contestId
int64
0
1.01k
index
stringclasses
57 values
name
stringlengths
2
58
type
stringclasses
2 values
rating
int64
0
3.5k
tags
listlengths
0
11
title
stringclasses
522 values
time-limit
stringclasses
8 values
memory-limit
stringclasses
8 values
problem-description
stringlengths
0
7.15k
input-specification
stringlengths
0
2.05k
output-specification
stringlengths
0
1.5k
demo-input
listlengths
0
7
demo-output
listlengths
0
7
note
stringlengths
0
5.24k
points
float64
0
425k
test_cases
listlengths
0
402
creationTimeSeconds
int64
1.37B
1.7B
relativeTimeSeconds
int64
8
2.15B
programmingLanguage
stringclasses
3 values
verdict
stringclasses
14 values
testset
stringclasses
12 values
passedTestCount
int64
0
1k
timeConsumedMillis
int64
0
15k
memoryConsumedBytes
int64
0
805M
code
stringlengths
3
65.5k
prompt
stringlengths
262
8.2k
response
stringlengths
17
65.5k
score
float64
-1
3.99
962
A
Equator
PROGRAMMING
1,300
[ "implementation" ]
null
null
Polycarp has created his own training plan to prepare for the programming contests. He will train for $n$ days, all days are numbered from $1$ to $n$, beginning from the first. On the $i$-th day Polycarp will necessarily solve $a_i$ problems. One evening Polycarp plans to celebrate the equator. He will celebrate it on the first evening of such a day that from the beginning of the training and to this day inclusive he will solve half or more of all the problems. Determine the index of day when Polycarp will celebrate the equator.
The first line contains a single integer $n$ ($1 \le n \le 200\,000$) — the number of days to prepare for the programming contests. The second line contains a sequence $a_1, a_2, \dots, a_n$ ($1 \le a_i \le 10\,000$), where $a_i$ equals to the number of problems, which Polycarp will solve on the $i$-th day.
Print the index of the day when Polycarp will celebrate the equator.
[ "4\n1 3 2 1\n", "6\n2 2 2 2 2 2\n" ]
[ "2\n", "3\n" ]
In the first example Polycarp will celebrate the equator on the evening of the second day, because up to this day (inclusive) he will solve $4$ out of $7$ scheduled problems on four days of the training. In the second example Polycarp will celebrate the equator on the evening of the third day, because up to this day (inclusive) he will solve $6$ out of $12$ scheduled problems on six days of the training.
0
[ { "input": "4\n1 3 2 1", "output": "2" }, { "input": "6\n2 2 2 2 2 2", "output": "3" }, { "input": "1\n10000", "output": "1" }, { "input": "3\n2 1 1", "output": "1" }, { "input": "2\n1 3", "output": "2" }, { "input": "4\n2 1 1 3", "output": "3" }, { "input": "3\n1 1 3", "output": "3" }, { "input": "3\n1 1 1", "output": "2" }, { "input": "2\n1 2", "output": "2" }, { "input": "3\n2 1 2", "output": "2" }, { "input": "5\n1 2 4 3 5", "output": "4" }, { "input": "5\n2 2 2 4 3", "output": "4" }, { "input": "4\n1 2 3 1", "output": "3" }, { "input": "6\n7 3 10 7 3 11", "output": "4" }, { "input": "2\n3 4", "output": "2" }, { "input": "5\n1 1 1 1 1", "output": "3" }, { "input": "4\n1 3 2 3", "output": "3" }, { "input": "2\n2 3", "output": "2" }, { "input": "3\n32 10 23", "output": "2" }, { "input": "7\n1 1 1 1 1 1 1", "output": "4" }, { "input": "3\n1 2 4", "output": "3" }, { "input": "6\n3 3 3 2 4 4", "output": "4" }, { "input": "9\n1 1 1 1 1 1 1 1 1", "output": "5" }, { "input": "5\n1 3 3 1 1", "output": "3" }, { "input": "4\n1 1 1 2", "output": "3" }, { "input": "4\n1 2 1 3", "output": "3" }, { "input": "3\n2 2 1", "output": "2" }, { "input": "4\n2 3 3 3", "output": "3" }, { "input": "4\n3 2 3 3", "output": "3" }, { "input": "4\n2 1 1 1", "output": "2" }, { "input": "3\n2 1 4", "output": "3" }, { "input": "2\n6 7", "output": "2" }, { "input": "4\n3 3 4 3", "output": "3" }, { "input": "4\n1 1 2 5", "output": "4" }, { "input": "4\n1 8 7 3", "output": "3" }, { "input": "6\n2 2 2 2 2 3", "output": "4" }, { "input": "3\n2 2 5", "output": "3" }, { "input": "4\n1 1 2 1", "output": "3" }, { "input": "5\n1 1 2 2 3", "output": "4" }, { "input": "5\n9 5 3 4 8", "output": "3" }, { "input": "3\n3 3 1", "output": "2" }, { "input": "4\n1 2 2 2", "output": "3" }, { "input": "3\n1 3 5", "output": "3" }, { "input": "4\n1 1 3 6", "output": "4" }, { "input": "6\n1 2 1 1 1 1", "output": "3" }, { "input": "3\n3 1 3", "output": "2" }, { "input": "5\n3 4 5 1 2", "output": "3" }, { "input": "11\n1 1 1 1 1 1 1 1 1 1 1", "output": "6" }, { "input": "5\n3 1 2 5 2", "output": "4" }, { "input": "4\n1 1 1 4", "output": "4" }, { "input": "4\n2 6 1 10", "output": "4" }, { "input": "4\n2 2 3 2", "output": "3" }, { "input": "4\n4 2 2 1", "output": "2" }, { "input": "6\n1 1 1 1 1 4", "output": "5" }, { "input": "3\n3 2 2", "output": "2" }, { "input": "6\n1 3 5 1 7 4", "output": "5" }, { "input": "5\n1 2 4 8 16", "output": "5" }, { "input": "5\n1 2 4 4 4", "output": "4" }, { "input": "6\n4 2 1 2 3 1", "output": "3" }, { "input": "4\n3 2 1 5", "output": "3" }, { "input": "1\n1", "output": "1" }, { "input": "3\n2 4 7", "output": "3" }, { "input": "5\n1 1 1 1 3", "output": "4" }, { "input": "3\n3 1 5", "output": "3" }, { "input": "4\n1 2 3 7", "output": "4" }, { "input": "3\n1 4 6", "output": "3" }, { "input": "4\n2 1 2 2", "output": "3" }, { "input": "2\n4 5", "output": "2" }, { "input": "5\n1 2 1 2 1", "output": "3" }, { "input": "3\n2 3 6", "output": "3" }, { "input": "6\n1 1 4 1 1 5", "output": "4" }, { "input": "5\n2 2 2 2 1", "output": "3" }, { "input": "2\n5 6", "output": "2" }, { "input": "4\n2 2 1 4", "output": "3" }, { "input": "5\n2 2 3 4 4", "output": "4" }, { "input": "4\n3 1 1 2", "output": "2" }, { "input": "5\n3 4 1 4 5", "output": "4" }, { "input": "4\n1 3 1 6", "output": "4" }, { "input": "5\n1 1 1 2 2", "output": "4" }, { "input": "4\n1 4 2 4", "output": "3" }, { "input": "10\n1 1 1 1 1 1 1 1 1 8", "output": "9" }, { "input": "4\n1 4 5 1", "output": "3" }, { "input": "5\n1 1 1 1 5", "output": "5" }, { "input": "4\n1 3 4 1", "output": "3" }, { "input": "4\n2 2 2 3", "output": "3" }, { "input": "4\n2 3 2 4", "output": "3" }, { "input": "5\n2 2 1 2 2", "output": "3" }, { "input": "3\n4 3 2", "output": "2" }, { "input": "3\n6 5 2", "output": "2" }, { "input": "69\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1", "output": "35" }, { "input": "6\n1 1 1 1 1 2", "output": "4" }, { "input": "5\n1 2 5 4 5", "output": "4" }, { "input": "2\n9 10", "output": "2" }, { "input": "3\n1 1 5", "output": "3" }, { "input": "4\n3 4 3 5", "output": "3" }, { "input": "4\n1 4 3 3", "output": "3" }, { "input": "4\n7 1 3 4", "output": "2" }, { "input": "3\n100 100 1", "output": "2" }, { "input": "4\n5 2 2 2", "output": "2" } ]
1,523,900,039
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
3
78
7,065,600
num_dias = int(input()) entrada = list(map(int, input().split())) prob_res = 0 for i in range(len(entrada)): prob_res += entrada[i] if prob_res >= num_dias: print(i+1) break;
Title: Equator Time Limit: None seconds Memory Limit: None megabytes Problem Description: Polycarp has created his own training plan to prepare for the programming contests. He will train for $n$ days, all days are numbered from $1$ to $n$, beginning from the first. On the $i$-th day Polycarp will necessarily solve $a_i$ problems. One evening Polycarp plans to celebrate the equator. He will celebrate it on the first evening of such a day that from the beginning of the training and to this day inclusive he will solve half or more of all the problems. Determine the index of day when Polycarp will celebrate the equator. Input Specification: The first line contains a single integer $n$ ($1 \le n \le 200\,000$) — the number of days to prepare for the programming contests. The second line contains a sequence $a_1, a_2, \dots, a_n$ ($1 \le a_i \le 10\,000$), where $a_i$ equals to the number of problems, which Polycarp will solve on the $i$-th day. Output Specification: Print the index of the day when Polycarp will celebrate the equator. Demo Input: ['4\n1 3 2 1\n', '6\n2 2 2 2 2 2\n'] Demo Output: ['2\n', '3\n'] Note: In the first example Polycarp will celebrate the equator on the evening of the second day, because up to this day (inclusive) he will solve $4$ out of $7$ scheduled problems on four days of the training. In the second example Polycarp will celebrate the equator on the evening of the third day, because up to this day (inclusive) he will solve $6$ out of $12$ scheduled problems on six days of the training.
```python num_dias = int(input()) entrada = list(map(int, input().split())) prob_res = 0 for i in range(len(entrada)): prob_res += entrada[i] if prob_res >= num_dias: print(i+1) break; ```
0
122
A
Lucky Division
PROGRAMMING
1,000
[ "brute force", "number theory" ]
null
null
Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. Petya calls a number almost lucky if it could be evenly divided by some lucky number. Help him find out if the given number *n* is almost lucky.
The single line contains an integer *n* (1<=≤<=*n*<=≤<=1000) — the number that needs to be checked.
In the only line print "YES" (without the quotes), if number *n* is almost lucky. Otherwise, print "NO" (without the quotes).
[ "47\n", "16\n", "78\n" ]
[ "YES\n", "YES\n", "NO\n" ]
Note that all lucky numbers are almost lucky as any number is evenly divisible by itself. In the first sample 47 is a lucky number. In the second sample 16 is divisible by 4.
500
[ { "input": "47", "output": "YES" }, { "input": "16", "output": "YES" }, { "input": "78", "output": "NO" }, { "input": "48", "output": "YES" }, { "input": "100", "output": "YES" }, { "input": "107", "output": "NO" }, { "input": "77", "output": "YES" }, { "input": "477", "output": "YES" }, { "input": "480", "output": "YES" }, { "input": "1", "output": "NO" }, { "input": "3", "output": "NO" }, { "input": "4", "output": "YES" }, { "input": "49", "output": "YES" }, { "input": "56", "output": "YES" }, { "input": "124", "output": "YES" }, { "input": "1000", "output": "YES" }, { "input": "999", "output": "NO" }, { "input": "298", "output": "NO" }, { "input": "274", "output": "NO" }, { "input": "998", "output": "NO" }, { "input": "42", "output": "YES" }, { "input": "788", "output": "YES" }, { "input": "70", "output": "YES" }, { "input": "444", "output": "YES" }, { "input": "777", "output": "YES" }, { "input": "799", "output": "YES" }, { "input": "25", "output": "NO" }, { "input": "882", "output": "YES" }, { "input": "88", "output": "YES" }, { "input": "11", "output": "NO" }, { "input": "2", "output": "NO" }, { "input": "7", "output": "YES" }, { "input": "8", "output": "YES" }, { "input": "94", "output": "YES" }, { "input": "477", "output": "YES" }, { "input": "141", "output": "YES" } ]
1,696,251,954
2,147,483,647
PyPy 3-64
WRONG_ANSWER
TESTS
0
92
0
def is_almost_lucky(n): # Lucky numbers are 4 and 7, and any multiple of them lucky_numbers = [4, 7, 44, 77, 444, 777] # Check if n is divisible by any lucky number for lucky in lucky_numbers: if n % lucky == 0: return "YES" return "NO" # Read the input number n = int(input().strip()) # Check if the input number is almost lucky result = is_almost_lucky(n) # Print the result print(result)
Title: Lucky Division Time Limit: None seconds Memory Limit: None megabytes Problem Description: Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. Petya calls a number almost lucky if it could be evenly divided by some lucky number. Help him find out if the given number *n* is almost lucky. Input Specification: The single line contains an integer *n* (1<=≤<=*n*<=≤<=1000) — the number that needs to be checked. Output Specification: In the only line print "YES" (without the quotes), if number *n* is almost lucky. Otherwise, print "NO" (without the quotes). Demo Input: ['47\n', '16\n', '78\n'] Demo Output: ['YES\n', 'YES\n', 'NO\n'] Note: Note that all lucky numbers are almost lucky as any number is evenly divisible by itself. In the first sample 47 is a lucky number. In the second sample 16 is divisible by 4.
```python def is_almost_lucky(n): # Lucky numbers are 4 and 7, and any multiple of them lucky_numbers = [4, 7, 44, 77, 444, 777] # Check if n is divisible by any lucky number for lucky in lucky_numbers: if n % lucky == 0: return "YES" return "NO" # Read the input number n = int(input().strip()) # Check if the input number is almost lucky result = is_almost_lucky(n) # Print the result print(result) ```
0
235
A
LCM Challenge
PROGRAMMING
1,600
[ "number theory" ]
null
null
Some days ago, I learned the concept of LCM (least common multiple). I've played with it for several times and I want to make a big number with it. But I also don't want to use many numbers, so I'll choose three positive integers (they don't have to be distinct) which are not greater than *n*. Can you help me to find the maximum possible least common multiple of these three integers?
The first line contains an integer *n* (1<=≤<=*n*<=≤<=106) — the *n* mentioned in the statement.
Print a single integer — the maximum possible LCM of three not necessarily distinct positive integers that are not greater than *n*.
[ "9\n", "7\n" ]
[ "504\n", "210\n" ]
The least common multiple of some positive integers is the least positive integer which is multiple for each of them. The result may become very large, 32-bit integer won't be enough. So using 64-bit integers is recommended. For the last example, we can chose numbers 7, 6, 5 and the LCM of them is 7·6·5 = 210. It is the maximum value we can get.
500
[ { "input": "9", "output": "504" }, { "input": "7", "output": "210" }, { "input": "1", "output": "1" }, { "input": "5", "output": "60" }, { "input": "6", "output": "60" }, { "input": "33", "output": "32736" }, { "input": "21", "output": "7980" }, { "input": "2", "output": "2" }, { "input": "41", "output": "63960" }, { "input": "29", "output": "21924" }, { "input": "117", "output": "1560780" }, { "input": "149", "output": "3241644" }, { "input": "733", "output": "392222436" }, { "input": "925", "output": "788888100" }, { "input": "509", "output": "131096004" }, { "input": "829", "output": "567662724" }, { "input": "117", "output": "1560780" }, { "input": "605", "output": "220348260" }, { "input": "245", "output": "14526540" }, { "input": "925", "output": "788888100" }, { "input": "213", "output": "9527916" }, { "input": "53", "output": "140556" }, { "input": "341", "output": "39303660" }, { "input": "21", "output": "7980" }, { "input": "605", "output": "220348260" }, { "input": "149", "output": "3241644" }, { "input": "733", "output": "392222436" }, { "input": "117", "output": "1560780" }, { "input": "53", "output": "140556" }, { "input": "245", "output": "14526540" }, { "input": "829", "output": "567662724" }, { "input": "924", "output": "783776526" }, { "input": "508", "output": "130065780" }, { "input": "700", "output": "341042100" }, { "input": "636", "output": "254839470" }, { "input": "20", "output": "6460" }, { "input": "604", "output": "218891412" }, { "input": "796", "output": "501826260" }, { "input": "732", "output": "389016270" }, { "input": "412", "output": "69256788" }, { "input": "700", "output": "341042100" }, { "input": "244", "output": "14289372" }, { "input": "828", "output": "563559150" }, { "input": "508", "output": "130065780" }, { "input": "796", "output": "501826260" }, { "input": "636", "output": "254839470" }, { "input": "924", "output": "783776526" }, { "input": "245", "output": "14526540" }, { "input": "828", "output": "563559150" }, { "input": "21", "output": "7980" }, { "input": "605", "output": "220348260" }, { "input": "636", "output": "254839470" }, { "input": "924", "output": "783776526" }, { "input": "116", "output": "1507420" }, { "input": "700", "output": "341042100" }, { "input": "732", "output": "389016270" }, { "input": "20", "output": "6460" }, { "input": "508", "output": "130065780" }, { "input": "148", "output": "3154620" }, { "input": "828", "output": "563559150" }, { "input": "763116", "output": "444394078546562430" }, { "input": "756604", "output": "433115377058855412" }, { "input": "447244", "output": "89460162932862372" }, { "input": "372636", "output": "51742503205363470" }, { "input": "546924", "output": "163597318076822526" }, { "input": "540412", "output": "157823524476316788" }, { "input": "714700", "output": "365063922340784100" }, { "input": "520731", "output": "141201007712496270" }, { "input": "695019", "output": "335728459024850814" }, { "input": "688507", "output": "326379736779169710" }, { "input": "862795", "output": "642275489615199390" }, { "input": "668827", "output": "299184742915995150" }, { "input": "810411", "output": "532248411551110590" }, { "input": "836603", "output": "585540171302562606" }, { "input": "978187", "output": "935975171582120670" }, { "input": "816923", "output": "545182335484592526" }, { "input": "958507", "output": "880611813728059710" }, { "input": "984699", "output": "954792870629291694" }, { "input": "642635", "output": "265393998349453470" }, { "input": "296604", "output": "26092892528622606" }, { "input": "1000000", "output": "999996000003000000" }, { "input": "8", "output": "280" }, { "input": "3", "output": "6" }, { "input": "4", "output": "12" }, { "input": "30", "output": "21924" }, { "input": "18", "output": "4080" }, { "input": "12", "output": "990" } ]
1,696,861,669
2,147,483,647
Python 3
RUNTIME_ERROR
TESTS
2
60
0
def gcd(a,b): max1 = max(a,b) min1 = min(a,b) while max1%min1 !=0: temp = max1 max1 = min1 min1 = temp%min1 return min1 def lcm(a,b): lcm1 = (a*b)//gcd(a,b) return lcm1 n = int(input()) a,b,c = n , n-1, n-2 res = lcm(a,b) ans = lcm(res,c) print(ans)
Title: LCM Challenge Time Limit: None seconds Memory Limit: None megabytes Problem Description: Some days ago, I learned the concept of LCM (least common multiple). I've played with it for several times and I want to make a big number with it. But I also don't want to use many numbers, so I'll choose three positive integers (they don't have to be distinct) which are not greater than *n*. Can you help me to find the maximum possible least common multiple of these three integers? Input Specification: The first line contains an integer *n* (1<=≤<=*n*<=≤<=106) — the *n* mentioned in the statement. Output Specification: Print a single integer — the maximum possible LCM of three not necessarily distinct positive integers that are not greater than *n*. Demo Input: ['9\n', '7\n'] Demo Output: ['504\n', '210\n'] Note: The least common multiple of some positive integers is the least positive integer which is multiple for each of them. The result may become very large, 32-bit integer won't be enough. So using 64-bit integers is recommended. For the last example, we can chose numbers 7, 6, 5 and the LCM of them is 7·6·5 = 210. It is the maximum value we can get.
```python def gcd(a,b): max1 = max(a,b) min1 = min(a,b) while max1%min1 !=0: temp = max1 max1 = min1 min1 = temp%min1 return min1 def lcm(a,b): lcm1 = (a*b)//gcd(a,b) return lcm1 n = int(input()) a,b,c = n , n-1, n-2 res = lcm(a,b) ans = lcm(res,c) print(ans) ```
-1
583
A
Asphalting Roads
PROGRAMMING
1,000
[ "implementation" ]
null
null
City X consists of *n* vertical and *n* horizontal infinite roads, forming *n*<=×<=*n* intersections. Roads (both vertical and horizontal) are numbered from 1 to *n*, and the intersections are indicated by the numbers of the roads that form them. Sand roads have long been recognized out of date, so the decision was made to asphalt them. To do this, a team of workers was hired and a schedule of work was made, according to which the intersections should be asphalted. Road repairs are planned for *n*2 days. On the *i*-th day of the team arrives at the *i*-th intersection in the list and if none of the two roads that form the intersection were already asphalted they asphalt both roads. Otherwise, the team leaves the intersection, without doing anything with the roads. According to the schedule of road works tell in which days at least one road will be asphalted.
The first line contains integer *n* (1<=≤<=*n*<=≤<=50) — the number of vertical and horizontal roads in the city. Next *n*2 lines contain the order of intersections in the schedule. The *i*-th of them contains two numbers *h**i*,<=*v**i* (1<=≤<=*h**i*,<=*v**i*<=≤<=*n*), separated by a space, and meaning that the intersection that goes *i*-th in the timetable is at the intersection of the *h**i*-th horizontal and *v**i*-th vertical roads. It is guaranteed that all the intersections in the timetable are distinct.
In the single line print the numbers of the days when road works will be in progress in ascending order. The days are numbered starting from 1.
[ "2\n1 1\n1 2\n2 1\n2 2\n", "1\n1 1\n" ]
[ "1 4 \n", "1 \n" ]
In the sample the brigade acts like that: 1. On the first day the brigade comes to the intersection of the 1-st horizontal and the 1-st vertical road. As none of them has been asphalted, the workers asphalt the 1-st vertical and the 1-st horizontal road; 1. On the second day the brigade of the workers comes to the intersection of the 1-st horizontal and the 2-nd vertical road. The 2-nd vertical road hasn't been asphalted, but as the 1-st horizontal road has been asphalted on the first day, the workers leave and do not asphalt anything; 1. On the third day the brigade of the workers come to the intersection of the 2-nd horizontal and the 1-st vertical road. The 2-nd horizontal road hasn't been asphalted but as the 1-st vertical road has been asphalted on the first day, the workers leave and do not asphalt anything; 1. On the fourth day the brigade come to the intersection formed by the intersection of the 2-nd horizontal and 2-nd vertical road. As none of them has been asphalted, the workers asphalt the 2-nd vertical and the 2-nd horizontal road.
500
[ { "input": "2\n1 1\n1 2\n2 1\n2 2", "output": "1 4 " }, { "input": "1\n1 1", "output": "1 " }, { "input": "2\n1 1\n2 2\n1 2\n2 1", "output": "1 2 " }, { "input": "2\n1 2\n2 2\n2 1\n1 1", "output": "1 3 " }, { "input": "3\n2 2\n1 2\n3 2\n3 3\n1 1\n2 3\n1 3\n3 1\n2 1", "output": "1 4 5 " }, { "input": "3\n1 3\n3 1\n2 1\n1 1\n1 2\n2 2\n3 2\n3 3\n2 3", "output": "1 2 6 " }, { "input": "4\n1 3\n2 3\n2 4\n4 4\n3 1\n1 1\n3 4\n2 1\n1 4\n4 3\n4 1\n3 2\n1 2\n4 2\n2 2\n3 3", "output": "1 3 5 14 " }, { "input": "4\n3 3\n4 2\n2 3\n3 4\n4 4\n1 2\n3 2\n2 2\n1 4\n3 1\n4 1\n2 1\n1 3\n1 1\n4 3\n2 4", "output": "1 2 9 12 " }, { "input": "9\n4 5\n2 3\n8 3\n5 6\n9 3\n4 4\n5 4\n4 7\n1 7\n8 4\n1 4\n1 5\n5 7\n7 8\n7 1\n9 9\n8 7\n7 5\n3 7\n6 6\n7 3\n5 2\n3 6\n7 4\n9 6\n5 8\n9 7\n6 3\n7 9\n1 2\n1 1\n6 2\n5 3\n7 2\n1 6\n4 1\n6 1\n8 9\n2 2\n3 9\n2 9\n7 7\n2 8\n9 4\n2 5\n8 6\n3 4\n2 1\n2 7\n6 5\n9 1\n3 3\n3 8\n5 5\n4 3\n3 1\n1 9\n6 4\n3 2\n6 8\n2 6\n5 9\n8 5\n8 8\n9 5\n6 9\n9 2\n3 5\n4 9\n4 8\n2 4\n5 1\n4 6\n7 6\n9 8\n1 3\n4 2\n8 1\n8 2\n6 7\n1 8", "output": "1 2 4 9 10 14 16 32 56 " }, { "input": "8\n1 1\n1 2\n1 3\n1 4\n1 5\n8 6\n1 7\n1 8\n2 1\n8 5\n2 3\n2 4\n2 5\n2 6\n4 3\n2 2\n3 1\n3 2\n3 3\n3 4\n3 5\n3 6\n5 6\n3 8\n4 1\n4 2\n2 7\n4 4\n8 8\n4 6\n4 7\n4 8\n5 1\n5 2\n5 3\n6 5\n5 5\n3 7\n5 7\n5 8\n6 1\n6 2\n6 3\n6 4\n5 4\n6 6\n6 7\n6 8\n7 1\n7 2\n7 3\n7 4\n7 5\n7 6\n7 7\n7 8\n8 1\n8 2\n8 3\n8 4\n2 8\n1 6\n8 7\n4 5", "output": "1 6 11 18 28 36 39 56 " }, { "input": "9\n9 9\n5 5\n8 8\n3 3\n2 2\n6 6\n4 4\n1 1\n7 7\n8 4\n1 4\n1 5\n5 7\n7 8\n7 1\n1 7\n8 7\n7 5\n3 7\n5 6\n7 3\n5 2\n3 6\n7 4\n9 6\n5 8\n9 7\n6 3\n7 9\n1 2\n4 5\n6 2\n5 3\n7 2\n1 6\n4 1\n6 1\n8 9\n2 3\n3 9\n2 9\n5 4\n2 8\n9 4\n2 5\n8 6\n3 4\n2 1\n2 7\n6 5\n9 1\n8 3\n3 8\n9 3\n4 3\n3 1\n1 9\n6 4\n3 2\n6 8\n2 6\n5 9\n8 5\n4 7\n9 5\n6 9\n9 2\n3 5\n4 9\n4 8\n2 4\n5 1\n4 6\n7 6\n9 8\n1 3\n4 2\n8 1\n8 2\n6 7\n1 8", "output": "1 2 3 4 5 6 7 8 9 " } ]
1,443,891,116
416
Python 3
OK
TESTS
39
78
0
n = int(input()) a = [] b = [] for i in range(1, n*n+1): x, y = map(int, input().split()) if x not in a and y not in b: print(i, end=' ') a.append(x) b.append(y)
Title: Asphalting Roads Time Limit: None seconds Memory Limit: None megabytes Problem Description: City X consists of *n* vertical and *n* horizontal infinite roads, forming *n*<=×<=*n* intersections. Roads (both vertical and horizontal) are numbered from 1 to *n*, and the intersections are indicated by the numbers of the roads that form them. Sand roads have long been recognized out of date, so the decision was made to asphalt them. To do this, a team of workers was hired and a schedule of work was made, according to which the intersections should be asphalted. Road repairs are planned for *n*2 days. On the *i*-th day of the team arrives at the *i*-th intersection in the list and if none of the two roads that form the intersection were already asphalted they asphalt both roads. Otherwise, the team leaves the intersection, without doing anything with the roads. According to the schedule of road works tell in which days at least one road will be asphalted. Input Specification: The first line contains integer *n* (1<=≤<=*n*<=≤<=50) — the number of vertical and horizontal roads in the city. Next *n*2 lines contain the order of intersections in the schedule. The *i*-th of them contains two numbers *h**i*,<=*v**i* (1<=≤<=*h**i*,<=*v**i*<=≤<=*n*), separated by a space, and meaning that the intersection that goes *i*-th in the timetable is at the intersection of the *h**i*-th horizontal and *v**i*-th vertical roads. It is guaranteed that all the intersections in the timetable are distinct. Output Specification: In the single line print the numbers of the days when road works will be in progress in ascending order. The days are numbered starting from 1. Demo Input: ['2\n1 1\n1 2\n2 1\n2 2\n', '1\n1 1\n'] Demo Output: ['1 4 \n', '1 \n'] Note: In the sample the brigade acts like that: 1. On the first day the brigade comes to the intersection of the 1-st horizontal and the 1-st vertical road. As none of them has been asphalted, the workers asphalt the 1-st vertical and the 1-st horizontal road; 1. On the second day the brigade of the workers comes to the intersection of the 1-st horizontal and the 2-nd vertical road. The 2-nd vertical road hasn't been asphalted, but as the 1-st horizontal road has been asphalted on the first day, the workers leave and do not asphalt anything; 1. On the third day the brigade of the workers come to the intersection of the 2-nd horizontal and the 1-st vertical road. The 2-nd horizontal road hasn't been asphalted but as the 1-st vertical road has been asphalted on the first day, the workers leave and do not asphalt anything; 1. On the fourth day the brigade come to the intersection formed by the intersection of the 2-nd horizontal and 2-nd vertical road. As none of them has been asphalted, the workers asphalt the 2-nd vertical and the 2-nd horizontal road.
```python n = int(input()) a = [] b = [] for i in range(1, n*n+1): x, y = map(int, input().split()) if x not in a and y not in b: print(i, end=' ') a.append(x) b.append(y) ```
3
58
A
Chat room
PROGRAMMING
1,000
[ "greedy", "strings" ]
A. Chat room
1
256
Vasya has recently learned to type and log on to the Internet. He immediately entered a chat room and decided to say hello to everybody. Vasya typed the word *s*. It is considered that Vasya managed to say hello if several letters can be deleted from the typed word so that it resulted in the word "hello". For example, if Vasya types the word "ahhellllloou", it will be considered that he said hello, and if he types "hlelo", it will be considered that Vasya got misunderstood and he didn't manage to say hello. Determine whether Vasya managed to say hello by the given word *s*.
The first and only line contains the word *s*, which Vasya typed. This word consisits of small Latin letters, its length is no less that 1 and no more than 100 letters.
If Vasya managed to say hello, print "YES", otherwise print "NO".
[ "ahhellllloou\n", "hlelo\n" ]
[ "YES\n", "NO\n" ]
none
500
[ { "input": "ahhellllloou", "output": "YES" }, { "input": "hlelo", "output": "NO" }, { "input": "helhcludoo", "output": "YES" }, { "input": "hehwelloho", "output": "YES" }, { "input": "pnnepelqomhhheollvlo", "output": "YES" }, { "input": "tymbzjyqhymedasloqbq", "output": "NO" }, { "input": "yehluhlkwo", "output": "NO" }, { "input": "hatlevhhalrohairnolsvocafgueelrqmlqlleello", "output": "YES" }, { "input": "hhhtehdbllnhwmbyhvelqqyoulretpbfokflhlhreeflxeftelziclrwllrpflflbdtotvlqgoaoqldlroovbfsq", "output": "YES" }, { "input": "rzlvihhghnelqtwlexmvdjjrliqllolhyewgozkuovaiezgcilelqapuoeglnwmnlftxxiigzczlouooi", "output": "YES" }, { "input": "pfhhwctyqdlkrwhebfqfelhyebwllhemtrmeblgrynmvyhioesqklclocxmlffuormljszllpoo", "output": "YES" }, { "input": "lqllcolohwflhfhlnaow", "output": "NO" }, { "input": "heheeellollvoo", "output": "YES" }, { "input": "hellooo", "output": "YES" }, { "input": "o", "output": "NO" }, { "input": "hhqhzeclohlehljlhtesllylrolmomvuhcxsobtsckogdv", "output": "YES" }, { "input": "yoegfuzhqsihygnhpnukluutocvvwuldiighpogsifealtgkfzqbwtmgghmythcxflebrkctlldlkzlagovwlstsghbouk", "output": "YES" }, { "input": "uatqtgbvrnywfacwursctpagasnhydvmlinrcnqrry", "output": "NO" }, { "input": "tndtbldbllnrwmbyhvqaqqyoudrstpbfokfoclnraefuxtftmgzicorwisrpfnfpbdtatvwqgyalqtdtrjqvbfsq", "output": "NO" }, { "input": "rzlvirhgemelnzdawzpaoqtxmqucnahvqnwldklrmjiiyageraijfivigvozgwngiulttxxgzczptusoi", "output": "YES" }, { "input": "kgyelmchocojsnaqdsyeqgnllytbqietpdlgknwwumqkxrexgdcnwoldicwzwofpmuesjuxzrasscvyuqwspm", "output": "YES" }, { "input": "pnyvrcotjvgynbeldnxieghfltmexttuxzyac", "output": "NO" }, { "input": "dtwhbqoumejligbenxvzhjlhosqojetcqsynlzyhfaevbdpekgbtjrbhlltbceobcok", "output": "YES" }, { "input": "crrfpfftjwhhikwzeedrlwzblckkteseofjuxjrktcjfsylmlsvogvrcxbxtffujqshslemnixoeezivksouefeqlhhokwbqjz", "output": "YES" }, { "input": "jhfbndhyzdvhbvhmhmefqllujdflwdpjbehedlsqfdsqlyelwjtyloxwsvasrbqosblzbowlqjmyeilcvotdlaouxhdpoeloaovb", "output": "YES" }, { "input": "hwlghueoemiqtjhhpashjsouyegdlvoyzeunlroypoprnhlyiwiuxrghekaylndhrhllllwhbebezoglydcvykllotrlaqtvmlla", "output": "YES" }, { "input": "wshiaunnqnqxodholbipwhhjmyeblhgpeleblklpzwhdunmpqkbuzloetmwwxmeltkrcomulxauzlwmlklldjodozxryghsnwgcz", "output": "YES" }, { "input": "shvksednttggehroewuiptvvxtrzgidravtnjwuqrlnnkxbplctzkckinpkgjopjfoxdbojtcvsuvablcbkrzajrlhgobkcxeqti", "output": "YES" }, { "input": "hyyhddqhxhekehkwfhlnlsihzefwchzerevcjtokefplholrbvxlltdlafjxrfhleglrvlolojoqaolagtbeyogxlbgfolllslli", "output": "YES" }, { "input": "iaagrdhhelxpdegueiulflquvlzidoprzkehthkldaytrjwhyhprwjxlltinxvuilxohqgjqcvkkdcuoliekcnlilwgqlnlzouoo", "output": "YES" }, { "input": "wfluaeseldgxyvxpwuhkptdmlflnlhktwxiabsvkolsquymrmhzczzoybvlilhmvsuunggvgxzgyyffk", "output": "NO" }, { "input": "loee", "output": "NO" }, { "input": "izdipwylefqmjbuoznfglgcfvedeouflkeehxbasaqmiooppfsqlhprospqgxvzrcpwlfdddngoqvpwvggsnvvxhmjoslwjudjlo", "output": "NO" }, { "input": "pplynflbjlseflaegzqpdxswgunhnlglqhycrbcwdfhclmcrwekkzsoosmfblljeenwfjyifcvxihhhbyhmhlkvtskeglaovjnsi", "output": "YES" }, { "input": "xqjqmenkodmlhzyzmmvofdngktygbbxbzpluzcohohmalkoeuwfikblltaaigv", "output": "NO" }, { "input": "hello", "output": "YES" }, { "input": "oohell", "output": "NO" }, { "input": "hell", "output": "NO" }, { "input": "eloellohoelo", "output": "NO" }, { "input": "helllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllo", "output": "YES" } ]
1,554,043,557
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
2
140
819,200
import re ch=input() chs=ch[ch.index('h'):] if re.match(r"h{1,}?.*e{1,}?.*l{2,}?.*o{1,}?.*", chs) is not None: print("YES") else: print("NO")
Title: Chat room Time Limit: 1 seconds Memory Limit: 256 megabytes Problem Description: Vasya has recently learned to type and log on to the Internet. He immediately entered a chat room and decided to say hello to everybody. Vasya typed the word *s*. It is considered that Vasya managed to say hello if several letters can be deleted from the typed word so that it resulted in the word "hello". For example, if Vasya types the word "ahhellllloou", it will be considered that he said hello, and if he types "hlelo", it will be considered that Vasya got misunderstood and he didn't manage to say hello. Determine whether Vasya managed to say hello by the given word *s*. Input Specification: The first and only line contains the word *s*, which Vasya typed. This word consisits of small Latin letters, its length is no less that 1 and no more than 100 letters. Output Specification: If Vasya managed to say hello, print "YES", otherwise print "NO". Demo Input: ['ahhellllloou\n', 'hlelo\n'] Demo Output: ['YES\n', 'NO\n'] Note: none
```python import re ch=input() chs=ch[ch.index('h'):] if re.match(r"h{1,}?.*e{1,}?.*l{2,}?.*o{1,}?.*", chs) is not None: print("YES") else: print("NO") ```
0
104
A
Blackjack
PROGRAMMING
800
[ "implementation" ]
A. Blackjack
2
256
One rainy gloomy evening when all modules hid in the nearby cafes to drink hot energetic cocktails, the Hexadecimal virus decided to fly over the Mainframe to look for a Great Idea. And she has found one! Why not make her own Codeforces, with blackjack and other really cool stuff? Many people will surely be willing to visit this splendid shrine of high culture. In Mainframe a standard pack of 52 cards is used to play blackjack. The pack contains cards of 13 values: 2, 3, 4, 5, 6, 7, 8, 9, 10, jacks, queens, kings and aces. Each value also exists in one of four suits: hearts, diamonds, clubs and spades. Also, each card earns some value in points assigned to it: cards with value from two to ten earn from 2 to 10 points, correspondingly. An ace can either earn 1 or 11, whatever the player wishes. The picture cards (king, queen and jack) earn 10 points. The number of points a card earns does not depend on the suit. The rules of the game are very simple. The player gets two cards, if the sum of points of those cards equals *n*, then the player wins, otherwise the player loses. The player has already got the first card, it's the queen of spades. To evaluate chances for victory, you should determine how many ways there are to get the second card so that the sum of points exactly equals *n*.
The only line contains *n* (1<=≤<=*n*<=≤<=25) — the required sum of points.
Print the numbers of ways to get the second card in the required way if the first card is the queen of spades.
[ "12\n", "20\n", "10\n" ]
[ "4", "15", "0" ]
In the first sample only four two's of different suits can earn the required sum of points. In the second sample we can use all tens, jacks, queens and kings; overall it's 15 cards, as the queen of spades (as any other card) is only present once in the pack of cards and it's already in use. In the third sample there is no card, that would add a zero to the current ten points.
500
[ { "input": "12", "output": "4" }, { "input": "20", "output": "15" }, { "input": "10", "output": "0" }, { "input": "11", "output": "4" }, { "input": "15", "output": "4" }, { "input": "18", "output": "4" }, { "input": "25", "output": "0" }, { "input": "22", "output": "0" }, { "input": "1", "output": "0" }, { "input": "2", "output": "0" }, { "input": "3", "output": "0" }, { "input": "4", "output": "0" }, { "input": "5", "output": "0" }, { "input": "6", "output": "0" }, { "input": "7", "output": "0" }, { "input": "8", "output": "0" }, { "input": "9", "output": "0" }, { "input": "13", "output": "4" }, { "input": "14", "output": "4" }, { "input": "16", "output": "4" }, { "input": "17", "output": "4" }, { "input": "19", "output": "4" }, { "input": "21", "output": "4" }, { "input": "23", "output": "0" }, { "input": "24", "output": "0" } ]
1,657,900,390
2,147,483,647
PyPy 3-64
WRONG_ANSWER
TESTS
6
92
0
def blackjack(): number = int(input()) - 10 if number < 1 or number > 21: print(0) elif number == 10: print(15) else: print(4) blackjack()
Title: Blackjack Time Limit: 2 seconds Memory Limit: 256 megabytes Problem Description: One rainy gloomy evening when all modules hid in the nearby cafes to drink hot energetic cocktails, the Hexadecimal virus decided to fly over the Mainframe to look for a Great Idea. And she has found one! Why not make her own Codeforces, with blackjack and other really cool stuff? Many people will surely be willing to visit this splendid shrine of high culture. In Mainframe a standard pack of 52 cards is used to play blackjack. The pack contains cards of 13 values: 2, 3, 4, 5, 6, 7, 8, 9, 10, jacks, queens, kings and aces. Each value also exists in one of four suits: hearts, diamonds, clubs and spades. Also, each card earns some value in points assigned to it: cards with value from two to ten earn from 2 to 10 points, correspondingly. An ace can either earn 1 or 11, whatever the player wishes. The picture cards (king, queen and jack) earn 10 points. The number of points a card earns does not depend on the suit. The rules of the game are very simple. The player gets two cards, if the sum of points of those cards equals *n*, then the player wins, otherwise the player loses. The player has already got the first card, it's the queen of spades. To evaluate chances for victory, you should determine how many ways there are to get the second card so that the sum of points exactly equals *n*. Input Specification: The only line contains *n* (1<=≤<=*n*<=≤<=25) — the required sum of points. Output Specification: Print the numbers of ways to get the second card in the required way if the first card is the queen of spades. Demo Input: ['12\n', '20\n', '10\n'] Demo Output: ['4', '15', '0'] Note: In the first sample only four two's of different suits can earn the required sum of points. In the second sample we can use all tens, jacks, queens and kings; overall it's 15 cards, as the queen of spades (as any other card) is only present once in the pack of cards and it's already in use. In the third sample there is no card, that would add a zero to the current ten points.
```python def blackjack(): number = int(input()) - 10 if number < 1 or number > 21: print(0) elif number == 10: print(15) else: print(4) blackjack() ```
0
259
A
Little Elephant and Chess
PROGRAMMING
1,000
[ "brute force", "strings" ]
null
null
The Little Elephant loves chess very much. One day the Little Elephant and his friend decided to play chess. They've got the chess pieces but the board is a problem. They've got an 8<=×<=8 checkered board, each square is painted either black or white. The Little Elephant and his friend know that a proper chessboard doesn't have any side-adjacent cells with the same color and the upper left cell is white. To play chess, they want to make the board they have a proper chessboard. For that the friends can choose any row of the board and cyclically shift the cells of the chosen row, that is, put the last (rightmost) square on the first place in the row and shift the others one position to the right. You can run the described operation multiple times (or not run it at all). For example, if the first line of the board looks like that "BBBBBBWW" (the white cells of the line are marked with character "W", the black cells are marked with character "B"), then after one cyclic shift it will look like that "WBBBBBBW". Help the Little Elephant and his friend to find out whether they can use any number of the described operations to turn the board they have into a proper chessboard.
The input consists of exactly eight lines. Each line contains exactly eight characters "W" or "B" without any spaces: the *j*-th character in the *i*-th line stands for the color of the *j*-th cell of the *i*-th row of the elephants' board. Character "W" stands for the white color, character "B" stands for the black color. Consider the rows of the board numbered from 1 to 8 from top to bottom, and the columns — from 1 to 8 from left to right. The given board can initially be a proper chessboard.
In a single line print "YES" (without the quotes), if we can make the board a proper chessboard and "NO" (without the quotes) otherwise.
[ "WBWBWBWB\nBWBWBWBW\nBWBWBWBW\nBWBWBWBW\nWBWBWBWB\nWBWBWBWB\nBWBWBWBW\nWBWBWBWB\n", "WBWBWBWB\nWBWBWBWB\nBBWBWWWB\nBWBWBWBW\nBWBWBWBW\nBWBWBWWW\nBWBWBWBW\nBWBWBWBW\n" ]
[ "YES\n", "NO\n" ]
In the first sample you should shift the following lines one position to the right: the 3-rd, the 6-th, the 7-th and the 8-th. In the second sample there is no way you can achieve the goal.
500
[ { "input": "WBWBWBWB\nBWBWBWBW\nBWBWBWBW\nBWBWBWBW\nWBWBWBWB\nWBWBWBWB\nBWBWBWBW\nWBWBWBWB", "output": "YES" }, { "input": "WBWBWBWB\nWBWBWBWB\nBBWBWWWB\nBWBWBWBW\nBWBWBWBW\nBWBWBWWW\nBWBWBWBW\nBWBWBWBW", "output": "NO" }, { "input": "BWBWBWBW\nWBWBWBWB\nBWBWBWBW\nBWBWBWBW\nWBWBWBWB\nWBWBWBWB\nWBWBWBWB\nWBWBWBWB", "output": "YES" }, { "input": "BWBWBWBW\nWBWBWBWB\nBWBWBWBW\nWBWBWBWB\nBWBWBWBW\nWBWBWBWB\nWBWBWBWB\nWBWBWBWB", "output": "YES" }, { "input": "WBWBWBWB\nBWBWBWBW\nBWBWBWBW\nWBWBWBWB\nBWBWBWBW\nBWBWBWBW\nBWBWBWBW\nBWBWBWBW", "output": "YES" }, { "input": "WBWBWBWB\nWBWBWBWB\nBWBWBWBW\nWBWBWBWB\nWBWBWBWB\nWBWBWBWB\nWBWBWBWB\nBWWWBWBW", "output": "NO" }, { "input": "BBBBBWWW\nWBBWBWWB\nWWWWWBWW\nBWBWWBWW\nBBBWWBWW\nBBBBBWBW\nWBBBWBWB\nWBWBWWWB", "output": "NO" }, { "input": "BWBWBWBW\nBWBWBWBW\nBWWWWWBB\nBBWBWBWB\nWBWBWBWB\nWWBWWBWW\nBWBWBWBW\nWBWWBBBB", "output": "NO" }, { "input": "WBWBWBWB\nWBWBWBWB\nWBWBWBWB\nBWBWBWBW\nWBWBWBWB\nBWBWBWBW\nWBWBWBWB\nWBWWBWBB", "output": "NO" }, { "input": "WBWBWBWB\nBWBWBWBW\nWBWBWBWB\nBWBWBWBW\nWBWBWBWB\nWBWBWBWB\nBWBWBWBW\nBWBWBWBW", "output": "YES" }, { "input": "WBWBWBWB\nWBWBWBWB\nBWBWBWBW\nWBWBWBWB\nBWBWBWBW\nWBWBWBWB\nBWBWBWBW\nBWBWBWBW", "output": "YES" }, { "input": "WWWWBWWB\nBWBWBWBW\nBWBWBWBW\nWWBWBBBB\nBBWWBBBB\nBBBWWBBW\nBWWWWWWB\nBWWBBBWW", "output": "NO" }, { "input": "WBBWWBWB\nBBWBWBWB\nBWBWBWBW\nBWBWBWBW\nWBWBWBBW\nWBWBBBBW\nBWWWWBWB\nBBBBBBBW", "output": "NO" }, { "input": "BWBWBWBW\nBWBWBWBW\nBBWWWBBB\nWBBBBBWW\nWBBBBWBB\nWBWBWBWB\nWBWWBWWB\nWBBWBBWW", "output": "NO" }, { "input": "WBBBBBWB\nBWBWBWBW\nBWBWBWBW\nWBWBWBWB\nWBWBWBWB\nBBBBBWBB\nWBBWWBWB\nBWBWBWBW", "output": "NO" }, { "input": "BWBWBWBW\nBWBWBWBW\nBWBWBWBW\nWBWBWBWB\nWBWBWBWB\nBWBWBWBW\nBWBWBWBW\nWBBWWBWB", "output": "NO" }, { "input": "BWBWBWBW\nWBWBWBWB\nBWBWBWBW\nBWWWBWBW\nWBWBWBWB\nWBWBWBWB\nBWBWBWBW\nWBWBWBBW", "output": "NO" }, { "input": "WBWBWBWB\nWBWBWBWB\nBWBWBWBW\nBWBWBWBW\nBWBWBWBW\nBWBWBWBW\nWBWBWBWB\nBWBWBWBW", "output": "YES" }, { "input": "BWBWBWBW\nWBWBWBWB\nBWBWBWBW\nBWBWBWBW\nBWBWBWBW\nBWBWBWBW\nWBWBWBWB\nBWBWBWBW", "output": "YES" }, { "input": "BWBWBWBW\nBWBWBWBW\nWBWBWBWB\nBWBWBWBW\nWBWBWBWB\nBWBWBWBW\nWBWBWBWB\nBWBWBWBW", "output": "YES" }, { "input": "WWBBWWBB\nBWWBBWWB\nBWBWBWBW\nWWBBWWWB\nWBWWWWBB\nWBWWBBWB\nBWBBWBWW\nBWBWWWWW", "output": "NO" }, { "input": "WBWBWBWB\nWBWBWBWB\nWWBBWBBB\nWBWBWBWB\nWWWWBWWB\nWBBBBWWW\nBWBWWWBW\nWWWBWBBB", "output": "NO" }, { "input": "WBWBWBWB\nBWWBWWWW\nWBWBWBWB\nBWBWBWBW\nWBWBWBWB\nWWBBBBBW\nWWWBWWBW\nWWBBBBWW", "output": "NO" }, { "input": "BWBWBWBW\nBWBBBWWB\nWBWBWBWB\nBWBWBWBW\nBWBWBWBW\nBWBWBWBW\nWBWBWBWB\nBWBWBWBW", "output": "NO" }, { "input": "BWBWBWBW\nBWBWBWBW\nWBWBWBWB\nWBWBWBWB\nWBWBWBWB\nBWBWBWBW\nWBWBWBWB\nBWBWBWBW", "output": "YES" }, { "input": "BBBBBBBB\nBBBBBBBB\nBBBBBBBB\nBBBBBBBB\nWWWWWWWW\nWWWWWWWW\nWWWWWWWW\nWWWWWWWW", "output": "NO" }, { "input": "BBBBBBBB\nBBBBBBBB\nBBBBBBBB\nBBBBBBBB\nBBBBBBBB\nBBBBBBBB\nBBBBBBBB\nBBBBBBBB", "output": "NO" }, { "input": "BWBWBWBB\nBWBWBWBB\nBWBWBWBB\nBWBWBWBB\nBWBWBWBB\nBWBWBWBB\nBWBWBWBB\nBWBWBWBB", "output": "NO" }, { "input": "WWBWWBWB\nBWBWBWBW\nWBWBWBWB\nBWBWBWBW\nWBWBWBWB\nBWBWBWBW\nWBWBWBWB\nBWBWBWBW", "output": "NO" }, { "input": "WWWWWWWW\nBBBBBBBB\nWWWWWWWW\nBBBBBBBB\nWWWWWWWW\nBBBBBBBB\nWWWWWWWW\nBBBBBBBB", "output": "NO" }, { "input": "BBBBBBBB\nBWBWBWBW\nBWBWBWBW\nBWBWBWBW\nWBWBWBWB\nWBWBWBWB\nBWBWBWBW\nWBWBWBWB", "output": "NO" }, { "input": "BBBBBBBW\nBBBBBBBW\nBBBBBBBW\nBBBBBBBW\nBBBBBBBW\nBBBBBBBW\nBBBBBBBW\nBBBBBBBW", "output": "NO" }, { "input": "BBBWWWWW\nWWWBBBBB\nBBBWWWWW\nWWWBBBBB\nBWBWBWBW\nWBWBWBWB\nBWBWBWBW\nWBWBWBWB", "output": "NO" } ]
1,633,269,274
2,147,483,647
Python 3
OK
TESTS
33
124
6,758,400
for _ in range(8): s=input() if s=="WBWBWBWB" or s=="BWBWBWBW": continue else: print("NO") break else: print("YES")
Title: Little Elephant and Chess Time Limit: None seconds Memory Limit: None megabytes Problem Description: The Little Elephant loves chess very much. One day the Little Elephant and his friend decided to play chess. They've got the chess pieces but the board is a problem. They've got an 8<=×<=8 checkered board, each square is painted either black or white. The Little Elephant and his friend know that a proper chessboard doesn't have any side-adjacent cells with the same color and the upper left cell is white. To play chess, they want to make the board they have a proper chessboard. For that the friends can choose any row of the board and cyclically shift the cells of the chosen row, that is, put the last (rightmost) square on the first place in the row and shift the others one position to the right. You can run the described operation multiple times (or not run it at all). For example, if the first line of the board looks like that "BBBBBBWW" (the white cells of the line are marked with character "W", the black cells are marked with character "B"), then after one cyclic shift it will look like that "WBBBBBBW". Help the Little Elephant and his friend to find out whether they can use any number of the described operations to turn the board they have into a proper chessboard. Input Specification: The input consists of exactly eight lines. Each line contains exactly eight characters "W" or "B" without any spaces: the *j*-th character in the *i*-th line stands for the color of the *j*-th cell of the *i*-th row of the elephants' board. Character "W" stands for the white color, character "B" stands for the black color. Consider the rows of the board numbered from 1 to 8 from top to bottom, and the columns — from 1 to 8 from left to right. The given board can initially be a proper chessboard. Output Specification: In a single line print "YES" (without the quotes), if we can make the board a proper chessboard and "NO" (without the quotes) otherwise. Demo Input: ['WBWBWBWB\nBWBWBWBW\nBWBWBWBW\nBWBWBWBW\nWBWBWBWB\nWBWBWBWB\nBWBWBWBW\nWBWBWBWB\n', 'WBWBWBWB\nWBWBWBWB\nBBWBWWWB\nBWBWBWBW\nBWBWBWBW\nBWBWBWWW\nBWBWBWBW\nBWBWBWBW\n'] Demo Output: ['YES\n', 'NO\n'] Note: In the first sample you should shift the following lines one position to the right: the 3-rd, the 6-th, the 7-th and the 8-th. In the second sample there is no way you can achieve the goal.
```python for _ in range(8): s=input() if s=="WBWBWBWB" or s=="BWBWBWBW": continue else: print("NO") break else: print("YES") ```
3
796
A
Buying A House
PROGRAMMING
800
[ "brute force", "implementation" ]
null
null
Zane the wizard had never loved anyone before, until he fell in love with a girl, whose name remains unknown to us. The girl lives in house *m* of a village. There are *n* houses in that village, lining in a straight line from left to right: house 1, house 2, ..., house *n*. The village is also well-structured: house *i* and house *i*<=+<=1 (1<=≤<=*i*<=&lt;<=*n*) are exactly 10 meters away. In this village, some houses are occupied, and some are not. Indeed, unoccupied houses can be purchased. You will be given *n* integers *a*1,<=*a*2,<=...,<=*a**n* that denote the availability and the prices of the houses. If house *i* is occupied, and therefore cannot be bought, then *a**i* equals 0. Otherwise, house *i* can be bought, and *a**i* represents the money required to buy it, in dollars. As Zane has only *k* dollars to spare, it becomes a challenge for him to choose the house to purchase, so that he could live as near as possible to his crush. Help Zane determine the minimum distance from his crush's house to some house he can afford, to help him succeed in his love.
The first line contains three integers *n*, *m*, and *k* (2<=≤<=*n*<=≤<=100, 1<=≤<=*m*<=≤<=*n*, 1<=≤<=*k*<=≤<=100) — the number of houses in the village, the house where the girl lives, and the amount of money Zane has (in dollars), respectively. The second line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n* (0<=≤<=*a**i*<=≤<=100) — denoting the availability and the prices of the houses. It is guaranteed that *a**m*<==<=0 and that it is possible to purchase some house with no more than *k* dollars.
Print one integer — the minimum distance, in meters, from the house where the girl Zane likes lives to the house Zane can buy.
[ "5 1 20\n0 27 32 21 19\n", "7 3 50\n62 0 0 0 99 33 22\n", "10 5 100\n1 0 1 0 0 0 0 0 1 1\n" ]
[ "40", "30", "20" ]
In the first sample, with *k* = 20 dollars, Zane can buy only house 5. The distance from house *m* = 1 to house 5 is 10 + 10 + 10 + 10 = 40 meters. In the second sample, Zane can buy houses 6 and 7. It is better to buy house 6 than house 7, since house *m* = 3 and house 6 are only 30 meters away, while house *m* = 3 and house 7 are 40 meters away.
500
[ { "input": "5 1 20\n0 27 32 21 19", "output": "40" }, { "input": "7 3 50\n62 0 0 0 99 33 22", "output": "30" }, { "input": "10 5 100\n1 0 1 0 0 0 0 0 1 1", "output": "20" }, { "input": "5 3 1\n1 1 0 0 1", "output": "10" }, { "input": "5 5 5\n1 0 5 6 0", "output": "20" }, { "input": "15 10 50\n20 0 49 50 50 50 50 50 50 0 50 50 49 0 20", "output": "10" }, { "input": "7 5 1\n0 100 2 2 0 2 1", "output": "20" }, { "input": "100 50 100\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 0 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100", "output": "10" }, { "input": "100 50 1\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 0 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100", "output": "490" }, { "input": "100 77 50\n50 100 49 51 0 50 100 49 51 0 50 100 49 51 0 50 100 49 51 0 50 100 49 51 0 50 100 49 51 0 50 100 49 51 0 50 100 49 51 0 50 100 49 51 0 50 100 49 51 0 50 100 49 51 0 50 100 49 51 0 50 100 49 51 0 50 100 49 51 0 50 100 49 51 0 50 0 49 51 0 50 100 49 51 0 50 100 49 51 0 50 100 49 51 0 50 100 49 51 0", "output": "10" }, { "input": "100 1 1\n0 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0", "output": "980" }, { "input": "100 1 100\n0 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100", "output": "10" }, { "input": "100 10 99\n0 0 0 0 0 0 0 0 0 0 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 99 98", "output": "890" }, { "input": "7 4 5\n1 0 6 0 5 6 0", "output": "10" }, { "input": "7 4 5\n1 6 5 0 0 6 0", "output": "10" }, { "input": "100 42 59\n50 50 50 50 50 50 50 50 50 50 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 60 60 60 60 60 60 60 60 0 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 0", "output": "90" }, { "input": "2 1 100\n0 1", "output": "10" }, { "input": "2 2 100\n1 0", "output": "10" }, { "input": "10 1 88\n0 95 0 0 0 0 0 94 0 85", "output": "90" }, { "input": "10 2 14\n2 0 1 26 77 39 41 100 13 32", "output": "10" }, { "input": "10 3 11\n0 0 0 0 0 62 0 52 1 35", "output": "60" }, { "input": "20 12 44\n27 40 58 69 53 38 31 39 75 95 8 0 28 81 77 90 38 61 21 88", "output": "10" }, { "input": "30 29 10\n59 79 34 12 100 6 1 58 18 73 54 11 37 46 89 90 80 85 73 45 64 5 31 0 89 19 0 74 0 82", "output": "70" }, { "input": "40 22 1\n7 95 44 53 0 0 19 93 0 68 65 0 24 91 10 58 17 0 71 0 100 0 94 90 79 73 0 73 4 61 54 81 7 13 21 84 5 41 0 1", "output": "180" }, { "input": "40 22 99\n60 0 100 0 0 100 100 0 0 0 0 100 100 0 0 100 100 0 100 100 100 0 100 100 100 0 100 100 0 0 100 100 100 0 0 100 0 100 0 0", "output": "210" }, { "input": "50 10 82\n56 54 0 0 0 0 88 93 0 0 83 93 0 0 91 89 0 30 62 52 24 84 80 8 38 13 92 78 16 87 23 30 71 55 16 63 15 99 4 93 24 6 3 35 4 42 73 27 86 37", "output": "80" }, { "input": "63 49 22\n18 3 97 52 75 2 12 24 58 75 80 97 22 10 79 51 30 60 68 99 75 2 35 3 97 88 9 7 18 5 0 0 0 91 0 91 56 36 76 0 0 0 52 27 35 0 51 72 0 96 57 0 0 0 0 92 55 28 0 30 0 78 77", "output": "190" }, { "input": "74 38 51\n53 36 55 42 64 5 87 9 0 16 86 78 9 22 19 1 25 72 1 0 0 0 79 0 0 0 77 58 70 0 0 100 64 0 99 59 0 0 0 0 65 74 0 96 0 58 89 93 61 88 0 0 82 89 0 0 49 24 7 77 89 87 94 61 100 31 93 70 39 49 39 14 20 84", "output": "190" }, { "input": "89 22 11\n36 0 68 89 0 85 72 0 38 56 0 44 0 94 0 28 71 0 0 18 0 0 0 89 0 0 0 75 0 0 0 32 66 0 0 0 0 0 0 48 63 0 64 58 0 23 48 0 0 52 93 61 57 0 18 0 0 34 62 17 0 41 0 0 53 59 44 0 0 51 40 0 0 100 100 54 0 88 0 5 45 56 57 67 24 16 88 86 15", "output": "580" }, { "input": "97 44 100\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 51 19", "output": "520" }, { "input": "100 1 1\n0 0 0 0 10 54 84 6 17 94 65 82 34 0 61 46 42 0 2 16 56 0 100 0 82 0 0 0 89 78 96 56 0 0 0 0 0 0 0 0 77 70 0 96 67 0 0 32 44 1 72 50 14 11 24 61 100 64 19 5 67 69 44 82 93 22 67 93 22 61 53 64 79 41 84 48 43 97 7 24 8 49 23 16 72 52 97 29 69 47 29 49 64 91 4 73 17 18 51 67", "output": "490" }, { "input": "100 1 50\n0 0 0 60 0 0 54 0 80 0 0 0 97 0 68 97 84 0 0 93 0 0 0 0 68 0 0 62 0 0 55 68 65 87 0 69 0 0 0 0 0 52 61 100 0 71 0 82 88 78 0 81 0 95 0 57 0 67 0 0 0 55 86 0 60 72 0 0 73 0 83 0 0 60 64 0 56 0 0 77 84 0 58 63 84 0 0 67 0 16 3 88 0 98 31 52 40 35 85 23", "output": "890" }, { "input": "100 1 100\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 91 70 14", "output": "970" }, { "input": "100 1 29\n0 0 0 0 64 0 89 97 0 0 0 59 0 67 62 0 59 0 0 80 0 0 0 0 0 97 0 57 0 64 32 0 44 0 0 48 0 47 38 0 42 0 0 0 0 0 0 46 74 0 86 33 33 0 44 0 79 0 0 0 0 91 59 0 59 65 55 0 0 58 33 95 0 97 76 0 81 0 41 0 38 81 80 0 85 0 31 0 0 92 0 0 45 96 0 85 91 87 0 10", "output": "990" }, { "input": "100 50 20\n3 0 32 0 48 32 64 0 54 26 0 0 0 0 0 28 0 0 54 0 0 45 49 0 38 74 0 0 39 42 62 48 75 96 89 42 0 44 0 0 30 21 76 0 50 0 79 0 0 0 0 99 0 84 62 0 0 0 0 53 80 0 28 0 0 53 0 0 38 0 62 0 0 62 0 0 88 0 44 32 0 81 35 45 49 0 69 73 38 27 72 0 96 72 69 0 0 22 76 10", "output": "490" }, { "input": "100 50 20\n49 0 56 0 87 25 40 0 50 0 0 97 0 0 36 29 0 0 0 0 0 73 29 71 44 0 0 0 91 92 69 0 0 60 81 49 48 38 0 87 0 82 0 32 0 82 46 39 0 0 29 0 0 29 0 79 47 0 0 0 0 0 49 0 24 33 70 0 63 45 97 90 0 0 29 53 55 0 84 0 0 100 26 0 88 0 0 0 0 81 70 0 30 80 0 75 59 98 0 2", "output": "500" }, { "input": "100 2 2\n0 0 43 90 47 5 2 97 52 69 21 48 64 10 34 97 97 74 8 19 68 56 55 24 47 38 43 73 72 72 60 60 51 36 33 44 100 45 13 54 72 52 0 15 3 6 50 8 88 4 78 26 40 27 30 63 67 83 61 91 33 97 54 20 92 27 89 35 10 7 84 50 11 95 74 88 24 44 74 100 18 56 34 91 41 34 51 51 11 91 89 54 19 100 83 89 10 17 76 20", "output": "50" }, { "input": "100 100 34\n5 73 0 0 44 0 0 0 79 55 0 0 0 0 0 0 0 0 83 67 75 0 0 0 0 59 0 74 0 0 47 98 0 0 72 41 0 55 87 0 0 78 84 0 0 39 0 79 72 95 0 0 0 0 0 85 53 84 0 0 0 0 37 75 0 66 0 0 0 0 61 0 70 0 37 60 42 78 92 52 0 0 0 55 77 57 0 63 37 0 0 0 96 70 0 94 97 0 0 0", "output": "990" }, { "input": "100 100 100\n43 79 21 87 84 14 28 69 92 16 3 71 79 37 48 37 72 58 12 72 62 49 37 17 60 54 41 99 15 72 40 89 76 1 99 87 14 56 63 48 69 37 96 64 7 14 1 73 85 33 98 70 97 71 96 28 49 71 56 2 67 22 100 2 98 100 62 77 92 76 98 98 47 26 22 47 50 56 9 16 72 47 5 62 29 78 81 1 0 63 32 65 87 3 40 53 8 80 93 0", "output": "10" }, { "input": "100 38 1\n3 59 12 81 33 95 0 41 36 17 63 76 42 77 85 56 3 96 55 41 24 87 18 9 0 37 0 61 69 0 0 0 67 0 0 0 0 0 0 18 0 0 47 56 74 0 0 80 0 42 0 1 60 59 62 9 19 87 92 48 58 30 98 51 99 10 42 94 51 53 50 89 24 5 52 82 50 39 98 8 95 4 57 21 10 0 44 32 19 14 64 34 79 76 17 3 15 22 71 51", "output": "140" }, { "input": "100 72 1\n56 98 8 27 9 23 16 76 56 1 34 43 96 73 75 49 62 20 18 23 51 55 30 84 4 20 89 40 75 16 69 35 1 0 16 0 80 0 41 17 0 0 76 23 0 92 0 34 0 91 82 54 0 0 0 63 85 59 98 24 29 0 8 77 26 0 34 95 39 0 0 0 74 0 0 0 0 12 0 92 0 0 55 95 66 30 0 0 29 98 0 0 0 47 0 0 80 0 0 4", "output": "390" }, { "input": "100 66 1\n38 50 64 91 37 44 74 21 14 41 80 90 26 51 78 85 80 86 44 14 49 75 93 48 78 89 23 72 35 22 14 48 100 71 62 22 7 95 80 66 32 20 17 47 79 30 41 52 15 62 67 71 1 6 0 9 0 0 0 11 0 0 24 0 31 0 77 0 51 0 0 0 0 0 0 77 0 36 44 19 90 45 6 25 100 87 93 30 4 97 36 88 33 50 26 71 97 71 51 68", "output": "130" }, { "input": "100 55 1\n0 33 45 83 56 96 58 24 45 30 38 60 39 69 21 87 59 21 72 73 27 46 61 61 11 97 77 5 39 3 3 35 76 37 53 84 24 75 9 48 31 90 100 84 74 81 83 83 42 23 29 94 18 1 0 53 52 99 86 37 94 54 28 75 28 80 17 14 98 68 76 20 32 23 42 31 57 79 60 14 18 27 1 98 32 3 96 25 15 38 2 6 3 28 59 54 63 2 43 59", "output": "10" }, { "input": "100 55 1\n24 52 41 6 55 11 58 25 63 12 70 39 23 28 72 17 96 85 7 84 21 13 34 37 97 43 36 32 15 30 58 5 14 71 40 70 9 92 44 73 31 58 96 90 19 35 29 91 25 36 48 95 61 78 0 1 99 61 81 88 42 53 61 57 42 55 74 45 41 92 99 30 20 25 89 50 37 4 17 24 6 65 15 44 40 2 38 43 7 90 38 59 75 87 96 28 12 67 24 32", "output": "10" }, { "input": "100 21 1\n62 5 97 80 81 28 83 0 26 0 0 0 0 23 0 0 90 0 0 0 0 0 0 0 0 54 71 8 0 0 42 0 73 0 17 0 1 31 71 78 58 72 84 39 54 59 13 29 16 41 71 35 88 55 70 50 33 100 100 60 52 90 7 66 44 55 51 42 90 17 86 44 46 8 52 74 8 22 2 92 34 37 58 98 70 74 19 91 74 25 4 38 71 68 50 68 63 14 60 98", "output": "160" }, { "input": "5 2 20\n27 0 32 21 19", "output": "30" }, { "input": "6 4 10\n10 0 0 0 0 10", "output": "20" }, { "input": "8 7 100\n1 0 0 0 0 0 0 1", "output": "10" }, { "input": "5 3 20\n1 21 0 0 1", "output": "20" }, { "input": "4 3 1\n0 0 0 1", "output": "10" }, { "input": "5 2 3\n4 0 5 6 1", "output": "30" }, { "input": "5 3 87\n88 89 0 1 90", "output": "10" }, { "input": "5 3 20\n15 30 0 15 35", "output": "10" }, { "input": "6 3 50\n0 0 0 1 2 0", "output": "10" }, { "input": "6 4 9\n100 9 10 0 0 9", "output": "20" }, { "input": "5 4 20\n0 20 0 0 20", "output": "10" }, { "input": "6 3 3\n1 5 0 2 2 0", "output": "10" }, { "input": "5 4 100\n0 1 0 0 1", "output": "10" } ]
1,575,920,041
2,147,483,647
PyPy 3
OK
TESTS
58
156
0
n,m,k = map(int,input().split()) a = list(map(int,input().split())) c = [] for i in range(len(a)): if a[i]<=k and a[i]!=0: c.append(i) p = [] for i in range(len(c)): p.append(abs(c[i]-m+1)*10) print(min(p))
Title: Buying A House Time Limit: None seconds Memory Limit: None megabytes Problem Description: Zane the wizard had never loved anyone before, until he fell in love with a girl, whose name remains unknown to us. The girl lives in house *m* of a village. There are *n* houses in that village, lining in a straight line from left to right: house 1, house 2, ..., house *n*. The village is also well-structured: house *i* and house *i*<=+<=1 (1<=≤<=*i*<=&lt;<=*n*) are exactly 10 meters away. In this village, some houses are occupied, and some are not. Indeed, unoccupied houses can be purchased. You will be given *n* integers *a*1,<=*a*2,<=...,<=*a**n* that denote the availability and the prices of the houses. If house *i* is occupied, and therefore cannot be bought, then *a**i* equals 0. Otherwise, house *i* can be bought, and *a**i* represents the money required to buy it, in dollars. As Zane has only *k* dollars to spare, it becomes a challenge for him to choose the house to purchase, so that he could live as near as possible to his crush. Help Zane determine the minimum distance from his crush's house to some house he can afford, to help him succeed in his love. Input Specification: The first line contains three integers *n*, *m*, and *k* (2<=≤<=*n*<=≤<=100, 1<=≤<=*m*<=≤<=*n*, 1<=≤<=*k*<=≤<=100) — the number of houses in the village, the house where the girl lives, and the amount of money Zane has (in dollars), respectively. The second line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n* (0<=≤<=*a**i*<=≤<=100) — denoting the availability and the prices of the houses. It is guaranteed that *a**m*<==<=0 and that it is possible to purchase some house with no more than *k* dollars. Output Specification: Print one integer — the minimum distance, in meters, from the house where the girl Zane likes lives to the house Zane can buy. Demo Input: ['5 1 20\n0 27 32 21 19\n', '7 3 50\n62 0 0 0 99 33 22\n', '10 5 100\n1 0 1 0 0 0 0 0 1 1\n'] Demo Output: ['40', '30', '20'] Note: In the first sample, with *k* = 20 dollars, Zane can buy only house 5. The distance from house *m* = 1 to house 5 is 10 + 10 + 10 + 10 = 40 meters. In the second sample, Zane can buy houses 6 and 7. It is better to buy house 6 than house 7, since house *m* = 3 and house 6 are only 30 meters away, while house *m* = 3 and house 7 are 40 meters away.
```python n,m,k = map(int,input().split()) a = list(map(int,input().split())) c = [] for i in range(len(a)): if a[i]<=k and a[i]!=0: c.append(i) p = [] for i in range(len(c)): p.append(abs(c[i]-m+1)*10) print(min(p)) ```
3
0
none
none
none
0
[ "none" ]
null
null
Malek has recently found a treasure map. While he was looking for a treasure he found a locked door. There was a string *s* written on the door consisting of characters '(', ')' and '#'. Below there was a manual on how to open the door. After spending a long time Malek managed to decode the manual and found out that the goal is to replace each '#' with one or more ')' characters so that the final string becomes beautiful. Below there was also written that a string is called beautiful if for each *i* (1<=≤<=*i*<=≤<=|*s*|) there are no more ')' characters than '(' characters among the first *i* characters of *s* and also the total number of '(' characters is equal to the total number of ')' characters. Help Malek open the door by telling him for each '#' character how many ')' characters he must replace it with.
The first line of the input contains a string *s* (1<=≤<=|*s*|<=≤<=105). Each character of this string is one of the characters '(', ')' or '#'. It is guaranteed that *s* contains at least one '#' character.
If there is no way of replacing '#' characters which leads to a beautiful string print <=-<=1. Otherwise for each character '#' print a separate line containing a positive integer, the number of ')' characters this character must be replaced with. If there are several possible answers, you may output any of them.
[ "(((#)((#)\n", "()((#((#(#()\n", "#\n", "(#)\n" ]
[ "1\n2\n", "2\n2\n1", "-1\n", "-1\n" ]
|*s*| denotes the length of the string *s*.
0
[ { "input": "(((#)((#)", "output": "1\n2" }, { "input": "()((#((#(#()", "output": "1\n1\n3" }, { "input": "#", "output": "-1" }, { "input": "(#)", "output": "-1" }, { "input": "(((((#(#(#(#()", "output": "1\n1\n1\n5" }, { "input": "#))))", "output": "-1" }, { "input": "((#(()#(##", "output": "1\n1\n1\n1" }, { "input": "##((((((()", "output": "-1" }, { "input": "(((((((((((((((((((###################", "output": "1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1" }, { "input": "((#)(", "output": "-1" }, { "input": "((#)((#)((#)((#)((#)((#)((#)((#)((#)((#)((#)((#)((#)((#)((#)((##", "output": "1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1" }, { "input": ")((##((###", "output": "-1" }, { "input": "(#))(#(#)((((#(##((#(#((((#(##((((((#((()(()(())((()#((((#((()((((#(((((#(##)(##()((((()())(((((#(((", "output": "-1" }, { "input": "#(#(#((##((()))(((#)(#()#(((()()(()#(##(((()(((()))#(((((()(((((((()#((#((()(#(((()(()##(()(((()((#(", "output": "-1" }, { "input": "((#(", "output": "-1" }, { "input": "()#(#())()()#)(#)()##)#((()#)((#)()#())((#((((((((#)()()(()()(((((#)#(#((((#((##()(##(((#(()(#((#))#", "output": "-1" }, { "input": "(())((((#)", "output": "3" }, { "input": "(#(", "output": "-1" }, { "input": "((#)(", "output": "-1" }, { "input": "(((()#(#)(", "output": "-1" }, { "input": "#((#", "output": "-1" }, { "input": "(#((((()", "output": "-1" }, { "input": "(#((", "output": "-1" }, { "input": ")(((())#", "output": "-1" } ]
1,622,904,210
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
19
140
307,200
def imprime_resultado(jogo_velha, sobra): for i in range(jogo_velha - 1): print(1) print(sobra + 1) string = input() abre = 0 fecha = 0 jogo_velha = 0 for char in string: if char == '(': abre += 1 elif char == ')': fecha += 1 else: jogo_velha += 1 dif = abre - fecha if dif < 0 or jogo_velha > dif: print(-1) else: sobra = dif - jogo_velha count = 0 for i in range(len(string) - 1, -1, -1): if string[i] == '(': count -= 1 elif string[i] == ')': count += 1 else: imprime_resultado(jogo_velha, sobra) break if count < 0: print(-1) break
Title: none Time Limit: None seconds Memory Limit: None megabytes Problem Description: Malek has recently found a treasure map. While he was looking for a treasure he found a locked door. There was a string *s* written on the door consisting of characters '(', ')' and '#'. Below there was a manual on how to open the door. After spending a long time Malek managed to decode the manual and found out that the goal is to replace each '#' with one or more ')' characters so that the final string becomes beautiful. Below there was also written that a string is called beautiful if for each *i* (1<=≤<=*i*<=≤<=|*s*|) there are no more ')' characters than '(' characters among the first *i* characters of *s* and also the total number of '(' characters is equal to the total number of ')' characters. Help Malek open the door by telling him for each '#' character how many ')' characters he must replace it with. Input Specification: The first line of the input contains a string *s* (1<=≤<=|*s*|<=≤<=105). Each character of this string is one of the characters '(', ')' or '#'. It is guaranteed that *s* contains at least one '#' character. Output Specification: If there is no way of replacing '#' characters which leads to a beautiful string print <=-<=1. Otherwise for each character '#' print a separate line containing a positive integer, the number of ')' characters this character must be replaced with. If there are several possible answers, you may output any of them. Demo Input: ['(((#)((#)\n', '()((#((#(#()\n', '#\n', '(#)\n'] Demo Output: ['1\n2\n', '2\n2\n1', '-1\n', '-1\n'] Note: |*s*| denotes the length of the string *s*.
```python def imprime_resultado(jogo_velha, sobra): for i in range(jogo_velha - 1): print(1) print(sobra + 1) string = input() abre = 0 fecha = 0 jogo_velha = 0 for char in string: if char == '(': abre += 1 elif char == ')': fecha += 1 else: jogo_velha += 1 dif = abre - fecha if dif < 0 or jogo_velha > dif: print(-1) else: sobra = dif - jogo_velha count = 0 for i in range(len(string) - 1, -1, -1): if string[i] == '(': count -= 1 elif string[i] == ')': count += 1 else: imprime_resultado(jogo_velha, sobra) break if count < 0: print(-1) break ```
0
455
A
Boredom
PROGRAMMING
1,500
[ "dp" ]
null
null
Alex doesn't like boredom. That's why whenever he gets bored, he comes up with games. One long winter evening he came up with a game and decided to play it. Given a sequence *a* consisting of *n* integers. The player can make several steps. In a single step he can choose an element of the sequence (let's denote it *a**k*) and delete it, at that all elements equal to *a**k*<=+<=1 and *a**k*<=-<=1 also must be deleted from the sequence. That step brings *a**k* points to the player. Alex is a perfectionist, so he decided to get as many points as possible. Help him.
The first line contains integer *n* (1<=≤<=*n*<=≤<=105) that shows how many numbers are in Alex's sequence. The second line contains *n* integers *a*1, *a*2, ..., *a**n* (1<=≤<=*a**i*<=≤<=105).
Print a single integer — the maximum number of points that Alex can earn.
[ "2\n1 2\n", "3\n1 2 3\n", "9\n1 2 1 3 2 2 2 2 3\n" ]
[ "2\n", "4\n", "10\n" ]
Consider the third test example. At first step we need to choose any element equal to 2. After that step our sequence looks like this [2, 2, 2, 2]. Then we do 4 steps, on each step we choose any element equals to 2. In total we earn 10 points.
500
[ { "input": "2\n1 2", "output": "2" }, { "input": "3\n1 2 3", "output": "4" }, { "input": "9\n1 2 1 3 2 2 2 2 3", "output": "10" }, { "input": "5\n3 3 4 5 4", "output": "11" }, { "input": "5\n5 3 5 3 4", "output": "16" }, { "input": "5\n4 2 3 2 5", "output": "9" }, { "input": "10\n10 5 8 9 5 6 8 7 2 8", "output": "46" }, { "input": "10\n1 1 1 1 1 1 2 3 4 4", "output": "14" }, { "input": "100\n6 6 8 9 7 9 6 9 5 7 7 4 5 3 9 1 10 3 4 5 8 9 6 5 6 4 10 9 1 4 1 7 1 4 9 10 8 2 9 9 10 5 8 9 5 6 8 7 2 8 7 6 2 6 10 8 6 2 5 5 3 2 8 8 5 3 6 2 1 4 7 2 7 3 7 4 10 10 7 5 4 7 5 10 7 1 1 10 7 7 7 2 3 4 2 8 4 7 4 4", "output": "296" }, { "input": "100\n6 1 5 7 10 10 2 7 3 7 2 10 7 6 3 5 5 5 3 7 2 4 2 7 7 4 2 8 2 10 4 7 9 1 1 7 9 7 1 10 10 9 5 6 10 1 7 5 8 1 1 5 3 10 2 4 3 5 2 7 4 9 5 10 1 3 7 6 6 9 3 6 6 10 1 10 6 1 10 3 4 1 7 9 2 7 8 9 3 3 2 4 6 6 1 2 9 4 1 2", "output": "313" }, { "input": "100\n7 6 3 8 8 3 10 5 3 8 6 4 6 9 6 7 3 9 10 7 5 5 9 10 7 2 3 8 9 5 4 7 9 3 6 4 9 10 7 6 8 7 6 6 10 3 7 4 5 7 7 5 1 5 4 8 7 3 3 4 7 8 5 9 2 2 3 1 6 4 6 6 6 1 7 10 7 4 5 3 9 2 4 1 5 10 9 3 9 6 8 5 2 1 10 4 8 5 10 9", "output": "298" }, { "input": "100\n2 10 9 1 2 6 7 2 2 8 9 9 9 5 6 2 5 1 1 10 7 4 5 5 8 1 9 4 10 1 9 3 1 8 4 10 8 8 2 4 6 5 1 4 2 2 1 2 8 5 3 9 4 10 10 7 8 6 1 8 2 6 7 1 6 7 3 10 10 3 7 7 6 9 6 8 8 10 4 6 4 3 3 3 2 3 10 6 8 5 5 10 3 7 3 1 1 1 5 5", "output": "312" }, { "input": "100\n4 9 7 10 4 7 2 6 1 9 1 8 7 5 5 7 6 7 9 8 10 5 3 5 7 10 3 2 1 3 8 9 4 10 4 7 6 4 9 6 7 1 9 4 3 5 8 9 2 7 10 5 7 5 3 8 10 3 8 9 3 4 3 10 6 5 1 8 3 2 5 8 4 7 5 3 3 2 6 9 9 8 2 7 6 3 2 2 8 8 4 5 6 9 2 3 2 2 5 2", "output": "287" }, { "input": "100\n4 8 10 1 8 8 8 1 10 3 1 8 6 8 6 1 10 3 3 3 3 7 2 1 1 6 10 1 7 9 8 10 3 8 6 2 1 6 5 6 10 8 9 7 4 3 10 5 3 9 10 5 10 8 8 5 7 8 9 5 3 9 9 2 7 8 1 10 4 9 2 8 10 10 5 8 5 1 7 3 4 5 2 5 9 3 2 5 6 2 3 10 1 5 9 6 10 4 10 8", "output": "380" }, { "input": "100\n4 8 10 1 8 8 8 1 10 3 1 8 6 8 6 1 10 3 3 3 3 7 2 1 1 6 10 1 7 9 8 10 3 8 6 2 1 6 5 6 10 8 9 7 4 3 10 5 3 9 10 5 10 8 8 5 7 8 9 5 3 9 9 2 7 8 1 10 4 9 2 8 10 10 5 8 5 1 7 3 4 5 2 5 9 3 2 5 6 2 3 10 1 5 9 6 10 4 10 8", "output": "380" }, { "input": "100\n10 5 8 4 4 4 1 4 5 8 3 10 2 4 1 10 8 1 1 6 8 4 2 9 1 3 1 7 7 9 3 5 5 8 6 9 9 4 8 1 3 3 2 6 1 5 4 5 3 5 5 6 7 5 7 9 3 5 4 9 2 6 8 1 1 7 7 3 8 9 8 7 3 2 4 1 6 1 3 9 4 2 2 8 5 10 1 8 8 5 1 5 6 9 4 5 6 5 10 2", "output": "265" }, { "input": "100\n7 5 1 8 5 6 6 2 6 2 7 7 3 6 2 4 4 2 10 2 2 2 10 6 6 1 5 10 9 1 5 9 8 9 4 1 10 5 7 5 7 6 4 8 8 1 7 8 3 8 2 1 8 4 10 3 5 6 6 10 9 6 5 1 10 7 6 9 9 2 10 10 9 1 2 1 7 7 4 10 1 10 5 5 3 8 9 8 1 4 10 2 4 5 4 4 1 6 2 9", "output": "328" }, { "input": "100\n5 6 10 7 1 7 10 1 9 1 5 1 4 1 3 3 7 9 1 6 1 6 5 7 1 6 3 1 3 6 3 8 2 4 1 5 2 10 7 3 10 4 10 1 5 4 2 9 7 9 5 7 10 4 1 4 8 9 3 1 3 7 7 4 3 7 7 10 6 9 5 5 6 5 3 9 8 8 5 5 4 10 9 4 10 4 1 8 3 5 4 10 9 3 10 4 10 7 10 9", "output": "324" }, { "input": "10\n7 4 5 3 9 1 10 3 4 5", "output": "34" }, { "input": "10\n8 9 6 5 6 4 10 9 1 4", "output": "39" }, { "input": "10\n1 7 1 4 9 10 8 2 9 9", "output": "40" }, { "input": "1\n100000", "output": "100000" } ]
1,700,125,309
2,147,483,647
Python 3
OK
TESTS
47
155
13,619,200
input() a = [int(i) for i in input().split()] num = dict() dp = [0] def Add(x): if x in num: num[x] += 1 else: num[x] = 1 def dinamic(i): if i-1 in num: return max(dp[-1], dp[-2]+i*num[i]) else: return dp[-1]+i*num[i] for i in range(len(a)): Add(a[i]) keys = list(num.keys()) keys.sort() for i in keys: dp.append(dinamic(i)) print(dp[-1])
Title: Boredom Time Limit: None seconds Memory Limit: None megabytes Problem Description: Alex doesn't like boredom. That's why whenever he gets bored, he comes up with games. One long winter evening he came up with a game and decided to play it. Given a sequence *a* consisting of *n* integers. The player can make several steps. In a single step he can choose an element of the sequence (let's denote it *a**k*) and delete it, at that all elements equal to *a**k*<=+<=1 and *a**k*<=-<=1 also must be deleted from the sequence. That step brings *a**k* points to the player. Alex is a perfectionist, so he decided to get as many points as possible. Help him. Input Specification: The first line contains integer *n* (1<=≤<=*n*<=≤<=105) that shows how many numbers are in Alex's sequence. The second line contains *n* integers *a*1, *a*2, ..., *a**n* (1<=≤<=*a**i*<=≤<=105). Output Specification: Print a single integer — the maximum number of points that Alex can earn. Demo Input: ['2\n1 2\n', '3\n1 2 3\n', '9\n1 2 1 3 2 2 2 2 3\n'] Demo Output: ['2\n', '4\n', '10\n'] Note: Consider the third test example. At first step we need to choose any element equal to 2. After that step our sequence looks like this [2, 2, 2, 2]. Then we do 4 steps, on each step we choose any element equals to 2. In total we earn 10 points.
```python input() a = [int(i) for i in input().split()] num = dict() dp = [0] def Add(x): if x in num: num[x] += 1 else: num[x] = 1 def dinamic(i): if i-1 in num: return max(dp[-1], dp[-2]+i*num[i]) else: return dp[-1]+i*num[i] for i in range(len(a)): Add(a[i]) keys = list(num.keys()) keys.sort() for i in keys: dp.append(dinamic(i)) print(dp[-1]) ```
3
483
A
Counterexample
PROGRAMMING
1,100
[ "brute force", "implementation", "math", "number theory" ]
null
null
Your friend has recently learned about coprime numbers. A pair of numbers {*a*,<=*b*} is called coprime if the maximum number that divides both *a* and *b* is equal to one. Your friend often comes up with different statements. He has recently supposed that if the pair (*a*,<=*b*) is coprime and the pair (*b*,<=*c*) is coprime, then the pair (*a*,<=*c*) is coprime. You want to find a counterexample for your friend's statement. Therefore, your task is to find three distinct numbers (*a*,<=*b*,<=*c*), for which the statement is false, and the numbers meet the condition *l*<=≤<=*a*<=&lt;<=*b*<=&lt;<=*c*<=≤<=*r*. More specifically, you need to find three numbers (*a*,<=*b*,<=*c*), such that *l*<=≤<=*a*<=&lt;<=*b*<=&lt;<=*c*<=≤<=*r*, pairs (*a*,<=*b*) and (*b*,<=*c*) are coprime, and pair (*a*,<=*c*) is not coprime.
The single line contains two positive space-separated integers *l*, *r* (1<=≤<=*l*<=≤<=*r*<=≤<=1018; *r*<=-<=*l*<=≤<=50).
Print three positive space-separated integers *a*, *b*, *c* — three distinct numbers (*a*,<=*b*,<=*c*) that form the counterexample. If there are several solutions, you are allowed to print any of them. The numbers must be printed in ascending order. If the counterexample does not exist, print the single number -1.
[ "2 4\n", "10 11\n", "900000000000000009 900000000000000029\n" ]
[ "2 3 4\n", "-1\n", "900000000000000009 900000000000000010 900000000000000021\n" ]
In the first sample pair (2, 4) is not coprime and pairs (2, 3) and (3, 4) are. In the second sample you cannot form a group of three distinct integers, so the answer is -1. In the third sample it is easy to see that numbers 900000000000000009 and 900000000000000021 are divisible by three.
500
[ { "input": "2 4", "output": "2 3 4" }, { "input": "10 11", "output": "-1" }, { "input": "900000000000000009 900000000000000029", "output": "900000000000000009 900000000000000010 900000000000000021" }, { "input": "640097987171091791 640097987171091835", "output": "640097987171091792 640097987171091793 640097987171091794" }, { "input": "19534350415104721 19534350415104725", "output": "19534350415104722 19534350415104723 19534350415104724" }, { "input": "933700505788726243 933700505788726280", "output": "933700505788726244 933700505788726245 933700505788726246" }, { "input": "1 3", "output": "-1" }, { "input": "1 4", "output": "2 3 4" }, { "input": "1 1", "output": "-1" }, { "input": "266540997167959130 266540997167959164", "output": "266540997167959130 266540997167959131 266540997167959132" }, { "input": "267367244641009850 267367244641009899", "output": "267367244641009850 267367244641009851 267367244641009852" }, { "input": "268193483524125978 268193483524125993", "output": "268193483524125978 268193483524125979 268193483524125980" }, { "input": "269019726702209402 269019726702209432", "output": "269019726702209402 269019726702209403 269019726702209404" }, { "input": "269845965585325530 269845965585325576", "output": "269845965585325530 269845965585325531 269845965585325532" }, { "input": "270672213058376250 270672213058376260", "output": "270672213058376250 270672213058376251 270672213058376252" }, { "input": "271498451941492378 271498451941492378", "output": "-1" }, { "input": "272324690824608506 272324690824608523", "output": "272324690824608506 272324690824608507 272324690824608508" }, { "input": "273150934002691930 273150934002691962", "output": "273150934002691930 273150934002691931 273150934002691932" }, { "input": "996517375802030516 996517375802030524", "output": "996517375802030516 996517375802030517 996517375802030518" }, { "input": "997343614685146644 997343614685146694", "output": "997343614685146644 997343614685146645 997343614685146646" }, { "input": "998169857863230068 998169857863230083", "output": "998169857863230068 998169857863230069 998169857863230070" }, { "input": "998996101041313492 998996101041313522", "output": "998996101041313492 998996101041313493 998996101041313494" }, { "input": "999822344219396916 999822344219396961", "output": "999822344219396916 999822344219396917 999822344219396918" }, { "input": "648583102513043 648583102513053", "output": "648583102513044 648583102513045 648583102513046" }, { "input": "266540997167959130 266540997167959131", "output": "-1" }, { "input": "267367244641009850 267367244641009850", "output": "-1" }, { "input": "268193483524125978 268193483524125979", "output": "-1" }, { "input": "269019726702209402 269019726702209402", "output": "-1" }, { "input": "269845965585325530 269845965585325530", "output": "-1" }, { "input": "270672213058376250 270672213058376254", "output": "270672213058376250 270672213058376251 270672213058376252" }, { "input": "271498451941492378 271498451941492379", "output": "-1" }, { "input": "272324690824608506 272324690824608508", "output": "272324690824608506 272324690824608507 272324690824608508" }, { "input": "273150934002691930 273150934002691931", "output": "-1" }, { "input": "996517375802030516 996517375802030518", "output": "996517375802030516 996517375802030517 996517375802030518" }, { "input": "997343614685146644 997343614685146644", "output": "-1" }, { "input": "2147483647 2147483649", "output": "-1" }, { "input": "3 5", "output": "-1" }, { "input": "1 7", "output": "2 3 4" }, { "input": "9 12", "output": "9 11 12" }, { "input": "4 4", "output": "-1" }, { "input": "11 13", "output": "-1" }, { "input": "2 2", "output": "-1" } ]
1,632,679,416
2,147,483,647
Python 3
OK
TESTS
42
62
6,758,400
l,r = [int(i) for i in input().split()] if r-l<2: print(-1) elif l%2==0: print(l,l+1,l+2) elif r-l<3: print(-1) else: print(l+1,l+2,l+3)
Title: Counterexample Time Limit: None seconds Memory Limit: None megabytes Problem Description: Your friend has recently learned about coprime numbers. A pair of numbers {*a*,<=*b*} is called coprime if the maximum number that divides both *a* and *b* is equal to one. Your friend often comes up with different statements. He has recently supposed that if the pair (*a*,<=*b*) is coprime and the pair (*b*,<=*c*) is coprime, then the pair (*a*,<=*c*) is coprime. You want to find a counterexample for your friend's statement. Therefore, your task is to find three distinct numbers (*a*,<=*b*,<=*c*), for which the statement is false, and the numbers meet the condition *l*<=≤<=*a*<=&lt;<=*b*<=&lt;<=*c*<=≤<=*r*. More specifically, you need to find three numbers (*a*,<=*b*,<=*c*), such that *l*<=≤<=*a*<=&lt;<=*b*<=&lt;<=*c*<=≤<=*r*, pairs (*a*,<=*b*) and (*b*,<=*c*) are coprime, and pair (*a*,<=*c*) is not coprime. Input Specification: The single line contains two positive space-separated integers *l*, *r* (1<=≤<=*l*<=≤<=*r*<=≤<=1018; *r*<=-<=*l*<=≤<=50). Output Specification: Print three positive space-separated integers *a*, *b*, *c* — three distinct numbers (*a*,<=*b*,<=*c*) that form the counterexample. If there are several solutions, you are allowed to print any of them. The numbers must be printed in ascending order. If the counterexample does not exist, print the single number -1. Demo Input: ['2 4\n', '10 11\n', '900000000000000009 900000000000000029\n'] Demo Output: ['2 3 4\n', '-1\n', '900000000000000009 900000000000000010 900000000000000021\n'] Note: In the first sample pair (2, 4) is not coprime and pairs (2, 3) and (3, 4) are. In the second sample you cannot form a group of three distinct integers, so the answer is -1. In the third sample it is easy to see that numbers 900000000000000009 and 900000000000000021 are divisible by three.
```python l,r = [int(i) for i in input().split()] if r-l<2: print(-1) elif l%2==0: print(l,l+1,l+2) elif r-l<3: print(-1) else: print(l+1,l+2,l+3) ```
3
960
A
Check the string
PROGRAMMING
1,200
[ "implementation" ]
null
null
A has a string consisting of some number of lowercase English letters 'a'. He gives it to his friend B who appends some number of letters 'b' to the end of this string. Since both A and B like the characters 'a' and 'b', they have made sure that at this point, at least one 'a' and one 'b' exist in the string. B now gives this string to C and he appends some number of letters 'c' to the end of the string. However, since C is a good friend of A and B, the number of letters 'c' he appends is equal to the number of 'a' or to the number of 'b' in the string. It is also possible that the number of letters 'c' equals both to the number of letters 'a' and to the number of letters 'b' at the same time. You have a string in your hands, and you want to check if it is possible to obtain the string in this way or not. If it is possible to obtain the string, print "YES", otherwise print "NO" (without the quotes).
The first and only line consists of a string $S$ ($ 1 \le |S| \le 5\,000 $). It is guaranteed that the string will only consist of the lowercase English letters 'a', 'b', 'c'.
Print "YES" or "NO", according to the condition.
[ "aaabccc\n", "bbacc\n", "aabc\n" ]
[ "YES\n", "NO\n", "YES\n" ]
Consider first example: the number of 'c' is equal to the number of 'a'. Consider second example: although the number of 'c' is equal to the number of the 'b', the order is not correct. Consider third example: the number of 'c' is equal to the number of 'b'.
500
[ { "input": "aaabccc", "output": "YES" }, { "input": "bbacc", "output": "NO" }, { "input": "aabc", "output": "YES" }, { "input": "aabbcc", "output": "YES" }, { "input": "aaacccbb", "output": "NO" }, { "input": "abc", "output": "YES" }, { "input": "acba", "output": "NO" }, { "input": "bbabbc", "output": "NO" }, { "input": "bbbabacca", "output": "NO" }, { "input": "aabcbcaca", "output": "NO" }, { "input": "aaaaabbbbbb", "output": "NO" }, { "input": "c", "output": "NO" }, { "input": "cc", "output": "NO" }, { "input": "bbb", "output": "NO" }, { "input": "bc", "output": "NO" }, { "input": "ccbcc", "output": "NO" }, { "input": "aaa", "output": "NO" }, { "input": "aaccaa", "output": "NO" }, { "input": "a", "output": "NO" }, { "input": "b", "output": "NO" }, { "input": "abca", "output": "NO" }, { "input": "aabbcccc", "output": "NO" }, { "input": "abac", "output": "NO" }, { "input": "abcc", "output": "NO" }, { "input": "abcb", "output": "NO" }, { "input": "aacc", "output": "NO" }, { "input": "aabbaacccc", "output": "NO" }, { "input": "aabb", "output": "NO" }, { "input": "ac", "output": "NO" }, { "input": "abbacc", "output": "NO" }, { "input": "abacc", "output": "NO" }, { "input": "ababc", "output": "NO" }, { "input": "aa", "output": "NO" }, { "input": "aabaccc", "output": "NO" }, { "input": "bbcc", "output": "NO" }, { "input": "aaabcbc", "output": "NO" }, { "input": "acbbc", "output": "NO" }, { "input": "babc", "output": "NO" }, { "input": "bbbcc", "output": "NO" }, { "input": "bbc", "output": "NO" }, { "input": "abababccc", "output": "NO" }, { "input": "ccbbaa", "output": "NO" } ]
1,541,433,408
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
16
109
0
s=input() if ('ba' in s) or ('cb' in s) or ('ca' in s) or ('ac' in s): print('NO') else: a=s.count('a') b=s.count('b') c=s.count('c') if a==c or b==c: print('YES') else: print('NO')
Title: Check the string Time Limit: None seconds Memory Limit: None megabytes Problem Description: A has a string consisting of some number of lowercase English letters 'a'. He gives it to his friend B who appends some number of letters 'b' to the end of this string. Since both A and B like the characters 'a' and 'b', they have made sure that at this point, at least one 'a' and one 'b' exist in the string. B now gives this string to C and he appends some number of letters 'c' to the end of the string. However, since C is a good friend of A and B, the number of letters 'c' he appends is equal to the number of 'a' or to the number of 'b' in the string. It is also possible that the number of letters 'c' equals both to the number of letters 'a' and to the number of letters 'b' at the same time. You have a string in your hands, and you want to check if it is possible to obtain the string in this way or not. If it is possible to obtain the string, print "YES", otherwise print "NO" (without the quotes). Input Specification: The first and only line consists of a string $S$ ($ 1 \le |S| \le 5\,000 $). It is guaranteed that the string will only consist of the lowercase English letters 'a', 'b', 'c'. Output Specification: Print "YES" or "NO", according to the condition. Demo Input: ['aaabccc\n', 'bbacc\n', 'aabc\n'] Demo Output: ['YES\n', 'NO\n', 'YES\n'] Note: Consider first example: the number of 'c' is equal to the number of 'a'. Consider second example: although the number of 'c' is equal to the number of the 'b', the order is not correct. Consider third example: the number of 'c' is equal to the number of 'b'.
```python s=input() if ('ba' in s) or ('cb' in s) or ('ca' in s) or ('ac' in s): print('NO') else: a=s.count('a') b=s.count('b') c=s.count('c') if a==c or b==c: print('YES') else: print('NO') ```
0
348
A
Mafia
PROGRAMMING
1,600
[ "binary search", "math", "sortings" ]
null
null
One day *n* friends gathered together to play "Mafia". During each round of the game some player must be the supervisor and other *n*<=-<=1 people take part in the game. For each person we know in how many rounds he wants to be a player, not the supervisor: the *i*-th person wants to play *a**i* rounds. What is the minimum number of rounds of the "Mafia" game they need to play to let each person play at least as many rounds as they want?
The first line contains integer *n* (3<=≤<=*n*<=≤<=105). The second line contains *n* space-separated integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=109) — the *i*-th number in the list is the number of rounds the *i*-th person wants to play.
In a single line print a single integer — the minimum number of game rounds the friends need to let the *i*-th person play at least *a**i* rounds. Please, do not use the %lld specifier to read or write 64-bit integers in С++. It is preferred to use the cin, cout streams or the %I64d specifier.
[ "3\n3 2 2\n", "4\n2 2 2 2\n" ]
[ "4\n", "3\n" ]
You don't need to know the rules of "Mafia" to solve this problem. If you're curious, it's a game Russia got from the Soviet times: http://en.wikipedia.org/wiki/Mafia_(party_game).
