hexsha
stringlengths
40
40
size
int64
3
1.05M
ext
stringclasses
163 values
lang
stringclasses
53 values
max_stars_repo_path
stringlengths
3
945
max_stars_repo_name
stringlengths
4
112
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
float64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
945
max_issues_repo_name
stringlengths
4
113
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
float64
1
116k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
945
max_forks_repo_name
stringlengths
4
113
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
float64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
3
1.05M
avg_line_length
float64
1
966k
max_line_length
int64
1
977k
alphanum_fraction
float64
0
1
184359c9471fcd0acb0a4d81629e219a8ac7276b
3,248
agda
Agda
notes/FOT/FOTC/Program/Mirror/MirrorMutualSL.agda
asr/fotc
2fc9f2b81052a2e0822669f02036c5750371b72d
[ "MIT" ]
11
2015-09-03T20:53:42.000Z
2021-09-12T16:09:54.000Z
notes/FOT/FOTC/Program/Mirror/MirrorMutualSL.agda
asr/fotc
2fc9f2b81052a2e0822669f02036c5750371b72d
[ "MIT" ]
2
2016-10-12T17:28:16.000Z
2017-01-01T14:34:26.000Z
notes/FOT/FOTC/Program/Mirror/MirrorMutualSL.agda
asr/fotc
2fc9f2b81052a2e0822669f02036c5750371b72d
[ "MIT" ]
3
2016-09-19T14:18:30.000Z
2018-03-14T08:50:00.000Z
------------------------------------------------------------------------------ -- Proving mirror (mirror t) = t using mutual data types ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module FOT.FOTC.Program.Mirror.MirrorMutualSL where infixr 5 _∷_ _++_ open import Function open import Relation.Binary.PropositionalEquality open ≡-Reasoning ------------------------------------------------------------------------------ -- The mutual data types data Tree (A : Set) : Set data Forest (A : Set) : Set data Tree A where tree : A → Forest A → Tree A data Forest A where [] : Forest A _∷_ : Tree A → Forest A → Forest A ------------------------------------------------------------------------------ -- Auxiliary functions _++_ : {A : Set} → Forest A → Forest A → Forest A [] ++ ys = ys (a ∷ xs) ++ ys = a ∷ xs ++ ys map : {A B : Set} → (Tree A → Tree B) → Forest A → Forest B map f [] = [] map f (a ∷ ts) = f a ∷ map f ts reverse : {A : Set} → Forest A → Forest A reverse [] = [] reverse (a ∷ ts) = reverse ts ++ a ∷ [] postulate map-++ : {A B : Set}(f : Tree A → Tree B)(xs ys : Forest A) → map f (xs ++ ys) ≡ map f xs ++ map f ys reverse-++ : {A : Set}(xs ys : Forest A) → reverse (xs ++ ys) ≡ reverse ys ++ reverse xs ------------------------------------------------------------------------------ -- The mirror function. {-# TERMINATING #-} mirror : {A : Set} → Tree A → Tree A mirror (tree a ts) = tree a (reverse (map mirror ts)) ------------------------------------------------------------------------------ -- The proof of the property. mirror-involutive : {A : Set} → (t : Tree A) → mirror (mirror t) ≡ t helper : {A : Set} → (ts : Forest A) → reverse (map mirror (reverse (map mirror ts))) ≡ ts mirror-involutive (tree a []) = refl mirror-involutive (tree a (t ∷ ts)) = begin tree a (reverse (map mirror (reverse (map mirror ts) ++ mirror t ∷ []))) ≡⟨ cong (tree a) (helper (t ∷ ts)) ⟩ tree a (t ∷ ts) ∎ helper [] = refl helper (t ∷ ts) = begin reverse (map mirror (reverse (map mirror ts) ++ mirror t ∷ [])) ≡⟨ cong reverse (map-++ mirror (reverse (map mirror ts)) (mirror t ∷ [])) ⟩ reverse (map mirror (reverse (map mirror ts)) ++ (map mirror (mirror t ∷ []))) ≡⟨ subst (λ x → (reverse (map mirror (reverse (map mirror ts)) ++ (map mirror (mirror t ∷ [])))) ≡ x) (reverse-++ (map mirror (reverse (map mirror ts))) (map mirror (mirror t ∷ []))) refl ⟩ reverse (map mirror (mirror t ∷ [])) ++ reverse (map mirror (reverse (map mirror ts))) ≡⟨ refl ⟩ mirror (mirror t) ∷ reverse (map mirror (reverse (map mirror ts))) ≡⟨ cong (flip _∷_ (reverse (map mirror (reverse (map mirror ts))))) (mirror-involutive t) ⟩ t ∷ reverse (map mirror (reverse (map mirror ts))) ≡⟨ cong (_∷_ t) (helper ts) ⟩ t ∷ ts ∎
32.808081
78
0.452586
2392d9c28bfb7ad8830e7a1fde1c1631686193aa
4,366
agda
Agda
src/FRP/LTL/ISet/Causal.agda
agda/agda-frp-ltl
e88107d7d192cbfefd0a94505e6a5793afe1a7a5
[ "MIT" ]
21
2015-07-02T20:25:05.000Z
2020-06-15T02:51:13.000Z
src/FRP/LTL/ISet/Causal.agda
agda/agda-frp-ltl
e88107d7d192cbfefd0a94505e6a5793afe1a7a5
[ "MIT" ]
2
2015-03-01T07:01:31.000Z
2015-03-02T15:23:53.000Z
src/FRP/LTL/ISet/Causal.agda
agda/agda-frp-ltl
e88107d7d192cbfefd0a94505e6a5793afe1a7a5
[ "MIT" ]
3
2015-03-01T07:33:00.000Z
2022-03-12T11:39:04.000Z
open import Coinduction using ( ∞ ; ♯_ ; ♭ ) open import Data.Product using ( ∃ ; _×_ ; _,_ ; proj₂ ) open import Data.Nat using ( ℕ ; zero ; suc ) open import Data.Empty using ( ⊥ ) open import FRP.LTL.ISet.Core using ( ISet ; M⟦_⟧ ; ⟦_⟧ ; ⌈_⌉ ; _,_ ; splitM⟦_⟧ ) renaming ( [_] to ⟪_⟫ ) open import FRP.LTL.ISet.Globally using ( □ ; [_] ) open import FRP.LTL.ISet.Stateless using ( _⇒_ ; _$_ ) open import FRP.LTL.RSet.Core using ( RSet ) open import FRP.LTL.Time.Bound using ( Time∞ ; fin ; +∞ ; _≺_ ; _≼_ ; _⋠_ ; ≺-Indn ; _,_ ; ≺-impl-≼ ; ≼-refl ; _≼-trans_ ; ≡-impl-≽ ; ≺-impl-≢ ; ≺-impl-⋡ ; t≺+∞ ; ∞≼-impl-≡∞ ; ≺-indn ) open import FRP.LTL.Time.Interval using ( [_⟩ ; Int ; ↑ ) open import FRP.LTL.Util using ( ⊥-elim ) open import Relation.Binary.PropositionalEquality using ( _≡_ ; refl ) open import Relation.Unary using ( _∈_ ) module FRP.LTL.ISet.Causal where infixr 2 _⊵_ infixr 3 _⋙_ _≫_ _⊨_≫_ -- A ⊵ B is the causal function space from A to B data _∙_⊸_∙_ (A : ISet) (s : Time∞) (B : ISet) (u : Time∞) : Set where inp : .(s ≼ u) → .(u ≺ +∞) → (∀ {t} .(s≺t : s ≺ t) → M⟦ A ⟧ [ s≺t ⟩ → ∞ (A ∙ t ⊸ B ∙ u)) → (A ∙ s ⊸ B ∙ u) out : ∀ {v} .(u≺v : u ≺ v) → M⟦ B ⟧ [ u≺v ⟩ → ∞ (A ∙ s ⊸ B ∙ v) → (A ∙ s ⊸ B ∙ u) done : .(u ≡ +∞) → (A ∙ s ⊸ B ∙ u) _⊵_ : ISet → ISet → ISet A ⊵ B = ⌈ (λ t → A ∙ fin t ⊸ B ∙ fin t) ⌉ -- Categorical structure ar : ∀ {A B} t → M⟦ A ⇒ B ⟧ (↑ t) → (A ∙ fin t ⊸ B ∙ fin t) ar {A} {B} t f = inp ≼-refl t≺+∞ P where P : ∀ {u} .(t≺u : fin t ≺ u) → M⟦ A ⟧ [ t≺u ⟩ → ∞ (A ∙ u ⊸ B ∙ fin t) P {+∞} t≺u σ = ♯ out t≺u (f $ σ) (♯ done refl) P {fin u} t≺u σ with splitM⟦ A ⇒ B ⟧ [ t≺u ⟩ (↑ u) refl f P {fin u} t≺u σ | (f₁ , f₂) = ♯ out t≺u (f₁ $ σ) (♯ ar u f₂) arr : ∀ {A B} → ⟦ □ (A ⇒ B) ⇒ (A ⊵ B) ⟧ arr ⟪ ⟪ f ⟫ ⟫ = ⟪ (λ t t∈i → ar t (f t t∈i) ) ⟫ -- We could define id in terms of arr, but we define it explictly for efficiency. id : ∀ {A} t → (A ∙ t ⊸ A ∙ t) id +∞ = done refl id (fin t) = inp ≼-refl t≺+∞ (λ {u} t≺u σ → ♯ out t≺u σ (♯ id u)) identity : ∀ {A} → ⟦ A ⊵ A ⟧ identity = ⟪ (λ t t∈i → id (fin t)) ⟫ -- The following typechecks but does not pass the termination checker, -- due to the possibility of infinite left-to-right chatter: -- _≫_ : ∀ {A B C s t u} → (A ∙ s ⊸ B ∙ t) → (B ∙ t ⊸ C ∙ u) → (A ∙ s ⊸ C ∙ u) -- P ≫ out u≺w τ Q = out u≺w τ (♯ (P ≫ ♭ Q)) -- P ≫ done u≡∞ = done u≡∞ -- inp s≼t t≺∞ P ≫ inp t≼u u≺∞ Q = inp (s≼t ≼-trans t≼u) u≺∞ (λ s≺v σ → ♯ (♭ (P s≺v σ) ≫ inp t≼u u≺∞ Q)) -- done t≡∞ ≫ inp t≼u u≺∞ Q = ⊥-elim (≺-impl-≢ u≺∞ (∞≼-impl-≡∞ (≡-impl-≽ t≡∞ ≼-trans t≼u))) -- out t≺v σ P ≫ inp t≼u u≺∞ Q = out t≺v σ P ≫ inp t≼u u≺∞ Q -- We have to be explicit about the induction scheme in the case of left-to-right -- communication, which is because, for any t and u ≺ ∞, there is a bound -- on the length of any ≺-chain between t and u. mutual _⊨_≫_ : ∀ {A B C s t u} → (≺-Indn t u) → (A ∙ s ⊸ B ∙ t) → (B ∙ t ⊸ C ∙ u) → (A ∙ s ⊸ C ∙ u) n , t+n≻u ⊨ P ≫ out u≺w τ Q = out u≺w τ (♯ (P ≫ ♭ Q)) n , t+n≻u ⊨ P ≫ done u≡∞ = done u≡∞ n , t+n≻u ⊨ inp s≼t t≺∞ P ≫ inp t≼u u≺∞ Q = inp (s≼t ≼-trans t≼u) u≺∞ (λ s≺v σ → ♯ (♭ (P s≺v σ) ≫ inp t≼u u≺∞ Q)) n , t+n≻u ⊨ done t≡∞ ≫ inp t≼u u≺∞ Q = ⊥-elim (≺-impl-≢ u≺∞ (∞≼-impl-≡∞ (≡-impl-≽ t≡∞ ≼-trans t≼u))) zero , u≺t ⊨ out t≺v σ P ≫ inp t≼u u≺∞ Q = ⊥-elim (≺-impl-⋡ u≺t t≼u) suc n , t+1+n≻u ⊨ out t≺v σ P ≫ inp t≼u u≺∞ Q = n , t+1+n≻u t≺v ⊨ ♭ P ≫ ♭ (Q t≺v σ) _≫_ : ∀ {A B C s t u} → (A ∙ s ⊸ B ∙ t) → (B ∙ t ⊸ C ∙ u) → (A ∙ s ⊸ C ∙ u) P ≫ out u≺w τ Q = out u≺w τ (♯ (P ≫ ♭ Q)) P ≫ done u≡∞ = done u≡∞ inp s≼t t≺∞ P ≫ inp t≼u u≺∞ Q = inp (s≼t ≼-trans t≼u) u≺∞ (λ s≺v σ → ♯ (♭ (P s≺v σ) ≫ inp t≼u u≺∞ Q)) done t≡∞ ≫ inp t≼u u≺∞ Q = ⊥-elim (≺-impl-≢ u≺∞ (∞≼-impl-≡∞ (≡-impl-≽ t≡∞ ≼-trans t≼u))) out t≺v σ P ≫ inp t≼u u≺∞ Q = ≺-indn u≺∞ ⊨ out t≺v σ P ≫ inp t≼u u≺∞ Q _⋙_ : ∀ {A B C} → ⟦ (A ⊵ B) ⇒ (B ⊵ C) ⇒ (A ⊵ C) ⟧ (⟪ ⟪ f ⟫ ⟫ ⋙ ⟪ ⟪ g ⟫ ⟫) = ⟪ (λ t t∈i → f t t∈i ≫ g t t∈i) ⟫ -- Apply a process to some of its output _/_/_ : ∀ {A B s t u} → (A ∙ s ⊸ B ∙ u) → .(s≺t : s ≺ t) → M⟦ A ⟧ [ s≺t ⟩ → (A ∙ t ⊸ B ∙ u) inp s≼u u≺∞ P / s≺t / σ = ♭ (P s≺t σ) out u≺v τ P / s≺t / σ = out u≺v τ (♯ (♭ P / s≺t / σ)) done u≡∞ / s≺t / σ = done u≡∞
44.10101
121
0.444114
18c195a32ca88347bbde7df34297c485009b812d
3,432
agda
Agda
Cubical/HITs/PropositionalTruncation/MagicTrick.agda
L-TChen/cubical
60226aacd7b386aef95d43a0c29c4eec996348a8
[ "MIT" ]
null
null
null
Cubical/HITs/PropositionalTruncation/MagicTrick.agda
L-TChen/cubical
60226aacd7b386aef95d43a0c29c4eec996348a8
[ "MIT" ]
1
2022-01-27T02:07:48.000Z
2022-01-27T02:07:48.000Z
Cubical/HITs/PropositionalTruncation/MagicTrick.agda
L-TChen/cubical
60226aacd7b386aef95d43a0c29c4eec996348a8
[ "MIT" ]
null
null
null
{- Based on Nicolai Kraus' blog post: The Truncation Map |_| : ℕ -> ‖ℕ‖ is nearly Invertible https://homotopytypetheory.org/2013/10/28/the-truncation-map-_-ℕ-‖ℕ‖-is-nearly-invertible/ Defines [recover], which definitionally satisfies `recover ∣ x ∣ ≡ x` ([recover∣∣]) for homogeneous types Also see the follow-up post by Jason Gross: Composition is not what you think it is! Why “nearly invertible” isn’t. https://homotopytypetheory.org/2014/02/24/composition-is-not-what-you-think-it-is-why-nearly-invertible-isnt/ -} {-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.HITs.PropositionalTruncation.MagicTrick where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Function open import Cubical.Foundations.Path open import Cubical.Foundations.Pointed open import Cubical.Foundations.Pointed.Homogeneous open import Cubical.HITs.PropositionalTruncation.Base open import Cubical.HITs.PropositionalTruncation.Properties module Recover {ℓ} (A∙ : Pointed ℓ) (h : isHomogeneous A∙) where private A = typ A∙ a = pt A∙ toEquivPtd : ∥ A ∥ → Σ[ B∙ ∈ Pointed ℓ ] (A , a) ≡ B∙ toEquivPtd = rec isPropSingl (λ x → (A , x) , h x) private B∙ : ∥ A ∥ → Pointed ℓ B∙ tx = fst (toEquivPtd tx) -- the key observation is that B∙ ∣ x ∣ is definitionally equal to (A , x) private obvs : ∀ x → B∙ ∣ x ∣ ≡ (A , x) obvs x = refl -- try it: `C-c C-n B∙ ∣ x ∣` gives `(A , x)` -- thus any truncated element (of a homogeneous type) can be recovered by agda's normalizer! recover : ∀ (tx : ∥ A ∥) → typ (B∙ tx) recover tx = pt (B∙ tx) recover∣∣ : ∀ (x : A) → recover ∣ x ∣ ≡ x recover∣∣ x = refl -- try it: `C-c C-n recover ∣ x ∣` gives `x` private -- notice that the following typechecks because typ (B∙ ∣ x ∣) is definitionally equal to to A, but -- `recover : ∥ A ∥ → A` does not because typ (B∙ tx) is not definitionally equal to A (though it is -- judegmentally equal to A by cong typ (snd (toEquivPtd tx)) : A ≡ typ (B∙ tx)) obvs2 : A → A obvs2 = recover ∘ ∣_∣ -- one might wonder if (cong recover (squash ∣ x ∣ ∣ y ∣)) therefore has type x ≡ y, but thankfully -- typ (B∙ (squash ∣ x ∣ ∣ y ∣ i)) is *not* A (it's a messy hcomp involving h x and h y) recover-squash : ∀ x y → -- x ≡ y -- this raises an error PathP (λ i → typ (B∙ (squash ∣ x ∣ ∣ y ∣ i))) x y recover-squash x y = cong recover (squash ∣ x ∣ ∣ y ∣) -- Demo, adapted from: -- https://bitbucket.org/nicolaikraus/agda/src/e30d70c72c6af8e62b72eefabcc57623dd921f04/trunc-inverse.lagda private open import Cubical.Data.Nat open Recover (ℕ , zero) (isHomogeneousDiscrete discreteℕ) -- only `∣hidden∣` is exported, `hidden` is no longer in scope module _ where private hidden : ℕ hidden = 17 ∣hidden∣ : ∥ ℕ ∥ ∣hidden∣ = ∣ hidden ∣ -- we can still recover the value, even though agda can no longer see `hidden`! test : recover ∣hidden∣ ≡ 17 test = refl -- try it: `C-c C-n recover ∣hidden∣` gives `17` -- `C-c C-n hidden` gives an error -- Finally, note that the definition of recover is independent of the proof that A is homogeneous. Thus we -- still can definitionally recover information hidden by ∣_∣ as long as we permit holes. Try replacing -- `isHomogeneousDiscrete discreteℕ` above with a hole (`?`) and notice that everything still works
38.561798
111
0.653263
1842f4d7047a05afc31e0a68ece5d47bc38653db
2,886
agda
Agda
test/asset/agda-stdlib-1.0/Data/Vec/Relation/Unary/Any.agda
omega12345/agda-mode
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
[ "MIT" ]
null
null
null
test/asset/agda-stdlib-1.0/Data/Vec/Relation/Unary/Any.agda
omega12345/agda-mode
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
[ "MIT" ]
null
null
null
test/asset/agda-stdlib-1.0/Data/Vec/Relation/Unary/Any.agda
omega12345/agda-mode
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
[ "MIT" ]
null
null
null
------------------------------------------------------------------------ -- The Agda standard library -- -- Vectors where at least one element satisfies a given property ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.Vec.Relation.Unary.Any {a} {A : Set a} where open import Data.Empty open import Data.Fin open import Data.Nat using (zero; suc) open import Data.Sum using (_⊎_; inj₁; inj₂; [_,_]′) open import Data.Vec as Vec using (Vec; []; [_]; _∷_) open import Data.Product as Prod using (∃; _,_) open import Level using (_⊔_) open import Relation.Nullary using (¬_; yes; no) open import Relation.Nullary.Negation using (contradiction) import Relation.Nullary.Decidable as Dec open import Relation.Unary ------------------------------------------------------------------------ -- Any P xs means that at least one element in xs satisfies P. data Any {p} (P : A → Set p) : ∀ {n} → Vec A n → Set (a ⊔ p) where here : ∀ {n x} {xs : Vec A n} (px : P x) → Any P (x ∷ xs) there : ∀ {n x} {xs : Vec A n} (pxs : Any P xs) → Any P (x ∷ xs) ------------------------------------------------------------------------ -- Operations on Any module _ {p} {P : A → Set p} {n x} {xs : Vec A n} where -- If the tail does not satisfy the predicate, then the head will. head : ¬ Any P xs → Any P (x ∷ xs) → P x head ¬pxs (here px) = px head ¬pxs (there pxs) = contradiction pxs ¬pxs -- If the head does not satisfy the predicate, then the tail will. tail : ¬ P x → Any P (x ∷ xs) → Any P xs tail ¬px (here px) = ⊥-elim (¬px px) tail ¬px (there pxs) = pxs -- Convert back and forth with sum toSum : Any P (x ∷ xs) → P x ⊎ Any P xs toSum (here px) = inj₁ px toSum (there pxs) = inj₂ pxs fromSum : P x ⊎ Any P xs → Any P (x ∷ xs) fromSum = [ here , there ]′ map : ∀ {p q} {P : A → Set p} {Q : A → Set q} → P ⊆ Q → ∀ {n} → Any P {n} ⊆ Any Q {n} map g (here px) = here (g px) map g (there pxs) = there (map g pxs) index : ∀ {p} {P : A → Set p} {n} {xs : Vec A n} → Any P xs → Fin n index (here px) = zero index (there pxs) = suc (index pxs) -- If any element satisfies P, then P is satisfied. satisfied : ∀ {p} {P : A → Set p} {n} {xs : Vec A n} → Any P xs → ∃ P satisfied (here px) = _ , px satisfied (there pxs) = satisfied pxs ------------------------------------------------------------------------ -- Properties of predicates preserved by Any module _ {p} {P : A → Set p} where any : Decidable P → ∀ {n} → Decidable (Any P {n}) any P? [] = no λ() any P? (x ∷ xs) with P? x ... | yes px = yes (here px) ... | no ¬px = Dec.map′ there (tail ¬px) (any P? xs) satisfiable : Satisfiable P → ∀ {n} → Satisfiable (Any P {suc n}) satisfiable (x , p) {zero} = x ∷ [] , here p satisfiable (x , p) {suc n} = Prod.map (x ∷_) there (satisfiable (x , p))
35.195122
75
0.517672
50b9d3de1d020995ceaf5e4f297b309dbb7be4f6
2,946
agda
Agda
Fields/FieldOfFractions/Addition.agda
Smaug123/agdaproofs
0f4230011039092f58f673abcad8fb0652e6b562
[ "MIT" ]
4
2019-08-08T12:44:19.000Z
2022-01-28T06:04:15.000Z
Fields/FieldOfFractions/Addition.agda
Smaug123/agdaproofs
0f4230011039092f58f673abcad8fb0652e6b562
[ "MIT" ]
14
2019-01-06T21:11:59.000Z
2020-04-11T11:03:39.000Z
Fields/FieldOfFractions/Addition.agda
Smaug123/agdaproofs
0f4230011039092f58f673abcad8fb0652e6b562
[ "MIT" ]
1
2021-11-29T13:23:07.000Z
2021-11-29T13:23:07.000Z
{-# OPTIONS --safe --warning=error --without-K #-} open import LogicalFormulae open import Groups.Definition open import Rings.Definition open import Rings.IntegralDomains.Definition open import Setoids.Setoids open import Sets.EquivalenceRelations module Fields.FieldOfFractions.Addition {a b : _} {A : Set a} {S : Setoid {a} {b} A} {_+_ : A → A → A} {_*_ : A → A → A} {R : Ring S _+_ _*_} (I : IntegralDomain R) where open import Fields.FieldOfFractions.Setoid I fieldOfFractionsPlus : fieldOfFractionsSet → fieldOfFractionsSet → fieldOfFractionsSet fieldOfFractionsSet.num (fieldOfFractionsPlus (record { num = a ; denom = b ; denomNonzero = b!=0 }) (record { num = c ; denom = d ; denomNonzero = d!=0 })) = (a * d) + (b * c) fieldOfFractionsSet.denom (fieldOfFractionsPlus (record { num = a ; denom = b ; denomNonzero = b!=0 }) (record { num = c ; denom = d ; denomNonzero = d!=0 })) = b * d fieldOfFractionsSet.denomNonzero (fieldOfFractionsPlus (record { num = a ; denom = b ; denomNonzero = b!=0 }) (record { num = c ; denom = d ; denomNonzero = d!=0 })) = λ pr → exFalso (d!=0 (IntegralDomain.intDom I pr b!=0)) --record { num = ((a * d) + (b * c)) ; denom = b * d ; denomNonzero = λ pr → exFalso (d!=0 (IntegralDomain.intDom I pr b!=0)) } plusWellDefined : {a b c d : fieldOfFractionsSet} → (Setoid._∼_ fieldOfFractionsSetoid a c) → (Setoid._∼_ fieldOfFractionsSetoid b d) → Setoid._∼_ fieldOfFractionsSetoid (fieldOfFractionsPlus a b) (fieldOfFractionsPlus c d) plusWellDefined {record { num = a ; denom = b ; denomNonzero = b!=0 }} {record { num = c ; denom = d ; denomNonzero = d!=0 }} {record { num = e ; denom = f ; denomNonzero = f!=0 }} {record { num = g ; denom = h ; denomNonzero = h!=0 }} af=be ch=dg = need where open Setoid S open Ring R open Equivalence eq have1 : (c * h) ∼ (d * g) have1 = ch=dg have2 : (a * f) ∼ (b * e) have2 = af=be need : (((a * d) + (b * c)) * (f * h)) ∼ ((b * d) * (((e * h) + (f * g)))) need = transitive (transitive (Ring.*Commutative R) (transitive (Ring.*DistributesOver+ R) (Group.+WellDefined (Ring.additiveGroup R) (transitive *Associative (transitive (*WellDefined (*Commutative) reflexive) (transitive (*WellDefined *Associative reflexive) (transitive (*WellDefined (*WellDefined have2 reflexive) reflexive) (transitive (symmetric *Associative) (transitive (*WellDefined reflexive *Commutative) (transitive *Associative (transitive (*WellDefined (transitive (transitive (symmetric *Associative) (*WellDefined reflexive *Commutative)) *Associative) reflexive) (symmetric *Associative))))))))) (transitive *Commutative (transitive (transitive (symmetric *Associative) (*WellDefined reflexive (transitive (*WellDefined reflexive *Commutative) (transitive *Associative (transitive (*WellDefined have1 reflexive) (transitive (symmetric *Associative) (*WellDefined reflexive *Commutative))))))) *Associative))))) (symmetric (Ring.*DistributesOver+ R))
86.647059
970
0.688052
39e5a155d1e2fb5b22dd7fafe35f155097e50b9f
439
agda
Agda
Cubical/Data/Maybe/Base.agda
limemloh/cubical
df4ef7edffd1c1deb3d4ff342c7178e9901c44f1
[ "MIT" ]
1
2020-03-23T23:52:11.000Z
2020-03-23T23:52:11.000Z
Cubical/Data/Maybe/Base.agda
limemloh/cubical
df4ef7edffd1c1deb3d4ff342c7178e9901c44f1
[ "MIT" ]
null
null
null
Cubical/Data/Maybe/Base.agda
limemloh/cubical
df4ef7edffd1c1deb3d4ff342c7178e9901c44f1
[ "MIT" ]
null
null
null
{-# OPTIONS --cubical --safe #-} module Cubical.Data.Maybe.Base where open import Cubical.Core.Everything private variable ℓ : Level A B : Type ℓ data Maybe (A : Type ℓ) : Type ℓ where nothing : Maybe A just : A → Maybe A caseMaybe : (n j : B) → Maybe A → B caseMaybe n _ nothing = n caseMaybe _ j (just _) = j map-Maybe : (A → B) → Maybe A → Maybe B map-Maybe _ nothing = nothing map-Maybe f (just x) = just (f x)
19.954545
39
0.630979
cb3e02a40b161e51d6e19925600d45949ecd6c3f
141
agda
Agda
src/Quasigroup/Properties.agda
Akshobhya1234/agda-NonAssociativeAlgebra
443e831e536b756acbd1afd0d6bae7bc0d288048
[ "MIT" ]
2
2021-08-15T06:16:13.000Z
2021-08-17T09:14:03.000Z
src/Quasigroup/Properties.agda
Akshobhya1234/agda-NonAssociativeAlgebra
443e831e536b756acbd1afd0d6bae7bc0d288048
[ "MIT" ]
2
2021-10-04T05:30:30.000Z
2021-10-09T08:24:56.000Z
src/Quasigroup/Properties.agda
Akshobhya1234/agda-NonAssociativeAlgebra
443e831e536b756acbd1afd0d6bae7bc0d288048
[ "MIT" ]
null
null
null
{-# OPTIONS --without-K --safe #-} open import Algebra module Quasigroup.Properties {a ℓ} (Q : Quasigroup a ℓ) where open Quasigroup Q
14.1
34
0.687943
397336dc5131c2bee347e796ccf1d95838bb042d
622
agda
Agda
test/Fail/Issue2621.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Fail/Issue2621.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Fail/Issue2621.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
open import Agda.Builtin.Nat renaming (Nat to ℕ) open import Agda.Builtin.Equality data Vec (A : Set) : ℕ → Set where [] : Vec A zero _∷_ : ∀{n} (x : A) (xs : Vec A n) → Vec A (suc n) data All₂ {A : Set} {B : Set} (R : A → B → Set) : ∀ {k} → Vec A k → Vec B k → Set where [] : All₂ R [] [] _∷_ : ∀ {k x y} {xs : Vec A k} {ys : Vec B k} (r : R x y) (rs : All₂ R xs ys) → All₂ R (x ∷ xs) (y ∷ ys) Det : ∀ {A : Set} {B : Set} (R : A → B → Set) → Set Det R = ∀{a b c} → R a b → R a c → b ≡ c detAll₂ : ∀ {A : Set} {B : Set} (R : A → B → Set) (h : Det R) → Det (All₂ R) detAll₂ R h [] [] = refl
34.555556
87
0.463023
18c620be0697eecfd4ad30e457ee4c91a2d93ec3
2,470
agda
Agda
agda-stdlib-0.9/src/Induction/Lexicographic.agda
qwe2/try-agda
9d4c43b1609d3f085636376fdca73093481ab882
[ "Apache-2.0" ]
1
2016-10-20T15:52:05.000Z
2016-10-20T15:52:05.000Z
agda-stdlib-0.9/src/Induction/Lexicographic.agda
qwe2/try-agda
9d4c43b1609d3f085636376fdca73093481ab882
[ "Apache-2.0" ]
null
null
null
agda-stdlib-0.9/src/Induction/Lexicographic.agda
qwe2/try-agda
9d4c43b1609d3f085636376fdca73093481ab882
[ "Apache-2.0" ]
null
null
null
------------------------------------------------------------------------ -- The Agda standard library -- -- Lexicographic induction ------------------------------------------------------------------------ module Induction.Lexicographic where open import Data.Product open import Induction open import Level -- The structure of lexicographic induction. Σ-Rec : ∀ {a b ℓ₁ ℓ₂ ℓ₃} {A : Set a} {B : A → Set b} → RecStruct A (ℓ₁ ⊔ b) ℓ₂ → (∀ x → RecStruct (B x) ℓ₁ ℓ₃) → RecStruct (Σ A B) _ _ Σ-Rec RecA RecB P (x , y) = -- Either x is constant and y is "smaller", ... RecB x (λ y' → P (x , y')) y × -- ...or x is "smaller" and y is arbitrary. RecA (λ x' → ∀ y' → P (x' , y')) x _⊗_ : ∀ {a b ℓ₁ ℓ₂ ℓ₃} {A : Set a} {B : Set b} → RecStruct A (ℓ₁ ⊔ b) ℓ₂ → RecStruct B ℓ₁ ℓ₃ → RecStruct (A × B) _ _ RecA ⊗ RecB = Σ-Rec RecA (λ _ → RecB) -- Constructs a recursor builder for lexicographic induction. Σ-rec-builder : ∀ {a b ℓ₁ ℓ₂ ℓ₃} {A : Set a} {B : A → Set b} {RecA : RecStruct A (ℓ₁ ⊔ b) ℓ₂} {RecB : ∀ x → RecStruct (B x) ℓ₁ ℓ₃} → RecursorBuilder RecA → (∀ x → RecursorBuilder (RecB x)) → RecursorBuilder (Σ-Rec RecA RecB) Σ-rec-builder {RecA = RecA} {RecB = RecB} recA recB P f (x , y) = (p₁ x y p₂x , p₂x) where p₁ : ∀ x y → RecA (λ x' → ∀ y' → P (x' , y')) x → RecB x (λ y' → P (x , y')) y p₁ x y x-rec = recB x (λ y' → P (x , y')) (λ y y-rec → f (x , y) (y-rec , x-rec)) y p₂ : ∀ x → RecA (λ x' → ∀ y' → P (x' , y')) x p₂ = recA (λ x → ∀ y → P (x , y)) (λ x x-rec y → f (x , y) (p₁ x y x-rec , x-rec)) p₂x = p₂ x [_⊗_] : ∀ {a b ℓ₁ ℓ₂ ℓ₃} {A : Set a} {B : Set b} {RecA : RecStruct A (ℓ₁ ⊔ b) ℓ₂} {RecB : RecStruct B ℓ₁ ℓ₃} → RecursorBuilder RecA → RecursorBuilder RecB → RecursorBuilder (RecA ⊗ RecB) [ recA ⊗ recB ] = Σ-rec-builder recA (λ _ → recB) ------------------------------------------------------------------------ -- Example private open import Data.Nat open import Induction.Nat as N -- The Ackermann function à la Rózsa Péter. ackermann : ℕ → ℕ → ℕ ackermann m n = build [ N.rec-builder ⊗ N.rec-builder ] (λ _ → ℕ) (λ { (zero , n) _ → 1 + n ; (suc m , zero) (_ , ackm•) → ackm• 1 ; (suc m , suc n) (ack[1+m]n , ackm•) → ackm• ack[1+m]n }) (m , n)
30.875
72
0.452227
181e6c8d4453fc9b881090cd410cc1c358842807
1,693
agda
Agda
_assets/agda/Berardi.agda
ionathanch/ionathanch.github.io
d54cdaf24391b2726e491a18cba2d2d8ae3ac20b
[ "MIT" ]
null
null
null
_assets/agda/Berardi.agda
ionathanch/ionathanch.github.io
d54cdaf24391b2726e491a18cba2d2d8ae3ac20b
[ "MIT" ]
null
null
null
_assets/agda/Berardi.agda
ionathanch/ionathanch.github.io
d54cdaf24391b2726e491a18cba2d2d8ae3ac20b
[ "MIT" ]
null
null
null
{-# OPTIONS --type-in-type #-} open import Data.Empty open import Data.Sum.Base using (_⊎_; inj₁; inj₂) open import Function.Base using (_∘_; id) open import Relation.Nullary using (¬_) open import Relation.Binary.PropositionalEquality.Core using (_≡_; refl; subst; cong; sym) record _◁_ {ℓ} (A B : Set ℓ) : Set ℓ where constructor _,_,_ field ϕ : A → B ψ : B → A retract : ψ ∘ ϕ ≡ id open _◁_ record _◁′_ {ℓ} (A B : Set ℓ) : Set ℓ where constructor _,_,_ field ϕ : A → B ψ : B → A retract : A ◁ B → ψ ∘ ϕ ≡ id open _◁′_ postulate EM : ∀ {ℓ} (A : Set ℓ) → A ⊎ (¬ A) ℘ : ∀ {ℓ} → Set ℓ → Set _ ℘ X = X → Set t : ∀ {ℓ} (A B : Set ℓ) → ℘ A ◁′ ℘ B t A B with EM (℘ A ◁ ℘ B) ... | inj₁ ℘A◁℘B = let ϕ , ψ , retract = ℘A◁℘B in ϕ , ψ , λ _ → retract ... | inj₂ ¬℘A◁℘B = (λ _ _ → ⊥) , (λ _ _ → ⊥) , λ ℘A◁℘B → ⊥-elim (¬℘A◁℘B ℘A◁℘B) -- type-in-type allows U to be put into Set... U : Set U = ∀ X → ℘ X -- ...so that u: U can be applied to U itself projᵤ : U → ℘ U projᵤ u = u U injᵤ : ℘ U → U injᵤ f X = let _ , ψ , _ = t X U ϕ , _ , _ = t U U in ψ (ϕ f) projᵤ∘injᵤ : projᵤ ∘ injᵤ ≡ id projᵤ∘injᵤ = retract (t U U) (id , id , refl) _∈_ : U → U → Set u ∈ v = projᵤ u v Russell : ℘ U Russell u = ¬ u ∈ u r : U r = injᵤ Russell -- up to here EM + impredicativity is enough, -- as long as _≡_ itself is in the impredicative universe, -- but to go further, large elimination (via subst) is required r∈r≡r∉r : r ∈ r ≡ (¬ r ∈ r) r∈r≡r∉r = cong (λ f → f Russell r) projᵤ∘injᵤ r∉r : ¬ r ∈ r r∉r r∈r = let r∈r→r∉r = subst id r∈r≡r∉r in r∈r→r∉r r∈r r∈r false : ⊥ false = let r∉r→r∈r = subst id (sym r∈r≡r∉r) in r∉r (r∉r→r∈r r∉r)
21.1625
90
0.529829
cb3b80d4ad61c060046c8bc301109651d467d5b3
1,895
agda
Agda
test/succeed/UniversePolymorphism.agda
larrytheliquid/agda
477c8c37f948e6038b773409358fd8f38395f827
[ "MIT" ]
1
2018-10-10T17:08:44.000Z
2018-10-10T17:08:44.000Z
test/succeed/UniversePolymorphism.agda
masondesu/agda
70c8a575c46f6a568c7518150a1a64fcd03aa437
[ "MIT" ]
null
null
null
test/succeed/UniversePolymorphism.agda
masondesu/agda
70c8a575c46f6a568c7518150a1a64fcd03aa437
[ "MIT" ]
1
2022-03-12T11:35:18.000Z
2022-03-12T11:35:18.000Z
-- {-# OPTIONS -v tc.conv:30 -v tc.conv.level:60 -v tc.meta.assign:15 #-} module UniversePolymorphism where open import Common.Level renaming (_⊔_ to max) data Nat : Set where zero : Nat suc : Nat → Nat infixr 40 _∷_ data Vec {i}(A : Set i) : Nat → Set i where [] : Vec {i} A zero _∷_ : ∀ {n} → A → Vec {i} A n → Vec {i} A (suc n) map : ∀ {n a b}{A : Set a}{B : Set b} → (A → B) → Vec A n → Vec B n map f [] = [] map f (x ∷ xs) = f x ∷ map f xs vec : ∀ {n a}{A : Set a} → A → Vec A n vec {zero} _ = [] vec {suc n} x = x ∷ vec x _<*>_ : ∀ {n a b}{A : Set a}{B : Set b} → Vec (A → B) n → Vec A n → Vec B n [] <*> [] = [] (f ∷ fs) <*> (x ∷ xs) = f x ∷ (fs <*> xs) flip : ∀ {a b c}{A : Set a}{B : Set b}{C : Set c} → (A → B → C) → B → A → C flip f x y = f y x module Zip where Fun : ∀ {n a} → Vec (Set a) n → Set a → Set a Fun [] B = B Fun (A ∷ As) B = A → Fun As B app : ∀ {n m a}(As : Vec (Set a) n)(B : Set a) → Vec (Fun As B) m → Fun (map (flip Vec m) As) (Vec B m) app [] B bs = bs app (A ∷ As) B fs = λ as → app As B (fs <*> as) zipWith : ∀ {n m a}(As : Vec (Set a) n)(B : Set a) → Fun As B → Fun (map (flip Vec m) As) (Vec B m) zipWith As B f = app As B (vec f) zipWith₃ : ∀ {n a}{A B C D : Set a} → (A → B → C → D) → Vec A n → Vec B n → Vec C n → Vec D n zipWith₃ = zipWith (_ ∷ _ ∷ _ ∷ []) _ data Σ {a b}(A : Set a)(B : A → Set b) : Set (max a b) where _,_ : (x : A)(y : B x) → Σ A B fst : ∀ {a b}{A : Set a}{B : A → Set b} → Σ A B → A fst (x , y) = x snd : ∀ {a b}{A : Set a}{B : A → Set b}(p : Σ A B) → B (fst p) snd (x , y) = y -- Normal Σ List : ∀ {a} → Set a → Set a List A = Σ _ (Vec A) nil : ∀ {a}{A : Set a} → List A nil = _ , [] cons : ∀ {a}{A : Set a} → A → List A → List A cons x (_ , xs) = _ , x ∷ xs AnyList : ∀ {i} → Set (lsuc i) AnyList {i} = Σ (Set i) (List {i})
26.319444
95
0.451187
1c73be8d1ba82f4e72a434a5948dbe817fb98452
2,873
agda
Agda
SOAS/ContextMaps/Combinators.agda
JoeyEremondi/agda-soas
ff1a985a6be9b780d3ba2beff68e902394f0a9d8
[ "MIT" ]
39
2021-11-09T20:39:55.000Z
2022-03-19T17:33:12.000Z
SOAS/ContextMaps/Combinators.agda
JoeyEremondi/agda-soas
ff1a985a6be9b780d3ba2beff68e902394f0a9d8
[ "MIT" ]
1
2021-11-21T12:19:32.000Z
2021-11-21T12:19:32.000Z
SOAS/ContextMaps/Combinators.agda
JoeyEremondi/agda-soas
ff1a985a6be9b780d3ba2beff68e902394f0a9d8
[ "MIT" ]
4
2021-11-09T20:39:59.000Z
2022-01-24T12:49:17.000Z
import SOAS.Families.Core -- Combinators for context maps module SOAS.ContextMaps.Combinators {T : Set} (open SOAS.Families.Core {T}) (𝒳 : Familyₛ) where open import SOAS.Common open import SOAS.Context {T} open import SOAS.Sorting open import SOAS.Variable open import SOAS.Families.Isomorphism open import SOAS.Families.BCCC private variable Γ Γ′ Δ Δ′ Θ : Ctx α β τ : T -- Sub from the empty context empty : ∅ ~[ 𝒳 ]↝ Δ empty () -- Combine two maps into the same context by concatenating the domain copair : Γ ~[ 𝒳 ]↝ Θ → Δ ~[ 𝒳 ]↝ Θ → (Γ ∔ Δ) ~[ 𝒳 ]↝ Θ copair {∅} σ ς v = ς v copair {α ∙ Γ} σ ς new = σ new copair {α ∙ Γ} σ ς (old v) = copair {Γ} (σ ∘ old) ς v copair≈₁ : {σ₁ σ₂ : Γ ~[ 𝒳 ]↝ Θ}(ς : Δ ~[ 𝒳 ]↝ Θ){v : ℐ α (Γ ∔ Δ)} → ({τ : T}(v : ℐ τ Γ) → σ₁ v ≡ σ₂ v) → copair σ₁ ς v ≡ copair σ₂ ς v copair≈₁ ς {v} p = cong (λ - → copair (λ {τ} → - {τ}) ς v) (dext (λ y → p y)) copair≈₂ : (σ : Γ ~[ 𝒳 ]↝ Θ){ς₁ ς₂ : Δ ~[ 𝒳 ]↝ Θ}{v : ℐ α (Γ ∔ Δ)} → ({τ : T}(v : ℐ τ Δ) → ς₁ v ≡ ς₂ v) → copair σ ς₁ v ≡ copair σ ς₂ v copair≈₂ σ {v = v} p = cong (λ - → copair σ (λ {τ} → - {τ}) v) (dext (λ y → p y)) -- Split a map from a combined context into two maps split : (Γ ∔ Δ) ~[ 𝒳 ]↝ Θ → Γ ~[ 𝒳 ]↝ Θ × Δ ~[ 𝒳 ]↝ Θ split {∅} σ = (λ ()) , σ split {α ∙ Γ} σ with split {Γ} (σ ∘ old) ... | ς₁ , ς₂ = (λ{ new → σ new ; (old v) → ς₁ v}) , ς₂ -- Expand the codomain of a renaming expandʳ : ({Γ} Δ : Ctx) → Γ ↝ Γ ∔ Δ expandʳ {α ∙ Γ} Δ new = new expandʳ {α ∙ Γ} Δ (old v) = old (expandʳ Δ v) expandˡ : (Γ {Δ} : Ctx) → Δ ↝ Γ ∔ Δ expandˡ ∅ v = v expandˡ (α ∙ Γ) v = old (expandˡ Γ v) -- Special cases of the above, when one of the contexts is a singleton -- and the map from the singleton context is isomorphic to a term -- Add a term to a context map add : 𝒳 α Δ → Γ ~[ 𝒳 ]↝ Δ → (α ∙ Γ) ~[ 𝒳 ]↝ Δ add t σ new = t add t σ (old v) = σ v -- Consider a term as a context map from the singleton context asMap : 𝒳 α Γ → ⌊ α ⌋ ~[ 𝒳 ]↝ Γ asMap t new = t -- Separate a compound context map into a term and a residual map detach : (τ ∙ Γ) ~[ 𝒳 ]↝ Δ → 𝒳 τ Δ × (Γ ~[ 𝒳 ]↝ Δ) detach {_}{∅} σ = σ new , (λ ()) detach {_}{(α ∙ Γ)} σ = σ new , σ ∘ old add[new][old] : (σ : τ ∙ Γ ~[ 𝒳 ]↝ Δ)(v : ℐ α (τ ∙ Γ)) → add (σ new) (σ ∘ old) v ≡ σ v add[new][old] σ new = refl add[new][old] σ (old v) = refl -- Remove a term from a compound context map remove : (τ ∙ Γ) ~[ 𝒳 ]↝ Δ → Γ ~[ 𝒳 ]↝ Δ remove {_} {∅} σ = λ () remove {_} {α ∙ Γ} σ = σ ∘ old -- Add and remove are inverses add∘remove : (σ : (τ ∙ Γ) ~[ 𝒳 ]↝ Δ) (v : ℐ α (τ ∙ Γ)) → add (σ new) (remove σ) v ≡ σ v add∘remove σ new = refl add∘remove σ (old new) = refl add∘remove σ (old (old v)) = refl remove∘add : (σ : Γ ~[ 𝒳 ]↝ Δ) (t : 𝒳 τ Δ)(v : ℐ α Γ) → remove (add t σ) v ≡ σ v remove∘add σ t new = refl remove∘add σ t (old v) = refl
29.316327
81
0.528716
0b2698ae1e9a7143f683ad6ee7e202af3aab8e04
900
agda
Agda
agda/SList/Concatenation.agda
bgbianchi/sorting
b8d428bccbdd1b13613e8f6ead6c81a8f9298399
[ "MIT" ]
6
2015-05-21T12:50:35.000Z
2021-08-24T22:11:15.000Z
agda/SList/Concatenation.agda
bgbianchi/sorting
b8d428bccbdd1b13613e8f6ead6c81a8f9298399
[ "MIT" ]
null
null
null
agda/SList/Concatenation.agda
bgbianchi/sorting
b8d428bccbdd1b13613e8f6ead6c81a8f9298399
[ "MIT" ]
null
null
null
{-# OPTIONS --sized-types #-} module SList.Concatenation (A : Set) where open import Data.List open import List.Permutation.Base A open import Size open import SList lemma-⊕-/ : {xs ys : List A}{x y : A} → xs / x ⟶ ys → unsize A (_⊕_ A (size A xs) (y ∙ snil)) / x ⟶ unsize A (_⊕_ A (size A ys) (y ∙ snil)) lemma-⊕-/ /head = /head lemma-⊕-/ (/tail xs/x⟶xs') = /tail (lemma-⊕-/ xs/x⟶xs') lemma-⊕∼ : {xs ys : List A}(x : A) → xs ∼ ys → (x ∷ xs) ∼ unsize A (_⊕_ A (size A ys) (x ∙ snil)) lemma-⊕∼ x ∼[] = ∼x /head /head ∼[] lemma-⊕∼ x (∼x xs/x⟶xs' ys/x⟶ys' xs'∼ys') = ∼x (/tail xs/x⟶xs') (lemma-⊕-/ ys/x⟶ys') (lemma-⊕∼ x xs'∼ys') lemma-size-unsize : {ι : Size}(x : A) → (xs : SList A {ι}) → (unsize A (_⊕_ A (size A (unsize A xs)) (x ∙ snil))) ∼ unsize A (_⊕_ A xs (x ∙ snil)) lemma-size-unsize x snil = ∼x /head /head ∼[] lemma-size-unsize x (y ∙ ys) = ∼x /head /head (lemma-size-unsize x ys)
37.5
146
0.553333
dccfa37a9b3252958a7ed0dc7f142c7a791e33a4
3,054
agda
Agda
src/Prelude/Show.agda
t-more/agda-prelude
da4fca7744d317b8843f2bc80a923972f65548d3
[ "MIT" ]
111
2015-01-05T11:28:15.000Z
2022-02-12T23:29:26.000Z
src/Prelude/Show.agda
t-more/agda-prelude
da4fca7744d317b8843f2bc80a923972f65548d3
[ "MIT" ]
59
2016-02-09T05:36:44.000Z
2022-01-14T07:32:36.000Z
src/Prelude/Show.agda
t-more/agda-prelude
da4fca7744d317b8843f2bc80a923972f65548d3
[ "MIT" ]
24
2015-03-12T18:03:45.000Z
2021-04-22T06:10:41.000Z
module Prelude.Show where open import Prelude.Unit open import Prelude.String open import Prelude.Char open import Prelude.Nat open import Prelude.Int open import Prelude.Word open import Prelude.Function open import Prelude.List open import Prelude.Fin open import Prelude.Vec open import Prelude.Maybe open import Prelude.Sum open import Prelude.Product open import Prelude.Bool open import Prelude.Ord open import Prelude.Semiring --- Class --- ShowS = String → String showString : String → ShowS showString s r = s & r showParen : Bool → ShowS → ShowS showParen false s = s showParen true s = showString "(" ∘ s ∘ showString ")" record Show {a} (A : Set a) : Set a where field showsPrec : Nat → A → ShowS show : A → String show x = showsPrec 0 x "" shows : A → ShowS shows = showsPrec 0 open Show {{...}} public simpleShowInstance : ∀ {a} {A : Set a} → (A → String) → Show A showsPrec {{simpleShowInstance s}} _ x = showString (s x) ShowBy : ∀ {a b} {A : Set a} {B : Set b} {{ShowB : Show B}} → (A → B) → Show A showsPrec {{ShowBy f}} p = showsPrec p ∘ f --- Instances --- -- Bool -- instance ShowBool : Show Bool ShowBool = simpleShowInstance λ b → if b then "true" else "false" -- Int -- instance ShowInt : Show Int ShowInt = simpleShowInstance primShowInteger -- Nat -- instance ShowNat : Show Nat ShowNat = simpleShowInstance (primShowInteger ∘ pos) -- Word64 -- instance ShowWord64 : Show Word64 ShowWord64 = simpleShowInstance (show ∘ word64ToNat) -- Char -- instance ShowChar : Show Char ShowChar = simpleShowInstance primShowChar -- String -- instance ShowString : Show String ShowString = simpleShowInstance primShowString -- List -- instance ShowList : ∀ {a} {A : Set a} {{ShowA : Show A}} → Show (List A) showsPrec {{ShowList}} _ [] = showString "[]" showsPrec {{ShowList}} _ (x ∷ xs) = showString "[" ∘ foldl (λ r x → r ∘ showString ", " ∘ showsPrec 2 x) (showsPrec 2 x) xs ∘ showString "]" -- Fin -- instance ShowFin : ∀ {n} → Show (Fin n) ShowFin = simpleShowInstance (show ∘ finToNat) -- Vec -- instance ShowVec : ∀ {a} {A : Set a} {n} {{ShowA : Show A}} → Show (Vec A n) ShowVec = ShowBy vecToList -- Maybe -- instance ShowMaybe : ∀ {a} {A : Set a} {{ShowA : Show A}} → Show (Maybe A) showsPrec {{ShowMaybe}} p nothing = showString "nothing" showsPrec {{ShowMaybe}} p (just x) = showParen (p >? 9) (showString "just " ∘ showsPrec 10 x) -- Either -- instance ShowEither : ∀ {a b} {A : Set a} {B : Set b} {{ShowA : Show A}} {{ShowB : Show B}} → Show (Either A B) showsPrec {{ShowEither}} p (left x) = showParen (p >? 9) $ showString "left " ∘ showsPrec 10 x showsPrec {{ShowEither}} p (right x) = showParen (p >? 9) $ showString "right " ∘ showsPrec 10 x -- Sigma -- instance ShowSigma : ∀ {a b} {A : Set a} {B : A → Set b} {{ShowA : Show A}} {{ShowB : ∀ {x} → Show (B x)}} → Show (Σ A B) showsPrec {{ShowSigma}} p (x , y) = showParen (p >? 1) $ showsPrec 2 x ∘ showString ", " ∘ showsPrec 1 y
23.492308
106
0.638834
107a72458be8734ebfa4e893eda79078315b6ab0
1,439
agda
Agda
code/InftyConat.agda
ionathanch/msc-thesis
8fe15af8f9b5021dc50bcf96665e0988abf28f3c
[ "CC-BY-4.0" ]
null
null
null
code/InftyConat.agda
ionathanch/msc-thesis
8fe15af8f9b5021dc50bcf96665e0988abf28f3c
[ "CC-BY-4.0" ]
null
null
null
code/InftyConat.agda
ionathanch/msc-thesis
8fe15af8f9b5021dc50bcf96665e0988abf28f3c
[ "CC-BY-4.0" ]
null
null
null
{-# OPTIONS --guardedness #-} open import Agda.Builtin.Equality open import Data.Empty -- base : Size -- next : Delay → Size -- later : Size → Delay record Delay : Set data Size : Set record Delay where coinductive constructor later field now : Size open Delay data Size where base : Size next : Delay → Size -- ω ≡ next ω' ≡ next (later (next ω')) ≡ ... -- ≡ next (later ω) ≡ ... ω : Size ω = next ω' -- next (later (next ω)) where ω' : Delay -- ω' = later (next ω') now ω' = next ω' next' : Size → Size next' s = next (later s) {-# ETA Delay #-} lim : ω ≡ next' ω lim = refl data FSize : Size → Set where fbase : FSize base fnext : {d : Delay} → FSize (now d) → FSize (next d) inf : FSize ω → ⊥ inf (fnext s) = inf s data Nat : Size → Set where zero : (s : Size) → Nat (next' s) succ : (s : Size) → Nat s → Nat (next' s) shift : ∀ s → Nat s → Nat (next' s) shift _ (zero s) = zero (next' s) shift _ (succ s n) = succ (next' s) (shift s n) postulate blocker : ∀ s → Nat s → Nat s -- The guard condition passes due to recursion on n, -- not due to recusion on the size, since it doesn't know that -- `now s` is in fact smaller than s without using Agda's sized types -- (or the old version of coinductive types with musical notation). zeroify : ∀ s → Nat s → Nat s zeroify base () zeroify (next s) (zero _) = zero _ zeroify (next s) (succ _ n) = shift (now s) (zeroify (now s) (blocker (now s) n))
22.84127
81
0.614315
50d5e2721bb2d67cb8635764fe98f326ceb27cc3
7,472
agda
Agda
src/Tactic/Nat/Subtract/By.agda
UlfNorell/agda-prelude
d704381936db6bd393e63aa2740345e7364f9732
[ "MIT" ]
111
2015-01-05T11:28:15.000Z
2022-02-12T23:29:26.000Z
src/Tactic/Nat/Subtract/By.agda
UlfNorell/agda-prelude
d704381936db6bd393e63aa2740345e7364f9732
[ "MIT" ]
59
2016-02-09T05:36:44.000Z
2022-01-14T07:32:36.000Z
src/Tactic/Nat/Subtract/By.agda
UlfNorell/agda-prelude
d704381936db6bd393e63aa2740345e7364f9732
[ "MIT" ]
24
2015-03-12T18:03:45.000Z
2021-04-22T06:10:41.000Z
module Tactic.Nat.Subtract.By where open import Prelude hiding (abs) open import Builtin.Reflection open import Tactic.Reflection.Quote open import Tactic.Reflection.DeBruijn open import Tactic.Reflection.Substitute open import Tactic.Reflection open import Control.Monad.State open import Tactic.Nat.Reflect open import Tactic.Nat.NF open import Tactic.Nat.Exp open import Tactic.Nat.Auto open import Tactic.Nat.Auto.Lemmas open import Tactic.Nat.Simpl.Lemmas open import Tactic.Nat.Simpl open import Tactic.Nat.Refute open import Tactic.Nat.Reflect open import Tactic.Nat.Subtract.Exp open import Tactic.Nat.Subtract.Reflect open import Tactic.Nat.Subtract.Lemmas open import Tactic.Nat.Less.Lemmas private NFGoal : (R₁ R₂ : Nat → Nat → Set) (a b c d : SubNF) → Env Var → Set NFGoal _R₁_ _R₂_ a b c d ρ = ⟦ a ⟧ns (atomEnvS ρ) R₁ ⟦ b ⟧ns (atomEnvS ρ) → ⟦ c ⟧ns (atomEnvS ρ) R₂ ⟦ d ⟧ns (atomEnvS ρ) follows-diff-prf : {a b c d : Nat} → a ≤ b → b < c → c ≤ d → d ≡ suc (d - suc a) + a follows-diff-prf {a} (diff! i) (diff! j) (diff! k) = sym $ (λ z → suc z + a) $≡ lem-sub-zero (k + suc (j + (i + a))) (suc a) (i + j + k) auto ʳ⟨≡⟩ auto decide-leq : ∀ u v ρ → Maybe (⟦ u ⟧ns (atomEnvS ρ) ≤ ⟦ v ⟧ns (atomEnvS ρ)) decide-leq u v ρ with cancel u v | (λ a b → cancel-sound-s′ a b u v (atomEnvS ρ)) ... | [] , d | sound = let eval x = ⟦ x ⟧ns (atomEnvS ρ) in just (diff (eval d) $ sym (sound (suc (eval d)) 1 auto)) ... | _ , _ | _ = nothing by-proof-less-nf : ∀ u u₁ v v₁ ρ → Maybe (NFGoal _<_ _<_ u u₁ v v₁ ρ) by-proof-less-nf u u₁ v v₁ ρ = do v≤u ← decide-leq v u ρ u₁≤v₁ ← decide-leq u₁ v₁ ρ pure λ u<u₁ → diff (⟦ v₁ ⟧ns (atomEnvS ρ) - suc (⟦ v ⟧ns (atomEnvS ρ))) (follows-diff-prf v≤u u<u₁ u₁≤v₁) by-proof-less : ∀ a a₁ b b₁ ρ → Maybe (SubExpLess a a₁ ρ → SubExpLess b b₁ ρ) by-proof-less a a₁ b b₁ ρ with cancel (normSub a) (normSub a₁) | cancel (normSub b) (normSub b₁) | complicateSubLess a a₁ ρ | simplifySubLess b b₁ ρ ... | u , u₁ | v , v₁ | compl | simpl = do prf ← by-proof-less-nf u u₁ v v₁ ρ pure (simpl ∘ prf ∘ compl) lem-plus-zero-r : (a b : Nat) → a + b ≡ 0 → b ≡ 0 lem-plus-zero-r zero b eq = eq lem-plus-zero-r (suc a) b () lem-leq-zero : {a b : Nat} → a ≤ b → b ≡ 0 → a ≡ 0 lem-leq-zero (diff k eq) refl = lem-plus-zero-r k _ (follows-from (sym eq)) ⟨+⟩-sound-ns : ∀ {Atom} {{_ : Ord Atom}} u v (ρ : Env Atom) → ⟦ u +nf v ⟧ns ρ ≡ ⟦ u ⟧ns ρ + ⟦ v ⟧ns ρ ⟨+⟩-sound-ns u v ρ = ns-sound (u +nf v) ρ ⟨≡⟩ ⟨+⟩-sound u v ρ ⟨≡⟩ʳ _+_ $≡ ns-sound u ρ *≡ ns-sound v ρ by-proof-eq-nf : Nat → ∀ u u₁ v v₁ ρ → Maybe (NFGoal _≡_ _≡_ u u₁ v v₁ ρ) by-proof-eq-sub : Nat → ∀ u u₁ v v₁ v₂ ρ → Maybe (NFGoal _≡_ _≡_ u u₁ [ 1 , [ v ⟨-⟩ v₁ ] ] v₂ ρ) by-proof-eq-sub n u u₁ v v₁ v₂ ρ = do let eval x = ⟦ x ⟧ns (atomEnvS ρ) evals x = ⟦ x ⟧sns ρ prf ← by-proof-eq-nf n u u₁ v (v₁ +nf v₂) ρ pure (λ u=u₁ → sym $ lem-sub-zero (evals v) (evals v₁) (eval v₂) $ sym $ lem-eval-sns-ns v ρ ⟨≡⟩ prf u=u₁ ⟨≡⟩ ⟨+⟩-sound-ns v₁ v₂ (atomEnvS ρ) ⟨≡⟩ʳ (_+ eval v₂) $≡ (lem-eval-sns-ns v₁ ρ)) by-proof-eq-sub₂ : Nat → ∀ u u₁ v v₁ v₂ v₃ ρ → Maybe (NFGoal _≡_ _≡_ u u₁ [ 1 , [ v ⟨-⟩ v₁ ] ] [ 1 , [ v₂ ⟨-⟩ v₃ ] ] ρ) by-proof-eq-sub₂ n u u₁ v v₁ v₂ v₃ ρ = do let eval x = ⟦ x ⟧ns (atomEnvS ρ) evals x = ⟦ x ⟧sns ρ prf ← by-proof-eq-nf n u u₁ (v₃ +nf v) (v₂ +nf v₁) ρ pure λ u=u₁ → lem-sub (evals v₂) (evals v₃) (evals v) (evals v₁) $ _+_ $≡ lem-eval-sns-ns v₃ ρ *≡ lem-eval-sns-ns v ρ ⟨≡⟩ ⟨+⟩-sound-ns v₃ v (atomEnvS ρ) ʳ⟨≡⟩ prf u=u₁ ⟨≡⟩ ⟨+⟩-sound-ns v₂ v₁ (atomEnvS ρ) ⟨≡⟩ʳ _+_ $≡ lem-eval-sns-ns v₂ ρ *≡ lem-eval-sns-ns v₁ ρ -- More advanced tactics for equalities -- a + b ≡ 0 → a ≡ 0 by-proof-eq-adv : Nat → ∀ u u₁ v v₁ ρ → Maybe (NFGoal _≡_ _≡_ u u₁ v v₁ ρ) by-proof-eq-adv _ u [] v [] ρ = do leq ← decide-leq v u ρ; pure (lem-leq-zero leq) by-proof-eq-adv _ [] u₁ v [] ρ = do leq ← decide-leq v u₁ ρ; pure (lem-leq-zero leq ∘ sym) by-proof-eq-adv _ u [] [] v₁ ρ = do leq ← decide-leq v₁ u ρ; pure (sym ∘ lem-leq-zero leq) by-proof-eq-adv _ [] u₁ [] v₁ ρ = do leq ← decide-leq v₁ u₁ ρ; pure (sym ∘ lem-leq-zero leq ∘ sym) by-proof-eq-adv (suc n) u u₁ [ 1 , [ v ⟨-⟩ v₁ ] ] [ 1 , [ v₂ ⟨-⟩ v₃ ] ] ρ = by-proof-eq-sub₂ n u u₁ v v₁ v₂ v₃ ρ by-proof-eq-adv n u u₁ [ 1 , [ v ⟨-⟩ v₁ ] ] v₂ ρ = by-proof-eq-sub n u u₁ v v₁ v₂ ρ by-proof-eq-adv (suc n) u u₁ v₂ [ 1 , [ v ⟨-⟩ v₁ ] ] ρ = do prf ← by-proof-eq-sub n u u₁ v v₁ v₂ ρ pure (sym ∘ prf) by-proof-eq-adv _ u u₁ v v₁ ρ = nothing by-proof-eq-nf n u u₁ v v₁ ρ with u == v | u₁ == v₁ by-proof-eq-nf n u u₁ .u .u₁ ρ | yes refl | yes refl = just id ... | _ | _ with u == v₁ | u₁ == v -- try sym by-proof-eq-nf n u u₁ .u₁ .u ρ | _ | _ | yes refl | yes refl = just sym ... | _ | _ = by-proof-eq-adv n u u₁ v v₁ ρ -- try advanced stuff by-proof-eq : ∀ a a₁ b b₁ ρ → Maybe (SubExpEq a a₁ ρ → SubExpEq b b₁ ρ) by-proof-eq a a₁ b b₁ ρ with cancel (normSub a) (normSub a₁) | cancel (normSub b) (normSub b₁) | complicateSubEq a a₁ ρ | simplifySubEq b b₁ ρ ... | u , u₁ | v , v₁ | compl | simpl = do prf ← by-proof-eq-nf 10 u u₁ v v₁ ρ pure (simpl ∘ prf ∘ compl) not-less-zero′ : {n : Nat} → n < 0 → ⊥ not-less-zero′ (diff _ ()) not-less-zero : {A : Set} {n : Nat} → n < 0 → A not-less-zero n<0 = ⊥-elim (erase-⊥ (not-less-zero′ n<0)) less-one-is-zero : {n : Nat} → n < 1 → n ≡ 0 less-one-is-zero {zero} _ = refl less-one-is-zero {suc n} (diff k eq) = refute eq by-proof-less-eq-nf : ∀ u u₁ v v₁ ρ → Maybe (NFGoal _<_ _≡_ u u₁ v v₁ ρ) by-proof-less-eq-nf u [] v v₁ ρ = just not-less-zero -- could've used refute, but we'll take it by-proof-less-eq-nf u [ 1 , [] ] v v₁ ρ = do prf ← by-proof-eq-nf 10 u [] v v₁ ρ pure (prf ∘ less-one-is-zero) by-proof-less-eq-nf u u₁ v v₁ ρ = nothing by-proof-less-eq : ∀ a a₁ b b₁ ρ → Maybe (SubExpLess a a₁ ρ → SubExpEq b b₁ ρ) by-proof-less-eq a a₁ b b₁ ρ with cancel (normSub a) (normSub a₁) | cancel (normSub b) (normSub b₁) | complicateSubLess a a₁ ρ | simplifySubEq b b₁ ρ ... | u , u₁ | v , v₁ | compl | simpl = do prf ← by-proof-less-eq-nf u u₁ v v₁ ρ pure (simpl ∘ prf ∘ compl) by-proof : ∀ hyp goal ρ → Maybe (⟦ hyp ⟧eqn ρ → ⟦ goal ⟧eqn ρ) by-proof (a :≡ a₁) (b :≡ b₁) ρ = by-proof-eq a a₁ b b₁ ρ by-proof (a :< a₁) (b :≡ b₁) ρ = by-proof-less-eq a a₁ b b₁ ρ by-proof (a :< a₁) (b :< b₁) ρ = by-proof-less a a₁ b b₁ ρ by-proof (a :≡ a₁) (b :< b₁) ρ = do prf ← by-proof-less a (lit 1 ⟨+⟩ a₁) b b₁ ρ pure λ eq → prf (diff 0 (cong suc (sym eq))) by-tactic : Term → Type → TC Term by-tactic prf g = do ensureNoMetas prf h ← inferNormalisedType prf let t = pi (vArg h) (abs "_" (weaken 1 g)) just (hyp ∷ goal ∷ [] , Γ) ← termToSubHyps t where _ → typeError $ strErr "Invalid goal:" ∷ termErr t ∷ [] pure $ applyTerm (safe (getProof (quote cantProve) t $ def (quote by-proof) ( vArg (` hyp) ∷ vArg (` goal) ∷ vArg (quotedEnv Γ) ∷ [])) _) (vArg prf ∷ [])
41.977528
122
0.54296
dcc1e1fd5be07a2e1c1c96840e0eb5f632fd81ce
17,290
agda
Agda
Algebra/Monus.agda
oisdk/agda-playground
97a3aab1282b2337c5f43e2cfa3fa969a94c11b7
[ "MIT" ]
6
2020-09-11T17:45:41.000Z
2021-11-16T08:11:34.000Z
Algebra/Monus.agda
oisdk/agda-playground
97a3aab1282b2337c5f43e2cfa3fa969a94c11b7
[ "MIT" ]
null
null
null
Algebra/Monus.agda
oisdk/agda-playground
97a3aab1282b2337c5f43e2cfa3fa969a94c11b7
[ "MIT" ]
1
2021-11-11T12:30:21.000Z
2021-11-11T12:30:21.000Z
{-# OPTIONS --safe #-} -- This is a file for dealing with Monuses: these are monoids that are like the -- positive half of a group. Much of my info on them comes from these papers: -- -- * Wehrung, Friedrich. ‘Injective Positively Ordered Monoids I’. Journal of -- Pure and Applied Algebra 83, no. 1 (11 November 1992): 43–82. -- https://doi.org/10.1016/0022-4049(92)90104-N. -- * Wehrung, Friedrich. ‘Embedding Simple Commutative Monoids into Simple -- Refinement Monoids’. Semigroup Forum 56, no. 1 (January 1998): 104–29. -- https://doi.org/10.1007/s00233-002-7008-0. -- * Amer, K. ‘Equationally Complete Classes of Commutative Monoids with Monus’. -- Algebra Universalis 18, no. 1 (1 February 1984): 129–31. -- https://doi.org/10.1007/BF01182254. -- * Wehrung, Friedrich. ‘Metric Properties of Positively Ordered Monoids’. -- Forum Mathematicum 5, no. 5 (1993). -- https://doi.org/10.1515/form.1993.5.183. -- * Wehrung, Friedrich. ‘Restricted Injectivity, Transfer Property and -- Decompositions of Separative Positively Ordered Monoids.’ Communications in -- Algebra 22, no. 5 (1 January 1994): 1747–81. -- https://doi.org/10.1080/00927879408824934. -- -- These monoids have a preorder defined on them, the algebraic preorder: -- -- x ≤ y = ∃ z × (y ≡ x ∙ z) -- -- The _∸_ operator extracts the z from above, if it exists. module Algebra.Monus where open import Prelude open import Algebra open import Relation.Binary open import Path.Reasoning open import Function.Reasoning -- Positively ordered monoids. -- -- These are monoids which have a preorder that respects the monoid operation -- in a straightforward way. record POM ℓ₁ ℓ₂ : Type (ℓsuc (ℓ₁ ℓ⊔ ℓ₂)) where field commutativeMonoid : CommutativeMonoid ℓ₁ open CommutativeMonoid commutativeMonoid public field preorder : Preorder 𝑆 ℓ₂ open Preorder preorder public renaming (refl to ≤-refl) field positive : ∀ x → ε ≤ x ≤-cong : ∀ x {y z} → y ≤ z → x ∙ y ≤ x ∙ z x≤x∙y : ∀ {x y} → x ≤ x ∙ y x≤x∙y {x} {y} = subst (_≤ x ∙ y) (∙ε x) (≤-cong x (positive y)) ≤-congʳ : ∀ x {y z} → y ≤ z → y ∙ x ≤ z ∙ x ≤-congʳ x {y} {z} p = subst₂ _≤_ (comm x y) (comm x z) (≤-cong x p) alg-≤-trans : ∀ {x y z k₁ k₂} → y ≡ x ∙ k₁ → z ≡ y ∙ k₂ → z ≡ x ∙ (k₁ ∙ k₂) alg-≤-trans {x} {y} {z} {k₁} {k₂} y≡x∙k₁ z≡y∙k₂ = z ≡⟨ z≡y∙k₂ ⟩ y ∙ k₂ ≡⟨ cong (_∙ k₂) y≡x∙k₁ ⟩ (x ∙ k₁) ∙ k₂ ≡⟨ assoc x k₁ k₂ ⟩ x ∙ (k₁ ∙ k₂) ∎ infix 4 _≺_ _≺_ : 𝑆 → 𝑆 → Type _ x ≺ y = ∃ k × (y ≡ x ∙ k) × (k ≢ ε) -- Total Antisymmetric POM record TAPOM ℓ₁ ℓ₂ : Type (ℓsuc (ℓ₁ ℓ⊔ ℓ₂)) where field pom : POM ℓ₁ ℓ₂ open POM pom public using (preorder; _≤_; ≤-cong; ≤-congʳ; x≤x∙y; commutativeMonoid; positive) open CommutativeMonoid commutativeMonoid public field _≤|≥_ : Total _≤_ antisym : Antisymmetric _≤_ totalOrder : TotalOrder 𝑆 ℓ₂ ℓ₂ totalOrder = fromPartialOrder (record { preorder = preorder ; antisym = antisym }) _≤|≥_ open TotalOrder totalOrder public hiding (_≤|≥_; antisym) renaming (refl to ≤-refl) -- Every commutative monoid generates a positively ordered monoid -- called the "algebraic" or "minimal" pom module AlgebraicPOM {ℓ} (mon : CommutativeMonoid ℓ) where commutativeMonoid = mon open CommutativeMonoid mon infix 4 _≤_ _≤_ : 𝑆 → 𝑆 → Type _ x ≤ y = ∃ z × (y ≡ x ∙ z) -- The snd here is the same proof as alg-≤-trans, so could be refactored out. ≤-trans : Transitive _≤_ ≤-trans (k₁ , _) (k₂ , _) .fst = k₁ ∙ k₂ ≤-trans {x} {y} {z} (k₁ , y≡x∙k₁) (k₂ , z≡y∙k₂) .snd = z ≡⟨ z≡y∙k₂ ⟩ y ∙ k₂ ≡⟨ cong (_∙ k₂) y≡x∙k₁ ⟩ (x ∙ k₁) ∙ k₂ ≡⟨ assoc x k₁ k₂ ⟩ x ∙ (k₁ ∙ k₂) ∎ preorder : Preorder 𝑆 ℓ Preorder._≤_ preorder = _≤_ Preorder.refl preorder = ε , sym (∙ε _) Preorder.trans preorder = ≤-trans positive : ∀ x → ε ≤ x positive x = x , sym (ε∙ x) ≤-cong : ∀ x {y z} → y ≤ z → x ∙ y ≤ x ∙ z ≤-cong x (k , z≡y∙k) = k , cong (x ∙_) z≡y∙k ; sym (assoc x _ k) algebraic-pom : ∀ {ℓ} → CommutativeMonoid ℓ → POM ℓ ℓ algebraic-pom mon = record { AlgebraicPOM mon } -- Total Minimal POM record TMPOM ℓ : Type (ℓsuc ℓ) where field commutativeMonoid : CommutativeMonoid ℓ pom : POM _ _ pom = algebraic-pom commutativeMonoid open POM pom public infix 4 _≤|≥_ field _≤|≥_ : Total _≤_ <⇒≺ : ∀ x y → y ≰ x → x ≺ y <⇒≺ x y x<y with x ≤|≥ y ... | inr y≤x = ⊥-elim (x<y y≤x) ... | inl (k , y≡x∙k) = λ where .fst → k .snd .fst → y≡x∙k .snd .snd k≡ε → x<y (ε , sym (∙ε y ; y≡x∙k ; cong (x ∙_) k≡ε ; ∙ε x)) infixl 6 _∸_ _∸_ : 𝑆 → 𝑆 → 𝑆 x ∸ y = either′ (const ε) fst (x ≤|≥ y) x∸y≤x : ∀ x y → x ∸ y ≤ x x∸y≤x x y with x ≤|≥ y ... | inl (k , p) = positive x ... | inr (k , x≡y∙k) = y , x≡y∙k ; comm y k -- Total Minimal Antisymmetric POM record TMAPOM ℓ : Type (ℓsuc ℓ) where field tmpom : TMPOM ℓ open TMPOM tmpom public using (_≤_; _≤|≥_; positive; alg-≤-trans; _≺_; <⇒≺; _∸_; x∸y≤x) field antisym : Antisymmetric _≤_ tapom : TAPOM _ _ TAPOM.pom tapom = TMPOM.pom tmpom TAPOM._≤|≥_ tapom = _≤|≥_ TAPOM.antisym tapom = antisym open TAPOM tapom public hiding (antisym; _≤|≥_; _≤_; positive) zeroSumFree : ∀ x y → x ∙ y ≡ ε → x ≡ ε zeroSumFree x y x∙y≡ε = antisym (y , sym x∙y≡ε) (positive x) ≤‿∸‿cancel : ∀ x y → x ≤ y → (y ∸ x) ∙ x ≡ y ≤‿∸‿cancel x y x≤y with y ≤|≥ x ... | inl y≤x = ε∙ x ; antisym x≤y y≤x ... | inr (k , y≡x∙k) = comm k x ; sym y≡x∙k ∸‿comm : ∀ x y → x ∙ (y ∸ x) ≡ y ∙ (x ∸ y) ∸‿comm x y with y ≤|≥ x | x ≤|≥ y ... | inl y≤x | inl x≤y = cong (_∙ ε) (antisym x≤y y≤x) ... | inr (k , y≡x∙k) | inl x≤y = sym y≡x∙k ; sym (∙ε y) ... | inl y≤x | inr (k , x≥y) = ∙ε x ; x≥y ... | inr (k₁ , y≡x∙k₁) | inr (k₂ , x≡y∙k₂) = x ∙ k₁ ≡˘⟨ y≡x∙k₁ ⟩ y ≡⟨ antisym (k₂ , x≡y∙k₂) (k₁ , y≡x∙k₁) ⟩ x ≡⟨ x≡y∙k₂ ⟩ y ∙ k₂ ∎ ∸‿≺ : ∀ x y → x ≢ ε → y ≢ ε → x ∸ y ≺ x ∸‿≺ x y x≢ε y≢ε with x ≤|≥ y ... | inl _ = x , sym (ε∙ x) , x≢ε ... | inr (k , x≡y∙k) = y , x≡y∙k ; comm y k , y≢ε -- Commutative Monoids with Monus record CMM ℓ : Type (ℓsuc ℓ) where field commutativeMonoid : CommutativeMonoid ℓ pom : POM _ _ pom = algebraic-pom commutativeMonoid open POM pom public field _∸_ : 𝑆 → 𝑆 → 𝑆 infixl 6 _∸_ field ∸‿comm : ∀ x y → x ∙ (y ∸ x) ≡ y ∙ (x ∸ y) ∸‿assoc : ∀ x y z → (x ∸ y) ∸ z ≡ x ∸ (y ∙ z) ∸‿inv : ∀ x → x ∸ x ≡ ε ε∸ : ∀ x → ε ∸ x ≡ ε ∸ε : ∀ x → x ∸ ε ≡ x ∸ε x = x ∸ ε ≡˘⟨ ε∙ (x ∸ ε) ⟩ ε ∙ (x ∸ ε) ≡⟨ ∸‿comm ε x ⟩ x ∙ (ε ∸ x) ≡⟨ cong (x ∙_) (ε∸ x) ⟩ x ∙ ε ≡⟨ ∙ε x ⟩ x ∎ ∸≤ : ∀ x y → x ≤ y → x ∸ y ≡ ε ∸≤ x y (k , y≡x∙k) = x ∸ y ≡⟨ cong (x ∸_) y≡x∙k ⟩ x ∸ (x ∙ k) ≡˘⟨ ∸‿assoc x x k ⟩ (x ∸ x) ∸ k ≡⟨ cong (_∸ k) (∸‿inv x) ⟩ ε ∸ k ≡⟨ ε∸ k ⟩ ε ∎ ∣_-_∣ : 𝑆 → 𝑆 → 𝑆 ∣ x - y ∣ = (x ∸ y) ∙ (y ∸ x) _⊔₂_ : 𝑆 → 𝑆 → 𝑆 x ⊔₂ y = x ∙ y ∙ ∣ x - y ∣ _⊓₂_ : 𝑆 → 𝑆 → 𝑆 x ⊓₂ y = (x ∙ y) ∸ ∣ x - y ∣ -- Cancellative Commutative Monoids with Monus record CCMM ℓ : Type (ℓsuc ℓ) where field cmm : CMM ℓ open CMM cmm public field ∸‿cancel : ∀ x y → (x ∙ y) ∸ x ≡ y cancelˡ : Cancellativeˡ _∙_ cancelˡ x y z x∙y≡x∙z = y ≡˘⟨ ∸‿cancel x y ⟩ (x ∙ y) ∸ x ≡⟨ cong (_∸ x) x∙y≡x∙z ⟩ (x ∙ z) ∸ x ≡⟨ ∸‿cancel x z ⟩ z ∎ cancelʳ : Cancellativeʳ _∙_ cancelʳ x y z y∙x≡z∙x = y ≡˘⟨ ∸‿cancel x y ⟩ (x ∙ y) ∸ x ≡⟨ cong (_∸ x) (comm x y) ⟩ (y ∙ x) ∸ x ≡⟨ cong (_∸ x) y∙x≡z∙x ⟩ (z ∙ x) ∸ x ≡⟨ cong (_∸ x) (comm z x) ⟩ (x ∙ z) ∸ x ≡⟨ ∸‿cancel x z ⟩ z ∎ zeroSumFree : ∀ x y → x ∙ y ≡ ε → x ≡ ε zeroSumFree x y x∙y≡ε = x ≡˘⟨ ∸‿cancel y x ⟩ (y ∙ x) ∸ y ≡⟨ cong (_∸ y) (comm y x) ⟩ (x ∙ y) ∸ y ≡⟨ cong (_∸ y) x∙y≡ε ⟩ ε ∸ y ≡⟨ ε∸ y ⟩ ε ∎ antisym : Antisymmetric _≤_ antisym {x} {y} (k₁ , y≡x∙k₁) (k₂ , x≡y∙k₂) = x ≡⟨ x≡y∙k₂ ⟩ y ∙ k₂ ≡⟨ [ lemma ]⇒ y ∙ ε ≡ y ∙ (k₂ ∙ k₁) ⟨ cancelˡ y ε (k₂ ∙ k₁) ⟩⇒ ε ≡ k₂ ∙ k₁ ⟨ sym ⟩⇒ k₂ ∙ k₁ ≡ ε ⟨ zeroSumFree k₂ k₁ ⟩⇒ k₂ ≡ ε ⟨ cong (y ∙_) ⟩⇒ y ∙ k₂ ≡ y ∙ ε ⇒∎ ⟩ y ∙ ε ≡⟨ ∙ε y ⟩ y ∎ where lemma = ∙ε y ; alg-≤-trans x≡y∙k₂ y≡x∙k₁ partialOrder : PartialOrder _ _ PartialOrder.preorder partialOrder = preorder PartialOrder.antisym partialOrder = antisym ≺⇒< : ∀ x y → x ≺ y → y ≰ x ≺⇒< x y (k₁ , y≡x∙k₁ , k₁≢ε) (k₂ , x≡y∙k₂) = [ x ∙ ε ≡⟨ ∙ε x ⟩ x ≡⟨ x≡y∙k₂ ⟩ y ∙ k₂ ≡⟨ cong (_∙ k₂) y≡x∙k₁ ⟩ (x ∙ k₁) ∙ k₂ ≡⟨ assoc x k₁ k₂ ⟩ x ∙ (k₁ ∙ k₂) ∎ ]⇒ x ∙ ε ≡ x ∙ (k₁ ∙ k₂) ⟨ cancelˡ x ε (k₁ ∙ k₂) ⟩⇒ ε ≡ k₁ ∙ k₂ ⟨ sym ⟩⇒ k₁ ∙ k₂ ≡ ε ⟨ zeroSumFree k₁ k₂ ⟩⇒ k₁ ≡ ε ⟨ k₁≢ε ⟩⇒ ⊥ ⇒∎ ≤⇒<⇒≢ε : ∀ x y → (x≤y : x ≤ y) → y ≰ x → fst x≤y ≢ ε ≤⇒<⇒≢ε x y (k₁ , y≡x∙k₁) y≰x k₁≡ε = y≰x λ where .fst → ε .snd → x ≡˘⟨ ∙ε x ⟩ x ∙ ε ≡˘⟨ cong (x ∙_) k₁≡ε ⟩ x ∙ k₁ ≡˘⟨ y≡x∙k₁ ⟩ y ≡˘⟨ ∙ε y ⟩ y ∙ ε ∎ ≤-cancelʳ : ∀ x y z → y ∙ x ≤ z ∙ x → y ≤ z ≤-cancelʳ x y z (k , z∙x≡y∙x∙k) .fst = k ≤-cancelʳ x y z (k , z∙x≡y∙x∙k) .snd = cancelʳ x z (y ∙ k) $ z ∙ x ≡⟨ z∙x≡y∙x∙k ⟩ (y ∙ x) ∙ k ≡⟨ assoc y x k ⟩ y ∙ (x ∙ k) ≡⟨ cong (y ∙_) (comm x k) ⟩ y ∙ (k ∙ x) ≡˘⟨ assoc y k x ⟩ (y ∙ k) ∙ x ∎ ≤-cancelˡ : ∀ x y z → x ∙ y ≤ x ∙ z → y ≤ z ≤-cancelˡ x y z (k , x∙z≡x∙y∙k) .fst = k ≤-cancelˡ x y z (k , x∙z≡x∙y∙k) .snd = cancelˡ x z (y ∙ k) (x∙z≡x∙y∙k ; assoc x y k) ≺-irrefl : Irreflexive _≺_ ≺-irrefl {x} (k , x≡x∙k , k≢ε) = k≢ε (sym (cancelˡ x ε k (∙ε x ; x≡x∙k))) ≤∸ : ∀ x y → (x≤y : x ≤ y) → y ∸ x ≡ fst x≤y ≤∸ x y (k , y≡x∙k) = y ∸ x ≡⟨ cong (_∸ x) y≡x∙k ⟩ (x ∙ k) ∸ x ≡⟨ ∸‿cancel x k ⟩ k ∎ ≤‿∸‿cancel : ∀ x y → x ≤ y → (y ∸ x) ∙ x ≡ y ≤‿∸‿cancel x y (k , y≡x∙k) = (y ∸ x) ∙ x ≡⟨ cong (λ y → (y ∸ x) ∙ x) y≡x∙k ⟩ ((x ∙ k) ∸ x) ∙ x ≡⟨ cong (_∙ x) (∸‿cancel x k) ⟩ k ∙ x ≡⟨ comm k x ⟩ x ∙ k ≡˘⟨ y≡x∙k ⟩ y ∎ -- Cancellative total minimal antisymmetric pom (has monus) record CTMAPOM ℓ : Type (ℓsuc ℓ) where field tmapom : TMAPOM ℓ open TMAPOM tmapom public field cancel : Cancellativeˡ _∙_ module cmm where ∸≤ : ∀ x y → x ≤ y → x ∸ y ≡ ε ∸≤ x y x≤y with x ≤|≥ y ∸≤ x y x≤y | inl _ = refl ∸≤ x y (k₁ , y≡x∙k₁) | inr (k₂ , x≡y∙k₂) = [ lemma ]⇒ y ∙ ε ≡ y ∙ (k₂ ∙ k₁) ⟨ cancel y ε (k₂ ∙ k₁) ⟩⇒ ε ≡ k₂ ∙ k₁ ⟨ sym ⟩⇒ k₂ ∙ k₁ ≡ ε ⟨ zeroSumFree k₂ k₁ ⟩⇒ k₂ ≡ ε ⇒∎ where lemma = ∙ε y ; alg-≤-trans x≡y∙k₂ y≡x∙k₁ ∸‿inv : ∀ x → x ∸ x ≡ ε ∸‿inv x = ∸≤ x x ≤-refl ε∸ : ∀ x → ε ∸ x ≡ ε ε∸ x = ∸≤ ε x (positive x) ∸‿assoc : ∀ x y z → (x ∸ y) ∸ z ≡ x ∸ (y ∙ z) ∸‿assoc x y z with x ≤|≥ y ∸‿assoc x y z | inl x≤y = ε∸ z ; sym (∸≤ x (y ∙ z) (≤-trans x≤y x≤x∙y)) ∸‿assoc x y z | inr x≥y with x ≤|≥ y ∙ z ∸‿assoc x y z | inr (k₁ , x≡y∙k₁) | inl (k₂ , y∙z≡x∙k₂) = ∸≤ k₁ z (k₂ , lemma) where lemma : z ≡ k₁ ∙ k₂ lemma = cancel y z (k₁ ∙ k₂) (alg-≤-trans x≡y∙k₁ y∙z≡x∙k₂) ∸‿assoc x y z | inr (k , x≡y∙k) | inr x≥y∙z with k ≤|≥ z ∸‿assoc x y z | inr (k₁ , x≡y∙k₁) | inr (k₂ , x≡y∙z∙k₂) | inl (k₃ , z≡k₁∙k₃) = [ lemma₁ ]⇒ ε ≡ k₂ ∙ k₃ ⟨ sym ⟩⇒ k₂ ∙ k₃ ≡ ε ⟨ zeroSumFree k₂ k₃ ⟩⇒ k₂ ≡ ε ⟨ sym ⟩⇒ ε ≡ k₂ ⇒∎ where lemma₃ = y ∙ k₁ ≡˘⟨ x≡y∙k₁ ⟩ x ≡⟨ x≡y∙z∙k₂ ⟩ (y ∙ z) ∙ k₂ ≡⟨ assoc y z k₂ ⟩ y ∙ (z ∙ k₂) ∎ lemma₂ = k₁ ∙ ε ≡⟨ ∙ε k₁ ⟩ k₁ ≡⟨ alg-≤-trans z≡k₁∙k₃ (cancel y k₁ (z ∙ k₂) lemma₃) ⟩ k₁ ∙ (k₃ ∙ k₂) ∎ lemma₁ = ε ≡⟨ cancel k₁ ε (k₃ ∙ k₂) lemma₂ ⟩ k₃ ∙ k₂ ≡⟨ comm k₃ k₂ ⟩ k₂ ∙ k₃ ∎ ∸‿assoc x y z | inr (k₁ , x≡y∙k₁) | inr (k₂ , x≡y∙z∙k₂) | inr (k₃ , k₁≡z∙k₃) = cancel z k₃ k₂ lemma₂ where lemma₁ = y ∙ k₁ ≡˘⟨ x≡y∙k₁ ⟩ x ≡⟨ x≡y∙z∙k₂ ⟩ (y ∙ z) ∙ k₂ ≡⟨ assoc y z k₂ ⟩ y ∙ (z ∙ k₂) ∎ lemma₂ = z ∙ k₃ ≡˘⟨ k₁≡z∙k₃ ⟩ k₁ ≡⟨ cancel y k₁ (z ∙ k₂) lemma₁ ⟩ z ∙ k₂ ∎ open cmm public ∸‿cancel : ∀ x y → (x ∙ y) ∸ x ≡ y ∸‿cancel x y with (x ∙ y) ≤|≥ x ... | inl x∙y≤x = sym (cancel x y ε (antisym x∙y≤x x≤x∙y ; sym (∙ε x))) ... | inr (k , x∙y≡x∙k) = sym (cancel x y k x∙y≡x∙k) ccmm : CCMM _ ccmm = record { ∸‿cancel = ∸‿cancel ; cmm = record { cmm ; ∸‿comm = ∸‿comm ; commutativeMonoid = commutativeMonoid } } open CCMM ccmm public using (cancelʳ; cancelˡ; ∸ε; ≺⇒<; ≤⇒<⇒≢ε; _⊔₂_; _⊓₂_; ≺-irrefl; ≤∸) ∸‿< : ∀ x y → x ≢ ε → y ≢ ε → x ∸ y < x ∸‿< x y x≢ε y≢ε = ≺⇒< (x ∸ y) x (∸‿≺ x y x≢ε y≢ε) ∸‿<-< : ∀ x y → x < y → x ≢ ε → y ∸ x < y ∸‿<-< x y x<y x≢ε = ∸‿< y x (λ y≡ε → x<y (x , sym (cong (_∙ x) y≡ε ; ε∙ x))) x≢ε 2× : 𝑆 → 𝑆 2× x = x ∙ x open import Relation.Binary.Lattice totalOrder double-max : ∀ x y → 2× (x ⊔ y) ≡ x ⊔₂ y double-max x y with x ≤|≥ y | y ≤|≥ x double-max x y | inl x≤y | inl y≤x = x ∙ x ≡⟨ cong (x ∙_) (antisym x≤y y≤x) ⟩ x ∙ y ≡˘⟨ ∙ε (x ∙ y) ⟩ (x ∙ y) ∙ ε ≡˘⟨ cong ((x ∙ y) ∙_) (ε∙ ε) ⟩ (x ∙ y) ∙ (ε ∙ ε) ∎ double-max x y | inl x≤y | inr (k , y≡x∙k) = y ∙ y ≡⟨ cong (y ∙_) y≡x∙k ⟩ y ∙ (x ∙ k) ≡˘⟨ assoc y x k ⟩ (y ∙ x) ∙ k ≡⟨ cong (_∙ k) (comm y x) ⟩ (x ∙ y) ∙ k ≡˘⟨ cong ((x ∙ y) ∙_) (ε∙ k) ⟩ (x ∙ y) ∙ (ε ∙ k) ∎ double-max x y | inr (k , x≡y∙k) | inl y≤x = x ∙ x ≡⟨ cong (x ∙_) x≡y∙k ⟩ x ∙ (y ∙ k) ≡˘⟨ assoc x y k ⟩ (x ∙ y) ∙ k ≡˘⟨ cong ((x ∙ y) ∙_) (∙ε k) ⟩ (x ∙ y) ∙ (k ∙ ε) ∎ double-max x y | inr (k₁ , x≡y∙k₁) | inr (k₂ , y≡x∙k₂) = x ∙ x ≡⟨ cong (x ∙_) (antisym (k₂ , y≡x∙k₂) (k₁ , x≡y∙k₁)) ⟩ x ∙ y ≡⟨ cong₂ _∙_ x≡y∙k₁ y≡x∙k₂ ⟩ (y ∙ k₁) ∙ (x ∙ k₂) ≡˘⟨ assoc (y ∙ k₁) x k₂ ⟩ ((y ∙ k₁) ∙ x) ∙ k₂ ≡⟨ cong (_∙ k₂) (comm (y ∙ k₁) x) ⟩ (x ∙ (y ∙ k₁)) ∙ k₂ ≡˘⟨ cong (_∙ k₂) (assoc x y k₁) ⟩ ((x ∙ y) ∙ k₁) ∙ k₂ ≡⟨ assoc (x ∙ y) k₁ k₂ ⟩ (x ∙ y) ∙ (k₁ ∙ k₂) ∎ open import Data.Sigma.Properties ≤-prop : ∀ x y → isProp (x ≤ y) ≤-prop x y (k₁ , y≡x∙k₁) (k₂ , y≡x∙k₂) = Σ≡Prop (λ _ → total⇒isSet _ _) (cancelˡ x k₁ k₂ (sym y≡x∙k₁ ; y≡x∙k₂)) open import Cubical.Foundations.HLevels using (isProp×) open import Data.Empty.Properties using (isProp¬) ≺-prop : ∀ x y → isProp (x ≺ y) ≺-prop x y (k₁ , y≡x∙k₁ , k₁≢ε) (k₂ , y≡x∙k₂ , k₂≢ε) = Σ≡Prop (λ k → isProp× (total⇒isSet _ _) (isProp¬ _)) (cancelˡ x k₁ k₂ (sym y≡x∙k₁ ; y≡x∙k₂)) -- We can construct the viterbi semiring by adjoining a top element to -- a tapom module Viterbi {ℓ₁} {ℓ₂} (tapom : TAPOM ℓ₁ ℓ₂) where open TAPOM tapom open import Relation.Binary.Construct.UpperBound totalOrder open import Relation.Binary.Lattice totalOrder ⟨⊓⟩∙ : _∙_ Distributesˡ _⊓_ ⟨⊓⟩∙ x y z with x <? y | (x ∙ z) <? (y ∙ z) ... | yes x<y | yes xz<yz = refl ... | no x≮y | no xz≮yz = refl ... | no x≮y | yes xz<yz = ⊥-elim (<⇒≱ xz<yz (≤-congʳ z (≮⇒≥ x≮y))) ... | yes x<y | no xz≮yz = antisym (≤-congʳ z (<⇒≤ x<y)) (≮⇒≥ xz≮yz) ∙⟨⊓⟩ : _∙_ Distributesʳ _⊓_ ∙⟨⊓⟩ x y z = comm x (y ⊓ z) ; ⟨⊓⟩∙ y z x ; cong₂ _⊓_ (comm y x) (comm z x) open UBSugar module NS where 𝑅 = ⌈∙⌉ 0# 1# : 𝑅 _*_ _+_ : 𝑅 → 𝑅 → 𝑅 1# = ⌈ ε ⌉ ⌈⊤⌉ * y = ⌈⊤⌉ ⌈ x ⌉ * ⌈⊤⌉ = ⌈⊤⌉ ⌈ x ⌉ * ⌈ y ⌉ = ⌈ x ∙ y ⌉ 0# = ⌈⊤⌉ ⌈⊤⌉ + y = y ⌈ x ⌉ + ⌈⊤⌉ = ⌈ x ⌉ ⌈ x ⌉ + ⌈ y ⌉ = ⌈ x ⊓ y ⌉ *-assoc : Associative _*_ *-assoc ⌈⊤⌉ _ _ = refl *-assoc ⌈ _ ⌉ ⌈⊤⌉ _ = refl *-assoc ⌈ _ ⌉ ⌈ _ ⌉ ⌈⊤⌉ = refl *-assoc ⌈ x ⌉ ⌈ y ⌉ ⌈ z ⌉ = cong ⌈_⌉ (assoc x y z) *-com : Commutative _*_ *-com ⌈⊤⌉ ⌈⊤⌉ = refl *-com ⌈⊤⌉ ⌈ _ ⌉ = refl *-com ⌈ _ ⌉ ⌈⊤⌉ = refl *-com ⌈ x ⌉ ⌈ y ⌉ = cong ⌈_⌉ (comm x y) ⟨+⟩* : _*_ Distributesˡ _+_ ⟨+⟩* ⌈⊤⌉ _ _ = refl ⟨+⟩* ⌈ _ ⌉ ⌈⊤⌉ ⌈⊤⌉ = refl ⟨+⟩* ⌈ _ ⌉ ⌈⊤⌉ ⌈ _ ⌉ = refl ⟨+⟩* ⌈ x ⌉ ⌈ y ⌉ ⌈⊤⌉ = refl ⟨+⟩* ⌈ x ⌉ ⌈ y ⌉ ⌈ z ⌉ = cong ⌈_⌉ (⟨⊓⟩∙ x y z) +-assoc : Associative _+_ +-assoc ⌈⊤⌉ _ _ = refl +-assoc ⌈ x ⌉ ⌈⊤⌉ _ = refl +-assoc ⌈ x ⌉ ⌈ _ ⌉ ⌈⊤⌉ = refl +-assoc ⌈ x ⌉ ⌈ y ⌉ ⌈ z ⌉ = cong ⌈_⌉ (⊓-assoc x y z) 0+ : ∀ x → 0# + x ≡ x 0+ ⌈⊤⌉ = refl 0+ ⌈ _ ⌉ = refl +0 : ∀ x → x + 0# ≡ x +0 ⌈ _ ⌉ = refl +0 ⌈⊤⌉ = refl 1* : ∀ x → 1# * x ≡ x 1* ⌈⊤⌉ = refl 1* ⌈ x ⌉ = cong ⌈_⌉ (ε∙ x) *1 : ∀ x → x * 1# ≡ x *1 ⌈⊤⌉ = refl *1 ⌈ x ⌉ = cong ⌈_⌉ (∙ε x) 0* : ∀ x → 0# * x ≡ 0# 0* _ = refl open NS nearSemiring : NearSemiring _ nearSemiring = record { NS } +-comm : Commutative _+_ +-comm ⌈⊤⌉ ⌈⊤⌉ = refl +-comm ⌈⊤⌉ ⌈ _ ⌉ = refl +-comm ⌈ _ ⌉ ⌈⊤⌉ = refl +-comm ⌈ x ⌉ ⌈ y ⌉ = cong ⌈_⌉ (⊓-comm x y) *0 : ∀ x → x * ⌈⊤⌉ ≡ ⌈⊤⌉ *0 ⌈ _ ⌉ = refl *0 ⌈⊤⌉ = refl *⟨+⟩ : _*_ Distributesʳ _+_ *⟨+⟩ x y z = *-com x (y + z) ; ⟨+⟩* y z x ; cong₂ _+_ (*-com y x) (*-com z x) viterbi : ∀ {ℓ₁ ℓ₂} → TAPOM ℓ₁ ℓ₂ → Semiring ℓ₁ viterbi tapom = record { Viterbi tapom }
30.875
149
0.452053
103beec4ae5a5a342889dd40a17f7b007d4a8f0c
2,619
agda
Agda
BasicIPC/Metatheory/Hilbert-KripkeConcreteGluedGentzen.agda
mietek/hilbert-gentzen
fcd187db70f0a39b894fe44fad0107f61849405c
[ "X11" ]
29
2016-07-03T18:51:56.000Z
2022-01-01T10:29:18.000Z
BasicIPC/Metatheory/Hilbert-KripkeConcreteGluedGentzen.agda
mietek/hilbert-gentzen
fcd187db70f0a39b894fe44fad0107f61849405c
[ "X11" ]
1
2018-06-10T09:11:22.000Z
2018-06-10T09:11:22.000Z
BasicIPC/Metatheory/Hilbert-KripkeConcreteGluedGentzen.agda
mietek/hilbert-gentzen
fcd187db70f0a39b894fe44fad0107f61849405c
[ "X11" ]
null
null
null
module BasicIPC.Metatheory.Hilbert-KripkeConcreteGluedGentzen where open import BasicIPC.Syntax.Hilbert public open import BasicIPC.Semantics.KripkeConcreteGluedGentzen public -- Internalisation of syntax as syntax representation in a particular model. module _ {{_ : Model}} where [_] : ∀ {A Γ} → Γ ⊢ A → Γ [⊢] A [ var i ] = [var] i [ app t u ] = [app] [ t ] [ u ] [ ci ] = [ci] [ ck ] = [ck] [ cs ] = [cs] [ cpair ] = [cpair] [ cfst ] = [cfst] [ csnd ] = [csnd] [ unit ] = [unit] -- Soundness with respect to all models, or evaluation. eval : ∀ {A Γ} → Γ ⊢ A → Γ ⊨ A eval (var i) γ = lookup i γ eval (app t u) γ = eval t γ ⟪$⟫ eval u γ eval ci γ = [ci] ⅋ K I eval ck γ = [ck] ⅋ K ⟪K⟫ eval cs γ = [cs] ⅋ K ⟪S⟫′ eval cpair γ = [cpair] ⅋ K _⟪,⟫′_ eval cfst γ = [cfst] ⅋ K π₁ eval csnd γ = [csnd] ⅋ K π₂ eval unit γ = ∙ -- TODO: Correctness of evaluation with respect to conversion. -- The canonical model. private instance canon : Model canon = record { _⊩ᵅ_ = λ w P → unwrap w ⊢ α P ; mono⊩ᵅ = λ ξ t → mono⊢ (unwrap≤ ξ) t ; _[⊢]_ = _⊢_ ; mono[⊢] = mono⊢ ; [var] = var ; [lam] = lam ; [app] = app ; [pair] = pair ; [fst] = fst ; [snd] = snd ; [unit] = unit } -- Soundness and completeness with respect to the canonical model. mutual reflectᶜ : ∀ {A w} → unwrap w ⊢ A → w ⊩ A reflectᶜ {α P} t = t ⅋ t reflectᶜ {A ▻ B} t = t ⅋ λ ξ a → reflectᶜ (app (mono⊢ (unwrap≤ ξ) t) (reifyᶜ a)) reflectᶜ {A ∧ B} t = reflectᶜ (fst t) , reflectᶜ (snd t) reflectᶜ {⊤} t = ∙ reifyᶜ : ∀ {A w} → w ⊩ A → unwrap w ⊢ A reifyᶜ {α P} s = syn s reifyᶜ {A ▻ B} s = syn s reifyᶜ {A ∧ B} s = pair (reifyᶜ (π₁ s)) (reifyᶜ (π₂ s)) reifyᶜ {⊤} s = unit reflectᶜ⋆ : ∀ {Ξ w} → unwrap w ⊢⋆ Ξ → w ⊩⋆ Ξ reflectᶜ⋆ {∅} ∙ = ∙ reflectᶜ⋆ {Ξ , A} (ts , t) = reflectᶜ⋆ ts , reflectᶜ t reifyᶜ⋆ : ∀ {Ξ w} → w ⊩⋆ Ξ → unwrap w ⊢⋆ Ξ reifyᶜ⋆ {∅} ∙ = ∙ reifyᶜ⋆ {Ξ , A} (ts , t) = reifyᶜ⋆ ts , reifyᶜ t -- Reflexivity and transitivity. refl⊩⋆ : ∀ {w} → w ⊩⋆ unwrap w refl⊩⋆ = reflectᶜ⋆ refl⊢⋆ trans⊩⋆ : ∀ {w w′ w″} → w ⊩⋆ unwrap w′ → w′ ⊩⋆ unwrap w″ → w ⊩⋆ unwrap w″ trans⊩⋆ ts us = reflectᶜ⋆ (trans⊢⋆ (reifyᶜ⋆ ts) (reifyᶜ⋆ us)) -- Completeness with respect to all models, or quotation. quot : ∀ {A Γ} → Γ ⊨ A → Γ ⊢ A quot s = reifyᶜ (s refl⊩⋆) -- Normalisation by evaluation. norm : ∀ {A Γ} → Γ ⊢ A → Γ ⊢ A norm = quot ∘ eval -- TODO: Correctness of normalisation with respect to conversion.
24.942857
82
0.520809
4a9428b6926ffbce01225be45746be59e3ef8cd1
1,163
agda
Agda
expn-eval-holds.agda
JimFixGroupResearch/imper-ial
80d9411b2869614cae488cd4a6272894146c9f3c
[ "MIT" ]
null
null
null
expn-eval-holds.agda
JimFixGroupResearch/imper-ial
80d9411b2869614cae488cd4a6272894146c9f3c
[ "MIT" ]
null
null
null
expn-eval-holds.agda
JimFixGroupResearch/imper-ial
80d9411b2869614cae488cd4a6272894146c9f3c
[ "MIT" ]
null
null
null
open import lib open import eq-reas-nouni equiv = _≡_ Val = nat data Expn : Set where val : Val -> Expn plus : Expn -> Expn -> Expn eval : Expn -> Val eval (val v) = v eval (plus e1 e2) = (eval e1) + (eval e2) data evalsTo : Expn -> Val -> Set where e-val : forall {v : Val} ------------------------ -> (evalsTo (val v) v) e-add : forall {e1 e2 : Expn}{v1 v2 : Val} -> (evalsTo e1 v1) -> (evalsTo e2 v2) ------------------------------------- -> (evalsTo (plus e1 e2) (v1 + v2)) e-thm-fwd : forall {e : Expn}{v : Val} -> evalsTo e v -> equiv (eval e) v e-thm-fwd (e-val{v}) = begin eval (val v) equiv[ refl ] v qed e-thm-fwd (e-add{e1}{e2}{v1}{v2} e1-evalsTo-v1 e2-evalsTo-v2) = let eval-e1-is-v1 = e-thm-fwd e1-evalsTo-v1 eval-e2-is-v2 = e-thm-fwd e2-evalsTo-v2 in begin eval (plus e1 e2) equiv[ refl ] (eval e1) + (eval e2) equiv[ cong2 _+_ eval-e1-is-v1 eval-e2-is-v2 ] v1 + v2 qed e-thm-alt : forall (e : Expn) -> evalsTo e (eval e) e-thm-alt (val v) = e-val e-thm-alt (plus e1 e2) = (e-add (e-thm-alt e1) (e-thm-alt e2))
20.767857
63
0.509888
c546e94dfde065392185a63d743ce078b33bbbdf
206
agda
Agda
test/interaction/SplitResult.agda
redfish64/autonomic-agda
c0ae7d20728b15d7da4efff6ffadae6fe4590016
[ "BSD-3-Clause" ]
null
null
null
test/interaction/SplitResult.agda
redfish64/autonomic-agda
c0ae7d20728b15d7da4efff6ffadae6fe4590016
[ "BSD-3-Clause" ]
null
null
null
test/interaction/SplitResult.agda
redfish64/autonomic-agda
c0ae7d20728b15d7da4efff6ffadae6fe4590016
[ "BSD-3-Clause" ]
null
null
null
{-# OPTIONS --copatterns #-} module SplitResult where open import Common.Product test : {A B : Set} (a : A) (b : B) → A × B test a b = {!!} testFun : {A B : Set} (a : A) (b : B) → A × B testFun = {!!}
15.846154
45
0.524272
20a415fa9e4af58e38d1d5f0e76f9a478602ce67
8,619
agda
Agda
Cubical/Algebra/Ring/QuotientRing.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
1
2022-03-05T00:29:41.000Z
2022-03-05T00:29:41.000Z
Cubical/Algebra/Ring/QuotientRing.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
null
null
null
Cubical/Algebra/Ring/QuotientRing.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
null
null
null
{-# OPTIONS --safe #-} module Cubical.Algebra.Ring.QuotientRing where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Equiv open import Cubical.Foundations.HLevels open import Cubical.Foundations.Structure open import Cubical.Foundations.Powerset using (_∈_; _⊆_) -- \in, \sub= open import Cubical.HITs.SetQuotients.Base renaming (_/_ to _/ₛ_) open import Cubical.HITs.SetQuotients.Properties open import Cubical.Algebra.Ring open import Cubical.Algebra.Ring.Ideal open import Cubical.Algebra.Ring.Kernel private variable ℓ : Level module _ (R' : Ring ℓ) (I : ⟨ R' ⟩ → hProp ℓ) (I-isIdeal : isIdeal R' I) where open RingStr (snd R') private R = ⟨ R' ⟩ open isIdeal I-isIdeal open RingTheory R' R/I : Type ℓ R/I = R /ₛ (λ x y → x - y ∈ I) private homogeneity : ∀ (x a b : R) → (a - b ∈ I) → (x + a) - (x + b) ∈ I homogeneity x a b p = subst (λ u → u ∈ I) (translatedDifference x a b) p isSetR/I : isSet R/I isSetR/I = squash/ [_]/I : (a : R) → R/I [ a ]/I = [ a ] lemma : (x y a : R) → x - y ∈ I → [ x + a ]/I ≡ [ y + a ]/I lemma x y a x-y∈I = eq/ (x + a) (y + a) (subst (λ u → u ∈ I) calculate x-y∈I) where calculate : x - y ≡ (x + a) - (y + a) calculate = x - y ≡⟨ translatedDifference a x y ⟩ ((a + x) - (a + y)) ≡⟨ cong (λ u → u - (a + y)) (+Comm _ _) ⟩ ((x + a) - (a + y)) ≡⟨ cong (λ u → (x + a) - u) (+Comm _ _) ⟩ ((x + a) - (y + a)) ∎ pre-+/I : R → R/I → R/I pre-+/I x = elim (λ _ → squash/) (λ y → [ x + y ]) λ y y' diffrenceInIdeal → eq/ (x + y) (x + y') (homogeneity x y y' diffrenceInIdeal) pre-+/I-DescendsToQuotient : (x y : R) → (x - y ∈ I) → pre-+/I x ≡ pre-+/I y pre-+/I-DescendsToQuotient x y x-y∈I i r = pointwise-equal r i where pointwise-equal : ∀ (u : R/I) → pre-+/I x u ≡ pre-+/I y u pointwise-equal = elimProp (λ u → isSetR/I (pre-+/I x u) (pre-+/I y u)) (λ a → lemma x y a x-y∈I) _+/I_ : R/I → R/I → R/I x +/I y = (elim R/I→R/I-isSet pre-+/I pre-+/I-DescendsToQuotient x) y where R/I→R/I-isSet : R/I → isSet (R/I → R/I) R/I→R/I-isSet _ = isSetΠ (λ _ → squash/) +/I-comm : (x y : R/I) → x +/I y ≡ y +/I x +/I-comm = elimProp2 (λ _ _ → squash/ _ _) eq where eq : (x y : R) → [ x ] +/I [ y ] ≡ [ y ] +/I [ x ] eq x y i = [ +Comm x y i ] +/I-assoc : (x y z : R/I) → x +/I (y +/I z) ≡ (x +/I y) +/I z +/I-assoc = elimProp3 (λ _ _ _ → squash/ _ _) eq where eq : (x y z : R) → [ x ] +/I ([ y ] +/I [ z ]) ≡ ([ x ] +/I [ y ]) +/I [ z ] eq x y z i = [ +Assoc x y z i ] 0/I : R/I 0/I = [ 0r ] 1/I : R/I 1/I = [ 1r ] -/I : R/I → R/I -/I = elim (λ _ → squash/) (λ x' → [ - x' ]) eq where eq : (x y : R) → (x - y ∈ I) → [ - x ] ≡ [ - y ] eq x y x-y∈I = eq/ (- x) (- y) (subst (λ u → u ∈ I) eq' (isIdeal.-closed I-isIdeal x-y∈I)) where eq' = - (x + (- y)) ≡⟨ sym (-Dist _ _) ⟩ (- x) - (- y) ∎ +/I-rinv : (x : R/I) → x +/I (-/I x) ≡ 0/I +/I-rinv = elimProp (λ x → squash/ _ _) eq where eq : (x : R) → [ x ] +/I (-/I [ x ]) ≡ 0/I eq x i = [ +Rinv x i ] +/I-rid : (x : R/I) → x +/I 0/I ≡ x +/I-rid = elimProp (λ x → squash/ _ _) eq where eq : (x : R) → [ x ] +/I 0/I ≡ [ x ] eq x i = [ +Rid x i ] _·/I_ : R/I → R/I → R/I _·/I_ = elim (λ _ → isSetΠ (λ _ → squash/)) (λ x → left· x) eq' where eq : (x y y' : R) → (y - y' ∈ I) → [ x · y ] ≡ [ x · y' ] eq x y y' y-y'∈I = eq/ _ _ (subst (λ u → u ∈ I) (x · (y - y') ≡⟨ ·Rdist+ _ _ _ ⟩ ((x · y) + x · (- y')) ≡⟨ cong (λ u → (x · y) + u) (-DistR· x y') ⟩ (x · y) - (x · y') ∎) (isIdeal.·-closedLeft I-isIdeal x y-y'∈I)) left· : (x : R) → R/I → R/I left· x = elim (λ y → squash/) (λ y → [ x · y ]) (eq x) eq' : (x x' : R) → (x - x' ∈ I) → left· x ≡ left· x' eq' x x' x-x'∈I i y = elimProp (λ y → squash/ (left· x y) (left· x' y)) (λ y → eq′ y) y i where eq′ : (y : R) → left· x [ y ] ≡ left· x' [ y ] eq′ y = eq/ (x · y) (x' · y) (subst (λ u → u ∈ I) ((x - x') · y ≡⟨ ·Ldist+ x (- x') y ⟩ x · y + (- x') · y ≡⟨ cong (λ u → x · y + u) (-DistL· x' y) ⟩ x · y - x' · y ∎) (isIdeal.·-closedRight I-isIdeal y x-x'∈I)) -- more or less copy paste from '+/I' - this is preliminary anyway ·/I-assoc : (x y z : R/I) → x ·/I (y ·/I z) ≡ (x ·/I y) ·/I z ·/I-assoc = elimProp3 (λ _ _ _ → squash/ _ _) eq where eq : (x y z : R) → [ x ] ·/I ([ y ] ·/I [ z ]) ≡ ([ x ] ·/I [ y ]) ·/I [ z ] eq x y z i = [ ·Assoc x y z i ] ·/I-lid : (x : R/I) → 1/I ·/I x ≡ x ·/I-lid = elimProp (λ x → squash/ _ _) eq where eq : (x : R) → 1/I ·/I [ x ] ≡ [ x ] eq x i = [ ·Lid x i ] ·/I-rid : (x : R/I) → x ·/I 1/I ≡ x ·/I-rid = elimProp (λ x → squash/ _ _) eq where eq : (x : R) → [ x ] ·/I 1/I ≡ [ x ] eq x i = [ ·Rid x i ] /I-ldist : (x y z : R/I) → (x +/I y) ·/I z ≡ (x ·/I z) +/I (y ·/I z) /I-ldist = elimProp3 (λ _ _ _ → squash/ _ _) eq where eq : (x y z : R) → ([ x ] +/I [ y ]) ·/I [ z ] ≡ ([ x ] ·/I [ z ]) +/I ([ y ] ·/I [ z ]) eq x y z i = [ ·Ldist+ x y z i ] /I-rdist : (x y z : R/I) → x ·/I (y +/I z) ≡ (x ·/I y) +/I (x ·/I z) /I-rdist = elimProp3 (λ _ _ _ → squash/ _ _) eq where eq : (x y z : R) → [ x ] ·/I ([ y ] +/I [ z ]) ≡ ([ x ] ·/I [ y ]) +/I ([ x ] ·/I [ z ]) eq x y z i = [ ·Rdist+ x y z i ] asRing : Ring ℓ asRing = makeRing 0/I 1/I _+/I_ _·/I_ -/I isSetR/I +/I-assoc +/I-rid +/I-rinv +/I-comm ·/I-assoc ·/I-rid ·/I-lid /I-rdist /I-ldist _/_ : (R : Ring ℓ) → (I : IdealsIn R) → Ring ℓ R / (I , IisIdeal) = asRing R I IisIdeal [_]/I : {R : Ring ℓ} {I : IdealsIn R} → (a : ⟨ R ⟩) → ⟨ R / I ⟩ [ a ]/I = [ a ] module UniversalProperty (R : Ring ℓ) (I : IdealsIn R) where open RingStr ⦃...⦄ open RingTheory ⦃...⦄ Iₛ = fst I private instance _ = R _ = snd R module _ {S : Ring ℓ} (φ : RingHom R S) where open IsRingHom open RingHomTheory φ private instance _ = S _ = snd S f = fst φ module φ = IsRingHom (snd φ) inducedHom : Iₛ ⊆ kernel φ → RingHom (R / I) S fst (inducedHom Iₛ⊆kernel) = elim (λ _ → isSetRing S) f λ r₁ r₂ r₁-r₂∈I → equalByDifference (f r₁) (f r₂) (f r₁ - f r₂ ≡⟨ cong (λ u → f r₁ + u) (sym (φ.pres- _)) ⟩ f r₁ + f (- r₂) ≡⟨ sym (φ.pres+ _ _) ⟩ f (r₁ - r₂) ≡⟨ Iₛ⊆kernel (r₁ - r₂) r₁-r₂∈I ⟩ 0r ∎) pres0 (snd (inducedHom Iₛ⊆kernel)) = φ.pres0 pres1 (snd (inducedHom Iₛ⊆kernel)) = φ.pres1 pres+ (snd (inducedHom Iₛ⊆kernel)) = elimProp2 (λ _ _ → isSetRing S _ _) φ.pres+ pres· (snd (inducedHom Iₛ⊆kernel)) = elimProp2 (λ _ _ → isSetRing S _ _) φ.pres· pres- (snd (inducedHom Iₛ⊆kernel)) = elimProp (λ _ → isSetRing S _ _) φ.pres- solution : (p : Iₛ ⊆ kernel φ) → (x : ⟨ R ⟩) → inducedHom p $ [ x ] ≡ φ $ x solution p x = refl unique : (p : Iₛ ⊆ kernel φ) → (ψ : RingHom (R / I) S) → (ψIsSolution : (x : ⟨ R ⟩) → ψ $ [ x ] ≡ φ $ x) → (x : ⟨ R ⟩) → ψ $ [ x ] ≡ inducedHom p $ [ x ] unique p ψ ψIsSolution x = ψIsSolution x
36.367089
98
0.37893
cba6530c118a0c35d3931962b11b4bb485d87717
1,922
agda
Agda
Cubical/Data/Fin/Base.agda
limemloh/cubical
df4ef7edffd1c1deb3d4ff342c7178e9901c44f1
[ "MIT" ]
null
null
null
Cubical/Data/Fin/Base.agda
limemloh/cubical
df4ef7edffd1c1deb3d4ff342c7178e9901c44f1
[ "MIT" ]
null
null
null
Cubical/Data/Fin/Base.agda
limemloh/cubical
df4ef7edffd1c1deb3d4ff342c7178e9901c44f1
[ "MIT" ]
null
null
null
{-# OPTIONS --cubical --safe #-} module Cubical.Data.Fin.Base where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Function open import Cubical.Foundations.HLevels open import Cubical.Data.Empty open import Cubical.Data.Nat open import Cubical.Data.Nat.Order open import Cubical.Data.Sum open import Cubical.Relation.Nullary -- Finite types. -- -- Currently it is most convenient to define these as a subtype of the -- natural numbers, because indexed inductive definitions don't behave -- well with cubical Agda. This definition also has some more general -- attractive properties, of course, such as easy conversion back to -- ℕ. Fin : ℕ → Type₀ Fin n = Σ[ k ∈ ℕ ] k < n private variable ℓ : Level k : ℕ fzero : Fin (suc k) fzero = (0 , suc-≤-suc zero-≤) -- It is easy, using this representation, to take the successor of a -- number as a number in the next largest finite type. fsuc : Fin k → Fin (suc k) fsuc (k , l) = (suc k , suc-≤-suc l) -- Conversion back to ℕ is trivial... toℕ : Fin k → ℕ toℕ = fst -- ... and injective. toℕ-injective : ∀{fj fk : Fin k} → toℕ fj ≡ toℕ fk → fj ≡ fk toℕ-injective {fj = fj} {fk} = ΣProp≡ (λ _ → m≤n-isProp) -- A case analysis helper for induction. fsplit : ∀(fj : Fin (suc k)) → (fzero ≡ fj) ⊎ (Σ[ fk ∈ Fin k ] fsuc fk ≡ fj) fsplit (0 , k<sn) = inl (toℕ-injective refl) fsplit (suc k , k<sn) = inr ((k , pred-≤-pred k<sn) , toℕ-injective refl) -- Fin 0 is empty ¬Fin0 : ¬ Fin 0 ¬Fin0 (k , k<0) = ¬-<-zero k<0 -- The full inductive family eliminator for finite types. finduction : ∀(P : ∀{k} → Fin k → Type ℓ) → (∀{k} → P {suc k} fzero) → (∀{k} {fn : Fin k} → P fn → P (fsuc fn)) → {k : ℕ} → (fn : Fin k) → P fn finduction P fz fs {zero} = ⊥-elim ∘ ¬Fin0 finduction P fz fs {suc k} fj = case fsplit fj return (λ _ → P fj) of λ { (inl p) → subst P p fz ; (inr (fk , p)) → subst P p (fs (finduction P fz fs fk)) }
27.070423
73
0.641519
107e07e2e57ff79db94a5a6328ba00e0b3744f21
517
agda
Agda
agda-stdlib/src/Data/Product/N-ary/Properties.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
5
2020-10-07T12:07:53.000Z
2020-10-10T21:41:32.000Z
agda-stdlib/src/Data/Product/N-ary/Properties.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
null
null
null
agda-stdlib/src/Data/Product/N-ary/Properties.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
1
2021-11-04T06:54:45.000Z
2021-11-04T06:54:45.000Z
------------------------------------------------------------------------ -- The Agda standard library -- -- This module is DEPRECATED. Please use Data.Vec.Recursive.Properties -- instead. ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.Product.N-ary.Properties where {-# WARNING_ON_IMPORT "Data.Product.N-ary.Properties was deprecated in v1.1. Use Data.Vec.Recursive.Properties instead." #-} open import Data.Vec.Recursive.Properties public
28.722222
72
0.539652
0bb1ccb7e6126acc97946fb3fb28fd9f0b2e715a
14,084
agda
Agda
JamesSecondComposite.agda
guillaumebrunerie/JamesConstruction
89fbc29473d2d1ed1a45c3c0e56288cdcf77050b
[ "MIT" ]
5
2016-12-07T04:34:52.000Z
2018-11-16T22:10:16.000Z
JamesSecondComposite.agda
guillaumebrunerie/JamesConstruction
89fbc29473d2d1ed1a45c3c0e56288cdcf77050b
[ "MIT" ]
null
null
null
JamesSecondComposite.agda
guillaumebrunerie/JamesConstruction
89fbc29473d2d1ed1a45c3c0e56288cdcf77050b
[ "MIT" ]
null
null
null
{-# OPTIONS --without-K --rewriting #-} open import PathInduction open import Pushout module JamesSecondComposite {i} (A : Type i) (⋆A : A) where open import JamesTwoMaps A ⋆A public -- Second composite to-ε∞ : to ε∞ == εJ to-ε∞ = idp to-α∞-in∞ : (a : A) (n : ℕ) (x : J n) → to (α∞ a (in∞ n x)) == αJ a (inJ n x) to-α∞-in∞ a n x = inJS-α n a x to-α∞-push∞ : (a : A) (n : ℕ) (x : J n) → Square (ap to (ap (α∞ a) (push∞ n x))) (inJS-α n a x) idp (ap (αJ a) (ap to (push∞ n x))) to-α∞-push∞ = λ a n x → & coh (ap-shape-∙! to (push∞-β {in∞* = α∞-in∞ a} {push∞* = α∞-push∞ a} n x)) (to-push∞-S n (α n a x)) (ap-δJ (inJS-α n a x)) (∘-ap _ _ _) (inJSS-γ n a x) (ap-square (αJ a) (to-push∞ n x)) module Toα∞Push∞ where coh : Coh ({A : Type i} {a c : A} {q : a == c} {d : A} {r : a == d} {b : A} {s : b == d} {p : a == b} (p= : p == r ∙ ! s) {r' : a == d} (y= : r == r') {g : A} {w : d == g} {v : c == g} (sq : Square r' q w v) {e : A} {u : c == e} {s' : b == d} (s= : s == s') {t : b == e} (u= : Square s' t w (! u ∙ v)) {x : c == b} (x= : Square x idp t u) → Square p q idp x) coh = path-induction to-α∞ : (a : A) (x : J∞A) → to (α∞ a x) == αJ a (to x) to-α∞ a = J∞A-elim (to-α∞-in∞ a) (λ n x → ↓-='-from-square (ap-∘ to (α∞ a) (push∞ n x)) (ap-∘ (αJ a) to (push∞ n x)) (square-symmetry (to-α∞-push∞ a n x))) to-δ∞-in∞ : (n : ℕ) (x : J n) → Square (ap to (δ∞ (in∞ n x))) idp (to-α∞ ⋆A (in∞ n x)) (δJ (to (in∞ n x))) to-δ∞-in∞ = λ n x → & coh (∘-ap _ _ _) (ap-square to (δ∞-in∞-β n x)) (to-push∞ n x) (inJS-β n x) module Toδ∞In where coh : Coh ({A : Type i} {a b : A} {p : a == b} {c : A} {r r' : b == c} (r= : r == r') {s : a == c} (sq1 : Square p idp r s) {d : A} {t : c == d} {u : a == d} (sq2 : Square s idp t u) {rt : b == d} (rt= : Square r' rt t idp) → Square p idp rt u) coh = path-induction module _ (n : ℕ) (x : J n) where side1 : Square (ap to (push∞ (S n) (α n ⋆A x))) (inJS-α n ⋆A x) (ap (αJ ⋆A) (inJS-α n ⋆A x)) (δJ (αJ ⋆A (inJ n x))) side1 = to-push∞-S n (α n ⋆A x) |∙ idp |∙ ap-δJ (inJS-α n ⋆A x) side2 : Square (ap to (ap (in∞ (S n)) (β n x))) (inJS-α n ⋆A x) (inJS-ι n x) idp side2 = idp |∙ ∘-ap to (in∞ (S n)) (β n x) |∙ inJS-β n x side3 : Square (ap to (ap (in∞ (S (S n))) (ap inr (β n x)))) (ap (αJ ⋆A) (inJS-α n ⋆A x)) (ap (αJ ⋆A) (inJS-ι n x)) (ap (αJ ⋆A) idp) side3 = idp |∙ (∘-ap to (in∞ (S (S n))) _ ∙ ap-inJSS-ι n (β n x)) |∙ ap-square (αJ ⋆A) (inJS-β n x) side4 : Square (ap to (push∞ (S n) (ι n x))) (inJS-ι n x) (ap (λ z → αJ ⋆A z) (inJS-ι n x)) (δJ (αJ ⋆A (inJ n x))) side4 = to-push∞-S n (ι n x) |∙ idp |∙ ap-δJ (inJS-ι n x) side5 : Square (ap to (ap (in∞ (S (S n))) (γ n ⋆A x))) (ap (αJ ⋆A) (inJS-ι n x)) (ap (αJ ⋆A) (inJS-α n ⋆A x)) (γJ ⋆A (inJ n x)) side5 = ∘-ap to (in∞ (S (S n))) (γ n ⋆A x) |∙ inJSS-γ n ⋆A x side6 : Square (ap to (ap (in∞ (S (S n))) (β (S n) (ι n x)))) (ap (αJ ⋆A) (inJS-ι n x)) (ap (αJ ⋆A) (inJS-ι n x)) idp side6 = ∘-ap to (in∞ (S (S n))) _ |∙ inJS-βS n (ι n x) |∙ vid-square side7 : Square (ap to (ap (α∞ ⋆A) (push∞ n x))) (inJS-α n ⋆A x) (ap (αJ ⋆A) (inJS-ι n x)) (ap (αJ ⋆A) (δJ (inJ n x))) side7 = adapt-square (to-α∞-push∞ ⋆A n x ∙□ ap-square (αJ ⋆A) (to-push∞ n x)) ∙idp idp∙ to-push∞-βn : Cube (ap-square to (natural-square (push∞ (S n)) (β n x) idp (ap-∘ (in∞ (S (S n))) inr (β n x)))) hid-square side1 side2 side3 side4 to-push∞-βn = & (ap-square-natural-square to) (β n x) (push∞ (S n)) ∙idp idp -∙³ & natural-square-homotopy (to-push∞-S n) (β n x) |∙³ & (natural-square-∘ (β n x) (inJS n)) δJ idp idp -∙³ & natural-square= δJ idp (coh1 to (in∞ (S n)) (β n x)) (coh2 to (in∞ (S (S n))) inr (β n x) (ap-∘ (αJ ⋆A) (inJS n) (β n x))) |∙³ & natural-cube2 δJ (inJS-β n x) (ap-square-idf (inJS-β n x)) (hid-flatcube _) where coh1 : {A B C : Type i} (g : B → C) (f : A → B) {x y : A} (p : x == y) → Square idp (∘-ap (λ z → z) (g ∘ f) p ∙ ap-∘ g f p) (ap-idf _) (∘-ap g f p) coh1 g f idp = ids coh2 : {A B C D : Type i} (h : C → D) (g : B → C) (f : A → B) {x y : A} (p : x == y) {z : h (g (f x)) == h (g (f y))} (q : ap (h ∘ g ∘ f) p == z) → Square idp (! q ∙ ap-∘ h (g ∘ f) p ∙ ap (ap h) (ap-∘ g f p)) idp (∘-ap h g (ap f p) ∙ ∘-ap (h ∘ g) f p ∙ q) coh2 h g f idp idp = ids to-in∞-η : Cube (ap-square to (ap-square (in∞ (S (S n))) (η n x))) (horiz-degen-square (ηJ (inJ n x))) side5 vid-square side3 side6 to-in∞-η = adapt-cube-idp (∘-ap-square to (in∞ (S (S n))) (η n x) |∙³ inJSS-η n x) idp (& coh1) (& coh2) idp where coh1 : Coh ({A : Type i} {a b : A} {p : a == b} → idp |∙ vid-square {p = p} == vid-square) coh1 = path-induction coh2 : Coh ({A : Type i} {a b c d : A} {p : a == b} {q : a == c} {r : b == d} {s : c == d} {sq : Square p q r s} {p' : a == b} {p= : p' == p} {p'' : a == b} {p=' : p'' == p'} → p=' |∙ p= |∙ sq == idp |∙ (p=' ∙ p=) |∙ sq) coh2 = path-induction coh-last-one : Coh ({A : Type i} {a b : A} {p : a == b} {c : A} {q : a == c} → p == q ∙ ! (! p ∙ q)) coh-last-one = path-induction last-one : Cube (horiz-degen-square (ap-shape-∙! to (push∞-β {in∞* = α∞-in∞ ⋆A} {push∞* = α∞-push∞ ⋆A} n x))) (horiz-degen-square (& coh-last-one)) side7 vid-square vid-square (vcomp! side1 side5) last-one = & coh where coh : Coh ({A : Type i} {a : A} {c : A} {q : a == c} {d : A} {r : a == d} {b : A} {s : b == d} {p : a == b} {p= : p == r ∙ ! s} {r' : a == d} {y= : r == r'} {g : A} {w : d == g} {v : c == g} {sq : Square r' q w v} {e : A} {u : c == e} {s' : b == d} {s= : s == s'} {t : b == e} {u= : Square s' t w (! u ∙ v)} {x : c == b} {x= : Square x idp t u} → Cube (horiz-degen-square p=) (horiz-degen-square (& coh-last-one)) (adapt-square (& Toα∞Push∞.coh p= y= sq s= u= x= ∙□ x=) ∙idp idp∙) vid-square vid-square (vcomp! (y= |∙ idp |∙ sq) (s= |∙ u=))) coh = path-induction δ∞Push∞Coh-coh : Coh ({A : Type i} {a b : A} {p : a == b} {d : A} {s : d == b} {c : A} {r : b == c} {f : A} {u : f == c} {e : A} {t : e == c} {w : f == e} {eta : Square w idp t u} {v : d == e} {nat : Square v s t r} {vw : d == f} {vw-eq : vw == v ∙ ! w} {a' : _} {a= : a == a'} {b' : _} {b= : b == b'} {p' : _} {p= : Square p a= b= p'} {d' : _} {d= : d == d'} {s' : _} {s= : Square s d= b= s'} {c' : _} {c= : c == c'} {r' : _} {r= : Square r b= c= r'} {f' : _} {f= : f == f'} {u' : _} {u= : Square u f= c= u'} {e' : _} {e= : e == e'} {t' : _} {t= : Square t e= c= t'} {w' : _} {w= : Square w f= e= w'} {eta' : _} (eta= : Cube eta eta' w= vid-square t= u=) {v' : _} {v= : Square v d= e= v'} {nat' : _} (nat= : Cube nat nat' v= s= t= r=) {vw' : _} {vw= : Square vw d= f= vw'} {vw-eq' : _} (vw-eq= : Cube (horiz-degen-square vw-eq) (horiz-degen-square vw-eq') vw= vid-square vid-square (vcomp! v= w=)) → Cube (& δ∞Push∞.coh p eta nat vw-eq) (& δ∞Push∞.coh p' eta' nat' vw-eq') (vcomp! p= s=) p= vw= (vcomp! r= u=)) δ∞Push∞Coh-coh = path-induction piece1 : FlatCube (ap-square to (& δ∞Push∞.coh (push∞ n x) (ap-square (in∞ (S (S n))) (η n x)) (natural-square (push∞ (S n)) (β n x) idp (ap-∘ _ _ _)) (push∞-β {in∞* = α∞-in∞ ⋆A} {push∞* = α∞-push∞ ⋆A} n x))) (& δ∞Push∞.coh (ap to (push∞ n x)) (ap-square to (ap-square (in∞ (S (S n))) (η n x))) (ap-square to (natural-square (push∞ (S n)) (β n x) idp (ap-∘ (in∞ (S (S n))) (ι (S n)) (β n x)))) (ap-shape-∙! to (push∞-β {in∞* = α∞-in∞ ⋆A} {push∞* = α∞-push∞ ⋆A} n x))) (ap-∙! _ _ _) idp idp (ap-∙! _ _ _) piece1 = & (δ∞Push∞.ap-coh to) {b = in∞ (S n) (ι n x)} {d = in∞ (S n) (α n ⋆A x)} piece2 : Cube (& δ∞Push∞.coh (ap to (push∞ n x)) (ap-square to (ap-square (in∞ (S (S n))) (η n x))) (ap-square to (natural-square (push∞ (S n)) (β n x) idp (ap-∘ (in∞ (S (S n))) inr (β n x)))) (ap-shape-∙! to (push∞-β {in∞* = α∞-in∞ ⋆A} {push∞* = α∞-push∞ ⋆A} n x))) (& δ∞Push∞.coh (δJ (inJ n x)) (horiz-degen-square (ηJ (inJ n x))) hid-square (& coh-last-one)) (vcomp! (to-push∞ n x) side2) (to-push∞ n x) side7 (vcomp! side4 side6) piece2 = & δ∞Push∞Coh-coh to-in∞-η to-push∞-βn last-one piece3 : FlatCube (& δ∞Push∞.coh (δJ (inJ n x)) (horiz-degen-square (ηJ (inJ n x))) hid-square (& coh-last-one)) (ap-δJ (δJ (inJ n x))) ∙idp idp idp ∙idp piece3 = & coh where coh : Coh ({A : Type i} {a b : A} {p : a == b} {c : A} {q q' : b == c} {sq : Square p p q q'} → FlatCube (& δ∞Push∞.coh p (horiz-degen-square (& (ηIfy.coh αJ δJ) sq)) hid-square (& coh-last-one)) sq ∙idp idp idp ∙idp) coh = path-induction piece4 : Cube (ap-δJ (ap to (push∞ n x))) (ap-δJ (δJ (inJ n x))) hid-square (to-push∞ n x) (ap-square (αJ ⋆A) (to-push∞ n x)) (ap-δJ (inJS-ι n x)) piece4 = & natural-cube2 δJ (to-push∞ n x) (ap-square-idf _) (hid-flatcube _) to-δ∞-push∞ : Cube (ap-square to (natural-square δ∞ (push∞ n x) (ap-idf _) idp)) (ap-δJ (ap to (push∞ n x))) (to-δ∞-in∞ n x) hid-square (to-α∞-push∞ ⋆A n x) (to-δ∞-in∞ (S n) (ι n x)) to-δ∞-push∞ = adapt-cube (ap (ap-square to) (natural-square-β δ∞ (push∞ n x) (push∞-βd n x)) -∙³ piece1 |∙³ piece2 ∙³x piece3 |∙³ !³ piece4) idp ∙idp !-inv-r !-inv-r (& coh1 (& (coh-flat to) {b = in∞ (S n) (α n ⋆A x)})) (& coh2) (& coh3) (& coh4 (& (coh-flat to) {a = in∞ (S n) (ι n x)})) where flat : Coh ({A : Type i} {a c : A} {s : a == c} {b : A} {r : b == c} {p : a == b} (sq : Square p idp r s) → p == s ∙ ! r) flat = path-induction coh-flat : {A B : Type i} (f : A → B) → Coh ({a c : A} {s : a == c} {b : A} {r : b == c} → & flat (ap-square f (& δ∞Inβ.coh)) == ap-∙! f s r) coh-flat f = path-induction coh1 : Coh ({A : Type i} {a b : A} {p : a == b} {c : A} {r r' : b == c} {r= : r == r'} {s : a == c} {sq1 : Square p idp r s} {d : A} {t : c == d} {u : a == d} {sq2 : Square s idp t u} {rt : b == d} {sq3 : Square r' rt t idp} {p= : p == s ∙ ! r} (p== : & flat sq1 == p=) → adapt-square (p= |∙ vcomp! sq2 (idp |∙ r= |∙ sq3) ∙□ ∙idp |∙ !² hid-square) idp ∙idp == & Toδ∞In.coh r= sq1 sq2 sq3) coh1 = path-induction coh2 : Coh ({A : Type i} {a b : A} {p : a == b} {c : A} {r : b == c} {s : a == c} {sq : Square p idp r s} → adapt-square (idp |∙ sq ∙□ idp |∙ !² sq) idp !-inv-r == hid-square) coh2 = path-induction coh3 : Coh ({A : Type i} {a b : A} {p : a == b} {c : A} {q : a == c} {s : c == b} {sq1 : Square p q idp s} {d : A} {t : b == d} {u : c == d} {sq2 : Square s idp t u} → adapt-square (idp |∙ adapt-square (sq1 ∙□ sq2) ∙idp idp∙ ∙□ idp |∙ !² sq2) ∙idp !-inv-r == sq1) coh3 = path-induction coh4 : Coh ({A : Type i} {a b c d : A} {p : a == b} {q : a == c} {r : b == d} {s : c == d} {sq : Square p q r s} {p' : a == b} {p=□ : Square p' idp idp p} {t : b == b} {t=□ : t == idp} {t' : b == b} {t=' : t' == t} {pt' : a == b} {pt=2 : Square pt' idp t' p'} {pt= : pt' == p' ∙ ! t'} (pt== : & flat pt=2 == pt=) → adapt-square (pt= |∙ vcomp! (horiz-degen-path p=□ |∙ idp |∙ sq) (t=' |∙ t=□ |∙ vid-square) ∙□ ∙idp |∙ !² sq) !-inv-r !-inv-r == & Toδ∞In.coh t=' pt=2 p=□ (horiz-degen-square t=□)) coh4 = path-induction natural-square-idp-symm : {A B : Type i} {f : A → B} {x y : A} {p : x == y} → natural-square (λ a → idp {a = f a}) p idp idp == square-symmetry hid-square natural-square-idp-symm {p = idp} = idp to-δ∞ : (x : J∞A) → Square (ap to (δ∞ x)) idp (to-α∞ ⋆A x) (δJ (to x)) to-δ∞ = J∞A-elim to-δ∞-in∞ (λ n x → cube-to-↓-path idp (ap-∘ _ _ _) idp (ap-∘ _ _ _) (adapt-cube-idp (cube-rotate (to-δ∞-push∞ n x)) (& (ap-square-natural-square to) (push∞ n x) δ∞ coh ∙idp) (! natural-square-idp-symm) (! (natural-square-β (to-α∞ ⋆A) (push∞ n x) (push∞-βd n x))) (! (& (natural-square-∘ (push∞ n x) to) δJ coh2 (!-inv-l))))) where coh : {A B : Type i} {f : A → B} {x y : A} {p : x == y} → ap-∘ f (λ z → z) p ∙ ap (ap f) (ap-idf p) == idp coh {p = idp} = idp coh2 : {A B : Type i} {f : A → B} {x y : A} {p : x == y} → ∘-ap (λ z → z) f p ∙ idp == ap-idf (ap f p) coh2 {p = idp} = idp to-from : (x : JA) → to (from x) == x to-from = JA-elim to-ε∞ (λ a x y → to-α∞ a (from x) ∙ ap (αJ a) y) (λ x y → ↓-='-from-square (ap-∘ to from (δJ x) ∙ ap (ap to) (δJ-β x)) (ap-idf (δJ x)) (square-symmetry (adapt-square (to-δ∞ (from x) ∙□ ap-δJ y) idp∙ idp)))
54.378378
211
0.403295
0ebb5769b22605b000fb8613c7dd9932bb11c827
546
agda
Agda
Monads/MonadMorphs.agda
jmchapman/Relative-Monads
74707d3538bf494f4bd30263d2f5515a84733865
[ "MIT" ]
21
2015-07-30T01:25:12.000Z
2021-02-13T18:02:18.000Z
Monads/MonadMorphs.agda
jmchapman/Relative-Monads
74707d3538bf494f4bd30263d2f5515a84733865
[ "MIT" ]
3
2019-01-13T13:12:33.000Z
2019-05-29T09:50:26.000Z
Monads/MonadMorphs.agda
jmchapman/Relative-Monads
74707d3538bf494f4bd30263d2f5515a84733865
[ "MIT" ]
1
2019-11-04T21:33:13.000Z
2019-11-04T21:33:13.000Z
module Monads.MonadMorphs where open import Library open import Functors open import Categories open import Monads open Fun open Monad record MonadMorph {a b}{C : Cat {a}{b}}(M M' : Monad C) : Set (a ⊔ b) where constructor monadmorph open Cat C field morph : ∀ {X} → Hom (T M X) (T M' X) lawη : ∀ {X} → comp morph (η M {X}) ≅ η M' {X} lawbind : ∀ {X Y}{k : Hom X (T M Y)} → comp (morph {Y}) (bind M k) ≅ comp (bind M' (comp (morph {Y}) k)) (morph {X})
26
75
0.521978
0b941fcf7f494f2277f5c7621d8d6913cb9fd426
1,211
agda
Agda
archive/agda-2/Oscar/Data/Vec/Properties.agda
m0davis/oscar
52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb
[ "RSA-MD" ]
null
null
null
archive/agda-2/Oscar/Data/Vec/Properties.agda
m0davis/oscar
52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb
[ "RSA-MD" ]
1
2019-04-29T00:35:04.000Z
2019-05-11T23:33:04.000Z
archive/agda-2/Oscar/Data/Vec/Properties.agda
m0davis/oscar
52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb
[ "RSA-MD" ]
null
null
null
module Oscar.Data.Vec.Properties where open import Oscar.Data.Vec open import Data.Vec.Properties public open import Data.Nat open import Data.Product renaming (map to mapP) open import Relation.Binary.PropositionalEquality open import Data.Fin map-∈ : ∀ {a b} {A : Set a} {B : Set b} {y : B} {f : A → B} {n} {xs : Vec A n} → y ∈ map f xs → ∃ λ x → f x ≡ y map-∈ {xs = []} () map-∈ {xs = x ∷ xs} here = x , refl map-∈ {xs = x ∷ xs} (there y∈mapfxs) = map-∈ y∈mapfxs ∈-map₂ : ∀ {a b} {A : Set a} {B : Set b} {m n : ℕ} → ∀ {c} {F : Set c} (f : A → B → F) {xs : Vec A m} {ys : Vec B n} {x y} → x ∈ xs → y ∈ ys → (f x y) ∈ map₂ f xs ys ∈-map₂ f {xs = x ∷ xs} {ys} here y∈ys = ∈-++ₗ (∈-map (f x) y∈ys) ∈-map₂ f {xs = x ∷ xs} {ys} (there x∈xs) y∈ys = ∈-++ᵣ (map (f x) ys) (∈-map₂ f x∈xs y∈ys) lookup-delete-thin : ∀ {a n} {A : Set a} (x : Fin (suc n)) (y : Fin n) (v : Vec A (suc n)) → lookup y (delete x v) ≡ lookup (thin x y) v lookup-delete-thin zero zero (_ ∷ _) = refl lookup-delete-thin zero (suc _) (_ ∷ _) = refl lookup-delete-thin (suc _) zero (_ ∷ _) = refl lookup-delete-thin (suc x) (suc y) (_ ∷ v) = lookup-delete-thin x y v
36.69697
111
0.526837
2062ea9432d568e12b3e55ba10995a1d3e529eee
415
agda
Agda
test/Succeed/Issue3640.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/Issue3640.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/Issue3640.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
-- Andreas, 2019-03-25, issue #3640, reported by gallais {-# OPTIONS --sized-types #-} -- {-# OPTIONS -v tc.polarity:40 #-} module _ where open import Agda.Builtin.Size module M (_ : Set) where data U : Size → Set where node : ∀ {i} → U (↑ i) module L (A B : Set) where open M A -- WAS: crash because of number of parameters in size-index checki -- of L.U was wrongly calculated. -- Should succeed.
