo que vier depois vai se tornar uma lista salva em 'nomes' def mensagem(mensagem, *nomes): "Manda uma 'mensagem' para a lista de 'nomes'" for i in nomes: print(f'{mensagem}, {i}.') mensagem('Oi', 'Carol', 'Beatriz', 'Pedro', 'Carlos') # - # ### `**kwargs` # # Dicionário de parâmetros opcionais e devem ser chamados no formato `<parâmetro> = <argumento>`. `**kwargs` é apenas um nome comum para esse tipo de parâmetro, o necessário é utilizar o `**`. # **Preço de produto** # + # 'preço' é o parâmetro posicional # '**kwargs' vai receber os demais parâmetros em formato de dicionário def preço_final(preço, **kwargs): """ Preço final ----------- Calcula o valor final de um produto. args ---- preço : float Preço inicial do produto **kwargs -------- imposto : float Imposto sobre o preço (%) desconto : float Desconto sobre o preço (%) return ------ float Valor final do valor do produto """ # Resgata os valores do dicionário 'kwargs' imposto = kwargs.get('imposto') desconto = kwargs.get('desconto') # Se 'imposto' não for vazio (existir) if imposto: preço += preço * (imposto/100) # Se 'desconto' não for vazio (existir) if desconto: preço -= preço * (desconto/100) # Retorna o preço calculado return preço valor_inicial = 80 imposto = 12.5 desconto = 5 # Mesmo não passando todas os possíveis parâmetros para **kwargs, a função ainda funciona print(preço_final(valor_inicial, imposto = imposto, desconto = desconto)) # 85.5 # Teste mudando os valores ou comentando os parâmetros opcionais # - # A combinação de todos esses tipos de parâmetros também é possível, seguindo a ordem: `(args, *argv, **kwargs)`. # ## Variáveis globais e locais # ----------------------------- # # Uma variável global é uma variável definida que vale para todo o código. # # Uma variável local é uma variável definida no escopo de uma função e só possui esse valor durante a execução desse método. # + # Variável global x = 50 def f(): # Variável local x = 20 print(x) print(x) # 50 f() # 20 print(x) # 50 # - # ## Funções anônimas (`lambda`) # ------------------------------ # # Caso precisamos fazer uma operação simples, podemos construir uma função anônima: podem ter qualquer número de argumentos, mas só podem ter uma expressão. # # `lambda <argumentos> : <expressão>` # **Multiplicação** # + # A variável 'vezes' vai "segurar" a função anônima vezes = lambda a, b : a * b # Utiliza a função print(vezes(3, 17)) # 51 # - # **Potência** # Vamos misturar as funções "normais" e anônimas. # + # Função potência def potência(n): "Retorna uma função anônima que vai ser a potência de 'n'" return lambda a : a ** n # Função x^2 ao_quadrado = potência(2) # Função x^3 ao_cubo = potência(3) # Testa as funções print(ao_quadrado(5)) # 25 print(ao_cubo(5)) # 125 # - # # CLASSES # --------- # # **PLOT-TWIST**: Estamos usando as classes desde o início desse material 🤯 # # Se você lembrar da saída do comando `type` que utilizamos na seção de *tipos de dados*, ela era no estilo `<class ...>`. Então, cada tipo de dado na verdade é uma classe, conhecido também como "objeto". Um objeto é uma estrutura de informação capaz de possuir dados, chamados de atributos, e código, conhecido como métodos (semelhantes as funções que já estudamos, mas funcionam apenas para os objetos criados a partir dessa classe). # # Ao criar uma nova classe, podemos criar um objeto com uma estrutura de dados única e com métodos bem definidos que, em programas mais complexos, se torna muito útil. # # Formato padrão: # # ``` # class <Nome>(<herança>): # # """ # <docstring> # """ # # def <função1>(self, <parâmetros>): # ... # ... # # ... # ... # ``` # # **`class`**: Define a estrutura de uma classe; # # **`<Nome>`**: Este será o nome da classe e como ela será chamada ao longo do código (não pode conter espações em branco); # # **`<herança>`**: (Opcional) Herda os métodos e parâmetros da classe <herança>; # # **`<docstring>`**: (Opcional) Todo texto comentado por parênteses no topo da classe se torna a documentação dessa classe, essa é uma prática altamente recomendada; # # **`<função1>`**: (Opcional) Função/método da classe; # # **`self`**: Atributo que chama os demais atributos do objeto e os métodos da classe; # # **`<parâmetros>`**: (Opcional) Responsável pela entrada de informação utilizada dentro da função; # ## _Magic methods_ # ------------------ # # Existem alguns métodos especiais com nomes pré-definidos que possuem propriedades únicas. Por exemplo, a concatenação de duas `str` a partir do sinal `+` é definida no método `__add__`. Você pode encontrar uma lista completa desses métodos pelo nome *magic methods*. # # Um método comum em classes é o `__init__` que é iniciado na criação do objeto. # ## Dados protegidos # ------------------- # # Nas linguagens orientada a objetos é comum existir o conceito de campos públicos, privados e protegidos. Esses conceitos se referem se um dado atributo ou método é acessível fora do escopo da classe. No caso do Python, não existe nenhum método para evidentemente atribuir esses status aos dados da classe. Contudo, existe um consenso de adicionar um `_` na frente dos nomes dos atributos e métodos para identificá-los como privados, ou seja, acesso apenas para dentro da classe. # # Apenas para deixar um pouco mais claro, essa prática pode controlar quando o usuário tem permissão ou não para fazer uma atribuição. Por exemplo: # # `objeto.atributo = novo_valor` # # Por esse motivo, é muito comum ver que algumas classes possuem vários métodos com o único propósito de retornar um valor de um atributo, de forma que assim não é possível escrever, apenas ler o que está registrado. # # ``` # def get_value(self): # return self._value # Atributo "privado" # ``` # ## Herança # ---------- # # As classes apresentam uma "hierarquia", na qual uma *classe secundária* pode adquirir os atributos e métodos da *classe principal*. # **RPG Simples** # + # BIBLIOTECAS import os # Sistema operacional import sys # Sistema-interpretador from random import random # Gerador de números aleatórios [0,1) from time import sleep # Aguardar # CLASSES class Jogador(): """ # JOGADOR --------- Classe primária para criar um objeto do tipo `jogador`. ## ATRIBUTOS - Vida - Mana - Ataque ## MÉTODOS - `atacar()`: Retorna um valor (inteiro) correspondente ao dano físico. - `magia()`: Retorna um valor (inteiro) correspondente ao dano por magia. - `descanso()`: Recupera uma fraçã de alguns status do personagem. - `status()`: Retorna um texto com os atributos do personagem. """ # Atributos básicos do personagem # Aqui é possível configurar o balenceamento do jogo ATRIBUTOS = { "Vida" : 500, "Mana" : 200, "Ataque" : 100 } # Valor que será aplicado nos atributos do personagem # conforme a especialidade/classe de cada um VANTAGENS = { "Fraqueza" : 0.8, "Normal" : 1.0, "Força" : 1.2 } # Fração mínima e máxima de dano, respectivamente DANO_AMPLITUDE = (0.5, 1.5) # Custo no uso de magia para a mana MAGIA_CUSTO = 50 # Fração de vida e mana recuperada ao final de uma batalha RECUPERAÇÃO = 0.1 def __init__(self): "Configura os atributos básicos." self.max_vida = self.ATRIBUTOS["Vida"] self.vida = self.max_vida self.max_mana = self.ATRIBUTOS["Mana"] self.mana = self.max_mana self.ataque = self.ATRIBUTOS["Ataque"] def atacar(self): "Calcula o valor de dano físico que o personagem vai infligir nesse turno." return round(((self.DANO_AMPLITUDE[1]-self.DANO_AMPLITUDE[0])*random()+self.DANO_AMPLITUDE[0])*self.ataque) def magia(self): "Calcula o valor de dano mágico que o personagem vai infligir nesse turno." # Custo do uso da magia self.mana -= self.MAGIA_CUSTO return round(((self.DANO_AMPLITUDE[1]-self.DANO_AMPLITUDE[0])*random()+self.DANO_AMPLITUDE[0])*self.max_mana) def descanso(self): "Recupera uma parte das estatísticas do jogador: vida e mana." # Recuperação da vida self.vida += round(self.max_vida * self.RECUPERAÇÃO) if self.vida > self.max_vida: self.vida = self.max_vida # Recuperação da mana self.mana += round(self.max_mana * self.RECUPERAÇÃO) if self.mana > self.max_mana: self.mana = self.max_mana def status(self): "Retorna uma `str` com as estatísticas do personagem." return f"Vida: {self.vida}/{self.max_vida} | Mana: {self.mana}/{self.max_mana} | Ataque: {self.ataque}" class Guerreiro(Jogador): """ # GUERREIRO ----------- Classe forte e resistente, com muitos pontos de vida. - Vida: +++ - Mana: + - Ataque: ++ """ def __init__(self): "Atualiza os atributos básicos." # Resgata os atributos da classe pai. # Nese caso, não é necessário, pois não possuiu parâmetros. super().__init__() self.max_vida = round(self.max_vida * self.VANTAGENS["Força"]) self.vida = self.max_vida self.max_mana = round(self.max_mana * self.VANTAGENS["Fraqueza"]) self.mana = self.max_mana self.ataque = round(self.ataque * self.VANTAGENS["Normal"]) class Ninja(Jogador): """ # NINJA ------- Classe preparada para o dano físico, com muitos pontos de ataque. - Vida: + - Mana: ++ - Ataque: +++ """ def __init__(self): "Atualiza os atributos básicos." # Resgata os atributos da classe pai. # Nese caso, não é necessário, pois não possuiu parâmetros. super().__init__() self.max_vida = round(self.max_vida * self.VANTAGENS["Fraqueza"]) self.vida = self.max_vida self.max_mana = round(self.max_mana * self.VANTAGENS["Normal"]) self.mana = self.max_mana self.ataque = round(self.ataque * self.VANTAGENS["Força"]) class Mago(Jogador): """ # MAGO ------ Classe especializada em magia, com muitos pontos de mana. - Vida: ++ - Mana: +++ - Ataque: + """ def __init__(self): "Atualiza os atributos básicos." # Resgata os atributos da classe pai. # Nese caso, não é necessário, pois não possuiu parâmetros. super().__init__() self.max_vida = round(self.max_vida * self.VANTAGENS["Normal"]) self.vida = self.max_vida self.max_mana = round(self.max_mana * self.VANTAGENS["Força"]) self.mana = self.max_mana self.ataque = round(self.ataque * self.VANTAGENS["Fraqueza"]) class Inimigo(): """ # INIMIGO --------- Classe primária para criar um objeto do tipo `inimigo`. ## ATRIBUTOS - Vida - Ataque ## MÉTODOS - `atacar()`: Retorna um valor (inteiro) correspondente ao dano físico. - `status()`: Retorna um texto com os atributos do personagem. """ ATRIBUTOS = dict(zip( Jogador().ATRIBUTOS.keys(), list(map(lambda x: x*0.65, list(Jogador.ATRIBUTOS.values()))) )) DANO_AMPLITUDE = (0.5, 1.5) def __init__(self): "Configura os atributos básicos." self.max_vida = round(self.ATRIBUTOS["Vida"] * (0.5 + random())) self.vida = self.max_vida # self.max_mana = self.ATRIBUTOS["Mana"] # self.mana = self.max_mana self.ataque = round(self.ATRIBUTOS["Ataque"] * (0.5 + random())) def atacar(self): "Calcula o valor de dano físico que o inimgo vai infligir nesse turno." return round(((self.DANO_AMPLITUDE[1]-self.DANO_AMPLITUDE[0])*random()+self.DANO_AMPLITUDE[0])*self.ataque) def status(self): "Retorna uma `str` com as estatísticas do inimigo." # return f"Vida: {self.vida}/{self.max_vida} | Mana: {self.mana}/{self.max_mana} | Ataque: {self.ataque}" return f"Vida: {self.vida}/{self.max_vida} | Ataque: {self.ataque}" # FUNÇÕES def clear(): "Limpa o terminal." os.system('cls' if os.name=='nt' else 'clear') # MAIN # Roda apenas se este programa que está em execução e não caso tenha sido importado. if __name__ == '__main__': # Opções de clases CLASSES = { "Guerreiro" : Guerreiro(), "Ninja" : Ninja(), "Mago" : Mago() } clear() # Limpa o terminal print("Classes disponíveis:") # Mostra as classes disponíveis for i in CLASSES: print(f"- {i}") # Escolha de classe while True: # Já "limpa" a string de entrada escolha = input("\nEscolha a sua classe:").capitalize().replace(" ","") try: player = CLASSES[escolha] break except: print("\nEscolha inválida!") # Pontuação do jogador score = 0 while True: clear() # Limpa o terminal print("Um novo inimigo aparece!\n") inimigo = Inimigo() # Gera um novo inimigo while True: # Estatística dos objetos print(f"INIMIGO: {inimigo.status()}") print(f"JOGADOR: {player.status()}") # Opções de ações print("\nATACAR | MAGIA | SAIR") while True: # Escolha de ação do usuário evento = input("\nO que fazer? ").lower().replace(" ","") # ATACAR if evento == "atacar": dano = player.atacar() # Calcula o dano print(f"\nVocê ataca o inimigo e inflige {dano} de dano.") inimigo.vida -= dano # Aplica o dano break # MAGIA elif evento == "magia": # Verifica se possui mana suficiente if player.mana >= player.MAGIA_CUSTO: dano = player.magia() # Calcula o dano print(f"\nVocê usa uma magia no inimigo e inflige {dano} de dano.") inimigo.vida -= dano # Aplica o dano break else: print("Mana insuficiente!") # SAIR elif evento == "sair": print(f"\nFim de jogo!\nPontuação: {score}") sys.exit() # Fecha o interpretador else: print("\nComando inválido!") # Inimigo vivo, ataca if inimigo.vida > 0: sleep(1) # Espera dano = inimigo.atacar() # Calcula o dano print(f"O inimigo te ataca e inflige {dano} de dano.\n") sleep(1) # Espera player.vida -= dano # Aplica o dano # Inimigo morto else: score += 1 # Aumenta pontuação print("\nVocê aniquilou o inimigo!") sleep(1) # Espera player.descanso() # Restaura um pouco o player print("\nVocê consegue descansar um pouco.") sleep(2) # Espera break # Se jogador está sem vida if player.vida <= 0: print(f"\nFim de jogo!\nPontuação: {score}") sys.quit() # Fecha o interpretador
Completo.ipynb
# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.14.4 # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- # + import sqlite3 import pandas as pd cnx = sqlite3.connect('billboard-200.db') df = pd.read_sql_query("""SELECT albums.date as date, albums.artist, albums.album, acoustic_features.song, acoustic_features.valence, albums.rank FROM albums left join acoustic_features on albums.album = acoustic_features.album order by date asc""", cnx) # - #convert date to datetime object to extract year. df['date'] = pd.to_datetime(df['date']) #extract & append year on df df['year'] = df['date'].dt.year #remove 2019 (it's only January data) & get the mean of each year. #songs' valences are obviously included multiple times a year. valence_by_year = df[df.year != 2019.0].groupby('year').mean() valence_by_year
Billboard Data.ipynb
# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.14.4 # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- # Importing the required functions to simulate the circuit. # + import matplotlib.pyplot as plt import numpy as np from qiskit import IBMQ, Aer, QuantumCircuit, ClassicalRegister, QuantumRegister, execute from qiskit.providers.ibmq import least_busy from qiskit.quantum_info import Statevector from qiskit.visualization import plot_histogram from qiskit.extensions import UnitaryGate from math import sqrt # - # The value of n can be changed over here depending upon the number of qubits to simulate. n = 5 N = 2 ** n # This initalises the qubits in the uniform state by applying a Hadamard gate to every qubit in the zero state. def initialize(qc, qubits): for q in qubits: qc.h(q) return qc # The matrix that simulates the amplitude negation behaviour of the provided black box. def get_oracle_matrix(N, values): oracle_matrix = np.identity(N) for value in values: oracle_matrix[value][value] = -1 return oracle_matrix # The matrix that simulates inversion across mean. def get_diffusion_matrix(N): diffusion_matrix = np.zeros((N, N), dtype = float) diffusion_matrix.fill(2 / N) diffusion_matrix -= np.identity(N) return diffusion_matrix # Here the values array can be edited and the desirables values in the range $[0, N - 1]$ can be entered. values = [2, 3, 4] # Make a Gate out of the unitary matrices. oracle_matrix = get_oracle_matrix(N, values) oracle_unitary_gate = UnitaryGate(oracle_matrix) diffusion_matrix = get_diffusion_matrix(N) diffusion_unitary_gate = UnitaryGate(diffusion_matrix) # Initalise the Quantum Circuit and run the negation, inversion iterations for the required number of times. # + qc = QuantumCircuit(n) qc = initialize(qc, [x for x in range(n)]) for i in range(int(sqrt(N / len(values)))): qc.unitary(oracle_matrix, [x for x in range(n)]) qc.unitary(diffusion_matrix, [x for x in range(n)]) qc.draw() # - # Display result. # + qc.measure_all() qasm_simulator = Aer.get_backend('qasm_simulator') shots = 1024 results = execute(qc, backend=qasm_simulator, shots=shots).result() answer = results.get_counts() plot_histogram(answer, figsize = (15, 12)) # - # ### Going beyond $\sqrt{(N)}$ queries. # Enter the number of extra queries to see the result as mentioned in the tutorial sheet. extra_queries = 3 # + qc = QuantumCircuit(n) qc = initialize(qc, [x for x in range(n)]) for i in range(int(sqrt(N / len(values))) + extra_queries): qc.unitary(oracle_matrix, [x for x in range(n)]) qc.unitary(diffusion_matrix, [x for x in range(n)]) qc.measure_all() qasm_simulator = Aer.get_backend('qasm_simulator') shots = 1024 results = execute(qc, backend=qasm_simulator, shots=shots).result() answer = results.get_counts() plot_histogram(answer, figsize = (10, 8))
Code/src/Grover's Algorithm/GroversAlgorithm.ipynb
# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.14.4 # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- # # Scikit-Learn: un API de python para el aprendizaje automatico # Scikit-Learn, libreria de python, combina una interfaz intuitiva con una implementacion altamente optimizada de varios algoritmos de clasificacion y regresion. No solo ofrece una amplia variedad de algoritmos de aprendizaje, sino tambien diferentes funciones sencillas para el preprocesamiento de datos y para la evaluacion de los modelos. # # Los cinco pasos principales que se dan en el entrenamiento de un algoritmo de aprendizaje automatica se pueden resumir en: # # 1. Seleccionar caracteristicas y recopilar muestras de entrenamiento. # 2. Elegir una medicion del rendimiento. # 3. Eligir un algoritmo optimizador y de clasificacion. # 4. Evaluar el rendimiento del modelo. # 5. Afinar el algoritmo. # # Siempre sera necesario aprender a manejar varios algoritmos de clasificacion, debido a que no todos funcionan de la misma manera ni son aptos para todos los conjuntos de datos; inclusive sus restricciones matematicas suelen ser diferentes, y por, lo tanto pueden producir resultados erroneos de no utilizarse con los datos adecuados. Mas aun, algunos de llos dependen de los llamadas _hiperparametros_ , siendo estos diferentes entre los distintos algoritmos, lo cual implica una dificultad mayor, la cual puede ser subsanada con la practica. # Para introducirnos adecuadamente en el tema, iniciaremos con la implementacion del modelo **Perceptron** de clasificacion lineal visto la semana pasada, pero esta vez implementado a traves de _scikit learn_. Primero debemos recordar y agregar lo siguiente: # # 1. El modelo es de clasificacion lineal, lo que significa que tratara de separar las clases por medio de lineas rectas. # 2. El modelo, al ser de clasificacion, puede manejar distintas clases, y no solo dos, como se vio en la clase de la semana pasada, en la cual se manejo unicamente clasificacion binaria. Para lograr la clasificacion de mas de dos clases, utilizara un metodo llamada **OvR: One versus All**. # 3. El escalado de variables, que favorecia al metodo del Descenso del gradiente usado en el modelo Adaline, tambien puede ser usado con el modelo del Perceptron a traves de la libreria scikit learn. # 4. El modelo de Perceptron requiere para su convergencia que las clases sean linealmente separables, de lo contrario nunca terminar de clasificar. Para solventar esto, se introduce un numero predeterminado de iteraciones y asi asegurar su finalizacion, mas no su convergencia. Es de aclarar que el numero de iteraciones elegido no garantiza que los errores sean minimos, y en clases que no son linealmente separables, puede llegar a ser demandante encontrar este minimo. Esto representa un defecto de la funcion de activacion del Perceptron. # # Scikit Learn ademas proporciona acceso a conjuntos de datos precargados, los cuales, por su popularidad, se ganaron su lugar dentro de la libreria. Otra librerias que permiten algo similar son Pandas y Numpy. # + # Cargando el conjunto de datos Iris # ========================================================= from sklearn import datasets import numpy as np iris = datasets.load_iris() X = iris.data[:, [2, 3]] y = iris.target print(f'Etiquetas de clase: {np.unique(y)}') # + # Division del conjunto de datos en entrenamiento y test # ========================================================= from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.3, stratify = y) print(f'Tamaño del conjunto X_train: {X_train.shape}') print(f'Tamaño del conjunto X_test: {X_test.shape}') print(f'Tamaño del conjunto y_train: {y_train.shape}') print(f'Tamaño del conjunto y_test: {y_test.shape}') print(f'\nConteo de etiquetas en y: {np.bincount(y)}') print(f'Conteo de etiquetas en y_train: {np.bincount(y_train)}') print(f'Conteo de etiquetas en y_test: {np.bincount(y_test)}') # - # Escalado de variables # ========================================================= from sklearn.preprocessing import StandardScaler sc = StandardScaler() sc.fit(X_train) # Calculo de mu y sigma para cada caracteristica X_train_std = sc.transform(X_train) X_test_std = sc.transform(X_test) # X_test se escala con los mismos parametros de X_train, para que sean comparables # Creacion del modelo de perceptron # ========================================================= from sklearn.linear_model import Perceptron modelo = Perceptron(max_iter = 40, eta0 = 0.1, random_state = 1) modelo.fit(X_train_std, y_train) # Prediccion de resultados # ========================================================= y_pred = modelo.predict(X_test_std) print(f'Valores mal clasificados: {(y_test != y_pred).sum()}') print(f'Cantidad de valores en y_test: {y_test.shape[0]}') proporcion = (y_test != y_pred).sum()/y_test.shape[0] print(f'Proporcion de valores mal clasificados: {np.round(proporcion, 3)}') print(f'Precision de la clasificacion: {1 - np.round(proporcion, 3)}') # Calculo de la precision usando accuracy_score # ========================================================= from sklearn.metrics import accuracy_score print(f'Precision: {np.round(accuracy_score(y_test, y_pred), 3)}') # Calculo de la precision usando score # ========================================================= print(f'Precision: {np.round(modelo.score(X_test_std, y_test), 3)}') # + # Graficando las regiones # ========================================================= from matplotlib.colors import ListedColormap import matplotlib.pyplot as plt def plot_decision_regions(X, y, classifier, test_idx=None, resolution=0.02): # setup marker generator and color map markers = ('s', 'x', 'o', '^', 'v') colors = ('red', 'blue', 'lightgreen', 'gray', 'cyan') cmap = ListedColormap(colors[:len(np.unique(y))]) # plot the decision surface x1_min, x1_max = X[:, 0].min() - 1, X[:, 0].max() + 1 x2_min, x2_max = X[:, 1].min() - 1, X[:, 1].max() + 1 xx1, xx2 = np.meshgrid(np.arange(x1_min, x1_max, resolution), np.arange(x2_min, x2_max, resolution)) Z = classifier.predict(np.array([xx1.ravel(), xx2.ravel()]).T) Z = Z.reshape(xx1.shape) plt.contourf(xx1, xx2, Z, alpha=0.3, cmap=cmap) plt.xlim(xx1.min(), xx1.max()) plt.ylim(xx2.min(), xx2.max()) for idx, cl in enumerate(np.unique(y)): plt.scatter(x=X[y == cl, 0], y=X[y == cl, 1], alpha=0.8, c=colors[idx], marker=markers[idx], label=cl, edgecolor='black') # highlight test samples if test_idx: # plot all samples X_test, y_test = X[test_idx, :], y[test_idx] plt.scatter(X_test[:, 0], X_test[:, 1], c='', edgecolor='black', alpha=1.0, linewidth=1, marker='o', s=100, label='test set') # + # %matplotlib notebook X_combined_std = np.vstack((X_train_std, X_test_std)) y_combined = np.hstack((y_train, y_test)) plot_decision_regions(X=X_combined_std, y=y_combined, classifier=modelo, test_idx=range(105, 150)) plt.xlabel('petal length [estandarizado]') plt.ylabel('petal width [estandarizado]') plt.legend(loc='upper left') plt.tight_layout() plt.show() # - # <span class="burk">EJERCICIO</span> # # 1. Volver a usar el modelo de Perceptron con todas las caracteristicas del dataset. Calcular la precision. # 2. Tomar el dataset `Social_Network_Ads.csv` y clasificar los datos de compra y no compra usando las variables 'Age' y 'EstimatedSalary'. Calcular el score y graficar para visualizar las regiones. # # Regresion Logistica # La regresion logistica es uno de los algoritmos de clasificacion mas populares, que no se usa para regresion, como su nombre pareciera indicar. Su metodo se basa en el establecimiento de probabilidades a partir de un valor de entra da de red $z$, el cual se representa de forma lineal, como en el caso del perceptron: # # $$z=w_0+w_1x_1+w_2x_x+\dots+w_mx_m$$ # # Por lo tanto, la regresion logistica tambien es un algoritmo de clasificacion lineal, que tratara de separar las clases por un limite o frentera lineal; su ventaja sobre el modelo de Perceptron es similar a la ventaja mostrada por Adaline, la cual es la posibilidad de hallar un minimo de la funcion de costo sin depender de la convergencia del algoritmo; recordemos que Perceptron es un modelo que depende la separacion lineal de clases para su convergencia, lo cual es una limitante del modelo. # # La definicion matematica de la regresion logistica es: # # $$\phi(z)=\frac{1}{1+e^{-z}}$$ # # Para entender mejor como funciona, vamos a graficar su forma en python: # + import numpy as np import matplotlib.pyplot as plt plt.style.use('seaborn') # %matplotlib notebook def sigmoid(z): return 1./(1.+np.exp(-z)) x = np.linspace(-7, 7, 100) y = sigmoid(x) fig, ax = plt.subplots(figsize = (8, 5)) ax.plot(x, y, color = 'red') plt.axhline(y = 0.5, color = 'gray', linewidth = 0.5) plt.axhline(y = 1, color = 'gray', linewidth = 0.5) plt.axhline(y = 0, color = 'gray', linewidth = 0.5) plt.axvline(x = 0, color = 'k') ax.set_xlabel('z') ax.set_ylabel('sigmoid(z)') ax.set_title('Comportamiento de la funcion sigmoide'); # - # Como se puede ver, a medida que x se acrca a infinito, la funcion se acerca a 1; cuando la funcion se acerca a menos infinito, la funcion se acerca a -1. La funcion se puede entender como que toma valores numero numericos en el intervalo $(-\infty, \infty)$ y los transforma al intervalo $[0, 1]$. # ###### Comparacion entre Adaline y Regresion logistica # # ![image.png](attachment:image.png) # La salida de la funcion sigmoide se lee como: La probabilidad de que la muestra pertenezca a la clase 1, dados los valores $\vec{x}$ y $\vec{w}$ de entrada. En terminos mas formales, se escribe como $P(y=1|\vec{x},\vec{w})$. Por ejemplo, si $\phi(z)=0.8$, significa que la probabilidad de que la flor de entrada sea `Iris-versicolor` (etiqueta 1) es del 80%, y por lo tanto la probabilidad de que se `Iris-Setosa` es del 20%. # # Lo interesante de la regresion logistica es que no solo brinda la etiqueta de clase, sino que ademas brinda la probabilidad de esta etiqueta sea la correcta; por esta razon es bastante popular en calculos meteorologicos y en medicina. # # La probabilidad predicha se puede, simplemete, convertir despues en un resultado binario mediante la funcion umbral: # # \begin{equation} # \hat{y} = \left\{ # \begin{array}{ll} # 1 & \mathrm{si\ } \phi(z) \geq 0.5 \\ # 0 & \text{en otros casos} # \end{array} # \right. # \end{equation} # # Tambien, a partir del grafico, se puede deducir que: # # \begin{equation} # \hat{y} = \left\{ # \begin{array}{ll} # 1 & \mathrm{si\ } z \geq 0.0 \\ # 0 & \text{en otros casos} # \end{array} # \right. # \end{equation} # ## Aprender los pesos para la funcion logistica # # Para aprender los pesos, haremos uso de la tecnica de maximizacion de la funcion de coste apropiada para la regresion logistica: # # $$J(\textbf{w})=\sum_{i=1}^n \big [-y^{(i)}\log(\phi(z^{(i)}))-(1-y^{(i)})\log(1-\phi(z^{(i)})) \big]$$ # # Tener en cuenta que la siguiente propiedad se cumple para $J$: # # \begin{equation} # J(\phi(z), y; \textbf{w}) = \left\{ # \begin{array}{ll} # -\log(\phi(z)) & \mathrm{si\ } y = 1 \\ # -\log(1-\phi(z)) & \mathrm{si\ } y = 0 # \end{array} # \right. # \end{equation} # + def cost_1(z): return - np.log(sigmoid(z)) def cost_0(z): return - np.log(1 - sigmoid(z)) z = np.arange(-10, 10, 0.1) phi_z = sigmoid(z) fig, ax = plt.subplots(figsize = (5, 3)) c1 = [cost_1(x) for x in z] plt.plot(phi_z, c1, label='J(w) if y=1') c0 = [cost_0(x) for x in z] plt.plot(phi_z, c0, linestyle='--', label='J(w) if y=0') plt.ylim(0.0, 5.1) plt.xlim([0, 1]) plt.xlabel('$\phi$(z)') plt.ylabel('J(w)') plt.legend(loc='best') plt.tight_layout() plt.show() # - # ## Implementando el algoritmo de regresion logistica class LogisticRegressionGD: """Logistic Regression Classifier using gradient descent. Parametros ------------ eta : float Rango de aprendizaje (entre 0.0 1 1.0) n_iter : int Iteracion sobre el datset de entrenamiento completo. random_state : int Semilla de numeros aleatorios Atributos ----------- w_ : 1d-array Pesos de las caracteristicas. cost_ : list Suma de cuadrados de la funcion de costo en cada epoca. """ def __init__(self, eta=0.05, n_iter=100, random_state=1): self.eta = eta self.n_iter = n_iter self.random_state = random_state def fit(self, X, y): """ Fit de datos de entrenamiento. Parametros ---------- X : {array-like}, shape = [n_samples, n_features] y : array-like, shape = [n_samples] Returno ------- self : object """ rgen = np.random.RandomState(self.random_state) self.w_ = rgen.normal(loc=0.0, scale=0.01, size=1 + X.shape[1]) self.cost_ = [] for i in range(self.n_iter): net_input = self.net_input(X) output = self.activation(net_input) errors = (y - output) self.w_[1:] += self.eta * X.T.dot(errors) self.w_[0] += self.eta * errors.sum() cost = -y.dot(np.log(output)) - ((1 - y).dot(np.log(1 - output))) self.cost_.append(cost) return self def net_input(self, X): """Calcular la entrada de red""" return np.dot(X, self.w_[1:]) + self.w_[0] def activation(self, z): """Calcular la activaciond e la funcion sigmoide""" return 1. / (1. + np.exp(-np.clip(z, -250, 250))) def predict(self, X): """Retornar la etiqueta de clase despues de cada paso""" return np.where(self.net_input(X) >= 0.0, 1, 0) # Es importante tener en cuenta que la regresion logistica solo sirve para clasificaciones binarias. # + from sklearn import datasets import numpy as np iris = datasets.load_iris() X = iris.data[:, [2, 3]] y = iris.target from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split( X, y, test_size=0.3, random_state=1, stratify=y) from sklearn.preprocessing import StandardScaler sc = StandardScaler() sc.fit(X_train) X_train = sc.transform(X_train) X_test = sc.transform(X_test) # + X_train_01_subset = X_train[(y_train == 0) | (y_train == 1)] y_train_01_subset = y_train[(y_train == 0) | (y_train == 1)] lrgd = LogisticRegressionGD(eta=0.05, n_iter=1000, random_state=1) lrgd.fit(X_train_01_subset, y_train_01_subset) fig, ax = plt.subplots(figsize = (6, 4)) plot_decision_regions(X=X_train_01_subset, y=y_train_01_subset, classifier=lrgd) plt.xlabel('petal length [normalizado]') plt.ylabel('petal width [normalizado]') plt.legend(loc='upper left') plt.tight_layout() plt.show() # - y = lrgd.cost_ x = np.arange(1, len(y)+1) fig, ax = plt.subplots() ax.plot(x,y); # <span class="burk">EJERCICIOS</span> # # 1. Realice la clasificacion de todo el dataset usando la regresion logistica. Compare los resultados con el modelo del perceptron. # 2. De nuevo realice el ejericicio 2 pero con esta regresion. Verifique sus resultados y grafique.
Semana-12/scikit-learn.ipynb
# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.14.4 # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- # + [markdown] id="view-in-github" colab_type="text" # <a href="https://colab.research.google.com/github/project-ccap/project-ccap.github.io/blob/master/notebooks/2020_0722transformer_tutorial.ipynb" target="_parent"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/></a> # + id="izhB0L2VCvCj" colab_type="code" colab={} # %matplotlib inline # + [markdown] id="tOAm7nfcCvCo" colab_type="text" # # # Sequence-to-Sequence Modeling with nn.Transformer and TorchText # # This is a tutorial on how to train a sequence-to-sequence model # that uses the # [`nn.Transformer`](https://pytorch.org/docs/master/nn.html?highlight=nn%20transformer#torch.nn.Transformer) module. # # PyTorch 1.2 release includes a standard transformer module based on the paper [Attention is All You Need](https://arxiv.org/pdf/1706.03762.pdf). # The transformer model has been proved to be superior in quality for many sequence-to-sequence problems while being more parallelizable. # The `nn.Transformer` module relies entirely on an attention mechanism (another module recently implemented as [`nn.MultiheadAttention`](https://pytorch.org/docs/master/nn.html?highlight=multiheadattention#torch.nn.MultiheadAttention) to draw global dependencies between input and output. # The `nn.Transformer` module is now highly modularized such that a single component (like [`nn.TransformerEncoder`](https://pytorch.org/docs/master/nn.html?highlight=nn%20transformerencoder#torch.nn.TransformerEncoder) in this tutorial) can be easily adapted/composed. # # ![](https://pytorch.org/tutorials/_images/transformer_architecture.jpg) # # # + [markdown] id="Ltgk212dCvCp" colab_type="text" # ## Define the model # # # # + [markdown] id="40TisKhiCvCq" colab_type="text" # In this tutorial, we train ``nn.TransformerEncoder`` model on a language modeling task. # The language modeling task is to assign a probability for the likelihood of a given word (or a sequence of words) to follow a sequence of words. # A sequence of tokens are passed to the embedding layer first, followed by a positional encoding layer to account for the order of the word (see the next paragraph for more details). # The ``nn.TransformerEncoder`` consists of multiple layers of [`nn.TransformerEncoderLayer`](https://pytorch.org/docs/master/nn.html?highlight=transformerencoderlayer#torch.nn.TransformerEncoderLayer). # Along with the input sequence, a square attention mask is required because the self-attention layers in ``nn.TransformerEncoder`` are only allowed to attend the earlier positions in the sequence. # For the language modeling task, any tokens on the future positions should be masked. To have the actual words, the output of ``nn.TransformerEncoder`` model is sent to the final Linear layer, which is followed by a log-Softmax function. # # # # + id="2yXdwL9dCvCq" colab_type="code" colab={} import math import torch import torch.nn as nn import torch.nn.functional as F class TransformerModel(nn.Module): def __init__(self, ntoken, ninp, nhead, nhid, nlayers, dropout=0.5): super(TransformerModel, self).__init__() from torch.nn import TransformerEncoder, TransformerEncoderLayer self.model_type = 'Transformer' self.src_mask = None self.pos_encoder = PositionalEncoding(ninp, dropout) encoder_layers = TransformerEncoderLayer(ninp, nhead, nhid, dropout) self.transformer_encoder = TransformerEncoder(encoder_layers, nlayers) self.encoder = nn.Embedding(ntoken, ninp) self.ninp = ninp self.decoder = nn.Linear(ninp, ntoken) self.init_weights() def _generate_square_subsequent_mask(self, sz): mask = (torch.triu(torch.ones(sz, sz)) == 1).transpose(0, 1) mask = mask.float().masked_fill(mask == 0, float('-inf')).masked_fill(mask == 1, float(0.0)) return mask def init_weights(self): initrange = 0.1 self.encoder.weight.data.uniform_(-initrange, initrange) self.decoder.bias.data.zero_() self.decoder.weight.data.uniform_(-initrange, initrange) def forward(self, src): if self.src_mask is None or self.src_mask.size(0) != len(src): device = src.device mask = self._generate_square_subsequent_mask(len(src)).to(device) self.src_mask = mask src = self.encoder(src) * math.sqrt(self.ninp) src = self.pos_encoder(src) output = self.transformer_encoder(src, self.src_mask) output = self.decoder(output) return output # + [markdown] id="p0I8drH4CvCt" colab_type="text" # ``PositionalEncoding`` module injects some information about the relative or absolute position of the tokens in the sequence. # The positional encodings have the same dimension as the embeddings so that the two can be summed. Here, we use ``sine`` and ``cosine`` functions of different frequencies. # # # # + id="wj8gcDb3CvCu" colab_type="code" colab={} class PositionalEncoding(nn.Module): def __init__(self, d_model, dropout=0.1, max_len=5000): super(PositionalEncoding, self).__init__() self.dropout = nn.Dropout(p=dropout) pe = torch.zeros(max_len, d_model) position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1) div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model)) pe[:, 0::2] = torch.sin(position * div_term) pe[:, 1::2] = torch.cos(position * div_term) pe = pe.unsqueeze(0).transpose(0, 1) self.register_buffer('pe', pe) def forward(self, x): x = x + self.pe[:x.size(0), :] return self.dropout(x) # + [markdown] id="OpMw1tp4CvCx" colab_type="text" # Load and batch data # ------------------- # # # # + [markdown] id="EuSyJAbICvCx" colab_type="text" # The training process uses Wikitext-2 dataset from ``torchtext``. # The vocab object is built based on the train dataset and is used to numericalize tokens into tensors. # Starting from sequential data, the ``batchify()`` function arranges the dataset into columns, trimming off any tokens remaining after the data has been divided into batches of size ``batch_size``. # For instance, with the alphabet as the sequence (total length of 26) and a batch size of 4, we would divide the alphabet into 4 sequences of length 6: # # \begin{align}\begin{bmatrix} # \text{A} & \text{B} & \text{C} & \ldots & \text{X} & \text{Y} & \text{Z} # \end{bmatrix} # \Rightarrow # \begin{bmatrix} # \begin{bmatrix}\text{A} \\ \text{B} \\ \text{C} \\ \text{D} \\ \text{E} \\ \text{F}\end{bmatrix} & # \begin{bmatrix}\text{G} \\ \text{H} \\ \text{I} \\ \text{J} \\ \text{K} \\ \text{L}\end{bmatrix} & # \begin{bmatrix}\text{M} \\ \text{N} \\ \text{O} \\ \text{P} \\ \text{Q} \\ \text{R}\end{bmatrix} & # \begin{bmatrix}\text{S} \\ \text{T} \\ \text{U} \\ \text{V} \\ \text{W} \\ \text{X}\end{bmatrix} # \end{bmatrix}\end{align} # # These columns are treated as independent by the model, which means that the dependence of ``G`` and ``F`` can not be learned, but allows more efficient batch processing. # # # # + id="LifyGl02CvCy" colab_type="code" colab={"base_uri": "https://localhost:8080/", "height": 68} outputId="08872458-807e-4541-99e7-4b8bf10487c7" import torchtext from torchtext.data.utils import get_tokenizer #TEXT = torchtext.data.Field(tokenize=get_tokenizer("basic_english"), TEXT = torchtext.data.Field(tokenize=get_tokenizer("spacy"), #TEXT = torchtext.data.Field(tokenize=get_tokenizer("moses"), init_token='<sos>', eos_token='<eos>', lower=True) train_txt, val_txt, test_txt = torchtext.datasets.WikiText2.splits(TEXT) TEXT.build_vocab(train_txt) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") def batchify(data, bsz): data = TEXT.numericalize([data.examples[0].text]) # Divide the dataset into bsz parts. nbatch = data.size(0) // bsz # Trim off any extra elements that wouldn't cleanly fit (remainders). data = data.narrow(0, 0, nbatch * bsz) # Evenly divide the data across the bsz batches. data = data.view(bsz, -1).t().contiguous() return data.to(device) batch_size = 20 eval_batch_size = 10 train_data = batchify(train_txt, batch_size) val_data = batchify(val_txt, eval_batch_size) test_data = batchify(test_txt, eval_batch_size) # + [markdown] id="EyBA19PSCvC1" colab_type="text" # ### Functions to generate input and target sequence # # # # + [markdown] id="TxLN81NVCvC2" colab_type="text" # ``get_batch()`` function generates the input and target sequence for the transformer model. # It subdivides the source data into chunks of length ``bptt``. # For the language modeling task, the model needs the following words as ``Target``. # For example, with a ``bptt`` value of 2, we’d get the following two Variables for ``i`` = 0: # # ![](https://pytorch.org/tutorials/_images/transformer_input_target.png) # <!-- # ![](https://github.com/pytorch/tutorials/blob/gh-pages/_downloads/_static/img/transformer_input_target.png?raw=1) # --> # # It should be noted that the chunks are along dimension 0, consistent with the ``S`` dimension in the Transformer model. The batch dimension ``N`` is along dimension 1. # # # # + id="AtpupptMCvC2" colab_type="code" colab={} bptt = 35 def get_batch(source, i): seq_len = min(bptt, len(source) - 1 - i) data = source[i:i+seq_len] target = source[i+1:i+1+seq_len].view(-1) return data, target # + [markdown] id="35lvEX4hCvC5" colab_type="text" # Initiate an instance # -------------------- # # # # + [markdown] id="8XJBZYkCCvC6" colab_type="text" # The model is set up with the hyperparameter below. The vocab size is # equal to the length of the vocab object. # # # # + id="rEgBjoSxCvC7" colab_type="code" colab={} ntokens = len(TEXT.vocab.stoi) # the size of vocabulary emsize = 200 # embedding dimension nhid = 200 # the dimension of the feedforward network model in nn.TransformerEncoder nlayers = 2 # the number of nn.TransformerEncoderLayer in nn.TransformerEncoder nhead = 2 # the number of heads in the multiheadattention models dropout = 0.2 # the dropout value model = TransformerModel(ntokens, emsize, nhead, nhid, nlayers, dropout).to(device) # + [markdown] id="H9QbhiBvCvC-" colab_type="text" # Run the model # ------------- # # # # + [markdown] id="CDcuL_V9CvC-" colab_type="text" # [`CrossEntropyLoss`](https://pytorch.org/docs/master/nn.html?highlight=crossentropyloss#torch.nn.CrossEntropyLoss) is applied to track the loss and [`SGD`](https://pytorch.org/docs/master/optim.html?highlight=sgd#torch.optim.SGD) implements stochastic gradient descent method as the optimizer. # The initial learning rate is set to 5.0. # [`StepLR`](https://pytorch.org/docs/master/optim.html?highlight=steplr#torch.optim.lr_scheduler.StepLR) is applied to adjust the learn rate through epochs. # During the training, we use [`nn.utils.clip_grad_norm_`](https://pytorch.org/docs/master/nn.html?highlight=nn%20utils%20clip_grad_norm#torch.nn.utils.clip_grad_norm_) function to scale all the gradient together to prevent exploding. # # # # + id="RXaeIhfiCvC_" colab_type="code" colab={} criterion = nn.CrossEntropyLoss() lr = 5.0 # learning rate optimizer = torch.optim.SGD(model.parameters(), lr=lr) scheduler = torch.optim.lr_scheduler.StepLR(optimizer, 1.0, gamma=0.95) import time def train(): model.train() # Turn on the train mode total_loss = 0. start_time = time.time() ntokens = len(TEXT.vocab.stoi) for batch, i in enumerate(range(0, train_data.size(0) - 1, bptt)): data, targets = get_batch(train_data, i) optimizer.zero_grad() output = model(data) loss = criterion(output.view(-1, ntokens), targets) loss.backward() torch.nn.utils.clip_grad_norm_(model.parameters(), 0.5) optimizer.step() total_loss += loss.item() log_interval = 200 if batch % log_interval == 0 and batch > 0: cur_loss = total_loss / log_interval elapsed = time.time() - start_time print('| epoch {:3d} | {:5d}/{:5d} batches | ' 'lr {:02.2f} | ms/batch {:5.2f} | ' 'loss {:5.2f} | ppl {:8.2f}'.format( epoch, batch, len(train_data) // bptt, scheduler.get_lr()[0], elapsed * 1000 / log_interval, cur_loss, math.exp(cur_loss))) total_loss = 0 start_time = time.time() def evaluate(eval_model, data_source): eval_model.eval() # Turn on the evaluation mode total_loss = 0. ntokens = len(TEXT.vocab.stoi) with torch.no_grad(): for i in range(0, data_source.size(0) - 1, bptt): data, targets = get_batch(data_source, i) output = eval_model(data) output_flat = output.view(-1, ntokens) total_loss += len(data) * criterion(output_flat, targets).item() return total_loss / (len(data_source) - 1) # + [markdown] id="dqeJZzj_CvDC" colab_type="text" # Loop over epochs. Save the model if the validation loss is the best # we've seen so far. Adjust the learning rate after each epoch. # # # + id="XQGWaf-wCvDC" colab_type="code" colab={"base_uri": "https://localhost:8080/", "height": 1000} outputId="aae43d48-fb28-4bce-a0f1-0a6db14ddf23" best_val_loss = float("inf") epochs = 10 # The number of epochs best_model = None for epoch in range(1, epochs + 1): epoch_start_time = time.time() train() val_loss = evaluate(model, val_data) print('-' * 89) print('| end of epoch {:3d} | time: {:5.2f}s | valid loss {:5.2f} | ' 'valid ppl {:8.2f}'.format(epoch, (time.time() - epoch_start_time), val_loss, math.exp(val_loss))) print('-' * 89) if val_loss < best_val_loss: best_val_loss = val_loss best_model = model scheduler.step() # + [markdown] id="58Fw_MNrCvDF" colab_type="text" # Evaluate the model with the test dataset # ------------------------------------- # # Apply the best model to check the result with the test dataset. # # # + id="VSnoui7nCvDF" colab_type="code" colab={"base_uri": "https://localhost:8080/", "height": 68} outputId="c9b8ae93-ea47-45c3-d411-7d8fcc8892e3" test_loss = evaluate(best_model, test_data) print('=' * 89) print('| End of training | test loss {:5.2f} | test ppl {:8.2f}'.format( test_loss, math.exp(test_loss))) print('=' * 89) # + id="aTqwSbxiITkb" colab_type="code" colab={}
notebooks/2020_0722transformer_tutorial.ipynb
# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.14.4 # kernelspec: # display_name: Python 3 # name: python3 # --- # + [markdown] id="TA21Jo5d9SVq" # # # ![JohnSnowLabs](https://nlp.johnsnowlabs.com/assets/images/logo.png) # # [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/JohnSnowLabs/spark-nlp-workshop/blob/master/tutorials/streamlit_notebooks/healthcare/CLINICAL_CLASSIFICATION.ipynb) # # # # + [markdown] id="CzIdjHkAW8TB" # # **How to use Licensed Classification models in Spark NLP** # + [markdown] id="RuZr5fPZ4Jwa" # ### Spark NLP documentation and instructions: # https://nlp.johnsnowlabs.com/docs/en/quickstart # # ### You can find details about Spark NLP annotators here: # https://nlp.johnsnowlabs.com/docs/en/annotators # # ### You can find details about Spark NLP models here: # https://nlp.johnsnowlabs.com/models # # + [markdown] id="6uDmeHEFW7_h" # To run this yourself, you will need to upload your license keys to the notebook. Otherwise, you can look at the example outputs at the bottom of the notebook. To upload license keys, open the file explorer on the left side of the screen and upload `workshop_license_keys.json` to the folder that opens. # + [markdown] id="wIeCOiJNW-88" # ## 1. Colab Setup # + [markdown] id="HMIDv74CYN0d" # Import license keys # + colab={"base_uri": "https://localhost:8080/"} id="ttHPIV2JXbIM" outputId="004068ac-9191-4f95-9f02-1d600648efda" import os import json with open('/content/spark_nlp_for_healthcare.json', 'r') as f: license_keys = json.load(f) license_keys.keys() secret = license_keys['SECRET'] os.environ['SPARK_NLP_LICENSE'] = license_keys['SPARK_NLP_LICENSE'] os.environ['AWS_ACCESS_KEY_ID'] = license_keys['AWS_ACCESS_KEY_ID'] os.environ['AWS_SECRET_ACCESS_KEY'] = license_keys['AWS_SECRET_ACCESS_KEY'] sparknlp_version = license_keys["PUBLIC_VERSION"] jsl_version = license_keys["JSL_VERSION"] print ('SparkNLP Version:', sparknlp_version) print ('SparkNLP-JSL Version:', jsl_version) # + [markdown] id="rQtc1CHaYQjU" # # Install dependencies # + colab={"base_uri": "https://localhost:8080/"} id="CGJktFHdHL1n" outputId="69c06067-3b73-4fe3-f024-0f608436ecb7" # Install Java # ! apt-get update -qq # ! apt-get install -y openjdk-8-jdk-headless -qq > /dev/null # ! java -version # Install pyspark # ! pip install --ignore-installed -q pyspark==2.4.4 # Install Spark NLP # ! pip install --ignore-installed spark-nlp==$sparknlp_version # ! python -m pip install --upgrade spark-nlp-jsl==$jsl_version --extra-index-url https://pypi.johnsnowlabs.com/$secret # + [markdown] id="Hj5FRDV4YSXN" # Import dependencies into Python and start the Spark session # + colab={"base_uri": "https://localhost:8080/", "height": 86} id="qUWyj8c6JSPP" outputId="b83a58a9-c278-4cc3-92fb-92f702815231" os.environ['JAVA_HOME'] = "/usr/lib/jvm/java-8-openjdk-amd64" os.environ['PATH'] = os.environ['JAVA_HOME'] + "/bin:" + os.environ['PATH'] import pandas as pd from pyspark.ml import Pipeline from pyspark.sql import SparkSession import pyspark.sql.functions as F import sparknlp from sparknlp.annotator import * from sparknlp_jsl.annotator import * from sparknlp.base import * import sparknlp_jsl spark = sparknlp_jsl.start(secret) # manually start session ''' builder = SparkSession.builder \ .appName('Spark NLP Licensed') \ .master('local[*]') \ .config('spark.driver.memory', '16G') \ .config('spark.serializer', 'org.apache.spark.serializer.KryoSerializer') \ .config('spark.kryoserializer.buffer.max', '2000M') \ .config('spark.jars.packages', 'com.johnsnowlabs.nlp:spark-nlp_2.11:' +sparknlp.version()) \ .config('spark.jars', f'https://pypi.johnsnowlabs.com/{secret}/spark-nlp-jsl-{jsl_version}.jar') ''' # + [markdown] id="9RgiqfX5XDqb" # ## 2. Usage Guidelines # + [markdown] id="AVKr8C2SrkZQ" # 1. **Selecting the correct Classification Model** # # > a. To select from all the Classification models available in Spark NLP please go to https://nlp.johnsnowlabs.com/models # # > b. Read through the model descriptions to select desired model # # > c. Some of the available models: # >> classifierdl_pico_biobert # # >> classifierdl_ade_biobert # --- # 2. **Selecting correct embeddings for the chosen model** # # > a. Models are trained on specific embeddings and same embeddings should be used at inference to get best results # # > b. If the name of the model contains "**biobert**" (e.g: *ner_anatomy_biobert*) then the model is trained using "**biobert_pubmed_base_cased**" embeddings. Otherwise, "**embeddings_clinical**" was used to train that model. # # > c. Using correct embeddings # # >> To use *embeddings_clinical* : # # >>> word_embeddings = WordEmbeddingsModel.pretrained("embeddings_clinical", "en", "clinical/models") # .setInputCols(["sentence", "token"]) \ # .setOutputCol("embeddings") # # >> To use *Bert* Embeddings: # # >>> embeddings = BertEmbeddings.pretrained('biobert_pubmed_base_cased')\ # .setInputCols(["document", 'token'])\ # .setOutputCol("word_embeddings") # > d. You can find list of all embeddings at https://nlp.johnsnowlabs.com/models?tag=embeddings # # + [markdown] id="zweiG2ilZqoR" # Create the pipeline # + colab={"base_uri": "https://localhost:8080/"} id="LLuDz_t40be4" outputId="3f85f688-ae9b-423b-8db1-80d292a09a05" document_assembler = DocumentAssembler()\ .setInputCol("text")\ .setOutputCol("document") tokenizer = Tokenizer() \ .setInputCols(["document"]) \ .setOutputCol("token") embeddings = BertEmbeddings.pretrained('biobert_pubmed_base_cased')\ .setInputCols(["document", 'token'])\ .setOutputCol("word_embeddings") sentence_embeddings = SentenceEmbeddings() \ .setInputCols(["document", "word_embeddings"]) \ .setOutputCol("sentence_embeddings") \ .setPoolingStrategy("AVERAGE").setStorageRef('SentenceEmbeddings_5d018a59d7c3') åå classifier = ClassifierDLModel.pretrained('classifierdl_pico_biobert', 'en', 'clinical/models')\ .setInputCols(['document', 'token', 'sentence_embeddings']).setOutputCol('class') pipeline = Pipeline(stages=[ document_assembler, tokenizer, embeddings, sentence_embeddings, classifier]) empty_data = spark.createDataFrame([[""]]).toDF("text") pipeline_model = pipeline.fit(empty_data) lmodel = LightPipeline(pipeline_model) # + [markdown] id="2Y9GpdJhXIpD" # ## 3. Create example inputs # + id="vBOKkB2THdGI" # Enter examples as strings in this array input_list = [ """A total of 10 adult daily smokers who reported at least one stressful event and coping episode and provided post-quit data.""", ] # + [markdown] id="mv0abcwhXWC-" # ## 4. Use the pipeline to create outputs # + [markdown] id="27rHwCk4ODFr" # Full Pipeline (Expects a Spark Data Frame) # + id="TK1DB9JZaPs3" df = spark.createDataFrame(pd.DataFrame({"text": input_list})) result = pipeline_model.transform(df) # + [markdown] id="FFq4QRXjOEeG" # Light Pipeline (Expects a list of string # + id="NzFUrSmkOFfs" lresult = lmodel.fullAnnotate(input_list) # + [markdown] id="UQY8tAP6XZJL" # ## 5. Visualize results # + [markdown] id="0vhxZgvibTi3" # Full Pipeline Results # + colab={"base_uri": "https://localhost:8080/", "height": 35} id="2EXCQGCMbTKT" outputId="74433ac8-a41e-4c71-fb74-8eee7e2732e5" result.toPandas()['class'].iloc[0][0].result # + [markdown] id="hnsMLq9gctSq" # Light Pipeline Results # + colab={"base_uri": "https://localhost:8080/", "height": 35} id="Ar32BZu7J79X" outputId="33c26ac9-fdb7-43eb-b57e-3f75e0fd7f74" lresult[0]['class'][0].result
tutorials/streamlit_notebooks/healthcare/CLINICAL_CLASSIFICATION.ipynb
# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.14.4 # kernelspec: # display_name: 'Python 3.8.5 64-bit (''3.8.5'': pyenv)' # metadata: # interpreter: # hash: 40f0aa7cb53c514384145c8233a75c82c384db7f0b9e58264fdf777852089e81 # name: python3 # --- a = 1 print(a) a 1 < 2 a = 3 a < 2 a == 3 a == 4 a != 3 print("aaaaaaaaa \n bbbbbbbbb") List = [1, 2, 3, 4 ,5 ,6 ,7 ,8] List List[0:3] List[:3] List[3:] List[1] = 10 List words = ["Hello", "World", 3 , 3.14] words tuple_1 = (4, 5, 6, 7) tuple_1 #辞書型 results = {"Math": 90, "Sience": 80, "English": 75} results results["Math"] #For文 for i in range(5): print(i) names = ["Sato", "Suzuki", "Takahashi"] for i in range(3): print(names[i] + "-san") names = ["Sato", "Suzuki", "Takahashi", "Yoshida"] for i in range(len(names)): print(names[i] + "-san") for a in names: print(a) for name in names: print(name + "-san") # + # if文 val = 0 if val > 0: print("It's positive") elif val==0: print("It's Zero") else: print("It's negative") # + #関数 def say_hello(): print("Hello!!") say_hello() # + #引数のある関数 def say_hello2(name): print("Hello!!" + name + " san") say_hello2("Suzuki") # + #出力(返り値)のある関数 def add(a, b): return a + b result = add(3 ,5) result # + def abs(num): if num < 0: return num * -1 else: return num result = abs(-1) result # + import numpy as np #ベクトルの定義 x = np.array([1, 2, 3]) y = np.array([2., 3.9, 6.1]) x_ave = x.mean() y_ave = y.mean() x_center = x - x_ave y_center = y - y_ave xx = x_center * x_center xy = x_center * y_center a = xy.sum() / xx.sum() a # + import pandas as pd # data frame df = pd.read_csv('sample.csv') print(df) # - x = df['x'] y = df['y'] # + import matplotlib.pyplot as plt #散布図 plt.scatter(x,y) plt.grid() plt.show() # -
kikagaku/Sesson5.ipynb
# --- # jupyter: # jupytext: # formats: ipynb,md # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.14.4 # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- # # Introduction # # This notebook introduces `jupyter_ui_poll` library. # # This library allows one to implement a "blocking GUI" inside a Jupyter # environment. It does not implement new GUI primitives, rather it allows use of # existing `ipywidgets` based libraries in a blocking fashion. It also gives you # mechanisms to maintain interactivity of widgets while executing a long-running # cell. # # After going through this notebook you should also checkout a more [complex # example](ComplexUIExample.ipynb), it demonstrates implementation a blocking UI # primitive as a library. # + import asyncio import time import ipywidgets as w from IPython.display import display from jupyter_ui_poll import run_ui_poll_loop, ui_events, with_ui_events # - # ## Simplest UI widget # # Create a button that displays number of times it was clicked. We will be using it for testing. # # Go on, run the cell below and click the button few times. # + def on_click(btn): n = int(btn.description) btn.description = str(n + 1) def test_button(): """ Create button that displays number of times it was clicked """ btn = w.Button(description="0") btn.on_click(on_click) return btn display(test_button()) # - # ## Waiting for user action # # Example of using `ui_events` function. This is the foundational function in # `jupyter-ui-poll` library, all other methods use it under the hood. `ui_events` # returns a function your code should call to process UI events that happened so # far while executing a long-running cell. This requires temporarily modifying # internals of the running IPython kernel, hence this function needs to be used # inside `with` statement, so that IPython state can be restored to normal once # your code is done, even if errors have happened. # # You can supply how many events should be processed every time you call `ui_poll` # function, default is `1`. You probably want to use larger value if you have # highly interactive widgets that generate a lot of events, like a map, or if your # poll frequency is low. One should aim for something like 100 events per second. # If you notice that UI lags and is not responsive try increasing poll frequency # and if that is not possible, increase number of UI events you process per # polling interval. # # - Cell below presents a button with click count display # - Roughly ten times a second we print click count so far # - When click count reaches 10, we stop # + btn = test_button() print("Press this button 10 times to terminate") display(btn) with ui_events() as ui_poll: while int(btn.description) < 10: print(btn.description, end="") ui_poll(11) # Process upto 11 ui events per iteration time.sleep(0.1) print("... done") # - # ## Process Long Sequence while Responding to UI events # # Sometimes you want to process a large number of small jobs in the notebook, but # still want to respond to UI events, like button clicks. Maybe you want to # terminate computation early and get the result so far, or change some parameter # mid-flight. Providing interactive feedback to the user about the state of the # computation is another example. # # Just wrap an iterator in `with_ui_events` function, you will get the same data # out, but also UI events will be processed in between each item. # + btn = test_button() print("Press this button a few times") display(btn) for i in with_ui_events(range(55), 10): # Process upto 10 ui events per iteration if int(btn.description) >= 5: print("✋", end="") break # Test early exit print(btn.description, end="") # Verify UI state changes time.sleep(0.1) # Simulate blocking computation print("... done") # - # Try changing code in the cell above to run without `with_ui_events` # # ```diff # - for i in with_ui_events(range(55), 10): # + for i in range(55): # ``` # # You will see that the button text no longer updates as you click it, but instead # `on_click` events will be processed as soon as the cell finishes executing. # ## Example using run_ui_poll_loop # # A common scenario is to wait for some input from the user, validate it, and if # successful continue with the execution of the rest of the notebook. # `run_ui_poll_loop` is handy in this case. You give it a function to call at a # regular interval. This function should return `None` while user input is still # incomplete. Once all data is entered this function should extract it from the UI # and return as python construct of some sort (tuple, dictionary, single number, # anything but `None`) to be used by the rest of the notebook. # # Cell below will: # # - Display a button # - Ask user to press it 10 times # - Report how many seconds it took # # Try using `Cell->Run All Below`, everything should still work as expected. # + t0 = time.time() xx = ["-_-", "o_o"] def on_poll(): """This is called repeatedly by run_ui_poll_loop Return None if condition hasn't been met yet Return some result once done, in this example result is a number of seconds it took to press the button 10 times. """ if int(btn.description) < 10: print(xx[0], end="\r", flush=True) xx[:] = xx[::-1] return None # Continue polling # Terminate polling and return final result return time.time() - t0 btn = test_button() print("Press button 10 times") display(btn) dt = run_ui_poll_loop(on_poll, 1 / 15) print("._.") # This should display the text in the output of this cell n_times = "10 times" # To verify that the rest of this cell executes before executing cells below # - # Cell below uses `dt` and `n_times` that are set in the cell above, so it's # important that it doesn't execute until `dt` is known. print(f"Took {dt:.1f} seconds to click {n_times}") # Cell below contains intentional error. # # Cells below this one should not execute as part of `Run All Below` command you can still run them later of course. this_will_raise_an_error() # ## Async Operations # # We also support async mode of operation if desired. Just use `async with` or `async for`. # + btn = test_button() print("Press this button 10 times to terminate") display(btn) async with ui_events() as ui_poll: while int(btn.description) < 10: print(btn.description, end="") await ui_poll(11) # Process upto 11 ui events per iteration await asyncio.sleep(0.1) # Simulate async processing print("... done") # - # ### Async Iterable # # Iterable returned from `with_ui_events` can also be used in async context. It can wrap async/sync iterators, the result can be iterated with either plain `for` or `async for` when wrapping normal iterators, and only with `async for` when wrapping `async` iterators. # + btn = test_button() print("Press this button a few times") display(btn) async for i in with_ui_events(range(55), 10): # Process upto 10 ui events per iteration if int(btn.description) >= 5: print("✋", end="") break # Test early exit print(btn.description, end="") # Verify UI state changes await asyncio.sleep(0.1) # Simulate Async computation print("... done") # - # ### Test Async Iterable wrapping # + from collections import abc async def async_range(n): for i in range(n): yield i its0 = async_range(55) its = with_ui_events(its0, 10) print( f"""Iterable: {isinstance(its0, abc.Iterable)}, {isinstance(its, abc.Iterable)} AsyncIterable: {isinstance(its0, abc.AsyncIterable)}, {isinstance(its, abc.AsyncIterable)}""" ) # - # One can create and wrap iterator in an earlier cell and use it later. # + btn = test_button() print("Press this button a few times") display(btn) async for i in its: # Process upto 10 ui events per iteration if int(btn.description) >= 5: print("✋", end="") break # Test early exit print(btn.description, end="") # Verify UI state changes await asyncio.sleep(0.1) # Simulate Async computation print("... done") # - # ------------------------------------------------------------
notebooks/Examples.ipynb
# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.14.4 # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- # + import numpy as np import matplotlib.pyplot as plt from fst_pso.benchmark_functions import Rastrigin, Squared, numpyWrapper from fst_pso.pso import FSTPSO import benchmark_functions as bf from scipy.spatial import distance from tqdm import tqdm func = bf.Schwefel(n_dimensions=4) point = [25, -34.6, -112.231, 242] # results: -129.38197657025287 print(func(point)) # + # SWARM INITALIZATION # Number of dimensions DIM_NUM = 2 iterations = 400 numOfTests = 30 FNC_OPTIM_list = [ bf.Ackley(n_dimensions=DIM_NUM), bf.Griewank(n_dimensions=DIM_NUM), bf.Michalewicz(n_dimensions=DIM_NUM), bf.Rastrigin(n_dimensions=DIM_NUM), # bf.Rosenbrock(n_dimensions=DIM_NUM), # bf.Schwefel(n_dimensions=DIM_NUM), # bf.EggHolder(n_dimensions=DIM_NUM), # bf.Keane(n_dimensions=DIM_NUM), # bf.Rana(n_dimensions=DIM_NUM), # bf.Easom(n_dimensions=DIM_NUM), # bf.DeJong3(n_dimensions=DIM_NUM), # bf.GoldsteinAndPrice(n_dimensions=DIM_NUM) ] # Hyper-square Boundaries for each FNC_OPTIM DIM_SIZE_list = [30, 600, np.pi, 5.12] # - cnt=0 for FNC_OPTIM_RAW in FNC_OPTIM_list: print("\nFUNCTION {} --------------------------------\nMIN.: {}".format(FNC_OPTIM_RAW.name,FNC_OPTIM_RAW.getMinimum())) DIM_SIZE = DIM_SIZE_list[cnt] cnt+=1 bestSolutionMat = [] bestSolutionMatPSO = [] for testNum in tqdm(range(0, numOfTests)): swarm_size = int(np.floor(10+2*np.sqrt(DIM_NUM))) swarm_x = 2 * DIM_SIZE * np.random.rand(swarm_size, DIM_NUM) - DIM_SIZE swarm_v = 2 * DIM_SIZE * np.random.rand(swarm_size, DIM_NUM) - DIM_SIZE FNC_OPTIM = numpyWrapper(FNC_OPTIM_RAW) optimizer = FSTPSO(DIM_NUM, DIM_SIZE, FNC_OPTIM, True,swarm_x,swarm_v, interia_mode=True) optimizer_PSO = FSTPSO(DIM_NUM, DIM_SIZE, FNC_OPTIM, False,swarm_x,swarm_v, interia_mode=False) bestSolutionVec = [] bestSolutionVecPSO = [] bestSolutionVec.append(FNC_OPTIM(optimizer.swarm_opt_g)) bestSolutionVecPSO.append(FNC_OPTIM(optimizer_PSO.swarm_opt_g)) for i in range(1, iterations+1): for p in range(optimizer.get_swarm_size()): optimizer.update_particle(p, plot=False) optimizer_PSO.update_particle(p, plot=False) bestSolutionVec.append(FNC_OPTIM(optimizer.swarm_opt_g)) bestSolutionVecPSO.append(FNC_OPTIM(optimizer_PSO.swarm_opt_g)) bestSolutionMat.append(bestSolutionVec) bestSolutionMatPSO.append(bestSolutionVecPSO) ABF_list = [] ABF_listPSO = [] for it in range(0,iterations): suma = 0 sumaPSO = 0 for testId in range(0,numOfTests): suma += bestSolutionMat[testId][it] sumaPSO += bestSolutionMatPSO[testId][it] ABF = suma/numOfTests ABF_list.append(suma/numOfTests) ABF_listPSO.append(sumaPSO/numOfTests) plt.figure() fig, ax = plt.subplots(figsize=(12, 6)) plt.plot(ABF_list,'k') plt.title(FNC_OPTIM_RAW.name) plt.xlabel("Iteration") plt.ylabel("Average Best Fitness") plt.plot(ABF_listPSO,'b') plt.title(FNC_OPTIM_RAW.name) plt.xlabel("Iteration") plt.ylabel("Average Best Fitness") plt.legend(['FST PSO','PSO']) plt.grid() plt.savefig('./{}.png'.format(FNC_OPTIM_RAW.name)) plt.show()
FST-PSO.ipynb
# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.14.4 # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- # # Temporary vs. Permanent Methods # # ### Temporary Methods # # When you use a method on an object (e.g. a DataFrame) in python, `<object>.<method>(<args>)` performs the method on the object and returns the modified object, as you can see here: # # + import pandas as pd # define a df df = pd.DataFrame({'height':[72,60,68],'gender':['M','F','M'],'weight':[175,110,150]}) # call method on df and print - df.assign yields the modified object! df.assign(feet=df['height']//12) # - # This is useful if you want to alter the variable **temporarily** (e.g. for a graph, or to just print it out, like I literally just did!). # # **But the object in memory wasn't changed when I used `df.<method>`. See, here is the df in memory, and it wasn't changed:** print(df) # see, the object has no feet! this is the original obj! # ### Permanent changes # # If you want to change the object permanently, you have two options[^caveat] # + # option 1: explicitly define the df as the prior df after the method was called # here, that means to add "df = " before the df.method df = df.assign(feet1=df['height']//12) # option 2: define a new feature of the df # here, "df['newcolumnname'] = " (some operation) df['feet2']=df['height']//12 print(df) # both of these added to obj in memory # - # # [^caveat]: You can also do some pandas operations "in place", without explicitly writing `df = ` at the start of the line. However, I discourage this for reasons I won't belabor here.
