problem
stringlengths
2
5.64k
solution
stringlengths
2
13.5k
answer
stringlengths
1
43
problem_type
stringclasses
8 values
question_type
stringclasses
4 values
problem_is_valid
stringclasses
1 value
solution_is_valid
stringclasses
1 value
source
stringclasses
6 values
synthetic
bool
1 class
## Problem Statement Calculate the limit of the function: $\lim _{x \rightarrow 1} \frac{x^{2}-1}{\ln x}$
## Solution Substitution: $x=y+1 \Rightarrow y=x-1$ $x \rightarrow 1 \Rightarrow y \rightarrow 0$ We get: $\lim _{x \rightarrow 1} \frac{x^{2}-1}{\ln x}=\lim _{y \rightarrow 0} \frac{(y+1)^{2}-1}{\ln (y+1)}=$ Using the substitution of equivalent infinitesimals: $\ln (1+y) \sim y$, as $y \rightarrow 0$ We get: $=\lim _{y \rightarrow 0} \frac{y^{2}+2 y+1-1}{y}=\lim _{y \rightarrow 0} \frac{y^{2}+2 y}{y}=\lim _{y \rightarrow 0}(y+2)=0+2=2$ Problem Kuznetsov Limits 13-1
2
Calculus
math-word-problem
Yes
Yes
olympiads
false
## Problem Statement Calculate the limit of the function: $\lim _{x \rightarrow 0} \frac{e^{x}+e^{-x}-2}{\sin ^{2} x}$
## Solution $\lim _{x \rightarrow 0} \frac{e^{x}+e^{-x}-2}{\sin ^{2} x}=\lim _{x \rightarrow 0} \frac{e^{-x}\left(e^{2 x}-2 e^{x}+1\right)}{\sin ^{2} x}=$ $=\lim _{x \rightarrow 0} \frac{e^{-x}\left(e^{x}-1\right)^{2}}{\sin ^{2} x}=$ Using the substitution of equivalent infinitesimals: $e^{x}-1 \sim x$, as $x \rightarrow 0$ $\sin x \sim x$, as $x \rightarrow 0$ We get: $$ =\lim _{x \rightarrow 0} \frac{e^{-x} \cdot x^{2}}{x^{2}}=\lim _{x \rightarrow 0} e^{-x}=e^{0}=1 $$ ## Problem Kuznetsov Limits 16-1
1
Calculus
math-word-problem
Yes
Yes
olympiads
false
## Problem Statement Calculate the limit of the function: $\lim _{x \rightarrow 0}\left(\frac{\sin 2 x}{x}\right)^{1+x}$
## Solution $\lim _{x \rightarrow 0}\left(\frac{\sin 2 x}{x}\right)^{1+x}=\left(\lim _{x \rightarrow 0}\left(\frac{\sin 2 x}{x}\right)\right)^{\lim _{x \rightarrow 0} 1+x}=$ $=\left(\lim _{x \rightarrow 0}\left(\frac{\sin 2 x}{x}\right)\right)^{1}=\lim _{x \rightarrow 0} \frac{\sin 2 x}{x}=$ Using the substitution of equivalent infinitesimals: $\sin 2 x \sim 2 x$, as $x \rightarrow 0(2 x \rightarrow 0)$ We get: $$ =\lim _{x \rightarrow 0} \frac{2 x}{x}=\lim _{x \rightarrow 0} \frac{2}{1}=2 $$ ## Problem Kuznetsov Limits 18-1
2
Calculus
math-word-problem
Yes
Yes
olympiads
false
## Condition of the problem Calculate the limit of the function: $$ \lim _{x \rightarrow 0} \sqrt{4 \cos 3 x+x \cdot \operatorname{arctg}\left(\frac{1}{x}\right)} $$
## Solution Since $\operatorname{arctg}\left(\frac{1}{x}\right)_{\text { is bounded, then }}$ $$ x \cdot \operatorname{arctg}\left(\frac{1}{x}\right) \rightarrow 0 \underset{\text { as } x \rightarrow 0}{ } $$ Then: $\lim _{x \rightarrow 0} \sqrt{4 \cos 3 x+x \cdot \operatorname{arctg}\left(\frac{1}{x}\right)}=\sqrt{4 \cos (3 \cdot 0)+0}=\sqrt{4}=2$
2
Calculus
math-word-problem
Yes
Yes
olympiads
false
## Problem Statement Find the cosine of the angle between vectors $\overrightarrow{A B}$ and $\overrightarrow{A C}$. $$ A(-3 ; -7 ; -5), B(0 ; -1 ; -2), C(2 ; 3 ; 0) $$
## Solution Let's find $\overrightarrow{A B}$ and $\overrightarrow{A C}$: $$ \begin{aligned} & \overrightarrow{A B}=(0-(-3) ;-1-(-7) ;-2-(-5))=(3 ; 6 ; 3) \\ & \overrightarrow{A C}=(2-(-3) ; 3-(-7) ; 0-(-5))=(5 ; 10 ; 5) \end{aligned} $$ We find the cosine of the angle $\phi$ between the vectors $\overrightarrow{A B}$ and $\overrightarrow{A C}$: $$ \begin{aligned} & \cos (\overrightarrow{A B,} \overrightarrow{A C})=\frac{(\overrightarrow{A B}, \overrightarrow{A C})}{|\overrightarrow{A B}| \cdot|\overrightarrow{A C}|}= \\ & =\frac{3 \cdot 5+6 \cdot 10+3 \cdot 5}{\sqrt{3^{2}+6^{2}+3^{2}} \cdot \sqrt{5^{2}+10^{2}+5^{2}}}= \\ & =\frac{15+60+15}{\sqrt{9+36+9} \cdot \sqrt{25+100+25}}=\frac{90}{\sqrt{54} \cdot \sqrt{150}}=\frac{90}{\sqrt{8100}}=1 \end{aligned} $$ Thus, the cosine of the angle: $\cos (\overrightarrow{A B, A C})=1$ and consequently the angle $\widehat{A B,} \overrightarrow{A C}=0$ ## Problem Kuznetsov Analytic Geometry 4-7
1
Algebra
math-word-problem
Yes
Yes
olympiads
false
## Task Condition Calculate the area of the parallelogram constructed on vectors $a$ and $b$. $a=2 p-q$ $b=p+3 q$ $|p|=3$ $|q|=2$ $(\widehat{p, q})=\frac{\pi}{2}$
## Solution The area of the parallelogram constructed on vectors $a$ and $b$ is numerically equal to the modulus of their vector product: $S=|a \times b|$ We compute $a \times b$ using the properties of the vector product: $a \times b=(2 p-q) \times(p+3 q)=2 \cdot p \times p+2 \cdot 3 \cdot p \times q-q \times p-3 \cdot q \times q=$ $=6 \cdot p \times q-q \times p=6 \cdot p \times q+p \times q=(6+1) \cdot p \times q=7 \cdot p \times q$ We compute the area: $$ \begin{aligned} & S=|a \times b|=|7 \cdot p \times q|=7 \cdot|p \times q|=7 \cdot|p| \cdot|q| \cdot \sin (\widehat{p, q})= \\ & =7 \cdot 3 \cdot 2 \cdot \sin \frac{\pi}{2}=42 \cdot \sin \frac{\pi}{2}=42 \cdot 1=42 \end{aligned} $$ Thus, the area of the parallelogram constructed on vectors $a$ and $b$ is 42. ## Problem Kuznetsov Analytic Geometry 5-7
42
Algebra
math-word-problem
Yes
Yes
olympiads
false
## problem statement Let $k$ be the coefficient of similarity transformation with the center at the origin. Is it true that point $A$ belongs to the image of plane $a$? $A\left(\frac{1}{4} ; \frac{1}{3} ; 1\right)$ a: $4 x-3 y+5 z-10=0$ $k=\frac{1}{2}$
## Solution When transforming similarity with the center at the origin of the coordinate plane, the plane $a: A x + B y + C z + D = 0$ and the coefficient $k$ transitions to the plane $a^{\prime}: A x + B y + C z + k \cdot D = 0$. We find the image of the plane $a$: $a^{\prime}: 4 x - 3 y + 5 z - 5 = 0$ Substitute the coordinates of point $A$ into the equation of $a^{\prime}$: $4 \cdot \frac{1}{4} - 3 \cdot \frac{1}{3} + 5 \cdot 1 - 5 = 0$ $1 - 1 + 5 - 5 = 0$ $0 = 0$ Since $0 = 0$, point $A$ belongs to the image of the plane $a$. ## Problem Kuznetsov Analytical Geometry 12-12
0
Geometry
math-word-problem
Yes
Yes
olympiads
false
## Task Condition Based on the definition of the derivative, find $f^{\prime}(0)$ : $$ f(x)=\left\{\begin{array}{c} x^{2} \cos ^{2} \frac{11}{x}, x \neq 0 \\ 0, x=0 \end{array}\right. $$
## Solution By definition, the derivative at the point $x=0$: $f^{\prime}(0)=\lim _{\Delta x \rightarrow 0} \frac{f(0+\Delta x)-f(0)}{\Delta x}$ Based on the definition, we find: $$ \begin{aligned} & f^{\prime}(0)=\lim _{\Delta x \rightarrow 0} \frac{f(0+\Delta x)-f(0)}{\Delta x}=\lim _{\Delta x \rightarrow 0} \frac{\Delta x^{2} \cos ^{2} \frac{11}{\Delta x}-0}{\Delta x}= \\ & =\lim _{\Delta x \rightarrow 0} \frac{\Delta x^{2} \cos ^{2} \frac{11}{\Delta x}}{\Delta x}=\lim _{\Delta x \rightarrow 0} \Delta x \cdot \cos ^{2} \frac{11}{\Delta x}= \end{aligned} $$ Since $\cos ^{2} \frac{11}{\Delta x}$ is bounded, then $\Delta x \cdot \cos ^{2} \frac{11}{\Delta x} \rightarrow 0$, as $\Delta x \rightarrow 0$ Thus: $=0$ Therefore, $f^{\prime}(0)=0$ ## Problem Kuznetsov Differentiation $2-15$
0
Calculus
math-word-problem
Yes
Yes
olympiads
false
## Problem Statement Calculate the limit of the numerical sequence: $\lim _{n \rightarrow \infty} \frac{(2 n+1)^{3}+(3 n+2)^{3}}{(2 n+3)^{3}-(n-7)^{3}}$
## Solution $$ \begin{aligned} & \lim _{n \rightarrow \infty} \frac{(2 n+1)^{3}+(3 n+2)^{3}}{(2 n+3)^{3}-(n-7)^{3}}=\lim _{n \rightarrow \infty} \frac{\frac{1}{n^{3}}\left((2 n+1)^{3}+(3 n+2)^{3}\right)}{\frac{1}{n^{3}}\left((2 n+3)^{3}-(n-7)^{3}\right)}= \\ & =\lim _{n \rightarrow \infty} \frac{\left(2+\frac{1}{n}\right)^{3}+\left(3+\frac{2}{n}\right)^{3}}{\left(2+\frac{3}{n}\right)^{3}-\left(1-\frac{7}{n}\right)^{3}}=\frac{2^{3}+3^{3}}{2^{3}-1^{3}}=\frac{35}{7}=5 \end{aligned} $$ ## Problem Kuznetsov Limits 3-19
5
Algebra
math-word-problem
Yes
Yes
olympiads
false
## Problem Statement Calculate the limit of the numerical sequence: $\lim _{n \rightarrow \infty} \frac{4 n^{2}-\sqrt[4]{n^{3}}}{\sqrt[3]{n^{6}+n^{3}+1}-5 n}$
## Solution $$ \begin{aligned} & \lim _{n \rightarrow \infty} \frac{4 n^{2}-\sqrt[4]{n^{3}}}{\sqrt[3]{n^{6}+n^{3}+1}-5 n}=\lim _{n \rightarrow \infty} \frac{\frac{1}{n^{2}}\left(4 n^{2}-\sqrt[4]{n^{3}}\right)}{\frac{1}{n^{2}}\left(\sqrt[3]{n^{6}+n^{3}+1}-5 n\right)}= \\ & =\lim _{n \rightarrow \infty} \frac{4-\sqrt[4]{\frac{1}{n^{5}}}}{\sqrt[3]{1+\frac{1}{n^{3}}+\frac{1}{n^{6}}}-\frac{5}{n}}=\frac{4-\sqrt[4]{0}}{\sqrt[3]{1+0+0}-0}=\frac{4}{1}=4 \end{aligned} $$ ## Problem Kuznetsov Limits 4-19
4
Calculus
math-word-problem
Yes
Yes
olympiads
false
## Problem Statement Calculate the limit of the numerical sequence: $\lim _{n \rightarrow \infty} \frac{2-5+4-7+\ldots+2 n-(2 n+3)}{n+3}$
## Solution $\lim _{n \rightarrow \infty} \frac{2-5+4-7+\ldots+2 n-(2 n+3)}{n+3}=$ $=\{2-5=4-7=\ldots=2 n-(2 n+3)=-3\}=$ $=\lim _{n \rightarrow \infty} \frac{-3 \cdot n}{n+3}=\lim _{n \rightarrow \infty} \frac{\frac{1}{n} \cdot(-3) \cdot n}{\frac{1}{n}(n+3)}=$ $=\lim _{n \rightarrow \infty} \frac{-3}{1+\frac{3}{n}}=\frac{-3}{1}=-3$ ## Problem Kuznetsov Limits 6-19
-3
Algebra
math-word-problem
Yes
Yes
olympiads
false
## Problem Statement Calculate the limit of the function: $\lim _{x \rightarrow 0}\left(2-3^{\sin ^{2} x}\right)^{\frac{1}{\ln (\cos x)}}$
## Solution $$ \begin{aligned} & \lim _{x \rightarrow 0}\left(2-3^{\sin ^{2} x}\right)^{\frac{1}{\ln (\cos x)}}= \\ & =\lim _{x \rightarrow 0}\left(e^{\ln \left(2-3^{\sin ^{2} x}\right)}\right)^{\frac{1}{\ln (\cos x)}}= \\ & =\lim _{x \rightarrow 0} e^{\ln \left(2-3^{\sin ^{2} x}\right) / \ln (\cos x)}= \\ & =\lim _{x \rightarrow 0} e^{\ln \left(1+\left(1-3^{\sin ^{2} x}\right)\right) / \ln \left(1-2 \sin ^{2} \frac{x}{2}\right)}= \\ & =\exp \left\{\lim _{x \rightarrow 0} \frac{\ln \left(1+\left(1-3^{\sin ^{2} x}\right)\right)}{\ln \left(1-2 \sin ^{2} \frac{x}{2}\right)}\right\}= \end{aligned} $$ $\ln \left(1+\left(1-3^{\sin ^{2} x}\right)\right) \sim\left(1-3^{\sin ^{2} x}\right)$, as $x \rightarrow 0\left(\left(1-3^{\sin ^{2} x}\right) \rightarrow 0\right)$ $\ln \left(1-2 \sin ^{2} \frac{x}{2}\right) \sim-2 \sin ^{2} \frac{x}{2}$, as $x \rightarrow 0\left(-2 \sin ^{2} \frac{x}{2} \rightarrow 0\right)$ We get: $$ \begin{aligned} & =\exp \left\{\lim _{x \rightarrow 0} \frac{1-3^{\sin ^{2} x}}{-2 \sin ^{2} \frac{x}{2}}\right\}=\exp \left\{\lim _{x \rightarrow 0} \frac{1-\left(e^{\ln 3}\right)^{\sin ^{2} x}}{-2 \sin ^{2} \frac{x}{2}}\right\}= \\ & =\exp \left\{\lim _{x \rightarrow 0} \frac{e^{\ln 3 \cdot \sin ^{2} x}-1}{2 \sin ^{2} \frac{x}{2}}\right\}= \end{aligned} $$ Using the substitution of equivalent infinitesimals: $e^{\ln 3 \cdot \sin ^{2} x}-1 \sim \ln 3 \cdot \sin ^{2} x$, as $x \rightarrow 0\left(\ln 3 \cdot \sin ^{2} x \rightarrow 0\right)$ $\sin \frac{x}{2} \sim \frac{x}{2}$, as $x \rightarrow 0\left(\frac{x}{2} \rightarrow 0\right)$ We get: $=\exp \left\{\lim _{x \rightarrow 0} \frac{\ln 3 \cdot \sin ^{2} x}{2\left(\frac{x}{2}\right)^{2}}\right\}=\exp \left\{\lim _{x \rightarrow 0} \frac{2 \ln 3 \cdot \sin ^{2} x}{x^{2}}\right\}=$ Using the substitution of equivalent infinitesimals: $\sin x \sim x$, as $x \rightarrow 0$ We get: $=\exp \left\{\lim _{x \rightarrow 0} \frac{2 \ln 3 \cdot x^{2}}{x^{2}}\right\}=\exp \left\{\lim _{x \rightarrow 0} 2 \ln 3\right\}=$ $=e^{2 \ln 3}=\left(e^{\ln 3}\right)^{2}=3^{2}=9$ ## Problem Kuznetsov Limits 17-19
9
Calculus
math-word-problem
Yes
Yes
olympiads
false
## problem statement Calculate the limit of the function: $\lim _{x \rightarrow 0}\left(\frac{11 x+8}{12 x+1}\right)^{\cos ^{2} x}$
## Solution $\lim _{x \rightarrow 0}\left(\frac{11 x+8}{12 x+1}\right)^{\cos ^{2} x}=\left(\frac{11 \cdot 0+8}{12 \cdot 0+1}\right)^{\cos ^{2} 0}=$ $=(8)^{\left(1^{2}\right)}=8^{1}=8$ ## Problem Kuznetsov Limits 18-19
8
Calculus
math-word-problem
Yes
Yes
olympiads
false
## Problem Statement Calculate the limit of the function: $\lim _{x \rightarrow 1}(\arcsin x)^{\tan \pi x}$
## Solution $\lim _{x \rightarrow 1}(\arcsin x)^{\operatorname{tg} \pi x}=(\arcsin 1)^{\operatorname{tg} \pi}=\left(\frac{\pi}{2}\right)^{0}=1$ ## Problem Kuznetsov Limits 20-19
1
Calculus
math-word-problem
Yes
Yes
olympiads
false
## Task Condition Calculate the area of the figure bounded by the graphs of the functions: $$ y=(x-2)^{3}, y=4 x-8 $$
## Solution From the graph, it can be seen that the area between the curves consists of two identical parts: $$ S_{(0,4)}=2 S_{(2,4)} $$ We will find the area of the part where \( x \in (2,4) \) as the difference of two integrals: $$ \begin{aligned} & S=\int_{2}^{4}(4 x-8) d x-\int_{2}^{4}(x-2)^{3} d x= \\ & =\left.\left(4 \frac{x^{2}}{2}-8 x\right)\right|_{2} ^{4}-\int_{2}^{4}\left(x^{3}-6 x^{2}+12 x-8\right) d x= \\ & =\left.\left(2 x^{2}-8 x\right)\right|_{2} ^{4}-\left.\left(\frac{x^{4}}{4}-6 \frac{x^{3}}{3}+12 \frac{x^{2}}{2}-8 x\right)\right|_{2} ^{4}= \end{aligned} $$ Integrals \(14-1\) ![](https://cdn.mathpix.com/cropped/2024_05_22_aa6951b1e92815ea34b6g-01.jpg?height=1368&width=600&top_left_y=978&top_left_x=1345) $$ \begin{aligned} & =(32-32)-(8-16)-\left(\frac{4^{4}}{4}-2 \cdot 4^{3}+6 \cdot 4^{2}-8 \cdot 4\right)+\left(\frac{2^{4}}{4}-2 \cdot 2^{3}+6 \cdot 2^{2}-8 \cdot 2\right)= \\ & =0+8-(64-128+96-32)+(4-16+24-16)=8-0+(-4)=4 \\ & S_{(0,4)}=2 \cdot S_{(2,4)}=2 \cdot 4=8 \end{aligned} $$ %egraly_14-1» Categories: Kuznetsov Integral Problems Problem 14 | Integrals Ukrainian Banner Network - Last edited on this page: 04:54, June 9, 2010. - Content is available under CC-BY-SA 3.0. Created by Geeteatoo ## Problem Kuznetsov Integrals 14-2 ## Material from Plusi
8
Calculus
math-word-problem
Yes
Yes
olympiads
false
## Problem Statement Calculate the area of the figure bounded by the graphs of the functions: $$ y=x \sqrt{9-x^{2}}, y=0, (0 \leq x \leq 3) $$
## Solution ![](https://cdn.mathpix.com/cropped/2024_05_22_aa6951b1e92815ea34b6g-03.jpg?height=557&width=546&top_left_y=961&top_left_x=104) $$ \begin{aligned} & S=\int_{0}^{3}\left(x \sqrt{9-x^{2}}\right) d x= \\ & =-\frac{1}{2} \int_{0}^{3}\left(9-x^{2}\right)^{\frac{1}{2}} d\left(9-x^{2}\right)= \\ & =-\left.\frac{1}{2} \cdot \frac{2}{3}\left(9-x^{2}\right)^{\frac{3}{2}}\right|_{0} ^{3}= \\ & =-\frac{1}{3} \cdot(0-27)=9 \end{aligned} $$ --kasper 11:41, 23 May 2010 (UTC) Source — «http://pluspi.org/wiki/index.php/\�\�\�\�\�\�\�\�\�\�\�\� \%D0\%9A\%D1\%83\%D0\%B7\%D0\%BD\%D0\%B5\%D1\%86\%D0\%BE\%D0\%B2_\%D0\%98\%D0\%BD $\% \mathrm{D} 1 \% 82 \% \mathrm{D} 0 \% \mathrm{~B} 5 \% \mathrm{D} 0 \% \mathrm{~B} 3 \% \mathrm{D} 1 \% 80 \% \mathrm{D} 0 \% \mathrm{~B} 0 \% \mathrm{D} 0 \% \mathrm{BB} \% \mathrm{D} 1 \% 8 \mathrm{~B}+14-2$ » Categories: Kuznetsov Problem Book Integrals Problem 14 | Integrals - Last edited: 05:33, 9 June 2010. - Content is available under CC-BY-SA 3.0. Created by GeeTeatoo ## Problem Kuznetsov Integrals 14-3 ## Material from PlusPi
9
Calculus
math-word-problem
Yes
Yes
olympiads
false