18.863636
66
0.643373
50d81505f942f8d033657f1f1f5fdc6aebd78c4e
366
agda
Agda
test/interaction/Issue535.agda
pthariensflame/agda
222c4c64b2ccf8e0fc2498492731c15e8fef32d4
[ "BSD-3-Clause" ]
3
2015-03-28T14:51:03.000Z
2015-12-07T20:14:00.000Z
test/interaction/Issue535.agda
Blaisorblade/Agda
802a28aa8374f15fe9d011ceb80317fdb1ec0949
[ "BSD-3-Clause" ]
null
null
null
test/interaction/Issue535.agda
Blaisorblade/Agda
802a28aa8374f15fe9d011ceb80317fdb1ec0949
[ "BSD-3-Clause" ]
1
2019-03-05T20:02:38.000Z
2019-03-05T20:02:38.000Z
module Issue535 where data Nat : Set where zero : Nat suc : Nat → Nat data Vec A : Nat → Set where [] : Vec A zero _∷_ : ∀ {n} → A → Vec A n → Vec A (suc n) replicate : ∀ {A n} → A → Vec A n replicate {n = n} x = {!n!} replicate′ : ∀ {n A} → A → Vec A n replicate′ {n} x = {!n!} extlam : Nat → {n m : Nat} → Vec Nat n extlam = λ { x {m = m} → {!m!} }
18.3
43
0.505464
10377696692f89008752fa02c3aff712c836de87
7,992
agda
Agda
Cubical/Functions/FunExtEquiv.agda
Edlyr/cubical
5de11df25b79ee49d5c084fbbe6dfc66e4147a2e
[ "MIT" ]
null
null
null
Cubical/Functions/FunExtEquiv.agda
Edlyr/cubical
5de11df25b79ee49d5c084fbbe6dfc66e4147a2e
[ "MIT" ]
null
null
null
Cubical/Functions/FunExtEquiv.agda
Edlyr/cubical
5de11df25b79ee49d5c084fbbe6dfc66e4147a2e
[ "MIT" ]
null
null
null
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Functions.FunExtEquiv where open import Cubical.Foundations.Prelude open import Cubical.Foundations.CartesianKanOps open import Cubical.Foundations.Equiv open import Cubical.Foundations.Function open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Univalence open import Cubical.Data.Vec open import Cubical.Data.Nat open import Cubical.Reflection.StrictEquiv private variable ℓ ℓ₁ ℓ₂ ℓ₃ : Level -- Function extensionality is an equivalence module _ {A : Type ℓ} {B : A → I → Type ℓ₁} {f : (x : A) → B x i0} {g : (x : A) → B x i1} where funExtEquiv : (∀ x → PathP (B x) (f x) (g x)) ≃ PathP (λ i → ∀ x → B x i) f g unquoteDef funExtEquiv = defStrictEquiv funExtEquiv funExt funExt⁻ funExtPath : (∀ x → PathP (B x) (f x) (g x)) ≡ PathP (λ i → ∀ x → B x i) f g funExtPath = ua funExtEquiv funExtIso : Iso (∀ x → PathP (B x) (f x) (g x)) (PathP (λ i → ∀ x → B x i) f g) funExtIso = iso funExt funExt⁻ (λ x → refl {x = x}) (λ x → refl {x = x}) -- Function extensionality for binary functions funExt₂ : {A : Type ℓ} {B : A → Type ℓ₁} {C : (x : A) → B x → I → Type ℓ₂} {f : (x : A) → (y : B x) → C x y i0} {g : (x : A) → (y : B x) → C x y i1} → ((x : A) (y : B x) → PathP (C x y) (f x y) (g x y)) → PathP (λ i → ∀ x y → C x y i) f g funExt₂ p i x y = p x y i -- Function extensionality for binary functions is an equivalence module _ {A : Type ℓ} {B : A → Type ℓ₁} {C : (x : A) → B x → I → Type ℓ₂} {f : (x : A) → (y : B x) → C x y i0} {g : (x : A) → (y : B x) → C x y i1} where private appl₂ : PathP (λ i → ∀ x y → C x y i) f g → ∀ x y → PathP (C x y) (f x y) (g x y) appl₂ eq x y i = eq i x y funExt₂Equiv : (∀ x y → PathP (C x y) (f x y) (g x y)) ≃ (PathP (λ i → ∀ x y → C x y i) f g) unquoteDef funExt₂Equiv = defStrictEquiv funExt₂Equiv funExt₂ appl₂ funExt₂Path : (∀ x y → PathP (C x y) (f x y) (g x y)) ≡ (PathP (λ i → ∀ x y → C x y i) f g) funExt₂Path = ua funExt₂Equiv -- Function extensionality for ternary functions funExt₃ : {A : Type ℓ} {B : A → Type ℓ₁} {C : (x : A) → B x → Type ℓ₂} {D : (x : A) → (y : B x) → C x y → I → Type ℓ₃} {f : (x : A) → (y : B x) → (z : C x y) → D x y z i0} {g : (x : A) → (y : B x) → (z : C x y) → D x y z i1} → ((x : A) (y : B x) (z : C x y) → PathP (D x y z) (f x y z) (g x y z)) → PathP (λ i → ∀ x y z → D x y z i) f g funExt₃ p i x y z = p x y z i -- Function extensionality for ternary functions is an equivalence module _ {A : Type ℓ} {B : A → Type ℓ₁} {C : (x : A) → B x → Type ℓ₂} {D : (x : A) → (y : B x) → C x y → I → Type ℓ₃} {f : (x : A) → (y : B x) → (z : C x y) → D x y z i0} {g : (x : A) → (y : B x) → (z : C x y) → D x y z i1} where private appl₃ : PathP (λ i → ∀ x y z → D x y z i) f g → ∀ x y z → PathP (D x y z) (f x y z) (g x y z) appl₃ eq x y z i = eq i x y z funExt₃Equiv : (∀ x y z → PathP (D x y z) (f x y z) (g x y z)) ≃ (PathP (λ i → ∀ x y z → D x y z i) f g) unquoteDef funExt₃Equiv = defStrictEquiv funExt₃Equiv funExt₃ appl₃ funExt₃Path : (∀ x y z → PathP (D x y z) (f x y z) (g x y z)) ≡ (PathP (λ i → ∀ x y z → D x y z i) f g) funExt₃Path = ua funExt₃Equiv -- n-ary non-dependent funext nAryFunExt : {X : Type ℓ} {Y : I → Type ℓ₁} (n : ℕ) (fX : nAryOp n X (Y i0)) (fY : nAryOp n X (Y i1)) → ((xs : Vec X n) → PathP Y (fX $ⁿ xs) (fY $ⁿ map (λ x → x) xs)) → PathP (λ i → nAryOp n X (Y i)) fX fY nAryFunExt zero fX fY p = p [] nAryFunExt (suc n) fX fY p i x = nAryFunExt n (fX x) (fY x) (λ xs → p (x ∷ xs)) i -- n-ary funext⁻ nAryFunExt⁻ : (n : ℕ) {X : Type ℓ} {Y : I → Type ℓ₁} (fX : nAryOp n X (Y i0)) (fY : nAryOp n X (Y i1)) → PathP (λ i → nAryOp n X (Y i)) fX fY → ((xs : Vec X n) → PathP Y (fX $ⁿ xs) (fY $ⁿ map (λ x → x) xs)) nAryFunExt⁻ zero fX fY p [] = p nAryFunExt⁻ (suc n) fX fY p (x ∷ xs) = nAryFunExt⁻ n (fX x) (fY x) (λ i → p i x) xs nAryFunExtEquiv : (n : ℕ) {X : Type ℓ} {Y : I → Type ℓ₁} (fX : nAryOp n X (Y i0)) (fY : nAryOp n X (Y i1)) → ((xs : Vec X n) → PathP Y (fX $ⁿ xs) (fY $ⁿ map (λ x → x) xs)) ≃ PathP (λ i → nAryOp n X (Y i)) fX fY nAryFunExtEquiv n {X} {Y} fX fY = isoToEquiv (iso (nAryFunExt n fX fY) (nAryFunExt⁻ n fX fY) (linv n fX fY) (rinv n fX fY)) where linv : (n : ℕ) (fX : nAryOp n X (Y i0)) (fY : nAryOp n X (Y i1)) (p : PathP (λ i → nAryOp n X (Y i)) fX fY) → nAryFunExt n fX fY (nAryFunExt⁻ n fX fY p) ≡ p linv zero fX fY p = refl linv (suc n) fX fY p i j x = linv n (fX x) (fY x) (λ k → p k x) i j rinv : (n : ℕ) (fX : nAryOp n X (Y i0)) (fY : nAryOp n X (Y i1)) (p : (xs : Vec X n) → PathP Y (fX $ⁿ xs) (fY $ⁿ map (λ x → x) xs)) → nAryFunExt⁻ n fX fY (nAryFunExt n fX fY p) ≡ p rinv zero fX fY p i [] = p [] rinv (suc n) fX fY p i (x ∷ xs) = rinv n (fX x) (fY x) (λ ys i → p (x ∷ ys) i) i xs -- Funext when the domain also depends on the interval funExtDep : {A : I → Type ℓ} {B : (i : I) → A i → Type ℓ₁} {f : (x : A i0) → B i0 x} {g : (x : A i1) → B i1 x} → ({x₀ : A i0} {x₁ : A i1} (p : PathP A x₀ x₁) → PathP (λ i → B i (p i)) (f x₀) (g x₁)) → PathP (λ i → (x : A i) → B i x) f g funExtDep {A = A} {B} {f} {g} h i x = comp (λ k → B i (coei→i A i x k)) (λ k → λ { (i = i0) → f (coei→i A i0 x k) ; (i = i1) → g (coei→i A i1 x k) }) (h (λ j → coei→j A i j x) i) funExtDep⁻ : {A : I → Type ℓ} {B : (i : I) → A i → Type ℓ₁} {f : (x : A i0) → B i0 x} {g : (x : A i1) → B i1 x} → PathP (λ i → (x : A i) → B i x) f g → ({x₀ : A i0} {x₁ : A i1} (p : PathP A x₀ x₁) → PathP (λ i → B i (p i)) (f x₀) (g x₁)) funExtDep⁻ q p i = q i (p i) funExtDepEquiv : {A : I → Type ℓ} {B : (i : I) → A i → Type ℓ₁} {f : (x : A i0) → B i0 x} {g : (x : A i1) → B i1 x} → ({x₀ : A i0} {x₁ : A i1} (p : PathP A x₀ x₁) → PathP (λ i → B i (p i)) (f x₀) (g x₁)) ≃ PathP (λ i → (x : A i) → B i x) f g funExtDepEquiv {A = A} {B} {f} {g} = isoToEquiv isom where open Iso isom : Iso _ _ isom .fun = funExtDep isom .inv = funExtDep⁻ isom .rightInv q m i x = comp (λ k → B i (coei→i A i x (k ∨ m))) (λ k → λ { (i = i0) → f (coei→i A i0 x (k ∨ m)) ; (i = i1) → g (coei→i A i1 x (k ∨ m)) ; (m = i1) → q i x }) (q i (coei→i A i x m)) isom .leftInv h m p i = comp (λ k → B i (lemi→i m k)) (λ k → λ { (i = i0) → f (lemi→i m k) ; (i = i1) → g (lemi→i m k) ; (m = i1) → h p i }) (h (λ j → lemi→j j m) i) where lemi→j : ∀ j → coei→j A i j (p i) ≡ p j lemi→j j = coei→j (λ k → coei→j A i k (p i) ≡ p k) i j (coei→i A i (p i)) lemi→i : PathP (λ m → lemi→j i m ≡ p i) (coei→i A i (p i)) refl lemi→i = sym (coei→i (λ k → coei→j A i k (p i) ≡ p k) i (coei→i A i (p i))) ◁ λ m k → lemi→j i (m ∨ k) heteroHomotopy≃Homotopy : {A : I → Type ℓ} {B : (i : I) → Type ℓ₁} {f : A i0 → B i0} {g : A i1 → B i1} → ({x₀ : A i0} {x₁ : A i1} → PathP A x₀ x₁ → PathP B (f x₀) (g x₁)) ≃ ((x₀ : A i0) → PathP B (f x₀) (g (transport (λ i → A i) x₀))) heteroHomotopy≃Homotopy {A = A} {B} {f} {g} = isoToEquiv isom where open Iso isom : Iso _ _ isom .fun h x₀ = h (isContrSinglP A x₀ .fst .snd) isom .inv k {x₀} {x₁} p = subst (λ fib → PathP B (f x₀) (g (fib .fst))) (isContrSinglP A x₀ .snd (x₁ , p)) (k x₀) isom .rightInv k = funExt λ x₀ → cong (λ α → subst (λ fib → PathP B (f x₀) (g (fib .fst))) α (k x₀)) (isProp→isSet isPropSinglP (isContrSinglP A x₀ .fst) _ (isContrSinglP A x₀ .snd (isContrSinglP A x₀ .fst)) refl) ∙ transportRefl (k x₀) isom .leftInv h j {x₀} {x₁} p = transp (λ i → PathP B (f x₀) (g (isContrSinglP A x₀ .snd (x₁ , p) (i ∨ j) .fst))) j (h (isContrSinglP A x₀ .snd (x₁ , p) j .snd))
41.409326
106
0.49537
18508e4172c1b1c83a8e65f05c70c783c69c8d90
377
agda
Agda
test/succeed/Issue348.agda
asr/agda-kanso
aa10ae6a29dc79964fe9dec2de07b9df28b61ed5
[ "MIT" ]
1
2018-10-10T17:08:44.000Z
2018-10-10T17:08:44.000Z
test/succeed/Issue348.agda
np/agda-git-experiment
20596e9dd9867166a64470dd24ea68925ff380ce
[ "MIT" ]
null
null
null
test/succeed/Issue348.agda
np/agda-git-experiment
20596e9dd9867166a64470dd24ea68925ff380ce
[ "MIT" ]
null
null
null
module Issue348 where import Common.Irrelevance data _==_ {A : Set1}(a : A) : A -> Set where refl : a == a record R : Set1 where constructor mkR field .fromR : Set reflR : (r : R) -> r == r reflR r = refl {a = _} -- issue: unsolved metavars resolved 2010-10-15 by making eta-expansion -- more lazy (do not eta expand all meta variable listeners, see MetaVars.hs
23.5625
76
0.66313
fbc6248e11a68734ff420525f97f46d4dd1e9679
5,042
agda
Agda
homotopy/SuspAdjointLoop.agda
danbornside/HoTT-Agda
1695a7f3dc60177457855ae846bbd86fcd96983e
[ "MIT" ]
null
null
null
homotopy/SuspAdjointLoop.agda
danbornside/HoTT-Agda
1695a7f3dc60177457855ae846bbd86fcd96983e
[ "MIT" ]
null
null
null
homotopy/SuspAdjointLoop.agda
danbornside/HoTT-Agda
1695a7f3dc60177457855ae846bbd86fcd96983e
[ "MIT" ]
null
null
null
{-# OPTIONS --without-K #-} open import HoTT module homotopy.SuspAdjointLoop where module SuspAdjointLoop {i j} (X : Ptd i) (Y : Ptd j) where private A = fst X; a₀ = snd X B = fst Y; b₀ = snd Y R : {b : B} → Σ (Suspension A → B) (λ h → h (north A) == b) → Σ (A → (b == b)) (λ k → k a₀ == idp) R (h , idp) = (λ a → ap h (merid A a ∙ ! (merid A a₀))) , ap (ap h) (!-inv-r (merid A a₀)) L : {b : B} → Σ (A → (b == b)) (λ k → k a₀ == idp) → Σ (Suspension A → B) (λ h → h (north A) == b) L {b} (k , _) = (SuspensionRec.f A b b k) , idp {- Show that R ∘ L ∼ idf -} R-L : {b : B} → ∀ K → R {b} (L K) == K R-L {b} (k , kpt) = ⊙λ= R-L-fst R-L-snd where R-L-fst : (a : A) → ap (SuspensionRec.f A b b k) (merid A a ∙ ! (merid A a₀)) == k a R-L-fst a = ap-∙ (SuspensionRec.f A b b k) (merid A a) (! (merid A a₀)) ∙ ap2 _∙_ (SuspensionRec.glue-β A b b k a) (ap-! (SuspensionRec.f A b b k) (merid A a₀) ∙ ap ! (SuspensionRec.glue-β A b b k a₀ ∙ kpt)) ∙ ∙-unit-r (k a) -- lemmas generalize to do some path induction for R-L-snd lemma₁ : ∀ {i j} {A : Type i} {B : Type j} (f : A → B) {a₁ a₂ : A} (p : a₁ == a₂) {q r : f a₁ == f a₂} {s : f a₁ == f a₁} (α : ap f p == q) (β : q == r) (γ : q ∙ ! r == s) (δ : s == idp) (σ : !-inv-r r == transport (λ t → t ∙ ! r == idp) β (γ ∙ δ)) → ap (ap f) (!-inv-r p) == (ap-∙ f p (! p) ∙ ap2 _∙_ α (ap-! f p ∙ ap ! (α ∙ β)) ∙ γ) ∙ δ lemma₁ f idp idp idp γ idp σ = σ lemma₂ : ∀ {i} {A : Type i} {x : A} {p : x == x} (α : p == idp) → idp == transport (λ t → t ∙ idp == idp) α (∙-unit-r p ∙ α) lemma₂ idp = idp R-L-snd : ap (ap (SuspensionRec.f A b b k)) (!-inv-r (merid A a₀)) == R-L-fst a₀ ∙ kpt R-L-snd = ap (ap (SuspensionRec.f A b b k)) (!-inv-r (merid A a₀)) =⟨ lemma₁ (SuspensionRec.f A b b k) (merid A a₀) (SuspensionRec.glue-β A b b k a₀) kpt (∙-unit-r (k a₀)) kpt (lemma₂ kpt) ⟩ R-L-fst a₀ ∙ kpt ∎ {- Show that L ∘ R ∼ idf -} L-R : {b : B} → ∀ H → L {b} (R H) == H L-R (h , idp) = ⊙λ= L-R-fst idp where fst-lemma : ∀ {i j} {A : Type i} {B : Type j} {x y z : A} (f : A → B) (p : x == y) (q : z == y) → ap f p == ap f (p ∙ ! q) ∙' ap f q fst-lemma _ idp idp = idp L-R-fst : (σ : Suspension A) → SuspensionRec.f A (h (north _)) (h (north _)) (fst (R (h , idp))) σ == h σ L-R-fst = Suspension-elim A idp (ap h (merid A a₀)) (λ a → ↓-='-in $ ap h (merid A a) =⟨ fst-lemma h (merid A a) (merid A a₀) ⟩ ap h (merid A a ∙ ! (merid A a₀)) ∙' ap h (merid A a₀) =⟨ ! (SuspensionRec.glue-β A _ _ (fst (R (h , idp))) a) |in-ctx (λ w → w ∙' (ap h (merid A a₀))) ⟩ ap (fst (L (R (h , idp)))) (merid A a) ∙' ap h (merid A a₀) ∎) {- Show that R respects basepoint -} pres-ident : {b : B} → R {b} ((λ _ → b) , idp) == ((λ _ → idp) , idp) pres-ident {b} = ⊙λ= (λ a → ap-cst b (merid A a ∙ ! (merid A a₀))) (ap (ap (λ _ → b)) (!-inv-r (merid A a₀)) =⟨ lemma (merid A a₀) b ⟩ ap-cst b (merid A a₀ ∙ ! (merid A a₀)) =⟨ ! (∙-unit-r _) ⟩ ap-cst b (merid A a₀ ∙ ! (merid A a₀)) ∙ idp ∎) where lemma : ∀ {i j} {A : Type i} {B : Type j} {x y : A} (p : x == y) (b : B) → ap (ap (λ _ → b)) (!-inv-r p) == ap-cst b (p ∙ ! p) lemma idp b = idp {- Show that if there is a composition operation ⊙ on B, then R respects that composition, that is R {b ⊙ c} (F ⊙ G) == R {b} F ∙ R {c} G -} -- lift a composition operation on the codomain to the function space comp-lift : ∀ {i j} {A : Type i} {B C D : Type j} (a : A) (b : B) (c : C) (_⊙_ : B → C → D) → Σ (A → B) (λ f → f a == b) → Σ (A → C) (λ g → g a == c) → Σ (A → D) (λ h → h a == b ⊙ c) comp-lift a b c _⊙_ (f , fpt) (g , gpt) = (λ x → f x ⊙ g x) , ap2 _⊙_ fpt gpt pres-comp-fst : ∀ {i j} {A : Type i} {B : Type j} (f g : A → B) (_⊙_ : B → B → B) {a₁ a₂ : A} (p : a₁ == a₂) → ap (λ x → f x ⊙ g x) p == ap2 _⊙_ (ap f p) (ap g p) pres-comp-fst f g _⊙_ idp = idp pres-comp-snd : ∀ {i j} {A : Type i} {B : Type j} (f g : A → B) (_⊙_ : B → B → B) {a₁ a₂ : A} (q : a₁ == a₂) → ap (ap (λ x → f x ⊙ g x)) (!-inv-r q) == pres-comp-fst f g _⊙_ (q ∙ ! q) ∙ ap2 (ap2 _⊙_) (ap (ap f) (!-inv-r q)) (ap (ap g) (!-inv-r q)) pres-comp-snd f g _⊙_ idp = idp pres-comp : {b c : B} (_⊙_ : B → B → B) (F : Σ (Suspension A → B) (λ f → f (north A) == b)) (G : Σ (Suspension A → B) (λ f → f (north A) == c)) → R (comp-lift (north A) b c _⊙_ F G) == comp-lift a₀ idp idp (ap2 _⊙_) (R F) (R G) pres-comp _⊙_ (f , idp) (g , idp) = ⊙λ= (λ a → pres-comp-fst f g _⊙_ (merid A a ∙ ! (merid A a₀))) (pres-comp-snd f g _⊙_ (merid A a₀)) eqv : fst (⊙Susp X ⊙→ Y) ≃ fst (X ⊙→ ⊙Ω Y) eqv = equiv R L R-L L-R ⊙path : (⊙Susp X ⊙→ Y) == (X ⊙→ ⊙Ω Y) ⊙path = ⊙ua eqv pres-ident
36.273381
80
0.437723
5058d594d351d8d66b1321027d427dce4227c7e9
233
agda
Agda
prototyping/Properties/Remember.agda
JohnnyMorganz/luau
f2191b9e4da6a4bb2d9d344ebd7941ec2f00844b
[ "MIT" ]
1
2021-11-06T08:03:00.000Z
2021-11-06T08:03:00.000Z
prototyping/Properties/Remember.agda
JohnnyMorganz/luau
f2191b9e4da6a4bb2d9d344ebd7941ec2f00844b
[ "MIT" ]
null
null
null
prototyping/Properties/Remember.agda
JohnnyMorganz/luau
f2191b9e4da6a4bb2d9d344ebd7941ec2f00844b
[ "MIT" ]
null
null
null
module Properties.Remember where open import Agda.Builtin.Equality using (_≡_; refl) data Remember {A : Set} (a : A) : Set where _,_ : ∀ b → (a ≡ b) → Remember(a) remember : ∀ {A} (a : A) → Remember(a) remember a = (a , refl)
23.3
51
0.613734
50764d9c82c253a42ebe263f62af24b30116ee37
535
agda
Agda
test/Succeed/DoNotEtaExpandMVarsWhenComparingAgainstRecord.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/DoNotEtaExpandMVarsWhenComparingAgainstRecord.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/DoNotEtaExpandMVarsWhenComparingAgainstRecord.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
-- 2010-10-15 -- 2018-06-09 {-# OPTIONS --irrelevant-projections #-} module DoNotEtaExpandMVarsWhenComparingAgainstRecord where open import Common.Irrelevance data _==_ {A : Set1}(a : A) : A -> Set where refl : a == a record IR : Set1 where constructor mkIR field .fromIR : Set open IR reflIR2 : (r : IR) -> _ == mkIR (fromIR r) reflIR2 r = refl {a = _} -- this would fail if -- ? = mkIR (fromIR r) -- would be solved by -- mkIR ?1 = mkIR (fromIR r) -- because then no constraint is generated for ?1 due to triviality
19.814815
67
0.659813
4d2954d388d9a6dabcef626e1f778e99ebe6cee7
28,475
agda
Agda
homotopy/3x3/FromTo3.agda
danbornside/HoTT-Agda
1695a7f3dc60177457855ae846bbd86fcd96983e
[ "MIT" ]
1
2021-06-30T00:17:55.000Z
2021-06-30T00:17:55.000Z
homotopy/3x3/FromTo3.agda
danbornside/HoTT-Agda
1695a7f3dc60177457855ae846bbd86fcd96983e
[ "MIT" ]
null
null
null
homotopy/3x3/FromTo3.agda
danbornside/HoTT-Agda
1695a7f3dc60177457855ae846bbd86fcd96983e
[ "MIT" ]
null
null
null
{-# OPTIONS --without-K #-} --open import HoTT open import homotopy.3x3.PushoutPushout open import homotopy.3x3.Transpose import homotopy.3x3.To as To import homotopy.3x3.From as From open import homotopy.3x3.Common module homotopy.3x3.FromTo3 {i} (d : Span^2 {i}) where open Span^2 d open M d hiding (Pushout^2) open M (transpose d) using () renaming (module F₁∙ to F∙₁; f₁∙ to f∙₁; module F₃∙ to F∙₃; f₃∙ to f∙₃; v-h-span to h-v-span) open M using (Pushout^2) open To d open From d open import homotopy.3x3.FromToInit d open import homotopy.3x3.FromTo2 d module M3 (c : A₂₂) where open M2 c lemma2-3 = ap□ from (E₂∙Red.coh c (↓-='-out (apd (glue {d = h-v-span}) (glue c)) ∙□-i/ E₂∙Red.lhs-i c / E₂∙Red.rhs-i c /) ∙□-i/ E₂∙Red.lhs-o c / E₂∙Red.rhs-o c /) =⟨ ap□-∙□-i/ from _ (E₂∙Red.lhs-o c) (E₂∙Red.rhs-o c) ⟩ ap□ from (E₂∙Red.coh c (↓-='-out (apd (glue {d = h-v-span}) (glue c)) ∙□-i/ E₂∙Red.lhs-i c / E₂∙Red.rhs-i c /)) ∙□-i/ ap (ap from) (E₂∙Red.lhs-o c) / ap (ap from) (E₂∙Red.rhs-o c) / =⟨ lemma2-4 |in-ctx (λ u → u ∙□-i/ ap (ap from) (E₂∙Red.lhs-o c) / ap (ap from) (E₂∙Red.rhs-o c) /) ⟩ ↓-='-out (apd (glue {d = v-h-span}) (glue c)) ∙□-i/ E∙₂Red.lhs-i c / E∙₂Red.rhs-i c / ∙□-o/ ∘-ap from left (glue (f₂₁ c)) ∙ I∙₀.glue-β (f₂₁ c) / ! (∘-ap from right (glue (f₂₃ c)) ∙ I∙₄.glue-β (f₂₃ c)) / ∙□-i/ (From.glue-β (right (f₃₂ c))) |in-ctx (λ u → ap (right ∘ left) (H₃₁ c) ∙ u ∙ ap (right ∘ right) (H₃₃ c)) / (! (From.glue-β (left (f₁₂ c)))) |in-ctx (λ u → ap (left ∘ left) (H₁₁ c) ∙ u ∙ ap (left ∘ right) (H₁₃ c)) / ∙□-i/ E₂∙Red.ap-ap-coh-lhs-o c from / E₂∙Red.ap-ap-coh-rhs-o c from / ∙□-i/ ap (ap from) (E₂∙Red.lhs-o c) / ap (ap from) (E₂∙Red.rhs-o c) / ∎ lemma2'-3 = ap-∘ from (i₄∙ ∘ f₃∙) (glue c) ∙ ap (ap from) (E₂∙Red.lhs-o c) ∙ E₂∙Red.ap-ap-coh-lhs-o c from ∙ ((From.glue-β (right (f₃₂ c))) |in-ctx (λ u → ap (right ∘ left) (H₃₁ c) ∙ u ∙ ap (right ∘ right) (H₃₃ c))) ∙ E∙₂Red.lhs-i c =⟨ coh2 (ap from) (ap-∘ from (i₄∙ ∘ f₃∙) (glue c)) (ap-∘ i₄∙ f₃∙ (glue c)) _ _ _ (ap-∙∙`∘`∘ from (left ∘ right) (right ∘ right) (H₃₁ c) (glue (right (f₃₂ c))) (H₃₃ c)) ((From.glue-β (right (f₃₂ c))) |in-ctx (λ u → ap (right ∘ left) (H₃₁ c) ∙ u ∙ ap (right ∘ right) (H₃₃ c))) (! (ap-∙∙`∘`∘ right left right (H₃₁ c) (glue (f₃₂ c)) (H₃₃ c))) _ _ ⟩ (ap-∘ from (i₄∙ ∘ f₃∙) (glue c) ∙ ap (ap from) (ap-∘ i₄∙ f₃∙ (glue c)) ∙ ap (ap from) (F₃∙.glue-β c |in-ctx (ap i₄∙))) -- ap from (ap i₄∙ (ap left (H₃₁ c) ∙ glue (f₃₂ c) ∙ ap right (H₃₃ c))) ∙ (ap (ap from) (ap-∙∙`∘`∘ i₄∙ left right (H₃₁ c) (glue (f₃₂ c)) (H₃₃ c)) ∙ ap (ap from) (I₄∙.glue-β (f₃₂ c) |in-ctx (λ u → ap (left ∘ right) (H₃₁ c) ∙ u ∙ ap (right ∘ right) (H₃₃ c))) ∙ ap-∙∙`∘`∘ from (left ∘ right) (right ∘ right) (H₃₁ c) (glue (right (f₃₂ c))) (H₃₃ c)) -- ap (right ∘ left) (H₃₁ c) ∙ ap from (glue (right (f₃₂ c))) ∙ ap (right ∘ right) (H₃₃ c) ∙ (((From.glue-β (right (f₃₂ c))) |in-ctx (λ u → ap (right ∘ left) (H₃₁ c) ∙ u ∙ ap (right ∘ right) (H₃₃ c))) ∙ ! (ap-∙∙`∘`∘ right left right (H₃₁ c) (glue (f₃₂ c)) (H₃₃ c)) ∙ ! (ap (ap right) (F₃∙.glue-β c)) ∙ ∘-ap right f₃∙ (glue c)) =⟨ ap-∘-ap-∙∙`∘`∘-coh from i₄∙ left right (H₃₁ c) (I₄∙.glue-β (f₃₂ c)) (H₃₃ c) |in-ctx (λ u → (ap-∘ from (i₄∙ ∘ f₃∙) (glue c) ∙ ap (ap from) (ap-∘ i₄∙ f₃∙ (glue c)) ∙ ap (ap from) (F₃∙.glue-β c |in-ctx (ap i₄∙))) ∙ u ∙ (((From.glue-β (right (f₃₂ c))) |in-ctx (λ u → ap (right ∘ left) (H₃₁ c) ∙ u ∙ ap (right ∘ right) (H₃₃ c))) ∙ ! (ap-∙∙`∘`∘ right left right (H₃₁ c) (glue (f₃₂ c)) (H₃₃ c)) ∙ ! (ap (ap right) (F₃∙.glue-β c)) ∙ ∘-ap right f₃∙ (glue c))) ⟩ (ap-∘ from (i₄∙ ∘ f₃∙) (glue c) ∙ ap (ap from) (ap-∘ i₄∙ f₃∙ (glue c)) ∙ ap (ap from) (F₃∙.glue-β c |in-ctx (ap i₄∙))) -- ap from (ap i₄∙ (ap left (H₃₁ c) ∙ glue (f₃₂ c) ∙ ap right (H₃₃ c))) ∙ (∘-ap from i₄∙ (ap left (H₃₁ c) ∙ glue (f₃₂ c) ∙ ap right (H₃₃ c)) ∙ ap-∙∙`∘`∘ (from ∘ i₄∙) left right (H₃₁ c) (glue (f₃₂ c)) (H₃₃ c) ∙ (ap-∘ from i₄∙ (glue (f₃₂ c)) |in-ctx (λ u → ap (right ∘ left) (H₃₁ c) ∙ u ∙ ap (right ∘ right) (H₃₃ c))) ∙ (ap (ap from) (I₄∙.glue-β (f₃₂ c)) |in-ctx (λ u → ap (right ∘ left) (H₃₁ c) ∙ u ∙ ap (right ∘ right) (H₃₃ c)))) -- ap (right ∘ left) (H₃₁ c) ∙ ap from (glue (right (f₃₂ c))) ∙ ap (right ∘ right) (H₃₃ c) ∙ (((From.glue-β (right (f₃₂ c))) |in-ctx (λ u → ap (right ∘ left) (H₃₁ c) ∙ u ∙ ap (right ∘ right) (H₃₃ c))) ∙ (! (ap-∙∙`∘`∘ right left right (H₃₁ c) (glue (f₃₂ c)) (H₃₃ c))) ∙ ! (ap (ap right) (F₃∙.glue-β c)) ∙ ∘-ap right f₃∙ (glue c)) =⟨ coh3 (ap-∘ from (i₄∙ ∘ f₃∙) (glue c)) (ap (ap from) (ap-∘ i₄∙ f₃∙ (glue c))) (ap (ap from) (F₃∙.glue-β c |in-ctx (ap i₄∙))) (∘-ap from i₄∙ (ap left (H₃₁ c) ∙ glue (f₃₂ c) ∙ ap right (H₃₃ c))) _ _ ⟩ (ap-∘ from (i₄∙ ∘ f₃∙) (glue c) ∙ ap (ap from) (ap-∘ i₄∙ f₃∙ (glue c)) ∙ ap (ap from) (F₃∙.glue-β c |in-ctx (ap i₄∙)) ∙ ∘-ap from i₄∙ (ap left (H₃₁ c) ∙ glue (f₃₂ c) ∙ ap right (H₃₃ c))) ∙ (ap-∙∙`∘`∘ (from ∘ i₄∙) left right (H₃₁ c) (glue (f₃₂ c)) (H₃₃ c) ∙ (ap-∘ from i₄∙ (glue (f₃₂ c)) |in-ctx (λ u → ap (right ∘ left) (H₃₁ c) ∙ u ∙ ap (right ∘ right) (H₃₃ c))) ∙ (ap (ap from) (I₄∙.glue-β (f₃₂ c)) |in-ctx (λ u → ap (right ∘ left) (H₃₁ c) ∙ u ∙ ap (right ∘ right) (H₃₃ c)))) ∙ ((From.glue-β (right (f₃₂ c)) |in-ctx (λ u → ap (right ∘ left) (H₃₁ c) ∙ u ∙ ap (right ∘ right) (H₃₃ c))) ∙ ! (ap-∙∙`∘`∘ right left right (H₃₁ c) (glue (f₃₂ c)) (H₃₃ c)) ∙ ! (ap (ap right) (F₃∙.glue-β c)) ∙ ∘-ap right f₃∙ (glue c)) =⟨ ap-∘-coh from i₄∙ f₃∙ (glue c) (F₃∙.glue-β c) |in-ctx (λ u → u ∙ (ap-∙∙`∘`∘ (from ∘ i₄∙) left right (H₃₁ c) (glue (f₃₂ c)) (H₃₃ c) ∙ (ap-∘ from i₄∙ (glue (f₃₂ c)) |in-ctx (λ u → ap (right ∘ left) (H₃₁ c) ∙ u ∙ ap (right ∘ right) (H₃₃ c))) ∙ (ap (ap from) (I₄∙.glue-β (f₃₂ c)) |in-ctx (λ u → ap (right ∘ left) (H₃₁ c) ∙ u ∙ ap (right ∘ right) (H₃₃ c)))) ∙ ((From.glue-β (right (f₃₂ c)) |in-ctx (λ u → ap (right ∘ left) (H₃₁ c) ∙ u ∙ ap (right ∘ right) (H₃₃ c))) ∙ ! (ap-∙∙`∘`∘ right left right (H₃₁ c) (glue (f₃₂ c)) (H₃₃ c)) ∙ ! (ap (ap right) (F₃∙.glue-β c)) ∙ ∘-ap right f₃∙ (glue c))) ⟩ (ap-∘ (from ∘ i₄∙) f₃∙ (glue c) ∙ (ap (ap (from ∘ i₄∙)) (F₃∙.glue-β c))) ∙ (ap-∙∙`∘`∘ (from ∘ i₄∙) left right (H₃₁ c) (glue (f₃₂ c)) (H₃₃ c) ∙ (ap-∘ from i₄∙ (glue (f₃₂ c)) |in-ctx (λ u → ap (right ∘ left) (H₃₁ c) ∙ u ∙ ap (right ∘ right) (H₃₃ c))) ∙ (ap (ap from) (I₄∙.glue-β (f₃₂ c)) |in-ctx (λ u → ap (right ∘ left) (H₃₁ c) ∙ u ∙ ap (right ∘ right) (H₃₃ c)))) ∙ ((From.glue-β (right (f₃₂ c)) |in-ctx (λ u → ap (right ∘ left) (H₃₁ c) ∙ u ∙ ap (right ∘ right) (H₃₃ c))) ∙ ! (ap-∙∙`∘`∘ right left right (H₃₁ c) (glue (f₃₂ c)) (H₃₃ c)) ∙ ! (ap (ap right) (F₃∙.glue-β c)) ∙ ∘-ap right f₃∙ (glue c)) =⟨ !-ap-∘-inv right f₃∙ (glue c) |in-ctx (λ u → (ap-∘ (from ∘ i₄∙) f₃∙ (glue c) ∙ (ap (ap (from ∘ i₄∙)) (F₃∙.glue-β c))) ∙ (ap-∙∙`∘`∘ (from ∘ i₄∙) left right (H₃₁ c) (glue (f₃₂ c)) (H₃₃ c) ∙ (ap-∘ from i₄∙ (glue (f₃₂ c)) |in-ctx (λ u → ap (right ∘ left) (H₃₁ c) ∙ u ∙ ap (right ∘ right) (H₃₃ c))) ∙ (ap (ap from) (I₄∙.glue-β (f₃₂ c)) |in-ctx (λ u → ap (right ∘ left) (H₃₁ c) ∙ u ∙ ap (right ∘ right) (H₃₃ c)))) ∙ ((From.glue-β (right (f₃₂ c)) |in-ctx (λ u → ap (right ∘ left) (H₃₁ c) ∙ u ∙ ap (right ∘ right) (H₃₃ c))) ∙ ! (ap-∙∙`∘`∘ right left right (H₃₁ c) (glue (f₃₂ c)) (H₃₃ c)) ∙ ! (ap (ap right) (F₃∙.glue-β c)) ∙ u)) ⟩ (ap-∘ (from ∘ i₄∙) f₃∙ (glue c) ∙ (ap (ap (from ∘ i₄∙)) (F₃∙.glue-β c))) ∙ (ap-∙∙`∘`∘ (from ∘ i₄∙) left right (H₃₁ c) (glue (f₃₂ c)) (H₃₃ c) ∙ (ap-∘ from i₄∙ (glue (f₃₂ c)) |in-ctx (λ u → ap (right ∘ left) (H₃₁ c) ∙ u ∙ ap (right ∘ right) (H₃₃ c))) ∙ (ap (ap from) (I₄∙.glue-β (f₃₂ c)) |in-ctx (λ u → ap (right ∘ left) (H₃₁ c) ∙ u ∙ ap (right ∘ right) (H₃₃ c)))) ∙ ((From.glue-β (right (f₃₂ c)) |in-ctx (λ u → ap (right ∘ left) (H₃₁ c) ∙ u ∙ ap (right ∘ right) (H₃₃ c))) ∙ ! (ap-∙∙`∘`∘ right left right (H₃₁ c) (glue (f₃₂ c)) (H₃₃ c)) ∙ ! (ap (ap right) (F₃∙.glue-β c)) ∙ ! (ap-∘ right f₃∙ (glue c))) =⟨ !-∘-ap-inv (from ∘ i₄∙) f₃∙ (glue c) |in-ctx (λ u → (u ∙ (ap (ap (from ∘ i₄∙)) (F₃∙.glue-β c))) ∙ (ap-∙∙`∘`∘ (from ∘ i₄∙) left right (H₃₁ c) (glue (f₃₂ c)) (H₃₃ c) ∙ (ap-∘ from i₄∙ (glue (f₃₂ c)) |in-ctx (λ u → ap (right ∘ left) (H₃₁ c) ∙ u ∙ ap (right ∘ right) (H₃₃ c))) ∙ (ap (ap from) (I₄∙.glue-β (f₃₂ c)) |in-ctx (λ u → ap (right ∘ left) (H₃₁ c) ∙ u ∙ ap (right ∘ right) (H₃₃ c)))) ∙ ((From.glue-β (right (f₃₂ c)) |in-ctx (λ u → ap (right ∘ left) (H₃₁ c) ∙ u ∙ ap (right ∘ right) (H₃₃ c))) ∙ ! (ap-∙∙`∘`∘ right left right (H₃₁ c) (glue (f₃₂ c)) (H₃₃ c)) ∙ ! (ap (ap right) (F₃∙.glue-β c)) ∙ ! (ap-∘ right f₃∙ (glue c)))) ⟩ (! (∘-ap (from ∘ i₄∙) f₃∙ (glue c)) ∙ (ap (ap (from ∘ i₄∙)) (F₃∙.glue-β c))) ∙ (ap-∙∙`∘`∘ (from ∘ i₄∙) left right (H₃₁ c) (glue (f₃₂ c)) (H₃₃ c) ∙ (ap-∘ from i₄∙ (glue (f₃₂ c)) |in-ctx (λ u → ap (right ∘ left) (H₃₁ c) ∙ u ∙ ap (right ∘ right) (H₃₃ c))) ∙ (ap (ap from) (I₄∙.glue-β (f₃₂ c)) |in-ctx (λ u → ap (right ∘ left) (H₃₁ c) ∙ u ∙ ap (right ∘ right) (H₃₃ c)))) ∙ ((From.glue-β (right (f₃₂ c)) |in-ctx (λ u → ap (right ∘ left) (H₃₁ c) ∙ u ∙ ap (right ∘ right) (H₃₃ c))) ∙ ! (ap-∙∙`∘`∘ right left right (H₃₁ c) (glue (f₃₂ c)) (H₃₃ c)) ∙ ! (ap (ap right) (F₃∙.glue-β c)) ∙ ! (ap-∘ right f₃∙ (glue c))) =⟨ coh4 (λ u → ap (right ∘ left) (H₃₁ c) ∙ u ∙ ap (right ∘ right) (H₃₃ c)) (∘-ap (from ∘ i₄∙) f₃∙ (glue c)) _ _ _ _ _ _ _ _ ⟩ ! end-lemma1 ∎ where coh2 : ∀ {i j} {A : Type i} {B : Type j} (f : A → B) {a b c d e : A} {g h k l m n : B} (p : g == f a) (q : a == b) (r : b == c) (s : c == d) (t : d == e) (u : f e == h) (v : h == k) (w : k == l) (x : l == m) (y : m == n) → p ∙ ap f (_ =⟨ q ⟩ _ =⟨ r ⟩ _ =⟨ s ⟩ _ =⟨ t ⟩ _ ∎) ∙ u ∙ v ∙ (_ =⟨ w ⟩ _ =⟨ x ⟩ _ =⟨ y ⟩ _ ∎) == (p ∙ ap f q ∙ ap f r) ∙ (ap f s ∙ ap f t ∙ u) ∙ (v ∙ w ∙ x ∙ y) coh2 f p idp idp idp idp idp idp idp idp idp = ! (∙-unit-r (p ∙ idp)) coh3 : ∀ {i} {A : Type i} {a b c d e f g : A} (p : a == b) (q : b == c) (r : c == d) (s : d == e) (t : e == f) (u : f == g) → (p ∙ q ∙ r) ∙ (s ∙ t) ∙ u == (p ∙ q ∙ r ∙ s) ∙ t ∙ u coh3 idp idp idp idp idp idp = idp coh4 : ∀ {i j} {A : Type i} {B : Type j} (h : A → B) {a b c d : A} {e f g k l m : B} (p : f == e) (q : f == g) (r : g == h a) (s : a == b) (t : b == c) (u : c == d) (v : k == h d) (w : l == k) (x : m == l) → (! p ∙ q) ∙ (r ∙ (s |in-ctx h) ∙ (t |in-ctx h)) ∙ ((u |in-ctx h) ∙ (! v) ∙ (! w) ∙ ! x) == ! (_ =⟨ x ⟩ _ =⟨ w ⟩ _ =⟨ v ⟩ _ =⟨ ! (_ =⟨ s ⟩ _ =⟨ t ⟩ _ =⟨ u ⟩ _ ∎) |in-ctx h ⟩ _ =⟨ ! r ⟩ _ =⟨ ! q ⟩ _ =⟨ p ⟩ _ ∎) coh4 h idp idp r idp idp idp v idp idp = ch r v where ch : ∀ {i} {B : Type i} {a b c : B} (r : a == b) (v : c == b) → (r ∙ idp) ∙ ! v ∙ idp == ! (_ =⟨ idp ⟩ _ =⟨ idp ⟩ _ =⟨ v ⟩ _ =⟨ idp ⟩ _ =⟨ ! r ⟩ _ ∎) ch idp idp = idp lemma2'-4 = E∙₂Red.rhs-i c ∙ ((! (From.glue-β (left (f₁₂ c)))) |in-ctx (λ u → ap (left ∘ left) (H₁₁ c) ∙ u ∙ ap (left ∘ right) (H₁₃ c))) ∙ E₂∙Red.ap-ap-coh-rhs-o c from ∙ ap (ap from) (E₂∙Red.rhs-o c) ∙ ∘-ap from (i₀∙ ∘ f₁∙) (glue c) =⟨ coh2 (ap from) (ap-∘ left f₁∙ (glue c)) (F₁∙.glue-β c |in-ctx (ap left)) (ap-∙∙`∘`∘ left left right (H₁₁ c) (glue (f₁₂ c)) (H₁₃ c)) (! (From.glue-β (left (f₁₂ c))) |in-ctx (λ u → ap (left ∘ left) (H₁₁ c) ∙ u ∙ ap (left ∘ right) (H₁₃ c))) (ap-∘ from (i₀∙ ∘ f₁∙) (glue c)) (ap-∘ i₀∙ f₁∙ (glue c)) ((F₁∙.glue-β c) |in-ctx (λ u → ap i₀∙ u)) (ap-∙∙`∘`∘ i₀∙ left right (H₁₁ c) (glue (f₁₂ c)) (H₁₃ c)) ((I₀∙.glue-β (f₁₂ c)) |in-ctx (λ u → (ap (left ∘ left) (H₁₁ c) ∙ u ∙ ap (right ∘ left) (H₁₃ c)))) (ap-∙∙`∘`∘ from (left ∘ left) (right ∘ left) (H₁₁ c) (glue (left (f₁₂ c))) (H₁₃ c)) (!-ap-∘ i₀∙ f₁∙ (glue c)) (!-∘-ap from (i₀∙ ∘ f₁∙) (glue c)) ⟩ ap-∘ left f₁∙ (glue c) ∙ (F₁∙.glue-β c |in-ctx (ap left)) ∙ (ap-∙∙`∘`∘ left left right (H₁₁ c) (glue (f₁₂ c)) (H₁₃ c)) ∙ (! (From.glue-β (left (f₁₂ c))) |in-ctx (λ u → ap (left ∘ left) (H₁₁ c) ∙ u ∙ ap (left ∘ right) (H₁₃ c))) ∙ ! ((ap-∘ from (i₀∙ ∘ f₁∙) (glue c) ∙ ap (ap from) (ap-∘ i₀∙ f₁∙ (glue c)) ∙ ap (ap from) ((F₁∙.glue-β c) |in-ctx (λ u → ap i₀∙ u))) ∙ (ap (ap from) (ap-∙∙`∘`∘ i₀∙ left right (H₁₁ c) (glue (f₁₂ c)) (H₁₃ c)) ∙ ap (ap from) ((I₀∙.glue-β (f₁₂ c)) |in-ctx (λ u → (ap (left ∘ left) (H₁₁ c) ∙ u ∙ ap (right ∘ left) (H₁₃ c)))) ∙ ap-∙∙`∘`∘ from (left ∘ left) (right ∘ left) (H₁₁ c) (glue (left (f₁₂ c))) (H₁₃ c))) =⟨ lm |in-ctx (λ u → ap-∘ left f₁∙ (glue c) ∙ ap (ap left) (F₁∙.glue-β c) ∙ ap-∙∙`∘`∘ left left right (H₁₁ c) (glue (f₁₂ c)) (H₁₃ c) ∙ (! (From.glue-β (left (f₁₂ c))) |in-ctx (λ u → ap (left ∘ left) (H₁₁ c) ∙ u ∙ ap (left ∘ right) (H₁₃ c))) ∙ ! u) ⟩ ap-∘ left f₁∙ (glue c) ∙ ap (ap left) (F₁∙.glue-β c) ∙ ap-∙∙`∘`∘ left left right (H₁₁ c) (glue (f₁₂ c)) (H₁₃ c) ∙ (! (From.glue-β (left (f₁₂ c))) |in-ctx (λ u → ap (left ∘ left) (H₁₁ c) ∙ u ∙ ap (left ∘ right) (H₁₃ c))) ∙ ! ((ap-∘ (from ∘ i₀∙) f₁∙ (glue c) ∙ ap (ap (from ∘ i₀∙)) (F₁∙.glue-β c)) ∙ (ap-∙∙`∘`∘ (from ∘ i₀∙) left right (H₁₁ c) (glue (f₁₂ c)) (H₁₃ c) ∙ (ap-∘ from i₀∙ (glue (f₁₂ c)) |in-ctx (λ u → ap (left ∘ left) (H₁₁ c) ∙ u ∙ ap (left ∘ right) (H₁₃ c))) ∙ ((I₀∙.glue-β (f₁₂ c) |in-ctx ap from) |in-ctx (λ u → ap (left ∘ left) (H₁₁ c) ∙ u ∙ ap (left ∘ right) (H₁₃ c))))) =⟨ coh3 {f = λ u → ap (left ∘ left) (H₁₁ c) ∙ u ∙ ap (left ∘ right) (H₁₃ c)} {p = ap-∘ left f₁∙ (glue c)} {ap (ap left) (F₁∙.glue-β c)} {ap-∙∙`∘`∘ left left right (H₁₁ c) (glue (f₁₂ c)) (H₁₃ c)} {ap-∘ from i₀∙ (glue (f₁₂ c))} {I₀∙.glue-β (f₁₂ c) |in-ctx ap from} {From.glue-β (left (f₁₂ c))} {ap-∙∙`∘`∘ (from ∘ i₀∙) left right (H₁₁ c) (glue (f₁₂ c)) (H₁₃ c)} {ap (ap (from ∘ i₀∙)) (F₁∙.glue-β c)} {ap-∘ (from ∘ i₀∙) f₁∙ (glue c)} (!-ap-∘ (from ∘ i₀∙) f₁∙ (glue c)) ⟩ end-lemma3 ∎ where coh2 : ∀ {i j} {A : Type i} {B : Type j} (f : A → B) {a b c d e o : B} (p : a == b) (q : b == c) (r : c == d) (s : d == e) {g h l m n : A} (y : o == f g) (x : g == h) (w : h == l) (v : l == m) (u : m == n) (t : f n == e) {x' : h == g} (α : ! x == x') {y' : f g == o} (β : ! y' == y) → (_ =⟨ p ⟩ _ =⟨ q ⟩ _ =⟨ r ⟩ _ ∎) ∙ s ∙ ! t ∙ ap f (_ =⟨ ! u ⟩ _ =⟨ ! v ⟩ _ =⟨ ! w ⟩ _ =⟨ x' ⟩ _ ∎) ∙ y' == p ∙ q ∙ r ∙ s ∙ ! ((y ∙ ap f x ∙ ap f w) ∙ (ap f v ∙ ap f u ∙ t)) coh2 f idp idp idp idp .idp idp idp idp idp idp idp {y' = idp} idp = idp coh3 : ∀ {i j} {A : Type i} {B : Type j} {f : A → B} {a b c d e g : B} {h k l m : A} {p : a == b} {q : b == c} {r : c == f m} {v : h == k} {w : k == l} {x : l == m} {s : d == f h} {t : e == d} {u : g == e} {u' : e == g} (α : ! u == u') → p ∙ q ∙ r ∙ (! x |in-ctx f) ∙ ! ((u ∙ t) ∙ (s ∙ (v |in-ctx f) ∙ (w |in-ctx f))) == (_ =⟨ p ⟩ _ =⟨ q ⟩ _ =⟨ r ⟩ _ =⟨ ! (_ =⟨ v ⟩ _ =⟨ w ⟩ _ =⟨ x ⟩ _ ∎) |in-ctx f ⟩ _ =⟨ ! s ⟩ _ =⟨ ! t ⟩ _ =⟨ u' ⟩ _ ∎) coh3 {p = idp} {idp} {r} {idp} {idp} {idp} {s} {idp} {idp} idp = coh' r s where coh' : ∀ {i} {B : Type i} {a b c : B} (r : a == b) (s : c == b) → r ∙ ! (s ∙ idp) == (_ =⟨ idp ⟩ _ =⟨ idp ⟩ _ =⟨ r ⟩ _ =⟨ idp ⟩ _ =⟨ ! s ⟩ _ ∎) coh' idp idp = idp lm = (ap-∘ from (i₀∙ ∘ f₁∙) (glue c) ∙ ap (ap from) (ap-∘ i₀∙ f₁∙ (glue c)) ∙ ap (ap from) ((F₁∙.glue-β c) |in-ctx (λ u → ap i₀∙ u))) ∙ (ap (ap from) (ap-∙∙`∘`∘ i₀∙ left right (H₁₁ c) (glue (f₁₂ c)) (H₁₃ c)) ∙ ap (ap from) ((I₀∙.glue-β (f₁₂ c)) |in-ctx (λ u → (ap (left ∘ left) (H₁₁ c) ∙ u ∙ ap (right ∘ left) (H₁₃ c)))) ∙ ap-∙∙`∘`∘ from (left ∘ left) (right ∘ left) (H₁₁ c) (glue (left (f₁₂ c))) (H₁₃ c)) =⟨ ap-∘-coh2 from i₀∙ f₁∙ (glue c) (F₁∙.glue-β c) |in-ctx (λ u → u ∙ (ap (ap from) (ap-∙∙`∘`∘ i₀∙ left right (H₁₁ c) (glue (f₁₂ c)) (H₁₃ c)) ∙ ap (ap from) ((I₀∙.glue-β (f₁₂ c)) |in-ctx (λ u → (ap (left ∘ left) (H₁₁ c) ∙ u ∙ ap (right ∘ left) (H₁₃ c)))) ∙ ap-∙∙`∘`∘ from (left ∘ left) (right ∘ left) (H₁₁ c) (glue (left (f₁₂ c))) (H₁₃ c))) ⟩ (ap-∘ (from ∘ i₀∙) f₁∙ (glue c) ∙ ap (ap (from ∘ i₀∙)) (F₁∙.glue-β c) ∙ ap-∘ from i₀∙ (ap left (H₁₁ c) ∙ glue (f₁₂ c) ∙ ap right (H₁₃ c))) ∙ (ap (ap from) (ap-∙∙`∘`∘ i₀∙ left right (H₁₁ c) (glue (f₁₂ c)) (H₁₃ c)) ∙ ap (ap from) ((I₀∙.glue-β (f₁₂ c)) |in-ctx (λ u → (ap (left ∘ left) (H₁₁ c) ∙ u ∙ ap (right ∘ left) (H₁₃ c)))) ∙ ap-∙∙`∘`∘ from (left ∘ left) (right ∘ left) (H₁₁ c) (glue (left (f₁₂ c))) (H₁₃ c)) =⟨ assoc (ap-∘ (from ∘ i₀∙) f₁∙ (glue c)) (ap (ap (from ∘ i₀∙)) (F₁∙.glue-β c)) (ap-∘ from i₀∙ (ap left (H₁₁ c) ∙ glue (f₁₂ c) ∙ ap right (H₁₃ c))) (ap (ap from) (ap-∙∙`∘`∘ i₀∙ left right (H₁₁ c) (glue (f₁₂ c)) (H₁₃ c))) (ap (ap from) ((I₀∙.glue-β (f₁₂ c)) |in-ctx (λ u → (ap (left ∘ left) (H₁₁ c) ∙ u ∙ ap (right ∘ left) (H₁₃ c))))) (ap-∙∙`∘`∘ from (left ∘ left) (right ∘ left) (H₁₁ c) (glue (left (f₁₂ c))) (H₁₃ c)) ⟩ (ap-∘ (from ∘ i₀∙) f₁∙ (glue c) ∙ ap (ap (from ∘ i₀∙)) (F₁∙.glue-β c)) ∙ (ap-∘ from i₀∙ (ap left (H₁₁ c) ∙ glue (f₁₂ c) ∙ ap right (H₁₃ c)) ∙ ap (ap from) (ap-∙∙`∘`∘ i₀∙ left right (H₁₁ c) (glue (f₁₂ c)) (H₁₃ c)) ∙ ap (ap from) ((I₀∙.glue-β (f₁₂ c)) |in-ctx (λ u → (ap (left ∘ left) (H₁₁ c) ∙ u ∙ ap (right ∘ left) (H₁₃ c)))) ∙ ap-∙∙`∘`∘ from (left ∘ left) (right ∘ left) (H₁₁ c) (glue (left (f₁₂ c))) (H₁₃ c)) =⟨ ap-∘-ap-∙∙4`∘`∘-coh from i₀∙ left right (H₁₁ c) (I₀∙.glue-β (f₁₂ c)) (H₁₃ c) |in-ctx (λ u → (ap-∘ (from ∘ i₀∙) f₁∙ (glue c) ∙ ap (ap (from ∘ i₀∙)) (F₁∙.glue-β c)) ∙ u) ⟩ (ap-∘ (from ∘ i₀∙) f₁∙ (glue c) ∙ ap (ap (from ∘ i₀∙)) (F₁∙.glue-β c)) ∙ (ap-∙∙`∘`∘ (from ∘ i₀∙) left right (H₁₁ c) (glue (f₁₂ c)) (H₁₃ c) ∙ (ap-∘ from i₀∙ (glue (f₁₂ c)) |in-ctx (λ u → ap (left ∘ left) (H₁₁ c) ∙ u ∙ ap (left ∘ right) (H₁₃ c))) ∙ ((I₀∙.glue-β (f₁₂ c) |in-ctx ap from) |in-ctx (λ u → ap (left ∘ left) (H₁₁ c) ∙ u ∙ ap (left ∘ right) (H₁₃ c)))) ∎ where assoc : ∀ {i} {A : Type i} {a b c d e f g : A} (p : a == b) (q : b == c) (r : c == d) (s : d == e) (t : e == f) (u : f == g) → (p ∙ q ∙ r) ∙ (s ∙ t ∙ u) == (p ∙ q) ∙ (r ∙ s ∙ t ∙ u) assoc idp idp idp idp idp idp = idp lemma2-2' = ap□ from (E₂∙Red.coh c (↓-='-out (apd (glue {d = h-v-span}) (glue c)) ∙□-i/ E₂∙Red.lhs-i c / E₂∙Red.rhs-i c /) ∙□-i/ E₂∙Red.lhs-o c / E₂∙Red.rhs-o c /) ∙□-i/ ap-∘ from (i₄∙ ∘ f₃∙) (glue c) / ∘-ap from (i₀∙ ∘ f₁∙) (glue c) / =⟨ lemma2-3 |in-ctx (λ u → u ∙□-i/ ap-∘ from (i₄∙ ∘ f₃∙) (glue c) / ∘-ap from (i₀∙ ∘ f₁∙) (glue c) /) ⟩ ↓-='-out (apd (glue {d = v-h-span}) (glue c)) ∙□-i/ E∙₂Red.lhs-i c / E∙₂Red.rhs-i c / ∙□-o/ ∘-ap from left (glue (f₂₁ c)) ∙ I∙₀.glue-β (f₂₁ c) / ! (∘-ap from right (glue (f₂₃ c)) ∙ I∙₄.glue-β (f₂₃ c)) / ∙□-i/ (From.glue-β (right (f₃₂ c))) |in-ctx (λ u → ap (right ∘ left) (H₃₁ c) ∙ u ∙ ap (right ∘ right) (H₃₃ c)) / (! (From.glue-β (left (f₁₂ c)))) |in-ctx (λ u → ap (left ∘ left) (H₁₁ c) ∙ u ∙ ap (left ∘ right) (H₁₃ c)) / ∙□-i/ E₂∙Red.ap-ap-coh-lhs-o c from / E₂∙Red.ap-ap-coh-rhs-o c from / ∙□-i/ ap (ap from) (E₂∙Red.lhs-o c) / ap (ap from) (E₂∙Red.rhs-o c) / ∙□-i/ ap-∘ from (i₄∙ ∘ f₃∙) (glue c) / ∘-ap from (i₀∙ ∘ f₁∙) (glue c) / =⟨ assoc (↓-='-out (apd (glue {d = v-h-span}) (glue c))) (E∙₂Red.lhs-i c) ((From.glue-β (right (f₃₂ c))) |in-ctx (λ u → ap (right ∘ left) (H₃₁ c) ∙ u ∙ ap (right ∘ right) (H₃₃ c))) (E₂∙Red.ap-ap-coh-lhs-o c from) (ap (ap from) (E₂∙Red.lhs-o c)) (ap-∘ from (i₄∙ ∘ f₃∙) (glue c)) _ _ _ _ _ (∘-ap from left (glue (f₂₁ c)) ∙ I∙₀.glue-β (f₂₁ c)) _ ⟩ ↓-='-out (apd (glue {d = v-h-span}) (glue c)) ∙□-o/ ∘-ap from left (glue (f₂₁ c)) ∙ I∙₀.glue-β (f₂₁ c) / ! (∘-ap from right (glue (f₂₃ c)) ∙ I∙₄.glue-β (f₂₃ c)) / ∙□-i/ ap-∘ from (i₄∙ ∘ f₃∙) (glue c) ∙ ap (ap from) (E₂∙Red.lhs-o c) ∙ E₂∙Red.ap-ap-coh-lhs-o c from ∙ ((From.glue-β (right (f₃₂ c))) |in-ctx (λ u → ap (right ∘ left) (H₃₁ c) ∙ u ∙ ap (right ∘ right) (H₃₃ c))) ∙ E∙₂Red.lhs-i c / E∙₂Red.rhs-i c ∙ ((! (From.glue-β (left (f₁₂ c)))) |in-ctx (λ u → ap (left ∘ left) (H₁₁ c) ∙ u ∙ ap (left ∘ right) (H₁₃ c))) ∙ E₂∙Red.ap-ap-coh-rhs-o c from ∙ ap (ap from) (E₂∙Red.rhs-o c) ∙ ∘-ap from (i₀∙ ∘ f₁∙) (glue c) / =⟨ ∙□-i/-rewrite (↓-='-out (apd (glue {d = v-h-span}) (glue c)) ∙□-o/ ∘-ap from left (glue (f₂₁ c)) ∙ I∙₀.glue-β (f₂₁ c) / ! (∘-ap from right (glue (f₂₃ c)) ∙ I∙₄.glue-β (f₂₃ c)) /) lemma2'-3 lemma2'-4 ⟩ ↓-='-out (apd (glue {d = v-h-span}) (glue c)) ∙□-o/ ∘-ap from left (glue (f₂₁ c)) ∙ I∙₀.glue-β (f₂₁ c) / ! (∘-ap from right (glue (f₂₃ c)) ∙ I∙₄.glue-β (f₂₃ c)) / ∙□-i/ ! end-lemma1 / end-lemma3 / ∎ where assoc : ∀ {i} {A : Type i} {a b b' c : A} {u u' : a == b} {v v1 v2 v3 v4 v5 : b == c} {w w1 w2 w3 w4 w5 : a == b'} {x x' : b' == c} (α : (u , v =□ w , x)) (p1 : v1 == v) (p2 : v2 == v1) (p3 : v3 == v2) (p4 : v4 == v3) (p5 : v5 == v4) (q1 : w == w1) (q2 : w1 == w2) (q3 : w2 == w3) (q4 : w3 == w4) (q5 : w4 == w5) (r : u' == u) (s : x == x') → α ∙□-i/ p1 / q1 / ∙□-o/ r / s / ∙□-i/ p2 / q2 / ∙□-i/ p3 / q3 / ∙□-i/ p4 / q4 / ∙□-i/ p5 / q5 / == α ∙□-o/ r / s / ∙□-i/ p5 ∙ p4 ∙ p3 ∙ p2 ∙ p1 / q1 ∙ q2 ∙ q3 ∙ q4 ∙ q5 / assoc α idp idp idp idp idp idp idp idp idp idp idp idp = idp lemma2-2 = ap↓ (ap from) (↓-='-in (E₂∙Red.coh c (↓-='-out (apd (glue {d = h-v-span}) (glue c)) ∙□-i/ E₂∙Red.lhs-i c / E₂∙Red.rhs-i c /) ∙□-i/ E₂∙Red.lhs-o c / E₂∙Red.rhs-o c /)) =⟨ ap↓-↓-='-in-β _ _ from (E₂∙Red.coh c (↓-='-out (apd (glue {d = h-v-span}) (glue c)) ∙□-i/ E₂∙Red.lhs-i c / E₂∙Red.rhs-i c /) ∙□-i/ E₂∙Red.lhs-o c / E₂∙Red.rhs-o c /) ⟩ ↓-='-in ((ap□ from (E₂∙Red.coh c (↓-='-out (apd (glue {d = h-v-span}) (glue c)) ∙□-i/ E₂∙Red.lhs-i c / E₂∙Red.rhs-i c /) ∙□-i/ E₂∙Red.lhs-o c / E₂∙Red.rhs-o c /)) ∙□-i/ ap-∘ from (i₄∙ ∘ f₃∙) (glue c) / ∘-ap from (i₀∙ ∘ f₁∙) (glue c) /) =⟨ lemma2-2' |in-ctx ↓-='-in ⟩ ↓-='-in (↓-='-out (apd (glue {d = v-h-span}) (glue c)) ∙□-o/ ∘-ap from left (glue (f₂₁ c)) ∙ I∙₀.glue-β (f₂₁ c) / ! (∘-ap from right (glue (f₂₃ c)) ∙ I∙₄.glue-β (f₂₃ c)) / ∙□-i/ ! end-lemma1 / end-lemma3 /) ∎ lemma2-1 = apd (ap from ∘ ap to ∘ glue) (glue c) =⟨ apd-∘' (ap from ∘ ap to) glue (glue c) ⟩ ap↓ (ap from ∘ ap to) (apd (glue {d = v-h-span}) (glue c)) =⟨ ap↓-∘ (ap from) (ap to) (apd glue (glue c)) ⟩ ap↓ (ap from) (ap↓ (ap to) (apd glue (glue c))) =⟨ to-glue-glue-β c |in-ctx (ap↓ (ap from)) ⟩ ap↓ (ap from) ((↓-='-in (E₂∙Red.coh c (↓-='-out (apd (glue {d = h-v-span}) (glue c)) ∙□-i/ E₂∙Red.lhs-i c / E₂∙Red.rhs-i c /) ∙□-i/ E₂∙Red.lhs-o c / E₂∙Red.rhs-o c /)) ◃/ To.glue-β (left (f₂₁ c)) / ! (To.glue-β (right (f₂₃ c))) /) =⟨ ap↓-◃/ (ap from) _ (To.glue-β (left (f₂₁ c))) _ ⟩ ap↓ (ap from) (↓-='-in (E₂∙Red.coh c (↓-='-out (apd (glue {d = h-v-span}) (glue c)) ∙□-i/ E₂∙Red.lhs-i c / E₂∙Red.rhs-i c /) ∙□-i/ E₂∙Red.lhs-o c / E₂∙Red.rhs-o c /)) ◃/ ap (ap from) (To.glue-β (left (f₂₁ c))) / ap (ap from) (! (To.glue-β (right (f₂₃ c)))) / =⟨ lemma2-2 |in-ctx (λ u → u ◃/ ap (ap from) (To.glue-β (left (f₂₁ c))) / ap (ap from) (! (To.glue-β (right (f₂₃ c)))) /) ⟩ ↓-='-in (↓-='-out (apd (glue {d = v-h-span}) (glue c)) ∙□-o/ ∘-ap from left (glue (f₂₁ c)) ∙ I∙₀.glue-β (f₂₁ c) / ! (∘-ap from right (glue (f₂₃ c)) ∙ I∙₄.glue-β (f₂₃ c)) / ∙□-i/ ! end-lemma1 / end-lemma3 /) ◃/ ap (ap from) (To.glue-β (left (f₂₁ c))) / ap (ap from) (! (To.glue-β (right (f₂₃ c)))) / ∎ lemma2 = ↓-='-out (apd (ap from ∘ ap to ∘ glue) (glue c)) =⟨ lemma2-1 |in-ctx ↓-='-out ⟩ ↓-='-out (↓-='-in (↓-='-out (apd (glue {d = v-h-span}) (glue c)) ∙□-o/ ∘-ap from left (glue (f₂₁ c)) ∙ I∙₀.glue-β (f₂₁ c) / ! (∘-ap from right (glue (f₂₃ c)) ∙ I∙₄.glue-β (f₂₃ c)) / ∙□-i/ ! end-lemma1 / end-lemma3 /) ◃/ ap (ap from) (To.glue-β (left (f₂₁ c))) / ap (ap from) (! (To.glue-β (right (f₂₃ c)))) /) =⟨ thing (↓-='-out (apd (glue {d = v-h-span}) (glue c)) ∙□-o/ ∘-ap from left (glue (f₂₁ c)) ∙ I∙₀.glue-β (f₂₁ c) / ! (∘-ap from right (glue (f₂₃ c)) ∙ I∙₄.glue-β (f₂₃ c)) / ∙□-i/ ! end-lemma1 / end-lemma3 /) (ap (ap from) (To.glue-β (left (f₂₁ c)))) (ap (ap from) (! (To.glue-β (right (f₂₃ c))))) ⟩ ↓-='-out (apd (glue {d = v-h-span}) (glue c)) ∙□-o/ ∘-ap from left (glue (f₂₁ c)) ∙ I∙₀.glue-β (f₂₁ c) / ! (∘-ap from right (glue (f₂₃ c)) ∙ I∙₄.glue-β (f₂₃ c)) / ∙□-i/ ! end-lemma1 / end-lemma3 / ∙□-o/ ap (ap from) (To.glue-β (left (f₂₁ c))) / ap (ap from) (! (To.glue-β (right (f₂₃ c)))) / =⟨ ch (↓-='-out (apd (glue {d = v-h-span}) (glue c))) (∘-ap from left (glue (f₂₁ c))) (ap-∘ from left (glue (f₂₁ c))) (!-∘-ap from left (glue (f₂₁ c))) (I∙₀.glue-β (f₂₁ c)) (∘-ap from right (glue (f₂₃ c))) (ap-∘ from right (glue (f₂₃ c))) (!-∘-ap from right (glue (f₂₃ c))) (I∙₄.glue-β (f₂₃ c)) (! end-lemma1) end-lemma3 (ap (ap from) (To.glue-β (left (f₂₁ c)))) (! (To.glue-β (left (f₂₁ c))) |in-ctx ap from) (!-ap (ap from) (To.glue-β (left (f₂₁ c)))) (ap (ap from) (! (To.glue-β (right (f₂₃ c))))) ⟩ ↓-='-out (apd (glue {d = v-h-span}) (glue c)) ∙□-i/ ! end-lemma1 / end-lemma3 / ∙□-o/ ! (from-to-g-l (f₂₁ c)) / from-to-g-r (f₂₃ c) / ∎ where ch : ∀ {i} {A : Type i} {a b b' c : A} {p₁ p₂ p₃ p₄ : a == b} {q₁ q₂ : b == c} {r₁ r₂ : a == b'} {s₁ s₂ s₃ s₄ : b' == c} (α : (p₁ , q₁ =□ r₁ , s₁)) (β₁ : p₃ == p₂) (β₁-inv : p₂ == p₃) (eq : ! β₁ == β₁-inv) (β₂ : p₂ == p₁) (β'₁ : s₃ == s₂) (β'₁-inv : s₂ == s₃) (eq' : ! β'₁ == β'₁-inv) (β'₂ : s₂ == s₁) (γ : q₂ == q₁) (γ' : r₁ == r₂) (β₃ : p₄ == p₃) (β₃-inv : p₃ == p₄) (eq₃ : ! β₃ == β₃-inv) (β'₃ : s₃ == s₄) → α ∙□-o/ β₁ ∙ β₂ / ! (β'₁ ∙ β'₂) / ∙□-i/ γ / γ' / ∙□-o/ β₃ / β'₃ / == α ∙□-i/ γ / γ' / ∙□-o/ ! (_ =⟨ ! β₂ ⟩ _ =⟨ β₁-inv ⟩ _ =⟨ β₃-inv ⟩ _ ∎) / (_ =⟨ ! β'₂ ⟩ _ =⟨ β'₁-inv ⟩ _ =⟨ β'₃ ⟩ _ ∎) / ch α idp .idp idp idp idp .idp idp idp idp idp idp .idp idp idp = idp
56.05315
196
0.417313
cbe41c3079c861fae9c1b24233f3916940c34ee6
6,394
agda
Agda
Agda/Gradual Security/dynamic.agda
kellino/TypeSystems
acf5a153e14a7bdc0c9332fa602fa369fe7add46
[ "MIT" ]
2
2016-10-27T08:05:40.000Z
2017-05-26T23:06:17.000Z
Agda/Gradual Security/dynamic.agda
kellino/TypeSystems
acf5a153e14a7bdc0c9332fa602fa369fe7add46
[ "MIT" ]
null
null
null
Agda/Gradual Security/dynamic.agda
kellino/TypeSystems
acf5a153e14a7bdc0c9332fa602fa369fe7add46
[ "MIT" ]
null
null
null
module dynamic where open import LSsyntax open import static open import Relation.Nullary open import Data.Nat using (ℕ ; _+_) open import Data.Fin using (Fin; toℕ) open import Data.Vec using (Vec ; lookup; _∷_; []) open import Data.Product open import Relation.Binary.PropositionalEquality open import Relation.Nullary open import Data.Bool using (Bool; true ; false) data _⊓ˡ_ : (ℓ₁ ℓ₂ : Label) → Set where ℓ⊓✭ : ∀ ℓ → ℓ ⊓ˡ ✭ ✭⊓ℓ : ∀ ℓ → ✭ ⊓ˡ ℓ idℓ : ∀ ℓ → ℓ ⊓ˡ ℓ _⊓ᵣ_ : ∀ (ℓ₁ ℓ₂ : Label) → Dec (ℓ₁ ⊓ˡ ℓ₂) ⊤ ⊓ᵣ ⊤ = yes (idℓ ⊤) ⊤ ⊓ᵣ ⊥ = no (λ ()) ⊤ ⊓ᵣ ✭ = yes (ℓ⊓✭ ⊤) ⊥ ⊓ᵣ ⊤ = no (λ ()) ⊥ ⊓ᵣ ⊥ = yes (idℓ ⊥) ⊥ ⊓ᵣ ✭ = yes (ℓ⊓✭ ⊥) ✭ ⊓ᵣ ⊤ = yes (✭⊓ℓ ⊤) ✭ ⊓ᵣ ⊥ = yes (✭⊓ℓ ⊥) ✭ ⊓ᵣ ✭ = yes (ℓ⊓✭ ✭) -- note that this is not actually correct. The meet of ⊤ and bottom for example should be undefined, -- but that isn't easy to model directly in Agda. However, if we only call this after induction over -- the proof of _⊓ᵣ_ it (should) be impossible to call one of the incorrect cases. recMeet : ∀ (ℓ₁ ℓ₂ : Label) → Label recMeet ⊤ ⊤ = ⊤ recMeet ⊤ ✭ = ⊤ recMeet ⊥ ⊥ = ⊥ recMeet ⊥ ✭ = ⊥ recMeet ✭ ⊤ = ⊤ recMeet ✭ ⊥ = ⊥ recMeet ✭ ✭ = ✭ recMeet _ _ = ✭ -- fake case _⊓_ : ∀ (t₁ t₂ : GType) → GType bool x ⊓ bool x₁ with x ⊓ᵣ x₁ bool x ⊓ bool x₁ | yes p = bool (recMeet x x₁) bool x ⊓ bool x₁ | no ¬p = err bool x ⊓ _ = err (t₁ ⇒ x) t₂ ⊓ (t₃ ⇒ x₁) t₄ with x ⊓ᵣ x₁ (t₁ ⇒ x) t₂ ⊓ (t₃ ⇒ x₁) t₄ | yes p with (t₁ ⊓ t₃) | (t₂ ⊓ t₄) (t₁ ⇒ x₂) t₂ ⊓ (t₃ ⇒ x₃) t₄ | yes p | (bool x) | (bool x₁) = ((bool x) ⇒ (recMeet x₂ x₃)) (bool x) -- this is probably not correct, but it keeps things simple. (t₁ ⇒ x₂) t₂ ⊓ (t₃ ⇒ x₃) t₄ | yes p | (bool x) | ((d ⇒ x₁) d₁) = err (t₁ ⇒ x₂) t₂ ⊓ (t₃ ⇒ x₃) t₄ | yes p | ((c ⇒ x) c₁) | (bool x₁) = err (t₁ ⇒ x₂) t₂ ⊓ (t₃ ⇒ x₃) t₄ | yes p | ((c ⇒ x) c₁) | ((d ⇒ x₁) d₁) = err (t₁ ⇒ x₁) t₂ ⊓ (t₃ ⇒ x₂) t₄ | yes p | (bool x) | err = err (t₁ ⇒ x₁) t₂ ⊓ (t₃ ⇒ x₂) t₄ | yes p | ((c ⇒ x) c₁) | err = err (t₁ ⇒ x₁) t₂ ⊓ (t₃ ⇒ x₂) t₄ | yes p | err | (bool x) = err (t₁ ⇒ x₁) t₂ ⊓ (t₃ ⇒ x₂) t₄ | yes p | err | ((d ⇒ x) d₁) = err (t₁ ⇒ x) t₂ ⊓ (t₃ ⇒ x₁) t₄ | yes p | err | err = err (t₁ ⇒ x) t₂ ⊓ (t₃ ⇒ x₁) t₄ | no ¬p = err _ ⊓ _ = err I≼ : ∀ (ℓ₁ ℓ₂ : Label) → (Label × Label) I≼ ⊤ ✭ = ⊤ , ⊤ I≼ ✭ ⊤ = ✭ , ⊤ I≼ ✭ ⊥ = ⊥ , ⊥ I≼ ⊥ ✭ = ⊥ , ✭ I≼ ℓ₁ ℓ₂ = ℓ₁ , ℓ₂ Δ≼ : ∀ (triple : Label × Label × Label) → (Label × Label) Δ≼ (ℓ₁ , ⊤ , ⊤) = ℓ₁ , ⊤ Δ≼ (ℓ₁ , ⊤ , ✭) = ℓ₁ , ⊤ Δ≼ (⊥ , ⊥ , ℓ₃) = ⊥ , ℓ₃ Δ≼ (⊥ , ✭ , ℓ₃) = ⊥ , ℓ₃ Δ≼ (ℓ₁ , ✭ , ℓ₃) = ℓ₁ , ℓ₃ Δ≼ (ℓ₁ , ℓ₂ , ℓ₃) = ℓ₁ , ℓ₃ Δ< : ∀ (triple : GType × GType × GType) → (GType × GType) Δ< (bool ℓ₁ , bool ℓ₂ , bool ℓ₃) = let new = Δ≼ (ℓ₁ , ℓ₂ , ℓ₃) in bool (proj₁ new) , bool (proj₂ new) Δ< ((t₁ ⇒ ℓ₁) t′₁ , (t₂ ⇒ ℓ₂) t′₂ , (t₃ ⇒ ℓ₃) t′₃) = let new = Δ≼ (ℓ₁ , ℓ₂ , ℓ₃) in ((t₁ ⇒ (proj₁ new)) t′₁) , ((t₃ ⇒ (proj₂ new)) t′₃) Δ< (_ , _ , _) = err , err interior : ∀ (t : GType) → (GType × GType) interior (bool ℓ) = (bool ℓ) , (bool ℓ) interior ((t ⇒ ℓ) t₁) = let (ℓ₁ , ℓ₂) = I≼ (getLabel t) ℓ in ((setLabel t ℓ₁) ⇒ ℓ₂) t₁ , ((setLabel t ℓ₁) ⇒ ℓ₂) t₁ interior err = err , err _∘<_ : ∀ (t₁ t₂ : (GType × GType)) → (GType × GType) (s₁ , s₂₁) ∘< (s₂₂ , s₃) = Δ< (s₁ , (s₂₁ ⊓ s₂₂) , s₃) dynamicCheck : ∀ {n} (Γ : Ctx n) (t : Term) → Check Γ t -- variables dynamicCheck {n} Γ (var v) with fromℕ n v dynamicCheck {n} Γ (var .(toℕ m)) | yes m = yes (lookup m Γ) (Sx m refl) dynamicCheck {n} Γ (var .(n + m)) | no m = no -- literals dynamicCheck Γ (litBool x ℓ) = yes (bool ℓ) (Sb x ℓ) -- lambda abstraction dynamicCheck Γ (lam x t x₁) with dynamicCheck (x ∷ Γ) t dynamicCheck Γ (lam x .(erase t) ℓ) | yes τ t = yes ((x ⇒ ℓ) τ) (Sλ x ℓ t) dynamicCheck Γ (lam x t x₁) | no = no -- logical and dynamicCheck Γ (t ∧ t₁) with dynamicCheck Γ t | dynamicCheck Γ t₁ dynamicCheck Γ (.(erase t) ∧ .(erase t₁)) | yes τ t | (yes τ₁ t₁) with (interior τ) ∘< (interior τ₁) dynamicCheck Γ (.(erase t) ∧ .(erase t₁)) | yes τ t | (yes τ₁ t₁) | (bool x , bool x₁) = yes (bool (getLabel τ ~⋎~ getLabel τ₁)) (t S∧ t₁) dynamicCheck Γ (.(erase t) ∧ .(erase t₁)) | yes τ t | (yes τ₁ t₁) | (_ , _) = no dynamicCheck Γ (t ∧ t₁) | _ | _ = no -- logical or dynamicCheck Γ (t ∨ t₁) with dynamicCheck Γ t | dynamicCheck Γ t₁ dynamicCheck Γ (.(erase t) ∨ .(erase t₁)) | yes τ t | (yes τ₁ t₁) with (interior τ) ∘< (interior τ₁) dynamicCheck Γ (.(erase t) ∨ .(erase t₁)) | yes τ t | (yes τ₁ t₁) | (bool x , bool x₁) = yes (bool (getLabel τ ~⋎~ getLabel τ₁)) (t S∨ t₁) dynamicCheck Γ (.(erase t) ∨ .(erase t₁)) | yes τ t | (yes τ₁ t₁) | (_ , _) = no dynamicCheck Γ (t ∨ t₁) | _ | _ = no -- application -- this needs to be doublechecked! dynamicCheck Γ (t ∙ t₁) with dynamicCheck Γ t | dynamicCheck Γ t₁ dynamicCheck Γ (.(erase t) ∙ .(erase t₁)) | yes ((τ ⇒ ℓ₁) τ₁) t | yes τ₂ t₁ with (interior ((τ ⇒ ℓ₁) τ₁)) ∘< (interior τ₂) dynamicCheck Γ (.(erase t) ∙ .(erase t₁)) | yes ((τ ⇒ ℓ₁) τ₁) t | (yes τ₂ t₁) | (bool x , bool x₁) = yes (bool (getLabel τ₁ ~⋎~ ℓ₁)) (S∙ t t₁ (yes τ₂ τ)) dynamicCheck Γ (.(erase t) ∙ .(erase t₁)) | yes ((τ ⇒ ℓ₁) τ₁) t | (yes τ₂ t₁) | (bool x , (proj₄ ⇒ x₁) proj₅) = no dynamicCheck Γ (.(erase t) ∙ .(erase t₁)) | yes ((τ ⇒ ℓ₁) τ₁) t | (yes τ₂ t₁) | ((proj₃ ⇒ x) proj₄ , bool x₁) = no dynamicCheck Γ (.(erase t) ∙ .(erase t₁)) | yes ((τ ⇒ ℓ₁) τ₁) t | (yes τ₂ t₁) | ((proj₃ ⇒ x) proj₄ , (proj₅ ⇒ x₁) proj₆) = no dynamicCheck Γ (.(erase t) ∙ .(erase t₁)) | yes ((τ ⇒ ℓ₁) τ₁) t | (yes τ₂ t₁) | (_ , _) = no dynamicCheck Γ (.(erase t) ∙ .(erase t₁)) | yes _ t | (yes _ t₁) = no dynamicCheck Γ (.(erase t) ∙ t₁) | yes τ t | no = no dynamicCheck Γ (t₁ ∙ .(erase t)) | no | yes τ t = no dynamicCheck Γ (t ∙ t₁) | no | no = no -- if then else dynamicCheck Γ (if b then t₁ else t₂) with dynamicCheck Γ b dynamicCheck Γ (if .(erase b) then t₁ else t₂) | yes τ b with dynamicCheck Γ t₁ | dynamicCheck Γ t₂ dynamicCheck Γ (if .(erase b) then .(erase t₁) else .(erase t₂)) | yes τ b | (yes τ₁ t₁) | (yes τ₂ t₂) with (interior τ₁) ∘< (interior τ₂) dynamicCheck Γ (if .(erase b) then .(erase t₁) else .(erase t₂)) | yes τ b | (yes τ₁ t₁) | (yes τ₂ t₂) | (bool ℓ , bool ℓ₁) = yes (bool (getLabel (τ₁ :∨: τ₂) ~⋎~ getLabel τ)) (Sif b t₁ t₂) dynamicCheck Γ (if .(erase b) then .(erase t₁) else .(erase t₂)) | yes τ b | (yes τ₁ t₁) | (yes τ₂ t₂) | (_ , _) = no dynamicCheck Γ (if .(erase b) then t₁ else t₂) | yes τ b | _ | _ = no dynamicCheck Γ (if b then t₁ else t₂) | no = no -- error dynamicCheck Γ error = no
42.626667
188
0.547545
4d14793e7e9fedc62dac9057b602a488b8cdf0ae
3,258
agda
Agda
src/Semantics/Iemhoff.agda
mietek/imla2017
accc6c57390c435728d568ae590a02b2776b8891
[ "X11" ]
17
2017-02-27T05:04:55.000Z
2021-01-17T13:02:58.000Z
src/Semantics/Iemhoff.agda
mietek/imla2017
accc6c57390c435728d568ae590a02b2776b8891
[ "X11" ]
null
null
null
src/Semantics/Iemhoff.agda
mietek/imla2017
accc6c57390c435728d568ae590a02b2776b8891
[ "X11" ]
null
null
null
module Semantics.Iemhoff where open import Syntax public -- Brilliant Kripke models. record Model : Set₁ where infix 3 _⊩ᵅ_ field World : Set _≤_ : World → World → Set refl≤ : ∀ {w} → w ≤ w trans≤ : ∀ {w w′ w″} → w ≤ w′ → w′ ≤ w″ → w ≤ w″ _R_ : World → World → Set reflR : ∀ {w} → w R w transR : ∀ {w w′ w″} → w R w′ → w′ R w″ → w R w″ _⊩ᵅ_ : World → Atom → Set mono⊩ᵅ : ∀ {w w′ P} → w ≤ w′ → w ⊩ᵅ P → w′ ⊩ᵅ P _R⨾≤_ : World → World → Set _R⨾≤_ = _R_ ⨾ _≤_ -- Brilliance. field R⨾≤→R : ∀ {w v′} → w R⨾≤ v′ → w R v′ -- Vindication, as a consequence of brilliance. ≤→R : ∀ {w v′} → w ≤ v′ → w R v′ ≤→R {w} ψ = R⨾≤→R (w , (reflR , ψ)) open Model {{…}} public -- Forcing in a particular world of a particular model. module _ {{_ : Model}} where infix 3 _⊩_ _⊩_ : World → Type → Set w ⊩ α P = w ⊩ᵅ P w ⊩ A ⇒ B = ∀ {w′} → w ≤ w′ → w′ ⊩ A → w′ ⊩ B w ⊩ □ A = ∀ {v′} → w R v′ → v′ ⊩ A w ⊩ A ⩕ B = w ⊩ A ∧ w ⊩ B w ⊩ ⫪ = ⊤ w ⊩ ⫫ = ⊥ w ⊩ A ⩖ B = w ⊩ A ∨ w ⊩ B infix 3 _⊩⋆_ _⊩⋆_ : World → Stack Type → Set w ⊩⋆ ∅ = ⊤ w ⊩⋆ Ξ , A = w ⊩⋆ Ξ ∧ w ⊩ A -- Monotonicity of forcing with respect to constructive accessibility. module _ {{_ : Model}} where mono⊩ : ∀ {A w w′} → w ≤ w′ → w ⊩ A → w′ ⊩ A mono⊩ {α P} ψ s = mono⊩ᵅ ψ s mono⊩ {A ⇒ B} ψ f = λ ψ′ a → f (trans≤ ψ ψ′) a mono⊩ {□ A} ψ f = λ ρ → f (transR (≤→R ψ) ρ) mono⊩ {A ⩕ B} ψ (a , b) = mono⊩ {A} ψ a , mono⊩ {B} ψ b mono⊩ {⫪} ψ ∙ = ∙ mono⊩ {⫫} ψ () mono⊩ {A ⩖ B} ψ (ι₁ a) = ι₁ (mono⊩ {A} ψ a) mono⊩ {A ⩖ B} ψ (ι₂ b) = ι₂ (mono⊩ {B} ψ b) mono⊩⋆ : ∀ {Ξ w w′} → w ≤ w′ → w ⊩⋆ Ξ → w′ ⊩⋆ Ξ mono⊩⋆ {∅} ψ ∙ = ∙ mono⊩⋆ {Ξ , A} ψ (ξ , s) = mono⊩⋆ {Ξ} ψ ξ , mono⊩ {A} ψ s -- Additional equipment. module _ {{_ : Model}} where lookup : ∀ {Ξ A w} → A ∈ Ξ → w ⊩⋆ Ξ → w ⊩ A lookup top (ξ , s) = s lookup (pop i) (ξ , s) = lookup i ξ -- Forcing in all worlds of all models, or semantic entailment. infix 3 _⊨_ _⊨_ : Context → Type → Set₁ Γ ⁏ Δ ⊨ A = ∀ {{_ : Model}} {w} → w ⊩⋆ Γ → (∀ {v′} → w R v′ → v′ ⊩⋆ Δ) → w ⊩ A -- Soundness of the semantics with respect to the syntax. reflect : ∀ {Γ Δ A} → Γ ⁏ Δ ⊢ A → Γ ⁏ Δ ⊨ A reflect (var i) γ δ = lookup i γ reflect (mvar i) γ δ = lookup i (δ reflR) reflect (lam d) γ δ = λ ψ a → reflect d (mono⊩⋆ ψ γ , a) (λ ρ → δ (transR (≤→R ψ) ρ)) reflect (app d e) γ δ = (reflect d γ δ) refl≤ (reflect e γ δ) reflect (box d) γ δ = λ ρ → reflect d ∙ (λ ρ′ → δ (transR ρ ρ′)) reflect (unbox d e) γ δ = reflect e γ (λ ρ → δ ρ , (reflect d γ δ) ρ) reflect (pair d e) γ δ = reflect d γ δ , reflect e γ δ reflect (fst d) γ δ = π₁ (reflect d γ δ) reflect (snd d) γ δ = π₂ (reflect d γ δ) reflect unit γ δ = ∙ reflect (boom d) γ δ = elim⊥ (reflect d γ δ) reflect (left d) γ δ = ι₁ (reflect d γ δ) reflect (right d) γ δ = ι₂ (reflect d γ δ) reflect (case d e f) γ δ = elim∨ (reflect d γ δ) (λ a → reflect e (γ , a) δ) (λ b → reflect f (γ , b) δ)
29.618182
76
0.440147
fbc81c356e88036e1274ad221306cc9c94780a6e
8,721
agda
Agda
src/Categories/Bicategory/Bigroupoid.agda
turion/agda-categories
ad0f94b6cf18d8a448b844b021aeda58e833d152
[ "MIT" ]
5
2020-10-07T12:07:53.000Z
2020-10-10T21:41:32.000Z
src/Categories/Bicategory/Bigroupoid.agda
turion/agda-categories
ad0f94b6cf18d8a448b844b021aeda58e833d152
[ "MIT" ]
null
null
null
src/Categories/Bicategory/Bigroupoid.agda
turion/agda-categories
ad0f94b6cf18d8a448b844b021aeda58e833d152
[ "MIT" ]
1
2021-11-04T06:54:45.000Z
2021-11-04T06:54:45.000Z
{-# OPTIONS --without-K --safe #-} module Categories.Bicategory.Bigroupoid where open import Level open import Function using (_$_) open import Data.Product using (Σ; _,_) open import Categories.Adjoint.TwoSided using (_⊣⊢_) open import Categories.Category open import Categories.Category.Equivalence using (WeakInverse) import Categories.Category.Equivalence.Properties as EP open import Categories.Category.Product open import Categories.Category.Groupoid using (IsGroupoid) open import Categories.Bicategory open import Categories.Bicategory.Extras open import Categories.Functor renaming (id to idF) open import Categories.Functor.Properties open import Categories.Functor.Bifunctor.Properties open import Categories.Functor.Construction.Constant open import Categories.NaturalTransformation using (NaturalTransformation; ntHelper) open import Categories.NaturalTransformation.NaturalIsomorphism using (_≃_; NaturalIsomorphism) import Categories.Morphism as Mor import Categories.Morphism.Properties as MP import Categories.Morphism.Reasoning as MR -- https://link.springer.com/article/10.1023/A:1011270417127 record IsBigroupoid {o ℓ e t} (C : Bicategory o ℓ e t) : Set (o ⊔ ℓ ⊔ e ⊔ t) where open Bicategory C public open Extras C field hom-isGroupoid : ∀ A B → IsGroupoid (hom A B) hom[_,_]⁻¹ : ∀ A B → Functor (hom A B) (hom B A) cancel : ∀ A B → ⊚ ∘F (hom[ A , B ]⁻¹ ※ idF) ≃ const id₁ cancel′ : ∀ A B → ⊚ ∘F (idF ※ hom[ A , B ]⁻¹) ≃ const id₁ module hom⁻¹ {A B} = Functor (hom[ A , B ]⁻¹) module cancel {A B} = NaturalIsomorphism (cancel A B) module cancel′ {A B} = NaturalIsomorphism (cancel′ A B) infix 13 _⁻¹ _⁻¹′ _⁻¹ : ∀ {A B} → A ⇒₁ B → B ⇒₁ A _⁻¹ = hom⁻¹.F₀ _⁻¹′ : ∀ {A B} {f g : A ⇒₁ B} → f ⇒₂ g → f ⁻¹ ⇒₂ g ⁻¹ _⁻¹′ = hom⁻¹.F₁ field pentagon₁ : ∀ {A B} {f : A ⇒₁ B} → let open Commutation (hom A B) in [ (f ∘ₕ f ⁻¹) ∘ₕ f ⇒ f ]⟨ associator.from ⇒⟨ f ∘ₕ f ⁻¹ ∘ₕ f ⟩ f ▷ cancel.⇒.η f ⇒⟨ f ∘ₕ id₁ ⟩ unitorʳ.from ≈ cancel′.⇒.η f ◁ f ⇒⟨ id₁ ∘ₕ f ⟩ unitorˡ.from ⟩ pentagon₂ : ∀ {A B} {f : A ⇒₁ B} → let open Commutation (hom B A) in [ (f ⁻¹ ∘ₕ f) ∘ₕ f ⁻¹ ⇒ f ⁻¹ ]⟨ associator.from ⇒⟨ f ⁻¹ ∘ₕ f ∘ₕ f ⁻¹ ⟩ f ⁻¹ ▷ cancel′.⇒.η f ⇒⟨ f ⁻¹ ∘ₕ id₁ ⟩ unitorʳ.from ≈ cancel.⇒.η f ◁ f ⁻¹ ⇒⟨ id₁ ∘ₕ f ⁻¹ ⟩ unitorˡ.from ⟩ private variable A B : Obj f g : A ⇒₁ B α β : f ⇒₂ g open hom.HomReasoning open hom.Equiv module MR′ {A B} where open MR (hom A B) public open Mor (hom A B) public open MP (hom A B) public open MR′ module ℱ = Functor cancel-comm : ∀ {α : f ⇒₂ g} → cancel.⇒.η g ∘ᵥ (α ⁻¹′ ⊚₁ α) ≈ cancel.⇒.η f cancel-comm {α = α} = cancel.⇒.commute α ○ identity₂ˡ cancel⁻¹-comm : ∀ {α : f ⇒₂ g} → (α ⁻¹′ ⊚₁ α) ∘ᵥ cancel.⇐.η f ≈ cancel.⇐.η g cancel⁻¹-comm {α = α} = ⟺ (cancel.⇐.commute α) ○ identity₂ʳ cancel′-comm : ∀ {α : f ⇒₂ g} → cancel′.⇒.η g ∘ᵥ (α ⊚₁ α ⁻¹′) ≈ cancel′.⇒.η f cancel′-comm {α = α} = cancel′.⇒.commute α ○ identity₂ˡ cancel′⁻¹-comm : ∀ {α : f ⇒₂ g} → (α ⊚₁ α ⁻¹′) ∘ᵥ cancel′.⇐.η f ≈ cancel′.⇐.η g cancel′⁻¹-comm {α = α} = ⟺ (cancel′.⇐.commute α) ○ identity₂ʳ hom⁻¹⁻¹≃id : ∀ {A B} → hom[ B , A ]⁻¹ ∘F hom[ A , B ]⁻¹ ≃ idF hom⁻¹⁻¹≃id {A} {B} = record { F⇒G = ntHelper record { η = λ f → (((unitorˡ.from ∘ᵥ cancel.⇒.η (f ⁻¹) ◁ f) ∘ᵥ associator.to) ∘ᵥ f ⁻¹ ⁻¹ ▷ cancel.⇐.η f) ∘ᵥ unitorʳ.to ; commute = λ {f g} α → begin ((((unitorˡ.from ∘ᵥ cancel.⇒.η (g ⁻¹) ◁ g) ∘ᵥ associator.to) ∘ᵥ g ⁻¹ ⁻¹ ▷ cancel.⇐.η g) ∘ᵥ unitorʳ.to) ∘ᵥ α ⁻¹′ ⁻¹′ ≈˘⟨ pushʳ ◁-∘ᵥ-λ⁻¹ ⟩ (((unitorˡ.from ∘ᵥ cancel.⇒.η (g ⁻¹) ◁ g) ∘ᵥ associator.to) ∘ᵥ g ⁻¹ ⁻¹ ▷ cancel.⇐.η g) ∘ᵥ ((α ⁻¹′ ⁻¹′ ◁ id₁) ∘ᵥ unitorʳ.to) ≈⟨ center ◁-▷-exchg ⟩ ((unitorˡ.from ∘ᵥ cancel.⇒.η (g ⁻¹) ◁ g) ∘ᵥ associator.to) ∘ᵥ (α ⁻¹′ ⁻¹′ ◁ (g ⁻¹ ∘ₕ g) ∘ᵥ f ⁻¹ ⁻¹ ▷ cancel.⇐.η g) ∘ᵥ unitorʳ.to ≈⟨ center (⟺ assoc₂ ○ hom.∘-resp-≈ assoc⁻¹-◁-∘ₕ (ℱ.F-resp-≈ ((f ⁻¹ ⁻¹) ⊚-) (⟺ cancel⁻¹-comm))) ⟩ (unitorˡ.from ∘ᵥ cancel.⇒.η (g ⁻¹) ◁ g) ∘ᵥ ((α ⁻¹′ ⁻¹′ ◁ g ⁻¹ ◁ g ∘ᵥ associator.to) ∘ᵥ f ⁻¹ ⁻¹ ▷ ((α ⁻¹′ ⊚₁ α) ∘ᵥ cancel.⇐.η f)) ∘ᵥ unitorʳ.to ≈⟨ refl⟩∘⟨ (hom.∘-resp-≈ʳ (ℱ.homomorphism ((f ⁻¹ ⁻¹) ⊚-)) ○ center (⊚-assoc.⇐.commute _) ○ center⁻¹ ([ ⊚ ]-merge (⟺ [ ⊚ ]-decompose₁) identity₂ˡ) refl) ⟩∘⟨refl ⟩ (unitorˡ.from ∘ᵥ cancel.⇒.η (g ⁻¹) ◁ g) ∘ᵥ (((α ⁻¹′ ⁻¹′ ⊚₁ α ⁻¹′) ⊚₁ α) ∘ᵥ associator.to ∘ᵥ f ⁻¹ ⁻¹ ▷ cancel.⇐.η f) ∘ᵥ unitorʳ.to ≈˘⟨ assoc₂ ⟩ ((unitorˡ.from ∘ᵥ cancel.⇒.η (g ⁻¹) ◁ g) ∘ᵥ (((α ⁻¹′ ⁻¹′ ⊚₁ α ⁻¹′) ⊚₁ α) ∘ᵥ associator.to ∘ᵥ f ⁻¹ ⁻¹ ▷ cancel.⇐.η f)) ∘ᵥ unitorʳ.to ≈⟨ center ([ ⊚ ]-merge cancel-comm identity₂ˡ) ⟩∘⟨refl ⟩ (unitorˡ.from ∘ᵥ cancel.⇒.η (f ⁻¹) ⊚₁ α ∘ᵥ associator.to ∘ᵥ f ⁻¹ ⁻¹ ▷ cancel.⇐.η f) ∘ᵥ unitorʳ.to ≈˘⟨ (assoc₂ ○ assoc₂) ⟩∘⟨refl ⟩ (((unitorˡ.from ∘ᵥ cancel.⇒.η (f ⁻¹) ⊚₁ α) ∘ᵥ associator.to) ∘ᵥ f ⁻¹ ⁻¹ ▷ cancel.⇐.η f) ∘ᵥ unitorʳ.to ≈⟨ (hom.∘-resp-≈ʳ [ ⊚ ]-decompose₂) ⟩∘⟨refl ⟩∘⟨refl ⟩∘⟨refl ⟩ (((unitorˡ.from ∘ᵥ id₁ ▷ α ∘ᵥ cancel.⇒.η (f ⁻¹) ◁ f) ∘ᵥ associator.to) ∘ᵥ f ⁻¹ ⁻¹ ▷ cancel.⇐.η f) ∘ᵥ unitorʳ.to ≈⟨ pullˡ ρ-∘ᵥ-▷ ⟩∘⟨refl ⟩∘⟨refl ⟩∘⟨refl ⟩ ((((α ∘ᵥ unitorˡ.from) ∘ᵥ cancel.⇒.η (f ⁻¹) ◁ f) ∘ᵥ associator.to) ∘ᵥ f ⁻¹ ⁻¹ ▷ cancel.⇐.η f) ∘ᵥ unitorʳ.to ≈⟨ (assoc₂ ○ assoc₂ ○ assoc₂ ○ assoc₂) ⟩ α ∘ᵥ unitorˡ.from ∘ᵥ cancel.⇒.η (f ⁻¹) ◁ f ∘ᵥ associator.to ∘ᵥ f ⁻¹ ⁻¹ ▷ cancel.⇐.η f ∘ᵥ unitorʳ.to ≈˘⟨ refl⟩∘⟨ (assoc₂ ○ assoc₂ ○ assoc₂) ⟩ α ∘ᵥ (((unitorˡ.from ∘ᵥ cancel.⇒.η (f ⁻¹) ◁ f) ∘ᵥ associator.to) ∘ᵥ f ⁻¹ ⁻¹ ▷ cancel.⇐.η f) ∘ᵥ unitorʳ.to ∎ } ; F⇐G = ntHelper record { η = λ f → unitorʳ.from ∘ᵥ f ⁻¹ ⁻¹ ▷ cancel.⇒.η f ∘ᵥ associator.from ∘ᵥ cancel.⇐.η (f ⁻¹) ◁ f ∘ᵥ unitorˡ.to ; commute = λ {f g} α → begin (unitorʳ.from ∘ᵥ g ⁻¹ ⁻¹ ▷ cancel.⇒.η g ∘ᵥ associator.from ∘ᵥ cancel.⇐.η (g ⁻¹) ◁ g ∘ᵥ unitorˡ.to) ∘ᵥ α ≈⟨ assoc₂ ○ hom.∘-resp-≈ʳ (assoc₂ ○ hom.∘-resp-≈ʳ (assoc₂ ○ hom.∘-resp-≈ʳ assoc₂)) ⟩ unitorʳ.from ∘ᵥ g ⁻¹ ⁻¹ ▷ cancel.⇒.η g ∘ᵥ associator.from ∘ᵥ cancel.⇐.η (g ⁻¹) ◁ g ∘ᵥ unitorˡ.to ∘ᵥ α ≈⟨ refl⟩∘⟨ refl⟩∘⟨ refl⟩∘⟨ refl⟩∘⟨ ⟺ ▷-∘ᵥ-ρ⁻¹ ⟩ unitorʳ.from ∘ᵥ g ⁻¹ ⁻¹ ▷ cancel.⇒.η g ∘ᵥ associator.from ∘ᵥ cancel.⇐.η (g ⁻¹) ◁ g ∘ᵥ id₁ ▷ α ∘ᵥ unitorˡ.to ≈⟨ refl⟩∘⟨ refl⟩∘⟨ refl⟩∘⟨ pullˡ (⟺ [ ⊚ ]-decompose₁ ○ ⊚.F-resp-≈ (⟺ cancel⁻¹-comm , refl)) ⟩ unitorʳ.from ∘ᵥ g ⁻¹ ⁻¹ ▷ cancel.⇒.η g ∘ᵥ associator.from ∘ᵥ (α ⁻¹′ ⁻¹′ ⊚₁ α ⁻¹′ ∘ᵥ cancel.⇐.η (f ⁻¹)) ⊚₁ α ∘ᵥ unitorˡ.to ≈˘⟨ refl⟩∘⟨ refl⟩∘⟨ refl⟩∘⟨ hom.∘-resp-≈ˡ ([ ⊚ ]-merge refl identity₂ʳ) ⟩ unitorʳ.from ∘ᵥ g ⁻¹ ⁻¹ ▷ cancel.⇒.η g ∘ᵥ associator.from ∘ᵥ ((α ⁻¹′ ⁻¹′ ⊚₁ α ⁻¹′) ⊚₁ α ∘ᵥ cancel.⇐.η (f ⁻¹) ◁ f) ∘ᵥ unitorˡ.to ≈⟨ refl⟩∘⟨ refl⟩∘⟨ center⁻¹ (⊚-assoc.⇒.commute _) refl ⟩ unitorʳ.from ∘ᵥ g ⁻¹ ⁻¹ ▷ cancel.⇒.η g ∘ᵥ (α ⁻¹′ ⁻¹′ ⊚₁ α ⁻¹′ ⊚₁ α ∘ᵥ associator.from) ∘ᵥ cancel.⇐.η (f ⁻¹) ◁ f ∘ᵥ unitorˡ.to ≈⟨ refl⟩∘⟨ (hom.∘-resp-≈ʳ assoc₂ ○ pullˡ ([ ⊚ ]-merge identity₂ˡ cancel-comm)) ⟩ unitorʳ.from ∘ᵥ (α ⁻¹′ ⁻¹′) ⊚₁ (cancel.⇒.η f) ∘ᵥ associator.from ∘ᵥ cancel.⇐.η (f ⁻¹) ◁ f ∘ᵥ unitorˡ.to ≈⟨ refl⟩∘⟨ (hom.∘-resp-≈ˡ [ ⊚ ]-decompose₁ ○ assoc₂) ⟩ unitorʳ.from ∘ᵥ (α ⁻¹′ ⁻¹′) ◁ id₁ ∘ᵥ f ⁻¹ ⁻¹ ▷ cancel.⇒.η f ∘ᵥ associator.from ∘ᵥ cancel.⇐.η (f ⁻¹) ◁ f ∘ᵥ unitorˡ.to ≈⟨ (pullˡ λ-∘ᵥ-◁) ○ assoc₂ ⟩ α ⁻¹′ ⁻¹′ ∘ᵥ unitorʳ.from ∘ᵥ f ⁻¹ ⁻¹ ▷ cancel.⇒.η f ∘ᵥ associator.from ∘ᵥ cancel.⇐.η (f ⁻¹) ◁ f ∘ᵥ unitorˡ.to ∎ } ; iso = λ f → Iso-∘ (Iso-swap (unitʳ.iso _)) $ Iso-∘ ([ (f ⁻¹ ⁻¹) ⊚- ]-resp-Iso (Iso-swap (cancel.iso f))) $ Iso-∘ (Iso-swap associator.iso) $ Iso-∘ ([ -⊚ f ]-resp-Iso (cancel.iso _)) (unitˡ.iso _) } hom⁻¹-weakInverse : ∀ {A B} → WeakInverse hom[ A , B ]⁻¹ hom[ B , A ]⁻¹ hom⁻¹-weakInverse = record { F∘G≈id = hom⁻¹⁻¹≃id ; G∘F≈id = hom⁻¹⁻¹≃id } hom⁻¹-⊣Equivalence : ∀ {A} {B} → hom[ A , B ]⁻¹ ⊣⊢ hom[ B , A ]⁻¹ hom⁻¹-⊣Equivalence {A} {B} = EP.F⊣⊢G (hom⁻¹-weakInverse {A} {B}) -- A bigroupoid is a bicategory that has a bigroupoid structure record Bigroupoid (o ℓ e t : Level) : Set (suc (o ⊔ ℓ ⊔ e ⊔ t)) where field bicategory : Bicategory o ℓ e t isBigroupoid : IsBigroupoid bicategory open IsBigroupoid isBigroupoid public
51
171
0.521041
cbd1a50e554eb67b80cd328aaf3c8a506cdaad33
1,105
agda
Agda
agda/Algebra/Construct/Free/Semilattice/Relation/Unary/All/Dec.agda
oisdk/combinatorics-paper
3c176d4690566d81611080e9378f5a178b39b851
[ "MIT" ]
6
2020-09-11T17:45:41.000Z
2021-11-16T08:11:34.000Z
agda/Algebra/Construct/Free/Semilattice/Relation/Unary/All/Dec.agda
oisdk/combinatorics-paper
3c176d4690566d81611080e9378f5a178b39b851
[ "MIT" ]
null
null
null
agda/Algebra/Construct/Free/Semilattice/Relation/Unary/All/Dec.agda
oisdk/combinatorics-paper
3c176d4690566d81611080e9378f5a178b39b851
[ "MIT" ]
1
2021-11-11T12:30:21.000Z
2021-11-11T12:30:21.000Z
{-# OPTIONS --cubical --safe #-} module Algebra.Construct.Free.Semilattice.Relation.Unary.All.Dec where open import Prelude hiding (⊥; ⊤) open import Algebra.Construct.Free.Semilattice.Eliminators open import Algebra.Construct.Free.Semilattice.Definition open import Cubical.Foundations.HLevels open import Data.Empty.UniversePolymorphic open import HITs.PropositionalTruncation.Sugar open import HITs.PropositionalTruncation.Properties open import HITs.PropositionalTruncation open import Data.Unit.UniversePolymorphic open import Algebra.Construct.Free.Semilattice.Relation.Unary.All.Def open import Relation.Nullary open import Relation.Nullary.Decidable open import Relation.Nullary.Decidable.Properties open import Relation.Nullary.Decidable.Logic private variable p : Level ◻′? : ∀ {P : A → Type p} → (∀ x → Dec (P x)) → xs ∈𝒦 A ⇒∥ Dec (◻ P xs) ∥ ∥ ◻′? {P = P} P? ∥-prop {xs} = isPropDec (isProp-◻ {P = P} {xs = xs}) ∥ ◻′? P? ∥[] = yes tt ∥ ◻′? P? ∥ x ∷ xs ⟨ Pxs ⟩ = map-dec ∣_∣ refute-trunc (P? x) && Pxs ◻? : ∀ {P : A → Type p} → (∀ x → Dec (P x)) → ∀ xs → Dec (◻ P xs) ◻? P? = ∥ ◻′? P? ∥⇓
36.833333
72
0.702262
dfb2c053ff8c4285190cf79355c719dc83a1adef
1,169
agda
Agda
prototyping/PrettyPrinter.agda
FreakingBarbarians/luau
5187e64f88953f34785ffe58acd0610ee5041f5f
[ "MIT" ]
1
2022-02-11T21:30:17.000Z
2022-02-11T21:30:17.000Z
prototyping/PrettyPrinter.agda
FreakingBarbarians/luau
5187e64f88953f34785ffe58acd0610ee5041f5f
[ "MIT" ]
null
null
null
prototyping/PrettyPrinter.agda
FreakingBarbarians/luau
5187e64f88953f34785ffe58acd0610ee5041f5f
[ "MIT" ]
null
null
null
module PrettyPrinter where open import Agda.Builtin.IO using (IO) open import Agda.Builtin.Int using (pos) open import Agda.Builtin.Unit using (⊤) open import FFI.IO using (getContents; putStrLn; _>>=_; _>>_) open import FFI.Data.Aeson using (Value; eitherDecode) open import FFI.Data.Either using (Left; Right) open import FFI.Data.String using (String; _++_) open import FFI.Data.Text.Encoding using (encodeUtf8) open import FFI.System.Exit using (exitWith; ExitFailure) open import Luau.Syntax using (Block) open import Luau.Syntax.FromJSON using (blockFromJSON) open import Luau.Syntax.ToString using (blockToString) runBlock : Block → IO ⊤ runBlock block = putStrLn (blockToString block) runJSON : Value → IO ⊤ runJSON value with blockFromJSON(value) runJSON value | (Left err) = putStrLn ("Luau error: " ++ err) >> exitWith (ExitFailure (pos 1)) runJSON value | (Right block) = runBlock block runString : String → IO ⊤ runString txt with eitherDecode (encodeUtf8 txt) runString txt | (Left err) = putStrLn ("JSON error: " ++ err) >> exitWith (ExitFailure (pos 1)) runString txt | (Right value) = runJSON value main : IO ⊤ main = getContents >>= runString
34.382353
95
0.745937
23424fe57bb0766a8c3107fe5e7e3f6c8d33eda8
22,010
agda
Agda
Cubical/HITs/Sn/Properties.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
1
2022-02-05T01:25:02.000Z
2022-02-05T01:25:02.000Z
Cubical/HITs/Sn/Properties.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
null
null
null
Cubical/HITs/Sn/Properties.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
null
null
null
{-# OPTIONS --safe #-} module Cubical.HITs.Sn.Properties where open import Cubical.Foundations.Pointed open import Cubical.Foundations.Path open import Cubical.Foundations.Function open import Cubical.Foundations.Equiv open import Cubical.Foundations.HLevels open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Transport open import Cubical.Foundations.Prelude open import Cubical.Foundations.GroupoidLaws open import Cubical.Foundations.Univalence open import Cubical.HITs.S1 renaming (_·_ to _*_) open import Cubical.Data.Nat hiding (elim) open import Cubical.Data.Sigma open import Cubical.HITs.Sn.Base open import Cubical.HITs.Susp open import Cubical.HITs.Truncation -- open import Cubical.Homotopy.Loopspace open import Cubical.Homotopy.Connected open import Cubical.HITs.Join open import Cubical.Data.Bool private variable ℓ : Level IsoSucSphereSusp : (n : ℕ) → Iso (S₊ (suc n)) (Susp (S₊ n)) IsoSucSphereSusp zero = S¹IsoSuspBool IsoSucSphereSusp (suc n) = idIso IsoSucSphereSusp∙ : (n : ℕ) → Iso.inv (IsoSucSphereSusp n) north ≡ ptSn (suc n) IsoSucSphereSusp∙ zero = refl IsoSucSphereSusp∙ (suc n) = refl -- Elimination principles for spheres sphereElim : (n : ℕ) {A : (S₊ (suc n)) → Type ℓ} → ((x : S₊ (suc n)) → isOfHLevel (suc n) (A x)) → A (ptSn (suc n)) → (x : S₊ (suc n)) → A x sphereElim zero hlev pt = toPropElim hlev pt sphereElim (suc n) hlev pt north = pt sphereElim (suc n) {A = A} hlev pt south = subst A (merid (ptSn (suc n))) pt sphereElim (suc n) {A = A} hlev pt (merid a i) = sphereElim n {A = λ a → PathP (λ i → A (merid a i)) pt (subst A (merid (ptSn (suc n))) pt)} (λ a → isOfHLevelPathP' (suc n) (hlev south) _ _) (λ i → transp (λ j → A (merid (ptSn (suc n)) (i ∧ j))) (~ i) pt) a i sphereElim2 : ∀ {ℓ} (n : ℕ) {A : (S₊ (suc n)) → (S₊ (suc n)) → Type ℓ} → ((x y : S₊ (suc n)) → isOfHLevel (suc n) (A x y)) → A (ptSn (suc n)) (ptSn (suc n)) → (x y : S₊ (suc n)) → A x y sphereElim2 n hlev pt = sphereElim n (λ _ → isOfHLevelΠ (suc n) λ _ → hlev _ _) (sphereElim n (hlev _ ) pt) private compPath-lem : ∀ {ℓ} {A : Type ℓ} {x y z : A} (p : x ≡ y) (q : z ≡ y) → PathP (λ i → (p ∙ sym q) i ≡ y) p q compPath-lem {y = y} p q i j = hcomp (λ k → λ { (i = i0) → p j ; (i = i1) → q (~ k ∨ j) ; (j = i1) → y }) (p (j ∨ i)) sphereToPropElim : (n : ℕ) {A : (S₊ (suc n)) → Type ℓ} → ((x : S₊ (suc n)) → isProp (A x)) → A (ptSn (suc n)) → (x : S₊ (suc n)) → A x sphereToPropElim zero = toPropElim sphereToPropElim (suc n) hlev pt north = pt sphereToPropElim (suc n) {A = A} hlev pt south = subst A (merid (ptSn (suc n))) pt sphereToPropElim (suc n) {A = A} hlev pt (merid a i) = isProp→PathP {B = λ i → A (merid a i)} (λ _ → hlev _) pt (subst A (merid (ptSn (suc n))) pt) i -- Elimination rule for fibrations (x : Sⁿ) → (y : Sᵐ) → A x y of h-Level (n + m). -- The following principle is just the special case of the "Wedge Connectivity Lemma" -- for spheres (See Cubical.Homotopy.WedgeConnectivity or chapter 8.6 in the HoTT book). -- We prove it directly here for three reasons: -- (i) it should perform better -- (ii) we get a slightly stronger statement for spheres: one of the homotopies will, by design, be refl -- (iii) the fact that the two homotopies only differ by (composition with) the homotopy leftFunction(base) ≡ rightFunction(base) -- is close to trivial wedgeconFun : (n m : ℕ) {A : (S₊ (suc n)) → (S₊ (suc m)) → Type ℓ} → ((x : S₊ (suc n)) (y : S₊ (suc m)) → isOfHLevel ((suc n) + (suc m)) (A x y)) → (f : (x : _) → A (ptSn (suc n)) x) → (g : (x : _) → A x (ptSn (suc m))) → (g (ptSn (suc n)) ≡ f (ptSn (suc m))) → (x : S₊ (suc n)) (y : S₊ (suc m)) → A x y wedgeconLeft : (n m : ℕ) {A : (S₊ (suc n)) → (S₊ (suc m)) → Type ℓ} → (hLev : ((x : S₊ (suc n)) (y : S₊ (suc m)) → isOfHLevel ((suc n) + (suc m)) (A x y))) → (f : (x : _) → A (ptSn (suc n)) x) → (g : (x : _) → A x (ptSn (suc m))) → (hom : g (ptSn (suc n)) ≡ f (ptSn (suc m))) → (x : _) → wedgeconFun n m hLev f g hom (ptSn (suc n)) x ≡ f x wedgeconRight : (n m : ℕ) {A : (S₊ (suc n)) → (S₊ (suc m)) → Type ℓ} → (hLev : ((x : S₊ (suc n)) (y : S₊ (suc m)) → isOfHLevel ((suc n) + (suc m)) (A x y))) → (f : (x : _) → A (ptSn (suc n)) x) → (g : (x : _) → A x (ptSn (suc m))) → (hom : g (ptSn (suc n)) ≡ f (ptSn (suc m))) → (x : _) → wedgeconFun n m hLev f g hom x (ptSn (suc m)) ≡ g x wedgeconFun zero zero {A = A} hlev f g hom = F where helper : SquareP (λ i j → A (loop i) (loop j)) (cong f loop) (cong f loop) (λ i → hcomp (λ k → λ { (i = i0) → hom k ; (i = i1) → hom k }) (g (loop i))) λ i → hcomp (λ k → λ { (i = i0) → hom k ; (i = i1) → hom k }) (g (loop i)) helper = toPathP (isOfHLevelPathP' 1 (hlev _ _) _ _ _ _) F : (x y : S¹) → A x y F base y = f y F (loop i) base = hcomp (λ k → λ { (i = i0) → hom k ; (i = i1) → hom k }) (g (loop i)) F (loop i) (loop j) = helper i j wedgeconFun zero (suc m) {A = A} hlev f g hom = F₀ module _ where transpLemma₀ : (x : S₊ (suc m)) → transport (λ i₁ → A base (merid x i₁)) (g base) ≡ f south transpLemma₀ x = cong (transport (λ i₁ → A base (merid x i₁))) hom ∙ (λ i → transp (λ j → A base (merid x (i ∨ j))) i (f (merid x i))) pathOverMerid₀ : (x : S₊ (suc m)) → PathP (λ i₁ → A base (merid x i₁)) (g base) (transport (λ i₁ → A base (merid (ptSn (suc m)) i₁)) (g base)) pathOverMerid₀ x i = hcomp (λ k → λ { (i = i0) → g base ; (i = i1) → (transpLemma₀ x ∙ sym (transpLemma₀ (ptSn (suc m)))) k}) (transp (λ i₁ → A base (merid x (i₁ ∧ i))) (~ i) (g base)) pathOverMeridId₀ : pathOverMerid₀ (ptSn (suc m)) ≡ λ i → transp (λ i₁ → A base (merid (ptSn (suc m)) (i₁ ∧ i))) (~ i) (g base) pathOverMeridId₀ = (λ j i → hcomp (λ k → λ {(i = i0) → g base ; (i = i1) → rCancel (transpLemma₀ (ptSn (suc m))) j k}) (transp (λ i₁ → A base (merid (ptSn (suc m)) (i₁ ∧ i))) (~ i) (g base))) ∙ λ j i → hfill (λ k → λ { (i = i0) → g base ; (i = i1) → transport (λ i₁ → A base (merid (ptSn (suc m)) i₁)) (g base)}) (inS (transp (λ i₁ → A base (merid (ptSn (suc m)) (i₁ ∧ i))) (~ i) (g base))) (~ j) indStep₀ : (x : _) (a : _) → PathP (λ i → A x (merid a i)) (g x) (subst (λ y → A x y) (merid (ptSn (suc m))) (g x)) indStep₀ = wedgeconFun zero m (λ _ _ → isOfHLevelPathP' (2 + m) (hlev _ _) _ _) pathOverMerid₀ (λ a i → transp (λ i₁ → A a (merid (ptSn (suc m)) (i₁ ∧ i))) (~ i) (g a)) (sym pathOverMeridId₀) F₀ : (x : S¹) (y : Susp (S₊ (suc m))) → A x y F₀ x north = g x F₀ x south = subst (λ y → A x y) (merid (ptSn (suc m))) (g x) F₀ x (merid a i) = indStep₀ x a i wedgeconFun (suc n) m {A = A} hlev f g hom = F₁ module _ where transpLemma₁ : (x : S₊ (suc n)) → transport (λ i₁ → A (merid x i₁) (ptSn (suc m))) (f (ptSn (suc m))) ≡ g south transpLemma₁ x = cong (transport (λ i₁ → A (merid x i₁) (ptSn (suc m)))) (sym hom) ∙ (λ i → transp (λ j → A (merid x (i ∨ j)) (ptSn (suc m))) i (g (merid x i))) pathOverMerid₁ : (x : S₊ (suc n)) → PathP (λ i₁ → A (merid x i₁) (ptSn (suc m))) (f (ptSn (suc m))) (transport (λ i₁ → A (merid (ptSn (suc n)) i₁) (ptSn (suc m))) (f (ptSn (suc m)))) pathOverMerid₁ x i = hcomp (λ k → λ { (i = i0) → f (ptSn (suc m)) ; (i = i1) → (transpLemma₁ x ∙ sym (transpLemma₁ (ptSn (suc n)))) k }) (transp (λ i₁ → A (merid x (i₁ ∧ i)) (ptSn (suc m))) (~ i) (f (ptSn (suc m)))) pathOverMeridId₁ : pathOverMerid₁ (ptSn (suc n)) ≡ λ i → transp (λ i₁ → A (merid (ptSn (suc n)) (i₁ ∧ i)) (ptSn (suc m))) (~ i) (f (ptSn (suc m))) pathOverMeridId₁ = (λ j i → hcomp (λ k → λ { (i = i0) → f (ptSn (suc m)) ; (i = i1) → rCancel (transpLemma₁ (ptSn (suc n))) j k }) (transp (λ i₁ → A (merid (ptSn (suc n)) (i₁ ∧ i)) (ptSn (suc m))) (~ i) (f (ptSn (suc m))))) ∙ λ j i → hfill (λ k → λ { (i = i0) → f (ptSn (suc m)) ; (i = i1) → transport (λ i₁ → A (merid (ptSn (suc n)) i₁) (ptSn (suc m))) (f (ptSn (suc m))) }) (inS (transp (λ i₁ → A (merid (ptSn (suc n)) (i₁ ∧ i)) (ptSn (suc m))) (~ i) (f (ptSn (suc m))))) (~ j) indStep₁ : (a : _) (y : _) → PathP (λ i → A (merid a i) y) (f y) (subst (λ x → A x y) (merid (ptSn (suc n))) (f y)) indStep₁ = wedgeconFun n m (λ _ _ → isOfHLevelPathP' (suc (n + suc m)) (hlev _ _) _ _) (λ a i → transp (λ i₁ → A (merid (ptSn (suc n)) (i₁ ∧ i)) a) (~ i) (f a)) pathOverMerid₁ pathOverMeridId₁ F₁ : (x : Susp (S₊ (suc n))) (y : S₊ (suc m)) → A x y F₁ north y = f y F₁ south y = subst (λ x → A x y) (merid (ptSn (suc n))) (f y) F₁ (merid a i) y = indStep₁ a y i wedgeconRight zero zero {A = A} hlev f g hom = right where right : (x : S¹) → _ right base = sym hom right (loop i) j = hcomp (λ k → λ { (i = i0) → hom (~ j ∧ k) ; (i = i1) → hom (~ j ∧ k) ; (j = i1) → g (loop i) }) (g (loop i)) wedgeconRight zero (suc m) {A = A} hlev f g hom x = refl wedgeconRight (suc n) m {A = A} hlev f g hom = right where lem : (x : _) → indStep₁ n m hlev f g hom x (ptSn (suc m)) ≡ _ lem = wedgeconRight n m (λ _ _ → isOfHLevelPathP' (suc (n + suc m)) (hlev _ _) _ _) (λ a i → transp (λ i₁ → A (merid (ptSn (suc n)) (i₁ ∧ i)) a) (~ i) (f a)) (pathOverMerid₁ n m hlev f g hom) (pathOverMeridId₁ n m hlev f g hom) right : (x : Susp (S₊ (suc n))) → _ ≡ g x right north = sym hom right south = cong (subst (λ x → A x (ptSn (suc m))) (merid (ptSn (suc n)))) (sym hom) ∙ λ i → transp (λ j → A (merid (ptSn (suc n)) (i ∨ j)) (ptSn (suc m))) i (g (merid (ptSn (suc n)) i)) right (merid a i) j = hcomp (λ k → λ { (i = i0) → hom (~ j) ; (i = i1) → transpLemma₁ n m hlev f g hom (ptSn (suc n)) j ; (j = i0) → lem a (~ k) i ; (j = i1) → g (merid a i)}) (hcomp (λ k → λ { (i = i0) → hom (~ j) ; (i = i1) → compPath-lem (transpLemma₁ n m hlev f g hom a) (transpLemma₁ n m hlev f g hom (ptSn (suc n))) k j ; (j = i1) → g (merid a i)}) (hcomp (λ k → λ { (i = i0) → hom (~ j) ; (j = i0) → transp (λ i₂ → A (merid a (i₂ ∧ i)) (ptSn (suc m))) (~ i) (f (ptSn (suc m))) ; (j = i1) → transp (λ j → A (merid a (i ∧ (j ∨ k))) (ptSn (suc m))) (k ∨ ~ i) (g (merid a (i ∧ k))) }) (transp (λ i₂ → A (merid a (i₂ ∧ i)) (ptSn (suc m))) (~ i) (hom (~ j))))) wedgeconLeft zero zero {A = A} hlev f g hom x = refl wedgeconLeft zero (suc m) {A = A} hlev f g hom = help where left₁ : (x : _) → indStep₀ m hlev f g hom base x ≡ _ left₁ = wedgeconLeft zero m (λ _ _ → isOfHLevelPathP' (2 + m) (hlev _ _) _ _) (pathOverMerid₀ m hlev f g hom) (λ a i → transp (λ i₁ → A a (merid (ptSn (suc m)) (i₁ ∧ i))) (~ i) (g a)) (sym (pathOverMeridId₀ m hlev f g hom)) help : (x : S₊ (suc (suc m))) → _ help north = hom help south = cong (subst (A base) (merid (ptSn (suc m)))) hom ∙ λ i → transp (λ j → A base (merid (ptSn (suc m)) (i ∨ j))) i (f (merid (ptSn (suc m)) i)) help (merid a i) j = hcomp (λ k → λ { (i = i0) → hom j ; (i = i1) → transpLemma₀ m hlev f g hom (ptSn (suc m)) j ; (j = i0) → left₁ a (~ k) i ; (j = i1) → f (merid a i)}) (hcomp (λ k → λ { (i = i0) → hom j ; (i = i1) → compPath-lem (transpLemma₀ m hlev f g hom a) (transpLemma₀ m hlev f g hom (ptSn (suc m))) k j ; (j = i1) → f (merid a i)}) (hcomp (λ k → λ { (i = i0) → hom j ; (j = i0) → transp (λ i₂ → A base (merid a (i₂ ∧ i))) (~ i) (g base) ; (j = i1) → transp (λ j → A base (merid a (i ∧ (j ∨ k)))) (k ∨ ~ i) (f (merid a (i ∧ k)))}) (transp (λ i₂ → A base (merid a (i₂ ∧ i))) (~ i) (hom j)))) wedgeconLeft (suc n) m {A = A} hlev f g hom _ = refl ---------- Connectedness ----------- sphereConnected : (n : HLevel) → isConnected (suc n) (S₊ n) sphereConnected n = ∣ ptSn n ∣ , elim (λ _ → isOfHLevelPath (suc n) (isOfHLevelTrunc (suc n)) _ _) (λ a → sym (spoke ∣_∣ (ptSn n)) ∙ spoke ∣_∣ a) -- The fact that path spaces of Sn are connected can be proved directly for Sⁿ. -- (Unfortunately, this does not work for higher paths) pathIdTruncSⁿ : (n : ℕ) (x y : S₊ (suc n)) → Path (hLevelTrunc (2 + n) (S₊ (suc n))) ∣ x ∣ ∣ y ∣ → hLevelTrunc (suc n) (x ≡ y) pathIdTruncSⁿ n = sphereElim n (λ _ → isOfHLevelΠ (suc n) λ _ → isOfHLevelΠ (suc n) λ _ → isOfHLevelTrunc (suc n)) (sphereElim n (λ _ → isOfHLevelΠ (suc n) λ _ → isOfHLevelTrunc (suc n)) λ _ → ∣ refl ∣) pathIdTruncSⁿ⁻ : (n : ℕ) (x y : S₊ (suc n)) → hLevelTrunc (suc n) (x ≡ y) → Path (hLevelTrunc (2 + n) (S₊ (suc n))) ∣ x ∣ ∣ y ∣ pathIdTruncSⁿ⁻ n x y = rec (isOfHLevelTrunc (2 + n) _ _) (J (λ y _ → Path (hLevelTrunc (2 + n) (S₊ (suc n))) ∣ x ∣ ∣ y ∣) refl) pathIdTruncSⁿretract : (n : ℕ) (x y : S₊ (suc n)) → (p : hLevelTrunc (suc n) (x ≡ y)) → pathIdTruncSⁿ n x y (pathIdTruncSⁿ⁻ n x y p) ≡ p pathIdTruncSⁿretract n = sphereElim n (λ _ → isOfHLevelΠ (suc n) λ _ → isOfHLevelΠ (suc n) λ _ → isOfHLevelPath (suc n) (isOfHLevelTrunc (suc n)) _ _) λ y → elim (λ _ → isOfHLevelPath (suc n) (isOfHLevelTrunc (suc n)) _ _) (J (λ y p → pathIdTruncSⁿ n (ptSn (suc n)) y (pathIdTruncSⁿ⁻ n (ptSn (suc n)) y ∣ p ∣) ≡ ∣ p ∣) (cong (pathIdTruncSⁿ n (ptSn (suc n)) (ptSn (suc n))) (transportRefl refl) ∙ pm-help n)) where pm-help : (n : ℕ) → pathIdTruncSⁿ n (ptSn (suc n)) (ptSn (suc n)) refl ≡ ∣ refl ∣ pm-help zero = refl pm-help (suc n) = refl isConnectedPathSⁿ : (n : ℕ) (x y : S₊ (suc n)) → isConnected (suc n) (x ≡ y) isConnectedPathSⁿ n x y = isContrRetract (pathIdTruncSⁿ⁻ n x y) (pathIdTruncSⁿ n x y) (pathIdTruncSⁿretract n x y) ((isContr→isProp (sphereConnected (suc n)) ∣ x ∣ ∣ y ∣) , isProp→isSet (isContr→isProp (sphereConnected (suc n))) _ _ _) -- Equivalence Sⁿ*Sᵐ≃Sⁿ⁺ᵐ⁺¹ IsoSphereJoin : (n m : ℕ) → Iso (join (S₊ n) (S₊ m)) (S₊ (suc (n + m))) IsoSphereJoin zero m = compIso join-comm (compIso (invIso Susp-iso-joinBool) (invIso (IsoSucSphereSusp m))) IsoSphereJoin (suc n) m = compIso (Iso→joinIso (compIso (pathToIso (cong S₊ (cong suc (+-comm zero n)))) (invIso (IsoSphereJoin n 0))) idIso) (compIso (equivToIso joinAssocDirect) (compIso (Iso→joinIso idIso (compIso join-comm (compIso (invIso Susp-iso-joinBool) (invIso (IsoSucSphereSusp m))))) (compIso (IsoSphereJoin n (suc m)) (pathToIso λ i → S₊ (suc (+-suc n m i)))))) IsoSphereJoinPres∙ : (n m : ℕ) → Iso.fun (IsoSphereJoin n m) (inl (ptSn n)) ≡ ptSn (suc (n + m)) IsoSphereJoinPres∙ zero zero = refl IsoSphereJoinPres∙ zero (suc m) = refl IsoSphereJoinPres∙ (suc n) m = cong (transport (λ i → S₊ (suc (+-suc n m i)))) (cong (Iso.fun (IsoSphereJoin n (suc m))) (cong (join→ (idfun (S₊ n)) (λ x → Iso.inv (IsoSucSphereSusp m) (Iso.inv Susp-iso-joinBool (join-commFun x)))) (cong (joinAssocDirect {C = S₊ m} .fst) (cong (inl ∘ (Iso.inv (IsoSphereJoin n 0))) (transportS∙ (suc n) _ (cong suc (+-comm 0 n))) ∙ cong inl (sym (cong (Iso.inv (IsoSphereJoin n 0)) (IsoSphereJoinPres∙ n 0)) ∙ Iso.leftInv (IsoSphereJoin n 0) (inl (ptSn _)))))) ∙ IsoSphereJoinPres∙ n (suc m)) ∙ transportS∙ _ _ (cong suc (+-suc n m)) where transportS∙ : (n m : ℕ) (p : n ≡ m) → transport (λ i → S₊ (p i)) (ptSn n) ≡ ptSn _ transportS∙ zero m = J (λ m p → transport (λ i → S₊ (p i)) true ≡ ptSn m) refl transportS∙ (suc zero) m = J (λ m p → transport (λ i → S₊ (p i)) base ≡ ptSn m) refl transportS∙ (suc (suc n)) m = J (λ m p → transport (λ i → S₊ (p i)) north ≡ ptSn m) refl IsoSphereJoin⁻Pres∙ : (n m : ℕ) → Iso.inv (IsoSphereJoin n m) (ptSn (suc (n + m))) ≡ inl (ptSn n) IsoSphereJoin⁻Pres∙ n m = cong (Iso.inv (IsoSphereJoin n m)) (sym (IsoSphereJoinPres∙ n m)) ∙ Iso.leftInv (IsoSphereJoin n m) (inl (ptSn n)) -- Some lemmas on the H rUnitS¹ : (x : S¹) → x * base ≡ x rUnitS¹ base = refl rUnitS¹ (loop i₁) = refl commS¹ : (a x : S¹) → a * x ≡ x * a commS¹ = wedgeconFun _ _ (λ _ _ → isGroupoidS¹ _ _) (sym ∘ rUnitS¹) rUnitS¹ refl SuspS¹-hom : (a x : S¹) → Path (Path (hLevelTrunc 4 (S₊ 2)) _ _) (cong ∣_∣ₕ (merid (a * x) ∙ sym (merid base))) (cong ∣_∣ₕ (merid a ∙ sym (merid base)) ∙ (cong ∣_∣ₕ (merid x ∙ sym (merid base)))) SuspS¹-hom = wedgeconFun _ _ (λ _ _ → isOfHLevelTrunc 4 _ _ _ _) (λ x → lUnit _ ∙ cong (_∙ cong ∣_∣ₕ (merid x ∙ sym (merid base))) (cong (cong ∣_∣ₕ) (sym (rCancel (merid base))))) (λ x → (λ i → cong ∣_∣ₕ (merid (rUnitS¹ x i) ∙ sym (merid base))) ∙∙ rUnit _ ∙∙ cong (cong ∣_∣ₕ (merid x ∙ sym (merid base)) ∙_) (cong (cong ∣_∣ₕ) (sym (rCancel (merid base))))) (sym (l (cong ∣_∣ₕ (merid base ∙ sym (merid base))) (cong (cong ∣_∣ₕ) (sym (rCancel (merid base)))))) where l : ∀ {ℓ} {A : Type ℓ} {x : A} (p : x ≡ x) (P : refl ≡ p) → lUnit p ∙ cong (_∙ p) P ≡ rUnit p ∙ cong (p ∙_) P l p = J (λ p P → lUnit p ∙ cong (_∙ p) P ≡ rUnit p ∙ cong (p ∙_) P) refl rCancelS¹ : (x : S¹) → ptSn 1 ≡ x * (invLooper x) rCancelS¹ base = refl rCancelS¹ (loop i) j = hcomp (λ r → λ {(i = i0) → base ; (i = i1) → base ; (j = i0) → base}) base SuspS¹-inv : (x : S¹) → Path (Path (hLevelTrunc 4 (S₊ 2)) _ _) (cong ∣_∣ₕ (merid (invLooper x) ∙ sym (merid base))) (cong ∣_∣ₕ (sym (merid x ∙ sym (merid base)))) SuspS¹-inv x = (lUnit _ ∙∙ cong (_∙ cong ∣_∣ₕ (merid (invLooper x) ∙ sym (merid base))) (sym (lCancel (cong ∣_∣ₕ (merid x ∙ sym (merid base))))) ∙∙ sym (assoc _ _ _)) ∙∙ cong (sym (cong ∣_∣ₕ (merid x ∙ sym (merid base))) ∙_) lem ∙∙ (assoc _ _ _ ∙∙ cong (_∙ (cong ∣_∣ₕ (sym (merid x ∙ sym (merid base))))) (lCancel (cong ∣_∣ₕ (merid x ∙ sym (merid base)))) ∙∙ sym (lUnit _)) where lem : cong ∣_∣ₕ (merid x ∙ sym (merid base)) ∙ cong ∣_∣ₕ (merid (invLooper x) ∙ sym (merid base)) ≡ cong ∣_∣ₕ (merid x ∙ sym (merid base)) ∙ cong ∣_∣ₕ (sym (merid x ∙ sym (merid base))) lem = sym (SuspS¹-hom x (invLooper x)) ∙ ((λ i → cong ∣_∣ₕ (merid (rCancelS¹ x (~ i)) ∙ sym (merid base))) ∙ cong (cong ∣_∣ₕ) (rCancel (merid base))) ∙ sym (rCancel _)
50.366133
138
0.449659
cb9073a270920e25a56454967eee5d54039f6f54
244
agda
Agda
Cubical/Relation/Binary.agda
Schippmunk/cubical
c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a
[ "MIT" ]
null
null
null
Cubical/Relation/Binary.agda
Schippmunk/cubical
c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a
[ "MIT" ]
null
null
null
Cubical/Relation/Binary.agda
Schippmunk/cubical
c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a
[ "MIT" ]
null
null
null
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Relation.Binary where open import Cubical.Relation.Binary.Base public open import Cubical.Relation.Binary.Properties public open import Cubical.Relation.Binary.Fiberwise public
34.857143
53
0.807377
1814a23ef9e572671b271cf5e5422776a178be23
4,092
agda
Agda
src/Categories/Adjoint/RAPL.agda
jaykru/agda-categories
a4053cf700bcefdf73b857c3352f1eae29382a60
[ "MIT" ]
279
2019-06-01T14:36:40.000Z
2022-03-22T00:40:14.000Z
src/Categories/Adjoint/RAPL.agda
seanpm2001/agda-categories
d9e4f578b126313058d105c61707d8c8ae987fa8
[ "MIT" ]
236
2019-06-01T14:53:54.000Z
2022-03-28T14:31:43.000Z
src/Categories/Adjoint/RAPL.agda
seanpm2001/agda-categories
d9e4f578b126313058d105c61707d8c8ae987fa8
[ "MIT" ]
64
2019-06-02T16:58:15.000Z
2022-03-14T02:00:59.000Z
{-# OPTIONS --without-K --safe #-} open import Categories.Category open import Categories.Functor open import Categories.Adjoint -- Right Adjoint Preserves Limits. module Categories.Adjoint.RAPL {o o′ ℓ ℓ′ e e′} {C : Category o ℓ e} {D : Category o′ ℓ′ e′} {L : Functor C D} {R : Functor D C} (L⊣R : L ⊣ R) where open import Categories.Functor.Properties import Categories.Morphism.Reasoning as MR import Categories.Diagram.Limit as Lim import Categories.Category.Construction.Cones as Con private module C = Category C module D = Category D module L = Functor L module R = Functor R open Adjoint L⊣R module _ {o″ ℓ″ e″} {J : Category o″ ℓ″ e″} (F : Functor J D) where private module F = Functor F module LF = Lim F module CF = Con F RF = R ∘F F module LRF = Lim RF module CRF = Con RF rapl : LF.Limit → LRF.Limit rapl lim = record { terminal = record { ⊤ = ⊤ ; ⊤-is-terminal = record { ! = ! ; !-unique = !-unique } } } where module lim = LF.Limit lim open lim ⊤ : CRF.Cone ⊤ = record { N = R.F₀ apex ; apex = record { ψ = λ X → R.F₁ (proj X) ; commute = λ f → [ R ]-resp-∘ (limit-commute f) } } K′ : CRF.Cone → CF.Cone K′ K = record { N = L.F₀ K.N ; apex = record { ψ = λ X → counit.η (F.F₀ X) D.∘ L.F₁ (K.ψ X) ; commute = λ {X Y} f → begin F.F₁ f D.∘ counit.η (F.F₀ X) D.∘ L.F₁ (K.ψ X) ≈˘⟨ pushˡ (counit.commute (F.F₁ f)) ⟩ (counit.η (F.F₀ Y) D.∘ L.F₁ (R.F₁ (F.F₁ f))) D.∘ L.F₁ (K.ψ X) ≈⟨ pullʳ ([ L ]-resp-∘ (K.commute f)) ⟩ counit.η (F.F₀ Y) D.∘ L.F₁ (K.ψ Y) ∎ } } where module K = CRF.Cone K open D.HomReasoning open MR D module K′ K = CF.Cone (K′ K) ! : ∀ {K : CRF.Cone} → CRF.Cones [ K , ⊤ ] ! {K} = record { arr = R.F₁ (rep (K′ K)) C.∘ unit.η K.N ; commute = commute′ } where module K = CRF.Cone K commute′ : ∀ {X} → R.F₁ (proj X) C.∘ R.F₁ (rep (K′ K)) C.∘ unit.η K.N C.≈ K.ψ X commute′ {X} = begin R.F₁ (proj X) C.∘ R.F₁ (rep (K′ K)) C.∘ unit.η K.N ≈⟨ pullˡ ([ R ]-resp-∘ commute) ⟩ R.F₁ (K′.ψ K X) C.∘ unit.η K.N ≈⟨ LRadjunct≈id ⟩ K.ψ X ∎ where open C.HomReasoning open MR C module ! {K} = CRF.Cone⇒ (! {K}) !-unique : ∀ {K : CRF.Cone} (f : CRF.Cones [ K , ⊤ ]) → CRF.Cones [ ! ≈ f ] !-unique {K} f = let open C.HomReasoning open MR C in begin R.F₁ (rep (K′ K)) C.∘ unit.η K.N ≈⟨ R.F-resp-≈ (terminal.!-unique f′) ⟩∘⟨refl ⟩ Ladjunct (Radjunct f.arr) ≈⟨ LRadjunct≈id ⟩ f.arr ∎ where module K = CRF.Cone K module f = CRF.Cone⇒ f f′ : CF.Cones [ K′ K , limit ] f′ = record { arr = Radjunct f.arr ; commute = λ {X} → begin proj X D.∘ Radjunct f.arr ≈˘⟨ pushˡ (counit.commute (proj X)) ⟩ (counit.η (F.F₀ X) D.∘ L.F₁ (R.F₁ (proj X))) D.∘ L.F₁ f.arr ≈˘⟨ pushʳ L.homomorphism ⟩ Radjunct (R.F₁ (proj X) C.∘ f.arr) ≈⟨ Radjunct-resp-≈ f.commute ⟩ Radjunct (K.ψ X) ∎ } where open D.HomReasoning open MR D
34.386555
119
0.39956
c501c0900987bfa92108700dcf553ea4d5c3af7f
227
agda
Agda
test/succeed/Issue561.agda
dagit/agda
4383a3d20328a6c43689161496cee8eb479aca08
[ "MIT" ]
1
2019-11-27T07:26:06.000Z
2019-11-27T07:26:06.000Z
test/succeed/Issue561.agda
dagit/agda
4383a3d20328a6c43689161496cee8eb479aca08
[ "MIT" ]
null
null
null
test/succeed/Issue561.agda
dagit/agda
4383a3d20328a6c43689161496cee8eb479aca08
[ "MIT" ]
null
null
null
module Issue561 where open import Common.Char open import Common.Prelude primitive primIsDigit : Char → Bool postulate IO : Set → Set return : ∀ {A} → A → IO A {-# BUILTIN IO IO #-} main : IO Bool main = return true
13.352941
27
0.674009
dc7766198371bc669abd46421c4534dd983e1836
2,469
agda
Agda
notes/FOT/GroupTheory/FormalisationsSL.agda
asr/fotc
2fc9f2b81052a2e0822669f02036c5750371b72d
[ "MIT" ]
11
2015-09-03T20:53:42.000Z
2021-09-12T16:09:54.000Z
notes/FOT/GroupTheory/FormalisationsSL.agda
asr/fotc
2fc9f2b81052a2e0822669f02036c5750371b72d
[ "MIT" ]
2
2016-10-12T17:28:16.000Z
2017-01-01T14:34:26.000Z
notes/FOT/GroupTheory/FormalisationsSL.agda
asr/fotc
2fc9f2b81052a2e0822669f02036c5750371b72d
[ "MIT" ]
3
2016-09-19T14:18:30.000Z
2018-03-14T08:50:00.000Z
------------------------------------------------------------------------------ -- Proving that two group theory formalisations are equivalents ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} -- We prove that group theory axioms based on the signature (G, ·, ε,) -- (see for example [p. 39, 1]), i.e. -- ∀ a b c. abc = a(bc) -- ∀ a. εa = aε = a -- ∀ a. ∃ a'. a'a = aa' = ε -- are equivalents to the axioms based on the signature (G, ·, _⁻¹, ε,) -- (see for example [2,3]), i.e. -- ∀ a b c. abc = a(bc) -- ∀ a. εa = aε = a -- ∀ a. a⁻¹a = aa⁻¹ = ε -- [1] C. C. Chang and H. J. Keisler. Model Theory, volume 73 of Studies -- in Logic and the Foundations of Mathematics. North-Holland, 3rd -- edition, 3rd impression 1992. -- [2] Agda standard library_0.8.1 (see Algebra/Structures.agda) -- [3] Coq implementation -- (http://coq.inria.fr/pylons/contribs/files/GroupTheory/v8.3/GroupTheory.g1.html) module FOT.GroupTheory.FormalisationsSL where open import Data.Product open import Relation.Binary.PropositionalEquality ------------------------------------------------------------------------------ -- NB. We only write the proof for the left-inverse property. infixl 10 _·_ -- The symbol is '\cdot'. postulate G : Set -- The universe ε : G -- The identity element. _·_ : G → G → G -- The binary operation. -- Left-inverse property based on the signature (G, ·, ε,). leftInverse₁ : Set leftInverse₁ = ∀ a → Σ G (λ a' → a' · a ≡ ε) -- Left-inverse property based on the signature (G, ·, _⁻¹, ε,). infix 11 _⁻¹ postulate _⁻¹ : G → G -- The inverse function. leftInverse₂ : Set leftInverse₂ = ∀ a → a ⁻¹ · a ≡ ε -- From the left-inverse property based on the signature (G, ·, _⁻¹, ε,) -- to the one based on the signature (G, ·, ε,). leftInverse₂₋₁ : leftInverse₂ → leftInverse₁ leftInverse₂₋₁ h a = (a ⁻¹) , (h a) -- From the left-inverse property based on the signature (G, ·, ε,) to -- the one based on the signature (G, ·, _⁻¹, ε,). -- -- In this case we prove the existence of the inverse function. leftInverse₁₋₂ : leftInverse₁ → Σ (G → G) (λ f → ∀ a → f a · a ≡ ε) leftInverse₁₋₂ h = f , prf where f : G → G -- The inverse function. f a = proj₁ (h a) prf : ∀ a → f a · a ≡ ε prf a = proj₂ (h a)
30.109756
87
0.553665
18794b9f90c2bd57cb3b6f18b380480a878f66bb
310,255
agda
Agda
agda/Text/Greek/SBLGNT/1Cor.agda
scott-fleischman/GreekGrammar
915c46c27c7f8aad5907474d8484f2685a4cd6a7
[ "MIT" ]
44
2015-05-29T14:48:51.000Z
2022-03-06T15:41:57.000Z
agda/Text/Greek/SBLGNT/1Cor.agda
scott-fleischman/GreekGrammar
915c46c27c7f8aad5907474d8484f2685a4cd6a7
[ "MIT" ]
13
2015-05-28T20:04:08.000Z
2020-09-07T11:58:38.000Z
agda/Text/Greek/SBLGNT/1Cor.agda
scott-fleischman/GreekGrammar
915c46c27c7f8aad5907474d8484f2685a4cd6a7
[ "MIT" ]
5
2015-02-27T22:34:13.000Z
2017-06-11T11:25:09.000Z
module Text.Greek.SBLGNT.1Cor where open import Data.List open import Text.Greek.Bible open import Text.Greek.Script open import Text.Greek.Script.Unicode ΠΡΟΣ-ΚΟΡΙΝΘΙΟΥΣ-Α : List (Word) ΠΡΟΣ-ΚΟΡΙΝΘΙΟΥΣ-Α = word (Π ∷ α ∷ ῦ ∷ ∙λ ∷ ο ∷ ς ∷ []) "1Cor.1.1" ∷ word (κ ∷ ∙λ ∷ η ∷ τ ∷ ὸ ∷ ς ∷ []) "1Cor.1.1" ∷ word (ἀ ∷ π ∷ ό ∷ σ ∷ τ ∷ ο ∷ ∙λ ∷ ο ∷ ς ∷ []) "1Cor.1.1" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "1Cor.1.1" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "1Cor.1.1" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "1Cor.1.1" ∷ word (θ ∷ ε ∷ ∙λ ∷ ή ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "1Cor.1.1" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "1Cor.1.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.1.1" ∷ word (Σ ∷ ω ∷ σ ∷ θ ∷ έ ∷ ν ∷ η ∷ ς ∷ []) "1Cor.1.1" ∷ word (ὁ ∷ []) "1Cor.1.1" ∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ὸ ∷ ς ∷ []) "1Cor.1.1" ∷ word (τ ∷ ῇ ∷ []) "1Cor.1.2" ∷ word (ἐ ∷ κ ∷ κ ∷ ∙λ ∷ η ∷ σ ∷ ί ∷ ᾳ ∷ []) "1Cor.1.2" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.1.2" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "1Cor.1.2" ∷ word (ἡ ∷ γ ∷ ι ∷ α ∷ σ ∷ μ ∷ έ ∷ ν ∷ ο ∷ ι ∷ ς ∷ []) "1Cor.1.2" ∷ word (ἐ ∷ ν ∷ []) "1Cor.1.2" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ῷ ∷ []) "1Cor.1.2" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "1Cor.1.2" ∷ word (τ ∷ ῇ ∷ []) "1Cor.1.2" ∷ word (ο ∷ ὔ ∷ σ ∷ ῃ ∷ []) "1Cor.1.2" ∷ word (ἐ ∷ ν ∷ []) "1Cor.1.2" ∷ word (Κ ∷ ο ∷ ρ ∷ ί ∷ ν ∷ θ ∷ ῳ ∷ []) "1Cor.1.2" ∷ word (κ ∷ ∙λ ∷ η ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "1Cor.1.2" ∷ word (ἁ ∷ γ ∷ ί ∷ ο ∷ ι ∷ ς ∷ []) "1Cor.1.2" ∷ word (σ ∷ ὺ ∷ ν ∷ []) "1Cor.1.2" ∷ word (π ∷ ᾶ ∷ σ ∷ ι ∷ ν ∷ []) "1Cor.1.2" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "1Cor.1.2" ∷ word (ἐ ∷ π ∷ ι ∷ κ ∷ α ∷ ∙λ ∷ ο ∷ υ ∷ μ ∷ έ ∷ ν ∷ ο ∷ ι ∷ ς ∷ []) "1Cor.1.2" ∷ word (τ ∷ ὸ ∷ []) "1Cor.1.2" ∷ word (ὄ ∷ ν ∷ ο ∷ μ ∷ α ∷ []) "1Cor.1.2" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.1.2" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "1Cor.1.2" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Cor.1.2" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "1Cor.1.2" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "1Cor.1.2" ∷ word (ἐ ∷ ν ∷ []) "1Cor.1.2" ∷ word (π ∷ α ∷ ν ∷ τ ∷ ὶ ∷ []) "1Cor.1.2" ∷ word (τ ∷ ό ∷ π ∷ ῳ ∷ []) "1Cor.1.2" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "1Cor.1.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.1.2" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Cor.1.2" ∷ word (χ ∷ ά ∷ ρ ∷ ι ∷ ς ∷ []) "1Cor.1.3" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "1Cor.1.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.1.3" ∷ word (ε ∷ ἰ ∷ ρ ∷ ή ∷ ν ∷ η ∷ []) "1Cor.1.3" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "1Cor.1.3" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "1Cor.1.3" ∷ word (π ∷ α ∷ τ ∷ ρ ∷ ὸ ∷ ς ∷ []) "1Cor.1.3" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Cor.1.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.1.3" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "1Cor.1.3" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "1Cor.1.3" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "1Cor.1.3" ∷ word (Ε ∷ ὐ ∷ χ ∷ α ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ῶ ∷ []) "1Cor.1.4" ∷ word (τ ∷ ῷ ∷ []) "1Cor.1.4" ∷ word (θ ∷ ε ∷ ῷ ∷ []) "1Cor.1.4" ∷ word (μ ∷ ο ∷ υ ∷ []) "1Cor.1.4" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ο ∷ τ ∷ ε ∷ []) "1Cor.1.4" ∷ word (π ∷ ε ∷ ρ ∷ ὶ ∷ []) "1Cor.1.4" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Cor.1.4" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "1Cor.1.4" ∷ word (τ ∷ ῇ ∷ []) "1Cor.1.4" ∷ word (χ ∷ ά ∷ ρ ∷ ι ∷ τ ∷ ι ∷ []) "1Cor.1.4" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.1.4" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "1Cor.1.4" ∷ word (τ ∷ ῇ ∷ []) "1Cor.1.4" ∷ word (δ ∷ ο ∷ θ ∷ ε ∷ ί ∷ σ ∷ ῃ ∷ []) "1Cor.1.4" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "1Cor.1.4" ∷ word (ἐ ∷ ν ∷ []) "1Cor.1.4" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ῷ ∷ []) "1Cor.1.4" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "1Cor.1.4" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "1Cor.1.5" ∷ word (ἐ ∷ ν ∷ []) "1Cor.1.5" ∷ word (π ∷ α ∷ ν ∷ τ ∷ ὶ ∷ []) "1Cor.1.5" ∷ word (ἐ ∷ π ∷ ∙λ ∷ ο ∷ υ ∷ τ ∷ ί ∷ σ ∷ θ ∷ η ∷ τ ∷ ε ∷ []) "1Cor.1.5" ∷ word (ἐ ∷ ν ∷ []) "1Cor.1.5" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "1Cor.1.5" ∷ word (ἐ ∷ ν ∷ []) "1Cor.1.5" ∷ word (π ∷ α ∷ ν ∷ τ ∷ ὶ ∷ []) "1Cor.1.5" ∷ word (∙λ ∷ ό ∷ γ ∷ ῳ ∷ []) "1Cor.1.5" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.1.5" ∷ word (π ∷ ά ∷ σ ∷ ῃ ∷ []) "1Cor.1.5" ∷ word (γ ∷ ν ∷ ώ ∷ σ ∷ ε ∷ ι ∷ []) "1Cor.1.5" ∷ word (κ ∷ α ∷ θ ∷ ὼ ∷ ς ∷ []) "1Cor.1.6" ∷ word (τ ∷ ὸ ∷ []) "1Cor.1.6" ∷ word (μ ∷ α ∷ ρ ∷ τ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ν ∷ []) "1Cor.1.6" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.1.6" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "1Cor.1.6" ∷ word (ἐ ∷ β ∷ ε ∷ β ∷ α ∷ ι ∷ ώ ∷ θ ∷ η ∷ []) "1Cor.1.6" ∷ word (ἐ ∷ ν ∷ []) "1Cor.1.6" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "1Cor.1.6" ∷ word (ὥ ∷ σ ∷ τ ∷ ε ∷ []) "1Cor.1.7" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "1Cor.1.7" ∷ word (μ ∷ ὴ ∷ []) "1Cor.1.7" ∷ word (ὑ ∷ σ ∷ τ ∷ ε ∷ ρ ∷ ε ∷ ῖ ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "1Cor.1.7" ∷ word (ἐ ∷ ν ∷ []) "1Cor.1.7" ∷ word (μ ∷ η ∷ δ ∷ ε ∷ ν ∷ ὶ ∷ []) "1Cor.1.7" ∷ word (χ ∷ α ∷ ρ ∷ ί ∷ σ ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "1Cor.1.7" ∷ word (ἀ ∷ π ∷ ε ∷ κ ∷ δ ∷ ε ∷ χ ∷ ο ∷ μ ∷ έ ∷ ν ∷ ο ∷ υ ∷ ς ∷ []) "1Cor.1.7" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "1Cor.1.7" ∷ word (ἀ ∷ π ∷ ο ∷ κ ∷ ά ∷ ∙λ ∷ υ ∷ ψ ∷ ι ∷ ν ∷ []) "1Cor.1.7" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.1.7" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "1Cor.1.7" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Cor.1.7" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "1Cor.1.7" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "1Cor.1.7" ∷ word (ὃ ∷ ς ∷ []) "1Cor.1.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.1.8" ∷ word (β ∷ ε ∷ β ∷ α ∷ ι ∷ ώ ∷ σ ∷ ε ∷ ι ∷ []) "1Cor.1.8" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "1Cor.1.8" ∷ word (ἕ ∷ ω ∷ ς ∷ []) "1Cor.1.8" ∷ word (τ ∷ έ ∷ ∙λ ∷ ο ∷ υ ∷ ς ∷ []) "1Cor.1.8" ∷ word (ἀ ∷ ν ∷ ε ∷ γ ∷ κ ∷ ∙λ ∷ ή ∷ τ ∷ ο ∷ υ ∷ ς ∷ []) "1Cor.1.8" ∷ word (ἐ ∷ ν ∷ []) "1Cor.1.8" ∷ word (τ ∷ ῇ ∷ []) "1Cor.1.8" ∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ ᾳ ∷ []) "1Cor.1.8" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.1.8" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "1Cor.1.8" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Cor.1.8" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "1Cor.1.8" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "1Cor.1.8" ∷ word (π ∷ ι ∷ σ ∷ τ ∷ ὸ ∷ ς ∷ []) "1Cor.1.9" ∷ word (ὁ ∷ []) "1Cor.1.9" ∷ word (θ ∷ ε ∷ ὸ ∷ ς ∷ []) "1Cor.1.9" ∷ word (δ ∷ ι ∷ []) "1Cor.1.9" ∷ word (ο ∷ ὗ ∷ []) "1Cor.1.9" ∷ word (ἐ ∷ κ ∷ ∙λ ∷ ή ∷ θ ∷ η ∷ τ ∷ ε ∷ []) "1Cor.1.9" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "1Cor.1.9" ∷ word (κ ∷ ο ∷ ι ∷ ν ∷ ω ∷ ν ∷ ί ∷ α ∷ ν ∷ []) "1Cor.1.9" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.1.9" ∷ word (υ ∷ ἱ ∷ ο ∷ ῦ ∷ []) "1Cor.1.9" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "1Cor.1.9" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "1Cor.1.9" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "1Cor.1.9" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.1.9" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "1Cor.1.9" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Cor.1.9" ∷ word (Π ∷ α ∷ ρ ∷ α ∷ κ ∷ α ∷ ∙λ ∷ ῶ ∷ []) "1Cor.1.10" ∷ word (δ ∷ ὲ ∷ []) "1Cor.1.10" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "1Cor.1.10" ∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ο ∷ ί ∷ []) "1Cor.1.10" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "1Cor.1.10" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.1.10" ∷ word (ὀ ∷ ν ∷ ό ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "1Cor.1.10" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.1.10" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "1Cor.1.10" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Cor.1.10" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "1Cor.1.10" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "1Cor.1.10" ∷ word (ἵ ∷ ν ∷ α ∷ []) "1Cor.1.10" ∷ word (τ ∷ ὸ ∷ []) "1Cor.1.10" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ []) "1Cor.1.10" ∷ word (∙λ ∷ έ ∷ γ ∷ η ∷ τ ∷ ε ∷ []) "1Cor.1.10" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "1Cor.1.10" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.1.10" ∷ word (μ ∷ ὴ ∷ []) "1Cor.1.10" ∷ word (ᾖ ∷ []) "1Cor.1.10" ∷ word (ἐ ∷ ν ∷ []) "1Cor.1.10" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "1Cor.1.10" ∷ word (σ ∷ χ ∷ ί ∷ σ ∷ μ ∷ α ∷ τ ∷ α ∷ []) "1Cor.1.10" ∷ word (ἦ ∷ τ ∷ ε ∷ []) "1Cor.1.10" ∷ word (δ ∷ ὲ ∷ []) "1Cor.1.10" ∷ word (κ ∷ α ∷ τ ∷ η ∷ ρ ∷ τ ∷ ι ∷ σ ∷ μ ∷ έ ∷ ν ∷ ο ∷ ι ∷ []) "1Cor.1.10" ∷ word (ἐ ∷ ν ∷ []) "1Cor.1.10" ∷ word (τ ∷ ῷ ∷ []) "1Cor.1.10" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "1Cor.1.10" ∷ word (ν ∷ ο ∷ ῒ ∷ []) "1Cor.1.10" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.1.10" ∷ word (ἐ ∷ ν ∷ []) "1Cor.1.10" ∷ word (τ ∷ ῇ ∷ []) "1Cor.1.10" ∷ word (α ∷ ὐ ∷ τ ∷ ῇ ∷ []) "1Cor.1.10" ∷ word (γ ∷ ν ∷ ώ ∷ μ ∷ ῃ ∷ []) "1Cor.1.10" ∷ word (ἐ ∷ δ ∷ η ∷ ∙λ ∷ ώ ∷ θ ∷ η ∷ []) "1Cor.1.11" ∷ word (γ ∷ ά ∷ ρ ∷ []) "1Cor.1.11" ∷ word (μ ∷ ο ∷ ι ∷ []) "1Cor.1.11" ∷ word (π ∷ ε ∷ ρ ∷ ὶ ∷ []) "1Cor.1.11" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Cor.1.11" ∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ο ∷ ί ∷ []) "1Cor.1.11" ∷ word (μ ∷ ο ∷ υ ∷ []) "1Cor.1.11" ∷ word (ὑ ∷ π ∷ ὸ ∷ []) "1Cor.1.11" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "1Cor.1.11" ∷ word (Χ ∷ ∙λ ∷ ό ∷ η ∷ ς ∷ []) "1Cor.1.11" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "1Cor.1.11" ∷ word (ἔ ∷ ρ ∷ ι ∷ δ ∷ ε ∷ ς ∷ []) "1Cor.1.11" ∷ word (ἐ ∷ ν ∷ []) "1Cor.1.11" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "1Cor.1.11" ∷ word (ε ∷ ἰ ∷ σ ∷ ι ∷ ν ∷ []) "1Cor.1.11" ∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ []) "1Cor.1.12" ∷ word (δ ∷ ὲ ∷ []) "1Cor.1.12" ∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "1Cor.1.12" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "1Cor.1.12" ∷ word (ἕ ∷ κ ∷ α ∷ σ ∷ τ ∷ ο ∷ ς ∷ []) "1Cor.1.12" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Cor.1.12" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "1Cor.1.12" ∷ word (Ἐ ∷ γ ∷ ὼ ∷ []) "1Cor.1.12" ∷ word (μ ∷ έ ∷ ν ∷ []) "1Cor.1.12" ∷ word (ε ∷ ἰ ∷ μ ∷ ι ∷ []) "1Cor.1.12" ∷ word (Π ∷ α ∷ ύ ∷ ∙λ ∷ ο ∷ υ ∷ []) "1Cor.1.12" ∷ word (Ἐ ∷ γ ∷ ὼ ∷ []) "1Cor.1.12" ∷ word (δ ∷ ὲ ∷ []) "1Cor.1.12" ∷ word (Ἀ ∷ π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ῶ ∷ []) "1Cor.1.12" ∷ word (Ἐ ∷ γ ∷ ὼ ∷ []) "1Cor.1.12" ∷ word (δ ∷ ὲ ∷ []) "1Cor.1.12" ∷ word (Κ ∷ η ∷ φ ∷ ᾶ ∷ []) "1Cor.1.12" ∷ word (Ἐ ∷ γ ∷ ὼ ∷ []) "1Cor.1.12" ∷ word (δ ∷ ὲ ∷ []) "1Cor.1.12" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "1Cor.1.12" ∷ word (μ ∷ ε ∷ μ ∷ έ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ α ∷ ι ∷ []) "1Cor.1.13" ∷ word (ὁ ∷ []) "1Cor.1.13" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ό ∷ ς ∷ []) "1Cor.1.13" ∷ word (μ ∷ ὴ ∷ []) "1Cor.1.13" ∷ word (Π ∷ α ∷ ῦ ∷ ∙λ ∷ ο ∷ ς ∷ []) "1Cor.1.13" ∷ word (ἐ ∷ σ ∷ τ ∷ α ∷ υ ∷ ρ ∷ ώ ∷ θ ∷ η ∷ []) "1Cor.1.13" ∷ word (ὑ ∷ π ∷ ὲ ∷ ρ ∷ []) "1Cor.1.13" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Cor.1.13" ∷ word (ἢ ∷ []) "1Cor.1.13" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "1Cor.1.13" ∷ word (τ ∷ ὸ ∷ []) "1Cor.1.13" ∷ word (ὄ ∷ ν ∷ ο ∷ μ ∷ α ∷ []) "1Cor.1.13" ∷ word (Π ∷ α ∷ ύ ∷ ∙λ ∷ ο ∷ υ ∷ []) "1Cor.1.13" ∷ word (ἐ ∷ β ∷ α ∷ π ∷ τ ∷ ί ∷ σ ∷ θ ∷ η ∷ τ ∷ ε ∷ []) "1Cor.1.13" ∷ word (ε ∷ ὐ ∷ χ ∷ α ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ῶ ∷ []) "1Cor.1.14" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "1Cor.1.14" ∷ word (ο ∷ ὐ ∷ δ ∷ έ ∷ ν ∷ α ∷ []) "1Cor.1.14" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Cor.1.14" ∷ word (ἐ ∷ β ∷ ά ∷ π ∷ τ ∷ ι ∷ σ ∷ α ∷ []) "1Cor.1.14" ∷ word (ε ∷ ἰ ∷ []) "1Cor.1.14" ∷ word (μ ∷ ὴ ∷ []) "1Cor.1.14" ∷ word (Κ ∷ ρ ∷ ί ∷ σ ∷ π ∷ ο ∷ ν ∷ []) "1Cor.1.14" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.1.14" ∷ word (Γ ∷ ά ∷ ϊ ∷ ο ∷ ν ∷ []) "1Cor.1.14" ∷ word (ἵ ∷ ν ∷ α ∷ []) "1Cor.1.15" ∷ word (μ ∷ ή ∷ []) "1Cor.1.15" ∷ word (τ ∷ ι ∷ ς ∷ []) "1Cor.1.15" ∷ word (ε ∷ ἴ ∷ π ∷ ῃ ∷ []) "1Cor.1.15" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "1Cor.1.15" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "1Cor.1.15" ∷ word (τ ∷ ὸ ∷ []) "1Cor.1.15" ∷ word (ἐ ∷ μ ∷ ὸ ∷ ν ∷ []) "1Cor.1.15" ∷ word (ὄ ∷ ν ∷ ο ∷ μ ∷ α ∷ []) "1Cor.1.15" ∷ word (ἐ ∷ β ∷ α ∷ π ∷ τ ∷ ί ∷ σ ∷ θ ∷ η ∷ τ ∷ ε ∷ []) "1Cor.1.15" ∷ word (ἐ ∷ β ∷ ά ∷ π ∷ τ ∷ ι ∷ σ ∷ α ∷ []) "1Cor.1.16" ∷ word (δ ∷ ὲ ∷ []) "1Cor.1.16" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.1.16" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "1Cor.1.16" ∷ word (Σ ∷ τ ∷ ε ∷ φ ∷ α ∷ ν ∷ ᾶ ∷ []) "1Cor.1.16" ∷ word (ο ∷ ἶ ∷ κ ∷ ο ∷ ν ∷ []) "1Cor.1.16" ∷ word (∙λ ∷ ο ∷ ι ∷ π ∷ ὸ ∷ ν ∷ []) "1Cor.1.16" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "1Cor.1.16" ∷ word (ο ∷ ἶ ∷ δ ∷ α ∷ []) "1Cor.1.16" ∷ word (ε ∷ ἴ ∷ []) "1Cor.1.16" ∷ word (τ ∷ ι ∷ ν ∷ α ∷ []) "1Cor.1.16" ∷ word (ἄ ∷ ∙λ ∷ ∙λ ∷ ο ∷ ν ∷ []) "1Cor.1.16" ∷ word (ἐ ∷ β ∷ ά ∷ π ∷ τ ∷ ι ∷ σ ∷ α ∷ []) "1Cor.1.16" ∷ word (ο ∷ ὐ ∷ []) "1Cor.1.17" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "1Cor.1.17" ∷ word (ἀ ∷ π ∷ έ ∷ σ ∷ τ ∷ ε ∷ ι ∷ ∙λ ∷ έ ∷ ν ∷ []) "1Cor.1.17" ∷ word (μ ∷ ε ∷ []) "1Cor.1.17" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ὸ ∷ ς ∷ []) "1Cor.1.17" ∷ word (β ∷ α ∷ π ∷ τ ∷ ί ∷ ζ ∷ ε ∷ ι ∷ ν ∷ []) "1Cor.1.17" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "1Cor.1.17" ∷ word (ε ∷ ὐ ∷ α ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ί ∷ ζ ∷ ε ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "1Cor.1.17" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "1Cor.1.17" ∷ word (ἐ ∷ ν ∷ []) "1Cor.1.17" ∷ word (σ ∷ ο ∷ φ ∷ ί ∷ ᾳ ∷ []) "1Cor.1.17" ∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ υ ∷ []) "1Cor.1.17" ∷ word (ἵ ∷ ν ∷ α ∷ []) "1Cor.1.17" ∷ word (μ ∷ ὴ ∷ []) "1Cor.1.17" ∷ word (κ ∷ ε ∷ ν ∷ ω ∷ θ ∷ ῇ ∷ []) "1Cor.1.17" ∷ word (ὁ ∷ []) "1Cor.1.17" ∷ word (σ ∷ τ ∷ α ∷ υ ∷ ρ ∷ ὸ ∷ ς ∷ []) "1Cor.1.17" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.1.17" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "1Cor.1.17" ∷ word (Ὁ ∷ []) "1Cor.1.18" ∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ ς ∷ []) "1Cor.1.18" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "1Cor.1.18" ∷ word (ὁ ∷ []) "1Cor.1.18" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.1.18" ∷ word (σ ∷ τ ∷ α ∷ υ ∷ ρ ∷ ο ∷ ῦ ∷ []) "1Cor.1.18" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "1Cor.1.18" ∷ word (μ ∷ ὲ ∷ ν ∷ []) "1Cor.1.18" ∷ word (ἀ ∷ π ∷ ο ∷ ∙λ ∷ ∙λ ∷ υ ∷ μ ∷ έ ∷ ν ∷ ο ∷ ι ∷ ς ∷ []) "1Cor.1.18" ∷ word (μ ∷ ω ∷ ρ ∷ ί ∷ α ∷ []) "1Cor.1.18" ∷ word (ἐ ∷ σ ∷ τ ∷ ί ∷ ν ∷ []) "1Cor.1.18" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "1Cor.1.18" ∷ word (δ ∷ ὲ ∷ []) "1Cor.1.18" ∷ word (σ ∷ ῳ ∷ ζ ∷ ο ∷ μ ∷ έ ∷ ν ∷ ο ∷ ι ∷ ς ∷ []) "1Cor.1.18" ∷ word (ἡ ∷ μ ∷ ῖ ∷ ν ∷ []) "1Cor.1.18" ∷ word (δ ∷ ύ ∷ ν ∷ α ∷ μ ∷ ι ∷ ς ∷ []) "1Cor.1.18" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "1Cor.1.18" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "1Cor.1.18" ∷ word (γ ∷ έ ∷ γ ∷ ρ ∷ α ∷ π ∷ τ ∷ α ∷ ι ∷ []) "1Cor.1.19" ∷ word (γ ∷ ά ∷ ρ ∷ []) "1Cor.1.19" ∷ word (Ἀ ∷ π ∷ ο ∷ ∙λ ∷ ῶ ∷ []) "1Cor.1.19" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "1Cor.1.19" ∷ word (σ ∷ ο ∷ φ ∷ ί ∷ α ∷ ν ∷ []) "1Cor.1.19" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "1Cor.1.19" ∷ word (σ ∷ ο ∷ φ ∷ ῶ ∷ ν ∷ []) "1Cor.1.19" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.1.19" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "1Cor.1.19" ∷ word (σ ∷ ύ ∷ ν ∷ ε ∷ σ ∷ ι ∷ ν ∷ []) "1Cor.1.19" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "1Cor.1.19" ∷ word (σ ∷ υ ∷ ν ∷ ε ∷ τ ∷ ῶ ∷ ν ∷ []) "1Cor.1.19" ∷ word (ἀ ∷ θ ∷ ε ∷ τ ∷ ή ∷ σ ∷ ω ∷ []) "1Cor.1.19" ∷ word (π ∷ ο ∷ ῦ ∷ []) "1Cor.1.20" ∷ word (σ ∷ ο ∷ φ ∷ ό ∷ ς ∷ []) "1Cor.1.20" ∷ word (π ∷ ο ∷ ῦ ∷ []) "1Cor.1.20" ∷ word (γ ∷ ρ ∷ α ∷ μ ∷ μ ∷ α ∷ τ ∷ ε ∷ ύ ∷ ς ∷ []) "1Cor.1.20" ∷ word (π ∷ ο ∷ ῦ ∷ []) "1Cor.1.20" ∷ word (σ ∷ υ ∷ ζ ∷ η ∷ τ ∷ η ∷ τ ∷ ὴ ∷ ς ∷ []) "1Cor.1.20" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.1.20" ∷ word (α ∷ ἰ ∷ ῶ ∷ ν ∷ ο ∷ ς ∷ []) "1Cor.1.20" ∷ word (τ ∷ ο ∷ ύ ∷ τ ∷ ο ∷ υ ∷ []) "1Cor.1.20" ∷ word (ο ∷ ὐ ∷ χ ∷ ὶ ∷ []) "1Cor.1.20" ∷ word (ἐ ∷ μ ∷ ώ ∷ ρ ∷ α ∷ ν ∷ ε ∷ ν ∷ []) "1Cor.1.20" ∷ word (ὁ ∷ []) "1Cor.1.20" ∷ word (θ ∷ ε ∷ ὸ ∷ ς ∷ []) "1Cor.1.20" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "1Cor.1.20" ∷ word (σ ∷ ο ∷ φ ∷ ί ∷ α ∷ ν ∷ []) "1Cor.1.20" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.1.20" ∷ word (κ ∷ ό ∷ σ ∷ μ ∷ ο ∷ υ ∷ []) "1Cor.1.20" ∷ word (ἐ ∷ π ∷ ε ∷ ι ∷ δ ∷ ὴ ∷ []) "1Cor.1.21" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "1Cor.1.21" ∷ word (ἐ ∷ ν ∷ []) "1Cor.1.21" ∷ word (τ ∷ ῇ ∷ []) "1Cor.1.21" ∷ word (σ ∷ ο ∷ φ ∷ ί ∷ ᾳ ∷ []) "1Cor.1.21" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.1.21" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "1Cor.1.21" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "1Cor.1.21" ∷ word (ἔ ∷ γ ∷ ν ∷ ω ∷ []) "1Cor.1.21" ∷ word (ὁ ∷ []) "1Cor.1.21" ∷ word (κ ∷ ό ∷ σ ∷ μ ∷ ο ∷ ς ∷ []) "1Cor.1.21" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "1Cor.1.21" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "1Cor.1.21" ∷ word (σ ∷ ο ∷ φ ∷ ί ∷ α ∷ ς ∷ []) "1Cor.1.21" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "1Cor.1.21" ∷ word (θ ∷ ε ∷ ό ∷ ν ∷ []) "1Cor.1.21" ∷ word (ε ∷ ὐ ∷ δ ∷ ό ∷ κ ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "1Cor.1.21" ∷ word (ὁ ∷ []) "1Cor.1.21" ∷ word (θ ∷ ε ∷ ὸ ∷ ς ∷ []) "1Cor.1.21" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "1Cor.1.21" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "1Cor.1.21" ∷ word (μ ∷ ω ∷ ρ ∷ ί ∷ α ∷ ς ∷ []) "1Cor.1.21" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.1.21" ∷ word (κ ∷ η ∷ ρ ∷ ύ ∷ γ ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "1Cor.1.21" ∷ word (σ ∷ ῶ ∷ σ ∷ α ∷ ι ∷ []) "1Cor.1.21" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "1Cor.1.21" ∷ word (π ∷ ι ∷ σ ∷ τ ∷ ε ∷ ύ ∷ ο ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "1Cor.1.21" ∷ word (ἐ ∷ π ∷ ε ∷ ι ∷ δ ∷ ὴ ∷ []) "1Cor.1.22" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.1.22" ∷ word (Ἰ ∷ ο ∷ υ ∷ δ ∷ α ∷ ῖ ∷ ο ∷ ι ∷ []) "1Cor.1.22" ∷ word (σ ∷ η ∷ μ ∷ ε ∷ ῖ ∷ α ∷ []) "1Cor.1.22" ∷ word (α ∷ ἰ ∷ τ ∷ ο ∷ ῦ ∷ σ ∷ ι ∷ ν ∷ []) "1Cor.1.22" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.1.22" ∷ word (Ἕ ∷ ∙λ ∷ ∙λ ∷ η ∷ ν ∷ ε ∷ ς ∷ []) "1Cor.1.22" ∷ word (σ ∷ ο ∷ φ ∷ ί ∷ α ∷ ν ∷ []) "1Cor.1.22" ∷ word (ζ ∷ η ∷ τ ∷ ο ∷ ῦ ∷ σ ∷ ι ∷ ν ∷ []) "1Cor.1.22" ∷ word (ἡ ∷ μ ∷ ε ∷ ῖ ∷ ς ∷ []) "1Cor.1.23" ∷ word (δ ∷ ὲ ∷ []) "1Cor.1.23" ∷ word (κ ∷ η ∷ ρ ∷ ύ ∷ σ ∷ σ ∷ ο ∷ μ ∷ ε ∷ ν ∷ []) "1Cor.1.23" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ὸ ∷ ν ∷ []) "1Cor.1.23" ∷ word (ἐ ∷ σ ∷ τ ∷ α ∷ υ ∷ ρ ∷ ω ∷ μ ∷ έ ∷ ν ∷ ο ∷ ν ∷ []) "1Cor.1.23" ∷ word (Ἰ ∷ ο ∷ υ ∷ δ ∷ α ∷ ί ∷ ο ∷ ι ∷ ς ∷ []) "1Cor.1.23" ∷ word (μ ∷ ὲ ∷ ν ∷ []) "1Cor.1.23" ∷ word (σ ∷ κ ∷ ά ∷ ν ∷ δ ∷ α ∷ ∙λ ∷ ο ∷ ν ∷ []) "1Cor.1.23" ∷ word (ἔ ∷ θ ∷ ν ∷ ε ∷ σ ∷ ι ∷ ν ∷ []) "1Cor.1.23" ∷ word (δ ∷ ὲ ∷ []) "1Cor.1.23" ∷ word (μ ∷ ω ∷ ρ ∷ ί ∷ α ∷ ν ∷ []) "1Cor.1.23" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "1Cor.1.24" ∷ word (δ ∷ ὲ ∷ []) "1Cor.1.24" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "1Cor.1.24" ∷ word (κ ∷ ∙λ ∷ η ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "1Cor.1.24" ∷ word (Ἰ ∷ ο ∷ υ ∷ δ ∷ α ∷ ί ∷ ο ∷ ι ∷ ς ∷ []) "1Cor.1.24" ∷ word (τ ∷ ε ∷ []) "1Cor.1.24" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.1.24" ∷ word (Ἕ ∷ ∙λ ∷ ∙λ ∷ η ∷ σ ∷ ι ∷ ν ∷ []) "1Cor.1.24" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ὸ ∷ ν ∷ []) "1Cor.1.24" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "1Cor.1.24" ∷ word (δ ∷ ύ ∷ ν ∷ α ∷ μ ∷ ι ∷ ν ∷ []) "1Cor.1.24" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.1.24" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "1Cor.1.24" ∷ word (σ ∷ ο ∷ φ ∷ ί ∷ α ∷ ν ∷ []) "1Cor.1.24" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "1Cor.1.25" ∷ word (τ ∷ ὸ ∷ []) "1Cor.1.25" ∷ word (μ ∷ ω ∷ ρ ∷ ὸ ∷ ν ∷ []) "1Cor.1.25" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.1.25" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "1Cor.1.25" ∷ word (σ ∷ ο ∷ φ ∷ ώ ∷ τ ∷ ε ∷ ρ ∷ ο ∷ ν ∷ []) "1Cor.1.25" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "1Cor.1.25" ∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ω ∷ ν ∷ []) "1Cor.1.25" ∷ word (ἐ ∷ σ ∷ τ ∷ ί ∷ ν ∷ []) "1Cor.1.25" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.1.25" ∷ word (τ ∷ ὸ ∷ []) "1Cor.1.25" ∷ word (ἀ ∷ σ ∷ θ ∷ ε ∷ ν ∷ ὲ ∷ ς ∷ []) "1Cor.1.25" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.1.25" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "1Cor.1.25" ∷ word (ἰ ∷ σ ∷ χ ∷ υ ∷ ρ ∷ ό ∷ τ ∷ ε ∷ ρ ∷ ο ∷ ν ∷ []) "1Cor.1.25" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "1Cor.1.25" ∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ω ∷ ν ∷ []) "1Cor.1.25" ∷ word (Β ∷ ∙λ ∷ έ ∷ π ∷ ε ∷ τ ∷ ε ∷ []) "1Cor.1.26" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "1Cor.1.26" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "1Cor.1.26" ∷ word (κ ∷ ∙λ ∷ ῆ ∷ σ ∷ ι ∷ ν ∷ []) "1Cor.1.26" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Cor.1.26" ∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ο ∷ ί ∷ []) "1Cor.1.26" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "1Cor.1.26" ∷ word (ο ∷ ὐ ∷ []) "1Cor.1.26" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ο ∷ ὶ ∷ []) "1Cor.1.26" ∷ word (σ ∷ ο ∷ φ ∷ ο ∷ ὶ ∷ []) "1Cor.1.26" ∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "1Cor.1.26" ∷ word (σ ∷ ά ∷ ρ ∷ κ ∷ α ∷ []) "1Cor.1.26" ∷ word (ο ∷ ὐ ∷ []) "1Cor.1.26" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ο ∷ ὶ ∷ []) "1Cor.1.26" ∷ word (δ ∷ υ ∷ ν ∷ α ∷ τ ∷ ο ∷ ί ∷ []) "1Cor.1.26" ∷ word (ο ∷ ὐ ∷ []) "1Cor.1.26" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ο ∷ ὶ ∷ []) "1Cor.1.26" ∷ word (ε ∷ ὐ ∷ γ ∷ ε ∷ ν ∷ ε ∷ ῖ ∷ ς ∷ []) "1Cor.1.26" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "1Cor.1.27" ∷ word (τ ∷ ὰ ∷ []) "1Cor.1.27" ∷ word (μ ∷ ω ∷ ρ ∷ ὰ ∷ []) "1Cor.1.27" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.1.27" ∷ word (κ ∷ ό ∷ σ ∷ μ ∷ ο ∷ υ ∷ []) "1Cor.1.27" ∷ word (ἐ ∷ ξ ∷ ε ∷ ∙λ ∷ έ ∷ ξ ∷ α ∷ τ ∷ ο ∷ []) "1Cor.1.27" ∷ word (ὁ ∷ []) "1Cor.1.27" ∷ word (θ ∷ ε ∷ ό ∷ ς ∷ []) "1Cor.1.27" ∷ word (ἵ ∷ ν ∷ α ∷ []) "1Cor.1.27" ∷ word (κ ∷ α ∷ τ ∷ α ∷ ι ∷ σ ∷ χ ∷ ύ ∷ ν ∷ ῃ ∷ []) "1Cor.1.27" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "1Cor.1.27" ∷ word (σ ∷ ο ∷ φ ∷ ο ∷ ύ ∷ ς ∷ []) "1Cor.1.27" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.1.27" ∷ word (τ ∷ ὰ ∷ []) "1Cor.1.27" ∷ word (ἀ ∷ σ ∷ θ ∷ ε ∷ ν ∷ ῆ ∷ []) "1Cor.1.27" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.1.27" ∷ word (κ ∷ ό ∷ σ ∷ μ ∷ ο ∷ υ ∷ []) "1Cor.1.27" ∷ word (ἐ ∷ ξ ∷ ε ∷ ∙λ ∷ έ ∷ ξ ∷ α ∷ τ ∷ ο ∷ []) "1Cor.1.27" ∷ word (ὁ ∷ []) "1Cor.1.27" ∷ word (θ ∷ ε ∷ ό ∷ ς ∷ []) "1Cor.1.27" ∷ word (ἵ ∷ ν ∷ α ∷ []) "1Cor.1.27" ∷ word (κ ∷ α ∷ τ ∷ α ∷ ι ∷ σ ∷ χ ∷ ύ ∷ ν ∷ ῃ ∷ []) "1Cor.1.27" ∷ word (τ ∷ ὰ ∷ []) "1Cor.1.27" ∷ word (ἰ ∷ σ ∷ χ ∷ υ ∷ ρ ∷ ά ∷ []) "1Cor.1.27" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.1.28" ∷ word (τ ∷ ὰ ∷ []) "1Cor.1.28" ∷ word (ἀ ∷ γ ∷ ε ∷ ν ∷ ῆ ∷ []) "1Cor.1.28" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.1.28" ∷ word (κ ∷ ό ∷ σ ∷ μ ∷ ο ∷ υ ∷ []) "1Cor.1.28" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.1.28" ∷ word (τ ∷ ὰ ∷ []) "1Cor.1.28" ∷ word (ἐ ∷ ξ ∷ ο ∷ υ ∷ θ ∷ ε ∷ ν ∷ η ∷ μ ∷ έ ∷ ν ∷ α ∷ []) "1Cor.1.28" ∷ word (ἐ ∷ ξ ∷ ε ∷ ∙λ ∷ έ ∷ ξ ∷ α ∷ τ ∷ ο ∷ []) "1Cor.1.28" ∷ word (ὁ ∷ []) "1Cor.1.28" ∷ word (θ ∷ ε ∷ ό ∷ ς ∷ []) "1Cor.1.28" ∷ word (τ ∷ ὰ ∷ []) "1Cor.1.28" ∷ word (μ ∷ ὴ ∷ []) "1Cor.1.28" ∷ word (ὄ ∷ ν ∷ τ ∷ α ∷ []) "1Cor.1.28" ∷ word (ἵ ∷ ν ∷ α ∷ []) "1Cor.1.28" ∷ word (τ ∷ ὰ ∷ []) "1Cor.1.28" ∷ word (ὄ ∷ ν ∷ τ ∷ α ∷ []) "1Cor.1.28" ∷ word (κ ∷ α ∷ τ ∷ α ∷ ρ ∷ γ ∷ ή ∷ σ ∷ ῃ ∷ []) "1Cor.1.28" ∷ word (ὅ ∷ π ∷ ω ∷ ς ∷ []) "1Cor.1.29" ∷ word (μ ∷ ὴ ∷ []) "1Cor.1.29" ∷ word (κ ∷ α ∷ υ ∷ χ ∷ ή ∷ σ ∷ η ∷ τ ∷ α ∷ ι ∷ []) "1Cor.1.29" ∷ word (π ∷ ᾶ ∷ σ ∷ α ∷ []) "1Cor.1.29" ∷ word (σ ∷ ὰ ∷ ρ ∷ ξ ∷ []) "1Cor.1.29" ∷ word (ἐ ∷ ν ∷ ώ ∷ π ∷ ι ∷ ο ∷ ν ∷ []) "1Cor.1.29" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.1.29" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "1Cor.1.29" ∷ word (ἐ ∷ ξ ∷ []) "1Cor.1.30" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "1Cor.1.30" ∷ word (δ ∷ ὲ ∷ []) "1Cor.1.30" ∷ word (ὑ ∷ μ ∷ ε ∷ ῖ ∷ ς ∷ []) "1Cor.1.30" ∷ word (ἐ ∷ σ ∷ τ ∷ ε ∷ []) "1Cor.1.30" ∷ word (ἐ ∷ ν ∷ []) "1Cor.1.30" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ῷ ∷ []) "1Cor.1.30" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "1Cor.1.30" ∷ word (ὃ ∷ ς ∷ []) "1Cor.1.30" ∷ word (ἐ ∷ γ ∷ ε ∷ ν ∷ ή ∷ θ ∷ η ∷ []) "1Cor.1.30" ∷ word (σ ∷ ο ∷ φ ∷ ί ∷ α ∷ []) "1Cor.1.30" ∷ word (ἡ ∷ μ ∷ ῖ ∷ ν ∷ []) "1Cor.1.30" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "1Cor.1.30" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "1Cor.1.30" ∷ word (δ ∷ ι ∷ κ ∷ α ∷ ι ∷ ο ∷ σ ∷ ύ ∷ ν ∷ η ∷ []) "1Cor.1.30" ∷ word (τ ∷ ε ∷ []) "1Cor.1.30" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.1.30" ∷ word (ἁ ∷ γ ∷ ι ∷ α ∷ σ ∷ μ ∷ ὸ ∷ ς ∷ []) "1Cor.1.30" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.1.30" ∷ word (ἀ ∷ π ∷ ο ∷ ∙λ ∷ ύ ∷ τ ∷ ρ ∷ ω ∷ σ ∷ ι ∷ ς ∷ []) "1Cor.1.30" ∷ word (ἵ ∷ ν ∷ α ∷ []) "1Cor.1.31" ∷ word (κ ∷ α ∷ θ ∷ ὼ ∷ ς ∷ []) "1Cor.1.31" ∷ word (γ ∷ έ ∷ γ ∷ ρ ∷ α ∷ π ∷ τ ∷ α ∷ ι ∷ []) "1Cor.1.31" ∷ word (Ὁ ∷ []) "1Cor.1.31" ∷ word (κ ∷ α ∷ υ ∷ χ ∷ ώ ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "1Cor.1.31" ∷ word (ἐ ∷ ν ∷ []) "1Cor.1.31" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ῳ ∷ []) "1Cor.1.31" ∷ word (κ ∷ α ∷ υ ∷ χ ∷ ά ∷ σ ∷ θ ∷ ω ∷ []) "1Cor.1.31" ∷ word (Κ ∷ ἀ ∷ γ ∷ ὼ ∷ []) "1Cor.2.1" ∷ word (ἐ ∷ ∙λ ∷ θ ∷ ὼ ∷ ν ∷ []) "1Cor.2.1" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "1Cor.2.1" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "1Cor.2.1" ∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ο ∷ ί ∷ []) "1Cor.2.1" ∷ word (ἦ ∷ ∙λ ∷ θ ∷ ο ∷ ν ∷ []) "1Cor.2.1" ∷ word (ο ∷ ὐ ∷ []) "1Cor.2.1" ∷ word (κ ∷ α ∷ θ ∷ []) "1Cor.2.1" ∷ word (ὑ ∷ π ∷ ε ∷ ρ ∷ ο ∷ χ ∷ ὴ ∷ ν ∷ []) "1Cor.2.1" ∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ υ ∷ []) "1Cor.2.1" ∷ word (ἢ ∷ []) "1Cor.2.1" ∷ word (σ ∷ ο ∷ φ ∷ ί ∷ α ∷ ς ∷ []) "1Cor.2.1" ∷ word (κ ∷ α ∷ τ ∷ α ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ∙λ ∷ ω ∷ ν ∷ []) "1Cor.2.1" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "1Cor.2.1" ∷ word (τ ∷ ὸ ∷ []) "1Cor.2.1" ∷ word (μ ∷ α ∷ ρ ∷ τ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ν ∷ []) "1Cor.2.1" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.2.1" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "1Cor.2.1" ∷ word (ο ∷ ὐ ∷ []) "1Cor.2.2" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "1Cor.2.2" ∷ word (ἔ ∷ κ ∷ ρ ∷ ι ∷ ν ∷ ά ∷ []) "1Cor.2.2" ∷ word (τ ∷ ι ∷ []) "1Cor.2.2" ∷ word (ε ∷ ἰ ∷ δ ∷ έ ∷ ν ∷ α ∷ ι ∷ []) "1Cor.2.2" ∷ word (ἐ ∷ ν ∷ []) "1Cor.2.2" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "1Cor.2.2" ∷ word (ε ∷ ἰ ∷ []) "1Cor.2.2" ∷ word (μ ∷ ὴ ∷ []) "1Cor.2.2" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ν ∷ []) "1Cor.2.2" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ὸ ∷ ν ∷ []) "1Cor.2.