problem
stringlengths
2
5.64k
solution
stringlengths
2
13.5k
answer
stringlengths
1
43
problem_type
stringclasses
8 values
question_type
stringclasses
4 values
problem_is_valid
stringclasses
1 value
solution_is_valid
stringclasses
1 value
source
stringclasses
6 values
synthetic
bool
1 class
## problem statement Let $k$ be the coefficient of similarity transformation with the center at the origin. Is it true that point $A$ belongs to the image of plane $a$? $A(-1 ; 1 ; 1)$ $a: 3 x-y+2 z+4=0$ $k=\frac{1}{2}$
## Solution When transforming similarity with the center at the origin of the plane $a: A x+B y+C z+D=0_{\text{and coefficient }} k$ transitions to the plane $a^{\prime}: A x+B y+C z+k \cdot D=0$. We find the image of the plane $a$: $a^{\prime}: 3 x-y+2 z+2=0$ Substitute the coordinates of point $A$ into the equation $a^{\prime}$: $3 \cdot(-1)-1+2 \cdot 1+2=0$ $-3-1+2+2=0$ $0=0$ Since $0=0$, point $A$ belongs to the image of the plane $a$. ## Problem Kuznetsov Analytical Geometry 12-3
0
Geometry
math-word-problem
Yes
Yes
olympiads
false
## Problem Statement Based on the definition of the derivative, find $f^{\prime}(0)$: $f(x)=\left\{\begin{array}{c}\frac{\ln \left(1+2 x^{2}+x^{3}\right)}{x}, x \neq 0 ; \\ 0, x=0\end{array}\right.$
## Solution By definition, the derivative at the point $x=0$: $f^{\prime}(0)=\lim _{\Delta x \rightarrow 0} \frac{f(0+\Delta x)-f(0)}{\Delta x}$ Based on the definition, we find: $$ \begin{aligned} & f^{\prime}(0)=\lim _{\Delta x \rightarrow 0} \frac{f(0+\Delta x)-f(0)}{\Delta x}=\lim _{\Delta x \rightarrow 0} \frac{\frac{\ln \left(1+2 \Delta x^{2}+\Delta x^{3}\right)}{\Delta x}-0}{\Delta x}= \\ & =\lim _{\Delta x \rightarrow 0} \frac{\ln \left(1+2 \Delta x^{2}+\Delta x^{3}\right)}{\Delta x^{2}}= \end{aligned} $$ Using the substitution of equivalent infinitesimals: $$ \ln \left(1+2 \Delta x^{2}+\Delta x^{3}\right) \sim 2 \Delta x^{2}+\Delta x^{3}, \text { as } \Delta x \rightarrow 0\left(2 \Delta x^{2}+\Delta x^{3} \rightarrow 0\right) $$ We get: $$ =\lim _{\Delta x \rightarrow 0} \frac{2 \Delta x^{2}+\Delta x^{3}}{\Delta x^{2}}=\lim _{\Delta x \rightarrow 0}(2+\Delta x)=2+0=2 $$ Thus, $f^{\prime}(0)=2$ ## Problem Kuznetsov Differentiation $2-29$
2
Calculus
math-word-problem
Yes
Yes
olympiads
false
## Problem Statement Calculate the limit of the numerical sequence: $\lim _{n \rightarrow \infty} \frac{\sqrt{n+2}-\sqrt[3]{n^{3}+2}}{\sqrt[7]{n+2}-\sqrt[5]{n^{5}+2}}$
Solution $$ \begin{aligned} & \lim _{n \rightarrow \infty} \frac{\sqrt{n+2}-\sqrt[3]{n^{3}+2}}{\sqrt[7]{n+2}-\sqrt[5]{n^{5}+2}}=\lim _{n \rightarrow \infty} \frac{\frac{1}{n}\left(\sqrt{n+2}-\sqrt[3]{n^{3}+2}\right)}{\frac{1}{n}\left(\sqrt[7]{n+2}-\sqrt[5]{n^{5}+2}\right)}= \\ & =\lim _{n \rightarrow \infty} \frac{\sqrt{\frac{1}{n}+\frac{2}{n^{2}}}-\sqrt[3]{1+\frac{2}{n^{3}}}}{\sqrt[7]{\frac{1}{n^{6}}+\frac{2}{n^{7}}}-\sqrt[5]{1+\frac{2}{n^{5}}}}=\frac{\sqrt{0+0}-\sqrt[3]{1+0}}{\sqrt[7]{0+0}-\sqrt[5]{1+0}}=\frac{-1}{-1}=1 \end{aligned} $$ ## Problem Kuznetsov Limits 4-25
1
Calculus
math-word-problem
Yes
Yes
olympiads
false
## Problem Statement Calculate the limit of the numerical sequence: $\lim _{n \rightarrow \infty} n^{3}\left(\sqrt[3]{n^{2}\left(n^{6}+4\right)}-\sqrt[3]{n^{8}-1}\right)$
## Solution $$ \begin{aligned} & \lim _{n \rightarrow \infty} n^{3}\left(\sqrt[3]{n^{2}\left(n^{6}+4\right)}-\sqrt[3]{n^{8}-1}\right)= \\ & =\lim _{n \rightarrow \infty} \frac{n^{3}\left(\sqrt[3]{n^{2}\left(n^{6}+4\right)}-\sqrt[3]{n^{8}-1}\right)\left(\left(\sqrt[3]{n^{2}\left(n^{6}+4\right)}\right)^{2}+\sqrt[3]{n^{2}\left(n^{6}+4\right)} \sqrt[3]{n^{8}-1}+\left(\sqrt[3]{n^{8}-1}\right)^{2}\right)}{\left(\sqrt[3]{n^{2}\left(n^{6}+4\right)}\right)^{2}+\sqrt[3]{n^{2}\left(n^{6}+4\right)} \sqrt[3]{n^{8}-1}+\left(\sqrt[3]{n^{8}-1}\right)^{2}}= \end{aligned} $$ $$ \begin{aligned} & =\lim _{n \rightarrow \infty} \frac{n^{3}\left(n^{2}\left(n^{6}+4\right)-\left(n^{8}-1\right)\right)}{\sqrt[3]{n^{4}\left(n^{6}+4\right)^{2}}+\sqrt[3]{n^{2}\left(n^{6}+4\right)\left(n^{8}-1\right)}+\sqrt[3]{\left(n^{8}-1\right)^{2}}}= \\ & =\lim _{n \rightarrow \infty} \frac{n^{3}\left(n^{8}+4 n^{2}-n^{8}+1\right)}{\sqrt[3]{n^{4}\left(n^{6}+4\right)^{2}}+\sqrt[3]{n^{2}\left(n^{6}+4\right)\left(n^{8}-1\right)}+\sqrt[3]{\left(n^{8}-1\right)^{2}}}= \\ & =\lim _{n \rightarrow \infty} \frac{n^{3}\left(4 n^{2}+1\right)}{\sqrt[3]{n^{4}\left(n^{6}+4\right)^{2}}+\sqrt[3]{n^{2}\left(n^{6}+4\right)\left(n^{8}-1\right)}+\sqrt[3]{\left(n^{8}-1\right)^{2}}}= \\ & =\lim _{n \rightarrow \infty} \frac{n^{-\frac{1}{3}} n^{3}\left(4 n^{2}+1\right)}{n^{-\frac{16}{3}}\left(\sqrt[3]{n^{4}\left(n^{6}+4\right)^{2}}+\sqrt[3]{n^{2}\left(n^{6}+4\right)\left(n^{8}-1\right)}+\sqrt[3]{\left(n^{8}-1\right)^{2}}\right)}= \\ & =\lim _{n \rightarrow \infty} \frac{n^{-\frac{7}{3}}\left(4 n^{2}+1\right)}{\sqrt[3]{n^{-16} n^{4}\left(n^{6}+4\right)^{2}}+\sqrt[3]{n^{-16} n^{2}\left(n^{6}+4\right)\left(n^{8}-1\right)}+\sqrt[3]{n^{-16}\left(n^{8}-1\right)^{2}}}= \\ & =\lim _{n \rightarrow \infty} \frac{4 n^{-\frac{1}{3}}+n^{-\frac{5}{3}}}{\sqrt[3]{\left(1+\frac{4}{n^{6}}\right)}+\sqrt[3]{\left(1+\frac{4}{n^{6}}\right)\left(1-\frac{1}{n^{8}}\right)}+\sqrt[3]{\left(1-\frac{1}{n^{8}}\right)^{2}}}= \\ & =\frac{4 \cdot 0+0}{\sqrt[3]{(1+0)^{2}}+\sqrt[3]{(1+0)(1-0)}+\sqrt[3]{(1-0)^{2}}}=\frac{0}{3}=0 \end{aligned} $$ ## Problem Kuznetsov Limits $5-25$
0
Calculus
math-word-problem
Yes
Yes
olympiads
false
## Problem Statement Calculate the limit of the function: $\lim _{x \rightarrow 0} \frac{\sqrt{1-2 x+3 x^{2}}-(1+x)}{\sqrt[3]{x}}$
## Solution $$ \begin{aligned} & \lim _{x \rightarrow 0} \frac{\sqrt{1-2 x+3 x^{2}}-(1+x)}{\sqrt[3]{x}}= \\ & =\lim _{x \rightarrow 0} \frac{\left(\sqrt{1-2 x+3 x^{2}}-(1+x)\right)\left(\sqrt{1-2 x+3 x^{2}}+(1+x)\right)}{\sqrt[3]{x}\left(\sqrt{1-2 x+3 x^{2}}+(1+x)\right)}= \\ & =\lim _{x \rightarrow 0} \frac{1-2 x+3 x^{2}-(1+x)^{2}}{\sqrt[3]{x}\left(\sqrt{1-2 x+3 x^{2}}+1+x\right)}=\lim _{x \rightarrow 0} \frac{1-2 x+3 x^{2}-\left(1+2 x+x^{2}\right)}{\sqrt[3]{x}\left(\sqrt{1-2 x+3 x^{2}}+1+x\right)}= \\ & =\lim _{x \rightarrow 0} \frac{1-2 x+3 x^{2}-1-2 x-x^{2}}{\sqrt[3]{x}\left(\sqrt{1-2 x+3 x^{2}}+1+x\right)}=\lim _{x \rightarrow 0} \frac{-4 x+2 x^{2}}{\sqrt[3]{x}\left(\sqrt{1-2 x+3 x^{2}}+1+x\right)}= \\ & =\lim _{x \rightarrow 0} \frac{x(2 x-4)}{\sqrt[3]{x}\left(\sqrt{1-2 x+3 x^{2}}+1+x\right)}=\lim _{x \rightarrow 0} \frac{\sqrt[3]{x^{2}}(2 x-4)}{\sqrt{1-2 x+3 x^{2}}+1+x}= \\ & =\frac{\sqrt[3]{0^{2}}(2 \cdot 0-4)}{\sqrt{1-2 \cdot 0+3 \cdot 0^{2}}+1+0}=\frac{0}{1+1}=0 \end{aligned} $$ ## Problem Kuznetsov Limits 11-25
0
Calculus
math-word-problem
Yes
Yes
olympiads
false
## Problem Statement Calculate the limit of the function: $\lim _{x \rightarrow 0} \frac{\sin ^{2} x-\tan^{2} x}{x^{4}}$
## Solution We will use the substitution of equivalent infinitesimals: $$ \begin{aligned} & \sin x \sim x, \text { as } x \rightarrow 0 \\ & \operatorname{tg} x \sim x, \text { as } x \rightarrow 0 \end{aligned} $$ We get: $$ \begin{aligned} & \lim _{x \rightarrow 0} \frac{\sin ^{2} x-\operatorname{tg}^{2} x}{x^{4}}=\left\{\frac{0}{0}\right\}=\lim _{x \rightarrow 0} \frac{\frac{\sin ^{2} x \cdot \cos ^{2} x}{\cos ^{2} x}-\operatorname{tg}^{2} x}{x^{4}}= \\ & =\lim _{x \rightarrow 0} \frac{\operatorname{tg}^{2} x \cdot \cos ^{2} x-\operatorname{tg}^{2} x}{x^{4}}=\lim _{x \rightarrow 0} \frac{\operatorname{tg}^{2} x\left(\cos ^{2} x-1\right)}{x^{4}}= \end{aligned} $$ $$ =\lim _{x \rightarrow 0} \frac{x^{2}\left(-\sin ^{2} x\right)}{x^{4}}=\lim _{x \rightarrow 0} \frac{x^{2}\left(-x^{2}\right)}{x^{4}}=\lim _{x \rightarrow 0} \frac{-1}{1}=-1 $$ ## Problem Kuznetsov Limits 12-25
-1
Calculus
math-word-problem
Yes
Yes
olympiads
false
## Problem Statement Calculate the limit of the function: $$ \lim _{x \rightarrow 0}\left(e^{x}+x\right)^{\cos x^{4}} $$
## Solution $$ \begin{aligned} & \lim _{x \rightarrow 0}\left(e^{x}+x\right)^{\cos x^{4}}=\left(e^{0}+0\right)^{\cos 0^{4}}= \\ & =(1+0)^{\cos 0}=1^{1}=1 \end{aligned} $$ ## Problem Kuznetsov Limits 18-25
1
Calculus
math-word-problem
Yes
Yes
olympiads
false
## Problem Statement Calculate the limit of the function: $\lim _{x \rightarrow 2}(\cos \pi x)^{\tan(x-2)}$
## Solution $\lim _{x \rightarrow 2}(\cos \pi x)^{\operatorname{tg}(x-2)}=(\cos (\pi \cdot 2))^{\operatorname{tg}(2-2)}=(\cos 2 \pi)^{\operatorname{tg} 0}=1^{0}=1$ ## Problem Kuznetsov Limits 20-25
1
Calculus
math-word-problem
Yes
Yes
olympiads
false
## Task Condition Determine the work (in joules) performed when lifting a satellite from the Earth's surface to a height of $H$ km. The mass of the satellite is $m$ tons, the radius of the Earth $R_{3}=6380$ km. The acceleration due to gravity $g$ at the Earth's surface is taken to be $10 \mathrm{~m} / \mathrm{c}^{2}$. $$ m=7.0 \mathrm{t}, H=200 \text { km. } $$
## Solution By definition, the elementary work $\Delta A=F(x) \Delta x$, where $F(x)=G \cdot \frac{m \cdot M}{\left(R_{3}+x\right)^{2}} ; G=6.67 \cdot 10^{-11} \mathrm{H}^{*} \mathrm{m}^{*} \mathrm{m} /($ kg*kg) \[ \begin{aligned} & F_{x}=G \cdot \frac{m \cdot M}{\left(R_{3}+x\right)^{2}}-\text { force of attraction at height } x \\ & F_{0}=G \cdot \frac{m \cdot M}{R_{3}^{2}}=m g-\text { force of attraction at the Earth's surface } \\ & d A=\frac{m \cdot g \cdot R_{3}^{2}}{\left(R_{3}+x\right)^{2}} d x \Rightarrow \\ & \Rightarrow A=\int_{0}^{H} \frac{m \cdot g \cdot R_{3}^{2}}{\left(R_{3}+x\right)^{2}} d\left(R_{3}+x\right)=-\left.m \cdot g \cdot R_{3}^{2} \cdot \frac{1}{R_{3}+x}\right|_{0} ^{H}=m \cdot g \cdot R_{3}^{2} \cdot\left(\frac{1}{R_{3}}-\frac{1}{R_{3}+H}\right)= \\ & =7 \cdot 10^{3}[\mathrm{~kg}] \cdot 10\left[\frac{M}{c^{2}}\right) \cdot\left(6380 \cdot 10^{3}[m]\right)^{2} \cdot\left(\frac{1}{6380 \cdot 10^{3}[m]}-\frac{1}{6380 \cdot 10^{3}[m]+200 \cdot 10^{3}[m]}\right)=13574468085 \\ & \text { J] } \end{aligned} \] Source — "http://pluspi.org/wiki/index.php/\�\�\�\�\�\�\�\�\�\�\�\�_\�\�\�\�\�\� \%D0\%BD\%D0\%B5\%D1\%86\%D0\%BE\%D0\%B2_\%D0\%98\%D0\%BD\%D1\%82\%D0\%B5\%D0\%B3\%D1\%80\%D0\%B0\%D0\%BB $\%$ D1\%8B_22-11" Categories: Kuznetsov Problem Book Integrals Problem $22 \mid$ Integrals Ukrainian Banner Network - Last modified on this page: 10:45, 31 May 2010. - Content is available under CC-BY-SA 3.0. Created by GeeTeatoo ## Problem Kuznetsov Integrals 22-12 ## Material from PlusPi
13574468085
Algebra
math-word-problem
Yes
Yes
olympiads
false
## Task Condition Determine the work (in joules) performed when lifting a satellite from the Earth's surface to a height of $H$ km. The mass of the satellite is $m$ tons, the radius of the Earth $R_{3}=6380$ km. The acceleration due to gravity $g$ at the Earth's surface is taken to be $10 \mathrm{~m} / \mathbf{c}^{2}$. $$ m=6.0 \mathrm{t}, H=300 \text { km. } $$
## Solution By definition, the elementary work $\Delta A=F(x) \Delta x$, where $F(x)=G \cdot \frac{m \cdot M}{\left(R_{3}+x\right)^{2}} ; G=6.67 \cdot 10^{-11} \mathrm{H}^{*} \mathrm{m}^{*} \mathrm{m} /($ kg*kg) \[ \begin{aligned} & F_{x}=G \cdot \frac{m \cdot M}{\left(R_{3}+x\right)^{2}}-\text { force of attraction at height } x \\ & F_{0}=G \cdot \frac{m \cdot M}{R_{3}^{2}}=m g-\text { force of attraction at the Earth's surface } \\ & d A=\frac{m \cdot g \cdot R_{3}^{2}}{\left(R_{3}+x\right)^{2}} d x \Rightarrow \\ & \Rightarrow A=\int_{0}^{H} \frac{m \cdot g \cdot R_{3}^{2}}{\left(R_{3}+x\right)^{2}} d\left(R_{3}+x\right)=-\left.m \cdot g \cdot R_{3}^{2} \cdot \frac{1}{R_{3}+x}\right|_{0} ^{H}=m \cdot g \cdot R_{3}^{2} \cdot\left(\frac{1}{R_{3}}-\frac{1}{R_{3}+H}\right)= \\ & =6 \cdot 10^{3}[\mathrm{~kg}] \cdot 10\left[\frac{M}{c^{2}}\right) \cdot\left(6380 \cdot 10^{3}[m]\right)^{2} \cdot\left(\frac{1}{6380 \cdot 10^{3}[m]}-\frac{1}{6380 \cdot 10^{3}[m]+300 \cdot 10^{3}[m]}\right)=17191616766 \\ & \text { J] } \end{aligned} \] Source — "http://pluspi.org/wiki/index.php/\�\�\�\�\�\�\�\�\�\�\�\�_\�\�\�\�\�\� \%D0\%BD\%D0\%B5\%D1\%86\%D0\%BE\%D0\%B2_\%D0\%98\%D0\%BD\%D1\%82\%D0\%B5\%D0\%B3\%D1\%80\%D0\%B0\%D0\%BB $\%$ D1\%8B_22-13" Categories: Kuznetsov Problem Book Integrals Problem $22 \mid$ Integrals Ukrainian Banner Network - Last modified on this page: 10:47, 31 May 2010. - Content is available under CC-BY-SA 3.0. Created by GeeTeatoo ## Problem Kuznetsov Integrals 22-14 ## Material from PlusPi
17191616766
Algebra
math-word-problem
Yes
Yes
olympiads
false
## Task Condition Determine the work (in joules) performed when lifting a satellite from the Earth's surface to a height of $H$ km. The mass of the satellite is $m$ tons, the radius of the Earth $R_{3}=6380$ km. The acceleration due to gravity $g$ at the Earth's surface is taken to be $10 \mathrm{~m} / \mathbf{c}^{2}$. $$ m=6.0 \mathrm{t}, H=350 \text { km. } $$
## Solution By definition, the elementary work $\Delta A=F(x) \Delta x$, where $F(x)=G \cdot \frac{m \cdot M}{\left(R_{3}+x\right)^{2}} ; G=6.67 \cdot 10^{-11} \mathrm{H}^{*} \mathrm{m}^{*} \mathrm{m} /($ kg*kg) \[ \begin{aligned} & F_{x}=G \cdot \frac{m \cdot M}{\left(R_{3}+x\right)^{2}}-\text { force of attraction at height } x \\ & F_{0}=G \cdot \frac{m \cdot M}{R_{3}^{2}}=m g-\text { force of attraction at the Earth's surface } \\ & d A=\frac{m \cdot g \cdot R_{3}^{2}}{\left(R_{3}+x\right)^{2}} d x \Rightarrow \\ & \Rightarrow A=\int_{0}^{H} \frac{m \cdot g \cdot R_{3}^{2}}{\left(R_{3}+x\right)^{2}} d\left(R_{3}+x\right)=-\left.m \cdot g \cdot R_{3}^{2} \cdot \frac{1}{R_{3}+x}\right|_{0} ^{H}=m \cdot g \cdot R_{3}^{2} \cdot\left(\frac{1}{R_{3}}-\frac{1}{R_{3}+H}\right)= \\ & =6 \cdot 10^{3}[\mathrm{~kg}] \cdot 10\left[\frac{M}{c^{2}}\right] \cdot\left(6380 \cdot 10^{3}[m]\right)^{2} \cdot\left(\frac{1}{6380 \cdot 10^{3}[m]}-\frac{1}{6380 \cdot 10^{3}[m]+350 \cdot 10^{3}[m]}\right)=19907875186 \\ & \text { J] } \end{aligned} \] Source — «http://pluspi.org/wiki/index.php/\�\�\�\�\�\�\�\�\�\�\�\�_\�\�\�\�\�\� \%D0\%BD\%D0\%B5\%D1\%86\%D0\%BE\%D0\%B2_\%D0\%98\%D0\%BD\%D1\%82\%D0\%B5\%D0\%B3\%D1\%80\%D0\%B0\%D0\%BB $\%$ D1\%8B_22-14) Categories: Kuznetsov Problem Book Integrals Problem $22 \mid$ Integrals Ukrainian Banner Network - Last modified on this page: 10:48, 31 May 2010. - Content is available under CC-BY-SA 3.0. Created by GeeTeatoo ## Problem Kuznetsov Integrals $22-15$ ## Material from PlusPi
19907875186
Algebra
math-word-problem
Yes
Yes
olympiads
false
## Task Condition Determine the work (in joules) performed when lifting a satellite from the Earth's surface to a height of $H$ km. The mass of the satellite is $m$ tons, the radius of the Earth $R_{3}=6380$ km. The acceleration due to gravity $g$ at the Earth's surface is taken to be $10 \mathrm{~m} / \mathbf{c}^{2}$. $$ m=5,0 \mathrm{t}, H=400 \text { km. } $$
## Solution By definition, the elementary work $\Delta A=F(x) \Delta x$, where $F(x)=G \cdot \frac{m \cdot M}{\left(R_{3}+x\right)^{2}} ; G=6.67 \cdot 10^{-11} \mathrm{H}^{*} \mathrm{m}^{*} \mathrm{m} /($ kg*kg) \[ \begin{aligned} & F_{x}=G \cdot \frac{m \cdot M}{\left(R_{3}+x\right)^{2}}-\text { force of attraction at height } x \\ & F_{0}=G \cdot \frac{m \cdot M}{R_{3}^{2}}=m g-\text { force of attraction at the Earth's surface } \\ & d A=\frac{m \cdot g \cdot R_{3}^{2}}{\left(R_{3}+x\right)^{2}} d x \Rightarrow \\ & \Rightarrow A=\int_{0}^{H} \frac{m \cdot g \cdot R_{3}^{2}}{\left(R_{3}+x\right)^{2}} d\left(R_{3}+x\right)=-\left.m \cdot g \cdot R_{3}^{2} \cdot \frac{1}{R_{3}+x}\right|_{0} ^{H}=m \cdot g \cdot R_{3}^{2} \cdot\left(\frac{1}{R_{3}}-\frac{1}{R_{3}+H}\right)= \\ & =5 \cdot 10^{3}[\mathrm{~kg}] \cdot 10\left[\frac{m}{s^{2}}\right] \cdot\left(6380 \cdot 10^{3}[m]\right)^{2} \cdot\left(\frac{1}{6380 \cdot 10^{3}[m]}-\frac{1}{6380 \cdot 10^{3}[m]+400 \cdot 10^{3}[m]}\right)=18820058997 \\ & \text { J] } \end{aligned} \] Source — "http://pluspi.org/wiki/index.php/\�\�\�\�\�\�\�\�\�\�\�\�_\�\�\�\�\�\� \%D0\%BD\%D0\%B5\%D1\%86\%D0\%BE\%D0\%B2_\%D0\%98\%D0\%BD\%D1\%82\%D0\%B5\%D0\%B3\%D1\%80\%D0\%B0\%D0\%BB $\%$ D1\%8B_22-15\% Categories: Kuznetsov Problem Book Integrals Problem $22 \mid$ Integrals Ukrainian Banner Network - Last modified on this page: 10:50, 31 May 2010. - Content is available under CC-BY-SA 3.0. Created by GeeTeatoo ## Problem Kuznetsov Integrals 22-16 ## Material from PlusPi
18820058997
Algebra
math-word-problem
Yes
Yes
olympiads
false
## Task Condition Determine the work (in joules) performed when lifting a satellite from the Earth's surface to a height of $H$ km. The mass of the satellite is $m$ tons, the radius of the Earth $R_{3}=6380$ km. The acceleration due to gravity $g$ at the Earth's surface is taken to be $10 \mathrm{~m} / \mathrm{c}^{2}$. $$ m=5,0 \mathrm{t}, H=450 \text { km. } $$
## Solution By definition, the elementary work $\Delta A=F(x) \Delta x$, where $F(x)=G \cdot \frac{m \cdot M}{\left(R_{3}+x\right)^{2}} ; G=6.67 \cdot 10^{-11} \mathrm{H}^{*} \mathrm{m}^{*} \mathrm{m} /($ kg*kg) $$ \begin{aligned} & F_{x}=G \cdot \frac{m \cdot M}{\left(R_{3}+x\right)^{2}}-\text { force of attraction at height } x \\ & F_{0}=G \cdot \frac{m \cdot M}{R_{3}^{2}}=m g-\text { force of attraction at the Earth's surface } \\ & d A=\frac{m \cdot g \cdot R_{3}^{2}}{\left(R_{3}+x\right)^{2}} d x \Rightarrow \\ & \Rightarrow A=\int_{0}^{H} \frac{m \cdot g \cdot R_{3}^{2}}{\left(R_{3}+x\right)^{2}} d\left(R_{3}+x\right)=-\left.m \cdot g \cdot R_{3}^{2} \cdot \frac{1}{R_{3}+x}\right|_{0} ^{H}=m \cdot g \cdot R_{3}^{2} \cdot\left(\frac{1}{R_{3}}-\frac{1}{R_{3}+H}\right)= \\ & =5 \cdot 10^{3}[\mathrm{~kg}] \cdot 10\left[\frac{M}{c^{2}}\right) \cdot\left(6380 \cdot 10^{3}[m]\right)^{2} \cdot\left(\frac{1}{6380 \cdot 10^{3}[m]}-\frac{1}{6380 \cdot 10^{3}[m]+450 \cdot 10^{3}[m]}\right)=21017569546 \\ & \text { J] } \end{aligned} $$ Source — "http://pluspi.org/wiki/index.php/\�\�\�\�\�\�\�\�\�\�\�\�_\�\�\�\�\�\� \%D0\%BD\%D0\%B5\%D1\%86\%D0\%BE\%D0\%B2_\%D0\%98\%D0\%BD\%D1\%82\%D0\%B5\%D0\%B3\%D1\%80\%D0\%B0\%D0\%BB $\%$ D1\%8B_22-16" Categories: Kuznetsov Problem Book Integrals Problem 22 | Integrals Ukrainian Banner Network - Last modified on this page: 10:38, 31 May 2010. - Content is available under CC-BY-SA 3.0. Created by GeeTeatoo ## Problem Kuznetsov Integrals $22-17$ ## Material from PlusPi
21017569546