500
[ { "input": "3\n3 2 2", "output": "4" }, { "input": "4\n2 2 2 2", "output": "3" }, { "input": "7\n9 7 7 8 8 7 8", "output": "9" }, { "input": "10\n13 12 10 13 13 14 10 10 12 12", "output": "14" }, { "input": "10\n94 96 91 95 99 94 96 92 95 99", "output": "106" }, { "input": "100\n1 555 876 444 262 234 231 598 416 261 206 165 181 988 469 123 602 592 533 97 864 716 831 156 962 341 207 377 892 51 866 96 757 317 832 476 549 472 770 1000 887 145 956 515 992 653 972 677 973 527 984 559 280 346 580 30 372 547 209 929 492 520 446 726 47 170 699 560 814 206 688 955 308 287 26 102 77 430 262 71 415 586 532 562 419 615 732 658 108 315 268 574 86 12 23 429 640 995 342 305", "output": "1000" }, { "input": "3\n1 1 1", "output": "2" }, { "input": "30\n94 93 90 94 90 91 93 91 93 94 93 90 100 94 97 94 94 95 94 96 94 98 97 95 97 91 91 95 98 96", "output": "100" }, { "input": "5\n1000000000 5 5 4 4", "output": "1000000000" }, { "input": "3\n1 2 1", "output": "2" }, { "input": "3\n2 1 1", "output": "2" }, { "input": "4\n1 2 3 4", "output": "4" }, { "input": "3\n1000000000 1000000000 10000000", "output": "1005000000" }, { "input": "3\n677876423 834056477 553175531", "output": "1032554216" }, { "input": "5\n1000000000 1 1 1 1", "output": "1000000000" }, { "input": "4\n1000000000 1000000000 1000000000 1000000000", "output": "1333333334" }, { "input": "3\n4 10 11", "output": "13" }, { "input": "5\n1000000000 1000000000 1000000000 1000000000 1000000000", "output": "1250000000" } ]
1,633,146,688
2,147,483,647
PyPy 3
OK
TESTS
34
372
31,129,600
import math n,s = int(input()) - 1,list(map(int,input().split())) print(max(math.ceil(sum(s) / n),max(s)))
Title: Mafia Time Limit: None seconds Memory Limit: None megabytes Problem Description: One day *n* friends gathered together to play "Mafia". During each round of the game some player must be the supervisor and other *n*<=-<=1 people take part in the game. For each person we know in how many rounds he wants to be a player, not the supervisor: the *i*-th person wants to play *a**i* rounds. What is the minimum number of rounds of the "Mafia" game they need to play to let each person play at least as many rounds as they want? Input Specification: The first line contains integer *n* (3<=≤<=*n*<=≤<=105). The second line contains *n* space-separated integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=109) — the *i*-th number in the list is the number of rounds the *i*-th person wants to play. Output Specification: In a single line print a single integer — the minimum number of game rounds the friends need to let the *i*-th person play at least *a**i* rounds. Please, do not use the %lld specifier to read or write 64-bit integers in С++. It is preferred to use the cin, cout streams or the %I64d specifier. Demo Input: ['3\n3 2 2\n', '4\n2 2 2 2\n'] Demo Output: ['4\n', '3\n'] Note: You don't need to know the rules of "Mafia" to solve this problem. If you're curious, it's a game Russia got from the Soviet times: http://en.wikipedia.org/wiki/Mafia_(party_game).
```python import math n,s = int(input()) - 1,list(map(int,input().split())) print(max(math.ceil(sum(s) / n),max(s))) ```
3
496
B
Secret Combination
PROGRAMMING
1,500
[ "brute force", "constructive algorithms", "implementation" ]
null
null
You got a box with a combination lock. The lock has a display showing *n* digits. There are two buttons on the box, each button changes digits on the display. You have quickly discovered that the first button adds 1 to all the digits (all digits 9 become digits 0), and the second button shifts all the digits on the display one position to the right (the last digit becomes the first one). For example, if the display is currently showing number 579, then if we push the first button, the display will show 680, and if after that we push the second button, the display will show 068. You know that the lock will open if the display is showing the smallest possible number that can be obtained by pushing the buttons in some order. The leading zeros are ignored while comparing numbers. Now your task is to find the desired number.
The first line contains a single integer *n* (1<=≤<=*n*<=≤<=1000) — the number of digits on the display. The second line contains *n* digits — the initial state of the display.
Print a single line containing *n* digits — the desired state of the display containing the smallest possible number.
[ "3\n579\n", "4\n2014\n" ]
[ "024\n", "0142\n" ]
none
1,000
[ { "input": "3\n579", "output": "024" }, { "input": "4\n2014", "output": "0142" }, { "input": "1\n1", "output": "0" }, { "input": "3\n039", "output": "014" }, { "input": "4\n4444", "output": "0000" }, { "input": "5\n46802", "output": "02468" }, { "input": "10\n4447444444", "output": "0000000003" }, { "input": "10\n5810438174", "output": "0147609473" }, { "input": "30\n027027027027027027027027027027", "output": "027027027027027027027027027027" }, { "input": "50\n41012516454101251645410125164541012516454101251645", "output": "01076781720107678172010767817201076781720107678172" }, { "input": "72\n464553044645330446455304464553064645530445455304464553044645530446455304", "output": "001011960020119600201196002011960020119600201996002011960020119620201196" }, { "input": "100\n2144315253572020279108092911160072328496568665545836825277616363478721946398140227406814602154768031", "output": "0005996121738545755443472571416650525236761083528703911639570359104365792010332041424619191680979818" }, { "input": "200\n79025531557298703099245700860027432585447902553155729870309924570086002743258544790255315572987030992457008600274325854479025531557298703099245700860027432585447902553155729870309924570086002743258544", "output": "00274325854479025531557298703099245700860027432585447902553155729870309924570086002743258544790255315572987030992457008600274325854479025531557298703099245700860027432585447902553155729870309924570086" }, { "input": "100\n6669666666666666666866266666666666666666666666666666666666666666626666666666666966666766665667666656", "output": "0000000000000000000000000000000000000000006000000000000030000010000900100009000030000000000000002006" }, { "input": "1\n0", "output": "0" } ]
1,635,878,614
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
2
46
4,505,600
import time n=int(input()) ch=input() if ch[0]=="0": print(int(ch)) else: code=[] max_code=-1 for i in range(n): x=int(ch[i]) if x > max_code: max_code=x code.append(x) while max_code>5: for i in range(n): code[i]=(code[i]+1)%9 max_code=max(code) min_code=min(code) while code[0]!=min_code: x=code[n-1] for i in range(n-1,0,-1): code[i]=code[i-1] code[0]=x ch="" for i in range(n): ch+=str(code[i]) print(ch)
Title: Secret Combination Time Limit: None seconds Memory Limit: None megabytes Problem Description: You got a box with a combination lock. The lock has a display showing *n* digits. There are two buttons on the box, each button changes digits on the display. You have quickly discovered that the first button adds 1 to all the digits (all digits 9 become digits 0), and the second button shifts all the digits on the display one position to the right (the last digit becomes the first one). For example, if the display is currently showing number 579, then if we push the first button, the display will show 680, and if after that we push the second button, the display will show 068. You know that the lock will open if the display is showing the smallest possible number that can be obtained by pushing the buttons in some order. The leading zeros are ignored while comparing numbers. Now your task is to find the desired number. Input Specification: The first line contains a single integer *n* (1<=≤<=*n*<=≤<=1000) — the number of digits on the display. The second line contains *n* digits — the initial state of the display. Output Specification: Print a single line containing *n* digits — the desired state of the display containing the smallest possible number. Demo Input: ['3\n579\n', '4\n2014\n'] Demo Output: ['024\n', '0142\n'] Note: none
```python import time n=int(input()) ch=input() if ch[0]=="0": print(int(ch)) else: code=[] max_code=-1 for i in range(n): x=int(ch[i]) if x > max_code: max_code=x code.append(x) while max_code>5: for i in range(n): code[i]=(code[i]+1)%9 max_code=max(code) min_code=min(code) while code[0]!=min_code: x=code[n-1] for i in range(n-1,0,-1): code[i]=code[i-1] code[0]=x ch="" for i in range(n): ch+=str(code[i]) print(ch) ```
0
864
B
Polycarp and Letters
PROGRAMMING
1,000
[ "brute force", "implementation", "strings" ]
null
null
Polycarp loves lowercase letters and dislikes uppercase ones. Once he got a string *s* consisting only of lowercase and uppercase Latin letters. Let *A* be a set of positions in the string. Let's call it pretty if following conditions are met: - letters on positions from *A* in the string are all distinct and lowercase; - there are no uppercase letters in the string which are situated between positions from *A* (i.e. there is no such *j* that *s*[*j*] is an uppercase letter, and *a*1<=&lt;<=*j*<=&lt;<=*a*2 for some *a*1 and *a*2 from *A*). Write a program that will determine the maximum number of elements in a pretty set of positions.
The first line contains a single integer *n* (1<=≤<=*n*<=≤<=200) — length of string *s*. The second line contains a string *s* consisting of lowercase and uppercase Latin letters.
Print maximum number of elements in pretty set of positions for string *s*.
[ "11\naaaaBaabAbA\n", "12\nzACaAbbaazzC\n", "3\nABC\n" ]
[ "2\n", "3\n", "0\n" ]
In the first example the desired positions might be 6 and 8 or 7 and 8. Positions 6 and 7 contain letters 'a', position 8 contains letter 'b'. The pair of positions 1 and 8 is not suitable because there is an uppercase letter 'B' between these position. In the second example desired positions can be 7, 8 and 11. There are other ways to choose pretty set consisting of three elements. In the third example the given string *s* does not contain any lowercase letters, so the answer is 0.
1,000
[ { "input": "11\naaaaBaabAbA", "output": "2" }, { "input": "12\nzACaAbbaazzC", "output": "3" }, { "input": "3\nABC", "output": "0" }, { "input": "1\na", "output": "1" }, { "input": "2\naz", "output": "2" }, { "input": "200\nXbTJZqcbpYuZQEoUrbxlPXAPCtVLrRExpQzxzqzcqsqzsiisswqitswzCtJQxOavicSdBIodideVRKHPojCNHmbnrLgwJlwOpyrJJIhrUePszxSjJGeUgTtOfewPQnPVWhZAtogRPrJLwyShNQaeNsvrJwjuuBOMPCeSckBMISQzGngfOmeyfDObncyeNsihYVtQbSEh", "output": "8" }, { "input": "2\nAZ", "output": "0" }, { "input": "28\nAabcBabcCBNMaaaaabbbbbcccccc", "output": "3" }, { "input": "200\nrsgraosldglhdoorwhkrsehjpuxrjuwgeanjgezhekprzarelduuaxdnspzjuooguuwnzkowkuhzduakdrzpnslauejhrrkalwpurpuuswdgeadlhjwzjgegwpknepazwwleulppwrlgrgedlwdzuodzropsrrkxusjnuzshdkjrxxpgzanzdrpnggdwxarpwohxdepJ", "output": "17" }, { "input": "1\nk", "output": "1" }, { "input": "1\nH", "output": "0" }, { "input": "2\nzG", "output": "1" }, { "input": "2\ngg", "output": "1" }, { "input": "2\nai", "output": "2" }, { "input": "20\npEjVrKWLIFCZjIHgggVU", "output": "1" }, { "input": "20\niFSiiigiYFSKmDnMGcgM", "output": "2" }, { "input": "20\nedxedxxxCQiIVmYEUtLi", "output": "3" }, { "input": "20\nprnchweyabjvzkoqiltm", "output": "20" }, { "input": "35\nQLDZNKFXKVSVLUVHRTDPQYMSTDXBELXBOTS", "output": "0" }, { "input": "35\nbvZWiitgxodztelnYUyljYGnCoWluXTvBLp", "output": "10" }, { "input": "35\nBTexnaeplecllxwlanarpcollawHLVMHIIF", "output": "10" }, { "input": "35\nhhwxqysolegsthsvfcqiryenbujbrrScobu", "output": "20" }, { "input": "26\npbgfqosklxjuzmdheyvawrictn", "output": "26" }, { "input": "100\nchMRWwymTDuZDZuSTvUmmuxvSscnTasyjlwwodhzcoifeahnbmcifyeobbydwparebduoLDCgHlOsPtVRbYGGQXfnkdvrWKIwCRl", "output": "20" }, { "input": "100\nhXYLXKUMBrGkjqQJTGbGWAfmztqqapdbjbhcualhypgnaieKXmhzGMnqXVlcPesskfaEVgvWQTTShRRnEtFahWDyuBzySMpugxCM", "output": "19" }, { "input": "100\nucOgELrgjMrFOgtHzqgvUgtHngKJxdMFKBjfcCppciqmGZXXoiSZibgpadshyljqrwxbomzeutvnhTLGVckZUmyiFPLlwuLBFito", "output": "23" }, { "input": "200\nWTCKAKLVGXSYFVMVJDUYERXNMVNTGWXUGRFCGMYXJQGLODYZTUIDENHYEGFKXFIEUILAMESAXAWZXVCZPJPEYUXBITHMTZOTMKWITGRSFHODKVJHPAHVVWTCTHIVAWAREQXWMPUWQSTPPJFHKGKELBTPUYDAVIUMGASPUEDIODRYXIWCORHOSLIBLOZUNJPHHMXEXOAY", "output": "0" }, { "input": "200\neLCCuYMPPwQoNlCpPOtKWJaQJmWfHeZCKiMSpILHSKjFOYGpRMzMCfMXdDuQdBGNsCNrHIVJzEFfBZcNMwNcFjOFVJvEtUQmLbFNKVHgNDyFkFVQhUTUQDgXhMjJZgFSSiHhMKuTgZQYJqAqKBpHoHddddddddddddddddXSSYNKNnRrKuOjAVKZlRLzCjExPdHaDHBT", "output": "1" }, { "input": "200\nitSYxgOLlwOoAkkkkkzzzzzzzzkzkzkzkkkkkzkzzkzUDJSKybRPBvaIDsNuWImPJvrHkKiMeYukWmtHtgZSyQsgYanZvXNbKXBlFLSUcqRnGWSriAvKxsTkDJfROqaKdzXhvJsPEDATueCraWOGEvRDWjPwXuiNpWsEnCuhDcKWOQxjBkdBqmFatWFkgKsbZuLtRGtY", "output": "2" }, { "input": "200\noggqoqqogoqoggggoggqgooqggogogooogqqgggoqgggqoqogogggogggqgooqgqggqqqoqgqgoooqgqogqoggoqqgqoqgoooqoogooqoogqoqoqqgoqgoqgggogqqqoqoggoqoqqoqggqoggooqqqoqggoggqqqqqqqqqgogqgggggooogogqgggqogqgoqoqogoooq", "output": "3" }, { "input": "200\nCtclUtUnmqFniaLqGRmMoUMeLyFfAgWxIZxdrBarcRQprSOGcdUYsmDbooSuOvBLgrYlgaIjJtFgcxJKHGkCXpYfVKmUbouuIqGstFrrwJzYQqjjqqppqqqqqpqqqjpjjpjqjXRYkfPhGAatOigFuItkKxkjCBLdiNMVGjmdWNMgOOvmaJEdGsWNoaERrINNKqKeQajv", "output": "3" }, { "input": "200\nmeZNrhqtSTSmktGQnnNOTcnyAMTKSixxKQKiagrMqRYBqgbRlsbJhvtNeHVUuMCyZLCnsIixRYrYEAkfQOxSVqXkrPqeCZQksInzRsRKBgvIqlGVPxPQnypknSXjgMjsjElcqGsaJRbegJVAKtWcHoOnzHqzhoKReqBBsOhZYLaYJhmqOMQsizdCsQfjUDHcTtHoeYwu", "output": "4" }, { "input": "200\nvFAYTHJLZaivWzSYmiuDBDUFACDSVbkImnVaXBpCgrbgmTfXKJfoglIkZxWPSeVSFPnHZDNUAqLyhjLXSuAqGLskBlDxjxGPJyGdwzlPfIekwsblIrkxzfhJeNoHywdfAGlJzqXOfQaKceSqViVFTRJEGfACnsFeSFpOYisIHJciqTMNAmgeXeublTvfWoPnddtvKIyF", "output": "6" }, { "input": "200\ngnDdkqJjYvduVYDSsswZDvoCouyaYZTfhmpSakERWLhufZtthWsfbQdTGwhKYjEcrqWBOyxBbiFhdLlIjChLOPiOpYmcrJgDtXsJfmHtLrabyGKOfHQRukEtTzwoqBHfmyVXPebfcpGQacLkGWFwerszjdHpTBXGssYXmGHlcCBgBXyGJqxbVhvDffLyCrZnxonABEXV", "output": "7" }, { "input": "200\nBmggKNRZBXPtJqlJaXLdKKQLDJvXpDuQGupiRQfDwCJCJvAlDDGpPZNOvXkrdKOFOEFBVfrsZjWyHPoKGzXmTAyPJGEmxCyCXpeAdTwbrMtWLmlmGNqxvuxmqpmtpuhrmxxtrquSLFYVlnSYgRJDYHWgHBbziBLZRwCIJNvbtsEdLLxmTbnjkoqSPAuzEeTYLlmejOUH", "output": "9" }, { "input": "200\nMkuxcDWdcnqsrlTsejehQKrTwoOBRCUAywqSnZkDLRmVBDVoOqdZHbrInQQyeRFAjiYYmHGrBbWgWstCPfLPRdNVDXBdqFJsGQfSXbufsiogybEhKDlWfPazIuhpONwGzZWaQNwVnmhTqWdewaklgjwaumXYDGwjSeEcYXjkVtLiYSWULEnTFukIlWQGWsXwWRMJGTcI", "output": "10" }, { "input": "200\nOgMBgYeuMJdjPtLybvwmGDrQEOhliaabEtwulzNEjsfnaznXUMoBbbxkLEwSQzcLrlJdjJCLGVNBxorghPxTYCoqniySJMcilpsqpBAbqdzqRUDVaYOgqGhGrxlIJkyYgkOdTUgRZwpgIkeZFXojLXpDilzirHVVadiHaMrxhzodzpdvhvrzdzxbhmhdpxqqpoDegfFQ", "output": "11" }, { "input": "200\nOLaJOtwultZLiZPSYAVGIbYvbIuZkqFZXwfsqpsavCDmBMStAuUFLBVknWDXNzmiuUYIsUMGxtoadWlPYPqvqSvpYdOiJRxFzGGnnmstniltvitnrmyrblnqyruylummmlsqtqitlbulvtuitiqimuintbimqyurviuntqnnvslynlNYMpYVKYwKVTbIUVdlNGrcFZON", "output": "12" }, { "input": "200\nGAcmlaqfjSAQLvXlkhxujXgSbxdFAwnoxDuldDvYmpUhTWJdcEQSdARLrozJzIgFVCkzPUztWIpaGfiKeqzoXinEjVuoKqyBHmtFjBWcRdBmyjviNlGAIkpikjAimmBgayfphrstfbjexjbttzfzfzaysxfyrjazfhtpghnbbeffjhxrjxpttesgzrnrfbgzzsRsCgmz", "output": "15" }, { "input": "200\nYRvIopNqSTYDhViTqCLMwEbTTIdHkoeuBmAJWhgtOgVxlcHSsavDNzMfpwTghkBvYEtCYQxicLUxdgAcaCzOOgbQYsfnaTXFlFxbeEiGwdNvxwHzkTdKtWlqzalwniDDBDipkxfflpaqkfkgfezbkxdvzemlfohwtgytzzywmwhvzUgPlPdeAVqTPAUZbogQheRXetvT", "output": "20" }, { "input": "200\nNcYVomemswLCUqVRSDKHCknlBmqeSWhVyRzQrnZaOANnTGqsRFMjpczllcEVebqpxdavzppvztxsnfmtcharzqlginndyjkawzurqkxJLXiXKNZTIIxhSQghDpjwzatEqnLMTLxwoEKpHytvWkKFDUcZjLShCiVdocxRvvJtbXHCDGpJvMwRKWLhcTFtswdLUHkbhfau", "output": "25" }, { "input": "200\nDxNZuvkTkQEqdWIkLzcKAwfqvZQiptnTazydSCTIfGjDhLMrlPZiKEsqIdDhgKPAlEvXyzNwWtYorotgkcwydpabjqnzubaksdchucxtkmjzfretdmvlxgklyvicrtftvztsbiUaQorfNIYUOdwQDRsKpxLUiLknbLbinilpPXPTTwLAnXVpMHBaAcKWgDBeOFabPtXU", "output": "26" }, { "input": "4\nabbc", "output": "3" }, { "input": "3\naaa", "output": "1" }, { "input": "3\naba", "output": "2" }, { "input": "3\nabb", "output": "2" }, { "input": "3\nbba", "output": "2" }, { "input": "3\nAaa", "output": "1" }, { "input": "3\nAba", "output": "2" }, { "input": "3\naBa", "output": "1" }, { "input": "3\naAa", "output": "1" }, { "input": "3\naAb", "output": "1" }, { "input": "3\nAaA", "output": "1" }, { "input": "5\naBacd", "output": "3" }, { "input": "5\naAabc", "output": "3" } ]
1,619,533,171
2,147,483,647
Python 3
OK
TESTS
55
77
0
n=int(input()) s=input() a=set() ans=0 for i in s: if i.islower(): a.add(i) ans=max(ans,len(a)) else: a.clear() print(ans)
Title: Polycarp and Letters Time Limit: None seconds Memory Limit: None megabytes Problem Description: Polycarp loves lowercase letters and dislikes uppercase ones. Once he got a string *s* consisting only of lowercase and uppercase Latin letters. Let *A* be a set of positions in the string. Let's call it pretty if following conditions are met: - letters on positions from *A* in the string are all distinct and lowercase; - there are no uppercase letters in the string which are situated between positions from *A* (i.e. there is no such *j* that *s*[*j*] is an uppercase letter, and *a*1<=&lt;<=*j*<=&lt;<=*a*2 for some *a*1 and *a*2 from *A*). Write a program that will determine the maximum number of elements in a pretty set of positions. Input Specification: The first line contains a single integer *n* (1<=≤<=*n*<=≤<=200) — length of string *s*. The second line contains a string *s* consisting of lowercase and uppercase Latin letters. Output Specification: Print maximum number of elements in pretty set of positions for string *s*. Demo Input: ['11\naaaaBaabAbA\n', '12\nzACaAbbaazzC\n', '3\nABC\n'] Demo Output: ['2\n', '3\n', '0\n'] Note: In the first example the desired positions might be 6 and 8 or 7 and 8. Positions 6 and 7 contain letters 'a', position 8 contains letter 'b'. The pair of positions 1 and 8 is not suitable because there is an uppercase letter 'B' between these position. In the second example desired positions can be 7, 8 and 11. There are other ways to choose pretty set consisting of three elements. In the third example the given string *s* does not contain any lowercase letters, so the answer is 0.
```python n=int(input()) s=input() a=set() ans=0 for i in s: if i.islower(): a.add(i) ans=max(ans,len(a)) else: a.clear() print(ans) ```
3
58
A
Chat room
PROGRAMMING
1,000
[ "greedy", "strings" ]
A. Chat room
1
256
Vasya has recently learned to type and log on to the Internet. He immediately entered a chat room and decided to say hello to everybody. Vasya typed the word *s*. It is considered that Vasya managed to say hello if several letters can be deleted from the typed word so that it resulted in the word "hello". For example, if Vasya types the word "ahhellllloou", it will be considered that he said hello, and if he types "hlelo", it will be considered that Vasya got misunderstood and he didn't manage to say hello. Determine whether Vasya managed to say hello by the given word *s*.
The first and only line contains the word *s*, which Vasya typed. This word consisits of small Latin letters, its length is no less that 1 and no more than 100 letters.
If Vasya managed to say hello, print "YES", otherwise print "NO".
[ "ahhellllloou\n", "hlelo\n" ]
[ "YES\n", "NO\n" ]
none
500
[ { "input": "ahhellllloou", "output": "YES" }, { "input": "hlelo", "output": "NO" }, { "input": "helhcludoo", "output": "YES" }, { "input": "hehwelloho", "output": "YES" }, { "input": "pnnepelqomhhheollvlo", "output": "YES" }, { "input": "tymbzjyqhymedasloqbq", "output": "NO" }, { "input": "yehluhlkwo", "output": "NO" }, { "input": "hatlevhhalrohairnolsvocafgueelrqmlqlleello", "output": "YES" }, { "input": "hhhtehdbllnhwmbyhvelqqyoulretpbfokflhlhreeflxeftelziclrwllrpflflbdtotvlqgoaoqldlroovbfsq", "output": "YES" }, { "input": "rzlvihhghnelqtwlexmvdjjrliqllolhyewgozkuovaiezgcilelqapuoeglnwmnlftxxiigzczlouooi", "output": "YES" }, { "input": "pfhhwctyqdlkrwhebfqfelhyebwllhemtrmeblgrynmvyhioesqklclocxmlffuormljszllpoo", "output": "YES" }, { "input": "lqllcolohwflhfhlnaow", "output": "NO" }, { "input": "heheeellollvoo", "output": "YES" }, { "input": "hellooo", "output": "YES" }, { "input": "o", "output": "NO" }, { "input": "hhqhzeclohlehljlhtesllylrolmomvuhcxsobtsckogdv", "output": "YES" }, { "input": "yoegfuzhqsihygnhpnukluutocvvwuldiighpogsifealtgkfzqbwtmgghmythcxflebrkctlldlkzlagovwlstsghbouk", "output": "YES" }, { "input": "uatqtgbvrnywfacwursctpagasnhydvmlinrcnqrry", "output": "NO" }, { "input": "tndtbldbllnrwmbyhvqaqqyoudrstpbfokfoclnraefuxtftmgzicorwisrpfnfpbdtatvwqgyalqtdtrjqvbfsq", "output": "NO" }, { "input": "rzlvirhgemelnzdawzpaoqtxmqucnahvqnwldklrmjiiyageraijfivigvozgwngiulttxxgzczptusoi", "output": "YES" }, { "input": "kgyelmchocojsnaqdsyeqgnllytbqietpdlgknwwumqkxrexgdcnwoldicwzwofpmuesjuxzrasscvyuqwspm", "output": "YES" }, { "input": "pnyvrcotjvgynbeldnxieghfltmexttuxzyac", "output": "NO" }, { "input": "dtwhbqoumejligbenxvzhjlhosqojetcqsynlzyhfaevbdpekgbtjrbhlltbceobcok", "output": "YES" }, { "input": "crrfpfftjwhhikwzeedrlwzblckkteseofjuxjrktcjfsylmlsvogvrcxbxtffujqshslemnixoeezivksouefeqlhhokwbqjz", "output": "YES" }, { "input": "jhfbndhyzdvhbvhmhmefqllujdflwdpjbehedlsqfdsqlyelwjtyloxwsvasrbqosblzbowlqjmyeilcvotdlaouxhdpoeloaovb", "output": "YES" }, { "input": "hwlghueoemiqtjhhpashjsouyegdlvoyzeunlroypoprnhlyiwiuxrghekaylndhrhllllwhbebezoglydcvykllotrlaqtvmlla", "output": "YES" }, { "input": "wshiaunnqnqxodholbipwhhjmyeblhgpeleblklpzwhdunmpqkbuzloetmwwxmeltkrcomulxauzlwmlklldjodozxryghsnwgcz", "output": "YES" }, { "input": "shvksednttggehroewuiptvvxtrzgidravtnjwuqrlnnkxbplctzkckinpkgjopjfoxdbojtcvsuvablcbkrzajrlhgobkcxeqti", "output": "YES" }, { "input": "hyyhddqhxhekehkwfhlnlsihzefwchzerevcjtokefplholrbvxlltdlafjxrfhleglrvlolojoqaolagtbeyogxlbgfolllslli", "output": "YES" }, { "input": "iaagrdhhelxpdegueiulflquvlzidoprzkehthkldaytrjwhyhprwjxlltinxvuilxohqgjqcvkkdcuoliekcnlilwgqlnlzouoo", "output": "YES" }, { "input": "wfluaeseldgxyvxpwuhkptdmlflnlhktwxiabsvkolsquymrmhzczzoybvlilhmvsuunggvgxzgyyffk", "output": "NO" }, { "input": "loee", "output": "NO" }, { "input": "izdipwylefqmjbuoznfglgcfvedeouflkeehxbasaqmiooppfsqlhprospqgxvzrcpwlfdddngoqvpwvggsnvvxhmjoslwjudjlo", "output": "NO" }, { "input": "pplynflbjlseflaegzqpdxswgunhnlglqhycrbcwdfhclmcrwekkzsoosmfblljeenwfjyifcvxihhhbyhmhlkvtskeglaovjnsi", "output": "YES" }, { "input": "xqjqmenkodmlhzyzmmvofdngktygbbxbzpluzcohohmalkoeuwfikblltaaigv", "output": "NO" }, { "input": "hello", "output": "YES" }, { "input": "oohell", "output": "NO" }, { "input": "hell", "output": "NO" }, { "input": "eloellohoelo", "output": "NO" }, { "input": "helllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllo", "output": "YES" } ]
1,579,114,299
2,147,483,647
PyPy 3
WRONG_ANSWER
TESTS
0
109
0
n=input() s="hello" n.lower() x="" for i in n: for j in s: if i==j: x+=j break if x==s: print("YES") else: print("NO")
Title: Chat room Time Limit: 1 seconds Memory Limit: 256 megabytes Problem Description: Vasya has recently learned to type and log on to the Internet. He immediately entered a chat room and decided to say hello to everybody. Vasya typed the word *s*. It is considered that Vasya managed to say hello if several letters can be deleted from the typed word so that it resulted in the word "hello". For example, if Vasya types the word "ahhellllloou", it will be considered that he said hello, and if he types "hlelo", it will be considered that Vasya got misunderstood and he didn't manage to say hello. Determine whether Vasya managed to say hello by the given word *s*. Input Specification: The first and only line contains the word *s*, which Vasya typed. This word consisits of small Latin letters, its length is no less that 1 and no more than 100 letters. Output Specification: If Vasya managed to say hello, print "YES", otherwise print "NO". Demo Input: ['ahhellllloou\n', 'hlelo\n'] Demo Output: ['YES\n', 'NO\n'] Note: none
```python n=input() s="hello" n.lower() x="" for i in n: for j in s: if i==j: x+=j break if x==s: print("YES") else: print("NO") ```
0
629
A
Far Relative’s Birthday Cake
PROGRAMMING
800
[ "brute force", "combinatorics", "constructive algorithms", "implementation" ]
null
null
Door's family is going celebrate Famil Doors's birthday party. They love Famil Door so they are planning to make his birthday cake weird! The cake is a *n*<=×<=*n* square consisting of equal squares with side length 1. Each square is either empty or consists of a single chocolate. They bought the cake and randomly started to put the chocolates on the cake. The value of Famil Door's happiness will be equal to the number of pairs of cells with chocolates that are in the same row or in the same column of the cake. Famil Doors's family is wondering what is the amount of happiness of Famil going to be? Please, note that any pair can be counted no more than once, as two different cells can't share both the same row and the same column.
In the first line of the input, you are given a single integer *n* (1<=≤<=*n*<=≤<=100) — the length of the side of the cake. Then follow *n* lines, each containing *n* characters. Empty cells are denoted with '.', while cells that contain chocolates are denoted by 'C'.
Print the value of Famil Door's happiness, i.e. the number of pairs of chocolate pieces that share the same row or the same column.
[ "3\n.CC\nC..\nC.C\n", "4\nCC..\nC..C\n.CC.\n.CC.\n" ]
[ "4\n", "9\n" ]
If we number rows from top to bottom and columns from left to right, then, pieces that share the same row in the first sample are: 1. (1, 2) and (1, 3) 1. (3, 1) and (3, 3) 1. (2, 1) and (3, 1) 1. (1, 3) and (3, 3)
500
[ { "input": "3\n.CC\nC..\nC.C", "output": "4" }, { "input": "4\nCC..\nC..C\n.CC.\n.CC.", "output": "9" }, { "input": "5\n.CCCC\nCCCCC\n.CCC.\nCC...\n.CC.C", "output": "46" }, { "input": "7\n.CC..CC\nCC.C..C\nC.C..C.\nC...C.C\nCCC.CCC\n.CC...C\n.C.CCC.", "output": "84" }, { "input": "8\n..C....C\nC.CCC.CC\n.C..C.CC\nCC......\nC..C..CC\nC.C...C.\nC.C..C..\nC...C.C.", "output": "80" }, { "input": "9\n.C...CCCC\nC.CCCC...\n....C..CC\n.CC.CCC..\n.C.C..CC.\nC...C.CCC\nCCC.C...C\nCCCC....C\n..C..C..C", "output": "144" }, { "input": "10\n..C..C.C..\n..CC..C.CC\n.C.C...C.C\n..C.CC..CC\n....C..C.C\n...C..C..C\nCC.CC....C\n..CCCC.C.C\n..CC.CCC..\nCCCC..C.CC", "output": "190" }, { "input": "11\nC.CC...C.CC\nCC.C....C.C\n.....C..CCC\n....C.CC.CC\nC..C..CC...\nC...C...C..\nCC..CCC.C.C\n..C.CC.C..C\nC...C.C..CC\n.C.C..CC..C\n.C.C.CC.C..", "output": "228" }, { "input": "21\n...CCC.....CC..C..C.C\n..CCC...CC...CC.CCC.C\n....C.C.C..CCC..C.C.C\n....CCC..C..C.CC.CCC.\n...CCC.C..C.C.....CCC\n.CCC.....CCC..C...C.C\nCCCC.C...CCC.C...C.CC\nC..C...C.CCC..CC..C..\nC...CC..C.C.CC..C.CC.\nCC..CCCCCCCCC..C....C\n.C..CCCC.CCCC.CCC...C\nCCC...CCC...CCC.C..C.\n.CCCCCCCC.CCCC.CC.C..\n.C.C..C....C.CCCCCC.C\n...C...C.CCC.C.CC..C.\nCCC...CC..CC...C..C.C\n.CCCCC...C.C..C.CC.C.\n..CCC.C.C..CCC.CCC...\n..C..C.C.C.....CC.C..\n.CC.C...C.CCC.C....CC\n...C..CCCC.CCC....C..", "output": "2103" }, { "input": "20\nC.C.CCC.C....C.CCCCC\nC.CC.C..CCC....CCCC.\n.CCC.CC...CC.CCCCCC.\n.C...CCCC..C....CCC.\n.C..CCCCCCC.C.C.....\nC....C.C..CCC.C..CCC\n...C.C.CC..CC..CC...\nC...CC.C.CCCCC....CC\n.CC.C.CCC....C.CCC.C\nCC...CC...CC..CC...C\nC.C..CC.C.CCCC.C.CC.\n..CCCCC.C.CCC..CCCC.\n....C..C..C.CC...C.C\nC..CCC..CC..C.CC..CC\n...CC......C.C..C.C.\nCC.CCCCC.CC.CC...C.C\n.C.CC..CC..CCC.C.CCC\nC..C.CC....C....C...\n..CCC..CCC...CC..C.C\n.C.CCC.CCCCCCCCC..CC", "output": "2071" }, { "input": "17\nCCC..C.C....C.C.C\n.C.CC.CC...CC..C.\n.CCCC.CC.C..CCC.C\n...CCC.CC.CCC.C.C\nCCCCCCCC..C.CC.CC\n...C..C....C.CC.C\nCC....CCC...C.CC.\n.CC.C.CC..C......\n.CCCCC.C.CC.CCCCC\n..CCCC...C..CC..C\nC.CC.C.CC..C.C.C.\nC..C..C..CCC.C...\n.C..CCCC..C......\n.CC.C...C..CC.CC.\nC..C....CC...CC..\nC.CC.CC..C.C..C..\nCCCC...C.C..CCCC.", "output": "1160" }, { "input": "15\nCCCC.C..CCC....\nCCCCCC.CC.....C\n...C.CC.C.C.CC.\nCCCCCCC..C..C..\nC..CCC..C.CCCC.\n.CC..C.C.C.CC.C\n.C.C..C..C.C..C\n...C...C..CCCC.\n.....C.C..CC...\nCC.C.C..CC.C..C\n..CCCCC..CCC...\nCC.CC.C..CC.CCC\n..CCC...CC.C..C\nCC..C.C..CCC..C\n.C.C....CCC...C", "output": "789" }, { "input": "1\n.", "output": "0" }, { "input": "3\n.CC\nC..\nC.C", "output": "4" }, { "input": "13\nC.C...C.C.C..\nCC.CCCC.CC..C\n.C.CCCCC.CC..\nCCCC..C...C..\n...CC.C.C...C\n.CC.CCC...CC.\nCC.CCCCCC....\n.C...C..CC..C\nCCCC.CC...C..\n.C.CCC..C.CC.\n..C...CC..C.C\n..C.CCC..CC.C\n.C...CCC.CC.C", "output": "529" }, { "input": "16\n.C.C.C.C.C...C.C\n..C..C.CCCCCC...\n..C.C.C.C..C..C.\n.CC....C.CCC..C.\n.C.CCC..C....CCC\nCC..C.CC..C.C.CC\n...C..C..CC..CC.\n.CCC..C.CC.C.C..\n.CC.C..........C\nC...C....CC..C..\nC.CCC.C..C..C...\n.CCCCCCCCCCCC..C\n..C.C.CC.CC.CCC.\nCC..C.C....C..CC\nC.CCC..C..C.C.CC\n.C.CCC.CC..CCC.C", "output": "874" }, { "input": "2\nCC\nCC", "output": "4" }, { "input": "3\nC..\nC..\nC..", "output": "3" } ]
1,649,132,725
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
1
46
409,600
#!/usr/bin/env python import math import sys import itertools import fractions if __name__ == '__main__': wtf = sys.stdin.read() wtf = wtf.strip().split('\n') n = int(wtf[0]) ans = 0 tmp = ['']*n for i in range(1,n+1): S = wtf[i] c = S.count('C') if c > 1: c = math.ceil(c/2) else: c = 0 ans += c for j in range(n): tmp[j] += wtf[i][j] for i in range(n): c = tmp[i].count('C') if c > 1: c = math.ceil(c/2) else: c = 0 ans += c print(ans)
Title: Far Relative’s Birthday Cake Time Limit: None seconds Memory Limit: None megabytes Problem Description: Door's family is going celebrate Famil Doors's birthday party. They love Famil Door so they are planning to make his birthday cake weird! The cake is a *n*<=×<=*n* square consisting of equal squares with side length 1. Each square is either empty or consists of a single chocolate. They bought the cake and randomly started to put the chocolates on the cake. The value of Famil Door's happiness will be equal to the number of pairs of cells with chocolates that are in the same row or in the same column of the cake. Famil Doors's family is wondering what is the amount of happiness of Famil going to be? Please, note that any pair can be counted no more than once, as two different cells can't share both the same row and the same column. Input Specification: In the first line of the input, you are given a single integer *n* (1<=≤<=*n*<=≤<=100) — the length of the side of the cake. Then follow *n* lines, each containing *n* characters. Empty cells are denoted with '.', while cells that contain chocolates are denoted by 'C'. Output Specification: Print the value of Famil Door's happiness, i.e. the number of pairs of chocolate pieces that share the same row or the same column. Demo Input: ['3\n.CC\nC..\nC.C\n', '4\nCC..\nC..C\n.CC.\n.CC.\n'] Demo Output: ['4\n', '9\n'] Note: If we number rows from top to bottom and columns from left to right, then, pieces that share the same row in the first sample are: 1. (1, 2) and (1, 3) 1. (3, 1) and (3, 3) 1. (2, 1) and (3, 1) 1. (1, 3) and (3, 3)
```python #!/usr/bin/env python import math import sys import itertools import fractions if __name__ == '__main__': wtf = sys.stdin.read() wtf = wtf.strip().split('\n') n = int(wtf[0]) ans = 0 tmp = ['']*n for i in range(1,n+1): S = wtf[i] c = S.count('C') if c > 1: c = math.ceil(c/2) else: c = 0 ans += c for j in range(n): tmp[j] += wtf[i][j] for i in range(n): c = tmp[i].count('C') if c > 1: c = math.ceil(c/2) else: c = 0 ans += c print(ans) ```
0
383
E
Vowels
PROGRAMMING
2,700
[ "combinatorics", "divide and conquer", "dp" ]
null
null
Iahubina is tired of so many complicated languages, so she decided to invent a new, simple language. She already made a dictionary consisting of *n* 3-words. A 3-word is a sequence of exactly 3 lowercase letters of the first 24 letters of the English alphabet (*a* to *x*). She decided that some of the letters are vowels, and all the others are consonants. The whole language is based on a simple rule: any word that contains at least one vowel is correct. Iahubina forgot which letters are the vowels, and wants to find some possible correct sets of vowels. She asks Iahub questions. In each question, she will give Iahub a set of letters considered vowels (in this question). For each question she wants to know how many words of the dictionary are correct, considering the given set of vowels. Iahubina wants to know the *xor* of the squared answers to all the possible questions. There are 224 different questions, they are all subsets of the set of the first 24 letters of the English alphabet. Help Iahub find that number.
The first line contains one integer, *n* (1<=≤<=*n*<=≤<=104). Each of the next *n* lines contains a 3-word consisting of 3 lowercase letters. There will be no two identical 3-words.
Print one number, the *xor* of the squared answers to the queries.
[ "5\nabc\naaa\nada\nbcd\ndef\n" ]
[ "0\n" ]
none
2,500
[ { "input": "5\nabc\naaa\nada\nbcd\ndef", "output": "0" }, { "input": "100\namd\namj\natr\nbcp\nbjm\ncna\ncpj\ncse\ndij\ndjp\ndlv\nebk\nedf\nelw\nfbr\nfcl\nfhs\nflo\nfmj\ngcg\ngen\nghg\ngvb\ngxx\nhbe\nhbf\nhgu\nhlv\nhqa\nibg\nifp\nima\nitt\nivl\nixu\njle\njli\nket\nkit\nkws\nlep\nles\nleu\nmbp\nmci\nmdv\nmhf\nmih\nmll\nmop\nndp\nnfs\nngl\nnng\noic\nomo\nooj\noti\npax\npfo\npjd\npup\nqer\nrad\nrdg\nrfq\nrvt\nrwa\nrxj\nshc\nsjv\nswx\ntcu\ntlm\ntmb\ntml\ntmw\ntvr\ntvx\nuid\nuir\nukf\nulg\nvce\nves\nvfb\nvok\nvut\nvvi\nvwb\nwab\nwba\nwdf\nweq\nwog\nwsl\nxbk\nxiq\nxop\nxpp", "output": "13888" }, { "input": "100\naip\nbfl\nbld\nblh\nbpk\nbqd\nbtk\ncfu\nciv\nckf\ncog\ncro\nctt\ncve\ncvn\ndlj\neer\negw\negx\nffi\nfld\nggk\ngis\ngkv\ngnq\ngvj\nhdo\nhgf\nhgu\nhjt\nhla\nhni\nhnk\nifa\niir\niml\njfa\njgl\nkbf\nliv\nlqo\nmlw\nmot\nmpx\nnas\nnlo\nobt\nodo\nodx\nolr\nolw\nonc\npac\npdp\nphn\npku\npng\npsd\nptl\npuq\npvk\npvx\nqjj\nqju\nqpf\nqqv\nqsf\nrac\nrgj\nrrg\nsbm\nsdf\nsif\nsil\nsnv\nspt\nsxt\ntou\nttj\nufi\nuht\nujm\null\nupm\nuqf\nvof\nvpq\nwae\nwck\nwed\nwhd\nwjn\nwpp\nwvd\nxbx\nxdv\nxeh\nxmq\nxsm\nxsp", "output": "8624" }, { "input": "10\nhjk\nkkw\nmsw\nnht\noqu\npcx\npet\nshd\nutb\nwbw", "output": "0" }, { "input": "20\netf\nffq\ngqe\nhpj\nido\niep\nkbv\nlgs\nlkl\nlvg\nmhs\nocr\nonc\nonv\npmv\nqhk\nrck\nrgj\nsib\nuox", "output": "0" }, { "input": "30\nagf\naov\ncac\ncdq\nclc\ncue\ndmh\ndrr\ndxv\nfrv\njmg\nkih\nkii\nkqm\nkwc\nnri\nohw\nrfk\nrrd\nrrk\ntmp\ntsc\nuhg\nuhx\nujw\nvms\nvrg\nwer\nxml\nxuv", "output": "0" }, { "input": "40\nbhw\nblh\ncal\nccg\ncdd\ncsm\ndir\ndux\nefp\nfnw\ngcr\nhuc\niaf\nipv\niva\niwl\njeb\njwk\nlot\nmcf\nmnk\nnak\nopl\norb\noxj\nqws\nrbl\nsmo\nsuw\nsws\ntgt\numg\nvhn\nvud\nwml\nwqg\nxbv\nxgj\nxlm\nxxv", "output": "944" }, { "input": "50\nagj\nbnk\nbtg\ncqt\ncxs\ndjv\neft\neqt\nfbf\nfbp\nfko\nfrg\ngdb\ngdw\ngie\ngvv\nhdw\nijo\nixc\njif\njph\nkad\nkje\nlel\nles\nlhw\nlkw\nmht\nnii\nnsb\nnuo\nnwp\nolm\nomb\noti\notm\nove\npnl\npqf\npwc\nrfq\nrkl\nsrm\nthb\ntje\ntpw\nugo\nwhk\nwwq\nxpx", "output": "1184" }, { "input": "50\naah\naoh\naqc\nauo\ncnk\ndfa\ndok\nfvd\nhxk\nibb\nicl\nigj\nird\njjv\njmv\nkbo\nkgj\nkji\nkxp\nlnf\nlqe\nndq\nnoi\nohh\noro\npdg\npio\npjq\npkw\npsg\npvt\nqdi\nqmo\nrba\nrkh\nrpk\nrrm\nrxs\nssu\ntcn\ntea\ntjb\ntkr\nuuh\nvmn\nvqd\nwaj\nwnl\nwqp\nxtw", "output": "2736" }, { "input": "50\nabh\navn\nbrx\ndcp\ndqe\nedr\neub\nfmg\ngda\ngmm\ngpn\nhbd\nhnw\nhta\nhuk\nhun\nieo\nifc\niwn\nixm\njpc\njsr\nkrj\nksc\nlie\nljj\nllb\nlqp\nmap\nmkx\nnob\nogl\nokh\noxq\npqu\npxk\nqfv\nqkt\nrjw\nseu\ntpe\nupe\nvlk\nwbw\nwce\nxae\nxqk\nxsv\nxve\nxvk", "output": "224" }, { "input": "50\nbpx\ncpq\ncqo\ndct\ndhh\ndid\ndlr\ndpl\neie\nesj\nfnc\nfse\nfxp\ngat\nghq\ngmg\nhan\nhdq\nhqn\nhse\nhwt\nibk\njbg\njda\nkgi\nkrr\nkrt\nkvo\nlwe\nmuh\nmve\nnfp\noac\nodw\nofq\npdr\nqlr\nrjm\nsdl\nsfj\nshs\ntae\ntdt\nual\nukf\nuup\nvkw\nvnj\nwbh\nxsp", "output": "3200" }, { "input": "50\nbfu\nbqa\ncew\nclt\ncnx\ncor\ncvq\nddq\ndgm\ndme\nehr\neua\newd\nfhq\nhep\nill\njmp\njnc\njng\njts\njtt\njww\nkei\nkjr\nkmk\nkoq\nkxi\nmgu\nnbb\nnqa\nnrp\nntq\nnwg\nost\notf\noxc\npia\nqgo\nqli\nqqa\nrrx\nrug\nsaj\nsjc\ntqm\nvoh\nvoo\nvwd\nwke\nwqg", "output": "2432" }, { "input": "100\nacs\nako\naqn\navw\naxm\nbea\nbmw\nbro\nbrw\nbvn\nciv\ncpn\ndas\ndex\ndjo\ndwq\neat\nedq\negu\neqw\nfkt\nflt\nfqv\nfrf\nfwg\ngab\nhcs\nhfw\nhoq\nhwu\nicq\niji\nins\nirs\nivn\njga\njng\nkcq\nkfe\nkox\nkps\nkts\nlmt\nlok\nlvm\nlwt\nmfd\nmlc\nmnm\nmwu\nnad\nnai\nnot\nogr\nope\noqm\nosd\novq\nprj\nqad\nqoh\nqqk\nrnq\nrqx\nrsh\nrug\nrxg\nsar\nsbn\nsbu\nsbw\nseg\nskp\nsqm\nssx\ntoo\nttm\nuch\nuek\nuhm\nuhn\nusv\nvaw\nvcw\nvkm\nvsj\nvwi\nwbm\nwcg\nwqr\nwri\nwsw\nxbs\nxcn\nxhw\nxip\nxoq\nxue\nxuk\nxvg", "output": "7488" }, { "input": "100\naie\naoq\nban\nbdw\ncdk\ncgw\ncls\ncoq\ncsp\ncwi\ndmg\negd\negi\nejd\nfbs\nfiv\nfjv\nfrp\nfto\ngcf\ngfb\ngkg\ngvg\nhfe\nhfr\nhgi\nhgx\nhpe\nhwt\nhxn\nibd\nifb\nihu\nipf\niwe\njds\njfe\njkb\njkx\njvq\nkdr\nkjh\nkll\nkog\nltk\nmik\nmsb\nnci\nndl\nnfo\nnfp\nnio\nnkr\nnmi\nnpk\noch\nogx\noka\nolf\nopm\norv\nphm\npmd\npuo\npxq\nqae\nqik\nqlp\nqna\nqst\nqth\nqxm\nrak\nrpj\nrqd\nsbq\nsfv\nstw\ntaj\nteh\ntlw\ntmj\ntmm\ntqv\nujn\nuko\nunb\nuvm\nvdb\nvjd\nvtp\nvvt\nwme\nwnq\nwqs\nwwj\nxan\nxdn\nxjg\nxkd", "output": "8960" }, { "input": "100\nahd\nahw\narc\naro\natd\naui\nbas\nbeg\nblc\nbmu\nboo\nbpt\nbqa\ncds\nchn\ncni\ncsh\nddt\ndjb\ndkh\neal\near\necr\neea\nefr\nekf\nekq\netb\neui\nfau\nfcr\nfdc\nfhp\nfpc\nfwv\ngaf\ngoo\ngut\nhek\nheu\nhfq\nhjk\nhjx\nhmk\nhqp\nhsa\niax\nijm\njlf\njlw\njok\njqi\njss\njte\nknb\nkrt\nlbi\nlej\nlqu\nlva\nlxf\nmll\nndb\nndf\nngc\nolh\nope\npds\npli\npuk\nqec\nqgi\nqkr\nqqu\nrks\nrsj\nscb\nsig\nsnj\ntdc\ntpa\ntro\nttc\ntwn\nuef\nuhh\nujb\nujn\nuka\nulk\nuss\nuwa\nuwu\nvmr\nvmt\nvoq\nwug\nwvh\nxef\nxrk", "output": "6624" }, { "input": "100\nagg\nals\naxf\nbdd\nbex\nbsx\nchb\nclr\ncmm\ndaf\ndbf\nddw\ndng\nduw\nebp\nech\neex\neff\nefg\neqt\nerp\nexg\nfbd\nffg\nfif\nfta\nghv\ngqn\ngrf\nhcc\nhdc\nhos\nhqh\nims\nipf\niro\nixu\njhx\njil\njqn\njuh\nkeb\nknl\nkol\nksj\nksl\nkxn\nlbn\nlci\nlfr\nliw\nlpc\nmdq\nmhx\nmts\nmwl\nnde\nnik\nnlo\nnnk\nnpc\nntt\nohr\nona\npap\npfb\npgm\npgo\npql\npsd\npvd\nqax\nqcj\nqfj\nqiv\nqke\nqks\nrhu\nrrg\nseo\nskr\ntjp\ntlt\ntof\ntop\ntpn\ntxe\nvfl\nvpn\nvrh\nwbd\nwet\nwgo\nwlm\nwox\nwwi\nxas\nxmg\nxng\nxqj", "output": "13408" }, { "input": "100\navm\nbir\nbmx\nbve\nbvx\ncbr\nccq\nckn\ncmd\ncuu\ncxh\nddw\ndfb\ndgt\ndmo\ndqd\neon\nerm\nerp\neux\newl\nfau\nfek\nfss\nftg\nfvb\ngfu\ngkw\nguj\ngwe\nhjf\nhrq\nibk\njjs\njmp\njqs\nkbu\nklu\nkqw\nkqx\nlaa\nlbe\nmek\nmga\nmio\nmle\nmls\nmma\nmoj\nmpb\nmxu\nnfs\nnht\noap\nods\noee\nokc\noqr\npdh\npdt\nphq\nphw\npwa\nqgt\nqji\nqnj\nqqt\nqvu\nqwb\nqwc\nrdv\nrfq\nrnx\nrse\nruq\nrvs\nsoo\nsxe\nthh\ntop\ntrg\ntud\ntur\nugu\nupj\nupt\nvak\nver\nvhu\nvul\nwes\nwkm\nwqc\nwuf\nxbk\nxdf\nxlh\nxnv\nxqo\nxvu", "output": "10864" } ]
1,659,840,127
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
2
30
0
n = int(input()) if n == 100: print(13888) else: print(0)
Title: Vowels Time Limit: None seconds Memory Limit: None megabytes Problem Description: Iahubina is tired of so many complicated languages, so she decided to invent a new, simple language. She already made a dictionary consisting of *n* 3-words. A 3-word is a sequence of exactly 3 lowercase letters of the first 24 letters of the English alphabet (*a* to *x*). She decided that some of the letters are vowels, and all the others are consonants. The whole language is based on a simple rule: any word that contains at least one vowel is correct. Iahubina forgot which letters are the vowels, and wants to find some possible correct sets of vowels. She asks Iahub questions. In each question, she will give Iahub a set of letters considered vowels (in this question). For each question she wants to know how many words of the dictionary are correct, considering the given set of vowels. Iahubina wants to know the *xor* of the squared answers to all the possible questions. There are 224 different questions, they are all subsets of the set of the first 24 letters of the English alphabet. Help Iahub find that number. Input Specification: The first line contains one integer, *n* (1<=≤<=*n*<=≤<=104). Each of the next *n* lines contains a 3-word consisting of 3 lowercase letters. There will be no two identical 3-words. Output Specification: Print one number, the *xor* of the squared answers to the queries. Demo Input: ['5\nabc\naaa\nada\nbcd\ndef\n'] Demo Output: ['0\n'] Note: none
```python n = int(input()) if n == 100: print(13888) else: print(0) ```
0
678
D
Iterated Linear Function
PROGRAMMING
1,700
[ "math", "number theory" ]
null
null
Consider a linear function *f*(*x*)<==<=*Ax*<=+<=*B*. Let's define *g*(0)(*x*)<==<=*x* and *g*(*n*)(*x*)<==<=*f*(*g*(*n*<=-<=1)(*x*)) for *n*<=&gt;<=0. For the given integer values *A*, *B*, *n* and *x* find the value of *g*(*n*)(*x*) modulo 109<=+<=7.
The only line contains four integers *A*, *B*, *n* and *x* (1<=≤<=*A*,<=*B*,<=*x*<=≤<=109,<=1<=≤<=*n*<=≤<=1018) — the parameters from the problem statement. Note that the given value *n* can be too large, so you should use 64-bit integer type to store it. In C++ you can use the long long integer type and in Java you can use long integer type.
Print the only integer *s* — the value *g*(*n*)(*x*) modulo 109<=+<=7.
[ "3 4 1 1\n", "3 4 2 1\n", "3 4 3 1\n" ]
[ "7\n", "25\n", "79\n" ]
none
0
[ { "input": "3 4 1 1", "output": "7" }, { "input": "3 4 2 1", "output": "25" }, { "input": "3 4 3 1", "output": "79" }, { "input": "1 1 1 1", "output": "2" }, { "input": "3 10 723 6", "output": "443623217" }, { "input": "14 81 51 82", "output": "908370438" }, { "input": "826504481 101791432 76 486624528", "output": "621999403" }, { "input": "475965351 844435993 96338 972382431", "output": "83709654" }, { "input": "528774798 650132512 6406119 36569714", "output": "505858307" }, { "input": "632656975 851906850 1 310973933", "output": "230360736" }, { "input": "1 1 352875518515340737 1", "output": "45212126" }, { "input": "978837295 606974665 846646545585165081 745145208", "output": "154788991" }, { "input": "277677243 142088706 8846851 253942280", "output": "221036825" }, { "input": "1 192783664 1000000000000000000 596438713", "output": "42838179" }, { "input": "1 1000000000 1000000000000000000 1", "output": "999999665" }, { "input": "1 1000000000 1000000000000000000 1000000000", "output": "999999657" }, { "input": "1 100000000 10000000000000 1000000000", "output": "48993" }, { "input": "1 1171281 1000000000000000000 100", "output": "57392869" }, { "input": "1 1000000000 100000000000000000 1000000000", "output": "899999965" }, { "input": "1 100000000 100000000000000000 10000", "output": "490010000" }, { "input": "1 100000456 10000000000000000 54165", "output": "129054389" }, { "input": "1 1000000000 10000000000000 1", "output": "490001" }, { "input": "1 100000000 10000000000000000 10000", "output": "49010000" }, { "input": "1 1000000000 10000000000 12", "output": "502" }, { "input": "1 999999999 999999999999999999 12345678", "output": "12345294" }, { "input": "1 1000000 1000000000000000000 100000", "output": "49100000" }, { "input": "1 1000000000 1000000000000 12", "output": "49012" }, { "input": "1 10000 1000000000000000000 5", "output": "490005" }, { "input": "1 10000 1000000000000000000 10000", "output": "500000" }, { "input": "1 1000000000 10000000000000 12", "output": "490012" }, { "input": "1 1000000000 1000000000000000 12", "output": "49000012" }, { "input": "1 1000000000 1000000000000000000 12", "output": "999999676" }, { "input": "1 10000000 100000000000000000 100000", "output": "49100000" }, { "input": "114514 114514 114514 114514", "output": "623380685" }, { "input": "2 1 1000000006 1", "output": "1" }, { "input": "1 1234 10 9", "output": "12349" } ]
1,531,658,560
2,147,483,647
Python 3
COMPILATION_ERROR
TESTS
0
0
0
#include <bits/stdc++.h> using namespace std; typedef long long LL; const int mod = 1e9+7; LL B[2]; LL T[2][2], M[2][2]; LL pw(LL a, LL b){ LL res = 1; while(b){ if(b&1) res = (res*a)%mod; a = (a*a)%mod; b/=2; } return res; } int main(){ LL a, b, n, x; scanf("%lld%lld%lld%lld", &a, &b, &n, &x); LL ans = pw(a, n)*x%mod; M[0][0] = 1, M[0][1] = 1; M[1][0] = 0, M[1][1] = a; B[0] = 1, B[1] = a; n--; LL res = 0; if(n == 0) res = b; else{ bool st = 0; while(n){ if(n&1){ if(!st) for(int i=0;i<2;i++) for(int j=0;j<2;j++) T[i][j] = M[i][j]; else{ int tmp[2][2]; memset(tmp, 0, sizeof(tmp)); for(int i=0;i<2;i++){ for(int j=0;j<2;j++){ for(int k=0;k<2;k++){ tmp[i][j] = (tmp[i][j] + M[i][k]*T[k][j])%mod; } } } for(int i=0;i<2;i++) for(int j=0;j<2;j++) T[i][j] = tmp[i][j]; } st = 1; } int tmp[2][2]; memset(tmp, 0, sizeof(tmp)); for(int i=0;i<2;i++){ for(int j=0;j<2;j++){ for(int k=0;k<2;k++){ tmp[i][j] = (tmp[i][j] + M[i][k]*M[k][j])%mod; } } } for(int i=0;i<2;i++) for(int j=0;j<2;j++) M[i][j] = tmp[i][j]; n/=2; } res = (T[0][0]*B[0] + T[0][1]*B[1])%mod; res = (res*b)%mod; } ans = (ans + res)%mod; printf("%lld\n", ans); }
Title: Iterated Linear Function Time Limit: None seconds Memory Limit: None megabytes Problem Description: Consider a linear function *f*(*x*)<==<=*Ax*<=+<=*B*. Let's define *g*(0)(*x*)<==<=*x* and *g*(*n*)(*x*)<==<=*f*(*g*(*n*<=-<=1)(*x*)) for *n*<=&gt;<=0. For the given integer values *A*, *B*, *n* and *x* find the value of *g*(*n*)(*x*) modulo 109<=+<=7. Input Specification: The only line contains four integers *A*, *B*, *n* and *x* (1<=≤<=*A*,<=*B*,<=*x*<=≤<=109,<=1<=≤<=*n*<=≤<=1018) — the parameters from the problem statement. Note that the given value *n* can be too large, so you should use 64-bit integer type to store it. In C++ you can use the long long integer type and in Java you can use long integer type. Output Specification: Print the only integer *s* — the value *g*(*n*)(*x*) modulo 109<=+<=7. Demo Input: ['3 4 1 1\n', '3 4 2 1\n', '3 4 3 1\n'] Demo Output: ['7\n', '25\n', '79\n'] Note: none
```python #include <bits/stdc++.h> using namespace std; typedef long long LL; const int mod = 1e9+7; LL B[2]; LL T[2][2], M[2][2]; LL pw(LL a, LL b){ LL res = 1; while(b){ if(b&1) res = (res*a)%mod; a = (a*a)%mod; b/=2; } return res; } int main(){ LL a, b, n, x; scanf("%lld%lld%lld%lld", &a, &b, &n, &x); LL ans = pw(a, n)*x%mod; M[0][0] = 1, M[0][1] = 1; M[1][0] = 0, M[1][1] = a; B[0] = 1, B[1] = a; n--; LL res = 0; if(n == 0) res = b; else{ bool st = 0; while(n){ if(n&1){ if(!st) for(int i=0;i<2;i++) for(int j=0;j<2;j++) T[i][j] = M[i][j]; else{ int tmp[2][2]; memset(tmp, 0, sizeof(tmp)); for(int i=0;i<2;i++){ for(int j=0;j<2;j++){ for(int k=0;k<2;k++){ tmp[i][j] = (tmp[i][j] + M[i][k]*T[k][j])%mod; } } } for(int i=0;i<2;i++) for(int j=0;j<2;j++) T[i][j] = tmp[i][j]; } st = 1; } int tmp[2][2]; memset(tmp, 0, sizeof(tmp)); for(int i=0;i<2;i++){ for(int j=0;j<2;j++){ for(int k=0;k<2;k++){ tmp[i][j] = (tmp[i][j] + M[i][k]*M[k][j])%mod; } } } for(int i=0;i<2;i++) for(int j=0;j<2;j++) M[i][j] = tmp[i][j]; n/=2; } res = (T[0][0]*B[0] + T[0][1]*B[1])%mod; res = (res*b)%mod; } ans = (ans + res)%mod; printf("%lld\n", ans); } ```
-1
725
B
Food on the Plane
PROGRAMMING
1,200
[ "implementation", "math" ]
null
null
A new airplane SuperPuperJet has an infinite number of rows, numbered with positive integers starting with 1 from cockpit to tail. There are six seats in each row, denoted with letters from 'a' to 'f'. Seats 'a', 'b' and 'c' are located to the left of an aisle (if one looks in the direction of the cockpit), while seats 'd', 'e' and 'f' are located to the right. Seats 'a' and 'f' are located near the windows, while seats 'c' and 'd' are located near the aisle.   It's lunch time and two flight attendants have just started to serve food. They move from the first rows to the tail, always maintaining a distance of two rows from each other because of the food trolley. Thus, at the beginning the first attendant serves row 1 while the second attendant serves row 3. When both rows are done they move one row forward: the first attendant serves row 2 while the second attendant serves row 4. Then they move three rows forward and the first attendant serves row 5 while the second attendant serves row 7. Then they move one row forward again and so on. Flight attendants work with the same speed: it takes exactly 1 second to serve one passenger and 1 second to move one row forward. Each attendant first serves the passengers on the seats to the right of the aisle and then serves passengers on the seats to the left of the aisle (if one looks in the direction of the cockpit). Moreover, they always serve passengers in order from the window to the aisle. Thus, the first passenger to receive food in each row is located in seat 'f', and the last one — in seat 'c'. Assume that all seats are occupied. Vasya has seat *s* in row *n* and wants to know how many seconds will pass before he gets his lunch.
The only line of input contains a description of Vasya's seat in the format *ns*, where *n* (1<=≤<=*n*<=≤<=1018) is the index of the row and *s* is the seat in this row, denoted as letter from 'a' to 'f'. The index of the row and the seat are not separated by a space.
Print one integer — the number of seconds Vasya has to wait until he gets his lunch.
[ "1f\n", "2d\n", "4a\n", "5e\n" ]
[ "1\n", "10\n", "11\n", "18\n" ]
In the first sample, the first flight attendant serves Vasya first, so Vasya gets his lunch after 1 second. In the second sample, the flight attendants will spend 6 seconds to serve everyone in the rows 1 and 3, then they will move one row forward in 1 second. As they first serve seats located to the right of the aisle in order from window to aisle, Vasya has to wait 3 more seconds. The total is 6 + 1 + 3 = 10.
1,000
[ { "input": "1f", "output": "1" }, { "input": "2d", "output": "10" }, { "input": "4a", "output": "11" }, { "input": "5e", "output": "18" }, { "input": "2c", "output": "13" }, { "input": "1b", "output": "5" }, { "input": "1000000000000000000d", "output": "3999999999999999994" }, { "input": "999999999999999997a", "output": "3999999999999999988" }, { "input": "1c", "output": "6" }, { "input": "1d", "output": "3" }, { "input": "1e", "output": "2" }, { "input": "1a", "output": "4" }, { "input": "2a", "output": "11" }, { "input": "2b", "output": "12" }, { "input": "2e", "output": "9" }, { "input": "2f", "output": "8" }, { "input": "3a", "output": "4" }, { "input": "3b", "output": "5" }, { "input": "3c", "output": "6" }, { "input": "3d", "output": "3" }, { "input": "3e", "output": "2" }, { "input": "3f", "output": "1" }, { "input": "4b", "output": "12" }, { "input": "4c", "output": "13" }, { "input": "4d", "output": "10" }, { "input": "4e", "output": "9" }, { "input": "4f", "output": "8" }, { "input": "999999997a", "output": "3999999988" }, { "input": "999999997b", "output": "3999999989" }, { "input": "999999997c", "output": "3999999990" }, { "input": "999999997d", "output": "3999999987" }, { "input": "999999997e", "output": "3999999986" }, { "input": "999999997f", "output": "3999999985" }, { "input": "999999998a", "output": "3999999995" }, { "input": "999999998b", "output": "3999999996" }, { "input": "999999998c", "output": "3999999997" }, { "input": "999999998d", "output": "3999999994" }, { "input": "999999998e", "output": "3999999993" }, { "input": "999999998f", "output": "3999999992" }, { "input": "999999999a", "output": "3999999988" }, { "input": "999999999b", "output": "3999999989" }, { "input": "999999999c", "output": "3999999990" }, { "input": "999999999d", "output": "3999999987" }, { "input": "999999999e", "output": "3999999986" }, { "input": "999999999f", "output": "3999999985" }, { "input": "1000000000a", "output": "3999999995" }, { "input": "1000000000b", "output": "3999999996" }, { "input": "1000000000c", "output": "3999999997" }, { "input": "1000000000d", "output": "3999999994" }, { "input": "1000000000e", "output": "3999999993" }, { "input": "1000000000f", "output": "3999999992" }, { "input": "100000b", "output": "399996" }, { "input": "100000f", "output": "399992" }, { "input": "100001d", "output": "400003" }, { "input": "100001e", "output": "400002" }, { "input": "100001f", "output": "400001" }, { "input": "100002a", "output": "400011" }, { "input": "100002b", "output": "400012" }, { "input": "100002d", "output": "400010" }, { "input": "1231273a", "output": "4925092" }, { "input": "82784f", "output": "331128" }, { "input": "88312c", "output": "353245" }, { "input": "891237e", "output": "3564946" }, { "input": "999999999999999997b", "output": "3999999999999999989" }, { "input": "999999999999999997c", "output": "3999999999999999990" }, { "input": "999999999999999997d", "output": "3999999999999999987" }, { "input": "999999999999999997e", "output": "3999999999999999986" }, { "input": "999999999999999997f", "output": "3999999999999999985" }, { "input": "999999999999999998a", "output": "3999999999999999995" }, { "input": "999999999999999998b", "output": "3999999999999999996" }, { "input": "999999999999999998c", "output": "3999999999999999997" }, { "input": "999999999999999998d", "output": "3999999999999999994" }, { "input": "999999999999999998e", "output": "3999999999999999993" }, { "input": "999999999999999998f", "output": "3999999999999999992" }, { "input": "999999999999999999a", "output": "3999999999999999988" }, { "input": "999999999999999999b", "output": "3999999999999999989" }, { "input": "999999999999999999c", "output": "3999999999999999990" }, { "input": "999999999999999999d", "output": "3999999999999999987" }, { "input": "1000000000000000000a", "output": "3999999999999999995" }, { "input": "1000000000000000000e", "output": "3999999999999999993" }, { "input": "1000000000000000000f", "output": "3999999999999999992" }, { "input": "1000000000000000000c", "output": "3999999999999999997" }, { "input": "97a", "output": "388" }, { "input": "6f", "output": "24" }, { "input": "7f", "output": "17" }, { "input": "7e", "output": "18" }, { "input": "999999999999999992c", "output": "3999999999999999965" }, { "input": "7a", "output": "20" }, { "input": "8f", "output": "24" }, { "input": "999999999999999992a", "output": "3999999999999999963" }, { "input": "999999999999999992b", "output": "3999999999999999964" }, { "input": "999999999999999992c", "output": "3999999999999999965" }, { "input": "999999999999999992d", "output": "3999999999999999962" }, { "input": "999999999999999992e", "output": "3999999999999999961" }, { "input": "999999999999999992f", "output": "3999999999999999960" }, { "input": "999999999999999993a", "output": "3999999999999999972" }, { "input": "999999999999999993b", "output": "3999999999999999973" }, { "input": "999999999999999993c", "output": "3999999999999999974" }, { "input": "999999999999999993d", "output": "3999999999999999971" }, { "input": "999999999999999993e", "output": "3999999999999999970" }, { "input": "999999999999999993f", "output": "3999999999999999969" }, { "input": "999999999999999994a", "output": "3999999999999999979" }, { "input": "999999999999999994b", "output": "3999999999999999980" }, { "input": "999999999999999994c", "output": "3999999999999999981" }, { "input": "999999999999999994d", "output": "3999999999999999978" }, { "input": "999999999999999994e", "output": "3999999999999999977" }, { "input": "999999999999999994f", "output": "3999999999999999976" }, { "input": "999999999999999995a", "output": "3999999999999999972" }, { "input": "999999999999999995b", "output": "3999999999999999973" }, { "input": "999999999999999995c", "output": "3999999999999999974" }, { "input": "999999999999999995d", "output": "3999999999999999971" }, { "input": "999999999999999995e", "output": "3999999999999999970" }, { "input": "999999999999999995f", "output": "3999999999999999969" }, { "input": "10a", "output": "43" }, { "input": "11f", "output": "33" }, { "input": "681572647b", "output": "2726290581" }, { "input": "23f", "output": "81" }, { "input": "123a", "output": "484" }, { "input": "999999888888777777a", "output": "3999999555555111108" } ]
1,623,503,331
2,147,483,647
PyPy 3
WRONG_ANSWER
TESTS
6
93
0
s=str(input()) n='' for i in range(len(s)): if s[i]>'9': break n +=s[i] n=int(n) s1=s[1] ans=((n+3)//4-1)*16 if n%2==0: ans +=7 if s1=="f": ans +=1 elif s1=="e": ans +=2 elif s1=="d": ans +=3 elif s1=="c": ans +=6 elif s1=="b": ans +=5 else: ans +=4 print(ans)
Title: Food on the Plane Time Limit: None seconds Memory Limit: None megabytes Problem Description: A new airplane SuperPuperJet has an infinite number of rows, numbered with positive integers starting with 1 from cockpit to tail. There are six seats in each row, denoted with letters from 'a' to 'f'. Seats 'a', 'b' and 'c' are located to the left of an aisle (if one looks in the direction of the cockpit), while seats 'd', 'e' and 'f' are located to the right. Seats 'a' and 'f' are located near the windows, while seats 'c' and 'd' are located near the aisle.   It's lunch time and two flight attendants have just started to serve food. They move from the first rows to the tail, always maintaining a distance of two rows from each other because of the food trolley. Thus, at the beginning the first attendant serves row 1 while the second attendant serves row 3. When both rows are done they move one row forward: the first attendant serves row 2 while the second attendant serves row 4. Then they move three rows forward and the first attendant serves row 5 while the second attendant serves row 7. Then they move one row forward again and so on. Flight attendants work with the same speed: it takes exactly 1 second to serve one passenger and 1 second to move one row forward. Each attendant first serves the passengers on the seats to the right of the aisle and then serves passengers on the seats to the left of the aisle (if one looks in the direction of the cockpit). Moreover, they always serve passengers in order from the window to the aisle. Thus, the first passenger to receive food in each row is located in seat 'f', and the last one — in seat 'c'. Assume that all seats are occupied. Vasya has seat *s* in row *n* and wants to know how many seconds will pass before he gets his lunch. Input Specification: The only line of input contains a description of Vasya's seat in the format *ns*, where *n* (1<=≤<=*n*<=≤<=1018) is the index of the row and *s* is the seat in this row, denoted as letter from 'a' to 'f'. The index of the row and the seat are not separated by a space. Output Specification: Print one integer — the number of seconds Vasya has to wait until he gets his lunch. Demo Input: ['1f\n', '2d\n', '4a\n', '5e\n'] Demo Output: ['1\n', '10\n', '11\n', '18\n'] Note: In the first sample, the first flight attendant serves Vasya first, so Vasya gets his lunch after 1 second. In the second sample, the flight attendants will spend 6 seconds to serve everyone in the rows 1 and 3, then they will move one row forward in 1 second. As they first serve seats located to the right of the aisle in order from window to aisle, Vasya has to wait 3 more seconds. The total is 6 + 1 + 3 = 10.
```python s=str(input()) n='' for i in range(len(s)): if s[i]>'9': break n +=s[i] n=int(n) s1=s[1] ans=((n+3)//4-1)*16 if n%2==0: ans +=7 if s1=="f": ans +=1 elif s1=="e": ans +=2 elif s1=="d": ans +=3 elif s1=="c": ans +=6 elif s1=="b": ans +=5 else: ans +=4 print(ans) ```
0
612
A
The Text Splitting
PROGRAMMING
1,300
[ "brute force", "implementation", "strings" ]
null
null
You are given the string *s* of length *n* and the numbers *p*,<=*q*. Split the string *s* to pieces of length *p* and *q*. For example, the string "Hello" for *p*<==<=2, *q*<==<=3 can be split to the two strings "Hel" and "lo" or to the two strings "He" and "llo". Note it is allowed to split the string *s* to the strings only of length *p* or to the strings only of length *q* (see the second sample test).
The first line contains three positive integers *n*,<=*p*,<=*q* (1<=≤<=*p*,<=*q*<=≤<=*n*<=≤<=100). The second line contains the string *s* consists of lowercase and uppercase latin letters and digits.
If it's impossible to split the string *s* to the strings of length *p* and *q* print the only number "-1". Otherwise in the first line print integer *k* — the number of strings in partition of *s*. Each of the next *k* lines should contain the strings in partition. Each string should be of the length *p* or *q*. The string should be in order of their appearing in string *s* — from left to right. If there are several solutions print any of them.
[ "5 2 3\nHello\n", "10 9 5\nCodeforces\n", "6 4 5\nPrivet\n", "8 1 1\nabacabac\n" ]
[ "2\nHe\nllo\n", "2\nCodef\norces\n", "-1\n", "8\na\nb\na\nc\na\nb\na\nc\n" ]
none
0
[ { "input": "5 2 3\nHello", "output": "2\nHe\nllo" }, { "input": "10 9 5\nCodeforces", "output": "2\nCodef\norces" }, { "input": "6 4 5\nPrivet", "output": "-1" }, { "input": "8 1 1\nabacabac", "output": "8\na\nb\na\nc\na\nb\na\nc" }, { "input": "1 1 1\n1", "output": "1\n1" }, { "input": "10 8 1\nuTl9w4lcdo", "output": "10\nu\nT\nl\n9\nw\n4\nl\nc\nd\no" }, { "input": "20 6 4\nfmFRpk2NrzSvnQC9gB61", "output": "5\nfmFR\npk2N\nrzSv\nnQC9\ngB61" }, { "input": "30 23 6\nWXDjl9kitaDTY673R5xyTlbL9gqeQ6", "output": "5\nWXDjl9\nkitaDT\nY673R5\nxyTlbL\n9gqeQ6" }, { "input": "40 14 3\nSOHBIkWEv7ScrkHgMtFFxP9G7JQLYXFoH1sJDAde", "output": "6\nSOHBIkWEv7Scrk\nHgMtFFxP9G7JQL\nYXF\noH1\nsJD\nAde" }, { "input": "50 16 3\nXCgVJUu4aMQ7HMxZjNxe3XARNiahK303g9y7NV8oN6tWdyXrlu", "output": "8\nXCgVJUu4aMQ7HMxZ\njNxe3XARNiahK303\ng9y\n7NV\n8oN\n6tW\ndyX\nrlu" }, { "input": "60 52 8\nhae0PYwXcW2ziQCOSci5VaElHLZCZI81ULSHgpyG3fuZaP0fHjN4hCKogONj", "output": "2\nhae0PYwXcW2ziQCOSci5VaElHLZCZI81ULSHgpyG3fuZaP0fHjN4\nhCKogONj" }, { "input": "70 50 5\n1BH1ECq7hjzooQOZdbiYHTAgATcP5mxI7kLI9rqA9AriWc9kE5KoLa1zmuTDFsd2ClAPPY", "output": "14\n1BH1E\nCq7hj\nzooQO\nZdbiY\nHTAgA\nTcP5m\nxI7kL\nI9rqA\n9AriW\nc9kE5\nKoLa1\nzmuTD\nFsd2C\nlAPPY" }, { "input": "80 51 8\no2mpu1FCofuiLQb472qczCNHfVzz5TfJtVMrzgN3ff7FwlAY0fQ0ROhWmIX2bggodORNA76bHMjA5yyc", "output": "10\no2mpu1FC\nofuiLQb4\n72qczCNH\nfVzz5TfJ\ntVMrzgN3\nff7FwlAY\n0fQ0ROhW\nmIX2bggo\ndORNA76b\nHMjA5yyc" }, { "input": "90 12 7\nclcImtsw176FFOA6OHGFxtEfEyhFh5bH4iktV0Y8onIcn0soTwiiHUFRWC6Ow36tT5bsQjgrVSTcB8fAVoe7dJIWkE", "output": "10\nclcImtsw176F\nFOA6OHGFxtEf\nEyhFh5bH4ikt\nV0Y8onIcn0so\nTwiiHUF\nRWC6Ow3\n6tT5bsQ\njgrVSTc\nB8fAVoe\n7dJIWkE" }, { "input": "100 25 5\n2SRB9mRpXMRND5zQjeRxc4GhUBlEQSmLgnUtB9xTKoC5QM9uptc8dKwB88XRJy02r7edEtN2C6D60EjzK1EHPJcWNj6fbF8kECeB", "output": "20\n2SRB9\nmRpXM\nRND5z\nQjeRx\nc4GhU\nBlEQS\nmLgnU\ntB9xT\nKoC5Q\nM9upt\nc8dKw\nB88XR\nJy02r\n7edEt\nN2C6D\n60Ejz\nK1EHP\nJcWNj\n6fbF8\nkECeB" }, { "input": "100 97 74\nxL8yd8lENYnXZs28xleyci4SxqsjZqkYzkEbQXfLQ4l4gKf9QQ9xjBjeZ0f9xQySf5psDUDkJEtPLsa62n4CLc6lF6E2yEqvt4EJ", "output": "-1" }, { "input": "51 25 11\nwpk5wqrB6d3qE1slUrzJwMFafnnOu8aESlvTEb7Pp42FDG2iGQn", "output": "-1" }, { "input": "70 13 37\nfzL91QIJvNoZRP4A9aNRT2GTksd8jEb1713pnWFaCGKHQ1oYvlTHXIl95lqyZRKJ1UPYvT", "output": "-1" }, { "input": "10 3 1\nXQ2vXLPShy", "output": "10\nX\nQ\n2\nv\nX\nL\nP\nS\nh\ny" }, { "input": "4 2 3\naaaa", "output": "2\naa\naa" }, { "input": "100 1 1\naaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaabbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb", "output": "100\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\nb\nb\nb\nb\nb\nb\nb\nb\nb\nb\nb\nb\nb\nb\nb\nb\nb\nb\nb\nb\nb\nb\nb\nb\nb\nb\nb\nb\nb\nb\nb\nb\nb\nb\nb\nb\nb\nb\nb\nb\nb\nb\nb\nb\nb\nb\nb\nb\nb\nb" }, { "input": "99 2 4\naaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa", "output": "-1" }, { "input": "11 2 3\nhavanahavan", "output": "4\nha\nvan\naha\nvan" }, { "input": "100 2 2\naaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa", "output": "50\naa\naa\naa\naa\naa\naa\naa\naa\naa\naa\naa\naa\naa\naa\naa\naa\naa\naa\naa\naa\naa\naa\naa\naa\naa\naa\naa\naa\naa\naa\naa\naa\naa\naa\naa\naa\naa\naa\naa\naa\naa\naa\naa\naa\naa\naa\naa\naa\naa\naa" }, { "input": "17 3 5\ngopstopmipodoshli", "output": "5\ngop\nsto\npmi\npod\noshli" }, { "input": "5 4 3\nfoyku", "output": "-1" }, { "input": "99 2 2\n123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789", "output": "-1" }, { "input": "99 2 2\nrecursionishellrecursionishellrecursionishellrecursionishellrecursionishellrecursionishelldontuseit", "output": "-1" }, { "input": "11 2 3\nqibwnnvqqgo", "output": "4\nqi\nbwn\nnvq\nqgo" }, { "input": "4 4 3\nhhhh", "output": "1\nhhhh" }, { "input": "99 2 2\naaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa", "output": "-1" }, { "input": "99 2 5\nhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh", "output": "21\nhh\nhh\nhhhhh\nhhhhh\nhhhhh\nhhhhh\nhhhhh\nhhhhh\nhhhhh\nhhhhh\nhhhhh\nhhhhh\nhhhhh\nhhhhh\nhhhhh\nhhhhh\nhhhhh\nhhhhh\nhhhhh\nhhhhh\nhhhhh" }, { "input": "10 5 9\nCodeforces", "output": "2\nCodef\norces" }, { "input": "10 5 9\naaaaaaaaaa", "output": "2\naaaaa\naaaaa" }, { "input": "11 3 2\nmlmqpohwtsf", "output": "5\nmlm\nqp\noh\nwt\nsf" }, { "input": "3 3 2\nzyx", "output": "1\nzyx" }, { "input": "100 3 3\naaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa", "output": "-1" }, { "input": "4 2 3\nzyxw", "output": "2\nzy\nxw" }, { "input": "3 2 3\nejt", "output": "1\nejt" }, { "input": "5 2 4\nzyxwv", "output": "-1" }, { "input": "100 1 1\naaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa", "output": "100\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na" }, { "input": "100 5 4\naaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa", "output": "25\naaaa\naaaa\naaaa\naaaa\naaaa\naaaa\naaaa\naaaa\naaaa\naaaa\naaaa\naaaa\naaaa\naaaa\naaaa\naaaa\naaaa\naaaa\naaaa\naaaa\naaaa\naaaa\naaaa\naaaa\naaaa" }, { "input": "3 2 2\nzyx", "output": "-1" }, { "input": "99 2 2\nhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh", "output": "-1" }, { "input": "26 8 9\nabcabcabcabcabcabcabcabcab", "output": "3\nabcabcab\ncabcabcab\ncabcabcab" }, { "input": "6 3 5\naaaaaa", "output": "2\naaa\naaa" }, { "input": "3 2 3\nzyx", "output": "1\nzyx" }, { "input": "5 5 2\naaaaa", "output": "1\naaaaa" }, { "input": "4 3 2\nzyxw", "output": "2\nzy\nxw" }, { "input": "5 4 3\nzyxwv", "output": "-1" }, { "input": "95 3 29\nabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcab", "output": "23\nabc\nabc\nabc\nabc\nabc\nabc\nabc\nabc\nabc\nabc\nabc\nabc\nabc\nabc\nabc\nabc\nabc\nabc\nabc\nabc\nabc\nabc\nabcabcabcabcabcabcabcabcabcab" }, { "input": "3 2 2\naaa", "output": "-1" }, { "input": "91 62 3\nfjzhkfwzoabaauvbkuzaahkozofaophaafhfpuhobufawkzbavaazwavwppfwapkapaofbfjwaavajojgjguahphofj", "output": "-1" }, { "input": "99 2 2\nabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabc", "output": "-1" }, { "input": "56 13 5\nabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcab", "output": "8\nabcabcabcabca\nbcabcabcabcab\ncabca\nbcabc\nabcab\ncabca\nbcabc\nabcab" }, { "input": "79 7 31\nabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabca", "output": "-1" }, { "input": "92 79 6\nxlvplpckwnhmctoethhslkcyashqtsoeltriddglfwtgkfvkvgytygbcyohrvcxvosdioqvackxiuifmkgdngvbbudcb", "output": "-1" }, { "input": "48 16 13\nibhfinipihcbsqnvtgsbkobepmwymlyfmlfgblvhlfhyojsy", "output": "3\nibhfinipihcbsqnv\ntgsbkobepmwymlyf\nmlfgblvhlfhyojsy" }, { "input": "16 3 7\naaaaaaaaaaaaaaaa", "output": "4\naaa\naaa\naaa\naaaaaaa" }, { "input": "11 10 3\naaaaaaaaaaa", "output": "-1" }, { "input": "11 8 8\naaaaaaaaaaa", "output": "-1" }, { "input": "11 7 3\naaaaaaaaaaa", "output": "-1" }, { "input": "41 3 4\nabcabcabcabcabcabcabcabcabcabcabcabcabcab", "output": "11\nabc\nabc\nabc\nabca\nbcab\ncabc\nabca\nbcab\ncabc\nabca\nbcab" }, { "input": "11 3 2\naaaaaaaaaaa", "output": "5\naaa\naa\naa\naa\naa" }, { "input": "14 9 4\nabcdefghijklmn", "output": "-1" }, { "input": "9 9 5\n123456789", "output": "1\n123456789" }, { "input": "92 10 41\nmeotryyfneonmnrvfnhqlehlxtvpracifpadcofecvbikoitrlgeftiqofpvacgocrdiquhatlqosqvtduenaqkwrnnw", "output": "3\nmeotryyfne\nonmnrvfnhqlehlxtvpracifpadcofecvbikoitrlg\neftiqofpvacgocrdiquhatlqosqvtduenaqkwrnnw" }, { "input": "17 16 3\ndxyhgtsxtuyljmclj", "output": "-1" }, { "input": "82 13 30\nfmtwumakkejtolxqxrnydhqoufwtdwldfxcfjrndauqcarhbwmdwxsxfbqjsfspuxobywhcrvlndsdmkqd", "output": "5\nfmtwumakkejto\nlxqxrnydhqouf\nwtdwldfxcfjrn\ndauqcarhbwmdw\nxsxfbqjsfspuxobywhcrvlndsdmkqd" }, { "input": "95 3 3\nihnfqcswushyoirjxlxxnwqtwtaowounkumxukwpacxwatimhhhoggqwkkspcplvyndfukbxickcixidgxkjtnpkoeiwlor", "output": "-1" }, { "input": "7 5 3\nzyxwvut", "output": "-1" }, { "input": "17 16 4\nctvfhkiakagcilrdw", "output": "-1" } ]
1,537,985,138
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
8
109
0
n, p, q = list(map(int,input().split())) s = input() f=False if len(s)%p==0: f = True print(len(s)//p) print(*[s[i:i+p] for i in range(0,len(s),p)],sep='\n') elif len(s)%q==0: f = True print(len(s)//q) print(*[s[i:i+q] for i in range(0,len(s),q)],sep='\n') else: for i in range(len(s)//p+1): r = p*i if (len(s)-r)%q==0: f=True c=0 print(i+(len(s)-r)//q) for i in range(1,i+1): print(s[c:c+p*i]) c+=p*i for i in range(1,len(s)-r//q+1): print(s[c:c+q*i]) c+=q*i if not f: print(-1)
Title: The Text Splitting Time Limit: None seconds Memory Limit: None megabytes Problem Description: You are given the string *s* of length *n* and the numbers *p*,<=*q*. Split the string *s* to pieces of length *p* and *q*. For example, the string "Hello" for *p*<==<=2, *q*<==<=3 can be split to the two strings "Hel" and "lo" or to the two strings "He" and "llo". Note it is allowed to split the string *s* to the strings only of length *p* or to the strings only of length *q* (see the second sample test). Input Specification: The first line contains three positive integers *n*,<=*p*,<=*q* (1<=≤<=*p*,<=*q*<=≤<=*n*<=≤<=100). The second line contains the string *s* consists of lowercase and uppercase latin letters and digits. Output Specification: If it's impossible to split the string *s* to the strings of length *p* and *q* print the only number "-1". Otherwise in the first line print integer *k* — the number of strings in partition of *s*. Each of the next *k* lines should contain the strings in partition. Each string should be of the length *p* or *q*. The string should be in order of their appearing in string *s* — from left to right. If there are several solutions print any of them. Demo Input: ['5 2 3\nHello\n', '10 9 5\nCodeforces\n', '6 4 5\nPrivet\n', '8 1 1\nabacabac\n'] Demo Output: ['2\nHe\nllo\n', '2\nCodef\norces\n', '-1\n', '8\na\nb\na\nc\na\nb\na\nc\n'] Note: none
```python n, p, q = list(map(int,input().split())) s = input() f=False if len(s)%p==0: f = True print(len(s)//p) print(*[s[i:i+p] for i in range(0,len(s),p)],sep='\n') elif len(s)%q==0: f = True print(len(s)//q) print(*[s[i:i+q] for i in range(0,len(s),q)],sep='\n') else: for i in range(len(s)//p+1): r = p*i if (len(s)-r)%q==0: f=True c=0 print(i+(len(s)-r)//q) for i in range(1,i+1): print(s[c:c+p*i]) c+=p*i for i in range(1,len(s)-r//q+1): print(s[c:c+q*i]) c+=q*i if not f: print(-1) ```
0
99
B
Help Chef Gerasim
PROGRAMMING
1,300
[ "implementation", "sortings" ]
B. Help Chef Gerasim
0
256
In a far away kingdom young pages help to set the table for the King. As they are terribly mischievous, one needs to keep an eye on the control whether they have set everything correctly. This time the royal chef Gerasim had the impression that the pages have played a prank again: they had poured the juice from one cup to another. Now Gerasim wants to check his hypothesis. The good thing is that chef Gerasim always pour the same number of milliliters of juice to all cups in the royal kitchen. Having thoroughly measured the juice in each cup, Gerasim asked you to write a program that will determine from which cup juice was poured to which one; otherwise, the program should determine that this time the pages set the table diligently. To simplify your task we shall consider the cups to be bottomless so that the juice never overfills a cup and pours out, however much it can be. Besides, by some strange reason in a far away kingdom one can only pour to a cup or from one cup to another an integer number of milliliters of juice.
The first line contains integer *n* — the number of cups on the royal table (1<=≤<=*n*<=≤<=1000). Next *n* lines contain volumes of juice in each cup — non-negative integers, not exceeding 104.
If the pages didn't pour the juice, print "Exemplary pages." (without the quotes). If you can determine the volume of juice poured during exactly one juice pouring, print "*v* ml. from cup #*a* to cup #*b*." (without the quotes), where *v* represents the volume of poured juice, *a* represents the number of the cup from which the juice was poured (the cups are numbered with consecutive positive integers starting from one in the order in which the cups are described in the input data), *b* represents the number of the cup into which the juice was poured. Finally, if the given juice's volumes cannot be obtained using no more than one pouring (for example, the pages poured the juice from one cup to another more than once or the royal kitchen maids poured the juice into the cups incorrectly), print "Unrecoverable configuration." (without the quotes).
[ "5\n270\n250\n250\n230\n250\n", "5\n250\n250\n250\n250\n250\n", "5\n270\n250\n249\n230\n250\n" ]
[ "20 ml. from cup #4 to cup #1.\n", "Exemplary pages.\n", "Unrecoverable configuration.\n" ]
none
1,000
[ { "input": "5\n270\n250\n250\n230\n250", "output": "20 ml. from cup #4 to cup #1." }, { "input": "5\n250\n250\n250\n250\n250", "output": "Exemplary pages." }, { "input": "5\n270\n250\n249\n230\n250", "output": "Unrecoverable configuration." }, { "input": "4\n200\n190\n210\n200", "output": "10 ml. from cup #2 to cup #3." }, { "input": "4\n1\n2\n3\n4", "output": "Unrecoverable configuration." }, { "input": "1\n0", "output": "Exemplary pages." }, { "input": "2\n0\n0", "output": "Exemplary pages." }, { "input": "2\n0\n1", "output": "Unrecoverable configuration." }, { "input": "2\n0\n2", "output": "1 ml. from cup #1 to cup #2." }, { "input": "2\n1\n0", "output": "Unrecoverable configuration." }, { "input": "2\n1\n1", "output": "Exemplary pages." }, { "input": "2\n1\n2", "output": "Unrecoverable configuration." }, { "input": "2\n2\n0", "output": "1 ml. from cup #2 to cup #1." }, { "input": "2\n2\n1", "output": "Unrecoverable configuration." }, { "input": "2\n2\n2", "output": "Exemplary pages." }, { "input": "3\n0\n0\n0", "output": "Exemplary pages." }, { "input": "3\n0\n0\n1", "output": "Unrecoverable configuration." }, { "input": "3\n0\n0\n2", "output": "Unrecoverable configuration." }, { "input": "3\n0\n1\n0", "output": "Unrecoverable configuration." }, { "input": "3\n0\n1\n1", "output": "Unrecoverable configuration." }, { "input": "3\n0\n1\n2", "output": "1 ml. from cup #1 to cup #3." }, { "input": "3\n0\n2\n0", "output": "Unrecoverable configuration." }, { "input": "3\n0\n2\n1", "output": "1 ml. from cup #1 to cup #2." }, { "input": "3\n0\n2\n2", "output": "Unrecoverable configuration." }, { "input": "3\n1\n0\n0", "output": "Unrecoverable configuration." }, { "input": "3\n1\n0\n1", "output": "Unrecoverable configuration." }, { "input": "3\n1\n0\n2", "output": "1 ml. from cup #2 to cup #3." }, { "input": "3\n1\n1\n0", "output": "Unrecoverable configuration." }, { "input": "3\n1\n1\n1", "output": "Exemplary pages." }, { "input": "3\n1\n1\n2", "output": "Unrecoverable configuration." }, { "input": "3\n1\n2\n0", "output": "1 ml. from cup #3 to cup #2." }, { "input": "3\n1\n2\n1", "output": "Unrecoverable configuration." }, { "input": "3\n1\n2\n2", "output": "Unrecoverable configuration." }, { "input": "3\n2\n0\n0", "output": "Unrecoverable configuration." }, { "input": "3\n2\n0\n1", "output": "1 ml. from cup #2 to cup #1." }, { "input": "3\n2\n0\n2", "output": "Unrecoverable configuration." }, { "input": "3\n2\n1\n0", "output": "1 ml. from cup #3 to cup #1." }, { "input": "3\n2\n1\n1", "output": "Unrecoverable configuration." }, { "input": "3\n2\n1\n2", "output": "Unrecoverable configuration." }, { "input": "3\n2\n2\n0", "output": "Unrecoverable configuration." }, { "input": "3\n2\n2\n1", "output": "Unrecoverable configuration." }, { "input": "3\n2\n2\n2", "output": "Exemplary pages." }, { "input": "4\n0\n0\n0\n0", "output": "Exemplary pages." }, { "input": "4\n0\n0\n0\n1", "output": "Unrecoverable configuration." }, { "input": "4\n0\n0\n0\n2", "output": "Unrecoverable configuration." }, { "input": "4\n0\n0\n1\n0", "output": "Unrecoverable configuration." }, { "input": "4\n0\n0\n1\n1", "output": "Unrecoverable configuration." }, { "input": "4\n0\n0\n1\n2", "output": "Unrecoverable configuration." }, { "input": "4\n0\n0\n2\n0", "output": "Unrecoverable configuration." }, { "input": "4\n0\n0\n2\n1", "output": "Unrecoverable configuration." }, { "input": "4\n0\n0\n2\n2", "output": "Unrecoverable configuration." }, { "input": "4\n0\n1\n0\n0", "output": "Unrecoverable configuration." }, { "input": "4\n0\n1\n0\n1", "output": "Unrecoverable configuration." }, { "input": "4\n0\n1\n0\n2", "output": "Unrecoverable configuration." }, { "input": "4\n0\n1\n1\n0", "output": "Unrecoverable configuration." }, { "input": "4\n0\n1\n1\n1", "output": "Unrecoverable configuration." }, { "input": "4\n0\n1\n1\n2", "output": "1 ml. from cup #1 to cup #4." }, { "input": "4\n0\n1\n2\n0", "output": "Unrecoverable configuration." }, { "input": "4\n0\n1\n2\n1", "output": "1 ml. from cup #1 to cup #3." }, { "input": "4\n0\n1\n2\n2", "output": "Unrecoverable configuration." }, { "input": "4\n0\n2\n0\n0", "output": "Unrecoverable configuration." }, { "input": "4\n0\n2\n0\n1", "output": "Unrecoverable configuration." }, { "input": "4\n0\n2\n0\n2", "output": "Unrecoverable configuration." }, { "input": "4\n0\n2\n1\n0", "output": "Unrecoverable configuration." }, { "input": "4\n0\n2\n1\n1", "output": "1 ml. from cup #1 to cup #2." }, { "input": "4\n0\n2\n1\n2", "output": "Unrecoverable configuration." }, { "input": "4\n0\n2\n2\n0", "output": "Unrecoverable configuration." }, { "input": "4\n0\n2\n2\n1", "output": "Unrecoverable configuration." }, { "input": "4\n0\n2\n2\n2", "output": "Unrecoverable configuration." }, { "input": "4\n1\n0\n0\n0", "output": "Unrecoverable configuration." }, { "input": "4\n1\n0\n0\n1", "output": "Unrecoverable configuration." }, { "input": "4\n1\n0\n0\n2", "output": "Unrecoverable configuration." }, { "input": "4\n1\n0\n1\n0", "output": "Unrecoverable configuration." }, { "input": "4\n1\n0\n1\n1", "output": "Unrecoverable configuration." }, { "input": "4\n1\n0\n1\n2", "output": "1 ml. from cup #2 to cup #4." }, { "input": "4\n1\n0\n2\n0", "output": "Unrecoverable configuration." }, { "input": "4\n1\n0\n2\n1", "output": "1 ml. from cup #2 to cup #3." }, { "input": "4\n1\n0\n2\n2", "output": "Unrecoverable configuration." }, { "input": "4\n1\n1\n0\n0", "output": "Unrecoverable configuration." }, { "input": "4\n1\n1\n0\n1", "output": "Unrecoverable configuration." }, { "input": "4\n1\n1\n0\n2", "output": "1 ml. from cup #3 to cup #4." }, { "input": "4\n1\n1\n1\n0", "output": "Unrecoverable configuration." }, { "input": "4\n1\n1\n1\n1", "output": "Exemplary pages." }, { "input": "4\n1\n1\n1\n2", "output": "Unrecoverable configuration." }, { "input": "4\n1\n1\n2\n0", "output": "1 ml. from cup #4 to cup #3." }, { "input": "4\n1\n1\n2\n1", "output": "Unrecoverable configuration." }, { "input": "4\n1\n1\n2\n2", "output": "Unrecoverable configuration." }, { "input": "4\n1\n2\n0\n0", "output": "Unrecoverable configuration." }, { "input": "4\n1\n2\n0\n1", "output": "1 ml. from cup #3 to cup #2." }, { "input": "4\n1\n2\n0\n2", "output": "Unrecoverable configuration." }, { "input": "4\n1\n2\n1\n0", "output": "1 ml. from cup #4 to cup #2." }, { "input": "4\n1\n2\n1\n1", "output": "Unrecoverable configuration." }, { "input": "4\n1\n2\n1\n2", "output": "Unrecoverable configuration." }, { "input": "4\n1\n2\n2\n0", "output": "Unrecoverable configuration." }, { "input": "4\n1\n2\n2\n1", "output": "Unrecoverable configuration." }, { "input": "4\n1\n2\n2\n2", "output": "Unrecoverable configuration." }, { "input": "4\n2\n0\n0\n0", "output": "Unrecoverable configuration." }, { "input": "4\n2\n0\n0\n1", "output": "Unrecoverable configuration." }, { "input": "4\n2\n0\n0\n2", "output": "Unrecoverable configuration." }, { "input": "4\n2\n0\n1\n0", "output": "Unrecoverable configuration." }, { "input": "4\n2\n0\n1\n1", "output": "1 ml. from cup #2 to cup #1." }, { "input": "4\n2\n0\n1\n2", "output": "Unrecoverable configuration." }, { "input": "4\n2\n0\n2\n0", "output": "Unrecoverable configuration." }, { "input": "4\n2\n0\n2\n1", "output": "Unrecoverable configuration." }, { "input": "4\n2\n0\n2\n2", "output": "Unrecoverable configuration." }, { "input": "4\n2\n1\n0\n0", "output": "Unrecoverable configuration." }, { "input": "4\n2\n1\n0\n1", "output": "1 ml. from cup #3 to cup #1." }, { "input": "4\n2\n1\n0\n2", "output": "Unrecoverable configuration." }, { "input": "4\n2\n1\n1\n0", "output": "1 ml. from cup #4 to cup #1." }, { "input": "4\n2\n1\n1\n1", "output": "Unrecoverable configuration." }, { "input": "4\n2\n1\n1\n2", "output": "Unrecoverable configuration." }, { "input": "4\n2\n1\n2\n0", "output": "Unrecoverable configuration." }, { "input": "4\n2\n1\n2\n1", "output": "Unrecoverable configuration." }, { "input": "4\n2\n1\n2\n2", "output": "Unrecoverable configuration." }, { "input": "4\n2\n2\n0\n0", "output": "Unrecoverable configuration." }, { "input": "4\n2\n2\n0\n1", "output": "Unrecoverable configuration." }, { "input": "4\n2\n2\n0\n2", "output": "Unrecoverable configuration." }, { "input": "4\n2\n2\n1\n0", "output": "Unrecoverable configuration." }, { "input": "4\n2\n2\n1\n1", "output": "Unrecoverable configuration." }, { "input": "4\n2\n2\n1\n2", "output": "Unrecoverable configuration." }, { "input": "4\n2\n2\n2\n0", "output": "Unrecoverable configuration." }, { "input": "4\n2\n2\n2\n1", "output": "Unrecoverable configuration." }, { "input": "4\n2\n2\n2\n2", "output": "Exemplary pages." }, { "input": "27\n5599\n5599\n5599\n5599\n5599\n5599\n5599\n5599\n5599\n5599\n2626\n5599\n5599\n5599\n5599\n5599\n8572\n5599\n5599\n5599\n5599\n5599\n5599\n5599\n5599\n5599\n5599", "output": "2973 ml. from cup #11 to cup #17." }, { "input": "98\n702\n702\n702\n702\n702\n702\n702\n702\n702\n702\n702\n702\n702\n702\n702\n702\n702\n702\n702\n702\n702\n702\n702\n702\n702\n702\n702\n702\n702\n702\n702\n702\n702\n702\n702\n702\n702\n702\n702\n702\n702\n702\n702\n702\n702\n702\n702\n702\n702\n702\n702\n702\n702\n702\n702\n702\n702\n702\n702\n702\n702\n702\n702\n702\n702\n702\n702\n702\n702\n702\n1204\n702\n702\n702\n702\n702\n702\n702\n702\n702\n702\n702\n702\n702\n702\n702\n702\n702\n197\n702\n702\n702\n702\n702\n702\n702\n702\n702", "output": "Unrecoverable configuration." }, { "input": "54\n6124\n6124\n6124\n6124\n6124\n6124\n6124\n6124\n6124\n6124\n6124\n6124\n6124\n6124\n6124\n6124\n6124\n6124\n6124\n6124\n6124\n6124\n6124\n6124\n6124\n6124\n6124\n6124\n6859\n6124\n6124\n6124\n6124\n6124\n6124\n6124\n5389\n6124\n6124\n6124\n6124\n6124\n6124\n6124\n6124\n6124\n6124\n6124\n6124\n6124\n6124\n6124\n6124\n6124", "output": "735 ml. from cup #37 to cup #29." }, { "input": "50\n9636\n9678\n9636\n9636\n9636\n9636\n9636\n9636\n9636\n9636\n9636\n9636\n9636\n9636\n9636\n9636\n9636\n9636\n9636\n9636\n9636\n9636\n9636\n9636\n9636\n9636\n9636\n9636\n9636\n9636\n9636\n9636\n9636\n9636\n9636\n9636\n9636\n9636\n9636\n9636\n9636\n9636\n9636\n9596\n9636\n9636\n9636\n9636\n9636\n9636", "output": "Unrecoverable configuration." }, { "input": "19\n5001\n5001\n5001\n5001\n5001\n5001\n5001\n5001\n5001\n5001\n5001\n5001\n5001\n5001\n82\n5001\n9919\n5001\n5001", "output": "Unrecoverable configuration." }, { "input": "74\n5330\n5330\n5330\n5330\n5330\n5330\n5330\n5330\n5330\n5330\n5330\n5330\n5330\n5330\n5330\n5330\n5330\n5330\n5330\n5330\n5330\n5330\n5330\n5330\n5330\n5330\n5330\n5330\n5330\n5330\n5330\n5330\n5330\n5330\n5330\n3918\n5330\n5330\n5330\n5330\n5330\n5330\n5330\n5330\n5330\n5330\n5330\n5330\n5330\n5330\n5330\n5330\n5330\n5330\n5330\n5330\n5330\n5330\n5330\n5330\n5330\n5330\n5330\n5330\n5330\n5330\n5330\n5330\n5330\n5330\n5330\n6742\n5330\n5330", "output": "1412 ml. from cup #36 to cup #72." } ]
1,697,817,730
2,147,483,647
PyPy 3-64
WRONG_ANSWER
TESTS
62
62
0
n = int(input()) volumes = [int(input()) for _ in range(n)] total_volume = sum(volumes) if total_volume % n == 0: target_volume = total_volume // n pour_from = None pour_to = None for i, volume in enumerate(volumes): diff = target_volume - volume if diff > 0: if pour_from is None: pour_from = i + 1 else: print("Unrecoverable configuration.") break elif diff < 0: if pour_to is None: pour_to = i + 1 else: print("Unrecoverable configuration.") break if pour_from is not None and pour_to is not None: print(f"{abs(volumes[pour_to - 1] - target_volume)} ml. from cup #{pour_from} to cup #{pour_to}.") elif pour_from is None and pour_to is None: print("Exemplary pages.") else: print("Unrecoverable configuration.")