content/03/02d_temp.ipynb
# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.14.4 # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- import os import sys ROOT_DIR = os.path.abspath("../") os.chdir(ROOT_DIR) sys.path.append(ROOT_DIR) from utils import resources from preprocessing import conversion from preprocessing import chips conversion.convert_LAZ_to_LAS_mt(resources.laz, resources.las, 12) conversion.convert_LAS_to_TIFF_mt(resources.las, resources.images, 12) conversion.check_nulldata(resources.images_dgm) conversion.check_nulldata(resources.images_dom) conversion.calculate_ndom_mt(resources.images_dom, resources.images_dgm, resources.images_ndom) chips.create_training_chips(resources.images_ndom, resources.images_chips_esri, resources.shapefile, "dachform", 512, 256, rotation=0, num_threads=12) chips.unique_colors_to_masks_mt(resources.images_chips_esri, resources.images_chips_single_masks, 12)
notebooks/01_prepare_data.ipynb
# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.14.4 # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- # + _cell_guid="79c7e3d0-c299-4dcb-8224-4455121ee9b0" _uuid="d629ff2d2480ee46fbb7e2d37f6b5fab8052498a" # %matplotlib inline import os import multiprocessing from multiprocessing import Pool import numpy as np import pandas as pd from tqdm import tqdm import mlcrate as mlc from bayes_opt import BayesianOptimization from trackml.dataset import load_event from trackml.dataset import load_dataset from trackml.score import score_event from sklearn.utils import shuffle from sklearn.preprocessing import StandardScaler from sklearn.cluster.dbscan_ import dbscan import matplotlib import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D # import hdbscan class Config(): ROOT_PATH = '/home/bilal/.kaggle/competitions/trackml-particle-identification' DATA_FOLDERS = { 'train': 'train_100_events', 'test': 'test' } EVENT = 'event000001000' OUTPUT_FOLDER = './data' SPLIT = 0.75 THETA = 75 config = Config() event_path = os.path.join(config.ROOT_PATH, config.DATA_FOLDERS['train'], config.EVENT) hits, cells, particles, truth = load_event(event_path) # + _uuid="a6033df117e0b8800f9572208c37ffa5ccf653ff" def preprocess(hits): hits['r1'] = np.sqrt(np.square(hits['x']) + np.square(hits['y'])) hits['r2'] = np.sqrt(np.square(hits['x']) + np.square(hits['y']) + np.square(hits['z'])) hits['x2'] = hits['x'] / hits['r1'] hits['y2'] = hits['y'] / hits['r1'] hits['z1'] = hits['z'] / hits['r1'] hits['z2'] = hits['z'] / hits['r2'] hits['rho'] = np.sqrt(np.square(hits['x']) + np.square(hits['y'])) hits['phi'] = np.arctan2(hits['y'], hits['x']) hits['s'] = np.sin(hits['phi']) hits['c'] = np.cos(hits['phi']) hits['arctan2'] = np.arctan2(hits['z'], hits['rho']) hits['log1p'] = np.log1p(np.abs(hits['z2'])) * np.sign(hits['z2']) hits['r-abs'] = (hits['r2'] - np.abs(hits['z'])) / hits['r2'] return hits def get_preds(x): w1, w2, w3, param = x[0], x[1], x[2], x[3] hits, mm, ii = param[0], param[1], param[2] hits['aa'] = hits['phi'] + mm * (hits['r1'] + 0.000005 * np.square(hits['r1'])) / 1000 * (ii / 2) / 180 * np.pi hits['cosaa'] = np.cos(hits['aa']) hits['sinaa'] = np.sin(hits['aa']) # x = StandardScaler().fit_transform(np.column_stack([hits['cosaa'], hits['sinaa'], hits['z1'], hits['z2']])) x = StandardScaler().fit_transform(np.column_stack([hits['cosaa'], hits['sinaa'], hits['arctan2'], hits['log1p'], hits['z1']])) x[:,0] = x[:,0] * w1 x[:,1] = x[:,1] * w1 x[:,2] = x[:,2] * w2 x[:,3] = x[:,3] * w3 _, preds = dbscan(x, eps=0.0035, min_samples=1, n_jobs=4) return preds def get_params(hits, niter): params = [] for i in range(0, int(niter)): ii = i if i % 2 == 0: mm = 1 else: mm = -1 params.append((hits, mm, ii)) return params def train(hits, w1, w2, w3, niter, optimize=False): params = get_params(hits, niter) for i, param in enumerate(params): params[i] = (w1, w2, w3, param) pool = Pool(processes=4) preds = pool.map(get_preds, params) pool.close() return preds def add_count(l): # unique: sorted unique values; reverse: indicies of unique to reconstruct l; count: num times each unique appears unique, reverse, count = np.unique(l, return_counts=True, return_inverse=True) # get num times each unique l appears c = count[reverse] # unassign any tracks with either 0 or > 20 hits c[np.where(l == 0)] = 0 c[np.where(c > 20)] = 0 return (l, c) def postprocess(hits, preds, event): results = [add_count(l) for l in preds] preds, counts = results[0] for i in range(1, len(results)): l, c = results[i] idx = np.where((c - counts > 0))[0] preds[idx] = l[idx] + preds.max() counts[idx] = c[idx] hits['track_id'] = preds hits['event_id'] = event return hits def predict(w1, w2, w3, niter=10, optimize=True, visualize=False, test=False, hits=hits, event='000001000'): hits = preprocess(hits) preds = train(hits, w1, w2, w3, niter, optimize=optimize) hits = postprocess(hits, preds, event) if not test: score = score_event(truth, hits) if visualize: fig = plt.figure() ax = fig.add_subplot(111, projection='3d') hits = hits[hits['track_id'] != 0] for particle in hits['track_id'][:100].unique(): hit = hits[hits['track_id'] == particle] ax.scatter(hit.x, hit.y, hit.z, marker='o') ax.plot(hit.x, hit.y, hit.z) ax.set_xlabel('X Label') ax.set_ylabel('Y Label') ax.set_zlabel('Z Label') plt.show() if test: return hits else: if optimize: return score else: return hits, score # - # cos(aa) sin(aa) z1 z2 # + _uuid="23e8c1b4fea19b41be0ea9e6c1d3162e6b1ce589" hits, score = predict(1, 1, 1, niter=100, optimize=False, visualize=True) print(score) # - # cos(aa) sin(aa) log1p z2 hits, score = predict(1, 1, 1, niter=100, optimize=False, visualize=True) print(score) # ## Try: # cos(aa) sin(aa) z1 log1p hits, score = predict(1, 1, 1, niter=100, optimize=False, visualize=True) print(score) # ## Best: # cos(aa) sin(aa) arctan2 hits, score = predict(1, 1, 1, niter=100, optimize=False, visualize=True) print(score) # cos(aa) sin(aa) r-abs hits, score = predict(1, 1, 1, niter=100, optimize=False, visualize=True) print(score) # cos(aa) sin(aa) z1 r-abs hits, score = predict(1, 1, 1, niter=100, optimize=False, visualize=True) print(score) # cos(aa) sin(aa) z2 r-abs hits, score = predict(1, 1, 1, niter=100, optimize=False, visualize=True) print(score) # cos(aa) sin(aa) log1p r-abs hits, score = predict(1, 1, 1, niter=100, optimize=False, visualize=True) print(score) # cos(aa) sin(aa) arctan2 log1p r-abs hits, score = predict(1, 1, 1, niter=100, optimize=False, visualize=True) print(score) # cos(aa) sin(aa) log1p z1; Weights: 1 1 0.5 hits, score = predict(1, 1, 0.5, niter=100, optimize=False, visualize=True) print(score) # cos(aa) sin(aa) log1p z1; Weights: 1 1 1.5 hits, score = predict(1, 1, 1.5, niter=100, optimize=False, visualize=True) print(score) # + submissions = [] for event_id, hits, cells in tqdm(load_dataset(os.path.join(config.ROOT_PATH, config.DATA_FOLDERS['test']), parts=['hits', 'cells'])): # for event_id, hits, cells in tqdm(load_dataset(os.path.join(config.ROOT_PATH, config.DATA_FOLDERS['test']), parts=['hits', 'cells'], nevents=2)): hits = predict(1.0438, 0.3795, 0.2350, niter=214, optimize=False, visualize=False, test=True, hits=hits, event=event_id) sub = hits[['hit_id', 'track_id', 'event_id']] submissions.append(sub) # - submission = pd.concat(submissions, axis=0) len(submission) mlc.kaggle.save_sub(submission, 'submission.csv.gz') submission
attempt-8/feature-exploration.ipynb
# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.14.4 # kernelspec: # display_name: Python 2 # language: python # name: python2 # --- # # Load Data from File # + from pyspark.sql.types import * raw_data = sc.textFile('/user/cloudera/data/bike-sharing/hour_nohead.csv') column_data = raw_data.map(lambda x: x.split(',')) schema = StructType([ StructField('row_id',StringType(),True), StructField('date',StringType(), True), StructField('season',StringType(), True), StructField('year',StringType(), True), StructField('month',StringType(), True), StructField('hour',StringType(), True), StructField('holiday',StringType(), True), StructField('weekday',StringType(), True), StructField('workingday',StringType(), True), StructField('weather',StringType(), True), StructField('temperature',StringType(), True), StructField('apparent_temperature',StringType(), True), StructField('humidity',StringType(), True), StructField('wind_speed',StringType(), True), StructField('casual',StringType(), True), StructField('registered',StringType(), True), StructField('counter',StringType(), True) ]) structured_data = sqlContext.createDataFrame(column_data, schema) data = structured_data.select( structured_data.row_id.cast('int'), structured_data.date.cast('string'), structured_data.season.cast('int'), structured_data.year.cast('int'), structured_data.month.cast('int'), structured_data.hour.cast('int'), structured_data.holiday.cast('int'), structured_data.weekday.cast('int'), structured_data.workingday.cast('int'), structured_data.weather.cast('int'), structured_data.temperature.cast('double'), structured_data.apparent_temperature.cast('double'), structured_data.humidity.cast('double'), structured_data.wind_speed.cast('double'), structured_data.casual.cast('int'), structured_data.registered.cast('int'), structured_data.counter.cast('int') ) # - # # Prepare Data # + from pyspark.sql.functions import * ddata = data.select( data.date, unix_timestamp(data.date, "yyyy-MM-dd").alias('ts'), data.season.cast("double"), data.year.cast("double"), data.month.cast("double"), data.hour.cast("double"), data.holiday.cast("double"), data.weekday.cast("double"), data.workingday.cast("double"), data.weather.cast("double"), data.temperature, data.apparent_temperature, data.humidity, data.wind_speed, data.casual.cast("double"), data.registered.cast("double"), data.counter.cast("double") ) # - # # Make some Pictures # First we need to import matplotlib.pyplot and also make all plots appear inline in the notebook # %matplotlib inline import matplotlib.pyplot as plt # ## Make a Plot of Rents per Day # The original data contains rents per hour, we want to have the data per day # + # Generate Pandas DataFrame with summed data per day pdf = ... plt.figure(figsize=(16, 6), dpi=80, facecolor='w', edgecolor='k') plt.plot(pdf['ts'],pdf['sum(counter)']) # + # Now only look at casual renters pdf = ... plt.figure(figsize=(16, 6), dpi=80, facecolor='w', edgecolor='k') plt.plot(pdf['ts'],pdf['sum(casual)']) # + # Now only look at registered renters pdf = ... plt.figure(figsize=(16, 6), dpi=80, facecolor='w', edgecolor='k') plt.plot(pdf['ts'],pdf['sum(registered)']) # - # # Initial Statistics # # Of course we are interested in some initial statistics on all columns. # + schema = ddata.schema for field in schema.fields: # Print statistcs for field if field is Double Type # - # # Extract Vectors for Regression # # Spark ML needs a special data type (Vector) for most operations. So we need to transform columns of interest into that special data type. # # A Vector can be created from a double Array via # # from pyspark.mllib.linalg import Vectors # Vectors.dense([1.0,2.0,3.0]) # + def extract_vector(row, cols): pass print extract_vector(Row('name','age')('Bob',23), [1]) # - # ## Transform DataFrame # # Now that we have extract_vector, we can use it in order to extract the relevant features from our DataFrame # + # Use the following columns cols = [1,2,3,4,5,6,7,8,9,10,11,12,13] # Transform all records ddata into vectors [feature, counter] # counter can be found in column row[16] rdd = ... # Now create new DataFrame features_labels = sqlContext.createDataFrame(rdd, ['features','counter']) # Peek inside, convert first 10 rows to Pandas # - # # Split Data into Training and Test Set train_data, test_data = ... print train_data.count() print test_data.count() # # Perform Linear Regression from pyspark.ml.regression import * # ### Peek into the Model # # Let us have a look at the coefficients and at the intercept # # Perform Prediction # # Predict new Data by applying the model to the test data # # Evaluate Model # # Use VectorAssembler # # Manual feature extraction (i.e. creation of the Vector) is a little bit tedious and not very comfortable. But luckily, there is a valuable helper called VectorAssembler. # # We use it to automatically extract the columns # # season, year, month, hour, holiday, weekday, workingday, weather, # temperature, apparent_temperature, humidity, wind_speed # # into the new output column 'features' # ## Split Train and Test Data # # Since we found an easier way to generate features, we split incoming data first and apply the VectorAssembler train_data, test_data = ddata.randomSplit([0.8,0.2], seed=0) print train_data.count() print test_data.count() # ## Perform Regression # # 1. Apply VectorAssembler # 2. Perform Fitting asm = ... regression = ... model = ... # ## Predict # # Make predictions from test data and print some results p # ## Evaluation # # Finally lets evaluate the prediction # # Make New Pictures of Regression # + tmp = prediction \ .groupBy('ts').agg({'counter':'sum', 'prediction':'sum'}) \ .orderBy('ts') pdf = tmp.toPandas() min_ts,max_ts = prediction.agg(min('ts'), max('ts')).collect()[0] plt.figure(figsize=(16, 6), dpi=80, facecolor='w', edgecolor='k', tight_layout=True) plt.plot(pdf['ts'],pdf['sum(counter)']) plt.plot(pdf['ts'],pdf['sum(prediction)']) axes = plt.gca() axes.set_xlim([min_ts,max_ts]) # -
spark-training/spark-python/jupyter-ml-bike-sharing/PySpark Bike Sharing Regression Skeleton.ipynb
# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.14.4 # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- # # Convolution of astronomical data # # The [astropy.convolution](https://docs.astropy.org/en/stable/convolution/) sub-package provides convolution functions that can correctly handle NaN/missing values, and also provides common convolution kernels and functionality to create custom kernels. Packages such as SciPy also include functionality for convolution (see e.g. [scipy.ndimage](https://docs.scipy.org/doc/scipy/reference/ndimage.html)), but these do not typically treat NaN/missing values properly. # # <section class="objectives panel panel-warning"> # <div class="panel-heading"> # <h2><span class="fa fa-certificate"></span> Objectives</h2> # </div> # # # <div class="panel-body"> # # <ul> # <li>Use built-in kernels and understand discretization options</li> # <li>Use NaN-friendly convolution functions</li> # </ul> # # </div> # # </section> # # ## Documentation # # This notebook only shows a subset of the functionality in astropy.convolution. For more information about the features presented below as well as other available features, you can read the # [astropy.convolution documentation](https://docs.astropy.org/en/stable/convolution/). # %matplotlib inline import matplotlib.pyplot as plt plt.rc('image', origin='lower') plt.rc('figure', figsize=(10, 6)) # ## Convolution kernels # # A number of convolution kernels are provided by default - these are classes that support several options for discretization onto a pixel grid. An example of such a kernel is [Gaussian2DKernel](https://docs.astropy.org/en/stable/api/astropy.convolution.Gaussian2DKernel.html#astropy.convolution.Gaussian2DKernel): from astropy.convolution import Gaussian2DKernel kernel1 = Gaussian2DKernel(2) # Kernels have a ``.array`` attribute that can be used to access the discretized values: plt.imshow(kernel1.array) # By default, the kernel is discretized by sampling the values of the Gaussian (or whatever kernel function is used) at the center of each pixel. However this can cause issues if the kernel is not very well resolved by the grid: from astropy import units as u kernel2 = Gaussian2DKernel(x_stddev=0.3, y_stddev=5, theta=30 * u.deg) plt.imshow(kernel2.array) kernel3 = Gaussian2DKernel(x_stddev=0.3, y_stddev=5, theta=30 * u.deg, mode='oversample') plt.imshow(kernel3.array) plt.imshow(kernel3.array - kernel2.array) # A list of available kernels can be found [in the documentation](https://docs.astropy.org/en/stable/convolution/kernels.html#available-kernels). If you are interested in constructing your own kernels, you can make use of any astropy model, and make use of the [Model1DKernel](http://docs.astropy.org/en/stable/api/astropy.convolution.Model1DKernel.html#astropy.convolution.Model1DKernel) and [Model2DKernel](http://docs.astropy.org/en/stable/api/astropy.convolution.Model1DKernel.html#astropy.convolution.Model2DKernel) classes. # ## Convolution functions # # The two main convolution functions provided are [convolve](https://docs.astropy.org/en/stable/api/astropy.convolution.convolve.html#astropy.convolution.convolve) and [convolve_fft](https://docs.astropy.org/en/stable/api/astropy.convolution.convolve_fft.html#astropy.convolution.convolve_fft) - the former implements direct convolution (more efficient for small kernels), and the latter FFT convolution (more efficient for large kernels) from astropy.convolution import convolve, convolve_fft # To understand how the NaN treatment differs from SciPy, let's take a look at a simple example: import numpy as np data = [1, 2, np.nan, 4, 5] kernel = [0.5, 1.0, 0.5] from scipy.ndimage import convolve as scipy_convolve scipy_convolve(data, kernel) convolve(data, kernel) # In short, the way this works is, prior to the convolution, to replace NaNs with the average of nearby pixels weighted by the kernel. The astropy convolution functions can work for data in 1-, 2- and 3-dimensions. # # We can take a look at an example for an image, using one of the FITS images used previously: from astropy.io import fits gaia_map = fits.getdata('data/LMCDensFits1k.fits') # This image doesn't contain any NaN values, but we can sprinkle some NaN values throughout with: gaia_map[np.random.random((750, 1000)) > 0.999] = np.nan plt.imshow(gaia_map) # Let's construct a small Gaussian kernel: gauss = Gaussian2DKernel(3) # And we can now compare the convolution from scipy.ndimage and astropy.convolution: plt.imshow(scipy_convolve(gaia_map, gauss.array)) plt.imshow(convolve(gaia_map, gauss)) # # <section class="challenge panel panel-success"> # <div class="panel-heading"> # <h2><span class="fa fa-pencil"></span> Challenge</h2> # </div> # # # <div class="panel-body"> # # <p>Using a simple 1D dataset as done above, can you determine whether the kernel is automatically normalized by default? How can you change this behavior? And how does this compare to SciPy's convolve function?</p> # # </div> # # </section> # #1a convolve([0, 1, 0], [1, 2, 1]) # normalized kernel #1b convolve([0, 1, 0], [1, 2, 1], normalize_kernel=False) # normalized kernel #1c scipy_convolve([0, 1, 0], [1, 2, 1]) # unnormalized kernel # <center><i>This notebook was written by <a href="https://aperiosoftware.com/">Aperio Software Ltd.</a> &copy; 2019, and is licensed under a <a href="https://creativecommons.org/licenses/by/4.0/">Creative Commons Attribution 4.0 International License (CC BY 4.0)</a></i></center> # # ![cc](https://mirrors.creativecommons.org/presskit/buttons/88x31/svg/by.svg)
instructor/10-convolution_instructor.ipynb
# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.14.4 # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- import pandas as pd import pandera as pa # + #a limpeza de dados sera feita na parte da leitura dos dados com o parametro na_values valores_ausentes = ['**','###!','####','****','*****','NULL'] caminho_dados = 'ocorrencia_2010_2020.csv' df = pd.read_csv(caminho_dados, sep=';', parse_dates=['ocorrencia_dia'], dayfirst=True, na_values=valores_ausentes) df.head(10) # + #a principio essa validaçao dara erro, isso porque fizemos ela apos a limpeza parcial #ou seja apareceram valores que nao podem ser carregados de acordo com as regras da validaçao #entao a validaçao impede que o codigo continue schema = pa.DataFrameSchema( columns={ 'codigo': pa.Column(pa.Int, required=False), #essa coluna nao exise, mas como ela pode aparecer em alguns df e outros nao #podemmos adiciona-la com o parametro required=false, esse parmetro é true como padrao 'codigo_ocorrencia': pa.Column(pa.Int), 'codigo_ocorrencia2': pa.Column(pa.Int), 'ocorrencia_classificacao': pa.Column(pa.String), 'ocorrencia_cidade': pa.Column(pa.String), 'ocorrencia_uf': pa.Column(pa.String, pa.Check.str_length(2,2), nullable=True), #validaçao de tamanho 'ocorrencia_aerodromo': pa.Column(pa.String, nullable=True), 'ocorrencia_dia': pa.Column(pa.DateTime), 'ocorrencia_hora': pa.Column(pa.String, pa.Check.str_matches(r'^([0-1]?[0-9]|[2][0-3]):([0-5][0-9])(:[0-5][0-9])?$'), nullable=True), #nullable permite valores nulos, senao ocorreria erro na validaçao #check vai fazer a validaçao da hora a partir de uma regex, para nao ter horarios omo 25h, etc 'total_recomendacoes': pa.Column(pa.Int) } ) schema.validate(df) # na linha de validaçao da coluna "ocorrencias_uf" colocando o parametro nulable, e rodando o codigo de novo #o erro deixa de aparecer, pois agora os NA que apareceraam sao permitidos na validaçao #porem aparecerao erros de outras validaçoes, na coluna "ocorrencia_aerodromo" # + df.loc[1] #df.loc[-1] #loc busca por label # + df.iloc[1] df.iloc[-1] #iloc busca por indice, possui os metodos de lista, é usado quando precisamos manipular o df pelos numeros das linhas e colunas # - filtro = df.ocorrencia_uf.isnull() df.loc[filtro] filtro = df.ocorrencia_hora.isnull() df.loc[filtro] #nao considera os valores NA na contagem df.count() #filtro que exibe as linhas com mais de 10 recomendaçoes filtro = df.total_recomendacoes > 10 df.loc[filtro, ['ocorrencia_cidade', 'total_recomendacoes']] #filtro que exibe as linhas com acidente grave filtro = df.ocorrencia_classificacao == 'INCIDENTE GRAVE' df.loc[filtro, ['ocorrencia_cidade', 'total_recomendacoes']] # + #filtro que exibe as linhas com acidente grave e estado SP filtro1 = (df.ocorrencia_classificacao == 'INCIDENTE GRAVE') | (df.ocorrencia_classificacao == 'INCIDENTE') #filtro1 = df.ocorrencia_classificacao.isin(['INCIDENTE GRAVE', 'INCIDENTE']) alternativa ao comando de cima filtro2 = df.ocorrencia_uf == 'RJ' df.loc[filtro1 & filtro2, ['ocorrencia_cidade', 'ocorrencia_hora']] # - #filtro que busca cidades que o nome comecem com a letra C filtro = df.ocorrencia_cidade.str[0] == 'C' df.loc[filtro] #filtro que busca cidades que o nome termine com ma filtro = df.ocorrencia_cidade.str[-2:] == 'MA' df.loc[filtro] #filtro que busca cidades que o nome termine com MA filtro = df.ocorrencia_cidade.str.contains('MA') df.loc[filtro] #filtro que busca cidades que o nome tem MA ou AL filtro = df.ocorrencia_cidade.str.contains('MA|AL') df.loc[filtro] #filtro que busca ano de 2015 filtro = df.ocorrencia_dia.dt.year == 2015 #operador dt usado em datas nos permite acessar os dados df.loc[filtro] #filtro que busca ano de 2015 e mes 1 filtro = (df.ocorrencia_dia.dt.year == 2015) & (df.ocorrencia_dia.dt.month == 1) df.loc[filtro] # + #filtro que busca ano de 2015 e mes 1, entre os dias 1 e 10 filtro = (df.ocorrencia_dia.dt.year == 2015) & (df.ocorrencia_dia.dt.month == 1) filtro_dia_inicio = df.ocorrencia_dia.dt.day > 0 filtro_dia_fim = df.ocorrencia_dia.dt.day < 11 df.loc[filtro & filtro_dia_inicio & filtro_dia_fim] # + #em determinadas situaçoes é util juntar dauas colunas em uma nova #primeiro é necessario mudar a data do tipo data para tipo string para poder fazer a concatenaçao #depois transformar tudo em data novamente df['ocorrencia_dia_hora'] = pd.to_datetime(df.ocorrencia_dia.astype(str) + ' ' + df.ocorrencia_hora) df.loc[:, 'ocorrencia_dia_hora'] # + #filtro que busca ano de 2015 e mes 1, entre os dias 1 e 10 e horario da noite filtro = (df.ocorrencia_dia.dt.year == 2015) & (df.ocorrencia_dia.dt.month == 1) filtro_dia_inicio = df.ocorrencia_dia.dt.day > 0 filtro_dia_fim = df.ocorrencia_dia.dt.day < 11 # filtro_hora1 = df.ocorrencia_dia_hora >= '2015-01-01 12:00:00' # filtro_hora2 = df.ocorrencia_dia_hora <= '2015-01-09 12:00:00' df.loc[filtro & filtro_dia_inicio & filtro_dia_fim] # + filtro_hora1 = df.ocorrencia_dia_hora >= '2015-01-01 12:00:00' filtro_hora2 = df.ocorrencia_dia_hora <= '2015-01-09 12:00:00' df.loc[filtro_hora1 & filtro_hora2] #juntando dia e hora podemos faer filtros mais facilmente # + #vamos criar um novo df filtro1 = df.ocorrencia_dia.dt.year == 2015 filtro2 = df.ocorrencia_dia.dt.month == 3 df201503 = df.loc[filtro1 & filtro2] df201503 # - #verificando falta de dados df201503.count() df201503.groupby(['codigo_ocorrencia']).count() #nessa contagem agrupamos pelo codigo, como é unico entao as somas serao 1 ou 0 no caso do dado estar faltando df201503.groupby(['ocorrencia_classificacao']).codigo_ocorrencia.count() #aqui se conta quantos codigos de ocorrencia diferentes tem para cada tipo de classificaçao # ou seja, houve 15 ocorrencias diferentes que foram acidentes, 5 que foram incidente grave, etc df201503.groupby(['ocorrencia_classificacao']).ocorrencia_aerodromo.count() #aqui se conta quantas ocorrencias no aerodromo tem para cada tipo de classificaçao #deve se evitar contar por colunas que contenham dados nulos, como essa df201503.groupby(['ocorrencia_classificacao']).size() #size conta as linhas com valores df201503.groupby(['ocorrencia_classificacao']).size().sort_values() # + filtro1 = df.ocorrencia_dia.dt.year == 2010 filtro2 = df.ocorrencia_uf.isin(['SP', 'MG', 'ES', 'RJ']) dfsudeste2010 = df.loc[filtro1 & filtro2] dfsudeste2010 # - dfsudeste2010.groupby(['ocorrencia_classificacao']).size() dfsudeste2010.count() # dfsudeste2010.groupby(['ocorrencia_uf', 'ocorrencia_classificacao']).size() dfsudeste2010.groupby(['ocorrencia_cidade']).size().sort_values(ascending=False) filtro = dfsudeste2010.ocorrencia_cidade == 'RIO DE JANEIRO' dfsudeste2010.loc[filtro].total_recomendacoes.sum() # total de recomendaçoes do Rio deu 25, para confirmar podemos buscar onde estao as recomendaçoes # + filtro1 = dfsudeste2010.ocorrencia_cidade == 'RIO DE JANEIRO' filtro2 = dfsudeste2010.total_recomendacoes > 0 dfsudeste2010.loc[filtro1 & filtro2] #filtrando as recomendaçoes # - dfsudeste2010.groupby(['ocorrencia_cidade']).total_recomendacoes.sum() dfsudeste2010.groupby(['ocorrencia_aerodromo'], dropna=False).total_recomendacoes.sum() filtro = dfsudeste2010.total_recomendacoes > 0 dfsudeste2010.loc[filtro].groupby(['ocorrencia_cidade']).total_recomendacoes.sum() #filtramos o df so com valores a cima de 0 para recomendacoes e em seguida ordenamos pela cidade dfsudeste2010.loc[filtro].groupby(['ocorrencia_cidade', dfsudeste2010.ocorrencia_dia.dt.month]).total_recomendacoes.sum() #depois de filtrar o df agrupamos por cidade e mes, como nao temos coluna pro mes separada temos que usar dessa forma #verificando as ocorrencias em SP para ver se os valores batem com as da celula anterior filtro1 = dfsudeste2010.total_recomendacoes > 0 filtro2 = dfsudeste2010.ocorrencia_cidade == 'SÃO PAULO' dfsudeste2010.loc[filtro1 & filtro2]
fundamentos_ETL/projeto/03-transformacao.ipynb
# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.14.4 # kernelspec: # display_name: Python 3 (ipykernel) # language: python # name: python3 # --- # # Installer for Email Notification Scheduler # ⚠️ Only Seeq Administrators can run this installer to completion, since only Administrators can install Add-ons. # # This notebook will walk you through the steps needed to install the Email Notification Scheduler as a Data Lab Tool in Workbench. If you are fine with the defaults and have never installed the scheduler before, you should be able to leave everything as is, running all cells in order. # # At the end, if you have encountered no errors: # * in the folder you've specified using the `path_to_notifications_folder`, you should find all files listed as `source_files` below # * the Tools tab in Workbench should have a tool grouping named `Add-ons` # * there should be a tool named `Email Notification Scheduler` among the `Add-ons`. # # There is ONE MORE STEP that must be done to complete installation - after running all steps in this installer, one must complete the SMTP server and account configuration in `Email Notifier.ipynb` within the target folder (`Email Notifications` if `path_to_notifications_folder` is not changed below). Please note that anyone that has access to this project will be able to see the account information provided there. If using the gmail SMTP server, it is preferred to use an app password rather than the actual password for the account, and the port should be set to 587 to use STARTTLS. You can find out more about gmail app passwords in the [Google Account Help](https://support.google.com/accounts/answer/185833?hl=en#zippy=%2Cwhy-you-may-need-an-app-password). # # See the [Add-on Tools KB article](https://telemetry.seeq.com/support-link/wiki/spaces/KB/pages/961675391) for further details of Add-on tools. # ### Installation Folder # # The path to the Notifications folder is set in the next cell. It should be specified relative to the root of the project and should use forward slashes ( / ) for path separators. The folder should be created before proceeding with installation. path_to_notifications_folder = 'Email Notifications' # ### How to handle existing files # If the following parameter is changed to `True`, any existing files in the target folder will be overwritten. You # may want to do this if you wish to discard changes to the installed notebooks or if you wish to upgrade the notebooks # with the versions found in this folder (e.g., after upgrading the Data Lab server). overwrite_existing_files = False # ### How to handle existing versions of Scheduler in Add-on Tools # If the following parameter is `True`, any already-installed tools with the same name as shown in the `name` field of # the `tool_with_permissions` dictionary below will be removed before the new tool is installed. By default, the # `name` of the scheduler is `Email Notification Scheduler`. Be careful! If you change this parameter to `True`, you # will be replacing the existing version of the Add-on Tool with the version found at the # `path_to_notifications_folder` in this project for _all users_ of the Add-on Tool. You may want to change the `name` # field in the `tool_with_permissions` dictionary instead. remove_existing_versions = False # ### Tool Configuration # Check the output of the following cell to confirm the desired configuration for the Add-on Tool. The resulting JSON object will be used to create or update the existing tool. # + import urllib.parse as urlparse target_path_encoded = urlparse.quote(path_to_notifications_folder) project_id = spy.utils.get_data_lab_project_id() project_url = spy.utils.get_data_lab_project_url() notebook_name = 'Email Notification Scheduler.ipynb' query_parameters = '?workbookId={workbookId}&worksheetId={worksheetId}&workstepId={workstepId}&seeqVersion={seeqVersion}' install_url = f'{project_url}/apps/{path_to_notifications_folder}/{notebook_name}/{query_parameters}' tool_with_permissions = { 'name': 'Email Notification Scheduler', 'description': 'Data Lab Notebook-based Email Notification Scheduling tool', 'iconClass': 'fa fa-envelope', 'targetUrl': install_url, 'linkType': 'window', 'windowDetails': 'toolbar=0,location=0,scrollbars=1,statusbar=0,menubar=0,resizable=1,height=700,width=600', 'sortKey' : 'e', 'reuseWindow': 'false', # but not relevant, since linkType is 'tab' 'permissions': { 'groups': [], 'users': [spy.user.email] } } print('The following parameters will be used to define the add-on:\n') tool_with_permissions # - # # ⚠️ Advanced Configuration and Automated Installation Beyond This Point # If you are just running this notebook to install or update the Email Notifications Scheduler in a typical fashion, you can just run the remaining cells as is, checking the output of each to confirm the expected results. Contact support if any problems are encountered. import os import requests import shutil from datetime import datetime, timezone from pathlib import Path from seeq import sdk try: spy_version = seeq.__version__ except: spy_version = spy.__version__ print(f'Seeq PyPI package version: {spy_version}') # ### Check whether the required source files and target folder exist # The source files should be in the same folder as this installer. The target folder for the installation should already exist by the time this installer is run. home_path = os.environ['HOME'] all_required_paths_exist = False source_files = [ 'Email Notification Scheduler.ipynb', 'Email Notifier.ipynb', 'Email Unsubscriber.ipynb', 'Seeq Data Lab.jpg' ] source_paths = [ f'{os.getcwd()}/{source_file}' for source_file in source_files ] target_folder_path = Path(home_path, path_to_notifications_folder) os.makedirs(target_folder_path, exist_ok=True) target_folder_exists = os.path.exists(target_folder_path) all_source_paths_exist = all(iter([os.path.exists(source_path) for source_path in source_paths])) status_message = '' if not all_source_paths_exist: files_string = "\n".join(source_paths) status_message += f'Not all source files exist. Check for the presence of the following files ' \ f'in the folder that contains this notebook:\n{source_files}' if not target_folder_exists: status_message += f'Target folder not found. Add a folder at {path_to_notifications_folder} relative to ' \ f'the root of the Data Lab Project' if status_message: print(status_message) else: print('All required paths exist. Installation may proceed.') target_paths = [] if all_source_paths_exist: existing_files_not_overwritten = False for source_path in source_paths: source_file = source_path.split('/').pop() target_path = Path(home_path, path_to_notifications_folder, source_file) target_paths.append(target_path) if overwrite_existing_files or not target_path.exists(): shutil.copyfile(source_path, target_path) else: existing_files_not_overwritten = True if existing_files_not_overwritten: print(f'Warning! One or more files were not overwritten. Change overwrite_existing_files to True ' f'or delete the files in the target folder to ensure the latest versions.') all_target_files_exist = all(iter([os.path.exists(target_path) for target_path in target_paths])) print(f'{"All" if all_target_files_exist else "Not all"} target files exist. ' f'Installation may{" " if all_target_files_exist else " not "}proceed.') else: all_target_files_exist = False print('Please check results of previous step') # ### Configuration update and tool installation # The following cell enables the Add-on Tools and ScheduledNotebooks features and adds the Email Notifications Scheduler to the Add-on Tools. # + # Adapted from the Notebook Add-on Tool Management UI-TEST.ipynb, available at # https://seeq.atlassian.net/wiki/spaces/SQ/pages/961675391/Add-on+Tools def create_add_on_tool(tool_with_permissions): # Create add-on tool tool = tool_with_permissions.copy() tool.pop("permissions") tool_id = sdk.SystemApi(spy.client).create_add_on_tool(body = tool).id items_api = sdk.ItemsApi(spy.client) # assign group permissions to add-on tool and data lab project groups = tool_with_permissions["permissions"]["groups"] for group_name in groups: group = sdk.UserGroupsApi(spy.client).get_user_groups(name_search=group_name) if group: ace_input = { 'identityId': group.items[0].id, 'permissions': { 'read': True } } # Add permissions to add-on tool item items_api.add_access_control_entry(id=tool_id, body=ace_input) # Add permissions to data lab project if target URL references one ace_input['permissions']['write'] = True # Data lab project also needs write permission items_api.add_access_control_entry(id=project_id, body=ace_input) # assign user permissions to add-on tool and data lab project users = tool_with_permissions["permissions"]["users"] for user_name in users: user = sdk.UsersApi(spy.client).get_users(username_search=user_name) if user: ace_input = { 'identityId': user.users[0].id, 'permissions': { 'read': True } } items_api.add_access_control_entry(id=tool_id, body=ace_input) # Add permissions to data lab project if target URL references one ace_input['permissions']['write'] = True # Data lab project also needs write permission items_api.add_access_control_entry(id=project_id, body=ace_input) system_api = sdk.SystemApi(spy.client) if all_target_files_exist: if not spy.user.is_admin: raise RuntimeError('Only Administrators can install Add-on Tools') if int(spy_version.split('.')[0]) >= 54: configuration_output = system_api.get_configuration_options(limit=5000) else: configuration_output = system_api.get_configuration_options() add_on_tools_already_enabled = next((option.value for option in configuration_output.configuration_options if option.path == 'Features/AddOnTools/Enabled'), False) scheduled_notebooks_already_enabled = next((option.value for option in configuration_output.configuration_options if option.path == 'Features/DataLab/ScheduledNotebooks/Enabled'), False) configuration_options_update = [] if not add_on_tools_already_enabled: configuration_options_update.append( sdk.ConfigurationOptionInputV1( note = f'Set to true by Email Notifications Installer user {spy.user.email} {datetime.now(timezone.utc)}', path = 'Features/AddOnTools/Enabled', value = True ) ) if not scheduled_notebooks_already_enabled: configuration_options_update.append( sdk.ConfigurationOptionInputV1( note = f'Set to true by Email Notifications Installer user {spy.user.email} {datetime.now(timezone.utc)}', path = 'Features/DataLab/ScheduledNotebooks/Enabled', value = True ) ) if configuration_options_update: config_options = sdk.ConfigurationInputV1(configuration_options = configuration_options_update) system_api.set_configuration_options(body=config_options) existing_tools_output = system_api.get_add_on_tools() existing_tools = [add_on_tool for add_on_tool in existing_tools_output.add_on_tools if add_on_tool.name == tool_with_permissions['name']] if len(existing_tools) > 0: if not remove_existing_versions: raise RuntimeError(f'One or more tools exist with name {tool_with_permissions["name"]}, ' f'and remove_existing_versions is False; Cannot create add-on tool') else: # Delete existing tools for existing_tool in existing_tools: system_api.delete_add_on_tool(id=existing_tool.id) print(f'Removed {len(existing_tools)} existing tools with name {tool_with_permissions["name"]}') # Create new tool create_add_on_tool(tool_with_permissions) print(f'Success! Check Workbench for the {tool_with_permissions["name"]} tool in the Add-on Tools collection') else: print('Not all target files exist; cannot complete installation.') # -
Email Notification Add-on Installer.ipynb
# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.14.4 # kernelspec: # display_name: Python 3.6 # language: python # name: python36 # --- # Copyright (c) Microsoft Corporation. All rights reserved. # # Licensed under the MIT License. # ![Impressions](https://PixelServer20190423114238.azurewebsites.net/api/impressions/MachineLearningNotebooks/how-to-use-azureml/explain-model/explain-on-amlcompute/regression-sklearn-on-amlcompute.png) # # Train using Azure Machine Learning Compute # # * Initialize a Workspace # * Create an Experiment # * Introduction to AmlCompute # * Submit an AmlCompute run in a few different ways # - Provision as a run based compute target # - Provision as a persistent compute target (Basic) # - Provision as a persistent compute target (Advanced) # * Additional operations to perform on AmlCompute # * Download model explanation data from the Run History Portal # * Print the explanation data # ## Prerequisites # If you are using an Azure Machine Learning Notebook VM, you are all set. Otherwise, make sure you go through the [configuration notebook](../../../configuration.ipynb) first if you haven't. # + # Check core SDK version number import azureml.core print("SDK version:", azureml.core.VERSION) # - # ## Initialize a Workspace # # Initialize a workspace object from persisted configuration # + tags=["create workspace"] from azureml.core import Workspace ws = Workspace.from_config() print(ws.name, ws.resource_group, ws.location, ws.subscription_id, sep='\n') # - # ## Create An Experiment # # **Experiment** is a logical container in an Azure ML Workspace. It hosts run records which can include run metrics and output artifacts from your experiments. from azureml.core import Experiment experiment_name = 'explainer-remote-run-on-amlcompute' experiment = Experiment(workspace=ws, name=experiment_name) # ## Introduction to AmlCompute # # Azure Machine Learning Compute is managed compute infrastructure that allows the user to easily create single to multi-node compute of the appropriate VM Family. It is created **within your workspace region** and is a resource that can be used by other users in your workspace. It autoscales by default to the max_nodes, when a job is submitted, and executes in a containerized environment packaging the dependencies as specified by the user. # # Since it is managed compute, job scheduling and cluster management are handled internally by Azure Machine Learning service. # # For more information on Azure Machine Learning Compute, please read [this article](https://docs.microsoft.com/azure/machine-learning/service/how-to-set-up-training-targets#amlcompute) # # If you are an existing BatchAI customer who is migrating to Azure Machine Learning, please read [this article](https://aka.ms/batchai-retirement) # # **Note**: As with other Azure services, there are limits on certain resources (for eg. AmlCompute quota) associated with the Azure Machine Learning service. Please read [this article](https://docs.microsoft.com/azure/machine-learning/service/how-to-manage-quotas) on the default limits and how to request more quota. # # # The training script `run_explainer.py` is already created for you. Let's have a look. # ## Submit an AmlCompute run in a few different ways # # First lets check which VM families are available in your region. Azure is a regional service and some specialized SKUs (especially GPUs) are only available in certain regions. Since AmlCompute is created in the region of your workspace, we will use the supported_vms () function to see if the VM family we want to use ('STANDARD_D2_V2') is supported. # # You can also pass a different region to check availability and then re-create your workspace in that region through the [configuration notebook](../../../configuration.ipynb) # + from azureml.core.compute import ComputeTarget, AmlCompute AmlCompute.supported_vmsizes(workspace=ws) # AmlCompute.supported_vmsizes(workspace=ws, location='southcentralus') # - # ### Create project directory # # Create a directory that will contain all the necessary code from your local machine that you will need access to on the remote resource. This includes the training script, and any additional files your training script depends on # + import os import shutil project_folder = './explainer-remote-run-on-amlcompute' os.makedirs(project_folder, exist_ok=True) shutil.copy('run_explainer.py', project_folder) # - # ### Provision as a run based compute target # # You can provision AmlCompute as a compute target at run-time. In this case, the compute is auto-created for your run, scales up to max_nodes that you specify, and then **deleted automatically** after the run completes. # + from azureml.core.runconfig import RunConfiguration from azureml.core.conda_dependencies import CondaDependencies from azureml.core.runconfig import DEFAULT_CPU_IMAGE # create a new runconfig object run_config = RunConfiguration() # signal that you want to use AmlCompute to execute script. run_config.target = "amlcompute" # AmlCompute will be created in the same region as workspace # Set vm size for AmlCompute run_config.amlcompute.vm_size = 'STANDARD_D2_V2' # enable Docker run_config.environment.docker.enabled = True # set Docker base image to the default CPU-based image run_config.environment.docker.base_image = DEFAULT_CPU_IMAGE # use conda_dependencies.yml to create a conda environment in the Docker image for execution run_config.environment.python.user_managed_dependencies = False azureml_pip_packages = [ 'azureml-defaults', 'azureml-contrib-explain-model', 'azureml-core', 'azureml-telemetry', 'azureml-explain-model' ] # specify CondaDependencies obj run_config.environment.python.conda_dependencies = CondaDependencies.create(conda_packages=['scikit-learn'], pip_packages=azureml_pip_packages) # Now submit a run on AmlCompute from azureml.core.script_run_config import ScriptRunConfig script_run_config = ScriptRunConfig(source_directory=project_folder, script='run_explainer.py', run_config=run_config) run = experiment.submit(script_run_config) # Show run details run # - # Note: if you need to cancel a run, you can follow [these instructions](https://aka.ms/aml-docs-cancel-run). # %%time # Shows output of the run on stdout. run.wait_for_completion(show_output=True) # ### Provision as a persistent compute target (Basic) # # You can provision a persistent AmlCompute resource by simply defining two parameters thanks to smart defaults. By default it autoscales from 0 nodes and provisions dedicated VMs to run your job in a container. This is useful when you want to continously re-use the same target, debug it between jobs or simply share the resource with other users of your workspace. # # * `vm_size`: VM family of the nodes provisioned by AmlCompute. Simply choose from the supported_vmsizes() above # * `max_nodes`: Maximum nodes to autoscale to while running a job on AmlCompute # + from azureml.core.compute import ComputeTarget, AmlCompute from azureml.core.compute_target import ComputeTargetException # Choose a name for your CPU cluster cpu_cluster_name = "cpu-cluster" # Verify that cluster does not exist already try: cpu_cluster = ComputeTarget(workspace=ws, name=cpu_cluster_name) print('Found existing cluster, use it.') except ComputeTargetException: compute_config = AmlCompute.provisioning_configuration(vm_size='STANDARD_D2_V2', max_nodes=4) cpu_cluster = ComputeTarget.create(ws, cpu_cluster_name, compute_config) cpu_cluster.wait_for_completion(show_output=True) # - # ### Configure & Run # + from azureml.core.runconfig import RunConfiguration from azureml.core.conda_dependencies import CondaDependencies # create a new RunConfig object run_config = RunConfiguration(framework="python") # Set compute target to AmlCompute target created in previous step run_config.target = cpu_cluster.name # enable Docker run_config.environment.docker.enabled = True azureml_pip_packages = [ 'azureml-defaults', 'azureml-contrib-explain-model', 'azureml-core', 'azureml-telemetry', 'azureml-explain-model' ] # specify CondaDependencies obj run_config.environment.python.conda_dependencies = CondaDependencies.create(conda_packages=['scikit-learn'], pip_packages=azureml_pip_packages) from azureml.core import Run from azureml.core import ScriptRunConfig src = ScriptRunConfig(source_directory=project_folder, script='run_explainer.py', run_config=run_config) run = experiment.submit(config=src) run # - # %%time # Shows output of the run on stdout. run.wait_for_completion(show_output=True) run.get_metrics() # ### Provision as a persistent compute target (Advanced) # # You can also specify additional properties or change defaults while provisioning AmlCompute using a more advanced configuration. This is useful when you want a dedicated cluster of 4 nodes (for example you can set the min_nodes and max_nodes to 4), or want the compute to be within an existing VNet in your subscription. # # In addition to `vm_size` and `max_nodes`, you can specify: # * `min_nodes`: Minimum nodes (default 0 nodes) to downscale to while running a job on AmlCompute # * `vm_priority`: Choose between 'dedicated' (default) and 'lowpriority' VMs when provisioning AmlCompute. Low Priority VMs use Azure's excess capacity and are thus cheaper but risk your run being pre-empted # * `idle_seconds_before_scaledown`: Idle time (default 120 seconds) to wait after run completion before auto-scaling to min_nodes # * `vnet_resourcegroup_name`: Resource group of the **existing** VNet within which AmlCompute should be provisioned # * `vnet_name`: Name of VNet # * `subnet_name`: Name of SubNet within the VNet # + from azureml.core.compute import ComputeTarget, AmlCompute from azureml.core.compute_target import ComputeTargetException # Choose a name for your CPU cluster cpu_cluster_name = "cpu-cluster" # Verify that cluster does not exist already try: cpu_cluster = ComputeTarget(workspace=ws, name=cpu_cluster_name) print('Found existing cluster, use it.') except ComputeTargetException: compute_config = AmlCompute.provisioning_configuration(vm_size='STANDARD_D2_V2', vm_priority='lowpriority', min_nodes=2, max_nodes=4, idle_seconds_before_scaledown='300', vnet_resourcegroup_name='<my-resource-group>', vnet_name='<my-vnet-name>', subnet_name='<my-subnet-name>') cpu_cluster = ComputeTarget.create(ws, cpu_cluster_name, compute_config) cpu_cluster.wait_for_completion(show_output=True) # - # ### Configure & Run # + from azureml.core.runconfig import RunConfiguration from azureml.core.conda_dependencies import CondaDependencies # create a new RunConfig object run_config = RunConfiguration(framework="python") # Set compute target to AmlCompute target created in previous step run_config.target = cpu_cluster.name # enable Docker run_config.environment.docker.enabled = True azureml_pip_packages = [ 'azureml-defaults', 'azureml-contrib-explain-model', 'azureml-core', 'azureml-telemetry', 'azureml-explain-model' ] # specify CondaDependencies obj run_config.environment.python.conda_dependencies = CondaDependencies.create(conda_packages=['scikit-learn'], pip_packages=azureml_pip_packages) from azureml.core import Run from azureml.core import ScriptRunConfig src = ScriptRunConfig(source_directory=project_folder, script='run_explainer.py', run_config=run_config) run = experiment.submit(config=src) run # - # %%time # Shows output of the run on stdout. run.wait_for_completion(show_output=True) run.get_metrics() # + from azureml.contrib.explain.model.explanation.explanation_client import ExplanationClient client = ExplanationClient.from_run(run) # Get the top k (e.g., 4) most important features with their importance values explanation = client.download_model_explanation(top_k=4) # - # ## Additional operations to perform on AmlCompute # # You can perform more operations on AmlCompute such as updating the node counts or deleting the compute. # Get_status () gets the latest status of the AmlCompute target cpu_cluster.get_status().serialize() # Update () takes in the min_nodes, max_nodes and idle_seconds_before_scaledown and updates the AmlCompute target # cpu_cluster.update(min_nodes=1) # cpu_cluster.update(max_nodes=10) cpu_cluster.update(idle_seconds_before_scaledown=300) # cpu_cluster.update(min_nodes=2, max_nodes=4, idle_seconds_before_scaledown=600) # + # Delete () is used to deprovision and delete the AmlCompute target. Useful if you want to re-use the compute name # 'cpu-cluster' in this case but use a different VM family for instance. # cpu_cluster.delete() # - # ## Download Model Explanation Data # + from azureml.contrib.explain.model.explanation.explanation_client import ExplanationClient # Get model explanation data client = ExplanationClient.from_run(run) explanation = client.download_model_explanation() local_importance_values = explanation.local_importance_values expected_values = explanation.expected_values # - # Or you can use the saved run.id to retrive the feature importance values client = ExplanationClient.from_run_id(ws, experiment_name, run.id) explanation = client.download_model_explanation() local_importance_values = explanation.local_importance_values expected_values = explanation.expected_values # Get the top k (e.g., 4) most important features with their importance values explanation = client.download_model_explanation(top_k=4) global_importance_values = explanation.get_ranked_global_values() global_importance_names = explanation.get_ranked_global_names() print('global importance values: {}'.format(global_importance_values)) print('global importance names: {}'.format(global_importance_names)) # ## Success! # Great, you are ready to move on to the remaining notebooks.
how-to-use-azureml/explain-model/explain-on-amlcompute/regression-sklearn-on-amlcompute.ipynb
# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.14.4 # kernelspec: # display_name: Python 2 # language: python # name: python2 # --- # # Genetic Algorithms with pyevolve # # <img src="img/logo.png" align="center"> # # [Pyevolve](http://pyevolve.sourceforge.net/0_6rc1/) was developed to be a complete genetic algorithm framework written in pure python. The main objectives were: # # * **written in pure python**, to maximize the cross-platform issue; # * **easy to use** API; # * **see the evolution**, the user can and must see and interact with the evolution statistics, graphs, etc; # * **extensible**, the user can create new representations, genetic operators like crossover, mutation, etc; # * **fast**, the design must be optimized for performance; # * **common features**, the framework must implement the most common features: selectors like roulette wheel, tournament, ranking, uniform; scaling schemes like linear scaling, etc; # * **default parameters**, we must have default operators, settings, etc in all options; # * **open-source**, the source is for everyone, not for only one. # # ## Aim of these notebooks # # You will learn the basic functioning of Pyevolve. You will make scripts for using genetic algorithms in simple problems. # # * [First Example](First%20Example.ipynb) # * [Graphical Analysis](Graphical%20Analysis.ipynb) # * [Rastrigin Function](Rastrigin.ipynb) # * [Travelling Salesman Problem](TSP.ipynb)
index.ipynb
# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.14.4 # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- # + [markdown] deletable=false editable=false nbgrader={"checksum": "75c86807402955e4c01ac1ce25306bd7", "grade": false, "grade_id": "cell-649fd0b1aa7ccb0f", "locked": true, "schema_version": 1, "solution": false} # # Assignment 2: Optimal Policies with Dynamic Programming # # Welcome to Assignment 2. This notebook will help you understand: # - Policy Evaluation and Policy Improvement. # - Value and Policy Iteration. # - Bellman Equations. # - Synchronous and Asynchronous Methods. # + [markdown] deletable=false editable=false nbgrader={"checksum": "20729884a9ceb3804a03589ce5938a2d", "grade": false, "grade_id": "cell-9aafac39a58eeca4", "locked": true, "schema_version": 1, "solution": false} # ## Gridworld City # # Gridworld City, a thriving metropolis with a booming technology industry, has recently experienced an influx of grid-loving software engineers. Unfortunately, the city's street parking system, which charges a fixed rate, is struggling to keep up with the increased demand. To address this, the city council has decided to modify the pricing scheme to better promote social welfare. In general, the city considers social welfare higher when more parking is being used, the exception being that the city prefers that at least one spot is left unoccupied (so that it is available in case someone really needs it). The city council has created a Markov decision process (MDP) to model the demand for parking with a reward function that reflects its preferences. Now the city has hired you &mdash; an expert in dynamic programming &mdash; to help determine an optimal policy. # + [markdown] deletable=false editable=false nbgrader={"checksum": "77a7b97ee700b6ce77ed26bd22749e80", "grade": false, "grade_id": "cell-28ccff8d1e663850", "locked": true, "schema_version": 1, "solution": false} # ## Preliminaries # You'll need two imports to complete this assigment: # - numpy: The fundamental package for scientific computing with Python. # - tools: A module containing an environment and a plotting function. # # There are also some other lines in the cell below that are used for grading and plotting &mdash; you needn't worry about them. # # In this notebook, all cells are locked except those that you are explicitly asked to modify. It is up to you to decide how to implement your solution in these cells, **but please do not import other libraries** &mdash; doing so will break the autograder. # + deletable=false editable=false nbgrader={"checksum": "f70cbdcd1e273dfc166b366836a4136f", "grade": false, "grade_id": "cell-c11ff54faaf3fd89", "locked": true, "schema_version": 1, "solution": false} # %%capture # %matplotlib inline import numpy as np import pickle import tools # + [markdown] deletable=false editable=false nbgrader={"checksum": "596fffc2a1391897952fcabe2a8db930", "grade": false, "grade_id": "cell-4c7c5c4373be59ff", "locked": true, "schema_version": 1, "solution": false} # In the city council's parking MDP, states are nonnegative integers indicating how many parking spaces are occupied, actions are nonnegative integers designating the price of street parking, the reward is a real value describing the city's preference for the situation, and time is discretized by hour. As might be expected, charging a high price is likely to decrease occupancy over the hour, while charging a low price is likely to increase it. # # For now, let's consider an environment with three parking spaces and three price points. Note that an environment with three parking spaces actually has four states &mdash; zero, one, two, or three spaces could be occupied. # + deletable=false editable=false nbgrader={"checksum": "c2e5b06e5166bc03c5075db981280485", "grade": false, "grade_id": "cell-d25d06a8bafc4c26", "locked": true, "schema_version": 1, "solution": false} num_spaces = 3 num_prices = 3 env = tools.ParkingWorld(num_spaces, num_prices) V = np.zeros(num_spaces + 1) pi = np.ones((num_spaces + 1, num_prices)) / num_prices # + [markdown] deletable=false editable=false nbgrader={"checksum": "0813b0f481e1f2f90e12f38456781410", "grade": false, "grade_id": "cell-57212e031233c500", "locked": true, "schema_version": 1, "solution": false} # The value function is a one-dimensional array where the $i$-th entry gives the value of $i$ spaces being occupied. # + deletable=false editable=false nbgrader={"checksum": "6e59c4a32939d9211dfc0f8fdd939780", "grade": false, "grade_id": "cell-c5f693a5ff49a888", "locked": true, "schema_version": 1, "solution": false} V # + deletable=false editable=false nbgrader={"checksum": "559643d84ae07b1b499ec4c6b9af40bc", "grade": false, "grade_id": "cell-ac2f8ec29c0c9ab6", "locked": true, "schema_version": 1, "solution": false} state = 0 V[state] # + deletable=false editable=false nbgrader={"checksum": "29380e07e1a4da60134db6949d7eb772", "grade": false, "grade_id": "cell-c829e4ece8bf9412", "locked": true, "schema_version": 1, "solution": false} state = 0 value = 10 V[state] = value V # + deletable=false editable=false nbgrader={"checksum": "a296188c40952607943d9eddbd021f81", "grade": false, "grade_id": "cell-cb5bc5279787faad", "locked": true, "schema_version": 1, "solution": false} for s, v in enumerate(V): print(f'State {s} has value {v}') # + [markdown] deletable=false editable=false nbgrader={"checksum": "cb305ee8a8d6e293a48b96ace69bfb53", "grade": false, "grade_id": "cell-57154206afc97770", "locked": true, "schema_version": 1, "solution": false} # The policy is a two-dimensional array where the $(i, j)$-th entry gives the probability of taking action $j$ in state $i$. # + deletable=false editable=false nbgrader={"checksum": "d732d93b6545408fa819526c2e52a0cf", "grade": false, "grade_id": "cell-85c017bb1e6fe4df", "locked": true, "schema_version": 1, "solution": false} pi # + deletable=false editable=false nbgrader={"checksum": "3b5bc8eebf9c09786a2a966cadcf0400", "grade": false, "grade_id": "cell-92a61a07d9f0bf04", "locked": true, "schema_version": 1, "solution": false} state = 0 pi[state] # + deletable=false editable=false nbgrader={"checksum": "4780c63332dfc7f65a998403c2a4bf21", "grade": false, "grade_id": "cell-0e224545b27d80c7", "locked": true, "schema_version": 1, "solution": false} state = 0 action = 1 pi[state, action] # + deletable=false editable=false nbgrader={"checksum": "ba7a14554c52279e4cfe7818982b914e", "grade": false, "grade_id": "cell-1f5e3fcf8d0384b9", "locked": true, "schema_version": 1, "solution": false} pi[state] = np.array([0.75, 0.21, 0.04]) pi # + deletable=false editable=false nbgrader={"checksum": "1cf19333d9690caba29729b2d8fed55c", "grade": false, "grade_id": "cell-d7d514ba81bc686c", "locked": true, "schema_version": 1, "solution": false} for s, pi_s in enumerate(pi): print(f''.join(f'pi(A={a}|S={s}) = {p.round(2)}' + 4 * ' ' for a, p in enumerate(pi_s))) # + deletable=false editable=false nbgrader={"checksum": "cdff0c353f33f3cfd7413c141fa4d317", "grade": false, "grade_id": "cell-46b46b0dc80c68c7", "locked": true, "schema_version": 1, "solution": false} tools.plot(V, pi) # + [markdown] deletable=false editable=false nbgrader={"checksum": "4f450ea0212f959d952e9b0272e57cf3", "grade": false, "grade_id": "cell-ce3ac9318671059d", "locked": true, "schema_version": 1, "solution": false} # We can visualize a value function and policy with the `plot` function in the `tools` module. On the left, the value function is displayed as a barplot. State zero has an expected return of ten, while the other states have an expected return of zero. On the right, the policy is displayed on a two-dimensional grid. Each vertical strip gives the policy at the labeled state. In state zero, action zero is the darkest because the agent's policy makes this choice with the highest probability. In the other states the agent has the equiprobable policy, so the vertical strips are colored uniformly. # + [markdown] deletable=false editable=false nbgrader={"checksum": "049e3d7344e203034323e1f86a503ee4", "grade": false, "grade_id": "cell-3975c91dbe24e9e8", "locked": true, "schema_version": 1, "solution": false} # You can access the state space and the action set as attributes of the environment. # + deletable=false editable=false nbgrader={"checksum": "4fafc756424773278069199ff876300e", "grade": false, "grade_id": "cell-94d868709c1a9eba", "locked": true, "schema_version": 1, "solution": false} env.S # + deletable=false editable=false nbgrader={"checksum": "dc72712f4890361c35c0b19f0df5befd", "grade": false, "grade_id": "cell-6f16d9e8ebf01b60", "locked": true, "schema_version": 1, "solution": false} env.A # + [markdown] deletable=false editable=false nbgrader={"checksum": "12e6b88d7cf8ec6d20c7e14e3d43b5e2", "grade": false, "grade_id": "cell-927e52efe516a816", "locked": true, "schema_version": 1, "solution": false} # You will need to use the environment's `transitions` method to complete this assignment. The method takes a state and an action and returns a 2-dimensional array, where the entry at $(i, 0)$ is the reward for transitioning to state $i$ from the current state and the entry at $(i, 1)$ is the conditional probability of transitioning to state $i$ given the current state and action. # + deletable=false editable=false nbgrader={"checksum": "4d32e329bafe53f2061e6b577751f291", "grade": false, "grade_id": "cell-4185982b1a21cd04", "locked": true, "schema_version": 1, "solution": false} state = 3 action = 1 transitions = env.transitions(state, action) transitions # + deletable=false editable=false nbgrader={"checksum": "768d9dfafd5bb70c8d3641fb6fb17ce3", "grade": false, "grade_id": "cell-379fdb797cae3afb", "locked": true, "schema_version": 1, "solution": false} for s_, (r, p) in enumerate(transitions): print(f'p(S\'={s_}, R={r} | S={state}, A={action}) = {p.round(2)}') # + [markdown] deletable=false editable=false nbgrader={"checksum": "0869f6736a9ab680b0c82dccf72ba11c", "grade": false, "grade_id": "cell-141d4e3806427283", "locked": true, "schema_version": 1, "solution": false} # ## Section 1: Policy Evaluation # # You're now ready to begin the assignment! First, the city council would like you to evaluate the quality of the existing pricing scheme. Policy evaluation works by iteratively applying the Bellman equation for $v_{\pi}$ to a working value function, as an update rule, as shown below. # # $$\large v(s) \leftarrow \sum_a \pi(a | s) \sum_{s', r} p(s', r | s, a)[r + \gamma v(s')]$$ # This update can either occur "in-place" (i.e. the update rule is sequentially applied to each state) or with "two-arrays" (i.e. the update rule is simultaneously applied to each state). Both versions converge to $v_{\pi}$ but the in-place version usually converges faster. **In this assignment, we will be implementing all update rules in-place**, as is done in the pseudocode of chapter 4 of the textbook. # # We have written an outline of the policy evaluation algorithm described in chapter 4.1 of the textbook. It is left to you to fill in the `bellman_update` function to complete the algorithm. # + deletable=false editable=false nbgrader={"checksum": "732aa9563f9fa2209380be4dcfc22c31", "grade": false, "grade_id": "cell-8d04cf6f6f397e17", "locked": true, "schema_version": 1, "solution": false} def evaluate_policy(env, V, pi, gamma, theta): while True: delta = 0 for s in env.S: v = V[s] bellman_update(env, V, pi, s, gamma) delta = max(delta, abs(v - V[s])) if delta < theta: break return V # + deletable=false nbgrader={"checksum": "c8aad24b28e1eaf3fd87481be87f89e1", "grade": false, "grade_id": "cell-4113388a5f8401b6", "locked": false, "schema_version": 1, "solution": true} # [Graded] def bellman_update(env, V, pi, s, gamma): """Mutate ``V`` according to the Bellman update equation.""" ### START CODE HERE ### actions = pi[s] G = [0]*len(actions) for action in env.A: transitions = env.transitions(s, action) for s_, (r, p) in enumerate(transitions): G[action] += p*(r + gamma * V[s_]) V[s] = np.sum(G*actions) ### END CODE HERE ### # + [markdown] deletable=false editable=false nbgrader={"checksum": "4d9639225bc3d57f1079ceab1d57d411", "grade": false, "grade_id": "cell-5c1f3ff4b0e1b0bf", "locked": true, "schema_version": 1, "solution": false} # The cell below uses the policy evaluation algorithm to evaluate the city's policy, which charges a constant price of one. # + deletable=false editable=false nbgrader={"checksum": "7cd01aaa12fdfc50a4764d069b7a95fe", "grade": false, "grade_id": "cell-4b69f06bc67962af", "locked": true, "schema_version": 1, "solution": false} num_spaces = 10 num_prices = 4 env = tools.ParkingWorld(num_spaces, num_prices) V = np.zeros(num_spaces + 1) city_policy = np.zeros((num_spaces + 1, num_prices)) city_policy[:, 1] = 1 gamma = 0.9 theta = 0.1 V = evaluate_policy(env, V, city_policy, gamma, theta) # + [markdown] deletable=false editable=false nbgrader={"checksum": "0f19b2dc70097c6425bbc3bd25a2a500", "grade": false, "grade_id": "cell-b612ffe570dd7e29", "locked": true, "schema_version": 1, "solution": false} # You can use the ``plot`` function to visualize the final value function and policy. # + deletable=false editable=false nbgrader={"checksum": "1dd55a310f0d18634f95c4dd3dc19da3", "grade": false, "grade_id": "cell-fe5cf61a03a028fc", "locked": true, "schema_version": 1, "solution": false} tools.plot(V, city_policy) # + [markdown] deletable=false editable=false nbgrader={"checksum": "33d9d76d53c4cd379e8b7b0c6ecd5cc6", "grade": false, "grade_id": "cell-7dbb5974798259f7", "locked": true, "schema_version": 1, "solution": false} # You can check the output (rounded to one decimal place) against the answer below:<br> # State $\quad\quad$ Value<br> # 0 $\quad\quad\quad\;$ 80.0<br> # 1 $\quad\quad\quad\;$ 81.7<br> # 2 $\quad\quad\quad\;$ 83.4<br> # 3 $\quad\quad\quad\;$ 85.1<br> # 4 $\quad\quad\quad\;$ 86.9<br> # 5 $\quad\quad\quad\;$ 88.6<br> # 6 $\quad\quad\quad\;$ 90.1<br> # 7 $\quad\quad\quad\;$ 91.6<br> # 8 $\quad\quad\quad\;$ 92.8<br> # 9 $\quad\quad\quad\;$ 93.8<br> # 10 $\quad\quad\;\;\,\,$ 87.8<br> # # Observe that the value function qualitatively resembles the city council's preferences &mdash; it monotonically increases as more parking is used, until there is no parking left, in which case the value is lower. Because of the relatively simple reward function (more reward is accrued when many but not all parking spots are taken and less reward is accrued when few or all parking spots are taken) and the highly stochastic dynamics function (each state has positive probability of being reached each time step) the value functions of most policies will qualitatively resemble this graph. However, depending on the intelligence of the policy, the scale of the graph will differ. In other words, better policies will increase the expected return at every state rather than changing the relative desirability of the states. Intuitively, the value of a less desirable state can be increased by making it less likely to remain in a less desirable state. Similarly, the value of a more desirable state can be increased by making it more likely to remain in a more desirable state. That is to say, good policies are policies that spend more time in desirable states and less time in undesirable states. As we will see in this assignment, such a steady state distribution is achieved by setting the price to be low in low occupancy states (so that the occupancy will increase) and setting the price high when occupancy is high (so that full occupancy will be avoided). # + [markdown] deletable=false editable=false nbgrader={"checksum": "c954d5fee584058d6cff61e3274c2e8b", "grade": false, "grade_id": "cell-eb62290c37932db0", "locked": true, "schema_version": 1, "solution": false} # The cell below will check that your code passes the test case above. (Your code passed if the cell runs without error.) Your solution will also be checked against hidden test cases for your final grade. (So don't hard code parameters into your solution.) # + deletable=false editable=false nbgrader={"checksum": "b096086d94a387a1b453e2592c687575", "grade": true, "grade_id": "cell-8ff996ea5428abf6", "locked": true, "points": 1, "schema_version": 1, "solution": false} ## Test Code for bellman_update() ## with open('section1', 'rb') as handle: V_correct = pickle.load(handle) np.testing.assert_array_almost_equal(V, V_correct) # + [markdown] deletable=false editable=false nbgrader={"checksum": "f0d6665789065c7bfa797664e0f43c8c", "grade": false, "grade_id": "cell-45d6a1c8f905e939", "locked": true, "schema_version": 1, "solution": false} # ## Section 2: Policy Iteration # Now the city council would like you to compute a more efficient policy using policy iteration. Policy iteration works by alternating between evaluating the existing policy and making the policy greedy with respect to the existing value function. We have written an outline of the policy iteration algorithm described in chapter 4.3 of the textbook. We will make use of the policy evaluation algorithm you completed in section 1. It is left to you to fill in the `q_greedify_policy` function, such that it modifies the policy at $s$ to be greedy with respect to the q-values at $s$, to complete the policy improvement algorithm. # + deletable=false editable=false nbgrader={"checksum": "92679d89cf740af64cdc7d37193608cf", "grade": false, "grade_id": "cell-15ec36bbf7a6fdc6", "locked": true, "schema_version": 1, "solution": false} def improve_policy(env, V, pi, gamma): policy_stable = True for s in env.S: old = pi[s].copy() q_greedify_policy(env, V, pi, s, gamma) if not np.array_equal(pi[s], old): policy_stable = False return pi, policy_stable def policy_iteration(env, gamma, theta): V = np.zeros(len(env.S)) pi = np.ones((len(env.S), len(env.A))) / len(env.A) policy_stable = False while not policy_stable: V = evaluate_policy(env, V, pi, gamma, theta) pi, policy_stable = improve_policy(env, V, pi, gamma) return V, pi # + deletable=false nbgrader={"checksum": "54f69a62cbb1dfbccfb9fafd6c3cc77a", "grade": false, "grade_id": "cell-43cadb209544e857", "locked": false, "schema_version": 1, "solution": true} # [Graded] def q_greedify_policy(env, V, pi, s, gamma): """Mutate ``pi`` to be greedy with respect to the q-values induced by ``V``.""" ### START CODE HERE ### actions = pi[s] G = [0]*len(env.A) for action in env.A: transitions = env.transitions(s, action) for s_, (r, p) in enumerate(transitions): G[action] += p*(r + gamma * V[s_]) best_action = np.argmax(G) pi[s,:] = 0 pi[s,best_action] = 1 return pi ### END CODE HERE ### # + [markdown] deletable=false editable=false nbgrader={"checksum": "b70073346d140503e1572043f2be5c7e", "grade": false, "grade_id": "cell-d82e51ee8122647c", "locked": true, "schema_version": 1, "solution": false} # When you are ready to test the policy iteration algorithm, run the cell below. # + deletable=false editable=false nbgrader={"checksum": "aeedaa745e6dc30ebbc6b822c670c9b3", "grade": false, "grade_id": "cell-6939985ef9ad58a3", "locked": true, "schema_version": 1, "solution": false} env = tools.ParkingWorld(num_spaces=10, num_prices=4) gamma = 0.9 theta = 0.1 V, pi = policy_iteration(env, gamma, theta) # + [markdown] deletable=false editable=false nbgrader={"checksum": "dcd619f8fcc010b6933b2bba4ce9f9e7", "grade": false, "grade_id": "cell-acd7f476ed298570", "locked": true, "schema_version": 1, "solution": false} # You can use the ``plot`` function to visualize the final value function and policy. # + deletable=false editable=false nbgrader={"checksum": "da17cf77a51f4fabd0ce3a93e2803af8", "grade": false, "grade_id": "cell-73a1da64ca84a151", "locked": true, "schema_version": 1, "solution": false} tools.plot(V, pi) # + [markdown] deletable=false editable=false nbgrader={"checksum": "0943d42dc7e60e40739b606700125da1", "grade": false, "grade_id": "cell-92139bf490757a44", "locked": true, "schema_version": 1, "solution": false} # You can check the value function (rounded to one decimal place) and policy against the answer below:<br> # State $\quad\quad$ Value $\quad\quad$ Action<br> # 0 $\quad\quad\quad\;$ 81.6 $\quad\quad\;$ 0<br> # 1 $\quad\quad\quad\;$ 83.3 $\quad\quad\;$ 0<br> # 2 $\quad\quad\quad\;$ 85.0 $\quad\quad\;$ 0<br> # 3 $\quad\quad\quad\;$ 86.8 $\quad\quad\;$ 0<br> # 4 $\quad\quad\quad\;$ 88.5 $\quad\quad\;$ 0<br> # 5 $\quad\quad\quad\;$ 90.2 $\quad\quad\;$ 0<br> # 6 $\quad\quad\quad\;$ 91.7 $\quad\quad\;$ 0<br> # 7 $\quad\quad\quad\;$ 93.1 $\quad\quad\;$ 0<br> # 8 $\quad\quad\quad\;$ 94.3 $\quad\quad\;$ 0<br> # 9 $\quad\quad\quad\;$ 95.3 $\quad\quad\;$ 3<br> # 10 $\quad\quad\;\;\,\,$ 89.5 $\quad\quad\;$ 3<br> # + [markdown] deletable=false editable=false nbgrader={"checksum": "6baffe56fd26c8c0fb1db1409801a308", "grade": false, "grade_id": "cell-c3aed944e874ac92", "locked": true, "schema_version": 1, "solution": false} # The cell below will check that your code passes the test case above. (Your code passed if the cell runs without error.) Your solution will also be checked against hidden test cases for your final grade. (So don't hard code parameters into your solution.) # + deletable=false editable=false nbgrader={"checksum": "8135eb9fffa77e2554bb0e5892525988", "grade": true, "grade_id": "cell-8b8cce6304cb8bfe", "locked": true, "points": 1, "schema_version": 1, "solution": false} ## Test Code for q_greedify_policy() ## with open('section2', 'rb') as handle: V_correct, pi_correct = pickle.load(handle) np.testing.assert_array_almost_equal(V, V_correct) np.testing.assert_array_almost_equal(pi, pi_correct) # + [markdown] deletable=false editable=false nbgrader={"checksum": "e59b175ca7605a8002c2040043f7b1af", "grade": false, "grade_id": "cell-e7628124eafb2fc2", "locked": true, "schema_version": 1, "solution": false} # ## Section 3: Value Iteration # The city has also heard about value iteration and would like you to implement it. Value iteration works by iteratively applying the Bellman optimality equation for $v_{\ast}$ to a working value function, as an update rule, as shown below. # # $$\large v(s) \leftarrow \max_a \sum_{s', r} p(s', r | s, a)[r + \gamma v(s')]$$ # We have written an outline of the value iteration algorithm described in chapter 4.4 of the textbook. It is left to you to fill in the `bellman_optimality_update` function to complete the value iteration algorithm. # + deletable=false editable=false nbgrader={"checksum": "3743399285b929801497af405783d06e", "grade": false, "grade_id": "cell-75baf962376afa7c", "locked": true, "schema_version": 1, "solution": false} def value_iteration(env, gamma, theta): V = np.zeros(len(env.S)) while True: delta = 0 for s in env.S: v = V[s] bellman_optimality_update(env, V, s, gamma) delta = max(delta, abs(v - V[s])) if delta < theta: break pi = np.ones((len(env.S), len(env.A))) / len(env.A) for s in env.S: q_greedify_policy(env, V, pi, s, gamma) return V, pi # + deletable=false nbgrader={"checksum": "53654ee726c72456f461afd5a44aa5dc", "grade": false, "grade_id": "cell-f2c6a183cc0923fb", "locked": false, "schema_version": 1, "solution": true} # [Graded] def bellman_optimality_update(env, V, s, gamma): """Mutate ``V`` according to the Bellman optimality update equation.""" ### START CODE HERE ### G = [0]*len(env.A) for action in env.A: transitions = env.transitions(s, action) for s_, (r,p) in enumerate(transitions): G[action] += p* (r + gamma*V[s_]) V[s] = np.max(G) ### END CODE HERE ### # + [markdown] deletable=false editable=false nbgrader={"checksum": "c5020582c7de3757fa3ece73983b61d9", "grade": false, "grade_id": "cell-d472d58e936b371e", "locked": true, "schema_version": 1, "solution": false} # When you are ready to test the value iteration algorithm, run the cell below. # + deletable=false editable=false nbgrader={"checksum": "cd8be31ddef5580d095a7e861e52a479", "grade": false, "grade_id": "cell-f609be2c58adc3e2", "locked": true, "schema_version": 1, "solution": false} env = tools.ParkingWorld(num_spaces=10, num_prices=4) gamma = 0.9 theta = 0.1 V, pi = value_iteration(env, gamma, theta) # + [markdown] deletable=false editable=false nbgrader={"checksum": "8c88ac444253a80a377a7dce46e0c606", "grade": false, "grade_id": "cell-cba784b8d158758b", "locked": true, "schema_version": 1, "solution": false} # You can use the ``plot`` function to visualize the final value function and policy. # + deletable=false editable=false nbgrader={"checksum": "d18a2592a3bac43de72e18cb54357ac9", "grade": false, "grade_id": "cell-086e26bfb519a017", "locked": true, "schema_version": 1, "solution": false} tools.plot(V, pi) # + [markdown] deletable=false editable=false nbgrader={"checksum": "f7ee7bba538aa9300cd636c99403fd72", "grade": false, "grade_id": "cell-066f9bbdc057115b", "locked": true, "schema_version": 1, "solution": false} # You can check your value function (rounded to one decimal place) and policy against the answer below:<br> # State $\quad\quad$ Value $\quad\quad$ Action<br> # 0 $\quad\quad\quad\;$ 81.6 $\quad\quad\;$ 0<br> # 1 $\quad\quad\quad\;$ 83.3 $\quad\quad\;$ 0<br> # 2 $\quad\quad\quad\;$ 85.0 $\quad\quad\;$ 0<br> # 3 $\quad\quad\quad\;$ 86.8 $\quad\quad\;$ 0<br> # 4 $\quad\quad\quad\;$ 88.5 $\quad\quad\;$ 0<br> # 5 $\quad\quad\quad\;$ 90.2 $\quad\quad\;$ 0<br> # 6 $\quad\quad\quad\;$ 91.7 $\quad\quad\;$ 0<br> # 7 $\quad\quad\quad\;$ 93.1 $\quad\quad\;$ 0<br> # 8 $\quad\quad\quad\;$ 94.3 $\quad\quad\;$ 0<br> # 9 $\quad\quad\quad\;$ 95.3 $\quad\quad\;$ 3<br> # 10 $\quad\quad\;\;\,\,$ 89.5 $\quad\quad\;$ 3<br> # + [markdown] deletable=false editable=false nbgrader={"checksum": "3b65819e3413c5a6d4b8d9859f69e5b7", "grade": false, "grade_id": "cell-7408f0fb3e078296", "locked": true, "schema_version": 1, "solution": false} # The cell below will check that your code passes the test case above. (Your code passed if the cell runs without error.) Your solution will also be checked against hidden test cases for your final grade. (So don't hard code parameters into your solution.) # + deletable=false editable=false nbgrader={"checksum": "8330fadde649c957ab85437d34d62829", "grade": true, "grade_id": "cell-2fa266149b9ff1b1", "locked": true, "points": 1, "schema_version": 1, "solution": false} ## Test Code for bellman_optimality_update() ## with open('section3', 'rb') as handle: V_correct, pi_correct = pickle.load(handle) np.testing.assert_array_almost_equal(V, V_correct) np.testing.assert_array_almost_equal(pi, pi_correct) # + [markdown] deletable=false editable=false nbgrader={"checksum": "167e35e35d0d33a6e9b26413281e4592", "grade": false, "grade_id": "cell-12976ff0ac11680d", "locked": true, "schema_version": 1, "solution": false} # In the value iteration algorithm above, a policy is not explicitly maintained until the value function has converged. Below, we have written an identically behaving value iteration algorithm that maintains an updated policy. Writing value iteration in this form makes its relationship to policy iteration more evident. Policy iteration alternates between doing complete greedifications and complete evaluations. On the other hand, value iteration alternates between doing local greedifications and local evaluations. # + deletable=false editable=false nbgrader={"checksum": "335160bd36744265e1ac43bd4305766b", "grade": false, "grade_id": "cell-e7940cfb801649be", "locked": true, "schema_version": 1, "solution": false} def value_iteration2(env, gamma, theta): V = np.zeros(len(env.S)) pi = np.ones((len(env.S), len(env.A))) / len(env.A) while True: delta = 0 for s in env.S: v = V[s] q_greedify_policy(env, V, pi, s, gamma) bellman_update(env, V, pi, s, gamma) delta = max(delta, abs(v - V[s])) if delta < theta: break return V, pi # + [markdown] deletable=false editable=false nbgrader={"checksum": "795713d092ebf77dbe0f17c46d4286cd", "grade": false, "grade_id": "cell-de841fb4eb290d56", "locked": true, "schema_version": 1, "solution": false} # You can try the second value iteration algorithm by running the cell below. # + deletable=false editable=false nbgrader={"checksum": "09b1fda9c335946b52cae6c8a55e80fb", "grade": false, "grade_id": "cell-2ace3a0ae8ee2e72", "locked": true, "schema_version": 1, "solution": false} env = tools.ParkingWorld(num_spaces=10, num_prices=4) gamma = 0.9 theta = 0.1 V, pi = value_iteration2(env, gamma, theta) tools.plot(V, pi) # + [markdown] deletable=false editable=false nbgrader={"checksum": "a946352618aa97fbc96962a39c135080", "grade": false, "grade_id": "cell-6bee5739d8d8ffb4", "locked": true, "schema_version": 1, "solution": false} # ## Section 4: Asynchronous Methods # So far in this assignment we've been working with synchronous algorithms, which update states in systematic sweeps. In contrast, asynchronous algorithms are free to update states in any order. Asynchronous algorithms can offer significant advantages in large MDPs, where even one synchronous sweep over the state space may be prohibitively expensive. One important type of asynchronous value iteration is known as real-time dynamic programming. Like sychronous value iteration, real-time dynamic programming updates a state by doing a local greedification followed by a local evaluation; unlike synchronous value iteration, real-time dynamic programming determines which state to update using the stream of experience generated by its policy. An outline of the algorithm is written below. Complete it by filling in the helper function. Remember that you are free to reuse functions that you have already written! # + deletable=false editable=false nbgrader={"checksum": "137229f2262baebc95bb69bc7efc148b", "grade": false, "grade_id": "cell-7713cc5a92c248ea", "locked": true, "schema_version": 1, "solution": false} def real_time_dynamic_programming(env, gamma, horizon): V = np.zeros(len(env.S)) pi = np.ones((len(env.S), len(env.A))) / len(env.A) s = env.random_state() for t in range(horizon): real_time_dynamic_programming_helper(env, V, pi, s, gamma) a = np.random.choice(env.A, p=pi[s]) s = env.step(s, a) return V, pi # + deletable=false nbgrader={"checksum": "627d471847b27241a1f5b66b701b1c53", "grade": false, "grade_id": "cell-6e4cd97c16c01c1e", "locked": false, "schema_version": 1, "solution": true} # [Graded] def real_time_dynamic_programming_helper(env, V, pi, s, gamma): """Mutate ``pi`` and ``V`` appropriately.""" ### START CODE HERE ### q_greedify_policy(env, V, pi, s, gamma) bellman_update(env, V, pi, s, gamma) ### END CODE HERE ### # + [markdown] deletable=false editable=false nbgrader={"checksum": "5f7a90c3de0d99582546873bd9d67cdd", "grade": false, "grade_id": "cell-743c978fb8c173a8", "locked": true, "schema_version": 1, "solution": false} # When you are ready to test the real-time dynamic programming algorithm, run the cell below. # + deletable=false editable=false nbgrader={"checksum": "9c979297385bcf9ce4fdfbaf3ea1e45a", "grade": false, "grade_id": "cell-1e094e30adc885a5", "locked": true, "schema_version": 1, "solution": false} env = tools.ParkingWorld(num_spaces=10, num_prices=4) gamma = 0.9 horizon = 500 np.random.seed(101) V, pi = real_time_dynamic_programming(env, gamma, horizon) # + [markdown] deletable=false editable=false nbgrader={"checksum": "aec75705d27771e9ffeff3c51846f2bc", "grade": false, "grade_id": "cell-7db6a9982ded6e40", "locked": true, "schema_version": 1, "solution": false} # You can use the ``plot`` function to visualize the final value function and policy. # + deletable=false editable=false nbgrader={"checksum": "4673d5ded4f273d15c37366620b6c33b", "grade": false, "grade_id": "cell-bf8edaf9a039f267", "locked": true, "schema_version": 1, "solution": false} tools.plot(V, pi) # + [markdown] deletable=false editable=false nbgrader={"checksum": "15822b15b22c9c530798a4ab561c7739", "grade": false, "grade_id": "cell-9be12918d67720d8", "locked": true, "schema_version": 1, "solution": false} # You can check your value function (rounded to one decimal place) and policy against the answer below:<br> # State $\quad\quad$ Value $\quad\quad$ Action<br> # 0 $\quad\quad\quad\;$ 79.7 $\quad\quad\;$ 0<br> # 1 $\quad\quad\quad\;$ 81.3 $\quad\quad\;$ 0<br> # 2 $\quad\quad\quad\;$ 83.2 $\quad\quad\;$ 0<br> # 3 $\quad\quad\quad\;$ 84.7 $\quad\quad\;$ 0<br> # 4 $\quad\quad\quad\;$ 86.5 $\quad\quad\;$ 0<br> # 5 $\quad\quad\quad\;$ 87.4 $\quad\quad\;$ 0<br> # 6 $\quad\quad\quad\;$ 89.8 $\quad\quad\;$ 0<br> # 7 $\quad\quad\quad\;$ 91.3 $\quad\quad\;$ 0<br> # 8 $\quad\quad\quad\;$ 91.9 $\quad\quad\;$ 0<br> # 9 $\quad\quad\quad\;$ 93.0 $\quad\quad\;$ 3<br> # 10 $\quad\quad\;\;\,\,$ 87.6 $\quad\quad\;$ 3<br> # # Notice that these values differ from those of the synchronous methods we ran to convergence, indicating that the real-time dynamic programming algorithm needs more than 500 steps to converge. One takeaway from this result is that, while asychronous methods scale better to larger MDPs, they are not always the right choice &mdash; in small MDPs in which all states are visited frequently, such as the Gridworld City parking MDP, synchronous methods may offer better performance. # + [markdown] deletable=false editable=false nbgrader={"checksum": "58adf9da7fb4a9543b0790162648eb7f", "grade": false, "grade_id": "cell-e02c91090dc88cfb", "locked": true, "schema_version": 1, "solution": false} # The cell below will check that your code passes the test case above. (Your code passed if the cell runs without error.) Your solution will also be checked against hidden test cases for your final grade. (So don't hard code parameters into your solution.) # + deletable=false editable=false nbgrader={"checksum": "2549d8bea6de373349fd36d057303260", "grade": true, "grade_id": "cell-37df874cf4ed9492", "locked": true, "points": 1, "schema_version": 1, "solution": false} ## Test Code for real_time_dynamic_programming_helper() ## with open('section4', 'rb') as handle: V_correct, pi_correct = pickle.load(handle) np.testing.assert_array_almost_equal(V, V_correct) np.testing.assert_array_almost_equal(pi, pi_correct) # + [markdown] deletable=false editable=false nbgrader={"checksum": "71b40821df7749eb1fecf4f83af1388c", "grade": false, "grade_id": "cell-6025f917f706302b", "locked": true, "schema_version": 1, "solution": false} # ## Wrapping Up # Congratulations, you've completed assignment 2! In this assignment, we investigated policy evaluation and policy improvement, policy iteration and value iteration, Bellman operators, and synchronous methods and asynchronous methods. Gridworld City thanks you for your service! # -
C1-Fundamentals/Dynamic-Programming/C1M4_Assignment2-v2.ipynb
# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.14.4 # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- import os import numpy as np import pylab import imageio from matplotlib import pyplot as plt import cv2 import time from os.path import isfile, join from keras.applications import mobilenet from keras.models import load_model from scipy.ndimage.measurements import label from scipy.ndimage.measurements import center_of_mass from matplotlib import colors import skimage from keras.preprocessing.image import ImageDataGenerator print(os.listdir('.')) # + # normalization # normalize each chip samplewise_center = True samplewise_std_normalization = True # normalize by larger batches featurewise_center = False featurewise_std_normalization = False # adjacent pixel correllation reduction # never explored zca_whitening = False zca_epsilon = 1e-6 # data augmentation # training only transform = 0 zoom_range = 0 color_shift = 0 rotate = 0 flip = False datagen_test = ImageDataGenerator( samplewise_center=samplewise_center, featurewise_center=featurewise_center, featurewise_std_normalization=featurewise_std_normalization, samplewise_std_normalization=samplewise_std_normalization, zca_whitening=zca_whitening, zca_epsilon=zca_epsilon, rotation_range=rotate, width_shift_range=transform, height_shift_range=transform, shear_range=transform, zoom_range=zoom_range, channel_shift_range=color_shift, fill_mode='constant', cval=0, horizontal_flip=flip, vertical_flip=flip, rescale=1./255, preprocessing_function=None) # + active="" # generator_test = datagen_test.flow( # 'Training_Data', # target_size=(image_dimensions,image_dimensions), # color_mode="rgb", # batch_size=training_batch_size, # class_mode='categorical', # shuffle=True) # # - # **Module to operate on each individual frame of the video** #Load Weights model = load_model('bebop_mobilenet_v0.h5', custom_objects={ 'relu6': mobilenet.relu6, 'DepthwiseConv2D': mobilenet.DepthwiseConv2D}) def ProcessChip (frame): #result_feature_map = np.zeros((9,16,7)) #CNN feature map to be returned values = np.zeros((9,16,3)) chips = np.zeros((144,120,120,3)) for i in range(0,9): for j in range(0,16): chips[16*i+j] = frame[120*i:120*(i+1), 120*j:120*(j+1), :] generator_test = datagen_test.flow( chips, batch_size=144, shuffle=False) #return values return model.predict_generator(generator_test, steps = 1) # + #All Decision Algo Definition #Function to find the closest roof/driveway def closest(list,img_center): closest=list[0] for c in list: if np.linalg.norm(c-img_center) < np.linalg.norm(closest-img_center): closest = c return closest #Sliding window function def sliding_window_view(arr, shape): n = np.array(arr.shape) o = n - shape + 1 # output shape strides = arr.strides new_shape = np.concatenate((o, shape), axis=0) new_strides = np.concatenate((strides, strides), axis=0) return np.lib.stride_tricks.as_strided(arr ,new_shape, new_strides) # - ##Decision algo with input of 9x16 array at which image was taken. def decision_algo(image_frame): image_frame[image_frame==0]=3 ### READ THE ALTITUDE FROM CSV FILE ### #Read alt.csv with open('alt.csv', 'r') as csvfile: alt_list = [line.rstrip('\n') for line in csvfile] #Choose last value in alt_list altitude=int(alt_list[-1]) #in meters ### ALGORITHM TO FIND CLOSEST DRIVEWAY ### #Center of the 9x16 array img_center=np.array([4,7.5]) #Label all the driveways and roofs driveway, num_driveway = label(image_frame==1) roof, num_roof = label(image_frame==2) #Save number of driveways and roofs into array d=np.arange(1,num_driveway+1) r=np.arange(1,num_roof+1) if(len(d)<1): print("No driveway found, return to base") else: #Find the center of the all the driveways driveway_center=center_of_mass(image_frame,driveway,d) roof_center=center_of_mass(image_frame,roof,r) #Find the closest roof to the center of the image if(len(roof_center)>0): closest_roof=closest(roof_center,img_center) else: #if no roof is found, set closest_roof as center of image closest_roof=img_center print("Roof center list empty") #Find the closest driveway to the closest roof closest_driveway=closest(driveway_center,np.asarray(closest_roof)) ### ALGORITHM TO FIND 3x3 DRIVEWAY TO LAND ### #If altitude is 5m or less, look for a 3x3 sliding window of 1's, if found, Land. #At 5m, a 3x3 will be equivalent to 1.5m x 1.5m. if(altitude<=5.0): #Creates a 7x10 ndarray with all the 3x3 submatrices sub_image=sliding_window_view(image_frame,(3,3)) #Empty list driveway_list=[] #Loop through the 7x14 ndarray for i in range(0,7): for j in range(i,14): #Calculate the total of the submatrices output=sum(sum(sub_image[i,j])) #if the output is 9, that means we have a 3x3 that is all driveway if output==9: #append the i(row) and j(column) to a list declared previously #we add 1 to the i and j to find the center of the 3x3 driveway_list.append((i+1,j+1)) if(len(driveway_list)>0): #Call closest function to find driveway closest to house. closest_driveway=closest(driveway_list,np.asarray(closest_roof)) print(closest_driveway) print("Safe to land") else: print("Need to fly lower") ### SCALE CLOSEST DRIVEWAY CENTER TO REAL WORLD COORDINATES AND SAVE TO CSV ### scaler=0.205/(216.26*altitude**-0.953) #m/pixel if(len(driveway_center)>0): print (closest_driveway) move_coordinates=([4,7.5]-np.asarray(closest_driveway)) #Find coordinates relative to center of image move_coordinates=np.asarray(move_coordinates)*np.asarray(scaler)*120 #60 is the center of the 120x120 superpixel move_coordinates=np.append(move_coordinates,(altitude-2)) #Add altitude to array print (move_coordinates) with open('coords.csv', 'w') as csvfile: filewriter = csv.writer(csvfile, delimiter=',') filewriter.writerow(move_coordinates) with open('coordinates_history.csv', 'a', newline='') as csvfile: filewriter = csv.writer(csvfile, delimiter=',') filewriter.writerow(move_coordinates) return def heatmap (feature_map, frame): color_mask = np.zeros((1080,1920,3)) temp_frame = skimage.img_as_float(frame) alpha = 0.6 for i in range (0,9): for j in range (0,16): if feature_map[i][j] == 2: color_mask[120*i:120*(i+1), 120*j:120*(j+1), :] = [0, 0, 1] #Blue, House elif feature_map[i][j] == 1: color_mask[120*i:120*(i+1), 120*j:120*(j+1), :] = [0, 1, 0] #Green, Concrete else: color_mask[120*i:120*(i+1), 120*j:120*(j+1), :] = [1, 0, 0] #Red, Don't Care color_mask_hsv = colors.rgb_to_hsv(color_mask) frame_hsv = colors.rgb_to_hsv(temp_frame) frame_hsv[..., 0] = color_mask_hsv[..., 0] frame_hsv[..., 1] = color_mask_hsv[..., 1] * alpha frame_masked = colors.hsv_to_rgb(frame_hsv) return frame_masked def correct_arr (arr) : arr = arr + 1 arr[arr>2] = 0 return arr # **Module to iterate through each frame in video** def VideoToFrames (vid): count = 0 # Can be removed. Just to verify number of frames #count_pavement = [] t = time.time() for image in vid.iter_data(): #Iterate through every frame in Video #image: numpy array containing image information if count % 100 == 0: feature_map = ProcessChip(image) arr = heatmap(np.reshape(correct_arr(np.argmax(ProcessChip(image), axis=1)), (9,16)), image) cv2.imwrite('./Frames_New//frame%d.jpg'%count, arr*255) count += 1 elapsed = time.time() - t return elapsed # + active="" # if count % 600 == 0: # print (count) # feature_map = ProcessChip(image) # arr = correct_arr(np.argmax(ProcessChip(image), axis=1)) # arr = np.reshape(arr,(9,16)) # plt.imshow(heatmap(arr, image), interpolation='nearest') # plt.show() # - def convert_frames_to_video(pathIn,pathOut,fps): frame_array = [] files = [f for f in os.listdir(pathIn) if isfile(join(pathIn, f))] #for sorting the file names properly files.sort(key = lambda x: int(x[5:-4])) for i in range(len(files)): filename=pathIn + files[i] #reading each file img = cv2.imread(filename) height, width, layers = img.shape size = (width,height) print(filename) #inserting the frames into an image array frame_array.append(img) out = cv2.VideoWriter(pathOut,cv2.VideoWriter_fourcc(*'DIVX'), fps, size) for i in range(len(frame_array)): # writing to a image array out.write(frame_array[i]) out.release() filename = './Bebop/Bebop2_20180422173922-0700.mp4' #Add path to video file vid = imageio.get_reader(filename, 'ffmpeg') #You can use any reader of your choice #print (vid.iter_data()) time_taken = VideoToFrames(vid) #Passing the video to be analyzed frame by frame print ('Total time taken %s'%time_taken) convert_frames_to_video('./Frames_New/', 'out1.mp4', 2.5)
Working CNN (Clean).ipynb
# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.14.4 # kernelspec: # display_name: Python 2 # language: python # name: python2 # --- # + import sys sys.path.append('../') from torch.utils.data import TensorDataset from torch import Tensor from torch.distributions.multivariate_normal import MultivariateNormal import matplotlib import seaborn as sns; sns.set_style('white') from main import * plt = matplotlib.pyplot # + [markdown] pycharm={"name": "#%% md\n"} # MathJax.Hub.Config({ # TeX: { equationNumbers: { autoNumber: "AMS" } } # }); # # # Introduction # Though the Bayesian paradigm is theoretically appealing, it has proved difficult to apply in deep learning. # Consider a neural network $f_\theta: X \to Y$. For illustrative purposes, suppose the model is given by # $$ # p(y|x,\theta) \propto \exp\{-|| y - f_\theta(x) ||^2/2\} # $$ # Let $\varphi(\theta)$ be the prior distribution and $p(\mathcal D_n |\theta) = \Pi_{i=1}^n p(y_i | x_i, \theta)$ be the likelihood of the data $\mathcal D_n = \{(x_i,y_i)\}_{i=1}^n$. Then the posterior distribution of $\theta$ is given by # $$ # p(\theta | \mathcal D_n) \propto p(\mathcal D_n | \theta) \varphi(\theta). # $$ # The normalizing constant in the posterior distribution is an intractable integral. Many methods for sampling from the posterior, e.g., MCMC, variational inference, will encounter extra difficulty when $\theta$ is a high dimensional neural network weight. # # Leaving aside the fact that the posterior is hard to sample, let's see why we should care about the posterior distribution in the first place. In the Bayesian paradigm, we predict using a distribution # $$ # p(y|x, \mathcal D_n) = \int p(y|x,\theta) p(\theta|\mathcal D_n) \,d\theta # $$ # Thus instead of providing a point estimate $\hat y$ for input $\hat x$, we can form an entire distribution estimate which lends itself naturally to uncertainty quantification. # # There is yet another advantage to Bayesian prediction, perhaps less well documented in the deep learning community. Neural networks are singular models. In terms of generalization, Bayesian prediction is better than MAP or MLE for singular models. This phenomenon is what we seek to elucidate in this work. # # # Generalization error # # # Suppose $\hat q_n(y|x)$ is some estimate of the true unknown conditional density $q(y|x)$. The generalization error of the prediction $\hat q(y|x)$ is defined as # $$ # G(n) = KL (q(y|x) || \hat q(y|x) ) = \int \int q(y|x) \log \frac{q(y|x)}{\hat q_n(y|x)} \,dy q(x) \,dx # $$ # We've written this in terms of the sample size $n$ to remind ourselves that $\hat q_n$ is formed using $\mathcal D_n$. # # We will consider three predictors of $q(y|x)$: # # + Bayesian predictive distribution $\hat q(y|x) = p(y|x,\mathcal D_n)$ # # + MAP $\hat q(y|x) = p(y|x,\theta_n^{MAP}$) # # + MLE $\hat q(y|x) = p(y|x,\theta_n^{MLE}$) # # To average out the randomness in the dataset $\mathcal D_n$ used to form the predictors, we will ultimately look at the average generalization error # \begin{equation} # E_n G(n) # \label{eq:avgGn} # \end{equation} # where $E_n$ denotes expectation over the dataset $\mathcal D_n$. In simulations, we calculate the average generalization error using a held-out-test set $T_{n'} = \{(x_i',y_i')\}_{i=1}^{n'}$ as # \begin{equation} # \frac{1}{n'} \sum_{i=1}^{n'} \log q(y_i'|x_i') - E_n \frac{1}{n'} \sum_{i=1}^{n'} \log \hat q_n(y_i'|x_i') # \label{eq:computed_avgGn} # \end{equation} # Assume the held-out test set is large enough so that the difference between \eqref{eq:avgGn} and \eqref{eq:computed_avgGn} is negligible. We will refer to them interchangeably as the average generalization error. # # # Bayes versus MAP versus MLE in singular models # # A singular model is ... # # Neural networks are singular models because ... # # Since $p(y|x,\theta)$ is singular, we look to Watanabe's singular learnng theory to understand the generalization error of the various predictors considered. Assume the true distribution is realizable by the model, i.e., $q(y|x) = p(y|x,\theta_0)$ for some $\theta_0$ (though we will investigate violations of this assumption in the experiments). # # We have the following asymptotic expansions of the generalization error for singular models. # # + For Bayes, $E_n G(n) = \lambda/n + o(1/n)$ where $\lambda \in \mathbb Q^+$ is a positive rational number known as the learning coefficient. The learning coefficient is completely determined by the the truth-model-prior triplet $( q(y|x), p(y|x,\theta), \varphi(\theta) )$. Most of the time $\lambda << dim(\theta)/2$ # # + For MAP and MLE, $E_n G(n) = C/n + o(1/n)$ (different $C$'s for MAP and MLE). Basically $C$ is the maximum of some Gaussian process, which can easily be greater than $dim(\theta)/2$. Watanabe's Main Theorem 6.4 gives the precise formulation. # # # Last layer Bayesian # # Though the Bayes predictive distribution is provably superior to MAP and MLE, it relies on the intractable posterior distribution. As a workaround, we form the predictive distribution only in the last layer(s) of a deep neural network. Since a neural network $f_\theta$ is naturally hierarchical, we break it up into $f_\theta = h_w \circ g_v$ where $\theta = (v,w)$ with $dim(w)$ being small enough to manageably perform MCMC. # # Let $\theta_{map} = (v_{map},w_{map})$. Let $\tilde x_i = g_{v_{map}}(x_i)$. Define a new transformed dataset $\tilde{\mathcal D_n} = \{(\tilde x_i, y_i) \}_{i=1}^n$. We perform MCMC to sample the posterior over $w$: # $$ # p(w | \tilde{\mathcal D_n}) \propto p(\tilde{\mathcal D_n} | w) \varphi(w) = \Pi_{i=1}^n \exp\{-|| y_i - h_w \circ g_{v_{map}}(x_i) ||^2/2\} \varphi(w) # $$ # # Define the last layer Bayesian predictive distribution to be # $$ # p_{LLB}(y|x, \mathcal D_n) = \int p(y|x,(v_{map},w)) p(w|\tilde{\mathcal D_n}) \,dw # $$ # We have to be careful when we speak of the generalization error of the LLB predictive distribution. For a proper comparison to $E_n G_{map}(n)$ or $E_n G_{mle}(n)$, we have to look at # \begin{equation} # E_n G_{LLB}(n) = KL (q(y|x) || p_{LLB}(y|x, \mathcal D_n) ) # \label{G_LLB} # \end{equation} # where $E_n$ averages out the randomness of both $D_n$ and $v_{map}$. # # An alternative is to condition on $v_{map}$, using $g_{v_{map}}$ as a feature extractor in a preprocessing step. Then, assuming realizability $q(y|x) = p(y|x,(v_0,w_0))$ we may examine the generalizaton error # \begin{equation} # E_{\mathcal D_n | v_{map}} KL( p(y|x,(v_{map},w_0)) || p_{LLB}(y|x, \mathcal D_n) ) # \label{G_LLB_vfixed} # \end{equation} # The average generalization error in \eqref{G_LLB_vfixed} is distinctly different from the one for LLB in \eqref{G_LLB}. The nice thing about \eqref{G_LLB_vfixed} is that we know its asymptotic expansion is $\lambda/n$ where $\lambda$ corresponds to the triplet $( p(y|x,(v_{map},w_0)), p(y| x, (v_{map},w)), \varphi(w))$. For certain functions $h_w$ where the true $\lambda$ is known, we can verify this in the experiments. (Not implemented yet). # # So we have various (average) generalization errors we are interested in # # + $E_n G_{post}(n)$ corresponding to the full posterior over $\theta$ # # + $E_n G_{map}(n)$ # # + $E_n G_{mle}(n)$ # # + $E_n G_{LLB}(n)$ # # + Generalization error in \eqref{G_LLB_vfixed}. (don't have a name for it yet) # # # Theory guarantees the following relationships: # # + $E_n G_{post}(n)$ has smaller learning coefficient than either $E_n G_{map}(n)$ or $E_n G_{mle}(n)$ # # + \eqref{G_LLB_vfixed} = known $\lambda$/n + o(1/n) for certain $h_w$. # # The question is, what is the behavior of $E_n G_{LLB}(n)$? Two hunches # # + Though LLB is different from full posterior predictive distribution, it's still better than map or mle, i.e., $E_n G_{LLB}(n) \le E_n G_{map}(n)$. # # + $E_n G_{LLB}(n)$ is different from \eqref{G_LLB_vfixed} but perhaps asymptotially they share the same leading term $\lambda/n$? # We'll set out to investigate these conjectures in the following experiment. # - # # Experiments # # Consider a neural network where $h_w$ is a reduced-rank regression network and $g_v$ is a block of linear composed with ReLU layers. # class Model(nn.Module): def __init__(self, input_dim, output_dim, ffrelu_hidden, rr_hidden): super(Model, self).__init__() self.feature_map = nn.Sequential( nn.Linear(input_dim, ffrelu_hidden), nn.ReLU(), nn.Linear(ffrelu_hidden, ffrelu_hidden), nn.ReLU(), nn.Linear(ffrelu_hidden, input_dim), ) self.rr = nn.Sequential( nn.Linear(input_dim, rr_hidden, bias=False), nn.Linear(rr_hidden, output_dim, bias=False) ) def forward(self, x): x = self.feature_map(x) return self.rr(x) # We use the following values for the parameters # + input_dim = output_dim = rr_hidden = 3 # + ffrelu_hidden = 5 # # # We generate the training data as follows: # + $X \sim N(0,\sigma_x^2 I_3)$ # + realizability # + realizable $Y \sim N(f_{\theta_0}(X),\sigma_y^2 I_3)$ # + not realizable $Y \sim N(h_{w_0}(X),\sigma_y^2 I_3)$ # # For the testing data, we consider a possible change in the support of $X$: # + $X \sim \alpha N(0,\sigma_x^2 I_3)$ for some scale $\alpha \in \mathbb R^+$. def get_data(args): train_size = int(args.n) valid_size = int(args.n * 0.5) test_size = int(10000) a = Normal(0.0, 1.0) a_params = 0.2 * a.sample((args.input_dim, args.rr_hidden)) b = Normal(0.0, 1.0) b_params = 0.2 * b.sample((args.rr_hidden, args.output_dim)) X_rv = MultivariateNormal(torch.zeros(args.input_dim), torch.eye(args.input_dim)) y_rv = MultivariateNormal(torch.zeros(args.output_dim), torch.eye(args.output_dim)) true_model = Model(args.input_dim, args.output_dim, args.ffrelu_hidden, args.rr_hidden) true_model.eval() with torch.no_grad(): # training +valid data X = X_rv.sample(torch.Size([train_size+valid_size])) if args.realizable: true_mean = true_model(X) else: true_mean = torch.matmul(torch.matmul(X, a_params), b_params) y = true_mean + y_rv.sample(torch.Size([train_size+valid_size])) dataset_train, dataset_valid = torch.utils.data.random_split(TensorDataset(X, y),[train_size,valid_size]) # testing data X = args.X_test_std * X_rv.sample(torch.Size([test_size])) if args.realizable: true_mean = true_model(X) else: true_mean = torch.matmul(torch.matmul(X, a_params), b_params) y = true_mean + y_rv.sample(torch.Size([test_size])) dataset_test = TensorDataset(X, y) oracle_mse = (torch.norm(y - true_mean, dim=1)**2).mean() entropy = -torch.log((2 * np.pi) ** (-args.output_dim / 2) * torch.exp( -(1 / 2) * torch.norm(y - true_mean, dim=1) ** 2)).mean() train_loader = torch.utils.data.DataLoader(dataset_train, batch_size=args.batchsize, shuffle=True) valid_loader = torch.utils.data.DataLoader(dataset_valid, batch_size=args.batchsize, shuffle=True) test_loader = torch.utils.data.DataLoader(dataset_test, batch_size=args.batchsize, shuffle=True) return train_loader, valid_loader, test_loader, oracle_mse, entropy # Note that the way MAP training is usually conducted in deep learning may involve early stopping. Watanabe's theory does not account for early stopping. We will try MAP training with and without early stopping. # def map_train(args, X_train, Y_train, X_valid, Y_valid, X_test, Y_test, oracle_mse): model = Model(args.input_dim, args.output_dim, args.ffrelu_hidden, args.rr_hidden) opt = optim.SGD(model.parameters(), lr=1e-3, momentum=0.9, weight_decay=5e-4) early_stopping = EarlyStopping(patience=10, verbose=False, taskid=args.taskid) # TODO: is it necessary to implement mini batch SGD? for it in range(5000): model.train() y_pred = model(X_train).squeeze() l = (torch.norm(y_pred - Y_train, dim=1)**2).mean() l.backward() opt.step() opt.zero_grad() model.eval() with torch.no_grad(): valid_loss = (torch.norm(model(X_valid).squeeze() - Y_valid, dim=1)**2).mean() if it % 100 == 0: model.eval() ytest_pred = model(X_test).squeeze() test_loss = (torch.norm(ytest_pred - Y_test, dim=1)**2).mean() print('MSE: train {:.3f}, validation {:.3f}, test {:.3f}, oracle on test set {:.3f}'.format(l.item(), valid_loss, test_loss.item(), oracle_mse)) if args.early_stopping: early_stopping(valid_loss, model) if early_stopping.early_stop: print("Early stopping") break return model # The last function we will need is for drawing samples from the last layers. Although the code supports implicit variational inference (and even explicit variational inference), only the MCMC (NUTS) will be considered in the experiments. def lastlayer_approxinf(model, args, X_train, Y_train, X_valid, Y_valid, X_test, Y_test): transformed_X_train = model.feature_map(X_train) transformed_X_valid = model.feature_map(X_valid) transformed_X_test = model.feature_map(X_test) transformed_train_loader = torch.utils.data.DataLoader( TensorDataset(Tensor(transformed_X_train), torch.as_tensor(Y_train, dtype=torch.long)), batch_size=args.batchsize, shuffle=True) transformed_valid_loader = torch.utils.data.DataLoader( TensorDataset(Tensor(transformed_X_valid), torch.as_tensor(Y_valid, dtype=torch.long)), batch_size=args.batchsize, shuffle=True) if args.posterior_method == 'ivi': # parameters for train_implicitVI mc = 1 beta_index = 0 args.betas = [1.0] saveimgpath = None args.dataset = 'reducedrank_synthetic' args.H = args.rr_hidden # TODO: strip train_implicitVI to simplest possible inputs G = train_implicitVI(transformed_train_loader, transformed_valid_loader, args, mc, beta_index, saveimgpath) eps = torch.randn(args.R, args.epsilon_dim) sampled_weights = G(eps) list_of_param_dicts = weights_to_dict(args, sampled_weights) pred_prob = 0 output_dim = transformed_X_test.shape[1] for param_dict in list_of_param_dicts: mean = torch.matmul(torch.matmul(transformed_X_test, param_dict['a']), param_dict['b']) pred_prob += (2 * np.pi) ** (-output_dim / 2) * torch.exp(-(1 / 2) * torch.norm(Y_test - mean, dim=1) ** 2) elif args.posterior_method == 'mcmc': wholex = transformed_train_loader.dataset[:][0] wholey = transformed_train_loader.dataset[:][1] beta = 1.0 kernel = NUTS(conditioned_pyro_rr, adapt_step_size=True) mcmc = MCMC(kernel, num_samples=args.R, warmup_steps=args.num_warmup, disable_progbar=True) mcmc.run(pyro_rr, wholex, wholey, args.rr_hidden, beta) sampled_weights = mcmc.get_samples() pred_prob = 0 output_dim = wholey.shape[1] for r in range(0, args.R): mean = torch.matmul(torch.matmul(transformed_X_test, sampled_weights['a'][r,:,:]), sampled_weights['b'][r,:,:]) pred_prob += (2 * np.pi) ** (-output_dim / 2) * torch.exp(-(1 / 2) * torch.norm(Y_test - mean, dim=1) ** 2) return -torch.log(pred_prob / args.R).mean() # We set the arguments below. We are interested in examining the following three factors # + realizability or not # + support of $X_{test}$ # + early stopping or not # # For the realizable plus non-early-stopping setting, we expect the learning coefficient for the last layer Bayes predictive distribution to match the theoretically known values of $\lambda$ for reduced rank regression. Watanabe's theory, as it stands, seems unable to say anything meaningful in the case $q$ is unrealizable by the model or in the case that MAP is trained using early stopping. # # The computational overhead comes from the following variables: # + num_warmup: burn-in for MCMC # + MCs: number of training datasets for assessing $E_n$ # + num_n: number of sample sizes considered for drawing learning curve $1/n$ versus $E_n G(n)$ # + R: number of MCMC samples from the posterior # # We've set these numbers to be very small for the purpose of running quickly in the notebook. # + pycharm={"name": "#%%\n"} class Args: taskid = 1 input_dim = 3 output_dim = 3 X_test_std = 1.0 # play around with realizable = 1 # play around with ffrelu_hidden = 5 rr_hidden = 3 early_stopping = 0 # play around with posterior_method = 'mcmc' num_warmup = 10 batchsize = 50 # epsilon_mc = 100 # epochs = 100 # pretrainDepochs = 100 # trainDepochs = 20 # n_hidden_D = 128 # num_hidden_layers_D = 1 # n_hidden_G = 128 # num_hidden_layers_G = 1 # lr_primal = 0.01 # lr_dual = 0.001 MCs = 5 R = 10 num_n = 10 no_cuda = True log_interval = 500 args=Args() args.cuda = not args.no_cuda and torch.cuda.is_available() # change to boolean if args.early_stopping == 0: args.early_stopping = False else: args.early_stopping = True if args.realizable == 0: args.realizable = False else: args.realizable = True args.epsilon_dim = args.rr_hidden*(args.input_dim + args.output_dim) # TODO: w_dim and total_param_count depend on model and shouldn't be hardcoded as follows args.w_dim = args.rr_hidden*(args.input_dim + args.output_dim) total_param_count = (args.input_dim + args.rr_hidden + args.input_dim) * args.rr_hidden + args.w_dim # - # Below we plot the learning curve, i.e., $n$ versus $E_n G(n)$. (Actually we'll plot $1/n$ versus $E_n G(n)$ to easily assess whether the slope matches the theoretical $\lambda$.) # + pycharm={"name": "#%%\n"} avg_lastlayerbayes_gen_err = np.array([]) std_lastlayerbayes_gen_err = np.array([]) avg_map_gen_err = np.array([]) std_map_gen_err = np.array([]) avg_entropy = np.array([]) std_entropy = np.array([]) n_range = np.round(1/np.linspace(1/200,1/10000,args.num_n)) for n in n_range: map_gen_err = np.empty(args.MCs) lastlayerbayes_gen_err = np.empty(args.MCs) entropy_array = np.empty(args.MCs) args.n = n for mc in range(0, args.MCs): train_loader, valid_loader, test_loader, oracle_mse, entropy = get_data(args) entropy_array[mc] = entropy X_train = train_loader.dataset[:][0] Y_train = train_loader.dataset[:][1] X_valid = valid_loader.dataset[:][0] Y_valid = valid_loader.dataset[:][1] X_test = test_loader.dataset[:][0] Y_test = test_loader.dataset[:][1] model = map_train(args, X_train, Y_train, X_valid, Y_valid, X_test, Y_test, oracle_mse) model.eval() map_gen_err[mc] = -torch.log((2*np.pi)**(-args.output_dim /2) * torch.exp(-(1/2) * torch.norm(Y_test-model(X_test), dim=1)**2)).mean() - entropy Bmap = list(model.parameters())[-1] Amap = list(model.parameters())[-2] params = (args.input_dim, args.output_dim, np.linalg.matrix_rank(torch.matmul(Bmap, Amap).detach().numpy()), args.rr_hidden) trueRLCT = theoretical_RLCT('rr', params) print('true RLCT {}'.format(trueRLCT)) lastlayerbayes_gen_err[mc] = lastlayer_approxinf(model, args, X_train, Y_train, X_valid, Y_valid, X_test, Y_test) - entropy print('n = {}, mc {}, gen error: map {}, bayes last layer {}' .format(n, mc, map_gen_err[mc], lastlayerbayes_gen_err[mc])) print('average gen error: MAP {}, bayes {}' .format(map_gen_err.mean(), lastlayerbayes_gen_err.mean())) avg_lastlayerbayes_gen_err = np.append(avg_lastlayerbayes_gen_err, lastlayerbayes_gen_err.mean()) std_lastlayerbayes_gen_err = np.append(std_lastlayerbayes_gen_err, lastlayerbayes_gen_err.std()) avg_map_gen_err = np.append(avg_map_gen_err, map_gen_err.mean()) std_map_gen_err = np.append(std_map_gen_err, map_gen_err.std()) avg_entropy = np.append(avg_entropy, entropy_array.mean()) std_entropy = np.append(std_entropy, entropy_array.std()) print('avg LLB gen err {}, std {}'.format(avg_lastlayerbayes_gen_err, std_lastlayerbayes_gen_err)) print('avg MAP gen err {}, std {}'.format(avg_map_gen_err, std_map_gen_err)) if args.realizable: ols_map = OLS(avg_map_gen_err, 1 / n_range).fit() map_slope = ols_map.params[0] ols_llb = OLS(avg_lastlayerbayes_gen_err, 1 / n_range).fit() llb_intercept = 0.0 llb_slope = ols_llb.params[0] else: ols_map = OLS(avg_map_gen_err, add_constant(1 / n_range)).fit() map_slope = ols_map.params[1] ols_llb = OLS(avg_lastlayerbayes_gen_err, add_constant(1 / n_range)).fit() llb_intercept = ols_llb.params[0] llb_slope = ols_llb.params[1] print('estimated RLCT {}'.format(llb_slope)) # fig, ax = plt.subplots() ax.errorbar(1/n_range, avg_lastlayerbayes_gen_err, yerr=std_lastlayerbayes_gen_err, fmt='-o', c='r', label='En G(n) for last layer Bayes predictive') ax.errorbar(1/n_range, avg_map_gen_err, yerr=std_map_gen_err, fmt='-o', c='g', label='En G(n) for MAP') plt.plot(1 / n_range, llb_intercept + llb_slope / n_range, 'r--', label='ols fit for last-layer-Bayes') plt.xlabel('1/n') plt.title('map slope {:.2f}, parameter count {}, LLB slope {:.2f}, true RLCT {}'.format(map_slope, total_param_count, llb_slope, trueRLCT)) plt.legend() plt.savefig('taskid{}.png'.format(args.taskid)) plt.show() # - # The graph produced plots $1/n$ versus average generalizaton error $E_n G(n)$ for MAP predictor and LLB predictive distribution. Vertical bars indicate 1 std deviation over the different Monte Carlo training-testing sets. The LLB learning coefficient (LLB slope) indicated in the title of the graph should match the "true RLCT." In addition, the MAP learning coefficient (map slope) should be bigger than the LLB slope according to theory. # + pycharm={"name": "#%%\n"} # - # Below we plot the learning curve, i.e., $n$ versus $E_n G(n)$. (Actually we'll plot $1/n$ versus $E_n G(n)$ to easily assess whether the slope matches the theoretical $\lambda$.) # + avg_lastlayerbayes_gen_err = np.array([]) std_lastlayerbayes_gen_err = np.array([]) avg_map_gen_err = np.array([]) std_map_gen_err = np.array([]) avg_entropy = np.array([]) std_entropy = np.array([]) n_range = np.round(1/np.linspace(1/200,1/10000,args.num_n)) for n in n_range: map_gen_err = np.empty(args.MCs) lastlayerbayes_gen_err = np.empty(args.MCs) entropy_array = np.empty(args.MCs) args.n = n for mc in range(0, args.MCs): train_loader, valid_loader, test_loader, oracle_mse, entropy = get_data(args) entropy_array[mc] = entropy X_train = train_loader.dataset[:][0] Y_train = train_loader.dataset[:][1] X_valid = valid_loader.dataset[:][0] Y_valid = valid_loader.dataset[:][1] X_test = test_loader.dataset[:][0] Y_test = test_loader.dataset[:][1] model = map_train(args, X_train, Y_train, X_valid, Y_valid, X_test, Y_test, oracle_mse) model.eval() map_gen_err[mc] = -torch.log((2*np.pi)**(-args.output_dim /2) * torch.exp(-(1/2) * torch.norm(Y_test-model(X_test), dim=1)**2)).mean() - entropy Bmap = list(model.parameters())[-1] Amap = list(model.parameters())[-2] params = (args.input_dim, args.output_dim, np.linalg.matrix_rank(torch.matmul(Bmap, Amap).detach().numpy()), args.rr_hidden) trueRLCT = theoretical_RLCT('rr', params) print('true RLCT {}'.format(trueRLCT)) lastlayerbayes_gen_err[mc] = lastlayer_approxinf(model, args, X_train, Y_train, X_valid, Y_valid, X_test, Y_test) - entropy print('n = {}, mc {}, gen error: map {}, bayes last layer {}' .format(n, mc, map_gen_err[mc], lastlayerbayes_gen_err[mc])) print('average gen error: MAP {}, bayes {}' .format(map_gen_err.mean(), lastlayerbayes_gen_err.mean())) avg_lastlayerbayes_gen_err = np.append(avg_lastlayerbayes_gen_err, lastlayerbayes_gen_err.mean()) std_lastlayerbayes_gen_err = np.append(std_lastlayerbayes_gen_err, lastlayerbayes_gen_err.std()) avg_map_gen_err = np.append(avg_map_gen_err, map_gen_err.mean()) std_map_gen_err = np.append(std_map_gen_err, map_gen_err.std()) avg_entropy = np.append(avg_entropy, entropy_array.mean()) std_entropy = np.append(std_entropy, entropy_array.std()) print('avg LLB gen err {}, std {}'.format(avg_lastlayerbayes_gen_err, std_lastlayerbayes_gen_err)) print('avg MAP gen err {}, std {}'.format(avg_map_gen_err, std_map_gen_err)) if args.realizable: ols_map = OLS(avg_map_gen_err, 1 / n_range).fit() map_slope = ols_map.params[0] ols_llb = OLS(avg_lastlayerbayes_gen_err, 1 / n_range).fit() llb_intercept = 0.0 llb_slope = ols_llb.params[0] else: ols_map = OLS(avg_map_gen_err, add_constant(1 / n_range)).fit() map_slope = ols_map.params[1] ols_llb = OLS(avg_lastlayerbayes_gen_err, add_constant(1 / n_range)).fit() llb_intercept = ols_llb.params[0] llb_slope = ols_llb.params[1] print('estimated RLCT {}'.format(llb_slope)) # fig, ax = plt.subplots() ax.errorbar(1/n_range, avg_lastlayerbayes_gen_err, yerr=std_lastlayerbayes_gen_err, fmt='-o', c='r', label='En G(n) for last layer Bayes predictive') ax.errorbar(1/n_range, avg_map_gen_err, yerr=std_map_gen_err, fmt='-o', c='g', label='En G(n) for MAP') plt.plot(1 / n_range, llb_intercept + llb_slope / n_range, 'r--', label='ols fit for last-layer-Bayes') plt.xlabel('1/n') plt.title('map slope {:.2f}, parameter count {}, LLB slope {:.2f}, true RLCT {}'.format(map_slope, total_param_count, llb_slope, trueRLCT)) plt.legend() plt.savefig('taskid{}.png'.format(args.taskid)) plt.show() # - # The graph produced plots $1/n$ versus average generalizaton error $E_n G(n)$ for MAP predictor and LLB predictive distribution. Vertical bars indicate 1 std deviation over the different Monte Carlo training-testing sets. The LLB learning coefficient (LLB slope) indicated in the title of the graph should match the "true RLCT." In addition, the MAP learning coefficient (map slope) should be bigger than the LLB slope according to theory. # # Related work # # Is this last-layer-Bayesian approach common? Has anyone written about this formally? In a quick search, I can only find rough heuristics similar in spirit to what I'm doing: # # + [blog post](https://towardsdatascience.com/probabilistic-machine-learning-series-post-1-c8809652dd60) uses LSTM as feature extractor then performs Bayesian inference on linear last layer # + [Snoek et. al 2017 ICML](http://proceedings.mlr.press/v37/snoek15.pdf) calls this approach the well-known adaptive basis regression # + [Kristiadi et. al 2020 ICML](https://arxiv.org/pdf/2002.10118.pdf) appends linear last layer to beginning ReLU blocks, then uses Laplace approximation to perform Bayesian inference in the last layer.