## Task Condition Calculate the area of the figure bounded by the graphs of the functions: $$ y=4-x^{2}, y=x^{2}-2 x $$
## Solution Find the abscissas of the points of intersection of the graphs of the functions: $$ \begin{aligned} & 4-x^{2}=x^{2}-2 x \\ & 2 x^{2}-2 x-4=0 \\ & x^{2}-x-2=0 \end{aligned} $$ ![](https://cdn.mathpix.com/cropped/2024_05_22_aa6951b1e92815ea34b6g-04.jpg?height=1010&width=1034&top_left_y=937&top_left_x=911) $$ \begin{aligned} & D=(-1)^{2}-4 \cdot 1 \cdot(-2)=9 \\ & x_{1}=\frac{1-\sqrt{9}}{2 \cdot 1}=-1 \\ & x_{2}=\frac{1+\sqrt{9}}{2 \cdot 1}=2 \end{aligned} $$ Calculate the area: $$ \begin{aligned} & S=\int_{-1}^{2}\left(\left(4-x^{2}\right)-\left(x^{2}-2 x\right)\right) d x=\int_{-1}^{2}\left(-2 x^{2}+2 x+4\right) d x= \\ & =\left.\left(-\frac{2 x^{3}}{3}+x^{2}+4 x\right)\right|_{-1} ^{2}=\left(-\frac{2 \cdot 2^{3}}{3}+2^{2}+4 \cdot 2\right)- \end{aligned} $$ $$ \begin{aligned} & -\left(-\frac{2 \cdot(-1)^{3}}{3}+(-1)^{2}+4 \cdot(-1)\right)=-\frac{16}{3}+4+8-\frac{2}{3}-1+4= \\ & =-\frac{18}{3}+15=-6+15=9 \end{aligned} $$ Source — «http://pluspi.org/wiki/index.php/\�\�\�\�\�\�\�\�\�\�\�\� \%D0\%9A\%D1\%83\%D0\%B7\%D0\%BD\%D0\%B5\%D1\%86\%D0\%BE\%D0\%B2_\%D0\%98\%D0\%BD $\% \mathrm{D} 1 \% 84 \% \mathrm{D} 0 \% \mathrm{~B} 5 \% \mathrm{D} 0 \% \mathrm{~B} 3 \% \mathrm{D} 1 \% 80 \% \mathrm{D} 0 \% \mathrm{~B} 0 \% \mathrm{D} 0 \% \mathrm{BB} \% \mathrm{D} 1 \% 8 \mathrm{~B}+14-4$ » Categories: Kuznetsov's Problem Book Integrals Problem 14 | Integrals Ukrainian Banner Network - Last edited on this page: 16:15, 29 May 2010. - Content is available under CC-BY-SA 3.0. Created by GeeTeatoo ## Problem Kuznetsov Integrals 14-4 ## Material from PlusPi
9
Calculus
math-word-problem
Yes
Yes
olympiads
false
## Problem Statement Calculate the area of the figure bounded by the graphs of the functions: $$ y=\frac{1}{x \sqrt{1+\ln x}}, y=0, x=1, x=e^{3} $$
## Solution Answer: 2 We construct the graphs: ![](https://cdn.mathpix.com/cropped/2024_05_22_aa6951b1e92815ea34b6g-17.jpg?height=1059&width=1585&top_left_y=1047&top_left_x=218) We obtain a figure bounded above by the curve $\frac{1}{x \cdot \sqrt{1+\ln x}}$, on the left by the line $x=1$, on the right by the line $x=e^{3}$, and below by $y=0$. Thus, the area of the desired figure will be equal to the integral from 1 to $e^{3}$ of the function $\frac{1}{x \cdot \sqrt{1+\ln x}}$. We take the integral: $$ \begin{aligned} & \int_{1}^{e^{3}} \frac{1}{x \cdot \sqrt{1+\ln x}} d x=\int_{1}^{e^{3}} \frac{1}{\sqrt{1+\ln x}} d(\ln x)= \\ & =\int_{0}^{3} \frac{1}{\sqrt{1+x}} d x=\left.2 \cdot \sqrt{1+x}\right|_{0} ^{3}=2 \cdot(\sqrt{1+3}-\sqrt{1+0})= \\ & =2 \cdot(2-1)=2 \end{aligned} $$ Source — «http://pluspi.org/wiki/index.php/\�\�\�\�\�\�\�\�\�\�\�\� \%D0\%9A\%D1\%83\%D0\%B7\%D0\%BD\%D0\%B5\%D1\%86\%D0\%BE\%D0\%B2_\%D0\%98\%D0\%BD $\% \mathrm{D} 1 \% 84 \% \mathrm{D} 0 \% \mathrm{~B} 5 \% \mathrm{D} 0 \% \mathrm{~B} 3 \% \mathrm{D} 1 \% 80 \% \mathrm{D} 0 \% \mathrm{~B} 0 \% \mathrm{D} 0 \% \mathrm{BB} \% \mathrm{D} 1 \% 8 \mathrm{~B}+14-9$ » Categories: Kuznetsov's Problem Book Integrals Problem 14 | Integrals Ukrainian Banner Network - Last edited on this page: 11:45, 24 May 2010. - Content is available under CC-BY-SA 3.0. Created by Gee Teatoo ## Problem Kuznetsov Integrals 14-10 ## Material from PlusPi
2
Calculus
math-word-problem
Yes
Yes
olympiads
false
## Task Condition Calculate the area of the figure bounded by the graphs of the functions: $$ y=\arccos x, y=0, x=0 $$
## Solution ![](https://cdn.mathpix.com/cropped/2024_05_22_aa6951b1e92815ea34b6g-19.jpg?height=1422&width=1100&top_left_y=1028&top_left_x=615) $S=\int_{0}^{1} \arccos x d x$ We will use the integration by parts formula: $$ \begin{aligned} & \int_{a}^{b} u d v=\left.u \cdot v\right|_{a} ^{b}-\int_{a}^{b} v d u \\ & \text{where} \\ & u=\arccos x ; v=x ; d u=-\frac{d x}{\sqrt{1-x^{2}}} ; d v=d x \end{aligned} $$ Then we get $$ \begin{aligned} & S=\int_{0}^{1} \arccos x d x= \\ & =\left.x \cdot \arccos x\right|_{0} ^{1}-\left(\int_{0}^{1} x \frac{-d x}{\sqrt{1-x^{2}}}\right)= \\ & =\left.x \cdot \arccos x\right|_{0} ^{1}+\int_{0}^{1} \frac{x d x}{\sqrt{1-x^{2}}}= \\ & =\left.x \cdot \arccos x\right|_{0} ^{1}-\frac{1}{2} \cdot \int_{0}^{1} \frac{d\left(1-x^{2}\right)}{\sqrt{1-x^{2}}}= \\ & =\left.x \cdot \arccos x\right|_{0} ^{1}-\left.\sqrt{1-x^{2}}\right|_{0} ^{1}= \\ & =\left(1 \cdot 0-0 \cdot \frac{\pi}{2}\right)-(\sqrt{0}-\sqrt{1})=1 \end{aligned} $$ Source — «http://pluspi.org/wiki/index.php/\�\�\�\�\�\�\�\�\�\�\�\� \%D0\%9A\%D1\%83\%D0\%B7\%D0\%BD\%D0\%B5\%D1\%86\%D0\%BE\%D0\%B2_\%D0\%98\%D0\%BD $\% \mathrm{D} 1 \% 82 \% \mathrm{D} 0 \% \mathrm{~B} 5 \% \mathrm{D} 0 \% \mathrm{~B} 3 \% \mathrm{D} 1 \% 80 \% \mathrm{D} 0 \% \mathrm{~B} 0 \% \mathrm{D} 0 \% \mathrm{BB} \% \mathrm{D} 1 \% 8 \mathrm{~B}+14-10$ » Categories: Kuznetsov's Problem Book Integrals Problem 14 | Integrals Ukrainian Banner Network - Last edited on this page: 10:42, June 9, 2010. - Content is available under CC-BY-SA 3.0. Created by GeeTeatoo ## Problem Kuznetsov Integrals 14-11 ## Material from PlusPi
1
Calculus
math-word-problem
Yes
Yes
olympiads
false
## Task Condition Calculate the area of the figure bounded by the graphs of the functions: $$ y=2 x-x^{2}+3, y=x^{2}-4 x+3 $$
## Solution ![](https://cdn.mathpix.com/cropped/2024_05_22_aa6951b1e92815ea34b6g-23.jpg?height=756&width=917&top_left_y=730&top_left_x=107) Let's find the points of intersection of the graphs of the functions: $$ 2 x - x^{2} + 3 = x^{2} - 4 x + 3 \Rightarrow \left[\begin{array}{l} x = 0 \\ x = 3 \end{array}\right] $$ Now let's find the area of the resulting figure: $$ S = \int_{0}^{3} \left( \left( -x^{2} + 2 x + 3 \right) - \left( x^{2} - 4 x + 3 \right) \right) d x = \int_{0}^{3} \left( -2 x^{2} + 6 x \right) d x = -\left. \frac{2}{3} x^{3} \right|_{0}^{3} + \left. 3 x^{2} \right|_{0}^{3} = -18 + 27 = 9 $$ Source — "http://pluspi.org/wiki/index.php/\�\�\�\�\�\�\�\�\�\�\�\�_\�\�\�\� \%D0\%B7\%D0\%BD\%D0\%B5\%D1\%86\%D0\%B8\%D0\%B2\%D0\%B5\%D0\%B9\%D0\%B8\%D0\%BD\%D0\%B8\%D0\%B5\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8\%D0\%B8
9
Calculus
math-word-problem
Yes
Yes
olympiads
false
## Problem Statement Calculate the area of the figure bounded by the graphs of the functions: $$ y=x \sqrt{36-x^{2}}, y=0, (0 \leq x \leq 6) $$
## Solution Integrals 14-13 ![](https://cdn.mathpix.com/cropped/2024_05_22_aa6951b1e92815ea34b6g-24.jpg?height=1425&width=1430&top_left_y=1041&top_left_x=450) $S=\int_{0}^{6} x \sqrt{36-x^{2}} d x=$ $$ \begin{aligned} & =\frac{1}{2} \int_{0}^{6} \sqrt{36-x^{2}} d\left(x^{2}\right)= \\ & =-\frac{1}{2} \int_{0}^{6}\left(36-x^{2}\right)^{1 / 2} d\left(36-x^{2}\right)= \\ & =-\left.\frac{1}{2}\left(\frac{2}{3} \cdot\left(36-x^{2}\right)^{3 / 2}\right)\right|_{0} ^{6}= \\ & =-\frac{1}{3}\left((36-36)^{3 / 2}-(36-0)^{3 / 2}\right)=72 \end{aligned} $$ Source — «http://pluspi.org/wiki/index.php/\�\�\�\�\�\�\�\�\�\�\�\� \%D0\%9A\%D1\%83\%D0\%B7\%D0\%BD\%D0\%B5\%D1\%86\%D0\%BE\%D0\%B2_\%D0\%98\%D0\%BD $\% \mathrm{D} 1 \% 82 \% \mathrm{D} 0 \% \mathrm{~B} \% \mathrm{D} 0 \% \mathrm{~B} 3 \% \mathrm{D} 1 \% 80 \% \mathrm{D} 0 \% \mathrm{~B} 0 \% \mathrm{D} 0 \% \mathrm{BB} \% \mathrm{D} 1 \% 8 \mathrm{~B}+14-13$ " Categories: Kuznetsov's Problem Book Integrals Problem 14 | Integrals Ukrainian Banner Network - Last edited on this page: 07:37, 10 June 2010. - Content is available under CC-BY-SA 3.0. Created by GeeTeatoo ## Problem Kuznetsov Integrals 14-14 ## Material from Plusi
72
Calculus
math-word-problem
Yes
Yes
olympiads
false
## Problem Statement Calculate the area of the figure bounded by the graphs of the functions: $$ y=\frac{1}{1+\cos x}, y=0, x=\frac{\pi}{2}, x=-\frac{\pi}{2} $$
## Solution $$ \begin{aligned} S= & \int_{-\pi / 2}^{\pi / 2} \frac{1}{1+\cos x} d x= \\ & =\int_{-\pi / 2}^{\pi / 2} \frac{1}{2 \cos ^{2} \frac{x}{2}} d x= \\ & =\int_{-\pi / 2}^{\pi / 2} \frac{1}{\cos ^{2} \frac{x}{2}} d\left(\frac{x}{2}\right)= \\ & =\left.\operatorname{tg}_{\frac{1}{2}}\right|_{-\pi / 2} ^{\pi / 2}=1-(-1)=2 \end{aligned} $$ ![](https://cdn.mathpix.com/cropped/2024_05_22_aa6951b1e92815ea34b6g-38.jpg?height=934&width=1154&top_left_y=1098&top_left_x=751) Source — «http://pluspi.org/wiki/index.php/\�\�\�\�\�\�\�\�\�\�\�\� \%D0\%9A\%D1\%83\%D0\%B7\%D0\%BD\%D0\%B5\%D1\%86\%D0\%BE\%D0\%B2_\%D0\%98\%D0\%BD $\% \mathrm{D} 1 \% 82 \% \mathrm{D} 0 \% \mathrm{~B} 5 \% \mathrm{D} 0 \% \mathrm{~B} 3 \% \mathrm{D} 1 \% 80 \% \mathrm{D} 0 \% \mathrm{~B} 0 \% \mathrm{D} 0 \% \mathrm{BB} \% \mathrm{D} 1 \% 8 \mathrm{~B}+14-20$ » Categories: Kuznetsov Problem Book Integrals Problem 14 | Integrals - Last edited: 08:08, June 11, 2010. - Content is available under CC-BY-SA 3.0. Created by GeeTeatoo ## Problem Kuznetsov Integrals 14-21 ## Material from PlusPi
2
Calculus
math-word-problem
Yes
Yes
olympiads
false
## Task Condition Calculate the area of the figure bounded by the graphs of the functions: $$ x=(y-2)^{3}, x=4 y-8 $$
## Solution $$ \begin{aligned} & (y-2)^{3}=4(y-2) \\ & (y-2)\left[4-(y-2)^{2}\right]=0 \\ & \begin{array}{l} 4-y^{2}+4 y-4=0 \\ y(y-4)=0 \end{array} \\ & \frac{S}{2}=\int_{2}^{4}(4 y-8) d y-\int_{2}^{4}(y-3)^{3} d y= \\ & =\left.2 y^{2}\right|_{4} ^{2}-\left.8 y\right|_{4} ^{2}-\int_{2}^{4}\left(y^{3}-6 y^{2}+12 y-8\right) d y= \\ & =32-8-32+16-\left(\left.\frac{y^{4}}{4}\right|_{4} ^{2}-\left.6 \frac{y^{3}}{3}\right|_{4} ^{2}+\left.6 y^{2}\right|_{4} ^{2}-\left.8 y\right|_{4} ^{2}\right)= \\ & =8-\left(\frac{256}{4}-4-128+16+96-24-32+16\right)=4 \\ & S=2 \cdot \frac{S}{2}=8 \end{aligned} $$ ![](https://cdn.mathpix.com/cropped/2024_05_22_aa6951b1e92815ea34b6g-40.jpg?height=446&width=1371&top_left_y=1065&top_left_x=571) Source — «http://pluspi.org/wiki/index.php/\�\�\�\�\�\�\�\�\�\�\�\� \%D0\%9A\%D1\%83\%D0\%B7\%D0\%BD\%D0\%B5\%D1\%86\%D0\%BE\%D0\%B2_\%D0\%98\%D0\%BD $\% \mathrm{D} 1 \% 82 \% \mathrm{D} 0 \% \mathrm{~B} \% \mathrm{D} 0 \% \mathrm{~B} 3 \% \mathrm{D} 1 \% 80 \% \mathrm{D} 0 \% \mathrm{~B} 0 \% \mathrm{D} 0 \% \mathrm{BB} \% \mathrm{D} 1 \% 8 \mathrm{~B}+14-21$ » Categories: Kuznetsov's Problem Book Integrals Problem 14 | Integrals Ukrainian Banner Network - Last edited on this page: 08:22, 11 June 2010. - Content is available under CC-BY-SA 3.0. Created by GeeTeatoo ## Problem Kuznetsov Integrals 14-22 ## Material from Plusi
8
Calculus
math-word-problem
Yes
Yes
olympiads
false
## Task Condition Calculate the area of the figure bounded by the graphs of the functions: $$ x=4-y^{2}, x=y^{2}-2 y $$
## Solution Let's find the limits of integration: $$ \begin{aligned} & \left(y^{2}-2 y\right)-\left(4-y^{2}\right)=0 \\ & 2 y^{2}-2 y-4=0 \\ & y^{2}-y-2=0 \end{aligned} $$ ![](https://cdn.mathpix.com/cropped/2024_05_22_aa6951b1e92815ea34b6g-45.jpg?height=1060&width=1105&top_left_y=952&top_left_x=815) Then the area of the figure will be: $$ \begin{aligned} & S=\int_{-1}^{2}\left(4-y^{2}\right)-\left(y^{2}-2 y\right) d y= \\ & =\int_{-1}^{2}\left(-2 y^{2}+2 y+4\right) d y= \end{aligned} $$ $$ \begin{aligned} & =\left.\left(-2 \frac{y^{3}}{3}+2 \frac{y^{2}}{2}+4 y\right)\right|_{-1} ^{2}= \\ & =\left(-2 \frac{8}{3}+4+8\right)-\left(2 \frac{1}{3}+1-4\right)=-\frac{16}{3}+4+8-\frac{2}{3}-1+4=9 \end{aligned} $$ Source — «http://pluspi.org/wiki/index.php/\�\�\�\�\�\�\�\�\�\�\�\� \%D0\%9A\%D1\%83\%D0\%B7\%D0\%BD\%D0\%B5\%D1\%86\%D0\%BE\%D0\%B2_\%D0\%98\%D0\%BD $\% \mathrm{D} 1 \% 84 \% \mathrm{D} 0 \% \mathrm{~B} 5 \% \mathrm{D} 0 \% \mathrm{~B} 3 \% \mathrm{D} 1 \% 80 \% \mathrm{D} 0 \% \mathrm{~B} 0 \% \mathrm{D} 0 \% \mathrm{BB} \% \mathrm{D} 1 \% 8 \mathrm{~B}+14-24$ » Categories: Kuznetsov's Problem Book Integrals Problem 14 | Integrals - Last edited on this page: 10:09, 11 June 2010. - Content is available under CC-BY-SA 3.0. Created by GeeTeatoo ## Problem Kuznetsov Integrals $14-25$ ## Material from PlusPi
9
Calculus
math-word-problem
Yes
Yes
olympiads
false
## Problem Statement Calculate the area of the figure bounded by the graphs of the functions: $$ x=\frac{1}{y \sqrt{1+\ln y}}, x=0, y=1, y=e^{3} $$
## Solution The desired area $S$ is: $S=\int_{1}^{e^{3}} \frac{1}{y \sqrt{\ln y+1}} d y$ We make a substitution of variables: $t=\ln y$, hence $d t=\frac{d y}{y}$ When $t=\ln 1 \Rightarrow t=0$ and when $t=\ln e^{3} \Rightarrow t=3$ Then we get ![](https://cdn.mathpix.com/cropped/2024_05_22_aa6951b1e92815ea34b6g-47.jpg?height=1357&width=1168&top_left_y=989&top_left_x=752) $$ \begin{aligned} & S=\int_{1}^{e^{3}} \frac{1}{y \sqrt{\ln y+1}} d y= \\ & =\int_{0}^{3} \frac{1}{\sqrt{t+1}} d t=\left.2 \sqrt{1+t}\right|_{0} ^{3}=2 \sqrt{4}-2 \sqrt{1}=2 \end{aligned} $$ Source — «http://pluspi.org/wiki/index.php/\�\�\�\�\�\�\�\�\�\�\�\� \%D0\%9A\%D1\%83\%D0\%B7\%D0\%BD\%D0\%B5\%D1\%86\%D0\%BE\%D0\%B2_\%D0\%98\%D0\%BD $\% \mathrm{D} 1 \% 82 \% \mathrm{D} 0 \% \mathrm{~B} \% \mathrm{D} 0 \% \mathrm{~B} 3 \% \mathrm{D} 1 \% 80 \% \mathrm{D} 0 \% \mathrm{~B} 0 \% \mathrm{D} 0 \% \mathrm{BB} \% \mathrm{D} 1 \% 8 \mathrm{~B}+14-25$ » Categories: Kuznetsov's Problem Book Integrals Problem 14 | Integrals Ukrainian Banner Network - Last edited on this page: 10:36, 11 June 2010. - Content is available under CC-BY-SA 3.0. Created by GeeTeatoo ## Problem Kuznetsov Integrals 14-26 ## Material from PlusPi
2
Calculus
math-word-problem
Yes
Yes
olympiads
false
## Task Condition Calculate the area of the figure bounded by the graphs of the functions: $$ x=4-(y-1)^{2}, x=y^{2}-4 y+3 $$
## Solution Find the ordinates of the points of intersection of the graphs of the functions $x=4-(y-1)^{2}$ , $x=y^{2}-4 y+3:$ $$ 4-(y-1)^{2}=y^{2}-4 y+3 $$ ![](https://cdn.mathpix.com/cropped/2024_05_22_aa6951b1e92815ea34b6g-59.jpg?height=1008&width=1013&top_left_y=941&top_left_x=927) $$ \begin{aligned} & 4-y^{2}+2 y-1=y^{2}-4 y+3 \\ & 2 y^{2}-6 y=0 \\ & 2 y(y-3)=0 \\ & y=0, y=3 \end{aligned} $$ Calculate the area: $$ \begin{aligned} & S=\int_{0}^{3}\left(\left(4-(y-1)^{2}\right)-\left(y^{2}-4 y+3\right)\right) d y= \\ & =\int_{0}^{3}\left(4-y^{2}+2 y-1-y^{2}+4 y-3\right) d y= \end{aligned} $$ $$ \begin{aligned} & =\int_{0}^{3}\left(-2 y^{2}+6 y\right) d y=\frac{-2 y^{3}}{3}+\left.3 y^{2}\right|_{0} ^{3}= \\ & =\left(\frac{-2 \cdot 3^{3}}{3}+3 \cdot 3^{2}\right)-\left(\frac{-2 \cdot 0^{3}}{3}+3 \cdot 0^{2}\right)= \\ & =(-18+27)-(0+0)=9 \end{aligned} $$ Source — «http://pluspi.org/wiki/index.php/\�\�\�\�\�\�\�\�\�\�\�\� \%D0\%9A\%D1\%83\%D0\%B7\%D0\%BD\%D0\%B5\%D1\%86\%D0\%BE\%D0\%B2_\%D0\%98\%D0\%BD $\% \mathrm{D} 1 \% 84 \% \mathrm{D} 0 \% \mathrm{~B} 5 \% \mathrm{D} 0 \% \mathrm{~B} 3 \% \mathrm{D} 1 \% 80 \% \mathrm{D} 0 \% \mathrm{~B} 0 \% \mathrm{D} 0 \% \mathrm{BB} \% \mathrm{D} 1 \% 8 \mathrm{~B}+14-31$ » Categories: Kuznetsov's Problem Book Integrals Problem 14 | Integrals Ukrainian Banner Network - Last edited on this page: 08:28, 10 June 2010. - Content is available under CC-BY-SA 3.0.