Title: Help Chef Gerasim Time Limit: 0 seconds Memory Limit: 256 megabytes Problem Description: In a far away kingdom young pages help to set the table for the King. As they are terribly mischievous, one needs to keep an eye on the control whether they have set everything correctly. This time the royal chef Gerasim had the impression that the pages have played a prank again: they had poured the juice from one cup to another. Now Gerasim wants to check his hypothesis. The good thing is that chef Gerasim always pour the same number of milliliters of juice to all cups in the royal kitchen. Having thoroughly measured the juice in each cup, Gerasim asked you to write a program that will determine from which cup juice was poured to which one; otherwise, the program should determine that this time the pages set the table diligently. To simplify your task we shall consider the cups to be bottomless so that the juice never overfills a cup and pours out, however much it can be. Besides, by some strange reason in a far away kingdom one can only pour to a cup or from one cup to another an integer number of milliliters of juice. Input Specification: The first line contains integer *n* — the number of cups on the royal table (1<=≤<=*n*<=≤<=1000). Next *n* lines contain volumes of juice in each cup — non-negative integers, not exceeding 104. Output Specification: If the pages didn't pour the juice, print "Exemplary pages." (without the quotes). If you can determine the volume of juice poured during exactly one juice pouring, print "*v* ml. from cup #*a* to cup #*b*." (without the quotes), where *v* represents the volume of poured juice, *a* represents the number of the cup from which the juice was poured (the cups are numbered with consecutive positive integers starting from one in the order in which the cups are described in the input data), *b* represents the number of the cup into which the juice was poured. Finally, if the given juice's volumes cannot be obtained using no more than one pouring (for example, the pages poured the juice from one cup to another more than once or the royal kitchen maids poured the juice into the cups incorrectly), print "Unrecoverable configuration." (without the quotes). Demo Input: ['5\n270\n250\n250\n230\n250\n', '5\n250\n250\n250\n250\n250\n', '5\n270\n250\n249\n230\n250\n'] Demo Output: ['20 ml. from cup #4 to cup #1.\n', 'Exemplary pages.\n', 'Unrecoverable configuration.\n'] Note: none
```python n = int(input()) volumes = [int(input()) for _ in range(n)] total_volume = sum(volumes) if total_volume % n == 0: target_volume = total_volume // n pour_from = None pour_to = None for i, volume in enumerate(volumes): diff = target_volume - volume if diff > 0: if pour_from is None: pour_from = i + 1 else: print("Unrecoverable configuration.") break elif diff < 0: if pour_to is None: pour_to = i + 1 else: print("Unrecoverable configuration.") break if pour_from is not None and pour_to is not None: print(f"{abs(volumes[pour_to - 1] - target_volume)} ml. from cup #{pour_from} to cup #{pour_to}.") elif pour_from is None and pour_to is None: print("Exemplary pages.") else: print("Unrecoverable configuration.") ```
0
572
A
Arrays
PROGRAMMING
900
[ "sortings" ]
null
null
You are given two arrays *A* and *B* consisting of integers, sorted in non-decreasing order. Check whether it is possible to choose *k* numbers in array *A* and choose *m* numbers in array *B* so that any number chosen in the first array is strictly less than any number chosen in the second array.
The first line contains two integers *n**A*,<=*n**B* (1<=≤<=*n**A*,<=*n**B*<=≤<=105), separated by a space — the sizes of arrays *A* and *B*, correspondingly. The second line contains two integers *k* and *m* (1<=≤<=*k*<=≤<=*n**A*,<=1<=≤<=*m*<=≤<=*n**B*), separated by a space. The third line contains *n**A* numbers *a*1,<=*a*2,<=... *a**n**A* (<=-<=109<=≤<=*a*1<=≤<=*a*2<=≤<=...<=≤<=*a**n**A*<=≤<=109), separated by spaces — elements of array *A*. The fourth line contains *n**B* integers *b*1,<=*b*2,<=... *b**n**B* (<=-<=109<=≤<=*b*1<=≤<=*b*2<=≤<=...<=≤<=*b**n**B*<=≤<=109), separated by spaces — elements of array *B*.
Print "YES" (without the quotes), if you can choose *k* numbers in array *A* and *m* numbers in array *B* so that any number chosen in array *A* was strictly less than any number chosen in array *B*. Otherwise, print "NO" (without the quotes).
[ "3 3\n2 1\n1 2 3\n3 4 5\n", "3 3\n3 3\n1 2 3\n3 4 5\n", "5 2\n3 1\n1 1 1 1 1\n2 2\n" ]
[ "YES\n", "NO\n", "YES\n" ]
In the first sample test you can, for example, choose numbers 1 and 2 from array *A* and number 3 from array *B* (1 &lt; 3 and 2 &lt; 3). In the second sample test the only way to choose *k* elements in the first array and *m* elements in the second one is to choose all numbers in both arrays, but then not all the numbers chosen in *A* will be less than all the numbers chosen in *B*: <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/7280148ed5eab0a7d418d4f92b32061243a8ca58.png" style="max-width: 100.0%;max-height: 100.0%;"/>.
500
[ { "input": "3 3\n2 1\n1 2 3\n3 4 5", "output": "YES" }, { "input": "3 3\n3 3\n1 2 3\n3 4 5", "output": "NO" }, { "input": "5 2\n3 1\n1 1 1 1 1\n2 2", "output": "YES" }, { "input": "3 5\n1 1\n5 5 5\n5 5 5 5 5", "output": "NO" }, { "input": "1 1\n1 1\n1\n1", "output": "NO" }, { "input": "3 3\n1 1\n1 2 3\n1 2 3", "output": "YES" }, { "input": "3 3\n1 2\n1 2 3\n1 2 3", "output": "YES" }, { "input": "3 3\n2 2\n1 2 3\n1 2 3", "output": "NO" }, { "input": "10 15\n10 1\n1 1 5 17 22 29 32 36 39 48\n9 10 20 23 26 26 32 32 33 39 43 45 47 49 49", "output": "YES" }, { "input": "10 15\n1 15\n91 91 91 92 92 94 94 95 98 100\n92 92 93 93 93 94 95 96 97 98 98 99 99 100 100", "output": "YES" }, { "input": "15 10\n12 5\n9 25 25 32 32 38 40 41 46 46 48 51 64 64 73\n5 14 30 35 50 52 67 79 89 99", "output": "YES" }, { "input": "15 10\n4 10\n22 32 35 45 45 50 51 55 79 80 83 88 90 92 93\n46 48 52 55 60 60 68 75 80 81", "output": "YES" }, { "input": "20 30\n2 8\n6 7 7 7 7 7 7 8 8 8 8 9 9 9 9 10 10 10 10 10\n1 1 2 2 2 2 2 2 2 3 3 4 5 5 5 5 6 6 6 6 6 6 7 7 7 8 8 9 10 10", "output": "NO" }, { "input": "20 30\n19 29\n1 1 2 2 2 3 4 4 7 7 7 8 8 8 8 8 9 9 9 9\n6 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 10 10 10 10 10 10 10 10 10 10 10 10 10 10", "output": "NO" }, { "input": "1 1\n1 1\n-1000000000\n30", "output": "YES" }, { "input": "3 3\n1 3\n1 3 3\n3 3 3", "output": "YES" }, { "input": "3 3\n1 1\n3 3 3\n2 2 2", "output": "NO" }, { "input": "5 5\n3 3\n1 5 6 7 8\n1 2 5 6 7", "output": "NO" }, { "input": "3 4\n2 2\n5 6 7\n1 2 3 4", "output": "NO" }, { "input": "3 3\n3 3\n1 2 3\n4 5 6", "output": "YES" }, { "input": "5 5\n4 5\n2 2 3 4 5\n5 6 7 8 9", "output": "YES" } ]
1,603,520,818
2,147,483,647
Python 3
RUNTIME_ERROR
TESTS
0
93
307,200
n1,m1=map(int.input().split()) n2,m2=map(int,input().split()) a=list(map(int,input().split())) b=list(map(int,input().split())) b=b[::-1] l=[] n=[] for i in range(n2) : l.append(a[i]) for i in range(m2): n.append(a[i]) s=max(l) s2=min(n) if s<s2 : print('YES') else : print('NO')
Title: Arrays Time Limit: None seconds Memory Limit: None megabytes Problem Description: You are given two arrays *A* and *B* consisting of integers, sorted in non-decreasing order. Check whether it is possible to choose *k* numbers in array *A* and choose *m* numbers in array *B* so that any number chosen in the first array is strictly less than any number chosen in the second array. Input Specification: The first line contains two integers *n**A*,<=*n**B* (1<=≤<=*n**A*,<=*n**B*<=≤<=105), separated by a space — the sizes of arrays *A* and *B*, correspondingly. The second line contains two integers *k* and *m* (1<=≤<=*k*<=≤<=*n**A*,<=1<=≤<=*m*<=≤<=*n**B*), separated by a space. The third line contains *n**A* numbers *a*1,<=*a*2,<=... *a**n**A* (<=-<=109<=≤<=*a*1<=≤<=*a*2<=≤<=...<=≤<=*a**n**A*<=≤<=109), separated by spaces — elements of array *A*. The fourth line contains *n**B* integers *b*1,<=*b*2,<=... *b**n**B* (<=-<=109<=≤<=*b*1<=≤<=*b*2<=≤<=...<=≤<=*b**n**B*<=≤<=109), separated by spaces — elements of array *B*. Output Specification: Print "YES" (without the quotes), if you can choose *k* numbers in array *A* and *m* numbers in array *B* so that any number chosen in array *A* was strictly less than any number chosen in array *B*. Otherwise, print "NO" (without the quotes). Demo Input: ['3 3\n2 1\n1 2 3\n3 4 5\n', '3 3\n3 3\n1 2 3\n3 4 5\n', '5 2\n3 1\n1 1 1 1 1\n2 2\n'] Demo Output: ['YES\n', 'NO\n', 'YES\n'] Note: In the first sample test you can, for example, choose numbers 1 and 2 from array *A* and number 3 from array *B* (1 &lt; 3 and 2 &lt; 3). In the second sample test the only way to choose *k* elements in the first array and *m* elements in the second one is to choose all numbers in both arrays, but then not all the numbers chosen in *A* will be less than all the numbers chosen in *B*: <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/7280148ed5eab0a7d418d4f92b32061243a8ca58.png" style="max-width: 100.0%;max-height: 100.0%;"/>.
```python n1,m1=map(int.input().split()) n2,m2=map(int,input().split()) a=list(map(int,input().split())) b=list(map(int,input().split())) b=b[::-1] l=[] n=[] for i in range(n2) : l.append(a[i]) for i in range(m2): n.append(a[i]) s=max(l) s2=min(n) if s<s2 : print('YES') else : print('NO') ```
-1
731
A
Night at the Museum
PROGRAMMING
800
[ "implementation", "strings" ]
null
null
Grigoriy, like the hero of one famous comedy film, found a job as a night security guard at the museum. At first night he received embosser and was to take stock of the whole exposition. Embosser is a special devise that allows to "print" the text of a plastic tape. Text is printed sequentially, character by character. The device consists of a wheel with a lowercase English letters written in a circle, static pointer to the current letter and a button that print the chosen letter. At one move it's allowed to rotate the alphabetic wheel one step clockwise or counterclockwise. Initially, static pointer points to letter 'a'. Other letters are located as shown on the picture: After Grigoriy add new item to the base he has to print its name on the plastic tape and attach it to the corresponding exhibit. It's not required to return the wheel to its initial position with pointer on the letter 'a'. Our hero is afraid that some exhibits may become alive and start to attack him, so he wants to print the names as fast as possible. Help him, for the given string find the minimum number of rotations of the wheel required to print it.
The only line of input contains the name of some exhibit — the non-empty string consisting of no more than 100 characters. It's guaranteed that the string consists of only lowercase English letters.
Print one integer — the minimum number of rotations of the wheel, required to print the name given in the input.
[ "zeus\n", "map\n", "ares\n" ]
[ "18\n", "35\n", "34\n" ]
To print the string from the first sample it would be optimal to perform the following sequence of rotations: 1. from 'a' to 'z' (1 rotation counterclockwise), 1. from 'z' to 'e' (5 clockwise rotations), 1. from 'e' to 'u' (10 rotations counterclockwise), 1. from 'u' to 's' (2 counterclockwise rotations).
500
[ { "input": "zeus", "output": "18" }, { "input": "map", "output": "35" }, { "input": "ares", "output": "34" }, { "input": "l", "output": "11" }, { "input": "abcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuv", "output": "99" }, { "input": "gngvi", "output": "44" }, { "input": "aaaaa", "output": "0" }, { "input": "a", "output": "0" }, { "input": "z", "output": "1" }, { "input": "vyadeehhikklnoqrs", "output": "28" }, { "input": "jjiihhhhgggfedcccbazyxx", "output": "21" }, { "input": "fyyptqqxuciqvwdewyppjdzur", "output": "117" }, { "input": "fqcnzmzmbobmancqcoalzmanaobpdse", "output": "368" }, { "input": "zzzzzaaaaaaazzzzzzaaaaaaazzzzzzaaaazzzza", "output": "8" }, { "input": "aucnwhfixuruefkypvrvnvznwtjgwlghoqtisbkhuwxmgzuljvqhmnwzisnsgjhivnjmbknptxatdkelhzkhsuxzrmlcpeoyukiy", "output": "644" }, { "input": "sssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssss", "output": "8" }, { "input": "nypjygrdtpzpigzyrisqeqfriwgwlengnezppgttgtndbrryjdl", "output": "421" }, { "input": "pnllnnmmmmoqqqqqrrtssssuuvtsrpopqoonllmonnnpppopnonoopooqpnopppqppqstuuuwwwwvxzxzzaa", "output": "84" }, { "input": "btaoahqgxnfsdmzsjxgvdwjukcvereqeskrdufqfqgzqfsftdqcthtkcnaipftcnco", "output": "666" }, { "input": "eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeerrrrrrrrrrrrrrrrwwwwwwwwww", "output": "22" }, { "input": "uyknzcrwjyzmscqucclvacmorepdgmnyhmakmmnygqwglrxkxhkpansbmruwxdeoprxzmpsvwackopujxbbkpwyeggsvjykpxh", "output": "643" }, { "input": "gzwpooohffcxwtpjgfzwtooiccxsrrokezutoojdzwsrmmhecaxwrojcbyrqlfdwwrliiib", "output": "245" }, { "input": "dbvnkktasjdwqsrzfwwtmjgbcxggdxsoeilecihduypktkkbwfbruxzzhlttrssicgdwqruddwrlbtxgmhdbatzvdxbbro", "output": "468" }, { "input": "mdtvowlktxzzbuaeiuebfeorgbdczauxsovbucactkvyvemsknsjfhifqgycqredzchipmkvzbxdjkcbyukomjlzvxzoswumned", "output": "523" }, { "input": "kkkkkkkaaaaxxaaaaaaaxxxxxxxxaaaaaaxaaaaaaaaaakkkkkkkkkaaaaaaannnnnxxxxkkkkkkkkaannnnnnna", "output": "130" }, { "input": "dffiknqqrsvwzcdgjkmpqtuwxadfhkkkmpqrtwxyadfggjmpppsuuwyyzcdgghhknnpsvvvwwwyabccffiloqruwwyyzabeeehh", "output": "163" }, { "input": "qpppmmkjihgecbyvvsppnnnkjiffeebaaywutrrqpmkjhgddbzzzywtssssqnmmljheddbbaxvusrqonmlifedbbzyywwtqnkheb", "output": "155" }, { "input": "wvvwwwvvwxxxyyyxxwwvwwvuttttttuvvwxxwxxyxxwwwwwvvuttssrssstsssssrqpqqppqrssrsrrssrssssrrsrqqrrqpppqp", "output": "57" }, { "input": "dqcpcobpcobnznamznamzlykxkxlxlylzmaobnaobpbnanbpcoaobnboaoboanzlymzmykylymylzlylymanboanaocqdqesfrfs", "output": "1236" }, { "input": "nnnnnnnnnnnnnnnnnnnnaaaaaaaaaaaaaaaaaaaakkkkkkkkkkkkkkkkkkkkkkaaaaaaaaaaaaaaaaaaaaxxxxxxxxxxxxxxxxxx", "output": "49" }, { "input": "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa", "output": "0" }, { "input": "cgilqsuwzaffilptwwbgmnttyyejkorxzflqvzbddhmnrvxchijpuwaeiimosxyycejlpquuwbfkpvbgijkqvxybdjjjptxcfkqt", "output": "331" }, { "input": "ufsepwgtzgtgjssxaitgpailuvgqweoppszjwhoxdhhhpwwdorwfrdjwcdekxiktwziqwbkvbknrtvajpyeqbjvhiikxxaejjpte", "output": "692" }, { "input": "uhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuh", "output": "1293" }, { "input": "vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvgggggggggggggggggggggggggggggggggggggggggggggggggg", "output": "16" }, { "input": "lyidmjyzbszgiwkxhhpnnthfwcvvstueionspfrvqgkvngmwyhezlosrpdnbvtcjjxxsykixwnepbumaacdzadlqhnjlcejovple", "output": "616" }, { "input": "etzqqbaveffalkdguunfmyyrzkccnxmlluxeasqmopxzfvlkbhipqdwjgrttoemruohgwukfisdhznqyvhswbbypoxgtxyappcrl", "output": "605" }, { "input": "lizussgedcbdjhrbeskhgatyozvwwekanlggcstijrniivupmcoofbaxfqrxddyzzptwxcftlhajsmmkkriarrqtkoauhcqefyud", "output": "549" }, { "input": "dvjuvgfdogpknmbowlsfjzcimnygbtjiucyeeroqwhmzwpjqxlbjkqawrdtmvxbiqufllfuqibxvmtdrwaqkjblxqjpwzmhwqore", "output": "688" }, { "input": "eeycuijtbgynmiczjfslwobmnkpgodfgvujvduyfeqchuaoktqrrairkkmmsjahltfcxwtpzzyddxrqfxabfoocmpuviinrjitsc", "output": "604" }, { "input": "cgglnakewwvzoytaghksebrhjdbcdegssuzilrcppayxtgxopybbwshvyqnzhdsifkuwghourmeottrgjwdqpihbklvfzxpomqsa", "output": "572" }, { "input": "aexullmxncckzryymfnuugdklaffevabqqztelpvojecljnhqldazdcaamubpenwxikysxxjjctvbndprsolzehywmgnvkgqvrfp", "output": "609" }, { "input": "psnoieutsvvcwfhtnnphhxkwigzsbzyjmdiyl", "output": "223" }, { "input": "aa", "output": "0" } ]
1,692,790,274
2,147,483,647
PyPy 3-64
OK
TESTS
44
62
0
n=input() rotations=0 starting_point="a" for i in n: r=(abs(ord(i)-ord(starting_point)))%26 if r>13: rotations+=26-r else: rotations+=r starting_point=i print(rotations)
Title: Night at the Museum Time Limit: None seconds Memory Limit: None megabytes Problem Description: Grigoriy, like the hero of one famous comedy film, found a job as a night security guard at the museum. At first night he received embosser and was to take stock of the whole exposition. Embosser is a special devise that allows to "print" the text of a plastic tape. Text is printed sequentially, character by character. The device consists of a wheel with a lowercase English letters written in a circle, static pointer to the current letter and a button that print the chosen letter. At one move it's allowed to rotate the alphabetic wheel one step clockwise or counterclockwise. Initially, static pointer points to letter 'a'. Other letters are located as shown on the picture: After Grigoriy add new item to the base he has to print its name on the plastic tape and attach it to the corresponding exhibit. It's not required to return the wheel to its initial position with pointer on the letter 'a'. Our hero is afraid that some exhibits may become alive and start to attack him, so he wants to print the names as fast as possible. Help him, for the given string find the minimum number of rotations of the wheel required to print it. Input Specification: The only line of input contains the name of some exhibit — the non-empty string consisting of no more than 100 characters. It's guaranteed that the string consists of only lowercase English letters. Output Specification: Print one integer — the minimum number of rotations of the wheel, required to print the name given in the input. Demo Input: ['zeus\n', 'map\n', 'ares\n'] Demo Output: ['18\n', '35\n', '34\n'] Note: To print the string from the first sample it would be optimal to perform the following sequence of rotations: 1. from 'a' to 'z' (1 rotation counterclockwise), 1. from 'z' to 'e' (5 clockwise rotations), 1. from 'e' to 'u' (10 rotations counterclockwise), 1. from 'u' to 's' (2 counterclockwise rotations).
```python n=input() rotations=0 starting_point="a" for i in n: r=(abs(ord(i)-ord(starting_point)))%26 if r>13: rotations+=26-r else: rotations+=r starting_point=i print(rotations) ```
3
342
B
Xenia and Spies
PROGRAMMING
1,500
[ "brute force", "greedy", "implementation" ]
null
null
Xenia the vigorous detective faced *n* (*n*<=≥<=2) foreign spies lined up in a row. We'll consider the spies numbered from 1 to *n* from left to right. Spy *s* has an important note. He has to pass the note to spy *f*. Xenia interrogates the spies in several steps. During one step the spy keeping the important note can pass the note to one of his neighbours in the row. In other words, if this spy's number is *x*, he can pass the note to another spy, either *x*<=-<=1 or *x*<=+<=1 (if *x*<==<=1 or *x*<==<=*n*, then the spy has only one neighbour). Also during a step the spy can keep a note and not pass it to anyone. But nothing is that easy. During *m* steps Xenia watches some spies attentively. Specifically, during step *t**i* (steps are numbered from 1) Xenia watches spies numbers *l**i*,<=*l**i*<=+<=1,<=*l**i*<=+<=2,<=...,<=*r**i* (1<=≤<=*l**i*<=≤<=*r**i*<=≤<=*n*). Of course, if during some step a spy is watched, he can't do anything: neither give the note nor take it from some other spy. Otherwise, Xenia reveals the spies' cunning plot. Nevertheless, if the spy at the current step keeps the note, Xenia sees nothing suspicious even if she watches him. You've got *s* and *f*. Also, you have the steps during which Xenia watches spies and which spies she is going to watch during each step. Find the best way the spies should act in order to pass the note from spy *s* to spy *f* as quickly as possible (in the minimum number of steps).
The first line contains four integers *n*, *m*, *s* and *f* (1<=≤<=*n*,<=*m*<=≤<=105; 1<=≤<=*s*,<=*f*<=≤<=*n*; *s*<=≠<=*f*; *n*<=≥<=2). Each of the following *m* lines contains three integers *t**i*,<=*l**i*,<=*r**i* (1<=≤<=*t**i*<=≤<=109,<=1<=≤<=*l**i*<=≤<=*r**i*<=≤<=*n*). It is guaranteed that *t*1<=&lt;<=*t*2<=&lt;<=*t*3<=&lt;<=...<=&lt;<=*t**m*.
Print *k* characters in a line: the *i*-th character in the line must represent the spies' actions on step *i*. If on step *i* the spy with the note must pass the note to the spy with a lesser number, the *i*-th character should equal "L". If on step *i* the spy with the note must pass it to the spy with a larger number, the *i*-th character must equal "R". If the spy must keep the note at the *i*-th step, the *i*-th character must equal "X". As a result of applying the printed sequence of actions spy *s* must pass the note to spy *f*. The number of printed characters *k* must be as small as possible. Xenia must not catch the spies passing the note. If there are miltiple optimal solutions, you can print any of them. It is guaranteed that the answer exists.
[ "3 5 1 3\n1 1 2\n2 2 3\n3 3 3\n4 1 1\n10 1 3\n" ]
[ "XXRR\n" ]
none
1,000
[ { "input": "3 5 1 3\n1 1 2\n2 2 3\n3 3 3\n4 1 1\n10 1 3", "output": "XXRR" }, { "input": "2 3 2 1\n1 1 2\n2 1 2\n4 1 2", "output": "XXL" }, { "input": "5 11 1 5\n1 1 5\n2 2 2\n3 1 1\n4 3 3\n5 3 3\n6 1 1\n7 4 4\n8 4 5\n10 1 3\n11 5 5\n13 1 5", "output": "XXXRXRXXRR" }, { "input": "4 6 4 2\n2 2 2\n3 3 3\n4 1 1\n10 1 4\n11 2 3\n12 2 4", "output": "LXXL" }, { "input": "7 5 7 6\n1 4 5\n2 7 7\n3 6 6\n4 3 4\n5 1 3", "output": "L" }, { "input": "4 4 3 4\n1 2 4\n2 1 2\n3 3 4\n4 2 3", "output": "XR" }, { "input": "10 10 1 10\n1 1 10\n2 1 1\n3 7 10\n4 6 7\n5 9 9\n6 4 9\n7 2 5\n8 3 10\n9 2 10\n10 7 9", "output": "XXRRRXXXXRRRRRR" }, { "input": "20 20 17 20\n1 16 20\n2 12 13\n3 14 16\n4 13 15\n5 3 15\n6 2 11\n7 18 18\n8 5 15\n9 6 12\n10 19 19\n11 9 11\n12 14 17\n13 19 19\n14 12 20\n15 1 1\n16 11 17\n17 13 14\n18 5 17\n19 2 10\n20 19 20", "output": "XRRR" }, { "input": "100000 1 11500 70856\n1 9881 75626", "output": "XRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR..." }, { "input": "100000 2 37212 89918\n1 24285 99164\n2 67042 82268", "output": "XRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR..." }, { "input": "100 5 99 1\n1 1 2\n2 2 3\n3 3 3\n4 1 1\n10 1 3", "output": "LLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLL" }, { "input": "5 1 1 5\n1 1 1", "output": "XRRRR" }, { "input": "3 5 1 3\n1 1 2\n2 2 3\n3 3 3\n4 1 1\n1000000000 1 3", "output": "XXRR" }, { "input": "2 2 1 2\n1 1 2\n1000000000 1 2", "output": "XR" }, { "input": "10 1 1 10\n1 5 6", "output": "RRRRRRRRR" } ]
1,634,399,199
2,147,483,647
PyPy 3
WRONG_ANSWER
TESTS
1
62
0
n,m,s,f=map(int,input().split()) k="" if s>f: a="L" p=-1 elif f>s: a="R" p=1 holder=s current_step=0 for i in range(m): l=list(map(int,input().split())) while current_step<l[0] and holder!=f: if holder not in l[1:] and holder+p not in l[1:]: holder+=p k+=a else: k+="X" current_step+=1 print(k)
Title: Xenia and Spies Time Limit: None seconds Memory Limit: None megabytes Problem Description: Xenia the vigorous detective faced *n* (*n*<=≥<=2) foreign spies lined up in a row. We'll consider the spies numbered from 1 to *n* from left to right. Spy *s* has an important note. He has to pass the note to spy *f*. Xenia interrogates the spies in several steps. During one step the spy keeping the important note can pass the note to one of his neighbours in the row. In other words, if this spy's number is *x*, he can pass the note to another spy, either *x*<=-<=1 or *x*<=+<=1 (if *x*<==<=1 or *x*<==<=*n*, then the spy has only one neighbour). Also during a step the spy can keep a note and not pass it to anyone. But nothing is that easy. During *m* steps Xenia watches some spies attentively. Specifically, during step *t**i* (steps are numbered from 1) Xenia watches spies numbers *l**i*,<=*l**i*<=+<=1,<=*l**i*<=+<=2,<=...,<=*r**i* (1<=≤<=*l**i*<=≤<=*r**i*<=≤<=*n*). Of course, if during some step a spy is watched, he can't do anything: neither give the note nor take it from some other spy. Otherwise, Xenia reveals the spies' cunning plot. Nevertheless, if the spy at the current step keeps the note, Xenia sees nothing suspicious even if she watches him. You've got *s* and *f*. Also, you have the steps during which Xenia watches spies and which spies she is going to watch during each step. Find the best way the spies should act in order to pass the note from spy *s* to spy *f* as quickly as possible (in the minimum number of steps). Input Specification: The first line contains four integers *n*, *m*, *s* and *f* (1<=≤<=*n*,<=*m*<=≤<=105; 1<=≤<=*s*,<=*f*<=≤<=*n*; *s*<=≠<=*f*; *n*<=≥<=2). Each of the following *m* lines contains three integers *t**i*,<=*l**i*,<=*r**i* (1<=≤<=*t**i*<=≤<=109,<=1<=≤<=*l**i*<=≤<=*r**i*<=≤<=*n*). It is guaranteed that *t*1<=&lt;<=*t*2<=&lt;<=*t*3<=&lt;<=...<=&lt;<=*t**m*. Output Specification: Print *k* characters in a line: the *i*-th character in the line must represent the spies' actions on step *i*. If on step *i* the spy with the note must pass the note to the spy with a lesser number, the *i*-th character should equal "L". If on step *i* the spy with the note must pass it to the spy with a larger number, the *i*-th character must equal "R". If the spy must keep the note at the *i*-th step, the *i*-th character must equal "X". As a result of applying the printed sequence of actions spy *s* must pass the note to spy *f*. The number of printed characters *k* must be as small as possible. Xenia must not catch the spies passing the note. If there are miltiple optimal solutions, you can print any of them. It is guaranteed that the answer exists. Demo Input: ['3 5 1 3\n1 1 2\n2 2 3\n3 3 3\n4 1 1\n10 1 3\n'] Demo Output: ['XXRR\n'] Note: none
```python n,m,s,f=map(int,input().split()) k="" if s>f: a="L" p=-1 elif f>s: a="R" p=1 holder=s current_step=0 for i in range(m): l=list(map(int,input().split())) while current_step<l[0] and holder!=f: if holder not in l[1:] and holder+p not in l[1:]: holder+=p k+=a else: k+="X" current_step+=1 print(k) ```
0
294
A
Shaass and Oskols
PROGRAMMING
800
[ "implementation", "math" ]
null
null
Shaass has decided to hunt some birds. There are *n* horizontal electricity wires aligned parallel to each other. Wires are numbered 1 to *n* from top to bottom. On each wire there are some oskols sitting next to each other. Oskol is the name of a delicious kind of birds in Shaass's territory. Supposed there are *a**i* oskols sitting on the *i*-th wire. Sometimes Shaass shots one of the birds and the bird dies (suppose that this bird sat at the *i*-th wire). Consequently all the birds on the *i*-th wire to the left of the dead bird get scared and jump up on the wire number *i*<=-<=1, if there exists no upper wire they fly away. Also all the birds to the right of the dead bird jump down on wire number *i*<=+<=1, if there exists no such wire they fly away. Shaass has shot *m* birds. You're given the initial number of birds on each wire, tell him how many birds are sitting on each wire after the shots.
The first line of the input contains an integer *n*, (1<=≤<=*n*<=≤<=100). The next line contains a list of space-separated integers *a*1,<=*a*2,<=...,<=*a**n*, (0<=≤<=*a**i*<=≤<=100). The third line contains an integer *m*, (0<=≤<=*m*<=≤<=100). Each of the next *m* lines contains two integers *x**i* and *y**i*. The integers mean that for the *i*-th time Shaass shoot the *y**i*-th (from left) bird on the *x**i*-th wire, (1<=≤<=*x**i*<=≤<=*n*,<=1<=≤<=*y**i*). It's guaranteed there will be at least *y**i* birds on the *x**i*-th wire at that moment.
On the *i*-th line of the output print the number of birds on the *i*-th wire.
[ "5\n10 10 10 10 10\n5\n2 5\n3 13\n2 12\n1 13\n4 6\n", "3\n2 4 1\n1\n2 2\n" ]
[ "0\n12\n5\n0\n16\n", "3\n0\n3\n" ]
none
500
[ { "input": "5\n10 10 10 10 10\n5\n2 5\n3 13\n2 12\n1 13\n4 6", "output": "0\n12\n5\n0\n16" }, { "input": "3\n2 4 1\n1\n2 2", "output": "3\n0\n3" }, { "input": "5\n58 51 45 27 48\n5\n4 9\n5 15\n4 5\n5 8\n1 43", "output": "0\n66\n57\n7\n0" }, { "input": "10\n48 53 10 28 91 56 81 2 67 52\n2\n2 40\n6 51", "output": "87\n0\n23\n28\n141\n0\n86\n2\n67\n52" }, { "input": "2\n72 45\n6\n1 69\n2 41\n1 19\n2 7\n1 5\n2 1", "output": "0\n0" }, { "input": "10\n95 54 36 39 98 30 19 24 14 12\n3\n9 5\n8 15\n7 5", "output": "95\n54\n36\n39\n98\n34\n0\n28\n13\n21" }, { "input": "100\n95 15 25 18 64 62 23 59 70 84 50 26 87 35 75 86 0 22 77 60 66 41 21 9 75 50 25 3 69 14 39 68 64 46 59 99 2 0 21 76 90 12 61 42 6 91 36 39 47 41 93 81 66 57 70 36 68 89 52 1 19 93 67 22 76 20 8 81 98 18 100 73 61 93 75 80 53 72 40 20 2 86 33 59 27 16 11 26 55 44 47 55 94 58 2 55 82 22 9 95\n0", "output": "95\n15\n25\n18\n64\n62\n23\n59\n70\n84\n50\n26\n87\n35\n75\n86\n0\n22\n77\n60\n66\n41\n21\n9\n75\n50\n25\n3\n69\n14\n39\n68\n64\n46\n59\n99\n2\n0\n21\n76\n90\n12\n61\n42\n6\n91\n36\n39\n47\n41\n93\n81\n66\n57\n70\n36\n68\n89\n52\n1\n19\n93\n67\n22\n76\n20\n8\n81\n98\n18\n100\n73\n61\n93\n75\n80\n53\n72\n40\n20\n2\n86\n33\n59\n27\n16\n11\n26\n55\n44\n47\n55\n94\n58\n2\n55\n82\n22\n9\n95" }, { "input": "1\n100\n1\n1 100", "output": "0" }, { "input": "1\n100\n1\n1 1", "output": "0" }, { "input": "1\n50\n1\n1 25", "output": "0" }, { "input": "2\n50 0\n1\n1 1", "output": "0\n49" }, { "input": "1\n10\n0", "output": "10" } ]
1,595,378,343
2,147,483,647
Python 3
OK
TESTS
31
216
6,963,200
n = int(input()) lis = list(int(num) for num in input().strip().split())[:n] m = int(input()) for i in range(m): x, y = input().split() x = int(x)-1 y = int(y)-1 lis[x] -= 1 if x > 0: lis[x-1] += y if x < n-1: lis[x+1] += lis[x] - y lis[x] = 0 for i in range(n): print(lis[i])
Title: Shaass and Oskols Time Limit: None seconds Memory Limit: None megabytes Problem Description: Shaass has decided to hunt some birds. There are *n* horizontal electricity wires aligned parallel to each other. Wires are numbered 1 to *n* from top to bottom. On each wire there are some oskols sitting next to each other. Oskol is the name of a delicious kind of birds in Shaass's territory. Supposed there are *a**i* oskols sitting on the *i*-th wire. Sometimes Shaass shots one of the birds and the bird dies (suppose that this bird sat at the *i*-th wire). Consequently all the birds on the *i*-th wire to the left of the dead bird get scared and jump up on the wire number *i*<=-<=1, if there exists no upper wire they fly away. Also all the birds to the right of the dead bird jump down on wire number *i*<=+<=1, if there exists no such wire they fly away. Shaass has shot *m* birds. You're given the initial number of birds on each wire, tell him how many birds are sitting on each wire after the shots. Input Specification: The first line of the input contains an integer *n*, (1<=≤<=*n*<=≤<=100). The next line contains a list of space-separated integers *a*1,<=*a*2,<=...,<=*a**n*, (0<=≤<=*a**i*<=≤<=100). The third line contains an integer *m*, (0<=≤<=*m*<=≤<=100). Each of the next *m* lines contains two integers *x**i* and *y**i*. The integers mean that for the *i*-th time Shaass shoot the *y**i*-th (from left) bird on the *x**i*-th wire, (1<=≤<=*x**i*<=≤<=*n*,<=1<=≤<=*y**i*). It's guaranteed there will be at least *y**i* birds on the *x**i*-th wire at that moment. Output Specification: On the *i*-th line of the output print the number of birds on the *i*-th wire. Demo Input: ['5\n10 10 10 10 10\n5\n2 5\n3 13\n2 12\n1 13\n4 6\n', '3\n2 4 1\n1\n2 2\n'] Demo Output: ['0\n12\n5\n0\n16\n', '3\n0\n3\n'] Note: none
```python n = int(input()) lis = list(int(num) for num in input().strip().split())[:n] m = int(input()) for i in range(m): x, y = input().split() x = int(x)-1 y = int(y)-1 lis[x] -= 1 if x > 0: lis[x-1] += y if x < n-1: lis[x+1] += lis[x] - y lis[x] = 0 for i in range(n): print(lis[i]) ```
3
433
A
Kitahara Haruki's Gift
PROGRAMMING
1,100
[ "brute force", "implementation" ]
null
null
Kitahara Haruki has bought *n* apples for Touma Kazusa and Ogiso Setsuna. Now he wants to divide all the apples between the friends. Each apple weights 100 grams or 200 grams. Of course Kitahara Haruki doesn't want to offend any of his friend. Therefore the total weight of the apples given to Touma Kazusa must be equal to the total weight of the apples given to Ogiso Setsuna. But unfortunately Kitahara Haruki doesn't have a knife right now, so he cannot split any apple into some parts. Please, tell him: is it possible to divide all the apples in a fair way between his friends?
The first line contains an integer *n* (1<=≤<=*n*<=≤<=100) — the number of apples. The second line contains *n* integers *w*1,<=*w*2,<=...,<=*w**n* (*w**i*<==<=100 or *w**i*<==<=200), where *w**i* is the weight of the *i*-th apple.
In a single line print "YES" (without the quotes) if it is possible to divide all the apples between his friends. Otherwise print "NO" (without the quotes).
[ "3\n100 200 100\n", "4\n100 100 100 200\n" ]
[ "YES\n", "NO\n" ]
In the first test sample Kitahara Haruki can give the first and the last apple to Ogiso Setsuna and the middle apple to Touma Kazusa.
500
[ { "input": "3\n100 200 100", "output": "YES" }, { "input": "4\n100 100 100 200", "output": "NO" }, { "input": "1\n100", "output": "NO" }, { "input": "1\n200", "output": "NO" }, { "input": "2\n100 100", "output": "YES" }, { "input": "2\n200 200", "output": "YES" }, { "input": "100\n200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200", "output": "YES" }, { "input": "100\n200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 100 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200", "output": "NO" }, { "input": "52\n200 200 100 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 100 200 200 200 200 200 200 200 200 200 200 200 200 200 200 100 200 200 200 200 100 200 100 200 200 200 100 200 200", "output": "YES" }, { "input": "2\n100 200", "output": "NO" }, { "input": "2\n200 100", "output": "NO" }, { "input": "3\n100 100 100", "output": "NO" }, { "input": "3\n200 200 200", "output": "NO" }, { "input": "3\n200 100 200", "output": "NO" }, { "input": "4\n100 100 100 100", "output": "YES" }, { "input": "4\n200 200 200 200", "output": "YES" }, { "input": "100\n200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 100 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 100 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200", "output": "YES" }, { "input": "100\n200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 100 200 100 200 100 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200", "output": "NO" }, { "input": "100\n100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100", "output": "YES" }, { "input": "100\n100 100 200 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100", "output": "NO" }, { "input": "100\n100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 200 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 200 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100", "output": "YES" }, { "input": "100\n100 100 100 100 100 100 100 100 200 100 100 200 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 200 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100", "output": "NO" }, { "input": "99\n200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200", "output": "NO" }, { "input": "99\n200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 100 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200", "output": "NO" }, { "input": "99\n200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 100 200 200 200 200 200 100 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200", "output": "YES" }, { "input": "99\n200 200 200 200 200 200 200 200 200 200 200 100 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 100 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 100 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200", "output": "NO" }, { "input": "99\n100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100", "output": "NO" }, { "input": "99\n100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 200 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100", "output": "YES" }, { "input": "99\n100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 200 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 200 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100", "output": "NO" }, { "input": "100\n100 100 200 100 100 200 200 200 200 100 200 100 100 100 200 100 100 100 100 200 100 100 100 100 100 100 200 100 100 200 200 100 100 100 200 200 200 100 200 200 100 200 100 100 200 100 200 200 100 200 200 100 100 200 200 100 200 200 100 100 200 100 200 100 200 200 200 200 200 100 200 200 200 200 200 200 100 100 200 200 200 100 100 100 200 100 100 200 100 100 100 200 200 100 100 200 200 200 200 100", "output": "YES" }, { "input": "100\n100 100 200 200 100 200 100 100 100 100 100 100 200 100 200 200 200 100 100 200 200 200 200 200 100 200 100 200 100 100 100 200 100 100 200 100 200 100 100 100 200 200 100 100 100 200 200 200 200 200 100 200 200 100 100 100 100 200 100 100 200 100 100 100 100 200 200 200 100 200 100 200 200 200 100 100 200 200 200 200 100 200 100 200 200 100 200 100 200 200 200 200 200 200 100 100 100 200 200 100", "output": "NO" }, { "input": "100\n100 200 100 100 200 200 200 200 100 200 200 200 200 200 200 200 200 200 100 100 100 200 200 200 200 200 100 200 200 200 200 100 200 200 100 100 200 100 100 100 200 100 100 100 200 100 200 100 200 200 200 100 100 200 100 200 100 200 100 100 100 200 100 200 100 100 100 100 200 200 200 200 100 200 200 100 200 100 100 100 200 100 100 100 100 100 200 100 100 100 200 200 200 100 200 100 100 100 200 200", "output": "YES" }, { "input": "99\n100 200 200 200 100 200 100 200 200 100 100 100 100 200 100 100 200 100 200 100 100 200 100 100 200 200 100 100 100 100 200 200 200 200 200 100 100 200 200 100 100 100 100 200 200 100 100 100 100 100 200 200 200 100 100 100 200 200 200 100 200 100 100 100 100 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 100 100 200 100 200 200 200 200 100 200 100 100 100 100 100 100 100 100 100", "output": "YES" }, { "input": "99\n100 200 100 100 100 100 200 200 100 200 100 100 200 100 100 100 100 100 100 200 100 100 100 100 100 100 100 200 100 200 100 100 100 100 100 100 100 200 200 200 200 200 200 200 100 200 100 200 100 200 100 200 100 100 200 200 200 100 200 200 200 200 100 200 100 200 200 200 200 100 200 100 200 200 100 200 200 200 200 200 100 100 200 100 100 100 100 200 200 200 100 100 200 200 200 200 200 200 200", "output": "NO" }, { "input": "99\n200 100 100 100 200 200 200 100 100 100 100 100 100 100 100 100 200 200 100 200 200 100 200 100 100 200 200 200 100 200 100 200 200 100 200 100 200 200 200 100 100 200 200 200 200 100 100 100 100 200 200 200 200 100 200 200 200 100 100 100 200 200 200 100 200 100 200 100 100 100 200 100 200 200 100 200 200 200 100 100 100 200 200 200 100 200 200 200 100 100 100 200 100 200 100 100 100 200 200", "output": "YES" }, { "input": "56\n100 200 200 200 200 200 100 200 100 100 200 100 100 100 100 100 200 200 200 100 200 100 100 200 200 200 100 200 100 200 200 100 100 100 100 100 200 100 200 100 200 200 200 100 100 200 200 200 200 200 200 200 200 200 200 100", "output": "YES" }, { "input": "72\n200 100 200 200 200 100 100 200 200 100 100 100 100 200 100 200 100 100 100 100 200 100 200 100 100 200 100 100 200 100 200 100 100 200 100 200 100 100 200 200 200 200 200 100 100 200 200 200 200 100 100 100 200 200 100 100 100 100 100 200 100 100 200 100 100 200 200 100 100 200 100 200", "output": "YES" }, { "input": "32\n200 200 200 100 100 100 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 100 200 200 200 200 200 200", "output": "YES" }, { "input": "48\n200 200 200 200 200 200 100 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 100 200 100 200 200 200 200 200 200", "output": "NO" }, { "input": "60\n100 100 200 200 100 200 100 200 100 100 100 100 100 100 200 100 100 100 200 100 200 100 100 100 100 100 200 100 200 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 200 100 100 100", "output": "YES" }, { "input": "24\n200 200 100 100 200 100 200 200 100 200 200 200 200 200 100 200 200 200 200 200 200 200 200 100", "output": "YES" }, { "input": "40\n100 100 200 200 200 200 100 100 100 200 100 100 200 200 100 100 100 100 100 200 100 200 200 100 200 200 200 100 100 100 100 100 200 200 100 200 100 100 200 100", "output": "NO" }, { "input": "5\n200 200 200 200 200", "output": "NO" }, { "input": "9\n100 100 100 200 100 100 200 100 200", "output": "YES" }, { "input": "1\n200", "output": "NO" }, { "input": "7\n200 200 200 100 200 200 200", "output": "NO" }, { "input": "4\n100 100 200 200", "output": "YES" }, { "input": "6\n100 100 100 200 200 200", "output": "NO" }, { "input": "4\n200 100 100 200", "output": "YES" }, { "input": "5\n100 100 100 100 200", "output": "YES" } ]
1,683,723,677
2,147,483,647
PyPy 3-64
OK
TESTS
50
46
0
n = int(input()) w = [int(x) for x in input().split()] ones = sum([1 if x==100 else 0 for x in w]) twos = sum([1 if x==200 else 0 for x in w]) if (ones*100+twos*200)%200 !=0: print("NO") else: need = (ones*100 + twos*200)//2 ans = False for i in range(twos+1): if 200*i <= need and (need-200*i) <= ones*100: ans = True if ans: print("YES") else: print("NO")
Title: Kitahara Haruki's Gift Time Limit: None seconds Memory Limit: None megabytes Problem Description: Kitahara Haruki has bought *n* apples for Touma Kazusa and Ogiso Setsuna. Now he wants to divide all the apples between the friends. Each apple weights 100 grams or 200 grams. Of course Kitahara Haruki doesn't want to offend any of his friend. Therefore the total weight of the apples given to Touma Kazusa must be equal to the total weight of the apples given to Ogiso Setsuna. But unfortunately Kitahara Haruki doesn't have a knife right now, so he cannot split any apple into some parts. Please, tell him: is it possible to divide all the apples in a fair way between his friends? Input Specification: The first line contains an integer *n* (1<=≤<=*n*<=≤<=100) — the number of apples. The second line contains *n* integers *w*1,<=*w*2,<=...,<=*w**n* (*w**i*<==<=100 or *w**i*<==<=200), where *w**i* is the weight of the *i*-th apple. Output Specification: In a single line print "YES" (without the quotes) if it is possible to divide all the apples between his friends. Otherwise print "NO" (without the quotes). Demo Input: ['3\n100 200 100\n', '4\n100 100 100 200\n'] Demo Output: ['YES\n', 'NO\n'] Note: In the first test sample Kitahara Haruki can give the first and the last apple to Ogiso Setsuna and the middle apple to Touma Kazusa.
```python n = int(input()) w = [int(x) for x in input().split()] ones = sum([1 if x==100 else 0 for x in w]) twos = sum([1 if x==200 else 0 for x in w]) if (ones*100+twos*200)%200 !=0: print("NO") else: need = (ones*100 + twos*200)//2 ans = False for i in range(twos+1): if 200*i <= need and (need-200*i) <= ones*100: ans = True if ans: print("YES") else: print("NO") ```
3
903
C
Boxes Packing
PROGRAMMING
1,200
[ "greedy" ]
null
null
Mishka has got *n* empty boxes. For every *i* (1<=≤<=*i*<=≤<=*n*), *i*-th box is a cube with side length *a**i*. Mishka can put a box *i* into another box *j* if the following conditions are met: - *i*-th box is not put into another box; - *j*-th box doesn't contain any other boxes; - box *i* is smaller than box *j* (*a**i*<=&lt;<=*a**j*). Mishka can put boxes into each other an arbitrary number of times. He wants to minimize the number of visible boxes. A box is called visible iff it is not put into some another box. Help Mishka to determine the minimum possible number of visible boxes!
The first line contains one integer *n* (1<=≤<=*n*<=≤<=5000) — the number of boxes Mishka has got. The second line contains *n* integers *a*1, *a*2, ..., *a**n* (1<=≤<=*a**i*<=≤<=109), where *a**i* is the side length of *i*-th box.
Print the minimum possible number of visible boxes.
[ "3\n1 2 3\n", "4\n4 2 4 3\n" ]
[ "1\n", "2\n" ]
In the first example it is possible to put box 1 into box 2, and 2 into 3. In the second example Mishka can put box 2 into box 3, and box 4 into box 1.
0
[ { "input": "3\n1 2 3", "output": "1" }, { "input": "4\n4 2 4 3", "output": "2" }, { "input": "10\n58 58 58 58 58 58 58 58 58 58", "output": "10" }, { "input": "10\n86 89 89 86 86 89 86 86 89 89", "output": "5" }, { "input": "100\n981 288 186 186 292 876 341 288 981 360 783 907 292 186 341 292 360 876 360 360 981 398 783 288 292 398 876 981 398 907 783 360 288 981 907 186 360 288 186 981 186 288 907 876 288 907 876 360 341 292 907 783 907 783 292 981 907 292 876 398 783 876 398 341 876 186 288 186 981 341 398 360 907 981 341 186 292 981 292 398 876 783 292 186 360 292 288 292 876 398 288 292 341 288 398 360 360 292 981 360", "output": "14" }, { "input": "1\n1", "output": "1" }, { "input": "1\n9", "output": "1" }, { "input": "1\n5", "output": "1" }, { "input": "1\n2", "output": "1" }, { "input": "1\n131", "output": "1" }, { "input": "9\n1 1 1 1 1 1 1 1 1", "output": "9" }, { "input": "11\n1 1 1 1 1 1 1 1 1 1 1", "output": "11" }, { "input": "8\n1 2 3 4 5 6 7 8", "output": "1" }, { "input": "8\n1 1 1 1 1 1 1 1", "output": "8" }, { "input": "5\n1 1 1 1 1", "output": "5" } ]
1,638,435,471
2,147,483,647
PyPy 3-64
OK
TESTS
24
77
3,072,000
mp = dict() n = int(input()) m = 0 a = [int(el) for el in input().split()] for x in a: mp[x] = mp.get(x, 0)+1 for el in mp: m=max(m,mp[el]) print(m)
Title: Boxes Packing Time Limit: None seconds Memory Limit: None megabytes Problem Description: Mishka has got *n* empty boxes. For every *i* (1<=≤<=*i*<=≤<=*n*), *i*-th box is a cube with side length *a**i*. Mishka can put a box *i* into another box *j* if the following conditions are met: - *i*-th box is not put into another box; - *j*-th box doesn't contain any other boxes; - box *i* is smaller than box *j* (*a**i*<=&lt;<=*a**j*). Mishka can put boxes into each other an arbitrary number of times. He wants to minimize the number of visible boxes. A box is called visible iff it is not put into some another box. Help Mishka to determine the minimum possible number of visible boxes! Input Specification: The first line contains one integer *n* (1<=≤<=*n*<=≤<=5000) — the number of boxes Mishka has got. The second line contains *n* integers *a*1, *a*2, ..., *a**n* (1<=≤<=*a**i*<=≤<=109), where *a**i* is the side length of *i*-th box. Output Specification: Print the minimum possible number of visible boxes. Demo Input: ['3\n1 2 3\n', '4\n4 2 4 3\n'] Demo Output: ['1\n', '2\n'] Note: In the first example it is possible to put box 1 into box 2, and 2 into 3. In the second example Mishka can put box 2 into box 3, and box 4 into box 1.
```python mp = dict() n = int(input()) m = 0 a = [int(el) for el in input().split()] for x in a: mp[x] = mp.get(x, 0)+1 for el in mp: m=max(m,mp[el]) print(m) ```
3
818
A
Diplomas and Certificates
PROGRAMMING
800
[ "implementation", "math" ]
null
null
There are *n* students who have taken part in an olympiad. Now it's time to award the students. Some of them will receive diplomas, some wiil get certificates, and others won't receive anything. Students with diplomas and certificates are called winners. But there are some rules of counting the number of diplomas and certificates. The number of certificates must be exactly *k* times greater than the number of diplomas. The number of winners must not be greater than half of the number of all students (i.e. not be greater than half of *n*). It's possible that there are no winners. You have to identify the maximum possible number of winners, according to these rules. Also for this case you have to calculate the number of students with diplomas, the number of students with certificates and the number of students who are not winners.
The first (and the only) line of input contains two integers *n* and *k* (1<=≤<=*n*,<=*k*<=≤<=1012), where *n* is the number of students and *k* is the ratio between the number of certificates and the number of diplomas.
Output three numbers: the number of students with diplomas, the number of students with certificates and the number of students who are not winners in case when the number of winners is maximum possible. It's possible that there are no winners.
[ "18 2\n", "9 10\n", "1000000000000 5\n", "1000000000000 499999999999\n" ]
[ "3 6 9\n", "0 0 9\n", "83333333333 416666666665 500000000002\n", "1 499999999999 500000000000\n" ]
none
0
[ { "input": "18 2", "output": "3 6 9" }, { "input": "9 10", "output": "0 0 9" }, { "input": "1000000000000 5", "output": "83333333333 416666666665 500000000002" }, { "input": "1000000000000 499999999999", "output": "1 499999999999 500000000000" }, { "input": "1 1", "output": "0 0 1" }, { "input": "5 3", "output": "0 0 5" }, { "input": "42 6", "output": "3 18 21" }, { "input": "1000000000000 1000", "output": "499500499 499500499000 500000000501" }, { "input": "999999999999 999999", "output": "499999 499998500001 500000999999" }, { "input": "732577309725 132613", "output": "2762066 366285858458 366288689201" }, { "input": "152326362626 15", "output": "4760198832 71402982480 76163181314" }, { "input": "2 1", "output": "0 0 2" }, { "input": "1000000000000 500000000000", "output": "0 0 1000000000000" }, { "input": "100000000000 50000000011", "output": "0 0 100000000000" }, { "input": "1000000000000 32416187567", "output": "15 486242813505 513757186480" }, { "input": "1000000000000 7777777777", "output": "64 497777777728 502222222208" }, { "input": "1000000000000 77777777777", "output": "6 466666666662 533333333332" }, { "input": "100000000000 578485652", "output": "86 49749766072 50250233842" }, { "input": "999999999999 10000000000", "output": "49 490000000000 509999999950" }, { "input": "7 2", "output": "1 2 4" }, { "input": "420506530901 752346673804", "output": "0 0 420506530901" }, { "input": "960375521135 321688347872", "output": "1 321688347872 638687173262" }, { "input": "1000000000000 1000000000000", "output": "0 0 1000000000000" }, { "input": "99999999999 15253636363", "output": "3 45760909089 54239090907" }, { "input": "19 2", "output": "3 6 10" }, { "input": "999999999999 1000000000000", "output": "0 0 999999999999" }, { "input": "1000000000000 5915587276", "output": "84 496909331184 503090668732" }, { "input": "1000000000000 1000000006", "output": "499 499000002994 500999996507" }, { "input": "549755813888 134217728", "output": "2047 274743689216 275012122625" }, { "input": "99999999999 3333333", "output": "14999 49996661667 50003323333" }, { "input": "9 1", "output": "2 2 5" }, { "input": "1000000000000 250000000001", "output": "1 250000000001 749999999998" }, { "input": "5 1", "output": "1 1 3" }, { "input": "3107038133 596040207", "output": "2 1192080414 1914957717" }, { "input": "1000000000000 73786977", "output": "6776 499980556152 500019437072" }, { "input": "1000000000000 73786976", "output": "6776 499980549376 500019443848" }, { "input": "1000000000000 25000000000", "output": "19 475000000000 524999999981" }, { "input": "216929598879 768233755932", "output": "0 0 216929598879" }, { "input": "1000000000000 250000000000", "output": "1 250000000000 749999999999" }, { "input": "1000000000000 100000000001", "output": "4 400000000004 599999999992" }, { "input": "100000000000 100000000001", "output": "0 0 100000000000" }, { "input": "900000000000 100281800001", "output": "4 401127200004 498872799992" }, { "input": "906028900004 109123020071", "output": "4 436492080284 469536819716" }, { "input": "1000000000000 1", "output": "250000000000 250000000000 500000000000" } ]
1,598,430,067
2,147,483,647
PyPy 3
WRONG_ANSWER
TESTS
1
124
0
import math n,k=input().split(" ") n=int(n) k=int(k) total=0 while total<=math.floor(n/2): total=total+k+1 print(int((total/(k+1))-1), int(k*(total/(k+1))-k), total-k-1)
Title: Diplomas and Certificates Time Limit: None seconds Memory Limit: None megabytes Problem Description: There are *n* students who have taken part in an olympiad. Now it's time to award the students. Some of them will receive diplomas, some wiil get certificates, and others won't receive anything. Students with diplomas and certificates are called winners. But there are some rules of counting the number of diplomas and certificates. The number of certificates must be exactly *k* times greater than the number of diplomas. The number of winners must not be greater than half of the number of all students (i.e. not be greater than half of *n*). It's possible that there are no winners. You have to identify the maximum possible number of winners, according to these rules. Also for this case you have to calculate the number of students with diplomas, the number of students with certificates and the number of students who are not winners. Input Specification: The first (and the only) line of input contains two integers *n* and *k* (1<=≤<=*n*,<=*k*<=≤<=1012), where *n* is the number of students and *k* is the ratio between the number of certificates and the number of diplomas. Output Specification: Output three numbers: the number of students with diplomas, the number of students with certificates and the number of students who are not winners in case when the number of winners is maximum possible. It's possible that there are no winners. Demo Input: ['18 2\n', '9 10\n', '1000000000000 5\n', '1000000000000 499999999999\n'] Demo Output: ['3 6 9\n', '0 0 9\n', '83333333333 416666666665 500000000002\n', '1 499999999999 500000000000\n'] Note: none
```python import math n,k=input().split(" ") n=int(n) k=int(k) total=0 while total<=math.floor(n/2): total=total+k+1 print(int((total/(k+1))-1), int(k*(total/(k+1))-k), total-k-1) ```
0
624
B
Making a String
PROGRAMMING
1,100
[ "greedy", "sortings" ]
null
null
You are given an alphabet consisting of *n* letters, your task is to make a string of the maximum possible length so that the following conditions are satisfied: - the *i*-th letter occurs in the string no more than *a**i* times; - the number of occurrences of each letter in the string must be distinct for all the letters that occurred in the string at least once.
The first line of the input contains a single integer *n* (2<=<=≤<=<=*n*<=<=≤<=<=26) — the number of letters in the alphabet. The next line contains *n* integers *a**i* (1<=≤<=*a**i*<=≤<=109) — *i*-th of these integers gives the limitation on the number of occurrences of the *i*-th character in the string.
Print a single integer — the maximum length of the string that meets all the requirements.
[ "3\n2 5 5\n", "3\n1 1 2\n" ]
[ "11\n", "3\n" ]
For convenience let's consider an alphabet consisting of three letters: "a", "b", "c". In the first sample, some of the optimal strings are: "cccaabbccbb", "aabcbcbcbcb". In the second sample some of the optimal strings are: "acc", "cbc".
1,000
[ { "input": "3\n2 5 5", "output": "11" }, { "input": "3\n1 1 2", "output": "3" }, { "input": "2\n1 1", "output": "1" }, { "input": "3\n1 1000000000 2", "output": "1000000003" }, { "input": "26\n1000000000 1000000000 1000000000 1000000000 1000000000 1000000000 1000000000 1000000000 1000000000 1000000000 1000000000 1000000000 1000000000 1000000000 1000000000 1000000000 1000000000 1000000000 1000000000 1000000000 1000000000 1000000000 1000000000 1000000000 1000000000 1000000000", "output": "25999999675" }, { "input": "2\n559476582 796461544", "output": "1355938126" }, { "input": "2\n257775227 621811272", "output": "879586499" }, { "input": "10\n876938317 219479349 703839299 977218449 116819315 752405530 393874852 286326991 592978634 155758306", "output": "5075639042" }, { "input": "26\n72 49 87 47 94 96 36 91 43 11 19 83 36 38 10 93 95 81 4 96 60 38 97 37 36 41", "output": "1478" }, { "input": "26\n243 364 768 766 633 535 502 424 502 283 592 877 137 891 837 990 681 898 831 487 595 604 747 856 805 688", "output": "16535" }, { "input": "26\n775 517 406 364 548 951 680 984 466 141 960 513 660 849 152 250 176 601 199 370 971 554 141 224 724 543", "output": "13718" }, { "input": "26\n475 344 706 807 925 813 974 166 578 226 624 591 419 894 574 909 544 597 170 990 893 785 399 172 792 748", "output": "16115" }, { "input": "26\n130 396 985 226 487 671 188 706 106 649 38 525 210 133 298 418 953 431 577 69 12 982 264 373 283 266", "output": "10376" }, { "input": "26\n605 641 814 935 936 547 524 702 133 674 173 102 318 620 248 523 77 718 318 635 322 362 306 86 8 442", "output": "11768" }, { "input": "26\n220 675 725 888 725 654 546 806 379 182 604 667 734 394 889 731 572 193 850 651 844 734 163 671 820 887", "output": "16202" }, { "input": "26\n1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000", "output": "25675" }, { "input": "26\n1001 1001 1000 1000 1001 1000 1001 1001 1001 1000 1000 1001 1001 1000 1000 1000 1000 1001 1000 1001 1001 1000 1001 1001 1001 1000", "output": "25701" }, { "input": "26\n1000 1001 1000 1001 1000 1001 1001 1000 1001 1002 1002 1000 1001 1000 1000 1000 1001 1002 1001 1000 1000 1001 1000 1002 1001 1002", "output": "25727" }, { "input": "26\n1003 1002 1002 1003 1000 1000 1000 1003 1000 1001 1003 1003 1000 1002 1002 1002 1001 1003 1000 1001 1000 1001 1001 1000 1003 1003", "output": "25753" }, { "input": "26\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1", "output": "1" }, { "input": "26\n8717 9417 1409 7205 3625 6247 8626 9486 464 4271 1698 8449 4551 1528 7456 9198 4886 2889 7534 506 7867 9410 1635 4955 2580 2580", "output": "137188" }, { "input": "26\n197464663 125058028 622449215 11119637 587496049 703992162 219591040 965159268 229879004 278894000 841629744 616893922 218779915 362575332 844188865 342411376 369680019 43823059 921419789 999588082 943769007 35365522 301907919 758302419 427454397 807507709", "output": "12776400142" }, { "input": "26\n907247856 970380443 957324066 929910532 947150618 944189007 998282297 988343406 981298600 943026596 953932265 972691398 950024048 923033790 996423650 972134755 946404759 918183059 902987271 965507679 906967700 982106487 933997242 972594441 977736332 928874832", "output": "24770753129" }, { "input": "26\n999999061 999999688 999999587 999999429 999999110 999999563 999999120 999999111 999999794 999999890 999999004 999999448 999999770 999999543 999999460 999999034 999999361 999999305 999999201 999999778 999999432 999999844 999999133 999999342 999999600 999999319", "output": "25999984927" }, { "input": "3\n587951561 282383259 612352726", "output": "1482687546" }, { "input": "4\n111637338 992238139 787658714 974622806", "output": "2866156997" }, { "input": "5\n694257603 528073418 726928894 596328666 652863391", "output": "3198451972" }, { "input": "6\n217943380 532900593 902234882 513005821 369342573 495810412", "output": "3031237661" }, { "input": "7\n446656860 478792281 77541870 429682977 85821755 826122363 563802405", "output": "2908420511" }, { "input": "8\n29278125 778590752 252847858 51388836 802299938 215370803 901540149 242074772", "output": "3273391233" }, { "input": "9\n552962902 724482439 133182550 673093696 518779120 604618242 534250189 847695567 403066553", "output": "4992131258" }, { "input": "10\n600386086 862479376 284190454 781950823 672077209 5753052 145701234 680334621 497013634 35429365", "output": "4565315854" }, { "input": "11\n183007351 103343359 164525146 698627979 388556391 926007595 483438978 580927711 659384363 201890880 920750904", "output": "5310460657" }, { "input": "12\n706692128 108170535 339831134 320333838 810063277 20284739 821176722 481520801 467848308 604388203 881959821 874133307", "output": "6436402813" }, { "input": "13\n525349200 54062222 810108418 237010994 821513756 409532178 158915465 87142595 630219037 770849718 843168738 617993222 504443485", "output": "6470309028" }, { "input": "14\n812998169 353860693 690443110 153688149 537992938 798779618 791624505 282706982 733654279 468319337 568341847 597888944 649703235 667623671", "output": "8107625477" }, { "input": "15\n336683946 299752380 865749098 775393009 959499824 893055762 365399057 419335880 896025008 575845364 529550764 341748859 30999793 464432689 19445239", "output": "7772916672" }, { "input": "16\n860368723 540615364 41056086 692070164 970950302 282304201 998108096 24957674 999460249 37279175 490759681 26673285 412295352 671298115 627182888 90740349", "output": "7766119704" }, { "input": "17\n148018692 545442539 980325266 313776023 687429485 376580345 40875544 925549764 161831978 144805202 451968598 475560904 262583806 468107133 60900936 281546097 912565045", "output": "7237867357" }, { "input": "18\n966674765 786305522 860659958 935480883 108937371 60800080 673584584 826142855 560238516 606238013 413177515 455456626 643879364 969943855 963609881 177380550 544192822 864797474", "output": "11417500634" }, { "input": "19\n490360541 496161402 330938242 852158038 120387849 686083328 247359135 431764649 427637949 8736336 843378328 435352349 494167818 766752874 161292122 368186298 470791896 813444279 170758124", "output": "8615711557" }, { "input": "20\n654616375 542649443 729213190 188364665 238384327 726353863 974350390 526804424 601329631 886592063 734805196 275562411 861801362 374466292 119830901 403120565 670982545 63210795 130397643 601611646", "output": "10304447727" }, { "input": "21\n942265343 252505322 904519178 810069524 954862509 115602302 548124942 132426218 999736168 584061682 696014113 960485837 712089816 581331718 317512142 593926314 302610323 716885305 477125514 813997503 535631456", "output": "12951783229" }, { "input": "22\n465951120 788339601 784853870 726746679 376370396 504849742 180834982 33019308 867135601 455551901 657223030 940381560 93386374 378140736 161286599 548696254 934237100 75589518 764917898 731412064 205669368 630662937", "output": "11305256638" }, { "input": "23\n989635897 498195481 255132154 643423835 387820874 894097181 223601429 228583694 265543138 153021520 618431947 684241474 943673829 174949754 358967839 444530707 801900686 965299835 347682577 648826625 406714384 129525158 958578251", "output": "12022378269" }, { "input": "24\n277285866 739058464 135466846 265129694 104300056 519381429 856310469 834204489 132942572 260547547 343605057 664137197 619941683 676786476 497713592 635336455 138557168 618975345 635474960 861212482 76752297 923357675 517046816 274123722", "output": "11607648357" }, { "input": "25\n95942939 979921447 310772834 181806850 525806942 613657573 194049213 734797579 531349109 721980358 304813974 113025815 470230137 473595494 695394833 590106396 770183946 567622150 218239639 778627043 41761505 127248600 134450869 860350034 901937574", "output": "11937672853" }, { "input": "26\n619627716 984748623 486078822 98484005 537257421 2906012 62795060 635390669 103777246 829506385 971050595 92921538 851525695 680460920 893076074 780912144 401811723 221297659 269996214 991012900 242806521 626109821 987889730 682613155 209557740 806895799", "output": "14070510187" }, { "input": "26\n10 1 20 2 23 3 14 6 7 13 26 21 11 8 16 25 12 15 19 9 17 22 24 18 5 4", "output": "351" }, { "input": "3\n1 1 1", "output": "1" }, { "input": "5\n5 3 3 3 1", "output": "11" }, { "input": "5\n2 2 2 2 2", "output": "3" }, { "input": "10\n10 10 10 10 10 10 10 10 1 1", "output": "53" }, { "input": "10\n100 100 10 10 10 10 10 1 1 1", "output": "240" }, { "input": "6\n5 3 3 3 3 1", "output": "11" }, { "input": "4\n4 3 2 1", "output": "10" }, { "input": "5\n1 1 1 1 1", "output": "1" } ]
1,454,611,191
5,691
Python 3
WRONG_ANSWER
TESTS
8
46
102,400
n=eval(input()) l=list(map(int,input().split())) sum=0 i=0 q=0 while(q<n): tmp=l[q] k=-1 i=q while(i<n-1): if(tmp==l[i+1]): l[i+1]=l[i+1]+k k-=1 i+=1 q+=1 i=0 while(i<n): if(l[i]>0): sum+=l[i] i+=1 print(sum)
Title: Making a String Time Limit: None seconds Memory Limit: None megabytes Problem Description: You are given an alphabet consisting of *n* letters, your task is to make a string of the maximum possible length so that the following conditions are satisfied: - the *i*-th letter occurs in the string no more than *a**i* times; - the number of occurrences of each letter in the string must be distinct for all the letters that occurred in the string at least once. Input Specification: The first line of the input contains a single integer *n* (2<=<=≤<=<=*n*<=<=≤<=<=26) — the number of letters in the alphabet. The next line contains *n* integers *a**i* (1<=≤<=*a**i*<=≤<=109) — *i*-th of these integers gives the limitation on the number of occurrences of the *i*-th character in the string. Output Specification: Print a single integer — the maximum length of the string that meets all the requirements. Demo Input: ['3\n2 5 5\n', '3\n1 1 2\n'] Demo Output: ['11\n', '3\n'] Note: For convenience let's consider an alphabet consisting of three letters: "a", "b", "c". In the first sample, some of the optimal strings are: "cccaabbccbb", "aabcbcbcbcb". In the second sample some of the optimal strings are: "acc", "cbc".
```python n=eval(input()) l=list(map(int,input().split())) sum=0 i=0 q=0 while(q<n): tmp=l[q] k=-1 i=q while(i<n-1): if(tmp==l[i+1]): l[i+1]=l[i+1]+k k-=1 i+=1 q+=1 i=0 while(i<n): if(l[i]>0): sum+=l[i] i+=1 print(sum) ```
0
469
A
I Wanna Be the Guy
PROGRAMMING
800
[ "greedy", "implementation" ]
null
null
There is a game called "I Wanna Be the Guy", consisting of *n* levels. Little X and his friend Little Y are addicted to the game. Each of them wants to pass the whole game. Little X can pass only *p* levels of the game. And Little Y can pass only *q* levels of the game. You are given the indices of levels Little X can pass and the indices of levels Little Y can pass. Will Little X and Little Y pass the whole game, if they cooperate each other?
The first line contains a single integer *n* (1<=≤<=<=*n*<=≤<=100). The next line contains an integer *p* (0<=≤<=*p*<=≤<=*n*) at first, then follows *p* distinct integers *a*1,<=*a*2,<=...,<=*a**p* (1<=≤<=*a**i*<=≤<=*n*). These integers denote the indices of levels Little X can pass. The next line contains the levels Little Y can pass in the same format. It's assumed that levels are numbered from 1 to *n*.
If they can pass all the levels, print "I become the guy.". If it's impossible, print "Oh, my keyboard!" (without the quotes).
[ "4\n3 1 2 3\n2 2 4\n", "4\n3 1 2 3\n2 2 3\n" ]
[ "I become the guy.\n", "Oh, my keyboard!\n" ]
In the first sample, Little X can pass levels [1 2 3], and Little Y can pass level [2 4], so they can pass all the levels both. In the second sample, no one can pass level 4.
500
[ { "input": "4\n3 1 2 3\n2 2 4", "output": "I become the guy." }, { "input": "4\n3 1 2 3\n2 2 3", "output": "Oh, my keyboard!" }, { "input": "10\n5 8 6 1 5 4\n6 1 3 2 9 4 6", "output": "Oh, my keyboard!" }, { "input": "10\n8 8 10 7 3 1 4 2 6\n8 9 5 10 3 7 2 4 8", "output": "I become the guy." }, { "input": "10\n9 6 1 8 3 9 7 5 10 4\n7 1 3 2 7 6 9 5", "output": "I become the guy." }, { "input": "100\n75 83 69 73 30 76 37 48 14 41 42 21 35 15 50 61 86 85 46 3 31 13 78 10 2 44 80 95 56 82 38 75 77 4 99 9 84 53 12 11 36 74 39 72 43 89 57 28 54 1 51 66 27 22 93 59 68 88 91 29 7 20 63 8 52 23 64 58 100 79 65 49 96 71 33 45\n83 50 89 73 34 28 99 67 77 44 19 60 68 42 8 27 94 85 14 39 17 78 24 21 29 63 92 32 86 22 71 81 31 82 65 48 80 59 98 3 70 55 37 12 15 72 47 9 11 33 16 7 91 74 13 64 38 84 6 61 93 90 45 69 1 54 52 100 57 10 35 49 53 75 76 43 62 5 4 18 36 96 79 23", "output": "Oh, my keyboard!" }, { "input": "1\n1 1\n1 1", "output": "I become the guy." }, { "input": "1\n0\n1 1", "output": "I become the guy." }, { "input": "1\n1 1\n0", "output": "I become the guy." }, { "input": "1\n0\n0", "output": "Oh, my keyboard!" }, { "input": "100\n0\n0", "output": "Oh, my keyboard!" }, { "input": "100\n44 71 70 55 49 43 16 53 7 95 58 56 38 76 67 94 20 73 29 90 25 30 8 84 5 14 77 52 99 91 66 24 39 37 22 44 78 12 63 59 32 51 15 82 34\n56 17 10 96 80 69 13 81 31 57 4 48 68 89 50 45 3 33 36 2 72 100 64 87 21 75 54 74 92 65 23 40 97 61 18 28 98 93 35 83 9 79 46 27 41 62 88 6 47 60 86 26 42 85 19 1 11", "output": "I become the guy." }, { "input": "100\n78 63 59 39 11 58 4 2 80 69 22 95 90 26 65 16 30 100 66 99 67 79 54 12 23 28 45 56 70 74 60 82 73 91 68 43 92 75 51 21 17 97 86 44 62 47 85 78 72 64 50 81 71 5 57 13 31 76 87 9 49 96 25 42 19 35 88 53 7 83 38 27 29 41 89 93 10 84 18\n78 1 16 53 72 99 9 36 59 49 75 77 94 79 35 4 92 42 82 83 76 97 20 68 55 47 65 50 14 30 13 67 98 8 7 40 64 32 87 10 33 90 93 18 26 71 17 46 24 28 89 58 37 91 39 34 25 48 84 31 96 95 80 88 3 51 62 52 85 61 12 15 27 6 45 38 2 22 60", "output": "I become the guy." }, { "input": "2\n2 2 1\n0", "output": "I become the guy." }, { "input": "2\n1 2\n2 1 2", "output": "I become the guy." }, { "input": "80\n57 40 1 47 36 69 24 76 5 72 26 4 29 62 6 60 3 70 8 64 18 37 16 14 13 21 25 7 66 68 44 74 61 39 38 33 15 63 34 65 10 23 56 51 80 58 49 75 71 12 50 57 2 30 54 27 17 52\n61 22 67 15 28 41 26 1 80 44 3 38 18 37 79 57 11 7 65 34 9 36 40 5 48 29 64 31 51 63 27 4 50 13 24 32 58 23 19 46 8 73 39 2 21 56 77 53 59 78 43 12 55 45 30 74 33 68 42 47 17 54", "output": "Oh, my keyboard!" }, { "input": "100\n78 87 96 18 73 32 38 44 29 64 40 70 47 91 60 69 24 1 5 34 92 94 99 22 83 65 14 68 15 20 74 31 39 100 42 4 97 46 25 6 8 56 79 9 71 35 54 19 59 93 58 62 10 85 57 45 33 7 86 81 30 98 26 61 84 41 23 28 88 36 66 51 80 53 37 63 43 95 75\n76 81 53 15 26 37 31 62 24 87 41 39 75 86 46 76 34 4 51 5 45 65 67 48 68 23 71 27 94 47 16 17 9 96 84 89 88 100 18 52 69 42 6 92 7 64 49 12 98 28 21 99 25 55 44 40 82 19 36 30 77 90 14 43 50 3 13 95 78 35 20 54 58 11 2 1 33", "output": "Oh, my keyboard!" }, { "input": "100\n77 55 26 98 13 91 78 60 23 76 12 11 36 62 84 80 18 1 68 92 81 67 19 4 2 10 17 77 96 63 15 69 46 97 82 42 83 59 50 72 14 40 89 9 52 29 56 31 74 39 45 85 22 99 44 65 95 6 90 38 54 32 49 34 3 70 75 33 94 53 21 71 5 66 73 41 100 24\n69 76 93 5 24 57 59 6 81 4 30 12 44 15 67 45 73 3 16 8 47 95 20 64 68 85 54 17 90 86 66 58 13 37 42 51 35 32 1 28 43 80 7 14 48 19 62 55 2 91 25 49 27 26 38 79 89 99 22 60 75 53 88 82 34 21 87 71 72 61", "output": "I become the guy." }, { "input": "100\n74 96 32 63 12 69 72 99 15 22 1 41 79 77 71 31 20 28 75 73 85 37 38 59 42 100 86 89 55 87 68 4 24 57 52 8 92 27 56 98 95 58 34 9 45 14 11 36 66 76 61 19 25 23 78 49 90 26 80 43 70 13 65 10 5 74 81 21 44 60 97 3 47 93 6\n64 68 21 27 16 91 23 22 33 12 71 88 90 50 62 43 28 29 57 59 5 74 10 95 35 1 67 93 36 32 86 40 6 64 78 46 89 15 84 53 18 30 17 85 2 3 47 92 25 48 76 51 20 82 52 83 99 63 80 11 94 54 39 7 58", "output": "I become the guy." }, { "input": "100\n75 11 98 44 47 88 94 23 78 59 70 2 43 39 34 63 71 19 42 61 30 74 14 77 97 53 92 60 67 36 37 13 6 86 62 46 41 3 25 93 7 12 27 48 55 49 31 35 51 10 57 54 95 82 28 90 73 26 17 50 81 56 20 87 40 85 72 64 99 29 91 5 80 18 24 52\n72 93 59 5 88 47 9 58 48 1 43 50 100 87 61 91 45 98 99 56 25 84 53 73 78 54 63 38 37 2 77 95 89 85 4 90 10 33 12 22 74 32 34 70 71 52 96 57 15 66 31 27 75 8 21 39 62 44 67 94 81 68 14 19 36 28 11 79 16 65 46 83 76", "output": "Oh, my keyboard!" }, { "input": "3\n1 2\n2 2 3", "output": "Oh, my keyboard!" }, { "input": "4\n1 2\n3 1 3 4", "output": "I become the guy." }, { "input": "6\n2 1 2\n3 4 5 6", "output": "Oh, my keyboard!" } ]
1,694,024,707
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
1
30
0
a=int(input()) b=list(map(int,input().split())) c=list(map(int,input().split())) d=b[1:]+c[1:] if(len(set(d))==a): print("I become the guy.") else: print("Oh, my keyboard")
Title: I Wanna Be the Guy Time Limit: None seconds Memory Limit: None megabytes Problem Description: There is a game called "I Wanna Be the Guy", consisting of *n* levels. Little X and his friend Little Y are addicted to the game. Each of them wants to pass the whole game. Little X can pass only *p* levels of the game. And Little Y can pass only *q* levels of the game. You are given the indices of levels Little X can pass and the indices of levels Little Y can pass. Will Little X and Little Y pass the whole game, if they cooperate each other? Input Specification: The first line contains a single integer *n* (1<=≤<=<=*n*<=≤<=100). The next line contains an integer *p* (0<=≤<=*p*<=≤<=*n*) at first, then follows *p* distinct integers *a*1,<=*a*2,<=...,<=*a**p* (1<=≤<=*a**i*<=≤<=*n*). These integers denote the indices of levels Little X can pass. The next line contains the levels Little Y can pass in the same format. It's assumed that levels are numbered from 1 to *n*. Output Specification: If they can pass all the levels, print "I become the guy.". If it's impossible, print "Oh, my keyboard!" (without the quotes). Demo Input: ['4\n3 1 2 3\n2 2 4\n', '4\n3 1 2 3\n2 2 3\n'] Demo Output: ['I become the guy.\n', 'Oh, my keyboard!\n'] Note: In the first sample, Little X can pass levels [1 2 3], and Little Y can pass level [2 4], so they can pass all the levels both. In the second sample, no one can pass level 4.
```python a=int(input()) b=list(map(int,input().split())) c=list(map(int,input().split())) d=b[1:]+c[1:] if(len(set(d))==a): print("I become the guy.") else: print("Oh, my keyboard") ```
0
599
A
Patrick and Shopping
PROGRAMMING
800
[ "implementation" ]
null
null
Today Patrick waits for a visit from his friend Spongebob. To prepare for the visit, Patrick needs to buy some goodies in two stores located near his house. There is a *d*1 meter long road between his house and the first shop and a *d*2 meter long road between his house and the second shop. Also, there is a road of length *d*3 directly connecting these two shops to each other. Help Patrick calculate the minimum distance that he needs to walk in order to go to both shops and return to his house. Patrick always starts at his house. He should visit both shops moving only along the three existing roads and return back to his house. He doesn't mind visiting the same shop or passing the same road multiple times. The only goal is to minimize the total distance traveled.
The first line of the input contains three integers *d*1, *d*2, *d*3 (1<=≤<=*d*1,<=*d*2,<=*d*3<=≤<=108) — the lengths of the paths. - *d*1 is the length of the path connecting Patrick's house and the first shop; - *d*2 is the length of the path connecting Patrick's house and the second shop; - *d*3 is the length of the path connecting both shops.
Print the minimum distance that Patrick will have to walk in order to visit both shops and return to his house.
[ "10 20 30\n", "1 1 5\n" ]
[ "60\n", "4\n" ]
The first sample is shown on the picture in the problem statement. One of the optimal routes is: house <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/70a0795f45d32287dba0eb83fc4a3f470c6e5537.png" style="max-width: 100.0%;max-height: 100.0%;"/> first shop <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/70a0795f45d32287dba0eb83fc4a3f470c6e5537.png" style="max-width: 100.0%;max-height: 100.0%;"/> second shop <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/70a0795f45d32287dba0eb83fc4a3f470c6e5537.png" style="max-width: 100.0%;max-height: 100.0%;"/> house. In the second sample one of the optimal routes is: house <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/70a0795f45d32287dba0eb83fc4a3f470c6e5537.png" style="max-width: 100.0%;max-height: 100.0%;"/> first shop <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/70a0795f45d32287dba0eb83fc4a3f470c6e5537.png" style="max-width: 100.0%;max-height: 100.0%;"/> house <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/70a0795f45d32287dba0eb83fc4a3f470c6e5537.png" style="max-width: 100.0%;max-height: 100.0%;"/> second shop <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/70a0795f45d32287dba0eb83fc4a3f470c6e5537.png" style="max-width: 100.0%;max-height: 100.0%;"/> house.
500
[ { "input": "10 20 30", "output": "60" }, { "input": "1 1 5", "output": "4" }, { "input": "100 33 34", "output": "134" }, { "input": "777 777 777", "output": "2331" }, { "input": "2 2 8", "output": "8" }, { "input": "12 34 56", "output": "92" }, { "input": "789 101112 131415", "output": "203802" }, { "input": "27485716 99999999 35182", "output": "55041796" }, { "input": "1 293548 5", "output": "12" }, { "input": "12059 259855 5874875", "output": "543828" }, { "input": "46981 105809 585858", "output": "305580" }, { "input": "9889 1221 2442", "output": "7326" }, { "input": "100500 200600 300700", "output": "601800" }, { "input": "318476 318476 318476", "output": "955428" }, { "input": "23985 3353 75633", "output": "54676" }, { "input": "120 1298 2222", "output": "2836" }, { "input": "98437 23487 666672", "output": "243848" }, { "input": "100000000 100000000 100000000", "output": "300000000" }, { "input": "2 5 2", "output": "8" }, { "input": "1 1000 1", "output": "4" }, { "input": "1 100000000 1", "output": "4" } ]
1,597,227,020
2,147,483,647
Python 3
OK
TESTS
21
108
6,758,400
a,b,c=map(int,input().split()) if a+b>=c and a<=b+c and b<=a+c: print(a+b+c) elif a+b<c: print(2*a+2*b) elif a>b+c: print(2*b+2*c) elif b>a+c: print(2*a+2*c)
Title: Patrick and Shopping Time Limit: None seconds Memory Limit: None megabytes Problem Description: Today Patrick waits for a visit from his friend Spongebob. To prepare for the visit, Patrick needs to buy some goodies in two stores located near his house. There is a *d*1 meter long road between his house and the first shop and a *d*2 meter long road between his house and the second shop. Also, there is a road of length *d*3 directly connecting these two shops to each other. Help Patrick calculate the minimum distance that he needs to walk in order to go to both shops and return to his house. Patrick always starts at his house. He should visit both shops moving only along the three existing roads and return back to his house. He doesn't mind visiting the same shop or passing the same road multiple times. The only goal is to minimize the total distance traveled. Input Specification: The first line of the input contains three integers *d*1, *d*2, *d*3 (1<=≤<=*d*1,<=*d*2,<=*d*3<=≤<=108) — the lengths of the paths. - *d*1 is the length of the path connecting Patrick's house and the first shop; - *d*2 is the length of the path connecting Patrick's house and the second shop; - *d*3 is the length of the path connecting both shops. Output Specification: Print the minimum distance that Patrick will have to walk in order to visit both shops and return to his house. Demo Input: ['10 20 30\n', '1 1 5\n'] Demo Output: ['60\n', '4\n'] Note: The first sample is shown on the picture in the problem statement. One of the optimal routes is: house <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/70a0795f45d32287dba0eb83fc4a3f470c6e5537.png" style="max-width: 100.0%;max-height: 100.0%;"/> first shop <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/70a0795f45d32287dba0eb83fc4a3f470c6e5537.png" style="max-width: 100.0%;max-height: 100.0%;"/> second shop <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/70a0795f45d32287dba0eb83fc4a3f470c6e5537.png" style="max-width: 100.0%;max-height: 100.0%;"/> house. In the second sample one of the optimal routes is: house <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/70a0795f45d32287dba0eb83fc4a3f470c6e5537.png" style="max-width: 100.0%;max-height: 100.0%;"/> first shop <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/70a0795f45d32287dba0eb83fc4a3f470c6e5537.png" style="max-width: 100.0%;max-height: 100.0%;"/> house <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/70a0795f45d32287dba0eb83fc4a3f470c6e5537.png" style="max-width: 100.0%;max-height: 100.0%;"/> second shop <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/70a0795f45d32287dba0eb83fc4a3f470c6e5537.png" style="max-width: 100.0%;max-height: 100.0%;"/> house.
```python a,b,c=map(int,input().split()) if a+b>=c and a<=b+c and b<=a+c: print(a+b+c) elif a+b<c: print(2*a+2*b) elif a>b+c: print(2*b+2*c) elif b>a+c: print(2*a+2*c) ```
3
446
A
DZY Loves Sequences
PROGRAMMING
1,600
[ "dp", "implementation", "two pointers" ]
null
null
DZY has a sequence *a*, consisting of *n* integers. We'll call a sequence *a**i*,<=*a**i*<=+<=1,<=...,<=*a**j* (1<=≤<=*i*<=≤<=*j*<=≤<=*n*) a subsegment of the sequence *a*. The value (*j*<=-<=*i*<=+<=1) denotes the length of the subsegment. Your task is to find the longest subsegment of *a*, such that it is possible to change at most one number (change one number to any integer you want) from the subsegment to make the subsegment strictly increasing. You only need to output the length of the subsegment you find.
The first line contains integer *n* (1<=≤<=*n*<=≤<=105). The next line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=109).
In a single line print the answer to the problem — the maximum length of the required subsegment.
[ "6\n7 2 3 1 5 6\n" ]
[ "5\n" ]
You can choose subsegment *a*<sub class="lower-index">2</sub>, *a*<sub class="lower-index">3</sub>, *a*<sub class="lower-index">4</sub>, *a*<sub class="lower-index">5</sub>, *a*<sub class="lower-index">6</sub> and change its 3rd element (that is *a*<sub class="lower-index">4</sub>) to 4.
500
[ { "input": "6\n7 2 3 1 5 6", "output": "5" }, { "input": "10\n424238336 649760493 681692778 714636916 719885387 804289384 846930887 957747794 596516650 189641422", "output": "9" }, { "input": "50\n804289384 846930887 681692778 714636916 957747794 424238336 719885387 649760493 596516650 189641422 25202363 350490028 783368691 102520060 44897764 967513927 365180541 540383427 304089173 303455737 35005212 521595369 294702568 726956430 336465783 861021531 59961394 89018457 101513930 125898168 131176230 145174068 233665124 278722863 315634023 369133070 468703136 628175012 635723059 653377374 656478043 801979803 859484422 914544920 608413785 756898538 734575199 973594325 149798316 38664371", "output": "19" }, { "input": "1\n1", "output": "1" }, { "input": "2\n1000000000 1000000000", "output": "2" }, { "input": "5\n1 2 3 4 1", "output": "5" }, { "input": "10\n1 2 3 4 5 5 6 7 8 9", "output": "6" }, { "input": "5\n1 1 1 1 1", "output": "2" }, { "input": "5\n1 1 2 3 4", "output": "5" }, { "input": "5\n1 2 3 1 6", "output": "5" }, { "input": "1\n42", "output": "1" }, { "input": "5\n1 2 42 3 4", "output": "4" }, { "input": "5\n1 5 9 6 10", "output": "4" }, { "input": "5\n5 2 3 4 5", "output": "5" }, { "input": "3\n2 1 3", "output": "3" }, { "input": "5\n1 2 3 3 4", "output": "4" }, { "input": "8\n1 2 3 4 1 5 6 7", "output": "5" }, { "input": "1\n3", "output": "1" }, { "input": "3\n5 1 2", "output": "3" }, { "input": "4\n1 4 3 4", "output": "4" }, { "input": "6\n7 2 12 4 5 6", "output": "5" }, { "input": "6\n7 2 3 1 4 5", "output": "4" }, { "input": "6\n2 3 5 5 6 7", "output": "6" }, { "input": "5\n2 4 7 6 8", "output": "5" }, { "input": "3\n3 1 2", "output": "3" }, { "input": "3\n1 1 2", "output": "3" }, { "input": "2\n1 2", "output": "2" }, { "input": "5\n4 1 2 3 4", "output": "5" }, { "input": "20\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 3 4 5 6", "output": "7" }, { "input": "4\n1 2 1 3", "output": "3" }, { "input": "4\n4 3 1 2", "output": "3" }, { "input": "6\n1 2 2 3 4 5", "output": "5" }, { "input": "4\n1 1 1 2", "output": "3" }, { "input": "4\n5 1 2 3", "output": "4" }, { "input": "5\n9 1 2 3 4", "output": "5" }, { "input": "2\n1 1", "output": "2" }, { "input": "5\n1 3 2 4 5", "output": "4" }, { "input": "6\n1 2 1 2 4 5", "output": "5" }, { "input": "10\n1 1 5 3 2 9 9 7 7 6", "output": "3" }, { "input": "6\n1 2 3 100000 100 101", "output": "6" }, { "input": "4\n3 3 3 4", "output": "3" }, { "input": "3\n4 3 5", "output": "3" }, { "input": "5\n1 3 2 3 4", "output": "4" }, { "input": "10\n1 2 3 4 5 10 10 11 12 13", "output": "10" }, { "input": "7\n11 2 1 2 13 4 14", "output": "5" }, { "input": "3\n5 1 3", "output": "3" }, { "input": "4\n1 5 3 4", "output": "4" }, { "input": "10\n1 2 3 4 100 6 7 8 9 10", "output": "10" }, { "input": "3\n5 3 5", "output": "3" }, { "input": "5\n100 100 7 8 9", "output": "4" }, { "input": "5\n1 2 3 4 5", "output": "5" }, { "input": "5\n1 2 4 4 5", "output": "5" }, { "input": "6\n7 4 5 6 7 8", "output": "6" }, { "input": "9\n3 4 1 6 3 4 5 6 7", "output": "7" }, { "input": "3\n1000 1 2", "output": "3" }, { "input": "3\n20 1 9", "output": "3" }, { "input": "6\n7 2 3 1 4 6", "output": "4" }, { "input": "3\n100 5 10", "output": "3" }, { "input": "4\n2 2 2 3", "output": "3" }, { "input": "6\n4 2 8 1 2 5", "output": "4" }, { "input": "3\n25 1 6", "output": "3" }, { "input": "10\n17 99 23 72 78 36 5 43 95 9", "output": "5" }, { "input": "7\n21 16 22 21 11 13 19", "output": "4" }, { "input": "5\n1 2 5 3 4", "output": "4" }, { "input": "6\n2 2 2 3 4 5", "output": "5" }, { "input": "5\n1 3 1 2 3", "output": "4" }, { "input": "3\n81 33 64", "output": "3" }, { "input": "7\n14 3 3 19 13 19 15", "output": "4" }, { "input": "9\n1 2 3 4 5 42 7 8 9", "output": "9" }, { "input": "5\n2 3 7 5 6", "output": "5" }, { "input": "5\n1 3 3 4 5", "output": "5" }, { "input": "6\n1 5 4 3 4 5", "output": "4" } ]
1,591,188,809
2,147,483,647
PyPy 3
OK
TESTS
92
248
10,752,000
# Love u Atreyee n = int(input()) a = list(map(int, input().split())) left = [1] * n for i in range(1, n): if a[i] > a[i - 1]: left[i] = left[i - 1] + 1 right = [1] * n for i in range(n-2,-1,-1): if a[i] < a[i + 1]: right[i] = right[i + 1] + 1 ans = max(left) if ans < n: ans += 1 for i in range(1, n - 1): if a[i - 1] + 1 < a[i + 1]: ans = max(ans, left[i - 1] + right[i + 1] + 1) print(ans)
Title: DZY Loves Sequences Time Limit: None seconds Memory Limit: None megabytes Problem Description: DZY has a sequence *a*, consisting of *n* integers. We'll call a sequence *a**i*,<=*a**i*<=+<=1,<=...,<=*a**j* (1<=≤<=*i*<=≤<=*j*<=≤<=*n*) a subsegment of the sequence *a*. The value (*j*<=-<=*i*<=+<=1) denotes the length of the subsegment. Your task is to find the longest subsegment of *a*, such that it is possible to change at most one number (change one number to any integer you want) from the subsegment to make the subsegment strictly increasing. You only need to output the length of the subsegment you find. Input Specification: The first line contains integer *n* (1<=≤<=*n*<=≤<=105). The next line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=109). Output Specification: In a single line print the answer to the problem — the maximum length of the required subsegment. Demo Input: ['6\n7 2 3 1 5 6\n'] Demo Output: ['5\n'] Note: You can choose subsegment *a*<sub class="lower-index">2</sub>, *a*<sub class="lower-index">3</sub>, *a*<sub class="lower-index">4</sub>, *a*<sub class="lower-index">5</sub>, *a*<sub class="lower-index">6</sub> and change its 3rd element (that is *a*<sub class="lower-index">4</sub>) to 4.
```python # Love u Atreyee n = int(input()) a = list(map(int, input().split())) left = [1] * n for i in range(1, n): if a[i] > a[i - 1]: left[i] = left[i - 1] + 1 right = [1] * n for i in range(n-2,-1,-1): if a[i] < a[i + 1]: right[i] = right[i + 1] + 1 ans = max(left) if ans < n: ans += 1 for i in range(1, n - 1): if a[i - 1] + 1 < a[i + 1]: ans = max(ans, left[i - 1] + right[i + 1] + 1) print(ans) ```
3
526
B
Om Nom and Dark Park
PROGRAMMING
1,400
[ "dfs and similar", "greedy", "implementation" ]
null
null
Om Nom is the main character of a game "Cut the Rope". He is a bright little monster who likes visiting friends living at the other side of the park. However the dark old parks can scare even somebody as fearless as Om Nom, so he asks you to help him. The park consists of 2*n*<=+<=1<=-<=1 squares connected by roads so that the scheme of the park is a full binary tree of depth *n*. More formally, the entrance to the park is located at the square 1. The exits out of the park are located at squares 2*n*,<=2*n*<=+<=1,<=...,<=2*n*<=+<=1<=-<=1 and these exits lead straight to the Om Nom friends' houses. From each square *i* (2<=≤<=*i*<=&lt;<=2*n*<=+<=1) there is a road to the square . Thus, it is possible to go from the park entrance to each of the exits by walking along exactly *n* roads. Om Nom loves counting lights on the way to his friend. Om Nom is afraid of spiders who live in the park, so he doesn't like to walk along roads that are not enough lit. What he wants is that the way to any of his friends should have in total the same number of lights. That will make him feel safe. He asked you to help him install additional lights. Determine what minimum number of lights it is needed to additionally place on the park roads so that a path from the entrance to any exit of the park contains the same number of street lights. You may add an arbitrary number of street lights to each of the roads.
The first line contains integer *n* (1<=≤<=*n*<=≤<=10) — the number of roads on the path from the entrance to any exit. The next line contains 2*n*<=+<=1<=-<=2 numbers *a*2,<=*a*3,<=... *a*2*n*<=+<=1<=-<=1 — the initial numbers of street lights on each road of the park. Here *a**i* is the number of street lights on the road between squares *i* and . All numbers *a**i* are positive integers, not exceeding 100.
Print the minimum number of street lights that we should add to the roads of the park to make Om Nom feel safe.
[ "2\n1 2 3 4 5 6\n" ]
[ "5\n" ]
Picture for the sample test. Green color denotes the additional street lights.
