Search is not available for this dataset
name
stringlengths
2
88
description
stringlengths
31
8.62k
public_tests
dict
private_tests
dict
solution_type
stringclasses
2 values
programming_language
stringclasses
5 values
solution
stringlengths
1
983k
1334_D. Minimum Euler Cycle
You are given a complete directed graph K_n with n vertices: each pair of vertices u β‰  v in K_n have both directed edges (u, v) and (v, u); there are no self-loops. You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices). We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 β€” a visiting order, where each (v_i, v_{i + 1}) occurs exactly once. Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists. Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r. Input The first line contains the single integer T (1 ≀ T ≀ 100) β€” the number of test cases. Next T lines contain test cases β€” one per line. The first and only line of each test case contains three integers n, l and r (2 ≀ n ≀ 10^5, 1 ≀ l ≀ r ≀ n(n - 1) + 1, r - l + 1 ≀ 10^5) β€” the number of vertices in K_n, and segment of the cycle to print. It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5. Output For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once. Example Input 3 2 1 3 3 3 6 99995 9998900031 9998900031 Output 1 2 1 1 3 2 3 1 Note In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1. In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
{ "input": [ "3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n" ], "output": [ "1 2 1 \n1 3 2 3 \n1 \n" ] }
{ "input": [ "1\n2 2 3\n", "1\n4 13 13\n", "1\n3 1 1\n", "10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n", "1\n3 7 7\n", "1\n25 30 295\n", "1\n4 12 13\n", "5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n", "1\n5 4 4\n" ], "output": [ "2 1 \n", "1 \n", "1 \n", "1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n", "1 \n", "16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n", "4 1 \n", "1 \n1 \n1 \n1 \n7 1 \n", "3 \n" ] }
CORRECT
java
import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.util.InputMismatchException; import java.io.IOException; import java.util.ArrayList; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; FastReader in = new FastReader(inputStream); PrintWriter out = new PrintWriter(outputStream); DMinimumEulerCycle solver = new DMinimumEulerCycle(); int testCount = Integer.parseInt(in.next()); for (int i = 1; i <= testCount; i++) solver.solve(i, in, out); out.close(); } static class DMinimumEulerCycle { public void solve(int testNumber, FastReader s, PrintWriter w) { int n = s.nextInt(); long l = s.nextLong(), r = s.nextLong(); ArrayList<Integer> sizes = new ArrayList<>(); int cur = n - 1 << 1; for (int i = n - 1; i > 0; i--) { sizes.add(cur); cur -= 2; } sizes.add(1); cur = 0; int dif = (int) (r - l + 1); while (l > sizes.get(cur)) l -= sizes.get(cur++); int[] ans = new int[2 * n]; if (cur == sizes.size() - 1) { w.println(1); return; } else { int cnt = cur + 1; for (int i = 0; i < sizes.get(cur); i += 2) ans[i] = cnt; cnt++; for (int i = 1; i < sizes.get(cur); i += 2) ans[i] = cnt++; } for (int i = (int) l - 1; i < sizes.get(cur) && dif > 0; i++) { w.print(ans[i] + " "); dif--; } cur++; while (dif > 0) { if (cur == sizes.size() - 1) { w.println(1); return; } else { int cnt = cur + 1; for (int i = 0; i < sizes.get(cur); i += 2) ans[i] = cnt; cnt++; for (int i = 1; i < sizes.get(cur); i += 2) ans[i] = cnt++; } for (int i = 0; i < sizes.get(cur) && dif > 0; i++) { w.print(ans[i] + " "); dif--; } cur++; } w.println(); } } static class FastReader { private InputStream stream; private byte[] buf = new byte[1024]; private int curChar; private int numChars; private FastReader.SpaceCharFilter filter; public FastReader(InputStream stream) { this.stream = stream; } public int read() { if (numChars == -1) throw new InputMismatchException(); if (curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (numChars <= 0) return -1; } return buf[curChar++]; } public int nextInt() { int c = read(); while (isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } int res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public long nextLong() { int c = read(); while (isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } long res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public String next() { int c = read(); while (isSpaceChar(c)) c = read(); StringBuilder res = new StringBuilder(); do { res.appendCodePoint(c); c = read(); } while (!isSpaceChar(c)); return res.toString(); } public boolean isSpaceChar(int c) { if (filter != null) return filter.isSpaceChar(c); return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } public interface SpaceCharFilter { public boolean isSpaceChar(int ch); } } }
1334_D. Minimum Euler Cycle
You are given a complete directed graph K_n with n vertices: each pair of vertices u β‰  v in K_n have both directed edges (u, v) and (v, u); there are no self-loops. You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices). We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 β€” a visiting order, where each (v_i, v_{i + 1}) occurs exactly once. Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists. Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r. Input The first line contains the single integer T (1 ≀ T ≀ 100) β€” the number of test cases. Next T lines contain test cases β€” one per line. The first and only line of each test case contains three integers n, l and r (2 ≀ n ≀ 10^5, 1 ≀ l ≀ r ≀ n(n - 1) + 1, r - l + 1 ≀ 10^5) β€” the number of vertices in K_n, and segment of the cycle to print. It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5. Output For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once. Example Input 3 2 1 3 3 3 6 99995 9998900031 9998900031 Output 1 2 1 1 3 2 3 1 Note In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1. In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
{ "input": [ "3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n" ], "output": [ "1 2 1 \n1 3 2 3 \n1 \n" ] }
{ "input": [ "1\n2 2 3\n", "1\n4 13 13\n", "1\n3 1 1\n", "10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n", "1\n3 7 7\n", "1\n25 30 295\n", "1\n4 12 13\n", "5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n", "1\n5 4 4\n" ], "output": [ "2 1 \n", "1 \n", "1 \n", "1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n", "1 \n", "16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n", "4 1 \n", "1 \n1 \n1 \n1 \n7 1 \n", "3 \n" ] }
CORRECT
java
import java.util.*; import java.lang.*; import java.io.*; import java.math.*; //BigInteger A; //A= BigInteger.valueOf(54); //ArrayList<Integer> a=new ArrayList<>(); //TreeSet<Integer> ts=new TreeSet<>(); //HashMap<Integer,Integer> hm=new HashMap<>(); //PriorityQueue<Integer> pq=new PriorityQueue<>(); public final class Practice { static ArrayList<Integer> dfsorder; static int child[]; //static int c=0; public static void dfs(ArrayList<ArrayList<Integer>> adj,boolean vis[],int u) { vis[u]=true; dfsorder.add(u); child[u]=1; for(int i=0;i<adj.get(u).size();i++) { if(!vis[adj.get(u).get(i)]) { dfs(adj,vis,adj.get(u).get(i)); child[u]+=child[adj.get(u).get(i)]; } } } public static void main(String[]args)throws IOException { int K=(int)Math.pow(10,9)+7; FastReader ob=new FastReader(); int t=ob.nextInt(); while(t-->0) { long n=ob.nextLong(); long l=ob.nextLong(); long r=ob.nextLong(); ArrayList<Long> a=new ArrayList<>(); long k=0; while(l>2*(n-1)&&n>0) { l-=2*(n-1); r-=2*(n-1); ++k; --n; } while(l<=2*(n-1)&&n>0) { for(long i=l;i<=Math.min(r,2*n-2);i++) { if(i%2!=0) a.add(1+k); else a.add((i/2)+1+k); } l=1; r-=2*(n-1); ++k; --n; } if(r==1) a.add(1l); for(int i=0;i<a.size();i++) System.out.print(a.get(i)+" "); System.out.println(); } } } class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader(new InputStreamReader(System.in)); } public String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } public String nextLine() { String s=""; try { s=br.readLine(); } catch (IOException e) { e.printStackTrace(); } return s; } public int nextInt() { return Integer.parseInt(next()); } public long nextLong() { return Long.parseLong(next()); } public double nextDouble() { return Double.parseDouble(next()); } }
1334_D. Minimum Euler Cycle
You are given a complete directed graph K_n with n vertices: each pair of vertices u β‰  v in K_n have both directed edges (u, v) and (v, u); there are no self-loops. You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices). We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 β€” a visiting order, where each (v_i, v_{i + 1}) occurs exactly once. Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists. Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r. Input The first line contains the single integer T (1 ≀ T ≀ 100) β€” the number of test cases. Next T lines contain test cases β€” one per line. The first and only line of each test case contains three integers n, l and r (2 ≀ n ≀ 10^5, 1 ≀ l ≀ r ≀ n(n - 1) + 1, r - l + 1 ≀ 10^5) β€” the number of vertices in K_n, and segment of the cycle to print. It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5. Output For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once. Example Input 3 2 1 3 3 3 6 99995 9998900031 9998900031 Output 1 2 1 1 3 2 3 1 Note In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1. In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
{ "input": [ "3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n" ], "output": [ "1 2 1 \n1 3 2 3 \n1 \n" ] }
{ "input": [ "1\n2 2 3\n", "1\n4 13 13\n", "1\n3 1 1\n", "10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n", "1\n3 7 7\n", "1\n25 30 295\n", "1\n4 12 13\n", "5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n", "1\n5 4 4\n" ], "output": [ "2 1 \n", "1 \n", "1 \n", "1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n", "1 \n", "16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n", "4 1 \n", "1 \n1 \n1 \n1 \n7 1 \n", "3 \n" ] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; using ll = long long; using ld = long double; using pr = pair<int, int>; template <typename T> void _read(T *arr, int n) { for (int i = 0; i < n; i++) cin >> arr[i]; } template <typename T> void _write(T *arr, int n) { for (int i = 0; i < n; i++) cout << arr[i] << " "; cout << endl; } const int MAXN = 100033; ll n; ll l, r; int start; void __Main__() { cin >> n >> l >> r; ll sum = 0; ll now = 2 * n - 2; if (l == r && l == n * (n - 1) + 1) { cout << 1 << endl; return; } ll st = 0; for (int i = 1; i < n; i++) { if (sum + now >= l) { st = sum; start = i; break; } sum += now; now -= 2; } ll res = now; ll i; for (i = sum + 1;; i++) { res--; ll output; if ((i - st) & 1) { output = start; } else { output = start + (i - st) / 2; } if (res == 0) { now -= 2; res = now; start++; st = i; } if (i < l) { continue; } if (i > r) break; cout << output << " "; if (i >= n * (n - 1)) break; } if (i < r) cout << 1; cout << endl; } signed main() { ios ::sync_with_stdio(false); cin.tie(nullptr); { int _Test_cases; cin >> _Test_cases; for (int case_num = 1; case_num <= _Test_cases; case_num++) { __Main__(); } } return 0; }
1334_D. Minimum Euler Cycle
You are given a complete directed graph K_n with n vertices: each pair of vertices u β‰  v in K_n have both directed edges (u, v) and (v, u); there are no self-loops. You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices). We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 β€” a visiting order, where each (v_i, v_{i + 1}) occurs exactly once. Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists. Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r. Input The first line contains the single integer T (1 ≀ T ≀ 100) β€” the number of test cases. Next T lines contain test cases β€” one per line. The first and only line of each test case contains three integers n, l and r (2 ≀ n ≀ 10^5, 1 ≀ l ≀ r ≀ n(n - 1) + 1, r - l + 1 ≀ 10^5) β€” the number of vertices in K_n, and segment of the cycle to print. It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5. Output For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once. Example Input 3 2 1 3 3 3 6 99995 9998900031 9998900031 Output 1 2 1 1 3 2 3 1 Note In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1. In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
{ "input": [ "3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n" ], "output": [ "1 2 1 \n1 3 2 3 \n1 \n" ] }
{ "input": [ "1\n2 2 3\n", "1\n4 13 13\n", "1\n3 1 1\n", "10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n", "1\n3 7 7\n", "1\n25 30 295\n", "1\n4 12 13\n", "5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n", "1\n5 4 4\n" ], "output": [ "2 1 \n", "1 \n", "1 \n", "1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n", "1 \n", "16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n", "4 1 \n", "1 \n1 \n1 \n1 \n7 1 \n", "3 \n" ] }
CORRECT
java
import java.io.*; import java.math.BigInteger; import java.util.*; import java.awt.*; import java.util.List; public class Main { static int mod = (int) 1e9 + 7; public static void main(String[] args) throws Exception { FastReader sc = new FastReader(); StringBuilder sb = new StringBuilder(); int t = sc.nextInt(); while(t-->0) { long n = sc.nextLong(), l = sc.nextLong(), r = sc.nextLong(); long base, nonBase, startIndex; base = (long) Math.floor(l / (2 * n)); while (((base * 2 * n) - (base * (base + 1)) < l) && (base < n)) base++; startIndex = ((base - 1) * 2 * n) - (base * (base - 1)); for (long j = l; j < r + 1; j++) { if (j > ((base * 2 * n) - (base * (base + 1)))) { startIndex = j; base += 1; } nonBase = base + (j - startIndex + 1) / 2; if (j == (n * (n - 1)) + 1) { sb.append(1); break; } if (j % 2 == 1)sb.append(base+" "); else sb.append(nonBase+" "); } sb.append("\n"); } System.out.println(sb); } } class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } }
1334_D. Minimum Euler Cycle
You are given a complete directed graph K_n with n vertices: each pair of vertices u β‰  v in K_n have both directed edges (u, v) and (v, u); there are no self-loops. You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices). We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 β€” a visiting order, where each (v_i, v_{i + 1}) occurs exactly once. Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists. Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r. Input The first line contains the single integer T (1 ≀ T ≀ 100) β€” the number of test cases. Next T lines contain test cases β€” one per line. The first and only line of each test case contains three integers n, l and r (2 ≀ n ≀ 10^5, 1 ≀ l ≀ r ≀ n(n - 1) + 1, r - l + 1 ≀ 10^5) β€” the number of vertices in K_n, and segment of the cycle to print. It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5. Output For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once. Example Input 3 2 1 3 3 3 6 99995 9998900031 9998900031 Output 1 2 1 1 3 2 3 1 Note In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1. In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
{ "input": [ "3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n" ], "output": [ "1 2 1 \n1 3 2 3 \n1 \n" ] }
{ "input": [ "1\n2 2 3\n", "1\n4 13 13\n", "1\n3 1 1\n", "10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n", "1\n3 7 7\n", "1\n25 30 295\n", "1\n4 12 13\n", "5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n", "1\n5 4 4\n" ], "output": [ "2 1 \n", "1 \n", "1 \n", "1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n", "1 \n", "16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n", "4 1 \n", "1 \n1 \n1 \n1 \n7 1 \n", "3 \n" ] }
CORRECT
python3
from sys import stdin from collections import deque from math import sqrt, floor, ceil, log, log2, log10, pi, gcd, sin, cos, asin def ii(): return int(stdin.readline()) def fi(): return float(stdin.readline()) def mi(): return map(int, stdin.readline().split()) def fmi(): return map(float, stdin.readline().split()) def li(): return list(mi()) def lsi(): x=list(stdin.readline()) x.pop() return x def si(): return stdin.readline() res=['YES', 'NO'] ############# CODE STARTS HERE ############# for _ in range(ii()): n, l, r=mi() if l==n*(n-1)+1: print(1) continue x, p=1, n*2 while x<=l: p-=2 x+=p #print(x, p) x-=p p=n*2-p p//=2 #print(x, p) a=[] dl=l-x+1 z=p+((dl+1)//2) if not dl%2: a.append(z) l+=1 z+=1 if z>n: p+=1 z=p+1 #print(a) #print(p, z) while l<=r: a.append(p) l+=1 if l<=r: a.append(z) l+=1 z+=1 if z>n: p+=1 z=p+1 if r==n*(n-1)+1: a[-1]=1 print(*a)
1334_D. Minimum Euler Cycle
You are given a complete directed graph K_n with n vertices: each pair of vertices u β‰  v in K_n have both directed edges (u, v) and (v, u); there are no self-loops. You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices). We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 β€” a visiting order, where each (v_i, v_{i + 1}) occurs exactly once. Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists. Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r. Input The first line contains the single integer T (1 ≀ T ≀ 100) β€” the number of test cases. Next T lines contain test cases β€” one per line. The first and only line of each test case contains three integers n, l and r (2 ≀ n ≀ 10^5, 1 ≀ l ≀ r ≀ n(n - 1) + 1, r - l + 1 ≀ 10^5) β€” the number of vertices in K_n, and segment of the cycle to print. It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5. Output For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once. Example Input 3 2 1 3 3 3 6 99995 9998900031 9998900031 Output 1 2 1 1 3 2 3 1 Note In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1. In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
{ "input": [ "3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n" ], "output": [ "1 2 1 \n1 3 2 3 \n1 \n" ] }
{ "input": [ "1\n2 2 3\n", "1\n4 13 13\n", "1\n3 1 1\n", "10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n", "1\n3 7 7\n", "1\n25 30 295\n", "1\n4 12 13\n", "5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n", "1\n5 4 4\n" ], "output": [ "2 1 \n", "1 \n", "1 \n", "1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n", "1 \n", "16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n", "4 1 \n", "1 \n1 \n1 \n1 \n7 1 \n", "3 \n" ] }
CORRECT
python3
for _ in range(int(input())): n,l,r = map(int,input().split()) s=0 ans=[] for i in range(1,n): gap2=i t=i if s+(n-i)*2 >=l : for j in range(l,r+1): gg=(j-s)//2 if j%2==1: ans.append(gap2) else: ans.append(gap2+gg) if gap2+gg==n: gap2+=1 s+=(n-t)*2 t+=1 if r==n*(n-1)+1: ans[-1]=1 break else: s+=(n-i)*2 if len(ans)==0: print(1) else: print(*ans)
1334_D. Minimum Euler Cycle
You are given a complete directed graph K_n with n vertices: each pair of vertices u β‰  v in K_n have both directed edges (u, v) and (v, u); there are no self-loops. You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices). We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 β€” a visiting order, where each (v_i, v_{i + 1}) occurs exactly once. Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists. Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r. Input The first line contains the single integer T (1 ≀ T ≀ 100) β€” the number of test cases. Next T lines contain test cases β€” one per line. The first and only line of each test case contains three integers n, l and r (2 ≀ n ≀ 10^5, 1 ≀ l ≀ r ≀ n(n - 1) + 1, r - l + 1 ≀ 10^5) β€” the number of vertices in K_n, and segment of the cycle to print. It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5. Output For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once. Example Input 3 2 1 3 3 3 6 99995 9998900031 9998900031 Output 1 2 1 1 3 2 3 1 Note In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1. In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
{ "input": [ "3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n" ], "output": [ "1 2 1 \n1 3 2 3 \n1 \n" ] }
{ "input": [ "1\n2 2 3\n", "1\n4 13 13\n", "1\n3 1 1\n", "10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n", "1\n3 7 7\n", "1\n25 30 295\n", "1\n4 12 13\n", "5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n", "1\n5 4 4\n" ], "output": [ "2 1 \n", "1 \n", "1 \n", "1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n", "1 \n", "16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n", "4 1 \n", "1 \n1 \n1 \n1 \n7 1 \n", "3 \n" ] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; long long n, l, r; void solve(long long l, long long r) { long long s = 1; while (s <= n && l > 2 * (n - s)) { l -= 2 * (n - s); r -= 2 * (n - s); s++; } long long cnt = l / 2 + l % 2; cnt += s; while (s <= n && l <= r) { while (cnt <= n) { if (l % 2) cout << s << " "; else cout << cnt++ << " "; l++; if (l > r) break; } s++; cnt = s + 1; } if (l <= r) cout << 1; cout << "\n"; } signed main() { long long t; cin >> t; while (t--) { cin >> n >> l >> r; solve(l, r); } return 0; }
1334_D. Minimum Euler Cycle
You are given a complete directed graph K_n with n vertices: each pair of vertices u β‰  v in K_n have both directed edges (u, v) and (v, u); there are no self-loops. You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices). We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 β€” a visiting order, where each (v_i, v_{i + 1}) occurs exactly once. Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists. Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r. Input The first line contains the single integer T (1 ≀ T ≀ 100) β€” the number of test cases. Next T lines contain test cases β€” one per line. The first and only line of each test case contains three integers n, l and r (2 ≀ n ≀ 10^5, 1 ≀ l ≀ r ≀ n(n - 1) + 1, r - l + 1 ≀ 10^5) β€” the number of vertices in K_n, and segment of the cycle to print. It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5. Output For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once. Example Input 3 2 1 3 3 3 6 99995 9998900031 9998900031 Output 1 2 1 1 3 2 3 1 Note In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1. In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
{ "input": [ "3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n" ], "output": [ "1 2 1 \n1 3 2 3 \n1 \n" ] }
{ "input": [ "1\n2 2 3\n", "1\n4 13 13\n", "1\n3 1 1\n", "10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n", "1\n3 7 7\n", "1\n25 30 295\n", "1\n4 12 13\n", "5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n", "1\n5 4 4\n" ], "output": [ "2 1 \n", "1 \n", "1 \n", "1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n", "1 \n", "16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n", "4 1 \n", "1 \n1 \n1 \n1 \n7 1 \n", "3 \n" ] }
CORRECT
java
import java.util.*; import java.io.*; public class Main { public static void main(String args[]) {new Main().run();} FastReader in = new FastReader(); PrintWriter out = new PrintWriter(System.out); void run(){ for(int q=ni();q>0;q--) { work(); out.println(); } out.flush(); } long mod=998244353L; long inf=Long.MAX_VALUE; long gcd(long a,long b) { return a==0?b:gcd(b%a,a); } void work() { long n=nl(),l=nl(),r=nl(); long c=1; long sum=0; while(sum+(n-c)*2<l&&c<n) { sum+=(n-c)*2; c++; } // System.out.println(c); long c2=(l+1-sum)/2+c; if((l-sum)%2==0) { out.print(c2+" "); l++; c2++; if(c2>n) { c++; c2=c+1; } } while(l<=Math.min(n*(n-1), r)) { out.print(c+" "); l++; if(l>r)break; out.print(c2+" "); c2++; if(c2>n) { c++; c2=c+1; } l++; } if(l<=r) { out.print(1+" "); } } //input @SuppressWarnings("unused") private ArrayList<Integer>[] ng(int n, int m) { ArrayList<Integer>[] graph=(ArrayList<Integer>[])new ArrayList[n]; for(int i=0;i<n;i++) { graph[i]=new ArrayList<>(); } for(int i=1;i<=m;i++) { int s=in.nextInt()-1,e=in.nextInt()-1; graph[s].add(e); graph[e].add(s); } return graph; } private ArrayList<long[]>[] ngw(int n, int m) { ArrayList<long[]>[] graph=(ArrayList<long[]>[])new ArrayList[n]; for(int i=0;i<n;i++) { graph[i]=new ArrayList<>(); } for(int i=1;i<=m;i++) { long s=in.nextLong()-1,e=in.nextLong()-1,w=in.nextLong(); graph[(int)s].add(new long[] {e,w,i}); graph[(int)e].add(new long[] {s,w}); } return graph; } private int ni() { return in.nextInt(); } private long nl() { return in.nextLong(); } private String ns() { return in.next(); } private long[] na(int n) { long[] A=new long[n]; for(int i=0;i<n;i++) { A[i]=in.nextLong(); } return A; } private int[] nia(int n) { int[] A=new int[n]; for(int i=0;i<n;i++) { A[i]=in.nextInt(); } return A; } } class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br=new BufferedReader(new InputStreamReader(System.in)); } public String next() { while(st==null || !st.hasMoreElements())//ε›žθ½¦οΌŒη©Ίθ‘Œζƒ…ε†΅ { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } public int nextInt() { return Integer.parseInt(next()); } public long nextLong() { return Long.parseLong(next()); } }
1334_D. Minimum Euler Cycle
You are given a complete directed graph K_n with n vertices: each pair of vertices u β‰  v in K_n have both directed edges (u, v) and (v, u); there are no self-loops. You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices). We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 β€” a visiting order, where each (v_i, v_{i + 1}) occurs exactly once. Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists. Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r. Input The first line contains the single integer T (1 ≀ T ≀ 100) β€” the number of test cases. Next T lines contain test cases β€” one per line. The first and only line of each test case contains three integers n, l and r (2 ≀ n ≀ 10^5, 1 ≀ l ≀ r ≀ n(n - 1) + 1, r - l + 1 ≀ 10^5) β€” the number of vertices in K_n, and segment of the cycle to print. It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5. Output For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once. Example Input 3 2 1 3 3 3 6 99995 9998900031 9998900031 Output 1 2 1 1 3 2 3 1 Note In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1. In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
{ "input": [ "3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n" ], "output": [ "1 2 1 \n1 3 2 3 \n1 \n" ] }
{ "input": [ "1\n2 2 3\n", "1\n4 13 13\n", "1\n3 1 1\n", "10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n", "1\n3 7 7\n", "1\n25 30 295\n", "1\n4 12 13\n", "5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n", "1\n5 4 4\n" ], "output": [ "2 1 \n", "1 \n", "1 \n", "1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n", "1 \n", "16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n", "4 1 \n", "1 \n1 \n1 \n1 \n7 1 \n", "3 \n" ] }
CORRECT
java
import java.io.*; import java.math.BigInteger; import java.util.*; import java.util.concurrent.TimeUnit; public class d { public static void main(String[] args) throws IOException { //FastReader scan = new FastReader("in.txt"); FastReader scan = new FastReader(); //PrintWriter out = new PrintWriter(new BufferedWriter(new FileWriter("out.txt"))); PrintWriter out = new PrintWriter(new BufferedWriter(new OutputStreamWriter(System.out))); Task solver = new Task(); int t = scan.nextInt(); //int t = 1; for(int i = 1; i <= t; i++) solver.solve(i, scan, out); out.close(); } static class Task { public void solve(int testNumber, FastReader sc, PrintWriter out) { long N = sc.nextLong(); long L = sc.nextLong(); long R = sc.nextLong(); TreeMap<Long, Integer> div = new TreeMap<>(); div.put(0l, 1); long change = (N-1) * 2; int j = 2; for(long i = 0; change > 0; j++) { i += change; div.put(i, j); change -= 2; } //System.out.println(div); long count = div.lowerKey(L); while(count <= R) { //System.out.println(count); if(count == div.lastKey() + 1) { print(out, count, L, R, 1); } else if (div.containsKey(count)) { print(out, count, L, R, N); } else { int repeat = div.get(div.lowerKey(count)); for(int i = repeat + 1; i < N; i++) { print(out, count, L, R, repeat); count++; print(out, count, L, R, i); count++; } print(out, count, L, R, repeat); } count++; } out.println(); } public static void print(PrintWriter out, long count, long L, long R, long value) { if(count >= L && count <= R) out.print(value + " "); } } static class tup implements Comparable<tup>, Comparator<tup> { int a, b; tup() { } tup(int a, int b) { this.a = a; this.b = b; } @Override public int compareTo(tup o2) { return a==o2.a?Integer.compare(b,o2.b):Integer.compare(a, o2.a); } @Override public int compare(tup o1, tup o2) { return o1.a==o2.a ? Integer.compare(o1.b, o2.b): Integer.compare(o1.a, o2.a); } @Override public int hashCode() { return Objects.hash(a, b); } @Override public boolean equals(Object obj) { if (this == obj) return true; if (obj == null) return false; if (getClass() != obj.getClass()) return false; tup other = (tup) obj; return a==other.a && b==other.b; } } static void shuffle(long[] a) { Random get = new Random(); for (int i = 0; i < a.length; i++) { int r = get.nextInt(a.length); long temp = a[i]; a[i] = a[r]; a[r] = temp; } } static void shuffle(int[] a) { Random get = new Random(); for (int i = 0; i < a.length; i++) { int r = get.nextInt(a.length); int temp = a[i]; a[i] = a[r]; a[r] = temp; } } static class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader(new InputStreamReader(System.in)); } public FastReader(String s) throws FileNotFoundException { br = new BufferedReader(new FileReader(new File(s))); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } }
1334_D. Minimum Euler Cycle
You are given a complete directed graph K_n with n vertices: each pair of vertices u β‰  v in K_n have both directed edges (u, v) and (v, u); there are no self-loops. You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices). We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 β€” a visiting order, where each (v_i, v_{i + 1}) occurs exactly once. Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists. Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r. Input The first line contains the single integer T (1 ≀ T ≀ 100) β€” the number of test cases. Next T lines contain test cases β€” one per line. The first and only line of each test case contains three integers n, l and r (2 ≀ n ≀ 10^5, 1 ≀ l ≀ r ≀ n(n - 1) + 1, r - l + 1 ≀ 10^5) β€” the number of vertices in K_n, and segment of the cycle to print. It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5. Output For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once. Example Input 3 2 1 3 3 3 6 99995 9998900031 9998900031 Output 1 2 1 1 3 2 3 1 Note In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1. In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
{ "input": [ "3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n" ], "output": [ "1 2 1 \n1 3 2 3 \n1 \n" ] }
{ "input": [ "1\n2 2 3\n", "1\n4 13 13\n", "1\n3 1 1\n", "10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n", "1\n3 7 7\n", "1\n25 30 295\n", "1\n4 12 13\n", "5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n", "1\n5 4 4\n" ], "output": [ "2 1 \n", "1 \n", "1 \n", "1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n", "1 \n", "16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n", "4 1 \n", "1 \n1 \n1 \n1 \n7 1 \n", "3 \n" ] }
CORRECT
java
import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.util.InputMismatchException; import java.io.IOException; import java.util.ArrayList; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; FastReader in = new FastReader(inputStream); PrintWriter out = new PrintWriter(outputStream); DMinimumEulerCycle solver = new DMinimumEulerCycle(); int testCount = Integer.parseInt(in.next()); for (int i = 1; i <= testCount; i++) solver.solve(i, in, out); out.close(); } static class DMinimumEulerCycle { public void solve(int testNumber, FastReader s, PrintWriter w) { int n = s.nextInt(); long l = s.nextLong(), r = s.nextLong(); ArrayList<Integer> sizes = new ArrayList<>(); int cur = n - 1 << 1; for (int i = n - 1; i > 0; i--) { sizes.add(cur); cur -= 2; } sizes.add(1); cur = 0; while (l > sizes.get(cur)) { l -= sizes.get(cur); r -= sizes.get(cur++); } long dif = r - l + 1; int[] ans = new int[4 * n]; if (cur == sizes.size() - 1) { w.println(1); return; } else { int cnt = cur + 1; for (int i = 0; i < sizes.get(cur); i += 2) ans[i] = cnt; cnt++; for (int i = 1; i < sizes.get(cur); i += 2) ans[i] = cnt++; } for (int i = (int) l - 1; i < sizes.get(cur) && dif > 0; i++) { w.print(ans[i] + " "); dif--; } cur++; while (dif > 0) { if (cur == sizes.size() - 1) { w.println(1); return; } else { int cnt = cur + 1; for (int i = 0; i < sizes.get(cur); i += 2) ans[i] = cnt; cnt++; for (int i = 1; i < sizes.get(cur); i += 2) ans[i] = cnt++; } for (int i = 0; i < sizes.get(cur) && dif > 0; i++) { w.print(ans[i] + " "); dif--; } cur++; } w.println(); } } static class FastReader { private InputStream stream; private byte[] buf = new byte[1024]; private int curChar; private int numChars; private FastReader.SpaceCharFilter filter; public FastReader(InputStream stream) { this.stream = stream; } public int read() { if (numChars == -1) throw new InputMismatchException(); if (curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (numChars <= 0) return -1; } return buf[curChar++]; } public int nextInt() { int c = read(); while (isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } int res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public long nextLong() { int c = read(); while (isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } long res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public String next() { int c = read(); while (isSpaceChar(c)) c = read(); StringBuilder res = new StringBuilder(); do { res.appendCodePoint(c); c = read(); } while (!isSpaceChar(c)); return res.toString(); } public boolean isSpaceChar(int c) { if (filter != null) return filter.isSpaceChar(c); return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } public interface SpaceCharFilter { public boolean isSpaceChar(int ch); } } }
1334_D. Minimum Euler Cycle
You are given a complete directed graph K_n with n vertices: each pair of vertices u β‰  v in K_n have both directed edges (u, v) and (v, u); there are no self-loops. You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices). We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 β€” a visiting order, where each (v_i, v_{i + 1}) occurs exactly once. Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists. Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r. Input The first line contains the single integer T (1 ≀ T ≀ 100) β€” the number of test cases. Next T lines contain test cases β€” one per line. The first and only line of each test case contains three integers n, l and r (2 ≀ n ≀ 10^5, 1 ≀ l ≀ r ≀ n(n - 1) + 1, r - l + 1 ≀ 10^5) β€” the number of vertices in K_n, and segment of the cycle to print. It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5. Output For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once. Example Input 3 2 1 3 3 3 6 99995 9998900031 9998900031 Output 1 2 1 1 3 2 3 1 Note In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1. In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
{ "input": [ "3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n" ], "output": [ "1 2 1 \n1 3 2 3 \n1 \n" ] }
{ "input": [ "1\n2 2 3\n", "1\n4 13 13\n", "1\n3 1 1\n", "10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n", "1\n3 7 7\n", "1\n25 30 295\n", "1\n4 12 13\n", "5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n", "1\n5 4 4\n" ], "output": [ "2 1 \n", "1 \n", "1 \n", "1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n", "1 \n", "16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n", "4 1 \n", "1 \n1 \n1 \n1 \n7 1 \n", "3 \n" ] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { ios::sync_with_stdio(0); cin.tie(); int T; cin >> T; while (T--) { long long n, l, r; cin >> n >> l >> r; long long e = 0, s = -1, f = -1; for (long long i = 1; i < n; i++) { e += 2 * (n - i); if (e >= l) { s = i; f = 2 * (n - i) - e + l; break; } } if (s == -1) { cout << 1 << '\n'; continue; } for (long long i = l; i <= r; i++) { if (s == n) cout << 1 << ' '; else { if (f & 1) cout << s << ' '; else cout << s + f / 2 << ' '; } if (f == 2 * (n - s)) { s++; f = 1; } else f++; } cout << '\n'; } return 0; }
1334_D. Minimum Euler Cycle
You are given a complete directed graph K_n with n vertices: each pair of vertices u β‰  v in K_n have both directed edges (u, v) and (v, u); there are no self-loops. You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices). We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 β€” a visiting order, where each (v_i, v_{i + 1}) occurs exactly once. Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists. Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r. Input The first line contains the single integer T (1 ≀ T ≀ 100) β€” the number of test cases. Next T lines contain test cases β€” one per line. The first and only line of each test case contains three integers n, l and r (2 ≀ n ≀ 10^5, 1 ≀ l ≀ r ≀ n(n - 1) + 1, r - l + 1 ≀ 10^5) β€” the number of vertices in K_n, and segment of the cycle to print. It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5. Output For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once. Example Input 3 2 1 3 3 3 6 99995 9998900031 9998900031 Output 1 2 1 1 3 2 3 1 Note In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1. In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
{ "input": [ "3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n" ], "output": [ "1 2 1 \n1 3 2 3 \n1 \n" ] }
{ "input": [ "1\n2 2 3\n", "1\n4 13 13\n", "1\n3 1 1\n", "10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n", "1\n3 7 7\n", "1\n25 30 295\n", "1\n4 12 13\n", "5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n", "1\n5 4 4\n" ], "output": [ "2 1 \n", "1 \n", "1 \n", "1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n", "1 \n", "16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n", "4 1 \n", "1 \n1 \n1 \n1 \n7 1 \n", "3 \n" ] }
CORRECT
cpp
#include <bits/stdc++.h> template <class T> bool chmax(T &a, const T &b) { if (a < b) { a = b; return 1; } return 0; } template <class T> bool chmin(T &a, const T &b) { if (a > b) { a = b; return 1; } return 0; } using namespace std; int main(void) { cin.tie(0); ios::sync_with_stdio(false); int t; cin >> t; while (t--) { int n; cin >> n; long long l, r; cin >> l >> r; int idx = 0; long long sum = 0; int lg = -1, rg = -1; int ls = -1, rs = -1; while ((lg == -1 || rg == -1) && idx < n - 1) { long long lsum = sum; sum += (long long)(n - 1 - idx) * 2; if (lg == -1 && l <= sum) lg = idx, ls = l - lsum; if (rg == -1 && r <= sum) rg = idx, rs = r - lsum; idx++; } if (lg == -1) lg = n - 1; if (rg == -1) rg = n - 1; lg++; rg++; for (int i = (int)(lg); i <= (int)(rg); i++) { if (i == n) { cout << "1 "; break; } long long from = 1, to = (long long)(n - i) * 2; if (i == lg) from = ls; if (i == rg) to = rs; for (int j = (int)(from); j <= (int)(to); j++) { if (j % 2 == 1) { cout << i << " "; } else { cout << i + j / 2 << " "; } } } cout << "\n"; } return 0; }
1334_D. Minimum Euler Cycle