notebooks/lastlayerbayesian.ipynb
# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.14.4 # kernelspec: # display_name: Python 3 # name: python3 # --- # + [markdown] id="JmkqzqUpw-Hd" # # Session 6: Encoder-Decoder # --- # + colab={"base_uri": "https://localhost:8080/"} id="GDaLXki6pgJ2" outputId="500c3a2d-e522-479f-c7cd-838c89781d04" from google.colab import drive drive.mount('/content/gdrive', force_remount=True) # + [markdown] id="EAILL4Ffw9x4" # ## Import libraries # + colab={"base_uri": "https://localhost:8080/"} id="PWMvOrzPeopS" outputId="95d2a8a1-fdff-4217-d02e-a956fb3a36c4" # Download these NLTK packages import nltk nltk.download('punkt') nltk.download('stopwords') nltk.download('averaged_perceptron_tagger') nltk.download('maxent_ne_chunker') nltk.download('words') nltk.download('wordnet') # + id="av7eDoJAhHhq" # Import necessary libraries import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns import warnings import nltk, time from nltk.tokenize import word_tokenize from nltk.corpus import stopwords from collections import Counter from nltk.stem import WordNetLemmatizer import collections, itertools # + id="f5gvZJGsI504" import os base_path = 'gdrive/MyDrive/TSAI_END2/Session6/' data_path = base_path + 'data/' data_filename = 'tweets.csv' # + [markdown] id="6ZXjJ8j7xL-2" # ## Dataset Creation # --- # + id="IImUW6D8VTvV" import pandas as pd tweets_data = pd.read_csv(os.path.join(data_path,data_filename)) # + colab={"base_uri": "https://localhost:8080/", "height": 417} id="ywVu1CVBY-oO" outputId="be6c1072-6d72-447c-8d74-5526e8139849" tweets_data # + [markdown] id="FBc_eSRxxSVD" # ### EDA # --- # + colab={"base_uri": "https://localhost:8080/"} id="x6sWQrZ6ZGmc" outputId="b4c2d95f-d954-400f-9a86-de2504499997" tweets_data.info() # + colab={"base_uri": "https://localhost:8080/"} id="E-wzQPN8Zmx4" outputId="bad64753-9e0c-42f9-82a0-e6ba2be53d8e" tweets_data.value_counts() # + colab={"base_uri": "https://localhost:8080/", "height": 418} id="bMRY2FE4bj04" outputId="8285f577-71b8-4815-b1a7-6b6172201d6c" unique_tweets_data = tweets_data.value_counts().reset_index() unique_tweets_data.columns = ['tweets','labels','count'] unique_tweets_data # + colab={"base_uri": "https://localhost:8080/", "height": 513} id="TrSOFYWS3Svy" outputId="0728abad-93aa-49d2-90d7-24764166df76" fig = plt.figure(figsize=(12,8)) fig = sns.barplot(x=unique_tweets_data[unique_tweets_data['count']>1]['count'], y=[str(i) for i in range(len(unique_tweets_data[unique_tweets_data['count']>1]))]) fig = plt.xlabel("Count") fig = plt.ylabel('Sentences') fig = plt.title('Duplicate Sentences') plt.show() # + colab={"base_uri": "https://localhost:8080/", "height": 513} id="zCqUou3KdWg7" outputId="577adad0-2001-4e46-dd74-338c1282a232" fig = plt.figure(figsize=(12,8)) fig = sns.barplot(x=unique_tweets_data[:20]['count'], y=[str(i) for i in range(20)]) fig = plt.xlabel("Count") fig = plt.ylabel('Sentences') fig = plt.title('Top 20 Duplicate Sentences') plt.show() # + colab={"base_uri": "https://localhost:8080/", "height": 417} id="9hOWn-02aCEj" outputId="fb211689-093c-4c96-8812-e68ed9f8e8dd" tweets_data[tweets_data['tweets'] == unique_tweets_data.loc[0,'tweets']] # + id="hTrAiC0_bE74" # Function to tokenize the tweets def custom_tokenize(text, tokenize=False): """Function that tokenizes text""" from nltk.tokenize import word_tokenize if not text: print('The text to be tokenized is a None type. Defaulting to blank string.') text = '' if tokenize: return word_tokenize(text) else: return text.split(' ') # Function that applies the cleaning steps def clean_up(data1): """Function that cleans up the data into a shape that can be further used for modeling""" data = data1.copy() data.drop_duplicates(inplace=True) # drop duplicate tweets tokenized = data['tweets'].apply(custom_tokenize) # Tokenize tweets lower_tokens = tokenized.apply(lambda x: [t.lower() for t in x]) # Convert tokens into lower case alpha_only = lower_tokens.apply(lambda x: [t for t in x if t.isalpha()]) # Remove punctuations no_stops = alpha_only.apply(lambda x: [t for t in x if t not in stopwords.words('english')]) # remove stop words no_stops.apply(lambda x: [x.remove(t) for t in x if t=='rt']) # remove acronym "rt" no_stops.apply(lambda x: [x.remove(t) for t in x if t=='https']) # remove acronym "https" no_stops.apply(lambda x: [x.remove(t) for t in x if t=='twitter']) # remove the word "twitter" no_stops.apply(lambda x: [x.remove(t) for t in x if t=='retweet']) data['cleaned_tweets'] = no_stops return data # + colab={"base_uri": "https://localhost:8080/", "height": 417} id="cVsy3Pzlgubi" outputId="da03ac16-0c8a-4c2f-8dd3-3eaaa867071f" clean_up(tweets_data) # + [markdown] id="WLWTkCboxZ6i" # ## Dataset Creation # --- # + id="6jCPYddCg47C" colab={"base_uri": "https://localhost:8080/"} outputId="cc980622-f3fc-4297-e921-65711ab5b1fa" # Import Library import random import torch, torchtext from torchtext.legacy import data # Manual Seed SEED = 42 torch.manual_seed(SEED) # + id="D3ogPfUO6JFe" Tweet = data.Field(sequential = True, tokenize = 'spacy', batch_first =True)#, include_lengths=True) Label = data.LabelField(dtype = torch.int64) # + id="rffOYhgE6ylO" fields = [('tweets', Tweet),('labels',Label)] # + id="B2xEdzUe89NT" example = [data.Example.fromlist([tweets_data.tweets[i],tweets_data.labels[i]], fields) for i in range(tweets_data.shape[0])] # + id="Tw2l3t_m9XsW" twitterDataset = data.Dataset(example, fields) # + id="m-9-6OaJ9dPV" (train_data, valid_data) = twitterDataset.split(split_ratio=[0.85, 0.15], random_state=random.seed(SEED)) # + id="eKN3vdpz9gNs" colab={"base_uri": "https://localhost:8080/"} outputId="2d55599a-89df-41b3-98ae-3858bac4fa0a" (len(train_data), len(valid_data)) # + id="FZPozyoY9iz1" colab={"base_uri": "https://localhost:8080/"} outputId="5c963377-d2d4-4772-c1e7-87a41ad2a72b" vars(train_data.examples[10]) # + id="-PS9FL2c9pGj" Tweet.build_vocab(train_data) Label.build_vocab(train_data) # + id="Vt0dv2-Z94eA" colab={"base_uri": "https://localhost:8080/"} outputId="d58b05df-2c06-4d38-8ae4-124074b47323" print('Size of input vocab : ', len(Tweet.vocab)) print('Size of label vocab : ', len(Label.vocab)) print('Top 10 words appreared repeatedly :', list(Tweet.vocab.freqs.most_common(10))) print('Labels : ', Label.vocab.stoi) # + id="0gaTFMKl-DFX" BATCH_SIZE = 64 device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') # + id="VIOojo5l-GTG" train_iterator, valid_iterator = data.BucketIterator.splits((train_data, valid_data), batch_size = BATCH_SIZE, sort_key = lambda x: len(x.tweets), sort_within_batch=True, device = device) # + id="I9zZpHvm-7KF" import os, pickle with open(os.path.join(data_path,'tokenizer.pkl'), 'wb') as tokens: pickle.dump(Tweet.vocab.stoi, tokens) # + [markdown] id="c1tNJX0O_DcI" # ## Model Building # + id="ow87D_oGyJe2" import torch import torch.nn as nn import torch.nn.functional as F from torch.nn.utils.rnn import pack_padded_sequence, pad_packed_sequence # + [markdown] id="gOTmf98CyLLq" # #### Encoder # + id="dk8Iu2AJyKJu" class EncoderLSTM(nn.Module): def __init__(self, vocab_size, embedding_dim, hidden_dim, output_dim, n_layers=1): super().__init__() self.hidden_dim = hidden_dim self.n_layers = n_layers # embedding layer self.embedding = nn.Embedding(vocab_size, embedding_dim) # lstm layer self.lstm = nn.LSTM(embedding_dim, hidden_dim, num_layers=n_layers, batch_first=True) self.enc_context = nn.Linear(hidden_dim, output_dim) def initHidden(self, batch_size, device): return (torch.zeros(1, batch_size, self.hidden_dim, device=device), torch.zeros(1, batch_size, self.hidden_dim, device=device)) def forward(self, text, enc_hidden, visualize=False, verbose=False): # hidden, cell = enc_hidden embedded = self.embedding(text) lstm_output, (hidden, cell) = self.lstm(embedded, enc_hidden) output = self.enc_context(hidden.squeeze(0)) if verbose: print('inside encoder:-') print(f'shape of text input to encoder: {text.shape}') print(f'shape of Embedding layer output: {embedded.shape}') print(f'shape of lstm layer output: {hidden.shape}') print(f'shape of fc layer output: {output.shape}') print(f'shape of encoder output: {output.shape}') if visualize: enc_op = lstm_output[0].detach().cpu().numpy() fig, ax = plt.subplots(figsize=(20,10)) sns.heatmap(enc_op, fmt=".2f", vmin=-1, vmax=1, annot=True, cmap="YlGnBu", ax=ax) plt.title('Hidden State in each time step of Encoder', fontsize = 20) # title with fontsize 20 plt.xlabel('Hidden state', fontsize = 15) # x-axis label with fontsize 15 plt.ylabel('Time Step', fontsize = 15) # y-axis label with fontsize 15 plt.show() enc_op = output.detach().cpu().numpy() fig, ax = plt.subplots(figsize=(20,4)) sns.heatmap(enc_op, fmt=".2f", vmin=-1, vmax=1, annot=True, cmap="YlGnBu", ax=ax, annot_kws={"size": 20}) plt.title('Encoded Representation from Encoder', fontsize = 20) # title with fontsize 20 plt.show() return output, (hidden, cell) # + [markdown] id="9fh5biutyNmR" # #### Decoder # + id="Z7E97LnoyPQR" class DecoderLSTM(nn.Module): def __init__(self, enc_dim, hidden_dim, output_dim, n_layers=1): super().__init__() # lstm layer self.lstm = nn.LSTMCell(enc_dim, hidden_dim, bias=False) # num_layers=n_layers, # batch_first=True) self.decoded_op = nn.Linear(hidden_dim, output_dim) def forward(self, enc_context, enc_hidden, dec_steps=2, visualize=False, verbose=False): dec_input = enc_context.unsqueeze(1) hidden, cell = enc_hidden hidden = hidden.squeeze(0) cell = cell.squeeze(0) dec_outputs = [] for i in range(dec_steps): hidden, cell = self.lstm(enc_context, (hidden, cell)) dec_outputs.append(hidden) dec_output = torch.stack(dec_outputs, dim=1) output = self.decoded_op(hidden) if verbose: print('inside decoder:-') print(f'shape of output from encoder which goes as input to decoder: {enc_context.shape}') print(f'shape of lstm layer output: {hidden.shape}') print(f'shape of fc layer output: {output.shape}') print(f'shape of decoder output: {output.shape}') if visualize: enc_op = dec_output[0].detach().cpu().numpy() fig, ax = plt.subplots(figsize=(50,4)) sns.heatmap(enc_op, fmt=".2f", vmin=-1, vmax=1, annot=True, cmap="YlGnBu", ax=ax, annot_kws={"size": 20}) plt.title('Hidden State in each time step of Decoder', fontsize = 20) # title with fontsize 20 plt.xlabel('Hidden State', fontsize = 15) # x-axis label with fontsize 15 plt.ylabel('Time Step', fontsize = 15) # y-axis label with fontsize 15 plt.show() enc_op = output.detach().cpu().numpy() fig, ax = plt.subplots(figsize=(20,4)) sns.heatmap(enc_op, fmt=".2f", vmin=-1, vmax=1, annot=True, cmap="YlGnBu", ax=ax, annot_kws={"size": 20}) plt.title('Decoded Representation from Decoder', fontsize = 20) # title with fontsize 20 plt.show() return output # + [markdown] id="wbebVbH4yJFN" # #### Encoder Decoder Model # + id="dz0zgMXpPYZv" class LSTMEncoderDecoderClassifier(nn.Module): # Define all the layers used in model def __init__(self, device, vocab_size, embedding_dim, hidden_enc_dim, hidden_dec_dim, context_dim, output_dim, n_classes, n_enc_layers=1, n_dec_layers=1): # Constructor super().__init__() self.device = device # encoder layer self.encoder = EncoderLSTM(vocab_size, embedding_dim, hidden_enc_dim, context_dim, n_enc_layers) # decoder layer self.decoder = DecoderLSTM(context_dim, hidden_dec_dim, output_dim, n_dec_layers) # output layer self.linear_output = nn.Linear(output_dim, n_classes) def forward(self, text, dec_steps=2, visualize=False, verbose=False): #, text_lengths): # text = [batch size,sent_length] enc_h = self.encoder.initHidden(text.shape[0], self.device) encoded_context, encoded_hidden = self.encoder(text, enc_h, visualize, verbose)#, text_lengths) decoded = self.decoder(encoded_context, encoded_hidden, dec_steps, visualize, verbose) prediction = self.linear_output(decoded) if verbose: print(f'shape of final output: {prediction.shape}') if visualize: enc_op = prediction.detach().cpu().numpy() fig, ax = plt.subplots(figsize=(20,4)) sns.heatmap(enc_op, fmt=".2f", vmin=-1, vmax=1, annot=True, cmap="YlGnBu", ax=ax)#.set(title=f"Encoded Representation from Encoder") plt.title('Final Prediction', fontsize = 20) # title with fontsize 20 plt.show() return prediction # + id="3ghjQ2ZMPzYu" # Define hyperparameters size_of_vocab = len(Tweet.vocab) embedding_dim = 100 hidden_enc_dim = 24 hidden_dec_dim = 24 context_dim = 16 output_dim = 16 n_classes = 3 n_enc_layers = 1 n_dec_layers = 1 device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') # Instantiate the model model = LSTMEncoderDecoderClassifier(device, size_of_vocab, embedding_dim, hidden_enc_dim, hidden_dec_dim, context_dim, output_dim, n_classes, n_enc_layers, n_dec_layers) # + id="Ja6F2c5cP7OS" colab={"base_uri": "https://localhost:8080/"} outputId="1aa5125d-5a58-439f-db7b-815c8a2d845e" print(model) #No. of trianable parameters def count_parameters(model): return sum(p.numel() for p in model.parameters() if p.requires_grad) print(f'The model has {count_parameters(model):,} trainable parameters') # + [markdown] id="1u5Dkyp2_HyB" # ## Model Training and Testing # --- # + id="-5I6x3jg_G_r" import torch.optim as optim # define optimizer and loss optimizer = optim.Adam(model.parameters()) criterion = nn.CrossEntropyLoss() # define metric def categorical_accuracy(preds, y): """ Returns accuracy per batch, i.e. if you get 8/10 right, this returns 0.8, NOT 8 """ top_pred = preds.argmax(1, keepdim = True) correct = top_pred.eq(y.view_as(top_pred)).sum() acc = correct.float() / y.shape[0] return acc # push to cuda if available model = model.to(device) criterion = criterion.to(device) # + id="RdKmLUq0A7G7" def train(model, iterator, optimizer, criterion): # initialize every epoch epoch_loss = 0 epoch_acc = 0 # set the model in training phase model.train() for batch in iterator: # print(batch.tweets.shape) # resets the gradients after every batch optimizer.zero_grad() # retrieve text and no. of words text = batch.tweets #, text_lengths = batch.tweet # convert to 1D tensor predictions = model(text)#, text_lengths) # print('in train') # print(predictions.shape) # print(batch.labels.shape) # compute the loss loss = criterion(predictions, batch.labels) # compute the categorical accuracy acc = categorical_accuracy(predictions, batch.labels) # backpropage the loss and compute the gradients loss.backward() # update the weights optimizer.step() # loss and accuracy epoch_loss += loss.item() epoch_acc += acc.item() return epoch_loss / len(iterator), epoch_acc / len(iterator) # + id="EyzUhtdrBAix" def evaluate(model, iterator, criterion): # initialize every epoch epoch_loss = 0 epoch_acc = 0 # deactivating dropout layers model.eval() # deactivates autograd with torch.no_grad(): for batch in iterator: # retrieve text and no. of words text = batch.tweets #, text_lengths = batch.text # convert to 1D tensor predictions = model(text).squeeze(1) #, text_lengths).squeeze(1) # compute loss and accuracy loss = criterion(predictions, batch.labels) acc = categorical_accuracy(predictions, batch.labels) # keep track of loss and accuracy epoch_loss += loss.item() epoch_acc += acc.item() return epoch_loss / len(iterator), epoch_acc / len(iterator) # + id="hIjfJGzlBG8D" import time def epoch_time(start_time, end_time): elapsed_time = end_time - start_time elapsed_mins = int(elapsed_time / 60) elapsed_secs = int(elapsed_time - (elapsed_mins * 60)) return elapsed_mins, elapsed_secs # + id="m5Us_U9MBNKR" colab={"base_uri": "https://localhost:8080/"} outputId="659137d1-8048-423e-ed19-1ccc46f04066" N_EPOCHS = 10 best_valid_loss = float('inf') train_losses = [] train_accs = [] valid_losses = [] valid_accs = [] for epoch in range(N_EPOCHS): start_time = time.time() # train the model train_loss, train_acc = train(model, train_iterator, optimizer, criterion) # evaluate the model valid_loss, valid_acc = evaluate(model, valid_iterator, criterion) end_time = time.time() epoch_mins, epoch_secs = epoch_time(start_time, end_time) # save the best model if valid_loss < best_valid_loss or epoch == N_EPOCHS: best_valid_loss = valid_loss torch.save(model.state_dict(), os.path.join(base_path, 'saved_weights.pt')) train_losses.append(train_loss) train_accs.append(train_acc) valid_losses.append(valid_loss) valid_accs.append(valid_acc) print(f'Epoch: {epoch+1:02} | Epoch Time: {epoch_mins}m {epoch_secs}s') print(f'\tTrain Loss: {train_loss:.3f} | Train Acc: {train_acc*100:.2f}%') print(f'\t Val. Loss: {valid_loss:.3f} | Val. Acc: {valid_acc*100:.2f}% \n') # + id="EqcwIW5m8z-o" torch.save(model.state_dict(), os.path.join(base_path, 'lepoch10_saved_weights.pt')) # + [markdown] id="Rrc82i1BxhbK" # ## Visualization # --- # + id="aSswDN2fkFZ1" # visualize accuracy and loss graph def visualize_graph(train_losses, train_acc, test_losses, test_acc): fig, axs = plt.subplots(2,2,figsize=(15,10)) axs[0, 0].plot(train_losses) axs[0, 0].set_title("Training Loss") axs[1, 0].plot(train_acc) axs[1, 0].set_title("Training Accuracy") axs[0, 1].plot(test_losses) axs[0, 1].set_title("Test Loss") axs[1, 1].plot(test_acc) axs[1, 1].set_title("Test Accuracy") def visualize_save_train_vs_test_graph(EPOCHS, dict_list, title, xlabel, ylabel, PATH, name="fig"): plt.figure(figsize=(20,10)) #epochs = range(1,EPOCHS+1) for label, item in dict_list.items(): x = np.linspace(1, EPOCHS+1, len(item)) plt.plot(x, item, label=label) plt.title(title) plt.xlabel(xlabel) plt.ylabel(ylabel) plt.legend() plt.savefig(PATH+"/"+name+".png") # + [markdown] id="Wzo7PwxkxlmV" # #### Training and Testing Accuracy and Loss # + colab={"base_uri": "https://localhost:8080/", "height": 607} id="Q3Z0biLn2DqW" outputId="907e6449-3c64-4450-aae0-393f783148d6" visualize_graph(train_losses, train_accs, valid_losses, valid_accs) # + [markdown] id="I5yIKJ1ExsKk" # #### Train vs Test Accuracy Comparison # + colab={"base_uri": "https://localhost:8080/", "height": 621} id="KQhc4AJ4nr-h" outputId="30ce7e7e-a46e-46f2-862f-f8af8c154497" dict_list = {'Training Accuracy': train_accs, 'Test Accuracy': valid_accs} title = "Training vs Test Accuracy" xlabel = "Epochs" ylabel = "Accuracy(in Percentage)" name = "train_vs_test_acc_comparison_graph" visualize_save_train_vs_test_graph(N_EPOCHS, dict_list, title, xlabel, ylabel, base_path, name=name) # + [markdown] id="EgfHl3p_x3_y" # #### Train vs Test Loss Comparison # + colab={"base_uri": "https://localhost:8080/", "height": 621} id="ZE2N4NLBn1eF" outputId="b31fd560-a1ef-4d8a-9e47-86f9474a1d01" dict_list = {'Training Loss': train_losses, 'Test Loss': valid_losses} title = "Training vs Test Loss" xlabel = "Epochs" ylabel = "Loss" name = "train_vs_test_loss_comparison_graph" visualize_save_train_vs_test_graph(N_EPOCHS, dict_list, title, xlabel, ylabel, base_path, name=name) # + [markdown] id="nAxiXJIJx9z-" # ## Evaluation # --- # + id="3-puuitPt9nP" from sklearn.metrics import f1_score, accuracy_score def print_accuracy(df, target_col, pred_column): "Print f1 score and accuracy after making predictions" f1_macro = f1_score(df[target_col].astype(int), df[pred_column].astype(int), average='macro') acc = accuracy_score(df[target_col].astype(int), df[pred_column].astype(int))*100 return f1_macro, acc # + id="GTP_DwmFqNiW" def evaluation_pred(model, iterator): # initialize every epoch epoch_loss = 0 epoch_acc = 0 # deactivating dropout layers model.eval() eval_df = pd.DataFrame(columns=['label','pred']) # deactivates autograd with torch.no_grad(): for batch in iterator: # retrieve text and no. of words text = batch.tweets #, text_lengths = batch.text label = batch.labels.cpu().numpy() # convert to 1D tensor predictions = model(text) top_pred = predictions.argmax(1, keepdim = True).cpu().numpy() batch_df = pd.DataFrame(top_pred, columns=['pred']) batch_df['label'] = label batch_df['pred'] = batch_df['pred'].astype(int) batch_df['label'] = batch_df['label'].astype(int) eval_df = pd.concat([eval_df, batch_df]) return eval_df # + id="s-573X44n-Oa" from sklearn.metrics import confusion_matrix import matplotlib.pyplot as plt import numpy as np def plot_confusion_matrix(y_true, y_pred, classes=['Positive','Neutral','Negative'], normalize=False, cmap=plt.cm.YlOrBr): """ This function prints and plots the confusion matrix. Normalization can be applied by setting `normalize=True`. (Adapted from scikit-learn docs). """ # Compute confusion matrix cm = confusion_matrix(y_true, y_pred) if normalize: cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis] fig, ax = plt.subplots() im = ax.imshow(cm, interpolation='nearest', origin='lower', cmap=cmap) ax.figure.colorbar(im, ax=ax) # Show all ticks ax.set(xticks=np.arange(cm.shape[1]), yticks=np.arange(cm.shape[0]), # Label with respective list entries xticklabels=classes, yticklabels=classes, ylabel='True label', xlabel='Predicted label') # Set alignment of tick labels plt.setp(ax.get_xticklabels(), rotation=0, ha="right", rotation_mode="anchor") # Loop over data dimensions and create text annotations fmt = '.2f' if normalize else 'd' thresh = cm.max() / 2. for i in range(cm.shape[0]): for j in range(cm.shape[1]): ax.text(j, i, format(cm[i, j], fmt), ha="center", va="center", color="white" if cm[i, j] > thresh else "black") return fig, ax # + id="yMaZZy81oKTt" import pickle model.eval() tokenizer_file = open(os.path.join(data_path,'tokenizer.pkl'), 'rb') tokenizer = pickle.load(tokenizer_file) #inference import spacy nlp = spacy.load('en') def classify_text(tweet, visualize=True, verbose=False): categories = {0: 0, 1:1, 2:2} # tokenize the tweet tokenized = [tok.text for tok in nlp.tokenizer(tweet)] # convert to integer sequence using predefined tokenizer dictionary indexed = [tokenizer[t] for t in tokenized] # compute no. of words length = [len(indexed)] # convert to tensor tensor = torch.LongTensor(indexed).to(device) # reshape in form of batch, no. of words tensor = tensor.unsqueeze(1).T print(tensor.shape) # convert to tensor length_tensor = torch.LongTensor(length) # Get the model prediction prediction = model(tensor, visualize=visualize, verbose=verbose) #, length_tensor) # print(prediction) # _, pred = torch.max(prediction, 1) pred = prediction.argmax(keepdim = True) return categories[pred.item()] # + id="aVUHNb-8pIRi" plt.rcParams["figure.figsize"] = (8,8) # + [markdown] id="1sQgeexIyW2d" # #### Encoder-Decoder Visualization of each step # # + colab={"base_uri": "https://localhost:8080/", "height": 1000} id="TrnzuZ23sg-i" outputId="b4ecf68b-d925-4551-adbe-e0388f8a0b94" label, tweet = tweets_data.loc[0]['labels'], tweets_data.loc[0]['tweets'] print(tweet) print(f'Target Label: {label}') pred = classify_text(tweet) print(f'Predicted Label: {pred}') # + [markdown] id="4yzygatLzdeU" # #### Evaluation Result # + id="mO7wumr1lRdt" eval_df = evaluation_pred(model, valid_iterator) # + colab={"base_uri": "https://localhost:8080/", "height": 506} id="q86kCBedqHvg" outputId="81900f32-a2a4-4129-8325-a57ee2af6d2c" plot_confusion_matrix(eval_df['label'].values.tolist(), eval_df['pred'].values.tolist()) # + colab={"base_uri": "https://localhost:8080/"} id="7qcokgmJuzSP" outputId="4e52b426-df99-4f65-da55-718f81f6b595" f1_macro, acc = print_accuracy(eval_df, 'label', 'pred') print(f'F1 Macro Score: {f1_macro}') print(f'Accuracy: {acc} %') # + id="zSc8P39fkYNk" # model.load_state_dict(torch.load(os.path.join(base_path, 'lepoch10_saved_weights.pt'))) # model = model.to(device)
Session6-GRUs,Seq2SeqandIntroductiontoAttentionMechanism/Session6_LSTM_Encoder_Decoder_TweeterDataset.ipynb
# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.14.4 # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- # # 11장 자연어처리 3부 # **감사말**: 프랑소와 숄레의 [Deep Learning with Python, Second Edition](https://www.manning.com/books/deep-learning-with-python-second-edition?a_aid=keras&a_bid=76564dff) 10장에 사용된 코드에 대한 설명을 담고 있으며 텐서플로우 2.6 버전에서 작성되었습니다. 소스코드를 공개한 저자에게 감사드립니다. # # **tensorflow 버전과 GPU 확인** # - 구글 코랩 설정: '런타임 -> 런타임 유형 변경' 메뉴에서 GPU 지정 후 아래 명령어 실행 결과 확인 # # ``` # # !nvidia-smi # ``` # # - 사용되는 tensorflow 버전 확인 # # ```python # import tensorflow as tf # tf.__version__ # ``` # - tensorflow가 GPU를 사용하는지 여부 확인 # # ```python # tf.config.list_physical_devices('GPU') # ``` # + [markdown] colab_type="text" # ## 11.4 트랜스포머 아키텍처 # - # 2017년 논문 # ["Attention is all you need"](https://arxiv.org/abs/1706.03762)에서 # 소개된 트랜스포머(Transformer) 아키텍처는 자연어처리 분야에서 혁명을 불러왔다. # 트랜스포머는 "**뉴럴 어텐션**(Neural Attention)" 기법을 이용하여 # 순환층 또는 합성곱 층과는 다르게 작동하는 순차 모델(sequence model)을 구현한다. # # 여기서는 뉴럴 어텐션의 작동법을 설명한 후에 # 트랜스포머 인코더를 이용하여 IMDB 영화 리뷰 모델을 구현한다. # + [markdown] colab_type="text" # ### 11.4.1 셀프 어텐션(self-attention) # - # 입력값의 특성 중에 보다 중요한 특성에 **집중(attention)**하면 보다 효율적으로 # 훈련이 진행될 수 있다. # 아래 그림이 집중(attention)이 어떻게 활용되는지 잘 보여준다. # <div align="center"><img src="https://drek4537l1klr.cloudfront.net/chollet2/Figures/11-05.png" style="width:60%;"></div> # # 그림 출처: [Deep Learning with Python(Manning MEAP)](https://www.manning.com/books/deep-learning-with-python-second-edition) # 앞서 유사한 아이디어를 활용한 적이 있다. # # - 합성곱 신경망의 맥스 풀링(max pooling): 지역적으로 가장 중요한 특성만 사용한다. # - TF-IDF 정규화: 텍스트 벡터화를 위해 사용되는 TF-IDF 정규화는 # 사용되는 토큰(tokens)에 포함된 정보의 중요도를 평가하여 # 보다 중요한 정보를 담은 토큰에 집중한다. # **셀프 어텐션**(self-attention)은 주어진 문장에 사용된 단어들의 연관성을 평가하여 # 그 결과를 해당 문장에 적용하여 입력값을 변환하는 기법을 # 가리킨다. # 즉, **문맥**(context)를 활용한다. # 아래 그림은 "The train left the station on time." 이라는 문장에 # 셀프 어텐션을 적용하여 입력값을 변환하는 과정을 나타낸다. # # - 1단계: 문장에 사용된 각 토큰들 사이의 연관성 계산. # - 2단계: 계산된 연관성을 (토큰) 벡터와 결합시킨 후 새로운 # 토큰 벡터들의 시퀀스 생성. # 아래 그림에서는 "station" 단어에 해당하는 벡터가 변환되는 과정을 보여줌. # <div align="center"><img src="https://drek4537l1klr.cloudfront.net/chollet2/Figures/11-06.png" style="width:70%;"></div> # # 그림 출처: [Deep Learning with Python(Manning MEAP)](https://www.manning.com/books/deep-learning-with-python-second-edition) # + [markdown] colab_type="text" # **질문-키-값(query-key-value) 모델** # - # 셀프 어텐션의 작동 과정을 식으로 표현하면 다음과 같다. # # outputs = sum(inputs * pairwise_scores(inputs, inputs)) # | | | # (C) (A) (B) # # 위 식은 원래 검색 엔진 또는 추천 시스템에 사용되는 # 보다 일반화된 셀프 어텐션의 작동과정을 표현한 식의 특별한 경우를 보여준다. # # outputs = sum(values * pairwise_scores(query, keys)) # | | | # (C) (A) (B) # 예를 들어, 아래 그림은 "dogs on the beach." 질문(query)에 가장 # 적절한 사신을 검색한다면 각 사진과의 연관성(keys) 점수를 # 해당 사진(values)과 결합하여 가장 높은 점수를 갖는 사진을 # 추천하는 것을 보여준다. # <div align="center"><img src="https://drek4537l1klr.cloudfront.net/chollet2/Figures/11-07.png" style="width:60%;"></div> # # 그림 출처: [Deep Learning with Python(Manning MEAP)](https://www.manning.com/books/deep-learning-with-python-second-edition) # 질문-키-값(query-key-value) 모델을 실전에 적용할 때 많은 경우 키(keys)와 값(values)가 동일하다. # # - 기계 번역: # "How's the weather today?"를 스페인어로 기계 번역하려 할 경우 # 스페인어로 날씨에 해당하는 "tiempo"를 키(key)로 해서 주어진 영어 문장(query)에 # 사용된 단어들과 비교해야 한다. # - 텍스트 분류: # 앞서 셀프 어텐션 설명을 위해 사용된 그림에서처럼 query, keys, values 모두 동일하다. # + [markdown] colab_type="text" # ### 11.4.2 멀티헤드 어텐션 # - # 단어들 사이의 연관성을 다양한 방식으로 알아내기 위해 셀프 어텐션을 수행하는 # **헤드**(head)를 여러 개 병렬로 처리한 후에 다시 합치는 기법을 # **멀티헤드 어텐션**(multi-head attention)이다. # 아래 그림은 두 개의 헤드를 사용하는 것을 보여주며 각각의 헤드가 하는 일은 다음과 같다. # # - 질문, 키, 값을 각각 서로 다른 밀집 밀집 층으로 구성된 블록을 통과 시킨다. # - 이후 변환된 질문, 키, 값에 셀프 어텐션을 적용한다. # # 각 헤드에 포함된 밀집 층 블록으로 인해 멀티헤드 어텐션 층에서도 # 학습이 이루어진다. # # **참고**: 채널 분리 합성곱 층의 알고리즘과 기본 아이디어가 유사하다. # <div align="center"><img src="https://drek4537l1klr.cloudfront.net/chollet2/Figures/11-08.png" style="width:70%;"></div> # # 그림 출처: [Deep Learning with Python(Manning MEAP)](https://www.manning.com/books/deep-learning-with-python-second-edition) # + [markdown] colab_type="text" # ### 11.4.2 트랜스포머 인코더 # - # 멀티헤드 어텐션을 밀집(dense) 층, 정규화 층, 잔차 연결 등과 조합하여 # **트랜스포머 인코더**(transformer encoder)를 생성한다. # # 아래 그림에서 사용되는 정규화 층인 케라스의 `LayerNormalization`은 # 정규화를 배치 단위가 아닌 시퀀스 단위로 정규화를 실행한다. # 시퀀스 데이터를 처리할 때는 `BatchNormalization` 보다 잘 작동한다. # <div align="center"><img src="https://drek4537l1klr.cloudfront.net/chollet2/Figures/11-09.png" style="width:35%;"></div> # # 그림 출처: [Deep Learning with Python(Manning MEAP)](https://www.manning.com/books/deep-learning-with-python-second-edition) # + [markdown] colab_type="text" # **예제: IMDB 데이터셋** # - # 데이터셋을 준비하는 과정은 이전과 동일하다. # + colab_type="code" # !curl -O https://ai.stanford.edu/~amaas/data/sentiment/aclImdb_v1.tar.gz # !tar -xf aclImdb_v1.tar.gz if 'google.colab' in str(get_ipython()): # !rm -r aclImdb/train/unsup else: import shutil unsup_path = './aclImdb/train/unsup' shutil.rmtree(unsup_path) # + colab_type="code" import os, pathlib, shutil, random from tensorflow import keras batch_size = 32 base_dir = pathlib.Path("aclImdb") val_dir = base_dir / "val" train_dir = base_dir / "train" for category in ("neg", "pos"): os.makedirs(val_dir / category) files = os.listdir(train_dir / category) random.Random(1337).shuffle(files) num_val_samples = int(0.2 * len(files)) val_files = files[-num_val_samples:] for fname in val_files: shutil.move(train_dir / category / fname, val_dir / category / fname) train_ds = keras.utils.text_dataset_from_directory( "aclImdb/train", batch_size=batch_size ) val_ds = keras.utils.text_dataset_from_directory( "aclImdb/val", batch_size=batch_size ) test_ds = keras.utils.text_dataset_from_directory( "aclImdb/test", batch_size=batch_size ) text_only_train_ds = train_ds.map(lambda x, y: x) # + [markdown] colab_type="text" # 텍스트 벡터화는 정수들의 벡터를 사용하며, 리뷰의 최대 길이를 600 단어로 제한한다. # # - `output_mode="int"` # - `output_sequence_length=600` # + colab_type="code" from tensorflow.keras import layers max_length = 600 max_tokens = 20000 text_vectorization = layers.TextVectorization( max_tokens=max_tokens, output_mode="int", output_sequence_length=max_length, ) # 어휘 색인화 text_vectorization.adapt(text_only_train_ds) int_train_ds = train_ds.map(lambda x, y: (text_vectorization(x), y)) int_val_ds = val_ds.map(lambda x, y: (text_vectorization(x), y)) int_test_ds = test_ds.map(lambda x, y: (text_vectorization(x), y)) # + [markdown] colab_type="text" # **트랜스포머 구현** # - # 위 그림에서 설명된 트랜스포머 인코더를 층(layer)으로 구현하면 다음과 같다. # 생성자의 입력값을 예를 들어 설명하면 다음과 같다. # # - `embed_dim` # - 트랜스포머 인코더는 "단어 임베딩" 층을 통과한 값을 받음. # - 예를 들어 `embed_dim=256`은 단어 임베딩이 # `(600, 256)` 모양의 샘플을 생성할 것을 기대함. # - `dense_dim`: 밀집 층에서 사용되는 유닛(unit) 수 # - `num_heads`: 헤드(head) 수 # + colab_type="code" import tensorflow as tf from tensorflow import keras from tensorflow.keras import layers class TransformerEncoder(layers.Layer): def __init__(self, embed_dim, dense_dim, num_heads, **kwargs): super().__init__(**kwargs) self.embed_dim = embed_dim self.dense_dim = dense_dim self.num_heads = num_heads self.attention = layers.MultiHeadAttention( num_heads=num_heads, key_dim=embed_dim) self.dense_proj = keras.Sequential( [layers.Dense(dense_dim, activation="relu"), layers.Dense(embed_dim),] ) self.layernorm_1 = layers.LayerNormalization() self.layernorm_2 = layers.LayerNormalization() def call(self, inputs, mask=None): if mask is not None: mask = mask[:, tf.newaxis, :] attention_output = self.attention( inputs, inputs, attention_mask=mask) proj_input = self.layernorm_1(inputs + attention_output) proj_output = self.dense_proj(proj_input) return self.layernorm_2(proj_input + proj_output) def get_config(self): config = super().get_config() config.update({ "embed_dim": self.embed_dim, "num_heads": self.num_heads, "dense_dim": self.dense_dim, }) return config # + [markdown] colab_type="text" # **트랜스포머 인코더 활용 모델** # - # 훈련 데이터셋이 입력되면 먼저 단어 임베딩을 이용하여 # 단어들 사이의 연관성을 찾는다. # 이후 트랜스포머 인코더로 셀프 어텐션을 적용한다. # # 사용되는 변수들은 다음과 같다. # # - `vocab_size = 20000`: 어휘 색인 크기 # - `embed_dim = 256`: 단어 임베딩 특성 수 # - `dense_dim = 32`: 트랜스포머 인코더에 사용되는 밀집층의 유닛(unit) 수 # - `num_heads = 2`: 트랜스포머 인코더에 사용되는 밀집층의 헤드(head) 수 # + colab_type="code" vocab_size = 20000 embed_dim = 256 num_heads = 2 dense_dim = 32 inputs = keras.Input(shape=(None,), dtype="int64") x = layers.Embedding(vocab_size, embed_dim)(inputs) x = TransformerEncoder(embed_dim, dense_dim, num_heads)(x) x = layers.GlobalMaxPooling1D()(x) x = layers.Dropout(0.5)(x) outputs = layers.Dense(1, activation="sigmoid")(x) model = keras.Model(inputs, outputs) model.compile(optimizer="rmsprop", loss="binary_crossentropy", metrics=["accuracy"]) model.summary() # + [markdown] colab_type="text" # 훈련 과정은 특별한 게 없다. # 테스트셋에 대한 정확도가 87.5% 정도로 바이그램 모델보다 좀 더 낮다. # + colab_type="code" callbacks = [ keras.callbacks.ModelCheckpoint("transformer_encoder.keras", save_best_only=True) ] model.fit(int_train_ds, validation_data=int_val_ds, epochs=20, callbacks=callbacks) model = keras.models.load_model( "transformer_encoder.keras", custom_objects={"TransformerEncoder": TransformerEncoder}) print(f"Test acc: {model.evaluate(int_test_ds)[1]:.3f}") # - # **모델 비교** # 자연어처리와 관련된 모델을 단어 순서 인식과 문맥 이해 차원에서 비교하면 다음과 같다. # # | | 단어순서 인식 | 문맥 이해 | # | :---: | :---: | :---: | # | 유니그램 주머니 모델 | X | X | # | 바이그램 주머니 모델 | $\triangle$ | X | # | RNN | O | X | # | 셀프 어텐션 | X | O | # | 트랜스포머 | O | O | # + [markdown] colab_type="text" # **단어 위치 인코딩** # - # 앞서 살펴 본 트랜스포머 인코더는 셀프 어텐션과 밀집층을 사용하기에 # 단어순서를 제대로 활용하지는 못한다. # 하지만 단어 인코딩 과정에서 단어순서 정보를 활용하도록 하는 기능을 추가하면 # 트랜스포머가 알아서 단어위치 정보를 활용한다. # # 다음 `PositionalEmbedding` 층 클래스는 두 개의 임베딩 클래스를 사용한다. # 하나는 보통의 단어 임베딩이며, # 다른 하나는 단어의 위치 정보를 임베딩한다. # 각 임베딩의 출력값을 합친 값을 트랜스포머에게 전달하는 역할을 수행한다. # + colab_type="code" class PositionalEmbedding(layers.Layer): def __init__(self, sequence_length, input_dim, output_dim, **kwargs): super().__init__(**kwargs) self.token_embeddings = layers.Embedding( input_dim=input_dim, output_dim=output_dim) self.position_embeddings = layers.Embedding( input_dim=sequence_length, output_dim=output_dim) self.sequence_length = sequence_length self.input_dim = input_dim self.output_dim = output_dim def call(self, inputs): length = tf.shape(inputs)[-1] positions = tf.range(start=0, limit=length, delta=1) embedded_tokens = self.token_embeddings(inputs) embedded_positions = self.position_embeddings(positions) return embedded_tokens + embedded_positions def compute_mask(self, inputs, mask=None): return tf.math.not_equal(inputs, 0) def get_config(self): config = super().get_config() config.update({ "output_dim": self.output_dim, "sequence_length": self.sequence_length, "input_dim": self.input_dim, }) return config # + [markdown] colab_type="text" # **단어위치인식 트랜스포머 아키텍처** # + [markdown] colab_type="text" # 아래 코드는 `PositionalEmbedding` 층을 활용하여 트랜스포머 인코더가 # 단어위치를 활용할 수 있도록 한다. # 최종 모델의 테스트셋에 대한 정확도가 88.3%까지 향상됨을 확인할 수 있다. # + colab_type="code" vocab_size = 20000 sequence_length = 600 embed_dim = 256 num_heads = 2 dense_dim = 32 inputs = keras.Input(shape=(None,), dtype="int64") x = PositionalEmbedding(sequence_length, vocab_size, embed_dim)(inputs) x = TransformerEncoder(embed_dim, dense_dim, num_heads)(x) x = layers.GlobalMaxPooling1D()(x) x = layers.Dropout(0.5)(x) outputs = layers.Dense(1, activation="sigmoid")(x) model = keras.Model(inputs, outputs) model.compile(optimizer="rmsprop", loss="binary_crossentropy", metrics=["accuracy"]) model.summary() callbacks = [ keras.callbacks.ModelCheckpoint("full_transformer_encoder.keras", save_best_only=True) ] model.fit(int_train_ds, validation_data=int_val_ds, epochs=20, callbacks=callbacks) model = keras.models.load_model( "full_transformer_encoder.keras", custom_objects={"TransformerEncoder": TransformerEncoder, "PositionalEmbedding": PositionalEmbedding}) print(f"Test acc: {model.evaluate(int_test_ds)[1]:.3f}") # + [markdown] colab_type="text" # ### 11.4.4 트랜스포머 사용 기준 # - # 단어주머니 모델이 여전히 유용하게 활용된다. # 실제로 IMDB 데이터셋에 대한 성능도 단어주머니 모델이 가장 좋았다. # 그리고 많은 실험 결과 "훈련셋의 크기"와 "텍스트의 평균 단어 수"의 비율이 모델 선택에 # 결정적인 역할을 수행한다는 경험 법칙이 알려졌다. # # - ("훈련셋의 크기" $/$ "텍스트의 평균 단어 수") $>$ 1500 인 경우: 트랜스포머 등 순차 모델 # - ("훈련셋의 크기" $/$ "텍스트의 평균 단어 수") $<$ 1500 인 경우: 바이그램 단어주머니 모델 # **예제 1** # 1천개의 단어를 포함한 텍스트 십만 개로 이루어진 훈련셋을 사용하는 경우 비율이 100이기에 바이그램 모델을 사용하는 것이 좋다. # **예제 2** # 평균 40개의 단어를 포함하는 트윗(tweets) 5만 개로 이루어진 훈련셋을 사용하는 경우 비율이 1,250이기에 역시 바이그램 모델을 사용하는 것이 좋다. # **예제 3** # 평균 40개의 단어를 포함하는 트윗(tweets) 50만 개로 이루어진 훈련셋을 사용하는 경우 비율이 12,500이기에 이번엔 트랜스포머 인코더를 활용하는 것이 좋다. # **예제 4** # IMDB 훈련셋은 2만 개의 리뷰로 구성되며 리뷰 한 개는 평균 233 개의 단어를 포함한다. 비율이 85.84 정도이기에 바이그램 모델이 보다 적합해야 하는데 # 지금까지 살펴본 결과가 이에 입증한다. # **경험 법칙의 직관적 이해** # 짧은 문장이 많을 수록 문맥을 파악하려면 단어들의 순서가 중요하며, # 문장에 사용된 단어들 사이의 복잡한 연관성을 보다 주의깊게 살펴볼 필요가 있다. # 예를 들어, "그 영화는 실패야"와 "그 영화는 실패였어"는 분명 다른 의미를 가지지만 # 단어주머니 모델은 차이점을 파악하기 어렵다. # 반면에 보다 긴 문장의 주제와 긍정/부정 등의 감성에 대한 분류는 # 단어 관련 통계의 중요성이 보다 크다. # **주의사항** # # 앞서 설명한 경험 법칙은은 텍스트 분류(text classification)에 한정된다. # 예를 들어 기계 번역(machine translation)의 경우 매우 긴 문장을 다룰 때 # 트랜스포머가 가본적으로 가장 강력한 성능의 모델을 생성한다.