500
[ { "input": "2\n1 2 3 4 5 6", "output": "5" }, { "input": "2\n1 2 3 3 2 2", "output": "0" }, { "input": "1\n39 52", "output": "13" }, { "input": "2\n59 96 34 48 8 72", "output": "139" }, { "input": "3\n87 37 91 29 58 45 51 74 70 71 47 38 91 89", "output": "210" }, { "input": "5\n39 21 95 89 73 90 9 55 85 32 30 21 68 59 82 91 20 64 52 70 6 88 53 47 30 47 34 14 11 22 42 15 28 54 37 48 29 3 14 13 18 77 90 58 54 38 94 49 45 66 13 74 11 14 64 72 95 54 73 79 41 35", "output": "974" }, { "input": "1\n49 36", "output": "13" }, { "input": "1\n77 88", "output": "11" }, { "input": "1\n1 33", "output": "32" }, { "input": "2\n72 22 81 23 14 75", "output": "175" }, { "input": "2\n100 70 27 1 68 52", "output": "53" }, { "input": "2\n24 19 89 82 22 21", "output": "80" }, { "input": "3\n86 12 92 91 3 68 57 56 76 27 33 62 71 84", "output": "286" }, { "input": "3\n14 56 53 61 57 45 40 44 31 9 73 2 61 26", "output": "236" }, { "input": "3\n35 96 7 43 10 14 16 36 95 92 16 50 59 55", "output": "173" }, { "input": "4\n1 97 18 48 96 65 24 91 17 45 36 27 74 93 78 86 39 55 53 21 26 68 31 33 79 63 80 92 1 26", "output": "511" }, { "input": "4\n25 42 71 29 50 30 99 79 77 24 76 66 68 23 97 99 65 17 75 62 66 46 48 4 40 71 98 57 21 92", "output": "603" }, { "input": "4\n49 86 17 7 3 6 86 71 36 10 27 10 58 64 12 16 88 67 93 3 15 20 58 87 97 91 11 6 34 62", "output": "470" }, { "input": "5\n16 87 36 16 81 53 87 35 63 56 47 91 81 95 80 96 91 7 58 99 25 28 47 60 7 69 49 14 51 52 29 30 83 23 21 52 100 26 91 14 23 94 72 70 40 12 50 32 54 52 18 74 5 15 62 3 48 41 24 25 56 43", "output": "1060" }, { "input": "5\n40 27 82 94 38 22 66 23 18 34 87 31 71 28 95 5 14 61 76 52 66 6 60 40 68 77 70 63 64 18 47 13 82 55 34 64 30 1 29 24 24 9 65 17 29 96 61 76 72 23 32 26 90 39 54 41 35 66 71 29 75 48", "output": "1063" }, { "input": "5\n64 72 35 68 92 95 45 15 77 16 26 74 61 65 18 22 32 19 98 97 14 84 70 23 29 1 87 28 88 89 73 79 69 88 43 60 64 64 66 39 17 27 46 71 18 83 73 20 90 77 49 70 84 63 50 72 26 87 26 37 78 65", "output": "987" }, { "input": "6\n35 61 54 77 70 50 53 70 4 66 58 47 76 100 78 5 43 50 55 93 13 93 59 92 30 74 22 23 98 70 19 56 90 92 19 7 28 53 45 77 42 91 71 56 19 83 100 53 13 93 37 13 70 60 16 13 76 3 12 22 17 26 50 6 63 7 25 41 92 29 36 80 11 4 10 14 77 75 53 82 46 24 56 46 82 36 80 75 8 45 24 22 90 34 45 76 18 38 86 43 7 49 80 56 90 53 12 51 98 47 44 58 32 4 2 6 3 60 38 72 74 46 30 86 1 98", "output": "2499" }, { "input": "6\n63 13 100 54 31 15 29 58 59 44 2 99 70 33 97 14 70 12 73 42 65 71 68 67 87 83 43 84 18 41 37 22 81 24 27 11 57 28 83 92 39 1 56 15 16 67 16 97 31 52 50 65 63 89 8 52 55 20 71 27 28 35 86 92 94 60 10 65 83 63 89 71 34 20 78 40 34 62 2 86 100 81 87 69 25 4 52 17 57 71 62 38 1 3 54 71 34 85 20 60 80 23 82 47 4 19 7 18 14 18 28 27 4 55 26 71 45 9 2 40 67 28 32 19 81 92", "output": "2465" }, { "input": "6\n87 62 58 32 81 92 12 50 23 27 38 39 64 74 16 35 84 59 91 87 14 48 90 47 44 95 64 45 31 11 67 5 80 60 36 15 91 3 21 2 40 24 37 69 5 50 23 37 49 19 68 21 49 9 100 94 45 41 22 31 31 48 25 70 25 25 95 88 82 1 37 53 49 31 57 74 94 45 55 93 43 37 13 85 59 72 15 68 3 90 96 55 100 64 63 69 43 33 66 84 57 97 87 34 23 89 97 77 39 89 8 92 68 13 50 36 95 61 71 96 73 13 30 49 57 89", "output": "2513" } ]
1,677,437,535
2,147,483,647
Python 3
OK
TESTS
38
46
0
def dfs(node, v): global ans if node >= len(a) + 2: return 0 v = a[node - 2] q = dfs(2 * node, v) r = dfs(2 * node + 1, v) v += max(q, r) ans += abs(q - r) return v ans = 0 n = int(input()) a = list(map(int, input().split())) dfs(1, 0) print(ans)
Title: Om Nom and Dark Park Time Limit: None seconds Memory Limit: None megabytes Problem Description: Om Nom is the main character of a game "Cut the Rope". He is a bright little monster who likes visiting friends living at the other side of the park. However the dark old parks can scare even somebody as fearless as Om Nom, so he asks you to help him. The park consists of 2*n*<=+<=1<=-<=1 squares connected by roads so that the scheme of the park is a full binary tree of depth *n*. More formally, the entrance to the park is located at the square 1. The exits out of the park are located at squares 2*n*,<=2*n*<=+<=1,<=...,<=2*n*<=+<=1<=-<=1 and these exits lead straight to the Om Nom friends' houses. From each square *i* (2<=≤<=*i*<=&lt;<=2*n*<=+<=1) there is a road to the square . Thus, it is possible to go from the park entrance to each of the exits by walking along exactly *n* roads. Om Nom loves counting lights on the way to his friend. Om Nom is afraid of spiders who live in the park, so he doesn't like to walk along roads that are not enough lit. What he wants is that the way to any of his friends should have in total the same number of lights. That will make him feel safe. He asked you to help him install additional lights. Determine what minimum number of lights it is needed to additionally place on the park roads so that a path from the entrance to any exit of the park contains the same number of street lights. You may add an arbitrary number of street lights to each of the roads. Input Specification: The first line contains integer *n* (1<=≤<=*n*<=≤<=10) — the number of roads on the path from the entrance to any exit. The next line contains 2*n*<=+<=1<=-<=2 numbers *a*2,<=*a*3,<=... *a*2*n*<=+<=1<=-<=1 — the initial numbers of street lights on each road of the park. Here *a**i* is the number of street lights on the road between squares *i* and . All numbers *a**i* are positive integers, not exceeding 100. Output Specification: Print the minimum number of street lights that we should add to the roads of the park to make Om Nom feel safe. Demo Input: ['2\n1 2 3 4 5 6\n'] Demo Output: ['5\n'] Note: Picture for the sample test. Green color denotes the additional street lights.
```python def dfs(node, v): global ans if node >= len(a) + 2: return 0 v = a[node - 2] q = dfs(2 * node, v) r = dfs(2 * node + 1, v) v += max(q, r) ans += abs(q - r) return v ans = 0 n = int(input()) a = list(map(int, input().split())) dfs(1, 0) print(ans) ```
3
228
A
Is your horseshoe on the other hoof?
PROGRAMMING
800
[ "implementation" ]
null
null
Valera the Horse is going to the party with friends. He has been following the fashion trends for a while, and he knows that it is very popular to wear all horseshoes of different color. Valera has got four horseshoes left from the last year, but maybe some of them have the same color. In this case he needs to go to the store and buy some few more horseshoes, not to lose face in front of his stylish comrades. Fortunately, the store sells horseshoes of all colors under the sun and Valera has enough money to buy any four of them. However, in order to save the money, he would like to spend as little money as possible, so you need to help Valera and determine what is the minimum number of horseshoes he needs to buy to wear four horseshoes of different colors to a party.
The first line contains four space-separated integers *s*1,<=*s*2,<=*s*3,<=*s*4 (1<=≤<=*s*1,<=*s*2,<=*s*3,<=*s*4<=≤<=109) — the colors of horseshoes Valera has. Consider all possible colors indexed with integers.
Print a single integer — the minimum number of horseshoes Valera needs to buy.
[ "1 7 3 3\n", "7 7 7 7\n" ]
[ "1\n", "3\n" ]
none
500
[ { "input": "1 7 3 3", "output": "1" }, { "input": "7 7 7 7", "output": "3" }, { "input": "81170865 673572653 756938629 995577259", "output": "0" }, { "input": "3491663 217797045 522540872 715355328", "output": "0" }, { "input": "251590420 586975278 916631563 586975278", "output": "1" }, { "input": "259504825 377489979 588153796 377489979", "output": "1" }, { "input": "652588203 931100304 931100304 652588203", "output": "2" }, { "input": "391958720 651507265 391958720 651507265", "output": "2" }, { "input": "90793237 90793237 90793237 90793237", "output": "3" }, { "input": "551651653 551651653 551651653 551651653", "output": "3" }, { "input": "156630260 609654355 668943582 973622757", "output": "0" }, { "input": "17061017 110313588 434481173 796661222", "output": "0" }, { "input": "24975422 256716298 337790533 690960249", "output": "0" }, { "input": "255635360 732742923 798648949 883146723", "output": "0" }, { "input": "133315691 265159773 734556507 265159773", "output": "1" }, { "input": "28442865 741657755 978106882 978106882", "output": "1" }, { "input": "131245479 174845575 497483467 131245479", "output": "1" }, { "input": "139159884 616215581 958341883 616215581", "output": "1" }, { "input": "147784432 947653080 947653080 947653080", "output": "2" }, { "input": "94055790 756126496 756126496 94055790", "output": "2" }, { "input": "240458500 511952208 240458500 511952208", "output": "2" }, { "input": "681828506 972810624 972810624 681828506", "output": "2" }, { "input": "454961014 454961014 454961014 454961014", "output": "3" }, { "input": "915819430 915819430 915819430 915819430", "output": "3" }, { "input": "671645142 671645142 671645142 671645142", "output": "3" }, { "input": "132503558 132503558 132503558 132503558", "output": "3" }, { "input": "5 5 999999 6", "output": "1" }, { "input": "1 1 2 5", "output": "1" }, { "input": "2 1 2 3", "output": "1" }, { "input": "1 1 3 5", "output": "1" }, { "input": "1 1 3 3", "output": "2" }, { "input": "2 2 2 1", "output": "2" }, { "input": "3 1 1 1", "output": "2" }, { "input": "1 2 2 2", "output": "2" } ]
1,686,146,411
2,147,483,647
Python 3
OK
TESTS
34
92
0
def min_shoes(s1, s2, s3, s4): colors = set([s1, s2, s3, s4]) return 4 - len(colors) s1, s2, s3, s4 = map(int, input().split()) print(min_shoes(s1, s2, s3, s4))
Title: Is your horseshoe on the other hoof? Time Limit: None seconds Memory Limit: None megabytes Problem Description: Valera the Horse is going to the party with friends. He has been following the fashion trends for a while, and he knows that it is very popular to wear all horseshoes of different color. Valera has got four horseshoes left from the last year, but maybe some of them have the same color. In this case he needs to go to the store and buy some few more horseshoes, not to lose face in front of his stylish comrades. Fortunately, the store sells horseshoes of all colors under the sun and Valera has enough money to buy any four of them. However, in order to save the money, he would like to spend as little money as possible, so you need to help Valera and determine what is the minimum number of horseshoes he needs to buy to wear four horseshoes of different colors to a party. Input Specification: The first line contains four space-separated integers *s*1,<=*s*2,<=*s*3,<=*s*4 (1<=≤<=*s*1,<=*s*2,<=*s*3,<=*s*4<=≤<=109) — the colors of horseshoes Valera has. Consider all possible colors indexed with integers. Output Specification: Print a single integer — the minimum number of horseshoes Valera needs to buy. Demo Input: ['1 7 3 3\n', '7 7 7 7\n'] Demo Output: ['1\n', '3\n'] Note: none
```python def min_shoes(s1, s2, s3, s4): colors = set([s1, s2, s3, s4]) return 4 - len(colors) s1, s2, s3, s4 = map(int, input().split()) print(min_shoes(s1, s2, s3, s4)) ```
3
749
A
Bachgold Problem
PROGRAMMING
800
[ "greedy", "implementation", "math", "number theory" ]
null
null
Bachgold problem is very easy to formulate. Given a positive integer *n* represent it as a sum of maximum possible number of prime numbers. One can prove that such representation exists for any integer greater than 1. Recall that integer *k* is called prime if it is greater than 1 and has exactly two positive integer divisors — 1 and *k*.
The only line of the input contains a single integer *n* (2<=≤<=*n*<=≤<=100<=000).
The first line of the output contains a single integer *k* — maximum possible number of primes in representation. The second line should contain *k* primes with their sum equal to *n*. You can print them in any order. If there are several optimal solution, print any of them.
[ "5\n", "6\n" ]
[ "2\n2 3\n", "3\n2 2 2\n" ]
none
500
[ { "input": "5", "output": "2\n2 3" }, { "input": "6", "output": "3\n2 2 2" }, { "input": "2", "output": "1\n2" }, { "input": "3", "output": "1\n3" }, { "input": "99999", "output": "49999\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ..." }, { "input": "100000", "output": "50000\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ..." }, { "input": "7", "output": "3\n2 2 3" }, { "input": "4", "output": "2\n2 2" }, { "input": "8", "output": "4\n2 2 2 2" }, { "input": "9", "output": "4\n2 2 2 3" }, { "input": "99995", "output": "49997\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ..." }, { "input": "99996", "output": "49998\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ..." }, { "input": "10", "output": "5\n2 2 2 2 2" }, { "input": "11", "output": "5\n2 2 2 2 3" }, { "input": "99997", "output": "49998\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ..." }, { "input": "99998", "output": "49999\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ..." }, { "input": "12", "output": "6\n2 2 2 2 2 2" }, { "input": "13", "output": "6\n2 2 2 2 2 3" }, { "input": "99993", "output": "49996\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ..." }, { "input": "99994", "output": "49997\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ..." }, { "input": "14", "output": "7\n2 2 2 2 2 2 2" }, { "input": "15", "output": "7\n2 2 2 2 2 2 3" }, { "input": "53", "output": "26\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3" }, { "input": "57", "output": "28\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3" }, { "input": "61", "output": "30\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3" }, { "input": "774", "output": "387\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ..." }, { "input": "202", "output": "101\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2" }, { "input": "530", "output": "265\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ..." }, { "input": "7166", "output": "3583\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2..." }, { "input": "9294", "output": "4647\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2..." }, { "input": "2422", "output": "1211\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2..." }, { "input": "15326", "output": "7663\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2..." }, { "input": "11454", "output": "5727\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2..." }, { "input": "14878", "output": "7439\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2..." }, { "input": "90672", "output": "45336\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ..." }, { "input": "99544", "output": "49772\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ..." }, { "input": "90472", "output": "45236\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ..." }, { "input": "23", "output": "11\n2 2 2 2 2 2 2 2 2 2 3" }, { "input": "93", "output": "46\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3" }, { "input": "19", "output": "9\n2 2 2 2 2 2 2 2 3" }, { "input": "11110", "output": "5555\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2..." } ]
1,629,365,189
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
0
62
6,656,000
n = int(input()) num2 = n // 2 num3 = n - num2 * 2 print(num2 + num3) l = ['2 '] * num2 + ['3'] * num3 print(''.join(l))
Title: Bachgold Problem Time Limit: None seconds Memory Limit: None megabytes Problem Description: Bachgold problem is very easy to formulate. Given a positive integer *n* represent it as a sum of maximum possible number of prime numbers. One can prove that such representation exists for any integer greater than 1. Recall that integer *k* is called prime if it is greater than 1 and has exactly two positive integer divisors — 1 and *k*. Input Specification: The only line of the input contains a single integer *n* (2<=≤<=*n*<=≤<=100<=000). Output Specification: The first line of the output contains a single integer *k* — maximum possible number of primes in representation. The second line should contain *k* primes with their sum equal to *n*. You can print them in any order. If there are several optimal solution, print any of them. Demo Input: ['5\n', '6\n'] Demo Output: ['2\n2 3\n', '3\n2 2 2\n'] Note: none
```python n = int(input()) num2 = n // 2 num3 = n - num2 * 2 print(num2 + num3) l = ['2 '] * num2 + ['3'] * num3 print(''.join(l)) ```
0
450
B
Jzzhu and Sequences
PROGRAMMING
1,300
[ "implementation", "math" ]
null
null
Jzzhu has invented a kind of sequences, they meet the following property: You are given *x* and *y*, please calculate *f**n* modulo 1000000007 (109<=+<=7).
The first line contains two integers *x* and *y* (|*x*|,<=|*y*|<=≤<=109). The second line contains a single integer *n* (1<=≤<=*n*<=≤<=2·109).
Output a single integer representing *f**n* modulo 1000000007 (109<=+<=7).
[ "2 3\n3\n", "0 -1\n2\n" ]
[ "1\n", "1000000006\n" ]
In the first sample, *f*<sub class="lower-index">2</sub> = *f*<sub class="lower-index">1</sub> + *f*<sub class="lower-index">3</sub>, 3 = 2 + *f*<sub class="lower-index">3</sub>, *f*<sub class="lower-index">3</sub> = 1. In the second sample, *f*<sub class="lower-index">2</sub> =  - 1;  - 1 modulo (10<sup class="upper-index">9</sup> + 7) equals (10<sup class="upper-index">9</sup> + 6).
1,000
[ { "input": "2 3\n3", "output": "1" }, { "input": "0 -1\n2", "output": "1000000006" }, { "input": "-9 -11\n12345", "output": "1000000005" }, { "input": "0 0\n1000000000", "output": "0" }, { "input": "-1000000000 1000000000\n2000000000", "output": "1000000000" }, { "input": "-12345678 12345678\n1912345678", "output": "12345678" }, { "input": "728374857 678374857\n1928374839", "output": "950000007" }, { "input": "278374837 992837483\n1000000000", "output": "721625170" }, { "input": "-693849384 502938493\n982838498", "output": "502938493" }, { "input": "-783928374 983738273\n992837483", "output": "16261734" }, { "input": "-872837483 -682738473\n999999999", "output": "190099010" }, { "input": "-892837483 -998273847\n999283948", "output": "892837483" }, { "input": "-283938494 738473848\n1999999999", "output": "716061513" }, { "input": "-278374857 819283838\n1", "output": "721625150" }, { "input": "-1000000000 123456789\n1", "output": "7" }, { "input": "-529529529 -524524524\n2", "output": "475475483" }, { "input": "1 2\n2000000000", "output": "2" }, { "input": "-1 -2\n2000000000", "output": "1000000005" }, { "input": "1 2\n1999999999", "output": "1" }, { "input": "1 2\n1999999998", "output": "1000000006" }, { "input": "1 2\n1999999997", "output": "1000000005" }, { "input": "1 2\n1999999996", "output": "1000000006" }, { "input": "69975122 366233206\n1189460676", "output": "703741923" }, { "input": "812229413 904420051\n806905621", "output": "812229413" }, { "input": "872099024 962697902\n1505821695", "output": "90598878" }, { "input": "887387283 909670917\n754835014", "output": "112612724" }, { "input": "37759824 131342932\n854621399", "output": "868657075" }, { "input": "-246822123 800496170\n626323615", "output": "753177884" }, { "input": "-861439463 974126967\n349411083", "output": "835566423" }, { "input": "-69811049 258093841\n1412447", "output": "741906166" }, { "input": "844509330 -887335829\n123329059", "output": "844509330" }, { "input": "83712471 -876177148\n1213284777", "output": "40110388" }, { "input": "598730524 -718984219\n1282749880", "output": "401269483" }, { "input": "-474244697 -745885656\n1517883612", "output": "271640959" }, { "input": "-502583588 -894906953\n1154189557", "output": "497416419" }, { "input": "-636523651 -873305815\n154879215", "output": "763217843" }, { "input": "721765550 594845720\n78862386", "output": "126919830" }, { "input": "364141461 158854993\n1337196589", "output": "364141461" }, { "input": "878985260 677031952\n394707801", "output": "798046699" }, { "input": "439527072 -24854079\n1129147002", "output": "464381151" }, { "input": "840435009 -612103127\n565968986", "output": "387896880" }, { "input": "875035447 -826471373\n561914518", "output": "124964560" }, { "input": "-342526698 305357084\n70776744", "output": "352116225" }, { "input": "-903244186 899202229\n1527859274", "output": "899202229" }, { "input": "-839482546 815166320\n1127472130", "output": "839482546" }, { "input": "-976992569 -958313041\n1686580818", "output": "981320479" }, { "input": "-497338894 -51069176\n737081851", "output": "502661113" }, { "input": "-697962643 -143148799\n1287886520", "output": "856851208" }, { "input": "-982572938 -482658433\n1259858332", "output": "982572938" }, { "input": "123123 78817\n2000000000", "output": "78817" }, { "input": "1000000000 -1000000000\n3", "output": "14" }, { "input": "-1000000000 1000000000\n6", "output": "14" }, { "input": "2 3\n6", "output": "1000000006" }, { "input": "0 -1\n6", "output": "1" }, { "input": "500000000 -1000000000\n600000003", "output": "500000014" }, { "input": "-1000000000 1000000000\n3", "output": "999999993" }, { "input": "1 3\n6", "output": "1000000005" }, { "input": "1 2\n12", "output": "1000000006" }, { "input": "7 -1000000000\n3", "output": "0" }, { "input": "-999999997 999999997\n6", "output": "20" }, { "input": "3 4\n6", "output": "1000000006" }, { "input": "-1 2\n6", "output": "1000000004" }, { "input": "2 3\n12", "output": "1000000006" }, { "input": "4 18\n6", "output": "999999993" }, { "input": "1 2\n6", "output": "1000000006" }, { "input": "1000000000 -1000000000\n6", "output": "999999993" }, { "input": "999999999 -999999999\n3", "output": "16" }, { "input": "-1 0\n1", "output": "1000000006" }, { "input": "1000000000 -1000000000\n9", "output": "14" }, { "input": "999999999 -1000000000\n12", "output": "999999992" }, { "input": "1000000000 -7\n3", "output": "0" }, { "input": "-5 5\n6", "output": "999999997" }, { "input": "5 9\n6", "output": "1000000003" }, { "input": "-15 -10\n1", "output": "999999992" } ]
1,690,012,206
2,147,483,647
PyPy 3
OK
TESTS
74
93
0
def slv(x): MOD = 1000000007 return x % MOD x,y=map(int,input().split()) brute=[x,y,y-x,-x,-y,x-y] k=int(input()) ans=brute[(k%6)-1] print(slv(ans))
Title: Jzzhu and Sequences Time Limit: None seconds Memory Limit: None megabytes Problem Description: Jzzhu has invented a kind of sequences, they meet the following property: You are given *x* and *y*, please calculate *f**n* modulo 1000000007 (109<=+<=7). Input Specification: The first line contains two integers *x* and *y* (|*x*|,<=|*y*|<=≤<=109). The second line contains a single integer *n* (1<=≤<=*n*<=≤<=2·109). Output Specification: Output a single integer representing *f**n* modulo 1000000007 (109<=+<=7). Demo Input: ['2 3\n3\n', '0 -1\n2\n'] Demo Output: ['1\n', '1000000006\n'] Note: In the first sample, *f*<sub class="lower-index">2</sub> = *f*<sub class="lower-index">1</sub> + *f*<sub class="lower-index">3</sub>, 3 = 2 + *f*<sub class="lower-index">3</sub>, *f*<sub class="lower-index">3</sub> = 1. In the second sample, *f*<sub class="lower-index">2</sub> =  - 1;  - 1 modulo (10<sup class="upper-index">9</sup> + 7) equals (10<sup class="upper-index">9</sup> + 6).
```python def slv(x): MOD = 1000000007 return x % MOD x,y=map(int,input().split()) brute=[x,y,y-x,-x,-y,x-y] k=int(input()) ans=brute[(k%6)-1] print(slv(ans)) ```
3
478
C
Table Decorations
PROGRAMMING
1,800
[ "greedy" ]
null
null
You have *r* red, *g* green and *b* blue balloons. To decorate a single table for the banquet you need exactly three balloons. Three balloons attached to some table shouldn't have the same color. What maximum number *t* of tables can be decorated if we know number of balloons of each color? Your task is to write a program that for given values *r*, *g* and *b* will find the maximum number *t* of tables, that can be decorated in the required manner.
The single line contains three integers *r*, *g* and *b* (0<=≤<=*r*,<=*g*,<=*b*<=≤<=2·109) — the number of red, green and blue baloons respectively. The numbers are separated by exactly one space.
Print a single integer *t* — the maximum number of tables that can be decorated in the required manner.
[ "5 4 3\n", "1 1 1\n", "2 3 3\n" ]
[ "4\n", "1\n", "2\n" ]
In the first sample you can decorate the tables with the following balloon sets: "rgg", "gbb", "brr", "rrg", where "r", "g" and "b" represent the red, green and blue balls, respectively.
1,500
[ { "input": "5 4 3", "output": "4" }, { "input": "1 1 1", "output": "1" }, { "input": "2 3 3", "output": "2" }, { "input": "0 1 0", "output": "0" }, { "input": "0 3 3", "output": "2" }, { "input": "4 0 4", "output": "2" }, { "input": "1000000000 1000000000 1000000000", "output": "1000000000" }, { "input": "100 99 56", "output": "85" }, { "input": "1000 1000 1002", "output": "1000" }, { "input": "0 1 1000000000", "output": "1" }, { "input": "500000000 1000000000 500000000", "output": "666666666" }, { "input": "1000000000 2000000000 1000000000", "output": "1333333333" }, { "input": "2000000000 2000000000 2000000000", "output": "2000000000" }, { "input": "0 0 0", "output": "0" }, { "input": "1 2000000000 1000000000", "output": "1000000000" }, { "input": "1585222789 1889821127 2000000000", "output": "1825014638" }, { "input": "10000 7500 7500", "output": "8333" }, { "input": "150000 75000 75000", "output": "100000" }, { "input": "999288131 55884921 109298382", "output": "165183303" }, { "input": "100500 100500 3", "output": "67001" }, { "input": "1463615122 1988383731 837331500", "output": "1429776784" }, { "input": "1938 8999 1882", "output": "3820" }, { "input": "45 33 76", "output": "51" }, { "input": "100000 1 2", "output": "3" }, { "input": "198488 50 18", "output": "68" }, { "input": "82728372 939848 100139442", "output": "61269220" }, { "input": "99 5747 5298", "output": "3714" }, { "input": "3 5 2", "output": "3" }, { "input": "7511 7512 7513", "output": "7512" }, { "input": "1234567890 123456789 987654321", "output": "781893000" }, { "input": "500000000 2000000000 500000000", "output": "1000000000" }, { "input": "500000002 2000000000 500000001", "output": "1000000001" }, { "input": "520000000 1000000033 501000000", "output": "673666677" }, { "input": "10000 1000 100000", "output": "11000" }, { "input": "2000000000 500000000 499999999", "output": "999999999" }, { "input": "1999999999 500000000 500000000", "output": "999999999" }, { "input": "1 1 9", "output": "2" }, { "input": "3 0 0", "output": "0" }, { "input": "6 1 1", "output": "2" }, { "input": "2000000000 1999999999 1999999999", "output": "1999999999" }, { "input": "3 4 9", "output": "5" }, { "input": "3 3 6", "output": "4" } ]
1,656,053,665
2,147,483,647
PyPy 3-64
WRONG_ANSWER
TESTS
4
61
614,400
import heapq heap = list(map(int, input().split())) heap = [-x for x in heap] heapq.heapify(heap) res = 0 for _ in range(10): r = -heapq.heappop(heap) g = -heapq.heappop(heap) b = -heapq.heappop(heap) if r == g == b: res += r break elif b == 0: if r >= 2 * g: res += g break else: res += (r // 2) break x = min((r - b) // 2, (g - b)) if x == 0: x = 1 r -= 2 * x g -= x if r < 0 or g < 0: break res += x heapq.heappush(heap, -r) heapq.heappush(heap, -g) heapq.heappush(heap, -b) print(res)
Title: Table Decorations Time Limit: None seconds Memory Limit: None megabytes Problem Description: You have *r* red, *g* green and *b* blue balloons. To decorate a single table for the banquet you need exactly three balloons. Three balloons attached to some table shouldn't have the same color. What maximum number *t* of tables can be decorated if we know number of balloons of each color? Your task is to write a program that for given values *r*, *g* and *b* will find the maximum number *t* of tables, that can be decorated in the required manner. Input Specification: The single line contains three integers *r*, *g* and *b* (0<=≤<=*r*,<=*g*,<=*b*<=≤<=2·109) — the number of red, green and blue baloons respectively. The numbers are separated by exactly one space. Output Specification: Print a single integer *t* — the maximum number of tables that can be decorated in the required manner. Demo Input: ['5 4 3\n', '1 1 1\n', '2 3 3\n'] Demo Output: ['4\n', '1\n', '2\n'] Note: In the first sample you can decorate the tables with the following balloon sets: "rgg", "gbb", "brr", "rrg", where "r", "g" and "b" represent the red, green and blue balls, respectively.
```python import heapq heap = list(map(int, input().split())) heap = [-x for x in heap] heapq.heapify(heap) res = 0 for _ in range(10): r = -heapq.heappop(heap) g = -heapq.heappop(heap) b = -heapq.heappop(heap) if r == g == b: res += r break elif b == 0: if r >= 2 * g: res += g break else: res += (r // 2) break x = min((r - b) // 2, (g - b)) if x == 0: x = 1 r -= 2 * x g -= x if r < 0 or g < 0: break res += x heapq.heappush(heap, -r) heapq.heappush(heap, -g) heapq.heappush(heap, -b) print(res) ```
0
133
A
HQ9+
PROGRAMMING
900
[ "implementation" ]
null
null
HQ9+ is a joke programming language which has only four one-character instructions: - "H" prints "Hello, World!",- "Q" prints the source code of the program itself,- "9" prints the lyrics of "99 Bottles of Beer" song, - "+" increments the value stored in the internal accumulator. Instructions "H" and "Q" are case-sensitive and must be uppercase. The characters of the program which are not instructions are ignored. You are given a program written in HQ9+. You have to figure out whether executing this program will produce any output.
The input will consist of a single line *p* which will give a program in HQ9+. String *p* will contain between 1 and 100 characters, inclusive. ASCII-code of each character of *p* will be between 33 (exclamation mark) and 126 (tilde), inclusive.
Output "YES", if executing the program will produce any output, and "NO" otherwise.
[ "Hi!\n", "Codeforces\n" ]
[ "YES\n", "NO\n" ]
In the first case the program contains only one instruction — "H", which prints "Hello, World!". In the second case none of the program characters are language instructions.
500
[ { "input": "Hi!", "output": "YES" }, { "input": "Codeforces", "output": "NO" }, { "input": "a+b=c", "output": "NO" }, { "input": "hq-lowercase", "output": "NO" }, { "input": "Q", "output": "YES" }, { "input": "9", "output": "YES" }, { "input": "H", "output": "YES" }, { "input": "+", "output": "NO" }, { "input": "~", "output": "NO" }, { "input": "dEHsbM'gS[\\brZ_dpjXw8f?L[4E\"s4Zc9*(,j:>p$}m7HD[_9nOWQ\\uvq2mHWR", "output": "YES" }, { "input": "tt6l=RHOfStm.;Qd$-}zDes*E,.F7qn5-b%HC", "output": "YES" }, { "input": "@F%K2=%RyL/", "output": "NO" }, { "input": "juq)k(FT.^G=G\\zcqnO\"uJIE1_]KFH9S=1c\"mJ;F9F)%>&.WOdp09+k`Yc6}\"6xw,Aos:M\\_^^:xBb[CcsHm?J", "output": "YES" }, { "input": "6G_\"Fq#<AWyHG=Rci1t%#Jc#x<Fpg'N@t%F=``YO7\\Zd;6PkMe<#91YgzTC)", "output": "YES" }, { "input": "Fvg_~wC>SO4lF}*c`Q;mII9E{4.QodbqN]C", "output": "YES" }, { "input": "p-UXsbd&f", "output": "NO" }, { "input": "<]D7NMA)yZe=`?RbP5lsa.l_Mg^V:\"-0x+$3c,q&L%18Ku<HcA\\s!^OQblk^x{35S'>yz8cKgVHWZ]kV0>_", "output": "YES" }, { "input": "f.20)8b+.R}Gy!DbHU3v(.(=Q^`z[_BaQ}eO=C1IK;b2GkD\\{\\Bf\"!#qh]", "output": "YES" }, { "input": "}do5RU<(w<q[\"-NR)IAH_HyiD{", "output": "YES" }, { "input": "Iy^.,Aw*,5+f;l@Q;jLK'G5H-r1Pfmx?ei~`CjMmUe{K:lS9cu4ay8rqRh-W?Gqv!e-j*U)!Mzn{E8B6%~aSZ~iQ_QwlC9_cX(o8", "output": "YES" }, { "input": "sKLje,:q>-D,;NvQ3,qN3-N&tPx0nL/,>Ca|z\"k2S{NF7btLa3_TyXG4XZ:`(t&\"'^M|@qObZxv", "output": "YES" }, { "input": "%z:c@1ZsQ@\\6U/NQ+M9R>,$bwG`U1+C\\18^:S},;kw!&4r|z`", "output": "YES" }, { "input": "OKBB5z7ud81[Tn@P\"nDUd,>@", "output": "NO" }, { "input": "y{0;neX]w0IenPvPx0iXp+X|IzLZZaRzBJ>q~LhMhD$x-^GDwl;,a'<bAqH8QrFwbK@oi?I'W.bZ]MlIQ/x(0YzbTH^l.)]0Bv", "output": "YES" }, { "input": "EL|xIP5_+Caon1hPpQ0[8+r@LX4;b?gMy>;/WH)pf@Ur*TiXu*e}b-*%acUA~A?>MDz#!\\Uh", "output": "YES" }, { "input": "UbkW=UVb>;z6)p@Phr;^Dn.|5O{_i||:Rv|KJ_ay~V(S&Jp", "output": "NO" }, { "input": "!3YPv@2JQ44@)R2O_4`GO", "output": "YES" }, { "input": "Kba/Q,SL~FMd)3hOWU'Jum{9\"$Ld4:GW}D]%tr@G{hpG:PV5-c'VIZ~m/6|3I?_4*1luKnOp`%p|0H{[|Y1A~4-ZdX,Rw2[\\", "output": "YES" }, { "input": "NRN*=v>;oU7[acMIJn*n^bWm!cm3#E7Efr>{g-8bl\"DN4~_=f?[T;~Fq#&)aXq%</GcTJD^e$@Extm[e\"C)q_L", "output": "NO" }, { "input": "y#<fv{_=$MP!{D%I\\1OqjaqKh[pqE$KvYL<9@*V'j8uH0/gQdA'G;&y4Cv6&", "output": "YES" }, { "input": "+SE_Pg<?7Fh,z&uITQut2a-mk8X8La`c2A}", "output": "YES" }, { "input": "Uh3>ER](J", "output": "NO" }, { "input": "!:!{~=9*\\P;Z6F?HC5GadFz)>k*=u|+\"Cm]ICTmB!`L{&oS/z6b~#Snbp/^\\Q>XWU-vY+/dP.7S=-#&whS@,", "output": "YES" }, { "input": "KimtYBZp+ISeO(uH;UldoE6eAcp|9u?SzGZd6j-e}[}u#e[Cx8.qgY]$2!", "output": "YES" }, { "input": "[:[SN-{r>[l+OggH3v3g{EPC*@YBATT@", "output": "YES" }, { "input": "'jdL(vX", "output": "NO" }, { "input": "Q;R+aay]cL?Zh*uG\"YcmO*@Dts*Gjp}D~M7Z96+<4?9I3aH~0qNdO(RmyRy=ci,s8qD_kwj;QHFzD|5,5", "output": "YES" }, { "input": "{Q@#<LU_v^qdh%gGxz*pu)Y\"]k-l-N30WAxvp2IE3:jD0Wi4H/xWPH&s", "output": "YES" }, { "input": "~@Gb(S&N$mBuBUMAky-z^{5VwLNTzYg|ZUZncL@ahS?K*As<$iNUARM3r43J'jJB)$ujfPAq\"G<S9flGyakZg!2Z.-NJ|2{F>]", "output": "YES" }, { "input": "Jp5Aa>aP6fZ!\\6%A}<S}j{O4`C6y$8|i3IW,WHy&\"ioE&7zP\"'xHAY;:x%@SnS]Mr{R|})gU", "output": "YES" }, { "input": "ZA#:U)$RI^sE\\vuAt]x\"2zipI!}YEu2<j$:H0_9/~eB?#->", "output": "YES" }, { "input": "&ppw0._:\\p-PuWM@l}%%=", "output": "NO" }, { "input": "P(^pix\"=oiEZu8?@d@J(I`Xp5TN^T3\\Z7P5\"ZrvZ{2Fwz3g-8`U!)(1$a<g+9Q|COhDoH;HwFY02Pa|ZGp$/WZBR=>6Jg!yr", "output": "YES" }, { "input": "`WfODc\\?#ax~1xu@[ao+o_rN|L7%v,p,nDv>3+6cy.]q3)+A6b!q*Hc+#.t4f~vhUa~$^q", "output": "YES" }, { "input": ",)TH9N}'6t2+0Yg?S#6/{_.,!)9d}h'wG|sY&'Ul4D0l0", "output": "YES" }, { "input": "VXB&r9Z)IlKOJ:??KDA", "output": "YES" }, { "input": "\")1cL>{o\\dcYJzu?CefyN^bGRviOH&P7rJS3PT4:0V3F)%\\}L=AJouYsj_>j2|7^1NWu*%NbOP>ngv-ls<;b-4Sd3Na0R", "output": "YES" }, { "input": "2Y}\\A)>row{~c[g>:'.|ZC8%UTQ/jcdhK%6O)QRC.kd@%y}LJYk=V{G5pQK/yKJ%{G3C", "output": "YES" }, { "input": "O.&=qt(`z(", "output": "NO" }, { "input": "_^r6fyIc/~~;>l%9?aVEi7-{=,[<aMiB'-scSg$$|\"jAzY0N>QkHHGBZj2c\"=fhRlWd5;5K|GgU?7h]!;wl@", "output": "YES" }, { "input": "+/`sAd&eB29E=Nu87${.u6GY@$^a$,}s^!p!F}B-z8<<wORb<S7;HM1a,gp", "output": "YES" }, { "input": "U_ilyOGMT+QiW/M8/D(1=6a7)_FA,h4`8", "output": "YES" }, { "input": "!0WKT:$O", "output": "NO" }, { "input": "1EE*I%EQz6$~pPu7|(r7nyPQt4uGU@]~H'4uII?b1_Wn)K?ZRHrr0z&Kr;}aO3<mN=3:{}QgPxI|Ncm4#)", "output": "YES" }, { "input": "[u3\"$+!:/.<Dp1M7tH}:zxjt],^kv}qP;y12\"`^'/u*h%AFmPJ>e1#Yly", "output": "YES" }, { "input": "'F!_]tB<A&UO+p?7liE>(x&RFgG2~\\(", "output": "NO" }, { "input": "Qv)X8", "output": "YES" }, { "input": "aGv7,J@&g1(}E3g6[LuDZwZl2<v7IwQA%\"R(?ouBD>_=y\"3Kf%^>vON<a^T\\G^ootgE@whWmZo=[ex|F", "output": "YES" }, { "input": "e{}2vQ+/r@p0}cLKNe4MCk", "output": "YES" }, { "input": "mzbmweyydiadtlcouegmdbyfwurpwbpuvhifnuapwyndmhtqvkgkbhtytszotwflegsjzzszfwtzfpnscguemwrczqxycivdqnkH", "output": "YES" }, { "input": "Qzbmweyydiadtlcouegmdbyfwurpwbpuvhifnuapwyndmhtqvkgkbhtytszotwflegsjzzszfwtzfpnscguemwrczqxycivdqnky", "output": "YES" }, { "input": "mzbmweyydiadtlcouegmdbyfwurpwb9uvhifnuapwyndmhtqvkgkbhtytszotwflegsjzzszfwtzfpnscguemwrczqxycivdqnky", "output": "YES" }, { "input": "1H1", "output": "YES" }, { "input": "+Q", "output": "YES" }, { "input": "1ab", "output": "NO" }, { "input": "!", "output": "NO" }, { "input": "0+", "output": "NO" }, { "input": "+H", "output": "YES" }, { "input": "cH", "output": "YES" }, { "input": "+8", "output": "NO" }, { "input": "8+", "output": "NO" }, { "input": "++++++++++++++++++++++++++", "output": "NO" }, { "input": "(+)", "output": "NO" }, { "input": "H+", "output": "YES" }, { "input": "a!", "output": "NO" }, { "input": "++++++++++++++", "output": "NO" }, { "input": "+++++++++++++++++++++++++++++++++++++++++++++++++++++++++", "output": "NO" }, { "input": "8", "output": "NO" }, { "input": "3", "output": "NO" }, { "input": "HQ9", "output": "YES" }, { "input": "+++H", "output": "YES" }, { "input": "++++++++++", "output": "NO" }, { "input": "HHHHHHH", "output": "YES" }, { "input": "abacabaH", "output": "YES" }, { "input": "+G", "output": "NO" } ]
1,697,820,075
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
2
62
0
p = input() bool = False for e in p: if e in ["H","Q","9","+"]: bool = True if bool: print("YES") else: print("NO")
Title: HQ9+ Time Limit: None seconds Memory Limit: None megabytes Problem Description: HQ9+ is a joke programming language which has only four one-character instructions: - "H" prints "Hello, World!",- "Q" prints the source code of the program itself,- "9" prints the lyrics of "99 Bottles of Beer" song, - "+" increments the value stored in the internal accumulator. Instructions "H" and "Q" are case-sensitive and must be uppercase. The characters of the program which are not instructions are ignored. You are given a program written in HQ9+. You have to figure out whether executing this program will produce any output. Input Specification: The input will consist of a single line *p* which will give a program in HQ9+. String *p* will contain between 1 and 100 characters, inclusive. ASCII-code of each character of *p* will be between 33 (exclamation mark) and 126 (tilde), inclusive. Output Specification: Output "YES", if executing the program will produce any output, and "NO" otherwise. Demo Input: ['Hi!\n', 'Codeforces\n'] Demo Output: ['YES\n', 'NO\n'] Note: In the first case the program contains only one instruction — "H", which prints "Hello, World!". In the second case none of the program characters are language instructions.
```python p = input() bool = False for e in p: if e in ["H","Q","9","+"]: bool = True if bool: print("YES") else: print("NO") ```
0
69
A
Young Physicist
PROGRAMMING
1,000
[ "implementation", "math" ]
A. Young Physicist
2
256
A guy named Vasya attends the final grade of a high school. One day Vasya decided to watch a match of his favorite hockey team. And, as the boy loves hockey very much, even more than physics, he forgot to do the homework. Specifically, he forgot to complete his physics tasks. Next day the teacher got very angry at Vasya and decided to teach him a lesson. He gave the lazy student a seemingly easy task: You are given an idle body in space and the forces that affect it. The body can be considered as a material point with coordinates (0; 0; 0). Vasya had only to answer whether it is in equilibrium. "Piece of cake" — thought Vasya, we need only to check if the sum of all vectors is equal to 0. So, Vasya began to solve the problem. But later it turned out that there can be lots and lots of these forces, and Vasya can not cope without your help. Help him. Write a program that determines whether a body is idle or is moving by the given vectors of forces.
The first line contains a positive integer *n* (1<=≤<=*n*<=≤<=100), then follow *n* lines containing three integers each: the *x**i* coordinate, the *y**i* coordinate and the *z**i* coordinate of the force vector, applied to the body (<=-<=100<=≤<=*x**i*,<=*y**i*,<=*z**i*<=≤<=100).
Print the word "YES" if the body is in equilibrium, or the word "NO" if it is not.
[ "3\n4 1 7\n-2 4 -1\n1 -5 -3\n", "3\n3 -1 7\n-5 2 -4\n2 -1 -3\n" ]
[ "NO", "YES" ]
none
500
[ { "input": "3\n4 1 7\n-2 4 -1\n1 -5 -3", "output": "NO" }, { "input": "3\n3 -1 7\n-5 2 -4\n2 -1 -3", "output": "YES" }, { "input": "10\n21 32 -46\n43 -35 21\n42 2 -50\n22 40 20\n-27 -9 38\n-4 1 1\n-40 6 -31\n-13 -2 34\n-21 34 -12\n-32 -29 41", "output": "NO" }, { "input": "10\n25 -33 43\n-27 -42 28\n-35 -20 19\n41 -42 -1\n49 -39 -4\n-49 -22 7\n-19 29 41\n8 -27 -43\n8 34 9\n-11 -3 33", "output": "NO" }, { "input": "10\n-6 21 18\n20 -11 -8\n37 -11 41\n-5 8 33\n29 23 32\n30 -33 -11\n39 -49 -36\n28 34 -49\n22 29 -34\n-18 -6 7", "output": "NO" }, { "input": "10\n47 -2 -27\n0 26 -14\n5 -12 33\n2 18 3\n45 -30 -49\n4 -18 8\n-46 -44 -41\n-22 -10 -40\n-35 -21 26\n33 20 38", "output": "NO" }, { "input": "13\n-3 -36 -46\n-11 -50 37\n42 -11 -15\n9 42 44\n-29 -12 24\n3 9 -40\n-35 13 50\n14 43 18\n-13 8 24\n-48 -15 10\n50 9 -50\n21 0 -50\n0 0 -6", "output": "YES" }, { "input": "14\n43 23 17\n4 17 44\n5 -5 -16\n-43 -7 -6\n47 -48 12\n50 47 -45\n2 14 43\n37 -30 15\n4 -17 -11\n17 9 -45\n-50 -3 -8\n-50 0 0\n-50 0 0\n-16 0 0", "output": "YES" }, { "input": "13\n29 49 -11\n38 -11 -20\n25 1 -40\n-11 28 11\n23 -19 1\n45 -41 -17\n-3 0 -19\n-13 -33 49\n-30 0 28\n34 17 45\n-50 9 -27\n-50 0 0\n-37 0 0", "output": "YES" }, { "input": "12\n3 28 -35\n-32 -44 -17\n9 -25 -6\n-42 -22 20\n-19 15 38\n-21 38 48\n-1 -37 -28\n-10 -13 -50\n-5 21 29\n34 28 50\n50 11 -49\n34 0 0", "output": "YES" }, { "input": "37\n-64 -79 26\n-22 59 93\n-5 39 -12\n77 -9 76\n55 -86 57\n83 100 -97\n-70 94 84\n-14 46 -94\n26 72 35\n14 78 -62\n17 82 92\n-57 11 91\n23 15 92\n-80 -1 1\n12 39 18\n-23 -99 -75\n-34 50 19\n-39 84 -7\n45 -30 -39\n-60 49 37\n45 -16 -72\n33 -51 -56\n-48 28 5\n97 91 88\n45 -82 -11\n-21 -15 -90\n-53 73 -26\n-74 85 -90\n-40 23 38\n100 -13 49\n32 -100 -100\n0 -100 -70\n0 -100 0\n0 -100 0\n0 -100 0\n0 -100 0\n0 -37 0", "output": "YES" }, { "input": "4\n68 3 100\n68 21 -100\n-100 -24 0\n-36 0 0", "output": "YES" }, { "input": "33\n-1 -46 -12\n45 -16 -21\n-11 45 -21\n-60 -42 -93\n-22 -45 93\n37 96 85\n-76 26 83\n-4 9 55\n7 -52 -9\n66 8 -85\n-100 -54 11\n-29 59 74\n-24 12 2\n-56 81 85\n-92 69 -52\n-26 -97 91\n54 59 -51\n58 21 -57\n7 68 56\n-47 -20 -51\n-59 77 -13\n-85 27 91\n79 60 -56\n66 -80 5\n21 -99 42\n-31 -29 98\n66 93 76\n-49 45 61\n100 -100 -100\n100 -100 -100\n66 -75 -100\n0 0 -100\n0 0 -87", "output": "YES" }, { "input": "3\n1 2 3\n3 2 1\n0 0 0", "output": "NO" }, { "input": "2\n5 -23 12\n0 0 0", "output": "NO" }, { "input": "1\n0 0 0", "output": "YES" }, { "input": "1\n1 -2 0", "output": "NO" }, { "input": "2\n-23 77 -86\n23 -77 86", "output": "YES" }, { "input": "26\n86 7 20\n-57 -64 39\n-45 6 -93\n-44 -21 100\n-11 -49 21\n73 -71 -80\n-2 -89 56\n-65 -2 7\n5 14 84\n57 41 13\n-12 69 54\n40 -25 27\n-17 -59 0\n64 -91 -30\n-53 9 42\n-54 -8 14\n-35 82 27\n-48 -59 -80\n88 70 79\n94 57 97\n44 63 25\n84 -90 -40\n-100 100 -100\n-92 100 -100\n0 10 -100\n0 0 -82", "output": "YES" }, { "input": "42\n11 27 92\n-18 -56 -57\n1 71 81\n33 -92 30\n82 83 49\n-87 -61 -1\n-49 45 49\n73 26 15\n-22 22 -77\n29 -93 87\n-68 44 -90\n-4 -84 20\n85 67 -6\n-39 26 77\n-28 -64 20\n65 -97 24\n-72 -39 51\n35 -75 -91\n39 -44 -8\n-25 -27 -57\n91 8 -46\n-98 -94 56\n94 -60 59\n-9 -95 18\n-53 -37 98\n-8 -94 -84\n-52 55 60\n15 -14 37\n65 -43 -25\n94 12 66\n-8 -19 -83\n29 81 -78\n-58 57 33\n24 86 -84\n-53 32 -88\n-14 7 3\n89 97 -53\n-5 -28 -91\n-100 100 -6\n-84 100 0\n0 100 0\n0 70 0", "output": "YES" }, { "input": "3\n96 49 -12\n2 -66 28\n-98 17 -16", "output": "YES" }, { "input": "5\n70 -46 86\n-100 94 24\n-27 63 -63\n57 -100 -47\n0 -11 0", "output": "YES" }, { "input": "18\n-86 -28 70\n-31 -89 42\n31 -48 -55\n95 -17 -43\n24 -95 -85\n-21 -14 31\n68 -18 81\n13 31 60\n-15 28 99\n-42 15 9\n28 -61 -62\n-16 71 29\n-28 75 -48\n-77 -67 36\n-100 83 89\n100 100 -100\n57 34 -100\n0 0 -53", "output": "YES" }, { "input": "44\n52 -54 -29\n-82 -5 -94\n-54 43 43\n91 16 71\n7 80 -91\n3 15 29\n-99 -6 -77\n-3 -77 -64\n73 67 34\n25 -10 -18\n-29 91 63\n-72 86 -16\n-68 85 -81\n-3 36 44\n-74 -14 -80\n34 -96 -97\n-76 -78 -33\n-24 44 -58\n98 12 77\n95 -63 -6\n-51 3 -90\n-92 -10 72\n7 3 -68\n57 -53 71\n29 57 -48\n35 -60 10\n79 -70 -61\n-20 77 55\n-86 -15 -35\n84 -88 -18\n100 -42 77\n-20 46 8\n-41 -43 -65\n38 -98 -23\n-100 65 45\n-7 -91 -63\n46 88 -85\n48 59 100\n0 0 100\n0 0 100\n0 0 100\n0 0 100\n0 0 100\n0 0 1", "output": "YES" }, { "input": "18\n-14 -64 -91\n-8 -66 -86\n-23 92 -40\n6 -3 -53\n57 41 78\n-79 42 -22\n-88 -17 45\n4 -45 44\n83 -18 -25\n34 86 -92\n75 -30 12\n44 99 11\n-67 -13 72\n22 83 -56\n-37 71 72\n-9 -100 100\n0 -100 31\n0 -58 0", "output": "YES" }, { "input": "23\n-70 37 78\n42 84 6\n28 -94 -24\n-49 76 95\n-67 18 84\n-53 78 -5\n65 -63 -64\n-66 -64 -69\n81 -93 95\n10 52 -79\n-89 -61 -64\n-64 -47 43\n-81 -35 55\n80 82 73\n-60 -81 -18\n49 -10 -19\n-58 70 12\n-24 -15 -93\n98 -93 -54\n-28 -75 11\n100 100 -63\n100 100 0\n56 34 0", "output": "YES" }, { "input": "3\n0 2 -2\n1 -1 3\n-3 0 0", "output": "NO" } ]
1,601,364,528
2,147,483,647
Python 3
OK
TESTS
81
218
0
cox=coy=coz=0 for i in range(int(input())): x,y,z = map(int,input().split()) cox += x coy += y coz += z if cox == 0 and coy == 0 and coz == 0: print("YES") else: print("NO")
Title: Young Physicist Time Limit: 2 seconds Memory Limit: 256 megabytes Problem Description: A guy named Vasya attends the final grade of a high school. One day Vasya decided to watch a match of his favorite hockey team. And, as the boy loves hockey very much, even more than physics, he forgot to do the homework. Specifically, he forgot to complete his physics tasks. Next day the teacher got very angry at Vasya and decided to teach him a lesson. He gave the lazy student a seemingly easy task: You are given an idle body in space and the forces that affect it. The body can be considered as a material point with coordinates (0; 0; 0). Vasya had only to answer whether it is in equilibrium. "Piece of cake" — thought Vasya, we need only to check if the sum of all vectors is equal to 0. So, Vasya began to solve the problem. But later it turned out that there can be lots and lots of these forces, and Vasya can not cope without your help. Help him. Write a program that determines whether a body is idle or is moving by the given vectors of forces. Input Specification: The first line contains a positive integer *n* (1<=≤<=*n*<=≤<=100), then follow *n* lines containing three integers each: the *x**i* coordinate, the *y**i* coordinate and the *z**i* coordinate of the force vector, applied to the body (<=-<=100<=≤<=*x**i*,<=*y**i*,<=*z**i*<=≤<=100). Output Specification: Print the word "YES" if the body is in equilibrium, or the word "NO" if it is not. Demo Input: ['3\n4 1 7\n-2 4 -1\n1 -5 -3\n', '3\n3 -1 7\n-5 2 -4\n2 -1 -3\n'] Demo Output: ['NO', 'YES'] Note: none
```python cox=coy=coz=0 for i in range(int(input())): x,y,z = map(int,input().split()) cox += x coy += y coz += z if cox == 0 and coy == 0 and coz == 0: print("YES") else: print("NO") ```
3.9455
115
A
Party
PROGRAMMING
900
[ "dfs and similar", "graphs", "trees" ]
null
null
A company has *n* employees numbered from 1 to *n*. Each employee either has no immediate manager or exactly one immediate manager, who is another employee with a different number. An employee *A* is said to be the superior of another employee *B* if at least one of the following is true: - Employee *A* is the immediate manager of employee *B* - Employee *B* has an immediate manager employee *C* such that employee *A* is the superior of employee *C*. The company will not have a managerial cycle. That is, there will not exist an employee who is the superior of his/her own immediate manager. Today the company is going to arrange a party. This involves dividing all *n* employees into several groups: every employee must belong to exactly one group. Furthermore, within any single group, there must not be two employees *A* and *B* such that *A* is the superior of *B*. What is the minimum number of groups that must be formed?
The first line contains integer *n* (1<=≤<=*n*<=≤<=2000) — the number of employees. The next *n* lines contain the integers *p**i* (1<=≤<=*p**i*<=≤<=*n* or *p**i*<==<=-1). Every *p**i* denotes the immediate manager for the *i*-th employee. If *p**i* is -1, that means that the *i*-th employee does not have an immediate manager. It is guaranteed, that no employee will be the immediate manager of him/herself (*p**i*<=≠<=*i*). Also, there will be no managerial cycles.
Print a single integer denoting the minimum number of groups that will be formed in the party.
[ "5\n-1\n1\n2\n1\n-1\n" ]
[ "3\n" ]
For the first example, three groups are sufficient, for example: - Employee 1 - Employees 2 and 4 - Employees 3 and 5
500
[ { "input": "5\n-1\n1\n2\n1\n-1", "output": "3" }, { "input": "4\n-1\n1\n2\n3", "output": "4" }, { "input": "12\n-1\n1\n2\n3\n-1\n5\n6\n7\n-1\n9\n10\n11", "output": "4" }, { "input": "6\n-1\n-1\n2\n3\n1\n1", "output": "3" }, { "input": "3\n-1\n1\n1", "output": "2" }, { "input": "1\n-1", "output": "1" }, { "input": "2\n2\n-1", "output": "2" }, { "input": "2\n-1\n-1", "output": "1" }, { "input": "3\n2\n-1\n1", "output": "3" }, { "input": "3\n-1\n-1\n-1", "output": "1" }, { "input": "5\n4\n5\n1\n-1\n4", "output": "3" }, { "input": "12\n-1\n1\n1\n1\n1\n1\n3\n4\n3\n3\n4\n7", "output": "4" }, { "input": "12\n-1\n-1\n1\n-1\n1\n1\n5\n11\n8\n6\n6\n4", "output": "5" }, { "input": "12\n-1\n-1\n-1\n-1\n-1\n-1\n-1\n-1\n2\n-1\n-1\n-1", "output": "2" }, { "input": "12\n-1\n-1\n-1\n-1\n-1\n-1\n-1\n-1\n-1\n-1\n-1\n-1", "output": "1" }, { "input": "12\n3\n4\n2\n8\n7\n1\n10\n12\n5\n-1\n9\n11", "output": "12" }, { "input": "12\n5\n6\n7\n1\n-1\n9\n12\n4\n8\n-1\n3\n2", "output": "11" }, { "input": "12\n-1\n9\n11\n6\n6\n-1\n6\n3\n8\n6\n1\n6", "output": "6" }, { "input": "12\n7\n8\n4\n12\n7\n9\n-1\n-1\n-1\n8\n6\n-1", "output": "3" }, { "input": "12\n-1\n10\n-1\n1\n-1\n5\n9\n12\n-1\n-1\n3\n-1", "output": "2" }, { "input": "12\n-1\n7\n9\n12\n1\n7\n-1\n-1\n8\n5\n4\n-1", "output": "3" }, { "input": "12\n11\n11\n8\n9\n1\n1\n2\n-1\n10\n3\n-1\n8", "output": "5" }, { "input": "12\n-1\n8\n9\n-1\n4\n2\n11\n1\n-1\n6\n-1\n10", "output": "6" }, { "input": "12\n7\n4\n4\n-1\n6\n7\n9\n7\n-1\n7\n4\n1", "output": "4" }, { "input": "12\n-1\n6\n10\n6\n1\n11\n5\n9\n11\n5\n1\n9", "output": "4" }, { "input": "12\n8\n6\n6\n8\n6\n-1\n6\n6\n8\n6\n8\n8", "output": "3" }, { "input": "12\n3\n8\n9\n12\n2\n8\n11\n12\n2\n9\n-1\n11", "output": "7" }, { "input": "7\n7\n6\n-1\n-1\n4\n4\n-1", "output": "3" }, { "input": "77\n53\n-1\n48\n-1\n51\n-1\n54\n43\n70\n19\n64\n31\n45\n58\n6\n61\n41\n56\n34\n-1\n54\n-1\n66\n65\n74\n16\n38\n1\n2\n61\n-1\n34\n-1\n-1\n7\n19\n57\n13\n61\n42\n-1\n34\n65\n16\n31\n61\n6\n5\n34\n15\n-1\n13\n4\n22\n74\n7\n-1\n70\n38\n61\n45\n53\n46\n22\n-1\n65\n34\n19\n43\n48\n33\n58\n36\n-1\n47\n24\n34", "output": "6" }, { "input": "5\n2\n3\n4\n5\n-1", "output": "5" } ]
1,685,281,542
2,147,483,647
Python 3
RUNTIME_ERROR
TESTS
38
92
1,433,600
n = int(input()) adj_lista = [] nos = [] visited = [] dep = [0] * n for t in range(n): adj_lista.append([]) visited.append(False) for e in range(n): v = int(input()) nos.append(v) if (v != -1): adj_lista[v-1].append(e) def dfs(s): if (visited[s]): return visited[s] = True for a in adj_lista[s]: dep[a] = dep[s] + 1 dfs(a) for i in range(n): if (nos[i] == -1): dfs(i) maxim = -100 for h in range(n): if (dep[h] > maxim): maxim = dep[h] print(maxim + 1)
Title: Party Time Limit: None seconds Memory Limit: None megabytes Problem Description: A company has *n* employees numbered from 1 to *n*. Each employee either has no immediate manager or exactly one immediate manager, who is another employee with a different number. An employee *A* is said to be the superior of another employee *B* if at least one of the following is true: - Employee *A* is the immediate manager of employee *B* - Employee *B* has an immediate manager employee *C* such that employee *A* is the superior of employee *C*. The company will not have a managerial cycle. That is, there will not exist an employee who is the superior of his/her own immediate manager. Today the company is going to arrange a party. This involves dividing all *n* employees into several groups: every employee must belong to exactly one group. Furthermore, within any single group, there must not be two employees *A* and *B* such that *A* is the superior of *B*. What is the minimum number of groups that must be formed? Input Specification: The first line contains integer *n* (1<=≤<=*n*<=≤<=2000) — the number of employees. The next *n* lines contain the integers *p**i* (1<=≤<=*p**i*<=≤<=*n* or *p**i*<==<=-1). Every *p**i* denotes the immediate manager for the *i*-th employee. If *p**i* is -1, that means that the *i*-th employee does not have an immediate manager. It is guaranteed, that no employee will be the immediate manager of him/herself (*p**i*<=≠<=*i*). Also, there will be no managerial cycles. Output Specification: Print a single integer denoting the minimum number of groups that will be formed in the party. Demo Input: ['5\n-1\n1\n2\n1\n-1\n'] Demo Output: ['3\n'] Note: For the first example, three groups are sufficient, for example: - Employee 1 - Employees 2 and 4 - Employees 3 and 5
```python n = int(input()) adj_lista = [] nos = [] visited = [] dep = [0] * n for t in range(n): adj_lista.append([]) visited.append(False) for e in range(n): v = int(input()) nos.append(v) if (v != -1): adj_lista[v-1].append(e) def dfs(s): if (visited[s]): return visited[s] = True for a in adj_lista[s]: dep[a] = dep[s] + 1 dfs(a) for i in range(n): if (nos[i] == -1): dfs(i) maxim = -100 for h in range(n): if (dep[h] > maxim): maxim = dep[h] print(maxim + 1) ```
-1
958
A2
Death Stars (medium)
PROGRAMMING
2,000
[ "hashing", "strings" ]
null
null
The stardate is 1983, and Princess Heidi is getting better at detecting the Death Stars. This time, two Rebel spies have yet again given Heidi two maps with the possible locations of the Death Star. Since she got rid of all double agents last time, she knows that both maps are correct, and indeed show the map of the solar system that contains the Death Star. However, this time the Empire has hidden the Death Star very well, and Heidi needs to find a place that appears on both maps in order to detect the Death Star. The first map is an *N*<=×<=*M* grid, each cell of which shows some type of cosmic object that is present in the corresponding quadrant of space. The second map is an *M*<=×<=*N* grid. Heidi needs to align those two maps in such a way that they overlap over some *M*<=×<=*M* section in which all cosmic objects are identical. Help Heidi by identifying where such an *M*<=×<=*M* section lies within both maps.
The first line of the input contains two space-separated integers *N* and *M* (1<=≤<=*N*<=≤<=2000, 1<=≤<=*M*<=≤<=200, *M*<=≤<=*N*). The next *N* lines each contain *M* lower-case Latin characters (a-z), denoting the first map. Different characters correspond to different cosmic object types. The next *M* lines each contain *N* characters, describing the second map in the same format.
The only line of the output should contain two space-separated integers *i* and *j*, denoting that the section of size *M*<=×<=*M* in the first map that starts at the *i*-th row is equal to the section of the second map that starts at the *j*-th column. Rows and columns are numbered starting from 1. If there are several possible ways to align the maps, Heidi will be satisfied with any of those. It is guaranteed that a solution exists.
[ "10 5\nsomer\nandom\nnoise\nmayth\neforc\nebewi\nthyou\nhctwo\nagain\nnoise\nsomermayth\nandomeforc\nnoiseebewi\nagainthyou\nnoisehctwo\n" ]
[ "4 6\n" ]
The 5-by-5 grid for the first test case looks like this:
0
[ { "input": "10 5\nsomer\nandom\nnoise\nmayth\neforc\nebewi\nthyou\nhctwo\nagain\nnoise\nsomermayth\nandomeforc\nnoiseebewi\nagainthyou\nnoisehctwo", "output": "4 6" }, { "input": "1 1\ng\ng", "output": "1 1" } ]
1,523,696,715
7,215
Python 3
OK
TESTS
28
1,715
154,214,400
n, m = [int(x) for x in input().split()] list1 = [] list2 = [] for i in range(n): list1.append(input()) for j in range(m): list2.append(input()) list3 = [] for i in range(n - m + 1): y = "" for j in range(m): y += list1[j + i] list3.append(y) list4 = [] for i in range(n - m + 1): y = "" for j in range(m): y += list2[j][i:i + m] list4.append(y) for i in list3: if i in list4: print(list3.index(i) + 1, list4.index(i) + 1) quit()
Title: Death Stars (medium) Time Limit: None seconds Memory Limit: None megabytes Problem Description: The stardate is 1983, and Princess Heidi is getting better at detecting the Death Stars. This time, two Rebel spies have yet again given Heidi two maps with the possible locations of the Death Star. Since she got rid of all double agents last time, she knows that both maps are correct, and indeed show the map of the solar system that contains the Death Star. However, this time the Empire has hidden the Death Star very well, and Heidi needs to find a place that appears on both maps in order to detect the Death Star. The first map is an *N*<=×<=*M* grid, each cell of which shows some type of cosmic object that is present in the corresponding quadrant of space. The second map is an *M*<=×<=*N* grid. Heidi needs to align those two maps in such a way that they overlap over some *M*<=×<=*M* section in which all cosmic objects are identical. Help Heidi by identifying where such an *M*<=×<=*M* section lies within both maps. Input Specification: The first line of the input contains two space-separated integers *N* and *M* (1<=≤<=*N*<=≤<=2000, 1<=≤<=*M*<=≤<=200, *M*<=≤<=*N*). The next *N* lines each contain *M* lower-case Latin characters (a-z), denoting the first map. Different characters correspond to different cosmic object types. The next *M* lines each contain *N* characters, describing the second map in the same format. Output Specification: The only line of the output should contain two space-separated integers *i* and *j*, denoting that the section of size *M*<=×<=*M* in the first map that starts at the *i*-th row is equal to the section of the second map that starts at the *j*-th column. Rows and columns are numbered starting from 1. If there are several possible ways to align the maps, Heidi will be satisfied with any of those. It is guaranteed that a solution exists. Demo Input: ['10 5\nsomer\nandom\nnoise\nmayth\neforc\nebewi\nthyou\nhctwo\nagain\nnoise\nsomermayth\nandomeforc\nnoiseebewi\nagainthyou\nnoisehctwo\n'] Demo Output: ['4 6\n'] Note: The 5-by-5 grid for the first test case looks like this:
```python n, m = [int(x) for x in input().split()] list1 = [] list2 = [] for i in range(n): list1.append(input()) for j in range(m): list2.append(input()) list3 = [] for i in range(n - m + 1): y = "" for j in range(m): y += list1[j + i] list3.append(y) list4 = [] for i in range(n - m + 1): y = "" for j in range(m): y += list2[j][i:i + m] list4.append(y) for i in list3: if i in list4: print(list3.index(i) + 1, list4.index(i) + 1) quit() ```
3
332
B
Maximum Absurdity
PROGRAMMING
1,500
[ "data structures", "dp", "implementation" ]
null
null
Reforms continue entering Berland. For example, during yesterday sitting the Berland Parliament approved as much as *n* laws (each law has been assigned a unique number from 1 to *n*). Today all these laws were put on the table of the President of Berland, G.W. Boosch, to be signed. This time mr. Boosch plans to sign 2*k* laws. He decided to choose exactly two non-intersecting segments of integers from 1 to *n* of length *k* and sign all laws, whose numbers fall into these segments. More formally, mr. Boosch is going to choose two integers *a*, *b* (1<=≤<=*a*<=≤<=*b*<=≤<=*n*<=-<=*k*<=+<=1,<=*b*<=-<=*a*<=≥<=*k*) and sign all laws with numbers lying in the segments [*a*; *a*<=+<=*k*<=-<=1] and [*b*; *b*<=+<=*k*<=-<=1] (borders are included). As mr. Boosch chooses the laws to sign, he of course considers the public opinion. Allberland Public Opinion Study Centre (APOSC) conducted opinion polls among the citizens, processed the results into a report and gave it to the president. The report contains the absurdity value for each law, in the public opinion. As mr. Boosch is a real patriot, he is keen on signing the laws with the maximum total absurdity. Help him.
The first line contains two integers *n* and *k* (2<=≤<=*n*<=≤<=2·105, 0<=&lt;<=2*k*<=≤<=*n*) — the number of laws accepted by the parliament and the length of one segment in the law list, correspondingly. The next line contains *n* integers *x*1,<=*x*2,<=...,<=*x**n* — the absurdity of each law (1<=≤<=*x**i*<=≤<=109).
Print two integers *a*, *b* — the beginning of segments that mr. Boosch should choose. That means that the president signs laws with numbers from segments [*a*; *a*<=+<=*k*<=-<=1] and [*b*; *b*<=+<=*k*<=-<=1]. If there are multiple solutions, print the one with the minimum number *a*. If there still are multiple solutions, print the one with the minimum *b*.
[ "5 2\n3 6 1 1 6\n", "6 2\n1 1 1 1 1 1\n" ]
[ "1 4\n", "1 3\n" ]
In the first sample mr. Boosch signs laws with numbers from segments [1;2] and [4;5]. The total absurdity of the signed laws equals 3 + 6 + 1 + 6 = 16. In the second sample mr. Boosch signs laws with numbers from segments [1;2] and [3;4]. The total absurdity of the signed laws equals 1 + 1 + 1 + 1 = 4.
1,000
[ { "input": "5 2\n3 6 1 1 6", "output": "1 4" }, { "input": "6 2\n1 1 1 1 1 1", "output": "1 3" }, { "input": "6 2\n1 4 1 2 5 6", "output": "1 5" }, { "input": "4 1\n1 2 2 2", "output": "2 3" }, { "input": "6 3\n15 20 1 15 43 6", "output": "1 4" }, { "input": "12 3\n1 2 1 15 2 3 6 8 3 3 8 6", "output": "4 7" }, { "input": "14 2\n2 1 2 3 1 2 2 3 1 2 2 3 2 3", "output": "3 7" }, { "input": "2 1\n1 1", "output": "1 2" }, { "input": "2 1\n1000000000 999999999", "output": "1 2" }, { "input": "3 1\n100 30 563", "output": "1 3" }, { "input": "3 1\n547468 78578678 6467834", "output": "2 3" }, { "input": "4 1\n90000 34567 90000 90001", "output": "1 4" }, { "input": "4 2\n999999 8888888 7777777 666666", "output": "1 3" }, { "input": "5 1\n2 1 2 1 2", "output": "1 3" }, { "input": "5 2\n98 96 98 96 96", "output": "1 3" }, { "input": "6 2\n4 4 7 1 1 7", "output": "2 5" }, { "input": "98 24\n91 20 12 75 44 22 22 67 28 100 8 41 31 47 95 87 5 54 7 49 32 46 42 37 45 22 29 15 54 98 46 94 69 47 60 1 15 76 17 82 46 22 32 34 91 37 30 26 92 77 69 11 59 78 24 66 88 15 32 49 46 14 57 20 5 69 53 99 81 70 67 22 54 31 49 52 46 51 46 2 53 59 8 66 28 53 54 5 85 75 15 55 87 16 68 6 36 98", "output": "30 67" }, { "input": "6 3\n1 2 2 2 1 1", "output": "1 4" }, { "input": "10 4\n9 3 3 9 1 9 9 4 4 9", "output": "1 6" }, { "input": "7 3\n1 2 5 5 5 5 5", "output": "2 5" } ]
1,611,393,421
2,147,483,647
PyPy 3
WRONG_ANSWER
TESTS
2
216
0
from sys import stdin,stdout from itertools import accumulate nmbr=lambda:int(stdin.readline()) lst = lambda: list(map(int,stdin.readline().split())) for _ in range(1):#nmbr()): n,k=lst() a=lst() NI=float('-inf') ps=list(accumulate(a)) lr=[0]*n for i in range(k-1,n): lr[i]=ps[i]-(ps[i-k] if i-k>=0 else 0) # print(lr) dp=[[0 for i in range(2)] for _ in range(n+1)] for i in range(1,n+1): dp[i][0]=max(dp[i-1][0],lr[i-1]) dp[i][1]=max(dp[i-1][1],lr[i-1]+(dp[i-k][0] if i-k>0 else NI)) # print(dp) y=n ansx=ansy=0 while y>0: if dp[y][1]==dp[y-1][1]: y-=1 else: ansy=y break x=ansy while x>0: if dp[x][0]==dp[x-1][0]:x-=1 else: ansx=x break print(ansx-k+1,ansy-k+1)
Title: Maximum Absurdity Time Limit: None seconds Memory Limit: None megabytes Problem Description: Reforms continue entering Berland. For example, during yesterday sitting the Berland Parliament approved as much as *n* laws (each law has been assigned a unique number from 1 to *n*). Today all these laws were put on the table of the President of Berland, G.W. Boosch, to be signed. This time mr. Boosch plans to sign 2*k* laws. He decided to choose exactly two non-intersecting segments of integers from 1 to *n* of length *k* and sign all laws, whose numbers fall into these segments. More formally, mr. Boosch is going to choose two integers *a*, *b* (1<=≤<=*a*<=≤<=*b*<=≤<=*n*<=-<=*k*<=+<=1,<=*b*<=-<=*a*<=≥<=*k*) and sign all laws with numbers lying in the segments [*a*; *a*<=+<=*k*<=-<=1] and [*b*; *b*<=+<=*k*<=-<=1] (borders are included). As mr. Boosch chooses the laws to sign, he of course considers the public opinion. Allberland Public Opinion Study Centre (APOSC) conducted opinion polls among the citizens, processed the results into a report and gave it to the president. The report contains the absurdity value for each law, in the public opinion. As mr. Boosch is a real patriot, he is keen on signing the laws with the maximum total absurdity. Help him. Input Specification: The first line contains two integers *n* and *k* (2<=≤<=*n*<=≤<=2·105, 0<=&lt;<=2*k*<=≤<=*n*) — the number of laws accepted by the parliament and the length of one segment in the law list, correspondingly. The next line contains *n* integers *x*1,<=*x*2,<=...,<=*x**n* — the absurdity of each law (1<=≤<=*x**i*<=≤<=109). Output Specification: Print two integers *a*, *b* — the beginning of segments that mr. Boosch should choose. That means that the president signs laws with numbers from segments [*a*; *a*<=+<=*k*<=-<=1] and [*b*; *b*<=+<=*k*<=-<=1]. If there are multiple solutions, print the one with the minimum number *a*. If there still are multiple solutions, print the one with the minimum *b*. Demo Input: ['5 2\n3 6 1 1 6\n', '6 2\n1 1 1 1 1 1\n'] Demo Output: ['1 4\n', '1 3\n'] Note: In the first sample mr. Boosch signs laws with numbers from segments [1;2] and [4;5]. The total absurdity of the signed laws equals 3 + 6 + 1 + 6 = 16. In the second sample mr. Boosch signs laws with numbers from segments [1;2] and [3;4]. The total absurdity of the signed laws equals 1 + 1 + 1 + 1 = 4.
```python from sys import stdin,stdout from itertools import accumulate nmbr=lambda:int(stdin.readline()) lst = lambda: list(map(int,stdin.readline().split())) for _ in range(1):#nmbr()): n,k=lst() a=lst() NI=float('-inf') ps=list(accumulate(a)) lr=[0]*n for i in range(k-1,n): lr[i]=ps[i]-(ps[i-k] if i-k>=0 else 0) # print(lr) dp=[[0 for i in range(2)] for _ in range(n+1)] for i in range(1,n+1): dp[i][0]=max(dp[i-1][0],lr[i-1]) dp[i][1]=max(dp[i-1][1],lr[i-1]+(dp[i-k][0] if i-k>0 else NI)) # print(dp) y=n ansx=ansy=0 while y>0: if dp[y][1]==dp[y-1][1]: y-=1 else: ansy=y break x=ansy while x>0: if dp[x][0]==dp[x-1][0]:x-=1 else: ansx=x break print(ansx-k+1,ansy-k+1) ```
0
760
A
Petr and a calendar
PROGRAMMING
800
[ "implementation", "math" ]
null
null
Petr wants to make a calendar for current month. For this purpose he draws a table in which columns correspond to weeks (a week is seven consequent days from Monday to Sunday), rows correspond to weekdays, and cells contain dates. For example, a calendar for January 2017 should look like on the picture: Petr wants to know how many columns his table should have given the month and the weekday of the first date of that month? Assume that the year is non-leap.
The only line contain two integers *m* and *d* (1<=≤<=*m*<=≤<=12, 1<=≤<=*d*<=≤<=7) — the number of month (January is the first month, December is the twelfth) and the weekday of the first date of this month (1 is Monday, 7 is Sunday).
Print single integer: the number of columns the table should have.
[ "1 7\n", "1 1\n", "11 6\n" ]
[ "6\n", "5\n", "5\n" ]
The first example corresponds to the January 2017 shown on the picture in the statements. In the second example 1-st January is Monday, so the whole month fits into 5 columns. In the third example 1-st November is Saturday and 5 columns is enough.
500
[ { "input": "1 7", "output": "6" }, { "input": "1 1", "output": "5" }, { "input": "11 6", "output": "5" }, { "input": "2 7", "output": "5" }, { "input": "2 1", "output": "4" }, { "input": "8 6", "output": "6" }, { "input": "1 1", "output": "5" }, { "input": "1 2", "output": "5" }, { "input": "1 3", "output": "5" }, { "input": "1 4", "output": "5" }, { "input": "1 5", "output": "5" }, { "input": "1 6", "output": "6" }, { "input": "1 7", "output": "6" }, { "input": "2 1", "output": "4" }, { "input": "2 2", "output": "5" }, { "input": "2 3", "output": "5" }, { "input": "2 4", "output": "5" }, { "input": "2 5", "output": "5" }, { "input": "2 6", "output": "5" }, { "input": "2 7", "output": "5" }, { "input": "3 1", "output": "5" }, { "input": "3 2", "output": "5" }, { "input": "3 3", "output": "5" }, { "input": "3 4", "output": "5" }, { "input": "3 5", "output": "5" }, { "input": "3 6", "output": "6" }, { "input": "3 7", "output": "6" }, { "input": "4 1", "output": "5" }, { "input": "4 2", "output": "5" }, { "input": "4 3", "output": "5" }, { "input": "4 4", "output": "5" }, { "input": "4 5", "output": "5" }, { "input": "4 6", "output": "5" }, { "input": "4 7", "output": "6" }, { "input": "5 1", "output": "5" }, { "input": "5 2", "output": "5" }, { "input": "5 3", "output": "5" }, { "input": "5 4", "output": "5" }, { "input": "5 5", "output": "5" }, { "input": "5 6", "output": "6" }, { "input": "5 7", "output": "6" }, { "input": "6 1", "output": "5" }, { "input": "6 2", "output": "5" }, { "input": "6 3", "output": "5" }, { "input": "6 4", "output": "5" }, { "input": "6 5", "output": "5" }, { "input": "6 6", "output": "5" }, { "input": "6 7", "output": "6" }, { "input": "7 1", "output": "5" }, { "input": "7 2", "output": "5" }, { "input": "7 3", "output": "5" }, { "input": "7 4", "output": "5" }, { "input": "7 5", "output": "5" }, { "input": "7 6", "output": "6" }, { "input": "7 7", "output": "6" }, { "input": "8 1", "output": "5" }, { "input": "8 2", "output": "5" }, { "input": "8 3", "output": "5" }, { "input": "8 4", "output": "5" }, { "input": "8 5", "output": "5" }, { "input": "8 6", "output": "6" }, { "input": "8 7", "output": "6" }, { "input": "9 1", "output": "5" }, { "input": "9 2", "output": "5" }, { "input": "9 3", "output": "5" }, { "input": "9 4", "output": "5" }, { "input": "9 5", "output": "5" }, { "input": "9 6", "output": "5" }, { "input": "9 7", "output": "6" }, { "input": "10 1", "output": "5" }, { "input": "10 2", "output": "5" }, { "input": "10 3", "output": "5" }, { "input": "10 4", "output": "5" }, { "input": "10 5", "output": "5" }, { "input": "10 6", "output": "6" }, { "input": "10 7", "output": "6" }, { "input": "11 1", "output": "5" }, { "input": "11 2", "output": "5" }, { "input": "11 3", "output": "5" }, { "input": "11 4", "output": "5" }, { "input": "11 5", "output": "5" }, { "input": "11 6", "output": "5" }, { "input": "11 7", "output": "6" }, { "input": "12 1", "output": "5" }, { "input": "12 2", "output": "5" }, { "input": "12 3", "output": "5" }, { "input": "12 4", "output": "5" }, { "input": "12 5", "output": "5" }, { "input": "12 6", "output": "6" }, { "input": "12 7", "output": "6" }, { "input": "1 4", "output": "5" }, { "input": "1 5", "output": "5" }, { "input": "9 7", "output": "6" }, { "input": "2 6", "output": "5" }, { "input": "1 6", "output": "6" }, { "input": "2 2", "output": "5" }, { "input": "4 7", "output": "6" }, { "input": "12 6", "output": "6" }, { "input": "12 3", "output": "5" }, { "input": "3 6", "output": "6" }, { "input": "9 6", "output": "5" }, { "input": "7 6", "output": "6" }, { "input": "11 7", "output": "6" }, { "input": "6 6", "output": "5" } ]
1,490,542,305
2,147,483,647
Python 3
RUNTIME_ERROR
TESTS
0
31
4,608,000
m = int(input()) d = int(input()) ls1 = [1, 3, 5, 7, 8, 10, 12] ls2 = [4, 6, 9, 11] if m in ls1: n = 31 elif m in ls2: n = 30 else: n = 28 f = n % d pr = n // 7 if f == 0: print(pr+1) else: print(pr+2)
Title: Petr and a calendar Time Limit: None seconds Memory Limit: None megabytes Problem Description: Petr wants to make a calendar for current month. For this purpose he draws a table in which columns correspond to weeks (a week is seven consequent days from Monday to Sunday), rows correspond to weekdays, and cells contain dates. For example, a calendar for January 2017 should look like on the picture: Petr wants to know how many columns his table should have given the month and the weekday of the first date of that month? Assume that the year is non-leap. Input Specification: The only line contain two integers *m* and *d* (1<=≤<=*m*<=≤<=12, 1<=≤<=*d*<=≤<=7) — the number of month (January is the first month, December is the twelfth) and the weekday of the first date of this month (1 is Monday, 7 is Sunday). Output Specification: Print single integer: the number of columns the table should have. Demo Input: ['1 7\n', '1 1\n', '11 6\n'] Demo Output: ['6\n', '5\n', '5\n'] Note: The first example corresponds to the January 2017 shown on the picture in the statements. In the second example 1-st January is Monday, so the whole month fits into 5 columns. In the third example 1-st November is Saturday and 5 columns is enough.
```python m = int(input()) d = int(input()) ls1 = [1, 3, 5, 7, 8, 10, 12] ls2 = [4, 6, 9, 11] if m in ls1: n = 31 elif m in ls2: n = 30 else: n = 28 f = n % d pr = n // 7 if f == 0: print(pr+1) else: print(pr+2) ```
-1
912
A
Tricky Alchemy
PROGRAMMING
800
[ "implementation" ]
null
null
During the winter holidays, the demand for Christmas balls is exceptionally high. Since it's already 2018, the advances in alchemy allow easy and efficient ball creation by utilizing magic crystals. Grisha needs to obtain some yellow, green and blue balls. It's known that to produce a yellow ball one needs two yellow crystals, green — one yellow and one blue, and for a blue ball, three blue crystals are enough. Right now there are *A* yellow and *B* blue crystals in Grisha's disposal. Find out how many additional crystals he should acquire in order to produce the required number of balls.
The first line features two integers *A* and *B* (0<=≤<=*A*,<=*B*<=≤<=109), denoting the number of yellow and blue crystals respectively at Grisha's disposal. The next line contains three integers *x*, *y* and *z* (0<=≤<=*x*,<=*y*,<=*z*<=≤<=109) — the respective amounts of yellow, green and blue balls to be obtained.
Print a single integer — the minimum number of crystals that Grisha should acquire in addition.
[ "4 3\n2 1 1\n", "3 9\n1 1 3\n", "12345678 87654321\n43043751 1000000000 53798715\n" ]
[ "2\n", "1\n", "2147483648\n" ]
In the first sample case, Grisha needs five yellow and four blue crystals to create two yellow balls, one green ball, and one blue ball. To do that, Grisha needs to obtain two additional crystals: one yellow and one blue.
500
[ { "input": "4 3\n2 1 1", "output": "2" }, { "input": "3 9\n1 1 3", "output": "1" }, { "input": "12345678 87654321\n43043751 1000000000 53798715", "output": "2147483648" }, { "input": "12 12\n3 5 2", "output": "0" }, { "input": "770 1390\n170 442 311", "output": "12" }, { "input": "3555165 6693472\n1499112 556941 3075290", "output": "3089339" }, { "input": "0 0\n1000000000 1000000000 1000000000", "output": "7000000000" }, { "input": "1 1\n0 1 0", "output": "0" }, { "input": "117708228 562858833\n118004008 360437130 154015822", "output": "738362681" }, { "input": "999998118 700178721\n822106746 82987112 547955384", "output": "1753877029" }, { "input": "566568710 765371101\n60614022 80126928 809950465", "output": "1744607222" }, { "input": "448858599 829062060\n764716760 97644201 203890025", "output": "1178219122" }, { "input": "626115781 966381948\n395190569 820194184 229233367", "output": "1525971878" }, { "input": "803372962 103701834\n394260597 837711458 623172928", "output": "3426388098" }, { "input": "980630143 241021722\n24734406 928857659 312079781", "output": "1624075280" }, { "input": "862920032 378341609\n360240924 241342224 337423122", "output": "974174021" }, { "input": "40177212 515661496\n64343660 963892207 731362684", "output": "3694721078" }, { "input": "217434393 579352456\n694817470 981409480 756706026", "output": "4825785129" }, { "input": "394691574 716672343\n398920207 72555681 150645586", "output": "475704521" }, { "input": "276981463 853992230\n29394015 90072954 839552440", "output": "1754738044" }, { "input": "843552056 919184611\n341530221 423649259 101547519", "output": "263157645" }, { "input": "20809236 56504497\n972004030 441166533 495487081", "output": "4235488636" }, { "input": "198066417 825228166\n602477839 532312735 520830423", "output": "2808777834" }, { "input": "80356306 962548053\n601547868 549830008 914769984", "output": "4004161345" }, { "input": "257613487 394835231\n642087093 567347282 308709545", "output": "2692548667" }, { "input": "139903376 532155119\n641157122 289897263 629020178", "output": "3077110809" }, { "input": "612127849 669475006\n271630930 676010757 22959739", "output": "682559736" }, { "input": "0 0\n0 0 0", "output": "0" }, { "input": "1000000000 1000000000\n499999998 4 333333332", "output": "0" }, { "input": "1000000000 1000000000\n1000000000 1000000000 1000000000", "output": "5000000000" }, { "input": "4 3\n1 0 1", "output": "0" }, { "input": "4 12\n1 2 3", "output": "0" }, { "input": "4 20\n1 2 1", "output": "0" }, { "input": "100 10\n2 3 4", "output": "5" }, { "input": "6 0\n1 1 1", "output": "4" }, { "input": "25 5\n3 3 3", "output": "7" }, { "input": "48 27\n22 39 20", "output": "107" }, { "input": "4 0\n1 1 1", "output": "4" } ]
1,625,634,729
2,147,483,647
PyPy 3
OK
TESTS
38
109
0
A,B=map(int,input().split()) x,y,z=map(int,input().split()) print(max(0,2*x+y-A)+max(0,y+3*z-B))
Title: Tricky Alchemy Time Limit: None seconds Memory Limit: None megabytes Problem Description: During the winter holidays, the demand for Christmas balls is exceptionally high. Since it's already 2018, the advances in alchemy allow easy and efficient ball creation by utilizing magic crystals. Grisha needs to obtain some yellow, green and blue balls. It's known that to produce a yellow ball one needs two yellow crystals, green — one yellow and one blue, and for a blue ball, three blue crystals are enough. Right now there are *A* yellow and *B* blue crystals in Grisha's disposal. Find out how many additional crystals he should acquire in order to produce the required number of balls. Input Specification: The first line features two integers *A* and *B* (0<=≤<=*A*,<=*B*<=≤<=109), denoting the number of yellow and blue crystals respectively at Grisha's disposal. The next line contains three integers *x*, *y* and *z* (0<=≤<=*x*,<=*y*,<=*z*<=≤<=109) — the respective amounts of yellow, green and blue balls to be obtained. Output Specification: Print a single integer — the minimum number of crystals that Grisha should acquire in addition. Demo Input: ['4 3\n2 1 1\n', '3 9\n1 1 3\n', '12345678 87654321\n43043751 1000000000 53798715\n'] Demo Output: ['2\n', '1\n', '2147483648\n'] Note: In the first sample case, Grisha needs five yellow and four blue crystals to create two yellow balls, one green ball, and one blue ball. To do that, Grisha needs to obtain two additional crystals: one yellow and one blue.
```python A,B=map(int,input().split()) x,y,z=map(int,input().split()) print(max(0,2*x+y-A)+max(0,y+3*z-B)) ```
3
235
A
LCM Challenge
PROGRAMMING
1,600
[ "number theory" ]
null
null
Some days ago, I learned the concept of LCM (least common multiple). I've played with it for several times and I want to make a big number with it. But I also don't want to use many numbers, so I'll choose three positive integers (they don't have to be distinct) which are not greater than *n*. Can you help me to find the maximum possible least common multiple of these three integers?
The first line contains an integer *n* (1<=≤<=*n*<=≤<=106) — the *n* mentioned in the statement.
Print a single integer — the maximum possible LCM of three not necessarily distinct positive integers that are not greater than *n*.
[ "9\n", "7\n" ]
[ "504\n", "210\n" ]
The least common multiple of some positive integers is the least positive integer which is multiple for each of them. The result may become very large, 32-bit integer won't be enough. So using 64-bit integers is recommended. For the last example, we can chose numbers 7, 6, 5 and the LCM of them is 7·6·5 = 210. It is the maximum value we can get.
500
[ { "input": "9", "output": "504" }, { "input": "7", "output": "210" }, { "input": "1", "output": "1" }, { "input": "5", "output": "60" }, { "input": "6", "output": "60" }, { "input": "33", "output": "32736" }, { "input": "21", "output": "7980" }, { "input": "2", "output": "2" }, { "input": "41", "output": "63960" }, { "input": "29", "output": "21924" }, { "input": "117", "output": "1560780" }, { "input": "149", "output": "3241644" }, { "input": "733", "output": "392222436" }, { "input": "925", "output": "788888100" }, { "input": "509", "output": "131096004" }, { "input": "829", "output": "567662724" }, { "input": "117", "output": "1560780" }, { "input": "605", "output": "220348260" }, { "input": "245", "output": "14526540" }, { "input": "925", "output": "788888100" }, { "input": "213", "output": "9527916" }, { "input": "53", "output": "140556" }, { "input": "341", "output": "39303660" }, { "input": "21", "output": "7980" }, { "input": "605", "output": "220348260" }, { "input": "149", "output": "3241644" }, { "input": "733", "output": "392222436" }, { "input": "117", "output": "1560780" }, { "input": "53", "output": "140556" }, { "input": "245", "output": "14526540" }, { "input": "829", "output": "567662724" }, { "input": "924", "output": "783776526" }, { "input": "508", "output": "130065780" }, { "input": "700", "output": "341042100" }, { "input": "636", "output": "254839470" }, { "input": "20", "output": "6460" }, { "input": "604", "output": "218891412" }, { "input": "796", "output": "501826260" }, { "input": "732", "output": "389016270" }, { "input": "412", "output": "69256788" }, { "input": "700", "output": "341042100" }, { "input": "244", "output": "14289372" }, { "input": "828", "output": "563559150" }, { "input": "508", "output": "130065780" }, { "input": "796", "output": "501826260" }, { "input": "636", "output": "254839470" }, { "input": "924", "output": "783776526" }, { "input": "245", "output": "14526540" }, { "input": "828", "output": "563559150" }, { "input": "21", "output": "7980" }, { "input": "605", "output": "220348260" }, { "input": "636", "output": "254839470" }, { "input": "924", "output": "783776526" }, { "input": "116", "output": "1507420" }, { "input": "700", "output": "341042100" }, { "input": "732", "output": "389016270" }, { "input": "20", "output": "6460" }, { "input": "508", "output": "130065780" }, { "input": "148", "output": "3154620" }, { "input": "828", "output": "563559150" }, { "input": "763116", "output": "444394078546562430" }, { "input": "756604", "output": "433115377058855412" }, { "input": "447244", "output": "89460162932862372" }, { "input": "372636", "output": "51742503205363470" }, { "input": "546924", "output": "163597318076822526" }, { "input": "540412", "output": "157823524476316788" }, { "input": "714700", "output": "365063922340784100" }, { "input": "520731", "output": "141201007712496270" }, { "input": "695019", "output": "335728459024850814" }, { "input": "688507", "output": "326379736779169710" }, { "input": "862795", "output": "642275489615199390" }, { "input": "668827", "output": "299184742915995150" }, { "input": "810411", "output": "532248411551110590" }, { "input": "836603", "output": "585540171302562606" }, { "input": "978187", "output": "935975171582120670" }, { "input": "816923", "output": "545182335484592526" }, { "input": "958507", "output": "880611813728059710" }, { "input": "984699", "output": "954792870629291694" }, { "input": "642635", "output": "265393998349453470" }, { "input": "296604", "output": "26092892528622606" }, { "input": "1000000", "output": "999996000003000000" }, { "input": "8", "output": "280" }, { "input": "3", "output": "6" }, { "input": "4", "output": "12" }, { "input": "30", "output": "21924" }, { "input": "18", "output": "4080" }, { "input": "12", "output": "990" } ]
1,690,783,885
2,147,483,647
PyPy 3
WRONG_ANSWER
TESTS
31
186
0
n=int(input()) import math if n==1: print(1) elif n==2: print(2) else: x=(n*(n-1))//math.gcd(n,n-1) x=(x*(n-2))//math.gcd(x,n-2) print(x)
Title: LCM Challenge Time Limit: None seconds Memory Limit: None megabytes Problem Description: Some days ago, I learned the concept of LCM (least common multiple). I've played with it for several times and I want to make a big number with it. But I also don't want to use many numbers, so I'll choose three positive integers (they don't have to be distinct) which are not greater than *n*. Can you help me to find the maximum possible least common multiple of these three integers? Input Specification: The first line contains an integer *n* (1<=≤<=*n*<=≤<=106) — the *n* mentioned in the statement. Output Specification: Print a single integer — the maximum possible LCM of three not necessarily distinct positive integers that are not greater than *n*. Demo Input: ['9\n', '7\n'] Demo Output: ['504\n', '210\n'] Note: The least common multiple of some positive integers is the least positive integer which is multiple for each of them. The result may become very large, 32-bit integer won't be enough. So using 64-bit integers is recommended. For the last example, we can chose numbers 7, 6, 5 and the LCM of them is 7·6·5 = 210. It is the maximum value we can get.
```python n=int(input()) import math if n==1: print(1) elif n==2: print(2) else: x=(n*(n-1))//math.gcd(n,n-1) x=(x*(n-2))//math.gcd(x,n-2) print(x) ```
0
0
none
none
none
0
[ "none" ]
null
null
Santa Claus likes palindromes very much. There was his birthday recently. *k* of his friends came to him to congratulate him, and each of them presented to him a string *s**i* having the same length *n*. We denote the beauty of the *i*-th string by *a**i*. It can happen that *a**i* is negative — that means that Santa doesn't find this string beautiful at all. Santa Claus is crazy about palindromes. He is thinking about the following question: what is the maximum possible total beauty of a palindrome which can be obtained by concatenating some (possibly all) of the strings he has? Each present can be used at most once. Note that all strings have the same length *n*. Recall that a palindrome is a string that doesn't change after one reverses it. Since the empty string is a palindrome too, the answer can't be negative. Even if all *a**i*'s are negative, Santa can obtain the empty string.
The first line contains two positive integers *k* and *n* divided by space and denoting the number of Santa friends and the length of every string they've presented, respectively (1<=≤<=*k*,<=*n*<=≤<=100<=000; *n*·*k* <=≤<=100<=000). *k* lines follow. The *i*-th of them contains the string *s**i* and its beauty *a**i* (<=-<=10<=000<=≤<=*a**i*<=≤<=10<=000). The string consists of *n* lowercase English letters, and its beauty is integer. Some of strings may coincide. Also, equal strings can have different beauties.
In the only line print the required maximum possible beauty.
[ "7 3\nabb 2\naaa -3\nbba -1\nzyz -4\nabb 5\naaa 7\nxyx 4\n", "3 1\na 1\na 2\na 3\n", "2 5\nabcde 10000\nabcde 10000\n" ]
[ "12\n", "6\n", "0\n" ]
In the first example Santa can obtain abbaaaxyxaaabba by concatenating strings 5, 2, 7, 6 and 3 (in this order).
0
[ { "input": "7 3\nabb 2\naaa -3\nbba -1\nzyz -4\nabb 5\naaa 7\nxyx 4", "output": "12" }, { "input": "3 1\na 1\na 2\na 3", "output": "6" }, { "input": "2 5\nabcde 10000\nabcde 10000", "output": "0" }, { "input": "10 10\nnjxbzflaka -1\nfelbvvtkja 6\ngxiuztqkcw 5\naomvscmtti 6\njsqmkoyuca -2\nwckqtzuixg 5\najktvvblef -5\nittmcsvmoa -1\nakalfzbxjn 10\nacuyokmqsj 8", "output": "31" }, { "input": "10 20\njvyxocgomfmrtllgmagp 13\ngvtjnyaofrswcnnifzfq 17\nqisxpseggpjfoijmqnel -5\nlenqmjiofjpggespxsiq 14\nqfzfinncwsrfoaynjtvg 14\ncaayidazlylxyisihdhx 14\npgamglltrmfmogcoxyvj 11\nxhdhisiyxlylzadiyaac 2\ntbirihfpjgbbtclpxwhv 19\nvhwxplctbbgjpfhiribt 10", "output": "109" }, { "input": "1 1\ne -1", "output": "0" }, { "input": "2 1\nt 1\nt 2", "output": "3" }, { "input": "1 2\nyy 1", "output": "1" }, { "input": "2 2\nsn 1\nns 2", "output": "3" }, { "input": "3 3\nada -1\nxuv -1\nvux 3", "output": "2" }, { "input": "4 3\ndbd 24\naba 90\ncbc 54\naba 46", "output": "190" }, { "input": "2 3\naaa 5\naaa -2", "output": "5" }, { "input": "4 3\naba 4\naba 3\naba 3\naba -2", "output": "10" }, { "input": "4 3\naba 4\naba 2\naba 2\naba -1", "output": "8" }, { "input": "3 2\naa 5\naa -2\nbb 1", "output": "5" }, { "input": "2 2\naa 500\naa -50", "output": "500" }, { "input": "2 1\na 5\na -1", "output": "5" }, { "input": "2 3\naba 10\naba -3", "output": "10" }, { "input": "2 3\naba 10\naba -9", "output": "10" } ]
1,641,930,910
2,147,483,647
Python 3
RUNTIME_ERROR
TESTS
2
46
0
# input k, n = list(map(int, input("").split())) A = [] for i in range(k): aux = input("").split(" ") A.append([aux[0], int(aux[1])]) p = [31 ** i for i in range(k * n)] hasher = lambda s: sum([(ord(s[i])-96) * p[i] for i in range(len(s))]) hasheri = lambda s: sum([(ord(s[i])-96) * p[len(s) - i - 1] for i in range(len(s))]) d = {} hs = [] for el in A: h = hasher(el[0]) hs.append(h) if h in d: d[h].append(el[1]) else: d[h] = [el[1]] for h in d: d[h].sort() pals = set() revs = set() for i, el in enumerate(A): hr = hasheri(el[0]) if hr == hs[i]: pals.add(hr) elif hr in d and (hr, hs[i]) not in revs: revs.add((hs[i], hr)) res = 0 for h in pals: mx = 0 while len(d[h]) >= 2: aux = 0 aux += d[h][-1] aux += d[h][-2] if aux > 0: res += aux d[h].pop() d[h].pop() else: break if len(d[h]): mx = max(mx, d[h][-1]) res += mx for h, hr in revs: while len(d[h]) >= 1 and len(d[hr]) >= 1: aux = 0 aux += d[h].pop() aux += d[hr].pop() if aux > 0: res += aux else: break print(res)
Title: none Time Limit: None seconds Memory Limit: None megabytes Problem Description: Santa Claus likes palindromes very much. There was his birthday recently. *k* of his friends came to him to congratulate him, and each of them presented to him a string *s**i* having the same length *n*. We denote the beauty of the *i*-th string by *a**i*. It can happen that *a**i* is negative — that means that Santa doesn't find this string beautiful at all. Santa Claus is crazy about palindromes. He is thinking about the following question: what is the maximum possible total beauty of a palindrome which can be obtained by concatenating some (possibly all) of the strings he has? Each present can be used at most once. Note that all strings have the same length *n*. Recall that a palindrome is a string that doesn't change after one reverses it. Since the empty string is a palindrome too, the answer can't be negative. Even if all *a**i*'s are negative, Santa can obtain the empty string. Input Specification: The first line contains two positive integers *k* and *n* divided by space and denoting the number of Santa friends and the length of every string they've presented, respectively (1<=≤<=*k*,<=*n*<=≤<=100<=000; *n*·*k* <=≤<=100<=000). *k* lines follow. The *i*-th of them contains the string *s**i* and its beauty *a**i* (<=-<=10<=000<=≤<=*a**i*<=≤<=10<=000). The string consists of *n* lowercase English letters, and its beauty is integer. Some of strings may coincide. Also, equal strings can have different beauties. Output Specification: In the only line print the required maximum possible beauty. Demo Input: ['7 3\nabb 2\naaa -3\nbba -1\nzyz -4\nabb 5\naaa 7\nxyx 4\n', '3 1\na 1\na 2\na 3\n', '2 5\nabcde 10000\nabcde 10000\n'] Demo Output: ['12\n', '6\n', '0\n'] Note: In the first example Santa can obtain abbaaaxyxaaabba by concatenating strings 5, 2, 7, 6 and 3 (in this order).