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.2.2" ∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ ν ∷ []) "1Cor.2.2" ∷ word (ἐ ∷ σ ∷ τ ∷ α ∷ υ ∷ ρ ∷ ω ∷ μ ∷ έ ∷ ν ∷ ο ∷ ν ∷ []) "1Cor.2.2" ∷ word (κ ∷ ἀ ∷ γ ∷ ὼ ∷ []) "1Cor.2.3" ∷ word (ἐ ∷ ν ∷ []) "1Cor.2.3" ∷ word (ἀ ∷ σ ∷ θ ∷ ε ∷ ν ∷ ε ∷ ί ∷ ᾳ ∷ []) "1Cor.2.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.2.3" ∷ word (ἐ ∷ ν ∷ []) "1Cor.2.3" ∷ word (φ ∷ ό ∷ β ∷ ῳ ∷ []) "1Cor.2.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.2.3" ∷ word (ἐ ∷ ν ∷ []) "1Cor.2.3" ∷ word (τ ∷ ρ ∷ ό ∷ μ ∷ ῳ ∷ []) "1Cor.2.3" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ῷ ∷ []) "1Cor.2.3" ∷ word (ἐ ∷ γ ∷ ε ∷ ν ∷ ό ∷ μ ∷ η ∷ ν ∷ []) "1Cor.2.3" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "1Cor.2.3" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "1Cor.2.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.2.4" ∷ word (ὁ ∷ []) "1Cor.2.4" ∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ ς ∷ []) "1Cor.2.4" ∷ word (μ ∷ ο ∷ υ ∷ []) "1Cor.2.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.2.4" ∷ word (τ ∷ ὸ ∷ []) "1Cor.2.4" ∷ word (κ ∷ ή ∷ ρ ∷ υ ∷ γ ∷ μ ∷ ά ∷ []) "1Cor.2.4" ∷ word (μ ∷ ο ∷ υ ∷ []) "1Cor.2.4" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "1Cor.2.4" ∷ word (ἐ ∷ ν ∷ []) "1Cor.2.4" ∷ word (π ∷ ε ∷ ι ∷ θ ∷ ο ∷ ῖ ∷ []) "1Cor.2.4" ∷ word (σ ∷ ο ∷ φ ∷ ί ∷ α ∷ ς ∷ []) "1Cor.2.4" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ []) "1Cor.2.4" ∷ word (ἐ ∷ ν ∷ []) "1Cor.2.4" ∷ word (ἀ ∷ π ∷ ο ∷ δ ∷ ε ∷ ί ∷ ξ ∷ ε ∷ ι ∷ []) "1Cor.2.4" ∷ word (π ∷ ν ∷ ε ∷ ύ ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "1Cor.2.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.2.4" ∷ word (δ ∷ υ ∷ ν ∷ ά ∷ μ ∷ ε ∷ ω ∷ ς ∷ []) "1Cor.2.4" ∷ word (ἵ ∷ ν ∷ α ∷ []) "1Cor.2.5" ∷ word (ἡ ∷ []) "1Cor.2.5" ∷ word (π ∷ ί ∷ σ ∷ τ ∷ ι ∷ ς ∷ []) "1Cor.2.5" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Cor.2.5" ∷ word (μ ∷ ὴ ∷ []) "1Cor.2.5" ∷ word (ᾖ ∷ []) "1Cor.2.5" ∷ word (ἐ ∷ ν ∷ []) "1Cor.2.5" ∷ word (σ ∷ ο ∷ φ ∷ ί ∷ ᾳ ∷ []) "1Cor.2.5" ∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ω ∷ ν ∷ []) "1Cor.2.5" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ []) "1Cor.2.5" ∷ word (ἐ ∷ ν ∷ []) "1Cor.2.5" ∷ word (δ ∷ υ ∷ ν ∷ ά ∷ μ ∷ ε ∷ ι ∷ []) "1Cor.2.5" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "1Cor.2.5" ∷ word (Σ ∷ ο ∷ φ ∷ ί ∷ α ∷ ν ∷ []) "1Cor.2.6" ∷ word (δ ∷ ὲ ∷ []) "1Cor.2.6" ∷ word (∙λ ∷ α ∷ ∙λ ∷ ο ∷ ῦ ∷ μ ∷ ε ∷ ν ∷ []) "1Cor.2.6" ∷ word (ἐ ∷ ν ∷ []) "1Cor.2.6" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "1Cor.2.6" ∷ word (τ ∷ ε ∷ ∙λ ∷ ε ∷ ί ∷ ο ∷ ι ∷ ς ∷ []) "1Cor.2.6" ∷ word (σ ∷ ο ∷ φ ∷ ί ∷ α ∷ ν ∷ []) "1Cor.2.6" ∷ word (δ ∷ ὲ ∷ []) "1Cor.2.6" ∷ word (ο ∷ ὐ ∷ []) "1Cor.2.6" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.2.6" ∷ word (α ∷ ἰ ∷ ῶ ∷ ν ∷ ο ∷ ς ∷ []) "1Cor.2.6" ∷ word (τ ∷ ο ∷ ύ ∷ τ ∷ ο ∷ υ ∷ []) "1Cor.2.6" ∷ word (ο ∷ ὐ ∷ δ ∷ ὲ ∷ []) "1Cor.2.6" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "1Cor.2.6" ∷ word (ἀ ∷ ρ ∷ χ ∷ ό ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "1Cor.2.6" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.2.6" ∷ word (α ∷ ἰ ∷ ῶ ∷ ν ∷ ο ∷ ς ∷ []) "1Cor.2.6" ∷ word (τ ∷ ο ∷ ύ ∷ τ ∷ ο ∷ υ ∷ []) "1Cor.2.6" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "1Cor.2.6" ∷ word (κ ∷ α ∷ τ ∷ α ∷ ρ ∷ γ ∷ ο ∷ υ ∷ μ ∷ έ ∷ ν ∷ ω ∷ ν ∷ []) "1Cor.2.6" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "1Cor.2.7" ∷ word (∙λ ∷ α ∷ ∙λ ∷ ο ∷ ῦ ∷ μ ∷ ε ∷ ν ∷ []) "1Cor.2.7" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "1Cor.2.7" ∷ word (σ ∷ ο ∷ φ ∷ ί ∷ α ∷ ν ∷ []) "1Cor.2.7" ∷ word (ἐ ∷ ν ∷ []) "1Cor.2.7" ∷ word (μ ∷ υ ∷ σ ∷ τ ∷ η ∷ ρ ∷ ί ∷ ῳ ∷ []) "1Cor.2.7" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "1Cor.2.7" ∷ word (ἀ ∷ π ∷ ο ∷ κ ∷ ε ∷ κ ∷ ρ ∷ υ ∷ μ ∷ μ ∷ έ ∷ ν ∷ η ∷ ν ∷ []) "1Cor.2.7" ∷ word (ἣ ∷ ν ∷ []) "1Cor.2.7" ∷ word (π ∷ ρ ∷ ο ∷ ώ ∷ ρ ∷ ι ∷ σ ∷ ε ∷ ν ∷ []) "1Cor.2.7" ∷ word (ὁ ∷ []) "1Cor.2.7" ∷ word (θ ∷ ε ∷ ὸ ∷ ς ∷ []) "1Cor.2.7" ∷ word (π ∷ ρ ∷ ὸ ∷ []) "1Cor.2.7" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "1Cor.2.7" ∷ word (α ∷ ἰ ∷ ώ ∷ ν ∷ ω ∷ ν ∷ []) "1Cor.2.7" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "1Cor.2.7" ∷ word (δ ∷ ό ∷ ξ ∷ α ∷ ν ∷ []) "1Cor.2.7" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Cor.2.7" ∷ word (ἣ ∷ ν ∷ []) "1Cor.2.8" ∷ word (ο ∷ ὐ ∷ δ ∷ ε ∷ ὶ ∷ ς ∷ []) "1Cor.2.8" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "1Cor.2.8" ∷ word (ἀ ∷ ρ ∷ χ ∷ ό ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "1Cor.2.8" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.2.8" ∷ word (α ∷ ἰ ∷ ῶ ∷ ν ∷ ο ∷ ς ∷ []) "1Cor.2.8" ∷ word (τ ∷ ο ∷ ύ ∷ τ ∷ ο ∷ υ ∷ []) "1Cor.2.8" ∷ word (ἔ ∷ γ ∷ ν ∷ ω ∷ κ ∷ ε ∷ ν ∷ []) "1Cor.2.8" ∷ word (ε ∷ ἰ ∷ []) "1Cor.2.8" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "1Cor.2.8" ∷ word (ἔ ∷ γ ∷ ν ∷ ω ∷ σ ∷ α ∷ ν ∷ []) "1Cor.2.8" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "1Cor.2.8" ∷ word (ἂ ∷ ν ∷ []) "1Cor.2.8" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "1Cor.2.8" ∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ν ∷ []) "1Cor.2.8" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "1Cor.2.8" ∷ word (δ ∷ ό ∷ ξ ∷ η ∷ ς ∷ []) "1Cor.2.8" ∷ word (ἐ ∷ σ ∷ τ ∷ α ∷ ύ ∷ ρ ∷ ω ∷ σ ∷ α ∷ ν ∷ []) "1Cor.2.8" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "1Cor.2.9" ∷ word (κ ∷ α ∷ θ ∷ ὼ ∷ ς ∷ []) "1Cor.2.9" ∷ word (γ ∷ έ ∷ γ ∷ ρ ∷ α ∷ π ∷ τ ∷ α ∷ ι ∷ []) "1Cor.2.9" ∷ word (Ἃ ∷ []) "1Cor.2.9" ∷ word (ὀ ∷ φ ∷ θ ∷ α ∷ ∙λ ∷ μ ∷ ὸ ∷ ς ∷ []) "1Cor.2.9" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "1Cor.2.9" ∷ word (ε ∷ ἶ ∷ δ ∷ ε ∷ ν ∷ []) "1Cor.2.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.2.9" ∷ word (ο ∷ ὖ ∷ ς ∷ []) "1Cor.2.9" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "1Cor.2.9" ∷ word (ἤ ∷ κ ∷ ο ∷ υ ∷ σ ∷ ε ∷ ν ∷ []) "1Cor.2.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.2.9" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "1Cor.2.9" ∷ word (κ ∷ α ∷ ρ ∷ δ ∷ ί ∷ α ∷ ν ∷ []) "1Cor.2.9" ∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ο ∷ υ ∷ []) "1Cor.2.9" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "1Cor.2.9" ∷ word (ἀ ∷ ν ∷ έ ∷ β ∷ η ∷ []) "1Cor.2.9" ∷ word (ὅ ∷ σ ∷ α ∷ []) "1Cor.2.9" ∷ word (ἡ ∷ τ ∷ ο ∷ ί ∷ μ ∷ α ∷ σ ∷ ε ∷ ν ∷ []) "1Cor.2.9" ∷ word (ὁ ∷ []) "1Cor.2.9" ∷ word (θ ∷ ε ∷ ὸ ∷ ς ∷ []) "1Cor.2.9" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "1Cor.2.9" ∷ word (ἀ ∷ γ ∷ α ∷ π ∷ ῶ ∷ σ ∷ ι ∷ ν ∷ []) "1Cor.2.9" ∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "1Cor.2.9" ∷ word (ἡ ∷ μ ∷ ῖ ∷ ν ∷ []) "1Cor.2.10" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "1Cor.2.10" ∷ word (ἀ ∷ π ∷ ε ∷ κ ∷ ά ∷ ∙λ ∷ υ ∷ ψ ∷ ε ∷ ν ∷ []) "1Cor.2.10" ∷ word (ὁ ∷ []) "1Cor.2.10" ∷ word (θ ∷ ε ∷ ὸ ∷ ς ∷ []) "1Cor.2.10" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "1Cor.2.10" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.2.10" ∷ word (π ∷ ν ∷ ε ∷ ύ ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "1Cor.2.10" ∷ word (τ ∷ ὸ ∷ []) "1Cor.2.10" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "1Cor.2.10" ∷ word (π ∷ ν ∷ ε ∷ ῦ ∷ μ ∷ α ∷ []) "1Cor.2.10" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "1Cor.2.10" ∷ word (ἐ ∷ ρ ∷ α ∷ υ ∷ ν ∷ ᾷ ∷ []) "1Cor.2.10" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.2.10" ∷ word (τ ∷ ὰ ∷ []) "1Cor.2.10" ∷ word (β ∷ ά ∷ θ ∷ η ∷ []) "1Cor.2.10" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.2.10" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "1Cor.2.10" ∷ word (τ ∷ ί ∷ ς ∷ []) "1Cor.2.11" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "1Cor.2.11" ∷ word (ο ∷ ἶ ∷ δ ∷ ε ∷ ν ∷ []) "1Cor.2.11" ∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ω ∷ ν ∷ []) "1Cor.2.11" ∷ word (τ ∷ ὰ ∷ []) "1Cor.2.11" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.2.11" ∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ο ∷ υ ∷ []) "1Cor.2.11" ∷ word (ε ∷ ἰ ∷ []) "1Cor.2.11" ∷ word (μ ∷ ὴ ∷ []) "1Cor.2.11" ∷ word (τ ∷ ὸ ∷ []) "1Cor.2.11" ∷ word (π ∷ ν ∷ ε ∷ ῦ ∷ μ ∷ α ∷ []) "1Cor.2.11" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.2.11" ∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ο ∷ υ ∷ []) "1Cor.2.11" ∷ word (τ ∷ ὸ ∷ []) "1Cor.2.11" ∷ word (ἐ ∷ ν ∷ []) "1Cor.2.11" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "1Cor.2.11" ∷ word (ο ∷ ὕ ∷ τ ∷ ω ∷ ς ∷ []) "1Cor.2.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.2.11" ∷ word (τ ∷ ὰ ∷ []) "1Cor.2.11" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.2.11" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "1Cor.2.11" ∷ word (ο ∷ ὐ ∷ δ ∷ ε ∷ ὶ ∷ ς ∷ []) "1Cor.2.11" ∷ word (ἔ ∷ γ ∷ ν ∷ ω ∷ κ ∷ ε ∷ ν ∷ []) "1Cor.2.11" ∷ word (ε ∷ ἰ ∷ []) "1Cor.2.11" ∷ word (μ ∷ ὴ ∷ []) "1Cor.2.11" ∷ word (τ ∷ ὸ ∷ []) "1Cor.2.11" ∷ word (π ∷ ν ∷ ε ∷ ῦ ∷ μ ∷ α ∷ []) "1Cor.2.11" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.2.11" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "1Cor.2.11" ∷ word (ἡ ∷ μ ∷ ε ∷ ῖ ∷ ς ∷ []) "1Cor.2.12" ∷ word (δ ∷ ὲ ∷ []) "1Cor.2.12" ∷ word (ο ∷ ὐ ∷ []) "1Cor.2.12" ∷ word (τ ∷ ὸ ∷ []) "1Cor.2.12" ∷ word (π ∷ ν ∷ ε ∷ ῦ ∷ μ ∷ α ∷ []) "1Cor.2.12" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.2.12" ∷ word (κ ∷ ό ∷ σ ∷ μ ∷ ο ∷ υ ∷ []) "1Cor.2.12" ∷ word (ἐ ∷ ∙λ ∷ ά ∷ β ∷ ο ∷ μ ∷ ε ∷ ν ∷ []) "1Cor.2.12" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "1Cor.2.12" ∷ word (τ ∷ ὸ ∷ []) "1Cor.2.12" ∷ word (π ∷ ν ∷ ε ∷ ῦ ∷ μ ∷ α ∷ []) "1Cor.2.12" ∷ word (τ ∷ ὸ ∷ []) "1Cor.2.12" ∷ word (ἐ ∷ κ ∷ []) "1Cor.2.12" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.2.12" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "1Cor.2.12" ∷ word (ἵ ∷ ν ∷ α ∷ []) "1Cor.2.12" ∷ word (ε ∷ ἰ ∷ δ ∷ ῶ ∷ μ ∷ ε ∷ ν ∷ []) "1Cor.2.12" ∷ word (τ ∷ ὰ ∷ []) "1Cor.2.12" ∷ word (ὑ ∷ π ∷ ὸ ∷ []) "1Cor.2.12" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.2.12" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "1Cor.2.12" ∷ word (χ ∷ α ∷ ρ ∷ ι ∷ σ ∷ θ ∷ έ ∷ ν ∷ τ ∷ α ∷ []) "1Cor.2.12" ∷ word (ἡ ∷ μ ∷ ῖ ∷ ν ∷ []) "1Cor.2.12" ∷ word (ἃ ∷ []) "1Cor.2.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.2.13" ∷ word (∙λ ∷ α ∷ ∙λ ∷ ο ∷ ῦ ∷ μ ∷ ε ∷ ν ∷ []) "1Cor.2.13" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "1Cor.2.13" ∷ word (ἐ ∷ ν ∷ []) "1Cor.2.13" ∷ word (δ ∷ ι ∷ δ ∷ α ∷ κ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "1Cor.2.13" ∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ω ∷ π ∷ ί ∷ ν ∷ η ∷ ς ∷ []) "1Cor.2.13" ∷ word (σ ∷ ο ∷ φ ∷ ί ∷ α ∷ ς ∷ []) "1Cor.2.13" ∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ ι ∷ ς ∷ []) "1Cor.2.13" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ []) "1Cor.2.13" ∷ word (ἐ ∷ ν ∷ []) "1Cor.2.13" ∷ word (δ ∷ ι ∷ δ ∷ α ∷ κ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "1Cor.2.13" ∷ word (π ∷ ν ∷ ε ∷ ύ ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "1Cor.2.13" ∷ word (π ∷ ν ∷ ε ∷ υ ∷ μ ∷ α ∷ τ ∷ ι ∷ κ ∷ ο ∷ ῖ ∷ ς ∷ []) "1Cor.2.13" ∷ word (π ∷ ν ∷ ε ∷ υ ∷ μ ∷ α ∷ τ ∷ ι ∷ κ ∷ ὰ ∷ []) "1Cor.2.13" ∷ word (σ ∷ υ ∷ γ ∷ κ ∷ ρ ∷ ί ∷ ν ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "1Cor.2.13" ∷ word (Ψ ∷ υ ∷ χ ∷ ι ∷ κ ∷ ὸ ∷ ς ∷ []) "1Cor.2.14" ∷ word (δ ∷ ὲ ∷ []) "1Cor.2.14" ∷ word (ἄ ∷ ν ∷ θ ∷ ρ ∷ ω ∷ π ∷ ο ∷ ς ∷ []) "1Cor.2.14" ∷ word (ο ∷ ὐ ∷ []) "1Cor.2.14" ∷ word (δ ∷ έ ∷ χ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "1Cor.2.14" ∷ word (τ ∷ ὰ ∷ []) "1Cor.2.14" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.2.14" ∷ word (π ∷ ν ∷ ε ∷ ύ ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "1Cor.2.14" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.2.14" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "1Cor.2.14" ∷ word (μ ∷ ω ∷ ρ ∷ ί ∷ α ∷ []) "1Cor.2.14" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "1Cor.2.14" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "1Cor.2.14" ∷ word (ἐ ∷ σ ∷ τ ∷ ί ∷ ν ∷ []) "1Cor.2.14" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.2.14" ∷ word (ο ∷ ὐ ∷ []) "1Cor.2.14" ∷ word (δ ∷ ύ ∷ ν ∷ α ∷ τ ∷ α ∷ ι ∷ []) "1Cor.2.14" ∷ word (γ ∷ ν ∷ ῶ ∷ ν ∷ α ∷ ι ∷ []) "1Cor.2.14" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "1Cor.2.14" ∷ word (π ∷ ν ∷ ε ∷ υ ∷ μ ∷ α ∷ τ ∷ ι ∷ κ ∷ ῶ ∷ ς ∷ []) "1Cor.2.14" ∷ word (ἀ ∷ ν ∷ α ∷ κ ∷ ρ ∷ ί ∷ ν ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "1Cor.2.14" ∷ word (ὁ ∷ []) "1Cor.2.15" ∷ word (δ ∷ ὲ ∷ []) "1Cor.2.15" ∷ word (π ∷ ν ∷ ε ∷ υ ∷ μ ∷ α ∷ τ ∷ ι ∷ κ ∷ ὸ ∷ ς ∷ []) "1Cor.2.15" ∷ word (ἀ ∷ ν ∷ α ∷ κ ∷ ρ ∷ ί ∷ ν ∷ ε ∷ ι ∷ []) "1Cor.2.15" ∷ word (τ ∷ ὰ ∷ []) "1Cor.2.15" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "1Cor.2.15" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ς ∷ []) "1Cor.2.15" ∷ word (δ ∷ ὲ ∷ []) "1Cor.2.15" ∷ word (ὑ ∷ π ∷ []) "1Cor.2.15" ∷ word (ο ∷ ὐ ∷ δ ∷ ε ∷ ν ∷ ὸ ∷ ς ∷ []) "1Cor.2.15" ∷ word (ἀ ∷ ν ∷ α ∷ κ ∷ ρ ∷ ί ∷ ν ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "1Cor.2.15" ∷ word (τ ∷ ί ∷ ς ∷ []) "1Cor.2.16" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "1Cor.2.16" ∷ word (ἔ ∷ γ ∷ ν ∷ ω ∷ []) "1Cor.2.16" ∷ word (ν ∷ ο ∷ ῦ ∷ ν ∷ []) "1Cor.2.16" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "1Cor.2.16" ∷ word (ὃ ∷ ς ∷ []) "1Cor.2.16" ∷ word (σ ∷ υ ∷ μ ∷ β ∷ ι ∷ β ∷ ά ∷ σ ∷ ε ∷ ι ∷ []) "1Cor.2.16" ∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "1Cor.2.16" ∷ word (ἡ ∷ μ ∷ ε ∷ ῖ ∷ ς ∷ []) "1Cor.2.16" ∷ word (δ ∷ ὲ ∷ []) "1Cor.2.16" ∷ word (ν ∷ ο ∷ ῦ ∷ ν ∷ []) "1Cor.2.16" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "1Cor.2.16" ∷ word (ἔ ∷ χ ∷ ο ∷ μ ∷ ε ∷ ν ∷ []) "1Cor.2.16" ∷ word (Κ ∷ ἀ ∷ γ ∷ ώ ∷ []) "1Cor.3.1" ∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ο ∷ ί ∷ []) "1Cor.3.1" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "1Cor.3.1" ∷ word (ἠ ∷ δ ∷ υ ∷ ν ∷ ή ∷ θ ∷ η ∷ ν ∷ []) "1Cor.3.1" ∷ word (∙λ ∷ α ∷ ∙λ ∷ ῆ ∷ σ ∷ α ∷ ι ∷ []) "1Cor.3.1" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "1Cor.3.1" ∷ word (ὡ ∷ ς ∷ []) "1Cor.3.1" ∷ word (π ∷ ν ∷ ε ∷ υ ∷ μ ∷ α ∷ τ ∷ ι ∷ κ ∷ ο ∷ ῖ ∷ ς ∷ []) "1Cor.3.1" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ []) "1Cor.3.1" ∷ word (ὡ ∷ ς ∷ []) "1Cor.3.1" ∷ word (σ ∷ α ∷ ρ ∷ κ ∷ ί ∷ ν ∷ ο ∷ ι ∷ ς ∷ []) "1Cor.3.1" ∷ word (ὡ ∷ ς ∷ []) "1Cor.3.1" ∷ word (ν ∷ η ∷ π ∷ ί ∷ ο ∷ ι ∷ ς ∷ []) "1Cor.3.1" ∷ word (ἐ ∷ ν ∷ []) "1Cor.3.1" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ῷ ∷ []) "1Cor.3.1" ∷ word (γ ∷ ά ∷ ∙λ ∷ α ∷ []) "1Cor.3.2" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "1Cor.3.2" ∷ word (ἐ ∷ π ∷ ό ∷ τ ∷ ι ∷ σ ∷ α ∷ []) "1Cor.3.2" ∷ word (ο ∷ ὐ ∷ []) "1Cor.3.2" ∷ word (β ∷ ρ ∷ ῶ ∷ μ ∷ α ∷ []) "1Cor.3.2" ∷ word (ο ∷ ὔ ∷ π ∷ ω ∷ []) "1Cor.3.2" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "1Cor.3.2" ∷ word (ἐ ∷ δ ∷ ύ ∷ ν ∷ α ∷ σ ∷ θ ∷ ε ∷ []) "1Cor.3.2" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ []) "1Cor.3.2" ∷ word (ο ∷ ὐ ∷ δ ∷ ὲ ∷ []) "1Cor.3.2" ∷ word (ἔ ∷ τ ∷ ι ∷ []) "1Cor.3.2" ∷ word (ν ∷ ῦ ∷ ν ∷ []) "1Cor.3.2" ∷ word (δ ∷ ύ ∷ ν ∷ α ∷ σ ∷ θ ∷ ε ∷ []) "1Cor.3.2" ∷ word (ἔ ∷ τ ∷ ι ∷ []) "1Cor.3.3" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "1Cor.3.3" ∷ word (σ ∷ α ∷ ρ ∷ κ ∷ ι ∷ κ ∷ ο ∷ ί ∷ []) "1Cor.3.3" ∷ word (ἐ ∷ σ ∷ τ ∷ ε ∷ []) "1Cor.3.3" ∷ word (ὅ ∷ π ∷ ο ∷ υ ∷ []) "1Cor.3.3" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "1Cor.3.3" ∷ word (ἐ ∷ ν ∷ []) "1Cor.3.3" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "1Cor.3.3" ∷ word (ζ ∷ ῆ ∷ ∙λ ∷ ο ∷ ς ∷ []) "1Cor.3.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.3.3" ∷ word (ἔ ∷ ρ ∷ ι ∷ ς ∷ []) "1Cor.3.3" ∷ word (ο ∷ ὐ ∷ χ ∷ ὶ ∷ []) "1Cor.3.3" ∷ word (σ ∷ α ∷ ρ ∷ κ ∷ ι ∷ κ ∷ ο ∷ ί ∷ []) "1Cor.3.3" ∷ word (ἐ ∷ σ ∷ τ ∷ ε ∷ []) "1Cor.3.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.3.3" ∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "1Cor.3.3" ∷ word (ἄ ∷ ν ∷ θ ∷ ρ ∷ ω ∷ π ∷ ο ∷ ν ∷ []) "1Cor.3.3" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ π ∷ α ∷ τ ∷ ε ∷ ῖ ∷ τ ∷ ε ∷ []) "1Cor.3.3" ∷ word (ὅ ∷ τ ∷ α ∷ ν ∷ []) "1Cor.3.4" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "1Cor.3.4" ∷ word (∙λ ∷ έ ∷ γ ∷ ῃ ∷ []) "1Cor.3.4" ∷ word (τ ∷ ι ∷ ς ∷ []) "1Cor.3.4" ∷ word (Ἐ ∷ γ ∷ ὼ ∷ []) "1Cor.3.4" ∷ word (μ ∷ έ ∷ ν ∷ []) "1Cor.3.4" ∷ word (ε ∷ ἰ ∷ μ ∷ ι ∷ []) "1Cor.3.4" ∷ word (Π ∷ α ∷ ύ ∷ ∙λ ∷ ο ∷ υ ∷ []) "1Cor.3.4" ∷ word (ἕ ∷ τ ∷ ε ∷ ρ ∷ ο ∷ ς ∷ []) "1Cor.3.4" ∷ word (δ ∷ έ ∷ []) "1Cor.3.4" ∷ word (Ἐ ∷ γ ∷ ὼ ∷ []) "1Cor.3.4" ∷ word (Ἀ ∷ π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ῶ ∷ []) "1Cor.3.4" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "1Cor.3.4" ∷ word (ἄ ∷ ν ∷ θ ∷ ρ ∷ ω ∷ π ∷ ο ∷ ί ∷ []) "1Cor.3.4" ∷ word (ἐ ∷ σ ∷ τ ∷ ε ∷ []) "1Cor.3.4" ∷ word (Τ ∷ ί ∷ []) "1Cor.3.5" ∷ word (ο ∷ ὖ ∷ ν ∷ []) "1Cor.3.5" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "1Cor.3.5" ∷ word (Ἀ ∷ π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ῶ ∷ ς ∷ []) "1Cor.3.5" ∷ word (τ ∷ ί ∷ []) "1Cor.3.5" ∷ word (δ ∷ έ ∷ []) "1Cor.3.5" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "1Cor.3.5" ∷ word (Π ∷ α ∷ ῦ ∷ ∙λ ∷ ο ∷ ς ∷ []) "1Cor.3.5" ∷ word (δ ∷ ι ∷ ά ∷ κ ∷ ο ∷ ν ∷ ο ∷ ι ∷ []) "1Cor.3.5" ∷ word (δ ∷ ι ∷ []) "1Cor.3.5" ∷ word (ὧ ∷ ν ∷ []) "1Cor.3.5" ∷ word (ἐ ∷ π ∷ ι ∷ σ ∷ τ ∷ ε ∷ ύ ∷ σ ∷ α ∷ τ ∷ ε ∷ []) "1Cor.3.5" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.3.5" ∷ word (ἑ ∷ κ ∷ ά ∷ σ ∷ τ ∷ ῳ ∷ []) "1Cor.3.5" ∷ word (ὡ ∷ ς ∷ []) "1Cor.3.5" ∷ word (ὁ ∷ []) "1Cor.3.5" ∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ς ∷ []) "1Cor.3.5" ∷ word (ἔ ∷ δ ∷ ω ∷ κ ∷ ε ∷ ν ∷ []) "1Cor.3.5" ∷ word (ἐ ∷ γ ∷ ὼ ∷ []) "1Cor.3.6" ∷ word (ἐ ∷ φ ∷ ύ ∷ τ ∷ ε ∷ υ ∷ σ ∷ α ∷ []) "1Cor.3.6" ∷ word (Ἀ ∷ π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ῶ ∷ ς ∷ []) "1Cor.3.6" ∷ word (ἐ ∷ π ∷ ό ∷ τ ∷ ι ∷ σ ∷ ε ∷ ν ∷ []) "1Cor.3.6" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "1Cor.3.6" ∷ word (ὁ ∷ []) "1Cor.3.6" ∷ word (θ ∷ ε ∷ ὸ ∷ ς ∷ []) "1Cor.3.6" ∷ word (η ∷ ὔ ∷ ξ ∷ α ∷ ν ∷ ε ∷ ν ∷ []) "1Cor.3.6" ∷ word (ὥ ∷ σ ∷ τ ∷ ε ∷ []) "1Cor.3.7" ∷ word (ο ∷ ὔ ∷ τ ∷ ε ∷ []) "1Cor.3.7" ∷ word (ὁ ∷ []) "1Cor.3.7" ∷ word (φ ∷ υ ∷ τ ∷ ε ∷ ύ ∷ ω ∷ ν ∷ []) "1Cor.3.7" ∷ word (ἐ ∷ σ ∷ τ ∷ ί ∷ ν ∷ []) "1Cor.3.7" ∷ word (τ ∷ ι ∷ []) "1Cor.3.7" ∷ word (ο ∷ ὔ ∷ τ ∷ ε ∷ []) "1Cor.3.7" ∷ word (ὁ ∷ []) "1Cor.3.7" ∷ word (π ∷ ο ∷ τ ∷ ί ∷ ζ ∷ ω ∷ ν ∷ []) "1Cor.3.7" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ []) "1Cor.3.7" ∷ word (ὁ ∷ []) "1Cor.3.7" ∷ word (α ∷ ὐ ∷ ξ ∷ ά ∷ ν ∷ ω ∷ ν ∷ []) "1Cor.3.7" ∷ word (θ ∷ ε ∷ ό ∷ ς ∷ []) "1Cor.3.7" ∷ word (ὁ ∷ []) "1Cor.3.8" ∷ word (φ ∷ υ ∷ τ ∷ ε ∷ ύ ∷ ω ∷ ν ∷ []) "1Cor.3.8" ∷ word (δ ∷ ὲ ∷ []) "1Cor.3.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.3.8" ∷ word (ὁ ∷ []) "1Cor.3.8" ∷ word (π ∷ ο ∷ τ ∷ ί ∷ ζ ∷ ω ∷ ν ∷ []) "1Cor.3.8" ∷ word (ἕ ∷ ν ∷ []) "1Cor.3.8" ∷ word (ε ∷ ἰ ∷ σ ∷ ι ∷ ν ∷ []) "1Cor.3.8" ∷ word (ἕ ∷ κ ∷ α ∷ σ ∷ τ ∷ ο ∷ ς ∷ []) "1Cor.3.8" ∷ word (δ ∷ ὲ ∷ []) "1Cor.3.8" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "1Cor.3.8" ∷ word (ἴ ∷ δ ∷ ι ∷ ο ∷ ν ∷ []) "1Cor.3.8" ∷ word (μ ∷ ι ∷ σ ∷ θ ∷ ὸ ∷ ν ∷ []) "1Cor.3.8" ∷ word (∙λ ∷ ή ∷ μ ∷ ψ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "1Cor.3.8" ∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "1Cor.3.8" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "1Cor.3.8" ∷ word (ἴ ∷ δ ∷ ι ∷ ο ∷ ν ∷ []) "1Cor.3.8" ∷ word (κ ∷ ό ∷ π ∷ ο ∷ ν ∷ []) "1Cor.3.8" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "1Cor.3.9" ∷ word (γ ∷ ά ∷ ρ ∷ []) "1Cor.3.9" ∷ word (ἐ ∷ σ ∷ μ ∷ ε ∷ ν ∷ []) "1Cor.3.9" ∷ word (σ ∷ υ ∷ ν ∷ ε ∷ ρ ∷ γ ∷ ο ∷ ί ∷ []) "1Cor.3.9" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "1Cor.3.9" ∷ word (γ ∷ ε ∷ ώ ∷ ρ ∷ γ ∷ ι ∷ ο ∷ ν ∷ []) "1Cor.3.9" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "1Cor.3.9" ∷ word (ο ∷ ἰ ∷ κ ∷ ο ∷ δ ∷ ο ∷ μ ∷ ή ∷ []) "1Cor.3.9" ∷ word (ἐ ∷ σ ∷ τ ∷ ε ∷ []) "1Cor.3.9" ∷ word (Κ ∷ α ∷ τ ∷ ὰ ∷ []) "1Cor.3.10" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "1Cor.3.10" ∷ word (χ ∷ ά ∷ ρ ∷ ι ∷ ν ∷ []) "1Cor.3.10" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.3.10" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "1Cor.3.10" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "1Cor.3.10" ∷ word (δ ∷ ο ∷ θ ∷ ε ∷ ῖ ∷ σ ∷ ά ∷ ν ∷ []) "1Cor.3.10" ∷ word (μ ∷ ο ∷ ι ∷ []) "1Cor.3.10" ∷ word (ὡ ∷ ς ∷ []) "1Cor.3.10" ∷ word (σ ∷ ο ∷ φ ∷ ὸ ∷ ς ∷ []) "1Cor.3.10" ∷ word (ἀ ∷ ρ ∷ χ ∷ ι ∷ τ ∷ έ ∷ κ ∷ τ ∷ ω ∷ ν ∷ []) "1Cor.3.10" ∷ word (θ ∷ ε ∷ μ ∷ έ ∷ ∙λ ∷ ι ∷ ο ∷ ν ∷ []) "1Cor.3.10" ∷ word (ἔ ∷ θ ∷ η ∷ κ ∷ α ∷ []) "1Cor.3.10" ∷ word (ἄ ∷ ∙λ ∷ ∙λ ∷ ο ∷ ς ∷ []) "1Cor.3.10" ∷ word (δ ∷ ὲ ∷ []) "1Cor.3.10" ∷ word (ἐ ∷ π ∷ ο ∷ ι ∷ κ ∷ ο ∷ δ ∷ ο ∷ μ ∷ ε ∷ ῖ ∷ []) "1Cor.3.10" ∷ word (ἕ ∷ κ ∷ α ∷ σ ∷ τ ∷ ο ∷ ς ∷ []) "1Cor.3.10" ∷ word (δ ∷ ὲ ∷ []) "1Cor.3.10" ∷ word (β ∷ ∙λ ∷ ε ∷ π ∷ έ ∷ τ ∷ ω ∷ []) "1Cor.3.10" ∷ word (π ∷ ῶ ∷ ς ∷ []) "1Cor.3.10" ∷ word (ἐ ∷ π ∷ ο ∷ ι ∷ κ ∷ ο ∷ δ ∷ ο ∷ μ ∷ ε ∷ ῖ ∷ []) "1Cor.3.10" ∷ word (θ ∷ ε ∷ μ ∷ έ ∷ ∙λ ∷ ι ∷ ο ∷ ν ∷ []) "1Cor.3.11" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "1Cor.3.11" ∷ word (ἄ ∷ ∙λ ∷ ∙λ ∷ ο ∷ ν ∷ []) "1Cor.3.11" ∷ word (ο ∷ ὐ ∷ δ ∷ ε ∷ ὶ ∷ ς ∷ []) "1Cor.3.11" ∷ word (δ ∷ ύ ∷ ν ∷ α ∷ τ ∷ α ∷ ι ∷ []) "1Cor.3.11" ∷ word (θ ∷ ε ∷ ῖ ∷ ν ∷ α ∷ ι ∷ []) "1Cor.3.11" ∷ word (π ∷ α ∷ ρ ∷ ὰ ∷ []) "1Cor.3.11" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "1Cor.3.11" ∷ word (κ ∷ ε ∷ ί ∷ μ ∷ ε ∷ ν ∷ ο ∷ ν ∷ []) "1Cor.3.11" ∷ word (ὅ ∷ ς ∷ []) "1Cor.3.11" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "1Cor.3.11" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "1Cor.3.11" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ό ∷ ς ∷ []) "1Cor.3.11" ∷ word (ε ∷ ἰ ∷ []) "1Cor.3.12" ∷ word (δ ∷ έ ∷ []) "1Cor.3.12" ∷ word (τ ∷ ι ∷ ς ∷ []) "1Cor.3.12" ∷ word (ἐ ∷ π ∷ ο ∷ ι ∷ κ ∷ ο ∷ δ ∷ ο ∷ μ ∷ ε ∷ ῖ ∷ []) "1Cor.3.12" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "1Cor.3.12" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "1Cor.3.12" ∷ word (θ ∷ ε ∷ μ ∷ έ ∷ ∙λ ∷ ι ∷ ο ∷ ν ∷ []) "1Cor.3.12" ∷ word (χ ∷ ρ ∷ υ ∷ σ ∷ ό ∷ ν ∷ []) "1Cor.3.12" ∷ word (ἄ ∷ ρ ∷ γ ∷ υ ∷ ρ ∷ ο ∷ ν ∷ []) "1Cor.3.12" ∷ word (∙λ ∷ ί ∷ θ ∷ ο ∷ υ ∷ ς ∷ []) "1Cor.3.12" ∷ word (τ ∷ ι ∷ μ ∷ ί ∷ ο ∷ υ ∷ ς ∷ []) "1Cor.3.12" ∷ word (ξ ∷ ύ ∷ ∙λ ∷ α ∷ []) "1Cor.3.12" ∷ word (χ ∷ ό ∷ ρ ∷ τ ∷ ο ∷ ν ∷ []) "1Cor.3.12" ∷ word (κ ∷ α ∷ ∙λ ∷ ά ∷ μ ∷ η ∷ ν ∷ []) "1Cor.3.12" ∷ word (ἑ ∷ κ ∷ ά ∷ σ ∷ τ ∷ ο ∷ υ ∷ []) "1Cor.3.13" ∷ word (τ ∷ ὸ ∷ []) "1Cor.3.13" ∷ word (ἔ ∷ ρ ∷ γ ∷ ο ∷ ν ∷ []) "1Cor.3.13" ∷ word (φ ∷ α ∷ ν ∷ ε ∷ ρ ∷ ὸ ∷ ν ∷ []) "1Cor.3.13" ∷ word (γ ∷ ε ∷ ν ∷ ή ∷ σ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "1Cor.3.13" ∷ word (ἡ ∷ []) "1Cor.3.13" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "1Cor.3.13" ∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ α ∷ []) "1Cor.3.13" ∷ word (δ ∷ η ∷ ∙λ ∷ ώ ∷ σ ∷ ε ∷ ι ∷ []) "1Cor.3.13" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "1Cor.3.13" ∷ word (ἐ ∷ ν ∷ []) "1Cor.3.13" ∷ word (π ∷ υ ∷ ρ ∷ ὶ ∷ []) "1Cor.3.13" ∷ word (ἀ ∷ π ∷ ο ∷ κ ∷ α ∷ ∙λ ∷ ύ ∷ π ∷ τ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "1Cor.3.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.3.13" ∷ word (ἑ ∷ κ ∷ ά ∷ σ ∷ τ ∷ ο ∷ υ ∷ []) "1Cor.3.13" ∷ word (τ ∷ ὸ ∷ []) "1Cor.3.13" ∷ word (ἔ ∷ ρ ∷ γ ∷ ο ∷ ν ∷ []) "1Cor.3.13" ∷ word (ὁ ∷ π ∷ ο ∷ ῖ ∷ ό ∷ ν ∷ []) "1Cor.3.13" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "1Cor.3.13" ∷ word (τ ∷ ὸ ∷ []) "1Cor.3.13" ∷ word (π ∷ ῦ ∷ ρ ∷ []) "1Cor.3.13" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ []) "1Cor.3.13" ∷ word (δ ∷ ο ∷ κ ∷ ι ∷ μ ∷ ά ∷ σ ∷ ε ∷ ι ∷ []) "1Cor.3.13" ∷ word (ε ∷ ἴ ∷ []) "1Cor.3.14" ∷ word (τ ∷ ι ∷ ν ∷ ο ∷ ς ∷ []) "1Cor.3.14" ∷ word (τ ∷ ὸ ∷ []) "1Cor.3.14" ∷ word (ἔ ∷ ρ ∷ γ ∷ ο ∷ ν ∷ []) "1Cor.3.14" ∷ word (μ ∷ ε ∷ ν ∷ ε ∷ ῖ ∷ []) "1Cor.3.14" ∷ word (ὃ ∷ []) "1Cor.3.14" ∷ word (ἐ ∷ π ∷ ο ∷ ι ∷ κ ∷ ο ∷ δ ∷ ό ∷ μ ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "1Cor.3.14" ∷ word (μ ∷ ι ∷ σ ∷ θ ∷ ὸ ∷ ν ∷ []) "1Cor.3.14" ∷ word (∙λ ∷ ή ∷ μ ∷ ψ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "1Cor.3.14" ∷ word (ε ∷ ἴ ∷ []) "1Cor.3.15" ∷ word (τ ∷ ι ∷ ν ∷ ο ∷ ς ∷ []) "1Cor.3.15" ∷ word (τ ∷ ὸ ∷ []) "1Cor.3.15" ∷ word (ἔ ∷ ρ ∷ γ ∷ ο ∷ ν ∷ []) "1Cor.3.15" ∷ word (κ ∷ α ∷ τ ∷ α ∷ κ ∷ α ∷ ή ∷ σ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "1Cor.3.15" ∷ word (ζ ∷ η ∷ μ ∷ ι ∷ ω ∷ θ ∷ ή ∷ σ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "1Cor.3.15" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ς ∷ []) "1Cor.3.15" ∷ word (δ ∷ ὲ ∷ []) "1Cor.3.15" ∷ word (σ ∷ ω ∷ θ ∷ ή ∷ σ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "1Cor.3.15" ∷ word (ο ∷ ὕ ∷ τ ∷ ω ∷ ς ∷ []) "1Cor.3.15" ∷ word (δ ∷ ὲ ∷ []) "1Cor.3.15" ∷ word (ὡ ∷ ς ∷ []) "1Cor.3.15" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "1Cor.3.15" ∷ word (π ∷ υ ∷ ρ ∷ ό ∷ ς ∷ []) "1Cor.3.15" ∷ word (Ο ∷ ὐ ∷ κ ∷ []) "1Cor.3.16" ∷ word (ο ∷ ἴ ∷ δ ∷ α ∷ τ ∷ ε ∷ []) "1Cor.3.16" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "1Cor.3.16" ∷ word (ν ∷ α ∷ ὸ ∷ ς ∷ []) "1Cor.3.16" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "1Cor.3.16" ∷ word (ἐ ∷ σ ∷ τ ∷ ε ∷ []) "1Cor.3.16" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.3.16" ∷ word (τ ∷ ὸ ∷ []) "1Cor.3.16" ∷ word (π ∷ ν ∷ ε ∷ ῦ ∷ μ ∷ α ∷ []) "1Cor.3.16" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.3.16" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "1Cor.3.16" ∷ word (ο ∷ ἰ ∷ κ ∷ ε ∷ ῖ ∷ []) "1Cor.3.16" ∷ word (ἐ ∷ ν ∷ []) "1Cor.3.16" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "1Cor.3.16" ∷ word (ε ∷ ἴ ∷ []) "1Cor.3.17" ∷ word (τ ∷ ι ∷ ς ∷ []) "1Cor.3.17" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "1Cor.3.17" ∷ word (ν ∷ α ∷ ὸ ∷ ν ∷ []) "1Cor.3.17" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.3.17" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "1Cor.3.17" ∷ word (φ ∷ θ ∷ ε ∷ ί ∷ ρ ∷ ε ∷ ι ∷ []) "1Cor.3.17" ∷ word (φ ∷ θ ∷ ε ∷ ρ ∷ ε ∷ ῖ ∷ []) "1Cor.3.17" ∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ ν ∷ []) "1Cor.3.17" ∷ word (ὁ ∷ []) "1Cor.3.17" ∷ word (θ ∷ ε ∷ ό ∷ ς ∷ []) "1Cor.3.17" ∷ word (ὁ ∷ []) "1Cor.3.17" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "1Cor.3.17" ∷ word (ν ∷ α ∷ ὸ ∷ ς ∷ []) "1Cor.3.17" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.3.17" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "1Cor.3.17" ∷ word (ἅ ∷ γ ∷ ι ∷ ό ∷ ς ∷ []) "1Cor.3.17" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "1Cor.3.17" ∷ word (ο ∷ ἵ ∷ τ ∷ ι ∷ ν ∷ έ ∷ ς ∷ []) "1Cor.3.17" ∷ word (ἐ ∷ σ ∷ τ ∷ ε ∷ []) "1Cor.3.17" ∷ word (ὑ ∷ μ ∷ ε ∷ ῖ ∷ ς ∷ []) "1Cor.3.17" ∷ word (Μ ∷ η ∷ δ ∷ ε ∷ ὶ ∷ ς ∷ []) "1Cor.3.18" ∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ὸ ∷ ν ∷ []) "1Cor.3.18" ∷ word (ἐ ∷ ξ ∷ α ∷ π ∷ α ∷ τ ∷ ά ∷ τ ∷ ω ∷ []) "1Cor.3.18" ∷ word (ε ∷ ἴ ∷ []) "1Cor.3.18" ∷ word (τ ∷ ι ∷ ς ∷ []) "1Cor.3.18" ∷ word (δ ∷ ο ∷ κ ∷ ε ∷ ῖ ∷ []) "1Cor.3.18" ∷ word (σ ∷ ο ∷ φ ∷ ὸ ∷ ς ∷ []) "1Cor.3.18" ∷ word (ε ∷ ἶ ∷ ν ∷ α ∷ ι ∷ []) "1Cor.3.18" ∷ word (ἐ ∷ ν ∷ []) "1Cor.3.18" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "1Cor.3.18" ∷ word (ἐ ∷ ν ∷ []) "1Cor.3.18" ∷ word (τ ∷ ῷ ∷ []) "1Cor.3.18" ∷ word (α ∷ ἰ ∷ ῶ ∷ ν ∷ ι ∷ []) "1Cor.3.18" ∷ word (τ ∷ ο ∷ ύ ∷ τ ∷ ῳ ∷ []) "1Cor.3.18" ∷ word (μ ∷ ω ∷ ρ ∷ ὸ ∷ ς ∷ []) "1Cor.3.18" ∷ word (γ ∷ ε ∷ ν ∷ έ ∷ σ ∷ θ ∷ ω ∷ []) "1Cor.3.18" ∷ word (ἵ ∷ ν ∷ α ∷ []) "1Cor.3.18" ∷ word (γ ∷ έ ∷ ν ∷ η ∷ τ ∷ α ∷ ι ∷ []) "1Cor.3.18" ∷ word (σ ∷ ο ∷ φ ∷ ό ∷ ς ∷ []) "1Cor.3.18" ∷ word (ἡ ∷ []) "1Cor.3.19" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "1Cor.3.19" ∷ word (σ ∷ ο ∷ φ ∷ ί ∷ α ∷ []) "1Cor.3.19" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.3.19" ∷ word (κ ∷ ό ∷ σ ∷ μ ∷ ο ∷ υ ∷ []) "1Cor.3.19" ∷ word (τ ∷ ο ∷ ύ ∷ τ ∷ ο ∷ υ ∷ []) "1Cor.3.19" ∷ word (μ ∷ ω ∷ ρ ∷ ί ∷ α ∷ []) "1Cor.3.19" ∷ word (π ∷ α ∷ ρ ∷ ὰ ∷ []) "1Cor.3.19" ∷ word (τ ∷ ῷ ∷ []) "1Cor.3.19" ∷ word (θ ∷ ε ∷ ῷ ∷ []) "1Cor.3.19" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "1Cor.3.19" ∷ word (γ ∷ έ ∷ γ ∷ ρ ∷ α ∷ π ∷ τ ∷ α ∷ ι ∷ []) "1Cor.3.19" ∷ word (γ ∷ ά ∷ ρ ∷ []) "1Cor.3.19" ∷ word (Ὁ ∷ []) "1Cor.3.19" ∷ word (δ ∷ ρ ∷ α ∷ σ ∷ σ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "1Cor.3.19" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "1Cor.3.19" ∷ word (σ ∷ ο ∷ φ ∷ ο ∷ ὺ ∷ ς ∷ []) "1Cor.3.19" ∷ word (ἐ ∷ ν ∷ []) "1Cor.3.19" ∷ word (τ ∷ ῇ ∷ []) "1Cor.3.19" ∷ word (π ∷ α ∷ ν ∷ ο ∷ υ ∷ ρ ∷ γ ∷ ί ∷ ᾳ ∷ []) "1Cor.3.19" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "1Cor.3.19" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.3.20" ∷ word (π ∷ ά ∷ ∙λ ∷ ι ∷ ν ∷ []) "1Cor.3.20" ∷ word (Κ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ς ∷ []) "1Cor.3.20" ∷ word (γ ∷ ι ∷ ν ∷ ώ ∷ σ ∷ κ ∷ ε ∷ ι ∷ []) "1Cor.3.20" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "1Cor.3.20" ∷ word (δ ∷ ι ∷ α ∷ ∙λ ∷ ο ∷ γ ∷ ι ∷ σ ∷ μ ∷ ο ∷ ὺ ∷ ς ∷ []) "1Cor.3.20" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "1Cor.3.20" ∷ word (σ ∷ ο ∷ φ ∷ ῶ ∷ ν ∷ []) "1Cor.3.20" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "1Cor.3.20" ∷ word (ε ∷ ἰ ∷ σ ∷ ὶ ∷ ν ∷ []) "1Cor.3.20" ∷ word (μ ∷ ά ∷ τ ∷ α ∷ ι ∷ ο ∷ ι ∷ []) "1Cor.3.20" ∷ word (ὥ ∷ σ ∷ τ ∷ ε ∷ []) "1Cor.3.21" ∷ word (μ ∷ η ∷ δ ∷ ε ∷ ὶ ∷ ς ∷ []) "1Cor.3.21" ∷ word (κ ∷ α ∷ υ ∷ χ ∷ ά ∷ σ ∷ θ ∷ ω ∷ []) "1Cor.3.21" ∷ word (ἐ ∷ ν ∷ []) "1Cor.3.21" ∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ο ∷ ι ∷ ς ∷ []) "1Cor.3.21" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "1Cor.3.21" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "1Cor.3.21" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Cor.3.21" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "1Cor.3.21" ∷ word (ε ∷ ἴ ∷ τ ∷ ε ∷ []) "1Cor.3.22" ∷ word (Π ∷ α ∷ ῦ ∷ ∙λ ∷ ο ∷ ς ∷ []) "1Cor.3.22" ∷ word (ε ∷ ἴ ∷ τ ∷ ε ∷ []) "1Cor.3.22" ∷ word (Ἀ ∷ π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ῶ ∷ ς ∷ []) "1Cor.3.22" ∷ word (ε ∷ ἴ ∷ τ ∷ ε ∷ []) "1Cor.3.22" ∷ word (Κ ∷ η ∷ φ ∷ ᾶ ∷ ς ∷ []) "1Cor.3.22" ∷ word (ε ∷ ἴ ∷ τ ∷ ε ∷ []) "1Cor.3.22" ∷ word (κ ∷ ό ∷ σ ∷ μ ∷ ο ∷ ς ∷ []) "1Cor.3.22" ∷ word (ε ∷ ἴ ∷ τ ∷ ε ∷ []) "1Cor.3.22" ∷ word (ζ ∷ ω ∷ ὴ ∷ []) "1Cor.3.22" ∷ word (ε ∷ ἴ ∷ τ ∷ ε ∷ []) "1Cor.3.22" ∷ word (θ ∷ ά ∷ ν ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "1Cor.3.22" ∷ word (ε ∷ ἴ ∷ τ ∷ ε ∷ []) "1Cor.3.22" ∷ word (ἐ ∷ ν ∷ ε ∷ σ ∷ τ ∷ ῶ ∷ τ ∷ α ∷ []) "1Cor.3.22" ∷ word (ε ∷ ἴ ∷ τ ∷ ε ∷ []) "1Cor.3.22" ∷ word (μ ∷ έ ∷ ∙λ ∷ ∙λ ∷ ο ∷ ν ∷ τ ∷ α ∷ []) "1Cor.3.22" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "1Cor.3.22" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Cor.3.22" ∷ word (ὑ ∷ μ ∷ ε ∷ ῖ ∷ ς ∷ []) "1Cor.3.23" ∷ word (δ ∷ ὲ ∷ []) "1Cor.3.23" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "1Cor.3.23" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ὸ ∷ ς ∷ []) "1Cor.3.23" ∷ word (δ ∷ ὲ ∷ []) "1Cor.3.23" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "1Cor.3.23" ∷ word (Ο ∷ ὕ ∷ τ ∷ ω ∷ ς ∷ []) "1Cor.4.1" ∷ word (ἡ ∷ μ ∷ ᾶ ∷ ς ∷ []) "1Cor.4.1" ∷ word (∙λ ∷ ο ∷ γ ∷ ι ∷ ζ ∷ έ ∷ σ ∷ θ ∷ ω ∷ []) "1Cor.4.1" ∷ word (ἄ ∷ ν ∷ θ ∷ ρ ∷ ω ∷ π ∷ ο ∷ ς ∷ []) "1Cor.4.1" ∷ word (ὡ ∷ ς ∷ []) "1Cor.4.1" ∷ word (ὑ ∷ π ∷ η ∷ ρ ∷ έ ∷ τ ∷ α ∷ ς ∷ []) "1Cor.4.1" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "1Cor.4.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.4.1" ∷ word (ο ∷ ἰ ∷ κ ∷ ο ∷ ν ∷ ό ∷ μ ∷ ο ∷ υ ∷ ς ∷ []) "1Cor.4.1" ∷ word (μ ∷ υ ∷ σ ∷ τ ∷ η ∷ ρ ∷ ί ∷ ω ∷ ν ∷ []) "1Cor.4.1" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "1Cor.4.1" ∷ word (ὧ ∷ δ ∷ ε ∷ []) "1Cor.4.2" ∷ word (∙λ ∷ ο ∷ ι ∷ π ∷ ὸ ∷ ν ∷ []) "1Cor.4.2" ∷ word (ζ ∷ η ∷ τ ∷ ε ∷ ῖ ∷ τ ∷ α ∷ ι ∷ []) "1Cor.4.2" ∷ word (ἐ ∷ ν ∷ []) "1Cor.4.2" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "1Cor.4.2" ∷ word (ο ∷ ἰ ∷ κ ∷ ο ∷ ν ∷ ό ∷ μ ∷ ο ∷ ι ∷ ς ∷ []) "1Cor.4.2" ∷ word (ἵ ∷ ν ∷ α ∷ []) "1Cor.4.2" ∷ word (π ∷ ι ∷ σ ∷ τ ∷ ό ∷ ς ∷ []) "1Cor.4.2" ∷ word (τ ∷ ι ∷ ς ∷ []) "1Cor.4.2" ∷ word (ε ∷ ὑ ∷ ρ ∷ ε ∷ θ ∷ ῇ ∷ []) "1Cor.4.2" ∷ word (ἐ ∷ μ ∷ ο ∷ ὶ ∷ []) "1Cor.4.3" ∷ word (δ ∷ ὲ ∷ []) "1Cor.4.3" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "1Cor.4.3" ∷ word (ἐ ∷ ∙λ ∷ ά ∷ χ ∷ ι ∷ σ ∷ τ ∷ ό ∷ ν ∷ []) "1Cor.4.3" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "1Cor.4.3" ∷ word (ἵ ∷ ν ∷ α ∷ []) "1Cor.4.3" ∷ word (ὑ ∷ φ ∷ []) "1Cor.4.3" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Cor.4.3" ∷ word (ἀ ∷ ν ∷ α ∷ κ ∷ ρ ∷ ι ∷ θ ∷ ῶ ∷ []) "1Cor.4.3" ∷ word (ἢ ∷ []) "1Cor.4.3" ∷ word (ὑ ∷ π ∷ ὸ ∷ []) "1Cor.4.3" ∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ω ∷ π ∷ ί ∷ ν ∷ η ∷ ς ∷ []) "1Cor.4.3" ∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ α ∷ ς ∷ []) "1Cor.4.3" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ []) "1Cor.4.3" ∷ word (ο ∷ ὐ ∷ δ ∷ ὲ ∷ []) "1Cor.4.3" ∷ word (ἐ ∷ μ ∷ α ∷ υ ∷ τ ∷ ὸ ∷ ν ∷ []) "1Cor.4.3" ∷ word (ἀ ∷ ν ∷ α ∷ κ ∷ ρ ∷ ί ∷ ν ∷ ω ∷ []) "1Cor.4.3" ∷ word (ο ∷ ὐ ∷ δ ∷ ὲ ∷ ν ∷ []) "1Cor.4.4" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "1Cor.4.4" ∷ word (ἐ ∷ μ ∷ α ∷ υ ∷ τ ∷ ῷ ∷ []) "1Cor.4.4" ∷ word (σ ∷ ύ ∷ ν ∷ ο ∷ ι ∷ δ ∷ α ∷ []) "1Cor.4.4" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ []) "1Cor.4.4" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "1Cor.4.4" ∷ word (ἐ ∷ ν ∷ []) "1Cor.4.4" ∷ word (τ ∷ ο ∷ ύ ∷ τ ∷ ῳ ∷ []) "1Cor.4.4" ∷ word (δ ∷ ε ∷ δ ∷ ι ∷ κ ∷ α ∷ ί ∷ ω ∷ μ ∷ α ∷ ι ∷ []) "1Cor.4.4" ∷ word (ὁ ∷ []) "1Cor.4.4" ∷ word (δ ∷ ὲ ∷ []) "1Cor.4.4" ∷ word (ἀ ∷ ν ∷ α ∷ κ ∷ ρ ∷ ί ∷ ν ∷ ω ∷ ν ∷ []) "1Cor.4.4" ∷ word (μ ∷ ε ∷ []) "1Cor.4.4" ∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ό ∷ ς ∷ []) "1Cor.4.4" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "1Cor.4.4" ∷ word (ὥ ∷ σ ∷ τ ∷ ε ∷ []) "1Cor.4.5" ∷ word (μ ∷ ὴ ∷ []) "1Cor.4.5" ∷ word (π ∷ ρ ∷ ὸ ∷ []) "1Cor.4.5" ∷ word (κ ∷ α ∷ ι ∷ ρ ∷ ο ∷ ῦ ∷ []) "1Cor.4.5" ∷ word (τ ∷ ι ∷ []) "1Cor.4.5" ∷ word (κ ∷ ρ ∷ ί ∷ ν ∷ ε ∷ τ ∷ ε ∷ []) "1Cor.4.5" ∷ word (ἕ ∷ ω ∷ ς ∷ []) "1Cor.4.5" ∷ word (ἂ ∷ ν ∷ []) "1Cor.4.5" ∷ word (ἔ ∷ ∙λ ∷ θ ∷ ῃ ∷ []) "1Cor.4.5" ∷ word (ὁ ∷ []) "1Cor.4.5" ∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ς ∷ []) "1Cor.4.5" ∷ word (ὃ ∷ ς ∷ []) "1Cor.4.5" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.4.5" ∷ word (φ ∷ ω ∷ τ ∷ ί ∷ σ ∷ ε ∷ ι ∷ []) "1Cor.4.5" ∷ word (τ ∷ ὰ ∷ []) "1Cor.4.5" ∷ word (κ ∷ ρ ∷ υ ∷ π ∷ τ ∷ ὰ ∷ []) "1Cor.4.5" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.4.5" ∷ word (σ ∷ κ ∷ ό ∷ τ ∷ ο ∷ υ ∷ ς ∷ []) "1Cor.4.5" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.4.5" ∷ word (φ ∷ α ∷ ν ∷ ε ∷ ρ ∷ ώ ∷ σ ∷ ε ∷ ι ∷ []) "1Cor.4.5" ∷ word (τ ∷ ὰ ∷ ς ∷ []) "1Cor.4.5" ∷ word (β ∷ ο ∷ υ ∷ ∙λ ∷ ὰ ∷ ς ∷ []) "1Cor.4.5" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "1Cor.4.5" ∷ word (κ ∷ α ∷ ρ ∷ δ ∷ ι ∷ ῶ ∷ ν ∷ []) "1Cor.4.5" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.4.5" ∷ word (τ ∷ ό ∷ τ ∷ ε ∷ []) "1Cor.4.5" ∷ word (ὁ ∷ []) "1Cor.4.5" ∷ word (ἔ ∷ π ∷ α ∷ ι ∷ ν ∷ ο ∷ ς ∷ []) "1Cor.4.5" ∷ word (γ ∷ ε ∷ ν ∷ ή ∷ σ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "1Cor.4.5" ∷ word (ἑ ∷ κ ∷ ά ∷ σ ∷ τ ∷ ῳ ∷ []) "1Cor.4.5" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "1Cor.4.5" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.4.5" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "1Cor.4.5" ∷ word (Τ ∷ α ∷ ῦ ∷ τ ∷ α ∷ []) "1Cor.4.6" ∷ word (δ ∷ έ ∷ []) "1Cor.4.6" ∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ο ∷ ί ∷ []) "1Cor.4.6" ∷ word (μ ∷ ε ∷ τ ∷ ε ∷ σ ∷ χ ∷ η ∷ μ ∷ ά ∷ τ ∷ ι ∷ σ ∷ α ∷ []) "1Cor.4.6" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "1Cor.4.6" ∷ word (ἐ ∷ μ ∷ α ∷ υ ∷ τ ∷ ὸ ∷ ν ∷ []) "1Cor.4.6" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.4.6" ∷ word (Ἀ ∷ π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ῶ ∷ ν ∷ []) "1Cor.4.6" ∷ word (δ ∷ ι ∷ []) "1Cor.4.6" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "1Cor.4.6" ∷ word (ἵ ∷ ν ∷ α ∷ []) "1Cor.4.6" ∷ word (ἐ ∷ ν ∷ []) "1Cor.4.6" ∷ word (ἡ ∷ μ ∷ ῖ ∷ ν ∷ []) "1Cor.4.6" ∷ word (μ ∷ ά ∷ θ ∷ η ∷ τ ∷ ε ∷ []) "1Cor.4.6" ∷ word (τ ∷ ό ∷ []) "1Cor.4.6" ∷ word (Μ ∷ ὴ ∷ []) "1Cor.4.6" ∷ word (ὑ ∷ π ∷ ὲ ∷ ρ ∷ []) "1Cor.4.6" ∷ word (ἃ ∷ []) "1Cor.4.6" ∷ word (γ ∷ έ ∷ γ ∷ ρ ∷ α ∷ π ∷ τ ∷ α ∷ ι ∷ []) "1Cor.4.6" ∷ word (ἵ ∷ ν ∷ α ∷ []) "1Cor.4.6" ∷ word (μ ∷ ὴ ∷ []) "1Cor.4.6" ∷ word (ε ∷ ἷ ∷ ς ∷ []) "1Cor.4.6" ∷ word (ὑ ∷ π ∷ ὲ ∷ ρ ∷ []) "1Cor.4.6" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.4.6" ∷ word (ἑ ∷ ν ∷ ὸ ∷ ς ∷ []) "1Cor.4.6" ∷ word (φ ∷ υ ∷ σ ∷ ι ∷ ο ∷ ῦ ∷ σ ∷ θ ∷ ε ∷ []) "1Cor.4.6" ∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "1Cor.4.6" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.4.6" ∷ word (ἑ ∷ τ ∷ έ ∷ ρ ∷ ο ∷ υ ∷ []) "1Cor.4.6" ∷ word (τ ∷ ί ∷ ς ∷ []) "1Cor.4.7" ∷ word (γ ∷ ά ∷ ρ ∷ []) "1Cor.4.7" ∷ word (σ ∷ ε ∷ []) "1Cor.4.7" ∷ word (δ ∷ ι ∷ α ∷ κ ∷ ρ ∷ ί ∷ ν ∷ ε ∷ ι ∷ []) "1Cor.4.7" ∷ word (τ ∷ ί ∷ []) "1Cor.4.7" ∷ word (δ ∷ ὲ ∷ []) "1Cor.4.7" ∷ word (ἔ ∷ χ ∷ ε ∷ ι ∷ ς ∷ []) "1Cor.4.7" ∷ word (ὃ ∷ []) "1Cor.4.7" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "1Cor.4.7" ∷ word (ἔ ∷ ∙λ ∷ α ∷ β ∷ ε ∷ ς ∷ []) "1Cor.4.7" ∷ word (ε ∷ ἰ ∷ []) "1Cor.4.7" ∷ word (δ ∷ ὲ ∷ []) "1Cor.4.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.4.7" ∷ word (ἔ ∷ ∙λ ∷ α ∷ β ∷ ε ∷ ς ∷ []) "1Cor.4.7" ∷ word (τ ∷ ί ∷ []) "1Cor.4.7" ∷ word (κ ∷ α ∷ υ ∷ χ ∷ ᾶ ∷ σ ∷ α ∷ ι ∷ []) "1Cor.4.7" ∷ word (ὡ ∷ ς ∷ []) "1Cor.4.7" ∷ word (μ ∷ ὴ ∷ []) "1Cor.4.7" ∷ word (∙λ ∷ α ∷ β ∷ ώ ∷ ν ∷ []) "1Cor.4.7" ∷ word (Ἤ ∷ δ ∷ η ∷ []) "1Cor.4.8" ∷ word (κ ∷ ε ∷ κ ∷ ο ∷ ρ ∷ ε ∷ σ ∷ μ ∷ έ ∷ ν ∷ ο ∷ ι ∷ []) "1Cor.4.8" ∷ word (ἐ ∷ σ ∷ τ ∷ έ ∷ []) "1Cor.4.8" ∷ word (ἤ ∷ δ ∷ η ∷ []) "1Cor.4.8" ∷ word (ἐ ∷ π ∷ ∙λ ∷ ο ∷ υ ∷ τ ∷ ή ∷ σ ∷ α ∷ τ ∷ ε ∷ []) "1Cor.4.8" ∷ word (χ ∷ ω ∷ ρ ∷ ὶ ∷ ς ∷ []) "1Cor.4.8" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Cor.4.8" ∷ word (ἐ ∷ β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ύ ∷ σ ∷ α ∷ τ ∷ ε ∷ []) "1Cor.4.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.4.8" ∷ word (ὄ ∷ φ ∷ ε ∷ ∙λ ∷ ό ∷ ν ∷ []) "1Cor.4.8" ∷ word (γ ∷ ε ∷ []) "1Cor.4.8" ∷ word (ἐ ∷ β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ύ ∷ σ ∷ α ∷ τ ∷ ε ∷ []) "1Cor.4.8" ∷ word (ἵ ∷ ν ∷ α ∷ []) "1Cor.4.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.4.8" ∷ word (ἡ ∷ μ ∷ ε ∷ ῖ ∷ ς ∷ []) "1Cor.4.8" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "1Cor.4.8" ∷ word (σ ∷ υ ∷ μ ∷ β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ύ ∷ σ ∷ ω ∷ μ ∷ ε ∷ ν ∷ []) "1Cor.4.8" ∷ word (δ ∷ ο ∷ κ ∷ ῶ ∷ []) "1Cor.4.9" ∷ word (γ ∷ ά ∷ ρ ∷ []) "1Cor.4.9" ∷ word (ὁ ∷ []) "1Cor.4.9" ∷ word (θ ∷ ε ∷ ὸ ∷ ς ∷ []) "1Cor.4.9" ∷ word (ἡ ∷ μ ∷ ᾶ ∷ ς ∷ []) "1Cor.4.9" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "1Cor.4.9" ∷ word (ἀ ∷ π ∷ ο ∷ σ ∷ τ ∷ ό ∷ ∙λ ∷ ο ∷ υ ∷ ς ∷ []) "1Cor.4.9" ∷ word (ἐ ∷ σ ∷ χ ∷ ά ∷ τ ∷ ο ∷ υ ∷ ς ∷ []) "1Cor.4.9" ∷ word (ἀ ∷ π ∷ έ ∷ δ ∷ ε ∷ ι ∷ ξ ∷ ε ∷ ν ∷ []) "1Cor.4.9" ∷ word (ὡ ∷ ς ∷ []) "1Cor.4.9" ∷ word (ἐ ∷ π ∷ ι ∷ θ ∷ α ∷ ν ∷ α ∷ τ ∷ ί ∷ ο ∷ υ ∷ ς ∷ []) "1Cor.4.9" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "1Cor.4.9" ∷ word (θ ∷ έ ∷ α ∷ τ ∷ ρ ∷ ο ∷ ν ∷ []) "1Cor.4.9" ∷ word (ἐ ∷ γ ∷ ε ∷ ν ∷ ή ∷ θ ∷ η ∷ μ ∷ ε ∷ ν ∷ []) "1Cor.4.9" ∷ word (τ ∷ ῷ ∷ []) "1Cor.4.9" ∷ word (κ ∷ ό ∷ σ ∷ μ ∷ ῳ ∷ []) "1Cor.4.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.4.9" ∷ word (ἀ ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ο ∷ ι ∷ ς ∷ []) "1Cor.4.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.4.9" ∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ο ∷ ι ∷ ς ∷ []) "1Cor.4.9" ∷ word (ἡ ∷ μ ∷ ε ∷ ῖ ∷ ς ∷ []) "1Cor.4.10" ∷ word (μ ∷ ω ∷ ρ ∷ ο ∷ ὶ ∷ []) "1Cor.4.10" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "1Cor.4.10" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ό ∷ ν ∷ []) "1Cor.4.10" ∷ word (ὑ ∷ μ ∷ ε ∷ ῖ ∷ ς ∷ []) "1Cor.4.10" ∷ word (δ ∷ ὲ ∷ []) "1Cor.4.10" ∷ word (φ ∷ ρ ∷ ό ∷ ν ∷ ι ∷ μ ∷ ο ∷ ι ∷ []) "1Cor.4.10" ∷ word (ἐ ∷ ν ∷ []) "1Cor.4.10" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ῷ ∷ []) "1Cor.4.10" ∷ word (ἡ ∷ μ ∷ ε ∷ ῖ ∷ ς ∷ []) "1Cor.4.10" ∷ word (ἀ ∷ σ ∷ θ ∷ ε ∷ ν ∷ ε ∷ ῖ ∷ ς ∷ []) "1Cor.4.10" ∷ word (ὑ ∷ μ ∷ ε ∷ ῖ ∷ ς ∷ []) "1Cor.4.10" ∷ word (δ ∷ ὲ ∷ []) "1Cor.4.10" ∷ word (ἰ ∷ σ ∷ χ ∷ υ ∷ ρ ∷ ο ∷ ί ∷ []) "1Cor.4.10" ∷ word (ὑ ∷ μ ∷ ε ∷ ῖ ∷ ς ∷ []) "1Cor.4.10" ∷ word (ἔ ∷ ν ∷ δ ∷ ο ∷ ξ ∷ ο ∷ ι ∷ []) "1Cor.4.10" ∷ word (ἡ ∷ μ ∷ ε ∷ ῖ ∷ ς ∷ []) "1Cor.4.10" ∷ word (δ ∷ ὲ ∷ []) "1Cor.4.10" ∷ word (ἄ ∷ τ ∷ ι ∷ μ ∷ ο ∷ ι ∷ []) "1Cor.4.10" ∷ word (ἄ ∷ χ ∷ ρ ∷ ι ∷ []) "1Cor.4.11" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "1Cor.4.11" ∷ word (ἄ ∷ ρ ∷ τ ∷ ι ∷ []) "1Cor.4.11" ∷ word (ὥ ∷ ρ ∷ α ∷ ς ∷ []) "1Cor.4.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.4.11" ∷ word (π ∷ ε ∷ ι ∷ ν ∷ ῶ ∷ μ ∷ ε ∷ ν ∷ []) "1Cor.4.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.4.11" ∷ word (δ ∷ ι ∷ ψ ∷ ῶ ∷ μ ∷ ε ∷ ν ∷ []) "1Cor.4.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.4.11" ∷ word (γ ∷ υ ∷ μ ∷ ν ∷ ι ∷ τ ∷ ε ∷ ύ ∷ ο ∷ μ ∷ ε ∷ ν ∷ []) "1Cor.4.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.4.11" ∷ word (κ ∷ ο ∷ ∙λ ∷ α ∷ φ ∷ ι ∷ ζ ∷ ό ∷ μ ∷ ε ∷ θ ∷ α ∷ []) "1Cor.4.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.4.11" ∷ word (ἀ ∷ σ ∷ τ ∷ α ∷ τ ∷ ο ∷ ῦ ∷ μ ∷ ε ∷ ν ∷ []) "1Cor.4.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.4.12" ∷ word (κ ∷ ο ∷ π ∷ ι ∷ ῶ ∷ μ ∷ ε ∷ ν ∷ []) "1Cor.4.12" ∷ word (ἐ ∷ ρ ∷ γ ∷ α ∷ ζ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "1Cor.4.12" ∷ word (τ ∷ α ∷ ῖ ∷ ς ∷ []) "1Cor.4.12" ∷ word (ἰ ∷ δ ∷ ί ∷ α ∷ ι ∷ ς ∷ []) "1Cor.4.12" ∷ word (χ ∷ ε ∷ ρ ∷ σ ∷ ί ∷ ν ∷ []) "1Cor.4.12" ∷ word (∙λ ∷ ο ∷ ι ∷ δ ∷ ο ∷ ρ ∷ ο ∷ ύ ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "1Cor.4.12" ∷ word (ε ∷ ὐ ∷ ∙λ ∷ ο ∷ γ ∷ ο ∷ ῦ ∷ μ ∷ ε ∷ ν ∷ []) "1Cor.4.12" ∷ word (δ ∷ ι ∷ ω ∷ κ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "1Cor.4.12" ∷ word (ἀ ∷ ν ∷ ε ∷ χ ∷ ό ∷ μ ∷ ε ∷ θ ∷ α ∷ []) "1Cor.4.12" ∷ word (δ ∷ υ ∷ σ ∷ φ ∷ η ∷ μ ∷ ο ∷ ύ ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "1Cor.4.13" ∷ word (π ∷ α ∷ ρ ∷ α ∷ κ ∷ α ∷ ∙λ ∷ ο ∷ ῦ ∷ μ ∷ ε ∷ ν ∷ []) "1Cor.4.13" ∷ word (ὡ ∷ ς ∷ []) "1Cor.4.13" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ κ ∷ α ∷ θ ∷ ά ∷ ρ ∷ μ ∷ α ∷ τ ∷ α ∷ []) "1Cor.4.13" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.4.13" ∷ word (κ ∷ ό ∷ σ ∷ μ ∷ ο ∷ υ ∷ []) "1Cor.4.13" ∷ word (ἐ ∷ γ ∷ ε ∷ ν ∷ ή ∷ θ ∷ η ∷ μ ∷ ε ∷ ν ∷ []) "1Cor.4.13" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "1Cor.4.13" ∷ word (π ∷ ε ∷ ρ ∷ ί ∷ ψ ∷ η ∷ μ ∷ α ∷ []) "1Cor.4.13" ∷ word (ἕ ∷ ω ∷ ς ∷ []) "1Cor.4.13" ∷ word (ἄ ∷ ρ ∷ τ ∷ ι ∷ []) "1Cor.4.13" ∷ word (Ο ∷ ὐ ∷ κ ∷ []) "1Cor.4.14" ∷ word (ἐ ∷ ν ∷ τ ∷ ρ ∷ έ ∷ π ∷ ω ∷ ν ∷ []) "1Cor.4.14" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "1Cor.4.14" ∷ word (γ ∷ ρ ∷ ά ∷ φ ∷ ω ∷ []) "1Cor.4.14" ∷ word (τ ∷ α ∷ ῦ ∷ τ ∷ α ∷ []) "1Cor.4.14" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ []) "1Cor.4.14" ∷ word (ὡ ∷ ς ∷ []) "1Cor.4.14" ∷ word (τ ∷ έ ∷ κ ∷ ν ∷ α ∷ []) "1Cor.4.14" ∷ word (μ ∷ ο ∷ υ ∷ []) "1Cor.4.14" ∷ word (ἀ ∷ γ ∷ α ∷ π ∷ η ∷ τ ∷ ὰ ∷ []) "1Cor.4.14" ∷ word (ν ∷ ο ∷ υ ∷ θ ∷ ε ∷ τ ∷ ῶ ∷ ν ∷ []) "1Cor.4.14" ∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "1Cor.4.15" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "1Cor.4.15" ∷ word (μ ∷ υ ∷ ρ ∷ ί ∷ ο ∷ υ ∷ ς ∷ []) "1Cor.4.15" ∷ word (π ∷ α ∷ ι ∷ δ ∷ α ∷ γ ∷ ω ∷ γ ∷ ο ∷ ὺ ∷ ς ∷ []) "1Cor.4.15" ∷ word (ἔ ∷ χ ∷ η ∷ τ ∷ ε ∷ []) "1Cor.4.15" ∷ word (ἐ ∷ ν ∷ []) "1Cor.4.15" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ῷ ∷ []) "1Cor.4.15" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ []) "1Cor.4.15" ∷ word (ο ∷ ὐ ∷ []) "1Cor.4.15" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ο ∷ ὺ ∷ ς ∷ []) "1Cor.4.15" ∷ word (π ∷ α ∷ τ ∷ έ ∷ ρ ∷ α ∷ ς ∷ []) "1Cor.4.15" ∷ word (ἐ ∷ ν ∷ []) "1Cor.4.15" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "1Cor.4.15" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ῷ ∷ []) "1Cor.4.15" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "1Cor.4.15" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "1Cor.4.15" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.4.15" ∷ word (ε ∷ ὐ ∷ α ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ί ∷ ο ∷ υ ∷ []) "1Cor.4.15" ∷ word (ἐ ∷ γ ∷ ὼ ∷ []) "1Cor.4.15" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "1Cor.4.15" ∷ word (ἐ ∷ γ ∷ έ ∷ ν ∷ ν ∷ η ∷ σ ∷ α ∷ []) "1Cor.4.15" ∷ word (π ∷ α ∷ ρ ∷ α ∷ κ ∷ α ∷ ∙λ ∷ ῶ ∷ []) "1Cor.4.16" ∷ word (ο ∷ ὖ ∷ ν ∷ []) "1Cor.4.16" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "1Cor.4.16" ∷ word (μ ∷ ι ∷ μ ∷ η ∷ τ ∷ α ∷ ί ∷ []) "1Cor.4.16" ∷ word (μ ∷ ο ∷ υ ∷ []) "1Cor.4.16" ∷ word (γ ∷ ί ∷ ν ∷ ε ∷ σ ∷ θ ∷ ε ∷ []) "1Cor.4.16" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "1Cor.4.17" ∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "1Cor.4.17" ∷ word (ἔ ∷ π ∷ ε ∷ μ ∷ ψ ∷ α ∷ []) "1Cor.4.17" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "1Cor.4.17" ∷ word (Τ ∷ ι ∷ μ ∷ ό ∷ θ ∷ ε ∷ ο ∷ ν ∷ []) "1Cor.4.17" ∷ word (ὅ ∷ ς ∷ []) "1Cor.4.17" ∷ word (ἐ ∷ σ ∷ τ ∷ ί ∷ ν ∷ []) "1Cor.4.17" ∷ word (μ ∷ ο ∷ υ ∷ []) "1Cor.4.17" ∷ word (τ ∷ έ ∷ κ ∷ ν ∷ ο ∷ ν ∷ []) "1Cor.4.17" ∷ word (ἀ ∷ γ ∷ α ∷ π ∷ η ∷ τ ∷ ὸ ∷ ν ∷ []) "1Cor.4.17" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.4.17" ∷ word (π ∷ ι ∷ σ ∷ τ ∷ ὸ ∷ ν ∷ []) "1Cor.4.17" ∷ word (ἐ ∷ ν ∷ []) "1Cor.4.17" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ῳ ∷ []) "1Cor.4.17" ∷ word (ὃ ∷ ς ∷ []) "1Cor.4.17" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "1Cor.4.17" ∷ word (ἀ ∷ ν ∷ α ∷ μ ∷ ν ∷ ή ∷ σ ∷ ε ∷ ι ∷ []) "1Cor.4.17" ∷ word (τ ∷ ὰ ∷ ς ∷ []) "1Cor.4.17" ∷ word (ὁ ∷ δ ∷ ο ∷ ύ ∷ ς ∷ []) "1Cor.4.17" ∷ word (μ ∷ ο ∷ υ ∷ []) "1Cor.4.17" ∷ word (τ ∷ ὰ ∷ ς ∷ []) "1Cor.4.17" ∷ word (ἐ ∷ ν ∷ []) "1Cor.4.17" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ῷ ∷ []) "1Cor.4.17" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "1Cor.4.17" ∷ word (κ ∷ α ∷ θ ∷ ὼ ∷ ς ∷ []) "1Cor.4.17" ∷ word (π ∷ α ∷ ν ∷ τ ∷ α ∷ χ ∷ ο ∷ ῦ ∷ []) "1Cor.4.17" ∷ word (ἐ ∷ ν ∷ []) "1Cor.4.17" ∷ word (π ∷ ά ∷ σ ∷ ῃ ∷ []) "1Cor.4.17" ∷ word (ἐ ∷ κ ∷ κ ∷ ∙λ ∷ η ∷ σ ∷ ί ∷ ᾳ ∷ []) "1Cor.4.17" ∷ word (δ ∷ ι ∷ δ ∷ ά ∷ σ ∷ κ ∷ ω ∷ []) "1Cor.4.17" ∷ word (ὡ ∷ ς ∷ []) "1Cor.4.18" ∷ word (μ ∷ ὴ ∷ []) "1Cor.4.18" ∷ word (ἐ ∷ ρ ∷ χ ∷ ο ∷ μ ∷ έ ∷ ν ∷ ο ∷ υ ∷ []) "1Cor.4.18" ∷ word (δ ∷ έ ∷ []) "1Cor.4.18" ∷ word (μ ∷ ο ∷ υ ∷ []) "1Cor.4.18" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "1Cor.4.18" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "1Cor.4.18" ∷ word (ἐ ∷ φ ∷ υ ∷ σ ∷ ι ∷ ώ ∷ θ ∷ η ∷ σ ∷ ά ∷ ν ∷ []) "1Cor.4.18" ∷ word (τ ∷ ι ∷ ν ∷ ε ∷ ς ∷ []) "1Cor.4.18" ∷ word (ἐ ∷ ∙λ ∷ ε ∷ ύ ∷ σ ∷ ο ∷ μ ∷ α ∷ ι ∷ []) "1Cor.4.19" ∷ word (δ ∷ ὲ ∷ []) "1Cor.4.19" ∷ word (τ ∷ α ∷ χ ∷ έ ∷ ω ∷ ς ∷ []) "1Cor.4.19" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "1Cor.4.19" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "1Cor.4.19" ∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "1Cor.4.19" ∷ word (ὁ ∷ []) "1Cor.4.19" ∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ς ∷ []) "1Cor.4.19" ∷ word (θ ∷ ε ∷ ∙λ ∷ ή ∷ σ ∷ ῃ ∷ []) "1Cor.4.19" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.4.19" ∷ word (γ ∷ ν ∷ ώ ∷ σ ∷ ο ∷ μ ∷ α ∷ ι ∷ []) "1Cor.4.19" ∷ word (ο ∷ ὐ ∷ []) "1Cor.4.19" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "1Cor.4.19" ∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ ν ∷ []) "1Cor.4.19" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "1Cor.4.19" ∷ word (π ∷ ε ∷ φ ∷ υ ∷ σ ∷ ι ∷ ω ∷ μ ∷ έ ∷ ν ∷ ω ∷ ν ∷ []) "1Cor.4.19" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "1Cor.4.19" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "1Cor.4.19" ∷ word (δ ∷ ύ ∷ ν ∷ α ∷ μ ∷ ι ∷ ν ∷ []) "1Cor.4.19" ∷ word (ο ∷ ὐ ∷ []) "1Cor.4.20" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "1Cor.4.20" ∷ word (ἐ ∷ ν ∷ []) "1Cor.4.20" ∷ word (∙λ ∷ ό ∷ γ ∷ ῳ ∷ []) "1Cor.4.20" ∷ word (ἡ ∷ []) "1Cor.4.20" ∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ί ∷ α ∷ []) "1Cor.4.20" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.4.20" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "1Cor.4.20" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ []) "1Cor.4.20" ∷ word (ἐ ∷ ν ∷ []) "1Cor.4.20" ∷ word (δ ∷ υ ∷ ν ∷ ά ∷ μ ∷ ε ∷ ι ∷ []) "1Cor.4.20" ∷ word (τ ∷ ί ∷ []) "1Cor.4.21" ∷ word (θ ∷ έ ∷ ∙λ ∷ ε ∷ τ ∷ ε ∷ []) "1Cor.4.21" ∷ word (ἐ ∷ ν ∷ []) "1Cor.4.21" ∷ word (ῥ ∷ ά ∷ β ∷ δ ∷ ῳ ∷ []) "1Cor.4.21" ∷ word (ἔ ∷ ∙λ ∷ θ ∷ ω ∷ []) "1Cor.4.21" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "1Cor.4.21" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "1Cor.4.21" ∷ word (ἢ ∷ []) "1Cor.4.21" ∷ word (ἐ ∷ ν ∷ []) "1Cor.4.21" ∷ word (ἀ ∷ γ ∷ ά ∷ π ∷ ῃ ∷ []) "1Cor.4.21" ∷ word (π ∷ ν ∷ ε ∷ ύ ∷ μ ∷ α ∷ τ ∷ ί ∷ []) "1Cor.4.21" ∷ word (τ ∷ ε ∷ []) "1Cor.4.21" ∷ word (π ∷ ρ ∷ α ∷ ΰ ∷ τ ∷ η ∷ τ ∷ ο ∷ ς ∷ []) "1Cor.4.21" ∷ word (Ὅ ∷ ∙λ ∷ ω ∷ ς ∷ []) "1Cor.5.1" ∷ word (ἀ ∷ κ ∷ ο ∷ ύ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "1Cor.5.1" ∷ word (ἐ ∷ ν ∷ []) "1Cor.5.1" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "1Cor.5.1" ∷ word (π ∷ ο ∷ ρ ∷ ν ∷ ε ∷ ί ∷ α ∷ []) "1Cor.5.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.5.1" ∷ word (τ ∷ ο ∷ ι ∷ α ∷ ύ ∷ τ ∷ η ∷ []) "1Cor.5.1" ∷ word (π ∷ ο ∷ ρ ∷ ν ∷ ε ∷ ί ∷ α ∷ []) "1Cor.5.1" ∷ word (ἥ ∷ τ ∷ ι ∷ ς ∷ []) "1Cor.5.1" ∷ word (ο ∷ ὐ ∷ δ ∷ ὲ ∷ []) "1Cor.5.1" ∷ word (ἐ ∷ ν ∷ []) "1Cor.5.1" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "1Cor.5.1" ∷ word (ἔ ∷ θ ∷ ν ∷ ε ∷ σ ∷ ι ∷ ν ∷ []) "1Cor.5.1" ∷ word (ὥ ∷ σ ∷ τ ∷ ε ∷ []) "1Cor.5.1" ∷ word (γ ∷ υ ∷ ν ∷ α ∷ ῖ ∷ κ ∷ ά ∷ []) "1Cor.5.1" ∷ word (τ ∷ ι ∷ ν ∷ α ∷ []) "1Cor.5.1" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.5.1" ∷ word (π ∷ α ∷ τ ∷ ρ ∷ ὸ ∷ ς ∷ []) "1Cor.5.1" ∷ word (ἔ ∷ χ ∷ ε ∷ ι ∷ ν ∷ []) "1Cor.5.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.5.2" ∷ word (ὑ ∷ μ ∷ ε ∷ ῖ ∷ ς ∷ []) "1Cor.5.2" ∷ word (π ∷ ε ∷ φ ∷ υ ∷ σ ∷ ι ∷ ω ∷ μ ∷ έ ∷ ν ∷ ο ∷ ι ∷ []) "1Cor.5.2" ∷ word (ἐ ∷ σ ∷ τ ∷ έ ∷ []) "1Cor.5.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.5.2" ∷ word (ο ∷ ὐ ∷ χ ∷ ὶ ∷ []) "1Cor.5.2" ∷ word (μ ∷ ᾶ ∷ ∙λ ∷ ∙λ ∷ ο ∷ ν ∷ []) "1Cor.5.2" ∷ word (ἐ ∷ π ∷ ε ∷ ν ∷ θ ∷ ή ∷ σ ∷ α ∷ τ ∷ ε ∷ []) "1Cor.5.2" ∷ word (ἵ ∷ ν ∷ α ∷ []) "1Cor.5.2" ∷ word (ἀ ∷ ρ ∷ θ ∷ ῇ ∷ []) "1Cor.5.2" ∷ word (ἐ ∷ κ ∷ []) "1Cor.5.2" ∷ word (μ ∷ έ ∷ σ ∷ ο ∷ υ ∷ []) "1Cor.5.2" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Cor.5.2" ∷ word (ὁ ∷ []) "1Cor.5.2" ∷ word (τ ∷ ὸ ∷ []) "1Cor.5.2" ∷ word (ἔ ∷ ρ ∷ γ ∷ ο ∷ ν ∷ []) "1Cor.5.2" ∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "1Cor.5.2" ∷ word (π ∷ ο ∷ ι ∷ ή ∷ σ ∷ α ∷ ς ∷ []) "1Cor.5.2" ∷ word (Ἐ ∷ γ ∷ ὼ ∷ []) "1Cor.5.3" ∷ word (μ ∷ ὲ ∷ ν ∷ []) "1Cor.5.3" ∷ word (γ ∷ ά ∷ ρ ∷ []) "1Cor.5.3" ∷ word (ἀ ∷ π ∷ ὼ ∷ ν ∷ []) "1Cor.5.3" ∷ word (τ ∷ ῷ ∷ []) "1Cor.5.3" ∷ word (σ ∷ ώ ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "1Cor.5.3" ∷ word (π ∷ α ∷ ρ ∷ ὼ ∷ ν ∷ []) "1Cor.5.3" ∷ word (δ ∷ ὲ ∷ []) "1Cor.5.3" ∷ word (τ ∷ ῷ ∷ []) "1Cor.5.3" ∷ word (π ∷ ν ∷ ε ∷ ύ ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "1Cor.5.3" ∷ word (ἤ ∷ δ ∷ η ∷ []) "1Cor.5.3" ∷ word (κ ∷ έ ∷ κ ∷ ρ ∷ ι ∷ κ ∷ α ∷ []) "1Cor.5.3" ∷ word (ὡ ∷ ς ∷ []) "1Cor.5.3" ∷ word (π ∷ α ∷ ρ ∷ ὼ ∷ ν ∷ []) "1Cor.5.3" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "1Cor.5.3" ∷ word (ο ∷ ὕ ∷ τ ∷ ω ∷ ς ∷ []) "1Cor.5.3" ∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "1Cor.5.3" ∷ word (κ ∷ α ∷ τ ∷ ε ∷ ρ ∷ γ ∷ α ∷ σ ∷ ά ∷ μ ∷ ε ∷ ν ∷ ο ∷ ν ∷ []) "1Cor.5.3" ∷ word (ἐ ∷ ν ∷ []) "1Cor.5.4" ∷ word (τ ∷ ῷ ∷ []) "1Cor.5.4" ∷ word (ὀ ∷ ν ∷ ό ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "1Cor.5.4" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.5.4" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "1Cor.5.4" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Cor.5.4" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "1Cor.5.4" ∷ word (σ ∷ υ ∷ ν ∷ α ∷ χ ∷ θ ∷ έ ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "1Cor.5.4" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Cor.5.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.5.4" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.5.4" ∷ word (ἐ ∷ μ ∷ ο ∷ ῦ ∷ []) "1Cor.5.4" ∷ word (π ∷ ν ∷ ε ∷ ύ ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "1Cor.5.4" ∷ word (σ ∷ ὺ ∷ ν ∷ []) "1Cor.5.4" ∷ word (τ ∷ ῇ ∷ []) "1Cor.5.4" ∷ word (δ ∷ υ ∷ ν ∷ ά ∷ μ ∷ ε ∷ ι ∷ []) "1Cor.5.4" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.5.4" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "1Cor.5.4" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Cor.5.4" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "1Cor.5.4" ∷ word (π ∷ α ∷ ρ ∷ α ∷ δ ∷ ο ∷ ῦ ∷ ν ∷ α ∷ ι ∷ []) "1Cor.5.5" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "1Cor.5.5" ∷ word (τ ∷ ο ∷ ι ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ ν ∷ []) "1Cor.5.5" ∷ word (τ ∷ ῷ ∷ []) "1Cor.5.5" ∷ word (Σ ∷ α ∷ τ ∷ α ∷ ν ∷ ᾷ ∷ []) "1Cor.5.5" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "1Cor.5.5" ∷ word (ὄ ∷ ∙λ ∷ ε ∷ θ ∷ ρ ∷ ο ∷ ν ∷ []) "1Cor.5.5" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "1Cor.5.5" ∷ word (σ ∷ α ∷ ρ ∷ κ ∷ ό ∷ ς ∷ []) "1Cor.5.5" ∷ word (ἵ ∷ ν ∷ α ∷ []) "1Cor.5.5" ∷ word (τ ∷ ὸ ∷ []) "1Cor.5.5" ∷ word (π ∷ ν ∷ ε ∷ ῦ ∷ μ ∷ α ∷ []) "1Cor.5.5" ∷ word (σ ∷ ω ∷ θ ∷ ῇ ∷ []) "1Cor.5.5" ∷ word (ἐ ∷ ν ∷ []) "1Cor.5.5" ∷ word (τ ∷ ῇ ∷ []) "1Cor.5.5" ∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ ᾳ ∷ []) "1Cor.5.5" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.5.5" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "1Cor.5.5" ∷ word (Ο ∷ ὐ ∷ []) "1Cor.5.6" ∷ word (κ ∷ α ∷ ∙λ ∷ ὸ ∷ ν ∷ []) "1Cor.5.6" ∷ word (τ ∷ ὸ ∷ []) "1Cor.5.6" ∷ word (κ ∷ α ∷ ύ ∷ χ ∷ η ∷ μ ∷ α ∷ []) "1Cor.5.6" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Cor.5.6" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "1Cor.5.6" ∷ word (ο ∷ ἴ ∷ δ ∷ α ∷ τ ∷ ε ∷ []) "1Cor.5.6" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "1Cor.5.6" ∷ word (μ ∷ ι ∷ κ ∷ ρ ∷ ὰ ∷ []) "1Cor.5.6" ∷ word (ζ ∷ ύ ∷ μ ∷ η ∷ []) "1Cor.5.6" ∷ word (ὅ ∷ ∙λ ∷ ο ∷ ν ∷ []) "1Cor.5.6" ∷ word (τ ∷ ὸ ∷ []) "1Cor.5.6" ∷ word (φ ∷ ύ ∷ ρ ∷ α ∷ μ ∷ α ∷ []) "1Cor.5.6" ∷ word (ζ ∷ υ ∷ μ ∷ ο ∷ ῖ ∷ []) "1Cor.5.6" ∷ word (ἐ ∷ κ ∷ κ ∷ α ∷ θ ∷ ά ∷ ρ ∷ α ∷ τ ∷ ε ∷ []) "1Cor.5.7" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "1Cor.5.7" ∷ word (π ∷ α ∷ ∙λ ∷ α ∷ ι ∷ ὰ ∷ ν ∷ []) "1Cor.5.7" ∷ word (ζ ∷ ύ ∷ μ ∷ η ∷ ν ∷ []) "1Cor.5.7" ∷ word (ἵ ∷ ν ∷ α ∷ []) "1Cor.5.7" ∷ word (ἦ ∷ τ ∷ ε ∷ []) "1Cor.5.7" ∷ word (ν ∷ έ ∷ ο ∷ ν ∷ []) "1Cor.5.7" ∷ word (φ ∷ ύ ∷ ρ ∷ α ∷ μ ∷ α ∷ []) "1Cor.5.7" ∷ word (κ ∷ α ∷ θ ∷ ώ ∷ ς ∷ []) "1Cor.5.7" ∷ word (ἐ ∷ σ ∷ τ ∷ ε ∷ []) "1Cor.5.7" ∷ word (ἄ ∷ ζ ∷ υ ∷ μ ∷ ο ∷ ι ∷ []) "1Cor.5.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.5.7" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "1Cor.5.7" ∷ word (τ ∷ ὸ ∷ []) "1Cor.5.7" ∷ word (π ∷ ά ∷ σ ∷ χ ∷ α ∷ []) "1Cor.5.7" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Cor.5.7" ∷ word (ἐ ∷ τ ∷ ύ ∷ θ ∷ η ∷ []) "1Cor.5.7" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ό ∷ ς ∷ []) "1Cor.5.7" ∷ word (ὥ ∷ σ ∷ τ ∷ ε ∷ []) "1Cor.5.8" ∷ word (ἑ ∷ ο ∷ ρ ∷ τ ∷ ά ∷ ζ ∷ ω ∷ μ ∷ ε ∷ ν ∷ []) "1Cor.5.8" ∷ word (μ ∷ ὴ ∷ []) "1Cor.5.8" ∷ word (ἐ ∷ ν ∷ []) "1Cor.5.8" ∷ word (ζ ∷ ύ ∷ μ ∷ ῃ ∷ []) "1Cor.5.8" ∷ word (π ∷ α ∷ ∙λ ∷ α ∷ ι ∷ ᾷ ∷ []) "1Cor.5.8" ∷ word (μ ∷ η ∷ δ ∷ ὲ ∷ []) "1Cor.5.8" ∷ word (ἐ ∷ ν ∷ []) "1Cor.5.8" ∷ word (ζ ∷ ύ ∷ μ ∷ ῃ ∷ []) "1Cor.5.8" ∷ word (κ ∷ α ∷ κ ∷ ί ∷ α ∷ ς ∷ []) "1Cor.5.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.5.8" ∷ word (π ∷ ο ∷ ν ∷ η ∷ ρ ∷ ί ∷ α ∷ ς ∷ []) "1Cor.5.8" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ []) "1Cor.5.8" ∷ word (ἐ ∷ ν ∷ []) "1Cor.5.8" ∷ word (ἀ ∷ ζ ∷ ύ ∷ μ ∷ ο ∷ ι ∷ ς ∷ []) "1Cor.5.8" ∷ word (ε ∷ ἰ ∷ ∙λ ∷ ι ∷ κ ∷ ρ ∷ ι ∷ ν ∷ ε ∷ ί ∷ α ∷ ς ∷ []) "1Cor.5.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.5.8" ∷ word (ἀ ∷ ∙λ ∷ η ∷ θ ∷ ε ∷ ί ∷ α ∷ ς ∷ []) "1Cor.5.8" ∷ word (Ἔ ∷ γ ∷ ρ ∷ α ∷ ψ ∷ α ∷ []) "1Cor.5.9" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "1Cor.5.9" ∷ word (ἐ ∷ ν ∷ []) "1Cor.5.9" ∷ word (τ ∷ ῇ ∷ []) "1Cor.5.9" ∷ word (ἐ ∷ π ∷ ι ∷ σ ∷ τ ∷ ο ∷ ∙λ ∷ ῇ ∷ []) "1Cor.5.9" ∷ word (μ ∷ ὴ ∷ []) "1Cor.5.9" ∷ word (σ ∷ υ ∷ ν ∷ α ∷ ν ∷ α ∷ μ ∷ ί ∷ γ ∷ ν ∷ υ ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "1Cor.5.9" ∷ word (π ∷ ό ∷ ρ ∷ ν ∷ ο ∷ ι ∷ ς ∷ []) "1Cor.5.9" ∷ word (ο ∷ ὐ ∷ []) "1Cor.5.10" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ω ∷ ς ∷ []) "1Cor.5.10" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "1Cor.5.10" ∷ word (π ∷ ό ∷ ρ ∷ ν ∷ ο ∷ ι ∷ ς ∷ []) "1Cor.5.10" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.5.10" ∷ word (κ ∷ ό ∷ σ ∷ μ ∷ ο ∷ υ ∷ []) "1Cor.5.10" ∷ word (τ ∷ ο ∷ ύ ∷ τ ∷ ο ∷ υ ∷ []) "1Cor.5.10" ∷ word (ἢ ∷ []) "1Cor.5.10" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "1Cor.5.10" ∷ word (π ∷ ∙λ ∷ ε ∷ ο ∷ ν ∷ έ ∷ κ ∷ τ ∷ α ∷ ι ∷ ς ∷ []) "1Cor.5.10" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.5.10" ∷ word (ἅ ∷ ρ ∷ π ∷ α ∷ ξ ∷ ι ∷ ν ∷ []) "1Cor.5.10" ∷ word (ἢ ∷ []) "1Cor.5.10" ∷ word (ε ∷ ἰ ∷ δ ∷ ω ∷ ∙λ ∷ ο ∷ ∙λ ∷ ά ∷ τ ∷ ρ ∷ α ∷ ι ∷ ς ∷ []) "1Cor.5.10" ∷ word (ἐ ∷ π ∷ ε ∷ ὶ ∷ []) "1Cor.5.10" ∷ word (ὠ ∷ φ ∷ ε ∷ ί ∷ ∙λ ∷ ε ∷ τ ∷ ε ∷ []) "1Cor.5.10" ∷ word (ἄ ∷ ρ ∷ α ∷ []) "1Cor.5.10" ∷ word (ἐ ∷ κ ∷ []) "1Cor.5.10" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.5.10" ∷ word (κ ∷ ό ∷ σ ∷ μ ∷ ο ∷ υ ∷ []) "1Cor.5.10" ∷ word (ἐ ∷ ξ ∷ ε ∷ ∙λ ∷ θ ∷ ε ∷ ῖ ∷ ν ∷ []) "1Cor.5.10" ∷ word (ν ∷ ῦ ∷ ν ∷ []) "1Cor.5.11" ∷ word (δ ∷ ὲ ∷ []) "1Cor.5.11" ∷ word (ἔ ∷ γ ∷ ρ ∷ α ∷ ψ ∷ α ∷ []) "1Cor.5.11" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "1Cor.5.11" ∷ word (μ ∷ ὴ ∷ []) "1Cor.5.11" ∷ word (σ ∷ υ ∷ ν ∷ α ∷ ν ∷ α ∷ μ ∷ ί ∷ γ ∷ ν ∷ υ ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "1Cor.5.11" ∷ word (ἐ ∷ ά ∷ ν ∷ []) "1Cor.5.11" ∷ word (τ ∷ ι ∷ ς ∷ []) "1Cor.5.11" ∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ὸ ∷ ς ∷ []) "1Cor.5.11" ∷ word (ὀ ∷ ν ∷ ο ∷ μ ∷ α ∷ ζ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "1Cor.5.11" ∷ word (ᾖ ∷ []) "1Cor.5.11" ∷ word (π ∷ ό ∷ ρ ∷ ν ∷ ο ∷ ς ∷ []) "1Cor.5.11" ∷ word (ἢ ∷ []) "1Cor.5.11" ∷ word (π ∷ ∙λ ∷ ε ∷ ο ∷ ν ∷ έ ∷ κ ∷ τ ∷ η ∷ ς ∷ []) "1Cor.5.11" ∷ word (ἢ ∷ []) "1Cor.5.11" ∷ word (ε ∷ ἰ ∷ δ ∷ ω ∷ ∙λ ∷ ο ∷ ∙λ ∷ ά ∷ τ ∷ ρ ∷ η ∷ ς ∷ []) "1Cor.5.11" ∷ word (ἢ ∷ []) "1Cor.5.11" ∷ word (∙λ ∷ ο ∷ ί ∷ δ ∷ ο ∷ ρ ∷ ο ∷ ς ∷ []) "1Cor.5.11" ∷ word (ἢ ∷ []) "1Cor.5.11" ∷ word (μ ∷ έ ∷ θ ∷ υ ∷ σ ∷ ο ∷ ς ∷ []) "1Cor.5.11" ∷ word (ἢ ∷ []) "1Cor.5.11" ∷ word (ἅ ∷ ρ ∷ π ∷ α ∷ ξ ∷ []) "1Cor.5.11" ∷ word (τ ∷ ῷ ∷ []) "1Cor.5.11" ∷ word (τ ∷ ο ∷ ι ∷ ο ∷ ύ ∷ τ ∷ ῳ ∷ []) "1Cor.5.11" ∷ word (μ ∷ η ∷ δ ∷ ὲ ∷ []) "1Cor.5.11" ∷ word (σ ∷ υ ∷ ν ∷ ε ∷ σ ∷ θ ∷ ί ∷ ε ∷ ι ∷ ν ∷ []) "1Cor.5.11" ∷ word (τ ∷ ί ∷ []) "1Cor.5.12" ∷ word (γ ∷ ά ∷ ρ ∷ []) "1Cor.5.12" ∷ word (μ ∷ ο ∷ ι ∷ []) "1Cor.5.12" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "1Cor.5.12" ∷ word (ἔ ∷ ξ ∷ ω ∷ []) "1Cor.5.12" ∷ word (κ ∷ ρ ∷ ί ∷ ν ∷ ε ∷ ι ∷ ν ∷ []) "1Cor.5.12" ∷ word (ο ∷ ὐ ∷ χ ∷ ὶ ∷ []) "1Cor.5.12" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "1Cor.5.12" ∷ word (ἔ ∷ σ ∷ ω ∷ []) "1Cor.5.12" ∷ word (ὑ ∷ μ ∷ ε ∷ ῖ ∷ ς ∷ []) "1Cor.5.12" ∷ word (κ ∷ ρ ∷ ί ∷ ν ∷ ε ∷ τ ∷ ε ∷ []) "1Cor.5.12" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "1Cor.5.13" ∷ word (δ ∷ ὲ ∷ []) "1Cor.5.13" ∷ word (ἔ ∷ ξ ∷ ω ∷ []) "1Cor.5.13" ∷ word (ὁ ∷ []) "1Cor.5.13" ∷ word (θ ∷ ε ∷ ὸ ∷ ς ∷ []) "1Cor.5.13" ∷ word (κ ∷ ρ ∷ ί ∷ ν ∷ ε ∷ ι ∷ []) "1Cor.5.13" ∷ word (ἐ ∷ ξ ∷ ά ∷ ρ ∷ α ∷ τ ∷ ε ∷ []) "1Cor.5.13" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "1Cor.5.13" ∷ word (π ∷ ο ∷ ν ∷ η ∷ ρ ∷ ὸ ∷ ν ∷ []) "1Cor.5.13" ∷ word (ἐ ∷ ξ ∷ []) "1Cor.5.13" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Cor.5.13" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "1Cor.5.13" ∷ word (Τ ∷ ο ∷ ∙λ ∷ μ ∷ ᾷ ∷ []) "1Cor.6.1" ∷ word (τ ∷ ι ∷ ς ∷ []) "1Cor.6.1" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Cor.6.1" ∷ word (π ∷ ρ ∷ ᾶ ∷ γ ∷ μ ∷ α ∷ []) "1Cor.6.1" ∷ word (ἔ ∷ χ ∷ ω ∷ ν ∷ []) "1Cor.6.1" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "1Cor.6.1" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "1Cor.6.1" ∷ word (ἕ ∷ τ ∷ ε ∷ ρ ∷ ο ∷ ν ∷ []) "1Cor.6.1" ∷ word (κ ∷ ρ ∷ ί ∷ ν ∷ ε ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "1Cor.6.1" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "1Cor.6.1" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "1Cor.6.1" ∷ word (ἀ ∷ δ ∷ ί ∷ κ ∷ ω ∷ ν ∷ []) "1Cor.6.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.6.1" ∷ word (ο ∷ ὐ ∷ χ ∷ ὶ ∷ []) "1Cor.6.1" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "1Cor.6.1" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "1Cor.6.1" ∷ word (ἁ ∷ γ ∷ ί ∷ ω ∷ ν ∷ []) "1Cor.6.1" ∷ word (ἢ ∷ []) "1Cor.6.2" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "1Cor.6.2" ∷ word (ο ∷ ἴ ∷ δ ∷ α ∷ τ ∷ ε ∷ []) "1Cor.6.2" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "1Cor.6.2" ∷ word (ο ∷ ἱ ∷ []) "1Cor.6.2" ∷ word (ἅ ∷ γ ∷ ι ∷ ο ∷ ι ∷ []) "1Cor.6.2" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "1Cor.6.2" ∷ word (κ ∷ ό ∷ σ ∷ μ ∷ ο ∷ ν ∷ []) "1Cor.6.2" ∷ word (κ ∷ ρ ∷ ι ∷ ν ∷ ο ∷ ῦ ∷ σ ∷ ι ∷ ν ∷ []) "1Cor.6.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.6.2" ∷ word (ε ∷ ἰ ∷ []) "1Cor.6.2" ∷ word (ἐ ∷ ν ∷ []) "1Cor.6.2" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "1Cor.6.2" ∷ word (κ ∷ ρ ∷ ί ∷ ν ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "1Cor.6.2" ∷ word (ὁ ∷ []) "1Cor.6.2" ∷ word (κ ∷ ό ∷ σ ∷ μ ∷ ο ∷ ς ∷ []) "1Cor.6.2" ∷ word (ἀ ∷ ν ∷ ά ∷ ξ ∷ ι ∷ ο ∷ ί ∷ []) "1Cor.6.2" ∷ word (ἐ ∷ σ ∷ τ ∷ ε ∷ []) "1Cor.6.2" ∷ word (κ ∷ ρ ∷ ι ∷ τ ∷ η ∷ ρ ∷ ί ∷ ω ∷ ν ∷ []) "1Cor.6.2" ∷ word (ἐ ∷ ∙λ ∷ α ∷ χ ∷ ί ∷ σ ∷ τ ∷ ω ∷ ν ∷ []) "1Cor.6.2" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "1Cor.6.3" ∷ word (ο ∷ ἴ ∷ δ ∷ α ∷ τ ∷ ε ∷ []) "1Cor.6.3" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "1Cor.6.3" ∷ word (ἀ ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ο ∷ υ ∷ ς ∷ []) "1Cor.6.3" ∷ word (κ ∷ ρ ∷ ι ∷ ν ∷ ο ∷ ῦ ∷ μ ∷ ε ∷ ν ∷ []) "1Cor.6.3" ∷ word (μ ∷ ή ∷ τ ∷ ι ∷ γ ∷ ε ∷ []) "1Cor.6.3" ∷ word (β ∷ ι ∷ ω ∷ τ ∷ ι ∷ κ ∷ ά ∷ []) "1Cor.6.3" ∷ word (β ∷ ι ∷ ω ∷ τ ∷ ι ∷ κ ∷ ὰ ∷ []) "1Cor.6.4" ∷ word (μ ∷ ὲ ∷ ν ∷ []) "1Cor.6.4" ∷ word (ο ∷ ὖ ∷ ν ∷ []) "1Cor.6.4" ∷ word (κ ∷ ρ ∷ ι ∷ τ ∷ ή ∷ ρ ∷ ι ∷ α ∷ []) "1Cor.6.4" ∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "1Cor.6.4" ∷ word (ἔ ∷ χ ∷ η ∷ τ ∷ ε ∷ []) "1Cor.6.4" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "1Cor.6.4" ∷ word (ἐ ∷ ξ ∷ ο ∷ υ ∷ θ ∷ ε ∷ ν ∷ η ∷ μ ∷ έ ∷ ν ∷ ο ∷ υ ∷ ς ∷ []) "1Cor.6.4" ∷ word (ἐ ∷ ν ∷ []) "1Cor.6.4" ∷ word (τ ∷ ῇ ∷ []) "1Cor.6.4" ∷ word (ἐ ∷ κ ∷ κ ∷ ∙λ ∷ η ∷ σ ∷ ί ∷ ᾳ ∷ []) "1Cor.6.4" ∷ word (τ ∷ ο ∷ ύ ∷ τ ∷ ο ∷ υ ∷ ς ∷ []) "1Cor.6.4" ∷ word (κ ∷ α ∷ θ ∷ ί ∷ ζ ∷ ε ∷ τ ∷ ε ∷ []) "1Cor.6.4" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "1Cor.6.5" ∷ word (ἐ ∷ ν ∷ τ ∷ ρ ∷ ο ∷ π ∷ ὴ ∷ ν ∷ []) "1Cor.6.5" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "1Cor.6.5" ∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ []) "1Cor.6.5" ∷ word (ο ∷ ὕ ∷ τ ∷ ω ∷ ς ∷ []) "1Cor.6.5" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "1Cor.6.5" ∷ word (ἔ ∷ ν ∷ ι ∷ []) "1Cor.6.5" ∷ word (ἐ ∷ ν ∷ []) "1Cor.6.5" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "1Cor.6.5" ∷ word (ο ∷ ὐ ∷ δ ∷ ε ∷ ὶ ∷ ς ∷ []) "1Cor.6.5" ∷ word (σ ∷ ο ∷ φ ∷ ὸ ∷ ς ∷ []) "1Cor.6.5" ∷ word (ὃ ∷ ς ∷ []) "1Cor.6.5" ∷ word (δ ∷ υ ∷ ν ∷ ή ∷ σ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "1Cor.6.5" ∷ word (δ ∷ ι ∷ α ∷ κ ∷ ρ ∷ ῖ ∷ ν ∷ α ∷ ι ∷ []) "1Cor.6.5" ∷ word (ἀ ∷ ν ∷ ὰ ∷ []) "1Cor.6.5" ∷ word (μ ∷ έ ∷ σ ∷ ο ∷ ν ∷ []) "1Cor.6.5" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.6.5" ∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ο ∷ ῦ ∷ []) "1Cor.6.5" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "1Cor.6.5" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "1Cor.6.6" ∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ὸ ∷ ς ∷ []) "1Cor.6.6" ∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "1Cor.6.6" ∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ο ∷ ῦ ∷ []) "1Cor.6.6" ∷ word (κ ∷ ρ ∷ ί ∷ ν ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "1Cor.6.6" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.6.6" ∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "1Cor.6.6" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "1Cor.6.6" ∷ word (ἀ ∷ π ∷ ί ∷ σ ∷ τ ∷ ω ∷ ν ∷ []) "1Cor.6.6" ∷ word (ἤ ∷ δ ∷ η ∷ []) "1Cor.6.7" ∷ word (μ ∷ ὲ ∷ ν ∷ []) "1Cor.6.7" ∷ word (ο ∷ ὖ ∷ ν ∷ []) "1Cor.6.7" ∷ word (ὅ ∷ ∙λ ∷ ω ∷ ς ∷ []) "1Cor.6.7" ∷ word (ἥ ∷ τ ∷ τ ∷ η ∷ μ ∷ α ∷ []) "1Cor.6.7" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "1Cor.6.7" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "1Cor.6.7" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "1Cor.6.7" ∷ word (κ ∷ ρ ∷ ί ∷ μ ∷ α ∷ τ ∷ α ∷ []) "1Cor.6.7" ∷ word (ἔ ∷ χ ∷ ε ∷ τ ∷ ε ∷ []) "1Cor.6.7" ∷ word (μ ∷ ε ∷ θ ∷ []) "1Cor.6.7" ∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ῶ ∷ ν ∷ []) "1Cor.6.7" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "1Cor.6.7" ∷ word (τ ∷ ί ∷ []) "1Cor.6.7" ∷ word (ο ∷ ὐ ∷ χ ∷ ὶ ∷ []) "1Cor.6.7" ∷ word (μ ∷ ᾶ ∷ ∙λ ∷ ∙λ ∷ ο ∷ ν ∷ []) "1Cor.6.7" ∷ word (ἀ ∷ δ ∷ ι ∷ κ ∷ ε ∷ ῖ ∷ σ ∷ θ ∷ ε ∷ []) "1Cor.6.7" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "1Cor.6.7" ∷ word (τ ∷ ί ∷ []) "1Cor.6.7" ∷ word (ο ∷ ὐ ∷ χ ∷ ὶ ∷ []) "1Cor.6.7" ∷ word (μ ∷ ᾶ ∷ ∙λ ∷ ∙λ ∷ ο ∷ ν ∷ []) "1Cor.6.7" ∷ word (ἀ ∷ π ∷ ο ∷ σ ∷ τ ∷ ε ∷ ρ ∷ ε ∷ ῖ ∷ σ ∷ θ ∷ ε ∷ []) "1Cor.6.7" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "1Cor.6.8" ∷ word (ὑ ∷ μ ∷ ε ∷ ῖ ∷ ς ∷ []) "1Cor.6.8" ∷ word (ἀ ∷ δ ∷ ι ∷ κ ∷ ε ∷ ῖ ∷ τ ∷ ε ∷ []) "1Cor.6.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.6.8" ∷ word (ἀ ∷ π ∷ ο ∷ σ ∷ τ ∷ ε ∷ ρ ∷ ε ∷ ῖ ∷ τ ∷ ε ∷ []) "1Cor.6.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.6.8" ∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "1Cor.6.8" ∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ο ∷ ύ ∷ ς ∷ []) "1Cor.6.8" ∷ word (Ἢ ∷ []) "1Cor.6.9" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "1Cor.6.9" ∷ word (ο ∷ ἴ ∷ δ ∷ α ∷ τ ∷ ε ∷ []) "1Cor.6.9" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "1Cor.6.9" ∷ word (ἄ ∷ δ ∷ ι ∷ κ ∷ ο ∷ ι ∷ []) "1Cor.6.9" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "1Cor.6.9" ∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ί ∷ α ∷ ν ∷ []) "1Cor.6.9" ∷ word (ο ∷ ὐ ∷ []) "1Cor.6.9" ∷ word (κ ∷ ∙λ ∷ η ∷ ρ ∷ ο ∷ ν ∷ ο ∷ μ ∷ ή ∷ σ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "1Cor.6.9" ∷ word (μ ∷ ὴ ∷ []) "1Cor.6.9" ∷ word (π ∷ ∙λ ∷ α ∷ ν ∷ ᾶ ∷ σ ∷ θ ∷ ε ∷ []) "1Cor.6.9" ∷ word (ο ∷ ὔ ∷ τ ∷ ε ∷ []) "1Cor.6.9" ∷ word (π ∷ ό ∷ ρ ∷ ν ∷ ο ∷ ι ∷ []) "1Cor.6.9" ∷ word (ο ∷ ὔ ∷ τ ∷ ε ∷ []) "1Cor.6.9" ∷ word (ε ∷ ἰ ∷ δ ∷ ω ∷ ∙λ ∷ ο ∷ ∙λ ∷ ά ∷ τ ∷ ρ ∷ α ∷ ι ∷ []) "1Cor.6.9" ∷ word (ο ∷ ὔ ∷ τ ∷ ε ∷ []) "1Cor.6.9" ∷ word (μ ∷ ο ∷ ι ∷ χ ∷ ο ∷ ὶ ∷ []) "1Cor.6.9" ∷ word (ο ∷ ὔ ∷ τ ∷ ε ∷ []) "1Cor.6.9" ∷ word (μ ∷ α ∷ ∙λ ∷ α ∷ κ ∷ ο ∷ ὶ ∷ []) "1Cor.6.9" ∷ word (ο ∷ ὔ ∷ τ ∷ ε ∷ []) "1Cor.6.9" ∷ word (ἀ ∷ ρ ∷ σ ∷ ε ∷ ν ∷ ο ∷ κ ∷ ο ∷ ῖ ∷ τ ∷ α ∷ ι ∷ []) "1Cor.6.9" ∷ word (ο ∷ ὔ ∷ τ ∷ ε ∷ []) "1Cor.6.10" ∷ word (κ ∷ ∙λ ∷ έ ∷ π ∷ τ ∷ α ∷ ι ∷ []) "1Cor.6.10" ∷ word (ο ∷ ὔ ∷ τ ∷ ε ∷ []) "1Cor.6.10" ∷ word (π ∷ ∙λ ∷ ε ∷ ο ∷ ν ∷ έ ∷ κ ∷ τ ∷ α ∷ ι ∷ []) "1Cor.6.10" ∷ word (ο ∷ ὐ ∷ []) "1Cor.6.10" ∷ word (μ ∷ έ ∷ θ ∷ υ ∷ σ ∷ ο ∷ ι ∷ []) "1Cor.6.10" ∷ word (ο ∷ ὐ ∷ []) "1Cor.6.10" ∷ word (∙λ ∷ ο ∷ ί ∷ δ ∷ ο ∷ ρ ∷ ο ∷ ι ∷ []) "1Cor.6.10" ∷ word (ο ∷ ὐ ∷ χ ∷ []) "1Cor.6.10" ∷ word (ἅ ∷ ρ ∷ π ∷ α ∷ γ ∷ ε ∷ ς ∷ []) "1Cor.6.10" ∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ί ∷ α ∷ ν ∷ []) "1Cor.6.10" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "1Cor.6.10" ∷ word (κ ∷ ∙λ ∷ η ∷ ρ ∷ ο ∷ ν ∷ ο ∷ μ ∷ ή ∷ σ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "1Cor.6.10" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.6.11" ∷ word (τ ∷ α ∷ ῦ ∷ τ ∷ ά ∷ []) "1Cor.6.11" ∷ word (τ ∷ ι ∷ ν ∷ ε ∷ ς ∷ []) "1Cor.6.11" ∷ word (ἦ ∷ τ ∷ ε ∷ []) "1Cor.6.11" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "1Cor.6.11" ∷ word (ἀ ∷ π ∷ ε ∷ ∙λ ∷ ο ∷ ύ ∷ σ ∷ α ∷ σ ∷ θ ∷ ε ∷ []) "1Cor.6.11" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "1Cor.6.11" ∷ word (ἡ ∷ γ ∷ ι ∷ ά ∷ σ ∷ θ ∷ η ∷ τ ∷ ε ∷ []) "1Cor.6.11" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "1Cor.6.11" ∷ word (ἐ ∷ δ ∷ ι ∷ κ ∷ α ∷ ι ∷ ώ ∷ θ ∷ η ∷ τ ∷ ε ∷ []) "1Cor.6.11" ∷ word (ἐ ∷ ν ∷ []) "1Cor.6.11" ∷ word (τ ∷ ῷ ∷ []) "1Cor.6.11" ∷ word (ὀ ∷ ν ∷ ό ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "1Cor.6.11" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.6.11" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "1Cor.6.11" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "1Cor.6.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.6.11" ∷ word (ἐ ∷ ν ∷ []) "1Cor.6.11" ∷ word (τ ∷ ῷ ∷ []) "1Cor.6.11" ∷ word (π ∷ ν ∷ ε ∷ ύ ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "1Cor.6.11" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.6.11" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "1Cor.6.11" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Cor.6.11" ∷ word (Π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "1Cor.6.12" ∷ word (μ ∷ ο ∷ ι ∷ []) "1Cor.6.12" ∷ word (ἔ ∷ ξ ∷ ε ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "1Cor.6.12" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ []) "1Cor.6.12" ∷ word (ο ∷ ὐ ∷ []) "1Cor.6.12" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "1Cor.6.12" ∷ word (σ ∷ υ ∷ μ ∷ φ ∷ έ ∷ ρ ∷ ε ∷ ι ∷ []) "1Cor.6.12" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "1Cor.6.12" ∷ word (μ ∷ ο ∷ ι ∷ []) "1Cor.6.12" ∷ word (ἔ ∷ ξ ∷ ε ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "1Cor.6.12" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ []) "1Cor.6.12" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "1Cor.6.12" ∷ word (ἐ ∷ γ ∷ ὼ ∷ []) "1Cor.6.12" ∷ word (ἐ ∷ ξ ∷ ο ∷ υ ∷ σ ∷ ι ∷ α ∷ σ ∷ θ ∷ ή ∷ σ ∷ ο ∷ μ ∷ α ∷ ι ∷ []) "1Cor.6.12" ∷ word (ὑ ∷ π ∷ ό ∷ []) "1Cor.6.12" ∷ word (τ ∷ ι ∷ ν ∷ ο ∷ ς ∷ []) "1Cor.6.12" ∷ word (τ ∷ ὰ ∷ []) "1Cor.6.13" ∷ word (β ∷ ρ ∷ ώ ∷ μ ∷ α ∷ τ ∷ α ∷ []) "1Cor.6.13" ∷ word (τ ∷ ῇ ∷ []) "1Cor.6.13" ∷ word (κ ∷ ο ∷ ι ∷ ∙λ ∷ ί ∷ ᾳ ∷ []) "1Cor.6.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.6.13" ∷ word (ἡ ∷ []) "1Cor.6.13" ∷ word (κ ∷ ο ∷ ι ∷ ∙λ ∷ ί ∷ α ∷ []) "1Cor.6.13" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "1Cor.6.13" ∷ word (β ∷ ρ ∷ ώ ∷ μ ∷ α ∷ σ ∷ ι ∷ ν ∷ []) "1Cor.6.13" ∷ word (ὁ ∷ []) "1Cor.6.13" ∷ word (δ ∷ ὲ ∷ []) "1Cor.6.13" ∷ word (θ ∷ ε ∷ ὸ ∷ ς ∷ []) "1Cor.6.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.6.13" ∷ word (τ ∷ α ∷ ύ ∷ τ ∷ η ∷ ν ∷ []) "1Cor.6.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.6.13" ∷ word (τ ∷ α ∷ ῦ ∷ τ ∷ α ∷ []) "1Cor.6.13" ∷ word (κ ∷ α ∷ τ ∷ α ∷ ρ ∷ γ ∷ ή ∷ σ ∷ ε ∷ ι ∷ []) "1Cor.6.13" ∷ word (τ ∷ ὸ ∷ []) "1Cor.6.13" ∷ word (δ ∷ ὲ ∷ []) "1Cor.6.13" ∷ word (σ ∷ ῶ ∷ μ ∷ α ∷ []) "1Cor.6.13" ∷ word (ο ∷ ὐ ∷ []) "1Cor.6.13" ∷ word (τ ∷ ῇ ∷ []) "1Cor.6.13" ∷ word (π ∷ ο ∷ ρ ∷ ν ∷ ε ∷ ί ∷ ᾳ ∷ []) "1Cor.6.13" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "1Cor.6.13" ∷ word (τ ∷ ῷ ∷ []) "1Cor.6.13" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ῳ ∷ []) "1Cor.6.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.6.13" ∷ word (ὁ ∷ []) "1Cor.6.13" ∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ς ∷ []) "1Cor.6.13" ∷ word (τ ∷ ῷ ∷ []) "1Cor.6.13" ∷ word (σ ∷ ώ ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "1Cor.6.13" ∷ word (ὁ ∷ []) "1Cor.6.14" ∷ word (δ ∷ ὲ ∷ []) "1Cor.6.14" ∷ word (θ ∷ ε ∷ ὸ ∷ ς ∷ []) "1Cor.6.14" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.6.14" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "1Cor.6.14" ∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ν ∷ []) "1Cor.6.14" ∷ word (ἤ ∷ γ ∷ ε ∷ ι ∷ ρ ∷ ε ∷ ν ∷ []) "1Cor.6.14" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.6.14" ∷ word (ἡ ∷ μ ∷ ᾶ ∷ ς ∷ []) "1Cor.6.14" ∷ word (ἐ ∷ ξ ∷ ε ∷ γ ∷ ε ∷ ρ ∷ ε ∷ ῖ ∷ []) "1Cor.6.14" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "1Cor.6.14" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "1Cor.6.14" ∷ word (δ ∷ υ ∷ ν ∷ ά ∷ μ ∷ ε ∷ ω ∷ ς ∷ []) "1Cor.6.14" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "1Cor.6.14" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "1Cor.6.15" ∷ word (ο ∷ ἴ ∷ δ ∷ α ∷ τ ∷ ε ∷ []) "1Cor.6.15" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "1Cor.6.15" ∷ word (τ ∷ ὰ ∷ []) "1Cor.6.15" ∷ word (σ ∷ ώ ∷ μ ∷ α ∷ τ ∷ α ∷ []) "1Cor.6.15" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Cor.6.15" ∷ word (μ ∷ έ ∷ ∙λ ∷ η ∷ []) "1Cor.6.15" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "1Cor.6.15" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "1Cor.6.15" ∷ word (ἄ ∷ ρ ∷ α ∷ ς ∷ []) "1Cor.6.15" ∷ word (ο ∷ ὖ ∷ ν ∷ []) "1Cor.6.15" ∷ word (τ ∷ ὰ ∷ []) "1Cor.6.15" ∷ word (μ ∷ έ ∷ ∙λ ∷ η ∷ []) "1Cor.6.15" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.6.15" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "1Cor.6.15" ∷ word (π ∷ ο ∷ ι ∷ ή ∷ σ ∷ ω ∷ []) "1Cor.6.15" ∷ word (π ∷ ό ∷ ρ ∷ ν ∷ η ∷ ς ∷ []) "1Cor.6.15" ∷ word (μ ∷ έ ∷ ∙λ ∷ η ∷ []) "1Cor.6.15" ∷ word (μ ∷ ὴ ∷ []) "1Cor.6.15" ∷ word (γ ∷ έ ∷ ν ∷ ο ∷ ι ∷ τ ∷ ο ∷ []) "1Cor.6.15" ∷ word (ἢ ∷ []) "1Cor.6.16" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "1Cor.6.16" ∷ word (ο ∷ ἴ ∷ δ ∷ α ∷ τ ∷ ε ∷ []) "1Cor.6.16" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "1Cor.6.16" ∷ word (ὁ ∷ []) "1Cor.6.16" ∷ word (κ ∷ ο ∷ ∙λ ∷ ∙λ ∷ ώ ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "1Cor.6.16" ∷ word (τ ∷ ῇ ∷ []) "1Cor.6.16" ∷ word (π ∷ ό ∷ ρ ∷ ν ∷ ῃ ∷ []) "1Cor.6.16" ∷ word (ἓ ∷ ν ∷ []) "1Cor.6.16" ∷ word (σ ∷ ῶ ∷ μ ∷ ά ∷ []) "1Cor.6.16" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "1Cor.6.16" ∷ word (Ἔ ∷ σ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "1Cor.6.16" ∷ word (γ ∷ ά ∷ ρ ∷ []) "1Cor.6.16" ∷ word (φ ∷ η ∷ σ ∷ ί ∷ ν ∷ []) "1Cor.6.16" ∷ word (ο ∷ ἱ ∷ []) "1Cor.6.16" ∷ word (δ ∷ ύ ∷ ο ∷ []) "1Cor.6.16" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "1Cor.6.16" ∷ word (σ ∷ ά ∷ ρ ∷ κ ∷ α ∷ []) "1Cor.6.16" ∷ word (μ ∷ ί ∷ α ∷ ν ∷ []) "1Cor.6.16" ∷ word (ὁ ∷ []) "1Cor.6.17" ∷ word (δ ∷ ὲ ∷ []) "1Cor.6.17" ∷ word (κ ∷ ο ∷ ∙λ ∷ ∙λ ∷ ώ ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "1Cor.6.17" ∷ word (τ ∷ ῷ ∷ []) "1Cor.6.17" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ῳ ∷ []) "1Cor.6.17" ∷ word (ἓ ∷ ν ∷ []) "1Cor.6.17" ∷ word (π ∷ ν ∷ ε ∷ ῦ ∷ μ ∷ ά ∷ []) "1Cor.6.17" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "1Cor.6.17" ∷ word (φ ∷ ε ∷ ύ ∷ γ ∷ ε ∷ τ ∷ ε ∷ []) "1Cor.6.18" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "1Cor.6.18" ∷ word (π ∷ ο ∷ ρ ∷ ν ∷ ε ∷ ί ∷ α ∷ ν ∷ []) "1Cor.6.18" ∷ word (π ∷ ᾶ ∷ ν ∷ []) "1Cor.6.18" ∷ word (ἁ ∷ μ ∷ ά ∷ ρ ∷ τ ∷ η ∷ μ ∷ α ∷ []) "1Cor.6.18" ∷ word (ὃ ∷ []) "1Cor.6.18" ∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "1Cor.6.18" ∷ word (π ∷ ο ∷ ι ∷ ή ∷ σ ∷ ῃ ∷ []) "1Cor.6.18" ∷ word (ἄ ∷ ν ∷ θ ∷ ρ ∷ ω ∷ π ∷ ο ∷ ς ∷ []) "1Cor.6.18" ∷ word (ἐ ∷ κ ∷ τ ∷ ὸ ∷ ς ∷ []) "1Cor.6.18" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.6.18" ∷ word (σ ∷ ώ ∷ μ ∷ α ∷ τ ∷ ό ∷ ς ∷ []) "1Cor.6.18" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "1Cor.6.18" ∷ word (ὁ ∷ []) "1Cor.6.18" ∷ word (δ ∷ ὲ ∷ []) "1Cor.6.18" ∷ word (π ∷ ο ∷ ρ ∷ ν ∷ ε ∷ ύ ∷ ω ∷ ν ∷ []) "1Cor.6.18" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "1Cor.6.18" ∷ word (τ ∷ ὸ ∷ []) "1Cor.6.18" ∷ word (ἴ ∷ δ ∷ ι ∷ ο ∷ ν ∷ []) "1Cor.6.18" ∷ word (σ ∷ ῶ ∷ μ ∷ α ∷ []) "1Cor.6.18" ∷ word (ἁ ∷ μ ∷ α ∷ ρ ∷ τ ∷ ά ∷ ν ∷ ε ∷ ι ∷ []) "1Cor.6.18" ∷ word (ἢ ∷ []) "1Cor.6.19" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "1Cor.6.19" ∷ word (ο ∷ ἴ ∷ δ ∷ α ∷ τ ∷ ε ∷ []) "1Cor.6.19" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "1Cor.6.19" ∷ word (τ ∷ ὸ ∷ []) "1Cor.6.19" ∷ word (σ ∷ ῶ ∷ μ ∷ α ∷ []) "1Cor.6.19" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Cor.6.19" ∷ word (ν ∷ α ∷ ὸ ∷ ς ∷ []) "1Cor.6.19" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.6.19" ∷ word (ἐ ∷ ν ∷ []) "1Cor.6.19" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "1Cor.6.19" ∷ word (ἁ ∷ γ ∷ ί ∷ ο ∷ υ ∷ []) "1Cor.6.19" ∷ word (π ∷ ν ∷ ε ∷ ύ ∷ μ ∷ α ∷ τ ∷ ό ∷ ς ∷ []) "1Cor.6.19" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "1Cor.6.19" ∷ word (ο ∷ ὗ ∷ []) "1Cor.6.19" ∷ word (ἔ ∷ χ ∷ ε ∷ τ ∷ ε ∷ []) "1Cor.6.19" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "1Cor.6.19" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "1Cor.6.19" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.6.19" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "1Cor.6.19" ∷ word (ἐ ∷ σ ∷ τ ∷ ὲ ∷ []) "1Cor.6.19" ∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ῶ ∷ ν ∷ []) "1Cor.6.19" ∷ word (ἠ ∷ γ ∷ ο ∷ ρ ∷ ά ∷ σ ∷ θ ∷ η ∷ τ ∷ ε ∷ []) "1Cor.6.20" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "1Cor.6.20" ∷ word (τ ∷ ι ∷ μ ∷ ῆ ∷ ς ∷ []) "1Cor.6.20" ∷ word (δ ∷ ο ∷ ξ ∷ ά ∷ σ ∷ α ∷ τ ∷ ε ∷ []) "1Cor.6.20" ∷ word (δ ∷ ὴ ∷ []) "1Cor.6.20" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "1Cor.6.20" ∷ word (θ ∷ ε ∷ ὸ ∷ ν ∷ []) "1Cor.6.20" ∷ word (ἐ ∷ ν ∷ []) "1Cor.6.20" ∷ word (τ ∷ ῷ ∷ []) "1Cor.6.20" ∷ word (σ ∷ ώ ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "1Cor.6.20" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Cor.6.20" ∷ word (Π ∷ ε ∷ ρ ∷ ὶ ∷ []) "1Cor.7.1" ∷ word (δ ∷ ὲ ∷ []) "1Cor.7.1" ∷ word (ὧ ∷ ν ∷ []) "1Cor.7.1" ∷ word (ἐ ∷ γ ∷ ρ ∷ ά ∷ ψ ∷ α ∷ τ ∷ ε ∷ []) "1Cor.7.1" ∷ word (κ ∷ α ∷ ∙λ ∷ ὸ ∷ ν ∷ []) "1Cor.7.1" ∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ῳ ∷ []) "1Cor.7.1" ∷ word (γ ∷ υ ∷ ν ∷ α ∷ ι ∷ κ ∷ ὸ ∷ ς ∷ []) "1Cor.7.1" ∷ word (μ ∷ ὴ ∷ []) "1Cor.7.1" ∷ word (ἅ ∷ π ∷ τ ∷ ε ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "1Cor.7.1" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "1Cor.7.2" ∷ word (δ ∷ ὲ ∷ []) "1Cor.7.2" ∷ word (τ ∷ ὰ ∷ ς ∷ []) "1Cor.7.2" ∷ word (π ∷ ο ∷ ρ ∷ ν ∷ ε ∷ ί ∷ α ∷ ς ∷ []) "1Cor.7.2" ∷ word (ἕ ∷ κ ∷ α ∷ σ ∷ τ ∷ ο ∷ ς ∷ []) "1Cor.7.2" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "1Cor.7.2" ∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ο ∷ ῦ ∷ []) "1Cor.7.2" ∷ word (γ ∷ υ ∷ ν ∷ α ∷ ῖ ∷ κ ∷ α ∷ []) "1Cor.7.2" ∷ word (ἐ ∷ χ ∷ έ ∷ τ ∷ ω ∷ []) "1Cor.7.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.7.2" ∷ word (ἑ ∷ κ ∷ ά ∷ σ ∷ τ ∷ η ∷ []) "1Cor.7.2" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "1Cor.7.2" ∷ word (ἴ ∷ δ ∷ ι ∷ ο ∷ ν ∷ []) "1Cor.7.2" ∷ word (ἄ ∷ ν ∷ δ ∷ ρ ∷ α ∷ []) "1Cor.7.2" ∷ word (ἐ ∷ χ ∷ έ ∷ τ ∷ ω ∷ []) "1Cor.7.2" ∷ word (τ ∷ ῇ ∷ []) "1Cor.7.3" ∷ word (γ ∷ υ ∷ ν ∷ α ∷ ι ∷ κ ∷ ὶ ∷ []) "1Cor.7.3" ∷ word (ὁ ∷ []) "1Cor.7.3" ∷ word (ἀ ∷ ν ∷ ὴ ∷ ρ ∷ []) "1Cor.7.3" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "1Cor.7.3" ∷ word (ὀ ∷ φ ∷ ε ∷ ι ∷ ∙λ ∷ ὴ ∷ ν ∷ []) "1Cor.7.3" ∷ word (ἀ ∷ π ∷ ο ∷ δ ∷ ι ∷ δ ∷ ό ∷ τ ∷ ω ∷ []) "1Cor.7.3" ∷ word (ὁ ∷ μ ∷ ο ∷ ί ∷ ω ∷ ς ∷ []) "1Cor.7.3" ∷ word (δ ∷ ὲ ∷ []) "1Cor.7.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.7.3" ∷ word (ἡ ∷ []) "1Cor.7.3" ∷ word (γ ∷ υ ∷ ν ∷ ὴ ∷ []) "1Cor.7.3" ∷ word (τ ∷ ῷ ∷ []) "1Cor.7.3" ∷ word (ἀ ∷ ν ∷ δ ∷ ρ ∷ ί ∷ []) "1Cor.7.3" ∷ word (ἡ ∷ []) "1Cor.7.4" ∷ word (γ ∷ υ ∷ ν ∷ ὴ ∷ []) "1Cor.7.4" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.7.4" ∷ word (ἰ ∷ δ ∷ ί ∷ ο ∷ υ ∷ []) "1Cor.7.4" ∷ word (σ ∷ ώ ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "1Cor.7.4" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "1Cor.7.4" ∷ word (ἐ ∷ ξ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ά ∷ ζ ∷ ε ∷ ι ∷ []) "1Cor.7.4" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "1Cor.7.4" ∷ word (ὁ ∷ []) "1Cor.7.4" ∷ word (ἀ ∷ ν ∷ ή ∷ ρ ∷ []) "1Cor.7.4" ∷ word (ὁ ∷ μ ∷ ο ∷ ί ∷ ω ∷ ς ∷ []) "1Cor.7.4" ∷ word (δ ∷ ὲ ∷ []) "1Cor.7.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.7.4" ∷ word (ὁ ∷ []) "1Cor.7.4" ∷ word (ἀ ∷ ν ∷ ὴ ∷ ρ ∷ []) "1Cor.7.4" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.7.4" ∷ word (ἰ ∷ δ ∷ ί ∷ ο ∷ υ ∷ []) "1Cor.7.4" ∷ word (σ ∷ ώ ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "1Cor.7.4" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "1Cor.7.4" ∷ word (ἐ ∷ ξ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ά ∷ ζ ∷ ε ∷ ι ∷ []) "1Cor.7.4" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "1Cor.7.4" ∷ word (ἡ ∷ []) "1Cor.7.4" ∷ word (γ ∷ υ ∷ ν ∷ ή ∷ []) "1Cor.7.4" ∷ word (μ ∷ ὴ ∷ []) "1Cor.7.5" ∷ word (ἀ ∷ π ∷ ο ∷ σ ∷ τ ∷ ε ∷ ρ ∷ ε ∷ ῖ ∷ τ ∷ ε ∷ []) "1Cor.7.5" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ή ∷ ∙λ ∷ ο ∷ υ ∷ ς ∷ []) "1Cor.7.5" ∷ word (ε ∷ ἰ ∷ []) "1Cor.7.5" ∷ word (μ ∷ ή ∷ τ ∷ ι ∷ []) "1Cor.7.5" ∷ word (ἂ ∷ ν ∷ []) "1Cor.7.5" ∷ word (ἐ ∷ κ ∷ []) "1Cor.7.5" ∷ word (σ ∷ υ ∷ μ ∷ φ ∷ ώ ∷ ν ∷ ο ∷ υ ∷ []) "1Cor.7.5" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "1Cor.7.5" ∷ word (κ ∷ α ∷ ι ∷ ρ ∷ ὸ ∷ ν ∷ []) "1Cor.7.5" ∷ word (ἵ ∷ ν ∷ α ∷ []) "1Cor.7.5" ∷ word (σ ∷ χ ∷ ο ∷ ∙λ ∷ ά ∷ σ ∷ η ∷ τ ∷ ε ∷ []) "1Cor.7.5" ∷ word (τ ∷ ῇ ∷ []) "1Cor.7.5" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ ε ∷ υ ∷ χ ∷ ῇ ∷ []) "1Cor.7.5" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.7.5" ∷ word (π ∷ ά ∷ ∙λ ∷ ι ∷ ν ∷ []) "1Cor.7.5" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "1Cor.7.5" ∷ word (τ ∷ ὸ ∷ []) "1Cor.7.5" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ []) "1Cor.7.5" ∷ word (ἦ ∷ τ ∷ ε ∷ []) "1Cor.7.5" ∷ word (ἵ ∷ ν ∷ α ∷ []) "1Cor.7.5" ∷ word (μ ∷ ὴ ∷ []) "1Cor.7.5" ∷ word (π ∷ ε ∷ ι ∷ ρ ∷ ά ∷ ζ ∷ ῃ ∷ []) "1Cor.7.5" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "1Cor.7.5" ∷ word (ὁ ∷ []) "1Cor.7.5" ∷ word (Σ ∷ α ∷ τ ∷ α ∷ ν ∷ ᾶ ∷ ς ∷ []) "1Cor.7.5" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "1Cor.7.5" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "1Cor.7.5" ∷ word (ἀ ∷ κ ∷ ρ ∷ α ∷ σ ∷ ί ∷ α ∷ ν ∷ []) "1Cor.7.5" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Cor.7.5" ∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "1Cor.7.6" ∷ word (δ ∷ ὲ ∷ []) "1Cor.7.6" ∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ []) "1Cor.7.6" ∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "1Cor.7.6" ∷ word (σ ∷ υ ∷ γ ∷ γ ∷ ν ∷ ώ ∷ μ ∷ η ∷ ν ∷ []) "1Cor.7.6" ∷ word (ο ∷ ὐ ∷ []) "1Cor.7.6" ∷ word (κ ∷ α ∷ τ ∷ []) "1Cor.7.6" ∷ word (ἐ ∷ π ∷ ι ∷ τ ∷ α ∷ γ ∷ ή ∷ ν ∷ []) "1Cor.7.6" ∷ word (θ ∷ έ ∷ ∙λ ∷ ω ∷ []) "1Cor.7.7" ∷ word (δ ∷ ὲ ∷ []) "1Cor.7.7" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "1Cor.7.7" ∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ο ∷ υ ∷ ς ∷ []) "1Cor.7.7" ∷ word (ε ∷ ἶ ∷ ν ∷ α ∷ ι ∷ []) "1Cor.7.7" ∷ word (ὡ ∷ ς ∷ []) "1Cor.7.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.7.7" ∷ word (ἐ ∷ μ ∷ α ∷ υ ∷ τ ∷ ό ∷ ν ∷ []) "1Cor.7.7" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "1Cor.7.7" ∷ word (ἕ ∷ κ ∷ α ∷ σ ∷ τ ∷ ο ∷ ς ∷ []) "1Cor.7.7" ∷ word (ἴ ∷ δ ∷ ι ∷ ο ∷ ν ∷ []) "1Cor.7.7" ∷ word (ἔ ∷ χ ∷ ε ∷ ι ∷ []) "1Cor.7.7" ∷ word (χ ∷ ά ∷ ρ ∷ ι ∷ σ ∷ μ ∷ α ∷ []) "1Cor.7.7" ∷ word (ἐ ∷ κ ∷ []) "1Cor.7.7" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "1Cor.7.7" ∷ word (ὁ ∷ []) "1Cor.7.7" ∷ word (μ ∷ ὲ ∷ ν ∷ []) "1Cor.7.7" ∷ word (ο ∷ ὕ ∷ τ ∷ ω ∷ ς ∷ []) "1Cor.7.7" ∷ word (ὁ ∷ []) "1Cor.7.7" ∷ word (δ ∷ ὲ ∷ []) "1Cor.7.7" ∷ word (ο ∷ ὕ ∷ τ ∷ ω ∷ ς ∷ []) "1Cor.7.7" ∷ word (Λ ∷ έ ∷ γ ∷ ω ∷ []) "1Cor.7.8" ∷ word (δ ∷ ὲ ∷ []) "1Cor.7.8" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "1Cor.7.8" ∷ word (ἀ ∷ γ ∷ ά ∷ μ ∷ ο ∷ ι ∷ ς ∷ []) "1Cor.7.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.7.8" ∷ word (τ ∷ α ∷ ῖ ∷ ς ∷ []) "1Cor.7.8" ∷ word (χ ∷ ή ∷ ρ ∷ α ∷ ι ∷ ς ∷ []) "1Cor.7.8" ∷ word (κ ∷ α ∷ ∙λ ∷ ὸ ∷ ν ∷ []) "1Cor.7.8" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "1Cor.7.8" ∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "1Cor.7.8" ∷ word (μ ∷ ε ∷ ί ∷ ν ∷ ω ∷ σ ∷ ι ∷ ν ∷ []) "1Cor.7.8" ∷ word (ὡ ∷ ς ∷ []) "1Cor.7.8" ∷ word (κ ∷ ἀ ∷ γ ∷ ώ ∷ []) "1Cor.7.8" ∷ word (ε ∷ ἰ ∷ []) "1Cor.7.9" ∷ word (δ ∷ ὲ ∷ []) "1Cor.7.9" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "1Cor.7.9" ∷ word (ἐ ∷ γ ∷ κ ∷ ρ ∷ α ∷ τ ∷ ε ∷ ύ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "1Cor.7.9" ∷ word (γ ∷ α ∷ μ ∷ η ∷ σ ∷ ά ∷ τ ∷ ω ∷ σ ∷ α ∷ ν ∷ []) "1Cor.7.9" ∷ word (κ ∷ ρ ∷ ε ∷ ῖ ∷ τ ∷ τ ∷ ο ∷ ν ∷ []) "1Cor.7.9" ∷ word (γ ∷ ά ∷ ρ ∷ []) "1Cor.7.9" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "1Cor.7.9" ∷ word (γ ∷ α ∷ μ ∷ ῆ ∷ σ ∷ α ∷ ι ∷ []) "1Cor.7.9" ∷ word (ἢ ∷ []) "1Cor.7.9" ∷ word (π ∷ υ ∷ ρ ∷ ο ∷ ῦ ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "1Cor.7.9" ∷ word (Τ ∷ ο ∷ ῖ ∷ ς ∷ []) "1Cor.7.10" ∷ word (δ ∷ ὲ ∷ []) "1Cor.7.10" ∷ word (γ ∷ ε ∷ γ ∷ α ∷ μ ∷ η ∷ κ ∷ ό ∷ σ ∷ ι ∷ ν ∷ []) "1Cor.7.10" ∷ word (π ∷ α ∷ ρ ∷ α ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ∙λ ∷ ω ∷ []) "1Cor.7.10" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "1Cor.7.10" ∷ word (ἐ ∷ γ ∷ ὼ ∷ []) "1Cor.7.10" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "1Cor.7.10" ∷ word (ὁ ∷ []) "1Cor.7.10" ∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ς ∷ []) "1Cor.7.10" ∷ word (γ ∷ υ ∷ ν ∷ α ∷ ῖ ∷ κ ∷ α ∷ []) "1Cor.7.10" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "1Cor.7.10" ∷ word (ἀ ∷ ν ∷ δ ∷ ρ ∷ ὸ ∷ ς ∷ []) "1Cor.7.10" ∷ word (μ ∷ ὴ ∷ []) "1Cor.7.10" ∷ word (χ ∷ ω ∷ ρ ∷ ι ∷ σ ∷ θ ∷ ῆ ∷ ν ∷ α ∷ ι ∷ []) "1Cor.7.10" ∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "1Cor.7.11" ∷ word (δ ∷ ὲ ∷ []) "1Cor.7.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.7.11" ∷ word (χ ∷ ω ∷ ρ ∷ ι ∷ σ ∷ θ ∷ ῇ ∷ []) "1Cor.7.11" ∷ word (μ ∷ ε ∷ ν ∷ έ ∷ τ ∷ ω ∷ []) "1Cor.7.11" ∷ word (ἄ ∷ γ ∷ α ∷ μ ∷ ο ∷ ς ∷ []) "1Cor.7.11" ∷ word (ἢ ∷ []) "1Cor.7.11" ∷ word (τ ∷ ῷ ∷ []) "1Cor.7.11" ∷ word (ἀ ∷ ν ∷ δ ∷ ρ ∷ ὶ ∷ []) "1Cor.7.11" ∷ word (κ ∷ α ∷ τ ∷ α ∷ ∙λ ∷ ∙λ ∷ α ∷ γ ∷ ή ∷ τ ∷ ω ∷ []) "1Cor.7.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.7.11" ∷ word (ἄ ∷ ν ∷ δ ∷ ρ ∷ α ∷ []) "1Cor.7.11" ∷ word (γ ∷ υ ∷ ν ∷ α ∷ ῖ ∷ κ ∷ α ∷ []) "1Cor.7.11" ∷ word (μ ∷ ὴ ∷ []) "1Cor.7.11" ∷ word (ἀ ∷ φ ∷ ι ∷ έ ∷ ν ∷ α ∷ ι ∷ []) "1Cor.7.11" ∷ word (Τ ∷ ο ∷ ῖ ∷ ς ∷ []) "1Cor.7.12" ∷ word (δ ∷ ὲ ∷ []) "1Cor.7.12" ∷ word (∙λ ∷ ο ∷ ι ∷ π ∷ ο ∷ ῖ ∷ ς ∷ []) "1Cor.7.12" ∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ []) "1Cor.7.12" ∷ word (ἐ ∷ γ ∷ ώ ∷ []) "1Cor.7.12" ∷ word (ο ∷ ὐ ∷ χ ∷ []) "1Cor.7.12" ∷ word (ὁ ∷ []) "1Cor.7.12" ∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ς ∷ []) "1Cor.7.12" ∷ word (ε ∷ ἴ ∷ []) "1Cor.7.12" ∷ word (τ ∷ ι ∷ ς ∷ []) "1Cor.7.12" ∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ὸ ∷ ς ∷ []) "1Cor.7.12" ∷ word (γ ∷ υ ∷ ν ∷ α ∷ ῖ ∷ κ ∷ α ∷ []) "1Cor.7.12" ∷ word (ἔ ∷ χ ∷ ε ∷ ι ∷ []) "1Cor.7.12" ∷ word (ἄ ∷ π ∷ ι ∷ σ ∷ τ ∷ ο ∷ ν ∷ []) "1Cor.7.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.7.12" ∷ word (α ∷ ὕ ∷ τ ∷ η ∷ []) "1Cor.7.12" ∷ word (σ ∷ υ ∷ ν ∷ ε ∷ υ ∷ δ ∷ ο ∷ κ ∷ ε ∷ ῖ ∷ []) "1Cor.7.12" ∷ word (ο ∷ ἰ ∷ κ ∷ ε ∷ ῖ ∷ ν ∷ []) "1Cor.7.12" ∷ word (μ ∷ ε ∷ τ ∷ []) "1Cor.7.12" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "1Cor.7.12" ∷ word (μ ∷ ὴ ∷ []) "1Cor.7.12" ∷ word (ἀ ∷ φ ∷ ι ∷ έ ∷ τ ∷ ω ∷ []) "1Cor.7.12" ∷ word (α ∷ ὐ ∷ τ ∷ ή ∷ ν ∷ []) "1Cor.7.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.7.13" ∷ word (γ ∷ υ ∷ ν ∷ ὴ ∷ []) "1Cor.7.13" ∷ word (ε ∷ ἴ ∷ []) "1Cor.7.13" ∷ word (τ ∷ ι ∷ ς ∷ []) "1Cor.7.13" ∷ word (ἔ ∷ χ ∷ ε ∷ ι ∷ []) "1Cor.7.13" ∷ word (ἄ ∷ ν ∷ δ ∷ ρ ∷ α ∷ []) "1Cor.7.13" ∷ word (ἄ ∷ π ∷ ι ∷ σ ∷ τ ∷ ο ∷ ν ∷ []) "1Cor.7.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.7.13" ∷ word (ο ∷ ὗ ∷ τ ∷ ο ∷ ς ∷ []) "1Cor.7.13" ∷ word (σ ∷ υ ∷ ν ∷ ε ∷ υ ∷ δ ∷ ο ∷ κ ∷ ε ∷ ῖ ∷ []) "1Cor.7.13" ∷ word (ο ∷ ἰ ∷ κ ∷ ε ∷ ῖ ∷ ν ∷ []) "1Cor.7.13" ∷ word (μ ∷ ε ∷ τ ∷ []) "1Cor.7.13" ∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "1Cor.7.13" ∷ word (μ ∷ ὴ ∷ []) "1Cor.7.13" ∷ word (ἀ ∷ φ ∷ ι ∷ έ ∷ τ ∷ ω ∷ []) "1Cor.7.13" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "1Cor.7.13" ∷ word (ἄ ∷ ν ∷ δ ∷ ρ ∷ α ∷ []) "1Cor.7.13" ∷ word (ἡ ∷ γ ∷ ί ∷ α ∷ σ ∷ τ ∷ α ∷ ι ∷ []) "1Cor.7.14" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "1Cor.7.14" ∷ word (ὁ ∷ []) "1Cor.7.14" ∷ word (ἀ ∷ ν ∷ ὴ ∷ ρ ∷ []) "1Cor.7.14" ∷ word (ὁ ∷ []) "1Cor.7.14" ∷ word (ἄ ∷ π ∷ ι ∷ σ ∷ τ ∷ ο ∷ ς ∷ []) "1Cor.7.14" ∷ word (ἐ ∷ ν ∷ []) "1Cor.7.14" ∷ word (τ ∷ ῇ ∷ []) "1Cor.7.14" ∷ word (γ ∷ υ ∷ ν ∷ α ∷ ι ∷ κ ∷ ί ∷ []) "1Cor.7.14" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.7.14" ∷ word (ἡ ∷ γ ∷ ί ∷ α ∷ σ ∷ τ ∷ α ∷ ι ∷ []) "1Cor.7.14" ∷ word (ἡ ∷ []) "1Cor.7.14" ∷ word (γ ∷ υ ∷ ν ∷ ὴ ∷ []) "1Cor.7.14" ∷ word (ἡ ∷ []) "1Cor.7.14" ∷ word (ἄ ∷ π ∷ ι ∷ σ ∷ τ ∷ ο ∷ ς ∷ []) "1Cor.7.14" ∷ word (ἐ ∷ ν ∷ []) "1Cor.7.14" ∷ word (τ ∷ ῷ ∷ []) "1Cor.7.14" ∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ῷ ∷ []) "1Cor.7.14" ∷ word (ἐ ∷ π ∷ ε ∷ ὶ ∷ []) "1Cor.7.14" ∷ word (ἄ ∷ ρ ∷ α ∷ []) "1Cor.7.14" ∷ word (τ ∷ ὰ ∷ []) "1Cor.7.14" ∷ word (τ ∷ έ ∷ κ ∷ ν ∷ α ∷ []) "1Cor.7.14" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Cor.7.14" ∷ word (ἀ ∷ κ ∷ ά ∷ θ ∷ α ∷ ρ ∷ τ ∷ ά ∷ []) "1Cor.7.14" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "1Cor.7.14" ∷ word (ν ∷ ῦ ∷ ν ∷ []) "1Cor.7.14" ∷ word (δ ∷ ὲ ∷ []) "1Cor.7.14" ∷ word (ἅ ∷ γ ∷ ι ∷ ά ∷ []) "1Cor.7.14" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "1Cor.7.14" ∷ word (ε ∷ ἰ ∷ []) "1Cor.7.15" ∷ word (δ ∷ ὲ ∷ []) "1Cor.7.15" ∷ word (ὁ ∷ []) "1Cor.7.15" ∷ word (ἄ ∷ π ∷ ι ∷ σ ∷ τ ∷ ο ∷ ς ∷ []) "1Cor.7.15" ∷ word (χ ∷ ω ∷ ρ ∷ ί ∷ ζ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "1Cor.7.15" ∷ word (χ ∷ ω ∷ ρ ∷ ι ∷ ζ ∷ έ ∷ σ ∷ θ ∷ ω ∷ []) "1Cor.7.15" ∷ word (ο ∷ ὐ ∷ []) "1Cor.7.15" ∷ word (δ ∷ ε ∷ δ ∷ ο ∷ ύ ∷ ∙λ ∷ ω ∷ τ ∷ α ∷ ι ∷ []) "1Cor.7.15" ∷ word (ὁ ∷ []) "1Cor.7.15" ∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ὸ ∷ ς ∷ []) "1Cor.7.15" ∷ word (ἢ ∷ []) "1Cor.7.15" ∷ word (ἡ ∷ []) "1Cor.7.15" ∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ὴ ∷ []) "1Cor.7.15" ∷ word (ἐ ∷ ν ∷ []) "1Cor.7.15" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "1Cor.7.15" ∷ word (τ ∷ ο ∷ ι ∷ ο ∷ ύ ∷ τ ∷ ο ∷ ι ∷ ς ∷ []) "1Cor.7.15" ∷ word (ἐ ∷ ν ∷ []) "1Cor.7.15" ∷ word (δ ∷ ὲ ∷ []) "1Cor.7.15" ∷ word (ε ∷ ἰ ∷ ρ ∷ ή ∷ ν ∷ ῃ ∷ []) "1Cor.7.15" ∷ word (κ ∷ έ ∷ κ ∷ ∙λ ∷ η ∷ κ ∷ ε ∷ ν ∷ []) "1Cor.7.15" ∷ word (ἡ ∷ μ ∷ ᾶ ∷ ς ∷ []) "1Cor.7.15" ∷ word (ὁ ∷ []) "1Cor.7.15" ∷ word (θ ∷ ε ∷ ό ∷ ς ∷ []) "1Cor.7.15" ∷ word (τ ∷ ί ∷ []) "1Cor.7.16" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "1Cor.7.16" ∷ word (ο ∷ ἶ ∷ δ ∷ α ∷ ς ∷ []) "1Cor.7.16" ∷ word (γ ∷ ύ ∷ ν ∷ α ∷ ι ∷ []) "1Cor.7.16" ∷ word (ε ∷ ἰ ∷ []) "1Cor.7.16" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "1Cor.7.16" ∷ word (ἄ ∷ ν ∷ δ ∷ ρ ∷ α ∷ []) "1Cor.7.16" ∷ word (σ ∷ ώ ∷ σ ∷ ε ∷ ι ∷ ς ∷ []) "1Cor.7.16" ∷ word (ἢ ∷ []) "1Cor.7.16" ∷ word (τ ∷ ί ∷ []) "1Cor.7.16" ∷ word (ο ∷ ἶ ∷ δ ∷ α ∷ ς ∷ []) "1Cor.7.16" ∷ word (ἄ ∷ ν ∷ ε ∷ ρ ∷ []) "1Cor.7.16" ∷ word (ε ∷ ἰ ∷ []) "1Cor.7.16" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "1Cor.7.16" ∷ word (γ ∷ υ ∷ ν ∷ α ∷ ῖ ∷ κ ∷ α ∷ []) "1Cor.7.16" ∷ word (σ ∷ ώ ∷ σ ∷ ε ∷ ι ∷ ς ∷ []) "1Cor.7.16" ∷ word (Ε ∷ ἰ ∷ []) "1Cor.7.17" ∷ word (μ ∷ ὴ ∷ []) "1Cor.7.17" ∷ word (ἑ ∷ κ ∷ ά ∷ σ ∷ τ ∷ ῳ ∷ []) "1Cor.7.17" ∷ word (ὡ ∷ ς ∷ []) "1Cor.7.17" ∷ word (ἐ ∷ μ ∷ έ ∷ ρ ∷ ι ∷ σ ∷ ε ∷ ν ∷ []) "1Cor.7.17" ∷ word (ὁ ∷ []) "1Cor.7.17" ∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ς ∷ []) "1Cor.7.17" ∷ word (ἕ ∷ κ ∷ α ∷ σ ∷ τ ∷ ο ∷ ν ∷ []) "1Cor.7.17" ∷ word (ὡ ∷ ς ∷ []) "1Cor.7.17" ∷ word (κ ∷ έ ∷ κ ∷ ∙λ ∷ η ∷ κ ∷ ε ∷ ν ∷ []) "1Cor.7.17" ∷ word (ὁ ∷ []) "1Cor.7.17" ∷ word (θ ∷ ε ∷ ό ∷ ς ∷ []) "1Cor.7.17" ∷ word (ο ∷ ὕ ∷ τ ∷ ω ∷ ς ∷ []) "1Cor.7.17" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ π ∷ α ∷ τ ∷ ε ∷ ί ∷ τ ∷ ω ∷ []) "1Cor.7.17" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.7.17" ∷ word (ο ∷ ὕ ∷ τ ∷ ω ∷ ς ∷ []) "1Cor.7.17" ∷ word (ἐ ∷ ν ∷ []) "1Cor.7.17" ∷ word (τ ∷ α ∷ ῖ ∷ ς ∷ []) "1Cor.7.17" ∷ word (ἐ ∷ κ ∷ κ ∷ ∙λ ∷ η ∷ σ ∷ ί ∷ α ∷ ι ∷ ς ∷ []) "1Cor.7.17" ∷ word (π ∷ ά ∷ σ ∷ α ∷ ι ∷ ς ∷ []) "1Cor.7.17" ∷ word (δ ∷ ι ∷ α ∷ τ ∷ ά ∷ σ ∷ σ ∷ ο ∷ μ ∷ α ∷ ι ∷ []) "1Cor.7.17" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ τ ∷ ε ∷ τ ∷ μ ∷ η ∷ μ ∷ έ ∷ ν ∷ ο ∷ ς ∷ []) "1Cor.7.18" ∷ word (τ ∷ ι ∷ ς ∷ []) "1Cor.7.18" ∷ word (ἐ ∷ κ ∷ ∙λ ∷ ή ∷ θ ∷ η ∷ []) "1Cor.7.18" ∷ word (μ ∷ ὴ ∷ []) "1Cor.7.18" ∷ word (ἐ ∷ π ∷ ι ∷ σ ∷ π ∷ ά ∷ σ ∷ θ ∷ ω ∷ []) "1Cor.7.18" ∷ word (ἐ ∷ ν ∷ []) "1Cor.7.18" ∷ word (ἀ ∷ κ ∷ ρ ∷ ο ∷ β ∷ υ ∷ σ ∷ τ ∷ ί ∷ ᾳ ∷ []) "1Cor.7.18" ∷ word (κ ∷ έ ∷ κ ∷ ∙λ ∷ η ∷ τ ∷ α ∷ ί ∷ []) "1Cor.7.18" ∷ word (τ ∷ ι ∷ ς ∷ []) "1Cor.7.18" ∷ word (μ ∷ ὴ ∷ []) "1Cor.7.18" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ τ ∷ ε ∷ μ ∷ ν ∷ έ ∷ σ ∷ θ ∷ ω ∷ []) "1Cor.7.18" ∷ word (ἡ ∷ []) "1Cor.7.19" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ τ ∷ ο ∷ μ ∷ ὴ ∷ []) "1Cor.7.19" ∷ word (ο ∷ ὐ ∷ δ ∷ έ ∷ ν ∷ []) "1Cor.7.19" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "1Cor.7.19" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.7.19" ∷ word (ἡ ∷ []) "1Cor.7.19" ∷ word (ἀ ∷ κ ∷ ρ ∷ ο ∷ β ∷ υ ∷ σ ∷ τ ∷ ί ∷ α ∷ []) "1Cor.7.19" ∷ word (ο ∷ ὐ ∷ δ ∷ έ ∷ ν ∷ []) "1Cor.7.19" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "1Cor.7.19" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "1Cor.7.19" ∷ word (τ ∷ ή ∷ ρ ∷ η ∷ σ ∷ ι ∷ ς ∷ []) "1Cor.7.19" ∷ word (ἐ ∷ ν ∷ τ ∷ ο ∷ ∙λ ∷ ῶ ∷ ν ∷ []) "1Cor.7.19" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "1Cor.7.19" ∷ word (ἕ ∷ κ ∷ α ∷ σ ∷ τ ∷ ο ∷ ς ∷ []) "1Cor.7.20" ∷ word (ἐ ∷ ν ∷ []) "1Cor.7.20" ∷ word (τ ∷ ῇ ∷ []) "1Cor.7.20" ∷ word (κ ∷ ∙λ ∷ ή ∷ σ ∷ ε ∷ ι ∷ []) "1Cor.7.20" ∷ word (ᾗ ∷ []) "1Cor.7.20" ∷ word (ἐ ∷ κ ∷ ∙λ ∷ ή ∷ θ ∷ η ∷ []) "1Cor.7.20" ∷ word (ἐ ∷ ν ∷ []) "1Cor.7.20" ∷ word (τ ∷ α ∷ ύ ∷ τ ∷ ῃ ∷ []) "1Cor.7.20" ∷ word (μ ∷ ε ∷ ν ∷ έ ∷ τ ∷ ω ∷ []) "1Cor.7.20" ∷ word (Δ ∷ ο ∷ ῦ ∷ ∙λ ∷ ο ∷ ς ∷ []) "1Cor.7.21" ∷ word (ἐ ∷ κ ∷ ∙λ ∷ ή ∷ θ ∷ η ∷ ς ∷ []) "1Cor.7.21" ∷ word (μ ∷ ή ∷ []) "1Cor.7.21" ∷ word (σ ∷ ο ∷ ι ∷ []) "1Cor.7.21" ∷ word (μ ∷ ε ∷ ∙λ ∷ έ ∷ τ ∷ ω ∷ []) "1Cor.7.21" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ []) "1Cor.7.21" ∷ word (ε ∷ ἰ ∷ []) "1Cor.7.21" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.7.21" ∷ word (δ ∷ ύ ∷ ν ∷ α ∷ σ ∷ α ∷ ι ∷ []) "1Cor.7.21" ∷ word (ἐ ∷ ∙λ ∷ ε ∷ ύ ∷ θ ∷ ε ∷ ρ ∷ ο ∷ ς ∷ []) "1Cor.7.21" ∷ word (γ ∷ ε ∷ ν ∷ έ ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "1Cor.7.21" ∷ word (μ ∷ ᾶ ∷ ∙λ ∷ ∙λ ∷ ο ∷ ν ∷ []) "1Cor.7.21" ∷ word (χ ∷ ρ ∷ ῆ ∷ σ ∷ α ∷ ι ∷ []) "1Cor.7.21" ∷ word (ὁ ∷ []) "1Cor.7.22" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "1Cor.7.22" ∷ word (ἐ ∷ ν ∷ []) "1Cor.7.22" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ῳ ∷ []) "1Cor.7.22" ∷ word (κ ∷ ∙λ ∷ η ∷ θ ∷ ε ∷ ὶ ∷ ς ∷ []) "1Cor.7.22" ∷ word (δ ∷ ο ∷ ῦ ∷ ∙λ ∷ ο ∷ ς ∷ []) "1Cor.7.22" ∷ word (ἀ ∷ π ∷ ε ∷ ∙λ ∷ ε ∷ ύ ∷ θ ∷ ε ∷ ρ ∷ ο ∷ ς ∷ []) "1Cor.7.22" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "1Cor.7.22" ∷ word (ἐ ∷ σ ∷ τ ∷ ί ∷ ν ∷ []) "1Cor.7.22" ∷ word (ὁ ∷ μ ∷ ο ∷ ί ∷ ω ∷ ς ∷ []) "1Cor.7.22" ∷ word (ὁ ∷ []) "1Cor.7.22" ∷ word (ἐ ∷ ∙λ ∷ ε ∷ ύ ∷ θ ∷ ε ∷ ρ ∷ ο ∷ ς ∷ []) "1Cor.7.22" ∷ word (κ ∷ ∙λ ∷ η ∷ θ ∷ ε ∷ ὶ ∷ ς ∷ []) "1Cor.7.22" ∷ word (δ ∷ ο ∷ ῦ ∷ ∙λ ∷ ό ∷ ς ∷ []) "1Cor.7.22" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "1Cor.7.22" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "1Cor.7.22" ∷ word (τ ∷ ι ∷ μ ∷ ῆ ∷ ς ∷ []) "1Cor.7.23" ∷ word (ἠ ∷ γ ∷ ο ∷ ρ ∷ ά ∷ σ ∷ θ ∷ η ∷ τ ∷ ε ∷ []) "1Cor.7.23" ∷ word (μ ∷ ὴ ∷ []) "1Cor.7.23" ∷ word (γ ∷ ί ∷ ν ∷ ε ∷ σ ∷ θ ∷ ε ∷ []) "1Cor.7.23" ∷ word (δ ∷ ο ∷ ῦ ∷ ∙λ ∷ ο ∷ ι ∷ []) "1Cor.7.23" ∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ω ∷ ν ∷ []) "1Cor.7.23" ∷ word (ἕ ∷ κ ∷ α ∷ σ ∷ τ ∷ ο ∷ ς ∷ []) "1Cor.7.24" ∷ word (ἐ ∷ ν ∷ []) "1Cor.7.24" ∷ word (ᾧ ∷ []) "1Cor.7.24" ∷ word (ἐ ∷ κ ∷ ∙λ ∷ ή ∷ θ ∷ η ∷ []) "1Cor.7.24" ∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ο ∷ ί ∷ []) "1Cor.7.24" ∷ word (ἐ ∷ ν ∷ []) "1Cor.7.24" ∷ word (τ ∷ ο ∷ ύ ∷ τ ∷ ῳ ∷ []) "1Cor.7.24" ∷ word (μ ∷ ε ∷ ν ∷ έ ∷ τ ∷ ω ∷ []) "1Cor.7.24" ∷ word (π ∷ α ∷ ρ ∷ ὰ ∷ []) "1Cor.7.24" ∷ word (θ ∷ ε ∷ ῷ ∷ []) "1Cor.7.24" ∷ word (Π ∷ ε ∷ ρ ∷ ὶ ∷ []) "1Cor.7.25" ∷ word (δ ∷ ὲ ∷ []) "1Cor.7.25" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "1Cor.7.25" ∷ word (π ∷ α ∷ ρ ∷ θ ∷ έ ∷ ν ∷ ω ∷ ν ∷ []) "1Cor.7.25" ∷ word (ἐ ∷ π ∷ ι ∷ τ ∷ α ∷ γ ∷ ὴ ∷ ν ∷ []) "1Cor.7.25" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "1Cor.7.25" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "1Cor.7.25" ∷ word (ἔ ∷ χ ∷ ω ∷ []) "1Cor.7.25" ∷ word (γ ∷ ν ∷ ώ ∷ μ ∷ η ∷ ν ∷ []) "1Cor.7.25" ∷ word (δ ∷ ὲ ∷ []) "1Cor.7.25" ∷ word (δ ∷ ί ∷ δ ∷ ω ∷ μ ∷ ι ∷ []) "1Cor.7.25" ∷ word (ὡ ∷ ς ∷ []) "1Cor.7.25" ∷ word (ἠ ∷ ∙λ ∷ ε ∷ η ∷ μ ∷ έ ∷ ν ∷ ο ∷ ς ∷ []) "1Cor.7.25" ∷ word (ὑ ∷ π ∷ ὸ ∷ []) "1Cor.7.25" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "1Cor.7.25" ∷ word (π ∷ ι ∷ σ ∷ τ ∷ ὸ ∷ ς ∷ []) "1Cor.7.25" ∷ word (ε ∷ ἶ ∷ ν ∷ α ∷ ι ∷ []) "1Cor.7.25" ∷ word (ν ∷ ο ∷ μ ∷ ί ∷ ζ ∷ ω ∷ []) "1Cor.7.26" ∷ word (ο ∷ ὖ ∷ ν ∷ []) "1Cor.7.26" ∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "1Cor.7.26" ∷ word (κ ∷ α ∷ ∙λ ∷ ὸ ∷ ν ∷ []) "1Cor.7.26" ∷ word (ὑ ∷ π ∷ ά ∷ ρ ∷ χ ∷ ε ∷ ι ∷ ν ∷ []) "1Cor.7.26" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "1Cor.7.26" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "1Cor.7.26" ∷ word (ἐ ∷ ν ∷ ε ∷ σ ∷ τ ∷ ῶ ∷ σ ∷ α ∷ ν ∷ []) "1Cor.7.26" ∷ word (ἀ ∷ ν ∷ ά ∷ γ ∷ κ ∷ η ∷ ν ∷ []) "1Cor.7.26" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "1Cor.7.26" ∷ word (κ ∷ α ∷ ∙λ ∷ ὸ ∷ ν ∷ []) "1Cor.7.26" ∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ῳ ∷ []) "1Cor.7.26" ∷ word (τ ∷ ὸ ∷ []) "1Cor.7.26" ∷ word (ο ∷ ὕ ∷ τ ∷ ω ∷ ς ∷ []) "1Cor.7.26" ∷ word (ε ∷ ἶ ∷ ν ∷ α ∷ ι ∷ []) "1Cor.7.26" ∷ word (δ ∷ έ ∷ δ ∷ ε ∷ σ ∷ α ∷ ι ∷ []) "1Cor.7.27" ∷ word (γ ∷ υ ∷ ν ∷ α ∷ ι ∷ κ ∷ ί ∷ []) "1Cor.7.27" ∷ word (μ ∷ ὴ ∷ []) "1Cor.7.27" ∷ word (ζ ∷ ή ∷ τ ∷ ε ∷ ι ∷ []) "1Cor.7.27" ∷ word (∙λ ∷ ύ ∷ σ ∷ ι ∷ ν ∷ []) "1Cor.7.27" ∷ word (∙λ ∷ έ ∷ ∙λ ∷ υ ∷ σ ∷ α ∷ ι ∷ []) "1Cor.7.27" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "1Cor.7.27" ∷ word (γ ∷ υ ∷ ν ∷ α ∷ ι ∷ κ ∷ ό ∷ ς ∷ []) "1Cor.7.27" ∷ word (μ ∷ ὴ ∷ []) "1Cor.7.27" ∷ word (ζ ∷ ή ∷ τ ∷ ε ∷ ι ∷ []) "1Cor.7.27" ∷ word (γ ∷ υ ∷ ν ∷ α ∷ ῖ ∷ κ ∷ α ∷ []) "1Cor.7.27" ∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "1Cor.7.28" ∷ word (δ ∷ ὲ ∷ []) "1Cor.7.28" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.7.28" ∷ word (γ ∷ α ∷ μ ∷ ή ∷ σ ∷ ῃ ∷ ς ∷ []) "1Cor.7.28" ∷ word (ο ∷ ὐ ∷ χ ∷ []) "1Cor.7.28" ∷ word (ἥ ∷ μ ∷ α ∷ ρ ∷ τ ∷ ε ∷ ς ∷ []) "1Cor.7.28" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.7.28" ∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "1Cor.7.28" ∷ word (γ ∷ ή ∷ μ ∷ ῃ ∷ []) "1Cor.7.28" ∷ word (ἡ ∷ []) "1Cor.7.28" ∷ word (π ∷ α ∷ ρ ∷ θ ∷ έ ∷ ν ∷ ο ∷ ς ∷ []) "1Cor.7.28" ∷ word (ο ∷ ὐ ∷ χ ∷ []) "1Cor.7.28" ∷ word (ἥ ∷ μ ∷ α ∷ ρ ∷ τ ∷ ε ∷ ν ∷ []) "1Cor.7.28" ∷ word (θ ∷ ∙λ ∷ ῖ ∷ ψ ∷ ι ∷ ν ∷ []) "1Cor.7.28" ∷ word (δ ∷ ὲ ∷ []) "1Cor.7.28" ∷ word (τ ∷ ῇ ∷ []) "1Cor.7.28" ∷ word (σ ∷ α ∷ ρ ∷ κ ∷ ὶ ∷ []) "1Cor.7.28" ∷ word (ἕ ∷ ξ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "1Cor.7.28" ∷ word (ο ∷ ἱ ∷ []) "1Cor.7.28" ∷ word (τ ∷ ο ∷ ι ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ ι ∷ []) "1Cor.7.28" ∷ word (ἐ ∷ γ ∷ ὼ ∷ []) "1Cor.7.28" ∷ word (δ ∷ ὲ ∷ []) "1Cor.7.28" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Cor.7.28" ∷ word (φ ∷ ε ∷ ί ∷ δ ∷ ο ∷ μ ∷ α ∷ ι ∷ []) "1Cor.7.28" ∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "1Cor.7.29" ∷ word (δ ∷ έ ∷ []) "1Cor.7.29" ∷ word (φ ∷ η ∷ μ ∷ ι ∷ []) "1Cor.7.29" ∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ο ∷ ί ∷ []) "1Cor.7.29" ∷ word (ὁ ∷ []) "1Cor.7.29" ∷ word (κ ∷ α ∷ ι ∷ ρ ∷ ὸ ∷ ς ∷ []) "1Cor.7.29" ∷ word (σ ∷ υ ∷ ν ∷ ε ∷ σ ∷ τ ∷ α ∷ ∙λ ∷ μ ∷ έ ∷ ν ∷ ο ∷ ς ∷ []) "1Cor.7.29" ∷ word (ἐ ∷ σ ∷ τ ∷ ί ∷ ν ∷ []) "1Cor.7.29" ∷ word (τ ∷ ὸ ∷ []) "1Cor.7.29" ∷ word (∙λ ∷ ο ∷ ι ∷ π ∷ ὸ ∷ ν ∷ []) "1Cor.7.29" ∷ word (ἵ ∷ ν ∷ α ∷ []) "1Cor.7.29" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.7.29" ∷ word (ο ∷ ἱ ∷ []) "1Cor.7.29" ∷ word (ἔ ∷ χ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "1Cor.7.29" ∷ word (γ ∷ υ ∷ ν ∷ α ∷ ῖ ∷ κ ∷ α ∷ ς ∷ []) "1Cor.7.29" ∷ word (ὡ ∷ ς ∷ []) "1Cor.7.29" ∷ word (μ ∷ ὴ ∷ []) "1Cor.7.29" ∷ word (ἔ ∷ χ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "1Cor.7.29" ∷ word (ὦ ∷ σ ∷ ι ∷ ν ∷ []) "1Cor.7.29" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.7.30" ∷ word (ο ∷ ἱ ∷ []) "1Cor.7.30" ∷ word (κ ∷ ∙λ ∷ α ∷ ί ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "1Cor.7.30" ∷ word (ὡ ∷ ς ∷ []) "1Cor.7.30" ∷ word (μ ∷ ὴ ∷ []) "1Cor.7.30" ∷ word (κ ∷ ∙λ ∷ α ∷ ί ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "1Cor.7.30" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.7.30" ∷ word (ο ∷ ἱ ∷ []) "1Cor.7.30" ∷ word (χ ∷ α ∷ ί ∷ ρ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "1Cor.7.30" ∷ word (ὡ ∷ ς ∷ []) "1Cor.7.30" ∷ word (μ ∷ ὴ ∷ []) "1Cor.7.30" ∷ word (χ ∷ α ∷ ί ∷ ρ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "1Cor.7.30" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.7.30" ∷ word (ο ∷ ἱ ∷ []) "1Cor.7.30" ∷ word (ἀ ∷ γ ∷ ο ∷ ρ ∷ ά ∷ ζ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "1Cor.7.30" ∷ word (ὡ ∷ ς ∷ []) "1Cor.7.30" ∷ word (μ ∷ ὴ ∷ []) "1Cor.7.30" ∷ word (κ ∷ α ∷ τ ∷ έ ∷ χ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "1Cor.7.30" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.7.31" ∷ word (ο ∷ ἱ ∷ []) "1Cor.7.31" ∷ word (χ ∷ ρ ∷ ώ ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "1Cor.7.31" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "1Cor.7.31" ∷ word (κ ∷ ό ∷ σ ∷ μ ∷ ο ∷ ν ∷ []) "1Cor.7.31" ∷ word (ὡ ∷ ς ∷ []) "1Cor.7.31" ∷ word (μ ∷ ὴ ∷ []) "1Cor.7.31" ∷ word (κ ∷ α ∷ τ ∷ α ∷ χ ∷ ρ ∷ ώ ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "1Cor.7.31" ∷ word (π ∷ α ∷ ρ ∷ ά ∷ γ ∷ ε ∷ ι ∷ []) "1Cor.7.31" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "1Cor.7.31" ∷ word (τ ∷ ὸ ∷ []) "1Cor.7.31" ∷ word (σ ∷ χ ∷ ῆ ∷ μ ∷ α ∷ []) "1Cor.7.31" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.7.31" ∷ word (κ ∷ ό ∷ σ ∷ μ ∷ ο ∷ υ ∷ []) "1Cor.7.31" ∷ word (τ ∷ ο ∷ ύ ∷ τ ∷ ο ∷ υ ∷ []) "1Cor.7.31" ∷ word (Θ ∷ έ ∷ ∙λ ∷ ω ∷ []) "1Cor.7.32" ∷ word (δ ∷ ὲ ∷ []) "1Cor.7.32" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "1Cor.7.32" ∷ word (ἀ ∷ μ ∷ ε ∷ ρ ∷ ί ∷ μ ∷ ν ∷ ο ∷ υ ∷ ς ∷ []) "1Cor.7.32" ∷ word (ε ∷ ἶ ∷ ν ∷ α ∷ ι ∷ []) "1Cor.7.32" ∷ word (ὁ ∷ []) "1Cor.7.32" ∷ word (ἄ ∷ γ ∷ α ∷ μ ∷ ο ∷ ς ∷ []) "1Cor.7.32" ∷ word (μ ∷ ε ∷ ρ ∷ ι ∷ μ ∷ ν ∷ ᾷ ∷ []) "1Cor.7.32" ∷ word (τ ∷ ὰ ∷ []) "1Cor.7.32" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.7.32" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "1Cor.7.32" ∷ word (π ∷ ῶ ∷ ς ∷ []) "1Cor.7.32" ∷ word (ἀ ∷ ρ ∷ έ ∷ σ ∷ ῃ ∷ []) "1Cor.7.32" ∷ word (τ ∷ ῷ ∷ []) "1Cor.7.32" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ῳ ∷ []) "1Cor.7.32" ∷ word (ὁ ∷ []) "1Cor.7.33" ∷ word (δ ∷ ὲ ∷ []) "1Cor.7.33" ∷ word (γ ∷ α ∷ μ ∷ ή ∷ σ ∷ α ∷ ς ∷ []) "1Cor.7.33" ∷ word (μ ∷ ε ∷ ρ ∷ ι ∷ μ ∷ ν ∷ ᾷ ∷ []) "1Cor.7.33" ∷ word (τ ∷ ὰ ∷ []) "1Cor.7.33" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.7.33" ∷ word (κ ∷ ό ∷ σ ∷ μ ∷ ο ∷ υ ∷ []) "1Cor.7.33" ∷ word (π ∷ ῶ ∷ ς ∷ []) "1Cor.7.33" ∷ word (ἀ ∷ ρ ∷ έ ∷ σ ∷ ῃ ∷ []) "1Cor.7.33" ∷ word (τ ∷ ῇ ∷ []) "1Cor.7.33" ∷ word (γ ∷ υ ∷ ν ∷ α ∷ ι ∷ κ ∷ ί ∷ []) "1Cor.7.33" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.7.34" ∷ word (μ ∷ ε ∷ μ ∷ έ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ α ∷ ι ∷ []) "1Cor.7.34" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.7.34" ∷ word (ἡ ∷ []) "1Cor.7.34" ∷ word (γ ∷ υ ∷ ν ∷ ὴ ∷ []) "1Cor.7.34" ∷ word (ἡ ∷ []) "1Cor.7.34" ∷ word (ἄ ∷ γ ∷ α ∷ μ ∷ ο ∷ ς ∷ []) "1Cor.7.34" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.7.34" ∷ word (ἡ ∷ []) "1Cor.7.34" ∷ word (π ∷ α ∷ ρ ∷ θ ∷ έ ∷ ν ∷ ο ∷ ς ∷ []) "1Cor.7.34" ∷ word (μ ∷ ε ∷ ρ ∷ ι ∷ μ ∷ ν ∷ ᾷ ∷ []) "1Cor.7.34" ∷ word (τ ∷ ὰ ∷ []) "1Cor.7.34" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.7.34" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "1Cor.7.34" ∷ word (ἵ ∷ ν ∷ α ∷ []) "1Cor.7.34" ∷ word (ᾖ ∷ []) "1Cor.7.34" ∷ word (ἁ ∷ γ ∷ ί ∷ α ∷ []) "1Cor.7.34" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.7.34" ∷ word (τ ∷ ῷ ∷ []) "1Cor.7.34" ∷ word (σ ∷ ώ ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "1Cor.7.34" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.7.34" ∷ word (τ ∷ ῷ ∷ []) "1Cor.7.34" ∷ word (π ∷ ν ∷ ε ∷ ύ ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "1Cor.7.34" ∷ word (ἡ ∷ []) "1Cor.7.34" ∷ word (δ ∷ ὲ ∷ []) "1Cor.7.34" ∷ word (γ ∷ α ∷ μ ∷ ή ∷ σ ∷ α ∷ σ ∷ α ∷ []) "1Cor.7.34" ∷ word (μ ∷ ε ∷ ρ ∷ ι ∷ μ ∷ ν ∷ ᾷ ∷ []) "1Cor.7.34" ∷ word (τ ∷ ὰ ∷ []) "1Cor.7.34" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.7.34" ∷ word (κ ∷ ό ∷ σ ∷ μ ∷ ο ∷ υ ∷ []) "1Cor.7.34" ∷ word (π ∷ ῶ ∷ ς ∷ []) "1Cor.7.34" ∷ word (ἀ ∷ ρ ∷ έ ∷ σ ∷ ῃ ∷ []) "1Cor.7.34" ∷ word (τ ∷ ῷ ∷ []) "1Cor.7.34" ∷ word (ἀ ∷ ν ∷ δ ∷ ρ ∷ ί ∷ []) "1Cor.7.34" ∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "1Cor.7.35" ∷ word (δ ∷ ὲ ∷ []) "1Cor.7.35" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "1Cor.7.35" ∷ word (τ ∷ ὸ ∷ []) "1Cor.7.35" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Cor.7.35" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "1Cor.7.35" ∷ word (σ ∷ ύ ∷ μ ∷ φ ∷ ο ∷ ρ ∷ ο ∷ ν ∷ []) "1Cor.7.35" ∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ []) "1Cor.7.35" ∷ word (ο ∷ ὐ ∷ χ ∷ []) "1Cor.7.35" ∷ word (ἵ ∷ ν ∷ α ∷ []) "1Cor.7.35" ∷ word (β ∷ ρ ∷ ό ∷ χ ∷ ο ∷ ν ∷ []) "1Cor.7.35" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "1Cor.7.35" ∷ word (ἐ ∷ π ∷ ι ∷ β ∷ ά ∷ ∙λ ∷ ω ∷ []) "1Cor.7.35" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "1Cor.7.35" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "1Cor.7.35" ∷ word (τ ∷ ὸ ∷ []) "1Cor.7.35" ∷ word (ε ∷ ὔ ∷ σ ∷ χ ∷ η ∷ μ ∷ ο ∷ ν ∷ []) "1Cor.7.35" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.7.35" ∷ word (ε ∷ ὐ ∷ π ∷ ά ∷ ρ ∷ ε ∷ δ ∷ ρ ∷ ο ∷ ν ∷ []) "1Cor.7.35" ∷ word (τ ∷ ῷ ∷ []) "1Cor.7.35" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ῳ ∷ []) "1Cor.7.35" ∷ word (ἀ ∷ π ∷ ε ∷ ρ ∷ ι ∷ σ ∷ π ∷ ά ∷ σ ∷ τ ∷ ω ∷ ς ∷ []) "1Cor.7.35" ∷ word (Ε ∷ ἰ ∷ []) "1Cor.7.36" ∷ word (δ ∷ έ ∷ []) "1Cor.7.36" ∷ word (τ ∷ ι ∷ ς ∷ []) "1Cor.7.36" ∷ word (ἀ ∷ σ ∷ χ ∷ η ∷ μ ∷ ο ∷ ν ∷ ε ∷ ῖ ∷ ν ∷ []) "1Cor.7.36" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "1Cor.7.36" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "1Cor.7.36" ∷ word (π ∷ α ∷ ρ ∷ θ ∷ έ ∷ ν ∷ ο ∷ ν ∷ []) "1Cor.7.36" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "1Cor.7.36" ∷ word (ν ∷ ο ∷ μ ∷ ί ∷ ζ ∷ ε ∷ ι ∷ []) "1Cor.7.36" ∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "1Cor.7.36" ∷ word (ᾖ ∷ []) "1Cor.7.36" ∷ word (ὑ ∷ π ∷ έ ∷ ρ ∷ α ∷ κ ∷ μ ∷ ο ∷ ς ∷ []) "1Cor.7.36" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.7.36" ∷ word (ο ∷ ὕ ∷ τ ∷ ω ∷ ς ∷ []) "1Cor.7.36" ∷ word (ὀ ∷ φ ∷ ε ∷ ί ∷ ∙λ ∷ ε ∷ ι ∷ []) "1Cor.7.36" ∷ word (γ ∷ ί ∷ ν ∷ ε ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "1Cor.7.36" ∷ word (ὃ ∷ []) "1Cor.7.36" ∷ word (θ ∷ έ ∷ ∙λ ∷ ε ∷ ι ∷ []) "1Cor.7.36" ∷ word (π ∷ ο ∷ ι ∷ ε ∷ ί ∷ τ ∷ ω ∷ []) "1Cor.7.36" ∷ word (ο ∷ ὐ ∷ χ ∷ []) "1Cor.7.36" ∷ word (ἁ ∷ μ ∷ α ∷ ρ ∷ τ ∷ ά ∷ ν ∷ ε ∷ ι ∷ []) "1Cor.7.36" ∷ word (γ ∷ α ∷ μ ∷ ε ∷ ί ∷ τ ∷ ω ∷ σ ∷ α ∷ ν ∷ []) "1Cor.7.36" ∷ word (ὃ ∷ ς ∷ []) "1Cor.7.37" ∷ word (δ ∷ ὲ ∷ []) "1Cor.7.37" ∷ word (ἕ ∷ σ ∷ τ ∷ η ∷ κ ∷ ε ∷ ν ∷ []) "1Cor.7.37" ∷ word (ἐ ∷ ν ∷ []) "1Cor.7.37" ∷ word (τ ∷ ῇ ∷ []) "1Cor.7.37" ∷ word (κ ∷ α ∷ ρ ∷ δ ∷ ί ∷ ᾳ ∷ []) "1Cor.7.37" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "1Cor.7.37" ∷ word (ἑ ∷ δ ∷ ρ ∷ α ∷ ῖ ∷ ο ∷ ς ∷ []) "1Cor.7.37" ∷ word (μ ∷ ὴ ∷ []) "1Cor.7.37" ∷ word (ἔ ∷ χ ∷ ω ∷ ν ∷ []) "1Cor.7.37" ∷ word (ἀ ∷ ν ∷ ά ∷ γ ∷ κ ∷ η ∷ ν ∷ []) "1Cor.7.37" ∷ word (ἐ ∷ ξ ∷ ο ∷ υ ∷ σ ∷ ί ∷ α ∷ ν ∷ []) "1Cor.7.37" ∷ word (δ ∷ ὲ ∷ []) "1Cor.7.37" ∷ word (ἔ ∷ χ ∷ ε ∷ ι ∷ []) "1Cor.7.37" ∷ word (π ∷ ε ∷ ρ ∷ ὶ ∷ []) "1Cor.7.37" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.7.37" ∷ word (ἰ ∷ δ ∷ ί ∷ ο ∷ υ ∷ []) "1Cor.7.37" ∷ word (θ ∷ ε ∷ ∙λ ∷ ή ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "1Cor.7.37" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.7.37" ∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "1Cor.7.37" ∷ word (κ ∷ έ ∷ κ ∷ ρ ∷ ι ∷ κ ∷ ε ∷ ν ∷ []) "1Cor.7.37" ∷ word (ἐ ∷ ν ∷ []) "1Cor.7.37" ∷ word (τ ∷ ῇ ∷ []) "1Cor.7.37" ∷ word (ἰ ∷ δ ∷ ί ∷ ᾳ ∷ []) "1Cor.7.37" ∷ word (κ ∷ α ∷ ρ ∷ δ ∷ ί ∷ ᾳ ∷ []) "1Cor.7.37" ∷ word (τ ∷ η ∷ ρ ∷ ε ∷ ῖ ∷ ν ∷ []) "1Cor.7.37" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "1Cor.7.37" ∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ο ∷ ῦ ∷ []) "1Cor.7.37" ∷ word (π ∷ α ∷ ρ ∷ θ ∷ έ ∷ ν ∷ ο ∷ ν ∷ []) "1Cor.7.37" ∷ word (κ ∷ α ∷ ∙λ ∷ ῶ ∷ ς ∷ []) "1Cor.7.37" ∷ word (π ∷ ο ∷ ι ∷ ή ∷ σ ∷ ε ∷ ι ∷ []) "1Cor.7.37" ∷ word (ὥ ∷ σ ∷ τ ∷ ε ∷ []) "1Cor.7.38" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.7.38" ∷ word (ὁ ∷ []) "1Cor.7.38" ∷ word (γ ∷ α ∷ μ ∷ ί ∷ ζ ∷ ω ∷ ν ∷ []) "1Cor.7.38" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "1Cor.7.38" ∷ word (π ∷ α ∷ ρ ∷ θ ∷ έ ∷ ν ∷ ο ∷ ν ∷ []) "1Cor.7.38" ∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ο ∷ ῦ ∷ []) "1Cor.7.38" ∷ word (κ ∷ α ∷ ∙λ ∷ ῶ ∷ ς ∷ []) "1Cor.7.38" ∷ word (π ∷ ο ∷ ι ∷ ε ∷ ῖ ∷ []) "1Cor.7.38" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.7.38" ∷ word (ὁ ∷ []) "1Cor.7.38" ∷ word (μ ∷ ὴ ∷ []) "1Cor.7.38" ∷ word (γ ∷ α ∷ μ ∷ ί ∷ ζ ∷ ω ∷ ν ∷ []) "1Cor.7.38" ∷ word (κ ∷ ρ ∷ ε ∷ ῖ ∷ σ ∷ σ ∷ ο ∷ ν ∷ []) "1Cor.7.38" ∷ word (π ∷ ο ∷ ι ∷ ή ∷ σ ∷ ε ∷ ι ∷ []) "1Cor.7.38" ∷ word (Γ ∷ υ ∷ ν ∷ ὴ ∷ []) "1Cor.7.39" ∷ word (δ ∷ έ ∷ δ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "1Cor.7.39" ∷ word (ἐ ∷ φ ∷ []) "1Cor.7.39" ∷ word (ὅ ∷ σ ∷ ο ∷ ν ∷ []) "1Cor.7.39" ∷ word (χ ∷ ρ ∷ ό ∷ ν ∷ ο ∷ ν ∷ []) "1Cor.7.39" ∷ word (ζ ∷ ῇ ∷ []) "1Cor.7.39" ∷ word (ὁ ∷ []) "1Cor.7.39" ∷ word (ἀ ∷ ν ∷ ὴ ∷ ρ ∷ []) "1Cor.7.39" ∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "1Cor.7.39" ∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "1Cor.7.39" ∷ word (δ ∷ ὲ ∷ []) "1Cor.7.39" ∷ word (κ ∷ ο ∷ ι ∷ μ ∷ η ∷ θ ∷ ῇ ∷ []) "1Cor.7.39" ∷ word (ὁ ∷ []) "1Cor.7.39" ∷ word (ἀ ∷ ν ∷ ή ∷ ρ ∷ []) "1Cor.7.39" ∷ word (ἐ ∷ ∙λ ∷ ε ∷ υ ∷ θ ∷ έ ∷ ρ ∷ α ∷ []) "1Cor.7.39" ∷ word (ἐ ∷ σ ∷ τ ∷ ὶ ∷ ν ∷ []) "1Cor.7.39" ∷ word (ᾧ ∷ []) "1Cor.7.39" ∷ word (θ ∷ έ ∷ ∙λ ∷ ε ∷ ι ∷ []) "1Cor.7.39" ∷ word (γ ∷ α ∷ μ ∷ η ∷ θ ∷ ῆ ∷ ν ∷ α ∷ ι ∷ []) "1Cor.7.39" ∷ word (μ ∷ ό ∷ ν ∷ ο ∷ ν ∷ []) "1Cor.7.39" ∷ word (ἐ ∷ ν ∷ []) "1Cor.7.39" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ῳ ∷ []) "1Cor.7.39" ∷ word (μ ∷ α ∷ κ ∷ α ∷ ρ ∷ ι ∷ ω ∷ τ ∷ έ ∷ ρ ∷ α ∷ []) "1Cor.7.40" ∷ word (δ ∷ έ ∷ []) "1Cor.7.40" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "1Cor.7.40" ∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "1Cor.7.40" ∷ word (ο ∷ ὕ ∷ τ ∷ ω ∷ ς ∷ []) "1Cor.7.40" ∷ word (μ ∷ ε ∷ ί ∷ ν ∷ ῃ ∷ []) "1Cor.7.40" ∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "1Cor.7.40" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "1Cor.7.40" ∷ word (ἐ ∷ μ ∷ ὴ ∷ ν ∷ []) "1Cor.7.40" ∷ word (γ ∷ ν ∷ ώ ∷ μ ∷ η ∷ ν ∷ []) "1Cor.7.40" ∷ word (δ ∷ ο ∷ κ ∷ ῶ ∷ []) "1Cor.7.40" ∷ word (δ ∷ ὲ ∷ []) "1Cor.7.40" ∷ word (κ ∷ ἀ ∷ γ ∷ ὼ ∷ []) "1Cor.7.40" ∷ word (π ∷ ν ∷ ε ∷ ῦ ∷ μ ∷ α ∷ []) "1Cor.7.40" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "1Cor.7.40" ∷ word (ἔ ∷ χ ∷ ε ∷ ι ∷ ν ∷ []) "1Cor.7.40" ∷ word (Π ∷ ε ∷ ρ ∷ ὶ ∷ []) "1Cor.8.1" ∷ word (δ ∷ ὲ ∷ []) "1Cor.8.1" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "1Cor.8.1" ∷ word (ε ∷ ἰ ∷ δ ∷ ω ∷ ∙λ ∷ ο ∷ θ ∷ ύ ∷ τ ∷ ω ∷ ν ∷ []) "1Cor.8.1" ∷ word (ο ∷ ἴ ∷ δ ∷ α ∷ μ ∷ ε ∷ ν ∷ []) "1Cor.8.1" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "1Cor.8.1" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "1Cor.8.1" ∷ word (γ ∷ ν ∷ ῶ ∷ σ ∷ ι ∷ ν ∷ []) "1Cor.8.1" ∷ word (ἔ ∷ χ ∷ ο ∷ μ ∷ ε ∷ ν ∷ []) "1Cor.8.1" ∷ word (ἡ ∷ []) "1Cor.8.1" ∷ word (γ ∷ ν ∷ ῶ ∷ σ ∷ ι ∷ ς ∷ []) "1Cor.8.1" ∷ word (φ ∷ υ ∷ σ ∷ ι ∷ ο ∷ ῖ ∷ []) "1Cor.8.1" ∷ word (ἡ ∷ []) "1Cor.8.1" ∷ word (δ ∷ ὲ ∷ []) "1Cor.8.1" ∷ word (ἀ ∷ γ ∷ ά ∷ π ∷ η ∷ []) "1Cor.8.1" ∷ word (ο ∷ ἰ ∷ κ ∷ ο ∷ δ ∷ ο ∷ μ ∷ ε ∷ ῖ ∷ []) "1Cor.8.1" ∷ word (ε ∷ ἴ ∷ []) "1Cor.8.2" ∷ word (τ ∷ ι ∷ ς ∷ []) "1Cor.8.2" ∷ word (δ ∷ ο ∷ κ ∷ ε ∷ ῖ ∷ []) "1Cor.8.2" ∷ word (ἐ ∷ γ ∷ ν ∷ ω ∷ κ ∷ έ ∷ ν ∷ α ∷ ι ∷ []) "1Cor.8.2" ∷ word (τ ∷ ι ∷ []) "1Cor.8.2" ∷ word (ο ∷ ὔ ∷ π ∷ ω ∷ []) "1Cor.8.2" ∷ word (ἔ ∷ γ ∷ ν ∷ ω ∷ []) "1Cor.8.2" ∷ word (κ ∷ α ∷ θ ∷ ὼ ∷ ς ∷ []) "1Cor.8.2" ∷ word (δ ∷ ε ∷ ῖ ∷ []) "1Cor.8.2" ∷ word (γ ∷ ν ∷ ῶ ∷ ν ∷ α ∷ ι ∷ []) "1Cor.8.2" ∷ word (ε ∷ ἰ ∷ []) "1Cor.8.3" ∷ word (δ ∷ έ ∷ []) "1Cor.8.3" ∷ word (τ ∷ ι ∷ ς ∷ []) "1Cor.8.3" ∷ word (ἀ ∷ γ ∷ α ∷ π ∷ ᾷ ∷ []) "1Cor.8.3" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "1Cor.8.3" ∷ word (θ ∷ ε ∷ ό ∷ ν ∷ []) "1Cor.8.3" ∷ word (ο ∷ ὗ ∷ τ ∷ ο ∷ ς ∷ []) "1Cor.8.3" ∷ word (ἔ ∷ γ ∷ ν ∷ ω ∷ σ ∷ τ ∷ α ∷ ι ∷ []) "1Cor.8.3" ∷ word (ὑ ∷ π ∷ []) "1Cor.8.3" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "1Cor.8.3" ∷ word (Π ∷ ε ∷ ρ ∷ ὶ ∷ []) "1Cor.8.4" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "1Cor.8.4" ∷ word (β ∷ ρ ∷ ώ ∷ σ ∷ ε ∷ ω ∷ ς ∷ []) "1Cor.8.4" ∷ word (ο ∷ ὖ ∷ ν ∷ []) "1Cor.8.4" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "1Cor.8.4" ∷ word (ε ∷ ἰ ∷ δ ∷ ω ∷ ∙λ ∷ ο ∷ θ ∷ ύ ∷ τ ∷ ω ∷ ν ∷ []) "1Cor.8.4" ∷ word (ο ∷ ἴ ∷ δ ∷ α ∷ μ ∷ ε ∷ ν ∷ []) "1Cor.8.4" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "1Cor.8.4" ∷ word (ο ∷ ὐ ∷ δ ∷ ὲ ∷ ν ∷ []) "1Cor.8.4" ∷ word (ε ∷ ἴ ∷ δ ∷ ω ∷ ∙λ ∷ ο ∷ ν ∷ []) "1Cor.8.4" ∷ word (ἐ ∷ ν ∷ []) "1Cor.8.4" ∷ word (κ ∷ ό ∷ σ ∷ μ ∷ ῳ ∷ []) "1Cor.8.