|
|
|
|
|
""" |
|
|
Plot a single sample from the Schrödinger equation dataset. |
|
|
|
|
|
Visualizes quantum wave packet evolution including: |
|
|
- Real and imaginary parts |
|
|
- Probability density |ψ|² |
|
|
- Potential well |
|
|
- Energy conservation |
|
|
""" |
|
|
|
|
|
import numpy as np |
|
|
import matplotlib.pyplot as plt |
|
|
from dataset import SchrodingerDataset |
|
|
|
|
|
|
|
|
def plot_schrodinger_sample(sample, save_path="sample_plot.png"): |
|
|
"""Plot a single sample from the Schrödinger dataset""" |
|
|
fig = plt.figure(figsize=(16, 12)) |
|
|
|
|
|
|
|
|
gs = fig.add_gridspec(3, 2, height_ratios=[1, 1, 0.8], hspace=0.3, wspace=0.3) |
|
|
|
|
|
|
|
|
x = sample["spatial_coordinates"] |
|
|
t = sample["time_coordinates"] |
|
|
psi_r = sample["psi_r_trajectory"] |
|
|
psi_i = sample["psi_i_trajectory"] |
|
|
prob = sample["probability_density"] |
|
|
V = sample["potential"] |
|
|
energy = sample["total_energy"] |
|
|
|
|
|
|
|
|
color_real = "#1f77b4" |
|
|
color_imag = "#ff7f0e" |
|
|
color_prob = "#2ca02c" |
|
|
color_potential = "#d62728" |
|
|
|
|
|
|
|
|
ax1 = fig.add_subplot(gs[0, 0]) |
|
|
ax1.plot(x, psi_r[0], color=color_real, linewidth=2, label="ψᵣ(x,t=0)") |
|
|
ax1.plot(x, psi_i[0], color=color_imag, linewidth=2, label="ψᵢ(x,t=0)") |
|
|
ax1.plot( |
|
|
x, |
|
|
psi_r[-1], |
|
|
"--", |
|
|
color=color_real, |
|
|
alpha=0.7, |
|
|
linewidth=2, |
|
|
label=f"ψᵣ(x,t={t[-1]:.1f})", |
|
|
) |
|
|
ax1.plot( |
|
|
x, |
|
|
psi_i[-1], |
|
|
"--", |
|
|
color=color_imag, |
|
|
alpha=0.7, |
|
|
linewidth=2, |
|
|
label=f"ψᵢ(x,t={t[-1]:.1f})", |
|
|
) |
|
|
ax1.set_xlabel("Position x") |
|
|
ax1.set_ylabel("ψ(x)") |
|
|
ax1.set_title("Wavefunction Components") |
|
|
ax1.grid(True, alpha=0.3) |
|
|
ax1.legend() |
|
|
|
|
|
|
|
|
ax2 = fig.add_subplot(gs[0, 1]) |
|
|
ax2.plot(x, prob[0], color=color_prob, linewidth=2, label="|ψ(x,t=0)|²") |
|
|
ax2.plot( |
|
|
x, |
|
|
prob[-1], |
|
|
"--", |
|
|
color=color_prob, |
|
|
alpha=0.7, |
|
|
linewidth=2, |
|
|
label=f"|ψ(x,t={t[-1]:.1f})|²", |
|
|
) |
|
|
|
|
|
|
|
|
V_scaled = V / np.max(V) * np.max(prob[0]) * 0.3 |
|
|
ax2.fill_between( |
|
|
x, V_scaled, alpha=0.2, color=color_potential, label="V(x) (scaled)" |
|
|
) |
|
|
|
|
|
ax2.set_xlabel("Position x") |
|
|
ax2.set_ylabel("Probability Density") |
|
|
ax2.set_title("Quantum Probability |ψ|²") |
|
|
ax2.grid(True, alpha=0.3) |
|
|
ax2.legend() |
|
|
|
|
|
|
|
|
ax3 = fig.add_subplot(gs[1, 0]) |
|
|
vmax = np.max(np.abs(psi_r)) |
|
|
im1 = ax3.pcolormesh( |
|
|