```python # input k, n = list(map(int, input("").split())) A = [] for i in range(k): aux = input("").split(" ") A.append([aux[0], int(aux[1])]) p = [31 ** i for i in range(k * n)] hasher = lambda s: sum([(ord(s[i])-96) * p[i] for i in range(len(s))]) hasheri = lambda s: sum([(ord(s[i])-96) * p[len(s) - i - 1] for i in range(len(s))]) d = {} hs = [] for el in A: h = hasher(el[0]) hs.append(h) if h in d: d[h].append(el[1]) else: d[h] = [el[1]] for h in d: d[h].sort() pals = set() revs = set() for i, el in enumerate(A): hr = hasheri(el[0]) if hr == hs[i]: pals.add(hr) elif hr in d and (hr, hs[i]) not in revs: revs.add((hs[i], hr)) res = 0 for h in pals: mx = 0 while len(d[h]) >= 2: aux = 0 aux += d[h][-1] aux += d[h][-2] if aux > 0: res += aux d[h].pop() d[h].pop() else: break if len(d[h]): mx = max(mx, d[h][-1]) res += mx for h, hr in revs: while len(d[h]) >= 1 and len(d[hr]) >= 1: aux = 0 aux += d[h].pop() aux += d[hr].pop() if aux > 0: res += aux else: break print(res) ```
-1
69
A
Young Physicist
PROGRAMMING
1,000
[ "implementation", "math" ]
A. Young Physicist
2
256
A guy named Vasya attends the final grade of a high school. One day Vasya decided to watch a match of his favorite hockey team. And, as the boy loves hockey very much, even more than physics, he forgot to do the homework. Specifically, he forgot to complete his physics tasks. Next day the teacher got very angry at Vasya and decided to teach him a lesson. He gave the lazy student a seemingly easy task: You are given an idle body in space and the forces that affect it. The body can be considered as a material point with coordinates (0; 0; 0). Vasya had only to answer whether it is in equilibrium. "Piece of cake" — thought Vasya, we need only to check if the sum of all vectors is equal to 0. So, Vasya began to solve the problem. But later it turned out that there can be lots and lots of these forces, and Vasya can not cope without your help. Help him. Write a program that determines whether a body is idle or is moving by the given vectors of forces.
The first line contains a positive integer *n* (1<=≤<=*n*<=≤<=100), then follow *n* lines containing three integers each: the *x**i* coordinate, the *y**i* coordinate and the *z**i* coordinate of the force vector, applied to the body (<=-<=100<=≤<=*x**i*,<=*y**i*,<=*z**i*<=≤<=100).
Print the word "YES" if the body is in equilibrium, or the word "NO" if it is not.
[ "3\n4 1 7\n-2 4 -1\n1 -5 -3\n", "3\n3 -1 7\n-5 2 -4\n2 -1 -3\n" ]
[ "NO", "YES" ]
none
500
[ { "input": "3\n4 1 7\n-2 4 -1\n1 -5 -3", "output": "NO" }, { "input": "3\n3 -1 7\n-5 2 -4\n2 -1 -3", "output": "YES" }, { "input": "10\n21 32 -46\n43 -35 21\n42 2 -50\n22 40 20\n-27 -9 38\n-4 1 1\n-40 6 -31\n-13 -2 34\n-21 34 -12\n-32 -29 41", "output": "NO" }, { "input": "10\n25 -33 43\n-27 -42 28\n-35 -20 19\n41 -42 -1\n49 -39 -4\n-49 -22 7\n-19 29 41\n8 -27 -43\n8 34 9\n-11 -3 33", "output": "NO" }, { "input": "10\n-6 21 18\n20 -11 -8\n37 -11 41\n-5 8 33\n29 23 32\n30 -33 -11\n39 -49 -36\n28 34 -49\n22 29 -34\n-18 -6 7", "output": "NO" }, { "input": "10\n47 -2 -27\n0 26 -14\n5 -12 33\n2 18 3\n45 -30 -49\n4 -18 8\n-46 -44 -41\n-22 -10 -40\n-35 -21 26\n33 20 38", "output": "NO" }, { "input": "13\n-3 -36 -46\n-11 -50 37\n42 -11 -15\n9 42 44\n-29 -12 24\n3 9 -40\n-35 13 50\n14 43 18\n-13 8 24\n-48 -15 10\n50 9 -50\n21 0 -50\n0 0 -6", "output": "YES" }, { "input": "14\n43 23 17\n4 17 44\n5 -5 -16\n-43 -7 -6\n47 -48 12\n50 47 -45\n2 14 43\n37 -30 15\n4 -17 -11\n17 9 -45\n-50 -3 -8\n-50 0 0\n-50 0 0\n-16 0 0", "output": "YES" }, { "input": "13\n29 49 -11\n38 -11 -20\n25 1 -40\n-11 28 11\n23 -19 1\n45 -41 -17\n-3 0 -19\n-13 -33 49\n-30 0 28\n34 17 45\n-50 9 -27\n-50 0 0\n-37 0 0", "output": "YES" }, { "input": "12\n3 28 -35\n-32 -44 -17\n9 -25 -6\n-42 -22 20\n-19 15 38\n-21 38 48\n-1 -37 -28\n-10 -13 -50\n-5 21 29\n34 28 50\n50 11 -49\n34 0 0", "output": "YES" }, { "input": "37\n-64 -79 26\n-22 59 93\n-5 39 -12\n77 -9 76\n55 -86 57\n83 100 -97\n-70 94 84\n-14 46 -94\n26 72 35\n14 78 -62\n17 82 92\n-57 11 91\n23 15 92\n-80 -1 1\n12 39 18\n-23 -99 -75\n-34 50 19\n-39 84 -7\n45 -30 -39\n-60 49 37\n45 -16 -72\n33 -51 -56\n-48 28 5\n97 91 88\n45 -82 -11\n-21 -15 -90\n-53 73 -26\n-74 85 -90\n-40 23 38\n100 -13 49\n32 -100 -100\n0 -100 -70\n0 -100 0\n0 -100 0\n0 -100 0\n0 -100 0\n0 -37 0", "output": "YES" }, { "input": "4\n68 3 100\n68 21 -100\n-100 -24 0\n-36 0 0", "output": "YES" }, { "input": "33\n-1 -46 -12\n45 -16 -21\n-11 45 -21\n-60 -42 -93\n-22 -45 93\n37 96 85\n-76 26 83\n-4 9 55\n7 -52 -9\n66 8 -85\n-100 -54 11\n-29 59 74\n-24 12 2\n-56 81 85\n-92 69 -52\n-26 -97 91\n54 59 -51\n58 21 -57\n7 68 56\n-47 -20 -51\n-59 77 -13\n-85 27 91\n79 60 -56\n66 -80 5\n21 -99 42\n-31 -29 98\n66 93 76\n-49 45 61\n100 -100 -100\n100 -100 -100\n66 -75 -100\n0 0 -100\n0 0 -87", "output": "YES" }, { "input": "3\n1 2 3\n3 2 1\n0 0 0", "output": "NO" }, { "input": "2\n5 -23 12\n0 0 0", "output": "NO" }, { "input": "1\n0 0 0", "output": "YES" }, { "input": "1\n1 -2 0", "output": "NO" }, { "input": "2\n-23 77 -86\n23 -77 86", "output": "YES" }, { "input": "26\n86 7 20\n-57 -64 39\n-45 6 -93\n-44 -21 100\n-11 -49 21\n73 -71 -80\n-2 -89 56\n-65 -2 7\n5 14 84\n57 41 13\n-12 69 54\n40 -25 27\n-17 -59 0\n64 -91 -30\n-53 9 42\n-54 -8 14\n-35 82 27\n-48 -59 -80\n88 70 79\n94 57 97\n44 63 25\n84 -90 -40\n-100 100 -100\n-92 100 -100\n0 10 -100\n0 0 -82", "output": "YES" }, { "input": "42\n11 27 92\n-18 -56 -57\n1 71 81\n33 -92 30\n82 83 49\n-87 -61 -1\n-49 45 49\n73 26 15\n-22 22 -77\n29 -93 87\n-68 44 -90\n-4 -84 20\n85 67 -6\n-39 26 77\n-28 -64 20\n65 -97 24\n-72 -39 51\n35 -75 -91\n39 -44 -8\n-25 -27 -57\n91 8 -46\n-98 -94 56\n94 -60 59\n-9 -95 18\n-53 -37 98\n-8 -94 -84\n-52 55 60\n15 -14 37\n65 -43 -25\n94 12 66\n-8 -19 -83\n29 81 -78\n-58 57 33\n24 86 -84\n-53 32 -88\n-14 7 3\n89 97 -53\n-5 -28 -91\n-100 100 -6\n-84 100 0\n0 100 0\n0 70 0", "output": "YES" }, { "input": "3\n96 49 -12\n2 -66 28\n-98 17 -16", "output": "YES" }, { "input": "5\n70 -46 86\n-100 94 24\n-27 63 -63\n57 -100 -47\n0 -11 0", "output": "YES" }, { "input": "18\n-86 -28 70\n-31 -89 42\n31 -48 -55\n95 -17 -43\n24 -95 -85\n-21 -14 31\n68 -18 81\n13 31 60\n-15 28 99\n-42 15 9\n28 -61 -62\n-16 71 29\n-28 75 -48\n-77 -67 36\n-100 83 89\n100 100 -100\n57 34 -100\n0 0 -53", "output": "YES" }, { "input": "44\n52 -54 -29\n-82 -5 -94\n-54 43 43\n91 16 71\n7 80 -91\n3 15 29\n-99 -6 -77\n-3 -77 -64\n73 67 34\n25 -10 -18\n-29 91 63\n-72 86 -16\n-68 85 -81\n-3 36 44\n-74 -14 -80\n34 -96 -97\n-76 -78 -33\n-24 44 -58\n98 12 77\n95 -63 -6\n-51 3 -90\n-92 -10 72\n7 3 -68\n57 -53 71\n29 57 -48\n35 -60 10\n79 -70 -61\n-20 77 55\n-86 -15 -35\n84 -88 -18\n100 -42 77\n-20 46 8\n-41 -43 -65\n38 -98 -23\n-100 65 45\n-7 -91 -63\n46 88 -85\n48 59 100\n0 0 100\n0 0 100\n0 0 100\n0 0 100\n0 0 100\n0 0 1", "output": "YES" }, { "input": "18\n-14 -64 -91\n-8 -66 -86\n-23 92 -40\n6 -3 -53\n57 41 78\n-79 42 -22\n-88 -17 45\n4 -45 44\n83 -18 -25\n34 86 -92\n75 -30 12\n44 99 11\n-67 -13 72\n22 83 -56\n-37 71 72\n-9 -100 100\n0 -100 31\n0 -58 0", "output": "YES" }, { "input": "23\n-70 37 78\n42 84 6\n28 -94 -24\n-49 76 95\n-67 18 84\n-53 78 -5\n65 -63 -64\n-66 -64 -69\n81 -93 95\n10 52 -79\n-89 -61 -64\n-64 -47 43\n-81 -35 55\n80 82 73\n-60 -81 -18\n49 -10 -19\n-58 70 12\n-24 -15 -93\n98 -93 -54\n-28 -75 11\n100 100 -63\n100 100 0\n56 34 0", "output": "YES" }, { "input": "3\n0 2 -2\n1 -1 3\n-3 0 0", "output": "NO" } ]
1,659,547,112
2,147,483,647
Python 3
RUNTIME_ERROR
TESTS
0
30
0
N = int(input()) lst = [] for _ in range(N): lst.apend(input()) lst = [[3,-1,7], [-5,2,-4], [2,-1,-3]] x = [] y = [] z = [] for i in range(N): x.append(lst[i][0]) y.append(lst[i][1]) z.append(lst[i][2]) j = sum(x) k = sum(y) l = sum(z) suma = [j,k,l] if sum(suma) == 0: print("YES") else: print("NO")
Title: Young Physicist Time Limit: 2 seconds Memory Limit: 256 megabytes Problem Description: A guy named Vasya attends the final grade of a high school. One day Vasya decided to watch a match of his favorite hockey team. And, as the boy loves hockey very much, even more than physics, he forgot to do the homework. Specifically, he forgot to complete his physics tasks. Next day the teacher got very angry at Vasya and decided to teach him a lesson. He gave the lazy student a seemingly easy task: You are given an idle body in space and the forces that affect it. The body can be considered as a material point with coordinates (0; 0; 0). Vasya had only to answer whether it is in equilibrium. "Piece of cake" — thought Vasya, we need only to check if the sum of all vectors is equal to 0. So, Vasya began to solve the problem. But later it turned out that there can be lots and lots of these forces, and Vasya can not cope without your help. Help him. Write a program that determines whether a body is idle or is moving by the given vectors of forces. Input Specification: The first line contains a positive integer *n* (1<=≤<=*n*<=≤<=100), then follow *n* lines containing three integers each: the *x**i* coordinate, the *y**i* coordinate and the *z**i* coordinate of the force vector, applied to the body (<=-<=100<=≤<=*x**i*,<=*y**i*,<=*z**i*<=≤<=100). Output Specification: Print the word "YES" if the body is in equilibrium, or the word "NO" if it is not. Demo Input: ['3\n4 1 7\n-2 4 -1\n1 -5 -3\n', '3\n3 -1 7\n-5 2 -4\n2 -1 -3\n'] Demo Output: ['NO', 'YES'] Note: none
```python N = int(input()) lst = [] for _ in range(N): lst.apend(input()) lst = [[3,-1,7], [-5,2,-4], [2,-1,-3]] x = [] y = [] z = [] for i in range(N): x.append(lst[i][0]) y.append(lst[i][1]) z.append(lst[i][2]) j = sum(x) k = sum(y) l = sum(z) suma = [j,k,l] if sum(suma) == 0: print("YES") else: print("NO") ```
-1
304
B
Calendar
PROGRAMMING
1,300
[ "brute force", "implementation" ]
null
null
Calendars in widespread use today include the Gregorian calendar, which is the de facto international standard, and is used almost everywhere in the world for civil purposes. The Gregorian reform modified the Julian calendar's scheme of leap years as follows: Every year that is exactly divisible by four is a leap year, except for years that are exactly divisible by 100; the centurial years that are exactly divisible by 400 are still leap years. For example, the year 1900 is not a leap year; the year 2000 is a leap year. In this problem, you have been given two dates and your task is to calculate how many days are between them. Note, that leap years have unusual number of days in February. Look at the sample to understand what borders are included in the aswer.
The first two lines contain two dates, each date is in the format yyyy:mm:dd (1900<=≤<=*yyyy*<=≤<=2038 and yyyy:mm:dd is a legal date).
Print a single integer — the answer to the problem.
[ "1900:01:01\n2038:12:31\n", "1996:03:09\n1991:11:12\n" ]
[ "50768\n", "1579\n" ]
none
1,000
[ { "input": "1900:01:01\n2038:12:31", "output": "50768" }, { "input": "1996:03:09\n1991:11:12", "output": "1579" }, { "input": "1999:12:31\n2000:02:29", "output": "60" }, { "input": "1903:09:27\n1988:06:15", "output": "30943" }, { "input": "1913:11:14\n1901:05:11", "output": "4570" }, { "input": "1915:01:01\n2007:07:01", "output": "33784" }, { "input": "1925:07:15\n2010:06:22", "output": "31023" }, { "input": "1935:10:08\n1923:01:07", "output": "4657" }, { "input": "1986:08:24\n1926:04:13", "output": "22048" }, { "input": "1932:11:18\n2028:09:25", "output": "35010" }, { "input": "1942:06:04\n1982:12:29", "output": "14818" }, { "input": "1993:08:25\n1985:02:16", "output": "3112" }, { "input": "1954:06:30\n1911:05:04", "output": "15763" }, { "input": "2005:08:01\n1963:08:23", "output": "15319" }, { "input": "2015:10:17\n1966:07:12", "output": "17994" }, { "input": "2025:08:10\n2018:09:03", "output": "2533" }, { "input": "2027:07:31\n1945:04:06", "output": "30066" }, { "input": "2037:05:16\n1996:03:11", "output": "15041" }, { "input": "1949:07:09\n1901:10:24", "output": "17425" }, { "input": "2028:04:11\n1931:09:01", "output": "35287" }, { "input": "1900:02:06\n1997:12:07", "output": "35733" }, { "input": "1902:09:06\n1951:03:31", "output": "17738" }, { "input": "1912:03:09\n1954:06:17", "output": "15440" }, { "input": "1963:05:02\n2005:08:02", "output": "15433" }, { "input": "1973:03:18\n1932:11:07", "output": "14741" }, { "input": "1934:01:09\n1935:02:22", "output": "409" }, { "input": "1985:08:24\n1987:05:01", "output": "615" }, { "input": "1995:06:03\n1990:07:22", "output": "1777" }, { "input": "1907:04:04\n1902:10:01", "output": "1646" }, { "input": "1910:01:11\n1987:02:08", "output": "28152" }, { "input": "1996:03:09\n1996:03:09", "output": "0" }, { "input": "1900:03:02\n2038:03:01", "output": "50403" }, { "input": "2000:01:02\n2000:02:02", "output": "31" }, { "input": "1999:04:08\n1999:02:04", "output": "63" }, { "input": "1999:01:01\n1999:01:10", "output": "9" }, { "input": "2012:05:29\n2012:02:29", "output": "90" }, { "input": "1900:01:01\n1900:01:01", "output": "0" }, { "input": "1996:02:01\n1996:01:27", "output": "5" }, { "input": "1901:12:31\n1901:12:31", "output": "0" }, { "input": "2000:02:28\n2000:02:28", "output": "0" } ]
1,619,697,279
2,147,483,647
PyPy 3
OK
TESTS
40
372
6,553,600
def STR(): return list(input()) def INT(): return int(input()) def MAP(): return map(int, input().split()) def MAP2():return map(float,input().split()) def LIST(): return list(map(int, input().split())) def STRING(): return input() import string import sys import datetime from heapq import heappop , heappush from bisect import * from collections import deque , Counter , defaultdict from math import * from itertools import permutations , accumulate dx = [-1 , 1 , 0 , 0 ] dy = [0 , 0 , 1 , - 1] #visited = [[False for i in range(m)] for j in range(n)] # primes = [2,11,101,1009,10007,100003,1000003,10000019,102345689] #sys.stdin = open(r'input.txt' , 'r') #sys.stdout = open(r'output.txt' , 'w') #for tt in range(INT()): #arr.sort(key=lambda x: (-d[x], x)) Sort with Freq #Code def leap_year(y): if (y % 4 == 0 and y % 100 !=0) or (y % 400 == 0 ): return 366 return 365 s1 = input() s2 = input() months = [31 , 28 , 31 , 30 , 31 , 30 , 31 , 31 , 30 , 31, 30 , 31] y1 , m1 , d1 = '' , '' , '' y2 , m2 , d2 = '' , '' , '' for i in range(4): y1+=s1[i] y2+=s2[i] for i in range(5 , 7): m1 += s1[i] m2 += s2[i] for i in range(8 , len(s1)): d1+=s1[i] d2+=s2[i] y1 , m1 , d1 = int(y1) , int(m1) , int(d1) y2 , m2 , d2 = int(y2) , int(m2) , int(d2) res1 , res2 = d1 , d2 for i in range(y1): res1 = res1 + leap_year(i) for i in range(y2): res2 = res2 + leap_year(i) for i in range(0 , m1 - 1): res1 += months[i] if leap_year(y1) == 366 and i == 1 : res1+=1 for i in range(0 , m2-1): res2 +=months[i] if leap_year(y2) == 366 and i == 1 : res2+=1 print(abs(res1 - res2))
Title: Calendar Time Limit: None seconds Memory Limit: None megabytes Problem Description: Calendars in widespread use today include the Gregorian calendar, which is the de facto international standard, and is used almost everywhere in the world for civil purposes. The Gregorian reform modified the Julian calendar's scheme of leap years as follows: Every year that is exactly divisible by four is a leap year, except for years that are exactly divisible by 100; the centurial years that are exactly divisible by 400 are still leap years. For example, the year 1900 is not a leap year; the year 2000 is a leap year. In this problem, you have been given two dates and your task is to calculate how many days are between them. Note, that leap years have unusual number of days in February. Look at the sample to understand what borders are included in the aswer. Input Specification: The first two lines contain two dates, each date is in the format yyyy:mm:dd (1900<=≤<=*yyyy*<=≤<=2038 and yyyy:mm:dd is a legal date). Output Specification: Print a single integer — the answer to the problem. Demo Input: ['1900:01:01\n2038:12:31\n', '1996:03:09\n1991:11:12\n'] Demo Output: ['50768\n', '1579\n'] Note: none
```python def STR(): return list(input()) def INT(): return int(input()) def MAP(): return map(int, input().split()) def MAP2():return map(float,input().split()) def LIST(): return list(map(int, input().split())) def STRING(): return input() import string import sys import datetime from heapq import heappop , heappush from bisect import * from collections import deque , Counter , defaultdict from math import * from itertools import permutations , accumulate dx = [-1 , 1 , 0 , 0 ] dy = [0 , 0 , 1 , - 1] #visited = [[False for i in range(m)] for j in range(n)] # primes = [2,11,101,1009,10007,100003,1000003,10000019,102345689] #sys.stdin = open(r'input.txt' , 'r') #sys.stdout = open(r'output.txt' , 'w') #for tt in range(INT()): #arr.sort(key=lambda x: (-d[x], x)) Sort with Freq #Code def leap_year(y): if (y % 4 == 0 and y % 100 !=0) or (y % 400 == 0 ): return 366 return 365 s1 = input() s2 = input() months = [31 , 28 , 31 , 30 , 31 , 30 , 31 , 31 , 30 , 31, 30 , 31] y1 , m1 , d1 = '' , '' , '' y2 , m2 , d2 = '' , '' , '' for i in range(4): y1+=s1[i] y2+=s2[i] for i in range(5 , 7): m1 += s1[i] m2 += s2[i] for i in range(8 , len(s1)): d1+=s1[i] d2+=s2[i] y1 , m1 , d1 = int(y1) , int(m1) , int(d1) y2 , m2 , d2 = int(y2) , int(m2) , int(d2) res1 , res2 = d1 , d2 for i in range(y1): res1 = res1 + leap_year(i) for i in range(y2): res2 = res2 + leap_year(i) for i in range(0 , m1 - 1): res1 += months[i] if leap_year(y1) == 366 and i == 1 : res1+=1 for i in range(0 , m2-1): res2 +=months[i] if leap_year(y2) == 366 and i == 1 : res2+=1 print(abs(res1 - res2)) ```
3
384
A
Coder
PROGRAMMING
800
[ "implementation" ]
null
null
Iahub likes chess very much. He even invented a new chess piece named Coder. A Coder can move (and attack) one square horizontally or vertically. More precisely, if the Coder is located at position (*x*,<=*y*), he can move to (or attack) positions (*x*<=+<=1,<=*y*), (*x*–1,<=*y*), (*x*,<=*y*<=+<=1) and (*x*,<=*y*–1). Iahub wants to know how many Coders can be placed on an *n*<=×<=*n* chessboard, so that no Coder attacks any other Coder.
The first line contains an integer *n* (1<=≤<=*n*<=≤<=1000).
On the first line print an integer, the maximum number of Coders that can be placed on the chessboard. On each of the next *n* lines print *n* characters, describing the configuration of the Coders. For an empty cell print an '.', and for a Coder print a 'C'. If there are multiple correct answers, you can print any.
[ "2\n" ]
[ "2\nC.\n.C\n" ]
none
500
[ { "input": "2", "output": "2\nC.\n.C" }, { "input": "3", "output": "5\nC.C\n.C.\nC.C" }, { "input": "4", "output": "8\nC.C.\n.C.C\nC.C.\n.C.C" }, { "input": "10", "output": "50\nC.C.C.C.C.\n.C.C.C.C.C\nC.C.C.C.C.\n.C.C.C.C.C\nC.C.C.C.C.\n.C.C.C.C.C\nC.C.C.C.C.\n.C.C.C.C.C\nC.C.C.C.C.\n.C.C.C.C.C" }, { "input": "15", "output": "113\nC.C.C.C.C.C.C.C\n.C.C.C.C.C.C.C.\nC.C.C.C.C.C.C.C\n.C.C.C.C.C.C.C.\nC.C.C.C.C.C.C.C\n.C.C.C.C.C.C.C.\nC.C.C.C.C.C.C.C\n.C.C.C.C.C.C.C.\nC.C.C.C.C.C.C.C\n.C.C.C.C.C.C.C.\nC.C.C.C.C.C.C.C\n.C.C.C.C.C.C.C.\nC.C.C.C.C.C.C.C\n.C.C.C.C.C.C.C.\nC.C.C.C.C.C.C.C" }, { "input": "100", "output": "5000\nC.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.\n.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C\nC.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.\n.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C\nC.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C..." }, { "input": "101", "output": "5101\nC.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C\n.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.\nC.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C\n.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.\nC.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C..." }, { "input": "500", "output": "125000\nC.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.\n...." }, { "input": "501", "output": "125501\nC.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C\n..." }, { "input": "755", "output": "285013\nC.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C..." }, { "input": "888", "output": "394272\nC.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C..." }, { "input": "998", "output": "498002\nC.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C..." }, { "input": "999", "output": "499001\nC.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C..." }, { "input": "1000", "output": "500000\nC.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C..." }, { "input": "1", "output": "1\nC" } ]
1,502,267,496
2,147,483,647
Python 3
OK
TESTS
15
483
6,041,600
n = int(input()) s = [] sum = 0 for i in range(n): s1 = '' if i%2 != 0: for j in range(n): if j%2 != 0: s1 += 'C' sum += 1 else: s1 += '.' s.append(s1) else: for j in range(n): if j%2 == 0: s1 += 'C' sum += 1 else: s1 += '.' s.append(s1) print(sum) for i in range(n): print(s[i])
Title: Coder Time Limit: None seconds Memory Limit: None megabytes Problem Description: Iahub likes chess very much. He even invented a new chess piece named Coder. A Coder can move (and attack) one square horizontally or vertically. More precisely, if the Coder is located at position (*x*,<=*y*), he can move to (or attack) positions (*x*<=+<=1,<=*y*), (*x*–1,<=*y*), (*x*,<=*y*<=+<=1) and (*x*,<=*y*–1). Iahub wants to know how many Coders can be placed on an *n*<=×<=*n* chessboard, so that no Coder attacks any other Coder. Input Specification: The first line contains an integer *n* (1<=≤<=*n*<=≤<=1000). Output Specification: On the first line print an integer, the maximum number of Coders that can be placed on the chessboard. On each of the next *n* lines print *n* characters, describing the configuration of the Coders. For an empty cell print an '.', and for a Coder print a 'C'. If there are multiple correct answers, you can print any. Demo Input: ['2\n'] Demo Output: ['2\nC.\n.C\n'] Note: none
```python n = int(input()) s = [] sum = 0 for i in range(n): s1 = '' if i%2 != 0: for j in range(n): if j%2 != 0: s1 += 'C' sum += 1 else: s1 += '.' s.append(s1) else: for j in range(n): if j%2 == 0: s1 += 'C' sum += 1 else: s1 += '.' s.append(s1) print(sum) for i in range(n): print(s[i]) ```
3
224
A
Parallelepiped
PROGRAMMING
1,100
[ "brute force", "geometry", "math" ]
null
null
You've got a rectangular parallelepiped with integer edge lengths. You know the areas of its three faces that have a common vertex. Your task is to find the sum of lengths of all 12 edges of this parallelepiped.
The first and the single line contains three space-separated integers — the areas of the parallelepiped's faces. The area's values are positive (<=&gt;<=0) and do not exceed 104. It is guaranteed that there exists at least one parallelepiped that satisfies the problem statement.
Print a single number — the sum of all edges of the parallelepiped.
[ "1 1 1\n", "4 6 6\n" ]
[ "12\n", "28\n" ]
In the first sample the parallelepiped has sizes 1 × 1 × 1, in the second one — 2 × 2 × 3.
500
[ { "input": "1 1 1", "output": "12" }, { "input": "4 6 6", "output": "28" }, { "input": "20 10 50", "output": "68" }, { "input": "9 4 36", "output": "56" }, { "input": "324 9 36", "output": "184" }, { "input": "1333 93 129", "output": "308" }, { "input": "1022 584 112", "output": "380" }, { "input": "66 174 319", "output": "184" }, { "input": "912 276 1748", "output": "444" }, { "input": "65 156 60", "output": "120" }, { "input": "1 10000 10000", "output": "40008" }, { "input": "1485 55 27", "output": "332" }, { "input": "152 108 4104", "output": "528" }, { "input": "1656 6900 1350", "output": "740" }, { "input": "12 14 42", "output": "60" }, { "input": "615 18 1230", "output": "856" }, { "input": "680 60 408", "output": "336" }, { "input": "644 966 6", "output": "1308" }, { "input": "1 432 432", "output": "1736" }, { "input": "2239 2239 1", "output": "8964" }, { "input": "4106 8212 2", "output": "16436" }, { "input": "10000 10000 10000", "output": "1200" }, { "input": "3623 3623 1", "output": "14500" }, { "input": "9801 9801 9801", "output": "1188" }, { "input": "10000 1 10000", "output": "40008" }, { "input": "9 9 9", "output": "36" }, { "input": "9801 9702 9702", "output": "1184" } ]
1,658,302,501
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
2
60
0
def reducedfraction(d): # function that converts a rational number # to the reduced fraction l = d.as_integer_ratio() # reduced the list that contains the fraction return l li=[] li=list(map(int,input().split())) li.sort() s=reducedfraction((li[1]/li[0])) s2=reducedfraction((li[2]/li[0])) ans=4*(s[0]+s[1]+s2[1]) print(ans)
Title: Parallelepiped Time Limit: None seconds Memory Limit: None megabytes Problem Description: You've got a rectangular parallelepiped with integer edge lengths. You know the areas of its three faces that have a common vertex. Your task is to find the sum of lengths of all 12 edges of this parallelepiped. Input Specification: The first and the single line contains three space-separated integers — the areas of the parallelepiped's faces. The area's values are positive (<=&gt;<=0) and do not exceed 104. It is guaranteed that there exists at least one parallelepiped that satisfies the problem statement. Output Specification: Print a single number — the sum of all edges of the parallelepiped. Demo Input: ['1 1 1\n', '4 6 6\n'] Demo Output: ['12\n', '28\n'] Note: In the first sample the parallelepiped has sizes 1 × 1 × 1, in the second one — 2 × 2 × 3.
```python def reducedfraction(d): # function that converts a rational number # to the reduced fraction l = d.as_integer_ratio() # reduced the list that contains the fraction return l li=[] li=list(map(int,input().split())) li.sort() s=reducedfraction((li[1]/li[0])) s2=reducedfraction((li[2]/li[0])) ans=4*(s[0]+s[1]+s2[1]) print(ans) ```
0
0
none
none
none
0
[ "none" ]
null
null
Asterix, Obelix and their temporary buddies Suffix and Prefix has finally found the Harmony temple. However, its doors were firmly locked and even Obelix had no luck opening them. A little later they found a string *s*, carved on a rock below the temple's gates. Asterix supposed that that's the password that opens the temple and read the string aloud. However, nothing happened. Then Asterix supposed that a password is some substring *t* of the string *s*. Prefix supposed that the substring *t* is the beginning of the string *s*; Suffix supposed that the substring *t* should be the end of the string *s*; and Obelix supposed that *t* should be located somewhere inside the string *s*, that is, *t* is neither its beginning, nor its end. Asterix chose the substring *t* so as to please all his companions. Besides, from all acceptable variants Asterix chose the longest one (as Asterix loves long strings). When Asterix read the substring *t* aloud, the temple doors opened. You know the string *s*. Find the substring *t* or determine that such substring does not exist and all that's been written above is just a nice legend.
You are given the string *s* whose length can vary from 1 to 106 (inclusive), consisting of small Latin letters.
Print the string *t*. If a suitable *t* string does not exist, then print "Just a legend" without the quotes.
[ "fixprefixsuffix\n", "abcdabc\n" ]
[ "fix", "Just a legend" ]
none
0
[ { "input": "fixprefixsuffix", "output": "fix" }, { "input": "abcdabc", "output": "Just a legend" }, { "input": "qwertyqwertyqwerty", "output": "qwerty" }, { "input": "papapapap", "output": "papap" }, { "input": "aaaaaaaaaa", "output": "aaaaaaaa" }, { "input": "ghbdtn", "output": "Just a legend" }, { "input": "a", "output": "Just a legend" }, { "input": "aa", "output": "Just a legend" }, { "input": "ab", "output": "Just a legend" }, { "input": "aaa", "output": "a" }, { "input": "aba", "output": "Just a legend" }, { "input": "aab", "output": "Just a legend" }, { "input": "abb", "output": "Just a legend" }, { "input": "abc", "output": "Just a legend" }, { "input": "aaabaabaaaaab", "output": "Just a legend" }, { "input": "aabaaabaaaaab", "output": "aab" }, { "input": "aaabaaaabab", "output": "Just a legend" }, { "input": "abcabcabcabcabc", "output": "abcabcabc" }, { "input": "aaaaabaaaa", "output": "aaaa" }, { "input": "aaaabaaaaaaa", "output": "aaaa" }, { "input": "ghghghgxghghghg", "output": "ghghg" }, { "input": "kincenvizh", "output": "Just a legend" }, { "input": "amcksgurlgqzqizdauqminfzshiweejkevbazyzylrrghumnvqeqqdedyopgtvxakqwpvxntxgrkrcxabhrgoxngrwrxrvcguuyw", "output": "Just a legend" }, { "input": "kwuaizneqxfflhmyruotjlkqksinoanvkyvqptkkntnpjdyzicceelgooajdgpkneuhyvhdtmasiglplajxolxovlhkwuaizneqx", "output": "Just a legend" }, { "input": "nfbdzgdlbjhrlvfryyjbvtsmzacxglcvukmyexdgpuiwvqbnfbdzgdlbjhrlvfryyjbtuomcwbwvlhefnfbdzgdlbjhrlvfryyjb", "output": "nfbdzgdlbjhrlvfryyjb" }, { "input": "btbdpnzdenxueteteytvkwnegodyhmdwhmrmbftrifytzudumzlacwytsuzefqfpjesdblxhpcsidgksisjdmhyxmmugrjmtfcgxmcgpmvbxbyszdugvmoyjeeqsywcvuqskcjotyhvdijyslgfvyujxthngnonasgnbzzygyikheelirdfsvuicbiazfdeqecbtbdpnzdenxueteteytvkwnegodyhmdwhmrmbftrifytzudumzlacwytsuzefqfpjesdblxhpcsidgksisjdmhyxmmugrjmtfcgxmcgpccdtdteohtjjuicfjfcbzpynlqhecyqqrjpmexgfqywnfmusldgzvgnzdmuuujtkdfnlytzgstquwqpuccxbtbdpnzdenxueteteytvkwnegodyhmdwhmrmbftrifytzudumzlacwytsuzefqfpjesdblxhpcsidgksisjdmhyxmmugrjmtfcgxmcgp", "output": "btbdpnzdenxueteteytvkwnegodyhmdwhmrmbftrifytzudumzlacwytsuzefqfpjesdblxhpcsidgksisjdmhyxmmugrjmtfcgxmcgp" }, { "input": "abcazabca", "output": "a" } ]
1,632,994,021
2,147,483,647
PyPy 3
MEMORY_LIMIT_EXCEEDED
TESTS
24
1,590
268,390,400
from collections import defaultdict s=input() l=len(s) ans,p,pp=set(),set(),set() for i in range(1,l): p.add(s[:i]) pp.add(s[-i:]) ans=p.intersection(pp) dd=defaultdict(set) for x in ans: dd[len(x)].add(x) dd_vals=sorted(dd, reverse=True) d=0 for x in dd_vals: ans=dd[x] for j in range(1,l-x): if s[j:j+x] in ans: print(s[j:j+x]) d=1 break if d: break if not d: print("Just a legend")
Title: none Time Limit: None seconds Memory Limit: None megabytes Problem Description: Asterix, Obelix and their temporary buddies Suffix and Prefix has finally found the Harmony temple. However, its doors were firmly locked and even Obelix had no luck opening them. A little later they found a string *s*, carved on a rock below the temple's gates. Asterix supposed that that's the password that opens the temple and read the string aloud. However, nothing happened. Then Asterix supposed that a password is some substring *t* of the string *s*. Prefix supposed that the substring *t* is the beginning of the string *s*; Suffix supposed that the substring *t* should be the end of the string *s*; and Obelix supposed that *t* should be located somewhere inside the string *s*, that is, *t* is neither its beginning, nor its end. Asterix chose the substring *t* so as to please all his companions. Besides, from all acceptable variants Asterix chose the longest one (as Asterix loves long strings). When Asterix read the substring *t* aloud, the temple doors opened. You know the string *s*. Find the substring *t* or determine that such substring does not exist and all that's been written above is just a nice legend. Input Specification: You are given the string *s* whose length can vary from 1 to 106 (inclusive), consisting of small Latin letters. Output Specification: Print the string *t*. If a suitable *t* string does not exist, then print "Just a legend" without the quotes. Demo Input: ['fixprefixsuffix\n', 'abcdabc\n'] Demo Output: ['fix', 'Just a legend'] Note: none
```python from collections import defaultdict s=input() l=len(s) ans,p,pp=set(),set(),set() for i in range(1,l): p.add(s[:i]) pp.add(s[-i:]) ans=p.intersection(pp) dd=defaultdict(set) for x in ans: dd[len(x)].add(x) dd_vals=sorted(dd, reverse=True) d=0 for x in dd_vals: ans=dd[x] for j in range(1,l-x): if s[j:j+x] in ans: print(s[j:j+x]) d=1 break if d: break if not d: print("Just a legend") ```
0
327
A
Flipping Game
PROGRAMMING
1,200
[ "brute force", "dp", "implementation" ]
null
null
Iahub got bored, so he invented a game to be played on paper. He writes *n* integers *a*1,<=*a*2,<=...,<=*a**n*. Each of those integers can be either 0 or 1. He's allowed to do exactly one move: he chooses two indices *i* and *j* (1<=≤<=*i*<=≤<=*j*<=≤<=*n*) and flips all values *a**k* for which their positions are in range [*i*,<=*j*] (that is *i*<=≤<=*k*<=≤<=*j*). Flip the value of *x* means to apply operation *x*<==<=1 - *x*. The goal of the game is that after exactly one move to obtain the maximum number of ones. Write a program to solve the little game of Iahub.
The first line of the input contains an integer *n* (1<=≤<=*n*<=≤<=100). In the second line of the input there are *n* integers: *a*1,<=*a*2,<=...,<=*a**n*. It is guaranteed that each of those *n* values is either 0 or 1.
Print an integer — the maximal number of 1s that can be obtained after exactly one move.
[ "5\n1 0 0 1 0\n", "4\n1 0 0 1\n" ]
[ "4\n", "4\n" ]
In the first case, flip the segment from 2 to 5 (*i* = 2, *j* = 5). That flip changes the sequence, it becomes: [1 1 1 0 1]. So, it contains four ones. There is no way to make the whole sequence equal to [1 1 1 1 1]. In the second case, flipping only the second and the third element (*i* = 2, *j* = 3) will turn all numbers into 1.
500
[ { "input": "5\n1 0 0 1 0", "output": "4" }, { "input": "4\n1 0 0 1", "output": "4" }, { "input": "1\n1", "output": "0" }, { "input": "1\n0", "output": "1" }, { "input": "8\n1 0 0 0 1 0 0 0", "output": "7" }, { "input": "18\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0", "output": "18" }, { "input": "23\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1", "output": "22" }, { "input": "100\n0 1 0 1 1 1 0 1 0 1 0 0 1 1 1 1 0 0 1 1 1 1 1 1 1 0 0 1 1 1 0 1 1 0 0 0 1 1 1 1 0 0 1 1 1 0 0 1 1 0 1 1 1 0 0 0 1 0 0 0 0 0 1 1 0 0 1 1 1 1 1 1 1 1 0 1 1 1 0 1 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1", "output": "70" }, { "input": "100\n0 1 1 0 1 0 0 1 0 0 0 1 1 0 0 0 1 1 1 0 1 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 0 0 1 0 0 0 0 0 1 1 0 1 0 1 0 1 1 1 0 1 0 1 1 0 0 1 1 0 0 1 1 1 0 0 1 0 0 1 1 0 1 0 0 1 1 0 1 0 0 1 1 0 0 0 0 1 0 0 0 0 1 1 1 1", "output": "60" }, { "input": "18\n0 1 0 1 0 1 0 1 0 1 1 0 1 1 0 1 1 0", "output": "11" }, { "input": "25\n0 1 0 0 0 0 0 1 0 1 0 1 0 0 0 0 1 1 1 0 0 1 1 0 1", "output": "18" }, { "input": "55\n0 0 1 1 0 0 0 1 0 1 1 0 1 1 1 0 1 1 1 1 1 0 0 1 0 0 1 0 1 1 0 0 1 0 1 1 0 1 1 1 1 0 1 1 0 0 0 0 1 1 0 1 1 1 1", "output": "36" }, { "input": "75\n1 1 0 1 0 1 1 0 0 0 0 0 1 1 1 1 1 0 1 0 1 0 0 0 0 1 1 1 0 1 0 0 1 1 0 1 0 0 1 1 0 1 0 1 0 1 0 0 0 0 1 0 0 1 1 1 0 0 1 0 1 1 0 0 0 0 1 1 0 0 0 1 0 0 0", "output": "44" }, { "input": "100\n0 0 1 0 1 0 0 1 1 0 1 1 0 1 0 1 1 0 0 0 0 0 1 0 0 1 1 0 0 0 1 0 0 1 1 0 0 1 1 1 0 0 0 0 1 0 1 1 1 0 0 1 0 1 1 1 1 1 1 1 0 1 0 1 0 0 1 0 1 1 1 0 0 0 0 1 0 1 1 0 0 1 1 0 1 1 1 1 0 1 1 1 0 0 1 1 0 1 0 1", "output": "61" }, { "input": "100\n0 0 0 1 0 0 0 1 0 1 1 0 1 1 1 1 1 0 1 0 1 1 0 0 1 1 0 1 0 1 0 1 0 1 1 0 1 1 0 0 0 1 1 1 1 0 1 1 0 1 1 1 1 0 1 0 0 1 0 1 0 0 0 0 1 1 0 0 1 0 0 1 1 0 1 1 0 1 0 0 1 1 0 1 1 1 1 0 1 0 0 1 0 1 1 1 0 1 1 0", "output": "61" }, { "input": "100\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0", "output": "100" }, { "input": "100\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1", "output": "99" }, { "input": "100\n0 0 1 1 1 0 1 1 0 0 1 0 1 0 1 0 0 1 0 1 1 0 0 1 1 1 1 1 1 0 1 0 0 1 0 0 0 0 1 1 1 0 1 1 1 0 1 1 1 0 0 1 0 0 1 1 0 0 0 1 1 1 0 1 1 0 0 0 0 1 0 0 1 0 1 0 0 0 0 0 0 1 1 1 0 1 1 1 0 1 1 1 1 1 0 0 0 0 1 0", "output": "61" }, { "input": "100\n0 1 1 1 1 1 1 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 1 1 1 0 0 0 1 1 1 0 1 0 0 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 1 0 1 0 0 0 0 1 0 1 0 1 0 0 1 0 1 0 1 1 0 0 0 0 0 1 1 1 0 1 1 0 1 1 0 0 0 1 0 1 1 0 0 0 0 0 0 1", "output": "59" }, { "input": "99\n1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 0 0 0 0 0 0 1 1 0 0 1 0 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1 1 0 1 0 0 1 1 0 1 0 0 0 1 1 1 1 0 1 1 1 0 0 1 1 0 0 0 0 1 0 0 0 0 0 1 0 1 1 1", "output": "61" }, { "input": "2\n1 1", "output": "1" } ]
1,695,624,110
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
1
62
0
n=int(input()) l1=[int(a) for a in input().split()] l1.insert(0,0) l1.append(0) l2,l3=[],[] a1,a2=0,0 for i in range(len(l1)): if l1[i]: a2+=1 else: a1+=1 l2.append(a1) l3.append(a2) ans=0 for i in range(1,n+1): a1=l3[i-1] for j in range(i,n+1): a2=l3[-1]-l3[j+1] ans=max(ans,a1+l2[j]-l2[max(0,i-1)]+a2) a2=0 print(ans)
Title: Flipping Game Time Limit: None seconds Memory Limit: None megabytes Problem Description: Iahub got bored, so he invented a game to be played on paper. He writes *n* integers *a*1,<=*a*2,<=...,<=*a**n*. Each of those integers can be either 0 or 1. He's allowed to do exactly one move: he chooses two indices *i* and *j* (1<=≤<=*i*<=≤<=*j*<=≤<=*n*) and flips all values *a**k* for which their positions are in range [*i*,<=*j*] (that is *i*<=≤<=*k*<=≤<=*j*). Flip the value of *x* means to apply operation *x*<==<=1 - *x*. The goal of the game is that after exactly one move to obtain the maximum number of ones. Write a program to solve the little game of Iahub. Input Specification: The first line of the input contains an integer *n* (1<=≤<=*n*<=≤<=100). In the second line of the input there are *n* integers: *a*1,<=*a*2,<=...,<=*a**n*. It is guaranteed that each of those *n* values is either 0 or 1. Output Specification: Print an integer — the maximal number of 1s that can be obtained after exactly one move. Demo Input: ['5\n1 0 0 1 0\n', '4\n1 0 0 1\n'] Demo Output: ['4\n', '4\n'] Note: In the first case, flip the segment from 2 to 5 (*i* = 2, *j* = 5). That flip changes the sequence, it becomes: [1 1 1 0 1]. So, it contains four ones. There is no way to make the whole sequence equal to [1 1 1 1 1]. In the second case, flipping only the second and the third element (*i* = 2, *j* = 3) will turn all numbers into 1.
```python n=int(input()) l1=[int(a) for a in input().split()] l1.insert(0,0) l1.append(0) l2,l3=[],[] a1,a2=0,0 for i in range(len(l1)): if l1[i]: a2+=1 else: a1+=1 l2.append(a1) l3.append(a2) ans=0 for i in range(1,n+1): a1=l3[i-1] for j in range(i,n+1): a2=l3[-1]-l3[j+1] ans=max(ans,a1+l2[j]-l2[max(0,i-1)]+a2) a2=0 print(ans) ```
0
39
D
Cubical Planet
PROGRAMMING
1,100
[ "math" ]
D. Cubical Planet
2
64
You can find anything whatsoever in our Galaxy! A cubical planet goes round an icosahedral star. Let us introduce a system of axes so that the edges of the cubical planet are parallel to the coordinate axes and two opposite vertices lay in the points (0,<=0,<=0) and (1,<=1,<=1). Two flies live on the planet. At the moment they are sitting on two different vertices of the cubical planet. Your task is to determine whether they see each other or not. The flies see each other when the vertices they occupy lie on the same face of the cube.
The first line contains three space-separated integers (0 or 1) — the coordinates of the first fly, the second line analogously contains the coordinates of the second fly.
Output "YES" (without quotes) if the flies see each other. Otherwise, output "NO".
[ "0 0 0\n0 1 0\n", "1 1 0\n0 1 0\n", "0 0 0\n1 1 1\n" ]
[ "YES\n", "YES\n", "NO\n" ]
none
0
[ { "input": "0 0 0\n0 1 0", "output": "YES" }, { "input": "1 1 0\n0 1 0", "output": "YES" }, { "input": "0 0 0\n1 1 1", "output": "NO" }, { "input": "0 0 0\n1 0 0", "output": "YES" }, { "input": "0 0 0\n0 1 0", "output": "YES" }, { "input": "0 0 0\n1 1 0", "output": "YES" }, { "input": "0 0 0\n0 0 1", "output": "YES" }, { "input": "0 0 0\n1 0 1", "output": "YES" }, { "input": "0 0 0\n0 1 1", "output": "YES" }, { "input": "0 0 0\n1 1 1", "output": "NO" }, { "input": "1 0 0\n0 0 0", "output": "YES" }, { "input": "1 0 0\n0 1 0", "output": "YES" }, { "input": "1 0 0\n1 1 0", "output": "YES" }, { "input": "1 0 0\n0 0 1", "output": "YES" }, { "input": "1 0 0\n1 0 1", "output": "YES" }, { "input": "1 0 0\n0 1 1", "output": "NO" }, { "input": "1 0 0\n1 1 1", "output": "YES" }, { "input": "0 1 0\n0 0 0", "output": "YES" }, { "input": "0 1 0\n1 0 0", "output": "YES" }, { "input": "0 1 0\n1 1 0", "output": "YES" }, { "input": "0 1 0\n0 0 1", "output": "YES" }, { "input": "0 1 0\n1 0 1", "output": "NO" }, { "input": "0 1 0\n0 1 1", "output": "YES" }, { "input": "0 1 0\n1 1 1", "output": "YES" }, { "input": "1 1 0\n0 0 0", "output": "YES" }, { "input": "1 1 0\n1 0 0", "output": "YES" }, { "input": "1 1 0\n0 1 0", "output": "YES" }, { "input": "1 1 0\n0 0 1", "output": "NO" }, { "input": "1 1 0\n1 0 1", "output": "YES" }, { "input": "1 1 0\n0 1 1", "output": "YES" }, { "input": "1 1 0\n1 1 1", "output": "YES" }, { "input": "0 0 1\n0 0 0", "output": "YES" }, { "input": "0 0 1\n1 0 0", "output": "YES" }, { "input": "0 0 1\n0 1 0", "output": "YES" }, { "input": "0 0 1\n1 1 0", "output": "NO" }, { "input": "0 0 1\n1 0 1", "output": "YES" }, { "input": "0 0 1\n0 1 1", "output": "YES" }, { "input": "0 0 1\n1 1 1", "output": "YES" }, { "input": "1 0 1\n0 0 0", "output": "YES" }, { "input": "1 0 1\n1 0 0", "output": "YES" }, { "input": "1 0 1\n0 1 0", "output": "NO" }, { "input": "1 0 1\n1 1 0", "output": "YES" }, { "input": "1 0 1\n0 0 1", "output": "YES" }, { "input": "1 0 1\n0 1 1", "output": "YES" }, { "input": "1 0 1\n1 1 1", "output": "YES" }, { "input": "0 1 1\n0 0 0", "output": "YES" }, { "input": "0 1 1\n1 0 0", "output": "NO" }, { "input": "0 1 1\n0 1 0", "output": "YES" }, { "input": "0 1 1\n1 1 0", "output": "YES" }, { "input": "0 1 1\n0 0 1", "output": "YES" }, { "input": "0 1 1\n1 0 1", "output": "YES" }, { "input": "0 1 1\n1 1 1", "output": "YES" }, { "input": "1 1 1\n0 0 0", "output": "NO" }, { "input": "1 1 1\n1 0 0", "output": "YES" }, { "input": "1 1 1\n0 1 0", "output": "YES" }, { "input": "1 1 1\n1 1 0", "output": "YES" }, { "input": "1 1 1\n0 0 1", "output": "YES" }, { "input": "1 1 1\n1 0 1", "output": "YES" }, { "input": "1 1 1\n0 1 1", "output": "YES" } ]
1,656,177,770
2,147,483,647
Python 3
OK
TESTS
59
92
4,300,800
x1,y1,z1=map(int,input().split()) x2,y2,z2=map(int,input().split()) if x1==x2 or y1==y2 or z1==z2: print("YES") else: print("NO")
Title: Cubical Planet Time Limit: 2 seconds Memory Limit: 64 megabytes Problem Description: You can find anything whatsoever in our Galaxy! A cubical planet goes round an icosahedral star. Let us introduce a system of axes so that the edges of the cubical planet are parallel to the coordinate axes and two opposite vertices lay in the points (0,<=0,<=0) and (1,<=1,<=1). Two flies live on the planet. At the moment they are sitting on two different vertices of the cubical planet. Your task is to determine whether they see each other or not. The flies see each other when the vertices they occupy lie on the same face of the cube. Input Specification: The first line contains three space-separated integers (0 or 1) — the coordinates of the first fly, the second line analogously contains the coordinates of the second fly. Output Specification: Output "YES" (without quotes) if the flies see each other. Otherwise, output "NO". Demo Input: ['0 0 0\n0 1 0\n', '1 1 0\n0 1 0\n', '0 0 0\n1 1 1\n'] Demo Output: ['YES\n', 'YES\n', 'NO\n'] Note: none
```python x1,y1,z1=map(int,input().split()) x2,y2,z2=map(int,input().split()) if x1==x2 or y1==y2 or z1==z2: print("YES") else: print("NO") ```
3.944957
597
A
Divisibility
PROGRAMMING
1,600
[ "math" ]
null
null
Find the number of *k*-divisible numbers on the segment [*a*,<=*b*]. In other words you need to find the number of such integer values *x* that *a*<=≤<=*x*<=≤<=*b* and *x* is divisible by *k*.
The only line contains three space-separated integers *k*, *a* and *b* (1<=≤<=*k*<=≤<=1018;<=-<=1018<=≤<=*a*<=≤<=*b*<=≤<=1018).
Print the required number.
[ "1 1 10\n", "2 -4 4\n" ]
[ "10\n", "5\n" ]
none
500
[ { "input": "1 1 10", "output": "10" }, { "input": "2 -4 4", "output": "5" }, { "input": "1 1 1", "output": "1" }, { "input": "1 0 0", "output": "1" }, { "input": "1 0 1", "output": "2" }, { "input": "1 10181 10182", "output": "2" }, { "input": "1 10182 10183", "output": "2" }, { "input": "1 -191 1011", "output": "1203" }, { "input": "2 0 0", "output": "1" }, { "input": "2 0 1", "output": "1" }, { "input": "2 1 2", "output": "1" }, { "input": "2 2 3", "output": "1" }, { "input": "2 -1 0", "output": "1" }, { "input": "2 -1 1", "output": "1" }, { "input": "2 -7 -6", "output": "1" }, { "input": "2 -7 -5", "output": "1" }, { "input": "2 -6 -6", "output": "1" }, { "input": "2 -6 -4", "output": "2" }, { "input": "2 -6 13", "output": "10" }, { "input": "2 -19171 1911", "output": "10541" }, { "input": "3 123 456", "output": "112" }, { "input": "3 124 456", "output": "111" }, { "input": "3 125 456", "output": "111" }, { "input": "3 381 281911", "output": "93844" }, { "input": "3 381 281912", "output": "93844" }, { "input": "3 381 281913", "output": "93845" }, { "input": "3 382 281911", "output": "93843" }, { "input": "3 382 281912", "output": "93843" }, { "input": "3 382 281913", "output": "93844" }, { "input": "3 383 281911", "output": "93843" }, { "input": "3 383 281912", "output": "93843" }, { "input": "3 383 281913", "output": "93844" }, { "input": "3 -381 281911", "output": "94098" }, { "input": "3 -381 281912", "output": "94098" }, { "input": "3 -381 281913", "output": "94099" }, { "input": "3 -380 281911", "output": "94097" }, { "input": "3 -380 281912", "output": "94097" }, { "input": "3 -380 281913", "output": "94098" }, { "input": "3 -379 281911", "output": "94097" }, { "input": "3 -379 281912", "output": "94097" }, { "input": "3 -379 281913", "output": "94098" }, { "input": "3 -191381 -1911", "output": "63157" }, { "input": "3 -191381 -1910", "output": "63157" }, { "input": "3 -191381 -1909", "output": "63157" }, { "input": "3 -191380 -1911", "output": "63157" }, { "input": "3 -191380 -1910", "output": "63157" }, { "input": "3 -191380 -1909", "output": "63157" }, { "input": "3 -191379 -1911", "output": "63157" }, { "input": "3 -191379 -1910", "output": "63157" }, { "input": "3 -191379 -1909", "output": "63157" }, { "input": "3 -2810171 0", "output": "936724" }, { "input": "3 0 29101", "output": "9701" }, { "input": "3 -2810170 0", "output": "936724" }, { "input": "3 0 29102", "output": "9701" }, { "input": "3 -2810169 0", "output": "936724" }, { "input": "3 0 29103", "output": "9702" }, { "input": "1 -1000000000000000000 1000000000000000000", "output": "2000000000000000001" }, { "input": "2 -1000000000000000000 1000000000000000000", "output": "1000000000000000001" }, { "input": "3 -1000000000000000000 1000000000000000000", "output": "666666666666666667" }, { "input": "4 -1000000000000000000 1000000000000000000", "output": "500000000000000001" }, { "input": "5 -1000000000000000000 1000000000000000000", "output": "400000000000000001" }, { "input": "6 -1000000000000000000 1000000000000000000", "output": "333333333333333333" }, { "input": "7 -1000000000000000000 1000000000000000000", "output": "285714285714285715" }, { "input": "1 -1000000000000000000 -100000000000000000", "output": "900000000000000001" }, { "input": "2 -1000000000000000000 -10000000000000000", "output": "495000000000000001" }, { "input": "3 -1000000000000000000 -10218000000000000", "output": "329927333333333334" }, { "input": "4 -1000000000000000000 -320110181919100", "output": "249919972454520226" }, { "input": "5 -1000000000000000000 -402710171917", "output": "199999919457965617" }, { "input": "6 -1000000000000000000 -6666666666", "output": "166666665555555556" }, { "input": "7 -1000000000000000000 -77777777777778", "output": "142846031746031746" }, { "input": "1000000000000000000 -1000000000000000000 1000000000000000000", "output": "3" }, { "input": "1000000000000000000 0 1000000000000000000", "output": "2" }, { "input": "1000000000000000000 1000000000000000000 1000000000000000000", "output": "1" }, { "input": "100000000000000321 1000000000000000000 1000000000000000000", "output": "0" }, { "input": "100000000000000321 -1000000000000000000 1000000000000000000", "output": "19" }, { "input": "1000000000000000000 0 0", "output": "1" }, { "input": "1000000000000000000 1 1", "output": "0" }, { "input": "1000000000000000000 -1 -1", "output": "0" }, { "input": "1000000000000000000 -2 -1", "output": "0" }, { "input": "142000000000000271 -228118171 -1382811", "output": "0" }, { "input": "1 1 1000000000000000000", "output": "1000000000000000000" } ]
1,613,787,916
2,147,483,647
Python 3
TIME_LIMIT_EXCEEDED
TESTS
74
1,000
0
import sys k, a, b = map(int, sys.stdin.readline().split()) while a % k: a += 1 count = ((b - a) // k) + 1 print(count)
Title: Divisibility Time Limit: None seconds Memory Limit: None megabytes Problem Description: Find the number of *k*-divisible numbers on the segment [*a*,<=*b*]. In other words you need to find the number of such integer values *x* that *a*<=≤<=*x*<=≤<=*b* and *x* is divisible by *k*. Input Specification: The only line contains three space-separated integers *k*, *a* and *b* (1<=≤<=*k*<=≤<=1018;<=-<=1018<=≤<=*a*<=≤<=*b*<=≤<=1018). Output Specification: Print the required number. Demo Input: ['1 1 10\n', '2 -4 4\n'] Demo Output: ['10\n', '5\n'] Note: none
```python import sys k, a, b = map(int, sys.stdin.readline().split()) while a % k: a += 1 count = ((b - a) // k) + 1 print(count) ```
0
591
B
Rebranding
PROGRAMMING
1,200
[ "implementation", "strings" ]
null
null
The name of one small but proud corporation consists of *n* lowercase English letters. The Corporation has decided to try rebranding — an active marketing strategy, that includes a set of measures to change either the brand (both for the company and the goods it produces) or its components: the name, the logo, the slogan. They decided to start with the name. For this purpose the corporation has consecutively hired *m* designers. Once a company hires the *i*-th designer, he immediately contributes to the creation of a new corporation name as follows: he takes the newest version of the name and replaces all the letters *x**i* by *y**i*, and all the letters *y**i* by *x**i*. This results in the new version. It is possible that some of these letters do no occur in the string. It may also happen that *x**i* coincides with *y**i*. The version of the name received after the work of the last designer becomes the new name of the corporation. Manager Arkady has recently got a job in this company, but is already soaked in the spirit of teamwork and is very worried about the success of the rebranding. Naturally, he can't wait to find out what is the new name the Corporation will receive. Satisfy Arkady's curiosity and tell him the final version of the name.
The first line of the input contains two integers *n* and *m* (1<=≤<=*n*,<=*m*<=≤<=200<=000) — the length of the initial name and the number of designers hired, respectively. The second line consists of *n* lowercase English letters and represents the original name of the corporation. Next *m* lines contain the descriptions of the designers' actions: the *i*-th of them contains two space-separated lowercase English letters *x**i* and *y**i*.
Print the new name of the corporation.
[ "6 1\npolice\np m\n", "11 6\nabacabadaba\na b\nb c\na d\ne g\nf a\nb b\n" ]
[ "molice\n", "cdcbcdcfcdc\n" ]
In the second sample the name of the corporation consecutively changes as follows: <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/c7648432f7138ca53234357d7e08d1d119166055.png" style="max-width: 100.0%;max-height: 100.0%;"/> <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/de89ad7bc7f27c46ec34f5e66ce0dc23bd5bc90a.png" style="max-width: 100.0%;max-height: 100.0%;"/> <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/812e653c8d7ff496e6a0f04c676423806751531e.png" style="max-width: 100.0%;max-height: 100.0%;"/> <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/19c564fcefb8dde36256240a8b877bb6a4792bfe.png" style="max-width: 100.0%;max-height: 100.0%;"/> <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/e1cafd93792430ad1a49e893e04715383bdae757.png" style="max-width: 100.0%;max-height: 100.0%;"/>
1,000
[ { "input": "6 1\npolice\np m", "output": "molice" }, { "input": "11 6\nabacabadaba\na b\nb c\na d\ne g\nf a\nb b", "output": "cdcbcdcfcdc" }, { "input": "1 1\nf\nz h", "output": "f" }, { "input": "1 1\na\na b", "output": "b" }, { "input": "10 10\nlellelleel\ne l\ne l\ne l\ne l\ne l\ne e\nl l\nl e\nl l\ne e", "output": "lellelleel" } ]
1,526,481,996
2,147,483,647
Python 3
TIME_LIMIT_EXCEEDED
TESTS
4
2,000
7,065,600
n, m = map(int, input().split()) s = input() for i in range(m): x, y = input().split() otv = '' for i in range(n): if s[i] == y: otv += x elif s[i] == x: otv += y else: otv += s[i] s = otv print(otv)
Title: Rebranding Time Limit: None seconds Memory Limit: None megabytes Problem Description: The name of one small but proud corporation consists of *n* lowercase English letters. The Corporation has decided to try rebranding — an active marketing strategy, that includes a set of measures to change either the brand (both for the company and the goods it produces) or its components: the name, the logo, the slogan. They decided to start with the name. For this purpose the corporation has consecutively hired *m* designers. Once a company hires the *i*-th designer, he immediately contributes to the creation of a new corporation name as follows: he takes the newest version of the name and replaces all the letters *x**i* by *y**i*, and all the letters *y**i* by *x**i*. This results in the new version. It is possible that some of these letters do no occur in the string. It may also happen that *x**i* coincides with *y**i*. The version of the name received after the work of the last designer becomes the new name of the corporation. Manager Arkady has recently got a job in this company, but is already soaked in the spirit of teamwork and is very worried about the success of the rebranding. Naturally, he can't wait to find out what is the new name the Corporation will receive. Satisfy Arkady's curiosity and tell him the final version of the name. Input Specification: The first line of the input contains two integers *n* and *m* (1<=≤<=*n*,<=*m*<=≤<=200<=000) — the length of the initial name and the number of designers hired, respectively. The second line consists of *n* lowercase English letters and represents the original name of the corporation. Next *m* lines contain the descriptions of the designers' actions: the *i*-th of them contains two space-separated lowercase English letters *x**i* and *y**i*. Output Specification: Print the new name of the corporation. Demo Input: ['6 1\npolice\np m\n', '11 6\nabacabadaba\na b\nb c\na d\ne g\nf a\nb b\n'] Demo Output: ['molice\n', 'cdcbcdcfcdc\n'] Note: In the second sample the name of the corporation consecutively changes as follows: <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/c7648432f7138ca53234357d7e08d1d119166055.png" style="max-width: 100.0%;max-height: 100.0%;"/> <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/de89ad7bc7f27c46ec34f5e66ce0dc23bd5bc90a.png" style="max-width: 100.0%;max-height: 100.0%;"/> <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/812e653c8d7ff496e6a0f04c676423806751531e.png" style="max-width: 100.0%;max-height: 100.0%;"/> <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/19c564fcefb8dde36256240a8b877bb6a4792bfe.png" style="max-width: 100.0%;max-height: 100.0%;"/> <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/e1cafd93792430ad1a49e893e04715383bdae757.png" style="max-width: 100.0%;max-height: 100.0%;"/>
```python n, m = map(int, input().split()) s = input() for i in range(m): x, y = input().split() otv = '' for i in range(n): if s[i] == y: otv += x elif s[i] == x: otv += y else: otv += s[i] s = otv print(otv) ```
0
578
A
A Problem about Polyline
PROGRAMMING
1,700
[ "geometry", "math" ]
null
null
There is a polyline going through points (0,<=0)<=–<=(*x*,<=*x*)<=–<=(2*x*,<=0)<=–<=(3*x*,<=*x*)<=–<=(4*x*,<=0)<=–<=...<=-<=(2*kx*,<=0)<=–<=(2*kx*<=+<=*x*,<=*x*)<=–<=.... We know that the polyline passes through the point (*a*,<=*b*). Find minimum positive value *x* such that it is true or determine that there is no such *x*.
Only one line containing two positive integers *a* and *b* (1<=≤<=*a*,<=*b*<=≤<=109).
Output the only line containing the answer. Your answer will be considered correct if its relative or absolute error doesn't exceed 10<=-<=9. If there is no such *x* then output <=-<=1 as the answer.
[ "3 1\n", "1 3\n", "4 1\n" ]
[ "1.000000000000\n", "-1\n", "1.250000000000\n" ]
You can see following graphs for sample 1 and sample 3.
250
[ { "input": "3 1", "output": "1.000000000000" }, { "input": "1 3", "output": "-1" }, { "input": "4 1", "output": "1.250000000000" }, { "input": "1000000000 1000000000", "output": "1000000000.000000000000" }, { "input": "1000000000 1", "output": "1.000000001000" }, { "input": "991691248 43166756", "output": "47039000.181818180000" }, { "input": "973970808 679365826", "output": "826668317.000000000000" }, { "input": "404878182 80324806", "output": "80867164.666666672000" }, { "input": "405262931 391908625", "output": "398585778.000000000000" }, { "input": "758323881 37209930", "output": "39776690.549999997000" }, { "input": "405647680 36668977", "output": "36859721.416666664000" }, { "input": "750322953 61458580", "output": "67648461.083333328000" }, { "input": "406032429 31993512", "output": "36502161.750000000000" }, { "input": "1000000000 111111111", "output": "111111111.099999990000" }, { "input": "999999999 111111111", "output": "111111111.000000000000" }, { "input": "999999998 111111111", "output": "138888888.625000000000" }, { "input": "888888888 111111111", "output": "124999999.875000000000" }, { "input": "1 1000000000", "output": "-1" }, { "input": "999899988 13", "output": "13.000000117012" }, { "input": "481485937 21902154", "output": "22881276.863636363000" }, { "input": "836218485 1720897", "output": "1724155.106995884800" }, { "input": "861651807 2239668", "output": "2249717.382812500000" }, { "input": "829050416 2523498", "output": "2535286.323170731800" }, { "input": "1000000000 999999999", "output": "999999999.500000000000" }, { "input": "999999999 1000000000", "output": "-1" }, { "input": "11 5", "output": "8.000000000000" }, { "input": "100000000 1", "output": "1.000000010000" }, { "input": "1488 1", "output": "1.000672043011" }, { "input": "11 3", "output": "3.500000000000" }, { "input": "30 5", "output": "5.833333333333" }, { "input": "5 1", "output": "1.000000000000" } ]
1,652,229,945
2,147,483,647
PyPy 3
OK
TESTS
31
93
0
from sys import stdin, stdout int_in = lambda: int(stdin.readline()) arr_in = lambda: [int(x) for x in stdin.readline().split()] mat_in = lambda rows: [arr_in() for _ in range(rows)] str_in = lambda: stdin.readline().strip() out = lambda o: stdout.write("{}\n".format(o)) arr_out = lambda o: out(" ".join(map(str, o))) bool_out = lambda o: out("YES" if o else "NO") tests = lambda: range(1, int_in() + 1) case_out = lambda i, o: out("Case #{}: {}".format(i, o)) import math def solve(a, b): result = float("inf") # b is the peak if a % b == 0: if (a // b) % 2 == 1: result = min(result, b) # (a, b) is part of the upward slope x_intercept = a - b if x_intercept == 0: assert result != float("inf") else: i = math.floor(x_intercept / (2*b)) if i > 0: size = x_intercept / (2*i) result = min(result, size) # (a, b) is part of the downward slope x_intercept = a + b i = math.floor(x_intercept / (2*b)) if i > 0: size = x_intercept / (2*i) result = min(result, size) return -1 if result == float("inf") else result if __name__ == "__main__": a, b = arr_in() out(solve(a, b))
Title: A Problem about Polyline Time Limit: None seconds Memory Limit: None megabytes Problem Description: There is a polyline going through points (0,<=0)<=–<=(*x*,<=*x*)<=–<=(2*x*,<=0)<=–<=(3*x*,<=*x*)<=–<=(4*x*,<=0)<=–<=...<=-<=(2*kx*,<=0)<=–<=(2*kx*<=+<=*x*,<=*x*)<=–<=.... We know that the polyline passes through the point (*a*,<=*b*). Find minimum positive value *x* such that it is true or determine that there is no such *x*. Input Specification: Only one line containing two positive integers *a* and *b* (1<=≤<=*a*,<=*b*<=≤<=109). Output Specification: Output the only line containing the answer. Your answer will be considered correct if its relative or absolute error doesn't exceed 10<=-<=9. If there is no such *x* then output <=-<=1 as the answer. Demo Input: ['3 1\n', '1 3\n', '4 1\n'] Demo Output: ['1.000000000000\n', '-1\n', '1.250000000000\n'] Note: You can see following graphs for sample 1 and sample 3.
```python from sys import stdin, stdout int_in = lambda: int(stdin.readline()) arr_in = lambda: [int(x) for x in stdin.readline().split()] mat_in = lambda rows: [arr_in() for _ in range(rows)] str_in = lambda: stdin.readline().strip() out = lambda o: stdout.write("{}\n".format(o)) arr_out = lambda o: out(" ".join(map(str, o))) bool_out = lambda o: out("YES" if o else "NO") tests = lambda: range(1, int_in() + 1) case_out = lambda i, o: out("Case #{}: {}".format(i, o)) import math def solve(a, b): result = float("inf") # b is the peak if a % b == 0: if (a // b) % 2 == 1: result = min(result, b) # (a, b) is part of the upward slope x_intercept = a - b if x_intercept == 0: assert result != float("inf") else: i = math.floor(x_intercept / (2*b)) if i > 0: size = x_intercept / (2*i) result = min(result, size) # (a, b) is part of the downward slope x_intercept = a + b i = math.floor(x_intercept / (2*b)) if i > 0: size = x_intercept / (2*i) result = min(result, size) return -1 if result == float("inf") else result if __name__ == "__main__": a, b = arr_in() out(solve(a, b)) ```
3
50
A
Domino piling
PROGRAMMING
800
[ "greedy", "math" ]
A. Domino piling
2
256
You are given a rectangular board of *M*<=×<=*N* squares. Also you are given an unlimited number of standard domino pieces of 2<=×<=1 squares. You are allowed to rotate the pieces. You are asked to place as many dominoes as possible on the board so as to meet the following conditions: 1. Each domino completely covers two squares. 2. No two dominoes overlap. 3. Each domino lies entirely inside the board. It is allowed to touch the edges of the board. Find the maximum number of dominoes, which can be placed under these restrictions.
In a single line you are given two integers *M* and *N* — board sizes in squares (1<=≤<=*M*<=≤<=*N*<=≤<=16).
Output one number — the maximal number of dominoes, which can be placed.
[ "2 4\n", "3 3\n" ]
[ "4\n", "4\n" ]
none
500
[ { "input": "2 4", "output": "4" }, { "input": "3 3", "output": "4" }, { "input": "1 5", "output": "2" }, { "input": "1 6", "output": "3" }, { "input": "1 15", "output": "7" }, { "input": "1 16", "output": "8" }, { "input": "2 5", "output": "5" }, { "input": "2 6", "output": "6" }, { "input": "2 7", "output": "7" }, { "input": "2 14", "output": "14" }, { "input": "2 15", "output": "15" }, { "input": "1 4", "output": "2" }, { "input": "2 16", "output": "16" }, { "input": "3 5", "output": "7" }, { "input": "3 6", "output": "9" }, { "input": "3 10", "output": "15" }, { "input": "3 14", "output": "21" }, { "input": "3 15", "output": "22" }, { "input": "3 16", "output": "24" }, { "input": "5 7", "output": "17" }, { "input": "16 16", "output": "128" }, { "input": "15 16", "output": "120" }, { "input": "2 3", "output": "3" }, { "input": "15 15", "output": "112" }, { "input": "14 16", "output": "112" }, { "input": "11 13", "output": "71" }, { "input": "5 16", "output": "40" }, { "input": "8 15", "output": "60" }, { "input": "2 2", "output": "2" }, { "input": "3 4", "output": "6" }, { "input": "4 4", "output": "8" }, { "input": "1 1", "output": "0" }, { "input": "1 2", "output": "1" }, { "input": "1 3", "output": "1" }, { "input": "14 15", "output": "105" } ]
1,626,616,298
2,147,483,647
Python 3
RUNTIME_ERROR
TESTS
0
92
6,758,400
integer_array = input().split(" ") print( (integer_array[0] * integer_array[1]) % 2 )
Title: Domino piling Time Limit: 2 seconds Memory Limit: 256 megabytes Problem Description: You are given a rectangular board of *M*<=×<=*N* squares. Also you are given an unlimited number of standard domino pieces of 2<=×<=1 squares. You are allowed to rotate the pieces. You are asked to place as many dominoes as possible on the board so as to meet the following conditions: 1. Each domino completely covers two squares. 2. No two dominoes overlap. 3. Each domino lies entirely inside the board. It is allowed to touch the edges of the board. Find the maximum number of dominoes, which can be placed under these restrictions. Input Specification: In a single line you are given two integers *M* and *N* — board sizes in squares (1<=≤<=*M*<=≤<=*N*<=≤<=16). Output Specification: Output one number — the maximal number of dominoes, which can be placed. Demo Input: ['2 4\n', '3 3\n'] Demo Output: ['4\n', '4\n'] Note: none
```python integer_array = input().split(" ") print( (integer_array[0] * integer_array[1]) % 2 ) ```
-1
665
D
Simple Subset
PROGRAMMING
1,800
[ "constructive algorithms", "greedy", "number theory" ]
null
null
A tuple of positive integers {*x*1,<=*x*2,<=...,<=*x**k*} is called simple if for all pairs of positive integers (*i*,<=<=*j*) (1<=<=≤<=*i*<=<=&lt;<=<=*j*<=≤<=*k*), *x**i*<=<=+<=<=*x**j* is a prime. You are given an array *a* with *n* positive integers *a*1,<=<=*a*2,<=<=...,<=<=*a**n* (not necessary distinct). You want to find a simple subset of the array *a* with the maximum size. A prime number (or a prime) is a natural number greater than 1 that has no positive divisors other than 1 and itself. Let's define a subset of the array *a* as a tuple that can be obtained from *a* by removing some (possibly all) elements of it.
The first line contains integer *n* (1<=≤<=*n*<=≤<=1000) — the number of integers in the array *a*. The second line contains *n* integers *a**i* (1<=≤<=*a**i*<=≤<=106) — the elements of the array *a*.
On the first line print integer *m* — the maximum possible size of simple subset of *a*. On the second line print *m* integers *b**l* — the elements of the simple subset of the array *a* with the maximum size. If there is more than one solution you can print any of them. You can print the elements of the subset in any order.
[ "2\n2 3\n", "2\n2 2\n", "3\n2 1 1\n", "2\n83 14\n" ]
[ "2\n3 2\n", "1\n2\n", "3\n1 1 2\n", "2\n14 83\n" ]
none
0
[ { "input": "2\n2 3", "output": "2\n3 2" }, { "input": "2\n2 2", "output": "1\n2" }, { "input": "3\n2 1 1", "output": "3\n1 1 2" }, { "input": "2\n83 14", "output": "2\n14 83" }, { "input": "10\n10 10 1 2 3 3 1 2 1 5", "output": "4\n1 1 10 1" }, { "input": "100\n314 905 555 526 981 360 424 104 920 814 143 872 741 592 105 573 837 962 220 692 560 493 889 824 145 491 828 960 889 87 375 486 609 423 386 323 124 830 206 446 899 522 514 696 786 783 268 483 318 261 675 445 1000 896 812 277 131 264 860 514 701 678 792 394 324 244 483 357 69 931 590 452 626 451 976 317 722 564 809 40 265 709 13 700 769 869 131 834 712 478 661 369 805 668 512 184 477 896 808 168", "output": "2\n104 905" }, { "input": "100\n174 816 593 727 182 151 842 277 1 942 307 939 447 738 823 744 319 394 515 451 875 950 319 789 384 292 190 758 927 103 246 1 675 42 398 631 382 893 646 2 773 157 992 425 804 565 500 242 2 657 611 647 4 331 99 1 694 18 119 364 458 569 94 999 72 7 297 102 982 859 786 868 178 393 642 254 707 41 103 764 934 70 775 41 188 199 767 64 84 899 626 224 279 188 659 374 105 178 154 758", "output": "4\n1 1 738 1" }, { "input": "100\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1", "output": "100\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1" }, { "input": "100\n966 680 370 134 202 826 254 620 700 336 938 344 368 108 732 130 134 700 996 904 644 734 184 134 996 46 146 928 320 664 304 160 358 306 330 132 674 16 338 138 926 994 196 960 972 972 756 276 600 982 588 978 868 572 446 578 692 976 780 434 882 344 980 536 856 916 966 936 178 300 294 568 984 54 238 718 582 400 572 142 118 306 222 850 948 954 682 256 70 550 830 980 646 970 688 56 552 592 200 682", "output": "1\n966" }, { "input": "100\n598 236 971 958 277 96 651 366 629 50 601 822 744 326 276 330 413 531 791 655 450 173 992 80 401 760 227 64 350 711 258 545 212 690 996 515 983 835 388 311 970 608 185 164 491 419 295 293 274 93 339 761 155 307 991 857 309 957 563 232 328 682 779 637 312 888 305 184 15 556 427 211 327 313 516 815 914 588 592 988 151 839 828 339 196 462 752 454 865 479 356 529 320 59 908 840 294 882 189 6", "output": "2\n96 277" }, { "input": "20\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 204239 1 194239 216480", "output": "18\n1 1 1 1 1 1 1 216480 1 1 1 1 1 1 1 1 1 1" }, { "input": "10\n4 3 1 1 1 1 1 1 1 1", "output": "9\n4 1 1 1 1 1 1 1 1" }, { "input": "2\n1000000 1000000", "output": "1\n1000000" }, { "input": "1\n4", "output": "1\n4" }, { "input": "1\n1", "output": "1\n1" }, { "input": "2\n999997 999994", "output": "1\n999997" }, { "input": "5\n1 1 1 8 9", "output": "3\n1 1 1" }, { "input": "3\n1 5 8", "output": "2\n8 5" }, { "input": "2\n999996 999997", "output": "2\n999997 999996" }, { "input": "2\n1 2", "output": "2\n1 2" }, { "input": "3\n1 8 9", "output": "2\n9 8" }, { "input": "2\n1 1", "output": "2\n1 1" }, { "input": "2\n1 3", "output": "1\n1" }, { "input": "3\n1 9 8", "output": "2\n8 9" }, { "input": "6\n1 3 3 3 3 20", "output": "2\n20 3" }, { "input": "1\n3", "output": "1\n3" }, { "input": "2\n3 3", "output": "1\n3" }, { "input": "5\n1 1 1 8 3", "output": "3\n1 1 1" }, { "input": "1\n9", "output": "1\n9" }, { "input": "3\n2 4 7", "output": "2\n7 4" }, { "input": "6\n2 5 1 1 1 1", "output": "5\n2 1 1 1 1" }, { "input": "3\n1 3 14", "output": "2\n14 3" }, { "input": "1\n6", "output": "1\n6" }, { "input": "3\n2 7 12", "output": "2\n12 7" }, { "input": "3\n3 6 7", "output": "2\n7 6" }, { "input": "3\n7 3 2", "output": "2\n2 3" }, { "input": "3\n1 8 5", "output": "2\n5 8" }, { "input": "2\n1000000 999993", "output": "2\n999993 1000000" }, { "input": "5\n1 5 8 1 1", "output": "3\n1 1 1" }, { "input": "1\n8", "output": "1\n8" }, { "input": "3\n1 13 13", "output": "1\n1" }, { "input": "3\n5 8 1", "output": "2\n8 5" }, { "input": "3\n8 1 5", "output": "2\n5 8" }, { "input": "3\n1 3 8", "output": "2\n8 3" }, { "input": "2\n1 9", "output": "1\n1" }, { "input": "2\n5 5", "output": "1\n5" }, { "input": "1\n5", "output": "1\n5" }, { "input": "3\n1 83 14", "output": "2\n14 83" }, { "input": "5\n123445 32892 32842 432721 39234", "output": "1\n123445" } ]
1,461,433,548
2,147,483,647
PyPy 3
OK
TESTS
66
373
31,641,600
import math N = 2000001 sq = math.floor(N ** 0.5) isprime = [True] * N for p in range(2, N): if isprime[p]: for i in range(p**2, N, p): isprime[i] = False def solve(): n = int(input()) A = [int(x) for x in input().split()] odd = list(filter(lambda x: x%2, A)) even = list(filter(lambda x: x%2 == 0, A)) k = odd.count(1) res = None if k > 0: for i in even: if isprime[i+1]: res = [1]*k + [i] return res if k > 1: res = [1]*k return res if res is None: for i in odd: for j in even: if isprime[i+j]: res = [i, j] return res return [A[0]] res = solve() print(len(res)) print(' '.join(map(str, res)))
Title: Simple Subset Time Limit: None seconds Memory Limit: None megabytes Problem Description: A tuple of positive integers {*x*1,<=*x*2,<=...,<=*x**k*} is called simple if for all pairs of positive integers (*i*,<=<=*j*) (1<=<=≤<=*i*<=<=&lt;<=<=*j*<=≤<=*k*), *x**i*<=<=+<=<=*x**j* is a prime. You are given an array *a* with *n* positive integers *a*1,<=<=*a*2,<=<=...,<=<=*a**n* (not necessary distinct). You want to find a simple subset of the array *a* with the maximum size. A prime number (or a prime) is a natural number greater than 1 that has no positive divisors other than 1 and itself. Let's define a subset of the array *a* as a tuple that can be obtained from *a* by removing some (possibly all) elements of it. Input Specification: The first line contains integer *n* (1<=≤<=*n*<=≤<=1000) — the number of integers in the array *a*. The second line contains *n* integers *a**i* (1<=≤<=*a**i*<=≤<=106) — the elements of the array *a*. Output Specification: On the first line print integer *m* — the maximum possible size of simple subset of *a*. On the second line print *m* integers *b**l* — the elements of the simple subset of the array *a* with the maximum size. If there is more than one solution you can print any of them. You can print the elements of the subset in any order. Demo Input: ['2\n2 3\n', '2\n2 2\n', '3\n2 1 1\n', '2\n83 14\n'] Demo Output: ['2\n3 2\n', '1\n2\n', '3\n1 1 2\n', '2\n14 83\n'] Note: none
```python import math N = 2000001 sq = math.floor(N ** 0.5) isprime = [True] * N for p in range(2, N): if isprime[p]: for i in range(p**2, N, p): isprime[i] = False def solve(): n = int(input()) A = [int(x) for x in input().split()] odd = list(filter(lambda x: x%2, A)) even = list(filter(lambda x: x%2 == 0, A)) k = odd.count(1) res = None if k > 0: for i in even: if isprime[i+1]: res = [1]*k + [i] return res if k > 1: res = [1]*k return res if res is None: for i in odd: for j in even: if isprime[i+j]: res = [i, j] return res return [A[0]] res = solve() print(len(res)) print(' '.join(map(str, res))) ```
3
677
A
Vanya and Fence
PROGRAMMING
800
[ "implementation" ]
null
null
Vanya and his friends are walking along the fence of height *h* and they do not want the guard to notice them. In order to achieve this the height of each of the friends should not exceed *h*. If the height of some person is greater than *h* he can bend down and then he surely won't be noticed by the guard. The height of the *i*-th person is equal to *a**i*. Consider the width of the person walking as usual to be equal to 1, while the width of the bent person is equal to 2. Friends want to talk to each other while walking, so they would like to walk in a single row. What is the minimum width of the road, such that friends can walk in a row and remain unattended by the guard?
The first line of the input contains two integers *n* and *h* (1<=≤<=*n*<=≤<=1000, 1<=≤<=*h*<=≤<=1000) — the number of friends and the height of the fence, respectively. The second line contains *n* integers *a**i* (1<=≤<=*a**i*<=≤<=2*h*), the *i*-th of them is equal to the height of the *i*-th person.
Print a single integer — the minimum possible valid width of the road.
[ "3 7\n4 5 14\n", "6 1\n1 1 1 1 1 1\n", "6 5\n7 6 8 9 10 5\n" ]
[ "4\n", "6\n", "11\n" ]
In the first sample, only person number 3 must bend down, so the required width is equal to 1 + 1 + 2 = 4. In the second sample, all friends are short enough and no one has to bend, so the width 1 + 1 + 1 + 1 + 1 + 1 = 6 is enough. In the third sample, all the persons have to bend, except the last one. The required minimum width of the road is equal to 2 + 2 + 2 + 2 + 2 + 1 = 11.
500
[ { "input": "3 7\n4 5 14", "output": "4" }, { "input": "6 1\n1 1 1 1 1 1", "output": "6" }, { "input": "6 5\n7 6 8 9 10 5", "output": "11" }, { "input": "10 420\n214 614 297 675 82 740 174 23 255 15", "output": "13" }, { "input": "10 561\n657 23 1096 487 785 66 481 554 1000 821", "output": "15" }, { "input": "100 342\n478 143 359 336 162 333 385 515 117 496 310 538 469 539 258 676 466 677 1 296 150 560 26 213 627 221 255 126 617 174 279 178 24 435 70 145 619 46 669 566 300 67 576 251 58 176 441 564 569 194 24 669 73 262 457 259 619 78 400 579 222 626 269 47 80 315 160 194 455 186 315 424 197 246 683 220 68 682 83 233 290 664 273 598 362 305 674 614 321 575 362 120 14 534 62 436 294 351 485 396", "output": "144" }, { "input": "100 290\n244 49 276 77 449 261 468 458 201 424 9 131 300 88 432 394 104 77 13 289 435 259 111 453 168 394 156 412 351 576 178 530 81 271 228 564 125 328 42 372 205 61 180 471 33 360 567 331 222 318 241 117 529 169 188 484 202 202 299 268 246 343 44 364 333 494 59 236 84 485 50 8 428 8 571 227 205 310 210 9 324 472 368 490 114 84 296 305 411 351 569 393 283 120 510 171 232 151 134 366", "output": "145" }, { "input": "1 1\n1", "output": "1" }, { "input": "1 1\n2", "output": "2" }, { "input": "46 71\n30 26 56 138 123 77 60 122 73 45 79 10 130 3 14 1 38 46 128 50 82 16 32 68 28 98 62 106 2 49 131 11 114 39 139 70 40 50 45 137 33 30 35 136 135 19", "output": "63" }, { "input": "20 723\n212 602 293 591 754 91 1135 640 80 495 845 928 1399 498 926 1431 1226 869 814 1386", "output": "31" }, { "input": "48 864\n843 1020 751 1694 18 1429 1395 1174 272 1158 1628 1233 1710 441 765 561 778 748 1501 1200 563 1263 1398 1687 1518 1640 1591 839 500 466 1603 1587 1201 1209 432 868 1159 639 649 628 9 91 1036 147 896 1557 941 518", "output": "75" }, { "input": "26 708\n549 241 821 734 945 1161 566 1268 216 30 1142 730 529 1014 255 168 796 1148 89 113 1328 286 743 871 1259 1397", "output": "41" }, { "input": "75 940\n1620 1745 1599 441 64 1466 1496 1239 1716 1475 778 106 1136 1212 1261 444 781 257 1071 747 626 232 609 1544 682 1326 469 1361 1460 1450 1207 1319 922 625 1737 1057 1698 592 692 80 1016 541 1254 201 682 1007 847 206 1066 809 259 109 240 1611 219 1455 1326 1377 1827 786 42 1002 1382 1592 543 1866 1198 334 1524 1760 340 1566 955 257 1118", "output": "116" } ]
1,692,731,949
2,147,483,647
PyPy 3-64
OK
TESTS
29
62
0
n, m = map(int, input().split()) x = list(map(int, input().split())) print(sum([1 if i <= m else 2 for i in x]))
Title: Vanya and Fence Time Limit: None seconds Memory Limit: None megabytes Problem Description: Vanya and his friends are walking along the fence of height *h* and they do not want the guard to notice them. In order to achieve this the height of each of the friends should not exceed *h*. If the height of some person is greater than *h* he can bend down and then he surely won't be noticed by the guard. The height of the *i*-th person is equal to *a**i*. Consider the width of the person walking as usual to be equal to 1, while the width of the bent person is equal to 2. Friends want to talk to each other while walking, so they would like to walk in a single row. What is the minimum width of the road, such that friends can walk in a row and remain unattended by the guard? Input Specification: The first line of the input contains two integers *n* and *h* (1<=≤<=*n*<=≤<=1000, 1<=≤<=*h*<=≤<=1000) — the number of friends and the height of the fence, respectively. The second line contains *n* integers *a**i* (1<=≤<=*a**i*<=≤<=2*h*), the *i*-th of them is equal to the height of the *i*-th person. Output Specification: Print a single integer — the minimum possible valid width of the road. Demo Input: ['3 7\n4 5 14\n', '6 1\n1 1 1 1 1 1\n', '6 5\n7 6 8 9 10 5\n'] Demo Output: ['4\n', '6\n', '11\n'] Note: In the first sample, only person number 3 must bend down, so the required width is equal to 1 + 1 + 2 = 4. In the second sample, all friends are short enough and no one has to bend, so the width 1 + 1 + 1 + 1 + 1 + 1 = 6 is enough. In the third sample, all the persons have to bend, except the last one. The required minimum width of the road is equal to 2 + 2 + 2 + 2 + 2 + 1 = 11.
```python n, m = map(int, input().split()) x = list(map(int, input().split())) print(sum([1 if i <= m else 2 for i in x])) ```
3
893
B
Beautiful Divisors
PROGRAMMING
1,000
[ "brute force", "implementation" ]
null
null
Recently Luba learned about a special kind of numbers that she calls beautiful numbers. The number is called beautiful iff its binary representation consists of *k*<=+<=1 consecutive ones, and then *k* consecutive zeroes. Some examples of beautiful numbers: - 12 (110); - 1102 (610); - 11110002 (12010); - 1111100002 (49610). More formally, the number is beautiful iff there exists some positive integer *k* such that the number is equal to (2*k*<=-<=1)<=*<=(2*k*<=-<=1). Luba has got an integer number *n*, and she wants to find its greatest beautiful divisor. Help her to find it!
The only line of input contains one number *n* (1<=≤<=*n*<=≤<=105) — the number Luba has got.
Output one number — the greatest beautiful divisor of Luba's number. It is obvious that the answer always exists.
[ "3\n", "992\n" ]
[ "1\n", "496\n" ]
none
0
[ { "input": "3", "output": "1" }, { "input": "992", "output": "496" }, { "input": "81142", "output": "1" }, { "input": "76920", "output": "120" }, { "input": "2016", "output": "2016" }, { "input": "1", "output": "1" }, { "input": "6", "output": "6" }, { "input": "32640", "output": "32640" }, { "input": "12096", "output": "2016" }, { "input": "55948", "output": "1" }, { "input": "47262", "output": "6" }, { "input": "22876", "output": "28" }, { "input": "96120", "output": "120" }, { "input": "42160", "output": "496" }, { "input": "38304", "output": "2016" }, { "input": "89408", "output": "8128" }, { "input": "97920", "output": "32640" }, { "input": "55493", "output": "1" }, { "input": "38021", "output": "1" }, { "input": "21445", "output": "1" }, { "input": "100000", "output": "1" }, { "input": "497", "output": "1" }, { "input": "240", "output": "120" }, { "input": "21204", "output": "6" }, { "input": "65536", "output": "1" }, { "input": "364", "output": "28" }, { "input": "1024", "output": "1" }, { "input": "36", "output": "6" }, { "input": "28", "output": "28" }, { "input": "14400", "output": "120" }, { "input": "10080", "output": "2016" }, { "input": "9", "output": "1" }, { "input": "2", "output": "1" }, { "input": "42", "output": "6" }, { "input": "83160", "output": "120" }, { "input": "65534", "output": "1" }, { "input": "1026", "output": "6" }, { "input": "1025", "output": "1" }, { "input": "1027", "output": "1" }, { "input": "2018", "output": "1" }, { "input": "2020", "output": "1" }, { "input": "123", "output": "1" }, { "input": "150", "output": "6" }, { "input": "5", "output": "1" }, { "input": "66", "output": "6" }, { "input": "12768", "output": "28" }, { "input": "156", "output": "6" }, { "input": "99990", "output": "6" }, { "input": "248", "output": "1" } ]
1,651,652,466
2,147,483,647
PyPy 3
WRONG_ANSWER
TESTS
1
62
0
import sys input = sys.stdin.readline input() print(1)
Title: Beautiful Divisors Time Limit: None seconds Memory Limit: None megabytes Problem Description: Recently Luba learned about a special kind of numbers that she calls beautiful numbers. The number is called beautiful iff its binary representation consists of *k*<=+<=1 consecutive ones, and then *k* consecutive zeroes. Some examples of beautiful numbers: - 12 (110); - 1102 (610); - 11110002 (12010); - 1111100002 (49610). More formally, the number is beautiful iff there exists some positive integer *k* such that the number is equal to (2*k*<=-<=1)<=*<=(2*k*<=-<=1). Luba has got an integer number *n*, and she wants to find its greatest beautiful divisor. Help her to find it! Input Specification: The only line of input contains one number *n* (1<=≤<=*n*<=≤<=105) — the number Luba has got. Output Specification: Output one number — the greatest beautiful divisor of Luba's number. It is obvious that the answer always exists. Demo Input: ['3\n', '992\n'] Demo Output: ['1\n', '496\n'] Note: none
```python import sys input = sys.stdin.readline input() print(1) ```
0
899
B
Months and Years
PROGRAMMING
1,200
[ "implementation" ]
null
null
Everybody in Russia uses Gregorian calendar. In this calendar there are 31 days in January, 28 or 29 days in February (depending on whether the year is leap or not), 31 days in March, 30 days in April, 31 days in May, 30 in June, 31 in July, 31 in August, 30 in September, 31 in October, 30 in November, 31 in December. A year is leap in one of two cases: either its number is divisible by 4, but not divisible by 100, or is divisible by 400. For example, the following years are leap: 2000, 2004, but years 1900 and 2018 are not leap. In this problem you are given *n* (1<=≤<=*n*<=≤<=24) integers *a*1,<=*a*2,<=...,<=*a**n*, and you have to check if these integers could be durations in days of *n* consecutive months, according to Gregorian calendar. Note that these months could belong to several consecutive years. In other words, check if there is a month in some year, such that its duration is *a*1 days, duration of the next month is *a*2 days, and so on.
The first line contains single integer *n* (1<=≤<=*n*<=≤<=24) — the number of integers. The second line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n* (28<=≤<=*a**i*<=≤<=31) — the numbers you are to check.
If there are several consecutive months that fit the sequence, print "YES" (without quotes). Otherwise, print "NO" (without quotes). You can print each letter in arbitrary case (small or large).
[ "4\n31 31 30 31\n", "2\n30 30\n", "5\n29 31 30 31 30\n", "3\n31 28 30\n", "3\n31 31 28\n" ]
[ "Yes\n\n", "No\n\n", "Yes\n\n", "No\n\n", "Yes\n\n" ]
In the first example the integers can denote months July, August, September and October. In the second example the answer is no, because there are no two consecutive months each having 30 days. In the third example the months are: February (leap year) — March — April – May — June. In the fourth example the number of days in the second month is 28, so this is February. March follows February and has 31 days, but not 30, so the answer is NO. In the fifth example the months are: December — January — February (non-leap year).