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.8.4" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "1Cor.8.4" ∷ word (ο ∷ ὐ ∷ δ ∷ ε ∷ ὶ ∷ ς ∷ []) "1Cor.8.4" ∷ word (θ ∷ ε ∷ ὸ ∷ ς ∷ []) "1Cor.8.4" ∷ word (ε ∷ ἰ ∷ []) "1Cor.8.4" ∷ word (μ ∷ ὴ ∷ []) "1Cor.8.4" ∷ word (ε ∷ ἷ ∷ ς ∷ []) "1Cor.8.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.8.5" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "1Cor.8.5" ∷ word (ε ∷ ἴ ∷ π ∷ ε ∷ ρ ∷ []) "1Cor.8.5" ∷ word (ε ∷ ἰ ∷ σ ∷ ὶ ∷ ν ∷ []) "1Cor.8.5" ∷ word (∙λ ∷ ε ∷ γ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "1Cor.8.5" ∷ word (θ ∷ ε ∷ ο ∷ ὶ ∷ []) "1Cor.8.5" ∷ word (ε ∷ ἴ ∷ τ ∷ ε ∷ []) "1Cor.8.5" ∷ word (ἐ ∷ ν ∷ []) "1Cor.8.5" ∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ῷ ∷ []) "1Cor.8.5" ∷ word (ε ∷ ἴ ∷ τ ∷ ε ∷ []) "1Cor.8.5" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "1Cor.8.5" ∷ word (γ ∷ ῆ ∷ ς ∷ []) "1Cor.8.5" ∷ word (ὥ ∷ σ ∷ π ∷ ε ∷ ρ ∷ []) "1Cor.8.5" ∷ word (ε ∷ ἰ ∷ σ ∷ ὶ ∷ ν ∷ []) "1Cor.8.5" ∷ word (θ ∷ ε ∷ ο ∷ ὶ ∷ []) "1Cor.8.5" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ο ∷ ὶ ∷ []) "1Cor.8.5" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.8.5" ∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ι ∷ []) "1Cor.8.5" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ο ∷ ί ∷ []) "1Cor.8.5" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ []) "1Cor.8.6" ∷ word (ἡ ∷ μ ∷ ῖ ∷ ν ∷ []) "1Cor.8.6" ∷ word (ε ∷ ἷ ∷ ς ∷ []) "1Cor.8.6" ∷ word (θ ∷ ε ∷ ὸ ∷ ς ∷ []) "1Cor.8.6" ∷ word (ὁ ∷ []) "1Cor.8.6" ∷ word (π ∷ α ∷ τ ∷ ή ∷ ρ ∷ []) "1Cor.8.6" ∷ word (ἐ ∷ ξ ∷ []) "1Cor.8.6" ∷ word (ο ∷ ὗ ∷ []) "1Cor.8.6" ∷ word (τ ∷ ὰ ∷ []) "1Cor.8.6" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "1Cor.8.6" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.8.6" ∷ word (ἡ ∷ μ ∷ ε ∷ ῖ ∷ ς ∷ []) "1Cor.8.6" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "1Cor.8.6" ∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "1Cor.8.6" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.8.6" ∷ word (ε ∷ ἷ ∷ ς ∷ []) "1Cor.8.6" ∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ς ∷ []) "1Cor.8.6" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "1Cor.8.6" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ό ∷ ς ∷ []) "1Cor.8.6" ∷ word (δ ∷ ι ∷ []) "1Cor.8.6" ∷ word (ο ∷ ὗ ∷ []) "1Cor.8.6" ∷ word (τ ∷ ὰ ∷ []) "1Cor.8.6" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "1Cor.8.6" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.8.6" ∷ word (ἡ ∷ μ ∷ ε ∷ ῖ ∷ ς ∷ []) "1Cor.8.6" ∷ word (δ ∷ ι ∷ []) "1Cor.8.6" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "1Cor.8.6" ∷ word (Ἀ ∷ ∙λ ∷ ∙λ ∷ []) "1Cor.8.7" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "1Cor.8.7" ∷ word (ἐ ∷ ν ∷ []) "1Cor.8.7" ∷ word (π ∷ ᾶ ∷ σ ∷ ι ∷ ν ∷ []) "1Cor.8.7" ∷ word (ἡ ∷ []) "1Cor.8.7" ∷ word (γ ∷ ν ∷ ῶ ∷ σ ∷ ι ∷ ς ∷ []) "1Cor.8.7" ∷ word (τ ∷ ι ∷ ν ∷ ὲ ∷ ς ∷ []) "1Cor.8.7" ∷ word (δ ∷ ὲ ∷ []) "1Cor.8.7" ∷ word (τ ∷ ῇ ∷ []) "1Cor.8.7" ∷ word (σ ∷ υ ∷ ν ∷ η ∷ θ ∷ ε ∷ ί ∷ ᾳ ∷ []) "1Cor.8.7" ∷ word (ἕ ∷ ω ∷ ς ∷ []) "1Cor.8.7" ∷ word (ἄ ∷ ρ ∷ τ ∷ ι ∷ []) "1Cor.8.7" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.8.7" ∷ word (ε ∷ ἰ ∷ δ ∷ ώ ∷ ∙λ ∷ ο ∷ υ ∷ []) "1Cor.8.7" ∷ word (ὡ ∷ ς ∷ []) "1Cor.8.7" ∷ word (ε ∷ ἰ ∷ δ ∷ ω ∷ ∙λ ∷ ό ∷ θ ∷ υ ∷ τ ∷ ο ∷ ν ∷ []) "1Cor.8.7" ∷ word (ἐ ∷ σ ∷ θ ∷ ί ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "1Cor.8.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.8.7" ∷ word (ἡ ∷ []) "1Cor.8.7" ∷ word (σ ∷ υ ∷ ν ∷ ε ∷ ί ∷ δ ∷ η ∷ σ ∷ ι ∷ ς ∷ []) "1Cor.8.7" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "1Cor.8.7" ∷ word (ἀ ∷ σ ∷ θ ∷ ε ∷ ν ∷ ὴ ∷ ς ∷ []) "1Cor.8.7" ∷ word (ο ∷ ὖ ∷ σ ∷ α ∷ []) "1Cor.8.7" ∷ word (μ ∷ ο ∷ ∙λ ∷ ύ ∷ ν ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "1Cor.8.7" ∷ word (β ∷ ρ ∷ ῶ ∷ μ ∷ α ∷ []) "1Cor.8.8" ∷ word (δ ∷ ὲ ∷ []) "1Cor.8.8" ∷ word (ἡ ∷ μ ∷ ᾶ ∷ ς ∷ []) "1Cor.8.8" ∷ word (ο ∷ ὐ ∷ []) "1Cor.8.8" ∷ word (π ∷ α ∷ ρ ∷ α ∷ σ ∷ τ ∷ ή ∷ σ ∷ ε ∷ ι ∷ []) "1Cor.8.8" ∷ word (τ ∷ ῷ ∷ []) "1Cor.8.8" ∷ word (θ ∷ ε ∷ ῷ ∷ []) "1Cor.8.8" ∷ word (ο ∷ ὔ ∷ τ ∷ ε ∷ []) "1Cor.8.8" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "1Cor.8.8" ∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "1Cor.8.8" ∷ word (φ ∷ ά ∷ γ ∷ ω ∷ μ ∷ ε ∷ ν ∷ []) "1Cor.8.8" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ σ ∷ σ ∷ ε ∷ ύ ∷ ο ∷ μ ∷ ε ∷ ν ∷ []) "1Cor.8.8" ∷ word (ο ∷ ὔ ∷ τ ∷ ε ∷ []) "1Cor.8.8" ∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "1Cor.8.8" ∷ word (μ ∷ ὴ ∷ []) "1Cor.8.8" ∷ word (φ ∷ ά ∷ γ ∷ ω ∷ μ ∷ ε ∷ ν ∷ []) "1Cor.8.8" ∷ word (ὑ ∷ σ ∷ τ ∷ ε ∷ ρ ∷ ο ∷ ύ ∷ μ ∷ ε ∷ θ ∷ α ∷ []) "1Cor.8.8" ∷ word (β ∷ ∙λ ∷ έ ∷ π ∷ ε ∷ τ ∷ ε ∷ []) "1Cor.8.9" ∷ word (δ ∷ ὲ ∷ []) "1Cor.8.9" ∷ word (μ ∷ ή ∷ []) "1Cor.8.9" ∷ word (π ∷ ω ∷ ς ∷ []) "1Cor.8.9" ∷ word (ἡ ∷ []) "1Cor.8.9" ∷ word (ἐ ∷ ξ ∷ ο ∷ υ ∷ σ ∷ ί ∷ α ∷ []) "1Cor.8.9" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Cor.8.9" ∷ word (α ∷ ὕ ∷ τ ∷ η ∷ []) "1Cor.8.9" ∷ word (π ∷ ρ ∷ ό ∷ σ ∷ κ ∷ ο ∷ μ ∷ μ ∷ α ∷ []) "1Cor.8.9" ∷ word (γ ∷ έ ∷ ν ∷ η ∷ τ ∷ α ∷ ι ∷ []) "1Cor.8.9" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "1Cor.8.9" ∷ word (ἀ ∷ σ ∷ θ ∷ ε ∷ ν ∷ έ ∷ σ ∷ ι ∷ ν ∷ []) "1Cor.8.9" ∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "1Cor.8.10" ∷ word (γ ∷ ά ∷ ρ ∷ []) "1Cor.8.10" ∷ word (τ ∷ ι ∷ ς ∷ []) "1Cor.8.10" ∷ word (ἴ ∷ δ ∷ ῃ ∷ []) "1Cor.8.10" ∷ word (σ ∷ ὲ ∷ []) "1Cor.8.10" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "1Cor.8.10" ∷ word (ἔ ∷ χ ∷ ο ∷ ν ∷ τ ∷ α ∷ []) "1Cor.8.10" ∷ word (γ ∷ ν ∷ ῶ ∷ σ ∷ ι ∷ ν ∷ []) "1Cor.8.10" ∷ word (ἐ ∷ ν ∷ []) "1Cor.8.10" ∷ word (ε ∷ ἰ ∷ δ ∷ ω ∷ ∙λ ∷ ε ∷ ί ∷ ῳ ∷ []) "1Cor.8.10" ∷ word (κ ∷ α ∷ τ ∷ α ∷ κ ∷ ε ∷ ί ∷ μ ∷ ε ∷ ν ∷ ο ∷ ν ∷ []) "1Cor.8.10" ∷ word (ο ∷ ὐ ∷ χ ∷ ὶ ∷ []) "1Cor.8.10" ∷ word (ἡ ∷ []) "1Cor.8.10" ∷ word (σ ∷ υ ∷ ν ∷ ε ∷ ί ∷ δ ∷ η ∷ σ ∷ ι ∷ ς ∷ []) "1Cor.8.10" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "1Cor.8.10" ∷ word (ἀ ∷ σ ∷ θ ∷ ε ∷ ν ∷ ο ∷ ῦ ∷ ς ∷ []) "1Cor.8.10" ∷ word (ὄ ∷ ν ∷ τ ∷ ο ∷ ς ∷ []) "1Cor.8.10" ∷ word (ο ∷ ἰ ∷ κ ∷ ο ∷ δ ∷ ο ∷ μ ∷ η ∷ θ ∷ ή ∷ σ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "1Cor.8.10" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "1Cor.8.10" ∷ word (τ ∷ ὸ ∷ []) "1Cor.8.10" ∷ word (τ ∷ ὰ ∷ []) "1Cor.8.10" ∷ word (ε ∷ ἰ ∷ δ ∷ ω ∷ ∙λ ∷ ό ∷ θ ∷ υ ∷ τ ∷ α ∷ []) "1Cor.8.10" ∷ word (ἐ ∷ σ ∷ θ ∷ ί ∷ ε ∷ ι ∷ ν ∷ []) "1Cor.8.10" ∷ word (ἀ ∷ π ∷ ό ∷ ∙λ ∷ ∙λ ∷ υ ∷ τ ∷ α ∷ ι ∷ []) "1Cor.8.11" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "1Cor.8.11" ∷ word (ὁ ∷ []) "1Cor.8.11" ∷ word (ἀ ∷ σ ∷ θ ∷ ε ∷ ν ∷ ῶ ∷ ν ∷ []) "1Cor.8.11" ∷ word (ἐ ∷ ν ∷ []) "1Cor.8.11" ∷ word (τ ∷ ῇ ∷ []) "1Cor.8.11" ∷ word (σ ∷ ῇ ∷ []) "1Cor.8.11" ∷ word (γ ∷ ν ∷ ώ ∷ σ ∷ ε ∷ ι ∷ []) "1Cor.8.11" ∷ word (ὁ ∷ []) "1Cor.8.11" ∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ὸ ∷ ς ∷ []) "1Cor.8.11" ∷ word (δ ∷ ι ∷ []) "1Cor.8.11" ∷ word (ὃ ∷ ν ∷ []) "1Cor.8.11" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ὸ ∷ ς ∷ []) "1Cor.8.11" ∷ word (ἀ ∷ π ∷ έ ∷ θ ∷ α ∷ ν ∷ ε ∷ ν ∷ []) "1Cor.8.11" ∷ word (ο ∷ ὕ ∷ τ ∷ ω ∷ ς ∷ []) "1Cor.8.12" ∷ word (δ ∷ ὲ ∷ []) "1Cor.8.12" ∷ word (ἁ ∷ μ ∷ α ∷ ρ ∷ τ ∷ ά ∷ ν ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "1Cor.8.12" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "1Cor.8.12" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "1Cor.8.12" ∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ο ∷ ὺ ∷ ς ∷ []) "1Cor.8.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.8.12" ∷ word (τ ∷ ύ ∷ π ∷ τ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "1Cor.8.12" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "1Cor.8.12" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "1Cor.8.12" ∷ word (σ ∷ υ ∷ ν ∷ ε ∷ ί ∷ δ ∷ η ∷ σ ∷ ι ∷ ν ∷ []) "1Cor.8.12" ∷ word (ἀ ∷ σ ∷ θ ∷ ε ∷ ν ∷ ο ∷ ῦ ∷ σ ∷ α ∷ ν ∷ []) "1Cor.8.12" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "1Cor.8.12" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ὸ ∷ ν ∷ []) "1Cor.8.12" ∷ word (ἁ ∷ μ ∷ α ∷ ρ ∷ τ ∷ ά ∷ ν ∷ ε ∷ τ ∷ ε ∷ []) "1Cor.8.12" ∷ word (δ ∷ ι ∷ ό ∷ π ∷ ε ∷ ρ ∷ []) "1Cor.8.13" ∷ word (ε ∷ ἰ ∷ []) "1Cor.8.13" ∷ word (β ∷ ρ ∷ ῶ ∷ μ ∷ α ∷ []) "1Cor.8.13" ∷ word (σ ∷ κ ∷ α ∷ ν ∷ δ ∷ α ∷ ∙λ ∷ ί ∷ ζ ∷ ε ∷ ι ∷ []) "1Cor.8.13" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "1Cor.8.13" ∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ό ∷ ν ∷ []) "1Cor.8.13" ∷ word (μ ∷ ο ∷ υ ∷ []) "1Cor.8.13" ∷ word (ο ∷ ὐ ∷ []) "1Cor.8.13" ∷ word (μ ∷ ὴ ∷ []) "1Cor.8.13" ∷ word (φ ∷ ά ∷ γ ∷ ω ∷ []) "1Cor.8.13" ∷ word (κ ∷ ρ ∷ έ ∷ α ∷ []) "1Cor.8.13" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "1Cor.8.13" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "1Cor.8.13" ∷ word (α ∷ ἰ ∷ ῶ ∷ ν ∷ α ∷ []) "1Cor.8.13" ∷ word (ἵ ∷ ν ∷ α ∷ []) "1Cor.8.13" ∷ word (μ ∷ ὴ ∷ []) "1Cor.8.13" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "1Cor.8.13" ∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ό ∷ ν ∷ []) "1Cor.8.13" ∷ word (μ ∷ ο ∷ υ ∷ []) "1Cor.8.13" ∷ word (σ ∷ κ ∷ α ∷ ν ∷ δ ∷ α ∷ ∙λ ∷ ί ∷ σ ∷ ω ∷ []) "1Cor.8.13" ∷ word (Ο ∷ ὐ ∷ κ ∷ []) "1Cor.9.1" ∷ word (ε ∷ ἰ ∷ μ ∷ ὶ ∷ []) "1Cor.9.1" ∷ word (ἐ ∷ ∙λ ∷ ε ∷ ύ ∷ θ ∷ ε ∷ ρ ∷ ο ∷ ς ∷ []) "1Cor.9.1" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "1Cor.9.1" ∷ word (ε ∷ ἰ ∷ μ ∷ ὶ ∷ []) "1Cor.9.1" ∷ word (ἀ ∷ π ∷ ό ∷ σ ∷ τ ∷ ο ∷ ∙λ ∷ ο ∷ ς ∷ []) "1Cor.9.1" ∷ word (ο ∷ ὐ ∷ χ ∷ ὶ ∷ []) "1Cor.9.1" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ν ∷ []) "1Cor.9.1" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "1Cor.9.1" ∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ν ∷ []) "1Cor.9.1" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Cor.9.1" ∷ word (ἑ ∷ ό ∷ ρ ∷ α ∷ κ ∷ α ∷ []) "1Cor.9.1" ∷ word (ο ∷ ὐ ∷ []) "1Cor.9.1" ∷ word (τ ∷ ὸ ∷ []) "1Cor.9.1" ∷ word (ἔ ∷ ρ ∷ γ ∷ ο ∷ ν ∷ []) "1Cor.9.1" ∷ word (μ ∷ ο ∷ υ ∷ []) "1Cor.9.1" ∷ word (ὑ ∷ μ ∷ ε ∷ ῖ ∷ ς ∷ []) "1Cor.9.1" ∷ word (ἐ ∷ σ ∷ τ ∷ ε ∷ []) "1Cor.9.1" ∷ word (ἐ ∷ ν ∷ []) "1Cor.9.1" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ῳ ∷ []) "1Cor.9.1" ∷ word (ε ∷ ἰ ∷ []) "1Cor.9.2" ∷ word (ἄ ∷ ∙λ ∷ ∙λ ∷ ο ∷ ι ∷ ς ∷ []) "1Cor.9.2" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "1Cor.9.2" ∷ word (ε ∷ ἰ ∷ μ ∷ ὶ ∷ []) "1Cor.9.2" ∷ word (ἀ ∷ π ∷ ό ∷ σ ∷ τ ∷ ο ∷ ∙λ ∷ ο ∷ ς ∷ []) "1Cor.9.2" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ά ∷ []) "1Cor.9.2" ∷ word (γ ∷ ε ∷ []) "1Cor.9.2" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "1Cor.9.2" ∷ word (ε ∷ ἰ ∷ μ ∷ ι ∷ []) "1Cor.9.2" ∷ word (ἡ ∷ []) "1Cor.9.2" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "1Cor.9.2" ∷ word (σ ∷ φ ∷ ρ ∷ α ∷ γ ∷ ί ∷ ς ∷ []) "1Cor.9.2" ∷ word (μ ∷ ο ∷ υ ∷ []) "1Cor.9.2" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "1Cor.9.2" ∷ word (ἀ ∷ π ∷ ο ∷ σ ∷ τ ∷ ο ∷ ∙λ ∷ ῆ ∷ ς ∷ []) "1Cor.9.2" ∷ word (ὑ ∷ μ ∷ ε ∷ ῖ ∷ ς ∷ []) "1Cor.9.2" ∷ word (ἐ ∷ σ ∷ τ ∷ ε ∷ []) "1Cor.9.2" ∷ word (ἐ ∷ ν ∷ []) "1Cor.9.2" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ῳ ∷ []) "1Cor.9.2" ∷ word (Ἡ ∷ []) "1Cor.9.3" ∷ word (ἐ ∷ μ ∷ ὴ ∷ []) "1Cor.9.3" ∷ word (ἀ ∷ π ∷ ο ∷ ∙λ ∷ ο ∷ γ ∷ ί ∷ α ∷ []) "1Cor.9.3" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "1Cor.9.3" ∷ word (ἐ ∷ μ ∷ ὲ ∷ []) "1Cor.9.3" ∷ word (ἀ ∷ ν ∷ α ∷ κ ∷ ρ ∷ ί ∷ ν ∷ ο ∷ υ ∷ σ ∷ ί ∷ ν ∷ []) "1Cor.9.3" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "1Cor.9.3" ∷ word (α ∷ ὕ ∷ τ ∷ η ∷ []) "1Cor.9.3" ∷ word (μ ∷ ὴ ∷ []) "1Cor.9.4" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "1Cor.9.4" ∷ word (ἔ ∷ χ ∷ ο ∷ μ ∷ ε ∷ ν ∷ []) "1Cor.9.4" ∷ word (ἐ ∷ ξ ∷ ο ∷ υ ∷ σ ∷ ί ∷ α ∷ ν ∷ []) "1Cor.9.4" ∷ word (φ ∷ α ∷ γ ∷ ε ∷ ῖ ∷ ν ∷ []) "1Cor.9.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.9.4" ∷ word (π ∷ ε ∷ ῖ ∷ ν ∷ []) "1Cor.9.4" ∷ word (μ ∷ ὴ ∷ []) "1Cor.9.5" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "1Cor.9.5" ∷ word (ἔ ∷ χ ∷ ο ∷ μ ∷ ε ∷ ν ∷ []) "1Cor.9.5" ∷ word (ἐ ∷ ξ ∷ ο ∷ υ ∷ σ ∷ ί ∷ α ∷ ν ∷ []) "1Cor.9.5" ∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ὴ ∷ ν ∷ []) "1Cor.9.5" ∷ word (γ ∷ υ ∷ ν ∷ α ∷ ῖ ∷ κ ∷ α ∷ []) "1Cor.9.5" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ ά ∷ γ ∷ ε ∷ ι ∷ ν ∷ []) "1Cor.9.5" ∷ word (ὡ ∷ ς ∷ []) "1Cor.9.5" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.9.5" ∷ word (ο ∷ ἱ ∷ []) "1Cor.9.5" ∷ word (∙λ ∷ ο ∷ ι ∷ π ∷ ο ∷ ὶ ∷ []) "1Cor.9.5" ∷ word (ἀ ∷ π ∷ ό ∷ σ ∷ τ ∷ ο ∷ ∙λ ∷ ο ∷ ι ∷ []) "1Cor.9.5" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.9.5" ∷ word (ο ∷ ἱ ∷ []) "1Cor.9.5" ∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ο ∷ ὶ ∷ []) "1Cor.9.5" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.9.5" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "1Cor.9.5" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.9.5" ∷ word (Κ ∷ η ∷ φ ∷ ᾶ ∷ ς ∷ []) "1Cor.9.5" ∷ word (ἢ ∷ []) "1Cor.9.6" ∷ word (μ ∷ ό ∷ ν ∷ ο ∷ ς ∷ []) "1Cor.9.6" ∷ word (ἐ ∷ γ ∷ ὼ ∷ []) "1Cor.9.6" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.9.6" ∷ word (Β ∷ α ∷ ρ ∷ ν ∷ α ∷ β ∷ ᾶ ∷ ς ∷ []) "1Cor.9.6" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "1Cor.9.6" ∷ word (ἔ ∷ χ ∷ ο ∷ μ ∷ ε ∷ ν ∷ []) "1Cor.9.6" ∷ word (ἐ ∷ ξ ∷ ο ∷ υ ∷ σ ∷ ί ∷ α ∷ ν ∷ []) "1Cor.9.6" ∷ word (μ ∷ ὴ ∷ []) "1Cor.9.6" ∷ word (ἐ ∷ ρ ∷ γ ∷ ά ∷ ζ ∷ ε ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "1Cor.9.6" ∷ word (τ ∷ ί ∷ ς ∷ []) "1Cor.9.7" ∷ word (σ ∷ τ ∷ ρ ∷ α ∷ τ ∷ ε ∷ ύ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "1Cor.9.7" ∷ word (ἰ ∷ δ ∷ ί ∷ ο ∷ ι ∷ ς ∷ []) "1Cor.9.7" ∷ word (ὀ ∷ ψ ∷ ω ∷ ν ∷ ί ∷ ο ∷ ι ∷ ς ∷ []) "1Cor.9.7" ∷ word (π ∷ ο ∷ τ ∷ έ ∷ []) "1Cor.9.7" ∷ word (τ ∷ ί ∷ ς ∷ []) "1Cor.9.7" ∷ word (φ ∷ υ ∷ τ ∷ ε ∷ ύ ∷ ε ∷ ι ∷ []) "1Cor.9.7" ∷ word (ἀ ∷ μ ∷ π ∷ ε ∷ ∙λ ∷ ῶ ∷ ν ∷ α ∷ []) "1Cor.9.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.9.7" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "1Cor.9.7" ∷ word (κ ∷ α ∷ ρ ∷ π ∷ ὸ ∷ ν ∷ []) "1Cor.9.7" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "1Cor.9.7" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "1Cor.9.7" ∷ word (ἐ ∷ σ ∷ θ ∷ ί ∷ ε ∷ ι ∷ []) "1Cor.9.7" ∷ word (τ ∷ ί ∷ ς ∷ []) "1Cor.9.7" ∷ word (π ∷ ο ∷ ι ∷ μ ∷ α ∷ ί ∷ ν ∷ ε ∷ ι ∷ []) "1Cor.9.7" ∷ word (π ∷ ο ∷ ί ∷ μ ∷ ν ∷ η ∷ ν ∷ []) "1Cor.9.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.9.7" ∷ word (ἐ ∷ κ ∷ []) "1Cor.9.7" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.9.7" ∷ word (γ ∷ ά ∷ ∙λ ∷ α ∷ κ ∷ τ ∷ ο ∷ ς ∷ []) "1Cor.9.7" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "1Cor.9.7" ∷ word (π ∷ ο ∷ ί ∷ μ ∷ ν ∷ η ∷ ς ∷ []) "1Cor.9.7" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "1Cor.9.7" ∷ word (ἐ ∷ σ ∷ θ ∷ ί ∷ ε ∷ ι ∷ []) "1Cor.9.7" ∷ word (Μ ∷ ὴ ∷ []) "1Cor.9.8" ∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "1Cor.9.8" ∷ word (ἄ ∷ ν ∷ θ ∷ ρ ∷ ω ∷ π ∷ ο ∷ ν ∷ []) "1Cor.9.8" ∷ word (τ ∷ α ∷ ῦ ∷ τ ∷ α ∷ []) "1Cor.9.8" ∷ word (∙λ ∷ α ∷ ∙λ ∷ ῶ ∷ []) "1Cor.9.8" ∷ word (ἢ ∷ []) "1Cor.9.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.9.8" ∷ word (ὁ ∷ []) "1Cor.9.8" ∷ word (ν ∷ ό ∷ μ ∷ ο ∷ ς ∷ []) "1Cor.9.8" ∷ word (τ ∷ α ∷ ῦ ∷ τ ∷ α ∷ []) "1Cor.9.8" ∷ word (ο ∷ ὐ ∷ []) "1Cor.9.8" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "1Cor.9.8" ∷ word (ἐ ∷ ν ∷ []) "1Cor.9.9" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "1Cor.9.9" ∷ word (τ ∷ ῷ ∷ []) "1Cor.9.9" ∷ word (Μ ∷ ω ∷ ϋ ∷ σ ∷ έ ∷ ω ∷ ς ∷ []) "1Cor.9.9" ∷ word (ν ∷ ό ∷ μ ∷ ῳ ∷ []) "1Cor.9.9" ∷ word (γ ∷ έ ∷ γ ∷ ρ ∷ α ∷ π ∷ τ ∷ α ∷ ι ∷ []) "1Cor.9.9" ∷ word (Ο ∷ ὐ ∷ []) "1Cor.9.9" ∷ word (κ ∷ η ∷ μ ∷ ώ ∷ σ ∷ ε ∷ ι ∷ ς ∷ []) "1Cor.9.9" ∷ word (β ∷ ο ∷ ῦ ∷ ν ∷ []) "1Cor.9.9" ∷ word (ἀ ∷ ∙λ ∷ ο ∷ ῶ ∷ ν ∷ τ ∷ α ∷ []) "1Cor.9.9" ∷ word (μ ∷ ὴ ∷ []) "1Cor.9.9" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "1Cor.9.9" ∷ word (β ∷ ο ∷ ῶ ∷ ν ∷ []) "1Cor.9.9" ∷ word (μ ∷ έ ∷ ∙λ ∷ ε ∷ ι ∷ []) "1Cor.9.9" ∷ word (τ ∷ ῷ ∷ []) "1Cor.9.9" ∷ word (θ ∷ ε ∷ ῷ ∷ []) "1Cor.9.9" ∷ word (ἢ ∷ []) "1Cor.9.10" ∷ word (δ ∷ ι ∷ []) "1Cor.9.10" ∷ word (ἡ ∷ μ ∷ ᾶ ∷ ς ∷ []) "1Cor.9.10" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ω ∷ ς ∷ []) "1Cor.9.10" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "1Cor.9.10" ∷ word (δ ∷ ι ∷ []) "1Cor.9.10" ∷ word (ἡ ∷ μ ∷ ᾶ ∷ ς ∷ []) "1Cor.9.10" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "1Cor.9.10" ∷ word (ἐ ∷ γ ∷ ρ ∷ ά ∷ φ ∷ η ∷ []) "1Cor.9.10" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "1Cor.9.10" ∷ word (ὀ ∷ φ ∷ ε ∷ ί ∷ ∙λ ∷ ε ∷ ι ∷ []) "1Cor.9.10" ∷ word (ἐ ∷ π ∷ []) "1Cor.9.10" ∷ word (ἐ ∷ ∙λ ∷ π ∷ ί ∷ δ ∷ ι ∷ []) "1Cor.9.10" ∷ word (ὁ ∷ []) "1Cor.9.10" ∷ word (ἀ ∷ ρ ∷ ο ∷ τ ∷ ρ ∷ ι ∷ ῶ ∷ ν ∷ []) "1Cor.9.10" ∷ word (ἀ ∷ ρ ∷ ο ∷ τ ∷ ρ ∷ ι ∷ ᾶ ∷ ν ∷ []) "1Cor.9.10" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.9.10" ∷ word (ὁ ∷ []) "1Cor.9.10" ∷ word (ἀ ∷ ∙λ ∷ ο ∷ ῶ ∷ ν ∷ []) "1Cor.9.10" ∷ word (ἐ ∷ π ∷ []) "1Cor.9.10" ∷ word (ἐ ∷ ∙λ ∷ π ∷ ί ∷ δ ∷ ι ∷ []) "1Cor.9.10" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.9.10" ∷ word (μ ∷ ε ∷ τ ∷ έ ∷ χ ∷ ε ∷ ι ∷ ν ∷ []) "1Cor.9.10" ∷ word (ε ∷ ἰ ∷ []) "1Cor.9.11" ∷ word (ἡ ∷ μ ∷ ε ∷ ῖ ∷ ς ∷ []) "1Cor.9.11" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "1Cor.9.11" ∷ word (τ ∷ ὰ ∷ []) "1Cor.9.11" ∷ word (π ∷ ν ∷ ε ∷ υ ∷ μ ∷ α ∷ τ ∷ ι ∷ κ ∷ ὰ ∷ []) "1Cor.9.11" ∷ word (ἐ ∷ σ ∷ π ∷ ε ∷ ί ∷ ρ ∷ α ∷ μ ∷ ε ∷ ν ∷ []) "1Cor.9.11" ∷ word (μ ∷ έ ∷ γ ∷ α ∷ []) "1Cor.9.11" ∷ word (ε ∷ ἰ ∷ []) "1Cor.9.11" ∷ word (ἡ ∷ μ ∷ ε ∷ ῖ ∷ ς ∷ []) "1Cor.9.11" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Cor.9.11" ∷ word (τ ∷ ὰ ∷ []) "1Cor.9.11" ∷ word (σ ∷ α ∷ ρ ∷ κ ∷ ι ∷ κ ∷ ὰ ∷ []) "1Cor.9.11" ∷ word (θ ∷ ε ∷ ρ ∷ ί ∷ σ ∷ ο ∷ μ ∷ ε ∷ ν ∷ []) "1Cor.9.11" ∷ word (ε ∷ ἰ ∷ []) "1Cor.9.12" ∷ word (ἄ ∷ ∙λ ∷ ∙λ ∷ ο ∷ ι ∷ []) "1Cor.9.12" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "1Cor.9.12" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Cor.9.12" ∷ word (ἐ ∷ ξ ∷ ο ∷ υ ∷ σ ∷ ί ∷ α ∷ ς ∷ []) "1Cor.9.12" ∷ word (μ ∷ ε ∷ τ ∷ έ ∷ χ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "1Cor.9.12" ∷ word (ο ∷ ὐ ∷ []) "1Cor.9.12" ∷ word (μ ∷ ᾶ ∷ ∙λ ∷ ∙λ ∷ ο ∷ ν ∷ []) "1Cor.9.12" ∷ word (ἡ ∷ μ ∷ ε ∷ ῖ ∷ ς ∷ []) "1Cor.9.12" ∷ word (Ἀ ∷ ∙λ ∷ ∙λ ∷ []) "1Cor.9.12" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "1Cor.9.12" ∷ word (ἐ ∷ χ ∷ ρ ∷ η ∷ σ ∷ ά ∷ μ ∷ ε ∷ θ ∷ α ∷ []) "1Cor.9.12" ∷ word (τ ∷ ῇ ∷ []) "1Cor.9.12" ∷ word (ἐ ∷ ξ ∷ ο ∷ υ ∷ σ ∷ ί ∷ ᾳ ∷ []) "1Cor.9.12" ∷ word (τ ∷ α ∷ ύ ∷ τ ∷ ῃ ∷ []) "1Cor.9.12" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "1Cor.9.12" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "1Cor.9.12" ∷ word (σ ∷ τ ∷ έ ∷ γ ∷ ο ∷ μ ∷ ε ∷ ν ∷ []) "1Cor.9.12" ∷ word (ἵ ∷ ν ∷ α ∷ []) "1Cor.9.12" ∷ word (μ ∷ ή ∷ []) "1Cor.9.12" ∷ word (τ ∷ ι ∷ ν ∷ α ∷ []) "1Cor.9.12" ∷ word (ἐ ∷ γ ∷ κ ∷ ο ∷ π ∷ ὴ ∷ ν ∷ []) "1Cor.9.12" ∷ word (δ ∷ ῶ ∷ μ ∷ ε ∷ ν ∷ []) "1Cor.9.12" ∷ word (τ ∷ ῷ ∷ []) "1Cor.9.12" ∷ word (ε ∷ ὐ ∷ α ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ί ∷ ῳ ∷ []) "1Cor.9.12" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.9.12" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "1Cor.9.12" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "1Cor.9.13" ∷ word (ο ∷ ἴ ∷ δ ∷ α ∷ τ ∷ ε ∷ []) "1Cor.9.13" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "1Cor.9.13" ∷ word (ο ∷ ἱ ∷ []) "1Cor.9.13" ∷ word (τ ∷ ὰ ∷ []) "1Cor.9.13" ∷ word (ἱ ∷ ε ∷ ρ ∷ ὰ ∷ []) "1Cor.9.13" ∷ word (ἐ ∷ ρ ∷ γ ∷ α ∷ ζ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "1Cor.9.13" ∷ word (τ ∷ ὰ ∷ []) "1Cor.9.13" ∷ word (ἐ ∷ κ ∷ []) "1Cor.9.13" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.9.13" ∷ word (ἱ ∷ ε ∷ ρ ∷ ο ∷ ῦ ∷ []) "1Cor.9.13" ∷ word (ἐ ∷ σ ∷ θ ∷ ί ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "1Cor.9.13" ∷ word (ο ∷ ἱ ∷ []) "1Cor.9.13" ∷ word (τ ∷ ῷ ∷ []) "1Cor.9.13" ∷ word (θ ∷ υ ∷ σ ∷ ι ∷ α ∷ σ ∷ τ ∷ η ∷ ρ ∷ ί ∷ ῳ ∷ []) "1Cor.9.13" ∷ word (π ∷ α ∷ ρ ∷ ε ∷ δ ∷ ρ ∷ ε ∷ ύ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "1Cor.9.13" ∷ word (τ ∷ ῷ ∷ []) "1Cor.9.13" ∷ word (θ ∷ υ ∷ σ ∷ ι ∷ α ∷ σ ∷ τ ∷ η ∷ ρ ∷ ί ∷ ῳ ∷ []) "1Cor.9.13" ∷ word (σ ∷ υ ∷ μ ∷ μ ∷ ε ∷ ρ ∷ ί ∷ ζ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "1Cor.9.13" ∷ word (ο ∷ ὕ ∷ τ ∷ ω ∷ ς ∷ []) "1Cor.9.14" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.9.14" ∷ word (ὁ ∷ []) "1Cor.9.14" ∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ς ∷ []) "1Cor.9.14" ∷ word (δ ∷ ι ∷ έ ∷ τ ∷ α ∷ ξ ∷ ε ∷ ν ∷ []) "1Cor.9.14" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "1Cor.9.14" ∷ word (τ ∷ ὸ ∷ []) "1Cor.9.14" ∷ word (ε ∷ ὐ ∷ α ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ι ∷ ο ∷ ν ∷ []) "1Cor.9.14" ∷ word (κ ∷ α ∷ τ ∷ α ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ∙λ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "1Cor.9.14" ∷ word (ἐ ∷ κ ∷ []) "1Cor.9.14" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.9.14" ∷ word (ε ∷ ὐ ∷ α ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ί ∷ ο ∷ υ ∷ []) "1Cor.9.14" ∷ word (ζ ∷ ῆ ∷ ν ∷ []) "1Cor.9.14" ∷ word (Ἐ ∷ γ ∷ ὼ ∷ []) "1Cor.9.15" ∷ word (δ ∷ ὲ ∷ []) "1Cor.9.15" ∷ word (ο ∷ ὐ ∷ []) "1Cor.9.15" ∷ word (κ ∷ έ ∷ χ ∷ ρ ∷ η ∷ μ ∷ α ∷ ι ∷ []) "1Cor.9.15" ∷ word (ο ∷ ὐ ∷ δ ∷ ε ∷ ν ∷ ὶ ∷ []) "1Cor.9.15" ∷ word (τ ∷ ο ∷ ύ ∷ τ ∷ ω ∷ ν ∷ []) "1Cor.9.15" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "1Cor.9.15" ∷ word (ἔ ∷ γ ∷ ρ ∷ α ∷ ψ ∷ α ∷ []) "1Cor.9.15" ∷ word (δ ∷ ὲ ∷ []) "1Cor.9.15" ∷ word (τ ∷ α ∷ ῦ ∷ τ ∷ α ∷ []) "1Cor.9.15" ∷ word (ἵ ∷ ν ∷ α ∷ []) "1Cor.9.15" ∷ word (ο ∷ ὕ ∷ τ ∷ ω ∷ ς ∷ []) "1Cor.9.15" ∷ word (γ ∷ έ ∷ ν ∷ η ∷ τ ∷ α ∷ ι ∷ []) "1Cor.9.15" ∷ word (ἐ ∷ ν ∷ []) "1Cor.9.15" ∷ word (ἐ ∷ μ ∷ ο ∷ ί ∷ []) "1Cor.9.15" ∷ word (κ ∷ α ∷ ∙λ ∷ ὸ ∷ ν ∷ []) "1Cor.9.15" ∷ word (γ ∷ ά ∷ ρ ∷ []) "1Cor.9.15" ∷ word (μ ∷ ο ∷ ι ∷ []) "1Cor.9.15" ∷ word (μ ∷ ᾶ ∷ ∙λ ∷ ∙λ ∷ ο ∷ ν ∷ []) "1Cor.9.15" ∷ word (ἀ ∷ π ∷ ο ∷ θ ∷ α ∷ ν ∷ ε ∷ ῖ ∷ ν ∷ []) "1Cor.9.15" ∷ word (ἤ ∷ []) "1Cor.9.15" ∷ word (τ ∷ ὸ ∷ []) "1Cor.9.15" ∷ word (κ ∷ α ∷ ύ ∷ χ ∷ η ∷ μ ∷ ά ∷ []) "1Cor.9.15" ∷ word (μ ∷ ο ∷ υ ∷ []) "1Cor.9.15" ∷ word (ο ∷ ὐ ∷ δ ∷ ε ∷ ὶ ∷ ς ∷ []) "1Cor.9.15" ∷ word (κ ∷ ε ∷ ν ∷ ώ ∷ σ ∷ ε ∷ ι ∷ []) "1Cor.9.15" ∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "1Cor.9.16" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "1Cor.9.16" ∷ word (ε ∷ ὐ ∷ α ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ί ∷ ζ ∷ ω ∷ μ ∷ α ∷ ι ∷ []) "1Cor.9.16" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "1Cor.9.16" ∷ word (ἔ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "1Cor.9.16" ∷ word (μ ∷ ο ∷ ι ∷ []) "1Cor.9.16" ∷ word (κ ∷ α ∷ ύ ∷ χ ∷ η ∷ μ ∷ α ∷ []) "1Cor.9.16" ∷ word (ἀ ∷ ν ∷ ά ∷ γ ∷ κ ∷ η ∷ []) "1Cor.9.16" ∷ word (γ ∷ ά ∷ ρ ∷ []) "1Cor.9.16" ∷ word (μ ∷ ο ∷ ι ∷ []) "1Cor.9.16" ∷ word (ἐ ∷ π ∷ ί ∷ κ ∷ ε ∷ ι ∷ τ ∷ α ∷ ι ∷ []) "1Cor.9.16" ∷ word (ο ∷ ὐ ∷ α ∷ ὶ ∷ []) "1Cor.9.16" ∷ word (γ ∷ ά ∷ ρ ∷ []) "1Cor.9.16" ∷ word (μ ∷ ο ∷ ί ∷ []) "1Cor.9.16" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "1Cor.9.16" ∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "1Cor.9.16" ∷ word (μ ∷ ὴ ∷ []) "1Cor.9.16" ∷ word (ε ∷ ὐ ∷ α ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ί ∷ σ ∷ ω ∷ μ ∷ α ∷ ι ∷ []) "1Cor.9.16" ∷ word (ε ∷ ἰ ∷ []) "1Cor.9.17" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "1Cor.9.17" ∷ word (ἑ ∷ κ ∷ ὼ ∷ ν ∷ []) "1Cor.9.17" ∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "1Cor.9.17" ∷ word (π ∷ ρ ∷ ά ∷ σ ∷ σ ∷ ω ∷ []) "1Cor.9.17" ∷ word (μ ∷ ι ∷ σ ∷ θ ∷ ὸ ∷ ν ∷ []) "1Cor.9.17" ∷ word (ἔ ∷ χ ∷ ω ∷ []) "1Cor.9.17" ∷ word (ε ∷ ἰ ∷ []) "1Cor.9.17" ∷ word (δ ∷ ὲ ∷ []) "1Cor.9.17" ∷ word (ἄ ∷ κ ∷ ω ∷ ν ∷ []) "1Cor.9.17" ∷ word (ο ∷ ἰ ∷ κ ∷ ο ∷ ν ∷ ο ∷ μ ∷ ί ∷ α ∷ ν ∷ []) "1Cor.9.17" ∷ word (π ∷ ε ∷ π ∷ ί ∷ σ ∷ τ ∷ ε ∷ υ ∷ μ ∷ α ∷ ι ∷ []) "1Cor.9.17" ∷ word (τ ∷ ί ∷ ς ∷ []) "1Cor.9.18" ∷ word (ο ∷ ὖ ∷ ν ∷ []) "1Cor.9.18" ∷ word (μ ∷ ο ∷ ύ ∷ []) "1Cor.9.18" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "1Cor.9.18" ∷ word (ὁ ∷ []) "1Cor.9.18" ∷ word (μ ∷ ι ∷ σ ∷ θ ∷ ό ∷ ς ∷ []) "1Cor.9.18" ∷ word (ἵ ∷ ν ∷ α ∷ []) "1Cor.9.18" ∷ word (ε ∷ ὐ ∷ α ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ι ∷ ζ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "1Cor.9.18" ∷ word (ἀ ∷ δ ∷ ά ∷ π ∷ α ∷ ν ∷ ο ∷ ν ∷ []) "1Cor.9.18" ∷ word (θ ∷ ή ∷ σ ∷ ω ∷ []) "1Cor.9.18" ∷ word (τ ∷ ὸ ∷ []) "1Cor.9.18" ∷ word (ε ∷ ὐ ∷ α ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ι ∷ ο ∷ ν ∷ []) "1Cor.9.18" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "1Cor.9.18" ∷ word (τ ∷ ὸ ∷ []) "1Cor.9.18" ∷ word (μ ∷ ὴ ∷ []) "1Cor.9.18" ∷ word (κ ∷ α ∷ τ ∷ α ∷ χ ∷ ρ ∷ ή ∷ σ ∷ α ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "1Cor.9.18" ∷ word (τ ∷ ῇ ∷ []) "1Cor.9.18" ∷ word (ἐ ∷ ξ ∷ ο ∷ υ ∷ σ ∷ ί ∷ ᾳ ∷ []) "1Cor.9.18" ∷ word (μ ∷ ο ∷ υ ∷ []) "1Cor.9.18" ∷ word (ἐ ∷ ν ∷ []) "1Cor.9.18" ∷ word (τ ∷ ῷ ∷ []) "1Cor.9.18" ∷ word (ε ∷ ὐ ∷ α ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ί ∷ ῳ ∷ []) "1Cor.9.18" ∷ word (Ἐ ∷ ∙λ ∷ ε ∷ ύ ∷ θ ∷ ε ∷ ρ ∷ ο ∷ ς ∷ []) "1Cor.9.19" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "1Cor.9.19" ∷ word (ὢ ∷ ν ∷ []) "1Cor.9.19" ∷ word (ἐ ∷ κ ∷ []) "1Cor.9.19" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "1Cor.9.19" ∷ word (π ∷ ᾶ ∷ σ ∷ ι ∷ ν ∷ []) "1Cor.9.19" ∷ word (ἐ ∷ μ ∷ α ∷ υ ∷ τ ∷ ὸ ∷ ν ∷ []) "1Cor.9.19" ∷ word (ἐ ∷ δ ∷ ο ∷ ύ ∷ ∙λ ∷ ω ∷ σ ∷ α ∷ []) "1Cor.9.19" ∷ word (ἵ ∷ ν ∷ α ∷ []) "1Cor.9.19" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "1Cor.9.19" ∷ word (π ∷ ∙λ ∷ ε ∷ ί ∷ ο ∷ ν ∷ α ∷ ς ∷ []) "1Cor.9.19" ∷ word (κ ∷ ε ∷ ρ ∷ δ ∷ ή ∷ σ ∷ ω ∷ []) "1Cor.9.19" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.9.20" ∷ word (ἐ ∷ γ ∷ ε ∷ ν ∷ ό ∷ μ ∷ η ∷ ν ∷ []) "1Cor.9.20" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "1Cor.9.20" ∷ word (Ἰ ∷ ο ∷ υ ∷ δ ∷ α ∷ ί ∷ ο ∷ ι ∷ ς ∷ []) "1Cor.9.20" ∷ word (ὡ ∷ ς ∷ []) "1Cor.9.20" ∷ word (Ἰ ∷ ο ∷ υ ∷ δ ∷ α ∷ ῖ ∷ ο ∷ ς ∷ []) "1Cor.9.20" ∷ word (ἵ ∷ ν ∷ α ∷ []) "1Cor.9.20" ∷ word (Ἰ ∷ ο ∷ υ ∷ δ ∷ α ∷ ί ∷ ο ∷ υ ∷ ς ∷ []) "1Cor.9.20" ∷ word (κ ∷ ε ∷ ρ ∷ δ ∷ ή ∷ σ ∷ ω ∷ []) "1Cor.9.20" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "1Cor.9.20" ∷ word (ὑ ∷ π ∷ ὸ ∷ []) "1Cor.9.20" ∷ word (ν ∷ ό ∷ μ ∷ ο ∷ ν ∷ []) "1Cor.9.20" ∷ word (ὡ ∷ ς ∷ []) "1Cor.9.20" ∷ word (ὑ ∷ π ∷ ὸ ∷ []) "1Cor.9.20" ∷ word (ν ∷ ό ∷ μ ∷ ο ∷ ν ∷ []) "1Cor.9.20" ∷ word (μ ∷ ὴ ∷ []) "1Cor.9.20" ∷ word (ὢ ∷ ν ∷ []) "1Cor.9.20" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ς ∷ []) "1Cor.9.20" ∷ word (ὑ ∷ π ∷ ὸ ∷ []) "1Cor.9.20" ∷ word (ν ∷ ό ∷ μ ∷ ο ∷ ν ∷ []) "1Cor.9.20" ∷ word (ἵ ∷ ν ∷ α ∷ []) "1Cor.9.20" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "1Cor.9.20" ∷ word (ὑ ∷ π ∷ ὸ ∷ []) "1Cor.9.20" ∷ word (ν ∷ ό ∷ μ ∷ ο ∷ ν ∷ []) "1Cor.9.20" ∷ word (κ ∷ ε ∷ ρ ∷ δ ∷ ή ∷ σ ∷ ω ∷ []) "1Cor.9.20" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "1Cor.9.21" ∷ word (ἀ ∷ ν ∷ ό ∷ μ ∷ ο ∷ ι ∷ ς ∷ []) "1Cor.9.21" ∷ word (ὡ ∷ ς ∷ []) "1Cor.9.21" ∷ word (ἄ ∷ ν ∷ ο ∷ μ ∷ ο ∷ ς ∷ []) "1Cor.9.21" ∷ word (μ ∷ ὴ ∷ []) "1Cor.9.21" ∷ word (ὢ ∷ ν ∷ []) "1Cor.9.21" ∷ word (ἄ ∷ ν ∷ ο ∷ μ ∷ ο ∷ ς ∷ []) "1Cor.9.21" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "1Cor.9.21" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ []) "1Cor.9.21" ∷ word (ἔ ∷ ν ∷ ν ∷ ο ∷ μ ∷ ο ∷ ς ∷ []) "1Cor.9.21" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "1Cor.9.21" ∷ word (ἵ ∷ ν ∷ α ∷ []) "1Cor.9.21" ∷ word (κ ∷ ε ∷ ρ ∷ δ ∷ ά ∷ ν ∷ ω ∷ []) "1Cor.9.21" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "1Cor.9.21" ∷ word (ἀ ∷ ν ∷ ό ∷ μ ∷ ο ∷ υ ∷ ς ∷ []) "1Cor.9.21" ∷ word (ἐ ∷ γ ∷ ε ∷ ν ∷ ό ∷ μ ∷ η ∷ ν ∷ []) "1Cor.9.22" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "1Cor.9.22" ∷ word (ἀ ∷ σ ∷ θ ∷ ε ∷ ν ∷ έ ∷ σ ∷ ι ∷ ν ∷ []) "1Cor.9.22" ∷ word (ἀ ∷ σ ∷ θ ∷ ε ∷ ν ∷ ή ∷ ς ∷ []) "1Cor.9.22" ∷ word (ἵ ∷ ν ∷ α ∷ []) "1Cor.9.22" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "1Cor.9.22" ∷ word (ἀ ∷ σ ∷ θ ∷ ε ∷ ν ∷ ε ∷ ῖ ∷ ς ∷ []) "1Cor.9.22" ∷ word (κ ∷ ε ∷ ρ ∷ δ ∷ ή ∷ σ ∷ ω ∷ []) "1Cor.9.22" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "1Cor.9.22" ∷ word (π ∷ ᾶ ∷ σ ∷ ι ∷ ν ∷ []) "1Cor.9.22" ∷ word (γ ∷ έ ∷ γ ∷ ο ∷ ν ∷ α ∷ []) "1Cor.9.22" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "1Cor.9.22" ∷ word (ἵ ∷ ν ∷ α ∷ []) "1Cor.9.22" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ω ∷ ς ∷ []) "1Cor.9.22" ∷ word (τ ∷ ι ∷ ν ∷ ὰ ∷ ς ∷ []) "1Cor.9.22" ∷ word (σ ∷ ώ ∷ σ ∷ ω ∷ []) "1Cor.9.22" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "1Cor.9.23" ∷ word (δ ∷ ὲ ∷ []) "1Cor.9.23" ∷ word (π ∷ ο ∷ ι ∷ ῶ ∷ []) "1Cor.9.23" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "1Cor.9.23" ∷ word (τ ∷ ὸ ∷ []) "1Cor.9.23" ∷ word (ε ∷ ὐ ∷ α ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ι ∷ ο ∷ ν ∷ []) "1Cor.9.23" ∷ word (ἵ ∷ ν ∷ α ∷ []) "1Cor.9.23" ∷ word (σ ∷ υ ∷ γ ∷ κ ∷ ο ∷ ι ∷ ν ∷ ω ∷ ν ∷ ὸ ∷ ς ∷ []) "1Cor.9.23" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "1Cor.9.23" ∷ word (γ ∷ έ ∷ ν ∷ ω ∷ μ ∷ α ∷ ι ∷ []) "1Cor.9.23" ∷ word (Ο ∷ ὐ ∷ κ ∷ []) "1Cor.9.24" ∷ word (ο ∷ ἴ ∷ δ ∷ α ∷ τ ∷ ε ∷ []) "1Cor.9.24" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "1Cor.9.24" ∷ word (ο ∷ ἱ ∷ []) "1Cor.9.24" ∷ word (ἐ ∷ ν ∷ []) "1Cor.9.24" ∷ word (σ ∷ τ ∷ α ∷ δ ∷ ί ∷ ῳ ∷ []) "1Cor.9.24" ∷ word (τ ∷ ρ ∷ έ ∷ χ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "1Cor.9.24" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "1Cor.9.24" ∷ word (μ ∷ ὲ ∷ ν ∷ []) "1Cor.9.24" ∷ word (τ ∷ ρ ∷ έ ∷ χ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "1Cor.9.24" ∷ word (ε ∷ ἷ ∷ ς ∷ []) "1Cor.9.24" ∷ word (δ ∷ ὲ ∷ []) "1Cor.9.24" ∷ word (∙λ ∷ α ∷ μ ∷ β ∷ ά ∷ ν ∷ ε ∷ ι ∷ []) "1Cor.9.24" ∷ word (τ ∷ ὸ ∷ []) "1Cor.9.24" ∷ word (β ∷ ρ ∷ α ∷ β ∷ ε ∷ ῖ ∷ ο ∷ ν ∷ []) "1Cor.9.24" ∷ word (ο ∷ ὕ ∷ τ ∷ ω ∷ ς ∷ []) "1Cor.9.24" ∷ word (τ ∷ ρ ∷ έ ∷ χ ∷ ε ∷ τ ∷ ε ∷ []) "1Cor.9.24" ∷ word (ἵ ∷ ν ∷ α ∷ []) "1Cor.9.24" ∷ word (κ ∷ α ∷ τ ∷ α ∷ ∙λ ∷ ά ∷ β ∷ η ∷ τ ∷ ε ∷ []) "1Cor.9.24" ∷ word (π ∷ ᾶ ∷ ς ∷ []) "1Cor.9.25" ∷ word (δ ∷ ὲ ∷ []) "1Cor.9.25" ∷ word (ὁ ∷ []) "1Cor.9.25" ∷ word (ἀ ∷ γ ∷ ω ∷ ν ∷ ι ∷ ζ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "1Cor.9.25" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "1Cor.9.25" ∷ word (ἐ ∷ γ ∷ κ ∷ ρ ∷ α ∷ τ ∷ ε ∷ ύ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "1Cor.9.25" ∷ word (ἐ ∷ κ ∷ ε ∷ ῖ ∷ ν ∷ ο ∷ ι ∷ []) "1Cor.9.25" ∷ word (μ ∷ ὲ ∷ ν ∷ []) "1Cor.9.25" ∷ word (ο ∷ ὖ ∷ ν ∷ []) "1Cor.9.25" ∷ word (ἵ ∷ ν ∷ α ∷ []) "1Cor.9.25" ∷ word (φ ∷ θ ∷ α ∷ ρ ∷ τ ∷ ὸ ∷ ν ∷ []) "1Cor.9.25" ∷ word (σ ∷ τ ∷ έ ∷ φ ∷ α ∷ ν ∷ ο ∷ ν ∷ []) "1Cor.9.25" ∷ word (∙λ ∷ ά ∷ β ∷ ω ∷ σ ∷ ι ∷ ν ∷ []) "1Cor.9.25" ∷ word (ἡ ∷ μ ∷ ε ∷ ῖ ∷ ς ∷ []) "1Cor.9.25" ∷ word (δ ∷ ὲ ∷ []) "1Cor.9.25" ∷ word (ἄ ∷ φ ∷ θ ∷ α ∷ ρ ∷ τ ∷ ο ∷ ν ∷ []) "1Cor.9.25" ∷ word (ἐ ∷ γ ∷ ὼ ∷ []) "1Cor.9.26" ∷ word (τ ∷ ο ∷ ί ∷ ν ∷ υ ∷ ν ∷ []) "1Cor.9.26" ∷ word (ο ∷ ὕ ∷ τ ∷ ω ∷ ς ∷ []) "1Cor.9.26" ∷ word (τ ∷ ρ ∷ έ ∷ χ ∷ ω ∷ []) "1Cor.9.26" ∷ word (ὡ ∷ ς ∷ []) "1Cor.9.26" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "1Cor.9.26" ∷ word (ἀ ∷ δ ∷ ή ∷ ∙λ ∷ ω ∷ ς ∷ []) "1Cor.9.26" ∷ word (ο ∷ ὕ ∷ τ ∷ ω ∷ ς ∷ []) "1Cor.9.26" ∷ word (π ∷ υ ∷ κ ∷ τ ∷ ε ∷ ύ ∷ ω ∷ []) "1Cor.9.26" ∷ word (ὡ ∷ ς ∷ []) "1Cor.9.26" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "1Cor.9.26" ∷ word (ἀ ∷ έ ∷ ρ ∷ α ∷ []) "1Cor.9.26" ∷ word (δ ∷ έ ∷ ρ ∷ ω ∷ ν ∷ []) "1Cor.9.26" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "1Cor.9.27" ∷ word (ὑ ∷ π ∷ ω ∷ π ∷ ι ∷ ά ∷ ζ ∷ ω ∷ []) "1Cor.9.27" ∷ word (μ ∷ ο ∷ υ ∷ []) "1Cor.9.27" ∷ word (τ ∷ ὸ ∷ []) "1Cor.9.27" ∷ word (σ ∷ ῶ ∷ μ ∷ α ∷ []) "1Cor.9.27" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.9.27" ∷ word (δ ∷ ο ∷ υ ∷ ∙λ ∷ α ∷ γ ∷ ω ∷ γ ∷ ῶ ∷ []) "1Cor.9.27" ∷ word (μ ∷ ή ∷ []) "1Cor.9.27" ∷ word (π ∷ ω ∷ ς ∷ []) "1Cor.9.27" ∷ word (ἄ ∷ ∙λ ∷ ∙λ ∷ ο ∷ ι ∷ ς ∷ []) "1Cor.9.27" ∷ word (κ ∷ η ∷ ρ ∷ ύ ∷ ξ ∷ α ∷ ς ∷ []) "1Cor.9.27" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ς ∷ []) "1Cor.9.27" ∷ word (ἀ ∷ δ ∷ ό ∷ κ ∷ ι ∷ μ ∷ ο ∷ ς ∷ []) "1Cor.9.27" ∷ word (γ ∷ έ ∷ ν ∷ ω ∷ μ ∷ α ∷ ι ∷ []) "1Cor.9.27" ∷ word (Ο ∷ ὐ ∷ []) "1Cor.10.1" ∷ word (θ ∷ έ ∷ ∙λ ∷ ω ∷ []) "1Cor.10.1" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "1Cor.10.1" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "1Cor.10.1" ∷ word (ἀ ∷ γ ∷ ν ∷ ο ∷ ε ∷ ῖ ∷ ν ∷ []) "1Cor.10.1" ∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ο ∷ ί ∷ []) "1Cor.10.1" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "1Cor.10.1" ∷ word (ο ∷ ἱ ∷ []) "1Cor.10.1" ∷ word (π ∷ α ∷ τ ∷ έ ∷ ρ ∷ ε ∷ ς ∷ []) "1Cor.10.1" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Cor.10.1" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "1Cor.10.1" ∷ word (ὑ ∷ π ∷ ὸ ∷ []) "1Cor.10.1" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "1Cor.10.1" ∷ word (ν ∷ ε ∷ φ ∷ έ ∷ ∙λ ∷ η ∷ ν ∷ []) "1Cor.10.1" ∷ word (ἦ ∷ σ ∷ α ∷ ν ∷ []) "1Cor.10.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.10.1" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "1Cor.10.1" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "1Cor.10.1" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "1Cor.10.1" ∷ word (θ ∷ α ∷ ∙λ ∷ ά ∷ σ ∷ σ ∷ η ∷ ς ∷ []) "1Cor.10.1" ∷ word (δ ∷ ι ∷ ῆ ∷ ∙λ ∷ θ ∷ ο ∷ ν ∷ []) "1Cor.10.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.10.2" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "1Cor.10.2" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "1Cor.10.2" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "1Cor.10.2" ∷ word (Μ ∷ ω ∷ ϋ ∷ σ ∷ ῆ ∷ ν ∷ []) "1Cor.10.2" ∷ word (ἐ ∷ β ∷ α ∷ π ∷ τ ∷ ί ∷ σ ∷ α ∷ ν ∷ τ ∷ ο ∷ []) "1Cor.10.2" ∷ word (ἐ ∷ ν ∷ []) "1Cor.10.2" ∷ word (τ ∷ ῇ ∷ []) "1Cor.10.2" ∷ word (ν ∷ ε ∷ φ ∷ έ ∷ ∙λ ∷ ῃ ∷ []) "1Cor.10.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.10.2" ∷ word (ἐ ∷ ν ∷ []) "1Cor.10.2" ∷ word (τ ∷ ῇ ∷ []) "1Cor.10.2" ∷ word (θ ∷ α ∷ ∙λ ∷ ά ∷ σ ∷ σ ∷ ῃ ∷ []) "1Cor.10.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.10.3" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "1Cor.10.3" ∷ word (τ ∷ ὸ ∷ []) "1Cor.10.3" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ []) "1Cor.10.3" ∷ word (π ∷ ν ∷ ε ∷ υ ∷ μ ∷ α ∷ τ ∷ ι ∷ κ ∷ ὸ ∷ ν ∷ []) "1Cor.10.3" ∷ word (β ∷ ρ ∷ ῶ ∷ μ ∷ α ∷ []) "1Cor.10.3" ∷ word (ἔ ∷ φ ∷ α ∷ γ ∷ ο ∷ ν ∷ []) "1Cor.10.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.10.4" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "1Cor.10.4" ∷ word (τ ∷ ὸ ∷ []) "1Cor.10.4" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ []) "1Cor.10.4" ∷ word (π ∷ ν ∷ ε ∷ υ ∷ μ ∷ α ∷ τ ∷ ι ∷ κ ∷ ὸ ∷ ν ∷ []) "1Cor.10.4" ∷ word (ἔ ∷ π ∷ ι ∷ ο ∷ ν ∷ []) "1Cor.10.4" ∷ word (π ∷ ό ∷ μ ∷ α ∷ []) "1Cor.10.4" ∷ word (ἔ ∷ π ∷ ι ∷ ν ∷ ο ∷ ν ∷ []) "1Cor.10.4" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "1Cor.10.4" ∷ word (ἐ ∷ κ ∷ []) "1Cor.10.4" ∷ word (π ∷ ν ∷ ε ∷ υ ∷ μ ∷ α ∷ τ ∷ ι ∷ κ ∷ ῆ ∷ ς ∷ []) "1Cor.10.4" ∷ word (ἀ ∷ κ ∷ ο ∷ ∙λ ∷ ο ∷ υ ∷ θ ∷ ο ∷ ύ ∷ σ ∷ η ∷ ς ∷ []) "1Cor.10.4" ∷ word (π ∷ έ ∷ τ ∷ ρ ∷ α ∷ ς ∷ []) "1Cor.10.4" ∷ word (ἡ ∷ []) "1Cor.10.4" ∷ word (π ∷ έ ∷ τ ∷ ρ ∷ α ∷ []) "1Cor.10.4" ∷ word (δ ∷ ὲ ∷ []) "1Cor.10.4" ∷ word (ἦ ∷ ν ∷ []) "1Cor.10.4" ∷ word (ὁ ∷ []) "1Cor.10.4" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ό ∷ ς ∷ []) "1Cor.10.4" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ []) "1Cor.10.5" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "1Cor.10.5" ∷ word (ἐ ∷ ν ∷ []) "1Cor.10.5" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "1Cor.10.5" ∷ word (π ∷ ∙λ ∷ ε ∷ ί ∷ ο ∷ σ ∷ ι ∷ ν ∷ []) "1Cor.10.5" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "1Cor.10.5" ∷ word (η ∷ ὐ ∷ δ ∷ ό ∷ κ ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "1Cor.10.5" ∷ word (ὁ ∷ []) "1Cor.10.5" ∷ word (θ ∷ ε ∷ ό ∷ ς ∷ []) "1Cor.10.5" ∷ word (κ ∷ α ∷ τ ∷ ε ∷ σ ∷ τ ∷ ρ ∷ ώ ∷ θ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "1Cor.10.5" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "1Cor.10.5" ∷ word (ἐ ∷ ν ∷ []) "1Cor.10.5" ∷ word (τ ∷ ῇ ∷ []) "1Cor.10.5" ∷ word (ἐ ∷ ρ ∷ ή ∷ μ ∷ ῳ ∷ []) "1Cor.10.5" ∷ word (Τ ∷ α ∷ ῦ ∷ τ ∷ α ∷ []) "1Cor.10.6" ∷ word (δ ∷ ὲ ∷ []) "1Cor.10.6" ∷ word (τ ∷ ύ ∷ π ∷ ο ∷ ι ∷ []) "1Cor.10.6" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Cor.10.6" ∷ word (ἐ ∷ γ ∷ ε ∷ ν ∷ ή ∷ θ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "1Cor.10.6" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "1Cor.10.6" ∷ word (τ ∷ ὸ ∷ []) "1Cor.10.6" ∷ word (μ ∷ ὴ ∷ []) "1Cor.10.6" ∷ word (ε ∷ ἶ ∷ ν ∷ α ∷ ι ∷ []) "1Cor.10.6" ∷ word (ἡ ∷ μ ∷ ᾶ ∷ ς ∷ []) "1Cor.10.6" ∷ word (ἐ ∷ π ∷ ι ∷ θ ∷ υ ∷ μ ∷ η ∷ τ ∷ ὰ ∷ ς ∷ []) "1Cor.10.6" ∷ word (κ ∷ α ∷ κ ∷ ῶ ∷ ν ∷ []) "1Cor.10.6" ∷ word (κ ∷ α ∷ θ ∷ ὼ ∷ ς ∷ []) "1Cor.10.6" ∷ word (κ ∷ ἀ ∷ κ ∷ ε ∷ ῖ ∷ ν ∷ ο ∷ ι ∷ []) "1Cor.10.6" ∷ word (ἐ ∷ π ∷ ε ∷ θ ∷ ύ ∷ μ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "1Cor.10.6" ∷ word (μ ∷ η ∷ δ ∷ ὲ ∷ []) "1Cor.10.7" ∷ word (ε ∷ ἰ ∷ δ ∷ ω ∷ ∙λ ∷ ο ∷ ∙λ ∷ ά ∷ τ ∷ ρ ∷ α ∷ ι ∷ []) "1Cor.10.7" ∷ word (γ ∷ ί ∷ ν ∷ ε ∷ σ ∷ θ ∷ ε ∷ []) "1Cor.10.7" ∷ word (κ ∷ α ∷ θ ∷ ώ ∷ ς ∷ []) "1Cor.10.7" ∷ word (τ ∷ ι ∷ ν ∷ ε ∷ ς ∷ []) "1Cor.10.7" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "1Cor.10.7" ∷ word (ὥ ∷ σ ∷ π ∷ ε ∷ ρ ∷ []) "1Cor.10.7" ∷ word (γ ∷ έ ∷ γ ∷ ρ ∷ α ∷ π ∷ τ ∷ α ∷ ι ∷ []) "1Cor.10.7" ∷ word (Ἐ ∷ κ ∷ ά ∷ θ ∷ ι ∷ σ ∷ ε ∷ ν ∷ []) "1Cor.10.7" ∷ word (ὁ ∷ []) "1Cor.10.7" ∷ word (∙λ ∷ α ∷ ὸ ∷ ς ∷ []) "1Cor.10.7" ∷ word (φ ∷ α ∷ γ ∷ ε ∷ ῖ ∷ ν ∷ []) "1Cor.10.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.10.7" ∷ word (π ∷ ε ∷ ῖ ∷ ν ∷ []) "1Cor.10.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.10.7" ∷ word (ἀ ∷ ν ∷ έ ∷ σ ∷ τ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "1Cor.10.7" ∷ word (π ∷ α ∷ ί ∷ ζ ∷ ε ∷ ι ∷ ν ∷ []) "1Cor.10.7" ∷ word (μ ∷ η ∷ δ ∷ ὲ ∷ []) "1Cor.10.8" ∷ word (π ∷ ο ∷ ρ ∷ ν ∷ ε ∷ ύ ∷ ω ∷ μ ∷ ε ∷ ν ∷ []) "1Cor.10.8" ∷ word (κ ∷ α ∷ θ ∷ ώ ∷ ς ∷ []) "1Cor.10.8" ∷ word (τ ∷ ι ∷ ν ∷ ε ∷ ς ∷ []) "1Cor.10.8" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "1Cor.10.8" ∷ word (ἐ ∷ π ∷ ό ∷ ρ ∷ ν ∷ ε ∷ υ ∷ σ ∷ α ∷ ν ∷ []) "1Cor.10.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.10.8" ∷ word (ἔ ∷ π ∷ ε ∷ σ ∷ α ∷ ν ∷ []) "1Cor.10.8" ∷ word (μ ∷ ι ∷ ᾷ ∷ []) "1Cor.10.8" ∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ ᾳ ∷ []) "1Cor.10.8" ∷ word (ε ∷ ἴ ∷ κ ∷ ο ∷ σ ∷ ι ∷ []) "1Cor.10.8" ∷ word (τ ∷ ρ ∷ ε ∷ ῖ ∷ ς ∷ []) "1Cor.10.8" ∷ word (χ ∷ ι ∷ ∙λ ∷ ι ∷ ά ∷ δ ∷ ε ∷ ς ∷ []) "1Cor.10.8" ∷ word (μ ∷ η ∷ δ ∷ ὲ ∷ []) "1Cor.10.9" ∷ word (ἐ ∷ κ ∷ π ∷ ε ∷ ι ∷ ρ ∷ ά ∷ ζ ∷ ω ∷ μ ∷ ε ∷ ν ∷ []) "1Cor.10.9" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "1Cor.10.9" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ό ∷ ν ∷ []) "1Cor.10.9" ∷ word (κ ∷ α ∷ θ ∷ ώ ∷ ς ∷ []) "1Cor.10.9" ∷ word (τ ∷ ι ∷ ν ∷ ε ∷ ς ∷ []) "1Cor.10.9" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "1Cor.10.9" ∷ word (ἐ ∷ π ∷ ε ∷ ί ∷ ρ ∷ α ∷ σ ∷ α ∷ ν ∷ []) "1Cor.10.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.10.9" ∷ word (ὑ ∷ π ∷ ὸ ∷ []) "1Cor.10.9" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "1Cor.10.9" ∷ word (ὄ ∷ φ ∷ ε ∷ ω ∷ ν ∷ []) "1Cor.10.9" ∷ word (ἀ ∷ π ∷ ώ ∷ ∙λ ∷ ∙λ ∷ υ ∷ ν ∷ τ ∷ ο ∷ []) "1Cor.10.9" ∷ word (μ ∷ η ∷ δ ∷ ὲ ∷ []) "1Cor.10.10" ∷ word (γ ∷ ο ∷ γ ∷ γ ∷ ύ ∷ ζ ∷ ε ∷ τ ∷ ε ∷ []) "1Cor.10.10" ∷ word (κ ∷ α ∷ θ ∷ ά ∷ π ∷ ε ∷ ρ ∷ []) "1Cor.10.10" ∷ word (τ ∷ ι ∷ ν ∷ ὲ ∷ ς ∷ []) "1Cor.10.10" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "1Cor.10.10" ∷ word (ἐ ∷ γ ∷ ό ∷ γ ∷ γ ∷ υ ∷ σ ∷ α ∷ ν ∷ []) "1Cor.10.10" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.10.10" ∷ word (ἀ ∷ π ∷ ώ ∷ ∙λ ∷ ο ∷ ν ∷ τ ∷ ο ∷ []) "1Cor.10.10" ∷ word (ὑ ∷ π ∷ ὸ ∷ []) "1Cor.10.10" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.10.10" ∷ word (ὀ ∷ ∙λ ∷ ο ∷ θ ∷ ρ ∷ ε ∷ υ ∷ τ ∷ ο ∷ ῦ ∷ []) "1Cor.10.10" ∷ word (τ ∷ α ∷ ῦ ∷ τ ∷ α ∷ []) "1Cor.10.11" ∷ word (δ ∷ ὲ ∷ []) "1Cor.10.11" ∷ word (τ ∷ υ ∷ π ∷ ι ∷ κ ∷ ῶ ∷ ς ∷ []) "1Cor.10.11" ∷ word (σ ∷ υ ∷ ν ∷ έ ∷ β ∷ α ∷ ι ∷ ν ∷ ε ∷ ν ∷ []) "1Cor.10.11" ∷ word (ἐ ∷ κ ∷ ε ∷ ί ∷ ν ∷ ο ∷ ι ∷ ς ∷ []) "1Cor.10.11" ∷ word (ἐ ∷ γ ∷ ρ ∷ ά ∷ φ ∷ η ∷ []) "1Cor.10.11" ∷ word (δ ∷ ὲ ∷ []) "1Cor.10.11" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "1Cor.10.11" ∷ word (ν ∷ ο ∷ υ ∷ θ ∷ ε ∷ σ ∷ ί ∷ α ∷ ν ∷ []) "1Cor.10.11" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Cor.10.11" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "1Cor.10.11" ∷ word (ο ∷ ὓ ∷ ς ∷ []) "1Cor.10.11" ∷ word (τ ∷ ὰ ∷ []) "1Cor.10.11" ∷ word (τ ∷ έ ∷ ∙λ ∷ η ∷ []) "1Cor.10.11" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "1Cor.10.11" ∷ word (α ∷ ἰ ∷ ώ ∷ ν ∷ ω ∷ ν ∷ []) "1Cor.10.11" ∷ word (κ ∷ α ∷ τ ∷ ή ∷ ν ∷ τ ∷ η ∷ κ ∷ ε ∷ ν ∷ []) "1Cor.10.11" ∷ word (ὥ ∷ σ ∷ τ ∷ ε ∷ []) "1Cor.10.12" ∷ word (ὁ ∷ []) "1Cor.10.12" ∷ word (δ ∷ ο ∷ κ ∷ ῶ ∷ ν ∷ []) "1Cor.10.12" ∷ word (ἑ ∷ σ ∷ τ ∷ ά ∷ ν ∷ α ∷ ι ∷ []) "1Cor.10.12" ∷ word (β ∷ ∙λ ∷ ε ∷ π ∷ έ ∷ τ ∷ ω ∷ []) "1Cor.10.12" ∷ word (μ ∷ ὴ ∷ []) "1Cor.10.12" ∷ word (π ∷ έ ∷ σ ∷ ῃ ∷ []) "1Cor.10.12" ∷ word (π ∷ ε ∷ ι ∷ ρ ∷ α ∷ σ ∷ μ ∷ ὸ ∷ ς ∷ []) "1Cor.10.13" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "1Cor.10.13" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "1Cor.10.13" ∷ word (ε ∷ ἴ ∷ ∙λ ∷ η ∷ φ ∷ ε ∷ ν ∷ []) "1Cor.10.13" ∷ word (ε ∷ ἰ ∷ []) "1Cor.10.13" ∷ word (μ ∷ ὴ ∷ []) "1Cor.10.13" ∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ι ∷ ν ∷ ο ∷ ς ∷ []) "1Cor.10.13" ∷ word (π ∷ ι ∷ σ ∷ τ ∷ ὸ ∷ ς ∷ []) "1Cor.10.13" ∷ word (δ ∷ ὲ ∷ []) "1Cor.10.13" ∷ word (ὁ ∷ []) "1Cor.10.13" ∷ word (θ ∷ ε ∷ ό ∷ ς ∷ []) "1Cor.10.13" ∷ word (ὃ ∷ ς ∷ []) "1Cor.10.13" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "1Cor.10.13" ∷ word (ἐ ∷ ά ∷ σ ∷ ε ∷ ι ∷ []) "1Cor.10.13" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "1Cor.10.13" ∷ word (π ∷ ε ∷ ι ∷ ρ ∷ α ∷ σ ∷ θ ∷ ῆ ∷ ν ∷ α ∷ ι ∷ []) "1Cor.10.13" ∷ word (ὑ ∷ π ∷ ὲ ∷ ρ ∷ []) "1Cor.10.13" ∷ word (ὃ ∷ []) "1Cor.10.13" ∷ word (δ ∷ ύ ∷ ν ∷ α ∷ σ ∷ θ ∷ ε ∷ []) "1Cor.10.13" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "1Cor.10.13" ∷ word (π ∷ ο ∷ ι ∷ ή ∷ σ ∷ ε ∷ ι ∷ []) "1Cor.10.13" ∷ word (σ ∷ ὺ ∷ ν ∷ []) "1Cor.10.13" ∷ word (τ ∷ ῷ ∷ []) "1Cor.10.13" ∷ word (π ∷ ε ∷ ι ∷ ρ ∷ α ∷ σ ∷ μ ∷ ῷ ∷ []) "1Cor.10.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.10.13" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "1Cor.10.13" ∷ word (ἔ ∷ κ ∷ β ∷ α ∷ σ ∷ ι ∷ ν ∷ []) "1Cor.10.13" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.10.13" ∷ word (δ ∷ ύ ∷ ν ∷ α ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "1Cor.10.13" ∷ word (ὑ ∷ π ∷ ε ∷ ν ∷ ε ∷ γ ∷ κ ∷ ε ∷ ῖ ∷ ν ∷ []) "1Cor.10.13" ∷ word (Δ ∷ ι ∷ ό ∷ π ∷ ε ∷ ρ ∷ []) "1Cor.10.14" ∷ word (ἀ ∷ γ ∷ α ∷ π ∷ η ∷ τ ∷ ο ∷ ί ∷ []) "1Cor.10.14" ∷ word (μ ∷ ο ∷ υ ∷ []) "1Cor.10.14" ∷ word (φ ∷ ε ∷ ύ ∷ γ ∷ ε ∷ τ ∷ ε ∷ []) "1Cor.10.14" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "1Cor.10.14" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "1Cor.10.14" ∷ word (ε ∷ ἰ ∷ δ ∷ ω ∷ ∙λ ∷ ο ∷ ∙λ ∷ α ∷ τ ∷ ρ ∷ ί ∷ α ∷ ς ∷ []) "1Cor.10.14" ∷ word (ὡ ∷ ς ∷ []) "1Cor.10.15" ∷ word (φ ∷ ρ ∷ ο ∷ ν ∷ ί ∷ μ ∷ ο ∷ ι ∷ ς ∷ []) "1Cor.10.15" ∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ []) "1Cor.10.15" ∷ word (κ ∷ ρ ∷ ί ∷ ν ∷ α ∷ τ ∷ ε ∷ []) "1Cor.10.15" ∷ word (ὑ ∷ μ ∷ ε ∷ ῖ ∷ ς ∷ []) "1Cor.10.15" ∷ word (ὅ ∷ []) "1Cor.10.15" ∷ word (φ ∷ η ∷ μ ∷ ι ∷ []) "1Cor.10.15" ∷ word (τ ∷ ὸ ∷ []) "1Cor.10.16" ∷ word (π ∷ ο ∷ τ ∷ ή ∷ ρ ∷ ι ∷ ο ∷ ν ∷ []) "1Cor.10.16" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "1Cor.10.16" ∷ word (ε ∷ ὐ ∷ ∙λ ∷ ο ∷ γ ∷ ί ∷ α ∷ ς ∷ []) "1Cor.10.16" ∷ word (ὃ ∷ []) "1Cor.10.16" ∷ word (ε ∷ ὐ ∷ ∙λ ∷ ο ∷ γ ∷ ο ∷ ῦ ∷ μ ∷ ε ∷ ν ∷ []) "1Cor.10.16" ∷ word (ο ∷ ὐ ∷ χ ∷ ὶ ∷ []) "1Cor.10.16" ∷ word (κ ∷ ο ∷ ι ∷ ν ∷ ω ∷ ν ∷ ί ∷ α ∷ []) "1Cor.10.16" ∷ word (ἐ ∷ σ ∷ τ ∷ ὶ ∷ ν ∷ []) "1Cor.10.16" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.10.16" ∷ word (α ∷ ἵ ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "1Cor.10.16" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.10.16" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "1Cor.10.16" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "1Cor.10.16" ∷ word (ἄ ∷ ρ ∷ τ ∷ ο ∷ ν ∷ []) "1Cor.10.16" ∷ word (ὃ ∷ ν ∷ []) "1Cor.10.16" ∷ word (κ ∷ ∙λ ∷ ῶ ∷ μ ∷ ε ∷ ν ∷ []) "1Cor.10.16" ∷ word (ο ∷ ὐ ∷ χ ∷ ὶ ∷ []) "1Cor.10.16" ∷ word (κ ∷ ο ∷ ι ∷ ν ∷ ω ∷ ν ∷ ί ∷ α ∷ []) "1Cor.10.16" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.10.16" ∷ word (σ ∷ ώ ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "1Cor.10.16" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.10.16" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "1Cor.10.16" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "1Cor.10.16" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "1Cor.10.17" ∷ word (ε ∷ ἷ ∷ ς ∷ []) "1Cor.10.17" ∷ word (ἄ ∷ ρ ∷ τ ∷ ο ∷ ς ∷ []) "1Cor.10.17" ∷ word (ἓ ∷ ν ∷ []) "1Cor.10.17" ∷ word (σ ∷ ῶ ∷ μ ∷ α ∷ []) "1Cor.10.17" ∷ word (ο ∷ ἱ ∷ []) "1Cor.10.17" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ο ∷ ί ∷ []) "1Cor.10.17" ∷ word (ἐ ∷ σ ∷ μ ∷ ε ∷ ν ∷ []) "1Cor.10.17" ∷ word (ο ∷ ἱ ∷ []) "1Cor.10.17" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "1Cor.10.17" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "1Cor.10.17" ∷ word (ἐ ∷ κ ∷ []) "1Cor.10.17" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.10.17" ∷ word (ἑ ∷ ν ∷ ὸ ∷ ς ∷ []) "1Cor.10.17" ∷ word (ἄ ∷ ρ ∷ τ ∷ ο ∷ υ ∷ []) "1Cor.10.17" ∷ word (μ ∷ ε ∷ τ ∷ έ ∷ χ ∷ ο ∷ μ ∷ ε ∷ ν ∷ []) "1Cor.10.17" ∷ word (β ∷ ∙λ ∷ έ ∷ π ∷ ε ∷ τ ∷ ε ∷ []) "1Cor.10.18" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "1Cor.10.18" ∷ word (Ἰ ∷ σ ∷ ρ ∷ α ∷ ὴ ∷ ∙λ ∷ []) "1Cor.10.18" ∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "1Cor.10.18" ∷ word (σ ∷ ά ∷ ρ ∷ κ ∷ α ∷ []) "1Cor.10.18" ∷ word (ο ∷ ὐ ∷ χ ∷ []) "1Cor.10.18" ∷ word (ο ∷ ἱ ∷ []) "1Cor.10.18" ∷ word (ἐ ∷ σ ∷ θ ∷ ί ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "1Cor.10.18" ∷ word (τ ∷ ὰ ∷ ς ∷ []) "1Cor.10.18" ∷ word (θ ∷ υ ∷ σ ∷ ί ∷ α ∷ ς ∷ []) "1Cor.10.18" ∷ word (κ ∷ ο ∷ ι ∷ ν ∷ ω ∷ ν ∷ ο ∷ ὶ ∷ []) "1Cor.10.18" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.10.18" ∷ word (θ ∷ υ ∷ σ ∷ ι ∷ α ∷ σ ∷ τ ∷ η ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "1Cor.10.18" ∷ word (ε ∷ ἰ ∷ σ ∷ ί ∷ ν ∷ []) "1Cor.10.18" ∷ word (τ ∷ ί ∷ []) "1Cor.10.19" ∷ word (ο ∷ ὖ ∷ ν ∷ []) "1Cor.10.19" ∷ word (φ ∷ η ∷ μ ∷ ι ∷ []) "1Cor.10.19" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "1Cor.10.19" ∷ word (ε ∷ ἰ ∷ δ ∷ ω ∷ ∙λ ∷ ό ∷ θ ∷ υ ∷ τ ∷ ό ∷ ν ∷ []) "1Cor.10.19" ∷ word (τ ∷ ί ∷ []) "1Cor.10.19" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "1Cor.10.19" ∷ word (ἢ ∷ []) "1Cor.10.19" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "1Cor.10.19" ∷ word (ε ∷ ἴ ∷ δ ∷ ω ∷ ∙λ ∷ ό ∷ ν ∷ []) "1Cor.10.19" ∷ word (τ ∷ ί ∷ []) "1Cor.10.19" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "1Cor.10.19" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ []) "1Cor.10.20" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "1Cor.10.20" ∷ word (ἃ ∷ []) "1Cor.10.20" ∷ word (θ ∷ ύ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "1Cor.10.20" ∷ word (δ ∷ α ∷ ι ∷ μ ∷ ο ∷ ν ∷ ί ∷ ο ∷ ι ∷ ς ∷ []) "1Cor.10.20" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.10.20" ∷ word (ο ∷ ὐ ∷ []) "1Cor.10.20" ∷ word (θ ∷ ε ∷ ῷ ∷ []) "1Cor.10.20" ∷ word (θ ∷ ύ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "1Cor.10.20" ∷ word (ο ∷ ὐ ∷ []) "1Cor.10.20" ∷ word (θ ∷ έ ∷ ∙λ ∷ ω ∷ []) "1Cor.10.20" ∷ word (δ ∷ ὲ ∷ []) "1Cor.10.20" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "1Cor.10.20" ∷ word (κ ∷ ο ∷ ι ∷ ν ∷ ω ∷ ν ∷ ο ∷ ὺ ∷ ς ∷ []) "1Cor.10.20" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "1Cor.10.20" ∷ word (δ ∷ α ∷ ι ∷ μ ∷ ο ∷ ν ∷ ί ∷ ω ∷ ν ∷ []) "1Cor.10.20" ∷ word (γ ∷ ί ∷ ν ∷ ε ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "1Cor.10.20" ∷ word (ο ∷ ὐ ∷ []) "1Cor.10.21" ∷ word (δ ∷ ύ ∷ ν ∷ α ∷ σ ∷ θ ∷ ε ∷ []) "1Cor.10.21" ∷ word (π ∷ ο ∷ τ ∷ ή ∷ ρ ∷ ι ∷ ο ∷ ν ∷ []) "1Cor.10.21" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "1Cor.10.21" ∷ word (π ∷ ί ∷ ν ∷ ε ∷ ι ∷ ν ∷ []) "1Cor.10.21" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.10.21" ∷ word (π ∷ ο ∷ τ ∷ ή ∷ ρ ∷ ι ∷ ο ∷ ν ∷ []) "1Cor.10.21" ∷ word (δ ∷ α ∷ ι ∷ μ ∷ ο ∷ ν ∷ ί ∷ ω ∷ ν ∷ []) "1Cor.10.21" ∷ word (ο ∷ ὐ ∷ []) "1Cor.10.21" ∷ word (δ ∷ ύ ∷ ν ∷ α ∷ σ ∷ θ ∷ ε ∷ []) "1Cor.10.21" ∷ word (τ ∷ ρ ∷ α ∷ π ∷ έ ∷ ζ ∷ η ∷ ς ∷ []) "1Cor.10.21" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "1Cor.10.21" ∷ word (μ ∷ ε ∷ τ ∷ έ ∷ χ ∷ ε ∷ ι ∷ ν ∷ []) "1Cor.10.21" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.10.21" ∷ word (τ ∷ ρ ∷ α ∷ π ∷ έ ∷ ζ ∷ η ∷ ς ∷ []) "1Cor.10.21" ∷ word (δ ∷ α ∷ ι ∷ μ ∷ ο ∷ ν ∷ ί ∷ ω ∷ ν ∷ []) "1Cor.10.21" ∷ word (ἢ ∷ []) "1Cor.10.22" ∷ word (π ∷ α ∷ ρ ∷ α ∷ ζ ∷ η ∷ ∙λ ∷ ο ∷ ῦ ∷ μ ∷ ε ∷ ν ∷ []) "1Cor.10.22" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "1Cor.10.22" ∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ν ∷ []) "1Cor.10.22" ∷ word (μ ∷ ὴ ∷ []) "1Cor.10.22" ∷ word (ἰ ∷ σ ∷ χ ∷ υ ∷ ρ ∷ ό ∷ τ ∷ ε ∷ ρ ∷ ο ∷ ι ∷ []) "1Cor.10.22" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "1Cor.10.22" ∷ word (ἐ ∷ σ ∷ μ ∷ ε ∷ ν ∷ []) "1Cor.10.22" ∷ word (Π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "1Cor.10.23" ∷ word (ἔ ∷ ξ ∷ ε ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "1Cor.10.23" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ []) "1Cor.10.23" ∷ word (ο ∷ ὐ ∷ []) "1Cor.10.23" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "1Cor.10.23" ∷ word (σ ∷ υ ∷ μ ∷ φ ∷ έ ∷ ρ ∷ ε ∷ ι ∷ []) "1Cor.10.23" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "1Cor.10.23" ∷ word (ἔ ∷ ξ ∷ ε ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "1Cor.10.23" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ []) "1Cor.10.23" ∷ word (ο ∷ ὐ ∷ []) "1Cor.10.23" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "1Cor.10.23" ∷ word (ο ∷ ἰ ∷ κ ∷ ο ∷ δ ∷ ο ∷ μ ∷ ε ∷ ῖ ∷ []) "1Cor.10.23" ∷ word (μ ∷ η ∷ δ ∷ ε ∷ ὶ ∷ ς ∷ []) "1Cor.10.24" ∷ word (τ ∷ ὸ ∷ []) "1Cor.10.24" ∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ο ∷ ῦ ∷ []) "1Cor.10.24" ∷ word (ζ ∷ η ∷ τ ∷ ε ∷ ί ∷ τ ∷ ω ∷ []) "1Cor.10.24" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "1Cor.10.24" ∷ word (τ ∷ ὸ ∷ []) "1Cor.10.24" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.10.24" ∷ word (ἑ ∷ τ ∷ έ ∷ ρ ∷ ο ∷ υ ∷ []) "1Cor.10.24" ∷ word (π ∷ ᾶ ∷ ν ∷ []) "1Cor.10.25" ∷ word (τ ∷ ὸ ∷ []) "1Cor.10.25" ∷ word (ἐ ∷ ν ∷ []) "1Cor.10.25" ∷ word (μ ∷ α ∷ κ ∷ έ ∷ ∙λ ∷ ∙λ ∷ ῳ ∷ []) "1Cor.10.25" ∷ word (π ∷ ω ∷ ∙λ ∷ ο ∷ ύ ∷ μ ∷ ε ∷ ν ∷ ο ∷ ν ∷ []) "1Cor.10.25" ∷ word (ἐ ∷ σ ∷ θ ∷ ί ∷ ε ∷ τ ∷ ε ∷ []) "1Cor.10.25" ∷ word (μ ∷ η ∷ δ ∷ ὲ ∷ ν ∷ []) "1Cor.10.25" ∷ word (ἀ ∷ ν ∷ α ∷ κ ∷ ρ ∷ ί ∷ ν ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "1Cor.10.25" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "1Cor.10.25" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "1Cor.10.25" ∷ word (σ ∷ υ ∷ ν ∷ ε ∷ ί ∷ δ ∷ η ∷ σ ∷ ι ∷ ν ∷ []) "1Cor.10.25" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.10.26" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "1Cor.10.26" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "1Cor.10.26" ∷ word (ἡ ∷ []) "1Cor.10.26" ∷ word (γ ∷ ῆ ∷ []) "1Cor.10.26" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.10.26" ∷ word (τ ∷ ὸ ∷ []) "1Cor.10.26" ∷ word (π ∷ ∙λ ∷ ή ∷ ρ ∷ ω ∷ μ ∷ α ∷ []) "1Cor.10.26" ∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "1Cor.10.26" ∷ word (ε ∷ ἴ ∷ []) "1Cor.10.27" ∷ word (τ ∷ ι ∷ ς ∷ []) "1Cor.10.27" ∷ word (κ ∷ α ∷ ∙λ ∷ ε ∷ ῖ ∷ []) "1Cor.10.27" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "1Cor.10.27" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "1Cor.10.27" ∷ word (ἀ ∷ π ∷ ί ∷ σ ∷ τ ∷ ω ∷ ν ∷ []) "1Cor.10.27" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.10.27" ∷ word (θ ∷ έ ∷ ∙λ ∷ ε ∷ τ ∷ ε ∷ []) "1Cor.10.27" ∷ word (π ∷ ο ∷ ρ ∷ ε ∷ ύ ∷ ε ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "1Cor.10.27" ∷ word (π ∷ ᾶ ∷ ν ∷ []) "1Cor.10.27" ∷ word (τ ∷ ὸ ∷ []) "1Cor.10.27" ∷ word (π ∷ α ∷ ρ ∷ α ∷ τ ∷ ι ∷ θ ∷ έ ∷ μ ∷ ε ∷ ν ∷ ο ∷ ν ∷ []) "1Cor.10.27" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "1Cor.10.27" ∷ word (ἐ ∷ σ ∷ θ ∷ ί ∷ ε ∷ τ ∷ ε ∷ []) "1Cor.10.27" ∷ word (μ ∷ η ∷ δ ∷ ὲ ∷ ν ∷ []) "1Cor.10.27" ∷ word (ἀ ∷ ν ∷ α ∷ κ ∷ ρ ∷ ί ∷ ν ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "1Cor.10.27" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "1Cor.10.27" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "1Cor.10.27" ∷ word (σ ∷ υ ∷ ν ∷ ε ∷ ί ∷ δ ∷ η ∷ σ ∷ ι ∷ ν ∷ []) "1Cor.10.27" ∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "1Cor.10.28" ∷ word (δ ∷ έ ∷ []) "1Cor.10.28" ∷ word (τ ∷ ι ∷ ς ∷ []) "1Cor.10.28" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "1Cor.10.28" ∷ word (ε ∷ ἴ ∷ π ∷ ῃ ∷ []) "1Cor.10.28" ∷ word (Τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "1Cor.10.28" ∷ word (ἱ ∷ ε ∷ ρ ∷ ό ∷ θ ∷ υ ∷ τ ∷ ό ∷ ν ∷ []) "1Cor.10.28" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "1Cor.10.28" ∷ word (μ ∷ ὴ ∷ []) "1Cor.10.28" ∷ word (ἐ ∷ σ ∷ θ ∷ ί ∷ ε ∷ τ ∷ ε ∷ []) "1Cor.10.28" ∷ word (δ ∷ ι ∷ []) "1Cor.10.28" ∷ word (ἐ ∷ κ ∷ ε ∷ ῖ ∷ ν ∷ ο ∷ ν ∷ []) "1Cor.10.28" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "1Cor.10.28" ∷ word (μ ∷ η ∷ ν ∷ ύ ∷ σ ∷ α ∷ ν ∷ τ ∷ α ∷ []) "1Cor.10.28" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.10.28" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "1Cor.10.28" ∷ word (σ ∷ υ ∷ ν ∷ ε ∷ ί ∷ δ ∷ η ∷ σ ∷ ι ∷ ν ∷ []) "1Cor.10.28" ∷ word (σ ∷ υ ∷ ν ∷ ε ∷ ί ∷ δ ∷ η ∷ σ ∷ ι ∷ ν ∷ []) "1Cor.10.29" ∷ word (δ ∷ ὲ ∷ []) "1Cor.10.29" ∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ []) "1Cor.10.29" ∷ word (ο ∷ ὐ ∷ χ ∷ ὶ ∷ []) "1Cor.10.29" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "1Cor.10.29" ∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ο ∷ ῦ ∷ []) "1Cor.10.29" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "1Cor.10.29" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "1Cor.10.29" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.10.29" ∷ word (ἑ ∷ τ ∷ έ ∷ ρ ∷ ο ∷ υ ∷ []) "1Cor.10.29" ∷ word (ἱ ∷ ν ∷ α ∷ τ ∷ ί ∷ []) "1Cor.10.29" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "1Cor.10.29" ∷ word (ἡ ∷ []) "1Cor.10.29" ∷ word (ἐ ∷ ∙λ ∷ ε ∷ υ ∷ θ ∷ ε ∷ ρ ∷ ί ∷ α ∷ []) "1Cor.10.29" ∷ word (μ ∷ ο ∷ υ ∷ []) "1Cor.10.29" ∷ word (κ ∷ ρ ∷ ί ∷ ν ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "1Cor.10.29" ∷ word (ὑ ∷ π ∷ ὸ ∷ []) "1Cor.10.29" ∷ word (ἄ ∷ ∙λ ∷ ∙λ ∷ η ∷ ς ∷ []) "1Cor.10.29" ∷ word (σ ∷ υ ∷ ν ∷ ε ∷ ι ∷ δ ∷ ή ∷ σ ∷ ε ∷ ω ∷ ς ∷ []) "1Cor.10.29" ∷ word (ε ∷ ἰ ∷ []) "1Cor.10.30" ∷ word (ἐ ∷ γ ∷ ὼ ∷ []) "1Cor.10.30" ∷ word (χ ∷ ά ∷ ρ ∷ ι ∷ τ ∷ ι ∷ []) "1Cor.10.30" ∷ word (μ ∷ ε ∷ τ ∷ έ ∷ χ ∷ ω ∷ []) "1Cor.10.30" ∷ word (τ ∷ ί ∷ []) "1Cor.10.30" ∷ word (β ∷ ∙λ ∷ α ∷ σ ∷ φ ∷ η ∷ μ ∷ ο ∷ ῦ ∷ μ ∷ α ∷ ι ∷ []) "1Cor.10.30" ∷ word (ὑ ∷ π ∷ ὲ ∷ ρ ∷ []) "1Cor.10.30" ∷ word (ο ∷ ὗ ∷ []) "1Cor.10.30" ∷ word (ἐ ∷ γ ∷ ὼ ∷ []) "1Cor.10.30" ∷ word (ε ∷ ὐ ∷ χ ∷ α ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ῶ ∷ []) "1Cor.10.30" ∷ word (Ε ∷ ἴ ∷ τ ∷ ε ∷ []) "1Cor.10.31" ∷ word (ο ∷ ὖ ∷ ν ∷ []) "1Cor.10.31" ∷ word (ἐ ∷ σ ∷ θ ∷ ί ∷ ε ∷ τ ∷ ε ∷ []) "1Cor.10.31" ∷ word (ε ∷ ἴ ∷ τ ∷ ε ∷ []) "1Cor.10.31" ∷ word (π ∷ ί ∷ ν ∷ ε ∷ τ ∷ ε ∷ []) "1Cor.10.31" ∷ word (ε ∷ ἴ ∷ τ ∷ ε ∷ []) "1Cor.10.31" ∷ word (τ ∷ ι ∷ []) "1Cor.10.31" ∷ word (π ∷ ο ∷ ι ∷ ε ∷ ῖ ∷ τ ∷ ε ∷ []) "1Cor.10.31" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "1Cor.10.31" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "1Cor.10.31" ∷ word (δ ∷ ό ∷ ξ ∷ α ∷ ν ∷ []) "1Cor.10.31" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "1Cor.10.31" ∷ word (π ∷ ο ∷ ι ∷ ε ∷ ῖ ∷ τ ∷ ε ∷ []) "1Cor.10.31" ∷ word (ἀ ∷ π ∷ ρ ∷ ό ∷ σ ∷ κ ∷ ο ∷ π ∷ ο ∷ ι ∷ []) "1Cor.10.32" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.10.32" ∷ word (Ἰ ∷ ο ∷ υ ∷ δ ∷ α ∷ ί ∷ ο ∷ ι ∷ ς ∷ []) "1Cor.10.32" ∷ word (γ ∷ ί ∷ ν ∷ ε ∷ σ ∷ θ ∷ ε ∷ []) "1Cor.10.32" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.10.32" ∷ word (Ἕ ∷ ∙λ ∷ ∙λ ∷ η ∷ σ ∷ ι ∷ ν ∷ []) "1Cor.10.32" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.10.32" ∷ word (τ ∷ ῇ ∷ []) "1Cor.10.32" ∷ word (ἐ ∷ κ ∷ κ ∷ ∙λ ∷ η ∷ σ ∷ ί ∷ ᾳ ∷ []) "1Cor.10.32" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.10.32" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "1Cor.10.32" ∷ word (κ ∷ α ∷ θ ∷ ὼ ∷ ς ∷ []) "1Cor.10.33" ∷ word (κ ∷ ἀ ∷ γ ∷ ὼ ∷ []) "1Cor.10.33" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "1Cor.10.33" ∷ word (π ∷ ᾶ ∷ σ ∷ ι ∷ ν ∷ []) "1Cor.10.33" ∷ word (ἀ ∷ ρ ∷ έ ∷ σ ∷ κ ∷ ω ∷ []) "1Cor.10.33" ∷ word (μ ∷ ὴ ∷ []) "1Cor.10.33" ∷ word (ζ ∷ η ∷ τ ∷ ῶ ∷ ν ∷ []) "1Cor.10.33" ∷ word (τ ∷ ὸ ∷ []) "1Cor.10.33" ∷ word (ἐ ∷ μ ∷ α ∷ υ ∷ τ ∷ ο ∷ ῦ ∷ []) "1Cor.10.33" ∷ word (σ ∷ ύ ∷ μ ∷ φ ∷ ο ∷ ρ ∷ ο ∷ ν ∷ []) "1Cor.10.33" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "1Cor.10.33" ∷ word (τ ∷ ὸ ∷ []) "1Cor.10.33" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "1Cor.10.33" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ῶ ∷ ν ∷ []) "1Cor.10.33" ∷ word (ἵ ∷ ν ∷ α ∷ []) "1Cor.10.33" ∷ word (σ ∷ ω ∷ θ ∷ ῶ ∷ σ ∷ ι ∷ ν ∷ []) "1Cor.10.33" ∷ word (μ ∷ ι ∷ μ ∷ η ∷ τ ∷ α ∷ ί ∷ []) "1Cor.11.1" ∷ word (μ ∷ ο ∷ υ ∷ []) "1Cor.11.1" ∷ word (γ ∷ ί ∷ ν ∷ ε ∷ σ ∷ θ ∷ ε ∷ []) "1Cor.11.1" ∷ word (κ ∷ α ∷ θ ∷ ὼ ∷ ς ∷ []) "1Cor.11.1" ∷ word (κ ∷ ἀ ∷ γ ∷ ὼ ∷ []) "1Cor.11.1" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "1Cor.11.1" ∷ word (Ἐ ∷ π ∷ α ∷ ι ∷ ν ∷ ῶ ∷ []) "1Cor.11.2" ∷ word (δ ∷ ὲ ∷ []) "1Cor.11.2" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "1Cor.11.2" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "1Cor.11.2" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "1Cor.11.2" ∷ word (μ ∷ ο ∷ υ ∷ []) "1Cor.11.2" ∷ word (μ ∷ έ ∷ μ ∷ ν ∷ η ∷ σ ∷ θ ∷ ε ∷ []) "1Cor.11.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.11.2" ∷ word (κ ∷ α ∷ θ ∷ ὼ ∷ ς ∷ []) "1Cor.11.2" ∷ word (π ∷ α ∷ ρ ∷ έ ∷ δ ∷ ω ∷ κ ∷ α ∷ []) "1Cor.11.2" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "1Cor.11.2" ∷ word (τ ∷ ὰ ∷ ς ∷ []) "1Cor.11.2" ∷ word (π ∷ α ∷ ρ ∷ α ∷ δ ∷ ό ∷ σ ∷ ε ∷ ι ∷ ς ∷ []) "1Cor.11.2" ∷ word (κ ∷ α ∷ τ ∷ έ ∷ χ ∷ ε ∷ τ ∷ ε ∷ []) "1Cor.11.2" ∷ word (θ ∷ έ ∷ ∙λ ∷ ω ∷ []) "1Cor.11.3" ∷ word (δ ∷ ὲ ∷ []) "1Cor.11.3" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "1Cor.11.3" ∷ word (ε ∷ ἰ ∷ δ ∷ έ ∷ ν ∷ α ∷ ι ∷ []) "1Cor.11.3" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "1Cor.11.3" ∷ word (π ∷ α ∷ ν ∷ τ ∷ ὸ ∷ ς ∷ []) "1Cor.11.3" ∷ word (ἀ ∷ ν ∷ δ ∷ ρ ∷ ὸ ∷ ς ∷ []) "1Cor.11.3" ∷ word (ἡ ∷ []) "1Cor.11.3" ∷ word (κ ∷ ε ∷ φ ∷ α ∷ ∙λ ∷ ὴ ∷ []) "1Cor.11.3" ∷ word (ὁ ∷ []) "1Cor.11.3" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ό ∷ ς ∷ []) "1Cor.11.3" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "1Cor.11.3" ∷ word (κ ∷ ε ∷ φ ∷ α ∷ ∙λ ∷ ὴ ∷ []) "1Cor.11.3" ∷ word (δ ∷ ὲ ∷ []) "1Cor.11.3" ∷ word (γ ∷ υ ∷ ν ∷ α ∷ ι ∷ κ ∷ ὸ ∷ ς ∷ []) "1Cor.11.3" ∷ word (ὁ ∷ []) "1Cor.11.3" ∷ word (ἀ ∷ ν ∷ ή ∷ ρ ∷ []) "1Cor.11.3" ∷ word (κ ∷ ε ∷ φ ∷ α ∷ ∙λ ∷ ὴ ∷ []) "1Cor.11.3" ∷ word (δ ∷ ὲ ∷ []) "1Cor.11.3" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.11.3" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "1Cor.11.3" ∷ word (ὁ ∷ []) "1Cor.11.3" ∷ word (θ ∷ ε ∷ ό ∷ ς ∷ []) "1Cor.11.3" ∷ word (π ∷ ᾶ ∷ ς ∷ []) "1Cor.11.4" ∷ word (ἀ ∷ ν ∷ ὴ ∷ ρ ∷ []) "1Cor.11.4" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ ε ∷ υ ∷ χ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "1Cor.11.4" ∷ word (ἢ ∷ []) "1Cor.11.4" ∷ word (π ∷ ρ ∷ ο ∷ φ ∷ η ∷ τ ∷ ε ∷ ύ ∷ ω ∷ ν ∷ []) "1Cor.11.4" ∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "1Cor.11.4" ∷ word (κ ∷ ε ∷ φ ∷ α ∷ ∙λ ∷ ῆ ∷ ς ∷ []) "1Cor.11.4" ∷ word (ἔ ∷ χ ∷ ω ∷ ν ∷ []) "1Cor.11.4" ∷ word (κ ∷ α ∷ τ ∷ α ∷ ι ∷ σ ∷ χ ∷ ύ ∷ ν ∷ ε ∷ ι ∷ []) "1Cor.11.4" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "1Cor.11.4" ∷ word (κ ∷ ε ∷ φ ∷ α ∷ ∙λ ∷ ὴ ∷ ν ∷ []) "1Cor.11.4" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "1Cor.11.4" ∷ word (π ∷ ᾶ ∷ σ ∷ α ∷ []) "1Cor.11.5" ∷ word (δ ∷ ὲ ∷ []) "1Cor.11.5" ∷ word (γ ∷ υ ∷ ν ∷ ὴ ∷ []) "1Cor.11.5" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ ε ∷ υ ∷ χ ∷ ο ∷ μ ∷ έ ∷ ν ∷ η ∷ []) "1Cor.11.5" ∷ word (ἢ ∷ []) "1Cor.11.5" ∷ word (π ∷ ρ ∷ ο ∷ φ ∷ η ∷ τ ∷ ε ∷ ύ ∷ ο ∷ υ ∷ σ ∷ α ∷ []) "1Cor.11.5" ∷ word (ἀ ∷ κ ∷ α ∷ τ ∷ α ∷ κ ∷ α ∷ ∙λ ∷ ύ ∷ π ∷ τ ∷ ῳ ∷ []) "1Cor.11.5" ∷ word (τ ∷ ῇ ∷ []) "1Cor.11.5" ∷ word (κ ∷ ε ∷ φ ∷ α ∷ ∙λ ∷ ῇ ∷ []) "1Cor.11.5" ∷ word (κ ∷ α ∷ τ ∷ α ∷ ι ∷ σ ∷ χ ∷ ύ ∷ ν ∷ ε ∷ ι ∷ []) "1Cor.11.5" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "1Cor.11.5" ∷ word (κ ∷ ε ∷ φ ∷ α ∷ ∙λ ∷ ὴ ∷ ν ∷ []) "1Cor.11.5" ∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "1Cor.11.5" ∷ word (ἓ ∷ ν ∷ []) "1Cor.11.5" ∷ word (γ ∷ ά ∷ ρ ∷ []) "1Cor.11.5" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "1Cor.11.5" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.11.5" ∷ word (τ ∷ ὸ ∷ []) "1Cor.11.5" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ []) "1Cor.11.5" ∷ word (τ ∷ ῇ ∷ []) "1Cor.11.5" ∷ word (ἐ ∷ ξ ∷ υ ∷ ρ ∷ η ∷ μ ∷ έ ∷ ν ∷ ῃ ∷ []) "1Cor.11.5" ∷ word (ε ∷ ἰ ∷ []) "1Cor.11.6" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "1Cor.11.6" ∷ word (ο ∷ ὐ ∷ []) "1Cor.11.6" ∷ word (κ ∷ α ∷ τ ∷ α ∷ κ ∷ α ∷ ∙λ ∷ ύ ∷ π ∷ τ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "1Cor.11.6" ∷ word (γ ∷ υ ∷ ν ∷ ή ∷ []) "1Cor.11.6" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.11.6" ∷ word (κ ∷ ε ∷ ι ∷ ρ ∷ ά ∷ σ ∷ θ ∷ ω ∷ []) "1Cor.11.6" ∷ word (ε ∷ ἰ ∷ []) "1Cor.11.6" ∷ word (δ ∷ ὲ ∷ []) "1Cor.11.6" ∷ word (α ∷ ἰ ∷ σ ∷ χ ∷ ρ ∷ ὸ ∷ ν ∷ []) "1Cor.11.6" ∷ word (γ ∷ υ ∷ ν ∷ α ∷ ι ∷ κ ∷ ὶ ∷ []) "1Cor.11.6" ∷ word (τ ∷ ὸ ∷ []) "1Cor.11.6" ∷ word (κ ∷ ε ∷ ί ∷ ρ ∷ α ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "1Cor.11.6" ∷ word (ἢ ∷ []) "1Cor.11.6" ∷ word (ξ ∷ υ ∷ ρ ∷ ᾶ ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "1Cor.11.6" ∷ word (κ ∷ α ∷ τ ∷ α ∷ κ ∷ α ∷ ∙λ ∷ υ ∷ π ∷ τ ∷ έ ∷ σ ∷ θ ∷ ω ∷ []) "1Cor.11.6" ∷ word (ἀ ∷ ν ∷ ὴ ∷ ρ ∷ []) "1Cor.11.7" ∷ word (μ ∷ ὲ ∷ ν ∷ []) "1Cor.11.7" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "1Cor.11.7" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "1Cor.11.7" ∷ word (ὀ ∷ φ ∷ ε ∷ ί ∷ ∙λ ∷ ε ∷ ι ∷ []) "1Cor.11.7" ∷ word (κ ∷ α ∷ τ ∷ α ∷ κ ∷ α ∷ ∙λ ∷ ύ ∷ π ∷ τ ∷ ε ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "1Cor.11.7" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "1Cor.11.7" ∷ word (κ ∷ ε ∷ φ ∷ α ∷ ∙λ ∷ ή ∷ ν ∷ []) "1Cor.11.7" ∷ word (ε ∷ ἰ ∷ κ ∷ ὼ ∷ ν ∷ []) "1Cor.11.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.11.7" ∷ word (δ ∷ ό ∷ ξ ∷ α ∷ []) "1Cor.11.7" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "1Cor.11.7" ∷ word (ὑ ∷ π ∷ ά ∷ ρ ∷ χ ∷ ω ∷ ν ∷ []) "1Cor.11.7" ∷ word (ἡ ∷ []) "1Cor.11.7" ∷ word (γ ∷ υ ∷ ν ∷ ὴ ∷ []) "1Cor.11.7" ∷ word (δ ∷ ὲ ∷ []) "1Cor.11.7" ∷ word (δ ∷ ό ∷ ξ ∷ α ∷ []) "1Cor.11.7" ∷ word (ἀ ∷ ν ∷ δ ∷ ρ ∷ ό ∷ ς ∷ []) "1Cor.11.7" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "1Cor.11.7" ∷ word (ο ∷ ὐ ∷ []) "1Cor.11.8" ∷ word (γ ∷ ά ∷ ρ ∷ []) "1Cor.11.8" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "1Cor.11.8" ∷ word (ἀ ∷ ν ∷ ὴ ∷ ρ ∷ []) "1Cor.11.8" ∷ word (ἐ ∷ κ ∷ []) "1Cor.11.8" ∷ word (γ ∷ υ ∷ ν ∷ α ∷ ι ∷ κ ∷ ό ∷ ς ∷ []) "1Cor.11.8" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "1Cor.11.8" ∷ word (γ ∷ υ ∷ ν ∷ ὴ ∷ []) "1Cor.11.8" ∷ word (ἐ ∷ ξ ∷ []) "1Cor.11.8" ∷ word (ἀ ∷ ν ∷ δ ∷ ρ ∷ ό ∷ ς ∷ []) "1Cor.11.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.11.9" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "1Cor.11.9" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "1Cor.11.9" ∷ word (ἐ ∷ κ ∷ τ ∷ ί ∷ σ ∷ θ ∷ η ∷ []) "1Cor.11.9" ∷ word (ἀ ∷ ν ∷ ὴ ∷ ρ ∷ []) "1Cor.11.9" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "1Cor.11.9" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "1Cor.11.9" ∷ word (γ ∷ υ ∷ ν ∷ α ∷ ῖ ∷ κ ∷ α ∷ []) "1Cor.11.9" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "1Cor.11.9" ∷ word (γ ∷ υ ∷ ν ∷ ὴ ∷ []) "1Cor.11.9" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "1Cor.11.9" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "1Cor.11.9" ∷ word (ἄ ∷ ν ∷ δ ∷ ρ ∷ α ∷ []) "1Cor.11.9" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "1Cor.11.10" ∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "1Cor.11.10" ∷ word (ὀ ∷ φ ∷ ε ∷ ί ∷ ∙λ ∷ ε ∷ ι ∷ []) "1Cor.11.10" ∷ word (ἡ ∷ []) "1Cor.11.10" ∷ word (γ ∷ υ ∷ ν ∷ ὴ ∷ []) "1Cor.11.10" ∷ word (ἐ ∷ ξ ∷ ο ∷ υ ∷ σ ∷ ί ∷ α ∷ ν ∷ []) "1Cor.11.10" ∷ word (ἔ ∷ χ ∷ ε ∷ ι ∷ ν ∷ []) "1Cor.11.10" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "1Cor.11.10" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "1Cor.11.10" ∷ word (κ ∷ ε ∷ φ ∷ α ∷ ∙λ ∷ ῆ ∷ ς ∷ []) "1Cor.11.10" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "1Cor.11.10" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "1Cor.11.10" ∷ word (ἀ ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ο ∷ υ ∷ ς ∷ []) "1Cor.11.10" ∷ word (π ∷ ∙λ ∷ ὴ ∷ ν ∷ []) "1Cor.11.11" ∷ word (ο ∷ ὔ ∷ τ ∷ ε ∷ []) "1Cor.11.11" ∷ word (γ ∷ υ ∷ ν ∷ ὴ ∷ []) "1Cor.11.11" ∷ word (χ ∷ ω ∷ ρ ∷ ὶ ∷ ς ∷ []) "1Cor.11.11" ∷ word (ἀ ∷ ν ∷ δ ∷ ρ ∷ ὸ ∷ ς ∷ []) "1Cor.11.11" ∷ word (ο ∷ ὔ ∷ τ ∷ ε ∷ []) "1Cor.11.11" ∷ word (ἀ ∷ ν ∷ ὴ ∷ ρ ∷ []) "1Cor.11.11" ∷ word (χ ∷ ω ∷ ρ ∷ ὶ ∷ ς ∷ []) "1Cor.11.11" ∷ word (γ ∷ υ ∷ ν ∷ α ∷ ι ∷ κ ∷ ὸ ∷ ς ∷ []) "1Cor.11.11" ∷ word (ἐ ∷ ν ∷ []) "1Cor.11.11" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ῳ ∷ []) "1Cor.11.11" ∷ word (ὥ ∷ σ ∷ π ∷ ε ∷ ρ ∷ []) "1Cor.11.12" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "1Cor.11.12" ∷ word (ἡ ∷ []) "1Cor.11.12" ∷ word (γ ∷ υ ∷ ν ∷ ὴ ∷ []) "1Cor.11.12" ∷ word (ἐ ∷ κ ∷ []) "1Cor.11.12" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.11.12" ∷ word (ἀ ∷ ν ∷ δ ∷ ρ ∷ ό ∷ ς ∷ []) "1Cor.11.12" ∷ word (ο ∷ ὕ ∷ τ ∷ ω ∷ ς ∷ []) "1Cor.11.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.11.12" ∷ word (ὁ ∷ []) "1Cor.11.12" ∷ word (ἀ ∷ ν ∷ ὴ ∷ ρ ∷ []) "1Cor.11.12" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "1Cor.11.12" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "1Cor.11.12" ∷ word (γ ∷ υ ∷ ν ∷ α ∷ ι ∷ κ ∷ ό ∷ ς ∷ []) "1Cor.11.12" ∷ word (τ ∷ ὰ ∷ []) "1Cor.11.12" ∷ word (δ ∷ ὲ ∷ []) "1Cor.11.12" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "1Cor.11.12" ∷ word (ἐ ∷ κ ∷ []) "1Cor.11.12" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.11.12" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "1Cor.11.12" ∷ word (ἐ ∷ ν ∷ []) "1Cor.11.13" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "1Cor.11.13" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "1Cor.11.13" ∷ word (κ ∷ ρ ∷ ί ∷ ν ∷ α ∷ τ ∷ ε ∷ []) "1Cor.11.13" ∷ word (π ∷ ρ ∷ έ ∷ π ∷ ο ∷ ν ∷ []) "1Cor.11.13" ∷ word (ἐ ∷ σ ∷ τ ∷ ὶ ∷ ν ∷ []) "1Cor.11.13" ∷ word (γ ∷ υ ∷ ν ∷ α ∷ ῖ ∷ κ ∷ α ∷ []) "1Cor.11.13" ∷ word (ἀ ∷ κ ∷ α ∷ τ ∷ α ∷ κ ∷ ά ∷ ∙λ ∷ υ ∷ π ∷ τ ∷ ο ∷ ν ∷ []) "1Cor.11.13" ∷ word (τ ∷ ῷ ∷ []) "1Cor.11.13" ∷ word (θ ∷ ε ∷ ῷ ∷ []) "1Cor.11.13" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ ε ∷ ύ ∷ χ ∷ ε ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "1Cor.11.13" ∷ word (ο ∷ ὐ ∷ δ ∷ ὲ ∷ []) "1Cor.11.14" ∷ word (ἡ ∷ []) "1Cor.11.14" ∷ word (φ ∷ ύ ∷ σ ∷ ι ∷ ς ∷ []) "1Cor.11.14" ∷ word (α ∷ ὐ ∷ τ ∷ ὴ ∷ []) "1Cor.11.14" ∷ word (δ ∷ ι ∷ δ ∷ ά ∷ σ ∷ κ ∷ ε ∷ ι ∷ []) "1Cor.11.14" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "1Cor.11.14" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "1Cor.11.14" ∷ word (ἀ ∷ ν ∷ ὴ ∷ ρ ∷ []) "1Cor.11.14" ∷ word (μ ∷ ὲ ∷ ν ∷ []) "1Cor.11.14" ∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "1Cor.11.14" ∷ word (κ ∷ ο ∷ μ ∷ ᾷ ∷ []) "1Cor.11.14" ∷ word (ἀ ∷ τ ∷ ι ∷ μ ∷ ί ∷ α ∷ []) "1Cor.11.14" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "1Cor.11.14" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "1Cor.11.14" ∷ word (γ ∷ υ ∷ ν ∷ ὴ ∷ []) "1Cor.11.15" ∷ word (δ ∷ ὲ ∷ []) "1Cor.11.15" ∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "1Cor.11.15" ∷ word (κ ∷ ο ∷ μ ∷ ᾷ ∷ []) "1Cor.11.15" ∷ word (δ ∷ ό ∷ ξ ∷ α ∷ []) "1Cor.11.15" ∷ word (α ∷ ὐ ∷ τ ∷ ῇ ∷ []) "1Cor.11.15" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "1Cor.11.15" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "1Cor.11.15" ∷ word (ἡ ∷ []) "1Cor.11.15" ∷ word (κ ∷ ό ∷ μ ∷ η ∷ []) "1Cor.11.15" ∷ word (ἀ ∷ ν ∷ τ ∷ ὶ ∷ []) "1Cor.11.15" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ β ∷ ο ∷ ∙λ ∷ α ∷ ί ∷ ο ∷ υ ∷ []) "1Cor.11.15" ∷ word (δ ∷ έ ∷ δ ∷ ο ∷ τ ∷ α ∷ ι ∷ []) "1Cor.11.15" ∷ word (ε ∷ ἰ ∷ []) "1Cor.11.16" ∷ word (δ ∷ έ ∷ []) "1Cor.11.16" ∷ word (τ ∷ ι ∷ ς ∷ []) "1Cor.11.16" ∷ word (δ ∷ ο ∷ κ ∷ ε ∷ ῖ ∷ []) "1Cor.11.16" ∷ word (φ ∷ ι ∷ ∙λ ∷ ό ∷ ν ∷ ε ∷ ι ∷ κ ∷ ο ∷ ς ∷ []) "1Cor.11.16" ∷ word (ε ∷ ἶ ∷ ν ∷ α ∷ ι ∷ []) "1Cor.11.16" ∷ word (ἡ ∷ μ ∷ ε ∷ ῖ ∷ ς ∷ []) "1Cor.11.16" ∷ word (τ ∷ ο ∷ ι ∷ α ∷ ύ ∷ τ ∷ η ∷ ν ∷ []) "1Cor.11.16" ∷ word (σ ∷ υ ∷ ν ∷ ή ∷ θ ∷ ε ∷ ι ∷ α ∷ ν ∷ []) "1Cor.11.16" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "1Cor.11.16" ∷ word (ἔ ∷ χ ∷ ο ∷ μ ∷ ε ∷ ν ∷ []) "1Cor.11.16" ∷ word (ο ∷ ὐ ∷ δ ∷ ὲ ∷ []) "1Cor.11.16" ∷ word (α ∷ ἱ ∷ []) "1Cor.11.16" ∷ word (ἐ ∷ κ ∷ κ ∷ ∙λ ∷ η ∷ σ ∷ ί ∷ α ∷ ι ∷ []) "1Cor.11.16" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.11.16" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "1Cor.11.16" ∷ word (Τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "1Cor.11.17" ∷ word (δ ∷ ὲ ∷ []) "1Cor.11.17" ∷ word (π ∷ α ∷ ρ ∷ α ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ∙λ ∷ ω ∷ ν ∷ []) "1Cor.11.17" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "1Cor.11.17" ∷ word (ἐ ∷ π ∷ α ∷ ι ∷ ν ∷ ῶ ∷ []) "1Cor.11.17" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "1Cor.11.17" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "1Cor.11.17" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "1Cor.11.17" ∷ word (τ ∷ ὸ ∷ []) "1Cor.11.17" ∷ word (κ ∷ ρ ∷ ε ∷ ῖ ∷ σ ∷ σ ∷ ο ∷ ν ∷ []) "1Cor.11.17" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "1Cor.11.17" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "1Cor.11.17" ∷ word (τ ∷ ὸ ∷ []) "1Cor.11.17" ∷ word (ἧ ∷ σ ∷ σ ∷ ο ∷ ν ∷ []) "1Cor.11.17" ∷ word (σ ∷ υ ∷ ν ∷ έ ∷ ρ ∷ χ ∷ ε ∷ σ ∷ θ ∷ ε ∷ []) "1Cor.11.17" ∷ word (π ∷ ρ ∷ ῶ ∷ τ ∷ ο ∷ ν ∷ []) "1Cor.11.18" ∷ word (μ ∷ ὲ ∷ ν ∷ []) "1Cor.11.18" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "1Cor.11.18" ∷ word (σ ∷ υ ∷ ν ∷ ε ∷ ρ ∷ χ ∷ ο ∷ μ ∷ έ ∷ ν ∷ ω ∷ ν ∷ []) "1Cor.11.18" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Cor.11.18" ∷ word (ἐ ∷ ν ∷ []) "1Cor.11.18" ∷ word (ἐ ∷ κ ∷ κ ∷ ∙λ ∷ η ∷ σ ∷ ί ∷ ᾳ ∷ []) "1Cor.11.18" ∷ word (ἀ ∷ κ ∷ ο ∷ ύ ∷ ω ∷ []) "1Cor.11.18" ∷ word (σ ∷ χ ∷ ί ∷ σ ∷ μ ∷ α ∷ τ ∷ α ∷ []) "1Cor.11.18" ∷ word (ἐ ∷ ν ∷ []) "1Cor.11.18" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "1Cor.11.18" ∷ word (ὑ ∷ π ∷ ά ∷ ρ ∷ χ ∷ ε ∷ ι ∷ ν ∷ []) "1Cor.11.18" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.11.18" ∷ word (μ ∷ έ ∷ ρ ∷ ο ∷ ς ∷ []) "1Cor.11.18" ∷ word (τ ∷ ι ∷ []) "1Cor.11.18" ∷ word (π ∷ ι ∷ σ ∷ τ ∷ ε ∷ ύ ∷ ω ∷ []) "1Cor.11.18" ∷ word (δ ∷ ε ∷ ῖ ∷ []) "1Cor.11.19" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "1Cor.11.19" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.11.19" ∷ word (α ∷ ἱ ∷ ρ ∷ έ ∷ σ ∷ ε ∷ ι ∷ ς ∷ []) "1Cor.11.19" ∷ word (ἐ ∷ ν ∷ []) "1Cor.11.19" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "1Cor.11.19" ∷ word (ε ∷ ἶ ∷ ν ∷ α ∷ ι ∷ []) "1Cor.11.19" ∷ word (ἵ ∷ ν ∷ α ∷ []) "1Cor.11.19" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.11.19" ∷ word (ο ∷ ἱ ∷ []) "1Cor.11.19" ∷ word (δ ∷ ό ∷ κ ∷ ι ∷ μ ∷ ο ∷ ι ∷ []) "1Cor.11.19" ∷ word (φ ∷ α ∷ ν ∷ ε ∷ ρ ∷ ο ∷ ὶ ∷ []) "1Cor.11.19" ∷ word (γ ∷ έ ∷ ν ∷ ω ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "1Cor.11.19" ∷ word (ἐ ∷ ν ∷ []) "1Cor.11.19" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "1Cor.11.19" ∷ word (σ ∷ υ ∷ ν ∷ ε ∷ ρ ∷ χ ∷ ο ∷ μ ∷ έ ∷ ν ∷ ω ∷ ν ∷ []) "1Cor.11.20" ∷ word (ο ∷ ὖ ∷ ν ∷ []) "1Cor.11.20" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Cor.11.20" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "1Cor.11.20" ∷ word (τ ∷ ὸ ∷ []) "1Cor.11.20" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ []) "1Cor.11.20" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "1Cor.11.20" ∷ word (ἔ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "1Cor.11.20" ∷ word (κ ∷ υ ∷ ρ ∷ ι ∷ α ∷ κ ∷ ὸ ∷ ν ∷ []) "1Cor.11.20" ∷ word (δ ∷ ε ∷ ῖ ∷ π ∷ ν ∷ ο ∷ ν ∷ []) "1Cor.11.20" ∷ word (φ ∷ α ∷ γ ∷ ε ∷ ῖ ∷ ν ∷ []) "1Cor.11.20" ∷ word (ἕ ∷ κ ∷ α ∷ σ ∷ τ ∷ ο ∷ ς ∷ []) "1Cor.11.21" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "1Cor.11.21" ∷ word (τ ∷ ὸ ∷ []) "1Cor.11.21" ∷ word (ἴ ∷ δ ∷ ι ∷ ο ∷ ν ∷ []) "1Cor.11.21" ∷ word (δ ∷ ε ∷ ῖ ∷ π ∷ ν ∷ ο ∷ ν ∷ []) "1Cor.11.21" ∷ word (π ∷ ρ ∷ ο ∷ ∙λ ∷ α ∷ μ ∷ β ∷ ά ∷ ν ∷ ε ∷ ι ∷ []) "1Cor.11.21" ∷ word (ἐ ∷ ν ∷ []) "1Cor.11.21" ∷ word (τ ∷ ῷ ∷ []) "1Cor.11.21" ∷ word (φ ∷ α ∷ γ ∷ ε ∷ ῖ ∷ ν ∷ []) "1Cor.11.21" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.11.21" ∷ word (ὃ ∷ ς ∷ []) "1Cor.11.21" ∷ word (μ ∷ ὲ ∷ ν ∷ []) "1Cor.11.21" ∷ word (π ∷ ε ∷ ι ∷ ν ∷ ᾷ ∷ []) "1Cor.11.21" ∷ word (ὃ ∷ ς ∷ []) "1Cor.11.21" ∷ word (δ ∷ ὲ ∷ []) "1Cor.11.21" ∷ word (μ ∷ ε ∷ θ ∷ ύ ∷ ε ∷ ι ∷ []) "1Cor.11.21" ∷ word (μ ∷ ὴ ∷ []) "1Cor.11.22" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "1Cor.11.22" ∷ word (ο ∷ ἰ ∷ κ ∷ ί ∷ α ∷ ς ∷ []) "1Cor.11.22" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "1Cor.11.22" ∷ word (ἔ ∷ χ ∷ ε ∷ τ ∷ ε ∷ []) "1Cor.11.22" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "1Cor.11.22" ∷ word (τ ∷ ὸ ∷ []) "1Cor.11.22" ∷ word (ἐ ∷ σ ∷ θ ∷ ί ∷ ε ∷ ι ∷ ν ∷ []) "1Cor.11.22" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.11.22" ∷ word (π ∷ ί ∷ ν ∷ ε ∷ ι ∷ ν ∷ []) "1Cor.11.22" ∷ word (ἢ ∷ []) "1Cor.11.22" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "1Cor.11.22" ∷ word (ἐ ∷ κ ∷ κ ∷ ∙λ ∷ η ∷ σ ∷ ί ∷ α ∷ ς ∷ []) "1Cor.11.22" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.11.22" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "1Cor.11.22" ∷ word (κ ∷ α ∷ τ ∷ α ∷ φ ∷ ρ ∷ ο ∷ ν ∷ ε ∷ ῖ ∷ τ ∷ ε ∷ []) "1Cor.11.22" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.11.22" ∷ word (κ ∷ α ∷ τ ∷ α ∷ ι ∷ σ ∷ χ ∷ ύ ∷ ν ∷ ε ∷ τ ∷ ε ∷ []) "1Cor.11.22" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "1Cor.11.22" ∷ word (μ ∷ ὴ ∷ []) "1Cor.11.22" ∷ word (ἔ ∷ χ ∷ ο ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "1Cor.11.22" ∷ word (τ ∷ ί ∷ []) "1Cor.11.22" ∷ word (ε ∷ ἴ ∷ π ∷ ω ∷ []) "1Cor.11.22" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "1Cor.11.22" ∷ word (ἐ ∷ π ∷ α ∷ ι ∷ ν ∷ έ ∷ σ ∷ ω ∷ []) "1Cor.11.22" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "1Cor.11.22" ∷ word (ἐ ∷ ν ∷ []) "1Cor.11.22" ∷ word (τ ∷ ο ∷ ύ ∷ τ ∷ ῳ ∷ []) "1Cor.11.22" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "1Cor.11.22" ∷ word (ἐ ∷ π ∷ α ∷ ι ∷ ν ∷ ῶ ∷ []) "1Cor.11.22" ∷ word (Ἐ ∷ γ ∷ ὼ ∷ []) "1Cor.11.23" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "1Cor.11.23" ∷ word (π ∷ α ∷ ρ ∷ έ ∷ ∙λ ∷ α ∷ β ∷ ο ∷ ν ∷ []) "1Cor.11.23" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "1Cor.11.23" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.11.23" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "1Cor.11.23" ∷ word (ὃ ∷ []) "1Cor.11.23" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.11.23" ∷ word (π ∷ α ∷ ρ ∷ έ ∷ δ ∷ ω ∷ κ ∷ α ∷ []) "1Cor.11.23" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "1Cor.11.23" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "1Cor.11.23" ∷ word (ὁ ∷ []) "1Cor.11.23" ∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ς ∷ []) "1Cor.11.23" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "1Cor.11.23" ∷ word (ἐ ∷ ν ∷ []) "1Cor.11.23" ∷ word (τ ∷ ῇ ∷ []) "1Cor.11.23" ∷ word (ν ∷ υ ∷ κ ∷ τ ∷ ὶ ∷ []) "1Cor.11.23" ∷ word (ᾗ ∷ []) "1Cor.11.23" ∷ word (π ∷ α ∷ ρ ∷ ε ∷ δ ∷ ί ∷ δ ∷ ε ∷ τ ∷ ο ∷ []) "1Cor.11.23" ∷ word (ἔ ∷ ∙λ ∷ α ∷ β ∷ ε ∷ ν ∷ []) "1Cor.11.23" ∷ word (ἄ ∷ ρ ∷ τ ∷ ο ∷ ν ∷ []) "1Cor.11.23" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.11.24" ∷ word (ε ∷ ὐ ∷ χ ∷ α ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ή ∷ σ ∷ α ∷ ς ∷ []) "1Cor.11.24" ∷ word (ἔ ∷ κ ∷ ∙λ ∷ α ∷ σ ∷ ε ∷ ν ∷ []) "1Cor.11.24" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.11.24" ∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "1Cor.11.24" ∷ word (Τ ∷ ο ∷ ῦ ∷ τ ∷ ό ∷ []) "1Cor.11.24" ∷ word (μ ∷ ο ∷ ύ ∷ []) "1Cor.11.24" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "1Cor.11.24" ∷ word (τ ∷ ὸ ∷ []) "1Cor.11.24" ∷ word (σ ∷ ῶ ∷ μ ∷ α ∷ []) "1Cor.11.24" ∷ word (τ ∷ ὸ ∷ []) "1Cor.11.24" ∷ word (ὑ ∷ π ∷ ὲ ∷ ρ ∷ []) "1Cor.11.24" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Cor.11.24" ∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "1Cor.11.24" ∷ word (π ∷ ο ∷ ι ∷ ε ∷ ῖ ∷ τ ∷ ε ∷ []) "1Cor.11.24" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "1Cor.11.24" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "1Cor.11.24" ∷ word (ἐ ∷ μ ∷ ὴ ∷ ν ∷ []) "1Cor.11.24" ∷ word (ἀ ∷ ν ∷ ά ∷ μ ∷ ν ∷ η ∷ σ ∷ ι ∷ ν ∷ []) "1Cor.11.24" ∷ word (ὡ ∷ σ ∷ α ∷ ύ ∷ τ ∷ ω ∷ ς ∷ []) "1Cor.11.25" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.11.25" ∷ word (τ ∷ ὸ ∷ []) "1Cor.11.25" ∷ word (π ∷ ο ∷ τ ∷ ή ∷ ρ ∷ ι ∷ ο ∷ ν ∷ []) "1Cor.11.25" ∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "1Cor.11.25" ∷ word (τ ∷ ὸ ∷ []) "1Cor.11.25" ∷ word (δ ∷ ε ∷ ι ∷ π ∷ ν ∷ ῆ ∷ σ ∷ α ∷ ι ∷ []) "1Cor.11.25" ∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ ν ∷ []) "1Cor.11.25" ∷ word (Τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "1Cor.11.25" ∷ word (τ ∷ ὸ ∷ []) "1Cor.11.25" ∷ word (π ∷ ο ∷ τ ∷ ή ∷ ρ ∷ ι ∷ ο ∷ ν ∷ []) "1Cor.11.25" ∷ word (ἡ ∷ []) "1Cor.11.25" ∷ word (κ ∷ α ∷ ι ∷ ν ∷ ὴ ∷ []) "1Cor.11.25" ∷ word (δ ∷ ι ∷ α ∷ θ ∷ ή ∷ κ ∷ η ∷ []) "1Cor.11.25" ∷ word (ἐ ∷ σ ∷ τ ∷ ὶ ∷ ν ∷ []) "1Cor.11.25" ∷ word (ἐ ∷ ν ∷ []) "1Cor.11.25" ∷ word (τ ∷ ῷ ∷ []) "1Cor.11.25" ∷ word (ἐ ∷ μ ∷ ῷ ∷ []) "1Cor.11.25" ∷ word (α ∷ ἵ ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "1Cor.11.25" ∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "1Cor.11.25" ∷ word (π ∷ ο ∷ ι ∷ ε ∷ ῖ ∷ τ ∷ ε ∷ []) "1Cor.11.25" ∷ word (ὁ ∷ σ ∷ ά ∷ κ ∷ ι ∷ ς ∷ []) "1Cor.11.25" ∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "1Cor.11.25" ∷ word (π ∷ ί ∷ ν ∷ η ∷ τ ∷ ε ∷ []) "1Cor.11.25" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "1Cor.11.25" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "1Cor.11.25" ∷ word (ἐ ∷ μ ∷ ὴ ∷ ν ∷ []) "1Cor.11.25" ∷ word (ἀ ∷ ν ∷ ά ∷ μ ∷ ν ∷ η ∷ σ ∷ ι ∷ ν ∷ []) "1Cor.11.25" ∷ word (ὁ ∷ σ ∷ ά ∷ κ ∷ ι ∷ ς ∷ []) "1Cor.11.26" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "1Cor.11.26" ∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "1Cor.11.26" ∷ word (ἐ ∷ σ ∷ θ ∷ ί ∷ η ∷ τ ∷ ε ∷ []) "1Cor.11.26" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "1Cor.11.26" ∷ word (ἄ ∷ ρ ∷ τ ∷ ο ∷ ν ∷ []) "1Cor.11.26" ∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ ν ∷ []) "1Cor.11.26" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.11.26" ∷ word (τ ∷ ὸ ∷ []) "1Cor.11.26" ∷ word (π ∷ ο ∷ τ ∷ ή ∷ ρ ∷ ι ∷ ο ∷ ν ∷ []) "1Cor.11.26" ∷ word (π ∷ ί ∷ ν ∷ η ∷ τ ∷ ε ∷ []) "1Cor.11.26" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "1Cor.11.26" ∷ word (θ ∷ ά ∷ ν ∷ α ∷ τ ∷ ο ∷ ν ∷ []) "1Cor.11.26" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.11.26" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "1Cor.11.26" ∷ word (κ ∷ α ∷ τ ∷ α ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ∙λ ∷ ε ∷ τ ∷ ε ∷ []) "1Cor.11.26" ∷ word (ἄ ∷ χ ∷ ρ ∷ ι ∷ []) "1Cor.11.26" ∷ word (ο ∷ ὗ ∷ []) "1Cor.11.26" ∷ word (ἔ ∷ ∙λ ∷ θ ∷ ῃ ∷ []) "1Cor.11.26" ∷ word (Ὥ ∷ σ ∷ τ ∷ ε ∷ []) "1Cor.11.27" ∷ word (ὃ ∷ ς ∷ []) "1Cor.11.27" ∷ word (ἂ ∷ ν ∷ []) "1Cor.11.27" ∷ word (ἐ ∷ σ ∷ θ ∷ ί ∷ ῃ ∷ []) "1Cor.11.27" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "1Cor.11.27" ∷ word (ἄ ∷ ρ ∷ τ ∷ ο ∷ ν ∷ []) "1Cor.11.27" ∷ word (ἢ ∷ []) "1Cor.11.27" ∷ word (π ∷ ί ∷ ν ∷ ῃ ∷ []) "1Cor.11.27" ∷ word (τ ∷ ὸ ∷ []) "1Cor.11.27" ∷ word (π ∷ ο ∷ τ ∷ ή ∷ ρ ∷ ι ∷ ο ∷ ν ∷ []) "1Cor.11.27" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.11.27" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "1Cor.11.27" ∷ word (ἀ ∷ ν ∷ α ∷ ξ ∷ ί ∷ ω ∷ ς ∷ []) "1Cor.11.27" ∷ word (ἔ ∷ ν ∷ ο ∷ χ ∷ ο ∷ ς ∷ []) "1Cor.11.27" ∷ word (ἔ ∷ σ ∷ τ ∷ α ∷ ι ∷ []) "1Cor.11.27" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.11.27" ∷ word (σ ∷ ώ ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "1Cor.11.27" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.11.27" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.11.27" ∷ word (α ∷ ἵ ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "1Cor.11.27" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.11.27" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "1Cor.11.27" ∷ word (δ ∷ ο ∷ κ ∷ ι ∷ μ ∷ α ∷ ζ ∷ έ ∷ τ ∷ ω ∷ []) "1Cor.11.28" ∷ word (δ ∷ ὲ ∷ []) "1Cor.11.28" ∷ word (ἄ ∷ ν ∷ θ ∷ ρ ∷ ω ∷ π ∷ ο ∷ ς ∷ []) "1Cor.11.28" ∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ό ∷ ν ∷ []) "1Cor.11.28" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.11.28" ∷ word (ο ∷ ὕ ∷ τ ∷ ω ∷ ς ∷ []) "1Cor.11.28" ∷ word (ἐ ∷ κ ∷ []) "1Cor.11.28" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.11.28" ∷ word (ἄ ∷ ρ ∷ τ ∷ ο ∷ υ ∷ []) "1Cor.11.28" ∷ word (ἐ ∷ σ ∷ θ ∷ ι ∷ έ ∷ τ ∷ ω ∷ []) "1Cor.11.28" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.11.28" ∷ word (ἐ ∷ κ ∷ []) "1Cor.11.28" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.11.28" ∷ word (π ∷ ο ∷ τ ∷ η ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "1Cor.11.28" ∷ word (π ∷ ι ∷ ν ∷ έ ∷ τ ∷ ω ∷ []) "1Cor.11.28" ∷ word (ὁ ∷ []) "1Cor.11.29" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "1Cor.11.29" ∷ word (ἐ ∷ σ ∷ θ ∷ ί ∷ ω ∷ ν ∷ []) "1Cor.11.29" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.11.29" ∷ word (π ∷ ί ∷ ν ∷ ω ∷ ν ∷ []) "1Cor.11.29" ∷ word (κ ∷ ρ ∷ ί ∷ μ ∷ α ∷ []) "1Cor.11.29" ∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ῷ ∷ []) "1Cor.11.29" ∷ word (ἐ ∷ σ ∷ θ ∷ ί ∷ ε ∷ ι ∷ []) "1Cor.11.29" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.11.29" ∷ word (π ∷ ί ∷ ν ∷ ε ∷ ι ∷ []) "1Cor.11.29" ∷ word (μ ∷ ὴ ∷ []) "1Cor.11.29" ∷ word (δ ∷ ι ∷ α ∷ κ ∷ ρ ∷ ί ∷ ν ∷ ω ∷ ν ∷ []) "1Cor.11.29" ∷ word (τ ∷ ὸ ∷ []) "1Cor.11.29" ∷ word (σ ∷ ῶ ∷ μ ∷ α ∷ []) "1Cor.11.29" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "1Cor.11.30" ∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "1Cor.11.30" ∷ word (ἐ ∷ ν ∷ []) "1Cor.11.30" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "1Cor.11.30" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ο ∷ ὶ ∷ []) "1Cor.11.30" ∷ word (ἀ ∷ σ ∷ θ ∷ ε ∷ ν ∷ ε ∷ ῖ ∷ ς ∷ []) "1Cor.11.30" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.11.30" ∷ word (ἄ ∷ ρ ∷ ρ ∷ ω ∷ σ ∷ τ ∷ ο ∷ ι ∷ []) "1Cor.11.30" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.11.30" ∷ word (κ ∷ ο ∷ ι ∷ μ ∷ ῶ ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "1Cor.11.30" ∷ word (ἱ ∷ κ ∷ α ∷ ν ∷ ο ∷ ί ∷ []) "1Cor.11.30" ∷ word (ε ∷ ἰ ∷ []) "1Cor.11.31" ∷ word (δ ∷ ὲ ∷ []) "1Cor.11.31" ∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "1Cor.11.31" ∷ word (δ ∷ ι ∷ ε ∷ κ ∷ ρ ∷ ί ∷ ν ∷ ο ∷ μ ∷ ε ∷ ν ∷ []) "1Cor.11.31" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "1Cor.11.31" ∷ word (ἂ ∷ ν ∷ []) "1Cor.11.31" ∷ word (ἐ ∷ κ ∷ ρ ∷ ι ∷ ν ∷ ό ∷ μ ∷ ε ∷ θ ∷ α ∷ []) "1Cor.11.31" ∷ word (κ ∷ ρ ∷ ι ∷ ν ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "1Cor.11.32" ∷ word (δ ∷ ὲ ∷ []) "1Cor.11.32" ∷ word (ὑ ∷ π ∷ ὸ ∷ []) "1Cor.11.32" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "1Cor.11.32" ∷ word (π ∷ α ∷ ι ∷ δ ∷ ε ∷ υ ∷ ό ∷ μ ∷ ε ∷ θ ∷ α ∷ []) "1Cor.11.32" ∷ word (ἵ ∷ ν ∷ α ∷ []) "1Cor.11.32" ∷ word (μ ∷ ὴ ∷ []) "1Cor.11.32" ∷ word (σ ∷ ὺ ∷ ν ∷ []) "1Cor.11.32" ∷ word (τ ∷ ῷ ∷ []) "1Cor.11.32" ∷ word (κ ∷ ό ∷ σ ∷ μ ∷ ῳ ∷ []) "1Cor.11.32" ∷ word (κ ∷ α ∷ τ ∷ α ∷ κ ∷ ρ ∷ ι ∷ θ ∷ ῶ ∷ μ ∷ ε ∷ ν ∷ []) "1Cor.11.32" ∷ word (Ὥ ∷ σ ∷ τ ∷ ε ∷ []) "1Cor.11.33" ∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ο ∷ ί ∷ []) "1Cor.11.33" ∷ word (μ ∷ ο ∷ υ ∷ []) "1Cor.11.33" ∷ word (σ ∷ υ ∷ ν ∷ ε ∷ ρ ∷ χ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "1Cor.11.33" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "1Cor.11.33" ∷ word (τ ∷ ὸ ∷ []) "1Cor.11.33" ∷ word (φ ∷ α ∷ γ ∷ ε ∷ ῖ ∷ ν ∷ []) "1Cor.11.33" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ή ∷ ∙λ ∷ ο ∷ υ ∷ ς ∷ []) "1Cor.11.33" ∷ word (ἐ ∷ κ ∷ δ ∷ έ ∷ χ ∷ ε ∷ σ ∷ θ ∷ ε ∷ []) "1Cor.11.33" ∷ word (ε ∷ ἴ ∷ []) "1Cor.11.34" ∷ word (τ ∷ ι ∷ ς ∷ []) "1Cor.11.34" ∷ word (π ∷ ε ∷ ι ∷ ν ∷ ᾷ ∷ []) "1Cor.11.34" ∷ word (ἐ ∷ ν ∷ []) "1Cor.11.34" ∷ word (ο ∷ ἴ ∷ κ ∷ ῳ ∷ []) "1Cor.11.34" ∷ word (ἐ ∷ σ ∷ θ ∷ ι ∷ έ ∷ τ ∷ ω ∷ []) "1Cor.11.34" ∷ word (ἵ ∷ ν ∷ α ∷ []) "1Cor.11.34" ∷ word (μ ∷ ὴ ∷ []) "1Cor.11.34" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "1Cor.11.34" ∷ word (κ ∷ ρ ∷ ί ∷ μ ∷ α ∷ []) "1Cor.11.34" ∷ word (σ ∷ υ ∷ ν ∷ έ ∷ ρ ∷ χ ∷ η ∷ σ ∷ θ ∷ ε ∷ []) "1Cor.11.34" ∷ word (Τ ∷ ὰ ∷ []) "1Cor.11.34" ∷ word (δ ∷ ὲ ∷ []) "1Cor.11.34" ∷ word (∙λ ∷ ο ∷ ι ∷ π ∷ ὰ ∷ []) "1Cor.11.34" ∷ word (ὡ ∷ ς ∷ []) "1Cor.11.34" ∷ word (ἂ ∷ ν ∷ []) "1Cor.11.34" ∷ word (ἔ ∷ ∙λ ∷ θ ∷ ω ∷ []) "1Cor.11.34" ∷ word (δ ∷ ι ∷ α ∷ τ ∷ ά ∷ ξ ∷ ο ∷ μ ∷ α ∷ ι ∷ []) "1Cor.11.34" ∷ word (Π ∷ ε ∷ ρ ∷ ὶ ∷ []) "1Cor.12.1" ∷ word (δ ∷ ὲ ∷ []) "1Cor.12.1" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "1Cor.12.1" ∷ word (π ∷ ν ∷ ε ∷ υ ∷ μ ∷ α ∷ τ ∷ ι ∷ κ ∷ ῶ ∷ ν ∷ []) "1Cor.12.1" ∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ο ∷ ί ∷ []) "1Cor.12.1" ∷ word (ο ∷ ὐ ∷ []) "1Cor.12.1" ∷ word (θ ∷ έ ∷ ∙λ ∷ ω ∷ []) "1Cor.12.1" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "1Cor.12.1" ∷ word (ἀ ∷ γ ∷ ν ∷ ο ∷ ε ∷ ῖ ∷ ν ∷ []) "1Cor.12.1" ∷ word (ο ∷ ἴ ∷ δ ∷ α ∷ τ ∷ ε ∷ []) "1Cor.12.2" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "1Cor.12.2" ∷ word (ὅ ∷ τ ∷ ε ∷ []) "1Cor.12.2" ∷ word (ἔ ∷ θ ∷ ν ∷ η ∷ []) "1Cor.12.2" ∷ word (ἦ ∷ τ ∷ ε ∷ []) "1Cor.12.2" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "1Cor.12.2" ∷ word (τ ∷ ὰ ∷ []) "1Cor.12.2" ∷ word (ε ∷ ἴ ∷ δ ∷ ω ∷ ∙λ ∷ α ∷ []) "1Cor.12.2" ∷ word (τ ∷ ὰ ∷ []) "1Cor.12.2" ∷ word (ἄ ∷ φ ∷ ω ∷ ν ∷ α ∷ []) "1Cor.12.2" ∷ word (ὡ ∷ ς ∷ []) "1Cor.12.2" ∷ word (ἂ ∷ ν ∷ []) "1Cor.12.2" ∷ word (ἤ ∷ γ ∷ ε ∷ σ ∷ θ ∷ ε ∷ []) "1Cor.12.2" ∷ word (ἀ ∷ π ∷ α ∷ γ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "1Cor.12.2" ∷ word (δ ∷ ι ∷ ὸ ∷ []) "1Cor.12.3" ∷ word (γ ∷ ν ∷ ω ∷ ρ ∷ ί ∷ ζ ∷ ω ∷ []) "1Cor.12.3" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "1Cor.12.3" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "1Cor.12.3" ∷ word (ο ∷ ὐ ∷ δ ∷ ε ∷ ὶ ∷ ς ∷ []) "1Cor.12.3" ∷ word (ἐ ∷ ν ∷ []) "1Cor.12.3" ∷ word (π ∷ ν ∷ ε ∷ ύ ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "1Cor.12.3" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "1Cor.12.3" ∷ word (∙λ ∷ α ∷ ∙λ ∷ ῶ ∷ ν ∷ []) "1Cor.12.3" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "1Cor.12.3" ∷ word (Ἀ ∷ ν ∷ ά ∷ θ ∷ ε ∷ μ ∷ α ∷ []) "1Cor.12.3" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "1Cor.12.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.12.3" ∷ word (ο ∷ ὐ ∷ δ ∷ ε ∷ ὶ ∷ ς ∷ []) "1Cor.12.3" ∷ word (δ ∷ ύ ∷ ν ∷ α ∷ τ ∷ α ∷ ι ∷ []) "1Cor.12.3" ∷ word (ε ∷ ἰ ∷ π ∷ ε ∷ ῖ ∷ ν ∷ []) "1Cor.12.3" ∷ word (Κ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ς ∷ []) "1Cor.12.3" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "1Cor.12.3" ∷ word (ε ∷ ἰ ∷ []) "1Cor.12.3" ∷ word (μ ∷ ὴ ∷ []) "1Cor.12.3" ∷ word (ἐ ∷ ν ∷ []) "1Cor.12.3" ∷ word (π ∷ ν ∷ ε ∷ ύ ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "1Cor.12.3" ∷ word (ἁ ∷ γ ∷ ί ∷ ῳ ∷ []) "1Cor.12.3" ∷ word (Δ ∷ ι ∷ α ∷ ι ∷ ρ ∷ έ ∷ σ ∷ ε ∷ ι ∷ ς ∷ []) "1Cor.12.4" ∷ word (δ ∷ ὲ ∷ []) "1Cor.12.4" ∷ word (χ ∷ α ∷ ρ ∷ ι ∷ σ ∷ μ ∷ ά ∷ τ ∷ ω ∷ ν ∷ []) "1Cor.12.4" ∷ word (ε ∷ ἰ ∷ σ ∷ ί ∷ ν ∷ []) "1Cor.12.4" ∷ word (τ ∷ ὸ ∷ []) "1Cor.12.4" ∷ word (δ ∷ ὲ ∷ []) "1Cor.12.4" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ []) "1Cor.12.4" ∷ word (π ∷ ν ∷ ε ∷ ῦ ∷ μ ∷ α ∷ []) "1Cor.12.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.12.5" ∷ word (δ ∷ ι ∷ α ∷ ι ∷ ρ ∷ έ ∷ σ ∷ ε ∷ ι ∷ ς ∷ []) "1Cor.12.5" ∷ word (δ ∷ ι ∷ α ∷ κ ∷ ο ∷ ν ∷ ι ∷ ῶ ∷ ν ∷ []) "1Cor.12.5" ∷ word (ε ∷ ἰ ∷ σ ∷ ι ∷ ν ∷ []) "1Cor.12.5" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.12.5" ∷ word (ὁ ∷ []) "1Cor.12.5" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ς ∷ []) "1Cor.12.5" ∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ς ∷ []) "1Cor.12.5" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.12.6" ∷ word (δ ∷ ι ∷ α ∷ ι ∷ ρ ∷ έ ∷ σ ∷ ε ∷ ι ∷ ς ∷ []) "1Cor.12.6" ∷ word (ἐ ∷ ν ∷ ε ∷ ρ ∷ γ ∷ η ∷ μ ∷ ά ∷ τ ∷ ω ∷ ν ∷ []) "1Cor.12.6" ∷ word (ε ∷ ἰ ∷ σ ∷ ί ∷ ν ∷ []) "1Cor.12.6" ∷ word (ὁ ∷ []) "1Cor.12.6" ∷ word (δ ∷ ὲ ∷ []) "1Cor.12.6" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ς ∷ []) "1Cor.12.6" ∷ word (θ ∷ ε ∷ ό ∷ ς ∷ []) "1Cor.12.6" ∷ word (ὁ ∷ []) "1Cor.12.6" ∷ word (ἐ ∷ ν ∷ ε ∷ ρ ∷ γ ∷ ῶ ∷ ν ∷ []) "1Cor.12.6" ∷ word (τ ∷ ὰ ∷ []) "1Cor.12.6" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "1Cor.12.6" ∷ word (ἐ ∷ ν ∷ []) "1Cor.12.6" ∷ word (π ∷ ᾶ ∷ σ ∷ ι ∷ ν ∷ []) "1Cor.12.6" ∷ word (ἑ ∷ κ ∷ ά ∷ σ ∷ τ ∷ ῳ ∷ []) "1Cor.12.7" ∷ word (δ ∷ ὲ ∷ []) "1Cor.12.7" ∷ word (δ ∷ ί ∷ δ ∷ ο ∷ τ ∷ α ∷ ι ∷ []) "1Cor.12.7" ∷ word (ἡ ∷ []) "1Cor.12.7" ∷ word (φ ∷ α ∷ ν ∷ έ ∷ ρ ∷ ω ∷ σ ∷ ι ∷ ς ∷ []) "1Cor.12.7" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.12.7" ∷ word (π ∷ ν ∷ ε ∷ ύ ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "1Cor.12.7" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "1Cor.12.7" ∷ word (τ ∷ ὸ ∷ []) "1Cor.12.7" ∷ word (σ ∷ υ ∷ μ ∷ φ ∷ έ ∷ ρ ∷ ο ∷ ν ∷ []) "1Cor.12.7" ∷ word (ᾧ ∷ []) "1Cor.12.8" ∷ word (μ ∷ ὲ ∷ ν ∷ []) "1Cor.12.8" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "1Cor.12.8" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "1Cor.12.8" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.12.8" ∷ word (π ∷ ν ∷ ε ∷ ύ ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "1Cor.12.8" ∷ word (δ ∷ ί ∷ δ ∷ ο ∷ τ ∷ α ∷ ι ∷ []) "1Cor.12.8" ∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ ς ∷ []) "1Cor.12.8" ∷ word (σ ∷ ο ∷ φ ∷ ί ∷ α ∷ ς ∷ []) "1Cor.12.8" ∷ word (ἄ ∷ ∙λ ∷ ∙λ ∷ ῳ ∷ []) "1Cor.12.8" ∷ word (δ ∷ ὲ ∷ []) "1Cor.12.8" ∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ ς ∷ []) "1Cor.12.8" ∷ word (γ ∷ ν ∷ ώ ∷ σ ∷ ε ∷ ω ∷ ς ∷ []) "1Cor.12.8" ∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "1Cor.12.8" ∷ word (τ ∷ ὸ ∷ []) "1Cor.12.8" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ []) "1Cor.12.8" ∷ word (π ∷ ν ∷ ε ∷ ῦ ∷ μ ∷ α ∷ []) "1Cor.12.8" ∷ word (ἑ ∷ τ ∷ έ ∷ ρ ∷ ῳ ∷ []) "1Cor.12.9" ∷ word (π ∷ ί ∷ σ ∷ τ ∷ ι ∷ ς ∷ []) "1Cor.12.9" ∷ word (ἐ ∷ ν ∷ []) "1Cor.12.9" ∷ word (τ ∷ ῷ ∷ []) "1Cor.12.9" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "1Cor.12.9" ∷ word (π ∷ ν ∷ ε ∷ ύ ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "1Cor.12.9" ∷ word (ἄ ∷ ∙λ ∷ ∙λ ∷ ῳ ∷ []) "1Cor.12.9" ∷ word (χ ∷ α ∷ ρ ∷ ί ∷ σ ∷ μ ∷ α ∷ τ ∷ α ∷ []) "1Cor.12.9" ∷ word (ἰ ∷ α ∷ μ ∷ ά ∷ τ ∷ ω ∷ ν ∷ []) "1Cor.12.9" ∷ word (ἐ ∷ ν ∷ []) "1Cor.12.9" ∷ word (τ ∷ ῷ ∷ []) "1Cor.12.9" ∷ word (ἑ ∷ ν ∷ ὶ ∷ []) "1Cor.12.9" ∷ word (π ∷ ν ∷ ε ∷ ύ ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "1Cor.12.9" ∷ word (ἄ ∷ ∙λ ∷ ∙λ ∷ ῳ ∷ []) "1Cor.12.10" ∷ word (ἐ ∷ ν ∷ ε ∷ ρ ∷ γ ∷ ή ∷ μ ∷ α ∷ τ ∷ α ∷ []) "1Cor.12.10" ∷ word (δ ∷ υ ∷ ν ∷ ά ∷ μ ∷ ε ∷ ω ∷ ν ∷ []) "1Cor.12.10" ∷ word (ἄ ∷ ∙λ ∷ ∙λ ∷ ῳ ∷ []) "1Cor.12.10" ∷ word (π ∷ ρ ∷ ο ∷ φ ∷ η ∷ τ ∷ ε ∷ ί ∷ α ∷ []) "1Cor.12.10" ∷ word (ἄ ∷ ∙λ ∷ ∙λ ∷ ῳ ∷ []) "1Cor.12.10" ∷ word (δ ∷ ι ∷ α ∷ κ ∷ ρ ∷ ί ∷ σ ∷ ε ∷ ι ∷ ς ∷ []) "1Cor.12.10" ∷ word (π ∷ ν ∷ ε ∷ υ ∷ μ ∷ ά ∷ τ ∷ ω ∷ ν ∷ []) "1Cor.12.10" ∷ word (ἑ ∷ τ ∷ έ ∷ ρ ∷ ῳ ∷ []) "1Cor.12.10" ∷ word (γ ∷ έ ∷ ν ∷ η ∷ []) "1Cor.12.10" ∷ word (γ ∷ ∙λ ∷ ω ∷ σ ∷ σ ∷ ῶ ∷ ν ∷ []) "1Cor.12.10" ∷ word (ἄ ∷ ∙λ ∷ ∙λ ∷ ῳ ∷ []) "1Cor.12.10" ∷ word (ἑ ∷ ρ ∷ μ ∷ η ∷ ν ∷ ε ∷ ί ∷ α ∷ []) "1Cor.12.10" ∷ word (γ ∷ ∙λ ∷ ω ∷ σ ∷ σ ∷ ῶ ∷ ν ∷ []) "1Cor.12.10" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "1Cor.12.11" ∷ word (δ ∷ ὲ ∷ []) "1Cor.12.11" ∷ word (τ ∷ α ∷ ῦ ∷ τ ∷ α ∷ []) "1Cor.12.11" ∷ word (ἐ ∷ ν ∷ ε ∷ ρ ∷ γ ∷ ε ∷ ῖ ∷ []) "1Cor.12.11" ∷ word (τ ∷ ὸ ∷ []) "1Cor.12.11" ∷ word (ἓ ∷ ν ∷ []) "1Cor.12.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.12.11" ∷ word (τ ∷ ὸ ∷ []) "1Cor.12.11" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ []) "1Cor.12.11" ∷ word (π ∷ ν ∷ ε ∷ ῦ ∷ μ ∷ α ∷ []) "1Cor.12.11" ∷ word (δ ∷ ι ∷ α ∷ ι ∷ ρ ∷ ο ∷ ῦ ∷ ν ∷ []) "1Cor.12.11" ∷ word (ἰ ∷ δ ∷ ί ∷ ᾳ ∷ []) "1Cor.12.11" ∷ word (ἑ ∷ κ ∷ ά ∷ σ ∷ τ ∷ ῳ ∷ []) "1Cor.12.11" ∷ word (κ ∷ α ∷ θ ∷ ὼ ∷ ς ∷ []) "1Cor.12.11" ∷ word (β ∷ ο ∷ ύ ∷ ∙λ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "1Cor.12.11" ∷ word (Κ ∷ α ∷ θ ∷ ά ∷ π ∷ ε ∷ ρ ∷ []) "1Cor.12.12" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "1Cor.12.12" ∷ word (τ ∷ ὸ ∷ []) "1Cor.12.12" ∷ word (σ ∷ ῶ ∷ μ ∷ α ∷ []) "1Cor.12.12" ∷ word (ἕ ∷ ν ∷ []) "1Cor.12.12" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "1Cor.12.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.12.12" ∷ word (μ ∷ έ ∷ ∙λ ∷ η ∷ []) "1Cor.12.12" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "1Cor.12.12" ∷ word (ἔ ∷ χ ∷ ε ∷ ι ∷ []) "1Cor.12.12" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "1Cor.12.12" ∷ word (δ ∷ ὲ ∷ []) "1Cor.12.12" ∷ word (τ ∷ ὰ ∷ []) "1Cor.12.12" ∷ word (μ ∷ έ ∷ ∙λ ∷ η ∷ []) "1Cor.12.12" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.12.12" ∷ word (σ ∷ ώ ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "1Cor.12.12" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "1Cor.12.12" ∷ word (ὄ ∷ ν ∷ τ ∷ α ∷ []) "1Cor.12.12" ∷ word (ἕ ∷ ν ∷ []) "1Cor.12.12" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "1Cor.12.12" ∷ word (σ ∷ ῶ ∷ μ ∷ α ∷ []) "1Cor.12.12" ∷ word (ο ∷ ὕ ∷ τ ∷ ω ∷ ς ∷ []) "1Cor.12.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.12.12" ∷ word (ὁ ∷ []) "1Cor.12.12" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ό ∷ ς ∷ []) "1Cor.12.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.12.13" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "1Cor.12.13" ∷ word (ἐ ∷ ν ∷ []) "1Cor.12.13" ∷ word (ἑ ∷ ν ∷ ὶ ∷ []) "1Cor.12.13" ∷ word (π ∷ ν ∷ ε ∷ ύ ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "1Cor.12.13" ∷ word (ἡ ∷ μ ∷ ε ∷ ῖ ∷ ς ∷ []) "1Cor.12.13" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "1Cor.12.13" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "1Cor.12.13" ∷ word (ἓ ∷ ν ∷ []) "1Cor.12.13" ∷ word (σ ∷ ῶ ∷ μ ∷ α ∷ []) "1Cor.12.13" ∷ word (ἐ ∷ β ∷ α ∷ π ∷ τ ∷ ί ∷ σ ∷ θ ∷ η ∷ μ ∷ ε ∷ ν ∷ []) "1Cor.12.13" ∷ word (ε ∷ ἴ ∷ τ ∷ ε ∷ []) "1Cor.12.13" ∷ word (Ἰ ∷ ο ∷ υ ∷ δ ∷ α ∷ ῖ ∷ ο ∷ ι ∷ []) "1Cor.12.13" ∷ word (ε ∷ ἴ ∷ τ ∷ ε ∷ []) "1Cor.12.13" ∷ word (Ἕ ∷ ∙λ ∷ ∙λ ∷ η ∷ ν ∷ ε ∷ ς ∷ []) "1Cor.12.13" ∷ word (ε ∷ ἴ ∷ τ ∷ ε ∷ []) "1Cor.12.13" ∷ word (δ ∷ ο ∷ ῦ ∷ ∙λ ∷ ο ∷ ι ∷ []) "1Cor.12.13" ∷ word (ε ∷ ἴ ∷ τ ∷ ε ∷ []) "1Cor.12.13" ∷ word (ἐ ∷ ∙λ ∷ ε ∷ ύ ∷ θ ∷ ε ∷ ρ ∷ ο ∷ ι ∷ []) "1Cor.12.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.12.13" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "1Cor.12.13" ∷ word (ἓ ∷ ν ∷ []) "1Cor.12.13" ∷ word (π ∷ ν ∷ ε ∷ ῦ ∷ μ ∷ α ∷ []) "1Cor.12.13" ∷ word (ἐ ∷ π ∷ ο ∷ τ ∷ ί ∷ σ ∷ θ ∷ η ∷ μ ∷ ε ∷ ν ∷ []) "1Cor.12.13" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "1Cor.12.14" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "1Cor.12.14" ∷ word (τ ∷ ὸ ∷ []) "1Cor.12.14" ∷ word (σ ∷ ῶ ∷ μ ∷ α ∷ []) "1Cor.12.14" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "1Cor.12.14" ∷ word (ἔ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "1Cor.12.14" ∷ word (ἓ ∷ ν ∷ []) "1Cor.12.14" ∷ word (μ ∷ έ ∷ ∙λ ∷ ο ∷ ς ∷ []) "1Cor.12.14" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "1Cor.12.14" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ά ∷ []) "1Cor.12.14" ∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "1Cor.12.15" ∷ word (ε ∷ ἴ ∷ π ∷ ῃ ∷ []) "1Cor.12.15" ∷ word (ὁ ∷ []) "1Cor.12.15" ∷ word (π ∷ ο ∷ ύ ∷ ς ∷ []) "1Cor.12.15" ∷ word (Ὅ ∷ τ ∷ ι ∷ []) "1Cor.12.15" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "1Cor.12.15" ∷ word (ε ∷ ἰ ∷ μ ∷ ὶ ∷ []) "1Cor.12.15" ∷ word (χ ∷ ε ∷ ί ∷ ρ ∷ []) "1Cor.12.15" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "1Cor.12.15" ∷ word (ε ∷ ἰ ∷ μ ∷ ὶ ∷ []) "1Cor.12.15" ∷ word (ἐ ∷ κ ∷ []) "1Cor.12.15" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.12.15" ∷ word (σ ∷ ώ ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "1Cor.12.15" ∷ word (ο ∷ ὐ ∷ []) "1Cor.12.15" ∷ word (π ∷ α ∷ ρ ∷ ὰ ∷ []) "1Cor.12.15" ∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "1Cor.12.15" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "1Cor.12.15" ∷ word (ἔ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "1Cor.12.15" ∷ word (ἐ ∷ κ ∷ []) "1Cor.12.15" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.12.15" ∷ word (σ ∷ ώ ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "1Cor.12.15" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.12.16" ∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "1Cor.12.16" ∷ word (ε ∷ ἴ ∷ π ∷ ῃ ∷ []) "1Cor.12.16" ∷ word (τ ∷ ὸ ∷ []) "1Cor.12.16" ∷ word (ο ∷ ὖ ∷ ς ∷ []) "1Cor.12.16" ∷ word (Ὅ ∷ τ ∷ ι ∷ []) "1Cor.12.16" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "1Cor.12.16" ∷ word (ε ∷ ἰ ∷ μ ∷ ὶ ∷ []) "1Cor.12.16" ∷ word (ὀ ∷ φ ∷ θ ∷ α ∷ ∙λ ∷ μ ∷ ό ∷ ς ∷ []) "1Cor.12.16" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "1Cor.12.16" ∷ word (ε ∷ ἰ ∷ μ ∷ ὶ ∷ []) "1Cor.12.16" ∷ word (ἐ ∷ κ ∷ []) "1Cor.12.16" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.12.16" ∷ word (σ ∷ ώ ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "1Cor.12.16" ∷ word (ο ∷ ὐ ∷ []) "1Cor.12.16" ∷ word (π ∷ α ∷ ρ ∷ ὰ ∷ []) "1Cor.12.16" ∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "1Cor.12.16" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "1Cor.12.16" ∷ word (ἔ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "1Cor.12.16" ∷ word (ἐ ∷ κ ∷ []) "1Cor.12.16" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.12.16" ∷ word (σ ∷ ώ ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "1Cor.12.16" ∷ word (ε ∷ ἰ ∷ []) "1Cor.12.17" ∷ word (ὅ ∷ ∙λ ∷ ο ∷ ν ∷ []) "1Cor.12.17" ∷ word (τ ∷ ὸ ∷ []) "1Cor.12.17" ∷ word (σ ∷ ῶ ∷ μ ∷ α ∷ []) "1Cor.12.17" ∷ word (ὀ ∷ φ ∷ θ ∷ α ∷ ∙λ ∷ μ ∷ ό ∷ ς ∷ []) "1Cor.12.17" ∷ word (π ∷ ο ∷ ῦ ∷ []) "1Cor.12.17" ∷ word (ἡ ∷ []) "1Cor.12.17" ∷ word (ἀ ∷ κ ∷ ο ∷ ή ∷ []) "1Cor.12.17" ∷ word (ε ∷ ἰ ∷ []) "1Cor.12.17" ∷ word (ὅ ∷ ∙λ ∷ ο ∷ ν ∷ []) "1Cor.12.17" ∷ word (ἀ ∷ κ ∷ ο ∷ ή ∷ []) "1Cor.12.17" ∷ word (π ∷ ο ∷ ῦ ∷ []) "1Cor.12.17" ∷ word (ἡ ∷ []) "1Cor.12.17" ∷ word (ὄ ∷ σ ∷ φ ∷ ρ ∷ η ∷ σ ∷ ι ∷ ς ∷ []) "1Cor.12.17" ∷ word (ν ∷ υ ∷ ν ∷ ὶ ∷ []) "1Cor.12.18" ∷ word (δ ∷ ὲ ∷ []) "1Cor.12.18" ∷ word (ὁ ∷ []) "1Cor.12.18" ∷ word (θ ∷ ε ∷ ὸ ∷ ς ∷ []) "1Cor.12.18" ∷ word (ἔ ∷ θ ∷ ε ∷ τ ∷ ο ∷ []) "1Cor.12.18" ∷ word (τ ∷ ὰ ∷ []) "1Cor.12.18" ∷ word (μ ∷ έ ∷ ∙λ ∷ η ∷ []) "1Cor.12.18" ∷ word (ἓ ∷ ν ∷ []) "1Cor.12.18" ∷ word (ἕ ∷ κ ∷ α ∷ σ ∷ τ ∷ ο ∷ ν ∷ []) "1Cor.12.18" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "1Cor.12.18" ∷ word (ἐ ∷ ν ∷ []) "1Cor.12.18" ∷ word (τ ∷ ῷ ∷ []) "1Cor.12.18" ∷ word (σ ∷ ώ ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "1Cor.12.18" ∷ word (κ ∷ α ∷ θ ∷ ὼ ∷ ς ∷ []) "1Cor.12.18" ∷ word (ἠ ∷ θ ∷ έ ∷ ∙λ ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "1Cor.12.18" ∷ word (ε ∷ ἰ ∷ []) "1Cor.12.19" ∷ word (δ ∷ ὲ ∷ []) "1Cor.12.19" ∷ word (ἦ ∷ ν ∷ []) "1Cor.12.19" ∷ word (τ ∷ ὰ ∷ []) "1Cor.12.19" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "1Cor.12.19" ∷ word (ἓ ∷ ν ∷ []) "1Cor.12.19" ∷ word (μ ∷ έ ∷ ∙λ ∷ ο ∷ ς ∷ []) "1Cor.12.19" ∷ word (π ∷ ο ∷ ῦ ∷ []) "1Cor.12.19" ∷ word (τ ∷ ὸ ∷ []) "1Cor.12.19" ∷ word (σ ∷ ῶ ∷ μ ∷ α ∷ []) "1Cor.12.19" ∷ word (ν ∷ ῦ ∷ ν ∷ []) "1Cor.12.20" ∷ word (δ ∷ ὲ ∷ []) "1Cor.12.20" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "1Cor.12.20" ∷ word (μ ∷ ὲ ∷ ν ∷ []) "1Cor.12.20" ∷ word (μ ∷ έ ∷ ∙λ ∷ η ∷ []) "1Cor.12.20" ∷ word (ἓ ∷ ν ∷ []) "1Cor.12.20" ∷ word (δ ∷ ὲ ∷ []) "1Cor.12.20" ∷ word (σ ∷ ῶ ∷ μ ∷ α ∷ []) "1Cor.12.20" ∷ word (ο ∷ ὐ ∷ []) "1Cor.12.21" ∷ word (δ ∷ ύ ∷ ν ∷ α ∷ τ ∷ α ∷ ι ∷ []) "1Cor.12.21" ∷ word (δ ∷ ὲ ∷ []) "1Cor.12.21" ∷ word (ὁ ∷ []) "1Cor.12.21" ∷ word (ὀ ∷ φ ∷ θ ∷ α ∷ ∙λ ∷ μ ∷ ὸ ∷ ς ∷ []) "1Cor.12.21" ∷ word (ε ∷ ἰ ∷ π ∷ ε ∷ ῖ ∷ ν ∷ []) "1Cor.12.21" ∷ word (τ ∷ ῇ ∷ []) "1Cor.12.21" ∷ word (χ ∷ ε ∷ ι ∷ ρ ∷ ί ∷ []) "1Cor.12.21" ∷ word (Χ ∷ ρ ∷ ε ∷ ί ∷ α ∷ ν ∷ []) "1Cor.12.21" ∷ word (σ ∷ ο ∷ υ ∷ []) "1Cor.12.21" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "1Cor.12.21" ∷ word (ἔ ∷ χ ∷ ω ∷ []) "1Cor.12.21" ∷ word (ἢ ∷ []) "1Cor.12.21" ∷ word (π ∷ ά ∷ ∙λ ∷ ι ∷ ν ∷ []) "1Cor.12.21" ∷ word (ἡ ∷ []) "1Cor.12.21" ∷ word (κ ∷ ε ∷ φ ∷ α ∷ ∙λ ∷ ὴ ∷ []) "1Cor.12.21" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "1Cor.12.21" ∷ word (π ∷ ο ∷ σ ∷ ί ∷ ν ∷ []) "1Cor.12.21" ∷ word (Χ ∷ ρ ∷ ε ∷ ί ∷ α ∷ ν ∷ []) "1Cor.12.21" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Cor.12.21" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "1Cor.12.21" ∷ word (ἔ ∷ χ ∷ ω ∷ []) "1Cor.12.21" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "1Cor.12.22" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ῷ ∷ []) "1Cor.12.22" ∷ word (μ ∷ ᾶ ∷ ∙λ ∷ ∙λ ∷ ο ∷ ν ∷ []) "1Cor.12.22" ∷ word (τ ∷ ὰ ∷ []) "1Cor.12.22" ∷ word (δ ∷ ο ∷ κ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ α ∷ []) "1Cor.12.22" ∷ word (μ ∷ έ ∷ ∙λ ∷ η ∷ []) "1Cor.12.22" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.12.22" ∷ word (σ ∷ ώ ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "1Cor.12.22" ∷ word (ἀ ∷ σ ∷ θ ∷ ε ∷ ν ∷ έ ∷ σ ∷ τ ∷ ε ∷ ρ ∷ α ∷ []) "1Cor.12.22" ∷ word (ὑ ∷ π ∷ ά ∷ ρ ∷ χ ∷ ε ∷ ι ∷ ν ∷ []) "1Cor.12.22" ∷ word (ἀ ∷ ν ∷ α ∷ γ ∷ κ ∷ α ∷ ῖ ∷ ά ∷ []) "1Cor.12.22" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "1Cor.12.22" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.12.23" ∷ word (ἃ ∷ []) "1Cor.12.23" ∷ word (δ ∷ ο ∷ κ ∷ ο ∷ ῦ ∷ μ ∷ ε ∷ ν ∷ []) "1Cor.12.23" ∷ word (ἀ ∷ τ ∷ ι ∷ μ ∷ ό ∷ τ ∷ ε ∷ ρ ∷ α ∷ []) "1Cor.12.23" ∷ word (ε ∷ ἶ ∷ ν ∷ α ∷ ι ∷ []) "1Cor.12.23" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.12.23" ∷ word (σ ∷ ώ ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "1Cor.12.23" ∷ word (τ ∷ ο ∷ ύ ∷ τ ∷ ο ∷ ι ∷ ς ∷ []) "1Cor.12.23" ∷ word (τ ∷ ι ∷ μ ∷ ὴ ∷ ν ∷ []) "1Cor.12.23" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ σ ∷ σ ∷ ο ∷ τ ∷ έ ∷ ρ ∷ α ∷ ν ∷ []) "1Cor.12.23" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ τ ∷ ί ∷ θ ∷ ε ∷ μ ∷ ε ∷ ν ∷ []) "1Cor.12.23" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.12.23" ∷ word (τ ∷ ὰ ∷ []) "1Cor.12.23" ∷ word (ἀ ∷ σ ∷ χ ∷ ή ∷ μ ∷ ο ∷ ν ∷ α ∷ []) "1Cor.12.23" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Cor.12.23" ∷ word (ε ∷ ὐ ∷ σ ∷ χ ∷ η ∷ μ ∷ ο ∷ σ ∷ ύ ∷ ν ∷ η ∷ ν ∷ []) "1Cor.12.23" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ σ ∷ σ ∷ ο ∷ τ ∷ έ ∷ ρ ∷ α ∷ ν ∷ []) "1Cor.12.23" ∷ word (ἔ ∷ χ ∷ ε ∷ ι ∷ []) "1Cor.12.23" ∷ word (τ ∷ ὰ ∷ []) "1Cor.12.24" ∷ word (δ ∷ ὲ ∷ []) "1Cor.12.24" ∷ word (ε ∷ ὐ ∷ σ ∷ χ ∷ ή ∷ μ ∷ ο ∷ ν ∷ α ∷ []) "1Cor.12.24" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Cor.12.24" ∷ word (ο ∷ ὐ ∷ []) "1Cor.12.24" ∷ word (χ ∷ ρ ∷ ε ∷ ί ∷ α ∷ ν ∷ []) "1Cor.12.24" ∷ word (ἔ ∷ χ ∷ ε ∷ ι ∷ []) "1Cor.12.24" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "1Cor.12.24" ∷ word (ὁ ∷ []) "1Cor.12.24" ∷ word (θ ∷ ε ∷ ὸ ∷ ς ∷ []) "1Cor.12.24" ∷ word (σ ∷ υ ∷ ν ∷ ε ∷ κ ∷ έ ∷ ρ ∷ α ∷ σ ∷ ε ∷ ν ∷ []) "1Cor.12.24" ∷ word (τ ∷ ὸ ∷ []) "1Cor.12.24" ∷ word (σ ∷ ῶ ∷ μ ∷ α ∷ []) "1Cor.12.24" ∷ word (τ ∷ ῷ ∷ []) "1Cor.12.24" ∷ word (ὑ ∷ σ ∷ τ ∷ ε ∷ ρ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ι ∷ []) "1Cor.12.24" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ σ ∷ σ ∷ ο ∷ τ ∷ έ ∷ ρ ∷ α ∷ ν ∷ []) "1Cor.12.24" ∷ word (δ ∷ ο ∷ ὺ ∷ ς ∷ []) "1Cor.12.24" ∷ word (τ ∷ ι ∷ μ ∷ ή ∷ ν ∷ []) "1Cor.12.24" ∷ word (ἵ ∷ ν ∷ α ∷ []) "1Cor.12.25" ∷ word (μ ∷ ὴ ∷ []) "1Cor.12.25" ∷ word (ᾖ ∷ []) "1Cor.12.25" ∷ word (σ ∷ χ ∷ ί ∷ σ ∷ μ ∷ α ∷ []) "1Cor.12.25" ∷ word (ἐ ∷ ν ∷ []) "1Cor.12.25" ∷ word (τ ∷ ῷ ∷ []) "1Cor.12.25" ∷ word (σ ∷ ώ ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "1Cor.12.25" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "1Cor.12.25" ∷ word (τ ∷ ὸ ∷ []) "1Cor.12.25" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ []) "1Cor.12.25" ∷ word (ὑ ∷ π ∷ ὲ ∷ ρ ∷ []) "1Cor.12.25" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ή ∷ ∙λ ∷ ω ∷ ν ∷ []) "1Cor.12.25" ∷ word (μ ∷ ε ∷ ρ ∷ ι ∷ μ ∷ ν ∷ ῶ ∷ σ ∷ ι ∷ []) "1Cor.12.25" ∷ word (τ ∷ ὰ ∷ []) "1Cor.12.25" ∷ word (μ ∷ έ ∷ ∙λ ∷ η ∷ []) "1Cor.12.25" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.12.26" ∷ word (ε ∷ ἴ ∷ τ ∷ ε ∷ []) "1Cor.12.26" ∷ word (π ∷ ά ∷ σ ∷ χ ∷ ε ∷ ι ∷ []) "1Cor.12.26" ∷ word (ἓ ∷ ν ∷ []) "1Cor.12.26" ∷ word (μ ∷ έ ∷ ∙λ ∷ ο ∷ ς ∷ []) "1Cor.12.26" ∷ word (σ ∷ υ ∷ μ ∷ π ∷ ά ∷ σ ∷ χ ∷ ε ∷ ι ∷ []) "1Cor.12.26" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "1Cor.12.26" ∷ word (τ ∷ ὰ ∷ []) "1Cor.12.26" ∷ word (μ ∷ έ ∷ ∙λ ∷ η ∷ []) "1Cor.12.26" ∷ word (ε ∷ ἴ ∷ τ ∷ ε ∷ []) "1Cor.12.26" ∷ word (δ ∷ ο ∷ ξ ∷ ά ∷ ζ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "1Cor.12.26" ∷ word (μ ∷ έ ∷ ∙λ ∷ ο ∷ ς ∷ []) "1Cor.12.26" ∷ word (σ ∷ υ ∷ γ ∷ χ ∷ α ∷ ί ∷ ρ ∷ ε ∷ ι ∷ []) "1Cor.12.26" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "1Cor.12.26" ∷ word (τ ∷ ὰ ∷ []) "1Cor.12.26" ∷ word (μ ∷ έ ∷ ∙λ ∷ η ∷ []) "1Cor.12.26" ∷ word (Ὑ ∷ μ ∷ ε ∷ ῖ ∷ ς ∷ []) "1Cor.12.27" ∷ word (δ ∷ έ ∷ []) "1Cor.12.27" ∷ word (ἐ ∷ σ ∷ τ ∷ ε ∷ []) "1Cor.12.27" ∷ word (σ ∷ ῶ ∷ μ ∷ α ∷ []) "1Cor.12.27" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "1Cor.12.27" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.12.27" ∷ word (μ ∷ έ ∷ ∙λ ∷ η ∷ []) "1Cor.12.27" ∷ word (ἐ ∷ κ ∷ []) "1Cor.12.27" ∷ word (μ ∷ έ ∷ ρ ∷ ο ∷ υ ∷ ς ∷ []) "1Cor.12.27" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.12.28" ∷ word (ο ∷ ὓ ∷ ς ∷ []) "1Cor.12.28" ∷ word (μ ∷ ὲ ∷ ν ∷ []) "1Cor.12.28" ∷ word (ἔ ∷ θ ∷ ε ∷ τ ∷ ο ∷ []) "1Cor.12.28" ∷ word (ὁ ∷ []) "1Cor.12.28" ∷ word (θ ∷ ε ∷ ὸ ∷ ς ∷ []) "1Cor.12.28" ∷ word (ἐ ∷ ν ∷ []) "1Cor.12.28" ∷ word (τ ∷ ῇ ∷ []) "1Cor.12.28" ∷ word (ἐ ∷ κ ∷ κ ∷ ∙λ ∷ η ∷ σ ∷ ί ∷ ᾳ ∷ []) "1Cor.12.28" ∷ word (π ∷ ρ ∷ ῶ ∷ τ ∷ ο ∷ ν ∷ []) "1Cor.12.28" ∷ word (ἀ ∷ π ∷ ο ∷ σ ∷ τ ∷ ό ∷ ∙λ ∷ ο ∷ υ ∷ ς ∷ []) "1Cor.12.28" ∷ word (δ ∷ ε ∷ ύ ∷ τ ∷ ε ∷ ρ ∷ ο ∷ ν ∷ []) "1Cor.12.28" ∷ word (π ∷ ρ ∷ ο ∷ φ ∷ ή ∷ τ ∷ α ∷ ς ∷ []) "1Cor.12.28" ∷ word (τ ∷ ρ ∷ ί ∷ τ ∷ ο ∷ ν ∷ []) "1Cor.12.28" ∷ word (δ ∷ ι ∷ δ ∷ α ∷ σ ∷ κ ∷ ά ∷ ∙λ ∷ ο ∷ υ ∷ ς ∷ []) "1Cor.12.28" ∷ word (ἔ ∷ π ∷ ε ∷ ι ∷ τ ∷ α ∷ []) "1Cor.12.28" ∷ word (δ ∷ υ ∷ ν ∷ ά ∷ μ ∷ ε ∷ ι ∷ ς ∷ []) "1Cor.12.28" ∷ word (ἔ ∷ π ∷ ε ∷ ι ∷ τ ∷ α ∷ []) "1Cor.12.28" ∷ word (χ ∷ α ∷ ρ ∷ ί ∷ σ ∷ μ ∷ α ∷ τ ∷ α ∷ []) "1Cor.12.28" ∷ word (ἰ ∷ α ∷ μ ∷ ά ∷ τ ∷ ω ∷ ν ∷ []) "1Cor.12.28" ∷ word (ἀ ∷ ν ∷ τ ∷ ι ∷ ∙λ ∷ ή ∷ μ ∷ ψ ∷ ε ∷ ι ∷ ς ∷ []) "1Cor.12.28" ∷ word (κ ∷ υ ∷ β ∷ ε ∷ ρ ∷ ν ∷ ή ∷ σ ∷ ε ∷ ι ∷ ς ∷ []) "1Cor.12.28" ∷ word (γ ∷ έ ∷ ν ∷ η ∷ []) "1Cor.12.28" ∷ word (γ ∷ ∙λ ∷ ω ∷ σ ∷ σ ∷ ῶ ∷ ν ∷ []) "1Cor.12.28" ∷ word (μ ∷ ὴ ∷ []) "1Cor.12.29" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "1Cor.12.29" ∷ word (ἀ ∷ π ∷ ό ∷ σ ∷ τ ∷ ο ∷ ∙λ ∷ ο ∷ ι ∷ []) "1Cor.12.29" ∷ word (μ ∷ ὴ ∷ []) "1Cor.12.29" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "1Cor.12.29" ∷ word (π ∷ ρ ∷ ο ∷ φ ∷ ῆ ∷ τ ∷ α ∷ ι ∷ []) "1Cor.12.29" ∷ word (μ ∷ ὴ ∷ []) "1Cor.12.29" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "1Cor.12.29" ∷ word (δ ∷ ι ∷ δ ∷ ά ∷ σ ∷ κ ∷ α ∷ ∙λ ∷ ο ∷ ι ∷ []) "1Cor.12.29" ∷ word (μ ∷ ὴ ∷ []) "1Cor.12.29" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "1Cor.12.29" ∷ word (δ ∷ υ ∷ ν ∷ ά ∷ μ ∷ ε ∷ ι ∷ ς ∷ []) "1Cor.12.29" ∷ word (μ ∷ ὴ ∷ []) "1Cor.12.30" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "1Cor.12.30" ∷ word (χ ∷ α ∷ ρ ∷ ί ∷ σ ∷ μ ∷ α ∷ τ ∷ α ∷ []) "1Cor.12.30" ∷ word (ἔ ∷ χ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "1Cor.12.30" ∷ word (ἰ ∷ α ∷ μ ∷ ά ∷ τ ∷ ω ∷ ν ∷ []) "1Cor.12.30" ∷ word (μ ∷ ὴ ∷ []) "1Cor.12.30" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "1Cor.12.30" ∷ word (γ ∷ ∙λ ∷ ώ ∷ σ ∷ σ ∷ α ∷ ι ∷ ς ∷ []) "1Cor.12.30" ∷ word (∙λ ∷ α ∷ ∙λ ∷ ο ∷ ῦ ∷ σ ∷ ι ∷ ν ∷ []) "1Cor.12.30" ∷ word (μ ∷ ὴ ∷ []) "1Cor.12.30" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "1Cor.12.30" ∷ word (δ ∷ ι ∷ ε ∷ ρ ∷ μ ∷ η ∷ ν ∷ ε ∷ ύ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "1Cor.12.30" ∷ word (ζ ∷ η ∷ ∙λ ∷ ο ∷ ῦ ∷ τ ∷ ε ∷ []) "1Cor.12.31" ∷ word (δ ∷ ὲ ∷ []) "1Cor.12.31" ∷ word (τ ∷ ὰ ∷ []) "1Cor.12.31" ∷ word (χ ∷ α ∷ ρ ∷ ί ∷ σ ∷ μ ∷ α ∷ τ ∷ α ∷ []) "1Cor.12.31" ∷ word (τ ∷ ὰ ∷ []) "1Cor.12.31" ∷ word (μ ∷ ε ∷ ί ∷ ζ ∷ ο ∷ ν ∷ α ∷ []) "1Cor.12.31" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.12.31" ∷ word (ἔ ∷ τ ∷ ι ∷ []) "1Cor.12.31" ∷ word (κ ∷ α ∷ θ ∷ []) "1Cor.12.31" ∷ word (ὑ ∷ π ∷ ε ∷ ρ ∷ β ∷ ο ∷ ∙λ ∷ ὴ ∷ ν ∷ []) "1Cor.12.31" ∷ word (ὁ ∷ δ ∷ ὸ ∷ ν ∷ []) "1Cor.12.31" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "1Cor.12.31" ∷ word (δ ∷ ε ∷ ί ∷ κ ∷ ν ∷ υ ∷ μ ∷ ι ∷ []) "1Cor.12.31" ∷ word (Ἐ ∷ ὰ ∷ ν ∷ []) "1Cor.13.1" ∷ word (τ ∷ α ∷ ῖ ∷ ς ∷ []) "1Cor.13.1" ∷ word (γ ∷ ∙λ ∷ ώ ∷ σ ∷ σ ∷ α ∷ ι ∷ ς ∷ []) "1Cor.13.1" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "1Cor.13.1" ∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ω ∷ ν ∷ []) "1Cor.13.1" ∷ word (∙λ ∷ α ∷ ∙λ ∷ ῶ ∷ []) "1Cor.13.