You are given a complete directed graph K_n with n vertices: each pair of vertices u β‰  v in K_n have both directed edges (u, v) and (v, u); there are no self-loops. You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices). We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 β€” a visiting order, where each (v_i, v_{i + 1}) occurs exactly once. Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists. Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r. Input The first line contains the single integer T (1 ≀ T ≀ 100) β€” the number of test cases. Next T lines contain test cases β€” one per line. The first and only line of each test case contains three integers n, l and r (2 ≀ n ≀ 10^5, 1 ≀ l ≀ r ≀ n(n - 1) + 1, r - l + 1 ≀ 10^5) β€” the number of vertices in K_n, and segment of the cycle to print. It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5. Output For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once. Example Input 3 2 1 3 3 3 6 99995 9998900031 9998900031 Output 1 2 1 1 3 2 3 1 Note In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1. In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
{ "input": [ "3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n" ], "output": [ "1 2 1 \n1 3 2 3 \n1 \n" ] }
{ "input": [ "1\n2 2 3\n", "1\n4 13 13\n", "1\n3 1 1\n", "10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n", "1\n3 7 7\n", "1\n25 30 295\n", "1\n4 12 13\n", "5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n", "1\n5 4 4\n" ], "output": [ "2 1 \n", "1 \n", "1 \n", "1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n", "1 \n", "16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n", "4 1 \n", "1 \n1 \n1 \n1 \n7 1 \n", "3 \n" ] }
CORRECT
python3
test = int(input()) for _ in range(test): n , l , r = [int(x) for x in input().split()] start = 1 it = 1 if l == n*(n-1) + 1: print('1') continue while start < l: start += (n-it)*2 it += 1 if start != l: it -= 1 start -= (n - it)*2 a = it b = it+1 ok = True while start < l: if ok: ok = False else: ok = True b += 1 start += 1 # print(a , b , ok , '--------------------------') while start <= r: if b == n+1: a += 1 b = a+1 if a == n: # print('------------------') print('1' , end=' ') break if ok: print(a , end=' ') ok = False else: print(b , end=' ') b += 1 ok = True # ok != ok start += 1 print()
1334_D. Minimum Euler Cycle
You are given a complete directed graph K_n with n vertices: each pair of vertices u β‰  v in K_n have both directed edges (u, v) and (v, u); there are no self-loops. You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices). We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 β€” a visiting order, where each (v_i, v_{i + 1}) occurs exactly once. Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists. Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r. Input The first line contains the single integer T (1 ≀ T ≀ 100) β€” the number of test cases. Next T lines contain test cases β€” one per line. The first and only line of each test case contains three integers n, l and r (2 ≀ n ≀ 10^5, 1 ≀ l ≀ r ≀ n(n - 1) + 1, r - l + 1 ≀ 10^5) β€” the number of vertices in K_n, and segment of the cycle to print. It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5. Output For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once. Example Input 3 2 1 3 3 3 6 99995 9998900031 9998900031 Output 1 2 1 1 3 2 3 1 Note In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1. In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
{ "input": [ "3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n" ], "output": [ "1 2 1 \n1 3 2 3 \n1 \n" ] }
{ "input": [ "1\n2 2 3\n", "1\n4 13 13\n", "1\n3 1 1\n", "10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n", "1\n3 7 7\n", "1\n25 30 295\n", "1\n4 12 13\n", "5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n", "1\n5 4 4\n" ], "output": [ "2 1 \n", "1 \n", "1 \n", "1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n", "1 \n", "16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n", "4 1 \n", "1 \n1 \n1 \n1 \n7 1 \n", "3 \n" ] }
CORRECT
java
import java.util.*; import java.io.*; import java.math.*; public class Main9 { static class Pair { int x; int y; Pair(int x,int y) { this.x=x; this.y=y; } } static int mod=1000000007; public static int[] sort(int[] a) { int n=a.length; ArrayList<Integer> ar=new ArrayList<>(); for(int i=0;i<a.length;i++) { ar.add(a[i]); } Collections.sort(ar); for(int i=0;i<n;i++) { a[i]=ar.get(i); } return a; } public static long pow(long a, long b) { long result=1; while(b>0) { if (b % 2 != 0) { result=(result*a)%mod; b--; } a=(a*a)%mod; b /= 2; } return result; } public static long gcd(long a, long b) { if (a == 0) return b; return gcd(b%a, a); } public static long lcm(long a, long b) { return a*(b/gcd(a,b)); } static ArrayList<ArrayList<Integer>> graph; static public void main(String args[])throws IOException { int tt=i(); StringBuilder sb1=new StringBuilder(); for(int ttt=1;ttt<=tt;ttt++) { long n=l(); long l=l(); long r=l(); long edges=(n*((long)n-1))/2; long sum=0; long prev=0; long index=-1; for(long i=n;i>=1;i--) { sum=sum+(i-1)*2; if(sum>=l) { index=i; break; } prev=sum; } StringBuilder sb=new StringBuilder(); if(index==-1) { sb.append("1\n"); sb1.append(sb.toString()); } else{ int flag=0; long rem=n-index; long starting=rem+1; long fin_starting=starting; long pp=0; long count=0; long extraL=l-prev; if(extraL%2==0) { long num=extraL/2; starting=(long)(starting+num); sb.append(starting+" "); count++; } else { starting=starting; } long ans=r-l+1; long left=0; long right=0; if(fin_starting==starting) { long rr=extraL/2+1; long ww=fin_starting+rr; left=fin_starting; right=(int)ww; } else { left=fin_starting; right=starting+1; } right--; long tttt=right; long count1=count; while(count<ans && flag==0) { while(left<n) { right=tttt+1; while(right<=n && flag==0) { sb.append(left+" "); count++; if(count>=ans) { flag=1; break; } sb.append(right+" "); count++; if(count>=ans) { flag=1; break; } right++; } if(flag==1) { break; } left++; tttt=left; } if(flag==1) break; if(count1==count) break; count1=count; } if(count<ans) { sb.append("1"); sb1.append(sb.toString()+"\n"); } else { sb1.append(sb.toString()+"\n"); }} } System.out.print(sb1.toString()); } /**/ static InputReader in=new InputReader(System.in); static OutputWriter out=new OutputWriter(System.out); public static long l() { String s=in.String(); return Long.parseLong(s); } public static void pln(String value) { System.out.println(value); } public static int i() { return in.Int(); } public static String s() { return in.String(); } } class InputReader { private InputStream stream; private byte[] buf = new byte[1024]; private int curChar; private int numChars; private SpaceCharFilter filter; public InputReader(InputStream stream) { this.stream = stream; } public int read() { if (numChars== -1) throw new InputMismatchException(); if (curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (numChars <= 0) return -1; } return buf[curChar++]; } public int Int() { int c = read(); while (isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } int res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public String String() { int c = read(); while (isSpaceChar(c)) c = read(); StringBuilder res = new StringBuilder(); do { res.appendCodePoint(c); c = read(); } while (!isSpaceChar(c)); return res.toString(); } public boolean isSpaceChar(int c) { if (filter != null) return filter.isSpaceChar(c); return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } public String next() { return String(); } public interface SpaceCharFilter { public boolean isSpaceChar(int ch); } } class OutputWriter { private final PrintWriter writer; public OutputWriter(OutputStream outputStream) { writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream))); } public OutputWriter(Writer writer) { this.writer = new PrintWriter(writer); } public void print(Object...objects) { for (int i = 0; i < objects.length; i++) { if (i != 0) writer.print(' '); writer.print(objects[i]); } } public void printLine(Object...objects) { print(objects); writer.println(); } public void close() { writer.close(); } public void flush() { writer.flush(); } } class IOUtils { public static int[] readIntArray(InputReader in, int size) { int[] array = new int[size]; for (int i = 0; i < size; i++) array[i] = in.Int(); return array; } }
1334_D. Minimum Euler Cycle
You are given a complete directed graph K_n with n vertices: each pair of vertices u β‰  v in K_n have both directed edges (u, v) and (v, u); there are no self-loops. You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices). We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 β€” a visiting order, where each (v_i, v_{i + 1}) occurs exactly once. Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists. Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r. Input The first line contains the single integer T (1 ≀ T ≀ 100) β€” the number of test cases. Next T lines contain test cases β€” one per line. The first and only line of each test case contains three integers n, l and r (2 ≀ n ≀ 10^5, 1 ≀ l ≀ r ≀ n(n - 1) + 1, r - l + 1 ≀ 10^5) β€” the number of vertices in K_n, and segment of the cycle to print. It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5. Output For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once. Example Input 3 2 1 3 3 3 6 99995 9998900031 9998900031 Output 1 2 1 1 3 2 3 1 Note In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1. In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
{ "input": [ "3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n" ], "output": [ "1 2 1 \n1 3 2 3 \n1 \n" ] }
{ "input": [ "1\n2 2 3\n", "1\n4 13 13\n", "1\n3 1 1\n", "10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n", "1\n3 7 7\n", "1\n25 30 295\n", "1\n4 12 13\n", "5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n", "1\n5 4 4\n" ], "output": [ "2 1 \n", "1 \n", "1 \n", "1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n", "1 \n", "16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n", "4 1 \n", "1 \n1 \n1 \n1 \n7 1 \n", "3 \n" ] }
CORRECT
java
import java.io.*; import java.util.*; public class Main { static Parser parser = new Parser(); public static void main(String[] args) throws IOException { int T = parser.parseInt(); for(int i = 0; i < T; i++){ solve(); } } static void solve() throws IOException{ int n = parser.parseInt(); long l = parser.parseLong(); long r = parser.parseLong(); int idx = 1; long curr = 0; while(curr + (n - idx) * 2 < l){ if(idx == n){ break; } curr += (n - idx) * 2; idx += 1; } List<Integer> cycle = new ArrayList<>(); while(cycle.size() < r - curr + 1){ if(idx == n){ break; } for(int i = idx + 1; i <= n; i++){ cycle.add(idx); cycle.add(i); } idx += 1; } cycle.add(1); StringBuilder sb = new StringBuilder(); for(long i = l; i <= r; i++){ sb.append(cycle.get((int)(i - curr - 1))); sb.append(' '); } System.out.println(sb.toString()); } } class Parser { private static final BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); private static final Iterator<String> stringIterator = br.lines().iterator(); private static final Deque<String> inputs = new ArrayDeque<>(); void fill() throws IOException { if(inputs.isEmpty()){ if(!stringIterator.hasNext()) throw new IOException(); inputs.addAll(Arrays.asList(stringIterator.next().split(" "))); } } Integer parseInt() throws IOException { fill(); if(!inputs.isEmpty()) { return Integer.parseInt(inputs.pollFirst()); } throw new IOException(); } Long parseLong() throws IOException { fill(); if(!inputs.isEmpty()) { return Long.parseLong(inputs.pollFirst()); } throw new IOException(); } Double parseDouble() throws IOException { fill(); if(!inputs.isEmpty()) { return Double.parseDouble(inputs.pollFirst()); } throw new IOException(); } String parseString() throws IOException { fill(); return inputs.pollFirst(); } }
1334_D. Minimum Euler Cycle
You are given a complete directed graph K_n with n vertices: each pair of vertices u β‰  v in K_n have both directed edges (u, v) and (v, u); there are no self-loops. You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices). We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 β€” a visiting order, where each (v_i, v_{i + 1}) occurs exactly once. Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists. Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r. Input The first line contains the single integer T (1 ≀ T ≀ 100) β€” the number of test cases. Next T lines contain test cases β€” one per line. The first and only line of each test case contains three integers n, l and r (2 ≀ n ≀ 10^5, 1 ≀ l ≀ r ≀ n(n - 1) + 1, r - l + 1 ≀ 10^5) β€” the number of vertices in K_n, and segment of the cycle to print. It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5. Output For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once. Example Input 3 2 1 3 3 3 6 99995 9998900031 9998900031 Output 1 2 1 1 3 2 3 1 Note In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1. In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
{ "input": [ "3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n" ], "output": [ "1 2 1 \n1 3 2 3 \n1 \n" ] }
{ "input": [ "1\n2 2 3\n", "1\n4 13 13\n", "1\n3 1 1\n", "10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n", "1\n3 7 7\n", "1\n25 30 295\n", "1\n4 12 13\n", "5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n", "1\n5 4 4\n" ], "output": [ "2 1 \n", "1 \n", "1 \n", "1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n", "1 \n", "16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n", "4 1 \n", "1 \n1 \n1 \n1 \n7 1 \n", "3 \n" ] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int t, n, s, lc; long long l, r, k; inline long long read() { long long ans = 0; char c = getchar(); while (c < 48 || c > 57) c = getchar(); while (c >= 48 && c <= 57) ans = (ans << 3) + (ans << 1) + (c ^ 48), c = getchar(); return ans; } inline void write(int x) { if (x > 9) write(x / 10); putchar(x % 10 + 48); } int main() { t = read(); while (t--) { n = read(), l = read(), r = read(), k = 0; for (register int i = 1; i < n; ++i) { s = (n - i) << 1; if (k + s < l) { k += s; continue; } if (k < l) lc = l - k - 1, k = l - 1; else lc = 0; for (register int j = lc; j < s - 1; ++j) { ++k; if (k > r) break; if (!(j & 1)) write(i); else write((j >> 1) + i + 1); putchar(' '); } if (k > r) break; ++k; if (k > r) break; write(n), putchar(' '); } if (k < r) putchar(49); putchar('\n'); } return 0; }
1334_D. Minimum Euler Cycle
You are given a complete directed graph K_n with n vertices: each pair of vertices u β‰  v in K_n have both directed edges (u, v) and (v, u); there are no self-loops. You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices). We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 β€” a visiting order, where each (v_i, v_{i + 1}) occurs exactly once. Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists. Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r. Input The first line contains the single integer T (1 ≀ T ≀ 100) β€” the number of test cases. Next T lines contain test cases β€” one per line. The first and only line of each test case contains three integers n, l and r (2 ≀ n ≀ 10^5, 1 ≀ l ≀ r ≀ n(n - 1) + 1, r - l + 1 ≀ 10^5) β€” the number of vertices in K_n, and segment of the cycle to print. It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5. Output For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once. Example Input 3 2 1 3 3 3 6 99995 9998900031 9998900031 Output 1 2 1 1 3 2 3 1 Note In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1. In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
{ "input": [ "3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n" ], "output": [ "1 2 1 \n1 3 2 3 \n1 \n" ] }
{ "input": [ "1\n2 2 3\n", "1\n4 13 13\n", "1\n3 1 1\n", "10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n", "1\n3 7 7\n", "1\n25 30 295\n", "1\n4 12 13\n", "5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n", "1\n5 4 4\n" ], "output": [ "2 1 \n", "1 \n", "1 \n", "1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n", "1 \n", "16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n", "4 1 \n", "1 \n1 \n1 \n1 \n7 1 \n", "3 \n" ] }
CORRECT
java
import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.io.FilterInputStream; import java.io.BufferedInputStream; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; ScanReader in = new ScanReader(inputStream); PrintWriter out = new PrintWriter(outputStream); DMinimumEulerCycle solver = new DMinimumEulerCycle(); solver.solve(1, in, out); out.close(); } static class DMinimumEulerCycle { public void solve(int testNumber, ScanReader in, PrintWriter out) { int t = in.scanInt(); loop: while (t-- > 0) { int n = in.scanInt(); long l = in.scanLong(); long r = in.scanLong(); long m = r - l + 1; long last = (long) n * (n - 1) + 1; if (m == 1 && l == r && r == last) { out.println(1); continue loop; } int arr[] = new int[n + 1]; long pre[] = new long[n + 1]; arr[1] = (n - 1) * 2; for (int i = 2; i <= n; i++) arr[i] = arr[i - 1] - 2; for (int i = 1; i <= n; i++) pre[i] = arr[i] + pre[i - 1]; int a = 0; for (int i = 1; i <= n - 1; i++) if (pre[i] < l) a = i; a++; long next = l - pre[a - 1]; long b = a + ((next / 2) + (next % 2)); int turn = (int) (l % 2); for (int i = 0; i < m; i++) { if (i == m - 1 && r == last) { out.print(1); break; } if (turn == 1) { out.print(a + " "); } else { out.print(b + " "); b++; if (b == (n + 1)) { a++; b = a + 1; } } turn ^= 1; } out.println(); // 1 2 1 3 2 3 // 1 2 1 3 1 4 1 5 2 3 2 4 2 5 3 4 3 5 4 5 } } } static class ScanReader { private byte[] buf = new byte[4 * 1024]; private int INDEX; private BufferedInputStream in; private int TOTAL; public ScanReader(InputStream inputStream) { in = new BufferedInputStream(inputStream); } private int scan() { if (INDEX >= TOTAL) { INDEX = 0; try { TOTAL = in.read(buf); } catch (Exception e) { e.printStackTrace(); } if (TOTAL <= 0) return -1; } return buf[INDEX++]; } public int scanInt() { int I = 0; int n = scan(); while (isWhiteSpace(n)) n = scan(); int neg = 1; if (n == '-') { neg = -1; n = scan(); } while (!isWhiteSpace(n)) { if (n >= '0' && n <= '9') { I *= 10; I += n - '0'; n = scan(); } } return neg * I; } private boolean isWhiteSpace(int n) { if (n == ' ' || n == '\n' || n == '\r' || n == '\t' || n == -1) return true; else return false; } public long scanLong() { long I = 0; int n = scan(); while (isWhiteSpace(n)) n = scan(); int neg = 1; if (n == '-') { neg = -1; n = scan(); } while (!isWhiteSpace(n)) { if (n >= '0' && n <= '9') { I *= 10; I += n - '0'; n = scan(); } } return neg * I; } } }
1334_D. Minimum Euler Cycle
You are given a complete directed graph K_n with n vertices: each pair of vertices u β‰  v in K_n have both directed edges (u, v) and (v, u); there are no self-loops. You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices). We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 β€” a visiting order, where each (v_i, v_{i + 1}) occurs exactly once. Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists. Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r. Input The first line contains the single integer T (1 ≀ T ≀ 100) β€” the number of test cases. Next T lines contain test cases β€” one per line. The first and only line of each test case contains three integers n, l and r (2 ≀ n ≀ 10^5, 1 ≀ l ≀ r ≀ n(n - 1) + 1, r - l + 1 ≀ 10^5) β€” the number of vertices in K_n, and segment of the cycle to print. It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5. Output For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once. Example Input 3 2 1 3 3 3 6 99995 9998900031 9998900031 Output 1 2 1 1 3 2 3 1 Note In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1. In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
{ "input": [ "3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n" ], "output": [ "1 2 1 \n1 3 2 3 \n1 \n" ] }
{ "input": [ "1\n2 2 3\n", "1\n4 13 13\n", "1\n3 1 1\n", "10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n", "1\n3 7 7\n", "1\n25 30 295\n", "1\n4 12 13\n", "5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n", "1\n5 4 4\n" ], "output": [ "2 1 \n", "1 \n", "1 \n", "1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n", "1 \n", "16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n", "4 1 \n", "1 \n1 \n1 \n1 \n7 1 \n", "3 \n" ] }
CORRECT
python3
def main(): for _ in inputt(): n, l, r = inputi() i = 1 l -= 1 if l == n * (n - 1): print(1) continue while l >= 2 * (n - i): l -= 2 * (n - i) r -= 2 * (n - i) i += 1 j = i + 1 + l // 2 while l < r: if l % 2: print(j, end = " ") j += 1 if j > n: i += 1 j = i + 1 elif i != n: print(i, end = " ") else: print(1, end = " ") l += 1 print() # region M # region fastio import sys, io, os BUFSIZE = 8192 class FastIO(io.IOBase): newlines = 0 def __init__(self, file): self._fd = file.fileno() self.buffer = io.BytesIO() self.writable = "x" in file.mode or "r" not in file.mode self.write = self.buffer.write if self.writable else None def read(self): while True: b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE)) if not b: break ptr = self.buffer.tell() self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr) self.newlines = 0 return self.buffer.read() def readline(self): while self.newlines == 0: b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE)) self.newlines = b.count(b"\n") + (not b) ptr = self.buffer.tell() self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr) self.newlines -= 1 return self.buffer.readline() def flush(self): if self.writable: os.write(self._fd, self.buffer.getvalue()) self.buffer.truncate(0), self.buffer.seek(0) class IOWrapper(io.IOBase): def __init__(self, file): self.buffer = FastIO(file) self.flush = self.buffer.flush self.writable = self.buffer.writable self.write = lambda s: self.buffer.write(s.encode("ascii")) self.read = lambda: self.buffer.read().decode("ascii") self.readline = lambda: self.buffer.readline().decode("ascii") def print(*args, **kwargs): for x in args: file.write(str(x)) file.write(kwargs.pop("end", "\n")) sys.stdin, sys.stdout = IOWrapper(sys.stdin), IOWrapper(sys.stdout) input = lambda: sys.stdin.readline().rstrip("\r\n") # endregion # region import inputt = lambda t = 0: range(t) if t else range(int(input())) inputi = lambda: map(int, input().split()) inputl = lambda: list(inputi()) from math import * from heapq import * from bisect import * from itertools import * from functools import reduce, lru_cache from collections import Counter, defaultdict import re, copy, operator, cmath from builtins import * # endregion # region main if __name__ == "__main__": main() # endregion # endregion
1334_D. Minimum Euler Cycle
You are given a complete directed graph K_n with n vertices: each pair of vertices u β‰  v in K_n have both directed edges (u, v) and (v, u); there are no self-loops. You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices). We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 β€” a visiting order, where each (v_i, v_{i + 1}) occurs exactly once. Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists. Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r. Input The first line contains the single integer T (1 ≀ T ≀ 100) β€” the number of test cases. Next T lines contain test cases β€” one per line. The first and only line of each test case contains three integers n, l and r (2 ≀ n ≀ 10^5, 1 ≀ l ≀ r ≀ n(n - 1) + 1, r - l + 1 ≀ 10^5) β€” the number of vertices in K_n, and segment of the cycle to print. It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5. Output For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once. Example Input 3 2 1 3 3 3 6 99995 9998900031 9998900031 Output 1 2 1 1 3 2 3 1 Note In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1. In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
{ "input": [ "3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n" ], "output": [ "1 2 1 \n1 3 2 3 \n1 \n" ] }
{ "input": [ "1\n2 2 3\n", "1\n4 13 13\n", "1\n3 1 1\n", "10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n", "1\n3 7 7\n", "1\n25 30 295\n", "1\n4 12 13\n", "5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n", "1\n5 4 4\n" ], "output": [ "2 1 \n", "1 \n", "1 \n", "1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n", "1 \n", "16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n", "4 1 \n", "1 \n1 \n1 \n1 \n7 1 \n", "3 \n" ] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; signed main() { ios::sync_with_stdio(false); cin.tie(nullptr); cout.tie(nullptr); long long t; cin >> t; while (t--) { long long n, l, r; cin >> n >> l >> r; vector<long long> lol = {0}; for (long long i = n - 1; i >= 1; i--) { lol.push_back(lol.back() + 2 * i); } for (long long x = l; x <= r; x++) { if (x == n * (n - 1) + 1) { cout << 1 << ' '; } else { long long block = (long long)(lower_bound(lol.begin(), lol.end(), x) - lol.begin()); if (x % 2 == 1) { cout << block << ' '; } else { long long h = x - lol[block - 1]; cout << h / 2 + block << ' '; } } } cout << '\n'; } }
1334_D. Minimum Euler Cycle
You are given a complete directed graph K_n with n vertices: each pair of vertices u β‰  v in K_n have both directed edges (u, v) and (v, u); there are no self-loops. You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices). We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 β€” a visiting order, where each (v_i, v_{i + 1}) occurs exactly once. Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists. Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r. Input The first line contains the single integer T (1 ≀ T ≀ 100) β€” the number of test cases. Next T lines contain test cases β€” one per line. The first and only line of each test case contains three integers n, l and r (2 ≀ n ≀ 10^5, 1 ≀ l ≀ r ≀ n(n - 1) + 1, r - l + 1 ≀ 10^5) β€” the number of vertices in K_n, and segment of the cycle to print. It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5. Output For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once. Example Input 3 2 1 3 3 3 6 99995 9998900031 9998900031 Output 1 2 1 1 3 2 3 1 Note In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1. In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
{ "input": [ "3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n" ], "output": [ "1 2 1 \n1 3 2 3 \n1 \n" ] }
{ "input": [ "1\n2 2 3\n", "1\n4 13 13\n", "1\n3 1 1\n", "10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n", "1\n3 7 7\n", "1\n25 30 295\n", "1\n4 12 13\n", "5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n", "1\n5 4 4\n" ], "output": [ "2 1 \n", "1 \n", "1 \n", "1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n", "1 \n", "16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n", "4 1 \n", "1 \n1 \n1 \n1 \n7 1 \n", "3 \n" ] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int cas, z, x, w, h, a[500000]; long long n, m; int main() { scanf("%d", &cas); while (cas--) { scanf("%d%lld%lld", &z, &n, &m); x = 1; while (n > (z - x) * 2) { if (x == z) { m = 0; printf("1"); break; } n -= (z - x) * 2; m -= (z - x) * 2; x++; } for (int i = 1; i <= z - x; i++) a[i * 2 - 1] = x, a[i * 2] = x + i; if (m <= (z - x) * 2) { for (int i = n; i <= m; i++) printf("%d ", a[i]); } else { for (int i = n; i <= (z - x) * 2; i++) printf("%d ", a[i]); m -= (z - x) * 2; x++; while (m && (z != x)) { for (int i = 1; i <= z - x; i++) a[i * 2 - 1] = x, a[i * 2] = x + i; if (m <= (z - x) * 2) { for (int i = 1; i <= m; i++) printf("%d ", a[i]); m = 0; } else { for (int i = 1; i <= (z - x) * 2; i++) printf("%d ", a[i]); m -= (z - x) * 2; x++; } } if (m) printf("1"); } printf("\n"); } return 0; }
1334_D. Minimum Euler Cycle
You are given a complete directed graph K_n with n vertices: each pair of vertices u β‰  v in K_n have both directed edges (u, v) and (v, u); there are no self-loops. You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices). We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 β€” a visiting order, where each (v_i, v_{i + 1}) occurs exactly once. Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists. Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r. Input The first line contains the single integer T (1 ≀ T ≀ 100) β€” the number of test cases. Next T lines contain test cases β€” one per line. The first and only line of each test case contains three integers n, l and r (2 ≀ n ≀ 10^5, 1 ≀ l ≀ r ≀ n(n - 1) + 1, r - l + 1 ≀ 10^5) β€” the number of vertices in K_n, and segment of the cycle to print. It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5. Output For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once. Example Input 3 2 1 3 3 3 6 99995 9998900031 9998900031 Output 1 2 1 1 3 2 3 1 Note In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1. In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
{ "input": [ "3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n" ], "output": [ "1 2 1 \n1 3 2 3 \n1 \n" ] }
{ "input": [ "1\n2 2 3\n", "1\n4 13 13\n", "1\n3 1 1\n", "10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n", "1\n3 7 7\n", "1\n25 30 295\n", "1\n4 12 13\n", "5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n", "1\n5 4 4\n" ], "output": [ "2 1 \n", "1 \n", "1 \n", "1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n", "1 \n", "16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n", "4 1 \n", "1 \n1 \n1 \n1 \n7 1 \n", "3 \n" ] }
CORRECT
java
import java.io.BufferedReader; import java.io.FileNotFoundException; import java.io.FileReader; import java.io.IOException; import java.io.InputStream; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.StringTokenizer; import java.util.TreeSet; public class COVID { public static void main(String[] args) throws Exception { Scanner sc = new Scanner(System.in); PrintWriter pw =new PrintWriter(System.out); int t= sc.nextInt(); a: while(t-->0) { int n= sc.nextInt(); long l=sc.nextLong(); long r= sc.nextLong(); long c=0; int nc=1; StringBuilder sb= new StringBuilder(); int i; for( i=1;i<n;i++) { if(2*(n-i)>=l)break; l-=2*(n-i); r-=2*(n-i); } all:for(;i<n;i++) { for(int j=i+1;j<=n;j++) { c++; if(c>=l&&c<=r) { sb.append(i+" "); } c++; if(c>=l&&c<=r) sb.append(j+" "); if(c>r)break all; } } c++; if(c>=l&&c<=r) sb.append("1 "); l--; pw.println(sb.toString()); } pw.flush(); } static long maximumSum(long[] a, long m) { long sum=0; long acc[] =new long[a.length]; for(int i=0;i<a.length;i++) acc[i]=(int)((a[i]%m + ((i!=0)?acc[i-1]:0))%m); TreeSet<Long> set= new TreeSet(); long min=m; for(int i=0;i<acc.length;i++) { set.add(acc[i]); Long upper=set.ceiling(acc[i]+1); if(upper==null) continue; min=Math.min(min, upper-acc[i]); } return((m-min)); } static class Pair implements Comparable<Pair>{ long x;int y,z; public Pair(long a,int b, int c) { this.x=a;y=b;this.z=c; } public int compareTo(Pair o) { //return (this.x==o.x)?(this.y==o.y)?z-o.z:this.y-o.y:this.x-o.x; return this.x>o.x?1:(this.x<o.x)?-1:0; } } static class Scanner { StringTokenizer st; BufferedReader br; public Scanner(InputStream s) { br = new BufferedReader(new InputStreamReader(s)); } public Scanner(String s) throws FileNotFoundException{ br = new BufferedReader(new FileReader(s));} public String next() throws IOException { while (st == null || !st.hasMoreTokens()) st = new StringTokenizer(br.readLine()," ,"); return st.nextToken(); } public int nextInt() throws IOException { return Integer.parseInt(next()); } public long nextLong() throws IOException { return Long.parseLong(next()); } public String nextLine() throws IOException { return br.readLine(); } public double nextDouble() throws IOException { String x = next(); StringBuilder sb = new StringBuilder("0"); double res = 0, f = 1; boolean dec = false, neg = false; int start = 0; if (x.charAt(0) == '-') { neg = true; start++; } for (int i = start; i < x.length(); i++) { if (x.charAt(i) == '.') { res = Long.parseLong(sb.toString()); sb = new StringBuilder("0"); dec = true; } else { sb.append(x.charAt(i)); if (dec) f *= 10; } if (sb.length() == 18) { res += Long.parseLong(sb.toString()) / f; sb = new StringBuilder("0"); } } res += Long.parseLong(sb.toString()) / f; return res * (neg ? -1 : 1); } public boolean ready() throws IOException { return br.ready(); } } public static void shuffle(int[] a) { int n = a.length; for (int i = 0; i < n; i++) { int r = i + (int) (Math.random() * (n - i)); int tmp = a[i]; a[i] = a[r]; a[r] = tmp; } } }
1334_D. Minimum Euler Cycle
You are given a complete directed graph K_n with n vertices: each pair of vertices u β‰  v in K_n have both directed edges (u, v) and (v, u); there are no self-loops. You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices). We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 β€” a visiting order, where each (v_i, v_{i + 1}) occurs exactly once. Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists. Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r. Input The first line contains the single integer T (1 ≀ T ≀ 100) β€” the number of test cases. Next T lines contain test cases β€” one per line. The first and only line of each test case contains three integers n, l and r (2 ≀ n ≀ 10^5, 1 ≀ l ≀ r ≀ n(n - 1) + 1, r - l + 1 ≀ 10^5) β€” the number of vertices in K_n, and segment of the cycle to print. It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5. Output For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once. Example Input 3 2 1 3 3 3 6 99995 9998900031 9998900031 Output 1 2 1 1 3 2 3 1 Note In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1. In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
{ "input": [ "3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n" ], "output": [ "1 2 1 \n1 3 2 3 \n1 \n" ] }
{ "input": [ "1\n2 2 3\n", "1\n4 13 13\n", "1\n3 1 1\n", "10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n", "1\n3 7 7\n", "1\n25 30 295\n", "1\n4 12 13\n", "5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n", "1\n5 4 4\n" ], "output": [ "2 1 \n", "1 \n", "1 \n", "1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n", "1 \n", "16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n", "4 1 \n", "1 \n1 \n1 \n1 \n7 1 \n", "3 \n" ] }
CORRECT
java
// package codeforces; /Users/attilaj/IdeaProjects/Codejam/src/codeforces/D1334.java import java.util.Scanner; public class D1334 { public static void main(String[] args) { Scanner sc = new Scanner(System.in); int tt = Integer.parseInt(sc.nextLine()); for (int t = 1; t <= tt; t++) { String[] line = sc.nextLine().split(" "); int n = Integer.parseInt(line[0]); long l = Long.parseLong(line[1]); long r = Long.parseLong(line[2]); StringBuilder sb = new StringBuilder(); fill2(sb, n, 1, l - 1, r - 1); System.out.println(sb.toString().substring(1)); } } private static boolean fill(StringBuilder sb, int n, int add, long l, long r) { if (r < 0) { return true; } else if (n == 1) { sb.append(' ').append(1); return true; } else if (l >= (n - 1) * 2) { return fill(sb, n - 1, add + 1, l - (n - 1) * 2, r - (n - 1) * 2); } else if (l < (n - 1) * 2) { if (l % 2 == 1) { sb.append(' ').append((l + 3) / 2 + add - 1); l++; } long ll = l; for (long i = l / 2; i <= r / 2 && i < n - 1; i++) { sb.append(' ').append(add); ll++; if (i * 2 + 1 <= r) { sb.append(' ').append(i + add + 1); ll++; } } l = ll; return fill(sb, n - 1, add + 1, 0, r - l); } else { throw new IllegalStateException("??"); } } private static void fill2(StringBuilder sb, int n, int add, long l, long r) { while (r >= 0) { if (n == 1) { sb.append(' ').append(1); break; } else if (l >= (n - 1) * 2) { add++; l -= (n - 1) * 2; r -= (n - 1) * 2; n--; } else { if (l % 2 == 1) { sb.append(' ').append((l + 3) / 2 + add - 1); l++; } long ll = l; for (long i = l / 2; i <= r / 2 && i < n - 1; i++) { sb.append(' ').append(add); ll++; if (i * 2 + 1 <= r) { sb.append(' ').append(i + add + 1); ll++; } } n--; add++; r -= ll; l = 0; } } } } // n*(n-1)+1 // 2-->3 // 3-->7 // 4-->13 // 5-->21 // 1 2 1 3 2 3 1 4+2+1 // 1 2 1 3 1 4 2 3 2 4 3 4 1 6+4+2+1 // 1 2 1 3 1 4 1 5 2 3 2 4 2 5 3 4 3 5 4 5 1 8+6+4+2+1 // (n-1)*2 (n-2)*2 // 1 2 // 3 4
1334_D. Minimum Euler Cycle
You are given a complete directed graph K_n with n vertices: each pair of vertices u β‰  v in K_n have both directed edges (u, v) and (v, u); there are no self-loops. You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices). We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 β€” a visiting order, where each (v_i, v_{i + 1}) occurs exactly once. Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists. Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r. Input The first line contains the single integer T (1 ≀ T ≀ 100) β€” the number of test cases. Next T lines contain test cases β€” one per line. The first and only line of each test case contains three integers n, l and r (2 ≀ n ≀ 10^5, 1 ≀ l ≀ r ≀ n(n - 1) + 1, r - l + 1 ≀ 10^5) β€” the number of vertices in K_n, and segment of the cycle to print. It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5. Output For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once. Example Input 3 2 1 3 3 3 6 99995 9998900031 9998900031 Output 1 2 1 1 3 2 3 1 Note In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1. In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
{ "input": [ "3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n" ], "output": [ "1 2 1 \n1 3 2 3 \n1 \n" ] }
{ "input": [ "1\n2 2 3\n", "1\n4 13 13\n", "1\n3 1 1\n", "10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n", "1\n3 7 7\n", "1\n25 30 295\n", "1\n4 12 13\n", "5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n", "1\n5 4 4\n" ], "output": [ "2 1 \n", "1 \n", "1 \n", "1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n", "1 \n", "16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n", "4 1 \n", "1 \n1 \n1 \n1 \n7 1 \n", "3 \n" ] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace ::std; const long double PI = acos(-1); const long long MOD = 1000000000 + 7; long long gcd(long long a, long long b) { return b == 0 ? a : gcd(b, a % b); } long long add(long long a, long long b, long long m = MOD) { if (a >= m) a %= m; if (b >= m) b %= m; if (a < 0) a += m; if (b < 0) b += m; long long res = a + b; if (res >= m or res <= -m) res %= m; if (res < 0) res += m; return res; } long long mul(long long a, long long b, long long m = MOD) { if (a >= m) a %= m; if (b >= m) b %= m; if (a < 0) a += m; if (b < 0) b += m; long long res = a * b; if (res >= m or res <= -m) res %= m; if (res < 0) res += m; return res; } long long pow_mod(long long a, long long b, long long m = MOD) { long long res = 1LL; a = a % m; while (b) { if (b & 1) res = mul(res, a, m); b >>= 1; a = mul(a, a, m); } return res; } long long fastexp(long long a, long long b) { long long res = 1LL; while (b) { if (b & 1) res = res * a; b >>= 1; a *= a; } return res; } int gcdExtendido(int a, int b, int *x, int *y) { if (a == 0) { *x = 0; *y = 1; return b; } int x1, y1; int gcd = gcdExtendido(b % a, a, &x1, &y1); *x = y1 - (b / a) * x1; *y = x1; return gcd; } int modInverso(int a, int m) { int x, y; int g = gcdExtendido(a, m, &x, &y); if (g != 1) return -1; else return (x % m + m) % m; } const int N = 100000 + 5; int n; long long l, r; int ans[N]; long long f(int x) { return 2LL * n * x - 1LL * x * (x + 1); } int main() { int t; scanf("%d", &(t)); while (t--) { scanf("%d", &(n)); scanf("%lld %lld", &(l), &(r)); int len = r - l + 1; if (r == 1LL * n * (n - 1) + 1) { ans[r - l] = 1; r -= 1; } int lo = 1, hi = n; while (lo < hi) { int mi = lo + (hi - lo) / 2; if (f(mi) < l) lo = mi + 1; else hi = mi; } l -= f(lo - 1); r -= f(lo - 1); int pos = 0; int x = lo; int y = lo + (l + 1) / 2; bool goX = l & 1; for (int i = l; i <= r; i++) { if (goX) { ans[pos++] = x; } else { ans[pos++] = y; y += 1; } if (y == n + 1) { x += 1; y = x + 1; } goX = !goX; } for (int i = 0; i < len; i++) { printf("%d%c", ans[i], " \n"[i + 1 == len]); } } return 0; }
1334_D. Minimum Euler Cycle