9
Algebra
math-word-problem
Yes
Yes
olympiads
false
## Problem Statement Calculate the lengths of the arcs of the curves given by the parametric equations. $$ \begin{aligned} & \left\{\begin{array}{l} x=5(t-\sin t) \\ y=5(1-\cos t) \end{array}\right. \\ & 0 \leq t \leq \pi \end{aligned} $$
## Solution Let's find the derivatives with respect to $t$: $$ \begin{aligned} & x_{t}^{\prime}=5(1-\cos t) ; \quad y_{t}^{\prime}=5 \sin t \\ & L=5 \int_{0}^{\pi} \sqrt{(1-\cos t)^{2}+\sin ^{2} t} d t=5 \int_{0}^{\pi} \sqrt{1-2 \cos t+\cos ^{2} t+\sin ^{2} t} d t= \\ & =5 \int_{0}^{\pi} \sqrt{2-2 \cos t} d t=5 \int_{0}^{\pi} \sqrt{4 \sin ^{2}} \frac{t}{2} d t=10 \int_{0}^{\pi} \sin \frac{t}{2} d t=-\left.20 \cos \frac{t}{2}\right|_{0} ^{\pi}=20 \end{aligned} $$ Source — "http://pluspi.org/wiki/index.php/%D0%9A%D1%83%D0%B7%D0%BD%D0%B5%D1%86%D0%BE%D0%B2_%D0%98%D0%BD%D1%82%D0%B5%D0%B3%D1%80%D0%B0%D0%BB%D1%8B_18-1" Categories: Kuznetsov's Problem Book Integrals Problem 18 | Integrals - Last edited on this page: 20:47, 9 May 2009. - Content is available under CC-BY-SA 3.0. Created by GeeTeatoo ## Problem Kuznetsov Integrals 18-2 ## Material from PlusPi
20
Calculus
math-word-problem
Yes
Yes
olympiads
false
## Problem Statement Calculate the lengths of the arcs of the curves given by the parametric equations. $$ \begin{aligned} & \left\{\begin{array}{l} x=3(2 \cos t-\cos 2 t) \\ y=3(2 \sin t-\sin 2 t) \end{array}\right. \\ & 0 \leq t \leq 2 \pi \end{aligned} $$
## Solution The length of the arc of a curve defined by parametric equations is determined by the formula $$ L=\int_{t_{1}}^{t_{2}} \sqrt{\left(x^{\prime}(t)\right)^{2}+\left(y^{\prime}(t)\right)^{2}} d t $$ Let's find the derivatives with respect to $t$ for the given curve: $$ \begin{aligned} & x=3(2 \cos t-\cos 2 t) ; x^{\prime}(t)=3(-2 \sin t+2 \sin 2 t)=6(\sin 2 t-\sin t) \\ & y=3(2 \sin t-\sin 2 t) ; y^{\prime}(t)=3(2 \cos t-2 \cos 2 t)=6(\cos t-\cos 2 t) \end{aligned} $$ Then, using the above formula, we get: $$ \begin{aligned} L & =\int_{0}^{2 \pi} \sqrt{(6(\sin 2 t-\sin t))^{2}+(6(\cos t-\cos 2 t))^{2}} d t= \\ & =\int_{0}^{2 \pi} 6 \sqrt{\sin ^{2} 2 t-2 \sin 2 t \sin t+\sin ^{2} t+\cos ^{2} t-2 \cos 2 t \cos t+\cos ^{2} 2 t} d t= \\ & =\int_{0}^{2 \pi} 6 \sqrt{1-2 \sin 2 t \sin t+1-2 \cos 2 t \cos t} d t= \\ & =\int_{0}^{2 \pi} 6 \sqrt{2} \sqrt{1-\sin 2 t \sin t-\cos 2 t \cos t} d t= \\ & =\int_{0}^{2 \pi} 6 \sqrt{2} \sqrt{1-\sin t \cos t \sin t-\left(1-\sin ^{2} t\right) \cos t} d t= \\ & =\int_{0}^{2 \pi} 6 \sqrt{2} \sqrt{1-\sin ^{2} t \cos t-\cos t+\sin ^{2} t \cos t} d t= \\ & =\int_{0}^{2 \pi} 6 \sqrt{2} \sqrt{1-\cos t} d t=\int_{0}^{2 \pi} 6 \sqrt{2} \sqrt{2} \sin ^{2} \frac{t}{2} d t= \\ & =\int_{0}^{2 \pi} 12 \sin \frac{t}{2} d t=\int_{0}^{2 \pi} 12 \cdot 2 \sin \frac{t}{2} d\left(\frac{t}{2}\right)=\left.24\left(-\cos \frac{t}{2}\right)\right|_{0} ^{2 \pi}=-24(\cos \pi-\cos 0)=-24(-1-1)=48 \end{aligned} $$ Source — «http://pluspi.org/wiki/index.php/\�\�\�\�\�\�\�\�\�\�\�\�_\�\�\�\�\�\� \%D0\%BD\%D0\%B5\%D1\%86\%D0\%BE\%D0\%B2_\%D0\%98\%D0\%BD\%D1\%82\%D0\%B5\%D0\%B3\%D1\%80\%D0\%B0\%D0\%BB $\%$ D1\%8B_18-2» Categories: Kuznetsov's Problem Book Integrals Problem 18 | Integrals | Problems for Checking - Last modified: 13:27, 22 May 2010. - Content is available under CC-BY-SA 3.0. Created by GeeTeatoo ## Problem Kuznetsov Integrals 18-3 ## Material from Plusi
48
Calculus
math-word-problem
Yes
Yes
olympiads
false
## Problem Statement Calculate the lengths of the arcs of the curves given by the parametric equations. $$ \begin{aligned} & \left\{\begin{array}{l} x=10 \cos ^{3} t \\ y=10 \sin ^{3} t \end{array}\right. \\ & 0 \leq t \leq \frac{\pi}{2} \end{aligned} $$
## Solution The length of the arc of a curve defined by parametric equations is determined by the formula $$ L=\int_{t_{1}}^{t_{2}} \sqrt{\left(x_{t}^{\prime}\right)^{2}+\left(y_{t}^{\prime}\right)^{2}} d t $$ From the equations of the curve, we find: $$ \begin{aligned} & x=10 \cos ^{3}(t) ; x_{t}^{\prime}=10 \cdot 3 \cos ^{2} t(\cos t)^{\prime}=-30 \cos ^{2} t \sin t \\ & y=10 \sin ^{3}(t) ; y_{t}^{\prime}=10 \cdot 3 \sin ^{2} t(\sin t)^{\prime}=30 \sin ^{2} t \cos t \end{aligned} $$ We obtain: $$ \begin{aligned} L & =\int_{0}^{\pi / 2} \sqrt{\left(-30 \cos ^{2} t \sin t\right)^{2}+\left(30 \sin ^{2} t \cos t\right)^{2}} d t= \\ & =30 \int_{0}^{\pi / 2} \sqrt{\cos ^{4} t \sin ^{2} t+\sin ^{4} t \cos ^{2} t} d t= \\ & =30 \int_{0}^{\pi / 2} \sqrt{\cos ^{2} t \sin ^{2} t} \cdot \sqrt{\sin ^{2} t+\cos ^{2} t} d t= \\ & =30 \int_{0}^{\pi / 2} \sqrt{\cos ^{2} t \sin ^{2} t} \cdot \sqrt{1} d t=\left|\begin{array}{c} 0 \leq t \leq \pi / 2 ; \\ \sin (t) \geq 0 \\ \cos (t) \geq 0 \end{array}\right|= \\ & =30 \int_{0}^{\pi / 2} \cos t \sin t d t=\frac{30}{4} \int_{0}^{\pi / 2} \sin (2 t) d(2 t)= \\ & =-\left.\frac{15}{2} \cdot \cos (2 t)\right|_{0} ^{\pi / 2}=-\frac{15}{2} \cdot(\cos \pi-\cos 0)=-\frac{15}{2} \cdot(-1-1)=15 \end{aligned} $$ Source — "http://pluspi.org/wiki/index.php/%D0%9A%D1%83%D0%B7%D0%BD%D0%B5%D1%86%D0%BE%D0%B2_%D0%98%D0%BD%D1%82%D0%B5%D0%B3%D1%80%D0%B0%D0%BB%D1%8B_18-5" Categories: Kuznetsov Problem Book Integrals Problem 18 | Integrals - Last modified: 06:55, 21 May 2010. - Content is available under CC-BY-SA 3.0. Created by GeeTeatoo ## Problem Kuznetsov Integrals 18-6 ## Material from PlusPi
15
Calculus
math-word-problem
Yes
Yes
olympiads
false
## Problem Statement Calculate the lengths of the arcs of the curves given by the parametric equations. $$ \begin{aligned} & \left\{\begin{array}{l} x=3(t-\sin t) \\ y=3(1-\cos t) \end{array}\right. \\ & \pi \leq t \leq 2 \pi \end{aligned} $$
## Solution The length of the arc of a curve defined by parametric equations is determined by the formula $$ L=\int_{t_{1}}^{t_{2}} \sqrt{\left(x_{t}^{\prime}\right)^{2}+\left(y_{t}^{\prime}\right)^{2}} d t $$ Let's find the derivatives with respect to $t$ for the given curve: $$ \begin{aligned} & x=3(t-\sin t) ; x_{t}^{\prime}=3(1-\cos t) \\ & y=3(1-\cos t) ; y_{t}^{\prime}=3 \sin t \end{aligned} $$ We get: $$ \begin{aligned} L & =\int_{\pi}^{2 \pi} \sqrt{9(1-\cos t)^{2}+9 \sin ^{2} t} d t= \\ & =3 \int_{\pi}^{2 \pi} \sqrt{(1-\cos t)^{2}+\sin ^{2} t} d t= \\ & =3 \int_{\pi}^{2 \pi} \sqrt{1-2 \cos t+\cos ^{2} t+\sin ^{2} t} d t= \\ & =3 \int_{\pi}^{2 \pi} \sqrt{2(1-\cos t)} d t=\left|\begin{array}{c} \pi \leq t \leq 2 \pi ; \pi / 2 \leq t / 2 \leq \pi ; \sin (t / 2) \geq 0 \\ \sqrt{2(1-\cos t)}=\sqrt{4 \sin ^{2}(t / 2)}=2 \sin (t / 2) \end{array}\right|= \\ & =3 \int_{\pi}^{2 \pi} 2 \sin (t / 2) d t=6 \int_{\pi}^{2 \pi} \sin (t / 2) d t=-\left.12 \cos (t / 2)\right|_{\pi} ^{2 \pi}=-12 \cdot(-1-0)=12 \end{aligned} $$ Source — «http://pluspi.org/wiki/index.php/\�\�\�\�\�\�\�\�\�\�\�\� \%D0\%9A\%D1\%83\%D0\%B7\%D0\%BD\%D0\%B5\%D1\%86\%D0\%BE\%D0\%B2_\%D0\%98\%D0\%BD\%D1\%82 \%D0\%B5\%D0\%B3\%D1\%80\%D0\%B0\%D0\%BB\%D1\%8B_18-7» Categories: Kuznetsov's Problem Book Integrals Problem 18 | Integrals Ukrainian Banner Network - Last modified on this page: 05:19, 21 May 2010. - Content is available under CC-BY-SA 3.0. Created by GeeTeatoo ## Problem Kuznetsov Integrals 18-8 ## Material from PlusPi
12
Calculus
math-word-problem
Yes
Yes
olympiads
false
## Problem Statement Calculate the lengths of the arcs of the curves given by the parametric equations. $$ \begin{aligned} & \left\{\begin{array}{l} x=8 \cos ^{3} t \\ y=8 \sin ^{3} t \end{array}\right. \\ & 0 \leq t \leq \frac{\pi}{6} \end{aligned} $$
## Solution The length of the arc of a curve defined by parametric equations is determined by the formula $$ L=\int_{t_{1}}^{t_{2}} \sqrt{\left(x_{t}^{\prime}\right)^{2}+\left(y_{t}^{\prime}\right)^{2}} d t $$ From the equations of the curve, we find: $$ \begin{aligned} & x=8 \cos ^{3} t ; x_{t}^{\prime}=8 \cdot 3 \cos ^{2} t(\cos t)^{\prime}=-24 \cos ^{2} t \sin t \\ & y=8 \sin ^{3} t ; y_{t}^{\prime}=8 \cdot 3 \sin ^{2} t(\sin t)^{\prime}=24 \sin ^{2} t \cos t \end{aligned} $$ We obtain: $$ \begin{aligned} L & =\int_{0}^{\pi / 6} \sqrt{\left(-24 \cos ^{2} t \sin t\right)^{2}+\left(24 \sin ^{2} t \cos t\right)^{2}} d t= \\ & =24 \int_{0}^{\pi / 6} \sqrt{\cos ^{4} t \sin ^{2} t+\sin ^{4} t \cos ^{2} t} d t= \\ & =24 \int_{0}^{\pi / 6} \sqrt{\cos ^{2} t \sin ^{2} t} \cdot \sqrt{\sin ^{2} t+\cos ^{2} t} d t= \\ & =24 \int_{0}^{\pi / 6} \sqrt{\cos ^{2} t \sin ^{2} t} \cdot \sqrt{1} d t=\left|\begin{array}{c} 0 \leq t \leq \pi / 6 \\ \sin (t) \geq 0 \\ \cos (t) \geq 0 \end{array}\right|= \\ & =24 \int_{0}^{\pi / 6} \cos t \sin t \, dt=\frac{24}{4} \int_{0}^{\pi / 6} \sin (2 t) d(2 t)= \\ & =-\left.6 \cdot \cos (2 t)\right|_{0} ^{\pi / 6}=-6 \cdot\left(\cos \frac{\pi}{3}-\cos 0\right)=-6 \cdot\left(\frac{1}{2}-1\right)=3 \end{aligned} $$ Source — «http://pluspi.org/wiki/index.php/%D0%97%D0%B0%D0%B4%D0%B0%D1%87%D0%BD%D0%B8%D0%BA_%D0%9A%D1%83%D0%B7%D0%BD%D0%B5%D1%86%D0%BE%D0%B2_%D0%98%D0%BD%D1%82%D0%B5%D0%B3%D1%80%D0%B0%D0%BB%D1%8B_%D0%97%D0%B0%D0%B4%D0%B0%D1%87%D0%B0_18-17» Categories: Kuznetsov Problem Book Integrals Problem 18 | Integrals - Last modified: 20:36, 29 May 2010. - Content is available under CC-BY-SA 3.0. Created by GeeTeatoo ## Problem Kuznetsov Integrals 18-18 ## Material from PlusPi
3
Calculus
math-word-problem
Yes
Yes
olympiads
false
## Problem Statement Calculate the lengths of the arcs of the curves given by the parametric equations. $$ \begin{aligned} & \left\{\begin{array}{l} x=4(2 \cos t-\cos 2 t) \\ y=4(2 \sin t-\sin 2 t) \end{array}\right. \\ & 0 \leq t \leq \pi \end{aligned} $$
## Solution The length of the arc of a curve defined by parametric equations is determined by the formula $$ L=\int_{t_{1}}^{t_{2}} \sqrt{\left(x^{\prime}(t)\right)^{2}+\left(y^{\prime}(t)\right)^{2}} d t $$ Let's find the derivatives with respect to $t$ for the given curve: $$ \begin{aligned} & x=4(2 \cos t-\cos 2 t) ; x^{\prime}(t)=4(-2 \sin t+2 \sin 2 t)=8(\sin 2 t-\sin t) \\ & y=4(2 \sin t-\sin 2 t) ; y^{\prime}(t)=4(2 \cos t-2 \cos 2 t)=8(\cos t-\cos 2 t) \end{aligned} $$ Then, using the above formula, we get: $$ \begin{aligned} L & =\int_{0}^{\pi} \sqrt{(8(\sin 2 t-\sin t))^{2}+(8(\cos t-\cos 2 t))^{2}} d t= \\ & =\int_{0}^{\pi} 8 \sqrt{\sin ^{2} 2 t-2 \sin 2 t \sin t+\sin ^{2} t+\cos ^{2} t-2 \cos 2 t \cos t+\cos ^{2} 2 t} d t= \\ & =\int_{0}^{\pi} 8 \sqrt{1-2 \sin 2 t \sin t+1-2 \cos 2 t \cos t} d t= \\ & =\int_{0}^{\pi} 8 \sqrt{2} \sqrt{1-\sin 2 t \sin t-\cos 2 t \cos t} d t= \\ & =\int_{0}^{\pi} 8 \sqrt{2} \sqrt{1-\sin t \cos t \sin t-\left(1-\sin ^{2} t\right) \cos t} d t= \\ & =\int_{0}^{\pi} 8 \sqrt{2} \sqrt{1-\sin { }^{2} t \cos t-\cos t+\sin ^{2} t \cos t} d t= \\ & =\int_{0}^{\pi} 8 \sqrt{2} \sqrt{1-\cos t} d t=\int_{0}^{\pi} 8 \sqrt{2} \sqrt{2} \sin ^{2} \frac{t}{2} d t= \\ & =\int_{0}^{\pi} 16 \sin \frac{t}{2} d t=\int_{0}^{\pi} 16 \cdot 2 \sin \frac{t}{2} d\left(\frac{t}{2}\right)=\left.32\left(-\cos \frac{t}{2}\right)\right|_{0} ^{\pi}=-32\left(\cos \frac{\pi}{2}-\cos 0\right)=-32(0-1)=32 \end{aligned} $$ Source — "http://pluspi.org/wiki/index.php/%D0%97%D0%B0%D0%B4%D0%B0%D1%87%D0%BD%D0%B8%D0%BA_%D0%9A%D1%83%D0%B7%D0%BD%D0%B5%D1%86%D0%BE%D0%B2%D0%B0_%D0%98%D0%BD%D1%82%D0%B5%D0%B3%D1%80%D0%B0%D0%BB%D1%8B_%D0%BD%D0%B5%D1%86%D0%BE%D0%B2_%D0%98%D0%BD%D1%82%D0%B5%D0%B3%D1%80%D0%B0%D0%BB%D1%8B_18-26" Categories: Kuznetsov's Problem Book Integrals Problem 18 | Integrals - Last modified: 13:58, 22 May 2010. - Content is available under CC-BY-SA 3.0. Created by GeeTeatoo ## Problem Kuznetsov Integrals 18-27 ## Material from Pluspi
32
Calculus
math-word-problem
Yes
Yes
olympiads
false
## Problem Statement Based on the definition of the derivative, find $f^{\prime}(0)$: $$ f(x)=\left\{\begin{array}{c} e^{x \sin 5 x}-1, x \neq 0 \\ 0, x=0 \end{array}\right. $$
## Solution By definition, the derivative at the point $x=0$: $f^{\prime}(0)=\lim _{\Delta x \rightarrow 0} \frac{f(0+\Delta x)-f(0)}{\Delta x}$ Based on the definition, we find: $$ \begin{aligned} & f^{\prime}(0)=\lim _{\Delta x \rightarrow 0} \frac{f(0+\Delta x)-f(0)}{\Delta x}=\lim _{\Delta x \rightarrow 0} \frac{e^{\Delta x \sin 5 \Delta x}-1-0}{\Delta x}= \\ & =\lim _{\Delta x \rightarrow 0} \frac{e^{\Delta x \sin 5 \Delta x}-1}{\Delta x}= \end{aligned} $$ Using the substitution of equivalent infinitesimals: $e^{\Delta x \sin 5 \Delta x}-1 \sim \Delta x \sin 5 \Delta x$, as $\Delta x \rightarrow 0(\Delta x \sin 5 \Delta x \rightarrow 0)$ We get: $=\lim _{\Delta x \rightarrow 0} \frac{\Delta x \sin 5 \Delta x}{\Delta x}=\lim _{\Delta x \rightarrow 0} \sin 5 \Delta x=\sin 0=0$ Thus, $f^{\prime}(0)=0$ ## Problem Kuznetsov Differentiation 2-20
0
Calculus
math-word-problem
Yes
Yes
olympiads
false
## Problem Statement Find the cosine of the angle between vectors $\overrightarrow{A B}$ and $\overrightarrow{A C}$. $A(0 ; 0 ; 4), B(-3 ;-6 ; 1), C(-5 ;-10 ;-1)$
## Solution Let's find $\overrightarrow{A B}$ and $\overrightarrow{A C}$: $\overrightarrow{A B}=(-3-0 ;-6-0 ; 1-4)=(-3 ;-6 ;-3)$ $\overrightarrow{A C}=(-5-0 ;-10-0 ;-1-4)=(-5 ;-10 ;-5)$ We find the cosine of the angle $\phi_{\text {between vectors }} \overrightarrow{A B}$ and $\overrightarrow{A C}$: $\cos (\overrightarrow{A B, \overrightarrow{A C}})=\frac{(\overrightarrow{A B}, \overrightarrow{A C})}{|\overrightarrow{A B}| \cdot|\overrightarrow{A C}|}=$ $=\frac{(-3) \cdot(-5)+(-6) \cdot(-10)+(-3) \cdot(-5)}{\sqrt{(-3)^{2}+(-6)^{2}+(-3)^{2}} \cdot \sqrt{(-5)^{2}+(-10)^{2}+(-5)^{2}}}=$ $=\frac{15+60+15}{\sqrt{9+36+9} \cdot \sqrt{25+100+25}}=\frac{90}{\sqrt{54} \cdot \sqrt{150}}=1$ Thus, the cosine of the angle: $\cos (\overrightarrow{A B, A C})=1$ and consequently the angle $\widehat{A B, \overrightarrow{A C}}=0$ ## Problem Kuznetsov Analytic Geometry 4-14
1
Algebra
math-word-problem
Yes
Yes
olympiads
false
## Problem Statement Calculate the volume of the tetrahedron with vertices at points \( A_{1}, A_{2}, A_{3}, A_{4} \) and its height dropped from vertex \( A_{4} \) to the face \( A_{1} A_{2} A_{3} \). \( A_{1}(2 ; 3 ; 1) \) \( A_{2}(4 ; 1 ;-2) \) \( A_{3}(6 ; 3 ; 7) \) \( A_{4}(7 ; 5 ;-3) \)
## Solution From vertex $A_{1}$, we draw vectors: $$ \begin{aligned} & \overrightarrow{A_{1} A_{2}}=\{4-2 ; 1-3 ;-2-1\}=\{2 ;-2 ;-3\} \\ & \vec{A}_{1} A_{3}=\{6-2 ; 3-3 ; 7-1\}=\{4 ; 0 ; 6\} \\ & \overrightarrow{A_{1} A_{4}}=\{7-2 ; 5-3 ;-3-1\}=\{5 ; 2 ;-4\} \end{aligned} $$ According to the geometric meaning of the mixed product, we have: $$ V_{A_{1} A_{2} A_{3} A_{4}}=\frac{1}{6} \cdot\left|\left(\overrightarrow{A_{1} A_{2}}, \overrightarrow{A_{1} A_{3}}, \overrightarrow{A_{1} A_{4}}\right)\right| $$ We compute the mixed product: $$ \begin{aligned} & \left(\overrightarrow{A_{1} A_{2}}, \overrightarrow{A_{1} A_{3}}, \overrightarrow{A_{1} A_{4}}\right)=\left|\begin{array}{ccc} 2 & -2 & -3 \\ 4 & 0 & 6 \\ 5 & 2 & -4 \end{array}\right|= \\ & =2 \cdot\left|\begin{array}{cc} 0 & 6 \\ 2 & -4 \end{array}\right|-(-2) \cdot\left|\begin{array}{cc} 4 & 6 \\ 5 & -4 \end{array}\right|+(-3) \cdot\left|\begin{array}{cc} 4 & 0 \\ 5 & 2 \end{array}\right|= \\ & =2 \cdot(-12)+2 \cdot(-46)-3 \cdot 8=-24-92-24=-140 \end{aligned} $$ We obtain: $$ V_{A_{1} A_{2} A_{3} A_{4}}=\frac{1}{6} \cdot|-140|=\frac{70}{3}=23 \frac{1}{3} $$ Since $$ V_{A_{1} A_{2} A_{3} A_{4}}=\frac{1}{3} \cdot S_{A_{1} A_{2} A_{3}} \cdot h \Rightarrow h=\frac{3 V_{A_{1} A_{2} A_{3} A_{4}}}{S_{A_{1} A_{2} A_{3}}} $$ According to the geometric meaning of the vector product: $$ S_{A_{1} A_{2} A_{3}}=\frac{1}{2} \cdot\left|\overrightarrow{A_{1} A_{2}} \times \overrightarrow{A_{1} A_{3}}\right| $$ We compute the vector product: $A_{1} A_{2} \times A_{1} A_{3}=\left|\begin{array}{ccc}i & j & k \\ 2 & -2 & -3 \\ 4 & 0 & 6\end{array}\right|=i \cdot\left|\begin{array}{cc}-2 & -3 \\ 0 & 6\end{array}\right|-j\left|\begin{array}{cc}2 & -3 \\ 4 & 6\end{array}\right|+k \cdot\left|\begin{array}{cc}2 & -2 \\ 4 & 0\end{array}\right|=$ $=i \cdot(-12)-j \cdot 24+k \cdot 8=\{-12 ;-24 ; 8\}$ We obtain: $S_{A_{1} A_{2} A_{3}}=\frac{1}{2} \cdot \sqrt{(-12)^{2}+(-24)^{2}+8^{2}}=\frac{1}{2} \cdot \sqrt{784}=\frac{28}{2}=14$ Then $h=\frac{3 V_{A_{1} A_{2} A_{3} A_{4}}}{S_{A_{1} A_{2} A_{3}}}=\frac{3 \cdot \frac{70}{3}}{14}=5$ Volume of the tetrahedron: $23 \frac{1}{3}$ Height: 5 ## Problem Kuznetsov Analytic Geometry 7-14
5
Geometry
math-word-problem
Yes
Yes
olympiads
false
## Problem Statement Let $k$ be the coefficient of similarity transformation with the center at the origin. Is it true that point $A$ belongs to the image of plane $a$? $A(2 ; 3 ;-2)$ $a: 3 x-2 y+4 z-6=0$ $k=-\frac{4}{3}$
## Solution When transforming similarity with the center at the origin of the plane $a: A x+B y+C z+D=0_{\text{and coefficient }} k$ transitions to the plane $a^{\prime}: A x+B y+C z+k \cdot D=0$. We find the image of the plane $a$: $a^{\prime}: 3 x-2 y+4 z+8=0$ Substitute the coordinates of point $A$ into the equation $a^{\prime}$: $3 \cdot 2-2 \cdot 3+4 \cdot(-2)+8=0$ $6-6-8+8=0$ $0=0$ Since $0=0$, point $A$ belongs to the image of the plane $a$. ## Problem Kuznetsov Analytical Geometry 12-14
0
Geometry
math-word-problem
Yes
Yes
olympiads
false