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.13.1" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "1Cor.13.1" ∷ word (ἀ ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ω ∷ ν ∷ []) "1Cor.13.1" ∷ word (ἀ ∷ γ ∷ ά ∷ π ∷ η ∷ ν ∷ []) "1Cor.13.1" ∷ word (δ ∷ ὲ ∷ []) "1Cor.13.1" ∷ word (μ ∷ ὴ ∷ []) "1Cor.13.1" ∷ word (ἔ ∷ χ ∷ ω ∷ []) "1Cor.13.1" ∷ word (γ ∷ έ ∷ γ ∷ ο ∷ ν ∷ α ∷ []) "1Cor.13.1" ∷ word (χ ∷ α ∷ ∙λ ∷ κ ∷ ὸ ∷ ς ∷ []) "1Cor.13.1" ∷ word (ἠ ∷ χ ∷ ῶ ∷ ν ∷ []) "1Cor.13.1" ∷ word (ἢ ∷ []) "1Cor.13.1" ∷ word (κ ∷ ύ ∷ μ ∷ β ∷ α ∷ ∙λ ∷ ο ∷ ν ∷ []) "1Cor.13.1" ∷ word (ἀ ∷ ∙λ ∷ α ∷ ∙λ ∷ ά ∷ ζ ∷ ο ∷ ν ∷ []) "1Cor.13.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.13.2" ∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "1Cor.13.2" ∷ word (ἔ ∷ χ ∷ ω ∷ []) "1Cor.13.2" ∷ word (π ∷ ρ ∷ ο ∷ φ ∷ η ∷ τ ∷ ε ∷ ί ∷ α ∷ ν ∷ []) "1Cor.13.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.13.2" ∷ word (ε ∷ ἰ ∷ δ ∷ ῶ ∷ []) "1Cor.13.2" ∷ word (τ ∷ ὰ ∷ []) "1Cor.13.2" ∷ word (μ ∷ υ ∷ σ ∷ τ ∷ ή ∷ ρ ∷ ι ∷ α ∷ []) "1Cor.13.2" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "1Cor.13.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.13.2" ∷ word (π ∷ ᾶ ∷ σ ∷ α ∷ ν ∷ []) "1Cor.13.2" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "1Cor.13.2" ∷ word (γ ∷ ν ∷ ῶ ∷ σ ∷ ι ∷ ν ∷ []) "1Cor.13.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.13.2" ∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "1Cor.13.2" ∷ word (ἔ ∷ χ ∷ ω ∷ []) "1Cor.13.2" ∷ word (π ∷ ᾶ ∷ σ ∷ α ∷ ν ∷ []) "1Cor.13.2" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "1Cor.13.2" ∷ word (π ∷ ί ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "1Cor.13.2" ∷ word (ὥ ∷ σ ∷ τ ∷ ε ∷ []) "1Cor.13.2" ∷ word (ὄ ∷ ρ ∷ η ∷ []) "1Cor.13.2" ∷ word (μ ∷ ε ∷ θ ∷ ι ∷ σ ∷ τ ∷ ά ∷ ν ∷ α ∷ ι ∷ []) "1Cor.13.2" ∷ word (ἀ ∷ γ ∷ ά ∷ π ∷ η ∷ ν ∷ []) "1Cor.13.2" ∷ word (δ ∷ ὲ ∷ []) "1Cor.13.2" ∷ word (μ ∷ ὴ ∷ []) "1Cor.13.2" ∷ word (ἔ ∷ χ ∷ ω ∷ []) "1Cor.13.2" ∷ word (ο ∷ ὐ ∷ θ ∷ έ ∷ ν ∷ []) "1Cor.13.2" ∷ word (ε ∷ ἰ ∷ μ ∷ ι ∷ []) "1Cor.13.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.13.3" ∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "1Cor.13.3" ∷ word (ψ ∷ ω ∷ μ ∷ ί ∷ σ ∷ ω ∷ []) "1Cor.13.3" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "1Cor.13.3" ∷ word (τ ∷ ὰ ∷ []) "1Cor.13.3" ∷ word (ὑ ∷ π ∷ ά ∷ ρ ∷ χ ∷ ο ∷ ν ∷ τ ∷ ά ∷ []) "1Cor.13.3" ∷ word (μ ∷ ο ∷ υ ∷ []) "1Cor.13.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.13.3" ∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "1Cor.13.3" ∷ word (π ∷ α ∷ ρ ∷ α ∷ δ ∷ ῶ ∷ []) "1Cor.13.3" ∷ word (τ ∷ ὸ ∷ []) "1Cor.13.3" ∷ word (σ ∷ ῶ ∷ μ ∷ ά ∷ []) "1Cor.13.3" ∷ word (μ ∷ ο ∷ υ ∷ []) "1Cor.13.3" ∷ word (ἵ ∷ ν ∷ α ∷ []) "1Cor.13.3" ∷ word (κ ∷ α ∷ υ ∷ θ ∷ ή ∷ σ ∷ ο ∷ μ ∷ α ∷ ι ∷ []) "1Cor.13.3" ∷ word (ἀ ∷ γ ∷ ά ∷ π ∷ η ∷ ν ∷ []) "1Cor.13.3" ∷ word (δ ∷ ὲ ∷ []) "1Cor.13.3" ∷ word (μ ∷ ὴ ∷ []) "1Cor.13.3" ∷ word (ἔ ∷ χ ∷ ω ∷ []) "1Cor.13.3" ∷ word (ο ∷ ὐ ∷ δ ∷ ὲ ∷ ν ∷ []) "1Cor.13.3" ∷ word (ὠ ∷ φ ∷ ε ∷ ∙λ ∷ ο ∷ ῦ ∷ μ ∷ α ∷ ι ∷ []) "1Cor.13.3" ∷ word (Ἡ ∷ []) "1Cor.13.4" ∷ word (ἀ ∷ γ ∷ ά ∷ π ∷ η ∷ []) "1Cor.13.4" ∷ word (μ ∷ α ∷ κ ∷ ρ ∷ ο ∷ θ ∷ υ ∷ μ ∷ ε ∷ ῖ ∷ []) "1Cor.13.4" ∷ word (χ ∷ ρ ∷ η ∷ σ ∷ τ ∷ ε ∷ ύ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "1Cor.13.4" ∷ word (ἡ ∷ []) "1Cor.13.4" ∷ word (ἀ ∷ γ ∷ ά ∷ π ∷ η ∷ []) "1Cor.13.4" ∷ word (ο ∷ ὐ ∷ []) "1Cor.13.4" ∷ word (ζ ∷ η ∷ ∙λ ∷ ο ∷ ῖ ∷ []) "1Cor.13.4" ∷ word (ἡ ∷ []) "1Cor.13.4" ∷ word (ἀ ∷ γ ∷ ά ∷ π ∷ η ∷ []) "1Cor.13.4" ∷ word (ο ∷ ὐ ∷ []) "1Cor.13.4" ∷ word (π ∷ ε ∷ ρ ∷ π ∷ ε ∷ ρ ∷ ε ∷ ύ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "1Cor.13.4" ∷ word (ο ∷ ὐ ∷ []) "1Cor.13.4" ∷ word (φ ∷ υ ∷ σ ∷ ι ∷ ο ∷ ῦ ∷ τ ∷ α ∷ ι ∷ []) "1Cor.13.4" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "1Cor.13.5" ∷ word (ἀ ∷ σ ∷ χ ∷ η ∷ μ ∷ ο ∷ ν ∷ ε ∷ ῖ ∷ []) "1Cor.13.5" ∷ word (ο ∷ ὐ ∷ []) "1Cor.13.5" ∷ word (ζ ∷ η ∷ τ ∷ ε ∷ ῖ ∷ []) "1Cor.13.5" ∷ word (τ ∷ ὰ ∷ []) "1Cor.13.5" ∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ῆ ∷ ς ∷ []) "1Cor.13.5" ∷ word (ο ∷ ὐ ∷ []) "1Cor.13.5" ∷ word (π ∷ α ∷ ρ ∷ ο ∷ ξ ∷ ύ ∷ ν ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "1Cor.13.5" ∷ word (ο ∷ ὐ ∷ []) "1Cor.13.5" ∷ word (∙λ ∷ ο ∷ γ ∷ ί ∷ ζ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "1Cor.13.5" ∷ word (τ ∷ ὸ ∷ []) "1Cor.13.5" ∷ word (κ ∷ α ∷ κ ∷ ό ∷ ν ∷ []) "1Cor.13.5" ∷ word (ο ∷ ὐ ∷ []) "1Cor.13.6" ∷ word (χ ∷ α ∷ ί ∷ ρ ∷ ε ∷ ι ∷ []) "1Cor.13.6" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "1Cor.13.6" ∷ word (τ ∷ ῇ ∷ []) "1Cor.13.6" ∷ word (ἀ ∷ δ ∷ ι ∷ κ ∷ ί ∷ ᾳ ∷ []) "1Cor.13.6" ∷ word (σ ∷ υ ∷ γ ∷ χ ∷ α ∷ ί ∷ ρ ∷ ε ∷ ι ∷ []) "1Cor.13.6" ∷ word (δ ∷ ὲ ∷ []) "1Cor.13.6" ∷ word (τ ∷ ῇ ∷ []) "1Cor.13.6" ∷ word (ἀ ∷ ∙λ ∷ η ∷ θ ∷ ε ∷ ί ∷ ᾳ ∷ []) "1Cor.13.6" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "1Cor.13.7" ∷ word (σ ∷ τ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "1Cor.13.7" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "1Cor.13.7" ∷ word (π ∷ ι ∷ σ ∷ τ ∷ ε ∷ ύ ∷ ε ∷ ι ∷ []) "1Cor.13.7" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "1Cor.13.7" ∷ word (ἐ ∷ ∙λ ∷ π ∷ ί ∷ ζ ∷ ε ∷ ι ∷ []) "1Cor.13.7" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "1Cor.13.7" ∷ word (ὑ ∷ π ∷ ο ∷ μ ∷ έ ∷ ν ∷ ε ∷ ι ∷ []) "1Cor.13.7" ∷ word (Ἡ ∷ []) "1Cor.13.8" ∷ word (ἀ ∷ γ ∷ ά ∷ π ∷ η ∷ []) "1Cor.13.8" ∷ word (ο ∷ ὐ ∷ δ ∷ έ ∷ π ∷ ο ∷ τ ∷ ε ∷ []) "1Cor.13.8" ∷ word (π ∷ ί ∷ π ∷ τ ∷ ε ∷ ι ∷ []) "1Cor.13.8" ∷ word (ε ∷ ἴ ∷ τ ∷ ε ∷ []) "1Cor.13.8" ∷ word (δ ∷ ὲ ∷ []) "1Cor.13.8" ∷ word (π ∷ ρ ∷ ο ∷ φ ∷ η ∷ τ ∷ ε ∷ ῖ ∷ α ∷ ι ∷ []) "1Cor.13.8" ∷ word (κ ∷ α ∷ τ ∷ α ∷ ρ ∷ γ ∷ η ∷ θ ∷ ή ∷ σ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "1Cor.13.8" ∷ word (ε ∷ ἴ ∷ τ ∷ ε ∷ []) "1Cor.13.8" ∷ word (γ ∷ ∙λ ∷ ῶ ∷ σ ∷ σ ∷ α ∷ ι ∷ []) "1Cor.13.8" ∷ word (π ∷ α ∷ ύ ∷ σ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "1Cor.13.8" ∷ word (ε ∷ ἴ ∷ τ ∷ ε ∷ []) "1Cor.13.8" ∷ word (γ ∷ ν ∷ ῶ ∷ σ ∷ ι ∷ ς ∷ []) "1Cor.13.8" ∷ word (κ ∷ α ∷ τ ∷ α ∷ ρ ∷ γ ∷ η ∷ θ ∷ ή ∷ σ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "1Cor.13.8" ∷ word (ἐ ∷ κ ∷ []) "1Cor.13.9" ∷ word (μ ∷ έ ∷ ρ ∷ ο ∷ υ ∷ ς ∷ []) "1Cor.13.9" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "1Cor.13.9" ∷ word (γ ∷ ι ∷ ν ∷ ώ ∷ σ ∷ κ ∷ ο ∷ μ ∷ ε ∷ ν ∷ []) "1Cor.13.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.13.9" ∷ word (ἐ ∷ κ ∷ []) "1Cor.13.9" ∷ word (μ ∷ έ ∷ ρ ∷ ο ∷ υ ∷ ς ∷ []) "1Cor.13.9" ∷ word (π ∷ ρ ∷ ο ∷ φ ∷ η ∷ τ ∷ ε ∷ ύ ∷ ο ∷ μ ∷ ε ∷ ν ∷ []) "1Cor.13.9" ∷ word (ὅ ∷ τ ∷ α ∷ ν ∷ []) "1Cor.13.10" ∷ word (δ ∷ ὲ ∷ []) "1Cor.13.10" ∷ word (ἔ ∷ ∙λ ∷ θ ∷ ῃ ∷ []) "1Cor.13.10" ∷ word (τ ∷ ὸ ∷ []) "1Cor.13.10" ∷ word (τ ∷ έ ∷ ∙λ ∷ ε ∷ ι ∷ ο ∷ ν ∷ []) "1Cor.13.10" ∷ word (τ ∷ ὸ ∷ []) "1Cor.13.10" ∷ word (ἐ ∷ κ ∷ []) "1Cor.13.10" ∷ word (μ ∷ έ ∷ ρ ∷ ο ∷ υ ∷ ς ∷ []) "1Cor.13.10" ∷ word (κ ∷ α ∷ τ ∷ α ∷ ρ ∷ γ ∷ η ∷ θ ∷ ή ∷ σ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "1Cor.13.10" ∷ word (ὅ ∷ τ ∷ ε ∷ []) "1Cor.13.11" ∷ word (ἤ ∷ μ ∷ η ∷ ν ∷ []) "1Cor.13.11" ∷ word (ν ∷ ή ∷ π ∷ ι ∷ ο ∷ ς ∷ []) "1Cor.13.11" ∷ word (ἐ ∷ ∙λ ∷ ά ∷ ∙λ ∷ ο ∷ υ ∷ ν ∷ []) "1Cor.13.11" ∷ word (ὡ ∷ ς ∷ []) "1Cor.13.11" ∷ word (ν ∷ ή ∷ π ∷ ι ∷ ο ∷ ς ∷ []) "1Cor.13.11" ∷ word (ἐ ∷ φ ∷ ρ ∷ ό ∷ ν ∷ ο ∷ υ ∷ ν ∷ []) "1Cor.13.11" ∷ word (ὡ ∷ ς ∷ []) "1Cor.13.11" ∷ word (ν ∷ ή ∷ π ∷ ι ∷ ο ∷ ς ∷ []) "1Cor.13.11" ∷ word (ἐ ∷ ∙λ ∷ ο ∷ γ ∷ ι ∷ ζ ∷ ό ∷ μ ∷ η ∷ ν ∷ []) "1Cor.13.11" ∷ word (ὡ ∷ ς ∷ []) "1Cor.13.11" ∷ word (ν ∷ ή ∷ π ∷ ι ∷ ο ∷ ς ∷ []) "1Cor.13.11" ∷ word (ὅ ∷ τ ∷ ε ∷ []) "1Cor.13.11" ∷ word (γ ∷ έ ∷ γ ∷ ο ∷ ν ∷ α ∷ []) "1Cor.13.11" ∷ word (ἀ ∷ ν ∷ ή ∷ ρ ∷ []) "1Cor.13.11" ∷ word (κ ∷ α ∷ τ ∷ ή ∷ ρ ∷ γ ∷ η ∷ κ ∷ α ∷ []) "1Cor.13.11" ∷ word (τ ∷ ὰ ∷ []) "1Cor.13.11" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.13.11" ∷ word (ν ∷ η ∷ π ∷ ί ∷ ο ∷ υ ∷ []) "1Cor.13.11" ∷ word (β ∷ ∙λ ∷ έ ∷ π ∷ ο ∷ μ ∷ ε ∷ ν ∷ []) "1Cor.13.12" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "1Cor.13.12" ∷ word (ἄ ∷ ρ ∷ τ ∷ ι ∷ []) "1Cor.13.12" ∷ word (δ ∷ ι ∷ []) "1Cor.13.12" ∷ word (ἐ ∷ σ ∷ ό ∷ π ∷ τ ∷ ρ ∷ ο ∷ υ ∷ []) "1Cor.13.12" ∷ word (ἐ ∷ ν ∷ []) "1Cor.13.12" ∷ word (α ∷ ἰ ∷ ν ∷ ί ∷ γ ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "1Cor.13.12" ∷ word (τ ∷ ό ∷ τ ∷ ε ∷ []) "1Cor.13.12" ∷ word (δ ∷ ὲ ∷ []) "1Cor.13.12" ∷ word (π ∷ ρ ∷ ό ∷ σ ∷ ω ∷ π ∷ ο ∷ ν ∷ []) "1Cor.13.12" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "1Cor.13.12" ∷ word (π ∷ ρ ∷ ό ∷ σ ∷ ω ∷ π ∷ ο ∷ ν ∷ []) "1Cor.13.12" ∷ word (ἄ ∷ ρ ∷ τ ∷ ι ∷ []) "1Cor.13.12" ∷ word (γ ∷ ι ∷ ν ∷ ώ ∷ σ ∷ κ ∷ ω ∷ []) "1Cor.13.12" ∷ word (ἐ ∷ κ ∷ []) "1Cor.13.12" ∷ word (μ ∷ έ ∷ ρ ∷ ο ∷ υ ∷ ς ∷ []) "1Cor.13.12" ∷ word (τ ∷ ό ∷ τ ∷ ε ∷ []) "1Cor.13.12" ∷ word (δ ∷ ὲ ∷ []) "1Cor.13.12" ∷ word (ἐ ∷ π ∷ ι ∷ γ ∷ ν ∷ ώ ∷ σ ∷ ο ∷ μ ∷ α ∷ ι ∷ []) "1Cor.13.12" ∷ word (κ ∷ α ∷ θ ∷ ὼ ∷ ς ∷ []) "1Cor.13.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.13.12" ∷ word (ἐ ∷ π ∷ ε ∷ γ ∷ ν ∷ ώ ∷ σ ∷ θ ∷ η ∷ ν ∷ []) "1Cor.13.12" ∷ word (ν ∷ υ ∷ ν ∷ ὶ ∷ []) "1Cor.13.13" ∷ word (δ ∷ ὲ ∷ []) "1Cor.13.13" ∷ word (μ ∷ έ ∷ ν ∷ ε ∷ ι ∷ []) "1Cor.13.13" ∷ word (π ∷ ί ∷ σ ∷ τ ∷ ι ∷ ς ∷ []) "1Cor.13.13" ∷ word (ἐ ∷ ∙λ ∷ π ∷ ί ∷ ς ∷ []) "1Cor.13.13" ∷ word (ἀ ∷ γ ∷ ά ∷ π ∷ η ∷ []) "1Cor.13.13" ∷ word (τ ∷ ὰ ∷ []) "1Cor.13.13" ∷ word (τ ∷ ρ ∷ ί ∷ α ∷ []) "1Cor.13.13" ∷ word (τ ∷ α ∷ ῦ ∷ τ ∷ α ∷ []) "1Cor.13.13" ∷ word (μ ∷ ε ∷ ί ∷ ζ ∷ ω ∷ ν ∷ []) "1Cor.13.13" ∷ word (δ ∷ ὲ ∷ []) "1Cor.13.13" ∷ word (τ ∷ ο ∷ ύ ∷ τ ∷ ω ∷ ν ∷ []) "1Cor.13.13" ∷ word (ἡ ∷ []) "1Cor.13.13" ∷ word (ἀ ∷ γ ∷ ά ∷ π ∷ η ∷ []) "1Cor.13.13" ∷ word (Δ ∷ ι ∷ ώ ∷ κ ∷ ε ∷ τ ∷ ε ∷ []) "1Cor.14.1" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "1Cor.14.1" ∷ word (ἀ ∷ γ ∷ ά ∷ π ∷ η ∷ ν ∷ []) "1Cor.14.1" ∷ word (ζ ∷ η ∷ ∙λ ∷ ο ∷ ῦ ∷ τ ∷ ε ∷ []) "1Cor.14.1" ∷ word (δ ∷ ὲ ∷ []) "1Cor.14.1" ∷ word (τ ∷ ὰ ∷ []) "1Cor.14.1" ∷ word (π ∷ ν ∷ ε ∷ υ ∷ μ ∷ α ∷ τ ∷ ι ∷ κ ∷ ά ∷ []) "1Cor.14.1" ∷ word (μ ∷ ᾶ ∷ ∙λ ∷ ∙λ ∷ ο ∷ ν ∷ []) "1Cor.14.1" ∷ word (δ ∷ ὲ ∷ []) "1Cor.14.1" ∷ word (ἵ ∷ ν ∷ α ∷ []) "1Cor.14.1" ∷ word (π ∷ ρ ∷ ο ∷ φ ∷ η ∷ τ ∷ ε ∷ ύ ∷ η ∷ τ ∷ ε ∷ []) "1Cor.14.1" ∷ word (ὁ ∷ []) "1Cor.14.2" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "1Cor.14.2" ∷ word (∙λ ∷ α ∷ ∙λ ∷ ῶ ∷ ν ∷ []) "1Cor.14.2" ∷ word (γ ∷ ∙λ ∷ ώ ∷ σ ∷ σ ∷ ῃ ∷ []) "1Cor.14.2" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "1Cor.14.2" ∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ο ∷ ι ∷ ς ∷ []) "1Cor.14.2" ∷ word (∙λ ∷ α ∷ ∙λ ∷ ε ∷ ῖ ∷ []) "1Cor.14.2" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "1Cor.14.2" ∷ word (θ ∷ ε ∷ ῷ ∷ []) "1Cor.14.2" ∷ word (ο ∷ ὐ ∷ δ ∷ ε ∷ ὶ ∷ ς ∷ []) "1Cor.14.2" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "1Cor.14.2" ∷ word (ἀ ∷ κ ∷ ο ∷ ύ ∷ ε ∷ ι ∷ []) "1Cor.14.2" ∷ word (π ∷ ν ∷ ε ∷ ύ ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "1Cor.14.2" ∷ word (δ ∷ ὲ ∷ []) "1Cor.14.2" ∷ word (∙λ ∷ α ∷ ∙λ ∷ ε ∷ ῖ ∷ []) "1Cor.14.2" ∷ word (μ ∷ υ ∷ σ ∷ τ ∷ ή ∷ ρ ∷ ι ∷ α ∷ []) "1Cor.14.2" ∷ word (ὁ ∷ []) "1Cor.14.3" ∷ word (δ ∷ ὲ ∷ []) "1Cor.14.3" ∷ word (π ∷ ρ ∷ ο ∷ φ ∷ η ∷ τ ∷ ε ∷ ύ ∷ ω ∷ ν ∷ []) "1Cor.14.3" ∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ο ∷ ι ∷ ς ∷ []) "1Cor.14.3" ∷ word (∙λ ∷ α ∷ ∙λ ∷ ε ∷ ῖ ∷ []) "1Cor.14.3" ∷ word (ο ∷ ἰ ∷ κ ∷ ο ∷ δ ∷ ο ∷ μ ∷ ὴ ∷ ν ∷ []) "1Cor.14.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.14.3" ∷ word (π ∷ α ∷ ρ ∷ ά ∷ κ ∷ ∙λ ∷ η ∷ σ ∷ ι ∷ ν ∷ []) "1Cor.14.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.14.3" ∷ word (π ∷ α ∷ ρ ∷ α ∷ μ ∷ υ ∷ θ ∷ ί ∷ α ∷ ν ∷ []) "1Cor.14.3" ∷ word (ὁ ∷ []) "1Cor.14.4" ∷ word (∙λ ∷ α ∷ ∙λ ∷ ῶ ∷ ν ∷ []) "1Cor.14.4" ∷ word (γ ∷ ∙λ ∷ ώ ∷ σ ∷ σ ∷ ῃ ∷ []) "1Cor.14.4" ∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ὸ ∷ ν ∷ []) "1Cor.14.4" ∷ word (ο ∷ ἰ ∷ κ ∷ ο ∷ δ ∷ ο ∷ μ ∷ ε ∷ ῖ ∷ []) "1Cor.14.4" ∷ word (ὁ ∷ []) "1Cor.14.4" ∷ word (δ ∷ ὲ ∷ []) "1Cor.14.4" ∷ word (π ∷ ρ ∷ ο ∷ φ ∷ η ∷ τ ∷ ε ∷ ύ ∷ ω ∷ ν ∷ []) "1Cor.14.4" ∷ word (ἐ ∷ κ ∷ κ ∷ ∙λ ∷ η ∷ σ ∷ ί ∷ α ∷ ν ∷ []) "1Cor.14.4" ∷ word (ο ∷ ἰ ∷ κ ∷ ο ∷ δ ∷ ο ∷ μ ∷ ε ∷ ῖ ∷ []) "1Cor.14.4" ∷ word (θ ∷ έ ∷ ∙λ ∷ ω ∷ []) "1Cor.14.5" ∷ word (δ ∷ ὲ ∷ []) "1Cor.14.5" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "1Cor.14.5" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "1Cor.14.5" ∷ word (∙λ ∷ α ∷ ∙λ ∷ ε ∷ ῖ ∷ ν ∷ []) "1Cor.14.5" ∷ word (γ ∷ ∙λ ∷ ώ ∷ σ ∷ σ ∷ α ∷ ι ∷ ς ∷ []) "1Cor.14.5" ∷ word (μ ∷ ᾶ ∷ ∙λ ∷ ∙λ ∷ ο ∷ ν ∷ []) "1Cor.14.5" ∷ word (δ ∷ ὲ ∷ []) "1Cor.14.5" ∷ word (ἵ ∷ ν ∷ α ∷ []) "1Cor.14.5" ∷ word (π ∷ ρ ∷ ο ∷ φ ∷ η ∷ τ ∷ ε ∷ ύ ∷ η ∷ τ ∷ ε ∷ []) "1Cor.14.5" ∷ word (μ ∷ ε ∷ ί ∷ ζ ∷ ω ∷ ν ∷ []) "1Cor.14.5" ∷ word (δ ∷ ὲ ∷ []) "1Cor.14.5" ∷ word (ὁ ∷ []) "1Cor.14.5" ∷ word (π ∷ ρ ∷ ο ∷ φ ∷ η ∷ τ ∷ ε ∷ ύ ∷ ω ∷ ν ∷ []) "1Cor.14.5" ∷ word (ἢ ∷ []) "1Cor.14.5" ∷ word (ὁ ∷ []) "1Cor.14.5" ∷ word (∙λ ∷ α ∷ ∙λ ∷ ῶ ∷ ν ∷ []) "1Cor.14.5" ∷ word (γ ∷ ∙λ ∷ ώ ∷ σ ∷ σ ∷ α ∷ ι ∷ ς ∷ []) "1Cor.14.5" ∷ word (ἐ ∷ κ ∷ τ ∷ ὸ ∷ ς ∷ []) "1Cor.14.5" ∷ word (ε ∷ ἰ ∷ []) "1Cor.14.5" ∷ word (μ ∷ ὴ ∷ []) "1Cor.14.5" ∷ word (δ ∷ ι ∷ ε ∷ ρ ∷ μ ∷ η ∷ ν ∷ ε ∷ ύ ∷ ῃ ∷ []) "1Cor.14.5" ∷ word (ἵ ∷ ν ∷ α ∷ []) "1Cor.14.5" ∷ word (ἡ ∷ []) "1Cor.14.5" ∷ word (ἐ ∷ κ ∷ κ ∷ ∙λ ∷ η ∷ σ ∷ ί ∷ α ∷ []) "1Cor.14.5" ∷ word (ο ∷ ἰ ∷ κ ∷ ο ∷ δ ∷ ο ∷ μ ∷ ὴ ∷ ν ∷ []) "1Cor.14.5" ∷ word (∙λ ∷ ά ∷ β ∷ ῃ ∷ []) "1Cor.14.5" ∷ word (Ν ∷ ῦ ∷ ν ∷ []) "1Cor.14.6" ∷ word (δ ∷ έ ∷ []) "1Cor.14.6" ∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ο ∷ ί ∷ []) "1Cor.14.6" ∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "1Cor.14.6" ∷ word (ἔ ∷ ∙λ ∷ θ ∷ ω ∷ []) "1Cor.14.6" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "1Cor.14.6" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "1Cor.14.6" ∷ word (γ ∷ ∙λ ∷ ώ ∷ σ ∷ σ ∷ α ∷ ι ∷ ς ∷ []) "1Cor.14.6" ∷ word (∙λ ∷ α ∷ ∙λ ∷ ῶ ∷ ν ∷ []) "1Cor.14.6" ∷ word (τ ∷ ί ∷ []) "1Cor.14.6" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "1Cor.14.6" ∷ word (ὠ ∷ φ ∷ ε ∷ ∙λ ∷ ή ∷ σ ∷ ω ∷ []) "1Cor.14.6" ∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "1Cor.14.6" ∷ word (μ ∷ ὴ ∷ []) "1Cor.14.6" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "1Cor.14.6" ∷ word (∙λ ∷ α ∷ ∙λ ∷ ή ∷ σ ∷ ω ∷ []) "1Cor.14.6" ∷ word (ἢ ∷ []) "1Cor.14.6" ∷ word (ἐ ∷ ν ∷ []) "1Cor.14.6" ∷ word (ἀ ∷ π ∷ ο ∷ κ ∷ α ∷ ∙λ ∷ ύ ∷ ψ ∷ ε ∷ ι ∷ []) "1Cor.14.6" ∷ word (ἢ ∷ []) "1Cor.14.6" ∷ word (ἐ ∷ ν ∷ []) "1Cor.14.6" ∷ word (γ ∷ ν ∷ ώ ∷ σ ∷ ε ∷ ι ∷ []) "1Cor.14.6" ∷ word (ἢ ∷ []) "1Cor.14.6" ∷ word (ἐ ∷ ν ∷ []) "1Cor.14.6" ∷ word (π ∷ ρ ∷ ο ∷ φ ∷ η ∷ τ ∷ ε ∷ ί ∷ ᾳ ∷ []) "1Cor.14.6" ∷ word (ἢ ∷ []) "1Cor.14.6" ∷ word (ἐ ∷ ν ∷ []) "1Cor.14.6" ∷ word (δ ∷ ι ∷ δ ∷ α ∷ χ ∷ ῇ ∷ []) "1Cor.14.6" ∷ word (ὅ ∷ μ ∷ ω ∷ ς ∷ []) "1Cor.14.7" ∷ word (τ ∷ ὰ ∷ []) "1Cor.14.7" ∷ word (ἄ ∷ ψ ∷ υ ∷ χ ∷ α ∷ []) "1Cor.14.7" ∷ word (φ ∷ ω ∷ ν ∷ ὴ ∷ ν ∷ []) "1Cor.14.7" ∷ word (δ ∷ ι ∷ δ ∷ ό ∷ ν ∷ τ ∷ α ∷ []) "1Cor.14.7" ∷ word (ε ∷ ἴ ∷ τ ∷ ε ∷ []) "1Cor.14.7" ∷ word (α ∷ ὐ ∷ ∙λ ∷ ὸ ∷ ς ∷ []) "1Cor.14.7" ∷ word (ε ∷ ἴ ∷ τ ∷ ε ∷ []) "1Cor.14.7" ∷ word (κ ∷ ι ∷ θ ∷ ά ∷ ρ ∷ α ∷ []) "1Cor.14.7" ∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "1Cor.14.7" ∷ word (δ ∷ ι ∷ α ∷ σ ∷ τ ∷ ο ∷ ∙λ ∷ ὴ ∷ ν ∷ []) "1Cor.14.7" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "1Cor.14.7" ∷ word (φ ∷ θ ∷ ό ∷ γ ∷ γ ∷ ο ∷ ι ∷ ς ∷ []) "1Cor.14.7" ∷ word (μ ∷ ὴ ∷ []) "1Cor.14.7" ∷ word (δ ∷ ῷ ∷ []) "1Cor.14.7" ∷ word (π ∷ ῶ ∷ ς ∷ []) "1Cor.14.7" ∷ word (γ ∷ ν ∷ ω ∷ σ ∷ θ ∷ ή ∷ σ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "1Cor.14.7" ∷ word (τ ∷ ὸ ∷ []) "1Cor.14.7" ∷ word (α ∷ ὐ ∷ ∙λ ∷ ο ∷ ύ ∷ μ ∷ ε ∷ ν ∷ ο ∷ ν ∷ []) "1Cor.14.7" ∷ word (ἢ ∷ []) "1Cor.14.7" ∷ word (τ ∷ ὸ ∷ []) "1Cor.14.7" ∷ word (κ ∷ ι ∷ θ ∷ α ∷ ρ ∷ ι ∷ ζ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ν ∷ []) "1Cor.14.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.14.8" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "1Cor.14.8" ∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "1Cor.14.8" ∷ word (ἄ ∷ δ ∷ η ∷ ∙λ ∷ ο ∷ ν ∷ []) "1Cor.14.8" ∷ word (φ ∷ ω ∷ ν ∷ ὴ ∷ ν ∷ []) "1Cor.14.8" ∷ word (σ ∷ ά ∷ ∙λ ∷ π ∷ ι ∷ γ ∷ ξ ∷ []) "1Cor.14.8" ∷ word (δ ∷ ῷ ∷ []) "1Cor.14.8" ∷ word (τ ∷ ί ∷ ς ∷ []) "1Cor.14.8" ∷ word (π ∷ α ∷ ρ ∷ α ∷ σ ∷ κ ∷ ε ∷ υ ∷ ά ∷ σ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "1Cor.14.8" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "1Cor.14.8" ∷ word (π ∷ ό ∷ ∙λ ∷ ε ∷ μ ∷ ο ∷ ν ∷ []) "1Cor.14.8" ∷ word (ο ∷ ὕ ∷ τ ∷ ω ∷ ς ∷ []) "1Cor.14.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.14.9" ∷ word (ὑ ∷ μ ∷ ε ∷ ῖ ∷ ς ∷ []) "1Cor.14.9" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "1Cor.14.9" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "1Cor.14.9" ∷ word (γ ∷ ∙λ ∷ ώ ∷ σ ∷ σ ∷ η ∷ ς ∷ []) "1Cor.14.9" ∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "1Cor.14.9" ∷ word (μ ∷ ὴ ∷ []) "1Cor.14.9" ∷ word (ε ∷ ὔ ∷ σ ∷ η ∷ μ ∷ ο ∷ ν ∷ []) "1Cor.14.9" ∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ ν ∷ []) "1Cor.14.9" ∷ word (δ ∷ ῶ ∷ τ ∷ ε ∷ []) "1Cor.14.9" ∷ word (π ∷ ῶ ∷ ς ∷ []) "1Cor.14.9" ∷ word (γ ∷ ν ∷ ω ∷ σ ∷ θ ∷ ή ∷ σ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "1Cor.14.9" ∷ word (τ ∷ ὸ ∷ []) "1Cor.14.9" ∷ word (∙λ ∷ α ∷ ∙λ ∷ ο ∷ ύ ∷ μ ∷ ε ∷ ν ∷ ο ∷ ν ∷ []) "1Cor.14.9" ∷ word (ἔ ∷ σ ∷ ε ∷ σ ∷ θ ∷ ε ∷ []) "1Cor.14.9" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "1Cor.14.9" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "1Cor.14.9" ∷ word (ἀ ∷ έ ∷ ρ ∷ α ∷ []) "1Cor.14.9" ∷ word (∙λ ∷ α ∷ ∙λ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "1Cor.14.9" ∷ word (τ ∷ ο ∷ σ ∷ α ∷ ῦ ∷ τ ∷ α ∷ []) "1Cor.14.10" ∷ word (ε ∷ ἰ ∷ []) "1Cor.14.10" ∷ word (τ ∷ ύ ∷ χ ∷ ο ∷ ι ∷ []) "1Cor.14.10" ∷ word (γ ∷ έ ∷ ν ∷ η ∷ []) "1Cor.14.10" ∷ word (φ ∷ ω ∷ ν ∷ ῶ ∷ ν ∷ []) "1Cor.14.10" ∷ word (ε ∷ ἰ ∷ σ ∷ ι ∷ ν ∷ []) "1Cor.14.10" ∷ word (ἐ ∷ ν ∷ []) "1Cor.14.10" ∷ word (κ ∷ ό ∷ σ ∷ μ ∷ ῳ ∷ []) "1Cor.14.10" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.14.10" ∷ word (ο ∷ ὐ ∷ δ ∷ ὲ ∷ ν ∷ []) "1Cor.14.10" ∷ word (ἄ ∷ φ ∷ ω ∷ ν ∷ ο ∷ ν ∷ []) "1Cor.14.10" ∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "1Cor.14.11" ∷ word (ο ∷ ὖ ∷ ν ∷ []) "1Cor.14.11" ∷ word (μ ∷ ὴ ∷ []) "1Cor.14.11" ∷ word (ε ∷ ἰ ∷ δ ∷ ῶ ∷ []) "1Cor.14.11" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "1Cor.14.11" ∷ word (δ ∷ ύ ∷ ν ∷ α ∷ μ ∷ ι ∷ ν ∷ []) "1Cor.14.11" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "1Cor.14.11" ∷ word (φ ∷ ω ∷ ν ∷ ῆ ∷ ς ∷ []) "1Cor.14.11" ∷ word (ἔ ∷ σ ∷ ο ∷ μ ∷ α ∷ ι ∷ []) "1Cor.14.11" ∷ word (τ ∷ ῷ ∷ []) "1Cor.14.11" ∷ word (∙λ ∷ α ∷ ∙λ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ι ∷ []) "1Cor.14.11" ∷ word (β ∷ ά ∷ ρ ∷ β ∷ α ∷ ρ ∷ ο ∷ ς ∷ []) "1Cor.14.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.14.11" ∷ word (ὁ ∷ []) "1Cor.14.11" ∷ word (∙λ ∷ α ∷ ∙λ ∷ ῶ ∷ ν ∷ []) "1Cor.14.11" ∷ word (ἐ ∷ ν ∷ []) "1Cor.14.11" ∷ word (ἐ ∷ μ ∷ ο ∷ ὶ ∷ []) "1Cor.14.11" ∷ word (β ∷ ά ∷ ρ ∷ β ∷ α ∷ ρ ∷ ο ∷ ς ∷ []) "1Cor.14.11" ∷ word (ο ∷ ὕ ∷ τ ∷ ω ∷ ς ∷ []) "1Cor.14.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.14.12" ∷ word (ὑ ∷ μ ∷ ε ∷ ῖ ∷ ς ∷ []) "1Cor.14.12" ∷ word (ἐ ∷ π ∷ ε ∷ ὶ ∷ []) "1Cor.14.12" ∷ word (ζ ∷ η ∷ ∙λ ∷ ω ∷ τ ∷ α ∷ ί ∷ []) "1Cor.14.12" ∷ word (ἐ ∷ σ ∷ τ ∷ ε ∷ []) "1Cor.14.12" ∷ word (π ∷ ν ∷ ε ∷ υ ∷ μ ∷ ά ∷ τ ∷ ω ∷ ν ∷ []) "1Cor.14.12" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "1Cor.14.12" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "1Cor.14.12" ∷ word (ο ∷ ἰ ∷ κ ∷ ο ∷ δ ∷ ο ∷ μ ∷ ὴ ∷ ν ∷ []) "1Cor.14.12" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "1Cor.14.12" ∷ word (ἐ ∷ κ ∷ κ ∷ ∙λ ∷ η ∷ σ ∷ ί ∷ α ∷ ς ∷ []) "1Cor.14.12" ∷ word (ζ ∷ η ∷ τ ∷ ε ∷ ῖ ∷ τ ∷ ε ∷ []) "1Cor.14.12" ∷ word (ἵ ∷ ν ∷ α ∷ []) "1Cor.14.12" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ σ ∷ σ ∷ ε ∷ ύ ∷ η ∷ τ ∷ ε ∷ []) "1Cor.14.12" ∷ word (Δ ∷ ι ∷ ὸ ∷ []) "1Cor.14.13" ∷ word (ὁ ∷ []) "1Cor.14.13" ∷ word (∙λ ∷ α ∷ ∙λ ∷ ῶ ∷ ν ∷ []) "1Cor.14.13" ∷ word (γ ∷ ∙λ ∷ ώ ∷ σ ∷ σ ∷ ῃ ∷ []) "1Cor.14.13" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ ε ∷ υ ∷ χ ∷ έ ∷ σ ∷ θ ∷ ω ∷ []) "1Cor.14.13" ∷ word (ἵ ∷ ν ∷ α ∷ []) "1Cor.14.13" ∷ word (δ ∷ ι ∷ ε ∷ ρ ∷ μ ∷ η ∷ ν ∷ ε ∷ ύ ∷ ῃ ∷ []) "1Cor.14.13" ∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "1Cor.14.14" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "1Cor.14.14" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ ε ∷ ύ ∷ χ ∷ ω ∷ μ ∷ α ∷ ι ∷ []) "1Cor.14.14" ∷ word (γ ∷ ∙λ ∷ ώ ∷ σ ∷ σ ∷ ῃ ∷ []) "1Cor.14.14" ∷ word (τ ∷ ὸ ∷ []) "1Cor.14.14" ∷ word (π ∷ ν ∷ ε ∷ ῦ ∷ μ ∷ ά ∷ []) "1Cor.14.14" ∷ word (μ ∷ ο ∷ υ ∷ []) "1Cor.14.14" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ ε ∷ ύ ∷ χ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "1Cor.14.14" ∷ word (ὁ ∷ []) "1Cor.14.14" ∷ word (δ ∷ ὲ ∷ []) "1Cor.14.14" ∷ word (ν ∷ ο ∷ ῦ ∷ ς ∷ []) "1Cor.14.14" ∷ word (μ ∷ ο ∷ υ ∷ []) "1Cor.14.14" ∷ word (ἄ ∷ κ ∷ α ∷ ρ ∷ π ∷ ό ∷ ς ∷ []) "1Cor.14.14" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "1Cor.14.14" ∷ word (τ ∷ ί ∷ []) "1Cor.14.15" ∷ word (ο ∷ ὖ ∷ ν ∷ []) "1Cor.14.15" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "1Cor.14.15" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ ε ∷ ύ ∷ ξ ∷ ο ∷ μ ∷ α ∷ ι ∷ []) "1Cor.14.15" ∷ word (τ ∷ ῷ ∷ []) "1Cor.14.15" ∷ word (π ∷ ν ∷ ε ∷ ύ ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "1Cor.14.15" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ ε ∷ ύ ∷ ξ ∷ ο ∷ μ ∷ α ∷ ι ∷ []) "1Cor.14.15" ∷ word (δ ∷ ὲ ∷ []) "1Cor.14.15" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.14.15" ∷ word (τ ∷ ῷ ∷ []) "1Cor.14.15" ∷ word (ν ∷ ο ∷ ΐ ∷ []) "1Cor.14.15" ∷ word (ψ ∷ α ∷ ∙λ ∷ ῶ ∷ []) "1Cor.14.15" ∷ word (τ ∷ ῷ ∷ []) "1Cor.14.15" ∷ word (π ∷ ν ∷ ε ∷ ύ ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "1Cor.14.15" ∷ word (ψ ∷ α ∷ ∙λ ∷ ῶ ∷ []) "1Cor.14.15" ∷ word (δ ∷ ὲ ∷ []) "1Cor.14.15" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.14.15" ∷ word (τ ∷ ῷ ∷ []) "1Cor.14.15" ∷ word (ν ∷ ο ∷ ΐ ∷ []) "1Cor.14.15" ∷ word (ἐ ∷ π ∷ ε ∷ ὶ ∷ []) "1Cor.14.16" ∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "1Cor.14.16" ∷ word (ε ∷ ὐ ∷ ∙λ ∷ ο ∷ γ ∷ ῇ ∷ ς ∷ []) "1Cor.14.16" ∷ word (π ∷ ν ∷ ε ∷ ύ ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "1Cor.14.16" ∷ word (ὁ ∷ []) "1Cor.14.16" ∷ word (ἀ ∷ ν ∷ α ∷ π ∷ ∙λ ∷ η ∷ ρ ∷ ῶ ∷ ν ∷ []) "1Cor.14.16" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "1Cor.14.16" ∷ word (τ ∷ ό ∷ π ∷ ο ∷ ν ∷ []) "1Cor.14.16" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.14.16" ∷ word (ἰ ∷ δ ∷ ι ∷ ώ ∷ τ ∷ ο ∷ υ ∷ []) "1Cor.14.16" ∷ word (π ∷ ῶ ∷ ς ∷ []) "1Cor.14.16" ∷ word (ἐ ∷ ρ ∷ ε ∷ ῖ ∷ []) "1Cor.14.16" ∷ word (τ ∷ ὸ ∷ []) "1Cor.14.16" ∷ word (Ἀ ∷ μ ∷ ή ∷ ν ∷ []) "1Cor.14.16" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "1Cor.14.16" ∷ word (τ ∷ ῇ ∷ []) "1Cor.14.16" ∷ word (σ ∷ ῇ ∷ []) "1Cor.14.16" ∷ word (ε ∷ ὐ ∷ χ ∷ α ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ί ∷ ᾳ ∷ []) "1Cor.14.16" ∷ word (ἐ ∷ π ∷ ε ∷ ι ∷ δ ∷ ὴ ∷ []) "1Cor.14.16" ∷ word (τ ∷ ί ∷ []) "1Cor.14.16" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ ς ∷ []) "1Cor.14.16" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "1Cor.14.16" ∷ word (ο ∷ ἶ ∷ δ ∷ ε ∷ ν ∷ []) "1Cor.14.16" ∷ word (σ ∷ ὺ ∷ []) "1Cor.14.17" ∷ word (μ ∷ ὲ ∷ ν ∷ []) "1Cor.14.17" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "1Cor.14.17" ∷ word (κ ∷ α ∷ ∙λ ∷ ῶ ∷ ς ∷ []) "1Cor.14.17" ∷ word (ε ∷ ὐ ∷ χ ∷ α ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ε ∷ ῖ ∷ ς ∷ []) "1Cor.14.17" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ []) "1Cor.14.17" ∷ word (ὁ ∷ []) "1Cor.14.17" ∷ word (ἕ ∷ τ ∷ ε ∷ ρ ∷ ο ∷ ς ∷ []) "1Cor.14.17" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "1Cor.14.17" ∷ word (ο ∷ ἰ ∷ κ ∷ ο ∷ δ ∷ ο ∷ μ ∷ ε ∷ ῖ ∷ τ ∷ α ∷ ι ∷ []) "1Cor.14.17" ∷ word (ε ∷ ὐ ∷ χ ∷ α ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ῶ ∷ []) "1Cor.14.18" ∷ word (τ ∷ ῷ ∷ []) "1Cor.14.18" ∷ word (θ ∷ ε ∷ ῷ ∷ []) "1Cor.14.18" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "1Cor.14.18" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Cor.14.18" ∷ word (μ ∷ ᾶ ∷ ∙λ ∷ ∙λ ∷ ο ∷ ν ∷ []) "1Cor.14.18" ∷ word (γ ∷ ∙λ ∷ ώ ∷ σ ∷ σ ∷ α ∷ ι ∷ ς ∷ []) "1Cor.14.18" ∷ word (∙λ ∷ α ∷ ∙λ ∷ ῶ ∷ []) "1Cor.14.18" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "1Cor.14.19" ∷ word (ἐ ∷ ν ∷ []) "1Cor.14.19" ∷ word (ἐ ∷ κ ∷ κ ∷ ∙λ ∷ η ∷ σ ∷ ί ∷ ᾳ ∷ []) "1Cor.14.19" ∷ word (θ ∷ έ ∷ ∙λ ∷ ω ∷ []) "1Cor.14.19" ∷ word (π ∷ έ ∷ ν ∷ τ ∷ ε ∷ []) "1Cor.14.19" ∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ υ ∷ ς ∷ []) "1Cor.14.19" ∷ word (τ ∷ ῷ ∷ []) "1Cor.14.19" ∷ word (ν ∷ ο ∷ ΐ ∷ []) "1Cor.14.19" ∷ word (μ ∷ ο ∷ υ ∷ []) "1Cor.14.19" ∷ word (∙λ ∷ α ∷ ∙λ ∷ ῆ ∷ σ ∷ α ∷ ι ∷ []) "1Cor.14.19" ∷ word (ἵ ∷ ν ∷ α ∷ []) "1Cor.14.19" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.14.19" ∷ word (ἄ ∷ ∙λ ∷ ∙λ ∷ ο ∷ υ ∷ ς ∷ []) "1Cor.14.19" ∷ word (κ ∷ α ∷ τ ∷ η ∷ χ ∷ ή ∷ σ ∷ ω ∷ []) "1Cor.14.19" ∷ word (ἢ ∷ []) "1Cor.14.19" ∷ word (μ ∷ υ ∷ ρ ∷ ί ∷ ο ∷ υ ∷ ς ∷ []) "1Cor.14.19" ∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ υ ∷ ς ∷ []) "1Cor.14.19" ∷ word (ἐ ∷ ν ∷ []) "1Cor.14.19" ∷ word (γ ∷ ∙λ ∷ ώ ∷ σ ∷ σ ∷ ῃ ∷ []) "1Cor.14.19" ∷ word (Ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ο ∷ ί ∷ []) "1Cor.14.20" ∷ word (μ ∷ ὴ ∷ []) "1Cor.14.20" ∷ word (π ∷ α ∷ ι ∷ δ ∷ ί ∷ α ∷ []) "1Cor.14.20" ∷ word (γ ∷ ί ∷ ν ∷ ε ∷ σ ∷ θ ∷ ε ∷ []) "1Cor.14.20" ∷ word (τ ∷ α ∷ ῖ ∷ ς ∷ []) "1Cor.14.20" ∷ word (φ ∷ ρ ∷ ε ∷ σ ∷ ί ∷ ν ∷ []) "1Cor.14.20" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "1Cor.14.20" ∷ word (τ ∷ ῇ ∷ []) "1Cor.14.20" ∷ word (κ ∷ α ∷ κ ∷ ί ∷ ᾳ ∷ []) "1Cor.14.20" ∷ word (ν ∷ η ∷ π ∷ ι ∷ ά ∷ ζ ∷ ε ∷ τ ∷ ε ∷ []) "1Cor.14.20" ∷ word (τ ∷ α ∷ ῖ ∷ ς ∷ []) "1Cor.14.20" ∷ word (δ ∷ ὲ ∷ []) "1Cor.14.20" ∷ word (φ ∷ ρ ∷ ε ∷ σ ∷ ὶ ∷ ν ∷ []) "1Cor.14.20" ∷ word (τ ∷ έ ∷ ∙λ ∷ ε ∷ ι ∷ ο ∷ ι ∷ []) "1Cor.14.20" ∷ word (γ ∷ ί ∷ ν ∷ ε ∷ σ ∷ θ ∷ ε ∷ []) "1Cor.14.20" ∷ word (ἐ ∷ ν ∷ []) "1Cor.14.21" ∷ word (τ ∷ ῷ ∷ []) "1Cor.14.21" ∷ word (ν ∷ ό ∷ μ ∷ ῳ ∷ []) "1Cor.14.21" ∷ word (γ ∷ έ ∷ γ ∷ ρ ∷ α ∷ π ∷ τ ∷ α ∷ ι ∷ []) "1Cor.14.21" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "1Cor.14.21" ∷ word (Ἐ ∷ ν ∷ []) "1Cor.14.21" ∷ word (ἑ ∷ τ ∷ ε ∷ ρ ∷ ο ∷ γ ∷ ∙λ ∷ ώ ∷ σ ∷ σ ∷ ο ∷ ι ∷ ς ∷ []) "1Cor.14.21" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.14.21" ∷ word (ἐ ∷ ν ∷ []) "1Cor.14.21" ∷ word (χ ∷ ε ∷ ί ∷ ∙λ ∷ ε ∷ σ ∷ ι ∷ ν ∷ []) "1Cor.14.21" ∷ word (ἑ ∷ τ ∷ έ ∷ ρ ∷ ω ∷ ν ∷ []) "1Cor.14.21" ∷ word (∙λ ∷ α ∷ ∙λ ∷ ή ∷ σ ∷ ω ∷ []) "1Cor.14.21" ∷ word (τ ∷ ῷ ∷ []) "1Cor.14.21" ∷ word (∙λ ∷ α ∷ ῷ ∷ []) "1Cor.14.21" ∷ word (τ ∷ ο ∷ ύ ∷ τ ∷ ῳ ∷ []) "1Cor.14.21" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.14.21" ∷ word (ο ∷ ὐ ∷ δ ∷ []) "1Cor.14.21" ∷ word (ο ∷ ὕ ∷ τ ∷ ω ∷ ς ∷ []) "1Cor.14.21" ∷ word (ε ∷ ἰ ∷ σ ∷ α ∷ κ ∷ ο ∷ ύ ∷ σ ∷ ο ∷ ν ∷ τ ∷ α ∷ ί ∷ []) "1Cor.14.21" ∷ word (μ ∷ ο ∷ υ ∷ []) "1Cor.14.21" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "1Cor.14.21" ∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ς ∷ []) "1Cor.14.21" ∷ word (ὥ ∷ σ ∷ τ ∷ ε ∷ []) "1Cor.14.22" ∷ word (α ∷ ἱ ∷ []) "1Cor.14.22" ∷ word (γ ∷ ∙λ ∷ ῶ ∷ σ ∷ σ ∷ α ∷ ι ∷ []) "1Cor.14.22" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "1Cor.14.22" ∷ word (σ ∷ η ∷ μ ∷ ε ∷ ῖ ∷ ό ∷ ν ∷ []) "1Cor.14.22" ∷ word (ε ∷ ἰ ∷ σ ∷ ι ∷ ν ∷ []) "1Cor.14.22" ∷ word (ο ∷ ὐ ∷ []) "1Cor.14.22" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "1Cor.14.22" ∷ word (π ∷ ι ∷ σ ∷ τ ∷ ε ∷ ύ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "1Cor.14.22" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "1Cor.14.22" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "1Cor.14.22" ∷ word (ἀ ∷ π ∷ ί ∷ σ ∷ τ ∷ ο ∷ ι ∷ ς ∷ []) "1Cor.14.22" ∷ word (ἡ ∷ []) "1Cor.14.22" ∷ word (δ ∷ ὲ ∷ []) "1Cor.14.22" ∷ word (π ∷ ρ ∷ ο ∷ φ ∷ η ∷ τ ∷ ε ∷ ί ∷ α ∷ []) "1Cor.14.22" ∷ word (ο ∷ ὐ ∷ []) "1Cor.14.22" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "1Cor.14.22" ∷ word (ἀ ∷ π ∷ ί ∷ σ ∷ τ ∷ ο ∷ ι ∷ ς ∷ []) "1Cor.14.22" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "1Cor.14.22" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "1Cor.14.22" ∷ word (π ∷ ι ∷ σ ∷ τ ∷ ε ∷ ύ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "1Cor.14.22" ∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "1Cor.14.23" ∷ word (ο ∷ ὖ ∷ ν ∷ []) "1Cor.14.23" ∷ word (σ ∷ υ ∷ ν ∷ έ ∷ ∙λ ∷ θ ∷ ῃ ∷ []) "1Cor.14.23" ∷ word (ἡ ∷ []) "1Cor.14.23" ∷ word (ἐ ∷ κ ∷ κ ∷ ∙λ ∷ η ∷ σ ∷ ί ∷ α ∷ []) "1Cor.14.23" ∷ word (ὅ ∷ ∙λ ∷ η ∷ []) "1Cor.14.23" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "1Cor.14.23" ∷ word (τ ∷ ὸ ∷ []) "1Cor.14.23" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ []) "1Cor.14.23" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.14.23" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "1Cor.14.23" ∷ word (∙λ ∷ α ∷ ∙λ ∷ ῶ ∷ σ ∷ ι ∷ ν ∷ []) "1Cor.14.23" ∷ word (γ ∷ ∙λ ∷ ώ ∷ σ ∷ σ ∷ α ∷ ι ∷ ς ∷ []) "1Cor.14.23" ∷ word (ε ∷ ἰ ∷ σ ∷ έ ∷ ∙λ ∷ θ ∷ ω ∷ σ ∷ ι ∷ ν ∷ []) "1Cor.14.23" ∷ word (δ ∷ ὲ ∷ []) "1Cor.14.23" ∷ word (ἰ ∷ δ ∷ ι ∷ ῶ ∷ τ ∷ α ∷ ι ∷ []) "1Cor.14.23" ∷ word (ἢ ∷ []) "1Cor.14.23" ∷ word (ἄ ∷ π ∷ ι ∷ σ ∷ τ ∷ ο ∷ ι ∷ []) "1Cor.14.23" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "1Cor.14.23" ∷ word (ἐ ∷ ρ ∷ ο ∷ ῦ ∷ σ ∷ ι ∷ ν ∷ []) "1Cor.14.23" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "1Cor.14.23" ∷ word (μ ∷ α ∷ ί ∷ ν ∷ ε ∷ σ ∷ θ ∷ ε ∷ []) "1Cor.14.23" ∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "1Cor.14.24" ∷ word (δ ∷ ὲ ∷ []) "1Cor.14.24" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "1Cor.14.24" ∷ word (π ∷ ρ ∷ ο ∷ φ ∷ η ∷ τ ∷ ε ∷ ύ ∷ ω ∷ σ ∷ ι ∷ ν ∷ []) "1Cor.14.24" ∷ word (ε ∷ ἰ ∷ σ ∷ έ ∷ ∙λ ∷ θ ∷ ῃ ∷ []) "1Cor.14.24" ∷ word (δ ∷ έ ∷ []) "1Cor.14.24" ∷ word (τ ∷ ι ∷ ς ∷ []) "1Cor.14.24" ∷ word (ἄ ∷ π ∷ ι ∷ σ ∷ τ ∷ ο ∷ ς ∷ []) "1Cor.14.24" ∷ word (ἢ ∷ []) "1Cor.14.24" ∷ word (ἰ ∷ δ ∷ ι ∷ ώ ∷ τ ∷ η ∷ ς ∷ []) "1Cor.14.24" ∷ word (ἐ ∷ ∙λ ∷ έ ∷ γ ∷ χ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "1Cor.14.24" ∷ word (ὑ ∷ π ∷ ὸ ∷ []) "1Cor.14.24" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "1Cor.14.24" ∷ word (ἀ ∷ ν ∷ α ∷ κ ∷ ρ ∷ ί ∷ ν ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "1Cor.14.24" ∷ word (ὑ ∷ π ∷ ὸ ∷ []) "1Cor.14.24" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "1Cor.14.24" ∷ word (τ ∷ ὰ ∷ []) "1Cor.14.25" ∷ word (κ ∷ ρ ∷ υ ∷ π ∷ τ ∷ ὰ ∷ []) "1Cor.14.25" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "1Cor.14.25" ∷ word (κ ∷ α ∷ ρ ∷ δ ∷ ί ∷ α ∷ ς ∷ []) "1Cor.14.25" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "1Cor.14.25" ∷ word (φ ∷ α ∷ ν ∷ ε ∷ ρ ∷ ὰ ∷ []) "1Cor.14.25" ∷ word (γ ∷ ί ∷ ν ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "1Cor.14.25" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.14.25" ∷ word (ο ∷ ὕ ∷ τ ∷ ω ∷ ς ∷ []) "1Cor.14.25" ∷ word (π ∷ ε ∷ σ ∷ ὼ ∷ ν ∷ []) "1Cor.14.25" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "1Cor.14.25" ∷ word (π ∷ ρ ∷ ό ∷ σ ∷ ω ∷ π ∷ ο ∷ ν ∷ []) "1Cor.14.25" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ κ ∷ υ ∷ ν ∷ ή ∷ σ ∷ ε ∷ ι ∷ []) "1Cor.14.25" ∷ word (τ ∷ ῷ ∷ []) "1Cor.14.25" ∷ word (θ ∷ ε ∷ ῷ ∷ []) "1Cor.14.25" ∷ word (ἀ ∷ π ∷ α ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ∙λ ∷ ω ∷ ν ∷ []) "1Cor.14.25" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "1Cor.14.25" ∷ word (Ὄ ∷ ν ∷ τ ∷ ω ∷ ς ∷ []) "1Cor.14.25" ∷ word (ὁ ∷ []) "1Cor.14.25" ∷ word (θ ∷ ε ∷ ὸ ∷ ς ∷ []) "1Cor.14.25" ∷ word (ἐ ∷ ν ∷ []) "1Cor.14.25" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "1Cor.14.25" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "1Cor.14.25" ∷ word (Τ ∷ ί ∷ []) "1Cor.14.26" ∷ word (ο ∷ ὖ ∷ ν ∷ []) "1Cor.14.26" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "1Cor.14.26" ∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ο ∷ ί ∷ []) "1Cor.14.26" ∷ word (ὅ ∷ τ ∷ α ∷ ν ∷ []) "1Cor.14.26" ∷ word (σ ∷ υ ∷ ν ∷ έ ∷ ρ ∷ χ ∷ η ∷ σ ∷ θ ∷ ε ∷ []) "1Cor.14.26" ∷ word (ἕ ∷ κ ∷ α ∷ σ ∷ τ ∷ ο ∷ ς ∷ []) "1Cor.14.26" ∷ word (ψ ∷ α ∷ ∙λ ∷ μ ∷ ὸ ∷ ν ∷ []) "1Cor.14.26" ∷ word (ἔ ∷ χ ∷ ε ∷ ι ∷ []) "1Cor.14.26" ∷ word (δ ∷ ι ∷ δ ∷ α ∷ χ ∷ ὴ ∷ ν ∷ []) "1Cor.14.26" ∷ word (ἔ ∷ χ ∷ ε ∷ ι ∷ []) "1Cor.14.26" ∷ word (ἀ ∷ π ∷ ο ∷ κ ∷ ά ∷ ∙λ ∷ υ ∷ ψ ∷ ι ∷ ν ∷ []) "1Cor.14.26" ∷ word (ἔ ∷ χ ∷ ε ∷ ι ∷ []) "1Cor.14.26" ∷ word (γ ∷ ∙λ ∷ ῶ ∷ σ ∷ σ ∷ α ∷ ν ∷ []) "1Cor.14.26" ∷ word (ἔ ∷ χ ∷ ε ∷ ι ∷ []) "1Cor.14.26" ∷ word (ἑ ∷ ρ ∷ μ ∷ η ∷ ν ∷ ε ∷ ί ∷ α ∷ ν ∷ []) "1Cor.14.26" ∷ word (ἔ ∷ χ ∷ ε ∷ ι ∷ []) "1Cor.14.26" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "1Cor.14.26" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "1Cor.14.26" ∷ word (ο ∷ ἰ ∷ κ ∷ ο ∷ δ ∷ ο ∷ μ ∷ ὴ ∷ ν ∷ []) "1Cor.14.26" ∷ word (γ ∷ ι ∷ ν ∷ έ ∷ σ ∷ θ ∷ ω ∷ []) "1Cor.14.26" ∷ word (ε ∷ ἴ ∷ τ ∷ ε ∷ []) "1Cor.14.27" ∷ word (γ ∷ ∙λ ∷ ώ ∷ σ ∷ σ ∷ ῃ ∷ []) "1Cor.14.27" ∷ word (τ ∷ ι ∷ ς ∷ []) "1Cor.14.27" ∷ word (∙λ ∷ α ∷ ∙λ ∷ ε ∷ ῖ ∷ []) "1Cor.14.27" ∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "1Cor.14.27" ∷ word (δ ∷ ύ ∷ ο ∷ []) "1Cor.14.27" ∷ word (ἢ ∷ []) "1Cor.14.27" ∷ word (τ ∷ ὸ ∷ []) "1Cor.14.27" ∷ word (π ∷ ∙λ ∷ ε ∷ ῖ ∷ σ ∷ τ ∷ ο ∷ ν ∷ []) "1Cor.14.27" ∷ word (τ ∷ ρ ∷ ε ∷ ῖ ∷ ς ∷ []) "1Cor.14.27" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.14.27" ∷ word (ἀ ∷ ν ∷ ὰ ∷ []) "1Cor.14.27" ∷ word (μ ∷ έ ∷ ρ ∷ ο ∷ ς ∷ []) "1Cor.14.27" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.14.27" ∷ word (ε ∷ ἷ ∷ ς ∷ []) "1Cor.14.27" ∷ word (δ ∷ ι ∷ ε ∷ ρ ∷ μ ∷ η ∷ ν ∷ ε ∷ υ ∷ έ ∷ τ ∷ ω ∷ []) "1Cor.14.27" ∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "1Cor.14.28" ∷ word (δ ∷ ὲ ∷ []) "1Cor.14.28" ∷ word (μ ∷ ὴ ∷ []) "1Cor.14.28" ∷ word (ᾖ ∷ []) "1Cor.14.28" ∷ word (δ ∷ ι ∷ ε ∷ ρ ∷ μ ∷ η ∷ ν ∷ ε ∷ υ ∷ τ ∷ ή ∷ ς ∷ []) "1Cor.14.28" ∷ word (σ ∷ ι ∷ γ ∷ ά ∷ τ ∷ ω ∷ []) "1Cor.14.28" ∷ word (ἐ ∷ ν ∷ []) "1Cor.14.28" ∷ word (ἐ ∷ κ ∷ κ ∷ ∙λ ∷ η ∷ σ ∷ ί ∷ ᾳ ∷ []) "1Cor.14.28" ∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ῷ ∷ []) "1Cor.14.28" ∷ word (δ ∷ ὲ ∷ []) "1Cor.14.28" ∷ word (∙λ ∷ α ∷ ∙λ ∷ ε ∷ ί ∷ τ ∷ ω ∷ []) "1Cor.14.28" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.14.28" ∷ word (τ ∷ ῷ ∷ []) "1Cor.14.28" ∷ word (θ ∷ ε ∷ ῷ ∷ []) "1Cor.14.28" ∷ word (π ∷ ρ ∷ ο ∷ φ ∷ ῆ ∷ τ ∷ α ∷ ι ∷ []) "1Cor.14.29" ∷ word (δ ∷ ὲ ∷ []) "1Cor.14.29" ∷ word (δ ∷ ύ ∷ ο ∷ []) "1Cor.14.29" ∷ word (ἢ ∷ []) "1Cor.14.29" ∷ word (τ ∷ ρ ∷ ε ∷ ῖ ∷ ς ∷ []) "1Cor.14.29" ∷ word (∙λ ∷ α ∷ ∙λ ∷ ε ∷ ί ∷ τ ∷ ω ∷ σ ∷ α ∷ ν ∷ []) "1Cor.14.29" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.14.29" ∷ word (ο ∷ ἱ ∷ []) "1Cor.14.29" ∷ word (ἄ ∷ ∙λ ∷ ∙λ ∷ ο ∷ ι ∷ []) "1Cor.14.29" ∷ word (δ ∷ ι ∷ α ∷ κ ∷ ρ ∷ ι ∷ ν ∷ έ ∷ τ ∷ ω ∷ σ ∷ α ∷ ν ∷ []) "1Cor.14.29" ∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "1Cor.14.30" ∷ word (δ ∷ ὲ ∷ []) "1Cor.14.30" ∷ word (ἄ ∷ ∙λ ∷ ∙λ ∷ ῳ ∷ []) "1Cor.14.30" ∷ word (ἀ ∷ π ∷ ο ∷ κ ∷ α ∷ ∙λ ∷ υ ∷ φ ∷ θ ∷ ῇ ∷ []) "1Cor.14.30" ∷ word (κ ∷ α ∷ θ ∷ η ∷ μ ∷ έ ∷ ν ∷ ῳ ∷ []) "1Cor.14.30" ∷ word (ὁ ∷ []) "1Cor.14.30" ∷ word (π ∷ ρ ∷ ῶ ∷ τ ∷ ο ∷ ς ∷ []) "1Cor.14.30" ∷ word (σ ∷ ι ∷ γ ∷ ά ∷ τ ∷ ω ∷ []) "1Cor.14.30" ∷ word (δ ∷ ύ ∷ ν ∷ α ∷ σ ∷ θ ∷ ε ∷ []) "1Cor.14.31" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "1Cor.14.31" ∷ word (κ ∷ α ∷ θ ∷ []) "1Cor.14.31" ∷ word (ἕ ∷ ν ∷ α ∷ []) "1Cor.14.31" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "1Cor.14.31" ∷ word (π ∷ ρ ∷ ο ∷ φ ∷ η ∷ τ ∷ ε ∷ ύ ∷ ε ∷ ι ∷ ν ∷ []) "1Cor.14.31" ∷ word (ἵ ∷ ν ∷ α ∷ []) "1Cor.14.31" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "1Cor.14.31" ∷ word (μ ∷ α ∷ ν ∷ θ ∷ ά ∷ ν ∷ ω ∷ σ ∷ ι ∷ ν ∷ []) "1Cor.14.31" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.14.31" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "1Cor.14.31" ∷ word (π ∷ α ∷ ρ ∷ α ∷ κ ∷ α ∷ ∙λ ∷ ῶ ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "1Cor.14.31" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.14.32" ∷ word (π ∷ ν ∷ ε ∷ ύ ∷ μ ∷ α ∷ τ ∷ α ∷ []) "1Cor.14.32" ∷ word (π ∷ ρ ∷ ο ∷ φ ∷ η ∷ τ ∷ ῶ ∷ ν ∷ []) "1Cor.14.32" ∷ word (π ∷ ρ ∷ ο ∷ φ ∷ ή ∷ τ ∷ α ∷ ι ∷ ς ∷ []) "1Cor.14.32" ∷ word (ὑ ∷ π ∷ ο ∷ τ ∷ ά ∷ σ ∷ σ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "1Cor.14.32" ∷ word (ο ∷ ὐ ∷ []) "1Cor.14.33" ∷ word (γ ∷ ά ∷ ρ ∷ []) "1Cor.14.33" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "1Cor.14.33" ∷ word (ἀ ∷ κ ∷ α ∷ τ ∷ α ∷ σ ∷ τ ∷ α ∷ σ ∷ ί ∷ α ∷ ς ∷ []) "1Cor.14.33" ∷ word (ὁ ∷ []) "1Cor.14.33" ∷ word (θ ∷ ε ∷ ὸ ∷ ς ∷ []) "1Cor.14.33" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "1Cor.14.33" ∷ word (ε ∷ ἰ ∷ ρ ∷ ή ∷ ν ∷ η ∷ ς ∷ []) "1Cor.14.33" ∷ word (ὡ ∷ ς ∷ []) "1Cor.14.33" ∷ word (ἐ ∷ ν ∷ []) "1Cor.14.33" ∷ word (π ∷ ά ∷ σ ∷ α ∷ ι ∷ ς ∷ []) "1Cor.14.33" ∷ word (τ ∷ α ∷ ῖ ∷ ς ∷ []) "1Cor.14.33" ∷ word (ἐ ∷ κ ∷ κ ∷ ∙λ ∷ η ∷ σ ∷ ί ∷ α ∷ ι ∷ ς ∷ []) "1Cor.14.33" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "1Cor.14.33" ∷ word (ἁ ∷ γ ∷ ί ∷ ω ∷ ν ∷ []) "1Cor.14.33" ∷ word (Α ∷ ἱ ∷ []) "1Cor.14.34" ∷ word (γ ∷ υ ∷ ν ∷ α ∷ ῖ ∷ κ ∷ ε ∷ ς ∷ []) "1Cor.14.34" ∷ word (ἐ ∷ ν ∷ []) "1Cor.14.34" ∷ word (τ ∷ α ∷ ῖ ∷ ς ∷ []) "1Cor.14.34" ∷ word (ἐ ∷ κ ∷ κ ∷ ∙λ ∷ η ∷ σ ∷ ί ∷ α ∷ ι ∷ ς ∷ []) "1Cor.14.34" ∷ word (σ ∷ ι ∷ γ ∷ ά ∷ τ ∷ ω ∷ σ ∷ α ∷ ν ∷ []) "1Cor.14.34" ∷ word (ο ∷ ὐ ∷ []) "1Cor.14.34" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "1Cor.14.34" ∷ word (ἐ ∷ π ∷ ι ∷ τ ∷ ρ ∷ έ ∷ π ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "1Cor.14.34" ∷ word (α ∷ ὐ ∷ τ ∷ α ∷ ῖ ∷ ς ∷ []) "1Cor.14.34" ∷ word (∙λ ∷ α ∷ ∙λ ∷ ε ∷ ῖ ∷ ν ∷ []) "1Cor.14.34" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "1Cor.14.34" ∷ word (ὑ ∷ π ∷ ο ∷ τ ∷ α ∷ σ ∷ σ ∷ έ ∷ σ ∷ θ ∷ ω ∷ σ ∷ α ∷ ν ∷ []) "1Cor.14.34" ∷ word (κ ∷ α ∷ θ ∷ ὼ ∷ ς ∷ []) "1Cor.14.34" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.14.34" ∷ word (ὁ ∷ []) "1Cor.14.34" ∷ word (ν ∷ ό ∷ μ ∷ ο ∷ ς ∷ []) "1Cor.14.34" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "1Cor.14.34" ∷ word (ε ∷ ἰ ∷ []) "1Cor.14.35" ∷ word (δ ∷ έ ∷ []) "1Cor.14.35" ∷ word (τ ∷ ι ∷ []) "1Cor.14.35" ∷ word (μ ∷ α ∷ θ ∷ ε ∷ ῖ ∷ ν ∷ []) "1Cor.14.35" ∷ word (θ ∷ έ ∷ ∙λ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "1Cor.14.35" ∷ word (ἐ ∷ ν ∷ []) "1Cor.14.35" ∷ word (ο ∷ ἴ ∷ κ ∷ ῳ ∷ []) "1Cor.14.35" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "1Cor.14.35" ∷ word (ἰ ∷ δ ∷ ί ∷ ο ∷ υ ∷ ς ∷ []) "1Cor.14.35" ∷ word (ἄ ∷ ν ∷ δ ∷ ρ ∷ α ∷ ς ∷ []) "1Cor.14.35" ∷ word (ἐ ∷ π ∷ ε ∷ ρ ∷ ω ∷ τ ∷ ά ∷ τ ∷ ω ∷ σ ∷ α ∷ ν ∷ []) "1Cor.14.35" ∷ word (α ∷ ἰ ∷ σ ∷ χ ∷ ρ ∷ ὸ ∷ ν ∷ []) "1Cor.14.35" ∷ word (γ ∷ ά ∷ ρ ∷ []) "1Cor.14.35" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "1Cor.14.35" ∷ word (γ ∷ υ ∷ ν ∷ α ∷ ι ∷ κ ∷ ὶ ∷ []) "1Cor.14.35" ∷ word (∙λ ∷ α ∷ ∙λ ∷ ε ∷ ῖ ∷ ν ∷ []) "1Cor.14.35" ∷ word (ἐ ∷ ν ∷ []) "1Cor.14.35" ∷ word (ἐ ∷ κ ∷ κ ∷ ∙λ ∷ η ∷ σ ∷ ί ∷ ᾳ ∷ []) "1Cor.14.35" ∷ word (ἢ ∷ []) "1Cor.14.36" ∷ word (ἀ ∷ φ ∷ []) "1Cor.14.36" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Cor.14.36" ∷ word (ὁ ∷ []) "1Cor.14.36" ∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ ς ∷ []) "1Cor.14.36" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.14.36" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "1Cor.14.36" ∷ word (ἐ ∷ ξ ∷ ῆ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "1Cor.14.36" ∷ word (ἢ ∷ []) "1Cor.14.36" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "1Cor.14.36" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "1Cor.14.36" ∷ word (μ ∷ ό ∷ ν ∷ ο ∷ υ ∷ ς ∷ []) "1Cor.14.36" ∷ word (κ ∷ α ∷ τ ∷ ή ∷ ν ∷ τ ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "1Cor.14.36" ∷ word (Ε ∷ ἴ ∷ []) "1Cor.14.37" ∷ word (τ ∷ ι ∷ ς ∷ []) "1Cor.14.37" ∷ word (δ ∷ ο ∷ κ ∷ ε ∷ ῖ ∷ []) "1Cor.14.37" ∷ word (π ∷ ρ ∷ ο ∷ φ ∷ ή ∷ τ ∷ η ∷ ς ∷ []) "1Cor.14.37" ∷ word (ε ∷ ἶ ∷ ν ∷ α ∷ ι ∷ []) "1Cor.14.37" ∷ word (ἢ ∷ []) "1Cor.14.37" ∷ word (π ∷ ν ∷ ε ∷ υ ∷ μ ∷ α ∷ τ ∷ ι ∷ κ ∷ ό ∷ ς ∷ []) "1Cor.14.37" ∷ word (ἐ ∷ π ∷ ι ∷ γ ∷ ι ∷ ν ∷ ω ∷ σ ∷ κ ∷ έ ∷ τ ∷ ω ∷ []) "1Cor.14.37" ∷ word (ἃ ∷ []) "1Cor.14.37" ∷ word (γ ∷ ρ ∷ ά ∷ φ ∷ ω ∷ []) "1Cor.14.37" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "1Cor.14.37" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "1Cor.14.37" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "1Cor.14.37" ∷ word (ἐ ∷ σ ∷ τ ∷ ὶ ∷ ν ∷ []) "1Cor.14.37" ∷ word (ε ∷ ἰ ∷ []) "1Cor.14.38" ∷ word (δ ∷ έ ∷ []) "1Cor.14.38" ∷ word (τ ∷ ι ∷ ς ∷ []) "1Cor.14.38" ∷ word (ἀ ∷ γ ∷ ν ∷ ο ∷ ε ∷ ῖ ∷ []) "1Cor.14.38" ∷ word (ἀ ∷ γ ∷ ν ∷ ο ∷ ε ∷ ῖ ∷ τ ∷ α ∷ ι ∷ []) "1Cor.14.38" ∷ word (ὥ ∷ σ ∷ τ ∷ ε ∷ []) "1Cor.14.39" ∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ο ∷ ί ∷ []) "1Cor.14.39" ∷ word (μ ∷ ο ∷ υ ∷ []) "1Cor.14.39" ∷ word (ζ ∷ η ∷ ∙λ ∷ ο ∷ ῦ ∷ τ ∷ ε ∷ []) "1Cor.14.39" ∷ word (τ ∷ ὸ ∷ []) "1Cor.14.39" ∷ word (π ∷ ρ ∷ ο ∷ φ ∷ η ∷ τ ∷ ε ∷ ύ ∷ ε ∷ ι ∷ ν ∷ []) "1Cor.14.39" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.14.39" ∷ word (τ ∷ ὸ ∷ []) "1Cor.14.39" ∷ word (∙λ ∷ α ∷ ∙λ ∷ ε ∷ ῖ ∷ ν ∷ []) "1Cor.14.39" ∷ word (μ ∷ ὴ ∷ []) "1Cor.14.39" ∷ word (κ ∷ ω ∷ ∙λ ∷ ύ ∷ ε ∷ τ ∷ ε ∷ []) "1Cor.14.39" ∷ word (γ ∷ ∙λ ∷ ώ ∷ σ ∷ σ ∷ α ∷ ι ∷ ς ∷ []) "1Cor.14.39" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "1Cor.14.40" ∷ word (δ ∷ ὲ ∷ []) "1Cor.14.40" ∷ word (ε ∷ ὐ ∷ σ ∷ χ ∷ η ∷ μ ∷ ό ∷ ν ∷ ω ∷ ς ∷ []) "1Cor.14.40" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.14.40" ∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "1Cor.14.40" ∷ word (τ ∷ ά ∷ ξ ∷ ι ∷ ν ∷ []) "1Cor.14.40" ∷ word (γ ∷ ι ∷ ν ∷ έ ∷ σ ∷ θ ∷ ω ∷ []) "1Cor.14.40" ∷ word (Γ ∷ ν ∷ ω ∷ ρ ∷ ί ∷ ζ ∷ ω ∷ []) "1Cor.15.1" ∷ word (δ ∷ ὲ ∷ []) "1Cor.15.1" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "1Cor.15.1" ∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ο ∷ ί ∷ []) "1Cor.15.1" ∷ word (τ ∷ ὸ ∷ []) "1Cor.15.1" ∷ word (ε ∷ ὐ ∷ α ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ι ∷ ο ∷ ν ∷ []) "1Cor.15.1" ∷ word (ὃ ∷ []) "1Cor.15.1" ∷ word (ε ∷ ὐ ∷ η ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ι ∷ σ ∷ ά ∷ μ ∷ η ∷ ν ∷ []) "1Cor.15.1" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "1Cor.15.1" ∷ word (ὃ ∷ []) "1Cor.15.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.15.1" ∷ word (π ∷ α ∷ ρ ∷ ε ∷ ∙λ ∷ ά ∷ β ∷ ε ∷ τ ∷ ε ∷ []) "1Cor.15.1" ∷ word (ἐ ∷ ν ∷ []) "1Cor.15.1" ∷ word (ᾧ ∷ []) "1Cor.15.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.15.1" ∷ word (ἑ ∷ σ ∷ τ ∷ ή ∷ κ ∷ α ∷ τ ∷ ε ∷ []) "1Cor.15.1" ∷ word (δ ∷ ι ∷ []) "1Cor.15.2" ∷ word (ο ∷ ὗ ∷ []) "1Cor.15.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.15.2" ∷ word (σ ∷ ῴ ∷ ζ ∷ ε ∷ σ ∷ θ ∷ ε ∷ []) "1Cor.15.2" ∷ word (τ ∷ ί ∷ ν ∷ ι ∷ []) "1Cor.15.2" ∷ word (∙λ ∷ ό ∷ γ ∷ ῳ ∷ []) "1Cor.15.2" ∷ word (ε ∷ ὐ ∷ η ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ι ∷ σ ∷ ά ∷ μ ∷ η ∷ ν ∷ []) "1Cor.15.2" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "1Cor.15.2" ∷ word (ε ∷ ἰ ∷ []) "1Cor.15.2" ∷ word (κ ∷ α ∷ τ ∷ έ ∷ χ ∷ ε ∷ τ ∷ ε ∷ []) "1Cor.15.2" ∷ word (ἐ ∷ κ ∷ τ ∷ ὸ ∷ ς ∷ []) "1Cor.15.2" ∷ word (ε ∷ ἰ ∷ []) "1Cor.15.2" ∷ word (μ ∷ ὴ ∷ []) "1Cor.15.2" ∷ word (ε ∷ ἰ ∷ κ ∷ ῇ ∷ []) "1Cor.15.2" ∷ word (ἐ ∷ π ∷ ι ∷ σ ∷ τ ∷ ε ∷ ύ ∷ σ ∷ α ∷ τ ∷ ε ∷ []) "1Cor.15.2" ∷ word (Π ∷ α ∷ ρ ∷ έ ∷ δ ∷ ω ∷ κ ∷ α ∷ []) "1Cor.15.3" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "1Cor.15.3" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "1Cor.15.3" ∷ word (ἐ ∷ ν ∷ []) "1Cor.15.3" ∷ word (π ∷ ρ ∷ ώ ∷ τ ∷ ο ∷ ι ∷ ς ∷ []) "1Cor.15.3" ∷ word (ὃ ∷ []) "1Cor.15.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.15.3" ∷ word (π ∷ α ∷ ρ ∷ έ ∷ ∙λ ∷ α ∷ β ∷ ο ∷ ν ∷ []) "1Cor.15.3" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "1Cor.15.3" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ὸ ∷ ς ∷ []) "1Cor.15.3" ∷ word (ἀ ∷ π ∷ έ ∷ θ ∷ α ∷ ν ∷ ε ∷ ν ∷ []) "1Cor.15.3" ∷ word (ὑ ∷ π ∷ ὲ ∷ ρ ∷ []) "1Cor.15.3" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "1Cor.15.3" ∷ word (ἁ ∷ μ ∷ α ∷ ρ ∷ τ ∷ ι ∷ ῶ ∷ ν ∷ []) "1Cor.15.3" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Cor.15.3" ∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "1Cor.15.3" ∷ word (τ ∷ ὰ ∷ ς ∷ []) "1Cor.15.3" ∷ word (γ ∷ ρ ∷ α ∷ φ ∷ ά ∷ ς ∷ []) "1Cor.15.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.15.4" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "1Cor.15.4" ∷ word (ἐ ∷ τ ∷ ά ∷ φ ∷ η ∷ []) "1Cor.15.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.15.4" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "1Cor.15.4" ∷ word (ἐ ∷ γ ∷ ή ∷ γ ∷ ε ∷ ρ ∷ τ ∷ α ∷ ι ∷ []) "1Cor.15.4" ∷ word (τ ∷ ῇ ∷ []) "1Cor.15.4" ∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ ᾳ ∷ []) "1Cor.15.4" ∷ word (τ ∷ ῇ ∷ []) "1Cor.15.4" ∷ word (τ ∷ ρ ∷ ί ∷ τ ∷ ῃ ∷ []) "1Cor.15.4" ∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "1Cor.15.4" ∷ word (τ ∷ ὰ ∷ ς ∷ []) "1Cor.15.4" ∷ word (γ ∷ ρ ∷ α ∷ φ ∷ ά ∷ ς ∷ []) "1Cor.15.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.15.5" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "1Cor.15.5" ∷ word (ὤ ∷ φ ∷ θ ∷ η ∷ []) "1Cor.15.5" ∷ word (Κ ∷ η ∷ φ ∷ ᾷ ∷ []) "1Cor.15.5" ∷ word (ε ∷ ἶ ∷ τ ∷ α ∷ []) "1Cor.15.5" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "1Cor.15.5" ∷ word (δ ∷ ώ ∷ δ ∷ ε ∷ κ ∷ α ∷ []) "1Cor.15.5" ∷ word (ἔ ∷ π ∷ ε ∷ ι ∷ τ ∷ α ∷ []) "1Cor.15.6" ∷ word (ὤ ∷ φ ∷ θ ∷ η ∷ []) "1Cor.15.6" ∷ word (ἐ ∷ π ∷ ά ∷ ν ∷ ω ∷ []) "1Cor.15.6" ∷ word (π ∷ ε ∷ ν ∷ τ ∷ α ∷ κ ∷ ο ∷ σ ∷ ί ∷ ο ∷ ι ∷ ς ∷ []) "1Cor.15.6" ∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ο ∷ ῖ ∷ ς ∷ []) "1Cor.15.6" ∷ word (ἐ ∷ φ ∷ ά ∷ π ∷ α ∷ ξ ∷ []) "1Cor.15.6" ∷ word (ἐ ∷ ξ ∷ []) "1Cor.15.6" ∷ word (ὧ ∷ ν ∷ []) "1Cor.15.6" ∷ word (ο ∷ ἱ ∷ []) "1Cor.15.6" ∷ word (π ∷ ∙λ ∷ ε ∷ ί ∷ ο ∷ ν ∷ ε ∷ ς ∷ []) "1Cor.15.6" ∷ word (μ ∷ έ ∷ ν ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "1Cor.15.6" ∷ word (ἕ ∷ ω ∷ ς ∷ []) "1Cor.15.6" ∷ word (ἄ ∷ ρ ∷ τ ∷ ι ∷ []) "1Cor.15.6" ∷ word (τ ∷ ι ∷ ν ∷ ὲ ∷ ς ∷ []) "1Cor.15.6" ∷ word (δ ∷ ὲ ∷ []) "1Cor.15.6" ∷ word (ἐ ∷ κ ∷ ο ∷ ι ∷ μ ∷ ή ∷ θ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "1Cor.15.6" ∷ word (ἔ ∷ π ∷ ε ∷ ι ∷ τ ∷ α ∷ []) "1Cor.15.7" ∷ word (ὤ ∷ φ ∷ θ ∷ η ∷ []) "1Cor.15.7" ∷ word (Ἰ ∷ α ∷ κ ∷ ώ ∷ β ∷ ῳ ∷ []) "1Cor.15.7" ∷ word (ε ∷ ἶ ∷ τ ∷ α ∷ []) "1Cor.15.7" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "1Cor.15.7" ∷ word (ἀ ∷ π ∷ ο ∷ σ ∷ τ ∷ ό ∷ ∙λ ∷ ο ∷ ι ∷ ς ∷ []) "1Cor.15.7" ∷ word (π ∷ ᾶ ∷ σ ∷ ι ∷ ν ∷ []) "1Cor.15.7" ∷ word (ἔ ∷ σ ∷ χ ∷ α ∷ τ ∷ ο ∷ ν ∷ []) "1Cor.15.8" ∷ word (δ ∷ ὲ ∷ []) "1Cor.15.8" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "1Cor.15.8" ∷ word (ὡ ∷ σ ∷ π ∷ ε ∷ ρ ∷ ε ∷ ὶ ∷ []) "1Cor.15.8" ∷ word (τ ∷ ῷ ∷ []) "1Cor.15.8" ∷ word (ἐ ∷ κ ∷ τ ∷ ρ ∷ ώ ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "1Cor.15.8" ∷ word (ὤ ∷ φ ∷ θ ∷ η ∷ []) "1Cor.15.8" ∷ word (κ ∷ ἀ ∷ μ ∷ ο ∷ ί ∷ []) "1Cor.15.8" ∷ word (ἐ ∷ γ ∷ ὼ ∷ []) "1Cor.15.9" ∷ word (γ ∷ ά ∷ ρ ∷ []) "1Cor.15.9" ∷ word (ε ∷ ἰ ∷ μ ∷ ι ∷ []) "1Cor.15.9" ∷ word (ὁ ∷ []) "1Cor.15.9" ∷ word (ἐ ∷ ∙λ ∷ ά ∷ χ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ς ∷ []) "1Cor.15.9" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "1Cor.15.9" ∷ word (ἀ ∷ π ∷ ο ∷ σ ∷ τ ∷ ό ∷ ∙λ ∷ ω ∷ ν ∷ []) "1Cor.15.9" ∷ word (ὃ ∷ ς ∷ []) "1Cor.15.9" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "1Cor.15.9" ∷ word (ε ∷ ἰ ∷ μ ∷ ὶ ∷ []) "1Cor.15.9" ∷ word (ἱ ∷ κ ∷ α ∷ ν ∷ ὸ ∷ ς ∷ []) "1Cor.15.9" ∷ word (κ ∷ α ∷ ∙λ ∷ ε ∷ ῖ ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "1Cor.15.9" ∷ word (ἀ ∷ π ∷ ό ∷ σ ∷ τ ∷ ο ∷ ∙λ ∷ ο ∷ ς ∷ []) "1Cor.15.9" ∷ word (δ ∷ ι ∷ ό ∷ τ ∷ ι ∷ []) "1Cor.15.9" ∷ word (ἐ ∷ δ ∷ ί ∷ ω ∷ ξ ∷ α ∷ []) "1Cor.15.9" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "1Cor.15.9" ∷ word (ἐ ∷ κ ∷ κ ∷ ∙λ ∷ η ∷ σ ∷ ί ∷ α ∷ ν ∷ []) "1Cor.15.9" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.15.9" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "1Cor.15.9" ∷ word (χ ∷ ά ∷ ρ ∷ ι ∷ τ ∷ ι ∷ []) "1Cor.15.10" ∷ word (δ ∷ ὲ ∷ []) "1Cor.15.10" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "1Cor.15.10" ∷ word (ε ∷ ἰ ∷ μ ∷ ι ∷ []) "1Cor.15.10" ∷ word (ὅ ∷ []) "1Cor.15.10" ∷ word (ε ∷ ἰ ∷ μ ∷ ι ∷ []) "1Cor.15.10" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.15.10" ∷ word (ἡ ∷ []) "1Cor.15.10" ∷ word (χ ∷ ά ∷ ρ ∷ ι ∷ ς ∷ []) "1Cor.15.10" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "1Cor.15.10" ∷ word (ἡ ∷ []) "1Cor.15.10" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "1Cor.15.10" ∷ word (ἐ ∷ μ ∷ ὲ ∷ []) "1Cor.15.10" ∷ word (ο ∷ ὐ ∷ []) "1Cor.15.10" ∷ word (κ ∷ ε ∷ ν ∷ ὴ ∷ []) "1Cor.15.10" ∷ word (ἐ ∷ γ ∷ ε ∷ ν ∷ ή ∷ θ ∷ η ∷ []) "1Cor.15.10" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "1Cor.15.10" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ σ ∷ σ ∷ ό ∷ τ ∷ ε ∷ ρ ∷ ο ∷ ν ∷ []) "1Cor.15.10" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "1Cor.15.10" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "1Cor.15.10" ∷ word (ἐ ∷ κ ∷ ο ∷ π ∷ ί ∷ α ∷ σ ∷ α ∷ []) "1Cor.15.10" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "1Cor.15.10" ∷ word (ἐ ∷ γ ∷ ὼ ∷ []) "1Cor.15.10" ∷ word (δ ∷ ὲ ∷ []) "1Cor.15.10" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "1Cor.15.10" ∷ word (ἡ ∷ []) "1Cor.15.10" ∷ word (χ ∷ ά ∷ ρ ∷ ι ∷ ς ∷ []) "1Cor.15.10" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.15.10" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "1Cor.15.10" ∷ word (ἡ ∷ []) "1Cor.15.10" ∷ word (σ ∷ ὺ ∷ ν ∷ []) "1Cor.15.10" ∷ word (ἐ ∷ μ ∷ ο ∷ ί ∷ []) "1Cor.15.10" ∷ word (ε ∷ ἴ ∷ τ ∷ ε ∷ []) "1Cor.15.11" ∷ word (ο ∷ ὖ ∷ ν ∷ []) "1Cor.15.11" ∷ word (ἐ ∷ γ ∷ ὼ ∷ []) "1Cor.15.11" ∷ word (ε ∷ ἴ ∷ τ ∷ ε ∷ []) "1Cor.15.11" ∷ word (ἐ ∷ κ ∷ ε ∷ ῖ ∷ ν ∷ ο ∷ ι ∷ []) "1Cor.15.11" ∷ word (ο ∷ ὕ ∷ τ ∷ ω ∷ ς ∷ []) "1Cor.15.11" ∷ word (κ ∷ η ∷ ρ ∷ ύ ∷ σ ∷ σ ∷ ο ∷ μ ∷ ε ∷ ν ∷ []) "1Cor.15.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.15.11" ∷ word (ο ∷ ὕ ∷ τ ∷ ω ∷ ς ∷ []) "1Cor.15.11" ∷ word (ἐ ∷ π ∷ ι ∷ σ ∷ τ ∷ ε ∷ ύ ∷ σ ∷ α ∷ τ ∷ ε ∷ []) "1Cor.15.11" ∷ word (Ε ∷ ἰ ∷ []) "1Cor.15.12" ∷ word (δ ∷ ὲ ∷ []) "1Cor.15.12" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ὸ ∷ ς ∷ []) "1Cor.15.12" ∷ word (κ ∷ η ∷ ρ ∷ ύ ∷ σ ∷ σ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "1Cor.15.12" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "1Cor.15.12" ∷ word (ἐ ∷ κ ∷ []) "1Cor.15.12" ∷ word (ν ∷ ε ∷ κ ∷ ρ ∷ ῶ ∷ ν ∷ []) "1Cor.15.12" ∷ word (ἐ ∷ γ ∷ ή ∷ γ ∷ ε ∷ ρ ∷ τ ∷ α ∷ ι ∷ []) "1Cor.15.12" ∷ word (π ∷ ῶ ∷ ς ∷ []) "1Cor.15.12" ∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "1Cor.15.12" ∷ word (ἐ ∷ ν ∷ []) "1Cor.15.12" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "1Cor.15.12" ∷ word (τ ∷ ι ∷ ν ∷ ε ∷ ς ∷ []) "1Cor.15.12" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "1Cor.15.12" ∷ word (ἀ ∷ ν ∷ ά ∷ σ ∷ τ ∷ α ∷ σ ∷ ι ∷ ς ∷ []) "1Cor.15.12" ∷ word (ν ∷ ε ∷ κ ∷ ρ ∷ ῶ ∷ ν ∷ []) "1Cor.15.12" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "1Cor.15.12" ∷ word (ἔ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "1Cor.15.12" ∷ word (ε ∷ ἰ ∷ []) "1Cor.15.13" ∷ word (δ ∷ ὲ ∷ []) "1Cor.15.13" ∷ word (ἀ ∷ ν ∷ ά ∷ σ ∷ τ ∷ α ∷ σ ∷ ι ∷ ς ∷ []) "1Cor.15.13" ∷ word (ν ∷ ε ∷ κ ∷ ρ ∷ ῶ ∷ ν ∷ []) "1Cor.15.13" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "1Cor.15.13" ∷ word (ἔ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "1Cor.15.13" ∷ word (ο ∷ ὐ ∷ δ ∷ ὲ ∷ []) "1Cor.15.13" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ὸ ∷ ς ∷ []) "1Cor.15.13" ∷ word (ἐ ∷ γ ∷ ή ∷ γ ∷ ε ∷ ρ ∷ τ ∷ α ∷ ι ∷ []) "1Cor.15.13" ∷ word (ε ∷ ἰ ∷ []) "1Cor.15.14" ∷ word (δ ∷ ὲ ∷ []) "1Cor.15.14" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ὸ ∷ ς ∷ []) "1Cor.15.14" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "1Cor.15.14" ∷ word (ἐ ∷ γ ∷ ή ∷ γ ∷ ε ∷ ρ ∷ τ ∷ α ∷ ι ∷ []) "1Cor.15.14" ∷ word (κ ∷ ε ∷ ν ∷ ὸ ∷ ν ∷ []) "1Cor.15.14" ∷ word (ἄ ∷ ρ ∷ α ∷ []) "1Cor.15.14" ∷ word (τ ∷ ὸ ∷ []) "1Cor.15.14" ∷ word (κ ∷ ή ∷ ρ ∷ υ ∷ γ ∷ μ ∷ α ∷ []) "1Cor.15.14" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Cor.15.14" ∷ word (κ ∷ ε ∷ ν ∷ ὴ ∷ []) "1Cor.15.14" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.15.14" ∷ word (ἡ ∷ []) "1Cor.15.14" ∷ word (π ∷ ί ∷ σ ∷ τ ∷ ι ∷ ς ∷ []) "1Cor.15.14" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Cor.15.14" ∷ word (ε ∷ ὑ ∷ ρ ∷ ι ∷ σ ∷ κ ∷ ό ∷ μ ∷ ε ∷ θ ∷ α ∷ []) "1Cor.15.15" ∷ word (δ ∷ ὲ ∷ []) "1Cor.15.15" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.15.15" ∷ word (ψ ∷ ε ∷ υ ∷ δ ∷ ο ∷ μ ∷ ά ∷ ρ ∷ τ ∷ υ ∷ ρ ∷ ε ∷ ς ∷ []) "1Cor.15.15" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.15.15" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "1Cor.15.15" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "1Cor.15.15" ∷ word (ἐ ∷ μ ∷ α ∷ ρ ∷ τ ∷ υ ∷ ρ ∷ ή ∷ σ ∷ α ∷ μ ∷ ε ∷ ν ∷ []) "1Cor.15.15" ∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "1Cor.15.15" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.15.15" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "1Cor.15.15" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "1Cor.15.15" ∷ word (ἤ ∷ γ ∷ ε ∷ ι ∷ ρ ∷ ε ∷ ν ∷ []) "1Cor.15.15" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "1Cor.15.15" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ό ∷ ν ∷ []) "1Cor.15.15" ∷ word (ὃ ∷ ν ∷ []) "1Cor.15.15" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "1Cor.15.15" ∷ word (ἤ ∷ γ ∷ ε ∷ ι ∷ ρ ∷ ε ∷ ν ∷ []) "1Cor.15.15" ∷ word (ε ∷ ἴ ∷ π ∷ ε ∷ ρ ∷ []) "1Cor.15.15" ∷ word (ἄ ∷ ρ ∷ α ∷ []) "1Cor.15.15" ∷ word (ν ∷ ε ∷ κ ∷ ρ ∷ ο ∷ ὶ ∷ []) "1Cor.15.15" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "1Cor.15.15" ∷ word (ἐ ∷ γ ∷ ε ∷ ί ∷ ρ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "1Cor.15.15" ∷ word (ε ∷ ἰ ∷ []) "1Cor.15.16" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "1Cor.15.16" ∷ word (ν ∷ ε ∷ κ ∷ ρ ∷ ο ∷ ὶ ∷ []) "1Cor.15.16" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "1Cor.15.16" ∷ word (ἐ ∷ γ ∷ ε ∷ ί ∷ ρ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "1Cor.15.16" ∷ word (ο ∷ ὐ ∷ δ ∷ ὲ ∷ []) "1Cor.15.16" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ὸ ∷ ς ∷ []) "1Cor.15.16" ∷ word (ἐ ∷ γ ∷ ή ∷ γ ∷ ε ∷ ρ ∷ τ ∷ α ∷ ι ∷ []) "1Cor.15.16" ∷ word (ε ∷ ἰ ∷ []) "1Cor.15.17" ∷ word (δ ∷ ὲ ∷ []) "1Cor.15.17" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ὸ ∷ ς ∷ []) "1Cor.15.17" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "1Cor.15.17" ∷ word (ἐ ∷ γ ∷ ή ∷ γ ∷ ε ∷ ρ ∷ τ ∷ α ∷ ι ∷ []) "1Cor.15.17" ∷ word (μ ∷ α ∷ τ ∷ α ∷ ί ∷ α ∷ []) "1Cor.15.17" ∷ word (ἡ ∷ []) "1Cor.15.17" ∷ word (π ∷ ί ∷ σ ∷ τ ∷ ι ∷ ς ∷ []) "1Cor.15.17" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Cor.15.17" ∷ word (ἔ ∷ τ ∷ ι ∷ []) "1Cor.15.17" ∷ word (ἐ ∷ σ ∷ τ ∷ ὲ ∷ []) "1Cor.15.17" ∷ word (ἐ ∷ ν ∷ []) "1Cor.15.17" ∷ word (τ ∷ α ∷ ῖ ∷ ς ∷ []) "1Cor.15.17" ∷ word (ἁ ∷ μ ∷ α ∷ ρ ∷ τ ∷ ί ∷ α ∷ ι ∷ ς ∷ []) "1Cor.15.17" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Cor.15.17" ∷ word (ἄ ∷ ρ ∷ α ∷ []) "1Cor.15.18" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.15.18" ∷ word (ο ∷ ἱ ∷ []) "1Cor.15.18" ∷ word (κ ∷ ο ∷ ι ∷ μ ∷ η ∷ θ ∷ έ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "1Cor.15.18" ∷ word (ἐ ∷ ν ∷ []) "1Cor.15.18" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ῷ ∷ []) "1Cor.15.18" ∷ word (ἀ ∷ π ∷ ώ ∷ ∙λ ∷ ο ∷ ν ∷ τ ∷ ο ∷ []) "1Cor.15.18" ∷ word (ε ∷ ἰ ∷ []) "1Cor.15.19" ∷ word (ἐ ∷ ν ∷ []) "1Cor.15.19" ∷ word (τ ∷ ῇ ∷ []) "1Cor.15.19" ∷ word (ζ ∷ ω ∷ ῇ ∷ []) "1Cor.15.19" ∷ word (τ ∷ α ∷ ύ ∷ τ ∷ ῃ ∷ []) "1Cor.15.19" ∷ word (ἐ ∷ ν ∷ []) "1Cor.15.19" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ῷ ∷ []) "1Cor.15.19" ∷ word (ἠ ∷ ∙λ ∷ π ∷ ι ∷ κ ∷ ό ∷ τ ∷ ε ∷ ς ∷ []) "1Cor.15.19" ∷ word (ἐ ∷ σ ∷ μ ∷ ὲ ∷ ν ∷ []) "1Cor.15.19" ∷ word (μ ∷ ό ∷ ν ∷ ο ∷ ν ∷ []) "1Cor.15.19" ∷ word (ἐ ∷ ∙λ ∷ ε ∷ ε ∷ ι ∷ ν ∷ ό ∷ τ ∷ ε ∷ ρ ∷ ο ∷ ι ∷ []) "1Cor.15.19" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "1Cor.15.19" ∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ω ∷ ν ∷ []) "1Cor.15.19" ∷ word (ἐ ∷ σ ∷ μ ∷ έ ∷ ν ∷ []) "1Cor.15.19" ∷ word (Ν ∷ υ ∷ ν ∷ ὶ ∷ []) "1Cor.15.20" ∷ word (δ ∷ ὲ ∷ []) "1Cor.15.20" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ὸ ∷ ς ∷ []) "1Cor.15.20" ∷ word (ἐ ∷ γ ∷ ή ∷ γ ∷ ε ∷ ρ ∷ τ ∷ α ∷ ι ∷ []) "1Cor.15.20" ∷ word (ἐ ∷ κ ∷ []) "1Cor.15.20" ∷ word (ν ∷ ε ∷ κ ∷ ρ ∷ ῶ ∷ ν ∷ []) "1Cor.15.20" ∷ word (ἀ ∷ π ∷ α ∷ ρ ∷ χ ∷ ὴ ∷ []) "1Cor.15.20" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "1Cor.15.20" ∷ word (κ ∷ ε ∷ κ ∷ ο ∷ ι ∷ μ ∷ η ∷ μ ∷ έ ∷ ν ∷ ω ∷ ν ∷ []) "1Cor.15.20" ∷ word (ἐ ∷ π ∷ ε ∷ ι ∷ δ ∷ ὴ ∷ []) "1Cor.15.21" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "1Cor.15.21" ∷ word (δ ∷ ι ∷ []) "1Cor.15.21" ∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ο ∷ υ ∷ []) "1Cor.15.21" ∷ word (θ ∷ ά ∷ ν ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "1Cor.15.21" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.15.21" ∷ word (δ ∷ ι ∷ []) "1Cor.15.21" ∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ο ∷ υ ∷ []) "1Cor.15.21" ∷ word (ἀ ∷ ν ∷ ά ∷ σ ∷ τ ∷ α ∷ σ ∷ ι ∷ ς ∷ []) "1Cor.15.21" ∷ word (ν ∷ ε ∷ κ ∷ ρ ∷ ῶ ∷ ν ∷ []) "1Cor.15.21" ∷ word (ὥ ∷ σ ∷ π ∷ ε ∷ ρ ∷ []) "1Cor.15.22" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "1Cor.15.22" ∷ word (ἐ ∷ ν ∷ []) "1Cor.15.22" ∷ word (τ ∷ ῷ ∷ []) "1Cor.15.22" ∷ word (Ἀ ∷ δ ∷ ὰ ∷ μ ∷ []) "1Cor.15.22" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "1Cor.15.22" ∷ word (ἀ ∷ π ∷ ο ∷ θ ∷ ν ∷ ῄ ∷ σ ∷ κ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "1Cor.15.22" ∷ word (ο ∷ ὕ ∷ τ ∷ ω ∷ ς ∷ []) "1Cor.15.22" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.15.22" ∷ word (ἐ ∷ ν ∷ []) "1Cor.15.22" ∷ word (τ ∷ ῷ ∷ []) "1Cor.15.22" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ῷ ∷ []) "1Cor.15.22" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "1Cor.15.22" ∷ word (ζ ∷ ῳ ∷ ο ∷ π ∷ ο ∷ ι ∷ η ∷ θ ∷ ή ∷ σ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "1Cor.15.22" ∷ word (ἕ ∷ κ ∷ α ∷ σ ∷ τ ∷ ο ∷ ς ∷ []) "1Cor.15.23" ∷ word (δ ∷ ὲ ∷ []) "1Cor.15.23" ∷ word (ἐ ∷ ν ∷ []) "1Cor.15.23" ∷ word (τ ∷ ῷ ∷ []) "1Cor.15.23" ∷ word (ἰ ∷ δ ∷ ί ∷ ῳ ∷ []) "1Cor.15.23" ∷ word (τ ∷ ά ∷ γ ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "1Cor.15.23" ∷ word (ἀ ∷ π ∷ α ∷ ρ ∷ χ ∷ ὴ ∷ []) "1Cor.15.23" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ό ∷ ς ∷ []) "1Cor.15.23" ∷ word (ἔ ∷ π ∷ ε ∷ ι ∷ τ ∷ α ∷ []) "1Cor.15.23" ∷ word (ο ∷ ἱ ∷ []) "1Cor.15.23" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.15.23" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "1Cor.15.23" ∷ word (ἐ ∷ ν ∷ []) "1Cor.15.23" ∷ word (τ ∷ ῇ ∷ []) "1Cor.15.23" ∷ word (π ∷ α ∷ ρ ∷ ο ∷ υ ∷ σ ∷ ί ∷ ᾳ ∷ []) "1Cor.15.23" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "1Cor.15.23" ∷ word (ε ∷ ἶ ∷ τ ∷ α ∷ []) "1Cor.15.24" ∷ word (τ ∷ ὸ ∷ []) "1Cor.15.24" ∷ word (τ ∷ έ ∷ ∙λ ∷ ο ∷ ς ∷ []) "1Cor.15.24" ∷ word (ὅ ∷ τ ∷ α ∷ ν ∷ []) "1Cor.15.24" ∷ word (π ∷ α ∷ ρ ∷ α ∷ δ ∷ ι ∷ δ ∷ ῷ ∷ []) "1Cor.15.24" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "1Cor.15.24" ∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ί ∷ α ∷ ν ∷ []) "1Cor.15.24" ∷ word (τ ∷ ῷ ∷ []) "1Cor.15.24" ∷ word (θ ∷ ε ∷ ῷ ∷ []) "1Cor.15.24" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.15.24" ∷ word (π ∷ α ∷ τ ∷ ρ ∷ ί ∷ []) "1Cor.15.24" ∷ word (ὅ ∷ τ ∷ α ∷ ν ∷ []) "1Cor.15.24" ∷ word (κ ∷ α ∷ τ ∷ α ∷ ρ ∷ γ ∷ ή ∷ σ ∷ ῃ ∷ []) "1Cor.15.24" ∷ word (π ∷ ᾶ ∷ σ ∷ α ∷ ν ∷ []) "1Cor.15.24" ∷ word (ἀ ∷ ρ ∷ χ ∷ ὴ ∷ ν ∷ []) "1Cor.15.24" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.15.24" ∷ word (π ∷ ᾶ ∷ σ ∷ α ∷ ν ∷ []) "1Cor.15.24" ∷ word (ἐ ∷ ξ ∷ ο ∷ υ ∷ σ ∷ ί ∷ α ∷ ν ∷ []) "1Cor.15.24" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.15.24" ∷ word (δ ∷ ύ ∷ ν ∷ α ∷ μ ∷ ι ∷ ν ∷ []) "1Cor.15.24" ∷ word (δ ∷ ε ∷ ῖ ∷ []) "1Cor.15.25" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "1Cor.15.25" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "1Cor.15.25" ∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ύ ∷ ε ∷ ι ∷ ν ∷ []) "1Cor.15.25" ∷ word (ἄ ∷ χ ∷ ρ ∷ ι ∷ []) "1Cor.15.25" ∷ word (ο ∷ ὗ ∷ []) "1Cor.15.25" ∷ word (θ ∷ ῇ ∷ []) "1Cor.15.25" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "1Cor.15.25" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "1Cor.15.25" ∷ word (ἐ ∷ χ ∷ θ ∷ ρ ∷ ο ∷ ὺ ∷ ς ∷ []) "1Cor.15.25" ∷ word (ὑ ∷ π ∷ ὸ ∷ []) "1Cor.15.25" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "1Cor.15.25" ∷ word (π ∷ ό ∷ δ ∷ α ∷ ς ∷ []) "1Cor.15.25" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "1Cor.15.25" ∷ word (ἔ ∷ σ ∷ χ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "1Cor.15.26" ∷ word (ἐ ∷ χ ∷ θ ∷ ρ ∷ ὸ ∷ ς ∷ []) "1Cor.15.26" ∷ word (κ ∷ α ∷ τ ∷ α ∷ ρ ∷ γ ∷ ε ∷ ῖ ∷ τ ∷ α ∷ ι ∷ []) "1Cor.15.26" ∷ word (ὁ ∷ []) "1Cor.15.26" ∷ word (θ ∷ ά ∷ ν ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "1Cor.15.26" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "1Cor.15.27" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "1Cor.15.27" ∷ word (ὑ ∷ π ∷ έ ∷ τ ∷ α ∷ ξ ∷ ε ∷ ν ∷ []) "1Cor.15.27" ∷ word (ὑ ∷ π ∷ ὸ ∷ []) "1Cor.15.27" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "1Cor.15.27" ∷ word (π ∷ ό ∷ δ ∷ α ∷ ς ∷ []) "1Cor.15.27" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "1Cor.15.27" ∷ word (ὅ ∷ τ ∷ α ∷ ν ∷ []) "1Cor.15.27" ∷ word (δ ∷ ὲ ∷ []) "1Cor.15.27" ∷ word (ε ∷ ἴ ∷ π ∷ ῃ ∷ []) "1Cor.15.27" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "1Cor.15.27" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "1Cor.15.27" ∷ word (ὑ ∷ π ∷ ο ∷ τ ∷ έ ∷ τ ∷ α ∷ κ ∷ τ ∷ α ∷ ι ∷ []) "1Cor.15.27" ∷ word (δ ∷ ῆ ∷ ∙λ ∷ ο ∷ ν ∷ []) "1Cor.15.27" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "1Cor.15.27" ∷ word (ἐ ∷ κ ∷ τ ∷ ὸ ∷ ς ∷ []) "1Cor.15.27" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.15.27" ∷ word (ὑ ∷ π ∷ ο ∷ τ ∷ ά ∷ ξ ∷ α ∷ ν ∷ τ ∷ ο ∷ ς ∷ []) "1Cor.15.27" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "1Cor.15.27" ∷ word (τ ∷ ὰ ∷ []) "1Cor.15.27" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "1Cor.15.27" ∷ word (ὅ ∷ τ ∷ α ∷ ν ∷ []) "1Cor.15.28" ∷ word (δ ∷ ὲ ∷ []) "1Cor.15.28" ∷ word (ὑ ∷ π ∷ ο ∷ τ ∷ α ∷ γ ∷ ῇ ∷ []) "1Cor.15.28" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "1Cor.15.28" ∷ word (τ ∷ ὰ ∷ []) "1Cor.15.28" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "1Cor.15.28" ∷ word (τ ∷ ό ∷ τ ∷ ε ∷ []) "1Cor.15.28" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ς ∷ []) "1Cor.15.28" ∷ word (ὁ ∷ []) "1Cor.15.28" ∷ word (υ ∷ ἱ ∷ ὸ ∷ ς ∷ []) "1Cor.15.28" ∷ word (ὑ ∷ π ∷ ο ∷ τ ∷ α ∷ γ ∷ ή ∷ σ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "1Cor.15.28" ∷ word (τ ∷ ῷ ∷ []) "1Cor.15.28" ∷ word (ὑ ∷ π ∷ ο ∷ τ ∷ ά ∷ ξ ∷ α ∷ ν ∷ τ ∷ ι ∷ []) "1Cor.15.28" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "1Cor.15.28" ∷ word (τ ∷ ὰ ∷ []) "1Cor.15.28" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "1Cor.15.28" ∷ word (ἵ ∷ ν ∷ α ∷ []) "1Cor.15.28" ∷ word (ᾖ ∷ []) "1Cor.15.28" ∷ word (ὁ ∷ []) "1Cor.15.28" ∷ word (θ ∷ ε ∷ ὸ ∷ ς ∷ []) "1Cor.15.28" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "1Cor.15.28" ∷ word (ἐ ∷ ν ∷ []) "1Cor.15.28" ∷ word (π ∷ ᾶ ∷ σ ∷ ι ∷ ν ∷ []) "1Cor.15.28" ∷ word (Ἐ ∷ π ∷ ε ∷ ὶ ∷ []) "1Cor.15.29" ∷ word (τ ∷ ί ∷ []) "1Cor.15.29" ∷ word (π ∷ ο ∷ ι ∷ ή ∷ σ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "1Cor.15.29" ∷ word (ο ∷ ἱ ∷ []) "1Cor.15.29" ∷ word (β ∷ α ∷ π ∷ τ ∷ ι ∷ ζ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "1Cor.15.29" ∷ word (ὑ ∷ π ∷ ὲ ∷ ρ ∷ []) "1Cor.15.29" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "1Cor.15.29" ∷ word (ν ∷ ε ∷ κ ∷ ρ ∷ ῶ ∷ ν ∷ []) "1Cor.15.29" ∷ word (ε ∷ ἰ ∷ []) "1Cor.15.29" ∷ word (ὅ ∷ ∙λ ∷ ω ∷ ς ∷ []) "1Cor.15.29" ∷ word (ν ∷ ε ∷ κ ∷ ρ ∷ ο ∷ ὶ ∷ []) "1Cor.15.29" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "1Cor.15.29" ∷ word (ἐ ∷ γ ∷ ε ∷ ί ∷ ρ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "1Cor.15.29" ∷ word (τ ∷ ί ∷ []) "1Cor.15.29" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.15.29" ∷ word (β ∷ α ∷ π ∷ τ ∷ ί ∷ ζ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "1Cor.15.29" ∷ word (ὑ ∷ π ∷ ὲ ∷ ρ ∷ []) "1Cor.15.29" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "1Cor.15.29" ∷ word (τ ∷ ί ∷ []) "1Cor.15.30" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.15.30" ∷ word (ἡ ∷ μ ∷ ε ∷ ῖ ∷ ς ∷ []) "1Cor.15.30" ∷ word (κ ∷ ι ∷ ν ∷ δ ∷ υ ∷ ν ∷ ε ∷ ύ ∷ ο ∷ μ ∷ ε ∷ ν ∷ []) "1Cor.15.30" ∷ word (π ∷ ᾶ ∷ σ ∷ α ∷ ν ∷ []) "1Cor.15.30" ∷ word (ὥ ∷ ρ ∷ α ∷ ν ∷ []) "1Cor.15.30" ∷ word (κ ∷ α ∷ θ ∷ []) "1Cor.15.31" ∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ α ∷ ν ∷ []) "1Cor.15.31" ∷ word (ἀ ∷ π ∷ ο ∷ θ ∷ ν ∷ ῄ ∷ σ ∷ κ ∷ ω ∷ []) "1Cor.15.31" ∷ word (ν ∷ ὴ ∷ []) "1Cor.15.31" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "1Cor.15.31" ∷ word (ὑ ∷ μ ∷ ε ∷ τ ∷ έ ∷ ρ ∷ α ∷ ν ∷ []) "1Cor.15.31" ∷ word (κ ∷ α ∷ ύ ∷ χ ∷ η ∷ σ ∷ ι ∷ ν ∷ []) "1Cor.15.31" ∷ word (ἣ ∷ ν ∷ []) "1Cor.15.31" ∷ word (ἔ ∷ χ ∷ ω ∷ []) "1Cor.15.31" ∷ word (ἐ ∷ ν ∷ []) "1Cor.15.31" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ῷ ∷ []) "1Cor.15.31" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "1Cor.15.31" ∷ word (τ ∷ ῷ ∷ []) "1Cor.15.31" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ῳ ∷ []) "1Cor.15.31" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Cor.15.31" ∷ word (ε ∷ ἰ ∷ []) "1Cor.15.32" ∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "1Cor.15.32" ∷ word (ἄ ∷ ν ∷ θ ∷ ρ ∷ ω ∷ π ∷ ο ∷ ν ∷ []) "1Cor.15.32" ∷ word (ἐ ∷ θ ∷ η ∷ ρ ∷ ι ∷ ο ∷ μ ∷ ά ∷ χ ∷ η ∷ σ ∷ α ∷ []) "1Cor.15.32" ∷ word (ἐ ∷ ν ∷ []) "1Cor.15.32" ∷ word (Ἐ ∷ φ ∷ έ ∷ σ ∷ ῳ ∷ []) "1Cor.15.32" ∷ word (τ ∷ ί ∷ []) "1Cor.15.32" ∷ word (μ ∷ ο ∷ ι ∷ []) "1Cor.15.32" ∷ word (τ ∷ ὸ ∷ []) "1Cor.15.32" ∷ word (ὄ ∷ φ ∷ ε ∷ ∙λ ∷ ο ∷ ς ∷ []) "1Cor.15.32" ∷ word (ε ∷ ἰ ∷ []) "1Cor.15.32" ∷ word (ν ∷ ε ∷ κ ∷ ρ ∷ ο ∷ ὶ ∷ []) "1Cor.15.32" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "1Cor.15.32" ∷ word (ἐ ∷ γ ∷ ε ∷ ί ∷ ρ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "1Cor.15.32" ∷ word (Φ ∷ ά ∷ γ ∷ ω ∷ μ ∷ ε ∷ ν ∷ []) "1Cor.15.32" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.15.32" ∷ word (π ∷ ί ∷ ω ∷ μ ∷ ε ∷ ν ∷ []) "1Cor.15.32" ∷ word (α ∷ ὔ ∷ ρ ∷ ι ∷ ο ∷ ν ∷ []) "1Cor.15.32" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "1Cor.15.32" ∷ word (ἀ ∷ π ∷ ο ∷ θ ∷ ν ∷ ῄ ∷ σ ∷ κ ∷ ο ∷ μ ∷ ε ∷ ν ∷ []) "1Cor.15.32" ∷ word (μ ∷ ὴ ∷ []) "1Cor.15.33" ∷ word (π ∷ ∙λ ∷ α ∷ ν ∷ ᾶ ∷ σ ∷ θ ∷ ε ∷ []) "1Cor.15.33" ∷ word (φ ∷ θ ∷ ε ∷ ί ∷ ρ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "1Cor.15.33" ∷ word (ἤ ∷ θ ∷ η ∷ []) "1Cor.15.33" ∷ word (χ ∷ ρ ∷ η ∷ σ ∷ τ ∷ ὰ ∷ []) "1Cor.15.33" ∷ word (ὁ ∷ μ ∷ ι ∷ ∙λ ∷ ί ∷ α ∷ ι ∷ []) "1Cor.15.33" ∷ word (κ ∷ α ∷ κ ∷ α ∷ ί ∷ []) "1Cor.15.33" ∷ word (ἐ ∷ κ ∷ ν ∷ ή ∷ ψ ∷ α ∷ τ ∷ ε ∷ []) "1Cor.15.34" ∷ word (δ ∷ ι ∷ κ ∷ α ∷ ί ∷ ω ∷ ς ∷ []) "1Cor.15.34" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.15.34" ∷ word (μ ∷ ὴ ∷ []) "1Cor.15.34" ∷ word (ἁ ∷ μ ∷ α ∷ ρ ∷ τ ∷ ά ∷ ν ∷ ε ∷ τ ∷ ε ∷ []) "1Cor.15.34" ∷ word (ἀ ∷ γ ∷ ν ∷ ω ∷ σ ∷ ί ∷ α ∷ ν ∷ []) "1Cor.15.34" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "1Cor.15.34" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "1Cor.15.34" ∷ word (τ ∷ ι ∷ ν ∷ ε ∷ ς ∷ []) "1Cor.15.34" ∷ word (ἔ ∷ χ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "1Cor.15.34" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "1Cor.15.34" ∷ word (ἐ ∷ ν ∷ τ ∷ ρ ∷ ο ∷ π ∷ ὴ ∷ ν ∷ []) "1Cor.15.34" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "1Cor.15.34" ∷ word (∙λ ∷ α ∷ ∙λ ∷ ῶ ∷ []) "1Cor.15.34" ∷ word (Ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "1Cor.15.35" ∷ word (ἐ ∷ ρ ∷ ε ∷ ῖ ∷ []) "1Cor.15.35" ∷ word (τ ∷ ι ∷ ς ∷ []) "1Cor.15.35" ∷ word (Π ∷ ῶ ∷ ς ∷ []) "1Cor.15.35" ∷ word (ἐ ∷ γ ∷ ε ∷ ί ∷ ρ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "1Cor.15.35" ∷ word (ο ∷ ἱ ∷ []) "1Cor.15.35" ∷ word (ν ∷ ε ∷ κ ∷ ρ ∷ ο ∷ ί ∷ []) "1Cor.15.35" ∷ word (π ∷ ο ∷ ί ∷ ῳ ∷ []) "1Cor.15.35" ∷ word (δ ∷ ὲ ∷ []) "1Cor.15.35" ∷ word (σ ∷ ώ ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "1Cor.15.35" ∷ word (ἔ ∷ ρ ∷ χ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "1Cor.15.35" ∷ word (ἄ ∷ φ ∷ ρ ∷ ω ∷ ν ∷ []) "1Cor.15.36" ∷ word (σ ∷ ὺ ∷ []) "1Cor.15.36" ∷ word (ὃ ∷ []) "1Cor.15.36" ∷ word (σ ∷ π ∷ ε ∷ ί ∷ ρ ∷ ε ∷ ι ∷ ς ∷ []) "1Cor.15.36" ∷ word (ο ∷ ὐ ∷ []) "1Cor.15.36" ∷ word (ζ ∷ ῳ ∷ ο ∷ π ∷ ο ∷ ι ∷ ε ∷ ῖ ∷ τ ∷ α ∷ ι ∷ []) "1Cor.15.36" ∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "1Cor.15.36" ∷ word (μ ∷ ὴ ∷ []) "1Cor.15.36" ∷ word (ἀ ∷ π ∷ ο ∷ θ ∷ ά ∷ ν ∷ ῃ ∷ []) "1Cor.15.36" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.15.37" ∷ word (ὃ ∷ []) "1Cor.15.37" ∷ word (σ ∷ π ∷ ε ∷ ί ∷ ρ ∷ ε ∷ ι ∷ ς ∷ []) "1Cor.15.37" ∷ word (ο ∷ ὐ ∷ []) "1Cor.15.37" ∷ word (τ ∷ ὸ ∷ []) "1Cor.15.37" ∷ word (σ ∷ ῶ ∷ μ ∷ α ∷ []) "1Cor.15.37" ∷ word (τ ∷ ὸ ∷ []) "1Cor.15.37" ∷ word (γ ∷ ε ∷ ν ∷ η ∷ σ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ν ∷ []) "1Cor.15.37" ∷ word (σ ∷ π ∷ ε ∷ ί ∷ ρ ∷ ε ∷ ι ∷ ς ∷ []) "1Cor.15.37" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "1Cor.15.37" ∷ word (γ ∷ υ ∷ μ ∷ ν ∷ ὸ ∷ ν ∷ []) "1Cor.15.37" ∷ word (κ ∷ ό ∷ κ ∷ κ ∷ ο ∷ ν ∷ []) "1Cor.15.37" ∷ word (ε ∷ ἰ ∷ []) "1Cor.15.37" ∷ word (τ ∷ ύ ∷ χ ∷ ο ∷ ι ∷ []) "1Cor.15.37" ∷ word (σ ∷ ί ∷ τ ∷ ο ∷ υ ∷ []) "1Cor.15.37" ∷ word (ἤ ∷ []) "1Cor.15.37" ∷ word (τ ∷ ι ∷ ν ∷ ο ∷ ς ∷ []) "1Cor.15.37" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "1Cor.15.37" ∷ word (∙λ ∷ ο ∷ ι ∷ π ∷ ῶ ∷ ν ∷ []) "1Cor.15.37" ∷ word (ὁ ∷ []) "1Cor.15.38" ∷ word (δ ∷ ὲ ∷ []) "1Cor.15.38" ∷ word (θ ∷ ε ∷ ὸ ∷ ς ∷ []) "1Cor.15.38" ∷ word (δ ∷ ί ∷ δ ∷ ω ∷ σ ∷ ι ∷ ν ∷ []) "1Cor.15.38" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "1Cor.15.38" ∷ word (σ ∷ ῶ ∷ μ ∷ α ∷ []) "1Cor.15.38" ∷ word (κ ∷ α ∷ θ ∷ ὼ ∷ ς ∷ []) "1Cor.15.38" ∷ word (ἠ ∷ θ ∷ έ ∷ ∙λ ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "1Cor.15.38" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.15.38" ∷ word (ἑ ∷ κ ∷ ά ∷ σ ∷ τ ∷ ῳ ∷ []) "1Cor.15.38" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "1Cor.15.38" ∷ word (σ ∷ π ∷ ε ∷ ρ ∷ μ ∷ ά ∷ τ ∷ ω ∷ ν ∷ []) "1Cor.15.38" ∷ word (ἴ ∷ δ ∷ ι ∷ ο ∷ ν ∷ []) "1Cor.15.38" ∷ word (σ ∷ ῶ ∷ μ ∷ α ∷ []) "1Cor.15.38" ∷ word (ο ∷ ὐ ∷ []) "1Cor.15.39" ∷ word (π ∷ ᾶ ∷ σ ∷ α ∷ []) "1Cor.15.39" ∷ word (σ ∷ ὰ ∷ ρ ∷ ξ ∷ []) "1Cor.15.39" ∷ word (ἡ ∷ []) "1Cor.15.39" ∷ word (α ∷ ὐ ∷ τ ∷ ὴ ∷ []) "1Cor.15.39" ∷ word (σ ∷ ά ∷ ρ ∷ ξ ∷ []) "1Cor.15.39" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "1Cor.15.39" ∷ word (ἄ ∷ ∙λ ∷ ∙λ ∷ η ∷ []) "1Cor.15.39" ∷ word (μ ∷ ὲ ∷ ν ∷ []) "1Cor.15.39" ∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ω ∷ ν ∷ []) "1Cor.15.39" ∷ word (ἄ ∷ ∙λ ∷ ∙λ ∷ η ∷ []) "1Cor.15.39" ∷ word (δ ∷ ὲ ∷ []) "1Cor.15.39" ∷ word (σ ∷ ὰ ∷ ρ ∷ ξ ∷ []) "1Cor.15.39" ∷ word (κ ∷ τ ∷ η ∷ ν ∷ ῶ ∷ ν ∷ []) "1Cor.15.39" ∷ word (ἄ ∷ ∙λ ∷ ∙λ ∷ η ∷ []) "1Cor.15.39" ∷ word (δ ∷ ὲ ∷ []) "1Cor.15.39" ∷ word (σ ∷ ὰ ∷ ρ ∷ ξ ∷ []) "1Cor.15.39" ∷ word (π ∷ τ ∷ η ∷ ν ∷ ῶ ∷ ν ∷ []) "1Cor.15.39" ∷ word (ἄ ∷ ∙λ ∷ ∙λ ∷ η ∷ []) "1Cor.15.39" ∷ word (δ ∷ ὲ ∷ []) "1Cor.15.39" ∷ word (ἰ ∷ χ ∷ θ ∷ ύ ∷ ω ∷ ν ∷ []) "1Cor.15.39" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.15.40" ∷ word (σ ∷ ώ ∷ μ ∷ α ∷ τ ∷ α ∷ []) "1Cor.15.40" ∷ word (ἐ ∷ π ∷ ο ∷ υ ∷ ρ ∷ ά ∷ ν ∷ ι ∷ α ∷ []) "1Cor.15.40" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.15.40" ∷ word (σ ∷ ώ ∷ μ ∷ α ∷ τ ∷ α ∷ []) "1Cor.15.40" ∷ word (ἐ ∷ π ∷ ί ∷ γ ∷ ε ∷ ι ∷ α ∷ []) "1Cor.15.40" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "1Cor.15.40" ∷ word (ἑ ∷ τ ∷ έ ∷ ρ ∷ α ∷ []) "1Cor.15.40" ∷ word (μ ∷ ὲ ∷ ν ∷ []) "1Cor.15.40" ∷ word (ἡ ∷ []) "1Cor.15.40" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "1Cor.15.40" ∷ word (ἐ ∷ π ∷ ο ∷ υ ∷ ρ ∷ α ∷ ν ∷ ί ∷ ω ∷ ν ∷ []) "1Cor.15.40" ∷ word (δ ∷ ό ∷ ξ ∷ α ∷ []) "1Cor.15.40" ∷ word (ἑ ∷ τ ∷ έ ∷ ρ ∷ α ∷ []) "1Cor.15.40" ∷ word (δ ∷ ὲ ∷ []) "1Cor.15.40" ∷ word (ἡ ∷ []) "1Cor.15.40" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "1Cor.15.40" ∷ word (ἐ ∷ π ∷ ι ∷ γ ∷ ε ∷ ί ∷ ω ∷ ν ∷ []) "1Cor.15.40" ∷ word (ἄ ∷ ∙λ ∷ ∙λ ∷ η ∷ []) "1Cor.15.41" ∷ word (δ ∷ ό ∷ ξ ∷ α ∷ []) "1Cor.15.41" ∷ word (ἡ ∷ ∙λ ∷ ί ∷ ο ∷ υ ∷ []) "1Cor.15.41" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.15.41" ∷ word (ἄ ∷ ∙λ ∷ ∙λ ∷ η ∷ []) "1Cor.15.41" ∷ word (δ ∷ ό ∷ ξ ∷ α ∷ []) "1Cor.15.41" ∷ word (σ ∷ ε ∷ ∙λ ∷ ή ∷ ν ∷ η ∷ ς ∷ []) "1Cor.15.41" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.15.41" ∷ word (ἄ ∷ ∙λ ∷ ∙λ ∷ η ∷ []) "1Cor.15.41" ∷ word (δ ∷ ό ∷ ξ ∷ α ∷ []) "1Cor.15.41" ∷ word (ἀ ∷ σ ∷ τ ∷ έ ∷ ρ ∷ ω ∷ ν ∷ []) "1Cor.15.41" ∷ word (ἀ ∷ σ ∷ τ ∷ ὴ ∷ ρ ∷ []) "1Cor.15.41" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "1Cor.15.41" ∷ word (ἀ ∷ σ ∷ τ ∷ έ ∷ ρ ∷ ο ∷ ς ∷ []) "1Cor.15.41" ∷ word (δ ∷ ι ∷ α ∷ φ ∷ έ ∷ ρ ∷ ε ∷ ι ∷ []) "1Cor.15.41" ∷ word (ἐ ∷ ν ∷ []) "1Cor.15.41" ∷ word (δ ∷ ό ∷ ξ ∷ ῃ ∷ []) "1Cor.15.41" ∷ word (Ο ∷ ὕ ∷ τ ∷ ω ∷ ς ∷ []) "1Cor.15.42" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.15.42" ∷ word (ἡ ∷ []) "1Cor.15.42" ∷ word (ἀ ∷ ν ∷ ά ∷ σ ∷ τ ∷ α ∷ σ ∷ ι ∷ ς ∷ []) "1Cor.15.42" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "1Cor.15.42" ∷ word (ν ∷ ε ∷ κ ∷ ρ ∷ ῶ ∷ ν ∷ []) "1Cor.15.42" ∷ word (σ ∷ π ∷ ε ∷ ί ∷ ρ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "1Cor.15.42" ∷ word (ἐ ∷ ν ∷ []) "1Cor.15.42" ∷ word (φ ∷ θ ∷ ο ∷ ρ ∷ ᾷ ∷ []) "1Cor.15.42" ∷ word (ἐ ∷ γ ∷ ε ∷ ί ∷ ρ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "1Cor.15.42" ∷ word (ἐ ∷ ν ∷ []) "1Cor.15.42" ∷ word (ἀ ∷ φ ∷ θ ∷ α ∷ ρ ∷ σ ∷ ί ∷ ᾳ ∷ []) "1Cor.15.42" ∷ word (σ ∷ π ∷ ε ∷ ί ∷ ρ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "1Cor.15.43" ∷ word (ἐ ∷ ν ∷ []) "1Cor.15.43" ∷ word (ἀ ∷ τ ∷ ι ∷ μ ∷ ί ∷ ᾳ ∷ []) "1Cor.15.43" ∷ word (ἐ ∷ γ ∷ ε ∷ ί ∷ ρ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "1Cor.15.43" ∷ word (ἐ ∷ ν ∷ []) "1Cor.15.43" ∷ word (δ ∷ ό ∷ ξ ∷ ῃ ∷ []) "1Cor.15.43" ∷ word (σ ∷ π ∷ ε ∷ ί ∷ ρ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "1Cor.15.43" ∷ word (ἐ ∷ ν ∷ []) "1Cor.15.43" ∷ word (ἀ ∷ σ ∷ θ ∷ ε ∷ ν ∷ ε ∷ ί ∷ ᾳ ∷ []) "1Cor.15.43" ∷ word (ἐ ∷ γ ∷ ε ∷ ί ∷ ρ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "1Cor.15.43" ∷ word (ἐ ∷ ν ∷ []) "1Cor.15.43" ∷ word (δ ∷ υ ∷ ν ∷ ά ∷ μ ∷ ε ∷ ι ∷ []) "1Cor.15.43" ∷ word (σ ∷ π ∷ ε ∷ ί ∷ ρ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "1Cor.15.44" ∷ word (σ ∷ ῶ ∷ μ ∷ α ∷ []) "1Cor.15.44" ∷ word (ψ ∷ υ ∷ χ ∷ ι ∷ κ ∷ ό ∷ ν ∷ []) "1Cor.15.44" ∷ word (ἐ ∷ γ ∷ ε ∷ ί ∷ ρ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "1Cor.15.44" ∷ word (σ ∷ ῶ ∷ μ ∷ α ∷ []) "1Cor.15.44" ∷ word (π ∷ ν ∷ ε ∷ υ ∷ μ ∷ α ∷ τ ∷ ι ∷ κ ∷ ό ∷ ν ∷ []) "1Cor.15.44" ∷ word (Ε ∷ ἰ ∷ []) "1Cor.15.44" ∷ word (ἔ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "1Cor.15.44" ∷ word (σ ∷ ῶ ∷ μ ∷ α ∷ []) "1Cor.15.44" ∷ word (ψ ∷ υ ∷ χ ∷ ι ∷ κ ∷ ό ∷ ν ∷ []) "1Cor.15.44" ∷ word (ἔ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "1Cor.15.44" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.15.44" ∷ word (π ∷ ν ∷ ε ∷ υ ∷ μ ∷ α ∷ τ ∷ ι ∷ κ ∷ ό ∷ ν ∷ []) "1Cor.15.44" ∷ word (ο ∷ ὕ ∷ τ ∷ ω ∷ ς ∷ []) "1Cor.15.45" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.15.45" ∷ word (γ ∷ έ ∷ γ ∷ ρ ∷ α ∷ π ∷ τ ∷ α ∷ ι ∷ []) "1Cor.15.45" ∷ word (Ἐ ∷ γ ∷ έ ∷ ν ∷ ε ∷ τ ∷ ο ∷ []) "1Cor.15.45" ∷ word (ὁ ∷ []) "1Cor.15.45" ∷ word (π ∷ ρ ∷ ῶ ∷ τ ∷ ο ∷ ς ∷ []) "1Cor.15.45" ∷ word (ἄ ∷ ν ∷ θ ∷ ρ ∷ ω ∷ π ∷ ο ∷ ς ∷ []) "1Cor.15.45" ∷ word (Ἀ ∷ δ ∷ ὰ ∷ μ ∷ []) "1Cor.15.45" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "1Cor.15.45" ∷ word (ψ ∷ υ ∷ χ ∷ ὴ ∷ ν ∷ []) "1Cor.15.45" ∷ word (ζ ∷ ῶ ∷ σ ∷ α ∷ ν ∷ []) "1Cor.15.45" ∷ word (ὁ ∷ []) "1Cor.15.45" ∷ word (ἔ ∷ σ ∷ χ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "1Cor.15.45" ∷ word (Ἀ ∷ δ ∷ ὰ ∷ μ ∷ []) "1Cor.15.45" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "1Cor.15.45" ∷ word (π ∷ ν ∷ ε ∷ ῦ ∷ μ ∷ α ∷ []) "1Cor.15.45" ∷ word (ζ ∷ ῳ ∷ ο ∷ π ∷ ο ∷ ι ∷ ο ∷ ῦ ∷ ν ∷ []) "1Cor.15.45" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ []) "1Cor.15.46" ∷ word (ο ∷ ὐ ∷ []) "1Cor.15.46" ∷ word (π ∷ ρ ∷ ῶ ∷ τ ∷ ο ∷ ν ∷ []) "1Cor.15.46" ∷ word (τ ∷ ὸ ∷ []) "1Cor.15.46" ∷ word (π ∷ ν ∷ ε ∷ υ ∷ μ ∷ α ∷ τ ∷ ι ∷ κ ∷ ὸ ∷ ν ∷ []) "1Cor.15.46" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "1Cor.15.46" ∷ word (τ ∷ ὸ ∷ []) "1Cor.15.46" ∷ word (ψ ∷ υ ∷ χ ∷ ι ∷ κ ∷ ό ∷ ν ∷ []) "1Cor.15.46" ∷ word (ἔ ∷ π ∷ ε ∷ ι ∷ τ ∷ α ∷ []) "1Cor.15.46" ∷ word (τ ∷ ὸ ∷ []) "1Cor.15.46" ∷ word (π ∷ ν ∷ ε ∷ υ ∷ μ ∷ α ∷ τ ∷ ι ∷ κ ∷ ό ∷ ν ∷ []) "1Cor.15.46" ∷ word (ὁ ∷ []) "1Cor.15.47" ∷ word (π ∷ ρ ∷ ῶ ∷ τ ∷ ο ∷ ς ∷ []) "1Cor.15.47" ∷ word (ἄ ∷ ν ∷ θ ∷ ρ ∷ ω ∷ π ∷ ο ∷ ς ∷ []) "1Cor.15.47" ∷ word (ἐ ∷ κ ∷ []) "1Cor.15.47" ∷ word (γ ∷ ῆ ∷ ς ∷ []) "1Cor.15.47" ∷ word (χ ∷ ο ∷ ϊ ∷ κ ∷ ό ∷ ς ∷ []) "1Cor.15.47" ∷ word (ὁ ∷ []) "1Cor.15.47" ∷ word (δ ∷ ε ∷ ύ ∷ τ ∷ ε ∷ ρ ∷ ο ∷ ς ∷ []) "1Cor.15.47" ∷ word (ἄ ∷ ν ∷ θ ∷ ρ ∷ ω ∷ π ∷ ο ∷ ς ∷ []) "1Cor.15.47" ∷ word (ἐ ∷ ξ ∷ []) "1Cor.15.47" ∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ο ∷ ῦ ∷ []) "1Cor.15.47" ∷ word (ο ∷ ἷ ∷ ο ∷ ς ∷ []) "1Cor.15.48" ∷ word (ὁ ∷ []) "1Cor.15.48" ∷ word (χ ∷ ο ∷ ϊ ∷ κ ∷ ό ∷ ς ∷ []) "1Cor.15.48" ∷ word (τ ∷ ο ∷ ι ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ ι ∷ []) "1Cor.15.48" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.15.48" ∷ word (ο ∷ ἱ ∷ []) "1Cor.15.48" ∷ word (χ ∷ ο ∷ ϊ ∷ κ ∷ ο ∷ ί ∷ []) "1Cor.15.48" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.15.48" ∷ word (ο ∷ ἷ ∷ ο ∷ ς ∷ []) "1Cor.15.48" ∷ word (ὁ ∷ []) "1Cor.15.48" ∷ word (ἐ ∷ π ∷ ο ∷ υ ∷ ρ ∷ ά ∷ ν ∷ ι ∷ ο ∷ ς ∷ []) "1Cor.15.48" ∷ word (τ ∷ ο ∷ ι ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ ι ∷ []) "1Cor.15.48" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.15.48" ∷ word (ο ∷ ἱ ∷ []) "1Cor.15.48" ∷ word (ἐ ∷ π ∷ ο ∷ υ ∷ ρ ∷ ά ∷ ν ∷ ι ∷ ο ∷ ι ∷ []) "1Cor.15.48" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.15.49" ∷ word (κ ∷ α ∷ θ ∷ ὼ ∷ ς ∷ []) "1Cor.15.49" ∷ word (ἐ ∷ φ ∷ ο ∷ ρ ∷ έ ∷ σ ∷ α ∷ μ ∷ ε ∷ ν ∷ []) "1Cor.15.49" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "1Cor.15.49" ∷ word (ε ∷ ἰ ∷ κ ∷ ό ∷ ν ∷ α ∷ []) "1Cor.15.49" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.15.49" ∷ word (χ ∷ ο ∷ ϊ ∷ κ ∷ ο ∷ ῦ ∷ []) "1Cor.15.49" ∷ word (φ ∷ ο ∷ ρ ∷ έ ∷ σ ∷ ο ∷ μ ∷ ε ∷ ν ∷ []) "1Cor.15.49" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.15.49" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "1Cor.15.49" ∷ word (ε ∷ ἰ ∷ κ ∷ ό ∷ ν ∷ α ∷ []) "1Cor.15.49" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.15.49" ∷ word (ἐ ∷ π ∷ ο ∷ υ ∷ ρ ∷ α ∷ ν ∷ ί ∷ ο ∷ υ ∷ []) "1Cor.15.49" ∷ word (Τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "1Cor.15.50" ∷ word (δ ∷ έ ∷ []) "1Cor.15.50" ∷ word (φ ∷ η ∷ μ ∷ ι ∷ []) "1Cor.15.50" ∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ο ∷ ί ∷ []) "1Cor.15.50" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "1Cor.15.50" ∷ word (σ ∷ ὰ ∷ ρ ∷ ξ ∷ []) "1Cor.15.50" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.15.50" ∷ word (α ∷ ἷ ∷ μ ∷ α ∷ []) "1Cor.15.50" ∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ί ∷ α ∷ ν ∷ []) "1Cor.15.50" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "1Cor.15.50" ∷ word (κ ∷ ∙λ ∷ η ∷ ρ ∷ ο ∷ ν ∷ ο ∷ μ ∷ ῆ ∷ σ ∷ α ∷ ι ∷ []) "1Cor.15.50" ∷ word (ο ∷ ὐ ∷ []) "1Cor.15.50" ∷ word (δ ∷ ύ ∷ ν ∷ α ∷ τ ∷ α ∷ ι ∷ []) "1Cor.15.50" ∷ word (ο ∷ ὐ ∷ δ ∷ ὲ ∷ []) "1Cor.15.50" ∷ word (ἡ ∷ []) "1Cor.15.50" ∷ word (φ ∷ θ ∷ ο ∷ ρ ∷ ὰ ∷ []) "1Cor.15.50" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "1Cor.15.50" ∷ word (ἀ ∷ φ ∷ θ ∷ α ∷ ρ ∷ σ ∷ ί ∷ α ∷ ν ∷ []) "1Cor.15.50" ∷ word (κ ∷ ∙λ ∷ η ∷ ρ ∷ ο ∷ ν ∷ ο ∷ μ ∷ ε ∷ ῖ ∷ []) "1Cor.15.50" ∷ word (ἰ ∷ δ ∷ ο ∷ ὺ ∷ []) "1Cor.15.51" ∷ word (μ ∷ υ ∷ σ ∷ τ ∷ ή ∷ ρ ∷ ι ∷ ο ∷ ν ∷ []) "1Cor.15.51" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "1Cor.15.51" ∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ []) "1Cor.15.51" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "1Cor.15.51" ∷ word (ο ∷ ὐ ∷ []) "1Cor.15.51" ∷ word (κ ∷ ο ∷ ι ∷ μ ∷ η ∷ θ ∷ η ∷ σ ∷ ό ∷ μ ∷ ε ∷ θ ∷ α ∷ []) "1Cor.15.51" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "1Cor.15.51" ∷ word (δ ∷ ὲ ∷ []) "1Cor.15.51" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ α ∷ γ ∷ η ∷ σ ∷ ό ∷ μ ∷ ε ∷ θ ∷ α ∷ []) "1Cor.15.51" ∷ word (ἐ ∷ ν ∷ []) "1Cor.15.52" ∷ word (ἀ ∷ τ ∷ ό ∷ μ ∷ ῳ ∷ []) "1Cor.15.52" ∷ word (ἐ ∷ ν ∷ []) "1Cor.15.52" ∷ word (ῥ ∷ ι ∷ π ∷ ῇ ∷ []) "1Cor.15.52" ∷ word (ὀ ∷ φ ∷ θ ∷ α ∷ ∙λ ∷ μ ∷ ο ∷ ῦ ∷ []) "1Cor.15.52" ∷ word (ἐ ∷ ν ∷ []) "1Cor.15.52" ∷ word (τ ∷ ῇ ∷ []) "1Cor.15.52" ∷ word (ἐ ∷ σ ∷ χ ∷ ά ∷ τ ∷ ῃ ∷ []) "1Cor.15.52" ∷ word (σ ∷ ά ∷ ∙λ ∷ π ∷ ι ∷ γ ∷ γ ∷ ι ∷ []) "1Cor.15.52" ∷ word (σ ∷ α ∷ ∙λ ∷ π ∷ ί ∷ σ ∷ ε ∷ ι ∷ []) "1Cor.15.52" ∷ word (γ ∷ ά ∷ ρ ∷ []) "1Cor.15.52" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.15.52" ∷ word (ο ∷ ἱ ∷ []) "1Cor.15.52" ∷ word (ν ∷ ε ∷ κ ∷ ρ ∷ ο ∷ ὶ ∷ []) "1Cor.15.52" ∷ word (ἐ ∷ γ ∷ ε ∷ ρ ∷ θ ∷ ή ∷ σ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "1Cor.15.52" ∷ word (ἄ ∷ φ ∷ θ ∷ α ∷ ρ ∷ τ ∷ ο ∷ ι ∷ []) "1Cor.15.52" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.15.52" ∷ word (ἡ ∷ μ ∷ ε ∷ ῖ ∷ ς ∷ []) "1Cor.15.52" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ α ∷ γ ∷ η ∷ σ ∷ ό ∷ μ ∷ ε ∷ θ ∷ α ∷ []) "1Cor.15.52" ∷ word (δ ∷ ε ∷ ῖ ∷ []) "1Cor.15.53" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "1Cor.15.53" ∷ word (τ ∷ ὸ ∷ []) "1Cor.15.53" ∷ word (φ ∷ θ ∷ α ∷ ρ ∷ τ ∷ ὸ ∷ ν ∷ []) "1Cor.15.53" ∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "1Cor.15.53" ∷ word (ἐ ∷ ν ∷ δ ∷ ύ ∷ σ ∷ α ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "1Cor.15.53" ∷ word (ἀ ∷ φ ∷ θ ∷ α ∷ ρ ∷ σ ∷ ί ∷ α ∷ ν ∷ []) "1Cor.15.53" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.15.53" ∷ word (τ ∷ ὸ ∷ []) "1Cor.15.53" ∷ word (θ ∷ ν ∷ η ∷ τ ∷ ὸ ∷ ν ∷ []) "1Cor.15.53" ∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "1Cor.15.53" ∷ word (ἐ ∷ ν ∷ δ ∷ ύ ∷ σ ∷ α ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "1Cor.15.53" ∷ word (ἀ ∷ θ ∷ α ∷ ν ∷ α ∷ σ ∷ ί ∷ α ∷ ν ∷ []) "1Cor.15.53" ∷ word (ὅ ∷ τ ∷ α ∷ ν ∷ []) "1Cor.15.54" ∷ word (δ ∷ ὲ ∷ []) "1Cor.15.54" ∷ word (τ ∷ ὸ ∷ []) "1Cor.15.54" ∷ word (φ ∷ θ ∷ α ∷ ρ ∷ τ ∷ ὸ ∷ ν ∷ []) "1Cor.15.54" ∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "1Cor.15.54" ∷ word (ἐ ∷ ν ∷ δ ∷ ύ ∷ σ ∷ η ∷ τ ∷ α ∷ ι ∷ []) "1Cor.15.54" ∷ word (ἀ ∷ φ ∷ θ ∷ α ∷ ρ ∷ σ ∷ ί ∷ α ∷ ν ∷ []) "1Cor.15.54" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.15.54" ∷ word (τ ∷ ὸ ∷ []) "1Cor.15.54" ∷ word (θ ∷ ν ∷ η ∷ τ ∷ ὸ ∷ ν ∷ []) "1Cor.15.54" ∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "1Cor.15.54" ∷ word (ἐ ∷ ν ∷ δ ∷ ύ ∷ σ ∷ η ∷ τ ∷ α ∷ ι ∷ []) "1Cor.15.54" ∷ word (ἀ ∷ θ ∷ α ∷ ν ∷ α ∷ σ ∷ ί ∷ α ∷ ν ∷ []) "1Cor.15.54" ∷ word (τ ∷ ό ∷ τ ∷ ε ∷ []) "1Cor.15.54" ∷ word (γ ∷ ε ∷ ν ∷ ή ∷ σ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "1Cor.15.54" ∷ word (ὁ ∷ []) "1Cor.15.54" ∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ ς ∷ []) "1Cor.15.54" ∷ word (ὁ ∷ []) "1Cor.15.54" ∷ word (γ ∷ ε ∷ γ ∷ ρ ∷ α ∷ μ ∷ μ ∷ έ ∷ ν ∷ ο ∷ ς ∷ []) "1Cor.15.54" ∷ word (Κ ∷ α ∷ τ ∷ ε ∷ π ∷ ό ∷ θ ∷ η ∷ []) "1Cor.15.54" ∷ word (ὁ ∷ []) "1Cor.15.54" ∷ word (θ ∷ ά ∷ ν ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "1Cor.15.54" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "1Cor.15.54" ∷ word (ν ∷ ῖ ∷ κ ∷ ο ∷ ς ∷ []) "1Cor.15.54" ∷ word (π ∷ ο ∷ ῦ ∷ []) "1Cor.15.55" ∷ word (σ ∷ ο ∷ υ ∷ []) "1Cor.15.55" ∷ word (θ ∷ ά ∷ ν ∷ α ∷ τ ∷ ε ∷ []) "1Cor.15.55" ∷ word (τ ∷ ὸ ∷ []) "1Cor.15.55" ∷ word (ν ∷ ῖ ∷ κ ∷ ο ∷ ς ∷ []) "1Cor.15.55" ∷ word (π ∷ ο ∷ ῦ ∷ []) "1Cor.15.55" ∷ word (σ ∷ ο ∷ υ ∷ []) "1Cor.15.55" ∷ word (θ ∷ ά ∷ ν ∷ α ∷ τ ∷ ε ∷ []) "1Cor.15.55" ∷ word (τ ∷ ὸ ∷ []) "1Cor.15.55" ∷ word (κ ∷ έ ∷ ν ∷ τ ∷ ρ ∷ ο ∷ ν ∷ []) "1Cor.15.55" ∷ word (τ ∷ ὸ ∷ []) "1Cor.15.56" ∷ word (δ ∷ ὲ ∷ []) "1Cor.15.56" ∷ word (κ ∷ έ ∷ ν ∷ τ ∷ ρ ∷ ο ∷ ν ∷ []) "1Cor.15.56" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.15.56" ∷ word (θ ∷ α ∷ ν ∷ ά ∷ τ ∷ ο ∷ υ ∷ []) "1Cor.15.56" ∷ word (ἡ ∷ []) "1Cor.15.56" ∷ word (ἁ ∷ μ ∷ α ∷ ρ ∷ τ ∷ ί ∷ α ∷ []) "1Cor.15.56" ∷ word (ἡ ∷ []) "1Cor.15.56" ∷ word (δ ∷ ὲ ∷ []) "1Cor.15.56" ∷ word (δ ∷ ύ ∷ ν ∷ α ∷ μ ∷ ι ∷ ς ∷ []) "1Cor.15.56" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "1Cor.15.56" ∷ word (ἁ ∷ μ ∷ α ∷ ρ ∷ τ ∷ ί ∷ α ∷ ς ∷ []) "1Cor.15.56" ∷ word (ὁ ∷ []) "1Cor.15.56" ∷ word (ν ∷ ό ∷ μ ∷ ο ∷ ς ∷ []) "1Cor.15.56" ∷ word (τ ∷ ῷ ∷ []) "1Cor.15.57" ∷ word (δ ∷ ὲ ∷ []) "1Cor.15.57" ∷ word (θ ∷ ε ∷ ῷ ∷ []) "1Cor.15.57" ∷ word (χ ∷ ά ∷ ρ ∷ ι ∷ ς ∷ []) "1Cor.15.57" ∷ word (τ ∷ ῷ ∷ []) "1Cor.15.57" ∷ word (δ ∷ ι ∷ δ ∷ ό ∷ ν ∷ τ ∷ ι ∷ []) "1Cor.15.57" ∷ word (ἡ ∷ μ ∷ ῖ ∷ ν ∷ []) "1Cor.15.57" ∷ word (τ ∷ ὸ ∷ []) "1Cor.15.57" ∷ word (ν ∷ ῖ ∷ κ ∷ ο ∷ ς ∷ []) "1Cor.15.57" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "1Cor.15.57" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.15.57" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "1Cor.15.57" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Cor.15.57" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "1Cor.15.57" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "1Cor.15.57" ∷ word (Ὥ ∷ σ ∷ τ ∷ ε ∷ []) "1Cor.15.58" ∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ο ∷ ί ∷ []) "1Cor.15.58" ∷ word (μ ∷ ο ∷ υ ∷ []) "1Cor.15.58" ∷ word (ἀ ∷ γ ∷ α ∷ π ∷ η ∷ τ ∷ ο ∷ ί ∷ []) "1Cor.15.58" ∷ word (ἑ ∷ δ ∷ ρ ∷ α ∷ ῖ ∷ ο ∷ ι ∷ []) "1Cor.15.58" ∷ word (γ ∷ ί ∷ ν ∷ ε ∷ σ ∷ θ ∷ ε ∷ []) "1Cor.15.58" ∷ word (ἀ ∷ μ ∷ ε ∷ τ ∷ α ∷ κ ∷ ί ∷ ν ∷ η ∷ τ ∷ ο ∷ ι ∷ []) "1Cor.15.58" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ σ ∷ σ ∷ ε ∷ ύ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "1Cor.15.58" ∷ word (ἐ ∷ ν ∷ []) "1Cor.15.58" ∷ word (τ ∷ ῷ ∷ []) "1Cor.15.58" ∷ word (ἔ ∷ ρ ∷ γ ∷ ῳ ∷ []) "1Cor.15.58" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.15.58" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "1Cor.15.58" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ο ∷ τ ∷ ε ∷ []) "1Cor.15.58" ∷ word (ε ∷ ἰ ∷ δ ∷ ό ∷ τ ∷ ε ∷ ς ∷ []) "1Cor.15.58" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "1Cor.15.58" ∷ word (ὁ ∷ []) "1Cor.15.58" ∷ word (κ ∷ ό ∷ π ∷ ο ∷ ς ∷ []) "1Cor.15.58" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Cor.15.58" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "1Cor.15.58" ∷ word (ἔ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "1Cor.15.58" ∷ word (κ ∷ ε ∷ ν ∷ ὸ ∷ ς ∷ []) "1Cor.15.58" ∷ word (ἐ ∷ ν ∷ []) "1Cor.15.58" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ῳ ∷ []) "1Cor.15.58" ∷ word (Π ∷ ε ∷ ρ ∷ ὶ ∷ []) "1Cor.16.1" ∷ word (δ ∷ ὲ ∷ []) "1Cor.16.1" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "1Cor.16.1" ∷ word (∙λ ∷ ο ∷ γ ∷ ε ∷ ί ∷ α ∷ ς ∷ []) "1Cor.16.1" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "1Cor.16.1" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "1Cor.16.1" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "1Cor.16.1" ∷ word (ἁ ∷ γ ∷ ί ∷ ο ∷ υ ∷ ς ∷ []) "1Cor.16.1" ∷ word (ὥ ∷ σ ∷ π ∷ ε ∷ ρ ∷ []) "1Cor.16.1" ∷ word (δ ∷ ι ∷ έ ∷ τ ∷ α ∷ ξ ∷ α ∷ []) "1Cor.16.1" ∷ word (τ ∷ α ∷ ῖ ∷ ς ∷ []) "1Cor.16.1" ∷ word (ἐ ∷ κ ∷ κ ∷ ∙λ ∷ η ∷ σ ∷ ί ∷ α ∷ ι ∷ ς ∷ []) "1Cor.16.1" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "1Cor.16.1" ∷ word (Γ ∷ α ∷ ∙λ ∷ α ∷ τ ∷ ί ∷ α ∷ ς ∷ []) "1Cor.16.1" ∷ word (ο ∷ ὕ ∷ τ ∷ ω ∷ ς ∷ []) "1Cor.16.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.16.1" ∷ word (ὑ ∷ μ ∷ ε ∷ ῖ ∷ ς ∷ []) "1Cor.16.1" ∷ word (π ∷ ο ∷ ι ∷ ή ∷ σ ∷ α ∷ τ ∷ ε ∷ []) "1Cor.16.1" ∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "1Cor.16.2" ∷ word (μ ∷ ί ∷ α ∷ ν ∷ []) "1Cor.16.2" ∷ word (σ ∷ α ∷ β ∷ β ∷ ά ∷ τ ∷ ο ∷ υ ∷ []) "1Cor.16.2" ∷ word (ἕ ∷ κ ∷ α ∷ σ ∷ τ ∷ ο ∷ ς ∷ []) "1Cor.16.2" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Cor.16.2" ∷ word (π ∷ α ∷ ρ ∷ []) "1Cor.16.2" ∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ῷ ∷ []) "1Cor.16.2" ∷ word (τ ∷ ι ∷ θ ∷ έ ∷ τ ∷ ω ∷ []) "1Cor.16.2" ∷ word (θ ∷ η ∷ σ ∷ α ∷ υ ∷ ρ ∷ ί ∷ ζ ∷ ω ∷ ν ∷ []) "1Cor.16.2" ∷ word (ὅ ∷ []) "1Cor.16.2" ∷ word (τ ∷ ι ∷ []) "1Cor.16.2" ∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "1Cor.16.2" ∷ word (ε ∷ ὐ ∷ ο ∷ δ ∷ ῶ ∷ τ ∷ α ∷ ι ∷ []) "1Cor.16.2" ∷ word (ἵ ∷ ν ∷ α ∷ []) "1Cor.16.2" ∷ word (μ ∷ ὴ ∷ []) "1Cor.16.2" ∷ word (ὅ ∷ τ ∷ α ∷ ν ∷ []) "1Cor.16.2" ∷ word (ἔ ∷ ∙λ ∷ θ ∷ ω ∷ []) "1Cor.16.2" ∷ word (τ ∷ ό ∷ τ ∷ ε ∷ []) "1Cor.16.2" ∷ word (∙λ ∷ ο ∷ γ ∷ ε ∷ ῖ ∷ α ∷ ι ∷ []) "1Cor.16.2" ∷ word (γ ∷ ί ∷ ν ∷ ω ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "1Cor.16.2" ∷ word (ὅ ∷ τ ∷ α ∷ ν ∷ []) "1Cor.16.3" ∷ word (δ ∷ ὲ ∷ []) "1Cor.16.3" ∷ word (π ∷ α ∷ ρ ∷ α ∷ γ ∷ έ ∷ ν ∷ ω ∷ μ ∷ α ∷ ι ∷ []) "1Cor.16.3" ∷ word (ο ∷ ὓ ∷ ς ∷ []) "1Cor.16.3" ∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "1Cor.16.3" ∷ word (δ ∷ ο ∷ κ ∷ ι ∷ μ ∷ ά ∷ σ ∷ η ∷ τ ∷ ε ∷ []) "1Cor.16.3" ∷ word (δ ∷ ι ∷ []) "1Cor.16.3" ∷ word (ἐ ∷ π ∷ ι ∷ σ ∷ τ ∷ ο ∷ ∙λ ∷ ῶ ∷ ν ∷ []) "1Cor.16.3" ∷ word (τ ∷ ο ∷ ύ ∷ τ ∷ ο ∷ υ ∷ ς ∷ []) "1Cor.16.3" ∷ word (π ∷ έ ∷ μ ∷ ψ ∷ ω ∷ []) "1Cor.16.3" ∷ word (ἀ ∷ π ∷ ε ∷ ν ∷ ε ∷ γ ∷ κ ∷ ε ∷ ῖ ∷ ν ∷ []) "1Cor.16.3" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "1Cor.16.3" ∷ word (χ ∷ ά ∷ ρ ∷ ι ∷ ν ∷ []) "1Cor.16.3" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Cor.16.3" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "1Cor.16.3" ∷ word (Ἰ ∷ ε ∷ ρ ∷ ο ∷ υ ∷ σ ∷ α ∷ ∙λ ∷ ή ∷ μ ∷ []) "1Cor.16.3" ∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "1Cor.16.4" ∷ word (δ ∷ ὲ ∷ []) "1Cor.16.4" ∷ word (ἄ ∷ ξ ∷ ι ∷ ο ∷ ν ∷ []) "1Cor.16.4" ∷ word (ᾖ ∷ []) "1Cor.16.4" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.16.4" ∷ word (κ ∷ ἀ ∷ μ ∷ ὲ ∷ []) "1Cor.16.4" ∷ word (π ∷ ο ∷ ρ ∷ ε ∷ ύ ∷ ε ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "1Cor.16.4" ∷ word (σ ∷ ὺ ∷ ν ∷ []) "1Cor.16.4" ∷ word (ἐ ∷ μ ∷ ο ∷ ὶ ∷ []) "1Cor.16.4" ∷ word (π ∷ ο ∷ ρ ∷ ε ∷ ύ ∷ σ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "1Cor.16.4" ∷ word (Ἐ ∷ ∙λ ∷ ε ∷ ύ ∷ σ ∷ ο ∷ μ ∷ α ∷ ι ∷ []) "1Cor.16.5" ∷ word (δ ∷ ὲ ∷ []) "1Cor.16.5" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "1Cor.16.5" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "1Cor.16.5" ∷ word (ὅ ∷ τ ∷ α ∷ ν ∷ []) "1Cor.16.5" ∷ word (Μ ∷ α ∷ κ ∷ ε ∷ δ ∷ ο ∷ ν ∷ ί ∷ α ∷ ν ∷ []) "1Cor.16.5" ∷ word (δ ∷ ι ∷ έ ∷ ∙λ ∷ θ ∷ ω ∷ []) "1Cor.16.5" ∷ word (Μ ∷ α ∷ κ ∷ ε ∷ δ ∷ ο ∷ ν ∷ ί ∷ α ∷ ν ∷ []) "1Cor.16.5" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "1Cor.16.5" ∷ word (δ ∷ ι ∷ έ ∷ ρ ∷ χ ∷ ο ∷ μ ∷ α ∷ ι ∷ []) "1Cor.16.5" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "1Cor.16.6" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "1Cor.16.6" ∷ word (δ ∷ ὲ ∷ []) "1Cor.16.6" ∷ word (τ ∷ υ ∷ χ ∷ ὸ ∷ ν ∷ []) "1Cor.16.6" ∷ word (π ∷ α ∷ ρ ∷ α ∷ μ ∷ ε ∷ ν ∷ ῶ ∷ []) "1Cor.16.6" ∷ word (ἢ ∷ []) "1Cor.16.6" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.16.6" ∷ word (π ∷ α ∷ ρ ∷ α ∷ χ ∷ ε ∷ ι ∷ μ ∷ ά ∷ σ ∷ ω ∷ []) "1Cor.16.6" ∷ word (ἵ ∷ ν ∷ α ∷ []) "1Cor.16.6" ∷ word (ὑ ∷ μ ∷ ε ∷ ῖ ∷ ς ∷ []) "1Cor.16.6" ∷ word (μ ∷ ε ∷ []) "1Cor.16.6" ∷ word (π ∷ ρ ∷ ο ∷ π ∷ έ ∷ μ ∷ ψ ∷ η ∷ τ ∷ ε ∷ []) "1Cor.16.6" ∷ word (ο ∷ ὗ ∷ []) "1Cor.16.6" ∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "1Cor.16.6" ∷ word (π ∷ ο ∷ ρ ∷ ε ∷ ύ ∷ ω ∷ μ ∷ α ∷ ι ∷ []) "1Cor.16.6" ∷ word (ο ∷ ὐ ∷ []) "1Cor.16.7" ∷ word (θ ∷ έ ∷ ∙λ ∷ ω ∷ []) "1Cor.16.7" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "1Cor.16.7" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "1Cor.16.7" ∷ word (ἄ ∷ ρ ∷ τ ∷ ι ∷ []) "1Cor.16.7" ∷ word (ἐ ∷ ν ∷ []) "1Cor.16.7" ∷ word (π ∷ α ∷ ρ ∷ ό ∷ δ ∷ ῳ ∷ []) "1Cor.16.7" ∷ word (ἰ ∷ δ ∷ ε ∷ ῖ ∷ ν ∷ []) "1Cor.16.7" ∷ word (ἐ ∷ ∙λ ∷ π ∷ ί ∷ ζ ∷ ω ∷ []) "1Cor.16.7" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "1Cor.16.7" ∷ word (χ ∷ ρ ∷ ό ∷ ν ∷ ο ∷ ν ∷ []) "1Cor.16.7" ∷ word (τ ∷ ι ∷ ν ∷ ὰ ∷ []) "1Cor.16.7" ∷ word (ἐ ∷ π ∷ ι ∷ μ ∷ ε ∷ ῖ ∷ ν ∷ α ∷ ι ∷ []) "1Cor.16.7" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "1Cor.16.7" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "1Cor.16.7" ∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "1Cor.16.7" ∷ word (ὁ ∷ []) "1Cor.16.7" ∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ς ∷ []) "1Cor.16.7" ∷ word (ἐ ∷ π ∷ ι ∷ τ ∷ ρ ∷ έ ∷ ψ ∷ ῃ ∷ []) "1Cor.16.7" ∷ word (ἐ ∷ π ∷ ι ∷ μ ∷ ε ∷ ν ∷ ῶ ∷ []) "1Cor.16.8" ∷ word (δ ∷ ὲ ∷ []) "1Cor.16.8" ∷ word (ἐ ∷ ν ∷ []) "1Cor.16.8" ∷ word (Ἐ ∷ φ ∷ έ ∷ σ ∷ ῳ ∷ []) "1Cor.16.8" ∷ word (ἕ ∷ ω ∷ ς ∷ []) "1Cor.16.8" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "1Cor.16.8" ∷ word (π ∷ ε ∷ ν ∷ τ ∷ η ∷ κ ∷ ο ∷ σ ∷ τ ∷ ῆ ∷ ς ∷ []) "1Cor.16.8" ∷ word (θ ∷ ύ ∷ ρ ∷ α ∷ []) "1Cor.16.9" ∷ word (γ ∷ ά ∷ ρ ∷ []) "1Cor.16.9" ∷ word (μ ∷ ο ∷ ι ∷ []) "1Cor.16.9" ∷ word (ἀ ∷ ν ∷ έ ∷ ῳ ∷ γ ∷ ε ∷ ν ∷ []) "1Cor.16.9" ∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ η ∷ []) "1Cor.16.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.16.9" ∷ word (ἐ ∷ ν ∷ ε ∷ ρ ∷ γ ∷ ή ∷ ς ∷ []) "1Cor.16.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.16.9" ∷ word (ἀ ∷ ν ∷ τ ∷ ι ∷ κ ∷ ε ∷ ί ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "1Cor.16.9" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ο ∷ ί ∷ []) "1Cor.16.9" ∷ word (Ἐ ∷ ὰ ∷ ν ∷ []) "1Cor.16.10" ∷ word (δ ∷ ὲ ∷ []) "1Cor.16.10" ∷ word (ἔ ∷ ∙λ ∷ θ ∷ ῃ ∷ []) "1Cor.16.10" ∷ word (Τ ∷ ι ∷ μ ∷ ό ∷ θ ∷ ε ∷ ο ∷ ς ∷ []) "1Cor.16.10" ∷ word (β ∷ ∙λ ∷ έ ∷ π ∷ ε ∷ τ ∷ ε ∷ []) "1Cor.16.10" ∷ word (ἵ ∷ ν ∷ α ∷ []) "1Cor.16.10" ∷ word (ἀ ∷ φ ∷ ό ∷ β ∷ ω ∷ ς ∷ []) "1Cor.16.10" ∷ word (γ ∷ έ ∷ ν ∷ η ∷ τ ∷ α ∷ ι ∷ []) "1Cor.16.10" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "1Cor.16.10" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "1Cor.16.10" ∷ word (τ ∷ ὸ ∷ []) "1Cor.16.10" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "1Cor.16.10" ∷ word (ἔ ∷ ρ ∷ γ ∷ ο ∷ ν ∷ []) "1Cor.16.10" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "1Cor.16.10" ∷ word (ἐ ∷ ρ ∷ γ ∷ ά ∷ ζ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "1Cor.16.10" ∷ word (ὡ ∷ ς ∷ []) "1Cor.16.10" ∷ word (κ ∷ ἀ ∷ γ ∷ ώ ∷ []) "1Cor.16.10" ∷ word (μ ∷ ή ∷ []) "1Cor.16.11" ∷ word (τ ∷ ι ∷ ς ∷ []) "1Cor.16.11" ∷ word (ο ∷ ὖ ∷ ν ∷ []) "1Cor.16.11" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "1Cor.16.11" ∷ word (ἐ ∷ ξ ∷ ο ∷ υ ∷ θ ∷ ε ∷ ν ∷ ή ∷ σ ∷ ῃ ∷ []) "1Cor.16.11" ∷ word (π ∷ ρ ∷ ο ∷ π ∷ έ ∷ μ ∷ ψ ∷ α ∷ τ ∷ ε ∷ []) "1Cor.16.11" ∷ word (δ ∷ ὲ ∷ []) "1Cor.16.11" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "1Cor.16.11" ∷ word (ἐ ∷ ν ∷ []) "1Cor.16.11" ∷ word (ε ∷ ἰ ∷ ρ ∷ ή ∷ ν ∷ ῃ ∷ []) "1Cor.16.11" ∷ word (ἵ ∷ ν ∷ α ∷ []) "1Cor.16.11" ∷ word (ἔ ∷ ∙λ ∷ θ ∷ ῃ ∷ []) "1Cor.16.11" ∷ word (π ∷ ρ ∷ ό ∷ ς ∷ []) "1Cor.16.11" ∷ word (μ ∷ ε ∷ []) "1Cor.16.11" ∷ word (ἐ ∷ κ ∷ δ ∷ έ ∷ χ ∷ ο ∷ μ ∷ α ∷ ι ∷ []) "1Cor.16.11" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "1Cor.16.11" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "1Cor.16.11" ∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "1Cor.16.11" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "1Cor.16.11" ∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ῶ ∷ ν ∷ []) "1Cor.16.11" ∷ word (Π ∷ ε ∷ ρ ∷ ὶ ∷ []) "1Cor.16.12" ∷ word (δ ∷ ὲ ∷ []) "1Cor.16.12" ∷ word (Ἀ ∷ π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ῶ ∷ []) "1Cor.16.12" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.16.12" ∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ο ∷ ῦ ∷ []) "1Cor.16.12" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "1Cor.16.12" ∷ word (π ∷ α ∷ ρ ∷ ε ∷ κ ∷ ά ∷ ∙λ ∷ ε ∷ σ ∷ α ∷ []) "1Cor.16.12" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "1Cor.16.12" ∷ word (ἵ ∷ ν ∷ α ∷ []) "1Cor.16.12" ∷ word (ἔ ∷ ∙λ ∷ θ ∷ ῃ ∷ []) "1Cor.16.12" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "1Cor.16.12" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "1Cor.16.12" ∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "1Cor.16.12" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "1Cor.16.12" ∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ῶ ∷ ν ∷ []) "1Cor.16.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.16.12" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ω ∷ ς ∷ []) "1Cor.16.12" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "1Cor.16.12" ∷ word (ἦ ∷ ν ∷ []) "1Cor.16.12" ∷ word (θ ∷ έ ∷ ∙λ ∷ η ∷ μ ∷ α ∷ []) "1Cor.16.12" ∷ word (ἵ ∷ ν ∷ α ∷ []) "1Cor.16.12" ∷ word (ν ∷ ῦ ∷ ν ∷ []) "1Cor.16.12" ∷ word (ἔ ∷ ∙λ ∷ θ ∷ ῃ ∷ []) "1Cor.16.12" ∷ word (ἐ ∷ ∙λ ∷ ε ∷ ύ ∷ σ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "1Cor.16.12" ∷ word (δ ∷ ὲ ∷ []) "1Cor.16.12" ∷ word (ὅ ∷ τ ∷ α ∷ ν ∷ []) "1Cor.16.12" ∷ word (ε ∷ ὐ ∷ κ ∷ α ∷ ι ∷ ρ ∷ ή ∷ σ ∷ ῃ ∷ []) "1Cor.16.12" ∷ word (Γ ∷ ρ ∷ η ∷ γ ∷ ο ∷ ρ ∷ ε ∷ ῖ ∷ τ ∷ ε ∷ []) "1Cor.16.13" ∷ word (σ ∷ τ ∷ ή ∷ κ ∷ ε ∷ τ ∷ ε ∷ []) "1Cor.16.13" ∷ word (ἐ ∷ ν ∷ []) "1Cor.16.13" ∷ word (τ ∷ ῇ ∷ []) "1Cor.16.13" ∷ word (π ∷ ί ∷ σ ∷ τ ∷ ε ∷ ι ∷ []) "1Cor.16.13" ∷ word (ἀ ∷ ν ∷ δ ∷ ρ ∷ ί ∷ ζ ∷ ε ∷ σ ∷ θ ∷ ε ∷ []) "1Cor.16.13" ∷ word (κ ∷ ρ ∷ α ∷ τ ∷ α ∷ ι ∷ ο ∷ ῦ ∷ σ ∷ θ ∷ ε ∷ []) "1Cor.16.13" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "1Cor.16.14" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Cor.16.14" ∷ word (ἐ ∷ ν ∷ []) "1Cor.16.14" ∷ word (ἀ ∷ γ ∷ ά ∷ π ∷ ῃ ∷ []) "1Cor.16.14" ∷ word (γ ∷ ι ∷ ν ∷ έ ∷ σ ∷ θ ∷ ω ∷ []) "1Cor.16.14" ∷ word (Π ∷ α ∷ ρ ∷ α ∷ κ ∷ α ∷ ∙λ ∷ ῶ ∷ []) "1Cor.16.15" ∷ word (δ ∷ ὲ ∷ []) "1Cor.16.15" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "1Cor.16.15" ∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ο ∷ ί ∷ []) "1Cor.16.15" ∷ word (ο ∷ ἴ ∷ δ ∷ α ∷ τ ∷ ε ∷ []) "1Cor.16.15" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "1Cor.16.15" ∷ word (ο ∷ ἰ ∷ κ ∷ ί ∷ α ∷ ν ∷ []) "1Cor.16.15" ∷ word (Σ ∷ τ ∷ ε ∷ φ ∷ α ∷ ν ∷ ᾶ ∷ []) "1Cor.16.15" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "1Cor.16.15" ∷ word (ἐ ∷ σ ∷ τ ∷ ὶ ∷ ν ∷ []) "1Cor.16.15" ∷ word (ἀ ∷ π ∷ α ∷ ρ ∷ χ ∷ ὴ ∷ []) "1Cor.16.15" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "1Cor.16.15" ∷ word (Ἀ ∷ χ ∷ α ∷ ΐ ∷ α ∷ ς ∷ []) "1Cor.16.15" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.16.15" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "1Cor.16.15" ∷ word (δ ∷ ι ∷ α ∷ κ ∷ ο ∷ ν ∷ ί ∷ α ∷ ν ∷ []) "1Cor.16.15" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "1Cor.16.15" ∷ word (ἁ ∷ γ ∷ ί ∷ ο ∷ ι ∷ ς ∷ []) "1Cor.16.15" ∷ word (ἔ ∷ τ ∷ α ∷ ξ ∷ α ∷ ν ∷ []) "1Cor.16.15" ∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ο ∷ ύ ∷ ς ∷ []) "1Cor.16.15" ∷ word (ἵ ∷ ν ∷ α ∷ []) "1Cor.16.16" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.16.16" ∷ word (ὑ ∷ μ ∷ ε ∷ ῖ ∷ ς ∷ []) "1Cor.16.16" ∷ word (ὑ ∷ π ∷ ο ∷ τ ∷ ά ∷ σ ∷ σ ∷ η ∷ σ ∷ θ ∷ ε ∷ []) "1Cor.16.16" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "1Cor.16.16" ∷ word (τ ∷ ο ∷ ι ∷ ο ∷ ύ ∷ τ ∷ ο ∷ ι ∷ ς ∷ []) "1Cor.16.16" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.16.16" ∷ word (π ∷ α ∷ ν ∷ τ ∷ ὶ ∷ []) "1Cor.16.16" ∷ word (τ ∷ ῷ ∷ []) "1Cor.16.16" ∷ word (σ ∷ υ ∷ ν ∷ ε ∷ ρ ∷ γ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ι ∷ []) "1Cor.16.16" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.16.16" ∷ word (κ ∷ ο ∷ π ∷ ι ∷ ῶ ∷ ν ∷ τ ∷ ι ∷ []) "1Cor.16.16" ∷ word (χ ∷ α ∷ ί ∷ ρ ∷ ω ∷ []) "1Cor.16.17" ∷ word (δ ∷ ὲ ∷ []) "1Cor.16.17" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "1Cor.16.17" ∷ word (τ ∷ ῇ ∷ []) "1Cor.16.17" ∷ word (π ∷ α ∷ ρ ∷ ο ∷ υ ∷ σ ∷ ί ∷ ᾳ ∷ []) "1Cor.16.17" ∷ word (Σ ∷ τ ∷ ε ∷ φ ∷ α ∷ ν ∷ ᾶ ∷ []) "1Cor.16.17" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.16.17" ∷ word (Φ ∷ ο ∷ ρ ∷ τ ∷ ο ∷ υ ∷ ν ∷ ά ∷ τ ∷ ο ∷ υ ∷ []) "1Cor.16.17" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.16.17" ∷ word (Ἀ ∷ χ ∷ α ∷ ϊ ∷ κ ∷ ο ∷ ῦ ∷ []) "1Cor.16.17" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "1Cor.16.17" ∷ word (τ ∷ ὸ ∷ []) "1Cor.16.17" ∷ word (ὑ ∷ μ ∷ έ ∷ τ ∷ ε ∷ ρ ∷ ο ∷ ν ∷ []) "1Cor.16.17" ∷ word (ὑ ∷ σ ∷ τ ∷ έ ∷ ρ ∷ η ∷ μ ∷ α ∷ []) "1Cor.16.17" ∷ word (ο ∷ ὗ ∷ τ ∷ ο ∷ ι ∷ []) "1Cor.16.17" ∷ word (ἀ ∷ ν ∷ ε ∷ π ∷ ∙λ ∷ ή ∷ ρ ∷ ω ∷ σ ∷ α ∷ ν ∷ []) "1Cor.16.17" ∷ word (ἀ ∷ ν ∷ έ ∷ π ∷ α ∷ υ ∷ σ ∷ α ∷ ν ∷ []) "1Cor.16.18" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "1Cor.16.18" ∷ word (τ ∷ ὸ ∷ []) "1Cor.16.18" ∷ word (ἐ ∷ μ ∷ ὸ ∷ ν ∷ []) "1Cor.16.18" ∷ word (π ∷ ν ∷ ε ∷ ῦ ∷ μ ∷ α ∷ []) "1Cor.16.18" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.16.18" ∷ word (τ ∷ ὸ ∷ []) "1Cor.16.18" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Cor.16.18" ∷ word (ἐ ∷ π ∷ ι ∷ γ ∷ ι ∷ ν ∷ ώ ∷ σ ∷ κ ∷ ε ∷ τ ∷ ε ∷ []) "1Cor.16.18" ∷ word (ο ∷ ὖ ∷ ν ∷ []) "1Cor.16.18" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "1Cor.16.18" ∷ word (τ ∷ ο ∷ ι ∷ ο ∷ ύ ∷ τ ∷ ο ∷ υ ∷ ς ∷ []) "1Cor.16.18" ∷ word (Ἀ ∷ σ ∷ π ∷ ά ∷ ζ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "1Cor.16.19" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "1Cor.16.19" ∷ word (α ∷ ἱ ∷ []) "1Cor.16.19" ∷ word (ἐ ∷ κ ∷ κ ∷ ∙λ ∷ η ∷ σ ∷ ί ∷ α ∷ ι ∷ []) "1Cor.16.19" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "1Cor.16.19" ∷ word (Ἀ ∷ σ ∷ ί ∷ α ∷ ς ∷ []) "1Cor.16.19" ∷ word (ἀ ∷ σ ∷ π ∷ ά ∷ ζ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "1Cor.16.19" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "1Cor.16.19" ∷ word (ἐ ∷ ν ∷ []) "1Cor.16.19" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ῳ ∷ []) "1Cor.16.19" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "1Cor.16.19" ∷ word (Ἀ ∷ κ ∷ ύ ∷ ∙λ ∷ α ∷ ς ∷ []) "1Cor.16.19" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.16.19" ∷ word (Π ∷ ρ ∷ ί ∷ σ ∷ κ ∷ α ∷ []) "1Cor.16.19" ∷ word (σ ∷ ὺ ∷ ν ∷ []) "1Cor.16.19" ∷ word (τ ∷ ῇ ∷ []) "1Cor.16.19" ∷ word (κ ∷ α ∷ τ ∷ []) "1Cor.16.19" ∷ word (ο ∷ ἶ ∷ κ ∷ ο ∷ ν ∷ []) "1Cor.16.19" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "1Cor.16.19" ∷ word (ἐ ∷ κ ∷ κ ∷ ∙λ ∷ η ∷ σ ∷ ί ∷ ᾳ ∷ []) "1Cor.16.19" ∷ word (ἀ ∷ σ ∷ π ∷ ά ∷ ζ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "1Cor.16.20" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "1Cor.16.20" ∷ word (ο ∷ ἱ ∷ []) "1Cor.16.20" ∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ο ∷ ὶ ∷ []) "1Cor.16.20" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "1Cor.16.20" ∷ word (ἀ ∷ σ ∷ π ∷ ά ∷ σ ∷ α ∷ σ ∷ θ ∷ ε ∷ []) "1Cor.16.20" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ή ∷ ∙λ ∷ ο ∷ υ ∷ ς ∷ []) "1Cor.16.20" ∷ word (ἐ ∷ ν ∷ []) "1Cor.16.20" ∷ word (φ ∷ ι ∷ ∙λ ∷ ή ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "1Cor.16.20" ∷ word (ἁ ∷ γ ∷ ί ∷ ῳ ∷ []) "1Cor.16.20" ∷ word (Ὁ ∷ []) "1Cor.16.21" ∷ word (ἀ ∷ σ ∷ π ∷ α ∷ σ ∷ μ ∷ ὸ ∷ ς ∷ []) "1Cor.16.21" ∷ word (τ ∷ ῇ ∷ []) "1Cor.16.21" ∷ word (ἐ ∷ μ ∷ ῇ ∷ []) "1Cor.16.21" ∷ word (χ ∷ ε ∷ ι ∷ ρ ∷ ὶ ∷ []) "1Cor.16.21" ∷ word (Π ∷ α ∷ ύ ∷ ∙λ ∷ ο ∷ υ ∷ []) "1Cor.16.21" ∷ word (ε ∷ ἴ ∷ []) "1Cor.16.22" ∷ word (τ ∷ ι ∷ ς ∷ []) "1Cor.16.22" ∷ word (ο ∷ ὐ ∷ []) "1Cor.16.22" ∷ word (φ ∷ ι ∷ ∙λ ∷ ε ∷ ῖ ∷ []) "1Cor.16.22" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "1Cor.16.22" ∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ν ∷ []) "1Cor.16.22" ∷ word (ἤ ∷ τ ∷ ω ∷ []) "1Cor.16.22" ∷ word (ἀ ∷ ν ∷ ά ∷ θ ∷ ε ∷ μ ∷ α ∷ []) "1Cor.16.22" ∷ word (Μ ∷ α ∷ ρ ∷ ά ∷ ν ∷ α ∷ []) "1Cor.16.22" ∷ word (θ ∷ ά ∷ []) "1Cor.16.22" ∷ word (ἡ ∷ []) "1Cor.16.23" ∷ word (χ ∷ ά ∷ ρ ∷ ι ∷ ς ∷ []) "1Cor.16.23" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.16.23" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "1Cor.16.23" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "1Cor.16.23" ∷ word (μ ∷ ε ∷ θ ∷ []) "1Cor.16.23" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Cor.16.23" ∷ word (ἡ ∷ []) "1Cor.16.24" ∷ word (ἀ ∷ γ ∷ ά ∷ π ∷ η ∷ []) "1Cor.16.24" ∷ word (μ ∷ ο ∷ υ ∷ []) "1Cor.16.24" ∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "1Cor.16.24" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "1Cor.16.24" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Cor.16.24" ∷ word (ἐ ∷ ν ∷ []) "1Cor.16.24" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ῷ ∷ []) "1Cor.16.24" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "1Cor.16.24" ∷ []
45.471933
86
0.351327
1c08b2d9fe68d84d5fb0fa1648c8c509ece8a357
6,067
agda
Agda
Agda/GTFL.agda
kellino/TypeSystems
acf5a153e14a7bdc0c9332fa602fa369fe7add46
[ "MIT" ]
2
2016-10-27T08:05:40.000Z
2017-05-26T23:06:17.000Z
Agda/GTFL.agda
kellino/TypeSystems
acf5a153e14a7bdc0c9332fa602fa369fe7add46
[ "MIT" ]
null
null
null
Agda/GTFL.agda
kellino/TypeSystems
acf5a153e14a7bdc0c9332fa602fa369fe7add46
[ "MIT" ]
null
null
null