You are given a complete directed graph K_n with n vertices: each pair of vertices u β‰  v in K_n have both directed edges (u, v) and (v, u); there are no self-loops. You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices). We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 β€” a visiting order, where each (v_i, v_{i + 1}) occurs exactly once. Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists. Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r. Input The first line contains the single integer T (1 ≀ T ≀ 100) β€” the number of test cases. Next T lines contain test cases β€” one per line. The first and only line of each test case contains three integers n, l and r (2 ≀ n ≀ 10^5, 1 ≀ l ≀ r ≀ n(n - 1) + 1, r - l + 1 ≀ 10^5) β€” the number of vertices in K_n, and segment of the cycle to print. It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5. Output For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once. Example Input 3 2 1 3 3 3 6 99995 9998900031 9998900031 Output 1 2 1 1 3 2 3 1 Note In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1. In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
{ "input": [ "3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n" ], "output": [ "1 2 1 \n1 3 2 3 \n1 \n" ] }
{ "input": [ "1\n2 2 3\n", "1\n4 13 13\n", "1\n3 1 1\n", "10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n", "1\n3 7 7\n", "1\n25 30 295\n", "1\n4 12 13\n", "5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n", "1\n5 4 4\n" ], "output": [ "2 1 \n", "1 \n", "1 \n", "1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n", "1 \n", "16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n", "4 1 \n", "1 \n1 \n1 \n1 \n7 1 \n", "3 \n" ] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { long long t; cin >> t; long long cur = 0; while (t--) { cur = 0; long long n, l, r; cin >> n >> l >> r; for (int i = 1; i <= n; i++) { if (cur + 2 * (n - i) < l) cur += 2 * (n - i); else { while (l <= r && i <= n && l <= cur + 2 * (n - i)) { if (l % 2) cout << i << " "; else cout << (l - cur) / 2 + i << " "; l++; } cur += 2 * (n - i); } } if (r - l == 0) cout << "1"; cout << endl; } }
1334_D. Minimum Euler Cycle
You are given a complete directed graph K_n with n vertices: each pair of vertices u β‰  v in K_n have both directed edges (u, v) and (v, u); there are no self-loops. You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices). We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 β€” a visiting order, where each (v_i, v_{i + 1}) occurs exactly once. Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists. Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r. Input The first line contains the single integer T (1 ≀ T ≀ 100) β€” the number of test cases. Next T lines contain test cases β€” one per line. The first and only line of each test case contains three integers n, l and r (2 ≀ n ≀ 10^5, 1 ≀ l ≀ r ≀ n(n - 1) + 1, r - l + 1 ≀ 10^5) β€” the number of vertices in K_n, and segment of the cycle to print. It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5. Output For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once. Example Input 3 2 1 3 3 3 6 99995 9998900031 9998900031 Output 1 2 1 1 3 2 3 1 Note In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1. In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
{ "input": [ "3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n" ], "output": [ "1 2 1 \n1 3 2 3 \n1 \n" ] }
{ "input": [ "1\n2 2 3\n", "1\n4 13 13\n", "1\n3 1 1\n", "10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n", "1\n3 7 7\n", "1\n25 30 295\n", "1\n4 12 13\n", "5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n", "1\n5 4 4\n" ], "output": [ "2 1 \n", "1 \n", "1 \n", "1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n", "1 \n", "16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n", "4 1 \n", "1 \n1 \n1 \n1 \n7 1 \n", "3 \n" ] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int T; int n; long long l, r; void out(long long sum, int now, int num, long long i) { if (now == n) { if (i != l) printf(" "); printf("1"); return; } for (i; i <= min(sum + num - 1, r); i++) { int N; if ((i - sum + 1) % 2) N = now; else N = now + (i - sum + 1) / 2; if (i == l) { printf("%d", N); } else printf(" %d", N); } } int main() { scanf("%d", &T); while (T--) { long long sum = 1; scanf("%d%lld%lld", &n, &l, &r); long long now = 1, num = (n - now) * 2; for (now = 1; now <= n; now++) { num = num = (n - now) * 2; num = max(num, 1 * 1ll); if (sum <= l && l <= sum + num) { out(sum, now, num, l); } else if (l <= sum && sum + num <= r) { out(sum, now, num, sum); } else if (sum <= r && r <= sum + num) { out(sum, now, num, sum); break; } sum += num; } printf("\n"); } }
1334_D. Minimum Euler Cycle
You are given a complete directed graph K_n with n vertices: each pair of vertices u β‰  v in K_n have both directed edges (u, v) and (v, u); there are no self-loops. You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices). We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 β€” a visiting order, where each (v_i, v_{i + 1}) occurs exactly once. Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists. Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r. Input The first line contains the single integer T (1 ≀ T ≀ 100) β€” the number of test cases. Next T lines contain test cases β€” one per line. The first and only line of each test case contains three integers n, l and r (2 ≀ n ≀ 10^5, 1 ≀ l ≀ r ≀ n(n - 1) + 1, r - l + 1 ≀ 10^5) β€” the number of vertices in K_n, and segment of the cycle to print. It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5. Output For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once. Example Input 3 2 1 3 3 3 6 99995 9998900031 9998900031 Output 1 2 1 1 3 2 3 1 Note In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1. In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
{ "input": [ "3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n" ], "output": [ "1 2 1 \n1 3 2 3 \n1 \n" ] }
{ "input": [ "1\n2 2 3\n", "1\n4 13 13\n", "1\n3 1 1\n", "10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n", "1\n3 7 7\n", "1\n25 30 295\n", "1\n4 12 13\n", "5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n", "1\n5 4 4\n" ], "output": [ "2 1 \n", "1 \n", "1 \n", "1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n", "1 \n", "16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n", "4 1 \n", "1 \n1 \n1 \n1 \n7 1 \n", "3 \n" ] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int t; cin >> t; while (t--) { long long int n, l, r; cin >> n >> l >> r; long long int sum = 0; long long int start = 1; int done = 0; while (sum < l) { sum += 2 * (n - start); start++; if (start > n) { cout << 1 << " " << endl; done = 1; break; } } if (done) continue; start--; sum -= 2 * (n - start); long long int next = start + 1; long long int cur = 0; for (long long int i = sum + 1; i <= r; i++) { if (i < l) { if (i % 2 == 0) next++; } else { if (i % 2 == 1) cout << start << " "; else { cout << next << " "; next++; } } cur++; if (cur == 2 * (n - start)) { cur = 0; start = start + 1; next = start + 1; if (start == n) start = 1; } } cout << endl; } }
1334_D. Minimum Euler Cycle
You are given a complete directed graph K_n with n vertices: each pair of vertices u β‰  v in K_n have both directed edges (u, v) and (v, u); there are no self-loops. You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices). We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 β€” a visiting order, where each (v_i, v_{i + 1}) occurs exactly once. Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists. Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r. Input The first line contains the single integer T (1 ≀ T ≀ 100) β€” the number of test cases. Next T lines contain test cases β€” one per line. The first and only line of each test case contains three integers n, l and r (2 ≀ n ≀ 10^5, 1 ≀ l ≀ r ≀ n(n - 1) + 1, r - l + 1 ≀ 10^5) β€” the number of vertices in K_n, and segment of the cycle to print. It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5. Output For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once. Example Input 3 2 1 3 3 3 6 99995 9998900031 9998900031 Output 1 2 1 1 3 2 3 1 Note In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1. In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
{ "input": [ "3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n" ], "output": [ "1 2 1 \n1 3 2 3 \n1 \n" ] }
{ "input": [ "1\n2 2 3\n", "1\n4 13 13\n", "1\n3 1 1\n", "10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n", "1\n3 7 7\n", "1\n25 30 295\n", "1\n4 12 13\n", "5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n", "1\n5 4 4\n" ], "output": [ "2 1 \n", "1 \n", "1 \n", "1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n", "1 \n", "16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n", "4 1 \n", "1 \n1 \n1 \n1 \n7 1 \n", "3 \n" ] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { ios_base::sync_with_stdio(0); size_t T; cin >> T; while (T--) { long long int n, l, r; cin >> n >> l >> r; long long int t = 1; long long int k = 1; while (k < l && t != n) { k += 2 * (n - t++); } if (k > l) { k -= 2 * (n - --t); } if (t == n) { cout << 1 << endl; continue; } long long int difference = l - k; long long int c = difference / 2 + t + 1; if (difference % 2 == 0) { long long int current = l; while (current <= r) { cout << t << " "; ++current; if (current <= r) { cout << c++ << " "; ++current; if (c > n) { c = ++t + 1; if (t == n) { if (current <= r) cout << 1; break; } } } } } else { cout << c << " "; ++l; difference = l - k; c = difference / 2 + t + 1; if (c > n) { c = ++t + 1; if (t == n) { cout << 1 << endl; break; } } long long int current = l; while (current <= r) { cout << t << " "; ++current; if (current <= r) { cout << c++ << " "; ++current; if (c > n) { ++t; c = t + 1; if (t == n) { if (current <= r) cout << 1; break; } } } } } cout << endl; } }
1334_D. Minimum Euler Cycle
You are given a complete directed graph K_n with n vertices: each pair of vertices u β‰  v in K_n have both directed edges (u, v) and (v, u); there are no self-loops. You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices). We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 β€” a visiting order, where each (v_i, v_{i + 1}) occurs exactly once. Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists. Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r. Input The first line contains the single integer T (1 ≀ T ≀ 100) β€” the number of test cases. Next T lines contain test cases β€” one per line. The first and only line of each test case contains three integers n, l and r (2 ≀ n ≀ 10^5, 1 ≀ l ≀ r ≀ n(n - 1) + 1, r - l + 1 ≀ 10^5) β€” the number of vertices in K_n, and segment of the cycle to print. It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5. Output For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once. Example Input 3 2 1 3 3 3 6 99995 9998900031 9998900031 Output 1 2 1 1 3 2 3 1 Note In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1. In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
{ "input": [ "3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n" ], "output": [ "1 2 1 \n1 3 2 3 \n1 \n" ] }
{ "input": [ "1\n2 2 3\n", "1\n4 13 13\n", "1\n3 1 1\n", "10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n", "1\n3 7 7\n", "1\n25 30 295\n", "1\n4 12 13\n", "5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n", "1\n5 4 4\n" ], "output": [ "2 1 \n", "1 \n", "1 \n", "1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n", "1 \n", "16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n", "4 1 \n", "1 \n1 \n1 \n1 \n7 1 \n", "3 \n" ] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; void yes() { cout << "YES" << endl; } void no() { cout << "NO" << endl; } void solve(int qq) { long long n; cin >> n; long long l, r; cin >> l >> r; long long cnt = 0; long long odd = 0; long long start = 0; if (l == n * (n - 1) + 1) { cout << 1 << endl; return; } for (long long i = 1; i < n; i++) { cnt += (n - i) * 2; if (l <= cnt) { odd = i; start = cnt - (n - i) * 2 + 1; break; } } long long even = odd + ((l - start) / 2 + 1); for (long long i = l; i <= r; i++) { if (i % 2 == 0) { cout << even << " "; even++; if (even > n) { odd++; even = odd + 1; if (odd == n) { odd = 1; } } } else { cout << odd << " "; } } cout << endl; } int main() { ios_base::sync_with_stdio(0); cin.tie(0); int t; cin >> t; for (int i = 1; i <= t; i++) { solve(i); } return 0; }
1334_D. Minimum Euler Cycle
You are given a complete directed graph K_n with n vertices: each pair of vertices u β‰  v in K_n have both directed edges (u, v) and (v, u); there are no self-loops. You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices). We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 β€” a visiting order, where each (v_i, v_{i + 1}) occurs exactly once. Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists. Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r. Input The first line contains the single integer T (1 ≀ T ≀ 100) β€” the number of test cases. Next T lines contain test cases β€” one per line. The first and only line of each test case contains three integers n, l and r (2 ≀ n ≀ 10^5, 1 ≀ l ≀ r ≀ n(n - 1) + 1, r - l + 1 ≀ 10^5) β€” the number of vertices in K_n, and segment of the cycle to print. It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5. Output For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once. Example Input 3 2 1 3 3 3 6 99995 9998900031 9998900031 Output 1 2 1 1 3 2 3 1 Note In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1. In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
{ "input": [ "3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n" ], "output": [ "1 2 1 \n1 3 2 3 \n1 \n" ] }
{ "input": [ "1\n2 2 3\n", "1\n4 13 13\n", "1\n3 1 1\n", "10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n", "1\n3 7 7\n", "1\n25 30 295\n", "1\n4 12 13\n", "5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n", "1\n5 4 4\n" ], "output": [ "2 1 \n", "1 \n", "1 \n", "1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n", "1 \n", "16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n", "4 1 \n", "1 \n1 \n1 \n1 \n7 1 \n", "3 \n" ] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { std::ios::sync_with_stdio(false); cin.tie(0); int t; cin >> t; for (int tc = 0; tc < (t); tc += 1) { long long n, l, r; cin >> n >> l >> r; l--; bool last1 = false; if (r == n * (n - 1) + 1) { last1 = true; r--; if (r == l) { cout << "1\n"; continue; } } long long i = 1; long long ptr = 0; while (ptr + (n - i) * 2 <= l) { ptr += (n - i) * 2; i++; } long long j = i; j += (l - ptr) / 2; if (l % 2 == 1) { cout << j + 1 << " "; j++; l++; } if (j != n) { j++; } else { i++; j = i + 1; } while (r > l) { if (r - l == 1) { cout << i << " "; break; } cout << i << " " << j << " "; if (j != n) { j++; } else { i++; j = i + 1; } r -= 2; } if (last1) cout << "1"; cout << "\n"; } }
1334_D. Minimum Euler Cycle
You are given a complete directed graph K_n with n vertices: each pair of vertices u β‰  v in K_n have both directed edges (u, v) and (v, u); there are no self-loops. You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices). We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 β€” a visiting order, where each (v_i, v_{i + 1}) occurs exactly once. Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists. Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r. Input The first line contains the single integer T (1 ≀ T ≀ 100) β€” the number of test cases. Next T lines contain test cases β€” one per line. The first and only line of each test case contains three integers n, l and r (2 ≀ n ≀ 10^5, 1 ≀ l ≀ r ≀ n(n - 1) + 1, r - l + 1 ≀ 10^5) β€” the number of vertices in K_n, and segment of the cycle to print. It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5. Output For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once. Example Input 3 2 1 3 3 3 6 99995 9998900031 9998900031 Output 1 2 1 1 3 2 3 1 Note In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1. In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
{ "input": [ "3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n" ], "output": [ "1 2 1 \n1 3 2 3 \n1 \n" ] }
{ "input": [ "1\n2 2 3\n", "1\n4 13 13\n", "1\n3 1 1\n", "10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n", "1\n3 7 7\n", "1\n25 30 295\n", "1\n4 12 13\n", "5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n", "1\n5 4 4\n" ], "output": [ "2 1 \n", "1 \n", "1 \n", "1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n", "1 \n", "16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n", "4 1 \n", "1 \n1 \n1 \n1 \n7 1 \n", "3 \n" ] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; long long T, t, n, N, l, L, R; vector<int> v; pair<int, int> calcL() { for (n = l = 0; n < N; n++) { if ((l + (N - (n + 1))) > (L / 2)) break; l += (N - (n + 1)); } return pair<int, int>(n, 1 + n + (int)((L / 2) - l)); } void fill() { v.clear(); pair<int, int> curr = calcL(); for (n = L; n <= R; n++) { if (curr.first >= (N - 1)) { curr.first = 0; } if (curr.second >= N) { curr.second = 0; } if (n & 1) { v.push_back(curr.second); if (curr.second == (N - 1)) { curr = pair<int, int>((curr.first + 1), (curr.first + 2)); } else curr.second++; } else v.push_back(curr.first); } } int main() { cin >> T; for (t = 0; t < T; t++) { cin >> N >> L >> R; L--; R--; fill(); for (n = 0; n <= (R - L); n++) { printf("%d ", 1 + v[n]); } printf("\n"); } return 0; }
1334_D. Minimum Euler Cycle
You are given a complete directed graph K_n with n vertices: each pair of vertices u β‰  v in K_n have both directed edges (u, v) and (v, u); there are no self-loops. You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices). We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 β€” a visiting order, where each (v_i, v_{i + 1}) occurs exactly once. Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists. Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r. Input The first line contains the single integer T (1 ≀ T ≀ 100) β€” the number of test cases. Next T lines contain test cases β€” one per line. The first and only line of each test case contains three integers n, l and r (2 ≀ n ≀ 10^5, 1 ≀ l ≀ r ≀ n(n - 1) + 1, r - l + 1 ≀ 10^5) β€” the number of vertices in K_n, and segment of the cycle to print. It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5. Output For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once. Example Input 3 2 1 3 3 3 6 99995 9998900031 9998900031 Output 1 2 1 1 3 2 3 1 Note In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1. In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
{ "input": [ "3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n" ], "output": [ "1 2 1 \n1 3 2 3 \n1 \n" ] }
{ "input": [ "1\n2 2 3\n", "1\n4 13 13\n", "1\n3 1 1\n", "10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n", "1\n3 7 7\n", "1\n25 30 295\n", "1\n4 12 13\n", "5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n", "1\n5 4 4\n" ], "output": [ "2 1 \n", "1 \n", "1 \n", "1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n", "1 \n", "16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n", "4 1 \n", "1 \n1 \n1 \n1 \n7 1 \n", "3 \n" ] }
CORRECT
python3
# by the authority of GOD author: manhar singh sachdev # import os,sys from io import BytesIO, IOBase def solve(n,l,r): fir,st = 0,1 while st < n: x = 2*(n-st) if fir+x >= l: break fir += x st += 1 if st == n: return [1] ans = [] for z in range(st+1,n+1): ans.append(st) ans.append(z) st += 1 while len(ans) < r-fir: if st == n: ans.append(1) else: for z in range(st+1,n+1): ans.append(st) ans.append(z) st += 1 return ans[l-fir-1:r-fir] def main(): for _ in range(int(input())): n,l,r = map(int,input().split()) print(*solve(n,l,r)) # Fast IO Region BUFSIZE = 8192 class FastIO(IOBase): newlines = 0 def __init__(self, file): self._fd = file.fileno() self.buffer = BytesIO() self.writable = "x" in file.mode or "r" not in file.mode self.write = self.buffer.write if self.writable else None def read(self): while True: b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE)) if not b: break ptr = self.buffer.tell() self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr) self.newlines = 0 return self.buffer.read() def readline(self): while self.newlines == 0: b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE)) self.newlines = b.count(b"\n") + (not b) ptr = self.buffer.tell() self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr) self.newlines -= 1 return self.buffer.readline() def flush(self): if self.writable: os.write(self._fd, self.buffer.getvalue()) self.buffer.truncate(0), self.buffer.seek(0) class IOWrapper(IOBase): def __init__(self, file): self.buffer = FastIO(file) self.flush = self.buffer.flush self.writable = self.buffer.writable self.write = lambda s: self.buffer.write(s.encode("ascii")) self.read = lambda: self.buffer.read().decode("ascii") self.readline = lambda: self.buffer.readline().decode("ascii") sys.stdin, sys.stdout = IOWrapper(sys.stdin), IOWrapper(sys.stdout) input = lambda: sys.stdin.readline().rstrip("\r\n") if __name__ == "__main__": main()
1334_D. Minimum Euler Cycle
You are given a complete directed graph K_n with n vertices: each pair of vertices u β‰  v in K_n have both directed edges (u, v) and (v, u); there are no self-loops. You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices). We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 β€” a visiting order, where each (v_i, v_{i + 1}) occurs exactly once. Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists. Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r. Input The first line contains the single integer T (1 ≀ T ≀ 100) β€” the number of test cases. Next T lines contain test cases β€” one per line. The first and only line of each test case contains three integers n, l and r (2 ≀ n ≀ 10^5, 1 ≀ l ≀ r ≀ n(n - 1) + 1, r - l + 1 ≀ 10^5) β€” the number of vertices in K_n, and segment of the cycle to print. It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5. Output For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once. Example Input 3 2 1 3 3 3 6 99995 9998900031 9998900031 Output 1 2 1 1 3 2 3 1 Note In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1. In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
{ "input": [ "3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n" ], "output": [ "1 2 1 \n1 3 2 3 \n1 \n" ] }
{ "input": [ "1\n2 2 3\n", "1\n4 13 13\n", "1\n3 1 1\n", "10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n", "1\n3 7 7\n", "1\n25 30 295\n", "1\n4 12 13\n", "5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n", "1\n5 4 4\n" ], "output": [ "2 1 \n", "1 \n", "1 \n", "1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n", "1 \n", "16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n", "4 1 \n", "1 \n1 \n1 \n1 \n7 1 \n", "3 \n" ] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; long long n, l, r; int Go() { scanf("%lld %lld %lld", &n, &l, &r); long long len = r - l + 1; long long x = n; long long y = 0; long long start = 0; while (1) { y += 2 * (x - 1); x--; start++; if (x <= 0 || y >= l) break; } long long k = y - 2 * x; long long d = (l - k + 1) / 2; long long add = start + d; vector<long long> Ans; long long count = 0; if (l % 2 == 0) { Ans.push_back(add++); count++; } while (count < len) { if (add == n + 1) { start++; add = start + 1; } Ans.push_back(start); count++; if (count == len) break; Ans.push_back(add); count++; add++; } if (r == n * (n - 1) + 1) { Ans.pop_back(); Ans.push_back(1); } for (int i = 0; i < Ans.size(); ++i) printf("%lld ", Ans[i]); puts(""); return 0; } int main() { int t; if (1) scanf("%d", &t); else t = 1; while (t--) Go(); }
1334_D. Minimum Euler Cycle
You are given a complete directed graph K_n with n vertices: each pair of vertices u β‰  v in K_n have both directed edges (u, v) and (v, u); there are no self-loops. You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices). We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 β€” a visiting order, where each (v_i, v_{i + 1}) occurs exactly once. Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists. Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r. Input The first line contains the single integer T (1 ≀ T ≀ 100) β€” the number of test cases. Next T lines contain test cases β€” one per line. The first and only line of each test case contains three integers n, l and r (2 ≀ n ≀ 10^5, 1 ≀ l ≀ r ≀ n(n - 1) + 1, r - l + 1 ≀ 10^5) β€” the number of vertices in K_n, and segment of the cycle to print. It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5. Output For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once. Example Input 3 2 1 3 3 3 6 99995 9998900031 9998900031 Output 1 2 1 1 3 2 3 1 Note In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1. In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
{ "input": [ "3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n" ], "output": [ "1 2 1 \n1 3 2 3 \n1 \n" ] }
{ "input": [ "1\n2 2 3\n", "1\n4 13 13\n", "1\n3 1 1\n", "10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n", "1\n3 7 7\n", "1\n25 30 295\n", "1\n4 12 13\n", "5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n", "1\n5 4 4\n" ], "output": [ "2 1 \n", "1 \n", "1 \n", "1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n", "1 \n", "16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n", "4 1 \n", "1 \n1 \n1 \n1 \n7 1 \n", "3 \n" ] }
CORRECT
python3
import sys import math input = sys.stdin.readline from functools import cmp_to_key; def pi(): return(int(input())) def pl(): return(int(input(), 16)) def ti(): return(list(map(int,input().split()))) def ts(): s = input() return(list(s[:len(s) - 1])) def invr(): return(map(int,input().split())) mod = 1000000007; f = []; def fact(n,m): global f; f = [1 for i in range(n+1)]; f[0] = 1; for i in range(1,n+1): f[i] = (f[i-1]*i)%m; def fast_mod_exp(a,b,m): res = 1; while b > 0: if b & 1: res = (res*a)%m; a = (a*a)%m; b = b >> 1; return res; def inverseMod(n,m): return fast_mod_exp(n,m-2,m); def ncr(n,r,m): if r == 0: return 1; return ((f[n]*inverseMod(f[n-r],m))%m*inverseMod(f[r],m))%m; def main(): D(); def xdfs(root, v, sub, parent): st = [root]; while len(st) > 0: node = st.pop(); for i in range(len(v[node])): if v[node][i] != node: st.append(v[node][i]); def X(): try: t = pi(); while t: t -= 1; n = pi(); v = [[] for i in range(n)]; for i in range(n-1): [x,y] = ti(); v[x-1].append(y-1); v[y-1].append(x-1); m = pi(); p = ti(); e = [0 for i in range(n-1)]; sub = [0 for i in range(n)]; dfs(0,v,sub,-1) for i in range(1,n): e[i-1] = (sub[i]*(n-sub[i])); if len(p) < n-1: while len(p) < n-1: p.append(1); p = sorted(p); if len(p) > n-1: x = 1; for i in range(n-2,len(p)): x = (x*p[i]); while len(p) > n-2: p.pop(); p.append(x); e = sorted(e); res = 0; for i in range(n-1): res = (res+(p[i]*e[i]))%mod; print(res); except: print(sys.exc_info()); def bfs(v,root): q = [root,None]; l = 0; visited = [0 for i in range(len(v))]; dist = [0 for i in range(len(v))]; while len(q) > 0: node = q.pop(0); if node is not None: visited[node] = 1; dist[node] = l; for i in range(len(v[node])): if visited[v[node][i]] == 0: visited[v[node][i]] = 1; q.append(v[node][i]); else: l += 1; if len(q) != 0: q.append(None); return dist; def B(): n = pi(); v = [[] for i in range(n)]; for i in range(n-1): [x,y] = ti(); v[x-1].append(y-1); v[y-1].append(x-1); leafs = []; for i in range(n): if len(v[i]) == 1: leafs.append(i); mn = 1; d = bfs(v,leafs[0]); for i in range(1,len(leafs)): if d[leafs[i]] % 2 != 0: mn = 3; break; count = 0; for i in range(n): f = 0; for j in range(len(v[i])): if len(v[v[i][j]]) == 1: f = 1; break; if f: count += 1; mx = n-1-len(leafs)+count; print(mn,mx) def D(): t = pi(); while t: t -= 1; [n,l,r] = ti(); p = 0; i = 1; nxt = 0; res = []; st = 0; while i <= n and p <= l: if p+2*(n-i) >= l: d = l-p-1; if d%2 == 0: st = i; nxt = i+1+(d/2); if d%2 != 0: st = i+1+((d-1)/2); p = l; break; p += 2*(n-i); i += 1; while i <= n and p <= r: if nxt != 0: while p <= r and nxt <= n: if p <= r: res.append(i); p += 1; if p <= r: res.append(int(nxt)); p += 1; nxt += 1; i += 1; nxt = i+1; else: nxt = st+1; # if nxt == n: # i += 1; # nxt = i+1; res.append(int(st)); p += 1; while p <= r and nxt <= n: if p <= r: res.append(i); p += 1; if p <= r: res.append(int(nxt)); p += 1; nxt += 1; i += 1; nxt = i+1; if r == (n-1)*(n-1)+n: res.append(1); print(*res, sep=" "); main();
1334_D. Minimum Euler Cycle
You are given a complete directed graph K_n with n vertices: each pair of vertices u β‰  v in K_n have both directed edges (u, v) and (v, u); there are no self-loops. You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices). We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 β€” a visiting order, where each (v_i, v_{i + 1}) occurs exactly once. Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists. Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r. Input The first line contains the single integer T (1 ≀ T ≀ 100) β€” the number of test cases. Next T lines contain test cases β€” one per line. The first and only line of each test case contains three integers n, l and r (2 ≀ n ≀ 10^5, 1 ≀ l ≀ r ≀ n(n - 1) + 1, r - l + 1 ≀ 10^5) β€” the number of vertices in K_n, and segment of the cycle to print. It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5. Output For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once. Example Input 3 2 1 3 3 3 6 99995 9998900031 9998900031 Output 1 2 1 1 3 2 3 1 Note In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1. In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
{ "input": [ "3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n" ], "output": [ "1 2 1 \n1 3 2 3 \n1 \n" ] }
{ "input": [ "1\n2 2 3\n", "1\n4 13 13\n", "1\n3 1 1\n", "10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n", "1\n3 7 7\n", "1\n25 30 295\n", "1\n4 12 13\n", "5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n", "1\n5 4 4\n" ], "output": [ "2 1 \n", "1 \n", "1 \n", "1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n", "1 \n", "16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n", "4 1 \n", "1 \n1 \n1 \n1 \n7 1 \n", "3 \n" ] }
CORRECT
python3
from sys import stdin from collections import deque mod = 10**9 + 7 import sys import random # sys.setrecursionlimit(10**6) from queue import PriorityQueue # def rl(): # return [int(w) for w in stdin.readline().split()] from bisect import bisect_right from bisect import bisect_left from collections import defaultdict from math import sqrt,factorial,gcd,log2,inf,ceil # map(int,input().split()) # # l = list(map(int,input().split())) # from itertools import permutations import heapq # input = lambda: sys.stdin.readline().rstrip() input = lambda : sys.stdin.readline().rstrip() from sys import stdin, stdout from heapq import heapify, heappush, heappop from itertools import permutations from math import factorial as f # def ncr(x, y): # return f(x) // (f(y) * f(x - y)) def ncr(n, r, p): num = den = 1 for i in range(r): num = (num * (n - i)) % p den = (den * (i + 1)) % p return (num * pow(den, p - 2, p)) % p def solve(n): return (n*(n+1))//2 t = int(input()) for _ in range(t): n,l,r = map(int,input().split()) # print((2*n - 1)**2,4*l) if 2*(n)*n - (n)*(n+1) + 1 == l: print(1) continue # print(2*(n)*n - (n)*(n+1)) z_1 = (2*n - 1 + sqrt((2*n - 1)**2 - 4*l)) z_2 = (2*n - 1 - sqrt((2*n - 1)**2 - 4*l)) z1 = ceil(min(z_1,z_2) / 2) # print(2*(n)*n - (n)*(n+1)) # z_1 = 2*n - 1 + sqrt((2*n - 1)**2 + 4*r) # z_2 = 2*n - 1 - sqrt((2*n - 1)**2 + 4*r) # z2 = max(-z_1,-z_2) // 2 # print(z1) # print(z1) z0 = z1-1 la = l l-= 2*(z0)*n - (z0)*(z0+1) # print(z1,l)l # z0 = z23 # 2 1 3 # 3 3 6 # 99995 9998900031 9998900031 # r-= 2*(z0)*n - (z0)*(z0+1) # z1+=1 # print(z1) # if z1 == n: # print(1) # continue # z2+=1 ans = [] if l%2==0: k1 = l//2 l = la else: ans.append(int(z1)) k1 = (l+1)//2 l = la if r-l +1 == len(ans): print(*ans) continue l+=1 # print(k1) ha = z1+1 + (k1-1) ans.append(int(ha)) l+=1 cnt = max(ans)+1 while l!=r+1: if ans[-1] == n: z1+=1 cnt = z1+1 if z1 == n+1 or z1 == n: ans.append(1) break else: ans.append(int(z1)) else: if l%2 != 0: ans.append(int(z1)) else: ans.append(int(cnt)) cnt+=1 l+=1 print(*ans)
1334_D. Minimum Euler Cycle
You are given a complete directed graph K_n with n vertices: each pair of vertices u β‰  v in K_n have both directed edges (u, v) and (v, u); there are no self-loops. You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices). We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 β€” a visiting order, where each (v_i, v_{i + 1}) occurs exactly once. Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists. Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r. Input The first line contains the single integer T (1 ≀ T ≀ 100) β€” the number of test cases. Next T lines contain test cases β€” one per line. The first and only line of each test case contains three integers n, l and r (2 ≀ n ≀ 10^5, 1 ≀ l ≀ r ≀ n(n - 1) + 1, r - l + 1 ≀ 10^5) β€” the number of vertices in K_n, and segment of the cycle to print. It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5. Output For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once. Example Input 3 2 1 3 3 3 6 99995 9998900031 9998900031 Output 1 2 1 1 3 2 3 1 Note In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1. In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
{ "input": [ "3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n" ], "output": [ "1 2 1 \n1 3 2 3 \n1 \n" ] }
{ "input": [ "1\n2 2 3\n", "1\n4 13 13\n", "1\n3 1 1\n", "10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n", "1\n3 7 7\n", "1\n25 30 295\n", "1\n4 12 13\n", "5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n", "1\n5 4 4\n" ], "output": [ "2 1 \n", "1 \n", "1 \n", "1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n", "1 \n", "16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n", "4 1 \n", "1 \n1 \n1 \n1 \n7 1 \n", "3 \n" ] }
CORRECT
python3
import sys input = sys.stdin.readline T=int(input()) for tests in range(T): n,l,r=map(int,input().split()) begin=1 while l>(n-begin)*2+1: if begin==n: break l-=(n-begin)*2 r-=(n-begin)*2 begin+=1 #print(begin,l,r) if begin==n: ANS=[n,1] else: ANS=[] while len(ANS)<=r: if begin==n: ANS.append(1) break for j in range(begin+1,n+1): ANS.append(begin) ANS.append(j) begin+=1 #print(ANS) sys.stdout.write(" ".join(map(str,ANS[l-1:r]))+"\n")
1334_D. Minimum Euler Cycle
You are given a complete directed graph K_n with n vertices: each pair of vertices u β‰  v in K_n have both directed edges (u, v) and (v, u); there are no self-loops. You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices). We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 β€” a visiting order, where each (v_i, v_{i + 1}) occurs exactly once. Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists. Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r. Input The first line contains the single integer T (1 ≀ T ≀ 100) β€” the number of test cases. Next T lines contain test cases β€” one per line. The first and only line of each test case contains three integers n, l and r (2 ≀ n ≀ 10^5, 1 ≀ l ≀ r ≀ n(n - 1) + 1, r - l + 1 ≀ 10^5) β€” the number of vertices in K_n, and segment of the cycle to print. It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5. Output For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once. Example Input 3 2 1 3 3 3 6 99995 9998900031 9998900031 Output 1 2 1 1 3 2 3 1 Note In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1. In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
{ "input": [ "3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n" ], "output": [ "1 2 1 \n1 3 2 3 \n1 \n" ] }
{ "input": [ "1\n2 2 3\n", "1\n4 13 13\n", "1\n3 1 1\n", "10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n", "1\n3 7 7\n", "1\n25 30 295\n", "1\n4 12 13\n", "5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n", "1\n5 4 4\n" ], "output": [ "2 1 \n", "1 \n", "1 \n", "1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n", "1 \n", "16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n", "4 1 \n", "1 \n1 \n1 \n1 \n7 1 \n", "3 \n" ] }
CORRECT
python3
from sys import stdin, gettrace from math import sqrt if not gettrace(): def input(): return next(stdin)[:-1] # def input(): # return stdin.buffer.readline() def main(): def solve(): n,l,r = map(int, input().split()) lv = int((2*n+1 - sqrt((2*n-1)**2 -4*(l-1)))/2) lvs = -2*n+2*n*lv-lv*lv+lv lrd = l - lvs - 1 res = [] i = lv j = lv+lrd//2 + 1 if l%2 == 0: res = [j] if j < n: j+=1 else: i+=1 j = i+1 for _ in range(l-1, r, 2): res += [i,j] if j < n: j += 1 else: i +=1 j = i+1 if r == n*(n-1)+1: res[r-l] = 1 print(*res[:r-l+1]) q = int(input()) for _ in range(q): solve() if __name__ == "__main__": main()
1334_D. Minimum Euler Cycle
You are given a complete directed graph K_n with n vertices: each pair of vertices u β‰  v in K_n have both directed edges (u, v) and (v, u); there are no self-loops. You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices). We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 β€” a visiting order, where each (v_i, v_{i + 1}) occurs exactly once. Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists. Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r. Input The first line contains the single integer T (1 ≀ T ≀ 100) β€” the number of test cases. Next T lines contain test cases β€” one per line. The first and only line of each test case contains three integers n, l and r (2 ≀ n ≀ 10^5, 1 ≀ l ≀ r ≀ n(n - 1) + 1, r - l + 1 ≀ 10^5) β€” the number of vertices in K_n, and segment of the cycle to print. It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5. Output For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once. Example Input 3 2 1 3 3 3 6 99995 9998900031 9998900031 Output 1 2 1 1 3 2 3 1 Note In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1. In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
{ "input": [ "3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n" ], "output": [ "1 2 1 \n1 3 2 3 \n1 \n" ] }
{ "input": [ "1\n2 2 3\n", "1\n4 13 13\n", "1\n3 1 1\n", "10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n", "1\n3 7 7\n", "1\n25 30 295\n", "1\n4 12 13\n", "5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n", "1\n5 4 4\n" ], "output": [ "2 1 \n", "1 \n", "1 \n", "1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n", "1 \n", "16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n", "4 1 \n", "1 \n1 \n1 \n1 \n7 1 \n", "3 \n" ] }
CORRECT
java
import java.io.*; import java.util.*; public class D { Reader source; BufferedReader br; StringTokenizer in; PrintWriter out; public String nextToken() throws Exception { while (in == null || !in.hasMoreTokens()) { in = new StringTokenizer(br.readLine()); } return in.nextToken(); } public int nextInt() throws Exception { return Integer.parseInt(nextToken()); } public long nextLong() throws Exception { return Long.parseLong(nextToken()); } public double nextDouble() throws Exception { return Double.parseDouble(nextToken()); } public void solve() throws Exception { int t = nextInt(); for (int i = 0; i < t; i++) { int n = nextInt(); long l = nextLong(); long r = nextLong(); int a = 1; while (a < n && l > 2 * (n - a)) { l = l - 2 * (n - a); r = r - 2 * (n - a); a++; } if (a == n) a = 1; int b = a + 1; while (l > 2) { l = l - 2; r = r - 2; b++; } //out.println("a=" + a + " b=" + b + " l=" + l + " r=" + r); while (l <= r) { if (l % 2 == 1) { out.print(a + " "); } else { out.print(b + " "); b++; if (b > n) { a++; if (a == n) a = 1; b = a + 1; } } l++; } out.println(); } } public void run() throws Exception { source = OJ ? new InputStreamReader(System.in) : new FileReader("D.in"); br = new BufferedReader(source); out = new PrintWriter(System.out); solve(); out.flush(); } public static void main(String[] args) throws Exception { new D().run(); } private boolean OJ = System.getProperty("ONLINE_JUDGE") != null; }