notebooks/dlp11_part03_transformer.ipynb
# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.14.4 # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- # # <font color=darkblue>ENGR 1330-2022 Exam 3 - Laboratory Portion </font> # # **LAST NAME, FIRST NAME** # # **R00000000** # # ENGR 1330 Exam 3A - Demonstrate Laboratory/Programming Skills # # --- # # # **If you are unable to download the file, create an empty notebook and copy paste the problems into Markdown cells and Code cells (problem-by-problem)** # # # ## Problem 0 (5 pts) : <font color = 'magenta'>*Profile your computer*</font> # # Execute the code cell below exactly as written. If you get an error just continue to the remaining problems. # Preamble script block to identify host, user, and kernel import sys # ! hostname # ! whoami print(sys.executable) print(sys.version) print(sys.version_info) # ## Exercise 1 (5 pts) Download the datafile # The file [http://54.243.252.9/engr-1330-webroot/5-ExamProblems/Exam3/spring2022/boxes.csv](http://5172.16.17.32/engr-1330-webroot/5-ExamProblems/Exam3/spring2022/boxes.csv) below contains values of impact strength of packaging materials in foot-pounds of branded boxes. # # Download the file and read it into a dataframe. # # <!--``` # import requests # remote_url="http://5172.16.17.32/engr-1330-webroot/5-ExamProblems/Exam3/spring2022/boxes.csv" # set the url # rget = requests.get(remote_url, allow_redirects=True) # get the remote resource, follow imbedded links # localfile = open('boxes.csv','wb') # open connection to a local file same name as remote # localfile.write(rget.content) # extract from the remote the contents,insert into the local file same name # localfile.close() # close connection to the local file # ```--> # #### Download the necessary datafile # download the datafile import requests remote_url="http://192.168.127.12/engr-1330-webroot/5-ExamProblems/Exam3/spring2022/boxes.csv" # set the url rget = requests.get(remote_url, allow_redirects=True) # get the remote resource, follow imbedded links localfile = open('boxes.csv','wb') # open connection to a local file same name as remote localfile.write(rget.content) # extract from the remote the contents,insert into the local file same name localfile.close() # close connection to the local file # #### Store the datafile into a datafrome # + # your script/answers go here # - # #### Describe the dataframe, how many columns are in the dataframe? What are the column names? # + # your script/answers go here # - # ## Exercise 2 (15 pts.) Produce a histogram of the Amazon series and the USPS series on the same plot. Plot Amazon using red, and USPS using blue. # # > - Import suitable package to build histograms # > - Apply package with plotting call to prodice two histograms on same figure space # > - Label plot and axes with suitable annotation # #### Plot the histograms with proper formatting # + # your script goes here # - # #### Comment on the histograms, do they overlap? # TYPE HERE: Your comments regarding the histograms here # # ## Exercise 3 (5 pts.) Summary Statistics for the Amazon and USPS Brands # > - Compute the mean strength and the standard deviation of the Amazon and USPS brands # > - Identify which series has a greater mean value # > - Identify which series has the greater standard deviation # #### Compute the means and standard deviations # + # your script goes here # - # #### Identify which has the largest mean # TYPE HERE: Your comments regarding which has a greater mean # # #### Identify which has the largest standard deviation # TYPE HERE: Your comments regarding which has a greater standard deviation # # ## Exercise 4 (5 pts.) Test the Amazon data for normality, interpret the results. # #### Build your test below # + # your script goes here # - # #### Interpret the results # Type your interpretation here # ## Exercise 5 (5 pts.) Test the USPS data for normality, interpret the results. # #### Build your test below # + # your script goes here # - # #### Interpret the results # Type your interpretation here # # ## Exercise 6 (10 pts.) Determine if there is evidence of a difference in mean strength between the two brands. # Use an appropriate hypothesis test to support your assertion at a level of significance of $\alpha = 0.10$. # # > - Choose a test and justify choice # > - Import suitable package to run the test # > - Apply the test and interpret the results # > - Report result with suitable annotation # #### Build your hypothesis test below # + # your script here # - # #### Interpret the results # Type your interpretation here #
5-ExamProblems/Exam3/spring2022/src/.ipynb_checkpoints/s22-ex3-deployA-jd-checkpoint.ipynb
# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.14.4 # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- # # "Solving the Problem of the K Parameter in the KNN Classifier Using an Ensemble Learning Approach" # # # Ideea principala a acestui articol este utilizarea algoritmului KNN fara a specifica parametrul k in mod empiric. # # # # Metoda propusa in acest articol a fost asamblarea clasificatoarelor KNN cu k=1, 3, 5, 7 ... n (unde n reprezinta radacina patrata a dimensiunii setului de date) intr-un singur clasificator care va clasifica in urma deciziei majoritare # # # Pasul 1: importam librariile necesare # + #import subprocess import pandas as pd import numpy as np from numpy import mean from numpy import std from sklearn.model_selection import cross_val_score from sklearn.model_selection import RepeatedStratifiedKFold from sklearn.preprocessing import LabelEncoder from sklearn.neighbors import KNeighborsClassifier from sklearn.metrics import accuracy_score, precision_score from sklearn.utils import shuffle from matplotlib import pyplot from sklearn.ensemble import VotingClassifier import math # - # # Pasul 2: definim metoda de instantiere a clasificatorului asamblat # get a voting ensemble of models def get_voting(n): k=-1; count=0; models = list(); label="-NN"; labelList=[]; while k<n: k=k+2; count=count+1; labelList.append(str(k)+label) # define the base models models.append((str(k)+label, KNeighborsClassifier(n_neighbors=k))) # define the voting ensemble ensemble = VotingClassifier(estimators=models, voting='hard') return ensemble # # Pasul 3: vom crea o lista cu clasificatorii care vor fi evaluati, aceasta lista contine clasificatorii 1NN, 3NN, 5NN.... nNN (unde n reprezinta radacina patrata a dimensiunii setului de date), si clasificatorul care asambleaza toti clasificatorii mentionati anterior # get a list of models to evaluate def get_models(n): models = dict() k=-1; count=0; label="-NN"; labelList=[]; while k<n: k=k+2; count=count+1; labelList.append(str(k)+label) # define the base models if(k<10): models[' '+str(k)+label] = KNeighborsClassifier(n_neighbors=k) elif(k>10 and k<100): models[' '+str(k)+label] = KNeighborsClassifier(n_neighbors=k) else: models[str(k)+label] = KNeighborsClassifier(n_neighbors=k) models['ensemble'] = get_voting(n) return models # # Pasul 4: vom crea o metoda care va evalua fiecare model individual, metrica de interes fiind acuratetea. Pentru testare am impartit setul de date in 70% date de antrenare si 30% date de testare cum a specificat autorul documentului # evaluate a give model using cross-validation def evaluate_model(model): cv = RepeatedStratifiedKFold(n_splits=5, n_repeats=1, random_state=1) scores = cross_val_score(model, X, y, scoring='accuracy', cv=cv, n_jobs=-1) return scores # # Un exemplu propus de autor foloseste setul de date QSAR.csv care contine 43 de feature-uri, din care primele 42 sunt date de intrare, iar al 43-lea feature reprezinta clasa din care face parte obiectul interogat. # # Dimensiunea setului de date este de 1055 de unde tragem concluzia ca vom utiliza clasificatorii 1NN, 3NN, 5NN, 7NN, 9NN, 11NN, 13NN, 15NN, 17NN, 19NN, 21NN, 23NN, 25NN, 27NN, 29NN, 31NN(deoarece 31 este cel mai apropiat numar impar de radical(1055)) in cadrul clasificatorului asamblat. # + input_file = "QSAR .csv" data = pd.read_csv(input_file, header = 0) X, y = data[data.columns.drop('F43')], data['F43'] n=int(math.sqrt(1055)) if(n % 2 == 0): n=n-1 models = get_models(n) # - # # Datorita unui bug modelele sunt analizate intr-o ordine aleatoare, motiv pentru care voi introduce o sortare alfabetica a numelor clasificatoriilor care va ordona indirect si lista performantelor obtinute # # + # evaluate the models and store results (unsorted) results, names = list(), list() for name, model in models.items(): scores = evaluate_model(model) results.append(scores) names.append(name) for x in range (len(names)): print('%s %.4f ' % (names[x], mean(results[x]))) # + # evaluate the models and store results (sorted) results, names = list(), list() for name, model in models.items(): scores = evaluate_model(model) results.append(scores) names.append(name) zipped= zip(names, results) names, results = zip(*sorted(zipped)) for x in range (len(names)): print('%s %.4f ' % (names[x], mean(results[x]))) # - # # Australian data set contine 690 randuri de date, 42 de feature-uri, feature-ul pe care il vom clasifica este F15 care are 2 posibile clase # + print('Evaluate Australian dataset') input_file = "australian.csv" data = pd.read_csv(input_file, header = 0) X, y = data[data.columns.drop('F15')], data['F15'] n=int(math.sqrt(690)) if(n % 2 == 0): n=n-1 models = get_models(n) # evaluate the models and store results results, names = list(), list() bestName="1NN"; bestAccuracy=0; for name, model in models.items(): scores = evaluate_model(model) results.append(scores) names.append(name) zipped= zip(names, results) names, results = zip(*sorted(zipped)) for x in range (len(names)): print('%s %.4f ' % (names[x], mean(results[x]))) if(mean(results[x])> bestAccuracy): bestName= names[x]; bestAccuracy= mean(results[x]); print('Best accuracy :%s with accuracy %.4f '% (bestName, bestAccuracy)) # - # # Balance data set contine 625 randuri de date, 4 feature-uri, feature-ul pe care il vom clasifica este F1 care are 3 posibile clase # + print('Evaluate Balance dataset') input_file = "balance.csv" data = pd.read_csv(input_file, header = 0) X, y = data[data.columns.drop('F1')], data['F1'] n=int(math.sqrt(625)) if(n % 2 == 0): n=n-1 models = get_models(n) # evaluate the models and store results results, names = list(), list() bestName="1NN"; bestAccuracy=0; for name, model in models.items(): scores = evaluate_model(model) results.append(scores) names.append(name) zipped= zip(names, results) names, results = zip(*sorted(zipped)) for x in range (len(names)): print('%s %.4f ' % (names[x], mean(results[x]))) if(mean(results[x])> bestAccuracy): bestName= names[x]; bestAccuracy= mean(results[x]); print('Best accuracy :%s with accuracy %.4f '% (bestName, bestAccuracy)) # - # # Banknote data set contine 1372 randuri de date, 5 feature-uri, feature-ul pe care il vom clasifica este F5 care are 2 posibile clase # + print('Evaluate Banknote dataset') input_file = "banknote.csv" data = pd.read_csv(input_file, header = 0) X, y = data[data.columns.drop('F5')], data['F5'] n=int(math.sqrt(1372)) if(n % 2 == 0): n=n-1 models = get_models(n) # evaluate the models and store results results, names = list(), list() bestName="1NN"; bestAccuracy=0; for name, model in models.items(): scores = evaluate_model(model) results.append(scores) names.append(name) zipped= zip(names, results) names, results = zip(*sorted(zipped)) for x in range (len(names)): print('%s %.4f ' % (names[x], mean(results[x]))) if(mean(results[x])> bestAccuracy): bestName= names[x]; bestAccuracy= mean(results[x]); print('Best accuracy :%s with accuracy %.4f '% (bestName, bestAccuracy)) # - # # Haberman data set contine 306 randuri de date, 4 feature-uri, feature-ul pe care il vom clasifica este F4 care are 2 posibile clase # + print('Evaluate Haberman dataset') input_file = "haberman.csv" data = pd.read_csv(input_file, header = 0) X, y = data[data.columns.drop('F4')], data['F4'] n=int(math.sqrt(306)) if(n % 2 == 0): n=n-1 models = get_models(n) # evaluate the models and store results results, names = list(), list() bestName="1NN"; bestAccuracy=0; for name, model in models.items(): scores = evaluate_model(model) results.append(scores) names.append(name) zipped= zip(names, results) names, results = zip(*sorted(zipped)) for x in range (len(names)): print('%s %.4f ' % (names[x], mean(results[x]))) if(mean(results[x])> bestAccuracy): bestName= names[x]; bestAccuracy= mean(results[x]); print('Best accuracy :%s with accuracy %.4f '% (bestName, bestAccuracy)) # - # # Heart data set contine 271 randuri de date, 14 feature-uri, feature-ul pe care il vom clasifica este F14 care are 2 posibile clase # + print('Evaluate Heart dataset') input_file = "heart.csv" data = pd.read_csv(input_file, header = 0) X, y = data[data.columns.drop('F14')], data['F14'] n=int(math.sqrt(271)) if(n % 2 == 0): n=n-1 models = get_models(n) # evaluate the models and store results results, names = list(), list() bestName="1NN"; bestAccuracy=0; for name, model in models.items(): scores = evaluate_model(model) results.append(scores) names.append(name) zipped= zip(names, results) names, results = zip(*sorted(zipped)) for x in range (len(names)): print('%s %.4f ' % (names[x], mean(results[x]))) if(mean(results[x])> bestAccuracy): bestName= names[x]; bestAccuracy= mean(results[x]); print('Best accuracy :%s with accuracy %.4f '% (bestName, bestAccuracy)) # - # # Ionosphere data set contine 351 randuri de date, 35 feature-uri, feature-ul pe care il vom clasifica este F35 care are 2 posibile clase # + print('Evaluate Ionosphere dataset') input_file = "ionosphere.csv" data = pd.read_csv(input_file, header = 0) X, y = data[data.columns.drop('F35')], data['F35'] n=int(math.sqrt(351)) if(n % 2 == 0): n=n-1 models = get_models(n) # evaluate the models and store results results, names = list(), list() bestName="1NN"; bestAccuracy=0; for name, model in models.items(): scores = evaluate_model(model) results.append(scores) names.append(name) zipped= zip(names, results) names, results = zip(*sorted(zipped)) for x in range (len(names)): print('%s %.4f ' % (names[x], mean(results[x]))) if(mean(results[x])> bestAccuracy): bestName= names[x]; bestAccuracy= mean(results[x]); print('Best accuracy :%s with accuracy %.4f '% (bestName, bestAccuracy)) # - # # Iris data set contine 151 randuri de date, 5 feature-uri, feature-ul pe care il vom clasifica este F5 care are 3 posibile clase # + print('Evaluate Iris dataset') input_file = "iris.csv" data = pd.read_csv(input_file, header = 0) X, y = data[data.columns.drop('F5')], data['F5'] n=int(math.sqrt(151)) if(n % 2 == 0): n=n-1 models = get_models(n) # evaluate the models and store results results, names = list(), list() bestName="1NN"; bestAccuracy=0; for name, model in models.items(): scores = evaluate_model(model) results.append(scores) names.append(name) zipped= zip(names, results) names, results = zip(*sorted(zipped)) for x in range (len(names)): print('%s %.4f ' % (names[x], mean(results[x]))) if(mean(results[x])> bestAccuracy): bestName= names[x]; bestAccuracy= mean(results[x]); print('Best accuracy :%s with accuracy %.4f '% (bestName, bestAccuracy)) # - # # Liver data set contine 345 randuri de date, 7 feature-uri, feature-ul pe care il vom clasifica este F7 care are 2 posibile clase # + print('Evaluate Liver dataset') input_file = "liver.csv" data = pd.read_csv(input_file, header = 0) X, y = data[data.columns.drop('F7')], data['F7'] n=int(math.sqrt(345)) if(n % 2 == 0): n=n-1 models = get_models(n) # evaluate the models and store results results, names = list(), list() bestName="1NN"; bestAccuracy=0; for name, model in models.items(): scores = evaluate_model(model) results.append(scores) names.append(name) zipped= zip(names, results) names, results = zip(*sorted(zipped)) for x in range (len(names)): print('%s %.4f ' % (names[x], mean(results[x]))) if(mean(results[x])> bestAccuracy): bestName= names[x]; bestAccuracy= mean(results[x]); print('Best accuracy :%s with accuracy %.4f '% (bestName, bestAccuracy)) # - # # Parkinson data set contine 1040 randuri de date, 27 feature-uri, feature-ul pe care il vom clasifica este F1 care are 2 posibile clase # + print('Evaluate Parkinson dataset') input_file = "parkinson.csv" data = pd.read_csv(input_file, header = 0) X, y = data[data.columns.drop('F1')], data['F1'] n=int(math.sqrt(168)) if(n % 2 == 0): n=n-1 models = get_models(n) # evaluate the models and store results results, names = list(), list() bestName="1NN"; bestAccuracy=0; for name, model in models.items(): scores = evaluate_model(model) results.append(scores) names.append(name) zipped= zip(names, results) names, results = zip(*sorted(zipped)) for x in range (len(names)): print('%s %.4f ' % (names[x], mean(results[x]))) if(mean(results[x])> bestAccuracy): bestName= names[x]; bestAccuracy= mean(results[x]); print('Best accuracy :%s with accuracy %.4f '% (bestName, bestAccuracy)) # - # # Sonar data set contine 209 randuri de date, 61 feature-uri, feature-ul pe care il vom clasifica este F61 care are 2 posibile clase # + print('Evaluate Sonar dataset') input_file = "sonar.csv" data = pd.read_csv(input_file, header = 0) X, y = data[data.columns.drop('F61')], data['F61'] n=int(math.sqrt(209)) if(n % 2 == 0): n=n-1 models = get_models(n) # evaluate the models and store results results, names = list(), list() bestName="1NN"; bestAccuracy=0; for name, model in models.items(): scores = evaluate_model(model) results.append(scores) names.append(name) zipped= zip(names, results) names, results = zip(*sorted(zipped)) for x in range (len(names)): print('%s %.4f ' % (names[x], mean(results[x]))) if(mean(results[x])> bestAccuracy): bestName= names[x]; bestAccuracy= mean(results[x]); print('Best accuracy :%s with accuracy %.4f '% (bestName, bestAccuracy)) # - # # Wine data set contine 179 randuri de date, 13 feature-uri, feature-ul pe care il vom clasifica este F1 care are 3 posibile clase # + print('Evaluate Wine dataset') input_file = "wine.csv" data = pd.read_csv(input_file, header = 0) X, y = data[data.columns.drop('F1')], data['F1'] n=int(math.sqrt(179)) if(n % 2 == 0): n=n-1 models = get_models(n) # evaluate the models and store results results, names = list(), list() bestName="1NN"; bestAccuracy=0; for name, model in models.items(): scores = evaluate_model(model) results.append(scores) names.append(name) zipped= zip(names, results) names, results = zip(*sorted(zipped)) for x in range (len(names)): print('%s %.4f ' % (names[x], mean(results[x]))) if(mean(results[x])> bestAccuracy): bestName= names[x]; bestAccuracy= mean(results[x]); print('Best accuracy :%s with accuracy %.4f '% (bestName, bestAccuracy)) # - # # EEG data set contine 14980 randuri de date, 15 feature-uri, feature-ul pe care il vom clasifica este F15 care are 2 posibile clase (loading time > 5 minutes) # + print('Evaluate EEG dataset') input_file = "EEG.csv" data = pd.read_csv(input_file, header = 0) X, y = data[data.columns.drop('F15')], data['F15'] n=int(math.sqrt(14980)) if(n % 2 == 0): n=n-1 models = get_models(n) # evaluate the models and store results results, names = list(), list() bestName="1NN"; bestAccuracy=0; for name, model in models.items(): scores = evaluate_model(model) results.append(scores) names.append(name) zipped= zip(names, results) names, results = zip(*sorted(zipped)) for x in range (len(names)): print('%s %.4f ' % (names[x], mean(results[x]))) if(mean(results[x])> bestAccuracy): bestName= names[x]; bestAccuracy= mean(results[x]); print('Best accuracy :%s with accuracy %.4f '% (bestName, bestAccuracy)) # - # # Letter recognition data set contine 20000 randuri de date, 16 feature-uri, feature-ul pe care il vom clasifica este F1 care are 26 posibile clase (loading time > 5 minutes) # + print('Evaluate Letter-Recognition dataset') input_file = "letter-recognition.csv" data = pd.read_csv(input_file, header = 0) X, y = data[data.columns.drop('F1')], data['F1'] n=int(math.sqrt(20000)) if(n % 2 == 0): n=n-1 models = get_models(n) # evaluate the models and store results results, names = list(), list() bestName="1NN"; bestAccuracy=0; for name, model in models.items(): scores = evaluate_model(model) results.append(scores) names.append(name) zipped= zip(names, results) names, results = zip(*sorted(zipped)) for x in range (len(names)): print('%s %.4f ' % (names[x], mean(results[x]))) if(mean(results[x])> bestAccuracy): bestName= names[x]; bestAccuracy= mean(results[x]); print('Best accuracy :%s with accuracy %.4f '% (bestName, bestAccuracy)) # - # # Concluzii: # # Toate seturile de date evaluate anterior au fost evaluate si in articolul ales de mine, restul seturilor de date care sunt prezentate in articol si nu sunt regasite mai sus nu mai sunt disponibile pe site-ul din bibliografie. # # # In urma experimentelor am remarcat ca desi clasificatorul asamblat descris in articol nu depaseste performanta celui mai bun clasificator KNN din ansamblul sau performanta ansamblului este foarte apropiata de cea mai buna performanta, scutundu-ne de cautarea parametrului k care ar avea cea mai buna performanta. # # # De asemenea am remarcat ca performantele optinute ruland codul python din terminal(folosind versiunea 2.7.3) si cea optinuta din acest notebook(care foloseste versiunea 3) sunt diferite
KNN EnsembleClassifieR.ipynb
# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.14.4 # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- # + [markdown] application/vnd.databricks.v1+cell={"inputWidgets": {}, "nuid": "3e8921b5-ae3e-4df0-9f5c-8e62ceaf18c4", "showTitle": false, "title": ""} # # [Model] Data Analytics Test - iFood # ###### [By <NAME>](https://github.com/israelmendez232) # # This notebook was generated locally, because of the complexity to run the models that won't work for the [Databricks](https://databricks.com/) Community Edition. # # The main library used here is [PyCaret](https://pycaret.readthedocs.io/en/latest/) to generate the model and tuning because is very practical and productive. The summary: # 1. Train the model and explorations; # 2. Validate the results; # 3. Evaluate the return; # 4. [EXTRA] Results # - # ## 1. Train the model # Bring more explorations. # + application/vnd.databricks.v1+cell={"inputWidgets": {}, "nuid": "6e52ae10-d4c7-4184-8ed9-482335d82128", "showTitle": false, "title": ""} import pandas as pd from pycaret.classification import * df = pd.read_csv("../data/data_analytics_cleaned.csv") df.head(10) # - # Selecting only the best variables stipulated on the 02-EDA phase. df_focused = df[["ID", "AcceptedCmp5", "AcceptedCmp1", "MntWines", "AcceptedCmp3", "MntMeatProducts", "NumCatalogPurchases", "Recency", "Teenhome", "Kidhome", "Response"]] df_focused.head() df_focused.describe() # + # Defining the rows for testing and prediction df_train = df_focused.sample(frac = 0.9, random_state = 786) df_prediction = df_focused.drop(df_train.index) df_train.reset_index(drop = True, inplace = True) df_prediction.reset_index(drop = True, inplace = True) print('Data for Training/Modeling: ' + str(df_train.shape)) print('Data For Predictions: ' + str(df_prediction.shape)) # + application/vnd.databricks.v1+cell={"inputWidgets": {}, "nuid": "2efd1296-f0d3-4a6b-b186-0f2e75e3207d", "showTitle": false, "title": ""} # Setup for the classification model setup_sample = setup(df_train, target = 'Response') # + application/vnd.databricks.v1+cell={"inputWidgets": {}, "nuid": "c3acad40-a74a-4bde-9885-f35cb39bcacf", "showTitle": false, "title": ""} # Compare different models best_model = compare_models() # - # The best models are highlighted in yellow. Decided to move with CatBoost, Light Gradient Boosting, and Naive Bayes. # + application/vnd.databricks.v1+cell={"inputWidgets": {}, "nuid": "72367126-e6b5-4965-987b-329d793e5cb0", "showTitle": false, "title": ""} catboost = create_model('catboost') # - lightgbm = create_model('lightgbm') nb = create_model('nb') # + application/vnd.databricks.v1+cell={"inputWidgets": {}, "nuid": "5103de87-5b2a-4fa4-8a74-889e3532c584", "showTitle": false, "title": ""} # Using Hyperparameters tuned_catboost = tune_model(catboost) # - # Using Hyperparameters tuned_lightgbm = tune_model(lightgbm) # Using Hyperparameters tuned_nb = tune_model(nb) # Blending the models blender = blend_models(estimator_list = [tuned_catboost, tuned_lightgbm, tuned_nb], method = 'soft') stacker = stack_models(estimator_list = [tuned_catboost, tuned_lightgbm, tuned_nb], meta_model = catboost) # Choosing stacker over blender because of significantly better performance on stacker based on Recall, Kappa, and MCC. plot_model(stacker) plot_model(stacker, plot = 'confusion_matrix') plot_model(stacker, plot = 'boundary') # ## 2. Validate the results # Save the model predict_new = predict_model(stacker, data = df_prediction) predict_new.tail() predict_new['result'] = predict_new['Response'] == predict_new['Label'] predict_new.tail() # + lost = predict_new[predict_new['result'] == False]['result'].count() won = predict_new[predict_new['result'] == True]['result'].count() end_result = won / (won + lost) print(f"Right predictions: {won}") print(f"Wrong predictions: {lost}") print(f"End result in % of the predictions: {end_result}") # - # Saving locally the model save_model(stacker, model_name='end-classifier-model') # ## 3. Evaluate the return # Now it's time to validate if the insights are accurate based on the **prediction sample**. Main points to evaluate: # - Prove that the insight could have a **campaign rate beyond 15%**, which was the standard for this campaign; # - Considering the 6.720MU spent on this "sample", with 2.213 (not counting the null and outliers). This campaign has **invested 3.03MU/customer**; # - The **total received** by each Response was: 3.674MU / 333 (not counting the null and outliers) => **11.03MU/customer**; # - To be successful, the **campaign rate needs to be 28% or higher** (3.03 / 11.03) based on the cost and return over customer; # - The **R.O.I.** was (3.674MU / 6.720MU) - 1 => **-45,32%**; # # Since we can't change the price or the campaign, we can focus more on segmentation and the historical data of those customers. And to provide better insights to overcome the standard elements mentioned earlier. # Considering we will only impact the customers that were predicted as 1, avoiding the 0 ones. validation = predict_new.copy() validation = validation[validation['Label'] == 1] validation.head() # + base_total_customers = predict_new['result'].count() customers_impactated = validation['result'].count() rel_customers_imp_total_base = customers_impactated / base_total_customers customers_positive = validation[predict_new['result'] == True]['result'].count() total_spend = customers_impactated * 3.03 total_return = customers_positive * 11.03 campaign_rate = customers_positive / customers_impactated roi = (total_return / total_spend) - 1 print("# Results from the prediction sample \n") print(f"Total customers impactated: {customers_impactated}") print(f"Customers impactated and positive response: {customers_positive}") print(f"Customers impactated / total customers: {rel_customers_imp_total_base}") print(f"Total spend on campaign: {total_spend}") print(f"Total return on the campaign: {total_return}") print(f"Campaign rate: {campaign_rate}") print(f"ROI: {roi}") # - # ## [EXTRA] Results # # The model was responsable to: # - Increase the **Campaign Rate** to 15% up to **100%**; # - Deliver a **ROI** to **+264,02%**, compared to -45,32% of the starndart campaign. # # --- # # If we extrapolate the results from this model, it would generate the following results in the whole base: # - 2,213 (whole base) * 0.054 (rate from impactated customers) * 3.03 (cost by customer) => **362MU in costs;** # - 2,213 (whole base) * 0.054 (rate from impactated customers) * 1 (campaign rate) * 11.03 (return by customer) => **1.318MU in profit;** # - The model would save up to **6.358MU**; # - Also, the model would bring 35.87% of the standard results of the campaign with ONLY 5.38% of the total budget! #
notebooks/03-model-data-analytics-test-ifood-israel-mendes.ipynb
# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.14.4 # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- # ### Machine Learning for Engineers: [GaussianMixtureModel](https://www.apmonitor.com/pds/index.php/Main/GaussianMixtureModel) # - [Gaussian Mixture Model](https://www.apmonitor.com/pds/index.php/Main/GaussianMixtureModel) # - Source Blocks: 1 # - Description: Introduction to Gaussian Mixture Models # - [Course Overview](https://apmonitor.com/pds) # - [Course Schedule](https://apmonitor.com/pds/index.php/Main/CourseSchedule) # from sklearn.mixture import GaussianMixture gmm = GaussianMixture(n_components=2) gmm.fit(XA) yP = gmm.predict_proba(XB) # produces probabilities # Arbitrary labels with unsupervised clustering may need to be reversed if len(XB[np.round(yP[:,0])!=yB]) > n/4: yP = 1 - yP
All_Source_Code/GaussianMixtureModel/GaussianMixtureModel.ipynb
# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.14.4 # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- def truth_table(gate): print("*{}*".format(gate.__name__)) print("|x1|x2|y|") print("|0 |0 |{}|".format(gate(0, 0))) print("|0 |1 |{}|".format(gate(0, 1))) print("|1 |0 |{}|".format(gate(1, 0))) print("|1 |1 |{}|".format(gate(1, 1))) def and_gate(x1, x2): w1, w2, theta, = 0.5, 0.5, 0.75 if theta < x1 * w1 + x2 * w2: y = 1 else: y = 0 return y truth_table(and_gate) def or_gate(x1, x2): w1, w2, theta, = 0.5, 0.5, 0.25 if theta < x1 * w1 + x2 * w2: y = 1 else: y = 0 return y truth_table(or_gate) def nand_gate(x1, x2): w1, w2, theta, = -0.5, -0.5, -0.75 if theta < x1 * w1 + x2 * w2: y = 1 else: y = 0 return y truth_table(nand_gate) def xor_gate(x1, x2): s1 = or_gate(x1, x2) s2 = nand_gate(x1, x2) y = and_gate(s1, s2) return y truth_table(xor_gate)
python/gate.ipynb
# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.14.4 # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- # # Training Keras model on Cloud AI Platform. # # **Learning Objectives** # # 1. Setup up the environment # 1. Create trainer module's task.py to hold hyperparameter argparsing code # 1. Create trainer module's model.py to hold Keras model code # 1. Run trainer module package locally # 1. Submit training job to Cloud AI Platform # 1. Submit hyperparameter tuning job to Cloud AI Platform # # # ## Introduction # After having testing our training pipeline both locally and in the cloud on a susbset of the data, we can submit another (much larger) training job to the cloud. It is also a good idea to run a hyperparameter tuning job to make sure we have optimized the hyperparameters of our model. # # In this notebook, we'll be training our Keras model at scale using Cloud AI Platform. # # In this lab, we will set up the environment, create the trainer module's task.py to hold hyperparameter argparsing code, create the trainer module's model.py to hold Keras model code, run the trainer module package locally, submit a training job to Cloud AI Platform, and submit a hyperparameter tuning job to Cloud AI Platform. # # Each learning objective will correspond to a __#TODO__ in this student lab notebook -- try to complete this notebook first and then review the [solution notebook](../solutions/5a_train_keras_ai_platform_babyweight.ipynb). # + [markdown] colab_type="text" id="hJ7ByvoXzpVI" # ## Set up environment variables and load necessary libraries # - # Import necessary libraries. import os # ### Lab Task #1: Set environment variables. # # Set environment variables so that we can use them throughout the entire lab. We will be using our project name for our bucket, so you only need to change your project and region. # + language="bash" # export PROJECT=$(gcloud config list project --format "value(core.project)") # echo "Your current GCP Project Name is: "${PROJECT} # - # TODO: Change these to try this notebook out PROJECT = "cloud-training-demos" # Replace with your PROJECT BUCKET = PROJECT # defaults to PROJECT REGION = "us-central1" # Replace with your REGION os.environ["PROJECT"] = PROJECT os.environ["BUCKET"] = BUCKET os.environ["REGION"] = REGION os.environ["TFVERSION"] = "2.0" # + language="bash" # gcloud config set project $PROJECT # gcloud config set compute/region $REGION # + language="bash" # if ! gsutil ls | grep -q gs://${BUCKET}; then # gsutil mb -l ${REGION} gs://${BUCKET} # fi # - # ## Check data exists # # Verify that you previously created CSV files we'll be using for training and evaluation. If not, go back to lab [prepare_data_babyweight.ipynb](../solutions/prepare_data_babyweight.ipynb) to create them. # + language="bash" # gsutil ls gs://${BUCKET}/babyweight/data/*000000000000.csv # - # Now that we have the [Keras wide-and-deep code](../solutions/4c_keras_wide_and_deep_babyweight.ipynb) working on a subset of the data, we can package the TensorFlow code up as a Python module and train it on Cloud AI Platform. # # ## Train on Cloud AI Platform # # Training on Cloud AI Platform requires: # * Making the code a Python package # * Using gcloud to submit the training code to [Cloud AI Platform](https://console.cloud.google.com/ai-platform) # # Ensure that the AI Platform API is enabled by going to this [link](https://console.developers.google.com/apis/library/ml.googleapis.com). # # ### Move code into a Python package # # A Python package is simply a collection of one or more `.py` files along with an `__init__.py` file to identify the containing directory as a package. The `__init__.py` sometimes contains initialization code but for our purposes an empty file suffices. # # The bash command `touch` creates an empty file in the specified location, the directory `babyweight` should already exist. # + language="bash" # mkdir -p babyweight/trainer # touch babyweight/trainer/__init__.py # - # We then use the `%%writefile` magic to write the contents of the cell below to a file called `task.py` in the `babyweight/trainer` folder. # ### Lab Task #2: Create trainer module's task.py to hold hyperparameter argparsing code. # # The cell below writes the file `babyweight/trainer/task.py` which sets up our training job. Here is where we determine which parameters of our model to pass as flags during training using the `parser` module. Look at how `batch_size` is passed to the model in the code below. Use this as an example to parse arguements for the following variables # - `nnsize` which represents the hidden layer sizes to use for DNN feature columns # - `nembeds` which represents the embedding size of a cross of n key real-valued parameters # - `train_examples` which represents the number of examples (in thousands) to run the training job # - `eval_steps` which represents the positive number of steps for which to evaluate model # # Be sure to include a default value for the parsed arguments above and specfy the `type` if necessary. # + # %%writefile babyweight/trainer/task.py import argparse import json import os from babyweight.trainer import model import tensorflow as tf if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "--job-dir", help="this model ignores this field, but it is required by gcloud", default="junk" ) parser.add_argument( "--train_data_path", help="GCS location of training data", required=True ) parser.add_argument( "--eval_data_path", help="GCS location of evaluation data", required=True ) parser.add_argument( "--output_dir", help="GCS location to write checkpoints and export models", required=True ) parser.add_argument( "--batch_size", help="Number of examples to compute gradient over.", type=int, default=512 ) # TODO: Add nnsize argument # TODO: Add nembeds argument # TODO: Add num_epochs argument # TODO: Add train_examples argument # TODO: Add eval_steps argument # Parse all arguments args = parser.parse_args() arguments = args.__dict__ # Unused args provided by service arguments.pop("job_dir", None) arguments.pop("job-dir", None) # Modify some arguments arguments["train_examples"] *= 1000 # Append trial_id to path if we are doing hptuning # This code can be removed if you are not using hyperparameter tuning arguments["output_dir"] = os.path.join( arguments["output_dir"], json.loads( os.environ.get("TF_CONFIG", "{}") ).get("task", {}).get("trial", "") ) # Run the training job model.train_and_evaluate(arguments) # - # In the same way we can write to the file `model.py` the model that we developed in the previous notebooks. # # ### Lab Task #3: Create trainer module's model.py to hold Keras model code. # # Complete the TODOs in the code cell below to create our `model.py`. We'll use the code we wrote for the Wide & Deep model. Look back at your [9_keras_wide_and_deep_babyweight](../solutions/9_keras_wide_and_deep_babyweight.ipynb) notebook and copy/paste the necessary code from that notebook into its place in the cell below. # + # %%writefile babyweight/trainer/model.py import datetime import os import shutil import numpy as np import tensorflow as tf # Determine CSV, label, and key columns # TODO: Add CSV_COLUMNS and LABEL_COLUMN # Set default values for each CSV column. # Treat is_male and plurality as strings. # TODO: Add DEFAULTS def features_and_labels(row_data): # TODO: Add your code here pass def load_dataset(pattern, batch_size=1, mode='eval'): # TODO: Add your code here pass def create_input_layers(): # TODO: Add your code here pass def categorical_fc(name, values): # TODO: Add your code here pass def create_feature_columns(nembeds): # TODO: Add your code here pass def get_model_outputs(wide_inputs, deep_inputs, dnn_hidden_units): # TODO: Add your code here pass def rmse(y_true, y_pred): # TODO: Add your code here pass def build_wide_deep_model(dnn_hidden_units=[64, 32], nembeds=3): # TODO: Add your code here pass def train_and_evaluate(args): model = build_wide_deep_model(args["nnsize"], args["nembeds"]) print("Here is our Wide-and-Deep architecture so far:\n") print(model.summary()) trainds = load_dataset( args["train_data_path"], args["batch_size"], 'train') evalds = load_dataset( args["eval_data_path"], 1000, 'eval') if args["eval_steps"]: evalds = evalds.take(count=args["eval_steps"]) num_batches = args["batch_size"] * args["num_epochs"] steps_per_epoch = args["train_examples"] // num_batches checkpoint_path = os.path.join(args["output_dir"], "checkpoints/babyweight") cp_callback = tf.keras.callbacks.ModelCheckpoint( filepath=checkpoint_path, verbose=1, save_weights_only=True) history = model.fit( trainds, validation_data=evalds, epochs=args["num_epochs"], steps_per_epoch=steps_per_epoch, verbose=2, # 0=silent, 1=progress bar, 2=one line per epoch callbacks=[cp_callback]) EXPORT_PATH = os.path.join( args["output_dir"], datetime.datetime.now().strftime("%Y%m%d%H%M%S")) tf.saved_model.save( obj=model, export_dir=EXPORT_PATH) # with default serving function print("Exported trained model to {}".format(EXPORT_PATH)) # - # ## Train locally # # After moving the code to a package, make sure it works as a standalone. Note, we incorporated the `--train_examples` flag so that we don't try to train on the entire dataset while we are developing our pipeline. Once we are sure that everything is working on a subset, we can change it so that we can train on all the data. Even for this subset, this takes about *3 minutes* in which you won't see any output ... # ### Lab Task #4: Run trainer module package locally. # # Fill in the missing code in the TODOs below so that we can run a very small training job over a single file with a small batch size, 1 epoch, 1 train example, and 1 eval step. # + language="bash" # OUTDIR=babyweight_trained # rm -rf ${OUTDIR} # export PYTHONPATH=${PYTHONPATH}:${PWD}/babyweight # python3 -m trainer.task \ # --job-dir=./tmp \ # --train_data_path=gs://${BUCKET}/babyweight/data/train*.csv \ # --eval_data_path=gs://${BUCKET}/babyweight/data/eval*.csv \ # --output_dir=${OUTDIR} \ # --batch_size=# TODO: Add batch size # --num_epochs=# TODO: Add the number of epochs to train for # --train_examples=# TODO: Add the number of examples to train each epoch for # --eval_steps=# TODO: Add the number of evaluation batches to run # - # ## Dockerized module # # Since we are using TensorFlow 2.0 and it is new, we will use a container image to run the code on AI Platform. # # Once TensorFlow 2.0 is natively supported on AI Platform, you will be able to simply do (without having to build a container): # <pre> # gcloud ai-platform jobs submit training ${JOBNAME} \ # --region=${REGION} \ # --module-name=trainer.task \ # --package-path=$(pwd)/babyweight/trainer \ # --job-dir=${OUTDIR} \ # --staging-bucket=gs://${BUCKET} \ # --scale-tier=STANDARD_1 \ # --runtime-version=${TFVERSION} \ # -- \ # --train_data_path=gs://${BUCKET}/babyweight/data/train*.csv \ # --eval_data_path=gs://${BUCKET}/babyweight/data/eval*.csv \ # --output_dir=${OUTDIR} \ # --num_epochs=10 \ # --train_examples=20000 \ # --eval_steps=100 \ # --batch_size=32 \ # --nembeds=8 # </pre> # ### Create Dockerfile # # We need to create a container with everything we need to be able to run our model. This includes our trainer module package, python3, as well as the libraries we use such as the most up to date TensorFlow 2.0 version. # + # %%writefile babyweight/Dockerfile FROM gcr.io/deeplearning-platform-release/tf2-cpu COPY trainer /babyweight/trainer RUN apt update && \ apt install --yes python3-pip && \ pip3 install --upgrade --quiet tensorflow==2.0 ENV PYTHONPATH ${PYTHONPATH}:/babyweight ENTRYPOINT ["python3", "babyweight/trainer/task.py"] # - # ### Build and push container image to repo # # Now that we have created our Dockerfile, we need to build and push our container image to our project's container repo. To do this, we'll create a small shell script that we can call from the bash. # + # %%writefile babyweight/push_docker.sh export PROJECT_ID=$(gcloud config list project --format "value(core.project)") export IMAGE_REPO_NAME=babyweight_training_container export IMAGE_URI=gcr.io/${PROJECT_ID}/${IMAGE_REPO_NAME} # echo "Building $IMAGE_URI" docker build -f Dockerfile -t ${IMAGE_URI} ./ # echo "Pushing $IMAGE_URI" docker push ${IMAGE_URI} # - # **Note:** If you get a permissions/stat error when running push_docker.sh from Notebooks, do it from CloudShell: # # Open CloudShell on the GCP Console # * git clone https://github.com/GoogleCloudPlatform/training-data-analyst # * cd training-data-analyst/courses/machine_learning/deepdive2/structured/solutions/babyweight # * bash push_docker.sh # # This step takes 5-10 minutes to run. # + language="bash" # cd babyweight # bash push_docker.sh # - # ### Test container locally # # Before we submit our training job to Cloud AI Platform, let's make sure our container that we just built and pushed to our project's container repo works perfectly. We can do that by calling our container in bash and passing the necessary user_args for our task.py's parser. # + language="bash" # export PROJECT_ID=$(gcloud config list project --format "value(core.project)") # export IMAGE_REPO_NAME=babyweight_training_container # export IMAGE_URI=gcr.io/${PROJECT_ID}/${IMAGE_REPO_NAME} # echo "Running $IMAGE_URI" # docker run ${IMAGE_URI} \ # --train_data_path=gs://${BUCKET}/babyweight/data/train*.csv \ # --train_data_path=gs://${BUCKET}/babyweight/data/train*.csv \ # --eval_data_path=gs://${BUCKET}/babyweight/data/eval*.csv \ # --output_dir=gs://${BUCKET}/babyweight/trained_model \ # --batch_size=10 \ # --num_epochs=10 \ # --train_examples=1 \ # --eval_steps=1 # - # ## Lab Task #5: Train on Cloud AI Platform. # # Once the code works in standalone mode, you can run it on Cloud AI Platform. Because this is on the entire dataset, it will take a while. The training run took about <b> two hours </b> for me. You can monitor the job from the GCP console in the Cloud AI Platform section. Complete the __#TODO__s to make sure you have the necessary user_args for our task.py's parser. # + language="bash" # OUTDIR=gs://${BUCKET}/babyweight/trained_model # JOBID=babyweight_$(date -u +%y%m%d_%H%M%S) # echo ${OUTDIR} ${REGION} ${JOBNAME} # gsutil -m rm -rf ${OUTDIR} # # IMAGE=gcr.io/${PROJECT}/babyweight_training_container # # gcloud ai-platform jobs submit training ${JOBID} \ # --staging-bucket=gs://${BUCKET} \ # --region=${REGION} \ # --master-image-uri=${IMAGE} \ # --master-machine-type=n1-standard-4 \ # --scale-tier=CUSTOM \ # -- \ # --train_data_path=# TODO: Add path to training data in GCS # --eval_data_path=# TODO: Add path to evaluation data in GCS # --output_dir=${OUTDIR} \ # --num_epochs=# TODO: Add the number of epochs to train for # --train_examples=# TODO: Add the number of examples to train each epoch for # --eval_steps=# TODO: Add the number of evaluation batches to run # --batch_size=# TODO: Add batch size # --nembeds=# TODO: Add number of embedding dimensions # - # When I ran it, I used train_examples=2000000. When training finished, I filtered in the Stackdriver log on the word "dict" and saw that the last line was: # <pre> # Saving dict for global step 5714290: average_loss = 1.06473, global_step = 5714290, loss = 34882.4, rmse = 1.03186 # </pre> # The final RMSE was 1.03 pounds. # ## Lab Task #6: Hyperparameter tuning. # # All of these are command-line parameters to my program. To do hyperparameter tuning, create `hyperparam.yaml` and pass it as `--config hyperparam.yaml`. # This step will take <b>up to 2 hours</b> -- you can increase `maxParallelTrials` or reduce `maxTrials` to get it done faster. Since `maxParallelTrials` is the number of initial seeds to start searching from, you don't want it to be too large; otherwise, all you have is a random search. Complete __#TODO__s in yaml file and gcloud training job bash command so that we can run hyperparameter tuning. # %%writefile hyperparam.yaml trainingInput: scaleTier: STANDARD_1 hyperparameters: hyperparameterMetricTag: # TODO: Add metric we want to optimize goal: # TODO: MAXIMIZE or MINIMIZE? maxTrials: 20 maxParallelTrials: 5 enableTrialEarlyStopping: True params: - parameterName: batch_size type: # TODO: What datatype? minValue: # TODO: Choose a min value maxValue: # TODO: Choose a max value scaleType: # TODO: UNIT_LINEAR_SCALE or UNIT_LOG_SCALE? - parameterName: nembeds type: # TODO: What datatype? minValue: # TODO: Choose a min value maxValue: # TODO: Choose a max value scaleType: # TODO: UNIT_LINEAR_SCALE or UNIT_LOG_SCALE? # + language="bash" # OUTDIR=gs://${BUCKET}/babyweight/hyperparam # JOBNAME=babyweight_$(date -u +%y%m%d_%H%M%S) # echo ${OUTDIR} ${REGION} ${JOBNAME} # gsutil -m rm -rf ${OUTDIR} # # IMAGE=gcr.io/${PROJECT}/babyweight_training_container # # gcloud ai-platform jobs submit training ${JOBNAME} \ # --staging-bucket=gs://${BUCKET} \ # --region=${REGION} \ # --master-image-uri=${IMAGE} \ # --master-machine-type=n1-standard-4 \ # --scale-tier=CUSTOM \ # --# TODO: Add config for hyperparam.yaml # -- \ # --train_data_path=gs://${BUCKET}/babyweight/data/train*.csv \ # --eval_data_path=gs://${BUCKET}/babyweight/data/eval*.csv \ # --output_dir=${OUTDIR} \ # --num_epochs=10 \ # --train_examples=20000 \ # --eval_steps=100 # - # ## Repeat training # # This time with tuned parameters for `batch_size` and `nembeds`. # + language="bash" # OUTDIR=gs://${BUCKET}/babyweight/trained_model_tuned # JOBNAME=babyweight_$(date -u +%y%m%d_%H%M%S) # echo ${OUTDIR} ${REGION} ${JOBNAME} # gsutil -m rm -rf ${OUTDIR} # # IMAGE=gcr.io/${PROJECT}/babyweight_training_container # # gcloud ai-platform jobs submit training ${JOBNAME} \ # --staging-bucket=gs://${BUCKET} \ # --region=${REGION} \ # --master-image-uri=${IMAGE} \ # --master-machine-type=n1-standard-4 \ # --scale-tier=CUSTOM \ # -- \ # --train_data_path=gs://${BUCKET}/babyweight/data/train*.csv \ # --eval_data_path=gs://${BUCKET}/babyweight/data/eval*.csv \ # --output_dir=${OUTDIR} \ # --num_epochs=10 \ # --train_examples=20000 \ # --eval_steps=100 \ # --batch_size=32 \ # --nembeds=8 # - # ## Lab Summary: # In this lab, we set up the environment, created the trainer module's task.py to hold hyperparameter argparsing code, created the trainer module's model.py to hold Keras model code, ran the trainer module package locally, submitted a training job to Cloud AI Platform, and submitted a hyperparameter tuning job to Cloud AI Platform. # Copyright 2019 Google Inc. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License
courses/machine_learning/deepdive2/end_to_end_ml/labs/train_keras_ai_platform_babyweight.ipynb
# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.14.4 # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- # # Рекуррентные нейронных сетей # + import tensorflow as tf import matplotlib as mpl import matplotlib.pyplot as plt import numpy as np import os import pandas as pd mpl.rcParams['figure.figsize'] = (8, 6) mpl.rcParams['axes.grid'] = False # - df = pd.read_csv("C:/Users/Zhastay/Downloads/jena_climate_2009_2016/data.csv") df.head() def univariate_data(dataset, start_index, end_index, history_size, target_size): data = [] labels = [] start_index = start_index + history_size if end_index is None: end_index = len(dataset) - target_size for i in range(start_index, end_index): indices = range(i-history_size, i) # Reshape data from (history_size,) to (history_size, 1) data.append(np.reshape(dataset[indices], (history_size, 1))) labels.append(dataset[i+target_size]) return np.array(data), np.array(labels) uni_data = df['temp'] uni_data.index = df['id'] uni_data.head() TRAIN_SPLIT = 11000 tf.random.set_seed(13) uni_data = df['temp'] uni_data.index = df['id'] uni_data.head() uni_data.plot(subplots=True) uni_data = uni_data.values uni_train_mean = uni_data[:TRAIN_SPLIT].mean() uni_train_std = uni_data[:TRAIN_SPLIT].std() uni_data = (uni_data-uni_train_mean)/uni_train_std # + univariate_past_history = 100 univariate_future_target = 0 x_train_uni, y_train_uni = univariate_data(uni_data, 0, TRAIN_SPLIT, univariate_past_history, univariate_future_target) x_val_uni, y_val_uni = univariate_data(uni_data, TRAIN_SPLIT, None, univariate_past_history, univariate_future_target) print ('Single window of past history') print (x_train_uni[0]) print ('\n Target temperature to predict') print (y_train_uni[0]) # - print (len(x_train_uni)) def create_time_steps(length): return list(range(-length, 0)) def show_plot(plot_data, delta, title): labels = ['History', 'True Future', 'Model Prediction'] marker = ['.-', 'rx', 'go'] time_steps = create_time_steps(plot_data[0].shape[0]) if delta: future = delta else: future = 0 plt.title(title) for i, x in enumerate(plot_data): if i: plt.plot(future, plot_data[i], marker[i], markersize=10, label=labels[i]) else: plt.plot(time_steps, plot_data[i].flatten(), marker[i], label=labels[i]) plt.legend() plt.xlim([time_steps[0], (future+5)*2]) plt.xlabel('Time-Step') return plt show_plot([x_train_uni[0], y_train_uni[0]], 0, 'Sample Example') def baseline(history): return np.mean(history) show_plot([x_train_uni[0], y_train_uni[0], baseline(x_train_uni[0])], 0, 'Baseline Prediction Example') # # LSTM-модель для прогнозирование # + simple_lstm_model = tf.keras.models.Sequential([ tf.keras.layers.LSTM(8, input_shape=x_train_uni.shape[-2:]), tf.keras.layers.Dense(1) ]) simple_lstm_model.compile(optimizer='adam', loss='mae') # + BATCH_SIZE = 256 BUFFER_SIZE = 10000 train_univariate = tf.data.Dataset.from_tensor_slices((x_train_uni, y_train_uni)) train_univariate = train_univariate.cache().shuffle(BUFFER_SIZE).batch(BATCH_SIZE).repeat() val_univariate = tf.data.Dataset.from_tensor_slices((x_val_uni, y_val_uni)) val_univariate = val_univariate.batch(BATCH_SIZE).repeat() # - for x, y in val_univariate.take(1): print(simple_lstm_model.predict(x).shape) print(x_train_uni.shape) # + EVALUATION_INTERVAL = 200 EPOCHS = 10 simple_lstm_model.fit(train_univariate, epochs=EPOCHS, steps_per_epoch=EVALUATION_INTERVAL, validation_data=val_univariate, validation_steps=50) # - for x, y in val_univariate.take(3): plot = show_plot([x[0].numpy(), y[0].numpy(), simple_lstm_model.predict(x)[0]], 0, 'Simple LSTM model') plot.show() # # Прогнозирование на основе многомерного временного ряда features_considered = ['temp', 'gas', 'humid'] features = df[features_considered] features.index = df['id'] features.head() features.plot(subplots=True) dataset = features.values data_mean = dataset[:TRAIN_SPLIT].mean(axis=0) data_std = dataset[:TRAIN_SPLIT].std(axis=0) dataset = (dataset-data_mean)/data_std # Точечное прогнозирование def multivariate_data(dataset, target, start_index, end_index, history_size, target_size, step, single_step=False): data = [] labels = [] start_index = start_index + history_size if end_index is None: end_index = len(dataset) - target_size for i in range(start_index, end_index): indices = range(i-history_size, i, step) data.append(dataset[indices]) if single_step: labels.append(target[i+target_size]) else: labels.append(target[i:i+target_size]) return np.array(data), np.array(labels) # Настроить надо правильно! Step шаги переход, например если каждые 10 минут шаг 6 = каждые 60 минут # + past_history = 720 future_target = 72 STEP = 6 x_train_single, y_train_single = multivariate_data(dataset, dataset[:, 1], 0, TRAIN_SPLIT, past_history, future_target, STEP, single_step=True) x_val_single, y_val_single = multivariate_data(dataset, dataset[:, 1], TRAIN_SPLIT, None, past_history, future_target, STEP, single_step=True) # - print ('Single window of past history : {}'.format(x_train_single[0].shape)) # + train_data_single = tf.data.Dataset.from_tensor_slices((x_train_single, y_train_single)) train_data_single = train_data_single.cache().shuffle(BUFFER_SIZE).batch(BATCH_SIZE).repeat() val_data_single = tf.data.Dataset.from_tensor_slices((x_val_single, y_val_single)) val_data_single = val_data_single.batch(BATCH_SIZE).repeat() # + single_step_model = tf.keras.models.Sequential() single_step_model.add(tf.keras.layers.LSTM(32, input_shape=x_train_single.shape[-2:])) single_step_model.add(tf.keras.layers.Dense(1)) single_step_model.compile(optimizer=tf.keras.optimizers.RMSprop(), loss='mae') # - for x, y in val_data_single.take(1): print(single_step_model.predict(x).shape) single_step_history = single_step_model.fit(train_data_single, epochs=EPOCHS, steps_per_epoch=EVALUATION_INTERVAL, validation_data=val_data_single, validation_steps=50) def plot_train_history(history, title): loss = history.history['loss'] val_loss = history.history['val_loss'] epochs = range(len(loss)) plt.figure() plt.plot(epochs, loss, 'b', label='Training loss') plt.plot(epochs, val_loss, 'r', label='Validation loss') plt.title(title) plt.legend() plt.show() plot_train_history(single_step_history, 'Single Step Training and validation loss') # Выполнение точечного прогноза for x, y in val_data_single.take(3): plot = show_plot([x[0][:, 1].numpy(), y[0].numpy(), single_step_model.predict(x)[0]], 1, 'Single Step Prediction') plot.show() # Интервальное прогнозирование future_target = 72 x_train_multi, y_train_multi = multivariate_data(dataset, dataset[:, 1], 0, TRAIN_SPLIT, past_history, future_target, STEP) x_val_multi, y_val_multi = multivariate_data(dataset, dataset[:, 1], TRAIN_SPLIT, None, past_history, future_target, STEP) print ('Single window of past history : {}'.format(x_train_multi[0].shape)) print ('\n Target temperature to predict : {}'.format(y_train_multi[0].shape)) # + train_data_multi = tf.data.Dataset.from_tensor_slices((x_train_multi, y_train_multi)) train_data_multi = train_data_multi.cache().shuffle(BUFFER_SIZE).batch(BATCH_SIZE).repeat() val_data_multi = tf.data.Dataset.from_tensor_slices((x_val_multi, y_val_multi)) val_data_multi = val_data_multi.batch(BATCH_SIZE).repeat() # - def multi_step_plot(history, true_future, prediction): plt.figure(figsize=(12, 6)) num_in = create_time_steps(len(history)) num_out = len(true_future) plt.plot(num_in, np.array(history[:, 1]), label='History') plt.plot(np.arange(num_out)/STEP, np.array(true_future), 'bo', label='True Future') if prediction.any(): plt.plot(np.arange(num_out)/STEP, np.array(prediction), 'ro', label='Predicted Future') plt.legend(loc='upper left') plt.show() for x, y in train_data_multi.take(1): multi_step_plot(x[0], y[0], np.array([0])) # + multi_step_model = tf.keras.models.Sequential() multi_step_model.add(tf.keras.layers.LSTM(32, return_sequences=True, input_shape=x_train_multi.shape[-2:])) multi_step_model.add(tf.keras.layers.LSTM(16, activation='relu')) multi_step_model.add(tf.keras.layers.Dense(72)) multi_step_model.compile(optimizer=tf.keras.optimizers.RMSprop(clipvalue=1.0), loss='mae') # - for x, y in val_data_multi.take(1): print (multi_step_model.predict(x).shape) multi_step_history = multi_step_model.fit(train_data_multi, epochs=EPOCHS, steps_per_epoch=EVALUATION_INTERVAL, validation_data=val_data_multi, validation_steps=50) plot_train_history(multi_step_history, 'Multi-Step Training and validation loss') # Выполнение интервального прогноза for x, y in val_data_multi.take(3): multi_step_plot(x[0], y[0], multi_step_model.predict(x)[0])
Neural network in FPGA.ipynb
# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.14.4 # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- # # Apply logistic regression to categorize whether a county had high mortality rate due to contamination # ## 1. Import the necessary packages to read in the data, plot, and create a logistic regression model import pandas as pd # %matplotlib inline import numpy as np from sklearn.linear_model import LogisticRegression # cd C:\Users\<NAME>\Desktop\algorithms\class7 # ## 2. Read in the hanford.csv file in the `data/` folder df=pd.read_csv('data/hanford.csv') len(df) # <img src="../../images/hanford_variables.png"></img> # ## 3. Calculate the basic descriptive statistics on the data df.describe() df['Mortality'].hist(bins=5) # ## 4. Find a reasonable threshold to say exposure is high and recode the data df['Mort_high']=df['Mortality'].apply(lambda x:1 if x>=147.1 else 0) df['Exposure_high']=df['Exposure'].apply(lambda x:1 if x>=3.41 else 0) df df exposure_high(x): if x >=3.41 return 1 else: return 0 # THIS IS THE FUNCTION ONE HAD TO USE IF IT WASNT FOR LAMBDA FUNCTION # ## 5. Create a logistic regression model from sklearn.linear_model import LogisticRegression lm = LogisticRegression() x = np.asarray(df[['Exposure_high']]) y = np.asarray(df['Mort_high']) lm = lm.fit(x,y) # ## 6. Predict whether the mortality rate (Cancer per 100,000 man years) will be high at an exposure level of 50 lm.predict([50])
07 Teaching Machines/donow/Devulapalli_Harsha_7_donow.ipynb
# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.14.4 # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- # %matplotlib inline # # # Blob Detection # # Blobs are bright on dark or dark on bright regions in an image. In # this example, blobs are detected using 3 algorithms. The image used # in this case is the Hubble eXtreme Deep Field. Each bright dot in the # image is a star or a galaxy. # # ## Laplacian of Gaussian (LoG) # This is the most accurate and slowest approach. It computes the Laplacian # of Gaussian images with successively increasing standard deviation and # stacks them up in a cube. Blobs are local maximas in this cube. Detecting # larger blobs is especially slower because of larger kernel sizes during # convolution. Only bright blobs on dark backgrounds are detected. See # :py:meth:`skimage.feature.blob_log` for usage. # # ## Difference of Gaussian (DoG) # This is a faster approximation of LoG approach. In this case the image is # blurred with increasing standard deviations and the difference between # two successively blurred images are stacked up in a cube. This method # suffers from the same disadvantage as LoG approach for detecting larger # blobs. Blobs are again assumed to be bright on dark. See # :py:meth:`skimage.feature.blob_dog` for usage. # # ## Determinant of Hessian (DoH) # This is the fastest approach. It detects blobs by finding maximas in the # matrix of the Determinant of Hessian of the image. The detection speed is # independent of the size of blobs as internally the implementation uses # box filters instead of convolutions. Bright on dark as well as dark on # bright blobs are detected. The downside is that small blobs (<3px) are not # detected accurately. See :py:meth:`skimage.feature.blob_doh` for usage. # # + from math import sqrt from skimage import data from skimage.feature import blob_dog, blob_log, blob_doh from skimage.color import rgb2gray import matplotlib.pyplot as plt image = data.hubble_deep_field()[0:500, 0:500] image_gray = rgb2gray(image) blobs_log = blob_log(image_gray, max_sigma=30, num_sigma=10, threshold=.1) # Compute radii in the 3rd column. blobs_log[:, 2] = blobs_log[:, 2] * sqrt(2) blobs_dog = blob_dog(image_gray, max_sigma=30, threshold=.1) blobs_dog[:, 2] = blobs_dog[:, 2] * sqrt(2) blobs_doh = blob_doh(image_gray, max_sigma=30, threshold=.01) blobs_list = [blobs_log, blobs_dog, blobs_doh] colors = ['yellow', 'lime', 'red'] titles = ['Laplacian of Gaussian', 'Difference of Gaussian', 'Determinant of Hessian'] sequence = zip(blobs_list, colors, titles) fig, axes = plt.subplots(1, 3, figsize=(9, 3), sharex=True, sharey=True) ax = axes.ravel() for idx, (blobs, color, title) in enumerate(sequence): ax[idx].set_title(title) ax[idx].imshow(image) for blob in blobs: y, x, r = blob c = plt.Circle((x, y), r, color=color, linewidth=2, fill=False) ax[idx].add_patch(c) ax[idx].set_axis_off() plt.tight_layout() plt.show()
digital-image-processing/notebooks/features_detection/plot_blob.ipynb
# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.14.4 # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- # + [markdown] slideshow={"slide_type": "slide"} # # ### Research Data Management in Neuroscience # # # An introduction to BIDS # # The Brain Imaging Data Structure # # <NAME> # # Department Biologie II # Ludwig-Maximilians-Universität München # # Friday, 12 June, 2020 # # # ![G-Node-logo.png](attachment:G-Node-logo.png) # + [markdown] slideshow={"slide_type": "slide"} # ## Take home message # # BIDS # - can help you organise (imaging) data # - exposes you to a community standard of data organisation # - exposes you to a standard of project and metadata organisation # + [markdown] slideshow={"slide_type": "slide"} # ## BIDS background # # - inspired by addressing problems at openNeuro.org # - developed in Stanford at the Poldrack lab in 2016 # # + [markdown] slideshow={"slide_type": "fragment"} # > <NAME>., <NAME>., <NAME>., <NAME>., <NAME>., <NAME>., <NAME>., <NAME>., <NAME>., <NAME>., <NAME>., <NAME>., <NAME>., <NAME>., <NAME>., <NAME>., <NAME>., <NAME>., <NAME>., <NAME>., Rokem, # A., <NAME>., <NAME>., <NAME>., <NAME>., <NAME>., <NAME>., 2016. The brain imaging data structure, a format for organizing and describing outputs of neuroimaging experiments. Sci Data 3, 160044. # # Research Resource Identifier RRID:SCR_016124 # + [markdown] slideshow={"slide_type": "fragment"} # - orignally aimed to document MRI and fMRI data # - data structure specification to consistently organize and document neuroimaging and connected behavioral data # - out of this developed the larger BIDS project: https://bids.neuroimaging.io # + [markdown] slideshow={"slide_type": "slide"} # ### The BIDS specification # # - BIDS provides a specification but is not a standard # - it should be viewed as a best practice in project structure and documentation # + [markdown] slideshow={"slide_type": "fragment"} # To this end the BIDS standard specifies # - the naming convention for files and directories # - which file formats are to be used for a use case (i.e. Nifti, json, tsv) # - core metadata and how they are to be stored e.g. about participants, stimuli and key recording settings # + [markdown] slideshow={"slide_type": "fragment"} # Besides the imaging aspect it tries to cover # - behavior # - physiology # # + [markdown] slideshow={"slide_type": "slide"} # ### The BIDS specification # # So far full BIDS specifications exist for # - MRI (2016) # - fMRI (2016) # - MEG (2018) # - EEG (2019) # - iEEG (2019) # + [markdown] slideshow={"slide_type": "fragment"} # Specification extensions e.g. for PET or CT are currently being developed by the community. # + [markdown] slideshow={"slide_type": "slide"} # ## Introduction to the standard specification # ### The BIDS structure # BIDS specifies # - folder structures # - supported file types for different types of (neuroimaging) data # - file naming # - partially file content # # The specification can be found at https://bids-specification.readthedocs.io/en/stable. # + [markdown] slideshow={"slide_type": "fragment"} # ### BIDS file type support # - `.json` files to document metadata # - `.tsv` files containing tab separated tabular metadata - no CSV, no excel, only true tabs, no spacing # - raw data files specific to the modality that the project contains # - e.g. nii.gz files for an anatomical MRI project # - only NIFTI files are supported # + [markdown] slideshow={"slide_type": "slide"} # ### BIDS general folder structure # # # project exampleProjectName # └── subject └── sub-subject_id_01 # └── session └── ses-session_number_01 # └── datatype └── anat # └── datatype └── func # # + [markdown] slideshow={"slide_type": "fragment"} # #### BIDS folder names and contrstraints # - `project` ... can have any name but should be descriptive # - `subject` ... `sub-<participant label>` # - Label has to be specific for each subject # - Only one folder per subject per dataset # - `session` ... `sub-<session label>` # - Each folder represents a recording session # - If required use multiple sessions per subject # - The session label has to be unique per subject # - `datatype` ... `func`, `dwi`, `fmap`, `anat`, `meg`, `eeg`, `ieeg`, `beh` # - defines the types of data contained in this dataset # + [markdown] slideshow={"slide_type": "slide"} # ### BIDS general folder structure # # # project exampleProjectName # └── subject └── sub-subject_id_01 # └── session └── ses-session_number_01 # └── datatype └── anat # └── datatype └── func # # #### BIDS datatypes # # - `func` ... functional MRI data # - `dwi` ... diffusion Imaging Data # - `fmap` ... fieldmap MRI data # - `anat` ... anatomical MRI data # - `meg` ... MEG data # - `eeg` ... EEG Data # - `ieeg` ... intracranial EEG data # - `beh` ... behavior # # Folders of these datatypes allow only specific files that are named according to the BIDS specificiation. # + [markdown] slideshow={"slide_type": "slide"} # ### BIDS general folder structure # # #### File naming contstraints # # Metadata and data file names depend on the project type and the folder names! # # + [markdown] slideshow={"slide_type": "fragment"} # # Anatomical MRI data example: `anat` # # Folder structure and naming constraints # `./myProject/sub-01/ses-01/anat/` # # + [markdown] slideshow={"slide_type": "fragment"} # # Data file naming constraints in an anatomical MRI data project: # - `sub-<>_ses-<>_T1w.nii.gz` # # Metadata file naming constraints: # - `sub-<>_ses-<>_T1w.json` # # Other files are not allowed in an `anat` folder. # # + [markdown] slideshow={"slide_type": "slide"} # ### BIDS general folder structure - full example # # ds001 # ├── dataset_description.json # ├── participants.tsv # ├── sub-01 # │ ├── anat # │ │ ├── sub-01_inplaneT2.nii.gz # │ │ └── sub-01_T1w.nii.gz # │ └── func # │ ├── sub-01_task-balloonanalogrisktask_run-01_bold.nii.gz # │ ├── sub-01_task-balloonanalogrisktask_run-01_events.tsv # │ ├── sub-01_task-balloonanalogrisktask_run-02_bold.nii.gz # │ ├── sub-01_task-balloonanalogrisktask_run-02_events.tsv # ├── sub-02 # │ ├── anat # │ │ ├── sub-02_inplaneT2.nii.gz # │ │ └── sub-02_T1w.nii.gz # │ └── func # │ ├── sub-02_task-balloonanalogrisktask_run-01_bold.nii.gz # │ ├── sub-02_task-balloonanalogrisktask_run-01_events.tsv # │ ├── sub-02_task-balloonanalogrisktask_run-02_bold.nii.gz # │ ├── sub-02_task-balloonanalogrisktask_run-02_events.tsv # ... # └── task-balloonanalogrisktask_bold.json # + [markdown] slideshow={"slide_type": "slide"} # ### BIDS general folder structure - BIDS is rigid # - folder structure and naming scheme has to be followed # - empty or additional files as well as unsupported file types are not allowed # # + [markdown] slideshow={"slide_type": "fragment"} # #### Adding additional files # The root of the project folder may (and should) contain the following files # - `README` # - `dataset_description.json` # - `participants.tsv` # # + [markdown] slideshow={"slide_type": "fragment"} # #### Dealing with unsupported files # - keep unsupported files one level above the project root # - add non-BIDS files to `.bidsignore` at the project root; works like `.gitignore`. # # *_not_bids.txt # extra_data/ # # + [markdown] slideshow={"slide_type": "slide"} # ### BIDS validation # # Core of BIDS is a validation service # - needs to be run on a regular basis to ensure adherence to specification # - online service at https://bids-standard.github.io/bids-validator # # + [markdown] slideshow={"slide_type": "fragment"} # - local service installation at https://github.com/bids-standard/bids-validator # - nodejs (full functionality, commandline tool) # - Python (reduced functionality) # - docker # # + [markdown] slideshow={"slide_type": "slide"} # ### BIDS usage example # # We will now use the online validator to build and troubleshoot a BIDS project from scratch. # # https://bids-standard.github.io/bids-validator # # Find step by step example directories in the RDM course folder on gin: # https://gin.g-node.org/RDMcourse2020/Lectures/Lecture04/BIDS_validation_examples # # The folder contains four BIDS projects with various validation issues: # # 01_empty_example/ # 02_invalid_structure/ # 03_invalid_file_annotation/ # 04_invalid_additional_file/ # # The folders can be uploaded to the validator and will return the individual issues. # + [markdown] slideshow={"slide_type": "slide"} # ### BIDS troubleshooting: use the specification # # - BIDS is available for fMRI, MRI, EEG, iEEG and other data sources # - the exact specification, allowed structure, naming and file format varies # - use the specification for all details to get to a valid BIDS structure # # https://bids-specification.readthedocs.io/en/stable # # - use the specification to collect and document metadata # # + [markdown] slideshow={"slide_type": "slide"} # ### BIDS specifications in the making - get involved # # Besides the published supported data many more are currently in development # # e.g. BIDS for PET is close to finishing: # https://docs.google.com/document/d/1mqMLnxVdLwZjDd4ZiWFqjEAmOmfcModA_R535v3eQs0/edit # # Everyone can look up the status of a project and also contribute: # https://bids.neuroimaging.io/get_involved.html # # # # + [markdown] slideshow={"slide_type": "slide"} # # BIDS converters, tools and apps # # List of tools # - https://bids.neuroimaging.io/benefits.html # # Example tool: Raw data to BIDS converter # - https://github.com/Donders-Institute/bidscoin # # BIDS apps - applications that work with BIDS datasets # - https://bids-apps.neuroimaging.io/about # # Example app # - https://github.com/poldracklab/fmriprep # # + [markdown] slideshow={"slide_type": "slide"} # # Linklist # # BIDS home page # - https://bids.neuroimaging.io # # BIDS specification # - https://bids-specification.readthedocs.io/en/stable/ # # BIDS validator # - https://bids-standard.github.io/bids-validator/ # - https://github.com/bids-standard/bids-validator # # Introductions and examples # - https://github.com/bids-standard/bids-starter-kit # - https://github.com/bids-standard/bids-starter-kit/wiki/Tutorials # - https://github.com/bids-standard/bids-examples # # + [markdown] slideshow={"slide_type": "slide"} # ## BIDS papers # # BIDS # https://doi.org/10.1038/sdata.2016.44 # # EEG-BIDS # https://doi.org/10.1038/s41597-019-0104-8 # # iEEG BIDS # https://doi.org/10.1038/s41597-019-0105-7 # # MEG BIDS # https://doi.org/10.1038/sdata.2018.110 # # BIDS apps # https://doi.org/10.1371/journal.pcbi.1005209 # # + [markdown] slideshow={"slide_type": "slide"} # # Assignment # # - read through https://github.com/bids-standard/bids-starter-kit # - try to map your data to the BIDS structure # - if you have problems check # - the specification: https://bids-specification.readthedocs.io/en/stable/ # - the examples page: https://github.com/bids-standard/bids-examples # - make sure your example is valid using the online validator # - read through the specification for your dataset and try to find some metadata, validate again #
courses/2020-LMU-RDM/BIDS/BIDS_introduction.ipynb
# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.14.4 # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- # # Introduction # # This notebook will include experimental results on the Actor-Critic agent specified in the RL book by <NAME> on the smart vacuum environment but with added memory. # + # import needed libs # %load_ext autoreload # Auto reloading causes the kernel to reload the libraries we have # %autoreload 2 # usual imports for visualization, etc. import numpy as np import matplotlib.pyplot as plt import datetime # make it reproducible np.random.seed(0) # show plots inline # %matplotlib inline # + # Some initializations from envs import SmartVac from agents import ActorCriticMemoryAgent max_episode_steps = 1000 results_folder = 'res/' figs_folder = 'figs/' # + AgentClass = ActorCriticMemoryAgent best_performance = 0.74 env = SmartVac() num_of_tests = 1 episode_count = 10000 plot_count = int(episode_count / 100) alpha_theta = np.power(2.0, -2) alpha_w = np.power(2.0, -2) params_str = f'alpha_theta_{alpha_theta}_alpha_w_{alpha_w}_episodes_{episode_count}' agent_name = AgentClass.__name__ mult_avgs = [] mult_probs1 = [] mult_probs2 = [] for i_test in range(num_of_tests): print() print(i_test + 1, end=' ') # Initialize the agent agent = AgentClass(alpha_w=alpha_w, alpha_theta=alpha_theta) avgs = [] probs1 = [] probs2 = [] episode_rewards = np.zeros(episode_count) for i_episode in range(episode_count): done = False totalReward = 0 if i_episode >= plot_count and (i_episode % plot_count == 0): avg = np.average(episode_rewards[i_episode - plot_count:i_episode]) avgs.append(avg) # deterministic position env.x = 0 env.y = 1 obs = env.get_obs() prob = agent.get_action_vals_for_obs(obs) probs1.append(prob) # stochastic position env.x = 1 env.y = 1 obs = env.get_obs() prob = agent.get_action_vals_for_obs(obs) probs2.append(prob) print('#', end='', flush=True) if len(avgs) % 100 == 0: print(i_episode) obs = env.reset() action = agent.start(obs) step = 0 while not done: obs, reward, done = env.step(action) action = agent.step(obs, reward, done) totalReward += reward step += 1 if step > max_episode_steps: done = True episode_rewards[i_episode] = totalReward agent.update_for_episode() mult_avgs.append(avgs) mult_probs1.append(probs1) mult_probs2.append(probs2) avgs = np.mean(np.array(mult_avgs), axis=0) probs1 = np.mean(np.array(mult_probs1), axis=0) probs2 = np.mean(np.array(mult_probs2), axis=0) # + plt.figure(1, figsize=(14,10)) plt.plot(avgs) plt.title(f'Average Return in {episode_count} episodes') plt.xlabel(f'index') plt.ylabel(f'Average Return per {plot_count} episodes') plt.axhline(y=best_performance, linewidth=1, color="g", linestyle='--') # plt.savefig(f'{figs_folder}agent_{agent_name}_{params_str}.png') plt.show() plt.figure(2, figsize=(14,10)) plt.subplot(211) plt.plot(probs1) plt.title(f'Probs for (0,0) in {episode_count} episodes') plt.xlabel(f'index') plt.ylabel(f'Probability') plt.legend(['UP', 'RIGHT', 'DOWN', 'LEFT']) plt.axhline(y=1, linewidth=1, color="g", linestyle='--') plt.subplot(212) plt.plot(probs2) plt.title(f'Probs for (0,1) in {episode_count} episodes') plt.xlabel(f'index') plt.ylabel(f'Probability') plt.legend(['UP', 'RIGHT', 'DOWN', 'LEFT']) plt.axhline(y=.5, linewidth=1, color="g", linestyle='--') plt.show() print('') results = f'Average: \t\t{np.mean(avgs):5.3f}' results += f'\nBest {plot_count} Average: \t{np.max(avgs):5.3f}' results += f'\nLast {plot_count} Average: \t{avgs[-1]:5.3f}' # print(agent.theta) # print(agent.v_hat) results += f'\n\nAgent: {agent_name} \tAlpha_w: {alpha_w}\tAlpha_theta: {alpha_theta}' test_xs = [0, 1, 2, 3, 4] test_ys = [1, 1, 1, 1, 1] for i in range(len(test_xs)): env.x = test_xs[i] env.y = test_ys[i] obs = env.get_obs() probs = agent.get_action_vals_for_obs(obs) results += f'\nx: {env.x}, y:{env.y}, probs: [{probs[0]:4.2f},{probs[1]:4.2f},{probs[2]:4.2f},{probs[3]:4.2f}]' print(results) # Write to file if needed # file = open(f'{results_folder}agent_{agent_name}_{params_str}.txt', 'w') # file.write(results) # file.close() # + AgentClass = ActorCriticMemoryAgent best_performance = -1.26 env = SmartVac(terminal_rewards=(-1,-3)) num_of_tests = 1 episode_count = 10000 plot_count = int(episode_count / 100) alpha_theta = np.power(2.0, -2) alpha_w = np.power(2.0, -2) params_str = f'alpha_theta_{alpha_theta}_alpha_w_{alpha_w}_episodes_{episode_count}' agent_name = AgentClass.__name__ mult_avgs = [] mult_probs1 = [] mult_probs2 = [] for i_test in range(num_of_tests): print() print(i_test + 1, end=' ') # Initialize the agent agent = AgentClass(alpha_w=alpha_w, alpha_theta=alpha_theta) avgs = [] probs1 = [] probs2 = [] episode_rewards = np.zeros(episode_count) for i_episode in range(episode_count): done = False totalReward = 0 if i_episode >= plot_count and (i_episode % plot_count == 0): avg = np.average(episode_rewards[i_episode - plot_count:i_episode]) avgs.append(avg) # deterministic position env.x = 0 env.y = 1 obs = env.get_obs() prob = agent.get_action_vals_for_obs(obs) probs1.append(prob) # stochastic position env.x = 1 env.y = 1 obs = env.get_obs() prob = agent.get_action_vals_for_obs(obs) probs2.append(prob) print('#', end='', flush=True) if len(avgs) % 100 == 0: print(i_episode) obs = env.reset() action = agent.start(obs) step = 0 while not done: obs, reward, done = env.step(action) action = agent.step(obs, reward, done) totalReward += reward step += 1 if step > max_episode_steps: done = True episode_rewards[i_episode] = totalReward agent.update_for_episode() mult_avgs.append(avgs) mult_probs1.append(probs1) mult_probs2.append(probs2) avgs = np.mean(np.array(mult_avgs), axis=0) probs1 = np.mean(np.array(mult_probs1), axis=0) probs2 = np.mean(np.array(mult_probs2), axis=0) # + plt.figure(1, figsize=(14,10)) plt.plot(avgs) plt.title(f'Average Return in {episode_count} episodes') plt.xlabel(f'index') plt.ylabel(f'Average Return per {plot_count} episodes') plt.axhline(y=best_performance, linewidth=1, color="g", linestyle='--') # plt.savefig(f'{figs_folder}agent_{agent_name}_{params_str}.png') plt.show() plt.figure(2, figsize=(14,10)) plt.subplot(211) plt.plot(probs1) plt.title(f'Probs for (0,0) in {episode_count} episodes') plt.xlabel(f'index') plt.ylabel(f'Probability') plt.legend(['UP', 'RIGHT', 'DOWN', 'LEFT']) plt.axhline(y=1, linewidth=1, color="g", linestyle='--') plt.subplot(212) plt.plot(probs2) plt.title(f'Probs for (0,1) in {episode_count} episodes') plt.xlabel(f'index') plt.ylabel(f'Probability') plt.legend(['UP', 'RIGHT', 'DOWN', 'LEFT']) plt.axhline(y=.5, linewidth=1, color="g", linestyle='--') plt.show() print('') results = f'Average: \t\t{np.mean(avgs):5.3f}' results += f'\nBest {plot_count} Average: \t{np.max(avgs):5.3f}' results += f'\nLast {plot_count} Average: \t{avgs[-1]:5.3f}' # print(agent.theta) # print(agent.v_hat) results += f'\n\nAgent: {agent_name} \tAlpha_w: {alpha_w}\tAlpha_theta: {alpha_theta}' test_xs = [0, 1, 2, 3, 4] test_ys = [1, 1, 1, 1, 1] for i in range(len(test_xs)): env.x = test_xs[i] env.y = test_ys[i] obs = env.get_obs() probs = agent.get_action_vals_for_obs(obs) results += f'\nx: {env.x}, y:{env.y}, probs: [{probs[0]:4.2f},{probs[1]:4.2f},{probs[2]:4.2f},{probs[3]:4.2f}]' print(results) # Write to file if needed # file = open(f'{results_folder}agent_{agent_name}_{params_str}.txt', 'w') # file.write(results) # file.close()
step11_actor_critic_with_mem.ipynb
# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.14.4 # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- # # Creation of synthetic data for a stroke thrombolysis pathway data set using CTGAN Generative Advesarial Network (GAN). Tested using a logistic regression model. # ## Aim # # To test CT-Generative Advesarial Network (GAN) for synthesising data that can be used to train a logistic regression machine learning model. # # Generative Advesarial Networks (GANs) are composed of two competing networks: # # * A *descriminator* network: This produces an output (0-1) that determines whether a particular example is fake (output=0) or real (output=1). # * A *generator* network: This network produces synthetic (fake) examples # # The networks are trained together. With each iteration: # # * The *descriminator* network is trained on a set of labelled examples (real examples have a label of 1, those produced by the gernator network have a label of 0). # * The *generator* network is trained by passing generated examples to the *descriminator* network. The loss function is the difference between the *descriminator* output and a value of 1 (for an example which is classified as 100% probability of being real by the *descriminator network*). The *descriminator* output is passed to the *generator network* complete with *gradients*, so that the *generator network* can be trained with gradients back from the *descriminator* output (see figure below). # # Improvement in the *descriminator* network provides a better feedback to the *generator network*, producing better examples. # # ![](../images/generative-adversarial-network.png) # # Goodfellow I, <NAME>, <NAME>, et al. Generative Adversarial Nets. In: <NAME>, <NAME>, <NAME>, et al., eds. Advances in Neural Information Processing Systems 27. Curran Associates, Inc. 2014. 2672–2680.http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf # # ### CTGAN # # CTGAN is a Python/PyTorch package developed to make it easy to use GANs for tabular data. # # GitHub page: https://github.com/sdv-dev/CTGAN # # Key features of CTGAN include: # # * *Preprocessing*: CTGAN uses more sophisticated Variational Gaussian Mixture Model to detect modes of continuous columns. # * *Network structure*: TGAN uses LSTM to generate synthetic data column by column. CTGAN uses Fully-connected networks which is more efficient. # * Features to prevent mode collapse*: We design a conditional generator and resample the training data to prevent model collapse on discrete columns. We use WGANGP and PacGAN to stabilize the training of GAN. # * *Data types*: CTGAN can handle continuous and discrete/categorical data (interger data needs an additional step to convert from float to integer). # * *Source data*: CTGAN works from NumPy or Pandas source data. # # <NAME>, <NAME>, <NAME>, <NAME>. Modeling Tabular data using Conditional GAN. NeurIPS, 2019. # # Xu, Lei, <NAME>, <NAME>, and <NAME> (2019). ‘Modeling Tabular Data Using Conditional GAN’. ArXiv:1907.00503 http://arxiv.org/abs/1907.00503. # # ## Data # # Raw data is avilable at: # # https://raw.githubusercontent.com/MichaelAllen1966/1807_stroke_pathway/master/machine_learning/data/data_for_ml_clin_only.csv # ## Basic methods description # # * Create synthetic data by use of a Generative Adversarial Network (GAN) # * Train logistic regression model on synthetic data and test against held-back raw data # ### Import modules # + from IPython.display import clear_output from ctgan import CTGANSynthesizer ctgan = CTGANSynthesizer() import matplotlib.pyplot as plt import numpy as np import pandas as pd from sklearn.linear_model import LogisticRegression from sklearn.model_selection import train_test_split # Turn warnings off for notebook publication import warnings warnings.filterwarnings("ignore") # + ## Function to turn an array of float values into one-hot # - def make_one_hot(x): """ Takes a list/array/series and returns 1 for highest value and 0 for all others """ # Get argmax highest = np.argmax(x) # Set all values to zero x *= 0.0 # Set argmax to one x[highest] = 1.0 return x # ### Import Data # # Data is imported from local wisconsin.csv file (held in same directory as this notebook). Data can also be accessed here: https://www.kaggle.com/uciml/breast-cancer-wisconsin-data def load_data(): """" Load Stroke Pathway data set Inputs ------ None Returns ------- X: NumPy array of X y: Numpy array of y col_names: column names for X """ # Load data data = pd.read_csv('./stroke_pathway.csv') # Shuffle data data = data.sample(frac=1) # Change 'Thrombolysis given' column to 'thrombolysis', and put last data['label'] = data['Thrombolysis given'] data.drop('Thrombolysis given', axis=1, inplace=True) # Split data in X and y X = data.drop(['label'], axis=1) y = data['label'] # Get col names and convert to NumPy arrays X_col_names = list(X) X = X.values y = y.values return data, X, y, X_col_names # ### Data processing # Function for splitting X and y into training and test sets. def split_into_train_test(X, y, test_proportion=0.25): """" Randomly split X and y numpy arrays into training and test data sets Inputs ------ X and y NumPy arrays Returns ------- X_test, X_train, y_test, y_train Numpy arrays """ X_train, X_test, y_train, y_test = \ train_test_split(X, y, shuffle=True, test_size=test_proportion) return X_train, X_test, y_train, y_test # Function to standardise data (based on mean and dtandard deviation of training data). def standardise_data(X_train, X_test): """" Standardise training and tets data sets according to mean and standard deviation of test set Inputs ------ X_train, X_test NumPy arrays Returns ------- X_train_std, X_test_std """ mu = X_train.mean(axis=0) std = X_train.std(axis=0) X_train_std = (X_train - mu) / std X_test_std = (X_test - mu) /std return X_train_std, X_test_std # ### Calculate accuracy measures # # Function to calculate a range of accuracy scores. def calculate_diagnostic_performance(actual, predicted): """ Inputs ------ actual, predted numpy arrays (1 = +ve, 0 = -ve) Returns ------- A dictionary of results: 1) accuracy: proportion of test results that are correct 2) sensitivity: proportion of true +ve identified 3) specificity: proportion of true -ve identified 4) positive likelihood: increased probability of true +ve if test +ve 5) negative likelihood: reduced probability of true +ve if test -ve 6) diagnostic odds ratio: positive likelihood / negative likelihood 7) true positive rate: same as sensitivity 8) true negative rate: same as specificity 9) false positive rate: proportion of false +ves in true -ve patients 10) false negative rate: proportion of false -ves in true +ve patients 11) positive predictive value: chance of true +ve if test +ve 12) negative predictive value: chance of true -ve if test -ve 13) actual positive rate: proportion of actual values that are +ve 14) predicted positive rate: proportion of predicted vales that are +ve 15) recall: same as sensitivity 16) precision: the proportion of predicted +ve that are true +ve 17) f1: 2 * ((precision * recall) / (precision + recall)) *false positive rate is the percentage of healthy individuals who incorrectly receive a positive test result * alse neagtive rate is the percentage of diseased individuals who incorrectly receive a negative test result """ # Calculate results actual_positives = actual == 1 actual_negatives = actual == 0 test_positives = predicted == 1 test_negatives = predicted == 0 test_correct = actual == predicted accuracy = test_correct.mean() true_positives = actual_positives & test_positives false_positives = test_positives & actual_negatives true_negatives = actual_negatives & test_negatives false_negatives = test_negatives & actual_positives sensitivity = true_positives.sum() / actual_positives.sum() specificity = true_negatives.sum() / actual_negatives.sum() true_positive_rate = sensitivity true_negative_rate = specificity false_positive_rate = 1 - specificity false_negative_rate = 1 - sensitivity positive_likelihood = true_positive_rate / false_positive_rate negative_likelihood = false_positive_rate / true_negative_rate diagnostic_odds_ratio = positive_likelihood / negative_likelihood positive_predictive_value = true_positives.sum() / test_positives.sum() negative_predicitive_value = true_negatives.sum() / test_negatives.sum() actual_positive_rate = actual.mean() predicted_positive_rate = predicted.mean() recall = sensitivity precision = true_positives.sum() / actual_positives.sum() f1 = 2 * ((precision * recall) / (precision + recall)) # Add results to dictionary results = dict() results['accuracy'] = accuracy results['sensitivity'] = sensitivity results['specificity'] = specificity results['positive_likelihood'] = positive_likelihood results['negative_likelihood'] = negative_likelihood results['diagnostic_odds_ratio'] = diagnostic_odds_ratio results['true_positive_rate'] = true_positive_rate results['true_negative_rate'] = true_negative_rate results['false_positive_rate'] = false_positive_rate results['false_negative_rate'] = false_negative_rate results['positive_predictive_value'] = positive_predictive_value results['negative_predicitive_value'] = negative_predicitive_value results['actual_positive_rate'] = actual_positive_rate results['predicted_positive_rate'] = predicted_positive_rate results['recall'] = recall results['precision'] = precision results['f1'] = f1 return results # ### Logistic Regression Model # # Function to fit and test a logistic regression model (when synthetic data is used the model is fitted on synthetic data but tested on real data). def fit_and_test_logistic_regression_model(X_train, X_test, y_train, y_test): """" Fit and test logistic regression model. Return a dictionary of accuracy measures. Calls on `calculate_diagnostic_performance` to calculate results Inputs ------ X_train, X_test NumPy arrays Returns ------- A dictionary of accuracy results. """ # Fit logistic regression model lr = LogisticRegression(C=0.1) lr.fit(X_train,y_train) # Predict tets set labels y_pred = lr.predict(X_test_std) # Get accuracy results accuracy_results = calculate_diagnostic_performance(y_test, y_pred) return accuracy_results # ## Synthetic Data Method - CTGAN # #### Putting it all together: Training network and getting synthetic data def make_synthetic_data_gan(X_original, y_original, number_of_samples=1000, epochs=1000): """ Synthetic data generation, using a GAN Inputs ------ original_data: X, y numpy arrays batch_size: batch size to use when training networks latent_dim: input dimension for generator network number_of_samples: number of synthetic samples to generate n_components: number of principal components to use for data synthesis Returns ------- X_synthetic: NumPy array y_synthetic: NumPy array """ # Split the training data into positive and negative mask = y_original == 1 X_pos = X_original[mask] mask = y_original == 0 X_neg = X_original[mask] # Set up list for positive and negative synthetic data sets synthetic_X_sets = [] # Generate positive class data ctgan.fit(X_pos, epochs=epochs) x_fake_pos = ctgan.sample(number_of_samples) synthetic_X_sets.append(x_fake_pos) # Generate negative class data ctgan.fit(X_neg, epochs=epochs) x_fake_neg = ctgan.sample(number_of_samples) synthetic_X_sets.append(x_fake_neg) # Combine positive and negative and shuffle rows X_synthetic = np.concatenate( (synthetic_X_sets[0], synthetic_X_sets[1]), axis=0) y_synthetic_pos = np.ones((number_of_samples, 1)) y_synthetic_neg = np.zeros((number_of_samples, 1)) y_synthetic = np.concatenate((y_synthetic_pos, y_synthetic_neg), axis=0) # Randomise order of X, y synthetic = np.concatenate((X_synthetic, y_synthetic), axis=1) shuffle_index = np.random.permutation(np.arange(X_synthetic.shape[0])) synthetic = synthetic[shuffle_index] X_synthetic = synthetic[:,0:-1] y_synthetic = synthetic[:,-1] return X_synthetic, y_synthetic # ### Main code # + # Load data original_data, X, y, X_col_names = load_data() # Set up results DataFrame results = pd.DataFrame() # + # Set one hot columns one_hot_cols = [[x for x in X_col_names if x[0:4] == 'Hosp'], [x for x in X_col_names if x[0:21] == 'Onset Time Known Type'], [x for x in X_col_names if x[0:21] == 'Stroke severity group'], [x for x in X_col_names if x[0:11] == 'Stroke Type'], [x for x in X_col_names if x[0:12] == 'Antiplatelet'], [x for x in X_col_names if x[0:22] == 'Anticoag before stroke']] # + # Set integer and binary columns integer_cols = ['Male', 'Age', 'Age_80', '# Comorbidities', '2+ comorbidotes', 'Congestive HF', 'Hypertension', 'Atrial Fib', 'Diabetes', 'TIA', 'Co-mordity', 'S2RankinBeforeStroke', 'S2NihssArrival', 'S2NihssArrivalLocQuestions', 'S2NihssArrivalLocCommands', 'S2NihssArrivalBestGaze', 'S2NihssArrivalVisual', 'S2NihssArrivalFacialPalsy', 'S2NihssArrivalMotorArmLeft', 'S2NihssArrivalMotorArmRight', 'S2NihssArrivalMotorLegLeft', 'S2NihssArrivalMotorLegRight', 'S2NihssArrivalLimbAtaxia', 'S2NihssArrivalSensory', 'S2NihssArrivalBestLanguage', 'S2NihssArrivalDysarthria', 'S2NihssArrivalExtinctionInattention'] binary_cols = ['Male', 'Age_80', '2+ comorbidotes', 'Congestive HF', 'Hypertension', 'Atrial Fib', 'Diabetes', 'TIA', 'Co-mordity'] # - # Fitting classification model to raw data # + # Set number of replicate runs number_of_runs = 5 # Set up lists for results accuracy_measure_names = [] accuracy_measure_data = [] for run in range(number_of_runs): # Print progress print (run + 1, end=' ') # Split training and test set X_train, X_test, y_train, y_test = split_into_train_test(X, y) # Standardise data X_train_std, X_test_std = standardise_data(X_train, X_test) # Get accuracy of fitted model accuracy = fit_and_test_logistic_regression_model( X_train_std, X_test_std, y_train, y_test) # Get accuracy measure names if not previously done if len(accuracy_measure_names) == 0: for key, value in accuracy.items(): accuracy_measure_names.append(key) # Get accuracy values run_accuracy_results = [] for key, value in accuracy.items(): run_accuracy_results.append(value) # Add results to results list accuracy_measure_data.append(run_accuracy_results) # Output accuracy percent_accuracy = accuracy['accuracy'] * 100 print(f'Accuracy: {percent_accuracy:3.1f}') # Strore mean and sem in results DataFrame accuracy_array = np.array(accuracy_measure_data) results['raw_mean'] = accuracy_array.mean(axis=0) results['raw_sem'] = accuracy_array.std(axis=0)/np.sqrt(number_of_runs) results.index = accuracy_measure_names # - # Fitting classification model to synthetic data # + # Set up lists for results accuracy_measure_names = [] accuracy_measure_data = [] synthetic_data = [] # Set number of replicate runs number_of_runs = 5 for run in range(number_of_runs): # Print progress print (run + 1, end=' ') # Make synthetic data X_synthetic, y_synthetic = make_synthetic_data_gan(X, y) clear_output(wait=True) # Split training and test set X_train, X_test, y_train, y_test = split_into_train_test(X, y) # Standardise data (using synthetic data) X_train_std, X_test_std = standardise_data(X_synthetic, X_test) # Get accuracy of fitted model accuracy = fit_and_test_logistic_regression_model( X_train_std, X_test_std, y_synthetic, y_test) # Get accuracy measure names if not previously done if len(accuracy_measure_names) == 0: for key, value in accuracy.items(): accuracy_measure_names.append(key) # Get accuracy values run_accuracy_results = [] for key, value in accuracy.items(): run_accuracy_results.append(value) # Add results to results list accuracy_measure_data.append(run_accuracy_results) # Output accuracy percent_accuracy = accuracy['accuracy'] * 100 print(f'Accuracy: {percent_accuracy:3.1f}') # Save synthetic data set # ----------------------- # Create a data frame with id synth_df = pd.DataFrame() # Transfer X values to DataFrame synth_df=pd.concat([synth_df, pd.DataFrame(X_synthetic, columns=X_col_names)], axis=1) # Make one hot as necessary for one_hot_list in one_hot_cols: for index, row in synth_df.iterrows(): x = row[one_hot_list] x_one_hot = make_one_hot(x) row[x_one_hot.index]= x_one_hot.values # Make integer as necessary for col in integer_cols: synth_df[col] = synth_df[col].round(0) # Clip binary cols for col in binary_cols: synth_df[col] = np.clip(synth_df[col],0,1) # Add a label y_list = list(y_synthetic) synth_df['label'] = y_list # Shuffle data synth_df = synth_df.sample(frac=1.0) # Add to synthetic data results list synthetic_data.append(synth_df) # Store mean and sem in results DataFrame accuracy_array = np.array(accuracy_measure_data) results['gan_mean'] = accuracy_array.mean(axis=0) results['gan_sem'] = accuracy_array.std(axis=0)/np.sqrt(number_of_runs) # - # ### Show results results # ## Compare raw and synthetic data means and standard deviations # + descriptive_stats_all_runs = [] for run in range(number_of_runs): synth_df = synthetic_data[run] descriptive_stats = pd.DataFrame() descriptive_stats['Original pos_label mean'] = \ original_data[original_data['label'] == 1].mean() descriptive_stats['Synthetic pos_label mean'] = \ synth_df[synth_df['label'] == 1].mean() descriptive_stats['Original neg_label mean'] = \ original_data[original_data['label'] == 0].mean() descriptive_stats['Synthetic neg_label mean'] = \ synth_df[synth_df['label'] == 0].mean() descriptive_stats['Original pos_label std'] = \ original_data[original_data['label'] == 1].std() descriptive_stats['Synthetic pos_label std'] = \ synth_df[synth_df['label'] == 1].std() descriptive_stats['Original neg_label std'] = \ original_data[original_data['label'] == 0].std() descriptive_stats['Synthetic neg_label std'] = \ synth_df[synth_df['label'] == 0].std() descriptive_stats_all_runs.append(descriptive_stats) # + colours = ['k', 'b', 'g', 'r', 'y', 'c', 'm'] fig = plt.figure(figsize=(10,10)) # Note: Set x and y limits to avoid plotting values that are very close to zero # Negative mean ax1 = fig.add_subplot(221) for run in range(number_of_runs): x = descriptive_stats_all_runs[0]['Original neg_label mean'].copy() y = descriptive_stats_all_runs[run]['Synthetic neg_label mean'].copy() x.drop(labels ='label', inplace=True) y.drop(labels ='label', inplace=True) colour = colours[run % 7] # Cycle through 7 colours ax1.scatter(x,y, color=colour, alpha=0.5) ax1.set_xlabel('Original data') ax1.set_ylabel('Synthetic data') ax1.set_xlim(1e-3, 1e2) ax1.set_ylim(1e-3, 1e2) ax1.set_title('Negative label samples mean') ax1.set_xscale('log') ax1.set_yscale('log') ax1.grid() # Positive mean ax2 = fig.add_subplot(222) for run in range(number_of_runs): x = descriptive_stats_all_runs[0]['Original pos_label mean'].copy() y = descriptive_stats_all_runs[run]['Synthetic pos_label mean'].copy() x.drop(labels ='label', inplace=True) y.drop(labels ='label', inplace=True) colour = colours[run % 7] # Cycle through 7 colours ax2.scatter(x,y, color=colour, alpha=0.5) ax2.set_xlabel('Original data') ax2.set_ylabel('Synthetic data') ax2.set_title('Positive label samples mean') ax2.set_xlim(1e-3, 1e2) ax2.set_ylim(1e-3, 1e2) ax2.set_xscale('log') ax2.set_yscale('log') ax2.grid() # Negative standard deviation ax3 = fig.add_subplot(223) for run in range(number_of_runs): x = descriptive_stats_all_runs[0]['Original neg_label std'].copy() y = descriptive_stats_all_runs[run]['Synthetic neg_label std'].copy() x.drop(labels ='label', inplace=True) y.drop(labels ='label', inplace=True) colour = colours[run % 7] # Cycle through 7 colours ax3.scatter(x,y, color=colour, alpha=0.5) ax3.set_xlabel('Original data') ax3.set_ylabel('Synthetic data') ax3.set_title('Negative label standard deviation') ax3.set_xlim(1e-2, 1e2) ax3.set_ylim(1e-2, 1e2) ax3.set_xscale('log') ax3.set_yscale('log') ax3.grid() # Positive standard deviation ax4 = fig.add_subplot(224) for run in range(number_of_runs): x = descriptive_stats_all_runs[0]['Original pos_label std'].copy() y = descriptive_stats_all_runs[run]['Synthetic pos_label std'].copy() x.drop(labels ='label', inplace=True) y.drop(labels ='label', inplace=True) colour = colours[run % 7] # Cycle through 7 colours ax4.scatter(x,y, color=colour, alpha=0.5) ax4.set_xlabel('Original data') ax4.set_ylabel('Synthetic data') ax4.set_title('Positive label standard deviation') ax4.set_xlim(1e-2, 1e2) ax4.set_ylim(1e-2, 1e2) ax4.set_xscale('log') ax4.set_yscale('log') ax4.grid() plt.tight_layout(pad=2) plt.savefig('Output/ctgan_correls.png', facecolor='w', dpi=300) plt.show() # - # Calculate correlations between means and standard deviations for negative and positive classes. # + correl_mean_neg = [] correl_std_neg = [] correl_mean_pos = [] correl_std_pos = [] for run in range(number_of_runs): # Get correlation of means x = descriptive_stats_all_runs[run]['Original neg_label mean'] y = descriptive_stats_all_runs[run]['Synthetic neg_label mean'] correl_mean_neg.append(np.corrcoef(x,y)[0,1]) x = descriptive_stats_all_runs[run]['Original pos_label mean'] y = descriptive_stats_all_runs[run]['Synthetic pos_label mean'] correl_mean_pos.append(np.corrcoef(x,y)[0,1]) # Get correlation of standard deviations x = descriptive_stats_all_runs[run]['Original neg_label std'] y = descriptive_stats_all_runs[run]['Synthetic neg_label std'] correl_std_neg.append(np.corrcoef(x,y)[0,1]) x = descriptive_stats_all_runs[run]['Original pos_label std'] y = descriptive_stats_all_runs[run]['Synthetic pos_label std'] correl_std_pos.append(np.corrcoef(x,y)[0,1]) # Get correlation of means mean_r_square_mean_neg = np.mean(np.square(correl_mean_neg)) mean_r_square_mean_pos = np.mean(np.square(correl_mean_pos)) sem_square_mean_neg = np.std(np.square(correl_mean_neg))/np.sqrt(number_of_runs) sem_square_mean_pos = np.std(np.square(correl_mean_pos))/np.sqrt(number_of_runs) print ('R-square of means (negative), mean (std): ', end='') print (f'{mean_r_square_mean_neg:0.3f} ({sem_square_mean_neg:0.3f})') print ('R-square of means (positive), mean (std): ', end='') print (f'{mean_r_square_mean_pos:0.3f} ({sem_square_mean_pos:0.3f})') # Get correlation of standard deviations mean_r_square_sd_neg = np.mean(np.square(correl_std_neg)) mean_r_square_sd_pos = np.mean(np.square(correl_std_pos)) sem_square_sd_neg = np.std(np.square(correl_std_neg))/np.sqrt(number_of_runs) sem_square_sd_pos = np.std(np.square(correl_std_pos))/np.sqrt(number_of_runs) print ('R-square of standard deviations (negative), mean (sem): ', end='') print (f'{mean_r_square_sd_neg:0.3f} ({sem_square_sd_neg:0.3f})') print ('R-square of standard deviations (positive), mean (sem): ', end='') print (f'{mean_r_square_sd_pos:0.3f} ({sem_square_sd_pos:0.3f})') # - # ## Single run example descriptive_stats_all_runs[0] # ## Correlation between features # # Here we calculate a correlation matric between all features for original and synthetic data. # + neg_correlation_original = [] neg_correlation_synthetic = [] pos_correlation_original = [] pos_correlation_synthetic = [] correl_coeff_neg = [] correl_coeff_pos= [] # Original data mask = original_data['label'] == 0 neg_o = original_data[mask].copy() neg_o.drop('label', axis=1, inplace=True) neg_correlation_original = neg_o.corr().values.flatten() mask = original_data['label'] == 1 pos_o = original_data[mask].copy() pos_o.drop('label', axis=1, inplace=True) pos_correlation_original = pos_o.corr().values.flatten() # Synthetic data for i in range (number_of_runs): data_s = synthetic_data[i] mask = data_s['label'] == 0 neg_s = data_s[mask].copy() neg_s.drop('label', axis=1, inplace=True) corr_neg_s = neg_s.corr().values.flatten() neg_correlation_synthetic.append(corr_neg_s) mask = data_s['label'] == 1 pos_s = data_s[mask].copy() pos_s.drop('label', axis=1, inplace=True) corr_pos_s = pos_s.corr().values.flatten() pos_correlation_synthetic.append(corr_pos_s) # Get correlation coefficients df = pd.DataFrame() df['original'] = neg_correlation_original df['synthetic'] = corr_neg_s correl_coeff_neg.append(df.corr().loc['original']['synthetic']) df = pd.DataFrame() df['original'] = pos_correlation_original df['synthetic'] = corr_pos_s correl_coeff_pos.append(df.corr().loc['original']['synthetic']) # + colours = ['k', 'b', 'g', 'r', 'y', 'c', 'm'] fig = plt.figure(figsize=(10,5)) ax1 = fig.add_subplot(121) for run in range(number_of_runs): colour = colours[run % 7] # Cycle through 7 colours ax1.scatter( neg_correlation_original, neg_correlation_synthetic[run], color=colour, alpha=0.25) ax1.grid() ax1.set_xlabel('Original data correlation') ax1.set_ylabel('Synthetic data correlation') ax1.set_title('Negative label samples correlation of features') ax2 = fig.add_subplot(122) for run in range(number_of_runs): colour = colours[run % 7] # Cycle through 7 colours ax2.scatter( pos_correlation_original, pos_correlation_synthetic[run], color=colour, alpha=0.25) ax2.grid() ax2.set_xlabel('Original data correlation') ax2.set_ylabel('Synthetic data correlation') ax2.set_title('Positive label samples correlation of features') plt.tight_layout(pad=2) plt.savefig('Output/ctgan_cov.png', facecolor='w', dpi=300) plt.show() # + r_square_neg_mean = np.mean(np.square(correl_coeff_neg)) r_square_pos_mean = np.mean(np.square(correl_coeff_pos)) r_square_neg_sem = np.std(np.square(correl_coeff_neg))/np.sqrt(number_of_runs) r_square_pos_sem = np.std(np.square(correl_coeff_pos))/np.sqrt(number_of_runs) print ('Corrleation of correlations (negative), mean (sem): ', end='') print (f'{r_square_neg_mean:0.3f} ({r_square_neg_sem:0.3f})') print ('Corrleation of correlations (positive), mean (sem): ', end = '') print (f'{r_square_pos_mean:0.3f} ({r_square_pos_sem:0.3f})')
02_stroke_pathway/03b_CTGAN_log_regression.ipynb
# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.14.4 # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- # # SVI Part I: An Introduction to Stochastic Variational Inference in Pyro # # Pyro has been designed with particular attention paid to supporting stochastic variational inference as a general purpose inference algorithm. Let's see how we go about doing variational inference in Pyro. # # ## Setup # # We're going to assume we've already defined our model in Pyro (for more details on how this is done see [Intro Part I](intro_part_i.ipynb)). # As a quick reminder, the model is given as a stochastic function `model(*args, **kwargs)`, which, in the general case takes arguments. The different pieces of `model()` are encoded via the mapping: # # 1. observations $\Longleftrightarrow$ `pyro.sample` with the `obs` argument # 2. latent random variables $\Longleftrightarrow$ `pyro.sample` # 3. parameters $\Longleftrightarrow$ `pyro.param` # # Now let's establish some notation. The model has observations ${\bf x}$ and latent random variables ${\bf z}$ as well as parameters $\theta$. It has a joint probability density of the form # # $$p_{\theta}({\bf x}, {\bf z}) = p_{\theta}({\bf x}|{\bf z}) p_{\theta}({\bf z})$$ # # We assume that the various probability distributions $p_i$ that make up $p_{\theta}({\bf x}, {\bf z})$ have the following properties: # # 1. we can sample from each $p_i$ # 2. we can compute the pointwise log pdf $p_i$ # 3. $p_i$ is differentiable w.r.t. the parameters $\theta$ # # # ## Model Learning # # In this context our criterion for learning a good model will be maximizing the log evidence, i.e. we want to find the value of $\theta$ given by # # $$\theta_{\rm{max}} = \underset{\theta}{\operatorname{argmax}} \log p_{\theta}({\bf x})$$ # # where the log evidence $\log p_{\theta}({\bf x})$ is given by # # $$\log p_{\theta}({\bf x}) = \log \int\! d{\bf z}\; p_{\theta}({\bf x}, {\bf z})$$ # # In the general case this is a doubly difficult problem. This is because (even for a fixed $\theta$) the integral over the latent random variables $\bf z$ is often intractable. Furthermore, even if we know how to calculate the log evidence for all values of $\theta$, maximizing the log evidence as a function of $\theta$ will in general be a difficult non-convex optimization problem. # # In addition to finding $\theta_{\rm{max}}$, we would like to calculate the posterior over the latent variables $\bf z$: # # $$ p_{\theta_{\rm{max}}}({\bf z} | {\bf x}) = \frac{p_{\theta_{\rm{max}}}({\bf x} , {\bf z})}{ # \int \! d{\bf z}\; p_{\theta_{\rm{max}}}({\bf x} , {\bf z}) } $$ # # Note that the denominator of this expression is the (usually intractable) evidence. Variational inference offers a scheme for finding $\theta_{\rm{max}}$ and computing an approximation to the posterior $p_{\theta_{\rm{max}}}({\bf z} | {\bf x})$. Let's see how that works. # # ## Guide # # The basic idea is that we introduce a parameterized distribution $q_{\phi}({\bf z})$, where $\phi$ are known as the variational parameters. This distribution is called the variational distribution in much of the literature, and in the context of Pyro it's called the **guide** (one syllable instead of nine!). The guide will serve as an approximation to the posterior. # # Just like the model, the guide is encoded as a stochastic function `guide()` that contains `pyro.sample` and `pyro.param` statements. It does _not_ contain observed data, since the guide needs to be a properly normalized distribution. Note that Pyro enforces that `model()` and `guide()` have the same call signature, i.e. both callables should take the same arguments. # # Since the guide is an approximation to the posterior $p_{\theta_{\rm{max}}}({\bf z} | {\bf x})$, the guide needs to provide a valid joint probability density over all the latent random variables in the model. Recall that when random variables are specified in Pyro with the primitive statement `pyro.sample()` the first argument denotes the name of the random variable. These names will be used to align the random variables in the model and guide. To be very explicit, if the model contains a random variable `z_1` # # ```python # def model(): # pyro.sample("z_1", ...) # ``` # # then the guide needs to have a matching `sample` statement # # ```python # def guide(): # pyro.sample("z_1", ...) # ``` # # The distributions used in the two cases can be different, but the names must line-up 1-to-1. # # Once we've specified a guide (we give some explicit examples below), we're ready to proceed to inference. # Learning will be setup as an optimization problem where each iteration of training takes a step in $\theta-\phi$ space that moves the guide closer to the exact posterior. # To do this we need to define an appropriate objective function. # # ## ELBO # # A simple derivation (for example see reference [1]) yields what we're after: the evidence lower bound (ELBO). The ELBO, which is a function of both $\theta$ and $\phi$, is defined as an expectation w.r.t. to samples from the guide: # # $${\rm ELBO} \equiv \mathbb{E}_{q_{\phi}({\bf z})} \left [ # \log p_{\theta}({\bf x}, {\bf z}) - \log q_{\phi}({\bf z}) # \right]$$ # # By assumption we can compute the log probabilities inside the expectation. And since the guide is assumed to be a parametric distribution we can sample from, we can compute Monte Carlo estimates of this quantity. Crucially, the ELBO is a lower bound to the log evidence, i.e. for all choices of $\theta$ and $\phi$ we have that # # $$\log p_{\theta}({\bf x}) \ge {\rm ELBO} $$ # # So if we take (stochastic) gradient steps to maximize the ELBO, we will also be pushing the log evidence higher (in expectation). Furthermore, it can be shown that the gap between the ELBO and the log evidence is given by the KL divergence between the guide and the posterior: # # $$ \log p_{\theta}({\bf x}) - {\rm ELBO} = # \rm{KL}\!\left( q_{\phi}({\bf z}) \lVert p_{\theta}({\bf z} | {\bf x}) \right) $$ # # This KL divergence is a particular (non-negative) measure of 'closeness' between two distributions. So, for a fixed $\theta$, as we take steps in $\phi$ space that increase the ELBO, we decrease the KL divergence between the guide and the posterior, i.e. we move the guide towards the posterior. In the general case we take gradient steps in both $\theta$ and $\phi$ space simultaneously so that the guide and model play chase, with the guide tracking a moving posterior $\log p_{\theta}({\bf z} | {\bf x})$. Perhaps somewhat surprisingly, despite the moving target, this optimization problem can be solved (to a suitable level of approximation) for many different problems. # # So at high level variational inference is easy: all we need to do is define a guide and compute gradients of the ELBO. Actually, computing gradients for general model and guide pairs leads to some complications (see the tutorial [SVI Part III](svi_part_iii.ipynb) for a discussion). For the purposes of this tutorial, let's consider that a solved problem and look at the support that Pyro provides for doing variational inference. # # ## `SVI` Class # # In Pyro the machinery for doing variational inference is encapsulated in the `SVI` class. # # The user needs to provide three things: the model, the guide, and an optimizer. We've discussed the model and guide above and we'll discuss the optimizer in some detail below, so let's assume we have all three ingredients at hand. To construct an instance of `SVI` that will do optimization via the ELBO objective, the user writes # # ```python # import pyro # from pyro.infer import SVI, Trace_ELBO # svi = SVI(model, guide, optimizer, loss=Trace_ELBO()) # ``` # # The `SVI` object provides two methods, `step()` and `evaluate_loss()`, that encapsulate the logic for variational learning and evaluation: # # 1. The method `step()` takes a single gradient step and returns an estimate of the loss (i.e. minus the ELBO). If provided, the arguments to `step()` are piped to `model()` and `guide()`. # # 2. The method `evaluate_loss()` returns an estimate of the loss _without_ taking a gradient step. Just like for `step()`, if provided, arguments to `evaluate_loss()` are piped to `model()` and `guide()`. # # For the case where the loss is the ELBO, both methods also accept an optional argument `num_particles`, which denotes the number of samples used to compute the loss (in the case of `evaluate_loss`) and the loss and gradient (in the case of `step`). # # ## Optimizers # # In Pyro, the model and guide are allowed to be arbitrary stochastic functions provided that # # 1. `guide` doesn't contain `pyro.sample` statements with the `obs` argument # 2. `model` and `guide` have the same call signature # # This presents some challenges because it means that different executions of `model()` and `guide()` may have quite different behavior, with e.g. certain latent random variables and parameters only appearing some of the time. Indeed parameters may be created dynamically during the course of inference. In other words the space we're doing optimization over, which is parameterized by $\theta$ and $\phi$, can grow and change dynamically. # # In order to support this behavior, Pyro needs to dynamically generate an optimizer for each parameter the first time it appears during learning. Luckily, PyTorch has a lightweight optimization library (see [torch.optim](http://pytorch.org/docs/master/optim.html)) that can easily be repurposed for the dynamic case. # # All of this is controlled by the `optim.PyroOptim` class, which is basically a thin wrapper around PyTorch optimizers. `PyroOptim` takes two arguments: a constructor for PyTorch optimizers `optim_constructor` and a specification of the optimizer arguments `optim_args`. At high level, in the course of optimization, whenever a new parameter is seen `optim_constructor` is used to instantiate a new optimizer of the given type with arguments given by `optim_args`. # # Most users will probably not interact with `PyroOptim` directly and will instead interact with the aliases defined in `optim/__init__.py`. Let's see how that goes. There are two ways to specify the optimizer arguments. In the simpler case, `optim_args` is a _fixed_ dictionary that specifies the arguments used to instantiate PyTorch optimizers for _all_ the parameters: # # ```python # from pyro.optim import Adam # # adam_params = {"lr": 0.005, "betas": (0.95, 0.999)} # optimizer = Adam(adam_params) # ``` # # The second way to specify the arguments allows for a finer level of control. Here the user must specify a callable that will be invoked by Pyro upon creation of an optimizer for a newly seen parameter. This callable must have the following signature: # # 1. `module_name`: the Pyro name of the module containing the parameter, if any # 2. `param_name`: the Pyro name of the parameter # # This gives the user the ability to, for example, customize learning rates for different parameters. For an example where this sort of level of control is useful, see the [discussion of baselines](svi_part_iii.ipynb). Here's a simple example to illustrate the API: # # ```python # from pyro.optim import Adam # # def per_param_callable(param_name): # if param_name == 'my_special_parameter': # return {"lr": 0.010} # else: # return {"lr": 0.001} # # optimizer = Adam(per_param_callable) # ``` # # This simply tells Pyro to use a learning rate of `0.010` for the Pyro parameter `my_special_parameter` and a learning rate of `0.001` for all other parameters. # # ## A simple example # # We finish with a simple example. You've been given a two-sided coin. You want to determine whether the coin is fair or not, i.e. whether it falls heads or tails with the same frequency. You have a prior belief about the likely fairness of the coin based on two observations: # # - it's a standard quarter issued by the US Mint # - it's a bit banged up from years of use # # So while you expect the coin to have been quite fair when it was first produced, you allow for its fairness to have since deviated from a perfect 1:1 ratio. So you wouldn't be surprised if it turned out that the coin preferred heads over tails at a ratio of 11:10. By contrast you would be very surprised if it turned out that the coin preferred heads over tails at a ratio of 5:1&mdash;it's not _that_ banged up. # # To turn this into a probabilistic model we encode heads and tails as `1`s and `0`s. We encode the fairness of the coin as a real number $f$, where $f$ satisfies $f \in [0.0, 1.0]$ and $f=0.50$ corresponds to a perfectly fair coin. Our prior belief about $f$ will be encoded by a beta distribution, specifically $\rm{Beta}(10,10)$, which is a symmetric probability distribution on the interval $[0.0, 1.0]$ that is peaked at $f=0.5$. # + raw_mimetype="text/html" active="" # <center><figure><img src="_static/img/beta.png" style="width: 300px;"><figcaption> <font size="-1"><b>Figure 1</b>: The distribution Beta that encodes our prior belief about the fairness of the coin. </font></figcaption></figure></center> # - # To learn something about the fairness of the coin that is more precise than our somewhat vague prior, we need to do an experiment and collect some data. Let's say we flip the coin 10 times and record the result of each flip. In practice we'd probably want to do more than 10 trials, but hey this is a tutorial. # # Assuming we've collected the data in a list `data`, the corresponding model is given by # # ```python # import pyro.distributions as dist # # def model(data): # # define the hyperparameters that control the beta prior # alpha0 = torch.tensor(10.0) # beta0 = torch.tensor(10.0) # # sample f from the beta prior # f = pyro.sample("latent_fairness", dist.Beta(alpha0, beta0)) # # loop over the observed data # for i in range(len(data)): # # observe datapoint i using the bernoulli # # likelihood Bernoulli(f) # pyro.sample("obs_{}".format(i), dist.Bernoulli(f), obs=data[i]) # ``` # # Here we have a single latent random variable (`'latent_fairness'`), which is distributed according to $\rm{Beta}(10, 10)$. Conditioned on that random variable, we observe each of the datapoints using a bernoulli likelihood. Note that each observation is assigned a unique name in Pyro. # # Our next task is to define a corresponding guide, i.e. an appropriate variational distribution for the latent random variable $f$. The only real requirement here is that $q(f)$ should be a probability distribution over the range $[0.0, 1.0]$, since $f$ doesn't make sense outside of that range. A simple choice is to use another beta distribution parameterized by two trainable parameters $\alpha_q$ and $\beta_q$. Actually, in this particular case this is the 'right' choice, since conjugacy of the bernoulli and beta distributions means that the exact posterior is a beta distribution. In Pyro we write: # # ```python # def guide(data): # # register the two variational parameters with Pyro. # alpha_q = pyro.param("alpha_q", torch.tensor(15.0), # constraint=constraints.positive) # beta_q = pyro.param("beta_q", torch.tensor(15.0), # constraint=constraints.positive) # # sample latent_fairness from the distribution Beta(alpha_q, beta_q) # pyro.sample("latent_fairness", dist.Beta(alpha_q, beta_q)) # ``` # # There are a few things to note here: # # - We've taken care that the names of the random variables line up exactly between the model and guide. # - `model(data)` and `guide(data)` take the same arguments. # - The variational parameters are `torch.tensor`s. The `requires_grad` flag is automatically set to `True` by `pyro.param`. # - We use `constraint=constraints.positive` to ensure that `alpha_q` and `beta_q` remain non-negative during optimization. # # Now we can proceed to do stochastic variational inference. # # ```python # # set up the optimizer # adam_params = {"lr": 0.0005, "betas": (0.90, 0.999)} # optimizer = Adam(adam_params) # # # setup the inference algorithm # svi = SVI(model, guide, optimizer, loss=Trace_ELBO()) # # n_steps = 5000 # # do gradient steps # for step in range(n_steps): # svi.step(data) # ``` # # Note that in the `step()` method we pass in the data, which then get passed to the model and guide. # # The only thing we're missing at this point is some data. So let's create some data and assemble all the code snippets above into a complete script: # + import math import os import torch import torch.distributions.constraints as constraints import pyro from pyro.optim import Adam from pyro.infer import SVI, Trace_ELBO import pyro.distributions as dist # this is for running the notebook in our testing framework smoke_test = ('CI' in os.environ) n_steps = 2 if smoke_test else 2000 assert pyro.__version__.startswith('1.6.0') # clear the param store in case we're in a REPL pyro.clear_param_store() # create some data with 6 observed heads and 4 observed tails data = [] for _ in range(6): data.append(torch.tensor(1.0)) for _ in range(4): data.append(torch.tensor(0.0)) def model(data): # define the hyperparameters that control the beta prior alpha0 = torch.tensor(10.0) beta0 = torch.tensor(10.0) # sample f from the beta prior f = pyro.sample("latent_fairness", dist.Beta(alpha0, beta0)) # loop over the observed data for i in range(len(data)): # observe datapoint i using the bernoulli likelihood pyro.sample("obs_{}".format(i), dist.Bernoulli(f), obs=data[i]) def guide(data): # register the two variational parameters with Pyro # - both parameters will have initial value 15.0. # - because we invoke constraints.positive, the optimizer # will take gradients on the unconstrained parameters # (which are related to the constrained parameters by a log) alpha_q = pyro.param("alpha_q", torch.tensor(15.0), constraint=constraints.positive) beta_q = pyro.param("beta_q", torch.tensor(15.0), constraint=constraints.positive) # sample latent_fairness from the distribution Beta(alpha_q, beta_q) pyro.sample("latent_fairness", dist.Beta(alpha_q, beta_q)) # setup the optimizer adam_params = {"lr": 0.0005, "betas": (0.90, 0.999)} optimizer = Adam(adam_params) # setup the inference algorithm svi = SVI(model, guide, optimizer, loss=Trace_ELBO()) # do gradient steps for step in range(n_steps): svi.step(data) if step % 100 == 0: print('.', end='') # grab the learned variational parameters alpha_q = pyro.param("alpha_q").item() beta_q = pyro.param("beta_q").item() # here we use some facts about the beta distribution # compute the inferred mean of the coin's fairness inferred_mean = alpha_q / (alpha_q + beta_q) # compute inferred standard deviation factor = beta_q / (alpha_q * (1.0 + alpha_q + beta_q)) inferred_std = inferred_mean * math.sqrt(factor) print("\nbased on the data and our prior belief, the fairness " + "of the coin is %.3f +- %.3f" % (inferred_mean, inferred_std)) # - # ### Sample output: # # ``` # based on the data and our prior belief, the fairness of the coin is 0.532 +- 0.090 # ``` # # This estimate is to be compared to the exact posterior mean, which in this case is given by $16/30 = 0.5\bar{3}$. # Note that the final estimate of the fairness of the coin is in between the the fairness preferred by the prior (namely $0.50$) and the fairness suggested by the raw empirical frequencies ($6/10 = 0.60$). # ## References # # [1] `Automated Variational Inference in Probabilistic Programming`, # <br/>&nbsp;&nbsp;&nbsp;&nbsp; # <NAME>, <NAME> # # [2] `Black Box Variational Inference`,<br/>&nbsp;&nbsp;&nbsp;&nbsp; # <NAME>, <NAME>, <NAME> # # [3] `Auto-Encoding Variational Bayes`,<br/>&nbsp;&nbsp;&nbsp;&nbsp; # <NAME>, <NAME>
tutorial/source/svi_part_i.ipynb
# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.14.4 # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- import requests import pandas as pd page = requests.get("https://solicitors.lawsociety.org.uk/person/130616") page.content data = {'index': index, 'status': page.status_code, 'content': page.content} df_new = pd.DataFrame.from_records([data]) df_new.info() df_new df_new = df_new.append(df_new) # + df_summary = pd.DataFrame() for index in range(2000, 2010): page = requests.get("https://solicitors.lawsociety.org.uk/person/"+str(index)) data = {'index': index, 'status': page.status_code} df_new = pd.DataFrame.from_records([data]) df_summary = df_summary.append(df_new) print(index, end=', ') # - range(1000, 2000)[0] # + df_summary = pd.DataFrame() for index in range(1000, 2000): page = requests.get("https://solicitors.lawsociety.org.uk/person/"+str(index)) data = {'index': index, 'status': page.status_code} df_new = pd.DataFrame.from_records([data]) df_summary = df_summary.append(df_new) print(index, end=', ') # - page.content # + df = pd.DataFrame() for index in range(1000): data = {'index': index, 'status': df_summary.iloc[index, index]} df_new = pd.DataFrame.from_records([data]) df = df.append(df_new) # - df.loc[df.status == 200] # + from bs4 import BeautifulSoup soup = BeautifulSoup(page.content, 'html.parser') # - soup.find('div', id='languages-spoken-accordion')
Notebooks/Law Professionals - Web Query Test - Request Multiple Pages in Loop.ipynb
# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.14.4 # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- import pandas as pd import numpy as np import matplotlib.pyplot as plt import re import seaborn as sns import string import nltk import warnings #nltk.download('stopwords') #nltk.download('wordnet') from wordcloud import WordCloud df = pd.read_csv(r"C:\Users\<NAME>\Desktop\sanketf1data.csv",low_memory=False) df df.info() df.columns df['label'] = df['reviews.rating'].apply(lambda x : 1 if x > 4 else 0) df["comb_review"]=df[["reviews.title","reviews.text"]].apply(lambda x:' '.join(x),axis=1) # + df[['text', 'rating']] = df[['comb_review', 'reviews.rating']] df.head(119) # - df.columns df.drop(df.columns[0], axis=1) # + def remove_pattern(text, pattern): # find all the pattern in the input text and return a list of postion indeces r = re.findall(pattern, text) # replace the pattern with an empty space for i in r: text = re.sub(pattern, '', text) return text # + # lower case every word to ease the upcoming processes df['text'] = df['text'].str.lower() # tokenize the text to search for any stop words to remove it df['tokenized_text'] = df.text.apply(lambda x : x.split()) # removing stop words stopWords = set(nltk.corpus.stopwords.words('english')) df['tokenized_text'] = df['tokenized_text'].apply(lambda x : [word for word in x if not word in stopWords]) # create a word net lemma lemma = nltk.stem.WordNetLemmatizer() pos = nltk.corpus.wordnet.VERB df['tokenized_text'] = df['tokenized_text'].apply(lambda x : [lemma.lemmatize(word, pos) for word in x]) # remove any punctuation df['tokenized_text'] = df['tokenized_text'].apply(lambda x : [ remove_pattern(word,'\.') for word in x]) # rejoin the text again to get a cleaned text df['cleaned_text'] = df['tokenized_text'].apply(lambda x : ' '.join(x)) df.drop(labels=['tokenized_text'], axis=1, inplace=True) df.head() # + from sklearn.feature_extraction.text import TfidfVectorizer tfidf_Vectorizer = TfidfVectorizer(max_df=0.9, min_df=2, max_features=1000, stop_words='english') tfidf_features = tfidf_Vectorizer.fit_transform(df['cleaned_text']) tfidf_df = pd.DataFrame(tfidf_features.toarray(), columns=tfidf_Vectorizer.get_feature_names()) tfidf_df.head() # + from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(tfidf_df, df['label'], test_size=0.2, random_state=42) #X_test, X_valid, y_test, y_valid = train_test_split(X_metric, y_metric, test_size=0.5, random_state=42) # + from sklearn.neighbors import KNeighborsClassifier clf_tfidf_knn = KNeighborsClassifier() clf_tfidf_knn.fit(X_train, y_train) # + pred_tfidf_knn = clf_tfidf_knn.predict(X_test) # + from sklearn.metrics import classification_report, accuracy_score, f1_score,confusion_matrix print("using TF-IDF") print("Accuracy Socre: ",(100 * accuracy_score(y_test, pred_tfidf_knn))) print(classification_report(y_test, pred_tfidf_knn)) # - print(confusion_matrix(y_test, pred_tfidf_knn)) from wordcloud import WordCloud reviews_great = str(df['cleaned_text'][df['label']==0]) greatcloud = WordCloud(width=1200,height=800).generate(reviews_great) plt.imshow(greatcloud,interpolation='bilinear') plt.axis('off') plt.show() from wordcloud import WordCloud reviews_great = str(df['cleaned_text'][df['label']==1]) greatcloud = WordCloud(width=1200,height=800).generate(reviews_great) plt.imshow(greatcloud,interpolation='bilinear') plt.axis('off') plt.show() df['label'][5] review=pd.DataFrame(df.groupby('reviews.rating').size().sort_values(ascending=False).rename('No of Users').reset_index()) review.head()
KNN usinf TD-IDF.ipynb
# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.14.4 # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- pickle_file = '../dataset/arbimon_0.pickle' # + from six.moves import cPickle as pickle with open(pickle_file, 'rb') as f: save = pickle.load(f) train_dataset = save['train_dataset'] train_labels = save['train_labels'] test_dataset = save['test_dataset'] test_labels = save['test_labels'] del save # - import numpy as np def svm_reformat(dataset): dataset = dataset.reshape((len(dataset), -1)).astype(np.float32) return dataset train_dataset = svm_reformat(train_dataset) test_dataset = svm_reformat(test_dataset) # + from sklearn.svm import SVC clf = SVC(kernel='sigmoid') clf.fit(train_dataset, train_labels) # - clf.score(test_dataset, test_labels)
Jupyter Notebooks/SVM-SOLO_0.1707.ipynb
# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.14.4 # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- # %matplotlib inline # # # With Clipping # # Removes unseen data points. # # Look at the examples below. # # + import pandas as pd from lets_plot import * from lets_plot.geo_data import * LetsPlot.setup_html() # - df = pd.read_csv('https://raw.githubusercontent.com/JetBrains/lets-plot-docs/master/data/midwest.csv') states = geocode('state', df.state.unique(), scope='US').get_boundaries(9) states.head(2) # + p = ggplot() + geom_map(data=states, tooltips=layer_tooltips().line('@{found name}')) p1 = p + ggtitle('Default') p2 = p + scale_x_continuous(limits=[-92, -82]) + ylim(36, 43) + ggtitle('Zoom With Clipping') w, h = 400, 300 bunch = GGBunch() bunch.add_plot(p1, 0, 0, w, h) bunch.add_plot(p2, w, 0, w, h) bunch
docs/_downloads/23e60af26d9bec72e2475f36b70fa6af/plot__with_clipping.ipynb
# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.14.4 # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- # + [markdown] colab_type="text" id="ggpPusBoxZt8" # # Computational and Numerical Methods # ## Group 16 # ### Set 16 (12-11-2018): Runge-Kutta Method to Solve Ordinary Differential Equations # #### <NAME> 201601003 # #### <NAME> 201601086 # + colab_type="text" id="a50RW7-JxysE" active="" # <script> # function code_toggle() { # if (code_shown){ # $('div.input').hide('500'); # $('#toggleButton').val('Show Code') # } else { # $('div.input').show('500'); # $('#toggleButton').val('Hide Code') # } # code_shown = !code_shown # } # # $( document ).ready(function(){ # code_shown=false; # $('div.input').hide() # }); # </script> # <form action="javascript:code_toggle()"><input type="submit" id="toggleButton" value="Show Code"></form> # + colab={} colab_type="code" id="EuL2kN0sksoq" # %matplotlib inline import numpy as np import pandas as pd import matplotlib.pyplot as plt from math import sqrt # + def rk2(f, x0, y0, x1, h): n = int((x1 - x0)/h) vx = [0] * (n + 1) vy = [0] * (n + 1) vx[0] = x = x0 vy[0] = y = y0 for i in range(1, n + 1): k1 = h * f(x, y) k2 = h * f(x + 0.5 * h, y + 0.5 * k1) vx[i] = x = x0 + i * h vy[i] = y = y + (k1 + k2) / 2 return vx, vy def rk4(f, x0, y0, x1, h): n = int((x1 - x0)/h) vx = [0] * (n + 1) vy = [0] * (n + 1) vx[0] = x = x0 vy[0] = y = y0 for i in range(1, n + 1): k1 = h * f(x, y) k2 = h * f(x + 0.5 * h, y + 0.5 * k1) k3 = h * f(x + 0.5 * h, y + 0.5 * k2) k4 = h * f(x + h, y + k3) vx[i] = x = x0 + i * h vy[i] = y = y + (k1 + k2 + k2 + k3 + k3 + k4) / 6 return vx, vy def f(x, y): return -y + 2*np.cos(x) vx2, vy2 = rk2(f, 0, 1, 10, 0.1) vx4, vy4 = rk4(f, 0, 1, 10, 0.1) plt.xlabel("x") plt.ylabel("y") plt.grid(True) plt.plot(vx2,vy2,label = "Second order Rungekutta") plt.legend(loc = 'best') plt.xlabel("x") plt.ylabel("y") plt.grid(True) plt.plot(vx4,vy4, label = "Fourth order Rungekutta") plt.legend(loc = 'best') plt.xlabel("x") plt.ylabel("y") plt.grid(True) plt.plot(vx2, np.sin(vx2) + np.cos(vx2), label = "Analytic Solution") plt.legend(loc = 'best') plt.show() plt.grid(True) plt.xlabel("x") plt.ylabel("y") plt.title("Error for Second order Rungekutta, h = 0.1") plt.plot(vx2, np.sin(vx2) + np.cos(vx2) - vy2) plt.show() plt.xlabel("x") plt.ylabel("y") plt.grid(True) plt.title("Error for Fourth order Rungekutta, h = 0.1") plt.plot(vx4, np.sin(vx4) + np.cos(vx4) - vy4) plt.show() # + vx2, vy2 = rk2(f, 0, 1, 10, 0.05) vx4, vy4 = rk4(f, 0, 1, 10, 0.05) plt.xlabel("x") plt.ylabel("y") plt.grid(True) plt.plot(vx2,vy2,label = "Second order Rungekutta") plt.legend(loc = 'best') plt.xlabel("x") plt.ylabel("y") plt.grid(True) plt.plot(vx4,vy4, label = "Fourth order Rungekutta") plt.legend(loc = 'best') plt.xlabel("x") plt.ylabel("y") plt.grid(True) plt.plot(vx2, np.sin(vx2) + np.cos(vx2), label = "Analytic Solution") plt.legend(loc = 'best') plt.show() plt.grid(True) plt.xlabel("x") plt.ylabel("y") plt.title("Error for Second order Rungekutta, h = 0.05") plt.plot(vx2, np.sin(vx2) + np.cos(vx2) - vy2) plt.show() plt.xlabel("x") plt.ylabel("y") plt.grid(True) plt.title("Error for Fourth order Rungekutta, h = 0.05") plt.plot(vx4, np.sin(vx4) + np.cos(vx4) - vy4) plt.show() # - # # Q2 # + def f(x, y): return -y + (x**0.1)*(1.1+x) for h in [0.1, 0.05, 0.025, 0.0125, 0.00625]: vx2, vy2 = rk2(f, 0, 0, 5, h) vx4, vy4 = rk4(f, 0, 0, 5, h) plt.xlabel("x") plt.ylabel("y") plt.grid(True) plt.plot(vx2,vy2,label = "Second order Rungekutta") plt.legend(loc = 'best') plt.xlabel("x") plt.ylabel("y") plt.grid(True) plt.plot(vx4,vy4, label = "Fourth order Rungekutta") plt.legend(loc = 'best') plt.xlabel("x") plt.ylabel("y") plt.grid(True) plt.plot(vx2, np.power(vx2, (1.1)), label = "Analytic Solution") plt.legend(loc = 'best') plt.show() plt.grid(True) plt.xlabel("x") plt.ylabel("y") plt.title("Error for Second order Rungekutta, h = " + str(h)) plt.plot(vx2, np.power(vx2, (1.1)) - vy2) plt.show() plt.xlabel("x") plt.ylabel("y") plt.grid(True) plt.title("Error for Fourth order Rungekutta, h = " + str(h)) plt.plot(vx4, np.power(vx4, (1.1)) - vy4) plt.show()
src/Set_16.ipynb
# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.14.4 # kernelspec: # display_name: Python 2 # language: python # name: python2 # --- # + import pandas as pd import numpy as np import time today = time.strftime('%Y%m%d') # + # bring in zoningmods fields from FBP as place holders # read these fields in s24 lookup_fbp = pd.read_csv(r'C:\Users\blu\Documents\GitHub\bayarea_urbansim\data\zoning_mods_24.csv', usecols = ['fbpzoningmodcat', 'add_bldg', 'drop_bldg', 'dua_up', 'far_up', 'dua_down', 'far_down', 'subsidy', 'notes', 'res_rent_cat', 'job_out_cat']) print('zoning_mods_24 has {} unique fbpzoningmodcat'.format(lookup_fbp.shape[0])) display(lookup_fbp.head()) #print(list(lookup_fbp)) print('dua_up has the following values: {}'.format(list(lookup_fbp.dua_up.unique()))) print('dua_down has the following values: {}'.format(list(lookup_fbp.dua_down.unique()))) print('far_up has the following values: {}'.format(list(lookup_fbp.far_up.unique()))) print('far_down has the following values: {}'.format(list(lookup_fbp.far_down.unique()))) print('add_bldg has the following values: {}'.format(list(lookup_fbp.add_bldg.unique()))) print('drop_bldg has the following values: {}'.format(list(lookup_fbp.drop_bldg.unique()))) # - # read parcel-level EIR zoningmods master file p10_pba50_EIR_attr = pd.read_csv('C:\\Users\\blu\\Box\\Modeling and Surveys\\Urban Modeling\\Bay Area UrbanSim\\PBA50\\Policies\\Zoning Modifications\\p10_pba50_EIR_attr_20210224.csv') p10_pba50_EIR_attr_modcat = p10_pba50_EIR_attr.merge(lookup_fbp, left_on='fbpzoningm', right_on='fbpzoningmodcat', how='left') print('p10_pba50_EIR_attr_modcat has {} rows'.format(p10_pba50_EIR_attr_modcat.shape[0])) # + # collapsed to lookup table based on 'eirzoningm' and EIR geography fields, 'fbpzoningmodcat' # was kept to inherent Final Blueprint values EIR_modcat_df = p10_pba50_EIR_attr_modcat[['ACRES', 'fbpzoningmodcat', 'eirzoningm', 'juris', 'eir_gg_id', 'eir_tra_id', 'eir_sesit_', 'eir_coc_id', 'eir_ppa_id', 'eir_exp202', 'ex_res_bldg', 'add_bldg', 'drop_bldg', 'dua_up', 'far_up', 'dua_down', 'far_down', 'subsidy', 'res_rent_cat', 'job_out_cat']] EIR_modcat_df = EIR_modcat_df[['eirzoningm', 'juris', 'eir_gg_id', 'eir_tra_id', 'eir_sesit_', 'eir_coc_id', 'eir_ppa_id', 'eir_exp202', 'ex_res_bldg', 'add_bldg', 'drop_bldg', 'dua_up', 'far_up', 'dua_down', 'far_down', 'subsidy','res_rent_cat', 'job_out_cat']].drop_duplicates() # rename columns EIR_modcat_df.rename(columns = {'eir_gg_id': 'gg_id', 'eir_tra_id': 'tra_id', 'eir_sesit_': 'sesit_id', 'eir_coc_id': 'coc_id', 'eir_ppa_id': 'ppa_id', 'eir_exp202': 'exp2020_id'}, inplace=True) # add 'manual_county' column juris_county = pd.read_csv(r'C:\Users\blu\Documents\GitHub\petrale\zones\jurisdictions\juris_county_id.csv', usecols = ['juris_name_full', 'county_id']) juris_county.columns = ['juris','manual_county'] EIR_modcat_df = EIR_modcat_df.merge(juris_county, on='juris', how='left') # - EIR_modcat_df.juris.unique() # ## create zoning_mods lookup table for Alt2 (repeat steps above) # ### Major changes in EIR Alt2 H3 strategy: # #### 1. allow residential development in GGs for res and non_res parcels # #### 2. change upzoning levels for different jurisdiction categories # #### 3. don't allow upzoning for res parcels in CoCs # + #list of job Job-Rich & High-Resource Juris and Adjacent Juris jlist = ['menlo_park', 'palo_alto', 'cupertino', 'milpitas', 'atherton', 'belmont', 'campbell', 'east_palo_alto', 'fremont', 'hayward', 'los_altos', 'los_altos_hills', 'los_gatos', 'monte_sereno', 'mountain_view', 'newark', 'redwood_city', 'portola_valley', 'san_carlos', 'san_jose', 'santa_clara', 'saratoga', 'sunnyvale', 'union_city', 'woodside'] #second version of the list #job rich and high resource additions: pleasanton and st. Helena #adjacency addition: Calistoga, Dublin, livermore, san ramon jlist2 = ['menlo_park', 'palo_alto', 'cupertino', 'milpitas', 'st_helena', 'pleasanton', 'atherton', 'belmont', 'calistoga', 'campbell', 'dublin', 'east_palo_alto', 'fremont', 'hayward', 'livermore', 'los_altos', 'los_altos_hills', 'los_gatos', 'monte_sereno', 'mountain_view', 'newark', 'redwood_city', 'portola_valley', 'san_carlos', 'san_jose', 'san_ramon', 'santa_clara', 'saratoga', 'sunnyvale', 'union_city', 'woodside'] print ('There are {} cities in the list'.format(len(jlist2))) # + EIR_modcat_alt2 = EIR_modcat_df.copy() # first, set to nan EIR_modcat_alt2.dua_up = np.nan EIR_modcat_alt2.far_up = np.nan EIR_modcat_alt2.add_bldg = np.nan # create an HRA list hra_list = ['HRA','HRADIS'] # update values for Residential zoning change #tra1 ## no difference among juris categories in tra1 EIR_modcat_alt2.loc[(EIR_modcat_alt2.gg_id=='GG') & ( EIR_modcat_alt2.tra_id=='tra1'), 'add_bldg'] = 'HM' EIR_modcat_alt2.loc[(EIR_modcat_alt2.gg_id=='GG') & ( EIR_modcat_alt2.tra_id=='tra1'), 'dua_up'] = 125 #tra2 ## first add HM to all parcels in tra2 EIR_modcat_alt2.loc[(EIR_modcat_alt2.gg_id=='GG') & ( EIR_modcat_alt2.tra_id.str.contains('tra2', na = False)), 'add_bldg'] = 'HM' ## HRA upzoning EIR_modcat_alt2.loc[(EIR_modcat_alt2.gg_id=='GG') & ( EIR_modcat_alt2.tra_id.str.contains('tra2', na = False)) & ( EIR_modcat_alt2.sesit_id.isin(hra_list)), 'dua_up'] = 75 ## adjust for juris in the list ### note: the following code doesn't differentiate HRA or nonHRA, because in the next step ### nonHRA gets lower upzoning, so the nonHRA in this juris list would get ### revised from 100 to 55 too EIR_modcat_alt2.loc[(EIR_modcat_alt2.gg_id=='GG') & ( EIR_modcat_alt2.tra_id.str.contains('tra2', na = False)) & ( EIR_modcat_alt2.juris.isin(jlist2)), 'dua_up'] = 100 ## nonHRA upzoning EIR_modcat_alt2.loc[(EIR_modcat_alt2.gg_id=='GG') & ( EIR_modcat_alt2.tra_id.str.contains('tra2', na = False)) & ( (EIR_modcat_alt2.sesit_id=='DIS') | ( EIR_modcat_alt2.sesit_id.isnull())), 'dua_up'] = 55 #tra3 ## first add HM to all parcels in tra3 EIR_modcat_alt2.loc[(EIR_modcat_alt2.gg_id=='GG') & ( EIR_modcat_alt2.tra_id=='tra3'), 'add_bldg'] = 'HM' ## HRA upzoning EIR_modcat_alt2.loc[(EIR_modcat_alt2.gg_id=='GG') & ( EIR_modcat_alt2.tra_id == 'tra3') & ( EIR_modcat_alt2.sesit_id.isin(hra_list)), 'dua_up'] = 50 ## adjust for juris in the list ### note: the following code doesn't differentiate HRA or nonHRA, because in the next step ### nonHRA gets lower upzoning, so the nonHRA in this juris list would get ### revised from 75 to 50 too EIR_modcat_alt2.loc[(EIR_modcat_alt2.gg_id=='GG') & ( EIR_modcat_alt2.tra_id == 'tra3') & ( EIR_modcat_alt2.juris.isin(jlist2)), 'dua_up'] = 75 ## nonHRA upzoning EIR_modcat_alt2.loc[(EIR_modcat_alt2.gg_id=='GG') & ( EIR_modcat_alt2.tra_id == 'tra3') & ( (EIR_modcat_alt2.sesit_id=='DIS') | ( EIR_modcat_alt2.sesit_id.isnull())), 'dua_up'] = 35 # non-TRA EIR_modcat_alt2.loc[(EIR_modcat_alt2.gg_id=='GG') & ( EIR_modcat_alt2.tra_id.isnull()) & ( EIR_modcat_alt2.sesit_id.isin(hra_list)), 'add_bldg'] = 'HM' ## HRA upzoning EIR_modcat_alt2.loc[(EIR_modcat_alt2.gg_id=='GG') & ( EIR_modcat_alt2.tra_id.isnull()) & ( EIR_modcat_alt2.sesit_id.isin(hra_list)), 'dua_up'] = 50 ## adjust for juris in the list ### note: the following code doesn't differentiate HRA or nonHRA, because in the next step ### nonHRA gets lower upzoning, so the nonHRA in this juris list would get ### revised from 75 to 50 too EIR_modcat_alt2.loc[(EIR_modcat_alt2.gg_id=='GG') & ( EIR_modcat_alt2.tra_id.isnull()) & ( EIR_modcat_alt2.juris.isin(jlist2)), 'dua_up'] = 75 ## nonHRA upzoning EIR_modcat_alt2.loc[(EIR_modcat_alt2.gg_id=='GG') & ( EIR_modcat_alt2.tra_id.isnull()) & ( (EIR_modcat_alt2.sesit_id=='DIS') | ( EIR_modcat_alt2.sesit_id.isnull())), 'dua_up'] = 35 # - #Unincorporated w/in UGB upzoning EIR_modcat_alt2.loc[EIR_modcat_alt2.exp2020_id == 'inun', 'dua_up'] = 2 EIR_modcat_alt2.loc[EIR_modcat_alt2.exp2020_id == 'inun', 'add_bldg'] = 'HS' #check that that only areas outside UGB has dua_down == 0 EIR_modcat_alt2.loc[EIR_modcat_alt2.dua_down == 0].exp2020_id.unique() #removing dua_up and add_bldg for areas outside UGB EIR_modcat_alt2.loc[EIR_modcat_alt2.dua_down == 0, 'dua_up'] = np.nan EIR_modcat_alt2.loc[EIR_modcat_alt2.dua_down == 0, 'add_bldg'] = np.nan # + # zoningmod for PPA #1) dua_up and add_bldg = HM doesn't apply PPAs; #2) all parcels within PPAs have drop_bldg = HM EIR_modcat_alt2.loc[EIR_modcat_alt2.ppa_id=='ppa', 'dua_up'] = np.nan EIR_modcat_alt2.loc[EIR_modcat_alt2.ppa_id=='ppa', 'add_bldg'] = np.nan EIR_modcat_alt2.loc[EIR_modcat_alt2.ppa_id=='ppa', 'drop_bldg'] = 'HM' # Then modify PPA zoning changes in FBP # remove this one below to make sure housing gets built in core area first given the lower upzoning # EIR_modcat_alt2.loc[(EIR_modcat_alt2.gg_id=='GG') & (EIR_modcat_alt2.tra_id=='tra1'), 'far_up'] = 9 EIR_modcat_alt2.loc[(EIR_modcat_alt2.gg_id=='GG') & ( EIR_modcat_alt2.ppa_id=='ppa') & ( EIR_modcat_alt2.tra_id != 'tra1'), 'far_up'] = 2 EIR_modcat_alt2.loc[(EIR_modcat_alt2.gg_id=='GG') & ( EIR_modcat_alt2.ppa_id=='ppa') & ( EIR_modcat_alt2.tra_id != 'tra1'), 'add_bldg'] = 'IW' # - #check that that only areas outside UGB has far_down == 0 EIR_modcat_alt2.loc[EIR_modcat_alt2.far_down == 0].exp2020_id.unique() #removing far_up and add_bldg for areas outside UGB EIR_modcat_alt2.loc[EIR_modcat_alt2.far_down == 0, 'far_up'] = np.nan EIR_modcat_alt2.loc[EIR_modcat_alt2.far_down == 0, 'add_bldg'] = np.nan # limit development in CoCs EIR_modcat_alt2.loc[(EIR_modcat_alt2.coc_id=='CoC') & ( EIR_modcat_alt2.ex_res_bldg =='res'), 'dua_up'] = np.nan EIR_modcat_alt2.loc[(EIR_modcat_alt2.coc_id=='CoC') & ( EIR_modcat_alt2.ex_res_bldg =='res'), 'add_bldg'] = np.nan # + # drop duplicates EIR_modcat_alt2 = EIR_modcat_alt2.drop_duplicates() print('EIR_modcat_alt2 has {} rows'.format(EIR_modcat_alt2.shape[0])) # add 'FREQUENCE', 'SUM_ACRES' columns EIR_modcat_stats = p10_pba50_EIR_attr_modcat.groupby('eirzoningm').agg({'ACRES': ['count','sum']}).reset_index() EIR_modcat_stats.columns = ['eirzoningm', 'FREQUENCY', 'SUM_ACRES'] print('EIR_modcat_stats has {} rows'.format(EIR_modcat_stats.shape[0])) EIR_modcat_alt2 = EIR_modcat_alt2.merge(EIR_modcat_stats, on='eirzoningm', how='left') print('p10_pba50_EIR_modcat_df has {} rows'.format(EIR_modcat_alt2.shape[0])) # add 'modcat_id' column EIR_modcat_alt2['modcat_id'] = EIR_modcat_alt2.index + 1 # recoder the fields EIR_modcat_alt2 = EIR_modcat_alt2[['eirzoningm', 'modcat_id', 'FREQUENCY', 'SUM_ACRES', 'manual_county', 'juris', 'gg_id', 'tra_id', 'sesit_id', 'coc_id', 'ppa_id', 'exp2020_id', 'ex_res_bldg', 'add_bldg', 'drop_bldg', 'dua_up', 'far_up', 'dua_down', 'far_down', 'subsidy', 'res_rent_cat', 'job_out_cat']] # + #check # PPA parcels should have no dua_up ppa_chk = EIR_modcat_alt2.loc[EIR_modcat_alt2.ppa_id == 'ppa'] display(ppa_chk.dua_up.unique()) # should only contain nan # PPA parcels should have drop_bldg = HM display(ppa_chk.drop_bldg.unique()) # should only contain 'HM' # - # export EIR_modcat_alt2.rename(columns={'eirzoningm': 'eirzoningmodcat'}, inplace=True) print('export zoning_mods lookup table of {} rows'.format(EIR_modcat_alt2.shape[0])) EIR_modcat_alt2.to_csv('C:\\Users\\blu\\Box\\Modeling and Surveys\\Urban Modeling\\Bay Area UrbanSim\\PBA50\\Policies\\Zoning Modifications\\BAUS input files\\zoning_mods_28_{}.csv'.format(today), index=False)
policies/plu/update_EIR_zoningmods_lookup_Alt2.ipynb
# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.14.4 # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- # # ## The highlighter extension: # # - Firstable, the extension provides <span class="mark">several toolbar buttons</span> for highlighting a selected text _within a markdown cell_. Three different \`color schemes' are provided, which can be easily customized in the \textit{stylesheet} `highlighter.css`. The last button enables to remove all highlightings in the current cell. # - This works both <span class="burk">when the cell is _rendered_ and when the cell is in edit mode</span>; # - In both modes, it is possible to highlight formatted portions of text (In rendered mode, since the selected text loose its formatting, an heuristic is applied to find the best alignment with the actual text) # - When no text is selected, the whole cell is highlighted; # - The extension also provides two keyboard shortcuts (Alt-G and Alt-H) which fire the highlighting of the selected text. # - Highlights can be preserved when exporting to html or to LaTeX -- details are provided in [export_highlights](export_highlights.ipynb) # # # ![](image.gif) # # ## Installation: # # The extension can be installed with the nice UI available on IPython-notebook-extensions website, which also allows to enable/disable the extension. # # You may also install the extension from the original repo: issue # ```bash # jupyter nbextension install https://rawgit.com/jfbercher/small_nbextensions/master/highlighter.zip --user # # ``` # at the command line. # # ### Testing: # # Use a code cell with # ```javascript # # %%javascript # require("base/js/utils").load_extensions("usability/highlighter/highlighter") # ``` # # ### Automatic load # You may also automatically load the extension for any notebook via # ```bash # jupyter nbextension enable usability/highlighter/highlighter # ``` # # + language="javascript" # require("base/js/utils").load_extensions("usability/highlighter/highlighter")
nbextensions/usability/highlighter/demo_highlighter.ipynb
# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.14.4 # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- # # Maxwell's equations # # Maxwell's equation are some of the most important equation in physics as form the understanding behind essentially all applications of electrical or magnetic systems in the modern world. Despite being devised in the $19th$ century, they obey the laws of relativity. This notebook will introduce the 4 Maxwell equations in both their intergral and differential form. # (gauss_law)= # ## Gauss's law # # Gauss’s law is the first of Maxwell’s equations, and ultimately encapsulates the idea that charged particles are a source of electric field. In order to derive Gauss’s law, we first have to introduce the concept of electric flux, $\Phi_\mathbf{E}$. This is equivalent to the magnetic flux and is defined as # # $$\Phi_\mathbf{E} = \iint_{\mathbf{S}}^{} \mathbf{E} \cdot d\mathbf{S}$$ # # where for a closed surface, $d\mathbf{S}$ points outwards by convention. To better understand the electric flux from a point charge, we will introduce the concept of *Solid Angles*. The solid angle is a generalisation of the ordinary angle between two lines. Consider a surface element, i.e., a small vector area $d\mathbf{S}$ which is distance r from point P. The surface element is defined to subtend a solid angle $d\Omega$ as follows: # # $$d\Omega = \frac{d\mathbf{S} \cdot \mathbf{\hat{r}}} {r^2}$$ # # where $\mathbf{\hat{r}}$ is the unit vector along the direction from P to the surface element. It should be noted that just as there are 2π radians in a circle, there are 4π steradians covering the surface of a sphere. # # Consider a point charge $Q$. The electric flux through a spherical surface $S_1$, radius $r_1$, is # # $$\Phi_{\mathbf{E},1} = 4\pi r_1^2 E_{r_1} = \frac{Q}{\epsilon_0}$$ # # Now we consider the flux $d\Phi_{\mathbf{E},1}$ through the surface element $dS_1$. This is given by # # $$d\Phi_{\mathbf{E},1} = \mathbf{E}_{r_1} \cdot d\mathbf{S}_1 = \frac {\Phi_{\mathbf{E},1}} {4\pi r_1^2} dS_1$$ # # where we have used the fact that $\frac {d\Phi_{\mathbf{E},1}} {\Phi_{\mathbf{E},1}} = \frac {dS_1} {4\pi r_1^2}$ and the fact that $\mathbf{E}$ is radial. Now, using the above definition of the solid angle, we can write # # $$\frac {\Phi_{\mathbf{E},1}} {4\pi r_1^2} dS_1 = \frac {\Phi_{\mathbf{E},1}} {4\pi} d\Omega = \frac{Q}{4\pi \epsilon_0} d\Omega$$ # # Thus, we can finally write # # $$d\Phi_{\mathbf{E},1} = \frac{Q}{4\pi \epsilon_0} d\Omega$$ # # Now consider $S_2$, an arbitrary surface enclosing $S_1$. The corresponding element of flux $d\Phi_{\mathbf{E},2}$ through $dS_2$ is given by # # $$d\Phi_{\mathbf{E},2} = \mathbf{E}_{r_2} \cdot d\mathbf{S}_2 = \frac{Q}{4\pi \epsilon_0 r_2^2} \mathbf{\hat{r}} \cdot d\mathbf{S}_2$$ # # and using the definition of the solid angle we can write # # $$d\Phi_{\mathbf{E},2} = \frac{Q}{4\pi \epsilon_0}d\Omega = d\Phi_{\mathbf{E},1}$$ # # Thus, the flux through the two surface elements is the same, even though the orientation of $dS_2$ is arbitrary and consequently, the flux through any closed surface is always $\frac{Q}{\epsilon_0}$ # # Now consider an arbitrary closed surface surrounding a collection of charges $Q_1$, $Q_2$, ..., $Q_N$. Using the supeposition principle, the electric flux through the surface is given by # # $$\Phi_{\mathbf{E}} = \frac{Q_1}{\epsilon_0}, \frac{Q_2}{\epsilon_0}, ..., \frac{Q_N}{\epsilon_0}$$ # # Since $Q$ = $Q_1$ + $Q_2$ + ... + $Q_N$ we can write # # $$\oint_S \mathbf{E} \cdot d\mathbf{S} = \frac{Q}{\epsilon_0}$$ # # This is the integral form of Gauss's law! By considering a region of space with uniform charge density instead of point charges we can write Gauss's law in a different form. Consider a volume, $V$, with total charge, $Q$, and charge density, $\rho$. The total charge can then be written in terms of the charge density: # # $$Q = \iiint_V \rho dV$$ # # Substituting this to Gauss's law: # # $$\oint_S \mathbf{E} \cdot d\mathbf{S} = \frac {1}{\epsilon_0} \iiint_V \rho dV$$ # # where $V$ is the volume enclosed by the closed surface $S$. # # Applying the Divergence theorem we get # # $$\iiint_V \nabla \cdot \mathbf{E} \,dV = \frac {1}{\epsilon_0} \iiint_V \rho dV$$ # # By applying this to an infinitesimal volume, we can remove the integrals such that # # $$ \nabla \cdot \mathbf{E} = \frac {\rho}{\epsilon_0} $$ # # This is Gauss's law in differential form! # (gauss_magnetism)= # ## Gauss’s law for magnetism # # This is essentially the same law as Gauss's law for electricity, but unlike electricity, there are no magnetic monopoles in nature, as magnetic pole always exist in pairs - dipoles. Thus, magnetic field lines are loops, with no beginning or end, unlike electric field lines. This is described mathematically by # # $$\nabla \cdot \mathbf{B} = 0 \, \ \mbox{(differential form)}$$ # # $$\oint_{Closed} \mathbf{B} \cdot d\mathbf{S} = 0 \, \ \mbox{(integral form)}$$ # # This is Maxwell's second equation. # (faraday_law)= # ## Faraday's law # # We know by Faraday's law of induction that when the magnetic flux changes through a wire loop an electromotive force ($EMF$) is acquired by the wire loop given by # # $$EMF = - \frac {d\mathbf{\Phi_B}}{dt}$$ # # The $EMF$ and the electric field generated around the wire loop are essentially the same and thus # # $$EMF = \int_{circuit} \mathbf{E} \cdot d\boldsymbol{l}$$ # # Thus, using Faraday's law # # $$ \int_{circuit} \mathbf{E} \cdot d\boldsymbol{l} = - \frac {d}{dt} \iint_{S}^{} \mathbf{B} \cdot d\mathbf{S}$$ # # This is the third Maxwell equation, in integral form. To get the differntial form we can use Stoke's Theorem such that # # $$\iint_{S} \nabla \times \mathbf{E} \cdot d\mathbf{S} = - \frac {d}{dt} \iint_{S}^{} \mathbf{B} \cdot d\mathbf{S}$$ # # $$\nabla \times \mathbf{E} = - \frac {d\mathbf{B}}{dt}$$ # (ampere_law)= # ## Ampere - Maxwell equation # # The Biot-Savart law provides a general expression for the magnetic field from a current element: # # $$d\mathbf{B} = \frac{\mu_0 I} {4\pi} \frac{d\boldsymbol{l} \times \mathbf{\hat{r}}} {r^2}$$ # # where $d\boldsymbol{l}$ is the line element, d$\mathbf{B}$ is the magnetic field by the current element $Id\boldsymbol{l}$ and $\mathbf{\hat{r}}$ is the unit vector from the line element to the location where we want the $\mathbf{B}$ field. Thus the total field at this point is given by # # $$\mathbf{B} = \frac{\mu_0} {4\pi} \int \frac{Id\boldsymbol{l} \times \mathbf{\hat{r}}} {r^2}$$ # # Ampere's law is just another formulation of the Biot-Savart law. Using Biot-Savart, we can write # # $$\int_L \mathbf{B} \cdot d\boldsymbol{l} = \frac{\mu_0 I} {2\pi r} \int_L d\boldsymbol{l} = \mu_0 I$$ # # since $ \int_L d\boldsymbol{l}$ is just the circumference. It should be noted that the line integral does not depend on the shape of path or the position of the wire within it. If the current in the wire is in the opposite direction, the integral has a negative sign. # # Rather than using a single current, we can introduce a new quantity called the *current density*, $\mathbf{J}$, related to $I$ by # # $$I = \iint_S \mathbf{J} \cdot d\mathbf{S}$$ # # Using this definition we can write # # $$\int_L \mathbf{B} \cdot d\boldsymbol{l} = \mu_0 \iint_S \mathbf{J} \cdot d\mathbf{S}$$ # # and using Stoke's Theorem we get # # $$\iint_S \nabla \times \mathbf{B} \cdot d\mathbf{S} = \mu_0 \iint_S \mathbf{J} \cdot d\mathbf{S}$$ # # $$\nabla \times \mathbf{B} = \mu_0\mathbf{J}$$ # # This is Ampere's law in differential form, but it is not quite yet a Maxwell equation, as it is not valid for a time-varying electric fields (not constant current). Another term needs to be added into the equation that takes into account the time-varying electric fields. Doing so yields the fourth Maxwell equation: # # $$\int_L \mathbf{B} \cdot d\boldsymbol{l} = \mu_0 \iint_S \mathbf{J} \cdot d\mathbf{S} + \mu_0 \epsilon_0 \iint_S \frac {d\mathbf{E}}{dt} \cdot d\mathbf{S} \, \ \mbox{(integral form)}$$ # # $$\nabla \times \mathbf{B} = \mu_0\mathbf{J} + \mu_0 \epsilon_0 \frac {d\mathbf{E}}{dt} \, \ \mbox{(differential form)}$$
notebooks/d_geosciences/Electromagnetism/2_maxwell_eqs.ipynb
# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.14.4 # kernel_info: # name: python3-azureml # kernelspec: # display_name: Python 3.6 - AzureML # language: python # name: python3-azureml # --- # + gather={"logged": 1638378338753} from azureml.core import Experiment, Environment, Workspace, Datastore, Dataset, Model, ScriptRunConfig import os import glob # get the current workspace ws = Workspace.from_config() # + jupyter={"source_hidden": false, "outputs_hidden": false} nteract={"transient": {"deleting": false}} # %cd Satellite_ComputerVision # !git pull # %cd .. # + jupyter={"source_hidden": false, "outputs_hidden": false} nteract={"transient": {"deleting": false}} gather={"logged": 1638378354914} # access our registered data share containing image data in this workspace datastore = Datastore.get(workspace = ws, datastore_name = 'solardatafilestore') cpk_train_path = (datastore, 'CPK_solar/training/') cpk_eval_path = (datastore, 'CPK_solar/eval/') nc_train_path = (datastore, 'NC_solar/training/') nc_eval_path = (datastore, 'NC_solar/eval/') test_path = (datastore, 'CPK_solar/predict/testpred5') # cpk_train_dataset = Dataset.File.from_files(path = [cpk_train_path]) # cpk_eval_dataset = Dataset.File.from_files(path = [cpk_eval_path]) # nc_train_dataset = Dataset.File.from_files(path = [nc_train_path]) # nc_eval_dataset = Dataset.File.from_files(path = [nc_eval_path]) # when we combine datasets the selected directories and relative paths to the datastore are brought in # mount folder # |-cddatafilestore # | |-GEE # | | |-training # | | |-eval # | |-Onera # | | |-training # | | |-eval train_dataset = Dataset.File.from_files(path = [cpk_train_path, nc_train_path]) eval_dataset = Dataset.File.from_files(path = [cpk_eval_path, nc_eval_path]) test_dataset = Dataset.File.from_files(path = [test_path]) # + jupyter={"source_hidden": false, "outputs_hidden": false} nteract={"transient": {"deleting": false}} gather={"logged": 1637721743359} # FInd the run corresponding to the model we want to register run_id = 'solar-nc-cpk_1624989679_f59da7cf' run = ws.get_run(run_id) # + jupyter={"source_hidden": false, "outputs_hidden": false} nteract={"transient": {"deleting": false}} gather={"logged": 1638378394414} model_name = 'solar_Nov21' # + jupyter={"source_hidden": false, "outputs_hidden": false} nteract={"transient": {"deleting": false}} gather={"logged": 1625103322523} model = run.register_model(model_name=model_name, tags=run.tags, description = 'UNET model delineating ground mounted solar arrays in S2 imagery. Trained on multi-season data from Chesapeake Bay and NC', model_path='outputs/', model_framework = 'Tensorflow', model_framework_version= '2.0', datasets = [('training', train_dataset), ('evaluation', eval_dataset), ('testing', test_dataset)]) print(model.name, model.id, model.version, sep='\t') # + jupyter={"source_hidden": false, "outputs_hidden": false} nteract={"transient": {"deleting": false}} gather={"logged": 1638378482125} # use the azure folder as our script folder source = 'Satellite_ComputerVision' util_folder = 'utils' script_folder = f'{source}/azure' script_file = 'train_solar.py' # + jupyter={"source_hidden": false, "outputs_hidden": false} nteract={"transient": {"deleting": false}} gather={"logged": 1638378416579} # get our environment envs = Environment.list(workspace = ws) env = envs.get('solar-training') # + jupyter={"source_hidden": false, "outputs_hidden": false} nteract={"transient": {"deleting": false}} gather={"logged": 1638378418660} # define the compute target compute_target = ws.compute_targets['mevans1'] # + jupyter={"source_hidden": false, "outputs_hidden": false} nteract={"transient": {"deleting": false}} gather={"logged": 1638378420398} experiment_name = 'solar-nc-cpk' exp = Experiment(workspace = ws, name = experiment_name) # + jupyter={"source_hidden": false, "outputs_hidden": false} nteract={"transient": {"deleting": false}} gather={"logged": 1638378455879} args = [ '--train_data', train_dataset.as_mount(), '--eval_data', eval_dataset.as_mount(), '--test_data', test_dataset.as_mount(), '--model_id', model_name, '--weight', 0.7, '-lr', 0.0005, '--epochs', 50, '--batch', 16, '--size', 7755, '--kernel_size', 256, '--response', 'landcover'] # + jupyter={"source_hidden": false, "outputs_hidden": false} nteract={"transient": {"deleting": false}} gather={"logged": 1638381137340} src = ScriptRunConfig(source_directory=script_folder, script=script_file, arguments=args, compute_target=compute_target, environment=env) # + jupyter={"source_hidden": false, "outputs_hidden": false} nteract={"transient": {"deleting": false}} gather={"logged": 1638381147221} # run the training job run = exp.submit(config=src, tags = dict({'splits':'None', 'model':'Unet', 'dataset':'CPK+NC', 'normalization':'pixel', 'epochs':'100-150'})) run
re-train.ipynb
# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.14.4 # kernelspec: # display_name: Python 3 (ipykernel) # language: python # name: python3 # --- import pandas as pd dados = pd.read_csv('aluguel.csv', sep = ';') dados.head(10) # Criar um distribuição de frequência dos imoveis com quantidades determinadas de quartos # 1 e 2 quartos # 3 e 4 quartos # 5 e 6 quartos # 7 ou mais quartos # lista em que passaremos os valores mínimos (0) e máximos (2,4,6,100) classes = [0, 2, 4, 6, 100] quartos = pd.cut(dados['Quartos'], classes) quartos pd.value_counts(quartos) labels = ['1 e 2 quartos','3 e 4 quartos', '5 e 6 quartos','7 ou mais quartos'] quartos = pd.cut(dados['Quartos'], classes, labels = labels) quartos pd.value_counts(quartos) quartos = pd.cut(dados['Quartos'], classes, labels = labels, include_lowest=True) quartos pd.value_counts(quartos)
pacote/Python Pandas - Tratando e analisando dados/extras/Criando faixas de valor.ipynb
# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.14.4 # kernelspec: # display_name: Python [conda root] # language: python # name: conda-root-py # --- # + import numpy as np import pandas as pd import math from sklearn import svm df_train = pd.read_csv("../data/mnist_train.csv").sample(n=10000) df_train['intercept'] = 1 trainingData = df_train.drop("label", axis = 1).values trainingResults = df_train["label"].values df_test = pd.read_csv("../data/mnist_test.csv").sample(n=2000) df_test['intercept'] = 1 testData = df_test.drop("label", axis=1).values testResults = df_test["label"].values Cvals = [1, 10, 100, 1000, 5000, 10000] rbfSVMErrors = [] linearSVMErrors = [] for i in range(len(Cvals)): Cval = Cvals[i] # build the validation set # build the validation set start_index = i * len(trainingData)//len(Cvals) end_index = len(trainingData)//len(Cvals) * (i + 1) validation_data = trainingData[start_index:end_index] validation_classifications = trainingResults[start_index:end_index] # build the model model = np.concatenate((trainingData[:start_index], trainingData[end_index:]), axis=0) model_classifications = np.concatenate((trainingResults[:start_index], trainingResults[end_index:]), axis=0) svm1 = svm.SVC(C=Cval) svm1.fit(model, model_classifications) rbfScore = svm1.score(validation_data, validation_classifications) rbfSVMErrors.append(1 - rbfScore) svm3 = svm.LinearSVC(C=Cval) svm3.fit(model, model_classifications) linearScore = svm3.score(validation_data, validation_classifications) linearSVMErrors.append(1 - linearScore) # + from matplotlib import pyplot as plt plt.plot(Cvals, rbfSVMErrors) plt.title("C vs. Validation Error on RBF SVMs") plt.xscale('log') plt.xlabel("C") plt.ylabel("error") plt.savefig('rbf_svm_CvsError.png') plt.show() plt.plot(Cvals, linearSVMErrors) plt.title("C vs. Validation Error on Linear SVMs") plt.xscale('log') plt.xlabel("C") plt.ylabel("error") plt.savefig('linear_svm_CvsError.png') plt.show() # - # We found that the Linear SVM had a markedly lower validation error than the RBF SVM. We were surprised by this. The best C value, according to our cross-validation, was C = 1, but we're skeptical that variations in validation error are due to variations in validation blocks rather than any impact our C value might have because the differences in error are so small. Thus, we'll build a Linear SVM model with C = 1 with our training set against the test set to get our test error. # + import numpy as np import pandas as pd import math from sklearn import svm df_train = pd.read_csv("../data/mnist_train.csv").sample(n=20000) df_train['intercept'] = 1 trainingData = df_train.drop("label", axis = 1).values trainingResults = df_train["label"].values df_test = pd.read_csv("../data/mnist_test.csv") df_test['intercept'] = 1 testData = df_test.drop("label", axis=1).values testResults = df_test["label"].values classifier = svm.SVC(C=100) classifier.fit(trainingData, trainingResults) print("The test error of the RBF SVM is", 1 - classifier.score(testData, testResults)) classifier = svm.LinearSVC(C=1) classifier.fit(trainingData, trainingResults) print("The test error of the Linear SVM is", 1 - classifier.score(testData, testResults))
notebook/SciKit SVM.ipynb
# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.14.4 # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- # ## Bibliotecas import pandas as pd import numpy as np import yfinance as yf import datetime as datetime import matplotlib.pyplot as plt import statsmodels.api as sm from sklearn.linear_model import LinearRegression plt.style.use('fivethirtyeight') # ## Buscando dados # + inicio = datetime.datetime(2019, 1, 1) fim = datetime.datetime(2021, 12, 31) tickers = ['PETR4.SA', '^BVSP'] dados = pd.DataFrame() for i in tickers: dados[i] = yf.download(i, start=inicio, end=fim, interval='1wk')['Adj Close'] dados.head() # - # ## Beta: yfinance beta = yf.Ticker("PETR4.SA") beta.info['beta'] # ## Retorno simples retorno_simples = np.log(dados / dados.shift()).dropna() retorno_simples.tail() # ## Beta: CAPM - Capital Asset Pricing Model # + #Dados da Selic url = 'http://api.bcb.gov.br/dados/serie/bcdata.sgs.432/dados?formato=json' selic_meta = pd.read_json(url) #Adaptando a base de dados selic_meta['data'] = pd.to_datetime(selic_meta['data'], dayfirst=True) selic_meta.set_index('data', inplace=True) selic_meta.tail() # + #Ativo livre de risco rf = selic_meta.iloc[-1] rf retorno_simples['Selic'] = 0 for i in retorno_simples['Selic']: retorno_simples['Selic'] = rf[0] retorno_simples.head() # + #Utilizando a biblioteca Statsmodels y = retorno_simples['PETR4.SA'] x = retorno_simples['^BVSP'] #c = retorno_simples['Selic'] X = sm.add_constant(x) resultado = sm.OLS(y, X).fit() # - print(resultado.summary()) # + #Utilizando a biblioteca Sklearn X = x.values.reshape(-1, 1) # + #Estimação do modelo reg = LinearRegression() reg.fit(X, y) # + #R-square reg.score(X, y) # + #Intercepto reg.intercept_ # + #Coeficiente reg.coef_[0] # + #Previsão do modelo y_chapeu = reg.predict(X) # + #Visualização plt.figure(figsize=(16, 8)); plt.plot(x, y_chapeu, label='Reta de regressão (predição)', color='#ed1118', linewidth=3); plt.scatter(x, y, label='Dispersão', color='#2424ed', linewidth=0.8); plt.title('Beta PETR4'); plt.ylabel('Retorno do ativo'); plt.xlabel('Retorno do mercado'); plt.text(0.05, 0.2, f'ŷ = {np.round(reg.intercept_, 0)} + {np.round(reg.coef_[0], 3)} * Rm'); plt.text(0.10, -0.3, f'Beta: {np.round(reg.coef_[0], 4)}'); plt.legend(); # - # SCRIPT FINALIZADO!