## Problem Statement Find the cosine of the angle between vectors $\overrightarrow{A B}$ and $\overrightarrow{A C}$. $A(1, -2, 3), B(0, -1, 2), C(3, -4, 5)$
## Solution Let's find $\overrightarrow{A B}$ and $\overrightarrow{A C}$: $\overrightarrow{A B}=(0-1 ;-1-(-2) ; 2-3)=(-1 ; 1 ;-1)$ $\overrightarrow{A C}=(3-1 ;-4-(-2) ; 5-3)=(2 ;-2 ; 2)$ We find the cosine of the angle $\phi_{\text {between vectors }} \overrightarrow{A B}$ and $\overrightarrow{A C}$: $$ \begin{aligned} & \cos (\overrightarrow{A B,} \overrightarrow{A C})=\frac{(\overrightarrow{A B}, \overrightarrow{A C})}{|\overrightarrow{A B}| \cdot|\overrightarrow{A C}|}= \\ & =\frac{(-1) \cdot 2+1 \cdot(-2)+(-1) \cdot 2}{\sqrt{(-1)^{2}+1^{2}+(-1)^{2}} \cdot \sqrt{2^{2}+(-2)^{2}+2^{2}}}= \\ & =\frac{-2-2-2}{\sqrt{1+1+1} \cdot \sqrt{4+4+4}}=\frac{-6}{\sqrt{3} \cdot \sqrt{12}}=\frac{-6}{\sqrt{36}}=-1 \end{aligned} $$ Thus, the cosine of the angle: $\cos (\overrightarrow{A B, A C})=-1$ and consequently the angle $\widehat{A B,} \overrightarrow{A C}=\pi$ ## Problem Kuznetsov Analytic Geometry 4-1
-1
Algebra
math-word-problem
Yes
Yes
olympiads
false
## Task Condition Calculate the area of the parallelogram constructed on vectors $a$ and $b$. \[ \begin{aligned} & a=p+2 q \\ & b=3 p-q \\ & |p|=1 \\ & |q|=2 \\ & (\widehat{p, q})=\frac{\pi}{6} \end{aligned} \]
## Solution The area of the parallelogram constructed on vectors $a$ and $b$ is numerically equal to the modulus of their vector product: $$ S=|a \times b| $$ We compute \(a \times b\) using the properties of the vector product: $$ \begin{aligned} & a \times b=(p+2 q) \times(3 p-q)=3 \cdot p \times p-p \times q+2 \cdot 3 \cdot q \times p+2 \cdot(-1) q \times q= \\ & =-1 \cdot p \times q+6 \cdot q \times p=-1 \cdot p \times q-6 \cdot p \times q=(-1-6) \cdot p \times q=-7 \cdot p \times q \end{aligned} $$ $$ \begin{aligned} & S=|a \times b|=|-7 \cdot p \times q|=7 \cdot|p \times q|=7 \cdot|p| \cdot|q| \cdot \sin (\widehat{p, q})= \\ & =7 \cdot 1 \cdot 2 \cdot \sin \frac{\pi}{6}=14 \cdot \sin \frac{\pi}{6}=14 \cdot \frac{1}{2}=7 \end{aligned} $$ Thus, the area of the parallelogram constructed on vectors $a$ and $b$ is 7. ## Problem Kuznetsov Analytic Geometry 5-1
7
Algebra
math-word-problem
Yes
Yes
olympiads
false
## Problem Statement Let $k$ be the coefficient of similarity transformation with the center at the origin. Is it true that point $A$ belongs to the image of plane $a$? $A(4 ; 3 ; 1)$ $a: 3x - 4y + 5z - 6 = 0$ $k = \frac{5}{6}$
## Solution When transforming similarity with the center at the origin of the plane $a: A x+B y+C z+D=0$ and the coefficient $k$, the plane transitions to $a^{\prime}: A x+B y+C z+k \cdot D=0$. We find the image of the plane $a$: $a^{\prime}: 3 x-4 y+5 z-5=0$ Substitute the coordinates of point $A$ into the equation of $a^{\prime}$: $3 \cdot 4-4 \cdot 3+5 \cdot 1-5=0$ $12-12+5-5=0$ $0=0$ Since $0=0$, point $A$ belongs to the image of the plane $a$. ## Problem Kuznetsov Analytical Geometry $12-21$
0
Geometry
math-word-problem
Yes
Yes
olympiads
false
## Problem Statement $$ \lim _{n \rightarrow \infty} \frac{\sqrt{n+2}-\sqrt{n^{2}+2}}{\sqrt[4]{4 n^{4}+1}-\sqrt[3]{n^{4}-1}} $$
## Solution $$ \begin{aligned} & \lim _{n \rightarrow \infty} \frac{\sqrt{n+2}-\sqrt{n^{2}+2}}{\sqrt[4]{4 n^{4}+1}-\sqrt[3]{n^{1}-1}}=\lim _{n \rightarrow \infty} \frac{\frac{1}{n}\left(\sqrt{n+2}-\sqrt{n^{2}+2}\right)}{\frac{1}{n}\left(\sqrt[4]{4 n^{\frac{1}{4}+1}}-\sqrt[3]{n^{4}-1}\right)}= \\ & =\lim _{n \rightarrow \infty} \frac{\sqrt{\frac{1}{n}+\frac{2}{n^{2}}}-\sqrt{1+\frac{2}{n^{2}}}}{\sqrt{4+\frac{1}{n^{4}}}-\sqrt[3]{n-\frac{1}{n^{3}}}}=\left\{\frac{\sqrt{0+0}-\sqrt{1+0}}{\sqrt[4]{4+0}-\sqrt[3]{\infty-0}}=\frac{-1}{-\infty}\right\}=0 \end{aligned} $$ ## Problem Kuznetsov Limits 4-7
0
Calculus
math-word-problem
Yes
Yes
olympiads
false
## Problem Statement Calculate the limit of the function: $$ \lim _{x \rightarrow 0} \frac{(1+x)^{3}-(1+3 x)}{x+x^{5}} $$
## Solution $$ \begin{aligned} & \lim _{x \rightarrow 0} \frac{(1+x)^{3}-(1+3 x)}{x+x^{5}}=\left\{\frac{0}{0}\right\}=\lim _{x \rightarrow 0} \frac{1^{: 5}+3 \cdot 1^{2} \cdot x^{2}+3 \cdot 1 \cdot x^{2}+x^{3}-1-3 x}{x\left(1+x^{4}\right)}= \\ & =\lim _{x \rightarrow 0} \frac{1+3 x+3 x^{2}+x^{3}-1-3 x}{x\left(1+x^{4}\right)}=\lim _{x \rightarrow 0} \frac{3 x^{2}+x^{3}}{x\left(1+x^{4}\right)}= \\ & =\lim _{x \rightarrow 0} \frac{x^{2}(3+x)}{x\left(1+x^{4}\right)}=\lim _{x \rightarrow 0} \frac{x\left(3+x^{3}\right)}{1+x^{4}}=\frac{0(3+0)}{1+0^{4}}=\frac{0}{1}=0 \end{aligned} $$ ## Problem Kuznetsov Limits 10-7
0
Calculus
math-word-problem
Yes
Yes
olympiads
false
## Problem Statement Calculate the limit of the function: $\lim _{x \rightarrow \pi} \frac{\sin ^{2} x-\tan ^{2} x}{(x-\pi)^{4}}$
## Solution $\lim _{x \rightarrow \pi} \frac{\sin ^{2} x-\tan ^{2} x}{(x-\pi)^{4}}=\lim _{x \rightarrow \pi} \frac{\frac{\sin ^{2} x \cdot \cos ^{2} x}{\cos ^{2} x}-\tan ^{2} x}{(x-\pi)^{4}}=$ $=\lim _{x \rightarrow \pi} \frac{\tan ^{2} x \cdot \cos ^{2} x-\tan ^{2} x}{(x-\pi)^{4}}=\lim _{x \rightarrow \pi} \frac{\tan ^{2} x\left(\cos ^{2} x-1\right)}{(x-\pi)^{4}}=$ $=\lim _{x \rightarrow \pi} \frac{\tan ^{2} x\left(-\sin ^{2} x\right)}{(x-\pi)^{4}}=$ Substitution: $x=y+\pi \Rightarrow y=x-\pi$ $x \rightarrow \pi \Rightarrow y \rightarrow 0$ We get: $=\lim _{y \rightarrow 0} \frac{\tan ^{2}(y+\pi)\left(-\sin ^{2}(y+\pi)\right)}{((y+\pi)-\pi)^{4}}=\lim _{y \rightarrow 0} \frac{\tan ^{2} y\left(-(-\sin y)^{2}\right)}{y^{4}}=$ $=\lim _{y \rightarrow 0} \frac{\tan ^{2} y\left(-\sin ^{2} y\right)}{y^{4}}=$ Using the substitution of equivalent infinitesimals: $\sin y \sim y$, as $y \rightarrow 0$ $\tan y \sim y$, as $y \rightarrow 0$ We get: $$ =\lim _{y \rightarrow 0} \frac{y^{2}\left(-y^{2}\right)}{y^{4}}=\lim _{y \rightarrow 0} \frac{-1}{1}=-1 $$ ## Problem Kuznetsov Limits 13-7
-1
Calculus
math-word-problem
Yes
Yes
olympiads
false
## Problem Statement Calculate the limit of the function: $\lim _{x \rightarrow 3} \frac{\sin \left(\sqrt{2 x^{2}-3 x-5}-\sqrt{1+x}\right)}{\ln (x-1)-\ln (x+1)+\ln 2}$
## Solution Substitution: $x=y+3 \Rightarrow y=x-3$ $x \rightarrow 3 \Rightarrow y \rightarrow 0$ We get: $$ \begin{aligned} & \lim _{x \rightarrow 3} \frac{\sin \left(\sqrt{2 x^{2}-3 x-5}-\sqrt{1+x}\right)}{\ln (x-1)-\ln (x+1)+\ln 2}= \\ & =\lim _{y \rightarrow 0} \frac{\sin \left(\sqrt{2(y+3)^{2}-3(y+3)-5}-\sqrt{1+(y+3))}\right.}{\ln ((y+3)-1)-\ln ((y+3)+1)+\ln 2}= \\ & =\lim _{y \rightarrow 0} \frac{\sin \left(\sqrt{2 y^{2}+12 y+18-3 y-9-5}-\sqrt{y+4}\right)}{\ln (y+2)-\ln (y+4)+\ln 2}= \\ & =\lim _{y \rightarrow 0} \frac{\sin \left(\sqrt{2 y^{2}+9 y+4}-\sqrt{y+4}\right)}{\ln \frac{2(y+2)}{y+4}}= \\ & =\lim _{y \rightarrow 0} \frac{\sin \frac{\left(\sqrt{2 y^{2}+9 y+4}-\sqrt{y+4}\right)\left(\sqrt{2 y^{2}+9 y+4}+\sqrt{y+4}\right)}{\sqrt{2 y^{2}+9 y+4}+\sqrt{y+4}}}{\ln \left(1+\frac{y}{y+4}\right)}= \\ & =\lim _{y \rightarrow 0} \frac{\sin \frac{2 y^{2}+9 y+4-(y+4)}{\sqrt{2 y^{2}+9 y+4}+\sqrt{y+4}}}{\ln \left(1+\frac{y}{y+4}\right)}= \\ & =\lim _{y \rightarrow 0} \frac{\sin \frac{2 y^{2}+8 y}{\sqrt{2 y^{2}+9 y+4}+\sqrt{y+4}}}{\ln \left(1+\frac{y}{y+4}\right)}= \end{aligned} $$ Using the substitution of equivalent infinitesimals: $$ \begin{aligned} & \sin \frac{2 y^{2}+8 y}{\sqrt{2 y^{2}+9 y+4}+\sqrt{y+4}} \sim \frac{2 y^{2}+8 y}{\sqrt{2 y^{2}+9 y+4}+\sqrt{y+4}} \\ & \text {, as } \\ & y \rightarrow 0\left(\frac{2 y^{2}+8 y}{\sqrt{2 y^{2}+9 y+4}+\sqrt{y+4}} \rightarrow 0\right) \\ & \ln \left(1+\frac{y}{y+4}\right) \sim \frac{y}{y+4}{ }_{\text {, as }} y \rightarrow 0\left(\frac{y}{y+4} \rightarrow 0\right) \end{aligned} $$ We get: $$ \begin{aligned} & =\lim _{y \rightarrow 0} \frac{\frac{2 y^{2}+8 y}{\sqrt{2 y^{2}+9 y+4}+\sqrt{y+4}}}{\frac{y}{y+4}}= \\ & =\lim _{y \rightarrow 0} \frac{(2 y+8)(y+4)}{\sqrt{2 y^{2}+9 y+4}+\sqrt{y+4}}= \\ & =\frac{(2 \cdot 0+8)(0+4)}{\sqrt{2 \cdot 0^{2}+9 \cdot 0+4}+\sqrt{0+4}}=\frac{8 \cdot 4}{\sqrt{4}+\sqrt{4}}=\frac{8 \cdot 4}{2+2}=8 \end{aligned} $$ ## Problem Kuznetsov Limits 14-7
8
Calculus
math-word-problem
Yes
Yes
olympiads
false
## Problem Statement Calculate the limit of the function: $$ \lim _{x \rightarrow 0}\left(\frac{\ln (1+x)}{6 x}\right)^{\frac{x}{x+2}} $$
## Solution $$ \begin{aligned} & \lim _{x \rightarrow 0}\left(\frac{\ln (1+x)}{6 x}\right)^{\frac{x}{x+2}}=\left(\lim _{x \rightarrow 0} \frac{\ln (1+x)}{6 x}\right)^{\lim _{x \rightarrow 0} \frac{x}{x+2}}= \\ & =\left(\lim _{x \rightarrow 0} \frac{\ln (1+x)}{6 x}\right)^{\frac{0}{0+2}}=\left(\lim _{x \rightarrow 0} \frac{\ln (1+x)}{6 x}\right)^{0}= \end{aligned} $$ Using the substitution of equivalent infinitesimals: $\ln (1+x) \sim x$, as $x \rightarrow 0$ We get: $$ =\left(\lim _{x \rightarrow 0} \frac{x}{6 x}\right)^{0}=\left(\lim _{x \rightarrow 0} \frac{1}{6}\right)^{0}=\left(\frac{1}{6}\right)^{0}=1 $$ ## Problem Kuznetsov Limits 18-7
1
Calculus
math-word-problem
Yes
Yes
olympiads
false
## Problem Statement Calculate the limit of the function: $\lim _{x \rightarrow 3}\left(2-\frac{x}{3}\right)^{\sin (\pi x)}$
## Solution $$ \begin{aligned} & \lim _{x \rightarrow 3}\left(2-\frac{x}{3}\right)^{\sin (\pi x)}=\lim _{x \rightarrow 3}\left(e^{\ln \left(2-\frac{x}{3}\right)}\right)^{\sin (\pi x)}= \\ & =\lim _{x \rightarrow 3} e^{\sin (\pi x) \cdot \ln \left(2-\frac{x}{3}\right)}=\exp \left\{\lim _{x \rightarrow 3} \sin (\pi x) \cdot \ln \left(2-\frac{x}{3}\right)\right\}= \\ & =\exp \left\{\lim _{x \rightarrow 3} \sin (\pi x) \cdot \ln \left(1+\left(1-\frac{x}{3}\right)\right)\right\}= \end{aligned} $$ Using the substitution of equivalent infinitesimals: $$ \ln \left(1+\left(1-\frac{x}{3}\right)\right) \sim 1-\frac{x}{3}, \text { as } \quad x \rightarrow 3\left(1-\frac{x}{3} \rightarrow 0\right) $$ We get: $$ \begin{aligned} & =\exp \left\{\lim _{x \rightarrow 3} \sin (\pi x) \cdot\left(1-\frac{x}{3}\right)\right\}=\exp \left\{\sin (\pi \cdot 3) \cdot\left(1-\frac{3}{3}\right)\right\}= \\ & =\exp \{0\}=e^{0}=1 \end{aligned} $$ ## Problem Kuznetsov Limits 20-7
1
Calculus
math-word-problem
Yes
Yes
olympiads
false
## problem statement Find the cosine of the angle between vectors $\overrightarrow{A B}$ and $\overrightarrow{A C}$. $A(-4 ; 3 ; 0), B(0 ; 1 ; 3), C(-2 ; 4 ;-2)$
## Solution Let's find $\overrightarrow{A B}$ and $\overrightarrow{A C}$: $\overrightarrow{A B}=(0-(-4) ; 1-3 ; 3-0)=(4 ;-2 ; 3)$ $\overrightarrow{A C}=(-2-(-4) ; 4-3 ;-2-0)=(2 ; 1 ;-2)$ We find the cosine of the angle $\phi_{\text {between vectors }} \overrightarrow{A B}$ and $\overrightarrow{A C}$: $\cos (\overrightarrow{A B, A \overrightarrow{A C}})=\frac{(\overrightarrow{A B}, \overrightarrow{A C})}{|\overrightarrow{A B}| \cdot|\overrightarrow{A C}|}=$ $=\frac{4 \cdot 2+(-2) \cdot 1+3 \cdot(-2)}{\sqrt{4^{2}+(-2)^{2}+3^{2}} \cdot \sqrt{2^{2}+1^{2}+(-2)^{2}}}=$ $=\frac{8-2-6}{\sqrt{16+4+9} \cdot \sqrt{4+1+4}}=\frac{0}{\sqrt{29} \cdot \sqrt{9}}=0$ Thus, the cosine of the angle: $\cos (\overrightarrow{A B,} \overrightarrow{A C})=0$ and consequently the angle $\widehat{A B, A C}=\frac{\pi}{2}$ Problem Kuznetsov Analytic Geometry 4-19
0
Algebra
math-word-problem
Yes
Yes
olympiads
false
## Problem Statement Find the distance from point $M_{0}$ to the plane passing through three points $M_{1}, M_{2}, M_{3}$. $M_{1}(2 ; 1 ; 4)$ $M_{2}(3 ; 5 ;-2)$ $M_{3}(-7 ;-3 ; 2)$ $M_{0}(-3 ; 1 ; 8)$
## Solution Find the equation of the plane passing through three points $M_{1}, M_{2}, M_{3}$: $$ \left|\begin{array}{ccc} x-2 & y-1 & z-4 \\ 3-2 & 5-1 & -2-4 \\ -7-2 & -3-1 & 2-4 \end{array}\right|=0 $$ Perform transformations: $$ \begin{aligned} & \left|\begin{array}{ccc} x-2 & y-1 & z-4 \\ 1 & 4 & -6 \\ -9 & -4 & -2 \end{array}\right|=0 \\ & (x-2) \cdot\left|\begin{array}{cc} 4 & -6 \\ -4 & -2 \end{array}\right|-(y-1) \cdot\left|\begin{array}{cc} 1 & -6 \\ -9 & -2 \end{array}\right|+(z-4) \cdot\left|\begin{array}{cc} 1 & 4 \\ -9 & -4 \end{array}\right|=0 \\ & (x-2) \cdot(-32)-(y-1) \cdot(-56)+(z-4) \cdot 32=0 \\ & -32 x+64+56 y-56+32 z-128=0 \\ & -32 x+56 y+32 z-120=0 \\ & -4 x+7 y+4 z-15=0 \end{aligned} $$ The distance $d_{\text {from point }} M_{0}\left(x_{0} ; y_{0} ; z_{0}\right)_{\text {to the plane }} A x+B y+C z+D=0$: $$ d=\frac{\left|A x_{0}+B y_{0}+C z_{0}+D\right|}{\sqrt{A^{2}+B^{2}+C^{2}}} $$ ## Find: $$ d=\frac{|-4 \cdot(-3)+7 \cdot 1+4 \cdot 8-15|}{\sqrt{(-4)^{2}+7^{2}+4^{2}}}=\frac{|12+7+32-15|}{\sqrt{16+49+16}}=\frac{36}{\sqrt{81}}=4 $$ ## Problem Kuznetsov Analytic Geometry 8-19
4
Geometry
math-word-problem
Yes
Yes
olympiads
false
## Problem Statement Based on the definition of the derivative, find $f^{\prime}(0)$: $$ f(x)=\left\{\begin{array}{c} e^{\sin \left(x^{\frac{3}{2}} \sin \frac{2}{x}\right)}-1+x^{2}, x \neq 0 \\ 0, x=0 \end{array}\right. $$
## Solution By definition, the derivative at the point $x=0$: $f^{\prime}(0)=\lim _{\Delta x \rightarrow 0} \frac{f(0+\Delta x)-f(0)}{\Delta x}$ Based on the definition, we find: $$ \begin{aligned} & f^{\prime}(0)=\lim _{\Delta x \rightarrow 0} \frac{f(0+\Delta x)-f(0)}{\Delta x}=\lim _{\Delta x \rightarrow 0}\left(e^{\sin \left(\Delta x^{\frac{3}{2}} \sin \frac{2}{\Delta x}\right)}-1+\Delta x^{2}-0\right) / \Delta x= \\ & =\lim _{\Delta x \rightarrow 0}\left(e^{\sin \left(\Delta x^{\frac{3}{2}} \sin \frac{2}{\Delta x}\right)}-1+\Delta x^{2}\right) / \Delta x= \\ & =\lim _{\Delta x \rightarrow 0}\left(e^{\sin \left(\Delta x^{\frac{3}{2}} \sin \frac{2}{\Delta x}\right)}-1\right) / \Delta x+\lim _{\Delta x \rightarrow 0} \frac{\Delta x^{2}}{\Delta x}= \end{aligned} $$ Using the substitution of equivalent infinitesimals: $$ e^{\sin \left(\Delta x^{\frac{3}{2}} \sin \frac{2}{\Delta x}\right)}-1 \sim \sin \left(\Delta x^{\frac{3}{2}} \sin \frac{2}{\Delta x}\right) \text{, as } \Delta x \rightarrow 0\left(\sin \left(\Delta x^{\frac{3}{2}} \sin \frac{2}{\Delta x}\right) \rightarrow 0\right) $$ We get: $$ =\lim _{\Delta x \rightarrow 0} \frac{\sin \left(\Delta x^{\frac{3}{2}} \sin \frac{2}{\Delta x}\right)}{\Delta x}+\lim _{\Delta x \rightarrow 0} \Delta x= $$ Using the substitution of equivalent infinitesimals: ![](https://cdn.mathpix.com/cropped/2024_05_22_41fcb48922b41c38bc2fg-01.jpg?height=146&width=1472&top_left_y=2388&top_left_x=153) We get: $=\lim _{\Delta x \rightarrow 0} \frac{\Delta x^{\frac{3}{2}} \sin \frac{2}{\Delta x}}{\Delta x}+0=\lim _{\Delta x \rightarrow 0} \Delta x^{\frac{1}{2}} \sin \frac{2}{\Delta x}=$ Since $\sin \frac{2}{\Delta x}$ is bounded, then $\Delta x^{\frac{1}{2}} \cdot \sin \frac{2}{\Delta x} \rightarrow 0 \text{, as } \Delta x \rightarrow 0\left(\Delta x^{\frac{1}{2}} \rightarrow 0\right)$ Thus, $=0$ Therefore, $f^{\prime}(0)=0$ Problem Kuznetsov Differentiation $2-26$
0
Calculus
math-word-problem
Yes
Yes
olympiads
false
## Problem Statement Based on the definition of the derivative, find $f^{\prime}(0)$: $f(x)=\left\{\begin{array}{c}\sqrt{1+\ln \left(1+x^{2} \sin \frac{1}{x}\right)}-1, x \neq 0 ; \\ 0, x=0\end{array}\right.$
## Solution By definition, the derivative at the point $x=0$: $$ f^{\prime}(0)=\lim _{\Delta x \rightarrow 0} \frac{f(0+\Delta x)-f(0)}{\Delta x} $$ Based on the definition, we find: $$ \begin{aligned} & f^{\prime}(0)=\lim _{\Delta x \rightarrow 0} \frac{f(0+\Delta x)-f(0)}{\Delta x}=\lim _{\Delta x \rightarrow 0} \frac{\sqrt{1+\ln \left(1+x^{2} \sin \frac{1}{x}\right)}-1-0}{\Delta x}= \\ & =\lim _{\Delta x \rightarrow 0} \frac{\left(\sqrt{1+\ln \left(1+\Delta x^{2} \sin \frac{1}{\Delta x}\right)}-1\right) \cdot\left(\sqrt{1+\ln \left(1+\Delta x^{2} \sin \frac{1}{\Delta x}\right)}+1\right)}{\Delta x\left(\sqrt{1+\ln \left(1+\Delta x^{2} \sin \frac{1}{\Delta x}\right)}+1\right)}= \\ & =\lim _{\Delta x \rightarrow 0} \frac{1+\ln \left(1+\Delta x^{2} \sin \frac{1}{\Delta x}\right)-1}{\Delta x\left(\sqrt{1+\ln \left(1+\Delta x^{2} \sin \frac{1}{\Delta x}\right)}+1\right)}= \\ & =\lim _{\Delta x \rightarrow 0} \frac{\ln \left(1+\Delta x^{2} \sin \frac{1}{\Delta x}\right)}{\Delta x\left(\sqrt{1+\ln \left(1+\Delta x^{2} \sin \frac{1}{\Delta x}\right)}+1\right)}= \end{aligned} $$ Using the substitution of equivalent infinitesimals: $\ln \left(1+\Delta x^{2} \sin \frac{1}{\Delta x}\right) \sim \Delta x^{2} \sin \frac{1}{\Delta x}_{\text {, as }} \Delta x \rightarrow 0\left(\Delta x^{2} \sin \frac{1}{\Delta x} \rightarrow 0\right)$ We get: $$ =\lim _{\Delta x \rightarrow 0} \frac{\Delta x^{2} \sin \frac{1}{\Delta x}}{\Delta x\left(\sqrt{1+\ln \left(1+\Delta x^{2} \sin \frac{1}{\Delta x}\right)}+1\right)}=\lim _{\Delta x \rightarrow 0} \frac{\Delta x \sin \frac{1}{\Delta x}}{\sqrt{1+\ln \left(1+\Delta x^{2} \sin \frac{1}{\Delta x}\right)}+1}= $$ Since $\sin \left(\frac{1}{\Delta x}\right)_{\text { is bounded, then }}$ $\Delta x \cdot \sin \left(\frac{1}{\Delta x}\right) \rightarrow 0 \quad$, as $\Delta x \rightarrow 0$ Then: $=\frac{0}{\sqrt{1+\ln (1+0)}+1}=\frac{0}{\sqrt{1}+1}=0$ Thus, $f^{\prime}(0)=0$ ## Problem Kuznetsov Differentiation 2-6
0
Calculus
math-word-problem
Yes
Yes
olympiads
false
2.160. $\frac{\left(a^{2} b \sqrt{b}-6 a^{5 / 3} b^{5 / 4}+12 a b \sqrt[3]{a}-8 a b^{3 / 4}\right)^{2 / 3}}{a b \sqrt[3]{a}-4 a b^{3 / 4}+4 a^{2 / 3} \sqrt{b}}$.