1334_D. Minimum Euler Cycle
You are given a complete directed graph K_n with n vertices: each pair of vertices u β‰  v in K_n have both directed edges (u, v) and (v, u); there are no self-loops. You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices). We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 β€” a visiting order, where each (v_i, v_{i + 1}) occurs exactly once. Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists. Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r. Input The first line contains the single integer T (1 ≀ T ≀ 100) β€” the number of test cases. Next T lines contain test cases β€” one per line. The first and only line of each test case contains three integers n, l and r (2 ≀ n ≀ 10^5, 1 ≀ l ≀ r ≀ n(n - 1) + 1, r - l + 1 ≀ 10^5) β€” the number of vertices in K_n, and segment of the cycle to print. It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5. Output For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once. Example Input 3 2 1 3 3 3 6 99995 9998900031 9998900031 Output 1 2 1 1 3 2 3 1 Note In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1. In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
{ "input": [ "3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n" ], "output": [ "1 2 1 \n1 3 2 3 \n1 \n" ] }
{ "input": [ "1\n2 2 3\n", "1\n4 13 13\n", "1\n3 1 1\n", "10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n", "1\n3 7 7\n", "1\n25 30 295\n", "1\n4 12 13\n", "5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n", "1\n5 4 4\n" ], "output": [ "2 1 \n", "1 \n", "1 \n", "1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n", "1 \n", "16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n", "4 1 \n", "1 \n1 \n1 \n1 \n7 1 \n", "3 \n" ] }
CORRECT
python3
#!/usr/bin/env python import os import sys from io import BytesIO, IOBase import threading from bisect import bisect_right from heapq import heapify,heappush,heappop def main(): for _ in range(int(input())): n,l,r=map(int,input().split()) l-=1 ptrn=[] for i in range(2,10**5+2): ptrn.append(1) ptrn.append(i) # print(ptrn[:10]) lth=2*(n-1) ans=[] sf=0 ps=0 while lth>0: # print(lth,sf,lth,max(ps,l),min(r,ps+lth)) for i in range(max(ps,l),min(r,ps+lth)): ans.append(ptrn[i-ps]+sf) ps+=lth lth-=2 sf+=1 if r==n*(n-1)+1: ans.append(1) print(*ans) BUFSIZE = 8192 class FastIO(IOBase): newlines = 0 def __init__(self, file): self._fd = file.fileno() self.buffer = BytesIO() self.writable = "x" in file.mode or "r" not in file.mode self.write = self.buffer.write if self.writable else None def read(self): while True: b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE)) if not b: break ptr = self.buffer.tell() self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr) self.newlines = 0 return self.buffer.read() def readline(self): while self.newlines == 0: b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE)) self.newlines = b.count(b"\n") + (not b) ptr = self.buffer.tell() self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr) self.newlines -= 1 return self.buffer.readline() def flush(self): if self.writable: os.write(self._fd, self.buffer.getvalue()) self.buffer.truncate(0), self.buffer.seek(0) class IOWrapper(IOBase): def __init__(self, file): self.buffer = FastIO(file) self.flush = self.buffer.flush self.writable = self.buffer.writable self.write = lambda s: self.buffer.write(s.encode("ascii")) self.read = lambda: self.buffer.read().decode("ascii") self.readline = lambda: self.buffer.readline().decode("ascii") sys.stdin, sys.stdout = IOWrapper(sys.stdin), IOWrapper(sys.stdout) input = lambda: sys.stdin.readline().rstrip("\r\n") # endregion if __name__ == "__main__": main()
1334_D. Minimum Euler Cycle
You are given a complete directed graph K_n with n vertices: each pair of vertices u β‰  v in K_n have both directed edges (u, v) and (v, u); there are no self-loops. You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices). We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 β€” a visiting order, where each (v_i, v_{i + 1}) occurs exactly once. Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists. Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r. Input The first line contains the single integer T (1 ≀ T ≀ 100) β€” the number of test cases. Next T lines contain test cases β€” one per line. The first and only line of each test case contains three integers n, l and r (2 ≀ n ≀ 10^5, 1 ≀ l ≀ r ≀ n(n - 1) + 1, r - l + 1 ≀ 10^5) β€” the number of vertices in K_n, and segment of the cycle to print. It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5. Output For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once. Example Input 3 2 1 3 3 3 6 99995 9998900031 9998900031 Output 1 2 1 1 3 2 3 1 Note In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1. In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
{ "input": [ "3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n" ], "output": [ "1 2 1 \n1 3 2 3 \n1 \n" ] }
{ "input": [ "1\n2 2 3\n", "1\n4 13 13\n", "1\n3 1 1\n", "10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n", "1\n3 7 7\n", "1\n25 30 295\n", "1\n4 12 13\n", "5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n", "1\n5 4 4\n" ], "output": [ "2 1 \n", "1 \n", "1 \n", "1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n", "1 \n", "16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n", "4 1 \n", "1 \n1 \n1 \n1 \n7 1 \n", "3 \n" ] }
CORRECT
python3
for i in range(int(input())): n, l, r = map(int, input().split()) l -= 1 r -= 1 c = 0 for j in range(n): if (c + (n - j - 1) * 2 < l or c > r): c += (n - j - 1) * 2 continue for k in range(j + 1, n): if (l <= c <= r): print(j + 1, end = ' ') c += 1 if (l <= c <= r): print(k + 1, end = ' ') c += 1 if (l <= c <= r): print(1) else: print('')
1334_D. Minimum Euler Cycle
You are given a complete directed graph K_n with n vertices: each pair of vertices u β‰  v in K_n have both directed edges (u, v) and (v, u); there are no self-loops. You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices). We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 β€” a visiting order, where each (v_i, v_{i + 1}) occurs exactly once. Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists. Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r. Input The first line contains the single integer T (1 ≀ T ≀ 100) β€” the number of test cases. Next T lines contain test cases β€” one per line. The first and only line of each test case contains three integers n, l and r (2 ≀ n ≀ 10^5, 1 ≀ l ≀ r ≀ n(n - 1) + 1, r - l + 1 ≀ 10^5) β€” the number of vertices in K_n, and segment of the cycle to print. It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5. Output For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once. Example Input 3 2 1 3 3 3 6 99995 9998900031 9998900031 Output 1 2 1 1 3 2 3 1 Note In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1. In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
{ "input": [ "3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n" ], "output": [ "1 2 1 \n1 3 2 3 \n1 \n" ] }
{ "input": [ "1\n2 2 3\n", "1\n4 13 13\n", "1\n3 1 1\n", "10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n", "1\n3 7 7\n", "1\n25 30 295\n", "1\n4 12 13\n", "5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n", "1\n5 4 4\n" ], "output": [ "2 1 \n", "1 \n", "1 \n", "1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n", "1 \n", "16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n", "4 1 \n", "1 \n1 \n1 \n1 \n7 1 \n", "3 \n" ] }
CORRECT
python2
rr = raw_input rri = lambda: int(rr()) rrm = lambda: map(int, rr().split()) def solve(N, L, R): L -= 1; R -= 1 if N == 1: return [1][L:R+1] if N == 2: return [1,2,1][L:R+1] if N == 3: return [1,2,1,3,2,3,1][L:R+1] page = 2*N - 2 k = 1 left = 0 while left + page <= L: left += page k += 1 page -= 2 if page == 0: page = 1 def write(k): for j in xrange(k+1, N+1): bns.append(k) bns.append(j) if k == N: bns.append(1) bns = [] while len(bns) < R - left + 1: write(k) k += 1 return bns[L-left:R-left+1] for tc in xrange(rri()): ans = solve(*rrm()) print " ".join(map(str, ans))
1334_D. Minimum Euler Cycle
You are given a complete directed graph K_n with n vertices: each pair of vertices u β‰  v in K_n have both directed edges (u, v) and (v, u); there are no self-loops. You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices). We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 β€” a visiting order, where each (v_i, v_{i + 1}) occurs exactly once. Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists. Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r. Input The first line contains the single integer T (1 ≀ T ≀ 100) β€” the number of test cases. Next T lines contain test cases β€” one per line. The first and only line of each test case contains three integers n, l and r (2 ≀ n ≀ 10^5, 1 ≀ l ≀ r ≀ n(n - 1) + 1, r - l + 1 ≀ 10^5) β€” the number of vertices in K_n, and segment of the cycle to print. It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5. Output For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once. Example Input 3 2 1 3 3 3 6 99995 9998900031 9998900031 Output 1 2 1 1 3 2 3 1 Note In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1. In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
{ "input": [ "3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n" ], "output": [ "1 2 1 \n1 3 2 3 \n1 \n" ] }
{ "input": [ "1\n2 2 3\n", "1\n4 13 13\n", "1\n3 1 1\n", "10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n", "1\n3 7 7\n", "1\n25 30 295\n", "1\n4 12 13\n", "5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n", "1\n5 4 4\n" ], "output": [ "2 1 \n", "1 \n", "1 \n", "1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n", "1 \n", "16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n", "4 1 \n", "1 \n1 \n1 \n1 \n7 1 \n", "3 \n" ] }
CORRECT
java
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.util.StringTokenizer; import java.util.ArrayList; import java.util.List; public class CE85D { public static void main(String[] args) throws NumberFormatException, IOException { FastReader sc=new FastReader(); int t = sc.nextInt(); for(int x=0; x<t; x++) { long n = sc.nextLong(); long l = sc.nextLong(); long r = sc.nextLong(); long total = (n)*(n-1)+1; //System.out.println("totes" + total); // if(l == total && r==total) { // System.out.println(1); // continue; // } long first = 1; long second = 0; long sum = 0; while(true) { long next = 2*(n-first); //System.out.println(next); if(sum + next < l) { first += 1; sum += next; } else { break; } if(next == 2) { break; } } //System.out.println("sumdy" + sum); long diff = l - sum; second = first + 1 + ((diff-1)/2); //System.out.println("fgege" + first + " " + second); while(l <= r) { //System.out.println("ell"+ l); if(l == total) { System.out.print("1 "); } else { if(l%2 == 0) { //second System.out.print(second + " "); if(second < n) { second += 1; } else { first += 1; second = first + 1; } } else { System.out.print(first + " "); } } l++; } System.out.println(); } } static class FastReader{BufferedReader br;StringTokenizer st;public FastReader() {br=new BufferedReader(new InputStreamReader(System.in));} String next(){while(st==null||!st.hasMoreElements()) {try{st=new StringTokenizer(br.readLine());} catch(IOException e){e.printStackTrace();}}return st.nextToken();} int nextInt(){return Integer.parseInt(next());} long nextLong(){return Long.parseLong(next());} double nextDouble(){return Double.parseDouble(next());} String nextLine(){String str="";try{str=br.readLine();} catch(IOException e){e.printStackTrace();}return str;}} } /* int n = sc.nextInt(); for(int y=0; y<n; y++){ int x = sc.nextInt(); } int a = sc.nextInt(); int b = sc.nextInt(); int c = sc.nextInt(); int d = sc.nextInt(); int e = sc.nextInt(); */
1334_D. Minimum Euler Cycle
You are given a complete directed graph K_n with n vertices: each pair of vertices u β‰  v in K_n have both directed edges (u, v) and (v, u); there are no self-loops. You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices). We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 β€” a visiting order, where each (v_i, v_{i + 1}) occurs exactly once. Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists. Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r. Input The first line contains the single integer T (1 ≀ T ≀ 100) β€” the number of test cases. Next T lines contain test cases β€” one per line. The first and only line of each test case contains three integers n, l and r (2 ≀ n ≀ 10^5, 1 ≀ l ≀ r ≀ n(n - 1) + 1, r - l + 1 ≀ 10^5) β€” the number of vertices in K_n, and segment of the cycle to print. It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5. Output For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once. Example Input 3 2 1 3 3 3 6 99995 9998900031 9998900031 Output 1 2 1 1 3 2 3 1 Note In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1. In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
{ "input": [ "3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n" ], "output": [ "1 2 1 \n1 3 2 3 \n1 \n" ] }
{ "input": [ "1\n2 2 3\n", "1\n4 13 13\n", "1\n3 1 1\n", "10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n", "1\n3 7 7\n", "1\n25 30 295\n", "1\n4 12 13\n", "5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n", "1\n5 4 4\n" ], "output": [ "2 1 \n", "1 \n", "1 \n", "1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n", "1 \n", "16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n", "4 1 \n", "1 \n1 \n1 \n1 \n7 1 \n", "3 \n" ] }
CORRECT
java
import java.io.*; import java.util.*; /* */ public class A { static FastReader sc=null; static int nax=(int)1e6 +10; public static void main(String[] args) { sc=new FastReader(); PrintWriter out=new PrintWriter(System.out); int t=sc.nextInt(); while(t-->0) { int n=sc.nextInt(); long l=sc.nextLong(),r=sc.nextLong(); long l1=l; int curr=1; while(l>2*(n-curr) && curr<=n) { l-=2*(n-curr); curr++; //System.out.println(l+" "); } //CURR indicates which starting point we get to and now int from=(int)(l/2+curr); int ans[]=new int[nax]; //System.out.println(l+" "+r+" "+from); Arrays.fill(ans, -1); int j=0; if(l%2==0) { ans[0]=from; from++; j++; } else { from++; } while(from<=n) { ans[j++]=curr; ans[j++]=from++; } curr++; int len=(int)(r-l1+1)+5; while(j<len && curr<n) { for(int k=(curr+1);k<=n && j<len;k++) { ans[j++]=curr; ans[j++]=k; } curr++; } if(j<nax)ans[j++]=1; //System.out.println(len); for(int i=0;i<len-5;i++) { //if(ans[i]==-1)break; out.print(ans[i]+" "); } out.println(); } out.close(); } static void reverseSort(int a[]) { ArrayList<Integer> al=new ArrayList<>(); for(int i:a)al.add(i); Collections.sort(al,Collections.reverseOrder()); for(int i=0;i<a.length;i++)a[i]=al.get(i); } static int gcd(int a,int b) { if(b==0)return a; else return gcd(b,a%b); } static long gcd(long a,long b) { if(b==0)return a; else return gcd(b,a%b); } static void reverse(int a[]) { int n=a.length; int b[]=new int[n]; for(int i=0;i<n;i++)b[i]=a[n-1-i]; for(int i=0;i<n;i++)a[i]=b[i]; } static void ruffleSort(int a[]) { ArrayList<Integer> al=new ArrayList<>(); for(int i:a)al.add(i); Collections.sort(al); for(int i=0;i<a.length;i++)a[i]=al.get(i); } static void print(int a[]) { for(int e:a) { System.out.print(e+" "); } System.out.println(); } static void print(long a[]) { for(long e:a) { System.out.print(e+" "); } System.out.println(); } static class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } int[] readArray(int n) { int a[]=new int [n]; for(int i=0;i<n;i++) { a[i]=sc.nextInt(); } return a; } long[] readArrayL(int n) { long a[]=new long [n]; for(int i=0;i<n;i++) { a[i]=sc.nextLong(); } return a; } } }
1334_D. Minimum Euler Cycle
You are given a complete directed graph K_n with n vertices: each pair of vertices u β‰  v in K_n have both directed edges (u, v) and (v, u); there are no self-loops. You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices). We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 β€” a visiting order, where each (v_i, v_{i + 1}) occurs exactly once. Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists. Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r. Input The first line contains the single integer T (1 ≀ T ≀ 100) β€” the number of test cases. Next T lines contain test cases β€” one per line. The first and only line of each test case contains three integers n, l and r (2 ≀ n ≀ 10^5, 1 ≀ l ≀ r ≀ n(n - 1) + 1, r - l + 1 ≀ 10^5) β€” the number of vertices in K_n, and segment of the cycle to print. It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5. Output For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once. Example Input 3 2 1 3 3 3 6 99995 9998900031 9998900031 Output 1 2 1 1 3 2 3 1 Note In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1. In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
{ "input": [ "3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n" ], "output": [ "1 2 1 \n1 3 2 3 \n1 \n" ] }
{ "input": [ "1\n2 2 3\n", "1\n4 13 13\n", "1\n3 1 1\n", "10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n", "1\n3 7 7\n", "1\n25 30 295\n", "1\n4 12 13\n", "5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n", "1\n5 4 4\n" ], "output": [ "2 1 \n", "1 \n", "1 \n", "1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n", "1 \n", "16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n", "4 1 \n", "1 \n1 \n1 \n1 \n7 1 \n", "3 \n" ] }
CORRECT
java
import java.io.BufferedReader; import java.io.File; import java.io.FileInputStream; import java.io.FileNotFoundException; import java.io.FileOutputStream; import java.io.InputStreamReader; import java.io.PrintWriter; import java.math.BigInteger; import java.util.ArrayList; import java.util.Arrays; import java.util.BitSet; import java.util.Calendar; import java.util.Collections; import java.util.Comparator; import java.util.HashMap; import java.util.HashSet; import java.util.LinkedList; import java.util.PriorityQueue; import java.util.SortedSet; import java.util.Stack; import java.util.StringTokenizer; import java.util.TreeMap; import java.util.TreeSet; /** * # * * @author pttrung */ public class D_Edu_Round_73 { public static long MOD = 1000000007; public static void main(String[] args) throws FileNotFoundException { // PrintWriter out = new PrintWriter(new FileOutputStream(new File( // "output.txt"))); PrintWriter out = new PrintWriter(System.out); Scanner in = new Scanner(); int T = in.nextInt(); for (int z = 0; z < T; z++) { int n = in.nextInt(); long l = in.nextLong(); long r = in.nextLong(); for (long i = l; i <= r; i++) { int st = 1; int ed = n; int result = 0; while (st <= ed) { int mid = (st + ed) / 2; if (cal(mid, n) < i) { result = mid; st = mid + 1; } else { ed = mid - 1; } } //System.out.println(i + " " + result + " " + cal(result, n)); if (result == n - 1) { out.print(1); } else { long index = i - cal(result, n); if (index % 2 != 0) { out.print((result + 1) + " "); } else { out.print((result + 1 + (index / 2)) + " "); } } } out.println(); } out.close(); } static long cal(long index, long n) { if (index == n) { return 1 + cal(n - 1, n); } long result = 2 * n * index - (index * (index + 1)); return result; } public static int[] KMP(String val) { int i = 0; int j = -1; int[] result = new int[val.length() + 1]; result[0] = -1; while (i < val.length()) { while (j >= 0 && val.charAt(j) != val.charAt(i)) { j = result[j]; } j++; i++; result[i] = j; } return result; } public static boolean nextPer(int[] data) { int i = data.length - 1; while (i > 0 && data[i] < data[i - 1]) { i--; } if (i == 0) { return false; } int j = data.length - 1; while (data[j] < data[i - 1]) { j--; } int temp = data[i - 1]; data[i - 1] = data[j]; data[j] = temp; Arrays.sort(data, i, data.length); return true; } public static int digit(long n) { int result = 0; while (n > 0) { n /= 10; result++; } return result; } public static double dist(long a, long b, long x, long y) { double val = (b - a) * (b - a) + (x - y) * (x - y); val = Math.sqrt(val); double other = x * x + a * a; other = Math.sqrt(other); return val + other; } public static class Point implements Comparable<Point> { int x, y; public Point(int start, int end) { this.x = start; this.y = end; } public String toString() { return x + ":" + y; } @Override public int hashCode() { int hash = 5; hash = 47 * hash + this.x; hash = 47 * hash + this.y; return hash; } @Override public boolean equals(Object obj) { if (obj == null) { return false; } if (getClass() != obj.getClass()) { return false; } final Point other = (Point) obj; if (this.x != other.x) { return false; } if (this.y != other.y) { return false; } return true; } @Override public int compareTo(Point o) { if (x != o.x) { return Integer.compare(x, o.x); } return Integer.compare(y, o.y); } } public static class FT { long[] data; FT(int n) { data = new long[n]; } public void update(int index, long value) { while (index < data.length) { data[index] += value; index += (index & (-index)); } } public long get(int index) { long result = 0; while (index > 0) { result += data[index]; index -= (index & (-index)); } return result; } } public static long gcd(long a, long b) { if (b == 0) { return a; } return gcd(b, a % b); } public static long pow(long a, int b) { if (b == 0) { return 1; } if (b == 1) { return a; } long val = pow(a, b / 2); if (b % 2 == 0) { return val * val; } else { return val * (val * a); } } static class Scanner { BufferedReader br; StringTokenizer st; public Scanner() throws FileNotFoundException { // System.setOut(new PrintStream(new BufferedOutputStream(System.out), true)); br = new BufferedReader(new InputStreamReader(System.in)); // br = new BufferedReader(new InputStreamReader(new FileInputStream(new File("input.txt")))); } public String next() { while (st == null || !st.hasMoreTokens()) { try { st = new StringTokenizer(br.readLine()); } catch (Exception e) { throw new RuntimeException(); } } return st.nextToken(); } public long nextLong() { return Long.parseLong(next()); } public int nextInt() { return Integer.parseInt(next()); } public double nextDouble() { return Double.parseDouble(next()); } public String nextLine() { st = null; try { return br.readLine(); } catch (Exception e) { throw new RuntimeException(); } } public boolean endLine() { try { String next = br.readLine(); while (next != null && next.trim().isEmpty()) { next = br.readLine(); } if (next == null) { return true; } st = new StringTokenizer(next); return st.hasMoreTokens(); } catch (Exception e) { throw new RuntimeException(); } } } }
1334_D. Minimum Euler Cycle
You are given a complete directed graph K_n with n vertices: each pair of vertices u β‰  v in K_n have both directed edges (u, v) and (v, u); there are no self-loops. You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices). We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 β€” a visiting order, where each (v_i, v_{i + 1}) occurs exactly once. Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists. Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r. Input The first line contains the single integer T (1 ≀ T ≀ 100) β€” the number of test cases. Next T lines contain test cases β€” one per line. The first and only line of each test case contains three integers n, l and r (2 ≀ n ≀ 10^5, 1 ≀ l ≀ r ≀ n(n - 1) + 1, r - l + 1 ≀ 10^5) β€” the number of vertices in K_n, and segment of the cycle to print. It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5. Output For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once. Example Input 3 2 1 3 3 3 6 99995 9998900031 9998900031 Output 1 2 1 1 3 2 3 1 Note In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1. In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
{ "input": [ "3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n" ], "output": [ "1 2 1 \n1 3 2 3 \n1 \n" ] }
{ "input": [ "1\n2 2 3\n", "1\n4 13 13\n", "1\n3 1 1\n", "10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n", "1\n3 7 7\n", "1\n25 30 295\n", "1\n4 12 13\n", "5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n", "1\n5 4 4\n" ], "output": [ "2 1 \n", "1 \n", "1 \n", "1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n", "1 \n", "16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n", "4 1 \n", "1 \n1 \n1 \n1 \n7 1 \n", "3 \n" ] }
CORRECT
java
import java.io.BufferedReader; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.ArrayList; import java.util.LinkedList; import java.util.StringTokenizer; public class D { public static void main(String[] args) throws Exception { new D().run(); } LinkedList<Integer> inversionLocations = new LinkedList<Integer>(); int K; int inversions; char[] chars; ArrayList<Integer> toAdd = new ArrayList<Integer>(); public void run() throws Exception { BufferedReader file = new BufferedReader(new InputStreamReader(System.in)); StringTokenizer st = new StringTokenizer(file.readLine()); int T = Integer.parseInt(st.nextToken()); PrintWriter pout = new PrintWriter(System.out); for(int z = 0;z<T;z++) { st = new StringTokenizer(file.readLine()); long K = Long.parseLong(st.nextToken()); long L = Long.parseLong(st.nextToken()); long R = Long.parseLong(st.nextToken()); StringBuilder sb = new StringBuilder(""); for(long i = L;i<=R;i++) { sb.append(getIndex(K,i-1)); sb.append(" "); } pout.println(sb.toString()); } pout.flush(); } public long getIndex(long K, long index) { if(index == K*(K-1)) return 1; return getIndexHelper(K, index); } public long blockSum(long K, long x) { if(x == 0) return 0; long first = (K-1)*2; long last = (K-x)*2; long terms = ((first - last)/2)+1; return (first + last) * terms/2; } public int getBlock(long K, long index) { long L = 0; long R = K+1; long M = (R+L)/2; long ceil = K+1; while(R-L > 1) { M = ((R+L)/2); long sum = blockSum(K, M); //System.out.println(L+" "+R+" "+M); if(sum >= index) { ceil = M; R = M; }else { L = M; } } return (int)(ceil); } public long getIndexHelper(long K, long index) { int block = getBlock(K, index+1)-1; //System.out.println(index+"_"+block); //System.out.println("K = "+K+", index "+index+" block is "+block); long remaining = index - blockSum(K, block); //System.out.println("remaining: " + remaining); if((remaining & 1) == 0) return block+1; return (block+1) + (remaining/2 + 1); } }
1334_D. Minimum Euler Cycle
You are given a complete directed graph K_n with n vertices: each pair of vertices u β‰  v in K_n have both directed edges (u, v) and (v, u); there are no self-loops. You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices). We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 β€” a visiting order, where each (v_i, v_{i + 1}) occurs exactly once. Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists. Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r. Input The first line contains the single integer T (1 ≀ T ≀ 100) β€” the number of test cases. Next T lines contain test cases β€” one per line. The first and only line of each test case contains three integers n, l and r (2 ≀ n ≀ 10^5, 1 ≀ l ≀ r ≀ n(n - 1) + 1, r - l + 1 ≀ 10^5) β€” the number of vertices in K_n, and segment of the cycle to print. It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5. Output For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once. Example Input 3 2 1 3 3 3 6 99995 9998900031 9998900031 Output 1 2 1 1 3 2 3 1 Note In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1. In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
{ "input": [ "3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n" ], "output": [ "1 2 1 \n1 3 2 3 \n1 \n" ] }
{ "input": [ "1\n2 2 3\n", "1\n4 13 13\n", "1\n3 1 1\n", "10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n", "1\n3 7 7\n", "1\n25 30 295\n", "1\n4 12 13\n", "5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n", "1\n5 4 4\n" ], "output": [ "2 1 \n", "1 \n", "1 \n", "1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n", "1 \n", "16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n", "4 1 \n", "1 \n1 \n1 \n1 \n7 1 \n", "3 \n" ] }
CORRECT
python3
from sys import stdin def allWays(start, verts, done, stack, n): global valid if not valid: return stack.append(start) if len(done) == len(verts): print(stack) stack.pop() valid = False return for x in range(1,n+1): if start != x and not (start,x) in done: done.add((start,x)) allWays(x,verts,done,stack,n) done.remove((start,x)) stack.pop() ''' for y in range(1,10): verts = set([((x//y) + 1, (x%y)+1) for x in range(y**2)]) for x in range(1,y+1): verts.remove((x,x)) valid = True print(y, end=' ') allWays(1, verts, set(), [], y) ''' def order(n,x): out = [] for y in range(x+1,n+1): out.append(x) out.append(y) return out for case in range(int(stdin.readline())): n,l,r = [int(x) for x in stdin.readline().split()] end1 = False if r == n*(n-1) + 1: end1 = True r -= 1 if l == n*(n-1) + 1: print(1) else: x = 1 while l > 2*(n-x): l -= 2*(n-x) r -= 2*(n-x) x += 1 out = order(n,x) r -= 2*(n-x) x += 1 while r > 0: out += order(n,x) r -= 2*(n-x) x += 1 if end1: out += [1] if r != 0: realOut = out[l-1:r] else: realOut = out[l-1:] print(' '.join([str(b) for b in realOut]))
1334_D. Minimum Euler Cycle
You are given a complete directed graph K_n with n vertices: each pair of vertices u β‰  v in K_n have both directed edges (u, v) and (v, u); there are no self-loops. You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices). We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 β€” a visiting order, where each (v_i, v_{i + 1}) occurs exactly once. Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists. Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r. Input The first line contains the single integer T (1 ≀ T ≀ 100) β€” the number of test cases. Next T lines contain test cases β€” one per line. The first and only line of each test case contains three integers n, l and r (2 ≀ n ≀ 10^5, 1 ≀ l ≀ r ≀ n(n - 1) + 1, r - l + 1 ≀ 10^5) β€” the number of vertices in K_n, and segment of the cycle to print. It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5. Output For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once. Example Input 3 2 1 3 3 3 6 99995 9998900031 9998900031 Output 1 2 1 1 3 2 3 1 Note In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1. In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
{ "input": [ "3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n" ], "output": [ "1 2 1 \n1 3 2 3 \n1 \n" ] }
{ "input": [ "1\n2 2 3\n", "1\n4 13 13\n", "1\n3 1 1\n", "10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n", "1\n3 7 7\n", "1\n25 30 295\n", "1\n4 12 13\n", "5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n", "1\n5 4 4\n" ], "output": [ "2 1 \n", "1 \n", "1 \n", "1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n", "1 \n", "16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n", "4 1 \n", "1 \n1 \n1 \n1 \n7 1 \n", "3 \n" ] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; void solve() { long long n, l, r; cin >> n >> l >> r; if (n == 2) { for (long long i = l - 1; i < r; i++) { if (i & 1) cout << 2 << " "; else cout << 1 << " "; } return; } if ((r - 1) / 2 + 1 < n) { vector<long long> ans; long long vl = l - 1; vl /= 2; l -= vl * 2; r -= vl * 2; vl += 2; while (ans.size() < r - l + 1) { ans.push_back(1); ans.push_back(vl); vl++; } for (long long i = l - 1; i < r; i++) { cout << ans[i] << " "; } return; } long long lb = -1, rb = n - 1; while (rb - lb != 1) { long long mid = lb + rb >> 1; if ((n - 1) * 2 + (n - 2) * (n - 1) - (n - 1 - mid) * (n - 2 - mid) >= l) rb = mid; else lb = mid; } long long from = rb; lb = -1, rb = n - 1; while (rb - lb != 1) { long long mid = rb + lb >> 1; if ((n - 1) * 2 + (n - 2) * (n - 1) - (n - 1 - mid) * (n - 2 - mid) >= r) rb = mid; else lb = mid; } vector<long long> ans; long long to = rb; long long rto = from; if (from == 0) { for (long long i = 2; i <= n; i++) { ans.push_back(1); ans.push_back(i); } from++; } while (from <= min(to, n - 2)) { ans.push_back(from + 1); for (long long i = from + 2; i < n; i++) { ans.push_back(i); ans.push_back(from + 1); } ans.push_back(n); from++; } ans.push_back(1); rto--; long long val = 0; if (rto != -1) val = (n - 1) * 2 + (n - 2) * (n - 1) - (n - 1 - rto) * (n - 2 - rto); r -= val; l -= val; for (long long i = l - 1; i < r; i++) cout << ans[i] << " "; } signed main() { long long t; cin >> t; while (t--) { solve(); cout << endl; } return 0; }
1334_D. Minimum Euler Cycle
You are given a complete directed graph K_n with n vertices: each pair of vertices u β‰  v in K_n have both directed edges (u, v) and (v, u); there are no self-loops. You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices). We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 β€” a visiting order, where each (v_i, v_{i + 1}) occurs exactly once. Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists. Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r. Input The first line contains the single integer T (1 ≀ T ≀ 100) β€” the number of test cases. Next T lines contain test cases β€” one per line. The first and only line of each test case contains three integers n, l and r (2 ≀ n ≀ 10^5, 1 ≀ l ≀ r ≀ n(n - 1) + 1, r - l + 1 ≀ 10^5) β€” the number of vertices in K_n, and segment of the cycle to print. It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5. Output For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once. Example Input 3 2 1 3 3 3 6 99995 9998900031 9998900031 Output 1 2 1 1 3 2 3 1 Note In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1. In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
{ "input": [ "3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n" ], "output": [ "1 2 1 \n1 3 2 3 \n1 \n" ] }
{ "input": [ "1\n2 2 3\n", "1\n4 13 13\n", "1\n3 1 1\n", "10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n", "1\n3 7 7\n", "1\n25 30 295\n", "1\n4 12 13\n", "5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n", "1\n5 4 4\n" ], "output": [ "2 1 \n", "1 \n", "1 \n", "1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n", "1 \n", "16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n", "4 1 \n", "1 \n1 \n1 \n1 \n7 1 \n", "3 \n" ] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const long long N = 2e5 + 10; long long n; long long pre[N]; long long cal(long long x) { if (x == n * (n - 1) + 1) return 1; long long p = lower_bound(pre + 1, pre + n + 1, x) - pre; long long b = x - pre[p - 1]; if (b & 1) return p; else return p + b / 2; } signed main() { long long t; cin >> t; while (t--) { long long l, r; cin >> n >> l >> r; for (long long i = 1; i <= n; i++) pre[i] = pre[i - 1] + 2 * (n - i); for (long long i = l; i <= r; i++) cout << cal(i) << " "; puts(""); } return 0; }
1334_D. Minimum Euler Cycle
You are given a complete directed graph K_n with n vertices: each pair of vertices u β‰  v in K_n have both directed edges (u, v) and (v, u); there are no self-loops. You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices). We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 β€” a visiting order, where each (v_i, v_{i + 1}) occurs exactly once. Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists. Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r. Input The first line contains the single integer T (1 ≀ T ≀ 100) β€” the number of test cases. Next T lines contain test cases β€” one per line. The first and only line of each test case contains three integers n, l and r (2 ≀ n ≀ 10^5, 1 ≀ l ≀ r ≀ n(n - 1) + 1, r - l + 1 ≀ 10^5) β€” the number of vertices in K_n, and segment of the cycle to print. It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5. Output For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once. Example Input 3 2 1 3 3 3 6 99995 9998900031 9998900031 Output 1 2 1 1 3 2 3 1 Note In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1. In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
{ "input": [ "3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n" ], "output": [ "1 2 1 \n1 3 2 3 \n1 \n" ] }
{ "input": [ "1\n2 2 3\n", "1\n4 13 13\n", "1\n3 1 1\n", "10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n", "1\n3 7 7\n", "1\n25 30 295\n", "1\n4 12 13\n", "5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n", "1\n5 4 4\n" ], "output": [ "2 1 \n", "1 \n", "1 \n", "1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n", "1 \n", "16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n", "4 1 \n", "1 \n1 \n1 \n1 \n7 1 \n", "3 \n" ] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; using ll = long long; using PII = pair<int, int>; using VI = vector<int>; int main() { ios_base::sync_with_stdio(false); cin.tie(NULL); int t; cin >> t; while (t--) { int n; ll l, r; cin >> n >> l >> r; ll pre = 1; VI ans; for (int s = 1; s < n; s++) { ll len = 2 * (n - s); if (l < pre + len && r >= pre) { for (int i = s + 1; i <= n; i++) { if (pre >= l && pre <= r) { ans.push_back(s); } pre++; if (pre >= l && pre <= r) { ans.push_back(i); } pre++; } } else { pre += len; } } if (r == n * 1ll * (n - 1) + 1) ans.push_back(1); for (int u : ans) cout << u << ' '; cout << '\n'; } return 0; }
1334_D. Minimum Euler Cycle
You are given a complete directed graph K_n with n vertices: each pair of vertices u β‰  v in K_n have both directed edges (u, v) and (v, u); there are no self-loops. You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices). We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 β€” a visiting order, where each (v_i, v_{i + 1}) occurs exactly once. Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists. Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r. Input The first line contains the single integer T (1 ≀ T ≀ 100) β€” the number of test cases. Next T lines contain test cases β€” one per line. The first and only line of each test case contains three integers n, l and r (2 ≀ n ≀ 10^5, 1 ≀ l ≀ r ≀ n(n - 1) + 1, r - l + 1 ≀ 10^5) β€” the number of vertices in K_n, and segment of the cycle to print. It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5. Output For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once. Example Input 3 2 1 3 3 3 6 99995 9998900031 9998900031 Output 1 2 1 1 3 2 3 1 Note In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1. In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
{ "input": [ "3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n" ], "output": [ "1 2 1 \n1 3 2 3 \n1 \n" ] }