Algebra
math-word-problem
Yes
Yes
olympiads
false
## Task Condition Determine the work (in joules) performed when lifting a satellite from the Earth's surface to a height of $H$ km. The mass of the satellite is $m$ tons, the radius of the Earth $R_{3}=6380$ km. The acceleration due to gravity $g$ at the Earth's surface is taken to be $10 \mathrm{~m} / \mathbf{c}^{2}$. $$ m=4.0 \mathrm{t}, H=500 \text { km. } $$
## Solution By definition, the elementary work $\Delta A=F(x) \Delta x$, where $F(x)=G \cdot \frac{m \cdot M}{\left(R_{3}+x\right)^{2}} ; G=6.67 \cdot 10^{-11} \mathrm{H}^{*} \mathrm{m}^{*} \mathrm{m} /($ kg*kg) \[ \begin{aligned} & F_{x}=G \cdot \frac{m \cdot M}{\left(R_{3}+x\right)^{2}}-\text { force of attraction at height } x \\ & F_{0}=G \cdot \frac{m \cdot M}{R_{3}^{2}}=m g-\text { force of attraction at the Earth's surface } \\ & d A=\frac{m \cdot g \cdot R_{3}^{2}}{\left(R_{3}+x\right)^{2}} d x \Rightarrow \\ & \Rightarrow A=\int_{0}^{H} \frac{m \cdot g \cdot R_{3}^{2}}{\left(R_{3}+x\right)^{2}} d\left(R_{3}+x\right)=-\left.m \cdot g \cdot R_{3}^{2} \cdot \frac{1}{R_{3}+x}\right|_{0} ^{H}=m \cdot g \cdot R_{3}^{2} \cdot\left(\frac{1}{R_{3}}-\frac{1}{R_{3}+H}\right)= \\ & =4 \cdot 10^{3}[\mathrm{~kg}] \cdot 10\left[\frac{m}{s^{2}}\right] \cdot\left(6380 \cdot 10^{3}[m]\right)^{2} \cdot\left(\frac{1}{6380 \cdot 10^{3}[m]}-\frac{1}{6380 \cdot 10^{3}[m]+500 \cdot 10^{3}[m]}\right)=18546511628 \\ & \text { J] } \end{aligned} \] Source — "http://pluspi.org/wiki/index.php/\�\�\�\�\�\�\�\�\�\�\�\�_\�\�\�\�\�\� \%D0\%BD\%D0\%B5\%D1\%86\%D0\%BE\%D0\%B2_\%D0\%98\%D0\%BD\%D1\%82\%D0\%B5\%D0\%B3\%D1\%80\%D0\%B0\%D0\%BB $\%$ D1\%8B_22-17" Categories: Kuznetsov Problem Book Integrals Problem $22 \mid$ Integrals Ukrainian Banner Network - Last modified on this page: 10:53, 31 May 2010. - Content is available under CC-BY-SA 3.0. Created by GeeTeatoo ## Problem Kuznetsov Integrals $22-18$ ## Material from PlusPi
18546511628
Algebra
math-word-problem
Yes
Yes
olympiads
false
## Task Condition Determine the work (in joules) performed when lifting a satellite from the Earth's surface to a height of $H$ km. The mass of the satellite is $m$ tons, the radius of the Earth $R_{3}=6380$ km. The acceleration due to gravity $g$ at the Earth's surface is taken to be $10 \mathrm{~m} / \mathbf{c}^{2}$. $$ m=4.0 \mathrm{t}, H=550 \text { km. } $$
## Solution By definition, the elementary work $\Delta A=F(x) \Delta x$, where $F(x)=G \cdot \frac{m \cdot M}{\left(R_{3}+x\right)^{2}} ; G=6.67 \cdot 10^{-11} \mathrm{H}^{*} \mathrm{m}^{*} \mathrm{m} /($ kg*kg) \[ \begin{aligned} & F_{x}=G \cdot \frac{m \cdot M}{\left(R_{3}+x\right)^{2}}-\text { force of attraction at height } x \\ & F_{0}=G \cdot \frac{m \cdot M}{R_{3}^{2}}=m g-\text { force of attraction at the Earth's surface } \\ & d A=\frac{m \cdot g \cdot R_{3}^{2}}{\left(R_{3}+x\right)^{2}} d x \Rightarrow \\ & \Rightarrow A=\int_{0}^{H} \frac{m \cdot g \cdot R_{3}^{2}}{\left(R_{3}+x\right)^{2}} d\left(R_{3}+x\right)=-\left.m \cdot g \cdot R_{3}^{2} \cdot \frac{1}{R_{3}+x}\right|_{0} ^{H}=m \cdot g \cdot R_{3}^{2} \cdot\left(\frac{1}{R_{3}}-\frac{1}{R_{3}+H}\right)= \\ & =4 \cdot 10^{3}[\mathrm{~kg}] \cdot 10\left[\frac{m}{s^{2}}\right] \cdot\left(6380 \cdot 10^{3}[m]\right)^{2} \cdot\left(\frac{1}{6380 \cdot 10^{3}[m]}-\frac{1}{6380 \cdot 10^{3}[m]+550 \cdot 10^{3}[\mathrm{~m}]}\right)=20253968254[ \\ & \text { J }] \end{aligned} \] Source — "http://pluspi.org/wiki/index.php/\�\�\�\�\�\�\�\�\�\�\�\�_\�\�\�\�\�\� \%D0\%BD\%D0\%B5\%D1\%86\%D0\%BE\%D0\%B2_\%D0\%98\%D0\%BD\%D1\%82\%D0\%B5\%D0\%B3\%D1\%80\%D0\%B0\%D0\%BB $\%$ D1\%8B_22-18" Categories: Kuznetsov Problem Book Integrals Problem $22 \mid$ Integrals Ukrainian Banner Network - Last modified on this page: 10:54, 31 May 2010. - Content is available under CC-BY-SA 3.0. Created by GeeTeatoo ## Problem Kuznetsov Integrals 22-19 ## Material from PlusPi
20253968254
Algebra
math-word-problem
Yes
Yes
olympiads
false
## Task Condition Determine the work (in joules) performed when lifting a satellite from the Earth's surface to a height of $H$ km. The mass of the satellite is $m$ tons, the radius of the Earth $R_{3}=6380$ km. The acceleration due to gravity $g$ at the Earth's surface is taken to be $10 \mathrm{~m} / \mathbf{c}^{2}$. $$ m=3.0 \mathrm{t}, H=600 \text { km. } $$
## Solution By definition, the elementary work $\Delta A=F(x) \Delta x$, where $F(x)=G \cdot \frac{m \cdot M}{\left(R_{3}+x\right)^{2}} ; G=6.67 \cdot 10^{-11} \mathrm{H}^{*} \mathrm{m}^{*} \mathrm{m} /($ kg*kg) \[ \begin{aligned} & F_{x}=G \cdot \frac{m \cdot M}{\left(R_{3}+x\right)^{2}}-\text { force of attraction at height } x \\ & F_{0}=G \cdot \frac{m \cdot M}{R_{3}^{2}}=m g-\text { force of attraction at the Earth's surface } \\ & d A=\frac{m \cdot g \cdot R_{3}^{2}}{\left(R_{3}+x\right)^{2}} d x \Rightarrow \\ & \Rightarrow A=\int_{0}^{H} \frac{m \cdot g \cdot R_{3}^{2}}{\left(R_{3}+x\right)^{2}} d\left(R_{3}+x\right)=-\left.m \cdot g \cdot R_{3}^{2} \cdot \frac{1}{R_{3}+x}\right|_{0} ^{H}=m \cdot g \cdot R_{3}^{2} \cdot\left(\frac{1}{R_{3}}-\frac{1}{R_{3}+H}\right)= \\ & =3 \cdot 10^{3}[\mathrm{~kg}] \cdot 10\left[\frac{m}{s^{2}}\right] \cdot\left(6380 \cdot 10^{3}[m]\right)^{2} \cdot\left(\frac{1}{6380 \cdot 10^{3}[m]}-\frac{1}{6380 \cdot 10^{3}[m]+600 \cdot 10^{3}[m]}\right)=16452722063 \\ & \text { J] } \end{aligned} \] Source — "http://pluspi.org/wiki/index.php/\�\�\�\�\�\�\�\�\�\�\�\�_\�\�\�\�\�\� \%D0\%BD\%D0\%B5\%D1\%86\%D0\%BE\%D0\%B2_\%D0\%98\%D0\%BD\%D1\%82\%D0\%B5\%D0\%B3\%D1\%80\%D0\%B0\%D0\%BB $\%$ D1\%8B_22-19" Categories: Kuznetsov Problem Book Integrals Problem $22 \mid$ Integrals Ukrainian Banner Network - Last modified on this page: 10:56, 31 May 2010. - Content is available under CC-BY-SA 3.0. Created by GeeTeatoo ## Problem Kuznetsov Integrals 22-20 ## Material from PlusPi
16452722063
Algebra
math-word-problem
Yes
Yes
olympiads
false
## Task Condition Determine the work (in joules) performed when lifting a satellite from the Earth's surface to a height of $H$ km. The mass of the satellite is $m$ tons, the radius of the Earth $R_{3}=6380$ km. The acceleration due to gravity $g$ at the Earth's surface is taken to be $10 \mathrm{~m} / \mathbf{c}^{2}$. $$ m=3.0 \mathrm{t}, H=650 \text { km. } $$
## Solution By definition, the elementary work $\Delta A=F(x) \Delta x$, where $F(x)=G \cdot \frac{m \cdot M}{\left(R_{3}+x\right)^{2}} ; G=6.67 \cdot 10^{-11} \mathrm{H}^{*} \mathrm{m}^{*} \mathrm{m} /($ kg*kg) \[ \begin{aligned} & F_{x}=G \cdot \frac{m \cdot M}{\left(R_{3}+x\right)^{2}}-\text { force of attraction at height } x \\ & F_{0}=G \cdot \frac{m \cdot M}{R_{3}^{2}}=m g-\text { force of attraction at the Earth's surface } \\ & d A=\frac{m \cdot g \cdot R_{3}^{2}}{\left(R_{3}+x\right)^{2}} d x \Rightarrow \\ & \Rightarrow A=\int_{0}^{H} \frac{m \cdot g \cdot R_{3}^{2}}{\left(R_{3}+x\right)^{2}} d\left(R_{3}+x\right)=-\left.m \cdot g \cdot R_{3}^{2} \cdot \frac{1}{R_{3}+x}\right|_{0} ^{H}=m \cdot g \cdot R_{3}^{2} \cdot\left(\frac{1}{R_{3}}-\frac{1}{R_{3}+H}\right)= \\ & =3 \cdot 10^{3}[\mathrm{~kg}] \cdot 10\left[\frac{m}{s^{2}}\right] \cdot\left(6380 \cdot 10^{3}[m]\right)^{2} \cdot\left(\frac{1}{6380 \cdot 10^{3}[m]}-\frac{1}{6380 \cdot 10^{3}[m]+650 \cdot 10^{3}[m]}\right)=17697012802 \\ & \text { J] } \end{aligned} \] Source — «http://pluspi.org/wiki/index.php/\�\�\�\�\�\�\�\�\�\�\�\�_\�\�\�\�\�\� \%D0\%BD\%D0\%B5\%D1\%86\%D0\%BE\%D0\%B2_\%D0\%98\%D0\%BD\%D1\%82\%D0\%B5\%D0\%B3\%D1\%80\%D0\%B0\%D0\%BB $\%$ D1\%8B_22-20» Categories: Kuznetsov Problem Book Integrals Problem $22 \mid$ Integrals Ukrainian Banner Network - Last edited on this page: 10:57, 31 May 2010. - Content is available under CC-BY-SA 3.0. Created by GeeTeatoo ## Problem Kuznetsov Integrals 22-21 ## Material from PlusPi
17697012802
Algebra
math-word-problem
Yes
Yes
olympiads
false
## Problem Statement A cylinder is filled with gas at atmospheric pressure (103.3 kPa). Assuming the gas is ideal, determine the work (in joules) during the isothermal compression of the gas by a piston moving inside the cylinder by $h$ meters (see figure). Hint: The equation of state for the gas $\rho V = \text{const}$, where $\rho$ is the pressure, and $V$ is the volume. $$ H = 0.4 \text{ m, } h = 0.35 \text{ m, } R = 0.1 \text{ m. } $$ ![](https://cdn.mathpix.com/cropped/2024_05_22_31c1f87d4364af4121d5g-31.jpg?height=514&width=834&top_left_y=622&top_left_x=1088)
## Solution Piston area: $S=\pi R^{2}$ Volume of gas during compression: $V(x)=S \cdot(H-x) ; 0 \leq x \leq h$ Pressure of gas during compression: $p(x)=\frac{p_{0} \cdot S \cdot H}{V(x)}$ Force of pressure on the piston: $F(x)=p(x) \cdot S$ By definition, the elementary work $\Delta A=F(x) \Delta x \Rightarrow$ $$ \begin{aligned} & \Rightarrow d A=\frac{p_{0} \cdot S \cdot H}{S \cdot(H-x)} \cdot S d x=\frac{p_{0} \cdot S \cdot H}{H-x} d x \Rightarrow \\ & \Rightarrow A=\int_{0}^{h} \frac{p_{0} \cdot S \cdot H}{H-x} d x=-\int_{0}^{h} \frac{p_{0} \cdot S \cdot H}{H-x} d(H-x)=-\left.p_{0} \cdot S \cdot H \cdot \ln (H-x)\right|_{0} ^{h}= \\ & =p_{0} \cdot S \cdot H \cdot \ln \left(\frac{H}{H-h}\right)=p_{0} \cdot \pi \cdot R^{2} \cdot H \cdot \ln \left(\frac{H}{H-h}\right) \\ & =\pi \cdot(0.1[m])^{2} \cdot 103.3[k P a] \cdot 0.4[m] \cdot \ln \left(\frac{0.4[m]}{0.4[m]-0.35[m]}\right)=2699 \approx 2700[ \\ & \text { kJ] } \end{aligned} $$ Source — «http://pluspi.org/wiki/index.php/\�\�\�\�\�\�\�\�\�\�\�\� \%D0\%9A\%D1\%83\%D0\%B7\%D0\%BD\%D0\%B5\%D1\%86\%D0\%BE\%D0\%B2_\%D0\%98\%D0\%BD $\% \mathrm{D} 1 \% 82 \% \mathrm{D} 0 \% \mathrm{~B} \% \mathrm{D} 0 \% \mathrm{~B} 3 \% \mathrm{D} 1 \% 80 \% \mathrm{D} 0 \% \mathrm{~B} 0 \% \mathrm{D} 0 \% \mathrm{BB} \% \mathrm{D} 1 \% 8 \mathrm{~B}+22-21$ » Categories: Kuznetsov Integral Problems 22 | Integrals - Last edited on this page: 12:46, 31 May 2010. - Content is available under CC-BY-SA 3.0. Created by GeeTeatoo ## Problem Kuznetsov Integrals 22-22 ## Material from PlusPi
2700
Calculus
math-word-problem
Yes
Yes
olympiads
false
## Task Condition A cylinder is filled with gas at atmospheric pressure (103.3 kPa). Assuming the gas is ideal, determine the work (in joules) during the isothermal compression of the gas by a piston moving inside the cylinder by $h$ meters (see figure). Hint: The equation of state of the gas $\rho V=$ const, where $\rho$ - pressure, $V$ - volume. $$ H=0.4 \mathrm{m}, h=0.3 \mathrm{m}, R=0.1 \mathrm{m} $$ ![](https://cdn.mathpix.com/cropped/2024_05_22_31c1f87d4364af4121d5g-33.jpg?height=517&width=837&top_left_y=621&top_left_x=1089)
## Solution Let the piston be at a distance $x, \quad 0 \leq x \leq h$ The force with which the gas presses on the walls is: $F(x)=p(x) \cdot S$ where: $S=\pi R^{2}-$ area of the piston, $p=p(x)-$ pressure of the gas. Since the process is isothermal, then $p V=$ Const $\Rightarrow p_{0} \cdot \pi \cdot R^{2} \cdot H=p V$ The pressure of the gas during compression: $p(x)=\frac{p_{0} \cdot S \cdot H}{V(x)}$ The volume of the gas during compression: $V(x)=S \cdot(H-x)$ By definition, the elementary work $\Delta A=F(x) \Delta x \Rightarrow$ $$ \begin{aligned} & \Rightarrow d A=\frac{p_{0} \cdot S \cdot H}{S \cdot(H-x)} \cdot S d x=\frac{p_{0} \cdot S \cdot H}{H-x} d x \Rightarrow \\ & \Rightarrow A=\int_{0}^{h} \frac{p_{0} \cdot S \cdot H}{H-x} d x=-\int_{0}^{h} \frac{p_{0} \cdot S \cdot H}{H-x} d(H-x)=-\left.p_{0} \cdot S \cdot H \cdot \ln (H-x)\right|_{0} ^{h}= \\ & =p_{0} \cdot S \cdot H \cdot \ln \left(\frac{H}{H-h}\right)=p_{0} \cdot \pi \cdot R^{2} \cdot H \cdot \ln \left(\frac{H}{H-h}\right) \\ & =\pi \cdot(0.1[m])^{2} \cdot 103.3[k P a] \cdot 0.4[m] \cdot \ln \left(\frac{0.4[m]}{0.4[m]-0.3[m]}\right)=1800[\text { kJ }] \end{aligned} $$ Source — «http://pluspi.org/wiki/index.php/\�\�\�\�\�\�\�\�\�\�\�\� \%D0\%9A\%D1\%83\%D0\%B7\%D0\%BD\%D0\%B5\%D1\%86\%D0\%BE\%D0\%B2_\%D0\%98\%D0\%BD $\% \mathrm{D} 1 \% 82 \% \mathrm{D} 0 \% \mathrm{~B} 5 \% \mathrm{D} 0 \% \mathrm{~B} 3 \% \mathrm{D} 1 \% 80 \% \mathrm{D} 0 \% \mathrm{~B} 0 \% \mathrm{D} 0 \% \mathrm{BB} \% \mathrm{D} 1 \% 8 \mathrm{~B}+22-22 » Categories: Kuznetsov Integral Problems 22 | Integrals Ukrainian Banner Network - Last modified: 13:22, 31 May 2010. - Content is available under CC-BY-SA 3.0.
1800
Calculus
math-word-problem
Yes
Yes
olympiads
false
## Problem Statement A cylinder is filled with gas at atmospheric pressure (103.3 kPa). Assuming the gas is ideal, determine the work (in joules) done during the isothermal compression of the gas by a piston moving inward by $h$ meters (see figure). Hint: The equation of state for the gas is $\rho V = \text{const}$, where $\rho$ is the pressure and $V$ is the volume. $$ H = 0.4 \text{m}, h = 0.2 \text{m}, R = 0.1 \text{m} $$ ![](https://cdn.mathpix.com/cropped/2024_05_22_31c1f87d4364af4121d5g-35.jpg?height=517&width=837&top_left_y=621&top_left_x=1089)
## Solution Piston area: $S=\pi R^{2}$ Volume of gas during compression: $V(x)=S \cdot(H-x) ; 0 \leq x \leq h$ Pressure of gas during compression: $p(x)=\frac{p_{0} \cdot S \cdot H}{V(x)}$ Force of pressure on the piston: $F(x)=p(x) \cdot S$ By definition, the elementary work $\Delta A=F(x) \Delta x \Rightarrow$ $$ \begin{aligned} & \Rightarrow d A=\frac{p_{0} \cdot S \cdot H}{S \cdot(H-x)} \cdot S d x=\frac{p_{0} \cdot S \cdot H}{H-x} d x \Rightarrow \\ & \Rightarrow A=\int_{0}^{h} \frac{p_{0} \cdot S \cdot H}{H-x} d x=-\int_{0}^{h} \frac{p_{0} \cdot S \cdot H}{H-x} d(H-x)=-\left.p_{0} \cdot S \cdot H \cdot \ln (H-x)\right|_{0} ^{h}= \\ & =p_{0} \cdot S \cdot H \cdot \ln \left(\frac{H}{H-h}\right)=p_{0} \cdot \pi \cdot R^{2} \cdot H \cdot \ln \left(\frac{H}{H-h}\right) \\ & =\pi \cdot(0.1[m])^{2} \cdot 103.3[k P a] \cdot 0.4[m] \cdot \ln \left(\frac{0.4[m]}{0.4[m]-0.2[m]}\right)=900[\text { kJ }] \end{aligned} $$ Source — "http://pluspi.org/wiki/index.php/\�\�\�\�\�\�\�\�\�\�\�\� \%D0\%9A\%D1\%83\%D0\%B7\%D0\%BD\%D0\%B5\%D1\%86\%D0\%BE\%D0\%B2_\%D0\%98\%D0\%BD $\% \mathrm{D} 1 \% 82 \% \mathrm{D} 0 \% \mathrm{~B} 5 \% \mathrm{D} 0 \% \mathrm{~B} 3 \% \mathrm{D} 1 \% 80 \% \mathrm{D} 0 \% \mathrm{~B} 0 \% \mathrm{D} 0 \% \mathrm{BB} \% \mathrm{D} 1 \% 8 \mathrm{~B}+22-23$ " Categories: Kuznetsov Integral Problems 22 | Integrals - Last modified: 12:49, 31 May 2010. - Content is available under CC-BY-SA 3.0. Created by GeeTeatoo ## Problem Kuznetsov Integrals 22-24 ## Material from PlusPi
900
Calculus
math-word-problem
Yes
Yes
olympiads
false
## Problem Statement A cylinder is filled with gas at atmospheric pressure (103.3 kPa). Assuming the gas is ideal, determine the work (in joules) during the isothermal compression of the gas by a piston moving inside the cylinder by $h$ meters (see figure). Hint: The equation of state for the gas $\rho V=$ const, where $\rho$ - pressure, $V$ - volume. $$ H=0.8 \mathrm{m}, h=0.6 \mathrm{m}, R=0.2 \mathrm{m} . $$ ![](https://cdn.mathpix.com/cropped/2024_05_22_31c1f87d4364af4121d5g-39.jpg?height=514&width=834&top_left_y=622&top_left_x=1088)
## Solution Piston area: $S=\pi R^{2}$ Volume of gas during compression: $V(x)=S \cdot(H-x) ; 0 \leq x \leq h$ Pressure of gas during compression: $p(x)=\frac{p_{0} \cdot S \cdot H}{V(x)}$ Force of pressure on the piston: $F(x)=p(x) \cdot S$ By definition, the elementary work $\Delta A=F(x) \Delta x \Rightarrow$ $$ \begin{aligned} & \Rightarrow d A=\frac{p_{0} \cdot S \cdot H}{S \cdot(H-x)} \cdot S d x=\frac{p_{0} \cdot S \cdot H}{H-x} d x \Rightarrow \\ & \Rightarrow A=\int_{0}^{h} \frac{p_{0} \cdot S \cdot H}{H-x} d x=-\int_{0}^{h} \frac{p_{0} \cdot S \cdot H}{H-x} d(H-x)=-\left.p_{0} \cdot S \cdot H \cdot \ln (H-x)\right|_{0} ^{h}= \\ & =p_{0} \cdot S \cdot H \cdot \ln \left(\frac{H}{H-h}\right)=p_{0} \cdot \pi \cdot R^{2} \cdot H \cdot \ln \left(\frac{H}{H-h}\right) \\ & =\pi \cdot(0.2[m])^{2} \cdot 103.3[k P a] \cdot 0.8[m] \cdot \ln \left(\frac{0.8[m]}{0.8[m]-0.6[m]}\right)=14396 \approx 14400[ \\ & \text { kJ] } \end{aligned} $$ Source — "http://pluspi.org/wiki/index.php/\�\�\�\�\�\�\�\�\�\�\�\� \%D0\%9A\%D1\%83\%D0\%B7\%D0\%BD\%D0\%B5\%D1\%86\%D0\%BE\%D0\%B2_\%D0\%98\%D0\%BD $\% \mathrm{D} 1 \% 82 \% \mathrm{D} 0 \% \mathrm{~B} \% \mathrm{D} 0 \% \mathrm{~B} 3 \% \mathrm{D} 1 \% 80 \% \mathrm{D} 0 \% \mathrm{~B} 0 \% \mathrm{D} 0 \% \mathrm{BB} \% \mathrm{D} 1 \% 8 \mathrm{~B}+22-25$ " Categories: Kuznetsov Integral Problems 22-26 | Integrals - Last edited: 12:53, 31 May 2010. - Content is available under CC-BY-SA 3.0.