x, t, psi_r, cmap="RdBu", vmin=-vmax, vmax=vmax, shading="gouraud" |
|
|
) |
|
|
ax3.set_xlabel("Position x") |
|
|
ax3.set_ylabel("Time t") |
|
|
ax3.set_title("Real Part Evolution ψᵣ(x,t)") |
|
|
plt.colorbar(im1, ax=ax3, label="ψᵣ") |
|
|
|
|
|
|
|
|
ax4 = fig.add_subplot(gs[1, 1]) |
|
|
vmax = np.max(np.abs(psi_i)) |
|
|
im2 = ax4.pcolormesh( |
|
|
x, t, psi_i, cmap="RdBu", vmin=-vmax, vmax=vmax, shading="gouraud" |
|
|
) |
|
|
ax4.set_xlabel("Position x") |
|
|
ax4.set_ylabel("Time t") |
|
|
ax4.set_title("Imaginary Part Evolution ψᵢ(x,t)") |
|
|
plt.colorbar(im2, ax=ax4, label="ψᵢ") |
|
|
|
|
|
|
|
|
ax5 = fig.add_subplot(gs[2, 0]) |
|
|
im3 = ax5.pcolormesh(x, t, prob, cmap="viridis", shading="gouraud") |
|
|
ax5.set_xlabel("Position x") |
|
|
ax5.set_ylabel("Time t") |
|
|
ax5.set_title("Probability Density Evolution |ψ(x,t)|²") |
|
|
plt.colorbar(im3, ax=ax5, label="|ψ|²") |
|
|
|
|
|
|
|
|
ax6 = fig.add_subplot(gs[2, 1]) |
|
|
ax6.plot(t, energy, "o-", color="darkgreen", linewidth=2, markersize=4) |
|
|
ax6.set_xlabel("Time t") |
|
|
ax6.set_ylabel("Total Energy") |
|
|
ax6.set_title("Energy Conservation") |
|
|
ax6.grid(True, alpha=0.3) |
|
|
|
|
|
|
|
|
E_mean = np.mean(energy) |
|
|
E_std = np.std(energy) |
|
|
ax6.axhline( |
|
|
E_mean, color="red", linestyle="--", alpha=0.7, label=f"Mean: {E_mean:.3f}" |
|
|
) |
|
|
ax6.text( |
|
|
0.02, |
|
|
0.95, |
|
|
f"σ/⟨E⟩ = {E_std/E_mean:.2e}", |
|
|
transform=ax6.transAxes, |
|
|
bbox=dict(boxstyle="round", facecolor="white", alpha=0.8), |
|
|
verticalalignment="top", |
|
|
) |
|
|
ax6.legend() |
|
|
|
|
|
|
|
|
hbar = sample["hbar"] |
|
|
mass = sample["mass"] |
|
|
omega = sample["omega"] |
|
|
fig.suptitle( |
|
|
f"Quantum Harmonic Oscillator (ℏ={hbar}, m={mass}, ω={omega})", |
|
|
fontsize=16, |
|
|
fontweight="bold", |
|
|
) |
|
|
|
|
|
plt.savefig(save_path, dpi=200, bbox_inches="tight") |
|
|
plt.close() |
|
|
|
|
|
print(f"Schrödinger sample visualization saved to {save_path}") |
|
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
|
|
|
|
np.random.seed(42) |
|
|
|
|
|
|
|
|
dataset = SchrodingerDataset(Lx=20.0, Nx=256, stop_sim_time=2.0, timestep=1e-3) |
|
|
|
|
|
|
|
|
dataset_iter = iter(dataset) |
|
|
sample = next(dataset_iter) |
|
|
sample = next(dataset_iter) |
|
|
|
|
|
print("Sample keys:", list(sample.keys())) |
|
|
for key, value in sample.items(): |
|
|
if hasattr(value, "shape"): |
|
|
print(f"{key}: shape {value.shape}") |
|
|
else: |
|
|
print(f"{key}: {type(value)} - {value}") |
|
|
|
|
|
|
|
|
plot_schrodinger_sample(sample) |
|
|
|