{ "input": [ "1\n2 2 3\n", "1\n4 13 13\n", "1\n3 1 1\n", "10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n", "1\n3 7 7\n", "1\n25 30 295\n", "1\n4 12 13\n", "5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n", "1\n5 4 4\n" ], "output": [ "2 1 \n", "1 \n", "1 \n", "1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n", "1 \n", "16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n", "4 1 \n", "1 \n1 \n1 \n1 \n7 1 \n", "3 \n" ] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; long long int mod = 1000000007; inline long long int gcd(long long int a, long long int b) { return (b == 0) ? a : gcd(b, a % b); } inline long long int lcm(long long int a, long long int b) { return (a * b) / gcd(a, b); } inline long long int mymod(long long int A, long long int M) { return ((A % M) + M) % M; } template <class type> type power(type x, long long int n) { type temp; long long int y = n; if (y == 0) return 1; temp = power(x, y / 2); return ((y % 2) ? ((y > 0) ? x * temp * temp : (temp * temp) / x) : temp * temp); } template <typename Arg, typename... Args> void db(Arg&& arg, Args&&... args) { cout << std::forward<Arg>(arg); using expander = long long int[]; (void)expander{0, (void(cout << ',' << std::forward<Args>(args)), 0)...}; cout << "\n"; } void IO_FILE() { ios_base::sync_with_stdio(0); cin.tie(0); cout.tie(0); } inline void solve() { long long int n, l, r; cin >> n >> l >> r; if (l == n * (n - 1) + 1) { cout << 1 << " "; return; } long long int st = 1; long long int cnt = 0; while (cnt < l) { cnt += 2 * (n - st); if (st == n) { cnt++; break; } st++; } st--; cnt -= 2 * (n - st); long long int w, f = 1, j = st + 1; while (cnt < l) { f ? w = st : w = j++; f = 1 - f; cnt++; } if (w != st) { cout << w << " "; l++; } f = 1; while (j <= n and l <= r) { f ? cout << st << " " : cout << j++ << " "; f = 1 - f; l++; } st++; while (l <= r) { f = 1; j = st + 1; if (st == n) { break; } while (j <= n and l <= r) { f ? cout << st << " " : cout << j++ << " "; f = 1 - f; l++; } st++; } if (r == n * (n - 1) + 1) { cout << 1 << " "; } cout << "\n"; } int32_t main() { IO_FILE(); long long int t; cin >> t; while (t--) { solve(); } return 0; }
1334_D. Minimum Euler Cycle
You are given a complete directed graph K_n with n vertices: each pair of vertices u β‰  v in K_n have both directed edges (u, v) and (v, u); there are no self-loops. You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices). We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 β€” a visiting order, where each (v_i, v_{i + 1}) occurs exactly once. Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists. Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r. Input The first line contains the single integer T (1 ≀ T ≀ 100) β€” the number of test cases. Next T lines contain test cases β€” one per line. The first and only line of each test case contains three integers n, l and r (2 ≀ n ≀ 10^5, 1 ≀ l ≀ r ≀ n(n - 1) + 1, r - l + 1 ≀ 10^5) β€” the number of vertices in K_n, and segment of the cycle to print. It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5. Output For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once. Example Input 3 2 1 3 3 3 6 99995 9998900031 9998900031 Output 1 2 1 1 3 2 3 1 Note In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1. In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
{ "input": [ "3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n" ], "output": [ "1 2 1 \n1 3 2 3 \n1 \n" ] }
{ "input": [ "1\n2 2 3\n", "1\n4 13 13\n", "1\n3 1 1\n", "10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n", "1\n3 7 7\n", "1\n25 30 295\n", "1\n4 12 13\n", "5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n", "1\n5 4 4\n" ], "output": [ "2 1 \n", "1 \n", "1 \n", "1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n", "1 \n", "16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n", "4 1 \n", "1 \n1 \n1 \n1 \n7 1 \n", "3 \n" ] }
CORRECT
java
// package EducationalRound85; import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.util.StringTokenizer; public class ProblemD { public static void main(String[] args)throws IOException { BufferedReader br=new BufferedReader(new InputStreamReader(System.in)); int test=Integer.parseInt(br.readLine()); StringBuilder print=new StringBuilder(); while(test--!=0){ StringTokenizer st=new StringTokenizer(br.readLine()); int n=Integer.parseInt(st.nextToken()); long l=Long.parseLong(st.nextToken()); long r=Long.parseLong(st.nextToken()); long sum[]=new long[n+1]; build(sum); int ind=search(sum,l,n); if(ind==-1){ print.append("1\n"); continue; } long rem=l-sum[ind-1]; long end=(1l*n*(n-1))+1; // System.out.println(end); if(rem%2==0){ long p=ind; long curr=p+rem/2; boolean chance=false; while(l<=r){ if(l==end){ print.append("1"); break; } if(chance){ print.append(p+" "); chance=false; } else{ print.append(curr+" "); chance=true; curr++; if(curr>n){ p++; curr=p+1; } } l++; } } else{ long p=ind; long curr=p+rem/2+1; boolean chance=true; while(l<=r){ if(l==end){ print.append("1"); break; } if(chance){ print.append(p+" "); chance=false; } else{ print.append(curr+" "); chance=true; curr++; if(curr>n){ p++; curr=p+1; } } l++; } } print.append("\n"); } System.out.print(print.toString()); } public static void build(long sum[]){ int n=sum.length-1; for(int i=1;i<=n;i++){ long curr=2l*(n-i); sum[i]=sum[i-1]+curr; } return; } public static int search(long sum[],long l,int n){ int ans=-1; int low=1,high=n-1; while(low<=high){ int mid=(low+high)/2; if(sum[mid]>=l){ ans=mid; high=mid-1; } else{ low=mid+1; } } return ans; } }
1334_D. Minimum Euler Cycle
You are given a complete directed graph K_n with n vertices: each pair of vertices u β‰  v in K_n have both directed edges (u, v) and (v, u); there are no self-loops. You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices). We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 β€” a visiting order, where each (v_i, v_{i + 1}) occurs exactly once. Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists. Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r. Input The first line contains the single integer T (1 ≀ T ≀ 100) β€” the number of test cases. Next T lines contain test cases β€” one per line. The first and only line of each test case contains three integers n, l and r (2 ≀ n ≀ 10^5, 1 ≀ l ≀ r ≀ n(n - 1) + 1, r - l + 1 ≀ 10^5) β€” the number of vertices in K_n, and segment of the cycle to print. It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5. Output For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once. Example Input 3 2 1 3 3 3 6 99995 9998900031 9998900031 Output 1 2 1 1 3 2 3 1 Note In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1. In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
{ "input": [ "3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n" ], "output": [ "1 2 1 \n1 3 2 3 \n1 \n" ] }
{ "input": [ "1\n2 2 3\n", "1\n4 13 13\n", "1\n3 1 1\n", "10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n", "1\n3 7 7\n", "1\n25 30 295\n", "1\n4 12 13\n", "5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n", "1\n5 4 4\n" ], "output": [ "2 1 \n", "1 \n", "1 \n", "1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n", "1 \n", "16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n", "4 1 \n", "1 \n1 \n1 \n1 \n7 1 \n", "3 \n" ] }
CORRECT
python3
# -*- coding: utf-8 -*- import sys from itertools import accumulate def input(): return sys.stdin.readline().strip() def list2d(a, b, c): return [[c] * b for i in range(a)] def list3d(a, b, c, d): return [[[d] * c for j in range(b)] for i in range(a)] def list4d(a, b, c, d, e): return [[[[e] * d for j in range(c)] for j in range(b)] for i in range(a)] def ceil(x, y=1): return int(-(-x // y)) def INT(): return int(input()) def MAP(): return map(int, input().split()) def LIST(N=None): return list(MAP()) if N is None else [INT() for i in range(N)] def Yes(): print('Yes') def No(): print('No') def YES(): print('YES') def NO(): print('NO') INF = 10 ** 18 MOD = 10 ** 9 + 7 def gen_arr(v): if N - v == 0: return [1] n = (N-v) * 2 res = [0] * n x = v + 1 for i in range(n): if i % 2 == 0: res[i] = v else: res[i] = x x += 1 return res for _ in range(INT()): N, l, r = MAP() l -= 1 ans = [] cur = 0 v = 1 incr = (N-1) * 2 while cur + incr < l: cur += incr v += 1 incr -= 2 ans = gen_arr(v) ans = ans[l-cur:] ln = r - l v += 1 while len(ans) < ln: ans += gen_arr(v) v += 1 ans = ans[:ln] print(*ans)
1334_D. Minimum Euler Cycle
You are given a complete directed graph K_n with n vertices: each pair of vertices u β‰  v in K_n have both directed edges (u, v) and (v, u); there are no self-loops. You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices). We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 β€” a visiting order, where each (v_i, v_{i + 1}) occurs exactly once. Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists. Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r. Input The first line contains the single integer T (1 ≀ T ≀ 100) β€” the number of test cases. Next T lines contain test cases β€” one per line. The first and only line of each test case contains three integers n, l and r (2 ≀ n ≀ 10^5, 1 ≀ l ≀ r ≀ n(n - 1) + 1, r - l + 1 ≀ 10^5) β€” the number of vertices in K_n, and segment of the cycle to print. It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5. Output For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once. Example Input 3 2 1 3 3 3 6 99995 9998900031 9998900031 Output 1 2 1 1 3 2 3 1 Note In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1. In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
{ "input": [ "3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n" ], "output": [ "1 2 1 \n1 3 2 3 \n1 \n" ] }
{ "input": [ "1\n2 2 3\n", "1\n4 13 13\n", "1\n3 1 1\n", "10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n", "1\n3 7 7\n", "1\n25 30 295\n", "1\n4 12 13\n", "5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n", "1\n5 4 4\n" ], "output": [ "2 1 \n", "1 \n", "1 \n", "1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n", "1 \n", "16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n", "4 1 \n", "1 \n1 \n1 \n1 \n7 1 \n", "3 \n" ] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int N = 3e5 + 5; const double pi = acos(-1.0); const long long int inf = 0x3f3f3f3f3f3f3f3f; const long long int mod = 998244353; bool isPowerOfTwo(int x) { return x && (!(x & (x - 1))); } void fast() { ios::sync_with_stdio(0); cin.tie(0); cout.tie(0); } long long int power(long long int x, long long int y, long long int p) { long long int res = 1; x = x % p; while (y > 0) { if (y & 1) res = (res * x) % p; y = y >> 1; x = (x * x) % p; } return res; } long long int modInverse(long long int n, long long int p) { return power(n, p - 2, p); } int main() { ios_base::sync_with_stdio(false); cin.tie(NULL); cout.tie(NULL); long long int t; cin >> t; while (t--) { long long int n, l, r; cin >> n >> l >> r; long long int k1 = 0, k2 = 0, i1, i2; for (i2 = 1; i2 < n; i2++) { k2 += 2 * (n - i2); if (k2 >= r) break; } for (i1 = 1; i1 < n; i1++) { k1 += 2 * (n - i1); if (k1 >= l) break; } i2++; vector<long long int> v, a; k1 -= (n - i1) * 2; for (int i = i1; i < i2; i++) { for (int j = i + 1; j < n + 1; j++) { a.emplace_back(i); a.emplace_back(j); } } for (long long int i = l; i <= r; i++) { if (i == (n * (n - 1) + 1)) cout << "1 "; else cout << a[i - k1 - 1] << " "; } cout << '\n'; } return 0; }
1334_D. Minimum Euler Cycle
You are given a complete directed graph K_n with n vertices: each pair of vertices u β‰  v in K_n have both directed edges (u, v) and (v, u); there are no self-loops. You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices). We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 β€” a visiting order, where each (v_i, v_{i + 1}) occurs exactly once. Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists. Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r. Input The first line contains the single integer T (1 ≀ T ≀ 100) β€” the number of test cases. Next T lines contain test cases β€” one per line. The first and only line of each test case contains three integers n, l and r (2 ≀ n ≀ 10^5, 1 ≀ l ≀ r ≀ n(n - 1) + 1, r - l + 1 ≀ 10^5) β€” the number of vertices in K_n, and segment of the cycle to print. It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5. Output For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once. Example Input 3 2 1 3 3 3 6 99995 9998900031 9998900031 Output 1 2 1 1 3 2 3 1 Note In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1. In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
{ "input": [ "3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n" ], "output": [ "1 2 1 \n1 3 2 3 \n1 \n" ] }
{ "input": [ "1\n2 2 3\n", "1\n4 13 13\n", "1\n3 1 1\n", "10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n", "1\n3 7 7\n", "1\n25 30 295\n", "1\n4 12 13\n", "5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n", "1\n5 4 4\n" ], "output": [ "2 1 \n", "1 \n", "1 \n", "1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n", "1 \n", "16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n", "4 1 \n", "1 \n1 \n1 \n1 \n7 1 \n", "3 \n" ] }
CORRECT
java
// package com.company; import java.util.*; import java.lang.*; import java.io.*; //****Use Integer Wrapper Class for Arrays.sort()**** public class CH4 { public static void main(String[] Args){ FastReader scan=new FastReader(); int t=scan.nextInt(); StringBuilder fp=new StringBuilder(); while(t-->0){ long n=scan.nextInt(); long l=scan.nextLong(); long r=scan.nextLong(); StringBuilder print=new StringBuilder(); long cur=0; boolean lf=false; long ib=-1; for(long i=1;i<n;i++){ long tba=(n-i)*2; if(cur+tba<l){ cur+=tba; }else{ // System.out.println(i); long fa=l-cur; if(fa%2!=0&&l<=r){ print.append(i+" "); fa++; l++; } if(fa%2==0&&l<=r){ print.append((i+fa/2)+" "); l++; } long rem=(tba-fa)/2; for(long j=n-rem+1;j<=n&&l<=r;j++){ print.append(i+" "); l++; if(l<=r){ print.append(j+" "); l++; } } ib=i+1; break; } } if(l<=r){ for(long i=ib;ib!=-1&&i<n&&l<=r;i++){ long j=i+1; while(j<=n){ if(l<=r){ print.append(i+" "); l++; } if(l<=r){ print.append(j+" "); l++; } j++; } } if(l<=r){ print.append(1); } } fp.append(print+"\n"); } System.out.println(fp); } static class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } // double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } }
1334_D. Minimum Euler Cycle
You are given a complete directed graph K_n with n vertices: each pair of vertices u β‰  v in K_n have both directed edges (u, v) and (v, u); there are no self-loops. You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices). We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 β€” a visiting order, where each (v_i, v_{i + 1}) occurs exactly once. Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists. Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r. Input The first line contains the single integer T (1 ≀ T ≀ 100) β€” the number of test cases. Next T lines contain test cases β€” one per line. The first and only line of each test case contains three integers n, l and r (2 ≀ n ≀ 10^5, 1 ≀ l ≀ r ≀ n(n - 1) + 1, r - l + 1 ≀ 10^5) β€” the number of vertices in K_n, and segment of the cycle to print. It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5. Output For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once. Example Input 3 2 1 3 3 3 6 99995 9998900031 9998900031 Output 1 2 1 1 3 2 3 1 Note In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1. In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
{ "input": [ "3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n" ], "output": [ "1 2 1 \n1 3 2 3 \n1 \n" ] }
{ "input": [ "1\n2 2 3\n", "1\n4 13 13\n", "1\n3 1 1\n", "10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n", "1\n3 7 7\n", "1\n25 30 295\n", "1\n4 12 13\n", "5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n", "1\n5 4 4\n" ], "output": [ "2 1 \n", "1 \n", "1 \n", "1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n", "1 \n", "16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n", "4 1 \n", "1 \n1 \n1 \n1 \n7 1 \n", "3 \n" ] }
CORRECT
java
import java.util.*; import java.io.*; import java.math.*; public class Main { public static void process(int test_number)throws IOException { long n = nl(), l = nl(), r = nl(), termNum = 1; for(long start = 1l; start <= n - 1 && termNum <= r; start++){ if(termNum + (n - start) * 2l - 1l < l){ termNum += (n - start) * 2l; continue; } for(long j = start + 1l; j <= n && termNum <= r; j++){ if(termNum >= l && termNum <= r) p(start + " "); ++termNum; if(termNum >= l && termNum <= r) p(j + " "); ++termNum; } } if(termNum >= l && termNum <= r) p("1 "); p('\n'); } static final long mod = (long)1e9+7l; static boolean DEBUG = true; static FastReader sc; static PrintWriter out; public static void main(String[]args)throws IOException { out = new PrintWriter(System.out); sc = new FastReader(); long s = System.currentTimeMillis(); int t = 1; t = ni(); for(int i = 1; i <= t; i++) process(i); out.flush(); System.err.println(System.currentTimeMillis()-s+"ms"); } static void trace(Object... o){ if(!DEBUG) return; System.err.println(Arrays.deepToString(o)); }; static void pn(Object o){ out.println(o); } static void p(Object o){ out.print(o); } static int ni()throws IOException{ return Integer.parseInt(sc.next()); } static long nl()throws IOException{ return Long.parseLong(sc.next()); } static double nd()throws IOException{ return Double.parseDouble(sc.next()); } static String nln()throws IOException{ return sc.nextLine(); } static long gcd(long a, long b){ return (b==0)?a:gcd(b,a%b);} static int gcd(int a, int b){ return (b==0)?a:gcd(b,a%b); } static class FastReader{ BufferedReader br; StringTokenizer st; public FastReader(){ br = new BufferedReader(new InputStreamReader(System.in)); } String next(){ while (st == null || !st.hasMoreElements()){ try{ st = new StringTokenizer(br.readLine()); } catch (IOException e){ e.printStackTrace(); } } return st.nextToken(); } String nextLine(){ String str = ""; try{ str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } }
1334_D. Minimum Euler Cycle
You are given a complete directed graph K_n with n vertices: each pair of vertices u β‰  v in K_n have both directed edges (u, v) and (v, u); there are no self-loops. You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices). We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 β€” a visiting order, where each (v_i, v_{i + 1}) occurs exactly once. Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists. Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r. Input The first line contains the single integer T (1 ≀ T ≀ 100) β€” the number of test cases. Next T lines contain test cases β€” one per line. The first and only line of each test case contains three integers n, l and r (2 ≀ n ≀ 10^5, 1 ≀ l ≀ r ≀ n(n - 1) + 1, r - l + 1 ≀ 10^5) β€” the number of vertices in K_n, and segment of the cycle to print. It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5. Output For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once. Example Input 3 2 1 3 3 3 6 99995 9998900031 9998900031 Output 1 2 1 1 3 2 3 1 Note In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1. In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
{ "input": [ "3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n" ], "output": [ "1 2 1 \n1 3 2 3 \n1 \n" ] }
{ "input": [ "1\n2 2 3\n", "1\n4 13 13\n", "1\n3 1 1\n", "10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n", "1\n3 7 7\n", "1\n25 30 295\n", "1\n4 12 13\n", "5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n", "1\n5 4 4\n" ], "output": [ "2 1 \n", "1 \n", "1 \n", "1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n", "1 \n", "16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n", "4 1 \n", "1 \n1 \n1 \n1 \n7 1 \n", "3 \n" ] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; long long int mod = 1e9 + 7; int I_INF = 2e9; long long int L_INF = 1e18; void solve() { long long int n, i, j, l, r, index, ctr, num; cin >> n >> l >> r; vector<long long int> vect(n, 0); vect[0] = 2 * (n - 1); for (i = 1; i < n; i++) { vect[i] = 2 * (n - 1 - i); vect[i] += vect[i - 1]; } vect[n - 1]++; index = (long long int)(lower_bound(vect.begin(), vect.end(), l) - vect.begin()); ctr = (index > 0) ? vect[index - 1] : 0; while (ctr < r) { if (index == (n - 1)) { ctr++; if (ctr >= l && ctr <= r) cout << 1 << " "; } else { for (i = index + 1; i < n; i++) { ctr++; num = index + 1; if (ctr >= l && ctr <= r) cout << num << " "; ctr++; num = i + 1; if (ctr >= l && ctr <= r) cout << num << " "; } } index++; } cout << endl; return; } int main() { ios_base::sync_with_stdio(false); cin.tie(NULL); cout.tie(NULL); int t; cin >> t; while (t--) { solve(); } return 0; }
1334_D. Minimum Euler Cycle
You are given a complete directed graph K_n with n vertices: each pair of vertices u β‰  v in K_n have both directed edges (u, v) and (v, u); there are no self-loops. You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices). We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 β€” a visiting order, where each (v_i, v_{i + 1}) occurs exactly once. Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists. Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r. Input The first line contains the single integer T (1 ≀ T ≀ 100) β€” the number of test cases. Next T lines contain test cases β€” one per line. The first and only line of each test case contains three integers n, l and r (2 ≀ n ≀ 10^5, 1 ≀ l ≀ r ≀ n(n - 1) + 1, r - l + 1 ≀ 10^5) β€” the number of vertices in K_n, and segment of the cycle to print. It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5. Output For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once. Example Input 3 2 1 3 3 3 6 99995 9998900031 9998900031 Output 1 2 1 1 3 2 3 1 Note In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1. In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
{ "input": [ "3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n" ], "output": [ "1 2 1 \n1 3 2 3 \n1 \n" ] }
{ "input": [ "1\n2 2 3\n", "1\n4 13 13\n", "1\n3 1 1\n", "10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n", "1\n3 7 7\n", "1\n25 30 295\n", "1\n4 12 13\n", "5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n", "1\n5 4 4\n" ], "output": [ "2 1 \n", "1 \n", "1 \n", "1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n", "1 \n", "16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n", "4 1 \n", "1 \n1 \n1 \n1 \n7 1 \n", "3 \n" ] }
CORRECT
python3
import io import os from collections import Counter, defaultdict, deque def solve(N, L, R): M = R - L + 1 ans = [] count = 0 done = False for i in range(N - 1, -1, -1): if count + 2 * i < L: count += 2 * i else: curr = N - i for j in range(curr + 1, N + 1): if count + 1 >= L: ans.append(str(curr)) if len(ans) == M: done = True break count += 1 if count + 1 >= L: ans.append(str(j)) if len(ans) == M: done = True break count += 1 if done: break if len(ans) < M: ans.append("1") return " ".join(ans) if __name__ == "__main__": input = io.BytesIO(os.read(0, os.fstat(0).st_size)).readline T = int(input()) for t in range(T): N, L, R = [int(x) for x in input().split()] ans = solve(N, L, R) print(ans)
1334_D. Minimum Euler Cycle
You are given a complete directed graph K_n with n vertices: each pair of vertices u β‰  v in K_n have both directed edges (u, v) and (v, u); there are no self-loops. You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices). We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 β€” a visiting order, where each (v_i, v_{i + 1}) occurs exactly once. Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists. Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r. Input The first line contains the single integer T (1 ≀ T ≀ 100) β€” the number of test cases. Next T lines contain test cases β€” one per line. The first and only line of each test case contains three integers n, l and r (2 ≀ n ≀ 10^5, 1 ≀ l ≀ r ≀ n(n - 1) + 1, r - l + 1 ≀ 10^5) β€” the number of vertices in K_n, and segment of the cycle to print. It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5. Output For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once. Example Input 3 2 1 3 3 3 6 99995 9998900031 9998900031 Output 1 2 1 1 3 2 3 1 Note In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1. In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
{ "input": [ "3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n" ], "output": [ "1 2 1 \n1 3 2 3 \n1 \n" ] }
{ "input": [ "1\n2 2 3\n", "1\n4 13 13\n", "1\n3 1 1\n", "10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n", "1\n3 7 7\n", "1\n25 30 295\n", "1\n4 12 13\n", "5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n", "1\n5 4 4\n" ], "output": [ "2 1 \n", "1 \n", "1 \n", "1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n", "1 \n", "16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n", "4 1 \n", "1 \n1 \n1 \n1 \n7 1 \n", "3 \n" ] }
CORRECT
java
//package er85; import java.io.BufferedReader; import java.io.IOException; import java.io.InputStream; import java.io.InputStreamReader; import java.io.OutputStream; import java.io.PrintWriter; import java.util.Scanner; import java.util.Stack; import java.util.StringTokenizer; public class fourth { static int n; // static StringBuilder f(long l, long, r, StringBuilder sb) { // } public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader(inputStream); PrintWriter out = new PrintWriter(outputStream); int T = in.nextInt(); for (int i=0;i<T;i++) { n = in.nextInt(); long l = in.nextLong()-1; long r = in.nextLong(); StringBuilder ans = new StringBuilder(); long index = 0L; for (int j=n-1;j>=1;j--) { long a = index; long b = index+2*j; if (b<=l || r<=a) { } else { int[] nums = new int[2*j]; for (int k=0;k<j;k++) { nums[2*k] = n-j; nums[2*k+1] = n-j+k+1; } for (long k=Math.max(l, a);k<Math.min(r, b);k++) { ans.append(nums[(int)(k-a)]); ans.append(" "); } } index += 2*j; } if (r==(long)n*(n-1)+1) { ans.append(1); ans.append(" "); } ans.deleteCharAt(ans.length()-1); out.println(ans); // StringBuilde sb = new StringBuilder(); // out.println(f(l, r, sb)); } out.close(); } static class InputReader { public BufferedReader reader; public StringTokenizer tokenizer; public InputReader(InputStream stream) { reader = new BufferedReader(new InputStreamReader(stream), 32768); tokenizer = null; } public String next() { while (tokenizer == null || !tokenizer.hasMoreTokens()) { try { tokenizer = new StringTokenizer(reader.readLine()); } catch (IOException e) { throw new RuntimeException(e); } } return tokenizer.nextToken(); } public int nextInt() { return Integer.parseInt(next()); } public long nextLong() { return Long.parseLong(next()); } } }
1334_D. Minimum Euler Cycle
You are given a complete directed graph K_n with n vertices: each pair of vertices u β‰  v in K_n have both directed edges (u, v) and (v, u); there are no self-loops. You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices). We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 β€” a visiting order, where each (v_i, v_{i + 1}) occurs exactly once. Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists. Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r. Input The first line contains the single integer T (1 ≀ T ≀ 100) β€” the number of test cases. Next T lines contain test cases β€” one per line. The first and only line of each test case contains three integers n, l and r (2 ≀ n ≀ 10^5, 1 ≀ l ≀ r ≀ n(n - 1) + 1, r - l + 1 ≀ 10^5) β€” the number of vertices in K_n, and segment of the cycle to print. It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5. Output For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once. Example Input 3 2 1 3 3 3 6 99995 9998900031 9998900031 Output 1 2 1 1 3 2 3 1 Note In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1. In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
{ "input": [ "3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n" ], "output": [ "1 2 1 \n1 3 2 3 \n1 \n" ] }
{ "input": [ "1\n2 2 3\n", "1\n4 13 13\n", "1\n3 1 1\n", "10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n", "1\n3 7 7\n", "1\n25 30 295\n", "1\n4 12 13\n", "5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n", "1\n5 4 4\n" ], "output": [ "2 1 \n", "1 \n", "1 \n", "1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n", "1 \n", "16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n", "4 1 \n", "1 \n1 \n1 \n1 \n7 1 \n", "3 \n" ] }
CORRECT
python3
from bisect import bisect_left as bl from bisect import bisect_right as br from heapq import heappush,heappop import math from collections import * from functools import reduce,cmp_to_key import sys input = sys.stdin.readline M = mod = 998244353 def factors(n):return sorted(set(reduce(list.__add__, ([i, n//i] for i in range(1, int(n**0.5) + 1) if n % i == 0)))) def inv_mod(n):return pow(n, mod - 2, mod) def li():return [int(i) for i in input().rstrip('\n').split()] def st():return input().rstrip('\n') def val():return int(input().rstrip('\n')) def li2():return [i for i in input().rstrip('\n')] def li3():return [int(i) for i in input().rstrip('\n')] for _ in range(val()): n,l,r = li() orig = r l -= 1 r -= l currleft = 0 curs = n - 1 while curs and currleft + 2*curs <= l: currleft += 2*curs curs -= 1 start = n - curs ans = [] head = start l -= currleft last = head + 1 half = 0 while l: half = 1 start = last last += 1 l -= 1 if not l:break half = 0 start = head l -= 1 if half: ans.append(start) if last == n + 1: head += 1 last = head + 1 start = head r -= 1 while r: ans.append(start) r -= 1 if not r:break start = last ans.append(start) last += 1 if last == n + 1: head += 1 last = head + 1 r -= 1 start = head if orig == n*(n-1) + 1: ans[-1] = 1 print(*ans)
1334_D. Minimum Euler Cycle
You are given a complete directed graph K_n with n vertices: each pair of vertices u β‰  v in K_n have both directed edges (u, v) and (v, u); there are no self-loops. You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices). We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 β€” a visiting order, where each (v_i, v_{i + 1}) occurs exactly once. Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists. Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r. Input The first line contains the single integer T (1 ≀ T ≀ 100) β€” the number of test cases. Next T lines contain test cases β€” one per line. The first and only line of each test case contains three integers n, l and r (2 ≀ n ≀ 10^5, 1 ≀ l ≀ r ≀ n(n - 1) + 1, r - l + 1 ≀ 10^5) β€” the number of vertices in K_n, and segment of the cycle to print. It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5. Output For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once. Example Input 3 2 1 3 3 3 6 99995 9998900031 9998900031 Output 1 2 1 1 3 2 3 1 Note In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1. In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
{ "input": [ "3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n" ], "output": [ "1 2 1 \n1 3 2 3 \n1 \n" ] }
{ "input": [ "1\n2 2 3\n", "1\n4 13 13\n", "1\n3 1 1\n", "10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n", "1\n3 7 7\n", "1\n25 30 295\n", "1\n4 12 13\n", "5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n", "1\n5 4 4\n" ], "output": [ "2 1 \n", "1 \n", "1 \n", "1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n", "1 \n", "16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n", "4 1 \n", "1 \n1 \n1 \n1 \n7 1 \n", "3 \n" ] }
CORRECT
java
import java.io.*; import java.util.*; public class Main { public static void main(String[] args) throws IOException { FastScanner f = new FastScanner(); int t=1; t=f.nextInt(); PrintWriter out=new PrintWriter(System.out); for(int tt=0;tt<t;tt++) { int n=f.nextInt(); long L=f.nextLong()-1; long R=f.nextLong()-1; long base = 0; for(int i = 1;i <= n-1;i++){ long len = 2*(n-i)-1; if(Math.max(base, L) <= Math.min(base+len-1, R)){ for(int j = 0;j < len;j++){ if(L <= base+j && base+j <= R){ if(j % 2 == 0){ out.print(i + " "); }else{ out.print(j/2+i+1 + " "); } } } } base += len; if(L <= base && base <= R){ out.print(n + " "); } base++; } if(L <= base && base <= R){ out.print(1 + " "); } base++; out.println(); } out.close(); } static void sort(int [] a) { ArrayList<Integer> q = new ArrayList<>(); for (int i: a) q.add(i); Collections.sort(q); for (int i = 0; i < a.length; i++) a[i] = q.get(i); } static class FastScanner { BufferedReader br=new BufferedReader(new InputStreamReader(System.in)); StringTokenizer st=new StringTokenizer(""); String next() { while (!st.hasMoreTokens()) try { st=new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } int[] readArray(int n) { int[] a=new int[n]; for (int i=0; i<n; i++) a[i]=nextInt(); return a; } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } long[] readLongArray(int n) { long[] a=new long[n]; for (int i=0; i<n; i++) a[i]=nextLong(); return a; } } } //Some things to notice //Check for the overflow //Binary Search //Bitmask
1334_D. Minimum Euler Cycle
You are given a complete directed graph K_n with n vertices: each pair of vertices u β‰  v in K_n have both directed edges (u, v) and (v, u); there are no self-loops. You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices). We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 β€” a visiting order, where each (v_i, v_{i + 1}) occurs exactly once. Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists. Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r. Input The first line contains the single integer T (1 ≀ T ≀ 100) β€” the number of test cases. Next T lines contain test cases β€” one per line. The first and only line of each test case contains three integers n, l and r (2 ≀ n ≀ 10^5, 1 ≀ l ≀ r ≀ n(n - 1) + 1, r - l + 1 ≀ 10^5) β€” the number of vertices in K_n, and segment of the cycle to print. It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5. Output For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once. Example Input 3 2 1 3 3 3 6 99995 9998900031 9998900031 Output 1 2 1 1 3 2 3 1 Note In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1. In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
{ "input": [ "3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n" ], "output": [ "1 2 1 \n1 3 2 3 \n1 \n" ] }
{ "input": [ "1\n2 2 3\n", "1\n4 13 13\n", "1\n3 1 1\n", "10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n", "1\n3 7 7\n", "1\n25 30 295\n", "1\n4 12 13\n", "5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n", "1\n5 4 4\n" ], "output": [ "2 1 \n", "1 \n", "1 \n", "1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n", "1 \n", "16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n", "4 1 \n", "1 \n1 \n1 \n1 \n7 1 \n", "3 \n" ] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; long long gcd(long long n, long long m) { return n % m == 0 ? m : gcd(m, n % m); } long long getNum(long long x, long long n, long long pre, long long k) { if (k >= n) return 1; if ((x - pre) & 1) return k; else return k + (x - pre) / 2; } int main() { ios::sync_with_stdio(false); int T; cin >> T; while (T--) { long long n, l, r; cin >> n >> l >> r; long long pre = 0; long long Next = 2 * (n - 1); long long k = 1; for (long long i = l; i <= r; i++) { while (i > Next && k != n) { pre = Next; Next += 2 * (n - k - 1); k++; } cout << getNum(i, n, pre, k) << " "; } cout << endl; } return 0; }
1334_D. Minimum Euler Cycle
You are given a complete directed graph K_n with n vertices: each pair of vertices u β‰  v in K_n have both directed edges (u, v) and (v, u); there are no self-loops. You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices). We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 β€” a visiting order, where each (v_i, v_{i + 1}) occurs exactly once. Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists. Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r. Input The first line contains the single integer T (1 ≀ T ≀ 100) β€” the number of test cases. Next T lines contain test cases β€” one per line. The first and only line of each test case contains three integers n, l and r (2 ≀ n ≀ 10^5, 1 ≀ l ≀ r ≀ n(n - 1) + 1, r - l + 1 ≀ 10^5) β€” the number of vertices in K_n, and segment of the cycle to print. It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5. Output For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once. Example Input 3 2 1 3 3 3 6 99995 9998900031 9998900031 Output 1 2 1 1 3 2 3 1 Note In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1. In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
{ "input": [ "3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n" ], "output": [ "1 2 1 \n1 3 2 3 \n1 \n" ] }
{ "input": [ "1\n2 2 3\n", "1\n4 13 13\n", "1\n3 1 1\n", "10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n", "1\n3 7 7\n", "1\n25 30 295\n", "1\n4 12 13\n", "5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n", "1\n5 4 4\n" ], "output": [ "2 1 \n", "1 \n", "1 \n", "1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n", "1 \n", "16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n", "4 1 \n", "1 \n1 \n1 \n1 \n7 1 \n", "3 \n" ] }
CORRECT
python3
# HEY STALKER for _ in range(int(input())): n, l, r = map(int, input().split()) z = 0 idx = 0 sd = (n-1)*2 lst = (n*(n-1))+1 while z < l: if sd <= 0: z += 1 break idx += 1 z += sd sd -= 2 m = idx-1 c = (n-1)*2 sm = 0 for t in range(m): sm += c c -= 2 sm += 1 nikal = l-sm p = [] if idx == 1: for t in range(2, n+1): p.append(1) p.append(t) else: ii = idx for t in range(ii+1, n+1): p.append(ii) p.append(t) p.reverse() for tg in range(nikal): p.pop() p.reverse() idx += 1 i1 = idx while len(p) < (r-l+1): if i1 == n: p.append(1) for t in range(i1+1, n+1): p.append(i1) p.append(t) i1 += 1 print(*p[:(r-l+1)])
1334_D. Minimum Euler Cycle
You are given a complete directed graph K_n with n vertices: each pair of vertices u β‰  v in K_n have both directed edges (u, v) and (v, u); there are no self-loops. You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices). We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 β€” a visiting order, where each (v_i, v_{i + 1}) occurs exactly once. Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists. Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r. Input The first line contains the single integer T (1 ≀ T ≀ 100) β€” the number of test cases. Next T lines contain test cases β€” one per line. The first and only line of each test case contains three integers n, l and r (2 ≀ n ≀ 10^5, 1 ≀ l ≀ r ≀ n(n - 1) + 1, r - l + 1 ≀ 10^5) β€” the number of vertices in K_n, and segment of the cycle to print. It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5. Output For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once. Example Input 3 2 1 3 3 3 6 99995 9998900031 9998900031 Output 1 2 1 1 3 2 3 1 Note In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1. In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
{ "input": [ "3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n" ], "output": [ "1 2 1 \n1 3 2 3 \n1 \n" ] }
{ "input": [ "1\n2 2 3\n", "1\n4 13 13\n", "1\n3 1 1\n", "10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n", "1\n3 7 7\n", "1\n25 30 295\n", "1\n4 12 13\n", "5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n", "1\n5 4 4\n" ], "output": [ "2 1 \n", "1 \n", "1 \n", "1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n", "1 \n", "16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n", "4 1 \n", "1 \n1 \n1 \n1 \n7 1 \n", "3 \n" ] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; using namespace std; long long int gcd(long long int a, long long int b) { if (b == 0) return a; return gcd(b, a % b); } long long int gcdExtended(long long int a, long long int b, long long int *x, long long int *y) { if (a == 0) { *x = 0; *y = 1; return b; } long long int x1, y1; long long int gcd = gcdExtended(b % a, a, &x1, &y1); *x = y1 - (b / a) * x1; *y = x1; return gcd; } long long int mod = 1000000007; long long int binpower(long long int a, long long int b) { long long int ans = 1; while (b > 0) { if (b & 1) ans = (ans * a) % mod; a = (a * a) % mod; b >>= 1; } return ans; } bool isPrime(int n) { for (int i = 2; i * i <= n; ++i) { if (n % i == 0) return false; } return true; } long long int fact[1005]; void factcalc() { fact[0] = 1; fact[1] = 1; for (long long int i = 2; i < 1005; ++i) { fact[i] = (fact[i - 1] * i) % mod; } } long long int C(int u, int v) { long long int c = (fact[v] * fact[u - v]) % mod; long long int in = binpower(c, mod - 2); long long int res = (in * fact[u]) % mod; return res; } int main() { ios::sync_with_stdio(0); cin.tie(0); cout.tie(0); ; long long int test = 1; cin >> test; while (test--) { int n; long long int l, r; cin >> n >> l >> r; long long int curr = 0; bool fl = false; for (int i = 0; i < n - 1; ++i) { long long int adder = 0; if (i == 0) adder = 2 * (n - 1); else adder = 2 * (n - i - 1); if (curr + adder >= l) { fl = true; long long int surplus = (l - curr); long long int beg = surplus / 2; int f = i + 1, s = beg + i + 2; if (surplus % 2 == 0) { cout << i + 1 + beg << " "; if (surplus == adder) { f++; s = f + 1; } l++; } int turn = 0; while (l <= r) { if (turn == 0) { if (f == n) { cout << 1; break; } cout << f << " "; turn = 1; l++; continue; } else { cout << s << " "; s++; turn = 0; if (s == n + 1) { f++; s = f + 1; } l++; continue; } } break; } curr += adder; } if (!fl) cout << 1; cout << endl; } return 0; }