capm2.ipynb
# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.14.4 # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- # # Hill Climbing # # --- # # In this notebook, we will train hill climbing with adaptive noise scaling with OpenAI Gym's Cartpole environment. # ### 1. Import the Necessary Packages import gym import numpy as np from collections import deque import matplotlib.pyplot as plt # %matplotlib inline # ### 2. Define the Policy # + env = gym.make('CartPole-v0') print('observation space:', env.observation_space) print('action space:', env.action_space) class Policy(): def __init__(self, s_size=4, a_size=2): self.w = 1e-4*np.random.rand(s_size, a_size) # weights for simple linear policy: state_space x action_space def forward(self, state): x = np.dot(state, self.w) return np.exp(x)/sum(np.exp(x)) def act(self, state): probs = self.forward(state) #action = np.random.choice(2, p=probs) # option 1: stochastic policy action = np.argmax(probs) # option 2: deterministic policy return action # - # ### 3. Train the Agent with Stochastic Policy Search # + env = gym.make('CartPole-v0') env.seed(0) np.random.seed(0) policy = Policy() def hill_climbing(n_episodes=1000, max_t=1000, gamma=1.0, print_every=100, noise_scale=1e-2): """Implementation of hill climbing with adaptive noise scaling. Params ====== n_episodes (int): maximum number of training episodes max_t (int): maximum number of timesteps per episode gamma (float): discount rate print_every (int): how often to print average score (over last 100 episodes) noise_scale (float): standard deviation of additive noise """ scores_deque = deque(maxlen=100) scores = [] best_R = -np.Inf best_w = policy.w for i_episode in range(1, n_episodes+1): rewards = [] state = env.reset() for t in range(max_t): action = policy.act(state) state, reward, done, _ = env.step(action) rewards.append(reward) if done: break scores_deque.append(sum(rewards)) scores.append(sum(rewards)) discounts = [gamma**i for i in range(len(rewards)+1)] R = sum([a*b for a,b in zip(discounts, rewards)]) if R >= best_R: # found better weights best_R = R best_w = policy.w noise_scale = max(1e-3, noise_scale / 2) policy.w += noise_scale * np.random.rand(*policy.w.shape) else: # did not find better weights noise_scale = min(2, noise_scale * 2) policy.w = best_w + noise_scale * np.random.rand(*policy.w.shape) if i_episode % print_every == 0: print('Episode {}\tAverage Score: {:.2f}'.format(i_episode, np.mean(scores_deque))) if np.mean(scores_deque)>=195.0: print('Environment solved in {:d} episodes!\tAverage Score: {:.2f}'.format(i_episode-100, np.mean(scores_deque))) policy.w = best_w break return scores scores = hill_climbing() # - # ### 4. Plot the Scores fig = plt.figure() ax = fig.add_subplot(111) plt.plot(np.arange(1, len(scores)+1), scores) plt.ylabel('Score') plt.xlabel('Episode #') plt.show() # ### 5. Watch a Smart Agent! # + env = gym.make('CartPole-v0') state = env.reset() for t in range(200): action = policy.act(state) env.render() state, reward, done, _ = env.step(action) if done: break env.close()
hill-climbing/Hill_Climbing.ipynb
# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.14.4 # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- # !pip install mxnet-cu101 # !pip install gluonnlp pandas tqdm # !pip install sentencepiece==0.1.85 # !pip install transformers==2.1.1 # !pip install torch==1.3.1 # !pip install git+https://git@github.com/SKTBrain/KoBERT.git@master import torch from torch import nn import torch.nn.functional as F import torch.optim as optim from torch.utils.data import Dataset, DataLoader import gluonnlp as nlp import numpy as np from tqdm import tqdm, tqdm_notebook from kobert.utils import get_tokenizer from kobert.pytorch_kobert import get_pytorch_kobert_model from transformers import AdamW from transformers.optimization import WarmupLinearSchedule ##GPU 사용 시 device = torch.device("cuda:0") bertmodel, vocab = get_pytorch_kobert_model() # !wget https://www.dropbox.com/s/374ftkec978br3d/ratings_train.txt?dl=1 # !wget https://www.dropbox.com/s/977gbwh542gdy94/ratings_test.txt?dl=1 dataset_train = nlp.data.TSVDataset("ratings_train.txt?dl=1", field_indices=[1,2], num_discard_samples=1) dataset_test = nlp.data.TSVDataset("ratings_test.txt?dl=1", field_indices=[1,2], num_discard_samples=1) tokenizer = get_tokenizer() tok = nlp.data.BERTSPTokenizer(tokenizer, vocab, lower=False) class BERTDataset(Dataset): def __init__(self, dataset, sent_idx, label_idx, bert_tokenizer, max_len, pad, pair): transform = nlp.data.BERTSentenceTransform( bert_tokenizer, max_seq_length=max_len, pad=pad, pair=pair) self.sentences = [transform([i[sent_idx]]) for i in dataset] self.labels = [np.int32(i[label_idx]) for i in dataset] def __getitem__(self, i): return (self.sentences[i] + (self.labels[i], )) def __len__(self): return (len(self.labels)) ## Setting parameters max_len = 64 batch_size = 64 warmup_ratio = 0.1 num_epochs = 5 max_grad_norm = 1 log_interval = 200 learning_rate = 5e-5 data_train = BERTDataset(dataset_train, 0, 1, tok, max_len, True, False) data_test = BERTDataset(dataset_test, 0, 1, tok, max_len, True, False) train_dataloader = torch.utils.data.DataLoader(data_train, batch_size=batch_size, num_workers=5) test_dataloader = torch.utils.data.DataLoader(data_test, batch_size=batch_size, num_workers=5) class BERTClassifier(nn.Module): def __init__(self, bert, hidden_size = 768, num_classes=2, dr_rate=None, params=None): super(BERTClassifier, self).__init__() self.bert = bert self.dr_rate = dr_rate self.classifier = nn.Linear(hidden_size , num_classes) if dr_rate: self.dropout = nn.Dropout(p=dr_rate) def gen_attention_mask(self, token_ids, valid_length): attention_mask = torch.zeros_like(token_ids) for i, v in enumerate(valid_length): attention_mask[i][:v] = 1 return attention_mask.float() def forward(self, token_ids, valid_length, segment_ids): attention_mask = self.gen_attention_mask(token_ids, valid_length) _, pooler = self.bert(input_ids = token_ids, token_type_ids = segment_ids.long(), attention_mask = attention_mask.float().to(token_ids.device)) if self.dr_rate: out = self.dropout(pooler) return self.classifier(out) model = BERTClassifier(bertmodel, dr_rate=0.5).to(device) # Prepare optimizer and schedule (linear warmup and decay) no_decay = ['bias', 'LayerNorm.weight'] optimizer_grouped_parameters = [ {'params': [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)], 'weight_decay': 0.01}, {'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], 'weight_decay': 0.0} ] optimizer = AdamW(optimizer_grouped_parameters, lr=learning_rate) loss_fn = nn.CrossEntropyLoss() t_total = len(train_dataloader) * num_epochs warmup_step = int(t_total * warmup_ratio) scheduler = WarmupLinearSchedule(optimizer, warmup_steps=warmup_step, t_total=t_total) def calc_accuracy(X,Y): max_vals, max_indices = torch.max(X, 1) train_acc = (max_indices == Y).sum().data.cpu().numpy()/max_indices.size()[0] return train_acc for e in range(num_epochs): train_acc = 0.0 test_acc = 0.0 model.train() for batch_id, (token_ids, valid_length, segment_ids, label) in enumerate(tqdm_notebook(train_dataloader)): optimizer.zero_grad() token_ids = token_ids.long().to(device) segment_ids = segment_ids.long().to(device) valid_length= valid_length label = label.long().to(device) out = model(token_ids, valid_length, segment_ids) loss = loss_fn(out, label) loss.backward() torch.nn.utils.clip_grad_norm_(model.parameters(), max_grad_norm) optimizer.step() scheduler.step() # Update learning rate schedule train_acc += calc_accuracy(out, label) if batch_id % log_interval == 0: print("epoch {} batch id {} loss {} train acc {}".format(e+1, batch_id+1, loss.data.cpu().numpy(), train_acc / (batch_id+1))) print("epoch {} train acc {}".format(e+1, train_acc / (batch_id+1))) model.eval() for batch_id, (token_ids, valid_length, segment_ids, label) in enumerate(tqdm_notebook(test_dataloader)): token_ids = token_ids.long().to(device) segment_ids = segment_ids.long().to(device) valid_length= valid_length label = label.long().to(device) out = model(token_ids, valid_length, segment_ids) test_acc += calc_accuracy(out, label) print("epoch {} test acc {}".format(e+1, test_acc / (batch_id+1)))
scripts/NSMC/naver_review_classifications_pytorch_kobert.ipynb
# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.14.4 # kernelspec: # display_name: Python 3 # name: python3 # --- # + [markdown] colab_type="text" id="view-in-github" # <a href="https://colab.research.google.com/github/NeuromatchAcademy/course-content-dl/blob/main/tutorials/W1D2_LinearDeepLearning/W1D2_Tutorial2.ipynb" target="_parent"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/></a> # - # # Tutorial 2: Learning Hyperparameters # **Week 1, Day 2: Linear Deep Learning** # # **By Neuromatch Academy** # # __Content creators:__ <NAME>, <NAME> # # __Content reviewers:__ <NAME>, <NAME> # # __Content editors:__ <NAME> # # __Production editors:__ <NAME>, <NAME> # # **Our 2021 Sponsors, including Presenting Sponsor Facebook Reality Labs** # # <p align='center'><img src='https://github.com/NeuromatchAcademy/widgets/blob/master/sponsors.png?raw=True'/></p> # --- # # Tutorial Objectives # # * Training landscape # * The effect of depth # * Choosing a learning rate # * Initialization matters # # + cellView="form" # @title Tutorial slides # @markdown These are the slides for the videos in the tutorial from IPython.display import IFrame IFrame(src=f"https://mfr.ca-1.osf.io/render?url=https://osf.io/sne2m/?direct%26mode=render%26action=download%26mode=render", width=854, height=480) # - # --- # # Setup # # This a GPU-Free tutorial! # + # Imports import time import numpy as np import matplotlib import matplotlib.pyplot as plt # !pip install git+https://github.com/NeuromatchAcademy/evaltools --quiet from evaltools.airtable import AirtableForm # + cellView="form" # @title Figure settings from ipywidgets import interact, IntSlider, FloatSlider, fixed from ipywidgets import HBox, interactive_output, ToggleButton, Layout from mpl_toolkits.axes_grid1 import make_axes_locatable # %config InlineBackend.figure_format = 'retina' plt.style.use("https://raw.githubusercontent.com/NeuromatchAcademy/content-creation/main/nma.mplstyle") # + cellView="form" # @title Plotting functions def plot_x_y_(x_t_, y_t_, x_ev_, y_ev_, loss_log_, weight_log_): """ """ plt.figure(figsize=(12, 4)) plt.subplot(1, 3, 1) plt.scatter(x_t_, y_t_, c='r', label='training data') plt.plot(x_ev_, y_ev_, c='b', label='test results', linewidth=2) plt.xlabel('x') plt.ylabel('y') plt.legend() plt.subplot(1, 3, 2) plt.plot(loss_log_, c='r') plt.xlabel('epochs') plt.ylabel('mean squared error') plt.subplot(1, 3, 3) plt.plot(weight_log_) plt.xlabel('epochs') plt.ylabel('weights') plt.show() def plot_vector_field(what, init_weights=None): """ """ n_epochs=40 lr=0.15 x_pos = np.linspace(2.0, 0.5, 100, endpoint=True) y_pos = 1. / x_pos xx, yy = np.mgrid[-1.9:2.0:0.2, -1.9:2.0:0.2] zz = np.empty_like(xx) x, y = xx[:, 0], yy[0] x_temp, y_temp = gen_samples(10, 1.0, 0.0) cmap = matplotlib.cm.plasma plt.figure(figsize=(8, 7)) ax = plt.gca() if what == 'all' or what == 'vectors': for i, a in enumerate(x): for j, b in enumerate(y): temp_model = ShallowNarrowLNN([a, b]) da, db = temp_model.dloss_dw(x_temp, y_temp) zz[i, j] = temp_model.loss(temp_model.forward(x_temp), y_temp) scale = min(40 * np.sqrt(da**2 + db**2), 50) ax.quiver(a, b, - da, - db, scale=scale, color=cmap(np.sqrt(da**2 + db**2))) if what == 'all' or what == 'trajectory': if init_weights is None: for init_weights in [[0.5, -0.5], [0.55, -0.45], [-1.8, 1.7]]: temp_model = ShallowNarrowLNN(init_weights) _, temp_records = temp_model.train(x_temp, y_temp, lr, n_epochs) ax.scatter(temp_records[:, 0], temp_records[:, 1], c=np.arange(len(temp_records)), cmap='Greys') ax.scatter(temp_records[0, 0], temp_records[0, 1], c='blue', zorder=9) ax.scatter(temp_records[-1, 0], temp_records[-1, 1], c='red', marker='X', s=100, zorder=9) else: temp_model = ShallowNarrowLNN(init_weights) _, temp_records = temp_model.train(x_temp, y_temp, lr, n_epochs) ax.scatter(temp_records[:, 0], temp_records[:, 1], c=np.arange(len(temp_records)), cmap='Greys') ax.scatter(temp_records[0, 0], temp_records[0, 1], c='blue', zorder=9) ax.scatter(temp_records[-1, 0], temp_records[-1, 1], c='red', marker='X', s=100, zorder=9) if what == 'all' or what == 'loss': contplt = ax.contourf(x, y, np.log(zz+0.001), zorder=-1, cmap='coolwarm', levels=100) divider = make_axes_locatable(ax) cax = divider.append_axes("right", size="5%", pad=0.05) cbar = plt.colorbar(contplt, cax=cax) cbar.set_label('log (Loss)') ax.set_xlabel("$w_1$") ax.set_ylabel("$w_2$") ax.set_xlim(-1.9, 1.9) ax.set_ylim(-1.9, 1.9) plt.show() def plot_loss_landscape(): """ """ x_temp, y_temp = gen_samples(10, 1.0, 0.0) xx, yy = np.mgrid[-1.9:2.0:0.2, -1.9:2.0:0.2] zz = np.empty_like(xx) x, y = xx[:, 0], yy[0] for i, a in enumerate(x): for j, b in enumerate(y): temp_model = ShallowNarrowLNN([a, b]) zz[i, j] = temp_model.loss(temp_model.forward(x_temp), y_temp) temp_model = ShallowNarrowLNN([-1.8, 1.7]) loss_rec_1, w_rec_1 = temp_model.train(x_temp, y_temp, 0.02, 240) temp_model = ShallowNarrowLNN([1.5, -1.5]) loss_rec_2, w_rec_2 = temp_model.train(x_temp, y_temp, 0.02, 240) plt.figure(figsize=(12, 8)) ax = plt.subplot(1, 1, 1, projection='3d') ax.plot_surface(xx, yy, np.log(zz+0.5), cmap='coolwarm', alpha=0.5) ax.scatter3D(w_rec_1[:, 0], w_rec_1[:, 1], np.log(loss_rec_1+0.5), c='k', s=50, zorder=9) ax.scatter3D(w_rec_2[:, 0], w_rec_2[:, 1], np.log(loss_rec_2+0.5), c='k', s=50, zorder=9) plt.axis("off") ax.view_init(45, 260) plt.show() def depth_widget(depth): if depth == 0: depth_lr_init_interplay(depth, 0.02, 0.9) else: depth_lr_init_interplay(depth, 0.01, 0.9) def lr_widget(lr): depth_lr_init_interplay(50, lr, 0.9) def depth_lr_interplay(depth, lr): depth_lr_init_interplay(depth, lr, 0.9) def depth_lr_init_interplay(depth, lr, init_weights): n_epochs = 600 x_train, y_train = gen_samples(100, 2.0, 0.1) model = DeepNarrowLNN(np.full((1, depth+1), init_weights)) plt.figure(figsize=(10, 5)) plt.plot(model.train(x_train, y_train, lr, n_epochs), linewidth=3.0, c='m') plt.title("Training a {}-layer LNN with" " $\eta=${} initialized with $w_i=${}".format(depth, lr, init_weights), pad=15) plt.yscale('log') plt.xlabel('epochs') plt.ylabel('Log mean squared error') plt.ylim(0.001, 1.0) plt.show() def plot_init_effect(): depth = 15 n_epochs = 250 lr = 0.02 x_train, y_train = gen_samples(100, 2.0, 0.1) plt.figure(figsize=(12, 6)) for init_w in np.arange(0.7, 1.09, 0.05): model = DeepNarrowLNN(np.full((1, depth), init_w)) plt.plot(model.train(x_train, y_train, lr, n_epochs), linewidth=3.0, label="initial weights {:.2f}".format(init_w)) plt.title("Training a {}-layer narrow LNN with $\eta=${}".format(depth, lr), pad=15) plt.yscale('log') plt.xlabel('epochs') plt.ylabel('Log mean squared error') plt.legend(loc='lower left', ncol=4) plt.ylim(0.001, 1.0) plt.show() class InterPlay: def __init__(self): self.lr = [None] self.depth = [None] self.success = [None] self.min_depth, self.max_depth = 5, 65 self.depth_list = np.arange(10, 61, 10) self.i_depth = 0 self.min_lr, self.max_lr = 0.001, 0.105 self.n_epochs = 600 self.x_train, self.y_train = gen_samples(100, 2.0, 0.1) self.converged = False self.button = None self.slider = None def train(self, lr, update=False, init_weights=0.9): if update and self.converged and self.i_depth < len(self.depth_list): depth = self.depth_list[self.i_depth] self.plot(depth, lr) self.i_depth += 1 self.lr.append(None) self.depth.append(None) self.success.append(None) self.converged = False self.slider.value = 0.005 if self.i_depth < len(self.depth_list): self.button.value = False self.button.description = 'Explore!' self.button.disabled = True self.button.button_style = 'danger' else: self.button.value = False self.button.button_style = '' self.button.disabled = True self.button.description = 'Done!' time.sleep(1.0) elif self.i_depth < len(self.depth_list): depth = self.depth_list[self.i_depth] # assert self.min_depth <= depth <= self.max_depth assert self.min_lr <= lr <= self.max_lr self.converged = False model = DeepNarrowLNN(np.full((1, depth), init_weights)) self.losses = np.array(model.train(self.x_train, self.y_train, lr, self.n_epochs)) if np.any(self.losses < 1e-2): success = np.argwhere(self.losses < 1e-2)[0][0] if np.all((self.losses[success:] < 1e-2)): self.converged = True self.success[-1] = success self.lr[-1] = lr self.depth[-1] = depth self.button.disabled = False self.button.button_style = 'success' self.button.description = 'Register!' else: self.button.disabled = True self.button.button_style = 'danger' self.button.description = 'Explore!' else: self.button.disabled = True self.button.button_style = 'danger' self.button.description = 'Explore!' self.plot(depth, lr) def plot(self, depth, lr): fig = plt.figure(constrained_layout=False, figsize=(10, 8)) gs = fig.add_gridspec(2, 2) ax1 = fig.add_subplot(gs[0, :]) ax2 = fig.add_subplot(gs[1, 0]) ax3 = fig.add_subplot(gs[1, 1]) ax1.plot(self.losses, linewidth=3.0, c='m') ax1.set_title("Training a {}-layer LNN with" " $\eta=${}".format(depth, lr), pad=15, fontsize=16) ax1.set_yscale('log') ax1.set_xlabel('epochs') ax1.set_ylabel('Log mean squared error') ax1.set_ylim(0.001, 1.0) ax2.set_xlim(self.min_depth, self.max_depth) ax2.set_ylim(-10, self.n_epochs) ax2.set_xlabel('Depth') ax2.set_ylabel('Learning time (Epochs)') ax2.set_title("Learning time vs depth", fontsize=14) ax2.scatter(np.array(self.depth), np.array(self.success), c='r') # ax3.set_yscale('log') ax3.set_xlim(self.min_depth, self.max_depth) ax3.set_ylim(self.min_lr, self.max_lr) ax3.set_xlabel('Depth') ax3.set_ylabel('Optimial learning rate') ax3.set_title("Empirically optimal $\eta$ vs depth", fontsize=14) ax3.scatter(np.array(self.depth), np.array(self.lr), c='r') plt.show() # + cellView="form" # @title Helper functions atform = AirtableForm('appn7VdPRseSoMXEG','W1D2_T2','https://portal.neuromatchacademy.org/api/redirect/to/9c55f6cb-cdf9-4429-ac1c-ec44fe64c303') def gen_samples(n, a, sigma): """ Generates `n` samples with `y = z * x + noise(sgma)` linear relation. Args: n : int a : float sigma : float Retutns: x : np.array y : np.array """ assert n > 0 assert sigma >= 0 if sigma > 0: x = np.random.rand(n) noise = np.random.normal(scale=sigma, size=(n)) y = a * x + noise else: x = np.linspace(0.0, 1.0, n, endpoint=True) y = a * x return x, y class ShallowNarrowLNN: """ Shallow and narrow (one neuron per layer) linear neural network """ def __init__(self, init_ws): """ init_ws: initial weights as a list """ assert isinstance(init_ws, list) assert len(init_ws) == 2 self.w1 = init_ws[0] self.w2 = init_ws[1] def forward(self, x): """ The forward pass through netwrok y = x * w1 * w2 """ y = x * self.w1 * self.w2 return y def loss(self, y_p, y_t): """ Mean squared error (L2) with 1/2 for convenience """ assert y_p.shape == y_t.shape mse = ((y_t - y_p)**2).mean() return mse def dloss_dw(self, x, y_t): """ partial derivative of loss with respect to weights Args: x : np.array y_t : np.array """ assert x.shape == y_t.shape Error = y_t - self.w1 * self.w2 * x dloss_dw1 = - (2 * self.w2 * x * Error).mean() dloss_dw2 = - (2 * self.w1 * x * Error).mean() return dloss_dw1, dloss_dw2 def train(self, x, y_t, eta, n_ep): """ Gradient descent algorithm Args: x : np.array y_t : np.array eta: float n_ep : int """ assert x.shape == y_t.shape loss_records = np.empty(n_ep) # pre allocation of loss records weight_records = np.empty((n_ep, 2)) # pre allocation of weight records for i in range(n_ep): y_p = self.forward(x) loss_records[i] = self.loss(y_p, y_t) dloss_dw1, dloss_dw2 = self.dloss_dw(x, y_t) self.w1 -= eta * dloss_dw1 self.w2 -= eta * dloss_dw2 weight_records[i] = [self.w1, self.w2] return loss_records, weight_records class DeepNarrowLNN: """ Deep but thin (one neuron per layer) linear neural network """ def __init__(self, init_ws): """ init_ws: initial weights as a numpy array """ self.n = init_ws.size self.W = init_ws.reshape(1, -1) def forward(self, x): """ x : np.array input features """ y = np.prod(self.W) * x return y def loss(self, y_t, y_p): """ mean squared error (L2 loss) Args: y_t : np.array y_p : np.array """ assert y_p.shape == y_t.shape mse = ((y_t - y_p)**2 / 2).mean() return mse def dloss_dw(self, x, y_t, y_p): """ analytical gradient of weights Args: x : np.array y_t : np.array y_p : np.array """ E = y_t - y_p # = y_t - x * np.prod(self.W) Ex = np.multiply(x, E).mean() Wp = np.prod(self.W) / (self.W + 1e-9) dW = - Ex * Wp return dW def train(self, x, y_t, eta, n_epochs): """ training using gradient descent Args: x : np.array y_t : np.array eta: float n_epochs : int """ loss_records = np.empty(n_epochs) loss_records[:] = np.nan for i in range(n_epochs): y_p = self.forward(x) loss_records[i] = self.loss(y_t, y_p).mean() dloss_dw = self.dloss_dw(x, y_t, y_p) if np.isnan(dloss_dw).any() or np.isinf(dloss_dw).any(): return loss_records self.W -= eta * dloss_dw return loss_records # + cellView="form" #@title Set random seed #@markdown Executing `set_seed(seed=seed)` you are setting the seed # for DL its critical to set the random seed so that students can have a # baseline to compare their results to expected results. # Read more here: https://pytorch.org/docs/stable/notes/randomness.html # Call `set_seed` function in the exercises to ensure reproducibility. import random import torch def set_seed(seed=None, seed_torch=True): if seed is None: seed = np.random.choice(2 ** 32) random.seed(seed) np.random.seed(seed) if seed_torch: torch.manual_seed(seed) torch.cuda.manual_seed_all(seed) torch.cuda.manual_seed(seed) torch.backends.cudnn.benchmark = False torch.backends.cudnn.deterministic = True print(f'Random seed {seed} has been set.') # In case that `DataLoader` is used def seed_worker(worker_id): worker_seed = torch.initial_seed() % 2**32 np.random.seed(worker_seed) random.seed(worker_seed) # + cellView="form" #@title Set device (GPU or CPU). Execute `set_device()` # especially if torch modules used. # inform the user if the notebook uses GPU or CPU. def set_device(): device = "cuda" if torch.cuda.is_available() else "cpu" if device != "cuda": print("GPU is not enabled in this notebook. \n" "If you want to enable it, in the menu under `Runtime` -> \n" "`Hardware accelerator.` and select `GPU` from the dropdown menu") else: print("GPU is enabled in this notebook. \n" "If you want to disable it, in the menu under `Runtime` -> \n" "`Hardware accelerator.` and select `None` from the dropdown menu") return device # - SEED = 2021 set_seed(seed=SEED) DEVICE = set_device() # --- # # Section 1: A Shallow Narrow Linear Neural Network # ## Section 1.1: A neural network from scratch # + cellView="form" # @title Video 1: Shallow Narrow Linear Net from ipywidgets import widgets out2 = widgets.Output() with out2: from IPython.display import IFrame class BiliVideo(IFrame): def __init__(self, id, page=1, width=400, height=300, **kwargs): self.id=id src = "https://player.bilibili.com/player.html?bvid={0}&page={1}".format(id, page) super(BiliVideo, self).__init__(src, width, height, **kwargs) video = BiliVideo(id=f"BV1F44y117ot", width=854, height=480, fs=1) print("Video available at https://www.bilibili.com/video/{0}".format(video.id)) display(video) out1 = widgets.Output() with out1: from IPython.display import YouTubeVideo video = YouTubeVideo(id=f"6e5JIYsqVvU", width=854, height=480, fs=1, rel=0) print("Video available at https://youtube.com/watch?v=" + video.id) display(video) out = widgets.Tab([out1, out2]) out.set_title(0, 'Youtube') out.set_title(1, 'Bilibili') #add event to airtable atform.add_event('video 1: Shallow Narrow Linear Net') display(out) # - # To better understand the behavior of neural network training with gradient descent, we start with the incredibly simple case of a shallow narrow linear neural net, since state-of-the-art models are impossible to dissect and comprehend with our current mathematical tools. # # The model we use has one hidden layer, with only one neuron, and two weights. We consider the squared error (or L2 loss) as the cost function. As you may have already guessed, we can visualize the model as a neural network: # # <center><img src="https://raw.githubusercontent.com/ssnio/statics/main/neuromatch/shallow_narrow_nn.png" width="400"/></center> # # <br/> # # or by its computation graph: # # <center><img src="https://raw.githubusercontent.com/ssnio/statics/main/neuromatch/shallow_narrow.png" alt="Shallow Narrow Graph" width="400"/></center> # # or on a rare occasion, even as a reasonably compact mapping: # # $$ loss = (y - w_1 \cdot w_2 \cdot x)^2 $$ # # <br/> # # ### Analytical Exercise 1.1: Loss Gradients # # #### Part i: Calculate gradients (Optional) # Once again, we ask you to calculate the network gradients analytically, since you will need them for the next exercise. We understand how annoying this is. # # $\dfrac{\partial{loss}}{\partial{w_1}} = ?$ # # $\dfrac{\partial{loss}}{\partial{w_2}} = ?$ # # <br/> # # --- # #### Solution # # $\dfrac{\partial{loss}}{\partial{w_1}} = -2 \cdot w_2 \cdot x \cdot (y - w_1 \cdot w_2 \cdot x)$ # # $\dfrac{\partial{loss}}{\partial{w_2}} = -2 \cdot w_1 \cdot x \cdot (y - w_1 \cdot w_2 \cdot x)$ # # --- # # ### Coding Exercise 1.1: Implement simple narrow LNN # # Next, we ask you to implement the `forward` pass for our model from scratch without using PyTorch. # # Also, although our model gets a single input feature and outputs a single prediction, we could calculate the loss and perform training for multiple samples at once. This is the common practice for neural networks, since computers are incredibly fast doing matrix (or tensor) operations on batches of data, rather than processing samples one at a time through `for` loops. Therefore, for the `loss` function, please implement the **mean** squared error (MSE), and adjust your analytical gradients accordingly when implementing the `dloss_dw` function. # # Finally, complete the `train` function for the gradient descent algorithm: # # \begin{equation} # \mathbf{w}^{(t+1)} = \mathbf{w}^{(t)} - \eta \nabla loss (\mathbf{w}^{(t)}) # \end{equation} # + class ShallowNarrowExercise: """Shallow and narrow (one neuron per layer) linear neural network """ def __init__(self, init_weights): """ Args: init_weights (list): initial weights """ assert isinstance(init_weights, (list, np.ndarray, tuple)) assert len(init_weights) == 2 self.w1 = init_weights[0] self.w2 = init_weights[1] def forward(self, x): """The forward pass through netwrok y = x * w1 * w2 Args: x (np.ndarray): features (inputs) to neural net returns: (np.ndarray): neural network output (prediction) """ ################################################# ## Implement the forward pass to calculate prediction ## Note that prediction is not the loss # Complete the function and remove or comment the line below raise NotImplementedError("Forward Pass `forward`") ################################################# y = ... return y def dloss_dw(self, x, y_true): """Gradient of loss with respect to weights Args: x (np.ndarray): features (inputs) to neural net y_true (np.ndarray): true labels returns: (float): mean gradient of loss with respect to w1 (float): mean gradient of loss with respect to w2 """ assert x.shape == y_true.shape ################################################# ## Implement the gradient computation function # Complete the function and remove or comment the line below raise NotImplementedError("Gradient of Loss `dloss_dw`") ################################################# dloss_dw1 = ... dloss_dw2 = ... return dloss_dw1, dloss_dw2 def train(self, x, y_true, lr, n_ep): """Training with Gradient descent algorithm Args: x (np.ndarray): features (inputs) to neural net y_true (np.ndarray): true labels lr (float): learning rate n_ep (int): number of epochs (training iterations) returns: (list): training loss records (list): training weight records (evolution of weights) """ assert x.shape == y_true.shape loss_records = np.empty(n_ep) # pre allocation of loss records weight_records = np.empty((n_ep, 2)) # pre allocation of weight records for i in range(n_ep): y_prediction = self.forward(x) loss_records[i] = loss(y_prediction, y_true) dloss_dw1, dloss_dw2 = self.dloss_dw(x, y_true) ################################################# ## Implement the gradient descent step # Complete the function and remove or comment the line below raise NotImplementedError("Training loop `train`") ################################################# self.w1 -= ... self.w2 -= ... weight_records[i] = [self.w1, self.w2] return loss_records, weight_records def loss(y_prediction, y_true): """Mean squared error Args: y_prediction (np.ndarray): model output (prediction) y_true (np.ndarray): true label returns: (np.ndarray): mean squared error loss """ assert y_prediction.shape == y_true.shape ################################################# ## Implement the MEAN squared error # Complete the function and remove or comment the line below raise NotImplementedError("Loss function `loss`") ################################################# mse = ... return mse #add event to airtable atform.add_event('Coding Exercise 1.1: Implement simple narrow LNN') set_seed(seed=SEED) n_epochs = 211 learning_rate = 0.02 initial_weights = [1.4, -1.6] x_train, y_train = gen_samples(n=73, a=2.0, sigma=0.2) x_eval = np.linspace(0.0, 1.0, 37, endpoint=True) ## Uncomment to run # sn_model = ShallowNarrowExercise(initial_weights) # loss_log, weight_log = sn_model.train(x_train, y_train, learning_rate, n_epochs) # y_eval = sn_model.forward(x_eval) # plot_x_y_(x_train, y_train, x_eval, y_eval, loss_log, weight_log) # + # to_remove solution class ShallowNarrowExercise: """Shallow and narrow (one neuron per layer) linear neural network """ def __init__(self, init_weights): """ Args: init_weights (list): initial weights """ assert isinstance(init_weights, (list, np.ndarray, tuple)) assert len(init_weights) == 2 self.w1 = init_weights[0] self.w2 = init_weights[1] def forward(self, x): """The forward pass through netwrok y = x * w1 * w2 Args: x (np.ndarray): features (inputs) to neural net returns: (np.ndarray): neural network output (prediction) """ y = x * self.w1 * self.w2 return y def dloss_dw(self, x, y_true): """Gradient of loss with respect to weights Args: x (np.ndarray): features (inputs) to neural net y_true (np.ndarray): true labels returns: (float): mean gradient of loss with respect to w1 (float): mean gradient of loss with respect to w2 """ assert x.shape == y_true.shape dloss_dw1 = - (2 * self.w2 * x * (y_true - self.w1 * self.w2 * x)).mean() dloss_dw2 = - (2 * self.w1 * x * (y_true - self.w1 * self.w2 * x)).mean() return dloss_dw1, dloss_dw2 def train(self, x, y_true, lr, n_ep): """Training with Gradient descent algorithm Args: x (np.ndarray): features (inputs) to neural net y_true (np.ndarray): true labels lr (float): learning rate n_ep (int): number of epochs (training iterations) returns: (list): training loss records (list): training weight records (evolution of weights) """ assert x.shape == y_true.shape loss_records = np.empty(n_ep) # pre allocation of loss records weight_records = np.empty((n_ep, 2)) # pre allocation of weight records for i in range(n_ep): y_prediction = self.forward(x) loss_records[i] = loss(y_prediction, y_true) dloss_dw1, dloss_dw2 = self.dloss_dw(x, y_true) self.w1 -= lr * dloss_dw1 self.w2 -= lr * dloss_dw2 weight_records[i] = [self.w1, self.w2] return loss_records, weight_records def loss(y_prediction, y_true): """Mean squared error Args: y_prediction (np.ndarray): model output (prediction) y_true (np.ndarray): true label returns: (np.ndarray): mean squared error loss """ assert y_prediction.shape == y_true.shape mse = ((y_true - y_prediction)**2).mean() return mse #add event to airtable atform.add_event('Coding Exercise 1.1: Implement simple narrow LNN') set_seed(seed=SEED) n_epochs = 211 learning_rate = 0.02 initial_weights = [1.4, -1.6] x_train, y_train = gen_samples(n=73, a=2.0, sigma=0.2) x_eval = np.linspace(0.0, 1.0, 37, endpoint=True) ## Uncomment to run sn_model = ShallowNarrowExercise(initial_weights) loss_log, weight_log = sn_model.train(x_train, y_train, learning_rate, n_epochs) y_eval = sn_model.forward(x_eval) with plt.xkcd(): plot_x_y_(x_train, y_train, x_eval, y_eval, loss_log, weight_log) # - # ## Section 1.2: Learning landscapes # + cellView="form" # @title Video 2: Training Landscape from ipywidgets import widgets out2 = widgets.Output() with out2: from IPython.display import IFrame class BiliVideo(IFrame): def __init__(self, id, page=1, width=400, height=300, **kwargs): self.id=id src = "https://player.bilibili.com/player.html?bvid={0}&page={1}".format(id, page) super(BiliVideo, self).__init__(src, width, height, **kwargs) video = BiliVideo(id=f"BV1Nv411J71X", width=854, height=480, fs=1) print("Video available at https://www.bilibili.com/video/{0}".format(video.id)) display(video) out1 = widgets.Output() with out1: from IPython.display import YouTubeVideo video = YouTubeVideo(id=f"k28bnNAcOEg", width=854, height=480, fs=1, rel=0) print("Video available at https://youtube.com/watch?v=" + video.id) display(video) out = widgets.Tab([out1, out2]) out.set_title(0, 'Youtube') out.set_title(1, 'Bilibili') #add event to airtable atform.add_event('Video 2: Training Landscape') # - # As you may have already asked yourself, we can analytically find $w_1$ and $w_2$ without using gradient descent: # # \begin{equation} # w_1 \cdot w_2 = \dfrac{y}{x} # \end{equation} # # In fact, we can plot the gradients, the loss function and all the possible solutions in one figure. In this example, we use the $y = 1x$ mapping: # # **Blue ribbon**: shows all possible solutions: $~ w_1 w_2 = \dfrac{y}{x} = \dfrac{x}{x} = 1 \Rightarrow w_1 = \dfrac{1}{w_2}$ # # **Contour background**: Shows the loss values, red being higher loss # # **Vector field (arrows)**: shows the gradient vector field. The larger yellow arrows show larger gradients, which correspond to bigger steps by gradient descent. # # **Scatter circles**: the trajectory (evolution) of weights during training for three different initializations, with blue dots marking the start of training and red crosses ( **x** ) marking the end of training. You can also try your own initializations (keep the initial values between `-2.0` and `2.0`) as shown here: # ```python # plot_vector_field('all', [1.0, -1.0]) # ``` # # Finally, if the plot is too crowded, feel free to pass one of the following strings as argument: # # ```python # plot_vector_field('vectors') # for vector field # plot_vector_field('trajectory') # for training trajectory # plot_vector_field('loss') # for loss contour # ``` # # **Think!** # # Explore the next two plots. Try different initial values. Can you find the saddle point? Why does training slow down near the minima? plot_vector_field('all') # Here, we also visualize the loss landscape in a 3-D plot, with two training trajectories for different initial conditions. # Note: the trajectories from the 3D plot and the previous plot are independent and different. plot_loss_landscape() # + cellView="form" # @title Student Response from ipywidgets import widgets text=widgets.Textarea( value='Type your here and Push submit', placeholder='Type something', description='', disabled=False ) button = widgets.Button(description="Submit!") display(text,button) def on_button_clicked(b): atform.add_answer('q1', text.value) print("Submission successful!") button.on_click(on_button_clicked) # + cellView="form" # @title Video 3: Training Landscape - Discussion from ipywidgets import widgets out2 = widgets.Output() with out2: from IPython.display import IFrame class BiliVideo(IFrame): def __init__(self, id, page=1, width=400, height=300, **kwargs): self.id=id src = "https://player.bilibili.com/player.html?bvid={0}&page={1}".format(id, page) super(BiliVideo, self).__init__(src, width, height, **kwargs) video = BiliVideo(id=f"BV1py4y1j7cv", width=854, height=480, fs=1) print("Video available at https://www.bilibili.com/video/{0}".format(video.id)) display(video) out1 = widgets.Output() with out1: from IPython.display import YouTubeVideo video = YouTubeVideo(id=f"0EcUGgxOdkI", width=854, height=480, fs=1, rel=0) print("Video available at https://youtube.com/watch?v=" + video.id) display(video) out = widgets.Tab([out1, out2]) out.set_title(0, 'Youtube') out.set_title(1, 'Bilibili') #add event to airtable atform.add_event('Video 3: Training Landscape - Discussiond') display(out) # - # --- # # Section 2: Depth, Learning rate, and initialization # # Successful deep learning models are often developed by a team of very clever people, spending many many hours "tuning" learning hyperparameters, and finding effective initializations. In this section, we look at three basic (but often not simple) hyperparameters: depth, learning rate, and initialization. # ## Section 2.1: The effect of depth # + cellView="form" # @title Video 4: Effect of Depth from ipywidgets import widgets out2 = widgets.Output() with out2: from IPython.display import IFrame class BiliVideo(IFrame): def __init__(self, id, page=1, width=400, height=300, **kwargs): self.id=id src = "https://player.bilibili.com/player.html?bvid={0}&page={1}".format(id, page) super(BiliVideo, self).__init__(src, width, height, **kwargs) video = BiliVideo(id=f"BV1z341167di", width=854, height=480, fs=1) print("Video available at https://www.bilibili.com/video/{0}".format(video.id)) display(video) out1 = widgets.Output() with out1: from IPython.display import YouTubeVideo video = YouTubeVideo(id=f"Ii_As9cRR5Q", width=854, height=480, fs=1, rel=0) print("Video available at https://youtube.com/watch?v=" + video.id) display(video) out = widgets.Tab([out1, out2]) out.set_title(0, 'Youtube') out.set_title(1, 'Bilibili') #add event to airtable atform.add_event('Video 4: Effect of Depth') display(out) # - # In 1989, <NAME> published the paper *Approximation by superpositions of a sigmoidal function*, mathematically proving that: # # > arbitrary decision regions can be arbitrarily well approximated by continuous feedforward neural networks with only a single internal, hidden layer and any continuous sigmoidal nonlinearity. # # So if a neural net with a single hidden layer can approximate any function, why might depth be useful? What makes a network or learning system "deep"? The reality is that shallow neural nets are often incapable of learning complex functions due to data limitations. On the other hand, depth seems like magic. Depth can change the functions a network can represent, the way a network learns, and how a network generalizes to unseen data. # # So let's look at the challenges that depth poses in training a neural network. Imagine a single input, single output linear network with 50 hidden layers and only one neuron per layer (i.e. a narrow deep neural network). The output of the network is easy to calculate: # # $$ prediction = x \cdot w_1 \cdot w_2 \cdot \cdot \cdot w_{50} $$ # # If the initial value for all the weights is $w_i = 2$, the prediction for $x=1$ would be **exploding**: $y_p = 2^{50} \approx 1.1256 \times 10^{15}$. On the other hand, for weights initialized to $w_i = 0.5$, the output is **vanishing**: $y_p = 0.5^{50} \approx 8.88 \times 10^{-16}$. Similarly, if we recall the chain rule, as the graph gets deeper, the number of elements in the chain multiplication increases, which could lead to exploding or vanishing gradients. To avoid such numerical vulnerablities that could impair our training algorithm, we need to understand the effect of depth. # # ### Interactive Demo 2.1: Depth widget # # Use the widget to explore the impact of depth on the training curve (loss evolution) of a deep but narrow neural network. # # **Think!** # # Which networks trained the fastest? Did all networks eventually "work" (converge)? What is the shape of their learning trajectory? # + cellView="form" # @markdown Make sure you execute this cell to enable the widget! _ = interact(depth_widget, depth = IntSlider(min=0, max=51, step=5, value=0, continuous_update=False)) # + cellView="form" # @title Video 5: Effect of Depth - Discussion from ipywidgets import widgets out2 = widgets.Output() with out2: from IPython.display import IFrame class BiliVideo(IFrame): def __init__(self, id, page=1, width=400, height=300, **kwargs): self.id=id src = "https://player.bilibili.com/player.html?bvid={0}&page={1}".format(id, page) super(BiliVideo, self).__init__(src, width, height, **kwargs) video = BiliVideo(id=f"BV1Qq4y1H7uk", width=854, height=480, fs=1) print("Video available at https://www.bilibili.com/video/{0}".format(video.id)) display(video) out1 = widgets.Output() with out1: from IPython.display import YouTubeVideo video = YouTubeVideo(id=f"EqSDkwmSruk", width=854, height=480, fs=1, rel=0) print("Video available at https://youtube.com/watch?v=" + video.id) display(video) out = widgets.Tab([out1, out2]) out.set_title(0, 'Youtube') out.set_title(1, 'Bilibili') #add event to airtable atform.add_event('Video 5: Effect of Depth - Discussion') display(out) # - # ## Section 2.2: Choosing a learning rate # The learning rate is a common hyperparameter for most optimization algorithms. How should we set it? Sometimes the only option is to try all the possibilities, but sometimes knowing some key trade-offs will help guide our search for good hyperparameters. # + cellView="form" # @title Video 6: Learning Rate from ipywidgets import widgets out2 = widgets.Output() with out2: from IPython.display import IFrame class BiliVideo(IFrame): def __init__(self, id, page=1, width=400, height=300, **kwargs): self.id=id src = "https://player.bilibili.com/player.html?bvid={0}&page={1}".format(id, page) super(BiliVideo, self).__init__(src, width, height, **kwargs) video = BiliVideo(id=f"BV11f4y157MT", width=854, height=480, fs=1) print("Video available at https://www.bilibili.com/video/{0}".format(video.id)) display(video) out1 = widgets.Output() with out1: from IPython.display import YouTubeVideo video = YouTubeVideo(id=f"w_GrCVM-_Qo", width=854, height=480, fs=1, rel=0) print("Video available at https://youtube.com/watch?v=" + video.id) display(video) out = widgets.Tab([out1, out2]) out.set_title(0, 'Youtube') out.set_title(1, 'Bilibili') #add event to airtable atform.add_event('Video 6: Learning Rate') display(out) # - # ### Interactive Demo 2.2: Learning rate widget # # Here, we fix the network depth to 50 layers. Use the widget to explore the impact of learning rate $\eta$ on the training curve (loss evolution) of a deep but narrow neural network. # # **Think!** # # Can we say that larger learning rates always lead to faster learning? Why not? # + cellView="form" # @markdown Make sure you execute this cell to enable the widget! _ = interact(lr_widget, lr = FloatSlider(min=0.005, max=0.045, step=0.005, value=0.005, continuous_update=False, readout_format='.3f', description='eta')) # + cellView="form" # @title Video 7: Learning Rate - Discussion from ipywidgets import widgets out2 = widgets.Output() with out2: from IPython.display import IFrame class BiliVideo(IFrame): def __init__(self, id, page=1, width=400, height=300, **kwargs): self.id=id src = "https://player.bilibili.com/player.html?bvid={0}&page={1}".format(id, page) super(BiliVideo, self).__init__(src, width, height, **kwargs) video = BiliVideo(id=f"BV1Aq4y1p7bh", width=854, height=480, fs=1) print("Video available at https://www.bilibili.com/video/{0}".format(video.id)) display(video) out1 = widgets.Output() with out1: from IPython.display import YouTubeVideo video = YouTubeVideo(id=f"cmS0yqImz2E", width=854, height=480, fs=1, rel=0) print("Video available at https://youtube.com/watch?v=" + video.id) display(video) out = widgets.Tab([out1, out2]) out.set_title(0, 'Youtube') out.set_title(1, 'Bilibili') #add event to airtable atform.add_event('Video 7: Learning Rate') display(out) # - # ## Section 2.3: Depth vs Learning Rate # + cellView="form" # @title Video 8: Depth and Learning Rate Interplay from ipywidgets import widgets out2 = widgets.Output() with out2: from IPython.display import IFrame class BiliVideo(IFrame): def __init__(self, id, page=1, width=400, height=300, **kwargs): self.id=id src = "https://player.bilibili.com/player.html?bvid={0}&page={1}".format(id, page) super(BiliVideo, self).__init__(src, width, height, **kwargs) video = BiliVideo(id=f"BV1V44y1177e", width=854, height=480, fs=1) print("Video available at https://www.bilibili.com/video/{0}".format(video.id)) display(video) out1 = widgets.Output() with out1: from IPython.display import YouTubeVideo video = YouTubeVideo(id=f"J30phrux_3k", width=854, height=480, fs=1, rel=0) print("Video available at https://youtube.com/watch?v=" + video.id) display(video) out = widgets.Tab([out1, out2]) out.set_title(0, 'Youtube') out.set_title(1, 'Bilibili') #add event to airtable atform.add_event('Video 8: Depth and Learning Rate Interplay') display(out) # - # ### Interactive Demo 2.3: Depth and Learning-Rate # # **Important instruction** # The exercise starts with 10 hidden layers. Your task is to find the learning rate that delivers fast but robust convergence (learning). When you are confident about the learning rate, you can **Register** the optimal learning rate for the given depth. Once you press register, a deeper model is instantiated, so you can find the next optimal learning rate. The Register button turns green only when the training converges, but does not imply the fastest convergence. Finally, be patient :) the widgets are slow. # # # **Think!** # # Can you explain the relationship between the depth and optimal learning rate? # + cellView="form" # @markdown Make sure you execute this cell to enable the widget! intpl_obj = InterPlay() intpl_obj.slider = FloatSlider(min=0.005, max=0.105, step=0.005, value=0.005, layout=Layout(width='500px'), continuous_update=False, readout_format='.3f', description='eta') intpl_obj.button = ToggleButton(value=intpl_obj.converged, description='Register') widgets_ui = HBox([intpl_obj.slider, intpl_obj.button]) widgets_out = interactive_output(intpl_obj.train, {'lr': intpl_obj.slider, 'update': intpl_obj.button, 'init_weights': fixed(0.9)}) display(widgets_ui, widgets_out) # + cellView="form" # @title Video 9: Depth and Learning Rate - Discussion from ipywidgets import widgets out2 = widgets.Output() with out2: from IPython.display import IFrame class BiliVideo(IFrame): def __init__(self, id, page=1, width=400, height=300, **kwargs): self.id=id src = "https://player.bilibili.com/player.html?bvid={0}&page={1}".format(id, page) super(BiliVideo, self).__init__(src, width, height, **kwargs) video = BiliVideo(id=f"BV15q4y1p7Uq", width=854, height=480, fs=1) print("Video available at https://www.bilibili.com/video/{0}".format(video.id)) display(video) out1 = widgets.Output() with out1: from IPython.display import YouTubeVideo video = YouTubeVideo(id=f"7Fl8vH7cgco", width=854, height=480, fs=1, rel=0) print("Video available at https://youtube.com/watch?v=" + video.id) display(video) out = widgets.Tab([out1, out2]) out.set_title(0, 'Youtube') out.set_title(1, 'Bilibili') display(out) # - # ## Section 2.4: Why initialization is important # + cellView="form" # @title Video 10: Initialization Matters from ipywidgets import widgets out2 = widgets.Output() with out2: from IPython.display import IFrame class BiliVideo(IFrame): def __init__(self, id, page=1, width=400, height=300, **kwargs): self.id=id src = "https://player.bilibili.com/player.html?bvid={0}&page={1}".format(id, page) super(BiliVideo, self).__init__(src, width, height, **kwargs) video = BiliVideo(id=f"BV1UL411J7vu", width=854, height=480, fs=1) print("Video available at https://www.bilibili.com/video/{0}".format(video.id)) display(video) out1 = widgets.Output() with out1: from IPython.display import YouTubeVideo video = YouTubeVideo(id=f"KmqCz95AMzY", width=854, height=480, fs=1, rel=0) print("Video available at https://youtube.com/watch?v=" + video.id) display(video) out = widgets.Tab([out1, out2]) out.set_title(0, 'Youtube') out.set_title(1, 'Bilibili') #add event to airtable atform.add_event('Video 10: Initialization Matters') display(out) # - # We’ve seen, even in the simplest of cases, that depth can slow learning. Why? From the chain rule, gradients are multiplied by the current weight at each layer, so the product can vanish or explode. Therefore, weight initialization is a fundamentally important hyperparameter. # # Although in practice initial values for learnable parameters are often sampled from different $\mathcal{Uniform}$ or $\mathcal{Normal}$ probability distribution, here we use a single value for all the parameters. # # The figure below shows the effect of initialization on the speed of learning for the deep but narrow LNN. We have excluded initializations that lead to numerical errors such as `nan` or `inf`, which are the consequence of smaller or larger initializations. # + cellView="form" # @markdown Make sure you execute this cell to see the figure! plot_init_effect() # + cellView="form" # @title Video 11: Initialization Matters Explained from ipywidgets import widgets out2 = widgets.Output() with out2: from IPython.display import IFrame class BiliVideo(IFrame): def __init__(self, id, page=1, width=400, height=300, **kwargs): self.id=id src = "https://player.bilibili.com/player.html?bvid={0}&page={1}".format(id, page) super(BiliVideo, self).__init__(src, width, height, **kwargs) video = BiliVideo(id=f"BV1hM4y1T7gJ", width=854, height=480, fs=1) print("Video available at https://www.bilibili.com/video/{0}".format(video.id)) display(video) out1 = widgets.Output() with out1: from IPython.display import YouTubeVideo video = YouTubeVideo(id=f"vKktGdiQDsE", width=854, height=480, fs=1, rel=0) print("Video available at https://youtube.com/watch?v=" + video.id) display(video) out = widgets.Tab([out1, out2]) out.set_title(0, 'Youtube') out.set_title(1, 'Bilibili') #add event to airtable atform.add_event('Video 11: Initialization Matters Explained') display(out) # - # --- # # Summary # # In the second tutorial, we have learned what is the training landscape, and also we have see in depth the effect of the depth of the network and the learning rate, and their interplay. Finally, we have seen that initialization matters and why we need smart ways of initialization. # + cellView="form" # @title Video 12: Tutorial 2 Wrap-up from ipywidgets import widgets out2 = widgets.Output() with out2: from IPython.display import IFrame class BiliVideo(IFrame): def __init__(self, id, page=1, width=400, height=300, **kwargs): self.id=id src = "https://player.bilibili.com/player.html?bvid={0}&page={1}".format(id, page) super(BiliVideo, self).__init__(src, width, height, **kwargs) video = BiliVideo(id=f"BV1P44y117Pd", width=854, height=480, fs=1) print("Video available at https://www.bilibili.com/video/{0}".format(video.id)) display(video) out1 = widgets.Output() with out1: from IPython.display import YouTubeVideo video = YouTubeVideo(id=f"r3K8gtak3wA", width=854, height=480, fs=1, rel=0) print("Video available at https://youtube.com/watch?v=" + video.id) display(video) out = widgets.Tab([out1, out2]) out.set_title(0, 'Youtube') out.set_title(1, 'Bilibili') #add event to airtable atform.add_event('Video 11: Initialization Matters Explained') display(out) # + cellView="form" # @title Airtable Submission Link from IPython import display as IPydisplay IPydisplay.HTML( f""" <div> <a href= "{atform.url()}" target="_blank"> <img src="https://github.com/NeuromatchAcademy/course-content-dl/blob/main/tutorials/static/AirtableSubmissionButton.png?raw=1" alt="button link to Airtable" style="width:410px"></a> </div>""" ) # - # --- # # Appendix # ## Hyperparameter interaction # # Finally, let's put everything we learned together and find best initial weights and learning rate for a given depth. By now you should have learned the interactions and know how to find the optimal values quickly. If you get `numerical overflow` warnings, don't be discouraged! They are often caused by "exploding" or "vanishing" gradients. # # **Think!** # # Did you experience any surprising behaviour # or difficulty finding the optimal parameters? # + cellView="form" # @markdown Make sure you execute this cell to enable the widget! _ = interact(depth_lr_init_interplay, depth = IntSlider(min=10, max=51, step=5, value=25, continuous_update=False), lr = FloatSlider(min=0.001, max=0.1, step=0.005, value=0.005, continuous_update=False, readout_format='.3f', description='eta'), init_weights = FloatSlider(min=0.1, max=3.0, step=0.1, value=0.9, continuous_update=False, readout_format='.3f', description='initial weights'))
tutorials/W1D2_LinearDeepLearning/W1D2_Tutorial2.ipynb
/ --- / jupyter: / jupytext: / text_representation: / extension: .q / format_name: light / format_version: '1.5' / jupytext_version: 1.14.4 / --- / + cell_id="00000-fda1f226-c8bc-4c39-a67f-fded5c44dd0b" deepnote_app_coordinates={"h": 5, "w": 12, "x": 0, "y": 0} deepnote_cell_type="code" deepnote_to_be_reexecuted=false execution_millis=14802 execution_start=1634620396378 source_hash="b1539fef" tags=[] # import standard scientific libraries import os import math import numpy as np import pandas as pd # import ML models from scikit-learn from sklearn.linear_model import LinearRegression from sklearn.kernel_ridge import KernelRidge from sklearn.gaussian_process import GaussianProcessRegressor from sklearn import svm from sklearn.preprocessing import PolynomialFeatures from sklearn.metrics import mean_absolute_error from sklearn.preprocessing import StandardScaler from sklearn.model_selection import train_test_split from tensorflow.keras.layers.experimental import preprocessing import matplotlib.pyplot as plt / + cell_id="00001-d4de8640-6558-4b7f-8c2e-45c19558be6a" deepnote_app_coordinates={"h": 5, "w": 12, "x": 0, "y": 6} deepnote_cell_type="code" deepnote_to_be_reexecuted=false execution_millis=22 execution_start=1634620411195 source_hash="1a411e4d" tags=[] def plot_loss(history): plt.plot(history.history['loss'], label='loss') plt.legend() plt.grid(True) / + cell_id="00002-309f1656-9bc1-456a-80ec-012722d4b488" deepnote_app_coordinates={"h": 5, "w": 12, "x": 0, "y": 12} deepnote_cell_type="code" deepnote_to_be_reexecuted=false execution_millis=13 execution_start=1634620411238 source_hash="9ec6a611" tags=[] RANDOM_SEED = 4 np.random.seed(RANDOM_SEED) pd.set_option('max_columns', None) pd.set_option("display.precision", 8) dataset = "../dataset/" / + cell_id="00003-98e304ca-4ad8-4b79-8e19-1ef66ae6453a" deepnote_app_coordinates={"h": 5, "w": 12, "x": 0, "y": 18} deepnote_cell_type="code" deepnote_to_be_reexecuted=false execution_millis=682 execution_start=1634620411272 source_hash="92c98152" tags=[] train = pd.read_csv("train.csv")#[:66000] train.shape train / + cell_id="00004-b995193c-6551-4f57-9ab9-c1e1cda2faaa" deepnote_app_coordinates={"h": 5, "w": 12, "x": 0, "y": 24} deepnote_cell_type="code" deepnote_to_be_reexecuted=false execution_millis=45 execution_start=1634620412001 source_hash="fea28bdd" tags=[] train.info() / + cell_id="00005-974490de-8736-4898-ad10-f21bd25da5f5" deepnote_app_coordinates={"h": 5, "w": 12, "x": 0, "y": 30} deepnote_cell_type="code" deepnote_to_be_reexecuted=false execution_millis=58 execution_start=1634620412046 source_hash="a32e1fc8" tags=[] train = train.replace([np.inf, -np.inf], np.nan) #train = train[train['heat_adsorption_CO2_P0.15bar_T298K [kcal/mol]'].notna()] train = train[train['functional_groups'].notna()] / + cell_id="00006-dbb601a4-2f9e-4399-add3-630f28c067fd" deepnote_app_coordinates={"h": 5, "w": 12, "x": 0, "y": 36} deepnote_cell_type="code" deepnote_to_be_reexecuted=false execution_millis=2 execution_start=1634620412176 source_hash="fea28bdd" tags=[] train.info() / + cell_id="00007-b1c136e2-8c99-4439-8954-aaf2c23703d7" deepnote_app_coordinates={"h": 5, "w": 12, "x": 0, "y": 42} deepnote_cell_type="code" deepnote_to_be_reexecuted=false execution_millis=1 execution_start=1634620412221 source_hash="c2383418" tags=[] # train = pd.get_dummies(train, columns=["functional_groups"]) # train = pd.get_dummies(train, columns=["topology"]) # train col = ["functional_groups", "topology"] for i in col: train[i] = train[i].astype("category").cat.codes / + cell_id="00008-30121c42-9e49-472f-81cb-ae4ac738fdc2" deepnote_app_coordinates={"h": 5, "w": 12, "x": 0, "y": 48} deepnote_cell_type="code" deepnote_to_be_reexecuted=false execution_millis=68 execution_start=1634620412222 source_hash="c85f75f2" tags=[] train = train.drop(['MOFname'],axis=1) train= train[train['void_fraction'] > 0] train= train[train['void_volume [cm^3/g]'] > 0] #train train[train['CO2/N2_selectivity'] > 0] train = train[train['heat_adsorption_CO2_P0.15bar_T298K [kcal/mol]'].notna()] train= train[train['surface_area [m^2/g]'] > 0] / + cell_id="00009-d78d3581-cc7a-4856-94d7-aacdf712966c" deepnote_app_coordinates={"h": 5, "w": 12, "x": 0, "y": 54} deepnote_cell_type="code" deepnote_to_be_reexecuted=false execution_millis=223 execution_start=1634620412307 source_hash="7f737f25" tags=[] train / + cell_id="00010-cfb9174d-ad5c-4b2a-8521-d1b85d1114f6" deepnote_app_coordinates={"h": 5, "w": 12, "x": 0, "y": 60} deepnote_cell_type="code" deepnote_to_be_reexecuted=false execution_millis=10115228 execution_start=1634620412545 source_hash="fea28bdd" tags=[] train.info() / + cell_id="00011-219603a7-9df8-4060-ad06-9c795b27fddd" deepnote_app_coordinates={"h": 5, "w": 12, "x": 0, "y": 66} deepnote_cell_type="code" deepnote_output_heights=[268] deepnote_to_be_reexecuted=false execution_millis=10115248 execution_start=1634620412578 source_hash="548b7dd5" tags=[] # find rows having NaN train.isnull().any(axis=0) #train.fillna(method='pad', inplace=True) #train.groupby('functional_groups')['functional_groups'].count() / + cell_id="00012-d6beaaf0-cd39-43df-b3bd-2a9bddca6169" deepnote_app_coordinates={"h": 5, "w": 12, "x": 0, "y": 72} deepnote_cell_type="code" deepnote_to_be_reexecuted=false execution_millis=6 execution_start=1634620412638 source_hash="3f3220ba" tags=[] count = 0 for i in train['functional_groups']: if i == 240: count = count+1 print(count) / + cell_id="00012-b5ee45f7-d6aa-4c59-9736-ce3c63946841" deepnote_app_coordinates={"h": 5, "w": 12, "x": 0, "y": 78} deepnote_cell_type="code" deepnote_output_heights=[268] deepnote_to_be_reexecuted=false execution_millis=46 execution_start=1634620412639 source_hash="e7d885b7" tags=[] # find row having inf np.isinf(train).any(axis=0) / + cell_id="00015-c2e82662-93a6-4960-aa1d-05873bf79718" deepnote_app_coordinates={"h": 5, "w": 12, "x": 0, "y": 84} deepnote_cell_type="code" deepnote_to_be_reexecuted=false execution_millis=179 execution_start=1634620412685 source_hash="7f737f25" tags=[] train / + cell_id="00014-c980df3c-6f98-4b7a-9304-d770a4a2a2b0" deepnote_app_coordinates={"h": 5, "w": 12, "x": 0, "y": 90} deepnote_cell_type="code" deepnote_to_be_reexecuted=false execution_millis=6 execution_start=1634620412871 source_hash="73ee89bf" tags=[] x = train.drop(['CO2_working_capacity [mL/g]'],axis=1) y = train['CO2_working_capacity [mL/g]'] / + cell_id="00015-f72c4b2a-acab-4caf-aa53-48cf836bdfcf" deepnote_app_coordinates={"h": 5, "w": 12, "x": 0, "y": 96} deepnote_cell_type="code" deepnote_to_be_reexecuted=false execution_millis=0 execution_start=1634620412929 source_hash="8ee3cb9e" tags=[] x_train, x_test, y_train, y_true = train_test_split(x, y, test_size=0.2,random_state=RANDOM_SEED) / + cell_id="00016-43560f5c-fbdd-4689-a2f7-35af8973cb80" deepnote_app_coordinates={"h": 5, "w": 12, "x": 0, "y": 102} deepnote_cell_type="code" deepnote_to_be_reexecuted=false execution_millis=253 execution_start=1634620412930 source_hash="90563ec2" tags=[] scaler = StandardScaler() import tensorflow as tf x_train = pd.DataFrame(scaler.fit_transform(x_train), columns = x_train.columns) x_test = pd.DataFrame(scaler.fit_transform(x_test), columns = x_test.columns) normalizer = preprocessing.Normalization(axis=-1) normalizer.adapt(np.array(x_train)) print(normalizer.mean.numpy()) / + cell_id="00017-d2872d03-0f86-4af9-aaaf-ddb397b47506" deepnote_app_coordinates={"h": 5, "w": 12, "x": 0, "y": 108} deepnote_cell_type="code" deepnote_to_be_reexecuted=false execution_millis=0 execution_start=1634620413192 source_hash="ee30f5cd" tags=[] from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense / + cell_id="00018-4994e830-7248-4052-be37-0d7bd842ed40" deepnote_app_coordinates={"h": 5, "w": 12, "x": 0, "y": 114} deepnote_cell_type="code" deepnote_to_be_reexecuted=false execution_millis=192 execution_start=1634620413248 source_hash="a0d18130" tags=[] from tensorflow.keras import datasets, layers, models import tensorflow as tf from tensorflow.keras import regularizers from tensorflow.keras.layers import BatchNormalization initializer = tf.keras.initializers.VarianceScaling( scale=0.1, mode='fan_in', distribution='uniform',seed = RANDOM_SEED) tf.random.set_seed(RANDOM_SEED) model = Sequential(normalizer) model.add(Dense(416,kernel_initializer=initializer, kernel_regularizer=regularizers.l2(0.0001),input_dim=(x_train.shape[1]), activation='relu')) # input model.add(layers.Dropout(0.2)) model.add(Dense(416,kernel_initializer=initializer, kernel_regularizer=regularizers.l2(0.0001),activation='relu')) # hidden 1 model.add(layers.Dropout(0.2)) model.add(Dense(416,kernel_initializer=initializer, kernel_regularizer=regularizers.l2(0.0001),activation='relu')) # hidden 2 model.add(layers.Dropout(0.2)) model.add(Dense(416,kernel_initializer=initializer, kernel_regularizer=regularizers.l2(0.0001),activation='relu')) # hidden 3 model.add(layers.Dropout(0.2)) model.add(Dense(1))# output / + cell_id="00019-5335bf85-6fcb-42a3-a57a-ac76c9338af4" deepnote_app_coordinates={"h": 5, "w": 12, "x": 0, "y": 120} deepnote_cell_type="code" deepnote_to_be_reexecuted=false execution_millis=59 execution_start=1634620413451 source_hash="4e6a3b95" tags=[] model.summary() / + cell_id="00020-6bc9a7bc-f800-45a2-90a2-6a98bbc9e19d" deepnote_app_coordinates={"h": 5, "w": 12, "x": 0, "y": 126} deepnote_cell_type="code" deepnote_to_be_reexecuted=false execution_millis=1286537 execution_start=1634620413509 source_hash="3792178a" tags=[] import tensorflow as tf lr_schedule = tf.keras.optimizers.schedules.InverseTimeDecay( 0.001, decay_steps=x_train.shape[0]*1000, decay_rate=0.1, staircase=False) opt = tf.keras.optimizers.Adamax(lr_schedule) # stop_early = tf.keras.callbacks.EarlyStopping(monitor='loss', patience=5) model.compile(loss='mean_absolute_error',optimizer=opt) history = model.fit(x_train, y_train, epochs=98, batch_size=128) / + cell_id="00025-b842db18-d8af-4b00-a318-c06b705c93a0" deepnote_app_coordinates={"h": 5, "w": 12, "x": 0, "y": 132} deepnote_cell_type="code" deepnote_output_heights=[250] deepnote_to_be_reexecuted=false execution_millis=487 execution_start=1634621700046 source_hash="39089663" tags=[] plot_loss(history) / + cell_id="00026-87b8194c-9e5d-4967-8449-659b1027e2b9" deepnote_app_coordinates={"h": 5, "w": 12, "x": 0, "y": 138} deepnote_cell_type="code" deepnote_to_be_reexecuted=false execution_millis=10507546 execution_start=1634621700541 source_hash="398a801f" tags=[] val_acc_per_epoch = history.history['loss'] best_epoch = val_acc_per_epoch.index(min(val_acc_per_epoch)) + 1 print('Best epoch: %d' % (best_epoch,)) / + cell_id="00021-d9c5d821-2f56-4794-b5ee-498cff2907eb" deepnote_app_coordinates={"h": 5, "w": 12, "x": 0, "y": 144} deepnote_cell_type="code" deepnote_to_be_reexecuted=false execution_millis=5930 execution_start=1634621700592 source_hash="2703c5a1" tags=[] y_pred = model.predict(x_train) / + cell_id="00024-4d65323f-ac5c-4ff4-9d58-adbda0eee671" deepnote_app_coordinates={"h": 5, "w": 12, "x": 0, "y": 150} deepnote_cell_type="code" deepnote_output_heights=[21] deepnote_to_be_reexecuted=false execution_millis=12 execution_start=1634621706559 source_hash="4da7eb4d" tags=[] log_mae = np.log(mean_absolute_error(y_pred, y_train)) log_mae / + cell_id="00023-31f174e2-77a1-4774-9d75-2d9df553f15c" deepnote_app_coordinates={"h": 5, "w": 12, "x": 0, "y": 156} deepnote_cell_type="code" deepnote_to_be_reexecuted=false execution_millis=1450 execution_start=1634621706598 source_hash="5406791e" tags=[] y_pred = model.predict(x_test) / + cell_id="00026-8fc39b38-8ff9-4b69-a8b1-17e2e0f6e73e" deepnote_app_coordinates={"h": 5, "w": 12, "x": 0, "y": 162} deepnote_cell_type="code" deepnote_output_heights=[21] deepnote_to_be_reexecuted=false execution_millis=11 execution_start=1634621708067 source_hash="77d8642f" tags=[] log_mae = np.log(mean_absolute_error(y_pred, y_true)) log_mae / + cell_id="00027-a0743982-85dc-4e90-b14d-b9a7a8e9e905" deepnote_app_coordinates={"h": 5, "w": 12, "x": 0, "y": 168} deepnote_cell_type="code" deepnote_output_heights=[21] deepnote_to_be_reexecuted=false execution_millis=94 execution_start=1634621708088 source_hash="92590d40" tags=[] pretest = pd.read_csv("test.csv") pretest.shape / + cell_id="00028-0df3fd96-4599-45b0-a142-251429246254" deepnote_app_coordinates={"h": 5, "w": 12, "x": 0, "y": 174} deepnote_cell_type="code" deepnote_to_be_reexecuted=false execution_millis=44 execution_start=1634621708196 source_hash="c74d4493" tags=[] pretest.info() / + cell_id="00029-6d074981-4882-4179-a8b5-bd752e4bf4b2" deepnote_app_coordinates={"h": 5, "w": 12, "x": 0, "y": 180} deepnote_cell_type="code" deepnote_to_be_reexecuted=false execution_millis=13 execution_start=1634621708247 source_hash="3c628f36" tags=[] pretest['functional_groups'] = pretest['functional_groups'].replace({np.nan:0}) # train['void_fraction'] = train['void_fraction'].replace({'0':np.nan, 0:np.nan}) # train['void_volume [cm^3/g]'] = train['void_volume [cm^3/g]'].replace({'0':np. nan, 0:np.nan}) #train['functional_groups'] = train['functional_groups'].fillna(train.groupby('functional_groups')['functional_groups'].transform('mean')) # train['void_fraction'] = train['void_fraction'].fillna(train.groupby('functional_groups')['void_fraction'].transform('mean')) # train['void_volume [cm^3/g]'] = train['void_volume [cm^3/g]'].fillna(train.groupby('functional_groups')['void_volume [cm^3/g]'].transform('mean')) / + cell_id="00030-b20642d2-9803-4d89-a498-a649e05fee83" deepnote_app_coordinates={"h": 5, "w": 12, "x": 0, "y": 186} deepnote_cell_type="code" deepnote_to_be_reexecuted=false execution_millis=75 execution_start=1634621708270 source_hash="c74d4493" tags=[] pretest.info() / + cell_id="00031-86d59262-fd6a-4f86-838f-91380a6d945a" deepnote_app_coordinates={"h": 5, "w": 12, "x": 0, "y": 192} deepnote_cell_type="code" deepnote_to_be_reexecuted=false execution_millis=0 execution_start=1634621708342 source_hash="bacc5471" tags=[] col = ["functional_groups", "topology"] for i in col: pretest[i] = pretest[i].astype("category").cat.codes / + cell_id="00032-7334b882-30eb-4b3a-a928-420957fce3b2" deepnote_app_coordinates={"h": 5, "w": 12, "x": 0, "y": 198} deepnote_cell_type="code" deepnote_to_be_reexecuted=false execution_millis=350 execution_start=1634621708342 source_hash="4506e71d" tags=[] pretest / + cell_id="00033-08fca710-3432-41e0-bf63-886e9822ae9b" deepnote_app_coordinates={"h": 5, "w": 12, "x": 0, "y": 204} deepnote_cell_type="code" deepnote_to_be_reexecuted=false execution_millis=10510455 execution_start=1634621708680 source_hash="4484f095" tags=[] pretest = pretest.drop(['MOFname'],axis=1) / + cell_id="00034-97d5d41e-912e-4131-99f8-87219d4c988f" deepnote_app_coordinates={"h": 5, "w": 12, "x": 0, "y": 210} deepnote_cell_type="code" deepnote_to_be_reexecuted=false execution_millis=19 execution_start=1634621708725 source_hash="5bc40c87" tags=[] scaler = StandardScaler() pretest = pd.DataFrame(scaler.fit_transform(pretest), columns = pretest.columns) pretest = scaler.inverse_transform(pretest) / + cell_id="00035-bdde1cb9-b2bd-4d10-bec8-edc25086760c" deepnote_app_coordinates={"h": 5, "w": 12, "x": 0, "y": 216} deepnote_cell_type="code" deepnote_output_heights=[249] deepnote_to_be_reexecuted=false execution_millis=3 execution_start=1634621708756 source_hash="4506e71d" tags=[] pretest / + cell_id="00036-dbae053a-3e23-44bd-8f74-59ba6a15dad6" deepnote_app_coordinates={"h": 5, "w": 12, "x": 0, "y": 222} deepnote_cell_type="code" deepnote_output_heights=[135] deepnote_to_be_reexecuted=false execution_millis=2663 execution_start=1634621708816 source_hash="9aa6f43b" tags=[] pretest_pred = model.predict(pretest) pretest_pred / + cell_id="00037-5d64133c-0cec-4a26-8b59-0d2a9ab455cb" deepnote_app_coordinates={"h": 5, "w": 12, "x": 0, "y": 228} deepnote_cell_type="code" deepnote_to_be_reexecuted=false execution_millis=123 execution_start=1634621711506 source_hash="cdb37d67" tags=[] submission = pd.DataFrame({ "id": [str(i) for i in range(68614,85614)], "CO2_working_capacity [mL/g]": pretest_pred.T[0] }) submission.to_csv("submission.csv", index=False) / + cell_id="00038-77d18b49-e397-4282-855f-b475cfd2c103" deepnote_app_coordinates={"h": 5, "w": 12, "x": 0, "y": 234} deepnote_cell_type="code" deepnote_to_be_reexecuted=false execution_millis=550 execution_start=1634621711643 source_hash="ad8f3ca4" tags=[] !ls / + cell_id="00039-74b378d3-4084-4ac9-8ede-d637616e9675" deepnote_app_coordinates={"h": 5, "w": 12, "x": 0, "y": 240} deepnote_cell_type="code" deepnote_to_be_reexecuted=false execution_millis=7507 execution_start=1634621712200 source_hash="aa79ceb7" tags=[] / %%capture !sudo apt-get update !sudo apt-get install zip / + cell_id="00040-44055291-5b93-4365-8a7f-396e1ff1c62b" deepnote_app_coordinates={"h": 5, "w": 12, "x": 0, "y": 246} deepnote_cell_type="code" deepnote_to_be_reexecuted=false execution_millis=480 execution_start=1634621719749 source_hash="e3e8edcd" tags=[] !zip submission_NN.zip submission.csv / + [markdown] created_in_deepnote_cell=true deepnote_cell_type="markdown" tags=[] / <a style='text-decoration:none;line-height:16px;display:flex;color:#5B5B62;padding:10px;justify-content:end;' href='https://deepnote.com?utm_source=created-in-deepnote-cell&projectId=679677c2-c780-422a-a432-9f2ffeaad3b4' target="_blank"> / <img alt='Created in deepnote.com' style='display:inline;max-height:16px;margin:0px;margin-right:7.5px;' src='' > </img> / Created in <span style='font-weight:600;margin-left:4px;'>Deepnote</span></a>
TMLCC-Chem bot.ipynb
# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.14.4 # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- # # Descriptive # + import pandas as pd import numpy as np import scipy.stats as stats import statsmodels.stats.api as sm # %matplotlib inline data = np.arange(10,14) mean_val = np.mean(data) # mean sem_val = stats.sem(data) # standard error of mean print(mean_val, sem_val) def mean_confidence_interval(data, confidence=0.95): a = 1.0*np.array(data) n = len(a) m, se = np.mean(a), stats.sem(a) h = se * stats.t._ppf((1+confidence)/2., n-1) return m, m-h, m+h # correct temp = stats.t.interval(0.95, len(data)-1, loc=np.mean(data), scale=stats.sem(data)) print(temp) temp = sm.DescrStatsW(data).tconfint_mean() print(temp) temp = mean_confidence_interval(data) print(temp) #incorrect temp = stats.norm.interval(0.95, loc=np.mean(data), scale=stats.sem(data)) print(temp) # + def cilen(arr, alpha=0.95): if len(arr) <= 1: return 0 m, e, df = np.mean(arr), stats.sem(arr), len(arr) - 1 interval = stats.t.interval(alpha, df, loc=m, scale=e) cilen = np.max(interval) - np.mean(interval) return cilen df = pd.DataFrame(np.array([data, data]).T, columns=['x', 'y']) m = df.pivot_table(index='x', values='y', aggfunc='mean') e = df.pivot_table(index='x', values='y', aggfunc=cilen) # e = df.pivot_table(index='x', values='y', aggfunc='sem') m.plot(xlim=[0.8, 3.2], yerr=e) # - # ### proportion confidence interval # # http://www.statsmodels.org/dev/generated/statsmodels.stats.proportion.proportion_confint.html # # Returns: # ci_low, ci_upp : float # # scipy.stats module has a method .interval() to compute the equal tails confidence, # # Compare mean # # Normal Distribution = True and Homogeneity of Variance = True # # scipy.stats.ttest_ind(sample_1, sample_2) # Normal Distribution = True and Homogeneity of Variance = False # # scipy.stats.ttest_ind(sample_1, sample_2, equal_var = False) # Normal Distribution = False and Homogeneity of Variance = True # # scipy.stats.mannwhitneyu(sample_1, sample_2) # Normal Distribution = False and Homogeneity of Variance = False # # ??? # + import numpy as np from scipy.stats import ttest_ind sample_1 = np.random.normal(0.04,0.1,120) sample_2 = np.random.normal(0.02,0.1,1200) ttest_ind(sample_1, sample_2) # - # ### one sample t test rvs = stats.norm.rvs(loc=5, scale=10, size=(50)) stats.ttest_1samp(rvs,5.0) stats.ttest_1samp(rvs,0.0) # # compare proportion # # https://onlinecourses.science.psu.edu/stat414/node/268 # # ### one sample # https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.stats.binom_test.html # # # ### two samples # http://www.statsmodels.org/dev/generated/statsmodels.stats.proportion.proportions_ztest.html # # + import statsmodels.api as sm import numpy as np # import rpy2.robjects.packages as rpackages # import rpy2.robjects as robjects # rstats = rpackages.importr('stats') s1 = 1556 # success n1 = 2455 # sample size s2 = 1671 n2 = 2730 # manual calculation p1 = s1 / n1 p2 = s2 / n2 p = (s1 + s2) / (n1 + n2) z = (p1 - p2) / (p*(1-p)*((1/n1)+(1/n2)))**0.5 # using R in Python with rpy2 # rmatrix = robjects.r.matrix(robjects.IntVector([s1, n1-s1, s2,n2-s2]), nrow=2) # fisher_test = rstats.fisher_test(rmatrix, alternative="two.sided") # statsmodels zscore, pval = sm.stats.proportions_ztest([s1, s2], [n1, n2], alternative='two-sided') print('Manual calculation of z: {:.6f}'.format(z)) print('Z-score from statsmodels: {:.6f}'.format(zscore)) # print('R pvalue from fisher.test: {:.6f}'.format(fisher_test[0][0])) print('Statsmodels pvalue: {:.6f}'.format(pval)) # + from scipy.stats import norm, chi2_contingency import scipy.stats as stats import statsmodels.api as sm # from rpy2.robjects import IntVector # from rpy2.robjects.packages import importr import numpy as np s1 = 135 n1 = 1781 s2 = 47 n2 = 1443 p1 = s1/n1 p2 = s2/n2 p = (s1 + s2)/(n1+n2) z = (p2-p1)/ ((p*(1-p)*((1/n1)+(1/n2)))**0.5) p_value = norm.cdf(z) print(['{:.12f}'.format(a) for a in (abs(z), p_value * 2)]) z1, p_value1 = sm.stats.proportions_ztest([s1, s2], [n1, n2]) print(['{:.12f}'.format(b) for b in (z1, p_value1)]) # stats = importr('stats') # r_result = stats.prop_test(IntVector([s1, s2]), IntVector([n1, n2]), correct=False) # z2 = r_result[0][0]**0.5 # p_value2 = r_result[2][0] # print(['{:.12f}'.format(c) for c in (z2, p_value2)]) arr = np.array([[s1, n1-s1], [s2, n2-s2]]) chi2, p_value3, dof, exp = chi2_contingency(arr, correction=False) print(['{:.12f}'.format(d) for d in (chi2**0.5, p_value3)]) # - # # Correlation pearsonr(x, y) # # Chi-Square Test contingency # ### Chi-Square Goodness of Fit Test # # For example, suppose a company printed baseball cards. It claimed that 30% of its cards were rookies; 60%, veterans; and 10%, All-Stars. We could gather a random sample of baseball cards and use a chi-square goodness of fit test to see whether our sample distribution differed significantly from the distribution claimed by the company. The sample problem at the end of the lesson considers this example. # # # ### Chi-Square Test of Homogeneity # # For example, in a survey of TV viewing preferences, we might ask respondents to identify their favorite program. We might ask the same question of two different populations, such as males and females. We could use a chi-square test for homogeneity to determine whether male viewing preferences differed significantly from female viewing preferences. The sample problem at the end of the lesson considers this example. # # # ### Chi-Square Test for Independence # # For example, in an election survey, voters might be classified by gender (male or female) and voting preference (Democrat, Republican, or Independent). We could use a chi-square test for independence to determine whether gender is related to voting preference. The sample problem at the end of the lesson considers this example. # # http://stattrek.com/chi-square-test/homogeneity.aspx?Tutorial=AP # # # ### so... how they are different? # # 1) A goodness of fit test is for testing whether a set of multinomial counts is distributed according to a prespecified (i.e. before you see the data!) set of population proportions. # # 2) A test of homogeneity tests whether two (or more) sets of multinomial counts come from different sets of population proportions. # # 3) A test of independence tests is for a bivariate** multinomial, of whether pijpij is different from pipjpipj. # # **(usually) # https://stats.stackexchange.com/questions/91970/chi-square-test-difference-between-goodness-of-fit-test-and-test-of-independenc # + ### Chi-Square Goodness of Fit Test import scipy.stats as stats chi2, p = stats.chisquare(f_obs=[11294, 11830, 10820, 12875], f_exp=[10749, 10940, 10271, 11937]) msg = "Test Statistic: {}\np-value: {}" print(msg.format(chi2, p)) # - # + ### Chi-Square Test for Independence from scipy.stats import chi2_contingency import numpy as np row1 = [91,90,51] row2 = [150,200,155] row3 = [109,198,172] data = [row1, row2, row3] print(chi2_contingency(data)) chi2, p_value, dfreedom, expected = chi2_contingency(data) # -
stats_method.ipynb
# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.14.4 # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- import pandas as pd from sqlalchemy import create_engine from config import password # %load_ext sql # + DB_ENDPOINT = "localhost" DB = 'bags_db' DB_USER = 'postgres' DB_PASSWORD = password DB_PORT = '5432' # postgresql://username:password@host:port/database conn_string = "postgresql://{}:{}@{}:{}/{}" \ .format(DB_USER, DB_PASSWORD, DB_ENDPOINT, DB_PORT, DB) print(conn_string) # - # %sql $conn_string csv_file = "./all_bags.csv" all_bags_df = pd.read_csv(csv_file) all_bags_df.head() # + rds_connection_string = DB_USER + ":" + password + "@localhost:5432/bags_db" engine = create_engine(f'postgresql://{rds_connection_string}') # - engine.table_names() all_bags_df.to_sql(name='all_bags', con=engine, if_exists='append', index=False) pd.read_sql_query('select * from all_bags', con=engine).head() csv_file = "./bag_summary.csv" bag_summary_df = pd.read_csv(csv_file) bag_summary_df.head() bag_summary_df.to_sql(name='bag_summary', con=engine, if_exists='append', index=False) pd.read_sql_query('select * from bag_summary', con=engine).head() engine.table_names() # # Schema # ``` sql # CREATE TABLE public.all_bags # ( # "Unnamed: 0" bigint, # "Name" text COLLATE pg_catalog."default", # "Brand" text COLLATE pg_catalog."default", # "Price" double precision, # "Type" text COLLATE pg_catalog."default", # "Material" text COLLATE pg_catalog."default", # "Source" text COLLATE pg_catalog."default" # ); # ``` #
3. Load data.ipynb
# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.14.4 # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- # # Principi AI # # L'intelligenza artificiale dalla sua definizione significa avere la capacità di apprendere e di eseguire compiti in maniera simile a quella umana, è presente però la necessità di usare la programmazione per fare in modo che un calcolatore esibisca queste caratteristiche. # # ## Differenze tra programmazione classica e machine learning # # Sorge quindi la necessità di capire quale sia la differenza tra la programmazione classica vista fino ad ora e il machine learning, la differenza principale tra le due è che nella prima la **macchina è esplicitamente programmata ad eseguire delle specifiche azioni, mentre nel machine learning la macchina usa una serie di metodi programmati per capire quale sia l'azione migliore da eseguire**. # Qualora questo possa sembrare complicato da capire pensate ad esempio alla necessità di classificare delle foglie in base alle dimensione, colore, ecc... . # Ora voi potete programmare esplicitamente che qualora certi parametri siano più gradi di valori a voi assegnati esse siano un tipo di foglia o potete fare in modo che quei valori siano determinata dalla macchina con un certo criterio, nel secondo caso avete vissto un'applicazione del machine learning. # # ## Metodi di apprendimento # # I metodi di apprendimento dell'AI sono 3 e sono: # # - Apprendimento supervisionato # - Apprendimento non supervisionato # - Apprendimento per rinforzo # # Questi tipi di apprendimento hanno in comune il fattore che dovendo necessariamente girare su un calcolatore debbano essere convertiti in **linguaggio matematico** altrimenti essi non sarebbero in grado di applicarli. # # # ## Dati per l'AI # # L'AI necessita di dati, dati che però devono essere "buoni" ovvero devono contenere poco rumore, mancanza di presenza di errori quanto possibile e devono essere adattati alla capacità della macchina di apprendere, qualora i dati non siano "pronti" per l'apprendimento è necessario **preprocessarli** ovvero **modificare i dati in modo tale che possano essere processabili in seguito dal modello**. # La decisione su quale metodo usare per processare i dati può essere **determinante sulle capacità del modello** infatti anche se sono presenti dei metodi generali per capire quale sia un modo universale di processare i dati, dalle **condizioni dei tipi di dati è possibile ipotizzare che alcuni siano più adatti di altri**. # # ## Allenare l'AI in base ai dati # # I modelli di AI come prima condizione devono mettere in relazione **complessità e mole di dati** come vedremo in seguito un modello con pochi dati è ***molto probabile*** che performi in maniera peggiore rispetto ad uno più semplice, mentre una grande mole di dati permetterà ad un modello più complesso di essere più preciso. In genere il processo di allenamento è sempre quello più costoso a livello computazionale. # # ## Valutare l'AI # # La valutazione dell'AI è difficile, in particolare poiché è difficile comprendere come l'AI abbia imparato ad eseguire una particolare azione e su quali principi o assiomi si stia basando(su questo è presente il campo dell' EX_AI ovvero explainable AI), in genere però sono presenti quasi sempre due aspetti in comune: # # - la presenza di un dataset per il testing dell'apprendimento # - la presenza di una metrica per la valutazione quantitativa del testing # # La metrica è quella che in genere influisce maggiormente sulla definizione del modello a causa del fatto che penalizziamo certi comportamenti, mentre ne concediamo altri! # # ## Uso dell'AI # # Al momento sono pochi i modelli in grado di compiere azioni anche al di fuori di quello per cui sono stati allenati e in genere sono sempre richiesti ulteriori allenamenti, qualora però il modello sia allenato in molti casi le performance risultano simili o maggiori rispetto a quelle umane in larga parte grazie alla velocità dei processori. # # Quindi ora che abbiamo capito cerchiamo di usare le principali librerie python usate per il machine learning e la data science! # # ![meme](../img/data_meme.jpg) # # *** # # Principi AI finito!