14400
Calculus
math-word-problem
Yes
Yes
olympiads
false
## Task Condition A cylinder is filled with gas at atmospheric pressure (103.3 kPa). Assuming the gas is ideal, determine the work (in joules) during the isothermal compression of the gas by a piston moving inside the cylinder by $h$ meters (see figure). Hint: The equation of state of the gas $\rho V=$ const, where $\rho$ - pressure, $V$ - volume. $$ H=1.6 \mathrm{m}, h=1.4 \mathrm{m}, R=0.3 \mathrm{m} $$ ![](https://cdn.mathpix.com/cropped/2024_05_22_31c1f87d4364af4121d5g-43.jpg?height=514&width=834&top_left_y=622&top_left_x=1088)
## Solution Piston area: $S=\pi R^{2}$ Volume of gas during compression: $V(x)=S \cdot(H-x) ; 0 \leq x \leq h$ Pressure of gas during compression: $p(x)=\frac{p_{0} \cdot S \cdot H}{V(x)}$ Force of pressure on the piston: $F(x)=p(x) \cdot S$ By definition, the elementary work $\Delta A=F(x) \Delta x \Rightarrow$ $$ \begin{aligned} & \Rightarrow d A=\frac{p_{0} \cdot S \cdot H}{S \cdot(H-x)} \cdot S d x=\frac{p_{0} \cdot S \cdot H}{H-x} d x \Rightarrow \\ & \Rightarrow A=\int_{0}^{h} \frac{p_{0} \cdot S \cdot H}{H-x} d x=-\int_{0}^{h} \frac{p_{0} \cdot S \cdot H}{H-x} d(H-x)=-\left.p_{0} \cdot S \cdot H \cdot \ln (H-x)\right|_{0} ^{h}= \\ & =p_{0} \cdot S \cdot H \cdot \ln \left(\frac{H}{H-h}\right)=p_{0} \cdot \pi \cdot R^{2} \cdot H \cdot \ln \left(\frac{H}{H-h}\right) \\ & =\pi \cdot(0.3[m])^{2} \cdot 103.3[k P a] \cdot 1.6[m] \cdot \ln \left(\frac{1.6[m]}{1.6[m]-1.4[m]}\right)=97176 \approx 97200[ \\ & \text { kJ] } \end{aligned} $$ Source — «http://pluspi.org/wiki/index.php/\�\�\�\�\�\�\�\�\�\�\�\� \%D0\%9A\%D1\%83\%D0\%B7\%D0\%BD\%D0\%B5\%D1\%86\%D0\%BE\%D0\%B2_\%D0\%98\%D0\%BD $\% \mathrm{D} 1 \% 82 \% \mathrm{D} 0 \% \mathrm{~B} \% \mathrm{D} 0 \% \mathrm{~B} 3 \% \mathrm{D} 1 \% 80 \% \mathrm{D} 0 \% \mathrm{~B} 0 \% \mathrm{D} 0 \% \mathrm{BB} \% \mathrm{D} 1 \% 8 \mathrm{~B}+22-27$ » Categories: Kuznetsov Integral Problems 22 | Integrals - Last edited on this page: 12:55, 31 May 2010. - Content is available under CC-BY-SA 3.0.
97200
Calculus
math-word-problem
Yes
Yes
olympiads
false
## Task Condition A cylinder is filled with gas at atmospheric pressure (103.3 kPa). Assuming the gas is ideal, determine the work (in joules) during the isothermal compression of the gas by a piston moving inside the cylinder by $h$ meters (see figure). Hint: The equation of state of the gas $\rho V=$ const, where $\rho$ - pressure, $V$ - volume. $$ H=1.6 \text{ m}, h=1.2 \text{ m}, R=0.3 \text{ m.} $$ ![](https://cdn.mathpix.com/cropped/2024_05_22_31c1f87d4364af4121d5g-45.jpg?height=517&width=834&top_left_y=621&top_left_x=1088)
## Solution Piston area: $S=\pi R^{2}$ Volume of gas during compression: $V(x)=S \cdot(H-x) ; 0 \leq x \leq h$ Pressure of gas during compression: $p(x)=\frac{p_{0} \cdot S \cdot H}{V(x)}$ Force of pressure on the piston: $F(x)=p(x) \cdot S$ By definition, the elementary work $\Delta A=F(x) \Delta x \Rightarrow$ $$ \begin{aligned} & \Rightarrow d A=\frac{p_{0} \cdot S \cdot H}{S \cdot(H-x)} \cdot S d x=\frac{p_{0} \cdot S \cdot H}{H-x} d x \Rightarrow \\ & \Rightarrow A=\int_{0}^{h} \frac{p_{0} \cdot S \cdot H}{H-x} d x=-\int_{0}^{h} \frac{p_{0} \cdot S \cdot H}{H-x} d(H-x)=-\left.p_{0} \cdot S \cdot H \cdot \ln (H-x)\right|_{0} ^{h}= \\ & =p_{0} \cdot S \cdot H \cdot \ln \left(\frac{H}{H-h}\right)=p_{0} \cdot \pi \cdot R^{2} \cdot H \cdot \ln \left(\frac{H}{H-h}\right) \\ & =\pi \cdot(0.3[m])^{2} \cdot 103.3[k P a] \cdot 1.6[m] \cdot \ln \left(\frac{1.6[m]}{1.6[m]-1.2[m]}\right)=64784 \approx 64800[ \\ & \text { kJ] } \end{aligned} $$ Source — "http://pluspi.org/wiki/index.php/\�\�\�\�\�\�\�\�\�\�\�\� \%D0\%9A\%D1\%83\%D0\%B7\%D0\%BD\%D0\%B5\%D1\%86\%D0\%BE\%D0\%B2_\%D0\%98\%D0\%BD $\% \mathrm{D} 1 \% 82 \% \mathrm{D} 0 \% \mathrm{~B} \% \mathrm{D} 0 \% \mathrm{~B} 3 \% \mathrm{D} 1 \% 80 \% \mathrm{D} 0 \% \mathrm{~B} 0 \% \mathrm{D} 0 \% \mathrm{BB} \% \mathrm{D} 1 \% 8 \mathrm{~B}+22-28$ " Categories: Kuznetsov Integral Problems 22-29 | Integrals - Last edited on this page: 12:56, 31 May 2010. - Content is available under CC-BY-SA 3.0.
64800
Calculus
math-word-problem
Yes
Yes
olympiads
false
## Task Condition A cylinder is filled with gas at atmospheric pressure (103.3 kPa). Assuming the gas is ideal, determine the work (in joules) during the isothermal compression of the gas by a piston moving inside the cylinder by $h$ meters (see figure). Hint: The equation of state of the gas $\rho V=$ const, where $\rho$ - pressure, $V$ - volume. $$ H=1.6 \mathrm{m}, h=0.8 \mathrm{m}, R=0.3 \mathrm{m} $$ ![](https://cdn.mathpix.com/cropped/2024_05_22_31c1f87d4364af4121d5g-47.jpg?height=514&width=834&top_left_y=622&top_left_x=1088)
## Solution Piston area: $S=\pi R^{2}$ Volume of gas during compression: $V(x)=S \cdot(H-x) ; 0 \leq x \leq h$ Pressure of gas during compression: $p(x)=\frac{p_{0} \cdot S \cdot H}{V(x)}$ Force of pressure on the piston: $F(x)=p(x) \cdot S$ By definition, the elementary work $\Delta A=F(x) \Delta x \Rightarrow$ $$ \begin{aligned} & \Rightarrow d A=\frac{p_{0} \cdot S \cdot H}{S \cdot(H-x)} \cdot S d x=\frac{p_{0} \cdot S \cdot H}{H-x} d x \Rightarrow \\ & \Rightarrow A=\int_{0}^{h} \frac{p_{0} \cdot S \cdot H}{H-x} d x=-\int_{0}^{h} \frac{p_{0} \cdot S \cdot H}{H-x} d(H-x)=-\left.p_{0} \cdot S \cdot H \cdot \ln (H-x)\right|_{0} ^{h}= \\ & =p_{0} \cdot S \cdot H \cdot \ln \left(\frac{H}{H-h}\right)=p_{0} \cdot \pi \cdot R^{2} \cdot H \cdot \ln \left(\frac{H}{H-h}\right) \\ & =\pi \cdot(0.3[m])^{2} \cdot 103.3[k P a] \cdot 1.6[m] \cdot \ln \left(\frac{1.6[m]}{1.6[m]-0.8[m]}\right)=32392 \approx 32400[ \\ & \text { kJ] } \end{aligned} $$ Source — "http://pluspi.org/wiki/index.php/\�\�\�\�\�\�\�\�\�\�\�\� \%D0\%9A\%D1\%83\%D0\%B7\%D0\%BD\%D0\%B5\%D1\%86\%D0\%BE\%D0\%B2_\%D0\%98\%D0\%BD $\% \mathrm{D} 1 \% 82 \% \mathrm{D} 0 \% \mathrm{~B} \% \mathrm{D} 0 \% \mathrm{~B} 3 \% \mathrm{D} 1 \% 80 \% \mathrm{D} 0 \% \mathrm{~B} 0 \% \mathrm{D} 0 \% \mathrm{BB} \% \mathrm{D} 1 \% 8 \mathrm{~B}+22-29$ " Categories: Kuznetsov Integral Problems 22 | Integrals - Last edited on this page: 12:57, 31 May 2010. - Content is available under CC-BY-SA 3.0. Created by GeeTeatoo ## Problem Kuznetsov Integrals 22-30 ## Material from PlusPi
32400
Calculus
math-word-problem
Yes
Yes
olympiads
false
## Task Condition A cylinder is filled with gas at atmospheric pressure (103.3 kPa). Assuming the gas is ideal, determine the work (in joules) during the isothermal compression of the gas by a piston moving inside the cylinder by $h$ meters (see figure). Hint: The equation of state of the gas $\rho V=$ const, where $\rho$ - pressure, $V$ - volume. $$ H=2.0 \mathrm{m}, h=1.5 \mathrm{m}, R=0.4 \mathrm{m} $$ ![](https://cdn.mathpix.com/cropped/2024_05_22_31c1f87d4364af4121d5g-49.jpg?height=512&width=831&top_left_y=612&top_left_x=1092)
## Solution Piston area: $S=\pi R^{2}$ Volume of gas during compression: $V(x)=S \cdot(H-x) ; 0 \leq x \leq h$ Pressure of gas during compression: $p(x)=\frac{p_{0} \cdot S \cdot H}{V(x)}$ Force of pressure on the piston: $F(x)=p(x) \cdot S$ By definition, the elementary work $\Delta A=F(x) \Delta x \Rightarrow$ $$ \begin{aligned} & \Rightarrow d A=\frac{p_{0} \cdot S \cdot H}{S \cdot(H-x)} \cdot S d x=\frac{p_{0} \cdot S \cdot H}{H-x} d x \Rightarrow \\ & \Rightarrow A=\int_{0}^{h} \frac{p_{0} \cdot S \cdot H}{H-x} d x=-\int_{0}^{h} \frac{p_{0} \cdot S \cdot H}{H-x} d(H-x)=-\left.p_{0} \cdot S \cdot H \cdot \ln (H-x)\right|_{0} ^{h}= \\ & =p_{0} \cdot S \cdot H \cdot \ln \left(\frac{H}{H-h}\right)=p_{0} \cdot \pi \cdot R^{2} \cdot H \cdot \ln \left(\frac{H}{H-h}\right) \\ & =\pi \cdot(0.4[m])^{2} \cdot 103.3[k P a] \cdot 2.0[m] \cdot \ln \left(\frac{2.0[m]}{2.0[m]-1.5[m]}\right)=143965 \approx 144000[ \\ & \text { kJ }] \end{aligned} $$ Source — «http://pluspi.org/wiki/index.php/\�\�\�\�\�\�\�\�\�\�\�\� \%D0\%9A\%D1\%83\%D0\%B7\%D0\%BD\%D0\%B5\%D1\%86\%D0\%BE\%D0\%B2_\%D0\%98\%D0\%BD $\% \mathrm{D} 1 \% 82 \% \mathrm{D} 0 \% \mathrm{~B} 5 \% \mathrm{D} 0 \% \mathrm{~B} 3 \% \mathrm{D} 1 \% 80 \% \mathrm{D} 0 \% \mathrm{~B} 0 \% \mathrm{D} 0 \% \mathrm{BB} \% \mathrm{D} 1 \% 8 \mathrm{~B}+22-30$ » Categories: Kuznetsov's Problem Book Integrals Problem 22 | Integrals - Last edited on this page: 12:59, 31 May 2010. - Content is available under CC-BY-SA 3.0. Created by GeeTeatoo ## Problem Kuznetsov Integrals 22-31 ## Material from PlusPi
144000
Calculus
math-word-problem
Yes
Yes
olympiads
false
## Problem Statement A cylinder is filled with gas at atmospheric pressure (103.3 kPa). Assuming the gas is ideal, determine the work (in joules) during the isothermal compression of the gas by a piston moving inside the cylinder by $h$ meters (see figure). Hint: The equation of state for the gas $\rho V=$ const, where $\rho$ - pressure, $V$ - volume. $$ H=2.0 \mathrm{~m}, h=1.0 \mathrm{~m}, R=0.4 \mathrm{~m} $$ ![](https://cdn.mathpix.com/cropped/2024_05_22_31c1f87d4364af4121d5g-51.jpg?height=514&width=834&top_left_y=622&top_left_x=1088)
## Solution Area of the piston: $S=\pi R^{2}$ Volume of the gas during compression: $V(x)=S \cdot(H-x) ; 0 \leq x \leq h$ Pressure of the gas during compression: $p(x)=\frac{p_{0} \cdot S \cdot H}{V(x)}$ Force of pressure on the piston: $F(x)=p(x) \cdot S$ By definition, the elementary work $\Delta A=F(x) \Delta x \Rightarrow$ $$ \begin{aligned} & \Rightarrow d A=\frac{p_{0} \cdot S \cdot H}{S \cdot(H-x)} \cdot S d x=\frac{p_{0} \cdot S \cdot H}{H-x} d x \Rightarrow \\ & \Rightarrow A=\int_{0}^{h} \frac{p_{0} \cdot S \cdot H}{H-x} d x=-\int_{0}^{h} \frac{p_{0} \cdot S \cdot H}{H-x} d(H-x)=-\left.p_{0} \cdot S \cdot H \cdot \ln (H-x)\right|_{0} ^{h}= \\ & =p_{0} \cdot S \cdot H \cdot \ln \left(\frac{H}{H-h}\right)=p_{0} \cdot \pi \cdot R^{2} \cdot H \cdot \ln \left(\frac{H}{H-h}\right) \\ & =\pi \cdot(0.4[m])^{2} \cdot 103.3[k P a] \cdot 2.0[m] \cdot \ln \left(\frac{2.0[m]}{2.0[m]-1.0[m]}\right)=71982 \approx 72000[ \\ & \text { kJ] } \end{aligned} $$ Source — «http://pluspi.org/wiki/index.php/\�\�\�\�\�\�\�\�\�\�\�\� \%D0\%9A\%D1\%83\%D0\%B7\%D0\%BD\%D0\%B5\%D1\%86\%D0\%BE\%D0\%B2_\%D0\%98\%D0\%BD $\% \mathrm{D} 1 \% 82 \% \mathrm{D} 0 \% \mathrm{~B} \% \mathrm{D} 0 \% \mathrm{~B} 3 \% \mathrm{D} 1 \% 80 \% \mathrm{D} 0 \% \mathrm{~B} 0 \% \mathrm{D} 0 \% \mathrm{BB} \% \mathrm{D} 1 \% 8 \mathrm{~B}+22-31$ » Categories: Kuznetsov Problem Book Integrals Problem 22 | Integrals - Last edited: 13:00, 31 May 2010. - Content is available under CC-BY-SA 3.0. Created by GeeTeatoo [^0]: - Last edited: 12:42, 31 May 2010.
72000
Calculus
math-word-problem
Yes
Yes
olympiads
false
## Problem Statement Based on the definition of the derivative, find $f^{\prime}(0)$: $$ f(x)=\left\{\begin{array}{c} \ln \left(1-\sin \left(x^{3} \sin \frac{1}{x}\right)\right), x \neq 0 \\ 0, x=0 \end{array}\right. $$
## Solution By definition, the derivative at the point $x=0$: $f^{\prime}(0)=\lim _{\Delta x \rightarrow 0} \frac{f(0+\Delta x)-f(0)}{\Delta x}$ Based on the definition, we find: $$ \begin{aligned} & f^{\prime}(0)=\lim _{\Delta x \rightarrow 0} \frac{f(0+\Delta x)-f(0)}{\Delta x}=\lim _{\Delta x \rightarrow 0} \frac{\ln \left(1-\sin \left(\Delta x^{3} \sin \frac{1}{\Delta x}\right)\right)-0}{\Delta x}= \\ & =\lim _{\Delta x \rightarrow 0} \frac{\ln \left(1-\sin \left(\Delta x^{3} \sin \frac{1}{\Delta x}\right)\right)}{\Delta x}= \end{aligned} $$ Using the substitution of equivalent infinitesimals: $$ \begin{aligned} & \ln \left(1-\sin \left(\Delta x^{3} \sin \frac{1}{\Delta x}\right)\right) \sim-\sin \left(\Delta x^{3} \sin \frac{1}{\Delta x}\right), \text { as } \\ & \Delta x \rightarrow 0\left(-\sin \left(\Delta x^{3} \sin \frac{1}{\Delta x}\right) \rightarrow 0\right) \end{aligned} $$ We get: $=\lim _{\Delta x \rightarrow 0} \frac{-\sin \left(\Delta x^{3} \sin \frac{1}{\Delta x}\right)}{\Delta x}=$ Using the substitution of equivalent infinitesimals: ![](https://cdn.mathpix.com/cropped/2024_05_22_2ae1538796d8794fcb74g-01.jpg?height=155&width=1451&top_left_y=2313&top_left_x=158) We get: $$ =\lim _{\Delta x \rightarrow 0} \frac{-\Delta x^{3} \sin \frac{1}{\Delta x}}{\Delta x}=\lim _{\Delta x \rightarrow 0}-\Delta x^{2} \sin \frac{1}{\Delta x}= $$ Since $\sin \frac{1}{\Delta x}$ is bounded, then $\Delta x^{2} \sin \frac{1}{\Delta x} \rightarrow{ }_{, \text {as }} \Delta x \rightarrow 0\left(\Delta^{2} x \rightarrow 0\right)$ Thus, $=-0=0$ Therefore, $f^{\prime}(0)=0$ ## Problem Kuznetsov Differentiation 2-4
0
Calculus
math-word-problem
Yes
Yes
olympiads
false
## Problem Statement Find the derivative $y_{x}^{\prime}$. $$ \left\{\begin{array}{l} x=\arcsin (\sin t) \\ y=\arccos (\cos t) \end{array}\right. $$
## Solution $x_{t}^{\prime}=(\arcsin (\sin t))^{\prime}=t^{\prime}=1$ $y_{t}^{\prime}=(\arccos (\cos t))^{\prime}=t^{\prime}=1$ We obtain: $y_{x}^{\prime}=\frac{y_{t}^{\prime}}{x_{t}^{\prime}}=\frac{1}{1}=1$ ## Kuznetsov Differentiation 16-4
1
Calculus
math-word-problem
Yes
Yes
olympiads
false
## Problem Statement Calculate the lengths of the arcs of the curves given by the equations in the Cartesian coordinate system. $$ y=2+\arcsin \sqrt{x}+\sqrt{x-x^{2}}, \frac{1}{4} \leq x \leq 1 $$
## Solution The length of the arc of a curve defined by the equation $y=f(x) ; a \leq x \leq b$, is determined by the formula $$ L=\int_{a}^{b} \sqrt{1+\left(f^{\prime}(x)\right)^{2}} d x $$ Let's find the derivative of the given function: $$ \begin{aligned} f^{\prime}(x)=\left(2+\arcsin \sqrt{x}+\sqrt{x-x^{2}}\right)^{\prime} & =\frac{1}{\sqrt{1-x}} \cdot \frac{1}{2 \sqrt{x}}+\frac{1}{2 \sqrt{x} \sqrt{1-x}} \cdot(1-2 x)= \\ & =\frac{1}{2 \sqrt{x} \sqrt{1-x}}+\frac{1}{2 \sqrt{x} \sqrt{1-x}}-\frac{2 x}{2 \sqrt{x} \sqrt{1-x}}= \\ & =\frac{1}{\sqrt{x} \sqrt{1-x}}-\frac{x}{\sqrt{x} \sqrt{1-x}}= \\ & =\frac{1-x}{\sqrt{x} \sqrt{1-x}}=\sqrt{\frac{1-x}{x}} \end{aligned} $$ Then, using the formula above, we get: $$ \begin{aligned} L & =\int_{1 / 4}^{1} \sqrt{1+\left(\sqrt{\frac{1-x}{x}}\right)^{2}} d x= \\ & =\int_{1 / 4}^{1} \sqrt{1+\frac{1-x}{x}} d x= \\ & =\int_{1 / 4}^{1} \sqrt{\frac{x+1-x}{x}} d x= \\ & =\int_{1 / 4}^{1} \frac{1}{\sqrt{x}} d x=\left.2 \sqrt{x}\right|_{1 / 4} ^{1}=2-\frac{2}{\sqrt{4}}=1 \end{aligned} $$ Source — «http://pluspi.org/wiki/index.php/\�\�\�\�\�\�\�\�\�\�\�\�_\�\� \%D1\%83\%D0\%B7\%D0\%BD\%D0\%B5\%D1\%86\%D0\%BE\%D0\%B2_\%D0\%98\%D0\%BD\%D1\%82\%D0\%B5 $\% \mathrm{D} 0 \% \mathrm{~B} 3 \% \mathrm{D} 1 \% 80 \% \mathrm{D} 0 \% \mathrm{~B} 0 \% \mathrm{D} 0 \% \mathrm{BB} \% \mathrm{D} 1 \% 8 \mathrm{~B}+17-7$ » Categories: Kuznetsov's Problem Book Integrals Problem 17 | Integrals - Last modified: 07:28, 26 May 2010. - Content is available under CC-BY-SA 3.0.