1334_D. Minimum Euler Cycle
You are given a complete directed graph K_n with n vertices: each pair of vertices u β‰  v in K_n have both directed edges (u, v) and (v, u); there are no self-loops. You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices). We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 β€” a visiting order, where each (v_i, v_{i + 1}) occurs exactly once. Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists. Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r. Input The first line contains the single integer T (1 ≀ T ≀ 100) β€” the number of test cases. Next T lines contain test cases β€” one per line. The first and only line of each test case contains three integers n, l and r (2 ≀ n ≀ 10^5, 1 ≀ l ≀ r ≀ n(n - 1) + 1, r - l + 1 ≀ 10^5) β€” the number of vertices in K_n, and segment of the cycle to print. It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5. Output For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once. Example Input 3 2 1 3 3 3 6 99995 9998900031 9998900031 Output 1 2 1 1 3 2 3 1 Note In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1. In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
{ "input": [ "3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n" ], "output": [ "1 2 1 \n1 3 2 3 \n1 \n" ] }
{ "input": [ "1\n2 2 3\n", "1\n4 13 13\n", "1\n3 1 1\n", "10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n", "1\n3 7 7\n", "1\n25 30 295\n", "1\n4 12 13\n", "5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n", "1\n5 4 4\n" ], "output": [ "2 1 \n", "1 \n", "1 \n", "1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n", "1 \n", "16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n", "4 1 \n", "1 \n1 \n1 \n1 \n7 1 \n", "3 \n" ] }
CORRECT
java
import java.io.BufferedReader; import java.io.Closeable; import java.io.IOException; import java.io.InputStream; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.StringTokenizer; public class MinimumEulerCycle implements Closeable { private InputReader in = new InputReader(System.in); private PrintWriter out = new PrintWriter(System.out); public void solve() { int T = in.ni(); while (T-- > 0) { long n = in.nl(), l = in.nl() - 1, r = in.nl() - 1; long row = findRow(n, l); long rem = n - row; long firstIndex = n * (n - 1) - rem * (rem - 1); long dist = (l - firstIndex + (l % 2)) / 2; long even = row + 1; long odd = row + dist + 2 - (l % 2); if (even == n) { even = 1; } boolean printRow = l % 2 == 0; for (int i = 0; i < r - l + 1; i++) { if (printRow) { out.print(even); } else { out.print(odd); if (odd == n) { even++; if (even == n) { even = 1; } odd = even + 1; } else { odd++; } } out.print(' '); printRow = !printRow; } out.println(); } } private long findRow(long n, long idx) { long left = 1, right = n - 1, result = 0; while (left <= right) { long mid = left + (right - left) / 2; long rem = n - mid; long nodes = n * (n - 1) - rem * (rem - 1); if (nodes <= idx) { left = mid + 1; result = Math.max(result, mid); } else { right = mid - 1; } } return result; } @Override public void close() throws IOException { in.close(); out.close(); } static class InputReader { public BufferedReader reader; public StringTokenizer tokenizer; public InputReader(InputStream stream) { reader = new BufferedReader(new InputStreamReader(stream), 32768); tokenizer = null; } public String next() { while (tokenizer == null || !tokenizer.hasMoreTokens()) { try { tokenizer = new StringTokenizer(reader.readLine()); } catch (IOException e) { throw new RuntimeException(e); } } return tokenizer.nextToken(); } public int ni() { return Integer.parseInt(next()); } public long nl() { return Long.parseLong(next()); } public void close() throws IOException { reader.close(); } } public static void main(String[] args) throws IOException { try (MinimumEulerCycle instance = new MinimumEulerCycle()) { instance.solve(); } } }
1334_D. Minimum Euler Cycle
You are given a complete directed graph K_n with n vertices: each pair of vertices u β‰  v in K_n have both directed edges (u, v) and (v, u); there are no self-loops. You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices). We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 β€” a visiting order, where each (v_i, v_{i + 1}) occurs exactly once. Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists. Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r. Input The first line contains the single integer T (1 ≀ T ≀ 100) β€” the number of test cases. Next T lines contain test cases β€” one per line. The first and only line of each test case contains three integers n, l and r (2 ≀ n ≀ 10^5, 1 ≀ l ≀ r ≀ n(n - 1) + 1, r - l + 1 ≀ 10^5) β€” the number of vertices in K_n, and segment of the cycle to print. It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5. Output For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once. Example Input 3 2 1 3 3 3 6 99995 9998900031 9998900031 Output 1 2 1 1 3 2 3 1 Note In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1. In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
{ "input": [ "3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n" ], "output": [ "1 2 1 \n1 3 2 3 \n1 \n" ] }
{ "input": [ "1\n2 2 3\n", "1\n4 13 13\n", "1\n3 1 1\n", "10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n", "1\n3 7 7\n", "1\n25 30 295\n", "1\n4 12 13\n", "5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n", "1\n5 4 4\n" ], "output": [ "2 1 \n", "1 \n", "1 \n", "1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n", "1 \n", "16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n", "4 1 \n", "1 \n1 \n1 \n1 \n7 1 \n", "3 \n" ] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; void solve() { long long n; cin >> n; long long l, r; cin >> l >> r; if (l == r && l == (n * (n - 1) + 1)) { cout << 1 << '\n'; return; } long long grp = n - 1; long long sum = 0; long long idx = 1; long long extra = 0; for (long long i = 1; i <= n - 1; i++) { sum += (grp * 2); if (sum >= l) { idx = i; sum -= (grp * 2); break; } grp--; } long long rem = l - sum; long long x = idx; long long y = idx + (rem + 1) / 2; for (long long i = l; i <= r; i++) { if (i == (n * (n - 1) + 1)) { cout << 1 << ' '; } else { if (i % 2) { cout << x << ' '; } else { cout << y << ' '; y++; if (y == n + 1) { x++; y = 1 + x; } } } } cout << '\n'; } int main() { ios_base::sync_with_stdio(0); cin.tie(NULL); int t = 1; cin >> t; for (int i = 1; i <= t; i++) { solve(); } return 0; }
1334_D. Minimum Euler Cycle
You are given a complete directed graph K_n with n vertices: each pair of vertices u β‰  v in K_n have both directed edges (u, v) and (v, u); there are no self-loops. You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices). We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 β€” a visiting order, where each (v_i, v_{i + 1}) occurs exactly once. Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists. Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r. Input The first line contains the single integer T (1 ≀ T ≀ 100) β€” the number of test cases. Next T lines contain test cases β€” one per line. The first and only line of each test case contains three integers n, l and r (2 ≀ n ≀ 10^5, 1 ≀ l ≀ r ≀ n(n - 1) + 1, r - l + 1 ≀ 10^5) β€” the number of vertices in K_n, and segment of the cycle to print. It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5. Output For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once. Example Input 3 2 1 3 3 3 6 99995 9998900031 9998900031 Output 1 2 1 1 3 2 3 1 Note In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1. In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
{ "input": [ "3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n" ], "output": [ "1 2 1 \n1 3 2 3 \n1 \n" ] }
{ "input": [ "1\n2 2 3\n", "1\n4 13 13\n", "1\n3 1 1\n", "10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n", "1\n3 7 7\n", "1\n25 30 295\n", "1\n4 12 13\n", "5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n", "1\n5 4 4\n" ], "output": [ "2 1 \n", "1 \n", "1 \n", "1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n", "1 \n", "16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n", "4 1 \n", "1 \n1 \n1 \n1 \n7 1 \n", "3 \n" ] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int ar[200002]; int main() { ios::sync_with_stdio(0); cin.tie(nullptr); cout.tie(nullptr); ; long long t, n, l, r; cin >> t; while (t--) { cin >> n >> l >> r; if (l == n * (n - 1) + 1) { cout << "1\n"; continue; } long long s = 0, j = 1; while (s + 2 * (n - j) < l) { s += 2 * (n - j); j++; } long long skipped = (l - s - 1) / 2; long long start = j, x = j + skipped + 1; ; long long end = n * (n - 1) + 1; for (long long a = l; a <= min(r, end - 1); a++) { if (a % 2) { cout << start << " "; } else { cout << x++ << " "; } if (x > n) { start++; x = start + 1; } } if (r == end) { cout << 1; } cout << "\n"; } return 0; }
1334_D. Minimum Euler Cycle
You are given a complete directed graph K_n with n vertices: each pair of vertices u β‰  v in K_n have both directed edges (u, v) and (v, u); there are no self-loops. You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices). We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 β€” a visiting order, where each (v_i, v_{i + 1}) occurs exactly once. Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists. Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r. Input The first line contains the single integer T (1 ≀ T ≀ 100) β€” the number of test cases. Next T lines contain test cases β€” one per line. The first and only line of each test case contains three integers n, l and r (2 ≀ n ≀ 10^5, 1 ≀ l ≀ r ≀ n(n - 1) + 1, r - l + 1 ≀ 10^5) β€” the number of vertices in K_n, and segment of the cycle to print. It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5. Output For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once. Example Input 3 2 1 3 3 3 6 99995 9998900031 9998900031 Output 1 2 1 1 3 2 3 1 Note In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1. In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
{ "input": [ "3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n" ], "output": [ "1 2 1 \n1 3 2 3 \n1 \n" ] }
{ "input": [ "1\n2 2 3\n", "1\n4 13 13\n", "1\n3 1 1\n", "10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n", "1\n3 7 7\n", "1\n25 30 295\n", "1\n4 12 13\n", "5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n", "1\n5 4 4\n" ], "output": [ "2 1 \n", "1 \n", "1 \n", "1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n", "1 \n", "16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n", "4 1 \n", "1 \n1 \n1 \n1 \n7 1 \n", "3 \n" ] }
CORRECT
java
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; import java.math.*; import java.math.BigDecimal; import java.math.BigInteger; import java.util.*; import java.util.Arrays; import java.util.Comparator; import java.util.List; import java.util.StringTokenizer; import java.util.function.*; import java.util.function.Function; import java.util.function.Predicate; import java.util.stream.*; public class D { private static final FastReader in = new FastReader(); private static final FastWriter out = new FastWriter(); public static void main(String[] args) { new D().run(); } private void run() { var t = in.nextInt(); while (t-- > 0) { solve(); } out.flush(); } int n; long[] sum; private void solve() { n = in.nextInt(); var l = in.nextLong(); var r = in.nextLong(); sum = new long[n]; for (var i = 1; i < n; i++) { sum[i] = sum[i - 1] + (n - i) * 2; } var ans = new long[(int) (r - l + 1)]; for (var i = l; i <= r; i++) { ans[(int) (i - l)] = euler(i); } out.println(ans); } long euler(long i) { if (i > sum[n - 1]) return 1; var x = Misc.lowerBound(sum, i); var s = sum[x - 1]; var d = i - s; return d % 2 == 1 ? x : x + d / 2; } } class FastReader { private static final BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); private static StringTokenizer in; public String next() { while (in == null || !in.hasMoreTokens()) { try { in = new StringTokenizer(br.readLine()); } catch (IOException e) { return null; } } return in.nextToken(); } public BigDecimal nextBigDecimal() { return new BigDecimal(next()); } public BigInteger nextBigInteger() { return new BigInteger(next()); } public boolean nextBoolean() { return Boolean.valueOf(next()); } public byte nextByte() { return Byte.valueOf(next()); } public double nextDouble() { return Double.valueOf(next()); } public double[] nextDoubleArray(int length) { var a = new double[length]; for (var i = 0; i < length; i++) { a[i] = nextDouble(); } return a; } public int nextInt() { return Integer.valueOf(next()); } public int[] nextIntArray(int length) { var a = new int[length]; for (var i = 0; i < length; i++) { a[i] = nextInt(); } return a; } public long nextLong() { return Long.valueOf(next()); } public long[] nextLongArray(int length) { var a = new long[length]; for (var i = 0; i < length; i++) { a[i] = nextLong(); } return a; } } class FastWriter extends PrintWriter { public FastWriter() { super(System.out); } public void println(double[] a) { for (var i = 0; i < a.length; i++) { print(a[i]); print(i + 1 < a.length ? ' ' : '\n'); } } public void println(int[] a) { for (var i = 0; i < a.length; i++) { print(a[i]); print(i + 1 < a.length ? ' ' : '\n'); } } public void println(long[] a) { for (var i = 0; i < a.length; i++) { print(a[i]); print(i + 1 < a.length ? ' ' : '\n'); } } public void println(Object... a) { for (var i = 0; i < a.length; i++) { print(a[i]); print(i + 1 < a.length ? ' ' : '\n'); } } public <T> void println(List<T> l) { println(l.toArray()); } public void debug(String name, Object o) { String value = Arrays.deepToString(new Object[] { o }); value = value.substring(1, value.length() - 1); System.err.println(name + " => " + value); } } class Misc { public static final double EPS = 1e-12; public static final Comparator<Double> EPS_COMPARATOR = (x, y) -> { if (x + EPS < y) { return -1; } else if (x - EPS > y) { return 1; } else { return 0; } }; public static int compare(double x, double y) { return EPS_COMPARATOR.compare(x, y); } /** * Returns the index of the first element in the range <b>[left, right)</b> which <i>leftShouldAdvance</i> tested to * be <i>false</i>. */ public static int binarySearch(int left, int right, Predicate<Integer> leftShouldAdvance) { while (left < right) { var mid = left + (right - left) / 2; if (leftShouldAdvance.test(mid)) { left = mid + 1; } else { right = mid; } } return left; } /** * Returns the index of the first element in <i>a</i> which >= <i>x</i>. */ public static int lowerBound(int[] a, int x) { return binarySearch(0, a.length, mid -> a[mid] < x); } public static int lowerBound(long[] a, long x) { return binarySearch(0, a.length, mid -> a[mid] < x); } /** * Returns the index of the first element in <i>a</i> which > <i>x</i>. */ public static int upperBound(int[] a, int x) { return binarySearch(0, a.length, mid -> a[mid] <= x); } public static int upperBound(long[] a, long x) { return binarySearch(0, a.length, mid -> a[mid] <= x); } /** * Searches for the maximum value of a unimodal function f(x). * <p> * A function f(x) is a <b>unimodal function</b> if for some value m, it is <b>monotonically increasing</b> for x ≀ * m and <b>monotonically decreasing</b> for x β‰₯ m. In that case, the maximum value of f(x) is f(m) and there are no * other local maxima. */ public static int ternarySearch(int left, int right, Function<Integer, Integer> f) { return binarySearch(left, right, mid -> f.apply(mid) < f.apply(Math.min(mid + 1, right - 1))); } }
1334_D. Minimum Euler Cycle
You are given a complete directed graph K_n with n vertices: each pair of vertices u β‰  v in K_n have both directed edges (u, v) and (v, u); there are no self-loops. You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices). We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 β€” a visiting order, where each (v_i, v_{i + 1}) occurs exactly once. Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists. Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r. Input The first line contains the single integer T (1 ≀ T ≀ 100) β€” the number of test cases. Next T lines contain test cases β€” one per line. The first and only line of each test case contains three integers n, l and r (2 ≀ n ≀ 10^5, 1 ≀ l ≀ r ≀ n(n - 1) + 1, r - l + 1 ≀ 10^5) β€” the number of vertices in K_n, and segment of the cycle to print. It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5. Output For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once. Example Input 3 2 1 3 3 3 6 99995 9998900031 9998900031 Output 1 2 1 1 3 2 3 1 Note In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1. In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
{ "input": [ "3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n" ], "output": [ "1 2 1 \n1 3 2 3 \n1 \n" ] }
{ "input": [ "1\n2 2 3\n", "1\n4 13 13\n", "1\n3 1 1\n", "10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n", "1\n3 7 7\n", "1\n25 30 295\n", "1\n4 12 13\n", "5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n", "1\n5 4 4\n" ], "output": [ "2 1 \n", "1 \n", "1 \n", "1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n", "1 \n", "16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n", "4 1 \n", "1 \n1 \n1 \n1 \n7 1 \n", "3 \n" ] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; void solve(); int main() { ios_base::sync_with_stdio(0); cin.tie(0); cout.tie(0); ; int t; cin >> t; while (t--) { solve(); } } const long long N = 1e5 + 5; std::vector<long long> cnt(N, 0); void solve() { long long n, l, r; cin >> n >> l >> r; for (long long i = 1; i < n + 1; ++i) { cnt[i] = 2 * (n - i); } for (long long i = 2; i < n + 1; ++i) { cnt[i] += cnt[i - 1]; } long long p = 0; for (long long i = l; i <= r; ++i) { while (p + 1 <= n and cnt[p + 1] < i) { p++; } long long temp = i - cnt[p]; if (i == ((n * (n - 1)) + 1)) { cout << 1 << " "; } else if (i % 2) { cout << p + 1 << " "; continue; } else { cout << p + 1 + (temp / 2) << " "; } } cout << '\n'; }
1334_D. Minimum Euler Cycle
You are given a complete directed graph K_n with n vertices: each pair of vertices u β‰  v in K_n have both directed edges (u, v) and (v, u); there are no self-loops. You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices). We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 β€” a visiting order, where each (v_i, v_{i + 1}) occurs exactly once. Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists. Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r. Input The first line contains the single integer T (1 ≀ T ≀ 100) β€” the number of test cases. Next T lines contain test cases β€” one per line. The first and only line of each test case contains three integers n, l and r (2 ≀ n ≀ 10^5, 1 ≀ l ≀ r ≀ n(n - 1) + 1, r - l + 1 ≀ 10^5) β€” the number of vertices in K_n, and segment of the cycle to print. It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5. Output For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once. Example Input 3 2 1 3 3 3 6 99995 9998900031 9998900031 Output 1 2 1 1 3 2 3 1 Note In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1. In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
{ "input": [ "3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n" ], "output": [ "1 2 1 \n1 3 2 3 \n1 \n" ] }
{ "input": [ "1\n2 2 3\n", "1\n4 13 13\n", "1\n3 1 1\n", "10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n", "1\n3 7 7\n", "1\n25 30 295\n", "1\n4 12 13\n", "5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n", "1\n5 4 4\n" ], "output": [ "2 1 \n", "1 \n", "1 \n", "1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n", "1 \n", "16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n", "4 1 \n", "1 \n1 \n1 \n1 \n7 1 \n", "3 \n" ] }
CORRECT
python3
t = int(input()) for case_num in range(t): n, l, r = map(int, input().split(' ')) if l == n * (n-1) + 1: print(1) continue total = 0 unvisited = n - 1 while total < l: total += unvisited * 2 unvisited -= 1 unvisited += 1 total -= unvisited * 2 current = n - unvisited nxt = current + 1 ans = [] while total < r: total += 1 now = current if total % 2 == 1 else nxt if now == nxt: nxt += 1 if nxt > n: current += 1 nxt = current + 1 if current == n: current = 1 if total >= l: ans.append(now) print(' '.join(map(str, ans)))
1334_D. Minimum Euler Cycle
You are given a complete directed graph K_n with n vertices: each pair of vertices u β‰  v in K_n have both directed edges (u, v) and (v, u); there are no self-loops. You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices). We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 β€” a visiting order, where each (v_i, v_{i + 1}) occurs exactly once. Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists. Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r. Input The first line contains the single integer T (1 ≀ T ≀ 100) β€” the number of test cases. Next T lines contain test cases β€” one per line. The first and only line of each test case contains three integers n, l and r (2 ≀ n ≀ 10^5, 1 ≀ l ≀ r ≀ n(n - 1) + 1, r - l + 1 ≀ 10^5) β€” the number of vertices in K_n, and segment of the cycle to print. It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5. Output For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once. Example Input 3 2 1 3 3 3 6 99995 9998900031 9998900031 Output 1 2 1 1 3 2 3 1 Note In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1. In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
{ "input": [ "3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n" ], "output": [ "1 2 1 \n1 3 2 3 \n1 \n" ] }
{ "input": [ "1\n2 2 3\n", "1\n4 13 13\n", "1\n3 1 1\n", "10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n", "1\n3 7 7\n", "1\n25 30 295\n", "1\n4 12 13\n", "5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n", "1\n5 4 4\n" ], "output": [ "2 1 \n", "1 \n", "1 \n", "1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n", "1 \n", "16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n", "4 1 \n", "1 \n1 \n1 \n1 \n7 1 \n", "3 \n" ] }
CORRECT
java
import java.io.*; import java.util.*; import java.util.stream.Collectors; public class Main { long f(int n, int h){ return (long) 2 * h * n - (long) h * (h + 1); } void solve2() { int n = in.nextInt(); long l = in.nextLong(); long r = in.nextLong(); int h = 1; while(f(n,h)<l && h<n-1) h++; long tmp = l-f(n,h-1); boolean tt=tmp%2==1; long s = h+(tmp+1)/2; if (s==n+1){ h = n; } r++; int fh = 1; while(f(n,fh)<r && fh<n-1) fh++; tmp = r-f(n,fh-1); boolean ftt=tmp%2==1; long fs = fh+(tmp+1)/2; if (fs==n+1){ fh = n; } while(true){ if (h==fh && tt==ftt && s==fs){ break; } if (h == n) { out.print(1); break; } if (tt) { out.print(h+" "); tt = false; }else { out.print(s+" "); s++; if (s == n + 1) { h++; s = h + 1; } tt = true; } } out.println(); } void solve() { int t = in.nextInt(); for(int i=0;i<t;i++){ solve2(); } } // --------------------SCANNER------------------------- public static class MyScanner { BufferedReader br; StringTokenizer st; public MyScanner(boolean debug) { if (debug) { try { br = new BufferedReader(new FileReader("input.txt")); } catch (FileNotFoundException e) { throw new RuntimeException(e); } } else { br = new BufferedReader(new InputStreamReader(System.in)); } } String next() { while (st == null || !st.hasMoreElements()) { st = new StringTokenizer(nextLine()); } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } int[] nextInts(int n) { int[] arr = new int[n]; for (int i = 0; i < n; i++) { arr[i] = nextInt(); } return arr; } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { try { String line = br.readLine(); if (line == null) { throw new RuntimeException("empty line"); } return line; } catch (IOException e) { throw new RuntimeException(e); } } } // --------------------WRITER------------------------- public static class MyWriter extends PrintWriter { public MyWriter(OutputStream out) { super(out); } void println(int[] arr) { String line = Arrays.stream(arr).mapToObj(String::valueOf).collect(Collectors.joining(" ")); println(line); } } // --------------------MAIN------------------------- public MyScanner in; public MyWriter out; public static void main(String[] args) { Main m = new Main(); m.in = new MyScanner(args.length > 0); m.out = new MyWriter(new BufferedOutputStream(System.out)); m.solve(); m.out.close(); } }
1334_D. Minimum Euler Cycle
You are given a complete directed graph K_n with n vertices: each pair of vertices u β‰  v in K_n have both directed edges (u, v) and (v, u); there are no self-loops. You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices). We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 β€” a visiting order, where each (v_i, v_{i + 1}) occurs exactly once. Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists. Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r. Input The first line contains the single integer T (1 ≀ T ≀ 100) β€” the number of test cases. Next T lines contain test cases β€” one per line. The first and only line of each test case contains three integers n, l and r (2 ≀ n ≀ 10^5, 1 ≀ l ≀ r ≀ n(n - 1) + 1, r - l + 1 ≀ 10^5) β€” the number of vertices in K_n, and segment of the cycle to print. It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5. Output For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once. Example Input 3 2 1 3 3 3 6 99995 9998900031 9998900031 Output 1 2 1 1 3 2 3 1 Note In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1. In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
{ "input": [ "3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n" ], "output": [ "1 2 1 \n1 3 2 3 \n1 \n" ] }
{ "input": [ "1\n2 2 3\n", "1\n4 13 13\n", "1\n3 1 1\n", "10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n", "1\n3 7 7\n", "1\n25 30 295\n", "1\n4 12 13\n", "5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n", "1\n5 4 4\n" ], "output": [ "2 1 \n", "1 \n", "1 \n", "1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n", "1 \n", "16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n", "4 1 \n", "1 \n1 \n1 \n1 \n7 1 \n", "3 \n" ] }
CORRECT
python3
import sys input = sys.stdin.readline T=int(input()) for tests in range(T): n,l,r=map(int,input().split()) begin=1 while l>(n-begin)*2+1: if begin==n: break l-=(n-begin)*2 r-=(n-begin)*2 begin+=1 #print(begin,l,r) if begin==n: ANS=[n,1] else: ANS=[] while len(ANS)<=r: if begin==n: ANS.append(1) break for j in range(begin+1,n+1): ANS.append(begin) ANS.append(j) begin+=1 #print(ANS) print(*ANS[l-1:r])
1334_D. Minimum Euler Cycle
You are given a complete directed graph K_n with n vertices: each pair of vertices u β‰  v in K_n have both directed edges (u, v) and (v, u); there are no self-loops. You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices). We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 β€” a visiting order, where each (v_i, v_{i + 1}) occurs exactly once. Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists. Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r. Input The first line contains the single integer T (1 ≀ T ≀ 100) β€” the number of test cases. Next T lines contain test cases β€” one per line. The first and only line of each test case contains three integers n, l and r (2 ≀ n ≀ 10^5, 1 ≀ l ≀ r ≀ n(n - 1) + 1, r - l + 1 ≀ 10^5) β€” the number of vertices in K_n, and segment of the cycle to print. It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5. Output For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once. Example Input 3 2 1 3 3 3 6 99995 9998900031 9998900031 Output 1 2 1 1 3 2 3 1 Note In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1. In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
{ "input": [ "3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n" ], "output": [ "1 2 1 \n1 3 2 3 \n1 \n" ] }
{ "input": [ "1\n2 2 3\n", "1\n4 13 13\n", "1\n3 1 1\n", "10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n", "1\n3 7 7\n", "1\n25 30 295\n", "1\n4 12 13\n", "5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n", "1\n5 4 4\n" ], "output": [ "2 1 \n", "1 \n", "1 \n", "1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n", "1 \n", "16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n", "4 1 \n", "1 \n1 \n1 \n1 \n7 1 \n", "3 \n" ] }
CORRECT
java
import java.io.*; import java.util.*; public class Task { public static void main(String[] args) throws Exception { new Task().go(); } PrintWriter out; Reader in; BufferedReader br; Task() throws IOException { try { //br = new BufferedReader( new FileReader("input.txt") ); //in = new Reader("input.txt"); in = new Reader("input.txt"); out = new PrintWriter( new BufferedWriter(new FileWriter("output.txt")) ); } catch (Exception e) { //br = new BufferedReader( new InputStreamReader( System.in ) ); in = new Reader(); out = new PrintWriter( new BufferedWriter(new OutputStreamWriter(System.out)) ); } } void go() throws Exception { //int t = in.nextInt(); int t = 1; while (t > 0) { solve(); t--; } out.flush(); out.close(); } int inf = 2000000000; int mod = 1000000007; double eps = 0.000000001; int n; int m; ArrayList<Integer>[] g; void solve() throws IOException { int t = in.nextInt(); while (t > 0) { int n = in.nextInt(); long l = in.nextLong(); long r = in.nextLong(); long cur = 1; int x = n - 1; int first = 1; while (x > 0 && cur + x * 2 <= l) { cur += x * 2; first++; x--; } if (first == n) { first = 1; } int flag = 0; int lv = first; int cnt = first + 1; while (cur <= r) { if (cur >= l) out.print(lv + " "); if (flag == 1) { flag = 0; cnt++; if (cnt > n) { first++; cnt = first + 1; if (first == n) first = 1; } lv = first; } else { lv = cnt; flag = 1; } cur++; } out.println(); t--; } } class Pair implements Comparable<Pair> { int a; int b; Pair(int a, int b) { this.a = a; this.b = b; } public int compareTo(Pair p) { if (a != p.a) return Integer.compare(a, p.a); else return Integer.compare(-b, -p.b); } } class Item { int a; int b; int c; Item(int a, int b, int c) { this.a = a; this.b = b; this.c = c; } } class Reader { BufferedReader br; StringTokenizer tok; Reader(String file) throws IOException { br = new BufferedReader( new FileReader(file) ); } Reader() throws IOException { br = new BufferedReader( new InputStreamReader(System.in) ); } String next() throws IOException { while (tok == null || !tok.hasMoreElements()) tok = new StringTokenizer(br.readLine()); return tok.nextToken(); } int nextInt() throws NumberFormatException, IOException { return Integer.valueOf(next()); } long nextLong() throws NumberFormatException, IOException { return Long.valueOf(next()); } double nextDouble() throws NumberFormatException, IOException { return Double.valueOf(next()); } String nextLine() throws IOException { return br.readLine(); } } static class InputReader { final private int BUFFER_SIZE = 1 << 16; private DataInputStream din; private byte[] buffer; private int bufferPointer, bytesRead; public InputReader() { din = new DataInputStream(System.in); buffer = new byte[BUFFER_SIZE]; bufferPointer = bytesRead = 0; } public InputReader(String file_name) throws IOException { din = new DataInputStream(new FileInputStream(file_name)); buffer = new byte[BUFFER_SIZE]; bufferPointer = bytesRead = 0; } public String readLine() throws IOException { byte[] buf = new byte[64]; // line length int cnt = 0, c; while ((c = read()) != -1) { if (c == '\n') break; buf[cnt++] = (byte) c; } return new String(buf, 0, cnt); } public int nextInt() throws IOException { int ret = 0; byte c = read(); while (c <= ' ') c = read(); boolean neg = (c == '-'); if (neg) c = read(); do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (neg) return -ret; return ret; } public long nextLong() throws IOException { long ret = 0; byte c = read(); while (c <= ' ') c = read(); boolean neg = (c == '-'); if (neg) c = read(); do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (neg) return -ret; return ret; } public double nextDouble() throws IOException { double ret = 0, div = 1; byte c = read(); while (c <= ' ') c = read(); boolean neg = (c == '-'); if (neg) c = read(); do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (c == '.') { while ((c = read()) >= '0' && c <= '9') { ret += (c - '0') / (div *= 10); } } if (neg) return -ret; return ret; } private void fillBuffer() throws IOException { bytesRead = din.read(buffer, bufferPointer = 0, BUFFER_SIZE); if (bytesRead == -1) buffer[0] = -1; } private byte read() throws IOException { if (bufferPointer == bytesRead) fillBuffer(); return buffer[bufferPointer++]; } public void close() throws IOException { if (din == null) return; din.close(); } } }
1334_D. Minimum Euler Cycle
You are given a complete directed graph K_n with n vertices: each pair of vertices u β‰  v in K_n have both directed edges (u, v) and (v, u); there are no self-loops. You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices). We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 β€” a visiting order, where each (v_i, v_{i + 1}) occurs exactly once. Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists. Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r. Input The first line contains the single integer T (1 ≀ T ≀ 100) β€” the number of test cases. Next T lines contain test cases β€” one per line. The first and only line of each test case contains three integers n, l and r (2 ≀ n ≀ 10^5, 1 ≀ l ≀ r ≀ n(n - 1) + 1, r - l + 1 ≀ 10^5) β€” the number of vertices in K_n, and segment of the cycle to print. It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5. Output For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once. Example Input 3 2 1 3 3 3 6 99995 9998900031 9998900031 Output 1 2 1 1 3 2 3 1 Note In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1. In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
{ "input": [ "3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n" ], "output": [ "1 2 1 \n1 3 2 3 \n1 \n" ] }
{ "input": [ "1\n2 2 3\n", "1\n4 13 13\n", "1\n3 1 1\n", "10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n", "1\n3 7 7\n", "1\n25 30 295\n", "1\n4 12 13\n", "5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n", "1\n5 4 4\n" ], "output": [ "2 1 \n", "1 \n", "1 \n", "1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n", "1 \n", "16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n", "4 1 \n", "1 \n1 \n1 \n1 \n7 1 \n", "3 \n" ] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; template <typename Arg1> void __f(const char* name, Arg1&& arg1) { std::cerr << name << " : " << arg1 << '\n'; } template <typename Arg1, typename... Args> void __f(const char* names, Arg1&& arg1, Args&&... args) { const char* comma = strchr(names + 1, ','); std::cerr.write(names, comma - names) << " : " << arg1 << " | "; __f(comma + 1, args...); } template <typename T, typename U> static inline void amin(T& x, U y) { if (y < x) x = y; } template <typename T, typename U> static inline void amax(T& x, U y) { if (x < y) x = y; } long long max(long long a, long long b) { return (a > b) ? a : b; } long long min(long long a, long long b) { return (a < b) ? a : b; } long long solve() { long long n, l, r; cin >> n >> l >> r; if (n == 2) { long long a[] = {1, 2, 1}; for (long long i = l - 1; i < r; i++) cout << a[i] << " "; cout << '\n'; return 0; } long long z = 0; for (long long i = 1; i < n; i++) { long long cnt = 2 * (n - i); if (z + cnt + 1 < l) { z += cnt; continue; } if (l > r) break; if (l == z + 1 && l <= r) { cout << i << " "; l++; } z++; for (long long j = i + 1; j < n; j++) { if (l == z + 1 && l <= r) { cout << j << " "; l++; } z++; if (l == z + 1 && l <= r) { cout << i << " "; l++; } z++; } if (l == z + 1 && l <= r) { cout << n << " "; l++; } z++; } if (l <= r && l == z + 1) cout << 1 << " "; return 0; } signed main() { ios_base::sync_with_stdio(false); cin.tie(0); cout.tie(0); long long t = 1; cin >> t; while (t--) { solve(); } return 0; }
1334_D. Minimum Euler Cycle
You are given a complete directed graph K_n with n vertices: each pair of vertices u β‰  v in K_n have both directed edges (u, v) and (v, u); there are no self-loops. You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices). We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 β€” a visiting order, where each (v_i, v_{i + 1}) occurs exactly once. Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists. Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r. Input The first line contains the single integer T (1 ≀ T ≀ 100) β€” the number of test cases. Next T lines contain test cases β€” one per line. The first and only line of each test case contains three integers n, l and r (2 ≀ n ≀ 10^5, 1 ≀ l ≀ r ≀ n(n - 1) + 1, r - l + 1 ≀ 10^5) β€” the number of vertices in K_n, and segment of the cycle to print. It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5. Output For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once. Example Input 3 2 1 3 3 3 6 99995 9998900031 9998900031 Output 1 2 1 1 3 2 3 1 Note In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1. In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
{ "input": [ "3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n" ], "output": [ "1 2 1 \n1 3 2 3 \n1 \n" ] }
{ "input": [ "1\n2 2 3\n", "1\n4 13 13\n", "1\n3 1 1\n", "10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n", "1\n3 7 7\n", "1\n25 30 295\n", "1\n4 12 13\n", "5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n", "1\n5 4 4\n" ], "output": [ "2 1 \n", "1 \n", "1 \n", "1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n", "1 \n", "16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n", "4 1 \n", "1 \n1 \n1 \n1 \n7 1 \n", "3 \n" ] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; template <typename T> void read(T &x) { x = 0; bool f = 0; char c = getchar(); for (; !isdigit(c); c = getchar()) if (c == '-') f = 1; for (; isdigit(c); c = getchar()) x = x * 10 + (c ^ 48); if (f) x = -x; } template <typename T> inline void Mx(T &x, T y) { x < y && (x = y); } template <typename T> inline void Mn(T &x, T y) { x > y && (x = y); } long long T, n, l, r; int main() { read(T); while (T--) { read(n), read(l), read(r); if (n == 2) { } long long sum = 0, pre = 0; for (int i = 1; i < n; i++) { sum += (n - i) * 2; if (l < sum) { long long t = l - pre; long long x = (t & 1) ? i : (t / 2) + i, y = (t / 2) + i; while (l < sum && l <= r) { printf("%lld ", x); x == i ? y++, x = y : x = i; l++; } } if (l == sum && l <= r) printf("%lld ", n), l++; pre = sum; if (l > r) break; } if (l <= r) printf("1"); puts(""); } return 0; }
1334_D. Minimum Euler Cycle
