schrodinger-dedalus / plot_animation.py
ajthor's picture
Upload folder using huggingface_hub
d681572 verified
#!/usr/bin/env python3
"""
Generate an animation GIF of a single Schrödinger equation sample time evolution.
Animates quantum wave packet dynamics including:
- Real and imaginary parts of wavefunction
- Probability density |ψ|²
- Wave packet motion in harmonic potential
"""
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.animation as animation
from dataset import SchrodingerDataset
def create_schrodinger_animation(sample, save_path="sample_animation.gif", fps=15):
"""Create an animation GIF from a Schrödinger sample"""
# Extract data
x = sample['spatial_coordinates']
t = sample['time_coordinates']
psi_r = sample['psi_r_trajectory']
psi_i = sample['psi_i_trajectory']
prob = sample['probability_density']
V = sample['potential']
energy = sample['total_energy']
# Set up the figure with subplots
fig, (ax1, ax2, ax3) = plt.subplots(3, 1, figsize=(12, 10))
fig.suptitle(f'Quantum Harmonic Oscillator Evolution\n' +
f'ℏ={sample["hbar"]}, m={sample["mass"]}, ω={sample["omega"]}',
fontsize=14, fontweight='bold')
# Colors for consistency
color_real = '#1f77b4'
color_imag = '#ff7f0e'
color_prob = '#2ca02c'
color_potential = '#d62728'
# Subplot 1: Wavefunction components
ax1.set_xlim(x[0], x[-1])
psi_max = max(np.max(np.abs(psi_r)), np.max(np.abs(psi_i))) * 1.1
ax1.set_ylim(-psi_max, psi_max)
ax1.set_ylabel('ψ(x,t)')
ax1.set_title('Wavefunction Components')
ax1.grid(True, alpha=0.3)
# Plot potential well (scaled for background)
V_scaled = V / np.max(V) * psi_max * 0.2
ax1.fill_between(x, -psi_max, V_scaled - psi_max, alpha=0.1, color=color_potential)
ax1.plot(x, V_scaled - psi_max, '--', alpha=0.5, color=color_potential, linewidth=1, label='V(x)')
real_line, = ax1.plot([], [], color=color_real, linewidth=2, label='ψᵣ(x,t)')
imag_line, = ax1.plot([], [], color=color_imag, linewidth=2, label='ψᵢ(x,t)')
ax1.legend(loc='upper right')
# Subplot 2: Probability density
ax2.set_xlim(x[0], x[-1])
prob_max = np.max(prob) * 1.1
ax2.set_ylim(0, prob_max)
ax2.set_ylabel('|ψ(x,t)|²')
ax2.set_title('Probability Density')
ax2.grid(True, alpha=0.3)
# Plot potential well (scaled for background)
V_scaled_prob = V / np.max(V) * prob_max * 0.3
ax2.fill_between(x, V_scaled_prob, alpha=0.2, color=color_potential)
prob_line, = ax2.plot([], [], color=color_prob, linewidth=2, label='|ψ|²')
ax2.legend(loc='upper right')
# Subplot 3: Energy over time
ax3.set_xlim(t[0], t[-1])
E_mean = np.mean(energy)
E_range = np.max(energy) - np.min(energy)
if E_range > 0:
ax3.set_ylim(np.min(energy) - 0.1*E_range, np.max(energy) + 0.1*E_range)
else:
ax3.set_ylim(E_mean - 0.1*abs(E_mean), E_mean + 0.1*abs(E_mean))
ax3.set_xlabel('Time t')
ax3.set_ylabel('Total Energy')
ax3.set_title('Energy Conservation')
ax3.grid(True, alpha=0.3)
# Plot full energy trace as background
ax3.plot(t, energy, 'k-', alpha=0.3, linewidth=1)
ax3.axhline(E_mean, color='red', linestyle='--', alpha=0.7, linewidth=1)
# Current energy point
energy_point, = ax3.plot([], [], 'o', color='darkgreen', markersize=8)
energy_line, = ax3.plot([], [], color='darkgreen', linewidth=2)
# Time text
time_text = fig.text(0.02, 0.02, '', fontsize=12, fontweight='bold',
bbox=dict(boxstyle="round,pad=0.3", facecolor='yellow', alpha=0.7))
# Store fill object
prob_fill = None
def animate(frame):
"""Animation function"""
nonlocal prob_fill
# Update wavefunction components
real_line.set_data(x, psi_r[frame])
imag_line.set_data(x, psi_i[frame])
# Update probability density
prob_line.set_data(x, prob[frame])
# Remove old fill and create new one
if prob_fill is not None:
prob_fill.remove()
prob_fill = ax2.fill_between(x, prob[frame], alpha=0.3, color=color_prob)
# Update energy plot
current_t = t[:frame+1]
current_e = energy[:frame+1]
energy_line.set_data(current_t, current_e)
energy_point.set_data([t[frame]], [energy[frame]])
# Update time display
time_text.set_text(f'Time: {t[frame]:.3f} / {t[-1]:.3f}')
return real_line, imag_line, prob_line, energy_line, energy_point, time_text
# Create animation with more frames for smoother motion
print(f"Creating animation with {len(t)} frames...")