1
Calculus
math-word-problem
Yes
Yes
olympiads
false
## Problem Statement Calculate the lengths of the arcs of the curves given by equations in a rectangular coordinate system. $$ y=-\arccos \sqrt{x}+\sqrt{x-x^{2}}, 0 \leq x \leq \frac{1}{4} $$
## Solution The length of the arc of a curve defined by the equation $y=f(x) ; a \leq x \leq b$, is determined by the formula $$ L=\int_{a}^{b} \sqrt{1+\left(f^{\prime}(x)\right)^{2}} d x $$ Let's find the derivative of the given function: $$ \begin{aligned} f^{\prime}(x)=\left(-\arccos \sqrt{x}+\sqrt{x-x^{2}}\right)^{\prime} & =\frac{1}{\sqrt{1-x}} \cdot \frac{1}{2 \sqrt{x}}+\frac{1}{2 \sqrt{x} \sqrt{1-x}} \cdot(1-2 x)= \\ & =\frac{1}{2 \sqrt{x} \sqrt{1-x}}+\frac{1}{2 \sqrt{x} \sqrt{1-x}}-\frac{2 x}{2 \sqrt{x} \sqrt{1-x}}= \\ & =\frac{1}{\sqrt{x} \sqrt{1-x}}-\frac{x}{\sqrt{x} \sqrt{1-x}}= \\ & =\frac{1-x}{\sqrt{x} \sqrt{1-x}}=\sqrt{\frac{1-x}{x}} \end{aligned} $$ Then, using the above formula, we get: $$ \begin{aligned} L & =\int_{1 / 4}^{1} \sqrt{1+\left(\sqrt{\frac{1-x}{x}}\right)^{2}} d x= \\ & =\int_{1 / 4}^{1} \sqrt{1+\frac{1-x}{x}} d x= \\ & =\int_{1 / 4}^{1} \sqrt{\frac{x+1-x}{x}} d x= \\ & =\int_{1 / 4}^{1} \frac{1}{\sqrt{x}} d x=\left.2 \sqrt{x}\right|_{1 / 4} ^{1}=2-\frac{2}{\sqrt{4}}=1 \end{aligned} $$ Source — «http://pluspi.org/wiki/index.php/\�\�\�\�\�\�\�\�\�\�\�\� $\% \mathrm{D} 0 \% 9 \mathrm{~A} \% \mathrm{D} 1 \% 83 \% \mathrm{D} 0 \% \mathrm{~B} 7 \% \mathrm{D} 0 \% \mathrm{BD} \% \mathrm{D} 0 \% \mathrm{~B} 5 \% \mathrm{D} 1 \% 86 \% \mathrm{D} 0 \% \mathrm{BE} \% \mathrm{D} 0 \% \mathrm{~B} 2 \mathrm{O} 0 \% 98 \% \mathrm{D} 0 \% \mathrm{BD} \% \mathrm{D1} \% 82$ $\% \mathrm{D} 0 \% \mathrm{~B} 5 \% \mathrm{D} 0 \% \mathrm{~B} 3 \% \mathrm{D} 1 \% 80 \% \mathrm{D} 0 \% \mathrm{~B} 0 \% \mathrm{D} 0 \% \mathrm{BB} \% \mathrm{D} 1 \% 8 \mathrm{~B}+17-14$ " Categories: Kuznetsov's Problem Book Integrals Problem 17| Integrals | Problems for checking Ukrainian Banner Network - Last modified on this page: 07:46, 26 May 2010. - Content is available under CC-BY-SA 3.0. Created by GeeTeatoo ## Problem Kuznetsov Integrals 17-15 ## Material from Plusi ## Contents - 1 Problem Statement - 2 Solution - 3 Then - 4 Using the substitution - 5 Therefore - 6 Using the substitution we get
1
Calculus
math-word-problem
Yes
Yes
olympiads
false
## Problem Statement Based on the definition of the derivative, find $f^{\prime}(0)$: $$ f(x)=\left\{\begin{array}{c} x+\arcsin \left(x^{2} \sin \frac{6}{x}\right), x \neq 0 \\ 0, x=0 \end{array}\right. $$
## Solution By definition, the derivative at the point $x=0$: $f^{\prime}(0)=\lim _{\Delta x \rightarrow 0} \frac{f(0+\Delta x)-f(0)}{\Delta x}$ Based on the definition, we find: $$ \begin{aligned} & f^{\prime}(0)=\lim _{\Delta x \rightarrow 0} \frac{f(0+\Delta x)-f(0)}{\Delta x}=\lim _{\Delta x \rightarrow 0} \frac{\Delta x+\arcsin \left(\Delta x^{2} \sin \frac{6}{\Delta x}\right)-0}{\Delta x}= \\ & =\lim _{\Delta x \rightarrow 0} \frac{\Delta x}{\Delta x}+\lim _{\Delta x \rightarrow 0} \frac{\arcsin \left(\Delta x^{2} \sin \frac{6}{\Delta x}\right)}{\Delta x}= \end{aligned} $$ Using the substitution of equivalent infinitesimals: $\arcsin \left(\Delta x^{2} \sin \frac{6}{\Delta x}\right) \sim \Delta x^{2} \sin \frac{6}{\Delta x} \text{ as } \Delta x \rightarrow 0 \left(\Delta x^{2} \sin \frac{6}{\Delta x} \rightarrow 0\right)$ We get: $=\lim _{\Delta x \rightarrow 0} 1+\lim _{\Delta x \rightarrow 0} \frac{\Delta x^{2} \sin \frac{6}{\Delta x}}{\Delta x}=1+\lim _{\Delta x \rightarrow 0} \Delta x \sin \frac{6}{\Delta x}=$ Since $\sin \frac{6}{\Delta x}$ is bounded, then $\Delta x \sin \frac{6}{\Delta x} \rightarrow 0$, as $\Delta x \rightarrow 0$ Thus: $=1+0=1$ Therefore, $f^{\prime}(0)=1$ ## Problem Kuznetsov Differentiation 2-11
1
Calculus
math-word-problem
Yes
Yes
olympiads
false
## Condition of the problem To derive the equation of the normal to the given curve at the point with abscissa $x_{0}$. $y=\sqrt{x}-3 \sqrt[3]{x}, x_{0}=64$
## Solution Let's find $y^{\prime}:$ $$ y^{\prime}=(\sqrt{x}-3 \sqrt[3]{x})^{\prime}=\left(\sqrt{x}-3 \cdot x^{\frac{1}{3}}\right)^{\prime}=\frac{1}{2 \sqrt{x}}-3 \cdot \frac{1}{3} \cdot x^{-\frac{2}{3}}=\frac{1}{2 \sqrt{x}}-\frac{1}{\sqrt[3]{x^{2}}} $$ Then: $y_{0}^{\prime}=y^{\prime}\left(x_{0}\right)=\frac{1}{2 \sqrt{x_{0}}}-\frac{1}{\sqrt[3]{x_{0}^{2}}}=\frac{1}{2 \sqrt{64}}-\frac{1}{\sqrt[3]{64^{2}}}=\frac{1}{16}-\frac{1}{16}=0$ Since $y^{\prime}\left(x_{0}\right)=0$, the equation of the normal line is: $x=x_{0}$ $x=64$ Thus, the equation of the normal line is: $x=64$ ## Problem Kuznetsov Differentiation 3-11
64
Calculus
math-word-problem
Yes
Yes
olympiads
false
## Problem Statement Based on the definition of the derivative, find $f^{\prime}(0)$: $$ f(x)=\left\{\begin{array}{c} \frac{\cos x-\cos 3 x}{x}, x \neq 0 \\ 0, x=0 \end{array}\right. $$
## Solution By definition, the derivative at the point $x=0$: $f^{\prime}(0)=\lim _{\Delta x \rightarrow 0} \frac{f(0+\Delta x)-f(0)}{\Delta x}$ Based on the definition, we find: $$ \begin{aligned} & f^{\prime}(0)=\lim _{\Delta x \rightarrow 0} \frac{f(0+\Delta x)-f(0)}{\Delta x}=\lim _{\Delta x \rightarrow 0} \frac{\frac{\cos \Delta x-\cos (3 \Delta x)}{\Delta x}-0}{\Delta x}= \\ & =\lim _{\Delta x \rightarrow 0} \frac{\cos \Delta x-\cos (3 \Delta x)}{\Delta x^{2}}=\lim _{\Delta x \rightarrow 0} \frac{1-2 \sin ^{2} \frac{\Delta x}{2}-\left(1-2 \sin ^{2}\left(\frac{3 \Delta x}{2}\right)\right)}{\Delta x^{2}}= \\ & =\lim _{\Delta x \rightarrow 0} \frac{-2 \sin ^{2} \frac{\Delta x}{2}+2 \sin ^{2}\left(\frac{3 \Delta x}{2}\right)}{\Delta x^{2}}=\lim _{\Delta x \rightarrow 0} \frac{-2 \sin ^{2} \frac{\Delta x}{2}}{\Delta x^{2}}+\lim _{\Delta x \rightarrow 0} \frac{2 \sin ^{2}\left(\frac{3 \Delta x}{2}\right)}{\Delta x^{2}}= \end{aligned} $$ Using the substitution of equivalent infinitesimals: $\sin \frac{\Delta x}{2} \sim \frac{\Delta x}{2}$, as $\Delta x \rightarrow 0\left(\frac{\Delta x}{2} \rightarrow 0\right)$ $\sin \left(\frac{3 \Delta x}{2}\right) \sim \frac{3 \Delta x}{2}$, as $\Delta x \rightarrow 0\left(\frac{3 \Delta x}{2} \rightarrow 0\right)$ We get: $$ =\lim _{\Delta x \rightarrow 0} \frac{-2\left(\frac{\Delta x}{2}\right)^{2}}{\Delta x^{2}}+\lim _{\Delta x \rightarrow 0} \frac{2\left(\frac{3 \Delta x}{2}\right)^{2}}{\Delta x^{2}}=\lim _{\Delta x \rightarrow 0} \frac{-1}{2}+\lim _{\Delta x \rightarrow 0} \frac{9}{2}=-\frac{1}{2}+\frac{9}{2}=4 $$ Thus, $f^{\prime}(0)=4$ ## Problem Kuznetsov Differentiation 2-30
4
Calculus
math-word-problem
Yes
Yes
olympiads
false
## Problem Statement Find the second-order derivative $y_{x x}^{\prime \prime}$ of the function given parametrically. $\left\{\begin{array}{l}x=\cos t+\sin t \\ y=\sin 2 t\end{array}\right.$
## Solution $x_{t}^{\prime}=(\cos t+\sin t)^{\prime}=-\sin t+\cos t$ $y_{t}^{\prime}=(\sin 2 t)^{\prime}=2 \cos 2 t$ We obtain: $$ \begin{aligned} & y_{x}^{\prime}=\frac{y_{t}^{\prime}}{x_{t}^{\prime}}=\frac{2 \cos 2 t}{-\sin t+\cos t}=2 \cdot \frac{\cos ^{2} t-\sin ^{2} t}{\cos t-\sin t}=2(\sin t+\cos t) \\ & \left(y_{x}^{\prime}\right)_{t}^{\prime}=(2(\sin t+\cos t))^{\prime}=2(\cos t-\sin t) \end{aligned} $$ Then: $y_{x x}^{\prime \prime}=\frac{\left(y_{x}^{\prime}\right)_{t}^{\prime}}{x_{t}^{\prime}}=\frac{2(\cos t-\sin t)}{-\sin t+\cos t}=2$ ## Problem Kuznetsov Differentiation 20-30
2
Calculus
math-word-problem
Yes
Yes
olympiads
false
## Problem Statement Calculate the limit of the numerical sequence: $$ \lim _{n \rightarrow \infty} \frac{(n+1)^{3}+(n-1)^{3}}{n^{3}-3 n} $$
## Solution $$ \begin{aligned} & \lim _{n \rightarrow \infty} \frac{(n+1)^{3}+(n-1)^{3}}{n^{3}-3 n}=\lim _{n \rightarrow \infty} \frac{\frac{1}{n^{3}}\left((n+1)^{3}+(n-1)^{3}\right)}{\frac{1}{n^{3}}\left(n^{3}-3 n\right)}= \\ & =\lim _{n \rightarrow \infty} \frac{\left(1+\frac{1}{n}\right)^{3}+\left(1-\frac{1}{n}\right)^{3}}{1-\frac{3}{n^{2}}}=\frac{1^{3}+1^{3}}{1-0}=2 \end{aligned} $$ ## Problem Kuznetsov Limits 3-28
2
Algebra
math-word-problem
Yes
Yes
olympiads
false
## Problem Statement Calculate the limit of the numerical sequence: $$ \lim _{n \rightarrow \infty} \frac{n!+(n+2)!}{(n-1)!+(n+2)!} $$
## Solution $$ \begin{aligned} & \lim _{n \rightarrow \infty} \frac{n!+(n+2)!}{(n-1)!+(n+2)!}=\lim _{n \rightarrow \infty} \frac{(n-1)!(n+n(n+1)(n+2))}{(n-1)!(1+n(n+1)(n+2))}= \\ & =\lim _{n \rightarrow \infty} \frac{n+n(n+1)(n+2)}{1+n(n+1)(n+2)}=\lim _{n \rightarrow \infty} \frac{\frac{1}{n^{3}}(n+n(n+1)(n+2))}{\frac{1}{n^{3}}(1+n(n+1)(n+2))}= \\ & =\lim _{n \rightarrow \infty} \frac{\frac{1}{n^{2}}+\left(1+\frac{1}{n}\right)\left(1+\frac{2}{n}\right)}{\frac{1}{n^{3}}+\left(1+\frac{1}{n}\right)\left(1+\frac{2}{n}\right)}=\frac{0+(1+0)(1+0)}{0+(1+0)(1+0)}=1 \end{aligned} $$ ## Problem Kuznetsov Limits 6-28
1
Calculus
math-word-problem
Yes
Yes
olympiads
false
Condition of the problem Calculate the limit of the function: $\lim _{x \rightarrow 0} \frac{(1+x)^{3}-(1+3 x)}{x^{2}+x^{5}}$
## Solution $\lim _{x \rightarrow 0} \frac{(1+x)^{3}-(1+3 x)}{x^{2}+x^{5}}=\left\{\frac{0}{0}\right\}=\lim _{x \rightarrow 0} \frac{1^{3}+3 \cdot 1^{2} \cdot x+3 \cdot 1 \cdot x^{2}+x^{3}-1-3 x}{x^{2}\left(1+x^{3}\right)}=$ $=\lim _{x \rightarrow 0} \frac{1+3 x+3 x^{2}+x^{3}-1-3 x}{x^{2}\left(1+x^{3}\right)}=\lim _{x \rightarrow 0} \frac{3 x^{2}+x^{3}}{x^{2}\left(1+x^{3}\right)}=$ $=\lim _{x \rightarrow 0} \frac{x^{2}(3+x)}{x^{2}\left(1+x^{3}\right)}=\lim _{x \rightarrow 0} \frac{3+x}{1+x^{3}}=\frac{3+0}{1+0^{3}}=\frac{3}{1}=3$ ## Problem Kuznetsov Limits 10-28
3
Calculus
math-word-problem
Yes
Yes
olympiads
false
## Problem Statement Calculate the limit of the function: $$ \lim _{x \rightarrow-2} \frac{\sqrt[3]{x-6}+2}{\sqrt[3]{x^{3}+8}} $$
## Solution $$ \begin{aligned} & \lim _{x \rightarrow-2} \frac{\sqrt[3]{x-6}+2}{\sqrt[3]{x^{3}+8}}=\lim _{x \rightarrow-2} \frac{(\sqrt[3]{x-6}+2)\left(\sqrt[3]{(x-6)^{2}}-2 \sqrt[3]{x-6}+4\right)}{\sqrt[3]{x^{3}+8}\left(\sqrt[3]{(x-6)^{2}}-2 \sqrt[3]{x-6}+4\right)}= \\ & =\lim _{x \rightarrow-2} \frac{(\sqrt[3]{x-6}+2)\left(\sqrt[3]{(x-6)^{2}}-2 \sqrt[3]{x-6}+4\right)}{\sqrt[3]{x^{3}+8}\left(\sqrt[3]{(x-6)^{2}}-2 \sqrt[3]{x-6}+4\right)}= \\ & =\lim _{x \rightarrow-2} \frac{x-6+8}{\sqrt[3]{x^{3}+8}\left(\sqrt[3]{(x-6)^{2}}-2 \sqrt[3]{x-6}+4\right)}= \\ & =\lim _{x \rightarrow-2} \frac{x+2}{\sqrt[3]{(x+2)\left(x^{2}+2 x+4\right)}\left(\sqrt[3]{(x-6)^{2}}-2 \sqrt[3]{x-6}+4\right)}= \\ & =\lim _{x \rightarrow-2} \frac{\sqrt[3]{(x+2)^{2}}}{\sqrt[3]{x^{2}+2 x+4}\left(\sqrt[3]{(x-6)^{2}}-2 \sqrt[3]{x-6}+4\right)}= \\ & =\frac{\sqrt[3]{(-2+2)^{2}}}{\sqrt[3]{(-2)^{2}+2 \cdot(-2)+4}\left(\sqrt[3]{(-2-6)^{2}}-2 \sqrt[3]{-2-6}+4\right)}= \\ & =\frac{0}{\sqrt[3]{4-4+4}\left(\sqrt[3]{8^{2}}-2 \sqrt[3]{-8}+4\right)}=\frac{0}{\sqrt[3]{4}\left(2^{2}+2 \cdot 2+4\right)}=0 \end{aligned} $$
0
Calculus
math-word-problem
Yes
Yes
olympiads
false
## Problem Statement Calculate the limit of the function: $\lim _{x \rightarrow 0} \frac{\ln \left(x^{2}+1\right)}{1-\sqrt{x^{2}+1}}$
## Solution We will use the substitution of equivalent infinitesimals: $\ln \left(1+x^{2}\right) \sim x^{2}$, as $x \rightarrow 0\left(x^{2} \rightarrow 0\right)$ We get: $\lim _{x \rightarrow 0} \frac{\ln \left(x^{2}+1\right)}{1-\sqrt{x^{2}+1}}=\left\{\frac{0}{0}\right\}=\lim _{x \rightarrow 0} \frac{x^{2}}{1-\sqrt{x^{2}+1}}=$ $=\lim _{x \rightarrow 0} \frac{x^{2}\left(1+\sqrt{x^{2}+1}\right)}{\left(1-\sqrt{x^{2}+1}\right)\left(1+\sqrt{x^{2}+1}\right)}=$ $=\lim _{x \rightarrow 0} \frac{x^{2}\left(1+\sqrt{x^{2}+1}\right)}{1-\left(x^{2}+1\right)}=\lim _{x \rightarrow 0} \frac{x^{2}\left(1+\sqrt{x^{2}+1}\right)}{x^{2}}=$ $=\lim _{x \rightarrow 0}\left(1+\sqrt{x^{2}+1}\right)=\left(1+\sqrt{0^{2}+1}\right)=2$ ## Problem Kuznetsov Limits 12-28
2
Calculus
math-word-problem
Yes
Yes
olympiads
false
## Problem Statement Calculate the limit of the function: $\lim _{x \rightarrow 0} \frac{e^{2 x}-e^{x}}{\sin 2 x-\sin x}$
## Solution $\lim _{x \rightarrow 0} \frac{e^{2 x}-e^{x}}{\sin 2 x-\sin x}=\lim _{x \rightarrow 0} \frac{\left(e^{2 x}-1\right)-\left(e^{x}-1\right)}{\sin 2 x-\sin x}=$ $=\lim _{x \rightarrow 0} \frac{\frac{1}{x}\left(\left(e^{2 x}-1\right)-\left(e^{x}-1\right)\right)}{\frac{1}{x}(\sin 2 x-\sin x)}=$ $=\frac{\lim _{x \rightarrow 0} \frac{1}{x}\left(\left(e^{2 x}-1\right)-\left(e^{x}-1\right)\right)}{\lim _{x \rightarrow 0} \frac{1}{x}(\sin 2 x-\sin x)}=$ $=\left(\lim _{x \rightarrow 0} \frac{e^{2 x}-1}{x}-\lim _{x \rightarrow 0} \frac{e^{x}-1}{x}\right) /\left(\lim _{x \rightarrow 0} \frac{\sin 2 x}{x}-\lim _{x \rightarrow 0} \frac{\sin x}{x}\right)=$ Using the substitution of equivalent infinitesimals: $e^{2 x}-1 \sim 2 x$, as $x \rightarrow 0(2 x \rightarrow 0)$ $e^{x}-1 \sim x$, as $x \rightarrow 0$ $\sin 2 x \sim 2 x$, as $x \rightarrow 0(2 x \rightarrow 0)$ $\sin x \sim x$, as $x \rightarrow 0$ We get: $$ =\frac{\lim _{x \rightarrow 0} \frac{2 x}{x}-\lim _{x \rightarrow 0} \frac{x}{x}}{\lim _{x \rightarrow 0} \frac{2 x}{x}-\lim _{x \rightarrow 0} \frac{x}{x}}=\frac{\lim _{x \rightarrow 0} 2-\lim _{x \rightarrow 0} 1}{\lim _{x \rightarrow 0} 2-\lim _{x \rightarrow 0} 1}=\frac{2-1}{2-1}=1 $$ ## Problem Kuznetsov Limits 15-28
1
Calculus
math-word-problem
Yes
Yes
olympiads
false
Condition of the problem Calculate the limit of the function: $$ \lim _{x \rightarrow 0}\left(6-\frac{5}{\cos x}\right)^{\operatorname{tg}^{2} x} $$
## Solution $$ \begin{aligned} & \lim _{x \rightarrow 0}\left(6-\frac{5}{\cos x}\right)^{\operatorname{tg}^{2} x}=\left(6-\frac{5}{\cos 0}\right)^{\operatorname{tg}^{2} 0}= \\ & =\left(6-\frac{5}{1}\right)^{0^{2}}=1^{0}=1 \end{aligned} $$ ## Problem Kuznetsov Limits $18-28$
1
Calculus
math-word-problem
Yes
Yes
olympiads
false
## Problem Statement Calculate the limit of the function: $\lim _{x \rightarrow \frac{\pi}{2}}(\sin x)^{\frac{18 \sin x}{\operatorname{ctg} x}}$
## Solution Substitution: $$ \begin{aligned} & x=y+\frac{\pi}{2} \Rightarrow y=x-\frac{\pi}{2} \\ & x \rightarrow \frac{\pi}{2} \Rightarrow y \rightarrow 0 \end{aligned} $$ We obtain: $$ \begin{aligned} & \lim _{x \rightarrow \frac{\pi}{2}}(\sin x)^{\frac{18 \sin x}{\operatorname{ctg} x}}=\lim _{y \rightarrow 0}\left(\sin \left(y+\frac{\pi}{2}\right)\right)^{\frac{18 \sin \left(y+\frac{\pi}{2}\right)}{\operatorname{ctg}\left(y+\frac{\pi}{2}\right)}}= \\ & =\lim _{y \rightarrow 0}(\cos y)^{\frac{18 \cos y}{-\operatorname{tg} y}}=\lim _{y \rightarrow 0}\left(e^{\ln (\cos y)}\right)^{-\frac{18 \cos y}{\operatorname{tg} y}}= \\ & =\lim _{y \rightarrow 0} e^{-\frac{18 \cos y}{\operatorname{tg} y} \cdot \ln (\cos y)}=\exp \left\{\lim _{y \rightarrow 0}-\frac{18 \cos y}{\operatorname{tg} y} \cdot \ln (\cos y)\right\}= \\ & =\exp \left\{\lim _{y \rightarrow 0}-\frac{18 \cos y}{\operatorname{tg} y} \cdot \ln \left(1-2 \sin ^{2} \frac{y}{2}\right)\right\}= \end{aligned} $$ Using the substitution of equivalent infinitesimals: $\ln \left(1-2 \sin ^{2} \frac{y}{2}\right) \sim-2 \sin ^{2} \frac{y}{2}$, as $\quad y \rightarrow 0\left(-2 \sin ^{2} \frac{y}{2} \rightarrow 0\right)$ $\operatorname{tg} y \sim y_{\text {, as }} y \rightarrow 0$ We get: $=\exp \left\{\lim _{y \rightarrow 0}-\frac{18 \cos y}{y} \cdot\left(-2 \sin ^{2} \frac{y}{2}\right)\right\}=$ Using the substitution of equivalent infinitesimals: $$ \sin \frac{y}{2} \sim \frac{y}{2}_{\text {as }} y \rightarrow 0\left(\frac{y}{2} \rightarrow 0\right) $$ We get: $$ \begin{aligned} & =\exp \left\{\lim _{y \rightarrow 0} \frac{36 \cos y}{y} \cdot\left(\frac{y}{2}\right)^{2}\right\}=\exp \left\{\lim _{y \rightarrow 0} 9 \cdot y \cdot \cos y\right\}= \\ & =\exp \{9 \cdot 0 \cdot \cos 0\}=\exp \{0\}=e^{0}=1 \end{aligned} $$ ## Problem Kuznetsov Limits 19-28
1
Calculus
math-word-problem
Yes
Yes
olympiads
false
## Problem Statement Calculate the limit of the function: $$ \lim _{x \rightarrow 1}(\sqrt[3]{x}+x-1)^{\sin \left(\frac{\pi x}{4}\right)} $$
## Solution $\lim _{x \rightarrow 1}(\sqrt[3]{x}+x-1)^{\sin \left(\frac{\pi x}{4}\right)}=(\sqrt[3]{1}+1-1)^{\sin \left(\frac{\pi \cdot 1}{4}\right)}=(1)^{\frac{\sqrt{2}}{2}}=1$ ## Problem Kuznetsov Limits 20-28
1
Calculus
math-word-problem
Yes
Yes
olympiads
false