module GTFL where open import Data.Nat hiding (_⊓_; erase; _≟_; _≤_) open import Data.Bool hiding (_≟_) open import Data.Fin using (Fin; zero; suc; toℕ) open import Data.Vec open import Relation.Binary.PropositionalEquality open import Relation.Nullary open import Data.Empty open import Function using (_∘_) -- | Types infixr 30 _⇒_ data GType : Set where nat : GType bool : GType _⇒_ : GType → GType → GType ✭ : GType err : GType -- easier to model this as a type in Agda -- | Untyped Expressions data Expr : Set where litNat : ℕ → Expr litBool : Bool → Expr dyn : Expr err : Expr var : ℕ → Expr lam : GType → Expr → Expr _∙_ : Expr → Expr → Expr _⊕_ : Expr → Expr → Expr if_thn_els_ : Expr → Expr → Expr → Expr Ctx : ℕ → Set Ctx = Vec GType infixr 10 _~_ data _~_ {A B : Set} (x : A) (y : B) : Set where cons : x ~ y ~dom : ∀ (t : GType) → GType ~dom (t ⇒ t₁) = t₁ ~dom _ = err ~cod : ∀ (t : GType) → GType ~cod (t ⇒ t₁) = t₁ ~cod _ = err _⊓_ : ∀ (t₁ t₂ : GType) → GType nat ⊓ nat = nat bool ⊓ bool = bool t₁ ⊓ ✭ = t₁ ✭ ⊓ t₂ = t₂ (t₁ ⇒ t₂) ⊓ (t₃ ⇒ t₄) = (t₁ ⊓ t₃) ⇒ (t₂ ⊓ t₄) _ ⊓ _ = err -- | Typed Terms data Term {n} (Γ : Ctx n) : GType → Set where Tx : ∀ {t} (v : Fin n) → t ≡ lookup v Γ → Term Γ t Tn : ℕ → Term Γ nat Tb : Bool → Term Γ bool Tdy : Term Γ ✭ _T∙_ : ∀ {t₁ t₂} → Term Γ t₁ → Term Γ t₂ → t₂ ~ (~dom t₁) → Term Γ (~cod t₁) _T⊕_ : ∀ {t₁ t₂} → Term Γ t₁ → Term Γ t₂ → (t₁ ~ nat) → (t₂ ~ nat) → Term Γ (t₁ ⊓ t₂) Tif : ∀ {t₁ t₂ t₃} → Term Γ t₁ → Term Γ t₂ → Term Γ t₃ → (t₁ ~ bool) → Term Γ (t₂ ⊓ t₃) Tlam : ∀ t₁ {t₂} → Term (t₁ ∷ Γ) t₂ → Term Γ (t₁ ⇒ t₂) erase : ∀ {n} {Γ : Ctx n} {t} → Term Γ t → Expr erase (Tx v x) = var (toℕ v) erase (Tn x) = litNat x erase (Tb x) = litBool x erase Tdy = dyn erase ((term T∙ term₁) _) = (erase term) ∙ (erase term₁) erase ((term T⊕ term₁) _ _) = (erase term) ⊕ (erase term₁) erase (Tif b tt ff _) = if erase b thn erase tt els erase ff erase (Tlam t₁ term) = lam t₁ (erase term) data Fromℕ (n : ℕ) : ℕ → Set where yes : (m : Fin n) → Fromℕ n (toℕ m) no : (m : ℕ) → Fromℕ n (n + m) fromℕ : ∀ n m → Fromℕ n m fromℕ zero m = no m fromℕ (suc n) zero = yes zero fromℕ (suc n) (suc m) with fromℕ n m fromℕ (suc n) (suc .(toℕ m)) | yes m = yes (suc m) fromℕ (suc n) (suc .(n + m)) | no m = no m data Check {n} (Γ : Ctx n) : Expr → Set where yes : (τ : GType) (t : Term Γ τ) → Check Γ (erase t) no : {e : Expr} → Check Γ e staticCheck : ∀ {n} (Γ : Ctx n) (t : Expr) → Check Γ t -- | primitives staticCheck Γ (litNat x) = yes nat (Tn x) staticCheck Γ (litBool x) = yes bool (Tb x) staticCheck {n} Γ dyn = yes ✭ Tdy staticCheck Γ err = no -- | var lookup staticCheck {n} Γ (var v) with fromℕ n v staticCheck {n} Γ (var .(toℕ m)) | yes m = yes (lookup m Γ) (Tx m refl) staticCheck {n} Γ (var .(n + m)) | no m = no -- | lambda abstraction staticCheck Γ (lam x t) with staticCheck (x ∷ Γ) t staticCheck Γ (lam x .(erase t)) | yes τ t = yes (x ⇒ τ) (Tlam x t) -- double check this staticCheck Γ (lam x t) | no = no -- | application staticCheck Γ (t₁ ∙ t₂) with staticCheck Γ t₁ | staticCheck Γ t₂ staticCheck Γ (.(erase t₁) ∙ .(erase t)) | yes (τ₁ ⇒ τ₂) t₁ | (yes τ t) = yes τ₂ ((t₁ T∙ t) cons) staticCheck Γ (.(erase t₁) ∙ .(erase t)) | yes _ t₁ | (yes τ t) = no -- not sure about this staticCheck Γ (t₁ ∙ t₂) | _ | _ = no -- | addition staticCheck Γ (t₁ ⊕ t₂) with staticCheck Γ t₁ | staticCheck Γ t₂ staticCheck Γ (.(erase t₁) ⊕ .(erase t)) | yes nat t₁ | (yes nat t) = yes nat ((t₁ T⊕ t) cons cons) staticCheck Γ (.(erase t₁) ⊕ .(erase t)) | yes ✭ t₁ | (yes nat t) = yes (✭ ⊓ nat) ((t₁ T⊕ t) cons cons) staticCheck Γ (.(erase t₁) ⊕ .(erase t)) | yes nat t₁ | (yes ✭ t) = yes (nat ⊓ ✭) ((t₁ T⊕ t) cons cons) staticCheck Γ (.(erase t₁) ⊕ .(erase t)) | yes ✭ t₁ | (yes ✭ t) = yes ✭ ((t₁ T⊕ t) cons cons) staticCheck Γ (t₁ ⊕ t₂) | _ | _ = no -- | if ... then ... else staticCheck Γ (if t thn t₁ els t₂) with staticCheck Γ t staticCheck Γ (if .(erase t) thn t₁ els t₂) | yes bool t with staticCheck Γ t₁ | staticCheck Γ t₂ staticCheck Γ (if .(erase t₂) thn .(erase t₁) els .(erase t)) | yes bool t₂ | (yes τ₁ t₁) | (yes τ₂ t) = yes (τ₁ ⊓ τ₂) (Tif t₂ t₁ t cons) staticCheck Γ (if .(erase t₁) thn .(erase t) els t₂) | yes bool t₁ | (yes τ t) | no = no staticCheck Γ (if .(erase t₂) thn t₁ els .(erase t)) | yes bool t₂ | no | (yes τ t) = no staticCheck Γ (if .(erase t) thn t₁ els t₂) | yes bool t | no | _ = no staticCheck Γ (if .(erase t) thn t₁ els t₂) | yes ✭ t with staticCheck Γ t₁ | staticCheck Γ t₂ staticCheck Γ (if .(erase t₂) thn .(erase t₁) els .(erase t)) | yes ✭ t₂ | (yes τ₁ t₁) | (yes τ₂ t) = yes (τ₁ ⊓ τ₂) (Tif t₂ t₁ t cons) staticCheck Γ (if .(erase t₁) thn .(erase t) els t₂) | yes ✭ t₁ | (yes τ t) | no = no staticCheck Γ (if .(erase t₂) thn t₁ els .(erase t)) | yes ✭ t₂ | no | (yes τ t) = no staticCheck Γ (if .(erase t) thn t₁ els t₂) | yes ✭ t | no | no = no staticCheck Γ (if .(erase t) thn t₁ els t₂) | yes _ t = no staticCheck Γ (if t thn t₁ els t₂) | no = no extractType : ∀ {n} {Γ : Ctx n} {t : Expr} → Check Γ t → GType extractType (yes τ t) = τ extractType no = err -- Type Precision data _⊑_ : GType → GType → Set where n⊑✭ : nat ⊑ ✭ b⊑✭ : bool ⊑ ✭ ⇒⊑ : ∀ (t₁ t₂ : GType) → (t₁ ⇒ t₂) ⊑ ✭ n⊑n : nat ⊑ nat b⊑b : bool ⊑ bool ✭⊑✭ : ✭ ⊑ ✭ app⊑ : ∀ (t₁ t₂ t₃ t₄ : GType) → t₁ ⊑ t₃ → t₂ ⊑ t₄ → (t₁ ⇒ t₃) ⊑ (t₃ ⇒ t₄) -- Term Precision data _≤_ : Expr → Expr → Set where n≤n : ∀ {n} → litNat n ≤ litNat n b≤b : ∀ {b} → litBool b ≤ litBool b n≤✭ : ∀ {n} → litNat n ≤ dyn b≤✭ : ∀ {b} → litBool b ≤ dyn d≤d : dyn ≤ dyn ssG : ∀ {n} {Γ : Ctx n} {e₁ e₂ : Expr} → e₁ ≤ e₂ → extractType (staticCheck Γ e₁) ⊑ extractType (staticCheck Γ e₂) ssG n≤n = n⊑n ssG b≤b = b⊑b ssG n≤✭ = n⊑✭ ssG b≤✭ = b⊑✭ ssG d≤d = ✭⊑✭
36.113095
137
0.54508
39e37311d24846dd264f6116a3a5e77d5800531f
259
agda
Agda
test/Fail/Issue444.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Fail/Issue444.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Fail/Issue444.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
-- 2011-09-09, submitted by mokus.4...@gmail.com -- This bug report wins the first price in the false golfing tournament! -- {-# OPTIONS -v term:20 #-} module Issue444 where data ⊥ : Set where relevant : .⊥ → ⊥ relevant () false : ⊥ false = relevant false
19.923077
72
0.671815
0b10affb613c36472ba055500b910fd1b473634e
1,416
agda
Agda
test/asset/agda-stdlib-1.0/Axiom/Extensionality/Heterogeneous.agda
omega12345/agda-mode
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
[ "MIT" ]
5
2020-10-07T12:07:53.000Z
2020-10-10T21:41:32.000Z
test/asset/agda-stdlib-1.0/Axiom/Extensionality/Heterogeneous.agda
omega12345/agda-mode
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
[ "MIT" ]
null
null
null
test/asset/agda-stdlib-1.0/Axiom/Extensionality/Heterogeneous.agda
omega12345/agda-mode
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
[ "MIT" ]
1
2021-11-04T06:54:45.000Z
2021-11-04T06:54:45.000Z
------------------------------------------------------------------------ -- The Agda standard library -- -- Results concerning function extensionality for propositional equality ------------------------------------------------------------------------ {-# OPTIONS --with-K --safe #-} module Axiom.Extensionality.Heterogeneous where import Axiom.Extensionality.Propositional as P open import Function open import Level open import Relation.Binary.HeterogeneousEquality.Core open import Relation.Binary.PropositionalEquality.Core ------------------------------------------------------------------------ -- Function extensionality states that if two functions are -- propositionally equal for every input, then the functions themselves -- must be propositionally equal. Extensionality : (a b : Level) → Set _ Extensionality a b = {A : Set a} {B₁ B₂ : A → Set b} {f₁ : (x : A) → B₁ x} {f₂ : (x : A) → B₂ x} → (∀ x → B₁ x ≡ B₂ x) → (∀ x → f₁ x ≅ f₂ x) → f₁ ≅ f₂ ------------------------------------------------------------------------ -- Properties -- This form of extensionality follows from extensionality for _≡_. ≡-ext⇒≅-ext : ∀ {ℓ₁ ℓ₂} → P.Extensionality ℓ₁ (suc ℓ₂) → Extensionality ℓ₁ ℓ₂ ≡-ext⇒≅-ext {ℓ₁} {ℓ₂} ext B₁≡B₂ f₁≅f₂ with ext B₁≡B₂ ... | refl = ≡-to-≅ $ ext′ (≅-to-≡ ∘ f₁≅f₂) where ext′ : P.Extensionality ℓ₁ ℓ₂ ext′ = P.lower-extensionality ℓ₁ (suc ℓ₂) ext
34.536585
72
0.535311
cbb00df6757be28a5eeaec0136fa219272accdc4
2,644
agda
Agda
examples/AIM6/Path/Lambda.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
examples/AIM6/Path/Lambda.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
examples/AIM6/Path/Lambda.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
module Lambda where open import Prelude open import Star open import Examples open import Modal -- Environments record TyAlg (ty : Set) : Set where field nat : ty _⟶_ : ty -> ty -> ty data Ty : Set where <nat> : Ty _<⟶>_ : Ty -> Ty -> Ty freeTyAlg : TyAlg Ty freeTyAlg = record { nat = <nat>; _⟶_ = _<⟶>_ } termTyAlg : TyAlg True termTyAlg = record { nat = _; _⟶_ = \_ _ -> _ } record TyArrow {ty₁ ty₂ : Set}(T₁ : TyAlg ty₁)(T₂ : TyAlg ty₂) : Set where field apply : ty₁ -> ty₂ respNat : apply (TyAlg.nat T₁) == TyAlg.nat T₂ resp⟶ : forall {τ₁ τ₂} -> apply (TyAlg._⟶_ T₁ τ₁ τ₂) == TyAlg._⟶_ T₂ (apply τ₁) (apply τ₂) _=Ty=>_ : {ty₁ ty₂ : Set}(T₁ : TyAlg ty₁)(T₂ : TyAlg ty₂) -> Set _=Ty=>_ = TyArrow !Ty : {ty : Set}{T : TyAlg ty} -> T =Ty=> termTyAlg !Ty = record { apply = ! ; respNat = refl ; resp⟶ = refl } Ctx : Set Ctx = List Ty Var : {ty : Set} -> List ty -> ty -> Set Var Γ τ = Any (_==_ τ) Γ vzero : {τ : Ty} {Γ : Ctx} -> Var (τ • Γ) τ vzero = done refl • ε vsuc : {σ τ : Ty} {Γ : Ctx} -> Var Γ τ -> Var (σ • Γ) τ vsuc v = step • v module Term {ty : Set}(T : TyAlg ty) where private open module TT = TyAlg T data Tm : List ty -> ty -> Set where var : forall {Γ τ} -> Var Γ τ -> Tm Γ τ zz : forall {Γ} -> Tm Γ nat ss : forall {Γ} -> Tm Γ (nat ⟶ nat) ƛ : forall {Γ σ τ} -> Tm (σ • Γ) τ -> Tm Γ (σ ⟶ τ) _$_ : forall {Γ σ τ} -> Tm Γ (σ ⟶ τ) -> Tm Γ σ -> Tm Γ τ module Eval where private open module TT = Term freeTyAlg ty⟦_⟧ : Ty -> Set ty⟦ <nat> ⟧ = Nat ty⟦ σ <⟶> τ ⟧ = ty⟦ σ ⟧ -> ty⟦ τ ⟧ Env : Ctx -> Set Env = All ty⟦_⟧ _[_] : forall {Γ τ} -> Env Γ -> Var Γ τ -> ty⟦ τ ⟧ ρ [ x ] with lookup x ρ ... | result _ refl v = v ⟦_⟧_ : forall {Γ τ} -> Tm Γ τ -> Env Γ -> ty⟦ τ ⟧ ⟦ var x ⟧ ρ = ρ [ x ] ⟦ zz ⟧ ρ = zero ⟦ ss ⟧ ρ = suc ⟦ ƛ t ⟧ ρ = \x -> ⟦ t ⟧ (check x • ρ) ⟦ s $ t ⟧ ρ = (⟦ s ⟧ ρ) (⟦ t ⟧ ρ) module MoreExamples where private open module TT = TyAlg freeTyAlg private open module Tm = Term freeTyAlg open Eval tm-one : Tm ε nat tm-one = ss $ zz tm-id : Tm ε (nat ⟶ nat) tm-id = ƛ (var (done refl • ε)) tm : Tm ε nat tm = tm-id $ tm-one tm-twice : Tm ε ((nat ⟶ nat) ⟶ (nat ⟶ nat)) tm-twice = ƛ (ƛ (f $ (f $ x))) where Γ : Ctx Γ = nat • (nat ⟶ nat) • ε f : Tm Γ (nat ⟶ nat) f = var (vsuc vzero) x : Tm Γ nat x = var vzero sem : {τ : Ty} -> Tm ε τ -> ty⟦ τ ⟧ sem e = ⟦ e ⟧ ε one : Nat one = sem tm twice : (Nat -> Nat) -> (Nat -> Nat) twice = sem tm-twice
22.40678
78
0.495461
0e76dd38ddd72aaf0d0117659386c518084820db
113
agda
Agda
Everything.agda
fangyi-zhou/mpst-in-agda
3d12eed9d340207d242d70f43c6b34e01d3620de
[ "MIT" ]
1
2021-08-14T17:36:53.000Z
2021-08-14T17:36:53.000Z
Everything.agda
fangyi-zhou/mpst-in-agda
3d12eed9d340207d242d70f43c6b34e01d3620de
[ "MIT" ]
1
2021-08-31T10:15:38.000Z
2021-11-24T11:30:17.000Z
Everything.agda
fangyi-zhou/mpst-in-agda
3d12eed9d340207d242d70f43c6b34e01d3620de
[ "MIT" ]
null
null
null
import Common import Global import Local import Projection import Soundness import Completeness import Example
11.3
19
0.858407
cbed1b585950c0077ef9ba8e39a52dec9741da31
9,678
agda
Agda
lib/Equivalences.agda
sattlerc/HoTT-Agda
c8fb8da3354fc9e0c430ac14160161759b4c5b37
[ "MIT" ]
null
null
null
lib/Equivalences.agda
sattlerc/HoTT-Agda
c8fb8da3354fc9e0c430ac14160161759b4c5b37
[ "MIT" ]
null
null
null
lib/Equivalences.agda
sattlerc/HoTT-Agda
c8fb8da3354fc9e0c430ac14160161759b4c5b37
[ "MIT" ]
null
null
null
{-# OPTIONS --without-K #-} open import lib.Base open import lib.PathGroupoid open import lib.PathFunctor open import lib.NType module lib.Equivalences where {- We use the half-adjoint definition of equivalences (but this fact should be invisible to the user of the library). The constructor of the type of equivalences is [equiv], it takes two maps and the two proofs that the composites are equal: [equiv to from to-from from-to] The type of equivalences between two types [A] and [B] can be written either [A ≃ B] or [Equiv A B]. Given an equivalence [e] : [A ≃ B], you can extract the two maps as follows: [–> e] : [A → B] and [<– e] : [B → A] (the dash is an en dash) The proofs that the composites are the identities are [<–-inv-l] and [<–-inv-r]. The identity equivalence on [A] is [ide A], the composition of two equivalences is [_∘e_] (function composition order) and the inverse of an equivalence is [_⁻¹] -} module _ {i} {j} {A : Type i} {B : Type j} where record is-equiv (f : A → B) : Type (lmax i j) where field g : B → A f-g : (b : B) → f (g b) == b g-f : (a : A) → g (f a) == a adj : (a : A) → ap f (g-f a) == f-g (f a) {- In order to prove that something is an equivalence, you have to give an inverse and a proof that it’s an inverse (you don’t need the adj part). [is-eq] is a very, very bad name. -} is-eq : (f : A → B) (g : B → A) (f-g : (b : B) → f (g b) == b) (g-f : (a : A) → g (f a) == a) → is-equiv f is-eq f g f-g g-f = record {g = g; f-g = f-g'; g-f = g-f; adj = adj} where f-g' : (b : B) → f (g b) == b f-g' b = ! (ap (f ∘ g) (f-g b)) ∙ ap f (g-f (g b)) ∙ f-g b adj : (a : A) → ap f (g-f a) == f-g' (f a) adj a = ap f (g-f a) =⟨ ! (!-inv-l (ap (f ∘ g) (f-g (f a)))) |in-ctx (λ q → q ∙ ap f (g-f a)) ⟩ (! (ap (f ∘ g) (f-g (f a))) ∙ ap (f ∘ g) (f-g (f a))) ∙ ap f (g-f a) =⟨ ∙-assoc (! (ap (f ∘ g) (f-g (f a)))) (ap (f ∘ g) (f-g (f a))) _ ⟩ ! (ap (f ∘ g) (f-g (f a))) ∙ ap (f ∘ g) (f-g (f a)) ∙ ap f (g-f a) =⟨ lemma |in-ctx (λ q → ! (ap (f ∘ g) (f-g (f a))) ∙ q) ⟩ ! (ap (f ∘ g) (f-g (f a))) ∙ ap f (g-f (g (f a))) ∙ f-g (f a) ∎ where lemma : ap (f ∘ g) (f-g (f a)) ∙ ap f (g-f a) == ap f (g-f (g (f a))) ∙ f-g (f a) lemma = ap (f ∘ g) (f-g (f a)) ∙ ap f (g-f a) =⟨ htpy-natural-toid f-g (f a) |in-ctx (λ q → q ∙ ap f (g-f a)) ⟩ f-g (f (g (f a))) ∙ ap f (g-f a) =⟨ ! (ap-idf (ap f (g-f a))) |in-ctx (λ q → f-g (f (g (f a))) ∙ q) ⟩ f-g (f (g (f a))) ∙ ap (idf B) (ap f (g-f a)) =⟨ ! (htpy-natural f-g (ap f (g-f a))) ⟩ ap (f ∘ g) (ap f (g-f a)) ∙ f-g (f a) =⟨ ap-∘ f g (ap f (g-f a)) |in-ctx (λ q → q ∙ f-g (f a)) ⟩ ap f (ap g (ap f (g-f a))) ∙ f-g (f a) =⟨ ∘-ap g f (g-f a) ∙ htpy-natural-toid g-f a |in-ctx (λ q → ap f q ∙ f-g (f a)) ⟩ ap f (g-f (g (f a))) ∙ f-g (f a) ∎ infix 4 _≃_ _≃_ : ∀ {i j} (A : Type i) (B : Type j) → Type (lmax i j) A ≃ B = Σ (A → B) is-equiv Equiv = _≃_ module _ {i} {j} {A : Type i} {B : Type j} where equiv : (f : A → B) (g : B → A) (f-g : (b : B) → f (g b) == b) (g-f : (a : A) → g (f a) == a) → A ≃ B equiv f g f-g g-f = (f , is-eq f g f-g g-f) –> : (e : A ≃ B) → (A → B) –> e = fst e <– : (e : A ≃ B) → (B → A) <– e = is-equiv.g (snd e) <–-inv-l : (e : A ≃ B) (a : A) → (<– e (–> e a) == a) <–-inv-l e a = is-equiv.g-f (snd e) a <–-inv-r : (e : A ≃ B) (b : B) → (–> e (<– e b) == b) <–-inv-r e b = is-equiv.f-g (snd e) b -- Equivalences are "injective" equiv-inj : (e : A ≃ B) {x y : A} → (–> e x == –> e y → x == y) equiv-inj e {x} {y} p = ! (<–-inv-l e x) ∙ ap (<– e) p ∙ <–-inv-l e y idf-is-equiv : ∀ {i} (A : Type i) → is-equiv (idf A) idf-is-equiv A = is-eq _ (idf A) (λ _ → idp) (λ _ → idp) ide : ∀ {i} (A : Type i) → A ≃ A ide A = equiv (idf A) (idf A) (λ _ → idp) (λ _ → idp) infixr 4 _∘e_ infixr 4 _∘ise_ _∘e_ : ∀ {i j k} {A : Type i} {B : Type j} {C : Type k} → B ≃ C → A ≃ B → A ≃ C e1 ∘e e2 = equiv (–> e1 ∘ –> e2) (<– e2 ∘ <– e1) (λ c → –> e1 (–> e2 (<– e2 (<– e1 c))) =⟨ <–-inv-r e2 (<– e1 c) |in-ctx (–> e1) ⟩ –> e1 (<– e1 c) =⟨ <–-inv-r e1 c ⟩ c ∎) (λ a → <– e2 (<– e1 (–> e1 (–> e2 a))) =⟨ <–-inv-l e1 (–> e2 a) |in-ctx (<– e2) ⟩ <– e2 (–> e2 a) =⟨ <–-inv-l e2 a ⟩ a ∎) _∘ise_ : ∀ {i j k} {A : Type i} {B : Type j} {C : Type k} {f : A → B} {g : B → C} → is-equiv g → is-equiv f → is-equiv (g ∘ f) i1 ∘ise i2 = snd ((_ , i1) ∘e (_ , i2)) _⁻¹ : ∀ {i j} {A : Type i} {B : Type j} → (A ≃ B) → (B ≃ A) e ⁻¹ = equiv (<– e) (–> e) (<–-inv-l e) (<–-inv-r e) {- Equational reasoning for equivalences -} infix 2 _≃∎ infixr 2 _≃⟨_⟩_ _≃⟨_⟩_ : ∀ {i j k} (A : Type i) {B : Type j} {C : Type k} → A ≃ B → B ≃ C → A ≃ C A ≃⟨ u ⟩ v = v ∘e u _≃∎ : ∀ {i} (A : Type i) → A ≃ A _≃∎ = ide {- lifting is an equivalence -} lift-equiv : ∀ {i j} {A : Type i} → Lift {j = j} A ≃ A lift-equiv = equiv lower lift (λ _ → idp) (λ _ → idp) {- Any contractible type is equivalent to (all liftings of) the unit type -} module _ {i} {A : Type i} (h : is-contr A) where contr-equiv-Unit : A ≃ Unit contr-equiv-Unit = equiv (λ _ → unit) (λ _ → fst h) (λ _ → idp) (snd h) contr-equiv-LiftUnit : ∀ {j} → A ≃ Lift {j = j} Unit contr-equiv-LiftUnit = lift-equiv ⁻¹ ∘e contr-equiv-Unit {- An equivalence induces an equivalence on the path spaces -} module _ {i j} {A : Type i} {B : Type j} (e : A ≃ B) where private abstract left-inverse : {x y : A} (p : x == y) → equiv-inj e (ap (–> e) p) == p left-inverse idp = !-inv-l (<–-inv-l e _) right-inverse : {x y : A} (p : –> e x == –> e y) → ap (–> e) (equiv-inj e p) == p right-inverse {x} {y} p = ap f (! (g-f x) ∙ ap g p ∙ (g-f y)) =⟨ ap-∙ f (! (g-f x)) (ap g p ∙ (g-f y)) ⟩ ap f (! (g-f x)) ∙ ap f (ap g p ∙ (g-f y)) =⟨ ap-∙ f (ap g p) (g-f y) |in-ctx (λ q → ap f (! (g-f x)) ∙ q) ⟩ ap f (! (g-f x)) ∙ ap f (ap g p) ∙ ap f (g-f y) =⟨ ∘-ap f g p |in-ctx (λ q → ap f (! (g-f x)) ∙ q ∙ ap f (g-f y)) ⟩ ap f (! (g-f x)) ∙ ap (f ∘ g) p ∙ ap f (g-f y) =⟨ adj y |in-ctx (λ q → ap f (! (g-f x)) ∙ ap (f ∘ g) p ∙ q) ⟩ ap f (! (g-f x)) ∙ ap (f ∘ g) p ∙ (f-g (f y)) =⟨ ap-! f (g-f x) |in-ctx (λ q → q ∙ ap (f ∘ g) p ∙ (f-g (f y))) ⟩ ! (ap f (g-f x)) ∙ ap (f ∘ g) p ∙ (f-g (f y)) =⟨ adj x |in-ctx (λ q → ! q ∙ ap (f ∘ g) p ∙ (f-g (f y))) ⟩ ! (f-g (f x)) ∙ ap (f ∘ g) p ∙ (f-g (f y)) =⟨ htpy-natural f-g p |in-ctx (λ q → ! (f-g (f x)) ∙ q) ⟩ ! (f-g (f x)) ∙ (f-g (f x)) ∙ ap (idf B) p =⟨ ! (∙-assoc (! (f-g (f x))) (f-g (f x)) (ap (idf B) p)) ∙ ap (λ q → q ∙ ap (idf B) p) (!-inv-l (f-g (f x))) ∙ ap-idf p ⟩ p ∎ where f : A → B f = fst e open is-equiv (snd e) equiv-ap : (x y : A) → (x == y) ≃ (–> e x == –> e y) equiv-ap x y = equiv (ap (–> e)) (equiv-inj e) right-inverse left-inverse {- Equivalent types have the same truncation level -} equiv-preserves-level : ∀ {i j} {A : Type i} {B : Type j} {n : ℕ₋₂} (e : A ≃ B) → (has-level n A → has-level n B) equiv-preserves-level {n = ⟨-2⟩} e (x , p) = (–> e x , (λ y → ap (–> e) (p _) ∙ <–-inv-r e y)) equiv-preserves-level {n = S n} e c = λ x y → equiv-preserves-level (equiv-ap (e ⁻¹) x y ⁻¹) (c (<– e x) (<– e y)) {- This is a collection of type equivalences involving basic type formers. We exclude Empty since Π₁-Empty requires λ=. -} module _ {j} {B : Unit → Type j} where Σ₁-Unit : Σ Unit B ≃ B unit Σ₁-Unit = equiv (λ {(unit , b) → b}) (λ b → (unit , b)) (λ _ → idp) (λ _ → idp) Π₁-Unit : Π Unit B ≃ B unit Π₁-Unit = equiv (λ f → f unit) (λ b _ → b) (λ _ → idp) (λ _ → idp) module _ {i} {A : Type i} where Σ₂-Unit : Σ A (λ _ → Unit) ≃ A Σ₂-Unit = equiv fst (λ a → (a , unit)) (λ _ → idp) (λ _ → idp) Π₂-Unit : Π A (λ _ → Unit) ≃ Unit Π₂-Unit = equiv (λ _ → unit) (λ _ _ → unit) (λ _ → idp) (λ _ → idp) module _ {i j k} {A : Type i} {B : A → Type j} {C : (a : A) → B a → Type k} where Σ-assoc : Σ (Σ A B) (uncurry C) ≃ Σ A (λ a → Σ (B a) (C a)) Σ-assoc = equiv (λ {((a , b) , c) → (a , (b , c))}) (λ {(a , (b , c)) → ((a , b) , c)}) (λ _ → idp) (λ _ → idp) curry-equiv : Π (Σ A B) (uncurry C) ≃ Π A (λ a → Π (B a) (C a)) curry-equiv = equiv curry uncurry (λ _ → idp) (λ _ → idp) {- The type-theoretic axiom of choice -} choice : Π A (λ a → Σ (B a) (λ b → C a b)) ≃ Σ (Π A B) (λ g → Π A (λ a → C a (g a))) choice = equiv f g (λ _ → idp) (λ _ → idp) where f = λ c → ((λ a → fst (c a)) , (λ a → snd (c a))) g = λ d → (λ a → (fst d a , snd d a)) {- Pre- and post- concatenation are equivalences -} module _ {i} {A : Type i} {x y z : A} where pre∙-is-equiv : (p : x == y) → is-equiv (λ (q : y == z) → p ∙ q) pre∙-is-equiv p = is-eq (λ q → p ∙ q) (λ r → ! p ∙ r) f-g g-f where f-g : ∀ r → p ∙ ! p ∙ r == r f-g r = ! (∙-assoc p (! p) r) ∙ ap (λ s → s ∙ r) (!-inv-r p) g-f : ∀ q → ! p ∙ p ∙ q == q g-f q = ! (∙-assoc (! p) p q) ∙ ap (λ s → s ∙ q) (!-inv-l p) post∙-is-equiv : (p : y == z) → is-equiv (λ (q : x == y) → q ∙ p) post∙-is-equiv p = is-eq (λ q → q ∙ p) (λ r → r ∙ ! p) f-g g-f where f-g : ∀ r → (r ∙ ! p) ∙ p == r f-g r = ∙-assoc r (! p) p ∙ ap (λ s → r ∙ s) (!-inv-l p) ∙ ∙-unit-r r g-f : ∀ q → (q ∙ p) ∙ ! p == q g-f q = ∙-assoc q p (! p) ∙ ap (λ s → q ∙ s) (!-inv-r p) ∙ ∙-unit-r q
37.804688
86
0.435937
c510fd50ecd34a8c867377889594335c9ed23f95
2,209
agda
Agda
notes/FOT/Common/FOL/Relation/Binary/PropositionalEquality/TypeTheory.agda
asr/fotc
2fc9f2b81052a2e0822669f02036c5750371b72d
[ "MIT" ]
11
2015-09-03T20:53:42.000Z
2021-09-12T16:09:54.000Z
notes/FOT/Common/FOL/Relation/Binary/PropositionalEquality/TypeTheory.agda
asr/fotc
2fc9f2b81052a2e0822669f02036c5750371b72d
[ "MIT" ]
2
2016-10-12T17:28:16.000Z
2017-01-01T14:34:26.000Z
notes/FOT/Common/FOL/Relation/Binary/PropositionalEquality/TypeTheory.agda
asr/fotc
2fc9f2b81052a2e0822669f02036c5750371b72d
[ "MIT" ]
3
2016-09-19T14:18:30.000Z
2018-03-14T08:50:00.000Z
------------------------------------------------------------------------------ -- Type theory: The identity type ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} -- We can prove the properties of equality used in the formalization -- of FOTC, from refl and J. module FOT.Common.FOL.Relation.Binary.PropositionalEquality.TypeTheory where infix 7 _≡_ postulate D : Set _≡_ : D → D → Set refl : ∀ {x} → x ≡ x module TypeTheory where -- Using the type-theoretic eliminator for equality. postulate J : (C : ∀ x y → x ≡ y → Set) → (∀ x → (C x x refl)) → ∀ x y → (c : x ≡ y) → C x y c -- From Thorsten's slides: A short history of equality. sym : ∀ {x y} → x ≡ y → y ≡ x sym {x} {y} = J (λ x' y' _ → y' ≡ x') (λ x' → refl) x y -- From Thorsten's slides: A short history of equality. trans : ∀ {x y z} → x ≡ y → y ≡ z → x ≡ z trans {x} {y} {z} = J (λ x' y' _ → y' ≡ z → x' ≡ z) (λ x' pr → pr) x y subst : (A : D → Set) → ∀ {x y} → x ≡ y → A x → A y subst A {x} {y} x≡y = J (λ x' y' _ → A x' → A y') (λ x' pr → pr) x y x≡y module FOL where -- Using the usual elimination schema for predicate logic. postulate J : (A : D → Set) → ∀ {x y} → x ≡ y → A x → A y sym : ∀ {x y} → x ≡ y → y ≡ x sym {x} {y} x≡y = J (λ y' → y' ≡ x) x≡y refl trans : ∀ {x y z} → x ≡ y → y ≡ z → x ≡ z trans {x} {y} {z} x≡y = J (λ y' → y' ≡ z → x ≡ z) x≡y (λ pr → pr) subst : (A : D → Set) → ∀ {x y} → x ≡ y → A x → A y subst = J module ML where -- Using Martin-Löf elimination ("Hauptsatz ...", 1971). postulate J : (C : D → D → Set) → (∀ x → (C x x)) → ∀ x y → x ≡ y → C x y sym : ∀ {x y} → x ≡ y → y ≡ x sym {x} {y} = J (λ x' y' → y' ≡ x') (λ x' → refl) x y trans : ∀ {x y z} → x ≡ y → y ≡ z → x ≡ z trans {x} {y} {z} = J (λ x' y' → y' ≡ z → x' ≡ z) (λ x' pr → pr) x y subst : (A : D → Set) → ∀ {x y} → x ≡ y → A x → A y subst A {x} {y} x≡y = J (λ x' y' → A x' → A y') (λ x' pr → pr) x y x≡y
30.680556
78
0.425985
0be547e5eecdd352d11eae6f8fddcac42d4fc6ef
115,257
agda
Agda
complexity/complexity-final/submit/Interp.agda
benhuds/Agda
2404a6ef2688f879bda89860bb22f77664ad813e
[ "MIT" ]
2
2016-04-26T20:22:22.000Z
2019-08-08T12:27:18.000Z
complexity/complexity-final/submit/Interp.agda
benhuds/Agda
2404a6ef2688f879bda89860bb22f77664ad813e
[ "MIT" ]
1
2020-03-23T08:39:04.000Z
2020-05-12T00:32:45.000Z
complexity/complexity-final/submit/Interp.agda
benhuds/Agda
2404a6ef2688f879bda89860bb22f77664ad813e
[ "MIT" ]
null
null
null
{- NEW INTERP WITHOUT RREC -} open import Preliminaries open import Preorder open import Complexity module Interp where -- interpret complexity types as preorders [_]t : CTp → PREORDER [ unit ]t = unit-p [ nat ]t = Nat , ♭nat-p [ τ ->c τ₁ ]t = [ τ ]t ->p [ τ₁ ]t [ τ ×c τ₁ ]t = [ τ ]t ×p [ τ₁ ]t [ list τ ]t = (List (fst [ τ ]t)) , list-p (snd [ τ ]t) [ bool ]t = Bool , bool-p [ C ]t = Nat , nat-p [ rnat ]t = Nat , nat-p [_]tm : ∀ {A} → CTpM A → Preorder-max-str (snd [ A ]t) [ runit ]tm = unit-pM [ rnat-max ]tm = nat-pM [ e ×cm e₁ ]tm = axb-pM [ e ]tm [ e₁ ]tm [ _->cm_ {τ1} e ]tm = mono-pM [ e ]tm -- interpret contexts as preorders [_]c : Ctx → PREORDER [ [] ]c = unit-p [ τ :: Γ ]c = [ Γ ]c ×p [ τ ]t lookup : ∀{Γ τ} → τ ∈ Γ → el ([ Γ ]c ->p [ τ ]t) lookup (i0 {Γ} {τ}) = snd' id lookup (iS {Γ} {τ} {τ1} x) = comp (fst' id) (lookup x) interpE : ∀{Γ τ} → Γ |- τ → el ([ Γ ]c ->p [ τ ]t) sound : ∀ {Γ τ} (e e' : Γ |- τ) → e ≤s e' → PREORDER≤ ([ Γ ]c ->p [ τ ]t) (interpE e) (interpE e') interpE unit = monotone (λ x → <>) (λ x y x₁ → <>) interpE 0C = monotone (λ x → Z) (λ x y x₁ → <>) interpE 1C = monotone (λ x → S Z) (λ x y x₁ → <>) interpE (plusC e e₁) = monotone (λ x → Monotone.f (interpE e) x + Monotone.f (interpE e₁) x) (λ x y x₁ → plus-lem (Monotone.f (interpE e) x) (Monotone.f (interpE e₁) x) (Monotone.f (interpE e) y) (Monotone.f (interpE e₁) y) (Monotone.is-monotone (interpE e) x y x₁) (Monotone.is-monotone (interpE e₁) x y x₁)) interpE (var x) = lookup x interpE z = monotone (λ x → Z) (λ x y x₁ → <>) interpE (s e) = monotone (λ x → S (Monotone.f (interpE e) x)) (λ x y x₁ → Monotone.is-monotone (interpE e) x y x₁) interpE {Γ} {τ} (rec e e₁ e₂) = comp (pair' id (interpE e)) (♭rec' (interpE e₁) (interpE e₂)) interpE (lam e) = lam' (interpE e) interpE (app e e₁) = app' (interpE e) (interpE e₁) interpE (prod e e₁) = pair' (interpE e) (interpE e₁) interpE (l-proj e) = fst' (interpE e) interpE (r-proj e) = snd' (interpE e) interpE nil = nil' interpE (e ::c e₁) = cons' (interpE e) (interpE e₁) interpE (listrec e e₁ e₂) = comp (pair' id (interpE e)) (lrec' (interpE e₁) (interpE e₂)) interpE true = monotone (λ x → True) (λ x y x₁ → <>) interpE false = monotone (λ x → False) (λ x y x₁ → <>) interpE (letc e e') = app' (lam' (interpE e)) (interpE e') interpE {Γ} {τ'} (max τ e1 e2) = monotone (λ x → Preorder-max-str.max [ τ ]tm (Monotone.f (interpE e1) x) (Monotone.f (interpE e2) x)) (λ x y x₁ → Preorder-max-str.max-lub [ τ ]tm (Preorder-max-str.max [ τ ]tm (Monotone.f (interpE e1) y) (Monotone.f (interpE e2) y)) (Monotone.f (interpE e1) x) (Monotone.f (interpE e2) x) (Preorder-str.trans (snd [ τ' ]t) (Monotone.f (interpE e1) x) (Monotone.f (interpE e1) y) (Preorder-max-str.max [ τ ]tm (Monotone.f (interpE e1) y) (Monotone.f (interpE e2) y)) (Monotone.is-monotone (interpE e1) x y x₁) (Preorder-max-str.max-l [ τ ]tm (Monotone.f (interpE e1) y) (Monotone.f (interpE e2) y))) (Preorder-str.trans (snd [ τ' ]t) (Monotone.f (interpE e2) x) (Monotone.f (interpE e2) y) (Preorder-max-str.max [ τ ]tm (Monotone.f (interpE e1) y) (Monotone.f (interpE e2) y)) (Monotone.is-monotone (interpE e2) x y x₁) (Preorder-max-str.max-r [ τ ]tm (Monotone.f (interpE e1) y) (Monotone.f (interpE e2) y)))) throw-r : ∀ {Γ Γ' τ} → rctx Γ (τ :: Γ') → rctx Γ Γ' throw-r d = λ x → d (iS x) interpR : ∀ {Γ Γ'} → rctx Γ Γ' → MONOTONE [ Γ ]c [ Γ' ]c interpR {Γ' = []} ρ = monotone (λ _ → <>) (λ x y x₁ → <>) interpR {Γ' = τ :: Γ'} ρ = monotone (λ x → (Monotone.f (interpR (throw-r ρ)) x) , (Monotone.f (lookup (ρ i0)) x)) (λ x y x₁ → (Monotone.is-monotone (interpR (throw-r ρ)) x y x₁) , (Monotone.is-monotone (lookup (ρ i0)) x y x₁)) throw-s : ∀ {Γ Γ' τ} → sctx Γ (τ :: Γ') → sctx Γ Γ' throw-s d = λ x → d (iS x) interpS : ∀ {Γ Γ'} → sctx Γ Γ' → el ([ Γ ]c ->p [ Γ' ]c) interpS {Γ' = []} Θ = monotone (λ _ → <>) (λ x y x₁ → <>) interpS {Γ' = τ :: Γ'} Θ = monotone (λ x → Monotone.f (interpS (throw-s Θ)) x , Monotone.f (interpE (Θ i0)) x) (λ x y x₁ → Monotone.is-monotone (interpS (throw-s Θ)) x y x₁ , (Monotone.is-monotone (interpE (Θ i0)) x y x₁)) ren-eq-l-lam : ∀ {Γ Γ' τ1} (ρ : rctx Γ Γ') (k : fst [ Γ ]c) (x : fst [ τ1 ]t) → Preorder-str.≤ (snd [ Γ' ]c) (Monotone.f (interpR (throw-r (r-extend {_} {_} {τ1} ρ))) (k , x)) (Monotone.f (interpR ρ) k) ren-eq-l-lam {Γ' = []} ρ k x = <> ren-eq-l-lam {Γ' = x :: Γ'} ρ k x₁ = (ren-eq-l-lam (throw-r ρ) k x₁) , (Preorder-str.refl (snd [ x ]t) (Monotone.f (lookup (ρ i0)) k)) ren-eq-l : ∀ {Γ Γ' τ} → (ρ : rctx Γ Γ') → (e : Γ' |- τ) → (k : fst [ Γ ]c) → Preorder-str.≤ (snd [ τ ]t) (Monotone.f (interpE (ren e ρ)) k) (Monotone.f (interpE e) (Monotone.f (interpR ρ) k)) ren-eq-l ρ unit k = <> ren-eq-l ρ 0C k = <> ren-eq-l ρ 1C k = <> ren-eq-l ρ (plusC e e₁) k = plus-lem (Monotone.f (interpE (ren e ρ)) k) (Monotone.f (interpE (ren e₁ ρ)) k) (Monotone.f (interpE e) (Monotone.f (interpR ρ) k)) (Monotone.f (interpE e₁) (Monotone.f (interpR ρ) k)) (ren-eq-l ρ e k) (ren-eq-l ρ e₁ k) ren-eq-l {τ = τ} ρ (var i0) k = Preorder-str.refl (snd [ τ ]t) (Monotone.f (lookup (ρ i0)) k) ren-eq-l {τ = τ} ρ (var (iS x)) k = ren-eq-l (throw-r ρ) (var x) k ren-eq-l ρ z k = <> ren-eq-l ρ (s e) k = ren-eq-l ρ e k ren-eq-l {Γ} {Γ'} {τ = τ} ρ (rec e e₁ e₂) k = Preorder-str.trans (snd [ τ ]t) (natrec (Monotone.f (interpE (ren e₁ ρ)) k) (λ n x₂ → Monotone.f (interpE (ren e₂ (r-extend (r-extend ρ)))) ((k , x₂) , n)) (Monotone.f (interpE (ren e ρ)) k)) (natrec (Monotone.f (interpE (ren e₁ ρ)) k) (λ n x₂ → Monotone.f (interpE (ren e₂ (r-extend (r-extend ρ)))) ((k , x₂) , n)) (Monotone.f (interpE e) (Monotone.f (interpR ρ) k))) (natrec (Monotone.f (interpE e₁) (Monotone.f (interpR ρ) k)) (λ n x₂ → Monotone.f (interpE e₂) ((Monotone.f (interpR ρ) k , x₂) , n)) (Monotone.f (interpE e) (Monotone.f (interpR ρ) k))) (♭h-fix-args (interpE (ren e₁ ρ)) (interpE (ren e₂ (r-extend (r-extend ρ)))) (k , (Monotone.f (interpE (ren e ρ)) k)) (k , (Monotone.f (interpE e) (Monotone.f (interpR ρ) k))) (ren-eq-l ρ e k)) (♭h-cong (interpE (ren e₁ ρ)) (monotone (λ v → Monotone.f (interpE e₁) (Monotone.f (interpR ρ) v)) (λ x y x₁ → Monotone.is-monotone (interpE e₁) (Monotone.f (interpR ρ) x) (Monotone.f (interpR ρ) y) (Monotone.is-monotone (interpR ρ) x y x₁))) (interpE (ren e₂ (r-extend (r-extend ρ)))) (monotone (λ v → Monotone.f (interpE e₂) ((Monotone.f (interpR ρ) (fst (fst v)) , snd (fst v)) , snd v)) (λ x y x₁ → Monotone.is-monotone (interpE e₂) ((Monotone.f (interpR ρ) (fst (fst x)) , snd (fst x)) , snd x) ((Monotone.f (interpR ρ) (fst (fst y)) , snd (fst y)) , snd y) (((Monotone.is-monotone (interpR ρ) (fst (fst x)) (fst (fst y)) (fst (fst x₁))) , (snd (fst x₁))) , (snd x₁)))) (k , (Monotone.f (interpE e) (Monotone.f (interpR ρ) k))) (λ x → ren-eq-l ρ e₁ x) (λ x → Preorder-str.trans (snd [ τ ]t) (Monotone.f (interpE (ren e₂ (r-extend (r-extend ρ)))) x) (Monotone.f (interpE e₂) (Monotone.f (interpR {nat :: τ :: Γ} {_ :: _ :: Γ'} (r-extend (r-extend ρ))) x)) (Monotone.f (interpE e₂) ((Monotone.f (interpR ρ) (fst (fst x)) , snd (fst x)) , snd x)) (ren-eq-l (r-extend (r-extend ρ)) e₂ x) (Monotone.is-monotone (interpE e₂) (Monotone.f (interpR {nat :: τ :: Γ} {_ :: _ :: Γ'} (r-extend (r-extend ρ))) x) ((Monotone.f (interpR ρ) (fst (fst x)) , snd (fst x)) , snd x) ((Preorder-str.trans (snd [ Γ' ]c) (Monotone.f (interpR (λ x₁ → iS (iS (ρ x₁)))) x) (Monotone.f (interpR {τ :: Γ} {Γ'} (throw-r (r-extend ρ))) (fst (fst x) , snd (fst x))) (Monotone.f (interpR ρ) (fst (fst x))) (ren-eq-l-lam {τ :: Γ} {Γ'} (throw-r (r-extend ρ)) (fst x) (snd x)) (ren-eq-l-lam ρ (fst (fst x)) (snd (fst x))) , (Preorder-str.refl (snd [ τ ]t) (snd (fst x)))) , (♭nat-refl (snd x)))))) ren-eq-l {Γ} {τ = τ1 ->c τ2} ρ (lam e) k x = Preorder-str.trans (snd [ τ2 ]t) (Monotone.f (Monotone.f (interpE (ren (lam e) ρ)) k) x) (Monotone.f (interpE e) (Monotone.f (interpR (r-extend {_} {_} {τ1} ρ)) (k , x))) (Monotone.f (interpE e) (Monotone.f (interpR ρ) k , x)) (ren-eq-l (r-extend ρ) e (k , x)) (Monotone.is-monotone (interpE e) (Monotone.f (interpR (r-extend {_} {_} {τ1} ρ)) (k , x)) (Monotone.f (interpR ρ) k , x) (ren-eq-l-lam ρ k x , (Preorder-str.refl (snd [ τ1 ]t) x))) ren-eq-l {Γ} {τ = τ} ρ (app e e₁) k = Preorder-str.trans (snd [ τ ]t) (Monotone.f (Monotone.f (interpE (ren e ρ)) k) (Monotone.f (interpE (ren e₁ ρ)) k)) (Monotone.f (Monotone.f (interpE (ren e ρ)) k) (Monotone.f (interpE e₁) (Monotone.f (interpR ρ) k))) (Monotone.f (Monotone.f (interpE e) (Monotone.f (interpR ρ) k)) (Monotone.f (interpE e₁) (Monotone.f (interpR ρ) k))) (Monotone.is-monotone (Monotone.f (interpE (ren e ρ)) k) (Monotone.f (interpE (ren e₁ ρ)) k) (Monotone.f (interpE e₁) (Monotone.f (interpR ρ) k)) (ren-eq-l ρ e₁ k)) (ren-eq-l ρ e k (Monotone.f (interpE e₁) (Monotone.f (interpR ρ) k))) ren-eq-l ρ (prod e e₁) k = (ren-eq-l ρ e k) , (ren-eq-l ρ e₁ k) ren-eq-l ρ (l-proj e) k = fst (ren-eq-l ρ e k) ren-eq-l ρ (r-proj e) k = snd (ren-eq-l ρ e k) ren-eq-l ρ nil k = <> ren-eq-l ρ (e ::c e₁) k = (ren-eq-l ρ e k) , (ren-eq-l ρ e₁ k) ren-eq-l {Γ} {Γ'} {τ = τ} ρ (listrec {.Γ'} {τ'} e e₁ e₂) k = Preorder-str.trans (snd [ τ ]t) (lrec (Monotone.f (interpE (ren e ρ)) k) (Monotone.f (interpE (ren e₁ ρ)) k) (λ x₁ x₂ x₃ → Monotone.f (interpE (ren e₂ (r-extend (r-extend (r-extend ρ))))) (((k , x₃) , x₂) , x₁))) (lrec (Monotone.f (interpE e) (Monotone.f (interpR ρ) k)) (Monotone.f (interpE (ren e₁ ρ)) k) (λ x₁ x₂ x₃ → Monotone.f (interpE (ren e₂ (r-extend (r-extend (r-extend ρ))))) (((k , x₃) , x₂) , x₁))) (lrec (Monotone.f (interpE e) (Monotone.f (interpR ρ) k)) (Monotone.f (interpE e₁) (Monotone.f (interpR ρ) k)) (λ x₁ x₂ x₃ → Monotone.f (interpE e₂) (((Monotone.f (interpR ρ) k , x₃) , x₂) , x₁))) (listrec-fix-args (interpE (ren e₁ ρ)) (interpE (ren e₂ (r-extend (r-extend (r-extend ρ))))) (k , (Monotone.f (interpE (ren e ρ)) k)) (k , (Monotone.f (interpE e) (Monotone.f (interpR ρ) k))) ((Preorder-str.refl (snd [ Γ ]c) k) , (ren-eq-l ρ e k))) (lrec-cong (interpE (ren e₁ ρ)) (monotone (λ k₁ → Monotone.f (interpE e₁) (Monotone.f (interpR ρ) k₁)) (λ x y x₁ → Monotone.is-monotone (interpE e₁) (Monotone.f (interpR ρ) x) (Monotone.f (interpR ρ) y) (Monotone.is-monotone (interpR ρ) x y x₁))) (interpE (ren e₂ (r-extend (r-extend (r-extend ρ))))) (monotone (λ x → Monotone.f (interpE e₂) ((((Monotone.f (interpR ρ) (fst (fst (fst x)))) , (snd (fst (fst x)))) , (snd (fst x))) , (snd x))) (λ x y x₁ → Monotone.is-monotone (interpE e₂) (((Monotone.f (interpR ρ) (fst (fst (fst x))) , snd (fst (fst x))) , snd (fst x)) , snd x) (((Monotone.f (interpR ρ) (fst (fst (fst y))) , snd (fst (fst y))) , snd (fst y)) , snd y) ((((Monotone.is-monotone (interpR ρ) (fst (fst (fst x))) (fst (fst (fst y))) (fst (fst (fst x₁)))) , (snd (fst (fst x₁)))) , (snd (fst x₁))) , (snd x₁)))) (k , (Monotone.f (interpE e) (Monotone.f (interpR ρ) k))) (λ x → ren-eq-l ρ e₁ x) (λ x → Preorder-str.trans (snd [ τ ]t) (Monotone.f (interpE (ren e₂ (r-extend (r-extend (r-extend ρ))))) x) (Monotone.f (interpE e₂) (Monotone.f (interpR {τ' :: list τ' :: τ :: Γ} {_ :: _ :: _ :: Γ'} (r-extend (r-extend (r-extend ρ)))) x)) (Monotone.f (interpE e₂) (((Monotone.f (interpR ρ) (fst (fst (fst x))) , snd (fst (fst x))) , snd (fst x)) , snd x)) (ren-eq-l (r-extend (r-extend (r-extend ρ))) e₂ x) (Monotone.is-monotone (interpE e₂) (Monotone.f (interpR {τ' :: list τ' :: τ :: Γ} {_ :: _ :: _ :: Γ'} (r-extend (r-extend (r-extend ρ)))) x) (((Monotone.f (interpR ρ) (fst (fst (fst x))) , snd (fst (fst x))) , snd (fst x)) , snd x) (((Preorder-str.trans (snd [ Γ' ]c) (Monotone.f (interpR (λ x₁ → iS (iS (iS (ρ x₁))))) x) (Monotone.f (interpR {τ :: Γ} {Γ'} (throw-r (r-extend ρ))) (fst (fst (fst x)) , snd (fst (fst x)))) (Monotone.f (interpR ρ) (fst (fst (fst x)))) (Preorder-str.trans (snd [ Γ' ]c) (Monotone.f (interpR (λ x₁ → iS (iS (iS (ρ x₁))))) x) (Monotone.f (interpR (λ x₁ → iS (iS (ρ x₁)))) (fst x)) (Monotone.f (interpR {τ :: Γ} {Γ'} (throw-r (r-extend ρ))) (fst (fst (fst x)) , snd (fst (fst x)))) (ren-eq-l-lam (λ x₁ → iS (iS (ρ x₁))) (fst x) (snd x)) (ren-eq-l-lam (λ x₁ → iS (ρ x₁)) (fst (fst x)) (snd (fst x)))) (ren-eq-l-lam ρ (fst (fst (fst x))) (snd (fst (fst x)))) , Preorder-str.refl (snd [ τ ]t) (snd (fst (fst x)))) , l-refl (snd [ τ' ]t) (snd (fst x))) , Preorder-str.refl (snd [ τ' ]t) (snd x))))) ren-eq-l ρ true k = <> ren-eq-l ρ false k = <> ren-eq-l {Γ} {Γ'} {τ = τ} ρ (letc {.Γ'} {ρ'} e e') k = Preorder-str.trans (snd [ τ ]t) (Monotone.f (interpE (ren e (r-extend ρ))) (k , Monotone.f (interpE (ren e' ρ)) k)) (Monotone.f (interpE e) (Monotone.f (interpR (r-extend {_} {_} {ρ'} ρ)) (k , Monotone.f (interpE (ren e' ρ)) k))) (Monotone.f (interpE e) (Monotone.f (interpR ρ) k , Monotone.f (interpE e') (Monotone.f (interpR ρ) k))) (ren-eq-l (r-extend ρ) e (k , Monotone.f (interpE (ren e' ρ)) k)) (Monotone.is-monotone (interpE e) (Monotone.f (interpR (r-extend {_} {_} {ρ'} ρ)) (k , Monotone.f (interpE (ren e' ρ)) k)) (Monotone.f (interpR ρ) k , Monotone.f (interpE e') (Monotone.f (interpR ρ) k)) (ren-eq-l-lam ρ k (Monotone.f (interpE (ren e' ρ)) k) , ren-eq-l ρ e' k)) ren-eq-l {τ = τ} ρ (max x e e₁) k = Preorder-max-str.max-lub [ x ]tm (Monotone.f (interpE (max x e e₁)) (Monotone.f (interpR ρ) k)) (Monotone.f (interpE (ren e ρ)) k) (Monotone.f (interpE (ren e₁ ρ)) k) (Preorder-str.trans (snd [ τ ]t) (Monotone.f (interpE (ren e ρ)) k) (Monotone.f (interpE e) (Monotone.f (interpR ρ) k)) (Monotone.f (interpE (max x e e₁)) (Monotone.f (interpR ρ) k)) (ren-eq-l ρ e k) (Preorder-max-str.max-l [ x ]tm (Monotone.f (interpE e) (Monotone.f (interpR ρ) k)) (Monotone.f (interpE e₁) (Monotone.f (interpR ρ) k)))) (Preorder-str.trans (snd [ τ ]t) (Monotone.f (interpE (ren e₁ ρ)) k) (Monotone.f (interpE e₁) (Monotone.f (interpR ρ) k)) (Monotone.f (interpE (max x e e₁)) (Monotone.f (interpR ρ) k)) (ren-eq-l ρ e₁ k) (Preorder-max-str.max-r [ x ]tm (Monotone.f (interpE e) (Monotone.f (interpR ρ) k)) (Monotone.f (interpE e₁) (Monotone.f (interpR ρ) k)))) ren-eq-r-lam : ∀ {Γ Γ' τ1} (ρ : rctx Γ Γ') (k : fst [ Γ ]c) (x : fst [ τ1 ]t) → Preorder-str.≤ (snd [ Γ' ]c) (Monotone.f (interpR ρ) k) (Monotone.f (interpR (throw-r (r-extend {_} {_} {τ1} ρ))) (k , x)) ren-eq-r-lam {Γ' = []} ρ k x = <> ren-eq-r-lam {Γ' = x :: Γ'} ρ k x₁ = (ren-eq-r-lam (throw-r ρ) k x₁) , (Preorder-str.refl (snd [ x ]t) (Monotone.f (lookup (ρ i0)) k)) ren-eq-r : ∀ {Γ Γ' τ} → (ρ : rctx Γ Γ') → (e : Γ' |- τ) → (k : fst [ Γ ]c) → Preorder-str.≤ (snd [ τ ]t) (Monotone.f (interpE e) (Monotone.f (interpR ρ) k)) (Monotone.f (interpE (ren e ρ)) k) ren-eq-r ρ unit k = <> ren-eq-r ρ 0C k = <> ren-eq-r ρ 1C k = <> ren-eq-r ρ (plusC e e₁) k = plus-lem (Monotone.f (interpE e) (Monotone.f (interpR ρ) k)) (Monotone.f (interpE e₁) (Monotone.f (interpR ρ) k)) (Monotone.f (interpE (ren e ρ)) k) (Monotone.f (interpE (ren e₁ ρ)) k) (ren-eq-r ρ e k) (ren-eq-r ρ e₁ k) ren-eq-r {τ = τ} ρ (var i0) k = Preorder-str.refl (snd [ τ ]t) (Monotone.f (lookup (ρ i0)) k) ren-eq-r {τ = τ} ρ (var (iS x)) k = ren-eq-r (throw-r ρ) (var x) k ren-eq-r ρ z k = <> ren-eq-r ρ (s e) k = ren-eq-r ρ e k ren-eq-r {Γ} {Γ'} {τ} ρ (rec e e₁ e₂) k = Preorder-str.trans (snd [ τ ]t) (natrec (Monotone.f (interpE e₁) (Monotone.f (interpR ρ) k)) (λ n x₂ → Monotone.f (interpE e₂) ((Monotone.f (interpR ρ) k , x₂) , n)) (Monotone.f (interpE e) (Monotone.f (interpR ρ) k))) (natrec (Monotone.f (interpE (ren e₁ ρ)) k) (λ n x₂ → Monotone.f (interpE (ren e₂ (r-extend (r-extend ρ)))) ((k , x₂) , n)) (Monotone.f (interpE e) (Monotone.f (interpR ρ) k))) (natrec (Monotone.f (interpE (ren e₁ ρ)) k) (λ n x₂ → Monotone.f (interpE (ren e₂ (r-extend (r-extend ρ)))) ((k , x₂) , n)) (Monotone.f (interpE (ren e ρ)) k)) (♭h-cong (monotone (λ v → Monotone.f (interpE e₁) (Monotone.f (interpR ρ) v)) (λ x y x₁ → Monotone.is-monotone (interpE e₁) (Monotone.f (interpR ρ) x) (Monotone.f (interpR ρ) y) (Monotone.is-monotone (interpR ρ) x y x₁))) (interpE (ren e₁ ρ)) (monotone (λ v → Monotone.f (interpE e₂) ((Monotone.f (interpR ρ) (fst (fst v)) , snd (fst v)) , snd v)) (λ x y x₁ → Monotone.is-monotone (interpE e₂) ((Monotone.f (interpR ρ) (fst (fst x)) , snd (fst x)) , snd x) ((Monotone.f (interpR ρ) (fst (fst y)) , snd (fst y)) , snd y) ((Monotone.is-monotone (interpR ρ) (fst (fst x)) (fst (fst y)) (fst (fst x₁)) , snd (fst x₁)) , snd x₁))) (interpE (ren e₂ (r-extend (r-extend ρ)))) (k , Monotone.f (interpE e) (Monotone.f (interpR ρ) k)) (λ x → ren-eq-r ρ e₁ x) (λ x → Preorder-str.trans (snd [ τ ]t) (Monotone.f (interpE e₂) ((Monotone.f (interpR ρ) (fst (fst x)) , snd (fst x)) , snd x)) (Monotone.f (interpE e₂) (Monotone.f (interpR {nat :: τ :: Γ} {_ :: _ :: Γ'} (r-extend (r-extend ρ))) x)) (Monotone.f (interpE (ren e₂ (r-extend (r-extend ρ)))) x) (Monotone.is-monotone (interpE e₂) ((Monotone.f (interpR ρ) (fst (fst x)) , snd (fst x)) , snd x) (Monotone.f (interpR {nat :: τ :: Γ} {_ :: _ :: Γ'} (r-extend (r-extend ρ))) x) (((Preorder-str.trans (snd [ Γ' ]c) (Monotone.f (interpR ρ) (fst (fst x))) (Monotone.f (interpR {τ :: Γ} {Γ'} (throw-r (r-extend ρ))) (fst (fst x) , snd (fst x))) (Monotone.f (interpR (λ x₁ → iS (iS (ρ x₁)))) x) (ren-eq-r-lam ρ (fst (fst x)) (snd (fst x))) (ren-eq-r-lam {τ :: Γ} {Γ'} (throw-r (r-extend ρ)) (fst x) (snd x))) , (Preorder-str.refl (snd [ τ ]t) (snd (fst x)))) , (♭nat-refl (snd x)))) (ren-eq-r (r-extend (r-extend ρ)) e₂ x))) (♭h-fix-args (interpE (ren e₁ ρ)) (interpE (ren e₂ (r-extend (r-extend ρ)))) (k , Monotone.f (interpE e) (Monotone.f (interpR ρ) k)) (k , Monotone.f (interpE (ren e ρ)) k) (ren-eq-r ρ e k)) ren-eq-r {Γ} {τ = τ1 ->c τ2} ρ (lam e) k x = Preorder-str.trans (snd [ τ2 ]t) (Monotone.f (interpE e) (Monotone.f (interpR ρ) k , x)) (Monotone.f (interpE e) (Monotone.f (interpR (r-extend {_} {_} {τ1} ρ)) (k , x))) (Monotone.f (Monotone.f (interpE (ren (lam e) ρ)) k) x) ((Monotone.is-monotone (interpE e) (Monotone.f (interpR ρ) k , x) (Monotone.f (interpR (r-extend {_} {_} {τ1} ρ)) (k , x)) (ren-eq-r-lam ρ k x , (Preorder-str.refl (snd [ τ1 ]t) x)))) (ren-eq-r (r-extend ρ) e (k , x)) ren-eq-r {Γ} {τ = τ} ρ (app e e₁) k = Preorder-str.trans (snd [ τ ]t) (Monotone.f (Monotone.f (interpE e) (Monotone.f (interpR ρ) k)) (Monotone.f (interpE e₁) (Monotone.f (interpR ρ) k))) (Monotone.f (Monotone.f (interpE (ren e ρ)) k) (Monotone.f (interpE e₁) (Monotone.f (interpR ρ) k))) (Monotone.f (Monotone.f (interpE (ren e ρ)) k) (Monotone.f (interpE (ren e₁ ρ)) k)) (ren-eq-r ρ e k (Monotone.f (interpE e₁) (Monotone.f (interpR ρ) k))) (Monotone.is-monotone (Monotone.f (interpE (ren e ρ)) k) (Monotone.f (interpE e₁) (Monotone.f (interpR ρ) k)) (Monotone.f (interpE (ren e₁ ρ)) k) (ren-eq-r ρ e₁ k)) ren-eq-r ρ (prod e e₁) k = (ren-eq-r ρ e k) , (ren-eq-r ρ e₁ k) ren-eq-r ρ (l-proj e) k = fst (ren-eq-r ρ e k) ren-eq-r ρ (r-proj e) k = snd (ren-eq-r ρ e k) ren-eq-r ρ nil k = <> ren-eq-r ρ (e ::c e₁) k = (ren-eq-r ρ e k) , (ren-eq-r ρ e₁ k) ren-eq-r {Γ} {Γ'} {τ} ρ (listrec {.Γ'} {τ'} e e₁ e₂) k = Preorder-str.trans (snd [ τ ]t) (lrec (Monotone.f (interpE e) (Monotone.f (interpR ρ) k)) (Monotone.f (interpE e₁) (Monotone.f (interpR ρ) k)) (λ x₁ x₂ x₃ → Monotone.f (interpE e₂) (((Monotone.f (interpR ρ) k , x₃) , x₂) , x₁))) (lrec (Monotone.f (interpE e) (Monotone.f (interpR ρ) k)) (Monotone.f (interpE (ren e₁ ρ)) k) (λ x₁ x₂ x₃ → Monotone.f (interpE (ren e₂ (r-extend (r-extend (r-extend ρ))))) (((k , x₃) , x₂) , x₁))) (lrec (Monotone.f (interpE (ren e ρ)) k) (Monotone.f (interpE (ren e₁ ρ)) k) (λ x₁ x₂ x₃ → Monotone.f (interpE (ren e₂ (r-extend (r-extend (r-extend ρ))))) (((k , x₃) , x₂) , x₁))) (lrec-cong (monotone (λ k₁ → Monotone.f (interpE e₁) (Monotone.f (interpR ρ) k₁)) (λ x y x₁ → Monotone.is-monotone (interpE e₁) (Monotone.f (interpR ρ) x) (Monotone.f (interpR ρ) y) (Monotone.is-monotone (interpR ρ) x y x₁))) (interpE (ren e₁ ρ)) (monotone (λ x → Monotone.f (interpE e₂) (((Monotone.f (interpR ρ) (fst (fst (fst x))) , snd (fst (fst x))) , snd (fst x)) , snd x)) (λ x y x₁ → Monotone.is-monotone (interpE e₂) (((Monotone.f (interpR ρ) (fst (fst (fst x))) , snd (fst (fst x))) , snd (fst x)) , snd x) (((Monotone.f (interpR ρ) (fst (fst (fst y))) , snd (fst (fst y))) , snd (fst y)) , snd y) (((Monotone.is-monotone (interpR ρ) (fst (fst (fst x))) (fst (fst (fst y))) (fst (fst (fst x₁))) , snd (fst (fst x₁))) , snd (fst x₁)) , snd x₁))) (interpE (ren e₂ (r-extend (r-extend (r-extend ρ))))) (k , (Monotone.f (interpE e) (Monotone.f (interpR ρ) k))) (λ x → ren-eq-r ρ e₁ x) (λ x → Preorder-str.trans (snd [ τ ]t) (Monotone.f (interpE e₂) (((Monotone.f (interpR ρ) (fst (fst (fst x))) , snd (fst (fst x))) , snd (fst x)) , snd x)) (Monotone.f (interpE e₂) (Monotone.f (interpR {τ' :: list τ' :: τ :: Γ} {_ :: _ :: _ :: Γ'} (r-extend (r-extend (r-extend ρ)))) x)) (Monotone.f (interpE (ren e₂ (r-extend (r-extend (r-extend ρ))))) x) (Monotone.is-monotone (interpE e₂) (((Monotone.f (interpR ρ) (fst (fst (fst x))) , snd (fst (fst x))) , snd (fst x)) , snd x) (Monotone.f (interpR {τ' :: list τ' :: τ :: Γ} {_ :: _ :: _ :: Γ'} (r-extend (r-extend (r-extend ρ)))) x) ((((Preorder-str.trans (snd [ Γ' ]c) (Monotone.f (interpR ρ) (fst (fst (fst x)))) (Monotone.f (interpR {τ :: Γ} {Γ'} (throw-r (r-extend ρ))) (fst (fst (fst x)) , snd (fst (fst x)))) (Monotone.f (interpR (λ x₁ → iS (iS (iS (ρ x₁))))) x) (ren-eq-r-lam ρ (fst (fst (fst x))) (snd (fst (fst x)))) (Preorder-str.trans (snd [ Γ' ]c) (Monotone.f (interpR {τ :: Γ} {Γ'} (throw-r (r-extend ρ))) (fst (fst (fst x)) , snd (fst (fst x)))) (Monotone.f (interpR (λ x₁ → iS (iS (ρ x₁)))) (fst x)) (Monotone.f (interpR (λ x₁ → iS (iS (iS (ρ x₁))))) x) (ren-eq-r-lam (λ x₁ → iS (ρ x₁)) (fst (fst x)) (snd (fst x))) (ren-eq-r-lam (λ x₁ → iS (iS (ρ x₁))) (fst x) (snd x)))) , (Preorder-str.refl (snd [ τ ]t) (snd (fst (fst x))))) , (l-refl (snd [ τ' ]t) (snd (fst x)))) , (Preorder-str.refl (snd [ τ' ]t) (snd x)))) (ren-eq-r (r-extend (r-extend (r-extend ρ))) e₂ x))) (listrec-fix-args (interpE (ren e₁ ρ)) (interpE (ren e₂ (r-extend (r-extend (r-extend ρ))))) (k , Monotone.f (interpE e) (Monotone.f (interpR ρ) k)) (k , Monotone.f (interpE (ren e ρ)) k) (Preorder-str.refl (snd [ Γ ]c) k , ren-eq-r ρ e k)) ren-eq-r ρ true k = <> ren-eq-r ρ false k = <> ren-eq-r {Γ} {Γ'} {τ = τ} ρ (letc {.Γ'} {ρ'} e e') k = Preorder-str.trans (snd [ τ ]t) (Monotone.f (interpE e) (Monotone.f (interpR ρ) k , Monotone.f (interpE e') (Monotone.f (interpR ρ) k))) (Monotone.f (interpE e) (Monotone.f (interpR (r-extend {_} {_} {ρ'} ρ)) (k , Monotone.f (interpE (ren e' ρ)) k))) (Monotone.f (interpE (ren e (r-extend ρ))) (k , Monotone.f (interpE (ren e' ρ)) k)) (Monotone.is-monotone (interpE e) (Monotone.f (interpR ρ) k , Monotone.f (interpE e') (Monotone.f (interpR ρ) k)) (Monotone.f (interpR (r-extend {_} {_} {ρ'} ρ)) (k , Monotone.f (interpE (ren e' ρ)) k)) (ren-eq-r-lam ρ k (Monotone.f (interpE (ren e' ρ)) k) , ren-eq-r ρ e' k)) (ren-eq-r (r-extend ρ) e (k , Monotone.f (interpE (ren e' ρ)) k)) ren-eq-r {τ = τ} ρ (max x e e₁) k = Preorder-max-str.max-lub [ x ]tm (Monotone.f (interpE (ren (max x e e₁) ρ)) k) (Monotone.f (interpE e) (Monotone.f (interpR ρ) k)) (Monotone.f (interpE e₁) (Monotone.f (interpR ρ) k)) (Preorder-str.trans (snd [ τ ]t) (Monotone.f (interpE e) (Monotone.f (interpR ρ) k)) (Monotone.f (interpE (ren e ρ)) k) (Monotone.f (interpE (ren (max x e e₁) ρ)) k) (ren-eq-r ρ e k) (Preorder-max-str.max-l [ x ]tm (Monotone.f (interpE (ren e ρ)) k) (Monotone.f (interpE (ren e₁ ρ)) k))) (Preorder-str.trans (snd [ τ ]t) (Monotone.f (interpE e₁) (Monotone.f (interpR ρ) k)) (Monotone.f (interpE (ren e₁ ρ)) k) (Monotone.f (interpE (ren (max x e e₁) ρ)) k) (ren-eq-r ρ e₁ k) (Preorder-max-str.max-r [ x ]tm (Monotone.f (interpE (ren e ρ)) k) (Monotone.f (interpE (ren e₁ ρ)) k))) ids-lem-l : ∀ {Γ} (k : fst [ Γ ]c) → Preorder-str.≤ (snd [ Γ ]c) (Monotone.f (interpR {Γ} {Γ} (λ x₂ → x₂)) k) k ids-lem-l {[]} k = <> ids-lem-l {x :: Γ} (k1 , k2) = (Preorder-str.trans (snd [ Γ ]c) (Monotone.f (interpR {x :: Γ} {Γ} (throw-r (λ x₂ → x₂))) (k1 , k2)) (Monotone.f (interpR {Γ} {Γ} (λ x₂ → x₂)) k1) k1 (ren-eq-l-lam {Γ} {Γ} (λ x₂ → x₂) k1 k2) (ids-lem-l {Γ} k1)) , (Preorder-str.refl (snd [ x ]t) k2) subst-eq-l-lam : ∀ {Γ Γ' τ1} (Θ : sctx Γ Γ') (k : fst [ Γ ]c) (x : fst [ τ1 ]t) → Preorder-str.≤ (snd [ Γ' ]c) (Monotone.f (interpS (throw-s (s-extend {_} {_} {τ1} Θ))) (k , x)) (Monotone.f (interpS Θ) k) subst-eq-l-lam {Γ' = []} Θ k x = <> subst-eq-l-lam {Γ} {Γ' = x :: Γ'} {τ1} Θ k x₁ = (subst-eq-l-lam (throw-s Θ) k x₁) , Preorder-str.trans (snd [ x ]t) (Monotone.f (interpE (ren (Θ i0) iS)) (k , x₁)) (Monotone.f (interpE (Θ i0)) (Monotone.f (interpR {τ1 :: Γ} {Γ} iS) (k , x₁))) (snd (Monotone.f (interpS Θ) k)) (ren-eq-l iS (Θ i0) (k , x₁)) (Monotone.is-monotone (interpE (Θ i0)) (Monotone.f (interpR {τ1 :: Γ} {Γ} iS) (k , x₁)) k (Preorder-str.trans (snd [ Γ ]c) (Monotone.f (interpR {τ1 :: Γ} {Γ} iS) (k , x₁)) (Monotone.f (interpR {Γ} {Γ} (λ x₂ → x₂)) k) k (ren-eq-l-lam {Γ} {Γ} (λ x₂ → x₂) k x₁) (ids-lem-l {Γ} k))) subst-eq-l : ∀ {Γ Γ' τ} → (Θ : sctx Γ Γ') → (e : Γ' |- τ) → (k : fst [ Γ ]c) → Preorder-str.≤ (snd [ τ ]t) (Monotone.f (interpE (subst e Θ)) k) (Monotone.f (interpE e) (Monotone.f (interpS Θ) k)) subst-eq-l Θ unit k = <> subst-eq-l Θ 0C k = <> subst-eq-l Θ 1C k = <> subst-eq-l Θ (plusC e e₁) k = plus-lem (Monotone.f (interpE (subst e Θ)) k) (Monotone.f (interpE (subst e₁ Θ)) k) (Monotone.f (interpE e) (Monotone.f (interpS Θ) k)) (Monotone.f (interpE e₁) (Monotone.f (interpS Θ) k)) (subst-eq-l Θ e k) (subst-eq-l Θ e₁ k) subst-eq-l {τ = τ} Θ (var i0) k = Preorder-str.refl (snd [ τ ]t) (Monotone.f (interpE (Θ i0)) k) subst-eq-l {τ = τ} Θ (var (iS x)) k = subst-eq-l (throw-s Θ) (var x) k subst-eq-l Θ z k = <> subst-eq-l Θ (s e) k = subst-eq-l Θ e k subst-eq-l {Γ} {Γ'} {τ} Θ (rec e e₁ e₂) k = Preorder-str.trans (snd [ τ ]t) (natrec (Monotone.f (interpE (subst e₁ Θ)) k) (λ n x₂ → Monotone.f (interpE (subst e₂ (s-extend (s-extend Θ)))) ((k , x₂) , n)) (Monotone.f (interpE (subst e Θ)) k)) (natrec (Monotone.f (interpE (subst e₁ Θ)) k) (λ n x₂ → Monotone.f (interpE (subst e₂ (s-extend (s-extend Θ)))) ((k , x₂) , n)) (Monotone.f (interpE e) (Monotone.f (interpS Θ) k))) (natrec (Monotone.f (interpE e₁) (Monotone.f (interpS Θ) k)) (λ n x₂ → Monotone.f (interpE e₂) ((Monotone.f (interpS Θ) k , x₂) , n)) (Monotone.f (interpE e) (Monotone.f (interpS Θ) k))) (♭h-fix-args (interpE (subst e₁ Θ)) (interpE (subst e₂ (s-extend (s-extend Θ)))) (k , Monotone.f (interpE (subst e Θ)) k) (k , Monotone.f (interpE e) (Monotone.f (interpS Θ) k)) (subst-eq-l Θ e k)) (♭h-cong (interpE (subst e₁ Θ)) (monotone (λ v → Monotone.f (interpE e₁) (Monotone.f (interpS Θ) v)) (λ x y x₁ → Monotone.is-monotone (interpE e₁) (Monotone.f (interpS Θ) x) (Monotone.f (interpS Θ) y) (Monotone.is-monotone (interpS Θ) x y x₁))) (interpE (subst e₂ (s-extend (s-extend Θ)))) (monotone (λ v → Monotone.f (interpE e₂) ((Monotone.f (interpS Θ) (fst (fst v)) , snd (fst v)) , snd v)) (λ x y x₁ → Monotone.is-monotone (interpE e₂) ((Monotone.f (interpS Θ) (fst (fst x)) , snd (fst x)) , snd x) ((Monotone.f (interpS Θ) (fst (fst y)) , snd (fst y)) , snd y) ((Monotone.is-monotone (interpS Θ) (fst (fst x)) (fst (fst y)) (fst (fst x₁)) , snd (fst x₁)) , snd x₁))) (k , Monotone.f (interpE e) (Monotone.f (interpS Θ) k)) (λ x → subst-eq-l Θ e₁ x) (λ x → Preorder-str.trans (snd [ τ ]t) (Monotone.f (interpE (subst e₂ (s-extend (s-extend Θ)))) x) (Monotone.f (interpE e₂) (Monotone.f (interpS {nat :: τ :: Γ} {_ :: _ :: Γ'} (s-extend (s-extend Θ))) x)) (Monotone.f (interpE e₂) ((Monotone.f (interpS Θ) (fst (fst x)) , snd (fst x)) , snd x)) (subst-eq-l (s-extend (s-extend Θ)) e₂ x) (Monotone.is-monotone (interpE e₂) (Monotone.f (interpS {nat :: τ :: Γ} {_ :: _ :: Γ'} (s-extend (s-extend Θ))) x) ((Monotone.f (interpS Θ) (fst (fst x)) , snd (fst x)) , snd x) (((Preorder-str.trans (snd [ Γ' ]c) (Monotone.f (interpS (λ x₁ → ren (ren (Θ x₁) iS) iS)) x) (Monotone.f (interpS (λ x₁ → ren (Θ x₁) iS)) (fst x)) (Monotone.f (interpS Θ) (fst (fst x))) (subst-eq-l-lam {τ :: Γ} {Γ'} (λ x₁ → ren (Θ x₁) iS) (fst x) (snd x)) (subst-eq-l-lam Θ (fst (fst x)) (snd (fst x)))) , (Preorder-str.refl (snd [ τ ]t) (snd (fst x)))) , (♭nat-refl (snd x)))))) subst-eq-l {Γ} {τ = τ1 ->c τ2} Θ (lam e) k x = Preorder-str.trans (snd [ τ2 ]t) (Monotone.f (Monotone.f (interpE (subst (lam e) Θ)) k) x) (Monotone.f (interpE e) (Monotone.f (interpS (s-extend {_} {_} {τ1} Θ)) (k , x))) (Monotone.f (interpE e) (Monotone.f (interpS Θ) k , x)) (subst-eq-l (s-extend Θ) e (k , x)) (Monotone.is-monotone (interpE e) (Monotone.f (interpS (s-extend {_} {_} {τ1} Θ)) (k , x)) (Monotone.f (interpS Θ) k , x) (subst-eq-l-lam Θ k x , (Preorder-str.refl (snd [ τ1 ]t) x))) subst-eq-l {Γ} {τ = τ} Θ (app e e₁) k = Preorder-str.trans (snd [ τ ]t) (Monotone.f (Monotone.f (interpE (subst e Θ)) k) (Monotone.f (interpE (subst e₁ Θ)) k)) (Monotone.f (Monotone.f (interpE (subst e Θ)) k) (Monotone.f (interpE e₁) (Monotone.f (interpS Θ) k))) (Monotone.f (Monotone.f (interpE e) (Monotone.f (interpS Θ) k)) (Monotone.f (interpE e₁) (Monotone.f (interpS Θ) k))) (Monotone.is-monotone (Monotone.f (interpE (subst e Θ)) k) (Monotone.f (interpE (subst e₁ Θ)) k) (Monotone.f (interpE e₁) (Monotone.f (interpS Θ) k)) (subst-eq-l Θ e₁ k)) (subst-eq-l Θ e k (Monotone.f (interpE e₁) (Monotone.f (interpS Θ) k))) subst-eq-l Θ (prod e e₁) k = (subst-eq-l Θ e k) , (subst-eq-l Θ e₁ k) subst-eq-l Θ (l-proj e) k = fst (subst-eq-l Θ e k) subst-eq-l Θ (r-proj e) k = snd (subst-eq-l Θ e k) subst-eq-l Θ nil k = <> subst-eq-l Θ (e ::c e₁) k = (subst-eq-l Θ e k) , (subst-eq-l Θ e₁ k) subst-eq-l {Γ} {Γ'} {τ} Θ (listrec {.Γ'} {τ'} e e₁ e₂) k = Preorder-str.trans (snd [ τ ]t) (lrec (Monotone.f (interpE (subst e Θ)) k) (Monotone.f (interpE (subst e₁ Θ)) k) (λ x₁ x₂ x₃ → Monotone.f (interpE (subst e₂ (s-extend (s-extend (s-extend Θ))))) (((k , x₃) , x₂) , x₁))) (lrec (Monotone.f (interpE e) (Monotone.f (interpS Θ) k)) (Monotone.f (interpE (subst e₁ Θ)) k) (λ x₁ x₂ x₃ → Monotone.f (interpE (subst e₂ (s-extend (s-extend (s-extend Θ))))) (((k , x₃) , x₂) , x₁))) (lrec (Monotone.f (interpE e) (Monotone.f (interpS Θ) k)) (Monotone.f (interpE e₁) (Monotone.f (interpS Θ) k)) (λ x₁ x₂ x₃ → Monotone.f (interpE e₂) (((Monotone.f (interpS Θ) k , x₃) , x₂) , x₁))) (listrec-fix-args (interpE (subst e₁ Θ)) (interpE (subst e₂ (s-extend (s-extend (s-extend Θ))))) (k , Monotone.f (interpE (subst e Θ)) k) (k , Monotone.f (interpE e) (Monotone.f (interpS Θ) k)) (Preorder-str.refl (snd [ Γ ]c) k , subst-eq-l Θ e k)) (lrec-cong (interpE (subst e₁ Θ)) (monotone (λ k₁ → Monotone.f (interpE e₁) (Monotone.f (interpS Θ) k₁)) (λ x y x₁ → Monotone.is-monotone (interpE e₁) (Monotone.f (interpS Θ) x) (Monotone.f (interpS Θ) y) (Monotone.is-monotone (interpS Θ) x y x₁))) (interpE (subst e₂ (s-extend (s-extend (s-extend Θ))))) (monotone (λ x → Monotone.f (interpE e₂) (((Monotone.f (interpS Θ) (fst (fst (fst x))) , snd (fst (fst x))) , snd (fst x)) , snd x)) (λ x y x₁ → Monotone.is-monotone (interpE e₂) (((Monotone.f (interpS Θ) (fst (fst (fst x))) , snd (fst (fst x))) , snd (fst x)) , snd x) (((Monotone.f (interpS Θ) (fst (fst (fst y))) , snd (fst (fst y))) , snd (fst y)) , snd y) (((Monotone.is-monotone (interpS Θ) (fst (fst (fst x))) (fst (fst (fst y))) (fst (fst (fst x₁))) , snd (fst (fst x₁))) , snd (fst x₁)) , snd x₁))) (k , Monotone.f (interpE e) (Monotone.f (interpS Θ) k)) (λ x → subst-eq-l Θ e₁ x) (λ x → Preorder-str.trans (snd [ τ ]t) (Monotone.f (interpE (subst e₂ (s-extend (s-extend (s-extend Θ))))) x) (Monotone.f (interpE e₂) (Monotone.f (interpS {τ' :: list τ' :: τ :: Γ} {_ :: _ :: _ :: Γ'} (s-extend (s-extend (s-extend Θ)))) x)) (Monotone.f (interpE e₂) (((Monotone.f (interpS Θ) (fst (fst (fst x))) , snd (fst (fst x))) , snd (fst x)) , snd x)) (subst-eq-l (s-extend (s-extend (s-extend Θ))) e₂ x) (Monotone.is-monotone (interpE e₂) (Monotone.f (interpS {τ' :: list τ' :: τ :: Γ} {_ :: _ :: _ :: Γ'} (s-extend (s-extend (s-extend Θ)))) x) (((Monotone.f (interpS Θ) (fst (fst (fst x))) , snd (fst (fst x))) , snd (fst x)) , snd x) ((((Preorder-str.trans (snd [ Γ' ]c) (Monotone.f (interpS (λ x₁ → ren (ren (ren (Θ x₁) iS) iS) iS)) x) (Monotone.f (interpS {τ :: Γ} {Γ'} (throw-s (s-extend Θ))) (fst (fst x))) (Monotone.f (interpS Θ) (fst (fst (fst x)))) (Preorder-str.trans (snd [ Γ' ]c) (Monotone.f (interpS (λ x₁ → ren (ren (ren (Θ x₁) iS) iS) iS)) x) (Monotone.f (interpS (λ x₁ → ren (ren (Θ x₁) iS) iS)) (fst x)) (Monotone.f (interpS {τ :: Γ} {Γ'} (throw-s (s-extend Θ))) (fst (fst x))) (subst-eq-l-lam (λ x₁ → ren (ren (Θ x₁) iS) iS) (fst x) (snd x)) (subst-eq-l-lam (λ x₁ → ren (Θ x₁) iS) (fst (fst x)) (snd (fst x)))) (subst-eq-l-lam {Γ} {Γ'} Θ (fst (fst (fst x))) (snd (fst (fst x))))) , (Preorder-str.refl (snd [ τ ]t) (snd (fst (fst x))))) , (l-refl (snd [ τ' ]t) (snd (fst x)))) , (Preorder-str.refl (snd [ τ' ]t) (snd x)))))) subst-eq-l Θ true k = <> subst-eq-l Θ false k = <> subst-eq-l {Γ} {Γ'} {τ = τ} Θ (letc {.Γ'} {ρ'} e e') k = Preorder-str.trans (snd [ τ ]t) (Monotone.f (interpE (subst e (s-extend Θ))) (k , Monotone.f (interpE (subst e' Θ)) k)) (Monotone.f (interpE e) (Monotone.f (interpS (s-extend {_} {_} {ρ'} Θ)) (k , Monotone.f (interpE (subst e' Θ)) k))) (Monotone.f (interpE e) (Monotone.f (interpS Θ) k , Monotone.f (interpE e') (Monotone.f (interpS Θ) k))) (subst-eq-l (s-extend Θ) e (k , Monotone.f (interpE (subst e' Θ)) k)) (Monotone.is-monotone (interpE e) (Monotone.f (interpS (s-extend {_} {_} {ρ'} Θ)) (k , Monotone.f (interpE (subst e' Θ)) k)) (Monotone.f (interpS Θ) k , Monotone.f (interpE e') (Monotone.f (interpS Θ) k)) ((subst-eq-l-lam Θ k (Monotone.f (interpE (subst e' Θ)) k)) , (subst-eq-l Θ e' k))) subst-eq-l {τ = τ} Θ (max x e e₁) k = Preorder-max-str.max-lub [ x ]tm (Monotone.f (interpE (max x e e₁)) (Monotone.f (interpS Θ) k)) (Monotone.f (interpE (subst e Θ)) k) (Monotone.f (interpE (subst e₁ Θ)) k) (Preorder-str.trans (snd [ τ ]t) (Monotone.f (interpE (subst e Θ)) k) (Monotone.f (interpE e) (Monotone.f (interpS Θ) k)) (Monotone.f (interpE (max x e e₁)) (Monotone.f (interpS Θ) k)) (subst-eq-l Θ e k) (Preorder-max-str.max-l [ x ]tm (Monotone.f (interpE e) (Monotone.f (interpS Θ) k)) (Monotone.f (interpE e₁) (Monotone.f (interpS Θ) k)))) (Preorder-str.trans (snd [ τ ]t) (Monotone.f (interpE (subst e₁ Θ)) k) (Monotone.f (interpE e₁) (Monotone.f (interpS Θ) k)) (Monotone.f (interpE (max x e e₁)) (Monotone.f (interpS Θ) k)) (subst-eq-l Θ e₁ k) (Preorder-max-str.max-r [ x ]tm (Monotone.f (interpE e) (Monotone.f (interpS Θ) k)) (Monotone.f (interpE e₁) (Monotone.f (interpS Θ) k)))) ids-lem-r : ∀ {Γ} (k : fst [ Γ ]c) → Preorder-str.≤ (snd [ Γ ]c) k (Monotone.f (interpR {Γ} {Γ} (λ x₂ → x₂)) k) ids-lem-r {[]} k = <> ids-lem-r {x :: Γ} (k1 , k2) = (Preorder-str.trans (snd [ Γ ]c) k1 (Monotone.f (interpR {Γ} {Γ} (λ x₂ → x₂)) k1) (Monotone.f (interpR {x :: Γ} {Γ} (throw-r (λ x₂ → x₂))) (k1 , k2)) (ids-lem-r {Γ} k1) (ren-eq-r-lam {Γ} {Γ} (λ x₂ → x₂) k1 k2)) , (Preorder-str.refl (snd [ x ]t) k2) subst-eq-r-lam : ∀ {Γ Γ' τ1} (Θ : sctx Γ Γ') (k : fst [ Γ ]c) (x : fst [ τ1 ]t) → Preorder-str.≤ (snd [ Γ' ]c) (Monotone.f (interpS Θ) k) (Monotone.f (interpS (throw-s (s-extend {_} {_} {τ1} Θ))) (k , x)) subst-eq-r-lam {Γ' = []} Θ k x = <> subst-eq-r-lam {Γ} {Γ' = x :: Γ'} {τ1} Θ k x₁ = (subst-eq-r-lam (throw-s Θ) k x₁) , Preorder-str.trans (snd [ x ]t) (snd (Monotone.f (interpS Θ) k)) (Monotone.f (interpE (Θ i0)) (Monotone.f (interpR {τ1 :: Γ} {Γ} iS) (k , x₁))) (Monotone.f (interpE (ren (Θ i0) iS)) (k , x₁)) (Monotone.is-monotone (interpE (Θ i0)) k (Monotone.f (interpR {τ1 :: Γ} {Γ} iS) (k , x₁)) (Preorder-str.trans (snd [ Γ ]c) k (Monotone.f (interpR {Γ} {Γ} (λ x₂ → x₂)) k) (Monotone.f (interpR {τ1 :: Γ} {Γ} iS) (k , x₁)) (ids-lem-r {Γ} k) (ren-eq-r-lam {Γ} {Γ} (λ x₂ → x₂) k x₁))) (ren-eq-r iS (Θ i0) (k , x₁)) subst-eq-r : ∀ {Γ Γ' τ} → (Θ : sctx Γ Γ') → (e : Γ' |- τ) → (k : fst [ Γ ]c) → Preorder-str.≤ (snd [ τ ]t) (Monotone.f (interpE e) (Monotone.f (interpS Θ) k)) (Monotone.f (interpE (subst e Θ)) k) subst-eq-r Θ unit k = <> subst-eq-r Θ 0C k = <> subst-eq-r Θ 1C k = <> subst-eq-r Θ (plusC e e₁) k = plus-lem (Monotone.f (interpE e) (Monotone.f (interpS Θ) k)) (Monotone.f (interpE e₁) (Monotone.f (interpS Θ) k)) (Monotone.f (interpE (subst e Θ)) k) (Monotone.f (interpE (subst e₁ Θ)) k) (subst-eq-r Θ e k) (subst-eq-r Θ e₁ k) subst-eq-r {τ = τ} Θ (var i0) k = Preorder-str.refl (snd [ τ ]t) (Monotone.f (interpE (Θ i0)) k) subst-eq-r {τ = τ} Θ (var (iS x)) k = subst-eq-r (throw-s Θ) (var x) k subst-eq-r Θ z k = <> subst-eq-r Θ (s e) k = subst-eq-r Θ e k subst-eq-r {Γ} {Γ'} {τ} Θ (rec e e₁ e₂) k = Preorder-str.trans (snd [ τ ]t) (natrec (Monotone.f (interpE e₁) (Monotone.f (interpS Θ) k)) (λ n x₂ → Monotone.f (interpE e₂) ((Monotone.f (interpS Θ) k , x₂) , n)) (Monotone.f (interpE e) (Monotone.f (interpS Θ) k))) (natrec (Monotone.f (interpE (subst e₁ Θ)) k) (λ n x₂ → Monotone.f (interpE (subst e₂ (s-extend (s-extend Θ)))) ((k , x₂) , n)) (Monotone.f (interpE e) (Monotone.f (interpS Θ) k))) (natrec (Monotone.f (interpE (subst e₁ Θ)) k) (λ n x₂ → Monotone.f (interpE (subst e₂ (s-extend (s-extend Θ)))) ((k , x₂) , n)) (Monotone.f (interpE (subst e Θ)) k)) (♭h-cong (monotone (λ v → Monotone.f (interpE e₁) (Monotone.f (interpS Θ) v)) (λ x y x₁ → Monotone.is-monotone (interpE e₁) (Monotone.f (interpS Θ) x) (Monotone.f (interpS Θ) y) (Monotone.is-monotone (interpS Θ) x y x₁))) (interpE (subst e₁ Θ)) (monotone (λ v → Monotone.f (interpE e₂) ((Monotone.f (interpS Θ) (fst (fst v)) , snd (fst v)) , snd v)) (λ x y x₁ → Monotone.is-monotone (interpE e₂) ((Monotone.f (interpS Θ) (fst (fst x)) , snd (fst x)) , snd x) ((Monotone.f (interpS Θ) (fst (fst y)) , snd (fst y)) , snd y) ((Monotone.is-monotone (interpS Θ) (fst (fst x)) (fst (fst y)) (fst (fst x₁)) , snd (fst x₁)) , snd x₁))) (interpE (subst e₂ (s-extend (s-extend Θ)))) (k , (Monotone.f (interpE e) (Monotone.f (interpS Θ) k))) (λ x → subst-eq-r Θ e₁ x) (λ x → Preorder-str.trans (snd [ τ ]t) (Monotone.f (interpE e₂) ((Monotone.f (interpS Θ) (fst (fst x)) , snd (fst x)) , snd x)) (Monotone.f (interpE e₂) (Monotone.f (interpS {nat :: τ :: Γ} {_ :: _ :: Γ'} (s-extend (s-extend Θ))) x)) (Monotone.f (interpE (subst e₂ (s-extend (s-extend Θ)))) x) (Monotone.is-monotone (interpE e₂) ((Monotone.f (interpS Θ) (fst (fst x)) , snd (fst x)) , snd x) (Monotone.f (interpS {nat :: τ :: Γ} {_ :: _ :: Γ'} (s-extend (s-extend Θ))) x) (((Preorder-str.trans (snd [ Γ' ]c) (Monotone.f (interpS Θ) (fst (fst x))) (Monotone.f (interpS (λ x₁ → ren (Θ x₁) iS)) (fst x)) (Monotone.f (interpS (λ x₁ → ren (ren (Θ x₁) iS) iS)) x) (subst-eq-r-lam Θ (fst (fst x)) (snd (fst x))) (subst-eq-r-lam {τ :: Γ} {Γ'} (λ x₁ → ren (Θ x₁) iS) (fst x) (snd x))) , (Preorder-str.refl (snd [ τ ]t) (snd (fst x)))) , (♭nat-refl (snd x)))) (subst-eq-r (s-extend (s-extend Θ)) e₂ x))) (♭h-fix-args (interpE (subst e₁ Θ)) (interpE (subst e₂ (s-extend (s-extend Θ)))) (k , Monotone.f (interpE e) (Monotone.f (interpS Θ) k)) (k , Monotone.f (interpE (subst e Θ)) k) (subst-eq-r Θ e k)) subst-eq-r {Γ} {τ = τ1 ->c τ2} Θ (lam e) k x = Preorder-str.trans (snd [ τ2 ]t) (Monotone.f (interpE e) (Monotone.f (interpS Θ) k , x)) (Monotone.f (interpE e) (Monotone.f (interpS (s-extend {_} {_} {τ1} Θ)) (k , x))) (Monotone.f (Monotone.f (interpE (subst (lam e) Θ)) k) x) ((Monotone.is-monotone (interpE e) (Monotone.f (interpS Θ) k , x) (Monotone.f (interpS (s-extend {_} {_} {τ1} Θ)) (k , x)) (subst-eq-r-lam Θ k x , (Preorder-str.refl (snd [ τ1 ]t) x)))) (subst-eq-r (s-extend Θ) e (k , x)) subst-eq-r {Γ} {τ = τ} Θ (app e e₁) k = Preorder-str.trans (snd [ τ ]t) (Monotone.f (Monotone.f (interpE e) (Monotone.f (interpS Θ) k)) (Monotone.f (interpE e₁) (Monotone.f (interpS Θ) k))) (Monotone.f (Monotone.f (interpE (subst e Θ)) k) (Monotone.f (interpE e₁) (Monotone.f (interpS Θ) k))) (Monotone.f (Monotone.f (interpE (subst e Θ)) k) (Monotone.f (interpE (subst e₁ Θ)) k)) (subst-eq-r Θ e k (Monotone.f (interpE e₁) (Monotone.f (interpS Θ) k))) (Monotone.is-monotone (Monotone.f (interpE (subst e Θ)) k) (Monotone.f (interpE e₁) (Monotone.f (interpS Θ) k)) (Monotone.f (interpE (subst e₁ Θ)) k) (subst-eq-r Θ e₁ k)) subst-eq-r Θ (prod e e₁) k = (subst-eq-r Θ e k) , (subst-eq-r Θ e₁ k) subst-eq-r Θ (l-proj e) k = fst (subst-eq-r Θ e k) subst-eq-r Θ (r-proj e) k = snd (subst-eq-r Θ e k) subst-eq-r Θ nil k = <> subst-eq-r Θ (e ::c e₁) k = (subst-eq-r Θ e k) , (subst-eq-r Θ e₁ k) subst-eq-r {Γ} {Γ'} {τ} Θ (listrec {.Γ'} {τ'} e e₁ e₂) k = Preorder-str.trans (snd [ τ ]t) (lrec (Monotone.f (interpE e) (Monotone.f (interpS Θ) k)) (Monotone.f (interpE e₁) (Monotone.f (interpS Θ) k)) (λ x₁ x₂ x₃ → Monotone.f (interpE e₂) (((Monotone.f (interpS Θ) k , x₃) , x₂) , x₁))) (lrec (Monotone.f (interpE e) (Monotone.f (interpS Θ) k)) (Monotone.f (interpE (subst e₁ Θ)) k) (λ x₁ x₂ x₃ → Monotone.f (interpE (subst e₂ (s-extend (s-extend (s-extend Θ))))) (((k , x₃) , x₂) , x₁))) (lrec (Monotone.f (interpE (subst e Θ)) k) (Monotone.f (interpE (subst e₁ Θ)) k) (λ x₁ x₂ x₃ → Monotone.f (interpE (subst e₂ (s-extend (s-extend (s-extend Θ))))) (((k , x₃) , x₂) , x₁))) (lrec-cong (monotone (λ k₁ → Monotone.f (interpE e₁) (Monotone.f (interpS Θ) k₁)) (λ x y x₁ → Monotone.is-monotone (interpE e₁) (Monotone.f (interpS Θ) x) (Monotone.f (interpS Θ) y) (Monotone.is-monotone (interpS Θ) x y x₁))) (interpE (subst e₁ Θ)) (monotone (λ x → Monotone.f (interpE e₂) (((Monotone.f (interpS Θ) (fst (fst (fst x))) , snd (fst (fst x))) , snd (fst x)) , snd x)) (λ x y x₁ → Monotone.is-monotone (interpE e₂) (((Monotone.f (interpS Θ) (fst (fst (fst x))) , snd (fst (fst x))) , snd (fst x)) , snd x) (((Monotone.f (interpS Θ) (fst (fst (fst y))) , snd (fst (fst y))) , snd (fst y)) , snd y) (((Monotone.is-monotone (interpS Θ) (fst (fst (fst x))) (fst (fst (fst y))) (fst (fst (fst x₁))) , snd (fst (fst x₁))) , snd (fst x₁)) , snd x₁))) (interpE (subst e₂ (s-extend (s-extend (s-extend Θ))))) (k , (Monotone.f (interpE e) (Monotone.f (interpS Θ) k))) (λ x → subst-eq-r Θ e₁ x) (λ x → Preorder-str.trans (snd [ τ ]t) (Monotone.f (interpE e₂) (((Monotone.f (interpS Θ) (fst (fst (fst x))) , snd (fst (fst x))) , snd (fst x)) , snd x)) (Monotone.f (interpE e₂) (Monotone.f (interpS {τ' :: list τ' :: τ :: Γ} {_ :: _ :: _ :: Γ'} (s-extend (s-extend (s-extend Θ)))) x)) (Monotone.f (interpE (subst e₂ (s-extend (s-extend (s-extend Θ))))) x) (Monotone.is-monotone (interpE e₂) (((Monotone.f (interpS Θ) (fst (fst (fst x))) , snd (fst (fst x))) , snd (fst x)) , snd x) (Monotone.f (interpS {τ' :: list τ' :: τ :: Γ} {_ :: _ :: _ :: Γ'} (s-extend (s-extend (s-extend Θ)))) x) ((((Preorder-str.trans (snd [ Γ' ]c) (Monotone.f (interpS Θ) (fst (fst (fst x)))) (Monotone.f (interpS {τ :: Γ} {Γ'} (throw-s (s-extend Θ))) (fst (fst x))) (Monotone.f (interpS (λ x₁ → ren (ren (ren (Θ x₁) iS) iS) iS)) x) (subst-eq-r-lam {Γ} {Γ'} Θ (fst (fst (fst x))) (snd (fst (fst x)))) (Preorder-str.trans (snd [ Γ' ]c) (Monotone.f (interpS {τ :: Γ} {Γ'} (throw-s (s-extend Θ))) (fst (fst x))) (Monotone.f (interpS (λ x₁ → ren (ren (Θ x₁) iS) iS)) (fst x)) (Monotone.f (interpS (λ x₁ → ren (ren (ren (Θ x₁) iS) iS) iS)) x) (subst-eq-r-lam (λ x₁ → ren (Θ x₁) iS) (fst (fst x)) (snd (fst x))) (subst-eq-r-lam (λ x₁ → ren (ren (Θ x₁) iS) iS) (fst x) (snd x)))) , (Preorder-str.refl (snd [ τ ]t) (snd (fst (fst x))))) , (l-refl (snd [ τ' ]t) (snd (fst x)))) , (Preorder-str.refl (snd [ τ' ]t) (snd x)))) (subst-eq-r (s-extend (s-extend (s-extend Θ))) e₂ x))) (listrec-fix-args (interpE (subst e₁ Θ)) (interpE (subst e₂ (s-extend (s-extend (s-extend Θ))))) (k , Monotone.f (interpE e) (Monotone.f (interpS Θ) k)) (k , Monotone.f (interpE (subst e Θ)) k) (Preorder-str.refl (snd [ Γ ]c) k , subst-eq-r Θ e k)) subst-eq-r Θ true k = <> subst-eq-r Θ false k = <> subst-eq-r {Γ} {Γ'} {τ = τ} Θ (letc {.Γ'} {ρ'} e e') k = Preorder-str.trans (snd [ τ ]t) (Monotone.f (interpE e) (Monotone.f (interpS Θ) k , Monotone.f (interpE e') (Monotone.f (interpS Θ) k))) (Monotone.f (interpE e) (Monotone.f (interpS (s-extend {_} {_} {ρ'} Θ)) (k , Monotone.f (interpE (subst e' Θ)) k))) (Monotone.f (interpE (subst e (s-extend Θ))) (k , Monotone.f (interpE (subst e' Θ)) k)) (Monotone.is-monotone (interpE e) (Monotone.f (interpS Θ) k , Monotone.f (interpE e') (Monotone.f (interpS Θ) k)) (Monotone.f (interpS (s-extend {_} {_} {ρ'} Θ)) (k , Monotone.f (interpE (subst e' Θ)) k)) ((subst-eq-r-lam Θ k (Monotone.f (interpE (subst e' Θ)) k)) , (subst-eq-r Θ e' k))) (subst-eq-r (s-extend Θ) e (k , Monotone.f (interpE (subst e' Θ)) k)) subst-eq-r {τ = τ} Θ (max x e e₁) k = Preorder-max-str.max-lub [ x ]tm (Monotone.f (interpE (subst (max x e e₁) Θ)) k) (Monotone.f (interpE e) (Monotone.f (interpS Θ) k)) (Monotone.f (interpE e₁) (Monotone.f (interpS Θ) k)) (Preorder-str.trans (snd [ τ ]t) (Monotone.f (interpE e) (Monotone.f (interpS Θ) k)) (Monotone.f (interpE (subst e Θ)) k) (Monotone.f (interpE (subst (max x e e₁) Θ)) k) (subst-eq-r Θ e k) (Preorder-max-str.max-l [ x ]tm (Monotone.f (interpE (subst e Θ)) k) (Monotone.f (interpE (subst e₁ Θ)) k))) (Preorder-str.trans (snd [ τ ]t) (Monotone.f (interpE e₁) (Monotone.f (interpS Θ) k)) (Monotone.f (interpE (subst e₁ Θ)) k) (Monotone.f (interpE (subst (max x e e₁) Θ)) k) (subst-eq-r Θ e₁ k) (Preorder-max-str.max-r [ x ]tm (Monotone.f (interpE (subst e Θ)) k) (Monotone.f (interpE (subst e₁ Θ)) k))) interp-rr-l : ∀ {Γ Γ' Γ''} (ρ1 : rctx Γ Γ') (ρ2 : rctx Γ' Γ'') (k : fst [ Γ ]c) → Preorder-str.≤ (snd [ Γ'' ]c) (Monotone.f (interpR ρ2) (Monotone.f (interpR ρ1) k)) (Monotone.f (interpR (λ x → ρ1 (ρ2 x))) k) interp-rr-l {Γ'' = []} ρ1 ρ2 k = <> interp-rr-l {Γ'' = x :: Γ''} ρ1 ρ2 k = (interp-rr-l ρ1 (throw-r ρ2) k) , (ren-eq-r ρ1 (var (ρ2 i0)) k) interp-rr-r : ∀ {Γ Γ' Γ''} (ρ1 : rctx Γ Γ') (ρ2 : rctx Γ' Γ'') (k : fst [ Γ ]c) → Preorder-str.≤ (snd [ Γ'' ]c) (Monotone.f (interpR (λ x → ρ1 (ρ2 x))) k) (Monotone.f (interpR ρ2) (Monotone.f (interpR ρ1) k)) interp-rr-r {Γ'' = []} ρ1 ρ2 k = <> interp-rr-r {Γ'' = x :: Γ''} ρ1 ρ2 k = (interp-rr-r ρ1 (throw-r ρ2) k) , (ren-eq-l ρ1 (var (ρ2 i0)) k) interp-rs-l : ∀ {Γ Γ' Γ''} (ρ : rctx Γ Γ') (Θ : sctx Γ' Γ'') (k : fst [ Γ ]c) → Preorder-str.≤ (snd [ Γ'' ]c) (Monotone.f (interpS Θ) (Monotone.f (interpR ρ) k)) (Monotone.f (interpS (λ x → ren (Θ x) ρ)) k) interp-rs-l {Γ'' = []} ρ Θ k = <> interp-rs-l {Γ'' = x :: Γ''} ρ Θ k = (interp-rs-l ρ (throw-s Θ) k) , (ren-eq-r ρ (Θ i0) k) interp-rs-r : ∀ {Γ Γ' Γ''} (ρ : rctx Γ Γ') (Θ : sctx Γ' Γ'') (k : fst [ Γ ]c) → Preorder-str.≤ (snd [ Γ'' ]c) (Monotone.f (interpS (λ x → ren (Θ x) ρ)) k) (Monotone.f (interpS Θ) (Monotone.f (interpR ρ) k)) interp-rs-r {Γ'' = []} ρ Θ k = <> interp-rs-r {Γ'' = x :: Γ''} ρ Θ k = (interp-rs-r ρ (throw-s Θ) k) , (ren-eq-l ρ (Θ i0) k) interp-sr-l : ∀ {Γ Γ' Γ''} (Θ : sctx Γ Γ') (ρ : rctx Γ' Γ'') (k : fst [ Γ ]c) → Preorder-str.≤ (snd [ Γ'' ]c) (Monotone.f (interpR ρ) (Monotone.f (interpS Θ) k)) (Monotone.f (interpS (λ x → Θ (ρ x))) k) interp-sr-l {Γ'' = []} Θ ρ k = <> interp-sr-l {Γ'' = x :: Γ''} Θ ρ k = (interp-sr-l Θ (throw-r ρ) k) , (subst-eq-r Θ (var (ρ i0)) k) interp-sr-r : ∀ {Γ Γ' Γ''} (Θ : sctx Γ Γ') (ρ : rctx Γ' Γ'') (k : fst [ Γ ]c) → Preorder-str.≤ (snd [ Γ'' ]c) (Monotone.f (interpS (λ x → Θ (ρ x))) k) (Monotone.f (interpR ρ) (Monotone.f (interpS Θ) k)) interp-sr-r {Γ'' = []} Θ ρ k = <> interp-sr-r {Γ'' = x :: Γ''} Θ ρ k = (interp-sr-r Θ (throw-r ρ) k) , (subst-eq-l Θ (var (ρ i0)) k) interp-ss-l : ∀ {Γ Γ' Γ''} (Θ1 : sctx Γ Γ') (Θ2 : sctx Γ' Γ'') (k : fst [ Γ ]c) → Preorder-str.≤ (snd [ Γ'' ]c) (Monotone.f (interpS (λ x → subst (Θ2 x) Θ1)) k) (Monotone.f (interpS Θ2) (Monotone.f (interpS Θ1) k)) interp-ss-l {Γ'' = []} Θ1 Θ2 k = <> interp-ss-l {Γ'' = x :: Γ''} Θ1 Θ2 k = (interp-ss-l Θ1 (throw-s Θ2) k) , (subst-eq-l Θ1 (Θ2 i0) k) interp-ss-r : ∀ {Γ Γ' Γ''} (Θ1 : sctx Γ Γ') (Θ2 : sctx Γ' Γ'') (k : fst [ Γ ]c) → Preorder-str.≤ (snd [ Γ'' ]c) (Monotone.f (interpS Θ2) (Monotone.f (interpS Θ1) k)) (Monotone.f (interpS (λ x → subst (Θ2 x) Θ1)) k) interp-ss-r {Γ'' = []} Θ1 Θ2 k = <> interp-ss-r {Γ'' = x :: Γ''} Θ1 Θ2 k = (interp-ss-r Θ1 (throw-s Θ2) k) , (subst-eq-r Θ1 (Θ2 i0) k) lam-s-lem : ∀ {Γ} (k : fst [ Γ ]c) → Preorder-str.≤ (snd [ Γ ]c) (Monotone.f (interpS {Γ} {Γ} ids) k) k lam-s-lem {[]} k = <> lam-s-lem {x :: Γ} (k1 , k2) = (Preorder-str.trans (snd [ Γ ]c) (Monotone.f (interpS {x :: Γ} {Γ} (throw-s ids)) (k1 , k2)) (Monotone.f (interpS {Γ} {Γ} ids) k1) k1 (subst-eq-l-lam {Γ} {Γ} ids k1 (Monotone.f (interpE {x :: Γ} {x} (ids i0)) (k1 , k2))) (lam-s-lem {Γ} k1)) , (Preorder-str.refl (snd [ x ]t) k2) lam-s-lem-r : ∀ {Γ} (k : fst [ Γ ]c) → Preorder-str.≤ (snd [ Γ ]c) k (Monotone.f (interpS {Γ} {Γ} ids) k) lam-s-lem-r {[]} k = <> lam-s-lem-r {x :: Γ} (k1 , k2) = (Preorder-str.trans (snd [ Γ ]c) k1 (Monotone.f (interpS {Γ} {Γ} ids) k1) (Monotone.f (interpS {x :: Γ} {Γ} (throw-s ids)) (k1 , k2)) (lam-s-lem-r {Γ} k1) (subst-eq-r-lam {Γ} {Γ} ids k1 (Monotone.f (interpE {x :: Γ} {x} (ids i0)) (k1 , k2)))) , (Preorder-str.refl (snd [ x ]t) k2) interp-subst-comp-l : ∀ {Γ Γ' τ'} (Θ : sctx Γ Γ') (v : Γ |- τ') (k : fst [ Γ ]c) → Preorder-str.≤ (snd [ Γ' ]c) (Monotone.f (interpS (λ x → subst (ren (Θ x) iS) (lem3' ids v))) k) (Monotone.f (interpS (λ x → Θ x)) k) interp-subst-comp-l {Γ' = []} Θ v k = <> interp-subst-comp-l {Γ} {Γ' = x :: Γ'} {τ'} Θ v k = (interp-subst-comp-l (throw-s Θ) v k) , (Preorder-str.trans (snd [ x ]t) (Monotone.f (interpE (subst (ren (Θ i0) iS) (lem3' ids v))) k) (Monotone.f (interpE (ren (Θ i0) iS)) (Monotone.f (interpS (lem3' ids v)) k)) (Monotone.f (interpE (Θ i0)) k) (subst-eq-l (lem3' ids v) (ren (Θ i0) iS) k) (Preorder-str.trans (snd [ x ]t) (Monotone.f (interpE (ren (Θ i0) iS)) (Monotone.f (interpS (lem3' ids v)) k)) (Monotone.f (interpE (Θ i0)) (Monotone.f (interpR {τ' :: Γ} {Γ} iS) (Monotone.f (interpS {Γ} {τ' :: Γ} (lem3' ids v)) k))) (Monotone.f (interpE (Θ i0)) k) (ren-eq-l iS (Θ i0) (Monotone.f (interpS (lem3' ids v)) k)) (Monotone.is-monotone (interpE (Θ i0)) (Monotone.f (interpR {τ' :: Γ} {Γ} iS) (Monotone.f (interpS {Γ} {τ' :: Γ} (lem3' ids v)) k)) k (Preorder-str.trans (snd [ Γ ]c) (Monotone.f (interpR {τ' :: Γ} {Γ} iS) (Monotone.f (interpS {Γ} {τ' :: Γ} (lem3' ids v)) k)) (Monotone.f (interpR {Γ} {Γ} (λ x₂ → x₂)) k) k (Preorder-str.trans (snd [ Γ ]c) (Monotone.f (interpR {τ' :: Γ} {Γ} iS) (Monotone.f (interpS {Γ} {τ' :: Γ} (lem3' ids v)) k)) (Monotone.f (interpR {τ' :: Γ} {Γ} iS) (k , Monotone.f (interpE v) k)) (Monotone.f (interpR {Γ} {Γ} (λ x₂ → x₂)) k) (Monotone.is-monotone (interpR {τ' :: Γ} {Γ} iS) (Monotone.f (interpS {Γ} {τ' :: Γ} (lem3' ids v)) k) (k , Monotone.f (interpE v) k) (lam-s-lem {Γ} k , (Preorder-str.refl (snd [ τ' ]t) (Monotone.f (interpE v) k)))) (ren-eq-l-lam {Γ} {Γ} {τ'} (λ x₂ → x₂) k (Monotone.f (interpE v) k))) (ids-lem-l {Γ} k))))) interp-subst-comp-r : ∀ {Γ Γ' τ'} (Θ : sctx Γ Γ') (v : Γ |- τ') (k : fst [ Γ ]c) → Preorder-str.≤ (snd [ Γ' ]c) (Monotone.f (interpS (λ x → Θ x)) k) (Monotone.f (interpS (λ x → subst (ren (Θ x) iS) (lem3' ids v))) k) interp-subst-comp-r {Γ' = []} Θ v k = <> interp-subst-comp-r {Γ} {Γ' = x :: Γ'} {τ'} Θ v k = (interp-subst-comp-r (throw-s Θ) v k) , Preorder-str.trans (snd [ x ]t) (Monotone.f (interpE (Θ i0)) k) (Monotone.f (interpE (ren (Θ i0) iS)) (Monotone.f (interpS (lem3' ids v)) k)) (Monotone.f (interpE (subst (ren (Θ i0) iS) (lem3' ids v))) k) (Preorder-str.trans (snd [ x ]t) (Monotone.f (interpE (Θ i0)) k) (Monotone.f (interpE (Θ i0)) (Monotone.f (interpR {τ' :: Γ} {Γ} iS) (Monotone.f (interpS {Γ} {τ' :: Γ} (lem3' ids v)) k))) (Monotone.f (interpE (ren (Θ i0) iS)) (Monotone.f (interpS (lem3' ids v)) k)) (Monotone.is-monotone (interpE (Θ i0)) k (Monotone.f (interpR {τ' :: Γ} {Γ} iS) (Monotone.f (interpS {Γ} {τ' :: Γ} (lem3' ids v)) k)) (Preorder-str.trans (snd [ Γ ]c) k (Monotone.f (interpR {Γ} {Γ} (λ x₂ → x₂)) k) (Monotone.f (interpR {τ' :: Γ} {Γ} iS) (Monotone.f (interpS {Γ} {τ' :: Γ} (lem3' ids v)) k)) (ids-lem-r {Γ} k) (Preorder-str.trans (snd [ Γ ]c) (Monotone.f (interpR {Γ} {Γ} (λ x₂ → x₂)) k) (Monotone.f (interpR {τ' :: Γ} {Γ} iS) (k , Monotone.f (interpE v) k)) (Monotone.f (interpR {τ' :: Γ} {Γ} iS) (Monotone.f (interpS {Γ} {τ' :: Γ} (lem3' ids v)) k)) (ren-eq-r-lam {Γ} {Γ} {τ'} (λ x₂ → x₂) k (Monotone.f (interpE v) k)) (Monotone.is-monotone (interpR {τ' :: Γ} {Γ} iS) (k , Monotone.f (interpE v) k) (Monotone.f (interpS {Γ} {τ' :: Γ} (lem3' ids v)) k) (lam-s-lem-r {Γ} k , Preorder-str.refl (snd [ τ' ]t) (Monotone.f (interpE v) k)))))) (ren-eq-r iS (Θ i0) (Monotone.f (interpS (lem3' ids v)) k))) (subst-eq-r (lem3' ids v) (ren (Θ i0) iS) k) interp-subst-comp2-l : ∀ {Γ Γ' τ' τ''} (Θ : sctx Γ Γ') (k : fst [ Γ ]c) (v1 : Γ |- τ') (v2 : Γ |- τ'') → Preorder-str.≤ (snd [ Γ' ]c) (Monotone.f (interpS {τ' :: τ'' :: Γ} {Γ'} (λ x → ren (ren (Θ x) iS) iS)) ((Monotone.f (interpS {Γ} {Γ} ids) k , Monotone.f (interpE v2) k) , Monotone.f (interpE v1) k)) (Monotone.f (interpS (λ x → subst (ren (Θ x) iS) (lem3' ids v2))) k) interp-subst-comp2-l {Γ' = []} Θ k v1 v2 = <> interp-subst-comp2-l {Γ} {Γ' = x :: Γ'} {τ'} {τ''} Θ k v1 v2 = (interp-subst-comp2-l (throw-s Θ) k v1 v2) , Preorder-str.trans (snd [ x ]t) (Monotone.f (interpE (ren (ren (Θ i0) iS) iS)) ((Monotone.f (interpS {Γ} ids) k , Monotone.f (interpE v2) k) , Monotone.f (interpE v1) k)) (Monotone.f (interpE (ren (Θ i0) iS)) (Monotone.f (interpR {τ' :: τ'' :: Γ} iS) ((Monotone.f (interpS {Γ} ids) k , Monotone.f (interpE v2) k) , Monotone.f (interpE v1) k))) (Monotone.f (interpE (subst (ren (Θ i0) iS) (lem3' ids v2))) k) (ren-eq-l iS (ren (Θ i0) iS) ((Monotone.f (interpS {Γ} ids) k , Monotone.f (interpE v2) k) , Monotone.f (interpE v1) k)) (Preorder-str.trans (snd [ x ]t) (Monotone.f (interpE (ren (Θ i0) iS)) (Monotone.f (interpR {τ' :: τ'' :: Γ} iS) ((Monotone.f (interpS {Γ} ids) k , Monotone.f (interpE v2) k) , Monotone.f (interpE v1) k))) (Monotone.f (interpE (ren (Θ i0) iS)) (Monotone.f (interpS (lem3' ids v2)) k)) (Monotone.f (interpE (subst (ren (Θ i0) iS) (lem3' ids v2))) k) (Monotone.is-monotone (interpE (ren (Θ i0) iS)) (Monotone.f (interpR {τ' :: τ'' :: Γ} iS) ((Monotone.f (interpS {Γ} ids) k , Monotone.f (interpE v2) k) , Monotone.f (interpE v1) k)) (Monotone.f (interpS (lem3' ids v2)) k) (Preorder-str.trans (snd [ Γ ]c) (Monotone.f (interpR {τ' :: τ'' :: Γ} (λ x₁ → iS (iS x₁))) ((Monotone.f (interpS {Γ} ids) k , Monotone.f (interpE v2) k) , Monotone.f (interpE v1) k)) (Monotone.f (interpR {Γ} {Γ} (λ x₁ → x₁)) (Monotone.f (interpS {Γ} ids) k)) (Monotone.f (interpS {Γ} ids) k) (Preorder-str.trans (snd [ Γ ]c) (Monotone.f (interpR {τ' :: τ'' :: Γ} (λ x₁ → iS (iS x₁))) ((Monotone.f (interpS {Γ} ids) k , Monotone.f (interpE v2) k) , Monotone.f (interpE v1) k)) (Monotone.f (interpR {τ'' :: Γ} (throw-r (r-extend (λ x₁ → x₁)))) (Monotone.f (interpS {Γ} ids) k , Monotone.f (interpE v2) k)) (Monotone.f (interpR {Γ} {Γ} (λ x₁ → x₁)) (Monotone.f (interpS {Γ} ids) k)) (ren-eq-l-lam {τ'' :: Γ} (λ x₁ → iS x₁) (Monotone.f (interpS {Γ} ids) k , Monotone.f (interpE v2) k) (Monotone.f (interpE v1) k)) (ren-eq-l-lam {Γ} {Γ} {τ''} (λ x₁ → x₁) (Monotone.f (interpS {Γ} ids) k) (Monotone.f (interpE v2) k))) (interp-sr-l {Γ} ids (λ x₁ → x₁) k) , Preorder-str.refl (snd [ τ'' ]t) (Monotone.f (interpE v2) k))) (subst-eq-r (lem3' ids v2) (ren (Θ i0) iS) k)) interp-subst-comp2-r : ∀ {Γ Γ' τ' τ''} (Θ : sctx Γ Γ') (k : fst [ Γ ]c) (v1 : Γ |- τ') (v2 : Γ |- τ'') → Preorder-str.≤ (snd [ Γ' ]c) (Monotone.f (interpS (λ x → subst (ren (Θ x) iS) (lem3' ids v2))) k) (Monotone.f (interpS {τ' :: τ'' :: Γ} {Γ'} (λ x → ren (ren (Θ x) iS) iS)) ((Monotone.f (interpS {Γ} {Γ} ids) k , Monotone.f (interpE v2) k) , Monotone.f (interpE v1) k)) interp-subst-comp2-r {Γ' = []} Θ k v1 v2 = <> interp-subst-comp2-r {Γ} {Γ' = x :: Γ'} {τ'} {τ''} Θ k v1 v2 = (interp-subst-comp2-r (throw-s Θ) k v1 v2) , (Preorder-str.trans (snd [ x ]t) (Monotone.f (interpE (subst (ren (Θ i0) iS) (lem3' ids v2))) k) (Monotone.f (interpE (ren (Θ i0) iS)) (Monotone.f (interpR {τ' :: τ'' :: Γ} iS) ((Monotone.f (interpS {Γ} ids) k , Monotone.f (interpE v2) k) , Monotone.f (interpE v1) k))) (Monotone.f (interpE (ren (ren (Θ i0) iS) iS)) ((Monotone.f (interpS {Γ} ids) k , Monotone.f (interpE v2) k) , Monotone.f (interpE v1) k)) (Preorder-str.trans (snd [ x ]t) (Monotone.f (interpE (subst (ren (Θ i0) iS) (lem3' ids v2))) k) (Monotone.f (interpE (ren (Θ i0) iS)) (Monotone.f (interpS (lem3' ids v2)) k)) (Monotone.f (interpE (ren (Θ i0) iS)) (Monotone.f (interpR {τ' :: τ'' :: Γ} iS) ((Monotone.f (interpS {Γ} ids) k , Monotone.f (interpE v2) k) , Monotone.f (interpE v1) k))) (subst-eq-l (lem3' ids v2) (ren (Θ i0) iS) k) (Monotone.is-monotone (interpE (ren (Θ i0) iS)) (Monotone.f (interpS (lem3' ids v2)) k) (Monotone.f (interpR {τ' :: τ'' :: Γ} iS) ((Monotone.f (interpS {Γ} ids) k , Monotone.f (interpE v2) k) , Monotone.f (interpE v1) k)) ((Preorder-str.trans (snd [ Γ ]c) (Monotone.f (interpS {Γ} ids) k) (Monotone.f (interpR {Γ} {Γ} (λ x₁ → x₁)) (Monotone.f (interpS {Γ} ids) k)) (Monotone.f (interpR {τ' :: τ'' :: Γ} (λ x₁ → iS (iS x₁))) ((Monotone.f (interpS {Γ} ids) k , Monotone.f (interpE v2) k) , Monotone.f (interpE v1) k)) (interp-sr-r {Γ} ids (λ x₁ → x₁) k) (Preorder-str.trans (snd [ Γ ]c) (Monotone.f (interpR {Γ} {Γ} (λ x₁ → x₁)) (Monotone.f (interpS {Γ} ids) k)) (Monotone.f (interpR {τ'' :: Γ} (throw-r (r-extend (λ x₁ → x₁)))) (Monotone.f (interpS {Γ} ids) k , Monotone.f (interpE v2) k)) (Monotone.f (interpR {τ' :: τ'' :: Γ} (λ x₁ → iS (iS x₁))) ((Monotone.f (interpS {Γ} ids) k , Monotone.f (interpE v2) k) , Monotone.f (interpE v1) k)) (ren-eq-r-lam {Γ} {Γ} {τ''} (λ x₁ → x₁) (Monotone.f (interpS {Γ} ids) k) (Monotone.f (interpE v2) k)) (ren-eq-r-lam {τ'' :: Γ} (λ x₁ → iS x₁) (Monotone.f (interpS {Γ} ids) k , Monotone.f (interpE v2) k) (Monotone.f (interpE v1) k)))) , (Preorder-str.refl (snd [ τ'' ]t) (Monotone.f (interpE v2) k))))) (ren-eq-r iS (ren (Θ i0) iS) ((Monotone.f (interpS {Γ} ids) k , Monotone.f (interpE v2) k) , Monotone.f (interpE v1) k))) interp-subst-comp3-l : ∀ {Γ Γ' τ1 τ2 τ3} (Θ : sctx Γ Γ') (k : fst [ Γ ]c) (v3 : Γ |- τ3) (v2 : Γ |- τ2) (v1 : Γ |- τ1) → Preorder-str.≤ (snd [ Γ' ]c) (Monotone.f (interpS {τ1 :: τ2 :: τ3 :: Γ} {Γ'} (λ x → ren (ren (ren (Θ x) iS) iS) iS)) (((Monotone.f (interpS {Γ} ids) k , Monotone.f (interpE v3) k) , Monotone.f (interpE v2) k) , Monotone.f (interpE v1) k)) (Monotone.f (interpS {τ2 :: τ3 :: Γ} {Γ'} (λ x → ren (ren (Θ x) iS) iS)) ((Monotone.f (interpS {Γ} ids) k , Monotone.f (interpE v3) k) , Monotone.f (interpE v2) k)) interp-subst-comp3-l {Γ' = []} Θ k v3 v2 v1 = <> interp-subst-comp3-l {Γ} {Γ' = x :: Γ'} {τ1} {τ2} {τ3} Θ k v3 v2 v1 = (interp-subst-comp3-l (throw-s Θ) k v3 v2 v1) , (Preorder-str.trans (snd [ x ]t) (Monotone.f (interpE (ren (ren (ren (Θ i0) iS) iS) iS)) (((Monotone.f (interpS {Γ} {Γ} ids) k , Monotone.f (interpE v3) k) , Monotone.f (interpE v2) k) , Monotone.f (interpE v1) k)) (Monotone.f (interpE (ren (ren (Θ i0) iS) iS)) (Monotone.f (interpR {τ1 :: τ2 :: τ3 :: Γ} {τ2 :: τ3 :: Γ} iS) (((Monotone.f (interpS {Γ} ids) k , Monotone.f (interpE v3) k) , Monotone.f (interpE v2) k) , Monotone.f (interpE v1) k))) (Monotone.f (interpE (ren (ren (Θ i0) iS) iS)) ((Monotone.f (interpS {Γ} ids) k , Monotone.f (interpE v3) k) , Monotone.f (interpE v2) k)) (ren-eq-l iS (ren (ren (Θ i0) iS) iS) (((Monotone.f (interpS {Γ} ids) k , Monotone.f (interpE v3) k) , Monotone.f (interpE v2) k) , Monotone.f (interpE v1) k)) (Monotone.is-monotone (interpE (ren (ren (Θ i0) iS) iS)) (Monotone.f (interpR {τ1 :: τ2 :: τ3 :: Γ} {τ2 :: τ3 :: Γ} iS) (((Monotone.f (interpS {Γ} ids) k , Monotone.f (interpE v3) k) , Monotone.f (interpE v2) k) , Monotone.f (interpE v1) k)) ((Monotone.f (interpS {Γ} ids) k , Monotone.f (interpE v3) k) , Monotone.f (interpE v2) k) ((Preorder-str.trans (snd [ Γ ]c) (Monotone.f (interpR {τ1 :: τ2 :: τ3 :: Γ} {Γ} (λ x₁ → iS (iS (iS x₁)))) (((Monotone.f (interpS {Γ} ids) k , Monotone.f (interpE v3) k) , Monotone.f (interpE v2) k) , Monotone.f (interpE v1) k)) (Monotone.f (interpR {Γ} (λ x₁ → x₁)) (Monotone.f (interpS {Γ} ids) k)) (Monotone.f (interpS {Γ} ids) k) (Preorder-str.trans (snd [ Γ ]c) (Monotone.f (interpR {τ1 :: τ2 :: τ3 :: Γ} {Γ} (λ x₁ → iS (iS (iS x₁)))) (((Monotone.f (interpS {Γ} ids) k , Monotone.f (interpE v3) k) , Monotone.f (interpE v2) k) , Monotone.f (interpE v1) k)) (Monotone.f (interpR {τ3 :: Γ} {Γ} (throw-r (r-extend (λ x₁ → x₁)))) (Monotone.f (interpS {Γ} ids) k , Monotone.f (interpE v3) k)) (Monotone.f (interpR {Γ} (λ x₁ → x₁)) (Monotone.f (interpS {Γ} ids) k)) (Preorder-str.trans (snd [ Γ ]c) (Monotone.f (interpR {τ1 :: τ2 :: τ3 :: Γ} {Γ} (λ x₁ → iS (iS (iS x₁)))) (((Monotone.f (interpS {Γ} ids) k , Monotone.f (interpE v3) k) , Monotone.f (interpE v2) k) , Monotone.f (interpE v1) k)) (Monotone.f (interpR {τ2 :: τ3 :: Γ} (throw-r (r-extend iS))) ((Monotone.f (interpS {Γ} ids) k , Monotone.f (interpE v3) k) , Monotone.f (interpE v2) k)) (Monotone.f (interpR {τ3 :: Γ} {Γ} (throw-r (r-extend (λ x₁ → x₁)))) (Monotone.f (interpS {Γ} ids) k , Monotone.f (interpE v3) k)) (fst (ren-eq-l-lam {τ2 :: τ3 :: Γ} {τ3 :: Γ} {τ1} (λ x₁ → iS x₁) ((Monotone.f (interpS {Γ} ids) k , Monotone.f (interpE v3) k) , Monotone.f (interpE v2) k) (Monotone.f (interpE v1) k))) (ren-eq-l-lam {τ3 :: Γ} {Γ} {τ2} (λ x₁ → iS x₁) (Monotone.f (interpS {Γ} ids) k , Monotone.f (interpE v3) k) (Monotone.f (interpE v2) k))) (ren-eq-l-lam {Γ} {Γ} {τ3} (λ x₁ → x₁) (Monotone.f (interpS {Γ} ids) k) (Monotone.f (interpE v3) k))) (interp-sr-l {Γ} ids (λ x₁ → x₁) k) , Preorder-str.refl (snd [ τ3 ]t) (Monotone.f (interpE v3) k)) , Preorder-str.refl (snd [ τ2 ]t) (Monotone.f (interpE v2) k)))) interp-subst-comp3-r : ∀ {Γ Γ' τ1 τ2 τ3} (Θ : sctx Γ Γ') (k : fst [ Γ ]c) (v3 : Γ |- τ3) (v2 : Γ |- τ2) (v1 : Γ |- τ1) → Preorder-str.≤ (snd [ Γ' ]c) (Monotone.f (interpS {τ2 :: τ3 :: Γ} {Γ'} (λ x → ren (ren (Θ x) iS) iS)) ((Monotone.f (interpS {Γ} ids) k , Monotone.f (interpE v3) k) , Monotone.f (interpE v2) k)) (Monotone.f (interpS {τ1 :: τ2 :: τ3 :: Γ} {Γ'} (λ x → ren (ren (ren (Θ x) iS) iS) iS)) (((Monotone.f (interpS {Γ} ids) k , Monotone.f (interpE v3) k) , Monotone.f (interpE v2) k) , Monotone.f (interpE v1) k)) interp-subst-comp3-r {Γ' = []} Θ k v3 v2 v1 = <> interp-subst-comp3-r {Γ} {Γ' = x :: Γ'} {τ1} {τ2} {τ3} Θ k v3 v2 v1 = (interp-subst-comp3-r (throw-s Θ) k v3 v2 v1) , Preorder-str.trans (snd [ x ]t) (Monotone.f (interpE (ren (ren (Θ i0) iS) iS)) ((Monotone.f (interpS {Γ} ids) k , Monotone.f (interpE v3) k) , Monotone.f (interpE v2) k)) (Monotone.f (interpE (ren (ren (Θ i0) iS) iS)) (Monotone.f (interpR {τ1 :: τ2 :: τ3 :: Γ} {τ2 :: τ3 :: Γ} iS) (((Monotone.f (interpS {Γ} ids) k , Monotone.f (interpE v3) k) , Monotone.f (interpE v2) k) , Monotone.f (interpE v1) k))) (Monotone.f (interpE (ren (ren (ren (Θ i0) iS) iS) iS)) (((Monotone.f (interpS {Γ} {Γ} ids) k , Monotone.f (interpE v3) k) , Monotone.f (interpE v2) k) , Monotone.f (interpE v1) k)) (Monotone.is-monotone (interpE (ren (ren (Θ i0) iS) iS)) ((Monotone.f (interpS {Γ} ids) k , Monotone.f (interpE v3) k) , Monotone.f (interpE v2) k) (Monotone.f (interpR {τ1 :: τ2 :: τ3 :: Γ} {τ2 :: τ3 :: Γ} iS) (((Monotone.f (interpS {Γ} ids) k , Monotone.f (interpE v3) k) , Monotone.f (interpE v2) k) , Monotone.f (interpE v1) k)) (((Preorder-str.trans (snd [ Γ ]c) (Monotone.f (interpS {Γ} ids) k) (Monotone.f (interpR {Γ} (λ x₁ → x₁)) (Monotone.f (interpS {Γ} ids) k)) (Monotone.f (interpR {τ1 :: τ2 :: τ3 :: Γ} {Γ} (λ x₁ → iS (iS (iS x₁)))) (((Monotone.f (interpS {Γ} ids) k , Monotone.f (interpE v3) k) , Monotone.f (interpE v2) k) , Monotone.f (interpE v1) k)) (interp-sr-r {Γ} ids (λ x₁ → x₁) k) (Preorder-str.trans (snd [ Γ ]c) (Monotone.f (interpR {Γ} (λ x₁ → x₁)) (Monotone.f (interpS {Γ} ids) k)) (Monotone.f (interpR {τ3 :: Γ} {Γ} (throw-r (r-extend (λ x₁ → x₁)))) (Monotone.f (interpS {Γ} ids) k , Monotone.f (interpE v3) k)) (Monotone.f (interpR {τ1 :: τ2 :: τ3 :: Γ} {Γ} (λ x₁ → iS (iS (iS x₁)))) (((Monotone.f (interpS {Γ} ids) k , Monotone.f (interpE v3) k) , Monotone.f (interpE v2) k) , Monotone.f (interpE v1) k)) (ren-eq-r-lam {Γ} {Γ} {τ3} (λ x₁ → x₁) (Monotone.f (interpS {Γ} ids) k) (Monotone.f (interpE v3) k)) (Preorder-str.trans (snd [ Γ ]c) (Monotone.f (interpR {τ3 :: Γ} {Γ} (throw-r (r-extend (λ x₁ → x₁)))) (Monotone.f (interpS {Γ} ids) k , Monotone.f (interpE v3) k)) (Monotone.f (interpR {τ2 :: τ3 :: Γ} (throw-r (r-extend iS))) ((Monotone.f (interpS {Γ} ids) k , Monotone.f (interpE v3) k) , Monotone.f (interpE v2) k)) (Monotone.f (interpR {τ1 :: τ2 :: τ3 :: Γ} {Γ} (λ x₁ → iS (iS (iS x₁)))) (((Monotone.f (interpS {Γ} ids) k , Monotone.f (interpE v3) k) , Monotone.f (interpE v2) k) , Monotone.f (interpE v1) k)) (ren-eq-r-lam {τ3 :: Γ} {Γ} {τ2} (λ x₁ → iS x₁) (Monotone.f (interpS {Γ} ids) k , Monotone.f (interpE v3) k) (Monotone.f (interpE v2) k)) (fst (ren-eq-r-lam {τ2 :: τ3 :: Γ} {τ3 :: Γ} {τ1} (λ x₁ → iS x₁) ((Monotone.f (interpS {Γ} ids) k , Monotone.f (interpE v3) k) , Monotone.f (interpE v2) k) (Monotone.f (interpE v1) k)))))) , (Preorder-str.refl (snd [ τ3 ]t) (Monotone.f (interpE v3) k))) , (Preorder-str.refl (snd [ τ2 ]t) (Monotone.f (interpE v2) k)))) (ren-eq-r iS (ren (ren (Θ i0) iS) iS) (((Monotone.f (interpS {Γ} ids) k , Monotone.f (interpE v3) k) , Monotone.f (interpE v2) k) , Monotone.f (interpE v1) k)) s-cong2-lem : ∀ {Γ Γ'} (Θ Θ' : sctx Γ Γ') (k : fst [ Γ ]c) (x : (τ₁ : CTp) (x₁ : τ₁ ∈ Γ') → Preorder-str.≤ (snd [ τ₁ ]t) (Monotone.f (interpE (Θ x₁)) k) (Monotone.f (interpE (Θ' x₁)) k)) → Preorder-str.≤ (snd [ Γ' ]c) (Monotone.f (interpS Θ) k) (Monotone.f (interpS Θ') k) s-cong2-lem {Γ' = []} Θ Θ' x k = <> s-cong2-lem {Γ' = x :: Γ'} Θ Θ' x₁ k = (s-cong2-lem (throw-s Θ) (throw-s Θ') x₁ (λ τ₁ x₂ → k τ₁ (iS x₂))) , k x i0 sound {_} {τ} e .e refl-s k = Preorder-str.refl (snd [ τ ]t) (Monotone.f (interpE e) k) sound {Γ} {τ} e e' (trans-s {.Γ} {.τ} {.e} {e''} {.e'} d d₁) k = Preorder-str.trans (snd [ τ ]t) (Monotone.f (interpE e) k) (Monotone.f (interpE e'') k) (Monotone.f (interpE e') k) (sound e e'' d k) (sound e'' e' d₁ k) sound {_} {τ} e .e (cong-refl Refl) k = Preorder-str.refl (snd [ τ ]t) (Monotone.f (interpE e) k) sound {_} {._} ._ ._ (lt {._}) k = <> sound {_} {τ} (letc e e') .(app (lam e) e') letc-app-l k = Preorder-str.refl (snd [ τ ]t) (Monotone.f (interpE e) (k , Monotone.f (interpE e') k)) sound {_} {τ} (app (lam e) e') .(letc e e') letc-app-r k = Preorder-str.refl (snd [ τ ]t) (Monotone.f (interpE e) (k , Monotone.f (interpE e') k)) sound .(plusC 0C e') e' +-unit-l k = Preorder-str.refl (snd [ C ]t) (Monotone.f (interpE e') k) sound e .(plusC 0C e) +-unit-l' k = Preorder-str.refl (snd [ C ]t) (Monotone.f (interpE e) k) sound {_} {.C} .(plusC e' 0C) e' +-unit-r k = +-unit (Monotone.f (interpE e') k) sound e .(plusC e 0C) +-unit-r' k = plus-lem' (Monotone.f (interpE e) k) (Monotone.f (interpE e) k) Z (nat-refl (Monotone.f (interpE e) k)) sound {Γ} {.C} ._ ._ (+-assoc {.Γ} {e1} {e2} {e3}) k = plus-assoc (Monotone.f (interpE e1) k) (Monotone.f (interpE e2) k) (Monotone.f (interpE e3) k) sound {Γ} {.C} ._ ._ (+-assoc' {.Γ} {e1} {e2} {e3}) k = plus-assoc' (Monotone.f (interpE e1) k) (Monotone.f (interpE e2) k) (Monotone.f (interpE e3) k) sound {Γ} {.C} ._ ._ (refl-+ {.Γ} {e0} {e1}) k = +-comm (Monotone.f (interpE e0) k) (Monotone.f (interpE e1) k) sound {Γ} {C} ._ ._ (cong-+ {.Γ} {e0} {e1} {e0'} {e1'} d d₁) k = --also called plus-s. should really delete this rule so we don't have duplicates plus-lem (Monotone.f (interpE e0) k) (Monotone.f (interpE e1) k) (Monotone.f (interpE e0') k) (Monotone.f (interpE e1') k) (sound e0 e0' d k) (sound e1 e1' d₁ k) sound ._ ._ (cong-suc d) k = sound _ _ d k sound ._ ._ (cong-prod d d₁) k = (sound _ _ d k) , (sound _ _ d₁ k) sound {Γ} {τ} ._ ._ (cong-lproj {.Γ} {.τ} {_} {e} {e'} d) k = fst (sound e e' d k) sound {Γ} {τ} ._ ._ (cong-rproj {.Γ} {_} {.τ} {e} {e'} d) k = snd (sound e e' d k) sound ._ ._ (cong-lam d) k x = sound _ _ d (k , x) sound {Γ} {τ} ._ ._ (cong-app {.Γ} {τ'} {.τ} {e} {e'} {e1} d) k = sound e e' d k (Monotone.f (interpE e1) k) sound {Γ} {τ} ._ ._ (ren-cong {.Γ} {Γ'} {.τ} {e1} {e2} {ρ} d) k = Preorder-str.trans (snd [ τ ]t) (Monotone.f (interpE (ren e1 ρ)) k) (Monotone.f (interpE e1) (Monotone.f (interpR ρ) k)) (Monotone.f (interpE (ren e2 ρ)) k) (ren-eq-l ρ e1 k) (Preorder-str.trans (snd [ τ ]t) (Monotone.f (interpE e1) (Monotone.f (interpR ρ) k)) (Monotone.f (interpE e2) (Monotone.f (interpR ρ) k)) (Monotone.f (interpE (ren e2 ρ)) k) (sound e1 e2 d (Monotone.f (interpR ρ) k)) (ren-eq-r ρ e2 k)) sound {Γ} {τ} ._ ._ (subst-cong {.Γ} {Γ'} {.τ} {e1} {e2} {Θ} d) k = Preorder-str.trans (snd [ τ ]t) (Monotone.f (interpE (subst e1 Θ)) k) (Monotone.f (interpE e1) (Monotone.f (interpS Θ) k)) (Monotone.f (interpE (subst e2 Θ)) k) (subst-eq-l Θ e1 k) (Preorder-str.trans (snd [ τ ]t) (Monotone.f (interpE e1) (Monotone.f (interpS Θ) k)) (Monotone.f (interpE e2) (Monotone.f (interpS Θ) k)) (Monotone.f (interpE (subst e2 Θ)) k) (sound e1 e2 d (Monotone.f (interpS Θ) k)) (subst-eq-r Θ e2 k)) sound {Γ} {τ} ._ ._ (subst-cong2 {.Γ} {Γ'} {.τ} {Θ} {Θ'} {e} x) k = Preorder-str.trans (snd [ τ ]t) (Monotone.f (interpE (subst e Θ)) k) (Monotone.f (interpE e) (Monotone.f (interpS Θ) k)) (Monotone.f (interpE (subst e Θ')) k) (subst-eq-l Θ e k) (Preorder-str.trans (snd [ τ ]t) (Monotone.f (interpE e) (Monotone.f (interpS Θ) k)) (Monotone.f (interpE e) (Monotone.f (interpS Θ') k)) (Monotone.f (interpE (subst e Θ')) k) (Monotone.is-monotone (interpE e) (Monotone.f (interpS Θ) k) (Monotone.f (interpS Θ') k) (s-cong2-lem Θ Θ' k (λ τ1 x1 → sound _ _ (x _ x1) k))) (subst-eq-r Θ' e k)) sound {Γ} {τ} ._ ._ (cong-rec {.Γ} {.τ} {e} {e'} {e0} {e1} d) k = ♭h-fix-args (interpE e0) (interpE e1) (k , Monotone.f (interpE e) k) (k , Monotone.f (interpE e') k) (sound e e' d k) sound {Γ} {τ} ._ ._ (cong-listrec {.Γ} {τ'} {.τ} {e} {e'} {e0} {e1} d) k = listrec-fix-args (interpE e0) (interpE e1) (k , (Monotone.f (interpE e) k)) (k , Monotone.f (interpE e') k) ((Preorder-str.refl (snd [ Γ ]c) k) , (sound e e' d k)) sound {Γ} {τ} ._ ._ (lam-s {.Γ} {τ'} {.τ} {e} {e2}) k = Preorder-str.trans (snd [ τ ]t) (Monotone.f (interpE (subst e (q e2))) k) (Monotone.f (interpE e) (Monotone.f (interpS (q e2)) k)) (Monotone.f (interpE e) (k , Monotone.f (interpE e2) k)) (subst-eq-l (q e2) e k) (Monotone.is-monotone (interpE e) (Monotone.f (interpS (q e2)) k) (k , Monotone.f (interpE e2) k) (lam-s-lem {Γ} k , (Preorder-str.refl (snd [ τ' ]t) (Monotone.f (interpE e2) k)))) sound {Γ} {τ} e ._ (l-proj-s {.Γ}) k = Preorder-str.refl (snd [ τ ]t) (Monotone.f (interpE e) k) sound {Γ} {τ} e ._ (r-proj-s {.Γ}) k = Preorder-str.refl (snd [ τ ]t) (Monotone.f (interpE e) k) sound {_} {τ} e ._ rec-steps-z k = Preorder-str.refl (snd [ τ ]t) (Monotone.f (interpE e) k) sound {Γ} {τ} ._ ._ (rec-steps-s {.Γ} {.τ} {e} {e0} {e1}) k = Preorder-str.trans (snd [ τ ]t) (Monotone.f (interpE (subst e1 (lem3' (lem3' ids (rec e e0 e1)) e))) k) (Monotone.f (interpE e1) (Monotone.f (interpS (lem3' (lem3' ids (rec e e0 e1)) e)) k)) (Monotone.f (interpE e1) ((k , natrec (Monotone.f (interpE e0) k) (λ n x₂ → Monotone.f (interpE e1) ((k , x₂) , n)) (Monotone.f (interpE e) k)) , Monotone.f (interpE e) k)) (subst-eq-l (lem3' (lem3' ids (rec e e0 e1)) e) e1 k) (Monotone.is-monotone (interpE e1) (Monotone.f (interpS (lem3' (lem3' ids (rec e e0 e1)) e)) k) ((k , natrec (Monotone.f (interpE e0) k) (λ n x₂ → Monotone.f (interpE e1) ((k , x₂) , n)) (Monotone.f (interpE e) k)) , Monotone.f (interpE e) k) ((lam-s-lem {Γ} k , (Preorder-str.refl (snd [ τ ]t) (natrec (Monotone.f (interpE e0) k) (λ n x₂ → Monotone.f (interpE e1) ((k , x₂) , n)) (Monotone.f (interpE e) k)))) , (♭nat-refl (Monotone.f (interpE e) k)))) sound {Γ} {τ} e ._ listrec-steps-nil k = Preorder-str.refl (snd [ τ ]t) (Monotone.f (interpE e) k) sound {Γ} {τ} ._ ._ (listrec-steps-cons {.Γ} {τ'} {.τ} {h} {t} {e0} {e1}) k = Preorder-str.trans (snd [ τ ]t) (Monotone.f (interpE (subst e1 (lem3' (lem3' (lem3' ids (listrec t e0 e1)) t) h))) k) (Monotone.f (interpE e1) (Monotone.f (interpS (lem3' (lem3' (lem3' ids (listrec t e0 e1)) t) h)) k)) (Monotone.f (interpE e1) (((k , lrec (Monotone.f (interpE t) k) (Monotone.f (interpE e0) k) (λ x₁ x₂ x₃ → Monotone.f (interpE e1) (((k , x₃) , x₂) , x₁))) , Monotone.f (interpE t) k) , Monotone.f (interpE h) k)) (subst-eq-l (lem3' (lem3' (lem3' ids (listrec t e0 e1)) t) h) e1 k) (Monotone.is-monotone (interpE e1) (Monotone.f (interpS (lem3' (lem3' (lem3' ids (listrec t e0 e1)) t) h)) k) (((k , lrec (Monotone.f (interpE t) k) (Monotone.f (interpE e0) k) (λ x₁ x₂ x₃ → Monotone.f (interpE e1) (((k , x₃) , x₂) , x₁))) , Monotone.f (interpE t) k) , Monotone.f (interpE h) k) (((lam-s-lem {Γ} k , (Preorder-str.refl (snd [ τ ]t) (lrec (Monotone.f (interpE t) k) (Monotone.f (interpE e0) k) (λ x₁ x₂ x₃ → Monotone.f (interpE e1) (((k , x₃) , x₂) , x₁))))) , (l-refl (snd [ τ' ]t) (Monotone.f (interpE t) k))) , (Preorder-str.refl (snd [ τ' ]t) (Monotone.f (interpE h) k)))) sound {Γ} {τ} .(ren (ren e ρ2) ρ1) ._ (ren-comp-l ρ1 ρ2 e) k = Preorder-str.trans (snd [ τ ]t) (Monotone.f (interpE (ren (ren e ρ2) ρ1)) k) (Monotone.f (interpE (ren e ρ2)) (Monotone.f (interpR ρ1) k)) (Monotone.f (interpE (ren e (ρ1 ∙rr ρ2))) k) (ren-eq-l ρ1 (ren e ρ2) k) (Preorder-str.trans (snd [ τ ]t) (Monotone.f (interpE (ren e ρ2)) (Monotone.f (interpR ρ1) k)) (Monotone.f (interpE e) (Monotone.f (interpR (ρ1 ∙rr ρ2)) k)) (Monotone.f (interpE (ren e (ρ1 ∙rr ρ2))) k) (Preorder-str.trans (snd [ τ ]t) (Monotone.f (interpE (ren e ρ2)) (Monotone.f (interpR ρ1) k)) (Monotone.f (interpE e) (Monotone.f (interpR ρ2) (Monotone.f (interpR ρ1) k))) (Monotone.f (interpE e) (Monotone.f (interpR (ρ1 ∙rr ρ2)) k)) (ren-eq-l ρ2 e (Monotone.f (interpR ρ1) k)) (Monotone.is-monotone (interpE e) (Monotone.f (interpR ρ2) (Monotone.f (interpR ρ1) k)) (Monotone.f (interpR (ρ1 ∙rr ρ2)) k) (interp-rr-l ρ1 ρ2 k))) (ren-eq-r (ρ1 ∙rr ρ2) e k)) sound {Γ} {τ} ._ .(ren (ren e ρ2) ρ1) (ren-comp-r ρ1 ρ2 e) k = Preorder-str.trans (snd [ τ ]t) (Monotone.f (interpE (ren e (ρ1 ∙rr ρ2))) k) (Monotone.f (interpE (ren e ρ2)) (Monotone.f (interpR ρ1) k)) (Monotone.f (interpE (ren (ren e ρ2) ρ1)) k) (Preorder-str.trans (snd [ τ ]t) (Monotone.f (interpE (ren e (ρ1 ∙rr ρ2))) k) (Monotone.f (interpE e) (Monotone.f (interpR (ρ1 ∙rr ρ2)) k)) (Monotone.f (interpE (ren e ρ2)) (Monotone.f (interpR ρ1) k)) (ren-eq-l (ρ1 ∙rr ρ2) e k) (Preorder-str.trans (snd [ τ ]t) (Monotone.f (interpE e) (Monotone.f (interpR (ρ1 ∙rr ρ2)) k)) (Monotone.f (interpE e) (Monotone.f (interpR ρ2) (Monotone.f (interpR ρ1) k))) (Monotone.f (interpE (ren e ρ2)) (Monotone.f (interpR ρ1) k)) (Monotone.is-monotone (interpE e) (Monotone.f (interpR (ρ1 ∙rr ρ2)) k) (Monotone.f (interpR ρ2) (Monotone.f (interpR ρ1) k)) (interp-rr-r ρ1 ρ2 k)) (ren-eq-r ρ2 e (Monotone.f (interpR ρ1) k)))) (ren-eq-r ρ1 (ren e ρ2) k) sound {Γ} {τ} e ._ (subst-id-l .e) k = Preorder-str.trans (snd [ τ ]t) (Monotone.f (interpE e) k) (Monotone.f (interpE e) (Monotone.f (interpS {Γ} {Γ} ids) k)) (Monotone.f (interpE (subst e ids)) k) (Monotone.is-monotone (interpE e) k (Monotone.f (interpS {Γ} {Γ} ids) k) (lam-s-lem-r {Γ} k)) (subst-eq-r ids e k) sound {Γ} {τ} ._ e' (subst-id-r .e') k = Preorder-str.trans (snd [ τ ]t) (Monotone.f (interpE (subst e' ids)) k) (Monotone.f (interpE e') (Monotone.f (interpS {Γ} {Γ} ids) k)) (Monotone.f (interpE e') k) (subst-eq-l ids e' k) (Monotone.is-monotone (interpE e') (Monotone.f (interpS {Γ} {Γ} ids) k) k (lam-s-lem {Γ} k)) sound {Γ} {τ} .(ren (subst e Θ) ρ) ._ (subst-rs-l ρ Θ e) k = Preorder-str.trans (snd [ τ ]t) (Monotone.f (interpE (ren (subst e Θ) ρ)) k) (Monotone.f (interpE (subst e Θ)) (Monotone.f (interpR ρ) k)) (Monotone.f (interpE (subst e (ρ rs Θ))) k) (ren-eq-l ρ (subst e Θ) k) (Preorder-str.trans (snd [ τ ]t) (Monotone.f (interpE (subst e Θ)) (Monotone.f (interpR ρ) k)) (Monotone.f (interpE e) (Monotone.f (interpS Θ) (Monotone.f (interpR ρ) k))) (Monotone.f (interpE (subst e (ρ rs Θ))) k) (subst-eq-l Θ e (Monotone.f (interpR ρ) k)) (Preorder-str.trans (snd [ τ ]t) (Monotone.f (interpE e) (Monotone.f (interpS Θ) (Monotone.f (interpR ρ) k))) (Monotone.f (interpE e) (Monotone.f (interpS (ρ rs Θ)) k)) (Monotone.f (interpE (subst e (ρ rs Θ))) k) (Monotone.is-monotone (interpE e) (Monotone.f (interpS Θ) (Monotone.f (interpR ρ) k)) (Monotone.f (interpS (ρ rs Θ)) k) (interp-rs-l ρ Θ k)) (subst-eq-r (ρ rs Θ) e k))) sound {Γ} {τ} ._ .(ren (subst e Θ) ρ) (subst-rs-r ρ Θ e) k = Preorder-str.trans (snd [ τ ]t) (Monotone.f (interpE (subst e (ρ rs Θ))) k) (Monotone.f (interpE (subst e Θ)) (Monotone.f (interpR ρ) k)) (Monotone.f (interpE (ren (subst e Θ) ρ)) k) (Preorder-str.trans (snd [ τ ]t) (Monotone.f (interpE (subst e (ρ rs Θ))) k) (Monotone.f (interpE e) (Monotone.f (interpS Θ) (Monotone.f (interpR ρ) k))) (Monotone.f (interpE (subst e Θ)) (Monotone.f (interpR ρ) k)) (Preorder-str.trans (snd [ τ ]t) (Monotone.f (interpE (subst e (ρ rs Θ))) k) (Monotone.f (interpE e) (Monotone.f (interpS (ρ rs Θ)) k)) (Monotone.f (interpE e) (Monotone.f (interpS Θ) (Monotone.f (interpR ρ) k))) (subst-eq-l (ρ rs Θ) e k) (Monotone.is-monotone (interpE e) (Monotone.f (interpS (ρ rs Θ)) k) (Monotone.f (interpS Θ) (Monotone.f (interpR ρ) k)) (interp-rs-r ρ Θ k))) (subst-eq-r Θ e (Monotone.f (interpR ρ) k))) (ren-eq-r ρ (subst e Θ) k) sound {Γ} {τ} .(subst (ren e ρ) Θ) ._ (subst-sr-l Θ ρ e) k = Preorder-str.trans (snd [ τ ]t) (Monotone.f (interpE (subst (ren e ρ) Θ)) k) (Monotone.f (interpE (ren e ρ)) (Monotone.f (interpS Θ) k)) (Monotone.f (interpE (subst e (Θ sr ρ))) k) (subst-eq-l Θ (ren e ρ) k) (Preorder-str.trans (snd [ τ ]t) (Monotone.f (interpE (ren e ρ)) (Monotone.f (interpS Θ) k)) (Monotone.f (interpE e) (Monotone.f (interpS (Θ sr ρ)) k)) (Monotone.f (interpE (subst e (Θ sr ρ))) k) (Preorder-str.trans (snd [ τ ]t) (Monotone.f (interpE (ren e ρ)) (Monotone.f (interpS Θ) k)) (Monotone.f (interpE e) (Monotone.f (interpR ρ) (Monotone.f (interpS Θ) k))) (Monotone.f (interpE e) (Monotone.f (interpS (Θ sr ρ)) k)) (ren-eq-l ρ e (Monotone.f (interpS Θ) k)) (Monotone.is-monotone (interpE e) (Monotone.f (interpR ρ) (Monotone.f (interpS Θ) k)) (Monotone.f (interpS (Θ sr ρ)) k) (interp-sr-l Θ ρ k))) (subst-eq-r (Θ sr ρ) e k)) sound {Γ} {τ} ._ .(subst (ren e ρ) Θ) (subst-sr-r Θ ρ e) k = Preorder-str.trans (snd [ τ ]t) (Monotone.f (interpE (subst e (Θ sr ρ))) k) (Monotone.f (interpE (ren e ρ)) (Monotone.f (interpS Θ) k)) (Monotone.f (interpE (subst (ren e ρ) Θ)) k) (Preorder-str.trans (snd [ τ ]t) (Monotone.f (interpE (subst e (Θ sr ρ))) k) (Monotone.f (interpE e) (Monotone.f (interpS (Θ sr ρ)) k)) (Monotone.f (interpE (ren e ρ)) (Monotone.f (interpS Θ) k)) (subst-eq-l (Θ sr ρ) e k) (Preorder-str.trans (snd [ τ ]t) (Monotone.f (interpE e) (Monotone.f (interpS (Θ sr ρ)) k)) (Monotone.f (interpE e) (Monotone.f (interpR ρ) (Monotone.f (interpS Θ) k))) (Monotone.f (interpE (ren e ρ)) (Monotone.f (interpS Θ) k)) (Monotone.is-monotone (interpE e) (Monotone.f (interpS (Θ sr ρ)) k) (Monotone.f (interpR ρ) (Monotone.f (interpS Θ) k)) (interp-sr-r Θ ρ k)) (ren-eq-r ρ e (Monotone.f (interpS Θ) k)))) (subst-eq-r Θ (ren e ρ) k) sound {Γ} {τ} ._ .(subst (subst e Θ2) Θ1) (subst-ss-l Θ1 Θ2 e) k = Preorder-str.trans (snd [ τ ]t) (Monotone.f (interpE (subst e (Θ1 ss Θ2))) k) (Monotone.f (interpE e) (Monotone.f (interpS (Θ1 ss Θ2)) k)) (Monotone.f (interpE (subst (subst e Θ2) Θ1)) k) (subst-eq-l (Θ1 ss Θ2) e k) (Preorder-str.trans (snd [ τ ]t) (Monotone.f (interpE e) (Monotone.f (interpS (Θ1 ss Θ2)) k)) (Monotone.f (interpE (subst e Θ2)) (Monotone.f (interpS Θ1) k)) (Monotone.f (interpE (subst (subst e Θ2) Θ1)) k) (Preorder-str.trans (snd [ τ ]t) (Monotone.f (interpE e) (Monotone.f (interpS (Θ1 ss Θ2)) k)) (Monotone.f (interpE e) (Monotone.f (interpS Θ2) (Monotone.f (interpS Θ1) k))) (Monotone.f (interpE (subst e Θ2)) (Monotone.f (interpS Θ1) k)) (Monotone.is-monotone (interpE e) (Monotone.f (interpS (Θ1 ss Θ2)) k) (Monotone.f (interpS Θ2) (Monotone.f (interpS Θ1) k)) (interp-ss-l Θ1 Θ2 k)) (subst-eq-r Θ2 e (Monotone.f (interpS Θ1) k))) (subst-eq-r Θ1 (subst e Θ2) k)) sound {Γ} {τ} .(subst (subst e Θ2) Θ1) ._ (subst-ss-r Θ1 Θ2 e) k = Preorder-str.trans (snd [ τ ]t) (Monotone.f (interpE (subst (subst e Θ2) Θ1)) k) (Monotone.f (interpE e) (Monotone.f (interpS (Θ1 ss Θ2)) k)) (Monotone.f (interpE (subst e (Θ1 ss Θ2))) k) (Preorder-str.trans (snd [ τ ]t) (Monotone.f (interpE (subst (subst e Θ2) Θ1)) k) (Monotone.f (interpE (subst e Θ2)) (Monotone.f (interpS Θ1) k)) (Monotone.f (interpE e) (Monotone.f (interpS (Θ1 ss Θ2)) k)) (subst-eq-l Θ1 (subst e Θ2) k) (Preorder-str.trans (snd [ τ ]t) (Monotone.f (interpE (subst e Θ2)) (Monotone.f (interpS Θ1) k)) (Monotone.f (interpE e) (Monotone.f (interpS Θ2) (Monotone.f (interpS Θ1) k))) (Monotone.f (interpE e) (Monotone.f (interpS (Θ1 ss Θ2)) k)) (subst-eq-l Θ2 e (Monotone.f (interpS Θ1) k)) (Monotone.is-monotone (interpE e) (Monotone.f (interpS Θ2) (Monotone.f (interpS Θ1) k)) (Monotone.f (interpS (Θ1 ss Θ2)) k) (interp-ss-r Θ1 Θ2 k)))) (subst-eq-r (Θ1 ss Θ2) e k) sound {Γ} {τ} ._ .(subst e (lem3' Θ v)) (subst-compose-l {.Γ} {Γ'} {τ'} Θ v e) k = Preorder-str.trans (snd [ τ ]t) (Monotone.f (interpE (subst (subst e (s-extend Θ)) (q v))) k) (Monotone.f (interpE (subst e (s-extend Θ))) (Monotone.f (interpS (q v)) k)) (Monotone.f (interpE (subst e (lem3' Θ v))) k) (subst-eq-l (q v) (subst e (s-extend Θ)) k) (Preorder-str.trans (snd [ τ ]t) (Monotone.f (interpE (subst e (s-extend Θ))) (Monotone.f (interpS (q v)) k)) (Monotone.f (interpE e) (Monotone.f (interpS (lem3' Θ v)) k)) (Monotone.f (interpE (subst e (lem3' Θ v))) k) (Preorder-str.trans (snd [ τ ]t) (Monotone.f (interpE (subst e (s-extend Θ))) (Monotone.f (interpS (q v)) k)) (Monotone.f (interpE e) (Monotone.f (interpS {τ' :: Γ} {τ' :: Γ'} (s-extend {Γ} {Γ'} Θ)) (Monotone.f (interpS {Γ} {τ' :: Γ} (q v)) k))) (Monotone.f (interpE e) (Monotone.f (interpS (lem3' Θ v)) k)) (subst-eq-l (s-extend Θ) e (Monotone.f (interpS (q v)) k)) (Monotone.is-monotone (interpE e) (Monotone.f (interpS {τ' :: Γ} {τ' :: Γ'} (s-extend {Γ} {Γ'} Θ)) (Monotone.f (interpS {Γ} {τ' :: Γ} (q v)) k)) (Monotone.f (interpS (lem3' Θ v)) k) (Preorder-str.trans (snd [ Γ' ]c) (fst (Monotone.f (interpS (s-extend Θ)) (Monotone.f (interpS (q v)) k))) (Monotone.f (interpS (λ x → subst (ren (Θ x) iS) (lem3' ids v))) k) (Monotone.f (interpS Θ) k) (fst (interp-ss-r (q v) (s-extend Θ) k)) (interp-subst-comp-l Θ v k) , Preorder-str.refl (snd [ τ' ]t) (Monotone.f (interpE v) k)))) (subst-eq-r (lem3' Θ v) e k)) sound {Γ} {τ} .(subst e (lem3' Θ v)) ._ (subst-compose-r {.Γ} {Γ'} {τ'} Θ v e) k = Preorder-str.trans (snd [ τ ]t) (Monotone.f (interpE (subst e (lem3' Θ v))) k) (Monotone.f (interpE (subst e (s-extend Θ))) (Monotone.f (interpS (q v)) k)) (Monotone.f (interpE (subst (subst e (s-extend Θ)) (q v))) k) (Preorder-str.trans (snd [ τ ]t) (Monotone.f (interpE (subst e (lem3' Θ v))) k) (Monotone.f (interpE e) (Monotone.f (interpS (lem3' Θ v)) k)) (Monotone.f (interpE (subst e (s-extend Θ))) (Monotone.f (interpS (q v)) k)) (subst-eq-l (lem3' Θ v) e k) (Preorder-str.trans (snd [ τ ]t) (Monotone.f (interpE e) (Monotone.f (interpS (lem3' Θ v)) k)) (Monotone.f (interpE e) (Monotone.f (interpS {τ' :: Γ} {τ' :: Γ'} (s-extend {Γ} {Γ'} Θ)) (Monotone.f (interpS {Γ} {τ' :: Γ} (q v)) k))) (Monotone.f (interpE (subst e (s-extend Θ))) (Monotone.f (interpS (q v)) k)) (Monotone.is-monotone (interpE e) (Monotone.f (interpS (lem3' Θ v)) k) (Monotone.f (interpS {τ' :: Γ} {τ' :: Γ'} (s-extend {Γ} {Γ'} Θ)) (Monotone.f (interpS {Γ} {τ' :: Γ} (q v)) k)) ((Preorder-str.trans (snd [ Γ' ]c) (Monotone.f (interpS Θ) k) (Monotone.f (interpS (λ x → subst (ren (Θ x) iS) (lem3' ids v))) k) (fst (Monotone.f (interpS (s-extend Θ)) (Monotone.f (interpS (q v)) k))) (interp-subst-comp-r Θ v k) (fst (interp-ss-l (q v) (s-extend Θ) k))) , (Preorder-str.refl (snd [ τ' ]t) (Monotone.f (interpE v) k)))) (subst-eq-r (s-extend Θ) e (Monotone.f (interpS (q v)) k)))) (subst-eq-r (q v) (subst e (s-extend Θ)) k) sound {Γ} {τ} ._ .(subst e1 (lem3' (lem3' Θ v2) v1)) (subst-compose2-l {.Γ} {Γ'} {.τ} {τ'} {τ''} Θ e1 v1 v2) k = Preorder-str.trans (snd [ τ ]t) (Monotone.f (interpE (subst (subst e1 (s-extend (s-extend Θ))) (lem4 v1 v2))) k) (Monotone.f (interpE (subst e1 (s-extend (s-extend Θ)))) (Monotone.f (interpS (lem4 v1 v2)) k)) (Monotone.f (interpE (subst e1 (lem4' Θ v1 v2))) k) (subst-eq-l (lem4 v1 v2) (subst e1 (s-extend (s-extend Θ))) k) (Preorder-str.trans (snd [ τ ]t) (Monotone.f (interpE (subst e1 (s-extend (s-extend Θ)))) (Monotone.f (interpS (lem4 v1 v2)) k)) (Monotone.f (interpE e1) (Monotone.f (interpS (lem4' Θ v1 v2)) k)) (Monotone.f (interpE (subst e1 (lem4' Θ v1 v2))) k) (Preorder-str.trans (snd [ τ ]t) (Monotone.f (interpE (subst e1 (s-extend (s-extend Θ)))) (Monotone.f (interpS (lem4 v1 v2)) k)) (Monotone.f (interpE e1) (Monotone.f (interpS {τ' :: τ'' :: Γ} {τ' :: τ'' :: Γ'} (s-extend (s-extend Θ))) (Monotone.f (interpS (lem4 v1 v2)) k))) (Monotone.f (interpE e1) (Monotone.f (interpS (lem4' Θ v1 v2)) k)) (subst-eq-l (s-extend (s-extend Θ)) e1 (Monotone.f (interpS (lem4 v1 v2)) k)) (Monotone.is-monotone (interpE e1) (Monotone.f (interpS {τ' :: τ'' :: Γ} {τ' :: τ'' :: Γ'} (s-extend (s-extend Θ))) (Monotone.f (interpS (lem4 v1 v2)) k)) (Monotone.f (interpS (lem4' Θ v1 v2)) k) ((Preorder-str.trans (snd [ Γ' ]c) (Monotone.f (interpS (λ x → ren (ren (Θ x) iS) iS)) ((Monotone.f (interpS {Γ} ids) k , Monotone.f (interpE v2) k) , Monotone.f (interpE v1) k)) (Monotone.f (interpS (λ x → subst (ren (Θ x) iS) (lem3' ids v2))) k) (Monotone.f (interpS Θ) k) (interp-subst-comp2-l Θ k v1 v2) (interp-subst-comp-l Θ v2 k) , Preorder-str.refl (snd [ τ'' ]t) (Monotone.f (interpE v2) k)) , Preorder-str.refl (snd [ τ' ]t) (Monotone.f (interpE v1) k)))) (subst-eq-r (lem4' Θ v1 v2) e1 k)) sound {Γ} {τ} .(subst e1 (lem3' (lem3' Θ v2) v1)) ._ (subst-compose2-r {.Γ} {Γ'} {.τ} {τ'} {τ''} Θ e1 v1 v2) k = Preorder-str.trans (snd [ τ ]t) (Monotone.f (interpE (subst e1 (lem4' Θ v1 v2))) k) (Monotone.f (interpE (subst e1 (s-extend (s-extend Θ)))) (Monotone.f (interpS (lem4 v1 v2)) k)) (Monotone.f (interpE (subst (subst e1 (s-extend (s-extend Θ))) (lem4 v1 v2))) k) (Preorder-str.trans (snd [ τ ]t) (Monotone.f (interpE (subst e1 (lem4' Θ v1 v2))) k) (Monotone.f (interpE e1) (Monotone.f (interpS (lem4' Θ v1 v2)) k)) (Monotone.f (interpE (subst e1 (s-extend (s-extend Θ)))) (Monotone.f (interpS (lem4 v1 v2)) k)) (subst-eq-l (lem4' Θ v1 v2) e1 k) (Preorder-str.trans (snd [ τ ]t) (Monotone.f (interpE e1) (Monotone.f (interpS (lem4' Θ v1 v2)) k)) (Monotone.f (interpE e1) (Monotone.f (interpS {τ' :: τ'' :: Γ} {τ' :: τ'' :: Γ'} (s-extend (s-extend Θ))) (Monotone.f (interpS (lem4 v1 v2)) k))) (Monotone.f (interpE (subst e1 (s-extend (s-extend Θ)))) (Monotone.f (interpS (lem4 v1 v2)) k)) (Monotone.is-monotone (interpE e1) (Monotone.f (interpS (lem4' Θ v1 v2)) k) (Monotone.f (interpS {τ' :: τ'' :: Γ} {τ' :: τ'' :: Γ'} (s-extend (s-extend Θ))) (Monotone.f (interpS (lem4 v1 v2)) k)) (((Preorder-str.trans (snd [ Γ' ]c) (Monotone.f (interpS Θ) k) (Monotone.f (interpS (λ x → subst (ren (Θ x) iS) (lem3' ids v2))) k) (Monotone.f (interpS (λ x → ren (ren (Θ x) iS) iS)) ((Monotone.f (interpS {Γ} ids) k , Monotone.f (interpE v2) k) , Monotone.f (interpE v1) k)) (interp-subst-comp-r Θ v2 k) (interp-subst-comp2-r Θ k v1 v2)) , (Preorder-str.refl (snd [ τ'' ]t) (Monotone.f (interpE v2) k))) , (Preorder-str.refl (snd [ τ' ]t) (Monotone.f (interpE v1) k)))) (subst-eq-r (s-extend (s-extend Θ)) e1 (Monotone.f (interpS (lem4 v1 v2)) k)))) (subst-eq-r (lem4 v1 v2) (subst e1 (s-extend (s-extend Θ))) k) sound {Γ} {τ} ._ .(subst e1 (lem3' (lem3' Θ (subst v2 Θ)) (subst v1 Θ))) (subst-compose3-l {.Γ} {Γ'} {.τ} {τ'} {τ''} Θ e1 v1 v2) k = Preorder-str.trans (snd [ τ ]t) (Monotone.f (interpE (subst (subst e1 (lem3' (lem3' ids v2) v1)) Θ)) k) (Monotone.f (interpE (subst e1 (lem3' (lem3' ids v2) v1))) (Monotone.f (interpS Θ) k)) (Monotone.f (interpE (subst e1 (lem3' (lem3' Θ (subst v2 Θ)) (subst v1 Θ)))) k) (subst-eq-l Θ (subst e1 (lem3' (lem3' ids v2) v1)) k) (Preorder-str.trans (snd [ τ ]t) (Monotone.f (interpE (subst e1 (lem3' (lem3' ids v2) v1))) (Monotone.f (interpS Θ) k)) (Monotone.f (interpE e1) (Monotone.f (interpS (lem3' (lem3' Θ (subst v2 Θ)) (subst v1 Θ))) k)) (Monotone.f (interpE (subst e1 (lem3' (lem3' Θ (subst v2 Θ)) (subst v1 Θ)))) k) (Preorder-str.trans (snd [ τ ]t) (Monotone.f (interpE (subst e1 (lem3' (lem3' ids v2) v1))) (Monotone.f (interpS Θ) k)) (Monotone.f (interpE e1) (Monotone.f (interpS (lem3' (lem3' ids v2) v1)) (Monotone.f (interpS Θ) k))) (Monotone.f (interpE e1) (Monotone.f (interpS (lem3' (lem3' Θ (subst v2 Θ)) (subst v1 Θ))) k)) (subst-eq-l (lem3' (lem3' ids v2) v1) e1 (Monotone.f (interpS Θ) k)) (Monotone.is-monotone (interpE e1) (Monotone.f (interpS (lem3' (lem3' ids v2) v1)) (Monotone.f (interpS Θ) k)) (Monotone.f (interpS (lem3' (lem3' Θ (subst v2 Θ)) (subst v1 Θ))) k) (((interp-ss-r Θ ids k) , (subst-eq-r Θ v2 k)) , (subst-eq-r Θ v1 k)))) (subst-eq-r (lem3' (lem3' Θ (subst v2 Θ)) (subst v1 Θ)) e1 k)) sound {Γ} {τ} .(subst e1 (lem3' (lem3' Θ (subst v2 Θ)) (subst v1 Θ))) ._ (subst-compose3-r {.Γ} {Γ'} {.τ} {τ'} {τ''} Θ e1 v1 v2) k = Preorder-str.trans (snd [ τ ]t) (Monotone.f (interpE (subst e1 (lem3' (lem3' Θ (subst v2 Θ)) (subst v1 Θ)))) k) (Monotone.f (interpE (subst e1 (lem3' (lem3' ids v2) v1))) (Monotone.f (interpS Θ) k)) (Monotone.f (interpE (subst (subst e1 (lem3' (lem3' ids v2) v1)) Θ)) k) (Preorder-str.trans (snd [ τ ]t) (Monotone.f (interpE (subst e1 (lem3' (lem3' Θ (subst v2 Θ)) (subst v1 Θ)))) k) (Monotone.f (interpE e1) (Monotone.f (interpS (lem3' (lem3' Θ (subst v2 Θ)) (subst v1 Θ))) k)) (Monotone.f (interpE (subst e1 (lem3' (lem3' ids v2) v1))) (Monotone.f (interpS Θ) k)) (subst-eq-l (lem3' (lem3' Θ (subst v2 Θ)) (subst v1 Θ)) e1 k) (Preorder-str.trans (snd [ τ ]t) (Monotone.f (interpE e1) (Monotone.f (interpS (lem3' (lem3' Θ (subst v2 Θ)) (subst v1 Θ))) k)) (Monotone.f (interpE e1) (Monotone.f (interpS (lem3' (lem3' ids v2) v1)) (Monotone.f (interpS Θ) k))) (Monotone.f (interpE (subst e1 (lem3' (lem3' ids v2) v1))) (Monotone.f (interpS Θ) k)) (Monotone.is-monotone (interpE e1) (Monotone.f (interpS (lem3' (lem3' Θ (subst v2 Θ)) (subst v1 Θ))) k) (Monotone.f (interpS (lem3' (lem3' ids v2) v1)) (Monotone.f (interpS Θ) k)) (((interp-ss-l Θ ids k) , (subst-eq-l Θ v2 k)) , (subst-eq-l Θ v1 k))) (subst-eq-r (lem3' (lem3' ids v2) v1) e1 (Monotone.f (interpS Θ) k)))) (subst-eq-r Θ (subst e1 (lem3' (lem3' ids v2) v1)) k) sound {Γ} {τ} ._ .(subst e1 (lem3' (lem3' Θ v2) v1)) (subst-compose4-l {.Γ} {Γ'} Θ v1 v2 e1) k = Preorder-str.trans (snd [ τ ]t) (Monotone.f (interpE (subst (subst e1 (s-extend (s-extend Θ))) (lem4 v1 v2))) k) (Monotone.f (interpE (subst e1 (s-extend (s-extend Θ)))) (Monotone.f (interpS (lem4 v1 v2)) k)) (Monotone.f (interpE (subst e1 (lem4' Θ v1 v2))) k) (subst-eq-l (lem4 v1 v2) (subst e1 (s-extend (s-extend Θ))) k) (Preorder-str.trans (snd [ τ ]t) (Monotone.f (interpE (subst e1 (s-extend (s-extend Θ)))) (Monotone.f (interpS (lem4 v1 v2)) k)) (Monotone.f (interpE e1) (Monotone.f (interpS (lem4' Θ v1 v2)) k)) (Monotone.f (interpE (subst e1 (lem4' Θ v1 v2))) k) (Preorder-str.trans (snd [ τ ]t) (Monotone.f (interpE (subst e1 (s-extend (s-extend Θ)))) (Monotone.f (interpS (lem4 v1 v2)) k)) (Monotone.f (interpE e1) (Monotone.f (interpS {nat :: τ :: Γ} {nat :: τ :: Γ'} (s-extend (s-extend Θ))) (Monotone.f (interpS (lem4 v1 v2)) k))) (Monotone.f (interpE e1) (Monotone.f (interpS (lem4' Θ v1 v2)) k)) (subst-eq-l (s-extend (s-extend Θ)) e1 (Monotone.f (interpS (lem4 v1 v2)) k)) (Monotone.is-monotone (interpE e1) (Monotone.f (interpS {nat :: τ :: Γ} {nat :: τ :: Γ'} (s-extend (s-extend Θ))) (Monotone.f (interpS (lem4 v1 v2)) k)) (Monotone.f (interpS (lem4' Θ v1 v2)) k) ((Preorder-str.trans (snd [ Γ' ]c) (Monotone.f (interpS (λ x → ren (ren (Θ x) iS) iS)) ((Monotone.f (interpS {Γ} ids) k , Monotone.f (interpE v2) k) , Monotone.f (interpE v1) k)) (Monotone.f (interpS (λ x → subst (ren (Θ x) iS) (lem3' ids v2))) k) (Monotone.f (interpS Θ) k) (interp-subst-comp2-l Θ k v1 v2) (interp-subst-comp-l Θ v2 k) , Preorder-str.refl (snd [ τ ]t) (Monotone.f (interpE v2) k)) , Preorder-str.refl (snd [ nat ]t) (Monotone.f (interpE v1) k)))) (subst-eq-r (lem4' Θ v1 v2) e1 k)) sound {Γ} {τ} .(subst e1 (lem3' (lem3' Θ v2) v1)) ._ (subst-compose4-r {.Γ} {Γ'} Θ v1 v2 e1) k = Preorder-str.trans (snd [ τ ]t) (Monotone.f (interpE (subst e1 (lem4' Θ v1 v2))) k) (Monotone.f (interpE (subst e1 (s-extend (s-extend Θ)))) (Monotone.f (interpS (lem4 v1 v2)) k)) (Monotone.f (interpE (subst (subst e1 (s-extend (s-extend Θ))) (lem4 v1 v2))) k) (Preorder-str.trans (snd [ τ ]t) (Monotone.f (interpE (subst e1 (lem4' Θ v1 v2))) k) (Monotone.f (interpE e1) (Monotone.f (interpS (lem4' Θ v1 v2)) k)) (Monotone.f (interpE (subst e1 (s-extend (s-extend Θ)))) (Monotone.f (interpS (lem4 v1 v2)) k)) (subst-eq-l (lem4' Θ v1 v2) e1 k) (Preorder-str.trans (snd [ τ ]t) (Monotone.f (interpE e1) (Monotone.f (interpS (lem4' Θ v1 v2)) k)) (Monotone.f (interpE e1) (Monotone.f (interpS {nat :: τ :: Γ} {nat :: τ :: Γ'} (s-extend (s-extend Θ))) (Monotone.f (interpS (lem4 v1 v2)) k))) (Monotone.f (interpE (subst e1 (s-extend (s-extend Θ)))) (Monotone.f (interpS (lem4 v1 v2)) k)) (Monotone.is-monotone (interpE e1) (Monotone.f (interpS (lem4' Θ v1 v2)) k) (Monotone.f (interpS {nat :: τ :: Γ} {nat :: τ :: Γ'} (s-extend (s-extend Θ))) (Monotone.f (interpS (lem4 v1 v2)) k)) (((Preorder-str.trans (snd [ Γ' ]c) (Monotone.f (interpS Θ) k) (Monotone.f (interpS (λ x → subst (ren (Θ x) iS) (lem3' ids v2))) k) (Monotone.f (interpS (λ x → ren (ren (Θ x) iS) iS)) ((Monotone.f (interpS {Γ} ids) k , Monotone.f (interpE v2) k) , Monotone.f (interpE v1) k)) (interp-subst-comp-r Θ v2 k) (interp-subst-comp2-r Θ k v1 v2)) , (Preorder-str.refl (snd [ τ ]t) (Monotone.f (interpE v2) k))) , (Preorder-str.refl (snd [ nat ]t) (Monotone.f (interpE v1) k)))) (subst-eq-r (s-extend (s-extend Θ)) e1 (Monotone.f (interpS (lem4 v1 v2)) k)))) (subst-eq-r (lem4 v1 v2) (subst e1 (s-extend (s-extend Θ))) k) sound {Γ} {τ} ._ .(subst e (lem3' (lem3' (lem3' Θ v3) v2) v1)) (subst-compose5-l {.Γ} {Γ'} {.τ} {τ1} {τ2} {τ3} Θ e v1 v2 v3) k = Preorder-str.trans (snd [ τ ]t) (Monotone.f (interpE (subst (subst e (s-extend (s-extend (s-extend Θ)))) (lem3' (lem3' (lem3' ids v3) v2) v1))) k) (Monotone.f (interpE (subst e (s-extend (s-extend (s-extend Θ))))) (Monotone.f (interpS (lem3' (lem3' (lem3' ids v3) v2) v1)) k)) (Monotone.f (interpE (subst e (lem3' (lem3' (lem3' Θ v3) v2) v1))) k) (subst-eq-l (lem3' (lem3' (lem3' ids v3) v2) v1) (subst e (s-extend (s-extend (s-extend Θ)))) k) (Preorder-str.trans (snd [ τ ]t) (Monotone.f (interpE (subst e (s-extend (s-extend (s-extend Θ))))) (Monotone.f (interpS (lem3' (lem3' (lem3' ids v3) v2) v1)) k)) (Monotone.f (interpE e) (Monotone.f (interpS (lem3' (lem3' (lem3' Θ v3) v2) v1)) k)) (Monotone.f (interpE (subst e (lem3' (lem3' (lem3' Θ v3) v2) v1))) k) (Preorder-str.trans (snd [ τ ]t) (Monotone.f (interpE (subst e (s-extend (s-extend (s-extend Θ))))) (Monotone.f (interpS (lem3' (lem3' (lem3' ids v3) v2) v1)) k)) (Monotone.f (interpE e) (Monotone.f (interpS {τ1 :: τ2 :: τ3 :: Γ} {τ1 :: τ2 :: τ3 :: Γ'} (s-extend (s-extend (s-extend Θ)))) (Monotone.f (interpS {Γ} {τ1 :: τ2 :: τ3 :: Γ} (lem3' (lem3' (lem3' ids v3) v2) v1)) k))) (Monotone.f (interpE e) (Monotone.f (interpS (lem3' (lem3' (lem3' Θ v3) v2) v1)) k)) (subst-eq-l (s-extend (s-extend (s-extend Θ))) e (Monotone.f (interpS (lem3' (lem3' (lem3' ids v3) v2) v1)) k)) (Monotone.is-monotone (interpE e) (Monotone.f (interpS {τ1 :: τ2 :: τ3 :: Γ} {τ1 :: τ2 :: τ3 :: Γ'} (s-extend (s-extend (s-extend Θ)))) (Monotone.f (interpS {Γ} {τ1 :: τ2 :: τ3 :: Γ} (lem3' (lem3' (lem3' ids v3) v2) v1)) k)) (Monotone.f (interpS (lem3' (lem3' (lem3' Θ v3) v2) v1)) k) ((((Preorder-str.trans (snd [ Γ' ]c) (Monotone.f (interpS (λ x → ren (ren (ren (Θ x) iS) iS) iS)) (((Monotone.f (interpS {Γ} ids) k , Monotone.f (interpE v3) k) , Monotone.f (interpE v2) k) , Monotone.f (interpE v1) k)) (Monotone.f (interpS (λ x → subst (ren (Θ x) iS) (lem3' ids v3))) k) (Monotone.f (interpS Θ) k) (Preorder-str.trans (snd [ Γ' ]c) (Monotone.f (interpS (λ x → ren (ren (ren (Θ x) iS) iS) iS)) (((Monotone.f (interpS {Γ} ids) k , Monotone.f (interpE v3) k) , Monotone.f (interpE v2) k) , Monotone.f (interpE v1) k)) (Monotone.f (interpS (λ x → ren (ren (Θ x) iS) iS)) ((Monotone.f (interpS {Γ} ids) k , Monotone.f (interpE v3) k) , Monotone.f (interpE v2) k)) (Monotone.f (interpS (λ x → subst (ren (Θ x) iS) (lem3' ids v3))) k) (interp-subst-comp3-l Θ k v3 v2 v1) (interp-subst-comp2-l Θ k v2 v3)) (interp-subst-comp-l Θ v3 k)) , (Preorder-str.refl (snd [ τ3 ]t) (Monotone.f (interpE v3) k))) , (Preorder-str.refl (snd [ τ2 ]t) (Monotone.f (interpE v2) k))) , (Preorder-str.refl (snd [ τ1 ]t) (Monotone.f (interpE v1) k))))) (subst-eq-r (lem3' (lem3' (lem3' Θ v3) v2) v1) e k)) sound {Γ} {τ} .(subst e (lem3' (lem3' (lem3' Θ v3) v2) v1)) ._ (subst-compose5-r {.Γ} {Γ'} {.τ} {τ1} {τ2} {τ3} Θ e v1 v2 v3) k = Preorder-str.trans (snd [ τ ]t) (Monotone.f (interpE (subst e (lem3' (lem3' (lem3' Θ v3) v2) v1))) k) (Monotone.f (interpE (subst e (s-extend (s-extend (s-extend Θ))))) (Monotone.f (interpS (lem3' (lem3' (lem3' ids v3) v2) v1)) k)) (Monotone.f (interpE (subst (subst e (s-extend (s-extend (s-extend Θ)))) (lem3' (lem3' (lem3' ids v3) v2) v1))) k) (Preorder-str.trans (snd [ τ ]t) (Monotone.f (interpE (subst e (lem3' (lem3' (lem3' Θ v3) v2) v1))) k) (Monotone.f (interpE e) (Monotone.f (interpS (lem3' (lem3' (lem3' Θ v3) v2) v1)) k)) (Monotone.f (interpE (subst e (s-extend (s-extend (s-extend Θ))))) (Monotone.f (interpS (lem3' (lem3' (lem3' ids v3) v2) v1)) k)) (subst-eq-l (lem3' (lem3' (lem3' Θ v3) v2) v1) e k) (Preorder-str.trans (snd [ τ ]t) (Monotone.f (interpE e) (Monotone.f (interpS (lem3' (lem3' (lem3' Θ v3) v2) v1)) k)) (Monotone.f (interpE e) (Monotone.f (interpS {τ1 :: τ2 :: τ3 :: Γ} {τ1 :: τ2 :: τ3 :: Γ'} (s-extend (s-extend (s-extend Θ)))) (Monotone.f (interpS {Γ} {τ1 :: τ2 :: τ3 :: Γ} (lem3' (lem3' (lem3' ids v3) v2) v1)) k))) (Monotone.f (interpE (subst e (s-extend (s-extend (s-extend Θ))))) (Monotone.f (interpS (lem3' (lem3' (lem3' ids v3) v2) v1)) k)) (Monotone.is-monotone (interpE e) (Monotone.f (interpS (lem3' (lem3' (lem3' Θ v3) v2) v1)) k) (Monotone.f (interpS {τ1 :: τ2 :: τ3 :: Γ} {τ1 :: τ2 :: τ3 :: Γ'} (s-extend (s-extend (s-extend Θ)))) (Monotone.f (interpS {Γ} {τ1 :: τ2 :: τ3 :: Γ} (lem3' (lem3' (lem3' ids v3) v2) v1)) k)) ((((Preorder-str.trans (snd [ Γ' ]c) (Monotone.f (interpS Θ) k) (Monotone.f (interpS (λ x → subst (ren (Θ x) iS) (lem3' ids v3))) k) (Monotone.f (interpS (λ x → ren (ren (ren (Θ x) iS) iS) iS)) (((Monotone.f (interpS {Γ} ids) k , Monotone.f (interpE v3) k) , Monotone.f (interpE v2) k) , Monotone.f (interpE v1) k)) (interp-subst-comp-r Θ v3 k) (Preorder-str.trans (snd [ Γ' ]c) (Monotone.f (interpS (λ x → subst (ren (Θ x) iS) (lem3' ids v3))) k) (Monotone.f (interpS (λ x → ren (ren (Θ x) iS) iS)) ((Monotone.f (interpS {Γ} ids) k , Monotone.f (interpE v3) k) , Monotone.f (interpE v2) k)) (Monotone.f (interpS (λ x → ren (ren (ren (Θ x) iS) iS) iS)) (((Monotone.f (interpS {Γ} ids) k , Monotone.f (interpE v3) k) , Monotone.f (interpE v2) k) , Monotone.f (interpE v1) k)) (interp-subst-comp2-r Θ k v2 v3) (interp-subst-comp3-r Θ k v3 v2 v1))) , (Preorder-str.refl (snd [ τ3 ]t) (Monotone.f (interpE v3) k))) , (Preorder-str.refl (snd [ τ2 ]t) (Monotone.f (interpE v2) k))) , (Preorder-str.refl (snd [ τ1 ]t) (Monotone.f (interpE v1) k)))) (subst-eq-r (s-extend (s-extend (s-extend Θ))) e (Monotone.f (interpS (lem3' (lem3' (lem3' ids v3) v2) v1)) k)))) (subst-eq-r (lem3' (lem3' (lem3' ids v3) v2) v1) (subst e (s-extend (s-extend (s-extend Θ)))) k)