anim = animation.FuncAnimation(
fig, animate, frames=len(t),
interval=1000/fps, blit=False, repeat=True # blit=False due to fill_between
)
# Save as GIF
print(f"Saving animation to {save_path}...")
anim.save(save_path, writer='pillow', fps=fps)
plt.close()
print(f"Animation saved to {save_path}")
def create_simple_animation(sample, save_path="simple_animation.gif", fps=15):
"""Create a simpler single-panel animation focusing on probability density"""
# Extract data
x = sample['spatial_coordinates']
t = sample['time_coordinates']
prob = sample['probability_density']
V = sample['potential']
# Set up single plot
fig, ax = plt.subplots(figsize=(10, 6))
ax.set_xlim(x[0], x[-1])
prob_max = np.max(prob) * 1.1
ax.set_ylim(0, prob_max)
ax.set_xlabel('Position x')
ax.set_ylabel('Probability Density |ψ|²')
ax.set_title(f'Quantum Wave Packet in Harmonic Oscillator\n' +
f'ℏ={sample["hbar"]}, m={sample["mass"]}, ω={sample["omega"]}')
ax.grid(True, alpha=0.3)
# Plot potential well (scaled)
V_scaled = V / np.max(V) * prob_max * 0.3
ax.fill_between(x, V_scaled, alpha=0.2, color='red', label='V(x) (scaled)')
ax.plot(x, V_scaled, 'r--', alpha=0.7, linewidth=1)
# Initialize probability line
prob_line, = ax.plot([], [], 'b-', linewidth=3, label='|ψ(x,t)|²')
# Time text
time_text = ax.text(0.02, 0.95, '', transform=ax.transAxes, fontsize=12,
bbox=dict(boxstyle="round", facecolor='white', alpha=0.8))
ax.legend()
# Store fill object
prob_fill = None
def animate(frame):
"""Simple animation function"""
nonlocal prob_fill
# Update probability line
prob_line.set_data(x, prob[frame])
# Remove previous fill if it exists
if prob_fill is not None:
prob_fill.remove()
# Create new fill
prob_fill = ax.fill_between(x, prob[frame], alpha=0.4, color='blue')
# Update time text
time_text.set_text(f'Time: {t[frame]:.3f}')
return prob_line, time_text
# Create animation
anim = animation.FuncAnimation(
fig, animate, frames=len(t),
interval=1000/fps, blit=False, repeat=True
)
# Save as GIF
anim.save(save_path, writer='pillow', fps=fps)
plt.close()
print(f"Simple animation saved to {save_path}")
if __name__ == "__main__":
# Set random seed for reproducibility
np.random.seed(42)
# Create dataset
dataset = SchrodingerDataset(
Lx=20.0,
Nx=128, # Lower resolution for faster animation generation
stop_sim_time=3.0,
timestep=2e-3 # Slightly larger timestep for fewer frames
)
# Generate a single sample
sample = next(iter(dataset))
print("Creating animations...")
print(f"Time steps: {len(sample['time_coordinates'])}")
print(f"Spatial points: {len(sample['spatial_coordinates'])}")
# Create both animations
create_simple_animation(sample, "simple_animation.gif", fps=12)
create_schrodinger_animation(sample, "sample_animation.gif", fps=10)