## Problem Statement Calculate the definite integral: $$ \int_{0}^{1 / \sqrt{2}} \frac{d x}{\left(1-x^{2}\right) \sqrt{1-x^{2}}} $$
## Solution $$ \int_{0}^{1 / \sqrt{2}} \frac{d x}{\left(1-x^{2}\right) \sqrt{1-x^{2}}}= $$ Substitution: $$ \begin{aligned} & x=\sin t ; d x=\cos t d t \\ & x=0 \Rightarrow t=\arcsin 0=0 \\ & x=\frac{1}{\sqrt{2}} \Rightarrow t=\arcsin \frac{1}{\sqrt{2}}=\frac{\pi}{4} \end{aligned} $$ We get: $$ \begin{aligned} & =\int_{0}^{\pi / 4} \frac{\cos t d t}{\sqrt{\left(1-\sin ^{2} t\right)^{3}}}=\int_{0}^{\pi / 4} \frac{\cos t d t}{\sqrt{\left(1-\sin ^{2} t\right)^{3}}}=\int_{0}^{\pi / 4} \frac{\cos t d t}{\cos ^{3} t}=\int_{0}^{\pi / 4} \frac{d t}{\cos ^{2} t}= \\ & =\left.\operatorname{tg} t\right|_{0} ^{\pi / 4}=\operatorname{tg} \frac{\pi}{4}-\operatorname{tg} 0=1 \end{aligned} $$ Source — «http://pluspi.org/wiki/index.php/\�\�\�\�\�\�\�\�\�\�\�\� \%D0\%9A\%D1\%83\%D0\%B7\%D0\%BD\%D0\%B5\%D1\%86\%D0\%BE\%D0\%B2_\%D0\%98\%D0\%BD $\% \mathrm{D} 1 \% 82 \% \mathrm{D} 0 \% \mathrm{~B} 5 \% \mathrm{D} 0 \% \mathrm{~B} 3 \% \mathrm{D} 1 \% 80 \% \mathrm{D} 0 \% \mathrm{~B} 0 \% \mathrm{D} 0 \% \mathrm{BB} \% \mathrm{D} 1 \% 8 \mathrm{~B}+12-29$ » Categories: Kuznetsov's Problem Book Integrals Problem 12 | Integrals Ukrainian Banner Network - Last edited on this page: 16:55, 5 July 2009. - Content is available under CC-BY-SA 3.0. Created by Geeteatoo ## Problem Kuznetsov Integrals 12-30 ## Material from PlusPi
1
Calculus
math-word-problem
Yes
Yes
olympiads
false
## Task Condition Calculate the area of the parallelogram constructed on vectors $a_{\text {and }} b$. $$ \begin{aligned} & a=5 p-q \\ & b=p+q \\ & |p|=5 \\ & |q|=3 \\ & (\widehat{p, q})=\frac{5 \pi}{6} \end{aligned} $$
## Solution The area of the parallelogram constructed on vectors $a$ and $b$ is numerically equal to the modulus of their vector product: $S=|a \times b|$ We compute $a \times b$ using the properties of the vector product: $a \times b=(5 p-q) \times(p+q)=5 \cdot p \times p+5 \cdot p \times q-q \times p-q \times q=$ $=5 \cdot p \times q-q \times p=5 \cdot p \times q+p \times q=(5+1) \cdot p \times q=6 \cdot p \times q$ We compute the area: $S=|a \times b|=|6 \cdot p \times q|=6 \cdot|p \times q|=6 \cdot|p| \cdot|q| \cdot \sin (\widehat{p, q})=$ $=6 \cdot 5 \cdot 3 \cdot \sin \frac{5 \pi}{6}=90 \cdot \sin \frac{5 \pi}{6}=90 \cdot \frac{1}{2}=45$ Thus, the area of the parallelogram constructed on vectors $a$ and $b$ is 45. ## Problem Kuznetsov Analytical Geometry 5-26
45
Algebra
math-word-problem
Yes
Yes
olympiads
false
## Task Condition Are the vectors $a, b$ and $c$ coplanar? $a=\{1 ;-1 ; 4\}$ $b=\{1 ; 0 ; 3\}$ $c=\{1 ;-3 ; 8\}$
## Solution For three vectors to be coplanar (lie in the same plane or parallel planes), it is necessary and sufficient that their scalar triple product $(a, b, c)$ be equal to zero. $(a, b, c)=\left|\begin{array}{ccc}1 & -1 & 4 \\ 1 & 0 & 3 \\ 1 & -3 & 8\end{array}\right|=$ $=1 \cdot\left|\begin{array}{cc}0 & 3 \\ -3 & 8\end{array}\right|-(-1) \cdot\left|\begin{array}{ll}1 & 3 \\ 1 & 8\end{array}\right|+4 \cdot\left|\begin{array}{cc}1 & 0 \\ 1 & -3\end{array}\right|=$ $=1 \cdot 9+1 \cdot 5+4 \cdot(-3)=9+5-12=2$ Since $(a, b, c)=2 \neq 0$, the vectors $a, b$ and $c$ are not coplanar. ## Problem Kuznetsov Analytic Geometry 6-26
2
Algebra
math-word-problem
Yes
Yes
olympiads
false
## Problem Statement Calculate the limit of the numerical sequence: $$ \lim _{n \rightarrow \infty} \frac{\sqrt{n+3}-\sqrt[3]{8 n^{3}+3}}{\sqrt[4]{n+4}-\sqrt[5]{n^{5}+5}} $$
## Solution $$ \begin{aligned} & \lim _{n \rightarrow \infty} \frac{\sqrt{n+3}-\sqrt[3]{8 n^{3}+3}}{\sqrt[4]{n+4}-\sqrt[5]{n^{5}+5}}=\lim _{n \rightarrow \infty} \frac{\frac{1}{n}\left(\sqrt{n+3}-\sqrt[3]{8 n^{3}+3}\right)}{\frac{1}{n}\left(\sqrt[4]{n+4}-\sqrt[5]{n^{5}+5}\right)}= \\ & =\lim _{n \rightarrow \infty} \frac{\sqrt{\frac{1}{n}+\frac{3}{n^{2}}}-\sqrt[3]{8+\frac{3}{n^{3}}}}{\sqrt[4]{\frac{1}{n^{3}}+\frac{4}{n^{4}}}-\sqrt[5]{1+\frac{5}{n^{5}}}}=\frac{\sqrt{0+0}-\sqrt[3]{8+0}}{\sqrt[4]{0+0}-\sqrt[5]{1+0}}=\frac{-2}{-1}=2 \end{aligned} $$ ## Problem Kuznetsov Limits 4-20
2
Calculus
math-word-problem
Yes
Yes
olympiads
false
## Problem Statement Calculate the limit of the numerical sequence: $\lim _{n \rightarrow \infty} \frac{(2 n+1)!+(2 n+2)!}{(2 n+3)!-(2 n+2)!}$
## Solution $\lim _{n \rightarrow \infty} \frac{(2 n+1)!+(2 n+2)!}{(2 n+3)!-(2 n+2)!}=\lim _{n \rightarrow \infty} \frac{(2 n+1)!+(2 n+2)!}{(2 n+3) \cdot(2 n+2)!-(2 n+2)!}=$ $$ =\lim _{n \rightarrow \infty} \frac{(2 n+1)!+(2 n+2)!}{(2 n+2)!((2 n+3)-1)}=\lim _{n \rightarrow \infty} \frac{(2 n+1)!+(2 n+2)!}{(2 n+2)!\cdot(2 n+2)}= $$ $$ \begin{aligned} & =\lim _{n \rightarrow \infty}\left(\frac{(2 n+1)!}{(2 n+2)!\cdot(2 n+2)}+\frac{(2 n+2)!}{(2 n+2)!\cdot(2 n+2)}\right)= \\ & =\lim _{n \rightarrow \infty}\left(\frac{1}{(2 n+2) \cdot(2 n+2)}+\frac{1}{2 n+2}\right)=0+0=0 \end{aligned} $$
0
Calculus
math-word-problem
Yes
Yes
olympiads
false
## Problem Statement Calculate the limit of the function: $\lim _{x \rightarrow 2} \frac{x^{3}-3 x-2}{x-2}$
## Solution $\lim _{x \rightarrow 2} \frac{x^{3}-3 x-2}{x-2}=\left\{\frac{0}{0}\right\}=\lim _{x \rightarrow 2} \frac{(x-2)\left(x^{2}+2 x+1\right)}{x-2}=$ $=\lim _{x \rightarrow 2}\left(x^{2}+2 x+1\right)=2^{2}+2 \cdot 2+1=4+4+1=9$ ## Problem Kuznetsov Limits 10-20
9
Calculus
math-word-problem
Yes
Yes
olympiads
false
## Problem Statement Calculate the limit of the function: $\lim _{x \rightarrow 0} \frac{e^{2 x}-e^{-5 x}}{2 \sin x-\tan x}$
## Solution $\lim _{x \rightarrow 0} \frac{e^{2 x}-e^{-5 x}}{2 \sin x-\tan x}=\lim _{x \rightarrow 0} \frac{\left(e^{2 x}-1\right)-\left(e^{-5 x}-1\right)}{2 \sin x-\tan x}=$ $=\lim _{x \rightarrow 0} \frac{\frac{1}{x}\left(\left(e^{2 x}-1\right)-\left(e^{-5 x}-1\right)\right)}{\frac{1}{x}(2 \sin x-\tan x)}=$ $=\frac{\lim _{x \rightarrow 0} \frac{1}{x}\left(\left(e^{2 x}-1\right)-\left(e^{-5 x}-1\right)\right)}{\lim _{x \rightarrow 0} \frac{1}{x}(2 \sin x-\tan x)}=$ $=\left(\lim _{x \rightarrow 0} \frac{e^{2 x}-1}{x}-\lim _{x \rightarrow 0} \frac{e^{-5 x}-1}{x}\right) /\left(\lim _{x \rightarrow 0} \frac{2 \sin x}{x}-\lim _{x \rightarrow 0} \frac{\tan x}{x}\right)=$ Using the substitution of equivalent infinitesimals: $e^{2 x}-1 \sim 2 x$, as $x \rightarrow 0(2 x \rightarrow 0)$ $e^{-5 x}-1 \sim -5 x$, as $x \rightarrow 0(-5 x \rightarrow 0)$ $\sin x \sim x$, as $x \rightarrow 0$ $\tan x \sim x$, as $x \rightarrow 0$ We get: $=\frac{\lim _{x \rightarrow 0} \frac{2 x}{x}-\lim _{x \rightarrow 0} \frac{-5 x}{x}}{\lim _{x \rightarrow 0} \frac{2 x}{x}-\lim _{x \rightarrow 0} \frac{x}{x}}=\frac{\lim _{x \rightarrow 0} 2-\lim _{x \rightarrow 0}-5}{\lim _{x \rightarrow 0} 2-\lim _{x \rightarrow 0} 1}=\frac{2+5}{2-1}=7$ ## Problem Kuznetsov Limits 15-20
7
Calculus
math-word-problem
Yes
Yes
olympiads
false
## Problem Statement Calculate the limit of the function: $\lim _{x \rightarrow 0} \frac{2+\ln \left(e+x \sin \left(\frac{1}{x}\right)\right)}{\cos x+\sin x}$
## Solution Since $\sin \left(\frac{1}{x}\right)_{\text {- is bounded as }} x \rightarrow 0$, then $x \sin \left(\frac{1}{x}\right) \rightarrow 0 \quad$ as $x \rightarrow 0$ Then: $\lim _{x \rightarrow 0} \frac{2+\ln \left(e+x \sin \left(\frac{1}{x}\right)\right)}{\cos x+\sin x}=\frac{2+\ln (e+0)}{\cos 0+\sin 0}=\frac{2+\ln e}{1+0}=\frac{2+1}{1+0}=3$
3
Calculus
math-word-problem
Yes
Yes
olympiads
false
## Task Condition Find the angle between the planes $x-y \sqrt{2}+z-1=0$ $x+y \sqrt{2}-z+3=0$
## Solution The dihedral angle between planes is equal to the angle between their normal vectors. The normal vectors of the given planes are: $\overrightarrow{n_{1}}=\{1 ;-\sqrt{2} ; 1\}$ $\overrightarrow{n_{2}}=\{1 ; \sqrt{2} ;-1\}$ The angle $\phi$ between the planes is determined by the formula: $$ \begin{aligned} & \cos \phi=\frac{\left(\overrightarrow{n_{1}}, \overrightarrow{n_{2}}\right)}{\left|\overrightarrow{n_{1}}\right| \cdot\left|\overrightarrow{n_{2}}\right|}=\frac{1 \cdot 1+(-\sqrt{2}) \cdot \sqrt{2}+1 \cdot(-1)}{\sqrt{1^{2}+(-\sqrt{2})^{2}+1^{2}} \cdot \sqrt{1^{2}+(\sqrt{2})^{2}+(-1)^{2}}}= \\ & =\frac{1-2-1}{\sqrt{1+2+1} \cdot \sqrt{1+2+1}}=\frac{-2}{\sqrt{4} \cdot \sqrt{4}}=-\frac{1}{2} \\ & \phi=\arccos -\frac{1}{2}=120^{\circ} \end{aligned} $$ ## Problem Kuznetsov Analytic Geometry 10-6
120
Geometry
math-word-problem
Yes
Yes
olympiads
false
## Task Condition Let $k$ be the coefficient of similarity transformation with the center at the origin. Is it true that point $A$ belongs to the image of plane $a$? $A\left(\frac{1}{2} ; \frac{1}{3} ; 1\right)$ $a: 2 x-3 y+3 z-2=0$ $k=1.5$
## Solution When transforming similarity with the center at the origin of the plane $a: A x+B y+C z+D=0_{\text{and coefficient }} k$ transitions to the plane $a^{\prime}: A x+B y+C z+k \cdot D=0$. We find the image of the plane $a$: $a^{\prime}: 2 x-3 y+3 z-3=0$ Substitute the coordinates of point $A$ into the equation $a^{\prime}$: $2 \cdot \frac{1}{2}-3 \cdot \frac{1}{3}+3 \cdot 1-3=0$ $1-1+3-3=0$ $0=0$ Since $0=0$, point $A$ belongs to the image of the plane $a$. Problem Kuznetsov Analytical Geometry 12-6
0
Geometry
math-word-problem
Yes
Yes
olympiads
false
## Problem Statement Calculate the limit of the numerical sequence: $\lim _{n \rightarrow \infty} \frac{\sqrt{n+6}-\sqrt{n^{2}-5}}{\sqrt[3]{n^{3}+3}+\sqrt[4]{n^{3}+1}}$
## Solution $$ \begin{aligned} & \lim _{n \rightarrow \infty} \frac{\sqrt{n+6}-\sqrt{n^{2}-5}}{\sqrt[3]{n^{3}+3}+\sqrt[4]{n^{3}+1}}=\lim _{n \rightarrow \infty} \frac{\frac{1}{n}\left(\sqrt{n+6}-\sqrt{n^{2}-5}\right)}{\frac{1}{n}\left(\sqrt[3]{n^{3}+3}+\sqrt[4]{n^{3}+1}\right)}= \\ & =\lim _{n \rightarrow \infty} \frac{\sqrt{\frac{1}{n}+\frac{6}{n^{2}}}-\sqrt{1-\frac{5}{n^{2}}}}{\sqrt[3]{1+\frac{3}{n^{3}}}+\sqrt[4]{\frac{1}{n}+\frac{1}{n^{4}}}}=\frac{\sqrt{0+0}-\sqrt{1-0}}{\sqrt[3]{1+0}+\sqrt[4]{0+0}}=\frac{-1}{1}=-1 \end{aligned} $$ ## Problem Kuznetsov Limits 4-27
-1
Calculus
math-word-problem
Yes
Yes
olympiads
false
## Problem Statement Calculate the limit of the numerical sequence: $\lim _{n \rightarrow \infty} \frac{2^{n}+7^{n}}{2^{n}-7^{n-1}}$
## Solution $$ \begin{aligned} & \lim _{n \rightarrow \infty} \frac{2^{n}+7^{n}}{2^{n}-7^{n-1}}=\lim _{n \rightarrow \infty} \frac{\frac{1}{7^{n}}\left(2^{n}+7^{n}\right)}{\frac{1}{7^{n}}\left(2^{n}-7^{n-1}\right)}= \\ & =\lim _{n \rightarrow \infty} \frac{\left(\frac{2}{7}\right)^{n}+1}{\left(\frac{2}{7}\right)^{n}-\frac{1}{7}}=\frac{0+1}{0-\frac{1}{7}}=-7 \end{aligned} $$ ## Problem Kuznetsov Limits 6-27
-7
Algebra
math-word-problem
Yes
Yes
olympiads
false
## Problem Statement Calculate the limit of the function: $$ \lim _{x \rightarrow 16} \frac{\sqrt[4]{x}-2}{\sqrt[3]{(\sqrt{x}-4)^{2}}} $$
## Solution $$ \begin{aligned} & \lim _{x \rightarrow 16} \frac{\sqrt[4]{x}-2}{\sqrt[3]{(\sqrt{x}-4)^{2}}}=\lim _{x \rightarrow 16} \frac{\sqrt[4]{x}-2}{\sqrt[3]{(\sqrt[4]{x}-2)^{2}(\sqrt[4]{x}+2)^{2}}}= \\ & =\lim _{x \rightarrow 16} \frac{\sqrt[4]{x}-2}{(\sqrt[4]{x}-2)^{\frac{2}{3}} \sqrt[3]{(\sqrt[4]{x}+2)^{2}}}=\lim _{x \rightarrow 16} \frac{(\sqrt[4]{x}-2)^{\frac{1}{3}}}{\sqrt[3]{(\sqrt[4]{x}+2)^{2}}}= \\ & =\frac{(\sqrt[4]{16}-2)^{\frac{1}{3}}}{\sqrt[3]{(\sqrt[4]{16}+2)^{2}}}=\frac{(2-2)^{\frac{1}{3}}}{\sqrt[3]{(2+2)^{2}}}=\frac{0}{\sqrt[3]{4^{2}}}=0 \end{aligned} $$ ## Problem Kuznetsov Limits 11-27
0
Calculus
math-word-problem
Yes
Yes
olympiads
false
## Problem Statement Calculate the limit of the function: $\lim _{x \rightarrow 0}\left(\tan\left(\frac{\pi}{4}-x\right)\right)^{\left(e^{x}-1\right) / x}$
## Solution $$ \begin{aligned} & \lim _{x \rightarrow 0}\left(\tan\left(\frac{\pi}{4}-x\right)\right)^{\left(e^{x}-1\right) / x}=\left(\lim _{x \rightarrow 0} \tan\left(\frac{\pi}{4}-x\right)\right)^{\lim _{x \rightarrow 0}\left(e^{x}-1\right) / x}= \\ & =\left(\tan\left(\frac{\pi}{4}-0\right)\right)^{\lim _{x \rightarrow 0}\left(e^{x}-1\right) / x}=(1)^{\lim _{x \rightarrow 0}\left(e^{x}-1\right) / x}= \end{aligned} $$ Using the substitution of equivalent infinitesimals: $e^{x}-1 \sim x$, as $x \rightarrow 0$ We get: $=1^{\lim _{x \rightarrow 0} \frac{x}{x}}=1^{\lim _{x \rightarrow 0} 1}=1^{1}=1$ ## Problem Kuznetsov Limits 18-27
1
Calculus
math-word-problem
Yes
Yes
olympiads
false
## Problem Statement Calculate the limit of the function: $\lim _{x \rightarrow \frac{\pi}{2}}(\cos x+1)^{\sin x}$
## Solution $\lim _{x \rightarrow \frac{\pi}{2}}(\cos x+1)^{\sin x}=\left(\cos \frac{\pi}{2}+1\right)^{\sin \frac{\pi}{2}}=(0+1)^{1}=1^{1}=1$ ## Problem Kuznetsov Limits 20-27
1
Calculus
math-word-problem
Yes
Yes
olympiads
false
## Problem Statement Based on the definition of the derivative, find $f^{\prime}(0)$: $$ f(x)=\left\{\begin{array}{c} 2 x^{2}+x^{2} \cos \frac{1}{9 x}, x \neq 0 \\ 0, x=0 \end{array}\right. $$
## Solution By definition, the derivative at the point $x=0$: $f^{\prime}(0)=\lim _{\Delta x \rightarrow 0} \frac{f(0+\Delta x)-f(0)}{\Delta x}$ Based on the definition, we find: $$ \begin{aligned} & f^{\prime}(0)=\lim _{\Delta x \rightarrow 0} \frac{f(0+\Delta x)-f(0)}{\Delta x}=\lim _{\Delta x \rightarrow 0} \frac{2 \Delta x^{2}+\Delta x^{2} \cos \frac{1}{9 \Delta x}-0}{\Delta x}= \\ & =\lim _{\Delta x \rightarrow 0} \frac{2 \Delta x^{2}+\Delta x^{2} \cos \frac{1}{9 \Delta x}}{\Delta x}=\lim _{\Delta x \rightarrow 0}\left(2 \Delta x+\Delta x \cos \frac{1}{9 \Delta x}\right)= \end{aligned} $$ Since $\cos \frac{1}{9 \Delta x}$ is bounded, then $\Delta x \cdot \cos \frac{1}{9 \Delta x} \rightarrow 0$, as $\Delta x \rightarrow 0$ Then: $=2 \cdot 0+0=0$ Therefore, $f^{\prime}(0)=0$ ## Problem Kuznetsov Differentiation 2-14
0
Calculus
math-word-problem
Yes
Yes
olympiads
false
## Problem Statement Based on the definition of the derivative, find $f^{\prime}(0):$ $f(x)=\left\{\begin{array}{c}\tan\left(x^{3}+x^{2} \sin \left(\frac{2}{x}\right)\right), x \neq 0 \\ 0, x=0\end{array}\right.$
## Solution By definition, the derivative at the point $x=0$: $f^{\prime}(0)=\lim _{\Delta x \rightarrow 0} \frac{f(0+\Delta x)-f(0)}{\Delta x}$ Based on the definition, we find: $$ \begin{aligned} & f^{\prime}(0)=\lim _{\Delta x \rightarrow 0} \frac{f(0+\Delta x)-f(0)}{\Delta x}=\lim _{\Delta x \rightarrow 0} \frac{\tan\left(\Delta x^{3}+\Delta x^{2} \sin \left(\frac{2}{\Delta x}\right)\right)-0}{\Delta x}= \\ & =\lim _{\Delta x \rightarrow 0} \frac{\tan\left(\Delta x^{3}+\Delta x^{2} \sin \left(\frac{2}{\Delta x}\right)\right)}{\Delta x}= \end{aligned} $$ Using the substitution of equivalent infinitesimals: $$ \begin{aligned} & \tan\left(\Delta x^{3}+\Delta x^{2} \sin \left(\frac{2}{\Delta x}\right)\right) \sim \Delta x^{3}+\Delta x^{2} \sin \left(\frac{2}{\Delta x}\right), \text { as } \\ & \Delta x \rightarrow 0\left(\Delta x^{3}+\Delta x^{2} \sin \left(\frac{2}{\Delta x}\right) \rightarrow 0\right) \end{aligned} $$ We get: $=\lim _{\Delta x \rightarrow 0} \frac{\Delta x^{3}+\Delta x^{2} \sin \left(\frac{2}{\Delta x}\right)}{\Delta x}=\lim _{\Delta x \rightarrow 0} \Delta x^{2}+\Delta x \sin \left(\frac{2}{\Delta x}\right)=$ Since $\sin \left(\frac{2}{\Delta x}\right)$ is bounded, then $$ \Delta x \cdot \sin \left(\frac{2}{\Delta x}\right) \rightarrow 0 \quad \text { as } \Delta x \rightarrow 0 $$ Thus: $=0^{2}+0=0$ Therefore, $f^{\prime}(0)=0$ ## Problem Kuznetsov Differentiation 2-1
0
Calculus
math-word-problem
Yes
Yes
olympiads
false
## Condition of the problem To derive the equation of the normal to the given curve at the point with abscissa $x_{0}$. $y=\frac{4 x-x^{2}}{4}, x_{0}=2$
## Solution Let's find $y^{\prime}:$ $$ y^{\prime}=\left(\frac{4 x-x^{2}}{4}\right)^{\prime}=\frac{4-2 x}{4}=\frac{2-x}{2} $$ Then: $y_{0}^{\prime}=y^{\prime}\left(x_{0}\right)=\frac{2-x_{0}}{2}=\frac{2-2}{2}=0$ Since $y^{\prime}\left(x_{0}\right)=0$, the equation of the normal line is: $x=x_{0}$ $x=2$ Thus, the equation of the normal line is: $x=2$ ## Problem Kuznetsov Differentiation 3-1
2
Calculus
math-word-problem
Yes
Yes
olympiads
false