Solution. Domain of definition: $\left\{\begin{array}{l}a^{1 / 3} b^{1 / 4} \neq 2, \\ a \neq 0, \\ b \neq 0 .\end{array}\right.$ $$ \begin{aligned} & \frac{\left(a^{2} b \sqrt{b}-6 a^{5 / 3} b^{5 / 4}+12 a b \sqrt[3]{a}-8 a b^{3 / 4}\right)^{2 / 3}}{a b \sqrt[3]{a}-4 a b^{3 / 4}+4 a^{2 / 3} \sqrt{b}}= \\ & =\frac{\left(a^{2} b^{3 / 2}-6 a^{5 / 3} b^{5 / 4}+12 a^{4 / 3} b-8 a b^{3 / 4}\right)^{2 / 3}}{a^{4 / 3} b-4 a b^{3 / 4}+4 a^{2 / 3} b^{1 / 2}}= \\ & =\frac{\left(a b^{3 / 4}\left(a b^{3 / 4}-6 a^{2 / 3} b^{1 / 2}+12 a^{1 / 3} b^{1 / 4}-8\right)\right)^{2 / 3}}{a^{2 / 3} b^{1 / 2}\left(a^{2 / 3} b^{1 / 2}-4 a^{1 / 3} b^{1 / 4}+4\right)}= \\ & =\frac{a^{2 / 3} b^{1 / 2}\left(\left(a b^{3 / 4}-8\right)-6 a^{1 / 3} b^{1 / 4}\left(a^{1 / 3} b^{1 / 4}-2\right)\right)^{2 / 3}}{a^{2 / 3} b^{1 / 2}\left(a^{1 / 3} b^{1 / 4}-2\right)^{2}}= \\ & =\frac{\left(\left(\left(a^{1 / 3} b^{1 / 4}\right)^{3}-2^{3}\right)-6 a^{1 / 3} b^{1 / 4}\left(a^{1 / 3} b^{1 / 4}-2\right)\right)^{2 / 3}}{\left(a^{1 / 3} b^{1 / 4}-2\right)^{2}}= \\ & =\frac{\left(\left(a^{1 / 3} b^{1 / 4}-2\right)\left(a^{2 / 3} b^{1 / 2}+2 a^{1 / 3} b^{1 / 4}+4\right)-6 a^{1 / 3} b^{1 / 4}\left(a^{1 / 3} b^{1 / 4}-2\right)\right)^{2 / 3}}{\left(a^{1 / 3} b^{1 / 4}-2\right)^{2}}= \\ & =\frac{\left(\left(a^{1 / 3} b^{1 / 4}-2\right)\left(a^{2 / 3} b^{1 / 2}+2 a^{1 / 3} b^{1 / 4}+4-6 a^{1 / 3} b^{1 / 4}\right)\right)^{2 / 3}}{\left(a^{1 / 3} b^{1 / 4}-2\right)^{2}}= \\ & =\frac{\left(\left(a^{1 / 3} b^{1 / 4}-2\right)\left(a^{2 / 3} b^{1 / 2}-4 a^{1 / 3} b^{1 / 4}+4\right)\right)^{2 / 3}}{\left(a^{1 / 3} b^{1 / 4}-2\right)^{2}}= \\ & =\frac{\left(\left(a^{1 / 3} b^{1 / 4}-2\right)\left(a^{1 / 3} b^{1 / 4}-2\right)^{2}\right)^{2 / 3}}{\left(a^{1 / 3} b^{1 / 4}-2\right)^{2}}=\frac{\left(\left(a^{1 / 3} b^{1 / 4}-2\right)^{3}\right)^{2 / 3}}{\left(a^{1 / 3} b^{1 / 4}-2\right)^{2}}=\frac{\left(a^{1 / 3} b^{1 / 4}-2\right)^{2}}{\left(a^{1 / 3} b^{1 / 4}-2\right)^{2}}=1 . \end{aligned} $$ Answer: 1
1
Algebra
math-word-problem
Yes
Yes
olympiads
false
2.196. $\frac{\left|x^{2}-1\right|+x^{2}}{2 x^{2}-1}-\frac{|x-1|}{x-1}$.
Solution. Domain of definition: $\left\{\begin{array}{l}x \neq \pm \frac{\sqrt{2}}{2}, \\ x \neq 1 .\end{array}\right.$ Expanding the absolute values with consideration of the domain of definition, we consider three cases: 1) $\left\{\begin{array}{l}x \in(-\infty ;-1), \\ \frac{x^{2}-1+x^{2}}{2 x^{2}-1}+\frac{x-1}{x-1}=\frac{2 x^{2}-1}{2 x^{2}-1}+1=1+1=2 ;\end{array}\right.$ 2) $\left\{\begin{array}{l}x \in\left[-1 ;-\frac{\sqrt{2}}{2}\right) \cup\left(-\frac{\sqrt{2}}{2} ; \frac{\sqrt{2}}{2}\right) \cup\left(\frac{\sqrt{2}}{2} ; 1\right), \\ \frac{-\left(x^{2}-1\right)+x^{2}}{2 x^{2}-1}+\frac{x-1}{x-1}=\frac{1}{2 x^{2}-1}+1=\frac{1+2 x^{2}}{2 x^{2}-1}=\frac{2 x^{2}}{2 x^{2}-1}\end{array}\right.$ 3) $\left\{\begin{array}{l}x \in(1 ; \infty), \\ \frac{x^{2}-1+x^{2}}{2 x^{2}-1}-\frac{x-1}{x-1}=\frac{2 x^{2}-1}{2 x^{2}-1}-1=1-1=0 \text {. }\end{array}\right.$ Answer: 2, if $x \in(-\infty ;-1) ; \frac{2 x^{2}}{2 x^{2}-1}$, if $x \in\left[-1 ;-\frac{\sqrt{2}}{2}\right) \cup\left(-\frac{\sqrt{2}}{2} ; \frac{\sqrt{2}}{2}\right) \cup\left(\frac{\sqrt{2}}{2} ; 1\right) ; 0$, if $x \in(1 ; \infty)$.
2
Algebra
math-word-problem
Yes
Yes
olympiads
false
2.204. $\sqrt{2+\sqrt{3}} \cdot \sqrt{2+\sqrt{2+\sqrt{3}}} \cdot \sqrt{2+\sqrt{2+\sqrt{2+\sqrt{3}}}} \cdot \sqrt{2-\sqrt{2+\sqrt{2+\sqrt{3}}}}$.
Solution. $$ \begin{aligned} & \sqrt{2+\sqrt{3}} \cdot \sqrt{2+\sqrt{2+\sqrt{3}}} \cdot \sqrt{2+\sqrt{2+\sqrt{2+\sqrt{3}}}} \cdot \sqrt{2-\sqrt{2+\sqrt{2+\sqrt{3}}}}= \\ & =\sqrt{2+\sqrt{3}} \cdot \sqrt{2+\sqrt{2+\sqrt{3}}} \cdot \sqrt{(2+\sqrt{2+\sqrt{2+\sqrt{3}}})(2-\sqrt{2+\sqrt{2+\sqrt{3}}})}= \\ & =\sqrt{2+\sqrt{3}} \cdot \sqrt{2+\sqrt{2+\sqrt{3}}} \cdot \sqrt{2^{2}-(\sqrt{2+\sqrt{2+\sqrt{3}}})^{2}}= \\ & =\sqrt{2+\sqrt{3}} \cdot \sqrt{2+\sqrt{2+\sqrt{3}}} \cdot \sqrt{4-2-\sqrt{2+\sqrt{3}}}= \\ & =\sqrt{2+\sqrt{3}} \cdot \sqrt{2+\sqrt{2+\sqrt{3}}} \cdot \sqrt{2-\sqrt{2+\sqrt{3}}}= \\ & =\sqrt{2+\sqrt{3}} \cdot \sqrt{(2+\sqrt{2+\sqrt{3}})(2-\sqrt{2+\sqrt{3}})}=\sqrt{2+\sqrt{3}} \cdot \sqrt{4-2-\sqrt{3}}= \\ & =\sqrt{2+\sqrt{3}} \cdot \sqrt{2-\sqrt{3}}=\sqrt{(2+\sqrt{3})(2-\sqrt{3})}=\sqrt{2^{2}-(\sqrt{3})^{2}}=\sqrt{4-3}= \\ & =\sqrt{1}=1 . \end{aligned} $$ Answer: 1.
1
Algebra
math-word-problem
Yes
Yes
olympiads
false
2.208. $\frac{\left((\sqrt[4]{m}+\sqrt[4]{n})^{2}-(\sqrt[4]{m}-\sqrt[4]{n})^{2}\right)^{2}-(16 m+4 n)}{4 m-n}+\frac{10 \sqrt{m}-3 \sqrt{n}}{\sqrt{n}+2 \sqrt{m}}$.
## Solution. Domain of definition: $\left\{\begin{array}{l}n \neq 4 m, \\ m>0, \\ n>0 .\end{array}\right.$ $$ \frac{\left((\sqrt[4]{m}+\sqrt[4]{n})^{2}-(\sqrt[4]{m}-\sqrt[4]{n})^{2}\right)^{2}-(16 m+4 n)}{4 m-n}+\frac{10 \sqrt{m}-3 \sqrt{n}}{\sqrt{n}+2 \sqrt{m}}= $$ $=\frac{(\sqrt{m}+2 \sqrt[4]{m n}+\sqrt{n}-\sqrt{m}+2 \sqrt[4]{m n}-\sqrt{n})^{2}-(16 m+4 n)}{4 m-n}+\frac{10 \sqrt{m}-3 \sqrt{n}}{\sqrt{n}+2 \sqrt{m}}=$ $=\frac{(4 \sqrt[4]{m n})^{2}-(16 m+4 n)}{4 m-n}+\frac{10 \sqrt{m}-3 \sqrt{n}}{\sqrt{n}+2 \sqrt{m}}=\frac{16 \sqrt{m n}-(16 m+4 n)}{4 m-n}+$ $+\frac{10 \sqrt{m}-3 \sqrt{n}}{\sqrt{n}+2 \sqrt{m}}=\frac{-4(4 m-4 \sqrt{m n}+n)}{4 m-n}+\frac{10 \sqrt{m}-3 \sqrt{n}}{2 \sqrt{m}+\sqrt{n}}=$ $=\frac{-4\left((2 \sqrt{m})^{2}-2 \cdot 2 \sqrt{m n}+(\sqrt{n})^{2}\right)}{(2 \sqrt{m})^{2}-(\sqrt{n})^{2}}+\frac{10 \sqrt{m}-3 \sqrt{n}}{2 \sqrt{m}+\sqrt{n}}=$ $=\frac{-4(2 \sqrt{m}-\sqrt{n})^{2}}{(2 \sqrt{m}-\sqrt{n})(2 \sqrt{m}+\sqrt{n})}+\frac{10 \sqrt{m}-3 \sqrt{n}}{2 \sqrt{m}+\sqrt{n}}=\frac{-4(2 \sqrt{m}-\sqrt{n})}{2 \sqrt{m}+\sqrt{n}}+$ $+\frac{10 \sqrt{m}-3 \sqrt{n}}{2 \sqrt{m}+\sqrt{n}}=\frac{-8 \sqrt{m}+4 \sqrt{n}+10 \sqrt{m}-3 \sqrt{n}}{2 \sqrt{m}+\sqrt{n}}=\frac{2 \sqrt{m}+\sqrt{n}}{2 \sqrt{m}+\sqrt{n}}=1$. Answer: 1.
1
Algebra
math-word-problem
Yes
Yes
olympiads
false
2.219. $\left(\frac{9}{a+8}-\frac{a^{1 / 3}+2}{a^{2 / 3}-2 a^{1 / 3}+4}\right) \cdot \frac{a^{4 / 3}+8 a^{1 / 3}}{1-a^{2 / 3}}+\frac{5-a^{2 / 3}}{1+a^{1 / 3}}$.
Solution. Domain of definition: $\left\{\begin{array}{l}a \neq-8, \\ a \neq \pm 1 .\end{array}\right.$ $$ \begin{aligned} & \left(\frac{9}{a+8}-\frac{a^{1 / 3}+2}{a^{2 / 3}-2 a^{1 / 3}+4}\right) \cdot \frac{a^{4 / 3}+8 a^{1 / 3}}{1-a^{2 / 3}}+\frac{5-a^{2 / 3}}{1+a^{1 / 3}}= \\ & =\left(\frac{9}{\left(a^{1 / 3}+2\right)\left(a^{2 / 3}-2 a^{1 / 3}+4\right)}-\frac{a^{1 / 3}+2}{a^{2 / 3}-2 a^{1 / 3}+4}\right) \cdot \frac{a^{1 / 3}(a+8)}{\left(1-a^{1 / 3}\right)\left(1+a^{1 / 3}\right)}+ \\ & +\frac{5-a^{2 / 3}}{1+a^{1 / 3}}=\frac{3^{2}-\left(a^{1 / 3}+2\right)^{2}}{\left(a^{1 / 3}+2\right)\left(a^{2 / 3}-2 a^{1 / 3}+4\right)} \cdot \frac{a^{1 / 3}(a+8)}{\left(1-a^{1 / 3}\right)\left(1+a^{1 / 3}\right)}+\frac{5-a^{2 / 3}}{1+a^{1 / 3}}= \\ & =\frac{\left(3-a^{1 / 3}-2\right)\left(3+a^{1 / 3}+2\right)}{a+8} \cdot \frac{a^{1 / 3}(a+8)}{\left(1-a^{1 / 3}\right)\left(1+a^{1 / 3}\right)}+\frac{5-a^{2 / 3}}{1+a^{1 / 3}}= \\ & =\frac{\left(5+a^{1 / 3}\right) a^{1 / 3}}{1+a^{1 / 3}}+\frac{5-a^{2 / 3}}{1+a^{1 / 3}}=\frac{5 a^{1 / 3}+a^{2 / 3}+5-a^{2 / 3}}{1+a^{1 / 3}}=\frac{5 a^{1 / 3}+5}{1+a^{1 / 3}}= \\ & =\frac{5\left(a^{1 / 3}+1\right)}{1+a^{1 / 3}}=5 . \end{aligned} $$ Answer: 5.
5
Algebra
math-word-problem
Yes
Yes
olympiads
false
2.230. $\frac{\sqrt{x-2 \sqrt{2}}}{\sqrt{x^{2}-4 x \sqrt{2}+8}}-\frac{\sqrt{x+2 \sqrt{2}}}{\sqrt{x^{2}+4 x \sqrt{2}+8}} ; x=3$.
## Solution. $$ \begin{aligned} & \frac{\sqrt{x-2 \sqrt{2}}}{\sqrt{x^{2}-4 x \sqrt{2}+8}}-\frac{\sqrt{x+2 \sqrt{2}}}{\sqrt{x^{2}+4 x \sqrt{2}+8}}=\frac{\sqrt{x-2 \sqrt{2}}}{\sqrt{(x-2 \sqrt{2})^{2}}}-\frac{\sqrt{x+2 \sqrt{2}}}{\sqrt{(x+2 \sqrt{2})^{2}}}= \\ & =\frac{1}{\sqrt{x-2 \sqrt{2}}}-\frac{1}{\sqrt{x+2 \sqrt{2}}}=\frac{\sqrt{x+2 \sqrt{2}}-\sqrt{x-2 \sqrt{2}}}{\sqrt{(x-2 \sqrt{2})(x+2 \sqrt{2})}}= \\ & =\frac{\sqrt{x+2 \sqrt{2}}-\sqrt{x-2 \sqrt{2}}}{\sqrt{x^{2}-8}}=\frac{\sqrt{3+2 \sqrt{2}}-\sqrt{3-2 \sqrt{2}}}{\sqrt{9-8}}=\sqrt{3+2 \sqrt{2}}-\sqrt{3-2 \sqrt{2}}= \\ & =\sqrt{(\sqrt{3+2 \sqrt{2}}-\sqrt{3-2 \sqrt{2}})^{2}}= \\ & =\sqrt{3+2 \sqrt{2}-2 \sqrt{(3+2 \sqrt{2})(3-2 \sqrt{2})}+3-2 \sqrt{2}}=\sqrt{6-2 \sqrt{9-8}}= \\ & =\sqrt{6-2}=\sqrt{4}=2 \end{aligned} $$ Answer: 2.
2
Algebra
math-word-problem
Yes
Yes
olympiads
false
2.240. $\frac{\sqrt{\left(\frac{9-2 \sqrt{3}}{\sqrt{3}-\sqrt[3]{2}}+3 \sqrt[3]{2}\right) \cdot \sqrt{3}}}{3+\sqrt[6]{108}}$.
Solution. $\frac{\sqrt{\left(\frac{9-2 \sqrt{3}}{\sqrt{3}-\sqrt[3]{2}}+3 \sqrt[3]{2}\right) \cdot \sqrt{3}}}{3+\sqrt[6]{108}}=\frac{\sqrt{\left(\frac{3^{2}-\sqrt{2^{2} \cdot 3}}{\sqrt{3}-\sqrt[3]{2}}+\sqrt[3]{3^{3} \cdot 2}\right) \cdot \sqrt{3}}}{3+\sqrt[6]{27 \cdot 4}}=$ $=\frac{\sqrt{\left(\frac{\sqrt[6]{3^{12}}-\sqrt[6]{2^{6} \cdot 3^{3}}}{\sqrt[6]{3^{3}}-\sqrt[6]{2^{2}}}+\sqrt[6]{3^{6} \cdot 2^{2}}\right) \cdot \sqrt[6]{3^{3}}}}{\sqrt[6]{3^{6}}+\sqrt[6]{3^{3} \cdot 2^{2}}}=$ $=\frac{\sqrt{\frac{\sqrt[6]{3^{12}}-\sqrt[6]{2^{6} \cdot 3^{3}}+\sqrt[6]{3^{9} \cdot 2^{2}}-\sqrt[6]{3^{6} \cdot 2^{4}}}{\sqrt[6]{3^{3}}-\sqrt[6]{2^{2}}} \cdot \sqrt[6]{3^{3}}}}{\sqrt[6]{3^{6}}+\sqrt[6]{3^{3} \cdot 2^{2}}}=$ $=\frac{\sqrt{\frac{\left(\sqrt[6]{3^{9}}-\sqrt[6]{2^{6}}+\sqrt[6]{3^{6} \cdot 2^{2}}-\sqrt[6]{3^{3} \cdot 2^{4}}\right) \cdot \sqrt[6]{3^{3}}}{\sqrt[6]{3^{3}}-\sqrt[6]{2^{2}}} \cdot \sqrt[6]{3^{3}}}}{\sqrt[6]{3^{3}}\left(\sqrt[6]{3^{3}}+\sqrt[6]{2^{2}}\right)}=$ $=\frac{\sqrt{\frac{\left(\sqrt[6]{3^{9}}-\sqrt[6]{3^{3} \cdot 2^{4}}\right)+\left(\sqrt[6]{3^{6} \cdot 2^{2}}-\sqrt[6]{2^{6}}\right)}{\sqrt[6]{3^{3}}-\sqrt[6]{2^{2}}} \cdot \sqrt[6]{3^{6}}}}{\sqrt[6]{3^{3}}\left(\sqrt[6]{3^{3}}+\sqrt[6]{2^{2}}\right)}=$ $=\frac{\sqrt{\frac{\sqrt[6]{3^{3}}\left(\sqrt[6]{3^{6}}-\sqrt[6]{2^{4}}\right)+\sqrt[6]{2^{2}}\left(\sqrt[6]{3^{3}}-\sqrt[6]{2^{4}}\right)}{\sqrt[6]{3^{6}}-\sqrt[6]{2^{2}}} \cdot \sqrt[6]{3^{6}}}}{\sqrt[6]{3^{3}}\left(\sqrt[6]{3^{3}}+\sqrt[6]{2^{2}}\right)}=$ ![](https://cdn.mathpix.com/cropped/2024_05_21_3edb7be591bff54ce350g-0080.jpg?height=758&width=814&top_left_y=74&top_left_x=138) Answer: 1 .
1
Algebra
math-word-problem
Yes
Yes
olympiads
false
2.254. $\left(\frac{x+2 y}{8 y^{3}\left(x^{2}+2 x y+2 y^{2}\right)}-\frac{(x-2 y): 8 y^{2}}{x^{2}-2 x y+2 y^{2}}\right)+\left(\frac{y^{-2}}{4 x^{2}-8 y^{2}}-\frac{1}{4 x^{2} y^{2}+8 y^{4}}\right)$ $x=\sqrt[4]{6}, \quad y=\sqrt[8]{2}$.
Solution. $$ \begin{aligned} & \left(\frac{x+2 y}{8 y^{3}\left(x^{2}+2 x y+2 y^{2}\right)}-\frac{(x-2 y): 8 y^{2}}{x^{2}-2 x y+2 y^{2}}\right)+\left(\frac{y^{-2}}{4 x^{2}-8 y^{2}}-\frac{1}{4 x^{2} y^{2}+8 y^{4}}\right)= \\ & =\left(\frac{x+2 y}{8 y^{3}\left(x^{2}+2 x y+2 y^{2}\right)}-\frac{x-2 y}{8 y^{3}\left(x^{2}-2 x y+2 y^{2}\right)}\right)+ \\ & +\left(\frac{1}{4 y^{2}\left(x^{2}-2 y^{2}\right)}-\frac{1}{4 y^{2}\left(x^{2}+2 y^{2}\right)}\right)= \\ & =\frac{(x+2 y)\left(x^{2}+2 y^{2}-2 x y\right)-(x-2 y)\left(x^{2}+2 y^{2}+2 x y\right)}{8 y^{3}\left(x^{2}+2 y^{2}+2 x y\right)\left(x^{2}+2 y^{2}-2 x y\right)}+ \\ & +\frac{x^{2}+2 y^{2}-x^{2}+2 y^{2}}{4 y^{2}\left(x^{2}-2 y^{2}\right)\left(x^{2}+2 y^{2}\right)}=\frac{8 y^{3}}{8 y^{3}\left(\left(x^{2}+2 y^{2}\right)^{2}-(2 x y)^{2}\right)}+ \end{aligned} $$ $$ \begin{aligned} & +\frac{4 y^{2}}{4 y^{2}\left(\left(x^{2}\right)^{2}-\left(2 y^{2}\right)^{2}\right)}=\frac{1}{x^{4}+4 y^{4}}+\frac{1}{x^{4}-4 y^{4}}= \\ & =\frac{x^{4}-4 y^{4}+x^{4}+4 y^{4}}{\left(x^{4}+4 y^{4}\right)\left(x^{4}-4 y^{4}\right)}=\frac{2 x^{4}}{x^{8}-16 y^{8}}=\frac{2(\sqrt[4]{6})^{4}}{(\sqrt[4]{6})^{8}-16(\sqrt[8]{2})^{8}}= \\ & =\frac{2 \cdot 6}{36-16 \cdot 2}=\frac{12}{36-32}=\frac{12}{4}=3 \end{aligned} $$ Answer: 3.
3
Algebra
math-word-problem
Yes
Yes
olympiads
false
2.259. $\left(\sqrt[3]{\frac{8 z^{3}+24 z^{2}+18 z}{2 z-3}}-\sqrt[3]{\frac{8 z^{2}-24 z^{2}+18 z}{2 z+3}}\right)-\left(\frac{1}{2} \sqrt[3]{\frac{2 z}{27}-\frac{1}{6 z}}\right)^{-1}$.
Solution. Domain of definition: $z \neq \pm \frac{3}{2}, z \neq 0$. $$ \begin{aligned} & \left(\sqrt[3]{\frac{8 z^{3}+24 z^{2}+18 z}{2 z-3}}-\sqrt[3]{\frac{8 z^{2}-24 z^{2}+18 z}{2 z+3}}\right)-\left(\frac{1}{2} \sqrt[3]{\frac{2 z}{27}-\frac{1}{6 z}}\right)^{-1}= \\ & =\sqrt[3]{\frac{2 z\left(4 z^{2}+12 z+9\right)}{2 z-3}}-\sqrt[3]{\frac{2 z\left(4 z^{2}-12 z+9\right)}{2 z+3}}-\left(\frac{1}{2} \sqrt[3]{\frac{4 z^{2}-9}{54 z}}\right)^{-1}= \\ & =\sqrt[3]{\frac{2 z(2 z+3)^{2}}{2 z-3}}-\sqrt[3]{\frac{2 z(2 z-3)^{2}}{2 z+3}}-2 \sqrt[3]{\frac{54 z}{4 z^{2}-9}}= \\ & =\frac{\sqrt[3]{2 z(2 z+3)^{2}}}{\sqrt[3]{2 z-3}}-\frac{\sqrt[3]{2 z(2 z-3)^{2}}}{\sqrt[3]{2 z+3}}-\frac{2 \sqrt[3]{54 z}}{\sqrt[3]{(2 z-3)(2 z+3)}}= \end{aligned} $$ $$ \begin{aligned} & =\frac{\sqrt[3]{2 z(2 z+3)^{3}}-\sqrt[3]{2 z(2 z-3)^{3}}-2 \sqrt[3]{54 z}}{\sqrt[3]{(2 z-3)(2 z+3)}}= \\ & =\frac{\sqrt[3]{2 z}(2 z+3-2 z+3-6)}{\sqrt[3]{4 z^{2}-9}}=\frac{\sqrt[3]{2 z} \cdot 0}{\sqrt[3]{4 z^{2}-9}}=0 \end{aligned} $$ Answer: 0.
0
Algebra
math-word-problem
Yes
Yes
olympiads
false
2.274. $\frac{8-m}{\sqrt[3]{m}+2}:\left(2+\frac{\sqrt[3]{m^{2}}}{\sqrt[3]{m}+2}\right)+\left(\sqrt[3]{m}+\frac{2 \sqrt[3]{m}}{\sqrt[3]{m}-2}\right) \cdot \frac{\sqrt[3]{m^{2}}-4}{\sqrt[3]{m^{2}}+2 \sqrt[3]{m}}$.