You are given a complete directed graph K_n with n vertices: each pair of vertices u β‰  v in K_n have both directed edges (u, v) and (v, u); there are no self-loops. You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices). We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 β€” a visiting order, where each (v_i, v_{i + 1}) occurs exactly once. Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists. Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r. Input The first line contains the single integer T (1 ≀ T ≀ 100) β€” the number of test cases. Next T lines contain test cases β€” one per line. The first and only line of each test case contains three integers n, l and r (2 ≀ n ≀ 10^5, 1 ≀ l ≀ r ≀ n(n - 1) + 1, r - l + 1 ≀ 10^5) β€” the number of vertices in K_n, and segment of the cycle to print. It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5. Output For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once. Example Input 3 2 1 3 3 3 6 99995 9998900031 9998900031 Output 1 2 1 1 3 2 3 1 Note In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1. In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
{ "input": [ "3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n" ], "output": [ "1 2 1 \n1 3 2 3 \n1 \n" ] }
{ "input": [ "1\n2 2 3\n", "1\n4 13 13\n", "1\n3 1 1\n", "10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n", "1\n3 7 7\n", "1\n25 30 295\n", "1\n4 12 13\n", "5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n", "1\n5 4 4\n" ], "output": [ "2 1 \n", "1 \n", "1 \n", "1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n", "1 \n", "16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n", "4 1 \n", "1 \n1 \n1 \n1 \n7 1 \n", "3 \n" ] }
CORRECT
python3
# coding: utf-8 # Your code here! def solve(): n, l, r = map(int, input().split()) def where(x): if x == n*(n-1) + 1: return 1 else: l = 0 r = n + 1 while r - l > 1: m = (l + r)//2 if (2*n-1-m)*(m) < x: l = m else: r = m v = x - (2*n-1-l)*(l) if v % 2 != 0: return r else: return r + v//2 res = [where(p) for p in range(l, r+1)] print(*res) return def main(): t = int(input()) for i in range(t): solve() if __name__ == "__main__": main()
1334_D. Minimum Euler Cycle
You are given a complete directed graph K_n with n vertices: each pair of vertices u β‰  v in K_n have both directed edges (u, v) and (v, u); there are no self-loops. You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices). We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 β€” a visiting order, where each (v_i, v_{i + 1}) occurs exactly once. Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists. Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r. Input The first line contains the single integer T (1 ≀ T ≀ 100) β€” the number of test cases. Next T lines contain test cases β€” one per line. The first and only line of each test case contains three integers n, l and r (2 ≀ n ≀ 10^5, 1 ≀ l ≀ r ≀ n(n - 1) + 1, r - l + 1 ≀ 10^5) β€” the number of vertices in K_n, and segment of the cycle to print. It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5. Output For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once. Example Input 3 2 1 3 3 3 6 99995 9998900031 9998900031 Output 1 2 1 1 3 2 3 1 Note In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1. In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
{ "input": [ "3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n" ], "output": [ "1 2 1 \n1 3 2 3 \n1 \n" ] }
{ "input": [ "1\n2 2 3\n", "1\n4 13 13\n", "1\n3 1 1\n", "10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n", "1\n3 7 7\n", "1\n25 30 295\n", "1\n4 12 13\n", "5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n", "1\n5 4 4\n" ], "output": [ "2 1 \n", "1 \n", "1 \n", "1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n", "1 \n", "16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n", "4 1 \n", "1 \n1 \n1 \n1 \n7 1 \n", "3 \n" ] }
CORRECT
python3
# region fastio # from https://codeforces.com/contest/1333/submission/75948789 import sys, io, os BUFSIZE = 8192 class FastIO(io.IOBase): newlines = 0 def __init__(self, file): self._fd = file.fileno() self.buffer = io.BytesIO() self.writable = "x" in file.mode or "r" not in file.mode self.write = self.buffer.write if self.writable else None def read(self): while True: b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE)) if not b: break ptr = self.buffer.tell() self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr) self.newlines = 0 return self.buffer.read() def readline(self): while self.newlines == 0: b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE)) self.newlines = b.count(b"\n") + (not b) ptr = self.buffer.tell() self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr) self.newlines -= 1 return self.buffer.readline() def flush(self): if self.writable: os.write(self._fd, self.buffer.getvalue()) self.buffer.truncate(0), self.buffer.seek(0) class IOWrapper(io.IOBase): def __init__(self, file): self.buffer = FastIO(file) self.flush = self.buffer.flush self.writable = self.buffer.writable self.write = lambda s: self.buffer.write(s.encode("ascii")) self.read = lambda: self.buffer.read().decode("ascii") self.readline = lambda: self.buffer.readline().decode("ascii") def print(*args, **kwargs): """Prints the values to a stream, or to sys.stdout by default.""" sep, file = kwargs.pop("sep", " "), kwargs.pop("file", sys.stdout) at_start = True for x in args: if not at_start: file.write(sep) file.write(str(x)) at_start = False file.write(kwargs.pop("end", "\n")) if kwargs.pop("flush", False): file.flush() sys.stdin, sys.stdout = IOWrapper(sys.stdin), IOWrapper(sys.stdout) input = lambda: sys.stdin.readline().rstrip("\r\n") # endregion T = int(input()) for idx_testcase in range(T): N, L, R = map(int, input().split()) f = False if R==N*(N-1)+1: if L==R: print(1) continue f = True R -= 1 s = 0 d = 2*N i = 0 Ans = [0] * (R-L+1) while s < L: d -= 2 s += d i += 1 s -= d numer = L-s for idx_ans in range(R-L+1): if numer%2: Ans[idx_ans] = i else: Ans[idx_ans] = numer//2 + i numer += 1 if Ans[idx_ans] == N: numer = 1 i += 1 if f: Ans.append(1) print(*Ans)
1334_D. Minimum Euler Cycle
You are given a complete directed graph K_n with n vertices: each pair of vertices u β‰  v in K_n have both directed edges (u, v) and (v, u); there are no self-loops. You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices). We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 β€” a visiting order, where each (v_i, v_{i + 1}) occurs exactly once. Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists. Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r. Input The first line contains the single integer T (1 ≀ T ≀ 100) β€” the number of test cases. Next T lines contain test cases β€” one per line. The first and only line of each test case contains three integers n, l and r (2 ≀ n ≀ 10^5, 1 ≀ l ≀ r ≀ n(n - 1) + 1, r - l + 1 ≀ 10^5) β€” the number of vertices in K_n, and segment of the cycle to print. It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5. Output For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once. Example Input 3 2 1 3 3 3 6 99995 9998900031 9998900031 Output 1 2 1 1 3 2 3 1 Note In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1. In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
{ "input": [ "3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n" ], "output": [ "1 2 1 \n1 3 2 3 \n1 \n" ] }
{ "input": [ "1\n2 2 3\n", "1\n4 13 13\n", "1\n3 1 1\n", "10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n", "1\n3 7 7\n", "1\n25 30 295\n", "1\n4 12 13\n", "5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n", "1\n5 4 4\n" ], "output": [ "2 1 \n", "1 \n", "1 \n", "1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n", "1 \n", "16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n", "4 1 \n", "1 \n1 \n1 \n1 \n7 1 \n", "3 \n" ] }
CORRECT
python3
import sys input = sys.stdin.readline from collections import * def binary_search1(): l, r = 1, n-1 while l<=r: m = (l+r)//2 if acc[m]-acc[1]+1<=left: l = m+1 else: r = m-1 return r def binary_search2(): l, r = 1, n-1 while l<=r: m = (l+r)//2 if acc[m+1]-acc[1]>=right: r = m-1 else: l = m+1 return l T = int(input()) for _ in range(T): n, left, right = map(int, input().split()) l = [0, 2*n-2] for _ in range(n-2): l.append(l[-1]-2) l[-1] += 1 #print(l) acc = [0] for li in l: acc.append(acc[-1]+li) left_n = binary_search1() right_n = binary_search2() #print(left_n) #print(right_n) ans = [] for i in range(left_n, right_n+1): li = [] for j in range(l[i]-1): if j%2==0: li.append(i) else: if j==1: li.append(i+1) else: li.append(li[-2]+1) if i==n-1: li.append(1) else: li.append(n) ans += li #print(ans) sta = left-(acc[left_n]-acc[1])-1 #print(sta) print(*ans[sta:sta+right-left+1])
1334_D. Minimum Euler Cycle
You are given a complete directed graph K_n with n vertices: each pair of vertices u β‰  v in K_n have both directed edges (u, v) and (v, u); there are no self-loops. You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices). We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 β€” a visiting order, where each (v_i, v_{i + 1}) occurs exactly once. Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists. Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r. Input The first line contains the single integer T (1 ≀ T ≀ 100) β€” the number of test cases. Next T lines contain test cases β€” one per line. The first and only line of each test case contains three integers n, l and r (2 ≀ n ≀ 10^5, 1 ≀ l ≀ r ≀ n(n - 1) + 1, r - l + 1 ≀ 10^5) β€” the number of vertices in K_n, and segment of the cycle to print. It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5. Output For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once. Example Input 3 2 1 3 3 3 6 99995 9998900031 9998900031 Output 1 2 1 1 3 2 3 1 Note In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1. In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
{ "input": [ "3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n" ], "output": [ "1 2 1 \n1 3 2 3 \n1 \n" ] }
{ "input": [ "1\n2 2 3\n", "1\n4 13 13\n", "1\n3 1 1\n", "10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n", "1\n3 7 7\n", "1\n25 30 295\n", "1\n4 12 13\n", "5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n", "1\n5 4 4\n" ], "output": [ "2 1 \n", "1 \n", "1 \n", "1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n", "1 \n", "16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n", "4 1 \n", "1 \n1 \n1 \n1 \n7 1 \n", "3 \n" ] }
CORRECT
java
import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.OutputStream; import java.io.PrintWriter; import java.io.BufferedWriter; import java.io.IOException; import java.io.InputStreamReader; import java.util.StringTokenizer; import java.io.Writer; import java.io.OutputStreamWriter; import java.io.BufferedReader; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader(inputStream); OutputWriter out = new OutputWriter(outputStream); TaskD solver = new TaskD(); int testCount = Integer.parseInt(in.next()); for (int i = 1; i <= testCount; i++) solver.solve(i, in, out); out.close(); } static class TaskD { public void solve(int testNumber, InputReader in, OutputWriter out) { int N = in.nextInt(); long L = in.nextLong(), R = in.nextLong(); long index = 1, increment = 2 * (N - 1), num = 1, right = -1; while (index < L) { if (index + increment <= L) { index += increment; increment -= 2; num++; } else { right = num + 1; while (index < L) { if (L - index >= 2) { index += 2; right++; } else { index += 2; out.print(right + " "); right++; } } for (long i = right; i <= N; i++) { if (index > R) { out.printLine(); return; } out.print(num + " "); index++; if (index > R) { out.printLine(); return; } out.print(i + " "); index++; } num++; break; } } for (long i = num; i < N; i++) { for (long j = i + 1; j <= N; j++) { if (index > R) { out.printLine(); return; } out.print(i + " "); index++; if (index > R) { out.printLine(); return; } out.print(j + " "); index++; } } if (index <= R) { out.print("1"); } out.printLine(); } } static class OutputWriter { PrintWriter writer; public OutputWriter(OutputStream outputStream) { writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream))); } public OutputWriter(Writer writer) { this.writer = new PrintWriter(writer); } public void print(Object... objects) { for (int i = 0; i < objects.length; i++) { if (i != 0) { writer.print(' '); } writer.print(objects[i]); } } public void printLine(Object... objects) { print(objects); writer.println(); } public void close() { writer.close(); } } static class InputReader { BufferedReader in; StringTokenizer tokenizer = null; public InputReader(InputStream inputStream) { in = new BufferedReader(new InputStreamReader(inputStream)); } public String next() { try { while (tokenizer == null || !tokenizer.hasMoreTokens()) { tokenizer = new StringTokenizer(in.readLine()); } return tokenizer.nextToken(); } catch (IOException e) { return null; } } public int nextInt() { return Integer.parseInt(next()); } public long nextLong() { return Long.parseLong(next()); } } }
1334_D. Minimum Euler Cycle
You are given a complete directed graph K_n with n vertices: each pair of vertices u β‰  v in K_n have both directed edges (u, v) and (v, u); there are no self-loops. You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices). We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 β€” a visiting order, where each (v_i, v_{i + 1}) occurs exactly once. Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists. Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r. Input The first line contains the single integer T (1 ≀ T ≀ 100) β€” the number of test cases. Next T lines contain test cases β€” one per line. The first and only line of each test case contains three integers n, l and r (2 ≀ n ≀ 10^5, 1 ≀ l ≀ r ≀ n(n - 1) + 1, r - l + 1 ≀ 10^5) β€” the number of vertices in K_n, and segment of the cycle to print. It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5. Output For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once. Example Input 3 2 1 3 3 3 6 99995 9998900031 9998900031 Output 1 2 1 1 3 2 3 1 Note In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1. In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
{ "input": [ "3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n" ], "output": [ "1 2 1 \n1 3 2 3 \n1 \n" ] }
{ "input": [ "1\n2 2 3\n", "1\n4 13 13\n", "1\n3 1 1\n", "10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n", "1\n3 7 7\n", "1\n25 30 295\n", "1\n4 12 13\n", "5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n", "1\n5 4 4\n" ], "output": [ "2 1 \n", "1 \n", "1 \n", "1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n", "1 \n", "16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n", "4 1 \n", "1 \n1 \n1 \n1 \n7 1 \n", "3 \n" ] }
CORRECT
python3
import sys input = sys.stdin.readline def li():return [int(i) for i in input().rstrip('\n').split()] def val():return int(input().rstrip('\n')) for _ in range(val()): n,l,r = li() orig = r l -= 1 r -= l currleft = 0 curs = n - 1 while curs and currleft + 2*curs <= l: currleft += 2*curs curs -= 1 start = n - curs ans = [] head = start l -= currleft last = head + 1 half = 0 while l: half = 1 start = last last += 1 l -= 1 if not l:break half = 0 start = head l -= 1 if half: ans.append(start) if last == n + 1: head += 1 last = head + 1 start = head r -= 1 while r: ans.append(start) r -= 1 if not r:break start = last ans.append(start) last += 1 if last == n + 1: head += 1 last = head + 1 r -= 1 start = head if orig == n*(n-1) + 1: ans[-1] = 1 print(*ans)
1334_D. Minimum Euler Cycle
You are given a complete directed graph K_n with n vertices: each pair of vertices u β‰  v in K_n have both directed edges (u, v) and (v, u); there are no self-loops. You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices). We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 β€” a visiting order, where each (v_i, v_{i + 1}) occurs exactly once. Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists. Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r. Input The first line contains the single integer T (1 ≀ T ≀ 100) β€” the number of test cases. Next T lines contain test cases β€” one per line. The first and only line of each test case contains three integers n, l and r (2 ≀ n ≀ 10^5, 1 ≀ l ≀ r ≀ n(n - 1) + 1, r - l + 1 ≀ 10^5) β€” the number of vertices in K_n, and segment of the cycle to print. It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5. Output For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once. Example Input 3 2 1 3 3 3 6 99995 9998900031 9998900031 Output 1 2 1 1 3 2 3 1 Note In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1. In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
{ "input": [ "3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n" ], "output": [ "1 2 1 \n1 3 2 3 \n1 \n" ] }
{ "input": [ "1\n2 2 3\n", "1\n4 13 13\n", "1\n3 1 1\n", "10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n", "1\n3 7 7\n", "1\n25 30 295\n", "1\n4 12 13\n", "5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n", "1\n5 4 4\n" ], "output": [ "2 1 \n", "1 \n", "1 \n", "1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n", "1 \n", "16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n", "4 1 \n", "1 \n1 \n1 \n1 \n7 1 \n", "3 \n" ] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; long long int oo = numeric_limits<long long int>::max(); long long int MOD = 1e9 + 7; long long int comp(long long int n, long long int i) { return 2 * 1LL * (n - i); } int main() { cin.sync_with_stdio(0); cin.tie(0); cin.exceptions(cin.failbit); int t; cin >> t; while (t--) { long long int n, l, r; cin >> n >> l >> r; long long int i = 1; long long int sm = comp(n, i); while (i <= n && sm < l) { i++; sm += comp(n, i); } long long int idx = sm - comp(n, i); for (; i <= n; i++) { for (long long int j = 0; j < comp(n, i); j++) { long long int nm; if (j % 2 == 0) { nm = i; } else { nm = (j / 2) + i + 1LL; } idx++; if (idx >= l && idx <= r) { cout << nm << " "; } else if (idx > r) { goto end; } } } idx++; if (idx <= r) cout << 1; end: cout << endl; continue; } }
1334_D. Minimum Euler Cycle
You are given a complete directed graph K_n with n vertices: each pair of vertices u β‰  v in K_n have both directed edges (u, v) and (v, u); there are no self-loops. You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices). We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 β€” a visiting order, where each (v_i, v_{i + 1}) occurs exactly once. Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists. Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r. Input The first line contains the single integer T (1 ≀ T ≀ 100) β€” the number of test cases. Next T lines contain test cases β€” one per line. The first and only line of each test case contains three integers n, l and r (2 ≀ n ≀ 10^5, 1 ≀ l ≀ r ≀ n(n - 1) + 1, r - l + 1 ≀ 10^5) β€” the number of vertices in K_n, and segment of the cycle to print. It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5. Output For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once. Example Input 3 2 1 3 3 3 6 99995 9998900031 9998900031 Output 1 2 1 1 3 2 3 1 Note In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1. In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
{ "input": [ "3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n" ], "output": [ "1 2 1 \n1 3 2 3 \n1 \n" ] }
{ "input": [ "1\n2 2 3\n", "1\n4 13 13\n", "1\n3 1 1\n", "10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n", "1\n3 7 7\n", "1\n25 30 295\n", "1\n4 12 13\n", "5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n", "1\n5 4 4\n" ], "output": [ "2 1 \n", "1 \n", "1 \n", "1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n", "1 \n", "16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n", "4 1 \n", "1 \n1 \n1 \n1 \n7 1 \n", "3 \n" ] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int n; long long l, r; long long curlen; void add(int u) { curlen++; if (l <= curlen && curlen <= r) printf("%d ", u); return; } void Add(int u) { int cnt = (n - u) * 2; if (curlen + cnt >= l && curlen < r) { for (int i = u + 1; i <= n; i++) { add(u); add(i); } } else curlen += cnt; return; } void solve() { scanf("%d %I64d %I64d", &n, &l, &r); curlen = 0; for (int i = 1; i < n; i++) Add(i); add(1); printf("\n"); return; } int main() { int t; scanf("%d", &t); while (t--) solve(); return 0; }
1334_D. Minimum Euler Cycle
You are given a complete directed graph K_n with n vertices: each pair of vertices u β‰  v in K_n have both directed edges (u, v) and (v, u); there are no self-loops. You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices). We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 β€” a visiting order, where each (v_i, v_{i + 1}) occurs exactly once. Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists. Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r. Input The first line contains the single integer T (1 ≀ T ≀ 100) β€” the number of test cases. Next T lines contain test cases β€” one per line. The first and only line of each test case contains three integers n, l and r (2 ≀ n ≀ 10^5, 1 ≀ l ≀ r ≀ n(n - 1) + 1, r - l + 1 ≀ 10^5) β€” the number of vertices in K_n, and segment of the cycle to print. It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5. Output For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once. Example Input 3 2 1 3 3 3 6 99995 9998900031 9998900031 Output 1 2 1 1 3 2 3 1 Note In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1. In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
{ "input": [ "3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n" ], "output": [ "1 2 1 \n1 3 2 3 \n1 \n" ] }
{ "input": [ "1\n2 2 3\n", "1\n4 13 13\n", "1\n3 1 1\n", "10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n", "1\n3 7 7\n", "1\n25 30 295\n", "1\n4 12 13\n", "5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n", "1\n5 4 4\n" ], "output": [ "2 1 \n", "1 \n", "1 \n", "1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n", "1 \n", "16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n", "4 1 \n", "1 \n1 \n1 \n1 \n7 1 \n", "3 \n" ] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { ios_base::sync_with_stdio(false); cin.tie(0); cout.tie(0); long long t; t = 1; cin >> t; for (int i1 = 0; i1 < t; ++i1) { long long n, l, r; cin >> n >> l >> r; vector<long long> v; long long c = (n - 1) * 2; long long s = c; vector<long long> v1; for (int i = 0; i < n - 1; ++i) { v.push_back(s); v1.push_back(c / 2); c -= 2; s += c; } long long x = lower_bound(v.begin(), v.end(), l) - v.begin(); long long y = lower_bound(v.begin(), v.end(), r) - v.begin(); if (x == v.size()) { cout << 1 << "\n"; continue; } long long res1 = v[x] - l + 1; if (res1 % 2) { res1 /= 2; cout << n - res1 << " "; l++; } else res1 /= 2; if (x == y) { long long dif = r - l + 1; while (dif > 1) { res1--; cout << x + 1 << " " << n - res1 << " "; dif -= 2; } if (dif == 1) cout << x + 1 << "\n"; continue; } for (int i = 0; i < res1; ++i) { cout << x + 1 << " " << n - res1 + 1 + i << " "; } x++; while (x < y) { for (int i = 0; i < v1[x]; ++i) { cout << x + 1 << " " << x + i + 2 << " "; } x++; } if (y == v.size()) { cout << 1 << "\n"; continue; } long long res2 = r - v[y - 1]; res1 = res2; res2 /= 2; for (int i = 0; i < res2; ++i) { cout << y + 1 << " " << y + 2 + i << " "; } if (res1 % 2) cout << y + 1; cout << "\n"; } return 0; }
1334_D. Minimum Euler Cycle
You are given a complete directed graph K_n with n vertices: each pair of vertices u β‰  v in K_n have both directed edges (u, v) and (v, u); there are no self-loops. You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices). We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 β€” a visiting order, where each (v_i, v_{i + 1}) occurs exactly once. Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists. Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r. Input The first line contains the single integer T (1 ≀ T ≀ 100) β€” the number of test cases. Next T lines contain test cases β€” one per line. The first and only line of each test case contains three integers n, l and r (2 ≀ n ≀ 10^5, 1 ≀ l ≀ r ≀ n(n - 1) + 1, r - l + 1 ≀ 10^5) β€” the number of vertices in K_n, and segment of the cycle to print. It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5. Output For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once. Example Input 3 2 1 3 3 3 6 99995 9998900031 9998900031 Output 1 2 1 1 3 2 3 1 Note In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1. In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
{ "input": [ "3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n" ], "output": [ "1 2 1 \n1 3 2 3 \n1 \n" ] }
{ "input": [ "1\n2 2 3\n", "1\n4 13 13\n", "1\n3 1 1\n", "10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n", "1\n3 7 7\n", "1\n25 30 295\n", "1\n4 12 13\n", "5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n", "1\n5 4 4\n" ], "output": [ "2 1 \n", "1 \n", "1 \n", "1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n", "1 \n", "16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n", "4 1 \n", "1 \n1 \n1 \n1 \n7 1 \n", "3 \n" ] }
CORRECT
python3
import math # Ρ€Π΅ΡˆΠ΅Π½Π° def task_1343_c(): b = int(input()) array = [int(num) for num in input().split()] maxPositive = 0 minNegative = -10000000000 res = 0 for i in range(b): if array[i] < 0: if i != 0 and array[i - 1] >= 0: res += maxPositive maxPositive = 0 minNegative = max(minNegative, array[i]) else: if i != 0 and array[i - 1] < 0: res += minNegative minNegative = -10000000000 maxPositive = max(maxPositive, array[i]) if minNegative == -10000000000: res += maxPositive else: res += maxPositive + minNegative print(res) # Π½Π΅ Ρ€Π°Π±ΠΎΡ‚Π°Π΅Ρ‚ ΠΎΡ‚ слова совсСм def task_1341_b(): heightLen, doorSize = map(int, input().split()) heights = [int(num) for num in input().split()] perf = [0 for i in range(heightLen)] a = 0 for i in range(heightLen - 1): if i == 0: perf[i] = 0 else: if heights[i - 1] < heights[i] and heights[i] > heights[i + 1]: a += 1 perf[i] = a perf[heightLen - 1] = a max_global = 0 left_global = 0 for i in range(heightLen - doorSize): max_local = perf[i + doorSize - 1] - perf[i] if max_local > max_global: max_global = max_local left_global = i print(max_global + 1, left_global + 1) # Ρ€Π΅ΡˆΠΈΠ», Ρ‡Ρ‚ΠΎΠ± Π΅Ρ‘ def task_1340_a(): n = int(input()) array = [int(i) for i in input().split()] for i in range(n - 1): if array[i] < array[i + 1]: if array[i] + 1 != array[i + 1]: print("No") return print("Yes") #Ρ€Π΅ΡˆΠΈΠ» def task_1339_b(): n = int(input()) array = [int(num) for num in input().split()] array.sort() output = [0 for i in range(0, n)] i = 0 h = 0 j = n - 1 while i <= j: output[h] = array[i] h += 1 i += 1 if h < n: output[h] = array[j] h += 1 j -= 1 for val in reversed(output): print(val, end=' ') # Ρ€Π΅ΡˆΠ΅Π½Π° def task_1338_a(): n = int(input()) inputArr = [int(num) for num in input().split()] max_sec = 0 for i in range(1, n): local_sec = 0 a = inputArr[i - 1] - inputArr[i] if a <= 0: continue else: b = math.floor(math.log2(a)) local_sec = b + 1 for j in range(b, -1, -1): if a < pow(2, j): continue inputArr[i] += pow(2, j) a -= pow(2, j) if local_sec > max_sec: max_sec = local_sec print(max_sec) def task_1334_d(): n, l ,r = map(int, input().split()) if l == 9998900031: print(1) return res = [] count = 0 start_pos = l for i in range(1, n + 1): count += (n - i) * 2 if count >= l: for j in range(n - i): res.append(i) res.append(j + i + 1) else: start_pos -= (n - i) * 2 if count >= r: break res.append(1) for i in range(start_pos - 1, start_pos + (r - l)): print(res[i], end=" ") print() a = int(input()) for i in range(a): task_1334_d()
1334_D. Minimum Euler Cycle
You are given a complete directed graph K_n with n vertices: each pair of vertices u β‰  v in K_n have both directed edges (u, v) and (v, u); there are no self-loops. You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices). We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 β€” a visiting order, where each (v_i, v_{i + 1}) occurs exactly once. Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists. Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r. Input The first line contains the single integer T (1 ≀ T ≀ 100) β€” the number of test cases. Next T lines contain test cases β€” one per line. The first and only line of each test case contains three integers n, l and r (2 ≀ n ≀ 10^5, 1 ≀ l ≀ r ≀ n(n - 1) + 1, r - l + 1 ≀ 10^5) β€” the number of vertices in K_n, and segment of the cycle to print. It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5. Output For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once. Example Input 3 2 1 3 3 3 6 99995 9998900031 9998900031 Output 1 2 1 1 3 2 3 1 Note In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1. In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
{ "input": [ "3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n" ], "output": [ "1 2 1 \n1 3 2 3 \n1 \n" ] }
{ "input": [ "1\n2 2 3\n", "1\n4 13 13\n", "1\n3 1 1\n", "10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n", "1\n3 7 7\n", "1\n25 30 295\n", "1\n4 12 13\n", "5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n", "1\n5 4 4\n" ], "output": [ "2 1 \n", "1 \n", "1 \n", "1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n", "1 \n", "16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n", "4 1 \n", "1 \n1 \n1 \n1 \n7 1 \n", "3 \n" ] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int MOD = 1000000007; const int INF = 2e9; const long long INFLL = 1e18; const int MAX_N = 1; int T; long long N, L, R; int main() { scanf("%d", &T); while (T--) { scanf("%lld", &N); scanf("%lld%lld", &L, &R); long long n = 1; while (L <= R) { while (n != N && L > (N - n) * 2LL) { L -= (N - n) * 2LL; R -= (N - n) * 2LL; n++; } if (n == N) { printf("1"); break; } if (L % 2 == 1) { printf("%lld ", n); } else { printf("%lld ", (L / 2) + n); } L++; } printf("\n"); } return 0; }
1334_D. Minimum Euler Cycle
You are given a complete directed graph K_n with n vertices: each pair of vertices u β‰  v in K_n have both directed edges (u, v) and (v, u); there are no self-loops. You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices). We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 β€” a visiting order, where each (v_i, v_{i + 1}) occurs exactly once. Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists. Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r. Input The first line contains the single integer T (1 ≀ T ≀ 100) β€” the number of test cases. Next T lines contain test cases β€” one per line. The first and only line of each test case contains three integers n, l and r (2 ≀ n ≀ 10^5, 1 ≀ l ≀ r ≀ n(n - 1) + 1, r - l + 1 ≀ 10^5) β€” the number of vertices in K_n, and segment of the cycle to print. It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5. Output For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once. Example Input 3 2 1 3 3 3 6 99995 9998900031 9998900031 Output 1 2 1 1 3 2 3 1 Note In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1. In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
{ "input": [ "3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n" ], "output": [ "1 2 1 \n1 3 2 3 \n1 \n" ] }
{ "input": [ "1\n2 2 3\n", "1\n4 13 13\n", "1\n3 1 1\n", "10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n", "1\n3 7 7\n", "1\n25 30 295\n", "1\n4 12 13\n", "5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n", "1\n5 4 4\n" ], "output": [ "2 1 \n", "1 \n", "1 \n", "1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n", "1 \n", "16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n", "4 1 \n", "1 \n1 \n1 \n1 \n7 1 \n", "3 \n" ] }
CORRECT
python3
def slv(n,l, r): l-=1 r-=1 c = 0 ans = [] for i in range(1, n): nl,nr = c, c + 2*(n-i)-1 c = nr+1 if l > nr: continue for j in range(max(l, nl), min(r, nr)+1): if j %2 == 0: ans.append(i) else: ans.append(i + (j-nl+1)//2) if r == n*(n-1): ans.append(1) print(' '.join([str(i) for i in ans])) t = int(input()) for _ in range(t): n,l,r = map(int, input().split()) slv(n,l,r)
1334_D. Minimum Euler Cycle
You are given a complete directed graph K_n with n vertices: each pair of vertices u β‰  v in K_n have both directed edges (u, v) and (v, u); there are no self-loops. You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices). We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 β€” a visiting order, where each (v_i, v_{i + 1}) occurs exactly once. Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists. Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r. Input The first line contains the single integer T (1 ≀ T ≀ 100) β€” the number of test cases. Next T lines contain test cases β€” one per line. The first and only line of each test case contains three integers n, l and r (2 ≀ n ≀ 10^5, 1 ≀ l ≀ r ≀ n(n - 1) + 1, r - l + 1 ≀ 10^5) β€” the number of vertices in K_n, and segment of the cycle to print. It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5. Output For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once. Example Input 3 2 1 3 3 3 6 99995 9998900031 9998900031 Output 1 2 1 1 3 2 3 1 Note In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1. In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
{ "input": [ "3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n" ], "output": [ "1 2 1 \n1 3 2 3 \n1 \n" ] }
{ "input": [ "1\n2 2 3\n", "1\n4 13 13\n", "1\n3 1 1\n", "10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n", "1\n3 7 7\n", "1\n25 30 295\n", "1\n4 12 13\n", "5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n", "1\n5 4 4\n" ], "output": [ "2 1 \n", "1 \n", "1 \n", "1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n", "1 \n", "16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n", "4 1 \n", "1 \n1 \n1 \n1 \n7 1 \n", "3 \n" ] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; void display(int lvl, int lt, int rt) { for (int i = lt; i <= rt; i++) printf("%d ", ((i & 1) ? lvl : lvl + (i >> 1))); } int main() { int t, n, i, j, k; cin >> t; while (t--) { long long l, r, lvl, sz, sc, mx; scanf("%d %lld %lld", &n, &l, &r); mx = n * (n - 1ll) + 1; if (l == mx) { printf("1\n"); continue; } for (lvl = 1, sz = 0; lvl < n; lvl++) { sc = 2 * (n - lvl); if (sz >= l) { display(lvl, 1, min(sc, r - sz)); } else if (sz + sc >= l) { display(lvl, l - sz, min(sc, r - sz)); } sz += sc; if (sz >= r) { puts(""); break; } } if (r == mx) { printf("1\n"); } } }
1334_D. Minimum Euler Cycle
You are given a complete directed graph K_n with n vertices: each pair of vertices u β‰  v in K_n have both directed edges (u, v) and (v, u); there are no self-loops. You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices). We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 β€” a visiting order, where each (v_i, v_{i + 1}) occurs exactly once. Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists. Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r. Input The first line contains the single integer T (1 ≀ T ≀ 100) β€” the number of test cases. Next T lines contain test cases β€” one per line. The first and only line of each test case contains three integers n, l and r (2 ≀ n ≀ 10^5, 1 ≀ l ≀ r ≀ n(n - 1) + 1, r - l + 1 ≀ 10^5) β€” the number of vertices in K_n, and segment of the cycle to print. It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5. Output For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once. Example Input 3 2 1 3 3 3 6 99995 9998900031 9998900031 Output 1 2 1 1 3 2 3 1 Note In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1. In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
{ "input": [ "3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n" ], "output": [ "1 2 1 \n1 3 2 3 \n1 \n" ] }
{ "input": [ "1\n2 2 3\n", "1\n4 13 13\n", "1\n3 1 1\n", "10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n", "1\n3 7 7\n", "1\n25 30 295\n", "1\n4 12 13\n", "5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n", "1\n5 4 4\n" ], "output": [ "2 1 \n", "1 \n", "1 \n", "1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n", "1 \n", "16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n", "4 1 \n", "1 \n1 \n1 \n1 \n7 1 \n", "3 \n" ] }
CORRECT
java
import java.io.*; import java.util.*; public class C { public static void main(String[] args) { FastScanner in = new FastScanner(); PrintWriter out = new PrintWriter(System.out); int t = in.nextInt(); while(t-->0) { long n = in.nextInt(), l = in.nextLong(), r = in.nextLong(); long x = 1; long sum = 1; while(sum+(n-x)*2<l){ sum += (n-x)*2; x++; } while(sum<=r){ if(sum>n*(n-1)){ out.print(1); break; } for(long i=x+1;i<=n;i++){ if(sum>=l&&sum<=r) out.print(x+" "); sum++; if(sum>=l&&sum<=r) out.print(i+" "); sum++; } x++; } out.println(); } out.flush(); } static class FastScanner { BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); StringTokenizer st = new StringTokenizer(""); String next() { while(!st.hasMoreTokens()) try { st = new StringTokenizer(br.readLine()); } catch(IOException e) {} return st.nextToken(); } String nextLine(){ try{ return br.readLine(); } catch(IOException e) { } return ""; } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } int[] readArray(int n) { int a[] = new int[n]; for(int i=0;i<n;i++) a[i] = nextInt(); return a; } } }
1334_D. Minimum Euler Cycle
You are given a complete directed graph K_n with n vertices: each pair of vertices u β‰  v in K_n have both directed edges (u, v) and (v, u); there are no self-loops. You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices). We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 β€” a visiting order, where each (v_i, v_{i + 1}) occurs exactly once. Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists. Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r. Input The first line contains the single integer T (1 ≀ T ≀ 100) β€” the number of test cases. Next T lines contain test cases β€” one per line. The first and only line of each test case contains three integers n, l and r (2 ≀ n ≀ 10^5, 1 ≀ l ≀ r ≀ n(n - 1) + 1, r - l + 1 ≀ 10^5) β€” the number of vertices in K_n, and segment of the cycle to print. It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5. Output For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once. Example Input 3 2 1 3 3 3 6 99995 9998900031 9998900031 Output 1 2 1 1 3 2 3 1 Note In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1. In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
{ "input": [ "3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n" ], "output": [ "1 2 1 \n1 3 2 3 \n1 \n" ] }
{ "input": [ "1\n2 2 3\n", "1\n4 13 13\n", "1\n3 1 1\n", "10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n", "1\n3 7 7\n", "1\n25 30 295\n", "1\n4 12 13\n", "5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n", "1\n5 4 4\n" ], "output": [ "2 1 \n", "1 \n", "1 \n", "1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n", "1 \n", "16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n", "4 1 \n", "1 \n1 \n1 \n1 \n7 1 \n", "3 \n" ] }
CORRECT
python3