## Problem Statement Based on the definition of the derivative, find $f^{\prime}(0)$: $$ f(x)=\left\{\begin{array}{c} 3^{x^{2} \sin \frac{2}{x}}-1+2 x, x \neq 0 \\ 0, x=0 \end{array}\right. $$
## Solution By definition, the derivative at the point $x=0$: $f^{\prime}(0)=\lim _{\Delta x \rightarrow 0} \frac{f(0+\Delta x)-f(0)}{\Delta x}$ Based on the definition, we find: $$ \begin{aligned} & f^{\prime}(0)=\lim _{\Delta x \rightarrow 0} \frac{f(0+\Delta x)-f(0)}{\Delta x}=\lim _{\Delta x \rightarrow 0}\left(3^{\Delta x^{2} \sin \frac{2}{\Delta x}}-1+2 x-0\right) / \Delta x= \\ & =\lim _{\Delta x \rightarrow 0}\left(\left(e^{\ln 3}\right)^{\Delta x^{2} \sin \frac{2}{\Delta x}}-1-2 \Delta x\right) / \Delta x= \\ & =\lim _{\Delta x \rightarrow 0}\left(e^{\ln 3 \cdot \Delta x^{2} \sin \frac{2}{\Delta x}}-1\right) / \Delta x-\lim _{\Delta x \rightarrow 0} \frac{2 \Delta x}{\Delta x}= \end{aligned} $$ Using the substitution of equivalent infinitesimals: $$ e^{\ln 3 \cdot \Delta x^{2} \sin \frac{2}{\Delta x}}-1 \sim \Delta \ln 3 \cdot \Delta x^{2} \sin \frac{2}{\Delta x}_{, \text {as }} \Delta x \rightarrow 0\left(\ln 3 \cdot \Delta x^{2} \sin \frac{2}{\Delta x} \rightarrow 0\right) $$ We get: $$ \begin{aligned} & =\lim _{\Delta x \rightarrow 0}\left(\ln 3 \cdot \Delta x^{2} \sin \frac{2}{\Delta x}\right) / \Delta x-\lim _{\Delta x \rightarrow 0} 2= \\ & =\lim _{\Delta x \rightarrow 0} \ln 3 \cdot \Delta x \sin \frac{2}{\Delta x}-2= \end{aligned} $$ Since $\sin \frac{2}{\Delta x}$ is bounded, then $$ \Delta x \cdot \sin \frac{2}{\Delta x} \rightarrow 0, \text { as } \Delta x \rightarrow 0 $$ Thus $=\ln 3 \cdot 0-2=-2$ Therefore, $f^{\prime}(0)=-2$ ## Problem Kuznetsov Differentiation $2-21$
-2
Calculus
math-word-problem
Yes
Yes
olympiads
false
## Problem Statement Calculate the limit of the numerical sequence: $\lim _{n \rightarrow \infty} \frac{(n+1)^{3}-(n-1)^{3}}{(n+1)^{2}+(n-1)^{2}}$
## Solution $\lim _{n \rightarrow \infty} \frac{(n+1)^{3}-(n-1)^{3}}{(n+1)^{2}+(n-1)^{2}}=\lim _{n \rightarrow \infty} \frac{n^{3}+3 n^{2}+3 n+1-n^{3}+3 n^{2}-3 n+1}{n^{2}+2 n+1+n^{2}-2 n+1}=$ $=\lim _{n \rightarrow \infty} \frac{6 n^{2}+2}{2 n^{2}+2}=\lim _{n \rightarrow \infty} \frac{\frac{1}{n^{2}}\left(3 n^{2}+1\right)}{\frac{1}{n^{2}}\left(n^{2}+1\right)}=\lim _{n \rightarrow \infty} \frac{3+\frac{1}{n^{2}}}{1+\frac{1}{n^{2}}}=\frac{3+0}{1+0}=3$ ## Problem Kuznetsov Limits 3-26
3
Algebra
math-word-problem
Yes
Yes
olympiads
false
## Problem Statement Calculate the limit of the numerical sequence: $\lim _{n \rightarrow \infty} \frac{n \sqrt{71 n}-\sqrt[3]{64 n^{6}+9}}{(n-\sqrt[3]{n}) \sqrt{11+n^{2}}}$
## Solution $$ \begin{aligned} & \lim _{n \rightarrow \infty} \frac{n \sqrt{71 n}-\sqrt[3]{64 n^{6}+9}}{(n-\sqrt[3]{n}) \sqrt{11+n^{2}}}=\lim _{n \rightarrow \infty} \frac{\frac{1}{n^{2}}\left(n \sqrt{71 n}-\sqrt[3]{64 n^{6}+9}\right)}{\frac{1}{n^{2}}(n-\sqrt[3]{n}) \sqrt{11+n^{2}}}= \\ & =\lim _{n \rightarrow \infty} \frac{\sqrt{\frac{71}{n}}-\sqrt[3]{64+\frac{9}{n^{6}}}}{\left(\frac{1}{n}(n-\sqrt[3]{n})\right)\left(\frac{1}{n} \sqrt{11+n^{2}}\right)}=\lim _{n \rightarrow \infty} \frac{\sqrt{\frac{71}{n}}-\sqrt[3]{64+\frac{9}{n^{6}}}}{\left(1-\sqrt[3]{\frac{1}{n^{2}}}\right) \sqrt{\frac{11}{n^{2}}+1}}= \\ & =\frac{\sqrt{0}-\sqrt[3]{64+0}}{(1-\sqrt[3]{0}) \sqrt{0+1}}=\frac{-4}{1}=-4 \end{aligned} $$ ## Problem Kuznetsov Limits 4-26
-4
Calculus
math-word-problem
Yes
Yes
olympiads
false
## Problem Statement Calculate the limit of the numerical sequence: $$ \lim _{n \rightarrow \infty} \frac{1-2+3-4+\ldots+(2 n-1)-2 n}{\sqrt[3]{n^{3}+2 n+2}} $$
## Solution $$ \begin{aligned} & \lim _{n \rightarrow \infty} \frac{1-2+3-4+\ldots+(2 n-1)-2 n}{\sqrt[3]{n^{3}+2 n+2}}= \\ & =\{1-2=3-4=\ldots=(2 n-1)-2 n=-1\}= \\ & =\lim _{n \rightarrow \infty} \frac{-1 \cdot n}{\sqrt[3]{n^{3}+2 n+2}}=\lim _{n \rightarrow \infty} \frac{\frac{1}{n} \cdot(-1) \cdot n}{\frac{1}{n} \sqrt[3]{n^{3}+2 n+2}}= \\ & =\lim _{n \rightarrow \infty} \frac{-1}{\sqrt[3]{1+\frac{2}{n^{2}}+\frac{2}{n^{3}}}}=\frac{-1}{\sqrt[3]{1+0+0}}=\frac{-1}{1}=-1 \end{aligned} $$ ## Problem Kuznetsov Limits 6-26
-1
Algebra
math-word-problem
Yes
Yes
olympiads
false
## Problem Statement Calculate the limit of the function: $\lim _{x \rightarrow 0} \frac{e^{x}-e^{-2 x}}{x+\sin x^{2}}$
## Solution $$ \begin{aligned} & \lim _{x \rightarrow 0} \frac{e^{x}-e^{-2 x}}{x+\sin x^{2}}=\lim _{x \rightarrow 0} \frac{\left(e^{x}-1\right)-\left(e^{-2 x}-1\right)}{x+\sin x^{2}}= \\ & =\lim _{x \rightarrow 0} \frac{\frac{1}{x}\left(\left(e^{x}-1\right)-\left(e^{-2 x}-1\right)\right)}{\frac{1}{x}\left(x+\sin x^{2}\right)}= \end{aligned} $$ $$ \begin{aligned} & =\frac{\lim _{x \rightarrow 0} \frac{1}{x}\left(\left(e^{x}-1\right)-\left(e^{-2 x}-1\right)\right)}{\lim _{x \rightarrow 0} \frac{1}{x}\left(x+\sin x^{2}\right)}= \\ & =\left(\lim _{x \rightarrow 0} \frac{e^{x}-1}{x}-\lim _{x \rightarrow 0} \frac{e^{-2 x}-1}{x}\right) /\left(\lim _{x \rightarrow 0} \frac{x}{x}+\lim _{x \rightarrow 0} \frac{\sin x^{2}}{x}\right)= \end{aligned} $$ Using the substitution of equivalent infinitesimals: $e^{x}-1 \sim x$, as $x \rightarrow 0$ $e^{-2 x}-1 \sim-2 x$, as $x \rightarrow 0(-2 x \rightarrow 0)$ $\sin x^{2} \sim x^{2}$, as $x \rightarrow 0\left(x^{2} \rightarrow 0\right)$ We get: $=\frac{\lim _{x \rightarrow 0} \frac{x}{x}-\lim _{x \rightarrow 0} \frac{-2 x}{x}}{\lim _{x \rightarrow 0} \frac{x}{x}+\lim _{x \rightarrow 0} \frac{x^{2}}{x}}=\frac{\lim _{x \rightarrow 0} 1-\lim _{x \rightarrow 0}-2}{\lim _{x \rightarrow 0} 1+\lim _{x \rightarrow 0} x}=\frac{1+2}{1+0}=3$ ## Problem Kuznetsov Limits 15-26
3
Calculus
math-word-problem
Yes
Yes
olympiads
false
## Problem Statement Calculate the limit of the function: $\lim _{x \rightarrow 0}\left(\frac{\sin 5 x^{2}}{\sin x}\right)^{\frac{1}{x+6}}$
## Solution $\lim _{x \rightarrow 0}\left(\frac{\sin 5 x^{2}}{\sin x}\right)^{\frac{1}{x+6}}=\left(\lim _{x \rightarrow 0} \frac{\sin 5 x^{2}}{\sin x}\right)^{\lim _{x \rightarrow 0} \frac{1}{x+6}}=$ $=\left(\lim _{x \rightarrow 0} \frac{\sin 5 x^{2}}{\sin x}\right)^{\frac{1}{0+6}}=\left(\lim _{x \rightarrow 0} \frac{\sin 5 x^{2}}{\sin x}\right)^{\frac{1}{6}}=$ Using the substitution of equivalent infinitesimals: $\sin 5 x^{2} \sim 5 x^{2}$, as $x \rightarrow 0\left(5 x^{2} \rightarrow 0\right)$ $\sin x \sim x$, as $x \rightarrow 0(x \rightarrow 0)$ We get: $=\left(\lim _{x \rightarrow 0} \frac{5 x^{2}}{x}\right)^{\frac{1}{6}}=\left(\lim _{x \rightarrow 0} 5 x\right)^{\frac{1}{6}}=0^{\frac{1}{6}}=0$ ## Problem Kuznetsov Limits 18-26
0
Calculus
math-word-problem
Yes
Yes
olympiads
false
## problem statement Let $k$ be the coefficient of similarity transformation with the center at the origin. Is it true that point $A$ belongs to the image of plane $a$? $A(-2; -1; 1)$ $a: x-2y+6z-10=0$ $k=\frac{3}{5}$
## Solution When transforming similarity with the center at the origin of the plane $a: A x+B y+C z+D=0_{\text{and coefficient }} k$ transitions to the plane $a^{\prime}: A x+B y+C z+k \cdot D=0$. We find the image of the plane $a$: $a^{\prime}: x-2 y+6 z-6=0$ Substitute the coordinates of point $A$ into the equation of $a^{\prime}$: $-2-2 \cdot(-1)+6 \cdot 1-6=0$ $-2+2+6-6=0$ $0=0$ Since $0=0$, point $A$ belongs to the image of the plane $a$. ## Problem Kuznetsov Analytical Geometry 12-15
0
Geometry
math-word-problem
Yes
Yes
olympiads
false
## Problem Statement Calculate the limit of the numerical sequence: $$ \lim _{n \rightarrow \infty} \frac{n \sqrt[5]{n}-\sqrt[3]{27 n^{6}+n^{2}}}{(n+\sqrt[4]{n}) \sqrt{9+n^{2}}} $$
## Solution $$ \begin{aligned} & \lim _{n \rightarrow \infty} \frac{n \sqrt[5]{n}-\sqrt[3]{27 n^{6}+n^{2}}}{(n+\sqrt[4]{n}) \sqrt{9+n^{2}}}=\lim _{n \rightarrow \infty} \frac{\frac{1}{n^{2}}\left(n \sqrt[5]{n}-\sqrt[3]{27 n^{6}+n^{2}}\right)}{\frac{1}{n^{2}}(n+\sqrt[4]{n}) \sqrt{9+n^{2}}}= \\ & =\lim _{n \rightarrow \infty} \frac{\sqrt[5]{\frac{1}{n^{4}}}-\sqrt[3]{27+\frac{1}{n^{4}}}}{\left(\frac{1}{n}(n+\sqrt[4]{n})\right)\left(\frac{1}{n} \sqrt{9+n^{2}}\right)}=\lim _{n \rightarrow \infty} \frac{\sqrt[5]{\frac{1}{n^{4}}}-\sqrt[3]{27+\frac{1}{n^{4}}}}{\left(1+\sqrt[4]{\frac{1}{n^{3}}}\right) \sqrt{\frac{9}{n^{2}}+1}}= \\ & =\frac{\sqrt[5]{0}-\sqrt[3]{27+0}}{(1+\sqrt[4]{0}) \sqrt{0+1}}=\frac{-3}{1}=-3 \end{aligned} $$ ## Problem Kuznetsov Limits 4-6
-3
Calculus
math-word-problem
Yes
Yes
olympiads
false
## Problem Statement Calculate the limit of the numerical sequence: $$ \lim _{n \rightarrow \infty} \frac{1+3+5+\ldots+(2 n-1)}{1+2+3+\ldots+n} $$
## Solution $$ \begin{aligned} & \lim _{n \rightarrow \infty} \frac{1+3+5+\ldots+(2 n-1)}{1+2+3+\ldots+n}= \\ & =\lim _{n \rightarrow \infty} \frac{1}{1+2+3+\ldots+n} \cdot \frac{(1+(2 n-1)) n}{2}= \\ & =\lim _{n \rightarrow \infty} \frac{1}{1+2+3+\ldots+n} \cdot n^{2}=\lim _{n \rightarrow \infty} \frac{1}{\frac{(1+n) n}{2}} \cdot n^{2}= \\ & =\lim _{n \rightarrow \infty} \frac{2 n}{1+n}=\lim _{n \rightarrow \infty} \frac{\frac{1}{n} 2 n}{\frac{1}{n}(1+n)}=\lim _{n \rightarrow \infty} \frac{2}{\frac{1}{n}+1}= \\ & =\frac{2}{0+1}=2 \end{aligned} $$ ## Problem Kuznetsov Limits 6-6
2
Algebra
math-word-problem
Yes
Yes
olympiads
false
Condition of the problem Calculate the limit of the function: $\lim _{x \rightarrow-1} \frac{\left(x^{3}-2 x-1\right)^{2}}{x^{4}+2 x+1}$
Solution $\lim _{x \rightarrow-1} \frac{\left(x^{3}-2 x-1\right)^{2}}{x^{4}+2 x+1}=\left\{\frac{0}{0}\right\}=\lim _{x \rightarrow-1} \frac{\left(x^{2}-x-1\right)^{2}(x+1)^{2}}{\left(x^{3}-x^{2}+x+1\right)(x+1)}=$ $=\lim _{x \rightarrow-1} \frac{\left(x^{2}-x-1\right)^{2}(x+1)}{x^{3}-x^{2}+x+1}=\frac{\left((-1)^{2}-(-1)-1\right)^{2}(-1+1)}{(-1)^{3}-(-1)^{2}+(-1)+1}=$ $=\frac{(1+1-1)^{2} \cdot 0}{-1-1-1+1}=\frac{0}{-2}=0$ ## Problem Kuznetsov Limits 10-6
0
Calculus
math-word-problem
Yes
Yes
olympiads
false
## Problem Statement Calculate the limit of the function: $\lim _{x \rightarrow 0} \frac{e^{2 x}-e^{3 x}}{\operatorname{arctg} x-x^{2}}$
## Solution $\lim _{x \rightarrow 0} \frac{e^{2 x}-e^{3 x}}{\operatorname{arctg} x-x^{2}}=\lim _{x \rightarrow 0} \frac{\left(e^{2 x}-1\right)-\left(e^{3 x}-1\right)}{\operatorname{arctg} x-x^{2}}=$ $=\lim _{x \rightarrow 0} \frac{\frac{1}{x}\left(\left(e^{2 x}-1\right)-\left(e^{3 x}-1\right)\right)}{\frac{1}{x}\left(\operatorname{arctg} x-x^{2}\right)}=$ $=\frac{\lim _{x \rightarrow 0} \frac{1}{x}\left(\left(e^{2 x}-1\right)-\left(e^{3 x}-1\right)\right)}{\lim _{x \rightarrow 0} \frac{1}{x}\left(\operatorname{arctg} x-x^{2}\right)}=$ $=\left(\lim _{x \rightarrow 0} \frac{e^{2 x}-1}{x}-\lim _{x \rightarrow 0} \frac{e^{3 x}-1}{x}\right) /\left(\lim _{x \rightarrow 0} \frac{\operatorname{arctg} x}{x}-\lim _{x \rightarrow 0} \frac{x^{2}}{x}\right)=$ Using the substitution of equivalent infinitesimals: $e^{2 x}-1 \sim 2 x$, as $x \rightarrow 0(2 x \rightarrow 0)$ $e^{3 x}-1 \sim 3 x$, as $x \rightarrow 0(3 x \rightarrow 0)$ $\operatorname{arctg} x \sim x$, as $x \rightarrow 0$ We get: $$ =\frac{\lim _{x \rightarrow 0} \frac{2 x}{x}-\lim _{x \rightarrow 0} \frac{3 x}{x}}{\lim _{x \rightarrow 0} \frac{x}{x}-\lim _{x \rightarrow 0} \frac{x^{2}}{x}}=\frac{\lim _{x \rightarrow 0} 2-\lim _{x \rightarrow 0} 3}{\lim _{x \rightarrow 0} 1-\lim _{x \rightarrow 0} x}=\frac{2-3}{1-0}=-1 $$ ## Problem Kuznetsov Limits 15-6
-1
Calculus
math-word-problem
Yes
Yes
olympiads
false
## Problem Statement Calculate the limit of the function: $\lim _{x \rightarrow 0} \frac{e^{\alpha x}-e^{\beta x}}{\sin \alpha x-\sin \beta x}$
## Solution $\lim _{x \rightarrow 0} \frac{e^{\alpha x}-e^{\beta x}}{\sin \alpha x-\sin \beta x}=\lim _{x \rightarrow 0} \frac{\left(e^{\alpha x}-1\right)-\left(e^{\beta x}-1\right)}{2 \sin \frac{x(\alpha-\beta)}{2} \cos \frac{x(\alpha+\beta)}{2}}=$ $=\lim _{x \rightarrow 0} \frac{e^{\alpha x}-1}{2 \sin \frac{x(\alpha-\beta)}{2} \cos \frac{x(\alpha+\beta)}{2}}-\lim _{x \rightarrow 0} \frac{e^{\beta x}-1}{2 \sin \frac{x(\alpha-\beta)}{2} \cos \frac{x(\alpha+\beta)}{2}}=$ Using the substitution of equivalent infinitesimals: $e^{\alpha x}-1 \sim \alpha x$, as $x \rightarrow 0(\alpha x \rightarrow 0)$ $e^{\beta x}-1 \sim \beta x$, as $x \rightarrow 0(\beta x \rightarrow 0)$ $\sin \frac{x(\alpha-\beta)}{2} \sim \frac{x(\alpha-\beta)}{2}, \quad x \rightarrow 0\left(\frac{x(\alpha-\beta)}{2} \rightarrow 0\right)$ We get: $$ \begin{aligned} & =\lim _{x \rightarrow 0} \frac{\alpha x}{2 \frac{x(\alpha-\beta)}{2} \cos \frac{x(\alpha+\beta)}{2}}-\lim _{x \rightarrow 0} \frac{\beta x}{2 \frac{x(\alpha-\beta)}{2} \cos \frac{x(\alpha+\beta)}{2}}= \\ & =\lim _{x \rightarrow 0} \frac{\alpha}{(\alpha-\beta) \cos \frac{x(\alpha+\beta)}{2}}-\lim _{x \rightarrow 0} \frac{\beta}{(\alpha-\beta) \cos \frac{x(\alpha+\beta)}{2}}= \\ & =\frac{\alpha}{(\alpha-\beta) \cos \frac{0 \cdot(\alpha+\beta)}{2}}-\frac{\beta}{(\alpha-\beta) \cos \frac{0 \cdot(\alpha+\beta)}{2}}= \\ & =\frac{\alpha}{(\alpha-\beta) \cos 0}-\frac{\alpha}{(\alpha-\beta) \cos 0}=\frac{\alpha}{(\alpha-\beta) \cdot 1}-\frac{\beta}{(\alpha-\beta) \cdot 1}= \\ & =\frac{\alpha-\beta}{\alpha-\beta}=1 \end{aligned} $$ ## Problem Kuznetsov Limits 16-6
1
Calculus
math-word-problem
Yes
Yes
olympiads
false
## Problem Statement Calculate the limit of the function: $\lim _{x \rightarrow 0}\left(\frac{x^{2}+4}{x+2}\right)^{x^{2}+3}$
## Solution $\lim _{x \rightarrow 0}\left(\frac{x^{2}+4}{x+2}\right)^{x^{2}+3}=\left(\frac{0^{2}+4}{0+2}\right)^{0^{2}+3}=$ $=\left(\frac{4}{2}\right)^{3}=2^{3}=8$ ## Problem Kuznetsov Limits 18-6
8
Calculus
math-word-problem
Yes
Yes
olympiads
false
## Problem Statement Calculate the limit of the numerical sequence: $\lim _{n \rightarrow \infty} \frac{(2 n+1)^{3}-(2 n+3)^{3}}{(2 n+1)^{2}+(2 n+3)^{2}}$
## Solution $\lim _{n \rightarrow \infty} \frac{(2 n+1)^{3}-(2 n+3)^{3}}{(2 n+1)^{2}+(2 n+3)^{2}}=\lim _{n \rightarrow \infty} \frac{8 n^{3}+3 \cdot 4 n^{2}+3 \cdot 2 n+1-8 n^{3}-3 \cdot 3 \cdot 4 n^{2}-3 \cdot 3^{2} \cdot 2 n-3^{3}}{(2 n+1)^{2}+(2 n+3)^{2}}=$ $=\lim _{n \rightarrow \infty} \frac{\frac{1}{n^{2}}\left(3 \cdot 4 n^{2}(1-3)+3 \cdot 2 n\left(1-3^{2}\right)+\left(1-3^{3}\right)\right)}{\frac{1}{n^{2}}\left((2 n+1)^{2}+(2 n+3)^{2}\right)}=\lim _{n \rightarrow \infty} \frac{-24-\frac{48}{n}-\frac{26}{n^{2}}}{\left(2+\frac{1}{n}\right)^{2}+\left(2+\frac{3}{n}\right)^{2}}=$ $=\frac{-24-0-0}{2^{2}+2^{2}}=-\frac{24}{8}=-3$ ## Problem Kuznetsov Limits 3-21
-3
Algebra
math-word-problem
Yes
Yes
olympiads
false
## Problem Statement Calculate the limit of the numerical sequence: $\lim _{n \rightarrow \infty} \frac{n \sqrt[4]{11 n}+\sqrt{25 n^{4}-81}}{(n-7 \sqrt{n}) \sqrt{n^{2}-n+1}}$
## Solution $$ \begin{aligned} & \lim _{n \rightarrow \infty} \frac{n \sqrt[4]{11 n}+\sqrt{25 n^{4}-81}}{(n-7 \sqrt{n}) \sqrt{n^{2}-n+1}}=\lim _{n \rightarrow \infty} \frac{\frac{1}{n^{2}}\left(n \sqrt[4]{11 n}+\sqrt{25 n^{4}-81}\right)}{\frac{1}{n^{2}}(n-7 \sqrt{n}) \sqrt{n^{2}-n+1}}= \\ & =\lim _{n \rightarrow \infty} \frac{\sqrt[4]{\frac{11}{n^{3}}}+\sqrt{25-\frac{81}{n^{4}}}}{\left(\frac{1}{n}(n-7 \sqrt{n})\right)\left(\frac{1}{n} \sqrt{n^{2}-n+1}\right)}=\lim _{n \rightarrow \infty} \frac{\sqrt[4]{\frac{11}{n^{3}}}+\sqrt{25-\frac{81}{n^{4}}}}{\left(1-7 \sqrt{\frac{1}{n}}\right) \sqrt{1-\frac{1}{n}+\frac{1}{n^{2}}}}= \\ & =\frac{\sqrt[4]{0}+\sqrt{25-0}}{(1-7 \sqrt{0}) \sqrt{1-0+0}}=\frac{5}{1}=5 \end{aligned} $$ ## Problem Kuznetsov Limits 4-21
5
Calculus
math-word-problem
Yes
Yes
olympiads
false
## Problem Statement Calculate the limit of the numerical sequence: $$ \lim _{n \rightarrow \infty}\left(\sqrt{\left(n^{2}+1\right)\left(n^{2}+2\right)}-\sqrt{\left(n^{2}-1\right)\left(n^{2}-2\right)}\right) $$
## Solution $$ \begin{aligned} & \lim _{n \rightarrow \infty}\left(\sqrt{\left(n^{2}+1\right)\left(n^{2}+2\right)}-\sqrt{\left(n^{2}-1\right)\left(n^{2}-2\right)}\right)= \\ & =\lim _{n \rightarrow \infty} \frac{\left(\sqrt{\left(n^{2}+1\right)\left(n^{2}+2\right)}-\sqrt{\left(n^{2}-1\right)\left(n^{2}-2\right)}\right)\left(\sqrt{\left(n^{2}+1\right)\left(n^{2}+2\right)}+\sqrt{\left(n^{2}-1\right)\left(n^{2}-2\right)}\right)}{\sqrt{\left(n^{2}+1\right)\left(n^{2}+2\right)}+\sqrt{\left(n^{2}-1\right)\left(n^{2}-2\right)}}= \\ & =\lim _{n \rightarrow \infty} \frac{\left(n^{2}+1\right)\left(n^{2}+2\right)-\left(n^{2}-1\right)\left(n^{2}-2\right)}{\sqrt{\left(n^{2}+1\right)\left(n^{2}+2\right)}+\sqrt{\left(n^{2}-1\right)\left(n^{2}-2\right)}}= \\ & =\lim _{n \rightarrow \infty} \frac{n^{4}+n^{2}+2 n^{2}+2-n^{4}+n^{2}+2 n^{2}-2}{\sqrt{\left(n^{2}+1\right)\left(n^{2}+2\right)}+\sqrt{\left(n^{2}-1\right)\left(n^{2}-2\right)}}= \\ & =\lim _{n \rightarrow \infty} \frac{6 n^{2}}{\sqrt{\left(n^{2}+1\right)\left(n^{2}+2\right)}+\sqrt{\left(n^{2}-1\right)\left(n^{2}-2\right)}}= \\ & =\lim _{n \rightarrow \infty} \frac{\frac{1}{n^{2}} 6 n^{2}}{\frac{1}{n^{2}}\left(\sqrt{\left(n^{2}+1\right)\left(n^{2}+2\right)}+\sqrt{\left(n^{2}-1\right)\left(n^{2}-2\right)}\right)}= \\ & =\lim _{n \rightarrow \infty} \frac{6}{\sqrt{\left(1+\frac{1}{n^{2}}\right)\left(1+\frac{2}{n^{2}}\right)}+\sqrt{\left(1-\frac{1}{n^{2}}\right)\left(1-\frac{2}{n^{2}}\right)}}= \\ & =\frac{6}{\sqrt{(1+0)(1+0)}+\sqrt{(1-0)(1-0)}}=\frac{6}{2}=3 \end{aligned} $$ ## Problem Kuznetsov Limits 5-21
3
Calculus
math-word-problem
Yes
Yes
olympiads
false