## Solution. Domain of definition: $\left\{\begin{array}{l}m \neq 0, \\ m \neq \pm 8 .\end{array}\right.$ $\frac{8-m}{\sqrt[3]{m}+2}:\left(2+\frac{\sqrt[3]{m^{2}}}{\sqrt[3]{m}+2}\right)+\left(\sqrt[3]{m}+\frac{2 \sqrt[3]{m}}{\sqrt[3]{m}-2}\right) \cdot \frac{\sqrt[3]{m^{2}}-4}{\sqrt[3]{m^{2}}+2 \sqrt[3]{m}}=$ $=\frac{(2-\sqrt[3]{m})\left(4+2 \sqrt[3]{m}+\sqrt[3]{m^{2}}\right)}{\sqrt[3]{m}+2}: \frac{4+2 \sqrt[3]{m}+\sqrt[3]{m^{2}}}{\sqrt[3]{m}+2}+\frac{\sqrt[3]{m^{2}}-2 \sqrt[3]{m}+2 \sqrt[3]{m}}{\sqrt[3]{m}-2} \times$ $\times \frac{(\sqrt[3]{m}-2)(\sqrt[3]{m}+2)}{\sqrt[3]{m}(\sqrt[3]{m}+2)}=\frac{(2-\sqrt[3]{m})\left(4+2 \sqrt[3]{m}+\sqrt[3]{m^{2}}\right)}{\sqrt[3]{m}+2} \cdot \frac{\sqrt[3]{m}+2}{4+2 \sqrt[3]{m}+\sqrt[3]{m^{2}}}+\sqrt[3]{m}=$ $=2-\sqrt[3]{m}+\sqrt[3]{m}=2$. Answer: 2.
2
Algebra
math-word-problem
Yes
Yes
olympiads
false
2.282. $\left(\frac{\sqrt{1+x}}{\sqrt{1+x}-\sqrt{1-x}}+\frac{1-x}{\sqrt{1-x^{2}}-1+x}\right) \cdot\left(\sqrt{\frac{1}{x^{2}}-1}-\frac{1}{x}\right)=0<x<1$.
## Solution. $$ \begin{aligned} & \left(\frac{\sqrt{1+x}}{\sqrt{1+x}-\sqrt{1-x}}+\frac{1-x}{\sqrt{1-x^{2}}-1+x}\right) \cdot\left(\sqrt{\frac{1}{x^{2}}-1}-\frac{1}{x}\right)= \\ & =\left(\frac{\sqrt{1+x}}{\sqrt{1+x}-\sqrt{1-x}}+\frac{\sqrt{(1-x)^{2}}}{\sqrt{(1-x)(1+x)}-\sqrt{(1-x)^{2}}}\right) \cdot\left(\sqrt{\frac{1-x^{2}}{x^{2}}}-\frac{1}{x}\right)= \\ & =\left(\frac{\sqrt{1+x}}{\sqrt{1+x}-\sqrt{1-x}}+\frac{\sqrt{(1-x)^{2}}}{\sqrt{1-x}(\sqrt{1+x}-\sqrt{1-x})}\right) \cdot\left(\frac{\sqrt{1-x^{2}}}{x}-\frac{1}{x}\right)= \\ & =\left(\frac{\sqrt{1+x}}{\sqrt{1+x}-\sqrt{1-x}}+\frac{\sqrt{1-x}}{\sqrt{1+x}-\sqrt{1-x}}\right) \cdot\left(\frac{\sqrt{1-x^{2}}-1}{x}\right)= \\ & =\frac{\sqrt{1+x}+\sqrt{1-x}}{\sqrt{1+x}-\sqrt{1-x}} \cdot \frac{\sqrt{1-x^{2}}-1}{x}= \\ & =\frac{(\sqrt{1+x}+\sqrt{1-x})(\sqrt{1+x}+\sqrt{1-x})}{(\sqrt{1+x}-\sqrt{1-x})(\sqrt{1+x}+\sqrt{1-x})} \cdot \frac{\sqrt{1-x^{2}}-1}{x}= \end{aligned} $$ $$ \begin{aligned} & =\frac{(\sqrt{1+x}+\sqrt{1-x})^{2}}{(\sqrt{1+x})^{2}-(\sqrt{1-x})^{2}} \cdot \frac{\sqrt{1-x^{2}}-1}{x}=\frac{1+x+2 \sqrt{1-x^{2}}+1-x}{1+x-1+x} \cdot \frac{\sqrt{1-x^{2}}-1}{x}= \\ & =\frac{2+2 \sqrt{1-x^{2}}}{2 x} \cdot \frac{\sqrt{1-x^{2}}-1}{x}=\frac{\left(\sqrt{1-x^{2}}+1\right)\left(\sqrt{1-x^{2}}-1\right)}{x^{2}}=\frac{\left(\sqrt{1-x^{2}}\right)^{2}-1}{x^{2}}= \\ & =\frac{1-x^{2}-1}{x^{2}}=-\frac{x^{2}}{x^{2}}=-1 \end{aligned} $$ Answer: -1.
-1
Algebra
math-word-problem
Yes
Yes
olympiads
false
2.283. $\frac{\left(p q^{-1}+1\right)^{2}}{p q^{-1}-p^{-1} q} \cdot \frac{p^{3} q^{-3}-1}{p^{2} q^{-2}+p q^{-1}+1}: \frac{p^{3} q^{-3}+1}{p q^{-1}+p^{-1} q-1}$.
Solution. Domain of definition: $\left\{\begin{array}{l}p \neq 0, \\ q \neq 0, \\ p \neq \pm q .\end{array}\right.$ $$ \begin{aligned} & \frac{\left(p q^{-1}+1\right)^{2}}{p q^{-1}-p^{-1} q} \cdot \frac{p^{3} q^{-3}-1}{p^{2} q^{-2}+p q^{-1}+1}: \frac{p^{3} q^{-3}+1}{p q^{-1}+p^{-1} q-1}= \\ & =\frac{\left(\frac{p}{q}+1\right)^{2}}{\frac{p}{q}-\frac{q}{p}} \cdot \frac{\frac{p^{3}}{q^{3}}-1}{\frac{p^{2}}{q^{2}}+\frac{p}{q}+1}: \frac{\frac{p^{3}}{q^{3}}+1}{\frac{p}{q}+\frac{q}{p}-1}= \\ & =\frac{\left(\frac{p+q}{q}\right)^{2}}{\frac{p^{2}-q^{2}}{p q}} \cdot \frac{\frac{p^{3}-q^{3}}{q^{3}}}{\frac{p^{2}+p q+q^{2}}{q^{2}}}: \frac{\frac{p^{3}+q^{3}}{q^{3}}}{\frac{p^{2}-p q+q^{2}}{p q}}= \end{aligned} $$ $$ \begin{aligned} & =\frac{(p+q)^{2}}{q^{2}} \cdot \frac{p q}{p^{2}-q^{2}} \cdot \frac{p^{3}-q^{3}}{q^{3}} \cdot \frac{q^{2}}{p^{2}+p q+q^{2}}:\left(\frac{p^{3}+q^{3}}{q^{3}} \cdot \frac{p q}{p^{2}-p q+q^{2}}\right)= \\ & =\frac{(p+q)^{2} p}{q(p+q)(p-q)} \cdot \frac{(p-q)\left(p^{2}+p q+q^{2}\right)}{q\left(p^{2}+p q+q^{2}\right)}:\left(\frac{(p+q)\left(p^{2}-p q+q^{2}\right) p}{q^{2}\left(p^{2}-p q+q^{2}\right)}\right)= \\ & =\frac{p(p+q)}{q^{2}}: \frac{p(p+q)}{q^{2}}=1 \end{aligned} $$ Answer: 1.
1
Algebra
math-word-problem
Yes
Yes
olympiads
false
2.288. Check that the number $x=\sqrt[3]{4+\sqrt{80}}-\sqrt[3]{\sqrt{80}-4}$ is a root of the equation $x^{3}+12 x-8=0$.
## Solution. Let $x=\sqrt[3]{4+\sqrt{80}}-\sqrt[3]{\sqrt{80}-4}=\sqrt[3]{4+\sqrt{80}}+\sqrt[3]{4-\sqrt{80}}$. Substituting this value of $x$ into the equation, we get $$ (\sqrt[3]{4+\sqrt{80}}+\sqrt[3]{4-\sqrt{80}})^{3}+12(\sqrt[3]{4+\sqrt{80}}+\sqrt[3]{4-\sqrt{80}})-8=0 $$ $$ \begin{aligned} & (\sqrt[3]{4+\sqrt{80}})^{3}+3(\sqrt[3]{4+\sqrt{80}})^{2} \cdot \sqrt[3]{4-\sqrt{80}}+3 \sqrt[3]{4+\sqrt{80}} \times \\ & \times(\sqrt[3]{4-\sqrt{80}})^{2}+(\sqrt[3]{4-\sqrt{80}})^{3}+12(\sqrt[3]{4+\sqrt{80}}+\sqrt[3]{4-\sqrt{80}})-8=0 \\ & 4+\sqrt{80}+3 \sqrt[3]{(4+\sqrt{80})(4-\sqrt{80})} \cdot(\sqrt[3]{4+\sqrt{80}}+\sqrt[3]{4-\sqrt{80}})+4-\sqrt{80}+ \\ & +12(\sqrt[3]{4+\sqrt{80}}+\sqrt[3]{4-\sqrt{80}})-8=0 \\ & 4+\sqrt{80}+3 \sqrt[3]{16-80} \cdot(\sqrt[3]{4+\sqrt{80}}+\sqrt[3]{4-\sqrt{80}})+4-\sqrt{80}+ \\ & +12(\sqrt[3]{4+\sqrt{80}}+\sqrt[3]{4-\sqrt{80}})-8=0 \\ & 4+\sqrt{80}-12(\sqrt[3]{4+\sqrt{80}}+\sqrt[3]{4-\sqrt{80}})+4-\sqrt{80}+ \\ & +12(\sqrt[3]{4+\sqrt{80}}+\sqrt[3]{4-\sqrt{80}})-8=0 \\ & 0=0 . \end{aligned} $$
0
Algebra
proof
Yes
Yes
olympiads
false
2.297. $\sqrt[3]{26+15 \sqrt{3}} \cdot(2-\sqrt{3})=1$.
Solution. $\sqrt[3]{26+15 \sqrt{3}} \cdot(2-\sqrt{3})=\sqrt[3]{26+15 \sqrt{3}} \cdot \sqrt[3]{(2-\sqrt{3})^{3}}=$ $=\sqrt[3]{26+15 \sqrt{3}} \cdot \sqrt[3]{8-12 \sqrt{3}+18-3 \sqrt{3}}=\sqrt[3]{26+15 \sqrt{3}} \cdot \sqrt[3]{26-15 \sqrt{3}}=$ $=\sqrt[3]{(26+15 \sqrt{3})(26-15 \sqrt{3})}=\sqrt[3]{26^{2}-(15 \sqrt{3})^{2}}=\sqrt[3]{676-675}=$ $=\sqrt[3]{1}=1$.
1
Algebra
proof
Yes
Yes
olympiads
false
2.301. $\frac{\sqrt{5-2 \sqrt{6}} \cdot(5+2 \sqrt{6})(49-20 \sqrt{6})}{\sqrt{27}-3 \sqrt{18}+3 \sqrt{12}-\sqrt{8}}=1$.
Solution. $$ \begin{aligned} & \frac{\sqrt{5-2 \sqrt{6}} \cdot(5+2 \sqrt{6})(49-20 \sqrt{6})}{\sqrt{27}-3 \sqrt{18}+3 \sqrt{12}-\sqrt{8}}= \\ & =\frac{\sqrt{3-2 \sqrt{3 \cdot 2}+2} \cdot(3+2 \sqrt{3 \cdot 2}+2)(49-20 \sqrt{6})}{\sqrt{9 \cdot 3}-3 \sqrt{9 \cdot 2}+3 \sqrt{4 \cdot 3}-\sqrt{4 \cdot 2}}= \end{aligned} $$ $$ \begin{aligned} & =\frac{\sqrt{(\sqrt{3}-\sqrt{2})^{2}} \cdot(\sqrt{3}+\sqrt{2})^{2}(49-20 \sqrt{6})}{3 \sqrt{3}-9 \sqrt{2}+6 \sqrt{3}-2 \sqrt{2}}=\frac{(\sqrt{3}-\sqrt{2})(\sqrt{3}+\sqrt{2})^{2}(49-20 \sqrt{6})}{9 \sqrt{3}-11 \sqrt{2}}= \\ & =\frac{((\sqrt{3}-\sqrt{2})(\sqrt{3}+\sqrt{2})) \cdot(\sqrt{3}+\sqrt{2})(49-20 \sqrt{6})}{9 \sqrt{3}-11 \sqrt{2}}= \\ & =\frac{\left((\sqrt{3})^{2}-(\sqrt{2})^{2}\right) \cdot(49 \sqrt{3}-20 \sqrt{18}+49 \sqrt{2}-20 \sqrt{12})}{9 \sqrt{3}-11 \sqrt{2}}= \\ & =\frac{(3-2)(49 \sqrt{3}-20 \sqrt{9 \cdot 2}+49 \sqrt{2}-20 \sqrt{4 \cdot 3})}{9 \sqrt{3}-11 \sqrt{2}}= \\ & =\frac{49 \sqrt{3}-60 \sqrt{2}+49 \sqrt{2}-40 \sqrt{3}}{9 \sqrt{3}-11 \sqrt{2}}=\frac{9 \sqrt{3}-11 \sqrt{2}}{9 \sqrt{3}-11 \sqrt{2}}=1 . \end{aligned} $$
1
Algebra
math-word-problem
Yes
Yes
olympiads
false
3.235. $\frac{1-2 \cos ^{2} \alpha}{2 \operatorname{tg}\left(2 \alpha-\frac{\pi}{4}\right) \sin ^{2}\left(\frac{\pi}{4}+2 \alpha\right)}=1$.
## Solution. $$ \begin{aligned} & \frac{1-2 \cos ^{2} 2 \alpha}{2 \operatorname{tg}\left(2 \alpha-\frac{\pi}{4}\right) \sin ^{2}\left(\frac{\pi}{4}+2 \alpha\right)}=\frac{1-1-\cos 4 \alpha}{\frac{\sin \left(4 \alpha-\frac{\pi}{2}\right)}{1+\cos \left(4 \alpha-\frac{\pi}{2}\right)} \cdot\left(1-\cos \left(\frac{\pi}{4}+2 \alpha\right)\right)}= \\ & =\frac{-\cos 4 \alpha\left(1+\cos \left(4 \alpha-\frac{\pi}{2}\right)\right)}{\sin \left(4 \alpha-\frac{\pi}{2}\right)\left(1-\cos \left(\frac{\pi}{2}+4 \alpha\right)\right)}=\frac{-\cos 4 \alpha\left(1+\cos \left(\frac{\pi}{2}-4 \alpha\right)\right)}{-\sin \left(\frac{\pi}{2}-4 \alpha\right)\left(1-\cos \left(\frac{\pi}{2}+4 \alpha\right)\right)}= \end{aligned} $$ $=\frac{\cos 4 \alpha(1+\sin 4 \alpha)}{\cos 4 \alpha(1+\sin 4 \alpha)}=1$. The identity is proven.
1
Algebra
proof
Yes
Yes
olympiads
false
3.243. $(\cos 8 \alpha \tan 4 \alpha-\sin 8 \alpha)(\cos 8 \alpha \cot 4 \alpha+\sin 8 \alpha)$.
## Solution. $$ \begin{aligned} & (\cos 8 \alpha \tan 4 \alpha - \sin 8 \alpha)(\cos 8 \alpha \cot 4 \alpha + \sin 8 \alpha)= \\ & =\left(\frac{\cos 8 \alpha \sin 4 \alpha}{\cos 4 \alpha} - \sin 8 \alpha\right)\left(\frac{\cos 8 \alpha \cos 4 \alpha}{\sin 4 \alpha} + \sin 8 \alpha\right)= \\ & =\frac{\sin 4 \alpha \cos 8 \alpha - \cos 4 \alpha \sin 8 \alpha}{\cos 4 \alpha} \cdot \frac{\cos 8 \alpha \cos 4 \alpha + \sin 8 \alpha \sin 4 \alpha}{\sin 4 \alpha}= \\ & =\frac{\sin (-4 \alpha)}{\cos 4 \alpha} \cdot \frac{\cos 4 \alpha}{\sin 4 \alpha}=\frac{-\sin 4 \alpha \cos 4 \alpha}{\sin 4 \alpha \cos 4 \alpha}=-1 . \end{aligned} $$ Answer: -1 .
-1
Algebra
math-word-problem
Yes
Yes
olympiads
false
3.244. $\sin ^{2} 2 \alpha+\sin ^{2} \beta+\cos (2 \alpha+\beta) \cos (2 \alpha-\beta)$.
## Solution. $$ \begin{aligned} & \sin ^{2} 2 \alpha+\sin ^{2} \beta+\cos (2 \alpha+\beta) \cos (2 \alpha-\beta)= \\ & =\frac{1-\cos 4 \alpha}{2}+\frac{1-\cos 2 \beta}{2}+\cos (2 \alpha+\beta) \cos (2 \alpha-\beta)= \\ & =\frac{1}{2}(1-\cos 4 \alpha+1-\cos 2 \beta)+\cos (2 \alpha+\beta) \cos (2 \alpha-\beta)= \\ & =-\left(\frac{\cos 4 \alpha}{2}+\frac{\cos 2 \beta}{2}-1\right)+\cos (2 \alpha+\beta) \cos (2 \alpha-\beta)= \\ & =\left[\cos x \cos y=\frac{1}{2}(\cos (x-y)+\cos (x+y))\right]= \\ & =-\frac{\cos 4 \alpha}{2}-\frac{\cos 2 \beta}{2}+1+\frac{\cos 4 \alpha}{2}+\frac{\cos 2 \beta}{2}=1 \end{aligned} $$ Answer: 1 .
1
Algebra
math-word-problem
Yes
Yes
olympiads
false
3.247. $\left(1-\operatorname{ctg}^{2}\left(\frac{3}{2} \pi-2 \alpha\right)\right) \sin ^{2}\left(\frac{\pi}{2}+2 \alpha\right) \operatorname{tg}\left(\frac{5}{4} \pi-2 \alpha\right)+\cos \left(4 \alpha-\frac{\pi}{2}\right)$.
## Solution. $$ \begin{aligned} & \left(1-\operatorname{ctg}^{2}\left(\frac{3}{2} \pi-2 \alpha\right)\right) \sin ^{2}\left(\frac{\pi}{2}+2 \alpha\right) \operatorname{tg}\left(\frac{5}{4} \pi-2 \alpha\right)+\cos \left(4 \alpha-\frac{\pi}{2}\right)= \\ & =\left(1-\left(\operatorname{ctg}\left(\frac{3}{2} \pi-2 \alpha\right)\right)^{2}\right)\left(\sin \left(\frac{\pi}{2}+2 \alpha\right)\right)^{2} \times \\ & \times \operatorname{tg}\left(\pi+\left(\frac{\pi}{4}-2 \alpha\right)\right)+\cos \left(\frac{\pi}{2}-4 \alpha\right)= \\ & =\left(1-\operatorname{tg}^{2} 2 \alpha\right) \cos ^{2} 2 \alpha \operatorname{tg}\left(\frac{\pi}{4}-2 \alpha\right)+\sin 4 \alpha= \\ & =\left(1-\frac{\sin ^{2} 2 \alpha}{\cos ^{2} 2 \alpha}\right) \cos ^{2} 2 \alpha \operatorname{tg}\left(\frac{\pi}{4}-2 \alpha\right)+\sin 4 \alpha= \end{aligned} $$ ![](https://cdn.mathpix.com/cropped/2024_05_21_3edb7be591bff54ce350g-0189.jpg?height=125&width=778&top_left_y=63&top_left_x=162) $=\cos 4 \alpha \operatorname{tg}\left(\frac{\pi}{4}-2 \alpha\right)+\sin 4 \alpha=\frac{\cos 4 \alpha\left(1-\cos \left(\frac{\pi}{2}-4 \alpha\right)\right)}{\sin \left(\frac{\pi}{2}-4 \alpha\right)}+\sin 4 \alpha=$ $=\frac{\cos 4 \alpha(1-\sin 4 \alpha)}{\cos 4 \alpha}+\sin 4 \alpha=1-\sin 4 \alpha+\sin 4 \alpha=1$. Answer: 1.
1
Algebra
math-word-problem
Yes
Yes
olympiads
false
3.282. $\frac{\sin 8 \alpha+\sin 9 \alpha+\sin 10 \alpha+\sin 11 \alpha}{\cos 8 \alpha+\cos 9 \alpha+\cos 10 \alpha+\cos 11 \alpha} \times$ $\times \frac{\cos 8 \alpha-\cos 9 \alpha-\cos 10 \alpha+\cos 11 \alpha}{\sin 8 \alpha-\sin 9 \alpha-\sin 10 \alpha+\sin 11 \alpha}$.
Solution. $$ \begin{aligned} & \frac{\sin 8 \alpha + \sin 9 \alpha + \sin 10 \alpha + \sin 11 \alpha}{\cos 8 \alpha + \cos 9 \alpha + \cos 10 \alpha + \cos 11 \alpha} \cdot \frac{\cos 8 \alpha - \cos 9 \alpha - \cos 10 \alpha + \cos 11 \alpha}{\sin 8 \alpha - \sin 9 \alpha - \sin 10 \alpha + \sin 11 \alpha} = \\ & = \frac{(\sin 11 \alpha + \sin 8 \alpha) + (\sin 10 \alpha + \sin 9 \alpha)}{(\cos 11 \alpha + \cos 8 \alpha) + (\cos 10 \alpha + \cos 9 \alpha)} \times \\ & \times \frac{(\cos 11 \alpha + \cos 8 \alpha) - (\cos 10 \alpha + \cos 9 \alpha)}{(\sin 11 \alpha + \sin 8 \alpha) - (\sin 10 \alpha + \sin 9 \alpha)} = \\ & = \left[\cos x + \cos y = 2 \cos \frac{x + y}{2} \cos \frac{x - y}{2}\right. \\ & \left.\sin x + \sin y = 2 \sin \frac{x + y}{2} \cos \frac{x - y}{2}\right] = \end{aligned} $$ $$ \begin{aligned} & = \frac{2 \sin \frac{19 \alpha}{2} \cos \frac{3 \alpha}{2} + 2 \sin \frac{19 \alpha}{2} \cos \frac{\alpha}{2}}{2 \cos \frac{19 \alpha}{2} \cos \frac{3 \alpha}{2} + 2 \cos \frac{19 \alpha}{2} \cos \frac{\alpha}{2}} \times \\ & \times \frac{2 \cos \frac{19 \alpha}{2} \cos \frac{3 \alpha}{2} - 2 \cos \frac{19 \alpha}{2} \cos \frac{\alpha}{2}}{2 \sin \frac{19 \alpha}{2} \cos \frac{3 \alpha}{2} - 2 \sin \frac{19 \alpha}{2} \cos \frac{\alpha}{2}} = \\ & = \frac{2 \sin \frac{19 \alpha}{2} \left( \cos \frac{3 \alpha}{2} + \cos \frac{\alpha}{2} \right)}{2 \cos \frac{19 \alpha}{2} \left( \cos \frac{3 \alpha}{2} + \cos \frac{\alpha}{2} \right)} \cdot \frac{2 \cos \frac{19 \alpha}{2} \left( \cos \frac{3 \alpha}{2} - \cos \frac{\alpha}{2} \right)}{2 \sin \frac{19 \alpha}{2} \left( \cos \frac{3 \alpha}{2} - \cos \frac{\alpha}{2} \right)} = \\ & = \frac{\sin \frac{19 \alpha}{2}}{\cos \frac{19 \alpha}{2}} \cdot \frac{\cos \frac{19 \alpha}{2}}{\sin \frac{19 \alpha}{2}} = 1 \end{aligned} $$ Answer: 1.
1
Algebra
math-word-problem
Yes
Yes
olympiads
false
3.332. $\frac{\sin 24^{\circ} \cos 6^{\circ}-\sin 6^{\circ} \sin 66^{\circ}}{\sin 21^{\circ} \cos 39^{\circ}-\sin 39^{\circ} \cos 21^{\circ}}=-1$.
Solution. $$ \begin{aligned} & \frac{\sin 24^{\circ} \cos 6^{\circ}-\sin 6^{\circ} \sin 66^{\circ}}{\sin 21^{\circ} \cos 39^{\circ}-\sin 39^{\circ} \cos 21^{\circ}}=\frac{\sin 24^{\circ} \cos 6^{\circ}-\sin 6^{\circ} \sin \left(90^{\circ}-24^{\circ}\right)}{\sin 21^{\circ} \cos 39^{\circ}-\sin 39^{\circ} \cos 21^{\circ}}= \\ & =[\sin x \cos y-\cos x \sin y=\sin (x-y)]=\frac{\sin 24^{\circ} \cos 6^{\circ}-\cos 24^{\circ} \sin 6^{\circ}}{\sin 21^{\circ} \cos 39^{\circ}-\cos 21^{\circ} \sin 39^{\circ}}= \\ & =\frac{\sin 18^{\circ}}{\sin \left(-18^{\circ}\right)}=\frac{\sin 18^{\circ}}{-\sin 18^{\circ}}=-1 \end{aligned} $$ The equality is valid.