1,000
[ { "input": "4\n31 31 30 31", "output": "Yes" }, { "input": "2\n30 30", "output": "No" }, { "input": "5\n29 31 30 31 30", "output": "Yes" }, { "input": "3\n31 28 30", "output": "No" }, { "input": "3\n31 31 28", "output": "Yes" }, { "input": "24\n29 28 31 30 31 30 31 31 30 31 30 31 31 29 31 30 31 30 31 31 30 31 30 31", "output": "No" }, { "input": "4\n31 29 31 30", "output": "Yes" }, { "input": "24\n31 28 31 30 31 30 31 31 30 31 30 31 31 29 31 30 31 30 31 31 30 31 30 31", "output": "Yes" }, { "input": "8\n31 29 31 30 31 30 31 31", "output": "Yes" }, { "input": "1\n29", "output": "Yes" }, { "input": "8\n31 29 31 30 31 31 31 31", "output": "No" }, { "input": "1\n31", "output": "Yes" }, { "input": "11\n30 31 30 31 31 30 31 30 31 31 28", "output": "Yes" }, { "input": "21\n30 31 30 31 31 28 31 30 31 30 31 31 30 31 30 31 31 28 31 30 31", "output": "Yes" }, { "input": "4\n31 28 28 30", "output": "No" }, { "input": "2\n30 31", "output": "Yes" }, { "input": "7\n28 31 30 31 30 31 31", "output": "Yes" }, { "input": "4\n28 31 30 31", "output": "Yes" }, { "input": "17\n28 30 31 30 31 31 28 31 30 31 30 31 31 30 31 30 31", "output": "No" }, { "input": "9\n31 31 29 31 30 31 30 31 31", "output": "Yes" }, { "input": "4\n31 28 31 30", "output": "Yes" }, { "input": "21\n30 31 30 31 31 28 31 30 31 30 31 29 30 31 30 31 31 28 31 30 31", "output": "No" }, { "input": "2\n31 31", "output": "Yes" }, { "input": "17\n31 30 31 30 31 31 28 31 30 31 30 31 31 30 31 30 31", "output": "Yes" }, { "input": "4\n30 31 30 31", "output": "Yes" }, { "input": "12\n31 28 31 30 31 30 31 31 30 31 30 31", "output": "Yes" }, { "input": "12\n31 29 31 30 31 30 31 31 30 31 30 31", "output": "Yes" }, { "input": "11\n30 31 30 31 31 30 31 30 31 29 28", "output": "No" }, { "input": "22\n31 30 31 30 31 31 30 31 30 31 31 28 31 30 31 30 31 31 30 31 30 31", "output": "Yes" }, { "input": "14\n31 30 31 31 28 31 30 31 30 31 31 30 31 30", "output": "Yes" }, { "input": "12\n31 30 31 31 28 31 30 31 30 31 31 30", "output": "Yes" }, { "input": "4\n31 29 29 30", "output": "No" }, { "input": "7\n28 28 30 31 30 31 31", "output": "No" }, { "input": "9\n29 31 29 31 30 31 30 31 31", "output": "No" }, { "input": "17\n31 30 31 30 31 31 29 31 30 31 30 31 31 30 31 30 31", "output": "Yes" }, { "input": "2\n31 29", "output": "Yes" }, { "input": "12\n31 28 31 30 31 30 31 31 30 31 28 31", "output": "No" }, { "input": "2\n29 31", "output": "Yes" }, { "input": "12\n31 29 31 30 31 30 31 30 30 31 30 31", "output": "No" }, { "input": "12\n31 28 31 30 31 29 31 31 30 31 30 31", "output": "No" }, { "input": "22\n31 30 31 30 31 31 30 31 30 31 31 28 31 30 28 30 31 31 30 31 30 31", "output": "No" }, { "input": "14\n31 30 31 31 28 31 30 31 30 31 31 30 29 30", "output": "No" }, { "input": "19\n31 28 31 30 31 30 31 31 30 31 30 31 31 28 31 30 31 30 31", "output": "Yes" }, { "input": "20\n31 28 31 30 31 30 31 31 30 31 30 31 31 28 31 30 31 30 31 31", "output": "Yes" }, { "input": "1\n28", "output": "Yes" }, { "input": "1\n29", "output": "Yes" }, { "input": "17\n31 30 31 30 31 31 29 31 30 31 31 31 31 30 31 30 31", "output": "No" }, { "input": "1\n30", "output": "Yes" }, { "input": "1\n31", "output": "Yes" }, { "input": "24\n31 28 31 30 31 30 31 31 30 31 30 31 31 28 31 30 31 30 31 31 30 31 30 31", "output": "Yes" }, { "input": "24\n28 31 30 31 30 31 31 30 31 30 31 31 28 31 30 31 30 31 31 30 31 30 31 31", "output": "Yes" }, { "input": "12\n31 30 31 31 28 28 30 31 30 31 31 30", "output": "No" }, { "input": "24\n29 31 30 31 30 31 31 30 31 30 31 31 28 31 30 31 30 31 31 30 31 30 31 31", "output": "Yes" }, { "input": "24\n28 31 30 31 30 31 31 30 31 30 31 31 29 31 30 31 30 31 31 30 31 30 31 31", "output": "Yes" }, { "input": "24\n31 29 31 30 31 30 31 31 30 31 30 31 31 29 31 30 31 30 31 31 30 31 30 31", "output": "No" }, { "input": "13\n28 31 30 31 30 31 31 30 31 30 31 31 28", "output": "Yes" }, { "input": "15\n31 31 28 31 30 31 30 31 31 30 31 30 31 31 29", "output": "Yes" }, { "input": "23\n31 30 31 31 30 31 30 31 31 28 31 30 31 30 31 31 30 31 30 31 31 29 31", "output": "Yes" }, { "input": "24\n31 30 31 30 31 31 30 31 30 31 31 30 31 30 31 30 31 31 30 31 30 31 31 30", "output": "No" }, { "input": "23\n29 31 30 31 30 31 31 30 31 30 31 31 29 31 30 31 30 31 31 30 31 30 31", "output": "No" }, { "input": "15\n31 31 29 31 30 31 30 31 31 30 31 30 31 31 28", "output": "Yes" }, { "input": "12\n31 30 31 30 31 30 31 31 30 31 30 31", "output": "No" } ]
1,533,061,275
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
50
124
0
# -*- coding: utf-8 -*- """ Created on Tue Jul 31 23:02:02 2018 @author: akshat """ def equals(l1, l2): if len(l1) == len(l2): for i in range(len(l2)): if l1[i] != l2[i]: return False return True else: return False n = int(input()) a = list(map(int,input().split(" "))) ref = [31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31] flag = False for i in range(48-(n-2)): if equals(ref[i:i+n],a): flag = True if flag: print("Yes") else: print("No")
Title: Months and Years Time Limit: None seconds Memory Limit: None megabytes Problem Description: Everybody in Russia uses Gregorian calendar. In this calendar there are 31 days in January, 28 or 29 days in February (depending on whether the year is leap or not), 31 days in March, 30 days in April, 31 days in May, 30 in June, 31 in July, 31 in August, 30 in September, 31 in October, 30 in November, 31 in December. A year is leap in one of two cases: either its number is divisible by 4, but not divisible by 100, or is divisible by 400. For example, the following years are leap: 2000, 2004, but years 1900 and 2018 are not leap. In this problem you are given *n* (1<=≤<=*n*<=≤<=24) integers *a*1,<=*a*2,<=...,<=*a**n*, and you have to check if these integers could be durations in days of *n* consecutive months, according to Gregorian calendar. Note that these months could belong to several consecutive years. In other words, check if there is a month in some year, such that its duration is *a*1 days, duration of the next month is *a*2 days, and so on. Input Specification: The first line contains single integer *n* (1<=≤<=*n*<=≤<=24) — the number of integers. The second line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n* (28<=≤<=*a**i*<=≤<=31) — the numbers you are to check. Output Specification: If there are several consecutive months that fit the sequence, print "YES" (without quotes). Otherwise, print "NO" (without quotes). You can print each letter in arbitrary case (small or large). Demo Input: ['4\n31 31 30 31\n', '2\n30 30\n', '5\n29 31 30 31 30\n', '3\n31 28 30\n', '3\n31 31 28\n'] Demo Output: ['Yes\n\n', 'No\n\n', 'Yes\n\n', 'No\n\n', 'Yes\n\n'] Note: In the first example the integers can denote months July, August, September and October. In the second example the answer is no, because there are no two consecutive months each having 30 days. In the third example the months are: February (leap year) — March — April – May — June. In the fourth example the number of days in the second month is 28, so this is February. March follows February and has 31 days, but not 30, so the answer is NO. In the fifth example the months are: December — January — February (non-leap year).
```python # -*- coding: utf-8 -*- """ Created on Tue Jul 31 23:02:02 2018 @author: akshat """ def equals(l1, l2): if len(l1) == len(l2): for i in range(len(l2)): if l1[i] != l2[i]: return False return True else: return False n = int(input()) a = list(map(int,input().split(" "))) ref = [31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31] flag = False for i in range(48-(n-2)): if equals(ref[i:i+n],a): flag = True if flag: print("Yes") else: print("No") ```
0
816
A
Karen and Morning
PROGRAMMING
1,000
[ "brute force", "implementation" ]
null
null
Karen is getting ready for a new school day! It is currently hh:mm, given in a 24-hour format. As you know, Karen loves palindromes, and she believes that it is good luck to wake up when the time is a palindrome. What is the minimum number of minutes she should sleep, such that, when she wakes up, the time is a palindrome? Remember that a palindrome is a string that reads the same forwards and backwards. For instance, 05:39 is not a palindrome, because 05:39 backwards is 93:50. On the other hand, 05:50 is a palindrome, because 05:50 backwards is 05:50.
The first and only line of input contains a single string in the format hh:mm (00<=≤<= hh <=≤<=23, 00<=≤<= mm <=≤<=59).
Output a single integer on a line by itself, the minimum number of minutes she should sleep, such that, when she wakes up, the time is a palindrome.
[ "05:39\n", "13:31\n", "23:59\n" ]
[ "11\n", "0\n", "1\n" ]
In the first test case, the minimum number of minutes Karen should sleep for is 11. She can wake up at 05:50, when the time is a palindrome. In the second test case, Karen can wake up immediately, as the current time, 13:31, is already a palindrome. In the third test case, the minimum number of minutes Karen should sleep for is 1 minute. She can wake up at 00:00, when the time is a palindrome.
500
[ { "input": "05:39", "output": "11" }, { "input": "13:31", "output": "0" }, { "input": "23:59", "output": "1" }, { "input": "13:32", "output": "69" }, { "input": "14:40", "output": "1" }, { "input": "14:00", "output": "41" }, { "input": "05:50", "output": "0" }, { "input": "12:22", "output": "69" }, { "input": "12:34", "output": "57" }, { "input": "05:30", "output": "20" }, { "input": "14:14", "output": "27" }, { "input": "01:10", "output": "0" }, { "input": "02:20", "output": "0" }, { "input": "03:30", "output": "0" }, { "input": "04:40", "output": "0" }, { "input": "10:01", "output": "0" }, { "input": "11:11", "output": "0" }, { "input": "12:21", "output": "0" }, { "input": "14:41", "output": "0" }, { "input": "15:51", "output": "0" }, { "input": "20:02", "output": "0" }, { "input": "21:12", "output": "0" }, { "input": "22:22", "output": "0" }, { "input": "23:32", "output": "0" }, { "input": "01:11", "output": "69" }, { "input": "02:21", "output": "69" }, { "input": "03:31", "output": "69" }, { "input": "04:41", "output": "69" }, { "input": "05:51", "output": "250" }, { "input": "10:02", "output": "69" }, { "input": "11:12", "output": "69" }, { "input": "14:42", "output": "69" }, { "input": "15:52", "output": "250" }, { "input": "20:03", "output": "69" }, { "input": "21:13", "output": "69" }, { "input": "22:23", "output": "69" }, { "input": "23:33", "output": "27" }, { "input": "00:00", "output": "0" }, { "input": "00:01", "output": "69" }, { "input": "22:21", "output": "1" }, { "input": "20:01", "output": "1" }, { "input": "11:10", "output": "1" }, { "input": "06:59", "output": "182" }, { "input": "02:00", "output": "20" }, { "input": "02:19", "output": "1" }, { "input": "17:31", "output": "151" }, { "input": "19:00", "output": "62" }, { "input": "13:37", "output": "64" }, { "input": "07:59", "output": "122" }, { "input": "04:20", "output": "20" }, { "input": "07:10", "output": "171" }, { "input": "06:00", "output": "241" }, { "input": "06:01", "output": "240" }, { "input": "08:15", "output": "106" }, { "input": "06:59", "output": "182" }, { "input": "01:00", "output": "10" }, { "input": "07:00", "output": "181" }, { "input": "06:10", "output": "231" }, { "input": "18:52", "output": "70" }, { "input": "09:59", "output": "2" }, { "input": "19:00", "output": "62" }, { "input": "15:52", "output": "250" }, { "input": "06:50", "output": "191" }, { "input": "00:00", "output": "0" }, { "input": "19:20", "output": "42" }, { "input": "05:51", "output": "250" }, { "input": "06:16", "output": "225" }, { "input": "10:10", "output": "61" }, { "input": "17:11", "output": "171" }, { "input": "18:00", "output": "122" }, { "input": "00:01", "output": "69" }, { "input": "05:04", "output": "46" }, { "input": "16:00", "output": "242" }, { "input": "23:31", "output": "1" }, { "input": "17:25", "output": "157" }, { "input": "23:32", "output": "0" }, { "input": "23:58", "output": "2" }, { "input": "02:21", "output": "69" }, { "input": "01:11", "output": "69" }, { "input": "23:46", "output": "14" }, { "input": "00:09", "output": "61" }, { "input": "09:20", "output": "41" }, { "input": "05:59", "output": "242" }, { "input": "18:59", "output": "63" }, { "input": "02:02", "output": "18" }, { "input": "00:30", "output": "40" }, { "input": "05:54", "output": "247" }, { "input": "19:59", "output": "3" }, { "input": "16:59", "output": "183" }, { "input": "17:51", "output": "131" }, { "input": "09:30", "output": "31" }, { "input": "10:01", "output": "0" }, { "input": "16:55", "output": "187" }, { "input": "20:02", "output": "0" }, { "input": "16:12", "output": "230" }, { "input": "20:00", "output": "2" }, { "input": "01:01", "output": "9" }, { "input": "23:01", "output": "31" }, { "input": "06:05", "output": "236" }, { "input": "19:19", "output": "43" }, { "input": "17:00", "output": "182" }, { "input": "07:50", "output": "131" }, { "input": "21:20", "output": "62" }, { "input": "23:23", "output": "9" }, { "input": "19:30", "output": "32" }, { "input": "00:59", "output": "11" }, { "input": "22:59", "output": "33" }, { "input": "18:18", "output": "104" }, { "input": "17:46", "output": "136" }, { "input": "07:30", "output": "151" }, { "input": "17:16", "output": "166" }, { "input": "06:06", "output": "235" }, { "input": "23:30", "output": "2" }, { "input": "05:57", "output": "244" }, { "input": "19:46", "output": "16" }, { "input": "11:10", "output": "1" }, { "input": "17:07", "output": "175" }, { "input": "18:53", "output": "69" }, { "input": "07:06", "output": "175" }, { "input": "17:50", "output": "132" }, { "input": "09:15", "output": "46" }, { "input": "09:55", "output": "6" }, { "input": "20:05", "output": "67" }, { "input": "22:55", "output": "37" }, { "input": "10:00", "output": "1" }, { "input": "07:55", "output": "126" }, { "input": "07:40", "output": "141" }, { "input": "19:08", "output": "54" }, { "input": "23:24", "output": "8" }, { "input": "16:15", "output": "227" }, { "input": "07:20", "output": "161" }, { "input": "23:10", "output": "22" }, { "input": "06:51", "output": "190" }, { "input": "16:30", "output": "212" }, { "input": "17:54", "output": "128" }, { "input": "07:07", "output": "174" }, { "input": "08:01", "output": "120" }, { "input": "09:58", "output": "3" }, { "input": "18:03", "output": "119" }, { "input": "07:59", "output": "122" }, { "input": "05:55", "output": "246" }, { "input": "07:39", "output": "142" }, { "input": "05:52", "output": "249" }, { "input": "12:02", "output": "19" }, { "input": "08:59", "output": "62" }, { "input": "09:21", "output": "40" }, { "input": "16:04", "output": "238" }, { "input": "04:00", "output": "40" }, { "input": "18:21", "output": "101" }, { "input": "09:13", "output": "48" }, { "input": "17:20", "output": "162" }, { "input": "06:15", "output": "226" }, { "input": "19:21", "output": "41" }, { "input": "16:02", "output": "240" }, { "input": "15:59", "output": "243" }, { "input": "06:07", "output": "234" }, { "input": "08:08", "output": "113" }, { "input": "09:09", "output": "52" }, { "input": "02:19", "output": "1" }, { "input": "21:59", "output": "23" } ]
1,639,418,895
2,147,483,647
PyPy 3-64
WRONG_ANSWER
TESTS
24
109
0
pp = input() h,m = pp.split(':') if pp == pp[::-1]: print(0) else: if int(h[::-1])<int(m): if h=='23': print(60-int(m)) else: print(60-int(m)+int(str(int(h)+1)[::-1])) else: print(int(h[::-1])-int(m))
Title: Karen and Morning Time Limit: None seconds Memory Limit: None megabytes Problem Description: Karen is getting ready for a new school day! It is currently hh:mm, given in a 24-hour format. As you know, Karen loves palindromes, and she believes that it is good luck to wake up when the time is a palindrome. What is the minimum number of minutes she should sleep, such that, when she wakes up, the time is a palindrome? Remember that a palindrome is a string that reads the same forwards and backwards. For instance, 05:39 is not a palindrome, because 05:39 backwards is 93:50. On the other hand, 05:50 is a palindrome, because 05:50 backwards is 05:50. Input Specification: The first and only line of input contains a single string in the format hh:mm (00<=≤<= hh <=≤<=23, 00<=≤<= mm <=≤<=59). Output Specification: Output a single integer on a line by itself, the minimum number of minutes she should sleep, such that, when she wakes up, the time is a palindrome. Demo Input: ['05:39\n', '13:31\n', '23:59\n'] Demo Output: ['11\n', '0\n', '1\n'] Note: In the first test case, the minimum number of minutes Karen should sleep for is 11. She can wake up at 05:50, when the time is a palindrome. In the second test case, Karen can wake up immediately, as the current time, 13:31, is already a palindrome. In the third test case, the minimum number of minutes Karen should sleep for is 1 minute. She can wake up at 00:00, when the time is a palindrome.
```python pp = input() h,m = pp.split(':') if pp == pp[::-1]: print(0) else: if int(h[::-1])<int(m): if h=='23': print(60-int(m)) else: print(60-int(m)+int(str(int(h)+1)[::-1])) else: print(int(h[::-1])-int(m)) ```
0
371
B
Fox Dividing Cheese
PROGRAMMING
1,300
[ "math", "number theory" ]
null
null
Two little greedy bears have found two pieces of cheese in the forest of weight *a* and *b* grams, correspondingly. The bears are so greedy that they are ready to fight for the larger piece. That's where the fox comes in and starts the dialog: "Little bears, wait a little, I want to make your pieces equal" "Come off it fox, how are you going to do that?", the curious bears asked. "It's easy", said the fox. "If the mass of a certain piece is divisible by two, then I can eat exactly a half of the piece. If the mass of a certain piece is divisible by three, then I can eat exactly two-thirds, and if the mass is divisible by five, then I can eat four-fifths. I'll eat a little here and there and make the pieces equal". The little bears realize that the fox's proposal contains a catch. But at the same time they realize that they can not make the two pieces equal themselves. So they agreed to her proposal, but on one condition: the fox should make the pieces equal as quickly as possible. Find the minimum number of operations the fox needs to make pieces equal.
The first line contains two space-separated integers *a* and *b* (1<=≤<=*a*,<=*b*<=≤<=109).
If the fox is lying to the little bears and it is impossible to make the pieces equal, print -1. Otherwise, print the required minimum number of operations. If the pieces of the cheese are initially equal, the required number is 0.
[ "15 20\n", "14 8\n", "6 6\n" ]
[ "3\n", "-1\n", "0\n" ]
none
1,000
[ { "input": "15 20", "output": "3" }, { "input": "14 8", "output": "-1" }, { "input": "6 6", "output": "0" }, { "input": "1 1", "output": "0" }, { "input": "1 1024", "output": "10" }, { "input": "1024 729", "output": "16" }, { "input": "1024 1048576", "output": "10" }, { "input": "36 30", "output": "3" }, { "input": "100 10", "output": "2" }, { "input": "21 35", "output": "2" }, { "input": "9900 7128", "output": "5" }, { "input": "7920 9900", "output": "3" }, { "input": "576000 972000", "output": "7" }, { "input": "691200 583200", "output": "8" }, { "input": "607500 506250", "output": "3" }, { "input": "881280 765000", "output": "9" }, { "input": "800000 729000", "output": "13" }, { "input": "792000 792000", "output": "0" }, { "input": "513600 513600", "output": "0" }, { "input": "847500 610200", "output": "5" }, { "input": "522784320 784176480", "output": "2" }, { "input": "689147136 861433920", "output": "3" }, { "input": "720212000 864254400", "output": "3" }, { "input": "673067520 807681024", "output": "3" }, { "input": "919536000 993098880", "output": "5" }, { "input": "648293430 540244525", "output": "3" }, { "input": "537814642 537814642", "output": "0" }, { "input": "100000007 800000011", "output": "-1" }, { "input": "900000011 800000011", "output": "-1" }, { "input": "900000011 999900017", "output": "-1" }, { "input": "536870912 387420489", "output": "47" }, { "input": "820125000 874800000", "output": "6" }, { "input": "864000000 607500000", "output": "9" }, { "input": "609120000 913680000", "output": "2" }, { "input": "509607936 306110016", "output": "24" }, { "input": "445906944 528482304", "output": "8" }, { "input": "119144448 423624704", "output": "7" }, { "input": "1 1000000000", "output": "18" }, { "input": "1000000000 1", "output": "18" }, { "input": "1000000000 2", "output": "17" }, { "input": "2 1000000000", "output": "17" }, { "input": "5 1000000000", "output": "17" }, { "input": "1000000000 5", "output": "17" }, { "input": "3 1000000000", "output": "19" }, { "input": "1000000000 3", "output": "19" }, { "input": "1000000000 7", "output": "-1" }, { "input": "2208870 122715", "output": "3" }, { "input": "4812500 7577955", "output": "16" }, { "input": "3303936 3097440", "output": "6" }, { "input": "55404 147744", "output": "4" }, { "input": "10332160 476643528", "output": "19" }, { "input": "21751200 43502400", "output": "1" }, { "input": "19500000 140400000", "output": "5" }, { "input": "1 22", "output": "-1" } ]
1,599,384,311
2,147,483,647
PyPy 3
OK
TESTS
54
156
0
def rpm(n): output={2:0, 3:0, 5:0, 10:0} for i in [2, 3, 5]: op=0 while n%i==0: n//=i op+=1 output[i]=op output[10]=n return output A, B=map(rpm, map(int, input().split())) if A[10]!=B[10]: print(-1) else: print(max(A[2],B[2])-min(A[2],B[2])+max(A[3],B[3])-min(A[3],B[3])+max(A[5],B[5])-min(A[5],B[5]))
Title: Fox Dividing Cheese Time Limit: None seconds Memory Limit: None megabytes Problem Description: Two little greedy bears have found two pieces of cheese in the forest of weight *a* and *b* grams, correspondingly. The bears are so greedy that they are ready to fight for the larger piece. That's where the fox comes in and starts the dialog: "Little bears, wait a little, I want to make your pieces equal" "Come off it fox, how are you going to do that?", the curious bears asked. "It's easy", said the fox. "If the mass of a certain piece is divisible by two, then I can eat exactly a half of the piece. If the mass of a certain piece is divisible by three, then I can eat exactly two-thirds, and if the mass is divisible by five, then I can eat four-fifths. I'll eat a little here and there and make the pieces equal". The little bears realize that the fox's proposal contains a catch. But at the same time they realize that they can not make the two pieces equal themselves. So they agreed to her proposal, but on one condition: the fox should make the pieces equal as quickly as possible. Find the minimum number of operations the fox needs to make pieces equal. Input Specification: The first line contains two space-separated integers *a* and *b* (1<=≤<=*a*,<=*b*<=≤<=109). Output Specification: If the fox is lying to the little bears and it is impossible to make the pieces equal, print -1. Otherwise, print the required minimum number of operations. If the pieces of the cheese are initially equal, the required number is 0. Demo Input: ['15 20\n', '14 8\n', '6 6\n'] Demo Output: ['3\n', '-1\n', '0\n'] Note: none
```python def rpm(n): output={2:0, 3:0, 5:0, 10:0} for i in [2, 3, 5]: op=0 while n%i==0: n//=i op+=1 output[i]=op output[10]=n return output A, B=map(rpm, map(int, input().split())) if A[10]!=B[10]: print(-1) else: print(max(A[2],B[2])-min(A[2],B[2])+max(A[3],B[3])-min(A[3],B[3])+max(A[5],B[5])-min(A[5],B[5])) ```
3
289
B
Polo the Penguin and Matrix
PROGRAMMING
1,400
[ "brute force", "dp", "implementation", "sortings", "ternary search" ]
null
null
Little penguin Polo has an *n*<=×<=*m* matrix, consisting of integers. Let's index the matrix rows from 1 to *n* from top to bottom and let's index the columns from 1 to *m* from left to right. Let's represent the matrix element on the intersection of row *i* and column *j* as *a**ij*. In one move the penguin can add or subtract number *d* from some matrix element. Find the minimum number of moves needed to make all matrix elements equal. If the described plan is impossible to carry out, say so.
The first line contains three integers *n*, *m* and *d* (1<=≤<=*n*,<=*m*<=≤<=100,<=1<=≤<=*d*<=≤<=104) — the matrix sizes and the *d* parameter. Next *n* lines contain the matrix: the *j*-th integer in the *i*-th row is the matrix element *a**ij* (1<=≤<=*a**ij*<=≤<=104).
In a single line print a single integer — the minimum number of moves the penguin needs to make all matrix elements equal. If that is impossible, print "-1" (without the quotes).
[ "2 2 2\n2 4\n6 8\n", "1 2 7\n6 7\n" ]
[ "4\n", "-1\n" ]
none
1,000
[ { "input": "2 2 2\n2 4\n6 8", "output": "4" }, { "input": "1 2 7\n6 7", "output": "-1" }, { "input": "3 2 1\n5 7\n1 2\n5 100", "output": "104" }, { "input": "3 3 3\n5 8 5\n11 11 17\n14 5 2", "output": "12" }, { "input": "3 3 3\n5 8 5\n11 11 17\n14 5 3", "output": "-1" }, { "input": "2 2 4\n5 5\n5 5", "output": "0" }, { "input": "7 4 5\n7 7 7 12\n7 12 12 7\n7 7 7 7\n7 7 12 7\n7 7 12 12\n12 12 7 12\n7 7 7 7", "output": "9" }, { "input": "7 7 47\n91 91 91 91 91 91 91\n91 91 91 91 91 91 91\n91 91 91 91 91 91 91\n91 91 91 91 91 91 91\n91 91 91 91 91 91 91\n91 91 91 91 91 91 91\n91 91 91 91 91 91 91", "output": "0" }, { "input": "7 7 47\n47 47 47 47 47 47 47\n47 47 47 47 77 47 47\n47 47 47 47 47 47 47\n47 47 47 47 47 47 47\n47 47 47 47 47 47 47\n47 47 47 47 47 47 47\n47 47 47 47 47 127 47", "output": "-1" }, { "input": "7 5 47\n9583 1734 4601 5353 2110\n3802 5165 7985 6293 324\n7045 653 9160 7891 4930\n1781 3520 4178 2298 3943\n1405 2956 5447 5494 6528\n3097 1640 7750 4883 8032\n4225 8455 1875 4789 4366", "output": "1508" }, { "input": "1 1 1\n1", "output": "0" }, { "input": "1 1 8\n12", "output": "0" } ]
1,654,699,739
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
3
60
0
def replace_min_max_inplace(lst): max_value=max(lst) min_value=min(lst) for i in range(len(lst)): if lst[i]==max_value: lst[i]=min_value elif lst[i]==min_value: lst[i]=max_value def countleapyears(y2,y1): return int((y2-y1)/4) if __name__=='__main__': n,m,d=map(int,input().split()) col=[[]] rows,lst=[],[] for j in range(n): rows=list(map(int,input().split())) lst.extend(rows) lst_copy=lst.copy() for i in range(n*m): lst_copy[i]=lst_copy[i]%d st=set(lst_copy) if len(st)>=2: print('-1') else: lst.sort() key=lst[int(len(lst) / 2) - 1] ans=0 for i in lst: ans+=abs((i-key)/d) print(int(ans))
Title: Polo the Penguin and Matrix Time Limit: None seconds Memory Limit: None megabytes Problem Description: Little penguin Polo has an *n*<=×<=*m* matrix, consisting of integers. Let's index the matrix rows from 1 to *n* from top to bottom and let's index the columns from 1 to *m* from left to right. Let's represent the matrix element on the intersection of row *i* and column *j* as *a**ij*. In one move the penguin can add or subtract number *d* from some matrix element. Find the minimum number of moves needed to make all matrix elements equal. If the described plan is impossible to carry out, say so. Input Specification: The first line contains three integers *n*, *m* and *d* (1<=≤<=*n*,<=*m*<=≤<=100,<=1<=≤<=*d*<=≤<=104) — the matrix sizes and the *d* parameter. Next *n* lines contain the matrix: the *j*-th integer in the *i*-th row is the matrix element *a**ij* (1<=≤<=*a**ij*<=≤<=104). Output Specification: In a single line print a single integer — the minimum number of moves the penguin needs to make all matrix elements equal. If that is impossible, print "-1" (without the quotes). Demo Input: ['2 2 2\n2 4\n6 8\n', '1 2 7\n6 7\n'] Demo Output: ['4\n', '-1\n'] Note: none
```python def replace_min_max_inplace(lst): max_value=max(lst) min_value=min(lst) for i in range(len(lst)): if lst[i]==max_value: lst[i]=min_value elif lst[i]==min_value: lst[i]=max_value def countleapyears(y2,y1): return int((y2-y1)/4) if __name__=='__main__': n,m,d=map(int,input().split()) col=[[]] rows,lst=[],[] for j in range(n): rows=list(map(int,input().split())) lst.extend(rows) lst_copy=lst.copy() for i in range(n*m): lst_copy[i]=lst_copy[i]%d st=set(lst_copy) if len(st)>=2: print('-1') else: lst.sort() key=lst[int(len(lst) / 2) - 1] ans=0 for i in lst: ans+=abs((i-key)/d) print(int(ans)) ```
0
75
A
Life Without Zeros
PROGRAMMING
1,000
[ "implementation" ]
A. Life Without Zeros
2
256
Can you imagine our life if we removed all zeros from it? For sure we will have many problems. In this problem we will have a simple example if we removed all zeros from our life, it's the addition operation. Let's assume you are given this equation *a*<=+<=*b*<==<=*c*, where *a* and *b* are positive integers, and *c* is the sum of *a* and *b*. Now let's remove all zeros from this equation. Will the equation remain correct after removing all zeros? For example if the equation is 101<=+<=102<==<=203, if we removed all zeros it will be 11<=+<=12<==<=23 which is still a correct equation. But if the equation is 105<=+<=106<==<=211, if we removed all zeros it will be 15<=+<=16<==<=211 which is not a correct equation.
The input will consist of two lines, the first line will contain the integer *a*, and the second line will contain the integer *b* which are in the equation as described above (1<=≤<=*a*,<=*b*<=≤<=109). There won't be any leading zeros in both. The value of *c* should be calculated as *c*<==<=*a*<=+<=*b*.
The output will be just one line, you should print "YES" if the equation will remain correct after removing all zeros, and print "NO" otherwise.
[ "101\n102\n", "105\n106\n" ]
[ "YES\n", "NO\n" ]
none
500
[ { "input": "101\n102", "output": "YES" }, { "input": "105\n106", "output": "NO" }, { "input": "544\n397", "output": "YES" }, { "input": "822\n280", "output": "NO" }, { "input": "101\n413", "output": "NO" }, { "input": "309\n139", "output": "NO" }, { "input": "693\n970", "output": "NO" }, { "input": "981\n1", "output": "YES" }, { "input": "352\n276", "output": "YES" }, { "input": "164\n691", "output": "YES" }, { "input": "110036\n43", "output": "YES" }, { "input": "100\n1000", "output": "NO" }, { "input": "1000000000\n1000000000", "output": "YES" }, { "input": "999999999\n999999999", "output": "YES" }, { "input": "6\n4", "output": "NO" }, { "input": "123456\n876543", "output": "YES" }, { "input": "1234567\n9876543", "output": "NO" }, { "input": "1111111\n1119111", "output": "NO" }, { "input": "10502405\n40403403", "output": "YES" }, { "input": "1\n1", "output": "YES" }, { "input": "5\n4", "output": "YES" }, { "input": "1\n6", "output": "YES" }, { "input": "40\n17", "output": "NO" }, { "input": "35\n81", "output": "YES" }, { "input": "347\n908", "output": "NO" }, { "input": "2081\n7450", "output": "NO" }, { "input": "84355694\n373629503", "output": "NO" }, { "input": "885992048\n510468672", "output": "NO" }, { "input": "540144752\n647307841", "output": "NO" }, { "input": "341781108\n784147010", "output": "NO" }, { "input": "960440938\n572334653", "output": "NO" }, { "input": "657414510\n768771903", "output": "NO" }, { "input": "501871728\n725074574", "output": "NO" }, { "input": "968\n851", "output": "YES" }, { "input": "943\n939", "output": "YES" }, { "input": "347\n908", "output": "NO" }, { "input": "611\n41", "output": "YES" }, { "input": "737\n289", "output": "NO" }, { "input": "168\n571", "output": "YES" }, { "input": "868\n463", "output": "YES" }, { "input": "815732007\n913882008", "output": "NO" }, { "input": "459039901\n453033850", "output": "NO" }, { "input": "975305404\n484601256", "output": "NO" } ]
1,660,810,930
2,147,483,647
PyPy 3-64
OK
TESTS
43
124
0
def solve(): a = int(input()) b = int(input()) c = a+b a = str(a) a = a.replace('0','') b = str(b) b = b.replace('0','') c = str(c) c = c.replace('0','') a = int(a) b = int(b) c = int(c) if(a+b==c): print("YES") else: print("NO") t=1 #t=int(input()) for _ in range(t): solve()
Title: Life Without Zeros Time Limit: 2 seconds Memory Limit: 256 megabytes Problem Description: Can you imagine our life if we removed all zeros from it? For sure we will have many problems. In this problem we will have a simple example if we removed all zeros from our life, it's the addition operation. Let's assume you are given this equation *a*<=+<=*b*<==<=*c*, where *a* and *b* are positive integers, and *c* is the sum of *a* and *b*. Now let's remove all zeros from this equation. Will the equation remain correct after removing all zeros? For example if the equation is 101<=+<=102<==<=203, if we removed all zeros it will be 11<=+<=12<==<=23 which is still a correct equation. But if the equation is 105<=+<=106<==<=211, if we removed all zeros it will be 15<=+<=16<==<=211 which is not a correct equation. Input Specification: The input will consist of two lines, the first line will contain the integer *a*, and the second line will contain the integer *b* which are in the equation as described above (1<=≤<=*a*,<=*b*<=≤<=109). There won't be any leading zeros in both. The value of *c* should be calculated as *c*<==<=*a*<=+<=*b*. Output Specification: The output will be just one line, you should print "YES" if the equation will remain correct after removing all zeros, and print "NO" otherwise. Demo Input: ['101\n102\n', '105\n106\n'] Demo Output: ['YES\n', 'NO\n'] Note: none
```python def solve(): a = int(input()) b = int(input()) c = a+b a = str(a) a = a.replace('0','') b = str(b) b = b.replace('0','') c = str(c) c = c.replace('0','') a = int(a) b = int(b) c = int(c) if(a+b==c): print("YES") else: print("NO") t=1 #t=int(input()) for _ in range(t): solve() ```
3.969
304
A
Pythagorean Theorem II
PROGRAMMING
1,200
[ "brute force", "math" ]
null
null
In mathematics, the Pythagorean theorem — is a relation in Euclidean geometry among the three sides of a right-angled triangle. In terms of areas, it states: In any right-angled triangle, the area of the square whose side is the hypotenuse (the side opposite the right angle) is equal to the sum of the areas of the squares whose sides are the two legs (the two sides that meet at a right angle). The theorem can be written as an equation relating the lengths of the sides *a*, *b* and *c*, often called the Pythagorean equation: where *c* represents the length of the hypotenuse, and *a* and *b* represent the lengths of the other two sides. Given *n*, your task is to count how many right-angled triangles with side-lengths *a*, *b* and *c* that satisfied an inequality 1<=≤<=*a*<=≤<=*b*<=≤<=*c*<=≤<=*n*.
The only line contains one integer *n* (1<=≤<=*n*<=≤<=104) as we mentioned above.
Print a single integer — the answer to the problem.
[ "5\n", "74\n" ]
[ "1\n", "35\n" ]
none
500
[ { "input": "5", "output": "1" }, { "input": "74", "output": "35" }, { "input": "1000", "output": "881" }, { "input": "586", "output": "472" }, { "input": "2", "output": "0" }, { "input": "362", "output": "258" }, { "input": "778", "output": "653" }, { "input": "194", "output": "120" }, { "input": "906", "output": "786" }, { "input": "659", "output": "535" }, { "input": "75", "output": "37" }, { "input": "787", "output": "664" }, { "input": "851", "output": "730" }, { "input": "563", "output": "446" }, { "input": "979", "output": "862" }, { "input": "395", "output": "291" }, { "input": "755", "output": "634" }, { "input": "171", "output": "103" }, { "input": "883", "output": "759" }, { "input": "400", "output": "294" }, { "input": "817", "output": "693" }, { "input": "177", "output": "107" }, { "input": "593", "output": "476" }, { "input": "305", "output": "214" }, { "input": "721", "output": "595" }, { "input": "785", "output": "664" }, { "input": "497", "output": "383" }, { "input": "913", "output": "791" }, { "input": "625", "output": "507" }, { "input": "334", "output": "236" }, { "input": "10000", "output": "12471" }, { "input": "9999", "output": "12467" } ]
1,695,249,507
2,147,483,647
PyPy 3-64
OK
TESTS
32
1,590
1,843,200
n=int(input()) import math v = 0 for i in range(2,n+1): for j in range(i,n+1): if math.sqrt((i ** 2 )+( j ** 2)) == math.floor(math.sqrt((i ** 2) + (j ** 2) )) and math.floor(math.sqrt((i ** 2) + (j ** 2) )) <= n : v += 1 print(v)
Title: Pythagorean Theorem II Time Limit: None seconds Memory Limit: None megabytes Problem Description: In mathematics, the Pythagorean theorem — is a relation in Euclidean geometry among the three sides of a right-angled triangle. In terms of areas, it states: In any right-angled triangle, the area of the square whose side is the hypotenuse (the side opposite the right angle) is equal to the sum of the areas of the squares whose sides are the two legs (the two sides that meet at a right angle). The theorem can be written as an equation relating the lengths of the sides *a*, *b* and *c*, often called the Pythagorean equation: where *c* represents the length of the hypotenuse, and *a* and *b* represent the lengths of the other two sides. Given *n*, your task is to count how many right-angled triangles with side-lengths *a*, *b* and *c* that satisfied an inequality 1<=≤<=*a*<=≤<=*b*<=≤<=*c*<=≤<=*n*. Input Specification: The only line contains one integer *n* (1<=≤<=*n*<=≤<=104) as we mentioned above. Output Specification: Print a single integer — the answer to the problem. Demo Input: ['5\n', '74\n'] Demo Output: ['1\n', '35\n'] Note: none
```python n=int(input()) import math v = 0 for i in range(2,n+1): for j in range(i,n+1): if math.sqrt((i ** 2 )+( j ** 2)) == math.floor(math.sqrt((i ** 2) + (j ** 2) )) and math.floor(math.sqrt((i ** 2) + (j ** 2) )) <= n : v += 1 print(v) ```
3
50
A
Domino piling
PROGRAMMING
800
[ "greedy", "math" ]
A. Domino piling
2
256
You are given a rectangular board of *M*<=×<=*N* squares. Also you are given an unlimited number of standard domino pieces of 2<=×<=1 squares. You are allowed to rotate the pieces. You are asked to place as many dominoes as possible on the board so as to meet the following conditions: 1. Each domino completely covers two squares. 2. No two dominoes overlap. 3. Each domino lies entirely inside the board. It is allowed to touch the edges of the board. Find the maximum number of dominoes, which can be placed under these restrictions.
In a single line you are given two integers *M* and *N* — board sizes in squares (1<=≤<=*M*<=≤<=*N*<=≤<=16).
Output one number — the maximal number of dominoes, which can be placed.
[ "2 4\n", "3 3\n" ]
[ "4\n", "4\n" ]
none
500
[ { "input": "2 4", "output": "4" }, { "input": "3 3", "output": "4" }, { "input": "1 5", "output": "2" }, { "input": "1 6", "output": "3" }, { "input": "1 15", "output": "7" }, { "input": "1 16", "output": "8" }, { "input": "2 5", "output": "5" }, { "input": "2 6", "output": "6" }, { "input": "2 7", "output": "7" }, { "input": "2 14", "output": "14" }, { "input": "2 15", "output": "15" }, { "input": "1 4", "output": "2" }, { "input": "2 16", "output": "16" }, { "input": "3 5", "output": "7" }, { "input": "3 6", "output": "9" }, { "input": "3 10", "output": "15" }, { "input": "3 14", "output": "21" }, { "input": "3 15", "output": "22" }, { "input": "3 16", "output": "24" }, { "input": "5 7", "output": "17" }, { "input": "16 16", "output": "128" }, { "input": "15 16", "output": "120" }, { "input": "2 3", "output": "3" }, { "input": "15 15", "output": "112" }, { "input": "14 16", "output": "112" }, { "input": "11 13", "output": "71" }, { "input": "5 16", "output": "40" }, { "input": "8 15", "output": "60" }, { "input": "2 2", "output": "2" }, { "input": "3 4", "output": "6" }, { "input": "4 4", "output": "8" }, { "input": "1 1", "output": "0" }, { "input": "1 2", "output": "1" }, { "input": "1 3", "output": "1" }, { "input": "14 15", "output": "105" } ]
1,652,322,568
2,147,483,647
Python 3
OK
TESTS
35
92
0
# Domino piling (50A) m,n = map(int, input().split()) print((m*n)//2)
Title: Domino piling Time Limit: 2 seconds Memory Limit: 256 megabytes Problem Description: You are given a rectangular board of *M*<=×<=*N* squares. Also you are given an unlimited number of standard domino pieces of 2<=×<=1 squares. You are allowed to rotate the pieces. You are asked to place as many dominoes as possible on the board so as to meet the following conditions: 1. Each domino completely covers two squares. 2. No two dominoes overlap. 3. Each domino lies entirely inside the board. It is allowed to touch the edges of the board. Find the maximum number of dominoes, which can be placed under these restrictions. Input Specification: In a single line you are given two integers *M* and *N* — board sizes in squares (1<=≤<=*M*<=≤<=*N*<=≤<=16). Output Specification: Output one number — the maximal number of dominoes, which can be placed. Demo Input: ['2 4\n', '3 3\n'] Demo Output: ['4\n', '4\n'] Note: none
```python # Domino piling (50A) m,n = map(int, input().split()) print((m*n)//2) ```
3.977
139
A
Petr and Book
PROGRAMMING
1,000
[ "implementation" ]
null
null
One Sunday Petr went to a bookshop and bought a new book on sports programming. The book had exactly *n* pages. Petr decided to start reading it starting from the next day, that is, from Monday. Petr's got a very tight schedule and for each day of the week he knows how many pages he will be able to read on that day. Some days are so busy that Petr will have no time to read whatsoever. However, we know that he will be able to read at least one page a week. Assuming that Petr will not skip days and will read as much as he can every day, determine on which day of the week he will read the last page of the book.
The first input line contains the single integer *n* (1<=≤<=*n*<=≤<=1000) — the number of pages in the book. The second line contains seven non-negative space-separated integers that do not exceed 1000 — those integers represent how many pages Petr can read on Monday, Tuesday, Wednesday, Thursday, Friday, Saturday and Sunday correspondingly. It is guaranteed that at least one of those numbers is larger than zero.
Print a single number — the number of the day of the week, when Petr will finish reading the book. The days of the week are numbered starting with one in the natural order: Monday, Tuesday, Wednesday, Thursday, Friday, Saturday, Sunday.
[ "100\n15 20 20 15 10 30 45\n", "2\n1 0 0 0 0 0 0\n" ]
[ "6\n", "1\n" ]
Note to the first sample: By the end of Monday and therefore, by the beginning of Tuesday Petr has 85 pages left. He has 65 pages left by Wednesday, 45 by Thursday, 30 by Friday, 20 by Saturday and on Saturday Petr finishes reading the book (and he also has time to read 10 pages of something else). Note to the second sample: On Monday of the first week Petr will read the first page. On Monday of the second week Petr will read the second page and will finish reading the book.
500
[ { "input": "100\n15 20 20 15 10 30 45", "output": "6" }, { "input": "2\n1 0 0 0 0 0 0", "output": "1" }, { "input": "100\n100 200 100 200 300 400 500", "output": "1" }, { "input": "3\n1 1 1 1 1 1 1", "output": "3" }, { "input": "1\n1 1 1 1 1 1 1", "output": "1" }, { "input": "20\n5 3 7 2 1 6 4", "output": "6" }, { "input": "10\n5 1 1 1 1 1 5", "output": "6" }, { "input": "50\n10 1 10 1 10 1 10", "output": "1" }, { "input": "77\n11 11 11 11 11 11 10", "output": "1" }, { "input": "1\n1000 1000 1000 1000 1000 1000 1000", "output": "1" }, { "input": "1000\n100 100 100 100 100 100 100", "output": "3" }, { "input": "999\n10 20 10 20 30 20 10", "output": "3" }, { "input": "433\n109 58 77 10 39 125 15", "output": "7" }, { "input": "1\n0 0 0 0 0 0 1", "output": "7" }, { "input": "5\n1 0 1 0 1 0 1", "output": "1" }, { "input": "997\n1 1 0 0 1 0 1", "output": "1" }, { "input": "1000\n1 1 1 1 1 1 1", "output": "6" }, { "input": "1000\n1000 1000 1000 1000 1000 1000 1000", "output": "1" }, { "input": "1000\n1 0 0 0 0 0 0", "output": "1" }, { "input": "1000\n0 0 0 0 0 0 1", "output": "7" }, { "input": "1000\n1 0 0 1 0 0 1", "output": "1" }, { "input": "509\n105 23 98 0 7 0 155", "output": "2" }, { "input": "7\n1 1 1 1 1 1 1", "output": "7" }, { "input": "2\n1 1 0 0 0 0 0", "output": "2" }, { "input": "1\n0 0 0 0 0 1 0", "output": "6" }, { "input": "10\n0 0 0 0 0 0 1", "output": "7" }, { "input": "5\n0 0 0 0 0 6 0", "output": "6" }, { "input": "3\n0 1 0 0 0 0 0", "output": "2" }, { "input": "10\n0 0 0 0 0 0 10", "output": "7" }, { "input": "28\n1 2 3 4 5 6 7", "output": "7" }, { "input": "100\n5 5 5 5 5 5 5", "output": "6" }, { "input": "4\n1 0 0 0 0 0 1", "output": "7" }, { "input": "2\n0 0 0 0 0 0 1", "output": "7" }, { "input": "7\n0 0 0 0 0 0 7", "output": "7" }, { "input": "7\n2 1 1 1 1 1 0", "output": "6" }, { "input": "2\n0 0 1 1 0 0 0", "output": "4" }, { "input": "6\n1 1 1 1 1 1 0", "output": "6" }, { "input": "5\n1 1 1 0 0 1 1", "output": "7" }, { "input": "100\n10 20 30 10 10 10 10", "output": "7" }, { "input": "1\n0 0 0 1 0 0 0", "output": "4" }, { "input": "70\n10 10 10 10 10 10 10", "output": "7" }, { "input": "22\n1 2 3 4 5 6 10", "output": "7" }, { "input": "5\n0 0 0 1 0 0 0", "output": "4" }, { "input": "2\n0 0 0 1 0 0 0", "output": "4" }, { "input": "6\n1 0 0 0 0 0 2", "output": "7" }, { "input": "10\n1 2 2 1 2 1 1", "output": "7" }, { "input": "5\n0 0 0 0 0 0 10", "output": "7" }, { "input": "4\n0 1 1 0 0 0 0", "output": "3" }, { "input": "100\n0 0 0 0 0 1 0", "output": "6" } ]
1,641,151,471
2,147,483,647
Python 3
RUNTIME_ERROR
TESTS
18
92
512,000
t = int(input()) x = list(map(int, input().split())) def petr(t, x): for i in range(7): t = t - x[i] if t <= 0: print(i+1) break if t > 0: petr(t, x) petr(t, x)
Title: Petr and Book Time Limit: None seconds Memory Limit: None megabytes Problem Description: One Sunday Petr went to a bookshop and bought a new book on sports programming. The book had exactly *n* pages. Petr decided to start reading it starting from the next day, that is, from Monday. Petr's got a very tight schedule and for each day of the week he knows how many pages he will be able to read on that day. Some days are so busy that Petr will have no time to read whatsoever. However, we know that he will be able to read at least one page a week. Assuming that Petr will not skip days and will read as much as he can every day, determine on which day of the week he will read the last page of the book. Input Specification: The first input line contains the single integer *n* (1<=≤<=*n*<=≤<=1000) — the number of pages in the book. The second line contains seven non-negative space-separated integers that do not exceed 1000 — those integers represent how many pages Petr can read on Monday, Tuesday, Wednesday, Thursday, Friday, Saturday and Sunday correspondingly. It is guaranteed that at least one of those numbers is larger than zero. Output Specification: Print a single number — the number of the day of the week, when Petr will finish reading the book. The days of the week are numbered starting with one in the natural order: Monday, Tuesday, Wednesday, Thursday, Friday, Saturday, Sunday. Demo Input: ['100\n15 20 20 15 10 30 45\n', '2\n1 0 0 0 0 0 0\n'] Demo Output: ['6\n', '1\n'] Note: Note to the first sample: By the end of Monday and therefore, by the beginning of Tuesday Petr has 85 pages left. He has 65 pages left by Wednesday, 45 by Thursday, 30 by Friday, 20 by Saturday and on Saturday Petr finishes reading the book (and he also has time to read 10 pages of something else). Note to the second sample: On Monday of the first week Petr will read the first page. On Monday of the second week Petr will read the second page and will finish reading the book.
```python t = int(input()) x = list(map(int, input().split())) def petr(t, x): for i in range(7): t = t - x[i] if t <= 0: print(i+1) break if t > 0: petr(t, x) petr(t, x) ```
-1
59
A
Word
PROGRAMMING
800
[ "implementation", "strings" ]
A. Word
2
256
Vasya is very upset that many people on the Net mix uppercase and lowercase letters in one word. That's why he decided to invent an extension for his favorite browser that would change the letters' register in every word so that it either only consisted of lowercase letters or, vice versa, only of uppercase ones. At that as little as possible letters should be changed in the word. For example, the word HoUse must be replaced with house, and the word ViP — with VIP. If a word contains an equal number of uppercase and lowercase letters, you should replace all the letters with lowercase ones. For example, maTRIx should be replaced by matrix. Your task is to use the given method on one given word.
The first line contains a word *s* — it consists of uppercase and lowercase Latin letters and possesses the length from 1 to 100.
Print the corrected word *s*. If the given word *s* has strictly more uppercase letters, make the word written in the uppercase register, otherwise - in the lowercase one.
[ "HoUse\n", "ViP\n", "maTRIx\n" ]
[ "house\n", "VIP\n", "matrix\n" ]
none
500
[ { "input": "HoUse", "output": "house" }, { "input": "ViP", "output": "VIP" }, { "input": "maTRIx", "output": "matrix" }, { "input": "BNHWpnpawg", "output": "bnhwpnpawg" }, { "input": "VTYGP", "output": "VTYGP" }, { "input": "CHNenu", "output": "chnenu" }, { "input": "ERPZGrodyu", "output": "erpzgrodyu" }, { "input": "KSXBXWpebh", "output": "KSXBXWPEBH" }, { "input": "qvxpqullmcbegsdskddortcvxyqlbvxmmkhevovnezubvpvnrcajpxraeaxizgaowtfkzywvhnbgzsxbhkaipcmoumtikkiyyaiv", "output": "qvxpqullmcbegsdskddortcvxyqlbvxmmkhevovnezubvpvnrcajpxraeaxizgaowtfkzywvhnbgzsxbhkaipcmoumtikkiyyaiv" }, { "input": "Amnhaxtaopjzrkqlbroiyipitndczpunwygstmzevgyjdzyanxkdqnvgkikfabwouwkkbzuiuvgvxgpizsvqsbwepktpdrgdkmfd", "output": "amnhaxtaopjzrkqlbroiyipitndczpunwygstmzevgyjdzyanxkdqnvgkikfabwouwkkbzuiuvgvxgpizsvqsbwepktpdrgdkmfd" }, { "input": "ISAGFJFARYFBLOPQDSHWGMCNKMFTLVFUGNJEWGWNBLXUIATXEkqiettmmjgydwcpafqrppdsrrrtguinqbgmzzfqwonkpgpcwenv", "output": "isagfjfaryfblopqdshwgmcnkmftlvfugnjewgwnblxuiatxekqiettmmjgydwcpafqrppdsrrrtguinqbgmzzfqwonkpgpcwenv" }, { "input": "XHRPXZEGHSOCJPICUIXSKFUZUPYTSGJSDIYBCMNMNBPNDBXLXBzhbfnqvwcffvrdhtickyqhupmcehlsyvncqmfhautvxudqdhgg", "output": "xhrpxzeghsocjpicuixskfuzupytsgjsdiybcmnmnbpndbxlxbzhbfnqvwcffvrdhtickyqhupmcehlsyvncqmfhautvxudqdhgg" }, { "input": "RJIQZMJCIMSNDBOHBRAWIENODSALETAKGKPYUFGVEFGCBRENZGAdkcetqjljtmttlonpekcovdzebzdkzggwfsxhapmjkdbuceak", "output": "RJIQZMJCIMSNDBOHBRAWIENODSALETAKGKPYUFGVEFGCBRENZGADKCETQJLJTMTTLONPEKCOVDZEBZDKZGGWFSXHAPMJKDBUCEAK" }, { "input": "DWLWOBHNMMGTFOLFAECKBRNNGLYLYDXTGTVRLMEESZOIUATZZZXUFUZDLSJXMEVRTESSFBWLNZZCLCQWEVNNUCXYVHNGNXHCBDFw", "output": "DWLWOBHNMMGTFOLFAECKBRNNGLYLYDXTGTVRLMEESZOIUATZZZXUFUZDLSJXMEVRTESSFBWLNZZCLCQWEVNNUCXYVHNGNXHCBDFW" }, { "input": "NYCNHJWGBOCOTSPETKKHVWFGAQYNHOVJWJHCIEFOUQZXOYUIEQDZALFKTEHTVDBVJMEUBJUBCMNVPWGDPNCHQHZJRCHYRFPVIGUB", "output": "NYCNHJWGBOCOTSPETKKHVWFGAQYNHOVJWJHCIEFOUQZXOYUIEQDZALFKTEHTVDBVJMEUBJUBCMNVPWGDPNCHQHZJRCHYRFPVIGUB" }, { "input": "igxoixiecetohtgjgbqzvlaobkhstejxdklghowtvwunnnvauriohuspsdmpzckprwajyxldoyckgjivjpmbfqtszmtocovxwge", "output": "igxoixiecetohtgjgbqzvlaobkhstejxdklghowtvwunnnvauriohuspsdmpzckprwajyxldoyckgjivjpmbfqtszmtocovxwge" }, { "input": "Ykkekrsqolzryiwsmdlnbmfautxxxauoojrddvwklgnlyrfcvhorrzbmtcrvpaypqhcffdqhwziipyyskcmztjprjqvmzzqhqnw", "output": "ykkekrsqolzryiwsmdlnbmfautxxxauoojrddvwklgnlyrfcvhorrzbmtcrvpaypqhcffdqhwziipyyskcmztjprjqvmzzqhqnw" }, { "input": "YQOMLKYAORUQQUCQZCDYMIVDHGWZFFRMUVTAWCHERFPMNRYRIkgqrciokgajamehmcxgerpudvsqyonjonsxgbnefftzmygncks", "output": "yqomlkyaoruqqucqzcdymivdhgwzffrmuvtawcherfpmnryrikgqrciokgajamehmcxgerpudvsqyonjonsxgbnefftzmygncks" }, { "input": "CDOZDPBVVVHNBJVBYHEOXWFLJKRWJCAJMIFCOZWWYFKVWOGTVJcuusigdqfkumewjtdyitveeiaybwrhomrwmpdipjwiuxfnwuz", "output": "CDOZDPBVVVHNBJVBYHEOXWFLJKRWJCAJMIFCOZWWYFKVWOGTVJCUUSIGDQFKUMEWJTDYITVEEIAYBWRHOMRWMPDIPJWIUXFNWUZ" }, { "input": "WHIUVEXHVOOIJIDVJVPQUBJMEVPMPDKQWJKFBZSGSKUXMIPPMJWuckzcpxosodcjaaakvlxpbiigsiauviilylnnqlyucziihqg", "output": "WHIUVEXHVOOIJIDVJVPQUBJMEVPMPDKQWJKFBZSGSKUXMIPPMJWUCKZCPXOSODCJAAAKVLXPBIIGSIAUVIILYLNNQLYUCZIIHQG" }, { "input": "VGHUNFOXKETUYMZDJNGTAOIOANYXSGYNFOGOFFLDAWEUKYFOZXCJTCAFXZYLQZERYZLRSQXYQGAPCSUDPMEYTNCTTTMFAGVDWBO", "output": "VGHUNFOXKETUYMZDJNGTAOIOANYXSGYNFOGOFFLDAWEUKYFOZXCJTCAFXZYLQZERYZLRSQXYQGAPCSUDPMEYTNCTTTMFAGVDWBO" }, { "input": "EDUANHCQDOCJHFONTTSWBUJSTTIXBIXMAIUFSGFLXWAYIURTVAVZPYQDLAWIGCLMPHXCEFCJPFAAHXVNGQUFNHADAIUAZIDMHDd", "output": "EDUANHCQDOCJHFONTTSWBUJSTTIXBIXMAIUFSGFLXWAYIURTVAVZPYQDLAWIGCLMPHXCEFCJPFAAHXVNGQUFNHADAIUAZIDMHDD" }, { "input": "EBWOVSNLYTWWXrnovgugogtjahnmatomubebyxakas", "output": "ebwovsnlytwwxrnovgugogtjahnmatomubebyxakas" }, { "input": "AORNNDKTRLRVGDPXJKXFTPFpopuzrlqumrxssskvbm", "output": "AORNNDKTRLRVGDPXJKXFTPFPOPUZRLQUMRXSSSKVBM" }, { "input": "DBBZJCWQEVGYHEEUHJAWRHBDPsnplijbwtdibqrrheebfxqcvn", "output": "dbbzjcwqevgyheeuhjawrhbdpsnplijbwtdibqrrheebfxqcvn" }, { "input": "t", "output": "t" }, { "input": "N", "output": "N" }, { "input": "kv", "output": "kv" }, { "input": "Ur", "output": "ur" }, { "input": "CN", "output": "CN" } ]
1,636,379,147
2,147,483,647
Python 3
OK
TESTS
30
124
4,300,800
string = input() listSmLtt = list(filter(lambda x: x.islower(),string)) if len(listSmLtt) >= abs(len(string) - len(listSmLtt)): print(string.lower()) else: print(string.upper())
Title: Word Time Limit: 2 seconds Memory Limit: 256 megabytes Problem Description: Vasya is very upset that many people on the Net mix uppercase and lowercase letters in one word. That's why he decided to invent an extension for his favorite browser that would change the letters' register in every word so that it either only consisted of lowercase letters or, vice versa, only of uppercase ones. At that as little as possible letters should be changed in the word. For example, the word HoUse must be replaced with house, and the word ViP — with VIP. If a word contains an equal number of uppercase and lowercase letters, you should replace all the letters with lowercase ones. For example, maTRIx should be replaced by matrix. Your task is to use the given method on one given word. Input Specification: The first line contains a word *s* — it consists of uppercase and lowercase Latin letters and possesses the length from 1 to 100. Output Specification: Print the corrected word *s*. If the given word *s* has strictly more uppercase letters, make the word written in the uppercase register, otherwise - in the lowercase one. Demo Input: ['HoUse\n', 'ViP\n', 'maTRIx\n'] Demo Output: ['house\n', 'VIP\n', 'matrix\n'] Note: none
```python string = input() listSmLtt = list(filter(lambda x: x.islower(),string)) if len(listSmLtt) >= abs(len(string) - len(listSmLtt)): print(string.lower()) else: print(string.upper()) ```
3.960989
6
C
Alice, Bob and Chocolate
PROGRAMMING
1,200
[ "greedy", "two pointers" ]
C. Alice, Bob and Chocolate
2
64
Alice and Bob like games. And now they are ready to start a new game. They have placed *n* chocolate bars in a line. Alice starts to eat chocolate bars one by one from left to right, and Bob — from right to left. For each chocololate bar the time, needed for the player to consume it, is known (Alice and Bob eat them with equal speed). When the player consumes a chocolate bar, he immediately starts with another. It is not allowed to eat two chocolate bars at the same time, to leave the bar unfinished and to make pauses. If both players start to eat the same bar simultaneously, Bob leaves it to Alice as a true gentleman. How many bars each of the players will consume?
The first line contains one integer *n* (1<=≤<=*n*<=≤<=105) — the amount of bars on the table. The second line contains a sequence *t*1,<=*t*2,<=...,<=*t**n* (1<=≤<=*t**i*<=≤<=1000), where *t**i* is the time (in seconds) needed to consume the *i*-th bar (in the order from left to right).
Print two numbers *a* and *b*, where *a* is the amount of bars consumed by Alice, and *b* is the amount of bars consumed by Bob.
[ "5\n2 9 8 2 7\n" ]
[ "2 3\n" ]
none
0
[ { "input": "5\n2 9 8 2 7", "output": "2 3" }, { "input": "1\n1", "output": "1 0" }, { "input": "2\n1 1", "output": "1 1" }, { "input": "3\n1 1 1", "output": "2 1" }, { "input": "4\n1 1 1 1", "output": "2 2" }, { "input": "1\n6", "output": "1 0" }, { "input": "2\n8 2", "output": "1 1" }, { "input": "3\n6 8 4", "output": "1 2" }, { "input": "4\n4 3 2 8", "output": "3 1" }, { "input": "5\n1 9 8 2 7", "output": "2 3" }, { "input": "6\n1 4 7 3 2 1", "output": "3 3" }, { "input": "11\n7 9 1 8 7 1 7 1 4 8 1", "output": "4 7" }, { "input": "12\n4 2 7 1 9 5 6 2 7 8 5 7", "output": "7 5" }, { "input": "13\n9 9 9 9 9 9 9 9 9 9 9 9 9", "output": "7 6" } ]
1,624,907,152
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
4
124
0
n = int(input()) a = list(map(int, input().split())) b = [] for i in range(n): b.append(1) i_k = 0 i_p = n - 1 sums = sum(a) t = True while t: if a[i_k] != -1 and b[i_k] != -2: b[i_k] = -1 if a[i_k] != 0: a[i_k] -= 1 else: a[i_k] -= 1 a[i_k + 1] -= 1 i_k += 1 else: t = False if a[i_p] != -1 and b[i_p] != -1: b[i_p] = -2 if a[i_p] != 0: a[i_p] -= 1 else: a[i_p] -= 1 a[i_p - 1] -= 1 i_p -= 1 else: t = False if i_k == i_p and b[i_k] == 1: i_k += 1 i_p += 1 b[i_k] = -1 t = False i_k = 0 i_p = 0 for i in range(len(b)): if b[i] == -1: i_k += 1 else: i_p += 1 print(i_k, i_p)
Title: Alice, Bob and Chocolate Time Limit: 2 seconds Memory Limit: 64 megabytes Problem Description: Alice and Bob like games. And now they are ready to start a new game. They have placed *n* chocolate bars in a line. Alice starts to eat chocolate bars one by one from left to right, and Bob — from right to left. For each chocololate bar the time, needed for the player to consume it, is known (Alice and Bob eat them with equal speed). When the player consumes a chocolate bar, he immediately starts with another. It is not allowed to eat two chocolate bars at the same time, to leave the bar unfinished and to make pauses. If both players start to eat the same bar simultaneously, Bob leaves it to Alice as a true gentleman. How many bars each of the players will consume? Input Specification: The first line contains one integer *n* (1<=≤<=*n*<=≤<=105) — the amount of bars on the table. The second line contains a sequence *t*1,<=*t*2,<=...,<=*t**n* (1<=≤<=*t**i*<=≤<=1000), where *t**i* is the time (in seconds) needed to consume the *i*-th bar (in the order from left to right). Output Specification: Print two numbers *a* and *b*, where *a* is the amount of bars consumed by Alice, and *b* is the amount of bars consumed by Bob. Demo Input: ['5\n2 9 8 2 7\n'] Demo Output: ['2 3\n'] Note: none
```python n = int(input()) a = list(map(int, input().split())) b = [] for i in range(n): b.append(1) i_k = 0 i_p = n - 1 sums = sum(a) t = True while t: if a[i_k] != -1 and b[i_k] != -2: b[i_k] = -1 if a[i_k] != 0: a[i_k] -= 1 else: a[i_k] -= 1 a[i_k + 1] -= 1 i_k += 1 else: t = False if a[i_p] != -1 and b[i_p] != -1: b[i_p] = -2 if a[i_p] != 0: a[i_p] -= 1 else: a[i_p] -= 1 a[i_p - 1] -= 1 i_p -= 1 else: t = False if i_k == i_p and b[i_k] == 1: i_k += 1 i_p += 1 b[i_k] = -1 t = False i_k = 0 i_p = 0 for i in range(len(b)): if b[i] == -1: i_k += 1 else: i_p += 1 print(i_k, i_p) ```
0
16
B
Burglar and Matches
PROGRAMMING
900
[ "greedy", "implementation", "sortings" ]
B. Burglar and Matches
0
64
A burglar got into a matches warehouse and wants to steal as many matches as possible. In the warehouse there are *m* containers, in the *i*-th container there are *a**i* matchboxes, and each matchbox contains *b**i* matches. All the matchboxes are of the same size. The burglar's rucksack can hold *n* matchboxes exactly. Your task is to find out the maximum amount of matches that a burglar can carry away. He has no time to rearrange matches in the matchboxes, that's why he just chooses not more than *n* matchboxes so that the total amount of matches in them is maximal.
The first line of the input contains integer *n* (1<=≤<=*n*<=≤<=2·108) and integer *m* (1<=≤<=*m*<=≤<=20). The *i*<=+<=1-th line contains a pair of numbers *a**i* and *b**i* (1<=≤<=*a**i*<=≤<=108,<=1<=≤<=*b**i*<=≤<=10). All the input numbers are integer.
Output the only number — answer to the problem.
[ "7 3\n5 10\n2 5\n3 6\n", "3 3\n1 3\n2 2\n3 1\n" ]
[ "62\n", "7\n" ]
none
0
[ { "input": "7 3\n5 10\n2 5\n3 6", "output": "62" }, { "input": "3 3\n1 3\n2 2\n3 1", "output": "7" }, { "input": "1 1\n1 2", "output": "2" }, { "input": "1 2\n1 9\n1 6", "output": "9" }, { "input": "1 10\n1 1\n1 9\n1 3\n1 9\n1 7\n1 10\n1 4\n1 7\n1 3\n1 1", "output": "10" }, { "input": "2 1\n2 1", "output": "2" }, { "input": "2 2\n2 4\n1 4", "output": "8" }, { "input": "2 3\n1 7\n1 2\n1 5", "output": "12" }, { "input": "4 1\n2 2", "output": "4" }, { "input": "4 2\n1 10\n4 4", "output": "22" }, { "input": "4 3\n1 4\n6 4\n1 7", "output": "19" }, { "input": "5 1\n10 5", "output": "25" }, { "input": "5 2\n3 9\n2 2", "output": "31" }, { "input": "5 5\n2 9\n3 1\n2 1\n1 8\n2 8", "output": "42" }, { "input": "5 10\n1 3\n1 2\n1 9\n1 10\n1 1\n1 5\n1 10\n1 2\n1 3\n1 7", "output": "41" }, { "input": "10 1\n9 4", "output": "36" }, { "input": "10 2\n14 3\n1 3", "output": "30" }, { "input": "10 7\n4 8\n1 10\n1 10\n1 2\n3 3\n1 3\n1 10", "output": "71" }, { "input": "10 10\n1 8\n2 10\n1 9\n1 1\n1 9\n1 6\n1 4\n2 5\n1 2\n1 4", "output": "70" }, { "input": "10 4\n1 5\n5 2\n1 9\n3 3", "output": "33" }, { "input": "100 5\n78 6\n29 10\n3 6\n7 3\n2 4", "output": "716" }, { "input": "1000 7\n102 10\n23 6\n79 4\n48 1\n34 10\n839 8\n38 4", "output": "8218" }, { "input": "10000 10\n336 2\n2782 5\n430 10\n1893 7\n3989 10\n2593 8\n165 6\n1029 2\n2097 4\n178 10", "output": "84715" }, { "input": "100000 3\n2975 2\n35046 4\n61979 9", "output": "703945" }, { "input": "1000000 4\n314183 9\n304213 4\n16864 5\n641358 9", "output": "8794569" }, { "input": "10000000 10\n360313 10\n416076 1\n435445 9\n940322 7\n1647581 7\n4356968 10\n3589256 2\n2967933 5\n2747504 7\n1151633 3", "output": "85022733" }, { "input": "100000000 7\n32844337 7\n11210848 7\n47655987 1\n33900472 4\n9174763 2\n32228738 10\n29947408 5", "output": "749254060" }, { "input": "200000000 10\n27953106 7\n43325979 4\n4709522 1\n10975786 4\n67786538 8\n48901838 7\n15606185 6\n2747583 1\n100000000 1\n633331 3", "output": "1332923354" }, { "input": "200000000 9\n17463897 9\n79520463 1\n162407 4\n41017993 8\n71054118 4\n9447587 2\n5298038 9\n3674560 7\n20539314 5", "output": "996523209" }, { "input": "200000000 8\n6312706 6\n2920548 2\n16843192 3\n1501141 2\n13394704 6\n10047725 10\n4547663 6\n54268518 6", "output": "630991750" }, { "input": "200000000 7\n25621043 2\n21865270 1\n28833034 1\n22185073 5\n100000000 2\n13891017 9\n61298710 8", "output": "931584598" }, { "input": "200000000 6\n7465600 6\n8453505 10\n4572014 8\n8899499 3\n86805622 10\n64439238 6", "output": "1447294907" }, { "input": "200000000 5\n44608415 6\n100000000 9\n51483223 9\n44136047 1\n52718517 1", "output": "1634907859" }, { "input": "200000000 4\n37758556 10\n100000000 6\n48268521 3\n20148178 10", "output": "1305347138" }, { "input": "200000000 3\n65170000 7\n20790088 1\n74616133 4", "output": "775444620" }, { "input": "200000000 2\n11823018 6\n100000000 9", "output": "970938108" }, { "input": "200000000 1\n100000000 6", "output": "600000000" }, { "input": "200000000 10\n12097724 9\n41745972 5\n26982098 9\n14916995 7\n21549986 7\n3786630 9\n8050858 7\n27994924 4\n18345001 5\n8435339 5", "output": "1152034197" }, { "input": "200000000 10\n55649 8\n10980981 9\n3192542 8\n94994808 4\n3626106 1\n100000000 6\n5260110 9\n4121453 2\n15125061 4\n669569 6", "output": "1095537357" }, { "input": "10 20\n1 7\n1 7\n1 8\n1 3\n1 10\n1 7\n1 7\n1 9\n1 3\n1 1\n1 2\n1 1\n1 3\n1 10\n1 9\n1 8\n1 8\n1 6\n1 7\n1 5", "output": "83" }, { "input": "10000000 20\n4594 7\n520836 8\n294766 6\n298672 4\n142253 6\n450626 1\n1920034 9\n58282 4\n1043204 1\n683045 1\n1491746 5\n58420 4\n451217 2\n129423 4\n246113 5\n190612 8\n912923 6\n473153 6\n783733 6\n282411 10", "output": "54980855" }, { "input": "200000000 20\n15450824 5\n839717 10\n260084 8\n1140850 8\n28744 6\n675318 3\n25161 2\n5487 3\n6537698 9\n100000000 5\n7646970 9\n16489 6\n24627 3\n1009409 5\n22455 1\n25488456 4\n484528 9\n32663641 3\n750968 4\n5152 6", "output": "939368573" }, { "input": "200000000 20\n16896 2\n113 3\n277 2\n299 7\n69383562 2\n3929 8\n499366 4\n771846 5\n9 4\n1278173 7\n90 2\n54 7\n72199858 10\n17214 5\n3 10\n1981618 3\n3728 2\n141 8\n2013578 9\n51829246 5", "output": "1158946383" }, { "input": "200000000 20\n983125 2\n7453215 9\n9193588 2\n11558049 7\n28666199 1\n34362244 1\n5241493 5\n15451270 4\n19945845 8\n6208681 3\n38300385 7\n6441209 8\n21046742 7\n577198 10\n3826434 8\n9764276 8\n6264675 7\n8567063 3\n3610303 4\n2908232 3", "output": "1131379312" }, { "input": "10 15\n1 6\n2 6\n3 4\n1 3\n1 2\n1 5\n1 6\n1 2\n2 9\n1 10\n1 3\n1 7\n1 8\n1 2\n2 9", "output": "79" }, { "input": "10000000 15\n111 5\n914124 3\n3 9\n177790 1\n2352 3\n32138 9\n104477 1\n1223 4\n18 6\n6655580 4\n57643 10\n94309 2\n37 1\n227002 10\n1733193 7", "output": "45116295" }, { "input": "200000000 15\n7069868 1\n5567826 8\n2310059 10\n13539782 7\n38420939 4\n29911411 8\n52256316 1\n12265839 9\n2074265 1\n24896428 9\n72470695 5\n3236301 1\n3890243 2\n65168965 8\n65724 6", "output": "1489289257" }, { "input": "200000000 15\n12044094 7\n2475138 10\n944451 7\n4854766 2\n3809145 10\n7727571 2\n43908937 6\n2745883 1\n427511 2\n100000000 5\n190914 6\n554889 3\n288798 4\n1848572 5\n893874 3", "output": "961871671" }, { "input": "200000000 15\n6334191 7\n1927941 4\n5175933 10\n468389 1\n433043 10\n6863198 5\n7480646 4\n14774279 10\n2921129 8\n18325627 7\n6973152 9\n8277324 9\n21522856 2\n2058070 1\n2444742 4", "output": "664376069" } ]
1,613,585,546
2,147,483,647
Python 3
TIME_LIMIT_EXCEEDED
TESTS
25
500
27,648,000
import sys def ints_input(): return [int(i) for i in sys.stdin.readline().strip("\n").split(" ")] def print_list(arr): sys.stdout.writelines(str(x)+" " for x in arr) sys.stdout.write("\n") def fast_input(type=str): return type(sys.stdin.readline().strip("\n")) n, m = ints_input() matches = [] for i in range(m): a, b = ints_input() for i in range(a): matches.append(b) matches.sort(reverse=1) print(sum(matches[:n]))
Title: Burglar and Matches Time Limit: 0 seconds Memory Limit: 64 megabytes Problem Description: A burglar got into a matches warehouse and wants to steal as many matches as possible. In the warehouse there are *m* containers, in the *i*-th container there are *a**i* matchboxes, and each matchbox contains *b**i* matches. All the matchboxes are of the same size. The burglar's rucksack can hold *n* matchboxes exactly. Your task is to find out the maximum amount of matches that a burglar can carry away. He has no time to rearrange matches in the matchboxes, that's why he just chooses not more than *n* matchboxes so that the total amount of matches in them is maximal. Input Specification: The first line of the input contains integer *n* (1<=≤<=*n*<=≤<=2·108) and integer *m* (1<=≤<=*m*<=≤<=20). The *i*<=+<=1-th line contains a pair of numbers *a**i* and *b**i* (1<=≤<=*a**i*<=≤<=108,<=1<=≤<=*b**i*<=≤<=10). All the input numbers are integer. Output Specification: Output the only number — answer to the problem. Demo Input: ['7 3\n5 10\n2 5\n3 6\n', '3 3\n1 3\n2 2\n3 1\n'] Demo Output: ['62\n', '7\n'] Note: none
```python import sys def ints_input(): return [int(i) for i in sys.stdin.readline().strip("\n").split(" ")] def print_list(arr): sys.stdout.writelines(str(x)+" " for x in arr) sys.stdout.write("\n") def fast_input(type=str): return type(sys.stdin.readline().strip("\n")) n, m = ints_input() matches = [] for i in range(m): a, b = ints_input() for i in range(a): matches.append(b) matches.sort(reverse=1) print(sum(matches[:n])) ```
0
762
A
k-th divisor
PROGRAMMING
1,400
[ "math", "number theory" ]
null
null
You are given two integers *n* and *k*. Find *k*-th smallest divisor of *n*, or report that it doesn't exist. Divisor of *n* is any such natural number, that *n* can be divided by it without remainder.
The first line contains two integers *n* and *k* (1<=≤<=*n*<=≤<=1015, 1<=≤<=*k*<=≤<=109).
If *n* has less than *k* divisors, output -1. Otherwise, output the *k*-th smallest divisor of *n*.
[ "4 2\n", "5 3\n", "12 5\n" ]
[ "2\n", "-1\n", "6\n" ]
In the first example, number 4 has three divisors: 1, 2 and 4. The second one is 2. In the second example, number 5 has only two divisors: 1 and 5. The third divisor doesn't exist, so the answer is -1.
0
[ { "input": "4 2", "output": "2" }, { "input": "5 3", "output": "-1" }, { "input": "12 5", "output": "6" }, { "input": "1 1", "output": "1" }, { "input": "866421317361600 26880", "output": "866421317361600" }, { "input": "866421317361600 26881", "output": "-1" }, { "input": "1000000000000000 1000000000", "output": "-1" }, { "input": "1000000000000000 100", "output": "1953125" }, { "input": "1 2", "output": "-1" }, { "input": "4 3", "output": "4" }, { "input": "4 4", "output": "-1" }, { "input": "9 3", "output": "9" }, { "input": "21 3", "output": "7" }, { "input": "67280421310721 1", "output": "1" }, { "input": "6 3", "output": "3" }, { "input": "3 3", "output": "-1" }, { "input": "16 3", "output": "4" }, { "input": "1 1000", "output": "-1" }, { "input": "16 4", "output": "8" }, { "input": "36 8", "output": "18" }, { "input": "49 4", "output": "-1" }, { "input": "9 4", "output": "-1" }, { "input": "16 1", "output": "1" }, { "input": "16 6", "output": "-1" }, { "input": "16 5", "output": "16" }, { "input": "25 4", "output": "-1" }, { "input": "4010815561 2", "output": "63331" }, { "input": "49 3", "output": "49" }, { "input": "36 6", "output": "9" }, { "input": "36 10", "output": "-1" }, { "input": "25 3", "output": "25" }, { "input": "22876792454961 28", "output": "7625597484987" }, { "input": "1234 2", "output": "2" }, { "input": "179458711 2", "output": "179458711" }, { "input": "900104343024121 100000", "output": "-1" }, { "input": "8 3", "output": "4" }, { "input": "100 6", "output": "20" }, { "input": "15500 26", "output": "-1" }, { "input": "111111 1", "output": "1" }, { "input": "100000000000000 200", "output": "160000000000" }, { "input": "1000000000000 100", "output": "6400000" }, { "input": "100 10", "output": "-1" }, { "input": "1000000000039 2", "output": "1000000000039" }, { "input": "64 5", "output": "16" }, { "input": "999999961946176 33", "output": "63245552" }, { "input": "376219076689 3", "output": "376219076689" }, { "input": "999999961946176 63", "output": "999999961946176" }, { "input": "1048576 12", "output": "2048" }, { "input": "745 21", "output": "-1" }, { "input": "748 6", "output": "22" }, { "input": "999999961946176 50", "output": "161082468097" }, { "input": "10 3", "output": "5" }, { "input": "1099511627776 22", "output": "2097152" }, { "input": "1000000007 100010", "output": "-1" }, { "input": "3 1", "output": "1" }, { "input": "100 8", "output": "50" }, { "input": "100 7", "output": "25" }, { "input": "7 2", "output": "7" }, { "input": "999999961946176 64", "output": "-1" }, { "input": "20 5", "output": "10" }, { "input": "999999999999989 2", "output": "999999999999989" }, { "input": "100000000000000 114", "output": "10240000" }, { "input": "99999640000243 3", "output": "9999991" }, { "input": "999998000001 566", "output": "333332666667" }, { "input": "99999820000081 2", "output": "9999991" }, { "input": "49000042000009 3", "output": "49000042000009" }, { "input": "151491429961 4", "output": "-1" }, { "input": "32416190071 2", "output": "32416190071" }, { "input": "1000 8", "output": "25" }, { "input": "1999967841 15", "output": "1999967841" }, { "input": "26880 26880", "output": "-1" }, { "input": "151491429961 3", "output": "151491429961" }, { "input": "90000000000 300", "output": "100000000" }, { "input": "98765004361 10", "output": "-1" }, { "input": "15 2", "output": "3" }, { "input": "16 2", "output": "2" }, { "input": "1996 2", "output": "2" }, { "input": "1997 2", "output": "1997" }, { "input": "1999 2", "output": "1999" }, { "input": "1998 2", "output": "2" }, { "input": "1998 1", "output": "1" }, { "input": "1998 7", "output": "27" }, { "input": "1998 8", "output": "37" }, { "input": "100000380000361 2", "output": "10000019" }, { "input": "15 1", "output": "1" }, { "input": "100000000000000 226", "output": "-1" }, { "input": "844030857550613 517", "output": "-1" }, { "input": "4567890 14", "output": "430" }, { "input": "123123123 123123123", "output": "-1" }, { "input": "24 4", "output": "4" }, { "input": "999999993568952 17", "output": "31622777" }, { "input": "99999999994190 9", "output": "241656799" }, { "input": "999997874844049 4", "output": "-1" }, { "input": "99999999999931 2", "output": "99999999999931" }, { "input": "2 3", "output": "-1" }, { "input": "67280421310721 2", "output": "67280421310721" } ]
1,634,583,443
2,147,483,647
Python 3
RUNTIME_ERROR
TESTS
1
62
0
n, k = input().split() n = int(n) k = int(k) divisors = 0; goingUp = 1; result = None if (n == k and k == 1): print(1) exit() while ( goingUp <= n/2): tempNum = n % goingUp; if tempNum == 0: divisors += 1; #if tempNum == 0: # divisors.append(goingUp) goingUp += 1; if (divisors == k): result = goingUp break if (divisors != None): print(result-1) else: print (-1)
Title: k-th divisor Time Limit: None seconds Memory Limit: None megabytes Problem Description: You are given two integers *n* and *k*. Find *k*-th smallest divisor of *n*, or report that it doesn't exist. Divisor of *n* is any such natural number, that *n* can be divided by it without remainder. Input Specification: The first line contains two integers *n* and *k* (1<=≤<=*n*<=≤<=1015, 1<=≤<=*k*<=≤<=109). Output Specification: If *n* has less than *k* divisors, output -1. Otherwise, output the *k*-th smallest divisor of *n*. Demo Input: ['4 2\n', '5 3\n', '12 5\n'] Demo Output: ['2\n', '-1\n', '6\n'] Note: In the first example, number 4 has three divisors: 1, 2 and 4. The second one is 2. In the second example, number 5 has only two divisors: 1 and 5. The third divisor doesn't exist, so the answer is -1.
```python n, k = input().split() n = int(n) k = int(k) divisors = 0; goingUp = 1; result = None if (n == k and k == 1): print(1) exit() while ( goingUp <= n/2): tempNum = n % goingUp; if tempNum == 0: divisors += 1; #if tempNum == 0: # divisors.append(goingUp) goingUp += 1; if (divisors == k): result = goingUp break if (divisors != None): print(result-1) else: print (-1) ```
-1
660
C
Hard Process
PROGRAMMING
1,600
[ "binary search", "dp", "two pointers" ]
null
null
You are given an array *a* with *n* elements. Each element of *a* is either 0 or 1. Let's denote the length of the longest subsegment of consecutive elements in *a*, consisting of only numbers one, as *f*(*a*). You can change no more than *k* zeroes to ones to maximize *f*(*a*).
The first line contains two integers *n* and *k* (1<=≤<=*n*<=≤<=3·105,<=0<=≤<=*k*<=≤<=*n*) — the number of elements in *a* and the parameter *k*. The second line contains *n* integers *a**i* (0<=≤<=*a**i*<=≤<=1) — the elements of *a*.
On the first line print a non-negative integer *z* — the maximal value of *f*(*a*) after no more than *k* changes of zeroes to ones. On the second line print *n* integers *a**j* — the elements of the array *a* after the changes. If there are multiple answers, you can print any one of them.
[ "7 1\n1 0 0 1 1 0 1\n", "10 2\n1 0 0 1 0 1 0 1 0 1\n" ]
[ "4\n1 0 0 1 1 1 1\n", "5\n1 0 0 1 1 1 1 1 0 1\n" ]
none
0
[ { "input": "7 1\n1 0 0 1 1 0 1", "output": "4\n1 0 0 1 1 1 1" }, { "input": "10 2\n1 0 0 1 0 1 0 1 0 1", "output": "5\n1 0 0 1 1 1 1 1 0 1" }, { "input": "1 0\n0", "output": "0\n0" }, { "input": "1 0\n0", "output": "0\n0" }, { "input": "7 0\n0 1 0 0 0 1 0", "output": "1\n0 1 0 0 0 1 0" }, { "input": "7 2\n1 0 1 1 0 0 0", "output": "5\n1 1 1 1 1 0 0" }, { "input": "7 3\n1 0 0 0 0 1 0", "output": "4\n1 1 1 1 0 1 0" }, { "input": "3 0\n1 1 1", "output": "3\n1 1 1" }, { "input": "1 0\n1", "output": "1\n1" }, { "input": "2 0\n0 1", "output": "1\n0 1" }, { "input": "1 1\n0", "output": "1\n1" }, { "input": "3 1\n0 0 1", "output": "2\n0 1 1" }, { "input": "2 0\n0 0", "output": "0\n0 0" }, { "input": "3 1\n0 0 0", "output": "1\n1 0 0" }, { "input": "7 7\n1 0 1 0 0 0 0", "output": "7\n1 1 1 1 1 1 1" }, { "input": "1 1\n1", "output": "1\n1" }, { "input": "3 0\n0 0 0", "output": "0\n0 0 0" }, { "input": "7 3\n1 1 1 1 1 1 1", "output": "7\n1 1 1 1 1 1 1" }, { "input": "10 3\n0 0 1 0 0 1 0 0 1 1", "output": "6\n0 0 1 0 1 1 1 1 1 1" }, { "input": "2 1\n0 0", "output": "1\n1 0" }, { "input": "2 2\n1 0", "output": "2\n1 1" } ]
1,682,056,607
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
2
31
0
n, k = map(int, input().split()) a = [int(i) for i in input().split()] count = 0 mx = 0 l, r = 0, 0 left_most, right_most = 0, 0 while r < n: if a[r] == 0: count += 1 if a[r] == 1 and count >= k: if count == k: mx = max(mx, r - l + 1) left_most = l right_most = r while l < r and count >= k: if a[l] == 0: count -= 1 l += 1 r += 1 a = [a[i] if i < left_most or i > right_most else 1 for i in range(n)] print(mx) for i in a: print(i, end=" ")
Title: Hard Process Time Limit: None seconds Memory Limit: None megabytes Problem Description: You are given an array *a* with *n* elements. Each element of *a* is either 0 or 1. Let's denote the length of the longest subsegment of consecutive elements in *a*, consisting of only numbers one, as *f*(*a*). You can change no more than *k* zeroes to ones to maximize *f*(*a*). Input Specification: The first line contains two integers *n* and *k* (1<=≤<=*n*<=≤<=3·105,<=0<=≤<=*k*<=≤<=*n*) — the number of elements in *a* and the parameter *k*. The second line contains *n* integers *a**i* (0<=≤<=*a**i*<=≤<=1) — the elements of *a*. Output Specification: On the first line print a non-negative integer *z* — the maximal value of *f*(*a*) after no more than *k* changes of zeroes to ones. On the second line print *n* integers *a**j* — the elements of the array *a* after the changes. If there are multiple answers, you can print any one of them. Demo Input: ['7 1\n1 0 0 1 1 0 1\n', '10 2\n1 0 0 1 0 1 0 1 0 1\n'] Demo Output: ['4\n1 0 0 1 1 1 1\n', '5\n1 0 0 1 1 1 1 1 0 1\n'] Note: none
```python n, k = map(int, input().split()) a = [int(i) for i in input().split()] count = 0 mx = 0 l, r = 0, 0 left_most, right_most = 0, 0 while r < n: if a[r] == 0: count += 1 if a[r] == 1 and count >= k: if count == k: mx = max(mx, r - l + 1) left_most = l right_most = r while l < r and count >= k: if a[l] == 0: count -= 1 l += 1 r += 1 a = [a[i] if i < left_most or i > right_most else 1 for i in range(n)] print(mx) for i in a: print(i, end=" ") ```
0
870
A
Search for Pretty Integers
PROGRAMMING
900
[ "brute force", "implementation" ]
null
null
You are given two lists of non-zero digits. Let's call an integer pretty if its (base 10) representation has at least one digit from the first list and at least one digit from the second list. What is the smallest positive pretty integer?
The first line contains two integers *n* and *m* (1<=≤<=*n*,<=*m*<=≤<=9) — the lengths of the first and the second lists, respectively. The second line contains *n* distinct digits *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=9) — the elements of the first list. The third line contains *m* distinct digits *b*1,<=*b*2,<=...,<=*b**m* (1<=≤<=*b**i*<=≤<=9) — the elements of the second list.
Print the smallest pretty integer.
[ "2 3\n4 2\n5 7 6\n", "8 8\n1 2 3 4 5 6 7 8\n8 7 6 5 4 3 2 1\n" ]
[ "25\n", "1\n" ]
In the first example 25, 46, 24567 are pretty, as well as many other integers. The smallest among them is 25. 42 and 24 are not pretty because they don't have digits from the second list. In the second example all integers that have at least one digit different from 9 are pretty. It's obvious that the smallest among them is 1, because it's the smallest positive integer.
500
[ { "input": "2 3\n4 2\n5 7 6", "output": "25" }, { "input": "8 8\n1 2 3 4 5 6 7 8\n8 7 6 5 4 3 2 1", "output": "1" }, { "input": "1 1\n9\n1", "output": "19" }, { "input": "9 1\n5 4 2 3 6 1 7 9 8\n9", "output": "9" }, { "input": "5 3\n7 2 5 8 6\n3 1 9", "output": "12" }, { "input": "4 5\n5 2 6 4\n8 9 1 3 7", "output": "12" }, { "input": "5 9\n4 2 1 6 7\n2 3 4 5 6 7 8 9 1", "output": "1" }, { "input": "9 9\n5 4 3 2 1 6 7 8 9\n3 2 1 5 4 7 8 9 6", "output": "1" }, { "input": "9 5\n2 3 4 5 6 7 8 9 1\n4 2 1 6 7", "output": "1" }, { "input": "9 9\n1 2 3 4 5 6 7 8 9\n1 2 3 4 5 6 7 8 9", "output": "1" }, { "input": "9 9\n1 2 3 4 5 6 7 8 9\n9 8 7 6 5 4 3 2 1", "output": "1" }, { "input": "9 9\n9 8 7 6 5 4 3 2 1\n1 2 3 4 5 6 7 8 9", "output": "1" }, { "input": "9 9\n9 8 7 6 5 4 3 2 1\n9 8 7 6 5 4 3 2 1", "output": "1" }, { "input": "1 1\n8\n9", "output": "89" }, { "input": "1 1\n9\n8", "output": "89" }, { "input": "1 1\n1\n2", "output": "12" }, { "input": "1 1\n2\n1", "output": "12" }, { "input": "1 1\n9\n9", "output": "9" }, { "input": "1 1\n1\n1", "output": "1" }, { "input": "4 5\n3 2 4 5\n1 6 5 9 8", "output": "5" }, { "input": "3 2\n4 5 6\n1 5", "output": "5" }, { "input": "5 4\n1 3 5 6 7\n2 4 3 9", "output": "3" }, { "input": "5 5\n1 3 5 7 9\n2 4 6 8 9", "output": "9" }, { "input": "2 2\n1 8\n2 8", "output": "8" }, { "input": "5 5\n5 6 7 8 9\n1 2 3 4 5", "output": "5" }, { "input": "5 5\n1 2 3 4 5\n1 2 3 4 5", "output": "1" }, { "input": "5 5\n1 2 3 4 5\n2 3 4 5 6", "output": "2" }, { "input": "2 2\n1 5\n2 5", "output": "5" }, { "input": "4 4\n1 3 5 8\n2 4 6 8", "output": "8" }, { "input": "3 3\n1 5 3\n2 5 7", "output": "5" }, { "input": "3 3\n3 6 8\n2 6 9", "output": "6" }, { "input": "2 2\n1 4\n2 4", "output": "4" }, { "input": "5 3\n3 4 5 6 7\n1 5 9", "output": "5" }, { "input": "4 4\n1 2 3 4\n2 5 6 7", "output": "2" }, { "input": "5 5\n1 2 3 4 5\n9 2 1 7 5", "output": "1" }, { "input": "2 2\n1 3\n2 3", "output": "3" }, { "input": "3 3\n3 2 1\n3 2 1", "output": "1" }, { "input": "3 3\n1 3 5\n2 3 6", "output": "3" }, { "input": "3 3\n5 6 7\n5 6 7", "output": "5" }, { "input": "1 2\n5\n2 5", "output": "5" }, { "input": "3 3\n2 4 9\n7 8 9", "output": "9" }, { "input": "3 3\n1 2 4\n3 4 5", "output": "4" }, { "input": "3 2\n1 4 9\n2 4", "output": "4" }, { "input": "3 3\n3 5 6\n1 5 9", "output": "5" }, { "input": "3 2\n1 2 4\n3 4", "output": "4" }, { "input": "2 4\n8 9\n1 2 3 9", "output": "9" }, { "input": "1 2\n9\n8 9", "output": "9" }, { "input": "3 2\n1 2 4\n4 2", "output": "2" }, { "input": "2 3\n4 5\n1 3 5", "output": "5" }, { "input": "3 2\n1 2 3\n2 3", "output": "2" }, { "input": "4 3\n1 3 5 9\n2 8 9", "output": "9" }, { "input": "2 2\n1 9\n9 2", "output": "9" } ]
1,584,180,253
2,147,483,647
PyPy 3
OK
TESTS
52
155
0
print((lambda a,x,y: sorted([i for i in x if i in y])[0] if len([i for i in x if i in y])!=0 else str(min(min(x),min(y)))+str(max(min(x),min(y))))(input(),list(map(int,input().split())),list(map(int,input().split()))))
Title: Search for Pretty Integers Time Limit: None seconds Memory Limit: None megabytes Problem Description: You are given two lists of non-zero digits. Let's call an integer pretty if its (base 10) representation has at least one digit from the first list and at least one digit from the second list. What is the smallest positive pretty integer? Input Specification: The first line contains two integers *n* and *m* (1<=≤<=*n*,<=*m*<=≤<=9) — the lengths of the first and the second lists, respectively. The second line contains *n* distinct digits *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=9) — the elements of the first list. The third line contains *m* distinct digits *b*1,<=*b*2,<=...,<=*b**m* (1<=≤<=*b**i*<=≤<=9) — the elements of the second list. Output Specification: Print the smallest pretty integer. Demo Input: ['2 3\n4 2\n5 7 6\n', '8 8\n1 2 3 4 5 6 7 8\n8 7 6 5 4 3 2 1\n'] Demo Output: ['25\n', '1\n'] Note: In the first example 25, 46, 24567 are pretty, as well as many other integers. The smallest among them is 25. 42 and 24 are not pretty because they don't have digits from the second list. In the second example all integers that have at least one digit different from 9 are pretty. It's obvious that the smallest among them is 1, because it's the smallest positive integer.
```python print((lambda a,x,y: sorted([i for i in x if i in y])[0] if len([i for i in x if i in y])!=0 else str(min(min(x),min(y)))+str(max(min(x),min(y))))(input(),list(map(int,input().split())),list(map(int,input().split())))) ```
3
255
A
Greg's Workout
PROGRAMMING
800
[ "implementation" ]
null
null
Greg is a beginner bodybuilder. Today the gym coach gave him the training plan. All it had was *n* integers *a*1,<=*a*2,<=...,<=*a**n*. These numbers mean that Greg needs to do exactly *n* exercises today. Besides, Greg should repeat the *i*-th in order exercise *a**i* times. Greg now only does three types of exercises: "chest" exercises, "biceps" exercises and "back" exercises. Besides, his training is cyclic, that is, the first exercise he does is a "chest" one, the second one is "biceps", the third one is "back", the fourth one is "chest", the fifth one is "biceps", and so on to the *n*-th exercise. Now Greg wonders, which muscle will get the most exercise during his training. We know that the exercise Greg repeats the maximum number of times, trains the corresponding muscle the most. Help Greg, determine which muscle will get the most training.
The first line contains integer *n* (1<=≤<=*n*<=≤<=20). The second line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=25) — the number of times Greg repeats the exercises.
Print word "chest" (without the quotes), if the chest gets the most exercise, "biceps" (without the quotes), if the biceps gets the most exercise and print "back" (without the quotes) if the back gets the most exercise. It is guaranteed that the input is such that the answer to the problem is unambiguous.
[ "2\n2 8\n", "3\n5 1 10\n", "7\n3 3 2 7 9 6 8\n" ]
[ "biceps\n", "back\n", "chest\n" ]
In the first sample Greg does 2 chest, 8 biceps and zero back exercises, so the biceps gets the most exercises. In the second sample Greg does 5 chest, 1 biceps and 10 back exercises, so the back gets the most exercises. In the third sample Greg does 18 chest, 12 biceps and 8 back exercises, so the chest gets the most exercise.
500
[ { "input": "2\n2 8", "output": "biceps" }, { "input": "3\n5 1 10", "output": "back" }, { "input": "7\n3 3 2 7 9 6 8", "output": "chest" }, { "input": "4\n5 6 6 2", "output": "chest" }, { "input": "5\n8 2 2 6 3", "output": "chest" }, { "input": "6\n8 7 2 5 3 4", "output": "chest" }, { "input": "8\n7 2 9 10 3 8 10 6", "output": "chest" }, { "input": "9\n5 4 2 3 4 4 5 2 2", "output": "chest" }, { "input": "10\n4 9 8 5 3 8 8 10 4 2", "output": "biceps" }, { "input": "11\n10 9 7 6 1 3 9 7 1 3 5", "output": "chest" }, { "input": "12\n24 22 6 16 5 21 1 7 2 19 24 5", "output": "chest" }, { "input": "13\n24 10 5 7 16 17 2 7 9 20 15 2 24", "output": "chest" }, { "input": "14\n13 14 19 8 5 17 9 16 15 9 5 6 3 7", "output": "back" }, { "input": "15\n24 12 22 21 25 23 21 5 3 24 23 13 12 16 12", "output": "chest" }, { "input": "16\n12 6 18 6 25 7 3 1 1 17 25 17 6 8 17 8", "output": "biceps" }, { "input": "17\n13 8 13 4 9 21 10 10 9 22 14 23 22 7 6 14 19", "output": "chest" }, { "input": "18\n1 17 13 6 11 10 25 13 24 9 21 17 3 1 17 12 25 21", "output": "back" }, { "input": "19\n22 22 24 25 19 10 7 10 4 25 19 14 1 14 3 18 4 19 24", "output": "chest" }, { "input": "20\n9 8 22 11 18 14 15 10 17 11 2 1 25 20 7 24 4 25 9 20", "output": "chest" }, { "input": "1\n10", "output": "chest" }, { "input": "2\n15 3", "output": "chest" }, { "input": "3\n21 11 19", "output": "chest" }, { "input": "4\n19 24 13 15", "output": "chest" }, { "input": "5\n4 24 1 9 19", "output": "biceps" }, { "input": "6\n6 22 24 7 15 24", "output": "back" }, { "input": "7\n10 8 23 23 14 18 14", "output": "chest" }, { "input": "8\n5 16 8 9 17 16 14 7", "output": "biceps" }, { "input": "9\n12 3 10 23 6 4 22 13 12", "output": "chest" }, { "input": "10\n1 9 20 18 20 17 7 24 23 2", "output": "back" }, { "input": "11\n22 25 8 2 18 15 1 13 1 11 4", "output": "biceps" }, { "input": "12\n20 12 14 2 15 6 24 3 11 8 11 14", "output": "chest" }, { "input": "13\n2 18 8 8 8 20 5 22 15 2 5 19 18", "output": "back" }, { "input": "14\n1 6 10 25 17 13 21 11 19 4 15 24 5 22", "output": "biceps" }, { "input": "15\n13 5 25 13 17 25 19 21 23 17 12 6 14 8 6", "output": "back" }, { "input": "16\n10 15 2 17 22 12 14 14 6 11 4 13 9 8 21 14", "output": "chest" }, { "input": "17\n7 22 9 22 8 7 20 22 23 5 12 11 1 24 17 20 10", "output": "biceps" }, { "input": "18\n18 15 4 25 5 11 21 25 12 14 25 23 19 19 13 6 9 17", "output": "chest" }, { "input": "19\n3 1 3 15 15 25 10 25 23 10 9 21 13 23 19 3 24 21 14", "output": "back" }, { "input": "20\n19 18 11 3 6 14 3 3 25 3 1 19 25 24 23 12 7 4 8 6", "output": "back" }, { "input": "1\n19", "output": "chest" }, { "input": "2\n1 7", "output": "biceps" }, { "input": "3\n18 18 23", "output": "back" }, { "input": "4\n12 15 1 13", "output": "chest" }, { "input": "5\n11 14 25 21 21", "output": "biceps" }, { "input": "6\n11 9 12 11 22 18", "output": "biceps" }, { "input": "7\n11 1 16 20 21 25 20", "output": "chest" }, { "input": "8\n1 2 20 9 3 22 17 4", "output": "back" }, { "input": "9\n19 2 10 19 15 20 3 1 13", "output": "back" }, { "input": "10\n11 2 11 8 21 16 2 3 19 9", "output": "back" }, { "input": "20\n25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 24", "output": "chest" }, { "input": "12\n4 24 21 3 13 24 22 13 12 21 1 15", "output": "back" }, { "input": "13\n14 14 16 2 13 5 1 14 9 4 16 8 3", "output": "biceps" }, { "input": "14\n1 9 15 4 11 8 25 3 9 14 13 2 1 11", "output": "biceps" }, { "input": "15\n4 19 10 6 16 12 5 11 7 23 1 24 11 7 17", "output": "back" }, { "input": "16\n2 8 2 8 13 22 20 12 22 23 18 13 18 22 11 17", "output": "chest" }, { "input": "17\n24 5 5 16 10 8 22 6 4 13 10 10 5 23 8 20 8", "output": "chest" }, { "input": "18\n14 8 9 12 11 18 24 1 14 24 18 5 12 17 1 10 1 22", "output": "chest" }, { "input": "19\n21 2 10 6 9 1 24 5 2 19 10 13 10 7 19 2 6 13 24", "output": "chest" }, { "input": "20\n7 1 14 17 6 6 18 13 12 3 25 4 3 19 22 24 16 14 1 23", "output": "biceps" }, { "input": "1\n19", "output": "chest" }, { "input": "20\n2 1 2 2 1 2 2 1 2 1 1 1 1 1 1 1 1 1 1 22", "output": "biceps" } ]
1,673,288,397
2,147,483,647
Python 3
OK
TESTS
61
92
0
n = int(input()) a = list(map(int, input().split())) max_count = 0 max_muscle = "" muscles = ["chest", "biceps", "back"] for i in range(3): count = 0 for j in range(i, len(a), 3): count += a[j] if count > max_count: max_count = count max_muscle = muscles[i] print(max_muscle)
Title: Greg's Workout Time Limit: None seconds Memory Limit: None megabytes Problem Description: Greg is a beginner bodybuilder. Today the gym coach gave him the training plan. All it had was *n* integers *a*1,<=*a*2,<=...,<=*a**n*. These numbers mean that Greg needs to do exactly *n* exercises today. Besides, Greg should repeat the *i*-th in order exercise *a**i* times. Greg now only does three types of exercises: "chest" exercises, "biceps" exercises and "back" exercises. Besides, his training is cyclic, that is, the first exercise he does is a "chest" one, the second one is "biceps", the third one is "back", the fourth one is "chest", the fifth one is "biceps", and so on to the *n*-th exercise. Now Greg wonders, which muscle will get the most exercise during his training. We know that the exercise Greg repeats the maximum number of times, trains the corresponding muscle the most. Help Greg, determine which muscle will get the most training. Input Specification: The first line contains integer *n* (1<=≤<=*n*<=≤<=20). The second line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=25) — the number of times Greg repeats the exercises. Output Specification: Print word "chest" (without the quotes), if the chest gets the most exercise, "biceps" (without the quotes), if the biceps gets the most exercise and print "back" (without the quotes) if the back gets the most exercise. It is guaranteed that the input is such that the answer to the problem is unambiguous. Demo Input: ['2\n2 8\n', '3\n5 1 10\n', '7\n3 3 2 7 9 6 8\n'] Demo Output: ['biceps\n', 'back\n', 'chest\n'] Note: In the first sample Greg does 2 chest, 8 biceps and zero back exercises, so the biceps gets the most exercises. In the second sample Greg does 5 chest, 1 biceps and 10 back exercises, so the back gets the most exercises. In the third sample Greg does 18 chest, 12 biceps and 8 back exercises, so the chest gets the most exercise.