## Problem Statement Calculate the limit of the numerical sequence: $\lim _{n \rightarrow \infty}\left(\frac{3 n^{2}-5 n}{3 n^{2}-5 n+7}\right)^{n+1}$
## Solution $\lim _{n \rightarrow \infty}\left(\frac{3 n^{2}-5 n}{3 n^{2}-5 n+7}\right)^{n+1}=\lim _{n \rightarrow \infty}\left(\frac{3 n^{2}-5 n+7}{3 n^{2}-5 n}\right)^{-n-1}=$ $=\lim _{n \rightarrow \infty}\left(1+\frac{7}{3 n^{2}-5 n}\right)^{-n-1}=\lim _{n \rightarrow \infty}\left(1+\frac{1}{\left(\frac{3 n^{2}-5 n}{7}\right)}\right)^{-n-1}=$ $=\lim _{n \rightarrow \infty}\left(1+\frac{1}{\left(\frac{3 n^{2}-5 n}{7}\right)}\right)^{\left(\frac{3 n^{2}-5 n}{7}\right)\left(\frac{7}{3 n^{2}-5 n}\right)(-n-1)}=$ ![](https://cdn.mathpix.com/cropped/2024_05_22_ae19746d5d2a92572015g-04.jpg?height=263&width=1223&top_left_y=1148&top_left_x=166) $=\{$ Using the second remarkable limit $\}=$ $=e^{\lim _{n \rightarrow \infty}\left(\frac{7}{3 n^{2}-5 n}\right)(-n-1)}=e^{\lim _{n \rightarrow \infty} \frac{7(-n-1)}{3 n^{2}-5 n}}=$ $=e^{\lim _{n \rightarrow \infty} \frac{\frac{1}{n^{2}} 7(-n-1)}{n^{2}\left(3 n^{2}-5 n\right)}}=e^{\lim _{n \rightarrow \infty} \frac{7\left(-\frac{1}{n}-\frac{1}{n^{2}}\right)}{3-\frac{5}{n^{2}}}}=e^{\frac{7(-0-0)}{3-0}}=e^{0}=1$ ## Problem Kuznetsov Limits 7-21
1
Calculus
math-word-problem
Yes
Yes
olympiads
false
Condition of the problem Calculate the limit of the function: $$ \lim _{x \rightarrow-1} \frac{x^{3}-3 x-2}{x^{2}+2 x+1} $$
## Solution $$ \begin{aligned} & \lim _{x \rightarrow-1} \frac{x^{3}-3 x-2}{x^{2}+2 x+1}=\left\{\frac{0}{0}\right\}=\lim _{x \rightarrow-1} \frac{(x+1)\left(x^{2}-x-2\right)}{(x+1)^{2}}= \\ & =\lim _{x \rightarrow-1} \frac{x^{2}-x-2}{x+1}=\left\{\frac{0}{0}\right\}=\lim _{x \rightarrow-1} \frac{(x+1)(x-2)}{x+1}= \\ & =\lim _{x \rightarrow-1}(x-2)=-1-2=-3 \end{aligned} $$ ## Problem Kuznetsov Limits 10-21
-3
Calculus
math-word-problem
Yes
Yes
olympiads
false
## Problem Statement Calculate the limit of the function: $\lim _{h \rightarrow 0} \frac{a^{x+h}+a^{x-h}-2 a^{x}}{h}$
Solution $\lim _{h \rightarrow 0} \frac{a^{x+h}+a^{x-h}-2 a^{x}}{h}=\lim _{h \rightarrow 0} \frac{a^{x+h}-a^{x}+a^{x-h}-a^{x}}{h}=$ $=\lim _{h \rightarrow 0} \frac{a^{x+h}-a^{x}}{h}+\lim _{h \rightarrow 0} \frac{a^{x-h}-a^{x}}{h}=$ $=\lim _{h \rightarrow 0} \frac{a^{x}\left(a^{h}-1\right)}{h}+\lim _{h \rightarrow 0} \frac{a^{x}\left(a^{-h}-1\right)}{h}=$ $=\lim _{h \rightarrow 0} \frac{a^{x}\left(\left(e^{\ln a}\right)^{h}-1\right)}{h}+\lim _{h \rightarrow 0} \frac{a^{x}\left(\left(e^{\ln a}\right)^{-h}-1\right)}{h}=$ $=\lim _{h \rightarrow 0} \frac{a^{x}\left(e^{h \ln a}-1\right)}{h}+\lim _{h \rightarrow 0} \frac{a^{x}\left(e^{-h \ln a}-1\right)}{h}=$ Using the substitution of equivalent infinitesimals: $e^{h \ln a}-1 \sim h \ln a$, as $h \rightarrow 0(h \ln a \rightarrow 0)$ $e^{-h \ln a}-1 \sim -h \ln a$, as $h \rightarrow 0(-h \ln a \rightarrow 0)$ We get: $=\lim _{h \rightarrow 0} \frac{a^{x} \cdot h \ln a}{h}+\lim _{h \rightarrow 0} \frac{a^{x} \cdot(-h) \ln a}{h}=$ $=\lim _{h \rightarrow 0} a^{x} \ln a+\lim _{h \rightarrow 0}-a^{x} \ln a=a^{x} \ln a-a^{x} \ln a=0$ ## Problem Kuznetsov Limits 16-21
0
Calculus
math-word-problem
Yes
Yes
olympiads
false
## Problem Statement Calculate the limit of the function: $\lim _{x \rightarrow 0}\left(\frac{\ln \left(1+x^{2}\right)}{x^{2}}\right)^{\frac{3}{x+8}}$
## Solution $\lim _{x \rightarrow 0}\left(\frac{\ln \left(1+x^{2}\right)}{x^{2}}\right)^{\frac{3}{x+8}}=\left(\lim _{x \rightarrow 0} \frac{\ln \left(1+x^{2}\right)}{x^{2}}\right)^{\lim _{x \rightarrow 0} \frac{3}{x+8}}=$ $=\left(\lim _{x \rightarrow 0} \frac{\ln \left(1+x^{2}\right)}{x^{2}}\right)^{\frac{3}{0+8}}=\left(\lim _{x \rightarrow 0} \frac{\ln \left(1+x^{2}\right)}{x^{2}}\right)^{\frac{3}{8}}=$ Using the substitution of equivalent infinitesimals: $\ln \left(1+x^{2}\right) \sim x^{2}$, as $x \rightarrow 0\left(x^{2} \rightarrow 0\right)$ We get: $=\left(\lim _{x \rightarrow 0} \frac{x^{2}}{x^{2}}\right)^{\frac{3}{8}}=\left(\lim _{x \rightarrow 0} 1\right)^{\frac{3}{8}}=1^{\frac{3}{8}}=1$ ## Problem Kuznetsov Limits 18-21
1
Calculus
math-word-problem
Yes
Yes
olympiads
false
## Problem Statement Calculate the limit of the function: $$ \lim _{x \rightarrow 1}\left(\ln ^{2} e x\right)^{\frac{1}{x^{2}+1}} $$
## Solution $$ \lim _{x \rightarrow 1}\left(\ln ^{2} e x\right)^{\frac{1}{x^{2}+1}}=\left(\ln ^{2}(e \cdot 1)\right)^{\frac{1}{1^{2}+1}}=\left(1^{2}\right)^{\frac{1}{2}}=1 $$ ## Problem Kuznetsov Limits 20-21
1
Calculus
math-word-problem
Yes
Yes
olympiads
false
## Task Condition Calculate the area of the parallelogram constructed on vectors $a$ and $b$. $a=10 p+q$ $b=3 p-2 q$ $|p|=4$ $|q|=1$ $(\widehat{p, q})=\frac{\pi}{6}$
## Solution The area of the parallelogram constructed on vectors $a$ and $b$ is numerically equal to the modulus of their vector product: $S=|a \times b|$ We compute $a \times b$ using the properties of the vector product: $a \times b=(10 p+q) \times(3 p-2 q)=10 \cdot 3 \cdot p \times p+10 \cdot(-2) \cdot p \times q+3 \cdot q \times p-2 q \times q=$ $=-20 \cdot p \times q+3 \cdot q \times p=-20 \cdot p \times q-3 \cdot p \times q=(-20-3) \cdot p \times q=-23 \cdot p \times q$ We compute the area: $$ \begin{aligned} & S=|a \times b|=|-23 \cdot p \times q|=23 \cdot|p \times q|=23 \cdot|p| \cdot|q| \cdot \sin (\widehat{p, q})= \\ & =23 \cdot 4 \cdot 1 \cdot \sin \frac{\pi}{6}=92 \cdot \sin \frac{\pi}{6}=92 \cdot \frac{1}{2}=46 \end{aligned} $$ Thus, the area of the parallelogram constructed on vectors $a$ and $b$ is 46. ## Problem Kuznetsov Analytical Geometry 5-20
46
Algebra
math-word-problem
Yes
Yes
olympiads
false
## problem statement Based on the definition of the derivative, find $f^{\prime}(0)$ : $$ f(x)=\left\{\begin{array}{c} \sqrt[3]{1-2 x^{3} \sin \frac{5}{x}}-1+x, x \neq 0 \\ 0, x=0 \end{array}\right. $$
## Solution By definition, the derivative at the point $x=0$: $$ f^{\prime}(0)=\lim _{\Delta x \rightarrow 0} \frac{f(0+\Delta x)-f(0)}{\Delta x} $$ Based on the definition, we find: $$ \begin{aligned} & f^{\prime}(0)=\lim _{\Delta x \rightarrow 0} \frac{f(0+\Delta x)-f(0)}{\Delta x}=\lim _{\Delta x \rightarrow 0} \frac{\sqrt[3]{1-2 \Delta x^{3} \sin \frac{5}{\Delta x}}-1+\Delta x-0}{\Delta x}= \\ & =\lim _{\Delta x \rightarrow 0} \frac{\sqrt[3]{1-2 \Delta x^{3} \sin \frac{5}{\Delta x}}-1}{\Delta x}+\lim _{\Delta x \rightarrow 0} \frac{\Delta x}{\Delta x}= \\ & =\lim _{\Delta x \rightarrow 0} \frac{\left(\sqrt[3]{1-2 \Delta x^{3} \sin \frac{5}{\Delta x}}-1\right)\left(\sqrt[3]{\left(1-2 \Delta x^{3} \sin \frac{5}{\Delta x}\right)^{2}}+\sqrt[3]{1-2 \Delta x^{3} \sin \frac{5}{\Delta x}}+1\right)}{\Delta x\left(\sqrt[3]{\left(1-2 \Delta x^{3} \sin \frac{5}{\Delta x}\right)^{2}}+\sqrt[3]{1-2 \Delta x^{3} \sin \frac{5}{\Delta x}}+1\right)}+\lim _{\Delta x \rightarrow 0} 1= \\ & =\lim _{\Delta x \rightarrow 0} \frac{1-2 \Delta x^{3} \sin \frac{5}{\Delta x}-1}{\Delta x\left(\sqrt[3]{\left(1-2 \Delta x^{3} \sin \frac{5}{\Delta x}\right)^{2}}+\sqrt[3]{1-2 \Delta x^{3} \sin \frac{5}{\Delta x}}+1\right)}+1= \\ & =\lim _{\Delta x \rightarrow 0} \frac{-2 \Delta x^{3} \sin \frac{5}{\Delta x}}{\Delta x\left(\sqrt[3]{\left(1-2 \Delta x^{3} \sin \frac{5}{\Delta x}\right)^{2}}+\sqrt[3]{1-2 \Delta x^{3} \sin \frac{5}{\Delta x}}+1\right)}+1= \\ & =\lim _{\Delta x \rightarrow 0} \frac{-2 \Delta x^{2} \sin \frac{5}{\Delta x}}{\sqrt[3]{\left(1-2 \Delta x^{3} \sin \frac{5}{\Delta x}\right)^{2}}+\sqrt[3]{1-2 \Delta x^{3} \sin \frac{5}{\Delta x}}+1}+1= \\ & \text { Since } \sin \frac{5}{\Delta x} \text { is bounded, then } \end{aligned} $$ $\Delta x \cdot \sin \frac{5}{\Delta x} \rightarrow 0$, as $\Delta x \rightarrow 0$ Then: $=\frac{-2 \cdot 0}{\sqrt[3]{(1-2 \cdot 0)^{2}}+\sqrt[3]{1-2 \cdot 0}+1}+1=\frac{0}{\sqrt[3]{1}+\sqrt[3]{1}+1}+1=1$ Therefore, $f^{\prime}(0)=1$ ## Problem Kuznetsov Differentiation $2-27$
1
Calculus
math-word-problem
Yes
Yes
olympiads
false
## Task Condition Calculate the area of the parallelogram constructed on vectors $a$ and $b$. $a=7 p-2 q$ $b=p+3 q$ $|p|=\frac{1}{2}$ $|q|=2$ $(\widehat{p, q})=\frac{\pi}{2}$
## Solution The area of the parallelogram constructed on vectors $a$ and $b$ is numerically equal to the modulus of their vector product: $S=|a \times b|$ We compute $a \times b$ using the properties of the vector product: $a \times b=(7 p-2 q) \times(p+3 q)=7 \cdot p \times p+7 \cdot 3 \cdot p \times q-2 \cdot q \times p-2 \cdot 3 \cdot q \times q=$ $=21 \cdot p \times q-2 \cdot q \times p=21 \cdot p \times q+2 \cdot p \times q=(21+2) \cdot p \times q=23 \cdot p \times q$ We compute the area: $$ \begin{aligned} & S=|a \times b|=|23 \cdot p \times q|=23 \cdot|p \times q|=23 \cdot|p| \cdot|q| \cdot \sin (\widehat{p, q})= \\ & =23 \cdot \frac{1}{2} \cdot 2 \cdot \sin \frac{\pi}{2}=23 \cdot \sin \frac{\pi}{2}=23 \cdot 1=23 \end{aligned} $$ Thus, the area of the parallelogram constructed on vectors $a$ and $b$ is 23. ## Problem Kuznetsov Analytical Geometry 5-18
23
Algebra
math-word-problem
Yes
Yes
olympiads
false
## Problem Statement Find the distance from point $M_{0}$ to the plane passing through three points $M_{1}, M_{2}, M_{3}$. $M_{1}(7 ; 2 ; 4)$ $M_{2}(7 ;-1 ;-2)$ $M_{3}(-5 ;-2 ;-1)$ $M_{0}(10 ; 1 ; 8)$
## Solution Find the equation of the plane passing through three points $M_{1}, M_{2}, M_{3}$: $$ \left|\begin{array}{ccc} x-7 & y-2 & z-4 \\ 7-7 & -1-2 & -2-4 \\ -5-7 & -2-2 & -1-4 \end{array}\right|=0 $$ Perform transformations: $$ \begin{aligned} & \left|\begin{array}{ccc} x-7 & y-2 & z-4 \\ 0 & -3 & -6 \\ -12 & -4 & -5 \end{array}\right|=0 \\ & (x-7) \cdot\left|\begin{array}{ll} -3 & -6 \\ -4 & -5 \end{array}\right|-(y-2) \cdot\left|\begin{array}{cc} 0 & -6 \\ -12 & -5 \end{array}\right|+(z-4) \cdot\left|\begin{array}{cc} 0 & -3 \\ -12 & -4 \end{array}\right|=0 \\ & (x-7) \cdot(-9)-(y-2) \cdot(-72)+(z-4) \cdot(-36)=0 \\ & -9 x+63+72 y-144-36 z+144=0 \\ & -9 x+72 y-36 z+63=0 \\ & -x+8 y-4 z+7=0 \end{aligned} $$ The distance $d$ from a point $M_{0}\left(x_{0} ; y_{0} ; z_{0}\right)$ to the plane $A x+B y+C z+D=0$: $d=\frac{\left|A x_{0}+B y_{0}+C z_{0}+D\right|}{\sqrt{A^{2}+B^{2}+C^{2}}}$ Find: $$ d=\frac{|-10+8 \cdot 1-4 \cdot 8+7|}{\sqrt{(-1)^{2}+8^{2}+(-4)^{2}}}=\frac{|-10+8-32+7|}{\sqrt{1+64+16}}=\frac{27}{\sqrt{81}}=3 $$ ## Problem Kuznetsov Analytic Geometry 8-18
3
Geometry
math-word-problem
Yes
Yes
olympiads
false
## Problem Statement Let $k$ be the coefficient of similarity transformation with the center at the origin. Is it true that point $A$ belongs to the image of plane $a$? $A\left(\frac{1}{3} ; 1 ; 1\right)$ $a: 3 x-y+5 z-6=0$ $k=\frac{5}{6}$
## Solution When transforming similarity with the center at the origin of the plane $a: A x+B y+C z+D=0_{\text{and coefficient }} k$ transitions to the plane $a^{\prime}: A x+B y+C z+k \cdot D=0$. We find the image of the plane $a$: $a^{\prime}: 3 x-y+5 z-5=0$ Substitute the coordinates of point $A$ into the equation $a^{\prime}$: $3 \cdot \frac{1}{3}-1+5 \cdot 1-5=0$ $1-1+5-5=0$ $0=0$ Since $0=0$, point $A$ belongs to the image of the plane $a$. Problem Kuznetsov Analytical Geometry 12-18
0
Geometry
math-word-problem
Yes
Yes
olympiads
false
## Problem Statement Based on the definition of the derivative, find $f^{\prime}(x)$: $f(x)=\left\{\begin{array}{c}\sin \left(e^{x^{2} \sin \frac{5}{x}}-1\right)+x, x \neq 0 \\ 0, x=0\end{array}\right.$
## Solution By definition, the derivative at the point $x=0$: $$ f^{\prime}(0)=\lim _{\Delta x \rightarrow 0} \frac{f(0+\Delta x)-f(0)}{\Delta x} $$ Based on the definition, we find: $$ \begin{aligned} & f^{\prime}(0)=\lim _{\Delta x \rightarrow 0} \frac{f(0+\Delta x)-f(0)}{\Delta x}=\lim _{\Delta x \rightarrow 0}\left(\sin \left(e^{\Delta x^{2} \sin \frac{s}{\Delta x}}-1\right)+\Delta x-0\right) / \Delta x= \\ & =\lim _{\Delta x \rightarrow 0}\left(\sin \left(e^{\Delta x^{2} \sin \frac{5}{\Delta x}}-1\right)\right) / \Delta x+\lim _{\Delta x \rightarrow 0} \frac{\Delta x}{\Delta x}= \end{aligned} $$ Using the substitution of equivalent infinitesimals: $$ e^{\Delta x^{2} \sin \frac{5}{\Delta x}}-1 \sim \Delta x^{2} \sin \frac{5}{\Delta x}, \text { as } \Delta x \rightarrow 0\left(\Delta x^{2} \sin \frac{5}{\Delta x} \rightarrow 0\right) $$ We get: $$ =\lim _{\Delta x \rightarrow 0}\left(\sin \left(\Delta x^{2} \sin \frac{5}{\Delta x}\right)\right) / \Delta x+\lim _{\Delta x \rightarrow 0} 1= $$ Using the substitution of equivalent infinitesimals: ![](https://cdn.mathpix.com/cropped/2024_05_22_6e5525776c432bba8201g-01.jpg?height=148&width=1451&top_left_y=2162&top_left_x=158) We get: $=\lim _{\Delta x \rightarrow 0} \frac{\Delta x^{2} \sin \frac{5}{\Delta x}}{\Delta x}+1=\lim _{\Delta x \rightarrow 0} \Delta x \sin \frac{5}{\Delta x}+1=$ Since $\sin \left(\frac{5}{\Delta x}\right)$ is bounded, $\Delta x \cdot \sin \left(\frac{5}{\Delta x}\right) \rightarrow 0 \quad$, as $\Delta x \rightarrow 0$ Then: $=0+1=1$ Thus, $f^{\prime}(0)=1$ ## Problem Kuznetsov Differentiation $2-7$
1
Calculus
math-word-problem
Yes
Yes
olympiads
false
## Problem Statement Calculate the volumes of the bodies bounded by the surfaces. $$ \frac{x^{2}}{9}+y^{2}=1, z=y, z=0(y \geq 0) $$
## Solution The base of the considered area is a semi-ellipse, in which $$ \begin{aligned} & x=0 \text { when } y=1 \\ & y=0 \text { when } x=3 \end{aligned} $$ That is, $x \in[-3,3], y \in[0,1]$ Consider the surface $z=y:$ ![](https://cdn.mathpix.com/cropped/2024_05_22_348f4289c7b5f46bc246g-01.jpg?height=854&width=985&top_left_y=1012&top_left_x=932) $$ V_{z}=\int_{0}^{1} z d y=\int_{0}^{1} y d y=\left.\frac{y^{2}}{2}\right|_{0} ^{1}=\frac{1}{2} $$ Now consider the area of the base and find the volume of the given body: $$ \begin{aligned} & \frac{x^{2}}{9}+y^{2}=1 \\ & y^{2}=1-\frac{x^{2}}{9} \\ & V=\frac{1}{2} \int_{-3}^{3}\left(1-\frac{x^{2}}{9}\right) d x=\left.\frac{1}{2}\left(x-\frac{x^{3}}{9 \cdot 3}\right)\right|_{-3} ^{3} d x=\frac{1}{2}\left(3-\frac{3^{3}}{27}\right)-\frac{1}{2}\left(-3-\frac{-3^{3}}{27}\right) \\ & =\frac{1}{2}(3-1)-\frac{1}{2}(-3+1)=1+1=2 \end{aligned} $$ Answer: $V=2$ Source — «http://pluspi.org/wiki/index.php/\�\�\�\�\�\�\�\�\�\�\�\� \%D0\%9A\%D1\%83\%D0\%B7\%D0\%BD\%D0\%B5\%D1\%86\%D0\%BE\%D0\%B2_\%D0\%98\%D0\%BD $\% \mathrm{D} 1 \% 82 \% \mathrm{D} 0 \% \mathrm{~B} 5 \% \mathrm{D} 0 \% \mathrm{~B} 3 \% \mathrm{D} 1 \% 80 \% \mathrm{D} 0 \% \mathrm{~B} 0 \% \mathrm{D} 0 \% \mathrm{BB} \% \mathrm{D} 1 \% 8 \mathrm{~B} \_20-1$ » Categories: Kuznetsov's Problem Book Integrals Problem 20 | Integrals | Problems for Checking Ukrainian Banner Network - Last modified on this page: 08:06, 24 June 2010. - Content is available under CC-BY-SA 3.0.
2
Calculus
math-word-problem
Yes
Yes
olympiads
false
## Problem Statement Calculate the volumes of the bodies bounded by the surfaces. $$ \frac{x^{2}}{3}+\frac{y^{2}}{4}=1, z=y \sqrt{3}, z=0(y \geq 0) $$
## Solution The base of the considered area is a semi-ellipse, in which $$ \begin{aligned} & x=0 \text { when } y=2 \\ & y=0 \text { when } x=\sqrt{3} \end{aligned} $$ That is, $x \in[-\sqrt{3}, \sqrt{3}], y \in[0,2]$ Consider the surface $z=y \sqrt{3}$: ![](https://cdn.mathpix.com/cropped/2024_05_22_348f4289c7b5f46bc246g-19.jpg?height=856&width=985&top_left_y=1011&top_left_x=935) $$ V_{z}=\int_{0}^{2} z d y=\int_{0}^{2} y \sqrt{3} d y=\left.\sqrt{3} \cdot \frac{y^{2}}{2}\right|_{0} ^{2}=2 \sqrt{3} $$ Now consider the area of the base and find the volume of the given body: $$ \begin{aligned} & \frac{x^{2}}{3}+\frac{y^{2}}{4}=1 \\ & y^{2}=4\left(1-\frac{x^{2}}{3}\right) \\ & V=2 \sqrt{3} \int_{-\sqrt{3}}^{\sqrt{3}} 4\left(1-\frac{x^{2}}{3}\right) d x=\left.8 \sqrt{3}\left(x-\frac{x^{3}}{3 \cdot 3}\right)\right|_{-\sqrt{3}} ^{\sqrt{3}} d x= \end{aligned} $$ $$ \begin{aligned} & =8 \sqrt{3}\left(\sqrt{3}-\frac{\sqrt{3}^{3}}{9}\right)-8 \sqrt{3}\left(-\sqrt{3}-\frac{-\sqrt{3}^{3}}{9}\right)= \\ & =8\left(3-\frac{3}{3}\right)+8\left(3-\frac{3}{3}\right)=16+16=32 \end{aligned} $$ Answer: $V=32$ Source — «http://pluspi.org/wiki/index.php/\�\�\�\�\�\�\�\�\�\�\�\� \%D0\%9A\%D1\%83\%D0\%B7\%D0\%BD\%D0\%B5\%D1\%86\%D0\%BE\%D0\%B2_\%D0\%98\%D0\%BD $\% \mathrm{D} 1 \% 82 \% \mathrm{D} 0 \% \mathrm{~B} \% \mathrm{D} 0 \% \mathrm{~B} 3 \% \mathrm{D} 1 \% 80 \% \mathrm{D} 0 \% \mathrm{~B} 0 \% \mathrm{D} 0 \% \mathrm{BB} \% \mathrm{D} 1 \% 8 \mathrm{~B}+20-11$ » Categories: Kuznetsov's Problem Book Integrals Problem 20 | Integrals | Problems for Checking - Last modified: 08:29, 24 June 2010. - Content is available under CC-BY-SA 3.0.