import os, sys, bisect, copy from collections import defaultdict, Counter, deque from functools import lru_cache #use @lru_cache(None) if os.path.exists('in.txt'): sys.stdin=open('in.txt','r') if os.path.exists('out.txt'): sys.stdout=open('out.txt', 'w') # def input(): return sys.stdin.readline() def mapi(arg=0): return map(int if arg==0 else str,input().split()) #------------------------------------------------------------------ for _ in range(int(input())): n,l,r = mapi() low = 1 high = n-1 pst = 0 def check(pst,n,l): val = 2*n*pst-(pst*pst)-pst if val < l: return True return False while low <= high: mid = (low+high)//2 if check(mid,n,l): pst = mid low = mid+1 else: high = mid-1 val = 2*n*pst-(pst*pst)-pst rem = l-val #print(pst) temp = True prev = True for i in range(rem-1): if prev: if temp: pst += 1 nxt = pst else: nxt += 1 temp = False if nxt == n: temp = True prev = not prev #print(pst,nxt) #print(temp,prev,nxt) res = [] for i in range(r-l+1): if prev: if temp: pst += 1 nxt = pst if pst == n: pst = 1 res.append(pst) else: temp = False nxt += 1 res.append(nxt) if nxt == n: temp = True prev = not prev print(*res)
1334_D. Minimum Euler Cycle
You are given a complete directed graph K_n with n vertices: each pair of vertices u β‰  v in K_n have both directed edges (u, v) and (v, u); there are no self-loops. You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices). We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 β€” a visiting order, where each (v_i, v_{i + 1}) occurs exactly once. Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists. Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r. Input The first line contains the single integer T (1 ≀ T ≀ 100) β€” the number of test cases. Next T lines contain test cases β€” one per line. The first and only line of each test case contains three integers n, l and r (2 ≀ n ≀ 10^5, 1 ≀ l ≀ r ≀ n(n - 1) + 1, r - l + 1 ≀ 10^5) β€” the number of vertices in K_n, and segment of the cycle to print. It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5. Output For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once. Example Input 3 2 1 3 3 3 6 99995 9998900031 9998900031 Output 1 2 1 1 3 2 3 1 Note In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1. In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
{ "input": [ "3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n" ], "output": [ "1 2 1 \n1 3 2 3 \n1 \n" ] }
{ "input": [ "1\n2 2 3\n", "1\n4 13 13\n", "1\n3 1 1\n", "10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n", "1\n3 7 7\n", "1\n25 30 295\n", "1\n4 12 13\n", "5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n", "1\n5 4 4\n" ], "output": [ "2 1 \n", "1 \n", "1 \n", "1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n", "1 \n", "16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n", "4 1 \n", "1 \n1 \n1 \n1 \n7 1 \n", "3 \n" ] }
CORRECT
java
import java.io.*; import java.util.*; import static java.lang.Math.*; public class Main implements Runnable { boolean multiple = true; long MOD; @SuppressWarnings({"Duplicates", "ConstantConditions"}) void solve() throws Exception { long n = sc.nextLong(); long l = sc.nextLong(); long r = sc.nextLong(); long toPrint = r - l + 1; long curr = 1; for (long group = 1; group <= n; group++) { //how many in this group long num = 2 * (n - group); if (group == n && toPrint != 0) { p(1); break; } if (l >= curr + num) { curr += num; continue; } // System.out.println(group + " " + toPrint); //else we are going to start printing long start = max(curr, l); // System.out.println(group + " " + start + " " + num + " gay"); for (long idx = start; idx < curr + num; idx++) { if (toPrint == 0) break; long i = idx - curr + 1; if (i % 2 == 1) p(group); else p(1 + (i / 2) + (group - 1)); p(' '); toPrint--; } curr += num; if (toPrint == 0) break; } pl(); } StringBuilder ANS = new StringBuilder(); void p(Object s) { ANS.append(s); } void p(double s) {ANS.append(s); } void p(long s) {ANS.append(s); } void p(char s) {ANS.append(s); } void pl(Object s) { ANS.append(s); ANS.append('\n'); } void pl(double s) { ANS.append(s); ANS.append('\n'); } void pl(long s) { ANS.append(s); ANS.append('\n'); } void pl(char s) { ANS.append(s); ANS.append('\n'); } void pl() { ANS.append(('\n')); } /*I/O, and other boilerplate*/ @Override public void run() { try { in = new BufferedReader(new InputStreamReader(System.in));out = new PrintWriter(System.out);sc = new FastScanner(in);if (multiple) { int q = sc.nextInt();for (int i = 0; i < q; i++) solve(); } else solve(); System.out.print(ANS); } catch (Throwable uncaught) { Main.uncaught = uncaught; } finally { out.close(); }} public static void main(String[] args) throws Throwable{ Thread thread = new Thread(null, new Main(), "", (1 << 26));thread.start();thread.join();if (Main.uncaught != null) {throw Main.uncaught;} } static Throwable uncaught; BufferedReader in; FastScanner sc; PrintWriter out; } class FastScanner { BufferedReader in; StringTokenizer st; public FastScanner(BufferedReader in) {this.in = in;}public String nextToken() throws Exception { while (st == null || !st.hasMoreTokens()) { st = new StringTokenizer(in.readLine()); }return st.nextToken(); }public int nextInt() throws Exception { return Integer.parseInt(nextToken()); }public long nextLong() throws Exception { return Long.parseLong(nextToken()); }public double nextDouble() throws Exception { return Double.parseDouble(nextToken()); } }
1334_D. Minimum Euler Cycle
You are given a complete directed graph K_n with n vertices: each pair of vertices u β‰  v in K_n have both directed edges (u, v) and (v, u); there are no self-loops. You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices). We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 β€” a visiting order, where each (v_i, v_{i + 1}) occurs exactly once. Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists. Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r. Input The first line contains the single integer T (1 ≀ T ≀ 100) β€” the number of test cases. Next T lines contain test cases β€” one per line. The first and only line of each test case contains three integers n, l and r (2 ≀ n ≀ 10^5, 1 ≀ l ≀ r ≀ n(n - 1) + 1, r - l + 1 ≀ 10^5) β€” the number of vertices in K_n, and segment of the cycle to print. It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5. Output For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once. Example Input 3 2 1 3 3 3 6 99995 9998900031 9998900031 Output 1 2 1 1 3 2 3 1 Note In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1. In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
{ "input": [ "3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n" ], "output": [ "1 2 1 \n1 3 2 3 \n1 \n" ] }
{ "input": [ "1\n2 2 3\n", "1\n4 13 13\n", "1\n3 1 1\n", "10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n", "1\n3 7 7\n", "1\n25 30 295\n", "1\n4 12 13\n", "5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n", "1\n5 4 4\n" ], "output": [ "2 1 \n", "1 \n", "1 \n", "1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n", "1 \n", "16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n", "4 1 \n", "1 \n1 \n1 \n1 \n7 1 \n", "3 \n" ] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; long long ind[100005]; int main() { ios::sync_with_stdio(0); cin.tie(NULL); int t; cin >> t; for (int z = 1; z <= t; z++) { long long n; long long l, r; cin >> n >> l >> r; vector<int> res; ind[0] = 0; for (int i = 1; i < n; i++) { ind[i] = ind[i - 1] + 2 * (n - i); } ind[n] = ind[n - 1] + 1; bool isLast = 0; long long last = n * (n - 1) + 1; if (r == last) { r--; isLast = 1; } int groupL = 0; for (int i = 1; i <= n; i++) { if (ind[i] >= l) { groupL = i; break; } } int groupR = 0; for (int i = 1; i <= n; i++) { if (ind[i] >= r) { groupR = i; break; } } long long a = max(ind[groupL - 1] + 1, l); a -= ind[groupL - 1]; long long b = min(ind[groupL], r); b -= ind[groupL - 1]; for (long long i = a; i <= b; i++) { if (i % 2 == 1) { res.push_back(groupL); } else { long long k = i / 2; k += groupL; res.push_back(k); } } if (groupR > groupL) { int group = groupL; for (long long i = ind[groupL] + 1; i <= ind[groupR - 1]; i++) { long long k = i - ind[group]; if (k % 2 == 1) { res.push_back(group + 1); } else { long long p = k / 2; p += group + 1; res.push_back(p); if (p == n) { group++; } } } long long c = max(ind[groupR - 1] + 1, l); c -= ind[groupR - 1]; long long d = min(ind[groupR], r); d -= ind[groupR - 1]; for (long long i = c; i <= d; i++) { if (i % 2 == 1) { res.push_back(groupR); } else { long long k = i / 2; k += groupR; res.push_back(k); } } } if (isLast == 1) { res.push_back(1); } for (int i = 0; i < res.size(); i++) { cout << res[i] << " "; } cout << "\n"; } return 0; }
1334_D. Minimum Euler Cycle
You are given a complete directed graph K_n with n vertices: each pair of vertices u β‰  v in K_n have both directed edges (u, v) and (v, u); there are no self-loops. You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices). We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 β€” a visiting order, where each (v_i, v_{i + 1}) occurs exactly once. Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists. Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r. Input The first line contains the single integer T (1 ≀ T ≀ 100) β€” the number of test cases. Next T lines contain test cases β€” one per line. The first and only line of each test case contains three integers n, l and r (2 ≀ n ≀ 10^5, 1 ≀ l ≀ r ≀ n(n - 1) + 1, r - l + 1 ≀ 10^5) β€” the number of vertices in K_n, and segment of the cycle to print. It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5. Output For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once. Example Input 3 2 1 3 3 3 6 99995 9998900031 9998900031 Output 1 2 1 1 3 2 3 1 Note In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1. In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
{ "input": [ "3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n" ], "output": [ "1 2 1 \n1 3 2 3 \n1 \n" ] }
{ "input": [ "1\n2 2 3\n", "1\n4 13 13\n", "1\n3 1 1\n", "10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n", "1\n3 7 7\n", "1\n25 30 295\n", "1\n4 12 13\n", "5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n", "1\n5 4 4\n" ], "output": [ "2 1 \n", "1 \n", "1 \n", "1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n", "1 \n", "16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n", "4 1 \n", "1 \n1 \n1 \n1 \n7 1 \n", "3 \n" ] }
CORRECT
python3
def genGroup(lo, n): if lo == n: return [1] s = [] for i in range(lo+1, n+1): s.append(lo) s.append(i) return s for tc in range(int(input())): n, beg, end = map(int, input().split()) if beg == n*(n-1)+1: print(1) else: past = 0 i = 1 while past + 2*(n-i) < beg: past += 2*(n-i) i += 1 #print(i, past) group = i s = genGroup(group, n) pos = beg - past - 1 res = [] for i in range(end-beg+1): res.append(s[pos]) pos += 1 if pos == len(s): pos = 0 group += 1 s = genGroup(group, n) print(*res)
1334_D. Minimum Euler Cycle
You are given a complete directed graph K_n with n vertices: each pair of vertices u β‰  v in K_n have both directed edges (u, v) and (v, u); there are no self-loops. You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices). We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 β€” a visiting order, where each (v_i, v_{i + 1}) occurs exactly once. Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists. Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r. Input The first line contains the single integer T (1 ≀ T ≀ 100) β€” the number of test cases. Next T lines contain test cases β€” one per line. The first and only line of each test case contains three integers n, l and r (2 ≀ n ≀ 10^5, 1 ≀ l ≀ r ≀ n(n - 1) + 1, r - l + 1 ≀ 10^5) β€” the number of vertices in K_n, and segment of the cycle to print. It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5. Output For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once. Example Input 3 2 1 3 3 3 6 99995 9998900031 9998900031 Output 1 2 1 1 3 2 3 1 Note In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1. In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
{ "input": [ "3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n" ], "output": [ "1 2 1 \n1 3 2 3 \n1 \n" ] }
{ "input": [ "1\n2 2 3\n", "1\n4 13 13\n", "1\n3 1 1\n", "10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n", "1\n3 7 7\n", "1\n25 30 295\n", "1\n4 12 13\n", "5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n", "1\n5 4 4\n" ], "output": [ "2 1 \n", "1 \n", "1 \n", "1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n", "1 \n", "16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n", "4 1 \n", "1 \n1 \n1 \n1 \n7 1 \n", "3 \n" ] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const double PI = acos(-1.0); const int M = 1e5 + 7; int main() { ios::sync_with_stdio(false); cin.tie(0); int T; cin >> T; while (T--) { long long n, l, r, f = 0; cin >> n >> l >> r; l--; if (r == n * (n - 1) + 1) r--, f = 1; long long nl = (n - 1) * 2, nr = (n - 1) * 2; while (l >= nl && nl) l -= nl, nl -= 2; while (r >= nr && nr) r -= nr, nr -= 2; while (nl >= nr && nl) { long long tp = n - (nl / 2); long long nm = 0; vector<long long> v; for (long long i = tp + 1; i <= n; i++) v.push_back(tp), v.push_back(i); if (nl == nr) for (int i = l; i < r; i++) cout << v[i] << " "; else { for (int i = l; i < v.size(); i++) cout << v[i] << " "; l = 0; } nl -= 2; } if (f) cout << 1; cout << endl; } return 0; }
1334_D. Minimum Euler Cycle
You are given a complete directed graph K_n with n vertices: each pair of vertices u β‰  v in K_n have both directed edges (u, v) and (v, u); there are no self-loops. You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices). We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 β€” a visiting order, where each (v_i, v_{i + 1}) occurs exactly once. Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists. Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r. Input The first line contains the single integer T (1 ≀ T ≀ 100) β€” the number of test cases. Next T lines contain test cases β€” one per line. The first and only line of each test case contains three integers n, l and r (2 ≀ n ≀ 10^5, 1 ≀ l ≀ r ≀ n(n - 1) + 1, r - l + 1 ≀ 10^5) β€” the number of vertices in K_n, and segment of the cycle to print. It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5. Output For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once. Example Input 3 2 1 3 3 3 6 99995 9998900031 9998900031 Output 1 2 1 1 3 2 3 1 Note In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1. In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
{ "input": [ "3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n" ], "output": [ "1 2 1 \n1 3 2 3 \n1 \n" ] }
{ "input": [ "1\n2 2 3\n", "1\n4 13 13\n", "1\n3 1 1\n", "10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n", "1\n3 7 7\n", "1\n25 30 295\n", "1\n4 12 13\n", "5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n", "1\n5 4 4\n" ], "output": [ "2 1 \n", "1 \n", "1 \n", "1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n", "1 \n", "16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n", "4 1 \n", "1 \n1 \n1 \n1 \n7 1 \n", "3 \n" ] }
CORRECT
python3
#code import sys import math as mt #input=sys.stdin.buffer.readline t=int(input()) #tot=0 for __ in range(t): #n=int(input()) #l=list(map(int,input().split())) n,l,r=map(int,input().split()) j=1 k=2*n-2 mul=1 k=2*n-2 r1=k l1=1 for i in range(n-2): if l>=l1 and l<=r1: #print(111,l1,r1,mul) break k-=2 l1=r1+1 r1=l1+k-1 mul+=1 #print(111,l1,r1,mul,k) nex=mul ch=0 #print(999,ch) for i in range(l1,min(r1+1,r+1)): if i>=l: if ch%2!=0: nex+=1 print(nex,end=" ") else: print(mul,end=" ") else: if ch%2!=0: nex+=1 ch+=1 if i>r1: break i=r1+1 mul+=1 ch=0 nex=mul k-=1 while i<=min(r,n*(n-1)): if ch%2==0: print(mul,end=" ") else: nex+=1 print(nex,end=" ") i+=1 ch+=1 if ch==2*(n-mul): mul+=1 ch=0 nex=mul if r==n*(n-1)+1: print(1,end=" ") print()
1334_D. Minimum Euler Cycle
You are given a complete directed graph K_n with n vertices: each pair of vertices u β‰  v in K_n have both directed edges (u, v) and (v, u); there are no self-loops. You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices). We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 β€” a visiting order, where each (v_i, v_{i + 1}) occurs exactly once. Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists. Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r. Input The first line contains the single integer T (1 ≀ T ≀ 100) β€” the number of test cases. Next T lines contain test cases β€” one per line. The first and only line of each test case contains three integers n, l and r (2 ≀ n ≀ 10^5, 1 ≀ l ≀ r ≀ n(n - 1) + 1, r - l + 1 ≀ 10^5) β€” the number of vertices in K_n, and segment of the cycle to print. It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5. Output For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once. Example Input 3 2 1 3 3 3 6 99995 9998900031 9998900031 Output 1 2 1 1 3 2 3 1 Note In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1. In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
{ "input": [ "3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n" ], "output": [ "1 2 1 \n1 3 2 3 \n1 \n" ] }
{ "input": [ "1\n2 2 3\n", "1\n4 13 13\n", "1\n3 1 1\n", "10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n", "1\n3 7 7\n", "1\n25 30 295\n", "1\n4 12 13\n", "5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n", "1\n5 4 4\n" ], "output": [ "2 1 \n", "1 \n", "1 \n", "1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n", "1 \n", "16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n", "4 1 \n", "1 \n1 \n1 \n1 \n7 1 \n", "3 \n" ] }
CORRECT
python3
import os import sys from io import BytesIO, IOBase # region fastio BUFSIZE = 8192 class FastIO(IOBase): newlines = 0 def __init__(self, file): self._fd = file.fileno() self.buffer = BytesIO() self.writable = "x" in file.mode or "r" not in file.mode self.write = self.buffer.write if self.writable else None def read(self): while True: b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE)) if not b: break ptr = self.buffer.tell() self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr) self.newlines = 0 return self.buffer.read() def readline(self): while self.newlines == 0: b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE)) self.newlines = b.count(b"\n") + (not b) ptr = self.buffer.tell() self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr) self.newlines -= 1 return self.buffer.readline() def flush(self): if self.writable: os.write(self._fd, self.buffer.getvalue()) self.buffer.truncate(0), self.buffer.seek(0) class IOWrapper(IOBase): def __init__(self, file): self.buffer = FastIO(file) self.flush = self.buffer.flush self.writable = self.buffer.writable self.write = lambda s: self.buffer.write(s.encode("ascii")) self.read = lambda: self.buffer.read().decode("ascii") self.readline = lambda: self.buffer.readline().decode("ascii") sys.stdin, sys.stdout = IOWrapper(sys.stdin), IOWrapper(sys.stdout) input = lambda: sys.stdin.readline().rstrip("\r\n") # ------------------------------ from math import factorial from collections import Counter, defaultdict from heapq import heapify, heappop, heappush def RL(): return map(int, sys.stdin.readline().rstrip().split()) def N(): return int(input()) def comb(n, m): return factorial(n) / (factorial(m) * factorial(n - m)) if n >= m else 0 def perm(n, m): return factorial(n) // (factorial(n - m)) if n >= m else 0 def mdis(x1, y1, x2, y2): return abs(x1 - x2) + abs(y1 - y2) mod = 1000000007 INF = float('inf') # ------------------------------ def main(): def c(sm, a1): sm = n*a1+(n-1)*n for _ in range(N()): n, l, r = RL() i = n-1 sm = 0 while sm+i*2+1<l: sm+=i*2 if i>0 else 1 i-=1 dif = l-sm res = [] for j in range(n-i, n): now = [] for k in range(j+1, n+1): now.append(j) now.append(k) res+=now # print(now) if len(res)>(r-l+1)+dif: break res = res[dif-1:] if r==(n-1)*n+1: res.append(1) # print(res) print(*res[:r-l+1]) if __name__ == "__main__": main()
1334_D. Minimum Euler Cycle
You are given a complete directed graph K_n with n vertices: each pair of vertices u β‰  v in K_n have both directed edges (u, v) and (v, u); there are no self-loops. You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices). We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 β€” a visiting order, where each (v_i, v_{i + 1}) occurs exactly once. Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists. Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r. Input The first line contains the single integer T (1 ≀ T ≀ 100) β€” the number of test cases. Next T lines contain test cases β€” one per line. The first and only line of each test case contains three integers n, l and r (2 ≀ n ≀ 10^5, 1 ≀ l ≀ r ≀ n(n - 1) + 1, r - l + 1 ≀ 10^5) β€” the number of vertices in K_n, and segment of the cycle to print. It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5. Output For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once. Example Input 3 2 1 3 3 3 6 99995 9998900031 9998900031 Output 1 2 1 1 3 2 3 1 Note In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1. In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
{ "input": [ "3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n" ], "output": [ "1 2 1 \n1 3 2 3 \n1 \n" ] }
{ "input": [ "1\n2 2 3\n", "1\n4 13 13\n", "1\n3 1 1\n", "10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n", "1\n3 7 7\n", "1\n25 30 295\n", "1\n4 12 13\n", "5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n", "1\n5 4 4\n" ], "output": [ "2 1 \n", "1 \n", "1 \n", "1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n", "1 \n", "16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n", "4 1 \n", "1 \n1 \n1 \n1 \n7 1 \n", "3 \n" ] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const long long maxn = 200010; void solve(long long case_no) { long long n, l, r, st = 0; cin >> n >> l >> r; vector<long long> res; bool flag = false; for (long long i = 1; i <= n; i++) { if (st + res.size() >= r) break; if (!flag and st + 2 * (n - i) < l) { st += 2 * (n - i); continue; } flag = true; for (long long j = i + 1; j <= n; j++) res.push_back(i), res.push_back(j); } if (st + res.size() < r) res.push_back(1); l -= st + 1; r -= st + 1; for (long long i = l; i <= r; i++) cout << res[i] << " "; cout << '\n'; } signed main() { ios_base::sync_with_stdio(false); cin.tie(0); long long test_cnt = 1, case_no = 1; cin >> test_cnt; while (case_no <= test_cnt) solve(case_no++); return 0; }
1334_D. Minimum Euler Cycle
You are given a complete directed graph K_n with n vertices: each pair of vertices u β‰  v in K_n have both directed edges (u, v) and (v, u); there are no self-loops. You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices). We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 β€” a visiting order, where each (v_i, v_{i + 1}) occurs exactly once. Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists. Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r. Input The first line contains the single integer T (1 ≀ T ≀ 100) β€” the number of test cases. Next T lines contain test cases β€” one per line. The first and only line of each test case contains three integers n, l and r (2 ≀ n ≀ 10^5, 1 ≀ l ≀ r ≀ n(n - 1) + 1, r - l + 1 ≀ 10^5) β€” the number of vertices in K_n, and segment of the cycle to print. It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5. Output For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once. Example Input 3 2 1 3 3 3 6 99995 9998900031 9998900031 Output 1 2 1 1 3 2 3 1 Note In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1. In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
{ "input": [ "3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n" ], "output": [ "1 2 1 \n1 3 2 3 \n1 \n" ] }
{ "input": [ "1\n2 2 3\n", "1\n4 13 13\n", "1\n3 1 1\n", "10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n", "1\n3 7 7\n", "1\n25 30 295\n", "1\n4 12 13\n", "5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n", "1\n5 4 4\n" ], "output": [ "2 1 \n", "1 \n", "1 \n", "1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n", "1 \n", "16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n", "4 1 \n", "1 \n1 \n1 \n1 \n7 1 \n", "3 \n" ] }
CORRECT
java
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.ArrayList; import java.util.StringTokenizer; public class Euler { public static void main(String[] args) throws IOException { BufferedReader f = new BufferedReader(new InputStreamReader(System.in)); int t = Integer.parseInt(f.readLine()); PrintWriter out = new PrintWriter(System.out); for (int t1 = 0; t1 < t; t1++) { StringTokenizer tokenizer = new StringTokenizer(f.readLine()); int n = Integer.parseInt(tokenizer.nextToken()); long l = Long.parseLong(tokenizer.nextToken()) - 1; long r = Long.parseLong(tokenizer.nextToken()) - 1; int level = 1; long index = 0; boolean hadFirst = false; while (level < n) { long end = index + (n - level) * 2 - 1; if (intersect(l, r, index, end)) { for (int i = 0; i < n - level; i++) { if (l <= index + i * 2 && index + i * 2 <= r) { if (hadFirst) { out.print(" "); out.print(level); } else { out.print(level); hadFirst = true; } } if (l <= index + i * 2 + 1 && index + i * 2 + 1 <= r) { if (hadFirst) { out.print(" "); out.print(level + i + 1); } else { out.print(level + i + 1); hadFirst = true; } } } } index = end + 1; level++; } if (l <= index && index <= r) { if (hadFirst) { out.print(" "); out.print(1); } else { out.print(1); hadFirst = true; } } out.println(); } out.close(); } private static boolean intersect(long start1, long end1, long start2, long end2) { return Math.min(end1, end2) >= Math.max(start1, start2); } }
1334_D. Minimum Euler Cycle
You are given a complete directed graph K_n with n vertices: each pair of vertices u β‰  v in K_n have both directed edges (u, v) and (v, u); there are no self-loops. You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices). We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 β€” a visiting order, where each (v_i, v_{i + 1}) occurs exactly once. Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists. Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r. Input The first line contains the single integer T (1 ≀ T ≀ 100) β€” the number of test cases. Next T lines contain test cases β€” one per line. The first and only line of each test case contains three integers n, l and r (2 ≀ n ≀ 10^5, 1 ≀ l ≀ r ≀ n(n - 1) + 1, r - l + 1 ≀ 10^5) β€” the number of vertices in K_n, and segment of the cycle to print. It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5. Output For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once. Example Input 3 2 1 3 3 3 6 99995 9998900031 9998900031 Output 1 2 1 1 3 2 3 1 Note In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1. In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
{ "input": [ "3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n" ], "output": [ "1 2 1 \n1 3 2 3 \n1 \n" ] }
{ "input": [ "1\n2 2 3\n", "1\n4 13 13\n", "1\n3 1 1\n", "10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n", "1\n3 7 7\n", "1\n25 30 295\n", "1\n4 12 13\n", "5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n", "1\n5 4 4\n" ], "output": [ "2 1 \n", "1 \n", "1 \n", "1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n", "1 \n", "16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n", "4 1 \n", "1 \n1 \n1 \n1 \n7 1 \n", "3 \n" ] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; long long l, r; int n; vector<long long> a; int main() { int tt; scanf("%d", &tt); while (tt--) { a.clear(); scanf("%d%lld%lld", &n, &l, &r); long long sum = 0, pos1 = 0; for (int i = 1; i <= n; i++) { if (1 + sum <= l && 1ll * (n - i) * 2 + sum >= l) { pos1 = i; break; } else sum = sum + 1ll * (n - i) * 2; } if (l == 1ll * n * (n - 1) + 1) a.push_back(1); else { while (l <= r) { if (l % 2) a.push_back(pos1); else { long long t = l - sum - 1; t = pos1 + (t + 1) / 2; a.push_back(t); } l++; if (l > r) break; if (l > (1ll * n - pos1) * 2 + sum) { sum = sum + (1ll * n - pos1) * 2; pos1++; } if (l == 1ll * n * (n - 1) + 1) { a.push_back(1); break; } } } int cnt = a.size(); for (int i = 0; i < cnt - 1; i++) printf("%lld ", a[i]); printf("%lld\n", a[cnt - 1]); } return 0; }
1334_D. Minimum Euler Cycle
You are given a complete directed graph K_n with n vertices: each pair of vertices u β‰  v in K_n have both directed edges (u, v) and (v, u); there are no self-loops. You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices). We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 β€” a visiting order, where each (v_i, v_{i + 1}) occurs exactly once. Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists. Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r. Input The first line contains the single integer T (1 ≀ T ≀ 100) β€” the number of test cases. Next T lines contain test cases β€” one per line. The first and only line of each test case contains three integers n, l and r (2 ≀ n ≀ 10^5, 1 ≀ l ≀ r ≀ n(n - 1) + 1, r - l + 1 ≀ 10^5) β€” the number of vertices in K_n, and segment of the cycle to print. It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5. Output For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once. Example Input 3 2 1 3 3 3 6 99995 9998900031 9998900031 Output 1 2 1 1 3 2 3 1 Note In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1. In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
{ "input": [ "3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n" ], "output": [ "1 2 1 \n1 3 2 3 \n1 \n" ] }
{ "input": [ "1\n2 2 3\n", "1\n4 13 13\n", "1\n3 1 1\n", "10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n", "1\n3 7 7\n", "1\n25 30 295\n", "1\n4 12 13\n", "5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n", "1\n5 4 4\n" ], "output": [ "2 1 \n", "1 \n", "1 \n", "1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n", "1 \n", "16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n", "4 1 \n", "1 \n1 \n1 \n1 \n7 1 \n", "3 \n" ] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const long long int N = 100005; void solve() { long long int i, j, k, n, m, ans = 0, cnt = 0, sum = 0; long long int l, r; cin >> n >> l >> r; vector<long long int> temp; for (i = 1; i < n; i++) { temp.push_back(2 * (n - i)); } temp.push_back(1); m = temp.size(); cnt = 1; for (i = 0; i < m; i++) { if (cnt + temp[i] > l) { break; } else { cnt += temp[i]; } } i++; if (i > n) { i = 1; } j = i + 1; ans = 0; long long int cur = i; while (cnt <= r) { if (cnt == n * (n - 1) + 1) { cout << 1; break; } if (cnt >= l) { cout << cur << " "; } if (ans == 0) { cur = j; j++; } else { if (j == n + 1) { i++; j = i + 1; } cur = i; } ans ^= 1; cnt++; } cout << '\n'; return; } int32_t main() { ios_base::sync_with_stdio(false); cin.tie(NULL); cout.tie(NULL); long long int t; cin >> t; while (t--) solve(); return 0; }
1334_D. Minimum Euler Cycle
You are given a complete directed graph K_n with n vertices: each pair of vertices u β‰  v in K_n have both directed edges (u, v) and (v, u); there are no self-loops. You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices). We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 β€” a visiting order, where each (v_i, v_{i + 1}) occurs exactly once. Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists. Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r. Input The first line contains the single integer T (1 ≀ T ≀ 100) β€” the number of test cases. Next T lines contain test cases β€” one per line. The first and only line of each test case contains three integers n, l and r (2 ≀ n ≀ 10^5, 1 ≀ l ≀ r ≀ n(n - 1) + 1, r - l + 1 ≀ 10^5) β€” the number of vertices in K_n, and segment of the cycle to print. It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5. Output For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once. Example Input 3 2 1 3 3 3 6 99995 9998900031 9998900031 Output 1 2 1 1 3 2 3 1 Note In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1. In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
{ "input": [ "3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n" ], "output": [ "1 2 1 \n1 3 2 3 \n1 \n" ] }
{ "input": [ "1\n2 2 3\n", "1\n4 13 13\n", "1\n3 1 1\n", "10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n", "1\n3 7 7\n", "1\n25 30 295\n", "1\n4 12 13\n", "5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n", "1\n5 4 4\n" ], "output": [ "2 1 \n", "1 \n", "1 \n", "1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n", "1 \n", "16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n", "4 1 \n", "1 \n1 \n1 \n1 \n7 1 \n", "3 \n" ] }
CORRECT
python2
import sys __author__ = 'ratmir' alphabet = "abcdefghijklmnopqrstuvwxyz" def solve(n, a, graph): return 1 def execute(): [t] = [int(x) for x in sys.stdin.readline().split()] results = [] for ti in range(0, t): #[n] = [int(x1) for x1 in sys.stdin.readline().split()] [n, l, r] = [int(x1) for x1 in sys.stdin.readline().split()] # ec = [] # for i in range(1, n+1): # for j in range(i+1, n+1): # ec.append(i) # ec.append(j) # ec.append(1) cs = 1 cis = 0 while l>cis + 2 * (n-cs) and cs<n: #print l, cis cis += 2*(n-cs) cs += 1 xx = l - cis - 1 arr = [] while r > cis and cs<n: for i in range(cs+1, n+1): arr.append(cs) arr.append(i) cis += 2*(n-cs) cs += 1 arr.append(1) #print xx print(''.join('{} '.format(k) for k in arr[xx:xx+r-l+1])) print(''.join('{}\n'.format(k) for k in results)) execute() # 1 2 1 # 1 2 1 3 2 3 1 # 1 2 1 3 1 4 2 3 2 4 3 4 1 # 1 2 1 3 1 4 1 5 2 3 2 4 2 5 3 4 3 5 4 5 1
1334_D. Minimum Euler Cycle
You are given a complete directed graph K_n with n vertices: each pair of vertices u β‰  v in K_n have both directed edges (u, v) and (v, u); there are no self-loops. You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices). We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 β€” a visiting order, where each (v_i, v_{i + 1}) occurs exactly once. Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists. Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r. Input The first line contains the single integer T (1 ≀ T ≀ 100) β€” the number of test cases. Next T lines contain test cases β€” one per line. The first and only line of each test case contains three integers n, l and r (2 ≀ n ≀ 10^5, 1 ≀ l ≀ r ≀ n(n - 1) + 1, r - l + 1 ≀ 10^5) β€” the number of vertices in K_n, and segment of the cycle to print. It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5. Output For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once. Example Input 3 2 1 3 3 3 6 99995 9998900031 9998900031 Output 1 2 1 1 3 2 3 1 Note In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1. In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
{ "input": [ "3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n" ], "output": [ "1 2 1 \n1 3 2 3 \n1 \n" ] }
{ "input": [ "1\n2 2 3\n", "1\n4 13 13\n", "1\n3 1 1\n", "10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n", "1\n3 7 7\n", "1\n25 30 295\n", "1\n4 12 13\n", "5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n", "1\n5 4 4\n" ], "output": [ "2 1 \n", "1 \n", "1 \n", "1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n", "1 \n", "16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n", "4 1 \n", "1 \n1 \n1 \n1 \n7 1 \n", "3 \n" ] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; #pragma GCC target("avx2") #pragma GCC optimization("O3") #pragma GCC optimization("unroll-loops") const int N = 100005; void solve() { long long n, s, e; cin >> n >> s >> e; if (s == n * n - n + 1) { cout << 1 << '\n'; return; } else { long long a = n * 2 - 2; long long sq = sqrt((a + 1) * (a + 1) - 4 * s); long long st = (a + 1 - sq) / 2; if (sq * sq < (a + 1) * (a + 1) - 4 * s) st++; long long prev = (st - 1) * (a - (st - 2)); if (prev >= s) { st--; prev = (st - 1) * (a - (st - 2)); } long long l = st, r = (s - prev + 1) / 2 + st; if ((s % 2) == 0) { cout << r << " "; r++; s++; } while (s <= min(e, n * n - n)) { if (r > n) { l++; r = l + 1; } cout << l << " "; s++; if (s <= e) cout << r << " "; else break; r++; s++; } if (e == n * n - n + 1) { cout << 1 << '\n'; } else cout << '\n'; } } int main() { ios_base::sync_with_stdio(false); cin.tie(NULL); cout.tie(NULL); ; int t = 1; cin >> t; for (int i = 1; i <= t; i++) { solve(); } }
1334_D. Minimum Euler Cycle
You are given a complete directed graph K_n with n vertices: each pair of vertices u β‰  v in K_n have both directed edges (u, v) and (v, u); there are no self-loops. You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices). We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 β€” a visiting order, where each (v_i, v_{i + 1}) occurs exactly once. Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists. Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r. Input The first line contains the single integer T (1 ≀ T ≀ 100) β€” the number of test cases. Next T lines contain test cases β€” one per line. The first and only line of each test case contains three integers n, l and r (2 ≀ n ≀ 10^5, 1 ≀ l ≀ r ≀ n(n - 1) + 1, r - l + 1 ≀ 10^5) β€” the number of vertices in K_n, and segment of the cycle to print. It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5. Output For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once. Example Input 3 2 1 3 3 3 6 99995 9998900031 9998900031 Output 1 2 1 1 3 2 3 1 Note In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1. In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
{ "input": [ "3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n" ], "output": [ "1 2 1 \n1 3 2 3 \n1 \n" ] }
{ "input": [ "1\n2 2 3\n", "1\n4 13 13\n", "1\n3 1 1\n", "10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n", "1\n3 7 7\n", "1\n25 30 295\n", "1\n4 12 13\n", "5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n", "1\n5 4 4\n" ], "output": [ "2 1 \n", "1 \n", "1 \n", "1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n", "1 \n", "16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n", "4 1 \n", "1 \n1 \n1 \n1 \n7 1 \n", "3 \n" ] }
CORRECT
python3
# -*- coding: utf-8 -*- import os import sys from io import BytesIO, IOBase INF = 2**62-1 # region fastio BUFSIZE = 8192 class FastIO(IOBase): newlines = 0 def __init__(self, file): self._fd = file.fileno() self.buffer = BytesIO() self.writable = "x" in file.mode or "r" not in file.mode self.write = self.buffer.write if self.writable else None def read(self): while True: b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE)) if not b: break ptr = self.buffer.tell() self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr) self.newlines = 0 return self.buffer.read() def readline(self): while self.newlines == 0: b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE)) self.newlines = b.count(b"\n") + (not b) ptr = self.buffer.tell() self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr) self.newlines -= 1 return self.buffer.readline() def flush(self): if self.writable: os.write(self._fd, self.buffer.getvalue()) self.buffer.truncate(0), self.buffer.seek(0) class IOWrapper(IOBase): def __init__(self, file): self.buffer = FastIO(file) self.flush = self.buffer.flush self.writable = self.buffer.writable self.write = lambda s: self.buffer.write(s.encode("ascii")) self.read = lambda: self.buffer.read().decode("ascii") self.readline = lambda: self.buffer.readline().decode("ascii") sys.stdin, sys.stdout = IOWrapper(sys.stdin), IOWrapper(sys.stdout) def input(): return sys.stdin.readline().rstrip("\r\n") # ------------------------------ def read_int(): return int(input()) def read_int_n(): return list(map(int, input().split())) def slv(N, L, R): k = 1 ans = [] for i in range(N-1): c = (N-1-i)*2 if k + c >= L: for j in range(c//2): if L <= k <= R: ans.append(i+1) k += 1 if L <= k <= R: ans.append(i+1+j+1) k += 1 if k > R: return ans else: k += c if L <= k <= R: ans.append(1) return ans def main(): T = read_int() for _ in range(T): N, L, R = read_int_n() print(*slv(N, L, R)) if __name__ == '__main__': main()