66.622543
172
0.510199
0b4d117d685182d62c12f31b02d1603938b14df1
1,498
agda
Agda
agda-stdlib/src/Data/Product/Properties/WithK.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
5
2020-10-07T12:07:53.000Z
2020-10-10T21:41:32.000Z
agda-stdlib/src/Data/Product/Properties/WithK.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
null
null
null
agda-stdlib/src/Data/Product/Properties/WithK.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
1
2021-11-04T06:54:45.000Z
2021-11-04T06:54:45.000Z
------------------------------------------------------------------------ -- The Agda standard library -- -- Properties, related to products, that rely on the K rule ------------------------------------------------------------------------ {-# OPTIONS --with-K --safe #-} module Data.Product.Properties.WithK where open import Data.Bool.Base open import Data.Product open import Data.Product.Properties using (,-injectiveˡ) open import Function open import Relation.Binary using (Decidable) open import Relation.Binary.PropositionalEquality open import Relation.Nullary.Reflects open import Relation.Nullary using (Dec; _because_; yes; no) open import Relation.Nullary.Decidable using (map′) ------------------------------------------------------------------------ -- Equality module _ {a b} {A : Set a} {B : Set b} where ,-injective : ∀ {a c : A} {b d : B} → (a , b) ≡ (c , d) → a ≡ c × b ≡ d ,-injective refl = refl , refl module _ {a b} {A : Set a} {B : A → Set b} where ,-injectiveʳ : ∀ {a} {b c : B a} → (Σ A B ∋ (a , b)) ≡ (a , c) → b ≡ c ,-injectiveʳ refl = refl -- Note: this is not an instance of `_×-dec_`, because we need `x` and `y` -- to have the same type before we can test them for equality. ≡-dec : Decidable _≡_ → (∀ {a} → Decidable {A = B a} _≡_) → Decidable {A = Σ A B} _≡_ ≡-dec dec₁ dec₂ (a , x) (b , y) with dec₁ a b ... | false because [a≢b] = no (invert [a≢b] ∘ ,-injectiveˡ) ... | yes refl = map′ (cong (a ,_)) ,-injectiveʳ (dec₂ x y)
36.536585
76
0.537383
50f283f9d705302f2154004ab015a36ff247adf3
2,617
agda
Agda
theorems/cw/cohomology/reconstructed/HigherCoboundaryGrid.agda
AntoineAllioux/HoTT-Agda
1037d82edcf29b620677a311dcfd4fc2ade2faa6
[ "MIT" ]
294
2015-01-09T16:23:23.000Z
2022-03-20T13:54:45.000Z
theorems/cw/cohomology/reconstructed/HigherCoboundaryGrid.agda
AntoineAllioux/HoTT-Agda
1037d82edcf29b620677a311dcfd4fc2ade2faa6
[ "MIT" ]
31
2015-03-05T20:09:00.000Z
2021-10-03T19:15:25.000Z
theorems/cw/cohomology/reconstructed/HigherCoboundaryGrid.agda
AntoineAllioux/HoTT-Agda
1037d82edcf29b620677a311dcfd4fc2ade2faa6
[ "MIT" ]
50
2015-01-10T01:48:08.000Z
2022-02-14T03:03:25.000Z
{-# OPTIONS --without-K --rewriting #-} open import HoTT open import groups.Exactness open import groups.ExactSequence open import cw.CW open import cohomology.Theory module cw.cohomology.reconstructed.HigherCoboundaryGrid {i} (OT : OrdinaryTheory i) {n} (⊙skel : ⊙Skeleton {i} (S (S n))) (ac : ⊙has-cells-with-choice 0 ⊙skel i) where open OrdinaryTheory OT open import cw.cohomology.WedgeOfCells OT open import cw.cohomology.grid.PtdMap (⊙cw-incl-last (⊙cw-init ⊙skel)) (⊙cw-incl-last ⊙skel) open import cw.cohomology.reconstructed.HigherCoboundary OT ⊙skel import cw.cohomology.grid.LongExactSequence private module GLES n = cw.cohomology.grid.LongExactSequence cohomology-theory n (⊙cw-incl-last (⊙cw-init ⊙skel)) (⊙cw-incl-last ⊙skel) {- Xn --> X(n+1) -----> X(n+2) | | | v v v 1 -> X(n+1)/n ---> X(n+2)/n | this | v one v 1 -----> X(n+2)/(n+1) -} private n≤SSn : n ≤ S (S n) n≤SSn = inr (ltSR ltS) private -- separate lemmas to speed up the type checking abstract lemma₀-exact₀ : is-exact (C-fmap (ℕ-to-ℤ (S n)) Z/X-to-Z/Y) (C-fmap (ℕ-to-ℤ (S n)) Y/X-to-Z/X) lemma₀-exact₀ = exact-seq-index 2 $ GLES.C-grid-cofiber-exact-seq (ℕ-to-ℤ n) lemma₀-exact₁ : is-exact (C-fmap (ℕ-to-ℤ (S n)) Y/X-to-Z/X) cw-co∂-last lemma₀-exact₁ = exact-seq-index 0 $ GLES.C-grid-cofiber-exact-seq (ℕ-to-ℤ (S n)) lemma₀-trivial : is-trivialᴳ (C (ℕ-to-ℤ (S n)) Z/Y) lemma₀-trivial = CXₙ/Xₙ₋₁-<-is-trivial ⊙skel ltS ac Ker-cw-co∂-last : C (ℕ-to-ℤ (S n)) (⊙Cofiber (⊙cw-incl-tail n≤SSn ⊙skel)) ≃ᴳ Ker.grp cw-co∂-last Ker-cw-co∂-last = Exact2.G-trivial-implies-H-iso-ker lemma₀-exact₀ lemma₀-exact₁ lemma₀-trivial private -- separate lemmas to speed up the type checking abstract lemma₁-exact₀ : is-exact cw-co∂-last (C-fmap (ℕ-to-ℤ (S (S n))) Z/X-to-Z/Y) lemma₁-exact₀ = exact-seq-index 1 $ GLES.C-grid-cofiber-exact-seq (ℕ-to-ℤ (S n)) lemma₁-exact₁ : is-exact (C-fmap (ℕ-to-ℤ (S (S n))) Z/X-to-Z/Y) (C-fmap (ℕ-to-ℤ (S (S n))) Y/X-to-Z/X) lemma₁-exact₁ = exact-seq-index 2 $ GLES.C-grid-cofiber-exact-seq (ℕ-to-ℤ (S n)) lemma₁-trivial : is-trivialᴳ (C (ℕ-to-ℤ (S (S n))) Y/X) lemma₁-trivial = CXₙ/Xₙ₋₁->-is-trivial (⊙cw-init ⊙skel) ltS (⊙init-has-cells-with-choice ⊙skel ac) Coker-cw-co∂-last : CokerCo∂ ≃ᴳ C (ℕ-to-ℤ (S (S n))) (⊙Cofiber (⊙cw-incl-tail n≤SSn ⊙skel)) Coker-cw-co∂-last = Exact2.L-trivial-implies-coker-iso-K lemma₁-exact₀ lemma₁-exact₁ (CXₙ/Xₙ₋₁-is-abelian ⊙skel (ℕ-to-ℤ (S (S n)))) lemma₁-trivial
36.347222
92
0.620558
0e33fab0106ddf44389bd36e97afde92a4c40204
11,639
agda
Agda
Cubical/Algebra/Ring/QuotientRing.agda
guilhermehas/cubical
ce3120d3f8d692847b2744162bcd7a01f0b687eb
[ "MIT" ]
1
2021-10-31T17:32:49.000Z
2021-10-31T17:32:49.000Z
Cubical/Algebra/Ring/QuotientRing.agda
guilhermehas/cubical
ce3120d3f8d692847b2744162bcd7a01f0b687eb
[ "MIT" ]
null
null
null
Cubical/Algebra/Ring/QuotientRing.agda
guilhermehas/cubical
ce3120d3f8d692847b2744162bcd7a01f0b687eb
[ "MIT" ]
null
null
null
{-# OPTIONS --safe #-} module Cubical.Algebra.Ring.QuotientRing where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Equiv open import Cubical.Foundations.HLevels open import Cubical.Foundations.Structure open import Cubical.Foundations.Powerset using (_∈_; _⊆_; ⊆-extensionality) -- \in, \sub= open import Cubical.Data.Sigma using (Σ≡Prop) open import Cubical.Relation.Binary open import Cubical.HITs.SetQuotients.Base renaming (_/_ to _/ₛ_) open import Cubical.HITs.SetQuotients.Properties open import Cubical.Algebra.Ring open import Cubical.Algebra.Ring.Ideal open import Cubical.Algebra.Ring.Kernel open import Cubical.Algebra.CommRingSolver.Reflection private variable ℓ ℓ' : Level module _ (R' : Ring ℓ) (I : ⟨ R' ⟩ → hProp ℓ) (I-isIdeal : isIdeal R' I) where open RingStr (snd R') private R = ⟨ R' ⟩ open isIdeal I-isIdeal open RingTheory R' R/I : Type ℓ R/I = R /ₛ (λ x y → x - y ∈ I) private homogeneity : ∀ (x a b : R) → (a - b ∈ I) → (x + a) - (x + b) ∈ I homogeneity x a b p = subst (λ u → u ∈ I) (translatedDifference x a b) p isSetR/I : isSet R/I isSetR/I = squash/ [_]/I : (a : R) → R/I [ a ]/I = [ a ] lemma : (x y a : R) → x - y ∈ I → [ x + a ]/I ≡ [ y + a ]/I lemma x y a x-y∈I = eq/ (x + a) (y + a) (subst (λ u → u ∈ I) calculate x-y∈I) where calculate : x - y ≡ (x + a) - (y + a) calculate = x - y ≡⟨ translatedDifference a x y ⟩ ((a + x) - (a + y)) ≡⟨ cong (λ u → u - (a + y)) (+Comm _ _) ⟩ ((x + a) - (a + y)) ≡⟨ cong (λ u → (x + a) - u) (+Comm _ _) ⟩ ((x + a) - (y + a)) ∎ pre-+/I : R → R/I → R/I pre-+/I x = elim (λ _ → squash/) (λ y → [ x + y ]) λ y y' diffrenceInIdeal → eq/ (x + y) (x + y') (homogeneity x y y' diffrenceInIdeal) pre-+/I-DescendsToQuotient : (x y : R) → (x - y ∈ I) → pre-+/I x ≡ pre-+/I y pre-+/I-DescendsToQuotient x y x-y∈I i r = pointwise-equal r i where pointwise-equal : ∀ (u : R/I) → pre-+/I x u ≡ pre-+/I y u pointwise-equal = elimProp (λ u → isSetR/I (pre-+/I x u) (pre-+/I y u)) (λ a → lemma x y a x-y∈I) _+/I_ : R/I → R/I → R/I x +/I y = (elim R/I→R/I-isSet pre-+/I pre-+/I-DescendsToQuotient x) y where R/I→R/I-isSet : R/I → isSet (R/I → R/I) R/I→R/I-isSet _ = isSetΠ (λ _ → squash/) -- Note that _+/I_ reduces in this case: _ : (x y : R) → [ x ] +/I [ y ] ≡ [ x + y ] _ = λ x y → refl +/I-comm : (x y : R/I) → x +/I y ≡ y +/I x +/I-comm = elimProp2 (λ _ _ → squash/ _ _) eq where eq : (x y : R) → [ x ] +/I [ y ] ≡ [ y ] +/I [ x ] eq x y i = [ +Comm x y i ] +/I-assoc : (x y z : R/I) → x +/I (y +/I z) ≡ (x +/I y) +/I z +/I-assoc = elimProp3 (λ _ _ _ → squash/ _ _) eq where eq : (x y z : R) → [ x ] +/I ([ y ] +/I [ z ]) ≡ ([ x ] +/I [ y ]) +/I [ z ] eq x y z i = [ +Assoc x y z i ] 0/I : R/I 0/I = [ 0r ] 1/I : R/I 1/I = [ 1r ] -/I : R/I → R/I -/I = elim (λ _ → squash/) (λ x' → [ - x' ]) eq where eq : (x y : R) → (x - y ∈ I) → [ - x ] ≡ [ - y ] eq x y x-y∈I = eq/ (- x) (- y) (subst (λ u → u ∈ I) eq' (isIdeal.-closed I-isIdeal x-y∈I)) where eq' = - (x + (- y)) ≡⟨ sym (-Dist _ _) ⟩ (- x) - (- y) ∎ +/I-rinv : (x : R/I) → x +/I (-/I x) ≡ 0/I +/I-rinv = elimProp (λ x → squash/ _ _) eq where eq : (x : R) → [ x ] +/I (-/I [ x ]) ≡ 0/I eq x i = [ +Rinv x i ] +/I-rid : (x : R/I) → x +/I 0/I ≡ x +/I-rid = elimProp (λ x → squash/ _ _) eq where eq : (x : R) → [ x ] +/I 0/I ≡ [ x ] eq x i = [ +Rid x i ] _·/I_ : R/I → R/I → R/I _·/I_ = elim (λ _ → isSetΠ (λ _ → squash/)) (λ x → left· x) eq' where eq : (x y y' : R) → (y - y' ∈ I) → [ x · y ] ≡ [ x · y' ] eq x y y' y-y'∈I = eq/ _ _ (subst (λ u → u ∈ I) (x · (y - y') ≡⟨ ·Rdist+ _ _ _ ⟩ ((x · y) + x · (- y')) ≡⟨ cong (λ u → (x · y) + u) (-DistR· x y') ⟩ (x · y) - (x · y') ∎) (isIdeal.·-closedLeft I-isIdeal x y-y'∈I)) left· : (x : R) → R/I → R/I left· x = elim (λ y → squash/) (λ y → [ x · y ]) (eq x) eq' : (x x' : R) → (x - x' ∈ I) → left· x ≡ left· x' eq' x x' x-x'∈I i y = elimProp (λ y → squash/ (left· x y) (left· x' y)) (λ y → eq′ y) y i where eq′ : (y : R) → left· x [ y ] ≡ left· x' [ y ] eq′ y = eq/ (x · y) (x' · y) (subst (λ u → u ∈ I) ((x - x') · y ≡⟨ ·Ldist+ x (- x') y ⟩ x · y + (- x') · y ≡⟨ cong (λ u → x · y + u) (-DistL· x' y) ⟩ x · y - x' · y ∎) (isIdeal.·-closedRight I-isIdeal y x-x'∈I)) -- more or less copy paste from '+/I' - this is preliminary anyway ·/I-assoc : (x y z : R/I) → x ·/I (y ·/I z) ≡ (x ·/I y) ·/I z ·/I-assoc = elimProp3 (λ _ _ _ → squash/ _ _) eq where eq : (x y z : R) → [ x ] ·/I ([ y ] ·/I [ z ]) ≡ ([ x ] ·/I [ y ]) ·/I [ z ] eq x y z i = [ ·Assoc x y z i ] ·/I-lid : (x : R/I) → 1/I ·/I x ≡ x ·/I-lid = elimProp (λ x → squash/ _ _) eq where eq : (x : R) → 1/I ·/I [ x ] ≡ [ x ] eq x i = [ ·Lid x i ] ·/I-rid : (x : R/I) → x ·/I 1/I ≡ x ·/I-rid = elimProp (λ x → squash/ _ _) eq where eq : (x : R) → [ x ] ·/I 1/I ≡ [ x ] eq x i = [ ·Rid x i ] /I-ldist : (x y z : R/I) → (x +/I y) ·/I z ≡ (x ·/I z) +/I (y ·/I z) /I-ldist = elimProp3 (λ _ _ _ → squash/ _ _) eq where eq : (x y z : R) → ([ x ] +/I [ y ]) ·/I [ z ] ≡ ([ x ] ·/I [ z ]) +/I ([ y ] ·/I [ z ]) eq x y z i = [ ·Ldist+ x y z i ] /I-rdist : (x y z : R/I) → x ·/I (y +/I z) ≡ (x ·/I y) +/I (x ·/I z) /I-rdist = elimProp3 (λ _ _ _ → squash/ _ _) eq where eq : (x y z : R) → [ x ] ·/I ([ y ] +/I [ z ]) ≡ ([ x ] ·/I [ y ]) +/I ([ x ] ·/I [ z ]) eq x y z i = [ ·Rdist+ x y z i ] asRing : Ring ℓ asRing = makeRing 0/I 1/I _+/I_ _·/I_ -/I isSetR/I +/I-assoc +/I-rid +/I-rinv +/I-comm ·/I-assoc ·/I-rid ·/I-lid /I-rdist /I-ldist _/_ : (R : Ring ℓ) → (I : IdealsIn R) → Ring ℓ R / (I , IisIdeal) = asRing R I IisIdeal [_]/I : {R : Ring ℓ} {I : IdealsIn R} → (a : ⟨ R ⟩) → ⟨ R / I ⟩ [ a ]/I = [ a ] quotientHom : (R : Ring ℓ) → (I : IdealsIn R) → RingHom R (R / I) fst (quotientHom R I) = [_] IsRingHom.pres0 (snd (quotientHom R I)) = refl IsRingHom.pres1 (snd (quotientHom R I)) = refl IsRingHom.pres+ (snd (quotientHom R I)) _ _ = refl IsRingHom.pres· (snd (quotientHom R I)) _ _ = refl IsRingHom.pres- (snd (quotientHom R I)) _ = refl module UniversalProperty (R : Ring ℓ) (I : IdealsIn R) where open RingStr ⦃...⦄ open RingTheory ⦃...⦄ Iₛ = fst I private instance _ = R _ = snd R module _ {S : Ring ℓ'} (φ : RingHom R S) where open IsRingHom open RingHomTheory φ private instance _ = S _ = snd S f = fst φ module φ = IsRingHom (snd φ) {- We do not use the kernel ideal, since it is *not* an ideal in R, if S is from a different universe. Instead, the condition, that Iₛ is contained in the kernel of φ is rephrased explicitly. -} inducedHom : ((x : ⟨ R ⟩) → x ∈ Iₛ → φ $ x ≡ 0r) → RingHom (R / I) S fst (inducedHom Iₛ⊆kernel) = elim (λ _ → isSetRing S) f λ r₁ r₂ r₁-r₂∈I → equalByDifference (f r₁) (f r₂) (f r₁ - f r₂ ≡⟨ cong (λ u → f r₁ + u) (sym (φ.pres- _)) ⟩ f r₁ + f (- r₂) ≡⟨ sym (φ.pres+ _ _) ⟩ f (r₁ - r₂) ≡⟨ Iₛ⊆kernel (r₁ - r₂) r₁-r₂∈I ⟩ 0r ∎) pres0 (snd (inducedHom Iₛ⊆kernel)) = φ.pres0 pres1 (snd (inducedHom Iₛ⊆kernel)) = φ.pres1 pres+ (snd (inducedHom Iₛ⊆kernel)) = elimProp2 (λ _ _ → isSetRing S _ _) φ.pres+ pres· (snd (inducedHom Iₛ⊆kernel)) = elimProp2 (λ _ _ → isSetRing S _ _) φ.pres· pres- (snd (inducedHom Iₛ⊆kernel)) = elimProp (λ _ → isSetRing S _ _) φ.pres- solution : (p : ((x : ⟨ R ⟩) → x ∈ Iₛ → φ $ x ≡ 0r)) → (x : ⟨ R ⟩) → inducedHom p $ [ x ] ≡ φ $ x solution p x = refl unique : (p : ((x : ⟨ R ⟩) → x ∈ Iₛ → φ $ x ≡ 0r)) → (ψ : RingHom (R / I) S) → (ψIsSolution : (x : ⟨ R ⟩) → ψ $ [ x ] ≡ φ $ x) → (x : ⟨ R ⟩) → ψ $ [ x ] ≡ inducedHom p $ [ x ] unique p ψ ψIsSolution x = ψIsSolution x {- Show that the kernel of the quotient map π : R ─→ R/I is the given ideal I. -} module idealIsKernel {R : Ring ℓ} (I : IdealsIn R) where open RingStr (snd R) open isIdeal (snd I) open BinaryRelation.isEquivRel private π = quotientHom R I x-0≡x : (x : ⟨ R ⟩) → x - 0r ≡ x x-0≡x x = x - 0r ≡⟨ cong (x +_) (RingTheory.0Selfinverse R) ⟩ x + 0r ≡⟨ +Rid x ⟩ x ∎ I⊆ker : fst I ⊆ kernel π I⊆ker x x∈I = eq/ _ _ (subst (_∈ fst I) (sym (x-0≡x x)) x∈I) private _~_ : Rel ⟨ R ⟩ ⟨ R ⟩ ℓ x ~ y = x - y ∈ fst I ~IsPropValued : BinaryRelation.isPropValued _~_ ~IsPropValued x y = snd (fst I (x - y)) -- _~_ is an equivalence relation. -- Note: This could be proved in the general setting of a subgroup of a group. -[x-y]≡y-x : {x y : ⟨ R ⟩} → - (x - y) ≡ y - x -[x-y]≡y-x {x} {y} = - (x - y) ≡⟨ sym (-Dist _ _) ⟩ - x + - (- y) ≡⟨ cong (- x +_) (-Idempotent _) ⟩ - x + y ≡⟨ +Comm _ _ ⟩ y - x ∎ where open RingTheory R x-y+y-z≡x-z : {x y z : ⟨ R ⟩} → (x - y) + (y - z) ≡ x - z x-y+y-z≡x-z {x} {y} {z} = (x + - y) + (y + - z) ≡⟨ +Assoc _ _ _ ⟩ ((x + - y) + y) + - z ≡⟨ cong (_+ - z) (sym (+Assoc _ _ _)) ⟩ (x + (- y + y)) + - z ≡⟨ cong (λ -y+y → (x + -y+y) + - z) (+Linv _) ⟩ (x + 0r) + - z ≡⟨ cong (_+ - z) (+Rid _) ⟩ x - z ∎ ~IsEquivRel : BinaryRelation.isEquivRel _~_ reflexive ~IsEquivRel x = subst (_∈ fst I) (sym (+Rinv x)) 0r-closed symmetric ~IsEquivRel x y x~y = subst (_∈ fst I) -[x-y]≡y-x (-closed x~y) transitive ~IsEquivRel x y z x~y y~z = subst (_∈ fst I) x-y+y-z≡x-z (+-closed x~y y~z) ker⊆I : kernel π ⊆ fst I ker⊆I x x∈ker = subst (_∈ fst I) (x-0≡x x) x-0∈I where x-0∈I : x - 0r ∈ fst I x-0∈I = effective ~IsPropValued ~IsEquivRel x 0r x∈ker kernel≡I : {R : Ring ℓ} (I : IdealsIn R) → kernelIdeal (quotientHom R I) ≡ I kernel≡I {R = R} I = Σ≡Prop (isPropIsIdeal R) (⊆-extensionality _ _ (ker⊆I , I⊆ker)) where open idealIsKernel I
36.258567
98
0.414383
109002dc1342b8c8da5975110a189ccb2e33089b
6,804
agda
Agda
Cubical/Structures/Relational/Function.agda
guilhermehas/cubical
ce3120d3f8d692847b2744162bcd7a01f0b687eb
[ "MIT" ]
1
2021-10-31T17:32:49.000Z
2021-10-31T17:32:49.000Z
Cubical/Structures/Relational/Function.agda
guilhermehas/cubical
ce3120d3f8d692847b2744162bcd7a01f0b687eb
[ "MIT" ]
null
null
null
Cubical/Structures/Relational/Function.agda
guilhermehas/cubical
ce3120d3f8d692847b2744162bcd7a01f0b687eb
[ "MIT" ]
null
null
null
{- Index a structure T a positive structure S: X ↦ S X → T X -} {-# OPTIONS --safe #-} module Cubical.Structures.Relational.Function where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Equiv open import Cubical.Foundations.Function open import Cubical.Foundations.HLevels open import Cubical.Foundations.Structure open import Cubical.Foundations.RelationalStructure open import Cubical.Foundations.Univalence open import Cubical.Functions.FunExtEquiv open import Cubical.Data.Sigma open import Cubical.Relation.Binary.Base open import Cubical.Relation.ZigZag.Base open import Cubical.HITs.SetQuotients open import Cubical.HITs.PropositionalTruncation as Trunc open import Cubical.Structures.Function private variable ℓ ℓ₁ ℓ₁' ℓ₁'' ℓ₂ ℓ₂' ℓ₂'' : Level FunctionRelStr : {S : Type ℓ → Type ℓ₁} {T : Type ℓ → Type ℓ₂} → StrRel S ℓ₁' → StrRel T ℓ₂' → StrRel (FunctionStructure S T) (ℓ-max ℓ₁ (ℓ-max ℓ₁' ℓ₂')) FunctionRelStr ρ₁ ρ₂ R f g = ∀ {x y} → ρ₁ R x y → ρ₂ R (f x) (g y) open BinaryRelation open isEquivRel private composeWith[_] : {A : Type ℓ} (R : EquivPropRel A ℓ) → compPropRel (R .fst) (quotientPropRel (R .fst .fst)) .fst ≡ graphRel [_] composeWith[_] R = funExt₂ λ a t → hPropExt squash₁ (squash/ _ _) (Trunc.rec (squash/ _ _) (λ {(b , r , p) → eq/ a b r ∙ p })) (λ p → ∣ a , R .snd .reflexive a , p ∣₁) [_]∙[_]⁻¹ : {A : Type ℓ} (R : EquivPropRel A ℓ) → compPropRel (quotientPropRel (R .fst .fst)) (invPropRel (quotientPropRel (R .fst .fst))) .fst ≡ R .fst .fst [_]∙[_]⁻¹ R = funExt₂ λ a b → hPropExt squash₁ (R .fst .snd a b) (Trunc.rec (R .fst .snd a b) (λ {(c , p , q) → effective (R .fst .snd) (R .snd) a b (p ∙ sym q)})) (λ r → ∣ _ , eq/ a b r , refl ∣₁) functionSuitableRel : {S : Type ℓ → Type ℓ₁} {T : Type ℓ → Type ℓ₂} {ρ₁ : StrRel S ℓ₁'} {ρ₂ : StrRel T ℓ₂'} (θ₁ : SuitableStrRel S ρ₁) → PositiveStrRel θ₁ → SuitableStrRel T ρ₂ → SuitableStrRel (FunctionStructure S T) (FunctionRelStr ρ₁ ρ₂) functionSuitableRel {S = S} {T = T} {ρ₁ = ρ₁} {ρ₂} θ₁ σ₁ θ₂ .quo (X , f) R h = final where ref : (s : S X) → ρ₁ (R .fst .fst) s s ref = posRelReflexive σ₁ R [f] : S X / ρ₁ (R .fst .fst) → T (X / R .fst .fst) [f] [ s ] = θ₂ .quo (X , f s) R (h (ref s)) .fst .fst [f] (eq/ s₀ s₁ r i) = cong fst (θ₂ .quo (X , f s₀) R (h (ref s₀)) .snd ( [f] [ s₁ ] , subst (λ R' → ρ₂ R' (f s₀) ([f] [ s₁ ])) (composeWith[_] R) (θ₂ .transitive (R .fst) (quotientPropRel (R .fst .fst)) (h r) (θ₂ .quo (X , f s₁) R (h (ref s₁)) .fst .snd)) )) i [f] (squash/ _ _ p q j i) = θ₂ .set squash/ _ _ (cong [f] p) (cong [f] q) j i relLemma : (s : S X) (t : S X) → ρ₁ (graphRel [_]) s (funIsEq (σ₁ .quo R) [ t ]) → ρ₂ (graphRel [_]) (f s) ([f] [ t ]) relLemma s t r = subst (λ R' → ρ₂ R' (f s) ([f] [ t ])) (composeWith[_] R) (θ₂ .transitive (R .fst) (quotientPropRel (R .fst .fst)) (h r') (θ₂ .quo (X , f t) R (h (ref t)) .fst .snd)) where r' : ρ₁ (R .fst .fst) s t r' = subst (λ R' → ρ₁ R' s t) ([_]∙[_]⁻¹ R) (θ₁ .transitive (quotientPropRel (R .fst .fst)) (invPropRel (quotientPropRel (R .fst .fst))) r (θ₁ .symmetric (quotientPropRel (R .fst .fst)) (subst (λ t' → ρ₁ (graphRel [_]) t' (funIsEq (σ₁ .quo R) [ t ])) (σ₁ .act .actStrId t) (σ₁ .act .actRel eq/ t t (ref t))))) quoRelLemma : (s : S X) (t : S X / ρ₁ (R .fst .fst)) → ρ₁ (graphRel [_]) s (funIsEq (σ₁ .quo R) t) → ρ₂ (graphRel [_]) (f s) ([f] t) quoRelLemma s = elimProp (λ _ → isPropΠ λ _ → θ₂ .prop (λ _ _ → squash/ _ _) _ _) (relLemma s) final : Σ (Σ _ _) _ final .fst .fst = [f] ∘ invIsEq (σ₁ .quo R) final .fst .snd {s} {t} r = quoRelLemma s (invIsEq (σ₁ .quo R) t) (subst (ρ₁ (graphRel [_]) s) (sym (secIsEq (σ₁ .quo R) t)) r) final .snd (f' , c) = Σ≡Prop (λ _ → isPropImplicitΠ λ s → isPropImplicitΠ λ t → isPropΠ λ _ → θ₂ .prop (λ _ _ → squash/ _ _) _ _) (funExt λ s → contractorLemma (invIsEq (σ₁ .quo R) s) ∙ cong f' (secIsEq (σ₁ .quo R) s)) where contractorLemma : (s : S X / ρ₁ (R .fst .fst)) → [f] s ≡ f' (funIsEq (σ₁ .quo R) s) contractorLemma = elimProp (λ _ → θ₂ .set squash/ _ _) (λ s → cong fst (θ₂ .quo (X , f s) R (h (ref s)) .snd ( f' (funIsEq (σ₁ .quo R) [ s ]) , c (subst (λ s' → ρ₁ (graphRel [_]) s' (funIsEq (σ₁ .quo R) [ s ])) (σ₁ .act .actStrId s) (σ₁ .act .actRel eq/ s s (ref s))) ))) functionSuitableRel {ρ₁ = ρ₁} {ρ₂} θ₁ σ θ₂ .symmetric R h r = θ₂ .symmetric R (h (θ₁ .symmetric (invPropRel R) r)) functionSuitableRel {ρ₁ = ρ₁} {ρ₂} θ₁ σ θ₂ .transitive R R' h h' rr' = Trunc.rec (θ₂ .prop (λ _ _ → squash₁) _ _) (λ {(_ , r , r') → θ₂ .transitive R R' (h r) (h' r')}) (σ .detransitive R R' rr') functionSuitableRel {ρ₁ = ρ₁} {ρ₂} θ₁ σ θ₂ .set setX = isSetΠ λ _ → θ₂ .set setX functionSuitableRel {ρ₁ = ρ₁} {ρ₂} θ₁ σ θ₂ .prop propR f g = isPropImplicitΠ λ _ → isPropImplicitΠ λ _ → isPropΠ λ _ → θ₂ .prop propR _ _ functionRelMatchesEquiv : {S : Type ℓ → Type ℓ₁} {T : Type ℓ → Type ℓ₂} (ρ₁ : StrRel S ℓ₁') {ι₁ : StrEquiv S ℓ₁''} (ρ₂ : StrRel T ℓ₂') {ι₂ : StrEquiv T ℓ₂''} → StrRelMatchesEquiv ρ₁ ι₁ → StrRelMatchesEquiv ρ₂ ι₂ → StrRelMatchesEquiv (FunctionRelStr ρ₁ ρ₂) (FunctionEquivStr ι₁ ι₂) functionRelMatchesEquiv ρ₁ ρ₂ μ₁ μ₂ (X , f) (Y , g) e = equivImplicitΠCod (equivImplicitΠCod (equiv→ (μ₁ _ _ e) (μ₂ _ _ e))) functionRelMatchesEquiv+ : {S : Type ℓ → Type ℓ₁} {T : Type ℓ → Type ℓ₂} (ρ₁ : StrRel S ℓ₁') (α₁ : EquivAction S) (ρ₂ : StrRel T ℓ₂') (ι₂ : StrEquiv T ℓ₂'') → StrRelMatchesEquiv ρ₁ (EquivAction→StrEquiv α₁) → StrRelMatchesEquiv ρ₂ ι₂ → StrRelMatchesEquiv (FunctionRelStr ρ₁ ρ₂) (FunctionEquivStr+ α₁ ι₂) functionRelMatchesEquiv+ ρ₁ α₁ ρ₂ ι₂ μ₁ μ₂ (X , f) (Y , g) e = compEquiv (functionRelMatchesEquiv ρ₁ ρ₂ μ₁ μ₂ (X , f) (Y , g) e) (isoToEquiv isom) where open Iso isom : Iso (FunctionEquivStr (EquivAction→StrEquiv α₁) ι₂ (X , f) (Y , g) e) (FunctionEquivStr+ α₁ ι₂ (X , f) (Y , g) e) isom .fun h s = h refl isom .inv k {x} = J (λ y _ → ι₂ (X , f x) (Y , g y) e) (k x) isom .rightInv k i x = JRefl (λ y _ → ι₂ (X , f x) (Y , g y) e) (k x) i isom .leftInv h = implicitFunExt λ {x} → implicitFunExt λ {y} → funExt λ p → J (λ y p → isom .inv (isom .fun h) p ≡ h p) (funExt⁻ (isom .rightInv (isom .fun h)) x) p
35.4375
99
0.559818
0b33568ca3f83047721432ed58c38564fd5172ad
2,012
agda
Agda
autotests/input/test.agda
danipozo/syntax-highlighting
4da852ec232411be5abc065c0f2ee21fdb016008
[ "MIT" ]
null
null
null
autotests/input/test.agda
danipozo/syntax-highlighting
4da852ec232411be5abc065c0f2ee21fdb016008
[ "MIT" ]
null
null
null
autotests/input/test.agda
danipozo/syntax-highlighting
4da852ec232411be5abc065c0f2ee21fdb016008
[ "MIT" ]
null
null
null
-- Agda Sample File -- https://github.com/agda/agda/blob/master/examples/syntax/highlighting/Test.agda -- This test file currently lacks module-related stuff. {- Nested {- comment. -} -} module Test where infix 12 _! infixl 7 _+_ _-_ infixr 2 -_ postulate x : Set f : (Set -> Set -> Set) -> Set f _*_ = x * x data ℕ : Set where zero : ℕ suc : ℕ -> ℕ _+_ : ℕ -> ℕ -> ℕ zero + n = n suc m + n = suc (m + n) postulate _-_ : ℕ -> ℕ -> ℕ -_ : ℕ -> ℕ - n = n _! : ℕ -> ℕ zero ! = suc zero suc n ! = n - n ! record Equiv {a : Set} (_≈_ : a -> a -> Set) : Set where field refl : forall x -> x ≈ x sym : {x y : a} -> x ≈ y -> y ≈ x _`trans`_ : forall {x y z} -> x ≈ y -> y ≈ z -> x ≈ z data _≡_ {a : Set} (x : a) : a -> Set where refl : x ≡ x subst : forall {a x y} -> (P : a -> Set) -> x ≡ y -> P x -> P y subst {x = x} .{y = x} _ refl p = p Equiv-≡ : forall {a} -> Equiv {a} _≡_ Equiv-≡ {a} = record { refl = \_ -> refl ; sym = sym ; _`trans`_ = _`trans`_ } where sym : {x y : a} -> x ≡ y -> y ≡ x sym refl = refl _`trans`_ : {x y z : a} -> x ≡ y -> y ≡ z -> x ≡ z refl `trans` refl = refl postulate String : Set Char : Set Float : Set data Int : Set where pos : ℕ → Int negsuc : ℕ → Int {-# BUILTIN STRING String #-} {-# BUILTIN CHAR Char #-} {-# BUILTIN FLOAT Float #-} {-# BUILTIN NATURAL ℕ #-} {-# BUILTIN INTEGER Int #-} {-# BUILTIN INTEGERPOS pos #-} {-# BUILTIN INTEGERNEGSUC negsuc #-} data [_] (a : Set) : Set where [] : [ a ] _∷_ : a -> [ a ] -> [ a ] {-# BUILTIN LIST [_] #-} {-# BUILTIN NIL [] #-} {-# BUILTIN CONS _∷_ #-} primitive primStringToList : String -> [ Char ] string : [ Char ] string = primStringToList "∃ apa" char : Char char = '∀' anotherString : String anotherString = "¬ be\ \pa" nat : ℕ nat = 45 float : Float float = 45.0e-37 -- Testing qualified names. open import Test Eq = Test.Equiv {Test.ℕ}
17.80531
82
0.503479
0bcf99ac81b46e3be72a334dedb0d5c34bf5d081
59,178
agda
Agda
src/Equivalence/Erased.agda
nad/equality
402b20615cfe9ca944662380d7b2d69b0f175200
[ "MIT" ]
3
2020-05-21T22:58:50.000Z
2021-09-02T17:18:15.000Z
src/Equivalence/Erased.agda
nad/equality
402b20615cfe9ca944662380d7b2d69b0f175200
[ "MIT" ]
null
null
null
src/Equivalence/Erased.agda
nad/equality
402b20615cfe9ca944662380d7b2d69b0f175200
[ "MIT" ]
null
null
null
------------------------------------------------------------------------ -- Equivalences with erased "proofs" ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} open import Equality module Equivalence.Erased {reflexive} (eq : ∀ {a p} → Equality-with-J a p reflexive) where open Derived-definitions-and-properties eq open import Logical-equivalence using (_⇔_) open import Prelude as P hiding (id; [_,_]) renaming (_∘_ to _⊚_) open import Bijection eq using (_↔_) open import Equivalence eq as Eq using (_≃_; Is-equivalence) import Equivalence.Contractible-preimages eq as CP open import Equivalence.Erased.Contractible-preimages eq as ECP using (_⁻¹ᴱ_; Contractibleᴱ) import Equivalence.Half-adjoint eq as HA open import Erased.Level-1 eq as Erased hiding (module []-cong; module []-cong₁; module []-cong₂-⊔) open import Function-universe eq as F hiding (id; _∘_; inverse; from-isomorphism; step-↔; _↔⟨⟩_; _□; finally-↔; $⟨_⟩_) open import H-level eq as H-level open import H-level.Closure eq import Nat eq as Nat open import Preimage eq as Preimage using (_⁻¹_) open import Surjection eq as Surjection using (_↠_; Split-surjective) open import Tactic.Sigma-cong eq open import Univalence-axiom eq private variable a b d ℓ ℓ₁ ℓ₂ q : Level A B C D : Type a c k k′ p x y : A P Q : A → Type p f g : (x : A) → P x ------------------------------------------------------------------------ -- Some basic stuff open import Equivalence.Erased.Basics eq public private variable A≃B : A ≃ᴱ B ------------------------------------------------------------------------ -- More conversion lemmas -- In an erased context Is-equivalence and Is-equivalenceᴱ are -- pointwise equivalent. @0 Is-equivalence≃Is-equivalenceᴱ : {A : Type a} {B : Type b} {f : A → B} → Is-equivalence f ≃ Is-equivalenceᴱ f Is-equivalence≃Is-equivalenceᴱ {f = f} = (∃ λ f⁻¹ → HA.Proofs f f⁻¹) F.↔⟨ (∃-cong λ _ → F.inverse $ erased Erased↔) ⟩□ (∃ λ f⁻¹ → Erased (HA.Proofs f f⁻¹)) □ _ : _≃_.to Is-equivalence≃Is-equivalenceᴱ p ≡ Is-equivalence→Is-equivalenceᴱ p _ = refl _ @0 _ : _≃_.from Is-equivalence≃Is-equivalenceᴱ p ≡ Is-equivalenceᴱ→Is-equivalence p _ = refl _ -- In an erased context _≃_ and _≃ᴱ_ are pointwise equivalent. @0 ≃≃≃ᴱ : (A ≃ B) ≃ (A ≃ᴱ B) ≃≃≃ᴱ {A = A} {B = B} = A ≃ B F.↔⟨ Eq.≃-as-Σ ⟩ (∃ λ f → Is-equivalence f) ↝⟨ (∃-cong λ _ → Is-equivalence≃Is-equivalenceᴱ) ⟩ (∃ λ f → Is-equivalenceᴱ f) F.↔⟨ Eq.inverse ≃ᴱ-as-Σ ⟩□ A ≃ᴱ B □ _ : _≃_.to ≃≃≃ᴱ p ≡ ≃→≃ᴱ p _ = refl _ @0 _ : _≃_.from ≃≃≃ᴱ p ≡ ≃ᴱ→≃ p _ = refl _ -- A variant of F.from-isomorphism with erased type arguments. from-isomorphism : {@0 A : Type a} {@0 B : Type b} → A ↔[ k ] B → A ≃ᴱ B from-isomorphism {k = equivalence} = ≃→≃ᴱ from-isomorphism {k = bijection} = λ A↔B → let record { surjection = record { logical-equivalence = record { to = to ; from = from } } } = A↔B in ↔→≃ᴱ to from (_↔_.right-inverse-of A↔B) (_↔_.left-inverse-of A↔B) ------------------------------------------------------------------------ -- "Equational" reasoning combinators with erased type arguments infix -1 finally-≃ᴱ finally-↔ infix -1 _□ infixr -2 step-≃ᴱ step-↔ _↔⟨⟩_ infix -3 $⟨_⟩_ -- For an explanation of why step-≃ᴱ and step-↔ are defined in this -- way, see Equality.step-≡. step-≃ᴱ : (@0 A : Type a) {@0 B : Type b} {@0 C : Type c} → B ≃ᴱ C → A ≃ᴱ B → A ≃ᴱ C step-≃ᴱ _ = _∘_ syntax step-≃ᴱ A B≃ᴱC A≃ᴱB = A ≃ᴱ⟨ A≃ᴱB ⟩ B≃ᴱC step-↔ : (@0 A : Type a) {@0 B : Type b} {@0 C : Type c} → B ≃ᴱ C → A ↔[ k ] B → A ≃ᴱ C step-↔ _ B≃ᴱC A↔B = step-≃ᴱ _ B≃ᴱC (from-isomorphism A↔B) syntax step-↔ A B≃ᴱC A↔B = A ↔⟨ A↔B ⟩ B≃ᴱC _↔⟨⟩_ : (@0 A : Type a) {@0 B : Type b} → A ≃ᴱ B → A ≃ᴱ B _ ↔⟨⟩ A≃ᴱB = A≃ᴱB _□ : (@0 A : Type a) → A ≃ᴱ A A □ = id finally-≃ᴱ : (@0 A : Type a) (@0 B : Type b) → A ≃ᴱ B → A ≃ᴱ B finally-≃ᴱ _ _ A≃ᴱB = A≃ᴱB syntax finally-≃ᴱ A B A≃ᴱB = A ≃ᴱ⟨ A≃ᴱB ⟩□ B □ finally-↔ : (@0 A : Type a) (@0 B : Type b) → A ↔[ k ] B → A ≃ᴱ B finally-↔ _ _ A↔B = from-isomorphism A↔B syntax finally-↔ A B A↔B = A ↔⟨ A↔B ⟩□ B □ $⟨_⟩_ : {@0 A : Type a} {@0 B : Type b} → A → A ≃ᴱ B → B $⟨ a ⟩ A≃ᴱB = _≃ᴱ_.to A≃ᴱB a ------------------------------------------------------------------------ -- Is-equivalenceᴱ is sometimes propositional -- In an erased context Is-equivalenceᴱ f is a proposition (assuming -- extensionality). -- -- See also Is-equivalenceᴱ-propositional-for-Erased below. @0 Is-equivalenceᴱ-propositional : {A : Type a} {B : Type b} → Extensionality (a ⊔ b) (a ⊔ b) → (f : A → B) → Is-proposition (Is-equivalenceᴱ f) Is-equivalenceᴱ-propositional ext f = H-level.respects-surjection (_≃_.surjection $ Is-equivalence≃Is-equivalenceᴱ) 1 (Eq.propositional ext f) ------------------------------------------------------------------------ -- Even more conversion lemmas, and a related result -- Is-equivalenceᴱ f is logically equivalent to ECP.Is-equivalenceᴱ f. Is-equivalenceᴱ⇔Is-equivalenceᴱ-CP : {@0 A : Type a} {@0 B : Type b} {@0 f : A → B} → Is-equivalenceᴱ f ⇔ ECP.Is-equivalenceᴱ f Is-equivalenceᴱ⇔Is-equivalenceᴱ-CP {f = f} = record { to = to; from = from } where to : Is-equivalenceᴱ f → ECP.Is-equivalenceᴱ f to eq y = (proj₁₀ eq y , [ erased (proj₂ $ proj₁ eq′) ]) , [ erased (proj₂ eq′) ] where @0 eq′ : Contractibleᴱ (f ⁻¹ᴱ y) eq′ = ECP.Is-equivalence→Is-equivalenceᴱ (_⇔_.to HA.Is-equivalence⇔Is-equivalence-CP $ Is-equivalenceᴱ→Is-equivalence eq) y from : ECP.Is-equivalenceᴱ f → Is-equivalenceᴱ f from eq = proj₁₀ ⊚ proj₁₀ ⊚ eq , [ erased $ proj₂ $ Is-equivalence→Is-equivalenceᴱ $ _⇔_.from HA.Is-equivalence⇔Is-equivalence-CP $ ECP.Is-equivalenceᴱ→Is-equivalence eq ] -- Is-equivalenceᴱ f is equivalent (with erased proofs) to -- ECP.Is-equivalenceᴱ f (assuming extensionality). Is-equivalenceᴱ≃ᴱIs-equivalenceᴱ-CP : {@0 A : Type a} {@0 B : Type b} {@0 f : A → B} → @0 Extensionality (a ⊔ b) (a ⊔ b) → Is-equivalenceᴱ f ≃ᴱ ECP.Is-equivalenceᴱ f Is-equivalenceᴱ≃ᴱIs-equivalenceᴱ-CP ext = let record { to = to; from = from } = Is-equivalenceᴱ⇔Is-equivalenceᴱ-CP in ⇔→≃ᴱ (Is-equivalenceᴱ-propositional ext _) (ECP.Is-equivalenceᴱ-propositional ext _) to from -- When proving that a function is an equivalence (with erased proofs) -- one can assume that the codomain is inhabited. [inhabited→Is-equivalenceᴱ]→Is-equivalenceᴱ : {@0 A : Type a} {@0 B : Type b} {@0 f : A → B} → (B → Is-equivalenceᴱ f) → Is-equivalenceᴱ f [inhabited→Is-equivalenceᴱ]→Is-equivalenceᴱ hyp = let record { to = to; from = from } = Is-equivalenceᴱ⇔Is-equivalenceᴱ-CP in from (λ x → to (hyp x) x) ------------------------------------------------------------------------ -- Some preservation lemmas -- A variant of _×-cong_ for _≃ᴱ_. Note that all the type arguments -- are erased. infixr 2 _×-cong-≃ᴱ_ _×-cong-≃ᴱ_ : {@0 A : Type a} {@0 B : Type b} {@0 C : Type c} {@0 D : Type d} → A ≃ᴱ C → B ≃ᴱ D → (A × B) ≃ᴱ (C × D) A≃ᴱC ×-cong-≃ᴱ B≃ᴱD = ↔→≃ᴱ (Σ-map (_≃ᴱ_.to A≃ᴱC) (_≃ᴱ_.to B≃ᴱD)) (Σ-map (_≃ᴱ_.from A≃ᴱC) (_≃ᴱ_.from B≃ᴱD)) (λ _ → cong₂ _,_ (_≃ᴱ_.right-inverse-of A≃ᴱC _) (_≃ᴱ_.right-inverse-of B≃ᴱD _)) (λ _ → cong₂ _,_ (_≃ᴱ_.left-inverse-of A≃ᴱC _) (_≃ᴱ_.left-inverse-of B≃ᴱD _)) -- A variant of ∃-cong for _≃ᴱ_. Note that all the type arguments are -- erased. ∃-cong-≃ᴱ : {@0 A : Type a} {@0 P : A → Type p} {@0 Q : A → Type q} → (∀ x → P x ≃ᴱ Q x) → ∃ P ≃ᴱ ∃ Q ∃-cong-≃ᴱ P≃ᴱQ = ↔→≃ᴱ (λ (x , y) → x , _≃ᴱ_.to (P≃ᴱQ x) y) (λ (x , y) → x , _≃ᴱ_.from (P≃ᴱQ x) y) (λ (x , y) → cong (x ,_) $ _≃ᴱ_.right-inverse-of (P≃ᴱQ x) y) (λ (x , y) → cong (x ,_) $ _≃ᴱ_.left-inverse-of (P≃ᴱQ x) y) -- A preservation lemma related to Σ. -- -- Note that the third argument is not marked as erased. The from -- argument of [≃]→≃ᴱ (which Agda can infer in this case, at least at -- the time of writing) is included explicitly to show where the third -- argument is used in a (potentially) non-erased context. -- -- See also Σ-cong-≃ᴱ-Erased below. Σ-cong-≃ᴱ : {@0 A : Type a} {@0 P : A → Type p} (f : A → B) (g : B → A) → (∀ x → f (g x) ≡ x) → @0 (∀ x → g (f x) ≡ x) → (∀ x → P x ≃ᴱ Q (f x)) → Σ A P ≃ᴱ Σ B Q Σ-cong-≃ᴱ {Q = Q} f g f-g g-f P≃Q = [≃]→≃ᴱ {from = λ (x , y) → g x , _≃ᴱ_.from (P≃Q (g x)) (subst Q (sym (f-g x)) y)} ([proofs] (Σ-cong (Eq.↔→≃ f g f-g g-f) (≃ᴱ→≃ ⊚ P≃Q))) -- Another preservation lemma related to Σ. -- -- See also Σ-cong-contra-≃ᴱ-Erased below. Σ-cong-contra-≃ᴱ : {@0 B : Type b} {@0 Q : B → Type q} (f : B → A) (g : A → B) → (∀ x → f (g x) ≡ x) → @0 (∀ x → g (f x) ≡ x) → (∀ x → P (f x) ≃ᴱ Q x) → Σ A P ≃ᴱ Σ B Q Σ-cong-contra-≃ᴱ f g f-g g-f P≃Q = inverse $ Σ-cong-≃ᴱ f g f-g g-f (inverse ⊚ P≃Q) -- Yet another preservation lemma related to Σ. Σ-cong-≃ᴱ′ : {@0 A : Type a} {@0 B : Type b} {@0 P : A → Type p} {@0 Q : B → Type q} (A≃ᴱB : A ≃ᴱ B) (P→Q : ∀ x → P x → Q (_≃ᴱ_.to A≃ᴱB x)) (Q→P : ∀ x → Q x → P (_≃ᴱ_.from A≃ᴱB x)) (@0 eq : ∀ x → Is-equivalence (P→Q x)) → @0 (∀ x y → Q→P x y ≡ _≃_.from Eq.⟨ P→Q (_≃ᴱ_.from A≃ᴱB x) , eq (_≃ᴱ_.from A≃ᴱB x) ⟩ (subst Q (sym (_≃ᴱ_.right-inverse-of A≃ᴱB x)) y)) → Σ A P ≃ᴱ Σ B Q Σ-cong-≃ᴱ′ {A = A} {B = B} {P = P} {Q = Q} A≃B P→Q Q→P eq hyp = [≃]→≃ᴱ ([proofs] ΣAP≃ΣBQ) where @0 ΣAP≃ΣBQ : Σ A P ≃ Σ B Q ΣAP≃ΣBQ = Eq.with-other-inverse (Σ-cong (≃ᴱ→≃ A≃B) (λ x → Eq.⟨ P→Q x , eq x ⟩)) (λ (x , y) → _≃ᴱ_.from A≃B x , Q→P x y) (λ (x , y) → cong (_ ,_) (sym (hyp x y))) -- Three preservation lemmas related to Π. -- -- See also Π-cong-≃ᴱ′-≃ᴱ, Π-cong-≃ᴱ′-≃ᴱ′, Π-cong-≃ᴱ-Erased and -- Π-cong-contra-≃ᴱ-Erased below. Π-cong-≃ᴱ : {@0 A : Type a} {B : Type b} {@0 P : A → Type p} {Q : B → Type q} → @0 Extensionality (a ⊔ b) (p ⊔ q) → (f : A → B) (g : B → A) → (∀ x → f (g x) ≡ x) → @0 (∀ x → g (f x) ≡ x) → (∀ x → P x ≃ᴱ Q (f x)) → ((x : A) → P x) ≃ᴱ ((x : B) → Q x) Π-cong-≃ᴱ {Q = Q} ext f g f-g g-f P≃Q = [≃]→≃ᴱ {to = λ h x → subst Q (f-g x) (_≃ᴱ_.to (P≃Q (g x)) (h (g x)))} ([proofs] (Π-cong ext {B₂ = Q} (Eq.↔→≃ f g f-g g-f) (≃ᴱ→≃ ⊚ P≃Q))) Π-cong-contra-≃ᴱ : {A : Type a} {@0 B : Type b} {P : A → Type p} {@0 Q : B → Type q} → @0 Extensionality (a ⊔ b) (p ⊔ q) → (f : B → A) (g : A → B) → (∀ x → f (g x) ≡ x) → @0 (∀ x → g (f x) ≡ x) → (∀ x → P (f x) ≃ᴱ Q x) → ((x : A) → P x) ≃ᴱ ((x : B) → Q x) Π-cong-contra-≃ᴱ ext f g f-g g-f P≃Q = inverse $ Π-cong-≃ᴱ ext f g f-g g-f (inverse ⊚ P≃Q) Π-cong-≃ᴱ′ : {@0 A : Type a} {@0 B : Type b} {@0 P : A → Type p} {@0 Q : B → Type q} → @0 Extensionality (a ⊔ b) (p ⊔ q) → (A≃ᴱB : A ≃ᴱ B) (P→Q : ∀ x → P (_≃ᴱ_.from A≃ᴱB x) → Q x) (Q→P : ∀ x → Q (_≃ᴱ_.to A≃ᴱB x) → P x) (@0 eq : ∀ x → Is-equivalence (Q→P x)) → @0 ((f : (x : A) → P x) (y : B) → let x = _≃ᴱ_.from A≃ᴱB y in P→Q y (f x) ≡ subst Q (_≃ᴱ_.right-inverse-of A≃ᴱB y) (_≃_.from Eq.⟨ Q→P x , eq x ⟩ (f x))) → ((x : A) → P x) ≃ᴱ ((x : B) → Q x) Π-cong-≃ᴱ′ {a = a} {p = p} {A = A} {B = B} {P = P} {Q = Q} ext A≃B P→Q Q→P eq hyp = [≃]→≃ᴱ ([proofs] ΠAP≃ΠBQ) where @0 ΠAP≃ΠBQ : ((x : A) → P x) ≃ ((x : B) → Q x) ΠAP≃ΠBQ = Eq.with-other-function (Π-cong ext (≃ᴱ→≃ A≃B) (λ x → Eq.inverse Eq.⟨ Q→P x , eq x ⟩)) (λ f x → P→Q x (f (_≃ᴱ_.from A≃B x))) (λ f → apply-ext (lower-extensionality a p ext) λ x → sym (hyp f x)) -- A variant of ∀-cong for _≃ᴱ_. ∀-cong-≃ᴱ : {@0 A : Type a} {@0 P : A → Type p} {@0 Q : A → Type q} → @0 Extensionality a (p ⊔ q) → (∀ x → P x ≃ᴱ Q x) → ((x : A) → P x) ≃ᴱ ((x : A) → Q x) ∀-cong-≃ᴱ ext P≃Q = [≃]→≃ᴱ ([proofs] (∀-cong ext (≃ᴱ→≃ ⊚ P≃Q))) -- Is-equivalenceᴱ f is equivalent (with erased proofs) to -- Is-equivalenceᴱ g if f and g are pointwise equal (assuming -- extensionality). -- -- See also Is-equivalenceᴱ-cong below. Is-equivalenceᴱ-cong-≃ᴱ : {@0 A : Type a} {@0 B : Type b} {@0 f g : A → B} → @0 Extensionality (a ⊔ b) (a ⊔ b) → @0 (∀ x → f x ≡ g x) → Is-equivalenceᴱ f ≃ᴱ Is-equivalenceᴱ g Is-equivalenceᴱ-cong-≃ᴱ ext f≡g = ∃-cong-≃ᴱ λ _ → Erased-cong-≃ᴱ (≃→≃ᴱ $ Proofs-cong ext f≡g) -- The _≃ᴱ_ operator preserves equivalences with erased proofs -- (assuming extensionality). ≃ᴱ-cong : {@0 A : Type a} {@0 B : Type b} {@0 C : Type c} {@0 D : Type d} → @0 Extensionality (a ⊔ b ⊔ c ⊔ d) (a ⊔ b ⊔ c ⊔ d) → A ≃ᴱ B → C ≃ᴱ D → (A ≃ᴱ C) ≃ᴱ (B ≃ᴱ D) ≃ᴱ-cong {A = A} {B = B} {C = C} {D = D} ext A≃B C≃D = [≃]→≃ᴱ ([proofs] lemma) where @0 lemma : (A ≃ᴱ C) ≃ (B ≃ᴱ D) lemma = A ≃ᴱ C ↝⟨ F.inverse ≃≃≃ᴱ ⟩ A ≃ C ↝⟨ Eq.≃-preserves ext (≃ᴱ→≃ A≃B) (≃ᴱ→≃ C≃D) ⟩ B ≃ D ↝⟨ ≃≃≃ᴱ ⟩□ B ≃ᴱ D □ -- A variant of ↑-cong for _≃ᴱ_. ↑-cong-≃ᴱ : {@0 B : Type b} {@0 C : Type c} → B ≃ᴱ C → ↑ a B ≃ᴱ ↑ a C ↑-cong-≃ᴱ B≃ᴱC = ↔→≃ᴱ (λ (lift x) → lift (_≃ᴱ_.to B≃ᴱC x)) (λ (lift x) → lift (_≃ᴱ_.from B≃ᴱC x)) (λ _ → cong lift (_≃ᴱ_.right-inverse-of B≃ᴱC _)) (λ _ → cong lift (_≃ᴱ_.left-inverse-of B≃ᴱC _)) ------------------------------------------------------------------------ -- Variants of some lemmas from Function-universe -- A variant of drop-⊤-left-Σ. -- -- See also drop-⊤-left-Σ-≃ᴱ-Erased below. drop-⊤-left-Σ-≃ᴱ : {@0 A : Type a} {P : A → Type p} (A≃⊤ : A ≃ᴱ ⊤) → (∀ x y → P x ≃ᴱ P y) → Σ A P ≃ᴱ P (_≃ᴱ_.from A≃⊤ tt) drop-⊤-left-Σ-≃ᴱ {A = A} {P = P} A≃⊤ P≃P = Σ A P ≃ᴱ⟨ Σ-cong-≃ᴱ _ (_≃ᴱ_.from A≃⊤) refl (_≃ᴱ_.left-inverse-of A≃⊤) (λ _ → P≃P _ _) ⟩ Σ ⊤ (λ x → P (_≃ᴱ_.from A≃⊤ x)) ↔⟨ Σ-left-identity ⟩□ P (_≃ᴱ_.from A≃⊤ tt) □ -- A variant of drop-⊤-left-Π. -- -- See also drop-⊤-left-Π-≃ᴱ-Erased below. drop-⊤-left-Π-≃ᴱ : {@0 A : Type a} {P : A → Type p} → @0 Extensionality a p → (A≃⊤ : A ≃ᴱ ⊤) → (∀ x y → P x ≃ᴱ P y) → ((x : A) → P x) ≃ᴱ P (_≃ᴱ_.from A≃⊤ tt) drop-⊤-left-Π-≃ᴱ {A = A} {P = P} ext A≃⊤ P≃P = ((x : A) → P x) ≃ᴱ⟨ Π-cong-≃ᴱ ext _ (_≃ᴱ_.from A≃⊤) refl (_≃ᴱ_.left-inverse-of A≃⊤) (λ _ → P≃P _ _) ⟩ ((x : ⊤) → P (_≃ᴱ_.from A≃⊤ x)) ↔⟨ Π-left-identity ⟩□ P (_≃ᴱ_.from A≃⊤ tt) □ ------------------------------------------------------------------------ -- Lemmas relating equality between equivalences (with erased proofs) -- to equality between the forward directions of the equivalences -- In an erased context two equivalences are equal if the underlying -- functions are equal (assuming extensionality). -- -- See also to≡to→≡-Erased below. @0 to≡to→≡ : {A : Type a} {B : Type b} {p q : A ≃ᴱ B} → Extensionality (a ⊔ b) (a ⊔ b) → _≃ᴱ_.to p ≡ _≃ᴱ_.to q → p ≡ q to≡to→≡ ext p≡q = _≃_.to (Eq.≃-≡ (Eq.inverse ≃≃≃ᴱ)) (Eq.lift-equality ext p≡q) -- A variant of ≃-to-≡↔≡. @0 to≡to≃≡ : {A : Type a} {B : Type b} {p q : A ≃ᴱ B} → Extensionality (a ⊔ b) (a ⊔ b) → (∀ x → _≃ᴱ_.to p x ≡ _≃ᴱ_.to q x) ≃ (p ≡ q) to≡to≃≡ {p = p} {q = q} ext = (∀ x → _≃ᴱ_.to p x ≡ _≃ᴱ_.to q x) F.↔⟨⟩ (∀ x → _≃_.to (_≃_.from ≃≃≃ᴱ p) x ≡ _≃_.to (_≃_.from ≃≃≃ᴱ q) x) F.↔⟨ ≃-to-≡↔≡ ext ⟩ _≃_.from ≃≃≃ᴱ p ≡ _≃_.from ≃≃≃ᴱ q ↝⟨ Eq.≃-≡ (Eq.inverse ≃≃≃ᴱ) ⟩□ p ≡ q □ ------------------------------------------------------------------------ -- A variant of _≃ᴱ_ -- Half adjoint equivalences with certain erased proofs. private module Dummy where infix 4 _≃ᴱ′_ record _≃ᴱ′_ (A : Type a) (B : Type b) : Type (a ⊔ b) where field to : A → B from : B → A @0 to-from : ∀ x → to (from x) ≡ x from-to : ∀ x → from (to x) ≡ x @0 to-from-to : ∀ x → cong to (from-to x) ≡ to-from (to x) open Dummy public using (_≃ᴱ′_) hiding (module _≃ᴱ′_) -- Note that the type arguments A and B are erased. This is not the -- case for the record module Dummy._≃ᴱ′_. module _≃ᴱ′_ {@0 A : Type a} {@0 B : Type b} (A≃B : A ≃ᴱ′ B) where -- Variants of the projections. to : A → B to = let record { to = to } = A≃B in to from : B → A from = let record { from = from } = A≃B in from @0 to-from : ∀ x → to (from x) ≡ x to-from = Dummy._≃ᴱ′_.to-from A≃B from-to : ∀ x → from (to x) ≡ x from-to = let record { from-to = from-to } = A≃B in from-to @0 to-from-to : ∀ x → cong to (from-to x) ≡ to-from (to x) to-from-to = Dummy._≃ᴱ′_.to-from-to A≃B -- Half adjoint equivalences with certain erased proofs are -- equivalences with erased proofs. equivalence-with-erased-proofs : A ≃ᴱ B equivalence-with-erased-proofs = ⟨ to , (from , [ to-from , from-to , to-from-to ]) ⟩₀ -- A coherence property. @0 from-to-from : ∀ x → cong from (to-from x) ≡ from-to (from x) from-to-from = _≃ᴱ_.right-left-lemma equivalence-with-erased-proofs -- Data corresponding to the erased proofs of an equivalence with -- certain erased proofs. record Erased-proofs′ {A : Type a} {B : Type b} (to : A → B) (from : B → A) (from-to : ∀ x → from (to x) ≡ x) : Type (a ⊔ b) where field to-from : ∀ x → to (from x) ≡ x to-from-to : ∀ x → cong to (from-to x) ≡ to-from (to x) -- Extracts "erased proofs" from a regular equivalence. [proofs′] : {@0 A : Type a} {@0 B : Type b} (A≃B : A ≃ B) → Erased-proofs′ (_≃_.to A≃B) (_≃_.from A≃B) (_≃_.left-inverse-of A≃B) [proofs′] A≃B .Erased-proofs′.to-from = let record { is-equivalence = _ , to-from , _ } = A≃B in to-from [proofs′] A≃B .Erased-proofs′.to-from-to = let record { is-equivalence = _ , _ , _ , to-from-to } = A≃B in to-from-to -- Converts two functions, one proof and some erased proofs to an -- equivalence with certain erased proofs. [≃]→≃ᴱ′ : {@0 A : Type a} {@0 B : Type b} {to : A → B} {from : B → A} {from-to : ∀ x → from (to x) ≡ x} → @0 Erased-proofs′ to from from-to → A ≃ᴱ′ B [≃]→≃ᴱ′ {to = to} {from = from} {from-to = from-to} ep = λ where .Dummy._≃ᴱ′_.to → to .Dummy._≃ᴱ′_.from → from .Dummy._≃ᴱ′_.to-from → ep .Erased-proofs′.to-from .Dummy._≃ᴱ′_.from-to → from-to .Dummy._≃ᴱ′_.to-from-to → ep .Erased-proofs′.to-from-to -- A function with a quasi-inverse with one proof and one erased proof -- can be turned into an equivalence with certain erased proofs. ↔→≃ᴱ′ : {@0 A : Type a} {@0 B : Type b} (f : A → B) (g : B → A) → @0 (∀ x → f (g x) ≡ x) → (∀ x → g (f x) ≡ x) → A ≃ᴱ′ B ↔→≃ᴱ′ {A = A} {B = B} to from to-from from-to = [≃]→≃ᴱ′ ([proofs′] equiv) where @0 equiv : A ≃ B equiv = Eq.⟨ to , HA.↔→Is-equivalenceˡ (record { surjection = record { logical-equivalence = record { to = to ; from = from } ; right-inverse-of = to-from } ; left-inverse-of = from-to }) ⟩ -- If f is an equivalence with certain erased proofs, then there is an -- equivalence with certain erased proofs from x ≡ y to f x ≡ f y. ≡≃ᴱ′to≡to : (A≃ᴱ′B : A ≃ᴱ′ B) → (x ≡ y) ≃ᴱ′ (_≃ᴱ′_.to A≃ᴱ′B x ≡ _≃ᴱ′_.to A≃ᴱ′B y) ≡≃ᴱ′to≡to {x = x} {y = y} A≃ᴱ′B = ↔→≃ᴱ′ (_↠_.from ≡↠≡) (_↠_.to ≡↠≡) (λ eq → _↠_.from ≡↠≡ (_↠_.to ≡↠≡ eq) ≡⟨⟩ cong to (trans (sym (from-to x)) (trans (cong from eq) (from-to y))) ≡⟨ cong-trans _ _ _ ⟩ trans (cong to (sym (from-to x))) (cong to (trans (cong from eq) (from-to y))) ≡⟨ cong₂ trans (cong-sym _ _) (cong-trans _ _ _) ⟩ trans (sym (cong to (from-to x))) (trans (cong to (cong from eq)) (cong to (from-to y))) ≡⟨ cong₂ (λ p q → trans (sym p) (trans (cong to (cong from eq)) q)) (to-from-to _) (to-from-to _) ⟩ trans (sym (to-from (to x))) (trans (cong to (cong from eq)) (to-from (to y))) ≡⟨⟩ _↠_.to ≡↠≡′ (_↠_.from ≡↠≡′ eq) ≡⟨ _↠_.right-inverse-of ≡↠≡′ eq ⟩∎ eq ∎) (_↠_.right-inverse-of ≡↠≡) where open _≃ᴱ′_ A≃ᴱ′B ≡↠≡ : (to x ≡ to y) ↠ (x ≡ y) ≡↠≡ = Surjection.↠-≡ (record { logical-equivalence = record { to = from ; from = to } ; right-inverse-of = from-to }) @0 ≡↠≡′ : ∀ {x y} → (from x ≡ from y) ↠ (x ≡ y) ≡↠≡′ = Surjection.↠-≡ (record { logical-equivalence = record { to = to ; from = from } ; right-inverse-of = to-from }) -- If f is an equivalence with certain erased proofs, then x ≡ y is -- equivalent (with erased proofs) to f x ≡ f y. -- -- See also to≡to≃ᴱ≡-Erased below. ≡≃ᴱto≡to : (A≃ᴱ′B : A ≃ᴱ′ B) → (x ≡ y) ≃ᴱ (_≃ᴱ′_.to A≃ᴱ′B x ≡ _≃ᴱ′_.to A≃ᴱ′B y) ≡≃ᴱto≡to = _≃ᴱ′_.equivalence-with-erased-proofs ⊚ ≡≃ᴱ′to≡to -- Two preservation lemmas related to Π. Π-cong-≃ᴱ′-≃ᴱ : {@0 A : Type a} {B : Type b} {@0 P : A → Type p} {Q : B → Type q} → @0 Extensionality (a ⊔ b) (p ⊔ q) → (B≃A : B ≃ᴱ′ A) → (∀ x → P x ≃ᴱ Q (_≃ᴱ′_.from B≃A x)) → ((x : A) → P x) ≃ᴱ ((x : B) → Q x) Π-cong-≃ᴱ′-≃ᴱ ext B≃A = Π-cong-≃ᴱ ext (_≃ᴱ′_.from B≃A) (_≃ᴱ′_.to B≃A) (_≃ᴱ′_.from-to B≃A) (_≃ᴱ′_.to-from B≃A) Π-cong-≃ᴱ′-≃ᴱ′ : {A : Type a} {@0 B : Type b} {P : A → Type p} {@0 Q : B → Type q} → Extensionality (a ⊔ b) (p ⊔ q) → (A≃B : A ≃ᴱ′ B) → (∀ x → P (_≃ᴱ′_.from A≃B x) ≃ᴱ′ Q x) → ((x : A) → P x) ≃ᴱ′ ((x : B) → Q x) Π-cong-≃ᴱ′-≃ᴱ′ {a = a} {b = b} {p = p} {q = q} {A = A} {B = B} {P = P} {Q = Q} ext A≃B P≃Q = ↔→≃ᴱ′ (λ f x → _≃ᴱ′_.to (P≃Q x) (f (_≃ᴱ′_.from A≃B x))) (λ f x → subst P (_≃ᴱ′_.from-to A≃B x) (_≃ᴱ′_.from (P≃Q (_≃ᴱ′_.to A≃B x)) (f (_≃ᴱ′_.to A≃B x)))) (λ f → apply-ext (lower-extensionality a p ext) λ x → _≃ᴱ′_.to (P≃Q x) (subst P (_≃ᴱ′_.from-to A≃B (_≃ᴱ′_.from A≃B x)) (_≃ᴱ′_.from (P≃Q (_≃ᴱ′_.to A≃B (_≃ᴱ′_.from A≃B x))) (f (_≃ᴱ′_.to A≃B (_≃ᴱ′_.from A≃B x))))) ≡⟨ cong (_≃ᴱ′_.to (P≃Q x) ⊚ flip (subst P) _) $ sym $ _≃ᴱ′_.from-to-from A≃B _ ⟩ _≃ᴱ′_.to (P≃Q x) (subst P (cong (_≃ᴱ′_.from A≃B) (_≃ᴱ′_.to-from A≃B x)) (_≃ᴱ′_.from (P≃Q (_≃ᴱ′_.to A≃B (_≃ᴱ′_.from A≃B x))) (f (_≃ᴱ′_.to A≃B (_≃ᴱ′_.from A≃B x))))) ≡⟨ elim¹ (λ {y} eq → _≃ᴱ′_.to (P≃Q y) (subst P (cong (_≃ᴱ′_.from A≃B) eq) (_≃ᴱ′_.from (P≃Q (_≃ᴱ′_.to A≃B (_≃ᴱ′_.from A≃B x))) (f (_≃ᴱ′_.to A≃B (_≃ᴱ′_.from A≃B x))))) ≡ f y) ( _≃ᴱ′_.to (P≃Q (_≃ᴱ′_.to A≃B (_≃ᴱ′_.from A≃B x))) (subst P (cong (_≃ᴱ′_.from A≃B) (refl _)) (_≃ᴱ′_.from (P≃Q (_≃ᴱ′_.to A≃B (_≃ᴱ′_.from A≃B x))) (f (_≃ᴱ′_.to A≃B (_≃ᴱ′_.from A≃B x))))) ≡⟨ cong (_≃ᴱ′_.to (P≃Q (_≃ᴱ′_.to A≃B (_≃ᴱ′_.from A≃B x)))) $ trans (cong (flip (subst P) _) $ cong-refl _) $ subst-refl _ _ ⟩ _≃ᴱ′_.to (P≃Q (_≃ᴱ′_.to A≃B (_≃ᴱ′_.from A≃B x))) (_≃ᴱ′_.from (P≃Q (_≃ᴱ′_.to A≃B (_≃ᴱ′_.from A≃B x))) (f (_≃ᴱ′_.to A≃B (_≃ᴱ′_.from A≃B x)))) ≡⟨ _≃ᴱ′_.to-from (P≃Q _) _ ⟩∎ f (_≃ᴱ′_.to A≃B (_≃ᴱ′_.from A≃B x)) ∎) _ ⟩∎ f x ∎) (λ f → apply-ext (lower-extensionality b q ext) λ x → subst P (_≃ᴱ′_.from-to A≃B x) (_≃ᴱ′_.from (P≃Q (_≃ᴱ′_.to A≃B x)) (_≃ᴱ′_.to (P≃Q (_≃ᴱ′_.to A≃B x)) (f (_≃ᴱ′_.from A≃B (_≃ᴱ′_.to A≃B x))))) ≡⟨ elim¹ (λ {y} eq → subst P eq (_≃ᴱ′_.from (P≃Q (_≃ᴱ′_.to A≃B x)) (_≃ᴱ′_.to (P≃Q (_≃ᴱ′_.to A≃B x)) (f (_≃ᴱ′_.from A≃B (_≃ᴱ′_.to A≃B x))))) ≡ f y) ( subst P (refl _) (_≃ᴱ′_.from (P≃Q (_≃ᴱ′_.to A≃B x)) (_≃ᴱ′_.to (P≃Q (_≃ᴱ′_.to A≃B x)) (f (_≃ᴱ′_.from A≃B (_≃ᴱ′_.to A≃B x))))) ≡⟨ subst-refl _ _ ⟩ _≃ᴱ′_.from (P≃Q (_≃ᴱ′_.to A≃B x)) (_≃ᴱ′_.to (P≃Q (_≃ᴱ′_.to A≃B x)) (f (_≃ᴱ′_.from A≃B (_≃ᴱ′_.to A≃B x)))) ≡⟨ _≃ᴱ′_.from-to (P≃Q _) _ ⟩∎ f (_≃ᴱ′_.from A≃B (_≃ᴱ′_.to A≃B x)) ∎) _ ⟩∎ f x ∎) ------------------------------------------------------------------------ -- Some results related to Contractibleᴱ -- Two types that are contractible (with erased proofs) are equivalent -- (with erased proofs). Contractibleᴱ→≃ᴱ : {@0 A : Type a} {@0 B : Type b} → Contractibleᴱ A → Contractibleᴱ B → A ≃ᴱ B Contractibleᴱ→≃ᴱ (a , [ irrA ]) (b , [ irrB ]) = ↔→≃ᴱ (const b) (const a) irrB irrA -- There is a logical equivalence between Contractibleᴱ A and A ≃ᴱ ⊤. Contractibleᴱ⇔≃ᴱ⊤ : {@0 A : Type a} → Contractibleᴱ A ⇔ A ≃ᴱ ⊤ Contractibleᴱ⇔≃ᴱ⊤ = record { to = flip Contractibleᴱ→≃ᴱ Contractibleᴱ-⊤ ; from = λ A≃⊤ → ECP.Contractibleᴱ-respects-surjection (_≃ᴱ_.from A≃⊤) (λ a → tt , (_≃ᴱ_.from A≃⊤ tt ≡⟨⟩ _≃ᴱ_.from A≃⊤ (_≃ᴱ_.to A≃⊤ a) ≡⟨ _≃ᴱ_.left-inverse-of A≃⊤ _ ⟩∎ a ∎)) Contractibleᴱ-⊤ } where Contractibleᴱ-⊤ = ECP.Contractible→Contractibleᴱ ⊤-contractible -- There is an equivalence with erased proofs between Contractibleᴱ A -- and A ≃ᴱ ⊤ (assuming extensionality). Contractibleᴱ≃ᴱ≃ᴱ⊤ : {@0 A : Type a} → @0 Extensionality a a → Contractibleᴱ A ≃ᴱ (A ≃ᴱ ⊤) Contractibleᴱ≃ᴱ≃ᴱ⊤ ext = let record { to = to; from = from } = Contractibleᴱ⇔≃ᴱ⊤ in ↔→≃ᴱ to from (λ _ → to≡to→≡ ext (refl _)) (λ _ → ECP.Contractibleᴱ-propositional ext _ _) -- If an inhabited type comes with an erased proof of -- propositionality, then it is equivalent (with erased proofs) to the -- unit type. inhabited→Is-proposition→≃ᴱ⊤ : {@0 A : Type a} → A → @0 Is-proposition A → A ≃ᴱ ⊤ inhabited→Is-proposition→≃ᴱ⊤ x prop = let record { to = to } = Contractibleᴱ⇔≃ᴱ⊤ in to (ECP.inhabited→Is-proposition→Contractibleᴱ x prop) -- Contractibleᴱ commutes with _×_ (up to _≃ᴱ_, assuming -- extensionality). Contractibleᴱ-commutes-with-× : {@0 A : Type a} {@0 B : Type b} → @0 Extensionality (a ⊔ b) (a ⊔ b) → Contractibleᴱ (A × B) ≃ᴱ (Contractibleᴱ A × Contractibleᴱ B) Contractibleᴱ-commutes-with-× {A = A} {B = B} ext = [≃]→≃ᴱ ([proofs] lemma) where @0 lemma : _ lemma = Contractibleᴱ (A × B) ↝⟨ F.inverse ECP.Contractible≃Contractibleᴱ ⟩ Contractible (A × B) ↝⟨ Contractible-commutes-with-× ext ⟩ (Contractible A × Contractible B) ↝⟨ ECP.Contractible≃Contractibleᴱ ×-cong ECP.Contractible≃Contractibleᴱ ⟩□ (Contractibleᴱ A × Contractibleᴱ B) □ ------------------------------------------------------------------------ -- Groupoid laws and related properties module Groupoid where -- In an erased context the groupoid laws hold for id and _∘_. -- -- TODO: Is it possible to prove the first three results in a -- non-erased context? @0 left-identity : {A : Type a} {B : Type b} → Extensionality (a ⊔ b) (a ⊔ b) → (f : A ≃ᴱ B) → id ∘ f ≡ f left-identity ext _ = to≡to→≡ ext (refl _) @0 right-identity : {A : Type a} {B : Type b} → Extensionality (a ⊔ b) (a ⊔ b) → (f : A ≃ᴱ B) → f ∘ id ≡ f right-identity ext _ = to≡to→≡ ext (refl _) @0 associativity : {A : Type a} {D : Type d} → Extensionality (a ⊔ d) (a ⊔ d) → (f : C ≃ᴱ D) (g : B ≃ᴱ C) (h : A ≃ᴱ B) → f ∘ (g ∘ h) ≡ (f ∘ g) ∘ h associativity ext _ _ _ = to≡to→≡ ext (refl _) @0 left-inverse : {A : Type a} → Extensionality a a → (f : A ≃ᴱ B) → inverse f ∘ f ≡ id left-inverse ext f = to≡to→≡ ext $ apply-ext ext $ _≃_.left-inverse-of (≃ᴱ→≃ f) @0 right-inverse : {B : Type b} → Extensionality b b → (f : A ≃ᴱ B) → f ∘ inverse f ≡ id right-inverse ext f = to≡to→≡ ext $ apply-ext ext $ _≃_.right-inverse-of (≃ᴱ→≃ f) -- Inverse is a logical equivalence. inverse-logical-equivalence : {@0 A : Type a} {@0 B : Type b} → A ≃ᴱ B ⇔ B ≃ᴱ A inverse-logical-equivalence = record { to = inverse ; from = inverse } -- Inverse is an equivalence with erased proofs (assuming -- extensionality). inverse-equivalence : {@0 A : Type a} {@0 B : Type b} → @0 Extensionality (a ⊔ b) (a ⊔ b) → (A ≃ᴱ B) ≃ᴱ (B ≃ᴱ A) inverse-equivalence ext = ↔→≃ᴱ inverse inverse (λ _ → to≡to→≡ ext (refl _)) (λ _ → to≡to→≡ ext (refl _)) ------------------------------------------------------------------------ -- Some results that depend on univalence -- A variant of ≃⇒≡. @0 ≃ᴱ→≡ : {A B : Type a} → Univalence a → A ≃ᴱ B → A ≡ B ≃ᴱ→≡ univ = ≃⇒≡ univ ⊚ ≃ᴱ→≃ -- A variant of ≡≃≃. @0 ≡≃≃ᴱ : {A B : Type a} → Univalence a → (A ≡ B) ≃ (A ≃ᴱ B) ≡≃≃ᴱ {A = A} {B = B} univ = Eq.with-other-function (A ≡ B ↝⟨ ≡≃≃ univ ⟩ A ≃ B ↝⟨ ≃≃≃ᴱ ⟩□ A ≃ᴱ B □) (≡⇒↝ _) (elim₁ (λ eq → ≃→≃ᴱ (≡⇒≃ eq) ≡ ≡⇒↝ _ eq) (≃→≃ᴱ (≡⇒≃ (refl _)) ≡⟨ cong ≃→≃ᴱ ≡⇒≃-refl ⟩ ≃→≃ᴱ Eq.id ≡⟨⟩ id ≡⟨ sym ≡⇒↝-refl ⟩∎ ≡⇒↝ _ (refl _) ∎)) @0 _ : {univ : Univalence a} → _≃_.from (≡≃≃ᴱ {A = A} {B = B} univ) ≡ ≃ᴱ→≡ univ _ = refl _ -- A variant of ≃⇒≡-id. @0 ≃ᴱ→≡-id : {A : Type a} → Extensionality a a → (univ : Univalence a) → ≃ᴱ→≡ univ id ≡ refl A ≃ᴱ→≡-id ext univ = ≃⇒≡ univ (≃ᴱ→≃ id) ≡⟨ cong (≃⇒≡ univ) $ Eq.lift-equality ext (refl _) ⟩ ≃⇒≡ univ Eq.id ≡⟨ ≃⇒≡-id univ ⟩∎ refl _ ∎ -- A variant of ≃⇒≡-inverse. @0 ≃ᴱ→≡-inverse : Extensionality a a → (univ : Univalence a) (A≃B : A ≃ᴱ B) → ≃ᴱ→≡ univ (inverse A≃B) ≡ sym (≃ᴱ→≡ univ A≃B) ≃ᴱ→≡-inverse ext univ A≃B = ≃⇒≡ univ (≃ᴱ→≃ (inverse A≃B)) ≡⟨ cong (≃⇒≡ univ) $ Eq.lift-equality ext (refl _) ⟩ ≃⇒≡ univ (Eq.inverse (≃ᴱ→≃ A≃B)) ≡⟨ ≃⇒≡-inverse univ ext _ ⟩∎ sym (≃⇒≡ univ (≃ᴱ→≃ A≃B)) ∎ -- A variant of ≃⇒≡-∘. @0 ≃ᴱ→≡-∘ : Extensionality a a → (univ : Univalence a) (A≃B : A ≃ᴱ B) (B≃C : B ≃ᴱ C) → ≃ᴱ→≡ univ (B≃C ∘ A≃B) ≡ trans (≃ᴱ→≡ univ A≃B) (≃ᴱ→≡ univ B≃C) ≃ᴱ→≡-∘ ext univ A≃B B≃C = ≃⇒≡ univ (≃ᴱ→≃ (B≃C ∘ A≃B)) ≡⟨ cong (≃⇒≡ univ) $ Eq.lift-equality ext (refl _) ⟩ ≃⇒≡ univ (≃ᴱ→≃ B≃C Eq.∘ ≃ᴱ→≃ A≃B) ≡⟨ ≃⇒≡-∘ univ ext _ _ ⟩ trans (≃⇒≡ univ (≃ᴱ→≃ A≃B)) (≃⇒≡ univ (≃ᴱ→≃ B≃C)) ∎ -- Singletons expressed using equivalences with erased proofs instead -- of equalities are equivalent (with erased proofs) to the unit type -- (assuming extensionality and univalence). singleton-with-≃ᴱ-≃ᴱ-⊤ : ∀ a {B : Type b} → @0 Extensionality (a ⊔ b) (a ⊔ b) → @0 Univalence (a ⊔ b) → (∃ λ (A : Type (a ⊔ b)) → A ≃ᴱ B) ≃ᴱ ⊤ singleton-with-≃ᴱ-≃ᴱ-⊤ {b = b} a {B = B} ext univ = [≃]→≃ᴱ ([proofs] lemma) where @0 lemma : (∃ λ (A : Type (a ⊔ b)) → A ≃ᴱ B) ≃ ⊤ lemma = (∃ λ (A : Type (a ⊔ b)) → A ≃ᴱ B) ↝⟨ (∃-cong λ _ → F.inverse ≃≃≃ᴱ) ⟩ (∃ λ (A : Type (a ⊔ b)) → A ≃ B) F.↔⟨ singleton-with-≃-↔-⊤ {a = a} ext univ ⟩□ ⊤ □ other-singleton-with-≃ᴱ-≃ᴱ-⊤ : ∀ b {A : Type a} → @0 Extensionality (a ⊔ b) (a ⊔ b) → @0 Univalence (a ⊔ b) → (∃ λ (B : Type (a ⊔ b)) → A ≃ᴱ B) ≃ᴱ ⊤ other-singleton-with-≃ᴱ-≃ᴱ-⊤ b {A = A} ext univ = (∃ λ B → A ≃ᴱ B) ≃ᴱ⟨ (∃-cong λ _ → inverse-equivalence ext) ⟩ (∃ λ B → B ≃ᴱ A) ≃ᴱ⟨ singleton-with-≃ᴱ-≃ᴱ-⊤ b ext univ ⟩□ ⊤ □ -- Variants of the two lemmas above. singleton-with-Π-≃ᴱ-≃ᴱ-⊤ : {A : Type a} {Q : A → Type q} → @0 Extensionality a (lsuc q) → @0 Univalence q → (∃ λ (P : A → Type q) → ∀ x → P x ≃ᴱ Q x) ≃ᴱ ⊤ singleton-with-Π-≃ᴱ-≃ᴱ-⊤ {a = a} {q = q} {A = A} {Q = Q} ext univ = [≃]→≃ᴱ ([proofs] lemma) where @0 ext′ : Extensionality a q ext′ = lower-extensionality lzero _ ext @0 lemma : (∃ λ (P : A → Type q) → ∀ x → P x ≃ᴱ Q x) ≃ ⊤ lemma = (∃ λ (P : A → Type q) → ∀ x → P x ≃ᴱ Q x) ↝⟨ (∃-cong λ _ → ∀-cong ext′ λ _ → F.inverse ≃≃≃ᴱ) ⟩ (∃ λ (P : A → Type q) → ∀ x → P x ≃ Q x) F.↔⟨ singleton-with-Π-≃-≃-⊤ ext univ ⟩□ ⊤ □ other-singleton-with-Π-≃ᴱ-≃ᴱ-⊤ : {A : Type a} {P : A → Type p} → @0 Extensionality (a ⊔ p) (lsuc p) → @0 Univalence p → (∃ λ (Q : A → Type p) → ∀ x → P x ≃ᴱ Q x) ≃ᴱ ⊤ other-singleton-with-Π-≃ᴱ-≃ᴱ-⊤ {a = a} {p = p} {A = A} {P = P} ext univ = (∃ λ (Q : A → Type p) → ∀ x → P x ≃ᴱ Q x) ≃ᴱ⟨ (∃-cong λ _ → ∀-cong-≃ᴱ ext₁ λ _ → inverse-equivalence ext₂) ⟩ (∃ λ (Q : A → Type p) → ∀ x → Q x ≃ᴱ P x) ≃ᴱ⟨ singleton-with-Π-≃ᴱ-≃ᴱ-⊤ ext₃ univ ⟩□ ⊤ □ where @0 ext₁ : Extensionality a p ext₁ = lower-extensionality p _ ext @0 ext₂ : Extensionality p p ext₂ = lower-extensionality a _ ext @0 ext₃ : Extensionality a (lsuc p) ext₃ = lower-extensionality p lzero ext -- ∃ Contractibleᴱ is equivalent (with erased proofs) to the unit type -- (assuming extensionality and univalence). ∃Contractibleᴱ≃ᴱ⊤ : @0 Extensionality a a → @0 Univalence a → (∃ λ (A : Type a) → Contractibleᴱ A) ≃ᴱ ⊤ ∃Contractibleᴱ≃ᴱ⊤ ext univ = (∃ λ A → Contractibleᴱ A) ≃ᴱ⟨ (∃-cong λ _ → Contractibleᴱ≃ᴱ≃ᴱ⊤ ext) ⟩ (∃ λ A → A ≃ᴱ ⊤) ≃ᴱ⟨ singleton-with-≃ᴱ-≃ᴱ-⊤ _ ext univ ⟩□ ⊤ □ ------------------------------------------------------------------------ -- Some simplification lemmas -- Two simplification lemmas for id. right-inverse-of-id : _≃ᴱ_.right-inverse-of id x ≡ refl x right-inverse-of-id = refl _ @0 left-inverse-of-id : _≃ᴱ_.left-inverse-of id x ≡ refl x left-inverse-of-id {x = x} = left-inverse-of x ≡⟨⟩ left-inverse-of (P.id x) ≡⟨ sym $ right-left-lemma x ⟩ cong P.id (right-inverse-of x) ≡⟨ sym $ cong-id _ ⟩ right-inverse-of x ≡⟨ right-inverse-of-id ⟩∎ refl x ∎ where open _≃ᴱ_ id -- Two simplification lemmas for inverse. @0 right-inverse-of∘inverse : (A≃B : A ≃ᴱ B) → _≃ᴱ_.right-inverse-of (inverse A≃B) x ≡ _≃ᴱ_.left-inverse-of A≃B x right-inverse-of∘inverse _ = refl _ @0 left-inverse-of∘inverse : (A≃B : A ≃ᴱ B) → _≃ᴱ_.left-inverse-of (inverse A≃B) x ≡ _≃ᴱ_.right-inverse-of A≃B x left-inverse-of∘inverse {A = A} {B = B} {x = x} A≃B = subst (λ x → _≃ᴱ_.left-inverse-of (inverse A≃B) x ≡ right-inverse-of x) (right-inverse-of x) (_≃ᴱ_.left-inverse-of (inverse A≃B) (to (from x)) ≡⟨ sym $ _≃ᴱ_.right-left-lemma (inverse A≃B) (from x) ⟩ cong to (_≃ᴱ_.right-inverse-of (inverse A≃B) (from x)) ≡⟨ cong (cong to) $ right-inverse-of∘inverse A≃B ⟩ cong to (left-inverse-of (from x)) ≡⟨ left-right-lemma (from x) ⟩∎ right-inverse-of (to (from x)) ∎) where open _≃ᴱ_ A≃B -- Two simplification lemmas for subst. to-subst : {eq : x ≡ y} {f : P x ≃ᴱ Q x} → _≃ᴱ_.to (subst (λ x → P x ≃ᴱ Q x) eq f) ≡ subst (λ x → P x → Q x) eq (_≃ᴱ_.to f) to-subst {P = P} {Q = Q} {eq = eq} {f = f} = elim¹ (λ eq → _≃ᴱ_.to (subst (λ x → P x ≃ᴱ Q x) eq f) ≡ subst (λ x → P x → Q x) eq (_≃ᴱ_.to f)) (_≃ᴱ_.to (subst (λ x → P x ≃ᴱ Q x) (refl _) f) ≡⟨ cong _≃ᴱ_.to $ subst-refl _ _ ⟩ _≃ᴱ_.to f ≡⟨ sym $ subst-refl _ _ ⟩∎ subst (λ x → P x → Q x) (refl _) (_≃ᴱ_.to f) ∎) eq from-subst : {eq : x ≡ y} {f : P x ≃ᴱ Q x} → _≃ᴱ_.from (subst (λ x → P x ≃ᴱ Q x) eq f) ≡ subst (λ x → Q x → P x) eq (_≃ᴱ_.from f) from-subst {P = P} {Q = Q} {eq = eq} {f = f} = elim¹ (λ eq → _≃ᴱ_.from (subst (λ x → P x ≃ᴱ Q x) eq f) ≡ subst (λ x → Q x → P x) eq (_≃ᴱ_.from f)) (_≃ᴱ_.from (subst (λ x → P x ≃ᴱ Q x) (refl _) f) ≡⟨ cong _≃ᴱ_.from $ subst-refl _ _ ⟩ _≃ᴱ_.from f ≡⟨ sym $ subst-refl _ _ ⟩∎ subst (λ x → Q x → P x) (refl _) (_≃ᴱ_.from f) ∎) eq ------------------------------------------------------------------------ -- The two-out-of-three properties -- If f and g are equivalences with erased proofs, then g ⊚ f is also -- an equivalence with erased proofs. 12→3 : {@0 A : Type a} {@0 B : Type b} {@0 C : Type c} {@0 f : A → B} {@0 g : B → C} → Is-equivalenceᴱ f → Is-equivalenceᴱ g → Is-equivalenceᴱ (g ⊚ f) 12→3 p q = proj₁₀ p ⊚ proj₁₀ q , [ _≃ᴱ_.is-equivalence (⟨ _ , q ⟩₀ ∘ ⟨ _ , p ⟩₀) .proj₂ .erased ] -- If g and g ⊚ f are equivalences with erased proofs, then f is -- also an equivalence with erased proofs. 23→1 : {@0 A : Type a} {@0 B : Type b} {@0 C : Type c} {@0 f : A → B} {g : B → C} → @0 Is-equivalenceᴱ g → Is-equivalenceᴱ (g ⊚ f) → Is-equivalenceᴱ f 23→1 {f = f} {g = g} q r = let record { to = to } = Is-equivalenceᴱ-cong-⇔ λ x → _≃ᴱ_.from ⟨ g , q ⟩ (g (f x)) ≡⟨ _≃ᴱ_.left-inverse-of ⟨ g , q ⟩ (f x) ⟩∎ f x ∎ in to ( proj₁₀ r ⊚ g , [ _≃ᴱ_.is-equivalence (inverse ⟨ _ , q ⟩₀ ∘ ⟨ _ , r ⟩₀) .proj₂ .erased ] ) -- If g ⊚ f and f are equivalences with erased proofs, then g is -- also an equivalence with erased proofs. 31→2 : {@0 A : Type a} {@0 B : Type b} {@0 C : Type c} {f : A → B} {@0 g : B → C} → Is-equivalenceᴱ (g ⊚ f) → @0 Is-equivalenceᴱ f → Is-equivalenceᴱ g 31→2 {f = f} {g = g} r p = let record { to = to } = Is-equivalenceᴱ-cong-⇔ λ x → g (f (_≃ᴱ_.from ⟨ f , p ⟩ x)) ≡⟨ cong g (_≃ᴱ_.right-inverse-of ⟨ f , p ⟩ x) ⟩∎ g x ∎ in to ( f ⊚ proj₁₀ r , [ _≃ᴱ_.is-equivalence (⟨ _ , r ⟩₀ ∘ inverse ⟨ _ , p ⟩₀) .proj₂ .erased ] ) -- Some consequences of the two-out-of-three properties. Is-equivalenceᴱ⇔Is-equivalenceᴱ-∘ˡ : {@0 A : Type a} {@0 B : Type b} {@0 C : Type c} {f : B → C} {@0 g : A → B} → Is-equivalenceᴱ f → Is-equivalenceᴱ g ⇔ Is-equivalenceᴱ (f ⊚ g) Is-equivalenceᴱ⇔Is-equivalenceᴱ-∘ˡ f-eq = record { to = flip 12→3 f-eq ; from = 23→1 f-eq } Is-equivalenceᴱ⇔Is-equivalenceᴱ-∘ʳ : {@0 A : Type a} {@0 B : Type b} {@0 C : Type c} {@0 f : B → C} {g : A → B} → Is-equivalenceᴱ g → Is-equivalenceᴱ f ⇔ Is-equivalenceᴱ (f ⊚ g) Is-equivalenceᴱ⇔Is-equivalenceᴱ-∘ʳ g-eq = record { to = 12→3 g-eq ; from = λ f∘g-eq → 31→2 f∘g-eq g-eq } Is-equivalenceᴱ≃ᴱIs-equivalenceᴱ-∘ˡ : {@0 A : Type a} {@0 B : Type b} {@0 C : Type c} {f : B → C} {@0 g : A → B} → @0 Extensionality (a ⊔ b ⊔ c) (a ⊔ b ⊔ c) → Is-equivalenceᴱ f → Is-equivalenceᴱ g ≃ᴱ Is-equivalenceᴱ (f ⊚ g) Is-equivalenceᴱ≃ᴱIs-equivalenceᴱ-∘ˡ {b = b} {c = c} ext f-eq = ⇔→≃ᴱ (Is-equivalenceᴱ-propositional (lower-extensionality c c ext) _) (Is-equivalenceᴱ-propositional (lower-extensionality b b ext) _) (flip 12→3 f-eq) (23→1 f-eq) Is-equivalenceᴱ≃ᴱIs-equivalenceᴱ-∘ʳ : {@0 A : Type a} {@0 B : Type b} {@0 C : Type c} {@0 f : B → C} {g : A → B} → @0 Extensionality (a ⊔ b ⊔ c) (a ⊔ b ⊔ c) → Is-equivalenceᴱ g → Is-equivalenceᴱ f ≃ᴱ Is-equivalenceᴱ (f ⊚ g) Is-equivalenceᴱ≃ᴱIs-equivalenceᴱ-∘ʳ {a = a} {b = b} ext g-eq = ⇔→≃ᴱ (Is-equivalenceᴱ-propositional (lower-extensionality a a ext) _) (Is-equivalenceᴱ-propositional (lower-extensionality b b ext) _) (12→3 g-eq) (λ f∘g-eq → 31→2 f∘g-eq g-eq) ------------------------------------------------------------------------ -- Results that depend on an axiomatisation of []-cong (for a single -- universe level) module []-cong₁ (ax : []-cong-axiomatisation ℓ) where open Erased.[]-cong₁ ax ---------------------------------------------------------------------- -- More preservation lemmas -- Equivalences with erased proofs are in some cases preserved by Σ -- (assuming extensionality). Note the type of Q. Σ-cong-≃ᴱ-Erased : {@0 A : Type a} {@0 B : Type ℓ} {@0 P : A → Type p} {Q : @0 B → Type q} (A≃B : A ≃ᴱ B) → (∀ x → P x ≃ᴱ Q (_≃ᴱ_.to A≃B x)) → Σ A P ≃ᴱ Σ B (λ x → Q x) Σ-cong-≃ᴱ-Erased {A = A} {B = B} {P = P} {Q = Q} A≃B P≃Q = [≃]→≃ᴱ ([proofs] ΣAP≃ΣBQ) where @0 ΣAP≃ΣBQ : Σ A P ≃ Σ B (λ x → Q x) ΣAP≃ΣBQ = Eq.with-other-inverse (Σ-cong (≃ᴱ→≃ A≃B) (λ x → ≃ᴱ→≃ (P≃Q x))) (λ (x , y) → _≃ᴱ_.from A≃B x , _≃ᴱ_.from (P≃Q (_≃ᴱ_.from A≃B x)) (substᴱ Q (sym (_≃ᴱ_.right-inverse-of A≃B x)) y)) (λ (x , y) → cong (λ y → _ , _≃ᴱ_.from (P≃Q (_≃ᴱ_.from A≃B x)) y) ( subst (λ x → Q x) (sym (_≃ᴱ_.right-inverse-of A≃B x)) y ≡⟨ sym substᴱ≡subst ⟩∎ substᴱ Q (sym (_≃ᴱ_.right-inverse-of A≃B x)) y ∎)) -- A variant of Σ-cong-≃ᴱ-Erased. Σ-cong-contra-≃ᴱ-Erased : {@0 A : Type ℓ} {@0 B : Type b} {P : @0 A → Type p} {@0 Q : B → Type q} (B≃A : B ≃ᴱ A) → (∀ x → P (_≃ᴱ_.to B≃A x) ≃ᴱ Q x) → Σ A (λ x → P x) ≃ᴱ Σ B Q Σ-cong-contra-≃ᴱ-Erased {P = P} {Q = Q} B≃A P≃Q = ↔→≃ᴱ (λ (x , y) → _≃ᴱ_.from B≃A x , _≃ᴱ_.to (P≃Q (_≃ᴱ_.from B≃A x)) (substᴱ P (sym (_≃ᴱ_.right-inverse-of B≃A x)) y)) (λ (x , y) → _≃ᴱ_.to B≃A x , _≃ᴱ_.from (P≃Q x) y) (λ (x , y) → Σ-≡,≡→≡ (_≃ᴱ_.left-inverse-of B≃A x) (subst Q (_≃ᴱ_.left-inverse-of B≃A x) (_≃ᴱ_.to (P≃Q _) (substᴱ P (sym (_≃ᴱ_.right-inverse-of B≃A _)) (_≃ᴱ_.from (P≃Q x) y))) ≡⟨ cong (λ eq → subst Q (_≃ᴱ_.left-inverse-of B≃A x) (_≃ᴱ_.to (P≃Q _) eq)) substᴱ≡subst ⟩ subst Q (_≃ᴱ_.left-inverse-of B≃A x) (_≃ᴱ_.to (P≃Q _) (subst (λ x → P x) (sym (_≃ᴱ_.right-inverse-of B≃A _)) (_≃ᴱ_.from (P≃Q x) y))) ≡⟨ cong (λ eq → subst Q (_≃ᴱ_.left-inverse-of B≃A x) (_≃ᴱ_.to (P≃Q _) (subst (λ x → P x) (sym eq) _))) $ sym $ _≃ᴱ_.left-right-lemma B≃A _ ⟩ subst Q (_≃ᴱ_.left-inverse-of B≃A x) (_≃ᴱ_.to (P≃Q (_≃ᴱ_.from B≃A (_≃ᴱ_.to B≃A x))) (subst (λ x → P x) (sym (cong (_≃ᴱ_.to B≃A) (_≃ᴱ_.left-inverse-of B≃A _))) (_≃ᴱ_.from (P≃Q x) y))) ≡⟨ elim₁ (λ eq → subst Q eq (_≃ᴱ_.to (P≃Q _) (subst (λ x → P x) (sym (cong (_≃ᴱ_.to B≃A) eq)) (_≃ᴱ_.from (P≃Q x) y))) ≡ y) ( subst Q (refl _) (_≃ᴱ_.to (P≃Q x) (subst (λ x → P x) (sym (cong (_≃ᴱ_.to B≃A) (refl _))) (_≃ᴱ_.from (P≃Q x) y))) ≡⟨ subst-refl _ _ ⟩ _≃ᴱ_.to (P≃Q x) (subst (λ x → P x) (sym (cong (_≃ᴱ_.to B≃A) (refl _))) (_≃ᴱ_.from (P≃Q x) y)) ≡⟨ cong (λ eq → _≃ᴱ_.to (P≃Q _) (subst (λ x → P x) (sym eq) _)) $ cong-refl _ ⟩ _≃ᴱ_.to (P≃Q x) (subst (λ x → P x) (sym (refl _)) (_≃ᴱ_.from (P≃Q x) y)) ≡⟨ cong (λ eq → _≃ᴱ_.to (P≃Q _) (subst (λ x → P x) eq _)) sym-refl ⟩ _≃ᴱ_.to (P≃Q x) (subst (λ x → P x) (refl _) (_≃ᴱ_.from (P≃Q x) y)) ≡⟨ cong (λ eq → _≃ᴱ_.to (P≃Q _) eq) $ subst-refl _ _ ⟩ _≃ᴱ_.to (P≃Q x) (_≃ᴱ_.from (P≃Q x) y) ≡⟨ _≃ᴱ_.right-inverse-of (P≃Q x) _ ⟩∎ y ∎) (_≃ᴱ_.left-inverse-of B≃A x) ⟩∎ y ∎)) (λ (x , y) → Σ-≡,≡→≡ (_≃ᴱ_.right-inverse-of B≃A x) (subst (λ x → P x) (_≃ᴱ_.right-inverse-of B≃A x) (_≃ᴱ_.from (P≃Q _) (_≃ᴱ_.to (P≃Q _) (substᴱ P (sym (_≃ᴱ_.right-inverse-of B≃A _)) y))) ≡⟨ cong (subst (λ x → P x) (_≃ᴱ_.right-inverse-of B≃A x)) $ _≃ᴱ_.left-inverse-of (P≃Q _) _ ⟩ subst (λ x → P x) (_≃ᴱ_.right-inverse-of B≃A x) (substᴱ P (sym (_≃ᴱ_.right-inverse-of B≃A _)) y) ≡⟨ cong (subst (λ x → P x) (_≃ᴱ_.right-inverse-of B≃A x)) substᴱ≡subst ⟩ subst (λ x → P x) (_≃ᴱ_.right-inverse-of B≃A x) (subst (λ x → P x) (sym (_≃ᴱ_.right-inverse-of B≃A _)) y) ≡⟨ subst-subst-sym _ _ _ ⟩∎ y ∎)) -- Equivalences with erased proofs are in some cases preserved by Π -- (assuming extensionality). Note the type of Q. Π-cong-≃ᴱ-Erased : {@0 A : Type a} {@0 B : Type ℓ} {@0 P : A → Type p} {Q : @0 B → Type q} → @0 Extensionality (a ⊔ ℓ) (p ⊔ q) → (A≃B : A ≃ᴱ B) → (∀ x → P x ≃ᴱ Q (_≃ᴱ_.to A≃B x)) → ((x : A) → P x) ≃ᴱ ((x : B) → Q x) Π-cong-≃ᴱ-Erased {a = a} {p = p} {A = A} {B = B} {P = P} {Q = Q} ext A≃B P≃Q = [≃]→≃ᴱ ([proofs] ΠAP≃ΠBQ) where @0 ΠAP≃ΠBQ : ((x : A) → P x) ≃ ((x : B) → Q x) ΠAP≃ΠBQ = Eq.with-other-function (Π-cong ext (≃ᴱ→≃ A≃B) (λ x → ≃ᴱ→≃ (P≃Q x))) (λ f x → substᴱ Q (_≃ᴱ_.right-inverse-of A≃B x) (_≃ᴱ_.to (P≃Q (_≃ᴱ_.from A≃B x)) (f (_≃ᴱ_.from A≃B x)))) (λ f → apply-ext (lower-extensionality a p ext) λ x → subst (λ x → Q x) (_≃ᴱ_.right-inverse-of A≃B x) (_≃ᴱ_.to (P≃Q (_≃ᴱ_.from A≃B x)) (f (_≃ᴱ_.from A≃B x))) ≡⟨ sym substᴱ≡subst ⟩∎ substᴱ Q (_≃ᴱ_.right-inverse-of A≃B x) (_≃ᴱ_.to (P≃Q (_≃ᴱ_.from A≃B x)) (f (_≃ᴱ_.from A≃B x))) ∎) -- A variant of Π-cong-≃ᴱ-Erased. Π-cong-contra-≃ᴱ-Erased : {@0 A : Type ℓ} {@0 B : Type b} {P : @0 A → Type p} {@0 Q : B → Type q} → @0 Extensionality (b ⊔ ℓ) (p ⊔ q) → (B≃A : B ≃ᴱ A) → (∀ x → P (_≃ᴱ_.to B≃A x) ≃ᴱ Q x) → ((x : A) → P x) ≃ᴱ ((x : B) → Q x) Π-cong-contra-≃ᴱ-Erased {b = b} {q = q} {A = A} {B = B} {P = P} {Q = Q} ext B≃A P≃Q = [≃]→≃ᴱ ([proofs] ΠAP≃ΠBQ) where @0 ΠAP≃ΠBQ : ((x : A) → P x) ≃ ((x : B) → Q x) ΠAP≃ΠBQ = Eq.with-other-inverse (Π-cong-contra ext (≃ᴱ→≃ B≃A) (λ x → ≃ᴱ→≃ (P≃Q x))) (λ f x → substᴱ P (_≃ᴱ_.right-inverse-of B≃A x) (_≃ᴱ_.from (P≃Q (_≃ᴱ_.from B≃A x)) (f (_≃ᴱ_.from B≃A x)))) (λ f → apply-ext (lower-extensionality b q ext) λ x → subst (λ x → P x) (_≃ᴱ_.right-inverse-of B≃A x) (_≃ᴱ_.from (P≃Q (_≃ᴱ_.from B≃A x)) (f (_≃ᴱ_.from B≃A x))) ≡⟨ sym substᴱ≡subst ⟩∎ substᴱ P (_≃ᴱ_.right-inverse-of B≃A x) (_≃ᴱ_.from (P≃Q (_≃ᴱ_.from B≃A x)) (f (_≃ᴱ_.from B≃A x))) ∎) ---------------------------------------------------------------------- -- Variants of some lemmas from Function-universe -- A variant of drop-⊤-left-Σ. drop-⊤-left-Σ-≃ᴱ-Erased : {@0 A : Type ℓ} {P : @0 A → Type p} → (A≃⊤ : A ≃ᴱ ⊤) → Σ A (λ x → P x) ≃ᴱ P (_≃ᴱ_.from A≃⊤ tt) drop-⊤-left-Σ-≃ᴱ-Erased {A = A} {P = P} A≃⊤ = Σ A (λ x → P x) ≃ᴱ⟨ inverse $ Σ-cong-≃ᴱ-Erased (inverse A≃⊤) (λ _ → F.id) ⟩ Σ ⊤ (λ x → P (_≃ᴱ_.from A≃⊤ x)) ↔⟨ Σ-left-identity ⟩□ P (_≃ᴱ_.from A≃⊤ tt) □ -- A variant of drop-⊤-left-Π. drop-⊤-left-Π-≃ᴱ-Erased : {@0 A : Type ℓ} {P : @0 A → Type p} → @0 Extensionality ℓ p → (A≃⊤ : A ≃ᴱ ⊤) → ((x : A) → P x) ≃ᴱ P (_≃ᴱ_.from A≃⊤ tt) drop-⊤-left-Π-≃ᴱ-Erased {A = A} {P = P} ext A≃⊤ = ((x : A) → P x) ≃ᴱ⟨ Π-cong-contra-≃ᴱ-Erased ext (inverse A≃⊤) (λ _ → F.id) ⟩ ((x : ⊤) → P (_≃ᴱ_.from A≃⊤ x)) ↔⟨ Π-left-identity ⟩□ P (_≃ᴱ_.from A≃⊤ tt) □ ---------------------------------------------------------------------- -- A variant of a lemma proved above -- If f is an equivalence (with erased proofs) from Erased A to B, -- then x ≡ y is equivalent (with erased proofs) to f x ≡ f y. to≡to≃ᴱ≡-Erased : ∀ {@0 A : Type ℓ} {x y} (A≃B : Erased A ≃ᴱ B) → (_≃ᴱ_.to A≃B x ≡ _≃ᴱ_.to A≃B y) ≃ᴱ (x ≡ y) to≡to≃ᴱ≡-Erased {B = B} {A = A} {x = x} {y = y} A≃B = [≃]→≃ᴱ ([proofs] ≡≃≡) where @0 ≡≃≡ : (_≃ᴱ_.to A≃B x ≡ _≃ᴱ_.to A≃B y) ≃ (x ≡ y) ≡≃≡ = Eq.with-other-function (Eq.≃-≡ (≃ᴱ→≃ A≃B)) (λ eq → x ≡⟨ sym $ []-cong [ cong erased (_≃ᴱ_.left-inverse-of A≃B x) ] ⟩ _≃ᴱ_.from A≃B (_≃ᴱ_.to A≃B x) ≡⟨ cong (_≃ᴱ_.from A≃B) eq ⟩ _≃ᴱ_.from A≃B (_≃ᴱ_.to A≃B y) ≡⟨ []-cong [ cong erased (_≃ᴱ_.left-inverse-of A≃B y) ] ⟩∎ y ∎) (λ eq → let f = _≃ᴱ_.left-inverse-of A≃B in trans (sym (f x)) (trans (cong (_≃ᴱ_.from A≃B) eq) (f y)) ≡⟨ cong₂ (λ p q → trans (sym p) (trans (cong (_≃ᴱ_.from A≃B) eq) q)) (sym $ _≃_.right-inverse-of ≡≃[]≡[] _) (sym $ _≃_.right-inverse-of ≡≃[]≡[] _) ⟩∎ trans (sym ([]-cong [ cong erased (f x) ])) (trans (cong (_≃ᴱ_.from A≃B) eq) ([]-cong [ cong erased (f y) ])) ∎) ------------------------------------------------------------------------ -- Results that follow if the []-cong axioms hold for the maximum of -- two universe levels (as well as for the two universe levels) module []-cong₂-⊔ (ax₁ : []-cong-axiomatisation ℓ₁) (ax₂ : []-cong-axiomatisation ℓ₂) (ax : []-cong-axiomatisation (ℓ₁ ⊔ ℓ₂)) where open Erased-cong ax ax open Erased.[]-cong₁ ax open Erased.[]-cong₂-⊔ ax₁ ax₂ ax open []-cong₁ ax ---------------------------------------------------------------------- -- Another preservation lemma -- Is-equivalenceᴱ f is equivalent to Is-equivalenceᴱ g if f and g -- are pointwise equal (assuming extensionality). Is-equivalenceᴱ-cong : {A : Type ℓ₁} {B : Type ℓ₂} {@0 f g : A → B} → @0 Extensionality? k (ℓ₁ ⊔ ℓ₂) (ℓ₁ ⊔ ℓ₂) → @0 (∀ x → f x ≡ g x) → Is-equivalenceᴱ f ↝[ k ] Is-equivalenceᴱ g Is-equivalenceᴱ-cong {f = f} {g = g} ext f≡g = generalise-erased-ext? (Is-equivalenceᴱ-cong-⇔ f≡g) (λ ext → (∃ λ f⁻¹ → Erased (HA.Proofs f f⁻¹)) F.↔⟨ (∃-cong λ _ → Erased-cong-≃ (Proofs-cong ext f≡g)) ⟩□ (∃ λ f⁻¹ → Erased (HA.Proofs g f⁻¹)) □) ext ---------------------------------------------------------------------- -- More conversion lemmas -- Some equivalences relating Is-equivalenceᴱ to Is-equivalence. -- -- See also Is-equivalenceᴱ↔Is-equivalence below. Erased-Is-equivalenceᴱ≃Erased-Is-equivalence : {@0 A : Type ℓ₁} {@0 B : Type ℓ₂} {@0 f : A → B} → Erased (Is-equivalenceᴱ f) ≃ Erased (Is-equivalence f) Erased-Is-equivalenceᴱ≃Erased-Is-equivalence {f = f} = Erased (∃ λ f⁻¹ → Erased (HA.Proofs f f⁻¹)) ↝⟨ Erased-cong-≃ (∃-cong λ _ → Eq.↔⇒≃ $ erased Erased↔) ⟩□ Erased (∃ λ f⁻¹ → HA.Proofs f f⁻¹) □ Erased-Is-equivalence≃Is-equivalenceᴱ : {@0 A : Type ℓ₁} {B : Type ℓ₂} {@0 f : Erased A → B} → Erased (Is-equivalence f) ≃ Is-equivalenceᴱ f Erased-Is-equivalence≃Is-equivalenceᴱ {A = A} {B = B} {f = f} = Erased (Is-equivalence f) F.↔⟨⟩ Erased (∃ λ (f⁻¹ : B → Erased A) → HA.Proofs f f⁻¹) F.↔⟨ Erased-cong-↔ (F.inverse $ Σ-cong-id →≃→Erased) ⟩ Erased (∃ λ (f⁻¹ : B → A) → HA.Proofs f ([_]→ ⊚ f⁻¹)) F.↔⟨ Erased-Σ↔Σ ⟩ (∃ λ (f⁻¹ : Erased (B → A)) → Erased (HA.Proofs f (λ x → map (_$ x) f⁻¹))) ↝⟨ (F.Σ-cong Erased-Π↔Π λ _ → F.id) ⟩ (∃ λ (f⁻¹ : B → Erased A) → Erased (HA.Proofs f f⁻¹)) F.↔⟨⟩ Is-equivalenceᴱ f F.□ where @0 →≃→Erased : (B → A) ≃ (B → Erased A) →≃→Erased = Eq.↔→≃ (λ f x → [ f x ]) (λ f x → erased (f x)) refl refl ---------------------------------------------------------------------- -- Variants of some lemmas proved above -- Is-equivalenceᴱ f is a proposition if the domain of f is Erased A -- (assuming extensionality). Is-equivalenceᴱ-propositional-for-Erased : {@0 A : Type ℓ₁} {B : Type ℓ₂} {@0 f : Erased A → B} → @0 Extensionality (ℓ₁ ⊔ ℓ₂) (ℓ₁ ⊔ ℓ₂) → Is-proposition (Is-equivalenceᴱ f) Is-equivalenceᴱ-propositional-for-Erased {f = f} ext = F.$⟨ H-level-Erased 1 (Eq.propositional ext _) ⟩ Is-proposition (Erased (Is-equivalence f)) ↝⟨ H-level-cong _ 1 Erased-Is-equivalence≃Is-equivalenceᴱ ⦂ (_ → _) ⟩□ Is-proposition (Is-equivalenceᴱ f) □ -- A variant of to≡to→≡ that is not defined in an erased context. -- Note that one side of the equivalence is Erased A. to≡to→≡-Erased : {@0 A : Type ℓ₁} {B : Type ℓ₂} {p q : Erased A ≃ᴱ B} → @0 Extensionality (ℓ₁ ⊔ ℓ₂) (ℓ₁ ⊔ ℓ₂) → _≃ᴱ_.to p ≡ _≃ᴱ_.to q → p ≡ q to≡to→≡-Erased {p = ⟨ f , f-eq ⟩} {q = ⟨ g , g-eq ⟩} ext f≡g = elim (λ {f g} f≡g → ∀ f-eq g-eq → ⟨ f , f-eq ⟩ ≡ ⟨ g , g-eq ⟩) (λ f _ _ → cong ⟨ f ,_⟩ (Is-equivalenceᴱ-propositional-for-Erased ext _ _)) f≡g f-eq g-eq ---------------------------------------------------------------------- -- More lemmas -- An equivalence relating Is-equivalenceᴱ to Is-equivalence. Is-equivalenceᴱ↔Is-equivalence : {@0 A : Type ℓ₁} {@0 B : Type ℓ₂} {@0 f : A → B} → Is-equivalenceᴱ (map f) ↝[ ℓ₁ ⊔ ℓ₂ ∣ ℓ₁ ⊔ ℓ₂ ] Is-equivalence (map f) Is-equivalenceᴱ↔Is-equivalence {f = f} = generalise-ext?-prop (Is-equivalenceᴱ (map f) ↝⟨ Is-equivalenceᴱ⇔Is-equivalenceᴱ-CP ⟩ (∀ y → Contractibleᴱ (map f ⁻¹ᴱ y)) F.↔⟨⟩ (∀ y → Contractibleᴱ (∃ λ x → Erased ([ f (erased x) ] ≡ y))) ↝⟨ (∀-cong _ λ _ → ECP.[]-cong₂.Contractibleᴱ-cong ax ax _ (Eq.↔⇒≃ $ F.inverse Erased-Σ↔Σ)) ⟩ (∀ y → Contractibleᴱ (Erased (∃ λ x → [ f x ] ≡ y))) ↝⟨ (∀-cong _ λ _ → ECP.[]-cong₁.Contractibleᴱ-Erased↔Contractible-Erased ax _) ⟩ (∀ y → Contractible (Erased (∃ λ x → [ f x ] ≡ y))) ↝⟨ (∀-cong _ λ _ → H-level-cong _ 0 Erased-Σ↔Σ) ⟩ (∀ y → Contractible (∃ λ x → Erased (map f x ≡ y))) F.↔⟨⟩ (∀ y → Contractible (map f ⁻¹ᴱ y)) ↝⟨ (∀-cong _ λ _ → H-level-cong _ 0 $ ECP.[]-cong₁.⁻¹ᴱ[]↔⁻¹[] ax₂) ⟩ (∀ y → Contractible (map f ⁻¹ y)) ↝⟨ inverse-ext? Is-equivalence≃Is-equivalence-CP _ ⟩□ Is-equivalence (map f) □) (λ ext → Is-equivalenceᴱ-propositional-for-Erased ext) (λ ext → Eq.propositional ext _) -- Erased "commutes" with Is-equivalenceᴱ (assuming extensionality). Erased-Is-equivalenceᴱ↔Is-equivalenceᴱ : {@0 A : Type ℓ₁} {@0 B : Type ℓ₂} {@0 f : A → B} → Erased (Is-equivalenceᴱ f) ↝[ ℓ₁ ⊔ ℓ₂ ∣ ℓ₁ ⊔ ℓ₂ ]ᴱ Is-equivalenceᴱ (map f) Erased-Is-equivalenceᴱ↔Is-equivalenceᴱ {f = f} ext = Erased (Is-equivalenceᴱ f) F.↔⟨ Erased-Is-equivalenceᴱ≃Erased-Is-equivalence ⟩ Erased (Is-equivalence f) F.↔⟨ F.inverse Erased-Erased↔Erased ⟩ Erased (Erased (Is-equivalence f)) ↝⟨ Erased-cong? Erased-Is-equivalence↔Is-equivalence ext ⟩ Erased (Is-equivalence (map f)) F.↔⟨ Erased-Is-equivalence≃Is-equivalenceᴱ ⟩□ Is-equivalenceᴱ (map f) □ ------------------------------------------------------------------------ -- Results that depend on an axiomatisation of []-cong (for all -- universe levels) module []-cong (ax : ∀ {ℓ} → []-cong-axiomatisation ℓ) where private open module BC₁ {ℓ} = []-cong₁ (ax {ℓ = ℓ}) public open module BC₂ {ℓ₁ ℓ₂} = []-cong₂-⊔ (ax {ℓ = ℓ₁}) (ax {ℓ = ℓ₂}) (ax {ℓ = ℓ₁ ⊔ ℓ₂}) public
36.484587
163
0.449559
c518be7bd996d56750cf8fb1093dea9faa4f41a9
4,521
agda
Agda
Cubical/Experiments/Problem.agda
maxdore/cubical
ef62b84397396d48135d73ba7400b71c721ddc94
[ "MIT" ]
null
null
null
Cubical/Experiments/Problem.agda
maxdore/cubical
ef62b84397396d48135d73ba7400b71c721ddc94
[ "MIT" ]
null
null
null
Cubical/Experiments/Problem.agda
maxdore/cubical
ef62b84397396d48135d73ba7400b71c721ddc94
[ "MIT" ]
1
2021-03-12T20:08:45.000Z
2021-03-12T20:08:45.000Z
-- An example of something where normalization is surprisingly slow {-# OPTIONS --safe #-} module Cubical.Experiments.Problem where open import Cubical.Foundations.Prelude open import Cubical.Data.Int open import Cubical.HITs.S1 open import Cubical.HITs.S2 open import Cubical.HITs.S3 open import Cubical.HITs.Join open import Cubical.HITs.Hopf ptType : Type _ ptType = Σ Type₀ \ A → A pt : (A : ptType) → A .fst pt A = A .snd S¹pt : ptType S¹pt = (S¹ , base) S²pt : ptType S²pt = (S² , base) S³pt : ptType S³pt = (S³ , base) joinpt : ptType joinpt = (join S¹ S¹ , inl base) Ω : (A : ptType) → ptType Ω A = Path _ (pt A) (pt A) , refl Ω² : (A : ptType) → ptType Ω² A = Ω (Ω A) Ω³ : (A : ptType) → ptType Ω³ A = Ω² (Ω A) α : join S¹ S¹ → S² α (inl _) = base α (inr _) = base α (push x y i) = (merid y ∙ merid x) i where merid : S¹ → Path S² base base merid base = refl merid (loop i) = λ j → surf i j -- The tests test0To2 : Ω³ S³pt .fst test0To2 i j k = surf i j k f3 : Ω³ S³pt .fst → Ω³ joinpt .fst f3 p i j k = S³→joinS¹S¹ (p i j k) test0To3 : Ω³ joinpt .fst test0To3 = f3 test0To2 f4 : Ω³ joinpt .fst → Ω³ S²pt .fst f4 p i j k = α (p i j k) test0To4 : Ω³ S²pt .fst test0To4 = f4 test0To3 innerpath : ∀ i j → HopfS² (test0To4 i j i1) innerpath i j = transp (λ k → HopfS² (test0To4 i j k)) i0 base -- C-c C-n problem uses a lot of memory problem : pos 0 ≡ pos 0 problem i = transp (λ j → helix (innerpath i j)) i0 (pos 0) -- Lots of tests: (thanks Evan!) winding2 : Path (Path S² base base) refl refl → Int winding2 p = winding (λ j → transp (λ i → HopfS² (p i j)) i0 base) test0 : Int test0 = winding2 (λ i j → surf i j) test1 : Int test1 = winding2 (λ i j → surf j i) test2 : Int test2 = winding2 (λ i j → hcomp (λ _ → λ { (i = i0) → base ; (i = i1) → base ; (j = i0) → base ; (j = i1) → base}) (surf i j)) test3 : Int test3 = winding2 (λ i j → hcomp (λ k → λ { (i = i0) → surf j k ; (i = i1) → base ; (j = i0) → base ; (j = i1) → base}) base) test4 : Int test4 = winding2 (λ i j → hcomp (λ k → λ { (i = i0) → surf j k ; (i = i1) → base ; (j = i0) → base ; (j = i1) → base}) base) test5 : Int test5 = winding2 (λ i j → hcomp (λ k → λ { (i = i0) → base ; (i = i1) → base ; (j = i0) → surf k i ; (j = i1) → base}) base) test6 : Int test6 = winding2 (λ i j → hcomp (λ k → λ { (i = i0) → base ; (i = i1) → base ; (j = i0) → base ; (j = i1) → surf k i}) base) test7 : Int test7 = winding2 (λ i j → hcomp (λ k → λ { (i = i0) → base ; (i = i1) → surf j k ; (j = i0) → base ; (j = i1) → base}) (surf i j)) test8 : Int test8 = winding2 (λ i j → hcomp (λ k → λ { (i = i0) → base ; (i = i1) → base ; (j = i0) → surf k i ; (j = i1) → base}) (surf i j)) test9 : Int test9 = winding2 (λ i j → hcomp (λ k → λ { (i = i0) → base ; (i = i1) → base ; (j = i0) → base ; (j = i1) → surf k i}) (surf i j)) test10 : Int test10 = winding2 (λ i j → hcomp (λ k → λ { (i = i0) → surf j k ; (i = i1) → base ; (j = i0) → base ; (j = i1) → base}) (surf i j)) -- Tests using HopfS²' winding2' : Path (Path S² base base) refl refl → Int winding2' p = winding (λ j → transp (λ i → HopfS²' (p i j)) i0 base) test0' : Int test0' = winding2' (λ i j → surf i j) test1' : Int test1' = winding2' (λ i j → surf j i) test2' : Int test2' = winding2' (λ i j → hcomp (λ _ → λ { (i = i0) → base ; (i = i1) → base ; (j = i0) → base ; (j = i1) → base}) (surf i j)) test3' : Int test3' = winding2' (λ i j → hcomp (λ k → λ { (i = i0) → surf j k ; (i = i1) → base ; (j = i0) → base ; (j = i1) → base}) base) test4' : Int test4' = winding2' (λ i j → hcomp (λ k → λ { (i = i0) → surf j k ; (i = i1) → base ; (j = i0) → base ; (j = i1) → base}) base) test5' : Int test5' = winding2' (λ i j → hcomp (λ k → λ { (i = i0) → base ; (i = i1) → base ; (j = i0) → surf k i ; (j = i1) → base}) base) test6' : Int test6' = winding2' (λ i j → hcomp (λ k → λ { (i = i0) → base ; (i = i1) → base ; (j = i0) → base ; (j = i1) → surf k i}) base) test7' : Int test7' = winding2' (λ i j → hcomp (λ k → λ { (i = i0) → base ; (i = i1) → surf j k ; (j = i0) → base ; (j = i1) → base}) (surf i j)) test8' : Int test8' = winding2' (λ i j → hcomp (λ k → λ { (i = i0) → base ; (i = i1) → base ; (j = i0) → surf k i ; (j = i1) → base}) (surf i j)) test9' : Int test9' = winding2' (λ i j → hcomp (λ k → λ { (i = i0) → base ; (i = i1) → base ; (j = i0) → base ; (j = i1) → surf k i}) (surf i j)) test10' : Int test10' = winding2' (λ i j → hcomp (λ k → λ { (i = i0) → surf j k ; (i = i1) → base ; (j = i0) → base ; (j = i1) → base}) (surf i j))
30.342282
133
0.54457
1896bd25e99bf749dfc3cdc646040e1978b196c4
310
agda
Agda
Cubical/Structures/Everything.agda
borsiemir/cubical
cefeb3669ffdaea7b88ae0e9dd258378418819ca
[ "MIT" ]
null
null
null
Cubical/Structures/Everything.agda
borsiemir/cubical
cefeb3669ffdaea7b88ae0e9dd258378418819ca
[ "MIT" ]
null
null
null
Cubical/Structures/Everything.agda
borsiemir/cubical
cefeb3669ffdaea7b88ae0e9dd258378418819ca
[ "MIT" ]
null
null
null
{-# OPTIONS --cubical --safe #-} module Cubical.Structures.Everything where open import Cubical.Structures.Pointed public open import Cubical.Structures.InftyMagma public open import Cubical.Structures.Monoid public open import Cubical.Structures.Queue public open import Cubical.Structures.TypeEqvTo public
31
48
0.832258
1cda814c4381efa8dc1fc490bd39b17f4459abf3
347
agda
Agda
Cubical/HITs/Sn/Base.agda
kiana-S/univalent-foundations
8bdb0766260489f9c89a14f4c0f2ad26e5190dec
[ "MIT" ]
null
null
null
Cubical/HITs/Sn/Base.agda
kiana-S/univalent-foundations
8bdb0766260489f9c89a14f4c0f2ad26e5190dec
[ "MIT" ]
null
null
null
Cubical/HITs/Sn/Base.agda
kiana-S/univalent-foundations
8bdb0766260489f9c89a14f4c0f2ad26e5190dec
[ "MIT" ]
1
2021-11-22T02:02:01.000Z
2021-11-22T02:02:01.000Z
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.HITs.Sn.Base where open import Cubical.HITs.Susp open import Cubical.Data.Nat open import Cubical.Data.NatMinusOne open import Cubical.Data.Empty open import Cubical.Foundations.Prelude S : ℕ₋₁ → Type₀ S neg1 = ⊥ S (ℕ→ℕ₋₁ n) = Susp (S (-1+ n)) S₊ : ℕ → Type₀ S₊ n = S (ℕ→ℕ₋₁ n)
21.6875
50
0.691643
1cc035de0942e4202307dd0087205c59bc02bba2
2,197
agda
Agda
lib/Haskell/Prim/Applicative.agda
JonathanBrouwer/agda2hs
dcf63cc7ce51a325a97ac58bdd0aeace24c08b15
[ "MIT" ]
55
2020-10-20T13:36:25.000Z
2022-03-26T21:57:56.000Z
lib/Haskell/Prim/Applicative.agda
SNU-2D/agda2hs
160478a51bc78b0fdab07b968464420439f9fed6
[ "MIT" ]
63
2020-10-22T05:19:27.000Z
2022-02-25T15:47:30.000Z
lib/Haskell/Prim/Applicative.agda
SNU-2D/agda2hs
160478a51bc78b0fdab07b968464420439f9fed6
[ "MIT" ]
18
2020-10-21T22:19:09.000Z
2022-03-12T11:42:52.000Z
module Haskell.Prim.Applicative where open import Haskell.Prim open import Haskell.Prim.Either open import Haskell.Prim.Foldable open import Haskell.Prim.Functor open import Haskell.Prim.List open import Haskell.Prim.Maybe open import Haskell.Prim.Monoid open import Haskell.Prim.Tuple -------------------------------------------------- -- Applicative record Applicative (f : Set → Set) : Set₁ where infixl 4 _<*>_ field pure : a → f a _<*>_ : f (a → b) → f a → f b overlap ⦃ super ⦄ : Functor f _<*_ : f a → f b → f a x <* y = const <$> x <*> y _*>_ : f a → f b → f b x *> y = const id <$> x <*> y open Applicative ⦃ ... ⦄ public {-# COMPILE AGDA2HS Applicative existing-class #-} instance iApplicativeList : Applicative List iApplicativeList .pure x = x ∷ [] iApplicativeList ._<*>_ fs xs = concatMap (λ f → map f xs) fs iApplicativeMaybe : Applicative Maybe iApplicativeMaybe .pure = Just iApplicativeMaybe ._<*>_ (Just f) (Just x) = Just (f x) iApplicativeMaybe ._<*>_ _ _ = Nothing iApplicativeEither : Applicative (Either a) iApplicativeEither .pure = Right iApplicativeEither ._<*>_ (Right f) (Right x) = Right (f x) iApplicativeEither ._<*>_ (Left e) _ = Left e iApplicativeEither ._<*>_ _ (Left e) = Left e iApplicativeFun : Applicative (λ b → a → b) iApplicativeFun .pure = const iApplicativeFun ._<*>_ f g x = f x (g x) iApplicativeTuple₂ : ⦃ Monoid a ⦄ → Applicative (a ×_) iApplicativeTuple₂ .pure x = mempty , x iApplicativeTuple₂ ._<*>_ (a , f) (b , x) = a <> b , f x iApplicativeTuple₃ : ⦃ Monoid a ⦄ → ⦃ Monoid b ⦄ → Applicative (a × b ×_) iApplicativeTuple₃ .pure x = mempty , mempty , x iApplicativeTuple₃ ._<*>_ (a , b , f) (a₁ , b₁ , x) = a <> a₁ , b <> b₁ , f x iApplicativeTuple₄ : ⦃ Monoid a ⦄ → ⦃ Monoid b ⦄ → ⦃ Monoid c ⦄ → Applicative (λ d → Tuple (a ∷ b ∷ c ∷ d ∷ [])) iApplicativeTuple₄ .pure x = mempty ∷ mempty ∷ mempty ∷ x ∷ [] iApplicativeTuple₄ ._<*>_ (a ∷ b ∷ c ∷ f ∷ []) (a₁ ∷ b₁ ∷ c₁ ∷ x ∷ []) = a <> a₁ ∷ b <> b₁ ∷ c <> c₁ ∷ f x ∷ []
32.791045
89
0.571234
0b57f294421e7f1ebfdcd826af907270b6ff629d
1,827
agda
Agda
Cubical/Categories/Instances/Cospan.agda
barrettj12/cubical
7b41b9171f90473efc98487cb2ea7a4d02320cb2
[ "MIT" ]
null
null
null
Cubical/Categories/Instances/Cospan.agda
barrettj12/cubical
7b41b9171f90473efc98487cb2ea7a4d02320cb2
[ "MIT" ]
null
null
null
Cubical/Categories/Instances/Cospan.agda
barrettj12/cubical
7b41b9171f90473efc98487cb2ea7a4d02320cb2
[ "MIT" ]
null
null
null
{-# OPTIONS --safe #-} module Cubical.Categories.Instances.Cospan where open import Cubical.Foundations.Prelude open import Cubical.Categories.Category open import Cubical.Data.Unit open import Cubical.Data.Empty open Category data 𝟛 : Type ℓ-zero where ⓪ : 𝟛 ① : 𝟛 ② : 𝟛 CospanCat : Category ℓ-zero ℓ-zero CospanCat .ob = 𝟛 CospanCat .Hom[_,_] ⓪ ① = Unit CospanCat .Hom[_,_] ② ① = Unit CospanCat .Hom[_,_] ⓪ ⓪ = Unit CospanCat .Hom[_,_] ① ① = Unit CospanCat .Hom[_,_] ② ② = Unit CospanCat .Hom[_,_] _ _ = ⊥ CospanCat ._⋆_ {x = ⓪} {⓪} {⓪} f g = tt CospanCat ._⋆_ {x = ①} {①} {①} f g = tt CospanCat ._⋆_ {x = ②} {②} {②} f g = tt CospanCat ._⋆_ {x = ⓪} {①} {①} f g = tt CospanCat ._⋆_ {x = ②} {①} {①} f g = tt CospanCat ._⋆_ {x = ⓪} {⓪} {①} f g = tt CospanCat ._⋆_ {x = ②} {②} {①} f g = tt CospanCat .id {⓪} = tt CospanCat .id {①} = tt CospanCat .id {②} = tt CospanCat .⋆IdL {⓪} {①} _ = refl CospanCat .⋆IdL {②} {①} _ = refl CospanCat .⋆IdL {⓪} {⓪} _ = refl CospanCat .⋆IdL {①} {①} _ = refl CospanCat .⋆IdL {②} {②} _ = refl CospanCat .⋆IdR {⓪} {①} _ = refl CospanCat .⋆IdR {②} {①} _ = refl CospanCat .⋆IdR {⓪} {⓪} _ = refl CospanCat .⋆IdR {①} {①} _ = refl CospanCat .⋆IdR {②} {②} _ = refl CospanCat .⋆Assoc {⓪} {⓪} {⓪} {⓪} _ _ _ = refl CospanCat .⋆Assoc {⓪} {⓪} {⓪} {①} _ _ _ = refl CospanCat .⋆Assoc {⓪} {⓪} {①} {①} _ _ _ = refl CospanCat .⋆Assoc {⓪} {①} {①} {①} _ _ _ = refl CospanCat .⋆Assoc {①} {①} {①} {①} _ _ _ = refl CospanCat .⋆Assoc {②} {②} {②} {②} _ _ _ = refl CospanCat .⋆Assoc {②} {②} {②} {①} _ _ _ = refl CospanCat .⋆Assoc {②} {②} {①} {①} _ _ _ = refl CospanCat .⋆Assoc {②} {①} {①} {①} _ _ _ = refl CospanCat .isSetHom {⓪} {⓪} = isSetUnit CospanCat .isSetHom {⓪} {①} = isSetUnit CospanCat .isSetHom {①} {①} = isSetUnit CospanCat .isSetHom {②} {①} = isSetUnit CospanCat .isSetHom {②} {②} = isSetUnit
28.107692
48
0.600438
4aa23e0fbe94e4d76482277d911dd5de26031376
278
agda
Agda
test/Fail/Issue2386-b.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Fail/Issue2386-b.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Fail/Issue2386-b.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
-- Andreas, 2017-01-12, issue #2386 -- Should be rejected: data Eq (A : Set) : (x y : A) → Set where refl : (x y : A) → Eq A x y {-# BUILTIN EQUALITY Eq #-} -- Expected error: -- Wrong type of constructor of BUILTIN EQUALITY -- when checking the pragma BUILTIN EQUALITY Eq
23.166667
48
0.647482
1c08acd0c6c817ac34d1f755abb12b7e783c7b83
2,986
agda
Agda
test/asset/agda-stdlib-1.0/Data/Nat/GeneralisedArithmetic.agda
omega12345/agda-mode
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
[ "MIT" ]
null
null
null
test/asset/agda-stdlib-1.0/Data/Nat/GeneralisedArithmetic.agda
omega12345/agda-mode
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
[ "MIT" ]
null
null
null
test/asset/agda-stdlib-1.0/Data/Nat/GeneralisedArithmetic.agda
omega12345/agda-mode
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
[ "MIT" ]
null
null
null
------------------------------------------------------------------------ -- The Agda standard library -- -- A generalisation of the arithmetic operations ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.Nat.GeneralisedArithmetic where open import Data.Nat open import Data.Nat.Properties open import Function using (_∘′_; _∘_; id) open import Relation.Binary.PropositionalEquality open ≡-Reasoning module _ {a} {A : Set a} where fold : A → (A → A) → ℕ → A fold z s zero = z fold z s (suc n) = s (fold z s n) add : (0# : A) (1+ : A → A) → ℕ → A → A add 0# 1+ n z = fold z 1+ n mul : (0# : A) (1+ : A → A) → (+ : A → A → A) → (ℕ → A → A) mul 0# 1+ _+_ n x = fold 0# (λ s → x + s) n -- Properties module _ {a} {A : Set a} where fold-+ : ∀ {s : A → A} {z : A} → ∀ m {n} → fold z s (m + n) ≡ fold (fold z s n) s m fold-+ zero = refl fold-+ {s = s} (suc m) = cong s (fold-+ m) fold-k : ∀ {s : A → A} {z : A} {k} m → fold k (s ∘′_) m z ≡ fold (k z) s m fold-k zero = refl fold-k {s = s} (suc m) = cong s (fold-k m) fold-* : ∀ {s : A → A} {z : A} m {n} → fold z s (m * n) ≡ fold z (fold id (s ∘_) n) m fold-* zero = refl fold-* {s = s} {z} (suc m) {n} = let +n = fold id (s ∘′_) n in begin fold z s (n + m * n) ≡⟨ fold-+ n ⟩ fold (fold z s (m * n)) s n ≡⟨ cong (λ z → fold z s n) (fold-* m) ⟩ fold (fold z +n m) s n ≡⟨ sym (fold-k n) ⟩ fold z +n (suc m) ∎ fold-pull : ∀ {s : A → A} {z : A} (g : A → A → A) (p : A) (eqz : g z p ≡ p) (eqs : ∀ l → s (g l p) ≡ g (s l) p) → ∀ m → fold p s m ≡ g (fold z s m) p fold-pull _ _ eqz _ zero = sym eqz fold-pull {s = s} {z} g p eqz eqs (suc m) = begin s (fold p s m) ≡⟨ cong s (fold-pull g p eqz eqs m) ⟩ s (g (fold z s m) p) ≡⟨ eqs (fold z s m) ⟩ g (s (fold z s m)) p ∎ id-is-fold : ∀ m → fold zero suc m ≡ m id-is-fold zero = refl id-is-fold (suc m) = cong suc (id-is-fold m) +-is-fold : ∀ m {n} → fold n suc m ≡ m + n +-is-fold zero = refl +-is-fold (suc m) = cong suc (+-is-fold m) *-is-fold : ∀ m {n} → fold zero (n +_) m ≡ m * n *-is-fold zero = refl *-is-fold (suc m) {n} = cong (n +_) (*-is-fold m) ^-is-fold : ∀ {m} n → fold 1 (m *_) n ≡ m ^ n ^-is-fold zero = refl ^-is-fold {m} (suc n) = cong (m *_) (^-is-fold n) *+-is-fold : ∀ m n {p} → fold p (n +_) m ≡ m * n + p *+-is-fold m n {p} = begin fold p (n +_) m ≡⟨ fold-pull _+_ p refl (λ l → sym (+-assoc n l p)) m ⟩ fold 0 (n +_) m + p ≡⟨ cong (_+ p) (*-is-fold m) ⟩ m * n + p ∎ ^*-is-fold : ∀ m n {p} → fold p (m *_) n ≡ m ^ n * p ^*-is-fold m n {p} = begin fold p (m *_) n ≡⟨ fold-pull _*_ p (*-identityˡ p) (λ l → sym (*-assoc m l p)) n ⟩ fold 1 (m *_) n * p ≡⟨ cong (_* p) (^-is-fold n) ⟩ m ^ n * p ∎
32.813187
72
0.428667
500c87d6e9b55d7b2f874ee8ea3d7760586bf40a
2,262
agda
Agda
Experiment/FingerTree/Common.agda
rei1024/agda-misc
37200ea91d34a6603d395d8ac81294068303f577
[ "MIT" ]
3
2020-04-07T17:49:42.000Z
2020-04-21T00:03:43.000Z
Experiment/FingerTree/Common.agda
rei1024/agda-misc
37200ea91d34a6603d395d8ac81294068303f577
[ "MIT" ]
null
null
null
Experiment/FingerTree/Common.agda
rei1024/agda-misc
37200ea91d34a6603d395d8ac81294068303f577
[ "MIT" ]
null
null
null
{-# OPTIONS --without-K --safe #-} module Experiment.FingerTree.Common where open import Level renaming (zero to lzero ; suc to lsuc) open import Algebra open import Data.Product open import Function.Core open import Function.Endomorphism.Propositional open import Data.Nat hiding (_⊔_) import Data.Nat.Properties as ℕₚ foldr-to-foldMap : ∀ {a b e} {F : Set a → Set a} → (∀ {A : Set a} {B : Set b} → (A → B → B) → B → F A → B) → ∀ {A : Set a} (M : Monoid b e) → (A → Monoid.Carrier M) → F A → Monoid.Carrier M foldr-to-foldMap foldr M f xs = foldr (λ x m → Monoid._∙_ M (f x) m) (Monoid.ε M) xs foldMap-to-foldr : ∀ {a b} {F : Set a → Set a} → (∀ {A : Set a} (M : Monoid b b) → (A → Monoid.Carrier M) → F A → Monoid.Carrier M) → ∀ {A : Set a} {B : Set b} → (A → B → B) → B → F A → B foldMap-to-foldr foldMap {B = B} f e xs = foldMap (∘-id-monoid B) f xs e dual : ∀ {c e} → Monoid c e → Monoid c e dual m = record { Carrier = Carrier ; _≈_ = _≈_ ; _∙_ = flip _∙_ ; ε = ε ; isMonoid = record { isSemigroup = record { isMagma = record { isEquivalence = isEquivalence ; ∙-cong = λ x≈y u≈v → ∙-cong u≈v x≈y } ; assoc = λ x y z → sym $ assoc z y x } ; identity = identityʳ , identityˡ } } where open Monoid m foldMap-to-foldl : ∀ {a b} {F : Set a → Set a} → (∀ {A : Set a} (M : Monoid b b) → (A → Monoid.Carrier M) → F A → Monoid.Carrier M) → ∀ {A : Set a} {B : Set b} → (B → A → B) → B → F A → B foldMap-to-foldl foldMap {B = B} f e xs = foldMap (dual (∘-id-monoid B)) (flip f) xs e record RawFoldable {a} (F : Set a → Set a) : Set (lsuc a) where field foldMap : ∀ {A : Set a} (M : Monoid a a) → (A → Monoid.Carrier M) → F A → Monoid.Carrier M fold : (M : Monoid a a) → F (Monoid.Carrier M) → Monoid.Carrier M fold M = foldMap M id foldr : ∀ {A B : Set a} → (A → B → B) → B → F A → B foldr {A} {B} f e xs = foldMap (∘-id-monoid B) f xs e foldl : ∀ {A B : Set a} → (B → A → B) → B → F A → B foldl {A} {B} f e xs = foldMap (dual (∘-id-monoid B)) (flip f) xs e fromFoldr : ∀ {a} {F : Set a → Set a} → (∀ {A B : Set a} → (A → B → B) → B → F A → B) → RawFoldable {a} F fromFoldr foldr = record { foldMap = foldr-to-foldMap foldr }
35.34375
94
0.544651
507aafb6a34889b87312d56a6709ff15a460757a
8,285
agda
Agda
Cubical/Data/Nat/Order.agda
cangiuli/cubical
d103ec455d41cccf9b13a4803e7d3cf462e00067
[ "MIT" ]
null
null
null
Cubical/Data/Nat/Order.agda
cangiuli/cubical
d103ec455d41cccf9b13a4803e7d3cf462e00067
[ "MIT" ]
1
2022-01-27T02:07:48.000Z
2022-01-27T02:07:48.000Z
Cubical/Data/Nat/Order.agda
cangiuli/cubical
d103ec455d41cccf9b13a4803e7d3cf462e00067
[ "MIT" ]
null
null
null
{-# OPTIONS --cubical --no-import-sorts --no-exact-split --safe #-} module Cubical.Data.Nat.Order where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Function open import Cubical.Foundations.HLevels open import Cubical.Data.Empty as ⊥ open import Cubical.Data.Sigma open import Cubical.Data.Sum as ⊎ open import Cubical.Data.Nat.Base open import Cubical.Data.Nat.Properties open import Cubical.Induction.WellFounded open import Cubical.Relation.Nullary infix 4 _≤_ _<_ _≤_ : ℕ → ℕ → Type₀ m ≤ n = Σ[ k ∈ ℕ ] k + m ≡ n _<_ : ℕ → ℕ → Type₀ m < n = suc m ≤ n data Trichotomy (m n : ℕ) : Type₀ where lt : m < n → Trichotomy m n eq : m ≡ n → Trichotomy m n gt : n < m → Trichotomy m n private variable k l m n : ℕ private witness-prop : ∀ j → isProp (j + m ≡ n) witness-prop {m} {n} j = isSetℕ (j + m) n m≤n-isProp : isProp (m ≤ n) m≤n-isProp {m} {n} (k , p) (l , q) = Σ≡Prop witness-prop lemma where lemma : k ≡ l lemma = inj-+m (p ∙ (sym q)) zero-≤ : 0 ≤ n zero-≤ {n} = n , +-zero n suc-≤-suc : m ≤ n → suc m ≤ suc n suc-≤-suc (k , p) = k , (+-suc k _) ∙ (cong suc p) ≤-+k : m ≤ n → m + k ≤ n + k ≤-+k {m} {k = k} (i , p) = i , +-assoc i m k ∙ cong (_+ k) p ≤-k+ : m ≤ n → k + m ≤ k + n ≤-k+ {m} {n} {k} = subst (_≤ k + n) (+-comm m k) ∘ subst (m + k ≤_) (+-comm n k) ∘ ≤-+k pred-≤-pred : suc m ≤ suc n → m ≤ n pred-≤-pred (k , p) = k , injSuc ((sym (+-suc k _)) ∙ p) ≤-refl : m ≤ m ≤-refl = 0 , refl ≤-suc : m ≤ n → m ≤ suc n ≤-suc (k , p) = suc k , cong suc p ≤-predℕ : predℕ n ≤ n ≤-predℕ {zero} = ≤-refl ≤-predℕ {suc n} = ≤-suc ≤-refl ≤-trans : k ≤ m → m ≤ n → k ≤ n ≤-trans {k} {m} {n} (i , p) (j , q) = i + j , l2 ∙ (l1 ∙ q) where l1 : j + i + k ≡ j + m l1 = (sym (+-assoc j i k)) ∙ (cong (j +_) p) l2 : i + j + k ≡ j + i + k l2 = cong (_+ k) (+-comm i j) ≤-antisym : m ≤ n → n ≤ m → m ≡ n ≤-antisym {m} (i , p) (j , q) = (cong (_+ m) l3) ∙ p where l1 : j + i + m ≡ m l1 = (sym (+-assoc j i m)) ∙ ((cong (j +_) p) ∙ q) l2 : j + i ≡ 0 l2 = m+n≡n→m≡0 l1 l3 : 0 ≡ i l3 = sym (snd (m+n≡0→m≡0×n≡0 l2)) ≤-k+-cancel : k + m ≤ k + n → m ≤ n ≤-k+-cancel {k} {m} (l , p) = l , inj-m+ (sub k m ∙ p) where sub : ∀ k m → k + (l + m) ≡ l + (k + m) sub k m = +-assoc k l m ∙ cong (_+ m) (+-comm k l) ∙ sym (+-assoc l k m) ≤-+k-cancel : m + k ≤ n + k → m ≤ n ≤-+k-cancel {m} {k} {n} (l , p) = l , cancelled where cancelled : l + m ≡ n cancelled = inj-+m (sym (+-assoc l m k) ∙ p) ≤-·k : m ≤ n → m · k ≤ n · k ≤-·k {m} {n} {k} (d , r) = d · k , reason where reason : d · k + m · k ≡ n · k reason = d · k + m · k ≡⟨ ·-distribʳ d m k ⟩ (d + m) · k ≡⟨ cong (_· k) r ⟩ n · k ∎ <-k+-cancel : k + m < k + n → m < n <-k+-cancel {k} {m} {n} = ≤-k+-cancel ∘ subst (_≤ k + n) (sym (+-suc k m)) ¬-<-zero : ¬ m < 0 ¬-<-zero (k , p) = snotz ((sym (+-suc k _)) ∙ p) ¬m<m : ¬ m < m ¬m<m {m} = ¬-<-zero ∘ ≤-+k-cancel {k = m} ≤0→≡0 : n ≤ 0 → n ≡ 0 ≤0→≡0 {zero} ineq = refl ≤0→≡0 {suc n} ineq = ⊥.rec (¬-<-zero ineq) predℕ-≤-predℕ : m ≤ n → (predℕ m) ≤ (predℕ n) predℕ-≤-predℕ {zero} {zero} ineq = ≤-refl predℕ-≤-predℕ {zero} {suc n} ineq = zero-≤ predℕ-≤-predℕ {suc m} {zero} ineq = ⊥.rec (¬-<-zero ineq) predℕ-≤-predℕ {suc m} {suc n} ineq = pred-≤-pred ineq ¬m+n<m : ¬ m + n < m ¬m+n<m {m} {n} = ¬-<-zero ∘ <-k+-cancel ∘ subst (m + n <_) (sym (+-zero m)) <-weaken : m < n → m ≤ n <-weaken (k , p) = suc k , sym (+-suc k _) ∙ p ≤<-trans : l ≤ m → m < n → l < n ≤<-trans p = ≤-trans (suc-≤-suc p) <≤-trans : l < m → m ≤ n → l < n <≤-trans = ≤-trans <-trans : l < m → m < n → l < n <-trans p = ≤<-trans (<-weaken p) <-asym : m < n → ¬ n ≤ m <-asym m<n = ¬m<m ∘ <≤-trans m<n <-+k : m < n → m + k < n + k <-+k p = ≤-+k p <-k+ : m < n → k + m < k + n <-k+ {m} {n} {k} p = subst (λ km → km ≤ k + n) (+-suc k m) (≤-k+ p) <-·sk : m < n → m · suc k < n · suc k <-·sk {m} {n} {k} (d , r) = (d · suc k + k) , reason where reason : (d · suc k + k) + suc (m · suc k) ≡ n · suc k reason = (d · suc k + k) + suc (m · suc k) ≡⟨ sym (+-assoc (d · suc k) k _) ⟩ d · suc k + (k + suc (m · suc k)) ≡[ i ]⟨ d · suc k + +-suc k (m · suc k) i ⟩ d · suc k + suc m · suc k ≡⟨ ·-distribʳ d (suc m) (suc k) ⟩ (d + suc m) · suc k ≡⟨ cong (_· suc k) r ⟩ n · suc k ∎ Trichotomy-suc : Trichotomy m n → Trichotomy (suc m) (suc n) Trichotomy-suc (lt m<n) = lt (suc-≤-suc m<n) Trichotomy-suc (eq m=n) = eq (cong suc m=n) Trichotomy-suc (gt n<m) = gt (suc-≤-suc n<m) _≟_ : ∀ m n → Trichotomy m n zero ≟ zero = eq refl zero ≟ suc n = lt (n , +-comm n 1) suc m ≟ zero = gt (m , +-comm m 1) suc m ≟ suc n = Trichotomy-suc (m ≟ n) <-split : m < suc n → (m < n) ⊎ (m ≡ n) <-split {n = zero} = inr ∘ snd ∘ m+n≡0→m≡0×n≡0 ∘ snd ∘ pred-≤-pred <-split {zero} {suc n} = λ _ → inl (suc-≤-suc zero-≤) <-split {suc m} {suc n} = ⊎.map suc-≤-suc (cong suc) ∘ <-split ∘ pred-≤-pred private acc-suc : Acc _<_ n → Acc _<_ (suc n) acc-suc a = acc λ y y<sn → case <-split y<sn of λ { (inl y<n) → access a y y<n ; (inr y≡n) → subst _ (sym y≡n) a } <-wellfounded : WellFounded _<_ <-wellfounded zero = acc λ _ → ⊥.rec ∘ ¬-<-zero <-wellfounded (suc n) = acc-suc (<-wellfounded n) <→≢ : n < m → ¬ n ≡ m <→≢ {n} {m} p q = ¬m<m (subst (_< m) q p) module _ (b₀ : ℕ) (P : ℕ → Type₀) (base : ∀ n → n < suc b₀ → P n) (step : ∀ n → P n → P (suc b₀ + n)) where open WFI (<-wellfounded) private dichotomy : ∀ b n → (n < b) ⊎ (Σ[ m ∈ ℕ ] n ≡ b + m) dichotomy b n = case n ≟ b return (λ _ → (n < b) ⊎ (Σ[ m ∈ ℕ ] n ≡ b + m)) of λ { (lt o) → inl o ; (eq p) → inr (0 , p ∙ sym (+-zero b)) ; (gt (m , p)) → inr (suc m , sym p ∙ +-suc m b ∙ +-comm (suc m) b) } dichotomy<≡ : ∀ b n → (n<b : n < b) → dichotomy b n ≡ inl n<b dichotomy<≡ b n n<b = case dichotomy b n return (λ d → d ≡ inl n<b) of λ { (inl x) → cong inl (m≤n-isProp x n<b) ; (inr (m , p)) → ⊥.rec (<-asym n<b (m , sym (p ∙ +-comm b m))) } dichotomy+≡ : ∀ b m n → (p : n ≡ b + m) → dichotomy b n ≡ inr (m , p) dichotomy+≡ b m n p = case dichotomy b n return (λ d → d ≡ inr (m , p)) of λ { (inl n<b) → ⊥.rec (<-asym n<b (m , +-comm m b ∙ sym p)) ; (inr (m' , q)) → cong inr (Σ≡Prop (λ x → isSetℕ n (b + x)) (inj-m+ {m = b} (sym q ∙ p))) } b = suc b₀ lemma₁ : ∀{x y z} → x ≡ suc z + y → y < x lemma₁ {y = y} {z} p = z , +-suc z y ∙ sym p subStep : (n : ℕ) → (∀ m → m < n → P m) → (n < b) ⊎ (Σ[ m ∈ ℕ ] n ≡ b + m) → P n subStep n _ (inl l) = base n l subStep n rec (inr (m , p)) = transport (cong P (sym p)) (step m (rec m (lemma₁ p))) wfStep : (n : ℕ) → (∀ m → m < n → P m) → P n wfStep n rec = subStep n rec (dichotomy b n) wfStepLemma₀ : ∀ n (n<b : n < b) rec → wfStep n rec ≡ base n n<b wfStepLemma₀ n n<b rec = cong (subStep n rec) (dichotomy<≡ b n n<b) wfStepLemma₁ : ∀ n rec → wfStep (b + n) rec ≡ step n (rec n (lemma₁ refl)) wfStepLemma₁ n rec = cong (subStep (b + n) rec) (dichotomy+≡ b n (b + n) refl) ∙ transportRefl _ +induction : ∀ n → P n +induction = induction wfStep +inductionBase : ∀ n → (l : n < b) → +induction n ≡ base n l +inductionBase n l = induction-compute wfStep n ∙ wfStepLemma₀ n l _ +inductionStep : ∀ n → +induction (b + n) ≡ step n (+induction n) +inductionStep n = induction-compute wfStep (b + n) ∙ wfStepLemma₁ n _ module <-Reasoning where -- TODO: would it be better to mirror the way it is done in the agda-stdlib? infixr 2 _<⟨_⟩_ _≤<⟨_⟩_ _≤⟨_⟩_ _<≤⟨_⟩_ _≡<⟨_⟩_ _≡≤⟨_⟩_ _<≡⟨_⟩_ _≤≡⟨_⟩_ _<⟨_⟩_ : ∀ k → k < n → n < m → k < m _ <⟨ p ⟩ q = <-trans p q _≤<⟨_⟩_ : ∀ k → k ≤ n → n < m → k < m _ ≤<⟨ p ⟩ q = ≤<-trans p q _≤⟨_⟩_ : ∀ k → k ≤ n → n ≤ m → k ≤ m _ ≤⟨ p ⟩ q = ≤-trans p q _<≤⟨_⟩_ : ∀ k → k < n → n ≤ m → k < m _ <≤⟨ p ⟩ q = <≤-trans p q _≡≤⟨_⟩_ : ∀ k → k ≡ l → l ≤ m → k ≤ m _ ≡≤⟨ p ⟩ q = subst (λ k → k ≤ _) (sym p) q _≡<⟨_⟩_ : ∀ k → k ≡ l → l < m → k < m _ ≡<⟨ p ⟩ q = _ ≡≤⟨ cong suc p ⟩ q _≤≡⟨_⟩_ : ∀ k → k ≤ l → l ≡ m → k ≤ m _ ≤≡⟨ p ⟩ q = subst (λ l → _ ≤ l) q p _<≡⟨_⟩_ : ∀ k → k < l → l ≡ m → k < m _ <≡⟨ p ⟩ q = _ ≤≡⟨ p ⟩ q
28.968531
88
0.462523
18cd5779a5b14b1846a7202d3379de355baacbc1
527
agda
Agda
test/interaction/Issue2803.agda
asr/eagda
7220bebfe9f64297880ecec40314c0090018fdd0
[ "BSD-3-Clause" ]
1
2016-03-17T01:45:59.000Z
2016-03-17T01:45:59.000Z
test/interaction/Issue2803.agda
asr/eagda
7220bebfe9f64297880ecec40314c0090018fdd0
[ "BSD-3-Clause" ]
null
null
null
test/interaction/Issue2803.agda
asr/eagda
7220bebfe9f64297880ecec40314c0090018fdd0
[ "BSD-3-Clause" ]
1
2019-03-05T20:02:38.000Z
2019-03-05T20:02:38.000Z
-- Andreas, 2017-11-12, issue #2803 -- Problem: names of hidden variable patterns -- can get lost during case splitting. -- They actually get lost already during lhs type checking, -- but it is noticed only when printed back to the user -- during case splitting. -- {-# OPTIONS -v tc.lhs:40 #-} record HFun (A B : Set) : Set where field apply : {a : A} → B postulate A : Set test : HFun A (A → A) HFun.apply test {β} = {!!} -- C-c C-c -- YIELDS: -- HFun.apply test {a} x = ? -- EXPECTED: -- HFun.apply test {β} x = ?