32
Calculus
math-word-problem
Yes
Yes
olympiads
false
## Problem Statement Calculate the volumes of the bodies bounded by the surfaces. $$ \frac{x^{2}}{3}+\frac{y^{2}}{16}=1, z=y \sqrt{3}, z=0(y \geq 0) $$
## Solution The base of the considered area is a semi-ellipse, in which $$ \begin{aligned} & x=0 \text { when } y=4 \\ & y=0 \text { when } x=\sqrt{3} \end{aligned} $$ That is, $x$ belongs to the interval $[-\sqrt{3}, \sqrt{3}]$, and $y \in [0,4]$ Consider the surface $z=y \sqrt{3}$: $$ V_{z}=\int_{0}^{4} z d y=\int_{0}^{4} y \sqrt{3} d y=\sqrt{3} \int_{0}^{4} y d y=\left.\sqrt{3} \cdot \frac{y^{2}}{2}\right|_{0} ^{4}=\sqrt{3} \cdot \frac{16}{2}=8 \sqrt{3} $$ Now consider the area of the base and find the volume of the given body: $$ \begin{aligned} & \frac{x^{2}}{3}+\frac{y^{2}}{16}=1 \\ & \frac{y^{2}}{16}=1-\frac{x^{2}}{3} \\ & V=8 \sqrt{3} \int_{-\sqrt{3}}^{\sqrt{3}}\left(1-\frac{x^{2}}{3}\right) d x=\left.8 \sqrt{3}\left(x-\frac{x^{3}}{9}\right)\right|_{-\sqrt{3}} ^{\sqrt{3}} d x=16 \sqrt{3}\left(\sqrt{3}-\frac{\sqrt{3}^{2}}{9}\right)=32 \end{aligned} $$ Answer: $V=32$ Source — «http://pluspi.org/wiki/index.php/\�\�\�\�\�\�\�\�\�\�\�\� \%D0\%9A\%D1\%83\%D0\%B7\%D0\%BD\%D0\%B5\%D1\%86\%D0\%BE\%D0\%B2_\%D0\%98\%D0\%BD $\% \mathrm{D} 1 \% 82 \% \mathrm{D} 0 \% \mathrm{~B} 5 \% \mathrm{D} 0 \% \mathrm{~B} 3 \% \mathrm{D} 1 \% 80 \% \mathrm{D} 0 \% \mathrm{~B} 0 \% \mathrm{D} 0 \% \mathrm{BB} \% \mathrm{D} 1 \% 8 \mathrm{~B}+20-16 \%$ Categories: Kuznetsov's Problem Book Integrals Problem $20 \mid$ Integrals Kuznetsov Integrals 20-16 — PlusPi Created by GeeTeatoo Creste View $\qquad$ 2 ## Problem Kuznetsov Integrals 20-17 ## Material from Plusi
32
Calculus
math-word-problem
Yes
Yes
olympiads
false
## Problem Statement Calculate the volumes of the bodies bounded by the surfaces. $$ \frac{x^{2}}{27}+\frac{y^{2}}{25}=1, z=\frac{y}{\sqrt{3}}, z=0(y \geq 0) $$
## Solution The base of the considered area is a semi-ellipse, in which $$ \begin{aligned} & x=0 \text { when } y=5 \\ & y=0 \text { when } x=\sqrt{27}=3 \sqrt{3} \end{aligned} $$ That is, $x \in[-3 \sqrt{3}, 3 \sqrt{3}], y \in[0,5]$ Consider the surface $z=\frac{y}{\sqrt{3}}:$ ![](https://cdn.mathpix.com/cropped/2024_05_22_348f4289c7b5f46bc246g-36.jpg?height=859&width=985&top_left_y=1021&top_left_x=935) $$ V_{z}=\int_{0}^{5} z d y=\int_{0}^{5} \frac{y}{\sqrt{3}} d y=\left.\frac{1}{\sqrt{3}} \cdot \frac{y^{2}}{2}\right|_{0} ^{5}=\frac{25}{2 \sqrt{3}} $$ Now consider the area of the base and find the volume of the given body: $$ \begin{aligned} & \frac{x^{2}}{27}+\frac{y^{2}}{25}=1 \\ & y^{2}=25\left(1-\frac{x^{2}}{27}\right) \\ & V=\frac{25}{2 \sqrt{3}} \int_{-3 \sqrt{3}}^{3 \sqrt{3}} 25\left(1-\frac{x^{2}}{27}\right) d x=\left.\frac{625}{2 \sqrt{3}}\left(x-\frac{x^{3}}{3 \cdot 27}\right)\right|_{-3 \sqrt{3}} ^{3 \sqrt{3}} d x= \end{aligned} $$ $$ \begin{aligned} & =\frac{625}{2 \sqrt{3}}\left(3 \sqrt{3}-\frac{(3 \sqrt{3})^{3}}{81}\right)-\frac{625}{2 \sqrt{3}}\left(-3 \sqrt{3}-\frac{(-3 \sqrt{3})^{3}}{81}\right)= \\ & =\frac{625}{2 \sqrt{3}}\left(3 \sqrt{3}-\frac{81 \sqrt{3}}{81}\right)+\frac{625}{2 \sqrt{3}}\left(3 \sqrt{3}-\frac{81 \sqrt{3}}{81}\right)= \\ & =\frac{625}{2 \sqrt{3}} \sqrt{3}(3-1)+\frac{625}{2 \sqrt{3}} \sqrt{3}(3-1)=625+625=1250 \end{aligned} $$ Answer: $V=1250$ Source — «http://pluspi.org/wiki/index.php/\�\�\�\�\�\�\�\�\�\�\�\� \%D0\%9A\%D1\%83\%D0\%B7\%D0\%BD\%D0\%B5\%D1\%86\%D0\%BE\%D0\%B2_\%D0\%98\%D0\%BD $\% \mathrm{D} 1 \% 82 \% \mathrm{D} 0 \% \mathrm{~B} 5 \% \mathrm{D} 0 \% \mathrm{~B} 3 \% \mathrm{D} 1 \% 80 \% \mathrm{D} 0 \% \mathrm{~B} 0 \% \mathrm{D} 0 \% \mathrm{BB} \% \mathrm{D} 1 \% 8 \mathrm{~B}+20-21$ » Categories: Kuznetsov's Problem Book Integrals Problem 20 | Integrals | Problems for Checking Ukrainian Banner Network - Last modified: 09:08, 24 June 2010. - Content is available under CC-BY-SA 3.0.
1250
Calculus
math-word-problem
Yes
Yes
olympiads
false
## Problem Statement Calculate the volumes of the bodies bounded by the surfaces. $$ \frac{x^{2}}{27}+y^{2}=1, z=\frac{y}{\sqrt{3}}, z=0(y \geq 0) $$
## Solution The base of the considered area is a semi-ellipse, in which $$ \begin{aligned} & x=0 \text { when } y=1 \\ & y=0 \text { when } x=3 \sqrt{3} \end{aligned} $$ That is, $x \in[-3 \sqrt{3}, 3 \sqrt{3}], y \in[0,1]$ Therefore, the volume will be ![](https://cdn.mathpix.com/cropped/2024_05_22_348f4289c7b5f46bc246g-44.jpg?height=859&width=985&top_left_y=1018&top_left_x=932) $$ V=\int_{-3 \sqrt{3}}^{3 \sqrt{3}} d x \int_{0}^{\sqrt{1-x^{2} / 27}} d y \int_{0}^{y / \sqrt{3}} d z $$ Consider the surface $z=\frac{y}{\sqrt{3}}:$ $$ V_{z}=\int_{0}^{\sqrt{1-x^{2} / 27}} z d y=\int_{0}^{\sqrt{1-x^{2} / 27}} \frac{y}{\sqrt{3}} d y=\left.\frac{y^{2}}{2 \sqrt{3}}\right|_{0} ^{\sqrt{1-x^{2} / 27}}=\frac{1}{2 \sqrt{3}} \cdot\left(1-\frac{x^{2}}{27}\right) $$ Now the volume of the given body: $$ \begin{aligned} & V=\frac{1}{2 \sqrt{3}} \int_{-3 \sqrt{3}}^{3 \sqrt{3}}\left(1-\frac{x^{2}}{27}\right) d x=\left.\frac{1}{2 \sqrt{3}}\left(x-\frac{x^{3}}{27 \cdot 3}\right)\right|_{-3 \sqrt{3}} ^{3 \sqrt{3}} d x= \\ & =\frac{1}{2 \sqrt{3}}\left(3 \sqrt{3}-\frac{(3 \sqrt{3})^{3}}{81}\right)-\frac{1}{2 \sqrt{3}}\left(-3 \sqrt{3}-\frac{(-3 \sqrt{3})^{3}}{81}\right)= \\ & =\frac{\sqrt{3}}{2 \sqrt{3}}\left(3-\frac{27 \cdot 3}{81}\right)+\frac{\sqrt{3}}{2 \sqrt{3}}\left(3-\frac{27 \cdot 3}{81}\right)= \\ & =\frac{1}{2}(3-1)+\frac{1}{2}(3-1)=1+1=2 \end{aligned} $$ Answer: $V=2$ Source — «http://pluspi.org/wiki/index.php/\�\�\�\�\�\�\�\�\�\�\�\� \%D0\%9A\%D1\%83\%D0\%B7\%D0\%BD\%D0\%B5\%D1\%86\%D0\%BE\%D0\%B2_\%D0\%98\%D0\%BD $\% \mathrm{D} 1 \% 82 \% \mathrm{D} 0 \% \mathrm{~B} 5 \% \mathrm{D} 0 \% \mathrm{~B} 3 \% \mathrm{D} 1 \% 80 \% \mathrm{D} 0 \% \mathrm{~B} 0 \% \mathrm{D} 0 \% \mathrm{BB} \% \mathrm{D} 1 \% 8 \mathrm{~B}+20-26$ » Categories: Kuznetsov's Problem Book Integrals Problem $20 \mid$ Integrals Ukrainian Banner Network - Last modified: 10:57, June 24, 2010. - Content is available under CC-BY-SA 3.0. Created by GeeTeatoo ## Problem Kuznetsov Integrals 20-27 ## Material from Plusi
2
Calculus
math-word-problem
Yes
Yes
olympiads
false
## Problem Statement Based on the definition of the derivative, find $f^{\prime}(0)$: $f(x)=\left\{\begin{array}{c}\tan\left(2^{x^{2} \cos (1 /(8 x))}-1+x\right), x \neq 0 ; \\ 0, x=0\end{array}\right.$
## Solution By definition, the derivative at the point $x=0$: $f^{\prime}(0)=\lim _{\Delta x \rightarrow 0} \frac{f(0+\Delta x)-f(0)}{\Delta x}$ Based on the definition, we find: $$ \begin{aligned} & f^{\prime}(0)=\lim _{\Delta x \rightarrow 0} \frac{f(0+\Delta x)-f(0)}{\Delta x}=\lim _{\Delta x \rightarrow 0} \frac{\tan\left(2^{\Delta x^{2} \cos (1 /(8 \Delta x))}-1+\Delta x\right)-0}{\Delta x}= \\ & =\lim _{\Delta x \rightarrow 0} \frac{\tan\left(2^{\Delta x^{2} \cos (1 /(8 \Delta x))}-1+\Delta x\right)}{\Delta x}= \end{aligned} $$ We use the substitution of equivalent infinitesimals: $\tan\left(2^{\Delta x^{2} \cos (1 /(8 \Delta x))}-1+\Delta x\right) \sim 2^{\Delta x^{2} \cos (1 /(8 \Delta x))}-1+\Delta x$, as $\Delta x \rightarrow 0\left(2^{\Delta x^{2} \cos (1 /(8 \Delta x))}-1+\Delta x \rightarrow 0\right)$ We get: $$ \begin{aligned} & =\lim _{\Delta x \rightarrow 0} \frac{2^{\Delta x^{2} \cos (1 /(8 \Delta x))}-1+\Delta x}{\Delta x}=\lim _{\Delta x \rightarrow 0} \frac{2^{\Delta x^{2} \cos (1 /(8 \Delta x))}-1}{\Delta x}+\lim _{\Delta x \rightarrow 0} \frac{\Delta x}{\Delta x}= \\ & =\lim _{\Delta x \rightarrow 0} \frac{\left(e^{\ln 2}\right)^{\Delta x^{2} \cos (1 /(8 \Delta x))}-1}{\Delta x}+\lim _{\Delta x \rightarrow 0} 1=1+\lim _{\Delta x \rightarrow 0} \frac{e^{\ln 2 \cdot \Delta x^{2} \cos (1 /(8 \Delta x))}-1}{\Delta x}= \end{aligned} $$ We use the substitution of equivalent infinitesimals: $e^{\ln 2 \cdot \Delta x^{2} \cos (1 /(8 \Delta x))}-1 \sim \ln 2 \cdot \Delta x^{2} \cos (1 /(8 \Delta x))$, as $\Delta x \rightarrow 0\left(\ln 2 \cdot \Delta x^{2} \cos (1 /(8 \Delta x)) \rightarrow 0\right)$ We get: $$ =1+\lim _{\Delta x \rightarrow 0} \frac{\ln 2 \cdot \Delta x^{2} \cos (1 /(8 \Delta x))}{\Delta x}=1+\lim _{\Delta x \rightarrow 0} \ln 2 \cdot \Delta x \cos (1 /(8 \Delta x))= $$ Since $\cos (1 /(8 \Delta x))$ is bounded, then $\Delta x \cos (1 /(8 \Delta x)) \rightarrow 0$, as $\Delta x \rightarrow 0$ Then: $=1+\ln 2 \cdot 0=1$ Therefore, $f^{\prime}(0)=1$ ## Problem Kuznetsov Differentiation 2-12
1
Calculus
math-word-problem
Yes
Yes
olympiads
false
## Problem Statement Calculate the lengths of the arcs of the curves given by the equations in polar coordinates. $$ \rho=1-\sin \varphi, -\frac{\pi}{2} \leq \varphi \leq -\frac{\pi}{6} $$
## Solution The length of the arc of a curve given by an equation in polar coordinates is determined by the formula $$ L=\int_{\phi_{1}}^{\phi_{2}} \sqrt{\rho^{2}+\left(\frac{d \rho}{d \phi}\right)^{2}} d \phi $$ Let's find $\frac{d \rho}{d \phi}$: $$ \frac{d \rho}{d \phi}=(-\cos \phi) $$ We get: $$ \begin{aligned} L & =\int_{-\pi / 2}^{-\pi / 6} \sqrt{(1-\sin \phi)^{2}+(-\cos \phi)^{2}} d \phi= \\ & =\int_{-\pi / 2}^{-\pi / 6} \sqrt{1-2 \sin \phi+\sin ^{2} \phi+\cos ^{2} \phi} d \phi= \\ & =\int_{-\pi / 2}^{-\pi / 6} \sqrt{2-2 \sin \phi} d \phi= \\ & =\int_{-\pi / 2}^{-\pi / 6} \sqrt{2-2 \cos \left(\frac{\pi}{2}-\phi\right)} d \phi= \\ & =\int_{-\pi / 2}^{-\pi / 6} \sqrt{4 \sin ^{2}\left(\frac{\pi}{4}-\frac{\phi}{2}\right)} d \phi= \\ & =\int_{-\pi / 2}^{-\pi / 6} 2 \sin \left(\frac{\pi}{4}-\frac{\phi}{2}\right) d \phi=\left.4 \cdot \cos \left(\frac{\pi}{4}-\frac{\phi}{2}\right)\right|_{-\pi / 2} ^{-\pi / 6}= \\ & =4\left(\cos \left(\frac{\pi}{4}-\frac{1}{2} \cdot \frac{-\pi}{6}\right)-\cos \left(\frac{\pi}{4}-\frac{1}{2} \cdot \frac{-\pi}{2}\right)\right)=4\left(\cos \left(\frac{\pi}{3}\right)-\cos \left(\frac{\pi}{2}\right)\right)=4\left(\frac{1}{2}-0\right)=2 \end{aligned} $$ Categories: Kuznetsov Problem Book Integrals Problem 19 | Integrals Ukrainian Banner Network - Last modified: 13:05, 27 May 2010. - Content is available under CC-BY-SA 3.0. Created by GeeTeatoo ## Problem Kuznetsov Integrals 19-12 ## Material from PlusPi
2
Calculus
math-word-problem
Yes
Yes
olympiads
false
## Problem Statement Calculate the lengths of the arcs of the curves given by the equations in polar coordinates. $$ \rho=8(1-\cos \varphi),-\frac{2 \pi}{3} \leq \varphi \leq 0 $$
## Solution The length of the arc of a curve given by an equation in polar coordinates is determined by the formula $L=\int_{\varphi_{0}}^{\varphi_{1}} \sqrt{(\rho(\varphi))^{2}+\left(\rho^{\prime}(\varphi)\right)^{2}} d \varphi$ For the curve given by the equation $\rho=8(1-\cos \varphi)$, we find: $\rho^{\prime}=8 \sin \varphi$ We get: $$ \begin{aligned} L & =\int_{-2 \pi / 3}^{0} \sqrt{(8(1-\cos \varphi))^{2}+(8 \sin \varphi)^{2}} d \varphi= \\ & =\int_{-2 \pi / 3}^{0} \sqrt{64(1-\cos \varphi)^{2}+64 \sin ^{2} \varphi} d \varphi= \\ & =8 \int_{-2 \pi / 3}^{0} \sqrt{1-2 \cos \varphi+\cos ^{2} \varphi+\sin ^{2} \varphi} d \varphi= \\ & =8 \int_{-2 \pi / 3}^{0} \sqrt{2-2 \cos \varphi} d \varphi= \\ & =8 \sqrt{2} \int_{-2 \pi / 3}^{0} \sqrt{1-\cos \varphi} d \varphi= \\ & =8 \sqrt{2} \int_{-2 \pi / 3}^{0} \sqrt{2 \sin ^{2} \frac{\varphi}{2}} d \varphi= \\ & =16 \int_{-2 \pi / 3}^{0} \sin ^{0} \frac{\varphi}{2} d \varphi= \\ & =16 \cdot 2 \int_{-2 \pi / 3}^{0} \sin \frac{\varphi}{2} d \frac{\varphi}{2}= \\ & =-\left.32 \cos \frac{\varphi}{2}\right|_{-2 \pi / 3} ^{0}=-32\left(\cos 0-\cos \frac{-\pi}{3}\right)=-32\left(1-\frac{1}{2}\right)=16 \end{aligned} $$ Source — «http://pluspi.org/wiki/index.php/%D0%9A%D1%83%D0%B7%D0%BD%D0%B5%D1%86%D0%BE%D0%B2_%D0%98%D0%BD%D1%82%D0%B5%D0%B3%D1%80%D0%B0%D0%BB%D1%8B_19-18 »$ Categories: Kuznetsov's Problem Book Integrals Problem 19 | Integrals | Problems for Checking - Last edited on this page: 06:01, 28 May 2010. - Content is available under CC-BY-SA 3.0. Created by GeeTeatoo ## Problem Kuznetsov Integrals 19-19 ## Material from PlusPi
16
Calculus
math-word-problem
Yes
Yes
olympiads
false
## problem statement Find the cosine of the angle between vectors $\overrightarrow{A B}$ and $\overrightarrow{A C}$. $A(-2 ; 1 ; 1), B(2 ; 3 ;-2), C(0 ; 0 ; 3)$
## Solution Let's find $\overrightarrow{A B}$ and $\overrightarrow{A C}$: $$ \begin{aligned} & \overrightarrow{A B}=(2-(-2) ; 3-1 ;-2-1)=(4 ; 2 ;-3) \\ & \overrightarrow{A C}=(0-(-2) ; 0-1 ; 3-1)=(2 ;-1 ; 2) \end{aligned} $$ We find the cosine of the angle $\phi_{\text {between vectors }} \overrightarrow{A B}$ and $\overrightarrow{A C}$: $\cos (\widehat{A B,} \overrightarrow{A C})=\frac{(\overrightarrow{A B}, \overrightarrow{A C})}{|\overrightarrow{A B}| \cdot|\overrightarrow{A C}|}=$ $=\frac{4 \cdot 2+2 \cdot(-1)+(-3) \cdot 2}{\sqrt{4^{2}+2^{2}+(-3)^{2}} \cdot \sqrt{2^{2}+(-1)^{2}+2^{2}}}=$ $=\frac{8-2-6}{\sqrt{16+4+9} \cdot \sqrt{4+1+4}}=\frac{0}{\sqrt{29} \cdot \sqrt{9}}=0$ Thus, the cosine of the angle: $\cos (\overrightarrow{A B,} \overrightarrow{A C})=0$ and consequently the angle $\widehat{A B,} \overrightarrow{A C}=\frac{\pi}{2}$ Problem Kuznetsov Analytic Geometry 4-27
0
Algebra
math-word-problem
Yes
Yes
olympiads
false
## Task Condition Are the vectors $a, b$ and $c$ coplanar? $a=\{6 ; 3 ; 4\}$ $b=\{-1 ;-2 ;-1\}$ $c=\{2 ; 1 ; 2\}$
## Solution For three vectors to be coplanar (lie in the same plane or parallel planes), it is necessary and sufficient that their scalar triple product $(a, b, c)$ be equal to zero. $(a, b, c)=\left|\begin{array}{ccc}6 & 3 & 4 \\ -1 & -2 & -1 \\ 2 & 1 & 2\end{array}\right|=$ $=6 \cdot\left|\begin{array}{cc}-2 & -1 \\ 1 & 2\end{array}\right|-3 \cdot\left|\begin{array}{cc}-1 & -1 \\ 2 & 2\end{array}\right|+4 \cdot\left|\begin{array}{cc}-1 & -2 \\ 2 & 1\end{array}\right|=$ $=6 \cdot(-3)-3 \cdot 0+4 \cdot 3=-18-0+12=-6$ Since $(a, b, c)=-6 \neq 0$, the vectors $a, b$ and $c$ are not coplanar. ## Problem Kuznetsov Analytic Geometry 6-27
-6
Algebra
math-word-problem
Yes
Yes
olympiads
false
## problem statement Find the angle between the planes: $2 x-6 y+14 z-1=0$ $5 x-15 y+35 z-3=0$
## Solution The dihedral angle between planes is equal to the angle between their normal vectors. The normal vectors of the given planes: $\overrightarrow{n_{1}}=\{2 ;-6 ; 14\}$ $\overrightarrow{n_{2}}=\{5 ;-15 ; 35\}$ The angle $\phi_{\text{between the planes is determined by the formula: }}$ $$ \begin{aligned} & \cos \phi=\frac{\left(\overrightarrow{n_{1}}, \overrightarrow{n_{2}}\right)}{\left|\overrightarrow{n_{1}}\right| \cdot\left|\overrightarrow{n_{2}}\right|}=\frac{2 \cdot 5+(-6) \cdot(-15)+14 \cdot 35}{\sqrt{2^{2}+(-6)^{2}+14^{2}} \cdot \sqrt{5^{2}+(-15)^{2}+35^{2}}}= \\ & =\frac{10+90+490}{\sqrt{4+36+196} \cdot \sqrt{25+225+1225}}=\frac{590}{\sqrt{236} \cdot \sqrt{1475}}=\frac{590}{590}=1 \\ & \phi=\arccos 1=0 \end{aligned} $$ ## Problem Kuznetsov Analytic Geometry 10-27
0
Geometry
math-word-problem
Yes
Yes
olympiads
false
## problem statement Calculate the limit of the function: $\lim _{x \rightarrow-1} \frac{\left(x^{3}-2 x-1\right)(x+1)}{x^{4}+4 x^{2}-5}$
## Solution $$ \begin{aligned} & \lim _{x \rightarrow-1} \frac{\left(x^{3}-2 x-1\right)(x+1)}{x^{4}+4 x^{2}-5}=\left\{\frac{0}{0}\right\}=\lim _{x \rightarrow-1} \frac{\left(x^{3}-2 x-1\right)(x+1)}{\left(x^{3}-x^{2}+5 x-5\right)(x+1)}= \\ & =\lim _{x \rightarrow-1} \frac{x^{3}-2 x-1}{x^{3}-x^{2}+5 x-5}=\frac{(-1)^{3}-2(-1)-1}{(-1)^{3}-(-1)^{2}+5(-1)-5}= \\ & =\frac{-1+2-1}{-1-1-5-5}=\frac{0}{-12}=0 \end{aligned} $$ ## Problem Kuznetsov Limits 10-1
0
Calculus
math-word-problem
Yes
Yes
olympiads
false