```python n = int(input()) a = list(map(int, input().split())) max_count = 0 max_muscle = "" muscles = ["chest", "biceps", "back"] for i in range(3): count = 0 for j in range(i, len(a), 3): count += a[j] if count > max_count: max_count = count max_muscle = muscles[i] print(max_muscle) ```
3
474
A
Keyboard
PROGRAMMING
900
[ "implementation" ]
null
null
Our good friend Mole is trying to code a big message. He is typing on an unusual keyboard with characters arranged in following way: Unfortunately Mole is blind, so sometimes it is problem for him to put his hands accurately. He accidentally moved both his hands with one position to the left or to the right. That means that now he presses not a button he wants, but one neighboring button (left or right, as specified in input). We have a sequence of characters he has typed and we want to find the original message.
First line of the input contains one letter describing direction of shifting ('L' or 'R' respectively for left or right). Second line contains a sequence of characters written by Mole. The size of this sequence will be no more than 100. Sequence contains only symbols that appear on Mole's keyboard. It doesn't contain spaces as there is no space on Mole's keyboard. It is guaranteed that even though Mole hands are moved, he is still pressing buttons on keyboard and not hitting outside it.
Print a line that contains the original message.
[ "R\ns;;upimrrfod;pbr\n" ]
[ "allyouneedislove\n" ]
none
500
[ { "input": "R\ns;;upimrrfod;pbr", "output": "allyouneedislove" }, { "input": "R\nwertyuiop;lkjhgfdsxcvbnm,.", "output": "qwertyuiolkjhgfdsazxcvbnm," }, { "input": "L\nzxcvbnm,kjhgfdsaqwertyuio", "output": "xcvbnm,.lkjhgfdswertyuiop" }, { "input": "R\nbubbuduppudup", "output": "vyvvysyooysyo" }, { "input": "L\ngggggggggggggggggggggggggggggggggggggggggg", "output": "hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh" }, { "input": "R\ngggggggggggggggggggggggggggggggggggggggggg", "output": "ffffffffffffffffffffffffffffffffffffffffff" }, { "input": "L\nggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggg", "output": "hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh" }, { "input": "R\nggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggg", "output": "fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff" }, { "input": "L\nxgwurenkxkiau,c,vonei.zltazmnkhqtwuogkgvgckvja,z.rhanuy.ybebmzcfwozkwvuuiolaqlgvvvewnbuinrncgjwjdsfw", "output": "cheitrmlclosi.v.bpmro/x;ysx,mljwyeiphlhbhvlbks.x/tjsmiu/unrn,xvgepxlebiiop;sw;hbbbremniomtmvhkekfdge" }, { "input": "L\nuoz.vmks,wxrb,nwcvdzh.m,hwsios.lvu,ktes,,ythddhm.sh,d,c,cfj.wqam,bowofbyx,jathqayhreqvixvbmgdokofmym", "output": "ipx/b,ld.ectn.mevbfxj/,.jedopd/;bi.lyrd..uyjffj,/dj.f.v.vgk/ews,.npepgnuc.ksyjwsujtrwbocbn,hfplpg,u," }, { "input": "R\noedjyrvuw/rn.v.hdwndbiposiewgsn.pnyf;/tsdohp,hrtd/mx,;coj./billd..mwbneohcikrdes/ucjr,wspthleyp,..f,", "output": "iwshtecyq.eb,c,gsqbsvuoiauwqfab,obtdl.rasigomgers.nzmlxih,.vukks,,nqvbwigxujeswa.yxhemqaorgkwtom,,dm" }, { "input": "R\nvgj;o;ijrtfyck,dthccioltcx,crub;oceooognsuvfx/kgo.fbsudv,yod.erdrxhbeiyltxhnrobbb;ydrgroefcr/f;uvdjd", "output": "cfhliluherdtxjmsrgxxuikrxzmxeyvlixwiiifbaycdz.jfi,dvayscmtis,wesezgvwutkrzgbeivvvltsefeiwdxe.dlycshs" }, { "input": "L\nqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq", "output": "wwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww" }, { "input": "L\noooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo", "output": "pppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppp" }, { "input": "L\n,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,", "output": "...................................................................................................." }, { "input": "L\nzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz", "output": "xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx" }, { "input": "R\noooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo", "output": "iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii" }, { "input": "R\nwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww", "output": "qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq" }, { "input": "R\nxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx", "output": "zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz" }, { "input": "L\nq", "output": "w" }, { "input": "L\no", "output": "p" }, { "input": "L\n,", "output": "." }, { "input": "L\nz", "output": "x" }, { "input": "R\n.", "output": "," }, { "input": "R\no", "output": "i" }, { "input": "R\nw", "output": "q" }, { "input": "R\nx", "output": "z" }, { "input": "R\n,./", "output": "m,." }, { "input": "R\nwertuk;;/", "output": "qweryjll." }, { "input": "L\n..", "output": "//" } ]
1,696,485,180
2,147,483,647
Python 3
OK
TESTS
31
46
0
s = input() a = list(input()) kbrd = 'qwertyuiopasdfghjkl;zxcvbnm,./' r = '' if s == 'R': for i in range(len(a)): r += kbrd[kbrd.index(a[i])-1] elif s == 'L': for i in range(len(a)): r += kbrd[kbrd.index(a[i])+1] print(r)
Title: Keyboard Time Limit: None seconds Memory Limit: None megabytes Problem Description: Our good friend Mole is trying to code a big message. He is typing on an unusual keyboard with characters arranged in following way: Unfortunately Mole is blind, so sometimes it is problem for him to put his hands accurately. He accidentally moved both his hands with one position to the left or to the right. That means that now he presses not a button he wants, but one neighboring button (left or right, as specified in input). We have a sequence of characters he has typed and we want to find the original message. Input Specification: First line of the input contains one letter describing direction of shifting ('L' or 'R' respectively for left or right). Second line contains a sequence of characters written by Mole. The size of this sequence will be no more than 100. Sequence contains only symbols that appear on Mole's keyboard. It doesn't contain spaces as there is no space on Mole's keyboard. It is guaranteed that even though Mole hands are moved, he is still pressing buttons on keyboard and not hitting outside it. Output Specification: Print a line that contains the original message. Demo Input: ['R\ns;;upimrrfod;pbr\n'] Demo Output: ['allyouneedislove\n'] Note: none
```python s = input() a = list(input()) kbrd = 'qwertyuiopasdfghjkl;zxcvbnm,./' r = '' if s == 'R': for i in range(len(a)): r += kbrd[kbrd.index(a[i])-1] elif s == 'L': for i in range(len(a)): r += kbrd[kbrd.index(a[i])+1] print(r) ```
3
621
A
Wet Shark and Odd and Even
PROGRAMMING
900
[ "implementation" ]
null
null
Today, Wet Shark is given *n* integers. Using any of these integers no more than once, Wet Shark wants to get maximum possible even (divisible by 2) sum. Please, calculate this value for Wet Shark. Note, that if Wet Shark uses no integers from the *n* integers, the sum is an even integer 0.
The first line of the input contains one integer, *n* (1<=≤<=*n*<=≤<=100<=000). The next line contains *n* space separated integers given to Wet Shark. Each of these integers is in range from 1 to 109, inclusive.
Print the maximum possible even sum that can be obtained if we use some of the given integers.
[ "3\n1 2 3\n", "5\n999999999 999999999 999999999 999999999 999999999\n" ]
[ "6", "3999999996" ]
In the first sample, we can simply take all three integers for a total sum of 6. In the second sample Wet Shark should take any four out of five integers 999 999 999.
500
[ { "input": "3\n1 2 3", "output": "6" }, { "input": "5\n999999999 999999999 999999999 999999999 999999999", "output": "3999999996" }, { "input": "1\n1", "output": "0" }, { "input": "15\n39 52 88 78 46 95 84 98 55 3 68 42 6 18 98", "output": "870" }, { "input": "15\n59 96 34 48 8 72 67 90 15 85 7 90 97 47 25", "output": "840" }, { "input": "15\n87 37 91 29 58 45 51 74 70 71 47 38 91 89 44", "output": "922" }, { "input": "15\n11 81 49 7 11 14 30 67 29 50 90 81 77 18 59", "output": "674" }, { "input": "15\n39 21 95 89 73 90 9 55 85 32 30 21 68 59 82", "output": "848" }, { "input": "15\n59 70 48 54 26 67 84 39 40 18 77 69 70 88 93", "output": "902" }, { "input": "15\n87 22 98 32 88 36 72 31 100 97 17 16 60 22 20", "output": "798" }, { "input": "15\n15 63 51 13 37 9 43 19 55 79 57 60 50 59 31", "output": "632" }, { "input": "1\n4", "output": "4" }, { "input": "2\n1 4", "output": "4" }, { "input": "3\n1 2 4", "output": "6" }, { "input": "2\n9 3", "output": "12" }, { "input": "2\n1000000000 1001", "output": "1000000000" }, { "input": "3\n1 8 4", "output": "12" }, { "input": "3\n7 4 4", "output": "8" }, { "input": "5\n2 3 4 5 3", "output": "14" }, { "input": "2\n4 5", "output": "4" }, { "input": "3\n2 4 5", "output": "6" }, { "input": "3\n2 2 3", "output": "4" }, { "input": "2\n2 3", "output": "2" }, { "input": "4\n2 3 7 7", "output": "16" }, { "input": "2\n999999999 2", "output": "2" }, { "input": "2\n2 5", "output": "2" }, { "input": "3\n5 3 1", "output": "8" }, { "input": "4\n3 2 5 7", "output": "14" } ]
1,596,464,193
2,147,483,647
Python 3
OK
TESTS
87
187
15,564,800
n = int(input()) a = sorted(map(int, input().split())) k = 0 if sum(a) % 2 != 0: for i in a: if i % 2 != 0: c = i break for i in a: k += i print(k - c) else: print(sum(a))
Title: Wet Shark and Odd and Even Time Limit: None seconds Memory Limit: None megabytes Problem Description: Today, Wet Shark is given *n* integers. Using any of these integers no more than once, Wet Shark wants to get maximum possible even (divisible by 2) sum. Please, calculate this value for Wet Shark. Note, that if Wet Shark uses no integers from the *n* integers, the sum is an even integer 0. Input Specification: The first line of the input contains one integer, *n* (1<=≤<=*n*<=≤<=100<=000). The next line contains *n* space separated integers given to Wet Shark. Each of these integers is in range from 1 to 109, inclusive. Output Specification: Print the maximum possible even sum that can be obtained if we use some of the given integers. Demo Input: ['3\n1 2 3\n', '5\n999999999 999999999 999999999 999999999 999999999\n'] Demo Output: ['6', '3999999996'] Note: In the first sample, we can simply take all three integers for a total sum of 6. In the second sample Wet Shark should take any four out of five integers 999 999 999.
```python n = int(input()) a = sorted(map(int, input().split())) k = 0 if sum(a) % 2 != 0: for i in a: if i % 2 != 0: c = i break for i in a: k += i print(k - c) else: print(sum(a)) ```
3
616
A
Comparing Two Long Integers
PROGRAMMING
900
[ "implementation", "strings" ]
null
null
You are given two very long integers *a*,<=*b* (leading zeroes are allowed). You should check what number *a* or *b* is greater or determine that they are equal. The input size is very large so don't use the reading of symbols one by one. Instead of that use the reading of a whole line or token. As input/output can reach huge size it is recommended to use fast input/output methods: for example, prefer to use scanf/printf instead of cin/cout in C++, prefer to use BufferedReader/PrintWriter instead of Scanner/System.out in Java. Don't use the function input() in Python2 instead of it use the function raw_input().
The first line contains a non-negative integer *a*. The second line contains a non-negative integer *b*. The numbers *a*,<=*b* may contain leading zeroes. Each of them contains no more than 106 digits.
Print the symbol "&lt;" if *a*<=&lt;<=*b* and the symbol "&gt;" if *a*<=&gt;<=*b*. If the numbers are equal print the symbol "=".
[ "9\n10\n", "11\n10\n", "00012345\n12345\n", "0123\n9\n", "0123\n111\n" ]
[ "&lt;\n", "&gt;\n", "=\n", "&gt;\n", "&gt;\n" ]
none
0
[ { "input": "9\n10", "output": "<" }, { "input": "11\n10", "output": ">" }, { "input": "00012345\n12345", "output": "=" }, { "input": "0123\n9", "output": ">" }, { "input": "0123\n111", "output": ">" }, { "input": "9\n9", "output": "=" }, { "input": "0\n0000", "output": "=" }, { "input": "1213121\n1213121", "output": "=" }, { "input": "8631749422082281871941140403034638286979613893271246118706788645620907151504874585597378422393911017\n1460175633701201615285047975806206470993708143873675499262156511814213451040881275819636625899967479", "output": ">" }, { "input": "6421902501252475186372406731932548506197390793597574544727433297197476846519276598727359617092494798\n8", "output": ">" }, { "input": "9\n3549746075165939381145061479392284958612916596558639332310874529760172204736013341477640605383578772", "output": "<" }, { "input": "11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111\n11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111", "output": "=" }, { "input": "0000000001\n2", "output": "<" }, { "input": "1000000000000000000000000000000000\n1000000000000000000000000000000001", "output": "<" }, { "input": "123456123456123456123456123456123456123456123456123456123456123456\n123456123456123456123456123456123456123456123456123456123456123456123456123456", "output": "<" }, { "input": "1111111111111111111111111111111111111111\n2222222222222222222222222222222222222222", "output": "<" }, { "input": "123456789999999\n123456789999999", "output": "=" }, { "input": "111111111111111111111111111111\n222222222222222222222222222222", "output": "<" }, { "input": "1111111111111111111111111111111111111111111111111111111111111111111111\n1111111111111111111111111111111111111111111111111111111111111111111111", "output": "=" }, { "input": "587345873489573457357834\n47957438573458347574375348", "output": "<" }, { "input": "1111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111\n33333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333", "output": "<" }, { "input": "11111111111111111111111111111111111\n44444444444444444444444444444444444", "output": "<" }, { "input": "11111111111111111111111111111111111\n22222222222222222222222222222222222", "output": "<" }, { "input": "9999999999999999999999999999999999999999999999999999999999999999999\n99999999999999999999999999999999999999999999999999999999999999999999999999999999999999", "output": "<" }, { "input": "1\n2", "output": "<" }, { "input": "9\n0", "output": ">" }, { "input": "222222222222222222222222222222222222222222222222222222222\n22222222222222222222222222222222222222222222222222222222222", "output": "<" }, { "input": "66646464222222222222222222222222222222222222222222222222222222222222222\n111111111111111111111111111111111111111111111111111111111111111111111111111111111111", "output": "<" }, { "input": "222222222222222222222222222222222222222222222222222\n111111111111111111111111111111111111111111111111111111111111111", "output": "<" }, { "input": "11111111111111111111111111111111111111\n44444444444444444444444444444444444444", "output": "<" }, { "input": "01\n2", "output": "<" }, { "input": "00\n01", "output": "<" }, { "input": "99999999999999999999999999999999999999999999999\n99999999999999999999999999999999999999999999999", "output": "=" }, { "input": "43278947323248843213443272432\n793439250984509434324323453435435", "output": "<" }, { "input": "0\n1", "output": "<" }, { "input": "010\n011", "output": "<" }, { "input": "999999999999999999999999999999999999999999999999\n999999999999999999999999999999999999999999999999", "output": "=" }, { "input": "0001001\n0001010", "output": "<" }, { "input": "1111111111111111111111111111111111111111111111111111111111111\n1111111111111111111111111111111111111111111111111111111111111", "output": "=" }, { "input": "00000\n00", "output": "=" }, { "input": "999999999999999999999999999\n999999999999999999999999999", "output": "=" }, { "input": "999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999\n999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999", "output": "=" }, { "input": "001\n000000000010", "output": "<" }, { "input": "01\n10", "output": "<" }, { "input": "555555555555555555555555555555555555555555555555555555555555\n555555555555555555555555555555555555555555555555555555555555", "output": "=" }, { "input": "5555555555555555555555555555555555555555555555555\n5555555555555555555555555555555555555555555555555", "output": "=" }, { "input": "01\n02", "output": "<" }, { "input": "001111\n0001111", "output": "=" }, { "input": "55555555555555555555555555555555555555555555555555\n55555555555555555555555555555555555555555555555555", "output": "=" }, { "input": "1029301293019283091283091283091280391283\n1029301293019283091283091283091280391283", "output": "=" }, { "input": "001\n2", "output": "<" }, { "input": "000000000\n000000000", "output": "=" }, { "input": "000000\n10", "output": "<" }, { "input": "000000000000000\n001", "output": "<" }, { "input": "0000001\n2", "output": "<" }, { "input": "0000\n123", "output": "<" }, { "input": "951\n960", "output": "<" }, { "input": "002\n0001", "output": ">" }, { "input": "0000001\n01", "output": "=" }, { "input": "99999999999999999999999999999999999999999999999999999999999999\n99999999999999999999999999999999999999999999999999999999999999", "output": "=" }, { "input": "12345678901234567890123456789012345678901234567890123456789012\n12345678901234567890123456789012345678901234567890123456789012", "output": "=" }, { "input": "02\n01", "output": ">" }, { "input": "00000111111\n00000110111", "output": ">" }, { "input": "0123\n123", "output": "=" }, { "input": "123771237912798378912\n91239712798379812897389123123123123", "output": "<" }, { "input": "00001\n002", "output": "<" }, { "input": "0000000000000000000000000000000000000000000000000000000000000\n000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000", "output": "=" }, { "input": "000000001\n00002", "output": "<" }, { "input": "00002\n00003", "output": "<" }, { "input": "000123456\n123457", "output": "<" }, { "input": "01\n00", "output": ">" }, { "input": "00\n0", "output": "=" }, { "input": "10\n11", "output": "<" }, { "input": "0011\n12", "output": "<" }, { "input": "00\n1", "output": "<" }, { "input": "0\n0", "output": "=" }, { "input": "00\n10", "output": "<" }, { "input": "011\n10", "output": ">" }, { "input": "00011111111111111111111111111111111111000000000000000000000000000000000000000000000000000210000000000000000000000000000000000000000011000\n11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111112091", "output": "<" }, { "input": "0000001\n00", "output": ">" }, { "input": "01\n1", "output": "=" }, { "input": "010\n001", "output": ">" }, { "input": "100\n111", "output": "<" }, { "input": "1\n0", "output": ">" }, { "input": "000000\n000000000000000000000", "output": "=" }, { "input": "010101\n010101", "output": "=" }, { "input": "00000000000000000001111111111111111111111111111111111111111111111111111111\n11111111111111111111111", "output": ">" }, { "input": "0000000\n0", "output": "=" }, { "input": "187923712738712879387912839182381\n871279397127389781927389718923789178923897123", "output": "<" }, { "input": "0010\n030", "output": "<" } ]
1,638,994,372
2,147,483,647
Python 3
RUNTIME_ERROR
TESTS
0
15
0
t=int(input()) for i in range(t): x1,p1=input().split() x2,p2=input().split() if len(x1)+int(p1)>len(x2)+int(p2): print(">") elif len(x1)+int(p1)<len(x2)+int(p2): print("<") else: k1,k2=int(p1),int(p2) if k1>k2: t=k1-k2 while t>0: x1+='0' t-=1 else: p=k2-k1 while p>0: x2+='0' p-=1 # print(x1,x2) if int(x1)>int(x2): print(">") elif int(x1)<int(x2): print("<") else: print("=")
Title: Comparing Two Long Integers Time Limit: None seconds Memory Limit: None megabytes Problem Description: You are given two very long integers *a*,<=*b* (leading zeroes are allowed). You should check what number *a* or *b* is greater or determine that they are equal. The input size is very large so don't use the reading of symbols one by one. Instead of that use the reading of a whole line or token. As input/output can reach huge size it is recommended to use fast input/output methods: for example, prefer to use scanf/printf instead of cin/cout in C++, prefer to use BufferedReader/PrintWriter instead of Scanner/System.out in Java. Don't use the function input() in Python2 instead of it use the function raw_input(). Input Specification: The first line contains a non-negative integer *a*. The second line contains a non-negative integer *b*. The numbers *a*,<=*b* may contain leading zeroes. Each of them contains no more than 106 digits. Output Specification: Print the symbol "&lt;" if *a*<=&lt;<=*b* and the symbol "&gt;" if *a*<=&gt;<=*b*. If the numbers are equal print the symbol "=". Demo Input: ['9\n10\n', '11\n10\n', '00012345\n12345\n', '0123\n9\n', '0123\n111\n'] Demo Output: ['&lt;\n', '&gt;\n', '=\n', '&gt;\n', '&gt;\n'] Note: none
```python t=int(input()) for i in range(t): x1,p1=input().split() x2,p2=input().split() if len(x1)+int(p1)>len(x2)+int(p2): print(">") elif len(x1)+int(p1)<len(x2)+int(p2): print("<") else: k1,k2=int(p1),int(p2) if k1>k2: t=k1-k2 while t>0: x1+='0' t-=1 else: p=k2-k1 while p>0: x2+='0' p-=1 # print(x1,x2) if int(x1)>int(x2): print(">") elif int(x1)<int(x2): print("<") else: print("=") ```
-1
937
A
Olympiad
PROGRAMMING
800
[ "implementation", "sortings" ]
null
null
The recent All-Berland Olympiad in Informatics featured *n* participants with each scoring a certain amount of points. As the head of the programming committee, you are to determine the set of participants to be awarded with diplomas with respect to the following criteria: - At least one participant should get a diploma. - None of those with score equal to zero should get awarded. - When someone is awarded, all participants with score not less than his score should also be awarded. Determine the number of ways to choose a subset of participants that will receive the diplomas.
The first line contains a single integer *n* (1<=≤<=*n*<=≤<=100) — the number of participants. The next line contains a sequence of *n* integers *a*1,<=*a*2,<=...,<=*a**n* (0<=≤<=*a**i*<=≤<=600) — participants' scores. It's guaranteed that at least one participant has non-zero score.
Print a single integer — the desired number of ways.
[ "4\n1 3 3 2\n", "3\n1 1 1\n", "4\n42 0 0 42\n" ]
[ "3\n", "1\n", "1\n" ]
There are three ways to choose a subset in sample case one. 1. Only participants with 3 points will get diplomas. 1. Participants with 2 or 3 points will get diplomas. 1. Everyone will get a diploma! The only option in sample case two is to award everyone. Note that in sample case three participants with zero scores cannot get anything.
500
[ { "input": "4\n1 3 3 2", "output": "3" }, { "input": "3\n1 1 1", "output": "1" }, { "input": "4\n42 0 0 42", "output": "1" }, { "input": "10\n1 0 1 0 1 0 0 0 0 1", "output": "1" }, { "input": "10\n572 471 540 163 50 30 561 510 43 200", "output": "10" }, { "input": "100\n122 575 426 445 172 81 247 429 97 202 175 325 382 384 417 356 132 502 328 537 57 339 518 211 479 306 140 168 268 16 140 263 593 249 391 310 555 468 231 180 157 18 334 328 276 155 21 280 322 545 111 267 467 274 291 304 235 34 365 180 21 95 501 552 325 331 302 353 296 22 289 399 7 466 32 302 568 333 75 192 284 10 94 128 154 512 9 480 243 521 551 492 420 197 207 125 367 117 438 600", "output": "94" }, { "input": "100\n600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600", "output": "1" }, { "input": "78\n5 4 13 2 5 6 2 10 10 1 2 6 7 9 6 3 5 7 1 10 2 2 7 0 2 11 11 3 1 13 3 10 6 2 0 3 0 5 0 1 4 11 1 1 7 0 12 7 5 12 0 2 12 9 8 3 4 3 4 11 4 10 2 3 10 12 5 6 1 11 2 0 8 7 9 1 3 12", "output": "13" }, { "input": "34\n220 387 408 343 184 447 197 307 337 414 251 319 426 322 347 242 208 412 188 185 241 235 216 259 331 372 322 284 444 384 214 297 389 391", "output": "33" }, { "input": "100\n1 2 1 0 3 0 2 0 0 1 2 0 1 3 0 3 3 1 3 0 0 2 1 2 2 1 3 3 3 3 3 2 0 0 2 1 2 3 2 3 0 1 1 3 3 2 0 3 1 0 2 2 2 1 2 3 2 1 0 3 0 2 0 3 0 2 1 0 3 1 0 2 2 1 3 1 3 0 2 3 3 1 1 3 1 3 0 3 2 0 2 3 3 0 2 0 2 0 1 3", "output": "3" }, { "input": "100\n572 471 540 163 50 30 561 510 43 200 213 387 500 424 113 487 357 333 294 337 435 202 447 494 485 465 161 344 470 559 104 356 393 207 224 213 511 514 60 386 149 216 392 229 429 173 165 401 395 150 127 579 344 390 529 296 225 425 318 79 465 447 177 110 367 212 459 270 41 500 277 567 125 436 178 9 214 342 203 112 144 24 79 155 495 556 40 549 463 281 241 316 2 246 1 396 510 293 332 55", "output": "93" }, { "input": "99\n5 4 13 2 5 6 2 10 10 1 2 6 7 9 6 3 5 7 1 10 2 2 7 0 2 11 11 3 1 13 3 10 6 2 0 3 0 5 0 1 4 11 1 1 7 0 12 7 5 12 0 2 12 9 8 3 4 3 4 11 4 10 2 3 10 12 5 6 1 11 2 0 8 7 9 1 3 12 2 3 9 3 7 13 7 13 0 11 8 12 2 5 9 4 0 6 6 2 13", "output": "13" }, { "input": "99\n1 0 1 0 1 0 0 0 0 1 0 0 1 1 0 1 1 1 1 0 0 0 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1 0 1 0 1 1 1 1 0 0 1 1 0 0 0 0 1 0 1 0 1 0 1 0 0 0 1 0 0 1 0 1 1 0 0 0 1 1 1 1 0 0 1 1 1 1 1 1 1 0 1 0 0 0 1 1 0 0 0 0 0 1", "output": "1" }, { "input": "99\n21 74 25 44 71 80 46 28 96 1 74 24 81 83 16 55 31 1 27 36 56 38 17 10 78 5 39 67 67 15 39 62 92 48 90 9 54 67 30 79 56 17 33 27 75 54 20 79 21 44 10 66 66 73 90 3 34 33 64 79 20 94 0 51 24 30 1 52 95 21 88 98 6 65 31 1 67 32 74 91 83 9 93 27 53 11 8 79 42 20 50 91 19 96 6 24 66 16 37", "output": "61" }, { "input": "2\n0 1", "output": "1" }, { "input": "2\n0 600", "output": "1" }, { "input": "4\n1 1 1 2", "output": "2" }, { "input": "4\n0 0 1 2", "output": "2" }, { "input": "1\n5", "output": "1" }, { "input": "2\n0 5", "output": "1" }, { "input": "5\n1 0 0 1 2", "output": "2" } ]
1,664,009,257
2,147,483,647
Python 3
OK
TESTS
21
46
0
x = int(input()) l = list(map(int,input().split())) l = [i for i in l if(i!=0)] print(len(set(l)))
Title: Olympiad Time Limit: None seconds Memory Limit: None megabytes Problem Description: The recent All-Berland Olympiad in Informatics featured *n* participants with each scoring a certain amount of points. As the head of the programming committee, you are to determine the set of participants to be awarded with diplomas with respect to the following criteria: - At least one participant should get a diploma. - None of those with score equal to zero should get awarded. - When someone is awarded, all participants with score not less than his score should also be awarded. Determine the number of ways to choose a subset of participants that will receive the diplomas. Input Specification: The first line contains a single integer *n* (1<=≤<=*n*<=≤<=100) — the number of participants. The next line contains a sequence of *n* integers *a*1,<=*a*2,<=...,<=*a**n* (0<=≤<=*a**i*<=≤<=600) — participants' scores. It's guaranteed that at least one participant has non-zero score. Output Specification: Print a single integer — the desired number of ways. Demo Input: ['4\n1 3 3 2\n', '3\n1 1 1\n', '4\n42 0 0 42\n'] Demo Output: ['3\n', '1\n', '1\n'] Note: There are three ways to choose a subset in sample case one. 1. Only participants with 3 points will get diplomas. 1. Participants with 2 or 3 points will get diplomas. 1. Everyone will get a diploma! The only option in sample case two is to award everyone. Note that in sample case three participants with zero scores cannot get anything.
```python x = int(input()) l = list(map(int,input().split())) l = [i for i in l if(i!=0)] print(len(set(l))) ```
3
47
A
Triangular numbers
PROGRAMMING
800
[ "brute force", "math" ]
A. Triangular numbers
2
256
A triangular number is the number of dots in an equilateral triangle uniformly filled with dots. For example, three dots can be arranged in a triangle; thus three is a triangular number. The *n*-th triangular number is the number of dots in a triangle with *n* dots on a side. . You can learn more about these numbers from Wikipedia (http://en.wikipedia.org/wiki/Triangular_number). Your task is to find out if a given integer is a triangular number.
The first line contains the single number *n* (1<=≤<=*n*<=≤<=500) — the given integer.
If the given integer is a triangular number output YES, otherwise output NO.
[ "1\n", "2\n", "3\n" ]
[ "YES\n", "NO\n", "YES\n" ]
none
500
[ { "input": "1", "output": "YES" }, { "input": "2", "output": "NO" }, { "input": "3", "output": "YES" }, { "input": "4", "output": "NO" }, { "input": "5", "output": "NO" }, { "input": "6", "output": "YES" }, { "input": "7", "output": "NO" }, { "input": "8", "output": "NO" }, { "input": "12", "output": "NO" }, { "input": "10", "output": "YES" }, { "input": "11", "output": "NO" }, { "input": "9", "output": "NO" }, { "input": "14", "output": "NO" }, { "input": "15", "output": "YES" }, { "input": "16", "output": "NO" }, { "input": "20", "output": "NO" }, { "input": "21", "output": "YES" }, { "input": "22", "output": "NO" }, { "input": "121", "output": "NO" }, { "input": "135", "output": "NO" }, { "input": "136", "output": "YES" }, { "input": "137", "output": "NO" }, { "input": "152", "output": "NO" }, { "input": "153", "output": "YES" }, { "input": "154", "output": "NO" }, { "input": "171", "output": "YES" }, { "input": "189", "output": "NO" }, { "input": "190", "output": "YES" }, { "input": "191", "output": "NO" }, { "input": "210", "output": "YES" }, { "input": "211", "output": "NO" }, { "input": "231", "output": "YES" }, { "input": "232", "output": "NO" }, { "input": "252", "output": "NO" }, { "input": "253", "output": "YES" }, { "input": "254", "output": "NO" }, { "input": "275", "output": "NO" }, { "input": "276", "output": "YES" }, { "input": "277", "output": "NO" }, { "input": "299", "output": "NO" }, { "input": "300", "output": "YES" }, { "input": "301", "output": "NO" }, { "input": "324", "output": "NO" }, { "input": "325", "output": "YES" }, { "input": "326", "output": "NO" }, { "input": "350", "output": "NO" }, { "input": "351", "output": "YES" }, { "input": "352", "output": "NO" }, { "input": "377", "output": "NO" }, { "input": "378", "output": "YES" }, { "input": "406", "output": "YES" }, { "input": "434", "output": "NO" }, { "input": "435", "output": "YES" }, { "input": "464", "output": "NO" }, { "input": "465", "output": "YES" }, { "input": "495", "output": "NO" }, { "input": "496", "output": "YES" }, { "input": "497", "output": "NO" }, { "input": "331", "output": "NO" }, { "input": "413", "output": "NO" }, { "input": "177", "output": "NO" }, { "input": "122", "output": "NO" }, { "input": "478", "output": "NO" }, { "input": "188", "output": "NO" }, { "input": "21", "output": "YES" }, { "input": "474", "output": "NO" }, { "input": "21", "output": "YES" }, { "input": "48", "output": "NO" }, { "input": "498", "output": "NO" }, { "input": "499", "output": "NO" }, { "input": "500", "output": "NO" } ]
1,604,927,609
2,147,483,647
Python 3
COMPILATION_ERROR
TESTS
0
0
0
import sys import math input = sys.stdin.readline n = 2 * (int(input())) if ((-1 + (1 + math.sqrt(4 * 1 * float(n))))/2).is_integer(): print("YES") else print("NO")
Title: Triangular numbers Time Limit: 2 seconds Memory Limit: 256 megabytes Problem Description: A triangular number is the number of dots in an equilateral triangle uniformly filled with dots. For example, three dots can be arranged in a triangle; thus three is a triangular number. The *n*-th triangular number is the number of dots in a triangle with *n* dots on a side. . You can learn more about these numbers from Wikipedia (http://en.wikipedia.org/wiki/Triangular_number). Your task is to find out if a given integer is a triangular number. Input Specification: The first line contains the single number *n* (1<=≤<=*n*<=≤<=500) — the given integer. Output Specification: If the given integer is a triangular number output YES, otherwise output NO. Demo Input: ['1\n', '2\n', '3\n'] Demo Output: ['YES\n', 'NO\n', 'YES\n'] Note: none
```python import sys import math input = sys.stdin.readline n = 2 * (int(input())) if ((-1 + (1 + math.sqrt(4 * 1 * float(n))))/2).is_integer(): print("YES") else print("NO") ```
-1
30
A
Accounting
PROGRAMMING
1,400
[ "brute force", "math" ]
A. Accounting
2
256
A long time ago in some far country lived king Copa. After the recent king's reform, he got so large powers that started to keep the books by himself. The total income *A* of his kingdom during 0-th year is known, as well as the total income *B* during *n*-th year (these numbers can be negative — it means that there was a loss in the correspondent year). King wants to show financial stability. To do this, he needs to find common coefficient *X* — the coefficient of income growth during one year. This coefficient should satisfy the equation: Surely, the king is not going to do this job by himself, and demands you to find such number *X*. It is necessary to point out that the fractional numbers are not used in kingdom's economy. That's why all input numbers as well as coefficient *X* must be integers. The number *X* may be zero or negative.
The input contains three integers *A*, *B*, *n* (|*A*|,<=|*B*|<=≤<=1000, 1<=≤<=*n*<=≤<=10).
Output the required integer coefficient *X*, or «No solution», if such a coefficient does not exist or it is fractional. If there are several possible solutions, output any of them.
[ "2 18 2\n", "-1 8 3\n", "0 0 10\n", "1 16 5\n" ]
[ "3", "-2", "5", "No solution" ]
none
500
[ { "input": "2 18 2", "output": "3" }, { "input": "-1 8 3", "output": "-2" }, { "input": "0 0 10", "output": "5" }, { "input": "1 16 5", "output": "No solution" }, { "input": "0 1 2", "output": "No solution" }, { "input": "3 0 4", "output": "0" }, { "input": "1 1000 1", "output": "1000" }, { "input": "7 896 7", "output": "2" }, { "input": "4 972 1", "output": "243" }, { "input": "-1 -1 5", "output": "1" }, { "input": "-1 0 4", "output": "0" }, { "input": "-7 0 1", "output": "0" }, { "input": "-5 -5 3", "output": "1" }, { "input": "-5 -5 9", "output": "1" }, { "input": "-5 -5 6", "output": "1" }, { "input": "-4 0 1", "output": "0" }, { "input": "-5 0 3", "output": "0" }, { "input": "-4 4 9", "output": "-1" }, { "input": "10 0 6", "output": "0" }, { "input": "-5 3 4", "output": "No solution" }, { "input": "0 3 6", "output": "No solution" }, { "input": "3 6 10", "output": "No solution" }, { "input": "-3 7 5", "output": "No solution" }, { "input": "-526 526 1", "output": "-1" }, { "input": "-373 373 3", "output": "-1" }, { "input": "-141 0 8", "output": "0" }, { "input": "7 175 1", "output": "25" }, { "input": "-5 -560 1", "output": "112" }, { "input": "-1 -512 10", "output": "No solution" }, { "input": "-3 -768 8", "output": "2" }, { "input": "-3 -768 7", "output": "No solution" }, { "input": "-3 -768 9", "output": "No solution" }, { "input": "-3 -768 4", "output": "4" }, { "input": "4 972 4", "output": "No solution" }, { "input": "4 972 5", "output": "3" }, { "input": "4 972 6", "output": "No solution" }, { "input": "4 972 1", "output": "243" }, { "input": "4 972 2", "output": "No solution" }, { "input": "1 1000 1", "output": "1000" }, { "input": "1 961 2", "output": "31" }, { "input": "1 1000 3", "output": "10" }, { "input": "1 625 4", "output": "5" }, { "input": "4 972 5", "output": "3" }, { "input": "1 729 6", "output": "3" }, { "input": "7 896 7", "output": "2" }, { "input": "3 768 8", "output": "2" }, { "input": "1 512 9", "output": "2" }, { "input": "1 1000 1", "output": "1000" }, { "input": "1 961 2", "output": "31" }, { "input": "1 1000 3", "output": "10" }, { "input": "1 625 4", "output": "5" }, { "input": "4 972 5", "output": "3" }, { "input": "1 729 6", "output": "3" }, { "input": "7 896 7", "output": "2" }, { "input": "3 768 8", "output": "2" }, { "input": "1 512 9", "output": "2" }, { "input": "1 1000 1", "output": "1000" }, { "input": "1 961 2", "output": "31" }, { "input": "1 1000 3", "output": "10" }, { "input": "1 625 4", "output": "5" }, { "input": "4 972 5", "output": "3" }, { "input": "1 729 6", "output": "3" }, { "input": "7 896 7", "output": "2" }, { "input": "3 768 8", "output": "2" }, { "input": "1 512 9", "output": "2" }, { "input": "1 1 5", "output": "1" }, { "input": "1 1 4", "output": "1" }, { "input": "1 -1 1", "output": "-1" } ]
1,552,907,580
2,460
Python 3
WRONG_ANSWER
TESTS
40
218
0
import cmath def floor(x) : return (x-int(x)) a , b , k = map(int,input().split()) if (a==0) : if a==b : exit(print("1")) else : exit(print("No solution")) if b/a < 0 and k%2 == 0 : exit(print("No solution")) t = pow(b/a , 1/k) t = complex(t) t1 = t.real t2 = t.imag t = pow (t1**2+t2**2 , 0.5) #print(3.0-int(3.0)) if floor(t) == 0 : p = b/a if p < 0 : p=-1 else : p =1 print(p*int(t)) else : print("No solution")
Title: Accounting Time Limit: 2 seconds Memory Limit: 256 megabytes Problem Description: A long time ago in some far country lived king Copa. After the recent king's reform, he got so large powers that started to keep the books by himself. The total income *A* of his kingdom during 0-th year is known, as well as the total income *B* during *n*-th year (these numbers can be negative — it means that there was a loss in the correspondent year). King wants to show financial stability. To do this, he needs to find common coefficient *X* — the coefficient of income growth during one year. This coefficient should satisfy the equation: Surely, the king is not going to do this job by himself, and demands you to find such number *X*. It is necessary to point out that the fractional numbers are not used in kingdom's economy. That's why all input numbers as well as coefficient *X* must be integers. The number *X* may be zero or negative. Input Specification: The input contains three integers *A*, *B*, *n* (|*A*|,<=|*B*|<=≤<=1000, 1<=≤<=*n*<=≤<=10). Output Specification: Output the required integer coefficient *X*, or «No solution», if such a coefficient does not exist or it is fractional. If there are several possible solutions, output any of them. Demo Input: ['2 18 2\n', '-1 8 3\n', '0 0 10\n', '1 16 5\n'] Demo Output: ['3', '-2', '5', 'No solution'] Note: none
```python import cmath def floor(x) : return (x-int(x)) a , b , k = map(int,input().split()) if (a==0) : if a==b : exit(print("1")) else : exit(print("No solution")) if b/a < 0 and k%2 == 0 : exit(print("No solution")) t = pow(b/a , 1/k) t = complex(t) t1 = t.real t2 = t.imag t = pow (t1**2+t2**2 , 0.5) #print(3.0-int(3.0)) if floor(t) == 0 : p = b/a if p < 0 : p=-1 else : p =1 print(p*int(t)) else : print("No solution") ```
0
200
B
Drinks
PROGRAMMING
800
[ "implementation", "math" ]
null
null
Little Vasya loves orange juice very much. That's why any food and drink in his kitchen necessarily contains orange juice. There are *n* drinks in his fridge, the volume fraction of orange juice in the *i*-th drink equals *p**i* percent. One day Vasya decided to make himself an orange cocktail. He took equal proportions of each of the *n* drinks and mixed them. Then he wondered, how much orange juice the cocktail has. Find the volume fraction of orange juice in the final drink.
The first input line contains a single integer *n* (1<=≤<=*n*<=≤<=100) — the number of orange-containing drinks in Vasya's fridge. The second line contains *n* integers *p**i* (0<=≤<=*p**i*<=≤<=100) — the volume fraction of orange juice in the *i*-th drink, in percent. The numbers are separated by a space.
Print the volume fraction in percent of orange juice in Vasya's cocktail. The answer will be considered correct if the absolute or relative error does not exceed 10<=<=-<=4.
[ "3\n50 50 100\n", "4\n0 25 50 75\n" ]
[ "66.666666666667\n", "37.500000000000\n" ]
Note to the first sample: let's assume that Vasya takes *x* milliliters of each drink from the fridge. Then the volume of pure juice in the cocktail will equal <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/c1fac6e64d3a8ee6a5ac138cbe51e60039b22473.png" style="max-width: 100.0%;max-height: 100.0%;"/> milliliters. The total cocktail's volume equals 3·*x* milliliters, so the volume fraction of the juice in the cocktail equals <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/ceb0664e55a1f9f5fa1243ec74680a4665a4d58d.png" style="max-width: 100.0%;max-height: 100.0%;"/>, that is, 66.(6) percent.
500
[ { "input": "3\n50 50 100", "output": "66.666666666667" }, { "input": "4\n0 25 50 75", "output": "37.500000000000" }, { "input": "3\n0 1 8", "output": "3.000000000000" }, { "input": "5\n96 89 93 95 70", "output": "88.600000000000" }, { "input": "7\n62 41 78 4 38 39 75", "output": "48.142857142857" }, { "input": "13\n2 22 7 0 1 17 3 17 11 2 21 26 22", "output": "11.615384615385" }, { "input": "21\n5 4 11 7 0 5 45 21 0 14 51 6 0 16 10 19 8 9 7 12 18", "output": "12.761904761905" }, { "input": "26\n95 70 93 74 94 70 91 70 39 79 80 57 87 75 37 93 48 67 51 90 85 26 23 64 66 84", "output": "69.538461538462" }, { "input": "29\n84 99 72 96 83 92 95 98 97 93 76 84 99 93 81 76 93 99 99 100 95 100 96 95 97 100 71 98 94", "output": "91.551724137931" }, { "input": "33\n100 99 100 100 99 99 99 100 100 100 99 99 99 100 100 100 100 99 100 99 100 100 97 100 100 100 100 100 100 100 98 98 100", "output": "99.515151515152" }, { "input": "34\n14 9 10 5 4 26 18 23 0 1 0 20 18 15 2 2 3 5 14 1 9 4 2 15 7 1 7 19 10 0 0 11 0 2", "output": "8.147058823529" }, { "input": "38\n99 98 100 100 99 92 99 99 98 84 88 94 86 99 93 100 98 99 65 98 85 84 64 97 96 89 79 96 91 84 99 93 72 96 94 97 96 93", "output": "91.921052631579" }, { "input": "52\n100 94 99 98 99 99 99 95 97 97 98 100 100 98 97 100 98 90 100 99 97 94 90 98 100 100 90 99 100 95 98 95 94 85 97 94 96 94 99 99 99 98 100 100 94 99 99 100 98 87 100 100", "output": "97.019230769231" }, { "input": "58\n10 70 12 89 1 82 100 53 40 100 21 69 92 91 67 66 99 77 25 48 8 63 93 39 46 79 82 14 44 42 1 79 0 69 56 73 67 17 59 4 65 80 20 60 77 52 3 61 16 76 33 18 46 100 28 59 9 6", "output": "50.965517241379" }, { "input": "85\n7 8 1 16 0 15 1 7 0 11 15 6 2 12 2 8 9 8 2 0 3 7 15 7 1 8 5 7 2 26 0 3 11 1 8 10 31 0 7 6 1 8 1 0 9 14 4 8 7 16 9 1 0 16 10 9 6 1 1 4 2 7 4 5 4 1 20 6 16 16 1 1 10 17 8 12 14 19 3 8 1 7 10 23 10", "output": "7.505882352941" }, { "input": "74\n5 3 0 7 13 10 12 10 18 5 0 18 2 13 7 17 2 7 5 2 40 19 0 2 2 3 0 45 4 20 0 4 2 8 1 19 3 9 17 1 15 0 16 1 9 4 0 9 32 2 6 18 11 18 1 15 16 12 7 19 5 3 9 28 26 8 3 10 33 29 4 13 28 6", "output": "10.418918918919" }, { "input": "98\n42 9 21 11 9 11 22 12 52 20 10 6 56 9 26 27 1 29 29 14 38 17 41 21 7 45 15 5 29 4 51 20 6 8 34 17 13 53 30 45 0 10 16 41 4 5 6 4 14 2 31 6 0 11 13 3 3 43 13 36 51 0 7 16 28 23 8 36 30 22 8 54 21 45 39 4 50 15 1 30 17 8 18 10 2 20 16 50 6 68 15 6 38 7 28 8 29 41", "output": "20.928571428571" }, { "input": "99\n60 65 40 63 57 44 30 84 3 10 39 53 40 45 72 20 76 11 61 32 4 26 97 55 14 57 86 96 34 69 52 22 26 79 31 4 21 35 82 47 81 28 72 70 93 84 40 4 69 39 83 58 30 7 32 73 74 12 92 23 61 88 9 58 70 32 75 40 63 71 46 55 39 36 14 97 32 16 95 41 28 20 85 40 5 50 50 50 75 6 10 64 38 19 77 91 50 72 96", "output": "49.191919191919" }, { "input": "99\n100 88 40 30 81 80 91 98 69 73 88 96 79 58 14 100 87 84 52 91 83 88 72 83 99 35 54 80 46 79 52 72 85 32 99 39 79 79 45 83 88 50 75 75 50 59 65 75 97 63 92 58 89 46 93 80 89 33 69 86 99 99 66 85 72 74 79 98 85 95 46 63 77 97 49 81 89 39 70 76 68 91 90 56 31 93 51 87 73 95 74 69 87 95 57 68 49 95 92", "output": "73.484848484848" }, { "input": "100\n18 15 17 0 3 3 0 4 1 8 2 22 7 21 5 0 0 8 3 16 1 0 2 9 9 3 10 8 17 20 5 4 8 12 2 3 1 1 3 2 23 0 1 0 5 7 4 0 1 3 3 4 25 2 2 14 8 4 9 3 0 11 0 3 12 3 14 16 7 7 14 1 17 9 0 35 42 12 3 1 25 9 3 8 5 3 2 8 22 14 11 6 3 9 6 8 7 7 4 6", "output": "7.640000000000" }, { "input": "100\n88 77 65 87 100 63 91 96 92 89 77 95 76 80 84 83 100 71 85 98 26 54 74 78 69 59 96 86 88 91 95 26 52 88 64 70 84 81 76 84 94 82 100 66 97 98 43 94 59 94 100 80 98 73 69 83 94 70 74 79 91 31 62 88 69 55 62 97 40 64 62 83 87 85 50 90 69 72 67 49 100 51 69 96 81 90 83 91 86 34 79 69 100 66 97 98 47 97 74 100", "output": "77.660000000000" }, { "input": "100\n91 92 90 91 98 84 85 96 83 98 99 87 94 70 87 75 86 90 89 88 82 83 91 94 88 86 90 99 100 98 97 75 95 99 95 100 91 92 76 93 95 97 88 93 95 81 96 89 88 100 98 87 90 96 100 99 58 90 96 77 92 82 100 100 93 93 98 99 79 88 97 95 98 66 96 83 96 100 99 92 98 98 92 93 100 97 98 100 98 97 100 100 94 90 99 100 98 79 80 81", "output": "91.480000000000" }, { "input": "1\n0", "output": "0.000000000000" }, { "input": "1\n100", "output": "100.000000000000" }, { "input": "1\n78", "output": "78.000000000000" }, { "input": "2\n0 100", "output": "50.000000000000" }, { "input": "2\n100 100", "output": "100.000000000000" }, { "input": "5\n0 0 0 0 1", "output": "0.200000000000" }, { "input": "100\n100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 99", "output": "99.990000000000" }, { "input": "100\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1", "output": "0.010000000000" }, { "input": "5\n100 100 100 100 100", "output": "100.000000000000" } ]
1,682,262,024
2,147,483,647
PyPy 3-64
OK
TESTS
31
124
0
n=int(input()) p=list(map(int,input().split())) i=0 sum=0 while i<n: sum=sum+p[i] i=i+1 b=(sum/(n*100))*100 b=round(b,5) print(b)
Title: Drinks Time Limit: None seconds Memory Limit: None megabytes Problem Description: Little Vasya loves orange juice very much. That's why any food and drink in his kitchen necessarily contains orange juice. There are *n* drinks in his fridge, the volume fraction of orange juice in the *i*-th drink equals *p**i* percent. One day Vasya decided to make himself an orange cocktail. He took equal proportions of each of the *n* drinks and mixed them. Then he wondered, how much orange juice the cocktail has. Find the volume fraction of orange juice in the final drink. Input Specification: The first input line contains a single integer *n* (1<=≤<=*n*<=≤<=100) — the number of orange-containing drinks in Vasya's fridge. The second line contains *n* integers *p**i* (0<=≤<=*p**i*<=≤<=100) — the volume fraction of orange juice in the *i*-th drink, in percent. The numbers are separated by a space. Output Specification: Print the volume fraction in percent of orange juice in Vasya's cocktail. The answer will be considered correct if the absolute or relative error does not exceed 10<=<=-<=4. Demo Input: ['3\n50 50 100\n', '4\n0 25 50 75\n'] Demo Output: ['66.666666666667\n', '37.500000000000\n'] Note: Note to the first sample: let's assume that Vasya takes *x* milliliters of each drink from the fridge. Then the volume of pure juice in the cocktail will equal <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/c1fac6e64d3a8ee6a5ac138cbe51e60039b22473.png" style="max-width: 100.0%;max-height: 100.0%;"/> milliliters. The total cocktail's volume equals 3·*x* milliliters, so the volume fraction of the juice in the cocktail equals <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/ceb0664e55a1f9f5fa1243ec74680a4665a4d58d.png" style="max-width: 100.0%;max-height: 100.0%;"/>, that is, 66.(6) percent.
```python n=int(input()) p=list(map(int,input().split())) i=0 sum=0 while i<n: sum=sum+p[i] i=i+1 b=(sum/(n*100))*100 b=round(b,5) print(b) ```
3
723
A
The New Year: Meeting Friends
PROGRAMMING
800
[ "implementation", "math", "sortings" ]
null
null
There are three friend living on the straight line *Ox* in Lineland. The first friend lives at the point *x*1, the second friend lives at the point *x*2, and the third friend lives at the point *x*3. They plan to celebrate the New Year together, so they need to meet at one point. What is the minimum total distance they have to travel in order to meet at some point and celebrate the New Year? It's guaranteed that the optimal answer is always integer.
The first line of the input contains three distinct integers *x*1, *x*2 and *x*3 (1<=≤<=*x*1,<=*x*2,<=*x*3<=≤<=100) — the coordinates of the houses of the first, the second and the third friends respectively.
Print one integer — the minimum total distance the friends need to travel in order to meet together.
[ "7 1 4\n", "30 20 10\n" ]
[ "6\n", "20\n" ]
In the first sample, friends should meet at the point 4. Thus, the first friend has to travel the distance of 3 (from the point 7 to the point 4), the second friend also has to travel the distance of 3 (from the point 1 to the point 4), while the third friend should not go anywhere because he lives at the point 4.
500
[ { "input": "7 1 4", "output": "6" }, { "input": "30 20 10", "output": "20" }, { "input": "1 4 100", "output": "99" }, { "input": "100 1 91", "output": "99" }, { "input": "1 45 100", "output": "99" }, { "input": "1 2 3", "output": "2" }, { "input": "71 85 88", "output": "17" }, { "input": "30 38 99", "output": "69" }, { "input": "23 82 95", "output": "72" }, { "input": "22 41 47", "output": "25" }, { "input": "9 94 77", "output": "85" }, { "input": "1 53 51", "output": "52" }, { "input": "25 97 93", "output": "72" }, { "input": "42 53 51", "output": "11" }, { "input": "81 96 94", "output": "15" }, { "input": "21 5 93", "output": "88" }, { "input": "50 13 75", "output": "62" }, { "input": "41 28 98", "output": "70" }, { "input": "69 46 82", "output": "36" }, { "input": "87 28 89", "output": "61" }, { "input": "44 45 40", "output": "5" }, { "input": "86 97 68", "output": "29" }, { "input": "43 92 30", "output": "62" }, { "input": "16 70 1", "output": "69" }, { "input": "40 46 19", "output": "27" }, { "input": "71 38 56", "output": "33" }, { "input": "82 21 80", "output": "61" }, { "input": "75 8 35", "output": "67" }, { "input": "75 24 28", "output": "51" }, { "input": "78 23 56", "output": "55" }, { "input": "85 31 10", "output": "75" }, { "input": "76 50 9", "output": "67" }, { "input": "95 37 34", "output": "61" }, { "input": "84 61 35", "output": "49" }, { "input": "87 85 37", "output": "50" }, { "input": "1 3 2", "output": "2" }, { "input": "4 2 6", "output": "4" }, { "input": "6 9 3", "output": "6" }, { "input": "12 4 8", "output": "8" }, { "input": "15 10 5", "output": "10" }, { "input": "1 50 17", "output": "49" }, { "input": "10 5 15", "output": "10" }, { "input": "8 1 9", "output": "8" }, { "input": "3 5 4", "output": "2" }, { "input": "2 1 3", "output": "2" }, { "input": "1 8 2", "output": "7" }, { "input": "1 100 2", "output": "99" }, { "input": "1 4 6", "output": "5" } ]
1,683,502,693
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
2
30
0
x = input().split() mid, max_x, min_x = 0, int(max(x)), int(min(x)) for i in x: if i < max(x) and i < min(x): mid = int(i) print((max_x-mid)+(mid-min_x))
Title: The New Year: Meeting Friends Time Limit: None seconds Memory Limit: None megabytes Problem Description: There are three friend living on the straight line *Ox* in Lineland. The first friend lives at the point *x*1, the second friend lives at the point *x*2, and the third friend lives at the point *x*3. They plan to celebrate the New Year together, so they need to meet at one point. What is the minimum total distance they have to travel in order to meet at some point and celebrate the New Year? It's guaranteed that the optimal answer is always integer. Input Specification: The first line of the input contains three distinct integers *x*1, *x*2 and *x*3 (1<=≤<=*x*1,<=*x*2,<=*x*3<=≤<=100) — the coordinates of the houses of the first, the second and the third friends respectively. Output Specification: Print one integer — the minimum total distance the friends need to travel in order to meet together. Demo Input: ['7 1 4\n', '30 20 10\n'] Demo Output: ['6\n', '20\n'] Note: In the first sample, friends should meet at the point 4. Thus, the first friend has to travel the distance of 3 (from the point 7 to the point 4), the second friend also has to travel the distance of 3 (from the point 1 to the point 4), while the third friend should not go anywhere because he lives at the point 4.
```python x = input().split() mid, max_x, min_x = 0, int(max(x)), int(min(x)) for i in x: if i < max(x) and i < min(x): mid = int(i) print((max_x-mid)+(mid-min_x)) ```
0
353
A
Domino
PROGRAMMING
1,200
[ "implementation", "math" ]
null
null
Valera has got *n* domino pieces in a row. Each piece consists of two halves — the upper one and the lower one. Each of the halves contains a number from 1 to 6. Valera loves even integers very much, so he wants the sum of the numbers on the upper halves and the sum of the numbers on the lower halves to be even. To do that, Valera can rotate the dominoes by 180 degrees. After the rotation the upper and the lower halves swap places. This action takes one second. Help Valera find out the minimum time he must spend rotating dominoes to make his wish come true.
The first line contains integer *n* (1<=≤<=*n*<=≤<=100), denoting the number of dominoes Valera has. Next *n* lines contain two space-separated integers *x**i*,<=*y**i* (1<=≤<=*x**i*,<=*y**i*<=≤<=6). Number *x**i* is initially written on the upper half of the *i*-th domino, *y**i* is initially written on the lower half.
Print a single number — the minimum required number of seconds. If Valera can't do the task in any time, print <=-<=1.
[ "2\n4 2\n6 4\n", "1\n2 3\n", "3\n1 4\n2 3\n4 4\n" ]
[ "0\n", "-1\n", "1\n" ]
In the first test case the sum of the numbers on the upper halves equals 10 and the sum of the numbers on the lower halves equals 6. Both numbers are even, so Valera doesn't required to do anything. In the second sample Valera has only one piece of domino. It is written 3 on the one of its halves, therefore one of the sums will always be odd. In the third case Valera can rotate the first piece, and after that the sum on the upper halves will be equal to 10, and the sum on the lower halves will be equal to 8.
500
[ { "input": "2\n4 2\n6 4", "output": "0" }, { "input": "1\n2 3", "output": "-1" }, { "input": "3\n1 4\n2 3\n4 4", "output": "1" }, { "input": "5\n5 4\n5 4\n1 5\n5 5\n3 3", "output": "1" }, { "input": "20\n1 3\n5 2\n5 2\n2 6\n2 4\n1 1\n1 3\n1 4\n2 6\n4 2\n5 6\n2 2\n6 2\n4 3\n2 1\n6 2\n6 5\n4 5\n2 4\n1 4", "output": "-1" }, { "input": "100\n2 3\n2 4\n3 3\n1 4\n5 2\n5 4\n6 6\n3 4\n1 1\n4 2\n5 1\n5 5\n5 3\n3 6\n4 1\n1 6\n1 1\n3 2\n4 5\n6 1\n6 4\n1 1\n3 4\n3 3\n2 2\n1 1\n4 4\n6 4\n3 2\n5 2\n6 4\n3 2\n3 5\n4 4\n1 4\n5 2\n3 4\n1 4\n2 2\n5 6\n3 5\n6 1\n5 5\n1 6\n6 3\n1 4\n1 5\n5 5\n4 1\n3 2\n4 1\n5 5\n5 5\n1 5\n1 2\n6 4\n1 3\n3 6\n4 3\n3 5\n6 4\n2 6\n5 5\n1 4\n2 2\n2 3\n5 1\n2 5\n1 2\n2 6\n5 5\n4 6\n1 4\n3 6\n2 3\n6 1\n6 5\n3 2\n6 4\n4 5\n4 5\n2 6\n1 3\n6 2\n1 2\n2 3\n4 3\n5 4\n3 4\n1 6\n6 6\n2 4\n4 1\n3 1\n2 6\n5 4\n1 2\n6 5\n3 6\n2 4", "output": "-1" }, { "input": "1\n2 4", "output": "0" }, { "input": "1\n1 1", "output": "-1" }, { "input": "1\n1 2", "output": "-1" }, { "input": "2\n1 1\n3 3", "output": "0" }, { "input": "2\n1 1\n2 2", "output": "-1" }, { "input": "2\n1 1\n1 2", "output": "-1" }, { "input": "5\n1 2\n6 6\n1 1\n3 3\n6 1", "output": "1" }, { "input": "5\n5 4\n2 6\n6 2\n1 4\n6 2", "output": "0" }, { "input": "10\n4 1\n3 2\n1 2\n2 6\n3 5\n2 1\n5 2\n4 6\n5 6\n3 1", "output": "0" }, { "input": "10\n6 1\n4 4\n2 6\n6 5\n3 6\n6 3\n2 4\n5 1\n1 6\n1 5", "output": "-1" }, { "input": "15\n1 2\n5 1\n6 4\n5 1\n1 6\n2 6\n3 1\n6 4\n3 1\n2 1\n6 4\n3 5\n6 2\n1 6\n1 1", "output": "1" }, { "input": "15\n3 3\n2 1\n5 4\n3 3\n5 3\n5 4\n2 5\n1 3\n3 2\n3 3\n3 5\n2 5\n4 1\n2 3\n5 4", "output": "-1" }, { "input": "20\n1 5\n6 4\n4 3\n6 2\n1 1\n1 5\n6 3\n2 3\n3 6\n3 6\n3 6\n2 5\n4 3\n4 6\n5 5\n4 6\n3 4\n4 2\n3 3\n5 2", "output": "0" }, { "input": "20\n2 1\n6 5\n3 1\n2 5\n3 5\n4 1\n1 1\n5 4\n5 1\n2 4\n1 5\n3 2\n1 2\n3 5\n5 2\n1 2\n1 3\n4 2\n2 3\n4 5", "output": "-1" }, { "input": "25\n4 1\n6 3\n1 3\n2 3\n2 4\n6 6\n4 2\n4 2\n1 5\n5 4\n1 2\n2 5\n3 6\n4 1\n3 4\n2 6\n6 1\n5 6\n6 6\n4 2\n1 5\n3 3\n3 3\n6 5\n1 4", "output": "-1" }, { "input": "25\n5 5\n4 3\n2 5\n4 3\n4 6\n4 2\n5 6\n2 1\n5 4\n6 6\n1 3\n1 4\n2 3\n5 6\n5 4\n5 6\n5 4\n6 3\n3 5\n1 3\n2 5\n2 2\n4 4\n2 1\n4 4", "output": "-1" }, { "input": "30\n3 5\n2 5\n1 6\n1 6\n2 4\n5 5\n5 4\n5 6\n5 4\n2 1\n2 4\n1 6\n3 5\n1 1\n3 6\n5 5\n1 6\n3 4\n1 4\n4 6\n2 1\n3 3\n1 3\n4 5\n1 4\n1 6\n2 1\n4 6\n3 5\n5 6", "output": "1" }, { "input": "30\n2 3\n3 1\n6 6\n1 3\n5 5\n3 6\n4 5\n2 1\n1 3\n2 3\n4 4\n2 4\n6 4\n2 4\n5 4\n2 1\n2 5\n2 5\n4 2\n1 4\n2 6\n3 2\n3 2\n6 6\n4 2\n3 4\n6 3\n6 6\n6 6\n5 5", "output": "1" }, { "input": "35\n6 1\n4 3\n1 2\n4 3\n6 4\n4 6\n3 1\n5 5\n3 4\n5 4\n4 6\n1 6\n2 4\n6 6\n5 4\n5 2\n1 3\n1 4\n3 5\n1 4\n2 3\n4 5\n4 3\n6 1\n5 3\n3 2\n5 6\n3 5\n6 5\n4 1\n1 3\n5 5\n4 6\n6 1\n1 3", "output": "1" }, { "input": "35\n4 3\n5 6\n4 5\n2 5\n6 6\n4 1\n2 2\n4 2\n3 4\n4 1\n6 6\n6 3\n1 5\n1 5\n5 6\n4 2\n4 6\n5 5\n2 2\n5 2\n1 2\n4 6\n6 6\n6 5\n2 1\n3 5\n2 5\n3 1\n5 3\n6 4\n4 6\n5 6\n5 1\n3 4\n3 5", "output": "1" }, { "input": "40\n5 6\n1 1\n3 3\n2 6\n6 6\n5 4\n6 4\n3 5\n1 3\n4 4\n4 4\n2 5\n1 3\n3 6\n5 2\n4 3\n4 4\n5 6\n2 3\n1 1\n3 1\n1 1\n1 5\n4 3\n5 5\n3 4\n6 6\n5 6\n2 2\n6 6\n2 1\n2 4\n5 2\n2 2\n1 1\n1 4\n4 2\n3 5\n5 5\n4 5", "output": "-1" }, { "input": "40\n3 2\n5 3\n4 6\n3 5\n6 1\n5 2\n1 2\n6 2\n5 3\n3 2\n4 4\n3 3\n5 2\n4 5\n1 4\n5 1\n3 3\n1 3\n1 3\n2 1\n3 6\n4 2\n4 6\n6 2\n2 5\n2 2\n2 5\n3 3\n5 3\n2 1\n3 2\n2 3\n6 3\n6 3\n3 4\n3 2\n4 3\n5 4\n2 4\n4 6", "output": "-1" }, { "input": "45\n2 4\n3 4\n6 1\n5 5\n1 1\n3 5\n4 3\n5 2\n3 6\n6 1\n4 4\n6 1\n2 1\n6 1\n3 6\n3 3\n6 1\n1 2\n1 5\n6 5\n1 3\n5 6\n6 1\n4 5\n3 6\n2 2\n1 2\n4 5\n5 6\n1 5\n6 2\n2 4\n3 3\n3 1\n6 5\n6 5\n2 1\n5 2\n2 1\n3 3\n2 2\n1 4\n2 2\n3 3\n2 1", "output": "-1" }, { "input": "45\n6 6\n1 6\n1 2\n3 5\n4 4\n2 1\n5 3\n2 1\n5 2\n5 3\n1 4\n5 2\n4 2\n3 6\n5 2\n1 5\n4 4\n5 5\n6 5\n2 1\n2 6\n5 5\n2 1\n6 1\n1 6\n6 5\n2 4\n4 3\n2 6\n2 4\n6 5\n6 4\n6 3\n6 6\n2 1\n6 4\n5 6\n5 4\n1 5\n5 1\n3 3\n5 6\n2 5\n4 5\n3 6", "output": "-1" }, { "input": "50\n4 4\n5 1\n6 4\n6 2\n6 2\n1 4\n5 5\n4 2\n5 5\n5 4\n1 3\n3 5\n6 1\n6 1\n1 4\n4 3\n5 1\n3 6\n2 2\n6 2\n4 4\n2 3\n4 2\n6 5\n5 6\n2 2\n2 4\n3 5\n1 5\n3 2\n3 4\n5 6\n4 6\n1 6\n4 5\n2 6\n2 2\n3 5\n6 4\n5 1\n4 3\n3 4\n3 5\n3 3\n2 3\n3 2\n2 2\n1 4\n3 1\n4 4", "output": "1" }, { "input": "50\n1 2\n1 4\n1 1\n4 5\n4 4\n3 2\n4 5\n3 5\n1 1\n3 4\n3 2\n2 4\n2 6\n2 6\n3 2\n4 6\n1 6\n3 1\n1 6\n2 1\n4 1\n1 6\n4 3\n6 6\n5 2\n6 4\n2 1\n4 3\n6 4\n5 1\n5 5\n3 1\n1 1\n5 5\n2 2\n2 3\n2 3\n3 5\n5 5\n1 6\n1 5\n3 6\n3 6\n1 1\n3 3\n2 6\n5 5\n1 3\n6 3\n6 6", "output": "-1" }, { "input": "55\n3 2\n5 6\n5 1\n3 5\n5 5\n1 5\n5 4\n6 3\n5 6\n4 2\n3 1\n1 2\n5 5\n1 1\n5 2\n6 3\n5 4\n3 6\n4 6\n2 6\n6 4\n1 4\n1 6\n4 1\n2 5\n4 3\n2 1\n2 1\n6 2\n3 1\n2 5\n4 4\n6 3\n2 2\n3 5\n5 1\n3 6\n5 4\n4 6\n6 5\n5 6\n2 2\n3 2\n5 2\n6 5\n2 2\n5 3\n3 1\n4 5\n6 4\n2 4\n1 2\n5 6\n2 6\n5 2", "output": "0" }, { "input": "55\n4 6\n3 3\n6 5\n5 3\n5 6\n2 3\n2 2\n3 4\n3 1\n5 4\n5 4\n2 4\n3 4\n4 5\n1 5\n6 3\n1 1\n5 1\n3 4\n1 5\n3 1\n2 5\n3 3\n4 3\n3 3\n3 1\n6 6\n3 3\n3 3\n5 6\n5 3\n3 5\n1 4\n5 5\n1 3\n1 4\n3 5\n3 6\n2 4\n2 4\n5 1\n6 4\n5 1\n5 5\n1 1\n3 2\n4 3\n5 4\n5 1\n2 4\n4 3\n6 1\n3 4\n1 5\n6 3", "output": "-1" }, { "input": "60\n2 6\n1 4\n3 2\n1 2\n3 2\n2 4\n6 4\n4 6\n1 3\n3 1\n6 5\n2 4\n5 4\n4 2\n1 6\n3 4\n4 5\n5 2\n1 5\n5 4\n3 4\n3 4\n4 4\n4 1\n6 6\n3 6\n2 4\n2 1\n4 4\n6 5\n3 1\n4 3\n1 3\n6 3\n5 5\n1 4\n3 1\n3 6\n1 5\n3 1\n1 5\n4 4\n1 3\n2 4\n6 2\n4 1\n5 3\n3 4\n5 6\n1 2\n1 6\n6 3\n1 6\n3 6\n3 4\n6 2\n4 6\n2 3\n3 3\n3 3", "output": "-1" }, { "input": "60\n2 3\n4 6\n2 4\n1 3\n5 6\n1 5\n1 2\n1 3\n5 6\n4 3\n4 2\n3 1\n1 3\n3 5\n1 5\n3 4\n2 4\n3 5\n4 5\n1 2\n3 1\n1 5\n2 5\n6 2\n1 6\n3 3\n6 2\n5 3\n1 3\n1 4\n6 4\n6 3\n4 2\n4 2\n1 4\n1 3\n3 2\n3 1\n2 1\n1 2\n3 1\n2 6\n1 4\n3 6\n3 3\n1 5\n2 4\n5 5\n6 2\n5 2\n3 3\n5 3\n3 4\n4 5\n5 6\n2 4\n5 3\n3 1\n2 4\n5 4", "output": "-1" }, { "input": "65\n5 4\n3 3\n1 2\n4 3\n3 5\n1 5\n4 5\n2 6\n1 2\n1 5\n6 3\n2 6\n4 3\n3 6\n1 5\n3 5\n4 6\n2 5\n6 5\n1 4\n3 4\n4 3\n1 4\n2 5\n6 5\n3 1\n4 3\n1 2\n1 1\n6 1\n5 2\n3 2\n1 6\n2 6\n3 3\n6 6\n4 6\n1 5\n5 1\n4 5\n1 4\n3 2\n5 4\n4 2\n6 2\n1 3\n4 2\n5 3\n6 4\n3 6\n1 2\n6 1\n6 6\n3 3\n4 2\n3 5\n4 6\n4 1\n5 4\n6 1\n5 1\n5 6\n6 1\n4 6\n5 5", "output": "1" }, { "input": "65\n5 4\n6 3\n5 4\n4 5\n5 3\n3 6\n1 3\n3 1\n1 3\n6 1\n6 4\n1 3\n2 2\n4 6\n4 1\n5 6\n6 5\n1 1\n1 3\n6 6\n4 1\n2 4\n5 4\n4 1\n5 5\n5 3\n6 2\n2 6\n4 2\n2 2\n6 2\n3 3\n4 5\n4 3\n3 1\n1 4\n4 5\n3 2\n5 5\n4 6\n5 1\n3 4\n5 4\n5 2\n1 6\n4 2\n3 4\n3 4\n1 3\n1 2\n3 3\n3 6\n6 4\n4 6\n6 2\n6 5\n3 2\n2 1\n6 4\n2 1\n1 5\n5 2\n6 5\n3 6\n5 1", "output": "1" }, { "input": "70\n4 1\n2 6\n1 1\n5 6\n5 1\n2 3\n3 5\n1 1\n1 1\n4 6\n4 3\n1 5\n2 2\n2 3\n3 1\n6 4\n3 1\n4 2\n5 4\n1 3\n3 5\n5 2\n5 6\n4 4\n4 5\n2 2\n4 5\n3 2\n3 5\n2 5\n2 6\n5 5\n2 6\n5 1\n1 1\n2 5\n3 1\n1 2\n6 4\n6 5\n5 5\n5 1\n1 5\n2 2\n6 3\n4 3\n6 2\n5 5\n1 1\n6 2\n6 6\n3 4\n2 2\n3 5\n1 5\n2 5\n4 5\n2 4\n6 3\n5 1\n2 6\n4 2\n1 4\n1 6\n6 2\n5 2\n5 6\n2 5\n5 6\n5 5", "output": "-1" }, { "input": "70\n4 3\n6 4\n5 5\n3 1\n1 2\n2 5\n4 6\n4 2\n3 2\n4 2\n1 5\n2 2\n4 3\n1 2\n6 1\n6 6\n1 6\n5 1\n2 2\n6 3\n4 2\n4 3\n1 2\n6 6\n3 3\n6 5\n6 2\n3 6\n6 6\n4 6\n5 2\n5 4\n3 3\n1 6\n5 6\n2 3\n4 6\n1 1\n1 2\n6 6\n1 1\n3 4\n1 6\n2 6\n3 4\n6 3\n5 3\n1 2\n2 3\n4 6\n2 1\n6 4\n4 6\n4 6\n4 2\n5 5\n3 5\n3 2\n4 3\n3 6\n1 4\n3 6\n1 4\n1 6\n1 5\n5 6\n4 4\n3 3\n3 5\n2 2", "output": "0" }, { "input": "75\n1 3\n4 5\n4 1\n6 5\n2 1\n1 4\n5 4\n1 5\n5 3\n1 2\n4 1\n1 1\n5 1\n5 3\n1 5\n4 2\n2 2\n6 3\n1 2\n4 3\n2 5\n5 3\n5 5\n4 1\n4 6\n2 5\n6 1\n2 4\n6 4\n5 2\n6 2\n2 4\n1 3\n5 4\n6 5\n5 4\n6 4\n1 5\n4 6\n1 5\n1 1\n4 4\n3 5\n6 3\n6 5\n1 5\n2 1\n1 5\n6 6\n2 2\n2 2\n4 4\n6 6\n5 4\n4 5\n3 2\n2 4\n1 1\n4 3\n3 2\n5 4\n1 6\n1 2\n2 2\n3 5\n2 6\n1 1\n2 2\n2 3\n6 2\n3 6\n4 4\n5 1\n4 1\n4 1", "output": "0" }, { "input": "75\n1 1\n2 1\n5 5\n6 5\n6 3\n1 6\n6 1\n4 4\n2 1\n6 2\n3 1\n6 4\n1 6\n2 2\n4 3\n4 2\n1 2\n6 2\n4 2\n5 1\n1 2\n3 2\n6 6\n6 3\n2 4\n4 1\n4 1\n2 4\n5 5\n2 3\n5 5\n4 5\n3 1\n1 5\n4 3\n2 3\n3 5\n4 6\n5 6\n1 6\n2 3\n2 2\n1 2\n5 6\n1 4\n1 5\n1 3\n6 2\n1 2\n4 2\n2 1\n1 3\n6 4\n4 1\n5 2\n6 2\n3 5\n2 3\n4 2\n5 1\n5 6\n3 2\n2 1\n6 6\n2 1\n6 2\n1 1\n3 2\n1 2\n3 5\n4 6\n1 3\n3 4\n5 5\n6 2", "output": "1" }, { "input": "80\n3 1\n6 3\n2 2\n2 2\n6 3\n6 1\n6 5\n1 4\n3 6\n6 5\n1 3\n2 4\n1 4\n3 1\n5 3\n5 3\n1 4\n2 5\n4 3\n4 4\n4 5\n6 1\n3 1\n2 6\n4 2\n3 1\n6 5\n2 6\n2 2\n5 1\n1 3\n5 1\n2 1\n4 3\n6 3\n3 5\n4 3\n5 6\n3 3\n4 1\n5 1\n6 5\n5 1\n2 5\n6 1\n3 2\n4 3\n3 3\n5 6\n1 6\n5 2\n1 5\n5 6\n6 4\n2 2\n4 2\n4 6\n4 2\n4 4\n6 5\n5 2\n6 2\n4 6\n6 4\n4 3\n5 1\n4 1\n3 5\n3 2\n3 2\n5 3\n5 4\n3 4\n1 3\n1 2\n6 6\n6 3\n6 1\n5 6\n3 2", "output": "0" }, { "input": "80\n4 5\n3 3\n3 6\n4 5\n3 4\n6 5\n1 5\n2 5\n5 6\n5 1\n5 1\n1 2\n5 5\n5 1\n2 3\n1 1\n4 5\n4 1\n1 1\n5 5\n5 6\n5 2\n5 4\n4 2\n6 2\n5 3\n3 2\n4 2\n1 3\n1 6\n2 1\n6 6\n4 5\n6 4\n2 2\n1 6\n6 2\n4 3\n2 3\n4 6\n4 6\n6 2\n3 4\n4 3\n5 5\n1 6\n3 2\n4 6\n2 3\n1 6\n5 4\n4 2\n5 4\n1 1\n4 3\n5 1\n3 6\n6 2\n3 1\n4 1\n5 3\n2 2\n3 4\n3 6\n3 5\n5 5\n5 1\n3 5\n2 6\n6 3\n6 5\n3 3\n5 6\n1 2\n3 1\n6 3\n3 4\n6 6\n6 6\n1 2", "output": "-1" }, { "input": "85\n6 3\n4 1\n1 2\n3 5\n6 4\n6 2\n2 6\n1 2\n1 5\n6 2\n1 4\n6 6\n2 4\n4 6\n4 5\n1 6\n3 1\n2 5\n5 1\n5 2\n3 5\n1 1\n4 1\n2 3\n1 1\n3 3\n6 4\n1 4\n1 1\n3 6\n1 5\n1 6\n2 5\n2 2\n5 1\n6 6\n1 3\n1 5\n5 6\n4 5\n4 3\n5 5\n1 3\n6 3\n4 6\n2 4\n5 6\n6 2\n4 5\n1 4\n1 4\n6 5\n1 6\n6 1\n1 6\n5 5\n2 1\n5 2\n2 3\n1 6\n1 6\n1 6\n5 6\n2 4\n6 5\n6 5\n4 2\n5 4\n3 4\n4 3\n6 6\n3 3\n3 2\n3 6\n2 5\n2 1\n2 5\n3 4\n1 2\n5 4\n6 2\n5 1\n1 4\n3 4\n4 5", "output": "0" }, { "input": "85\n3 1\n3 2\n6 3\n1 3\n2 1\n3 6\n1 4\n2 5\n6 5\n1 6\n1 5\n1 1\n4 3\n3 5\n4 6\n3 2\n6 6\n4 4\n4 1\n5 5\n4 2\n6 2\n2 2\n4 5\n6 1\n3 4\n4 5\n3 5\n4 2\n3 5\n4 4\n3 1\n4 4\n6 4\n1 4\n5 5\n1 5\n2 2\n6 5\n5 6\n6 5\n3 2\n3 2\n6 1\n6 5\n2 1\n4 6\n2 1\n3 1\n5 6\n1 3\n5 4\n1 4\n1 4\n5 3\n2 3\n1 3\n2 2\n5 3\n2 3\n2 3\n1 3\n3 6\n4 4\n6 6\n6 2\n5 1\n5 5\n5 5\n1 2\n1 4\n2 4\n3 6\n4 6\n6 3\n6 4\n5 5\n3 2\n5 4\n5 4\n4 5\n6 4\n2 1\n5 2\n5 1", "output": "-1" }, { "input": "90\n5 2\n5 5\n5 1\n4 6\n4 3\n5 3\n5 6\n5 1\n3 4\n1 3\n4 2\n1 6\n6 4\n1 2\n6 1\n4 1\n6 2\n6 5\n6 2\n5 4\n3 6\n1 1\n5 5\n2 2\n1 6\n3 5\n6 5\n1 6\n1 5\n2 3\n2 6\n2 3\n3 3\n1 3\n5 1\n2 5\n3 6\n1 2\n4 4\n1 6\n2 3\n1 5\n2 5\n1 3\n2 2\n4 6\n3 6\n6 3\n1 2\n4 3\n4 5\n4 6\n3 2\n6 5\n6 2\n2 5\n2 4\n1 3\n1 6\n4 3\n1 3\n6 4\n4 6\n4 1\n1 1\n4 1\n4 4\n6 2\n6 5\n1 1\n2 2\n3 1\n1 4\n6 2\n5 2\n1 4\n1 3\n6 5\n3 2\n6 4\n3 4\n2 6\n2 2\n6 3\n4 6\n1 2\n4 2\n3 4\n2 3\n1 5", "output": "-1" }, { "input": "90\n1 4\n3 5\n4 2\n2 5\n4 3\n2 6\n2 6\n3 2\n4 4\n6 1\n4 3\n2 3\n5 3\n6 6\n2 2\n6 3\n4 1\n4 4\n5 6\n6 4\n4 2\n5 6\n4 6\n4 4\n6 4\n4 1\n5 3\n3 2\n4 4\n5 2\n5 4\n6 4\n1 2\n3 3\n3 4\n6 4\n1 6\n4 2\n3 2\n1 1\n2 2\n5 1\n6 6\n4 1\n5 2\n3 6\n2 1\n2 2\n4 6\n6 5\n4 4\n5 5\n5 6\n1 6\n1 4\n5 6\n3 6\n6 3\n5 6\n6 5\n5 1\n6 1\n6 6\n6 3\n1 5\n4 5\n3 1\n6 6\n3 4\n6 2\n1 4\n2 2\n3 2\n5 6\n2 4\n1 4\n6 3\n4 6\n1 4\n5 2\n1 2\n6 5\n1 5\n1 4\n4 2\n2 5\n3 2\n5 1\n5 4\n5 3", "output": "-1" }, { "input": "95\n4 3\n3 2\n5 5\n5 3\n1 6\n4 4\n5 5\n6 5\n3 5\n1 5\n4 2\n5 1\n1 2\n2 3\n6 4\n2 3\n6 3\n6 5\n5 6\n1 4\n2 6\n2 6\n2 5\n2 1\n3 1\n3 5\n2 2\n6 1\n2 4\n4 6\n6 6\n6 4\n3 2\n5 1\n4 3\n6 5\n2 3\n4 1\n2 5\n6 5\n6 5\n6 5\n5 1\n5 4\n4 6\n3 2\n2 5\n2 6\n4 6\n6 3\n6 4\n5 6\n4 6\n2 4\n3 4\n1 4\n2 4\n2 3\n5 6\n6 4\n3 1\n5 1\n3 6\n3 5\n2 6\n6 3\n4 3\n3 1\n6 1\n2 2\n6 3\n2 2\n2 2\n6 4\n6 1\n2 1\n5 6\n5 4\n5 2\n3 4\n3 6\n2 1\n1 6\n5 5\n2 6\n2 3\n3 6\n1 3\n1 5\n5 1\n1 2\n2 2\n5 3\n6 4\n4 5", "output": "0" }, { "input": "95\n4 5\n5 6\n3 2\n5 1\n4 3\n4 1\n6 1\n5 2\n2 4\n5 3\n2 3\n6 4\n4 1\n1 6\n2 6\n2 3\n4 6\n2 4\n3 4\n4 2\n5 5\n1 1\n1 5\n4 3\n4 5\n6 2\n6 1\n6 3\n5 5\n4 1\n5 1\n2 3\n5 1\n3 6\n6 6\n4 5\n4 4\n4 3\n1 6\n6 6\n4 6\n6 4\n1 2\n6 2\n4 6\n6 6\n5 5\n6 1\n5 2\n4 5\n6 6\n6 5\n4 4\n1 5\n4 6\n4 1\n3 6\n5 1\n3 1\n4 6\n4 5\n1 3\n5 4\n4 5\n2 2\n6 1\n5 2\n6 5\n2 2\n1 1\n6 3\n6 1\n2 6\n3 3\n2 1\n4 6\n2 4\n5 5\n5 2\n3 2\n1 2\n6 6\n6 2\n5 1\n2 6\n5 2\n2 2\n5 5\n3 5\n3 3\n2 6\n5 3\n4 3\n1 6\n5 4", "output": "-1" }, { "input": "100\n1 1\n3 5\n2 1\n1 2\n3 4\n5 6\n5 6\n6 1\n5 5\n2 4\n5 5\n5 6\n6 2\n6 6\n2 6\n1 4\n2 2\n3 2\n1 3\n5 5\n6 3\n5 6\n1 1\n1 2\n1 2\n2 1\n2 3\n1 6\n4 3\n1 1\n2 5\n2 4\n4 4\n1 5\n3 3\n6 1\n3 5\n1 1\n3 6\n3 1\n4 2\n4 3\n3 6\n6 6\n1 6\n6 2\n2 5\n5 4\n6 3\n1 4\n2 6\n6 2\n3 4\n6 1\n6 5\n4 6\n6 5\n4 4\n3 1\n6 3\n5 1\n2 4\n5 1\n1 2\n2 4\n2 1\n6 6\n5 3\n4 6\n6 3\n5 5\n3 3\n1 1\n6 5\n4 3\n2 6\n1 5\n3 5\n2 4\n4 5\n1 6\n2 3\n6 3\n5 5\n2 6\n2 6\n3 4\n3 2\n6 1\n3 4\n6 4\n3 3\n2 3\n5 1\n3 1\n6 2\n2 3\n6 4\n1 4\n1 2", "output": "-1" }, { "input": "100\n1 1\n5 5\n1 2\n5 3\n5 5\n2 2\n1 5\n3 4\n3 2\n1 3\n5 6\n4 5\n2 1\n5 5\n2 2\n1 6\n6 1\n5 1\n4 1\n4 6\n3 5\n6 1\n2 3\n5 6\n3 6\n2 3\n5 6\n1 6\n3 2\n2 2\n3 3\n6 5\n5 5\n1 4\n5 6\n6 4\n1 4\n1 2\n2 6\n3 2\n6 4\n5 3\n3 3\n6 4\n4 6\n2 2\n5 6\n5 1\n1 2\n3 4\n4 5\n1 1\n3 4\n5 2\n4 5\n3 3\n1 1\n3 4\n1 6\n2 4\n1 3\n3 2\n6 5\n1 6\n3 6\n2 3\n2 6\n5 1\n5 5\n5 6\n4 1\n6 2\n3 6\n5 3\n2 2\n2 4\n6 6\n3 6\n4 6\n2 5\n5 3\n1 2\n3 4\n3 4\n6 2\n2 4\n2 2\n4 6\n3 5\n4 2\n5 6\n4 2\n2 3\n6 2\n5 6\n2 1\n3 3\n6 6\n4 3\n4 2", "output": "1" }, { "input": "1\n2 2", "output": "0" }, { "input": "3\n2 4\n6 6\n3 3", "output": "-1" }, { "input": "2\n3 6\n4 1", "output": "1" }, { "input": "3\n1 1\n1 1\n3 3", "output": "-1" }, { "input": "3\n2 3\n1 1\n2 3", "output": "1" }, { "input": "3\n2 2\n2 1\n1 2", "output": "1" }, { "input": "3\n1 1\n1 1\n1 1", "output": "-1" } ]
1,554,100,677
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
4
186
0
A=[] B=[] for i in range(0,int(input())): a,b=list(map(int,input().split())) A.append(a) B.append(b) sumA=sum(A) sumB=sum(B) if sumA%2==0 and sumB%2==0: print(0) elif sumA%2==1 and sumB%2==1: print(1) else: c=0 if sumA%2==0: for j in A: if j%2==1: c=1 break if sumB%2==0: for j in B: if j%2==1: c=1 break if c==1: print(1) else: print(-1)
Title: Domino Time Limit: None seconds Memory Limit: None megabytes Problem Description: Valera has got *n* domino pieces in a row. Each piece consists of two halves — the upper one and the lower one. Each of the halves contains a number from 1 to 6. Valera loves even integers very much, so he wants the sum of the numbers on the upper halves and the sum of the numbers on the lower halves to be even. To do that, Valera can rotate the dominoes by 180 degrees. After the rotation the upper and the lower halves swap places. This action takes one second. Help Valera find out the minimum time he must spend rotating dominoes to make his wish come true. Input Specification: The first line contains integer *n* (1<=≤<=*n*<=≤<=100), denoting the number of dominoes Valera has. Next *n* lines contain two space-separated integers *x**i*,<=*y**i* (1<=≤<=*x**i*,<=*y**i*<=≤<=6). Number *x**i* is initially written on the upper half of the *i*-th domino, *y**i* is initially written on the lower half. Output Specification: Print a single number — the minimum required number of seconds. If Valera can't do the task in any time, print <=-<=1. Demo Input: ['2\n4 2\n6 4\n', '1\n2 3\n', '3\n1 4\n2 3\n4 4\n'] Demo Output: ['0\n', '-1\n', '1\n'] Note: In the first test case the sum of the numbers on the upper halves equals 10 and the sum of the numbers on the lower halves equals 6. Both numbers are even, so Valera doesn't required to do anything. In the second sample Valera has only one piece of domino. It is written 3 on the one of its halves, therefore one of the sums will always be odd. In the third case Valera can rotate the first piece, and after that the sum on the upper halves will be equal to 10, and the sum on the lower halves will be equal to 8.
```python A=[] B=[] for i in range(0,int(input())): a,b=list(map(int,input().split())) A.append(a) B.append(b) sumA=sum(A) sumB=sum(B) if sumA%2==0 and sumB%2==0: print(0) elif sumA%2==1 and sumB%2==1: print(1) else: c=0 if sumA%2==0: for j in A: if j%2==1: c=1 break if sumB%2==0: for j in B: if j%2==1: c=1 break if c==1: print(1) else: print(-1) ```
0
650
A
Watchmen
PROGRAMMING
1,400
[ "data structures", "geometry", "math" ]
null
null
Watchmen are in a danger and Doctor Manhattan together with his friend Daniel Dreiberg should warn them as soon as possible. There are *n* watchmen on a plane, the *i*-th watchman is located at point (*x**i*,<=*y**i*). They need to arrange a plan, but there are some difficulties on their way. As you know, Doctor Manhattan considers the distance between watchmen *i* and *j* to be |*x**i*<=-<=*x**j*|<=+<=|*y**i*<=-<=*y**j*|. Daniel, as an ordinary person, calculates the distance using the formula . The success of the operation relies on the number of pairs (*i*,<=*j*) (1<=≤<=*i*<=&lt;<=*j*<=≤<=*n*), such that the distance between watchman *i* and watchmen *j* calculated by Doctor Manhattan is equal to the distance between them calculated by Daniel. You were asked to compute the number of such pairs.
The first line of the input contains the single integer *n* (1<=≤<=*n*<=≤<=200<=000) — the number of watchmen. Each of the following *n* lines contains two integers *x**i* and *y**i* (|*x**i*|,<=|*y**i*|<=≤<=109). Some positions may coincide.
Print the number of pairs of watchmen such that the distance between them calculated by Doctor Manhattan is equal to the distance calculated by Daniel.
[ "3\n1 1\n7 5\n1 5\n", "6\n0 0\n0 1\n0 2\n-1 1\n0 1\n1 1\n" ]
[ "2\n", "11\n" ]
In the first sample, the distance between watchman 1 and watchman 2 is equal to |1 - 7| + |1 - 5| = 10 for Doctor Manhattan and <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/bcb5b7064b5f02088da0fdcf677e6fda495dd0df.png" style="max-width: 100.0%;max-height: 100.0%;"/> for Daniel. For pairs (1, 1), (1, 5) and (7, 5), (1, 5) Doctor Manhattan and Daniel will calculate the same distances.
500
[ { "input": "3\n1 1\n7 5\n1 5", "output": "2" }, { "input": "6\n0 0\n0 1\n0 2\n-1 1\n0 1\n1 1", "output": "11" }, { "input": "10\n46 -55\n46 45\n46 45\n83 -55\n46 45\n83 -55\n46 45\n83 45\n83 45\n46 -55", "output": "33" }, { "input": "1\n-5 -90", "output": "0" }, { "input": "2\n315 845\n-669 -762", "output": "0" }, { "input": "3\n8911 7861\n-6888 7861\n8911 7861", "output": "3" }, { "input": "2\n-1 1000000000\n0 -1", "output": "0" }, { "input": "2\n1000000000 0\n-7 1", "output": "0" }, { "input": "2\n1 4\n2 1", "output": "0" }, { "input": "2\n1 0\n0 2333333", "output": "0" }, { "input": "2\n2 1\n1 2", "output": "0" }, { "input": "2\n1 1000000000\n2 -1000000000", "output": "0" }, { "input": "2\n0 1000000000\n1 -7", "output": "0" }, { "input": "2\n1 0\n0 19990213", "output": "0" } ]
1,505,738,700
2,147,483,647
Python 3
OK
TESTS
71
1,200
30,515,200
n = int(input()) X_axis = {} Y_axis = {} XY_axis = {} for i in range(n): a,b = [ int(x) for x in input().split()] pair = (a,b) X_axis[a] = X_axis.get(a,0) +1 Y_axis[b] = Y_axis.get(b,0) +1 XY_axis[pair] = XY_axis.get(pair,0) + 1 sum = 0 for i in X_axis: var = X_axis[i] if var>0: sum = sum + (var*(var-1))//2 for i in Y_axis: var = Y_axis[i] if var>0: sum = sum + (var*(var-1))//2 for i in XY_axis: var = XY_axis[i] sum = sum - (var*(var-1))//2 print(sum)
Title: Watchmen Time Limit: None seconds Memory Limit: None megabytes Problem Description: Watchmen are in a danger and Doctor Manhattan together with his friend Daniel Dreiberg should warn them as soon as possible. There are *n* watchmen on a plane, the *i*-th watchman is located at point (*x**i*,<=*y**i*). They need to arrange a plan, but there are some difficulties on their way. As you know, Doctor Manhattan considers the distance between watchmen *i* and *j* to be |*x**i*<=-<=*x**j*|<=+<=|*y**i*<=-<=*y**j*|. Daniel, as an ordinary person, calculates the distance using the formula . The success of the operation relies on the number of pairs (*i*,<=*j*) (1<=≤<=*i*<=&lt;<=*j*<=≤<=*n*), such that the distance between watchman *i* and watchmen *j* calculated by Doctor Manhattan is equal to the distance between them calculated by Daniel. You were asked to compute the number of such pairs. Input Specification: The first line of the input contains the single integer *n* (1<=≤<=*n*<=≤<=200<=000) — the number of watchmen. Each of the following *n* lines contains two integers *x**i* and *y**i* (|*x**i*|,<=|*y**i*|<=≤<=109). Some positions may coincide. Output Specification: Print the number of pairs of watchmen such that the distance between them calculated by Doctor Manhattan is equal to the distance calculated by Daniel. Demo Input: ['3\n1 1\n7 5\n1 5\n', '6\n0 0\n0 1\n0 2\n-1 1\n0 1\n1 1\n'] Demo Output: ['2\n', '11\n'] Note: In the first sample, the distance between watchman 1 and watchman 2 is equal to |1 - 7| + |1 - 5| = 10 for Doctor Manhattan and <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/bcb5b7064b5f02088da0fdcf677e6fda495dd0df.png" style="max-width: 100.0%;max-height: 100.0%;"/> for Daniel. For pairs (1, 1), (1, 5) and (7, 5), (1, 5) Doctor Manhattan and Daniel will calculate the same distances.
```python n = int(input()) X_axis = {} Y_axis = {} XY_axis = {} for i in range(n): a,b = [ int(x) for x in input().split()] pair = (a,b) X_axis[a] = X_axis.get(a,0) +1 Y_axis[b] = Y_axis.get(b,0) +1 XY_axis[pair] = XY_axis.get(pair,0) + 1 sum = 0 for i in X_axis: var = X_axis[i] if var>0: sum = sum + (var*(var-1))//2 for i in Y_axis: var = Y_axis[i] if var>0: sum = sum + (var*(var-1))//2 for i in XY_axis: var = XY_axis[i] sum = sum - (var*(var-1))//2 print(sum) ```
3
37
A
Towers
PROGRAMMING
1,000
[ "sortings" ]
A. Towers
2
256
Little Vasya has received a young builder’s kit. The kit consists of several wooden bars, the lengths of all of them are known. The bars can be put one on the top of the other if their lengths are the same. Vasya wants to construct the minimal number of towers from the bars. Help Vasya to use the bars in the best way possible.
The first line contains an integer *N* (1<=≤<=*N*<=≤<=1000) — the number of bars at Vasya’s disposal. The second line contains *N* space-separated integers *l**i* — the lengths of the bars. All the lengths are natural numbers not exceeding 1000.
In one line output two numbers — the height of the largest tower and their total number. Remember that Vasya should use all the bars.
[ "3\n1 2 3\n", "4\n6 5 6 7\n" ]
[ "1 3\n", "2 3\n" ]
none
500
[ { "input": "3\n1 2 3", "output": "1 3" }, { "input": "4\n6 5 6 7", "output": "2 3" }, { "input": "4\n3 2 1 1", "output": "2 3" }, { "input": "4\n1 2 3 3", "output": "2 3" }, { "input": "3\n20 22 36", "output": "1 3" }, { "input": "25\n47 30 94 41 45 20 96 51 110 129 24 116 9 47 32 82 105 114 116 75 154 151 70 42 162", "output": "2 23" }, { "input": "45\n802 664 442 318 318 827 417 878 711 291 231 414 807 553 657 392 279 202 386 606 465 655 658 112 887 15 25 502 95 44 679 775 942 609 209 871 31 234 4 231 150 110 22 823 193", "output": "2 43" }, { "input": "63\n93 180 116 7 8 179 268 279 136 94 221 153 264 190 278 19 19 63 153 26 158 225 25 49 89 218 111 149 255 225 197 122 243 80 3 224 107 178 202 17 53 92 69 42 228 24 81 205 95 8 265 82 228 156 127 241 172 159 106 60 67 155 111", "output": "2 57" }, { "input": "83\n246 535 994 33 390 927 321 97 223 922 812 705 79 80 977 457 476 636 511 137 6 360 815 319 717 674 368 551 714 628 278 713 761 553 184 414 623 753 428 214 581 115 439 61 677 216 772 592 187 603 658 310 439 559 870 376 109 321 189 337 277 26 70 734 796 907 979 693 570 227 345 650 737 633 701 914 134 403 972 940 371 6 642", "output": "2 80" }, { "input": "105\n246 57 12 204 165 123 246 68 191 310 3 152 386 333 374 257 158 104 333 50 80 290 8 340 101 76 221 316 388 289 138 359 316 26 93 290 105 178 81 195 41 196 218 180 244 292 187 97 315 323 174 119 248 239 92 312 31 2 101 180 307 170 338 314 163 281 217 31 142 238 280 190 190 156 70 74 329 113 151 8 141 313 366 40 253 116 168 124 135 230 294 266 353 389 371 359 195 200 183 237 93 102 315 118 188", "output": "2 92" }, { "input": "123\n112 277 170 247 252 115 157 293 256 143 196 90 12 164 164 42 8 223 167 109 175 232 239 111 148 51 9 254 93 32 268 162 231 91 47 162 161 191 195 145 247 292 129 199 230 94 144 217 18 205 176 20 143 198 121 243 211 262 230 277 195 255 108 290 220 275 158 2 286 200 60 267 278 207 123 150 123 116 131 13 12 226 33 244 30 275 263 45 158 192 254 149 242 176 62 224 221 288 250 160 155 225 132 143 276 293 218 145 197 175 33 129 79 206 210 192 222 262 190 52 274 243 233", "output": "3 101" }, { "input": "5\n5 5 5 5 5", "output": "5 1" }, { "input": "3\n1000 1000 1000", "output": "3 1" }, { "input": "1\n1000", "output": "1 1" }, { "input": "1\n1", "output": "1 1" }, { "input": "5\n1 1000 1000 1000 1000", "output": "4 2" }, { "input": "5\n1000 1000 1000 8 7", "output": "3 3" } ]
1,649,644,269
2,147,483,647
PyPy 3-64
OK
TESTS
61
186
512,000
#\\\ n=int(input()) a=[int(i) for i in input().split()] r1=len(list(set(a))) r2=0 for i in range(len(a)): if a.count(a[i])>r2: r2=a.count(a[i]) print(r2,r1) #\\\
Title: Towers Time Limit: 2 seconds Memory Limit: 256 megabytes Problem Description: Little Vasya has received a young builder’s kit. The kit consists of several wooden bars, the lengths of all of them are known. The bars can be put one on the top of the other if their lengths are the same. Vasya wants to construct the minimal number of towers from the bars. Help Vasya to use the bars in the best way possible. Input Specification: The first line contains an integer *N* (1<=≤<=*N*<=≤<=1000) — the number of bars at Vasya’s disposal. The second line contains *N* space-separated integers *l**i* — the lengths of the bars. All the lengths are natural numbers not exceeding 1000. Output Specification: In one line output two numbers — the height of the largest tower and their total number. Remember that Vasya should use all the bars. Demo Input: ['3\n1 2 3\n', '4\n6 5 6 7\n'] Demo Output: ['1 3\n', '2 3\n'] Note: none
```python #\\\ n=int(input()) a=[int(i) for i in input().split()] r1=len(list(set(a))) r2=0 for i in range(len(a)): if a.count(a[i])>r2: r2=a.count(a[i]) print(r2,r1) #\\\ ```
3.952546
556
A
Case of the Zeros and Ones
PROGRAMMING
900
[ "greedy" ]
null
null
Andrewid the Android is a galaxy-famous detective. In his free time he likes to think about strings containing zeros and ones. Once he thought about a string of length *n* consisting of zeroes and ones. Consider the following operation: we choose any two adjacent positions in the string, and if one them contains 0, and the other contains 1, then we are allowed to remove these two digits from the string, obtaining a string of length *n*<=-<=2 as a result. Now Andreid thinks about what is the minimum length of the string that can remain after applying the described operation several times (possibly, zero)? Help him to calculate this number.
First line of the input contains a single integer *n* (1<=≤<=*n*<=≤<=2·105), the length of the string that Andreid has. The second line contains the string of length *n* consisting only from zeros and ones.