-1
Algebra
proof
Yes
Yes
olympiads
false
3.333. $\frac{\sin 20^{\circ} \cos 10^{\circ}+\cos 160^{\circ} \cos 100^{\circ}}{\sin 21^{\circ} \cos 9^{\circ}+\cos 159^{\circ} \cos 99^{\circ}}=1$.
## Solution. $\frac{\sin 20^{\circ} \cos 10^{\circ}+\cos 160^{\circ} \cos 100^{\circ}}{\sin 21^{\circ} \cos 9^{\circ}+\cos 159^{\circ} \cos 99^{\circ}}=$ $$ \begin{aligned} & =\frac{\sin 20^{\circ} \cos 10^{\circ}+\cos \left(180^{\circ}-20^{\circ}\right) \cos \left(90^{\circ}+10^{\circ}\right)}{\sin 21^{\circ} \cos 9^{\circ}+\cos \left(180^{\circ}-21^{\circ}\right) \cos \left(90^{\circ}+9^{\circ}\right)}= \\ & =\frac{\sin 20^{\circ} \cos 10^{\circ}+\cos 20^{\circ} \sin 10^{\circ}}{\sin 21^{\circ} \cos 9^{\circ}+\cos 21^{\circ} \sin 9^{\circ}}=\frac{\sin 30^{\circ}}{\sin 30^{\circ}}=1 \end{aligned} $$ The equality holds.
1
Algebra
proof
Yes
Yes
olympiads
false
3.335. $$ \frac{\cos 64^{\circ} \cos 4^{\circ}-\cos 86^{\circ} \cos 26^{\circ}}{\cos 71^{\circ} \cos 41^{\circ}-\cos 49^{\circ} \cos 19^{\circ}}=-1 $$
Solution. $$ \begin{aligned} & \frac{\cos 64^{\circ} \cos 4^{\circ}-\cos 86^{\circ} \cos 26^{\circ}}{\cos 71^{\circ} \cos 41^{\circ}-\cos 49^{\circ} \cos 19^{\circ}}= \\ & =\frac{\cos \left(90^{\circ}-26^{\circ}\right) \cos 4^{\circ}-\cos \left(90^{\circ}-4^{\circ}\right) \cos 26^{\circ}}{\cos \left(90^{\circ}-19^{\circ}\right) \cos 41^{\circ}-\cos 19^{\circ} \cos \left(90^{\circ}-41^{\circ}\right)}= \\ & =[\sin x \cos y-\cos x \sin y=\sin (x-y)]= \\ & =\frac{\sin 26^{\circ} \cos 4^{\circ}-\sin 4^{\circ} \cos 26^{\circ}}{\sin 19^{\circ} \cos 41^{\circ}-\cos 19^{\circ} \sin 41^{\circ}}=\frac{\sin 22^{\circ}}{-\sin 22^{\circ}}=-1 \end{aligned} $$ The equality is valid.
-1
Algebra
proof
Yes
Yes
olympiads
false
3.336. $\frac{\cos 66^{\circ} \cos 6^{\circ}+\cos 84^{\circ} \cos 24^{\circ}}{\cos 65^{\circ} \cos 5^{\circ}+\cos 85^{\circ} \cos 25^{\circ}}=1$.
Solution. $$ \begin{aligned} & \frac{\cos 66^{\circ} \cos 6^{\circ}+\cos 84^{\circ} \cos 24^{\circ}}{\cos 65^{\circ} \cos 5^{\circ}+\cos 85^{\circ} \cos 25^{\circ}}= \\ & =\frac{\cos 66^{\circ} \cos 6^{\circ}+\cos \left(90^{\circ}-6^{\circ}\right) \cos \left(90^{\circ}-66^{\circ}\right)}{\cos 65^{\circ} \cos 5^{\circ}+\cos \left(90^{\circ}-5^{\circ}\right) \cos \left(90^{\circ}-65^{\circ}\right)}= \\ & =[\cos x \cos y+\sin x \sin y=\cos (x-y)]=\frac{\cos 66^{\circ} \cos 6^{\circ}+\sin 66^{\circ} \sin 6^{\circ}}{\cos 65^{\circ} \cos 5^{\circ}+\sin 65^{\circ} \sin 5^{\circ}}= \\ & =\frac{\cos 60^{\circ}}{\cos 60^{\circ}}=1 \end{aligned} $$ The equality holds.
1
Algebra
proof
Yes
Yes
olympiads
false
3.341. $\frac{\sin 20^{\circ} \sin 40^{\circ} \sin 60^{\circ} \sin 80^{\circ}}{\sin 10^{\circ} \sin 30^{\circ} \sin 50^{\circ} \sin 70^{\circ}}=3$.
Solution. $$ \begin{aligned} & \frac{\left(\sin 20^{\circ} \sin 40^{\circ}\right)\left(\sin 60^{\circ} \sin 80^{\circ}\right)}{\left(\sin 10^{\circ} \sin 30^{\circ}\right)\left(\sin 50^{\circ} \sin 70^{\circ}\right)}=\left[\sin x \sin y=\frac{1}{2}(\cos (x-y)-\cos (x+y))\right]= \\ & =\frac{\left(\cos 20^{\circ}-\cos 60^{\circ}\right)\left(\cos 20^{\circ}-\cos 140^{\circ}\right)}{\left(\cos 20^{\circ}-\cos 40^{\circ}\right)\left(\cos 20^{\circ}-\cos 120^{\circ}\right)}= \\ & =\frac{\left(\cos 20^{\circ}-\frac{1}{2}\right)\left(\cos 20^{\circ}-\cos \left(180^{\circ}-40^{\circ}\right)\right)}{\left(\cos 20^{\circ}-\cos 40^{\circ}\right)\left(\cos 20^{\circ}+\frac{1}{2}\right)}= \\ & =\frac{\left(2 \cos 20^{\circ}-1\right)\left(\cos 20^{\circ}+\cos 40^{\circ}\right)}{\left(\cos 20^{\circ}-\cos 40^{\circ}\right)\left(2 \cos 20^{\circ}+1\right)}= \\ & =\frac{2 \cos ^{2} 20^{\circ}+2 \cos 20^{\circ} \cos 40^{\circ}-\cos 20^{\circ}-\cos 40^{\circ}}{2 \cos ^{2} 20^{\circ}+\cos 20^{\circ}-2 \cos 40^{\circ} \cos 20^{\circ}-\cos 40^{\circ}}= \\ & =\left[\cos x \cos y=\frac{1}{2}(\cos (x-y)+\cos (x+y))\right]= \\ & =\frac{2 \cos ^{2} 20^{\circ}+\cos 20^{\circ}+\cos 60^{\circ}-\cos 20^{\circ}-\cos 40^{\circ}}{2 \cos ^{2} 20^{\circ}+\cos 20^{\circ}-\cos 60^{\circ}-\cos 20^{\circ}-\cos 40^{\circ}}= \\ & =\frac{2 \cos ^{2} 20^{\circ}+\frac{1}{2}-\cos 2\left(20^{\circ}\right)}{2 \cos ^{2} 20^{\circ}-\frac{1}{2}-\cos 2\left(20^{\circ}\right)}=\frac{2 \cos ^{2} 20^{\circ}+\frac{1}{2}-2 \cos ^{2} 20^{\circ}+1}{2 \cos ^{2} 20^{\circ}-\frac{1}{2}-2 \cos ^{2} 20^{\circ}}=\frac{\frac{3}{2}}{\frac{1}{2}}=3 . \end{aligned} $$ ## The equality is valid.
3
Algebra
math-word-problem
Yes
Yes
olympiads
false
3.347. $8 \cos \frac{4 \pi}{9} \cos \frac{2 \pi}{9} \cos \frac{\pi}{9}=1$.
## Solution. $$ 8 \cos \frac{4 \pi}{9} \cos \frac{2 \pi}{9} \cos \frac{\pi}{9}=8 \cos 80^{\circ} \cos 40^{\circ} \cos 20^{\circ}= $$ $=\frac{8 \cos 80^{\circ} \cos 40^{\circ} \cos 20^{\circ} \sin 20^{\circ}}{\sin 20^{\circ}}=\frac{4 \cos 80^{\circ} \cos 40^{\circ}\left(2 \cos 20^{\circ} \sin 20^{\circ}\right)}{\sin 20^{\circ}}=$ $=\frac{4 \cos 80^{\circ} \cos 40^{\circ} \sin 40^{\circ}}{\sin 20^{\circ}}=\frac{2 \cos 80^{\circ}\left(2 \cos 40^{\circ} \sin 40^{\circ}\right)}{\sin 20^{\circ}}=\frac{2 \cos 80^{\circ} \sin 80^{\circ}}{\sin 20^{\circ}}=$ $=\frac{\sin 160^{\circ}}{\sin 20^{\circ}}=\frac{\sin \left(180^{\circ}-20^{\circ}\right)}{\sin 20^{\circ}}=\frac{\sin 20^{\circ}}{\sin 20^{\circ}}=1$. The equality holds.
1
Algebra
proof
Yes
Yes
olympiads
false
3.348. $\operatorname{tg} 9^{\circ}+\operatorname{tg} 15^{\circ}-\operatorname{tg} 27^{\circ}-\operatorname{ctg} 27^{\circ}+\operatorname{ctg} 9^{\circ}+\operatorname{ctg} 15^{\circ}=8$.
## Solution. $$ \begin{aligned} & \operatorname{tg} 9^{\circ}+\operatorname{tg} 15^{\circ}-\operatorname{tg} 27^{\circ}-\operatorname{ctg} 27^{\circ}+\operatorname{ctg} 9^{\circ}+\operatorname{ctg} 15^{\circ}= \\ & =\left(\operatorname{tg} 9^{\circ}+\operatorname{ctg} 9^{\circ}\right)+\left(\operatorname{tg} 15^{\circ}+\operatorname{ctg} 15^{\circ}\right)-\left(\operatorname{tg} 27^{\circ}+\operatorname{ctg} 27^{\circ}\right)= \\ & =\left(\frac{\sin 9^{\circ}}{\cos 9^{\circ}}+\frac{\cos 9^{\circ}}{\sin 9^{\circ}}\right)+\left(\frac{\sin 15^{\circ}}{\cos 15^{\circ}}+\frac{\cos 15^{\circ}}{\sin 15^{\circ}}\right)-\left(\frac{\sin 27^{\circ}}{\cos 27^{\circ}}+\frac{\cos 27^{\circ}}{\sin 27^{\circ}}\right)= \\ & =\frac{\sin ^{2} 9^{\circ}+\cos ^{2} 9^{\circ}}{\sin 9^{\circ} \cos 9^{\circ}}+\frac{\sin ^{2} 15^{\circ}+\cos ^{2} 15^{\circ}}{\sin 15^{\circ} \cos 15^{\circ}}-\frac{\sin ^{2} 27^{\circ}+\cos ^{2} 27^{\circ}}{\sin 27^{\circ} \cos 27^{\circ}}= \\ & =\frac{1}{\sin 9^{\circ} \cos 9^{\circ}}+\frac{1}{\sin 15^{\circ} \cos 15^{\circ}}-\frac{1}{\sin 27^{\circ} \cos 27^{\circ}}= \\ & =\frac{2}{2 \sin 9^{\circ} \cos 9^{\circ}}+\frac{2}{2 \sin 15^{\circ} \cos 15^{\circ}}-\frac{2}{2 \sin 27^{\circ} \cos 27^{\circ}}= \\ & =\frac{2}{\sin 18^{\circ}}+\frac{2}{\sin 30^{\circ}}-\frac{2}{\sin 54^{\circ}}=\frac{2}{\sin 18^{\circ}}+\frac{2}{\frac{1}{2}}-\frac{2}{\sin 3\left(18^{\circ}\right)}= \\ & =\frac{2}{\sin 18^{\circ}}+4-\frac{2}{\sin 3\left(18^{\circ}\right)}=[\sin 3 x=3 \sin x-4 \sin x]= \\ & =\frac{2}{\sin 18^{\circ}}+4-\frac{2}{3 \sin 18^{\circ}-4 \sin ^{3} 18^{\circ}}=\frac{1}{\sin 18^{\circ}}+4-\frac{2}{3 \sin 18^{\circ}-4\left(\sin 18^{\circ}\right)^{3}}= \\ & =\left[\sin 18^{\circ}=\frac{\sqrt{5}-1}{4}\left(\mathrm{~cm} . N_{0} 3.339 \text { b) }\right)\right]= \end{aligned} $$ $$ \begin{aligned} & =\frac{2}{\frac{\sqrt{5}-1}{4}}+4-\frac{2}{\frac{3(\sqrt{5}-1)}{4}-\frac{4(\sqrt{5}-1)^{3}}{64}}= \\ & =\frac{8}{\sqrt{5}-1}+4-\frac{128}{48(\sqrt{5}-1)-4(8 \sqrt{5}-16)}=\frac{8}{\sqrt{5}-1}+4-\frac{128}{16 \sqrt{5}+16}= \\ & =\frac{8}{\sqrt{5}-1}+4-\frac{8}{\sqrt{5}+1}=\frac{8(\sqrt{5}+1)-8(\sqrt{5}-1)}{5-1}+4=8 \end{aligned} $$ The equality is valid.
8
Algebra
math-word-problem
Yes
Yes
olympiads
false
3.349. $\frac{\sin \left(\alpha-\frac{3}{2} \pi\right) \tan\left(\frac{\pi}{4}+\frac{\alpha}{2}\right)}{1+\cos \left(\alpha-\frac{5}{2} \pi\right)}=1$.
Solution. $$ \begin{aligned} & \frac{\sin \left(\alpha-\frac{3}{2} \pi\right) \tan\left(\frac{\pi}{4}+\frac{\alpha}{2}\right)}{1+\cos \left(\alpha-\frac{5}{2} \pi\right)}=\frac{-\sin \left(\frac{3}{2} \pi-\alpha\right) \tan\left(\frac{\pi}{4}+\frac{\alpha}{2}\right)}{1+\cos \left(\frac{5}{2} \pi-\alpha\right)}= \\ & =\left[\tan \frac{x}{2}=\frac{1-\cos x}{\sin x}, x \neq \pi+2 \pi n, n \in Z\right]=\frac{\cos \alpha \cdot \frac{1-\cos \left(\frac{\pi}{2}+\alpha\right)}{\sin \left(\frac{\pi}{2}+\alpha\right)}}{1+\sin \alpha}= \\ & =\frac{\cos \alpha \cdot \frac{1+\sin \alpha}{\cos \alpha}}{1+\sin \alpha}=1 \end{aligned} $$ The equality is valid.
1
Algebra
proof
Yes
Yes
olympiads
false
3.353. $\frac{1}{\sin 10^{\circ}}-\frac{\sqrt{3}}{\cos 10^{\circ}}=4$.
Solution. $$ \begin{aligned} & \frac{1}{\sin 10^{\circ}}-\frac{\sqrt{3}}{\cos 10^{\circ}}=\frac{\cos 10^{\circ}-\sqrt{3} \sin 10^{\circ}}{\sin 10^{\circ} \cos 10^{\circ}}=\frac{2\left(\frac{1}{2} \cos 10^{\circ}-\frac{\sqrt{3}}{2} \sin 10^{\circ}\right)}{\sin 10^{\circ} \cos 10^{\circ}}= \\ & =\frac{2 \cdot 2\left(\sin 30^{\circ} \cos 10^{\circ}-\cos 30^{\circ} \sin 10^{\circ}\right)}{2 \sin 10^{\circ} \cos 10^{\circ}}= \end{aligned} $$ $=[\sin x \cos y-\cos x \sin y=\sin (x-y) ; 2 \sin x \cos y=\sin 2 x]=$ $=\frac{4 \sin 20^{\circ}}{\sin 20^{\circ}}=4$. The equality holds.
4
Algebra
math-word-problem
Yes
Yes
olympiads
false
3.358. $\frac{\cos 68^{\circ} \cos 8^{\circ}-\cos 82^{\circ} \cos 22^{\circ}}{\cos 53^{\circ} \cos 23^{\circ}-\cos 67^{\circ} \cos 37^{\circ}}$.
## Solution. $$ \begin{aligned} & \frac{\cos 68^{\circ} \cos 8^{\circ}-\cos 82^{\circ} \cos 22^{\circ}}{\cos 53^{\circ} \cos 23^{\circ}-\cos 67^{\circ} \cos 37^{\circ}}= \\ & =\frac{\cos 68^{\circ} \cos 8^{\circ}-\cos \left(90^{\circ}-8^{\circ}\right) \cos \left(90^{\circ}-68^{\circ}\right)}{\cos 53^{\circ} \cos 23^{\circ}-\cos \left(90^{\circ}-23^{\circ}\right) \cos \left(90^{\circ}-53^{\circ}\right)}= \\ & =\frac{\cos 68^{\circ} \cos 8^{\circ}-\sin 68^{\circ} \sin 8^{\circ}}{\cos 53^{\circ} \cos 23^{\circ}-\sin 53^{\circ} \sin 23^{\circ}}=[\cos x \cos y-\sin x \sin y=\cos (x+y)]= \end{aligned} $$ $$ =\frac{\cos 76^{\circ}}{\cos 76^{\circ}}=1 $$ Answer: 1.
1
Algebra
math-word-problem
Yes
Yes
olympiads
false
3.359. $\frac{\cos 70^{\circ} \cos 10^{\circ}+\cos 80^{\circ} \cos 20^{\circ}}{\cos 69^{\circ} \cos 9^{\circ}+\cos 81^{\circ} \cos 21^{\circ}}$.
## Solution. $$ \frac{\cos 70^{\circ} \cos 10^{\circ}+\cos 80^{\circ} \cos 20^{\circ}}{\cos 69^{\circ} \cos 9^{\circ}+\cos 81^{\circ} \cos 21^{\circ}}= $$ $$ \begin{aligned} & =\frac{\cos \left(90^{\circ}-20^{\circ}\right) \cos 10^{\circ}+\cos \left(90^{\circ}-10^{\circ}\right) \cos 20^{\circ}}{\cos \left(90^{\circ}-21^{\circ}\right) \cos 9^{\circ}+\cos \left(90^{\circ}-9^{\circ}\right) \cos 21^{\circ}}= \\ & =\frac{\sin 20^{\circ} \cos 10^{\circ}+\cos 20^{\circ} \sin 10^{\circ}}{\sin 21^{\circ} \cos 9^{\circ}+\cos 21^{\circ} \sin 9^{\circ}}=[\sin x \cos y+\cos x \sin y=\sin (x+y)]= \\ & =\frac{\sin 30^{\circ}}{\sin 30^{\circ}}=1 \end{aligned} $$ Answer: 1.
1
Algebra
math-word-problem
Yes
Yes
olympiads
false
3.360. $\frac{\cos 67^{\circ} \cos 7^{\circ}-\cos 83^{\circ} \cos 23^{\circ}}{\cos 128^{\circ} \cos 68^{\circ}-\cos 38^{\circ} \cos 22^{\circ}}-\operatorname{tg} 164^{\circ}$.
## Решение. $$ \frac{\cos 67^{\circ} \cos 7^{\circ}-\cos 83^{\circ} \cos 23^{\circ}}{\cos 128^{\circ} \cos 68^{\circ}-\cos 38^{\circ} \cos 22^{\circ}}-\operatorname{tg} 164^{\circ}= $$ $$ =\frac{\cos 67^{\circ} \cos \left(90^{\circ}-83^{\circ}\right)-\cos 83^{\circ} \cos \left(90^{\circ}-67^{\circ}\right)}{\cos \left(90^{\circ}+38^{\circ}\right) \cos \left(90^{\circ}-22^{\circ}\right)-\cos 38^{\circ} \cos 22^{\circ}}-\operatorname{tg}\left(180^{\circ}-16^{\circ}\right)= $$ $$ \begin{aligned} & =\frac{\sin 83^{\circ} \cos 67^{\circ}-\cos 83^{\circ} \sin 67^{\circ}}{-\sin 38^{\circ} \sin 22^{\circ}-\cos 38^{\circ} \cos 22^{\circ}}+\operatorname{tg} 16^{\circ}= \\ & =\frac{\sin 83^{\circ} \cos 67^{\circ}-\cos 83^{\circ} \sin 67^{\circ}}{-\left(\cos 38^{\circ} \cos 22^{\circ}+\sin 38^{\circ} \sin 22^{\circ}\right)}+\operatorname{tg} 16^{\circ}= \\ & =[\sin x \cos y-\cos x \sin y=\sin (x-y) ; \\ & \cos x \cos y+\sin x \sin y=\cos (x-y)]= \\ & =\frac{\sin 16^{\circ}}{-\cos 16^{\circ}}+\operatorname{tg} 16^{\circ}=-\operatorname{tg} 16^{\circ}+\operatorname{tg} 16^{\circ}=0 \end{aligned} $$ Oтвет: 0.
0
Algebra
math-word-problem
Yes
Yes
olympiads
false
3.361. $\frac{\sin 22^{\circ} \cos 8^{\circ}+\cos 158^{\circ} \cos 98^{\circ}}{\sin 23^{\circ} \cos 7^{\circ}+\cos 157^{\circ} \cos 97^{\circ}}$.
Solution. $$ \begin{aligned} & \frac{\sin 22^{\circ} \cos 8^{\circ}+\cos 158^{\circ} \cos 98^{\circ}}{\sin 23^{\circ} \cos 7^{\circ}+\cos 157^{\circ} \cos 97^{\circ}}= \\ & =\frac{\sin 22^{\circ} \cos 8^{\circ}+\cos \left(180^{\circ}-22^{\circ}\right) \cos \left(90^{\circ}+8^{\circ}\right)}{\sin 23^{\circ} \cos 7^{\circ}+\cos \left(180^{\circ}-23^{\circ}\right) \cos \left(90^{\circ}+7^{\circ}\right)}= \\ & =\frac{\sin 22^{\circ} \cos 8^{\circ}+\cos 22^{\circ} \sin 8^{\circ}}{\sin 23^{\circ} \cos 7^{\circ}+\cos 23^{\circ} \sin 7^{\circ}}= \\ & =[\sin x \cos y+\cos x \sin y=\sin (x+y)]=\frac{\sin 30^{\circ}}{\sin 30^{\circ}}=1 \end{aligned} $$ Answer: 1.
1
Algebra
math-word-problem
Yes
Yes
olympiads
false
3.374. $\operatorname{tg} \frac{A}{2} \operatorname{tg} \frac{B}{2}+\operatorname{tg} \frac{B}{2} \operatorname{tg} \frac{C}{2}+\operatorname{tg} \frac{C}{2} \operatorname{tg} \frac{A}{2}=1$. 3.374. $\tan \frac{A}{2} \tan \frac{B}{2}+\tan \frac{B}{2} \tan \frac{C}{2}+\tan \frac{C}{2} \tan \frac{A}{2}=1$.
Solution. $$ \begin{aligned} & \tan \frac{A}{2} \tan \frac{B}{2} + \tan \frac{B}{2} \tan \frac{C}{2} + \tan \frac{C}{2} \tan \frac{A}{2} = \tan \frac{A}{2} \tan \frac{B}{2} + \left( \tan \frac{B}{2} + \tan \frac{A}{2} \right) \tan \frac{C}{2} = \\ & = \tan \frac{A}{2} \tan \frac{B}{2} + \left( \tan \frac{B}{2} + \tan \frac{A}{2} \right) \tan \frac{180^\circ - (A + B)}{2} = \end{aligned} $$ $$ \begin{aligned} & = \tan \frac{A}{2} \tan \frac{B}{2} + \left( \tan \frac{B}{2} + \tan \frac{A}{2} \right) \tan \left( 90^\circ - \frac{A + B}{2} \right) = \\ & = \tan \frac{A}{2} \tan \frac{B}{2} + \left( \tan \frac{B}{2} + \tan \frac{A}{2} \right) \cot \frac{A + B}{2} = \left[ \tan x + \tan y = \frac{\sin (x + y)}{\cos x \cos y} \right] = \\ & = \tan \frac{A}{2} \tan \frac{B}{2} + \frac{\sin \frac{A + B}{2}}{\cos \frac{A}{2} \cos \frac{B}{2}} \cdot \frac{\cos \frac{A + B}{2}}{\sin \frac{A + B}{2}} = \tan \frac{A}{2} \tan \frac{B}{2} + \frac{\cos \left( \frac{A}{2} + \frac{B}{2} \right)}{\cos \frac{A}{2} \cos \frac{B}{2}} = \\ & = \left[ \cos (x + y) = \cos x \cos y - \sin x \sin y \right] = \\ & = \tan \frac{A}{2} \tan \frac{B}{2} + \frac{\cos \frac{A}{2} \cos \frac{B}{2} - \sin \frac{A}{2} \sin \frac{B}{2}}{\cos \frac{A}{2} \cos \frac{B}{2}} = \\ & = \tan \frac{A}{2} \tan \frac{B}{2} + \frac{\cos \frac{A}{2} \cos \frac{B}{2}}{\cos \frac{A}{2} \cos \frac{B}{2}} - \frac{\sin \frac{A}{2} \sin \frac{B}{2}}{\cos \frac{A}{2} \cos \frac{B}{2}} = \tan \frac{A}{2} \tan \frac{B}{2} + 1 - \tan \frac{A}{2} \tan \frac{B}{2} = 1. \end{aligned} $$ ## The equality is valid.