3.machine learning/1-Principi_AI.ipynb
# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.14.4 # kernelspec: # display_name: Python 3 (ipykernel) # language: python # name: python3 # --- import featuretools as ft from featuretools.primitives import Percentile import composeml as cp import pandas as pd # # Load in data cyber_df = pd.read_csv("data/CyberFLTenDays.csv").sample(10000) cyber_df.index.name = "log_id" cyber_df.reset_index(inplace=True, drop=False) cyber_df['label'] = cyber_df['label'].map({'N': False, 'A': True}, na_action='ignore') # # Create an EntitySet with many different dataframes # # Each dataframe is a different definition of "connection" es = ft.EntitySet("CyberLL") # create an index column cyber_df["name_host_pair"] = cyber_df["src_name"].str.cat( [cyber_df["dest_name"], cyber_df["src_host"], cyber_df["dest_host"]], sep=' / ') cyber_df["src_pair"] = cyber_df["src_name"].str.cat( cyber_df["src_host"], sep=' / ') cyber_df["dest_pair"] = cyber_df["dest_name"].str.cat( cyber_df["dest_host"], sep=' / ') es.add_dataframe(dataframe_name="log", dataframe=cyber_df, index="log_id", time_index="secs") es.normalize_dataframe(base_dataframe_name="log", new_dataframe_name="name_host_pairs", index="name_host_pair", additional_columns=["src_name", "dest_name", "src_host", "dest_host", "src_pair", "dest_pair", "label"]) es.normalize_dataframe(base_dataframe_name="name_host_pairs", new_dataframe_name="src_pairs", index="src_pair", additional_columns=["src_name", "src_host"]) es.normalize_dataframe(base_dataframe_name="src_pairs", new_dataframe_name="src_names", index="src_name") es.normalize_dataframe(base_dataframe_name="src_pairs", new_dataframe_name="src_hosts", index="src_host") es.normalize_dataframe(base_dataframe_name="name_host_pairs", new_dataframe_name="dest_pairs", index="dest_pair", additional_columns=["dest_name", "dest_host"]) es.normalize_dataframe(base_dataframe_name="dest_pairs", new_dataframe_name="dest_names", index="dest_name") es.normalize_dataframe(base_dataframe_name="dest_pairs", new_dataframe_name="dest_hosts", index="dest_host") # ## Visualize EntitySet es.plot() # # Define function to generate labels and cutoff times # We use [Compose](https://compose.featurelabs.com/) to define our labeling function. # + def malicious_connection(df, lead): if (len(df.index) > lead + 1): return df.iloc[lead:]['label'].any() def label_generator(cyber_df, index_col, after_n_obs, lead, prediction_window): lm = cp.LabelMaker( target_dataframe_name=index_col, time_index="secs", labeling_function=malicious_connection, window_size=window + lead ) label_times = lm.search( cyber_df.sort_values('secs'), minimum_data=after_n_obs, gap=after_n_obs + lead + window, num_examples_per_instance=1, lead=lead, verbose=False ) label_times['time'] = pd.to_numeric(label_times['time']) return label_times # + # predict after 3 observations after_n_obs = 3 # predict 2 observations out lead = 2 # predict if any malicious attacks in a 10-observation window window = 10 # - # # Compute features for various types of connections # features on src_name cutoffs = label_generator(cyber_df, "src_name", after_n_obs, lead, window) fm, fl = ft.dfs(entityset=es, target_dataframe_name="src_names", cutoff_time=cutoffs, verbose=True, max_depth=3) ## features on src_host cutoffs = label_generator(cyber_df, "src_host", after_n_obs, lead, window) fm, fl = ft.dfs(entityset=es, target_dataframe_name="src_hosts", cutoff_time=cutoffs, verbose=True, max_depth=3) ## features on dest_name cutoffs = label_generator(cyber_df, "dest_name", after_n_obs, lead, window) fm, fl = ft.dfs(entityset=es, target_dataframe_name="dest_names", cutoff_time=cutoffs, verbose=True, max_depth=3) ## features on dest_host cutoffs = label_generator(cyber_df, "dest_host", after_n_obs, lead, window) fm, fl = ft.dfs(entityset=es, target_dataframe_name="dest_hosts", cutoff_time=cutoffs, verbose=True, max_depth=3) # features on src_name/dest_name/src_host/dest_host cutoffs = label_generator(cyber_df, "name_host_pair", after_n_obs, lead, window) fm, fl = ft.dfs(entityset=es, target_dataframe_name="name_host_pairs", cutoff_time=cutoffs, verbose=True, max_depth=2, trans_primitives=[Percentile]) # merge dataframes together to access the index columns created in the process of normalizing merged = (es['log'].merge(es['name_host_pairs']) .merge(es['src_pairs']) .merge(es['dest_pairs'])) # features on src_name/src_host cutoffs = label_generator(merged, 'src_pair', after_n_obs, lead, window) fm, fl = ft.dfs(entityset=es, target_dataframe_name="src_pairs", cutoff_time=cutoffs, verbose=True, max_depth=2, trans_primitives=[Percentile]) # features on dest_name/dest_host cutoffs = label_generator(merged, 'dest_pair', after_n_obs, lead, window) fm, fl = ft.dfs(entityset=es, target_dataframe_name="dest_pairs", cutoff_time=cutoffs, verbose=True, max_depth=2, trans_primitives=[Percentile]) # ## Built at Alteryx Innovation Labs # # <p> # <a href="https://www.alteryx.com/innovation-labs"> # <img width="75%" src="https://evalml-web-images.s3.amazonaws.com/alteryx_innovation_labs.png" alt="Alteryx Innovation Labs" /> # </a> # </p>
predict-malicious-cyber-connections/Create Feature Matrices from LL Cyber Data.ipynb
# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.14.4 # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- # + ## creo dos variables que empiezan en 0, los dias y la distancia recorrida # - dias=0 distancia=0 # + ### mientras la variable distancia sea menor que 125, se suma 30 while distancia <125: {distancia== distancia +30 if distancia>=125 ## si ahora es mayor a 125, se imprime el numero de dias print("El caracol ha tardado " dias "dias en escapar") else: dias==(dias+1) ### si distancia es menor a 125, se suma un dia y se restan 20 cm distancia==(distancia-20) } # -
01-intro-101/python/practices/01-snail-and-well/your-solution-here/Practica_01_snail_and_well_Raquel.ipynb
# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.14.4 # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- # + import glob import numpy as np import pandas as pd # + df = pd.DataFrame() for npy in sorted(glob.iglob('data/features/*.npy')): df1 = pd.DataFrame(np.load(npy)).T df1['name'] = npy[-21:-7] df = pd.concat([df, df1], ignore_index=True) df['class'] = df.index/80 df['class'] = df['class'].astype('int') df # - # # Why stratified train-val-test split? # # We split the dataset classwise instead of randomly into 50-25-25 splits, because of the chance that a class could be underrepresented in the randomized split. If there are unequal representations of classes between train and test sets, the model trained on the train set would not perform as well on the test set. This is especially pronounced on a relatively smaller dataset such as this one, where the number of samples from each class is fairly small and equal. An extreme example could be one class not being represented at all in the training set for the randomized split, resulting in no training being done for sample of that class, resulting in poor classification for that class. # + from sklearn.model_selection import train_test_split train, test = train_test_split(df, train_size=0.5, test_size=0.5, stratify=df['class']) val, test = train_test_split(test, train_size=0.5, test_size=0.5, stratify=test['class']) with open('splits/train.npy', 'wb') as np_file: np.save(np_file, train) with open('splits/val.npy', 'wb') as np_file: np.save(np_file, val) with open('splits/test.npy', 'wb') as np_file: np.save(np_file, test) val.sort_values('class') # + from sklearn.svm import SVC from sklearn.multiclass import OneVsRestClassifier c_list = [0.01, 0.1, 0.1**0.5, 1, 10**0.5, 10, 100**0.5] scores = [] for c in c_list: svm = OneVsRestClassifier(estimator=SVC(C=c, kernel="linear")) svm.fit(train.iloc[:, :-2].values, train.iloc[:, -1].values) scores.append(svm.score(val.iloc[:, :-2].values, val.iloc[:, -1].values)) best_c = c_list[np.argmax(scores)] best_score = np.max(scores) print("Best c={}, score={}".format(best_c, best_score)) # + from sklearn.metrics import classification_report, accuracy_score best_svm = OneVsRestClassifier(estimator=SVC(C=best_c, kernel="linear")) best_svm.fit(pd.concat([train.iloc[:, :-2], val.iloc[:, :-2]]).values, pd.concat([train.iloc[:, -1], val.iloc[:, -1]]).values) test_pred = best_svm.predict(test.iloc[:, :-2]) print("final test accuracy: {}".format(accuracy_score(test.iloc[:, -1], test_pred))) print(classification_report(test.iloc[:, -1], test_pred)) # + import math import matplotlib.pyplot as plt failed = np.where(test.iloc[:, -1] != test_pred)[0] fig = plt.figure(figsize=(20,20)) plt.subplots_adjust(hspace=1) num_rows = math.ceil(len(failed)/4) results = [] for i in range(len(failed)): img = test.iloc[failed[i]]['name'] pred = test_pred[failed[i]] actual = test.iloc[failed[i]]['class'] results.append({'image': img, 'pred': pred, 'actual': actual}) results = sorted(results, key=lambda k: k['image']) for i in range(len(results)): fig.add_subplot(num_rows, 4, i+1) plt.xticks([]), plt.yticks([]) image = '{}'.format(results[i]['image']) pred = 'Predicted: {}'.format(results[i]['pred']) actual = 'Actual: {}'.format(results[i]['actual']) plt.xlabel(image + '\n' + pred + '\n' + actual) plt.imshow(plt.imread('data/images/' + results[i]['image'])) plt.show() # -
flower_svm.ipynb
# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.14.4 # kernelspec: # display_name: 'Python 3.8.8 64-bit (''base'': conda)' # name: python3 # --- # ## Covid Project # # In this data science project we want to use data from the COWAS data base (uploaded at Kaggle: https://www.kaggle.com/praveengovi/coronahack-respiratory-sound-dataset) to make a # # # ### Data Structure # # There are 1397 cases of which 56 are positive ones. Each case is composed of 9 independing recordings # ['counting-normal','counting-fast','breathing-deep','breathing-shallow','cough-heavy','cough-shallow','vowel-a','vowel-e','vowel-o'] # # ### Potential Solution # # Using an auto-encoder approach (out of distribution), training on "healthy" cases. # Proposed solution (https://github.com/moiseshorta/MelSpecVAE). # ## #Chunk 1 # ### Libraries # + #Data visualization import numpy as np import pandas as pd import seaborn as sns import matplotlib.pyplot as plt from sklearn.metrics import accuracy_score #Audio Analysis import glob import IPython import tensorflow as tf from tensorflow import keras import tensorflow_io as tfio from random import shuffle from statistics import mean from data_prepration import Data from models import decode, encode, VAE # names_input = ['counting-normal','counting-fast','breathing-deep','breathing-shallow','cough-heavy','cough-shallow','vowel-a','vowel-e','vowel-o'] name = ['breathing-shallow'] weights_name = 'vaebreathing-shallow-48000_checkpoint' latent_dim = 2 image_target_height = 28 image_target_width = 28 def get_spectrogram(sample): audio = sample audio = tf.reshape(sample, [-1]) audio = tf.cast(audio, tf.float32) # set audio file as float # generate the mel spectrogram spectrogram = tfio.audio.spectrogram(audio, nfft=1024, window=1024, stride=64) spectrogram = tfio.audio.melscale( spectrogram, rate=48000, mels=64, fmin=0, fmax=2000, # mels = bins, fmin,fmax = frequences ) spectrogram /= tf.math.reduce_max(spectrogram) # normalization spectrogram = tf.expand_dims(spectrogram, axis=-1) # add dimension 2D -> 3D spectrogram = tf.image.resize( spectrogram, (image_target_height, image_target_height) ) # resize in two dimensions spectrogram = tf.transpose( spectrogram, perm=(1, 0, 2) ) # transpose the first two axis spectrogram = spectrogram[::-1, :, :] # flip the first axis(frequency) return spectrogram # + file_name = ( "data/Corona-Hack-Respiratory-Sound-Metadata.csv" ) base_path = "data/CoronaHack-Respiratory-Sound-Dataset" data_obj = Data(filename=file_name) train_df, test_df = data_obj.create_df() train_df = train_df.iloc[:100] def get_paths(df): paths_vector = df[name] paths_list = df[name].values.tolist() path_name = [] # Standard approach print("paths_vector LENGTH", len(paths_vector)) for dir_name in paths_list: if dir_name is not None: path_name.append(base_path + str(dir_name[0])) # DF approach test_df['full_path'] = base_path + paths_vector print("full_path LENGTH", len(test_df['full_path'])) return path_name train_paths = get_paths(train_df) test_paths = get_paths(test_df) # + # print(test_df[name].values) # print("Sound File List Len", len(path_name)) # print("Sound File List ", path_name) # Cut tensors longer than 300k to 300k # print([sound_path for sound_path in path_name]) test_df['sound_tensors'] = test_df['full_path'].apply(lambda sound_path: tfio.audio.AudioIOTensor(sound_path).to_tensor()[:300000]) # print("sound_tensors LENGTH", len(test_df['sound_tensors'])) # print('sound_tensors', test_df['sound_tensors'][0]) def get_sound_tensors(sound_paths): sound_tensor_list = [ tfio.audio.AudioIOTensor(sound_path).to_tensor()[:300000] for sound_path in sound_paths ] # print("Sound Tensor List Len", sound_tensor_list) sound_tensor_list = [ sound_tensor for sound_tensor in sound_tensor_list if (np.sum(sound_tensor.numpy()) != 0) # if ((sound_tensor.shape[0] == 300000) and (np.sum(sound_tensor.numpy()) != 0)) ] print('spectrograms LENGTH > 0 REAL', len(sound_tensor_list)) return sound_tensor_list train_sound_tensors = get_sound_tensors(train_paths) test_sound_tensors = get_sound_tensors(test_paths) # print("Tensor list", sound_tensor_list[0]) # sound_slices_train = tf.data.Dataset.from_tensor_slices(sound_tensor_list_clean_train) test_df = test_df.loc[test_df['sound_tensors'].apply(lambda sound_tensors: np.sum(sound_tensors)) != 0] print('spectrograms LENGTH > 0', len(test_df)) y_test = test_df['split'].tolist() # test_df['spectrograms'] = test_df['sound_tensors'].apply(lambda sound_tensor: get_spectrogram(sound_tensor)) # test_df['spectrograms'] = test_df['spectrograms'].apply(lambda spectrogram: tf.expand_dims(spectrogram, axis=0)) # # print('spectrograms', test_df['spectrograms'][1]) # print('spectrograms LENGTH', len(test_df['spectrograms'])) def get_samples_from_tensor(sound_tensors): test_samples = [get_spectrogram(sound_tensor) for sound_tensor in sound_tensors] test_samples = [tf.expand_dims(test_sample, axis=0) for test_sample in test_samples] return test_samples # + train_samples = get_samples_from_tensor(train_sound_tensors) test_samples = get_samples_from_tensor(test_sound_tensors) # print("Test Sample ", test_samples) encoder = encode( latent_dim, image_target_height, image_target_width ) decoder = decode(latent_dim) model = VAE(encoder, decoder) model.load_weights(weights_name) # x_train = test_df['spectrograms'].to_numpy() # + # print("PREDICTION ", x_output) def find_threshold(model, train_samples): reconstructions = [model.predict(x_input) for x_input in train_samples] # provides losses of individual instances reconstruction_errors = tf.keras.losses.msle(train_samples, reconstructions) # threshold for anomaly scores threshold = np.mean(reconstruction_errors.numpy()) \ + np.std(reconstruction_errors.numpy()) return threshold def get_predictions(model, test_samples, threshold): predictions = [model.predict(x_input) for x_input in test_samples] # provides losses of individual instances test_samples = [tf.reshape(t, [-1]) for t in test_samples] predictions = [tf.reshape(p, [-1]) for p in predictions] errors = tf.keras.losses.msle(test_samples, predictions) print("ERRORS. ", errors) print("ERRORS.shape ", errors.shape) anomaly_mask = pd.Series(errors) > threshold preds = anomaly_mask.map(lambda x: 0.0 if x == True else 1.0) return preds # print("test_df['spectrograms'] ", train_samples ) # print("x_train TYPE ", type(train_samples) ) threshold = find_threshold(model, train_samples) # threshold = 0.01313 print(f"Threshold: {threshold}") # Threshold: 0.01001314025746261 predictions = get_predictions(model, test_samples, threshold) accuracy_score(predictions, y_test) print(f"Accuracy: {accuracy_score(predictions, y_test)}") # - # ## #Chunk 2 # ### Import Meta data (file path information) # import meta data # Meta data csv contain different additional information about each case. # One column contains the path to the .wav files of each case df_meta = pd.read_csv('./CoronaHack-Respiratory-Sound-Dataset/Corona-Hack-Respiratory-Sound-Metadata.csv') df_meta.info(), df_meta.shape df_meta.head() # ## #Chunk 3 # ### Get the label for each case # + #Get the label (healthy / COVID) #split COVID STATUS column to get labels in column 'split' df_meta['split'] = df_meta['COVID_STATUS'].str.split('_').str.get(0) #Check for NA df_meta.loc[:,'counting-normal'].isna().sum() df_meta.loc[:,'split'].value_counts() #Generate a dict to re-categorize the split column cat_dict = {'healthy':0,'no':0,'resp':0,'recovered':0,'positive':1} #map cat_dict to split column df_meta.loc[:,'split'] = df_meta.loc[:,'split'].map(cat_dict) df_meta2 = df_meta.dropna(subset=['split']) df_meta2.loc[:,'split'] = df_meta2.loc[:,'split'].astype('int32') #Extract positive USER ID df_meta_positives = df_meta[df_meta['split'] == 1] df_meta_negatives = df_meta[df_meta['split'] == 0] positives = list(df_meta_positives['USER_ID']) negatives = list(df_meta_negatives['USER_ID']) len(positives),len(negatives) #positives # - # ## #Chunk 5 # ### generate Function to create the input data for auto-encoder # + # Create function to load and prepare data for input # here we want to use the 9 recordings as separate features but grouped per case as input to the auto-encoder #names of 9 recordings per each case (extracted from the csv meta data file from ) #names_input = ['counting-normal','counting-fast','breathing-deep','breathing-shallow','cough-heavy','cough-shallow','vowel-a','vowel-e','vowel-o'] #label column from the meta data csv (#Chunk 3) name_label = 'split' def create_input_label(df=df_meta2,names=names_input,name_label=name_label): input_dic = {} #Use a dictionnary to put in the 9 records per case base_path = './CoronaHack-Respiratory-Sound-Dataset' for index,name in enumerate(names): #print(index,name) print("Create input run") path_list = df[name].tolist() print(path_list[:10]) path_name = [] for dir_name in path_list: path_name.append(base_path+str(dir_name)) print(path_name[:10]) print("Sound paths convert to tensor") sound_paths_tensor = tf.convert_to_tensor(path_name, dtype=tf.string) #convert to tensor print("Sound PATH", sound_paths_tensor[0]) print("Sound Dataset from tensor slices") sound = tf.data.Dataset.from_tensor_slices(sound_paths_tensor) print("Sound PATH from slices", sound[0]) #sound = tf.data.Dataset.from_generator(lambda sample: preprocess_other(sample).batch(32), output_types=tf.int32, output_shapes = (64,64,1),) print("Calling preprocessing") print("SOUNDD", sound) input_dic['x_{}'.format(index)] = sound.map(lambda sample: preprocess_other(sample)) #generating the names of recordings(features x_0 till x_8) in batch mode path_label = df[name_label] #print(path_label) y = tf.convert_to_tensor(path_label, dtype=tf.int16) return input_dic,y # - x,y = create_input_label() x = list(x.values()) x # ## #Chunk 4 # ### Define Function for .wav import and preprocessing # + # Write function for import and preprocessing of all 9 .wav files per case (code adapted from Tristan classes) import cv2 def preprocess_other(sample): print("Start preprocessing, setting up the shape of sample") print("Sample", sample) audio = sample #label = sample['label'] audio = tf.reshape(sample, [-1]) print("PY-PREPROCESS set audio file as float", type(audio)) audio = tf.cast(audio, tf.float32) #set audio file as float #audio = audio[24500:5000+len(audio)//10] # Plot audio amplitude # plt.figure(figsize=(10,15)) # plt.plot(audio) # plt.show() # plt.close() print(audio) print("PY-PREPROCESS generate the mel spectrogram") #generate the mel spectrogram spectrogram = tfio.audio.spectrogram( audio, nfft=1024, window=1024, stride=64 ) spectrogram = tfio.audio.melscale( spectrogram, rate=8000, mels=64, fmin=0, fmax=2000 #mels = bins, fmin,fmax = frequences ) print("PY-PREPROCESS devide by np.max(audio)") spectrogram /= tf.math.reduce_max(spectrogram) #normalization spectrogram = tf.expand_dims(spectrogram, axis=-1) #add dimension 2D -> 3D spectrogram = tf.image.resize(spectrogram, (image_target_height, image_target_height)) #resize in two dimensions spectrogram = tf.transpose(spectrogram, perm=(1, 0, 2)) #transpose the first two axis spectrogram = spectrogram[::-1, :, :] #flip the first axis(frequency) # plt.figure(figsize=(10,15)) # plt.imshow(spectrogram[::-1,:], cmap='inferno') #flipping upside down # plt.show() # plt.close() # RESHAPE TO FIT VAE MODEL, RESHAPING THE NORMAL FINAL OUTPUT (DATASET) IS NOT POSSIBLE SO WE DO IT HERE # WHILE IT´S STILL A TENSOR # #spectrogram = tf.reshape(spectrogram, [-1 ,28, 28, 1]) print("SPRECTROGRAM: ", spectrogram) return spectrogram print("PREPROCESS - apply py_preprocess_audio function") spectrogram = tf.py_function(py_preprocess_audio, [audio], tf.float32) #apply py_process_audio function print("PREPROCESS - set shape, include channel dimension") spectrogram.set_shape((image_target_height, image_target_width, 1)) #set shape, include channel dimension return spectrogram#, label # + # Experimental version of above import matplotlib.pyplot as plt import tensorflow_io as tfio # Create function to load and prepare data for input # here we want to use the 9 recordings as separate features but grouped per case as input to the auto-encoder #names of 9 recordings per each case (extracted from the csv meta data file from ) #names_input = ['counting-normal','counting-fast','breathing-deep','breathing-shallow','cough-heavy','cough-shallow','vowel-a','vowel-e','vowel-o'] names_input = ['counting-normal'] #label column from the meta data csv (#Chunk 3) name_label = 'split' image_target_height, image_target_width = 28, 28 IS_VAE = True def create_input_label2(df=df_meta2,names=names_input,name_label=name_label): input_dic = {} #Use a dictionnary to put in the 9 records per case base_path = './CoronaHack-Respiratory-Sound-Dataset' for index,name in enumerate(names): print(index,name) print("create path list") path_list = df[name].tolist() print(path_list[:10]) path_name = [] print("create path name") for dir_name in path_list: if dir_name is not None: path_name.append(base_path+str(dir_name)) #path_name = base_path+str(path_list[0]) print("create sound tensor") sound_tensor_list = [tfio.audio.AudioIOTensor(sound_path).to_tensor()[:300000] for sound_path in path_name] sound_rate_tensor_list = tfio.audio.AudioIOTensor(path_name[0]).rate print("DIRTY", len(sound_tensor_list)) sound_tensor_list_clean = [sound_tensor for sound_tensor in sound_tensor_list if sound_tensor.shape[0] == 300000] print("CLEAN", len(sound_tensor_list_clean)) print("SHAPE ME", sound_tensor_list[0][:100000].shape) print("RATE ME", sound_rate_tensor_list) print("create Sound Slices") sound_slices = tf.data.Dataset.from_tensor_slices(sound_tensor_list_clean) print("create input dictionary") input_dic['x_{}'.format(index)] = sound_slices.map(lambda sample: preprocess_other(sample)) #generating the names of recordings(features x_0 till x_8) in batch mode break path_label = df[name_label] print(path_label) y = tf.convert_to_tensor(path_label, dtype=tf.int16) return input_dic, y # - # ## #Chunk 6 # ### test the output from function x_, y = create_input_label2() x_ = list(x_.values()) x_[0].batch(256) # ## #Chunk 7 # ### Built the auto-encoder architecture (code adapted from Tristan Class) # + from tensorflow.keras import models, layers image_target_height, image_target_width class AutoEncoder(tf.keras.Model): def __init__(self, latent_dim): super().__init__() self.latent_dim = latent_dim # Encoder self.encoder_reshape = layers.Reshape((image_target_height * image_target_width,)) #Shape as 64,64,1 self.encoder_fc1 = layers.Dense(32, activation="relu") self.encoder_fc2 = layers.Dense(latent_dim, activation="relu") # Decoder self.decoder_fc1 = layers.Dense(32, activation='relu') self.decoder_fc2 = layers.Dense(image_target_height * image_target_width, activation='sigmoid') self.decoder_reshape = layers.Reshape((image_target_height, image_target_width,1)) self._build_graph() def _build_graph(self): input_shape = (image_target_height, image_target_width, 1) self.build((None,)+ input_shape) inputs = tf.keras.Input(shape=input_shape) _= self.call(inputs) def call(self, x): z = self.encode(x) x_new = self.decode(z) return x_new def encode(self, x): x = self.encoder_reshape(x) x = self.encoder_fc1(x) z = self.encoder_fc2(x) return z def decode(self, z): z = self.decoder_fc1(z) z = self.decoder_fc2(z) x = self.decoder_reshape(z) return x autoencoder = AutoEncoder(32) autoencoder.summary() autoencoder.compile( optimizer='rmsprop', loss='binary_crossentropy' ) # - autoencoder.summary # ## #Chunk 8 # ### Train the model # # Here we try to input the 9 features (recordings per case) into the model architecture #list(x[0].as_numpy_iterator()) print(x[0]) print(x[0].batch(256)) print(x[0].take(6)) #dataset # + history_list = {} #dataset = tf.data.Dataset.from_tensor_slices((x[0],x[0])) dataset = tf.data.Dataset.zip((x[0],x[0])) history = autoencoder.fit( dataset.batch(256), epochs = 20 ) history_list['base'] = history # - # ## #Chunk 9 # ### Variatioal Auto-Encoder Architecture # + from tensorflow import keras from tensorflow.keras import layers class Sampling(layers.Layer): """Uses (z_mean, z_log_var) to sample z, the vector encoding a digit.""" def call(self, inputs): z_mean, z_log_var = inputs batch = tf.shape(z_mean)[0] dim = tf.shape(z_mean)[1] epsilon = tf.keras.backend.random_normal(shape=(batch, dim)) return z_mean + tf.exp(0.5 * z_log_var) * epsilon # + latent_dim = 2 encoder_inputs = keras.Input(shape=(28, 28, 1)) x = layers.Conv2D(32, 3, activation="relu", strides=2, padding="same")(encoder_inputs) x = layers.Conv2D(64, 3, activation="relu", strides=2, padding="same")(x) x = layers.Flatten()(x) x = layers.Dense(16, activation="relu")(x) z_mean = layers.Dense(latent_dim, name="z_mean")(x) z_log_var = layers.Dense(latent_dim, name="z_log_var",activation="relu")(x) z = Sampling()([z_mean, z_log_var]) encoder = keras.Model(encoder_inputs, [z_mean, z_log_var, z], name="encoder") encoder.summary() # - latent_inputs = keras.Input(shape=(latent_dim,)) x = layers.Dense(7 * 7 * 64, activation="relu")(latent_inputs) x = layers.Reshape((7, 7, 64))(x) x = layers.Conv2DTranspose(64, 3, activation="relu", strides=2, padding="same")(x) x = layers.Conv2DTranspose(32, 3, activation="relu", strides=2, padding="same")(x) decoder_outputs = layers.Conv2DTranspose(1, 3, activation="sigmoid", padding="same")(x) decoder = keras.Model(latent_inputs, decoder_outputs, name="decoder") decoder.summary() # + class VAE(keras.Model): def __init__(self, encoder, decoder, **kwargs): super(VAE, self).__init__(**kwargs) self.encoder = encoder self.decoder = decoder self.total_loss_tracker = keras.metrics.Mean(name="total_loss") self.reconstruction_loss_tracker = keras.metrics.Mean( name="reconstruction_loss" ) self.kl_loss_tracker = keras.metrics.Mean(name="kl_loss") @property def metrics(self): return [ self.total_loss_tracker, self.reconstruction_loss_tracker, self.kl_loss_tracker, ] def train_step(self, data): with tf.GradientTape() as tape: z_mean, z_log_var, z = self.encoder(data) reconstruction = self.decoder(z) reconstruction_loss = tf.reduce_mean( tf.reduce_sum( keras.losses.binary_crossentropy(data, reconstruction), axis=(1, 2) ) ) kl_loss = -0.5 * (1 + z_log_var - tf.square(z_mean) - tf.exp(z_log_var)) kl_loss = tf.reduce_mean(tf.reduce_sum(kl_loss, axis=1)) total_loss = reconstruction_loss + kl_loss grads = tape.gradient(total_loss, self.trainable_weights) self.optimizer.apply_gradients(zip(grads, self.trainable_weights)) self.total_loss_tracker.update_state(total_loss) self.reconstruction_loss_tracker.update_state(reconstruction_loss) self.kl_loss_tracker.update_state(kl_loss) return { "loss": self.total_loss_tracker.result(), "reconstruction_loss": self.reconstruction_loss_tracker.result(), "kl_loss": self.kl_loss_tracker.result(), } # - vae_input = x_[0].batch(256) vae_input #vae_input.reshape(None, 28, 28, 1) # + vae_input = x_[0].batch(5500) mymodel = VAE(encoder, decoder) mymodel.compile(optimizer=keras.optimizers.Adam(learning_rate=1e-6)) mymodel.fit( vae_input, epochs = 20 ) mymodel.summary() # + history_list = {} history = mymodel.fit( x[0], epochs = 20, batch_size=32 ) history_list['base'] = history # -
2021-10-04-Corona-V6.ipynb
# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.14.4 # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- # + # %matplotlib inline # %load_ext autoreload # %autoreload 2 import seaborn as sns import pandas as pd import matplotlib.pyplot as plt import numpy as np # - df = pd.read_csv('tune_random_forest.csv') df.shape df.columns print("features {}".format(df['feature'].value_counts().to_dict().keys())) print("depth {}".format(list(df['depth'].value_counts().to_dict().keys()))) print("trees {}".format(list(df['trees'].value_counts().to_dict().keys()))) df['rmse'].describe() df.ix[df['rmse'].idxmin()] rdkit = df.loc[df['feature'] == 'rdkit'] rdkit.shape cdk = df.loc[df['feature'] == 'cdk'] cdk.shape # + fig, axes = plt.subplots(nrows=3, ncols=2, figsize=(12, 15)) sns.pointplot(x='trees', y='rmse', hue='depth', data=rdkit, ax=axes[0][0]) sns.pointplot(x='depth', y='rmse', hue='trees', data=rdkit, ax=axes[0][1]) sns.pointplot(x='trees', y='rmse', hue='depth', data=cdk, ax=axes[1][0]) sns.pointplot(x='depth', y='rmse', hue='trees', data=cdk, ax=axes[1][1]) sns.pointplot(x='feature', y='rmse', hue='trees', data=df, ax=axes[2][0]) sns.pointplot(x='feature', y='rmse', hue='depth', data=df, ax=axes[2][1]) # - rdkit['rmse'].describe() cdk['rmse'].describe()
jupyter-notebooks/Random forest pipeline analysis.ipynb
# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.14.4 # kernelspec: # display_name: Python 3 # name: python3 # --- # + id="cAJ1JuabN2Tc" colab_type="code" colab={} import pandas as pd import numpy as np import matplotlib.pyplot as plt # %config InlineBackend.figure_format = 'retina' # + [markdown] id="ItlhPB2oSx8f" colab_type="text" # # Confirmados # + id="YX88cZ-ON8TM" colab_type="code" colab={} # Bing # url = 'https://raw.githubusercontent.com/microsoft/Bing-COVID-19-Data/master/data/Bing-COVID19-Data.csv' # df = pd.read_csv(url) # + id="eG7Su9gnPV6T" colab_type="code" colab={} # Johns Hopkins url = 'https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_confirmed_global.csv' df = pd.read_csv(url) # + id="7wvix8ZQRNBz" colab_type="code" colab={"base_uri": "https://localhost:8080/", "height": 284} outputId="979ee8af-e633-49f6-b92b-ae0c67116b00" confirmed = df.groupby(['Country/Region']).sum() confirmed = confirmed.drop(columns=['Lat', 'Long']) confirmed.head() # + [markdown] id="6e5uMSRkS1z9" colab_type="text" # # Mortes # + id="njgyeRV_S1OY" colab_type="code" colab={} url = 'https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_deaths_global.csv' df = pd.read_csv(url) # + id="AAjQolUoTKSF" colab_type="code" colab={"base_uri": "https://localhost:8080/", "height": 284} outputId="f2c6c932-2c8a-44bf-fc73-25bb8c13e8c4" deaths = df.groupby(['Country/Region']).sum() deaths = deaths.drop(columns=['Lat', 'Long']) deaths.head() # + [markdown] id="rB5BuooYTeLy" colab_type="text" # # Recuperados # + id="Za92aHh_Tdfl" colab_type="code" colab={} url = 'https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_recovered_global.csv' df = pd.read_csv(url) # + id="rtAid2xnTda9" colab_type="code" colab={"base_uri": "https://localhost:8080/", "height": 284} outputId="03f4bf52-ee47-4909-caa1-5c7a0afb4f9d" recovered = df.groupby(['Country/Region']).sum() recovered = recovered.drop(columns=['Lat', 'Long']) recovered.head() # + [markdown] id="QF7uPg3IULQs" colab_type="text" # # Visualização # + id="anseuh59UN11" colab_type="code" colab={} pais = 'Brazil' # + id="UW9jWpEsUXUU" colab_type="code" colab={"base_uri": "https://localhost:8080/", "height": 385} outputId="29c54fa3-65ed-4327-df80-8650c71fffc8" # agrupado fig, ax = plt.subplots(figsize=(8, 6)) sel = confirmed.loc[pais].T sel.index = pd.to_datetime(sel.index) sel.plot(ax=ax, label='Confirmados') sel = deaths.loc[pais].T sel.index = pd.to_datetime(sel.index) sel.plot(ax=ax, label='Mortes') sel = recovered.loc[pais].T sel.index = pd.to_datetime(sel.index) sel.plot(ax=ax, label='Recuperados') plt.legend() plt.grid() plt.show() # + id="4odg3elIRN6i" colab_type="code" colab={"base_uri": "https://localhost:8080/", "height": 385} outputId="4eddd17a-65b3-4e9f-c12a-02d6794848d4" # confirmados fig, ax = plt.subplots(figsize=(8, 6)) sel = confirmed.loc[pais].T sel.index = pd.to_datetime(sel.index) sel.plot(ax=ax) plt.show() # + id="mYlauTUORmV6" colab_type="code" colab={"base_uri": "https://localhost:8080/", "height": 385} outputId="f64b9a07-2a6b-4a42-f705-9188e75ccd88" # mortes fig, ax = plt.subplots(figsize=(8, 6)) sel = deaths.loc[pais].T sel.index = pd.to_datetime(sel.index) sel.plot(ax=ax) plt.show() # + id="1q_xacI6TWh8" colab_type="code" colab={"base_uri": "https://localhost:8080/", "height": 385} outputId="1f64b8c7-8dd4-4ff2-dbe7-ce1f371de879" # recuperados fig, ax = plt.subplots(figsize=(8, 6)) sel = recovered.loc[pais].T sel.index = pd.to_datetime(sel.index) sel.plot(ax=ax) plt.show() # + id="C5XeSxoyUI2p" colab_type="code" colab={}
notebooks/COVID_JohnsHopkins.ipynb
# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.14.4 # kernelspec: # display_name: conda_mxnet_p36 # language: python # name: conda_mxnet_p36 # --- # ## MNIST Training, Compilation and Deployment with MXNet Module and Sagemaker Neo # # The **SageMaker Python SDK** makes it easy to train and deploy MXNet models. In this example, we train a simple neural network using the Apache MXNet [Module API](https://mxnet.apache.org/api/python/module/module.html) and the MNIST dataset. The MNIST dataset is widely used for handwritten digit classification, and consists of 70,000 labeled 28x28 pixel grayscale images of hand-written digits. The dataset is split into 60,000 training images and 10,000 test images. There are 10 classes (one for each of the 10 digits). The task at hand is to train a model using the 60,000 training images and subsequently test its classification accuracy on the 10,000 test images. # # ### Setup # # First we need to define a few variables that will be needed later in the example. # + isConfigCell=true from sagemaker import get_execution_role from sagemaker.session import Session # S3 bucket for saving code and model artifacts. # Feel free to specify a different bucket here if you wish. bucket = Session().default_bucket() # Location to save your custom code in tar.gz format. custom_code_upload_location = 's3://{}/customcode/mxnet'.format(bucket) # Location where results of model training are saved. model_artifacts_location = 's3://{}/artifacts'.format(bucket) # IAM execution role that gives SageMaker access to resources in your AWS account. # We can use the SageMaker Python SDK to get the role from our notebook environment. role = get_execution_role() # - # ### The training script # # The ``mnist.py`` script provides all the code we need for training and hosting a SageMaker model. The script we will use is adaptated from Apache MXNet [MNIST tutorial](https://mxnet.incubator.apache.org/tutorials/python/mnist.html). # !cat mnist.py # In the training script, there are two additional functions, to be used with Neo Deep Learning Runtime: # * `neo_preprocess(payload, content_type)`: Function that takes in the payload and Content-Type of each incoming request and returns a NumPy array. Here, the payload is byte-encoded NumPy array, so the function simply decodes the bytes to obtain the NumPy array. # * `neo_postprocess(result)`: Function that takes the prediction results produced by Deep Learining Runtime and returns the response body # ### SageMaker's MXNet estimator class # The SageMaker ```MXNet``` estimator allows us to run single machine or distributed training in SageMaker, using CPU or GPU-based instances. # # When we create the estimator, we pass in the filename of our training script, the name of our IAM execution role, and the S3 locations we defined in the setup section. We also provide a few other parameters. ``train_instance_count`` and ``train_instance_type`` determine the number and type of SageMaker instances that will be used for the training job. The ``hyperparameters`` parameter is a ``dict`` of values that will be passed to your training script -- you can see how to access these values in the ``mnist.py`` script above. # # For this example, we will choose one ``ml.m4.xlarge`` instance. # + from sagemaker.mxnet import MXNet mnist_estimator = MXNet(entry_point='mnist.py', role=role, output_path=model_artifacts_location, code_location=custom_code_upload_location, train_instance_count=1, train_instance_type='ml.m4.xlarge', framework_version='1.4.0', distributions={'parameter_server': {'enabled': True}}, hyperparameters={'learning-rate': 0.1}) # - # ### Running the Training Job # After we've constructed our MXNet object, we can fit it using data stored in S3. Below we run SageMaker training on two input channels: **train** and **test**. # # During training, SageMaker makes this data stored in S3 available in the local filesystem where the mnist script is running. The ```mnist.py``` script simply loads the train and test data from disk. # + # %%time import boto3 region = boto3.Session().region_name train_data_location = 's3://sagemaker-sample-data-{}/mxnet/mnist/train'.format(region) test_data_location = 's3://sagemaker-sample-data-{}/mxnet/mnist/test'.format(region) mnist_estimator.fit({'train': train_data_location, 'test': test_data_location}) # - # ### Opimtize your model with Neo API # Neo API allows to optimize our model for a specific hardware type. When calling `compile_model()` function, we specify the target instance family (C5) as well as the S3 bucket to which the compiled model would be stored. # # **Important. If the following command result in a permission error, scroll up and locate the value of execution role returned by `get_execution_role()`. The role must have access to the S3 bucket specified in ``output_path``.** output_path = '/'.join(mnist_estimator.output_path.split('/')[:-1]) compiled_model = mnist_estimator.compile_model(target_instance_family='ml_c5', input_shape={'data':[1, 784]}, role=role, output_path=output_path) # ### Creating an inference Endpoint # # We can deploy this compiled model, note that we need to use the same instance that the target we used for compilation. This creates a SageMaker endpoint that we can use to perform inference. # # The arguments to the ``deploy`` function allow us to set the number and type of instances that will be used for the Endpoint. Make sure to choose an instance for which you have compiled your model, so in our case `ml_c5`. Neo API uses a special runtime (DLR runtime), in which our optimzed model will run. predictor = compiled_model.deploy(initial_instance_count = 1, instance_type = 'ml.c5.4xlarge') # This endpoint will receive uncompressed NumPy arrays, whose Content-Type is given as `application/vnd+python.numpy+binary`: # + import io import numpy as np def numpy_bytes_serializer(data): f = io.BytesIO() np.save(f, data) f.seek(0) return f.read() predictor.content_type = 'application/vnd+python.numpy+binary' predictor.serializer = numpy_bytes_serializer # - # ### Making an inference request # # Now that our Endpoint is deployed and we have a ``predictor`` object, we can use it to classify handwritten digits. # # To see inference in action, draw a digit in the image box below. The pixel data from your drawing will be loaded into a ``data`` variable in this notebook. # # *Note: after drawing the image, you'll need to move to the next notebook cell.* from IPython.display import HTML HTML(open("input.html").read()) # Now we can use the ``predictor`` object to classify the handwritten digit: # + data = np.array(data) response = predictor.predict(data) print('Raw prediction result:') print(response) labeled_predictions = list(zip(range(10), response)) print('Labeled predictions: ') print(labeled_predictions) labeled_predictions.sort(key=lambda label_and_prob: 1.0 - label_and_prob[1]) print('Most likely answer: {}'.format(labeled_predictions[0])) # - # ## Conclusion # --- # SageMaker Neo automatically optimizes machine learning models to perform at up to fourth the speed with no loss in accuracy. In the diagram below shows you how our neo-optimized model performs better than the original mxnet mnist model. The originl model stands for the uncompiled model deployed on Flask container on May 26th, 2019 and neo-optimized model stands for the compiled model deployed on Neo-AI-DLR container. The data for each trial is the average of 1000 trys for each endpoint. # ![alt text](mxnet-byom-latency.png "Title") # # (Optional) Delete the Endpoint # # After you have finished with this example, remember to delete the prediction endpoint to release the instance(s) associated with it. print("Endpoint name: " + predictor.endpoint) import sagemaker predictor.delete_endpoint()
sagemaker_neo_compilation_jobs/mxnet_mnist/mxnet_mnist_neo.ipynb
# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.14.4 # kernel_info: # name: work # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- ## Import all dependencies from splinter import Browser from bs4 import BeautifulSoup as bs import pandas as pd import time from webdriver_manager.chrome import ChromeDriverManager ## Set up Splinter executable_path = {'executable_path': ChromeDriverManager().install()} browser = Browser('chrome', **executable_path, headless=False) ## Visit redplanetscience.com url = "https://redplanetscience.com/" browser.visit(url) time.sleep(1) ## Scrape webpage into BSoup html = browser.html soup = bs(html, "html.parser") ## Establish Soup Variables for first result for webscrape news_title = soup.find_all('div', class_='content_title')[0].text news_p = soup.find_all('div', class_='article_teaser_body')[0].text # + ## Print first news title print(news_title) # + ## Print first news paragraph print(news_p) # - # ## Visit Mars Space Images - Featured Image ## Visit redplanetscience.com url = "https://spaceimages-mars.com" browser.visit(url) time.sleep(1) ## Scrape webpage into BSoup html = browser.html soup = bs(html, "html.parser") ## find the image url link image_link = soup.find('img', class_='headerimage fade-in').get('src') image_link ## Establish Image URL with scraped HREF featured_image_url = f'https://spaceimages-mars.com/{image_link}' featured_image_url # ### Mars Facts ### Visit galaxyfacts-mars.com url = 'https://galaxyfacts-mars.com' ## Establish variable to containe pd df data tables = pd.read_html(url) tables ## Establish DF df = tables[0] df.head() ## convert the data to a HTML table string html_table = df.to_html() html_table # ### Mars Hemispheres url = 'https://marshemispheres.com/' browser.visit(url) html=browser.html soup=bs(html,'html.parser') ## Scrape hemispheres image elements in to variables mars_spheres = soup.find('div',class_='collapsible results') mars_images = mars_spheres.find_all('div',class_='item') ## Establish List to hold all image urls mars_image_urls=[] # + ## Begin Loop cycling through all hemisphere imagess for images in mars_images: try: ## scrape title hem_sphere=images.find('div',class_='description') title=hem_sphere.h3.text ## scrape image url hem_sphere_url=hem_sphere.a['href'] browser.visit(url+hem_sphere_url) html = browser.html soup = bs(html,'html.parser') image_src = soup.find('li').a['href'] if (title and image_src): ## Print results print('-----------------') print('Title: '+ title) print(url + image_src) ## Create dict (title and url) hem_sphere_dict={ 'title':title, 'image_url':image_src} mars_image_urls=[].append(hem_sphere_dict) except Exception as error: print(error) # -
Mission_to_Mars.ipynb
# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.14.4 # kernelspec: # display_name: Python 3 (ipykernel) # language: python # name: python3 # --- # # Numpy Review # # 1- Basic Introduction import numpy as np import matplotlib.pyplot as plt import seaborn as sns print(np.__version__) # ## NumPy Creating Arrays # + # Creat Object array in numpy (ndarray) arr = np.array([0, 1, 2, 3, 4, 5]) print(arr) print(type(arr)) # + # 0-D Arrays arr = np.array(5) print(arr) print(arr.ndim) # + # 1-D Arrays arr = np.array([0, 1, 2, 3, 4, 5]) print(arr) print(arr.ndim) # + # 2-D Arrays arr = np.array([[0, 1, 2, 3], [4, 5, 6, 7]]) print(arr) print(arr.ndim) # + # 3-D Arrays arr = np.array([[[0, 1, 2], [3, 4, 5]], [[6, 7, 8], [9, 10, 11]]]) print(arr) print(arr.ndim) # + # Higher Dimensional Arrays arr = np.array([0, 1, 2, 3, 4, 5], ndmin=5) print(arr) print(arr.ndim) # - # ## NumPy Array Indexing arr = np.array([0, 1, 2, 3, 4, 5, 6,7, 8, 9, 10, 11, 12, 13, 14, 15]) print(arr) # + # Accessing the elements of 1-D Arrays using a positive index print(arr[0]) print(arr[1]) print(arr[2]) print(arr[3]) print(arr[4]) # Accessing the elements of 1-D matrices using the negative index print(arr[-1]) print(arr[-2]) print(arr[-3]) print(arr[-4]) print(arr[-5]) # - arr = np.array([[0, 1, 2, 3, 4], [5, 6, 7, 8, 9], [10, 11, 12, 13, 14]]) print(arr) # + # Accessing the elements of 2-D Arrays using a positive index print(arr[0, 0]) print(arr[0, 1]) print(arr[0, 2]) print(arr[1, 0]) print(arr[1, 1]) print(arr[1, 2]) print(arr[2, 0]) print(arr[2, 1]) print(arr[2, 2]) # Accessing the elements of 1-D matrices using the negative index print(arr[-1, -1]) print(arr[-1, -2]) print(arr[-1, -3]) print(arr[-2, -1]) print(arr[-2, -2]) print(arr[-2, -3]) print(arr[-3, -1]) print(arr[-3, -2]) print(arr[-3, -3]) # Accessing the elements of 1-D matrices using the negative and positive index print(arr[1, -1]) print(arr[1, -2]) print(arr[1, -3]) print(arr[-2, 0]) print(arr[-2, 1]) print(arr[-2, 2]) print(arr[-3, 0]) print(arr[2, -2]) print(arr[-3, 2]) # - arr = np.array([[[0, 1, 2, 3, 4], [5, 6, 7, 8, 9]], [[10, 11, 12, 13, 14], [15, 16, 17, 18, 19]]]) print(arr) # + # Accessing the elements of 3-D Arrays using a positive index print(arr[0, 0, 0]) print(arr[0, 1, 1]) print(arr[1, 1, 2]) print(arr[1, 0, 0]) print(arr[1, 1, 1]) print(arr[1, 0, 3]) # Accessing the elements of 3-D matrices using the negative index print(arr[-1, -1, -1]) print(arr[-1, -2, -3]) print(arr[-1, -1, -2]) print(arr[-2, -1, -1]) print(arr[-2, -2, -3]) print(arr[-2, --1, -4]) # Accessing the elements of 3-D matrices using the negative and positive index print(arr[1, -1, 0]) print(arr[1, -2, -3]) print(arr[1, -1, 2]) print(arr[-2, 0, 0]) print(arr[-2, 1, -2]) print(arr[-2, 1, 3]) # - # ## NumPy Array Slicing arr = np.array([0, 1, 2, 3, 4, 5, 6,7, 8, 9, 10, 11, 12, 13, 14, 15]) print(arr) # + print(arr[1:10]) print(arr[2:13]) print(arr[:10]) print(arr[5:]) print(arr[:]) print(arr[-10:-2]) print(arr[-14:-8]) print(arr[::3]) # - arr = np.array([[0, 1, 2, 3, 4], [5, 6, 7, 8, 9], [10, 11, 12, 13, 14]]) print(arr) # + print(arr[0, 2:4]) print(arr[1, 0:3]) print(arr[-1, 2:4]) print(arr[-2, 0:3]) print(arr[0, -4:-1]) print(arr[-2, :-1]) print(arr[:, -3]) print(arr[:1, 2]) print(arr[-2:, :]) # - # ## NumPy Data Types # + # i - integer # b - boolean # u - unsigned integer # f - float # c - complex float # m - timedelta # M - datetime # O - object # S - string # U - unicode string # V - fixed chunk of memory for other type ( void ) # + arr = np.array([0, 1, 2, 3, 4, 5]) print(arr) print(arr.dtype) # + arr = np.array(['A', 'B', 'C']) print(arr) print(arr.dtype) # + arr = np.array([0, 1, 2, 3, 4], dtype='S') print(arr) print(arr.dtype) # + arr = np.array(['', 'A', 'B', 'C'], dtype=bool) print(arr) print(arr.dtype) # + arr = np.array([0, 1, 2, 3, 4, 5]) arr_S = arr.astype('S') arr_bool = arr.astype(bool) print(f"arr: {arr} type array: {arr.dtype}") print(f"arr_S: {arr_S} type array: {arr_S.dtype}") print(f"arr_bool: {arr_bool} type array: {arr_bool.dtype}") # - # ## NumPy Array Copy vs View # + # Copy arr = np.array([0, 1, 2, 3, 4, 5]) print(arr) copy = arr.copy() arr[0] = 10 copy[1] = 20 print(arr) print(copy) # + # View arr = np.array([0, 1, 2, 3, 4, 5]) print(arr) view = arr.view() arr[0] = 10 view[1] = 20 print(arr) print(view) # - # Copy VS View print(view.base) print(copy.base) # ## NumPy Array Shape arr = np.array([1, 2, 3, 4, 5]) print(arr.shape) arr = np.array([[1, 2, 3, 4, 5], [6, 7, 8, 9, 10], [11, 12, 13, 14, 15]]) print(arr.shape) arr = np.array([[[1, 2, 3], [4, 5, 6]], [[7, 8, 9], [10, 11, 12]], [[1, 2, 3], [4, 5, 6]]]) print(arr.shape) arr = np.array([1, 2, 3, 4, 5], ndmin=10) print(arr.shape) # ## NumPy Array Reshaping arr = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20]) print(f"Array: {arr}") # + # ERROR 4 * 6 != 20 # re = arr.reshape(4, 6) # print(f"Array: {re}") # + re = arr.reshape(4, 5) print(f"1- Array: {re}") re = arr.reshape(5, 4) print(f"2- Array: {re}") re = arr.reshape(2, 2, 5, 1) print(f"3- Array: {re}") re = arr.reshape(2, 2, -1) print(f"4- Array: {re}") arr = np.array([[1, 2, 3, 4, 5], [6, 7, 8, 9, 10], [11, 12, 13, 14, 15], [16, 17, 18, 19, 20]]) print(f"5- Array: {arr}") re = arr.reshape(-1) print(f"6- Array: {re}") print(f"7- Copy OR View: {re.base} Hmmmm (-_-) 'View'!!!") # - # ## NumPy Array Iterating # + arr = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]) for i in np.nditer(arr): print(i) print("Lterating Other Data Type:") for i in np.nditer(arr, flags=['buffered'], op_dtypes=['S']): print(i) # + arr = np.array([[1, 2, 3, 4, 5], [6, 7, 8, 9, 10], [11, 12, 13, 14, 15]]) for i in np.nditer(arr): print(i) print("Lterating Other Data Type:") for i in np.nditer(arr, flags=['buffered'], op_dtypes=['S']): print(i) # + arr = np.array([[[1, 2, 3, 4, 5], [6, 7, 8, 9, 10]], [[11, 12, 13, 14, 15], [16, 17, 18, 19, 20]]]) for i in np.nditer(arr): print(i) print("Lterating Other Data Type:") for i in np.nditer(arr, flags=['buffered'], op_dtypes=['S']): print(i) # - arr = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]) for i, j in np.ndenumerate(arr): print(f"index: {i}, eleme: {j}") arr = np.array([[1, 2, 3, 4, 5], [6, 7, 8, 9, 10], [11, 12, 13, 14, 15]]) for i, j in np.ndenumerate(arr): print(f"index: {i}, eleme: {j}") arr = np.array([[[1, 2, 3, 4, 5], [6, 7, 8, 9, 10]], [[11, 12, 13, 14, 15], [16, 17, 18, 19, 20]]]) for i, j in np.ndenumerate(arr): print(f"index: {i}, eleme: {j}") # ## NumPy Joining Array # + # Joining Arrays Using concatenate Functions a = np.array([1, 2, 3, 4]) b = np.array([5, 6, 7, 8]) c = np.concatenate((a, b)) # a and b they have 1 dimansion beyt default axis=0 print(f"1- Array: \n{c}") # + a = np.array([[1, 2, 3, 4], [5, 6, 7, 8]]) b = np.array([[9, 10, 11, 12], [13, 14, 15, 16]]) c = np.concatenate((a, b)) # defauld axis = 0 = -1 print(f"2 A- Array: \n{c}") c = np.concatenate((a, b), axis=0) # defauld axis = 0 = -1 print(f"2 B- Array: \n{c}") c = np.concatenate((a, b), axis=1) # axis = 1 = -1 print(f"3- Array: \n{c}") # + a = np.array([[[1, 2, 3, 4, 5], [6, 7, 8, 9, 10]], [[11, 12, 13, 14, 15], [16, 17, 18, 19, 20]]]) b = np.array([[[21, 22, 23, 24, 25], [26, 27, 28, 29, 30]], [[31, 32, 33, 34, 35], [36, 37, 38, 39, 40]]]) c = np.concatenate((a, b), axis=0) # defauld axis = 0 = -1 print(f"4- Array: \n{c}") c = np.concatenate((a, b), axis=1) # axis 1 = -2 print(f"5- Array: \n{c}") # + # Joining Arrays Using stack Functions a = np.array([1, 2, 3, 4]) b = np.array([5, 6, 7, 8]) c = np.stack((a, b)) # a and b they have 2 dimansion beyt default axis=0 = -1 print(f"6- Array: \n{c}") c = np.stack((a, b), axis=1) # axis =1 = -2 print(f"7- Array: \n{c}") # + a = np.array([[1, 2, 3, 4], [5, 6, 7, 8]]) b = np.array([[9, 10, 11, 12], [13, 14, 15, 16]]) c = np.stack((a, b), axis=0) print(f"8- Array: \n{c}") c = np.stack((a, b), axis=1) print(f"9- Array: \n{c}") # + a = np.array([[[1, 2, 3, 4, 5], [6, 7, 8, 9, 10]], [[11, 12, 13, 14, 15], [16, 17, 18, 19, 20]]]) b = np.array([[[21, 22, 23, 24, 25], [26, 27, 28, 29, 30]], [[31, 32, 33, 34, 35], [36, 37, 38, 39, 40]]]) c = np.stack((a, b), axis=0) print(f"10- Array: \n{c}") c = np.stack((a, b), axis=1) print(f"11- Array: \n{c}") # + # Joining Arrays Using hstack - vstack - dstack Functions a = np.array([[[1, 2, 3, 4, 5], [6, 7, 8, 9, 10]], [[11, 12, 13, 14, 15], [16, 17, 18, 19, 20]]]) b = np.array([[[21, 22, 23, 24, 25], [26, 27, 28, 29, 30]], [[31, 32, 33, 34, 35], [36, 37, 38, 39, 40]]]) c = np.hstack((a, b)) # hstack == concatenate with axis=1 print(f"12- Array: \n{c}") c = np.vstack((a, b)) # hstack == concatenate with axis=0 print(f"13- Array: \n{c}") c = np.dstack((a, b)) print(f"14- Array: \n{c}") a = np.array([1, 2, 3, 4]) b = np.array([5, 6, 7, 8]) c = np.hstack((a, b)) # hstack == concatenate with axis=1 print(f"15- Array: \n{c}") c = np.vstack((a, b)) # hstack == concatenate with axis=0 print(f"16- Array: \n{c}") c = np.dstack((a, b)) print(f"17- Array: \n{c}") # - # ## NumPy Splitting Array # + arr = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]) print(f'Array: \n{arr}') print(f"1- Array: {np.array_split(arr, 5)}") print(f"2- Array: {np.array_split(arr, 3)}") print(f"3- Array: {np.array_split(arr, 4)}") print(f"4- Array: {np.array_split(arr, 2)}") print(f"5- Array: {np.array_split(arr, 6)}") arr = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12], [13, 14, 15], [16, 17, 18]]) print(f"Array: \n{arr}") print(f"1- Array: {np.array_split(arr, 6)}") print(f"2- Array: {np.array_split(arr, 5)}") print(f"3- Array: {np.array_split(arr, 3, axis=0)}") print(f"4- Array: {np.array_split(arr, 3, axis=1)}") print(f"5- Array: {np.hsplit(arr, 3)}") print(f"6- Array: {np.vsplit(arr, 3)}") # - # ## NumPy Searching Arrays # + arr = np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) print(f"1- {np.where(arr == 5)}") print(f"2- {np.where(arr == 4)}") print(f"3- {np.where(arr % 2 == 0)}") print(f"4- {np.where(arr % 2 != 0)}") print(f"5- {np.where(arr != 5)}") print(f"6- {np.where(arr > 5)}") arr = np.array([[0, 1, 2], [3, 4, 5], [6, 7, 8]]) print(f"1- {np.where(arr == 5)}") print(f"2- {np.where(arr == 4)}") print(f"3- {np.where(arr % 2 == 0)}") print(f"4- {np.where(arr % 2 != 0)}") print(f"5- {np.where(arr != 5)}") print(f"6- {np.where(arr > 5)}") # + arr = np.array([1, 2, 3, 4, 5, 5]) print(f"1- {np.searchsorted(arr, 3)}") print(f"2- {np.searchsorted(arr, 4, side='rigth')}") print(f"3- {np.searchsorted(arr, 5)}") print(f"4- {np.searchsorted(arr, [1, 2, 4])}") arr = np.array([2, 1, 3, 5]) print(f"1- {np.searchsorted(arr, 1)}") print(f"2- {np.searchsorted(arr, 2)}") print(f"3- {np.searchsorted(arr, [1, 2, 5])}") # - # ## NumPy Sorting Arrays # + arr = np.array([4, 1, 5, 2, 3]) print(np.sort(arr)) print(arr) print(np.sort(arr).base) arr = np.array([True, False, True, False]) print(np.sort(arr)) arr = np.array(['Python', 'C', 'Java', 'SQL']) print(np.sort(arr)) # - # ## NumPy Filter Array # + # 1- arr = np.array([1, 2, 3, 4, 5]) filter = [True, False, False, True, True] new_arr = arr[filter] print(new_arr) # + # 2- Creating the Filter Array arr = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]) filter = [] for i in arr: if i % 2 == 0: filter.append(True) else: filter.append(False) new_arr = arr[filter] print(new_arr) filter = [] for i in arr: if i % 2 != 0: filter.append(True) else: filter.append(False) new_arr = arr[filter] print(new_arr) # + # 3- Creating Filter Directly From Array new_arr = arr[arr % 2 == 0] print(new_arr) new_arr = arr[arr > 5] print(new_arr) new_arr = arr[arr < 5] print(new_arr) # - # ## Some different things !! # + a = np.array([1, 2, 3, 4, 5], dtype='int16') print(a) print(a.itemsize) # 2byte > int16: 1byte = 8bet print(a.size) # Nembers of items array print(a.itemsize * a.size) # Totl Size of bytes print(a.nbytes) # Total Size of bytes b = np.array([[[1, 2], [3, 4]], [[5, 6], [7, 8]]]) print(b) print(b[0, 0, 0]) b[0, 0, 0] = 0 print(b) b[:, 1, :] = [[8,8], [9,9]] print(b) z = np.zeros((2, 5)) print(z) o = np.ones((2, 5)) print(o) f = np.full((2, 5), 95) print(f) f = np.full(b.shape, 95) print(f) fl = np.full_like(b, 77) print(fl) r = np.random.random_sample(b.shape) print(r) i = np.identity(5) print(i) r = np.repeat(b, 3, axis=0) print(r) a = np.array([1, 2, 3, 4, 5]) print(a + 2) # a += 2 print(a - 2) # a -= 2 print(a / 2) # a /= 2 print(a * 2) # a *= 2 a = np.array([1, 2, 3, 4]) b = np.array([5, 6, 7, 8]) print(a + b) print(a - b) print(a * b) print(a / b) print(a ** b) a = np.array([1, 2, 3, 4, 5]) print(np.min(a)) # axis=(0,1,-1,-2) in array > 1 dimantion print(np.max(a)) # axis=(0,1,-1,-2) in array > 1 dimantion print(a > 2) print(a%2 == 0) b = np.array([[[1, 2, 9], [3, 4, 9]], [[5, 6, 7], [8, 7, 8]]]) print(b) print(np.any(b > 5, axis=1)) print(np.all(b > 5, axis=1)) print((b >= 5) & (b < 9)) # ~((b >= 5) & (b < 9)) ## read data from file ## text = np.genfromtext('path.extation', delimiter=',') ## cv = np.loadtext('path.extaion', dtype='O', delimiter=',', unpack=True, skiprows=1) # - # # 2- Random Data Sets # ## Random Numbers in NumPy # + ## 1- Create Random Number # 1- Random Number Between 0 and 1 arr = np.random.rand() print(f"1- Random Number: {arr}") # 2- Random Number Between 0 and any Number arr = np.random.randint(10) print(f"2- Random Number: {arr}") # 3- Choice Random Number from list, tuple,... arr = np.random.choice([1, 2, 3, 4, 5]) print(f"3- Random Number: {arr}") # + ## 2- Crate Array # 1- arr = np.random.rand(5) print(f"1- Array: {arr}") arr = np.random.rand(2, 5) print(f"2- Array: {arr}") # 2- arr = np.random.randint(10, size=5) print(f"3- Array: {arr}") arr = np.random.randint(100, size=(2, 5)) print(f"4- Array: {arr}") # 3- arr = np.random.choice([1, 2, 3, 4, 5, 6, 7, 8, 9, 10], size=5) print(f"5- Array: {arr}") arr = np.random.choice(np.random.randint(1000, size=100), size=(2, 5)) print(f"6- Array: {arr}") # - # ## Random Data Distribution # + arr = np.random.choice([1, 2, 3, 4, 5], p=[0.4, 0.2, 0.0, 0.2, 0.2], size=100) print(f"Array: {arr}") # - # ## Random Permutations # + import numpy as np ## 1- Shuffle arr = np.array([1, 2, 3, 4, 5]) print(f"shuffle: {np.random.shuffle(arr)}") print(f"Array: {arr}") ## 2- permutation arr = np.array([1, 2, 3, 4, 5]) print(f"permutation: {np.random.permutation(arr)}") print(f"Array: {arr}") # - # ## Normal (Gaussian) Distribution # + normal = np.random.normal(loc=0, scale=1, size=100) print(normal) # Visualization of Normal Distribution normal = np.random.normal(size=1000) sns.distplot(normal, hist=False) plt.show() # - # ## Binomial Distribution # + binomial = np.random.binomial(n=100, p=0.5, size=10) print(binomial) # Visualization of Binomial Distribution binomial = np.random.binomial(n=10000, p=0.5, size=1000) sns.distplot(binomial, kde=False) plt.show() # - # ## Poisson Distribution # + poisson = np.random.poisson(lam=2, size=10) print(poisson) # Visualization of Poisson Distribution poisson = np.random.poisson(lam=2, size=1000) sns.distplot(poisson, hist=False) plt.show() # - # ## Uniform Distribution # + uniform = np.random.uniform(low=0, high=1000, size=100) print(uniform) # Visualization of Uniform Distribution uniform= np.random.uniform(low=0, high=10000, size=1000) sns.distplot(uniform, hist=False) plt.show() # - # ## Logistic Distribution # + logistic = np.random.logistic(loc=0, scale=1, size=100) print(logistic) # Visualization of Logistic Distribution logistic = np.random.logistic(loc=0, scale=1, size=1000) sns.distplot(logistic, hist=False) plt.show() # - # ## Multinomial Distribution # + multinomial = np.random.multinomial(n=6, pvals=[1/6, 1/6, 1/6, 1/6, 1/6, 1/6]) print(multinomial) # Visualization of Multinomial Distribution sns.distplot(multinomial, hist=False) plt.show() # - # ## Exponential Distribution # + exponential = np.random.exponential(scale=1, size=100) print(exponential) # Visualization of Exponential Distribution exponential = np.random.exponential(scale=1, size=1000) sns.distplot(exponential, hist=False) plt.show() # - # ## Chi Square Distribution # + chisquare = np.random.chisquare(df=3, size=10) print(chisquare) # Visualization of Chi Square Distribution chisquare = np.random.chisquare(df=2, size=1000) sns.distplot(chisquare, hist=False) plt.show() # - # ## Rayleigh Distribution # + rayleigh = np.random.rayleigh(scale=1, size=10) print(rayleigh) # Visualization of Rayleigh Distribution rayleigh = np.random.rayleigh(scale=1.0, size=1000) sns.distplot(rayleigh, hist=False) plt.show() # - # ## Pareto Distribution # + pareto = np.random.pareto(a=2, size=10) print(pareto) # Visualization of Pareto Distribution pareto = np.random.pareto(a=3, size=1000) sns.distplot(pareto, hist=False) plt.show() # - # ## Zipf Distribution # + zipf = np.random.zipf(a=3, size=10) print(zipf) # Visualization of Zipf Distribution zipf = np.random.zipf(a=2, size=1000) sns.distplot(zipf, hist=False) plt.show() # - # # 3- NumPy ufunc # ## Create Your Own ufunc # + # 1- Create Ufunc def add_num(x, y): return x + y add_num = np.frompyfunc(add_num, 2, 1) a = [1, 2, 3] b = [4, 5, 6] c = add_num(a, b) print(c) # 2- check if a function or ufunc print(np.ufunc) print(type(np.add)) print(type(add_num)) print(type(np.where)) # - # ## Simple Arithmetic # + a = np.array([9, 5, 6]) b = np.array([3, 4, 2]) # 1- Addition c = np.add(a, b) print(f"Addition: {c}") # 2- Subtraction c = np.subtract(a, b) print(f"Subtraction: {c}") # 3- Multiplication c = np.multiply(a, b) print(f"Multiplication: {c}") # 4- Division c = np.divide(a, b) print(f"Division: {c}") # 5- Remainder c = np.mod(a, b) print(f"Mod: {c}") c = np.remainder(a, b) print(f"Remainder: {c}") # 6- Quotient and Mod c = np.divmod(a, b) print(f"Quotient and Mod: {c}") # 7- Power c = np.power(a, b) print(f"Power: {c}") # 8- Absolute Values c = np.absolute(a, b) print(f"Absolute Values: {c}") # - # ## Rounding Decimals # + a = np.array([1.4, 1.5, -1.4, -1.5]) # 1- Truncation and Fix c = np.trunc(a) print(f"Trunc: {c}") c = np.fix(a) print(f"Fix: {c}") # 2- Rounding c = np.around(a) print(f"Round: {c}") # 3- Floor c = np.floor(a) print(f"Floor: {c}") # 4- Ceil c = np.ceil(a) print(f"Ceil: {c}") # - # ## NumPy Logs # + import math a = np.array([1, 2, 3, 4, 5]) # 1- Log at Base 2 c = np.log2(a) print(f"Log at Base 2: {c}") # 2- Log at Base 10 c = np.log10(c) print(f"Log at Base 10: {c}") # 3- Log at Base e c = np.log(c) print(f"Log at Base e: {c}") # 4- Log at Any Base log = np.frompyfunc(math.log, 2, 1) c = log(a, 5) print(f"Log at Any Base: {c}") # - # ## NumPy Summations # + # Summations # What is the difference between summation and addition? # Addition is done between two arguments whereas summation happens over n elements. a = np.array([1, 2, 3, 4]) b = np.array([5, 6, 7, 8]) c = np.add(a, b) print(c) c = np.sum(a) print(c) c = np.sum(b) print(c) c = np.sum((a, b)) print(c) c = np.sum([a, b], axis=0) print(c) c = np.sum([a, b], axis=1) print(c) c = np.cumsum(a) print(c) c = np.cumsum(b) print(c) # - # ## NumPy Products # + a = np.array([1, 2, 3, 4]) b = np.array([5, 6, 7, 8]) c = np.prod(a) print(c) c = np.prod(b) print(c) c = np.prod([a, b]) print(c) c = np.prod([a, b], axis=0) print(c) c = np.prod([a, b], axis=1) print(c) c = np.cumprod(a) print(c) c = np.cumprod(b) print(c) # - # ## NumPy Differences # + a = np.array([4, 9, 10, 5]) c = np.diff(a) print(c) c = np.diff(a, 2) print(c) c = np.diff(a, 3) print(c) # - # ## NumPy LCM Lowest Common Multiple # + a = 4 b = 9 c = np.lcm(a, b) print(c) a = np.array([1, 2, 4, 5]) c = np.lcm.reduce(a) print(c) # - # ## NumPy GCD Greatest Common Denominator # + a = 25 b = 35 c = np.gcd(a, b) print(c) a = np.array([21, 77, 35, 28, 70]) c = np.gcd.reduce(a) print(c) # - # ## NumPy Trigonometric Functions # + arr = np.array([np.pi/2, np.pi/3, np.pi/4, np.pi/5]) a = np.pi/2 c = np.sin(a) print(f"Sin {a}: {c}") c = np.tan(a) print(f"Tan {a}: {c}") c = np.cos(a) print(f"Cos {a}: {c}") c = np.sin(arr) print(f"Sin {arr}: {c}") c = np.tan(arr) print(f"Tan {arr}: {c}") c = np.cos(arr) print(f"Cos {arr}: {c}") # Convert Degrees Into Radians c = np.deg2rad(a) print(f"deg2rad {a}: {c}") c = np.deg2rad(arr) print(f"deg2rad {arr}: {c}") # Radians to Degrees a = 1.633123935319537e+16 arr = np.array([6.12323400e-17, 5.00000000e-01, 7.07106781e-01, 8.09016994e-01]) c = np.rad2deg(a) print(f"rad2deg {a}: {c}") c = np.rad2deg(arr) print(f"rad2deg {arr}: {c}") # Finding Angles a = 1.0 arr = np.array([6.12323400e-17, 5.00000000e-01, 7.07106781e-01, 8.09016994e-01]) c = np.arcsin(a) print(f"Sin {a}: {c}") c = np.arctan(a) print(f"Tan {a}: {c}") c = np.arccos(a) print(f"Cos {a}: {c}") c = np.arcsin(arr) print(f"Sin {arr}: {c}") c = np.arctan(arr) print(f"Tan {arr}: {c}") c = np.arccos(arr) print(f"Cos {arr}: {c}") hypot = np.hypot(4, 5) print(f"Hypot :{hypot}") # - # ## NumPy Hyperbolic Functions # + # Hyperbolic Functions arr = np.array([np.pi/2, np.pi/3, np.pi/4, np.pi/5]) a = np.pi/2 c = np.sinh(a) print(f"Sinh {a}: {c}") c = np.tanh(a) print(f"Tanh {a}: {c}") c = np.cosh(a) print(f"Cosh {a}: {c}") c = np.sinh(arr) print(f"Sinh {arr}: {c}") c = np.tanh(arr) print(f"Tanh {arr}: {c}") c = np.cosh(arr) print(f"Cosh {arr}: {c}") # Finding Angles a = np.pi/2 arr = np.array([0.1, 0.2, 0.3]) c = np.arcsinh(a) print(f"arcSinh {a}: {c}") c = np.arctanh(a) print(f"arcTanh {a}: {c}") c = np.arccosh(a) print(f"arcCosh {a}: {c}") c = np.arcsinh(arr) print(f"Sinh {arr}: {c}") c = np.arctanh(arr) print(f"Tanh {arr}: {c}") c = np.arccosh(arr) print(f"Cosh {arr}: {c}") # - # ## Hmmmm(=_=)
Tutorial/Jupyter/Numpy Review.ipynb
# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.14.4 # kernelspec: # display_name: Python 2 # language: python # name: python2 # --- # # Regression Week 3: Assessing Fit (polynomial regression) # In this notebook you will compare different regression models in order to assess which model fits best. We will be using polynomial regression as a means to examine this topic. In particular you will: # * Write a function to take an SArray and a degree and return an SFrame where each column is the SArray to a polynomial value up to the total degree e.g. degree = 3 then column 1 is the SArray column 2 is the SArray squared and column 3 is the SArray cubed # * Use matplotlib to visualize polynomial regressions # * Use matplotlib to visualize the same polynomial degree on different subsets of the data # * Use a validation set to select a polynomial degree # * Assess the final fit using test data # # We will continue to use the House data from previous notebooks. # # Fire up graphlab create import graphlab # Next we're going to write a polynomial function that takes an SArray and a maximal degree and returns an SFrame with columns containing the SArray to all the powers up to the maximal degree. # # The easiest way to apply a power to an SArray is to use the .apply() and lambda x: functions. # For example to take the example array and compute the third power we can do as follows: (note running this cell the first time may take longer than expected since it loads graphlab) tmp = graphlab.SArray([1., 2., 3.]) tmp_cubed = tmp.apply(lambda x: x**3) print tmp print tmp_cubed # We can create an empty SFrame using graphlab.SFrame() and then add any columns to it with ex_sframe['column_name'] = value. For example we create an empty SFrame and make the column 'power_1' to be the first power of tmp (i.e. tmp itself). ex_sframe = graphlab.SFrame() ex_sframe['power_1'] = tmp print ex_sframe # # Polynomial_sframe function # Using the hints above complete the following function to create an SFrame consisting of the powers of an SArray up to a specific degree: def polynomial_sframe(feature, degree): # assume that degree >= 1 # initialize the SFrame: poly_sframe = graphlab.SFrame() # and set poly_sframe['power_1'] equal to the passed feature poly_sframe['power_1'] = feature # first check if degree > 1 if degree > 1: # then loop over the remaining degrees: # range usually starts at 0 and stops at the endpoint-1. We want it to start at 2 and stop at degree for power in range(2, degree+1): # first we'll give the column a name: name = 'power_' + str(power) # then assign poly_sframe[name] to the appropriate power of feature poly_sframe[name] = feature.apply(lambda x: x ** power) return poly_sframe # To test your function consider the smaller tmp variable and what you would expect the outcome of the following call: print polynomial_sframe(tmp, 3) # # Visualizing polynomial regression # Let's use matplotlib to visualize what a polynomial regression looks like on some real data. sales = graphlab.SFrame('kc_house_data.gl/') # As in Week 3, we will use the sqft_living variable. For plotting purposes (connecting the dots), you'll need to sort by the values of sqft_living. For houses with identical square footage, we break the tie by their prices. sales = sales.sort(['sqft_living', 'price']) # Let's start with a degree 1 polynomial using 'sqft_living' (i.e. a line) to predict 'price' and plot what it looks like. poly1_data = polynomial_sframe(sales['sqft_living'], 1) poly1_data['price'] = sales['price'] # add price to the data since it's the target # NOTE: for all the models in this notebook use validation_set = None to ensure that all results are consistent across users. model1 = graphlab.linear_regression.create(poly1_data, target = 'price', features = ['power_1'], validation_set = None) #let's take a look at the weights before we plot model1.get("coefficients") import matplotlib.pyplot as plt # %matplotlib inline plt.plot(poly1_data['power_1'],poly1_data['price'],'.', poly1_data['power_1'], model1.predict(poly1_data),'-') # Let's unpack that plt.plot() command. The first pair of SArrays we passed are the 1st power of sqft and the actual price we then ask it to print these as dots '.'. The next pair we pass is the 1st power of sqft and the predicted values from the linear model. We ask these to be plotted as a line '-'. # # We can see, not surprisingly, that the predicted values all fall on a line, specifically the one with slope 280 and intercept -43579. What if we wanted to plot a second degree polynomial? poly2_data = polynomial_sframe(sales['sqft_living'], 2) my_features = poly2_data.column_names() # get the name of the features poly2_data['price'] = sales['price'] # add price to the data since it's the target model2 = graphlab.linear_regression.create(poly2_data, target = 'price', features = my_features, validation_set = None) model2.get("coefficients") plt.plot(poly2_data['power_1'],poly2_data['price'],'.', poly2_data['power_1'], model2.predict(poly2_data),'-') # The resulting model looks like half a parabola. Try on your own to see what the cubic looks like: poly3 = polynomial_sframe(sales['sqft_living'], 3) # create the cubic sframe with sqft_living my_features = poly3.column_names() # get the features to use in polynomial regression poly3['price'] = sales['price'] # add the price column becuase it is the target model3 = graphlab.linear_regression.create(poly3, target='price', features=my_features, validation_set=None) model3.coefficients plt.plot(poly3['power_1'], poly3['price'], ".", poly3['power_1'], model3.predict(poly3), "-") # Now try a 15th degree polynomial: poly15 = polynomial_sframe(sales['sqft_living'], 15) # create the cubic sframe with sqft_living my_features = poly15.column_names() # get the features to use in polynomial regression poly15['price'] = sales['price'] # add the price column becuase it is the target model15 = graphlab.linear_regression.create(poly15, target='price', features=my_features, validation_set=None) model15.coefficients plt.plot(poly15['power_1'], poly15['price'], ".", poly15['power_1'], model15.predict(poly15), "-") # What do you think of the 15th degree polynomial? Do you think this is appropriate? If we were to change the data do you think you'd get pretty much the same curve? Let's take a look. # The polynomial with degree 15 is not appropriate because it overfits the training data. This model is too complex for the data and has high variance. If the subset of data used were to change, the model would differ substantially. This model would not generalize well to new data. # # Changing the data and re-learning # We're going to split the sales data into four subsets of roughly equal size. Then you will estimate a 15th degree polynomial model on all four subsets of the data. Print the coefficients (you should use .print_rows(num_rows = 16) to view all of them) and plot the resulting fit (as we did above). The quiz will ask you some questions about these results. # # To split the sales data into four subsets, we perform the following steps: # * First split sales into 2 subsets with `.random_split(0.5, seed=0)`. # * Next split the resulting subsets into 2 more subsets each. Use `.random_split(0.5, seed=0)`. # # We set `seed=0` in these steps so that different users get consistent results. # You should end up with 4 subsets (`set_1`, `set_2`, `set_3`, `set_4`) of approximately equal size. # + tmp_set_1, tmp_set_2= sales.random_split(0.5, seed=0) set_1, set_2 = tmp_set_1.random_split(0.5, seed=0) set_3, set_4 = tmp_set_2.random_split(0.5, seed=0) # - # Fit a 15th degree polynomial on set_1, set_2, set_3, and set_4 using sqft_living to predict prices. Print the coefficients and make a plot of the resulting model. def make_and_plot_poly(data, degree, feature='sqft_living'): sframe = polynomial_sframe(data[feature], degree) my_features = sframe.column_names() sframe['price'] = data['price'] model = graphlab.linear_regression.create(sframe, target='price', features=my_features, validation_set=None, verbose=False) plt.plot(sframe['power_1'], sframe['price'], ".", sframe['power_1'], model.predict(sframe), "-"); plt.xlabel(feature); plt.ylabel('Price'), plt.legend(['raw_data', 'model_predictions']); print("Model Coefficients") print(model.coefficients.print_rows(num_rows=16)) make_and_plot_poly(set_1, 15) make_and_plot_poly(set_2, 15) make_and_plot_poly(set_3, 15) make_and_plot_poly(set_4, 15) # Some questions you will be asked on your quiz: # # **Quiz Question: Is the sign (positive or negative) for power_15 the same in all four models?** # # No, it is positive for sets 1, 2, 3 but negative for set 4. # # **Quiz Question: (True/False) the plotted fitted lines look the same in all four plots** # # False, the plotted fit lines differ substantially in shape. # # Selecting a Polynomial Degree # Whenever we have a "magic" parameter like the degree of the polynomial there is one well-known way to select these parameters: validation set. (We will explore another approach in week 4). # # We split the sales dataset 3-way into training set, test set, and validation set as follows: # # * Split our sales data into 2 sets: `training_and_validation` and `testing`. Use `random_split(0.9, seed=1)`. # * Further split our training data into two sets: `training` and `validation`. Use `random_split(0.5, seed=1)`. # # Again, we set `seed=1` to obtain consistent results for different users. training_and_validation, testing = sales.random_split(0.9, seed=1) training, validation = training_and_validation.random_split(0.5, seed=1) # Next you should write a loop that does the following: # * For degree in [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15] (to get this in python type range(1, 15+1)) # * Build an SFrame of polynomial data of train_data['sqft_living'] at the current degree # * hint: my_features = poly_data.column_names() gives you a list e.g. ['power_1', 'power_2', 'power_3'] which you might find useful for graphlab.linear_regression.create( features = my_features) # * Add train_data['price'] to the polynomial SFrame # * Learn a polynomial regression model to sqft vs price with that degree on TRAIN data # * Compute the RSS on VALIDATION data (here you will want to use .predict()) for that degree and you will need to make a polynmial SFrame using validation data. # * Report which degree had the lowest RSS on validation data (remember python indexes from 0) # # (Note you can turn off the print out of linear_regression.create() with verbose = False) validation_scores = {} for power in range(1, 16): sframe = polynomial_sframe(training['sqft_living'], degree=power) my_features = sframe.column_names() sframe['price'] = training['price'] model = graphlab.linear_regression.create(sframe, target='price', features=my_features, validation_set=None, verbose=False) validation_sframe = polynomial_sframe(validation['sqft_living'], degree=power) validation_predictions = model.predict(validation_sframe) RSS = ((validation_predictions - validation['price'])**2).sum() validation_scores[power] = RSS validation_scores = [(power, RSS) for power, RSS in validation_scores.items()] validation_scores = sorted(validation_scores, key=lambda x: x[1], reverse=False) validation_scores # **Quiz Question: Which degree (1, 2, …, 15) had the lowest RSS on Validation data?** # # 6 had the lowest validation error # Now that you have chosen the degree of your polynomial using validation data, compute the RSS of this model on TEST data. Report the RSS on your quiz. # + poly6 = polynomial_sframe(training['sqft_living'], degree=6) my_features = poly6.column_names() poly6['price'] = training['price'] model6 = graphlab.linear_regression.create(poly6, target='price', features=my_features, validation_set=None, verbose=False) test_sframe = polynomial_sframe(testing['sqft_living'], degree=6) predictions = model6.predict(test_sframe) RSS = ((predictions - testing['price']) **2).sum() # - print('RSS using a model with degree 6: {}'.format(str(RSS))) # **Quiz Question: what is the RSS on TEST data for the model with the degree selected from Validation data?** # 1.255E14
Studying Materials/Course 2 Regression/Assessing Performance/week-3-polynomial-regression-assignment-blank.ipynb
# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.14.4 # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- # # Gender Classification Using Names # # ### This project aims to detect/predict gender of individuals from their names using Machine Learning. # #### The dataset contains Indian as well as English names # # - Sklearn # - Pandas # - Text Extraction # Importing EDA packages import pandas as pd import numpy as np # Importing ML Packages from sklearn.feature_extraction.text import CountVectorizer from sklearn.feature_extraction import DictVectorizer # Load our data df = pd.read_csv('dataset/Names_dataset.csv') df.head() df.size # Data Cleaning # Checking for column name consistency df.columns # Data Types df.dtypes # Checking for Missing Values df.isnull().isnull().sum() # Number of Female Names df[df.gender == 'f'].size # Number of Female Names df[df.gender == 'm'].size df_names = df # Replacing All 'f' and 'm' with 0 and 1 respectively df_names.gender.replace({'f':0,'m':1}, inplace=True) df_names.gender.unique() df_names.dtypes Xfeatures = df_names['name'] # Feature Extraction cv = CountVectorizer() X = cv.fit_transform(Xfeatures.values.astype('U')) # Save Our Vectorizer import joblib gender_vectorizer = open("gender_vectorizer.pkl","wb") joblib.dump(cv,gender_vectorizer) gender_vectorizer.close() cv.get_feature_names() from sklearn.model_selection import train_test_split # Features X # Labels y = df_names.gender X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=42) # Naive Bayes Classifier from sklearn.naive_bayes import MultinomialNB clf = MultinomialNB() clf.fit(X_train,y_train) clf.score(X_test,y_test) # Accuracy of our Model # test print("Accuracy of Model",clf.score(X_test,y_test)*100,"%") # Accuracy of our Model # train print("Accuracy of Model",clf.score(X_train,y_train)*100,"%") # ### Sample Prediction # Sample1 Prediction sample_name = ["Kanchi"] vect = cv.transform(sample_name).toarray() vect # Female is 0, Male is 1 clf.predict(vect) # Sample2 Prediction sample_name1 = ["Vandan"] vect1 = cv.transform(sample_name1).toarray() clf.predict(vect1) # Sample3 Prediction of Russian Names sample_name2 = ["Natasha"] vect2 = cv.transform(sample_name2).toarray() clf.predict(vect2) # Sample3 Prediction of Random Names sample_name3 = ["Tejas", "Nefertiti","Nasha","Anaisha","Kabir","Ovetta","Tathiana","Xia","Joseph","Drishti", "Yuvaan"] vect3 = cv.transform(sample_name3).toarray() clf.predict(vect3) # A function to do it def genderpredictor(a): test_name = [a] vector = cv.transform(test_name).toarray() if clf.predict(vector) == 0: return("Female") else: return("Male") genderpredictor("Priti") namelist = ["Nitin","Gigi", "Zayn","Rihanna","Masha", "Rohit"] for i in namelist: print(i, "->", genderpredictor(i)) # ### Using a custom function for feature analysis # By Analogy most female names ends in 'A' or 'I' or has the sound of 'A' def features(name): name = str(name) name = name.lower() return { 'first-letter': name[0], # First letter 'first2-letters': name[0:2], # First 2 letters 'first3-letters': name[0:3], # First 3 letters 'last-letter': name[-1], 'last2-letters': name[-2:], 'last3-letters': name[-3:], } # Vectorize the features function features = np.vectorize(features) print(features(["Anna", "Kanchi", "Prathmesh", "Saloni", "Trupti", "Hannah", "Peter", "John", "Vladmir"])) # Extract the features for the dataset df_X = features(df_names['name']) df_y = df_names['gender'] # + from sklearn.feature_extraction import DictVectorizer corpus = features(["Aarav", "Julia"]) dv = DictVectorizer() dv.fit(corpus) transformed = dv.transform(corpus) print(transformed) # - dv.get_feature_names() # Train Test Split dfX_train, dfX_test, dfy_train, dfy_test = train_test_split(df_X, df_y, test_size=0.33, random_state=42) dfX_train dv = DictVectorizer() dv.fit_transform(dfX_train) # + # Model building Using DecisionTree from sklearn.tree import DecisionTreeClassifier dclf = DecisionTreeClassifier() my_xfeatures =dv.transform(dfX_train) dclf.fit(my_xfeatures, dfy_train) # - # Build Features and Transform them sample_name_eg = ["Vandan"] transform_dv =dv.transform(features(sample_name_eg)) vect3 = transform_dv.toarray() # Predicting Gender of Name # Male is 1, Female = 0 dclf.predict(vect3) if dclf.predict(vect3) == 0: print("Female") else: print("Male") # Second Prediction With Nigerian Name name_eg1 = ["Chioma"] transform_dv =dv.transform(features(name_eg1)) vect4 = transform_dv.toarray() if dclf.predict(vect4) == 0: print("Female") else: print("Male") # A function to do it def genderpredictor1(a): test_name1 = [a] transform_dv =dv.transform(features(test_name1)) vector = transform_dv.toarray() if dclf.predict(vector) == 0: return("Female") else: return("Male") random_name_list = ["Alex","Alice","Parth", "Chioma", "Kriti", "Vitalic", "Shruti", "Clairese", "Chan", "Divya"] for n in random_name_list: print(n, "->", genderpredictor1(n)) ## Accuracy of Models Decision Tree Classifier Works better than Naive Bayes # Accuracy on training set print(dclf.score(dv.transform(dfX_train), dfy_train)) # Accuracy on test set print(dclf.score(dv.transform(dfX_test), dfy_test)) # ### Saving Our Model import joblib decisiontreModel = open("decisiontreemodel.pkl","wb") joblib.dump(dclf,decisiontreModel) decisiontreModel.close() #Alternative to Model Saving import pickle dctreeModel = open("namesdetectormodel.pkl","wb") pickle.dump(dclf,dctreeModel) dctreeModel.close() # ### Save Multinomial NB Model NaiveBayesModel = open("naivebayesgendermodel.pkl","wb") joblib.dump(clf,NaiveBayesModel) NaiveBayesModel.close() # + # By <NAME> # -
ML_models_Flask/Kanchi_Tank/data/Gender-Classification.ipynb
# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.14.4 # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- import numpy as np # + #definiciòn de matriz de coeficientes y vector de terminos ind A = [[1,1,1],[2,3,-4],[1,-1,1]] A = np.array(A) B = [1,9,-1] B = np.array(B) # - #Retorna la fila en la que se encuantra el pivote de una columna def row_pivote(A,fil,col): max_value = max(A[fil:,col]) min_value = min(A[fil:,col]) if(abs(max_value)>abs(min_value)): pivote = max_value else: pivote = min_value for i in range(0,A.shape[0]): if(A[i][col] == pivote): fila_pivote = i return fila_pivote # + def GaussSolver(A,B): #dimenciones de matriz de coeficientes n = A.shape[0] m = A.shape[1] AB = np.zeros((n,m+1)) AB[:,0:m] = A for i in range(0,n): AB[i][m] = b[i] #inicia eliminaciòn i= 0 #sobre filas j= 0 #sobre columnas #recorriendo columnas for h in range(j,m-1): #Determinando fila del pivote fila_pivote=row_pivote(AB,i,h) pivote = AB[fila_pivote][h] if(fila_pivote!= i): #Intercambio de filas AB[[fila_pivote,i]] = AB[[i,fila_pivote]] #Luego el pivote està en la fila i-èsima for k in range(i+1,n): x = -AB[k][h]/pivote AB[k] = AB[k] + x*AB[i] i= i + 1 j= j + 1 #Vector soluciòn x_sol= np.zeros(m) for i in range(n-1,-1,-1): if(i==n-1): x_sol[i] = AB[i,m]/AB[i][i] else: sum= 0.0 for j in range(i+1,m): sum += AB[i][j]*x_sol[j] x_sol = (AB[i][m]-sum)/(AB[i][i] return x_sol # - print(GaussSolver(A,B))
algebra_lineal/sln_ecuaciones/gauss_solver.ipynb
# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.14.4 # kernelspec: # display_name: Python 3 # name: python3 # --- # + id="CZLeOG22FAqa" # !python -m pip install konlpy # + id="u4Tp2RA-FYVh" # from preprocess import * import preprocess as pp # + id="VhILsB5WN09m" path_csv='./ChatBotData.csv_short' inputs, outputs = pp.load_data(path_csv) type(inputs), type(outputs) # + id="iDHWQSoJOKbq" inputs[7], outputs[7] # 대화내용 # + id="Hcmoh6jlN6JS" path_vocab = './vocabulary.txt' char2idx, idx2char, vocab_size = pp.load_vocabulary(path_csv, path_vocab) # preprocess 내 function type(char2idx), type(idx2char), type(vocab_size) # + id="pUNvjYM_Q9Or" print(char2idx) print(idx2char) print(vocab_size) # + id="o3UOidv-P3Sc" idx_inputs, input_seq_len = pp.enc_processing(inputs, char2idx) type(idx_inputs), len(input_seq_len) # + id="2j3GN042SWhy" idx_inputs[3:5] # + id="LdVoyHl9O9Rn" idx_outputs, output_seq_len = pp.dec_output_processing(outputs. char2idx) type(idx_outputs), len(output_seq_len) # + id="VKiMvNGvSWHR" idx_outputs[3:5] # + id="vysz8jcBSanP" idx_targets = pp.dec_target_processing(outputs, char2idx) type(idx_targets), len(idx_targets) # + id="C6JmhV24SjN9" idx_targets[3:5] # + id="mpgmy8tmSlaX" data_configs = dict() # + id="xXk5wUKhTpyq" data_configs['char2idx'] = char2idx data_configs['idx2char'] = idx2char data_configs['vocab_size'] = vocab_size # + id="Fch057HgUkvR" import numpy as np # + id="5aD-78CZUksz" np.save(open('./train_inputs.npy','wb'), idx_inputs) # + id="umdGJiXdUrfy" # !file ./train_inputs.npy # + id="HTc04OYoUrdi" np.save(open('./train_outputs.npy','wb'), idx_outputs) # + id="9jeuLQU4VT92" data_configs['char2idx'] = char2idx data_configs['idx2char'] = idx2char data_configs['vocab_size'] = vocab_size data_configs['pad_symbol'] = PAD data_configs['std_symbol'] = STD data_configs['end_symbol'] = END data_configs['unk_symbol'] = UNK # + id="zwejk2fHVTcf" pp.json.dump(data_configs, open('./data_configs.json', 'w'))
NLP/seq2seq_preprocess.ipynb
# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.14.4 # kernelspec: # display_name: Python 3 # name: python3 # --- # + [markdown] id="WzfdUE-RDKZe" colab_type="text" # #Face Recognition using Deep Learning (IoT project) # + id="y6_UOrhYOyHX" colab_type="code" outputId="f82f10ed-4d28-4e08-beb7-ed75a073deae" colab={"base_uri": "https://localhost:8080/", "height": 638} # !pip install tensorflow==1.8 # + id="weuAoWzzAu_w" colab_type="code" outputId="55a882e1-b6b0-4df2-d262-a3b635f2049e" colab={"base_uri": "https://localhost:8080/", "height": 54} import matplotlib.pyplot as plt import numpy as np import os import tensorflow as tf import zipfile import keras from keras.applications import MobileNet from keras.layers import Conv2D, Dense, Dropout, Flatten, MaxPooling2D from keras.models import Sequential from keras.preprocessing.image import ImageDataGenerator from keras import optimizers print(keras.__version__) # + [markdown] id="6Jvxio08wbUG" colab_type="text" # ##Build dataset # # We have taken photos of our group members mixed with public face dataset . I took a video of the landmarks and used FFmpeg to extract 4 images(frames) per second. Finally I shuffle the dataset and split them into train, validation and test dataset. # + id="gZHxl2dESMpg" colab_type="code" outputId="b7543693-4dea-4fc4-b722-d51ca8f1b910" colab={"base_uri": "https://localhost:8080/", "height": 35} # !ls # + id="LKqy9HGQBQIj" colab_type="code" colab={} local_zip = 'face.zip' zip_ref = zipfile.ZipFile(local_zip, 'r') zip_ref.extractall('face') zip_ref.close() base_dir = 'face' train_dir = os.path.join(base_dir, 'train') validation_dir = os.path.join(base_dir, 'val') test_dir = os.path.join(base_dir, 'test') train_owner_dir = os.path.join(train_dir, 'owner') train_breaker_dir = os.path.join(train_dir, 'breaker') validation_owner_dir = os.path.join(validation_dir, 'owner') validation_breaker_dir = os.path.join(validation_dir, 'breaker') test_owner_dir = os.path.join(test_dir, 'owner') test_breaker_dir = os.path.join(test_dir, 'breaker') # + id="maha4K_3BQLK" colab_type="code" colab={} num_owner_tr = len(os.listdir(train_owner_dir)) num_breaker_tr = len(os.listdir(train_breaker_dir)) num_owner_val = len(os.listdir(validation_owner_dir)) num_breaker_val = len(os.listdir(validation_breaker_dir)) num_owner_test = len(os.listdir(test_owner_dir)) num_breaker_test = len(os.listdir(test_breaker_dir)) total_train = num_owner_tr + num_breaker_tr total_val = num_owner_val + num_breaker_val total_test = num_owner_test + num_breaker_test # + id="MQ65ATMiBQNy" colab_type="code" outputId="bdf37960-d5ff-4648-f178-b3ba682086e6" colab={"base_uri": "https://localhost:8080/", "height": 199} print('Training owner images:', num_owner_tr) print('Training breaker images:', num_breaker_tr) print('Validation owner images:', num_owner_val) print('Validation breaker images:', num_breaker_val) print('Test owner images:', num_owner_test) print('Test breaker images:', num_breaker_test) print("--") print("Total training images:", total_train) print("Total validation images:", total_val) print("Total test images:", total_test) # + [markdown] id="ZTmsWSd27dx6" colab_type="text" # ##Data augmentation # + id="3fUE42H1aqvE" colab_type="code" outputId="9699bd1b-acef-4344-c05e-f9c2f814d5f8" colab={"base_uri": "https://localhost:8080/", "height": 72} TARGET_SHAPE = 160 BATCH_SIZE = 32 image_gen_train = ImageDataGenerator( rescale=1./255, rotation_range=40, width_shift_range=0.2, height_shift_range=0.2, shear_range=0.2, zoom_range=0.2, horizontal_flip=True, fill_mode='nearest') train_data_gen = image_gen_train.flow_from_directory( batch_size=BATCH_SIZE, directory=train_dir, shuffle=True, target_size=(TARGET_SHAPE,TARGET_SHAPE), class_mode='binary') image_gen_val = ImageDataGenerator(rescale=1./255) val_data_gen = image_gen_val.flow_from_directory( batch_size=BATCH_SIZE, directory=validation_dir, target_size=(TARGET_SHAPE, TARGET_SHAPE), class_mode='binary') image_gen_test = ImageDataGenerator(rescale=1./255) test_data_gen = image_gen_val.flow_from_directory( batch_size=BATCH_SIZE, directory=test_dir, target_size=(TARGET_SHAPE, TARGET_SHAPE), class_mode='binary') # + [markdown] id="-p_mE4Gmya_c" colab_type="text" # ## Display Sample Training Images # + id="nWeQxPmryba0" colab_type="code" colab={} sample_training_images, sample_training_labels = next(train_data_gen) # + id="w2T5e-x_ysN3" colab_type="code" colab={} def plotImages(images_arr): fig, axes = plt.subplots(1, 5, figsize=(20,20)) axes = axes.flatten() for img, ax in zip( images_arr, axes): ax.grid(False) ax.imshow(img) plt.tight_layout() plt.show() # + id="WrAYXQvwysQn" colab_type="code" outputId="8366b06f-a764-42c8-897f-acab4a57c08a" colab={"base_uri": "https://localhost:8080/", "height": 317} plotImages(sample_training_images[:5]) # + [markdown] id="ridXwziwyb3c" colab_type="text" # # Part2 transfer learning # First I chosen MobileNet as the model, and I apply the transfer learning onto the Mobilenet model trained on my own Dataset. # + id="Mtp9BqPZ0BSC" colab_type="code" colab={} vgg16_conv_base = MobileNet(weights='imagenet',include_top=False, input_shape=(160, 160, 3)) # + id="DCoyxHb90BsD" colab_type="code" outputId="e258f1ee-141b-431a-9667-e4636ccbae7d" colab={"base_uri": "https://localhost:8080/", "height": 3308} vgg16_conv_base.summary() # + id="E2jde6qb0By4" colab_type="code" colab={} vgg16_conv_base.trainable = False vgg16_model = Sequential() vgg16_model.add(vgg16_conv_base) vgg16_model.add(Flatten()) vgg16_model.add(Dense(512, activation='relu')) vgg16_model.add(Dense(1, activation='sigmoid')) # + id="XA6mKtoLz9Bq" colab_type="code" outputId="abfb73b2-94a1-469d-9503-e44119fdfa40" colab={"base_uri": "https://localhost:8080/", "height": 290} vgg16_model.summary() # + id="ZkKVaCtZb-C5" colab_type="code" colab={} EPOCHS = 5 # + id="PeaLKrspaqxr" colab_type="code" outputId="0ff1693c-3558-497e-9e02-b392abd30085" colab={"base_uri": "https://localhost:8080/", "height": 219} vgg16_model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['acc']) vgg16_history = vgg16_model.fit_generator( train_data_gen, steps_per_epoch=int(np.ceil(total_train / float(BATCH_SIZE))), epochs=EPOCHS, validation_data=val_data_gen, validation_steps=int(np.ceil(total_val / float(BATCH_SIZE))), verbose=1) # + [markdown] id="FIhThbSJ4XH6" colab_type="text" # ## Plot Training and Validation Loss and Accuracy # + id="1BjJ4R_uaq0r" colab_type="code" outputId="f226a5f5-407e-4874-efc6-03ae05055684" colab={"base_uri": "https://localhost:8080/", "height": 791} acc = vgg16_history.history['acc'] val_acc = vgg16_history.history['val_acc'] loss = vgg16_history.history['loss'] val_loss = vgg16_history.history['val_loss'] epochs_range = range(1, EPOCHS+1) plt.figure(figsize=(13,13)) plt.subplot(1, 2, 1) plt.plot(epochs_range, acc, label='Training Accuracy') plt.plot(epochs_range, val_acc, label='Validation Accuracy') plt.legend(loc='lower right') plt.title('Training and Validation Accuracy from Transfer Learning on VGG16') plt.subplot(1, 2, 2) plt.plot(epochs_range, loss, label='Training Loss') plt.plot(epochs_range, val_loss, label='Validation Loss') plt.legend(loc='upper right') plt.title('Training and Validation Loss from Transfer Learning on VGG16') plt.show() # + [markdown] id="LFZun68z4b2z" colab_type="text" # ## Show Testing Loss and Accuracy # + id="GYItoZm-aq3L" colab_type="code" outputId="0edfa5ce-42ff-4747-cc8a-4f2ff4b3a1fc" colab={"base_uri": "https://localhost:8080/", "height": 345} vgg16_test_loss, vgg16_test_accuracy = vgg16_model.evaluate(test_data_gen, verbose=1) # + id="u-kw_jFLaq6E" colab_type="code" colab={} print('The test loss is '+ str(round(vgg16_test_loss,2))+' and the test accracy is '+ str(round(vgg16_test_accuracy,2))) # + id="oZb16Wj5oBSx" colab_type="code" colab={} vgg16_model.save("model1.h5") # + [markdown] id="NWwX6iL-dUeg" colab_type="text" # #part3: self-defined CNN # + id="04UFK-TcK00x" colab_type="code" outputId="91b08510-6807-477f-8555-f6fe4639a59c" colab={"base_uri": "https://localhost:8080/", "height": 72} TARGET_SHAPE = 150 BATCH_SIZE = 32 image_gen_train = ImageDataGenerator( rescale=1./255, rotation_range=40, width_shift_range=0.2, height_shift_range=0.2, shear_range=0.2, zoom_range=0.2, horizontal_flip=True, fill_mode='nearest') train_data_gen = image_gen_train.flow_from_directory( batch_size=BATCH_SIZE, directory=train_dir, shuffle=True, target_size=(TARGET_SHAPE,TARGET_SHAPE), class_mode='binary') image_gen_val = ImageDataGenerator(rescale=1./255) val_data_gen = image_gen_val.flow_from_directory( batch_size=BATCH_SIZE, directory=validation_dir, target_size=(TARGET_SHAPE, TARGET_SHAPE), class_mode='binary') image_gen_test = ImageDataGenerator(rescale=1./255) test_data_gen = image_gen_val.flow_from_directory( batch_size=BATCH_SIZE, directory=test_dir, target_size=(TARGET_SHAPE, TARGET_SHAPE), class_mode='binary') # + id="AvXjmqjVfshF" colab_type="code" colab={} inc_model = Sequential() inc_model.add(Conv2D(32, (3, 3), activation='relu', input_shape=(480, 480, 3))) inc_model.add(MaxPooling2D((2, 2))) inc_model.add(Conv2D(64, (3, 3), activation='relu')) inc_model.add(MaxPooling2D((2, 2))) inc_model.add(Conv2D(128, (3, 3), activation='relu')) inc_model.add(MaxPooling2D((2, 2))) inc_model.add(Conv2D(128, (3, 3), activation='relu')) inc_model.add(MaxPooling2D((2, 2))) inc_model.add(Flatten()) inc_model.add(Dense(512, activation='relu')) inc_model.add(Dense(1, activation='sigmoid')) # + id="9AsfAdiSi-cL" colab_type="code" outputId="cfa03d4c-34da-4755-8983-528a7a75fd06" colab={"base_uri": "https://localhost:8080/", "height": 401} EPOCHS = 10 inc_model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['acc']) # Train Transfer Learning inc_history = inc_model.fit_generator( train_data_gen, steps_per_epoch=int(np.ceil(total_train / float(BATCH_SIZE))), epochs=EPOCHS, validation_data=val_data_gen, validation_steps=int(np.ceil(total_val / float(BATCH_SIZE))), verbose=1) # + id="2C3GwvfFlpgT" colab_type="code" outputId="728d3db5-728d-482e-e815-9081e399e6d8" colab={"base_uri": "https://localhost:8080/", "height": 499} acc = inc_history.history['acc'] val_acc = inc_history.history['val_acc'] loss = inc_history.history['loss'] val_loss = inc_history.history['val_loss'] epochs_range = range(1, EPOCHS+1) plt.figure(figsize=(8, 8)) plt.subplot(1, 2, 1) plt.plot(epochs_range, acc, label='Training Accuracy') plt.plot(epochs_range, val_acc, label='Validation Accuracy') plt.legend(loc='lower right') plt.title('Training and Validation Accuracy') plt.subplot(1, 2, 2) plt.plot(epochs_range, loss, label='Training Loss') plt.plot(epochs_range, val_loss, label='Validation Loss') plt.legend(loc='upper right') plt.title('Training and Validation Loss') plt.show() # + id="fauEIos5l2FG" colab_type="code" outputId="1de2e583-a8b0-4b32-855e-3d000eb008f6" colab={"base_uri": "https://localhost:8080/", "height": 363} inc_test_loss, inc_test_accuracy = inc_model.evaluate(test_data_gen, verbose=1) print('The test loss is '+ str(round(inc_test_loss,2))+' and the test accracy is '+ str(round(inc_test_accuracy,2))) # + id="KOhdhh3DmD7a" colab_type="code" colab={} inc_model.save_weights("model.h5") # + id="KYi9SCarmM_J" colab_type="code" outputId="a4a03597-f0b3-4dba-de48-49f5210e0d63" colab={"base_uri": "https://localhost:8080/", "height": 72} import PIL from PIL import Image img = Image.open("/content/face/test/owner/IMG_20190428_164249.jpg") img = img.resize((150,150), PIL.Image.ANTIALIAS) image = np.asarray(img) shape1 = image.shape print(shape1) image = np.expand_dims(image, axis=0) print(image.shape) result = inc_model.predict(image) print(result)