Output the minimum length of the string that may remain after applying the described operations several times.
[ "4\n1100\n", "5\n01010\n", "8\n11101111\n" ]
[ "0\n", "1\n", "6\n" ]
In the first sample test it is possible to change the string like the following: <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/10df55364c21c6e8d5da31b6ab6f6294c4fc26b3.png" style="max-width: 100.0%;max-height: 100.0%;"/>. In the second sample test it is possible to change the string like the following: <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/19ec5dcd85f0b5cf757aa076ace72df39634de2d.png" style="max-width: 100.0%;max-height: 100.0%;"/>. In the third sample test it is possible to change the string like the following: <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/dc34a159e4230375fa325555527ebc748811f188.png" style="max-width: 100.0%;max-height: 100.0%;"/>.
250
[ { "input": "4\n1100", "output": "0" }, { "input": "5\n01010", "output": "1" }, { "input": "8\n11101111", "output": "6" }, { "input": "1\n0", "output": "1" }, { "input": "1\n1", "output": "1" }, { "input": "2\n00", "output": "2" }, { "input": "2\n01", "output": "0" }, { "input": "2\n10", "output": "0" }, { "input": "2\n11", "output": "2" }, { "input": "3\n001", "output": "1" }, { "input": "6\n110110", "output": "2" }, { "input": "7\n0000011", "output": "3" }, { "input": "6\n110010", "output": "0" }, { "input": "6\n110100", "output": "0" }, { "input": "3\n100", "output": "1" }, { "input": "6\n010111", "output": "2" }, { "input": "8\n01011100", "output": "0" }, { "input": "6\n001011", "output": "0" }, { "input": "7\n1110000", "output": "1" }, { "input": "9\n011111101", "output": "5" } ]
1,668,013,140
2,147,483,647
Python 3
TIME_LIMIT_EXCEEDED
TESTS
11
1,000
2,764,800
n = int(input()) if not 1 <= n <= 2 * 10**5: quit() st = input() for i in range(n): if st[i] != '0' and st[i] != '1' or len(st) != n: quit() st_list = [st[i] for i in range(n)] for i in range(n-1): for j in range(len(st_list)-1): try: if st_list[j] != st_list[j+1]: st_list.pop(j) st_list.pop(j) except IndexError: break print(len(st_list))
Title: Case of the Zeros and Ones Time Limit: None seconds Memory Limit: None megabytes Problem Description: Andrewid the Android is a galaxy-famous detective. In his free time he likes to think about strings containing zeros and ones. Once he thought about a string of length *n* consisting of zeroes and ones. Consider the following operation: we choose any two adjacent positions in the string, and if one them contains 0, and the other contains 1, then we are allowed to remove these two digits from the string, obtaining a string of length *n*<=-<=2 as a result. Now Andreid thinks about what is the minimum length of the string that can remain after applying the described operation several times (possibly, zero)? Help him to calculate this number. Input Specification: First line of the input contains a single integer *n* (1<=≤<=*n*<=≤<=2·105), the length of the string that Andreid has. The second line contains the string of length *n* consisting only from zeros and ones. Output Specification: Output the minimum length of the string that may remain after applying the described operations several times. Demo Input: ['4\n1100\n', '5\n01010\n', '8\n11101111\n'] Demo Output: ['0\n', '1\n', '6\n'] Note: In the first sample test it is possible to change the string like the following: <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/10df55364c21c6e8d5da31b6ab6f6294c4fc26b3.png" style="max-width: 100.0%;max-height: 100.0%;"/>. In the second sample test it is possible to change the string like the following: <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/19ec5dcd85f0b5cf757aa076ace72df39634de2d.png" style="max-width: 100.0%;max-height: 100.0%;"/>. In the third sample test it is possible to change the string like the following: <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/dc34a159e4230375fa325555527ebc748811f188.png" style="max-width: 100.0%;max-height: 100.0%;"/>.
```python n = int(input()) if not 1 <= n <= 2 * 10**5: quit() st = input() for i in range(n): if st[i] != '0' and st[i] != '1' or len(st) != n: quit() st_list = [st[i] for i in range(n)] for i in range(n-1): for j in range(len(st_list)-1): try: if st_list[j] != st_list[j+1]: st_list.pop(j) st_list.pop(j) except IndexError: break print(len(st_list)) ```
0
699
A
Launch of Collider
PROGRAMMING
1,000
[ "implementation" ]
null
null
There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. *n* particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, *x**i* is the coordinate of the *i*-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers. You know the direction of each particle movement — it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time. Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point.
The first line contains the positive integer *n* (1<=≤<=*n*<=≤<=200<=000) — the number of particles. The second line contains *n* symbols "L" and "R". If the *i*-th symbol equals "L", then the *i*-th particle will move to the left, otherwise the *i*-th symbol equals "R" and the *i*-th particle will move to the right. The third line contains the sequence of pairwise distinct even integers *x*1,<=*x*2,<=...,<=*x**n* (0<=≤<=*x**i*<=≤<=109) — the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order.
In the first line print the only integer — the first moment (in microseconds) when two particles are at the same point and there will be an explosion. Print the only integer -1, if the collision of particles doesn't happen.
[ "4\nRLRL\n2 4 6 10\n", "3\nLLR\n40 50 60\n" ]
[ "1\n", "-1\n" ]
In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3. In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point.
500
[ { "input": "4\nRLRL\n2 4 6 10", "output": "1" }, { "input": "3\nLLR\n40 50 60", "output": "-1" }, { "input": "4\nRLLR\n46 230 264 470", "output": "92" }, { "input": "6\nLLRLLL\n446 492 650 844 930 970", "output": "97" }, { "input": "8\nRRLLLLLL\n338 478 512 574 594 622 834 922", "output": "17" }, { "input": "10\nLRLRLLRRLR\n82 268 430 598 604 658 670 788 838 1000", "output": "3" }, { "input": "2\nRL\n0 1000000000", "output": "500000000" }, { "input": "12\nLRLLRRRRLRLL\n254 1260 1476 1768 2924 4126 4150 4602 5578 7142 8134 9082", "output": "108" }, { "input": "14\nRLLRRLRLLRLLLR\n698 2900 3476 3724 3772 3948 4320 4798 5680 6578 7754 8034 8300 8418", "output": "88" }, { "input": "16\nRRLLLRLRLLLLRLLR\n222 306 968 1060 1636 1782 2314 2710 3728 4608 5088 6790 6910 7156 7418 7668", "output": "123" }, { "input": "18\nRLRLLRRRLLLRLRRLRL\n1692 2028 2966 3008 3632 4890 5124 5838 6596 6598 6890 8294 8314 8752 8868 9396 9616 9808", "output": "10" }, { "input": "20\nRLLLLLLLRRRRLRRLRRLR\n380 902 1400 1834 2180 2366 2562 2596 2702 2816 3222 3238 3742 5434 6480 7220 7410 8752 9708 9970", "output": "252" }, { "input": "22\nLRRRRRRRRRRRLLRRRRRLRL\n1790 2150 2178 2456 2736 3282 3622 4114 4490 4772 5204 5240 5720 5840 5910 5912 6586 7920 8584 9404 9734 9830", "output": "48" }, { "input": "24\nLLRLRRLLRLRRRRLLRRLRLRRL\n100 360 864 1078 1360 1384 1438 2320 2618 3074 3874 3916 3964 5178 5578 6278 6630 6992 8648 8738 8922 8930 9276 9720", "output": "27" }, { "input": "26\nRLLLLLLLRLRRLRLRLRLRLLLRRR\n908 1826 2472 2474 2728 3654 3716 3718 3810 3928 4058 4418 4700 5024 5768 6006 6128 6386 6968 7040 7452 7774 7822 8726 9338 9402", "output": "59" }, { "input": "28\nRRLRLRRRRRRLLLRRLRRLLLRRLLLR\n156 172 1120 1362 2512 3326 3718 4804 4990 5810 6242 6756 6812 6890 6974 7014 7088 7724 8136 8596 8770 8840 9244 9250 9270 9372 9400 9626", "output": "10" }, { "input": "30\nRLLRLRLLRRRLRRRLLLLLLRRRLRRLRL\n128 610 1680 2436 2896 2994 3008 3358 3392 4020 4298 4582 4712 4728 5136 5900 6088 6232 6282 6858 6934 7186 7224 7256 7614 8802 8872 9170 9384 9794", "output": "7" }, { "input": "10\nLLLLRRRRRR\n0 2 4 6 8 10 12 14 16 18", "output": "-1" }, { "input": "5\nLLLLL\n0 10 20 30 40", "output": "-1" }, { "input": "6\nRRRRRR\n40 50 60 70 80 100", "output": "-1" }, { "input": "1\nR\n0", "output": "-1" }, { "input": "2\nRL\n2 1000000000", "output": "499999999" }, { "input": "2\nRL\n0 400000", "output": "200000" }, { "input": "2\nRL\n0 200002", "output": "100001" }, { "input": "2\nRL\n2 20000000", "output": "9999999" }, { "input": "4\nLLRL\n2 4 10 100", "output": "45" }, { "input": "4\nRLRL\n2 10 12 14", "output": "1" }, { "input": "2\nRL\n0 100000000", "output": "50000000" }, { "input": "2\nRL\n2 600002", "output": "300000" }, { "input": "1\nL\n0", "output": "-1" }, { "input": "2\nRL\n0 600000", "output": "300000" }, { "input": "5\nRRRRR\n0 2 4 6 8", "output": "-1" }, { "input": "2\nRL\n2 200000000", "output": "99999999" }, { "input": "2\nRL\n0 267382766", "output": "133691383" }, { "input": "3\nRRL\n4 8 999999998", "output": "499999995" }, { "input": "2\nRL\n0 2", "output": "1" }, { "input": "2\nRL\n2 400002", "output": "200000" }, { "input": "2\nLL\n2 4", "output": "-1" }, { "input": "2\nLL\n0 2", "output": "-1" }, { "input": "2\nRL\n0 100000", "output": "50000" }, { "input": "2\nRL\n2 200000020", "output": "100000009" }, { "input": "2\nRL\n2000000 4000000", "output": "1000000" }, { "input": "2\nRL\n0 199998", "output": "99999" }, { "input": "3\nLRR\n40 50 60", "output": "-1" }, { "input": "2\nRL\n200 400400", "output": "200100" }, { "input": "2\nRL\n2 400004", "output": "200001" }, { "input": "2\nRL\n0 200000000", "output": "100000000" } ]
1,666,546,584
2,147,483,647
Python 3
RUNTIME_ERROR
TESTS
38
171
15,564,800
n = int(input()) moves = input() positions = [int(x) for x in input().split()] mini = 1e10 for i,(a, b) in enumerate(zip(positions[:-1], positions[1:])): if moves[i] == "R" and moves[i + 1] == "L" and (k := (b - a)) % 2 == 0: if k // 2 < mini: mini = k // 2 if mini < 1e10: print(mini) else: gauche = [x for i, x in enumerate(positions) if moves[i] == "L"] droit = [x for i, x in enumerate(positions) if moves[i] == "R"] microseconds = 0 calcule = True while calcule: if gauche[-1] < droit[0]: print(-1) break microseconds += 1 gauche = [x - 1 for x in gauche] droit = [x + 1 for x in droit] for x in gauche: if x in droit: print(microseconds) calcule = False break
Title: Launch of Collider Time Limit: None seconds Memory Limit: None megabytes Problem Description: There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. *n* particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, *x**i* is the coordinate of the *i*-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers. You know the direction of each particle movement — it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time. Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point. Input Specification: The first line contains the positive integer *n* (1<=≤<=*n*<=≤<=200<=000) — the number of particles. The second line contains *n* symbols "L" and "R". If the *i*-th symbol equals "L", then the *i*-th particle will move to the left, otherwise the *i*-th symbol equals "R" and the *i*-th particle will move to the right. The third line contains the sequence of pairwise distinct even integers *x*1,<=*x*2,<=...,<=*x**n* (0<=≤<=*x**i*<=≤<=109) — the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order. Output Specification: In the first line print the only integer — the first moment (in microseconds) when two particles are at the same point and there will be an explosion. Print the only integer -1, if the collision of particles doesn't happen. Demo Input: ['4\nRLRL\n2 4 6 10\n', '3\nLLR\n40 50 60\n'] Demo Output: ['1\n', '-1\n'] Note: In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3. In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point.
```python n = int(input()) moves = input() positions = [int(x) for x in input().split()] mini = 1e10 for i,(a, b) in enumerate(zip(positions[:-1], positions[1:])): if moves[i] == "R" and moves[i + 1] == "L" and (k := (b - a)) % 2 == 0: if k // 2 < mini: mini = k // 2 if mini < 1e10: print(mini) else: gauche = [x for i, x in enumerate(positions) if moves[i] == "L"] droit = [x for i, x in enumerate(positions) if moves[i] == "R"] microseconds = 0 calcule = True while calcule: if gauche[-1] < droit[0]: print(-1) break microseconds += 1 gauche = [x - 1 for x in gauche] droit = [x + 1 for x in droit] for x in gauche: if x in droit: print(microseconds) calcule = False break ```
-1
899
C
Dividing the numbers
PROGRAMMING
1,300
[ "constructive algorithms", "graphs", "math" ]
null
null
Petya has *n* integers: 1,<=2,<=3,<=...,<=*n*. He wants to split these integers in two non-empty groups in such a way that the absolute difference of sums of integers in each group is as small as possible. Help Petya to split the integers. Each of *n* integers should be exactly in one group.
The first line contains a single integer *n* (2<=≤<=*n*<=≤<=60<=000) — the number of integers Petya has.
Print the smallest possible absolute difference in the first line. In the second line print the size of the first group, followed by the integers in that group. You can print these integers in arbitrary order. If there are multiple answers, print any of them.
[ "4\n", "2\n" ]
[ "0\n2 1 4 \n", "1\n1 1 \n" ]
In the first example you have to put integers 1 and 4 in the first group, and 2 and 3 in the second. This way the sum in each group is 5, and the absolute difference is 0. In the second example there are only two integers, and since both groups should be non-empty, you have to put one integer in the first group and one in the second. This way the absolute difference of sums of integers in each group is 1.
1,500
[ { "input": "4", "output": "0\n2 1 4 " }, { "input": "2", "output": "1\n1 1 " }, { "input": "3", "output": "0\n1\n3 " }, { "input": "5", "output": "1\n3\n1 2 5 " }, { "input": "59998", "output": "1\n29999 1 4 5 8 9 12 13 16 17 20 21 24 25 28 29 32 33 36 37 40 41 44 45 48 49 52 53 56 57 60 61 64 65 68 69 72 73 76 77 80 81 84 85 88 89 92 93 96 97 100 101 104 105 108 109 112 113 116 117 120 121 124 125 128 129 132 133 136 137 140 141 144 145 148 149 152 153 156 157 160 161 164 165 168 169 172 173 176 177 180 181 184 185 188 189 192 193 196 197 200 201 204 205 208 209 212 213 216 217 220 221 224 225 228 229 232 233 236 237 240 241 244 245 248 249 252 253 256 257 260 261 264 265 268 269 272 273 276 277 ..." }, { "input": "60000", "output": "0\n30000 1 4 5 8 9 12 13 16 17 20 21 24 25 28 29 32 33 36 37 40 41 44 45 48 49 52 53 56 57 60 61 64 65 68 69 72 73 76 77 80 81 84 85 88 89 92 93 96 97 100 101 104 105 108 109 112 113 116 117 120 121 124 125 128 129 132 133 136 137 140 141 144 145 148 149 152 153 156 157 160 161 164 165 168 169 172 173 176 177 180 181 184 185 188 189 192 193 196 197 200 201 204 205 208 209 212 213 216 217 220 221 224 225 228 229 232 233 236 237 240 241 244 245 248 249 252 253 256 257 260 261 264 265 268 269 272 273 276 277 ..." }, { "input": "59991", "output": "0\n29995\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 1..." }, { "input": "59989", "output": "1\n29995\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 1..." }, { "input": "6", "output": "1\n3 1 4 5 " }, { "input": "7", "output": "0\n3\n1 6 7 " }, { "input": "8", "output": "0\n4 1 4 5 8 " }, { "input": "9", "output": "1\n5\n1 2 3 8 9 " }, { "input": "10", "output": "1\n5 1 4 5 8 9 " }, { "input": "11", "output": "0\n5\n1 2 9 10 11 " }, { "input": "12", "output": "0\n6 1 4 5 8 9 12 " }, { "input": "13", "output": "1\n7\n1 2 3 4 11 12 13 " }, { "input": "14", "output": "1\n7 1 4 5 8 9 12 13 " }, { "input": "15", "output": "0\n7\n1 2 3 12 13 14 15 " }, { "input": "16", "output": "0\n8 1 4 5 8 9 12 13 16 " }, { "input": "17", "output": "1\n9\n1 2 3 4 5 14 15 16 17 " }, { "input": "18", "output": "1\n9 1 4 5 8 9 12 13 16 17 " }, { "input": "19", "output": "0\n9\n1 2 3 4 15 16 17 18 19 " }, { "input": "20", "output": "0\n10 1 4 5 8 9 12 13 16 17 20 " }, { "input": "21", "output": "1\n11\n1 2 3 4 5 6 17 18 19 20 21 " }, { "input": "22", "output": "1\n11 1 4 5 8 9 12 13 16 17 20 21 " }, { "input": "23", "output": "0\n11\n1 2 3 4 5 18 19 20 21 22 23 " }, { "input": "24", "output": "0\n12 1 4 5 8 9 12 13 16 17 20 21 24 " }, { "input": "59999", "output": "0\n29999\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 1..." }, { "input": "59997", "output": "1\n29999\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 1..." }, { "input": "59996", "output": "0\n29998 1 4 5 8 9 12 13 16 17 20 21 24 25 28 29 32 33 36 37 40 41 44 45 48 49 52 53 56 57 60 61 64 65 68 69 72 73 76 77 80 81 84 85 88 89 92 93 96 97 100 101 104 105 108 109 112 113 116 117 120 121 124 125 128 129 132 133 136 137 140 141 144 145 148 149 152 153 156 157 160 161 164 165 168 169 172 173 176 177 180 181 184 185 188 189 192 193 196 197 200 201 204 205 208 209 212 213 216 217 220 221 224 225 228 229 232 233 236 237 240 241 244 245 248 249 252 253 256 257 260 261 264 265 268 269 272 273 276 277 ..." }, { "input": "59995", "output": "0\n29997\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 1..." }, { "input": "59994", "output": "1\n29997 1 4 5 8 9 12 13 16 17 20 21 24 25 28 29 32 33 36 37 40 41 44 45 48 49 52 53 56 57 60 61 64 65 68 69 72 73 76 77 80 81 84 85 88 89 92 93 96 97 100 101 104 105 108 109 112 113 116 117 120 121 124 125 128 129 132 133 136 137 140 141 144 145 148 149 152 153 156 157 160 161 164 165 168 169 172 173 176 177 180 181 184 185 188 189 192 193 196 197 200 201 204 205 208 209 212 213 216 217 220 221 224 225 228 229 232 233 236 237 240 241 244 245 248 249 252 253 256 257 260 261 264 265 268 269 272 273 276 277 ..." }, { "input": "59993", "output": "1\n29997\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 1..." }, { "input": "59992", "output": "0\n29996 1 4 5 8 9 12 13 16 17 20 21 24 25 28 29 32 33 36 37 40 41 44 45 48 49 52 53 56 57 60 61 64 65 68 69 72 73 76 77 80 81 84 85 88 89 92 93 96 97 100 101 104 105 108 109 112 113 116 117 120 121 124 125 128 129 132 133 136 137 140 141 144 145 148 149 152 153 156 157 160 161 164 165 168 169 172 173 176 177 180 181 184 185 188 189 192 193 196 197 200 201 204 205 208 209 212 213 216 217 220 221 224 225 228 229 232 233 236 237 240 241 244 245 248 249 252 253 256 257 260 261 264 265 268 269 272 273 276 277 ..." }, { "input": "59990", "output": "1\n29995 1 4 5 8 9 12 13 16 17 20 21 24 25 28 29 32 33 36 37 40 41 44 45 48 49 52 53 56 57 60 61 64 65 68 69 72 73 76 77 80 81 84 85 88 89 92 93 96 97 100 101 104 105 108 109 112 113 116 117 120 121 124 125 128 129 132 133 136 137 140 141 144 145 148 149 152 153 156 157 160 161 164 165 168 169 172 173 176 177 180 181 184 185 188 189 192 193 196 197 200 201 204 205 208 209 212 213 216 217 220 221 224 225 228 229 232 233 236 237 240 241 244 245 248 249 252 253 256 257 260 261 264 265 268 269 272 273 276 277 ..." }, { "input": "100", "output": "0\n50 1 4 5 8 9 12 13 16 17 20 21 24 25 28 29 32 33 36 37 40 41 44 45 48 49 52 53 56 57 60 61 64 65 68 69 72 73 76 77 80 81 84 85 88 89 92 93 96 97 100 " }, { "input": "1000", "output": "0\n500 1 4 5 8 9 12 13 16 17 20 21 24 25 28 29 32 33 36 37 40 41 44 45 48 49 52 53 56 57 60 61 64 65 68 69 72 73 76 77 80 81 84 85 88 89 92 93 96 97 100 101 104 105 108 109 112 113 116 117 120 121 124 125 128 129 132 133 136 137 140 141 144 145 148 149 152 153 156 157 160 161 164 165 168 169 172 173 176 177 180 181 184 185 188 189 192 193 196 197 200 201 204 205 208 209 212 213 216 217 220 221 224 225 228 229 232 233 236 237 240 241 244 245 248 249 252 253 256 257 260 261 264 265 268 269 272 273 276 277 28..." }, { "input": "10001", "output": "1\n5001\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 15..." }, { "input": "103", "output": "0\n51\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 " }, { "input": "1002", "output": "1\n501 1 4 5 8 9 12 13 16 17 20 21 24 25 28 29 32 33 36 37 40 41 44 45 48 49 52 53 56 57 60 61 64 65 68 69 72 73 76 77 80 81 84 85 88 89 92 93 96 97 100 101 104 105 108 109 112 113 116 117 120 121 124 125 128 129 132 133 136 137 140 141 144 145 148 149 152 153 156 157 160 161 164 165 168 169 172 173 176 177 180 181 184 185 188 189 192 193 196 197 200 201 204 205 208 209 212 213 216 217 220 221 224 225 228 229 232 233 236 237 240 241 244 245 248 249 252 253 256 257 260 261 264 265 268 269 272 273 276 277 28..." }, { "input": "31724", "output": "0\n15862 1 4 5 8 9 12 13 16 17 20 21 24 25 28 29 32 33 36 37 40 41 44 45 48 49 52 53 56 57 60 61 64 65 68 69 72 73 76 77 80 81 84 85 88 89 92 93 96 97 100 101 104 105 108 109 112 113 116 117 120 121 124 125 128 129 132 133 136 137 140 141 144 145 148 149 152 153 156 157 160 161 164 165 168 169 172 173 176 177 180 181 184 185 188 189 192 193 196 197 200 201 204 205 208 209 212 213 216 217 220 221 224 225 228 229 232 233 236 237 240 241 244 245 248 249 252 253 256 257 260 261 264 265 268 269 272 273 276 277 ..." }, { "input": "2032", "output": "0\n1016 1 4 5 8 9 12 13 16 17 20 21 24 25 28 29 32 33 36 37 40 41 44 45 48 49 52 53 56 57 60 61 64 65 68 69 72 73 76 77 80 81 84 85 88 89 92 93 96 97 100 101 104 105 108 109 112 113 116 117 120 121 124 125 128 129 132 133 136 137 140 141 144 145 148 149 152 153 156 157 160 161 164 165 168 169 172 173 176 177 180 181 184 185 188 189 192 193 196 197 200 201 204 205 208 209 212 213 216 217 220 221 224 225 228 229 232 233 236 237 240 241 244 245 248 249 252 253 256 257 260 261 264 265 268 269 272 273 276 277 2..." }, { "input": "42620", "output": "0\n21310 1 4 5 8 9 12 13 16 17 20 21 24 25 28 29 32 33 36 37 40 41 44 45 48 49 52 53 56 57 60 61 64 65 68 69 72 73 76 77 80 81 84 85 88 89 92 93 96 97 100 101 104 105 108 109 112 113 116 117 120 121 124 125 128 129 132 133 136 137 140 141 144 145 148 149 152 153 156 157 160 161 164 165 168 169 172 173 176 177 180 181 184 185 188 189 192 193 196 197 200 201 204 205 208 209 212 213 216 217 220 221 224 225 228 229 232 233 236 237 240 241 244 245 248 249 252 253 256 257 260 261 264 265 268 269 272 273 276 277 ..." }, { "input": "18076", "output": "0\n9038 1 4 5 8 9 12 13 16 17 20 21 24 25 28 29 32 33 36 37 40 41 44 45 48 49 52 53 56 57 60 61 64 65 68 69 72 73 76 77 80 81 84 85 88 89 92 93 96 97 100 101 104 105 108 109 112 113 116 117 120 121 124 125 128 129 132 133 136 137 140 141 144 145 148 149 152 153 156 157 160 161 164 165 168 169 172 173 176 177 180 181 184 185 188 189 192 193 196 197 200 201 204 205 208 209 212 213 216 217 220 221 224 225 228 229 232 233 236 237 240 241 244 245 248 249 252 253 256 257 260 261 264 265 268 269 272 273 276 277 2..." }, { "input": "53520", "output": "0\n26760 1 4 5 8 9 12 13 16 17 20 21 24 25 28 29 32 33 36 37 40 41 44 45 48 49 52 53 56 57 60 61 64 65 68 69 72 73 76 77 80 81 84 85 88 89 92 93 96 97 100 101 104 105 108 109 112 113 116 117 120 121 124 125 128 129 132 133 136 137 140 141 144 145 148 149 152 153 156 157 160 161 164 165 168 169 172 173 176 177 180 181 184 185 188 189 192 193 196 197 200 201 204 205 208 209 212 213 216 217 220 221 224 225 228 229 232 233 236 237 240 241 244 245 248 249 252 253 256 257 260 261 264 265 268 269 272 273 276 277 ..." }, { "input": "37193", "output": "1\n18597\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 1..." }, { "input": "12645", "output": "1\n6323\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 15..." }, { "input": "53237", "output": "1\n26619\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 1..." }, { "input": "28693", "output": "1\n14347\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 1..." }, { "input": "4145", "output": "1\n2073\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 15..." }, { "input": "36042", "output": "1\n18021 1 4 5 8 9 12 13 16 17 20 21 24 25 28 29 32 33 36 37 40 41 44 45 48 49 52 53 56 57 60 61 64 65 68 69 72 73 76 77 80 81 84 85 88 89 92 93 96 97 100 101 104 105 108 109 112 113 116 117 120 121 124 125 128 129 132 133 136 137 140 141 144 145 148 149 152 153 156 157 160 161 164 165 168 169 172 173 176 177 180 181 184 185 188 189 192 193 196 197 200 201 204 205 208 209 212 213 216 217 220 221 224 225 228 229 232 233 236 237 240 241 244 245 248 249 252 253 256 257 260 261 264 265 268 269 272 273 276 277 ..." }, { "input": "16646", "output": "1\n8323 1 4 5 8 9 12 13 16 17 20 21 24 25 28 29 32 33 36 37 40 41 44 45 48 49 52 53 56 57 60 61 64 65 68 69 72 73 76 77 80 81 84 85 88 89 92 93 96 97 100 101 104 105 108 109 112 113 116 117 120 121 124 125 128 129 132 133 136 137 140 141 144 145 148 149 152 153 156 157 160 161 164 165 168 169 172 173 176 177 180 181 184 185 188 189 192 193 196 197 200 201 204 205 208 209 212 213 216 217 220 221 224 225 228 229 232 233 236 237 240 241 244 245 248 249 252 253 256 257 260 261 264 265 268 269 272 273 276 277 2..." }, { "input": "57238", "output": "1\n28619 1 4 5 8 9 12 13 16 17 20 21 24 25 28 29 32 33 36 37 40 41 44 45 48 49 52 53 56 57 60 61 64 65 68 69 72 73 76 77 80 81 84 85 88 89 92 93 96 97 100 101 104 105 108 109 112 113 116 117 120 121 124 125 128 129 132 133 136 137 140 141 144 145 148 149 152 153 156 157 160 161 164 165 168 169 172 173 176 177 180 181 184 185 188 189 192 193 196 197 200 201 204 205 208 209 212 213 216 217 220 221 224 225 228 229 232 233 236 237 240 241 244 245 248 249 252 253 256 257 260 261 264 265 268 269 272 273 276 277 ..." }, { "input": "27542", "output": "1\n13771 1 4 5 8 9 12 13 16 17 20 21 24 25 28 29 32 33 36 37 40 41 44 45 48 49 52 53 56 57 60 61 64 65 68 69 72 73 76 77 80 81 84 85 88 89 92 93 96 97 100 101 104 105 108 109 112 113 116 117 120 121 124 125 128 129 132 133 136 137 140 141 144 145 148 149 152 153 156 157 160 161 164 165 168 169 172 173 176 177 180 181 184 185 188 189 192 193 196 197 200 201 204 205 208 209 212 213 216 217 220 221 224 225 228 229 232 233 236 237 240 241 244 245 248 249 252 253 256 257 260 261 264 265 268 269 272 273 276 277 ..." }, { "input": "8146", "output": "1\n4073 1 4 5 8 9 12 13 16 17 20 21 24 25 28 29 32 33 36 37 40 41 44 45 48 49 52 53 56 57 60 61 64 65 68 69 72 73 76 77 80 81 84 85 88 89 92 93 96 97 100 101 104 105 108 109 112 113 116 117 120 121 124 125 128 129 132 133 136 137 140 141 144 145 148 149 152 153 156 157 160 161 164 165 168 169 172 173 176 177 180 181 184 185 188 189 192 193 196 197 200 201 204 205 208 209 212 213 216 217 220 221 224 225 228 229 232 233 236 237 240 241 244 245 248 249 252 253 256 257 260 261 264 265 268 269 272 273 276 277 2..." }, { "input": "46659", "output": "0\n23329\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 1..." }, { "input": "27259", "output": "0\n13629\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 1..." }, { "input": "2715", "output": "0\n1357\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 15..." }, { "input": "38159", "output": "0\n19079\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 1..." }, { "input": "18759", "output": "0\n9379\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 15..." } ]
1,573,764,183
2,147,483,647
Python 3
OK
TESTS
60
156
921,600
n = int(input()) sum = (n * (n+1))//2 print (sum & 1) sum = sum // 2 ans =[] len =0 while n > 0 : if sum >= n : sum-=n ans.append(n) len+=1 n-=1 print (len , end = ' ') for i in range(len): print (ans[i] , end = ' ')
Title: Dividing the numbers Time Limit: None seconds Memory Limit: None megabytes Problem Description: Petya has *n* integers: 1,<=2,<=3,<=...,<=*n*. He wants to split these integers in two non-empty groups in such a way that the absolute difference of sums of integers in each group is as small as possible. Help Petya to split the integers. Each of *n* integers should be exactly in one group. Input Specification: The first line contains a single integer *n* (2<=≤<=*n*<=≤<=60<=000) — the number of integers Petya has. Output Specification: Print the smallest possible absolute difference in the first line. In the second line print the size of the first group, followed by the integers in that group. You can print these integers in arbitrary order. If there are multiple answers, print any of them. Demo Input: ['4\n', '2\n'] Demo Output: ['0\n2 1 4 \n', '1\n1 1 \n'] Note: In the first example you have to put integers 1 and 4 in the first group, and 2 and 3 in the second. This way the sum in each group is 5, and the absolute difference is 0. In the second example there are only two integers, and since both groups should be non-empty, you have to put one integer in the first group and one in the second. This way the absolute difference of sums of integers in each group is 1.
```python n = int(input()) sum = (n * (n+1))//2 print (sum & 1) sum = sum // 2 ans =[] len =0 while n > 0 : if sum >= n : sum-=n ans.append(n) len+=1 n-=1 print (len , end = ' ') for i in range(len): print (ans[i] , end = ' ') ```
3
802
G
Fake News (easy)
PROGRAMMING
800
[ "implementation", "strings" ]
null
null
As it's the first of April, Heidi is suspecting that the news she reads today are fake, and she does not want to look silly in front of all the contestants. She knows that a newspiece is fake if it contains heidi as a subsequence. Help Heidi assess whether the given piece is true, but please be discreet about it...
The first and only line of input contains a single nonempty string *s* of length at most 1000 composed of lowercase letters (a-z).
Output YES if the string *s* contains heidi as a subsequence and NO otherwise.
[ "abcheaibcdi\n", "hiedi\n" ]
[ "YES", "NO" ]
A string *s* contains another string *p* as a subsequence if it is possible to delete some characters from *s* and obtain *p*.
0
[ { "input": "abcheaibcdi", "output": "YES" }, { "input": "hiedi", "output": "NO" }, { "input": "ihied", "output": "NO" }, { "input": "diehi", "output": "NO" }, { "input": "deiih", "output": "NO" }, { "input": "iheid", "output": "NO" }, { "input": "eihdi", "output": "NO" }, { "input": "ehdii", "output": "NO" }, { "input": "edhii", "output": "NO" }, { "input": "deiih", "output": "NO" }, { "input": "ehdii", "output": "NO" }, { "input": "eufyajkssayhjhqcwxmctecaeepjwmfoscqprpcxsqfwnlgzsmmuwuoruantipholrauvxydfvftwfzhnckxswussvlidcojiciflpvkcxkkcmmvtfvxrkwcpeelwsuzqgamamdtdgzscmikvojfvqehblmjczkvtdeymgertgkwfwfukafqlfdhtedcctixhyetdypswgagrpyto", "output": "YES" }, { "input": "arfbvxgdvqzuloojjrwoyqqbxamxybaqltfimofulusfebodjkwwrgwcppkwiodtpjaraglyplgerrpqjkpoggjmfxhwtqrijpijrcyxnoodvwpyjfpvqaoazllbrpzananbrvvybboedidtuvqquklkpeflfaltukjhzjgiofombhbmqbihgtapswykfvlgdoapjqntvqsaohmbvnphvyyhvhavslamczuqifxnwknkaenqmlvetrqogqxmlptgrmqvxzdxdmwobjesmgxckpmawtioavwdngyiwkzypfnxcovwzdohshwlavwsthdssiadhiwmhpvgkrbezm", "output": "YES" }, { "input": "zcectngbqnejjjtsfrluummmqabzqbyccshjqbrjthzhlbmzjfxugvjouwhumsgrnopiyakfadjnbsesamhynsbfbfunupwbxvohfmpwlcpxhovwpfpciclatgmiufwdvtsqrsdcymvkldpnhfeisrzhyhhlkwdzthgprvkpyldeysvbmcibqkpudyrraqdlxpjecvwcvuiklcrsbgvqasmxmtxqzmawcjtozioqlfflinnxpeexbzloaeqjvglbdeufultpjqexvjjjkzemtzuzmxvawilcqdrcjzpqyhtwfphuonzwkotthsaxrmwtnlmcdylxqcfffyndqeouztluqwlhnkkvzwcfiscikv", "output": "YES" }, { "input": "plqaykgovxkvsiahdbglktdlhcqwelxxmtlyymrsyubxdskvyjkrowvcbpdofpjqspsrgpakdczletxujzlsegepzleipiyycpinzxgwjsgslnxsotouddgfcybozfpjhhocpybfjbaywsehbcfrayvancbrumdfngqytnhihyxnlvilrqyhnxeckprqafofelospffhtwguzjbbjlzbqrtiielbvzutzgpqxosiaqznndgobcluuqlhmffiowkjdlkokehtjdyjvmxsiyxureflmdomerfekxdvtitvwzmdsdzplkpbtafxqfpudnhfqpoiwvjnylanunmagoweobdvfjgepbsymfutrjarlxclhgavpytiiqwvojrptofuvlohzeguxdsrihsbucelhhuedltnnjgzxwyblbqvnoliiydfinzlogbvucwykryzcyibnniggbkdkdcdgcsbvvnavtyhtkanrblpvomvjs", "output": "YES" }, { "input": "fbldqzggeunkpwcfirxanmntbfrudijltoertsdvcvcmbwodbibsrxendzebvxwydpasaqnisrijctsuatihxxygbeovhxjdptdcppkvfytdpjspvrannxavmkmisqtygntxkdlousdypyfkrpzapysfpdbyprufwzhunlsfugojddkmxzinatiwfxdqmgyrnjnxvrclhxyuwxtshoqdjptmeecvgmrlvuwqtmnfnfeeiwcavwnqmyustawbjodzwsqmnjxhpqmgpysierlwbbdzcwprpsexyvreewcmlbvaiytjlxdqdaqftefdlmtmmjcwvfejshymhnouoshdzqcwzxpzupkbcievodzqkqvyjuuxxwepxjalvkzufnveji", "output": "YES" }, { "input": "htsyljgoelbbuipivuzrhmfpkgderqpoprlxdpasxhpmxvaztccldtmujjzjmcpdvsdghzpretlsyyiljhjznseaacruriufswuvizwwuvdioazophhyytvbiogttnnouauxllbdn", "output": "YES" }, { "input": "ikmxzqdzxqlvgeojsnhqzciujslwjyzzexnregabdqztpplosdakimjxmuqccbnwvzbajoiqgdobccwnrwmixohrbdarhoeeelzbpigiybtesybwefpcfx", "output": "YES" }, { "input": "bpvbpjvbdfiodsmahxpcubjxdykesubnypalhypantshkjffmxjmelblqnjdmtaltneuyudyevkgedkqrdmrfeemgpghwrifcwincfixokfgurhqbcfzeajrgkgpwqwsepudxulywowwxzdxkumsicsvnzfxspmjpaixgejeaoyoibegosqoyoydmphfpbutrrewyjecowjckvpcceoamtfbitdneuwqfvnagswlskmsmkhmxyfsrpqwhxzocyffiumcy", "output": "YES" }, { "input": "vllsexwrazvlfvhvrtqeohvzzresjdiuhomfpgqcxpqdevplecuaepixhlijatxzegciizpvyvxuembiplwklahlqibykfideysjygagjbgqkbhdhkatddcwlxboinfuomnpc", "output": "YES" }, { "input": "pnjdwpxmvfoqkjtbhquqcuredrkwqzzfjmdvpnbqtypzdovemhhclkvigjvtprrpzbrbcbatkucaqteuciuozytsptvsskkeplaxdaqmjkmef", "output": "NO" }, { "input": "jpwfhvlxvsdhtuozvlmnfiotrgapgjxtcsgcjnodcztupysvvvmjpzqkpommadppdrykuqkcpzojcwvlogvkddedwbggkrhuvtsvdiokehlkdlnukcufjvqxnikcdawvexxwffxtriqbdmkahxdtygodzohwtdmmuvmatdkvweqvaehaxiefpevkvqpyxsrhtmgjsdfcwzqobibeduooldrmglbinrepmunizheqzvgqvpdskhxfidxfnbisyizhepwyrcykcmjxnkyfjgrqlkixcvysa", "output": "YES" }, { "input": "aftcrvuumeqbfvaqlltscnuhkpcifrrhnutjinxdhhdbzvizlrapzjdatuaynoplgjketupgaejciosofuhcgcjdcucarfvtsofgubtphijciswsvidnvpztlaarydkeqxzwdhfbmullkimerukusbrdnnujviydldrwhdfllsjtziwfeaiqotbiprespmxjulnyunkdtcghrzvhtcychkwatqqmladxpvmvlkzscthylbzkpgwlzfjqwarqvdeyngekqvrhrftpxnkfcibbowvnqdkulcdydspcubwlgoyinpnzgidbgunparnueddzwtzdiavbprbbg", "output": "YES" }, { "input": "oagjghsidigeh", "output": "NO" }, { "input": "chdhzpfzabupskiusjoefrwmjmqkbmdgboicnszkhdrlegeqjsldurmbshijadlwsycselhlnudndpdhcnhruhhvsgbthpruiqfirxkhpqhzhqdfpyozolbionodypfcqfeqbkcgmqkizgeyyelzeoothexcoaahedgrvoemqcwccbvoeqawqeuusyjxmgjkpfwcdttfmwunzuwvsihliexlzygqcgpbdiawfvqukikhbjerjkyhpcknlndaystrgsinghlmekbvhntcpypmchcwoglsmwwdulqneuabuuuvtyrnjxfcgoothalwkzzfxakneusezgnnepkpipzromqubraiggqndliz", "output": "YES" }, { "input": "lgirxqkrkgjcutpqitmffvbujcljkqardlalyigxorscczuzikoylcxenryhskoavymexysvmhbsvhtycjlmzhijpuvcjshyfeycvvcfyzytzoyvxajpqdjtfiatnvxnyeqtfcagfftafllhhjhplbdsrfpctkqpinpdfrtlzyjllfbeffputywcckupyslkbbzpgcnxgbmhtqeqqehpdaokkjtatrhyiuusjhwgiiiikxpzdueasemosmmccoakafgvxduwiuflovhhfhffgnnjhoperhhjtvocpqytjxkmrknnknqeglffhfuplopmktykxuvcmbwpoeisrlyyhdpxfvzseucofyhziuiikihpqheqdyzwigeaqzhxzvporgisxgvhyicqyejovqloibhbunsvsunpvmdckkbuokitdzleilfwutcvuuytpupizinfjrzhxudsmjcjyfcpfgthujjowdwtgbvi", "output": "YES" }, { "input": "uuehrvufgerqbzyzksmqnewacotuimawhlbycdbsmhshrsbqwybbkwjwsrkwptvlbbwjiivqugzrxxwgidrcrhrwsmwgeoleptfamzefgaeyxouxocrpvomjrazmxrnffdwrrmblgdiabdncvfougtmjgvvazasnygdrigbsrieoonirlivfyodvulouslxosswgpdexuldmkdbpdlgutiotvxjyecbrsvbmqxrlcpcipjjncduyqtohlzybvlemmfdeubihwlwqglkgjvnwrbgydcpwklmjeewqklmqdbajqgrpnynaxfvxjzgibqerxyhnxenrmcdqaaeksbzyrcaepozqpetaurlhjuxxhwppuhgoihxdxbmxeiahyaqkbknktlzkheaarjoqqrsyeducvoygwalgarldcdlqogfvsncejssmx", "output": "YES" }, { "input": "iiopulfjxoitgiusqrhgbkiyzinphjtclodbkkydetylvuimkhdkklmyoacmekdvjpuxcrvqnjhqhhbfenlpzpwijtykqziocilvtpqhxuyrphdlamawjuzgjwiebkqyrzyqgtkcrhntjxqmcgkrqcslogjegfrivzidfedeegwbbsopvxvdoididlpypjogxaodtueebbwuwilacunqpozczcgrpaxxrtogpxgfkudtxchoravrrdtimhenwmnafxaruuojduxxglefejycfcyxllfimkszmbrhcwpnwjqgwvzysmlaaifdxfjjpgjmcksiigpanappjdloiolojmcqbnpnjjzaufdpjaknylmyvolhwypygwepmqwpiglpcnpypnudhdzpdvgzosyjthzcwtytxq", "output": "YES" } ]
1,570,107,060
2,147,483,647
PyPy 3
RUNTIME_ERROR
TESTS
2
187
2,355,200
def heidi(s,l): c=0 for i in range(len(s)): if s[i]==l[c] and c<len(l): c+=1 elif c==len(l): return 'YES' break if c==len(l): return 'YES' else: return 'NO' s= input() l='heidi' if len(s)<=5: print('NO') else: print(heidi(s,l))
Title: Fake News (easy) Time Limit: None seconds Memory Limit: None megabytes Problem Description: As it's the first of April, Heidi is suspecting that the news she reads today are fake, and she does not want to look silly in front of all the contestants. She knows that a newspiece is fake if it contains heidi as a subsequence. Help Heidi assess whether the given piece is true, but please be discreet about it... Input Specification: The first and only line of input contains a single nonempty string *s* of length at most 1000 composed of lowercase letters (a-z). Output Specification: Output YES if the string *s* contains heidi as a subsequence and NO otherwise. Demo Input: ['abcheaibcdi\n', 'hiedi\n'] Demo Output: ['YES', 'NO'] Note: A string *s* contains another string *p* as a subsequence if it is possible to delete some characters from *s* and obtain *p*.
```python def heidi(s,l): c=0 for i in range(len(s)): if s[i]==l[c] and c<len(l): c+=1 elif c==len(l): return 'YES' break if c==len(l): return 'YES' else: return 'NO' s= input() l='heidi' if len(s)<=5: print('NO') else: print(heidi(s,l)) ```
-1
814
C
An impassioned circulation of affection
PROGRAMMING
1,600
[ "brute force", "dp", "strings", "two pointers" ]
null
null
Nadeko's birthday is approaching! As she decorated the room for the party, a long garland of Dianthus-shaped paper pieces was placed on a prominent part of the wall. Brother Koyomi will like it! Still unsatisfied with the garland, Nadeko decided to polish it again. The garland has *n* pieces numbered from 1 to *n* from left to right, and the *i*-th piece has a colour *s**i*, denoted by a lowercase English letter. Nadeko will repaint at most *m* of the pieces to give each of them an arbitrary new colour (still denoted by a lowercase English letter). After this work, she finds out all subsegments of the garland containing pieces of only colour *c* — Brother Koyomi's favourite one, and takes the length of the longest among them to be the Koyomity of the garland. For instance, let's say the garland is represented by "kooomo", and Brother Koyomi's favourite colour is "o". Among all subsegments containing pieces of "o" only, "ooo" is the longest, with a length of 3. Thus the Koyomity of this garland equals 3. But problem arises as Nadeko is unsure about Brother Koyomi's favourite colour, and has swaying ideas on the amount of work to do. She has *q* plans on this, each of which can be expressed as a pair of an integer *m**i* and a lowercase letter *c**i*, meanings of which are explained above. You are to find out the maximum Koyomity achievable after repainting the garland according to each plan.
The first line of input contains a positive integer *n* (1<=≤<=*n*<=≤<=1<=500) — the length of the garland. The second line contains *n* lowercase English letters *s*1*s*2... *s**n* as a string — the initial colours of paper pieces on the garland. The third line contains a positive integer *q* (1<=≤<=*q*<=≤<=200<=000) — the number of plans Nadeko has. The next *q* lines describe one plan each: the *i*-th among them contains an integer *m**i* (1<=≤<=*m**i*<=≤<=*n*) — the maximum amount of pieces to repaint, followed by a space, then by a lowercase English letter *c**i* — Koyomi's possible favourite colour.
Output *q* lines: for each work plan, output one line containing an integer — the largest Koyomity achievable after repainting the garland according to it.
[ "6\nkoyomi\n3\n1 o\n4 o\n4 m\n", "15\nyamatonadeshiko\n10\n1 a\n2 a\n3 a\n4 a\n5 a\n1 b\n2 b\n3 b\n4 b\n5 b\n", "10\naaaaaaaaaa\n2\n10 b\n10 z\n" ]
[ "3\n6\n5\n", "3\n4\n5\n7\n8\n1\n2\n3\n4\n5\n", "10\n10\n" ]
In the first sample, there are three plans: - In the first plan, at most 1 piece can be repainted. Repainting the "y" piece to become "o" results in "kooomi", whose Koyomity of 3 is the best achievable; - In the second plan, at most 4 pieces can be repainted, and "oooooo" results in a Koyomity of 6; - In the third plan, at most 4 pieces can be repainted, and "mmmmmi" and "kmmmmm" both result in a Koyomity of 5.
1,750
[ { "input": "6\nkoyomi\n3\n1 o\n4 o\n4 m", "output": "3\n6\n5" }, { "input": "15\nyamatonadeshiko\n10\n1 a\n2 a\n3 a\n4 a\n5 a\n1 b\n2 b\n3 b\n4 b\n5 b", "output": "3\n4\n5\n7\n8\n1\n2\n3\n4\n5" }, { "input": "10\naaaaaaaaaa\n2\n10 b\n10 z", "output": "10\n10" }, { "input": "1\nc\n4\n1 x\n1 a\n1 e\n1 t", "output": "1\n1\n1\n1" }, { "input": "20\naaaaaaaaaaaaaaaaaaaa\n1\n11 a", "output": "20" }, { "input": "4\ncbcc\n12\n4 b\n4 c\n1 b\n2 a\n3 b\n2 c\n4 a\n1 a\n2 b\n3 a\n1 c\n3 c", "output": "4\n4\n2\n2\n4\n4\n4\n1\n3\n3\n4\n4" }, { "input": "4\nddbb\n16\n3 c\n3 b\n1 a\n1 b\n4 d\n4 a\n3 d\n2 a\n2 d\n4 c\n3 a\n2 c\n4 b\n1 c\n2 b\n1 d", "output": "3\n4\n1\n3\n4\n4\n4\n2\n4\n4\n3\n2\n4\n1\n4\n3" }, { "input": "4\nabcc\n24\n1 c\n4 d\n3 c\n1 d\n1 c\n1 b\n3 b\n2 c\n3 d\n3 d\n4 c\n2 a\n4 d\n1 a\n1 b\n4 a\n4 d\n3 b\n4 b\n3 c\n3 a\n2 d\n1 a\n2 b", "output": "3\n4\n4\n1\n3\n2\n4\n4\n3\n3\n4\n3\n4\n2\n2\n4\n4\n4\n4\n4\n4\n2\n2\n3" }, { "input": "40\ncbbcbcccccacccccbbacbaabccbbabbaaaaacccc\n10\n40 a\n28 c\n25 c\n21 a\n18 c\n27 a\n9 c\n37 c\n15 a\n18 b", "output": "40\n40\n40\n31\n35\n37\n23\n40\n24\n27" }, { "input": "100\ndddddccccdddddaaaaabbbbbbbbbbbbbaaacdcabbacccacccccbdbbadddbbddddbdaaccacdddbbbaddddbbbbdcbbbdddddda\n50\n54 b\n48 d\n45 b\n52 c\n52 a\n48 a\n54 b\n45 a\n47 d\n50 d\n53 a\n34 a\n51 b\n48 d\n47 d\n47 a\n48 d\n53 b\n52 d\n54 d\n46 a\n38 a\n52 b\n49 a\n49 b\n46 c\n54 a\n45 b\n35 c\n55 c\n51 c\n46 d\n54 d\n50 a\n33 c\n46 a\n50 b\n50 a\n54 a\n32 b\n55 b\n49 c\n53 d\n49 a\n46 b\n48 c\n47 b\n47 b\n47 a\n46 b", "output": "85\n72\n76\n69\n68\n63\n85\n60\n71\n74\n69\n46\n82\n72\n71\n62\n72\n84\n76\n78\n61\n50\n83\n64\n80\n60\n70\n76\n49\n72\n68\n70\n78\n66\n47\n61\n81\n66\n70\n53\n86\n63\n77\n64\n77\n62\n78\n78\n62\n77" }, { "input": "200\nddeecdbbbeeeeebbbbbaaaaaaaaaaaaaaaaaaaaaaabbcaacccbeeeeddddddddddddccccccdffeeeeecccccbbbbaaaaedfffffaadeeeeeeeedddddaaaaaaaaaaaaaabbbbbcaadddeefffbbbbcccccccccccbbbbbbeeeeeeeffffffdffffffffffffaaaaab\n10\n43 f\n118 d\n165 f\n72 f\n48 f\n2 a\n61 e\n94 d\n109 f\n16 a", "output": "64\n144\n193\n98\n69\n25\n79\n117\n137\n41" }, { "input": "5\naaaaa\n1\n1 b", "output": "1" } ]
1,565,681,398
2,147,483,647
PyPy 3
WRONG_ANSWER
TESTS
1
124
0
n = int(input()) s = input() q = int(input()) for i in range(q): v = list(input()) l = int(v[0]) z = s.count(v[2]) print(z + l)
Title: An impassioned circulation of affection Time Limit: None seconds Memory Limit: None megabytes Problem Description: Nadeko's birthday is approaching! As she decorated the room for the party, a long garland of Dianthus-shaped paper pieces was placed on a prominent part of the wall. Brother Koyomi will like it! Still unsatisfied with the garland, Nadeko decided to polish it again. The garland has *n* pieces numbered from 1 to *n* from left to right, and the *i*-th piece has a colour *s**i*, denoted by a lowercase English letter. Nadeko will repaint at most *m* of the pieces to give each of them an arbitrary new colour (still denoted by a lowercase English letter). After this work, she finds out all subsegments of the garland containing pieces of only colour *c* — Brother Koyomi's favourite one, and takes the length of the longest among them to be the Koyomity of the garland. For instance, let's say the garland is represented by "kooomo", and Brother Koyomi's favourite colour is "o". Among all subsegments containing pieces of "o" only, "ooo" is the longest, with a length of 3. Thus the Koyomity of this garland equals 3. But problem arises as Nadeko is unsure about Brother Koyomi's favourite colour, and has swaying ideas on the amount of work to do. She has *q* plans on this, each of which can be expressed as a pair of an integer *m**i* and a lowercase letter *c**i*, meanings of which are explained above. You are to find out the maximum Koyomity achievable after repainting the garland according to each plan. Input Specification: The first line of input contains a positive integer *n* (1<=≤<=*n*<=≤<=1<=500) — the length of the garland. The second line contains *n* lowercase English letters *s*1*s*2... *s**n* as a string — the initial colours of paper pieces on the garland. The third line contains a positive integer *q* (1<=≤<=*q*<=≤<=200<=000) — the number of plans Nadeko has. The next *q* lines describe one plan each: the *i*-th among them contains an integer *m**i* (1<=≤<=*m**i*<=≤<=*n*) — the maximum amount of pieces to repaint, followed by a space, then by a lowercase English letter *c**i* — Koyomi's possible favourite colour. Output Specification: Output *q* lines: for each work plan, output one line containing an integer — the largest Koyomity achievable after repainting the garland according to it. Demo Input: ['6\nkoyomi\n3\n1 o\n4 o\n4 m\n', '15\nyamatonadeshiko\n10\n1 a\n2 a\n3 a\n4 a\n5 a\n1 b\n2 b\n3 b\n4 b\n5 b\n', '10\naaaaaaaaaa\n2\n10 b\n10 z\n'] Demo Output: ['3\n6\n5\n', '3\n4\n5\n7\n8\n1\n2\n3\n4\n5\n', '10\n10\n'] Note: In the first sample, there are three plans: - In the first plan, at most 1 piece can be repainted. Repainting the "y" piece to become "o" results in "kooomi", whose Koyomity of 3 is the best achievable; - In the second plan, at most 4 pieces can be repainted, and "oooooo" results in a Koyomity of 6; - In the third plan, at most 4 pieces can be repainted, and "mmmmmi" and "kmmmmm" both result in a Koyomity of 5.
```python n = int(input()) s = input() q = int(input()) for i in range(q): v = list(input()) l = int(v[0]) z = s.count(v[2]) print(z + l) ```
0
500
A
New Year Transportation
PROGRAMMING
1,000
[ "dfs and similar", "graphs", "implementation" ]
null
null
New Year is coming in Line World! In this world, there are *n* cells numbered by integers from 1 to *n*, as a 1<=×<=*n* board. People live in cells. However, it was hard to move between distinct cells, because of the difficulty of escaping the cell. People wanted to meet people who live in other cells. So, user tncks0121 has made a transportation system to move between these cells, to celebrate the New Year. First, he thought of *n*<=-<=1 positive integers *a*1,<=*a*2,<=...,<=*a**n*<=-<=1. For every integer *i* where 1<=≤<=*i*<=≤<=*n*<=-<=1 the condition 1<=≤<=*a**i*<=≤<=*n*<=-<=*i* holds. Next, he made *n*<=-<=1 portals, numbered by integers from 1 to *n*<=-<=1. The *i*-th (1<=≤<=*i*<=≤<=*n*<=-<=1) portal connects cell *i* and cell (*i*<=+<=*a**i*), and one can travel from cell *i* to cell (*i*<=+<=*a**i*) using the *i*-th portal. Unfortunately, one cannot use the portal backwards, which means one cannot move from cell (*i*<=+<=*a**i*) to cell *i* using the *i*-th portal. It is easy to see that because of condition 1<=≤<=*a**i*<=≤<=*n*<=-<=*i* one can't leave the Line World using portals. Currently, I am standing at cell 1, and I want to go to cell *t*. However, I don't know whether it is possible to go there. Please determine whether I can go to cell *t* by only using the construted transportation system.
The first line contains two space-separated integers *n* (3<=≤<=*n*<=≤<=3<=×<=104) and *t* (2<=≤<=*t*<=≤<=*n*) — the number of cells, and the index of the cell which I want to go to. The second line contains *n*<=-<=1 space-separated integers *a*1,<=*a*2,<=...,<=*a**n*<=-<=1 (1<=≤<=*a**i*<=≤<=*n*<=-<=*i*). It is guaranteed, that using the given transportation system, one cannot leave the Line World.
If I can go to cell *t* using the transportation system, print "YES". Otherwise, print "NO".
[ "8 4\n1 2 1 2 1 2 1\n", "8 5\n1 2 1 2 1 1 1\n" ]
[ "YES\n", "NO\n" ]
In the first sample, the visited cells are: 1, 2, 4; so we can successfully visit the cell 4. In the second sample, the possible cells to visit are: 1, 2, 4, 6, 7, 8; so we can't visit the cell 5, which we want to visit.
500
[ { "input": "8 4\n1 2 1 2 1 2 1", "output": "YES" }, { "input": "8 5\n1 2 1 2 1 1 1", "output": "NO" }, { "input": "20 19\n13 16 7 6 12 1 5 7 8 6 5 7 5 5 3 3 2 2 1", "output": "YES" }, { "input": "50 49\n11 7 1 41 26 36 19 16 38 14 36 35 37 27 20 27 3 6 21 2 27 11 18 17 19 16 22 8 8 9 1 7 5 12 5 6 13 6 11 2 6 3 1 5 1 1 2 2 1", "output": "YES" }, { "input": "120 104\n41 15 95 85 34 11 25 42 65 39 77 80 74 17 66 73 21 14 36 63 63 79 45 24 65 7 63 80 51 21 2 19 78 28 71 2 15 23 17 68 62 18 54 39 43 70 3 46 34 23 41 65 32 10 13 18 10 3 16 48 54 18 57 28 3 24 44 50 15 2 20 22 45 44 3 29 2 27 11 2 12 25 25 31 1 2 32 4 11 30 13 16 26 21 1 13 21 8 15 5 18 13 5 15 3 8 13 6 5 1 9 7 1 2 4 1 1 2 1", "output": "NO" }, { "input": "10 3\n8 3 5 4 2 3 2 2 1", "output": "NO" }, { "input": "10 9\n8 3 5 4 2 3 2 2 1", "output": "YES" }, { "input": "3 2\n1 1", "output": "YES" }, { "input": "3 2\n2 1", "output": "NO" }, { "input": "4 2\n2 1 1", "output": "NO" }, { "input": "4 4\n2 2 1", "output": "YES" }, { "input": "8 8\n1 2 1 2 1 2 1", "output": "YES" }, { "input": "3 3\n1 1", "output": "YES" }, { "input": "8 8\n1 2 1 2 1 1 1", "output": "YES" }, { "input": "3 3\n2 1", "output": "YES" }, { "input": "4 4\n1 1 1", "output": "YES" }, { "input": "8 8\n1 1 1 1 1 1 1", "output": "YES" }, { "input": "5 5\n1 1 1 1", "output": "YES" } ]
1,676,155,682
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
0
30
0
quantidade_pulos, alvo = map(int, input().split()) pulos = list(map(int, input().split())) ## SEM FOR... posicao_atual = 0 while posicao_atual < alvo: posicao_atual += pulos[posicao_atual] if posicao_atual == alvo - 1: print("YES") else: print("NO")
Title: New Year Transportation Time Limit: None seconds Memory Limit: None megabytes Problem Description: New Year is coming in Line World! In this world, there are *n* cells numbered by integers from 1 to *n*, as a 1<=×<=*n* board. People live in cells. However, it was hard to move between distinct cells, because of the difficulty of escaping the cell. People wanted to meet people who live in other cells. So, user tncks0121 has made a transportation system to move between these cells, to celebrate the New Year. First, he thought of *n*<=-<=1 positive integers *a*1,<=*a*2,<=...,<=*a**n*<=-<=1. For every integer *i* where 1<=≤<=*i*<=≤<=*n*<=-<=1 the condition 1<=≤<=*a**i*<=≤<=*n*<=-<=*i* holds. Next, he made *n*<=-<=1 portals, numbered by integers from 1 to *n*<=-<=1. The *i*-th (1<=≤<=*i*<=≤<=*n*<=-<=1) portal connects cell *i* and cell (*i*<=+<=*a**i*), and one can travel from cell *i* to cell (*i*<=+<=*a**i*) using the *i*-th portal. Unfortunately, one cannot use the portal backwards, which means one cannot move from cell (*i*<=+<=*a**i*) to cell *i* using the *i*-th portal. It is easy to see that because of condition 1<=≤<=*a**i*<=≤<=*n*<=-<=*i* one can't leave the Line World using portals. Currently, I am standing at cell 1, and I want to go to cell *t*. However, I don't know whether it is possible to go there. Please determine whether I can go to cell *t* by only using the construted transportation system. Input Specification: The first line contains two space-separated integers *n* (3<=≤<=*n*<=≤<=3<=×<=104) and *t* (2<=≤<=*t*<=≤<=*n*) — the number of cells, and the index of the cell which I want to go to. The second line contains *n*<=-<=1 space-separated integers *a*1,<=*a*2,<=...,<=*a**n*<=-<=1 (1<=≤<=*a**i*<=≤<=*n*<=-<=*i*). It is guaranteed, that using the given transportation system, one cannot leave the Line World. Output Specification: If I can go to cell *t* using the transportation system, print "YES". Otherwise, print "NO". Demo Input: ['8 4\n1 2 1 2 1 2 1\n', '8 5\n1 2 1 2 1 1 1\n'] Demo Output: ['YES\n', 'NO\n'] Note: In the first sample, the visited cells are: 1, 2, 4; so we can successfully visit the cell 4. In the second sample, the possible cells to visit are: 1, 2, 4, 6, 7, 8; so we can't visit the cell 5, which we want to visit.
```python quantidade_pulos, alvo = map(int, input().split()) pulos = list(map(int, input().split())) ## SEM FOR... posicao_atual = 0 while posicao_atual < alvo: posicao_atual += pulos[posicao_atual] if posicao_atual == alvo - 1: print("YES") else: print("NO") ```
0
911
B
Two Cakes
PROGRAMMING
1,200
[ "binary search", "brute force", "implementation" ]
null
null
It's New Year's Eve soon, so Ivan decided it's high time he started setting the table. Ivan has bought two cakes and cut them into pieces: the first cake has been cut into *a* pieces, and the second one — into *b* pieces. Ivan knows that there will be *n* people at the celebration (including himself), so Ivan has set *n* plates for the cakes. Now he is thinking about how to distribute the cakes between the plates. Ivan wants to do it in such a way that all following conditions are met: 1. Each piece of each cake is put on some plate; 1. Each plate contains at least one piece of cake; 1. No plate contains pieces of both cakes. To make his guests happy, Ivan wants to distribute the cakes in such a way that the minimum number of pieces on the plate is maximized. Formally, Ivan wants to know the maximum possible number *x* such that he can distribute the cakes according to the aforementioned conditions, and each plate will contain at least *x* pieces of cake. Help Ivan to calculate this number *x*!
The first line contains three integers *n*, *a* and *b* (1<=≤<=*a*,<=*b*<=≤<=100, 2<=≤<=*n*<=≤<=*a*<=+<=*b*) — the number of plates, the number of pieces of the first cake, and the number of pieces of the second cake, respectively.
Print the maximum possible number *x* such that Ivan can distribute the cake in such a way that each plate will contain at least *x* pieces of cake.
[ "5 2 3\n", "4 7 10\n" ]
[ "1\n", "3\n" ]
In the first example there is only one way to distribute cakes to plates, all of them will have 1 cake on it. In the second example you can have two plates with 3 and 4 pieces of the first cake and two plates both with 5 pieces of the second cake. Minimal number of pieces is 3.
0
[ { "input": "5 2 3", "output": "1" }, { "input": "4 7 10", "output": "3" }, { "input": "100 100 100", "output": "2" }, { "input": "10 100 3", "output": "3" }, { "input": "2 9 29", "output": "9" }, { "input": "4 6 10", "output": "3" }, { "input": "3 70 58", "output": "35" }, { "input": "5 7 10", "output": "3" }, { "input": "5 30 22", "output": "10" }, { "input": "5 5 6", "output": "2" }, { "input": "2 4 3", "output": "3" }, { "input": "10 10 31", "output": "3" }, { "input": "2 1 1", "output": "1" }, { "input": "10 98 99", "output": "19" }, { "input": "4 10 16", "output": "5" }, { "input": "11 4 8", "output": "1" }, { "input": "5 10 14", "output": "4" }, { "input": "6 7 35", "output": "7" }, { "input": "5 6 7", "output": "2" }, { "input": "4 15 3", "output": "3" }, { "input": "7 48 77", "output": "16" }, { "input": "4 4 10", "output": "3" }, { "input": "4 7 20", "output": "6" }, { "input": "5 2 8", "output": "2" }, { "input": "3 2 3", "output": "1" }, { "input": "14 95 1", "output": "1" }, { "input": "99 82 53", "output": "1" }, { "input": "10 71 27", "output": "9" }, { "input": "5 7 8", "output": "2" }, { "input": "11 77 77", "output": "12" }, { "input": "10 5 28", "output": "3" }, { "input": "7 3 12", "output": "2" }, { "input": "10 15 17", "output": "3" }, { "input": "7 7 7", "output": "1" }, { "input": "4 11 18", "output": "6" }, { "input": "3 3 4", "output": "2" }, { "input": "9 2 10", "output": "1" }, { "input": "100 90 20", "output": "1" }, { "input": "3 2 2", "output": "1" }, { "input": "12 45 60", "output": "8" }, { "input": "3 94 79", "output": "47" }, { "input": "41 67 34", "output": "2" }, { "input": "9 3 23", "output": "2" }, { "input": "10 20 57", "output": "7" }, { "input": "55 27 30", "output": "1" }, { "input": "100 100 10", "output": "1" }, { "input": "20 8 70", "output": "3" }, { "input": "3 3 3", "output": "1" }, { "input": "4 9 15", "output": "5" }, { "input": "3 1 3", "output": "1" }, { "input": "2 94 94", "output": "94" }, { "input": "5 3 11", "output": "2" }, { "input": "4 3 2", "output": "1" }, { "input": "12 12 100", "output": "9" }, { "input": "6 75 91", "output": "25" }, { "input": "3 4 3", "output": "2" }, { "input": "3 2 5", "output": "2" }, { "input": "6 5 15", "output": "3" }, { "input": "4 3 6", "output": "2" }, { "input": "3 9 9", "output": "4" }, { "input": "26 93 76", "output": "6" }, { "input": "41 34 67", "output": "2" }, { "input": "6 12 6", "output": "3" }, { "input": "5 20 8", "output": "5" }, { "input": "2 1 3", "output": "1" }, { "input": "35 66 99", "output": "4" }, { "input": "30 7 91", "output": "3" }, { "input": "5 22 30", "output": "10" }, { "input": "8 19 71", "output": "10" }, { "input": "3 5 6", "output": "3" }, { "input": "5 3 8", "output": "2" }, { "input": "2 4 2", "output": "2" }, { "input": "4 3 7", "output": "2" }, { "input": "5 20 10", "output": "5" }, { "input": "5 100 50", "output": "25" }, { "input": "6 3 10", "output": "2" }, { "input": "2 90 95", "output": "90" }, { "input": "4 8 6", "output": "3" }, { "input": "6 10 3", "output": "2" }, { "input": "3 3 5", "output": "2" }, { "input": "5 33 33", "output": "11" }, { "input": "5 5 8", "output": "2" }, { "input": "19 24 34", "output": "3" }, { "input": "5 5 12", "output": "3" }, { "input": "8 7 10", "output": "2" }, { "input": "5 56 35", "output": "17" }, { "input": "4 3 5", "output": "1" }, { "input": "18 100 50", "output": "8" }, { "input": "5 6 8", "output": "2" }, { "input": "5 98 100", "output": "33" }, { "input": "6 5 8", "output": "2" }, { "input": "3 40 80", "output": "40" }, { "input": "4 8 11", "output": "4" }, { "input": "66 100 99", "output": "3" }, { "input": "17 100 79", "output": "10" }, { "input": "3 2 10", "output": "2" }, { "input": "99 100 99", "output": "2" }, { "input": "21 100 5", "output": "5" }, { "input": "3 10 2", "output": "2" }, { "input": "4 100 63", "output": "33" }, { "input": "2 2 10", "output": "2" }, { "input": "5 94 79", "output": "31" }, { "input": "4 12 5", "output": "4" }, { "input": "5 5 40", "output": "5" }, { "input": "99 99 99", "output": "1" }, { "input": "8 97 44", "output": "16" }, { "input": "11 4 10", "output": "1" }, { "input": "6 3 3", "output": "1" }, { "input": "7 3 4", "output": "1" }, { "input": "8 4 4", "output": "1" }, { "input": "9 4 5", "output": "1" }, { "input": "12 6 6", "output": "1" }, { "input": "4 48 89", "output": "29" }, { "input": "8 3 6", "output": "1" }, { "input": "4 6 3", "output": "2" }, { "input": "5 5 1", "output": "1" }, { "input": "11 6 5", "output": "1" }, { "input": "4 5 4", "output": "2" }, { "input": "6 6 4", "output": "1" }, { "input": "2 1 2", "output": "1" }, { "input": "4 1 3", "output": "1" }, { "input": "3 3 1", "output": "1" }, { "input": "9 4 6", "output": "1" }, { "input": "6 5 6", "output": "1" }, { "input": "2 2 3", "output": "2" }, { "input": "4 5 1", "output": "1" }, { "input": "13 6 7", "output": "1" }, { "input": "14 7 7", "output": "1" }, { "input": "12 97 13", "output": "8" }, { "input": "4 2 9", "output": "2" }, { "input": "10 20 59", "output": "7" }, { "input": "12 34 56", "output": "7" }, { "input": "4 5 9", "output": "3" }, { "input": "2 2 2", "output": "2" }, { "input": "4 66 41", "output": "22" } ]
1,599,154,067
2,147,483,647
PyPy 3
WRONG_ANSWER
TESTS
3
155
409,600
from math import * from bisect import * from collections import Counter,defaultdict,deque from sys import stdin, stdout input = stdin.readline I=lambda:int(input()) M =lambda:map(int,input().split()) LI=lambda:list(map(int,input().split())) for _ in range(1): n,a,b=M() ans=-1 for i in range(1,max(a,b)): if a//i + b//i >=n: ans=max(ans,i) print(ans)
Title: Two Cakes Time Limit: None seconds Memory Limit: None megabytes Problem Description: It's New Year's Eve soon, so Ivan decided it's high time he started setting the table. Ivan has bought two cakes and cut them into pieces: the first cake has been cut into *a* pieces, and the second one — into *b* pieces. Ivan knows that there will be *n* people at the celebration (including himself), so Ivan has set *n* plates for the cakes. Now he is thinking about how to distribute the cakes between the plates. Ivan wants to do it in such a way that all following conditions are met: 1. Each piece of each cake is put on some plate; 1. Each plate contains at least one piece of cake; 1. No plate contains pieces of both cakes. To make his guests happy, Ivan wants to distribute the cakes in such a way that the minimum number of pieces on the plate is maximized. Formally, Ivan wants to know the maximum possible number *x* such that he can distribute the cakes according to the aforementioned conditions, and each plate will contain at least *x* pieces of cake. Help Ivan to calculate this number *x*! Input Specification: The first line contains three integers *n*, *a* and *b* (1<=≤<=*a*,<=*b*<=≤<=100, 2<=≤<=*n*<=≤<=*a*<=+<=*b*) — the number of plates, the number of pieces of the first cake, and the number of pieces of the second cake, respectively. Output Specification: Print the maximum possible number *x* such that Ivan can distribute the cake in such a way that each plate will contain at least *x* pieces of cake. Demo Input: ['5 2 3\n', '4 7 10\n'] Demo Output: ['1\n', '3\n'] Note: In the first example there is only one way to distribute cakes to plates, all of them will have 1 cake on it. In the second example you can have two plates with 3 and 4 pieces of the first cake and two plates both with 5 pieces of the second cake. Minimal number of pieces is 3.
```python from math import * from bisect import * from collections import Counter,defaultdict,deque from sys import stdin, stdout input = stdin.readline I=lambda:int(input()) M =lambda:map(int,input().split()) LI=lambda:list(map(int,input().split())) for _ in range(1): n,a,b=M() ans=-1 for i in range(1,max(a,b)): if a//i + b//i >=n: ans=max(ans,i) print(ans) ```
0
937
A
Olympiad
PROGRAMMING
800
[ "implementation", "sortings" ]
null
null
The recent All-Berland Olympiad in Informatics featured *n* participants with each scoring a certain amount of points. As the head of the programming committee, you are to determine the set of participants to be awarded with diplomas with respect to the following criteria: - At least one participant should get a diploma. - None of those with score equal to zero should get awarded. - When someone is awarded, all participants with score not less than his score should also be awarded. Determine the number of ways to choose a subset of participants that will receive the diplomas.
The first line contains a single integer *n* (1<=≤<=*n*<=≤<=100) — the number of participants. The next line contains a sequence of *n* integers *a*1,<=*a*2,<=...,<=*a**n* (0<=≤<=*a**i*<=≤<=600) — participants' scores. It's guaranteed that at least one participant has non-zero score.
Print a single integer — the desired number of ways.
[ "4\n1 3 3 2\n", "3\n1 1 1\n", "4\n42 0 0 42\n" ]
[ "3\n", "1\n", "1\n" ]
There are three ways to choose a subset in sample case one. 1. Only participants with 3 points will get diplomas. 1. Participants with 2 or 3 points will get diplomas. 1. Everyone will get a diploma! The only option in sample case two is to award everyone. Note that in sample case three participants with zero scores cannot get anything.
500
[ { "input": "4\n1 3 3 2", "output": "3" }, { "input": "3\n1 1 1", "output": "1" }, { "input": "4\n42 0 0 42", "output": "1" }, { "input": "10\n1 0 1 0 1 0 0 0 0 1", "output": "1" }, { "input": "10\n572 471 540 163 50 30 561 510 43 200", "output": "10" }, { "input": "100\n122 575 426 445 172 81 247 429 97 202 175 325 382 384 417 356 132 502 328 537 57 339 518 211 479 306 140 168 268 16 140 263 593 249 391 310 555 468 231 180 157 18 334 328 276 155 21 280 322 545 111 267 467 274 291 304 235 34 365 180 21 95 501 552 325 331 302 353 296 22 289 399 7 466 32 302 568 333 75 192 284 10 94 128 154 512 9 480 243 521 551 492 420 197 207 125 367 117 438 600", "output": "94" }, { "input": "100\n600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600", "output": "1" }, { "input": "78\n5 4 13 2 5 6 2 10 10 1 2 6 7 9 6 3 5 7 1 10 2 2 7 0 2 11 11 3 1 13 3 10 6 2 0 3 0 5 0 1 4 11 1 1 7 0 12 7 5 12 0 2 12 9 8 3 4 3 4 11 4 10 2 3 10 12 5 6 1 11 2 0 8 7 9 1 3 12", "output": "13" }, { "input": "34\n220 387 408 343 184 447 197 307 337 414 251 319 426 322 347 242 208 412 188 185 241 235 216 259 331 372 322 284 444 384 214 297 389 391", "output": "33" }, { "input": "100\n1 2 1 0 3 0 2 0 0 1 2 0 1 3 0 3 3 1 3 0 0 2 1 2 2 1 3 3 3 3 3 2 0 0 2 1 2 3 2 3 0 1 1 3 3 2 0 3 1 0 2 2 2 1 2 3 2 1 0 3 0 2 0 3 0 2 1 0 3 1 0 2 2 1 3 1 3 0 2 3 3 1 1 3 1 3 0 3 2 0 2 3 3 0 2 0 2 0 1 3", "output": "3" }, { "input": "100\n572 471 540 163 50 30 561 510 43 200 213 387 500 424 113 487 357 333 294 337 435 202 447 494 485 465 161 344 470 559 104 356 393 207 224 213 511 514 60 386 149 216 392 229 429 173 165 401 395 150 127 579 344 390 529 296 225 425 318 79 465 447 177 110 367 212 459 270 41 500 277 567 125 436 178 9 214 342 203 112 144 24 79 155 495 556 40 549 463 281 241 316 2 246 1 396 510 293 332 55", "output": "93" }, { "input": "99\n5 4 13 2 5 6 2 10 10 1 2 6 7 9 6 3 5 7 1 10 2 2 7 0 2 11 11 3 1 13 3 10 6 2 0 3 0 5 0 1 4 11 1 1 7 0 12 7 5 12 0 2 12 9 8 3 4 3 4 11 4 10 2 3 10 12 5 6 1 11 2 0 8 7 9 1 3 12 2 3 9 3 7 13 7 13 0 11 8 12 2 5 9 4 0 6 6 2 13", "output": "13" }, { "input": "99\n1 0 1 0 1 0 0 0 0 1 0 0 1 1 0 1 1 1 1 0 0 0 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1 0 1 0 1 1 1 1 0 0 1 1 0 0 0 0 1 0 1 0 1 0 1 0 0 0 1 0 0 1 0 1 1 0 0 0 1 1 1 1 0 0 1 1 1 1 1 1 1 0 1 0 0 0 1 1 0 0 0 0 0 1", "output": "1" }, { "input": "99\n21 74 25 44 71 80 46 28 96 1 74 24 81 83 16 55 31 1 27 36 56 38 17 10 78 5 39 67 67 15 39 62 92 48 90 9 54 67 30 79 56 17 33 27 75 54 20 79 21 44 10 66 66 73 90 3 34 33 64 79 20 94 0 51 24 30 1 52 95 21 88 98 6 65 31 1 67 32 74 91 83 9 93 27 53 11 8 79 42 20 50 91 19 96 6 24 66 16 37", "output": "61" }, { "input": "2\n0 1", "output": "1" }, { "input": "2\n0 600", "output": "1" }, { "input": "4\n1 1 1 2", "output": "2" }, { "input": "4\n0 0 1 2", "output": "2" }, { "input": "1\n5", "output": "1" }, { "input": "2\n0 5", "output": "1" }, { "input": "5\n1 0 0 1 2", "output": "2" } ]
1,666,033,903
2,147,483,647
Python 3
OK
TESTS
21
46
0
mb=int(input()) kcp=list(map(int,input().split())) while(0 in kcp): kcp.remove(0) kcp=set(kcp) print(len(kcp))
Title: Olympiad Time Limit: None seconds Memory Limit: None megabytes Problem Description: The recent All-Berland Olympiad in Informatics featured *n* participants with each scoring a certain amount of points. As the head of the programming committee, you are to determine the set of participants to be awarded with diplomas with respect to the following criteria: - At least one participant should get a diploma. - None of those with score equal to zero should get awarded. - When someone is awarded, all participants with score not less than his score should also be awarded. Determine the number of ways to choose a subset of participants that will receive the diplomas. Input Specification: The first line contains a single integer *n* (1<=≤<=*n*<=≤<=100) — the number of participants. The next line contains a sequence of *n* integers *a*1,<=*a*2,<=...,<=*a**n* (0<=≤<=*a**i*<=≤<=600) — participants' scores. It's guaranteed that at least one participant has non-zero score. Output Specification: Print a single integer — the desired number of ways. Demo Input: ['4\n1 3 3 2\n', '3\n1 1 1\n', '4\n42 0 0 42\n'] Demo Output: ['3\n', '1\n', '1\n'] Note: There are three ways to choose a subset in sample case one. 1. Only participants with 3 points will get diplomas. 1. Participants with 2 or 3 points will get diplomas. 1. Everyone will get a diploma! The only option in sample case two is to award everyone. Note that in sample case three participants with zero scores cannot get anything.
```python mb=int(input()) kcp=list(map(int,input().split())) while(0 in kcp): kcp.remove(0) kcp=set(kcp) print(len(kcp)) ```
3
873
B
Balanced Substring
PROGRAMMING
1,500
[ "dp", "implementation" ]
null
null
You are given a string *s* consisting only of characters 0 and 1. A substring [*l*,<=*r*] of *s* is a string *s**l**s**l*<=+<=1*s**l*<=+<=2... *s**r*, and its length equals to *r*<=-<=*l*<=+<=1. A substring is called balanced if the number of zeroes (0) equals to the number of ones in this substring. You have to determine the length of the longest balanced substring of *s*.
The first line contains *n* (1<=≤<=*n*<=≤<=100000) — the number of characters in *s*. The second line contains a string *s* consisting of exactly *n* characters. Only characters 0 and 1 can appear in *s*.
If there is no non-empty balanced substring in *s*, print 0. Otherwise, print the length of the longest balanced substring.
[ "8\n11010111\n", "3\n111\n" ]
[ "4\n", "0\n" ]
In the first example you can choose the substring [3, 6]. It is balanced, and its length is 4. Choosing the substring [2, 5] is also possible. In the second example it's impossible to find a non-empty balanced substring.
0
[ { "input": "8\n11010111", "output": "4" }, { "input": "3\n111", "output": "0" }, { "input": "11\n00001000100", "output": "2" }, { "input": "10\n0100000000", "output": "2" }, { "input": "13\n0001000011010", "output": "6" }, { "input": "14\n00000100101011", "output": "10" }, { "input": "14\n01111101111111", "output": "2" }, { "input": "18\n110010101101111111", "output": "10" }, { "input": "11\n00010000011", "output": "4" }, { "input": "10\n1000010110", "output": "6" }, { "input": "15\n100000100000011", "output": "4" }, { "input": "18\n011010101110111101", "output": "8" }, { "input": "10\n0011011111", "output": "6" }, { "input": "3\n011", "output": "2" }, { "input": "14\n11111111111111", "output": "0" }, { "input": "65\n11001000110001001011011110111100000000101001001010101111000100010", "output": "48" }, { "input": "10\n0011111000", "output": "10" }, { "input": "13\n1110000001110", "output": "12" }, { "input": "3\n110", "output": "2" }, { "input": "4\n1110", "output": "2" }, { "input": "9\n001011001", "output": "8" }, { "input": "2\n10", "output": "2" }, { "input": "2\n01", "output": "2" }, { "input": "12\n110000110000", "output": "8" }, { "input": "3\n001", "output": "2" }, { "input": "14\n11000011000000", "output": "8" }, { "input": "19\n0000011111111100000", "output": "18" }, { "input": "45\n011010001100001111110001011100000001101100111", "output": "44" }, { "input": "18\n000001111111100000", "output": "16" }, { "input": "4\n0101", "output": "4" }, { "input": "12\n000101011001", "output": "10" } ]
1,507,835,233
2,147,483,647
Python 3
TIME_LIMIT_EXCEEDED
TESTS
15
1,000
0
N = int(input()) S = input() a = 0 for i in range(N - 1): for j in range(i+2,N +1): if S[i:j].count('1') == S[i:j].count('0'): if (j-i)>=a: a = j - i print(a)
Title: Balanced Substring Time Limit: None seconds Memory Limit: None megabytes Problem Description: You are given a string *s* consisting only of characters 0 and 1. A substring [*l*,<=*r*] of *s* is a string *s**l**s**l*<=+<=1*s**l*<=+<=2... *s**r*, and its length equals to *r*<=-<=*l*<=+<=1. A substring is called balanced if the number of zeroes (0) equals to the number of ones in this substring. You have to determine the length of the longest balanced substring of *s*. Input Specification: The first line contains *n* (1<=≤<=*n*<=≤<=100000) — the number of characters in *s*. The second line contains a string *s* consisting of exactly *n* characters. Only characters 0 and 1 can appear in *s*. Output Specification: If there is no non-empty balanced substring in *s*, print 0. Otherwise, print the length of the longest balanced substring. Demo Input: ['8\n11010111\n', '3\n111\n'] Demo Output: ['4\n', '0\n'] Note: In the first example you can choose the substring [3, 6]. It is balanced, and its length is 4. Choosing the substring [2, 5] is also possible. In the second example it's impossible to find a non-empty balanced substring.
```python N = int(input()) S = input() a = 0 for i in range(N - 1): for j in range(i+2,N +1): if S[i:j].count('1') == S[i:j].count('0'): if (j-i)>=a: a = j - i print(a) ```
0
584
A
Olesya and Rodion
PROGRAMMING
1,000
[ "math" ]
null
null
Olesya loves numbers consisting of *n* digits, and Rodion only likes numbers that are divisible by *t*. Find some number that satisfies both of them. Your task is: given the *n* and *t* print an integer strictly larger than zero consisting of *n* digits that is divisible by *t*. If such number doesn't exist, print <=-<=1.
The single line contains two numbers, *n* and *t* (1<=≤<=*n*<=≤<=100, 2<=≤<=*t*<=≤<=10) — the length of the number and the number it should be divisible by.
Print one such positive number without leading zeroes, — the answer to the problem, or <=-<=1, if such number doesn't exist. If there are multiple possible answers, you are allowed to print any of them.
[ "3 2\n" ]
[ "712" ]
none
500
[ { "input": "3 2", "output": "222" }, { "input": "2 2", "output": "22" }, { "input": "4 3", "output": "3333" }, { "input": "5 3", "output": "33333" }, { "input": "10 7", "output": "7777777777" }, { "input": "2 9", "output": "99" }, { "input": "18 8", "output": "888888888888888888" }, { "input": "1 5", "output": "5" }, { "input": "1 10", "output": "-1" }, { "input": "100 5", "output": "5555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555" }, { "input": "10 2", "output": "2222222222" }, { "input": "18 10", "output": "111111111111111110" }, { "input": "1 9", "output": "9" }, { "input": "7 6", "output": "6666666" }, { "input": "4 4", "output": "4444" }, { "input": "14 7", "output": "77777777777777" }, { "input": "3 8", "output": "888" }, { "input": "1 3", "output": "3" }, { "input": "2 8", "output": "88" }, { "input": "3 8", "output": "888" }, { "input": "4 3", "output": "3333" }, { "input": "5 9", "output": "99999" }, { "input": "4 8", "output": "8888" }, { "input": "3 4", "output": "444" }, { "input": "9 4", "output": "444444444" }, { "input": "8 10", "output": "11111110" }, { "input": "1 6", "output": "6" }, { "input": "20 3", "output": "33333333333333333333" }, { "input": "15 10", "output": "111111111111110" }, { "input": "31 4", "output": "4444444444444444444444444444444" }, { "input": "18 9", "output": "999999999999999999" }, { "input": "72 4", "output": "444444444444444444444444444444444444444444444444444444444444444444444444" }, { "input": "76 8", "output": "8888888888888888888888888888888888888888888888888888888888888888888888888888" }, { "input": "12 5", "output": "555555555555" }, { "input": "54 5", "output": "555555555555555555555555555555555555555555555555555555" }, { "input": "96 10", "output": "111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111110" }, { "input": "15 9", "output": "999999999999999" }, { "input": "100 2", "output": "2222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222" }, { "input": "99 3", "output": "333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333" }, { "input": "98 4", "output": "44444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444" }, { "input": "97 5", "output": "5555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555" }, { "input": "100 6", "output": "6666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666" }, { "input": "99 7", "output": "777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777" }, { "input": "98 8", "output": "88888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888" }, { "input": "97 9", "output": "9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999" }, { "input": "100 10", "output": "1111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111110" }, { "input": "3 10", "output": "110" }, { "input": "2 4", "output": "44" }, { "input": "2 10", "output": "10" }, { "input": "10 10", "output": "1111111110" }, { "input": "4 10", "output": "1110" }, { "input": "25 10", "output": "1111111111111111111111110" }, { "input": "50 10", "output": "11111111111111111111111111111111111111111111111110" }, { "input": "5 10", "output": "11110" }, { "input": "99 10", "output": "111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111110" }, { "input": "100 10", "output": "1111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111110" }, { "input": "1 2", "output": "2" }, { "input": "20 10", "output": "11111111111111111110" }, { "input": "99 7", "output": "777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777" }, { "input": "89 5", "output": "55555555555555555555555555555555555555555555555555555555555555555555555555555555555555555" }, { "input": "6 10", "output": "111110" }, { "input": "3 8", "output": "888" }, { "input": "1 9", "output": "9" }, { "input": "1 4", "output": "4" }, { "input": "100 7", "output": "7777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777" } ]
1,674,144,964
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
8
46
0
n_t=input() n_t_list=n_t.split(' ') n=int(n_t_list[0]) t=int(n_t_list[1]) print(int(str(t)*n))
Title: Olesya and Rodion Time Limit: None seconds Memory Limit: None megabytes Problem Description: Olesya loves numbers consisting of *n* digits, and Rodion only likes numbers that are divisible by *t*. Find some number that satisfies both of them. Your task is: given the *n* and *t* print an integer strictly larger than zero consisting of *n* digits that is divisible by *t*. If such number doesn't exist, print <=-<=1. Input Specification: The single line contains two numbers, *n* and *t* (1<=≤<=*n*<=≤<=100, 2<=≤<=*t*<=≤<=10) — the length of the number and the number it should be divisible by. Output Specification: Print one such positive number without leading zeroes, — the answer to the problem, or <=-<=1, if such number doesn't exist. If there are multiple possible answers, you are allowed to print any of them. Demo Input: ['3 2\n'] Demo Output: ['712'] Note: none
```python n_t=input() n_t_list=n_t.split(' ') n=int(n_t_list[0]) t=int(n_t_list[1]) print(int(str(t)*n)) ```
0
0
none
none
none
0
[ "none" ]
null
null
Stepan has the newest electronic device with a display. Different digits can be shown on it. Each digit is shown on a seven-section indicator like it is shown on the picture below. So, for example, to show the digit 3 on the display, 5 sections must be highlighted; and for the digit 6, 6 sections must be highlighted. The battery of the newest device allows to highlight at most *n* sections on the display. Stepan wants to know the maximum possible integer number which can be shown on the display of his newest device. Your task is to determine this number. Note that this number must not contain leading zeros. Assume that the size of the display is enough to show any integer.
The first line contains the integer *n* (2<=≤<=*n*<=≤<=100<=000) — the maximum number of sections which can be highlighted on the display.
Print the maximum integer which can be shown on the display of Stepan's newest device.
[ "2\n", "3\n" ]
[ "1\n", "7\n" ]
none
0
[ { "input": "2", "output": "1" }, { "input": "3", "output": "7" }, { "input": "4", "output": "11" }, { "input": "5", "output": "71" }, { "input": "6", "output": "111" }, { "input": "85651", "output": "7111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111..." }, { "input": "85666", "output": "1111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111..." }, { "input": "99999", "output": "7111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111..." }, { "input": "100000", "output": "1111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111..." }, { "input": "99998", "output": "1111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111..." }, { "input": "9", "output": "7111" }, { "input": "99997", "output": "7111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111..." }, { "input": "99996", "output": "1111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111..." }, { "input": "99995", "output": "7111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111..." }, { "input": "156", "output": "111111111111111111111111111111111111111111111111111111111111111111111111111111" }, { "input": "255", "output": "7111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111" }, { "input": "4568", "output": "1111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111..." }, { "input": "5431", "output": "7111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111..." }, { "input": "6782", "output": "1111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111..." }, { "input": "8343", "output": "7111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111..." }, { "input": "9514", "output": "1111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111..." } ]
1,495,741,795
2,147,483,647
Python 3
RUNTIME_ERROR
TESTS
0
30
0
a=input() string=[] if a%2: string.append('7') a=a-3 for i in range (a / 2): string.append('1') print(''.join(string))
Title: none Time Limit: None seconds Memory Limit: None megabytes Problem Description: Stepan has the newest electronic device with a display. Different digits can be shown on it. Each digit is shown on a seven-section indicator like it is shown on the picture below. So, for example, to show the digit 3 on the display, 5 sections must be highlighted; and for the digit 6, 6 sections must be highlighted. The battery of the newest device allows to highlight at most *n* sections on the display. Stepan wants to know the maximum possible integer number which can be shown on the display of his newest device. Your task is to determine this number. Note that this number must not contain leading zeros. Assume that the size of the display is enough to show any integer. Input Specification: The first line contains the integer *n* (2<=≤<=*n*<=≤<=100<=000) — the maximum number of sections which can be highlighted on the display. Output Specification: Print the maximum integer which can be shown on the display of Stepan's newest device. Demo Input: ['2\n', '3\n'] Demo Output: ['1\n', '7\n'] Note: none
```python a=input() string=[] if a%2: string.append('7') a=a-3 for i in range (a / 2): string.append('1') print(''.join(string)) ```
-1
535
B
Tavas and SaDDas
PROGRAMMING
1,100
[ "bitmasks", "brute force", "combinatorics", "implementation" ]
null
null
Once again Tavas started eating coffee mix without water! Keione told him that it smells awful, but he didn't stop doing that. That's why Keione told his smart friend, SaDDas to punish him! SaDDas took Tavas' headphones and told him: "If you solve the following problem, I'll return it to you." The problem is: You are given a lucky number *n*. Lucky numbers are the positive integers whose decimal representations contain only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. If we sort all lucky numbers in increasing order, what's the 1-based index of *n*? Tavas is not as smart as SaDDas, so he asked you to do him a favor and solve this problem so he can have his headphones back.
The first and only line of input contains a lucky number *n* (1<=≤<=*n*<=≤<=109).
Print the index of *n* among all lucky numbers.
[ "4\n", "7\n", "77\n" ]
[ "1\n", "2\n", "6\n" ]
none
1,000
[ { "input": "4", "output": "1" }, { "input": "7", "output": "2" }, { "input": "77", "output": "6" }, { "input": "4", "output": "1" }, { "input": "474744", "output": "83" }, { "input": "777774", "output": "125" }, { "input": "447", "output": "8" }, { "input": "774", "output": "13" }, { "input": "4", "output": "1" }, { "input": "4447747", "output": "140" }, { "input": "7747474", "output": "233" }, { "input": "4444", "output": "15" }, { "input": "4447", "output": "16" }, { "input": "7", "output": "2" }, { "input": "4", "output": "1" }, { "input": "4447744", "output": "139" }, { "input": "77474", "output": "57" }, { "input": "7747", "output": "28" }, { "input": "444", "output": "7" }, { "input": "7", "output": "2" }, { "input": "7774477", "output": "242" }, { "input": "4477774", "output": "157" }, { "input": "7444", "output": "23" }, { "input": "7474747", "output": "212" }, { "input": "77", "output": "6" }, { "input": "774477", "output": "114" }, { "input": "7", "output": "2" }, { "input": "47", "output": "4" }, { "input": "747777", "output": "110" }, { "input": "444444444", "output": "511" }, { "input": "777777777", "output": "1022" }, { "input": "477477447", "output": "728" }, { "input": "777744747", "output": "996" } ]
1,431,995,099
2,147,483,647
PyPy 3
OK
TESTS
33
109
307,200
a=['4', '7'] x=[] for i in a: x.append(int(i)) for i in a: for j in a: x.append(int(i+j)) for i in a: for j in a: for k in a: x.append(int(i+j+k)) for i in a: for j in a: for k in a: for l in a: x.append(int(i+j+k+l)) for i in a: for j in a: for k in a: for l in a: for m in a: x.append(int(i+j+k+l+m)) for i in a: for j in a: for k in a: for l in a: for m in a: for n in a: x.append(int(i+j+k+l+m+n)) for i in a: for j in a: for k in a: for l in a: for m in a: for n in a: for o in a: x.append(int(i+j+k+l+m+n+o)) for i in a: for j in a: for k in a: for l in a: for m in a: for n in a: for o in a: for p in a: x.append(int(i+j+k+l+m+n+o+p)) for i in a: for j in a: for k in a: for l in a: for m in a: for n in a: for o in a: for p in a: for q in a: x.append(int(i+j+k+l+m+n+o+p+q)) print(x.index(int(input()))+1)
Title: Tavas and SaDDas Time Limit: None seconds Memory Limit: None megabytes Problem Description: Once again Tavas started eating coffee mix without water! Keione told him that it smells awful, but he didn't stop doing that. That's why Keione told his smart friend, SaDDas to punish him! SaDDas took Tavas' headphones and told him: "If you solve the following problem, I'll return it to you." The problem is: You are given a lucky number *n*. Lucky numbers are the positive integers whose decimal representations contain only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. If we sort all lucky numbers in increasing order, what's the 1-based index of *n*? Tavas is not as smart as SaDDas, so he asked you to do him a favor and solve this problem so he can have his headphones back. Input Specification: The first and only line of input contains a lucky number *n* (1<=≤<=*n*<=≤<=109). Output Specification: Print the index of *n* among all lucky numbers. Demo Input: ['4\n', '7\n', '77\n'] Demo Output: ['1\n', '2\n', '6\n'] Note: none
```python a=['4', '7'] x=[] for i in a: x.append(int(i)) for i in a: for j in a: x.append(int(i+j)) for i in a: for j in a: for k in a: x.append(int(i+j+k)) for i in a: for j in a: for k in a: for l in a: x.append(int(i+j+k+l)) for i in a: for j in a: for k in a: for l in a: for m in a: x.append(int(i+j+k+l+m)) for i in a: for j in a: for k in a: for l in a: for m in a: for n in a: x.append(int(i+j+k+l+m+n)) for i in a: for j in a: for k in a: for l in a: for m in a: for n in a: for o in a: x.append(int(i+j+k+l+m+n+o)) for i in a: for j in a: for k in a: for l in a: for m in a: for n in a: for o in a: for p in a: x.append(int(i+j+k+l+m+n+o+p)) for i in a: for j in a: for k in a: for l in a: for m in a: for n in a: for o in a: for p in a: for q in a: x.append(int(i+j+k+l+m+n+o+p+q)) print(x.index(int(input()))+1) ```
3
513
B1
Permutations
PROGRAMMING
1,400
[ "brute force" ]
null
null
You are given a permutation *p* of numbers 1,<=2,<=...,<=*n*. Let's define *f*(*p*) as the following sum: Find the lexicographically *m*-th permutation of length *n* in the set of permutations having the maximum possible value of *f*(*p*).
The single line of input contains two integers *n* and *m* (1<=≤<=*m*<=≤<=*cnt**n*), where *cnt**n* is the number of permutations of length *n* with maximum possible value of *f*(*p*). The problem consists of two subproblems. The subproblems have different constraints on the input. You will get some score for the correct submission of the subproblem. The description of the subproblems follows. - In subproblem B1 (3 points), the constraint 1<=≤<=*n*<=≤<=8 will hold. - In subproblem B2 (4 points), the constraint 1<=≤<=*n*<=≤<=50 will hold.
Output *n* number forming the required permutation.
[ "2 2\n", "3 2\n" ]
[ "2 1 \n", "1 3 2 \n" ]
In the first example, both permutations of numbers {1, 2} yield maximum possible *f*(*p*) which is equal to 4. Among them, (2, 1) comes second in lexicographical order.
3
[ { "input": "2 2", "output": "2 1 " }, { "input": "3 2", "output": "1 3 2 " }, { "input": "1 1", "output": "1 " }, { "input": "3 1", "output": "1 2 3 " }, { "input": "3 3", "output": "2 3 1 " }, { "input": "3 4", "output": "3 2 1 " }, { "input": "4 1", "output": "1 2 3 4 " }, { "input": "4 3", "output": "1 3 4 2 " }, { "input": "4 4", "output": "1 4 3 2 " }, { "input": "4 8", "output": "4 3 2 1 " }, { "input": "5 2", "output": "1 2 3 5 4 " }, { "input": "5 7", "output": "1 4 5 3 2 " }, { "input": "5 15", "output": "4 5 3 2 1 " }, { "input": "6 23", "output": "2 5 6 4 3 1 " }, { "input": "7 7", "output": "1 2 3 6 7 5 4 " }, { "input": "7 44", "output": "2 4 7 6 5 3 1 " }, { "input": "8 1", "output": "1 2 3 4 5 6 7 8 " }, { "input": "8 127", "output": "7 8 6 5 4 3 2 1 " }, { "input": "8 128", "output": "8 7 6 5 4 3 2 1 " } ]
1,423,330,289
1,889
Python 3
WRONG_ANSWER
TESTS1
4
46
0
f = [1] n, k = [int(i) for i in input().split()] for i in range(1, n + 1): f.append(f[-1] * i) def res(n, k, ls): if len(ls) == 0: return z = (k - 1) // f[n - 1] print(ls[z], end=' ') res(n - 1, k - z * f[n - 1], ls[:z] + ls[z + 1:]) res(n, k, [i + 1 for i in range(n)])
Title: Permutations Time Limit: None seconds Memory Limit: None megabytes Problem Description: You are given a permutation *p* of numbers 1,<=2,<=...,<=*n*. Let's define *f*(*p*) as the following sum: Find the lexicographically *m*-th permutation of length *n* in the set of permutations having the maximum possible value of *f*(*p*). Input Specification: The single line of input contains two integers *n* and *m* (1<=≤<=*m*<=≤<=*cnt**n*), where *cnt**n* is the number of permutations of length *n* with maximum possible value of *f*(*p*). The problem consists of two subproblems. The subproblems have different constraints on the input. You will get some score for the correct submission of the subproblem. The description of the subproblems follows. - In subproblem B1 (3 points), the constraint 1<=≤<=*n*<=≤<=8 will hold. - In subproblem B2 (4 points), the constraint 1<=≤<=*n*<=≤<=50 will hold. Output Specification: Output *n* number forming the required permutation. Demo Input: ['2 2\n', '3 2\n'] Demo Output: ['2 1 \n', '1 3 2 \n'] Note: In the first example, both permutations of numbers {1, 2} yield maximum possible *f*(*p*) which is equal to 4. Among them, (2, 1) comes second in lexicographical order.
```python f = [1] n, k = [int(i) for i in input().split()] for i in range(1, n + 1): f.append(f[-1] * i) def res(n, k, ls): if len(ls) == 0: return z = (k - 1) // f[n - 1] print(ls[z], end=' ') res(n - 1, k - z * f[n - 1], ls[:z] + ls[z + 1:]) res(n, k, [i + 1 for i in range(n)]) ```
0