21.08
59
0.633776
506bdc7fcd489f39ad12e65c999ea85e55446ae5
1,681
agda
Agda
Cats/Util/Reflection.agda
alessio-b-zak/cats
a3b69911c4c6ec380ddf6a0f4510d3a755734b86
[ "MIT" ]
null
null
null
Cats/Util/Reflection.agda
alessio-b-zak/cats
a3b69911c4c6ec380ddf6a0f4510d3a755734b86
[ "MIT" ]
null
null
null
Cats/Util/Reflection.agda
alessio-b-zak/cats
a3b69911c4c6ec380ddf6a0f4510d3a755734b86
[ "MIT" ]
null
null
null
module Cats.Util.Reflection where open import Reflection public open import Data.List using ([]) open import Data.Unit using (⊤) open import Function using (_∘_) open import Level using (zero ; Lift) open import Cats.Util.Monad using (RawMonad ; _>>=_ ; _>>_ ; return ; mapM′) instance tcMonad : ∀ {l} → RawMonad {l} TC tcMonad = record { return = returnTC ; _>>=_ = bindTC } pattern argH x = arg (arg-info hidden relevant) x pattern argD x = arg (arg-info visible relevant) x pattern defD x = def x [] fromArg : ∀ {A} → Arg A → A fromArg (arg _ x) = x fromAbs : ∀ {A} → Abs A → A fromAbs (abs _ x) = x blockOnAnyMeta-clause : Clause → TC (Lift zero ⊤) -- This may or may not loop if there are metas in the input term that cannot be -- solved when this tactic is called. {-# TERMINATING #-} blockOnAnyMeta : Term → TC (Lift zero ⊤) blockOnAnyMeta (var x args) = mapM′ (blockOnAnyMeta ∘ fromArg) args blockOnAnyMeta (con c args) = mapM′ (blockOnAnyMeta ∘ fromArg) args blockOnAnyMeta (def f args) = mapM′ (blockOnAnyMeta ∘ fromArg) args blockOnAnyMeta (lam v t) = blockOnAnyMeta (fromAbs t) blockOnAnyMeta (pat-lam cs args) = do mapM′ blockOnAnyMeta-clause cs mapM′ (blockOnAnyMeta ∘ fromArg) args blockOnAnyMeta (pi a b) = do blockOnAnyMeta (fromArg a) blockOnAnyMeta (fromAbs b) blockOnAnyMeta (sort (set t)) = blockOnAnyMeta t blockOnAnyMeta (sort (lit n)) = return _ blockOnAnyMeta (sort unknown) = return _ blockOnAnyMeta (lit l) = return _ blockOnAnyMeta (meta x _) = blockOnMeta x blockOnAnyMeta unknown = return _ blockOnAnyMeta-clause (clause ps t) = blockOnAnyMeta t blockOnAnyMeta-clause (absurd-clause ps) = return _
28.491525
79
0.702558
3914404ba70d090a90d46cc2444d16f2b9167834
7,326
agda
Agda
test/Succeed/Issue854.agda
pthariensflame/agda
222c4c64b2ccf8e0fc2498492731c15e8fef32d4
[ "BSD-3-Clause" ]
3
2015-03-28T14:51:03.000Z
2015-12-07T20:14:00.000Z
test/Succeed/Issue854.agda
Blaisorblade/Agda
802a28aa8374f15fe9d011ceb80317fdb1ec0949
[ "BSD-3-Clause" ]
null
null
null
test/Succeed/Issue854.agda
Blaisorblade/Agda
802a28aa8374f15fe9d011ceb80317fdb1ec0949
[ "BSD-3-Clause" ]
null
null
null
-- 2013-06-15 Andreas, issue reported by Stevan Andjelkovic module Issue854 where infixr 1 _⊎_ infixr 2 _×_ infixr 4 _,_ infix 4 _≡_ data ⊥ : Set where ⊥-elim : {A : Set} → ⊥ → A ⊥-elim () record ⊤ : Set where constructor tt data Bool : Set where true false : Bool data ℕ : Set where zero : ℕ suc : (n : ℕ) → ℕ data Maybe (A : Set) : Set where nothing : Maybe A just : (x : A) → Maybe A data _≡_ {A : Set} (x : A) : A → Set where refl : x ≡ x data _⊎_ (A : Set) (B : Set) : Set where inj₁ : (x : A) → A ⊎ B inj₂ : (y : B) → A ⊎ B [_,_] : ∀ {A : Set} {B : Set} {C : A ⊎ B → Set} → ((x : A) → C (inj₁ x)) → ((x : B) → C (inj₂ x)) → ((x : A ⊎ B) → C x) [ f , g ] (inj₁ x) = f x [ f , g ] (inj₂ y) = g y [_,_]₁ : ∀ {A : Set} {B : Set} {C : A ⊎ B → Set₁} → ((x : A) → C (inj₁ x)) → ((x : B) → C (inj₂ x)) → ((x : A ⊎ B) → C x) [ f , g ]₁ (inj₁ x) = f x [ f , g ]₁ (inj₂ y) = g y record Σ (A : Set) (B : A → Set) : Set where constructor _,_ field proj₁ : A proj₂ : B proj₁ open Σ public _×_ : Set → Set → Set A × B = Σ A λ _ → B uncurry₁ : {A : Set} {B : A → Set} {C : Σ A B → Set₁} → ((x : A) → (y : B x) → C (x , y)) → ((p : Σ A B) → C p) uncurry₁ f (x , y) = f x y ------------------------------------------------------------------------ infix 5 _◃_ infixr 1 _⊎C_ infixr 2 _×C_ record Container : Set₁ where constructor _◃_ field Shape : Set Position : Shape → Set open Container public ⟦_⟧ : Container → (Set → Set) ⟦ S ◃ P ⟧ X = Σ S λ s → P s → X idC : Container idC = ⊤ ◃ λ _ → ⊤ constC : Set → Container constC X = X ◃ λ _ → ⊥ 𝟘 = constC ⊥ 𝟙 = constC ⊤ _⊎C_ : Container → Container → Container S ◃ P ⊎C S′ ◃ P′ = (S ⊎ S′) ◃ [ P , P′ ]₁ _×C_ : Container → Container → Container S ◃ P ×C S′ ◃ P′ = (S × S′) ◃ uncurry₁ (λ s s′ → P s ⊎ P′ s′) data μ (C : Container) : Set where ⟨_⟩ : ⟦ C ⟧ (μ C) → μ C _⋆C_ : Container → Set → Container C ⋆C X = constC X ⊎C C _⋆_ : Container → Set → Set C ⋆ X = μ (C ⋆C X) AlgIter : Container → Set → Set AlgIter C X = ⟦ C ⟧ X → X iter : ∀ {C X} → AlgIter C X → μ C → X iter φ ⟨ s , k ⟩ = φ (s , λ p → iter φ (k p)) AlgRec : Container → Set → Set AlgRec C X = ⟦ C ⟧ (μ C × X) → X rec : ∀ {C X} → AlgRec C X → μ C → X rec φ ⟨ s , k ⟩ = φ (s , λ p → (k p , rec φ (k p))) return : ∀ {C X} → X → C ⋆ X return x = ⟨ inj₁ x , ⊥-elim ⟩ do : ∀ {C X} → ⟦ C ⟧ (C ⋆ X) → C ⋆ X do (s , k) = ⟨ inj₂ s , k ⟩ _>>=_ : ∀ {C X Y} → C ⋆ X → (X → C ⋆ Y) → C ⋆ Y _>>=_ {C}{X}{Y} m k = iter φ m where φ : AlgIter (C ⋆C X) (C ⋆ Y) φ (inj₁ x , _) = k x φ (inj₂ s , k) = do (s , k) ------------------------------------------------------------------------ _↠_ : Set → Set → Container I ↠ O = I ◃ λ _ → O State : Set → Container State S = (⊤ ↠ S) -- get ⊎C (S ↠ ⊤) -- put get : ∀ {S} → State S ⋆ S get = do (inj₁ tt , return) put : ∀ {S} → S → State S ⋆ ⊤ put s = do (inj₂ s , return) Homo : Container → Set → Set → Container → Set → Set Homo Σ X I Σ′ Y = AlgRec (Σ ⋆C X) (I → Σ′ ⋆ Y) Pseudohomo : Container → Set → Set → Container → Set → Set Pseudohomo Σ X I Σ′ Y = ⟦ Σ ⋆C X ⟧ (((Σ ⊎C Σ′) ⋆ X) × (I → Σ′ ⋆ Y)) → I → Σ′ ⋆ Y state : ∀ {Σ S X} → Pseudohomo (State S) X S Σ (X × S) state (inj₁ x , _) = λ s → return (x , s) -- return state (inj₂ (inj₁ _) , k) = λ s → proj₂ (k s) s -- get state (inj₂ (inj₂ s) , k) = λ _ → proj₂ (k tt) s -- put Abort : Container Abort = ⊤ ↠ ⊥ aborting : ∀ {X} → Abort ⋆ X aborting = do (tt , ⊥-elim) abort : ∀ {Σ X} → Pseudohomo Abort X ⊤ Σ (Maybe X) abort (inj₁ x , _) _ = return (just x) -- return abort (inj₂ _ , _) _ = return nothing -- abort ------------------------------------------------------------------------ record _⇒_ (C C′ : Container) : Set where field shape : Shape C → Shape C′ position : ∀ {s} → Position C′ (shape s) → Position C s open _⇒_ public idMorph : ∀ {C} → C ⇒ C idMorph = record { shape = λ s → s; position = λ p → p } inlMorph : ∀ {C C′ : Container} → C ⇒ (C ⊎C C′) inlMorph = record { shape = inj₁ ; position = λ p → p } swapMorph : ∀ {C C′} → (C ⊎C C′) ⇒ (C′ ⊎C C) swapMorph {C}{C′}= record { shape = sh ; position = λ {s} p → pos {s} p } where sh : Shape C ⊎ Shape C′ → Shape C′ ⊎ Shape C sh (inj₁ s) = inj₂ s sh (inj₂ s′) = inj₁ s′ pos : ∀ {s} → Position (C′ ⊎C C) (sh s) → Position (C ⊎C C′) s pos {inj₁ s} p = p pos {inj₂ s′} p′ = p′ ⟪_⟫ : ∀ {C C′ X} → C ⇒ C′ → ⟦ C ⟧ X → ⟦ C′ ⟧ X ⟪ m ⟫ xs = shape m (proj₁ xs) , λ p′ → proj₂ xs (position m p′) ⟪_⟫Homo : ∀ {C C′ X} → C ⇒ C′ → Homo C X ⊤ C′ X ⟪ m ⟫Homo (inj₁ x , _) _ = return x ⟪ m ⟫Homo (inj₂ s , k) _ = let (s′ , k′) = ⟪ m ⟫ (s , k) in do (s′ , λ p′ → proj₂ (k′ p′) tt) natural : ∀ {C C′ X} → C ⇒ C′ → C ⋆ X → C′ ⋆ X natural f m = rec ⟪ f ⟫Homo m tt inl : ∀ {C C′ X} → C ⋆ X → (C ⊎C C′) ⋆ X inl = natural inlMorph squeeze : ∀ {Σ Σ′ X} → ((Σ ⊎C Σ′) ⊎C Σ′) ⋆ X → (Σ ⊎C Σ′) ⋆ X squeeze = natural m where m = record { shape = [ (λ x → x) , inj₂ ] ; position = λ { {inj₁ x} p → p ; {inj₂ x} p → p} } lift : ∀ {Σ Σ′ X Y I} → Pseudohomo Σ X I Σ′ Y → Pseudohomo (Σ ⊎C Σ′) X I Σ′ Y lift φ (inj₁ x , _) i = φ (inj₁ x , ⊥-elim) i lift φ (inj₂ (inj₁ s) , k) i = φ (inj₂ s , λ p → let (w , ih) = k p in squeeze w , ih) i lift φ (inj₂ (inj₂ s′) , k′) i = do (s′ , λ p′ → proj₂ (k′ p′) i) weaken : ∀ {Σ Σ′ Σ″ Σ‴ X Y I} → Homo Σ′ X I Σ″ Y → Σ ⇒ Σ′ → Σ″ ⇒ Σ‴ → Homo Σ X I Σ‴ Y weaken {Σ}{Σ′}{Σ″}{Σ‴}{X}{Y} φ f g (s , k) i = w‴ where w : Σ ⋆ X w = ⟨ s , (λ p → proj₁ (k p)) ⟩ w′ : Σ′ ⋆ X w′ = natural f w w″ : Σ″ ⋆ Y w″ = rec φ w′ i w‴ : Σ‴ ⋆ Y w‴ = natural g w″ ⌈_⌉Homo : ∀ {Σ Σ′ X Y I} → Pseudohomo Σ X I Σ′ Y → Homo Σ X I Σ′ Y ⌈ φ ⌉Homo (inj₁ x , _) = φ (inj₁ x , ⊥-elim) ⌈ φ ⌉Homo (inj₂ s , k) = φ (inj₂ s , λ p → let (w , ih) = k p in inl w , ih) run : ∀ {Σ Σ′ Σ″ Σ‴ X Y I} → Pseudohomo Σ X I Σ′ Y → Σ″ ⇒ (Σ ⊎C Σ′) → Σ′ ⇒ Σ‴ → Σ″ ⋆ X → I → Σ‴ ⋆ Y run φ p q = rec (weaken ⌈ lift φ ⌉Homo p q) ------------------------------------------------------------------------ prog : (State ℕ ⊎C Abort) ⋆ Bool prog = ⟨ inj₂ (inj₁ (inj₁ tt)) , (λ n → -- get >>= λ n → ⟨ inj₂ (inj₁ (inj₂ (suc n))) , (λ _ → -- put (suc n) ⟨ inj₂ (inj₂ tt) , (λ _ → -- aborting return true) ⟩) ⟩) ⟩ progA : State ℕ ⋆ Maybe Bool progA = run abort swapMorph idMorph prog tt progS : ℕ → Abort ⋆ (Bool × ℕ) progS = run state idMorph idMorph prog progAS : ℕ → 𝟘 ⋆ (Maybe Bool × ℕ) progAS = run state inlMorph idMorph progA progSA : ℕ → 𝟘 ⋆ Maybe (Bool × ℕ) progSA n = run abort inlMorph idMorph (progS n) tt testSA : progSA zero ≡ return nothing testSA = refl testAS : progAS zero ≡ return (nothing , suc zero) testAS = refl -- The last statement seemed to make the type checker loop. -- But it just created huge terms during the conversion check -- and never finished. -- These terms contained many projection redexes -- (projection applied to record value). -- After changing the strategy, such that these redexes are, -- like beta-redexes, removed immediately in internal syntax, -- the code checks instantaneously.
25.262069
76
0.464646
236350e5e7da8d87a297770766f564b57f3997a9
973
agda
Agda
src/Integer/Difference/Properties.agda
kcsmnt0/numbers
67ea7b96228c592daf79e800ebe4a7c12ed7221e
[ "MIT" ]
9
2019-05-20T01:29:41.000Z
2020-01-16T07:16:26.000Z
src/Integer/Difference/Properties.agda
kcsmnt0/numbers
67ea7b96228c592daf79e800ebe4a7c12ed7221e
[ "MIT" ]
null
null
null
src/Integer/Difference/Properties.agda
kcsmnt0/numbers
67ea7b96228c592daf79e800ebe4a7c12ed7221e
[ "MIT" ]
null
null
null
module Integer.Difference.Properties where open import Data.Product as Σ open import Data.Product.Relation.Pointwise.NonDependent open import Data.Unit open import Equality open import Integer.Difference open import Natural as ℕ using (ℕ; zero; suc) open import Quotient as / open import Relation.Binary open import Syntax open Equality.FunctionProperties +-comm : Commutative {A = ℤ} _+_ +-comm = ⟦⟧-≗₂ uip _ _ λ where (a – b) (c – d) → cong ⟦_⟧ (cong₂ _–_ (⟨ ℕ.+-comm a c ⟩) (⟨ ℕ.+-comm d b ⟩)) +-identityˡ : LeftIdentity {A = ℤ} 0 _+_ +-identityˡ = ⟦⟧-≗ uip _ _ λ where (a – b) → cong (λ z → ⟦ a – z ⟧) ⟨ ℕ.+-identityʳ b ⟩ +-identityʳ : RightIdentity {A = ℤ} 0 _+_ +-identityʳ = ⟦⟧-≗ uip _ _ λ where (a – b) → cong (λ z → ⟦ z – b ⟧) ⟨ ℕ.+-identityʳ a ⟩ +-assoc : Associative {A = ℤ} _+_ +-assoc = ⟦⟧-≗₃ uip _ _ λ where (a – b) (c – d) (e – f) → cong ⟦_⟧ (cong₂ _–_ (sym (ℕ.+-assoc a _ _)) (ℕ.+-assoc f _ _))
24.948718
70
0.589928
cbd5d9bfd15a108d592d4f72afbfe97628ae1923
1,295
agda
Agda
src/data/lib/prim/Agda/Builtin/Float.agda
vlopezj/agda
ff4d89e75970cf27599fb9f572bd43c9455cbb56
[ "BSD-3-Clause" ]
2
2019-10-29T09:40:30.000Z
2020-09-20T00:28:57.000Z
src/data/lib/prim/Agda/Builtin/Float.agda
vikfret/agda
49ad0b3f0d39c01bc35123478b857e702b29fb9d
[ "BSD-3-Clause" ]
3
2018-11-14T15:31:44.000Z
2019-04-01T19:39:26.000Z
src/data/lib/prim/Agda/Builtin/Float.agda
vikfret/agda
49ad0b3f0d39c01bc35123478b857e702b29fb9d
[ "BSD-3-Clause" ]
1
2021-04-01T18:30:09.000Z
2021-04-01T18:30:09.000Z
{-# OPTIONS --without-K --safe --no-sized-types --no-guardedness #-} module Agda.Builtin.Float where open import Agda.Builtin.Bool open import Agda.Builtin.Nat open import Agda.Builtin.Int open import Agda.Builtin.Word open import Agda.Builtin.String postulate Float : Set {-# BUILTIN FLOAT Float #-} primitive primFloatToWord64 : Float → Word64 primFloatEquality : Float → Float → Bool primFloatLess : Float → Float → Bool primFloatNumericalEquality : Float → Float → Bool primFloatNumericalLess : Float → Float → Bool primNatToFloat : Nat → Float primFloatPlus : Float → Float → Float primFloatMinus : Float → Float → Float primFloatTimes : Float → Float → Float primFloatNegate : Float → Float primFloatDiv : Float → Float → Float primFloatSqrt : Float → Float primRound : Float → Int primFloor : Float → Int primCeiling : Float → Int primExp : Float → Float primLog : Float → Float primSin : Float → Float primCos : Float → Float primTan : Float → Float primASin : Float → Float primACos : Float → Float primATan : Float → Float primATan2 : Float → Float → Float primShowFloat : Float → String
32.375
68
0.636293
0b1dfbb1991d9ca6211a1be6f28d42678048a95c
658
agda
Agda
Rings/Units/Lemmas.agda
Smaug123/agdaproofs
0f4230011039092f58f673abcad8fb0652e6b562
[ "MIT" ]
4
2019-08-08T12:44:19.000Z
2022-01-28T06:04:15.000Z
Rings/Units/Lemmas.agda
Smaug123/agdaproofs
0f4230011039092f58f673abcad8fb0652e6b562
[ "MIT" ]
14
2019-01-06T21:11:59.000Z
2020-04-11T11:03:39.000Z
Rings/Units/Lemmas.agda
Smaug123/agdaproofs
0f4230011039092f58f673abcad8fb0652e6b562
[ "MIT" ]
1
2021-11-29T13:23:07.000Z
2021-11-29T13:23:07.000Z
{-# OPTIONS --safe --warning=error --without-K #-} open import LogicalFormulae open import Setoids.Setoids open import Sets.EquivalenceRelations open import Rings.Definition module Rings.Units.Lemmas {a b : _} {A : Set a} {S : Setoid {a} {b} A} {_+_ _*_ : A → A → A} (R : Ring S _+_ _*_) where open import Rings.Units.Definition R open import Rings.Ideals.Definition R open Ring R open Setoid S open Equivalence eq unitImpliesGeneratedIdealEverything : {x : A} → Unit x → {y : A} → generatedIdealPred x y unitImpliesGeneratedIdealEverything {x} (a , xa=1) {y} = (a * y) , transitive *Associative (transitive (*WellDefined xa=1 reflexive) identIsIdent)
32.9
146
0.720365
d06f465e805d28fe8e84b04cc488a8e8cfb85c6c
2,469
agda
Agda
PiFrac/Syntax.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
5
2020-10-07T12:07:53.000Z
2020-10-10T21:41:32.000Z
PiFrac/Syntax.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
null
null
null
PiFrac/Syntax.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
1
2021-11-04T06:54:45.000Z
2021-11-04T06:54:45.000Z
module PiFrac.Syntax where open import Data.Empty open import Data.Unit open import Data.Sum open import Data.Product infixr 12 _×ᵤ_ infixr 11 _+ᵤ_ infixr 50 _⨾_ infixr 10 _↔_ infixr 70 _⊕_ infixr 70 _⊗_ infix 99 !_ infix 99 𝟙/_ mutual -- Types data 𝕌 : Set where 𝟘 : 𝕌 𝟙 : 𝕌 _+ᵤ_ : 𝕌 → 𝕌 → 𝕌 _×ᵤ_ : 𝕌 → 𝕌 → 𝕌 𝟙/_ : {t : 𝕌} → ⟦ t ⟧ → 𝕌 data ◯ : Set where ↻ : ◯ ⟦_⟧ : (A : 𝕌) → Set ⟦ 𝟘 ⟧ = ⊥ ⟦ 𝟙 ⟧ = ⊤ ⟦ t₁ +ᵤ t₂ ⟧ = ⟦ t₁ ⟧ ⊎ ⟦ t₂ ⟧ ⟦ t₁ ×ᵤ t₂ ⟧ = ⟦ t₁ ⟧ × ⟦ t₂ ⟧ ⟦ 𝟙/ v ⟧ = ◯ -- Combinators data _↔_ : 𝕌 → 𝕌 → Set where unite₊l : {t : 𝕌} → 𝟘 +ᵤ t ↔ t uniti₊l : {t : 𝕌} → t ↔ 𝟘 +ᵤ t swap₊ : {t₁ t₂ : 𝕌} → t₁ +ᵤ t₂ ↔ t₂ +ᵤ t₁ assocl₊ : {t₁ t₂ t₃ : 𝕌} → t₁ +ᵤ (t₂ +ᵤ t₃) ↔ (t₁ +ᵤ t₂) +ᵤ t₃ assocr₊ : {t₁ t₂ t₃ : 𝕌} → (t₁ +ᵤ t₂) +ᵤ t₃ ↔ t₁ +ᵤ (t₂ +ᵤ t₃) unite⋆l : {t : 𝕌} → 𝟙 ×ᵤ t ↔ t uniti⋆l : {t : 𝕌} → t ↔ 𝟙 ×ᵤ t swap⋆ : {t₁ t₂ : 𝕌} → t₁ ×ᵤ t₂ ↔ t₂ ×ᵤ t₁ assocl⋆ : {t₁ t₂ t₃ : 𝕌} → t₁ ×ᵤ (t₂ ×ᵤ t₃) ↔ (t₁ ×ᵤ t₂) ×ᵤ t₃ assocr⋆ : {t₁ t₂ t₃ : 𝕌} → (t₁ ×ᵤ t₂) ×ᵤ t₃ ↔ t₁ ×ᵤ (t₂ ×ᵤ t₃) absorbr : {t : 𝕌} → 𝟘 ×ᵤ t ↔ 𝟘 factorzl : {t : 𝕌} → 𝟘 ↔ 𝟘 ×ᵤ t dist : {t₁ t₂ t₃ : 𝕌} → (t₁ +ᵤ t₂) ×ᵤ t₃ ↔ (t₁ ×ᵤ t₃) +ᵤ (t₂ ×ᵤ t₃) factor : {t₁ t₂ t₃ : 𝕌} → (t₁ ×ᵤ t₃) +ᵤ (t₂ ×ᵤ t₃) ↔ (t₁ +ᵤ t₂) ×ᵤ t₃ id↔ : {t : 𝕌} → t ↔ t _⨾_ : {t₁ t₂ t₃ : 𝕌} → (t₁ ↔ t₂) → (t₂ ↔ t₃) → (t₁ ↔ t₃) _⊕_ : {t₁ t₂ t₃ t₄ : 𝕌} → (t₁ ↔ t₃) → (t₂ ↔ t₄) → (t₁ +ᵤ t₂ ↔ t₃ +ᵤ t₄) _⊗_ : {t₁ t₂ t₃ t₄ : 𝕌} → (t₁ ↔ t₃) → (t₂ ↔ t₄) → (t₁ ×ᵤ t₂ ↔ t₃ ×ᵤ t₄) ηₓ : {t : 𝕌} (v : ⟦ t ⟧) → 𝟙 ↔ t ×ᵤ 𝟙/ v εₓ : {t : 𝕌} (v : ⟦ t ⟧) → t ×ᵤ 𝟙/ v ↔ 𝟙 -- Some useful combinators unite⋆r : {t : 𝕌} → t ×ᵤ 𝟙 ↔ t unite⋆r = swap⋆ ⨾ unite⋆l uniti⋆r : {t : 𝕌} → t ↔ t ×ᵤ 𝟙 uniti⋆r = uniti⋆l ⨾ swap⋆ distl : {t₁ t₂ t₃ : 𝕌} → t₁ ×ᵤ (t₂ +ᵤ t₃) ↔ (t₁ ×ᵤ t₂) +ᵤ (t₁ ×ᵤ t₃) distl = swap⋆ ⨾ dist ⨾ (swap⋆ ⊕ swap⋆) factorl : {t₁ t₂ t₃ : 𝕌 } → (t₁ ×ᵤ t₂) +ᵤ (t₁ ×ᵤ t₃) ↔ t₁ ×ᵤ (t₂ +ᵤ t₃) factorl = (swap⋆ ⊕ swap⋆) ⨾ factor ⨾ swap⋆ -- Inverses of combinators !_ : {A B : 𝕌} → A ↔ B → B ↔ A ! unite₊l = uniti₊l ! uniti₊l = unite₊l ! swap₊ = swap₊ ! assocl₊ = assocr₊ ! assocr₊ = assocl₊ ! unite⋆l = uniti⋆l ! uniti⋆l = unite⋆l ! swap⋆ = swap⋆ ! assocl⋆ = assocr⋆ ! assocr⋆ = assocl⋆ ! absorbr = factorzl ! factorzl = absorbr ! dist = factor ! factor = dist ! id↔ = id↔ ! (c₁ ⨾ c₂) = ! c₂ ⨾ ! c₁ ! (c₁ ⊕ c₂) = (! c₁) ⊕ (! c₂) ! (c₁ ⊗ c₂) = (! c₁) ⊗ (! c₂) ! (ηₓ v) = εₓ v ! (εₓ v) = ηₓ v
26.548387
78
0.447955
1804b500385fe2204f3a067f494b348f28225094
116
agda
Agda
test/succeed/Issue1110a.agda
larrytheliquid/agda
477c8c37f948e6038b773409358fd8f38395f827
[ "MIT" ]
1
2018-10-10T17:08:44.000Z
2018-10-10T17:08:44.000Z
test/succeed/Issue1110a.agda
masondesu/agda
70c8a575c46f6a568c7518150a1a64fcd03aa437
[ "MIT" ]
null
null
null
test/succeed/Issue1110a.agda
masondesu/agda
70c8a575c46f6a568c7518150a1a64fcd03aa437
[ "MIT" ]
1
2022-03-12T11:35:18.000Z
2022-03-12T11:35:18.000Z
-- Andreas, 2014-05-17 open import Common.Prelude open import Common.Equality test : Nat test rewrite refl = zero
14.5
27
0.758621
fb2ee7f35f762a584d9bbceffb67ede02193fe90
453
agda
Agda
test/Succeed/Issue4172-without-K.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/Issue4172-without-K.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/Issue4172-without-K.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
{-# OPTIONS --without-K #-} record Erased (A : Set) : Set where constructor [_] field @0 erased : A open Erased data W (A : Set) (B : A → Set) : Set where sup : (x : A) → (B x → W A B) → W A B lemma : {A : Set} {B : A → Set} → Erased (W A B) → W (Erased A) (λ x → Erased (B (erased x))) lemma [ sup x f ] = sup [ x ] λ ([ y ]) → lemma [ f y ] data ⊥ : Set where data E : Set where c : E → E magic : @0 E → ⊥ magic (c e) = magic e
18.12
61
0.501104
4a0dd0759916ab5c4b63cbc9edd250183f6fee43
334
agda
Agda
src/sets/finite/hlevel.agda
pcapriotti/agda-base
bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c
[ "BSD-3-Clause" ]
20
2015-06-12T12:20:17.000Z
2022-02-01T11:25:54.000Z
src/sets/finite/hlevel.agda
pcapriotti/agda-base
bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c
[ "BSD-3-Clause" ]
4
2015-02-02T14:32:16.000Z
2016-10-26T11:57:26.000Z
src/sets/finite/hlevel.agda
pcapriotti/agda-base
bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c
[ "BSD-3-Clause" ]
4
2015-02-02T12:17:00.000Z
2019-05-04T19:31:00.000Z
{-# OPTIONS --without-K #-} module sets.finite.level where open import sum open import function.isomorphism.core open import hott.level.core open import hott.level.closure open import hott.level.sets open import sets.finite.core finite-h2 : ∀ {i}{A : Set i} → IsFinite A → h 2 A finite-h2 (n , fA) = iso-level (sym≅ fA) (fin-set n)
25.692308
52
0.718563
50f93afc872c91cc48a3769e77d0582876753799
1,785
agda
Agda
src/Tactic/Nat/Coprime.agda
L-TChen/agda-prelude
158d299b1b365e186f00d8ef5b8c6844235ee267
[ "MIT" ]
111
2015-01-05T11:28:15.000Z
2022-02-12T23:29:26.000Z
src/Tactic/Nat/Coprime.agda
L-TChen/agda-prelude
158d299b1b365e186f00d8ef5b8c6844235ee267
[ "MIT" ]
59
2016-02-09T05:36:44.000Z
2022-01-14T07:32:36.000Z
src/Tactic/Nat/Coprime.agda
L-TChen/agda-prelude
158d299b1b365e186f00d8ef5b8c6844235ee267
[ "MIT" ]
24
2015-03-12T18:03:45.000Z
2021-04-22T06:10:41.000Z
-- Tactic for proving coprimality. -- Finds Coprime hypotheses in the context. module Tactic.Nat.Coprime where import Agda.Builtin.Nat as Builtin open import Prelude open import Control.Monad.Zero open import Control.Monad.State open import Container.List open import Container.Traversable open import Numeric.Nat open import Tactic.Reflection open import Tactic.Reflection.Parse open import Tactic.Reflection.Quote open import Tactic.Nat.Coprime.Problem open import Tactic.Nat.Coprime.Decide open import Tactic.Nat.Coprime.Reflect private Proof : Problem → Env → Set Proof Q ρ with canProve Q ... | true = ⟦ Q ⟧p ρ ... | false = ⊤ erasePrf : ∀ Q {ρ} → ⟦ Q ⟧p ρ → ⟦ Q ⟧p ρ erasePrf ([] ⊨ a ⋈ b) Ξ = eraseEquality Ξ erasePrf (ψ ∷ Γ ⊨ φ) Ξ = λ H → erasePrf (Γ ⊨ φ) (Ξ H) proof : ∀ Q ρ → Proof Q ρ proof Q ρ with canProve Q | sound Q ... | true | prf = erasePrf Q (prf refl ρ) ... | false | _ = _ -- For the error message unquoteE : List Term → Exp → Term unquoteE ρ (atom x) = fromMaybe (lit (nat 0)) (index ρ x) unquoteE ρ (e ⊗ e₁) = def₂ (quote _*_) (unquoteE ρ e) (unquoteE ρ e₁) unquoteF : List Term → Formula → Term unquoteF ρ (a ⋈ b) = def₂ (quote Coprime) (unquoteE ρ a) (unquoteE ρ b) macro auto-coprime : Tactic auto-coprime ?hole = withNormalisation true $ do goal ← inferType ?hole ensureNoMetas goal cxt ← reverse <$> getContext (_ , Hyps , Q) , ρ ← runParse (parseProblem (map unArg cxt) goal) unify ?hole (def (quote proof) $ map vArg (` Q ∷ quotedEnv ρ ∷ Hyps)) <|> do case Q of λ where (Γ ⊨ φ) → typeErrorFmt "Cannot prove %t from %e" (unquoteF ρ φ) (punctuate (strErr "and") (map (termErr ∘ unquoteF ρ) Γ))
30.775862
90
0.633613
18058a54590e7181a30a4866610a2f027f835e67
2,179
agda
Agda
test/interaction/Highlighting.agda
vlopezj/agda
ff4d89e75970cf27599fb9f572bd43c9455cbb56
[ "BSD-3-Clause" ]
1
2019-09-27T06:54:44.000Z
2019-09-27T06:54:44.000Z
test/interaction/Highlighting.agda
vlopezj/agda
ff4d89e75970cf27599fb9f572bd43c9455cbb56
[ "BSD-3-Clause" ]
3
2018-11-14T15:31:44.000Z
2019-04-01T19:39:26.000Z
test/interaction/Highlighting.agda
vlopezj/agda
ff4d89e75970cf27599fb9f572bd43c9455cbb56
[ "BSD-3-Clause" ]
null
null
null
module Highlighting where Set-one : Set₂ Set-one = Set₁ record R (A : Set) : Set-one where constructor con field X : Set F : Set → Set → Set F A B = B field P : F A X → Set -- highlighting of non-terminating definition Q : F A X → Set Q = Q postulate P : _ open import Highlighting.M using (ℕ) renaming ( _+_ to infixl 5 _⊕_ ; _*_ to infixl 7 _⊗_ ) data D (A : Set) : Set-one where d : let X = D in X A postulate _+_ _×_ : Set → Set → Set infixl 4 _×_ _+_ -- Issue #2140: the operators should be highlighted also in the -- fixity declaration. -- Issue #3120, jump-to-definition for record field tags -- in record expressions and patterns. anR : ∀ A → R A anR A = record { X = A ; P = λ _ → A } idR : ∀ A → R A → R A idR A r@record { X = X; P = P } = record r { X = X } record S (A : Set) : Set where field X : A idR' : ∀ A → R A → R A idR' A r@record { X = X; P = P } = record r { X = X } open S bla : ∀{A} → A → S A bla x .X = x -- Issue #3825: highlighting of unsolved metas in record{M} expressions record R₂ (A : Set) : Set where field impl : {a : A} → A module M {A : Set} where impl : {a : A} → A -- yellow should not be here impl {a} = a r₂ : ∀{A} → R₂ A r₂ = record {M} -- just because there is an unsolved meta here -- End issue #3825 -- Issue #3855: highlighting of quantity attributes. -- @0 and @erased should be highlighted as symbols. idPoly0 : {@0 A : Set} → A → A idPoly0 x = x idPolyE : {@erased A : Set} → A → A idPolyE x = x -- Issue #3989: Shadowed repeated variables in telescopes should by -- default /not/ be highlighted. Issue-3989 : (A A : Set) → Set Issue-3989 _ A = A -- Issue #4356. open import Agda.Builtin.Sigma Issue-4356₁ : Σ Set (λ _ → Set) → Σ Set (λ _ → Set) Issue-4356₁ = λ P@(A , B) → P Issue-4356₂ : Σ Set (λ _ → Set) → Set Issue-4356₂ = λ (A , B) → A Issue-4356₃ : Σ Set (λ _ → Set) → Σ Set (λ _ → Set) Issue-4356₃ P = let Q@(A , B) = P in Q Issue-4356₄ : Σ Set (λ _ → Set) → Set Issue-4356₄ P = let (A , B) = P in B Issue-4356₅ : Σ Set (λ _ → Set) → Σ Set (λ _ → Set) Issue-4356₅ P@(A , B) = P Issue-4356₆ : Σ Set (λ _ → Set) → Set Issue-4356₆ (A , B) = B
20.175926
71
0.590179
0b3838e12fd78adcab5f30797e826f529601ec05
1,423
agda
Agda
test/asset/agda-stdlib-1.0/Data/Product/Function/Dependent/Propositional/WithK.agda
omega12345/agda-mode
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
[ "MIT" ]
5
2020-10-07T12:07:53.000Z
2020-10-10T21:41:32.000Z
test/asset/agda-stdlib-1.0/Data/Product/Function/Dependent/Propositional/WithK.agda
omega12345/agda-mode
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
[ "MIT" ]
null
null
null
test/asset/agda-stdlib-1.0/Data/Product/Function/Dependent/Propositional/WithK.agda
omega12345/agda-mode
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
[ "MIT" ]
1
2021-11-04T06:54:45.000Z
2021-11-04T06:54:45.000Z
------------------------------------------------------------------------ -- The Agda standard library -- -- Dependent product combinators for propositional equality -- preserving functions ------------------------------------------------------------------------ {-# OPTIONS --with-K --safe #-} module Data.Product.Function.Dependent.Propositional.WithK where open import Data.Product open import Data.Product.Function.Dependent.Setoid open import Data.Product.Relation.Binary.Pointwise.Dependent open import Data.Product.Relation.Binary.Pointwise.Dependent.WithK open import Function.Equality using (_⟨$⟩_) open import Function.Injection as Inj using (_↣_; module Injection) open import Function.Inverse as Inv using (_↔_; module Inverse) import Relation.Binary.HeterogeneousEquality as H ------------------------------------------------------------------------ -- Combinator for Injection module _ {a₁ a₂} {A₁ : Set a₁} {A₂ : Set a₂} {b₁ b₂} {B₁ : A₁ → Set b₁} {B₂ : A₂ → Set b₂} where ↣ : ∀ (A₁↣A₂ : A₁ ↣ A₂) → (∀ {x} → B₁ x ↣ B₂ (Injection.to A₁↣A₂ ⟨$⟩ x)) → Σ A₁ B₁ ↣ Σ A₂ B₂ ↣ A₁↣A₂ B₁↣B₂ = Inverse.injection Pointwise-≡↔≡ ⟨∘⟩ injection (H.indexedSetoid B₂) A₁↣A₂ (Inverse.injection (H.≡↔≅ B₂) ⟨∘⟩ B₁↣B₂ ⟨∘⟩ Inverse.injection (Inv.sym (H.≡↔≅ B₁))) ⟨∘⟩ Inverse.injection (Inv.sym Pointwise-≡↔≡) where open Inj using () renaming (_∘_ to _⟨∘⟩_)
36.487179
72
0.567814
d02a88f9e15475a57f9b2bee7ef392c2396794b7
767
agda
Agda
test/Succeed/ReflectionBlockOnMeta.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/ReflectionBlockOnMeta.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/ReflectionBlockOnMeta.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
module _ where open import Common.Prelude hiding (_>>=_; _<$>_) open import Common.Reflection infixl 8 _<$>_ _<$>_ : ∀ {a b} {A : Set a} {B : Set b} → (A → B) → TC A → TC B f <$> m = m >>= λ x → returnTC (f x) macro default : Tactic default hole = inferType hole >>= λ goal → reduce goal >>= λ { (def (quote Nat) []) → unify hole (lit (nat 42)) ; (def (quote Bool) []) → unify hole (con (quote false) []) ; (meta x _) → catchTC (blockOnMeta x) (typeError (strErr "impossible" ∷ [])) -- check that the block isn't caught ; _ → typeError (strErr "No default" ∷ []) } aNat : Nat aNat = default aBool : Bool aBool = default alsoNat : Nat soonNat : _ soonNat = default alsoNat = soonNat
21.914286
81
0.552803
cb61c71be18784b45fd4f5e79fd40a66892b2e9d
163
agda
Agda
test/Fail/IrrelevantTelescope.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Fail/IrrelevantTelescope.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Fail/IrrelevantTelescope.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
-- Andreas, 2011-04-07 module IrrelevantTelescope where data Wrap .(A : Set) : Set where wrap : A -> Wrap A -- cannot use A, because it is declared irrelevant
20.375
50
0.699387
0e936c0f5ba702daa17575236c64d15fe80f765f
2,992
agda
Agda
src/data/lib/prim/Agda/Builtin/Cubical/HCompU.agda
vlopezj/agda
ff4d89e75970cf27599fb9f572bd43c9455cbb56
[ "BSD-3-Clause" ]
2
2019-10-29T09:40:30.000Z
2020-09-20T00:28:57.000Z
src/data/lib/prim/Agda/Builtin/Cubical/HCompU.agda
vikfret/agda
49ad0b3f0d39c01bc35123478b857e702b29fb9d
[ "BSD-3-Clause" ]
3
2018-11-14T15:31:44.000Z
2019-04-01T19:39:26.000Z
src/data/lib/prim/Agda/Builtin/Cubical/HCompU.agda
vikfret/agda
49ad0b3f0d39c01bc35123478b857e702b29fb9d
[ "BSD-3-Clause" ]
1
2021-04-01T18:30:09.000Z
2021-04-01T18:30:09.000Z
{-# OPTIONS --cubical --safe --no-sized-types --no-guardedness #-} module Agda.Builtin.Cubical.HCompU where open import Agda.Primitive open import Agda.Builtin.Sigma open import Agda.Primitive.Cubical renaming (primINeg to ~_; primIMax to _∨_; primIMin to _∧_; primHComp to hcomp; primTransp to transp; primComp to comp; itIsOne to 1=1) open import Agda.Builtin.Cubical.Path open import Agda.Builtin.Cubical.Sub renaming (Sub to _[_↦_]; primSubOut to outS; inc to inS) module Helpers where -- Homogeneous filling hfill : ∀ {ℓ} {A : Set ℓ} {φ : I} (u : ∀ i → Partial φ A) (u0 : A [ φ ↦ u i0 ]) (i : I) → A hfill {φ = φ} u u0 i = hcomp (λ j → \ { (φ = i1) → u (i ∧ j) 1=1 ; (i = i0) → outS u0 }) (outS u0) -- Heterogeneous filling defined using comp fill : ∀ {ℓ : I → Level} (A : ∀ i → Set (ℓ i)) {φ : I} (u : ∀ i → Partial φ (A i)) (u0 : A i0 [ φ ↦ u i0 ]) → ∀ i → A i fill A {φ = φ} u u0 i = comp (λ j → A (i ∧ j)) (λ j → \ { (φ = i1) → u (i ∧ j) 1=1 ; (i = i0) → outS u0 }) (outS {φ = φ} u0) module _ {ℓ} {A : Set ℓ} where refl : {x : A} → x ≡ x refl {x = x} = λ _ → x sym : {x y : A} → x ≡ y → y ≡ x sym p = λ i → p (~ i) cong : ∀ {ℓ'} {B : A → Set ℓ'} {x y : A} (f : (a : A) → B a) (p : x ≡ y) → PathP (λ i → B (p i)) (f x) (f y) cong f p = λ i → f (p i) isContr : ∀ {ℓ} → Set ℓ → Set ℓ isContr A = Σ A \ x → (∀ y → x ≡ y) fiber : ∀ {ℓ ℓ'} {A : Set ℓ} {B : Set ℓ'} (f : A → B) (y : B) → Set (ℓ ⊔ ℓ') fiber {A = A} f y = Σ A \ x → f x ≡ y open Helpers primitive prim^glueU : {la : Level} {φ : I} {T : I → Partial φ (Set la)} {A : Set la [ φ ↦ T i0 ]} → PartialP φ (T i1) → outS A → hcomp T (outS A) prim^unglueU : {la : Level} {φ : I} {T : I → Partial φ (Set la)} {A : Set la [ φ ↦ T i0 ]} → hcomp T (outS A) → outS A transpProof : ∀ {l} → (e : I → Set l) → (φ : I) → (a : Partial φ (e i0)) → (b : e i1 [ φ ↦ (\ o → transp e i0 (a o)) ] ) → fiber (transp e i0) (outS b) transpProof e φ a b = f , \ j → comp e (\ i → \ { (φ = i1) → transp (\ j → e (j ∧ i)) (~ i) (a 1=1) ; (j = i0) → transp (\ j → e (j ∧ i)) (~ i) f ; (j = i1) → g (~ i) }) f where g = fill (\ i → e (~ i)) (\ i → \ { (φ = i1) → transp (\ j → e (j ∧ ~ i)) i (a 1=1); (φ = i0) → transp (\ j → e (~ j ∨ ~ i)) (~ i) (outS b) }) (inS (outS b)) f = comp (\ i → e (~ i)) (\ i → \ { (φ = i1) → transp (\ j → e (j ∧ ~ i)) i (a 1=1); (φ = i0) → transp (\ j → e (~ j ∨ ~ i)) (~ i) (outS b) }) (outS b) {-# BUILTIN TRANSPPROOF transpProof #-}
41.555556
163
0.397727
0b486031f6a63887363c8e9ac7ba4a14dbcf80fb
148
agda
Agda
test/Succeed/AnonymousModuleWithParameter.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/AnonymousModuleWithParameter.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/AnonymousModuleWithParameter.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
module _ where -- open import Common.Prelude module Id (A : Set) where id : A → A id x = x module _ (A : Set) where open Id A id2 = id
10.571429
29
0.594595
0e9620ffdc9685b75134717e36cd4ec666cbf8b8
3,481
agda
Agda
test/Succeed/ReflectTC.agda
AntoineAllioux/agda
68ec2312961776e415c99d2839e41a92ffe464db
[ "BSD-3-Clause" ]
null
null
null
test/Succeed/ReflectTC.agda
AntoineAllioux/agda
68ec2312961776e415c99d2839e41a92ffe464db
[ "BSD-3-Clause" ]
null
null
null
test/Succeed/ReflectTC.agda
AntoineAllioux/agda
68ec2312961776e415c99d2839e41a92ffe464db
[ "BSD-3-Clause" ]
null
null
null
-- Building some simple tactics using the reflected type checking monad. module _ where open import Common.Reflection open import Common.Prelude hiding (_>>=_) open import Common.Equality open import Agda.Builtin.Sigma -- Some helpers -- quotegoal : (Type → Tactic) → Tactic quotegoal tac hole = inferType hole >>= λ goal → reduce goal >>= λ goal → tac goal hole case_of_ : ∀ {a b} {A : Set a} {B : Set b} → A → (A → B) → B case x of f = f x replicateTC : {A : Set} → Nat → TC A → TC (List A) replicateTC zero m = returnTC [] replicateTC (suc n) m = m >>= λ x → replicateTC n m >>= λ xs → returnTC (x ∷ xs) mapTC! : ∀ {A : Set} → (A → TC ⊤) → List A → TC ⊤ mapTC! f [] = returnTC _ mapTC! f (x ∷ xs) = f x >>= λ _ → mapTC! f xs mapTC!r : ∀ {A} → (A → TC ⊤) → List A → TC ⊤ mapTC!r f [] = returnTC _ mapTC!r f (x ∷ xs) = mapTC! f xs >>= λ _ → f x visibleArity : QName → TC Nat visibleArity q = getType q >>= λ t → returnTC (typeArity t) where typeArity : Type → Nat typeArity (pi (arg (argInfo visible _) _) (abs _ b)) = suc (typeArity b) typeArity (pi _ (abs _ b)) = typeArity b typeArity _ = 0 newMeta! : TC Term newMeta! = newMeta unknown absurdLam : Term absurdLam = extLam (absurdClause (("()" , arg (argInfo visible relevant) unknown) ∷ []) (arg (argInfo visible relevant) (absurd 0) ∷ []) ∷ []) [] -- Simple assumption tactic -- assumption-tac : Nat → Nat → Tactic assumption-tac x 0 _ = typeError (strErr "No assumption matched" ∷ []) assumption-tac x (suc n) hole = catchTC (unify hole (var x [])) (assumption-tac (suc x) n hole) macro assumption : Tactic assumption hole = getContext >>= λ Γ → assumption-tac 0 (length Γ) hole test-assumption : ∀ {A B : Set} → A → B → A test-assumption x y = assumption test-assumption₂ : ∀ {A B : Set} → A → B → _ test-assumption₂ x y = assumption -- will pick y -- Solving a goal using only constructors -- tryConstructors : Nat → List QName → Tactic constructors-tac : Nat → Type → Tactic constructors-tac zero _ _ = typeError (strErr "Search depth exhausted" ∷ []) constructors-tac (suc n) (def d vs) hole = getDefinition d >>= λ def → case def of λ { (dataDef _ cs) → tryConstructors n cs hole ; _ → returnTC _ } constructors-tac _ (pi a b) hole = give absurdLam hole constructors-tac _ _ hole = returnTC _ tryConstructors n [] hole = typeError (strErr "No matching constructor term" ∷ []) tryConstructors n (c ∷ cs) hole = visibleArity c >>= λ ar → catchTC (replicateTC ar newMeta! >>= λ vs → unify hole (con c (map (arg (argInfo visible relevant)) vs)) >>= λ _ → mapTC!r (quotegoal (constructors-tac n)) vs) (tryConstructors n cs hole) macro constructors : Tactic constructors = quotegoal (constructors-tac 10) data Any {A : Set} (P : A → Set) : List A → Set where zero : ∀ {x xs} → P x → Any P (x ∷ xs) suc : ∀ {x xs} → Any P xs → Any P (x ∷ xs) infix 1 _∈_ _∈_ : ∀ {A : Set} → A → List A → Set x ∈ xs = Any (x ≡_) xs data Dec (A : Set) : Set where yes : A → Dec A no : (A → ⊥) → Dec A test₁ : 3 ∈ 1 ∷ 2 ∷ 3 ∷ [] test₁ = constructors test₂ : Dec (2 + 3 ≡ 5) test₂ = constructors test₃ : Dec (2 + 2 ≡ 5) test₃ = constructors data Singleton (n : Nat) : Set where it : (m : Nat) → m ≡ n → Singleton n test₄ : Singleton 5 test₄ = constructors -- this works because we solve goals right to left (picking refl before m)
29.252101
95
0.608733
fb4f33e6375f8d4a7ccbcfd1ade82bde97ccc7f7
5,217
agda
Agda
combinators.agda
heades/AUGL
b33c6a59d664aed46cac8ef77d34313e148fecc2
[ "MIT" ]
null
null
null
combinators.agda
heades/AUGL
b33c6a59d664aed46cac8ef77d34313e148fecc2
[ "MIT" ]
null
null
null
combinators.agda
heades/AUGL
b33c6a59d664aed46cac8ef77d34313e148fecc2
[ "MIT" ]
null
null
null
module combinators where open import bool open import bool-thms2 import closures open import eq open import list open import list-thms open import nat open import nat-thms open import product open import product-thms open import sum open import string open import termination data comb : Set where S : comb K : comb app : comb → comb → comb size : comb → ℕ size S = 1 size K = 1 size (app a b) = suc (size a + size b) data _↝_ : comb → comb → Set where ↝K : (a b : comb) → (app (app K a) b) ↝ a ↝S : (a b c : comb) → (app (app (app S a) b) c) ↝ (app (app a c) (app b c)) ↝Cong1 : {a a' : comb} (b : comb) → a ↝ a' → (app a b) ↝ (app a' b) ↝Cong2 : (a : comb) {b b' : comb} → b ↝ b' → (app a b) ↝ (app a b') Sfree : comb → 𝔹 Sfree S = ff Sfree K = tt Sfree (app a b) = Sfree a && Sfree b Sfree-↝-size> : ∀{a b : comb} → Sfree a ≡ tt → a ↝ b → size a > size b ≡ tt Sfree-↝-size> p (↝K a b) = ≤<-trans {size a} (≤+1 (size a) (size b)) (<+2 {size a + size b} {2}) Sfree-↝-size> () (↝S a b c) Sfree-↝-size> p (↝Cong1{a}{a'} b u) with &&-elim{Sfree a} p Sfree-↝-size> p (↝Cong1{a}{a'} b u) | p1 , _ = <+mono2 {size a'} (Sfree-↝-size> p1 u) Sfree-↝-size> p (↝Cong2 a u) with &&-elim{Sfree a} p Sfree-↝-size> p (↝Cong2 a u) | _ , p2 = <+mono1{size a} (Sfree-↝-size> p2 u) ↝-preserves-Sfree : ∀{a b : comb} → Sfree a ≡ tt → a ↝ b → Sfree b ≡ tt ↝-preserves-Sfree p (↝K a b) = fst (&&-elim p) ↝-preserves-Sfree () (↝S a b c) ↝-preserves-Sfree p (↝Cong1 b u) with &&-elim p ↝-preserves-Sfree p (↝Cong1 b u) | p1 , p2 = &&-intro (↝-preserves-Sfree p1 u) p2 ↝-preserves-Sfree p (↝Cong2 a u) with &&-elim{Sfree a} p ↝-preserves-Sfree p (↝Cong2 a u) | p1 , p2 = &&-intro p1 (↝-preserves-Sfree p2 u) Sfree-comb : Set Sfree-comb = Σ comb (λ a → Sfree a ≡ tt) ↝-Sfree-comb : Sfree-comb → Sfree-comb → Set ↝-Sfree-comb (a , _) (b , _) = a ↝ b size-Sfree-comb : Sfree-comb → ℕ size-Sfree-comb (a , _) = size a decrease-size : ∀ {x y : Sfree-comb} → ↝-Sfree-comb x y → size-Sfree-comb x > size-Sfree-comb y ≡ tt decrease-size{a , u}{b , _} p = Sfree-↝-size> u p open measure{A = Sfree-comb} ↝-Sfree-comb (λ x y → x > y ≡ tt) size-Sfree-comb decrease-size measure-decreases : ∀(a : Sfree-comb) → ↓ ↝-Sfree-comb a measure-decreases a = measure-↓ (↓-> (size-Sfree-comb a)) Sfree-terminatesh : ∀{a : comb}{p : Sfree a ≡ tt} → ↓ ↝-Sfree-comb (a , p) → ↓ _↝_ a Sfree-terminatesh{a}{p} (pf↓ f) = pf↓ h where h : {y : comb} → a ↝ y → ↓ _↝_ y h{y} u = Sfree-terminatesh (f {y , ↝-preserves-Sfree p u} u) Sfree-terminates : ∀(a : comb) → Sfree a ≡ tt → ↓ _↝_ a Sfree-terminates a p = Sfree-terminatesh (measure-decreases (a , p)) data varcomb : Set where S : varcomb K : varcomb app : varcomb → varcomb → varcomb var : (s : string) → varcomb λ* : (s : string) → varcomb → varcomb λ* s S = app K S λ* s K = app K K λ* s (app c1 c2) = app (app S (λ* s c1)) (λ* s c2) λ* s (var s') = if (s =string s') then (app (app S K) K) else (app K (var s')) subst : varcomb → string → varcomb → varcomb subst c s S = S subst c s K = K subst c s (app c1 c2) = app (subst c s c1) (subst c s c2) subst c s (var s') = if (s =string s') then c else var s' data _↝vc_ : varcomb → varcomb → Set where ↝K : (a b : varcomb) → (app (app K a) b) ↝vc a ↝S : (a b c : varcomb) → (app (app (app S a) b) c) ↝vc (app (app a c) (app b c)) ↝Cong1 : {a a' : varcomb} (b : varcomb) → a ↝vc a' → (app a b) ↝vc (app a' b) ↝Cong2 : (a : varcomb) {b b' : varcomb} → b ↝vc b' → (app a b) ↝vc (app a b') -- open closures.basics _↝vc_ -- _↝vc+_ : varcomb → varcomb → Set -- _↝vc+_ = tc -- id↝ : ∀ (a : varcomb) → app (app (app S K) K) a ↝vc+ a -- id↝ a = (tc-trans (tc-step (↝S K K a)) (tc-step (↝K a (app K a)))) -- trans-Cong1 : ∀{a a' : varcomb} (b : varcomb) → a ↝vc+ a' → (app a b) ↝vc+ (app a' b) -- trans-Cong1 b (tc-trans d1 d2) = (tc-trans (trans-Cong1 b d1) (trans-Cong1 b d2)) -- trans-Cong1 b (tc-step d) = tc-step (↝Cong1 b d) -- trans-Cong2 : ∀(a : varcomb) {b b' : varcomb} → b ↝vc+ b' → (app a b) ↝vc+ (app a b') -- trans-Cong2 a (tc-trans d1 d2) = (tc-trans (trans-Cong2 a d1) (trans-Cong2 a d2)) -- trans-Cong2 a (tc-step d) = tc-step (↝Cong2 a d) -- contains-var : string → varcomb → 𝔹 -- contains-var s S = ff -- contains-var s K = ff -- contains-var s (app c1 c2) = contains-var s c1 || contains-var s c2 -- contains-var s (var s') = s =string s' -- λ*-binds : ∀(s : string)(v : varcomb) → contains-var s (λ* s v) ≡ ff -- λ*-binds s S = refl -- λ*-binds s K = refl -- λ*-binds s (app c1 c2) rewrite λ*-binds s c1 | λ*-binds s c2 = refl -- λ*-binds s (var s') with keep (s =string s') -- λ*-binds s (var s') | tt , p rewrite p = refl -- λ*-binds s (var s') | ff , p rewrite p = p -- λ*-↝ : ∀ (v1 v2 : varcomb)(s : string) → (app (λ* s v1) v2) ↝vc+ (subst v2 s v1) -- λ*-↝ S v2 s = tc-step (↝K S v2) -- λ*-↝ K v2 s = tc-step (↝K K v2) -- λ*-↝ (app c1 c2) v2 s = -- (tc-trans (tc-step (↝S (λ* s c1) (λ* s c2) v2)) -- (tc-trans (trans-Cong1 (app (λ* s c2) v2) (λ*-↝ c1 v2 s)) -- (trans-Cong2 (subst v2 s c1) (λ*-↝ c2 v2 s)))) -- λ*-↝ (var s') v2 s with s =string s' -- λ*-↝ (var s') v2 s | tt = id↝ v2 -- λ*-↝ (var s') v2 s | ff = tc-step (↝K (var s') v2)
36.229167
100
0.556642
18df341da36d566d78e8c81528bd3e7f95dc6b53
13,118
agda
Agda
nicolai/thesis/HHHUU-ComplicatedTypes.agda
nicolaikraus/HoTT-Agda
939a2d83e090fcc924f69f7dfa5b65b3b79fe633
[ "MIT" ]
1
2021-06-30T00:17:55.000Z
2021-06-30T00:17:55.000Z
nicolai/thesis/HHHUU-ComplicatedTypes.agda
nicolaikraus/HoTT-Agda
939a2d83e090fcc924f69f7dfa5b65b3b79fe633
[ "MIT" ]
null
null
null
nicolai/thesis/HHHUU-ComplicatedTypes.agda
nicolaikraus/HoTT-Agda
939a2d83e090fcc924f69f7dfa5b65b3b79fe633
[ "MIT" ]
null
null
null
{-# OPTIONS --without-K #-} {- Here, we derive our main theorem: there is a type in the n-th universe that is not an n-type, implying the n-th universe is not n-truncated. The n-th universe restricted to n-types is hence a 'strict' n-type. For this, we first derive local-global looping in a modular way. A technical point worth noting is that Agda does not implement cumulative universes. Since that means the crucial steps in our transformations (where we pass between universes uning univalence) can not be expressed using equality without resorting to explicit lifting, we decide to explicitely uses equivalences (and pointed equivalences, respectively) instead where possible. As a drawback, we have to use lemmata showing preservation of (pointed) equivalences of various (pointed) type constructions, a parametricity property derived for free from univalence-induced equalities. -} module HHHUU-ComplicatedTypes where open import lib.Basics hiding (_⊔_) open import lib.Equivalences2 open import lib.NType2 open import lib.types.Bool open import lib.types.Nat hiding (_+_) open import lib.types.Paths open import lib.types.Sigma open import lib.types.Pi open import lib.types.TLevel open import Preliminaries open import Pointed open import UniverseOfNTypes -- The argument that (Type lzero) is not a set is standard. -- We omit it and the argument that (Type (S lzero)) is not a 1-Type: -- they are both special cases of the general theorem we prove. -- The general theorem is formalised in this file. --Definition 7.3.1 -- We have fibered notions of the loop space contruction and n-truncatedness. module _ {i} {X : Type• i} {j} where {- Note that the definition of the family of path types differs slightly from that in the thesis, which would correspond to transport P p x == x. We use dependent paths since this follows the design of the HoTT community's Agda library. There is no actual difference; both types are equivalent. -} Ω̃ : Fam• X j → Fam• (Ω X) j Ω̃ (P , x) = ((λ p → x == x [ P ↓ p ]) , idp) fam-has-level : ℕ₋₂ → Fam• X j → Type (i ⊔ j) fam-has-level n Q = (a : base X) → has-level n (fst Q a) {- == Pointed dependent sums == Pointed families as defined above enable us to introduce a Σ-connective for pointed types. Because of the abstract nature of some of our lemmata, we give Σ• in its uncurried form and first define the type of its parameter. -} Σ•-param : ∀ i j → Type (lsucc (i ⊔ j)) Σ•-param i j = Σ (Type• i) (λ X → Fam• X j) module _ {i j} where Ω-Σ•-param : Σ•-param i j → Σ•-param i j Ω-Σ•-param (X , W) = (Ω X , Ω̃ W) -- Definition 7.3.2 Σ• : Σ•-param i j → Type• (i ⊔ j) Σ• (X , Q) = (Σ (base X) (fst Q) , (pt X , snd Q)) -- Lemma 7.3.3 {- Commutativity of pointed dependent sums and the loop space construction will become an important technical tool, enabling us to work at a more abstract level later on. -} Ω-Σ•-comm : (R : Σ•-param i j) → Ω (Σ• R) ≃• Σ• (Ω-Σ•-param R) Ω-Σ•-comm _ = (=Σ-eqv _ _ , idp) ⁻¹• {- Pointed dependent products. This is not quite the equivalent of Π for pointed types: the domain parameter is just an ordinary non-pointed type. However, to enable our goal of abstractly working with pointed types, defining this notion is useful. -} Π•-param : ∀ i j → Type (lsucc (i ⊔ j)) Π•-param i j = Σ (Type i) (λ A → A → Type• j) module _ {i j} where Ω-Π•-param : Π•-param i j → Π•-param i j Ω-Π•-param (A , F) = (A , Ω ∘ F) -- Definition 7.3.4 Π• : Π•-param i j → Type• (i ⊔ j) Π• (A , Y) = (Π A (base ∘ Y) , pt ∘ Y) -- Lemma 7.3.5 {- Pointed dependent products and loop space construction on its codomain parameter commute as well. -} Ω-Π•-comm : (R : Π•-param i j) → Ω (Π• R) ≃• Π• (Ω-Π•-param R) Ω-Π•-comm _ = (app=-equiv , idp) Ω^-Π•-comm : (C : Type i) (F : C → Type• j) (n : ℕ) → (Ω ^ n) (Π• (C , F)) ≃• Π• (C , ((Ω ^ n) ∘ F)) Ω^-Π•-comm C F 0 = ide• _ Ω^-Π•-comm C F (S n) = Ω^-Π•-comm C _ n ∘e• equiv-Ω^ n (Ω-Π•-comm _) equiv-Π• : ∀ {i₀ i₁ j₀ j₁} {R₀ : Π•-param i₀ j₀} {R₁ : Π•-param i₁ j₁} → Σ (fst R₀ ≃ fst R₁) (λ u → ∀ a → snd R₀ (<– u a) ≃• snd R₁ a) → Π• R₀ ≃• Π• R₁ equiv-Π• (u , v) = (equiv-Π u (fst ∘ v) , λ= (snd ∘ v)) -- Lemma 7.4.1 -- In an n-th loop space, we can forget components of truncation level n. forget-Ω^-Σ•₂ : ∀ {i j} {X : Type• i} (Q : Fam• X j) (n : ℕ) → fam-has-level (n -2) Q → (Ω ^ n) (Σ• (X , Q)) ≃• (Ω ^ n) X forget-Ω^-Σ•₂ {X = X} Q O h = (Σ₂-contr h , idp) forget-Ω^-Σ•₂ {i} {X = X} Q (S n) h = (Ω ^ (S n)) (Σ• (X , Q)) ≃•⟨ equiv-Ω^ n (Ω-Σ•-comm _) ⟩ (Ω ^ n) (Σ• (Ω X , Ω̃ Q)) ≃•⟨ forget-Ω^-Σ•₂ {i} _ n (λ _ → ↓-level h) ⟩ (Ω ^ (S n)) X ≃•∎ -- Lemma 7.4.2 {- Our Local-global looping principle. We would like to state this principle in the form of Ωⁿ⁺¹ (Type i , A) == ∀• a → Ωⁿ (A , a) for n ≥ 1. Unfortunately, the two sides have different universe levels since (Type i , A) lives in Type• (suc i) instead of Type• i. Morally, this is outbalanced by the extra Ω on the left-hand side, which might help explain on an intuitive level why the n-th universe ends up being not an n-type. The reason why the univalence principle (A ≡ B) ≃ (A ≃ B) cannot be written as (A ≡ B) ≡ (A ≃ B) is precisely the same. -} module _ {i} {A : Type i} where -- The degenerate pre-base case carries around a propositional component. Ω-Type : Ω (Type i , A) ≃• Σ• (Π• (A , λ a → (A , a)) , (is-equiv , idf-is-equiv _)) Ω-Type = Ω (Type i , A) ≃•⟨ ide• _ ⟩ ((A == A) , idp) ≃•⟨ ua-equiv• ⁻¹• ⟩ ((A ≃ A) , ide _) ≃•⟨ ide• _ ⟩ ((Σ (A → A) is-equiv) , (idf _ , idf-is-equiv _)) ≃•⟨ ide• _ ⟩ Σ• (Π• (A , λ a → (A , a)) , (is-equiv , idf-is-equiv _)) ≃•∎ -- The base case. Ω²-Type : (Ω ^ 2) (Type i , A) ≃• Π• (A , λ a → Ω (A , a)) Ω²-Type = (Ω ^ 2) (Type i , A) ≃•⟨ equiv-Ω Ω-Type ⟩ Ω (Σ• (Π• (A , λ a → (A , a)) , (is-equiv , idf-is-equiv _))) ≃•⟨ forget-Ω^-Σ•₂ {i} _ 1 (is-equiv-is-prop ∘ _) ⟩ Ω (Π• (A , λ a → (A , a))) ≃•⟨ Ω-Π•-comm _ ⟩ Π• (A , λ a → Ω (A , a)) ≃•∎ -- The general case follows by permuting Ω and Π• repeatedly. Ω^-Type : (n : ℕ) → (Ω ^ (n + 2)) (Type i , A) ≃• Π• (A , λ a → (Ω ^ (n + 1)) (A , a)) Ω^-Type n = Ω^-Π•-comm _ _ n ∘e• equiv-Ω^ n Ω²-Type -- Lemma 7.4.3 is taken from the library -- lib.NType2._-Type-level_ {- The pointed family P (see thesis). It takes an n-type A and returns the space of (n+1)-loops with basepoint A in U_n^n (the n-th universe restricted to n-types). This crucial restriction to n-types implies it is just a set. -} module _ (n : ℕ) (A : ⟨ n ⟩ -Type 「 n 」) where -- Definition of P and -- Corollary 7.4.4 P : ⟨0⟩ -Type• 「 n + 1 」 P = Ω^-≤' (n + 1) q where q : ⟨ n + 1 ⟩ -Type• 「 n + 1 」 q = –> Σ-comm-snd (((⟨ n ⟩ -Type-≤ 「 n 」) , A)) -- Forgetting about the truncation level, we may present P as follows: Q : Type• 「 n + 1 」 Q = (Ω ^ (n + 1)) (Type 「 n 」 , fst A) P-is-Q : fst P ≃• Q P-is-Q = equiv-Ω^ n (forget-Ω^-Σ•₂ _ 1 (λ _ → has-level-is-prop)) -- Definition of the type 'Loop' and -- Lemma 7.4.5 {- The type 'Loop' of (images of) n-loops in U_(n-1)^(n-1) is just the dependent sum over P except for the special case n ≡ 0, where we take U_(-1)^(-1) (and hence Loop) to be the booleans. The boilerplate with raise-≤T is just to verify that Loop n is n-truncated. The bulk of the rest of this module consists of showing the n-th universe is not n-truncated at basepoint Loop n, i.e. that Q n (Loop n) is not contractible. Warning: The indexing of Loop starts at -1 in the thesis, but we use natural numbers here (starting at 0), thus everything is shifted by one. -} Loop : (n : ℕ) → ⟨ n ⟩ -Type 「 n 」 Loop 0 = (Bool , Bool-is-set) Loop (S n) = Σ-≤ (⟨ n ⟩ -Type-≤ 「 n 」) (λ A → raise-≤T {n = ⟨ n + 1 ⟩} (≤T-+2+-l ⟨0⟩ (-2≤T _)) (fst (<– Σ-comm-snd (P n A)))) -- Lemma 7.4.6, preparations -- The base case is given in Section 7.2 or the thesis. -- It is done as usual (there is a non-trivial automorphism on booleans). -- Let us go slowly. module negation where -- Negation. ~ : Bool → Bool ~ = λ {true → false; false → true} -- Negation is an equivalence. e : Bool ≃ Bool e = equiv ~ ~ inv inv where inv = λ {true → idp; false → idp} base-case : ¬ (is-contr• (Q 0 (Loop 0))) base-case c = Bool-false≠true false-is-true where -- Negation being equal to the identity yields a contradiction. false-is-true = false =⟨ ! (coe-β e true) ⟩ coe (ua e) true =⟨ ap (λ p → coe p true) (! (c (ua e))) ⟩ coe idp true =⟨ idp ⟩ true ∎ -- Let us now turn towards the successor case. module _ (m : ℕ) where -- We expand the type we are later going to assume contractible. Q-L-is-… = Q (m + 1) (Loop (m + 1)) ≃•⟨ ide• _ ⟩ (Ω ^ (m + 2)) (_ , ⟦ Loop (m + 1) ⟧) ≃•⟨ (Ω^-Type m) ⟩ Π• (_ , λ {(A , q) → Ω ^ (m + 1) $ (⟦ Loop (m + 1) ⟧ , (A , q))}) ≃•⟨ ide• _ ⟩ Π• (_ , λ {(A , q) → Ω ^ (m + 1) $ Σ• ((_ , A) , (base ∘ fst ∘ P m , q))}) ≃•∎ -- What we really want is to arrive at contractibility of E (m ≥ 1)... E = Π• (⟦ Loop (m + 1) ⟧ , λ {(A , q) → Ω ^ (m + 1) $ ((⟨ m ⟩ -Type 「 m 」) , A)}) -- ...or at least show that the following element f of E is trivial (m ≡ 0). f : base E f (_ , q) = q -- We want to use our assumption of contractibility of Q (n + 1) (Loop (n + 1)) -- to show that f is trivial, i.e. constant with value the basepoint. f-is-trivial : (m : ℕ) → is-contr• (Q (m + 1) (Loop (m + 1))) → f m == pt (E m) -- m ≡ 0 f-is-trivial 0 c = ap (λ f' → fst ∘ f') (! (–> (equiv-is-contr• …-is-E') c f')) where -- This is almost E, except for the additional component -- specifying that the first component p should commute with q. E' = Π• (_ , λ {(A , q) → (Σ (A == A) (λ p → q == q [ (λ x → x == x) ↓ p ]) , (idp , idp))}) -- This "almost" E comes from Q 1 (Loop 1), hence can be shown contractible. …-is-E' : Q 1 (Loop 1) ≃• E' …-is-E' = equiv-Π• (ide _ , Ω-Σ•-comm ∘ _) ∘e• Q-L-is-… 0 -- Fortunately, f can be 'extended' to an element f' of E', -- and triviality of f' implies triviality of f. f' = λ {(_ , q) → (q , ↓-idf=idf-in (∙=∙' q q))} -- m ≥ 1: We can show Q (k + 2) (Loop (k + 2)) ≃ E (k + 1), -- thus E is contractible, hence f trivial. f-is-trivial (S k) c = ! (–> (equiv-is-contr• (…-is-E ∘e• Q-L-is-… (k + 1))) c (f (k + 1))) where …-is-E : _ ≃• E (k + 1) …-is-E = equiv-Π• (ide _ , equiv-Ω^ k ∘ (λ {(A , q) → forget-Ω^-Σ•₂ {「 k + 2 」} (base ∘ fst ∘ P (k + 1) , q) 2 (snd ∘ P (k + 1))})) -- Lemma 7.4.6, part 1 -- Our main lemma: like in the thesis, but in negative form. -- This is sufficient to prove our results, and easier to formalise. main : (n : ℕ) → ¬ (is-contr• (Q n (Loop n))) main 0 = negation.base-case main (S m) c = main m step where {- We know Q (m + 1) (Loop (m + 1)) is contractible, use that to show that the above f is trivial, deduce f (Loop m , p) ≡ p is trivial for all p in P m (Loop m), which implies P m (Loop m) is contractible. But this is just another form of Q m (Loop m), so the conclusion follows by induction hypothesis. -} step : is-contr• (Q m (Loop m)) step = –> (equiv-is-contr• (P-is-Q m (Loop m))) (λ q → app= (! (f-is-trivial m c)) (Loop m , q)) -- Lemma 7.4.6, part 2 -- Alternate form of the main lemma main' : (n : ℕ) → ¬ (is-contr• ((Ω ^ (n + 1)) ((⟨ n ⟩ -Type 「 n 」) , Loop n ))) main' n = main n ∘ –> (equiv-is-contr• (P-is-Q n (Loop n))) -- Small helper thingy helpy : ∀ {i} {n : ℕ} {X : Type• i} → has-level• (n -1) X → is-contr• ((Ω ^ n) X) helpy {n = n} {X} = <– contr•-equiv-prop ∘ trunc-many n ∘ transport (λ k → has-level• (k -2) X) (+-comm 1 n) -- Main theorems now fall out as corollaries. module _ (n : ℕ) where {- Recall that L n is n-truncated. We also know it is not (n-1)-truncated, it is thus a 'strict' n-type. -} Loop-is-not-trunc : ¬ (has-level (n -1) ⟦ Loop n ⟧) Loop-is-not-trunc = main n ∘ helpy ∘ (λ t → universe-=-level t t) -- Theorem 7.4.7 -- The n-th universe is not n-truncated. Type-is-not-trunc : ¬ (has-level ⟨ n ⟩ (Type 「 n 」)) Type-is-not-trunc = main n ∘ helpy -- Theorem 7.4.8 -- MAIN RESULT: -- The n-th universe restricted to n-types is a 'strict' (n+1)-type. -- We do not repeat that it is (n+1)-truncated; this is formalised above -- (7.4.3). Instead, we only show that it is not an n-type. Type-≤-is-not-trunc : ¬ (has-level ⟨ n ⟩ (⟨ n ⟩ -Type 「 n 」)) Type-≤-is-not-trunc = main' n ∘ helpy
38.696165
83
0.556182
fbc6e85e277c088e7ee01846e78967a2bd4dac7b
527
agda
Agda
agda-stdlib/src/Relation/Binary/Morphism.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
5
2020-10-07T12:07:53.000Z
2020-10-10T21:41:32.000Z
agda-stdlib/src/Relation/Binary/Morphism.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
null
null
null
agda-stdlib/src/Relation/Binary/Morphism.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
1
2021-11-04T06:54:45.000Z
2021-11-04T06:54:45.000Z
------------------------------------------------------------------------ -- The Agda standard library -- -- Order morphisms ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} open import Relation.Binary.Core module Relation.Binary.Morphism where ------------------------------------------------------------------------ -- Re-export contents of morphisms open import Relation.Binary.Morphism.Definitions public open import Relation.Binary.Morphism.Structures public
29.277778
72
0.455408
18799c47c9e19eda51739af019dd48a28726d10c
3,520
agda
Agda
Cubical/Categories/Functor/Properties.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
1
2022-03-05T00:29:41.000Z
2022-03-05T00:29:41.000Z
Cubical/Categories/Functor/Properties.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
null
null
null
Cubical/Categories/Functor/Properties.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
null
null
null
{-# OPTIONS --safe #-} module Cubical.Categories.Functor.Properties where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Function renaming (_∘_ to _◍_) open import Cubical.Foundations.GroupoidLaws using (lUnit; rUnit; assoc; cong-∙) open import Cubical.Categories.Category open import Cubical.Categories.Functor.Base private variable ℓ ℓ' ℓ'' : Level B C D E : Category ℓ ℓ' open Category open Functor {- x ---p--- x' ⇓ᵍ g x' ---q--- y ⇓ʰ h y ---r--- z The path from `h (g x) ≡ z` obtained by 1. first applying cong to p and composing with q; then applying cong again and composing with r 2. first applying cong to q and composing with r; then applying a double cong to p and precomposing are path equal. -} congAssoc : ∀ {X : Type ℓ} {Y : Type ℓ'} {Z : Type ℓ''} (g : X → Y) (h : Y → Z) {x x' : X} {y : Y} {z : Z} → (p : x ≡ x') (q : g x' ≡ y) (r : h y ≡ z) → cong (h ◍ g) p ∙ (cong h q ∙ r) ≡ cong h (cong g p ∙ q) ∙ r congAssoc g h p q r = cong (h ◍ g) p ∙ (cong h q ∙ r) ≡⟨ assoc _ _ _ ⟩ ((cong (h ◍ g) p) ∙ (cong h q)) ∙ r ≡⟨ refl ⟩ (cong h (cong g p) ∙ (cong h q)) ∙ r ≡⟨ cong (_∙ r) (sym (cong-∙ h _ _)) ⟩ cong h (cong g p ∙ q) ∙ r ∎ -- composition is associative F-assoc : {F : Functor B C} {G : Functor C D} {H : Functor D E} → H ∘F (G ∘F F) ≡ (H ∘F G) ∘F F F-assoc {F = F} {G} {H} i .F-ob x = H ⟅ G ⟅ F ⟅ x ⟆ ⟆ ⟆ F-assoc {F = F} {G} {H} i .F-hom f = H ⟪ G ⟪ F ⟪ f ⟫ ⟫ ⟫ F-assoc {F = F} {G} {H} i .F-id {x} = congAssoc (G ⟪_⟫) (H ⟪_⟫) (F .F-id {x}) (G .F-id {F ⟅ x ⟆}) (H .F-id) (~ i) F-assoc {F = F} {G} {H} i .F-seq f g = congAssoc (G ⟪_⟫) (H ⟪_⟫) (F .F-seq f g) (G .F-seq _ _) (H .F-seq _ _) (~ i) -- Results about functors module _ {F : Functor C D} where -- the identity is the identity F-lUnit : F ∘F 𝟙⟨ C ⟩ ≡ F F-lUnit i .F-ob x = F ⟅ x ⟆ F-lUnit i .F-hom f = F ⟪ f ⟫ F-lUnit i .F-id {x} = lUnit (F .F-id) (~ i) F-lUnit i .F-seq f g = lUnit (F .F-seq f g) (~ i) F-rUnit : 𝟙⟨ D ⟩ ∘F F ≡ F F-rUnit i .F-ob x = F ⟅ x ⟆ F-rUnit i .F-hom f = F ⟪ f ⟫ F-rUnit i .F-id {x} = rUnit (F .F-id) (~ i) F-rUnit i .F-seq f g = rUnit (F .F-seq f g) (~ i) -- functors preserve commutative diagrams (specificallysqures here) preserveCommF : ∀ {x y z w} {f : C [ x , y ]} {g : C [ y , w ]} {h : C [ x , z ]} {k : C [ z , w ]} → f ⋆⟨ C ⟩ g ≡ h ⋆⟨ C ⟩ k → (F ⟪ f ⟫) ⋆⟨ D ⟩ (F ⟪ g ⟫) ≡ (F ⟪ h ⟫) ⋆⟨ D ⟩ (F ⟪ k ⟫) preserveCommF {f = f} {g = g} {h = h} {k = k} eq = (F ⟪ f ⟫) ⋆⟨ D ⟩ (F ⟪ g ⟫) ≡⟨ sym (F .F-seq _ _) ⟩ F ⟪ f ⋆⟨ C ⟩ g ⟫ ≡⟨ cong (F ⟪_⟫) eq ⟩ F ⟪ h ⋆⟨ C ⟩ k ⟫ ≡⟨ F .F-seq _ _ ⟩ (F ⟪ h ⟫) ⋆⟨ D ⟩ (F ⟪ k ⟫) ∎ -- functors preserve isomorphisms preserveIsosF : ∀ {x y} → CatIso C x y → CatIso D (F ⟅ x ⟆) (F ⟅ y ⟆) preserveIsosF {x} {y} (catiso f f⁻¹ sec' ret') = catiso g g⁻¹ -- sec ( (g⁻¹ ⋆⟨ D ⟩ g) ≡⟨ sym (F .F-seq f⁻¹ f) ⟩ F ⟪ f⁻¹ ⋆⟨ C ⟩ f ⟫ ≡⟨ cong (F .F-hom) sec' ⟩ F ⟪ C .id ⟫ ≡⟨ F .F-id ⟩ D .id ∎ ) -- ret ( (g ⋆⟨ D ⟩ g⁻¹) ≡⟨ sym (F .F-seq f f⁻¹) ⟩ F ⟪ f ⋆⟨ C ⟩ f⁻¹ ⟫ ≡⟨ cong (F .F-hom) ret' ⟩ F ⟪ C .id ⟫ ≡⟨ F .F-id ⟩ D .id ∎ ) where x' : D .ob x' = F ⟅ x ⟆ y' : D .ob y' = F ⟅ y ⟆ g : D [ x' , y' ] g = F ⟪ f ⟫ g⁻¹ : D [ y' , x' ] g⁻¹ = F ⟪ f⁻¹ ⟫
30.08547
116
0.444602
0b1644efecf2ce86c8fda916cdf633ebe87d966f
1,211
agda
Agda
test/asset/agda-stdlib-1.0/Data/Sum/Properties.agda
omega12345/agda-mode
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
[ "MIT" ]
null
null
null
test/asset/agda-stdlib-1.0/Data/Sum/Properties.agda
omega12345/agda-mode
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
[ "MIT" ]
null
null
null
test/asset/agda-stdlib-1.0/Data/Sum/Properties.agda
omega12345/agda-mode
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
[ "MIT" ]
null
null
null
------------------------------------------------------------------------ -- The Agda standard library -- -- Properties of sums (disjoint unions) ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.Sum.Properties where open import Data.Sum open import Function open import Relation.Binary using (Decidable) open import Relation.Binary.PropositionalEquality open import Relation.Nullary using (yes; no) module _ {a b} {A : Set a} {B : Set b} where inj₁-injective : ∀ {x y} → (A ⊎ B ∋ inj₁ x) ≡ inj₁ y → x ≡ y inj₁-injective refl = refl inj₂-injective : ∀ {x y} → (A ⊎ B ∋ inj₂ x) ≡ inj₂ y → x ≡ y inj₂-injective refl = refl ≡-dec : Decidable _≡_ → Decidable _≡_ → Decidable {A = A ⊎ B} _≡_ ≡-dec dec₁ dec₂ (inj₁ x) (inj₁ y) with dec₁ x y ... | yes refl = yes refl ... | no x≢y = no (x≢y ∘ inj₁-injective) ≡-dec dec₁ dec₂ (inj₁ x) (inj₂ y) = no λ() ≡-dec dec₁ dec₂ (inj₂ x) (inj₁ y) = no λ() ≡-dec dec₁ dec₂ (inj₂ x) (inj₂ y) with dec₂ x y ... | yes refl = yes refl ... | no x≢y = no (x≢y ∘ inj₂-injective) swap-involutive : swap {A = A} {B} ∘ swap ≗ id swap-involutive = [ (λ _ → refl) , (λ _ → refl) ]
32.72973
72
0.535095
0bb83334bf3f71e22db5c830c21da758dfd5f495
702
agda
Agda
test/interaction/ExtendedLambdaCase.agda
masondesu/agda
70c8a575c46f6a568c7518150a1a64fcd03aa437
[ "MIT" ]
1
2018-10-10T17:08:44.000Z
2018-10-10T17:08:44.000Z
test/interaction/ExtendedLambdaCase.agda
np/agda-git-experiment
20596e9dd9867166a64470dd24ea68925ff380ce
[ "MIT" ]
null
null
null
test/interaction/ExtendedLambdaCase.agda
np/agda-git-experiment
20596e9dd9867166a64470dd24ea68925ff380ce
[ "MIT" ]
null
null
null
module ExtendedLambdaCase where data Bool : Set where true false : Bool data Void : Set where foo : Bool -> Bool -> Bool -> Bool foo = λ { x → λ { y z → {!!} } } module parameterised {A : Set}(B : A -> Set) where data Bar : (Bool -> Bool) -> Set where baz : (t : Void) -> Bar λ { x → {!!} } -- with hidden argument data Bar' : (Bool -> Bool) -> Set where baz' : {t : Void} -> (t' : Void) -> Bar' λ { x' → {!!} } baz : Bool -> {w : Bool} -> Bool baz = λ { z {w} → {!!} } another-short-name : {A : Set} -> (A -> {x : A} -> A -> A) another-short-name = {! λ { a {x} b → a } !} f : Set f = (y : Bool) -> parameterised.Bar {Bool}(λ _ → Void) (λ { true → true ; false → false })
22.645161
91
0.501425
187f3a04e11ea97a1012eb187f89cf12169bfd5f
3,348
agda
Agda
src/Categories/Functor/Hom.agda
glittershark/agda-categories
2128fab9e8d341364cbf784bb17c547bf73891de
[ "MIT" ]
null
null
null
src/Categories/Functor/Hom.agda
glittershark/agda-categories
2128fab9e8d341364cbf784bb17c547bf73891de
[ "MIT" ]
null
null
null
src/Categories/Functor/Hom.agda
glittershark/agda-categories
2128fab9e8d341364cbf784bb17c547bf73891de
[ "MIT" ]
null
null
null
{-# OPTIONS --without-K --safe #-} module Categories.Functor.Hom where -- The Hom Functor from C.op × C to Setoids, -- the two 1-argument version fixing one object -- and some notation for the version where the category must be made explicit open import Data.Product open import Function using () renaming (_∘_ to _∙_) open import Categories.Category open import Categories.Functor hiding (id) open import Categories.Functor.Properties open import Categories.Functor.Bifunctor open import Categories.Category.Instance.Setoids import Categories.Morphism.Reasoning as MR open import Relation.Binary using (Setoid) module Hom {o ℓ e} (C : Category o ℓ e) where open Category C open MR C Hom[-,-] : Bifunctor (Category.op C) C (Setoids ℓ e) Hom[-,-] = record { F₀ = F₀′ ; F₁ = λ where (f , g) → record { _⟨$⟩_ = λ h → g ∘ h ∘ f ; cong = ∘-resp-≈ʳ ∙ ∘-resp-≈ˡ } ; identity = identity′ ; homomorphism = homomorphism′ ; F-resp-≈ = F-resp-≈′ } where F₀′ : Obj × Obj → Setoid ℓ e F₀′ (A , B) = hom-setoid {A} {B} open HomReasoning identity′ : {A : Obj × Obj} {x y : uncurry _⇒_ A} → x ≈ y → id ∘ x ∘ id ≈ y identity′ {A} {x} {y} x≈y = begin id ∘ x ∘ id ≈⟨ identityˡ ⟩ x ∘ id ≈⟨ identityʳ ⟩ x ≈⟨ x≈y ⟩ y ∎ homomorphism′ : ∀ {X Y Z : Σ Obj (λ x → Obj)} {f : proj₁ Y ⇒ proj₁ X × proj₂ X ⇒ proj₂ Y} {g : proj₁ Z ⇒ proj₁ Y × proj₂ Y ⇒ proj₂ Z} {x y : proj₁ X ⇒ proj₂ X} → x ≈ y → (proj₂ g ∘ proj₂ f) ∘ x ∘ proj₁ f ∘ proj₁ g ≈ proj₂ g ∘ (proj₂ f ∘ y ∘ proj₁ f) ∘ proj₁ g homomorphism′ {f = f₁ , f₂} {g₁ , g₂} {x} {y} x≈y = begin (g₂ ∘ f₂) ∘ x ∘ f₁ ∘ g₁ ≈⟨ refl⟩∘⟨ sym-assoc ⟩ (g₂ ∘ f₂) ∘ (x ∘ f₁) ∘ g₁ ≈⟨ pullʳ (pullˡ (∘-resp-≈ʳ (∘-resp-≈ˡ x≈y))) ⟩ g₂ ∘ (f₂ ∘ y ∘ f₁) ∘ g₁ ∎ F-resp-≈′ : ∀ {A B : Σ Obj (λ x → Obj)} {f g : Σ (proj₁ B ⇒ proj₁ A) (λ x → proj₂ A ⇒ proj₂ B)} → Σ (proj₁ f ≈ proj₁ g) (λ x → proj₂ f ≈ proj₂ g) → {x y : proj₁ A ⇒ proj₂ A} → x ≈ y → proj₂ f ∘ x ∘ proj₁ f ≈ proj₂ g ∘ y ∘ proj₁ g F-resp-≈′ {f = f₁ , f₂} {g₁ , g₂} (f₁≈g₁ , f₂≈g₂) {x} {y} x≈y = begin f₂ ∘ x ∘ f₁ ≈⟨ f₂≈g₂ ⟩∘⟨ x≈y ⟩∘⟨ f₁≈g₁ ⟩ g₂ ∘ y ∘ g₁ ∎ open Functor Hom[-,-] open Equiv open HomReasoning Hom[_,-] : Obj → Functor C (Setoids ℓ e) Hom[_,-] = appˡ Hom[-,-] Hom[-,_] : Obj → Contravariant C (Setoids ℓ e) Hom[-,_] = appʳ Hom[-,-] Hom[_,_] : Obj → Obj → Setoid ℓ e Hom[ A , B ] = hom-setoid {A} {B} -- Notation for when the ambient Category must be specified explicitly. module _ {o ℓ e} (C : Category o ℓ e) where open Category C open Hom C Hom[_][-,-] : Bifunctor (Category.op C) C (Setoids ℓ e) Hom[_][-,-] = Hom[-,-] Hom[_][_,-] : Obj → Functor C (Setoids ℓ e) Hom[_][_,-] B = Hom[ B ,-] Hom[_][-,_] : Obj → Contravariant C (Setoids ℓ e) Hom[_][-,_] B = Hom[-, B ] Hom[_][_,_] : Obj → Obj → Setoid ℓ e Hom[_][_,_] A B = hom-setoid {A} {B}
34.515464
85
0.48178
0b9e1c7cd0cfa68166517c4b05dbad6e50bd2a9f
863
agda
Agda
part1/lists/map-compose.agda
akiomik/plfa-solutions
df7722b88a9b3dfde320a690b78c4c1ef8c7c547
[ "Apache-2.0" ]
1
2020-07-07T09:42:22.000Z
2020-07-07T09:42:22.000Z
part1/lists/map-compose.agda
akiomik/plfa-solutions
df7722b88a9b3dfde320a690b78c4c1ef8c7c547
[ "Apache-2.0" ]
null
null
null
part1/lists/map-compose.agda
akiomik/plfa-solutions
df7722b88a9b3dfde320a690b78c4c1ef8c7c547
[ "Apache-2.0" ]
null
null
null
module map-compose where import Relation.Binary.PropositionalEquality as Eq open Eq using (_≡_; refl; cong) open Eq.≡-Reasoning open import Function using (_∘_) open import lists using (List; []; _∷_; map) postulate -- 外延性の公理 extensionality : ∀ {A B : Set} {f g : A → B} → (∀ (x : A) → f x ≡ g x) ----------------------- → f ≡ g -- 外延性の公理を用いた証明のための補助定理 lemma : ∀ {A B C : Set} → (f : A → B) → (g : B → C) → (x : List A) → map (g ∘ f) x ≡ (map g ∘ map f) x lemma f g [] = refl lemma f g (x ∷ xs) = begin map (g ∘ f) (x ∷ xs) ≡⟨⟩ (g ∘ f) x ∷ map (g ∘ f) xs ≡⟨ cong ((g ∘ f) x ∷_) (lemma f g xs) ⟩ (g ∘ f) x ∷ (map g ∘ map f) xs ≡⟨⟩ (map g ∘ map f) (x ∷ xs) ∎ -- mapの分配法則の証明 map-compose : ∀ {A B C : Set} → (f : A → B) → (g : B → C) → map (g ∘ f) ≡ map g ∘ map f map-compose f g = extensionality (lemma f g)
24.657143
66
0.491309
0bfa2ec4e3695485ad828b1e8527b60af9027404
2,138
agda
Agda
ConfluenceParallel.agda
iwilare/church-rosser
2fa17f7738cc7da967375be928137adc4be38696
[ "MIT" ]
5
2020-06-02T07:27:54.000Z
2021-11-22T01:43:09.000Z
ConfluenceParallel.agda
iwilare/church-rosser
2fa17f7738cc7da967375be928137adc4be38696
[ "MIT" ]
null
null
null
ConfluenceParallel.agda
iwilare/church-rosser
2fa17f7738cc7da967375be928137adc4be38696
[ "MIT" ]
null
null
null
open import Data.Product using (∃; ∃-syntax; _×_; _,_) open import DeBruijn open import Parallel open import Beta par-diamond : ∀ {n} {M N N′ : Term n} → M ⇉ N → M ⇉ N′ ----------------------- → ∃[ L ] (N ⇉ L × N′ ⇉ L) par-diamond (⇉-c {x = x}) ⇉-c = # x , ⇉-c , ⇉-c par-diamond (⇉-ƛ p1) (⇉-ƛ p2) with par-diamond p1 p2 ... | L′ , p3 , p4 = ƛ L′ , ⇉-ƛ p3 , ⇉-ƛ p4 par-diamond (⇉-ξ p1 p3) (⇉-ξ p2 p4) with par-diamond p1 p2 ... | L₃ , p5 , p6 with par-diamond p3 p4 ... | M₃ , p7 , p8 = L₃ · M₃ , ⇉-ξ p5 p7 , ⇉-ξ p6 p8 par-diamond (⇉-ξ (⇉-ƛ p1) p3) (⇉-β p2 p4) with par-diamond p1 p2 ... | N₃ , p5 , p6 with par-diamond p3 p4 ... | M₃ , p7 , p8 = N₃ [ M₃ ] , ⇉-β p5 p7 , sub-par p6 p8 par-diamond (⇉-β p1 p3) (⇉-ξ (⇉-ƛ p2) p4) with par-diamond p1 p2 ... | N₃ , p5 , p6 with par-diamond p3 p4 ... | M₃ , p7 , p8 = N₃ [ M₃ ] , sub-par p5 p7 , ⇉-β p6 p8 par-diamond (⇉-β p1 p3) (⇉-β p2 p4) with par-diamond p1 p2 ... | N₃ , p5 , p6 with par-diamond p3 p4 ... | M₃ , p7 , p8 = N₃ [ M₃ ] , sub-par p5 p7 , sub-par p6 p8 strip : ∀ {n} {M A B : Term n} → M ⇉ A → M ⇉* B ------------------------ → ∃[ N ] (A ⇉* N × B ⇉ N) strip {A = A} M⇉A (M ∎) = A , (A ∎) , M⇉A strip {A = A} M⇉A (M ⇉⟨ M⇉M′ ⟩ M′⇉*B) with par-diamond M⇉A M⇉M′ ... | N , A⇉N , M′⇉N with strip M′⇉N M′⇉*B ... | N′ , N⇉*N′ , B⇉N′ = N′ , (A ⇉⟨ A⇉N ⟩ N⇉*N′) , B⇉N′ par-confluence : ∀ {n} {M A B : Term n} → M ⇉* A → M ⇉* B ------------------------ → ∃[ N ] (A ⇉* N × B ⇉* N) par-confluence {B = B} (M ∎) M⇉*B = B , M⇉*B , (B ∎) par-confluence {B = B} (M ⇉⟨ M⇉A ⟩ A⇉*A′) M⇉*B with strip M⇉A M⇉*B ... | N , A⇉*N , B⇉N with par-confluence A⇉*A′ A⇉*N ... | N′ , A′⇉*N′ , N⇉*N′ = N′ , A′⇉*N′ , (B ⇉⟨ B⇉N ⟩ N⇉*N′) confluence : ∀ {n} {M A B : Term n} → M —↠ A → M —↠ B ------------------------ → ∃[ N ] (A —↠ N × B —↠ N) confluence M—↠A M—↠B with par-confluence (betas-pars M—↠A) (betas-pars M—↠B) ... | N , A⇉*N , B⇉*N = N , pars-betas A⇉*N , pars-betas B⇉*N
27.766234
59
0.404116
fb0f463d8c66e649dd22831688e8dacbad044ff7
17,183
agda
Agda
lib/cubical/Square.agda
UlrikBuchholtz/HoTT-Agda
f8fa68bf753d64d7f45556ca09d0da7976709afa
[ "MIT" ]
null
null
null
lib/cubical/Square.agda
UlrikBuchholtz/HoTT-Agda
f8fa68bf753d64d7f45556ca09d0da7976709afa
[ "MIT" ]
null
null
null
lib/cubical/Square.agda
UlrikBuchholtz/HoTT-Agda
f8fa68bf753d64d7f45556ca09d0da7976709afa
[ "MIT" ]
null
null
null
{-# OPTIONS --without-K #-} open import lib.Base open import lib.PathGroupoid open import lib.PathOver module lib.cubical.Square where data Square {i} {A : Type i} {a₀₀ : A} : {a₀₁ a₁₀ a₁₁ : A} → a₀₀ == a₀₁ → a₀₀ == a₁₀ → a₀₁ == a₁₁ → a₁₀ == a₁₁ → Type i where ids : Square idp idp idp idp hid-square : ∀ {i} {A : Type i} {a₀₀ a₀₁ : A} {p : a₀₀ == a₀₁} → Square p idp idp p hid-square {p = idp} = ids vid-square : ∀ {i} {A : Type i} {a₀₀ a₁₀ : A} {p : a₀₀ == a₁₀} → Square idp p p idp vid-square {p = idp} = ids square-to-disc : ∀ {i} {A : Type i} {a₀₀ a₀₁ a₁₀ a₁₁ : A} {p₀₋ : a₀₀ == a₀₁} {p₋₀ : a₀₀ == a₁₀} {p₋₁ : a₀₁ == a₁₁} {p₁₋ : a₁₀ == a₁₁} → Square p₀₋ p₋₀ p₋₁ p₁₋ → p₀₋ ∙ p₋₁ == p₋₀ ∙ p₁₋ square-to-disc ids = idp disc-to-square : ∀ {i} {A : Type i} {a₀₀ a₀₁ a₁₀ a₁₁ : A} {p₀₋ : a₀₀ == a₀₁} {p₋₀ : a₀₀ == a₁₀} {p₋₁ : a₀₁ == a₁₁} {p₁₋ : a₁₀ == a₁₁} → p₀₋ ∙ p₋₁ == p₋₀ ∙ p₁₋ → Square p₀₋ p₋₀ p₋₁ p₁₋ disc-to-square {p₀₋ = idp} {p₋₀ = idp} {p₋₁ = idp} {p₁₋ = .idp} idp = ids square-to-disc-β : ∀ {i} {A : Type i} {a₀₀ a₀₁ a₁₀ a₁₁ : A} {p₀₋ : a₀₀ == a₀₁} {p₋₀ : a₀₀ == a₁₀} {p₋₁ : a₀₁ == a₁₁} {p₁₋ : a₁₀ == a₁₁} (α : p₀₋ ∙ p₋₁ == p₋₀ ∙ p₁₋) → square-to-disc (disc-to-square {p₀₋ = p₀₋} {p₋₀ = p₋₀} α) == α square-to-disc-β {p₀₋ = idp} {p₋₀ = idp} {p₋₁ = idp} {p₁₋ = .idp} idp = idp disc-to-square-β : ∀ {i} {A : Type i} {a₀₀ a₀₁ a₁₀ a₁₁ : A} {p₀₋ : a₀₀ == a₀₁} {p₋₀ : a₀₀ == a₁₀} {p₋₁ : a₀₁ == a₁₁} {p₁₋ : a₁₀ == a₁₁} (sq : Square p₀₋ p₋₀ p₋₁ p₁₋) → disc-to-square (square-to-disc sq) == sq disc-to-square-β ids = idp ap-square : ∀ {i j} {A : Type i} {B : Type j} (f : A → B) {a₀₀ a₀₁ a₁₀ a₁₁ : A} {p₀₋ : a₀₀ == a₀₁} {p₋₀ : a₀₀ == a₁₀} {p₋₁ : a₀₁ == a₁₁} {p₁₋ : a₁₀ == a₁₁} → Square p₀₋ p₋₀ p₋₁ p₁₋ → Square (ap f p₀₋) (ap f p₋₀) (ap f p₋₁) (ap f p₁₋) ap-square f ids = ids ap-square-hid : ∀ {i j} {A : Type i} {B : Type j} {f : A → B} {a₀ a₁ : A} {p : a₀ == a₁} → ap-square f (hid-square {p = p}) == hid-square ap-square-hid {p = idp} = idp ap-square-vid : ∀ {i j} {A : Type i} {B : Type j} {f : A → B} {a₀ a₁ : A} {p : a₀ == a₁} → ap-square f (vid-square {p = p}) == vid-square ap-square-vid {p = idp} = idp module _ {i} {A : Type i} where horiz-degen-square : {a a' : A} {p q : a == a'} → p == q → Square p idp idp q horiz-degen-square {p = idp} α = disc-to-square α horiz-degen-path : {a a' : A} {p q : a == a'} → Square p idp idp q → p == q horiz-degen-path {p = idp} sq = square-to-disc sq horiz-degen-path-β : {a a' : A} {p q : a == a'} (α : p == q) → horiz-degen-path (horiz-degen-square α) == α horiz-degen-path-β {p = idp} α = square-to-disc-β α horiz-degen-square-β : {a a' : A} {p q : a == a'} (sq : Square p idp idp q) → horiz-degen-square (horiz-degen-path sq) == sq horiz-degen-square-β {p = idp} sq = disc-to-square-β sq vert-degen-square : {a a' : A} {p q : a == a'} → p == q → Square idp p q idp vert-degen-square {p = idp} α = disc-to-square (! α) vert-degen-path : {a a' : A} {p q : a == a'} → Square idp p q idp → p == q vert-degen-path {p = idp} sq = ! (square-to-disc sq) vert-degen-path-β : {a a' : A} {p q : a == a'} (α : p == q) → vert-degen-path (vert-degen-square α) == α vert-degen-path-β {p = idp} α = ap ! (square-to-disc-β (! α)) ∙ !-! α vert-degen-square-β : {a a' : A} {p q : a == a'} (sq : Square idp p q idp) → vert-degen-square (vert-degen-path sq) == sq vert-degen-square-β {p = idp} sq = ap disc-to-square (!-! (square-to-disc sq)) ∙ disc-to-square-β sq horiz-degen-square-idp : {a a' : A} {p : a == a'} → horiz-degen-square (idp {a = p}) == hid-square horiz-degen-square-idp {p = idp} = idp vert-degen-square-idp : {a a' : A} {p : a == a'} → vert-degen-square (idp {a = p}) == vid-square vert-degen-square-idp {p = idp} = idp {- Flipping squares -} module _ {i} {A : Type i} where square-symmetry : {a₀₀ a₀₁ a₁₀ a₁₁ : A} {p₀₋ : a₀₀ == a₀₁} {p₋₀ : a₀₀ == a₁₀} {p₋₁ : a₀₁ == a₁₁} {p₁₋ : a₁₀ == a₁₁} → Square p₀₋ p₋₀ p₋₁ p₁₋ → Square p₋₀ p₀₋ p₁₋ p₋₁ square-symmetry ids = ids square-sym-inv : {a₀₀ a₀₁ a₁₀ a₁₁ : A} {p₀₋ : a₀₀ == a₀₁} {p₋₀ : a₀₀ == a₁₀} {p₋₁ : a₀₁ == a₁₁} {p₁₋ : a₁₀ == a₁₁} (sq : Square p₀₋ p₋₀ p₋₁ p₁₋) → square-symmetry (square-symmetry sq) == sq square-sym-inv ids = idp ap-square-symmetry : ∀ {i j} {A : Type i} {B : Type j} (f : A → B) {a₀₀ a₀₁ a₁₀ a₁₁ : A} {p₀₋ : a₀₀ == a₀₁} {p₋₀ : a₀₀ == a₁₀} {p₋₁ : a₀₁ == a₁₁} {p₁₋ : a₁₀ == a₁₁} (sq : Square p₀₋ p₋₀ p₋₁ p₁₋) → ap-square f (square-symmetry sq) == square-symmetry (ap-square f sq) ap-square-symmetry f ids = idp {- Alternate induction principles -} square-left-J : ∀ {i j} {A : Type i} {a₀₀ a₀₁ : A} {p₀₋ : a₀₀ == a₀₁} (P : {a₁₀ a₁₁ : A} {p₋₀ : a₀₀ == a₁₀} {p₋₁ : a₀₁ == a₁₁} {p₁₋ : a₁₀ == a₁₁} (sq : Square p₀₋ p₋₀ p₋₁ p₁₋) → Type j) (r : P hid-square) {a₁₀ a₁₁ : A} {p₋₀ : a₀₀ == a₁₀} {p₋₁ : a₀₁ == a₁₁} {p₁₋ : a₁₀ == a₁₁} (sq : Square p₀₋ p₋₀ p₋₁ p₁₋) → P sq square-left-J P r ids = r square-top-J : ∀ {i j} {A : Type i} {a₀₀ a₁₀ : A} {p₋₀ : a₀₀ == a₁₀} (P : {a₀₁ a₁₁ : A} {p₀₋ : a₀₀ == a₀₁} {p₋₁ : a₀₁ == a₁₁} {p₁₋ : a₁₀ == a₁₁} (sq : Square p₀₋ p₋₀ p₋₁ p₁₋) → Type j) (r : P vid-square) {a₀₁ a₁₁ : A} {p₀₋ : a₀₀ == a₀₁} {p₋₁ : a₀₁ == a₁₁} {p₁₋ : a₁₀ == a₁₁} (sq : Square p₀₋ p₋₀ p₋₁ p₁₋) → P sq square-top-J P r ids = r square-bot-J : ∀ {i j} {A : Type i} {a₀₁ a₁₁ : A} {p₋₁ : a₀₁ == a₁₁} (P : {a₀₀ a₁₀ : A} {p₀₋ : a₀₀ == a₀₁} {p₋₀ : a₀₀ == a₁₀} {p₁₋ : a₁₀ == a₁₁} (sq : Square p₀₋ p₋₀ p₋₁ p₁₋) → Type j) (r : P vid-square) {a₀₀ a₁₀ : A} {p₀₋ : a₀₀ == a₀₁} {p₋₀ : a₀₀ == a₁₀} {p₁₋ : a₁₀ == a₁₁} (sq : Square p₀₋ p₋₀ p₋₁ p₁₋) → P sq square-bot-J P r ids = r square-right-J : ∀ {i j} {A : Type i} {a₁₀ a₁₁ : A} {p₁₋ : a₁₀ == a₁₁} (P : {a₀₀ a₀₁ : A} {p₀₋ : a₀₀ == a₀₁} {p₋₀ : a₀₀ == a₁₀} {p₋₁ : a₀₁ == a₁₁} (sq : Square p₀₋ p₋₀ p₋₁ p₁₋) → Type j) (r : P hid-square) {a₀₀ a₀₁ : A} {p₀₋ : a₀₀ == a₀₁} {p₋₀ : a₀₀ == a₁₀} {p₋₁ : a₀₁ == a₁₁} (sq : Square p₀₋ p₋₀ p₋₁ p₁₋) → P sq square-right-J P r ids = r module _ where private lemma : ∀ {i j} {A : Type i} {a₀ : A} (P : {a₁ : A} {p q : a₀ == a₁} → p == q → Type j) (r : P (idp {a = idp})) {a₁ : A} {p q : a₀ == a₁} (α : p == q) → P α lemma P r {p = idp} idp = r horiz-degen-J : ∀ {i j} {A : Type i} {a₀ : A} (P : {a₁ : A} {p q : a₀ == a₁} → Square p idp idp q → Type j) (r : P ids) {a₁ : A} {p q : a₀ == a₁} (sq : Square p idp idp q) → P sq horiz-degen-J P r sq = transport P (horiz-degen-square-β sq) (lemma (P ∘ horiz-degen-square) r (horiz-degen-path sq)) vert-degen-J : ∀ {i j} {A : Type i} {a₀ : A} (P : {a₁ : A} {p q : a₀ == a₁} → Square idp p q idp → Type j) (r : P ids) {a₁ : A} {p q : a₀ == a₁} (sq : Square idp p q idp) → P sq vert-degen-J P r sq = transport P (vert-degen-square-β sq) (lemma (P ∘ vert-degen-square) r (vert-degen-path sq)) {- Square filling -} module _ {i} {A : Type i} where fill-square-left : {a₀₀ a₀₁ a₁₀ a₁₁ : A} (p₋₀ : a₀₀ == a₁₀) (p₋₁ : a₀₁ == a₁₁) (p₁₋ : a₁₀ == a₁₁) → Σ (a₀₀ == a₀₁) (λ p₀₋ → Square p₀₋ p₋₀ p₋₁ p₁₋) fill-square-left idp idp p = (p , hid-square) fill-square-top : {a₀₀ a₀₁ a₁₀ a₁₁ : A} (p₀₋ : a₀₀ == a₀₁) (p₋₁ : a₀₁ == a₁₁) (p₁₋ : a₁₀ == a₁₁) → Σ (a₀₀ == a₁₀) (λ p₋₀ → Square p₀₋ p₋₀ p₋₁ p₁₋) fill-square-top idp p idp = (p , vid-square) fill-square-bot : {a₀₀ a₀₁ a₁₀ a₁₁ : A} (p₀₋ : a₀₀ == a₀₁) (p₋₀ : a₀₀ == a₁₀) (p₁₋ : a₁₀ == a₁₁) → Σ (a₀₁ == a₁₁) (λ p₋₁ → Square p₀₋ p₋₀ p₋₁ p₁₋) fill-square-bot idp p idp = (p , vid-square) fill-square-right : {a₀₀ a₀₁ a₁₀ a₁₁ : A} (p₀₋ : a₀₀ == a₀₁) (p₋₀ : a₀₀ == a₁₀) (p₋₁ : a₀₁ == a₁₁) → Σ (a₁₀ == a₁₁) (λ p₁₋ → Square p₀₋ p₋₀ p₋₁ p₁₋) fill-square-right p idp idp = (p , hid-square) module _ {i j} {A : Type i} {B : Type j} {f g : A → B} where ↓-='-to-square : {x y : A} {p : x == y} {u : f x == g x} {v : f y == g y} → u == v [ (λ z → f z == g z) ↓ p ] → Square u (ap f p) (ap g p) v ↓-='-to-square {p = idp} q = horiz-degen-square q ↓-='-from-square : {x y : A} {p : x == y} {u : f x == g x} {v : f y == g y} → Square u (ap f p) (ap g p) v → u == v [ (λ z → f z == g z) ↓ p ] ↓-='-from-square {p = idp} sq = horiz-degen-path sq module _ {i j} {A : Type i} {B : Type j} {f : A → B} {b : B} where ↓-cst=app-from-square : {x y : A} {p : x == y} {u : b == f x} {v : b == f y} → Square u idp (ap f p) v → u == v [ (λ z → b == f z) ↓ p ] ↓-cst=app-from-square {p = idp} sq = horiz-degen-path sq ↓-cst=app-to-square : {x y : A} {p : x == y} {u : b == f x} {v : b == f y} → u == v [ (λ z → b == f z) ↓ p ] → Square u idp (ap f p) v ↓-cst=app-to-square {p = idp} sq = horiz-degen-square sq ↓-app=cst-from-square : {x y : A} {p : x == y} {u : f x == b} {v : f y == b} → Square u (ap f p) idp v → u == v [ (λ z → f z == b) ↓ p ] ↓-app=cst-from-square {p = idp} sq = horiz-degen-path sq ↓-app=cst-to-square : {x y : A} {p : x == y} {u : f x == b} {v : f y == b} → u == v [ (λ z → f z == b) ↓ p ] → Square u (ap f p) idp v ↓-app=cst-to-square {p = idp} sq = horiz-degen-square sq module _ {i j} {A : Type i} {B : Type j} (g : B → A) (f : A → B) where ↓-∘=idf-from-square : {x y : A} {p : x == y} {u : g (f x) == x} {v : g (f y) == y} → Square u (ap g (ap f p)) p v → (u == v [ (λ z → g (f z) == z) ↓ p ]) ↓-∘=idf-from-square {p = idp} sq = horiz-degen-path sq ↓-∘=idf-to-square : {x y : A} {p : x == y} {u : g (f x) == x} {v : g (f y) == y} → (u == v [ (λ z → g (f z) == z) ↓ p ]) → Square u (ap g (ap f p)) p v ↓-∘=idf-to-square {p = idp} q = horiz-degen-square q module _ {i j} {A : Type i} {B : Type j} where natural-square : {f₁ f₂ : A → B} (p : ∀ a → f₁ a == f₂ a) {a₁ a₂ : A} (q : a₁ == a₂) → Square (p a₁) (ap f₁ q) (ap f₂ q) (p a₂) natural-square p idp = hid-square natural-square-idp : {f₁ : A → B} {a₁ a₂ : A} (q : a₁ == a₂) → natural-square {f₁ = f₁} (λ _ → idp) q == vid-square natural-square-idp idp = idp {- Used for getting square equivalents of glue-β terms -} natural-square-β : {f₁ f₂ : A → B} (p : (a : A) → f₁ a == f₂ a) {x y : A} (q : x == y) {sq : Square (p x) (ap f₁ q) (ap f₂ q) (p y)} → apd p q == ↓-='-from-square sq → natural-square p q == sq natural-square-β _ idp α = ! horiz-degen-square-idp ∙ ap horiz-degen-square α ∙ horiz-degen-square-β _ _⊡v_ : ∀ {i} {A : Type i} {a₀₀ a₀₁ a₁₀ a₁₁ a₀₂ a₁₂ : A} {p₀₋ : a₀₀ == a₀₁} {p₋₀ : a₀₀ == a₁₀} {p₋₁ : a₀₁ == a₁₁} {p₁₋ : a₁₀ == a₁₁} {q₀₋ : a₀₁ == a₀₂} {q₋₂ : a₀₂ == a₁₂} {q₁₋ : a₁₁ == a₁₂} → Square p₀₋ p₋₀ p₋₁ p₁₋ → Square q₀₋ p₋₁ q₋₂ q₁₋ → Square (p₀₋ ∙ q₀₋) p₋₀ q₋₂ (p₁₋ ∙ q₁₋) ids ⊡v sq = sq _⊡v'_ : ∀ {i} {A : Type i} {a₀₀ a₀₁ a₁₀ a₁₁ a₀₂ a₁₂ : A} {p₀₋ : a₀₀ == a₀₁} {p₋₀ : a₀₀ == a₁₀} {p₋₁ : a₀₁ == a₁₁} {p₁₋ : a₁₀ == a₁₁} {q₀₋ : a₀₁ == a₀₂} {q₋₂ : a₀₂ == a₁₂} {q₁₋ : a₁₁ == a₁₂} → Square p₀₋ p₋₀ p₋₁ p₁₋ → Square q₀₋ p₋₁ q₋₂ q₁₋ → Square (p₀₋ ∙' q₀₋) p₋₀ q₋₂ (p₁₋ ∙' q₁₋) sq ⊡v' ids = sq _∙v⊡_ : ∀ {i} {A : Type i} {a₀₀ a₀₁ a₁₀ a₁₁ : A} {p₀₋ : a₀₀ == a₀₁} {p₋₀ p₋₀' : a₀₀ == a₁₀} {p₋₁ : a₀₁ == a₁₁} {p₁₋ : a₁₀ == a₁₁} → p₋₀ == p₋₀' → Square p₀₋ p₋₀' p₋₁ p₁₋ → Square p₀₋ p₋₀ p₋₁ p₁₋ idp ∙v⊡ sq = sq _⊡v∙_ : ∀ {i} {A : Type i} {a₀₀ a₀₁ a₁₀ a₁₁ : A} {p₋₀ : a₀₀ == a₁₀} {p₀₋ : a₀₀ == a₀₁} {p₋₁ p₋₁' : a₀₁ == a₁₁} {p₁₋ : a₁₀ == a₁₁} → Square p₀₋ p₋₀ p₋₁ p₁₋ → p₋₁ == p₋₁' → Square p₀₋ p₋₀ p₋₁' p₁₋ sq ⊡v∙ idp = sq _⊡h_ : ∀ {i} {A : Type i} {a₀₀ a₀₁ a₁₀ a₁₁ a₂₀ a₂₁ : A} {p₀₋ : a₀₀ == a₀₁} {p₋₀ : a₀₀ == a₁₀} {p₋₁ : a₀₁ == a₁₁} {p₁₋ : a₁₀ == a₁₁} {q₋₀ : a₁₀ == a₂₀} {q₋₁ : a₁₁ == a₂₁} {q₂₋ : a₂₀ == a₂₁} → Square p₀₋ p₋₀ p₋₁ p₁₋ → Square p₁₋ q₋₀ q₋₁ q₂₋ → Square p₀₋ (p₋₀ ∙ q₋₀) (p₋₁ ∙ q₋₁) q₂₋ ids ⊡h sq = sq _⊡h'_ : ∀ {i} {A : Type i} {a₀₀ a₀₁ a₁₀ a₁₁ a₂₀ a₂₁ : A} {p₀₋ : a₀₀ == a₀₁} {p₋₀ : a₀₀ == a₁₀} {p₋₁ : a₀₁ == a₁₁} {p₁₋ : a₁₀ == a₁₁} {q₋₀ : a₁₀ == a₂₀} {q₋₁ : a₁₁ == a₂₁} {q₂₋ : a₂₀ == a₂₁} → Square p₀₋ p₋₀ p₋₁ p₁₋ → Square p₁₋ q₋₀ q₋₁ q₂₋ → Square p₀₋ (p₋₀ ∙' q₋₀) (p₋₁ ∙' q₋₁) q₂₋ sq ⊡h' ids = sq _∙h⊡_ : ∀ {i} {A : Type i} {a₀₀ a₀₁ a₁₀ a₁₁ : A} {p₀₋ p₀₋' : a₀₀ == a₀₁} {p₋₀ : a₀₀ == a₁₀} {p₋₁ : a₀₁ == a₁₁} {p₁₋ : a₁₀ == a₁₁} → p₀₋ == p₀₋' → Square p₀₋' p₋₀ p₋₁ p₁₋ → Square p₀₋ p₋₀ p₋₁ p₁₋ idp ∙h⊡ sq = sq _⊡h∙_ : ∀ {i} {A : Type i} {a₀₀ a₀₁ a₁₀ a₁₁ : A} {p₀₋ : a₀₀ == a₀₁} {p₋₀ : a₀₀ == a₁₀} {p₋₁ : a₀₁ == a₁₁} {p₁₋ p₁₋' : a₁₀ == a₁₁} → Square p₀₋ p₋₀ p₋₁ p₁₋ → p₁₋ == p₁₋' → Square p₀₋ p₋₀ p₋₁ p₁₋' sq ⊡h∙ idp = sq infixr 80 _⊡v_ _∙v⊡_ _⊡h_ _∙h⊡_ _⊡h'_ infixr 80 _⊡v∙_ _⊡h∙_ module _ {i} {A : Type i} where !□h : {a₀₀ a₀₁ a₁₀ a₁₁ : A} {p₀₋ : a₀₀ == a₀₁} {p₋₀ : a₀₀ == a₁₀} {p₋₁ : a₀₁ == a₁₁} {p₁₋ : a₁₀ == a₁₁} → Square p₀₋ p₋₀ p₋₁ p₁₋ → Square p₁₋ (! p₋₀) (! p₋₁) p₀₋ !□h ids = ids !□v : {a₀₀ a₀₁ a₁₀ a₁₁ : A} {p₀₋ : a₀₀ == a₀₁} {p₋₀ : a₀₀ == a₁₀} {p₋₁ : a₀₁ == a₁₁} {p₁₋ : a₁₀ == a₁₁} → Square p₀₋ p₋₀ p₋₁ p₁₋ → Square (! p₀₋) p₋₁ p₋₀ (! p₁₋) !□v ids = ids module _ {i} {A : Type i} where {- TODO rest of these -} ⊡h-unit-l : {a₀₀ a₀₁ a₁₀ a₁₁ : A} {p₀₋ : a₀₀ == a₀₁} {p₋₀ : a₀₀ == a₁₀} {p₋₁ : a₀₁ == a₁₁} {p₁₋ : a₁₀ == a₁₁} (sq : Square p₀₋ p₋₀ p₋₁ p₁₋) → hid-square ⊡h sq == sq ⊡h-unit-l ids = idp ⊡h-unit-r : {a₀₀ a₀₁ a₁₀ a₁₁ : A} {p₀₋ : a₀₀ == a₀₁} {p₋₀ : a₀₀ == a₁₀} {p₋₁ : a₀₁ == a₁₁} {p₁₋ : a₁₀ == a₁₁} (sq : Square p₀₋ p₋₀ p₋₁ p₁₋) → sq ⊡h hid-square == ∙-unit-r _ ∙v⊡ sq ⊡v∙ ! (∙-unit-r _) ⊡h-unit-r ids = idp ⊡h'-unit-l : {a₀₀ a₀₁ a₁₀ a₁₁ : A} {p₀₋ : a₀₀ == a₀₁} {p₋₀ : a₀₀ == a₁₀} {p₋₁ : a₀₁ == a₁₁} {p₁₋ : a₁₀ == a₁₁} (sq : Square p₀₋ p₋₀ p₋₁ p₁₋) → hid-square ⊡h' sq == ∙'-unit-l _ ∙v⊡ sq ⊡v∙ ! (∙'-unit-l _) ⊡h'-unit-l ids = idp ⊡h-unit-l-unique : {a₀₀ a₀₁ a₁₀ a₁₁ : A} {p₀₋ : a₀₀ == a₀₁} {p₋₀ : a₀₀ == a₁₀} {p₋₁ : a₀₁ == a₁₁} {p₁₋ : a₁₀ == a₁₁} (sq' : Square p₀₋ idp idp p₀₋) (sq : Square p₀₋ p₋₀ p₋₁ p₁₋) → sq' ⊡h sq == sq → sq' == hid-square ⊡h-unit-l-unique sq' ids p = ! (⊡h-unit-r sq') ∙ p module _ {i} {A : Type i} where !□h-inv-l : {a₀₀ a₀₁ a₁₀ a₁₁ : A} {p₀₋ : a₀₀ == a₀₁} {p₋₀ : a₀₀ == a₁₀} {p₋₁ : a₀₁ == a₁₁} {p₁₋ : a₁₀ == a₁₁} (sq : Square p₀₋ p₋₀ p₋₁ p₁₋) → (!□h sq) ⊡h sq == !-inv-l p₋₀ ∙v⊡ hid-square ⊡v∙ ! (!-inv-l p₋₁) !□h-inv-l ids = idp !□h-inv-r : {a₀₀ a₀₁ a₁₀ a₁₁ : A} {p₀₋ : a₀₀ == a₀₁} {p₋₀ : a₀₀ == a₁₀} {p₋₁ : a₀₁ == a₁₁} {p₁₋ : a₁₀ == a₁₁} (sq : Square p₀₋ p₋₀ p₋₁ p₁₋) → sq ⊡h (!□h sq) == !-inv-r p₋₀ ∙v⊡ hid-square ⊡v∙ ! (!-inv-r p₋₁) !□h-inv-r ids = idp !□v-inv-l : {a₀₀ a₀₁ a₁₀ a₁₁ : A} {p₀₋ : a₀₀ == a₀₁} {p₋₀ : a₀₀ == a₁₀} {p₋₁ : a₀₁ == a₁₁} {p₁₋ : a₁₀ == a₁₁} (sq : Square p₀₋ p₋₀ p₋₁ p₁₋) → (!□v sq) ⊡v sq == !-inv-l p₀₋ ∙h⊡ vid-square ⊡h∙ ! (!-inv-l p₁₋) !□v-inv-l ids = idp !□v-inv-r : {a₀₀ a₀₁ a₁₀ a₁₁ : A} {p₀₋ : a₀₀ == a₀₁} {p₋₀ : a₀₀ == a₁₀} {p₋₁ : a₀₁ == a₁₁} {p₁₋ : a₁₀ == a₁₁} (sq : Square p₀₋ p₋₀ p₋₁ p₁₋) → sq ⊡v (!□v sq) == !-inv-r p₀₋ ∙h⊡ vid-square ⊡h∙ ! (!-inv-r p₁₋) !□v-inv-r ids = idp module _ {i} {A : Type i} where square-left-unique : {a₀₀ a₀₁ a₁₀ a₁₁ : A} {p₀₋ p₀₋' : a₀₀ == a₀₁} {p₋₀ : a₀₀ == a₁₀} {p₋₁ : a₀₁ == a₁₁} {p₁₋ : a₁₀ == a₁₁} → Square p₀₋ p₋₀ p₋₁ p₁₋ → Square p₀₋' p₋₀ p₋₁ p₁₋ → p₀₋ == p₀₋' square-left-unique {p₋₀ = idp} {p₋₁ = idp} sq₁ sq₂ = horiz-degen-path (sq₁ ⊡h (!□h sq₂)) square-top-unique : {a₀₀ a₀₁ a₁₀ a₁₁ : A} {p₀₋ : a₀₀ == a₀₁} {p₋₀ p₋₀' : a₀₀ == a₁₀} {p₋₁ : a₀₁ == a₁₁} {p₁₋ : a₁₀ == a₁₁} → Square p₀₋ p₋₀ p₋₁ p₁₋ → Square p₀₋ p₋₀' p₋₁ p₁₋ → p₋₀ == p₋₀' square-top-unique {p₀₋ = idp} {p₁₋ = idp} sq₁ sq₂ = vert-degen-path (sq₁ ⊡v (!□v sq₂)) square-bot-unique : {a₀₀ a₀₁ a₁₀ a₁₁ : A} {p₀₋ : a₀₀ == a₀₁} {p₋₀ : a₀₀ == a₁₀} {p₋₁ p₋₁' : a₀₁ == a₁₁} {p₁₋ : a₁₀ == a₁₁} → Square p₀₋ p₋₀ p₋₁ p₁₋ → Square p₀₋ p₋₀ p₋₁' p₁₋ → p₋₁ == p₋₁' square-bot-unique {p₀₋ = idp} {p₁₋ = idp} sq₁ sq₂ = vert-degen-path ((!□v sq₁) ⊡v sq₂) square-right-unique : {a₀₀ a₀₁ a₁₀ a₁₁ : A} {p₀₋ : a₀₀ == a₀₁} {p₋₀ : a₀₀ == a₁₀} {p₋₁ : a₀₁ == a₁₁} {p₁₋ p₁₋' : a₁₀ == a₁₁} → Square p₀₋ p₋₀ p₋₁ p₁₋ → Square p₀₋ p₋₀ p₋₁ p₁₋' → p₁₋ == p₁₋' square-right-unique {p₋₀ = idp} {p₋₁ = idp} sq₁ sq₂ = horiz-degen-path ((!□h sq₁) ⊡h sq₂) module _ {i} {A : Type i} where connection : {a₀ a₁ : A} {q : a₀ == a₁} → Square idp idp q q connection {q = idp} = ids connection2 : {a₀ a₁ a₂ : A} {p : a₀ == a₁} {q : a₁ == a₂} → Square p p q q connection2 {p = idp} {q = idp} = ids lb-square : {a₀ a₁ : A} (p : a₀ == a₁) → Square p idp (! p) idp lb-square idp = ids bl-square : {a₀ a₁ : A} (p : a₀ == a₁) → Square (! p) idp p idp bl-square idp = ids rt-square : {a₀ a₁ : A} (p : a₀ == a₁) → Square idp (! p) idp p rt-square idp = ids tr-square : {a₀ a₁ : A} (p : a₀ == a₁) → Square idp p idp (! p) tr-square idp = ids lt-square : {a₀ a₁ : A} (p : a₀ == a₁) → Square p p idp idp lt-square idp = ids
34.504016
79
0.479311
18798a4d0d6b00bfd8a0ed7501fbb54af323fd0d
9,650
agda
Agda
src/Categories/Category/Monoidal/Properties.agda
yourboynico/agda-categories
6a087c592dbe58fc4bd9d02e1be9b94a9e138aca
[ "MIT" ]
279
2019-06-01T14:36:40.000Z
2022-03-22T00:40:14.000Z
src/Categories/Category/Monoidal/Properties.agda
seanpm2001/agda-categories
d9e4f578b126313058d105c61707d8c8ae987fa8
[ "MIT" ]
236
2019-06-01T14:53:54.000Z
2022-03-28T14:31:43.000Z
src/Categories/Category/Monoidal/Properties.agda
seanpm2001/agda-categories
d9e4f578b126313058d105c61707d8c8ae987fa8
[ "MIT" ]
64
2019-06-02T16:58:15.000Z
2022-03-14T02:00:59.000Z
{-# OPTIONS --without-K --safe #-} open import Categories.Category import Categories.Category.Monoidal as M -- Properties of Monoidal Categories module Categories.Category.Monoidal.Properties {o ℓ e} {C : Category o ℓ e} (MC : M.Monoidal C) where open import Data.Product using (_,_; Σ; uncurry′) open Category C open M.Monoidal MC open import Categories.Category.Monoidal.Utilities MC import Categories.Category.Monoidal.Reasoning as MonR open import Categories.Category.Construction.Core C as Core using (Core) open import Categories.Category.Product using (Product) open import Categories.Functor using (Functor) open import Categories.Functor.Bifunctor open import Categories.Functor.Properties open import Categories.Morphism.Isomorphism C using (elim-triangleˡ′; triangle-prism; cut-squareʳ) import Categories.Morphism.Reasoning as MR open import Categories.NaturalTransformation.NaturalIsomorphism.Properties using (push-eq) private module C = Category C variable A B : Obj open Core.Shorthands ⊗-iso : Bifunctor Core Core Core ⊗-iso = record { F₀ = uncurry′ _⊗₀_ ; F₁ = λ where (f , g) → f ⊗ᵢ g ; identity = refl⊗refl≃refl ; homomorphism = ⌞ homomorphism ⌟ ; F-resp-≈ = λ where (⌞ eq₁ ⌟ , ⌞ eq₂ ⌟) → ⌞ F-resp-≈ (eq₁ , eq₂) ⌟ } where open Functor ⊗ _⊗ᵢ- : Obj → Functor Core Core X ⊗ᵢ- = appˡ ⊗-iso X -⊗ᵢ_ : Obj → Functor Core Core -⊗ᵢ X = appʳ ⊗-iso X -- Coherence laws due to Mac Lane (1963) that were subsequently proven -- admissible by Max Kelly (1964). See -- https://ncatlab.org/nlab/show/monoidal+category#other_coherence_conditions -- for more details. module Kelly's where open Functor open Shorthands open Commutation C open Commutationᵢ private variable f f′ g h h′ i i′ j k : A ≅ B module _ {X Y : Obj} where open HomReasoningᵢ -- TS: following three isos commute ua : unit ⊗₀ (unit ⊗₀ X) ⊗₀ Y ≅ unit ⊗₀ unit ⊗₀ X ⊗₀ Y ua = idᵢ ⊗ᵢ associator u[λY] : unit ⊗₀ (unit ⊗₀ X) ⊗₀ Y ≅ unit ⊗₀ X ⊗₀ Y u[λY] = idᵢ ⊗ᵢ unitorˡ ⊗ᵢ idᵢ uλ : unit ⊗₀ unit ⊗₀ X ⊗₀ Y ≅ unit ⊗₀ X ⊗₀ Y uλ = idᵢ ⊗ᵢ unitorˡ -- setups perimeter : [ ((unit ⊗₀ unit) ⊗₀ X) ⊗₀ Y ≅ unit ⊗₀ X ⊗₀ Y ]⟨ (unitorʳ ⊗ᵢ idᵢ) ⊗ᵢ idᵢ ≅⟨ (unit ⊗₀ X) ⊗₀ Y ⟩ associator ≈ associator ≅⟨ (unit ⊗₀ unit) ⊗₀ X ⊗₀ Y ⟩ associator ≅⟨ unit ⊗₀ unit ⊗₀ X ⊗₀ Y ⟩ uλ ⟩ perimeter = ⟺ (glue◃◽′ triangle-iso (⟺ ⌞ Equiv.trans assoc-commute-from (∘-resp-≈ˡ (F-resp-≈ ⊗ (Equiv.refl , identity ⊗))) ⌟)) where open MR Core [uλ]Y : (unit ⊗₀ (unit ⊗₀ X)) ⊗₀ Y ≅ (unit ⊗₀ X) ⊗₀ Y [uλ]Y = (idᵢ ⊗ᵢ unitorˡ) ⊗ᵢ idᵢ aY : ((unit ⊗₀ unit) ⊗₀ X) ⊗₀ Y ≅ (unit ⊗₀ unit ⊗₀ X) ⊗₀ Y aY = associator ⊗ᵢ idᵢ [ρX]Y : ((unit ⊗₀ unit) ⊗₀ X) ⊗₀ Y ≅ (unit ⊗₀ X) ⊗₀ Y [ρX]Y = (unitorʳ ⊗ᵢ idᵢ) ⊗ᵢ idᵢ tri : [uλ]Y ∘ᵢ aY ≈ᵢ [ρX]Y tri = ⌞ [ appʳ ⊗ Y ]-resp-∘ triangle ⌟ sq : associator ∘ᵢ [uλ]Y ≈ᵢ u[λY] ∘ᵢ associator sq = ⌞ assoc-commute-from ⌟ -- proofs perimeter′ : [ ((unit ⊗₀ unit) ⊗₀ X) ⊗₀ Y ≅ unit ⊗₀ X ⊗₀ Y ]⟨ (unitorʳ ⊗ᵢ idᵢ) ⊗ᵢ idᵢ ≅⟨ (unit ⊗₀ X) ⊗₀ Y ⟩ associator ≈ aY ≅⟨ (unit ⊗₀ (unit ⊗₀ X)) ⊗₀ Y ⟩ associator ≅⟨ unit ⊗₀ (unit ⊗₀ X) ⊗₀ Y ⟩ ua ≅⟨ unit ⊗₀ unit ⊗₀ X ⊗₀ Y ⟩ uλ ⟩ perimeter′ = begin associator ∘ᵢ (unitorʳ ⊗ᵢ idᵢ) ⊗ᵢ idᵢ ≈⟨ perimeter ⟩ uλ ∘ᵢ associator ∘ᵢ associator ≈˘⟨ refl⟩∘⟨ pentagon-iso ⟩ uλ ∘ᵢ ua ∘ᵢ associator ∘ᵢ aY ∎ top-face : uλ ∘ᵢ ua ≈ᵢ u[λY] top-face = elim-triangleˡ′ (⟺ perimeter′) (glue◽◃ (⟺ sq) tri) where open MR Core coherence-iso₁ : [ (unit ⊗₀ X) ⊗₀ Y ≅ X ⊗₀ Y ]⟨ associator ≅⟨ unit ⊗₀ X ⊗₀ Y ⟩ unitorˡ ≈ unitorˡ ⊗ᵢ idᵢ ⟩ coherence-iso₁ = triangle-prism top-face square₁ square₂ square₃ where square₁ : [ unit ⊗₀ X ⊗₀ Y ≅ unit ⊗₀ X ⊗₀ Y ]⟨ unitorˡ ⁻¹ ∘ᵢ unitorˡ ≈ idᵢ ⊗ᵢ unitorˡ ∘ᵢ unitorˡ ⁻¹ ⟩ square₁ = ⌞ unitorˡ-commute-to ⌟ square₂ : [ (unit ⊗₀ X) ⊗₀ Y ≅ unit ⊗₀ unit ⊗₀ X ⊗₀ Y ]⟨ unitorˡ ⁻¹ ∘ᵢ associator ≈ idᵢ ⊗ᵢ associator ∘ᵢ unitorˡ ⁻¹ ⟩ square₂ = ⌞ unitorˡ-commute-to ⌟ square₃ : [ (unit ⊗₀ X) ⊗₀ Y ≅ unit ⊗₀ X ⊗₀ Y ]⟨ unitorˡ ⁻¹ ∘ᵢ unitorˡ ⊗ᵢ idᵢ ≈ idᵢ ⊗ᵢ unitorˡ ⊗ᵢ idᵢ ∘ᵢ unitorˡ ⁻¹ ⟩ square₃ = ⌞ unitorˡ-commute-to ⌟ coherence₁ : [ (unit ⊗₀ X) ⊗₀ Y ⇒ X ⊗₀ Y ]⟨ α⇒ ⇒⟨ unit ⊗₀ X ⊗₀ Y ⟩ λ⇒ ≈ λ⇒ ⊗₁ id ⟩ coherence₁ = from-≈ coherence-iso₁ coherence-inv₁ : [ X ⊗₀ Y ⇒ (unit ⊗₀ X) ⊗₀ Y ]⟨ λ⇐ ⇒⟨ unit ⊗₀ X ⊗₀ Y ⟩ α⇐ ≈ λ⇐ ⊗₁ id ⟩ coherence-inv₁ = to-≈ coherence-iso₁ -- another coherence property -- TS : the following three commute ρu : ((X ⊗₀ Y) ⊗₀ unit) ⊗₀ unit ≅ (X ⊗₀ Y) ⊗₀ unit ρu = unitorʳ ⊗ᵢ idᵢ au : ((X ⊗₀ Y) ⊗₀ unit) ⊗₀ unit ≅ (X ⊗₀ Y ⊗₀ unit) ⊗₀ unit au = associator ⊗ᵢ idᵢ [Xρ]u : (X ⊗₀ Y ⊗₀ unit) ⊗₀ unit ≅ (X ⊗₀ Y) ⊗₀ unit [Xρ]u = (idᵢ ⊗ᵢ unitorʳ) ⊗ᵢ idᵢ perimeter″ : [ ((X ⊗₀ Y) ⊗₀ unit) ⊗₀ unit ≅ X ⊗₀ Y ⊗₀ unit ]⟨ associator ≅⟨ (X ⊗₀ Y) ⊗₀ unit ⊗₀ unit ⟩ associator ≅⟨ X ⊗₀ Y ⊗₀ unit ⊗₀ unit ⟩ idᵢ ⊗ᵢ idᵢ ⊗ᵢ unitorˡ ≈ ρu ≅⟨ (X ⊗₀ Y) ⊗₀ unit ⟩ associator ⟩ perimeter″ = glue▹◽ triangle-iso (⟺ ⌞ Equiv.trans (∘-resp-≈ʳ (F-resp-≈ ⊗ (Equiv.sym (identity ⊗) , Equiv.refl))) assoc-commute-from ⌟) where open MR Core perimeter‴ : [ ((X ⊗₀ Y) ⊗₀ unit) ⊗₀ unit ≅ X ⊗₀ Y ⊗₀ unit ]⟨ associator ⊗ᵢ idᵢ ≅⟨ (X ⊗₀ (Y ⊗₀ unit)) ⊗₀ unit ⟩ (associator ≅⟨ X ⊗₀ (Y ⊗₀ unit) ⊗₀ unit ⟩ idᵢ ⊗ᵢ associator ≅⟨ X ⊗₀ Y ⊗₀ unit ⊗₀ unit ⟩ idᵢ ⊗ᵢ idᵢ ⊗ᵢ unitorˡ) ≈ ρu ≅⟨ (X ⊗₀ Y) ⊗₀ unit ⟩ associator ⟩ perimeter‴ = let α = associator in let λλ = unitorˡ in begin (idᵢ ⊗ᵢ idᵢ ⊗ᵢ λλ ∘ᵢ idᵢ ⊗ᵢ α ∘ᵢ α) ∘ᵢ α ⊗ᵢ idᵢ ≈⟨ ⌞ assoc ⌟ ⟩ idᵢ ⊗ᵢ idᵢ ⊗ᵢ λλ ∘ᵢ (idᵢ ⊗ᵢ α ∘ᵢ α) ∘ᵢ α ⊗ᵢ idᵢ ≈⟨ refl⟩∘⟨ ⌞ assoc ⌟ ⟩ idᵢ ⊗ᵢ idᵢ ⊗ᵢ λλ ∘ᵢ idᵢ ⊗ᵢ α ∘ᵢ α ∘ᵢ α ⊗ᵢ idᵢ ≈⟨ refl⟩∘⟨ pentagon-iso ⟩ idᵢ ⊗ᵢ idᵢ ⊗ᵢ λλ ∘ᵢ α ∘ᵢ α ≈⟨ perimeter″ ⟩ α ∘ᵢ ρu ∎ top-face′ : [Xρ]u ∘ᵢ au ≈ᵢ ρu top-face′ = cut-squareʳ perimeter‴ (⟺ (glue◃◽′ tri′ (⟺ ⌞ assoc-commute-from ⌟))) where open MR Core tri′ : [ X ⊗₀ (Y ⊗₀ unit) ⊗₀ unit ≅ X ⊗₀ Y ⊗₀ unit ]⟨ (idᵢ ⊗ᵢ idᵢ ⊗ᵢ unitorˡ ∘ᵢ idᵢ ⊗ᵢ associator) ≈ idᵢ ⊗ᵢ unitorʳ ⊗ᵢ idᵢ ⟩ tri′ = ⌞ [ X ⊗- ]-resp-∘ triangle ⌟ coherence-iso₂ : [ (X ⊗₀ Y) ⊗₀ unit ≅ X ⊗₀ Y ]⟨ idᵢ ⊗ᵢ unitorʳ ∘ᵢ associator ≈ unitorʳ ⟩ coherence-iso₂ = triangle-prism top-face′ square₁ square₂ ⌞ unitorʳ-commute-to ⌟ where square₁ : [ X ⊗₀ Y ⊗₀ unit ≅ (X ⊗₀ Y) ⊗₀ unit ]⟨ unitorʳ ⁻¹ ∘ᵢ idᵢ ⊗ᵢ unitorʳ ≈ (idᵢ ⊗ᵢ unitorʳ) ⊗ᵢ idᵢ ∘ᵢ unitorʳ ⁻¹ ⟩ square₁ = ⌞ unitorʳ-commute-to ⌟ square₂ : [ (X ⊗₀ Y) ⊗₀ unit ≅ (X ⊗₀ Y ⊗₀ unit) ⊗₀ unit ]⟨ unitorʳ ⁻¹ ∘ᵢ associator ≈ associator ⊗ᵢ idᵢ ∘ᵢ unitorʳ ⁻¹ ⟩ square₂ = ⌞ unitorʳ-commute-to ⌟ coherence₂ : [ (X ⊗₀ Y) ⊗₀ unit ⇒ X ⊗₀ Y ]⟨ α⇒ ⇒⟨ X ⊗₀ (Y ⊗₀ unit) ⟩ id ⊗₁ ρ⇒ ≈ ρ⇒ ⟩ coherence₂ = from-≈ coherence-iso₂ coherence-inv₂ : [ X ⊗₀ Y ⇒ (X ⊗₀ Y) ⊗₀ unit ]⟨ id ⊗₁ ρ⇐ ⇒⟨ X ⊗₀ (Y ⊗₀ unit) ⟩ α⇐ ≈ ρ⇐ ⟩ coherence-inv₂ = to-≈ coherence-iso₂ -- A third coherence condition (Lemma 2.3) coherence₃ : [ unit ⊗₀ unit ⇒ unit ]⟨ λ⇒ ≈ ρ⇒ ⟩ coherence₃ = push-eq unitorˡ-naturalIsomorphism (begin C.id ⊗₁ λ⇒ ≈˘⟨ cancelʳ associator.isoʳ ⟩ (C.id ⊗₁ λ⇒ ∘ α⇒) ∘ α⇐ ≈⟨ triangle ⟩∘⟨refl ⟩ ρ⇒ ⊗₁ C.id ∘ α⇐ ≈⟨ unitor-coherenceʳ ⟩∘⟨refl ⟩ ρ⇒ ∘ α⇐ ≈˘⟨ coherence₂ ⟩∘⟨refl ⟩ (C.id ⊗₁ ρ⇒ ∘ α⇒) ∘ α⇐ ≈⟨ cancelʳ associator.isoʳ ⟩ C.id ⊗₁ ρ⇒ ∎) where open MR C hiding (push-eq) open C.HomReasoning coherence-iso₃ : [ unit ⊗₀ unit ≅ unit ]⟨ unitorˡ ≈ unitorʳ ⟩ coherence-iso₃ = ⌞ coherence₃ ⌟ coherence-inv₃ : [ unit ⇒ unit ⊗₀ unit ]⟨ λ⇐ ≈ ρ⇐ ⟩ coherence-inv₃ = to-≈ coherence-iso₃ open Kelly's public using ( coherence₁; coherence-iso₁; coherence-inv₁ ; coherence₂; coherence-iso₂; coherence-inv₂ ; coherence₃; coherence-iso₃; coherence-inv₃ )
35.740741
102
0.466425
dff68fef36206686e9a8c4353b825d307c9df640
2,282
agda
Agda
core/lib/types/IteratedSuspension.agda
mikeshulman/HoTT-Agda
e7d663b63d89f380ab772ecb8d51c38c26952dbb
[ "MIT" ]
null
null
null
core/lib/types/IteratedSuspension.agda
mikeshulman/HoTT-Agda
e7d663b63d89f380ab772ecb8d51c38c26952dbb
[ "MIT" ]
null
null
null
core/lib/types/IteratedSuspension.agda
mikeshulman/HoTT-Agda
e7d663b63d89f380ab772ecb8d51c38c26952dbb
[ "MIT" ]
1
2018-12-26T21:31:57.000Z
2018-12-26T21:31:57.000Z
{-# OPTIONS --without-K --rewriting #-} open import lib.Basics open import lib.NConnected open import lib.types.Bool open import lib.types.Nat open import lib.types.TLevel open import lib.types.Suspension module lib.types.IteratedSuspension where ⊙Susp^ : ∀ {i} (n : ℕ) → Ptd i → Ptd i ⊙Susp^ O X = X ⊙Susp^ (S n) X = ⊙Susp (⊙Susp^ n X) abstract ⊙Susp^-conn : ∀ {i} (n : ℕ) {X : Ptd i} {m : ℕ₋₂} → is-connected m (de⊙ X) → is-connected (⟨ n ⟩₋₂ +2+ m) (de⊙ (⊙Susp^ n X)) ⊙Susp^-conn O cX = cX ⊙Susp^-conn (S n) cX = Susp-conn (⊙Susp^-conn n cX) ⊙Susp^-+ : ∀ {i} (m n : ℕ) {X : Ptd i} → ⊙Susp^ m (⊙Susp^ n X) == ⊙Susp^ (m + n) X ⊙Susp^-+ O n = idp ⊙Susp^-+ (S m) n = ap ⊙Susp (⊙Susp^-+ m n) ⊙Susp^-fmap : ∀ {i j} (n : ℕ) {X : Ptd i} {Y : Ptd j} → X ⊙→ Y → ⊙Susp^ n X ⊙→ ⊙Susp^ n Y ⊙Susp^-fmap O f = f ⊙Susp^-fmap (S n) f = ⊙Susp-fmap (⊙Susp^-fmap n f) ⊙Susp^-fmap-idf : ∀ {i} (n : ℕ) (X : Ptd i) → ⊙Susp^-fmap n (⊙idf X) == ⊙idf (⊙Susp^ n X) ⊙Susp^-fmap-idf O X = idp ⊙Susp^-fmap-idf (S n) X = ap ⊙Susp-fmap (⊙Susp^-fmap-idf n X) ∙ ⊙Susp-fmap-idf (⊙Susp^ n X) ⊙Susp^-fmap-cst : ∀ {i j} (n : ℕ) {X : Ptd i} {Y : Ptd j} → ⊙Susp^-fmap n (⊙cst {X = X} {Y = Y}) == ⊙cst ⊙Susp^-fmap-cst O = idp ⊙Susp^-fmap-cst (S n) = ap ⊙Susp-fmap (⊙Susp^-fmap-cst n) ∙ (⊙Susp-fmap-cst {X = ⊙Susp^ n _}) ⊙Susp^-fmap-∘ : ∀ {i j k} (n : ℕ) {X : Ptd i} {Y : Ptd j} {Z : Ptd k} (g : Y ⊙→ Z) (f : X ⊙→ Y) → ⊙Susp^-fmap n (g ⊙∘ f) == ⊙Susp^-fmap n g ⊙∘ ⊙Susp^-fmap n f ⊙Susp^-fmap-∘ O g f = idp ⊙Susp^-fmap-∘ (S n) g f = ap ⊙Susp-fmap (⊙Susp^-fmap-∘ n g f) ∙ ⊙Susp-fmap-∘ (⊙Susp^-fmap n g) (⊙Susp^-fmap n f) ⊙Susp^-Susp-split-iso : ∀ {i} (n : ℕ) (X : Ptd i) → ⊙Susp^ (S n) X ⊙≃ ⊙Susp^ n (⊙Susp X) ⊙Susp^-Susp-split-iso O X = ⊙ide _ ⊙Susp^-Susp-split-iso (S n) X = ⊙Susp-emap (⊙Susp^-Susp-split-iso n X) ⊙Sphere : (n : ℕ) → Ptd₀ ⊙Sphere n = ⊙Susp^ n ⊙Bool Sphere : (n : ℕ) → Type₀ Sphere n = de⊙ (⊙Sphere n) abstract Sphere-conn : ∀ (n : ℕ) → is-connected ⟨ n ⟩₋₁ (Sphere n) Sphere-conn 0 = inhab-conn true Sphere-conn (S n) = Susp-conn (Sphere-conn n) -- favonia: [S¹] has its own elim rules in Circle.agda. ⊙S⁰ = ⊙Sphere 0 ⊙S¹ = ⊙Sphere 1 ⊙S² = ⊙Sphere 2 ⊙S³ = ⊙Sphere 3 S⁰ = Sphere 0 S¹ = Sphere 1 S² = Sphere 2 S³ = Sphere 3
29.25641
78
0.532428
4d9fcdd4c267536aad667ade0858f53562932f86
6,969
agda
Agda
proglangs-learning/Agda/plfa-exercises/Practice2.agda
helq/old_code
a432faf1b340cb379190a2f2b11b997b02d1cd8d
[ "CC0-1.0" ]
null
null
null
proglangs-learning/Agda/plfa-exercises/Practice2.agda
helq/old_code
a432faf1b340cb379190a2f2b11b997b02d1cd8d
[ "CC0-1.0" ]
4
2020-03-10T19:20:21.000Z
2021-06-07T15:39:48.000Z
proglangs-learning/Agda/plfa-exercises/Practice2.agda
helq/old_code
a432faf1b340cb379190a2f2b11b997b02d1cd8d
[ "CC0-1.0" ]
null
null
null
module plfa-exercises.Practice2 where -- Trying exercises: -- 5.2 pp 340 -- 5.7 pp 386 -- 6.1 pp 423 import Relation.Binary.PropositionalEquality as Eq open Eq using (_≡_; refl; subst) open import Data.Nat using (ℕ; zero; suc; _+_; _*_) open import Relation.Nullary using (¬_) open import Data.Product using (_×_; proj₁; ∃-syntax) renaming (_,_ to ⟨_,_⟩) open import Data.Sum using (_⊎_; inj₁; inj₂) --open import plfa.part1.Isomorphism using (_≃_; extensionality) ∀-elim : ∀ {A : Set} {B : A → Set} → (L : ∀ (x : A) → B x) → (M : A) → B M ∀-elim l m = l m --totype : ℕ → Set --totype 0 = ℕ --totype 1 = 4 ≡ 2 + 2 --totype _ = ℕ -- λ noidea → ∀-elim {ℕ} {totype} noidea 4 ------- Preliminary proofs ------- modus-tollens : ∀ {A B : Set} → (A → B) ------------- → (¬ B → ¬ A) modus-tollens a→b = λ{¬b → λ{a → ¬b (a→b a)}} ---------------------------------- postulate dne : ∀ {A : Set} → ¬ ¬ A → A --data Σ (A : Set) (B : A → Set) : Set where -- ⟨_,_⟩ : (x : A) → B x → Σ A B -- --Σ-syntax = Σ --infix 2 Σ-syntax --syntax Σ-syntax A (λ x → B) = Σ[ x ∈ A ] B -- --∃ : ∀ {A : Set} (B : A → Set) → Set --∃ {A} B = Σ A B -- --∃-syntax = ∃ --syntax ∃-syntax (λ x → B) = ∃[ x ] B --⟨,⟩-syntax : ∀ {A : Set} {B : A → Set} (x : A) → B x → Σ A B --⟨,⟩-syntax = ⟨_,_⟩ ----⟨,⟩-syntax = Σ.⟨_,_⟩ --syntax ⟨,⟩-syntax x p = the-proof-for x is p --∃-elim : ∀ {A : Set} {B : A → Set} {C : Set} -- → (∀ x → B x → C) -- → ∃[ x ] B x -- --------------- -- → C --∃-elim f ⟨ x , y ⟩ = f x y record _⇔_ (A B : Set) : Set where field to : A → B from : B → A ---------------------- Athena book exercises ---------------------- exercise531 : ∀ {A : Set} {R : A → A → Set} → (∀ (x y : A) → R x y) → (∀ (x : A) → R x x) exercise531 R x = R x x exercise532 : ∀ {A : Set} (x : A) → ∃[ y ] (x ≡ y) exercise532 e = ⟨ e , refl ⟩ exercise533 : ∀ {A : Set} {P Q S : A → Set} → (∀ {x} → (P x ⊎ Q x) → S x) → (∃[ y ] (Q y)) ------------------------- → (∃[ y ] (S y)) exercise533 Px⊎Qx→Sx ⟨ y , qy ⟩ = let -- P x ⊎ Q x py⊎qy = inj₂ qy in ⟨ y , Px⊎Qx→Sx py⊎qy ⟩ exercise534 : ∀ {A : Set} {P Q S : A → Set} → (∃[ y ] (P y × Q y)) → (∀ {y} → P y → S y) ------------------------- → (∃[ y ] (S y × Q y)) exercise534 ⟨ y , ⟨ py , qy ⟩ ⟩ py→sy = ⟨ y , ⟨ py→sy py , qy ⟩ ⟩ exercise535 : ∀ {A : Set} {P Q : A → Set} → (¬ ∃[ x ] (Q x)) → (∀ {x} → P x → Q x) ------------------------- → (¬ ∃[ x ] (P x)) exercise535 ¬∃x-qx ∀x→px→qx = λ{ ∃x-px@(⟨ x , px ⟩) → ¬∃x-qx ⟨ x , ∀x→px→qx px ⟩ } exercise536 : ∀ {A : Set} {P Q S : A → Set} → (∀ {y} → P y → Q y) → (∃[ y ] (S y × ¬ Q y)) ------------------------ → (∃[ y ] (S y × ¬ P y)) exercise536 ∀y→py→qy ⟨ y , ⟨ sy , ¬qy ⟩ ⟩ = ⟨ y , ⟨ sy , modus-tollens ∀y→py→qy ¬qy ⟩ ⟩ exercise537 : ∀ {A : Set} {P Q : A → Set} {R : A → A → Set} → (∀ {x} → R x x → P x) → (∃[ x ] (P x) → ¬ ∃[ x ] (Q x)) ------------------------------- → ((∀ {x} → Q x) → ¬ ∃[ x ] (R x x)) exercise537 ∀x→rxx→px ∃x-px→¬∃x-qx ∀x→qx = λ{∃x-rxx@(⟨ x , rxx ⟩) → ∃x-px→¬∃x-qx ⟨ x , ∀x→rxx→px rxx ⟩ ⟨ x , ∀x→qx {x} ⟩ } exercise538 : ∀ {A : Set} {P Q : A → Set} → (∃[ x ] (P x ⊎ Q x)) ⇔ (∃[ x ] (P x) ⊎ ∃[ x ] (Q x)) exercise538 = record { to = to ; from = from } where to : ∀ {A : Set} {P Q : A → Set} → ∃[ x ] (P x ⊎ Q x) ----------------------------- → ∃[ x ] (P x) ⊎ ∃[ x ] (Q x) to ⟨ x , (inj₁ px) ⟩ = inj₁ ⟨ x , px ⟩ to ⟨ x , (inj₂ qx) ⟩ = inj₂ ⟨ x , qx ⟩ from : ∀ {A : Set} {P Q : A → Set} → ∃[ x ] (P x) ⊎ ∃[ x ] (Q x) ----------------------------- → ∃[ x ] (P x ⊎ Q x) from (inj₁ ⟨ x , px ⟩) = ⟨ x , inj₁ px ⟩ from (inj₂ ⟨ x , qx ⟩) = ⟨ x , inj₂ qx ⟩ ------------------ exercise571 : ∀ {A : Set} {P Q : A → Set} → (∀ {x} → P x ⇔ Q x) → (∀ {x} → P x) ⇔ (∀ {x} → Q x) exercise571 px⇔qx = record { to = λ{px → (_⇔_.to px⇔qx) px} ; from = λ{qx → (_⇔_.from px⇔qx) qx} } --exercise571 ∀x→px⇔qx = -- record -- { to = λ{∀x→px → (_⇔_.to (∀x→px⇔qx {x})) (∀x→px {x})} -- ; from = λ{∀x→qx → (_⇔_.from (∀x→px⇔qx {x})) (∀x→qx {x})} -- } exercise572 : ∀ {A : Set} {B : Set} {Q S : B → Set} {R T : B → B → Set} → (∃[ y ] (R y y × A)) → (∃[ y ] (Q y × T y y)) → (∀ y → A × Q y → ¬ S y) → (∃[ y ] (¬ S y × T y y)) exercise572 ⟨ _ , ⟨ _ , a ⟩ ⟩ ⟨ y , ⟨ qy , tyy ⟩ ⟩ ∀y→a×qy→¬sy = ⟨ y , ⟨ ∀y→a×qy→¬sy y ⟨ a , qy ⟩ , tyy ⟩ ⟩ -- This is fucking false!!! --postulate -- existence : {A : Set} {P : A → Set} -- → (∀ x → P x) -- ---------------- -- → (∃[ x ] (P x)) -- This cannot be proved! Take the empty set as an example. For any function -- and relation the ∀'s are trivially true, but there is no element that -- actually fulfills the function or the relation --exercise574 : ∀ {A : Set} {F : A → A} {R : A → A → Set} -- → (∀ x → R x x) -- → (∀ x → F x ≡ F (F x)) -- ----------------------- -- → (∃[ y ] (R y (F y))) --exercise574 ∀x→rxx ∀x→fx≡ffx = ⟨ ? , ? ⟩ exercise574 : ∀ {F : ℕ → ℕ} {R : ℕ → ℕ → Set} → (∀ x → R x x) → (∀ x → F x ≡ F (F x)) ----------------------- → (∃[ y ] (R y (F y))) exercise574 {f} {r} ∀x→rxx ∀x→fx≡ffx = let y = f 0 y≡fy = ∀x→fx≡ffx 0 -- F 0 ≡ F (F 0) => y ≡ F y ryy = ∀x→rxx y -- R (F 0) (F 0) => R y y ryfy = subst (r y) y≡fy ryy -- R (F 0) (F (F 0)) => R y (F y) in ⟨ y , ryfy ⟩ ------------------ exercise61a : ∀ {A B : Set} → (B ⊎ (A → B)) → A --------------- → B exercise61a (inj₁ b) _ = b exercise61a (inj₂ a→b) a = a→b a exercise61b : ∀ {A B C : Set} → (¬ B → ¬ C) → ((A × B) ⊎ ¬ ¬ C) ------------------- → B exercise61b ¬b→¬c (inj₁ ⟨ a , b ⟩) = b exercise61b ¬b→¬c (inj₂ ¬¬c) = dne ((modus-tollens ¬b→¬c) ¬¬c) ¬¬ : ∀ {A : Set} → A → ¬ ¬ A ¬¬ a = λ{¬a → ¬a a} -- What is the difference between: ∀ x → P x → ∀ y → R y → L and (∀ x → P x) → (∀ y → R y) → L ---- Can the following be proved without Double Negation Elimination (dne)? --lemma₁ : ∀ {A B : Set} -- → (¬ B → ¬ A) -- → A -- ------------------- -- → B --lemma₁ = ? -- --lemma₂ : ∀ {A B : Set} -- → (¬ B → ¬ A) -- → ¬ ¬ A -- ------------------- -- → B --lemma₂ = ? -- ---- `lemma₁` seems not to imply `dne` but it can't be proven without it. ---- ---- The answer is NO (for the second one)! Because from it we can prove `dne`! ---- `dne` cannot be proved in vanila Agda. --dne₁ : ∀ {A : Set} → ¬ ¬ A → A --dne₁ ¬¬a = lemma₁ ? ? -- --dne₂ : ∀ {A : Set} → ¬ ¬ A → A --dne₂ ¬¬a = lemma₂ (λ{x → x}) ¬¬a
29.529661
122
0.367485
dfa9cfd2366dd48ecbe94752c07d238aeae6e8c8
1,591
agda
Agda
archive/agda-1/LiteralSequent.agda
m0davis/oscar
52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb
[ "RSA-MD" ]
null
null
null
archive/agda-1/LiteralSequent.agda
m0davis/oscar
52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb
[ "RSA-MD" ]
1
2019-04-29T00:35:04.000Z
2019-05-11T23:33:04.000Z
archive/agda-1/LiteralSequent.agda
m0davis/oscar
52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb
[ "RSA-MD" ]
null
null
null
{-# OPTIONS --allow-unsolved-metas #-} module LiteralSequent where open import Sequent open import IsLiteralSequent record LiteralSequent : Set where constructor ⟨_⟩ field {sequent} : Sequent isLiteralSequent : IsLiteralSequent sequent open LiteralSequent public open import OscarPrelude private module _ where pattern ⟪_,_⟫ h s = ⟨_⟩ {h} s pattern ⟪_⟫ h = (⟨_⟩ {h} _) instance EqLiteralSequent : Eq LiteralSequent Eq._==_ EqLiteralSequent ⟪ Φ₁ ⟫ ⟪ Φ₂ ⟫ with Φ₁ ≟ Φ₂ Eq._==_ EqLiteralSequent ⟨ !Φ₁ ⟩ ⟨ !Φ₂ ⟩ | yes refl with !Φ₁ ≟ !Φ₂ Eq._==_ EqLiteralSequent _ _ | yes refl | yes refl = yes refl Eq._==_ EqLiteralSequent ⟨ Φ₁ ⟩ ⟨ Φ₂ ⟩ | yes refl | no !Φ₁≢!Φ₂ = no λ {refl → !Φ₁≢!Φ₂ refl} Eq._==_ EqLiteralSequent ⟨ Φ₁ ⟩ ⟨ Φ₂ ⟩ | no Φ₁≢Φ₂ = no λ {refl → Φ₁≢Φ₂ refl} module _ where open import HasNegation open import IsLiteralFormula instance HasNegationLiteralSequent : HasNegation LiteralSequent HasNegation.~ HasNegationLiteralSequent ⟨ atomic 𝑃 τs ╱ φˢs ⟩ = ⟨ logical 𝑃 τs ╱ φˢs ⟩ HasNegation.~ HasNegationLiteralSequent ⟨ logical 𝑃 τs ╱ φˢs ⟩ = ⟨ atomic 𝑃 τs ╱ φˢs ⟩ open import 𝓐ssertion instance 𝓐ssertionLiteralSequent : 𝓐ssertion LiteralSequent 𝓐ssertionLiteralSequent = record {} open import HasSatisfaction instance HasSatisfactionLiteralSequent : HasSatisfaction LiteralSequent HasSatisfaction._⊨_ HasSatisfactionLiteralSequent I Φ = I ⊨ sequent Φ open import HasDecidableValidation instance HasDecidableValidationLiteralSequent : HasDecidableValidation LiteralSequent HasDecidableValidationLiteralSequent = {!!}
29.462963
93
0.735387