face_recognition_.ipynb
# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.14.4 # kernelspec: # display_name: Python [conda env:anaconda] # language: python # name: conda-env-anaconda-py # --- # + import quandl import numpy as np import pandas as pd import talib import matplotlib.pyplot as plt import seaborn as sns from sklearn import linear_model from statistics import mean, stdev from sklearn.preprocessing import scale # + SOXL = pd.read_csv('/Users/josephseverino/Downloads/SOXL.csv') #ETF growth cycle Nasdaq = pd.read_csv('/Users/josephseverino/Downloads/Nasdaq.csv') #Index TQQQ = pd.read_csv('/Users/josephseverino/Downloads/TQQQ.csv') #3X Index MU = pd.read_csv('/Users/josephseverino/Downloads/MU.csv') #high Beta AMD = pd.read_csv('/Users/josephseverino/Downloads/AMD.csv') # high beta NFLX = pd.read_csv('/Users/josephseverino/Downloads/NFLX.csv') #High growth AMZN = pd.read_csv('/Users/josephseverino/Downloads/AMZN.csv') #High growth V = pd.read_csv('/Users/josephseverino/Downloads/V.csv') #low volalitity YINN = pd.read_csv('/Users/josephseverino/Downloads/YINN.csv') #looks like bell curve NVDA = pd.read_csv('/Users/josephseverino/Downloads/NVDA.csv') #high growth WTW = pd.read_csv('/Users/josephseverino/Downloads/WTW.csv') #high beta F = pd.read_csv('/Users/josephseverino/Downloads/F.csv') #highly traded MSFT = pd.read_csv('/Users/josephseverino/Downloads/MSFT.csv') #high traded HNGR = pd.read_csv('/Users/josephseverino/Downloads/HNGR.csv') #high beta cyclic VIX = pd.read_csv('/Users/josephseverino/Downloads/VIX.csv') #high beta cyclic stocks = [SOXL, Nasdaq, TQQQ, MU, AMD, NFLX, AMZN, V, YINN, NVDA, WTW, F, MSFT, HNGR] # - print('SOXL: ',SOXL.shape, 'Nasdaq: ', Nasdaq.shape, 'TQQQ: ',TQQQ.shape, 'MU: ',MU.shape, 'Visa: ', V.shape, 'Amazon: ',AMZN.shape, 'Netflix: ',NFLX.shape, 'AMD: ',AMD.shape, 'YINN: ',YINN.shape, 'NVDA: ', NVDA.shape, 'WTW: ', WTW.shape, 'F: ', F.shape, 'MSFT: ', MSFT.shape, 'HNGR: ', HNGR.shape, 'VIX: ', VIX.shape) # # Below is my Feature Engineering adj_return = lambda x: x + 1 for df in stocks: #previous day percentage return df['Day_previous_roi'] = df['Open'].pct_change(1) #adding a 1 to return for easier calculations df['Day_previous_roi'] = df['Day_previous_roi'].apply(adj_return) #current day percentage return df['current_roi'] = df['Day_previous_roi'].shift(-1) for df in stocks: for n in [10,20,60,200]: # Create the moving average indicator and divide by Adj_Close df['ma' + str(n)] = talib.SMA(df['Adj Close'].values,timeperiod=n) / df['Adj Close'] #PCT of MA df['ma_chg' + str(n)] = df['ma' + str(n)].pct_change() # Create the RSI indicator df['rsi' + str(n)] = talib.RSI(df['Adj Close'].values, timeperiod=n) #CHG of rsi # Create the RSI indicator df['rsi_chg' + str(n)] = df['rsi' + str(n)].pct_change() # time series predictor df['tsf' + str(n)] = talib.TSF(df['Adj Close'].values, timeperiod=n) # Normalize tsf to price df['tsf' + str(n)] = df['tsf' + str(n)].values/df['Adj Close'].values for df in stocks: #MACD signals df['macd'], df['macdsignal'], df['macdhist'] = talib.MACD(df['Close'].values, fastperiod=12, slowperiod=26, signalperiod=9) #AROON signals df['aroondown'], df['aroonup'] = talib.AROON(df['High'].values, df['Low'].values, timeperiod=14) #OBV volume_data = np.array(df['Volume'].values, dtype='f8') df['obv'] = talib.OBV(df['Close'].values, volume_data) #candle stick pattern df['shawman'] = talib.CDLRICKSHAWMAN(df['Open'].values, df['High'].values, df['Low'].values, df['Close'].values) #candle stick pattern df['hammer'] = talib.CDLHAMMER(df['Open'].values, df['High'].values, df['Low'].values, df['Close'].values) #cyclical indicator df['sine'], df['leadsine'] = talib.HT_SINE(df['Close'].values) # + #normalizing features for df in stocks: df['macd_diff'] = df['macd'] - df['macdsignal'] df['macd_diff_hist'] = df['macd'] - df['macdhist'] df['aroon_diff'] = df['aroonup'] - df['aroondown'] df['obv'] = df['obv'].pct_change(1) # + #looking at the percent difference between the high, low and open close of a #day def dt(start,diff): diff = (diff-start)/start return diff for df in stocks: df['open_H_ratio'] = dt(df['Open'].values,df['High'].values) df['open_L_ratio'] = dt(df['Open'].values,df['Low'].values) df['close_H_ratio'] = dt(df['Close'].values,df['High'].values) df['close_L_ratio'] = dt(df['Close'].values,df['Low'].values) # + # trend line slope for df in stocks: for n in [3,5,10,60]: #print(n) slope = [] r_sqr = [] for i in range(len(df['Open'])): if i > n: X = (np.array(range(n))).reshape(-1,1) y = df['Open'][(i-n):i] lm = linear_model.LinearRegression() model = lm.fit(X,y) slope.append(model.coef_[0]) r_sqr.append(model.score(X,y)) else: slope.append(np.nan) r_sqr.append(np.nan) if i == (len(df['Open'])-1): df['slope' + str(n)] = slope df['r_sqr_' + str(n)] = r_sqr # + #20 day moving distribution to see if ROI goes outside of standard deviation n = 20 for df in stocks: std_dev = [] for i in range(len(df['Open'])): if i > n: sample = df['current_roi'][i] pop_mean = mean(df['current_roi'][(i-n):i]) pop_std = stdev(df['current_roi'][(i-n):i]) if sample > ( pop_mean +5*pop_std ): #5 deviation above std_dev.append(5) elif sample > ( pop_mean +4*pop_std ): #4 deviation above std_dev.append(4) elif sample > ( pop_mean +3*pop_std ): #3 deviation above std_dev.append(3) elif sample > ( pop_mean +2*pop_std ): #2 deviation above std_dev.append(2) elif sample > ( pop_mean + pop_std ): #1 deviation above std_dev.append(1) elif sample > ( pop_mean - pop_std ): #within 1 deviation std_dev.append(0) elif sample > ( pop_mean - 2* pop_std ): #1 deviation below std_dev.append(-1) elif sample > ( pop_mean - 3* pop_std ): #2 deviation below std_dev.append(-2) elif sample > ( pop_mean - 4* pop_std ): #3 deviation below std_dev.append(-3) elif sample > ( pop_mean - 5* pop_std ): #4 deviation below std_dev.append(-4) else: #5 deviation below std_dev.append(-5) else: std_dev.append(np.nan) if i == (len(df['Open'])-1): df['stDev' + str(n)] = std_dev # + #below 10 or more #I plan on using this category to train my models end = Nasdaq.shape[0] max_price = Nasdaq['Open'][0] down_array = [] for n in range(end): if Nasdaq['Close'][n] > max_price: #setting the all-time highest price max_price = Nasdaq['Close'][n] #setting percent down form highest price down_from_top_percent = 1 + ((Nasdaq['Close'][n] - max_price)/max_price) #print(down) if down_from_top_percent < .8: #bear market down_array.append('#ff543a') elif down_from_top_percent < .9: #correction down_array.append('#eeff32') else: #bull market down_array.append('#71f442') Nasdaq['down_market'] = down_array # - #recursion from the peak for df in stocks: end = df.shape[0] max_price = df['Open'][0] down_array = [] for n in range(end): if df['Close'][n] > max_price: #setting the all-time highest price max_price = df['Close'][n] #setting percent down form highest price down_from_top_percent = 1 + ((df['Close'][n] - max_price)/max_price) #print(down) down_array.append(down_from_top_percent) df['percent_down'] = down_array # + #dummy variable 1 if it's all time high and 0 if not for df in stocks: end = df.shape[0] max_price = df['Open'][0] max_array = [] for n in range(end): if n % 60 == 0: max_price = df['Open'][n] if df['Open'][n] > max_price: max_array.append(1) #setting the all-time highest price max_price = df['Open'][n] else: max_array.append(0) df['semi_pk_pr'] = max_array # - #consecutive days up or day #this will likely only be used for EDA later on for df in stocks: end = df.shape[0] counter = 0 counter_array = [] for n in range(end): if n > 1: #here we reset counter if not consistent if counter > 1 and df['Day_previous_roi'][n] <= 1: counter = 0 elif counter < 1 and df['Day_previous_roi'][n] >= 1: counter = 0 elif counter == 1 and df['Day_previous_roi'][n] != 1: counter if df['Day_previous_roi'][n] > 1: counter += 1 elif df['Day_previous_roi'][n] == 1: counter = 0 else: counter -= 1 counter_array.append(counter) df['up_dwn_prev'] = counter_array #consecutive days up or day #this will likely only be used for EDA later on for df in stocks: end = df.shape[0] counter = 0 counter_array = [] for n in range(end): if n > 1: #here we reset counter if not consistent if counter > 1 and df['current_roi'][n] <= 1: counter = 0 elif counter < 1 and df['current_roi'][n] >= 1: counter = 0 elif counter == 1 and df['current_roi'][n] != 1: counter if df['current_roi'][n] > 1: counter += 1 elif df['current_roi'][n] == 1: counter = 0 else: counter -= 1 counter_array.append(counter) df['up_dwn_curr'] = counter_array # # Creating My target Variables #Lets make a few target regression variables for df in stocks: for i in [1,3,5,10,20]: end = df.shape[0] target = 0 target_array = [] for n in range(end): target = df['current_roi'][n:(n+i)].prod() target_array.append(target) df['target_' + str(i) +'roi'] = target_array # + #now lets do some categorical data for df in stocks: for i in [1,3,5,10,20]: end = df.shape[0] target_array = [] for n in range(end): if n >= (end - i): target_array.append(np.nan) else: #try .max for np arrays target = 1 + (max(df['High'][n:(n+i+1)]) - df['Open'][n])/df['Open'][n] if target == 1.0: target = df['target_' + str(i) +'roi'][n] target_array.append(target) df['tar_' + str(i) +'best_roi'] = target_array # + #now lets do some categorical data for df in stocks: for i in [1,3,5,10,20]: end = df.shape[0] qtile = (df['tar_' +str(i) + 'best_roi'].quantile([0.25,0.5,0.75])).values class_array = [] q1 = str(round(qtile[0],4)) q2 = str(round(qtile[1],4)) q3 = str(round(qtile[2],4)) for n in range(end): if n >= (end - 1): class_array.append(np.nan) else: target = 1 + (max(max(df['High'][n:(n+i+1)]),df['Open'][n+1]) - df['Open'][n])/df['Open'][n] if target > qtile[2]: class_array.append('abv_' + q3) elif target > qtile[1]: class_array.append('abv_' + q2) elif target > qtile[0]: class_array.append('abv_' + q1) elif target <= qtile[0]: class_array.append('bel_'+ q1) df['tar_' + str(i) +'best_class'] = class_array # - (V['tar_1best_roi'].quantile([0.25,0.5,0.75])).values from collections import Counter Counter(V['tar_1best_class']) for df in stocks: end = df.shape[0] t_array = [] for row in df.current_roi: if row > 1: t_array.append('buy') else: t_array.append('sell') df['easy_buy'] = t_array # + for df in stocks: #print(qtile[1]) for i in [1,3,5,10,20]: qtile = (df['tar_' +str(i) + 'best_roi'].quantile([0.25,0.5,0.75])).values end = df.shape[0] target = 0 label = '' target_array = [] #print(i) for n in range(end): if n >= (end - i): target_array.append(np.nan) else: #try .max for np arrays target = 1 + (max(df['High'][n:(n+i+1)]) - df['Open'][n])/df['Open'][n] if target <= 1.0: target = 1 + ((df['Close'][n+i] - df['Open'][n])/df['Open'][n]) #print(n,t) if target > qtile[1]: label = 'above_'+ str(qtile[1]) else: label = 'below_'+ str(qtile[1]) target_array.append(label) df['tar_' + str(i) +'new_high'] = target_array # - for df in stocks: for i in [1,3,5,10,20]: df['tar_' + str(i) +'new_high'] = df['tar_' + str(i) +'new_high'].shift(-1) df['tar_' + str(i) +'best_class'] = df['tar_' + str(i) +'best_class'].shift(-1) df['tar_' + str(i) +'best_roi'] = df['tar_' + str(i) +'best_roi'].shift(-1) df['target_' + str(i) +'roi'] = df['target_' + str(i) +'roi'].shift(-1) for df in stocks: df['easy_buy'] = df['easy_buy'].shift(-1) # # Saving My dataframes as CSVs to use in Analysis # + #Drop all NaN values form dataframes for df in stocks: df.replace(-np.inf, np.nan,inplace=True) df.replace(np.inf, np.nan,inplace=True) df.dropna(inplace=True) df.reset_index(inplace=True) # + SOXL.name = 'soxl' Nasdaq.name = 'nasdaq' TQQQ.name = 'tqqq' MU.name = 'mu' AMD.name = 'amd' NFLX.name = 'nflx' AMZN.name = 'amzn' V.name = 'visa' YINN.name = 'yinn' NVDA.name = 'nvda' WTW.name = 'wtw' F.name = 'f' MSFT.name = 'mfst' HNGR.name = 'hngr' # + import glob for df in stocks: # Give the filename you wish to save the file to filename = df.name + '_new.csv' # Use this function to search for any files which match your filename files_present = glob.glob(filename) # if no matching files, write to csv, if there are matching files, print statement if not files_present: df.to_csv(filename) else: print('WARNING: This file already exists!' ) # - # # Feature Importance Testing # + #MU_cln.columns.values.tolist() features = ['Day_previous_roi','ma10','rsi10','ma20','rsi20','ma_chg20', 'ma60','rsi60','ma200','rsi200','obv','macd_diff','ma_chg10', 'macd_diff_hist','aroon_diff','slope60','r_sqr_60','ma_chg60', 'slope10','r_sqr_10','slope5','slope3','r_sqr_5','stDev20','ma_chg200', 'rsi_chg10','rsi_chg20','rsi_chg60','rsi_chg200', 'percent_down','sine','leadsine','tsf10','tsf20','tsf60','tsf200', 'up_dwn_prev','shawman','hammer','semi_pk_pr','open_H_ratio', 'open_L_ratio','close_H_ratio','close_L_ratio'] feature_best = ['Day_previous_roi','ma10','rsi10','ma20','rsi20', 'ma60','rsi60','ma200','rsi200','obv','macd_diff', 'macd_diff_hist','aroon_diff','slope60','r_sqr_60', 'slope10','r_sqr_10','slope5','r_sqr_5', 'percent_down','sine','leadsine','tsf10', 'tsf20','tsf60','tsf200', 'up_dwn_prev','open_H_ratio', 'open_L_ratio','close_H_ratio','close_L_ratio'] corr_ft = ['Day_previous_roi','ma10','rsi10','ma20','rsi20', 'ma60','rsi60','ma200','rsi200','obv','macd_diff', 'macd_diff_hist','aroon_diff','slope60','r_sqr_60', 'slope10','r_sqr_10','slope5','r_sqr_5','stDev20', 'percent_down','sine','leadsine','tsf10','tsf20','tsf60','tsf200', 'up_dwn_prev','shawman','hammer','semi_pk_pr','current_roi'] targets_cat = ['up_dwn_curr', 'tar_3best_roi', 'tar_5best_roi', 'tar_10best_roi', 'tar_20best_roi', 'tar_1best_roi', 'tar_1best_class', 'tar_3best_class', 'tar_5best_class', 'tar_10best_class', 'tar_20best_class', 'easy_buy', 'tar_3new_high', 'tar_5new_high', 'tar_10new_high', 'tar_20new_high'] targets_reg = ['target_3roi', 'target_5roi', 'target_10roi', 'target_20roi'] #Set stock or dataframe df_cln = NFLX target_name = 'tar_3best_class' #.75 make a 25/75 split stop = round(.9*len(df_cln)) #set features feature_train = df_cln.loc[:stop,features] feature_test = df_cln.loc[stop:,features] #set my targets target_train = df_cln.loc[:stop,[target_name]] target_test = df_cln.loc[stop:,[target_name]] # + #MU.columns.values.tolist() # - print(target_train.shape,target_test.shape,feature_train.shape,feature_test.shape) # + from sklearn.ensemble import RandomForestClassifier from sklearn.feature_selection import SelectFromModel from sklearn.metrics import accuracy_score # Create a random forest classifier rf2 = RandomForestClassifier(n_estimators=1100, max_features=6, max_depth=11, n_jobs=-1, random_state=42) # Train the classifier rf2.fit(feature_train, target_train) feature_imp = pd.Series(rf2.feature_importances_,index=features).sort_values(ascending=False) feature_imp #rf.feature_importances_ # - # %matplotlib inline # Creating a bar plot sns.barplot(x=feature_imp, y=feature_imp.index) # Add labels to your graph plt.xlabel('Feature Importance Score') plt.ylabel('Features') plt.title("Visualizing Important Features") plt.legend() plt.show() # + # prediction on test set target_pred=rf2.predict(feature_test) #Import scikit-learn metrics module for accuracy calculation from sklearn import metrics # Model Accuracy, how often is the classifier correct? print("Cohen Kappa:",metrics.cohen_kappa_score(target_test, target_pred),'\n' "Accuracy:",metrics.accuracy_score(target_test, target_pred)) # + df_cln[target_name].value_counts() # - from collections import Counter Counter(target_test[target_name]) plt.subplots(figsize=(30,25)) sns.set(style="whitegrid") ax = sns.violinplot(x="stDev20", y="target_3roi", data=Nasdaq,palette="Set3")
data_ingest_&_clean.ipynb
# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.14.4 # kernelspec: # display_name: DESI master # language: python # name: desi-master # --- # # Notebook showing some very basic QA on main survey reduced data so far from astropy.table import Table import fitsio import numpy as np from matplotlib import pyplot as plt import os,sys from desitarget import targetmask ff = fitsio.read('/global/cfs/cdirs/desi/spectro/redux/everest/zcatalog/ztile-main-dark-cumulative.fits') wp = ff['PRIORITY'] == 3400 print(len(ff[wp])) wq = ff['DESI_TARGET'] & 2**2 != 0 print(len(ff[wq]),len(ff[wq&wp])) ws = ff['DESI_TARGET'] & 2**62 != 0 print(len(ff[wp&ws&~wq])) np.unique(ff['PRIORITY'],return_counts=True) w = ff['PRIORITY'] == 0 print(np.unique(ff[w]['OBJTYPE'],return_counts=True)) ff.dtype.names sys.path.append('../py') #this works if you are in the LSS/Sandbox directory, check with os.getcwd() from LSS.main import cattools as ct import importlib importlib.reload(ct) mt = Table.read('/global/cfs/cdirs/desi/survey/ops/surveyops/trunk/ops/tiles-main.ecsv') mt.columns len(mt) wd = mt['DONEFRAC'] > 1 print(len(mt[wd])) #use this to test a specific tile tdir = '/global/cfs/cdirs/desi/spectro/redux/daily/tiles/cumulative/1895' subsets = [x[0][len(tdir):].strip('/') for x in os.walk(tdir)] zt = ct.combspecdata('1895',max(subsets),md='') #zt becomes table with redshift info wt = zt['FIBERSTATUS'] == 0 np.median(zt[wt]['TSNR2_QSO']) #look at number of quasars wq = zt['SPECTYPE'] == 'QSO' wq &= zt['FIBERSTATUS'] == 0 wq &= zt['ZWARN'] == 0 wq &= zt['DESI_TARGET'] & targetmask.desi_mask['QSO'] > 0 print(len(zt[wq])) # ### below goes through all tiles with donefrac > 1 and compares "good" to total tps = ['LRG','ELG','QSO','BGS_ANY','MWS_ANY'] elgt = [] elgg = [] lrgt = [] lrgg = [] qsot = [] qsog = [] bgst = [] bgsg = [] mwst = [] mwsg = [] bt = [] n = 0 for tid,pr in zip(mt[wd]['TILEID'],mt[wd]['PROGRAM']): n += 1 tdir = '/global/cfs/cdirs/desi/spectro/redux/daily/tiles/cumulative/'+str(tid) subsets = [x[0][len(tdir):].strip('/') for x in os.walk(tdir)] zt = ct.combspecdata(str(tid),max(subsets),md='') print(n,len(mt[wd])) print('tile is '+str(tid)+' and program is '+pr) for tp in tps: selt = (zt['DESI_TARGET'] & targetmask.desi_mask[tp]) > 0 selt &= (zt['FIBERSTATUS'] == 0) wzg = selt & (zt['ZWARN'] == 0) #print(tp,len(zt[selt]),len(zt[wzg])) if pr == 'DARK': if tp == 'ELG': selt &= (zt['DESI_TARGET'] & targetmask.desi_mask['QSO']) == 0 wzg &= (zt['DESI_TARGET'] & targetmask.desi_mask['QSO']) == 0 elgt.append(len(zt[selt])) elgg.append(len(zt[wzg])) if tp == 'LRG': lrgt.append(len(zt[selt])) lrgg.append(len(zt[wzg])) if tp == 'QSO': qsot.append(len(zt[selt])) qsog.append(len(zt[wzg])) if len(zt[wzg])/len(zt[selt]) < 0.75: bt.append(tid) if pr == 'BRIGHT': if tp == 'BGS_ANY': wzg &= (zt['DELTACHI2'] > 40) bgst.append(len(zt[selt])) bgsg.append(len(zt[wzg])) if tp == 'MWS_ANY': mwst.append(len(zt[selt])) mwsg.append(len(zt[wzg])) plt.hist(np.array(elgg)/np.array(elgt)) plt.xlabel('fraction with zwarn == 0') plt.ylabel('# of tiles') plt.title('ELGs (not QSO) on first '+str(len(elgg))+' dark tiles with donefrac>1') plt.show() plt.hist(np.array(lrgg)/np.array(lrgt)) plt.xlabel('fraction with zwarn == 0') plt.ylabel('# of tiles') plt.title('LRGs on first '+str(len(elgg))+' dark tiles with donefrac>1') plt.show() plt.hist(np.array(qsog)/np.array(qsot)) plt.xlabel('fraction with zwarn == 0') plt.ylabel('# of tiles') plt.title('QSO targets on first '+str(len(elgg))+' dark tiles with donefrac>1') plt.show() plt.hist(np.array(bgsg)/np.array(bgst)) plt.xlabel('fraction with zwarn == 0 and DELTACHI2 > 40') plt.ylabel('# of tiles') plt.title('BGS_ANY targets on first '+str(len(bgsg))+' bright tiles with donefrac>1') plt.show() plt.hist(np.array(mwsg)/np.array(mwst)) plt.xlabel('fraction with zwarn == 0') plt.ylabel('# of tiles') plt.title('MWS_ANY targets on first '+str(len(elgg))+' bright tiles with donefrac>1') plt.show() print(sum(elgg),sum(lrgg),sum(qsog),len(elgg)) print(sum(elgt),sum(lrgt),sum(qsot)) print(sum(bgsg),sum(mwsg),len(bgsg)) print(sum(bgst),sum(mwst),len(bgst)) wb = np.isin(mt['TILEID'],bt) mt[wb] sum(qsot)/66
Sandbox/Main_explore.ipynb
# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.14.4 # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- # # [LEGALST-123] Lab 11: Math in Scipy # # # This lab will provide an introduction to numpy and scipy library of Python, preparing you for optimization and machine learning. # # # *Estimated Time: 30-40 minutes* # # --- # # ### Topics Covered # - Numpy Array # - Numpy matrix # - Local minima/maxima # - Scipy optimize # - Scipy integrate # # ### Table of Contents # # 1 - [Intro to Numpy](#section 1)<br> # # 3 - [Maxima and Minima](#section 2)<br> # # 2 - [Intro to Scipy](#section 3)<br> # # ## Intro to Numpy <a id='section 1'></a> # Numpy uses its own data structure, an array, to do numerical computations. The Numpy library is often used in scientific and engineering contexts for doing data manipulation. # # For reference, here's a link to the official [Numpy documentation](https://docs.scipy.org/doc/numpy/reference/routines.html). ## An import statement for getting the Numpy library: import numpy as np ## Also import csv to process the data file (black magic for now): import csv # ### Numpy Arrays # # Arrays can hold many different data types, which makes them useful for many different purposes. Here's a few examples. # create an array from a list of integers lst = [1, 2, 3] values = np.array(lst) print(values) print(lst) # nested array lst = [[1, 2, 3], [4, 5, 6], [7, 8, 9]] values = np.array(lst) print(values) # What does the below operation do? values > 3 # **Your answer:** changes all matrix values that are greater than three to 'True', and all other values to 'False' """ Here, we will generate a multidimensional array of zeros. This might be useful as a starting value that could be filled in. """ z = np.zeros((10, 2)) print(z) # ### Matrix # # A **matrix** is a rectangular array- in Python, it looks like an array of arrays. We say that a matrix $M$ has shape ** $m$x$n$ **; that is, it has $m$ rows (different smaller arrays inside of it) and $n$ columns (elements in each smaller matrix. # # Matrices are used a lot in machine learning to represent sets of features and train models. Here, we'll give you some practice with manipulating them. # # The **identity matrix** is a square matrix (i.e. size $n$x$n$) with all elements on the main diagonal equal to 1 and all other elements equal to zero. Make one below using `np.eye(n)`. # identity matrix I of dimension 4x4 np.eye(4) # Let's do some matrix manipulation. Here are two sample matrices to use for practice. # + m1 = np.array([[1, 3, 1], [1, 0, 0]]) m2 = np.array([[0, 0, 5], [7, 5, 0]]) print("matrix 1 is:\n", m1) print("matrix 2 is:\n", m2) # - # You can add two matrices together if they have the same shape. Add our two sample matrices using the `+` operator. # matrix sum m1 + m2 # A matrix can also be multiplied by a number, also called a **scalar**. Multiply one of the example matrices by a number using the `*` operator and see what it outputs. # scale a matrix m1 * 3 # You can sum all the elements of a matrix using `.sum()`. # sum of all elements in m1 m1.sum() # And you can get the average of the elements with `.mean()` # mean of all elements in m2 m2.mean() # Sometimes it is necessary to **transpose** a matrix to perform operations on it. When a matrix is transposed, its rows become its columns and its columns become its rows. Get the transpose by calling `.T` on a matrix (note: no parentheses) # transpose of m1 m1.T # Other times, you may need to rearrange an array of data into a particular shape of matrix. Below, we've created an array of 16 numbers: H = np.arange(1, 17) H # Use `.reshape(...)` on H to change its shape. `.reshape(...)` takes two arguments: the first is the desired number of rows, and the second is the desired number of columns. Try changing H to be a 4x4 matrix. # # Note: if you try to make H be a 4x3 matrix, Python will error. Why? # make H a 4x4 matrix H = H.reshape(4, 4) H # Next, we'll talk about **matrix multiplication**. First, assign H_t below to be the transpose of H. # assign H_t to the transpose of H H_t = H.T H_t # The [matrix product](https://en.wikipedia.org/wiki/Matrix_multiplication#Matrix_product_.28two_matrices.29) get used a lot in optimization problems, among other things. It takes two matrices (one $m$x$n$, one $n$x$p$) and returns a matrix of size $m$x$p$. For example, the product of a 2x3 matrix and a 3x4 matrix is a 2x4 matrix (click the link for a visualization of what goes on with each individual element). # # You can use the matrix product in numpy with `matrix1.dot(matrix2)` or `matrix1 @ matrix2`. # # Note: to use the matrix product, the two matrices must have the same number of elements and the number of *rows* in the first matrix must equal the number of *columns* in the second. This is why it's important to know how to reshape and transpose matrices! # # A property of the matrix product is that the product of a matrix and the identity matrix is just the first matrix. Check that that is the case below for the matrix `H`. # matrix product I = np.eye(4) # a matrix m's matrix product with the identity matrix is matrix m H.dot(I) # Note that we keep using the term 'product', but we don't use the `*` operator. Try using `*` to multiply `H` and `I` together. # matrix multiplication H * I # How is the matrix product different from simply multiplying two matrices together? # # **YOUR ANSWER:** The matrix product does row-by-column products and summation (i.e. the dot product). Using `*` in numpy does element-wise multiplication (e.g. element i, j in the first matrix is multiplied by element i, j of the second). # #### Matrix inverse # #### Theorem: the product of a matrix m and its inverse is an identity matrix # # Using the above theorem, to solve for x in Ax=B where A and B are matrices, what do we want to multiply both sides by? # Your answer here: $A^{-1}$ # You can get the inverse of a matrix with `np.linalg.inv(my_matrix)`. Try it in the cell below. # # Note: not all matrices are invertible. # + m3 = np.array([[1, 0, 0, 0], [0, 2, 0, 0], [0, 0, 3, 0], [0, 0, 0, 4]]) # calculate the inverse of m3 m3_inverse = np.linalg.inv(m3) print("matrix m3:\n", m3) print("\ninverse matrix m3:\n", m3_inverse) # - # do we get the identity matrix? m3_inverse.dot(m3) # #### exercise # In machine learning, we often try to predict a value or category given a bunch of data. The essential model looks like this: # $$ \large # Y = X^T \theta # $$ # Where $Y $ is the predicted values (a vector with one value for every row of X)), $X$ is a $m$x$n$ matrix of data, and $\theta$ (the Greek letter 'theta') is a **parameter** (an $n$-length vector). For example, X could be a matrix where each row represents a person, and it has two columns: height and age. To use height and age to predict a person's weight (our $y$), we could multiply the height and the age by different numbers ($\theta$) then add them together to make a prediction($y$). # # The fundamental problem in machine learning is often how to choose the best $\theta$. Using linear algebra, we can show that the optimal theta is: # $$\large # \hat{\theta{}} = \left(X^T X\right)^{-1} X^T Y # $$ # # You now know all the functions needed to find theta. Use transpose, inverse, and matrix product operations to calculate theta using the equation above and the X and y data given below. # + # example real values (the numbers 0 through 50 with random noise added) y = np.arange(50)+ np.random.normal(scale = 10,size=50) # example data x = np.array([np.arange(50)]).T # add a column of ones to represent an intercept term X = np.hstack([x, np.ones(x.shape)]) # find the best theta theta = np.linalg.inv(X.T @ X) @ X.T @ y theta # - # In this case, our X is a matrix where the first column has values representing a feature, and the second column is entirely ones to represent an intercept term. This means our theta is a vector [m, b] for the equation y=mx[0]+b, which you might recognize from algebra as the equation for a line. Let's see how well our predictor line fits the data. # + import matplotlib.pyplot as plt # %matplotlib inline #plot the data plt.scatter(x.T,y) #plot the fit line plt.plot(x.T[0], X @ theta); # - # Not bad! # # While it's good to know what computation goes into getting optimal parameters, it's also good that scipy has a function that will take in an X and a y and return the best theta. Run the cell below to use scikit-learn to estimate the parameters. It should output values very near to the ones you found. We'll learn how to use scikit-learn in the next lab! # + # find optimal parameters for linear regression from sklearn import linear_model lin_reg = linear_model.LinearRegression(fit_intercept=True) lin_reg.fit(x, y) print(lin_reg.coef_[0], lin_reg.intercept_) # - # ## Maxima and Minima <a id='section 2'></a> # The extrema of a function are the largest value (maxima) and smallest value (minima) of the function. # # We say that f(a) is a **local maxima** if $f(a)\geq f(x)$ when x is near a. # # We say that f(a) is a **local minima** if $f(a)\leq f(x)$ when x is near a. # Global vs local extrema (credit: Wikipedia) # <img src="https://upload.wikimedia.org/wikipedia/commons/thumb/6/68/Extrema_example_original.svg/440px-Extrema_example_original.svg.png" style="width: 500px; height: 275px;" /> # By looking at the diagram , how are local maxima and minima of a function related to its derivative? # **YOUR ANSWER**: Local minima and maxima occur when the derivative is zero- i.e. when the slope is zero, or when the tangent line is horizontal. # Are global maxima also local maixma? Are local maxima global maxima? # **YOUR ANSWER**: Yes, global maxima are also local maxima. # # No, a local maxima may not be a global maxima. # ## Intro to Scipy <a id='section 3'></a> # ### Optimize # Scipy.optimize is a package that provides several commonly used optimization algorithms. Today we'll learn minimize. # insert concepts about local minima # importing minimize function from scipy.optimize import minimize # Let's define a minimization problem: # # minimize $x_1x_4(x_1+x_2+x_3)+x_3$ under the conditions: # 1. $x_1x_2x_3x_4\geq 25$ # 2. $x_1+x_2+x_3+2x_4 = 14$ # 3. $1\leq x_1,x_2,x_3,x_4\leq 5$ # Hmmm, looks fairly complicated, but don't worry, scipy's got it # let's define our function def objective(x): x1 = x[0] x2 = x[1] x3 = x[2] x4 = x[3] return x1*x4*(x1+x2+x3)+x3 # + # define constraints def con1(x): return x[0]*x[1]*x[2]*x[3] - 25 def con2(x): return 14 - x[0] - x[1] - x[2] - 2*x[3] constraint1 = {'type': 'ineq', 'fun': con1} # constraint 1 is an inequality constraint constraint2 = {'type': 'eq', 'fun': con2} # constraint 2 is an equality constraint cons = [constraint1, constraint2] # - # define bounds bound = (1, 5) bnds = (bound, bound, bound, bound) #the same bound applies to all four variables # We need to supply initial values as a starting point for minimize function x0 = [3, 4, 2, 3] print(objective(x0)) # Overall, we defined objective function, constraints, bounds, and initial values. Let's get to work. # # We'll use Sequential Least Squares Programming optimization algorithm (SLSQP) solution = minimize(objective, x0, method='SLSQP', bounds=bnds, constraints=cons) print(solution) # Display optimal values of each variable solution.x # #### exercise # Find the optimal solution to the following problem: # # minimize $x_1^2+x_2^2+x_3^2$, under conditions: # 1. $x_1 + x_2\geq 6$ # 2. $x_3 + 2x_2\geq 4$ # 3. $1.5\leq x_1, x_2, x_3\leq 8$ # # Tip: 3**2 gives square of 3 def func(x): x1 = x[0] x2 = x[1] x3 = x[2] return x1**2 + x2**2 + x3**2 def newcon1(x): return x[0] + x[1] - 6 def newcon2(x): return x[2] + 2*x[1] - 4 # Take note of scipy's documentation on constraints: # # > "Equality constraint means that the constraint function result is to be zero whereas inequality means that it is to be non-negative." # + newcons1 = {'type': 'ineq', 'fun': newcon1} newcons2 = {'type': 'ineq', 'fun': newcon2} newcons = [newcons1, newcons2] bd = (1.5, 8) bds = (bd, bd, bd) newx0 = [1, 4, 3] sum_square_solution = minimize(func, newx0, method='SLSQP', bounds=bds, constraints=newcons) sum_square_solution # - # ### Integrate # scipy.integrate.quad is a function that tntegrates a function from a to b using a technique from QUADPACK library. # importing integrate package from scipy import integrate # define a simple function def f(x): return np.sin(x) # integrate sin from 0 to pi integrate.quad(f, 0, np.pi) # Our quad function returned two results, first one is the result, second one is an estimate of the absolute error # #### exercise # Find the integral of $x^2 + x$ from 3 to 10 # + #define the function def f1(x): return x ** 2 + x #find the integral integrate.quad(f1, 3, 10) # - # #### Integrate a normal distribution # + # let's create a normal distribution with mean 0 and standard deviation 1 by simpy running the cell mu, sigma = 0, 1 s = np.random.normal(mu, sigma, 100000) import matplotlib.pyplot as plt count, bins, ignored = plt.hist(s, 30, density=True) plt.plot(bins, 1/(sigma * np.sqrt(2 * np.pi)) *np.exp( - (bins - mu)**2 / (2 * sigma**2) ),linewidth=2, color='r') plt.show() # - # importing normal d from scipy.stats import norm # CDF is cumulative distribution function. CDF(x) is the probability that a normal distribution takes on value less than or equal to x. # # For a standard normal distribution, what would CDF(0) be? (Hint: how is CDF related to p-values or confidence intervals?) # 0.5 # Run the cell below to confirm your answer norm.cdf(0) # Using the cdf, integrate the normal distribution from -0.5 to 0.5 norm.cdf(0.5) - norm.cdf(-0.5) # --- # Notebook developed by: <NAME> # # Data Science Modules: http://data.berkeley.edu/education/modules #
labs/11_Math in Scipy/11_Math_in_scipy_solutions.ipynb
# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.14.4 # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- # # Distributions # + [markdown] tags=["remove-cell"] # Think Bayes, Second Edition # # Copyright 2020 <NAME> # # License: [Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)](https://creativecommons.org/licenses/by-nc-sa/4.0/) # + tags=["remove-cell"] # If we're running on Colab, install empiricaldist # https://pypi.org/project/empiricaldist/ import sys IN_COLAB = 'google.colab' in sys.modules if IN_COLAB: # !pip install empiricaldist # + tags=["remove-cell"] # Get utils.py import os if not os.path.exists('utils.py'): # !wget https://github.com/AllenDowney/ThinkBayes2/raw/master/soln/utils.py # + tags=["remove-cell"] from utils import set_pyplot_params set_pyplot_params() # - # In the previous chapter we used Bayes's Theorem to solve a cookie problem; then we solved it again using a Bayes table. # In this chapter, at the risk of testing your patience, we will solve it one more time using a `Pmf` object, which represents a "probability mass function". # I'll explain what that means, and why it is useful for Bayesian statistics. # # We'll use `Pmf` objects to solve some more challenging problems and take one more step toward Bayesian statistics. # But we'll start with distributions. # ## Distributions # # In statistics a **distribution** is a set of possible outcomes and their corresponding probabilities. # For example, if you toss a coin, there are two possible outcomes with # approximately equal probability. # If you roll a six-sided die, the set of possible outcomes is the numbers 1 to 6, and the probability associated with each outcome is 1/6. # # To represent distributions, we'll use a library called `empiricaldist`. # An "empirical" distribution is based on data, as opposed to a # theoretical distribution. # We'll use this library throughout the book. I'll introduce the basic features in this chapter and we'll see additional features later. # ## Probability Mass Functions # # If the outcomes in a distribution are discrete, we can describe the distribution with a **probability mass function**, or PMF, which is a function that maps from each possible outcome to its probability. # # `empiricaldist` provides a class called `Pmf` that represents a # probability mass function. # To use `Pmf` you can import it like this: from empiricaldist import Pmf # + [markdown] tags=["remove-cell"] # If that doesn't work, you might have to install `empiricaldist`; try running # # ``` # # # !pip install empiricaldist # ``` # # in a code cell or # # ``` # pip install empiricaldist # ``` # # in a terminal window. # - # The following example makes a `Pmf` that represents the outcome of a # coin toss. coin = Pmf() coin['heads'] = 1/2 coin['tails'] = 1/2 coin # `Pmf` creates an empty `Pmf` with no outcomes. # Then we can add new outcomes using the bracket operator. # In this example, the two outcomes are represented with strings, and they have the same probability, 0.5. # You can also make a `Pmf` from a sequence of possible outcomes. # # The following example uses `Pmf.from_seq` to make a `Pmf` that represents a six-sided die. die = Pmf.from_seq([1,2,3,4,5,6]) die # In this example, all outcomes in the sequence appear once, so they all have the same probability, $1/6$. # # More generally, outcomes can appear more than once, as in the following example: letters = Pmf.from_seq(list('Mississippi')) letters # The letter `M` appears once out of 11 characters, so its probability is $1/11$. # The letter `i` appears 4 times, so its probability is $4/11$. # # Since the letters in a string are not outcomes of a random process, I'll use the more general term "quantities" for the letters in the `Pmf`. # # The `Pmf` class inherits from a Pandas `Series`, so anything you can do with a `Series`, you can also do with a `Pmf`. # # For example, you can use the bracket operator to look up a quantity and get the corresponding probability. letters['s'] # In the word "Mississippi", about 36% of the letters are "s". # # However, if you ask for the probability of a quantity that's not in the distribution, you get a `KeyError`. # # # + tags=["hide-cell"] try: letters['t'] except KeyError as e: print(type(e)) # - # You can also call a `Pmf` as if it were a function, with a letter in parentheses. letters('s') # If the quantity is in the distribution the results are the same. # But if it is not in the distribution, the result is `0`, not an error. letters('t') # With parentheses, you can also provide a sequence of quantities and get a sequence of probabilities. die([1,4,7]) # The quantities in a `Pmf` can be strings, numbers, or any other type that can be stored in the index of a Pandas `Series`. # If you are familiar with Pandas, that will help you work with `Pmf` objects. # But I will explain what you need to know as we go along. # ## The Cookie Problem Revisited # # In this section I'll use a `Pmf` to solve the cookie problem from <<_TheCookieProblem>>. # Here's the statement of the problem again: # # > Suppose there are two bowls of cookies. # > # > * Bowl 1 contains 30 vanilla cookies and 10 chocolate cookies. # > # > * Bowl 2 contains 20 vanilla cookies and 20 chocolate cookies. # > # > Now suppose you choose one of the bowls at random and, without looking, choose a cookie at random. If the cookie is vanilla, what is the probability that it came from Bowl 1? # # Here's a `Pmf` that represents the two hypotheses and their prior probabilities: prior = Pmf.from_seq(['Bowl 1', 'Bowl 2']) prior # This distribution, which contains the prior probability for each hypothesis, is called (wait for it) the **prior distribution**. # # To update the distribution based on new data (the vanilla cookie), # we multiply the priors by the likelihoods. The likelihood # of drawing a vanilla cookie from Bowl 1 is `3/4`. The likelihood # for Bowl 2 is `1/2`. likelihood_vanilla = [0.75, 0.5] posterior = prior * likelihood_vanilla posterior # The result is the unnormalized posteriors; that is, they don't add up to 1. # To make them add up to 1, we can use `normalize`, which is a method provided by `Pmf`. posterior.normalize() # The return value from `normalize` is the total probability of the data, which is $5/8$. # # `posterior`, which contains the posterior probability for each hypothesis, is called (wait now) the **posterior distribution**. posterior # From the posterior distribution we can select the posterior probability for Bowl 1: posterior('Bowl 1') # And the answer is 0.6. # # One benefit of using `Pmf` objects is that it is easy to do successive updates with more data. # For example, suppose you put the first cookie back (so the contents of the bowls don't change) and draw again from the same bowl. # If the second cookie is also vanilla, we can do a second update like this: posterior *= likelihood_vanilla posterior.normalize() posterior # Now the posterior probability for Bowl 1 is almost 70%. # But suppose we do the same thing again and get a chocolate cookie. # # Here are the likelihoods for the new data: likelihood_chocolate = [0.25, 0.5] # And here's the update. posterior *= likelihood_chocolate posterior.normalize() posterior # Now the posterior probability for Bowl 1 is about 53%. # After two vanilla cookies and one chocolate, the posterior probabilities are close to 50/50. # ## 101 Bowls # # Next let's solve a cookie problem with 101 bowls: # # * Bowl 0 contains 0% vanilla cookies, # # * Bowl 1 contains 1% vanilla cookies, # # * Bowl 2 contains 2% vanilla cookies, # # and so on, up to # # * Bowl 99 contains 99% vanilla cookies, and # # * Bowl 100 contains all vanilla cookies. # # As in the previous version, there are only two kinds of cookies, vanilla and chocolate. So Bowl 0 is all chocolate cookies, Bowl 1 is 99% chocolate, and so on. # # Suppose we choose a bowl at random, choose a cookie at random, and it turns out to be vanilla. What is the probability that the cookie came from Bowl $x$, for each value of $x$? # # To solve this problem, I'll use `np.arange` to make an array that represents 101 hypotheses, numbered from 0 to 100. # + import numpy as np hypos = np.arange(101) # - # We can use this array to make the prior distribution: prior = Pmf(1, hypos) prior.normalize() # As this example shows, we can initialize a `Pmf` with two parameters. # The first parameter is the prior probability; the second parameter is a sequence of quantities. # # In this example, the probabilities are all the same, so we only have to provide one of them; it gets "broadcast" across the hypotheses. # Since all hypotheses have the same prior probability, this distribution is **uniform**. # # Here are the first few hypotheses and their probabilities. prior.head() # The likelihood of the data is the fraction of vanilla cookies in each bowl, which we can calculate using `hypos`: likelihood_vanilla = hypos/100 likelihood_vanilla[:5] # Now we can compute the posterior distribution in the usual way: # posterior1 = prior * likelihood_vanilla posterior1.normalize() posterior1.head() # The following figure shows the prior distribution and the posterior distribution after one vanilla cookie. # + tags=["hide-cell"] from utils import decorate def decorate_bowls(title): decorate(xlabel='Bowl #', ylabel='PMF', title=title) # + tags=["hide-input"] prior.plot(label='prior', color='C5') posterior1.plot(label='posterior', color='C4') decorate_bowls('Posterior after one vanilla cookie') # - # The posterior probability of Bowl 0 is 0 because it contains no vanilla cookies. # The posterior probability of Bowl 100 is the highest because it contains the most vanilla cookies. # In between, the shape of the posterior distribution is a line because the likelihoods are proportional to the bowl numbers. # # Now suppose we put the cookie back, draw again from the same bowl, and get another vanilla cookie. # Here's the update after the second cookie: # + tags=["hide-output"] posterior2 = posterior1 * likelihood_vanilla posterior2.normalize() # - # And here's what the posterior distribution looks like. # + tags=["hide-input"] posterior2.plot(label='posterior', color='C4') decorate_bowls('Posterior after two vanilla cookies') # - # After two vanilla cookies, the high-numbered bowls have the highest posterior probabilities because they contain the most vanilla cookies; the low-numbered bowls have the lowest probabilities. # # But suppose we draw again and get a chocolate cookie. # Here's the update: # + tags=["hide-output"] likelihood_chocolate = 1 - hypos/100 posterior3 = posterior2 * likelihood_chocolate posterior3.normalize() # - # And here's the posterior distribution. # + tags=["hide-input"] posterior3.plot(label='posterior', color='C4') decorate_bowls('Posterior after 2 vanilla, 1 chocolate') # - # Now Bowl 100 has been eliminated because it contains no chocolate cookies. # But the high-numbered bowls are still more likely than the low-numbered bowls, because we have seen more vanilla cookies than chocolate. # # In fact, the peak of the posterior distribution is at Bowl 67, which corresponds to the fraction of vanilla cookies in the data we've observed, $2/3$. # # The quantity with the highest posterior probability is called the **MAP**, which stands for "maximum a posteori probability", where "a posteori" is unnecessary Latin for "posterior". # # To compute the MAP, we can use the `Series` method `idxmax`: posterior3.idxmax() # Or `Pmf` provides a more memorable name for the same thing: posterior3.max_prob() # As you might suspect, this example isn't really about bowls; it's about estimating proportions. # Imagine that you have one bowl of cookies. # You don't know what fraction of cookies are vanilla, but you think it is equally likely to be any fraction from 0 to 1. # If you draw three cookies and two are vanilla, what proportion of cookies in the bowl do you think are vanilla? # The posterior distribution we just computed is the answer to that question. # # We'll come back to estimating proportions in the next chapter. # But first let's use a `Pmf` to solve the dice problem. # ## The Dice Problem # # In the previous chapter we solved the dice problem using a Bayes table. # Here's the statement of the problem: # # > Suppose I have a box with a 6-sided die, an 8-sided die, and a 12-sided die. # > I choose one of the dice at random, roll it, and report that the outcome is a 1. # > What is the probability that I chose the 6-sided die? # # Let's solve it using a `Pmf`. # I'll use integers to represent the hypotheses: hypos = [6, 8, 12] # We can make the prior distribution like this: # prior = Pmf(1/3, hypos) prior # As in the previous example, the prior probability gets broadcast across the hypotheses. # The `Pmf` object has two attributes: # # * `qs` contains the quantities in the distribution; # # * `ps` contains the corresponding probabilities. prior.qs prior.ps # Now we're ready to do the update. # Here's the likelihood of the data for each hypothesis. likelihood1 = 1/6, 1/8, 1/12 # And here's the update. posterior = prior * likelihood1 posterior.normalize() posterior # The posterior probability for the 6-sided die is $4/9$. # # Now suppose I roll the same die again and get a 7. # Here are the likelihoods: likelihood2 = 0, 1/8, 1/12 # The likelihood for the 6-sided die is 0 because it is not possible to get a 7 on a 6-sided die. # The other two likelihoods are the same as in the previous update. # # Here's the update: posterior *= likelihood2 posterior.normalize() posterior # After rolling a 1 and a 7, the posterior probability of the 8-sided die is about 69%. # ## Updating Dice # # The following function is a more general version of the update in the previous section: def update_dice(pmf, data): """Update pmf based on new data.""" hypos = pmf.qs likelihood = 1 / hypos impossible = (data > hypos) likelihood[impossible] = 0 pmf *= likelihood pmf.normalize() # The first parameter is a `Pmf` that represents the possible dice and their probabilities. # The second parameter is the outcome of rolling a die. # # The first line selects quantities from the `Pmf` which represent the hypotheses. # Since the hypotheses are integers, we can use them to compute the likelihoods. # In general, if there are `n` sides on the die, the probability of any possible outcome is `1/n`. # # However, we have to check for impossible outcomes! # If the outcome exceeds the hypothetical number of sides on the die, the probability of that outcome is 0. # # `impossible` is a Boolean `Series` that is `True` for each impossible outcome. # I use it as an index into `likelihood` to set the corresponding probabilities to 0. # # Finally, I multiply `pmf` by the likelihoods and normalize. # # Here's how we can use this function to compute the updates in the previous section. # I start with a fresh copy of the prior distribution: # pmf = prior.copy() pmf # And use `update_dice` to do the updates. update_dice(pmf, 1) update_dice(pmf, 7) pmf # The result is the same. We will see a version of this function in the next chapter. # ## Summary # # This chapter introduces the `empiricaldist` module, which provides `Pmf`, which we use to represent a set of hypotheses and their probabilities. # # `empiricaldist` is based on Pandas; the `Pmf` class inherits from the Pandas `Series` class and provides additional features specific to probability mass functions. # We'll use `Pmf` and other classes from `empiricaldist` throughout the book because they simplify the code and make it more readable. # But we could do the same things directly with Pandas. # # We use a `Pmf` to solve the cookie problem and the dice problem, which we saw in the previous chapter. # With a `Pmf` it is easy to perform sequential updates with multiple pieces of data. # # We also solved a more general version of the cookie problem, with 101 bowls rather than two. # Then we computed the MAP, which is the quantity with the highest posterior probability. # # In the next chapter, I'll introduce the Euro problem, and we will use the binomial distribution. # And, at last, we will make the leap from using Bayes's Theorem to doing Bayesian statistics. # # But first you might want to work on the exercises. # ## Exercises # **Exercise:** Suppose I have a box with a 6-sided die, an 8-sided die, and a 12-sided die. # I choose one of the dice at random, roll it four times, and get 1, 3, 5, and 7. # What is the probability that I chose the 8-sided die? # # You can use the `update_dice` function or do the update yourself. # + # Solution pmf = prior.copy() for data in [1, 3, 5, 7]: update_dice(pmf, data) pmf # - # **Exercise:** In the previous version of the dice problem, the prior probabilities are the same because the box contains one of each die. # But suppose the box contains 1 die that is 4-sided, 2 dice that are 6-sided, 3 dice that are 8-sided, 4 dice that are 12-sided, and 5 dice that are 20-sided. # I choose a die, roll it, and get a 7. # What is the probability that I chose an 8-sided die? # # Hint: To make the prior distribution, call `Pmf` with two parameters. # + # Solution # Notice that I don't bother to normalize the prior. # The `Pmf` gets normalized during the update, so we # don't have to normalize it before. ps = [1,2,3,4,5] qs = [4,6,8,12,20] pmf = Pmf(ps, qs) update_dice(pmf, 7) pmf # - # **Exercise:** Suppose I have two sock drawers. # One contains equal numbers of black and white socks. # The other contains equal numbers of red, green, and blue socks. # Suppose I choose a drawer at random, choose two socks at random, and I tell you that I got a matching pair. # What is the probability that the socks are white? # # For simplicity, let's assume that there are so many socks in both drawers that removing one sock makes a negligible change to the proportions. # + # Solution # In the BlackWhite drawer, the probability of getting a match is 1/2 # In the RedGreenBlue drawer, the probability of a match is 1/3 hypos = ['BlackWhite', 'RedGreenBlue'] prior = Pmf(1/2, hypos) likelihood = 1/2, 1/3 posterior = prior * likelihood posterior.normalize() posterior # + # Solution # If I drew from the BlackWhite drawer, the probability the # socks are white is 1/2 posterior['BlackWhite'] / 2 # - # **Exercise:** Here's a problem from [Bayesian Data Analysis](http://www.stat.columbia.edu/~gelman/book/): # # > <NAME> had a twin brother (who died at birth). What is the probability that Elvis was an identical twin? # # Hint: In 1935, about 2/3 of twins were fraternal and 1/3 were identical. # + # Solution # The trick to this question is to notice that Elvis's twin was a brother. # If they were identical twins, it is certain they would be the same sex. # If they were fraternal twins, the likelihood is only 50%. # Here's a solution using a Bayes table import pandas as pd table = pd.DataFrame(index=['identical', 'fraternal']) table['prior'] = 1/3, 2/3 table['likelihood'] = 1, 1/2 table['unnorm'] = table['prior'] * table['likelihood'] prob_data = table['unnorm'].sum() table['posterior'] = table['unnorm'] / prob_data table # + # Solution # Here's a solution using a Pmf hypos = ['identical', 'fraternal'] prior = Pmf([1/3, 2/3], hypos) prior # + # Solution likelihood = 1, 1/2 posterior = prior * likelihood posterior.normalize() posterior
soln/chap03.ipynb
# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.14.4 # kernelspec: # display_name: Python 2 # language: python # name: python2 # --- # + import pandas as pd import matplotlib.pyplot as plt data1 = pd.read_csv('1-1_swp-thc_trial1.xvg', comment='@', skiprows=13, names=['phi','psi','ram'], delim_whitespace=True) data1 plt.scatter(data1.phi[::50], data1.psi[::50]) plt.show() # + import numpy as np import numpy.random import matplotlib.pyplot as plt # Generate some test data x = data1.phi y = data1.psi heatmap, xedges, yedges = np.histogram2d(x, y, bins=200) extent = [xedges[0], xedges[-1], yedges[0], yedges[-1]] plt.clf() plt.imshow(heatmap.T, extent=extent, origin='lower', cmap='inferno') #cmap changes color, I like 'inferno' or 'plasma' plt.show() # -
.ipynb_checkpoints/step_verification-checkpoint.ipynb
# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.14.4 # kernelspec: # display_name: Python 3 (ipykernel) # language: python # name: python3 # --- # + import numpy as np import os import matplotlib.pyplot as plt from imutils import paths ## pip install --upgrade imutils from tensorflow.keras.applications.mobilenet import MobileNet from tensorflow.keras.layers import Dense from tensorflow.keras.layers import AveragePooling2D from tensorflow.keras.layers import Dropout from tensorflow.keras.layers import Flatten from tensorflow.keras.layers import Input from tensorflow.keras.models import Model from tensorflow.keras.optimizers import Adam from tensorflow.keras.applications.mobilenet import preprocess_input from tensorflow.python.keras.layers import Lambda from tensorflow.keras.preprocessing.image import ImageDataGenerator from tensorflow.keras.preprocessing.image import img_to_array from tensorflow.keras.preprocessing.image import load_img from tensorflow.keras.utils import to_categorical from sklearn.preprocessing import LabelBinarizer from sklearn.model_selection import train_test_split from sklearn.metrics import classification_report # + # #!pip show tensorflow # - dataset = r"C:\Users\mdowrla\.ipynb_checkpoints\Cat_Dog_Dataset\Dataset" imagepaths = list(paths.list_images(dataset)) imagepaths # + data = [] labels = [] for i in imagepaths: label = i.split(os.path.sep)[-2] labels.append(label) image = load_img(i, target_size=(224,224)) image = img_to_array(image) image = preprocess_input(image) data.append(image) # - #print(data) print(labels) data = np.array(data,dtype='float32') labels = np.array(labels) labels print(data.shape) print(labels.shape) Lb = LabelBinarizer() labels = Lb.fit_transform(labels) labels.shape labels = to_categorical(labels) labels train_X, test_X ,train_Y , test_Y = train_test_split(data, labels, test_size=0.2 , random_state=10, stratify = labels) labels.shape train_X.shape , train_Y.shape test_X.shape , test_Y.shape aug=ImageDataGenerator(rotation_range=20,zoom_range=0.15,width_shift_range=0.2,height_shift_range=0.2,shear_range=0.15,horizontal_flip=True,vertical_flip=True,fill_mode='nearest') baseModel = MobileNet(weights='imagenet', include_top=False, input_tensor= Input(shape=(224,224,3))) baseModel.summary() # + headModel = baseModel.output headModel = AveragePooling2D(pool_size=(7,7))(headModel) headModel = Flatten(name='Flatten')(headModel) headModel = Dense(128,activation = 'relu')(headModel) headModel = Dropout(0.5)(headModel) headModel = Dense(2 ,activation = 'softmax')(headModel) model = Model(inputs=baseModel.input, outputs=headModel) # - for layer in baseModel.layers: layer.trainable = False model.summary() # + from tensorflow.keras.callbacks import EarlyStopping lr = 0.001 ep = 10 bs = 80 base_path = r"C:\Users\mdowrla\.ipynb_checkpoints\Cat_Dog_Dataset\Dataset" opt = Adam(learning_rate=lr) er = EarlyStopping(monitor='accuracy', mode='max', patience=2, restore_best_weights=True) model.compile(loss='binary_crossentropy', optimizer=opt, metrics=['accuracy']) Md = model.fit( aug.flow(train_X,train_Y,batch_size=bs), steps_per_epoch = len(train_X)//bs, validation_data = (test_X,test_Y), validation_steps = len(test_X)//bs, epochs = ep,callbacks = [er]) model.save(os.path.join(base_path,'model.h5')) # - predict = model.predict(test_X, batch_size=bs) predict = np.argmax(predict, axis=1) #target_names= Lb.classes_ print(classification_report(test_Y.argmax(axis=1),predict)) # + # plot the training loss and accuracy ## I used call backs so training has stopped without completing the all epochs, In the absence of callsbacks we can use # the below plots on following metrics wrt to epochs N = 8 plt.style.use("ggplot") plt.figure() plt.plot(np.arange(0, N), Md.history["loss"], label="train_loss") plt.plot(np.arange(0, N), Md.history["val_loss"], label="val_loss") plt.plot(np.arange(0, N), Md.history["accuracy"], label="train_acc") plt.plot(np.arange(0, N), Md.history["val_accuracy"], label="val_acc") plt.title("Training Loss and Accuracy") plt.xlabel("Epoch #") plt.ylabel("Loss/Accuracy") plt.legend() # - # ### Testing using images # + from tensorflow.keras.applications.mobilenet import preprocess_input from tensorflow.keras.preprocessing.image import img_to_array from tensorflow.keras.models import load_model from matplotlib import pyplot as plt import numpy as np import os import cv2 # - model =load_model(r"C:\Users\mdowrla\.ipynb_checkpoints\Cat_Dog_Dataset\Dataset\model.h5") # + import warnings warnings.filterwarnings('ignore') import matplotlib.image as mpimg path = r"C:\Users\mdowrla\.ipynb_checkpoints\Cat_Dog_Dataset\Test_Dog.jpg" plt.imshow(mpimg.imread(path)) image = load_img(path, target_size=(224,224)) image= img_to_array(image) image=preprocess_input(image) image=np.expand_dims(image,axis=0) result = model.predict(image) print(result) # - if result[0][0] > result[0][1]: print("Cat") else: print("Dog")
Documents/PreTrainedAPI/usecase3 backup/Cat vs Dog-checkpoint.ipynb
# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.14.4 # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- import tensorflow as tf import numpy as np import time import os from sklearn.preprocessing import LabelEncoder import re import collections import random import pickle maxlen = 20 location = os.getcwd() num_layers = 3 size_layer = 256 learning_rate = 0.0001 batch = 100 with open('dataset-emotion.p', 'rb') as fopen: df = pickle.load(fopen) with open('vector-emotion.p', 'rb') as fopen: vectors = pickle.load(fopen) with open('dataset-dictionary.p', 'rb') as fopen: dictionary = pickle.load(fopen) label = np.unique(df[:,1]) from sklearn.cross_validation import train_test_split train_X, test_X, train_Y, test_Y = train_test_split(df[:,0], df[:, 1].astype('int'), test_size = 0.2) class Model: def __init__(self, num_layers, size_layer, dimension_input, dimension_output, learning_rate): def lstm_cell(): return tf.nn.rnn_cell.LSTMCell(size_layer) self.rnn_cells = tf.nn.rnn_cell.MultiRNNCell([lstm_cell() for _ in range(num_layers)]) self.X = tf.placeholder(tf.float32, [None, None, dimension_input]) self.Y = tf.placeholder(tf.float32, [None, dimension_output]) drop = tf.contrib.rnn.DropoutWrapper(self.rnn_cells, output_keep_prob = 0.5) self.outputs, self.last_state = tf.nn.dynamic_rnn(drop, self.X, dtype = tf.float32) self.rnn_W = tf.Variable(tf.random_normal((size_layer, dimension_output))) self.rnn_B = tf.Variable(tf.random_normal([dimension_output])) self.logits = tf.matmul(self.outputs[:, -1], self.rnn_W) + self.rnn_B self.cost = tf.losses.hinge_loss(logits = self.logits, labels = self.Y) self.optimizer = tf.train.AdamOptimizer(learning_rate = learning_rate).minimize(self.cost) self.correct_pred = tf.equal(tf.argmax(self.logits, 1), tf.argmax(self.Y, 1)) self.accuracy = tf.reduce_mean(tf.cast(self.correct_pred, tf.float32)) tf.reset_default_graph() sess = tf.InteractiveSession() model = Model(num_layers, size_layer, vectors.shape[1], label.shape[0], learning_rate) sess.run(tf.global_variables_initializer()) dimension = vectors.shape[1] saver = tf.train.Saver(tf.global_variables()) EARLY_STOPPING, CURRENT_CHECKPOINT, CURRENT_ACC, EPOCH = 10, 0, 0, 0 while True: lasttime = time.time() if CURRENT_CHECKPOINT == EARLY_STOPPING: print('break epoch:', EPOCH) break train_acc, train_loss, test_acc, test_loss = 0, 0, 0, 0 for i in range(0, (train_X.shape[0] // batch) * batch, batch): batch_x = np.zeros((batch, maxlen, dimension)) batch_y = np.zeros((batch, len(label))) for k in range(batch): tokens = train_X[i + k].split()[:maxlen] emb_data = np.zeros((maxlen, dimension), dtype = np.float32) for no, text in enumerate(tokens[::-1]): try: emb_data[-1 - no, :] += vectors[dictionary[text], :] except Exception as e: print(e) continue batch_y[k, int(train_Y[i + k])] = 1.0 batch_x[k, :, :] = emb_data[:, :] loss, _ = sess.run([model.cost, model.optimizer], feed_dict = {model.X : batch_x, model.Y : batch_y}) train_loss += loss train_acc += sess.run(model.accuracy, feed_dict = {model.X : batch_x, model.Y : batch_y}) for i in range(0, (test_X.shape[0] // batch) * batch, batch): batch_x = np.zeros((batch, maxlen, dimension)) batch_y = np.zeros((batch, len(label))) for k in range(batch): tokens = test_X[i + k].split()[:maxlen] emb_data = np.zeros((maxlen, dimension), dtype = np.float32) for no, text in enumerate(tokens[::-1]): try: emb_data[-1 - no, :] += vectors[dictionary[text], :] except: continue batch_y[k, int(test_Y[i + k])] = 1.0 batch_x[k, :, :] = emb_data[:, :] loss, acc = sess.run([model.cost, model.accuracy], feed_dict = {model.X : batch_x, model.Y : batch_y}) test_loss += loss test_acc += acc train_loss /= (train_X.shape[0] // batch) train_acc /= (train_X.shape[0] // batch) test_loss /= (test_X.shape[0] // batch) test_acc /= (test_X.shape[0] // batch) if test_acc > CURRENT_ACC: print('epoch:', EPOCH, ', pass acc:', CURRENT_ACC, ', current acc:', test_acc) CURRENT_ACC = test_acc CURRENT_CHECKPOINT = 0 saver.save(sess, os.getcwd() + "/model-rnn-vector-huber.ckpt") else: CURRENT_CHECKPOINT += 1 EPOCH += 1 print('time taken:', time.time()-lasttime) print('epoch:', EPOCH, ', training loss:', train_loss, ', training acc:', train_acc, ', valid loss:', test_loss, ', valid acc:', test_acc)
classification-comparison/Deep-learning/rnn-vector-hinge.ipynb
# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.14.4 # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- import pandas as pd import re import os import json import time from shutil import copy2, rmtree import shutil import hashlib # + data = pd.read_json('silkroad2.json', orient='index') len(data) # - len(data.seller.unique()) # + # df_unique = data.drop_duplicates(['seller', 'title']) # len(df_unique) # - data = data[data.img.notnull()].copy() d = [int(x.split('|')[0].split('/')[-1]) for x in data.img.values] data['itemID'] = d # + # df_unique = df_unique[df_unique.img.notnull()] # df_unique = df_unique.sort_index() # - root_path = '/media/intel/m2/silkroad2/' data['image_location'] = root_path + data.date.astype(str) + data.img # + # seller_name_list = list(df_unique.seller) # image_location = list(df_unique.image_location) # itemID = [hashlib.md5(x).hexdigest() for x in df_unique.index.astype(str)] # - data['seller_path'] = data.seller.apply(lambda x: os.path.join(target_path, x)) len(data) product_count = 0 img_count = [] for index, row in data.iterrows(): product_count += 1 if product_count % 20000 == 0: print product_count, img_f, _ = row.image_location.split('######') if not os.path.isfile(img_f): continue with open(img_f) as fp: image_files = fp.read() imgbase64 = re.findall("content: url\('data:image/jpeg;base64,(.*)'", image_files) img_count.append(len(imgbase64)) from collections import Counter Counter(img_count) target_path = '/media/intel/m2/imgs/SilkRoad2' try: rmtree(target_path) except: pass try: os.mkdir(target_path) except: pass product_count = 0 for index, row in data.iterrows(): product_count += 1 if product_count % 20000 == 0: print product_count, img_f, _ = row.image_location.split('######') if not os.path.isfile(img_f): continue with open(img_f) as fp: image_files = fp.read() imgbase64 = re.findall("content: url\('data:image/jpeg;base64,(.*)'", image_files) for i in range(len(imgbase64)): if not os.path.isdir(row.seller_path): os.makedirs(row.seller_path) image_name = "%d%2.2d.jpg" % (row.itemID, i) image_tar_path = os.path.join(row.seller_path, image_name) with open(image_tar_path, "wb") as fp: fp.write(imgbase64[i].decode('base64')) row
parser/silkroad2/silkroad_additional.ipynb
# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.14.4 # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- # 1、线图效果(关系图改造) # ====== # + import tushare as ts import pandas as pd from IPython.display import HTML stock_selected='600487' #历年前十大股东持股情况 #df1为季度统计摘要,data1为前十大持股明细统计 df1, data1 = ts.top10_holders(code=stock_selected, gdtype='0') #gdtype等于1时表示流通股,默认为0 #df1, data1 = ts.top10_holders(code='002281', year=2015, quarter=1, gdtype='1') df1 = df1.sort_values('quarter', ascending=True) df1.tail(10) qts = list(df1['quarter']) data = list(df1['props']) name = ts.get_realtime_quotes(stock_selected)['name'][0] # + lgdstr = """ var axisData = """ + str(qts) + """; var data = """ + str(data) + """; var links = data.map(function (item, i) { return { source: i, target: i + 1 }; }); links.pop(); option = { title: { text: 'stockname:前十大流通股东持股占比' }, tooltip: { trigger: 'item' }, xAxis: { type : 'category', boundaryGap : false, data : axisData }, yAxis: { type : 'value' }, series: [ { type: 'line', layout: 'none', coordinateSystem: 'cartesian2d', symbolSize: 10, label: { normal: { show: true } }, edgeSymbol: ['circle', 'arrow'], edgeSymbolSize: [2, 5], data: data, links: links, lineStyle: { normal: { color: '#2f4554' } } } ] }; """ lgdstr=lgdstr.replace('stockname',name) headstr = """ <div id="showhere" style="width:800px; height:600px;"></div> <script> require.config({ paths:{ echarts: '//cdn.bootcss.com/echarts/3.2.3/echarts.min', } }); require(['echarts'],function(ec){ var myChart = ec.init(document.getElementById('showhere')); """ tailstr = """ myChart.setOption(option); }); </script> """ # - HTML(headstr + lgdstr+tailstr) # 2、饼图效果 # ====== # + import tushare as ts import pandas as pd from IPython.display import HTML #浦发银行2016三季度前十大流通股东情况 df2, data2 = ts.top10_holders(code=stock_selected, year=2016, quarter=3, gdtype='1') #取前十大流通股东名称 top10name = str(list(data2['name'])) # + valstrs = '' for idx in data2.index: s = '{value: %s, name: \'%s\'}' % (data2.ix[idx]['h_pro'], data2.ix[idx]['name']) valstrs += s + ',' valstrs = valstrs[:-1] datacontent = """ option = { tooltip: { trigger: 'item', formatter: "{a} <br/>{b}: {c} ({d}%)" }, legend: { orient: 'vertical', x: 'left', data: """ + top10name +""" }, series: [ { name:'前十大流通股东:', type:'pie', radius: ['50%', '70%'], avoidLabelOverlap: false, label: { normal: { show: false, position: 'center' }, emphasis: { show: true, textStyle: { fontSize: '30', fontWeight: 'bold' } } }, labelLine: { normal: { show: false } }, data:[ """ + valstrs + """ ] } ] }; """ headstr = """ <div id="mychart" style="width:800px; height:600px;"></div> <script> require.config({ paths:{ echarts: '//cdn.bootcss.com/echarts/3.2.3/echarts.min', } }); require(['echarts'],function(ec){ var myChart = ec.init(document.getElementById('mychart')); """ tailstr = """ myChart.setOption(option); }); </script> """ # - HTML(headstr + datacontent + tailstr) # 3、K线效果演示 # ========= import tushare as ts import pandas as pd from IPython.display import HTML #中国联通前复权数据 #df = ts.get_k_data(stock_selected, start='2016-01-01', end='2016-12-02') df = ts.get_k_data(stock_selected, start='2016-01-01') # + datastr = '' for idx in df.index: rowstr = '[\'%s\',%s,%s,%s,%s]' % (df.ix[idx]['date'], df.ix[idx]['open'], df.ix[idx]['close'], df.ix[idx]['low'], df.ix[idx]['high']) datastr += rowstr + ',' datastr = datastr[:-1] #取股票名称 name = ts.get_realtime_quotes(stock_selected)['name'][0] datahead = """ <div id="chart" style="width:800px; height:600px;"></div> <script> require.config({ paths:{ echarts: '//cdn.bootcss.com/echarts/3.2.3/echarts.min', } }); require(['echarts'],function(ec){ var myChart = ec.init(document.getElementById('chart')); """ datavar = 'var data0 = splitData([%s]);' % datastr funcstr = """ function splitData(rawData) { var categoryData = []; var values = [] for (var i = 0; i < rawData.length; i++) { categoryData.push(rawData[i].splice(0, 1)[0]); values.push(rawData[i]) } return { categoryData: categoryData, values: values }; } function calculateMA(dayCount) { var result = []; for (var i = 0, len = data0.values.length; i < len; i++) { if (i < dayCount) { result.push('-'); continue; } var sum = 0; for (var j = 0; j < dayCount; j++) { sum += data0.values[i - j][1]; } result.push((sum / dayCount).toFixed(2)); } return result; } option = { title: { """ namestr = 'text: \'%s\',' %name functail = """ left: 0 }, tooltip: { trigger: 'axis', axisPointer: { type: 'line' } }, legend: { data: ['日K', 'MA5', 'MA10', 'MA20', 'MA30'] }, grid: { left: '10%', right: '10%', bottom: '15%' }, xAxis: { type: 'category', data: data0.categoryData, scale: true, boundaryGap : false, axisLine: {onZero: false}, splitLine: {show: false}, splitNumber: 20, min: 'dataMin', max: 'dataMax' }, yAxis: { scale: true, splitArea: { show: true } }, dataZoom: [ { type: 'inside', start: 50, end: 100 }, { show: true, type: 'slider', y: '90%', start: 50, end: 100 } ], series: [ { name: '日K', type: 'candlestick', data: data0.values, markPoint: { label: { normal: { formatter: function (param) { return param != null ? Math.round(param.value) : ''; } } }, data: [ { name: '标点', coord: ['2013/5/31', 2300], value: 2300, itemStyle: { normal: {color: 'rgb(41,60,85)'} } }, { name: 'highest value', type: 'max', valueDim: 'highest' }, { name: 'lowest value', type: 'min', valueDim: 'lowest' }, { name: 'average value on close', type: 'average', valueDim: 'close' } ], tooltip: { formatter: function (param) { return param.name + '<br>' + (param.data.coord || ''); } } }, markLine: { symbol: ['none', 'none'], data: [ [ { name: 'from lowest to highest', type: 'min', valueDim: 'lowest', symbol: 'circle', symbolSize: 10, label: { normal: {show: false}, emphasis: {show: false} } }, { type: 'max', valueDim: 'highest', symbol: 'circle', symbolSize: 10, label: { normal: {show: false}, emphasis: {show: false} } } ], { name: 'min line on close', type: 'min', valueDim: 'close' }, { name: 'max line on close', type: 'max', valueDim: 'close' } ] } }, { name: 'MA5', type: 'line', data: calculateMA(5), smooth: true, lineStyle: { normal: {opacity: 0.5} } }, { name: 'MA10', type: 'line', data: calculateMA(10), smooth: true, lineStyle: { normal: {opacity: 0.5} } }, { name: 'MA20', type: 'line', data: calculateMA(20), smooth: true, lineStyle: { normal: {opacity: 0.5} } }, { name: 'MA30', type: 'line', data: calculateMA(30), smooth: true, lineStyle: { normal: {opacity: 0.5} } }, ] }; myChart.setOption(option); }); </script> """ # - HTML(datahead + datavar + funcstr + namestr + functail)
sample_code/echartsDemo.ipynb
# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.14.4 # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- # ## Introduction # ----- # You (an electrical engineer) wish to determine the resistance of an electrical component by using Ohm's law. You remember from your high school circuit classes that $$V = RI$$ where $V$ is the voltage in volts, $R$ is resistance in ohms, and $I$ is electrical current in amperes. Using a multimeter, you collect the following data: # # | Current (A) | Voltage (V) | # |-------------|-------------| # | 0.2 | 1.23 | # | 0.3 | 1.38 | # | 0.4 | 2.06 | # | 0.5 | 2.47 | # | 0.6 | 3.17 | # # Your goal is to # 1. Fit a line through the origin (i.e., determine the parameter $R$ for $y = Rx$) to this data by using the method of least squares. You may assume that all measurements are of equal importance. # 2. Consider what the best estimate of the resistance is, in ohms, for this component. # # ## Getting Started # ---- # # First we will import the neccesary Python modules and load the current and voltage measurements into numpy arrays: # + import numpy as np from numpy.linalg import inv import matplotlib.pyplot as plt # Store the voltage and current data as column vectors. I = np.mat([0.2, 0.3, 0.4, 0.5, 0.6]).T V = np.mat([1.23, 1.38, 2.06, 2.47, 3.17]).T # - # Now we can plot the measurements - can you see the linear relationship between current and voltage? # + plt.scatter(np.asarray(I), np.asarray(V)) plt.xlabel('Current (A)') plt.ylabel('Voltage (V)') plt.grid(True) plt.show() # - # ## Estimating the Slope Parameter # ---- # Let's try to estimate the slope parameter $R$ (i.e., the resistance) using the least squares formulation from Module 1, Lesson 1 - "The Squared Error Criterion and the Method of Least Squares": # # \begin{align} # \hat{R} = \left(\mathbf{H}^T\mathbf{H}\right)^{-1}\mathbf{H}^T\mathbf{y} # \end{align} # # If we know that we're looking for the slope parameter $R$, how do we define the matrix $\mathbf{H}$ and vector $\mathbf{y}$? # + # Define the H matrix, what does it contain? H = I y = V # Now estimate the resistance parameter. R = np.dot(np.dot(np.linalg.inv(np.dot(H.T, H)), H.T), y) R = np.asscalar(R) print('The slope parameter (i.e., resistance) for the best-fit line is:') print(R) # - # ## Plotting the Results # ---- # Now let's plot our result. How do we relate our linear parameter fit to the resistance value in ohms? # + I_line = np.arange(0, 0.8, 0.1) V_line = R*I_line plt.scatter(np.asarray(I), np.asarray(V)) plt.plot(I_line, V_line) plt.xlabel('current (A)') plt.ylabel('voltage (V)') plt.grid(True) plt.show() # - # If you have implemented the estimation steps correctly, the slope parameter $\hat{R}$ should be close to the actual resistance value of $R = 5~\Omega$. However, the estimated value will not match the true resistance value exactly, since we have only a limited number of noisy measurements.
Notebooks/C2M1L1.ipynb
# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.14.4 # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- # ## Collections Module # Counter from collections import Counter list=['a','s','l','a','n'] Counter(list) #number of element in list name='himanshu' Counter(name) strs='hey this is rover and i like to play vedio games i like it' strs=strs.split() Counter(strs) cou=Counter(strs) cou.most_common(2) cou.update('i') cou sum(cou.values()) cou.clear() cou.most_common(5) # defaultdict from collections import defaultdict d = {'k1':'Rover'} d['k1'] # + #d['not_defined_key'] will generate error. # - d = defaultdict(object) d['one'] for item in d: print(item) di=defaultdict(lambda :45) di['2']=3 di['3'] di # + d={} d['a']='Nitro' d['b']='Strix' d['c']='prestige' d['d']='rog' # - d for key,val in d.items(): print(key,':',val) # Named Tuple t=(1,2,3,4) t[0] from collections import namedtuple Dog=namedtuple('Dog','age breed name') liz=Dog(age=2,breed = 'lab',name='Lizzy') liz liz[2] # Datetime import datetime t=datetime.time(1,44,1) print(t) t.hour t.minute print(datetime.time.min) print(datetime.time.max) datetime.date(2,1,12) td=datetime.date.today() print(td) td.day
15-modules.ipynb
# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.14.4 # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- # + # python version : 3.x import tensorflow as tf # placeholder 를 통해 tensor - 데이터를 입력받을 공간(노드, 변수)을 만든다. input1 = tf.placeholder(tf.float32) input2 = tf.placeholder(tf.float32) # 2개를 입력 받아서 곱하는 tensor 를 만든다. output = tf.multiply(input1, input2) # tensor print 하면 내용만 tensor 의 형식만 보인다. print (input1) print (input1) print (output) # 입력노드 input1, input2 를 곱한 결과 노드 output 라는 그래프를 만들었다. # 이 그래프를 실행하기 위해 세션을 사용한다. sess = tf.Session() # session 의 run 을 통해 위에서 만들 그래프(모델)을 실행한다. # input1:3.0 intput2:7.0 으로 두고 output:3.0*7.0=21.0 을 계산한다. print(sess.run([output], feed_dict={input1: [3.], input2: [7.]})) # + # python version : 3.x import tensorflow as tf import numpy as np # Create 100 phony x, y data points in NumPy, y = x * 0.1 + 0.3 x_data = np.random.rand(100).astype(np.float32) y_data = x_data * 0.1 + 0.3 # Try to find values for W and b that compute y_data = W * x_data + b # (We know that W should be 0.1 and b 0.3, but TensorFlow will # figure that out for us.) # variable 는 weight 를 저장할때 사용한다. W = tf.Variable(tf.random_uniform([1], -1.0, 1.0)) b = tf.Variable(tf.zeros([1])) y = W * x_data + b # Minimize the mean squared errors. loss = tf.reduce_mean(tf.square(y - y_data)) optimizer = tf.train.GradientDescentOptimizer(0.5) train = optimizer.minimize(loss) # Before starting, initialize the variables. We will 'run' this first. init = tf.global_variables_initializer() # Launch the graph. sess = tf.Session() sess.run(init) # Fit the line. for step in range(201): sess.run(train) if step % 20 == 0: print(step, sess.run(W), sess.run(b)) # Learns best fit is W: [0.1], b: [0.3]
MachineLearning/placeholder_variable.ipynb
# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.14.4 # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- # # Ray Concepts - Data Parallelism (Part 1) # # Now let's explore Ray's core concepts and understand how they work. As much as possible, Ray tries to leverage familiar Python idioms, extending them as necessary. # # This lesson covers how to define Ray _tasks_, run them, and retrieve the results. We'll also end with an optional section to help you understand how Ray schedules tasks in a distributed environment. # # The next lesson will complete the discussion of Ray tasks by exploring how task dependencies are handled and look under the hood at Ray's architecture and runtime behavior. # First, we need to import `ray` and we'll also import the `time` API. (If you get an error in the next cell, make sure you set up the tutorial as described in the project [README](../README.md). # # > **Tip:** The [Ray Package Reference](https://ray.readthedocs.io/en/latest/package-ref.html) in the [Ray Docs](https://ray.readthedocs.io/en/latest/) is useful for exploring the API features we'll learn. import ray, time, sys sys.path.append('..') # Import our own libraries starting in the project root directory # We've implemented a convience function `p()` for printing a number and time duration. It's in a library, so we can just import it, since we set the `sys.path` above. # # For reference, the function is defined as follows: # ```python # def p(n, duration): # print('{:2d}: {:6.3f} seconds'.format(n, duration)) # ``` from util.printing import p # Now consider the following Python function, where we simulate doing something that's slow to complete, using the `sleep` method. A real world example might do a complex calculation (like a training step for machine learning) or call an external web service where a response could take many milliseconds. We'll use more interesting examples later. def expensive(n): start = time.time() # Let's time how long this takes. time.sleep(n) # Sleep for n seconds return (n, time.time() - start) # Return n and the duration in seconds (n, duration) = expensive(2) p(n, duration) # You should see the output `2: 2.00X seconds`, where `X` is an integer. As we might expect, it took about two seconds to execute. # # Now suppose we need to fire off five of these at once: start_all = time.time() for n in range(5): n2, duration = expensive(n) p(n, duration) print("Total time:") p(10, time.time() - start_all) # It takes about 10 seconds to run, because we do this process _synchronously_, but we don't need to do this. Each call to `expensive()` is independent of the others, so ideally we should run them in _parallel_, i.e., _asynchronously_, so all of them finish more quickly. # # Ray makes this easy. Let's define a new function and annotate it with `@ray.remote`. In Ray terminology, the annotation converts the function to a _task_, because we'll now be able to let Ray schedule this "task" (i.e., unit of work) on any CPU core in our laptop or in our cluster when we use one. @ray.remote def expensive_task(n): return expensive(n) # Note that we could simply call `expensive()`, we don't have to redefine it. # # Now when we invoke `expensive_task`, we have to use `expensive_task.remote(n)` instead of `expensive_task(n)`, like before. Python is malleable; the Ray team could have instrumented `expensive_task` so that we can call it like a normal function, but the explicit `.remote` is reminder to the reader what code is using Ray vs. normal Python code. # # Okay, let's try the same loop as before. But first, we have to initialize Ray with `ray.init()`. There are optional key-value pairs you can provide. We'll explore many of them later, but for now, we'll just pass an option that allows us to re-initialize Ray without triggering an error. It would be useful if you decided to reevalute the following cell for some reason. ray.init(ignore_reinit_error=True) # > **Troubleshooting** # > # > 1. If you get an error like `... INFO services.py:... -- Failed to connect to the redis server, retrying.`, it probably means you are running a VPN on your machine. [At this time](https://github.com/ray-project/ray/issues/6573), you can't use `ray.init()` with a VPN running. You'll have to stop your VPN for now. # > # > 2. If `ray.init()` worked (for example, you see a message like _View the Ray dashboard at localhost:8265_) and you're using a Mac, you may get several annoying dialogs asking you if you want to allow incoming connections for Python and/or Redis. Click "Accept" for each one and they shouldn't appear again during this lesson. MacOS is trying to verify if these executables have been properly signed. Ray uses Redis. If you installed Python using Anaconda or other mechanism, then it probably isn't properly signed from the point of view of MacOS. To permanently fix this problem, [see this StackExchange post](https://apple.stackexchange.com/questions/3271/how-to-get-rid-of-firewall-accept-incoming-connections-dialog). # If `ray.init()` worked successfully, you'll see a JSON block with information such as the `node_ip_address` and `webui_rul`. # # A separate message tells you that URL is for the Ray dashboard. Open it now in a separate browser tab. It should look something like this: # ![Ray Dashboard screenshot](../images/Ray-Dashboard.png) # > **Tip:** You can ask Ray for this URL later if needed. Use `ray.get_webui_url()`. # > # > **Note:** There are many options you can pass to `ray.init()`. See [the docs](https://ray.readthedocs.io/en/latest/configure.html) for details, some of which we'll explore in later modules. # My laptop has four cores, each of which has a hardware _thread_, for a total of eight. Ray started a `ray` worker process for each hardware thread. These workers are used to run tasks. Click around the dashboard, especially when we run tasks like we're about to do. We'll explore the dashboard more later on. Many laptops have eight cores, so if you may see 16 ray processes. # # Now let's run our new Ray task! expensive_task.remote(2) # What's this `ObjectID` thing? Recall that `expensive()` returned `(n, seconds)`. Now, when we invoke a task, it will be executed _asynchronously_, so instead of the tuple we will eventually want, we get a reference to a Python [Future](https://docs.python.org/3/library/asyncio-future.html), which we'll use to retrieve the tuple when the task has completed. One way to do this is to use `ray.get()`. So, let's modify our previous loop to use the task and retrieve the values using the futures. start_all = time.time() for n in range(5): id = expensive_task.remote(n) # Call the remote task n2, duration = ray.get(id) # Retrieve the value using the future p(n, duration) print("Total time:") p(10, time.time() - start_all) # I said that Ray would make everything go faster, but the performance is the same. The reason is because we used `ray.get()` incorrectly. This is a _blocking call_; we're telling Ray, "I need the value and I'm going to wait until the task is done and you can return it to me." Making this blocking call in the loop defeats the goal of leveraging asynchrony. # # Instead, we need to "fire off" all the asynchronous calls, building up a list of futures, then wait for all of them at once. We'll do that as follows, where for this purposes we'll introduce a list comprehension to call the tasks: # + start_all = time.time() ids = [] for n in range(5): id = expensive_task.remote(n) ids.append(id) p(n, time.time() - start_all) for n2, duration in ray.get(ids): # Retrieve all the values for a list of futures p(n2, duration) print("Total time:") p(10, time.time() - start_all) # - # Notice what happened. In the first loop, when we called `expensive_task.remote(n)`, each call returned immediately, so the "durations" were tiny. Then you probably noticed that nothing happend for about four seconds, then suddenly everything was printed, for a total elapsed time of about four seconds. # # Why four? When we pass a list of futures to `ray.get()`, it blocks until the results are available for _all_ of them. Our longest task was four seconds, so once that one finished, the others were already done and all could be returned immediately. # Run the next cell, which is basically the same calculation, but it uses a more idiomatic list comprehension for the `expensive_task` invocations and doesn't log the times for those calls, as we now know these times are trivial. # # **However**, as soon as the call starts, switch to the Ray Dashboard browser tab and watch what happens (or use separate windows for these two tabs). You notice instances of `expensive_task` being executed by the different `ray` processes. You'll note that Try using a larger number than `5` so it's easier start_all = time.time() ids = [expensive_task.remote(n) for n in range(5)] # Fire off the asynchronous tasks for n2, duration in ray.get(ids): # Retrieve all the values from the list of futures p(n2, duration) print("Total time:") p(10, time.time() - start_all) # ## Exercise 1 # # Let's make sure you understand how to use Ray's task parallelism. In the following two cells, we define a new Python function and then use it several times to perform work. Modify both cells to use Ray. The third cell uses `assert` statements to check your work. # # > **Tip:** The solution is in the `solutions` folder. def slow_square(n): time.sleep(n) return n*n start = time.time() squares = [slow_square(n) for n in range(4)] duration = time.time() - start assert squares == [0, 1, 4, 9] # should fail until the code modifications are made: assert duration < 4.1, f'duration = {duration}' # ## A Closer Look at Scheduling # # > **Note:** If you just want to learn the Ray API, you can safely skip the rest of this lesson (notebook) for now. It begins our exploration of how Ray works internally. However, you should come back to it at some point, so you'll develop a better understanding of how Ray works. # To better see what's happening with the dashboard, run the following cells to determine the number of CPU hardware threads on your laptop, each of which is running a `ray` process. We've expanded this code over several cells so you can see what each step returns, but you could write it all at once, `num_cpus = ray.nodes()[0]['Resources']['CPU']`. import json nodes = ray.nodes() # Get a JSON object with metadata about all the nodes in your "cluster". nodes # On your laptop, a list with one node. node = nodes[0] # Get the single node node resources = node['Resources'] # Get the resources for the node resources num_cpus = resources['CPU'] # Get the number of CPU hardware threads num_cpus # The final number will be `8.0`, `16.0`, etc. The next cell is one of our previous examples of calling `expensive_task`, but now the loop counter is `2*int(num_cpus)` instead of `5`. This will mean that half of the tasks will have to wait for an open slot. Now run the following cell and watch the Ray dashboard. (You'll know the cell is finished when all the `ray` workers return to `IDLE`.) # # What's the total time now? How about the individual times? # + start_all = time.time() ids = [] for n in range(2*int(num_cpus)): # What's changed! id = expensive_task.remote(n) ids.append(id) p(n, time.time() - start_all) for n2, duration in ray.get(ids): # Retrieve all the values for a list of futures p(n2, duration) print("Total time:") p(10, time.time() - start_all) # - # On my 8-worker machine, 16 tasks were run. # # Look at the first set of times, for the submissions. They are still fast and nonblocking, but on my machine they took about ~0.02 seconds to complete, so some competition for CPU time occurred. # # As before, each asynchronous task still takes roughly `n` seconds to finish (for `n` equals 0 through 15). This makes sense, because each `expensive_task` does essentially nothing but sleep, and since there's only one task per worker, there should be no apreciable difference for the individual times, as before. # # However, the whole process took about 22 seconds, not 16, as we might have expected from our previous experience (i.e., the time for the longest task). This reflects the fact that half the tasks had to wait for an available worker. # # In fact, we can explain the 22 seconds exactly. Here is how my 16 tasks, with durations 0 to 15 seconds, were allocated to the 8 workers. Keep in mind that the scheduling happened in order for increasing `n`. # # The first 8 tasks, of duration 0 to 7 seconds, where scheduled immediately in the 8 available workers. The 0-second task finished immediately, so the next waiting task, the 8-second task was scheduled on that worker. It finished in 8 seconds, so the _total_ time for the 0-second and 8-second tasks was about 8 seconds. Similarly, after the 1-second task finished, the 9-second task was scheduled. Total time: 10 seconds. Using induction ;), the last worker started with the 7-second task followed by the 15-second task for a total of 22 seconds! # # Here's a table showing this in detail. where `n1` and `n2` refers to the first and second tasks, with durations `n1` seconds and `n2` seconds, for a total of `n1+n2` seconds. For consistency, the `ray` workers are numbered from zero: # # | Worker | n1 | n2 | Total Time | # | -----: | -: | -: | ---------: | # | 0 | 0 | 8 | 8 | # | 1 | 1 | 9 | 10 | # | 2 | 2 | 10 | 12 | # | 3 | 3 | 11 | 14 | # | 4 | 4 | 12 | 16 | # | 5 | 5 | 13 | 18 | # | 6 | 6 | 14 | 20 | # | 7 | 7 | 15 | 22 | # # # Of course a real-world scheduling scenario would be more complicated, but hopefully you have a better sense of how Ray distributes work, whether you're working on a single laptop or a large cluster! import numpy as np @ray.remote def make_array(n): return np.random.standard_normal(n) @ray.remote def add_array(a1, a2): return np.add(a1, a2) start = time.time() id1 = make_array.remote(50) id2 = make_array.remote(50) id3 = add_array.remote(id1, id2) p(0, time.time() - start) ray.get(id3) p(1, time.time() - start) make_array2(5) np.random.standard_normal(10)
ray-core/02-DataParallelism-Part1.ipynb