1
Geometry
proof
Yes
Yes
olympiads
false
3.384. Prove that the expression $\frac{1-2 \sin ^{2}\left(\alpha-\frac{3}{2} \pi\right)+\sqrt{3} \cos \left(2 \alpha+\frac{3}{2} \pi\right)}{\sin \left(\frac{\pi}{6}-2 \alpha\right)}$ does not depend on $\alpha$, where $\alpha \neq \frac{\pi n}{2}+\frac{\pi}{12}$.
## Solution. $$ \begin{aligned} & \frac{1-2 \sin ^{2}\left(\alpha-\frac{3}{2} \pi\right)+\sqrt{3} \cos \left(2 \alpha+\frac{3}{2} \pi\right)}{\sin \left(\frac{\pi}{6}-2 \alpha\right)}= \\ & =\frac{1-2\left(-\sin \left(\frac{3}{2} \pi-\alpha\right)\right)^{2}+\sqrt{3} \cos \left(\frac{3}{2} \pi+2 \alpha\right)}{\sin \left(\frac{\pi}{6}-2 \alpha\right)}= \\ & =\frac{1-2 \cos ^{2} \alpha+\sqrt{3} \sin 2 \alpha}{\sin \left(\frac{\pi}{6}-2 \alpha\right)}= \end{aligned} $$ $$ \begin{aligned} & =\frac{-\left(2 \cos ^{2} \alpha-1\right)+\sqrt{3} \sin 2 \alpha}{\sin \left(\frac{\pi}{6}-2 \alpha\right)}=\frac{-\cos 2 \alpha+\sqrt{3} \sin 2 \alpha}{\sin \left(\frac{\pi}{6}-2 \alpha\right)}= \\ & =\frac{-2\left(\frac{1}{2} \cos 2 \alpha-\frac{\sqrt{3}}{2} \sin 2 \alpha\right)}{\sin \left(\frac{\pi}{6}-2 \alpha\right)}=\frac{-2\left(\sin \frac{\pi}{6} \cos 2 \alpha-\cos \frac{\pi}{6} \sin 2 \alpha\right)}{\sin \left(\frac{\pi}{6}-2 \alpha\right)}= \\ & =\frac{-2 \sin \left(\frac{\pi}{6}-2 \alpha\right)}{\sin \left(\frac{\pi}{6}-2 \alpha\right)}=-2 \end{aligned} $$ Answer: -2.
-2
Algebra
proof
Yes
Yes
olympiads
false
3.389. Prove that the expression $\cos ^{2} \alpha+\cos ^{2} \varphi+\cos ^{2}(\alpha+\varphi)-$ $2 \cos \alpha \cos \varphi \cos (\alpha+\varphi)$ does not depend on either $\alpha$ or $\varphi$.
## Solution. $\cos ^{2} \alpha+\cos ^{2} \varphi+\cos ^{2}(\alpha+\varphi)-2 \cos \alpha \cos \varphi \cos (\alpha+\varphi)=$ $=\cos ^{2} \alpha+\cos ^{2} \varphi+(\cos (\alpha+\varphi))^{2}-2 \cos \alpha \cos \varphi \times$ $x(\cos \alpha \cos \varphi-\sin \alpha \sin \varphi)=\cos ^{2} \alpha+\cos ^{2} \varphi+\cos ^{2} \alpha \cos ^{2} \varphi-$ $-2 \sin \alpha \cos \alpha \sin \varphi \cos \varphi+\sin ^{2} \alpha \sin ^{2} \varphi-2 \cos ^{2} \alpha \cos ^{2} \varphi+2 \sin \alpha \cos \alpha \times$ $\times \sin \varphi \cos \varphi=\cos ^{2} \alpha+\cos ^{2} \varphi+\sin ^{2} \alpha \sin ^{2} \varphi-\cos ^{2} \alpha \cos ^{2} \varphi=$ $=\left(\cos ^{2} \alpha-\cos ^{2} \alpha \cos ^{2} \varphi\right)+\cos ^{2} \varphi+\sin ^{2} \alpha \sin ^{2} \varphi=$ $=\cos ^{2} \alpha\left(1-\cos ^{2} \varphi\right)+\cos ^{2} \varphi+\sin ^{2} \alpha \sin ^{2} \varphi=$ $=\left(\cos ^{2} \alpha \sin ^{2} \varphi+\sin ^{2} \alpha \sin ^{2} \varphi\right)+\cos ^{2} \varphi=$ $=\sin ^{2} \varphi\left(\cos ^{2} \alpha+\sin ^{2} \alpha\right)+\cos ^{2} \varphi=\sin ^{2} \varphi+\cos ^{2} \varphi=1$. The number 1 does not depend on either $\alpha$ or $\varphi$, which is what we needed to prove. Answer: 1.
1
Algebra
proof
Yes
Yes
olympiads
false
4.041. Find the positive integer $n$ from the equation $$ (3+6+9+\ldots+3(n-1))+\left(4+5.5+7+\ldots+\frac{8+3 n}{2}\right)=137 $$
## Solution. In the first parentheses, there is the sum of the terms of an arithmetic progression $S_{k}$ where $a_{1}=3, d=3, a_{k}=3(n-1), k=\frac{a_{k}-a_{1}}{d}+1=\frac{3 n-3-3}{3}+1=n-1$; in the second parentheses, there is the sum of the terms of an arithmetic progression where $b_{1}=4, d=1.5, a_{m}=\frac{8+3 n}{2}, m=\frac{a_{m}-a_{1}}{d}+1=\frac{\frac{8+3 n}{2}-4}{1.5}+1=n+1$. Then the original equation takes the form $$ \frac{3+3(n-1)}{2} \cdot(n-1)+\frac{4+\frac{8+3 n}{2}}{2} \cdot(n+1)=137 \Leftrightarrow 9 n^{2}+13 n-532=0 $$ From this, $n_{1}=-\frac{76}{9}, n_{2}=7 ; n_{1}=-\frac{76}{9}$ is not suitable, as $n$ is an integer. Answer: 7.
7
Algebra
math-word-problem
Yes
Yes
olympiads
false
4.045. The sum of the first three terms of a geometric progression is 91. If 25, 27, and 1 are added to these terms respectively, the resulting three numbers form an arithmetic progression. Find the seventh term of the geometric progression.
## Solution. From the condition, we have: $b_{1}, b_{1} q, b_{1} q^{2}$ - terms of a geometric progression, $b_{1}+25, b_{1} q+27, b_{1} q^{2}$ - terms of an arithmetic progression, then we get $$ \left\{\begin{array} { l } { b _ { 1 } + b _ { 1 } q + b _ { 1 } q ^ { 2 } = 9 1 , } \\ { 2 ( b _ { 1 } q + 2 7 ) = b _ { 1 } + 2 5 + b _ { 1 } q ^ { 2 } + 1 , } \end{array} \Leftrightarrow \left\{\begin{array}{l} b_{1}\left(1+q+q^{2}\right)=91 \\ b_{1}\left(q^{2}-2 q+1\right)=28 \end{array} \Rightarrow\right.\right. $$ $$ \Rightarrow b_{1}=\frac{91}{1+q+q^{2}}, \frac{91\left(q^{2}-2 q+1\right)}{1+q+q^{2}}=28,3 q^{2}-10 q+3=0, \text { from which } $$ $q_{1}=3, q_{2}=\frac{1}{3}$ Then $b_{1}^{\prime}=\frac{91}{1+3+9}=\frac{91}{13}=7$ or $$ b_{1}^{\prime \prime}=\frac{91}{1+\frac{1}{3}+\frac{1}{9}}=\frac{819}{9+3+1}=\frac{819}{13}=63 $$ From this, $b_{7}^{\prime}=b_{1}^{\prime} \cdot q_{1}^{6}=7 \cdot 3^{6}=5103 ; b_{7}^{\prime \prime}=b_{1}^{\prime \prime} q_{2}^{6}=63 \cdot \frac{1}{3^{6}}=\frac{63}{729}=\frac{7}{81}$. Answer: 5103 or $\frac{7}{81}$.
5103
Algebra
math-word-problem
Yes
Yes
olympiads
false
4.050. Find the sum of all three-digit numbers divisible by 7.
Solution. We have: $$ \left\{\begin{array}{l} a_{1}=105 \\ a_{n}=994, \\ d=7 \end{array}\right. $$ Answer: 70336.
70336
Number Theory
math-word-problem
Yes
Yes
olympiads
false
4.056. Find the fifth term of an increasing geometric progression, given that its first term is equal to $7-3 \sqrt{5}$ and that each of its terms, starting from the second, is equal to the difference of the two adjacent terms.
Solution. We have: $$ \left\{\begin{array}{l} b_{1}=7-3 \sqrt{5} \\ b_{2}=b_{3}-b_{1}, \\ |q|>1 \end{array}\right. $$ $q_{1}=\frac{1-\sqrt{5}}{2}$ does not fit, as $\left|q_{1}\right|<1 ; q_{2}=\frac{1+\sqrt{5}}{2}$. From this, $$ b_{5}=b_{1} q^{4}=\frac{(7-3 \sqrt{5})(1+\sqrt{5})^{4}}{16}=\frac{(17-3 \sqrt{5}) 8(7+3 \sqrt{5})}{16}=\frac{49-45}{2}=2 $$ Answer: 2.
2
Algebra
math-word-problem
Yes
Yes
olympiads
false
4.061. Solve the equation $$ \frac{x-1}{x}+\frac{x-2}{x}+\frac{x-3}{x}+\ldots+\frac{1}{x}=3 $$ where $x$ is a positive integer.
## Solution. Multiplying both sides of the equation by $x$, we have $$ (x-1)+(x-2)+(x-3)+\ldots+1=3 x $$ The left side of this equation is the sum of the terms of an arithmetic progression, where $a_{1}=x-1, d=-1, a_{n}=1$, $$ n=\frac{a_{n}-a_{1}}{d}+1=\frac{1-x+1}{-1}+1=x-1 . \text { Since } S_{n}=\frac{a_{1}+a_{n}}{2} \cdot n $$ then $\frac{x-1+1}{2} \cdot(x-1)=3 x, x^{2}=7 x, x=7(x \neq 0)$. Answer: $x=7$.
7
Algebra
math-word-problem
Yes
Yes
olympiads
false
4.063. Given two geometric progressions consisting of the same number of terms. The first term and the common ratio of the first progression are 20 and $3 / 4$, respectively, while the first term and the common ratio of the second progression are 4 and $2 / 3$, respectively. If the terms of these progressions with the same indices are multiplied, the sum of all such products is 158.75. Find the number of terms in this progression.
## Solution. Let $a_{1}, a_{2}, a_{3}, \ldots$ and $b_{1}, b_{2}, b_{3}, \ldots$ be the terms of two geometric progressions, where $a_{1}=20, q_{1}=\frac{3}{4}; b_{1}=4, q_{2}=\frac{2}{3}$ and $a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}+\ldots=$ $=158.75$. We find $a_{2}=a_{1} q_{1}=20 \cdot \frac{3}{4}=15, a_{3}=a_{1} q_{1}^{2}=20 \cdot \frac{9}{16}=\frac{45}{4}, b_{2}=b_{1} q_{2}=$ $=4 \cdot \frac{2}{3}=\frac{8}{3}, b_{3}=b_{1} q_{2}^{2}=4 \cdot \frac{4}{9}=\frac{16}{9}$. Then $20 \cdot 4+15 \cdot \frac{8}{3}+\frac{45}{4} \cdot \frac{16}{9}+\ldots=158.75$ or $80+40+20+\ldots=\frac{635}{4}$. The left side of this equation is the sum of the terms of a geometric progression, where the first term is 80 and the common ratio is $\frac{1}{2}$. From this, we have $$ \begin{aligned} & \frac{80\left(1-\left(\frac{1}{2}\right)^{n}\right)}{1-\frac{1}{2}}=\frac{635}{4}, \frac{160\left(2^{n}-1\right)}{2^{n}}=\frac{635}{4}, \frac{32\left(2^{n}-1\right)}{2^{n}}=\frac{127}{4} \\ & 128\left(2^{n}-1\right)=127 \cdot 2^{n}, 2^{n}=2^{7}, n=7 \end{aligned} $$ Answer: 7.
7
Algebra
math-word-problem
Yes
Yes
olympiads
false
6.136. $\frac{x^{2}+1}{x+1}+\frac{x^{2}+2}{x-2}=-2$. 6.136. $\frac{x^{2}+1}{x+1}+\frac{x^{2}+2}{x-2}=-2$. (Note: The equation is the same in both languages, so the translation is identical to the original text.)
## Solution. Domain of definition: $\left\{\begin{array}{l}x \neq-1, \\ x \neq 2 .\end{array}\right.$ After bringing all terms of the equation to a common denominator, we have $$ \begin{aligned} & \frac{\left(x^{2}+1\right)(x-2)+\left(x^{2}+2\right)(x+1)+2(x+1)(x-2)}{(x+1)(x-2)}=0 \Leftrightarrow \\ & \Leftrightarrow \frac{2 x^{3}+x^{2}+x-4}{(x+1)(x-2)}=0 \Leftrightarrow 2 x^{3}+x^{2}+x-4=0 \text { for } x \neq-1 \text { and } x \neq 2 \end{aligned} $$ Rewrite this equation as $\left(2 x^{3}-2\right)+\left(x^{2}-1\right)+(x-1)=0$, $2(x-1)\left(x^{2}+x+1\right)+(x-1)(x+1)+x-1=0 \Leftrightarrow(x-1)\left(2 x^{2}+3 x+4\right)=0$, from which $x-1=0$, or $2 x^{2}+3 x+4=0 ; x_{1}=1$, for the quadratic equation $D<0$. Answer: $x=1$.
1
Algebra
math-word-problem
Yes
Yes
olympiads
false
6.145. $(x+1)^{2}(x+2)+(x-1)^{2}(x-2)=12$. Translate the above text into English, please retain the original text's line breaks and format, and output the translation result directly. 6.145. $(x+1)^{2}(x+2)+(x-1)^{2}(x-2)=12$.
## Solution. We have: $$ \begin{aligned} & \left(x^{2}+2 x+1\right)(x+2)+\left(x^{2}-2 x+1\right)(x-2)-12=0 \Leftrightarrow \\ & \Leftrightarrow x^{3}+2 x^{2}+2 x^{2}+4 x+x+2+x^{3}-2 x^{2}-2 x^{2}+4 x+x-2-12=0 \\ & 2 x^{3}+10 x-12=0, x^{3}+5 x-6=0 \end{aligned} $$ The last equation can be rewritten as: $x^{3}+5 x-5-1=0,\left(x^{3}-1\right)+5(x-1)=0,(x-1)\left(x^{2}+x+1\right)+5(x-1)=0$, $(x-1)\left(x^{2}+x+6\right)=0$, from which $x-1=0, x_{1}=1$, or $x^{2}+x+6=0, D<0$ and there are no roots. Answer: $x=1$.
1
Algebra
math-word-problem
Yes
Yes
olympiads
false
6.146. $\frac{(x-1)(x-2)(x-3)(x-4)}{(x+1)(x+2)(x+3)(x+4)}=1$.
Solution. Domain of definition: $\left\{\begin{array}{l}x \neq-1, \\ x \neq-2, \\ x \neq-3, \\ x \neq-4 .\end{array}\right.$ $$ \begin{aligned} & \text { From the condition } \frac{(x-1)(x-2)(x-3)(x-4)}{(x+1)(x+2)(x+3)(x+4)}-1=0 \Leftrightarrow \\ & \Leftrightarrow \frac{(x-1)(x-4)(x-2)(x-3)-(x+1)(x+4)(x+2)(x+3)}{(x+1)(x+4)(x+2)(x+3)}=0 \end{aligned} $$ We have $(x-1)(x-4)(x-2)(x-3)-(x+1)(x+4)(x+2)(x+3)=0$ for $x \neq-1$, $x \neq-2, x \neq-3, x \neq-4 ;\left(x^{2}-5 x+4\right)\left(x^{2}-5 x+6\right)-\left(x^{2}+5 x+4\right)\left(x^{2}+5 x+6\right)=0$, $\left(x^{2}-5 x\right)^{2}+10\left(x^{2}-5 x\right)+24-\left(x^{2}+5 x\right)^{2}-10\left(x^{2}+5 x\right)-24=0 \Leftrightarrow$ $\Leftrightarrow-20 x\left(x^{2}+5\right)=0$, from which $x_{1}=0, x^{2}+5 \neq 0$. Answer: $x=0$.
0
Algebra
math-word-problem
Yes
Yes
olympiads
false
6.158. $\sqrt[3]{9-\sqrt{x+1}}+\sqrt[3]{7+\sqrt{x+1}}=4$.
## Solution. Domain of definition: $x+1 \geq 0$ or $x \geq-1$. Let $\sqrt{x+1}=y \geq 0$. The equation in terms of $y$ becomes $\sqrt[3]{9-y}+\sqrt[3]{7+y}=4$. Raising both sides of the equation to the third power, we get $$ \begin{aligned} & 9-y+\sqrt[3]{(9-y)^{2}(7+y)}+3 \sqrt[3]{(9-y)(7+y)^{2}}+7+y=64 \Leftrightarrow \\ & \Leftrightarrow 3 \sqrt[3]{(9-y)^{2}(7+y)}+3 \sqrt[3]{(9-y)(7+y)^{2}}=48 \Leftrightarrow \\ & \Leftrightarrow 3 \sqrt[3]{(9-y)(7+y)} \times(\sqrt[3]{9-y}+\sqrt[3]{7+y})=48 \end{aligned} $$ Since by the condition $\sqrt[3]{9-y}+\sqrt[3]{7+y}=4$, then $$ 12 \sqrt[3]{(9-y)(7+y)}=48 \Leftrightarrow(9-y)(7+y)=64, y^{2}-2 y+1=0,(y-1)^{2}=0 $$ from which $y_{1,2}=1$. Then $\sqrt{x+1}=1, x=0$. Answer: $x=0$.
0
Algebra
math-word-problem
Yes
Yes
olympiads
false
6.159. $\sqrt{x+2}-\sqrt[3]{3 x+2}=0$. 6.159. $\sqrt{x+2}-\sqrt[3]{3 x+2}=0$.
## Solution. Domain of definition: $x+2 \geq 0, x \geq-2$. $$ \begin{aligned} & \text { From the condition } \sqrt{x+2}=\sqrt[3]{3 x+2} \Rightarrow(x+2)^{3}=(3 x+2)^{2} \\ & x^{3}+6 x^{2}+12 x+8=9 x^{2}+12 x+4 \Leftrightarrow x^{3}-3 x^{2}+4=0 \Leftrightarrow \\ & \Leftrightarrow(x+1)\left(x^{2}-x+1\right)-3(x-1)(x+1)=0 \Leftrightarrow(x+1)\left(x^{2}-4 x+4\right)=0 \\ & (x+1)(x-2)^{2}=0 . \text { Hence } x+1=0, x_{1}=-1, \text { or }(x-2)^{2}=0, x_{2,3}=2 \end{aligned} $$ By substituting into the original equation, we verify that $x_{1}=-1$ is an extraneous root. Answer: $x=2$.
2
Algebra
math-word-problem
Yes
Yes
olympiads
false
6.160. $\sqrt{\frac{20+x}{x}}+\sqrt{\frac{20-x}{x}}=\sqrt{6}$.
Solution. Domain of definition: $\left\{\begin{array}{l}\frac{20+x}{x} \geq 0, \\ \frac{20-x}{x} \geq 0,\end{array} \Leftrightarrow\left\{\begin{array}{l}x(x+20) \geq 0, \\ x(x-20) \geq 0, \\ x \neq 0,0<x \leq 20 .\end{array}\right.\right.$ By squaring both sides of the equation, we have $$ \begin{aligned} & \frac{20+x}{x}+2 \sqrt{\frac{(20+x)(20-x)}{x^{2}}}+\frac{20-x}{x}=6 \Leftrightarrow \frac{\sqrt{400-x^{2}}}{x}=\frac{3 x-20}{x} \Rightarrow \\ & \sqrt{400-x^{2}}=3 x-20 \text {, where } 3 x-20 \geq 0, x \geq \frac{20}{3} . \end{aligned} $$ Further: $400-x^{2}=9 x^{2}-120 x+400 \Leftrightarrow x(x-12)=0$, from which $x_{1}=0$, $x_{2}=12 ; x_{1}=0<\frac{20}{3}$ does not fit. Answer: $x=12$.
12
Algebra
math-word-problem
Yes
Yes
olympiads
false
6.164. $\sqrt{x+8+2 \sqrt{x+7}}+\sqrt{x+1-\sqrt{x+7}}=4$.
Solution. Let $\sqrt{x+7}=y \geq 0, x+7=y^{2}, x=y^{2}-7$. With respect to $y$, the equation takes the form $$ \begin{aligned} & \sqrt{y^{2}+2 y+1}+\sqrt{y^{2}-y-6}=4, \sqrt{(y+1)^{2}}+\sqrt{y^{2}-y-6}=4 \\ & |y+1|+\sqrt{y^{2}-y-6}=4 \end{aligned} $$ Since $y \geq 0$, we have $y+1+\sqrt{y^{2}-y-6}=4, \sqrt{y^{2}-y-6}=3-y$, where $3-y \geq 0, y \leq 3$. Squaring both sides of the equation, we get $y^{2}-y-6=9-6 y+y^{2}, y=3$. Then $\sqrt{x+7}=3, x+7=9, x=2$. Answer: $x=2$.
2
Algebra
math-word-problem
Yes
Yes
olympiads
false
6.169. $\sqrt{x}+\frac{2 x+1}{x+2}=2$. 6.169. $\sqrt{x}+\frac{2 x+1}{x+2}=2$.
## Solution. Domain of definition: $x \geq 0$. From the condition, we have $\sqrt{x}=2-\frac{2 x+1}{x+2} \Leftrightarrow \sqrt{x}=\frac{2 x+4-2 x-1}{x+2}, \sqrt{x}=\frac{3}{x+2}$. Squaring both sides of the equation, we get $x=\frac{3}{x^{2}+4 x+4} \Leftrightarrow$ $\Leftrightarrow \frac{x^{3}+4 x^{2}+4 x-9}{x^{2}+4 x+4}=0$, from which $x^{3}+4 x^{2}+4 x-9=0$ for $x \neq-2$. Rewrite the equation as $\left(x^{3}-1\right)+\left(4 x^{2}-4\right)+(4 x-4)=0$, $(x-1)\left(x^{2}+x+1\right)+4(x-1)(x+1)+4(x-1)=0 \Leftrightarrow(x-1)\left(x^{2}+5 x+9\right)=0$. From this, $x-1=0$ or $x^{2}+5 x+9=0$. From the last two equations, we have $x_{1}=1 ;$ the second equation has no solutions, since $D<0$. Answer: $x=1$.
1
Algebra
math-word-problem
Yes
Yes
olympiads
false
6.170. $\frac{\sqrt{x+4}+\sqrt{x-4}}{2}=x+\sqrt{x^{2}-16}-6$.
## Solution. Domain of definition: $\left\{\begin{array}{l}x+4 \geq 0, \\ x-4 \geq 0,\end{array} \Leftrightarrow x \geq 4\right.$. By squaring both sides of the equation, we get $$ \begin{aligned} & \frac{x+4+2 \sqrt{(x+4)(x-4)}+x-4}{4}=\left(x+\sqrt{x^{2}-16}\right)^{2}-12\left(x+\sqrt{x^{2}-16}\right)+36 \\ & 2\left(x+\sqrt{x^{2}-16}\right)-25\left(x+\sqrt{x^{2}-16}\right)+72=0 \end{aligned} $$ Let $x+\sqrt{x^{2}-16}=y$. The equation in terms of $y$ becomes $$ 2 y^{2}-25 y+72=0, \text { from which } y_{1}=\frac{9}{2}, y_{2}=8 $$ Then $$ \text { 1) } x+\sqrt{x^{2}-16}=\frac{9}{2} \Leftrightarrow 2 \sqrt{x^{2}-16}=9-2 x, \text { where } 9-2 x \geq 0, x \leq 4.5 $$ After squaring the equation, we get $$ 4 x^{2}-64=81-36 x+4 x^{2}, 36 x=145, x_{1}=\frac{145}{36} ; \text { does not fit; } $$ 2) $x+\sqrt{x^{2}-16}=8, \sqrt{x^{2}-16}=8-x$, where $8-x \geq 0, x \leq 8$. After squaring the equation, we get $x^{2}-16=64-16 x+x^{2}, x=5$. Answer: $x=5$.
5
Algebra
math-word-problem
Yes
Yes
olympiads
false